blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
3090b50b1b2dbeb3ad015b21bfc548109034625b
5e5758c4acb2ae534508fb60289e0a11cbdd74db
/ABCB prediction/predict.py
dec06e3f950227abbd61794e01e14991ccf04cc6
[]
no_license
Dannis-ARM/FYP
49f048c10600c3614e14e7158fe3d9d5720b4a89
a723d4ec8ed7578e890e402b5d9f181f24c4562f
refs/heads/main
2023-06-17T14:29:47.676789
2021-07-02T10:17:26
2021-07-02T10:17:26
376,296,178
0
0
null
null
null
null
UTF-8
Python
false
false
4,123
py
# @Time : 2021/5/31 22:47 # @Author : CME1809103 # @IDE : PyCharm import pandas as pd import matplotlib.pyplot as plt import numpy as np import math from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import LSTM # from tensorflow.python.keras.models import Sequential # from tensorflow.python.keras.layers import Dense, Activation, LSTM # IMPORTING DATASET dataset = pd.read_excel('Data/abcb.us.xlsx',sheet_name="abcb.us",usecols=[3,4,5,6]) # CREATING OWN INDEX FOR FLEXIBILITY obs = np.arange(1, len(dataset) + 1, 1) # 1-1452 # TAKING DIFFERENT INDICATORS FOR PREDICTION OHLC_avg = dataset.mean(axis = 1) # 0-1451 #OHLC # rsi = # RSI # PLOTTING ALL INDICATORS IN ONE PLOT plt.plot(obs, OHLC_avg, 'g', label = 'OHLC avg') plt.legend(loc = 'upper right') plt.show() # PREPARATION OF TIME SERIES DATASE OHLC_avg = np.reshape(OHLC_avg.values, (len(OHLC_avg),1)) # len(OHLC_avg) = 1452 scaler = MinMaxScaler(feature_range=(0, 1)) OHLC_avg = scaler.fit_transform(OHLC_avg) # TRAIN-TEST SPLIT train_OHLC = int(len(OHLC_avg) * 0.80) train_OHLC, test_OHLC = OHLC_avg[0:train_OHLC,:], OHLC_avg[train_OHLC:len(OHLC_avg),:] # TIME-SERIES DATASET (FOR TIME T, VALUES FOR TIME T+1) import indicators trainX, trainY = indicators.new_dataset(train_OHLC, 1) # trainX.shape() (1159, 1), trainY.shape() (1159,) testX, testY = indicators.new_dataset(test_OHLC, 1) # RESHAPING TRAIN AND TEST DATA trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) # c.shape[1] col, c.shape[0] row testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) step_size = 1 # LSTM MODEL model = Sequential() model.add(LSTM(32, input_shape=(1, step_size), return_sequences = True)) model.add(LSTM(16)) model.add(Dense(1)) model.add(Activation('linear')) # MODEL COMPILING AND TRAINING import os if os.path.exists("saved_model/my_model"): print("Get model from 'saved_model/my_model'") model = tf.keras.models.load_model('saved_model/my_model') model.summary() else: model.compile(loss='mean_squared_error', optimizer='adam') # Try SGD is bad, adam is overfit??, adagrad really bad. model.fit(trainX, trainY, epochs=5, batch_size=10, verbose=2) model.save('saved_model/my_model') print("Model created") # PREDICTION trainPredict = model.predict(trainX) testPredict = model.predict(testX) # DE-NORMALIZING FOR PLOTTING trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # TRAINING RMSE trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) print('Train RMSE: %.2f' % (trainScore)) # TEST RMSE testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) print('Test RMSE: %.2f' % (testScore)) # CREATING SIMILAR DATASET TO PLOT TRAINING PREDICTIONS trainPredictPlot = np.empty_like(OHLC_avg) trainPredictPlot[:, :] = np.nan trainPredictPlot[step_size:len(trainPredict)+step_size, :] = trainPredict # CREATING SIMILAR DATASSET TO PLOT TEST PREDICTIONS testPredictPlot = np.empty_like(OHLC_avg) testPredictPlot[:, :] = np.nan testPredictPlot[len(trainPredict)+(step_size*2)+1:len(OHLC_avg)-1, :] = testPredict # DE-NORMALIZING MAIN DATASET OHLC_avg = scaler.inverse_transform(OHLC_avg) # PLOT OF MAIN OHLC VALUES, TRAIN PREDICTIONS AND TEST PREDICTIONS plt.plot(OHLC_avg, 'g', label = 'original dataset') plt.plot(trainPredictPlot, 'r', label = 'training set') plt.plot(testPredictPlot, 'b', label = 'predicted stock price/test set') plt.legend(loc = 'upper right') plt.xlabel('Time in hours') plt.ylabel('OHLC Value of ABCB.US Stocks') plt.show() # PREDICT FUTURE VALUES last_val = testPredict[-1] last_val_scaled = last_val/last_val next_val = model.predict(np.reshape(last_val_scaled, (1,1,1))) print ("Last hour Value:", np.asscalar(last_val)) print ("Next hour Value:", np.asscalar(last_val*next_val)) # print np.append(last_val, next_val)
[ "CME1809103@xmu.edu.my" ]
CME1809103@xmu.edu.my
ffa3fc919b5b7974add0481cf555fa240c603cce
631465709a9b8bef0836766e54653c5a65d1e97a
/post.py
6ead0812f33a642635d5db338df20a5ff94d4702
[ "Apache-2.0" ]
permissive
sbreitenbach/market-trends
e5ed7adea6351b92f54d3b837b56c8766cc4b2b4
4c21cf61953e4872415ca9fbc886f15bac595ee2
refs/heads/main
2023-09-01T07:02:05.053527
2023-08-15T01:42:59
2023-08-15T01:42:59
332,080,646
0
0
Apache-2.0
2023-08-15T01:43:01
2021-01-22T22:49:27
Python
UTF-8
Python
false
false
393
py
class Post: def __init__(self, id, text, upvotes, type): self.id = id self.text = text self.upvotes = upvotes self.type = type self.sentiment = None self.title = None self.tickers = [] self.url = None def is_thread(self): if(self.type == "thread"): return True else: return False
[ "scott.breitenbach@gmail.com" ]
scott.breitenbach@gmail.com
f5e3ed467b15386559fc13c23acbe01d5fa2865f
3ddda99bfed9777566f7c2cd6e1f4af035a8ca5a
/purgeQueue.py
bf9f79aff456565eb9f74aba3ca6de0d15fc72e2
[]
no_license
kirankarpurapu/TweetMap
089fba897275a1c64e878afb704c990c3361b849
264e823bb40d728e983806117007b965fc1437fc
refs/heads/master
2021-01-19T21:54:33.292062
2016-11-26T01:20:42
2016-11-26T01:20:42
74,540,699
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
import boto3 sqs = boto3.resource('sqs') queue = sqs.get_queue_by_name(QueueName = 'TweetMap') #to purge the queue queue.purge()
[ "kiran@edu.chat" ]
kiran@edu.chat
c057f5b102d9212d662b5029e51e37b64f2075d1
bad7f9df662dc156dd8a3c880f470750c741c2fe
/Sobel.py
9fd8bde5f19aeb84eaf2061a977007306b5d102b
[]
no_license
Wenarepo/HOLArepo
a41f656c8bc8da6d5299a5dcfc3ce8aff4f9c191
75d63c837052b339a9b157f5f7695d612ad8b509
refs/heads/master
2021-01-18T21:17:36.473923
2016-06-07T03:30:36
2016-06-07T03:30:36
55,083,533
0
0
null
null
null
null
UTF-8
Python
false
false
1,004
py
from SimpleCV import Camera, Display, Image import numpy as np #import sklearn as sk from sklearn import * #from scipy.sparse import * #from scipy import * from matplotlib import pylab from matplotlib import pyplot as plt import cv2 c = Camera() def foto(c): img = c.getImage() img.show() return img img = cv2.imread('L5bc.png',0) # Output dtype = cv2.CV_8U sobelx8u = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=3) # Output dtype = cv2.CV_64F. Then take its absolute and convert to cv2.CV_8U sobelx64f = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) abs_sobel64f = np.absolute(sobelx64f) sobel_8u = np.uint8(abs_sobel64f) plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray') plt.title('Original'), plt.xticks([]), plt.yticks([]) plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray') plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([]) plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray') plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([]) plt.show()
[ "anselmojara@udec.cl" ]
anselmojara@udec.cl
526f8c46e446117efd192bba50cfc4f23ac26872
6fe651c2b014f8b07f36ba64d3b55edfc135caac
/comprehension_tutorial/exercises/advanced.py
8c831cf3ece1036a2df5f5c5e01dc2e07edf8d4f
[]
no_license
aftab82/learn
55496c11beaf5e00e85b161c4ba97eea921be21b
b592e6d4f5ac6ce6f1d2448c8f21b63674dabc0f
refs/heads/master
2022-09-15T08:05:28.423468
2022-08-31T21:16:46
2022-08-31T21:16:46
250,903,399
0
0
null
null
null
null
UTF-8
Python
false
false
1,081
py
"""Advanced exercises""" from collections import namedtuple import csv import random def matrix_from_string(string): """Convert rows of numbers to list of lists.""" return [ [int(elem) for elem in line.split()] for line in string.splitlines() ] def parse_csv(file_obj): """Return namedtuple list representing data from given file object.""" csv_reader = csv.reader(file_obj) Row = namedtuple('Row', next(csv_reader)) return [Row(*values) for values in csv_reader] def get_cards(): """Create a list of namedtuples representing a deck of playing cards.""" Card = namedtuple('Card', 'rank suit') ranks = ['A'] + [str(n) for n in range(2, 11)] + ['J', 'Q', 'K'] suits = ['spades', 'hearts', 'diamonds', 'clubs'] return [Card(rank, suit) for suit in suits for rank in ranks] def shuffle_cards(deck): """Shuffles a list in-place""" random.shuffle(deck) def deal_cards(deck, count=5): """Remove the given number of cards from the deck and returns them""" return [deck.pop() for i in range(count)]
[ "aftab28@gmail.com" ]
aftab28@gmail.com
fad8169480570752dbbffc1c0bc1e2ecb4f7d03e
3d952ae35dba7c7399e9278e44f75ee884d97ff6
/exchanges/uniswap.py
76b8ed359113f7f9bb5b57c6092c76ff523c93dc
[ "MIT" ]
permissive
JoaoCampos89/0xbtc-discord-price-bot
d90eb909de18b951ade8821fc06958e815e8fd2a
6eb6839213dfb0176c0be72c2dda7193d4131750
refs/heads/master
2020-08-08T09:22:13.036779
2019-07-11T04:12:23
2019-07-11T04:12:23
213,803,946
0
0
MIT
2019-10-09T02:39:24
2019-10-09T02:39:24
null
UTF-8
Python
false
false
5,257
py
""" API for Uniswap distributed exchange (uniswap.exchange) Price info is pulled from the smart contract https://docs.uniswap.io/api/exchange """ import logging from web3 import Web3 import time from .base_exchange import BaseExchangeAPI from .uniswap_abi import exchange_abi from configuration import ETHEREUM_NODE_URL from constants import SECONDS_PER_ETH_BLOCK def wei_to_ether(amount_in_wei): return int(amount_in_wei) / 1000000000000000000.0 def ether_to_wei(amount_in_ether): return int(amount_in_ether * 1000000000000000000.0) class UniswapAPI(BaseExchangeAPI): def __init__(self, currency_symbol): super().__init__() if currency_symbol == "0xBTC": self.uniswap_exchange_address = "0x701564Aa6E26816147D4fa211a0779F1B774Bb9B" self._decimals = 8 elif currency_symbol == "XXX": self.uniswap_exchange_address = "0x0000000000000000000000000000000000000000" self._decimals = 0 else: raise RuntimeError("Unknown currency_symbol {}, need to add address to uniswap.py".format(currency_symbol)) self.currency_symbol = currency_symbol self.exchange_name = "Uniswap" self.command_names = ["uniswap"] #self.short_url = "https://bit.ly/2PnLAre" # main uniswap interface self.short_url = "http://0xbitcoin.trade" # 0xbtc version of the ui self._time_volume_last_updated = 0 self._w3 = Web3(Web3.HTTPProvider(ETHEREUM_NODE_URL)) self._exchange = self._w3.eth.contract(address=self.uniswap_exchange_address, abi=exchange_abi) async def _update_24h_volume(self, timeout=10.0): token_purchase_topic = "0xcd60aa75dea3072fbc07ae6d7d856b5dc5f4eee88854f5b4abf7b680ef8bc50f" eth_purchase_topic = "0x7f4091b46c33e918a0f3aa42307641d17bb67029427a5369e54b353984238705" transfer_topic = "0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef" remove_liquidity_topic = "0x0fbf06c058b90cb038a618f8c2acbf6145f8b3570fd1fa56abb8f0f3f05b36e8" add_liquidity_topic = "0x06239653922ac7bea6aa2b19dc486b9361821d37712eb796adfd38d81de278ca" current_eth_block = self._w3.eth.blockNumber self.volume_eth = 0 for event in self._w3.eth.getLogs({ 'fromBlock': current_eth_block - (int(60*60*24 / SECONDS_PER_ETH_BLOCK)), 'toBlock': current_eth_block - 1, 'address': self.uniswap_exchange_address}): topic0 = self._w3.toHex(event['topics'][0]) if topic0 == token_purchase_topic: address = self._w3.toChecksumAddress(event['topics'][1][-20:]) eth_amount = wei_to_ether(self._w3.toInt(event['topics'][2])) token_amount = self._w3.toInt(event['topics'][3]) / 10**self._decimals self.volume_eth += eth_amount elif topic0 == eth_purchase_topic: address = self._w3.toChecksumAddress(event['topics'][1][-20:]) token_amount = self._w3.toInt(event['topics'][2]) / 10**self._decimals eth_amount = wei_to_ether(self._w3.toInt(event['topics'][3])) self.volume_eth += eth_amount elif topic0 == transfer_topic: # skip liquidity deposits/withdrawals continue elif topic0 == remove_liquidity_topic: # skip liquidity deposits/withdrawals continue address = self._w3.toChecksumAddress(event['topics'][1][-20:]) eth_amount = wei_to_ether(self._w3.toInt(event['topics'][2])) token_amount = self._w3.toInt(event['topics'][3]) / 10**self._decimals elif topic0 == add_liquidity_topic: # skip liquidity deposits/withdrawals continue address = self._w3.toChecksumAddress(event['topics'][1][-20:]) eth_amount = wei_to_ether(self._w3.toInt(event['topics'][2])) token_amount = self._w3.toInt(event['topics'][3]) / 10**self._decimals else: logging.debug('unknown topic txhash', self._w3.toHex(event['transactionHash'])) logging.debug('unknown topic topic0', topic0) self._time_volume_last_updated = time.time() async def _update(self, timeout=10.0): # TODO: The amount of tokens 'purchased' to determine the price should # not be a fixed value (200). Ideally, load the amount of tokens # available in the contract and use a certain percentage. amount_tokens = 200 eth_amount_buy = wei_to_ether(self._exchange.functions.getEthToTokenOutputPrice(amount_tokens * 10**self._decimals).call()) eth_amount_sell = wei_to_ether(self._exchange.functions.getTokenToEthInputPrice(amount_tokens * 10**self._decimals).call()) average_eth_amount = (eth_amount_buy + eth_amount_sell) / 2 self.price_eth = average_eth_amount / amount_tokens # update volume once every hour since it (potentially) loads eth api if time.time() - self._time_volume_last_updated > 60*60: await self._update_24h_volume() if __name__ == "__main__": e = UniswapAPI('0xBTC') e.load_once_and_print_values()
[ "x1d@protonmail.com" ]
x1d@protonmail.com
5dde8324a09e3e3b34e9ab6a9e16642d78a7ba41
20a466c82abf9e24e01814ea5f4864e09566b3b1
/foundryapp/foundryapp/report/committed_production_against_requirement_report/committed_production_against_requirement_report.py
a5e217adafec362826ee67e0dbfda0c50138c026
[ "MIT" ]
permissive
umaepoch/foundryapp
5d038562b5c0da6669b0d107a68eddace3682514
f8d43e2ead4de7d6f1a6c30bc3f9c7c390f030e1
refs/heads/master
2023-08-30T05:09:12.570319
2021-11-18T12:36:19
2021-11-18T12:36:19
399,685,380
0
1
null
null
null
null
UTF-8
Python
false
false
4,383
py
# Copyright (c) 2013, yashwanth and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe import datetime def execute(filters=None): columns = getColumns() data = construct_report(filters.get("scheduled_date")) return columns, data def construct_report(filters): r_data = [] cum_so_rqd = 0 cum_pln_disp = 0 cum_uo_dlv = 0 cum_prod_com = 0 dispatch = get_dispatch() data = get_production_plan() if len(data) > 0 and len(dispatch) > 0: for i in dispatch: for d in data: if i['dispatch_item'] == d['item_code']: cum_so_rqd += d['so_requirement'] cum_pln_disp += d['planned_dispatch'] cum_uo_dlv += d['under/over_delivery'] cum_prod_com += d['committed_production'] data[data.index(d)]['cum_so'] = cum_so_rqd data[data.index(d)]['cum_dis'] = cum_pln_disp data[data.index(d)]['cum_uo'] = cum_uo_dlv data[data.index(d)]['cum_prod'] = cum_prod_com data[data.index(d)]['cum_shrt'] = cum_prod_com - cum_pln_disp cum_so_rqd = 0 cum_prod_com = 0 cum_uo_dlv = 0 cum_pln_disp = 0 if filters: date = datetime.datetime.strptime(filters, '%Y-%m-%d').strftime('%d-%m-%Y') for d in data: if d['scheduled_shipment_date'] == date: r_data.append([d['scheduled_shipment_date'], d['item_code'], d['item_name'], d['concat'], d['so_requirement'], d['planned_dispatch'], d['under/over_delivery'], d['cum_so'], d['cum_dis'], d['cum_uo'], d['committed_production'], d['shortage/excess_production'], d['cum_prod'], d['cum_shrt']]) if filters is None: for d in data: r_data.append([d['scheduled_shipment_date'], d['item_code'], d['item_name'], d['concat'], d['so_requirement'], d['planned_dispatch'], d['under/over_delivery'], d['cum_so'], d['cum_dis'], d['cum_uo'], d['committed_production'], d['shortage/excess_production'], d['cum_prod'], d['cum_shrt']]) return r_data def getColumns(): columns = [ ("Scheduled Shipment Date")+"::150", ("Dispatch Item Code")+"::150", ("Dispatch Item Name")+"::150", ("Concat")+"::150", ("SO Requirement")+"::50", ("Planned Dispatch")+"::50", ("Under/Over Delivery")+"::50", ("Cumulative for the Week - SO Required")+"::50", ("Cumulative for the Week - Planned Dispatch")+"::50", ("Cumulative for theWeek - Under/Over Delivery")+"::50", ("Committed Prodction")+"::50", ("Shortage/Excess Production")+"::50", ("Cumulative Production Comittment")+"::50", ("Cumulative Shortage/Excess Production")+"::50" ] return columns def get_production_plan(): data = [] cmp_details = frappe.db.sql("""select cmpi.week_ending, cmpi.dispatch_item, cmpi.dispatch_item_name, concat(datediff(cmpi.week_ending, '1900-01-01') + 2,cmpi.dispatch_item) as date_serial_number, cmpi.so_requirement, cmpi.container_plan_requirement ,cmpi.production_quantity_committed, cmpi.quantity_in_tonnes from `tabCommitted Production Plan Items` as cmpi join `tabCommitted Production Plan` as cmp on cmpi.parent = cmp.name where cmp.is_active=1 order by cmpi.week_ending, cmpi.dispatch_item""", as_dict = 1) print("Commited : ",cmp_details) if cmp_details != None and (len(cmp_details) > 0): for cmp in cmp_details: if cmp['week_ending']: cmp_json = { 'scheduled_shipment_date' : cmp['week_ending'].strftime("%d-%m-%Y"), 'item_code' : cmp['dispatch_item'], 'item_name' : cmp['dispatch_item_name'], 'concat' : cmp['date_serial_number'], 'so_requirement' : cmp['so_requirement'], 'planned_dispatch': cmp['container_plan_requirement'], 'under/over_delivery': cmp['container_plan_requirement'] - cmp['so_requirement'], 'committed_production': cmp['production_quantity_committed'], 'shortage/excess_production': cmp['production_quantity_committed'] - cmp['container_plan_requirement'] } data.append(cmp_json) return data def get_dispatch(): dispatch = frappe.db.sql("""select cmpi.dispatch_item from `tabCommitted Production Plan Items` as cmpi join `tabCommitted Production Plan` as cmp on cmpi.parent = cmp.name where cmp.is_active=1 group by cmpi.dispatch_item order by dispatch_item""", as_dict = 1) print("Dispatch Items : ",dispatch) if dispatch != None and (len(dispatch) > 0): return dispatch return ""
[ "jyothi@meritsystems.com" ]
jyothi@meritsystems.com
15d7aecf4a95145f8bce53ba7959fd4e048a9fed
72350cc086e70f93425640b823bc7461c7cbff46
/WIDW3T2.py
bfc82776864276eb298abf4ed9d89527e41ad788
[]
no_license
Faybeee/Session3-Homework
c1529bd4e482eebbc4e71ea34e0f32288838e25b
2bee58f255bd2667ec78db6b237b302c33ced9f6
refs/heads/main
2023-02-21T03:40:39.822766
2021-01-24T12:40:46
2021-01-24T12:40:46
332,446,268
0
0
null
null
null
null
UTF-8
Python
false
false
2,650
py
#Write a program to ask a student for their percentage mark and convert this to a grade. #The conversion will be done in a function called mark_grade #Ask the user for their target grade and print this with their mark # If their target grade > exam grade display a suitable message # If their target grade = exam grade display a suitable message # If their target grade < exam grade display a suitable message def mark_grade (permark): if permark >=90: return "A" elif permark <90 and permark >=80 : return "B" elif permark <80 and permark >=70 : return "C" elif permark <70 and permark >=60 : return "D" elif permark <60 and permark >=50 : return "E" elif permark <50 : return "FAIL" def grade_mark (want,permark): if (want == "A" or want =="a") and permark >= 90: return "achieved" elif (want == "A" or want == "a") and permark <90: return "did not achieve" elif (want == "B" or want =="b") and permark >=80 and permark <90: return "achieved" elif (want == "B" or want =="b") and permark >=90: return "exceeded" elif (want == "B" or want == "b") and permark >80: return "did not achieve" elif (want == "C" or want =="c") and permark >=70 and permark <80: return "achieved" elif (want == "C" or want =="c") and permark >=80: return "exceeded" elif (want == "C" or want == "c") and permark >70: return "did not achieve" elif (want == "D" or want == "d") and permark >= 60 and permark < 70: return "achieved" elif (want == "D" or want == "d") and permark >= 70: return "exceeded" elif (want == "D" or want == "d") and permark > 60: return "did not achieve" elif (want == "E" or want == "e") and permark >= 50 and permark < 60: return "achieved" elif (want == "E" or want == "e") and permark >= 60: return "exceeded" elif (want == "E" or want == "e") and permark > 50: return "did not achieve" print("Hi, I'm here to calculate your grade!") want = str(input("First though, what grade are you hoping for?")) permark = int(input("What % mark did you get?")) grade = mark_grade(int(permark)) wanted = grade_mark(want,permark) if wanted == "achieved": endit = "Congratulations!" elif wanted == "exceeded": endit = "OMG! CONGRATULATIONS! THAT IS EPIC!!!" elif wanted == "did not achieve": endit = "Better luck next time!" print("Your grade is", grade, "you", wanted,"the", want, "you wanted.", endit)
[ "noreply@github.com" ]
noreply@github.com
c2056bf0c275dfbda836faa8cbf3d26e801cb7a5
1cbc03603f3aad9f4eecdd341d58d2f8c910063c
/theme_10/task_03/__init__.py
01de4b6607260dae5291e6053d6acd7ec0422574
[]
no_license
omeH/studies
71925b9a2419c152d5a1b8fd07974511851449c2
96eb72e20180554c2edc25397a520cd1c5cd7347
refs/heads/master
2016-08-06T01:12:19.723251
2014-12-11T18:45:39
2014-12-11T18:45:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
25
py
__all__ = [ 'safe' ]
[ "hanulllu@gmail.com" ]
hanulllu@gmail.com
95d13e0f751a416bc4b06580bcf2b908508684b6
a1b8b807a389fd3971ac235e46032c0be4795ff1
/Repo_Files/Zips/plugin.video.streamhub/resources/lib/sources/en/watchfree.py
499eb10d07d5e83d78835d4d22adcf9be4794a51
[]
no_license
sClarkeIsBack/StreamHub
0cd5da4b3229592a4e2cf7ce3e857294c172aaba
110983579645313b8b60eac08613435c033eb92d
refs/heads/master
2020-05-23T09:09:54.898715
2020-02-29T12:15:32
2020-02-29T12:15:32
80,440,827
9
20
null
2017-10-04T07:32:52
2017-01-30T16:43:46
Python
UTF-8
Python
false
false
8,483
py
# -*- coding: utf-8 -*- ''' Covenant Add-on This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import re,urllib,urlparse,base64 from resources.lib.modules import cleantitle from resources.lib.modules import client from resources.lib.modules import proxy class source: def __init__(self): self.priority = 0 self.language = ['en'] self.domains = ['watchfree.to','watchfree.unblockall.org','www6-watchfree6-to.unblocked.lol'] self.base_link = 'http://watchfree.unblockall.org' self.base_link = 'http://www6-watchfree6-to.unblocked.lol' self.moviesearch_link = '/?keyword=%s&search_section=1' self.tvsearch_link = '/?keyword=%s&search_section=2' def movie(self, imdb, title, localtitle, aliases, year): try: query = self.moviesearch_link % urllib.quote_plus(cleantitle.query(title)) query = urlparse.urljoin(self.base_link, query) result = str(proxy.request(query, 'free movies')) if 'page=2' in result or 'page%3D2' in result: result += str(proxy.request(query + '&page=2', 'free movies')) result = client.parseDOM(result, 'div', attrs = {'class': 'item'}) title = 'watch' + cleantitle.get(title) years = ['(%s)' % str(year), '(%s)' % str(int(year)+1), '(%s)' % str(int(year)-1)] result = [(client.parseDOM(i, 'a', ret='href'), client.parseDOM(i, 'a', ret='title')) for i in result] result = [(i[0][0], i[1][0]) for i in result if len(i[0]) > 0 and len(i[1]) > 0] result = [i for i in result if any(x in i[1] for x in years)] r = [(proxy.parse(i[0]), i[1]) for i in result] match = [i[0] for i in r if title == cleantitle.get(i[1]) and '(%s)' % str(year) in i[1]] match2 = [i[0] for i in r] match2 = [x for y,x in enumerate(match2) if x not in match2[:y]] if match2 == []: return for i in match2[:5]: try: if len(match) > 0: url = match[0] ; break r = proxy.request(urlparse.urljoin(self.base_link, i), 'free movies') r = re.findall('(tt\d+)', r) if imdb in r: url = i ; break except: pass url = re.findall('(?://.+?|)(/.+)', url)[0] url = client.replaceHTMLCodes(url) url = url.encode('utf-8') return url except: return def tvshow(self, imdb, tvdb, tvshowtitle, localtvshowtitle, aliases, year): try: query = self.tvsearch_link % urllib.quote_plus(cleantitle.query(tvshowtitle)) query = urlparse.urljoin(self.base_link, query) result = str(proxy.request(query, 'free movies')) if 'page=2' in result or 'page%3D2' in result: result += str(proxy.request(query + '&page=2', 'free movies')) result = client.parseDOM(result, 'div', attrs = {'class': 'item'}) tvshowtitle = 'watch' + cleantitle.get(tvshowtitle) years = ['(%s)' % str(year), '(%s)' % str(int(year)+1), '(%s)' % str(int(year)-1)] result = [(client.parseDOM(i, 'a', ret='href'), client.parseDOM(i, 'a', ret='title')) for i in result] result = [(i[0][0], i[1][0]) for i in result if len(i[0]) > 0 and len(i[1]) > 0] result = [i for i in result if any(x in i[1] for x in years)] r = [(proxy.parse(i[0]), i[1]) for i in result] match = [i[0] for i in r if tvshowtitle == cleantitle.get(i[1]) and '(%s)' % str(year) in i[1]] match2 = [i[0] for i in r] match2 = [x for y,x in enumerate(match2) if x not in match2[:y]] if match2 == []: return for i in match2[:5]: try: if len(match) > 0: url = match[0] ; break r = proxy.request(urlparse.urljoin(self.base_link, i), 'free movies') r = re.findall('(tt\d+)', r) if imdb in r: url = i ; break except: pass url = re.findall('(?://.+?|)(/.+)', url)[0] url = client.replaceHTMLCodes(url) url = url.encode('utf-8') return url except: return def episode(self, url, imdb, tvdb, title, premiered, season, episode): try: if url == None: return url = urlparse.urljoin(self.base_link, url) result = proxy.request(url, 'tv_episode_item') result = client.parseDOM(result, 'div', attrs = {'class': 'tv_episode_item'}) title = cleantitle.get(title) premiered = re.compile('(\d{4})-(\d{2})-(\d{2})').findall(premiered)[0] premiered = '%s %01d %s' % (premiered[1].replace('01','January').replace('02','February').replace('03','March').replace('04','April').replace('05','May').replace('06','June').replace('07','July').replace('08','August').replace('09','September').replace('10','October').replace('11','November').replace('12','December'), int(premiered[2]), premiered[0]) result = [(client.parseDOM(i, 'a', ret='href'), client.parseDOM(i, 'span', attrs = {'class': 'tv_episode_name'}), client.parseDOM(i, 'span', attrs = {'class': 'tv_num_versions'})) for i in result] result = [(i[0], i[1][0], i[2]) for i in result if len(i[1]) > 0] + [(i[0], None, i[2]) for i in result if len(i[1]) == 0] result = [(i[0], i[1], i[2][0]) for i in result if len(i[2]) > 0] + [(i[0], i[1], None) for i in result if len(i[2]) == 0] result = [(i[0][0], i[1], i[2]) for i in result if len(i[0]) > 0] url = [i for i in result if title == cleantitle.get(i[1]) and premiered == i[2]][:1] if len(url) == 0: url = [i for i in result if premiered == i[2]] if len(url) == 0 or len(url) > 1: url = [i for i in result if 'season-%01d-episode-%01d' % (int(season), int(episode)) in i[0]] url = url[0][0] url = proxy.parse(url) url = re.findall('(?://.+?|)(/.+)', url)[0] url = client.replaceHTMLCodes(url) url = url.encode('utf-8') return url except: return def sources(self, url, hostDict, hostprDict): try: sources = [] if url == None: return sources url = urlparse.urljoin(self.base_link, url) result = proxy.request(url, 'link_ite') links = client.parseDOM(result, 'table', attrs = {'class': 'link_ite.+?'}) for i in links: try: url = client.parseDOM(i, 'a', ret='href') url = [x for x in url if 'gtfo' in x][-1] url = proxy.parse(url) url = urlparse.parse_qs(urlparse.urlparse(url).query)['gtfo'][0] url = base64.b64decode(url) url = client.replaceHTMLCodes(url) url = url.encode('utf-8') host = re.findall('([\w]+[.][\w]+)$', urlparse.urlparse(url.strip().lower()).netloc)[0] if not host in hostDict: raise Exception() host = host.encode('utf-8') quality = client.parseDOM(i, 'div', attrs = {'class': 'quality'}) if any(x in ['[CAM]', '[TS]'] for x in quality): quality = 'CAM' else: quality = 'SD' quality = quality.encode('utf-8') sources.append({'source': host, 'quality': quality, 'language': 'en', 'url': url, 'direct': False, 'debridonly': False}) except: pass return sources except: return sources def resolve(self, url): return url
[ "mediahubiptv@gmail.com" ]
mediahubiptv@gmail.com
00170ae8d4a933ab33ea078c5a1290a931cf032d
b292052312683fe396873ea41bcb50b6b5c0c69b
/roots.py
4beefb069595e269e0cd9fa67d7769f5a330b5e3
[]
no_license
lucas-homer/pyfund
277da2eac90412a73fb41f161554a63cc5f16f34
d82d8bfa4a3dca05e4ae793f88628e7f089df010
refs/heads/master
2021-04-15T09:20:37.722881
2018-03-22T19:29:36
2018-03-22T19:29:36
126,384,692
0
0
null
null
null
null
UTF-8
Python
false
false
851
py
import sys def sqrt(x): '''Compute square roots using the method of Heron of Alexandria. Args: x: The number for which the square root is to be computed. Returns: The square root of x. Raises: ValueError: If x is negative. ''' if x < 0: raise ValueError("Cannot compute square root " "of negative number {}".format(x)) guess = x i = 0 while guess * guess != x and i < 20: guess = (guess + x / guess) / 2.0 i += 1 return guess def main(): try: print(sqrt(9)) print(sqrt(2)) print(sqrt(-1)) print("this is never printed.") except ValueError as e: print(e, file=sys.stderr) print("Program execution continues normally here.") if __name__ == '__main__': main()
[ "lucas.homer@gmail.com" ]
lucas.homer@gmail.com
59374bff51a5f4a97d27ad97be962fd2224e9c53
a39449d094f1aeb9c7b269b7c32b03ca84462243
/src/createCustomVocab.py
b9db22f2fa9618636dfef079f58ba6023650ed86
[]
no_license
somi198/KISTI-2020-AI-Project
4714f8aebe726a14ef9d620af25435d7dada73fb
ebcc8a2f907f1ca609fd026efeca5d716f0895a7
refs/heads/master
2023-07-13T05:14:40.152542
2021-08-14T12:11:39
2021-08-14T12:11:39
320,918,545
0
0
null
null
null
null
UTF-8
Python
false
false
4,352
py
import argparse import re import sys # custom vocab dictionaly new_vocab = [] # Vocab path ## input Vocab path MecapVocab_path = "rsc/my_conf/hangul_vocab.txt" EnglishVocab_path = "rsc/my_conf/ices_eng_vocab_1000.txt" ## output Vocab path CustomVocab_path = "rsc/my_conf/ices_custom_vocab_v2.txt" ## 입력 text가 한글인지 아닌지 판단. def isHangul(text): if text[:2] == "##": text = text[2:] #Check the Python Version pyVer3 = sys.version_info >= (3, 0) if pyVer3 : # for Ver 3 or later encText = text else: # for Ver 2.x if type(text) is not unicode: encText = text.decode('utf-8') else: encText = text hanCount = len(re.findall(u'[\u3130-\u318F\uAC00-\uD7A3]+', encText)) return hanCount > 0 def add_korean(): # 전체 글에서 추출한 vocab dictionaly f = open(MecapVocab_path, 'r') lines = f.readlines() print("Total Mecab Vocab size : ", len(lines)) f.close() count = 0 for i in lines: if isHangul(i[:-1]): new_vocab.append(i) count += 1 print("Number of Hangul vocab : {}".format(count)) print("Current new_vocab size : {} (한글단어 추가)".format(len(new_vocab))) def add_english(): f = open(EnglishVocab_path, 'r') eng_lines = f.readlines() print("Total English Vocab size : ", len(eng_lines)) f.close() count = 0 for i in eng_lines[5:]: new_vocab.append(i) count += 1 print("Number of english vocab : {}".format(len(eng_lines[5:]))) print("Current new_vocab size : {} (영어 추가)".format(len(new_vocab))) def add_seperater(): new_vocab.insert(0,'[MASK]\n') new_vocab.insert(0,'[SEP]\n') new_vocab.insert(0,'[CLS]\n') new_vocab.insert(0,'[UNK]\n') new_vocab.insert(0,'[PAD]\n') print("Number of seperater : 5") print("Current new_vocab size : {} (Seperater 추가)".format(len(new_vocab))) def add_number(): count = 0 for i in range(10): new_vocab.append(str(i)+'\n') new_vocab.append("##{}\n".format(i)) count += 2 print("Number of type of number : {}".format(count)) print("Current new_vocab size : {} (숫자 추가)".format(len(new_vocab))) def add_special_char(): used_Special_Char = "+-/*÷=×±∓∘∙∩∪≅∀√%∄∃θπσ≠<>≤≥≡∼≈≢∝≪≫∈∋∉⊂⊃⊆⊇⋈∑∫∏∞x().,%#{}" count = 0 for c in used_Special_Char: new_vocab.append(c+'\n') new_vocab.append("##{}\n".format(c)) count+=2 print("Number of Special Characters : {}".format(count)) print("Current new_vocab size : {} (숫자 추가)".format(len(new_vocab))) def merge_all_vocab(): f = open(CustomVocab_path, 'w') f.write("".join(new_vocab)) f.close() def compare_shap_word(): # ##붙은것과 안붙은 것 갯수 비교 f = open(CustomVocab_path, 'r') test = f.readlines() f.close() count = 0 count2 = 0 for i in test[5:]: if i[:2] == '##': count += 1 else: count2 += 1 print("## 붙은 것 : ", count) print("## 안 붙은 것 : ", count2) def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process korean spelling check') parser.add_argument('Mecab', help='Path of file Mecab vocab') parser.add_argument('english_only', help='Path of file english vocab') parser.add_argument('--custom', default="rsc/my_conf/ices_custom_vocab_v2.txt", help='Path of file final custom vocab') parser.add_argument('--check_word', type=str2bool, default="true", help='check ##word and word') args = parser.parse_args() ## input Vocab path MecapVocab_path = args.Mecab EnglishVocab_path = args.english_only ## output Vocab path CustomVocab_path = args.custom add_korean() add_english() add_seperater() add_number() add_special_char() merge_all_vocab() if (args.check_word): compare_shap_word()
[ "saejin7694@gmail.com" ]
saejin7694@gmail.com
8be593e9228a4956a1fb34a15eadd28289e4ea8e
1405f47a6e0715f163439b034987e6e298f74429
/top/api/rest/__init__.py
4d9cc5110cbc87832c3f2ab2702336280424af59
[]
no_license
skee-t/backend
5dd7064c62615de16c3fefba34edc19e598df00d
941976d99245486790ca91e134b0cbae1a003f1e
refs/heads/master
2021-05-03T20:13:35.559147
2016-12-26T10:45:09
2016-12-26T10:45:09
69,564,111
0
0
null
null
null
null
UTF-8
Python
false
false
1,609
py
from top.api.rest.AlibabaAliqinFcFlowChargeProvinceRequest import AlibabaAliqinFcFlowChargeProvinceRequest from top.api.rest.AlibabaAliqinFcFlowChargeRequest import AlibabaAliqinFcFlowChargeRequest from top.api.rest.AlibabaAliqinFcFlowGradeRequest import AlibabaAliqinFcFlowGradeRequest from top.api.rest.AlibabaAliqinFcFlowQueryRequest import AlibabaAliqinFcFlowQueryRequest from top.api.rest.AlibabaAliqinFcSmsNumQueryRequest import AlibabaAliqinFcSmsNumQueryRequest from top.api.rest.AlibabaAliqinFcSmsNumSendRequest import AlibabaAliqinFcSmsNumSendRequest from top.api.rest.AlibabaAliqinFcTtsNumSinglecallRequest import AlibabaAliqinFcTtsNumSinglecallRequest from top.api.rest.AlibabaAliqinFcVoiceNumDoublecallRequest import AlibabaAliqinFcVoiceNumDoublecallRequest from top.api.rest.AlibabaAliqinFcVoiceNumSinglecallRequest import AlibabaAliqinFcVoiceNumSinglecallRequest from top.api.rest.AppipGetRequest import AppipGetRequest from top.api.rest.AreasGetRequest import AreasGetRequest from top.api.rest.HttpdnsGetRequest import HttpdnsGetRequest from top.api.rest.KfcKeywordSearchRequest import KfcKeywordSearchRequest from top.api.rest.TimeGetRequest import TimeGetRequest from top.api.rest.TopAuthTokenCreateRequest import TopAuthTokenCreateRequest from top.api.rest.TopAuthTokenRefreshRequest import TopAuthTokenRefreshRequest from top.api.rest.TopIpoutGetRequest import TopIpoutGetRequest from top.api.rest.TopSecretGetRequest import TopSecretGetRequest from top.api.rest.TopatsResultGetRequest import TopatsResultGetRequest from top.api.rest.TopatsTaskDeleteRequest import TopatsTaskDeleteRequest
[ "rensikun@paypalm.cn" ]
rensikun@paypalm.cn
0653972e0dd62e235f1b6c73af6da5b96e246c6f
1a812d520fa0788864cab3c6bbd4e2ba0e8872c2
/employeedataandprintthatdata.py
d97719e66d1ee36ecddc97ae0f16f35d728b4462
[]
no_license
manutdmohit/pythonprogramexamples
b6f6906a6169ad2ecd9b16d95495474d570b065e
06ac4af8ce13872bbe843175a61d7ad77e0f92b6
refs/heads/main
2023-01-14T13:14:57.468947
2020-11-25T05:39:01
2020-11-25T05:39:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
eno=int(input('Enter employee number:')) ename=input('Enter employee name:') esal=float(input('Enter employee salary:')) eaddr=input('Enter employee address:') married=bool(input('Employee married?[True/False]:')) print('Please confirm your provided information') print('Employee Number:',eno) print('Employee Name:',ename) print('Employee Salary:',esal) print('Employee Address:',eaddr) print('Employee Married?:',married)
[ "noreply@github.com" ]
noreply@github.com
961781e9a4421f843daec46bf7d27a5b190cffc6
989b3499948137f57f14be8b2c77d0610d5975e6
/python-package/daily_study/python/question_python(resolved)/chapter4_conditional_and_loops(완결)/i_is_member.py
fb8ea88f0fd87a269fb0ec00839eb849b2386979
[]
no_license
namkiseung/python_BasicProject
76b4c070934ad4cb9d16ce844efa05f64fb09ac0
460d05248b2d1431624aba960e28bece888643e4
refs/heads/master
2022-12-13T21:12:06.865241
2020-04-23T01:30:08
2020-04-23T01:30:08
142,980,920
1
1
null
2022-12-08T02:27:40
2018-07-31T07:49:17
Python
UTF-8
Python
false
false
550
py
# -*- coding: utf-8 -*- def is_member(member_list, mem): """ 리스트 member_list 와, 어떤 데이터 mem을 전달받고, mem이 member_list에 포함되어 있는지를 True/False로 반환하는 함수를 작성하자 sample in/out: is_member([1, 5, 8, 3], 3) -> True is_member([5, 8, 3], -1) -> False """ # 여기 작성 return mem in member_list if __name__ == "__main__": print is_member([1, 5, 8, 3], 3)# -> True print is_member([5, 8, 3], -1) #-> False pass
[ "rlzld100@gmail.com" ]
rlzld100@gmail.com
dd0cf2b1d4f90a284dd76c89ec61fd109ca9df93
c99a9a65f451c2af2a1985829d031a40b0c78379
/backend/run.py
aa950026058d229589ac138c3517b6ef8aebc907
[]
no_license
jianchann/GetUP
18bdaa4af3330ce643db5633462e0a4597fc84c0
b9a900713df157ff05069fc7d4a57ef446e59469
refs/heads/master
2022-12-13T00:51:12.210559
2020-03-12T21:25:14
2020-03-12T21:25:14
235,525,416
0
1
null
2022-12-11T21:33:12
2020-01-22T08:00:32
Vue
UTF-8
Python
false
false
252
py
#!/usr/bin/env python from app import app, db import os db.create_all() if __name__ == '__main__': if app.debug: app.run(host='0.0.0.0') else: port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port)
[ "jianlorenzo_chan@yahoo.com.ph" ]
jianlorenzo_chan@yahoo.com.ph
ad005e7c3c65d9d484b6e2414b855dd7605fbebe
28ae5b967328670448b47baa87c5506d573595ac
/ex.py
5c0db097d191b60fa670863c3721a47bfd4236a4
[ "Apache-2.0" ]
permissive
Kagurazaka-Hanasaka/RanmaruWorks_Git
f4ea9ae838136f5969f5be1fa39d4eaa0ae1c47d
8e327b31b1b71cb231755fe61ffee49fa2d69e69
refs/heads/master
2020-03-25T03:43:21.121098
2018-08-03T00:05:59
2018-08-03T00:05:59
143,356,493
0
0
null
null
null
null
UTF-8
Python
false
false
2,406
py
import requests, re, json, uuid, glob, sqlite3, time, gc, os, psutil from bs4 import BeautifulSoup eoltoken = "null" merge = [] hlistc = 0 for pgn in range(5): cookd = { "igneous": "89540adbd", "ipb_member_id": "2237746", "ipb_pass_hash": "d99e752060d5e11636d7e427f62a3622", "lv": "1533216215-1533216236" } excook = requests.utils.cookiejar_from_dict(cookd, cookiejar=None, overwrite=True) exhead = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8,ja;q=0.7", "Connection": "keep-alive", "Host": "exhentai.org", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36" } eol = [] hlist = [] exurl = "https://exhentai.org/?page="+ str(pgn)+ "&f_doujinshi=on&advsearch=1&f_search=language%3Achinese&f_srdd=5&f_sname=on&f_stags=on&f_sr=on&f_sh=on&f_apply=Apply+Filter" orig = requests.get(exurl, headers=exhead, cookies=excook).text if "No hits found" in orig: print("-----Crawling Queue Ends-----") break else: BSorig = BeautifulSoup(orig) table = BSorig.find("table", {"class": "itg"}) for link in table.findAll("a", href=re.compile("https://exhentai\.org/g/[0-9]{1,8}/[A-Za-z0-9]{10}/")): if "href" in link.attrs: link2 = link.attrs["href"] hlist.append(link2.split("/")[4:6]) if eoltoken in hlist: eol = hlist.index(eoltoken) hlist = hlist[eol+1:len(hlist)] eoltoken = hlist[-1] req = { "method": "gdata", "gidlist": hlist, "namespace": 1 } recl = json.loads(json.dumps(requests.post("https://api.e-hentai.org/api.php", data=json.dumps(req, ensure_ascii=False).encode("utf-8")).json(), ensure_ascii=False))['gmetadata'] for obj in recl: with open(str(uuid.uuid4())+".json", "w", encoding="UTF-8") as f: json.dump(obj, f, ensure_ascii=False) hlistc = hlistc + 1 if hlistc >4: time.sleep(5) hlistc = 0 print("-----Page "+str(pgn)+" Crawling Ends-----") print(psutil.virtual_memory()) del pgn, exurl, orig, BSorig, table, link, link2, eol, hlist, req, recl, obj, cookd, excook, exhead gc.collect() for f in glob.glob("*.json"): with open(f, "rb") as inf: merge.append(json.load(inf)) del f gc.collect() with open("fin.json", "w", encoding="UTF-8") as out: json.dump(merge, out, ensure_ascii=False, sort_keys=True)
[ "noreply@github.com" ]
noreply@github.com
c7cc16f7ebab168223dc1364d956d6a0c8612445
e56563ea34f09b2269398cb038256f070fad34b5
/py/216_Combination_Sum_III.py
7b677bdc65522e1de2d2864dc79e6f0e2db06020
[]
no_license
zymov/leetcode
95bdefa84c2643933dde3b0826c732a4b9b03431
cbf87c5a37543894054040d296741931f8c7b205
refs/heads/master
2020-03-21T23:12:17.132201
2020-02-06T04:24:11
2020-02-06T04:24:11
139,172,577
0
0
null
null
null
null
UTF-8
Python
false
false
599
py
from typing import List class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: res = [] nums = [i for i in range(1,10)] self.backtracking(nums, 0, k, n, [], res) return res def backtracking(self, nums: List[int], index: int, k: int, remain: int, comb: List[int], res: List[List[int]]): if k < 0 or remain < 0: return if remain == 0 and k == 0: res.append(comb) for i in range(index, len(nums)): self.backtracking(nums, i + 1, k - 1, remain - nums[i], comb + [nums[i]], res)
[ "eyeder@163.com" ]
eyeder@163.com
7868596997fff7f69033313b6a5b4fab5e61c586
2d8839935bb79e9190487ab0b9cf17fa97716edf
/tas/rng.py
ff6c72d9f4cc697b69f3330856b3c5fd6a19363c
[]
no_license
yuhasem/poc_utils
914ef6069f8f8b22efdffdfce182343539983c73
c45ae82f3038432611ccf3336c72e31532843f9e
refs/heads/master
2023-04-10T17:30:47.059387
2023-03-19T23:21:19
2023-03-19T23:21:19
202,916,199
0
0
null
2020-04-18T18:03:39
2019-08-17T18:06:50
Python
UTF-8
Python
false
false
4,832
py
# -*- coding: utf-8 -*- """ Created on Wed Oct 13 19:24:51 2021 @author: yuhasem """ def top(value): return value >> 16 # Every step of RNG works as seed = 0x41C64E6D * seed + 0x6073 # These lists are precomputing what happens when you repeat this multiple # times. The entry at index i is what happens when it's repeated 2^i times. # This makes computing many frames in advance more efficient. multiply = [ 0x41C64E6D, 0xC2A29A69, 0xEE067F11, 0xCFDDDF21, 0x5F748241, 0x8B2E1481, 0x76006901, 0x1711D201, 0xBE67A401, 0xDDDF4801, 0x3FFE9001, 0x90FD2001, 0x65FA4001, 0xDBF48001, 0xF7E90001, 0xEFD20001, 0xDFA40001, 0xBF480001, 0x7E900001, 0xFD200001, 0xFA400001, 0xF4800001, 0xE9000001, 0xD2000001, 0xA4000001, 0x48000001, 0x90000001, 0x20000001, 0x40000001, 0x80000001, 0x00000001, 0x00000001] add = [ 0x00006073, 0xE97E7B6A, 0x31B0DDE4, 0x67DBB608, 0xCBA72510, 0x1D29AE20, 0xBA84EC40, 0x79F01880, 0x08793100, 0x6B566200, 0x803CC400, 0xA6B98800, 0xE6731000, 0x30E62000, 0xF1CC4000, 0x23988000, 0x47310000, 0x8E620000, 0x1CC40000, 0x39880000, 0x73100000, 0xE6200000, 0xCC400000, 0x98800000, 0x31000000, 0x62000000, 0xC4000000, 0x88000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000] def advanceRng(seed, steps): i = 0 while (steps > 0): if (steps % 2): seed = (seed * multiply[i] + add[i]) & 0xFFFFFFFF steps >>= 1 i += 1 if (i > 32): break return seed class Pokemon(): def __repr__(self): return "nat: %d, [%d,%d,%d,%d,%d,%d]" % ( self.nature, self.hp_iv, self.att_iv, self.def_iv, self.spa_iv, self.spd_iv, self.spe_iv) class StaticPokemon(Pokemon): def __init__(self, seed): # The first step is the usual VBlank seed = advanceRng(seed, 2) pid = top(seed) seed = advanceRng(seed, 1) pid += top(seed) << 16 self.nature = pid % 25; seed = advanceRng(seed, 1) ivs = top(seed) self.hp_iv = ivs & 0x1F ivs >>= 5 self.att_iv = ivs & 0x1F ivs >>= 5 self.def_iv = ivs & 0x1F seed = advanceRng(seed, 1) ivs = top(seed) self.spe_iv = ivs & 0x1F ivs >>= 5 self.spa_iv = ivs & 0x1F ivs >>= 5 self.spd_iv = ivs & 0x1F class WallyRaltsPokemon(Pokemon): def __init__(self, seed): # VBlank + 2 steps to generate TID (which we don't track) seed = advanceRng(seed, 3) male = False while not male: pid = 0 seed = advanceRng(seed, 1) pid = top(seed) seed = advanceRng(seed, 1) pid += top(seed) << 16 male = ((pid & 0xf0) >> 4) > 7 self.nature = pid % 25 seed = advanceRng(seed, 1) ivs = top(seed) self.hp_iv = ivs & 0x1F ivs >>= 5 self.att_iv = ivs & 0x1F ivs >>= 5 self.def_iv = ivs & 0x1F seed = advanceRng(seed, 1) ivs = top(seed) self.spe_iv = ivs & 0x1F ivs >>= 5 self.spa_iv = ivs & 0x1F ivs >>= 5 self.spd_iv = ivs & 0x1F class WildPokemon(Pokemon): def __init__(self, seed): # The first step is one to check for Synchronize, which we don't track. seed = advanceRng(seed, 2) self.advances = 2 self.nature = top(seed) % 25 tentative_nature = -1 while tentative_nature != self.nature: self.pid = 0 seed = advanceRng(seed, 1) self.pid = top(seed) seed = advanceRng(seed, 1) self.pid += top(seed) << 16 tentative_nature = self.pid % 25 self.advances += 2 seed = advanceRng(seed, 1) ivs = top(seed) self.hp_iv = ivs & 0x1F ivs >>= 5 self.att_iv = ivs & 0x1F ivs >>= 5 self.def_iv = ivs & 0x1F seed = advanceRng(seed, 1) ivs = top(seed) self.spe_iv = ivs & 0x1F ivs >>= 5 self.spa_iv = ivs & 0x1F ivs >>= 5 self.spd_iv = ivs & 0x1F self.advances += 2 def feebasTilesFromSeed(seed): tiles = [] i = 0 while i <= 5: seed = (0x41c64e6d * seed + 0x3039) % (1 << 32) tile = (top(seed) & 0xffff) % 0x1bf if tile == 0: tile = 447 if tile >= 4: i += 1 tiles.append(tile) return tiles def rareCandies(seed, size=6): candies = 0 for i in range(size): seed = advanceRng(seed, 1) if (top(seed) % 10 != 0): continue seed = advanceRng(seed, 1) item = top(seed) % 100 if (item >= 50 and item < 60): candies += 1 return candies
[ "lilyuhas@gmail.com" ]
lilyuhas@gmail.com
49593cfef8190bf81ad085564003ab1b4b9ef236
7b7b0a813ad2008d08c32b67aa71e442a592fc38
/pytorch_wrapper/modules/sequence_basic_cnn_encoder.py
e9890f4aa161f51e15de4877514a7f19d14a9755
[ "MIT" ]
permissive
HM102/pytorch-wrapper
312f259b0ce2645c1ec60b3c8513b4532e5018d8
ff95fb1c7153c67307f1b80349cca15e2c1ab0bf
refs/heads/master
2020-07-03T14:20:50.540972
2019-08-11T11:07:59
2019-08-11T11:07:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,441
py
import torch import torch.nn as nn import torch.nn.functional as F from .. import functional as pwF class SequenceBasicCNNEncoder(nn.Module): """ Basic CNN Encoder for sequences (https://arxiv.org/abs/1408.5882). """ def __init__(self, time_step_size, input_activation=None, kernel_heights=(1, 2, 3, 4, 5), out_channels=300, pre_pooling_activation=nn.ReLU, pooling_function=F.max_pool1d, post_pooling_activation=None, post_pooling_dp=0): """ :param time_step_size: Time step size. :param input_activation: Callable that creates the activation used on the input. :param kernel_heights: Tuple containing filter heights. :param out_channels: Number of filters for each filter height. :param pre_pooling_activation: Callable that creates the activation used before pooling. :param pooling_function: Callable that performs a pooling function before the activation. :param post_pooling_activation: Callable that creates the activation used after pooling. :param post_pooling_dp: Callable that performs a pooling function before the activation. """ super(SequenceBasicCNNEncoder, self).__init__() self._min_len = max(kernel_heights) self._kernel_heights = kernel_heights self._input_activation = input_activation() if input_activation is not None else input_activation self._convolutional_layers = nn.ModuleList( modules=[nn.Conv1d(in_channels=time_step_size, out_channels=out_channels, kernel_size=kernel_height) for kernel_height in kernel_heights] ) if pre_pooling_activation is not None: self._pre_pooling_activation = pre_pooling_activation() else: self._pre_pooling_activation = None self._pooling_function = pooling_function if post_pooling_activation is not None: self._post_pooling_activation = post_pooling_activation() else: self._post_pooling_activation = None self._output_dp_layer = nn.Dropout(post_pooling_dp) if post_pooling_dp > 0 else None def forward(self, batch_sequences): """ :param batch_sequences: 3D Tensor (batch_size, sequence_length, time_step_size) containing the sequence. :return: 2D Tensor (batch_size, len(kernel_heights) * out_channels) containing the encodings. """ if self._min_len > batch_sequences.shape[1]: batch_sequences = pwF.pad(batch_sequences, self._min_len - batch_sequences.shape[1], dim=1, pad_at_end=False) convolutions = [conv(batch_sequences.transpose(1, 2)) for conv in self._convolutional_layers] if self._pre_pooling_activation is not None: convolutions = [self._pre_pooling_activation(c) for c in convolutions] pooled = [self._pooling_function(c, c.shape[2]).squeeze(2) for c in convolutions] if self._post_pooling_activation is not None: pooled = [self._post_pooling_activation(p) for p in pooled] if len(self._kernel_heights) > 1: output = torch.cat(pooled, dim=1) else: output = pooled[0] if self._output_dp_layer is not None: output = self._output_dp_layer(output) return output
[ "jkoutsikakis@gmail.com" ]
jkoutsikakis@gmail.com
9cfe618f17d438eedbd354b0d2ae50576ab8c448
ca0ef0a1ed47d75e651fcd7109852c0723a10a3d
/msfalcon_beaker.py
32b7841b9f9380046793f98e7159a8c25d59a4e6
[ "MIT" ]
permissive
stancikcom/test
e4066004cbea3802e07f0273d1a90d379375f058
4d05aae7cfc6a7f48c103d32910b0514af955088
refs/heads/master
2016-09-11T12:25:37.887674
2015-01-15T20:24:44
2015-01-15T20:24:44
29,316,442
0
0
null
null
null
null
UTF-8
Python
false
false
1,059
py
from beaker.middleware import SessionMiddleware def simple_app(environ, start_response): # Get the session object from the environ session = environ['beaker.session'] # Check to see if a value is in the session user = 'logged_in' in session # Set some other session variable session['user_id'] = 10 start_response('200 OK', [('Content-type', 'text/plain')]) return ['User is logged in: %s' % user] # Configure the SessionMiddleware session_opts = { 'session.type': 'file', 'session.cookie_expires': True, } import falcon class Resource(object): def on_get(self, req, resp): # resp.body = '{"message": "Hello world!"}' session = req.env['beaker.session'] print session resp.content_type = 'text/plain' resp.body = 'Hello world!' resp.status = falcon.HTTP_200 api = application = falcon.API() api.add_route('/',Resource()) wsgi_app = SessionMiddleware(api, session_opts) import bjoern bjoern.listen(wsgi_app, host="127.0.0.1", port=8080) bjoern.run()
[ "info@stancik.com" ]
info@stancik.com
4fedb92719068acc90ab3c0697b69d31c3078c67
3e60b7d48d101d6a8057d4b8c5f10cb3d494a98a
/addinvoice.py
c7bc679fb992f372eae9311cb2434def4121d162
[]
no_license
suraj-adewale/SmartAccount
15ebdd08954ead735e91b87c4702f4597674181e
cc7c0ca04b9a7a2da0cd0c6f8106041dc90e7ad3
refs/heads/main
2023-06-10T05:33:44.878772
2021-07-01T22:33:59
2021-07-01T22:33:59
378,435,258
1
0
null
null
null
null
UTF-8
Python
false
false
22,419
py
from PyQt5.QtWidgets import QMainWindow,QHBoxLayout,QAction,QTabWidget,QCompleter,QTableWidgetItem,QCalendarWidget,QTableWidget,QAbstractItemView, QApplication,QDialog, QPushButton,QLabel,QMessageBox,\ QWidget,QVBoxLayout,QGridLayout,QComboBox,QLineEdit,QScrollArea,QDateEdit,QButtonGroup,QFormLayout,QTextEdit,QSpinBox from PyQt5 import QtCore, QtNetwork,QtWidgets from PyQt5.QtGui import QIcon,QPixmap,QPainter from PyQt5.QtCore import Qt, QDate,QDateTime,pyqtSignal from customers import Customers from addcustomer import AddCustomer import sys, json,base64 from babel.numbers import format_currency,parse_decimal#,parse_number from functools import partial class ImageWidget(QWidget): def __init__(self, imagePath, parent): super(ImageWidget, self).__init__(parent) self.picture = QPixmap(imagePath) def paintEvent(self, event): painter = QPainter(self) painter.drawPixmap(0, 0, self.picture) class ClickableLineEdit(QLineEdit): clicked=pyqtSignal() def mousePressEvent(self,event): if event.button()==Qt.LeftButton: self.clicked.emit() class Invoice(QMainWindow): def __init__(self,dic, parent=None): super(Invoice, self).__init__(parent) self.title = 'Invoice' self.left = (self.x()+230) self.top = (self.x()+50) self.width = 900 self.height = 550 self.edit_data=dic self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) usertype=json.load(open("db/usertype.json", "r")) if usertype=='Administrator': self.ip='localhost' if usertype=='User': self.ip=json.load(open("db/ipaddress.json", "r")) #self.setStyleSheet(open("qss/mainstyle.qss", "r").read()) self.InvoiceContent() self.setCentralWidget(self.widget) self.show() def window_close(self): self.close() def InvoiceContent(self): self.widget=QWidget() self.widgetDic={} self.balance=self.comborow=0 self.row=10 #self.row_col='00' self.rowCounts=self.row self.amt_placeholder=format_currency(0,'NGN', locale='en_US') self.requireddata=json.load(open("db/addinvoice.json", "r")) self.MessageBox=QMessageBox() mainlayout=QVBoxLayout() self.widget.setLayout(mainlayout) billinglayout=QHBoxLayout() mainlayout.addLayout(billinglayout,2) billingtab=QTabWidget() invoicetab=QTabWidget() billinglayout.addWidget(billingtab,3) billinglayout.addWidget(invoicetab,2) self.billing = QWidget() billingform=QFormLayout() billingform.setHorizontalSpacing(50) self.billing.setLayout(billingform) self.billing.setStatusTip("Enter supplier information") self.invoice = QWidget() invoiceform=QFormLayout() invoiceform.setHorizontalSpacing(50) self.invoice.setLayout(invoiceform) self.invoice.setStatusTip("Enter supplier information") billingtab.addTab(self.billing,"Billing") invoicetab.addTab(self.invoice,"Invoice") customerlayout=QGridLayout() self.customer=QComboBox() self.customer.setEditable(True) self.customerbtn=QPushButton("") self.customeredit=QPushButton("") customerlayout.addWidget(self.customer,0,0,0,4) customerlayout.addWidget(self.customerbtn,0,4) customerlayout.addWidget(self.customeredit,0,5) self.customerbtn.setIcon(QIcon('image/icon/team.png')) self.customerbtn.setIconSize(QtCore.QSize(20,20)) self.customeredit.setIcon(QIcon('image/icon/boy.png')) self.customeredit.setIconSize(QtCore.QSize(15,15)) self.customerbtn.clicked.connect(self.CustomerWindow) self.customeredit.clicked.connect(self.CustomerEdit) self.address=QTextEdit() self.address.setMaximumHeight(50) self.po_no=QLineEdit() self.customertax=QComboBox() self.customertax.addItems(['Default','Exempt']) createfromlayout=QGridLayout() self.createfrom=QComboBox() self.createfrombtn=QPushButton("") createfromlayout.addWidget(self.createfrom,0,0,0,4) createfromlayout.addWidget(self.createfrombtn,0,4) self.date() termlayout= QGridLayout() self.term=QComboBox() self.term.addItems(["Pay in days","COD"]) self.spinbox = QSpinBox() self.spinbox.setValue(30) termlayout.addWidget(self.term,0,0) termlayout.addWidget(self.spinbox,0,1) self.salesperson=QComboBox() self.salesperson.setEditable(True) self.invoice_no=QLineEdit() self.invoice_no.setReadOnly(True) self.createfrom.addItems(["[ New Invoice]","Existing Invoice"]) self.invoice_number=self.requireddata['invoiceno'] self.invoice_no=QLineEdit(self.invoice_number) self.salesaccount=QComboBox() self.salesaccount.setEditable(True) self.receivableaccount=QComboBox() self.receivableaccount.setEditable(True) self.customerdata=self.requireddata['customerdata'] self.customer.addItem("") self.customer.currentTextChanged.connect(self.CustomerChange) row=0 for key in sorted(self.customerdata): self.customer.insertItem(row,self.customerdata[key][0]) row=row+1 self.revenueaccounts=self.requireddata['revenueaccounts'] self.salesaccount.addItem("") self.salesaccount.insertItem(0,'-- Create a new account --') row=1 completerlist=[] for key in self.revenueaccounts: self.salesaccount.insertItem(row,self.revenueaccounts[key][2]) row=row+1 completerlist.append(self.revenueaccounts[key][2]) completer = QCompleter(completerlist) self.salesaccount.setCompleter(completer) self.receivables=self.requireddata['receivableaccounts'] self.receivableaccount.addItem("") self.receivableaccount.insertItem(0,'-- Create a new account --') row=1 completerlist=[] for key in self.receivables: self.receivableaccount.insertItem(row,self.receivables[key][2]) row=row+1 completerlist.append(self.receivables[key][2]) completer = QCompleter(completerlist) self.receivableaccount.setCompleter(completer) billingform.addRow("Customer:",customerlayout) billingform.addRow("Billing to:",self.address) billingform.addRow("Customer PO No:",self.po_no) billingform.addRow("Customer Tax:",self.customertax) invoiceform.addRow("Create from:",createfromlayout) invoiceform.addRow("Date:",self.dateedit1) invoiceform.addRow("Terms:",termlayout) invoiceform.addRow("Salesperson:",self.salesperson) invoiceform.addRow("Invoice No:",self.invoice_no) invoiceform.addRow("Revenue Account:",self.salesaccount) invoiceform.addRow("Receivables Account:",self.receivableaccount) self.addJournalTable() textlayout=QGridLayout() buttonlayout=QGridLayout() mainlayout.addLayout(self.tablelayout,5) mainlayout.addLayout(textlayout,2) mainlayout.addLayout(buttonlayout,1) self.comment=QTextEdit() self.comment.setPlaceholderText('[Enter invoice note]') self.nocomment=QTextEdit('Please contact us for more information about payment options.') self.privatecomment=QTextEdit() self.privatecomment.setPlaceholderText('[Enter internal notes]') self.footnote=QTextEdit('Thank you for your business.') commentgtab=QTabWidget() commentgtab.addTab(self.comment,"Comments") commentgtab.addTab(self.privatecomment,"Private comments") commentgtab.addTab(self.nocomment,"No comment") commentgtab.addTab(self.footnote,"Foot Comments") totalform=QFormLayout() totalform.setVerticalSpacing(5) self.subtotal=QLabel(self.amt_placeholder) self.tax=QLabel(self.amt_placeholder) self.total=QLabel() self.total.setText('<b>'+self.amt_placeholder+'</b>') totalform.addRow('Subtotal:',self.subtotal) totalform.addRow('Tax:',self.tax) totalform.addRow('<b>Total</b>',self.total) textlayout.addWidget(commentgtab,0,0,1,2) textlayout.addWidget(QLabel(''),0,2) textlayout.addLayout(totalform,0,3) self.record=QPushButton('Record') self.cancel=QPushButton('Cancel') self.help=QPushButton('Help') self.record.clicked.connect(self.Save_record) self.cancel.clicked.connect(self.close) buttonlayout.addWidget(QLabel(),0,0,1,3) buttonlayout.addWidget(self.record,0,4) buttonlayout.addWidget(self.cancel,0,5) buttonlayout.addWidget(self.help,0,6) if self.edit_data !={}: edit_data=self.edit_data['0'] date=edit_data['0'][10] year=(date.split('-'))[0] month=(date.split('-'))[1] day=(date.split('-'))[2] self.dateedit1.setDate(QDate(int(year),int(month),int(day))) self.customer.setCurrentText(edit_data['0'][6]) self.address.setText(edit_data['0'][7]) self.invoice_no.setText(edit_data['0'][9]) self.salesperson.setCurrentText(edit_data['0'][11]) self.receivableaccount.setCurrentText(edit_data['0'][1]) self.salesaccount.setCurrentText(edit_data['0'][4]) edit_data=self.edit_data['1'] self.UpdateRows(edit_data) self.comborow=len(edit_data) self.unitprice_changed_function(self.comborow-1) self.comborow=len(self.edit_data) if self.comborow>10: self.rowCounts=(self.comborow+5) self.table.setRowCount(self.rowCounts) self.table.resizeRowsToContents() def CustomerWindow(self): self.customerlist=Customers(self) self.customerlist.show() def CustomerEdit(self): self.customeredit=AddCustomer({}) self.customeredit.show() def CustomerChange(self,obj): try: index=str(self.customer.currentIndex()) address=(self.customerdata.get(index))[7] except Exception as e: address='' self.address.setText(address) def date(self): date = QDate() currentdate=date.currentDate() self.dateedit1 = QDateEdit() self.setObjectName("dateedit") self.dateedit1.setDate(currentdate) self.dateedit1.setDisplayFormat('dd/MM/yyyy') self.dateedit1.setCalendarPopup(True) def addJournalTable(self): JournalHeader=[" Qty "," Item "," Description "," Unit Price "," Tax "," Total ",""] self.tablelayout=QVBoxLayout() self.table =QTableWidget() self.table.setColumnCount(7) #Set three columns self.table.setRowCount(self.row) self.table.setEditTriggers(QAbstractItemView.AllEditTriggers) #self.table.setSizePolicy(QtWidgets.QSizePolicy.Expanding,QtWidgets.QSizePolicy.Minimum) self.table.horizontalHeader().setSectionResizeMode(QtWidgets.QHeaderView.Stretch) header = self.table.horizontalHeader() header.setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(1, QtWidgets.QHeaderView.Stretch) header.setSectionResizeMode(2, QtWidgets.QHeaderView.Stretch) header.setSectionResizeMode(3, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(4, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(5,1*(QtWidgets.QHeaderView.Stretch)//2) header.setSectionResizeMode(6, QtWidgets.QHeaderView.ResizeToContents) self.tablelayout.addWidget(self.table) self.table.clicked.connect(self.AddJournals) self.table.resizeRowsToContents() self.table.setSelectionMode(QAbstractItemView.MultiSelection) self.table.setEditTriggers(QAbstractItemView.NoEditTriggers) self.table.setShowGrid(True) self.table.setHorizontalHeaderLabels(JournalHeader) self.table.horizontalHeaderItem(0).setToolTip("Click on any row to add an account") self.table.horizontalHeaderItem(1).setToolTip("") self.table.horizontalHeaderItem(2).setToolTip("") self.table.horizontalHeaderItem(6).setToolTip("Click to delete a row") def AddJournals(self,item): currRow=(item.row()) col=item.column() if col==0: qty=QComboBox() qty.setEditable(True) item=QComboBox() item.setEditable(True) description=QComboBox() description.setEditable(True) unitprice=QLineEdit() tax=QComboBox() tax.setEditable(True) total=QLabel() image = ImageWidget('image/icon/clear.png', self) unitprice.setPlaceholderText(self.amt_placeholder) total.setText(self.amt_placeholder) if self.comborow not in self.widgetDic: widgetList=[] widgetList.append(qty) widgetList.append(item) widgetList.append(description) widgetList.append(unitprice) widgetList.append(tax) widgetList.append(total) self.widgetDic[self.comborow]=widgetList (self.widgetDic[self.comborow][3]).textChanged.connect(partial(self.unitprice_changed_function,self.comborow)) (self.widgetDic[self.comborow][0]).currentTextChanged.connect(partial(self.unitprice_changed_function,self.comborow)) self.table.setCellWidget(self.comborow,0,qty) self.table.setCellWidget(self.comborow,1,item) self.table.setCellWidget(self.comborow,2, description) self.table.setCellWidget(self.comborow,3,unitprice) self.table.setCellWidget(self.comborow,4,tax) self.table.setCellWidget(self.comborow,5, total) self.table.setCellWidget(self.comborow, 6, image) self.comborow=self.comborow+1 if self.comborow==self.rowCounts: self.rowCounts+5 self.rowCounts=(self.rowCounts+5) self.table.setRowCount(self.rowCounts) self.table.resizeRowsToContents() if col==6: self.DeleteRow(currRow) def DeleteRow(self,row): if row in self.widgetDic.keys(): self.widgetDic.pop(row) invoicedata={} index=0 for key in sorted(self.widgetDic): data_list=[] for col in range(6): if col==0: data_list.append((self.widgetDic[key][0]).currentText()) if col==1: data_list.append((self.widgetDic[key][1]).currentText()) if col==2: data_list.append((self.widgetDic[key][2]).currentText()) if col==3: data_list.append((self.widgetDic[key][3]).text()) if col==4: data_list.append((self.widgetDic[key][4]).currentText()) if col==5: data_list.append((self.widgetDic[key][5]).text()) invoicedata[index]=data_list index=index+1 self.UpdateRows(invoicedata) self.comborow=self.comborow-1 if self.rowCounts>10: self.rowCounts=(self.rowCounts-1) self.table.setRowCount(self.rowCounts) self.table.resizeRowsToContents() self.unitprice_changed_function(row-1) def UpdateRows(self,invoicedata): self.table.clearContents() self.widgetDic={} for keys in sorted(invoicedata): try: widgetList=[] qty=QComboBox() qty.setEditable(True) item=QComboBox() item.setEditable(True) description=QComboBox() description.setEditable(True) unitprice=QLineEdit() tax=QComboBox() tax.setEditable(True) total=QLabel() unitprice.setPlaceholderText(self.amt_placeholder) qty.setCurrentText(invoicedata[keys][0]) item.setCurrentText(str(invoicedata[keys][1])) description.setCurrentText(invoicedata[keys][2]) unitprice.setText(invoicedata[keys][3]) tax.setCurrentText(str(invoicedata[keys][4])) total.setText(invoicedata[keys][5]) self.table.setCellWidget(int(keys),0,qty) self.table.setCellWidget(int(keys),1,item) self.table.setCellWidget(int(keys),2, description) self.table.setCellWidget(int(keys),3,unitprice) self.table.setCellWidget(int(keys),4,tax) self.table.setCellWidget(int(keys),5, total) image = ImageWidget('image/icon/clear.png', self) self.table.setCellWidget(int(keys), 6, image) widgetList.append(qty) widgetList.append(item) widgetList.append(description) widgetList.append(unitprice) widgetList.append(tax) widgetList.append(total) self.widgetDic[int(keys)]=widgetList unitprice.textChanged.connect(partial(self.unitprice_changed_function,int(keys))) qty.currentTextChanged.connect(partial(self.unitprice_changed_function,int(keys))) except Exception as e: print(e) def unitprice_changed_function(self,currrow): if currrow==-1: return False try: float((self.widgetDic[currrow][0]).currentText()) except Exception as e: (self.widgetDic[currrow][0]).setCurrentText('') try: float((self.widgetDic[currrow][3]).text()) except Exception as e: (self.widgetDic[currrow][3]).setText('') try: qty=(self.widgetDic[currrow][0]).currentText() unitprice=(self.widgetDic[currrow][3]).text() if qty=="" or unitprice=="": return False total_=float(qty)*float(unitprice) (self.widgetDic[currrow][5]).setText(format_currency(total_,'NGN', locale='en_US')) total=0 for row in self.widgetDic: widget=self.widgetDic[row] if (widget[3]).text()=="" or (widget[3]).text()=="": return False qty=(widget[0]).currentText() unitprice=(widget[3]).text() total=total+float(qty)*float(unitprice) self.subtotal.setText(format_currency(total,'NGN', locale='en_US')) #self.tax=QLabel(self.amt_placeholder) self.total.setText('<b>'+format_currency(total,'NGN', locale='en_US')+'</b>') except Exception as e: if (self.widgetDic[currrow][5]).text()=="": return False val1=(((self.widgetDic[currrow][5]).text()).split('₦'))[1] val2=((((self.total.text()).split('₦'))[1]).split('</b>'))[0] val=float(val2)-float(val1) (self.widgetDic[currrow][5]).clear() self.subtotal.setText(format_currency(val,'NGN', locale='en_US')) #self.tax=QLabel(self.amt_placeholder) self.total.setText('<b>'+format_currency(val,'NGN', locale='en_US')+'</b>') def Save_record(self): date1=self.dateedit1.date() year1=str(date1.year()) day1=str(date1.day()) if len(str(date1.day()))==2 else '0'+str(date1.day()) month1=str(date1.month()) if len(str(date1.month()))==2 else '0'+str(date1.month()) date=(year1+'-'+month1+'-'+day1) date2=self.dateedit1.date() year2=str(date2.year()) day2=str(date2.day()) if len(str(date2.day()))==2 else '0'+str(date2.day()) month2=str(date2.month()) if len(str(date2.month()))==2 else '0'+str(date2.month()) duedate=(year2+'-'+month2+'-'+day2) userdb=open("db/user.json", "r") user=json.load(userdb) journaltype="Sales" address=(self.address.toPlainText()) customer=self.customer.currentText() memo="Sales;"+customer ref="SLS[AUTO]" revenueaccounts=self.salesaccount.currentText() receivables=self.receivableaccount.currentText() customerdata=self.customer.currentText() if revenueaccounts=="" or receivables=="" or customerdata=="": return False salesaccount=self.revenueaccounts[str(self.salesaccount.currentIndex()-1)] receivableaccount=self.receivables[str(self.receivableaccount.currentIndex()-1)] customer=self.customerdata[str(self.customer.currentIndex())] invoiceDic={} total=0 subtotal=[] for row in self.widgetDic: amnt=(self.widgetDic[row][5]).text() amnt=amnt.split('₦') invoicelist=[] invoicelist.append(receivableaccount[2]) invoicelist.append(customer[8]) invoicelist.append(customer[0]) invoicelist.append(address) invoicelist.append(ref) invoicelist.append(self.invoice_no.text()) #invoicelist.append(int(self.requireddata['invoiceid'])+counts) invoicelist.append(date) invoicelist.append(duedate) invoicelist.append(self.salesperson.currentText()) invoicelist.append((self.widgetDic[row][0]).currentText()) invoicelist.append((self.widgetDic[row][1]).currentText()) invoicelist.append((self.widgetDic[row][2]).currentText()) invoicelist.append((self.widgetDic[row][3]).text()) invoicelist.append(str(float(parse_decimal(amnt[1],locale='en_US')))) invoicelist.append("Not Paid") invoicelist.append(user) invoicelist.append(salesaccount[2]) invoiceDic[row]=invoicelist total=total+float(parse_decimal(amnt[1],locale='en_US')) subtotal.append(float(parse_decimal(amnt[1],locale='en_US'))) postDic={} rw=0 for sub in subtotal: postList=[] postList.append(salesaccount[2]) postList.append(str(sub)) postList.append('Credit') postList.append(ref) postList.append(journaltype) postList.append(memo) postList.append(date) postList.append(user) postDic[rw]=postList rw=rw+1 postList=[] postList.append(receivableaccount[2]) postList.append(str(total)) postList.append('Debit') postList.append(ref) postList.append(journaltype) postList.append(memo) postList.append(date) postList.append(user) postList.append(invoiceDic) postDic[rw]=postList postDic=json.dumps(postDic) postDic=base64.b64encode(postDic.encode()) data = QtCore.QByteArray() data.append("action=postjournal&") data.append("invoice=invoice&") data.append("journal={}".format(postDic.decode("utf-8"))) url = "http://{}:5000/journal".format(self.ip) req = QtNetwork.QNetworkRequest(QtCore.QUrl(url)) req.setHeader(QtNetwork.QNetworkRequest.ContentTypeHeader, "application/x-www-form-urlencoded") self.nam = QtNetwork.QNetworkAccessManager() self.nam.finished.connect(self.handleResponse) #return False self.nam.post(req, data) def handleResponse(self, reply): er = reply.error() if er == QtNetwork.QNetworkReply.NoError: bytes_string = reply.readAll() json_ar = json.loads(str(bytes_string, 'utf-8')) #data = json_ar['form'] if json_ar['19']=='Success': journaltype=json_ar['30'] ref=json_ar['25'] date=json_ar['35'] self.MessageBox.setWindowTitle('Post Journal') self.MessageBox.setText("") self.MessageBox.setInformativeText("{j} Journal with Ref: {r} was succesfully posted\non {d}. " "\n\nClick Ok to exit.".format(j=journaltype,r=ref,d=date)) self.MessageBox.setIcon(self.MessageBox.Information) self.MessageBox.setStandardButtons(self.MessageBox.Ok) self.MessageBox.show() self.invoice_no.setText(str(int(self.invoice_no.text())+1)) result = self.MessageBox.exec_() if result==self.MessageBox.Ok: pass else: QMessageBox.critical(self, 'Databese Connection ', "\n {} \n".format(reply.errorString())) if __name__ == '__main__': app = QApplication(sys.argv) ex = Invoice({}) ex.show() sys.exit(app.exec_())
[ "noreply@github.com" ]
noreply@github.com
4f2d7e9a93ccb1c73bfa12146ad9add11e573b27
d07a26e443538c5fc6b0711aff6e233daef79611
/LearnPythonGuessGame.py
e3a41526a4b12716d27871e2464f08f1855a7ba6
[]
no_license
Zahidsqldba07/Python-learn
bd602d490ee53f8e5331e70f92919ca315944ff9
ffc1608695ed6c7c3d2b6789913e34235dcf468e
refs/heads/master
2023-03-16T02:18:19.155281
2020-09-19T09:12:48
2020-09-19T09:12:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
secret_word = "respect" guess = '' guess_count = 0 guess_limit = 7 out_of_guesses = False while guess != secret_word and not (out_of_guesses): if guess_count < guess_limit: guess = input("What's the secret word?: ") guess_count += 1 if guess != secret_word: print("Hint: " + secret_word[int(guess_count)-1]) else: out_of_guesses = True if out_of_guesses: print("All out of guesses, better luck next time!") exit() else: print("Nice work!") exit()
[ "noreply@github.com" ]
noreply@github.com
6bd1bc226750e4fc2f58126a18698d94ddae4c97
605caafb8fd74e713d0a95014c559cede9033e8f
/selenium/copy_courses.py
cf6723011800c93e888f9d7a0a5d23bef93c8ea1
[]
no_license
cbaca90/blackboard
ed0f2e66f29337a75aa0a8a412edd4b457517e44
93f1b1f60884eac9603596256b14e8cf339f2901
refs/heads/master
2023-08-12T03:45:09.150444
2021-09-21T14:41:44
2021-09-21T14:41:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
from auth import * import time from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains def copy_courses(driver): with open('copy_courses.txt', 'r') as copy_list: copy_line = copy_list.read().splitlines() for copy in copy_line: source, destination = copy.split("\t") driver.get("https://courses.cscc.edu/webapps/blackboard/execute/copy_content?navItem=copy_course_content_exists&target=yes&type=course") source_field = driver.find_element_by_id("sourceCourseId") source_field.click() source_field.clear() source_field.send_keys(source) driver.implicitly_wait(1) destination_field = driver.find_element_by_id("destinationCourseId") destination_field.click() destination_field.clear() destination_field.send_keys(destination) driver.find_element_by_id("bottom_Submit").click() driver.implicitly_wait(3) driver.execute_script("selectAll(false, true);return false;") body = driver.find_element_by_css_selector('body') body.click() body.send_keys(Keys.CONTROL+Keys.END) driver.find_element_by_id("copyLinkToCourseFilesAndCopiesOfContent").click() #driver.find_element_by_id("bottom_Submit").click() driver.execute_script("document.getElementById('bottom_Submit').click();") driver.implicitly_wait(5) try: print(driver.find_element_by_id("goodMsg1").text) print("Success: "+source+" into "+destination) except: print("Failed: "+source+" into "+destination) def main(): driver = login() copy_courses(driver) logout(driver) main()
[ "hcrites@cscc.edu" ]
hcrites@cscc.edu
3b475b2198f533613949bc998bef4a4c42ea826f
5eb13a4e16bd195e9ef823021bc296a747ff98bb
/pbsetq4.py
3ae1819bfbf979e447b978bf7e4af69530947dcc
[]
no_license
Santosh2108/Python
59fff6d744ce4a1992489c43d7bacbe45a869a2a
b486fc18417d5463852a4f06eeb922aa2f648f6b
refs/heads/master
2020-03-22T11:22:29.245458
2018-07-12T10:37:41
2018-07-12T10:37:41
139,967,012
0
0
null
null
null
null
UTF-8
Python
false
false
772
py
#A) finding area of the sphere r = int(raw_input('Enter the radius of the sphere: ')) area=(4/3.0)*3.14*(r**3) print ('the area of the sphere is',area ) #B) Wholesale rate coverprice=24.95 discount=40/100.0 shippingcost=3 additional=0.75 count=60 discountprice=coverprice*discount totalprice=(coverprice-discountprice)*count total= totalprice+shippingcost+(count-1)*additional print ('price for 60 books',total ) #C) Time calculation timeleft = 6 * 3600 + 52 *60 easy = 2 * (8 * 60 + 15 ) fast = 3 * (7 * 60 + 12 ) totaltime = easy + fast + timeleft hours = totaltime/ 3600 remainingseconds= totaltime % 3600 minutes = remainingseconds /60 seconds = remainingseconds % 60 print ('Hours:',hours) print ('minutes:', minutes) print ('seconds:', seconds)
[ "noreply@github.com" ]
noreply@github.com
5ca34cd011e6668c0b56e664aa619380e5b92585
7d0f2252623d58de13d6c2b4bdb62f789e237aad
/tempimage.py
63b2148fbd466c62d2f3b9ee71df52629a8795d6
[]
no_license
orakelet/Drivhuset
51d4270189065546d7e8d603e2147e3623abe00d
f7f03827179fb29e116f8dd8565351058882284b
refs/heads/master
2020-03-28T20:36:56.335258
2018-07-24T19:15:37
2018-07-24T19:15:37
149,087,536
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
# import the necessary packages import uuid import os import time class TempImage: def __init__(self, basePath="/home/pi/OneDrive/Ute", ext=".jpg"): # construct the file path dateString = time.strftime("%Y%m%d-%H%M%S") self.path = "{base_path}/{date_String}{ext}".format(base_path=basePath, date_String=dateString, ext=ext) def cleanup(self): # remove the file os.remove(self.path)
[ "bjorn@steine.me" ]
bjorn@steine.me
4965e4de4a5b88bbbd49f754a5922043ebf947f4
c4076305e57b18fed25c3ad08f71cba263b8ded1
/ordinaryPython36/migrations/0011_feed_last_updated.py
379b49b0cf1e83b81f763b583d9c22bd1b15deb9
[]
no_license
ruslandzh61/TerraNews_Backend
498b04a0267ae49c852a76880efd02f753863902
9b781b8fb1bec0627c4bc19d250f5dfe69997ca5
refs/heads/master
2021-03-13T03:53:20.994479
2019-02-19T01:47:39
2019-02-19T01:47:39
84,026,935
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-16 11:55 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ordinaryPython36', '0010_articletrain'), ] operations = [ migrations.AddField( model_name='feed', name='last_updated', field=models.DateTimeField(null=True), ), ]
[ "dzhumakaliev_r@auca.kg" ]
dzhumakaliev_r@auca.kg
b7f9e19bc7036222cb812b05a20b982377dc3a8c
1147d91ae3552dfa72632727469c136ada3a7e8d
/src/Plot.py
65c89e1b02a637672c2923464248ed41a29aaa1a
[]
no_license
StephanJon/Plot-Graph-Interpolation
3e8d23226640cd1e7b6f98e849a9d086af856034
0dd0339eed7fe99873a3f757ec6614c65a312bca
refs/heads/master
2020-04-03T03:55:43.030744
2019-03-16T20:23:58
2019-03-16T20:55:34
154,998,532
0
0
null
null
null
null
UTF-8
Python
false
false
1,150
py
## @file Plot.py # @author Stephanus Jonatan # @date February 20, 2018 from CurveADT import * import matplotlib.pyplot as win ## @brief Returns a x-y graph. # @details Data points are in sequences X and Y. # @param X is a sequence filled with x data points # @param Y is a sequence filled with y data points def PlotSeq(X, Y): if len(X) != len(Y): raise SeqSizeMismatch("The sequences are not the same size") win.plot(X, Y, 'b') win.xlabel("x-axis") win.ylabel("y-axis") win.show() ## @brief Returns a x-y graph of curve c. # @details plots c at n equally spaced points # @param c is a curve of CurveT # @param n is the number of points inbetween each plotted data point of c def PlotCurve(c, n): interval = (c.maxD() - c.minD()) / n X_data = [] Y_data = [] if c.order() == 1: for i in range(c.minD(), c.maxD(), interval): Y_data.append(c.eval(i)) elif c.order() == 2: for i in range(c.minD(), c.maxD(), interval): Y_data.append(c.eval(i)) X_data += range(c.minD(), c.maxD(), interval) PlotSeq(X_data, Y_data)
[ "brianjonatan@DESKTOP-EH98R4U.localdomain" ]
brianjonatan@DESKTOP-EH98R4U.localdomain
4c38981263972d95636d6e02fdba40dbd8f2c5a8
0f4cd79db1379dc151e74400b6fc6a79d5b52d08
/work06/code/server.py
3eda8298462d5eed64997dd7e199f250b574a1ff
[]
no_license
Detect-er/Coursework
3cdffe84a61029e31420a4d89341208937520d02
91061dc0b2bed021d092e3da933e716c026ba838
refs/heads/master
2021-03-22T17:37:39.847713
2020-06-13T03:03:56
2020-06-13T03:03:56
247,388,020
3
2
null
2020-03-22T13:32:24
2020-03-15T02:29:43
C
UTF-8
Python
false
false
1,211
py
from socket import * from time import ctime HOST = '127.0.0.1' PORT = 4567 BUFSIZ = 1024 ADDR = (HOST,PORT) filename = "/mnt/ext4scull" #1、创建服务端的socket对象 tcpSerSock = socket(AF_INET,SOCK_STREAM) #2、绑定一个ip和端口 tcpSerSock.bind(ADDR) #3、服务器端一直监听是否有客户端进行连接 tcpSerSock.listen(5) while True: print('waiting for connection...') # 4、如果有客户端进行连接、则接受客户端的连接 tcpCliSock, addr = tcpSerSock.accept() #返回客户端socket通信对象和客户端的ip print('...connnecting from:', addr) while True: # 5、客户端与服务端进行通信 data = tcpCliSock.recv(BUFSIZ).decode() if not data: break print("From client: %s"%data) # 6、从filename文件中读取scull设备的信息 with open(filename) as f: content = f.read() f.close() # 7、服务端给客户端回消息 tcpCliSock.send(('the time is: [%s]\ntemperature is: %s\nhumidity is: %s' % ( ctime(), content.split()[0], content.split()[1])).encode()) # 8、关闭socket对象 tcpCliSock.close() tcpSerSock.close()
[ "noreply@github.com" ]
noreply@github.com
1817dddcfb6a350fe4323472755486725543c750
d70db722710bccf7a834e8e4acdb376b151b20a1
/apps/finances/models.py
0f4b847dc96b1d4ee9872b62f624905c17cde98f
[]
no_license
intentaware/Vader
b0d433f640b244d592126b2713506d214dc1d287
54d5d799beab1fc5cef99fb90d4e50e00720bfe0
refs/heads/master
2021-01-20T07:07:11.393929
2017-12-06T19:16:53
2017-12-06T19:16:53
30,995,526
0
1
null
null
null
null
UTF-8
Python
false
false
6,356
py
import shortuuid from django.db import models from django.utils.text import slugify, Truncator from django.contrib.postgres.fields import JSONField from django_extensions.db.fields import ShortUUIDField from apps.common.models import * from apps.common.utils.money import convert_to_cents from .mixins import Stripe, CURRENCY_CHOICES class BasePaymentModel(Stripe, TimeStamped): """Basic Payment Model, inherits Stripe model, will be used for multiple Attributes: amount (Decimal): total amount charged to customer attempted_on (Time): time on which the charge was attempted attempts (Int): Number of times we tried to charge charged_on (Time): If charge was succesful, populate the field with current time gateway_response (Json): Response from the server is_paid (Bool): if charge was succesful service_charges (Decimal): Service charges if any, amount is inclusive of service_charges taxes (Decimal): Taxes if any, Note: amount is inclusive of taxes """ amount = models.DecimalField(default=0.00, max_digits=20, decimal_places=4) currency = models.CharField( max_length=4, choices=CURRENCY_CHOICES, default='USD' ) attempts = models.IntegerField(default=0) #service charges service_charges = models.DecimalField( default=0.00, max_digits=20, decimal_places=4 ) taxes = models.DecimalField(default=0.0, max_digits=20, decimal_places=4) #total_amount = models.DecimalField(default=0.00, max_digits=20, decimal_places=4) # extra timestamps attempted_on = models.DateTimeField(blank=True, null=True) charged_on = models.DateTimeField(blank=True, null=True) # json mapped response from stripe gateway_response = JSONField(default={}) is_paid = models.BooleanField(default=False) class Meta: abstract = True @property def line_items_total(self): return self.amount - self.service_charges - self.taxes class Invoice(BasePaymentModel): stripe_id = models.CharField( max_length=256, blank=True, null=True, help_text='id obtained from stripe' ) company = models.ForeignKey('companies.Company', related_name='invoices') class Module(TimeStamped): [CORE, DMP, REPORTING] = range(3) SEGMENT_CHOICES = [ (CORE, 'Core'), (DMP, 'Data Management Platform'), (REPORTING, 'Reporting'), ] name = models.CharField(max_length=128, help_text='The name of the module') segment = models.IntegerField( choices=SEGMENT_CHOICES, default=CORE, help_text='The segment it is part of' ) def __unicode__(self): return self.name class Plan(TimeStamped, Stripe): [UNTIL_EXPIRY, DAY, WEEK, MONTH, YEAR] = range(5) INTERVAL_CHOICES = [ (UNTIL_EXPIRY, 'untill expiry'), (DAY, 'day'), (WEEK, 'week'), (MONTH, 'month'), (YEAR, 'year'), ] amount = models.DecimalField(default=0.00, max_digits=20, decimal_places=2) currency = models.CharField( max_length=4, choices=CURRENCY_CHOICES, default='USD' ) name = models.CharField(max_length=128) interval = models.IntegerField( choices=INTERVAL_CHOICES, default=UNTIL_EXPIRY ) modules = models.ManyToManyField(Module, through='finances.PlanModule') limit_campaigns = models.IntegerField( default=0, help_text='0 means unlimited' ) limit_impressions = models.IntegerField( default=0, help_text='0 means unlimited' ) stripe_id = ShortUUIDField(blank=True, null=True) def __unicode__(self): return self.name def save(self, *args, **kwargs): """Override the default save to hook the plans with Stripe. Args: *args: arguments, normally plain arguments **kwargs: Keyword arguments Returns: name (obj): Django Plan model object """ plan = None sd = self.stripe_dictionary if sd and self.stripe_id: try: plan = self.stripe_plan if int(plan.amount) != convert_to_cents( self.amount ) or self.currency.lower() != plan.currency: print 'not equal, creating new account' self.stripe_id = shortuuid.uuid() self.id = None self.create_stripe_plan() except self._stripe.error.InvalidRequestError: self.create_stripe_plan() return super(Plan, self).save(*args, **kwargs) class Meta: ordering = ['amount'] def create_stripe_plan(self, *args, **kwargs): return self._stripe.Plan.create(**self.stripe_dictionary) @property def stripe_plan(self): return self._stripe.Plan.retrieve(self.stripe_id) def features(self): from itertools import groupby modules = Module.objects.all().values('id', 'name', 'segment') plan_modules = self.modules.all().values('id', 'name', 'segment') for m in modules: if m in plan_modules: m['is_included'] = True else: m['is_included'] = False doc = dict() for k, v in groupby(modules, lambda x: x['segment']): doc[Module.SEGMENT_CHOICES[k][1]] = list(v) return doc @property def stripe_dictionary(self): doc = None if not self.interval == 0: doc = { 'id': self.stripe_id, 'name': '{name} ({currency})'.format( name=self.name, currency=self.currency ), 'amount': convert_to_cents(self.amount), 'currency': self.currency, 'interval': self.INTERVAL_CHOICES[self.interval][1], 'statement_descriptor': Truncator( 'IA: {name}'.format( name=self.name ) ).chars(22) } return doc class PlanModule(TimeStamped): plan = models.ForeignKey(Plan) module = models.ForeignKey(Module) class Meta: unique_together = ['plan', 'module']
[ "yousuf.jawwad@gmail.com" ]
yousuf.jawwad@gmail.com
ed1d3892b3a5accf4bd2915df77884af4342a114
6a233770f9adec1c1258b493b5bd66d89f2c902a
/add_data.py
e16817d9ae9a405d3afb92d29035548211eac9c0
[]
no_license
lionandbull/Movie-website-django
a13085701bfe4d30e4012c450c0e919c8936ec94
aa8c43e5eb9d9bcdfc9cffc3d2fa9f06d8f7d12d
refs/heads/master
2020-03-27T16:41:38.310421
2018-10-03T21:44:26
2018-10-03T21:44:26
146,800,333
2
1
null
null
null
null
UTF-8
Python
false
false
2,701
py
from imdbpie import Imdb import sqlite3 def execute_sql(s): con = sqlite3.connect('movie.db') with con: cur = con.cursor() cur.execute(s) def single_quote(s): if len(s) == 0: return 'None' if s.find('\'') != -1: return s.replace("\'", "\'\'") else: return s movie_list = [] movie_genres = {} actor_set = {} with open('data.csv') as f: for row in f.readlines()[1:]: columns = row.split(',') movie_id = columns[0].split('/')[4] genres = columns[1][:-1] movie_list.append(movie_id) movie_genres[movie_id] = genres imdb = Imdb() movie_count = 0 for movie_id in movie_list: try: title = imdb.get_title(movie_id) sql = ( '''INSERT INTO movie_movie VALUES (\'{}\',\'{}\',\'{}\',\'{}\',\'{}\',\'{}\',\'{}\',\'{}\',\'{}\')'''.format( movie_id, single_quote(str(title['base']['title'])), title['base']['year'], title['base']['runningTimeInMinutes'], movie_genres[movie_id], title['ratings']['rating'], single_quote(title['base']['image']['url']), single_quote(str(title['plot']['outline']['text'])), single_quote(str(imdb.get_title_videos(movie_id)['videos'][0]['encodings'][0]['play'])) )) execute_sql(sql) movie_count += 1 print("Insert movie: " + movie_id, movie_count) except Exception as e: print('Movie Insert Failure: ' + movie_id, e) continue actors = imdb.get_title_credits(movie_id) actor_length = len(actors['credits']['cast']) print('Add Actors: ', end='') for actor in actors['credits']['cast'][:5 if actor_length > 5 else actor_length]: actor_id = actor['id'].split('/')[2] try: if actor_id not in actor_set: sql = ('INSERT INTO movie_actor VALUES (\'{}\',\'{}\',\'{}\')'.format( actor_id, single_quote(str(actor['name'])), single_quote(str(actor['image']['url'])))) execute_sql(sql) actor_set[actor_id] = '' print(actor_id + ' success; ', end='') else: print(actor_id + ' existed; ', end='') sql = ( 'INSERT INTO movie_act(actorid_id, movieid_id) VALUES (\'{}\',\'{}\')'.format(actor_id, movie_id)) execute_sql(sql) except Exception as e: print(actor_id + ' failure', e, '; ', end='') print('\n')
[ "liuweixi0819@gmail.com" ]
liuweixi0819@gmail.com
5bc3cd7e613d2f19a2b9afeab49fed7008c3a986
4a344e17523c960a46e0d1d443044dae2505a2bc
/pages/contacts/GroupList.py
06ceb11c258b01b773f57891dad1426816a0463a
[]
no_license
JordMo/andfetion_ui
99e024a12bde7b5ae36b6ba8ee0054f2e482bf2c
e05d7c1362a4543aa31c39326fb3690d2f7e38fb
refs/heads/master
2023-05-25T18:51:15.289265
2019-09-06T10:47:28
2019-09-06T10:47:28
206,772,795
0
0
null
2023-05-22T22:17:00
2019-09-06T10:41:26
Python
UTF-8
Python
false
false
30,769
py
from appium.webdriver.common.mobileby import MobileBy from selenium.common.exceptions import NoSuchElementException from library.core.BasePage import BasePage from library.core.TestLogger import TestLogger #import preconditions import time class GroupListPage(BasePage): """群组列表""" ACTIVITY = 'com.cmcc.cmrcs.android.ui.activities.GroupChatListActivity2' __locators = { '移除成员_标题':(MobileBy.ID,'com.chinasofti.rcs:id/title'), '搜索标签分组成员':(MobileBy.ID,'com.chinasofti.rcs:id/contact_search_bar'), '刪除_标签名':(MobileBy.ID,'com.chinasofti.rcs:id/ib_label_del'), '星标图标': (MobileBy.ID, 'com.chinasofti.rcs:id/iv_star'), '星标': (MobileBy.ID, 'com.chinasofti.rcs:id/star'), "电话号码":(MobileBy.ID,'com.chinasofti.rcs:id/tv_phone'), "语音通话": (MobileBy.ID, 'com.chinasofti.rcs:id/tv_voice_call'), "视频通话": (MobileBy.ID, 'com.chinasofti.rcs:id/tv_video_call'), "分享名片": (MobileBy.ID, 'com.chinasofti.rcs:id/btn_share_card'), "邀请使用": (MobileBy.ID, 'com.chinasofti.rcs:id/tv_invitation_to_use'), "发送_邀请":(MobileBy.ID,'com.android.mms:id/right_btn'), "信息邀请":(MobileBy.ID,'com.android.mms:id/msg_content'), "修改标签名称":(MobileBy.ID,"com.chinasofti.rcs:id/label_toolbar_title"), "标签名称框":(MobileBy.ID,'com.chinasofti.rcs:id/edit_label_group_name'), "确定3":(MobileBy.ID,"com.chinasofti.rcs:id/tv_label_done"), "移除成员_标题":(MobileBy.ID,'com.chinasofti.rcs:id/title'), "多方电话提示框": (MobileBy.XPATH, "//*[@text='多方电话']"), "飞信电话": (MobileBy.XPATH, "//*[@text='飞信电话']"), "多方视频": (MobileBy.XPATH, "//*[@text='多方视频']"), "多方视频图标": (MobileBy.XPATH, "//*[@text='多方视频']"), '多方通话_图标':(MobileBy.ID,'com.chinasofti.rcs:id/action_multicall'), '分组联系人':(MobileBy.ID,'com.chinasofti.rcs:id/action_setting'), '分组联系人_标题':(MobileBy.ID,'com.chinasofti.rcs:id/title'), '富媒体面板': (MobileBy.ID, 'com.chinasofti.rcs:id/ll_rich_panel'), '返回': (MobileBy.ID, 'com.chinasofti.rcs:id/left_back'), '群聊': (MobileBy.ID, 'com.chinasofti.rcs:id/contact_name'), '新建群组': (MobileBy.ID, 'com.chinasofti.rcs:id/menu_add_btn'), '搜索群组': (MobileBy.XPATH, '//*[contains(@resource-id,"search")]'), 'com.chinasofti.rcs:id/fragment_container': (MobileBy.ID, 'com.chinasofti.rcs:id/fragment_container'), '群列表': (MobileBy.ID, 'com.chinasofti.rcs:id/recyclerView'), '列表项': (MobileBy.ID, 'com.chinasofti.rcs:id/rl_group_list_item'), '列表项首字母': (MobileBy.ID, 'com.chinasofti.rcs:id/contact_index'), '群名': (MobileBy.ID, 'com.chinasofti.rcs:id/contact_name'), '滚动条字符': (MobileBy.XPATH, '//*[@resource-id="com.chinasofti.rcs:id/contact_index_bar_container"]/*'), '标题新建分组': (MobileBy.ID, 'com.chinasofti.rcs:id/label_toolbar_title'), '确定': (MobileBy.ID, 'com.chinasofti.rcs:id/tv_sure'), '为你的分组创建一个名称': (MobileBy.ID, 'com.chinasofti.rcs:id/tv_sub_title'), '请输入标签分组名称': (MobileBy.ID, 'com.chinasofti.rcs:id/edit_group_name'), '通讯录': (MobileBy.ID, 'com.chinasofti.rcs:id/tvContact'), '标签分组': (MobileBy.ID, 'com.chinasofti.rcs:id/second_item'), '新建分组':(MobileBy.XPATH,'//*[@text="新建分组"]'), '知道了':(MobileBy.ID,'com.chinasofti.rcs:id/btn_cancel'), '设置':(MobileBy.ID,'com.chinasofti.rcs:id/iv_label_setting'), '删除标签':(MobileBy.XPATH,'//*[@text="删除标签"]'), '移除成员':(MobileBy.XPATH,'//*[@text="移除成员"]'), '标签名称':(MobileBy.XPATH,'//*[@text="标签名称"]'), '刪除按钮':(MobileBy.ID,'com.chinasofti.rcs:id/btn_ok'), 'back_contact':(MobileBy.ID,'com.chinasofti.rcs:id/back'), '联系人列表': (MobileBy.ID, 'com.chinasofti.rcs:id/contact_list_item'), 'back_gouppage':(MobileBy.ID,'com.chinasofti.rcs:id/rl_label_left_back'), "back_contact2":(MobileBy.ID,'com.chinasofti.rcs:id/label_group_left_back'), 'back_newpage':(MobileBy.ID,'com.chinasofti.rcs:id/iv_back'), 'back_settings': (MobileBy.ID, 'com.chinasofti.rcs:id/label_setting_left_back'), 'aaa':(MobileBy.XPATH,'//*[@text="aaa"]'), 'bbb': (MobileBy.XPATH, '//*[@text="bbb"]'), '添加成员':(MobileBy.XPATH,'//*[@text="添加成员"]'), '添加成员菜单': (MobileBy.ID, 'com.chinasofti.rcs:id/tv_first_colum'), '群发信息': (MobileBy.ID, 'com.chinasofti.rcs:id/tv_second_colum'), '多方电话': (MobileBy.ID, 'com.chinasofti.rcs:id/tv_third_colum'), '多方视频': (MobileBy.ID, 'com.chinasofti.rcs:id/tv_fourth_colum'), '大佬1': (MobileBy.ID, 'com.chinasofti.rcs:id/contact_name'), '大佬3':(MobileBy.XPATH,'//*[@text="大佬3"]'), '大佬2': (MobileBy.ID, 'com.chinasofti.rcs:id/title'), '搜索或输入手机号':(MobileBy.XPATH,"//*[@text='搜索或输入号码']"), '搜索框-搜索结果':(MobileBy.ID, 'com.chinasofti.rcs:id/contact_list_item'), '选择联系人':(MobileBy.ID,"com.chinasofti.rcs:id/title"), '清空搜索框': (MobileBy.ID, 'com.chinasofti.rcs:id/iv_delect'), '已选择的联系人': (MobileBy.ID, 'com.chinasofti.rcs:id/hor_contact_selection'), '分组联系人-姓名': (MobileBy.ID, 'com.chinasofti.rcs:id/group_member_name'), '分组联系人-电话号码': (MobileBy.ID, 'com.chinasofti.rcs:id/group_member_number'), '移除-已选择联系人': (MobileBy.ID, 'com.chinasofti.rcs:id/image_text'), '选择和通讯录联系人':(MobileBy.ID,'com.chinasofti.rcs:id/text_hint'), '删除-搜索':(MobileBy.ID,'com.chinasofti.rcs:id/iv_delect'), '联系人头像':(MobileBy.ID,'com.chinasofti.rcs:id/contact_icon'), '允许':(MobileBy.XPATH,'//*[@text="允许"]'), '和飞信测试':(MobileBy.ID,'com.chinasofti.rcs:id/tv_title_department'), '和通讯本人': (MobileBy.ID, ' com.chinasofti.rcs:id/tv_name_personal_contactlist'), '中软国际科技服务有限公司':(MobileBy.XPATH,'//*[@text="中软国际科技服务有限公司"]'), '广州': (MobileBy.XPATH, '//*[@text=" 广州"]'), '和通讯联系人': (MobileBy.ID,'com.chinasofti.rcs:id/img_icon_contactlist'), '我已阅读': (MobileBy.ID,'com.chinasofti.rcs:id/btn_check'), '已阅读_确定': (MobileBy.ID,'com.chinasofti.rcs:id/dialog_btn_ok'), '群发_输入框': (MobileBy.ID,'com.chinasofti.rcs:id/et_message'), '发送': (MobileBy.ID,'com.chinasofti.rcs:id/ib_send'), '标签设置': (MobileBy.ID, 'com.chinasofti.rcs:id/label_setting_toolbar_title'), '表情按钮': (MobileBy.ID,"com.chinasofti.rcs:id/ib_expression"), '表情_微笑': (MobileBy.XPATH,'//*[@text="[微笑1]"]'), '已转短信送达': (MobileBy.XPATH,'//*[@text="已转短信送达"]'), '添加图片': (MobileBy.ID,'com.chinasofti.rcs:id/ib_pic'), '选择图片': (MobileBy.ID,'com.chinasofti.rcs:id/iv_select'), '图片发送': (MobileBy.ID,'com.chinasofti.rcs:id/button_send'), '发送失败': (MobileBy.ID,'com.chinasofti.rcs:id/imageview_msg_send_failed'), '成员头像': (MobileBy.ID,'com.chinasofti.rcs:id/avator'), "确定_可用": (MobileBy.XPATH,'//*[@text="确定"]'), "版本更新": (MobileBy.ID,'com.chinasofti.rcs:id/dialog_title'), "以后再说": (MobileBy.ID,"com.chinasofti.rcs:id/btn_cancel"), '立即更新': (MobileBy.ID,"com.chinasofti.rcs:id/btn_ok"), '搜索': (MobileBy.ID,"com.chinasofti.rcs:id/edit_query"), '索引字母容器': (MobileBy.ID, 'com.chinasofti.rcs:id/contact_index_bar_container'), } @TestLogger.log("修改标签名称") def update_label_name(self,name='bbb'): time.sleep(1) self.click_element(self.__locators['标签名称']) time.sleep(1) self.click_element(self.__locators['标签名称框']) time.sleep(1) self.input_text(self.__locators['标签名称框'],name) time.sleep(1) self.click_sure_element() time.sleep(1) @TestLogger.log("移除按钮") def click_move_label(self): time.sleep(1) self.click_element(self.__locators['移除成员']) time.sleep(1) @TestLogger.log("清空搜索框") def clear_input_box(self): time.sleep(1) self.click_element(self.__locators['清空搜索框']) time.sleep(1) @TestLogger.log("清空搜索框") def is_element_present(self, locator='清空搜索框'): """判断元素是否存在,默认清空搜索框""" time.sleep(1) return self._is_element_present(self.__locators[locator]) @TestLogger.log() def sure_icon_is_checkable(self): """确定按钮是否可点击""" return self._is_clickable(self.__class__.__locators['确定']) @TestLogger.log("点击已选择联系人头像") def click_selected_contacts(self): time.sleep(1) self.click_element(self.__class__.__locators['已选择的联系人']) time.sleep(1) @TestLogger.log("删除输入标签名称") def delete_label_name(self, name='bbb'): time.sleep(1) self.click_element(self.__locators['标签名称']) time.sleep(1) self.click_element(self.__locators['标签名称框']) time.sleep(1) self.input_text(self.__locators['标签名称框'], name) time.sleep(1) self.click_element(self.__locators['刪除_标签名']) time.sleep(1) @TestLogger.log("标签名称") def click_label_name(self): time.sleep(1) self.click_element(self.__locators['标签名称']) time.sleep(1) @TestLogger.log("点击设置") def click_settings_button(self): time.sleep(1) self.click_element(self.__locators['设置']) time.sleep(1) @TestLogger.log("点击群发信息") def click_send_message_to_group(self): time.sleep(1) self.click_element(self.__locators['群发信息']) time.sleep(1) @TestLogger.log("多方通话_图标") def click_mult_call_icon(self): time.sleep(1) self.click_element(self.__locators['多方通话_图标']) time.sleep(1) @TestLogger.log("点击分组_图标") def click_divide_group_icon(self): time.sleep(1) self.click_element(self.__locators['分组联系人']) time.sleep(1) @TestLogger.log('返回') def click_back(self): self.click_element(self.__locators['返回']) @TestLogger.log('点击创建群') def click_create_group(self): self.click_element(self.__locators['新建群组']) @TestLogger.log('搜索群') def click_search_input(self): self.click_element(self.__locators['搜索群组']) @TestLogger.log('判断列表是否存在群XXX') def is_group_in_list(self, name): groups = self.mobile.list_iterator(self.__locators['群列表'], self.__locators['列表项']) for group in groups: if group.find_elements(MobileBy.XPATH, '//*[@resource-id="com.chinasofti.rcs:id/contact_name" and ' + '@text="{}"]'.format(name)): return True return False @TestLogger.log('点击群') def click_group(self, name): if self.is_group_in_list(name): self.click_element((MobileBy.XPATH, '//*[@resource-id="com.chinasofti.rcs:id/contact_name" and ' + '@text="{}"]'.format(name))) else: raise NoSuchElementException('找不到群:{}'.format((MobileBy.XPATH, '//*[@resource-id="com.chinasofti.rcs:id/contact_name" and ' + '@text="{}"]'.format(name)))) @TestLogger.log('等待群聊列表页面加载') def wait_for_page_load(self, timeout=8, auto_accept_alerts=True): self.wait_until( condition=lambda d: self._is_element_present(self.__locators['新建群组']), timeout=timeout, auto_accept_permission_alert=auto_accept_alerts ) @TestLogger.log('创建群聊') def create_group_chats_if_not_exits(self, name, members_list): """ 导入群聊数据 :param members_list: :param name: :return: """ self.click_search_input() from pages import GroupListSearchPage group_search = GroupListSearchPage() group_search.input_search_keyword(name) if group_search.is_group_in_list(name): group_search.click_back() else: group_search.click_back() self.click_create_group() from pages import SelectContactPage select_page = SelectContactPage() select_page.search_and_select_contact(*members_list) from pages import BuildGroupChatPage build_page = BuildGroupChatPage() build_page.create_group_chat(name) from pages import ChatWindowPage chat = ChatWindowPage() if chat.is_tips_display(): chat.directly_close_tips_alert() chat.wait_for_page_load() chat.click_back1() @TestLogger.log() def click_label_grouping(self): """点击标签分组""" self.click_element(self.__class__.__locators['标签分组']) @TestLogger.log() def open_contacts_page(self): from pages.contacts.Contacts import ContactsPage """切换到标签页:通讯录""" self.click_element(self.__locators['通讯录']) ContactsPage().click_sim_contact() @TestLogger.log() def check_if_contains_element(self,text="确定"): '''检查指定元素是否存在,默认是确定按钮''' return self.page_should_contain_element(self.__locators[text]) @TestLogger.log("点击确定") def click_sure_element(self): time.sleep(2) if self._is_element_present(self.__class__.__locators['确定']): self.click_element(self.__class__.__locators['确定']) else: self.click_element(self.__class__.__locators['确定3']) @TestLogger.log("点击某个联系人") def click_contact_element(self,text='大佬3'): for i in range(4): time.sleep(2) if self._is_element_present(self.__class__.__locators[text]): self.click_element(self.__class__.__locators[text]) return True else: self.page_up() return False @TestLogger.log("点击允许权限") def click_allow_button(self): time.sleep(2) if self._is_element_present(self.__class__.__locators['允许']): self.click_element(self.__class__.__locators['允许']) return True @TestLogger.log("点击新建分组") def click_new_group(self): self.click_element(self.__class__.__locators['新建分组']) @TestLogger.log("点击星标") def click_star_icon(self): self.click_element(self.__class__.__locators['星标图标']) @TestLogger.log("点击通讯录星标") def click_contact_star_icon(self): self.click_element(self.__class__.__locators['星标']) @TestLogger.log("点击输入框") def click_input_element(self): self.click_element(self.__class__.__locators['请输入标签分组名称']) @TestLogger.log("分享名片") def click_share_button(self): time.sleep(1) self.click_element(self.__class__.__locators['分享名片']) time.sleep(1) @TestLogger.log("邀请使用") def click_innvation_button(self): time.sleep(1) if self._is_element_present(self.__class__.__locators['邀请使用']): self.click_element(self.__class__.__locators['邀请使用']) time.sleep(1) self.click_element(self.__class__.__locators['发送_邀请']) time.sleep(2) if self._is_element_present(self.__class__.__locators['信息邀请']): self.driver.background_app(seconds=10) self.driver.launch_app() time.sleep(1) return True else: return False return True @TestLogger.log("发送_邀请") def click_send_innvation_button(self): time.sleep(1) self.click_element(self.__class__.__locators['发送_邀请']) time.sleep(1) @TestLogger.log("点击搜索框") def click_search_box(self,text='搜索或输入手机号'): self.click_element(self.__class__.__locators[text]) @TestLogger.log("查看删除按钮是否存在") def page_should_contain_element1(self, locator="删除-搜索"): return self.page_should_contain_element(self.__locators[locator]) @TestLogger.log("输入搜索内容") def input_search_text(self,text='dalao2'): self.input_text(self.__class__.__locators['搜索或输入手机号'], text) @TestLogger.log("搜索分组成员") def search_menber_text(self,text='dalao2'): self.input_text(self.__class__.__locators['搜索标签分组成员'], text) @TestLogger.log("输入内容") def input_content(self,text='祝一路顺风幸福美满'): self.input_text(self.__class__.__locators['请输入标签分组名称'],text) # @TestLogger.log("输入内容") # def inputing_content(self,text): # self.input_text(self.__class__.__locators['请输入标签分组名称'],text) @TestLogger.log("获取标签分组输入框文本") def get_text_of_lablegrouping_name(self): return self.get_text(self.__class__.__locators['请输入标签分组名称']) @TestLogger.log('使用坐标点击') def click_coordinate(self, x=1/2, y=15/16): width = self.driver.get_window_size()["width"] height = self.driver.get_window_size()["height"] print("width : ",width,height) x_start = width*x y_end = height*y self.tap_coordinate([(x_start, y_end)]) @TestLogger.log('删除分组标签') def delete_group(self, name='祝一路顺风幸福美满'): if self.is_text_present(name): self.click_text(name) time.sleep(2) flag = self._is_element_present(self.__class__.__locators['知道了']) if flag: self.click_element(self.__class__.__locators['知道了']) time.sleep(1) self.click_element(self.__class__.__locators['设置']) time.sleep(1) self.click_element(self.__class__.__locators['删除标签']) time.sleep(1) self.click_element(self.__class__.__locators['刪除按钮']) time.sleep(2) if self._is_element_present(self.__class__.__locators['允许']): self.click_element(self.__class__.__locators['允许']) time.sleep(2) else: print('标签不存在') @TestLogger.log("确认弹框处理") def tap_sure_box(self, text='知道了'): time.sleep(2) flag = self._is_element_present(self.__class__.__locators['知道了']) if flag: self.click_element(self.__class__.__locators[text]) else: print('标签不存在') @TestLogger.log() def click_back_by_android(self, times=1): """ 点击返回,通过android返回键 """ # times 返回次数 for i in range(times): self.driver.back() time.sleep(1) @TestLogger.log('返回按钮') def click_back_button(self,times=1): for i in range(times): time.sleep(2) if self._is_element_present(self.__class__.__locators['back_contact']): self.click_element(self.__class__.__locators['back_contact']) elif self._is_element_present(self.__class__.__locators['back_gouppage']): self.click_element(self.__class__.__locators['back_gouppage']) elif self._is_element_present(self.__class__.__locators['back_contact2']): self.click_element(self.__class__.__locators['back_contact2']) elif self._is_element_present(self.__class__.__locators['back_settings']): self.click_element(self.__class__.__locators['back_settings']) else: self.click_element(self.__class__.__locators['back_newpage']) time.sleep(1) @TestLogger.log('获取元素y坐标') def get_element_text_y(self,text='新建分组'): element=self.get_element(self.__locators[text]) y=element.location.get('y') return y @TestLogger.log('获取元素y坐标') def get_element_text_x(self, text='新建分组'): element = self.get_element(self.__locators[text]) x = element.location.get('x') return x @TestLogger.log('判断元素是否存在') def page_contain_element(self, locator='添加成员菜单'): return self.page_should_contain_element(self.__class__.__locators[locator]) @TestLogger.log('判断元素不存在') def page_not_contain_element(self, locator='添加成员菜单'): return self.page_should_not_contain_element(self.__class__.__locators[locator]) @TestLogger.log('判断元素颜色') def get_element_color(self, locator='选择联系人'): element = self.get_element(self.__locators[locator]) x=self.get_element_text_x(text=locator) y = self.get_element_text_y(text=locator) print(x,y) x=(x+1)/1440 y=(y+1)/2560 color=self.get_coordinate_color_of_element(element,x=x,y=y,by_percent=True) print("color = ",color) return color @TestLogger.log("新建分组") def new_group(self,name="aaa"): time.sleep(1) self.click_new_group() time.sleep(1) self.click_input_element() time.sleep(1) self.input_content(text=name) time.sleep(1) self.click_sure_element() time.sleep(2) self.click_allow_button() time.sleep(1) self.click_back_button() time.sleep(2) self.click_back_button() time.sleep(2) @TestLogger.log("添加成员dalao") def add_member(self,name='dalao5',times=1): member='大佬5' time.sleep(1) self.click_text('添加成员') time.sleep(1) self.click_search_box() time.sleep(1) self.input_search_text(name) time.sleep(1) self.hide_keyboard() time.sleep(1) if name is 'dalao6': member='大佬6' elif name is 'dalao7': member='大佬7' elif name is 'dalao1': member = '大佬1' elif name is 'dalao2': member = '大佬2' elif name is 'dalao3': member = '大佬3' if times==1: self.click_text(member) else: #time=2,点击2次 self.click_text(member) time.sleep(2) self.click_text(member) flag=self.is_toast_exist("该联系人不可选择") isExist=1 #为是第1次添加该联系人,为2是重复添加该联系人 if flag: print("联系人不可选") time.sleep(1) self.click_back_button() time.sleep(1) isExist = 2 else: time.sleep(1) self.click_sure_element() time.sleep(1) self.click_allow_button() time.sleep(1) isExist = 1 return isExist @TestLogger.log("群发信息") def send_message_to_group(self,message='aaaa'): time.sleep(1) self.click_element(self.__class__.__locators["群发信息"]) time.sleep(2) flag= self._is_element_present(self.__class__.__locators['我已阅读']) if flag: self.click_element(self.__class__.__locators['我已阅读']) time.sleep(1) self.click_element(self.__class__.__locators['已阅读_确定']) time.sleep(1) self.click_element(self.__class__.__locators["群发_输入框"]) time.sleep(1) self.input_text(self.__class__.__locators["群发_输入框"],message) time.sleep(1) self.click_element(self.__class__.__locators["发送"]) time.sleep(2) @TestLogger.log("发送表情") def send_express_to_group(self, message='aaaa'): time.sleep(1) self.click_element(self.__class__.__locators["群发信息"]) time.sleep(2) flag = self._is_element_present(self.__class__.__locators['我已阅读']) if flag: self.click_element(self.__class__.__locators['我已阅读']) time.sleep(1) self.click_element(self.__class__.__locators['已阅读_确定']) time.sleep(1) self.click_element(self.__class__.__locators["表情按钮"]) time.sleep(1) self.click_element(self.__class__.__locators["表情_微笑"]) time.sleep(1) self.click_element(self.__class__.__locators["发送"]) time.sleep(2) @TestLogger.log("发送图片") def send_picture_to_group(self, message='aaaa'): time.sleep(1) self.click_element(self.__class__.__locators["群发信息"]) time.sleep(2) flag = self._is_element_present(self.__class__.__locators['我已阅读']) if flag: self.click_element(self.__class__.__locators['我已阅读']) time.sleep(1) self.click_element(self.__class__.__locators['已阅读_确定']) time.sleep(1) self.click_element(self.__class__.__locators["添加图片"]) time.sleep(1) self.click_element(self.__class__.__locators["选择图片"]) time.sleep(1) self.click_element(self.__class__.__locators["图片发送"]) time.sleep(15) @TestLogger.log("群发信息") def enter_group_message(self, message='aaaa'): time.sleep(1) self.click_element(self.__class__.__locators["群发信息"]) time.sleep(2) flag = self._is_element_present(self.__class__.__locators['我已阅读']) if flag: self.click_element(self.__class__.__locators['我已阅读']) time.sleep(1) self.click_element(self.__class__.__locators['已阅读_确定']) time.sleep(1) time.sleep(1) @TestLogger.log("多方电话") def enter_mutil_call(self, message='aaaa'): time.sleep(1) self.click_element(self.__class__.__locators["多方电话"]) @TestLogger.log("多方视频") def enter_mutil_video_call(self, message='aaaa'): time.sleep(1) self.click_element(self.__class__.__locators["多方视频"]) def page_down(self): """向下滑动""" self.swipe_by_percent_on_screen(50, 30, 50, 70, 800) def find_star_by_name(self, locator, name, times=10): """根据联系人名称查找星标""" if self._is_element_present(locator): els = self.get_elements(locator) if els: for el in els: if el.text.endswith(name): return el c = 0 while c < times: # self.page_down() self.page_up() if self._is_element_present(locator): els = self.get_elements(locator) if els: for el in els: if el.text.endswith(name): return el c += 1 c = 0 while c < times: # self.page_up() self.page_down() if self._is_element_present(locator): els = self.get_elements(locator) if els: for el in els: if el.text.endswith(name): return el c += 1 return None def page_contain_star(self, name): """某联系人前是否存在星标""" el=self.find_star_by_name((MobileBy.XPATH, '//*[contains(@text,"%s")]' % name), name) if el: return self.page_contain_element('星标图标') else: pass # def swipe_select_one_member_by_name(self, name): # """通过人名选择一个联系人""" # el=self.get_element((MobileBy.XPATH, '//*[@text ="%s"]' % name)).text # if el: # self.click_text(el) # else: # self.find_star_by_name(el) # time.sleep(2) # self.click_text(el) @TestLogger.log("输入群名") def input_group_name(self,text): self.input_text(self.__class__.__locators['搜索'], text) def is_element_present_result(self): return self._is_element_present(self.__locators['搜索结果展示']) @TestLogger.log() def is_exists_group_by_name(self, name): """是否存在指定群名字的搜索结果""" locator = (MobileBy.XPATH, '//*[@resource-id="com.chinasofti.rcs:id/contact_name" and contains(@text, "%s")]' % name) return self._is_element_present(locator) def get_letters_index(self): """获取所有索引字母""" container_el = self.get_element(self.__class__.__locators['索引字母容器']) letter_els = container_el.find_elements(MobileBy.XPATH, "//android.widget.TextView") if not letter_els: raise AssertionError("No m005_contacts, please add m005_contacts in address book.") letters = [] for el in letter_els: letters.append(el.text) return letters @TestLogger.log() def click_letter_index(self, letter): """点击字母索引""" container_el = self.get_element(self.__class__.__locators['索引字母容器']) container_el.find_element(MobileBy.XPATH, "//android.widget.TextView[@text='%s']" % letter).click()
[ "mozhuoda@139.com" ]
mozhuoda@139.com
a304f77b1ab57e3a08ec5dc52f5ef0fd366f16de
7ccfe901f8cc39ef35b2fb5e5accadf11af8e90a
/dask_hpcconfig/__main__.py
484be2d8c46103e8b9c2a0fc800672e21778bfe1
[ "Apache-2.0" ]
permissive
umr-lops/dask-hpcconfig
bbf34bda787b59afde12e4b3b4788b3923374d16
be886561ccb3e4574ae2dd3296f0fa771108b33f
refs/heads/main
2023-08-09T06:40:08.421511
2023-07-27T10:33:06
2023-07-27T10:33:06
452,758,751
6
2
Apache-2.0
2023-09-01T11:53:00
2022-01-27T16:30:29
Python
UTF-8
Python
false
false
60
py
from . import cli if __name__ == "__main__": cli.app()
[ "keewis@posteo.de" ]
keewis@posteo.de
a7a66ee6bfc9b3d26e5dbb4a0a9df8f27b2a72e3
4c44c593048fa4e00fb0334209632a286886efd9
/sale_business_unit/models/product_business_unit.py
df6f50b9832b5d5adf851f1930983b0a7f67bcba
[]
no_license
treytux/trey-addons
0c3fec43c584d46bd299b4bca47dcc334bedca60
1cda42c0eae702684badce769f9ec053c59d6e42
refs/heads/12.0
2023-06-08T21:56:09.945084
2023-05-29T10:05:53
2023-05-29T10:05:53
114,281,765
19
49
null
2023-05-29T10:05:55
2017-12-14T18:10:39
Python
UTF-8
Python
false
false
8,333
py
############################################################################### # For copyright and license notices, see __manifest__.py file in root directory ############################################################################### from datetime import date from odoo import _, fields, models class ProductBusinessUnit(models.Model): _inherit = 'product.business.unit' quotation_count = fields.Integer( compute='_compute_sales', string='Quotations', readonly=True, ) quotation_order_count = fields.Integer( compute='_compute_sales', string='Quotation Orders', readonly=True, ) quotation_amount = fields.Float( compute='_compute_sales', string='Quotations Revenues', readonly=True, ) sale_count = fields.Integer( compute='_compute_sales', string='Sales', readonly=True, ) sale_order_count = fields.Integer( compute='_compute_sales', string='Sale Orders', readonly=True, ) sale_amount = fields.Float( compute='_compute_sales', string='Sales Revenues', readonly=True, ) invoice_count = fields.Integer( compute='_compute_invoices', string='Sales', readonly=True, ) invoice_order_count = fields.Integer( compute='_compute_invoices', string='Sale Orders', readonly=True, ) invoice_amount = fields.Float( compute='_compute_invoices', string='Sales Revenues', readonly=True, ) dashboard_graph_model = fields.Selection( selection_add=[ ('sale.report', 'Sales'), ('account.invoice.report', 'Invoices'), ], ) invoiced = fields.Integer( compute='_compute_invoices', string='Invoiced This Month', readonly=True, help=( 'Invoice revenue for the current month. This is the amount the ' 'sales unit has invoiced this month. It is used to compute the ' 'progression ratio of the current and target revenue on the ' 'kanban view.' ), ) invoiced_target = fields.Integer( string='Invoicing Target', help=( 'Target of invoice revenue for the current month. This is the ' 'amount the sales unit estimates to be able to invoice this ' 'month.' ), ) def _compute_sales(self): for unit in self: lines = self.env['sale.order.line'].search([ ('product_id', '!=', False), ('product_id.unit_id', '=', unit.id)]) quotation_lines = lines.filtered( lambda l: l.order_id.state in ['draft', 'sent']) sale_lines = lines.filtered( lambda l: l.order_id.state in ['sale', 'done']) unit.quotation_count = len(quotation_lines) unit.quotation_order_count = len( quotation_lines.mapped('order_id')) unit.quotation_amount = sum( quotation_lines.mapped('price_subtotal')) unit.sale_count = len(sale_lines) unit.sale_order_count = len( sale_lines.mapped('order_id')) unit.sale_amount = sum(sale_lines.mapped('price_subtotal')) def _compute_invoices(self): for unit in self: lines = self.env['account.invoice.line'].search([ ('invoice_id.state', 'not in', ['cancel', 'draft']), ('product_id', '!=', False), ('product_id.unit_id', '=', unit.id)]) unit.invoice_count = len(lines) unit.invoice_amount = sum(lines.mapped('price_subtotal')) invoices = lines.mapped('invoice_id') unit.invoice_order_count = len(invoices) month_invoices = invoices.filtered( lambda i: i.date <= date.today() and i.date >= date.today().replace(day=1) ) unit.invoiced = sum(month_invoices.mapped('amount_untaxed_signed')) def update_invoiced_target(self, value): return self.write({'invoiced_target': round(float(value or 0))}) def action_view_quotation_lines(self): self.ensure_one() lines = self.env['sale.order.line'].search([ ('order_id.state', 'in', ['draft', 'sent']), ('product_id', '!=', False), ('product_id.unit_id', '=', self.id)]) action = self.env.ref( 'sale_business_unit.sale_order_line_quotation_action').read()[0] action['domain'] = [('id', 'in', lines.ids)] return action def action_view_sale_lines(self): self.ensure_one() lines = self.env['sale.order.line'].search([ ('order_id.state', 'in', ['sale', 'done']), ('product_id', '!=', False), ('product_id.unit_id', '=', self.id)]) action = self.env.ref( 'sale_business_unit.sale_order_line_sale_action').read()[0] action['domain'] = [('id', 'in', lines.ids)] return action def action_view_invoice_lines(self): self.ensure_one() lines = self.env['account.invoice.line'].search([ ('invoice_id.state', 'not in', ['cancel', 'draft']), ('product_id', '!=', False), ('product_id.unit_id', '=', self.id)]) action = self.env.ref( 'sale_business_unit.account_invoice_line_action').read()[0] action['domain'] = [('id', 'in', lines.ids)] return action def action_view_quotation(self): self.ensure_one() lines = self.env['sale.order.line'].search([ ('order_id.state', 'in', ['draft', 'sent']), ('product_id', '!=', False), ('product_id.unit_id', '=', self.id)]) action = self.env.ref('sale.action_quotations').read()[0] action.update({ 'domain': [('id', 'in', lines.mapped('order_id').ids)], 'context': {}, }) return action def action_view_sale(self): self.ensure_one() lines = self.env['sale.order.line'].search([ ('product_id', '!=', False), ('product_id.unit_id', '=', self.id)]) sale_lines = lines.filtered( lambda l: l.order_id.state in ['sale', 'done']) action = self.env.ref('sale.action_orders').read()[0] action.update({ 'domain': [('id', 'in', sale_lines.mapped('order_id').ids)], 'context': {}, }) return action def action_view_invoice(self): self.ensure_one() lines = self.env['account.invoice.line'].search([ ('product_id', '!=', False), ('product_id.unit_id', '=', self.id)]) invoice_lines = lines.filtered( lambda l: l.invoice_id.state not in ['cancel', 'draft']) action = self.env.ref('account.action_invoice_tree1').read()[0] action.update({ 'domain': [('id', 'in', invoice_lines.mapped('invoice_id').ids)], 'context': {}, }) return action def _graph_date_column(self): if self.dashboard_graph_model == 'sale.report': return 'confirmation_date' elif self.dashboard_graph_model == 'account.invoice.report': return 'date' return super()._graph_date_column() def _graph_y_query(self): if self.dashboard_graph_model == 'sale.report': return 'SUM(price_subtotal)' elif self.dashboard_graph_model == 'account.invoice.report': return 'SUM(price_total)' return super()._graph_y_query() def _extra_sql_conditions(self): if self.dashboard_graph_model == 'sale.report': return "AND state in ('sale', 'done')" elif self.dashboard_graph_model == 'account.invoice.report': return "AND state in ('open', 'in_payment', 'paid')" return super()._extra_sql_conditions() def _graph_title_and_key(self): if self.dashboard_graph_model == 'sale.report': return ['', _('Sales: Untaxed Total')] elif self.dashboard_graph_model == 'account.invoice.report': return ['', _('Invoices: Untaxed Total')] return super()._graph_title_and_key()
[ "roberto@trey.es" ]
roberto@trey.es
cb5a4b34fb49207a33bf8d1192cb7f3761407b26
237598dd6cbd3b85f79221195491893814de8574
/webservicenew.py
6e60576ab4f7d1321564d3d4541d55ebdd81e368
[]
no_license
harsha97sahajan/Road-Damage-Detection
88ede0cb90f93e9e6ab9df5b72432542c0af0240
5c85bb740151e872f027af28ab4a8e53fc2b5a8c
refs/heads/main
2023-08-30T07:03:41.069394
2021-11-12T05:53:38
2021-11-12T05:53:38
427,242,357
0
0
null
null
null
null
UTF-8
Python
false
false
9,188
py
import os from flask import * import pymysql from werkzeug.utils import secure_filename from src.classify import predictfn con = pymysql.connect(host='localhost', port=3306, user='root', passwd='', db='roadsens') cmd = con.cursor() app = Flask(__name__) @app.route('/userreg', methods=['get', 'post']) def userreg(): fname = request.form['fname'] mname = request.form['mname'] lname = request.form['lname'] ph = request.form['ph'] email = request.form['email'] username = request.form['un'] pwd = request.form['pwd'] cmd.execute("select * from login where username='" + username + "' and type='user'") s = cmd.fetchone() if s is not None: return jsonify({'task': "invalid"}) else: cmd.execute("INSERT INTO`login` values(null,'" + username + "','" + pwd + "','user')") id = con.insert_id() cmd.execute("insert into user_reg values(null,'" + str(id) + "','" + fname + "','" + mname + "','" + lname + "','" + ph + "','" + email + "')") con.commit() return jsonify({'task': "success"}) @app.route('/login', methods=['POST']) def login(): try: username = request.form['un'] pwd = request.form['pwd'] try: cmd.execute( "select * from login where username='" + username + "' and password='" + pwd + "'") s = cmd.fetchone() print(s) if s is not None: id = s[0] print(id) return jsonify({'task': str(id), 'type': s[3]}) else: return jsonify({'task': "invalid"}) except Exception as e: print(str(e)) return jsonify({'task': "invalid"}) except Exception as e: print(e) return jsonify({'task': "success"}) @app.route('/send_spot_complaint', methods=['get', 'post']) def send_spot_complaint(): latitude = request.form['latitude'] print(latitude) longitude = request.form['longitude'] complaint = request.form['complaint'] uid = request.form['uid'] image=request.files['files'] file=secure_filename(image.filename) image.save(os.path.join("./static/image",file)) cmd.execute( "insert into spotcomplaint values(null,'" + uid + "','" + latitude + "','" + longitude + "','" + complaint + "','pending',null,'"+str(file)+"')") con.commit() return jsonify({'task': "success"}) @app.route('/send_emg_alert', methods=['get', 'post']) def send_emg_alert(): latitude = request.form['latitude'] longitude = request.form['longitude'] description = request.form['description'] uid = request.form['uid'] cmd.execute( "insert into emergency_alert values(null,'" + uid + "','" + latitude + "','" + longitude + "','" + description + "')") con.commit() return jsonify({'task': "success"}) @app.route('/view_signal', methods=['POST', 'GET']) def view_signal(): latitude = request.form['latitude'] longitude = request.form['longitude'] cmd.execute("select * ,(3959 * ACOS ( COS ( RADIANS('" + str( latitude) + "') ) * COS( RADIANS(`latitude`) ) * COS( RADIANS(`longitude`) - RADIANS('" + str( longitude) + "') ) + SIN ( RADIANS('" + str( latitude) + "') ) * SIN( RADIANS(`latitude`) ))) AS user_distance from trafficsignal_reg HAVING user_distance < 6.2137") print("select * ,(3959 * ACOS ( COS ( RADIANS('" + str( latitude) + "') ) * COS( RADIANS(`latitude`) ) * COS( RADIANS(`longitude`) - RADIANS('" + str( longitude) + "') ) + SIN ( RADIANS('" + str( latitude) + "') ) * SIN( RADIANS(`latitude`) ))) AS user_distance from trafficsignal_reg HAVING user_distance < 6.2137") s = cmd.fetchall(); print(s) row_headers = [x[0] for x in cmd.description] json_data = [] for result in s: json_data.append(dict(zip(row_headers, result))) print(json_data) return jsonify(json_data) @app.route('/view_important_place', methods=['POST', 'GET']) def view_important_place(): latitude = request.form['latitude'] longitude = request.form['longitude'] cmd.execute("select * ,(3959 * ACOS ( COS ( RADIANS('" + str(latitude) + "') ) * COS( RADIANS(`latitude`) ) * COS( RADIANS(`longitude`) - RADIANS('" + str( longitude) + "') ) + SIN ( RADIANS('" + str(latitude) + "') ) * SIN( RADIANS(`latitude`) ))) AS user_distance from imp_place_reg HAVING user_distance < 6.2137") s = cmd.fetchall(); print(s) row_headers = [x[0] for x in cmd.description] json_data = [] for result in s: json_data.append(dict(zip(row_headers, result))) print(json_data) return jsonify(json_data) @app.route('/view_complaint', methods=['POST', 'GET']) def view_complaint(): cmd.execute(" SELECT `spotcomplaint`.* ,`user_reg`.`fname`,`mname`,`lname`,`phone` FROM `user_reg` JOIN `spotcomplaint` ON `spotcomplaint`.`uid`=`user_reg`.lid where status='pending'") s = cmd.fetchall(); print(s) row_headers = [x[0] for x in cmd.description] json_data = [] for result in s: json_data.append(dict(zip(row_headers, result))) print(json_data) return jsonify(json_data) @app.route('/view_status', methods=['POST', 'GET']) def view_status(): uid = request.form['uid'] cmd.execute( " SELECT`spotcomplaint`.complaint,status,`traffic_police_reg`.`fname`,`mname`,`lname`,`phone` FROM `traffic_police_reg` JOIN `spotcomplaint` ON `spotcomplaint`.`policid`=`traffic_police_reg`.lid WHERE uid='" + uid + "'") s = cmd.fetchall(); print(s) row_headers = [x[0] for x in cmd.description] json_data = [] for result in s: json_data.append(dict(zip(row_headers, result))) print(json_data) return jsonify(json_data) @app.route('/view_emergency_alert', methods=['POST', 'GET']) def view_emergency_alert(): cmd.execute("SELECT `emergency_alert`.`descripion` ,`user_reg`.`fname`,`mname`,`lname`,`phone` FROM `user_reg` JOIN `emergency_alert` ON `emergency_alert`.`uid`=`user_reg`.lid ") s = cmd.fetchall(); print(s) row_headers = [x[0] for x in cmd.description] json_data = [] for result in s: json_data.append(dict(zip(row_headers, result))) print(json_data) return jsonify(json_data) @app.route('/update_status', methods=['POST', 'GET']) def update_status(): sc_id = request.form['cid'] reply=request.form['reply'] pid=request.form['pid'] cmd.execute( "UPDATE `spotcomplaint` SET `spotcomplaint`.`status`='"+reply+"',policid='"+pid+"' WHERE `spotcomplaint`.`sc_id`='"+str(sc_id)+"'") con.commit() return jsonify({'task': "success"}) @app.route('/emergency', methods=['get', 'post']) def emergency(): latitude = request.form['latitude'] longitude = request.form['longitude'] speed = request.form['speed'] cmd.execute("insert into distruption values(null,'" + latitude + "','" + longitude + "','" +speed + "',now())") con.commit() return jsonify({'task': "success"}) @app.route('/service',methods=['POST']) def service(): latitude=request.form['lati'] longitude=request.form['longi'] cmd.execute("select * ,(3959 * ACOS ( COS ( RADIANS("+latitude+") ) * COS( RADIANS(`latitude`) ) * COS( RADIANS(`longitude`) - RADIANS("+longitude+") ) + SIN ( RADIANS("+latitude+") ) * SIN( RADIANS(`latitude`) ))) AS user_distance from distruption where strength<4440 and strength>1000 and date>=DATE_ADD(curdate(),interval -10 day) HAVING user_distance < 2 ") s=cmd.fetchall() cmd.execute( "select * ,(3959 * ACOS ( COS ( RADIANS(" + latitude + ") ) * COS( RADIANS(`latitude`) ) * COS( RADIANS(`longitude`) - RADIANS(" + longitude + ") ) + SIN ( RADIANS(" + latitude + ") ) * SIN( RADIANS(`latitude`) ))) AS user_distance from distruption where strength<4440 and strength>1000 and date<DATE_ADD(curdate(),interval -10 day)and date>DATE_ADD(curdate(),interval -20 day) HAVING user_distance < 2 ") s1 = cmd.fetchall() if len(s1)<len(s): if len(s)>5: return jsonify({"task":"yes"}) else: return jsonify({"task": "no"}) else: if len(s1)>5: p=(len(s)/len(s1))*100 if p>50.0: return jsonify({"task": "yes"}) else: return jsonify({"task": "no"}) else: return jsonify({"task": "no"}) @pp.route("/capture",methods=['post']) def capture(): img=request.files["files"] lt=request.form['latitude'] lon=request.form['longitude'] file = secure_filename(img.filename) img.save(os.path.join("camimg/image", file)) re=predictfn(os.path.join("camimg/image", file)) if re=='normal': cmd.execute("insert into distruption values(null,'" + lt + "','" + lon + "','4000',now())") con.commit() return jsonify({'task': "success"}) if (__name__ == "__main__"): app.run(host='0.0.0.0', port=5000)
[ "noreply@github.com" ]
noreply@github.com
19261cb62700033a9cef08d8687bae4821b6f92d
21569b68b510b55bdc2acb1ff5ae521b31d44a79
/bin/pyrsa-encrypt-bigfile
9afaf7317207ef369910d93588778e7aefc825d6
[]
no_license
howarder3/Rpi3_study
a99faef434ae4f751d4d9f339aca918186f7cb3e
533ba60ae4d11b5e3cebc12283e067ccee5a5cfd
refs/heads/master
2020-03-18T18:11:01.030936
2018-05-27T20:46:40
2018-05-27T20:46:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
242
#!/home/pi/myenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from rsa.cli import encrypt_bigfile if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(encrypt_bigfile())
[ "howarder3@gmail.com" ]
howarder3@gmail.com
58438ab2d36cbce9f24fee5708909e935510e8a4
42e67c2ad5ec6500ab8523cfdcd8327997ad8486
/Pyproject/controlstructure/usatax.py
c6aa806b1efedb6ef2efc1ae2e1b65ad45dd8cff
[]
no_license
meg1988/PycharmProjects
34f45e36b835492ea2022839ca658e19c03fd58e
d8cd1cf262c1a374236ba0b583bb4838069eb3f2
refs/heads/master
2020-12-30T23:47:29.268050
2017-02-02T21:23:41
2017-02-02T21:23:41
80,572,898
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
fedtax= .1 statetax = {"CA":.1, "MA" : .15} def tax_calculate(income,state): return (income * (1-fedtax + statetax[state])) caincome = tax_calculate(1000,"CA") print(caincome) maincome = tax_calculate(1000,"MA") print(maincome)
[ "megharastogi92.8@gmail.com" ]
megharastogi92.8@gmail.com
f1403fe05fb506c6faed6be2e417b0d20f647e3b
c8b0f52d76d35986fd97d55857196b50627a5aa6
/jarvis.py
5fc1b66f26841f8ff8ab3af6fc6d891982376d8a
[]
no_license
sakshampathak1508/jarvis
08780927e26c7bd71dce198371bac6f8edf0bebb
988c2488ab628ce073d36a9200cffd841da8909a
refs/heads/master
2023-03-08T23:03:54.341407
2021-03-01T19:17:04
2021-03-01T19:17:04
340,014,994
1
2
null
2021-03-01T19:17:05
2021-02-18T10:33:05
Python
UTF-8
Python
false
false
4,195
py
import pyttsx3 import datetime import speech_recognition as sr import os import webbrowser,wikipedia import pywhatkit as kit import smtplib from googlesearch import search # time # search # wikipedia # search youtube # play youtube # spotify # send whatsapp message phone_nums = { "Enter name" : "Enter your phone number", } engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice',voices[1].id) def say(query): engine.say(query) engine.runAndWait() def start(): h_time = int(datetime.datetime.now().hour) if h_time>=0 and h_time<12: say("Good morning") elif h_time>=12 and h_time<=19: say("Good Afternoon") else: say("Good Evening") say("Hi i am jarvis. how may i help you") def take_command(): rec = sr.Recognizer() with sr.Microphone() as source: print("Getting Your Voice...") rec.pause_threshold = 1 audio = rec.listen(source) try: print("Listening") query = rec.recognize_google(audio,language='en-in') print(f"You said: {query}\n") except Exception as e: print("Not able to hear say that again please") return "none" return query def send_email(to,content): server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login('YourEMAILId@gmail.com', 'Your Password') server.sendmail('YourEMAILId@gmail.com', to, content) server.close() if __name__ == "__main__": data = take_command().lower() if 'hi jarvis' or 'hey jarvis' in data: start() while True: my_query = take_command().lower() if 'search youtube' in my_query: say("What you want to search") data = take_command().lower() webbrowser.open('https://www.youtube.com/results?search_query='+data) elif 'play youtube' in my_query: say("What you want to play") data = take_command().lower() kit.playonyt(data) elif 'open' in my_query: web = take_command() webbrowser.open(web+".com") elif 'search' in my_query: say("Here are the browser results") webbrowser.open("https://www.google.com/?#q="+my_query[6:]) for j in search(my_query, tld="co.in", num=10, stop=10, pause=2): print(j) elif 'wikipedia' in my_query: say('Searching Wikipedia...') my_query = my_query.replace("wikipedia", "") results = wikipedia.summary(my_query, sentences=1) say("According to Wikipedia") print(results) say(results) elif 'the time' in my_query: strTime = datetime.datetime.now().strftime("%H:%M:%S") print(f"Sir, the time is {strTime}") say(f"Sir, the time is {strTime}") elif 'play spotify' in my_query: path = "C:\\Users\\Vivek\\AppData\\Roaming\\Spotify\\Spotify.exe" os.startfile(path) elif 'send message' in my_query: try: say("Who is the reciever") reciever = take_command().lower() say("What is the message") msg = take_command() if reciever in phone_nums: kit.sendwhatmsg("+91"+phone_nums[reciever],msg,int(datetime.datetime.now().hour), int(datetime.datetime.now().minute)+1) else: say("The reciever is not in your contact list") except Exception as e: say("sorry sir . i am not able to send this message ") elif 'send email' in my_query: try: say("What should I say?") content = take_command() to = input("Enter email address: ") send_email(to, content) say("Email has been sent!") except Exception as e: print(e) say("Sorry sir . I am not able to send this email") elif 'quit' in my_query: say("thank you i would be pleased to help again") exit(1)
[ "sakshamvpathak@gmail.com" ]
sakshamvpathak@gmail.com
e11e11e8f056afa4c697607dfc0b4a9a999a6217
3f31e3cf84277f48fe5c646bf383b9b8c36a19bc
/basics/Instrukcje/6.py
812a5508addb3bd0db0e213b51b8c8227f363b0d
[]
no_license
kchmielewski/python_basics
046e0786bd0eb1668daaa2e6b196db7b2569d3f2
2d14c12617e4276da515c2dde6e64fabc92f24b4
refs/heads/master
2021-01-13T16:16:05.152126
2018-10-26T15:36:34
2018-10-26T15:36:34
81,139,210
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
''' Poniższy kod generuje listę l 4 unikalnych losowych liczb całkowitych z przedziału <0, 5). import random l = random.sample(range(5), 4) Napisz jednolinijkowy kod, za pomocą którego wyświetlisz na ekran napis “big number” jeżeli suma liczb w liście jest większa niż 6, w przeciwnym razie wyświetl na ekran napis “small number”. Skorzystaj z operatora trójargumentowego.''' import random l = random.sample(range(5), 4) print(l) print("big number" if sum(l)>6 else "small number")
[ "chmielewski.karol.96@gmail.com" ]
chmielewski.karol.96@gmail.com
3e5af7c3636c13d85734ff1e08ce448c0397d9ba
74651a896dad75ddc8ba3e2e29e778049a349aff
/whatplane/models/predict_model.py
9ddd0ca63ac2c0f603594148a6d8c889eb71f6f7
[ "BSD-3-Clause" ]
permissive
what-plane/what-plane-api
537eb5734adb7caa2c76fc18ecd8de9b25c8e0d3
fbd8ec8d59437cb8bcc0c55275850c653a7a902a
refs/heads/main
2023-03-01T03:02:11.459691
2021-02-14T21:40:39
2021-02-14T21:40:39
313,305,645
0
0
BSD-3-Clause
2021-02-11T00:08:26
2020-11-16T13:08:11
Jupyter Notebook
UTF-8
Python
false
false
3,031
py
from pathlib import Path from typing import List, Tuple from PIL.Image import Image import torch from torchvision.models.densenet import DenseNet from .data_helpers import process_image_data, process_image_file def test(dataloaders, model, criterion): # TODO Refactor this # monitor test loss and accuracy test_dataloader = dataloaders["test"] test_loss = 0.0 test_accuracy = 0.0 predicted_classes = [] correct_classes = [] model.eval() with torch.no_grad(): for images, labels in test_dataloader: images, labels = images.to(model.device), labels.to(model.device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() _, preds = torch.max(outputs, 1) correct = preds == labels.view(*preds.shape) test_accuracy += torch.mean(correct.type(torch.FloatTensor)).item() predicted_classes.extend(preds.cpu().numpy().tolist()) correct_classes.extend(labels.cpu().numpy().tolist()) test_loss /= len(test_dataloader) test_accuracy /= len(test_dataloader) print("Test Loss: {:.6f}".format(test_loss)) print("Test Accuracy: {:.2f}".format(100 * test_accuracy)) return test_loss, test_accuracy, predicted_classes, correct_classes def predict_image_data( image_data: Image, model: DenseNet, topk: int = 1 ) -> Tuple[List[float], List[str]]: image = process_image_data(image_data).float().unsqueeze(0) return predict_normalized(image, model, topk) def predict(image_path: Path, model: DenseNet, topk: int = 1) -> Tuple[List[float], List[str]]: image = process_image_file(image_path).float().unsqueeze(0) return predict_normalized(image, model, topk) def predict_normalized(processed_image: torch.Tensor, model: DenseNet, topk: int) -> Tuple[List[float], List[str]]: """ Predict the class (or classes) of an image using a trained deep learning model. Args: image_path (str): Location of the image file model (object): A trained PyTorch model cat_to_name (dict): Dict which maps category numbers to category names top_k (int): Number of top classes to return device (obj): Device to perform inference on Returns: prediction_dict (dict): Dictionary of top classes predicted for that image Example: >>> result = predict('images/flower.jpg', model, cat_to_name, 5, torch.device('cpu')) """ processed_image = processed_image.to(model.device) model.eval() with torch.set_grad_enabled(False): output = model(processed_image) probs = torch.nn.functional.softmax(output, dim=1) top_probs, top_classes = probs.topk(topk) top_probs = top_probs.cpu().numpy().tolist()[0] top_classes = [model.class_names[i] for i in top_classes.cpu().numpy().tolist()[0]] return top_probs, top_classes def predict_aircraft(image_path, model): _, classes = predict(image_path, model) return classes[0]
[ "parr.will.08@gmail.com" ]
parr.will.08@gmail.com
2eb8f88b7861661d8799f529e1d447d7eb3f13dc
e4529d420f55200646f3891448f82c3907804a77
/test.py
6d112f98fb53945ac6b21fe0ca545fb771568b22
[]
no_license
heyuanYao-pku/SynMapping
8779dff77735f6abcc1c11e7effb59b1a9915474
aab2d7d9b08b7b4d578a06e4b915da0d2178a6ba
refs/heads/master
2022-04-06T09:20:07.929773
2019-12-11T02:07:07
2019-12-11T02:07:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,069
py
import json import cv2 import os import numpy as np import TensorMap data_path = 'example\\data.json' data = json.load(open( data_path,'r') ) print(data.keys()) mList = data['mlist'][:35] tmp = data['P'] image_list_path = 'example\\image_list.npy' image_list = np.load(image_list_path) #mList = mList[0:20] #Plist = np.array(Plist) #Plist = Plist[0:20,0:20] #image_list = image_list[0:20] #print( np.shape(Plist) ) n = np.size(mList) Plist = np.zeros(np.shape(tmp), np.ndarray) print( n ) #print(mList[0],mList[100],mList[2],mList[102] ) for i in range(n): for j in range(n): if i==j: Plist[i][j] = np.eye(mList[i]) continue Plist[i][j] = np.array( tmp[j][i]) tensor = TensorMap.SynTensorMap(n,mList,Plist) Q = tensor.solution() np.save('example\\Q.npy',Q) Q = tensor.rounded_solution(0.5,Q) #Q = np.load('example\\Q.npy') print(mList[0:2],Q) draw = TensorMap.TensorMapVis(image_list,mList,Q).draw_image save_path = 'example\\' for i in range(n): cv2.imwrite(os.path.join(save_path,'%d.png'%i),draw[i])
[ "18811711520@163.com" ]
18811711520@163.com
5e36f42372dbf6feef4dfe79e1f36c07e3c53a73
070e299ab646eef31ac0c767b14e45e9e591683b
/16_1281_SubtracttheProductandSumofDigitsofanInteger.py
c65601301a71556d0b417b7421542747d655d5e2
[]
no_license
benny84416/test01
b6e4deffb4936db0d73c0b64e3da4da1e1015db9
f391548376e9a9f88e7d6c01581a8ce3feed8f71
refs/heads/main
2023-04-21T02:58:10.293615
2021-04-10T16:50:03
2021-04-10T16:50:03
348,393,842
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
# Example 1: # Input: n = 234 # Output: 15 # Explanation: # Product of digits = 2 * 3 * 4 = 24 # Sum of digits = 2 + 3 + 4 = 9 # Result = 24 - 9 = 15 # n = 234 n = 705 Sum = 0 Product = 1 List = list(str(n)) for s in List: # print(s) Sum+=int(s) Product*=int(s) # print(Sum) # print(Product) print(Product - Sum)
[ "gasry691@yahoo.com.tw" ]
gasry691@yahoo.com.tw
cba4f7f7a86bbd2c06e4b92208fe3e95d44f31ac
99b84337ae66ad2877544fd158f20e7f4cd96520
/day01-10/day04/晚间作业/4_求分数和.py
88cd4c266f76603fc47dbe64b8a9ae5e47a016b0
[]
no_license
jiajiabin/python_study
cf145d54cabce2cb98914b3448ed7d0e5c1c146c
b4faaff26ee9728af2e80942ba6a7c7f6a8b0f86
refs/heads/master
2020-06-21T21:31:26.034978
2019-08-26T11:39:34
2019-08-26T11:39:34
197,556,254
2
0
null
null
null
null
UTF-8
Python
false
false
93
py
#求1/1 + 1/2 + 1/3 + 1/10 的值 a = 10 b = 0 for i in range(1,a+1): b += 1 / i print(b)
[ "2592668397@qq.com" ]
2592668397@qq.com
5979b6ffe880e35199d444411456ee90b6941755
4cf053a451cd0436411912268c9140a6fc7af808
/Python/Lab3/LogisticRegression.py
325da6c13d69c4491db26c396f78300ba4b6b326
[]
no_license
Chaitanyaperavali/python-deeplearning
de63d5595df49cca8b0eb0d55ebc5a41f3eaf5ee
ea4863d41455b1ba451291ffdbd6acb9f7296110
refs/heads/master
2021-05-09T11:38:33.299206
2018-04-07T15:22:17
2018-04-07T15:22:17
118,994,220
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
import numpy as np from sklearn import cross_validation from sklearn.linear_model import LogisticRegression # LDA model lg = LogisticRegression() # Load wine data from input file d = np.loadtxt('wineinput.data',delimiter=',',skiprows=1) # split input data into input and response x = d[:,1:] y = d[:,0] # Perform cross validation on given data k_fold = cross_validation.KFold(len(x), 3, shuffle=True) print('Logistic regression Results: ') for (train, test) in k_fold: lg.fit(x[train], y[train]) # computes accuracy of the system outVal = lg.score(x[test], y[test]) # print overall output print('Score: ' + str(outVal))
[ "Chaitanya Peravali" ]
Chaitanya Peravali
c01a071eaa33b53d906dd544cdf2f54e10c8fb4b
8243514e8d95ccb7648d37a89accc8b91a602cc6
/setup.py
cb813da71ca0b01eb71d04572d790db37ff780f8
[]
no_license
nelastrnadova/pipeline
12d9f02a294762f86a52ca708b5bdf5ef5f7c085
0fba29d9c1a9cde7a5471eb42d2088639c2f8a78
refs/heads/main
2023-03-18T05:59:59.774426
2021-03-15T14:55:45
2021-03-15T14:55:45
347,218,966
1
0
null
null
null
null
UTF-8
Python
false
false
358
py
import argparse from glob import glob from database import Database from file import File from yaml import Yaml parser = argparse.ArgumentParser() parser.add_argument("-db", type=str, help="Path to db file", default="database.db") args = parser.parse_args() db = Database(args.db) for file in glob("initial_data/*"): db.exec(File(file).get_content())
[ "strnadova.nela@linuxmail.org" ]
strnadova.nela@linuxmail.org
c05db23369700bf9bda51685ae774bb8e46349af
ef0f418e5ce98d2b85a7493b4dd4a9dd7672d3fe
/poc/vxworks_rpc_udp_17185_probe.py
0d83c724c26d645c76d6225ee5ca4f3558273d18
[]
no_license
knownsec/VxPwn
481e3dbfd2d524c1cf8fd9a32cd24fd9042eea0d
6555f49675f0317d4a48568a89d0ec4332658402
refs/heads/master
2021-01-10T08:28:45.948113
2016-01-16T11:12:46
2016-01-16T11:12:46
49,614,826
160
96
null
null
null
null
UTF-8
Python
false
false
2,195
py
#!/usr/bin/env python # coding=utf-8 # probe on udp port 17185, VxWorks WDBRPC V1 & V2 # By dog2@404 import socket import struct def scanV1(host, port=17185, timeout=5): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.settimeout(timeout) payload_hex = 'cc6ff7e2000000000000000255555555000000010000000100000000000000000000000000000000ffff2e700000003026b00001' try: sock.sendto(payload_hex.decode('hex'), (host, port)) banner = sock.recv(65536) except socket.error as err: return None, '' return 'vxworks' in banner.lower(), banner def scanV2(host, port=17185, timeout=5): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.settimeout(timeout) connReq = ''.join([ struct.pack('>I', 0), # msgid '\x00' * 4, # msgcall '\x00\x00\x00\x02', # rpc version '\x55' * 4, # wdb programe number '\x00\x00\x00\x01', # programe version struct.pack('>I', 122), # function number: WDB_TARGET_CONNECT2 = 122 '\x00' * 16, '\x00' * 4, '\x00\x00\x00\x30', # packet length struct.pack('>I', 0), # msg seq ]) try: sock.sendto(connReq, (host, port)) resp1 = sock.recv(65536) except socket.error as err: return None, '', '' infoReq = ''.join([ struct.pack('>I', 1), # msgid '\x00' * 4, # msgcall '\x00\x00\x00\x02', # rpc version '\x55' * 4, # wdb programe number '\x00\x00\x00\x01', # programe version struct.pack('>I', 123), # function number: WDB_TGT_INFO_GET = 123 '\x00' * 16, '\x00' * 4, '\x00\x00\x00\x44', # packet length struct.pack('>I', 1), # msg seq '\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00', # parameter ]) try: sock.sendto(infoReq, (host, port)) resp2 = sock.recv(65536) except socket.timeout as err: resp2 = '' return 'vxworks' in resp2.lower(), resp1, resp2 if __name__ == '__main__': import sys from pprint import pprint as pr pr(scanV1(sys.argv[1])) print pr(scanV2(sys.argv[2]))
[ "dog2@dog2deMacBook-Pro.local" ]
dog2@dog2deMacBook-Pro.local
be67fef614ce58137d6e137d9650ea154eee845d
b00846dbec1fdc932d5a7856ff42b24bc93ae9bf
/rec/__init__.py
0aa1a16fb15cfd6d68687099370138cf4b1c0e1e
[ "MIT" ]
permissive
iawia002/rec
3c533536c94a75eeb7a3041f732ce67136cd093f
04637c2d68e5997efbd326eae912ef3b585b4dd8
refs/heads/master
2021-09-05T10:23:55.699510
2018-01-26T11:26:20
2018-01-26T11:26:20
111,183,941
2
0
MIT
2018-01-14T09:14:09
2017-11-18T06:54:31
Python
UTF-8
Python
false
false
46
py
# coding=utf-8 from .domain import * # noqa
[ "z2d@jifangcheng.com" ]
z2d@jifangcheng.com
ba6088e55bae994ac54dc793a94b87326b66b35e
509b4121e18517cff4bbaa7ba1a4d2a24db8395d
/util.py
a7b87f35ab0e0400d050fc443f5d50bab29053af
[]
no_license
jkim796/assembler
eec7158e8206fd34fe0fd0280f49e887c557f77d
d78d5a01cc3c020407079987f779bdff8f5d9e06
refs/heads/master
2021-05-07T01:02:38.217759
2017-11-11T05:16:47
2017-11-11T05:16:47
43,766,684
0
0
null
null
null
null
UTF-8
Python
false
false
8,748
py
import re import tables ### TODO: Error message when R-type, S-type are used wrong ### nameTable = {} labelTable = {} wordTable = {} # returns a list of lines, delimited by the \n character def readFrom(path): with open(path, 'r') as f: lines = f.readlines() return lines def writeTo(path, hex): with open(path, 'w') as f: f.write(hex) # This creates a dictionary of .NAME names and values. For example, .NAME IOBASE=0xF0000000 is parsed, then IOBASE and 0xF0000000 pair is put in util.nameTable def updateNameTable(line): nameRE = re.compile('\w+') names = nameRE.findall(line) name = names[1] value = names[2].lower() nameTable[name] = value # equivalent of parseName. Don't really understand what this does, and haven't seen any examples yet... def parseWord(line): pass # Will figure out what this actually does later def parseOrig(line): pass # Returns true if the current line is a directive (like .NAME). False otherwise. def isDirective(line): if line.startswith('.'): return True else: return False # Will expand more on this later. For now, only checks if the beginning of a line is a comment. def isComment(line): if line.startswith(';'): return True else: return False # Returns true if current line is a label definition (like MainLoop:). False otherwise. def isLabelDef(line): if line.endswith(':'): return True else: return False # Determines whether given instruction is a pseudo instruction def isPseudoInstr(line): wordsRE = re.compile('\w+') opcode = wordsRE.findall(line)[0].lower() if opcode in tables.pseudoTable: return True else: return False # Replaces pseudo instruction with regular instruction def replacePseudoInstr(line): wordsRE = re.compile('\w+') words = wordsRE.findall(line) opcode = words[0].lower() replacedLine = [] hasMoreLines = False if opcode == 'br': imm = words[-1] rest = 's0' + ', ' + 's0' + ', ' + imm replacedLine.append(tables.pseudoTable[opcode] + ' ' + rest) elif opcode == 'not': rd = words[-2] rs = words[-1] rest = rd + ', ' + rs + ', ' + rs replacedLine.append(tables.pseudoTable[opcode] + ' ' + rest) elif opcode == 'ble': rs1 = words[-3] rs2 = words[-2] imm = words[-1] rest = 's0' + ', ' + rs1 + ', ' + rs2 replacedLine.append(tables.pseudoTable[opcode] + ' ' + rest) rest = 's0' + ', ' + imm replacedLine.append('bnez' + ' ' + rest) hasMoreLines = True elif opcode == 'bge': rs1 = words[-3] rs2 = words[-2] imm = words[-1] rest = 's0' + ', ' + rs1 + ', ' + rs2 replacedLine.append(tables.pseudoTable[opcode] + ' ' + rest) rest = 's0' + ', ' + imm replacedLine.append('bnez' + ' ' + rest) hasMoreLines = True elif opcode == 'call': rs1 = words[-1] imm = words[-2] rest = 'ra' + ', ' + imm + '(' + rs1 + ')' replacedLine.append(tables.pseudoTable[opcode] + ' ' + rest) elif opcode == 'ret': rest = 'r9' + ', ' + '0' + '(' + 'ra' + ')' replacedLine.append(tables.pseudoTable[opcode] + ' ' + rest) elif opcode == 'jmp': imm = words[-2] rs1 = words[-1] rest = 'r9' + ', ' + imm + '(' + rs1 + ')' replacedLine.append(tables.pseudoTable[opcode] + ' ' + rest) return replacedLine, hasMoreLines # This puts label and the location it was defined in a table. Location is in hex string, based on the 0x40 byte addressable address (instead of the 2-bit shifted address) def updateLabelTable(label, origOffset, origAddr): location = '0x' + zext(hex(int(origAddr, 16) + 4 * origOffset), 8) # or this: location = hex(0x10 + offsetFromORIG)[2:0] labelTable[label] = location # Given a hex, zero extends it to 4 hexademical places def zext(imm, size): #if len(imm) > size: #raise Exception('Imm size too big!') imm = imm[2:] # strip 0x in front zeros = (size - len(imm)) * '0' return zeros + imm # Given a hex, trims it down to given size def trim(imm, size): #if len(imm) < size: #raise Exception('Imm size too small to be trimmed!') imm = imm[2:] # need to figure out which part to trim out...for now just trim out the 4 MSB's imm = imm[-4:] return imm def format(imm, size): if len(imm[2:]) > size: return trim(imm, size) elif len(imm[2:]) < size: return zext(imm, size) else: return imm[2:] # Returns true if given input is a decimal number string. False otherwise. def isDecimalOffset(imm): decimalRE = re.compile('[0-9]+') potential = decimalRE.match(imm) if potential is None: # if input starts with a char, we know for sure this is not a decimal number string. return False else: # even if input starts with a decimal number, it could still contain chars so we need to check if the entire given input is a decimal number string. num = potential.group() if len(num) == len(imm): return True else: return False # I don't think this function is useful def parseDirective(line): directiveRE = re.compile('\w+') # this doesn't match the leading dot(.) directives = directiveRE.findall(line) directive = directives[0] if directive == 'NAME': updateNameTable(line) elif directive == 'ORIG': parseOrig(line) elif directive == 'WORD': parseWord(line) else: raise Exception('Not a valid assembler directive!') # parses each line to opcode, registers, (and possibly labels) def parseLine(line): lineArr = line.split(' ', 1) opcode = lineArr[0].lower() stripOpcode = lineArr[1] splitComma = stripOpcode.split(',') stripSplit = [] for split in splitComma: stripSplit.append(split.strip().lower()) #get rid of whitespace if any #throw an error if it's not a valid opcode if opcode not in tables.opcodeTable: raise Exception('Invalid instruction opcode!') #then, based on which opcode it is, #look at how many registers it requires if isImmType(opcode) == False: #there are three registers regs = [stripSplit[0], stripSplit[1], stripSplit[2]] label = '000000000000' #don't care what this is else: #its either one or two registers if opcode == 'mvhi' or opcode == 'bltz' or opcode == 'bltez' or opcode == 'bnez' or opcode == 'bgtez' or opcode == 'bgtz': #its one register regs = [stripSplit[0]] label = stripSplit[1] else: #its two registers if opcode == 'jal' or opcode == 'lw' or opcode == 'sw': beginIndex = stripSplit[1].find("(") endIndex = stripSplit[1].find(")") regs = [stripSplit[0], stripSplit[1][beginIndex+1:endIndex]] label = stripSplit[1][:beginIndex] else: regs = [stripSplit[0], stripSplit[1]] label = stripSplit[2] #check validity of registers for reg in regs: if reg not in tables.regTable: print reg raise Exception('Invalid register(s)!') #check label validity partially # this always throws an erro so im commenting it out for now # if(label.startswith('0x')): # #make sure its valid hex # hexcheck = re.match('[0-9a-fA-F]{1,4}', label[1:]) # if hexcheck == None: # raise Exception('Invalid Immediate value!') return opcode, regs, label # translate opcode to hex def transOpcode(opcode): return tables.opcodeTable[opcode] # translate reg to hex def transReg(reg): return tables.regTable[reg] # For now, there's no checking on if there are too many or not enough registers (there should only be 2 or 3 registers) def transRegs(regs): hex = '' for reg in regs: hex += transReg(reg) return hex # Returns true if instruction is Immediate type, otherwise false. In case of false, fill in 0x000 in the translated instruction. def isImmType(opcode): if opcode.endswith('i') or opcode.startswith('b') or opcode == 'jal' or opcode == 'lw' or opcode == 'sw': return True else: return False # calculates the Imm value from label def calcLabelOffset(labelDefAddr, currAddr): labelDefAddr = int(labelDefAddr, 16) currAddr = int(currAddr, 16) if labelDefAddr > currAddr: return hex((labelDefAddr - (currAddr + 4)) / 4) elif labelDefAddr < currAddr: return hex(((labelDefAddr - (currAddr + 4)) / 4) & 0xffff)
[ "jkim796@gatech.edu" ]
jkim796@gatech.edu
667907153fb3690183536d53d10538fd0e5ee2f8
bfc25f1ad7bfe061b57cfab82aba9d0af1453491
/data/external/repositories_2to3/197978/Grasp-and-lift-EEG-challenge-master/genInfos.py
3fe287f7ae615d7d863ba13934411a5cad7ad2b9
[ "MIT" ]
permissive
Keesiu/meta-kaggle
77d134620ebce530d183467202cf45639d9c6ff2
87de739aba2399fd31072ee81b391f9b7a63f540
refs/heads/master
2020-03-28T00:23:10.584151
2018-12-20T19:09:50
2018-12-20T19:09:50
147,406,338
0
1
null
null
null
null
UTF-8
Python
false
false
2,710
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 13 21:35:28 2015. @author: fornax """ import numpy as np import pandas as pd from glob import glob from mne import concatenate_raws from preprocessing.aux import creat_mne_raw_object # #### define lists ##### subjects = list(range(1, 13)) lbls_tot = [] subjects_val_tot = [] series_val_tot = [] ids_tot = [] subjects_test_tot = [] series_test_tot = [] # #### generate predictions ##### for subject in subjects: print('Loading data for subject %d...' % subject) # ############### READ DATA ############################################### fnames = glob('data/train/subj%d_series*_data.csv' % (subject)) fnames.sort() fnames_val = fnames[-2:] fnames_test = glob('data/test/subj%d_series*_data.csv' % (subject)) fnames_test.sort() raw_val = concatenate_raws([creat_mne_raw_object(fname, read_events=True) for fname in fnames_val]) raw_test = concatenate_raws([creat_mne_raw_object(fname, read_events=False) for fname in fnames_test]) # extract labels for series 7&8 labels = raw_val._data[32:] lbls_tot.append(labels.transpose()) # aggregate infos for validation (series 7&8) raw_series7 = creat_mne_raw_object(fnames_val[0]) raw_series8 = creat_mne_raw_object(fnames_val[1]) series = np.array([7] * raw_series7.n_times + [8] * raw_series8.n_times) series_val_tot.append(series) subjs = np.array([subject]*labels.shape[1]) subjects_val_tot.append(subjs) # aggregate infos for test (series 9&10) ids = np.concatenate([np.array(pd.read_csv(fname)['id']) for fname in fnames_test]) ids_tot.append(ids) raw_series9 = creat_mne_raw_object(fnames_test[1], read_events=False) raw_series10 = creat_mne_raw_object(fnames_test[0], read_events=False) series = np.array([10] * raw_series10.n_times + [9] * raw_series9.n_times) series_test_tot.append(series) subjs = np.array([subject]*raw_test.n_times) subjects_test_tot.append(subjs) # save validation infos subjects_val_tot = np.concatenate(subjects_val_tot) series_val_tot = np.concatenate(series_val_tot) lbls_tot = np.concatenate(lbls_tot) toSave = np.c_[lbls_tot, subjects_val_tot, series_val_tot] np.save('infos_val.npy', toSave) # save test infos subjects_test_tot = np.concatenate(subjects_test_tot) series_test_tot = np.concatenate(series_test_tot) ids_tot = np.concatenate(ids_tot) toSave = np.c_[ids_tot, subjects_test_tot, series_test_tot] np.save('infos_test.npy', toSave)
[ "keesiu.wong@gmail.com" ]
keesiu.wong@gmail.com
06f746d46e92260fad3bdfc7fdedbc74a1648ad6
a6002f605d2f906cf86a22c467ee7f72cb30f314
/sambuca/free_parameters.py
f3360d70b710af5e43da8e723a24c998460f84a9
[ "MIT" ]
permissive
stevesagar/sambuca
c41e6d56d2e65a7b9b8ad47fc2564efa5dfec4df
d153684d48c31ec71c6df5c6c86b9c80da332793
refs/heads/master
2020-05-23T11:20:13.793098
2018-07-10T03:20:22
2018-07-10T03:20:22
80,386,653
0
2
null
null
null
null
UTF-8
Python
false
false
1,058
py
""" Sambuca Free Parameters Defines the default set of free parameters for use with the default parameter estimation function. """ from __future__ import ( absolute_import, division, print_function, unicode_literals) from builtins import * from collections import namedtuple FreeParameters = namedtuple('FreeParameters', ''' chl, cdom, nap, depth, substrate_fraction ''') """ namedtuple containing the default Sambuca free parameters. Attributes: chl (float): Concentration of chlorophyll (algal organic particulates). cdom (float): Concentration of coloured dissolved organic particulates (CDOM). nap (float): Concentration of non-algal particulates (NAP). depth (float): Water column depth. substrate_fraction (float): relative proportion of substrate1 and substrate2. """
[ "daniel.collins@csiro.au" ]
daniel.collins@csiro.au
7d61b22340803854812ce2fb50445f429aebeeb0
df44affab179c2546fb3e0d1dc29eebcfdf51c1c
/toughradius/common/smsapi.py
06534cfab472a0cec1e3f4ef54e6c8980f14269e
[]
no_license
sailorhdx/taurusradius
121c508e7faffaddcd5326d2b6d3710eaf0ed08e
92d30820611a0c9102ae41713ea3c35437a3c6ee
refs/heads/master
2021-01-22T02:28:31.543338
2017-06-17T02:15:33
2017-06-17T02:15:33
92,362,551
0
0
null
null
null
null
UTF-8
Python
false
false
2,021
py
#!/usr/bin/env python # coding=utf-8 import time import json import base64 from urllib import urlencode from toughradius.toughlib import apiutils from toughradius.toughlib import logger from toughradius.toughlib import utils from toughradius.toughlib.smsutils import smscn from toughradius.toughlib.smsutils import qcloud from toughradius.toughlib.smsutils import sendcloud from toughradius.toughlib.smsutils import toughcloud from toughradius.toughlib.btforms import rules from cyclone import httpclient from twisted.internet import defer class SmsApi(object): def __init__(self): self.gateways = ['toughcloud', 'smscn', 'qcloud', 'sendcloud'] self.smscalls = {} def get_instance(self, gateway, apikey, apisecret): if gateway in self.smscalls: return self.smscalls[gateway] if gateway == 'smscn': self.smscalls[gateway] = smscn.SmsApi(apikey, apisecret) elif gateway == 'qcloud': self.smscalls[gateway] = qcloud.SmsApi(apikey, apisecret) elif gateway == 'sendcloud': self.smscalls[gateway] = sendcloud.SmsApi(apikey, apisecret) elif gateway == 'toughcloud': self.smscalls[gateway] = toughcloud.SmsApi(apikey, apisecret) return self.smscalls.get(gateway) @defer.inlineCallbacks def send_sms(self, gateway, apikey, apisecret, sendphone, tplid, args = [], kwargs = {}): if gateway not in self.gateways: raise ValueError(u'gateway [%s] not support' % gateway) if not rules.is_mobile.valid(sendphone): raise ValueError(u'sendsms: %s mobile format error' % sendphone) try: api = self.get_instance(gateway, apikey, apisecret) resp = yield api.send_sms(sendphone, tplid, args=args, kwargs=kwargs) defer.returnValue(resp) except Exception as err: logger.exception(err) defer.returnValue(False) _smsapi = SmsApi() send_sms = _smsapi.send_sms
[ "sailorhdx@hotmail.com" ]
sailorhdx@hotmail.com
c8d81a928a94485e734bc350a35135eadc866d64
8683ea0e2a450f163737740bad07a6ca805120ce
/run.py
110ccab594694465d738cd4b00f02f5ce425814e
[]
no_license
AllanVieira/flask-microblog
250f5bfe54707e34cbaba314e0c9970555f7df9d
88a846a22ac6ba49dad3ced36188cda4d4dca0d6
refs/heads/master
2021-01-25T09:53:31.980809
2015-07-11T15:57:46
2015-07-11T15:57:46
38,900,231
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
#!flask-microblog/Scripts/python from app import app app.run(debug=True)
[ "vieira.allanc@gmail.com" ]
vieira.allanc@gmail.com
5818777c607c788982754ba5803d7c4594917e2c
4e06ed7a0438a7ed8289c4b77fce840750e8f631
/ProgrammingProblems/src/project_euler/P002_even_fibonacci_numbers/solution_02_best.py
f7d29892de8249997bff4a27b61976144d8b0c68
[ "MIT" ]
permissive
PavanKumar-K-A/Notes2Myself
bdb3793cc5de32f994998116e86eeffbe0447059
8c4fdde1a4abd5fb444f5740af460792d345d964
refs/heads/master
2020-12-02T16:34:42.433654
2016-07-29T11:27:39
2016-07-29T11:27:39
64,475,802
1
1
null
2016-07-29T11:31:07
2016-07-29T11:31:07
null
UTF-8
Python
false
false
1,152
py
""" Technique - A slight improvement over the previous technique and a slight but unnoticeable improvement in performance as well. - Since the series starts with 2 odd number, the third one will be even because it is the sum of two odd numbers. The next two will again be odd since one odd number gets added to an even number. In short, every third number in series will be even. Example 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... a, b, c, a, b, c, a, b, c, a, b, ... - This simple observation can help us to solve this puzzle without the need to divide by 2 and find the reminder each time. Note - Simple and best solutions Instrumentation - System Details: 8x Intel Core i7-3630QM CPU @ 2.40GHz, 16GB RAM, Ubuntu 14.04 - Input Details: UPPER_BOUND = 1 Billion - Time for 100 runs: Minimum - 0.0 sec, Average - 0.0 sec, Maximum 0.0 sec """ def answer(upper_bound): a, b = 1, 2 result = 0 while b < upper_bound: result += b a, b = b, b + a # 2, 3 a, b = b, b + a # 3, 5 a, b = b, b + a # 5, 8 - This is the third number that needs to be added return result
[ "mrohith@perfios.com" ]
mrohith@perfios.com
a890d4144bf7a932912ac6c94a213693f7940cdf
e9ceabd8414cdc90b374ee0b39c522b9df80c074
/tools/occam/occam/targets/interface.py
d8c64495b2edc048df9224861f7e4549932c0f8b
[]
no_license
Wajihulhassan/SelfContainedPrevirt
275605079442ce97111350e999b1a6cdbbadb7c7
ea2f9127921e3bb3e72a72436f49ec3698137073
refs/heads/master
2020-05-17T23:52:39.022564
2013-06-09T23:26:35
2013-06-09T23:26:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,659
py
# ------------------------------------------------------------------------------ # OCCAM # # Copyright © 2011-2012, SRI International # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of SRI International nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ------------------------------------------------------------------------------ from occam import passes from occam import interface, formats from occam import target import sys import getopt import tempfile def deep(libs, iface): tf = tempfile.NamedTemporaryFile(suffix='.iface', delete=False) tf.close() if not (iface is None): interface.writeInterface(iface, tf.name) else: iface = interface.emptyInterface() progress = True while progress: progress = False for l in libs: passes.interface(l, tf.name, [tf.name], quiet=True) x = interface.parseInterface(tf.name) progress = interface.joinInterfaces(iface, x) or progress interface.writeInterface(iface, tf.name) tf.unlink(tf.name) return iface def shallow(libs, iface): tf = tempfile.NamedTemporaryFile(suffix='.iface', delete=False) tf.close() if not (iface is None): interface.writeInterface(iface, tf.name) else: iface = interface.emptyInterface() for l in libs: passes.interface(l, tf.name, [tf.name], quiet=True) x = interface.parseInterface(tf.name) interface.joinInterfaces(iface, x) tf.unlink(tf.name) return iface def parse(fn): if fn == '@main': return interface.mainInterface() else: print fn return interface.parseInterface(fn) class InterfaceTool (target.Target): def opts(self, args): return getopt.getopt(args, 'o:', ['deep', 'join']) def usage(self): return '\n'.join( ["%s [-o <output.iface>] <interface.iface> <input.bc>+" % self.name, "%s [-o <output.iface>] --deep <interface.iface> <input.bc>+" % self.name, "%s [-o <output.iface>] --join <interfaces.iface>+" % self.name]) def desc(self): return '\n'.join( [" This tool computes the minimal interfaces accross all libraries.", " !main! can be used as any interface file name and it will insert", " the interface that has a single call to main(?,?)", " which is the default entry point.", " NOTE: This is only safe if there are no calls into these", " libraries from modules that are not listed.", " The tool supports the following usages:", "%s <output.iface> <input.bc> [<interfaces.iface>+]" % self.name, " compute the functions required for input.bc given the", " calls in the given interface files are the entry points", "%s --deep <output.iface> <input.bc>+ --with <interfaces.iface>+" % self.name, " recursively compute the minimal interfaces needed for the input", " bc files and write the cumulative interface to output.iface.", " The --with parameters specify input interfaces", "%s --join <output.iface> <interfaces.iface>+" % self.name, " Join the given interfaces into a single interface,", " write the combined interface to stdout"]) def run(self, cfg, flags, args): output = target.flag(flags, '-o', '-') if ('--join','') in flags: if len(args) < 1: raise target.ArgError() ifs = [parse(x) for x in args] result = ifs[0] for x in ifs[1:]: interface.joinInterfaces(result, x) else: # This is computing the interface if len(args) < 1: raise target.ArgError() if args[0] == '@*': iface = None else: iface = parse(args[0]) libs = args[1:] if '--deep' in flags: result = deep(libs, iface) else: result = shallow(libs, iface) interface.writeInterface(result, output) return 0 target.register('interface', InterfaceTool('interface'))
[ "scott@thinkmoore.net" ]
scott@thinkmoore.net
d2fee084c8ea4287d28cdf169c8e321a67e58e32
44cbc40e66c5a81507c74f0afd8f63b8d1de42c5
/sequence_solver/sequence_solver.py
c59087fcf4c862938c20e1e212eff6517ebe6084
[ "MIT" ]
permissive
jonathan-hepp/Sequence-Solver
3453666d68b5a6ea25f49783ae113b957c00664b
0f7e7ba287b9a90c181755f757bffa9c54d207f4
refs/heads/master
2021-01-19T13:46:39.600306
2017-02-27T18:26:05
2017-02-27T18:26:05
82,417,094
1
0
null
null
null
null
UTF-8
Python
false
false
876
py
# -*- coding: utf-8 -*- import strategies class SequenceSolver: def __init__(self, sequence): self.sequence = sequence def solve(self): for strategy in StrategiesFactory(): try: return strategy.solve(self.sequence) except: pass class StrategiesFactory: def __init__(self): self.index = 0 self.strategies = StrategiesFactory.create_all() def create_all(): strategy_list = [] for strategy in strategies.BaseStrategy.__subclasses__(): strategy_list.append(strategy()) return strategy_list def __iter__(self): return self def __next__(self): try: strategy = self.strategies[self.index] self.index += 1 return strategy except: raise StopIteration()
[ "jonathan.hepp@gmail.com" ]
jonathan.hepp@gmail.com
c10252bfec21903bc8ae0d91f331ff0f08794f14
95ee2471fd393c9cb9807a867dbf6bc000c83484
/Python/extraset.py
f4b2b970cfc213c7388b6e33f581b6bff00581b5
[]
no_license
Hugens25/School-Projects
6c7be0e3f96c651162595bb467de2334d2f91152
b8d40c4cfcf811e7a62f6d5e1c2bf5bd8d5b1480
refs/heads/master
2020-07-02T15:01:39.898406
2019-08-10T02:34:21
2019-08-10T02:34:21
201,565,483
0
0
null
null
null
null
UTF-8
Python
false
false
1,238
py
#import itertools def compare_vals(a,b): possible_values = [0,1,2] possible_values.remove(a) possible_values.remove(b) #print('Possible Values [0]: {}'.format(possible_values[0])) return possible_values[0] num_cases = int(input()) for i in range(num_cases): info = list(map(int, input().split())) attributes = info[0] total_cards = info[1] all_cards = [] count = 0 for j in range(total_cards): all_cards.append(list(map(int, input().split()))) #combos = itertools.combinations(all_cards, 2) needed_card = [] for i in range(len(all_cards)): for j in range(i+1,len(all_cards)): for k in range(attributes): possible_values = [0,1,2] if all_cards[i][k] == all_cards[j][k]: needed_card.append(all_cards[i][k]) if all_cards[i][k] != all_cards[j][k]: needed_card.append(compare_vals(all_cards[i][k],all_cards[j][k])) #print(needed_card) if needed_card in all_cards: count += 1 #print(needed_card) needed_card.clear() else: needed_card.clear() print(int(count/3))
[ "noreply@github.com" ]
noreply@github.com
8be063a8d6e92ff4b638faa109def6bca20d490b
1506063b93cbb1f9978ef78f822c797df4058a10
/test_circle.py
80508deed67561efcb6286df8d66abe910b5e627
[]
no_license
renanstn/unit-test-python
37c39c0fa4274110a0acfe77ae0689a7b498fd70
1719123119cf039c5075c9120b5af43cb9f59fd7
refs/heads/master
2022-11-30T08:34:18.265902
2020-08-05T21:17:03
2020-08-05T21:17:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
import unittest from circle import circle_area from math import pi ''' Para rodas os testes, executar em linha de comando: python -m unittest test_circles ou somente python -m unittest Para obter mais informações sobre os assert methods: Entre no python, import unittest, help(unittest.assertSetEqual), ''' class TestCircleArea(unittest.TestCase): def test_area(self): # Test areas when radius >= 0 self.assertAlmostEqual(circle_area(1), pi) self.assertAlmostEqual(circle_area(0), 0) self.assertAlmostEqual(circle_area(2.1), pi*2.1**2) def test_values(self): # Make sure value errors are raised when necessary self.assertRaises(ValueError, circle_area, -2) def test_types(self): # Make sure type errors are raised when necessary self.assertRaises(TypeError, circle_area, 3+5j) self.assertRaises(TypeError, circle_area, True) self.assertRaises(TypeError, circle_area, "radius")
[ "renan_ota@hotmail.com" ]
renan_ota@hotmail.com
b8a0233512848689eab5dea8d359062c641e2a1d
6a2bda031f53b057e7aac3aeebd070151f5923f1
/zmqpy/zmqpy.py
d012bf64ed8ad12196b425161f1ed1cec45fec26
[ "BSD-2-Clause" ]
permissive
pfw/zmqpy
ab34b9f9f7e662e5d056a5a35078c27f4c9b5d9b
185758349176709da43327e1f9b7c7c04d4ca850
refs/heads/master
2020-12-24T20:14:41.117019
2012-12-10T18:43:17
2012-12-10T18:43:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,024
py
# coding: utf-8 from ._cffi import C, ffi, zmq_version, new_uint64_pointer, \ new_int64_pointer, \ new_int_pointer, \ new_binary_data, \ value_uint64_pointer, \ value_int64_pointer, \ value_int_pointer, \ value_binary_data from .constants import * from .error import * from .utils import jsonapi class Context(object): _state = {} def __init__(self, iothreads=1): if not iothreads > 0: raise ZMQError(EINVAL) self.__dict__ = self._state self.zmq_ctx = C.zmq_init(iothreads) self.iothreads = iothreads self._closed = False self.n_sockets = 0 self.max_sockets = 32 self._sockets = {} self.sockopts = {LINGER: 1} self.linger = 1 def term(self): if self.closed: return for k, s in self._sockets.items(): if not s.closed: s.close() del self._sockets[k] C.zmq_term(self.zmq_ctx) self.zmq_ctx = None self._closed = True self.n_sockets = 0 @property def closed(self): return self._closed def _add_socket(self, socket): self._sockets[self.n_sockets] = socket self.n_sockets += 1 return self.n_sockets def _rm_socket(self, n): del self._sockets[n] def socket(self, sock_type): if self._closed: raise ZMQError(ENOTSUP) socket = Socket(self, sock_type) for option, option_value in self.sockopts.items(): socket.setsockopt(option, option_value) return socket def set_linger(self, value): self.sockopts[LINGER] = value self.linger = value def new_pointer_from_opt(option, length=0): if option in uint64_opts: return new_uint64_pointer() elif option in int64_opts: return new_int64_pointer() elif option in int_opts: return new_int_pointer() elif option in binary_opts: return new_binary_data(length) else: raise ValueError('Invalid option') def value_from_opt_pointer(option, opt_pointer, length=0): if option in uint64_opts: return int(opt_pointer[0]) elif option in int64_opts: return int(opt_pointer[0]) elif option in int_opts: return int(opt_pointer[0]) elif option in binary_opts: return ffi.string(opt_pointer) else: raise ValueError('Invalid option') def initialize_opt_pointer(option, value, length=0): if option in uint64_opts: return value_uint64_pointer(value) elif option in int64_opts: return value_int64_pointer(value) elif option in int_opts: return value_int_pointer(value) elif option in binary_opts: return value_binary_data(value, length) else: raise ValueError('Invalid option') class Socket(object): def __init__(self, context, sock_type): self.context = context self.sock_type = sock_type self.zmq_socket = C.zmq_socket(context.zmq_ctx, sock_type) if not self.zmq_socket: raise ZMQError() self._closed = False self._attrs = {} self.n = self.context._add_socket(self) self.last_errno = None @property def closed(self): return self._closed def close(self): if not self._closed: C.zmq_close(self.zmq_socket) self._closed = True def bind(self, address): ret = C.zmq_bind(self.zmq_socket, address) return ret def connect(self, address): ret = C.zmq_connect(self.zmq_socket, address) return ret def setsockopt(self, option, value): length = None if isinstance(value, str): length = len(value) low_level_data = initialize_opt_pointer(option, value, length) low_level_value_pointer = low_level_data[0] low_level_sizet = low_level_data[1] ret = C.zmq_setsockopt(self.zmq_socket, option, ffi.cast('void*', low_level_value_pointer), low_level_sizet) return ret def getsockopt(self, option, length=0): low_level_data = new_pointer_from_opt(option, length=length) low_level_value_pointer = low_level_data[0] low_level_sizet_pointer = low_level_data[1] ret = C.zmq_getsockopt(self.zmq_socket, option, low_level_value_pointer, low_level_sizet_pointer) if ret < 0: self.last_errno = C.zmq_errno() return -1 return value_from_opt_pointer(option, low_level_value_pointer) def send(self, message, flags=0, copy=False): zmq_msg = ffi.new('zmq_msg_t*') c_message = ffi.new('char[]', message) C.zmq_msg_init_size(zmq_msg, len(message)) C.memcpy(C.zmq_msg_data(zmq_msg), c_message, len(message)) if zmq_version == 2: ret = C.zmq_send(self.zmq_socket, zmq_msg, flags) else: ret = C.zmq_sendmsg(self. zmq_socket, zmq_msg, flags) C.zmq_msg_close(zmq_msg) if ret < 0: self.last_errno = C.zmq_errno() return ret def recv(self, flags=0): zmq_msg = ffi.new('zmq_msg_t*') C.zmq_msg_init(zmq_msg) if zmq_version == 2: ret = C.zmq_recv(self.zmq_socket, zmq_msg, flags) else: ret = C.zmq_recvmsg(self.zmq_socket, zmq_msg, flags) if ret < 0: C.zmq_msg_close(zmq_msg) raise zmqpy.ZMQError(_errno=C.zmq_errno()) value = ffi.buffer(C.zmq_msg_data(zmq_msg), int(C.zmq_msg_size(zmq_msg)))[:] C.zmq_msg_close(zmq_msg) return value def make_zmq_pollitem(socket, flags): zmq_socket = socket.zmq_socket zmq_pollitem = ffi.new('zmq_pollitem_t*') zmq_pollitem.socket = zmq_socket zmq_pollitem.fd = 0 zmq_pollitem.events = flags zmq_pollitem.revents = 0 return zmq_pollitem[0] def _poll(zmq_pollitem_list, poller, timeout=-1): if zmq_version == 2: timeout = timeout * 1000 items = ffi.new('zmq_pollitem_t[]', zmq_pollitem_list) list_length = ffi.cast('int', len(zmq_pollitem_list)) c_timeout = ffi.cast('long', timeout) C.zmq_poll(items, list_length, c_timeout) result = [] for index in range(len(items)): if items[index].revents > 0: result.append((poller._sockets[items[index].socket], items[index].revents)) return result # Code From PyZMQ class Poller(object): def __init__(self): self.sockets = {} self._sockets = {} self.c_sockets = {} def register(self, socket, flags=POLLIN|POLLOUT): if flags: self.sockets[socket] = flags self._sockets[socket.zmq_socket] = socket self.c_sockets[socket] = make_zmq_pollitem(socket, flags) elif socket in self.sockets: # uregister sockets registered with no events self.unregister(socket) else: # ignore new sockets with no events pass def modify(self, socket, flags=POLLIN|POLLOUT): self.register(socket, flags) def unregister(self, socket): del self.sockets[socket] del self._sockets[socket.zmq_socket] del self.c_sockets[socket] def poll(self, timeout=None): if timeout is None: timeout = -1 timeout = int(timeout) if timeout < 0: timeout = -1 items = _poll(self.c_sockets.values(), self, timeout=timeout) return items
[ "felipecruz@loogica.net" ]
felipecruz@loogica.net
5a5f34191a28725a3827b90ff01bbdf2a66566b0
38b2cf51cbd5cdbb062bf1393dae12237dd4f071
/二叉搜索树与双向链表.py
d9ad708f048d710bb74d2d5c775321a945865022
[]
no_license
Wsssssss/target-offer
4986ab6ec45a0dd123d4d578c041057df98f81ce
c595e5abee5244602adf9a285380bec9816e17e5
refs/heads/master
2020-06-17T03:33:46.318935
2019-09-16T15:48:57
2019-09-16T15:48:57
195,782,291
0
0
null
null
null
null
UTF-8
Python
false
false
1,375
py
# 题目描述 # 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。 class Solution: def Convert(self, pRootOfTree): if not pRootOfTree: return None if not pRootOfTree.left and not pRootOfTree.right: return pRootOfTree left = self.Convert(pRootOfTree.left) p = left while left and p.right: p = p.right if left: p.right = pRootOfTree pRootOfTree.left = p right = self.Convert(pRootOfTree.right) if right: pRootOfTree.right = right right.left = pRootOfTree return left if left else pRootOfTree def Convert2(self, pRootOfTree): if not pRootOfTree: return None stack =[] resstack = [] p = pRootOfTree while p or stack: if p: stack.append(p) p = p.left else: node = stack.pop() resstack.append(node) p = node.right head = resstack[0] while resstack: top = resstack.pop(0) if resstack: top.right = resstack[0] resstack[0].left = top return head
[ "569467716@qq.com" ]
569467716@qq.com
79194914e7ccad5fd5e4bcf44079d6386cb961dd
1b01d3c77d30cf6fb6aea9be42ff726960191092
/build/laser_filters-indigo-devel/catkin_generated/pkg.develspace.context.pc.py
704444c1ebf8c08a9dbeb1b577615230ec778fa5
[]
no_license
13386030098/laser_navigation
849f6e70bca212a6a37554181a617c3962294e4c
471aa4e3ce649a144b60aa77e808467cb208b443
refs/heads/master
2022-11-28T15:45:33.071171
2020-08-19T09:18:20
2020-08-19T09:18:20
267,012,401
2
0
null
null
null
null
UTF-8
Python
false
false
668
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/zzz/laser_navigation/src/laser_filters-indigo-devel/include".split(';') if "/home/zzz/laser_navigation/src/laser_filters-indigo-devel/include" != "" else [] PROJECT_CATKIN_DEPENDS = "sensor_msgs;roscpp;tf;filters;message_filters;laser_geometry;pluginlib;angles".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lpointcloud_filters;-llaser_scan_filters".split(';') if "-lpointcloud_filters;-llaser_scan_filters" != "" else [] PROJECT_NAME = "laser_filters" PROJECT_SPACE_DIR = "/home/zzz/laser_navigation/devel" PROJECT_VERSION = "1.8.8"
[ "2668920514@qq.com" ]
2668920514@qq.com
a1d0620331051435678cf0a9e29082e724a97bc7
8a907374778da9b7ea37bed9d1de862a28dcd30e
/appserver/community/migrations/0003_community_city.py
7af70f9f06772723fdc2b5d9574dba69a1a403f6
[ "MIT" ]
permissive
onebitme/SWE574-Horuscope
f1375f1a233c8959fd1369a6dcebb958a267b057
9725dd356cbfd19f0ce88d4a208c872be765bd88
refs/heads/master
2022-12-01T06:05:21.130558
2020-08-07T11:04:37
2020-08-07T11:04:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
# Generated by Django 2.1.1 on 2020-06-09 23:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('community', '0002_community_author'), ] operations = [ migrations.AddField( model_name='community', name='city', field=models.CharField(blank=True, max_length=100), ), ]
[ "ersuns@gmail.com" ]
ersuns@gmail.com
e3081826c16e08d1104471dac1a6abd7e415551c
b8a195eff34bb7a03012b27356536f9713f18ff6
/I0320063_exercise9.5.py
957b970e95aadabddc1e142216cb19f8725219a3
[]
no_license
AfinFirnas/Muhammad-Firnas-Balisca-Putra_I0320063_Abyan_Tugas9
f66711831a01f0b30af1779093051fcb43fc0b25
89083ee2c37f73fa9a218e12bb0a92db353bf8cc
refs/heads/main
2023-04-17T14:48:59.361287
2021-04-30T11:51:38
2021-04-30T11:51:38
363,116,993
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
A = [ [ [10,20,30], [40,50,60] ], [ [11,21,31], [41,51,61] ] ] # mengakses elemen 10 print(A[0][0][0]) # mengakses elemen 50 print(A[0][1][1])
[ "noreply@github.com" ]
noreply@github.com
24da100dd2dcfb1fbf2dc0f990d2db5cecb40f9e
a838d4bed14d5df5314000b41f8318c4ebe0974e
/sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2021_01_01/operations/_blob_services_operations.py
0d43959e0413d45f681583c3efd5aacfe3752027
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
13,580
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class BlobServicesOperations(object): """BlobServicesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.storage.v2021_01_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str account_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.BlobServiceItems"] """List blob services of storage account. It returns a collection of one object named default. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either BlobServiceItems or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.storage.v2021_01_01.models.BlobServiceItems] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BlobServiceItems"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('BlobServiceItems', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices'} # type: ignore def set_service_properties( self, resource_group_name, # type: str account_name, # type: str parameters, # type: "_models.BlobServiceProperties" **kwargs # type: Any ): # type: (...) -> "_models.BlobServiceProperties" """Sets the properties of a storage account’s Blob service, including properties for Storage Analytics and CORS (Cross-Origin Resource Sharing) rules. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :param parameters: The properties of a storage account’s Blob service, including properties for Storage Analytics and CORS (Cross-Origin Resource Sharing) rules. :type parameters: ~azure.mgmt.storage.v2021_01_01.models.BlobServiceProperties :keyword callable cls: A custom type or function that will be passed the direct response :return: BlobServiceProperties, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2021_01_01.models.BlobServiceProperties :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BlobServiceProperties"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" blob_services_name = "default" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.set_service_properties.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'BlobServicesName': self._serialize.url("blob_services_name", blob_services_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'BlobServiceProperties') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('BlobServiceProperties', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized set_service_properties.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/{BlobServicesName}'} # type: ignore def get_service_properties( self, resource_group_name, # type: str account_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.BlobServiceProperties" """Gets the properties of a storage account’s Blob service, including properties for Storage Analytics and CORS (Cross-Origin Resource Sharing) rules. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :type account_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: BlobServiceProperties, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2021_01_01.models.BlobServiceProperties :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BlobServiceProperties"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" blob_services_name = "default" accept = "application/json" # Construct URL url = self.get_service_properties.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'BlobServicesName': self._serialize.url("blob_services_name", blob_services_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('BlobServiceProperties', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_service_properties.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/{BlobServicesName}'} # type: ignore
[ "noreply@github.com" ]
noreply@github.com
6efada3b5038ccf2cd2a1a11da2d52c3112ff747
013c6e0fc00ce9d0775b7c80466a65e9576ae163
/ImageDownload/imgLoader.py
948dfe40a7e686b356c1e68d619627a645b14007
[]
no_license
DipuTut/Python
974f120370568e35df386ac6c064827fd1eeb270
ae425203dcfd9c84bef6730e61bd43a4ceca0f3c
refs/heads/master
2020-04-18T04:29:43.504804
2016-08-19T08:25:38
2016-08-19T08:25:38
66,065,733
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
# Retrieving Image data (keeping original names unchanged) from URLs in # a Text file and store them in local hard disk import urllib.request import fileinput for line in fileinput.input(): line = line.replace('\n', '') URL = line IMAGE = URL.rsplit('/',1)[1] urllib.request.urlretrieve(URL, IMAGE)
[ "mddipu@gmail.com" ]
mddipu@gmail.com
5f7a9d0592105bfbf7bb5cee5e5f926ff19e1c7b
e161cc9ad82699f83461985a5ffb930c63c4d16f
/app.py
4acd70d0ca49f27e4512737cd4c8a1cd76c61aef
[]
no_license
karanbajrang07/GOCORONA
acb3acefc5c00da1e56959a0c4e30aa48e209a19
e9b5437d3dfbc9d9f8fa1f6431a67ddffdca841a
refs/heads/master
2023-05-25T09:44:02.543056
2020-03-22T10:15:42
2020-03-22T10:15:42
249,150,188
0
0
null
2023-05-22T22:42:35
2020-03-22T09:24:50
Python
UTF-8
Python
false
false
1,604
py
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.graph_objs as go import pandas as pd import plotly.graph_objects as go from scrap import * import os # import urllib import re import pandas as pd import urllib.request import datetime global str global df df=update_data() df=pd.read_csv("data_covid1.csv") app = dash.Dash() labels = df["Name"] values = df["Total Confirmed cases(Indian)"] options=['Total Confirmed cases(Indian)','Total Confirmed cases(Foreign)', 'Cured', 'Death'] drop_down = [] for i in options: drop_down.append({'label':str(i),'value':i}) app.layout = html.Div([ html.Div(id='last-update', style={'display':'none'}), dcc.Dropdown(id='count_case',options=drop_down,value='Total Confirmed cases(Indian)'), dcc.Graph( id='graph' ), html.Div([html.Button('Refresh Data', id='refresh-data')]), ]) @app.callback(Output('graph', 'figure'), [Input('count_case', 'value')]) def figure_update(selected_value): df[df[selected_value]>0][selected_value] return go.Figure(go.Pie(labels=df[df[selected_value]>0]["Name"], values=df[df[selected_value]>0][selected_value],textinfo='label',textposition='inside')) @app.callback( Output('last-update','children'), [Input('refresh-data','n_clicks')]) def refresh_data(value): global df df=update_data() df=pd.read_csv("data_covid1.csv") connection.close() return datetime.now().strftime("%Y-%m-%d %H:%M:%S") if __name__ == '__main__': app.run_server()
[ "vivekkhanna987@gmail.com" ]
vivekkhanna987@gmail.com
1f0ecf8970323ca6e90866fda6313437fd553ddf
6e0363f62f8432bdbf84a6b076af8a6e64ffb77d
/database.py
310c9cd088eea54dae102af68caceefd5595b825
[]
no_license
bandirenuka/Company_Info
63d1477b06a0cf5d7b7da2a763e008525144e911
54a682cde999d8be6022d1649700fd95d470424c
refs/heads/master
2023-06-26T20:26:59.200126
2021-08-01T17:36:23
2021-08-01T17:36:23
391,698,909
0
0
null
null
null
null
UTF-8
Python
false
false
933
py
from model import Company import motor.motor_asyncio from typing import List client=motor.motor_asyncio.AsyncIOMotorClient('mongodb://localhost:27017/') database=client.Companyd collection=database.Companyt async def create_company(company): document=company result=await collection.insert_one(document) return document async def fetch_one_company(name): document = await collection.find_one({"name":name}) return document async def fetch_all_companys(): companys=[] cursor=collection.find({}) async for document in cursor: companys.append(Company(**document)) return companys async def update_company(name,employee_size): await collection.update_one({"name":name},{"$set":{"employee_size":employee_size}}) document=await collection.find_one({"name":name}) return document async def remove_Compnay(name): await collection.delete_one({"name":name}) return True
[ "71758275+bandirenuka@users.noreply.github.com" ]
71758275+bandirenuka@users.noreply.github.com
a0ce3ae8e6e2426106cc017889777f243291f359
7b725bfc551953331c2624156738772b55ad5e03
/server/tests/test_transformers.py
c86c8984e49fb23a1e8cecbbcd4816627bb83a89
[]
no_license
rbarbaresco/weathermap
5f0b32498fead2f77f45e1656d79ba95c66d6a9d
b298afdafc7ff8a9350284247ff206783a68977d
refs/heads/master
2021-07-13T04:54:31.662211
2017-10-19T12:29:14
2017-10-19T12:29:14
106,970,031
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
import unittest import json from server.weathermap.transformers import openweathertransform class TestTransformers(unittest.TestCase): with open('florianopolis.json', 'r') as file: floripa_forecast = file.read() def test_should_bring_five_days(self): response = json.loads(openweathertransform(self.floripa_forecast)) self.assertEqual(5, len(response))
[ "barbaresco.rodrigo@gmail.com" ]
barbaresco.rodrigo@gmail.com
650d4bc537b1b13cc59ad77a6032fd9401d7bda6
6a368201fab627448fc2165ecd533ad8c33d262f
/thucuong.py
da25c9def854e9f6fee1db302a6792d795308b62
[]
no_license
thanhtrung5763/DoAnOOP_Bai2_Python
c05674475030f238058d604c202b662a876091aa
97f05d76e7fb5dfe6698d94aed9937f218a667fa
refs/heads/master
2023-02-21T09:32:28.939721
2021-01-27T05:42:20
2021-01-27T05:42:20
328,703,563
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
from thucpham import ThucPham from quanlithucdon import QuanLiThucDon class ThucUong(ThucPham): def __init__(self, Ten=None, Gia=0, TinhTrang=None, ThoiDiemBan=None, Da=None): super().__init__(Ten, Gia, TinhTrang, ThoiDiemBan) self.Da = Da QuanLiThucDon.lThucPham.append(self) QuanLiThucDon.lThucUong.append(self) def TaoThucUong(self): super().TaoMonAn() self.Da = input("Da Hay Khong Da: ") def HienThi(self): super().HienThi() print(f"{self.Da:<10}")
[ "thanhtrung5763@gmail.com" ]
thanhtrung5763@gmail.com
96faf968490377dd49d59ec2795364de9ee2223c
5d0c9055d52dae6dc0e76003213165ec843a950d
/mercadolibre/mercadolibre/settings.py
4b3d249ca8407257447a809a5c5a9c4a5f760487
[]
no_license
gmtw/curso_web_scrapping
bdfac8ddb37c980b82dd6980813cefd8dae6fdc7
4bae3d747b644f208febc502389e76bc82860542
refs/heads/master
2020-12-21T10:43:33.142999
2020-01-27T03:00:14
2020-01-27T03:00:14
236,407,889
0
0
null
null
null
null
UTF-8
Python
false
false
3,197
py
# -*- coding: utf-8 -*- # Scrapy settings for mercadolibre project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'mercadolibre' SPIDER_MODULES = ['mercadolibre.spiders'] NEWSPIDER_MODULE = 'mercadolibre.spiders' ITEM_PIPELINES = ('mercadolibre.pipelines.MercadoPipeline') # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'mercadolibre (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'mercadolibre.middlewares.MercadolibreSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'mercadolibre.middlewares.MercadolibreDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'mercadolibre.pipelines.MercadolibrePipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "julio_somo@ciencias.unam.mx" ]
julio_somo@ciencias.unam.mx
f52a29a93a837fa8d7b68371fbafd667d115df5c
13525a82e1b1545b81d155956a1d310fa20a06fc
/Section-18/Python-data-structures/22_sum_floats/sum_floats.py
7db779a1fe6835ce94d877cd9d4dd1b8920a1e04
[]
no_license
trevormcdonald/Springboard-Exercises
55cd9f3a4edf560632fe46c23dcccaddced95878
7dffcb0b524ae4fee0989af7b5e5b25808276d68
refs/heads/master
2023-02-21T05:24:00.269708
2021-01-19T00:57:46
2021-01-19T00:57:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
301
py
def sum_floats(nums): """Return sum of floating point numbers in nums. >>> sum_floats([1.5, 2.4, 'awesome', [], 1]) 3.9 >>> sum_floats([1, 2, 3]) 0 """ sum = 0 for num in nums: if isinstance(num, float): sum += num return sum
[ "mrm257@cornell.edu" ]
mrm257@cornell.edu
11b3528b2e69e8e20b3ffec5e3cabb26665f60f8
7653ddbbc2256fae9cc62251f0241d0e9696df7d
/pyshtools/spectralanalysis/cross_spectrum.py
5b48e4b63cf25c38d0ad3ff3a882735c27d890b2
[ "BSD-3-Clause" ]
permissive
SHTOOLS/SHTOOLS
c3415b38da290805ecdfd59699587e5ac5233cc8
93e77dcc6b36b2363f07d79d07ec47d86e6cba65
refs/heads/master
2023-08-31T01:35:49.211882
2023-08-28T10:50:08
2023-08-28T10:50:08
24,725,612
315
117
BSD-3-Clause
2023-08-28T10:50:10
2014-10-02T15:53:36
Python
UTF-8
Python
false
false
6,773
py
import numpy as _np from scipy.special import factorial as _factorial def cross_spectrum(clm1, clm2, normalization='4pi', degrees=None, lmax=None, convention='power', unit='per_l', base=10.): """ Return the cross-spectrum of the spherical harmonic coefficients as a function of spherical harmonic degree. Usage ----- array = cross_spectrum(clm1, clm2, [normalization, degrees, lmax, convention, unit, base]) Returns ------- array : ndarray, shape (len(degrees)) 1-D ndarray of the spectrum. Parameters ---------- clm1 : ndarray, shape (2, lmax + 1, lmax + 1) ndarray containing the first set of spherical harmonic coefficients. clm2 : ndarray, shape (2, lmax + 1, lmax + 1) ndarray containing the second set of spherical harmonic coefficients. normalization : str, optional, default = '4pi' '4pi', 'ortho', 'schmidt', or 'unnorm' for geodesy 4pi normalized, orthonormalized, Schmidt semi-normalized, or unnormalized coefficients, respectively. lmax : int, optional, default = len(clm[0,:,0]) - 1. Maximum spherical harmonic degree to output. degrees : ndarray, optional, default = numpy.arange(lmax+1) Array containing the spherical harmonic degrees where the spectrum is computed. convention : str, optional, default = 'power' The type of spectrum to return: 'power' for power spectrum, 'energy' for energy spectrum, and 'l2norm' for the l2-norm spectrum. unit : str, optional, default = 'per_l' If 'per_l', return the total contribution to the spectrum for each spherical harmonic degree l. If 'per_lm', return the average contribution to the spectrum for each coefficient at spherical harmonic degree l. If 'per_dlogl', return the spectrum per log interval dlog_a(l). base : float, optional, default = 10. The logarithm base when calculating the 'per_dlogl' spectrum. Notes ----- This function returns either the cross-power spectrum, cross-energy spectrum, or l2-cross-norm spectrum. Total cross-power is defined as the integral of the clm1 times the conjugate of clm2 over all space, divided by the area the functions span. If the mean of the functions is zero, this is equivalent to the covariance of the two functions. The total cross-energy is the integral of clm1 times the conjugate of clm2 over all space and is 4pi times the total power. The l2-cross-norm is the sum of clm1 times the conjugate of clm2 over all angular orders as a function of spherical harmonic degree. The output spectrum can be expresed using one of three units. 'per_l' returns the contribution to the total spectrum from all angular orders at degree l. 'per_lm' returns the average contribution to the total spectrum from a single coefficient at degree l, and is equal to the 'per_l' spectrum divided by (2l+1). 'per_dlogl' returns the contribution to the total spectrum from all angular orders over an infinitessimal logarithmic degree band. The contrubution in the band dlog_a(l) is spectrum(l, 'per_dlogl')*dlog_a(l), where a is the base, and where spectrum(l, 'per_dlogl) is equal to spectrum(l, 'per_l')*l*log(a). """ if normalization.lower() not in ('4pi', 'ortho', 'schmidt', 'unnorm'): raise ValueError("The normalization must be '4pi', 'ortho', " + "'schmidt', or 'unnorm'. Input value was {:s}." .format(repr(normalization))) if convention.lower() not in ('power', 'energy', 'l2norm'): raise ValueError("convention must be 'power', 'energy', or " + "'l2norm'. Input value was {:s}" .format(repr(convention))) if unit.lower() not in ('per_l', 'per_lm', 'per_dlogl'): raise ValueError("unit must be 'per_l', 'per_lm', or 'per_dlogl'." + "Input value was {:s}".format(repr(unit))) if _np.iscomplexobj(clm1) is not _np.iscomplexobj(clm2): raise ValueError('clm1 and clm2 must both be either real or ' + 'complex. \nclm1 is complex : {:s}\n' .format(repr(_np.iscomplexobj(clm1))) + 'clm2 is complex : {:s}' .format(repr(_np.iscomplexobj(clm2)))) if lmax is None: lmax = len(clm1[0, :, 0]) - 1 if degrees is None: degrees = _np.arange(lmax+1) if _np.iscomplexobj(clm1): array = _np.empty(len(degrees), dtype=_np.complex128) else: array = _np.empty(len(degrees)) if normalization.lower() == 'unnorm': if convention.lower() == 'l2norm': raise ValueError("convention can not be set to 'l2norm' when " + "using unnormalized harmonics.") for i, l in enumerate(degrees): ms = _np.arange(l+1) conv = _factorial(l+ms) / (2. * l + 1.) / _factorial(l-ms) if _np.iscomplexobj(clm1): array[i] = (conv[0:l + 1] * clm1[0, l, 0:l + 1] * clm2[0, l, 0:l + 1].conjugate()).real.sum() + \ (conv[1:l + 1] * clm1[1, l, 1:l + 1] * clm2[1, l, 1:l + 1].conjugate()).real.sum() else: conv[1:l + 1] = conv[1:l + 1] / 2. array[i] = (conv[0:l + 1] * clm1[0, l, 0:l+1]**2).sum() + \ (conv[1:l + 1] * clm2[1, l, 1:l+1]**2).sum() else: for i, l in enumerate(degrees): if _np.iscomplexobj(clm1): array[i] = (clm1[0, l, 0:l + 1] * clm2[0, l, 0:l + 1].conjugate()).sum() + \ (clm1[1, l, 1:l + 1] * clm2[1, l, 1:l + 1].conjugate()).sum() else: array[i] = (clm1[0, l, 0:l + 1] * clm2[0, l, 0:l + 1]).sum() \ + (clm1[1, l, 1:l + 1] * clm2[1, l, 1:l + 1]).sum() if convention.lower() == 'l2norm': return array else: if normalization.lower() == '4pi': pass elif normalization.lower() == 'schmidt': array /= (2. * degrees + 1.) elif normalization.lower() == 'ortho': array /= (4. * _np.pi) if convention.lower() == 'energy': array *= 4. * _np.pi if unit.lower() == 'per_l': pass elif unit.lower() == 'per_lm': array /= (2. * degrees + 1.) elif unit.lower() == 'per_dlogl': array *= degrees * _np.log(base) return array
[ "mark.a.wieczorek@gmail.com" ]
mark.a.wieczorek@gmail.com
047f00770d20b8038d7afcd98a956810a9380d97
fa305ce263851654d122d2b2074ed08b0910c952
/bot.py
98fd1e289164908842495702378813acfad8959f
[]
no_license
kimelecta/bustabot
8a413d328de07fb8a3aa696f7ddc6eeb0c6d1ce0
c613b5b33d43270a699ae76442bc28c79882ffa1
refs/heads/master
2022-11-06T22:03:05.376727
2020-06-17T13:55:11
2020-06-17T13:55:11
272,973,652
0
0
null
null
null
null
UTF-8
Python
false
false
6,466
py
from http.server import HTTPServer, BaseHTTPRequestHandler import os import time from selenium import webdriver import selenium.webdriver.support.ui as ui from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By import sys HOST = '' PORT = os.environ['PORT'] URL = os.environ['HEROKU_APP_URL'] SIMULATION = False class MyHTTPHandler(BaseHTTPRequestHandler): """The request handler class for our server. It is instantiated once per connection to the server. """ def do_GET(self): self.send_response(200, 'OK') self.send_header('Content-type', 'text/plain') self.end_headers() # Modify log container height to get more log self.server.webdriver.execute_script("document.getElementsByClassName('logListContainer')[0].style.height = '400px'") # modify the height to have more log log = self.server.webdriver.find_element_by_xpath("//div[@class='ReactVirtualized__Grid__innerScrollContainer']").text # Open profile screen self.server.webdriver.find_element_by_xpath("//a[@href='/account/overview']").click() # Wait for the information table to show wait = ui.WebDriverWait(self.server.webdriver, 1) try: wait.until(EC.presence_of_element_located((By.XPATH, "//table[@class='table-light table table-condensed table-hover']"))) except: self.wfile.write(b'error') return # Get usefull player informations game_profit = self.server.webdriver.find_element_by_xpath("//table[@class='table-light table table-condensed table-hover']/tbody/tr[7]/td[2]").text username = self.server.webdriver.find_element_by_xpath("//div[@class='account-header']/h3").text balance = self.server.webdriver.find_element_by_xpath("//table[@class='table-light table table-condensed table-hover']/tbody/tr[8]/td[2]").text # Close profile screen self.server.webdriver.find_element_by_xpath("//button[@class='close']").click() msg = 'Username : ' + username + '\nProfit : ' + game_profit + '\nBalance : ' + balance + '\n\n' + log self.wfile.write(bytes(msg, 'utf-8')) class Server: """This class deserve the Heroku $PORT environnement variable It must be instantiated only once """ _httpd = None def __init__(self, webdriver): self._httpd = HTTPServer((HOST, int(PORT)), MyHTTPHandler) self._httpd.webdriver = webdriver def run(self): self._httpd.serve_forever() class Bustabit: """The Bustabit class is the core of this project It instantiate and run the selenium's webdriver used to communicate with the bustabit site """ _error = False _webdriver = None _script = None def __init__(self, profile_folder, script_name): fd = open(script_name, "r") self._script = fd.read() fd.close() # Launch Firefox GUI in headless mode opt = webdriver.FirefoxOptions() opt.headless = True self._webdriver = webdriver.Firefox(firefox_profile=profile_folder, firefox_options=opt) return def _connect(self): """Init webdriver""" self._webdriver.get('https://www.bustabit.com/play') # Wait until we find the presence of the 'auto' button try: wait = ui.WebDriverWait(self._webdriver, 5) wait.until(EC.presence_of_element_located((By.XPATH, "//li[@class='' and @role='presentation']/a[@role='button' and @href='#']"))) except: print('Are you sure you are logged with your profile ?') self._error = True return def _auto_bet(self): """Starting auto bet with the user script (butabit_script.js)""" # Get and click on 'Auto' button self._webdriver.find_element_by_xpath("//li[@class='' and @role='presentation']/a[@role='button' and @href='#']").click() # Get and click on the eye button self._webdriver.find_element_by_xpath("//button[@class='btn btn-xs btn-info']/i[@class='fa fa-eye']").click() time.sleep(1) # Wait for the popup to dislay # Fill the text area with the user script text_area = self._webdriver.find_element_by_xpath("//textarea[@class='form-control']") text_area.click() text_area.send_keys(Keys.CONTROL, 'a') text_area.send_keys(Keys.RETURN) text_area.send_keys(self._script) # Get and click on the 'Save Script' button self._webdriver.find_element_by_xpath("//button[@class='btn btn-success' and @type='submit']").click() time.sleep(1) # Get and click on the 'Down arrow' button self._webdriver.find_element_by_xpath("//button[@class='btn btn-xs btn-default']").click() if (SIMULATION): # Get and click on 'Simulation' checkbox self._webdriver.find_element_by_xpath("//div[@class='checkbox simCheckbox']/label/input[@type='checkbox']").click() # Get and fill the 'simulated balance' SIMULATED_BALANCE = 100000 simulated_balance_textbox = self._webdriver.find_element_by_name("simulatedBalance") simulated_balance_textbox.clear() simulated_balance_textbox.send_keys(str(SIMULATED_BALANCE)) # Get and click on the 'Run script' button self._webdriver.find_element_by_xpath("//button[@class='btn btn-success' and @type='submit']").click() return def _run(self): """Infinite loop""" # Trick to keep this heroku app alive # 60 * 1000 = 1 minute self._webdriver.execute_script("""setInterval(function(){ fetch('""" + URL + """') }, 60 * 1000 * 10) """) s = Server(self._webdriver) s.run() def start(self): """Start the Bustabit bot""" self._connect() if (self._error): self._webdriver.quit() return self._auto_bet() self._run() return FIREFOX_DIR = "firefox_profile" SCRIPT_NAME = "bustabit_script.js" if __name__ == "__main__": if not os.path.isdir(FIREFOX_DIR): print(FIREFOX_DIR + ' must be a directory') exit(1) if not os.path.isfile(SCRIPT_NAME): print(SCRIPT_NAME + ' must be a file') exit(1) bot = Bustabit(FIREFOX_DIR, SCRIPT_NAME) bot.start() exit(0)
[ "noreply@github.com" ]
noreply@github.com
e1906118e59973542cece93528583102ab8c6cf2
96d8cf1ee8835fc1909e35de462e810019f49997
/02_sl_full_adv_v13/sl_full_linf_pgd7_v11_cifar10/core/attacks_delta.py
133217511fef98934a83f68731e51e607c6c2260
[]
no_license
tnguyen9210/semi-supervised-learning-robustness-pytorch
d57913b7d3a71249f791563a1f232f25a4a6960b
1d51c77dfa9c6d80cc188227ddf9506b18545a4b
refs/heads/master
2022-10-19T04:57:25.733110
2020-06-05T08:51:37
2020-06-05T08:51:37
258,005,596
0
0
null
null
null
null
UTF-8
Python
false
false
5,458
py
import torch import torch.nn as nn import torch.nn.functional as F from core.utils import * class GradientSignAttack(object): def __init__(self, loss_fn, eps, clip_min=0., clip_max=1.): self.loss_fn = loss_fn self.eps = eps self.clip_min = clip_min self.clip_max = clip_max def perturb(self, net, x, y=None): """ """ if y is None: with torch.no_grad(): logit = net(x) y = torch.argmax(logit, dim=1) x_adv = x.detach().clone() y = y.detach().clone() # feed x_adv and compute grad x_adv.requires_grad = True logit_yadv = net(x_adv) loss = self.loss_fn(logit_yadv, y) x_grad = torch.autograd.grad(loss, x_adv)[0] x_adv = x_adv + self.eps*x_grad.sign() x_adv = torch.clamp(x_adv, min=self.clip_min, max=self.clip_max) x_adv = x_adv.detach().clone() return x_adv, 0 class LinfPGDAttack(object): def __init__( self, loss_fn, num_iters, eps, eps_iter, rand_init=True, clip_min=0., clip_max=1.): self.loss_fn = loss_fn self.num_iters = num_iters self.eps = eps self.eps_iter = eps_iter self.rand_init = rand_init self.clip_min = clip_min self.clip_max = clip_max def perturb(self, net, x, y=None): """ """ if y is None: with torch.no_grad(): logit = net(x) y = torch.argmax(logit, dim=1) x_nat = x.detach().clone() y = y.detach().clone() # init perturb if self.rand_init: delta = torch.zeros_like(x).uniform_(-1,1) delta = self.eps*delta x_adv = torch.clamp(x_nat + delta, min=self.clip_min, max=self.clip_max) delta = (x_adv - x_nat).detach().clone() # pgd iterations losses = [] for it in range(self.num_iters): delta.requires_grad = True # feed x_adv and compute grad x_adv = x_nat + delta logit_yadv = net(x_adv) loss = self.loss_fn(logit_yadv, y) grad = torch.autograd.grad(loss, delta)[0] # compute delta delta = delta + self.eps_iter*grad.sign() delta = torch.clamp(delta, min=-self.eps, max=self.eps) x_adv = torch.clamp(x_nat+delta, min=self.clip_min, max=self.clip_max) delta = (x_adv-x_nat).detach().clone() losses.append(round(loss.item(), 4)) x_adv = x_nat + delta return x_adv, losses class GradientAttack(object): def __init__(self, loss_fn, eps, clip_min=0., clip_max=1.): self.loss_fn = loss_fn self.eps = eps self.clip_min = clip_min self.clip_max = clip_max def perturb(self, net, x, y=None): """ """ if y is None: with torch.no_grad(): logit = net(x) y = torch.argmax(logit, dim=1) x_adv = x.detach().clone() y = y.detach().clone() # feed x_adv and compute grad x_adv.requires_grad = True logit_yadv = net(x_adv) loss = self.loss_fn(logit_yadv, y) x_grad = torch.autograd.grad(loss, x_adv)[0] x_grad = normalize_by_pnorm(x_grad, 2) x_adv = x_adv + self.eps*x_grad x_adv = torch.clamp(x_adv, min=self.clip_min, max=self.clip_max) x_adv = x_adv.detach().clone() return x_adv, 0 class L2PGDAttack(object): def __init__( self, loss_fn, num_iters, eps, eps_iter, rand_init=True, clip_min=0., clip_max=1.): self.loss_fn = loss_fn self.num_iters = num_iters self.eps = eps self.eps_iter = eps_iter self.rand_init = rand_init self.clip_min = clip_min self.clip_max = clip_max def perturb(self, net, x, y=None): """ """ if y is None: with torch.no_grad(): logit = net(x) y = torch.argmax(logit, dim=1) x_nat = x.detach().clone() y = y.detach().clone() # init perturb if self.rand_init: x_adv = torch.zeros_like(x).uniform_(self.clip_min,self.clip_max) delta = x_adv - x_nat delta = clamp_by_pnorm(delta, 2, self.eps) x_adv = torch.clamp(x_nat + delta, min=self.clip_min, max=self.clip_max) delta = (x_adv - x_nat).detach().clone() # pgd iterations losses = [] for it in range(self.num_iters): delta.requires_grad = True # feed x_adv and compute grad x_adv = x_nat + delta logit_yadv = net(x_adv) loss = self.loss_fn(logit_yadv, y) grad = torch.autograd.grad(loss, delta)[0] # compute delta grad = normalize_by_pnorm(grad, 2) delta = delta + self.eps_iter*grad delta = clamp_by_pnorm(delta, 2, self.eps) x_adv = torch.clamp(x_nat+delta, min=self.clip_min, max=self.clip_max) delta = (x_adv-x_nat).detach().clone() losses.append(round(loss.item(), 4)) x_adv = x_nat + delta return x_adv, losses
[ "tnguyen9210@gmail.com" ]
tnguyen9210@gmail.com
0e10c4dc821d92d19a19781c29184f2c21a3a2f8
a2e0e03e31f892454e537df32e3e1e1d94764fa0
/virtual/bin/gunicorn_paster
a5acb6c5f33e8c0f85c1fc0f5f42198bd48c6b30
[ "MIT" ]
permissive
MichelAtieno/Instagram-Clone
557272585a3fff6f7a7c552b08cc5ef5e2c129da
7250579e4f91084ad9bf8bd688df3f556dfef64a
refs/heads/master
2020-03-30T16:23:19.351522
2018-10-09T09:42:05
2018-10-09T09:42:05
151,406,356
2
0
null
null
null
null
UTF-8
Python
false
false
273
#!/home/michel/Desktop/Python-Django/Instagram/virtual/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from gunicorn.app.pasterapp import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
[ "mishqamish@gmail.com" ]
mishqamish@gmail.com
6893b1b04629476fddf2845af7cfe5908b9cb720
72e11a80587342b3f278d4df18406cd4ce7531e8
/hgdemandimport/demandimportpy3.py
e2ea27fa0f1166fc55324efb1bbdaf6c4a5029c6
[]
no_license
EnjoyLifeFund/Debian_py36_packages
740666f290cef73a4f634558ccf3fd4926addeda
1985d4c73fabd5f08f54b922e73a9306e09c77a5
refs/heads/master
2021-08-24T02:17:24.349195
2017-12-06T06:18:35
2017-12-06T06:18:35
113,167,612
1
0
null
null
null
null
UTF-8
Python
false
false
3,498
py
# demandimportpy3 - global demand-loading of modules for Mercurial # # Copyright 2017 Facebook Inc. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. """Lazy loading for Python 3.6 and above. This uses the new importlib finder/loader functionality available in Python 3.5 and up. The code reuses most of the mechanics implemented inside importlib.util, but with a few additions: * Allow excluding certain modules from lazy imports. * Expose an interface that's substantially the same as demandimport for Python 2. This also has some limitations compared to the Python 2 implementation: * Much of the logic is per-package, not per-module, so any packages loaded before demandimport is enabled will not be lazily imported in the future. In practice, we only expect builtins to be loaded before demandimport is enabled. """ # This line is unnecessary, but it satisfies test-check-py3-compat.t. from __future__ import absolute_import import contextlib import importlib.abc import importlib.machinery import importlib.util import sys _deactivated = False class _lazyloaderex(importlib.util.LazyLoader): """This is a LazyLoader except it also follows the _deactivated global and the ignore list. """ def exec_module(self, module): """Make the module load lazily.""" if _deactivated or module.__name__ in ignore: self.loader.exec_module(module) else: super().exec_module(module) # This is 3.6+ because with Python 3.5 it isn't possible to lazily load # extensions. See the discussion in https://python.org/sf/26186 for more. _extensions_loader = _lazyloaderex.factory( importlib.machinery.ExtensionFileLoader) _bytecode_loader = _lazyloaderex.factory( importlib.machinery.SourcelessFileLoader) _source_loader = _lazyloaderex.factory(importlib.machinery.SourceFileLoader) def _makefinder(path): return importlib.machinery.FileFinder( path, # This is the order in which loaders are passed in in core Python. (_extensions_loader, importlib.machinery.EXTENSION_SUFFIXES), (_source_loader, importlib.machinery.SOURCE_SUFFIXES), (_bytecode_loader, importlib.machinery.BYTECODE_SUFFIXES), ) ignore = [] def init(ignorelist): global ignore ignore = ignorelist def isenabled(): return _makefinder in sys.path_hooks and not _deactivated def disable(): try: while True: sys.path_hooks.remove(_makefinder) except ValueError: pass def enable(): sys.path_hooks.insert(0, _makefinder) @contextlib.contextmanager def deactivated(): # This implementation is a bit different from Python 2's. Python 3 # maintains a per-package finder cache in sys.path_importer_cache (see # PEP 302). This means that we can't just call disable + enable. # If we do that, in situations like: # # demandimport.enable() # ... # from foo.bar import mod1 # with demandimport.deactivated(): # from foo.bar import mod2 # # mod2 will be imported lazily. (The converse also holds -- whatever finder # first gets cached will be used.) # # Instead, have a global flag the LazyLoader can use. global _deactivated demandenabled = isenabled() if demandenabled: _deactivated = True try: yield finally: if demandenabled: _deactivated = False
[ "raliclo@gmail.com" ]
raliclo@gmail.com
e719552d07f6604b77bce83362de1ffe0652ab54
4491c65a31063f9282a504601866f63e52fe2c75
/tts.py
aa6a27419a7cdfd623a87739619acb6a33224752
[]
no_license
Pranad17/text-to
904e66259319a3f9aaf0d660768ba8fcd8d4b700
b9ed2cb55765fe616482aee46b59375a11258877
refs/heads/main
2023-06-01T18:50:50.662538
2021-06-16T10:20:11
2021-06-16T10:20:11
377,455,418
0
0
null
null
null
null
UTF-8
Python
false
false
864
py
import tkinter as tk import pyttsx3 engine = pyttsx3.init() class Widget(): def __init__(self): self.root = tk.Tk() self.root.title("TTS") self.root.resizable(0,0) self.root.configure(background="cyan") self.label = tk.Label(text="What you want me to speak?",bg="cyan",fg="black",font="Arial 35 bold") self.label.pack() self.entry = tk.Entry(font="Arial 25",width=30) self.entry.pack() self.button = tk.Button(text="SPEAK",bg="royalblue",fg="brown",font="Arial 30 bold",command=self.clicked) self.button.pack() self.root.mainloop() def clicked(self): text = self.entry.get() self.speak(text) def speak(self,text): engine.say(text) engine.runAndWait() if __name__ == "__main__": temp = Widget()
[ "noreply@github.com" ]
noreply@github.com
c9024f3ef48275c9eb9cfc94034cbd45602e30a9
48656e636c3992336f9acbc256cece0ce2d73d61
/PickANumber_A.py
915865e32acd5ce07d31a1a815afd6261dbe4ba3
[]
no_license
KatherineWinter/python
dd38cd51d2845fb5005294bbe96aae511f380ae8
8957bc3af0845c309c12fbc754af775614578cce
refs/heads/master
2021-07-14T00:49:34.447904
2020-07-25T19:26:47
2020-07-25T19:26:47
188,038,687
0
0
null
null
null
null
UTF-8
Python
false
false
1,480
py
import random isPlaying = True answer = random.randint(0, 9) guessCount = 0 playerGuess = 0 # Play until the user can play no longer while isPlaying: # Only show the initial prompt once a game. if guessCount == 0: playerGuess = raw_input("I'm thinking of a number between 0-9... Guess!\n") # Track how many times we have been in this loop guessCount += 1 ## Check for user error. # Use must input a number. This could have been done in a try/catch, but those are expensive. if playerGuess.isdigit() == False: playerGuess = raw_input( "Your guess must be a whole number between 0-9.\nTry again!\n") continue # If the input was a number... Check to see if the number was in range, and if the guess was correct playerGuessAsInt = int(playerGuess) if playerGuessAsInt < 0 or playerGuessAsInt > 9: playerGuess = raw_input( "Your guess must be a whole number between 0-9.\nTry again!\n") continue elif playerGuessAsInt != answer: playerGuess = raw_input("Close, but not close enough. \nTry again!\n") continue print "Winner! You guessed in", guessCount, "tries! Woo!\n\n" # Reset the game in the event the user wants to play again. answer = random.randint(0, 9) guessCount = 0 # Ask the user if they want to play again. Exit the game loop if they don't while True: playAgainInput = raw_input("Want to play again? (y/n) ") if playAgainInput == 'n': isPlaying = False break elif playAgainInput == 'y': isPlaying = True break
[ "katherine.m.winter@gmail.com" ]
katherine.m.winter@gmail.com
d3218762cdff63ff7e0cd0f38c3aef5d2b9d8cda
840eff9a6db3324212851fde5a22d40057f0471a
/assignment3/inverted_index.py
d90ff7e3158d1d0f5c96ffd76cb7ece725f353a2
[]
no_license
josyulakrishna/datascience_coursera
f013eded182711df956dc65043ffecad28dd8c41
ef544a431fafddaa1beab6851a6acf214a9f8c19
refs/heads/master
2021-01-13T01:25:12.222915
2013-08-16T06:34:44
2013-08-16T06:34:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
650
py
''' Created on May 22, 2013 @author: Josyula ''' # Part 1 import MapReduce import sys mr = MapReduce.MapReduce() # Part 2 def mapper(record): # key: document identifier # value: document contents document_id = record[0] text = record[1] words = text.split() for w in words: mr.emit_intermediate(w, document_id) # Part 3 def reducer(key, list_of_values): # key: word # value: list of occurrence counts docs = set(list_of_values) doct = list(docs) mr.emit((key, doct)) # Part 4 dpath = 'E:\\Data Science\\assignment3\\data\\books.json' inputdata = open(dpath) mr.execute(inputdata, mapper, reducer)
[ "josyula008@gmail.com" ]
josyula008@gmail.com
d070ea5b57e7c9f251743e491b019532adcef562
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_indispositions.py
fabc644b17f9f752e045cebb4233bf3276caa5da
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
#calss header class _INDISPOSITIONS(): def __init__(self,): self.name = "INDISPOSITIONS" self.definitions = indisposition self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['indisposition']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
d81f83f024e616bcef55ea18a79615a4a2ba197b
9763c89a87ab4d3c4c1aeed3b041f50cb63ca248
/pythonProject1/descriptions/descriptions/spiders/descriptions.py
2f911f1449246b06bdf8e5a18a4f2fe45b80bd0c
[]
no_license
01Skymoon01/Scrapy
4423642b5c1ff8619ceab1e780bf9dfabcde933c
3726fe6f079bc35b4698eeadacb4ce84f47382b6
refs/heads/master
2022-11-30T06:38:04.644565
2020-08-21T04:21:36
2020-08-21T04:21:36
289,175,470
0
0
null
null
null
null
UTF-8
Python
false
false
587
py
import scrapy from ..items import DescriptionsItem class QuoteSpider(scrapy.Spider): name = 'quotes' start_urls = { 'https://exchange.xforce.ibmcloud.com/vulnerabilities/184190' } def parse(self, response): # title = response.css('title').extract() # yield {'titleText': title} items = DescriptionsItem() all_div_quotes = response.css("div.instantresults") for quotes in all_div_quotes: title = quotes.css(".description::text").extract() yield { 'title': title }
[ "48031994+01Skymoon01@users.noreply.github.com" ]
48031994+01Skymoon01@users.noreply.github.com
661af640e8e5f910169f00e38340591ad0fbe6a2
a0d2a1315b90ba54cf956aa83f72512d5d4a6019
/_createValueNetwork.py
ba5a68930563dd49dc7d6c8b04aa6a2ca2ea5ead
[]
no_license
Silmaril64/Alphago
6a86cfff71802dabf33c647ba3d9771d1cad6edb
5a10807c4726af4060511bf6c15c7d8d235c6975
refs/heads/master
2023-03-03T08:59:43.576890
2021-02-09T19:43:16
2021-02-09T19:43:16
326,620,761
0
0
null
null
null
null
UTF-8
Python
false
false
1,911
py
import gzip, os.path import json from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow import keras from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Reshape import numpy as np model = Sequential([ Conv2D(192, 5, padding='same', activation = 'relu', data_format='channels_first', input_shape=(9,9,11)), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(192, 3, padding='same', activation = 'relu', data_format='channels_first'), Conv2D(1 , 1, padding='same', activation = 'relu', data_format='channels_first'), Flatten(), Dense(256, activation='relu'), Dense(1, activation='tanh') ]) model.compile(loss='mse', optimizer='adam', metrics=['mse', 'mae']) model.summary() model.save('./models/valueNetwork') print("Value Network Created Successfully")
[ "csj0oe@gmail.com" ]
csj0oe@gmail.com
f061753cf42f736ed0c97e963eb4432f17a31c35
14ac1cd2a1e1d5366ef06e26fadc3d34ff5d5fad
/apps/payinfo/urls.py
3af1a70532c586eebd4f77a1cce384f0f9595b75
[]
no_license
wangdawei0515/django_project
1c5b2384eaab112cf65da032ed3d5fccd7e27c70
7834237a8c19b4b854e8450e2d64458a17584d36
refs/heads/master
2020-03-24T02:50:46.708396
2018-07-29T14:31:21
2018-07-29T14:31:21
140,164,573
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
#encoding: utf-8 from django.urls import path from . import views app_name = 'payinfo' urlpatterns = [ path('',views.index,name='index'), path('payinfo_order/',views.payinfo_order,name='payinfo_order'), path('notify_view/',views.notify_view,name='notify_view'), path('download_payinfo/',views.download_payinfo,name='download_payinfo') ]
[ "wangdawei_@outlook.com" ]
wangdawei_@outlook.com
cc20d5ddabeb4b62b1d598fca3a72d742feb2a74
202bb7c5e37d3f117315e8bba3bd21e84b48fe6b
/alpha/WHSZIWHEN11.py
2ee339eed264849e5d11f95226f1fdd2cfbb9e8e
[]
no_license
haishuowang/work_whs
897cd10a65035191e702811ed650061f7109b9fa
b6a17aefc5905ad9c11dba4d745591ed92b1e386
refs/heads/master
2020-07-03T10:30:14.231858
2020-06-09T08:47:18
2020-06-09T08:47:18
201,877,822
1
2
null
null
null
null
UTF-8
Python
false
false
74,134
py
import numpy as np import pandas as pd import os import sys from itertools import product, permutations, combinations from datetime import datetime import time import matplotlib.pyplot as plt from collections import OrderedDict import sys sys.path.append("/mnt/mfs/LIB_ROOT") import open_lib.shared_paths.path as pt from open_lib.shared_tools import send_email def plot_send_result(pnl_df, sharpe_ratio, subject, text=''): figure_save_path = os.path.join('/mnt/mfs/dat_whs', 'tmp_figure') plt.figure(figsize=[16, 8]) plt.plot(pnl_df.index, pnl_df.cumsum(), label='sharpe_ratio={}'.format(sharpe_ratio)) plt.grid() plt.legend() plt.savefig(os.path.join(figure_save_path, '{}.png'.format(subject))) plt.close() to = ['whs@yingpei.com'] filepath = [os.path.join(figure_save_path, '{}.png'.format(subject))] send_email.send_email(text, to, filepath, subject) class BackTest: @staticmethod def AZ_Load_csv(target_path, index_time_type=True): if index_time_type: target_df = pd.read_table(target_path, sep='|', index_col=0, low_memory=False, parse_dates=True) else: target_df = pd.read_table(target_path, sep='|', index_col=0, low_memory=False) return target_df @staticmethod def AZ_Catch_error(func): def _deco(*args, **kwargs): try: ret = func(*args, **kwargs) except: ret = sys.exc_info() print(ret[0], ":", ret[1]) return ret return _deco @staticmethod def AZ_Time_cost(func): t1 = time.time() def _deco(*args, **kwargs): ret = func(*args, **kwargs) return ret t2 = time.time() print(f'cost_time: {t2-t1}') return _deco @staticmethod def AZ_Sharpe_y(pnl_df): return round((np.sqrt(250) * pnl_df.mean()) / pnl_df.std(), 4) @staticmethod def AZ_MaxDrawdown(asset_df): return asset_df - np.maximum.accumulate(asset_df) def AZ_Col_zscore(self, df, n, cap=None, min_periods=1): df_mean = self.AZ_Rolling_mean(df, n, min_periods=min_periods) df_std = df.rolling(window=n, min_periods=min_periods).std() target = (df - df_mean) / df_std if cap is not None: target[target > cap] = cap target[target < -cap] = -cap return target @staticmethod def AZ_Row_zscore(df, cap=None): df_mean = df.mean(axis=1) df_std = df.std(axis=1) target = df.sub(df_mean, axis=0).div(df_std, axis=0) if cap is not None: target[target > cap] = cap target[target < -cap] = -cap return target @staticmethod def AZ_Rolling(df, n, min_periods=1): return df.rolling(window=n, min_periods=min_periods) @staticmethod def AZ_Rolling_mean(df, n, min_periods=1): target = df.rolling(window=n, min_periods=min_periods).mean() target.iloc[:n - 1] = np.nan return target @staticmethod def AZ_Rolling_sharpe(pnl_df, roll_year=1, year_len=250, min_periods=1, cut_point_list=None, output=False): if cut_point_list is None: cut_point_list = [0.05, 0.33, 0.5, 0.66, 0.95] rolling_sharpe = pnl_df.rolling(int(roll_year * year_len), min_periods=min_periods) \ .apply(lambda x: np.sqrt(year_len) * x.mean() / x.std(), raw=True) rolling_sharpe.iloc[:int(roll_year * year_len) - 1] = np.nan cut_sharpe = rolling_sharpe.quantile(cut_point_list) if output: return rolling_sharpe, cut_sharpe.round(4) else: return cut_sharpe.round(4) @staticmethod def AZ_Pot(pos_df, asset_last): """ 计算 pnl/turover*10000的值,衡量cost的影响 :param pos_df: 仓位信息 :param asset_last: 最后一天的收益 :return: """ trade_times = pos_df.diff().abs().sum().sum() if trade_times == 0: return 0 else: pot = asset_last / trade_times * 10000 return round(pot, 2) @staticmethod def AZ_Normal_IC(signal, pct_n, min_valids=None, lag=0): signal = signal.shift(lag) signal = signal.replace(0, np.nan) corr_df = signal.corrwith(pct_n, axis=1).dropna() if min_valids is not None: signal_valid = signal.count(axis=1) signal_valid[signal_valid < min_valids] = np.nan signal_valid[signal_valid >= min_valids] = 1 corr_signal = corr_df * signal_valid else: corr_signal = corr_df return round(corr_signal, 6) def AZ_Normal_IR(self, signal, pct_n, min_valids=None, lag=0): corr_signal = self.AZ_Normal_IC(signal, pct_n, min_valids, lag) ic_mean = corr_signal.mean() ic_std = corr_signal.std() ir = ic_mean / ic_std return ir, corr_signal @staticmethod def AZ_Leverage_ratio(asset_df): """ 返回250天的return/(负的 一个月的return) :param asset_df: :return: """ asset_20 = asset_df - asset_df.shift(20) asset_250 = asset_df - asset_df.shift(250) if asset_250.mean() > 0: return asset_250.mean() / (-asset_20.min()) else: return asset_250.mean() / (-asset_20.max()) @staticmethod def AZ_Locked_date_deal(position_df, locked_df): """ 处理回测中停牌,涨停等 仓位需要锁死的情况 :param position_df:仓位信息 :param locked_df:停牌 涨跌停等不能交易信息(能交易记为1, 不能记为nan) :return: """ position_df_adj = (position_df * locked_df).dropna(how='all', axis=0) \ .fillna(method='ffill') return position_df_adj @staticmethod def AZ_Path_create(target_path): """ 添加新路径 :param target_path: :return: """ if not os.path.exists(target_path): os.makedirs(target_path) @staticmethod def AZ_split_stock(stock_list): """ 在stock_list中寻找A股代码 :param stock_list: :return: """ eqa = [x for x in stock_list if (x.startswith('0') or x.startswith('3')) and x.endwith('SZ') or x.startswith('6') and x.endwith('SH')] return eqa @staticmethod def AZ_add_stock_suffix(stock_list): """ whs 给stock_list只有数字的 A股代码 添加后缀 如 000001 运行后 000001.SZ :param stock_list: :return:   """ return list(map(lambda x: x + '.SH' if x.startswith('6') else x + '.SZ', stock_list)) @staticmethod def AZ_Delete_file(target_path, except_list=None): if except_list is None: except_list = [] assert type(except_list) == list file_list = os.listdir(target_path) file_list = list(set(file_list) - set(except_list)) for file_name in sorted(file_list): os.remove(os.path.join(target_path, file_name)) @staticmethod def AZ_turnover(pos_df): diff_sum = pos_df.diff().abs().sum().sum() pos_sum = pos_df.abs().sum().sum() if pos_sum == 0: return .0 return diff_sum / float(pos_sum) @staticmethod def AZ_annual_return(pos_df, return_df): temp_pnl = (pos_df * return_df).sum().sum() temp_pos = pos_df.abs().sum().sum() if temp_pos == 0: return .0 else: return temp_pnl * 250.0 / temp_pos def AZ_fit_ratio(self, pos_df, return_df): """ 传入仓位 和 每日收益 :param pos_df: :param return_df: :return: 时间截面上的夏普 * sqrt(abs(年化)/换手率), 当换手率为0时,返回0 """ sharp_ratio = self.AZ_Sharpe_y((pos_df * return_df).sum(axis=1)) ann_return = self.AZ_annual_return(pos_df, return_df) turnover = self.AZ_turnover(pos_df) if turnover == 0: return .0 else: return round(sharp_ratio * np.sqrt(abs(ann_return) / turnover), 2) def AZ_fit_ratio_rolling(self, pos_df, pnl_df, roll_year=1, year_len=250, min_periods=1, cut_point_list=None, output=False): if cut_point_list is None: cut_point_list = [0.05, 0.33, 0.5, 0.66, 0.95] rolling_sharpe, cut_sharpe = self.AZ_Rolling_sharpe(pnl_df, roll_year=roll_year, year_len=year_len, min_periods=min_periods, cut_point_list=cut_point_list, output=True) rolling_return = pnl_df.rolling(int(roll_year * year_len), min_periods=min_periods).apply( lambda x: 250.0 * x.sum().sum()) rolling_diff_pos = pos_df.diff().abs().sum(axis=1).rolling(int(roll_year * year_len), min_periods=min_periods).apply( lambda x: x.sum().sum()) rolling_return.iloc[:int(roll_year * year_len) - 1] = np.nan rolling_diff_pos.iloc[:int(roll_year * year_len) - 1] = np.nan rolling_fit_ratio = rolling_sharpe * np.sqrt(abs(rolling_return) / rolling_diff_pos) rolling_fit_ratio = rolling_fit_ratio.replace(np.inf, np.nan) rolling_fit_ratio = rolling_fit_ratio.replace(-np.inf, np.nan) cut_fit = rolling_fit_ratio.quantile(cut_point_list) return cut_fit.round(4) @staticmethod def AZ_VAR(pos_df, return_df, confidence_level, backward_len=500, forwward_len=250): tradeDayList = pos_df.index[:-forwward_len] col01 = return_df.columns[0] varList = [] cut_point_list = [0.05, 0.33, 0.5, 0.66, 0.95] if len(tradeDayList) == 0: print('数据量太少') else: for tradeDay in tradeDayList: tempPos = pos_df.loc[tradeDay, :] dayIndex = list(return_df.loc[:tradeDay, col01].index[-backward_len:]) + list( return_df.loc[tradeDay:, col01].index[:forwward_len]) return_df_c = return_df[list(tempPos.index)] historyReturn = list(return_df_c.mul(tempPos, axis=1).loc[dayIndex[0]:dayIndex[-1], :].sum(axis=1)) historyReturn.sort() varList.append(historyReturn[int(len(historyReturn) * confidence_level)]) var = pd.DataFrame({'var': varList}, index=tradeDayList) var = var.dropna() var_fit = var.quantile(cut_point_list) return list(var_fit['var']) bt = BackTest() def filter_all(cut_date, pos_df_daily, pct_n, if_return_pnl=False, if_only_long=False): pnl_df = (pos_df_daily * pct_n).sum(axis=1) pnl_df = pnl_df.replace(np.nan, 0) # pnl_df = pd.Series(pnl_df) # 样本内表现 return_in = pct_n[pct_n.index < cut_date] pnl_df_in = pnl_df[pnl_df.index < cut_date] asset_df_in = pnl_df_in.cumsum() last_asset_in = asset_df_in.iloc[-1] pos_df_daily_in = pos_df_daily[pos_df_daily.index < cut_date] pot_in = AZ_Pot(pos_df_daily_in, last_asset_in) leve_ratio = AZ_Leverage_ratio(asset_df_in) if leve_ratio < 0: leve_ratio = 100 sharpe_q_in_df = bt.AZ_Rolling_sharpe(pnl_df_in, roll_year=1, year_len=250, min_periods=1, cut_point_list=[0.3, 0.5, 0.7], output=False) sp_in = bt.AZ_Sharpe_y(pnl_df_in) fit_ratio = bt.AZ_fit_ratio(pos_df_daily_in, return_in) ic = round(bt.AZ_Normal_IC(pos_df_daily_in, pct_n, min_valids=None, lag=0).mean(), 6) sharpe_q_in_df_u, sharpe_q_in_df_m, sharpe_q_in_df_d = sharpe_q_in_df.values in_condition_u = sharpe_q_in_df_u > 0.9 and leve_ratio > 1 in_condition_d = sharpe_q_in_df_d < -0.9 and leve_ratio > 1 # 分双边和只做多 if if_only_long: in_condition = in_condition_u else: in_condition = in_condition_u | in_condition_d if sharpe_q_in_df_m > 0: way = 1 else: way = -1 # 样本外表现 pnl_df_out = pnl_df[pnl_df.index >= cut_date] out_condition, sharpe_q_out = out_sample_perf_c(pnl_df_out, way=way) if if_return_pnl: return in_condition, out_condition, ic, sharpe_q_in_df_u, sharpe_q_in_df_m, sharpe_q_in_df_d, pot_in, \ fit_ratio, leve_ratio, sp_in, sharpe_q_out, pnl_df else: return in_condition, out_condition, ic, sharpe_q_in_df_u, sharpe_q_in_df_m, sharpe_q_in_df_d, pot_in, \ fit_ratio, leve_ratio, sp_in, sharpe_q_out def mul_fun(a, b): a_l = a.where(a > 0, 0) a_s = a.where(a < 0, 0) b_l = b.where(b > 0, 0) b_s = b.where(b < 0, 0) pos_l = a_l.mul(b_l) pos_s = a_s.mul(b_s) pos = pos_l.sub(pos_s) return pos def sub_fun(a, b): return a.sub(b) def add_fun(a, b): return a.add(b) def AZ_Cut_window(df, begin_date, end_date=None, column=None): if column is None: if end_date is None: return df[df.index > begin_date] else: return df[(df.index > begin_date) & (df.index < end_date)] else: if end_date is None: return df[df[column] > begin_date] else: return df[(df[column] > begin_date) & (df[column] < end_date)] def AZ_Leverage_ratio(asset_df): """ 返回250天的return/(负的 一个月的return) :param asset_df: :return: """ asset_20 = asset_df - asset_df.shift(20) asset_250 = asset_df - asset_df.shift(250) if asset_250.mean() > 0: return round(asset_250.mean() / (-asset_20.min()), 2) else: return round(asset_250.mean() / (-asset_20.max()), 2) def pos_daily_fun(df, n=5): return df.rolling(window=n, min_periods=1).sum() def AZ_Pot(pos_df_daily, last_asset): trade_times = pos_df_daily.diff().abs().sum().sum() if trade_times == 0: return 0 else: pot = last_asset / trade_times * 10000 return round(pot, 2) def out_sample_perf_c(pnl_df_out, way=1): # 根据sharpe大小,统计样本外的表现 # if cut_point_list is None: # cut_point_list = [0.30] # if way == 1: # rolling_sharpe, cut_sharpe = \ # bt.AZ_Rolling_sharpe(pnl_df_out, roll_year=0.5, year_len=250, cut_point_list=cut_point_list, output=True) # else: # rolling_sharpe, cut_sharpe = \ # bt.AZ_Rolling_sharpe(-pnl_df_out, roll_year=0.5, year_len=250, cut_point_list=cut_point_list, output=True) if way == 1: sharpe_out = bt.AZ_Sharpe_y(pnl_df_out) else: sharpe_out = bt.AZ_Sharpe_y(-pnl_df_out) out_condition = sharpe_out > 0.8 return out_condition, round(sharpe_out * way, 2) def create_fun_set_2(fun_set): mix_fun_set = [] for fun_1, fun_2 in product(fun_set, repeat=2): exe_str_1 = """def {0}_{1}_fun(a, b, c): mix_1 = {0}_fun(a, b) mix_2 = {1}_fun(mix_1, c) return mix_2 """.format(fun_1.__name__.split('_')[0], fun_2.__name__.split('_')[0]) exec(compile(exe_str_1, '', 'exec')) exec('mix_fun_set += [{0}_{1}_fun]'.format(fun_1.__name__.split('_')[0], fun_2.__name__.split('_')[0])) return mix_fun_set def create_fun_set_2_(fun_set): mix_fun_set = {} for fun_1, fun_2 in product(fun_set, repeat=2): exe_str_1 = """def {0}_{1}_fun(a, b, c): mix_1 = {0}_fun(a, b) mix_2 = {1}_fun(mix_1, c) return mix_2 """.format(fun_1.__name__.split('_')[0], fun_2.__name__.split('_')[0]) exec(compile(exe_str_1, '', 'exec')) exec('mix_fun_set[\'{0}_{1}_fun\'] = {0}_{1}_fun' .format(fun_1.__name__.split('_')[0], fun_2.__name__.split('_')[0])) return mix_fun_set def create_fun_set_2_crt(): fun_2 = mul_fun mix_fun_set = [] for fun_1 in [add_fun, sub_fun, mul_fun]: exe_str_1 = """def {0}_{1}_fun(a, b, c): mix_1 = {0}_fun(a, b) mix_2 = {1}_fun(mix_1, c) return mix_2 """.format(fun_1.__name__.split('_')[0], fun_2.__name__.split('_')[0]) exec(compile(exe_str_1, '', 'exec')) exec('mix_fun_set += [{0}_{1}_fun]'.format(fun_1.__name__.split('_')[0], fun_2.__name__.split('_')[0])) return mix_fun_set def create_fun_set_2_crt_(): fun_2 = mul_fun mix_fun_set = dict() for fun_1 in [add_fun, sub_fun, mul_fun]: exe_str_1 = """def {0}_{1}_fun(a, b, c): mix_1 = {0}_fun(a, b) mix_2 = {1}_fun(mix_1, c) return mix_2 """.format(fun_1.__name__.split('_')[0], fun_2.__name__.split('_')[0]) exec(compile(exe_str_1, '', 'exec')) exec('mix_fun_set[\'{0}_{1}_fun\'] = {0}_{1}_fun' .format(fun_1.__name__.split('_')[0], fun_2.__name__.split('_')[0])) return mix_fun_set class FactorTest: def __init__(self, root_path, if_save, if_new_program, begin_date, cut_date, end_date, time_para_dict, sector_name, hold_time, lag, return_file, if_hedge, if_only_long, if_weight=0.5, ic_weight=0.5, para_adj_set_list=None): self.root_path = root_path self.if_save = if_save self.if_new_program = if_new_program self.begin_date = begin_date self.cut_date = cut_date self.end_date = end_date self.time_para_dict = time_para_dict self.sector_name = sector_name self.hold_time = hold_time self.lag = lag self.return_file = return_file self.if_hedge = if_hedge self.if_only_long = if_only_long self.if_weight = if_weight self.ic_weight = ic_weight if para_adj_set_list is None: self.para_adj_set_list = [ {'pot_in_num': 50, 'leve_ratio_num': 2, 'sp_in': 1.5, 'ic_num': 0.0, 'fit_ratio': 2}, {'pot_in_num': 40, 'leve_ratio_num': 2, 'sp_in': 1.5, 'ic_num': 0.0, 'fit_ratio': 2}, {'pot_in_num': 50, 'leve_ratio_num': 2, 'sp_in': 1, 'ic_num': 0.0, 'fit_ratio': 1}, {'pot_in_num': 50, 'leve_ratio_num': 1, 'sp_in': 1, 'ic_num': 0.0, 'fit_ratio': 2}, {'pot_in_num': 50, 'leve_ratio_num': 1, 'sp_in': 1, 'ic_num': 0.0, 'fit_ratio': 1}, {'pot_in_num': 40, 'leve_ratio_num': 1, 'sp_in': 1, 'ic_num': 0.0, 'fit_ratio': 1}] return_choose = self.load_return_data() self.xinx = return_choose.index sector_df = self.load_sector_data() self.xnms = sector_df.columns return_choose = return_choose.reindex(columns=self.xnms) self.sector_df = sector_df.reindex(index=self.xinx) # print('Loaded sector DataFrame!') if if_hedge: if ic_weight + if_weight != 1: exit(-1) else: if_weight = 0 ic_weight = 0 index_df_1 = self.load_index_data('000300').fillna(0) # index_weight_1 = self.load_index_weight_data('000300') index_df_2 = self.load_index_data('000905').fillna(0) # index_weight_2 = self.load_index_weight_data('000905') # # weight_df = if_weight * index_weight_1 + ic_weight * index_weight_2 hedge_df = if_weight * index_df_1 + ic_weight * index_df_2 self.return_choose = return_choose.sub(hedge_df, axis=0) # print('Loaded return DataFrame!') suspendday_df, limit_buy_sell_df = self.load_locked_data() limit_buy_sell_df_c = limit_buy_sell_df.shift(-1) limit_buy_sell_df_c.iloc[-1] = 1 suspendday_df_c = suspendday_df.shift(-1) suspendday_df_c.iloc[-1] = 1 self.suspendday_df_c = suspendday_df_c self.limit_buy_sell_df_c = limit_buy_sell_df_c # print('Loaded suspendday_df and limit_buy_sell DataFrame!') def reindex_fun(self, df): return df.reindex(index=self.xinx, columns=self.xnms) @staticmethod def create_log_save_path(target_path): top_path = os.path.split(target_path)[0] if not os.path.exists(top_path): os.mkdir(top_path) if not os.path.exists(target_path): os.mknod(target_path) @staticmethod def row_extre(raw_df, sector_df, percent): raw_df = raw_df * sector_df target_df = raw_df.rank(axis=1, pct=True) target_df[target_df >= 1 - percent] = 1 target_df[target_df <= percent] = -1 target_df[(target_df > percent) & (target_df < 1 - percent)] = 0 return target_df @staticmethod def pos_daily_fun(df, n=5): return df.rolling(window=n, min_periods=1).sum() def check_factor(self, name_list, file_name): load_path = os.path.join('/mnt/mfs/dat_whs/data/new_factor_data/' + self.sector_name) exist_factor = set([x[:-4] for x in os.listdir(load_path)]) print() use_factor = set(name_list) a = use_factor - exist_factor if len(a) != 0: print('factor not enough!') print(a) print(len(a)) send_email.send_email(f'{file_name} factor not enough!', ['whs@yingpei.com'], [], 'Factor Test Warning!') @staticmethod def create_all_para(tech_name_list, funda_name_list): target_list_1 = [] for tech_name in tech_name_list: for value in combinations(funda_name_list, 2): target_list_1 += [[tech_name] + list(value)] target_list_2 = [] for funda_name in funda_name_list: for value in combinations(tech_name_list, 2): target_list_2 += [[funda_name] + list(value)] target_list = target_list_1 + target_list_2 return target_list # 获取剔除新股的矩阵 def get_new_stock_info(self, xnms, xinx): new_stock_data = bt.AZ_Load_csv(os.path.join(self.root_path, 'EM_Tab01/CDSY_SECUCODE/LISTSTATE.csv')) new_stock_data.fillna(method='ffill', inplace=True) # 获取交易日信息 return_df = bt.AZ_Load_csv(os.path.join(self.root_path, 'EM_Funda/DERIVED_14/aadj_r.csv')).astype(float) trade_time = return_df.index new_stock_data = new_stock_data.reindex(index=trade_time).fillna(method='ffill') target_df = new_stock_data.shift(40).notnull().astype(int) target_df = target_df.reindex(columns=xnms, index=xinx) return target_df # 获取剔除st股票的矩阵 def get_st_stock_info(self, xnms, xinx): data = bt.AZ_Load_csv(os.path.join(self.root_path, 'EM_Tab01/CDSY_CHANGEINFO/CHANGEA.csv')) data = data.reindex(columns=xnms, index=xinx) data.fillna(method='ffill', inplace=True) data = data.astype(str) target_df = data.applymap(lambda x: 0 if 'ST' in x or 'PT' in x else 1) return target_df def load_return_data(self): return_choose = bt.AZ_Load_csv(os.path.join(self.root_path, 'EM_Funda/DERIVED_14/aadj_r.csv')) return_choose = return_choose[(return_choose.index >= self.begin_date) & (return_choose.index < self.end_date)] return return_choose # 获取sector data def load_sector_data(self): market_top_n = bt.AZ_Load_csv(os.path.join(self.root_path, 'EM_Funda/DERIVED_10/' + self.sector_name + '.csv')) market_top_n = market_top_n.reindex(index=self.xinx) market_top_n.dropna(how='all', axis='columns', inplace=True) xnms = market_top_n.columns xinx = market_top_n.index new_stock_df = self.get_new_stock_info(xnms, xinx) st_stock_df = self.get_st_stock_info(xnms, xinx) sector_df = market_top_n * new_stock_df * st_stock_df sector_df.replace(0, np.nan, inplace=True) return sector_df def load_index_weight_data(self, index_name): index_info = bt.AZ_Load_csv(self.root_path + f'/EM_Funda/IDEX_YS_WEIGHT_A/SECURITYNAME_{index_name}.csv') index_info = self.reindex_fun(index_info) index_mask = (index_info.notnull() * 1).replace(0, np.nan) mkt_cap = bt.AZ_Load_csv(os.path.join(self.root_path, 'EM_Funda/LICO_YS_STOCKVALUE/AmarketCapExStri.csv')) mkt_roll = mkt_cap.rolling(250, min_periods=0).mean() mkt_roll = self.reindex_fun(mkt_roll) mkt_roll_qrt = np.sqrt(mkt_roll) mkt_roll_qrt_index = mkt_roll_qrt * index_mask index_weight = mkt_roll_qrt_index.div(mkt_roll_qrt_index.sum(axis=1), axis=0) return index_weight # 涨跌停都不可交易 def load_locked_data(self): raw_suspendday_df = bt.AZ_Load_csv( os.path.join(self.root_path, 'EM_Funda/TRAD_TD_SUSPENDDAY/SUSPENDREASON.csv')) suspendday_df = raw_suspendday_df.isnull().astype(int) suspendday_df = suspendday_df.reindex(columns=self.xnms, index=self.xinx, fill_value=True) suspendday_df.replace(0, np.nan, inplace=True) return_df = bt.AZ_Load_csv(os.path.join(self.root_path, 'EM_Funda/DERIVED_14/aadj_r.csv')).astype(float) limit_buy_sell_df = (return_df.abs() < 0.095).astype(int) limit_buy_sell_df = limit_buy_sell_df.reindex(columns=self.xnms, index=self.xinx, fill_value=1) limit_buy_sell_df.replace(0, np.nan, inplace=True) return suspendday_df, limit_buy_sell_df # 获取index data def load_index_data(self, index_name): data = bt.AZ_Load_csv(os.path.join(self.root_path, 'EM_Funda/INDEX_TD_DAILYSYS/CHG.csv')) target_df = data[index_name].reindex(index=self.xinx) return target_df * 0.01 # 读取部分factor def load_part_factor(self, sector_name, xnms, xinx, file_list): factor_set = OrderedDict() for file_name in file_list: load_path = os.path.join('/mnt/mfs/dat_whs/data/new_factor_data/' + sector_name) target_df = pd.read_pickle(os.path.join(load_path, file_name + '.pkl')) factor_set[file_name] = target_df.reindex(columns=xnms, index=xinx).fillna(0) return factor_set # 读取factor def load_factor(self, file_name): factor_set = OrderedDict() load_path = os.path.join('/mnt/mfs/dat_whs/data/new_factor_data/' + self.sector_name) target_df = pd.read_pickle(os.path.join(load_path, file_name + '.pkl')) factor_set[file_name] = target_df.reindex(columns=self.xnms, index=self.xinx).fillna(0) return factor_set def deal_mix_factor(self, mix_factor): if self.if_only_long: mix_factor = mix_factor[mix_factor > 0] # 下单日期pos order_df = mix_factor.replace(np.nan, 0) # 排除入场场涨跌停的影响 order_df = order_df * self.sector_df * self.limit_buy_sell_df_c * self.suspendday_df_c order_df = order_df.div(order_df.abs().sum(axis=1).replace(0, np.nan), axis=0) order_df[order_df > 0.05] = 0.05 order_df[order_df < -0.05] = -0.05 daily_pos = pos_daily_fun(order_df, n=self.hold_time) daily_pos.fillna(0, inplace=True) # 排除出场涨跌停的影响 daily_pos = daily_pos * self.limit_buy_sell_df_c * self.suspendday_df_c daily_pos.fillna(method='ffill', inplace=True) return daily_pos def save_load_control(self, tech_name_list, funda_name_list, suffix_name, file_name): # 参数存储与加载的路径控制 result_save_path = '/mnt/mfs/dat_whs/result' if self.if_new_program: now_time = datetime.now().strftime('%Y%m%d_%H%M') if self.if_only_long: file_name = '{}_{}_{}_hold_{}_{}_{}_long.txt' \ .format(self.sector_name, self.if_hedge, now_time, self.hold_time, self.return_file, suffix_name) else: file_name = '{}_{}_{}_hold_{}_{}_{}.txt' \ .format(self.sector_name, self.if_hedge, now_time, self.hold_time, self.return_file, suffix_name) log_save_file = os.path.join(result_save_path, 'log', file_name) result_save_file = os.path.join(result_save_path, 'result', file_name) para_save_file = os.path.join(result_save_path, 'para', file_name) para_dict = dict() para_ready_df = pd.DataFrame(list(self.create_all_para(tech_name_list, funda_name_list))) total_para_num = len(para_ready_df) if self.if_save: self.create_log_save_path(log_save_file) self.create_log_save_path(result_save_file) self.create_log_save_path(para_save_file) para_dict['para_ready_df'] = para_ready_df para_dict['tech_name_list'] = tech_name_list para_dict['funda_name_list'] = funda_name_list pd.to_pickle(para_dict, para_save_file) else: log_save_file = os.path.join(result_save_path, 'log', file_name) result_save_file = os.path.join(result_save_path, 'result', file_name) para_save_file = os.path.join(result_save_path, 'para', file_name) para_tested_df = pd.read_table(log_save_file, sep='|', header=None, index_col=0) para_all_df = pd.read_pickle(para_save_file) total_para_num = len(para_all_df) para_ready_df = para_all_df.loc[sorted(list(set(para_all_df.index) - set(para_tested_df.index)))] print(file_name) print(f'para_num:{len(para_ready_df)}') return para_ready_df, log_save_file, result_save_file, total_para_num @staticmethod def create_all_para_(change_list, ratio_list, tech_list): target_list = list(product(change_list, ratio_list, tech_list)) return target_list def save_load_control_(self, change_list, ratio_list, tech_list, suffix_name, file_name): # 参数存储与加载的路径控制 result_save_path = '/mnt/mfs/dat_whs/result' if self.if_new_program: now_time = datetime.now().strftime('%Y%m%d_%H%M') if self.if_only_long: file_name = '{}_{}_{}_hold_{}_{}_{}_long.txt' \ .format(self.sector_name, self.if_hedge, now_time, self.hold_time, self.return_file, suffix_name) else: file_name = '{}_{}_{}_hold_{}_{}_{}.txt' \ .format(self.sector_name, self.if_hedge, now_time, self.hold_time, self.return_file, suffix_name) log_save_file = os.path.join(result_save_path, 'log', file_name) result_save_file = os.path.join(result_save_path, 'result', file_name) para_save_file = os.path.join(result_save_path, 'para', file_name) para_dict = dict() para_ready_df = pd.DataFrame(list(self.create_all_para_(change_list, ratio_list, tech_list))) total_para_num = len(para_ready_df) if self.if_save: self.create_log_save_path(log_save_file) self.create_log_save_path(result_save_file) self.create_log_save_path(para_save_file) para_dict['para_ready_df'] = para_ready_df para_dict['change_list'] = change_list para_dict['ratio_list'] = ratio_list para_dict['tech_list'] = tech_list pd.to_pickle(para_dict, para_save_file) else: log_save_file = os.path.join(result_save_path, 'log', file_name) result_save_file = os.path.join(result_save_path, 'result', file_name) para_save_file = os.path.join(result_save_path, 'para', file_name) para_tested_df = pd.read_table(log_save_file, sep='|', header=None, index_col=0) para_all_df = pd.read_pickle(para_save_file) total_para_num = len(para_all_df) para_ready_df = para_all_df.loc[sorted(list(set(para_all_df.index) - set(para_tested_df.index)))] print(file_name) print(f'para_num:{len(para_ready_df)}') return para_ready_df, log_save_file, result_save_file, total_para_num class FactorTestSector(FactorTest): def __init__(self, *args): super(FactorTestSector, self).__init__(*args) def load_tech_factor(self, file_name): load_path = os.path.join('/media/hdd1/DAT_PreCalc/PreCalc_whs/' + self.sector_name) target_df = pd.read_pickle(os.path.join(load_path, file_name + '.pkl')) \ .reindex(index=self.xinx, columns=self.xnms) if self.if_only_long: target_df = target_df[target_df > 0] return target_df def load_daily_factor(self, file_name): load_path = f'{self.root_path}/EM_Funda/daily/' tmp_df = bt.AZ_Load_csv(os.path.join(load_path, file_name + '.csv')) \ .reindex(index=self.xinx, columns=self.xnms) target_df = self.row_extre(tmp_df, self.sector_df, 0.3) if self.if_only_long: target_df = target_df[target_df > 0] return target_df def load_jerry_factor(self, file_name): factor_path = '/mnt/mfs/temp/dat_jerry/signal' raw_df = bt.AZ_Load_csv(f'{factor_path}/{file_name}') a = list(set(raw_df.iloc[-1, :100].dropna().values)) tmp_df = raw_df.reindex(index=self.xinx, columns=self.xnms) if len(a) > 5: target_df = self.row_extre(tmp_df, self.sector_df, 0.3) else: target_df = tmp_df pass if self.if_only_long: target_df = target_df[target_df > 0] return target_df def load_whs_factor(self, file_name): load_path = f'{self.root_path}/EM_Funda/dat_whs/' tmp_df = bt.AZ_Load_csv(os.path.join(load_path, file_name + '.csv')) \ .reindex(index=self.xinx, columns=self.xnms) target_df = self.row_extre(tmp_df, self.sector_df, 0.3) if self.if_only_long: target_df = target_df[target_df > 0] return target_df def load_remy_factor(self, file_name): load_path = f'{self.root_path}/EM_Funda/DERIVED_F1' raw_df = bt.AZ_Load_csv(f'{load_path}/{file_name}') a = list(set(raw_df.iloc[-1, :100].dropna().values)) tmp_df = raw_df.reindex(index=self.xinx, columns=self.xnms) if len(a) > 5: target_df = self.row_extre(tmp_df, self.sector_df, 0.3) else: target_df = tmp_df pass if self.if_only_long: target_df = target_df[target_df > 0] return target_df def single_test(self, name_1): factor_1 = getattr(self, my_factor_dict[name_1])(name_1) daily_pos = self.deal_mix_factor(factor_1).shift(2) in_condition, out_condition, ic, sharpe_q_in_df_u, sharpe_q_in_df_m, sharpe_q_in_df_d, pot_in, \ fit_ratio, leve_ratio, sp_in, sharpe_q_out, pnl_df = filter_all(self.cut_date, daily_pos, self.return_choose, if_return_pnl=True, if_only_long=self.if_only_long) if bt.AZ_Sharpe_y(pnl_df) > 0: return 1 else: return -1 def single_test_c(self, name_list): mix_factor = pd.DataFrame() for i in range(len(name_list)): tmp_name = name_list[i] buy_sell_way = self.single_test(tmp_name) tmp_factor = getattr(self, my_factor_dict[tmp_name])(tmp_name) mix_factor = mix_factor.add(tmp_factor * buy_sell_way, fill_value=0) # daily_pos = self.deal_mix_factor(mix_factor).shift(2) # in_condition, out_condition, ic, sharpe_q_in_df_u, sharpe_q_in_df_m, sharpe_q_in_df_d, pot_in, \ # fit_ratio, leve_ratio, sp_in, sharpe_q_out, pnl_df = \ # filter_all(self.cut_date, daily_pos, self.return_choose, if_return_pnl=True, if_only_long=False) # print(in_condition, out_condition, ic, sharpe_q_in_df_u, sharpe_q_in_df_m, sharpe_q_in_df_d, # pot_in, fit_ratio, leve_ratio, sp_in, sharpe_q_out) return mix_factor def single_test_real(self, name_list): mix_factor = pd.DataFrame() for i in range(len(name_list)): tmp_name = name_list[i] # result_list = self.single_test(tmp_name) # print(tmp_name, result_list) # print(1) buy_sell_way = self.single_test(tmp_name) tmp_factor = getattr(self, my_factor_dict[tmp_name])(tmp_name) part_daily_pos = self.deal_mix_factor(tmp_factor).shift(2) mix_factor = mix_factor.add(part_daily_pos * buy_sell_way, fill_value=0) daily_pos = mix_factor / len(name_list) in_condition, out_condition, ic, sharpe_q_in_df_u, sharpe_q_in_df_m, sharpe_q_in_df_d, pot_in, \ fit_ratio, leve_ratio, sp_in, sharpe_q_out, pnl_df = \ filter_all(self.cut_date, daily_pos, self.return_choose, if_return_pnl=True, if_only_long=False) print(in_condition, out_condition, ic, sharpe_q_in_df_u, sharpe_q_in_df_m, sharpe_q_in_df_d, pot_in, fit_ratio, leve_ratio, sp_in, sharpe_q_out) return mix_factor def load_index_data(index_name, xinx): data = bt.AZ_Load_csv(os.path.join('/mnt/mfs/DAT_EQT', 'EM_Tab09/INDEX_TD_DAILYSYS/CHG.csv')) target_df = data[index_name].reindex(index=xinx) return target_df * 0.01 def get_corr_matrix(cut_date=None): pos_file_list = [x for x in os.listdir('/mnt/mfs/AAPOS') if x.startswith('WHS')] return_df = bt.AZ_Load_csv('/mnt/mfs/DAT_EQT/EM_Funda/DERIVED_14/aadj_r.csv').astype(float) index_df_1 = load_index_data('000300', return_df.index).fillna(0) index_df_2 = load_index_data('000905', return_df.index).fillna(0) sum_pnl_df = pd.DataFrame() for pos_file_name in pos_file_list: pos_df = bt.AZ_Load_csv('/mnt/mfs/AAPOS/{}'.format(pos_file_name)) cond_1 = 'IF01' in pos_df.columns cond_2 = 'IC01' in pos_df.columns if cond_1 and cond_2: hedge_df = 0.5 * index_df_1 + 0.5 * index_df_2 return_df_c = return_df.sub(hedge_df, axis=0) elif cond_1: hedge_df = index_df_1 return_df_c = return_df.sub(hedge_df, axis=0) elif cond_2: hedge_df = index_df_2 return_df_c = return_df.sub(hedge_df, axis=0) else: print('alpha hedge error') continue pnl_df = (pos_df.shift(2) * return_df_c).sum(axis=1) pnl_df.name = pos_file_name sum_pnl_df = pd.concat([sum_pnl_df, pnl_df], axis=1) # plot_send_result(pnl_df, bt.AZ_Sharpe_y(pnl_df), 'mix_factor') if cut_date is not None: sum_pnl_df = sum_pnl_df[sum_pnl_df.index > cut_date] return sum_pnl_df def get_all_pnl_corr(pnl_df, col_name): all_pnl_df = pd.read_csv('/mnt/mfs/AATST/corr_tst_pnls', sep='|', index_col=0, parse_dates=True) all_pnl_df_c = pd.concat([all_pnl_df, pnl_df], axis=1) a = all_pnl_df_c.iloc[-600:].corr()[col_name] return a[a > 0.71] def corr_test_fun(pnl_df, alpha_name): sum_pnl_df = get_corr_matrix(cut_date=None) sum_pnl_df_c = pd.concat([sum_pnl_df, pnl_df], axis=1) corr_self = sum_pnl_df_c.corr()[[alpha_name]] other_corr = get_all_pnl_corr(pnl_df, alpha_name) print(other_corr) self_corr = corr_self[corr_self > 0.7].dropna(axis=0) print(self_corr) if len(self_corr) >= 2 or len(other_corr) >= 2: print('FAIL!') send_email.send_email('FAIL!\n' + self_corr.to_html(), ['whs@yingpei.com'], [], '[RESULT DEAL]' + alpha_name) else: print('SUCCESS!') send_email.send_email('SUCCESS!\n' + self_corr.to_html(), ['whs@yingpei.com'], [], '[RESULT DEAL]' + alpha_name) print('______________________________________') return 0 def config_test(): # pass 132.43 5.4 5.66 2.9698 2.58 # factor_str = 'vr_original_45days.csv|R_NETPROFIT_s_QYOY|REMFF.24|wgt_return_p120d_0.2|RQYE_p60d_col_extre_0.2' \ # '|R_NETPROFIT_s_QYOY_and_QTTM_0.3|RQMCL_p345d_continue_ud|RZYE_row_extre_0.2|REMTK.11|M1_p1|M1' # info_str = 'market_top_300plus_industry_10_15|20|False' # pass 97.91 4.07 4.34 2.601 3.41 # factor_str = 'news_num_df_20|turn_p120d_0.2|RQMCL_p345d_continue_ud|RQYE_p20d_col_extre_0.2' \ # '|R_FairValChg_TotProfit_s_First|MA_LINE_10_5|vr_afternoon_10min_20days|REMTK.06' \ # '|R_NetCashflowPS_s_First|REMFF.06|M1_p1' # info_str = 'market_top_300plus_industry_10_15|20|False' # pass 99.89 3.8 3.26 2.4056 3.04 ????? # factor_str = 'TotRev_and_mcap_QYOY_Y3YGR_0.3|RQMCL_p345d_continue_ud|RQYE_p10d_col_extre_0.2' \ # '|R_OPEX_sales_QYOY_and_QTTM_0.3|RZYE_p10d_col_extre_0.2' \ # '|TVOL_row_extre_0.2|R_NETPROFIT_s_QYOY_and_QTTM_0.3' # info_str = 'market_top_300plus_industry_10_15|20|False' # pass 105.39 4.18 2.92 2.5765 2.71 ziwhen10 # factor_str = 'M1|turn_p150d_0.18|ab_sale_mng_exp|REMFF.24|RZCHE_row_extre_0.2|R_ParentProfit_s_YOY_First' \ # '|RQMCL_p345d_continue_ud|evol_p10d|TVOL_row_extre_0.2|REMTK.06|RZYE_p10d_col_extre_0.2' # info_str = 'market_top_300plus_industry_10_15|20|False' # 130.81 5.84 5.78 3.2277 2.54 # factor_str = 'REMFF.08|vr_original_45days.csv|RQYE_row_extre_0.2|evol_p10d|M1|R_Cashflow_s_YOY_First|' \ # 'news_num_df_20|wgt_return_p60d_0.2|R_OPEX_sales_QYOY_and_QTTM_0.3|RQYE_p20d_col_extre_0.2' \ # '|vr_afternoon_10min_20days' # factor_str = 'REMFF.08|RQYE_row_extre_0.2|evol_p10d|R_Cashflow_s_YOY_First|' \ # 'news_num_df_20|wgt_return_p60d_0.2|R_OPEX_sales_QYOY_and_QTTM_0.3|RQYE_p20d_col_extre_0.2' # info_str = 'market_top_300plus_industry_10_15|20|False' # factor_str = 'TotRev_and_mcap_QYOY_Y3YGR_0.3|bulletin_num_df_20|RQYE_p20d_col_extre_0.2|REMWB.03' \ # '|bias_turn_p120d|evol_p20d|wgt_return_p20d_0.2|ADX_40_20_10|RZYE_row_extre_0.2|M1_p2|REMWB.05' # info_str = 'market_top_300plus_industry_20_25_30_35|20|False' # pass 99.64 5.33 8.85 3.3766 2.45 # factor_str = 'R_EPS_s_YOY_First|continue_ud_p200d|RQYE_p10d_col_extre_0.2|REMFF.20|LIQ_mix.csv|REMWB.03|REMTK.13' \ # '|aadj_r_p345d_continue_ud|wgt_return_p20d_0.2|ADX_40_20_10|REMTK.11' # info_str = 'market_top_300plus_industry_20_25_30_35|20|False' # pass 142.46 5.21 3.62 2.7607 2.59 # factor_str = 'aadj_r_p60d_col_extre_0.2|PE_TTM_row_extre_0.2|continue_ud_p20d|TotRev_and_asset_Y3YGR_Y5YGR_0.3' \ # '|R_EBITDA2_QYOY_and_QTTM_0.3|R_OTHERLASSET_QYOY_and_QTTM_0.3|REMTK.16|aadj_r_p10d_col_extre_0.2' \ # '|RQMCL_p345d_continue_ud|R_WorkCapital_QYOY|wgt_return_p20d_0.2' # # info_str = 'market_top_300plus_industry_45_50|20|False' # pass 174.61 5.44 5.15 2.6052 2.67 # factor_str = 'REMTK.21|continue_ud_p20d|REMFF.40|continue_ud_p100d' \ # '|TVOL_p345d_continue_ud|BBANDS_10_1|R_INVESTINCOME_s_QYOY|R_OTHERLASSET_QYOY_and_QTTM_0.3' \ # '|REMFF.20|tab2_9_row_extre_0.3' # info_str = 'market_top_300plus_industry_45_50|20|False' # pass 148.13 5.44 3.13 2.8275 1.49 # factor_str = 'REMFF.11|R_WorkCapital_QYOY_and_QTTM_0.3|continue_ud_p100d|aadj_r_p60d_col_extre_0.2' \ # '|R_LOANREC_s_QYOY_and_QTTM_0.3|TVOL_p345d_continue_ud|REMTK.32' \ # '|R_OTHERLASSET_QYOY_and_QTTM_0.3|wgt_return_p20d_0.2' # info_str = 'market_top_300plus_industry_45_50|20|False' # pass 117.41 4.48 2.87 2.6127 2.65 # factor_str = 'REMFF.20|R_INVESTINCOME_s_QYOY|REMTK.32|aadj_r_p10d_col_extre_0.2' \ # '|TotRev_and_mcap_intdebt_Y3YGR_Y5YGR_0.3|TVOL_p345d_continue_ud' \ # '|aadj_r_p120d_col_extre_0.2|R_NetAssets_s_YOY_First|continue_ud_p90d' # info_str = 'market_top_300plus_industry_45_50|20|False' # pass 152.11 5.24 2.64 2.6867 2.87 # factor_str = 'continue_ud_p100d|REMFF.26|turn_p20d_0.2|aadj_r_p120d_col_extre_0.2|REMTK.06' \ # '|R_LOANREC_s_QYOY_and_QTTM_0.3|TVOL_p345d_continue_ud|R_OTHERLASSET_QYOY_and_QTTM_0.3' \ # '|RQMCL_p345d_continue_ud|wgt_return_p20d_0.2' # info_str = 'market_top_300plus_industry_45_50|20|False' # pass 67.37 3.78 4.38 2.9121 2.72 # factor_str = 'PS_TTM_row_extre_0.2|R_WorkCapital_QYOY_and_QTTM_0.3|REMTK.32' \ # '|R_TangAssets_IntDebt_QYOY_and_QTTM_0.3|aadj_r_p120d_col_extre_0.2|R_INVESTINCOME_s_QYOY' \ # '|bar_num_7_df|wgt_return_p20d_0.2|OPCF_and_asset_Y3YGR_Y5YGR_0.3|R_GrossProfit_TTM_QYOY_and_QTTM_0.3' # info_str = 'market_top_300plus_industry_45_50|5|False' factor_name_list = factor_str.split('|') alpha_name = 'WHSZIWHEN11' sector_name, hold_time, if_only_long = info_str.split('|') hold_time = int(hold_time) if if_only_long == 'True': if_only_long = True else: if_only_long = False cut_date = '20180601' begin_date = pd.to_datetime('20130101') end_date = datetime.now() root_path = '/media/hdd1/DAT_EQT' # root_path = '/mnt/mfs/DAT_EQT' if_save = False if_new_program = True lag = 2 return_file = '' if_hedge = True if sector_name.startswith('market_top_300plus'): if_weight = 1 ic_weight = 0 elif sector_name.startswith('market_top_300to800plus'): if_weight = 0 ic_weight = 1 else: if_weight = 0.5 ic_weight = 0.5 time_para_dict = dict() main = FactorTestSector(root_path, if_save, if_new_program, begin_date, cut_date, end_date, time_para_dict, sector_name, hold_time, lag, return_file, if_hedge, if_only_long, if_weight, ic_weight) # mix_factor = main.single_test_c(factor_name_list) # sum_pos_df_new = main.deal_mix_factor(mix_factor) sum_pos_df_new = main.single_test_real(factor_name_list) if if_weight != 0: sum_pos_df_new['IF01'] = -if_weight * sum_pos_df_new.sum(axis=1) if ic_weight != 0: sum_pos_df_new['IC01'] = -ic_weight * sum_pos_df_new.sum(axis=1) pnl_df = (sum_pos_df_new.shift(2) * main.return_choose).sum(axis=1) pnl_df.name = alpha_name plot_send_result(pnl_df, bt.AZ_Sharpe_y(pnl_df), alpha_name) corr_test_fun(pnl_df, alpha_name) # sum_pos_df_new.round(10).fillna(0).to_csv(f'/mnt/mfs/AAPOS/{alpha_name}.pos', sep='|', index_label='Date') return sum_pos_df_new my_factor_dict = dict({ 'RZCHE_p120d_col_extre_0.2': 'load_tech_factor', 'RZCHE_p60d_col_extre_0.2': 'load_tech_factor', 'RZCHE_p20d_col_extre_0.2': 'load_tech_factor', 'RZCHE_p10d_col_extre_0.2': 'load_tech_factor', 'RZCHE_p345d_continue_ud': 'load_tech_factor', 'RZCHE_row_extre_0.2': 'load_tech_factor', 'RQCHL_p120d_col_extre_0.2': 'load_tech_factor', 'RQCHL_p60d_col_extre_0.2': 'load_tech_factor', 'RQCHL_p20d_col_extre_0.2': 'load_tech_factor', 'RQCHL_p10d_col_extre_0.2': 'load_tech_factor', 'RQCHL_p345d_continue_ud': 'load_tech_factor', 'RQCHL_row_extre_0.2': 'load_tech_factor', 'RQYL_p120d_col_extre_0.2': 'load_tech_factor', 'RQYL_p60d_col_extre_0.2': 'load_tech_factor', 'RQYL_p20d_col_extre_0.2': 'load_tech_factor', 'RQYL_p10d_col_extre_0.2': 'load_tech_factor', 'RQYL_p345d_continue_ud': 'load_tech_factor', 'RQYL_row_extre_0.2': 'load_tech_factor', 'RQYE_p120d_col_extre_0.2': 'load_tech_factor', 'RQYE_p60d_col_extre_0.2': 'load_tech_factor', 'RQYE_p20d_col_extre_0.2': 'load_tech_factor', 'RQYE_p10d_col_extre_0.2': 'load_tech_factor', 'RQYE_p345d_continue_ud': 'load_tech_factor', 'RQYE_row_extre_0.2': 'load_tech_factor', 'RQMCL_p120d_col_extre_0.2': 'load_tech_factor', 'RQMCL_p60d_col_extre_0.2': 'load_tech_factor', 'RQMCL_p20d_col_extre_0.2': 'load_tech_factor', 'RQMCL_p10d_col_extre_0.2': 'load_tech_factor', 'RQMCL_p345d_continue_ud': 'load_tech_factor', 'RQMCL_row_extre_0.2': 'load_tech_factor', 'RZYE_p120d_col_extre_0.2': 'load_tech_factor', 'RZYE_p60d_col_extre_0.2': 'load_tech_factor', 'RZYE_p20d_col_extre_0.2': 'load_tech_factor', 'RZYE_p10d_col_extre_0.2': 'load_tech_factor', 'RZYE_p345d_continue_ud': 'load_tech_factor', 'RZYE_row_extre_0.2': 'load_tech_factor', 'RZMRE_p120d_col_extre_0.2': 'load_tech_factor', 'RZMRE_p60d_col_extre_0.2': 'load_tech_factor', 'RZMRE_p20d_col_extre_0.2': 'load_tech_factor', 'RZMRE_p10d_col_extre_0.2': 'load_tech_factor', 'RZMRE_p345d_continue_ud': 'load_tech_factor', 'RZMRE_row_extre_0.2': 'load_tech_factor', 'RZRQYE_p120d_col_extre_0.2': 'load_tech_factor', 'RZRQYE_p60d_col_extre_0.2': 'load_tech_factor', 'RZRQYE_p20d_col_extre_0.2': 'load_tech_factor', 'RZRQYE_p10d_col_extre_0.2': 'load_tech_factor', 'RZRQYE_p345d_continue_ud': 'load_tech_factor', 'RZRQYE_row_extre_0.2': 'load_tech_factor', 'WILLR_200_40': 'load_tech_factor', 'WILLR_200_30': 'load_tech_factor', 'WILLR_200_20': 'load_tech_factor', 'WILLR_140_40': 'load_tech_factor', 'WILLR_140_30': 'load_tech_factor', 'WILLR_140_20': 'load_tech_factor', 'WILLR_100_40': 'load_tech_factor', 'WILLR_100_30': 'load_tech_factor', 'WILLR_100_20': 'load_tech_factor', 'WILLR_40_40': 'load_tech_factor', 'WILLR_40_30': 'load_tech_factor', 'WILLR_40_20': 'load_tech_factor', 'WILLR_20_40': 'load_tech_factor', 'WILLR_20_30': 'load_tech_factor', 'WILLR_20_20': 'load_tech_factor', 'WILLR_10_40': 'load_tech_factor', 'WILLR_10_30': 'load_tech_factor', 'WILLR_10_20': 'load_tech_factor', 'BBANDS_10_2': 'load_tech_factor', 'BBANDS_10_1.5': 'load_tech_factor', 'BBANDS_10_1': 'load_tech_factor', 'MACD_20_60_18': 'load_tech_factor', 'BBANDS_200_2': 'load_tech_factor', 'BBANDS_200_1.5': 'load_tech_factor', 'BBANDS_200_1': 'load_tech_factor', 'BBANDS_140_2': 'load_tech_factor', 'BBANDS_140_1.5': 'load_tech_factor', 'BBANDS_140_1': 'load_tech_factor', 'BBANDS_100_2': 'load_tech_factor', 'BBANDS_100_1.5': 'load_tech_factor', 'BBANDS_100_1': 'load_tech_factor', 'BBANDS_40_2': 'load_tech_factor', 'BBANDS_40_1.5': 'load_tech_factor', 'BBANDS_40_1': 'load_tech_factor', 'BBANDS_20_2': 'load_tech_factor', 'BBANDS_20_1.5': 'load_tech_factor', 'BBANDS_20_1': 'load_tech_factor', 'MA_LINE_160_60': 'load_tech_factor', 'MA_LINE_120_60': 'load_tech_factor', 'MA_LINE_100_40': 'load_tech_factor', 'MA_LINE_60_20': 'load_tech_factor', 'MA_LINE_10_5': 'load_tech_factor', 'MACD_12_26_9': 'load_tech_factor', 'intra_up_vwap_col_score_row_extre_0.3': 'load_tech_factor', 'intra_up_vol_col_score_row_extre_0.3': 'load_tech_factor', 'intra_up_div_dn_col_score_row_extre_0.3': 'load_tech_factor', 'intra_up_div_daily_col_score_row_extre_0.3': 'load_tech_factor', 'intra_up_15_bar_vwap_col_score_row_extre_0.3': 'load_tech_factor', 'intra_up_15_bar_vol_col_score_row_extre_0.3': 'load_tech_factor', 'intra_up_15_bar_div_dn_15_bar_col_score_row_extre_0.3': 'load_tech_factor', 'intra_up_15_bar_div_daily_col_score_row_extre_0.3': 'load_tech_factor', 'intra_dn_vwap_col_score_row_extre_0.3': 'load_tech_factor', 'intra_dn_vol_col_score_row_extre_0.3': 'load_tech_factor', 'intra_dn_div_daily_col_score_row_extre_0.3': 'load_tech_factor', 'intra_dn_15_bar_vwap_col_score_row_extre_0.3': 'load_tech_factor', 'intra_dn_15_bar_vol_col_score_row_extre_0.3': 'load_tech_factor', 'intra_dn_15_bar_div_daily_col_score_row_extre_0.3': 'load_tech_factor', 'intra_up_vwap_row_extre_0.3': 'load_tech_factor', 'intra_up_vol_row_extre_0.3': 'load_tech_factor', 'intra_up_div_dn_row_extre_0.3': 'load_tech_factor', 'intra_up_div_daily_row_extre_0.3': 'load_tech_factor', 'intra_up_15_bar_vwap_row_extre_0.3': 'load_tech_factor', 'intra_up_15_bar_vol_row_extre_0.3': 'load_tech_factor', 'intra_up_15_bar_div_dn_15_bar_row_extre_0.3': 'load_tech_factor', 'intra_up_15_bar_div_daily_row_extre_0.3': 'load_tech_factor', 'intra_dn_vwap_row_extre_0.3': 'load_tech_factor', 'intra_dn_vol_row_extre_0.3': 'load_tech_factor', 'intra_dn_div_daily_row_extre_0.3': 'load_tech_factor', 'intra_dn_15_bar_vwap_row_extre_0.3': 'load_tech_factor', 'intra_dn_15_bar_vol_row_extre_0.3': 'load_tech_factor', 'intra_dn_15_bar_div_daily_row_extre_0.3': 'load_tech_factor', 'tab5_15_row_extre_0.3': 'load_tech_factor', 'tab5_14_row_extre_0.3': 'load_tech_factor', 'tab5_13_row_extre_0.3': 'load_tech_factor', 'tab4_5_row_extre_0.3': 'load_tech_factor', 'tab4_2_row_extre_0.3': 'load_tech_factor', 'tab4_1_row_extre_0.3': 'load_tech_factor', 'tab2_11_row_extre_0.3': 'load_tech_factor', 'tab2_9_row_extre_0.3': 'load_tech_factor', 'tab2_8_row_extre_0.3': 'load_tech_factor', 'tab2_7_row_extre_0.3': 'load_tech_factor', 'tab2_4_row_extre_0.3': 'load_tech_factor', 'tab2_1_row_extre_0.3': 'load_tech_factor', 'tab1_9_row_extre_0.3': 'load_tech_factor', 'tab1_8_row_extre_0.3': 'load_tech_factor', 'tab1_7_row_extre_0.3': 'load_tech_factor', 'tab1_5_row_extre_0.3': 'load_tech_factor', 'tab1_2_row_extre_0.3': 'load_tech_factor', 'tab1_1_row_extre_0.3': 'load_tech_factor', 'RSI_200_30': 'load_tech_factor', 'RSI_140_30': 'load_tech_factor', 'RSI_100_30': 'load_tech_factor', 'RSI_40_30': 'load_tech_factor', 'RSI_200_10': 'load_tech_factor', 'RSI_140_10': 'load_tech_factor', 'RSI_100_10': 'load_tech_factor', 'RSI_40_10': 'load_tech_factor', 'ATR_200_0.2': 'load_tech_factor', 'ATR_140_0.2': 'load_tech_factor', 'ATR_100_0.2': 'load_tech_factor', 'ATR_40_0.2': 'load_tech_factor', 'ADOSC_60_160_0': 'load_tech_factor', 'ADOSC_60_120_0': 'load_tech_factor', 'ADOSC_40_100_0': 'load_tech_factor', 'ADOSC_20_60_0': 'load_tech_factor', 'MFI_200_70_30': 'load_tech_factor', 'MFI_140_70_30': 'load_tech_factor', 'MFI_100_70_30': 'load_tech_factor', 'MFI_40_70_30': 'load_tech_factor', 'CMO_200_0': 'load_tech_factor', 'CMO_140_0': 'load_tech_factor', 'CMO_100_0': 'load_tech_factor', 'CMO_40_0': 'load_tech_factor', 'AROON_200_80': 'load_tech_factor', 'AROON_140_80': 'load_tech_factor', 'AROON_100_80': 'load_tech_factor', 'AROON_40_80': 'load_tech_factor', 'ADX_200_20_10': 'load_tech_factor', 'ADX_140_20_10': 'load_tech_factor', 'ADX_100_20_10': 'load_tech_factor', 'ADX_40_20_10': 'load_tech_factor', 'TotRev_and_mcap_intdebt_QYOY_Y3YGR_0.3': 'load_tech_factor', 'TotRev_and_asset_QYOY_Y3YGR_0.3': 'load_tech_factor', 'TotRev_and_mcap_QYOY_Y3YGR_0.3': 'load_tech_factor', 'TotRev_and_mcap_intdebt_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'TotRev_and_asset_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'TotRev_and_mcap_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'NetProfit_and_mcap_intdebt_QYOY_Y3YGR_0.3': 'load_tech_factor', 'NetProfit_and_asset_QYOY_Y3YGR_0.3': 'load_tech_factor', 'NetProfit_and_mcap_QYOY_Y3YGR_0.3': 'load_tech_factor', 'NetProfit_and_mcap_intdebt_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'NetProfit_and_asset_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'NetProfit_and_mcap_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'EBIT_and_mcap_intdebt_QYOY_Y3YGR_0.3': 'load_tech_factor', 'EBIT_and_asset_QYOY_Y3YGR_0.3': 'load_tech_factor', 'EBIT_and_mcap_QYOY_Y3YGR_0.3': 'load_tech_factor', 'EBIT_and_mcap_intdebt_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'EBIT_and_asset_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'EBIT_and_mcap_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'OPCF_and_mcap_intdebt_QYOY_Y3YGR_0.3': 'load_tech_factor', 'OPCF_and_asset_QYOY_Y3YGR_0.3': 'load_tech_factor', 'OPCF_and_mcap_QYOY_Y3YGR_0.3': 'load_tech_factor', 'OPCF_and_mcap_intdebt_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'OPCF_and_asset_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'OPCF_and_mcap_Y3YGR_Y5YGR_0.3': 'load_tech_factor', 'R_OTHERLASSET_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_WorkCapital_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_TangAssets_IntDebt_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_SUMLIAB_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_ROE1_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_OPEX_sales_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_OperProfit_YOY_First_and_QTTM_0.3': 'load_tech_factor', 'R_OperCost_sales_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_OPCF_TTM_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_NETPROFIT_s_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_NetInc_s_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_NetAssets_s_YOY_First_and_QTTM_0.3': 'load_tech_factor', 'R_LOANREC_s_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_LTDebt_WorkCap_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_INVESTINCOME_s_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_IntDebt_Mcap_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_GSCF_sales_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_GrossProfit_TTM_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_FINANCEEXP_s_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_FairVal_TotProfit_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_ESTATEINVEST_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_EPSDiluted_YOY_First_and_QTTM_0.3': 'load_tech_factor', 'R_EBITDA2_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_CostSales_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_CFO_s_YOY_First_and_QTTM_0.3': 'load_tech_factor', 'R_Cashflow_s_YOY_First_and_QTTM_0.3': 'load_tech_factor', 'R_ASSETDEVALUELOSS_s_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_ACCOUNTREC_QYOY_and_QTTM_0.3': 'load_tech_factor', 'R_ACCOUNTPAY_QYOY_and_QTTM_0.3': 'load_tech_factor', 'CCI_p150d_limit_12': 'load_tech_factor', 'CCI_p120d_limit_12': 'load_tech_factor', 'CCI_p60d_limit_12': 'load_tech_factor', 'CCI_p20d_limit_12': 'load_tech_factor', 'MACD_40_160': 'load_tech_factor', 'MACD_40_200': 'load_tech_factor', 'MACD_20_200': 'load_tech_factor', 'MACD_20_100': 'load_tech_factor', 'MACD_10_30': 'load_tech_factor', 'bias_turn_p120d': 'load_tech_factor', 'bias_turn_p60d': 'load_tech_factor', 'bias_turn_p20d': 'load_tech_factor', 'turn_p150d_0.18': 'load_tech_factor', 'turn_p30d_0.24': 'load_tech_factor', 'turn_p120d_0.2': 'load_tech_factor', 'turn_p60d_0.2': 'load_tech_factor', 'turn_p20d_0.2': 'load_tech_factor', 'log_price_0.2': 'load_tech_factor', 'wgt_return_p120d_0.2': 'load_tech_factor', 'wgt_return_p60d_0.2': 'load_tech_factor', 'wgt_return_p20d_0.2': 'load_tech_factor', 'return_p90d_0.2': 'load_tech_factor', 'return_p30d_0.2': 'load_tech_factor', 'return_p120d_0.2': 'load_tech_factor', 'return_p60d_0.2': 'load_tech_factor', 'return_p20d_0.2': 'load_tech_factor', 'PBLast_p120d_col_extre_0.2': 'load_tech_factor', 'PBLast_p60d_col_extre_0.2': 'load_tech_factor', 'PBLast_p20d_col_extre_0.2': 'load_tech_factor', 'PBLast_p10d_col_extre_0.2': 'load_tech_factor', 'PBLast_p345d_continue_ud': 'load_tech_factor', 'PBLast_row_extre_0.2': 'load_tech_factor', 'PS_TTM_p120d_col_extre_0.2': 'load_tech_factor', 'PS_TTM_p60d_col_extre_0.2': 'load_tech_factor', 'PS_TTM_p20d_col_extre_0.2': 'load_tech_factor', 'PS_TTM_p10d_col_extre_0.2': 'load_tech_factor', 'PS_TTM_p345d_continue_ud': 'load_tech_factor', 'PS_TTM_row_extre_0.2': 'load_tech_factor', 'PE_TTM_p120d_col_extre_0.2': 'load_tech_factor', 'PE_TTM_p60d_col_extre_0.2': 'load_tech_factor', 'PE_TTM_p20d_col_extre_0.2': 'load_tech_factor', 'PE_TTM_p10d_col_extre_0.2': 'load_tech_factor', 'PE_TTM_p345d_continue_ud': 'load_tech_factor', 'PE_TTM_row_extre_0.2': 'load_tech_factor', 'volume_moment_p20120d': 'load_tech_factor', 'volume_moment_p1040d': 'load_tech_factor', 'volume_moment_p530d': 'load_tech_factor', 'moment_p50300d': 'load_tech_factor', 'moment_p30200d': 'load_tech_factor', 'moment_p40200d': 'load_tech_factor', 'moment_p20200d': 'load_tech_factor', 'moment_p20100d': 'load_tech_factor', 'moment_p10100d': 'load_tech_factor', 'moment_p1060d': 'load_tech_factor', 'moment_p510d': 'load_tech_factor', 'continue_ud_p200d': 'load_tech_factor', 'evol_p200d': 'load_tech_factor', 'vol_count_down_p200d': 'load_tech_factor', 'vol_p200d': 'load_tech_factor', 'continue_ud_p100d': 'load_tech_factor', 'evol_p100d': 'load_tech_factor', 'vol_count_down_p100d': 'load_tech_factor', 'vol_p100d': 'load_tech_factor', 'continue_ud_p90d': 'load_tech_factor', 'evol_p90d': 'load_tech_factor', 'vol_count_down_p90d': 'load_tech_factor', 'vol_p90d': 'load_tech_factor', 'continue_ud_p50d': 'load_tech_factor', 'evol_p50d': 'load_tech_factor', 'vol_count_down_p50d': 'load_tech_factor', 'vol_p50d': 'load_tech_factor', 'continue_ud_p30d': 'load_tech_factor', 'evol_p30d': 'load_tech_factor', 'vol_count_down_p30d': 'load_tech_factor', 'vol_p30d': 'load_tech_factor', 'continue_ud_p120d': 'load_tech_factor', 'evol_p120d': 'load_tech_factor', 'vol_count_down_p120d': 'load_tech_factor', 'vol_p120d': 'load_tech_factor', 'continue_ud_p60d': 'load_tech_factor', 'evol_p60d': 'load_tech_factor', 'vol_count_down_p60d': 'load_tech_factor', 'vol_p60d': 'load_tech_factor', 'continue_ud_p20d': 'load_tech_factor', 'evol_p20d': 'load_tech_factor', 'vol_count_down_p20d': 'load_tech_factor', 'vol_p20d': 'load_tech_factor', 'continue_ud_p10d': 'load_tech_factor', 'evol_p10d': 'load_tech_factor', 'vol_count_down_p10d': 'load_tech_factor', 'vol_p10d': 'load_tech_factor', 'volume_count_down_p120d': 'load_tech_factor', 'volume_count_down_p60d': 'load_tech_factor', 'volume_count_down_p20d': 'load_tech_factor', 'volume_count_down_p10d': 'load_tech_factor', 'price_p120d_hl': 'load_tech_factor', 'price_p60d_hl': 'load_tech_factor', 'price_p20d_hl': 'load_tech_factor', 'price_p10d_hl': 'load_tech_factor', 'aadj_r_p120d_col_extre_0.2': 'load_tech_factor', 'aadj_r_p60d_col_extre_0.2': 'load_tech_factor', 'aadj_r_p20d_col_extre_0.2': 'load_tech_factor', 'aadj_r_p10d_col_extre_0.2': 'load_tech_factor', 'aadj_r_p345d_continue_ud': 'load_tech_factor', 'aadj_r_p345d_continue_ud_pct': 'load_tech_factor', 'aadj_r_row_extre_0.2': 'load_tech_factor', 'TVOL_p90d_col_extre_0.2': 'load_tech_factor', 'TVOL_p30d_col_extre_0.2': 'load_tech_factor', 'TVOL_p120d_col_extre_0.2': 'load_tech_factor', 'TVOL_p60d_col_extre_0.2': 'load_tech_factor', 'TVOL_p20d_col_extre_0.2': 'load_tech_factor', 'TVOL_p10d_col_extre_0.2': 'load_tech_factor', 'TVOL_p345d_continue_ud': 'load_tech_factor', 'TVOL_row_extre_0.2': 'load_tech_factor', 'R_ACCOUNTPAY_QYOY': 'load_daily_factor', 'R_ACCOUNTREC_QYOY': 'load_daily_factor', 'R_ASSETDEVALUELOSS_s_QYOY': 'load_daily_factor', 'R_AssetDepSales_s_First': 'load_daily_factor', 'R_BusinessCycle_First': 'load_daily_factor', 'R_CFOPS_s_First': 'load_daily_factor', 'R_CFO_TotRev_s_First': 'load_daily_factor', 'R_CFO_s_YOY_First': 'load_daily_factor', 'R_Cashflow_s_YOY_First': 'load_daily_factor', 'R_CostSales_QYOY': 'load_daily_factor', 'R_CostSales_s_First': 'load_daily_factor', 'R_CurrentAssetsTurnover_QTTM': 'load_daily_factor', 'R_DaysReceivable_First': 'load_daily_factor', 'R_DebtAssets_QTTM': 'load_daily_factor', 'R_DebtEqt_First': 'load_daily_factor', 'R_EBITDA2_QYOY': 'load_daily_factor', 'R_EBITDA_IntDebt_QTTM': 'load_daily_factor', 'R_EBITDA_sales_TTM_First': 'load_daily_factor', 'R_EBIT_sales_QTTM': 'load_daily_factor', 'R_EPS_s_First': 'load_daily_factor', 'R_EPS_s_YOY_First': 'load_daily_factor', 'R_ESTATEINVEST_QYOY': 'load_daily_factor', 'R_FCFTot_Y3YGR': 'load_daily_factor', 'R_FINANCEEXP_s_QYOY': 'load_daily_factor', 'R_FairValChgPnL_s_First': 'load_daily_factor', 'R_FairValChg_TotProfit_s_First': 'load_daily_factor', 'R_FairVal_TotProfit_QYOY': 'load_daily_factor', 'R_FairVal_TotProfit_TTM_First': 'load_daily_factor', 'R_FinExp_sales_s_First': 'load_daily_factor', 'R_GSCF_sales_s_First': 'load_daily_factor', 'R_GrossProfit_TTM_QYOY': 'load_daily_factor', 'R_INVESTINCOME_s_QYOY': 'load_daily_factor', 'R_LTDebt_WorkCap_QTTM': 'load_daily_factor', 'R_MgtExp_sales_s_First': 'load_daily_factor', 'R_NETPROFIT_s_QYOY': 'load_daily_factor', 'R_NOTICEDATE_First': 'load_daily_factor', 'R_NetAssets_s_POP_First': 'load_daily_factor', 'R_NetAssets_s_YOY_First': 'load_daily_factor', 'R_NetCashflowPS_s_First': 'load_daily_factor', 'R_NetIncRecur_QYOY': 'load_daily_factor', 'R_NetIncRecur_s_First': 'load_daily_factor', 'R_NetInc_TotProfit_s_First': 'load_daily_factor', 'R_NetInc_s_First': 'load_daily_factor', 'R_NetInc_s_QYOY': 'load_daily_factor', 'R_NetMargin_s_YOY_First': 'load_daily_factor', 'R_NetProfit_sales_s_First': 'load_daily_factor', 'R_NetROA_TTM_First': 'load_daily_factor', 'R_NetROA_s_First': 'load_daily_factor', 'R_NonOperProft_TotProfit_s_First': 'load_daily_factor', 'R_OPCF_NetInc_s_First': 'load_daily_factor', 'R_OPCF_TTM_QYOY': 'load_daily_factor', 'R_OPCF_TotDebt_QTTM': 'load_daily_factor', 'R_OPCF_sales_s_First': 'load_daily_factor', 'R_OPEX_sales_TTM_First': 'load_daily_factor', 'R_OPEX_sales_s_First': 'load_daily_factor', 'R_OTHERLASSET_QYOY': 'load_daily_factor', 'R_OperCost_sales_s_First': 'load_daily_factor', 'R_OperProfit_YOY_First': 'load_daily_factor', 'R_OperProfit_s_POP_First': 'load_daily_factor', 'R_OperProfit_s_YOY_First': 'load_daily_factor', 'R_OperProfit_sales_s_First': 'load_daily_factor', 'R_ParentProfit_s_POP_First': 'load_daily_factor', 'R_ParentProfit_s_YOY_First': 'load_daily_factor', 'R_ROENetIncRecur_s_First': 'load_daily_factor', 'R_ROE_s_First': 'load_daily_factor', 'R_RecurNetProft_NetProfit_s_First': 'load_daily_factor', 'R_RevenuePS_s_First': 'load_daily_factor', 'R_RevenueTotPS_s_First': 'load_daily_factor', 'R_Revenue_s_POP_First': 'load_daily_factor', 'R_Revenue_s_YOY_First': 'load_daily_factor', 'R_SUMLIAB_QYOY': 'load_daily_factor', 'R_SUMLIAB_Y3YGR': 'load_daily_factor', 'R_SalesCost_s_First': 'load_daily_factor', 'R_SalesGrossMGN_QTTM': 'load_daily_factor', 'R_SalesGrossMGN_s_First': 'load_daily_factor', 'R_SalesNetMGN_s_First': 'load_daily_factor', 'R_TangAssets_TotLiab_QTTM': 'load_daily_factor', 'R_Tax_TotProfit_QTTM': 'load_daily_factor', 'R_Tax_TotProfit_s_First': 'load_daily_factor', 'R_TotAssets_s_YOY_First': 'load_daily_factor', 'R_TotLiab_s_YOY_First': 'load_daily_factor', 'R_TotRev_TTM_Y3YGR': 'load_daily_factor', 'R_TotRev_s_POP_First': 'load_daily_factor', 'R_TotRev_s_YOY_First': 'load_daily_factor', 'R_WorkCapital_QYOY': 'load_daily_factor', 'bar_num_7_df': 'load_whs_factor', 'bar_num_12_df': 'load_whs_factor', 'repurchase': 'load_whs_factor', 'dividend': 'load_whs_factor', 'repurchase_news_title': 'load_whs_factor', 'repurchase_news_summary': 'load_whs_factor', 'dividend_news_title': 'load_whs_factor', 'dividend_news_summary': 'load_whs_factor', 'staff_changes_news_title': 'load_whs_factor', 'staff_changes_news_summary': 'load_whs_factor', 'funds_news_title': 'load_whs_factor', 'funds_news_summary': 'load_whs_factor', 'meeting_decide_news_title': 'load_whs_factor', 'meeting_decide_news_summary': 'load_whs_factor', 'restricted_shares_news_title': 'load_whs_factor', 'restricted_shares_news_summary': 'load_whs_factor', 'son_company_news_title': 'load_whs_factor', 'son_company_news_summary': 'load_whs_factor', 'suspend_news_title': 'load_whs_factor', 'suspend_news_summary': 'load_whs_factor', 'shares_news_title': 'load_whs_factor', '': 'load_whs_factor', 'shares_news_summary': 'load_whs_factor', 'ab_inventory': 'load_whs_factor', 'ab_rec': 'load_whs_factor', 'ab_others_rec': 'load_whs_factor', 'ab_ab_pre_rec': 'load_whs_factor', 'ab_sale_mng_exp': 'load_whs_factor', 'ab_grossprofit': 'load_whs_factor', 'lsgg_num_df_5': 'load_whs_factor', 'lsgg_num_df_20': 'load_whs_factor', 'lsgg_num_df_60': 'load_whs_factor', 'bulletin_num_df': 'load_whs_factor', 'bulletin_num_df_5': 'load_whs_factor', 'bulletin_num_df_20': 'load_whs_factor', 'bulletin_num_df_60': 'load_whs_factor', 'news_num_df_5': 'load_whs_factor', 'news_num_df_20': 'load_whs_factor', 'news_num_df_60': 'load_whs_factor', 'staff_changes': 'load_whs_factor', 'funds': 'load_whs_factor', 'meeting_decide': 'load_whs_factor', 'restricted_shares': 'load_whs_factor', 'son_company': 'load_whs_factor', 'suspend': 'load_whs_factor', 'shares': 'load_whs_factor', 'buy_key_title__word': 'load_whs_factor', 'sell_key_title_word': 'load_whs_factor', 'buy_summary_key_word': 'load_whs_factor', 'sell_summary_key_word': 'load_whs_factor', }) my_factor_dict_2 = dict({ 'REMTK.40': 'load_remy_factor', 'REMTK.39': 'load_remy_factor', 'REMTK.38': 'load_remy_factor', 'REMTK.37': 'load_remy_factor', 'REMTK.36': 'load_remy_factor', 'REMTK.35': 'load_remy_factor', 'REMTK.34': 'load_remy_factor', 'REMTK.33': 'load_remy_factor', 'REMTK.32': 'load_remy_factor', 'REMTK.31': 'load_remy_factor', 'REMFF.40': 'load_remy_factor', 'REMFF.39': 'load_remy_factor', 'REMFF.38': 'load_remy_factor', 'REMFF.37': 'load_remy_factor', 'REMFF.36': 'load_remy_factor', 'REMFF.35': 'load_remy_factor', 'REMFF.34': 'load_remy_factor', 'REMFF.33': 'load_remy_factor', 'REMFF.32': 'load_remy_factor', 'REMFF.31': 'load_remy_factor', 'REMWB.12': 'load_remy_factor', 'REMWB.11': 'load_remy_factor', 'REMWB.10': 'load_remy_factor', 'REMWB.09': 'load_remy_factor', 'REMWB.08': 'load_remy_factor', 'REMWB.07': 'load_remy_factor', 'REMWB.06': 'load_remy_factor', 'REMWB.05': 'load_remy_factor', 'REMWB.04': 'load_remy_factor', 'REMWB.03': 'load_remy_factor', 'REMWB.02': 'load_remy_factor', 'REMWB.01': 'load_remy_factor', 'REMTK.30': 'load_remy_factor', 'REMTK.29': 'load_remy_factor', 'REMTK.28': 'load_remy_factor', 'REMTK.27': 'load_remy_factor', 'REMTK.26': 'load_remy_factor', 'REMTK.25': 'load_remy_factor', 'REMTK.24': 'load_remy_factor', 'REMTK.23': 'load_remy_factor', 'REMTK.22': 'load_remy_factor', 'REMTK.21': 'load_remy_factor', 'REMTK.20': 'load_remy_factor', 'REMTK.19': 'load_remy_factor', 'REMTK.18': 'load_remy_factor', 'REMTK.17': 'load_remy_factor', 'REMTK.16': 'load_remy_factor', 'REMTK.15': 'load_remy_factor', 'REMTK.14': 'load_remy_factor', 'REMTK.13': 'load_remy_factor', 'REMTK.12': 'load_remy_factor', 'REMTK.11': 'load_remy_factor', 'REMTK.10': 'load_remy_factor', 'REMTK.09': 'load_remy_factor', 'REMTK.08': 'load_remy_factor', 'REMTK.07': 'load_remy_factor', 'REMTK.06': 'load_remy_factor', 'REMTK.05': 'load_remy_factor', 'REMTK.04': 'load_remy_factor', 'REMTK.03': 'load_remy_factor', 'REMTK.02': 'load_remy_factor', 'REMTK.01': 'load_remy_factor', 'REMFF.30': 'load_remy_factor', 'REMFF.29': 'load_remy_factor', 'REMFF.28': 'load_remy_factor', 'REMFF.27': 'load_remy_factor', 'REMFF.26': 'load_remy_factor', 'REMFF.25': 'load_remy_factor', 'REMFF.24': 'load_remy_factor', 'REMFF.23': 'load_remy_factor', 'REMFF.22': 'load_remy_factor', 'REMFF.21': 'load_remy_factor', 'REMFF.20': 'load_remy_factor', 'REMFF.19': 'load_remy_factor', 'REMFF.18': 'load_remy_factor', 'REMFF.17': 'load_remy_factor', 'REMFF.16': 'load_remy_factor', 'REMFF.15': 'load_remy_factor', 'REMFF.14': 'load_remy_factor', 'REMFF.13': 'load_remy_factor', 'REMFF.12': 'load_remy_factor', 'REMFF.11': 'load_remy_factor', 'REMFF.10': 'load_remy_factor', 'REMFF.09': 'load_remy_factor', 'REMFF.08': 'load_remy_factor', 'REMFF.07': 'load_remy_factor', 'REMFF.06': 'load_remy_factor', 'REMFF.05': 'load_remy_factor', 'REMFF.04': 'load_remy_factor', 'REMFF.03': 'load_remy_factor', 'REMFF.02': 'load_remy_factor', 'REMFF.01': 'load_remy_factor' }) jerry_factor_dict = dict({ 'LIQ_all_original.csv': 'load_jerry_factor', 'LIQ_all_pure.csv': 'load_jerry_factor', 'LIQ_mix.csv': 'load_jerry_factor', 'LIQ_p1_original.csv': 'load_jerry_factor', 'LIQ_p1_pure.csv': 'load_jerry_factor', 'LIQ_p2_original.csv': 'load_jerry_factor', 'LIQ_p2_pure.csv': 'load_jerry_factor', 'LIQ_p3_original.csv': 'load_jerry_factor', 'LIQ_p3_pure.csv': 'load_jerry_factor', 'LIQ_p4_original.csv': 'load_jerry_factor', 'LIQ_p4_pure.csv': 'load_jerry_factor', 'M0': 'load_jerry_factor', 'M1': 'load_jerry_factor', 'M1_p1': 'load_jerry_factor', 'M1_p2': 'load_jerry_factor', 'M1_p3': 'load_jerry_factor', 'M1_p4': 'load_jerry_factor', 'vr_afternoon_10min_20days': 'load_jerry_factor', 'vr_afternoon_last10min_20days.csv': 'load_jerry_factor', 'vr_original_20days.csv': 'load_jerry_factor', 'vr_original_45days.csv': 'load_jerry_factor', 'vr_original_75days.csv': 'load_jerry_factor', }) my_factor_dict.update(my_factor_dict_2) my_factor_dict.update(jerry_factor_dict) if __name__ == '__main__': t1 = time.time() sum_pos_df = config_test() t2 = time.time() print(round(t2 - t1, 4))
[ "1612255875@qq.com" ]
1612255875@qq.com
68b377124eb26ae187dc04f00fc3c6cc81fed129
a21d2fb3f111f30b842a4c3a5c6940d1a003b94d
/Python3/Foundation/Day 8/进程 join.py
883a86cf1f1208853b0f0f2f71b0dd2e70e1d4ae
[]
no_license
hygnic/MyPython
438f16206770a006a3b7bcf2ada9150c71ce8af9
26aaa57728ad545af5920ff2015eae258712d077
refs/heads/master
2021-07-01T02:10:15.810495
2021-02-26T08:07:54
2021-02-26T08:07:54
220,612,238
0
0
null
null
null
null
UTF-8
Python
false
false
1,107
py
# User: hygnic # Date: 2018/9/8 # User: hygnic # Date: 2018/9/8 import os import time from multiprocessing import Process # help(os) def func1(args): print(args) time.sleep(2) print('son process: ', os.getpid()) def func2(filename, content): with open(filename, 'w') as content_wp: content_wp.write(content) if __name__ == '__main__': # 注册进程 j_list = [] for i in range(10): # 开启多个子进程 f1 = Process(target=func1, args=('*' * i,)) # 单个参数时有一个逗号,元组 # p2 = Process(target=func, args=('实参', '实参2')) 通过这种方式开启多个子进程 f1.start() # 开启一个子进程 内部会调用run()方法 j_list.append(f1) # 表中全是一个个进程 f2 = Process(target=func2, args=('info', 'func2 content')) f2.start() # print(j_list) # 阻塞当前进程,直到调用join方法的那个进程执行完,再继续执行当前进程。将异步改为同步 [f1.join() for f1 in j_list] # 列表表达式 print('Done! father process: ', os.getpid())
[ "hygnic@outlook.com" ]
hygnic@outlook.com
ea9dec07d951070f1a5289ec38c7b9b3c3248485
de8b2b0de2ba522493e2c86fa055df8c7c40aa69
/e008-largest-product.py
e1ab6fb66b56899bf4385b65ab78fb2590571507
[ "Unlicense" ]
permissive
bayramcicek/mini-programs
56edbd2013704813d6730ecaf684baf9042d21ab
3f876e3274b7beeb5e7413ac9c5275813d9f0d2d
refs/heads/master
2021-07-03T03:57:02.874127
2020-09-27T11:09:07
2020-09-27T11:09:07
138,440,620
0
0
null
null
null
null
UTF-8
Python
false
false
1,323
py
#!/usr/bin/python3.6 # created by cicek on 12.10.2018 15:09 digits = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450" d_list = list(digits) i, res = 0, 1 product_array = [] while ((i+12) < len(d_list)): for x in range(0, 13): res *= int(d_list[i+x]) product_array.append(res) res = 1 i += 1 product_array.sort() print(product_array[-1])
[ "noreply@github.com" ]
noreply@github.com
35e9113444ac17cadf33e735da85c9f5274af0c6
ce9a89a1988b9cd3738cc0ee310f8d9a262058b6
/carchive/h5data.py
1b4ba5a442ad96088e7d2dc7b17cbd7607ae82ab
[]
no_license
epicsdeb/carchivetools
64b9d7a2783b5f3bde674fec0699a414f3ee21c4
4c37624a22ba863469ba87c29aa44bd367825525
refs/heads/master
2022-02-24T20:13:23.418035
2022-01-02T19:01:32
2022-01-02T19:30:13
10,649,869
5
6
null
2022-02-15T19:16:48
2013-06-12T19:04:35
Python
UTF-8
Python
false
false
3,391
py
# -*- coding: utf-8 -*- """ Copyright 2015 Brookhaven Science Assoc. as operator of Brookhaven National Lab. """ import logging _log = logging.getLogger("carchive.h5data") import h5py, numpy __all__=['h5open','sevr2str'] _sevr={0:'',1:'MINOR',2:'MAJOR',3:'INVALID', 3968:'Est_Repeat',3856:'Repeat',3904:'Disconnect', 3872:'Archive_Off',3848:'Archive_Disable' } def sevr2str(S): try: return _sevr[S] except KeyError: return str(S) class H5PV(object): """The dataset(s) for a single PV Provides attributes: value, severity, status, and time """ def __init__(self, name, G): self.name = name self.value = G['value'] self.meta = G['meta'] self.status = self.meta['status'] self.severity = self.meta['severity'] self.scalar = self.value.shape[1]==1 def __len__(self): return self.meta.shape[0] @property def time(self): try: return self.__posix except AttributeError: self.__posix = P = self.meta['sec']+1e-9*self.meta['ns'] return P def plotdata(self): """Return plot-able step data Returns a typle (time, value) where each is an array which has 2*len(self)-1 points. Each additional point is placed between a pair of input points in the input, and has the value of the preceding point with a time 1 ns before the time of the point which follows. Analogous to Input=[(T0,Y0),(T1,Y1)] Output[(T0,Y0),(T1-1e-9,Y0),(T1,Y1)] """ if len(self)<=1: return self.time, self.value S = self.value.shape T = numpy.ndarray((2*S[0]-1,), dtype=self.time.dtype) V = numpy.ndarray((2*S[0]-1, S[1]), dtype=self.value.dtype) T[0::2] = self.time V[0::2] = self.value T[1::2] = self.time[1:]-1e-9 V[1::2] = self.value[:-1,:] return T,V class H5Data(object): """Access an HDF5 file containing data retrieved from PVs. >>> pvset = h5open('mydata.h5') >>> assert 'pvone' in pvset >>> pv1 = pvset['pvone'] >>> allpvs = pvset.astuple() >>> assert pv1 in allpvs >>> val1 = pv1.value """ def __init__(self, fname, mode='r'): name, _, path = fname.partition(':') self.__F=h5py.File(name, mode) self.__G=self.__F[path or '/'] haspv=False for pv in self.__G: P = self.__G[pv] V, M = P.get('value',None), P.get('meta', None) if V and M and V.shape[0]==M.shape[0]: haspv=True elif not V and not M: # ignore unrelated continue else: _log.warn("%s/%s has incorrectly formatted data", fname, pv) if not haspv: raise ValueError("%s contains no data"%fname) def __len__(self): return len(self.__G) def __iter__(self): return iter(self.__G) def __contains__(self, key): return key in self.__G def __getitem__(self, key): return H5PV(key, self.__G[key]) def astuple(self): """Return a tuple of H5PV instances. The order is establish by sorting the PV names. """ pvs = list(self.__G) pvs.sort() return tuple(map(self.__getitem__, pvs)) h5open = H5Data
[ "mdavidsaver@bnl.gov" ]
mdavidsaver@bnl.gov
486b7a6679e963cbbe74c87c996446b130cafa06
cc076b26000e177a5e0a9c50257dc173620bfc9c
/deep_RL_benchmarks/eval_best_RL.py
44b681922cf449be3244136b6299c0a9fd270be7
[ "BSD-2-Clause" ]
permissive
Mabrokma/deps_arXiv2020
73dc16f8493bf59ce3bc63a33e5d7a29c5295ef1
8f9bd9436e2a2ed94039a4cab83620d7b28f2964
refs/heads/master
2023-05-08T02:21:07.469279
2021-06-04T02:50:59
2021-06-04T02:50:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,005
py
import warnings warnings.filterwarnings("ignore") import matplotlib # matplotlib.use("Agg") import matplotlib.pyplot as plt import argparse import mlflow import os from scipy.io import loadmat from gym import spaces, Env from stable_baselines.common.env_checker import check_env from stable_baselines.common.policies import MlpPolicy from stable_baselines import PPO2, A2C, ACKTR # from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines.sac.policies import MlpPolicy as SacMlpPolicy import numpy as np import numpy.matlib import tensorflow as tf import time # def min_max_norm(M): # return (M - M.min(axis=0).reshape(1, -1))/(M.max(axis=0) - M.min(axis=0)).reshape(1, -1) def normalize(M, Mmin=None, Mmax=None): """ :param M: (2-d np.array) Data to be normalized :param Mmin: (int) Optional minimum. If not provided is inferred from data. :param Mmax: (int) Optional maximum. If not provided is inferred from data. :return: (2-d np.array) Min-max normalized data """ Mmin = M.min(axis=0).reshape(1, -1) if Mmin is None else Mmin Mmax = M.max(axis=0).reshape(1, -1) if Mmax is None else Mmax M_norm = (M - Mmin) / (Mmax - Mmin) return np.nan_to_num(M_norm) def min_max_denorm(M, Mmin, Mmax): """ denormalize min max norm :param M: (2-d np.array) Data to be normalized :param Mmin: (int) Minimum value :param Mmax: (int) Maximum value :return: (2-d np.array) Un-normalized data """ M_denorm = M*(Mmax - Mmin) + Mmin return np.nan_to_num(M_denorm) def control_profile(max_input=4e3, samples_day=288, sim_days=7): """ """ U_day = max_input*np.sin(np.arange(0, 2*np.pi, 2*np.pi/samples_day)) # samples_day U = np.tile(U_day, sim_days).reshape(-1, 1) # samples_day*sim_days return U def disturbance(file='../../TimeSeries/disturb.mat', n_sim=8064): return loadmat(file)['D'][:, :n_sim].T # n_sim X 3 class ToyBuilding(Env): """Custom Environment that follows gym interface""" metadata = {'render.modes': ['human']} def __init__(self, fully_observable=True, obs_norm=True, act_denorm=True, w_mean=0.0, w_var=0.0, theta_mean=0.0, theta_var=0.0): super().__init__() self.nsim, nsim = 8064, 8064 self.fully_observable = fully_observable self.act_denorm = act_denorm self.obs_norm = obs_norm self.w_mean = w_mean self.w_var = w_var self.theta_mean = theta_mean self.theta_var = theta_var self.nx, self.ny, self.nu, self.nd = 4, 1, 1, 3 # self.action_space = spaces.Box(-np.inf, np.inf, shape=(self.nu,), dtype=np.float32) self.action_space = spaces.Box(0, 5000, shape=(self.nu,), dtype=np.float32) self.observation_space = spaces.Box(-np.inf, np.inf, shape=[(self.ny+self.nd+self.ny+2*self.ny+2*self.nu, self.nx+self.nd+self.ny+2*self.ny+2*self.nu)[fully_observable]], dtype=np.float32) self.A = np.matrix([[0.9950, 0.0017, 0.0000, 0.0031], [0.0007, 0.9957, 0.0003, 0.0031], [0.0000, 0.0003, 0.9834, 0.0000], [0.2015, 0.4877, 0.0100, 0.2571]]) self.B = np.matrix([[1.7586e-06], [1.7584e-06], [1.8390e-10], [5.0563e-04]]) self.E = np.matrix([[0.0002, 0.0000, 0.0000], [0.0002, 0.0000, 0.0000], [0.0163, 0.0000, 0.0000], [0.0536, 0.0005, 0.0001]]) self.C = np.matrix([[0.0, 0.0, 0.0, 1.0]]) self.x = 20 * np.ones(4, dtype=np.float32) self.tstep = 0 self.y = self.C*np.asmatrix(self.x).T self.U = control_profile(samples_day=288, sim_days=nsim//288) nsim = self.U.shape[0] self.D = disturbance(file='disturb.mat', n_sim=nsim) self.X, self.Y = self.loop(8064, self.U, self.D) self.x, self.y = self.X[2016], self.Y[2016] self.init_idx = {'train': 0, 'dev': 2015, 'test': 4031} self.X, self.Y = self.X[2016:], self.Y[2016:] self.X_out = np.empty(shape=[0, 4]) print(self.X.shape) plot_trajectories([self.X[:, k] for k in range(self.X.shape[1])], [self.X[:, k] for k in range(self.X.shape[1])], ['$x_1$', '$x_2$', '$x_3$', '$x_4$']) # constraints and references self.ymin_val = 19 self.ymax_val = 25 self.umin_val = 0 self.umax_val = 5000 self.s_ymin = self.ReLU(-self.y + self.ymin_val) self.s_ymax = self.ReLU(self.y - self.ymax_val) self.s_umin = self.ReLU(-np.array([0]) + self.umin_val) self.s_umax = self.ReLU(np.array([0]) - self.umax_val) samples_day = 288 # 288 samples per day with 5 min sampling # R_day_train = 15 + 10 * np.sin(np.arange(0, 2 * np.pi, 2 * np.pi / samples_day)) # daily control profile R_day_train = 20 + 2 * np.sin(np.arange(0, 2 * np.pi, 2 * np.pi / samples_day)) # daily control profile Sim_days = 35 # number of simulated days self.Ref = np.matlib.repmat(R_day_train, 1, Sim_days).T # Sim_days control profile self.reference = self.Ref[2016] # self.Ref_train = self.Ref[2016:4032].squeeze() # ad hoc fix # self.Ref_train = 15 + 25 * np.random.rand(2016) # weights - the same as for deep MPC self.Q_con_u = 5e-7 self.Q_con_x = 50 self.Q_con_y = 50 self.Q_u = 1e-7 self.Q_u = 1e-6 self.Q_ref = 20 self.alpha_con = 0 def xtrue(self, dset): start = self.init_idx[dset] return self.X[start:start+2016] def loop(self, nsim, U, D): """ :param nsim: (int) Number of steps for open loop response :param U: (ndarray, shape=(nsim, self.nu)) Control profile matrix :param D: (ndarray, shape=(nsim, self.nd)) Disturbance matrix :param x: (ndarray, shape=(self.nx)) Initial state. If not give will use internal state. :return: The response matrices are aligned, i.e. X[k] is the state of the system that Y[k] is indicating """ Y = np.zeros((nsim+1, 1)) # output trajectory placeholders X = np.zeros((nsim+1, 4)) X[0] = self.x for k in range(nsim): Y[k+1] = self.C*np.asmatrix(X[k]).T d = np.asmatrix(D[k]).T u = np.asmatrix(U[k]).T x = self.A*np.asmatrix(X[k]).T + self.B*u + self.E*d X[k+1] = x.flatten() return X, Y def obs_normalize(self, obs): ###### Normalize min max bounds ymin = 0 ymax = 40 umin = 0 umax = 5000 dmin = np.min(self.D, 0) dmax = np.max(self.D, 0) rmin = np.min(self.Ref, 0) rmax = np.max(self.Ref, 0) if self.fully_observable is True: ny = self.nx else: ny = self.ny y_norm = normalize(obs[0:ny], ymin, ymax) d_norm = normalize(obs[ny:ny+self.nd], dmin, dmax) r_norm = normalize(obs[ny + self.nd:ny + self.nd+self.ny], rmin, rmax) sy_norm = normalize(obs[ny + self.nd + self.ny:ny + self.nd + 3*self.ny], ymin, ymax) su_norm = normalize(obs[ny + self.nd + 3 * self.ny:], umin, umax) obs_norm = np.concatenate([y_norm, d_norm, r_norm, sy_norm, su_norm]) return obs_norm def action_denorm(self, action): umin = 0 umax = 5000 action = min_max_denorm(action, umin, umax) return action def ReLU(self, x): return x * (x > 0) def step(self, action): if self.act_denorm is True: action = self.action_denorm(action) w = (self.w_mean - self.w_var) + (2 * self.w_var) * np.asmatrix( np.random.rand(self.nx, 1)) # additive uncertainty theta = (1 + self.theta_mean - self.theta_var) + (2 * self.theta_var) * np.asmatrix( np.random.rand(self.nx, self.nx)) # parametric uncertainty self.d = self.D[2016+self.tstep].reshape(3,1) # self.x = self.A*np.asmatrix(self.x).reshape(4, 1) + self.B*action.T + self.E*self.d self.x = np.multiply(theta, self.A)*np.asmatrix(self.x).reshape(4, 1) + self.B*action.T + self.E*self.d + w self.y = self.C * np.asmatrix(self.x) self.reference = self.Ref[2016+self.tstep] self.tstep += 1 # Original features in deep MPC: xi = torch.cat((x, d, r, symin, symax, umin, umax), 1) y_obsv = np.concatenate([np.array(self.y).flatten(), self.d.flatten(), self.reference, np.array(self.s_ymin).flatten(), np.array(self.s_ymax).flatten(), np.array(self.s_umin).flatten(), np.array(self.s_umax).flatten()]) x_obsv = np.concatenate([np.array(self.x).flatten(), self.d.flatten(), self.reference, np.array(self.s_ymin).flatten(), np.array(self.s_ymax).flatten(), np.array(self.s_umin).flatten(), np.array(self.s_umax).flatten()]) # y_obsv = np.concatenate((np.array(self.y).flatten(), self.d.flatten(), self.reference)) # x_obsv = np.concatenate((np.array(self.x).flatten(), self.d.flatten(), self.reference)) observation = (y_obsv, x_obsv)[self.fully_observable].astype(np.float32) if self.obs_norm is True: observation = self.obs_normalize(observation) self.X_out = np.concatenate([self.X_out, np.array(self.x.reshape([1, 4]))]) self.action = action self.s_ymin = self.ReLU(-self.y + self.ymin_val) self.s_ymax = self.ReLU(self.y - self.ymax_val) self.s_umin = self.ReLU(-action + self.umin_val) self.s_umax = self.ReLU(action - self.umax_val) return np.array(observation).flatten(), self.reward(), self.tstep == self.X.shape[0], {'xout': self.X_out} def reward(self): # return -np.mean((np.array(self.y - self.Y[self.tstep]))**2) con_penalties = self.Q_u * np.mean((np.array(self.action))**2) \ + self.Q_con_y * np.mean((np.array(self.s_ymin))**2) \ + self.Q_con_y * np.mean((np.array(self.s_ymax))**2) \ + self.Q_con_u * np.mean((np.array(self.s_umin))**2) \ + self.Q_con_u * np.mean((np.array(self.s_umax))**2) r = -self.Q_ref * np.mean((np.array(self.y - self.Ref[2016+self.tstep]))**2) \ - self.alpha_con*con_penalties return r def reset(self, dset='train'): self.x = 15+5*np.random.randn(self.nx).reshape([-1,1]) self.y = self.x[3].reshape([-1,1]) self.reference = self.Ref[2016+self.init_idx[dset]] self.d = self.D[2016+self.init_idx[dset]] self.tstep = self.init_idx[dset] self.s_ymin = self.ReLU(self.y + self.ymin_val) self.s_ymax = self.ReLU(self.y - self.ymax_val) y_obsv = np.concatenate([np.array(self.y).flatten(), self.d.flatten(), self.reference, np.array(self.s_ymin).flatten(), np.array(self.s_ymax).flatten(), np.array([self.umin_val]), np.array([self.umax_val])]) x_obsv = np.concatenate([np.array(self.x).flatten(), self.d.flatten(), self.reference, np.array(self.s_ymin).flatten(), np.array(self.s_ymax).flatten(), np.array([self.umin_val]), np.array([self.umax_val])]) # y_obsv = np.concatenate((self.y.flatten(), self.reference)) # x_obsv = np.concatenate((self.x.flatten(), self.reference)) observation = (y_obsv, x_obsv)[self.fully_observable].astype(np.float32) self.X_out = np.empty(shape=[0, 4]) return np.array(observation).flatten() def render(self, mode='human'): print('render') def plot_control(R, Y, U, D, Ymax=None, Ymin=None, Umax=None, Umin=None, figname='test.png'): fig, ax = plt.subplots(3, 1, figsize=(8, 8)) ax[0].plot(R, '--', label='R') ax[0].plot(Y, label='Y') ax[0].plot(Ymax, 'k--') if Ymax is not None else None ax[0].plot(Ymin, 'k--') if Ymin is not None else None ax[0].set(ylabel='Y') ax[1].plot(U, label='U') ax[1].plot(Umax, 'k--') if Umax is not None else None ax[1].plot(Umin, 'k--') if Umin is not None else None ax[1].set(ylabel='U') ax[2].plot(D, label='D') ax[2].set(ylabel='D') plt.tight_layout() plt.savefig(figname) def plot_trajectories(traj1, traj2, labels, figname='test.png'): fig, ax = plt.subplots(len(traj1), 1) for row, (t1, t2, label) in enumerate(zip(traj1, traj2, labels)): if t2 is not None: ax[row].plot(t1.flatten(), label='True') ax[row].plot(t2.flatten(), '--', label='Pred') else: ax[row].plot(t1) steps = range(0, t1.shape[0] + 1, 288) days = np.array(list(range(len(steps))))+7 ax[row].set(xticks=steps, xticklabels=days, ylabel=label, xlim=(0, len(t1))) ax[row].tick_params(labelbottom=False) ax[row].tick_params(labelbottom=True) ax[row].set_xlabel('Day') plt.tight_layout() plt.savefig(figname) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=None, help="Gpu to use") # OPTIMIZATION PARAMETERS # stable_baselines.ppo2.PPO2(policy, env, gamma=0.99, n_steps=128, ent_coef=0.01, # learning_rate=0.00025, vf_coef=0.5, max_grad_norm=0.5, # lam=0.95, nminibatches=4, noptepochs=4, cliprange=0.2, # cliprange_vf=None, verbose=0, tensorboard_log=None, # _init_setup_model=True, policy_kwargs=None, # full_tensorboard_log=False, seed=None, n_cpu_tf_sess=None) # https://arxiv.org/abs/1707.06347 # stable_baselines.a2c.A2C(policy, env, gamma=0.99, n_steps=5, vf_coef=0.25, ent_coef=0.01, # max_grad_norm=0.5, learning_rate=0.0007, alpha=0.99, momentum=0.0, # epsilon=1e-05, lr_schedule='constant', verbose=0, tensorboard_log=None, # _init_setup_model=True, policy_kwargs=None, full_tensorboard_log=False, # seed=None, n_cpu_tf_sess=None) # https://arxiv.org/abs/1602.01783 # stable_baselines.acktr.ACKTR(policy, env, gamma=0.99, nprocs=None, # n_steps=20, ent_coef=0.01, vf_coef=0.25, # vf_fisher_coef=1.0, learning_rate=0.25, max_grad_norm=0.5, # kfac_clip=0.001, lr_schedule='linear', verbose=0, # tensorboard_log=None, _init_setup_model=True, # async_eigen_decomp=False, kfac_update=1, gae_lambda=None, # policy_kwargs=None, full_tensorboard_log=False, seed=None, n_cpu_tf_sess=1) # https://arxiv.org/abs/1708.05144 opt_group = parser.add_argument_group('OPTIMIZATION PARAMETERS') opt_group.add_argument('-epochs', type=int, default=5) opt_group.add_argument('-lr', type=float, default=0.01, help='Step size for gradient descent.') opt_group.add_argument('-alg', type=str, choices=['PPO2', 'A2C', 'ACKTR'], default='A2C') parser.add_argument('-gpu', type=str, default=None, help="Gpu to use") ################# # DATA PARAMETERS data_group = parser.add_argument_group('DATA PARAMETERS') data_group.add_argument('-nsteps', type=int, default=128, help='Number of steps for open loop during training.') data_group.add_argument('-constrained', type=float, default=1.0, help='Constrained yes or no.') ################## # MODEL PARAMETERS model_group = parser.add_argument_group('MODEL PARAMETERS') # model_group.add_argument('-num_layers', type=int, default=1) model_group.add_argument('-bias', action='store_true', help='Whether to use bias in the neural network models.') model_group.add_argument('-nx_hidden', type=int, default=10, help='Number of hidden units.') #################### # LOGGING PARAMETERS log_group = parser.add_argument_group('LOGGING PARAMETERS') log_group.add_argument('-savedir', type=str, default='test', help="Where should your trained model be saved") log_group.add_argument('-modeldir', type=str, default='best_model', help="Best saved models from previous runs") log_group.add_argument('-verbosity', type=int, default=10, help="How many epochs in between status updates") log_group.add_argument('-exp', default='test', help='Will group all run under this experiment name.') log_group.add_argument('-location', default='mlruns', help='Where to write mlflow experiment tracking stuff') log_group.add_argument('-run', default='test', help='Some name to tell what the experiment run was about.') log_group.add_argument('-logger', choices=['mlflow', 'wandb', 'stdout'], help='Logging setup to use') return parser.parse_args() if __name__ == '__main__': args = parse_args() #################################### ###### DATA SETUP #################################### env = ToyBuilding() # env = DummyVecEnv([ToyBuilding for i in range(4)]) check_env(env) env.alpha_con = args.constrained n_hidden = args.nx_hidden algs = {'PPO2': PPO2, 'A2C': A2C, 'ACKTR': ACKTR} policies = {'PPO2': MlpPolicy, 'A2C': MlpPolicy, 'ACKTR': MlpPolicy} policy_kwargs = {'layers': [n_hidden, n_hidden]} model = algs[args.alg](policies[args.alg], env, n_steps=args.nsteps, verbose=0, learning_rate=args.lr, policy_kwargs=policy_kwargs) def openloop(dset='train', x0=None): if x0 is None: obs = env.reset(dset) else: obs = np.concatenate([x0, env.reference]) rewards = [] states = [] disturbances = [] references = [] actions = [] if env.fully_observable: ny = env.nx else: ny = env.ny for j in range(2016): action, _states = model.predict(obs) if action < 0: action = 0 elif action > 1: action = 1 env.obs_norm = True obs, reward, dones, info = env.step(action) env.tstep = env.tstep - 1 # denormalize states and actions for plotting env.obs_norm = False obs_denorm, _, _, _ = env.step(action) rewards.append(reward) actions.append(env.action) states.append(obs_denorm[0:ny]) disturbances.append(obs_denorm[ny:ny+env.nd]) references.append(obs_denorm[ny+env.nd]) mse_ref_open = -np.mean(np.array(rewards)) return mse_ref_open, np.array(references), np.array(states), np.array(actions), np.array(disturbances) ################################## # SIMULATE ################################## Eval_runs = 20 # number of randomized closed-loop simulations, Paper value: 20 param_uncertainty = True add_uncertainty = True show_plots = False if add_uncertainty: env.w_mean = 0 env.w_var = 0.1 else: env.w_mean = 0 env.w_var = 0.0 if param_uncertainty: env.theta_mean = 0 env.theta_var = 0.01 else: env.theta_mean = 0 env.theta_var = 0.00 # Load best model # best_model = model.load(os.path.join(args.modeldir, "RL_model_best_ACKTR.h5")) # https: // stable - baselines.readthedocs.io / en / master / modules / base.html best_model = model.load(os.path.join(args.modeldir, "RL_model_best_ACKTR_constr.h5")) # simulate best model model = best_model CPU_mean_time = np.zeros(Eval_runs) CPU_max_time = np.zeros(Eval_runs) MAE_constr_run = np.zeros(Eval_runs) MSE_ref_run = np.zeros(Eval_runs) MA_energy_run = np.zeros(Eval_runs) for run in range(0, Eval_runs): preds = [] refs = [] mses = [] U = [] D = [] start_step_time = time.time() for dset in ['train', 'dev', 'test']: mse, ref, pred, actions, disturb = openloop(dset) preds.append(pred) refs.append(ref) mses.append(mse) U.append(actions) D.append(disturb) eval_time = time.time() - start_step_time Ymax = env.ymax_val*np.ones([2016,1]) Ymin = env.ymin_val * np.ones([2016,1]) Umax = env.umax_val * np.ones([2016,1]) Umin = env.umin_val * np.ones([2016,1]) # closed loop simulations plots if show_plots: plot_control(R=refs[0], Y=preds[0][:, 3], U=U[0], D=D[0], Ymax=Ymax, Ymin=Ymin, Umax=Umax, Umin=Umin, figname=os.path.join(args.savedir, 'control_train.png')) plot_control(R=refs[2], Y=preds[2][:, 3], U=U[2], D=D[2], Ymax=Ymax, Ymin=Ymin, Umax=Umax, Umin=Umin, figname=os.path.join(args.savedir, 'control_test.png')) MAE_constr_run[run] = np.mean(np.maximum((preds[2][:, 3] - Ymax.squeeze()), 0)) + \ np.mean(np.maximum((-preds[2][:, 3] + Ymin.squeeze()), 0)) MSE_ref_run[run] = np.mean(np.square(preds[2][:, 3] - refs[0])) MA_energy_run[run] = np.mean(np.absolute(U[2])) MSE_ref = np.mean(MSE_ref_run) MA_energy = np.mean(MA_energy_run) MAE_constr = np.mean(MAE_constr_run)
[ "jan.drgona@pnnl.gov" ]
jan.drgona@pnnl.gov
ac08a963c69dab17953608a66b69822aa0e3b7e1
28e52f6df9a2fe3df78022dc4162a15aecb0e5b9
/venv/bin/django-admin.py
94fad1eafff3fea0d6dca30ebd3dffc03d597073
[]
no_license
garonzhang/genealogy_wechat
4b952b307e0e682eceb23521cc5ea8784c368954
1cf3f5b29acb3192e57eb47fcb9b22263437f147
refs/heads/master
2020-03-22T19:31:24.057225
2018-11-03T01:10:38
2018-11-03T01:10:38
140,534,800
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
#!/root/wechat/venv/bin/python3 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "garonzhang@gmail.com" ]
garonzhang@gmail.com
3a4c7f9d712049cf02648c56d53ff66b940cd9fb
05d692469305dd1adb9ebc46080525bb4515b424
/Exception handling/tryfinally5.py
7a605945006ab61d29eedb42aaf62afea001654d
[]
no_license
rajdharmkar/pythoncode
979805bc0e672f123ca1460644a4bd71d7854fd5
15b758d373f27da5680a711bf12c07e86758c447
refs/heads/master
2020-08-07T18:30:55.575632
2019-10-14T12:46:09
2019-10-14T12:46:09
213,551,766
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
try: fob = open ( 'test.txt', 'w' ) fob.write ( "It's my test file to verify try-finally in exception handling!!" ) print 'try block executed' finally: fob.close () print 'finally block executed'
[ "rajdharmkar@gmail.com" ]
rajdharmkar@gmail.com
e534e727ba2b594e582bdc4dfeba77f66ca78cca
57aef2eb6dc11d1e795475fe283aecbc494910bc
/sigmoid_draw.py
223584f87d20a69d7f022128facf410b1a637c8e
[]
no_license
junyeon-no/tensorflow_study
2cd4ccd1cdcb4a0ae1cdd06599658d94e13334b2
ea70d8f94f1174084738072091190ed5e871e14e
refs/heads/master
2022-12-22T20:14:29.165576
2020-10-02T00:54:33
2020-10-02T00:54:33
296,458,237
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
import numpy as np import matplotlib.pyplot as plt from step_func_draw import step_function def sigmoid(x): return 1/(1 + np.exp(-x)) if __name__ == "__main__": x = np.arange(-5.0, 5.0 , 0.1) y = sigmoid(x) plt.plot(x, y, label = "sigmoid") plt.ylim(-0.1, 1.1) x = np.arange(-5.0, 5.0, 0.1) y = step_function(x) plt.plot(x, y, linestyle = "--", label = "setp") plt.legend() plt.show()
[ "whwns5203@naver.com" ]
whwns5203@naver.com
97538fec829806a6dc0663c869c8d080db247647
f62aa26461e381435c86019ca2f502d10ff75b88
/catalog/migrations/0006_auto_20170121_1008.py
aa8cfe9522994670ffaf090ae699983f1dd31edd
[]
no_license
viktortat/CAP
edb2aef09169d9bcf04b541682d8dcb067edf1c6
60221d8fa1d1ccb209e40001554cb004480dd2d5
refs/heads/master
2021-06-12T13:03:33.917809
2017-04-30T19:58:38
2017-04-30T19:58:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
688
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-01-21 07:08 from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('catalog', '0005_auto_20170113_0259'), ] operations = [ migrations.AddField( model_name='catalogsite', name='pub_date', field=models.DateTimeField(default=django.utils.timezone.now, verbose_name='Дата'), ), migrations.AlterField( model_name='catalogsite', name='price', field=models.FloatField(default=0), ), ]
[ "l2maximum@mail.ru" ]
l2maximum@mail.ru
66fcec0a1f396ab7a1b7c0d07f995827b2518a3f
b482536080ffcb0194c7691464ccbf32be9fcbb9
/Modules.py
ccffe60cb565105384a2178d74bcd5768e1b8cdc
[ "MIT" ]
permissive
CristiSima/StellarisShipBuilder
f29f3d9f104773f7a0c7b52654950699e8cef1e9
19d40f84c704bad022b9477f51174245aee7dcaa
refs/heads/master
2021-11-10T17:54:13.817827
2021-11-02T11:49:23
2021-11-02T11:49:23
191,032,766
0
0
null
null
null
null
UTF-8
Python
false
false
21,151
py
class Module: def __init__(self,Type,Name,Ship): self.Name=Name self.Type=Type self.Ship=Ship self.Weapon1=self.Weapon2=self.Weapon3=self.Weapon4=self.Weapon5=self.Weapon6=None self.Utility1=self.Utility2=self.Utility3=self.Utility4=self.Utility5=self.Utility6=None def Save(self,File): #File.write(str(type(self))[8:-2]+"\n") if(self.Weapon1): self.Weapon1.Save(File) if(self.Weapon2): self.Weapon2.Save(File) if(self.Weapon3): self.Weapon3.Save(File) if(self.Weapon4): self.Weapon4.Save(File) if(self.Weapon5): self.Weapon5.Save(File) if(self.Weapon6): self.Weapon6.Save(File) File.write("\n") if(self.Utility1): self.Utility1.Save(File) if(self.Utility2): self.Utility2.Save(File) if(self.Utility3): self.Utility3.Save(File) if(self.Utility4): self.Utility4.Save(File) if(self.Utility5): self.Utility5.Save(File) if(self.Utility6): self.Utility6.Save(File) File.write("\n") def Load(self,File): if(self.Weapon1): self.Weapon1.Load(File) if(self.Weapon2): self.Weapon2.Load(File) if(self.Weapon3): self.Weapon3.Load(File) if(self.Weapon4): self.Weapon4.Load(File) if(self.Weapon5): self.Weapon5.Load(File) if(self.Weapon6): self.Weapon6.Load(File) File.readline() if(self.Utility1): self.Utility1.Load(File) if(self.Utility2): self.Utility2.Load(File) if(self.Utility3): self.Utility3.Load(File) if(self.Utility4): self.Utility4.Load(File) if(self.Utility5): self.Utility5.Load(File) if(self.Utility6): self.Utility6.Load(File) def Print(self): print(self.Name) print() if(self.Weapon1): self.Weapon1.Print() if(self.Weapon2): self.Weapon2.Print() if(self.Weapon3): self.Weapon3.Print() if(self.Weapon4): self.Weapon4.Print() if(self.Weapon5): self.Weapon5.Print() if(self.Weapon6): self.Weapon6.Print() print() if(self.Utility1): self.Utility1.Print() if(self.Utility2): self.Utility2.Print() if(self.Utility3): self.Utility3.Print() if(self.Utility4): self.Utility4.Print() if(self.Utility5): self.Utility5.Print() if(self.Utility6): self.Utility6.Print() print() print() def Build(self): if(self.Weapon1): self.Weapon1.Build() if(self.Weapon2): self.Weapon2.Build() if(self.Weapon3): self.Weapon3.Build() if(self.Weapon4): self.Weapon4.Build() if(self.Weapon5): self.Weapon5.Build() if(self.Weapon6): self.Weapon6.Build() if(self.Utility1): self.Utility1.Build() if(self.Utility2): self.Utility2.Build() if(self.Utility3): self.Utility3.Build() if(self.Utility4): self.Utility4.Build() if(self.Utility5): self.Utility5.Build() if(self.Utility6): self.Utility6.Build() class Slot: def __init__(self,Type,Ship): self.Type=Type self.Ship=Ship ### AB ### A=[W(Weapon),U(Utility),M(Module)] ### B: Specific subtype ### ### self.Thing=None def Equip(self,Thing): if(Thing): if(Thing=="None"): return if(self.Type==Thing.Type): self.Thing=Thing(self.Ship) self.Ship.Build() def Target(self): if(self.Type[0]=="W"): if(self.Type[1]=="S"): return Weapons.Small if(self.Type[1]=="M"): return Weapons.Medium if(self.Type[1]=="L"): return Weapons.Large if(self.Type[1]=="P"): return Weapons.Point if(self.Type[1]=="G"): return Weapons.Explosives if(self.Type[0]=="U"): if(self.Type[1]=="S"): return Utilitys.Small if(self.Type[1]=="M"): return Utilitys.Medium if(self.Type[1]=="L"): return Utilitys.Large if(self.Type[1]=="A"): return Utilitys.Auxilary print("ERRRROR") print("ERRRROR") print("ERRRROR") print("ERRRROR") print("ERRRROR") def Save(self,File): ''' if(self.Type[0]=='M'): self.Thing.Save(File) else: if(self.Thing): File.write(str(type(self.Thing))[8:-2]+"\n") else: File.write("None"+"\n") ''' if(self.Thing): File.write(str(type(self.Thing))[8:-2]+"\n") if(self.Type[0]=='M'): self.Thing.Save(File) else: File.write("None"+'\n') def Print(self): if(self.Thing): self.Thing.Print() else: print("None") def Load(self,File): None ''' ''' self.Equip(eval(File.readline()[:-1])) if(self.Thing and self.Type[0]=="M"): self.Thing.Load(File) def Build(self): if(self.Thing): self.Thing.Build() ''' Type="TYPE" Name="Artillery" Info=["Weapons: ","Utilitys: "] def __init__(self,Ship): Module.__init__(self,"TYPE","Artillery",Ship) self.Weapon=Slot("W",Ship) self.Utility=Slot("U",Ship) ''' class Corvete: class Core: Type="MCC" class Interceptor(Module): Type="MCC" Name="Interceptor" Info=["Weapons: 3S","Utility: 3S 1A"] def __init__(self,Ship): Module.__init__(self,"MCC","Interceptor",Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WS",Ship) self.Weapon3=Slot("WS",Ship) self.Utility1=Slot("US",Ship) self.Utility2=Slot("US",Ship) self.Utility3=Slot("US",Ship) self.Utility4=Slot("UA",Ship) class MissileBoat(Module): Type="MCC" Name="Missile Boat" Info=["Weapons: 1S 1G","Utility: 3S 1A"] def __init__(self,Ship): Module.__init__(self,"MCC","Missile Boat",Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WG",Ship) self.Utility1=Slot("US",Ship) self.Utility2=Slot("US",Ship) self.Utility3=Slot("US",Ship) self.Utility4=Slot("UA",Ship) class PicketShip(Module): Type="MCC" Name="Picket Ship" Info=["Weapons: 2S 1P","Utility: 3S 1A"] def __init__(self,Ship): Module.__init__(self,"MCC","Picket Ship",Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WS",Ship) self.Weapon3=Slot("WP",Ship) self.Utility1=Slot("US",Ship) self.Utility2=Slot("US",Ship) self.Utility3=Slot("US",Ship) self.Utility4=Slot("UA",Ship) Variants=[Interceptor,MissileBoat,PicketShip] Variants=[Core] class Destroyer: class Bow: Type="MDB" class Artillery(Module): Type="MDB" Name="Artillery" Info=["Weapons: 1L","Utilitys: 6S"] def __init__(self,Ship): Module.__init__(self,"MDB","Artillery",Ship) self.Weapon1=Slot("WL",Ship) self.Utility1=Slot("US",Ship) self.Utility2=Slot("US",Ship) self.Utility3=Slot("US",Ship) self.Utility4=Slot("US",Ship) self.Utility5=Slot("US",Ship) self.Utility6=Slot("US",Ship) class Gunship(Module): Type="MDB" Name="Gunship" Info=["Weapons: 2S 1M","Utilitys: 6S"] def __init__(self,Ship): Module.__init__(self,"MDB","Gunship",Ship) self.Weapon1=Slot("WM",Ship) self.Weapon2=Slot("WS",Ship) self.Weapon3=Slot("WS",Ship) self.Utility1=Slot("US",Ship) self.Utility2=Slot("US",Ship) self.Utility3=Slot("US",Ship) self.Utility4=Slot("US",Ship) self.Utility5=Slot("US",Ship) self.Utility6=Slot("US",Ship) class PicketShip(Module): Type="MDB" Name="Picket Ship" Info=["Weapons: 2S 1P","Utilitys: 6S"] def __init__(self,Ship): Module.__init__(self,"MDB","Picket Ship",Ship) self.Weapon1=Slot("WP",Ship) self.Weapon2=Slot("WS",Ship) self.Weapon3=Slot("WS",Ship) self.Utility1=Slot("US",Ship) self.Utility2=Slot("US",Ship) self.Utility3=Slot("US",Ship) self.Utility4=Slot("US",Ship) self.Utility5=Slot("US",Ship) self.Utility6=Slot("US",Ship) Variants=[Artillery,Gunship,PicketShip] class Stern: Type="MDS" class Gunship(Module): Type="MDS" Name="Gunship" Info=["Weapons: 1M","Utilitys: 1A"] def __init__(self,Ship): Module.__init__(self,"MDS","Gunship",Ship) self.Weapon1=Slot("WM",Ship) self.Utility1=Slot("UA",Ship) class Interceptor(Module): Type="MDS" Name="Interceptor" Info=["Weapons: 2S","Utilitys: 1A"] def __init__(self,Ship): Module.__init__(self,"MDS","Interceptor",Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WS",Ship) self.Utility1=Slot("UA",Ship) class PicketShip(Module): Type="MDS" Name="Picket Ship" Info=["Weapons: 2P","Utilitys: 1A"] def __init__(self,Ship): Module.__init__(self,"MDS","Picket Ship",Ship) self.Weapon1=Slot("WP",Ship) self.Weapon2=Slot("WP",Ship) self.Utility1=Slot("UA",Ship) Variants=[Gunship,Interceptor,PicketShip] Variants=[Bow,Stern] class Cruiser: class Bow: Type="MCB" class Artillery(Module): Type="MCB" Name="Artillery" Info=["Weapons: 1L ","Utilitys: 4M"] def __init__(self,Ship): Module.__init__(self,"MCB","Artillery",Ship) self.Weapon1=Slot("WL",Ship) self.Utility1=Slot("UM",Ship) self.Utility2=Slot("UM",Ship) self.Utility3=Slot("UM",Ship) self.Utility4=Slot("UM",Ship) class Broadside(Module): Type="MCB" Name="Broadside" Info=["Weapons: 2M ","Utilitys: 4M"] def __init__(self,Ship): Module.__init__(self,"MCB","Broadside",Ship) self.Weapon1=Slot("WM",Ship) self.Weapon2=Slot("WM",Ship) self.Utility1=Slot("UM",Ship) self.Utility2=Slot("UM",Ship) self.Utility3=Slot("UM",Ship) self.Utility4=Slot("UM",Ship) class Torpedo(Module): Type="MCB" Name="Torpedo" Info=["Weapons: 2S 1G ","Utilitys: 4M"] def __init__(self,Ship): Module.__init__(self,"MCB","Torpedo",Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WS",Ship) self.Weapon3=Slot("WG",Ship) self.Utility1=Slot("UM",Ship) self.Utility2=Slot("UM",Ship) self.Utility3=Slot("UM",Ship) self.Utility4=Slot("UM",Ship) Variants=[Artillery,Broadside,Torpedo] class Core: Type="MCC" class Artillery(Module): Type="MCC" Name="Artillery" Info=["Weapons: 1L 1M","Utilitys: 4M"] def __init__(self,Ship): Module.__init__(self,"MCC","Artillery",Ship) self.Weapon1=Slot("WL",Ship) self.Weapon2=Slot("WM",Ship) self.Utility1=Slot("UM",Ship) self.Utility2=Slot("UM",Ship) self.Utility3=Slot("UM",Ship) self.Utility4=Slot("UM",Ship) class Broadside(Module): Type="MCC" Name="Broadside" Info=["Weapons: 3M","Utilitys: 4M"] def __init__(self,Ship): Module.__init__(self,"MCC","Broadside",Ship) self.Weapon1=Slot("WM",Ship) self.Weapon2=Slot("WM",Ship) self.Weapon3=Slot("WM",Ship) self.Utility1=Slot("UM",Ship) self.Utility2=Slot("UM",Ship) self.Utility3=Slot("UM",Ship) self.Utility4=Slot("UM",Ship) class Hangar(Module): Type="MCC" Name="Hangar" Info=["Weapons: 2P 1H","Utilitys: 4M"] def __init__(self,Ship): Module.__init__(self,"MCC","Hangar",Ship) self.Weapon1=Slot("WP",Ship) self.Weapon2=Slot("WP",Ship) self.Weapon3=Slot("WH",Ship) self.Utility1=Slot("UM",Ship) self.Utility2=Slot("UM",Ship) self.Utility3=Slot("UM",Ship) self.Utility4=Slot("UM",Ship) class Torpedo(Module): Type="MCC" Name="Torpedo" Info=["Weapons: 2S 2G","Utilitys: 4M"] def __init__(self,Ship): Module.__init__(self,"MCC","Torpedo",Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WS",Ship) self.Weapon3=Slot("WG",Ship) self.Weapon4=Slot("WG",Ship) self.Utility1=Slot("UM",Ship) self.Utility2=Slot("UM",Ship) self.Utility3=Slot("UM",Ship) self.Utility4=Slot("UM",Ship) Variants=[Artillery,Broadside,Hangar,Torpedo] class Stern: Type="MCS" class Broadside(Module): Type="MCS" Name="Broadside" Info=["Weapons: 1M","Utilitys: 2A"] def __init__(self,Ship): Module.__init__(self,"MCC","Broadside",Ship) self.Weapon1=Slot("WM",Ship) self.Utility1=Slot("UA",Ship) self.Utility2=Slot("UA",Ship) class Gunship(Module): Type="MCC" Name="Gunship" Info=["Weapons: 2S","Utilitys: 2A"] def __init__(self,Ship): Module.__init__(self,"MCC","Gunship",Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WS",Ship) self.Utility1=Slot("UA",Ship) self.Utility2=Slot("UA",Ship) Variants=[Broadside,Gunship] Variants=[Bow,Core,Stern] class Battleship: class Bow: Type="MBB" class Artillery(Module): Type="MBB" Name="Artillery" Info=["Weapons: 2L","Utilitys: 3L"] def __init__(self,Ship): Module.__init__(self,"MBB","Artillery",Ship) self.Weapon1=Slot("WL",Ship) self.Weapon2=Slot("WL",Ship) self.Utility1=Slot("UL",Ship) self.Utility2=Slot("UL",Ship) self.Utility3=Slot("UL",Ship) class Broadside(Module): Type="MBB" Name="Broadside" Info=["Weapons: 2S 1M 1L","Utilitys: 2A"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WS",Ship) self.Weapon3=Slot("WM",Ship) self.Weapon4=Slot("WL",Ship) self.Utility1=Slot("UL",Ship) self.Utility2=Slot("UL",Ship) self.Utility3=Slot("UL",Ship) class Hangar(Module): Type="MBB" Name="Hangar" Info=["Weapons: 1M 2P 1H","Utilitys: 3L"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WM",Ship) self.Weapon2=Slot("WP",Ship) self.Weapon3=Slot("WP",Ship) self.Weapon4=Slot("WH",Ship) self.Utility1=Slot("UL",Ship) self.Utility2=Slot("UL",Ship) self.Utility3=Slot("UL",Ship) class SpinalMount(Module): Type="MBB" Name="Spinal Mount" Info=["Weapons: 1X","Utilitys: 3L"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WX",Ship) self.Utility1=Slot("UL",Ship) self.Utility2=Slot("UL",Ship) self.Utility3=Slot("UL",Ship) Variants=[Artillery,Broadside,Hangar,SpinalMount] class Core: Type="MBC" class Artillery(Module): Type="MBC" Name="Artillery" Info=["Weapons: 3L","Utilitys: 3L"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WL",Ship) self.Weapon2=Slot("WL",Ship) self.Weapon3=Slot("WL",Ship) self.Utility1=Slot("UL",Ship) self.Utility2=Slot("UL",Ship) self.Utility3=Slot("UL",Ship) class Broadside(Module): Type="MBC" Name="Broadside" Info=["Weapons: 2M 2L","Utilitys: 3L"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WM",Ship) self.Weapon2=Slot("WM",Ship) self.Weapon3=Slot("WL",Ship) self.Weapon4=Slot("WL",Ship) self.Utility1=Slot("UL",Ship) self.Utility2=Slot("UL",Ship) self.Utility3=Slot("UL",Ship) class Carrier(Module): Type="MBC" Name="Carrier" Info=["Weapons: 2S 2P 2H","Utilitys: 3L"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WS",Ship) self.Weapon2=Slot("WS",Ship) self.Weapon3=Slot("WP",Ship) self.Weapon4=Slot("WP",Ship) self.Weapon5=Slot("WH",Ship) self.Weapon6=Slot("WH",Ship) self.Utility1=Slot("UL",Ship) self.Utility2=Slot("UL",Ship) self.Utility3=Slot("UL",Ship) class Hangar(Module): Type="MBC" Name="Hangar" Info=["Weapons: 4M 1H","Utilitys: 3L"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WM",Ship) self.Weapon2=Slot("WM",Ship) self.Weapon3=Slot("WM",Ship) self.Weapon4=Slot("WM",Ship) self.Weapon5=Slot("WH",Ship) self.Utility1=Slot("UL",Ship) self.Utility2=Slot("UL",Ship) self.Utility3=Slot("UL",Ship) Variants=[Artillery,Broadside,Carrier,Hangar] class Stern: Type="MBS" class Artillery(Module): Type="MBS" Name="Artillery" Info=["Weapons: 1L","Utilitys: 2A"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WL",Ship) self.Utility1=Slot("UA",Ship) self.Utility2=Slot("UA",Ship) class Broadside(Module): Type="MBS" Name="Broadside" Info=["Weapons: 2M","Utilitys: 2A"] def __init__(self,Ship): Module.__init__(self,self.Type,self.Name,Ship) self.Weapon1=Slot("WM",Ship) self.Weapon2=Slot("WM",Ship) self.Utility1=Slot("UA",Ship) self.Utility2=Slot("UA",Ship) Variants=[Artillery,Broadside] Variants=[Bow,Core,Stern] if(__loader__!="Modules"): import Modules import Utilitys import Weapons import Components
[ "CristiSima@github.com" ]
CristiSima@github.com
e98b22fa6ef267f696bb0d745c79f47d0d9e171b
20f16917c9245aae71cb50fcc4b3e34e1e2a5006
/LessonThree/Python07/src/Story_start.py
bf42f5f5399b21892641b105ca409e6280efa206
[]
no_license
yinsendemogui/Alex
f4bce794efb5cacdf547c420d7a3a3c5d27be5c8
eeb230b9028ced5c7fc0f293c1d4d7b98c521721
refs/heads/master
2020-06-11T19:17:41.397658
2017-01-07T15:50:48
2017-01-07T15:50:48
75,628,240
0
0
null
null
null
null
UTF-8
Python
false
false
14,646
py
#!usr/bin/env python # -*- coding:utf-8 -*- # auther:Mr.chen # 描述: import time,os,sys sys.path.append('..') from lib import common # from lib.Players_model import players_Model DIR = os.path.dirname(__file__) DIR = DIR.replace('src','db/') TAG = True def Pre_chapter(user): time.sleep(2) title = """ * * * * * * * * * * * * * * * * * * * * * * *预章:传说* * * * * * * * * * * * * * * * * * * * * * * """ print (title) time.sleep(5) text = """ 相传很久以前,于古国疆域,有一奇人姓夸名父. 以大力闻于世间,以才智惊于圣贤,以风韵传于万载.. 忽一日,慕之者至.询问之,其曰... 吾父乃真之才,生于凡中.无师而达天地... 终其一生教化万民,此乃吾真之所持.. 父之事迹.且听我慢慢道来... """ for i in text.decode('utf-8'): if i != ' ': time.sleep(0.5) print i.encode('utf-8'), else: print i.encode('utf-8'), The_first_chapter(user) def The_first_chapter(user): # dict = common.log_info_read(DIR + 'config_conf') # for S in dict['students']: # if S.Name == user.Name: time.sleep(2) introduce = """ 登场人物介绍 姓名:{0} 年龄:{1} 国籍:{2} 特长:{3} 体力:{4} 武力:{5} 智力:{6} 魅力:{7} 秘籍:无 点评:屌丝,唯撩妹甚 姓名:灵儿 年龄:22 国籍:china 特长: 体力:1000 武力:70 智力:70 魅力:100 秘籍:游戏保护,万法不侵 点评:白富美 """.format(user.Name,user.Age,user.Nationality,user.Specialty,user.Strength,user.Force,user.IQ,user.Charm) for i in introduce.decode('utf-8'): if i != ' ': time.sleep(0.2) print i.encode('utf-8'), else: print i.encode('utf-8'), time.sleep(2) title = """ * * * * * * * * * * * * * * * * * * * * * * *第一章:缘启* * * * * * * * * * * * * * * * * * * * * * * """ print (title) time.sleep(5) text = """ 我的父亲叫做{0},本是一介草民,少时机缘之下, 救助了一个跳河自杀之人,本也并无所求,只因 我父那时在河中捕鱼,闲河中波澜太盛,吓跑鱼儿, 故,救之,以安抚鱼心。谁想此人竟是一小门派 掌教之子,因修炼走火,盲目间跌落河中。恰逢我父 出海,机缘所致,掌教有感我父恩德,故收其为徒, 传功授法,指引修行。说来也怪,我父不论武力{1}, 智力{1}魅力{2}尽数低于常人,但唯独撩妹能力 极其出众,故派中最小师妹灵儿常伴左右,个中滋味 不足为外人道也。 """.format(user.Name,user.Force,user.IQ,user.Charm) for i in text.decode('utf-8'): if i != ' ': time.sleep(0.5) print i.encode('utf-8'), else: print i.encode('utf-8'), The_second_chapter(user) def The_second_chapter(user): time.sleep(2) introduce = """ 登场人物介绍 姓名:高富帅 年龄:34 国籍:china 特长:有钱有势 体力:1000 武力:70 智力:70 魅力:70 秘籍:无 点评:如其名 """ for i in introduce.decode('utf-8'): if i != ' ': time.sleep(0.2) print i.encode('utf-8'), else: print i.encode('utf-8'), time.sleep(2) title = """ * * * * * * * * * * * * * * * * * * * * * * *第二章:幻灭* * * * * * * * * * * * * * * * * * * * * * * """ print (title) time.sleep(5) text = """ 我父和灵儿就这样朝夕相处,日久生情,只待谈婚论嫁之时。 但,世事难料。一日,掌门大寿,宴请四方,祝寿者繁多。 有一人姓高名富帅,乃当朝一品大员之子,见灵儿貌美, 意欲图之。在其下手一刻,幸被我父所阻,于是心生恨意, 命其下人,禀报大员,以圣上赐婚为由,向掌门施压。怎料, 掌门欲息事宁人,遂命灵儿随高富帅回京,奉旨完婚。师命 难违,灵儿纵千般不愿,亦感无可奈何。临行前,挥泪别过, 劝我父放下仇恨,勿思勿念。我父伤心之余,亦感自身渺小。 暗发宏愿,以期报仇雪恨,救灵儿于水火之间。 """ for i in text.decode('utf-8'): if i != ' ': time.sleep(0.5) print i.encode('utf-8'), else: print i.encode('utf-8'), The_third_chapter(user) def The_third_chapter(user): time.sleep(2) title = """ * * * * * * * * * * * * * * * * * * * * * * *第三章:暗涛* * * * * * * * * * * * * * * * * * * * * * * """ print (title) time.sleep(5) text = """ 灵儿事毕,我父再无心静修,辞别掌教,下山入世。 得一高人指点,拜于一隐门之中,勤学苦练,终得 真传。我父正欲出山报仇,被隐门上士所阻,言道 京城宦官家有一大内高手田伯光,武力高达90有余, 欲胜之需闯本门的锁妖塔拿一绝世宝物(双倍暴击率) 方可成行。 """ for i in text.decode('utf-8'): if i != ' ': time.sleep(0.5) print i.encode('utf-8'), else: print i.encode('utf-8'), time.sleep(2) while TAG: text = """ 剧情分支选择如下: 1,听劝 2,不听劝 """ print (text) choose = raw_input("请输入索引进行选择") if choose == '1': Lock_demon_tower(user) elif choose == '2': Fail_ending_one() else: print ("你的选择有误!") def Lock_demon_tower(user): List = [] dict = common.log_info_read(DIR + 'config_conf') for pobj in dict['players']: if pobj.Name == user.Name: P = pobj time.sleep(2) title = """ * * * * * * * * * * * * * * * * * * * * * * *第四章:勇闯锁妖塔* * * * * * * * * * * * * * * * * * * * * * * """ print (title) time.sleep(5) text = """ 反复思量,我父还是决定暂缓报仇,遵从隐士的看法, 独自一人来到锁妖塔前,看者前方雄伟的高达{0} 层的锁妖塔,暗下决心,要尽快完成闯塔拿到宝物. 于是,我父来到了塔下的驿站里... """.format(str(len(user.Tlist_obj))) for i in text.decode('utf-8'): if i != ' ': time.sleep(0.5) print i.encode('utf-8'), else: print i.encode('utf-8'), while TAG: test = """ 请问现在你想去哪? 1,闯塔 2,打开背包(吃药) 你还有{0}体力 3,不闯了,直接去报仇 """.format(str(P.Strength)) print (test) choose = raw_input("请输入索引进行选择:") num = 0 bum = 0 if choose == '1': for tobj in dict['towers']: if P.schedule[tobj] == 100: schedule = '已达成' bum += 1 else: schedule = P.schedule[tobj] print ("{0},{1},难度系数:{2},进度率:{3}%,创塔次数:{4}次".format(str(num+1),tobj.Lname,tobj.Difficulty,str(schedule),str(P.num[tobj]))) if bum == len(P.Tlist_obj): print ("{0},锁妖塔顶层,难度系统:0".format(str(num+2))) num += 1 List.append(str(num)) decide = raw_input("请输入索引进行选择:") if decide == str(len(P.Tlist_obj)+1) and bum == len(P.Tlist_obj): Lock_demon_tower_Top(user) if decide in List: if P.schedule[dict['towers'][int(decide)-1]] < 100: for i in range(10): re = P.Begins(dict['towers'][int(decide)-1]) if re == False: common.log_info_write(DIR + 'config_conf', dict) break else: common.log_info_write(DIR + 'config_conf', dict) else: print ("本层已经闯过了!") else: print ("你的输入有误!") elif choose == '2': while TAG: text = """ 背囊物品如下: 你还有{0}体力 1,大还丹:{1}个 2,小还丹 {2}个 """.format(str(P.Strength),str(P.Item['大还丹']),str(P.Item['大还丹'])) print (text) choose = raw_input("请输入索引进行选择:") if choose == '1': if P.Item['大还丹'] > 0 : P.Item['大还丹'] -= 1 P.Strength += 500 common.log_info_write(DIR + 'config_conf', dict) break else: print ("大还丹个数为0") break elif choose == '2': if P.Item['小还丹'] > 0: P.Item['小还丹'] -= 1 P.Strength += 200 common.log_info_write(DIR + 'config_conf', dict) break else: print ("小还丹个数为0") break else: print ("你的输入有误!请重新输入!") elif choose == '3': Fail_ending_one() else: print ("你的输入有误!") def Lock_demon_tower_Top(user): dict = common.log_info_read(DIR + 'config_conf') for pobj in dict['players']: if pobj.Name == user.Name: P = pobj time.sleep(2) title = """ * * * * * * * * * * * * * * * * * * * * * * *第五章:锁妖塔顶* * * * * * * * * * * * * * * * * * * * * * * """ print (title) time.sleep(5) text = """ 克服磨难,吾父终至,锁妖塔顶。与前相比,此地奇静。 地方不大,有水缸一口,两人高有余。好奇之下, 侧身观之,怎料竟有活人居于缸内,遂上前,救出。 原来此人就是灵儿。询问下,方知,那日毕,其心已死, 趁高富帅不备,遂逃出,寻短见,幸被隐门上士所救,居 此疗伤,恰逢我父闯塔,喜得相逢。至此,我父恍然,直呼, 此宝胜万宝也(主角瞬间满怒体力翻倍) """ for i in text.decode('utf-8'): if i != ' ': time.sleep(0.5) print i.encode('utf-8'), else: print i.encode('utf-8'), P.Strength = P.Strength * 2 common.log_info_write(DIR + 'config_conf', dict) Wu_Duo(user) def Wu_Duo(user): time.sleep(2) title = """ * * * * * * * * * * * * * * * * * * * * * * *终章:武夺* * * * * * * * * * * * * * * * * * * * * * * """ print (title) time.sleep(5) text = """ 经过不懈的努力,战胜了诸多困苦(实在懒得编了), 我们的主角终于和美女团结友爱的在一起生活,剧终 """ for i in text.decode('utf-8'): if i != ' ': time.sleep(0.5) print i.encode('utf-8'), else: print i.encode('utf-8'), exit() def Fail_ending_one(): time.sleep(2) title = """ * * * * * * * * * * * * * * * * * * * * * * *终章:武夺* * * * * * * * * * * * * * * * * * * * * * * """ print (title) time.sleep(5) text = """ 报仇心切,我父终是不肯听劝,遂一人趁夜逃出隐门, 数日后,进京踩点,待万事俱备只欠东风之时,奈何 大员祖宅大内高手,先知先觉,早已暗随我父三日有余, 眼见我父正待出手,遂突袭之,我父重伤,感叹报仇无望, 自此隐居山林,不问世事.....BAD END...... """ for i in text.decode('utf-8'): if i != ' ': time.sleep(0.5) print i.encode('utf-8'), else: print i.encode('utf-8'), exit()
[ "215379068@qq.com" ]
215379068@qq.com
7c758c74009c56b967069fdd7c768b6aca99de7e
921c6a7a41e318a207140c463778c12e0d4879da
/phonesimulator.py
f3db75ec0825b1ab419b73d718b0b56516eb1fae
[]
no_license
kezzayuno/summerTutoringSolutions
79b7352e1cd52504bb95277f828459dab4a3c075
73fa7ac97e9076d1f99de35a1bce2cf1007c1b1f
refs/heads/main
2023-05-03T09:52:20.611134
2021-05-27T00:08:57
2021-05-27T00:08:57
365,408,177
0
0
null
null
null
null
UTF-8
Python
false
false
1,815
py
# there can be errors in the file # - number would have not an integer # - duplicates phone number like two tims with the same number # - two numbers with two different people which imply that these two live together def createDict(file): phoneBook = {} done = False for line in file: splitLine = line.rstrip().split('$') number = formatNumber(splitLine[1]) if len(phoneBook) != 0: for name in phoneBook.keys(): if phoneBook[name] == number: saved = name phoneBook.pop(name) phoneBook[saved + ', ' + splitLine[0]] = number break if done == False: phoneBook[splitLine[0]] = number return phoneBook def formatNumber(number): newNumber = [] strNumber = '' for tupleDigit in zip(*([iter(number)] * 3)): newNumber.append(''.join(tupleDigit)) for num in newNumber: if num == newNumber[len(newNumber) - 1]: strNumber += num else: strNumber += num + '-' strNumber += number[len(number) - 1] return strNumber def checkPhoneNumber(phoneBook, name): for phoneName in phoneBook.keys(): if phoneName == name: return phoneBook[phoneName] if ',' in phoneName: splitNames = phoneName.split(',') for aName in splitNames: if name == aName: return phoneBook[phoneName] return "This name does not exist in this phone book." def main(): with open('myContacts.txt', 'r') as f: readFile = f.readlines() phoneBook = createDict(readFile) getPhoneNumber = input("Whose phone number do you wish to see? >") print(checkPhoneNumber(phoneBook, getPhoneNumber)) main()
[ "ayuno@ualberta.ca" ]
ayuno@ualberta.ca
d5edeac4cbc477ba3102868460c60680c85531d0
b27c5b8d5441cf10774305b79dddd9a35d366f31
/recipeapp/settings.py
704c9d111c0ab4d452c3bb193dc28bfaf89bf25b
[]
no_license
ins099/RecipeWebApp
58a925f8f224f5e867212d7a368f84fc3d882087
36d6961042a78c074b94ba6c1bf67f968975152c
refs/heads/main
2023-02-13T22:34:57.569192
2021-01-13T23:09:06
2021-01-13T23:09:06
321,590,791
0
0
null
null
null
null
UTF-8
Python
false
false
3,588
py
""" Django settings for recipeapp project. Generated by 'django-admin startproject' using Django 3.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve(strict=True).parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '9mt#j3mlm3p90xn$5pf5%l_ngn(4wd88$va6f&2yroj*g2%+#m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'recipe', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'recipeapp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'recipeapp.wsgi.application' REST_FRAMEWORK = { # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ] } # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] AUTH_USER_MODEL = 'recipe.User' # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' LOGIN_URL = '/login' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] MEDIA_URL = '/images/' MEDIA_ROOT = os.path.join(BASE_DIR, 'recipe/static/images/')
[ "alaminsaram92@gmail.com" ]
alaminsaram92@gmail.com
148b9208b0b1a0d77e8b6ca8105ddce0cca0bb8a
379e7d33dc72ebe0c2cdf605174813accc957797
/main.py
1833697eb5be2b619c469b03e4664800a896552f
[]
no_license
Kayt/heartmed
8838cea4c07be67b80c0294a6ccd7edeb64589a8
7dbbf3be44c912c4a1708cadaa987ef000ae1f73
refs/heads/master
2021-08-09T01:28:05.447174
2017-11-11T19:47:27
2017-11-11T19:47:27
110,351,336
1
0
null
null
null
null
UTF-8
Python
false
false
6,488
py
from numpy import exp, array, random, dot, asarray class NeuralNetwork(): def __init__(self): # Seed the random number generator, so it generates the same numbers # every time the program runs. random.seed(1) # We model a single neuron, with 3 input connections and 1 output connection. # We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1 # and mean 0. self.synaptic_weights = 2 * random.random((100, 1)) - 1 # The Sigmoid function, which describes an S shaped curve. # We pass the weighted sum of the inputs through this function to # normalise them between 0 and 1. def __sigmoid(self, x): return 1 / (1 + exp(-x)) # The derivative of the Sigmoid function. # This is the gradient of the Sigmoid curve. # It indicates how confident we are about the existing weight. def __sigmoid_derivative(self, x): return x * (1 - x) # We train the neural network through a process of trial and error. # Adjusting the synaptic weights each time. def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations): for iteration in xrange(number_of_training_iterations): # Pass the training set through our neural network (a single neuron). output = self.think(training_set_inputs) # Calculate the error (The difference between the desired output # and the predicted output). error = training_set_outputs - output # Multiply the error by the input and again by the gradient of the Sigmoid curve. # This means less confident weights are adjusted more. # This means inputs, which are zero, do not cause changes to the weights. adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output)) # Adjust the weights. self.synaptic_weights += adjustment # The neural network thinks. def think(self, inputs): # Pass inputs through our neural network (our single neuron). return self.__sigmoid(dot(asarray(inputs, self.synaptic_weights))) if __name__ == "__main__": #Intialise a single neuron neural network. neural_network = NeuralNetwork() print "Random starting synaptic weights: " print neural_network.synaptic_weights # The training set. We have 4 examples, each consisting of 3 input values # and 1 output value. training_set_inputs = array([ [63,1,1,145,233,1,2,150,0,2.3,3,0,6], [67,1,4,160,286,0,2,108,1,1.5,2,3,3], [67,1,4,120,229,0,2,129,1,2.6,2,2,7], [37,1,3,130,250,0,0,187,0,3.5,3,0,3], [41,0,2,130,204,0,2,172,0,1.4,1,0,3], [56,1,2,120,236,0,0,178,0,0.8,1,0,3], [62,0,4,140,268,0,2,160,0,3.6,3,2,3], [57,0,4,120,354,0,0,163,1,0.6,1,0,3], [63,1,4,130,254,0,2,147,0,1.4,2,1,7], [53,1,4,140,203,1,2,155,1,3.1,3,0,7], [57,1,4,140,192,0,0,148,0,0.4,2,0,6], [56,0,2,140,294,0,2,153,0,1.3,2,0,3], [56,1,3,130,256,1,2,142,1,0.6,2,1,6], [44,1,2,120,263,0,0,173,0,0,1,0,7], [52,1,3,172,199,1,0,162,0,0.5,1,0,7], [57,1,3,150,168,0,0,174,0,1.6,1,0,3], [48,1,2,110,229,0,0,168,0,1,3,0,7], [54,1,4,140,239,0,0,160,0,1.2,1,0,3], [48,0,3,130,275,0,0,139,0,0.2,1,0,3], [49,1,2,130,266,0,0,171,0,0.6,1,0,3], [64,1,1,110,211,0,2,144,1,1.8,2,0,3], [58,0,1,150,283,1,2,162,0,1,1,0,3], [58,1,2,120,284,0,2,160,0,1.8,2,0,3], [58,1,3,132,224,0,2,173,0,3.2,1,2,7], [60,1,4,130,206,0,2,132,1,2.4,2,2,7], [50,0,3,120,219,0,0,158,0,1.6,2,0,3], [58,0,3,120,340,0,0,172,0,0,1,0,3], [66,0,1,150,226,0,0,114,0,2.6,3,0,3], [43,1,4,150,247,0,0,171,0,1.5,1,0,3], [40,1,4,110,167,0,2,114,1,2,2,0,7], [69,0,1,140,239,0,0,151,0,1.8,1,2,3], [60,1,4,117,230,1,0,160,1,1.4,1,2,7], [64,1,3,140,335,0,0,158,0,0,1,0,3], [59,1,4,135,234,0,0,161,0,0.5,2,0,7], [44,1,3,130,233,0,0,179,1,0.4,1,0,3], [42,1,4,140,226,0,0,178,0,0,1,0,3], [43,1,4,120,177,0,2,120,1,2.5,2,0,7], [57,1,4,150,276,0,2,112,1,0.6,2,1,6], [55,1,4,132,353,0,0,132,1,1.2,2,1,7], [61,1,3,150,243,1,0,137,1,1,2,0,3], [65,0,4,150,225,0,2,114,0,1,2,3,7], [40,1,1,140,199,0,0,178,1,1.4,1,0,7], [71,0,2,160,302,0,0,162,0,0.4,1,2,3], [59,1,3,150,212,1,0,157,0,1.6,1,0,3], [61,0,4,130,330,0,2,169,0,0,1,0,3], [58,1,3,112,230,0,2,165,0,2.5,2,1,7], [51,1,3,110,175,0,0,123,0,0.6,1,0,3], [50,1,4,150,243,0,2,128,0,2.6,2,0,7], [65,0,3,140,417,1,2,157,0,0.8,1,1,3], [53,1,3,130,197,1,2,152,0,1.2,3,0,3], [41,0,2,105,198,0,0,168,0,0,1,1,3], [65,1,4,120,177,0,0,140,0,0.4,1,0,7], [44,1,4,112,290,0,2,153,0,0,1,1,3], [44,1,2,130,219,0,2,188,0,0,1,0,3], [60,1,4,130,253,0,0,144,1,1.4,1,1,7], [54,1,4,124,266,0,2,109,1,2.2,2,1,7], [50,1,3,140,233,0,0,163,0,0.6,2,1,7], [41,1,4,110,172,0,2,158,0,0,1,0,7], [54,1,3,125,273,0,2,152,0,0.5,3,1,3], [51,1,1,125,213,0,2,125,1,1.4,1,1,3], [51,0,4,130,305,0,0,142,1,1.2,2,0,7], [46,0,3,142,177,0,2,160,1,1.4,3,0,3], [58,1,4,128,216,0,2,131,1,2.2,2,3,7], [54,0,3,135,304,1,0,170,0,0,1,0,3], [54,1,4,120,188,0,0,113,0,1.4,2,1,7], [60,1,4,145,282,0,2,142,1,2.8,2,2,7], [60,1,3,140,185,0,2,155,0,3,2,0,3], [54,1,3,150,232,0,2,165,0,1.6,1,0,7], [59,1,4,170,326,0,2,140,1,3.4,3,0,7], [46,1,3,150,231,0,0,147,0,3.6,2,0,3], [65,0,3,155,269,0,0,148,0,0.8,1,0,3], [67,1,4,125,254,1,0,163,0,0.2,2,2,7] ]) training_set_outputs = array([[0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,1,0,0,0,1,1,0,1,0,0,0,0,1,0,1,1,1,1,0,0,1,0,1,0,1,1,1,0,1,1,0,1]]).T # Train the neural network using a training set. # Do it 10,000 times and make small adjustments each time. neural_network.train(training_set_inputs, training_set_outputs, 10000) print "New synaptic weights after training: " print neural_network.synaptic_weights # Test the neural network with a new situation. print "Considering new situation [65,1,4,110,248,0,2,158,0,0.6,1,2,6] -> ?: " print neural_network.think(array([65,1,4,110,248,0,2,158,0,0.6,1,2,6]))
[ "achim_munene@hotmail.com" ]
achim_munene@hotmail.com
362e9abe387de8ee165bafdca75d22ecb015f9f1
40efe4cdb4d7845ce7adca4b3d48aaeb2c0f35fb
/rotate_sort.py
8412180883b47c121dd7bd07654c069a3a569c9d
[]
no_license
viz06/python_codes
b663d360d223e549401b5c10534c9085c5def6a9
93b067afa4ba02fba73c9709c922983b2bf9ac09
refs/heads/master
2022-12-19T10:16:42.645697
2020-09-20T19:27:10
2020-09-20T19:27:10
295,674,842
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
class Solution: count=0 def findKRotation(self,arr, n): for i in range(n-1): if(arr[i]>arr[i+1]): return i+1 return 0 if __name__=='__main__': tc=int(input()) while tc>0: n=int(input()) a=list(map(int,input().strip().split())) ob=Solution() ans=ob.findKRotations(a,n) print(ans) tc=tc-1
[ "noreply@github.com" ]
noreply@github.com
306b1205394bae0e6a5f9c63abcc56d5c25288b4
5a6ea469a1a6571281e8a23ff8fbc4c3ea205a0f
/util/visualizer.py
283a78e9dfa482932160f889533973dfff9919bf
[]
no_license
123456789lin/Pytorch-CycleGAN-Simplified
ee00d32d1db3c5b7daf2bfdb273dcb487ee4e8de
364b1c36a0090c0a37e22c95eec4388dc5db90e4
refs/heads/master
2022-12-10T00:57:48.497532
2020-08-30T06:12:54
2020-08-30T06:12:54
291,289,682
0
0
null
null
null
null
UTF-8
Python
false
false
2,896
py
import numpy as np import time import os import sys import ntpath from . import util from subprocess import Popen, PIPE if sys.version_info[0] == 2: VisdomExceptionBase = Exception else: VisdomExceptionBase = ConnectionError def save_images(result_dir, visuals, image_path, aspect_ratio=1.0): """Save images to the disk. Parameters: visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs image_path (str) -- the string is used to create image paths aspect_ratio (float) -- the aspect ratio of saved images width (int) -- the images will be resized to width x width """ image_dir = os.path.join(result_dir, 'images') short_path = ntpath.basename(image_path[0]) name = os.path.splitext(short_path)[0] if not os.path.exists(image_dir): os.makedirs(image_dir) ims, txts, links = [], [], [] for label, im_data in visuals.items(): im = util.tensor2im(im_data) image_name = '%s_%s.png' % (name, label) save_path = os.path.join(image_dir, image_name) util.save_image(im, save_path, aspect_ratio=aspect_ratio) class Visualizer(): """This class includes several functions that can display/save images and print/save logging information. """ def __init__(self, opt): self.opt = opt # cache the option self.name = opt.name self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') with open(self.log_name, "a") as log_file: now = time.strftime("%c") log_file.write('================ Training Loss (%s) ================\n' % now) def display_current_results(self,img_dir, visuals, epoch): # save images to the disk if not os.path.exists(img_dir): os.makedirs(img_dir) for label, image in visuals.items(): image_numpy = util.tensor2im(image) img_path = os.path.join(img_dir, 'epoch%.3d_%s.png' % (epoch, label)) util.save_image(image_numpy, img_path) # losses: same format as |losses| of plot_current_losses def print_current_losses(self, epoch, iters, losses): """print current losses on console; also save the losses to the disk Parameters: epoch (int) -- current epoch iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) losses (OrderedDict) -- training losses stored in the format of (name, float) pairs """ message = '(epoch: %d, iters: %d) ' % (epoch, iters) for k, v in losses.items(): message += '%s: %.3f ' % (k, v) print(message) # print the message with open(self.log_name, "a") as log_file: log_file.write('%s\n' % message) # save the message
[ "noreply@github.com" ]
noreply@github.com
e285fd667bf08064ff25f762ee61ea06d3addb99
5a082f78df56e88d0b7096323f16d7a34f7751e0
/venv/Scripts/pip3.7-script.py
6ab5023b081a735352f9e21f4fc49c712766008b
[]
no_license
yonitouitou/PDFMerger
36e9f9fde2c25e2bc81b5b49b95f9330097f720a
d0f5e06cc1cf2375d9f5a0ee9a08d12e5f253af6
refs/heads/master
2020-12-09T10:31:25.168385
2020-05-10T07:51:08
2020-05-10T07:51:08
233,278,185
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
#!"C:\Users\Yoni Touitou\PycharmProjects\PdfMerger\venv\Scripts\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.7' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.7')() )
[ "yonitouitouu@gmail.com" ]
yonitouitouu@gmail.com
a7cab9582745010178a2ff7a604325a6acc85ace
f2d961fe88b67f9d1eb52170d4df7c0363fae073
/paper/plottraces_wt.py
0f6fb632d5797568f4da3376d5ce5e68dd5a2795
[]
no_license
acvmanzo/mn
12ffbf1aae9c8088a8461bb2e7f4823e31329338
c1d52e65e0bdec504d4e3954ad02ffe91f7f31ad
refs/heads/master
2021-01-23T04:23:47.366109
2014-06-08T11:05:11
2014-06-08T11:05:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,820
py
import mn.dftf.dftf as dftf import os import matplotlib.pyplot as plt import numpy as np import operator from mn.cmn.cmn import * import matplotlib import pickle import matplotlib as mpl # Plots raw traces on one graph from the movies specified below. # Run from the 'data' folder; in the 'data' folder are individual movie folders # (similar to the experiment/data folders). # Same values as in dftf.py, but only plotting roi1. DFTSIZE=10000 RESULTS_FILE = 'results1.txt' PARAMS_FILE = 'params' CORRPARAMS_FILE = 'corrparams' HZ_BOUND1 = 0.5 HZ_BOUND2 = 'end' KEYLIST = 'keylist' COLS= ['Mean1'] ROIS = ['roi1'] TYPE = 'raw' # Choose 'dft' or 'raw' if TYPE == 'dft': PLOTNAME = 'dfttraces.png' YLABEL = 'Amplitude' XLABEL = 'Hz' YMIN = 0 YLIM = 4 if TYPE == 'raw': PLOTNAME = 'rawtraces' YLABEL = 'Arbitrary Intensity' XLABEL = 'Time (s)' YMIN = -5 YLIM = 90 FONTSIZE = 6.7 # Font size for tick labels, axis labels. FIGW = 1.75 # Figure width in inches FIGH = 2.5 # Figure height in inches FIGDPI = 600 # Figure dpi BORDER = 'no' YAXISTICKS = 2 TIME = 1 # Length of time the traces show. XLIMHZ = 10 LINEWIDTH = 0.75 # Dictionary where the keys are the movie names and the values are the condition, the y offset of # the trace (so that they aren't on top of each other), and the color the of the trace. #MOVIES = {'mov_20101130_200135': ['112648-GAL4', 32.5+1, 'k'], 'mov_20110803_190537': ['UAS-TNT', 14+1, 'b'], 'mov_20101213_193258': ['112648 x TNT', 0, 'r']} #DFT_MOVIES = {'mov_20101130_200135': ['112648-GAL4', 3.1-0.25, 'k'], 'mov_20110803_190537': ['UAS-TNT', 1.8-0.25, 'b'], 'mov_20101213_193258': ['112648 x TNT', 0.25, 'r']} #MOVIES = {'mov_20110518_184507': ['24', 70, 'k'], 'mov_20110518_185105': ['30', 20, 'b'], 'mov_20110518_184217': ['24', 50, 'k'], 'mov_20110518_184849': ['30', 0, 'b']} #MOVIES = {'mov_20101130_200533': ['control', 45, 'k'], 'mov_20110518_191243': ['112648 x dtrpa1 - 24', 30, 'b'], 'mov_20110527_163607_part2' :['112648 x dtrpa1 - 32', 15, 'r'], 'mov_20110518_192012': ['112648 x dtrpa1 - 32', -5, 'r']} #MOVIES = {'mov_20110830_152007': ['24 h/100 mM suc', 70, 'k', '(i) '], 'mov_20110830_192926': ['10 h/100 mM suc', 45, 'k', '(ii) '], 'mov_20110901_182709' :['24 h/500 mM suc', 20, 'k', '(iii) '], 'mov_20110113_180524': ['500 mM suc + 2.5% MC', -1, 'k', '(iv) ']} MOVIES = {'mov_20110830_192926': ['10 h/100 mM suc', 70, 'k', '(i) '], 'mov_20110830_152007': ['24 h/100 mM suc', 45, 'k', '(ii) '], 'mov_20110901_182709' :['24 h/500 mM suc', 20, 'k', '(iii) '], 'mov_20110113_180524': ['24 h/500 mM suc + 2.5% MC', -1, 'k', '(iv) ']} matplotlib.rc('axes', linewidth=LINEWIDTH) def oneplot(moviedict, toplotdict, figw, figh, figdpi, fontsz, border, ylabel, ylim, time, ymin, lw): """Moviedict is the above dictionary of movies, toplotdict is a dictionary produced by toplot(), and other values are what's specified as global variables.""" print(toplotdict.keys()) fontv = mpl.font_manager.FontProperties() # Uncomment line below to set the font to verdana; the default matplotlib font is very # similar (just slightly narrower). fontv = mpl.font_manager.FontProperties(fname='/usr/share/matplotlib/mpl-data/fonts/ttf/arial.ttf') fontv.set_size(fontsz) fig1 = plt.figure(figsize=(figw, figh), dpi=figdpi, facecolor='w', edgecolor='k') #Plots data on one graph with parameters specified in the moviedict directory. for k, v in moviedict.iteritems(): print(k) cond1, offset, color, inum = v xvals = toplotdict[k][0] data = toplotdict[k][1] + offset condition = cond1 plt.plot(xvals, data, color, linewidth=lw, label=condition) print(condition) #if k == 'mov_20110113_180524': #plt.text(0.5, offset+7, inum+condition, horizontalalignment='left', #fontproperties=fontv) #else: #plt.text(0.5, offset+9, inum+condition, horizontalalignment='left', #fontproperties=fontv) if k == 'mov_20110113_180524': plt.text(0.05, offset+7, inum+condition, horizontalalignment='left', fontproperties=fontv) else: plt.text(0.05, offset+9, inum+condition, horizontalalignment='left', fontproperties=fontv) ax = plt.gca() ## Plots legend. #legend = plt.legend() ### Manipulates order of the legend entries. ##handles, labels = ax.get_legend_handles_labels() ##handles2 = handles[0], handles[2], handles[1], handles[3] ##labels2 = labels[0], labels[2], labels[1], labels[3] ##legend = ax.legend(handles2, labels2, bbox_to_anchor=(0, 0, 1, 1), transform=plt.gcf().transFigure) ### Changes legend font to fontsz. #ltext = legend.get_texts() #plt.setp(ltext, fontsize=fontsz) ### Removes border around the legend. #legend.draw_frame(False) #Uncomment lines below to display without top and right borders. if border == 'no': for loc, spine in ax.spines.iteritems(): if loc in ['left','bottom']: pass elif loc in ['right','top']: spine.set_color('none') # don't draw spine else: raise ValueError('unknown spine location: %s'%loc) #Uncomment lines below to display ticks only where there are borders. ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ## Removes tick labels and ticks from yaxis. ax.axes.yaxis.set_major_locator(matplotlib.ticker.NullLocator()) # Specifies axis labels and axis tick label sizes. plt.xlabel(XLABEL, fontproperties=fontv, labelpad=4) plt.ylabel(ylabel, fontproperties=fontv, labelpad=4) plt.xticks(fontproperties=fontv) plt.yticks(fontproperties=fontv) # Specifies axis limits. plt.axis( [0, time, ymin, ylim]) # Adjusts the space between the plot and the edges of the figure; (0,0) is the lower #lefthand corner of the figure. fig1.subplots_adjust(top=0.95) fig1.subplots_adjust(left=0.15) #fig1.subplots_adjust(right=0.95) fig1.subplots_adjust(bottom=0.15) def gentoplot(time): """Generates a dictionary where the keys are movie names and the values are the raw trace for plotting. Time specifies the length of time in seconds of the plots shown.""" toplot = {} # Generates a list of movie paths in the data folder. files = dftf.batch_s('.') # Generates dft traces and plots for each roi in each movie. for file in files: os.chdir(file) print(os.path.basename(file)) for col in COLS: if os.path.exists('params') == True: rawtracedata = dftf.TraceData(fname=RESULTS_FILE, paramsfile=PARAMS_FILE, corrparamsfile=CORRPARAMS_FILE, colname=col) td = rawtracedata.Processrawtrace(DFTSIZE, HZ_BOUND1, HZ_BOUND2) moviename = os.path.basename(os.path.abspath('.')) # Selects the area of the raw trace to plot. frames = time * td['fps'] #print(frames) plottime = td['seltrace'][:frames]/6 #print(len(plottime)) ms = plottime-np.mean(plottime) xsec = np.linspace(0, len(plottime)/td['fps'], len(plottime)) #print(xsec) condition = td['condition'] toplot[moviename] = [xsec, ms, condition] print(np.max(ms), np.min(ms)) return(toplot) def gentoplot_dft(xlimhz): toplot = {} # Generates a list of movie paths in the data folder. files = dftf.batch_s('.') # Generates dft traces and plots for each roi in each movie. for file in files: os.chdir(file) print(os.path.basename(file)) for col in COLS: if os.path.exists('params') == True: rawtracedata = dftf.TraceData(fname=RESULTS_FILE, paramsfile=PARAMS_FILE, corrparamsfile=CORRPARAMS_FILE, colname=col) td = rawtracedata.Processrawtrace(DFTSIZE, HZ_BOUND1, HZ_BOUND2) condition = td['condition'] m = td['peakf'] xpoints = np.linspace(0, td['fps']/2, td['dftsize']/2) prop = xlimhz/(td['fps']/2) tracelen = np.rint(prop*len(td['dftnormtrunctrace'])) toplot[td['moviename']] = [xpoints[:tracelen], td['dftnormtrunctrace'][:tracelen], condition] return(toplot) if TYPE == 'dft': toplot = gentoplot_dft(XLIMHZ) #oneplot(MOVIES, toplot, FIGW, FIGH, FIGDPI, FONTSIZE, BORDER, YLABEL, YLIM, TIME) oneplot(DFT_MOVIES, toplot, FIGW, FIGH, FIGDPI, FONTSIZE, BORDER, YLABEL, YLIM, XLIMHZ, YMIN) # Saves the figures in plots/plots. plotfolder = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath('.'))), 'plots') makenewdir(plotfolder) figname = os.path.join(plotfolder, PLOTNAME) plt.savefig(figname, dpi=FIGDPI) # Saves a file showing the movies I used for the plot. fname = os.path.join(plotfolder, 'movies_used_for_dfttraces.txt') with open(fname, 'w') as f: for k, v in MOVIES.iteritems(): f.write(k + ' ' + v[0] + '\n') if TYPE == 'raw': toplot = gentoplot(TIME) oneplot(MOVIES, toplot, FIGW, FIGH, FIGDPI, FONTSIZE, BORDER, YLABEL, YLIM, TIME, YMIN, LINEWIDTH) # Saves the figures in plots/plots. plotfolder = os.path.join(os.path.dirname(os.path.abspath('../')), 'plots') makenewdir(plotfolder) figname = os.path.join(plotfolder, PLOTNAME) plt.savefig(figname+'.svg', dpi=FIGDPI) plt.savefig(figname+'.png', dpi=FIGDPI) # Saves a file showing the movies I used for the plot and a pickle file with all the variables. fname = os.path.join(plotfolder, 'movies_used_for_rawtraces.txt') with open(fname, 'w') as f: for k, v in MOVIES.iteritems(): f.write(k + ' ' + v[0] + '\n') picklename = os.path.join(plotfolder, 'picklefile') with open(picklename, 'w') as h: d = {} d['MOVIES'] = MOVIES d['FONTSIZE'] = FONTSIZE d['FIGW'] = FIGW d['FIGH'] = FIGH d['FIGDPI'] = FIGDPI d['YAXISTICKS'] = YAXISTICKS d['TIME'] = TIME d['XLIMHZ'] = XLIMHZ d['PLOTNAME'] = PLOTNAME d['YLABEL'] = YLABEL d['XLABEL'] = XLABEL d['YMIN'] = YMIN d['YLIM'] = YLIM print(d) picklefile = pickle.Pickler(h) picklefile.dump(d)
[ "acvmanzo@gmail.com" ]
acvmanzo@gmail.com