blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
86308bfcffce3e71e197ca2c8c3120a75ad06334
4dda601cb02b404bc0ae25f984825641ddb135fe
/scuole/districts/management/commands/bootstrapdistricts_v2.py
46af7c74d2b94e19d1157f0518a10620f2fe82f8
[ "MIT" ]
permissive
texastribune/scuole
d89e49d6bf42d6476a8b2e5a4ebe6380c28e9f60
155444e313313ba484d98d73d94d34e9b8f57fbe
refs/heads/master
2023-06-28T02:52:40.037200
2023-05-22T21:51:15
2023-05-22T21:51:15
35,112,798
1
0
MIT
2023-06-12T20:04:49
2015-05-05T17:03:23
Python
UTF-8
Python
false
false
2,884
py
from csv import DictReader from json import dumps, load from os.path import join from django.conf import settings from django.contrib.gis.geos import GEOSGeometry, MultiPolygon from django.core.management.base import BaseCommand, CommandError from django.utils.text import slugify from scuole.counties.models import County from scuole.districts.models import District from scuole.regions.models import Region class Command(BaseCommand): help = "Bootstraps District models using TEA data." def add_arguments(self, parser): parser.add_argument("year", nargs="?", type=str, default=None) def handle(self, *args, **options): self.year = options.get("year") if not self.year: raise CommandError("A year is required.") entities_file = join( settings.DATA_FOLDER, f"tapr/{self.year}/district/entities.csv" ) with open(entities_file) as infile: districts = [row for row in DictReader(infile)] districts_geojson_file = join( settings.DATA_FOLDER, "tapr/reference/district/shapes/districts.geojson" ) shape_data = {} with open(districts_geojson_file) as infile: geo_data = load(infile) features = geo_data.get("features") for feature in features: properties = feature.get("properties") tea_id = properties.get("DISTRICT_C") shape_data[tea_id] = feature.get("geometry") self.shape_data = shape_data for district in districts: self.create_district(district) def create_district(self, data): district_id = str(data.get("DISTRICT")).zfill(6) district_name = data.get("DISTNAME_CLEAN") county_state_code = data.get("COUNTY").zfill(3) region_id = str(data.get("REGION")).zfill(2) self.stdout.write(f"Creating {district_name} ({district_id})") county = County.objects.get(state_code=county_state_code) region = Region.objects.get(region_id=region_id) is_charter = data["DFLCHART"] == "Y" if district_id in self.shape_data: geometry = GEOSGeometry(dumps(self.shape_data.get(district_id))) # checks to see if the geometry is a MultiPolygon if geometry.geom_typeid == 3: geometry = MultiPolygon(geometry) else: geometry = None self.stderr.write(f"No shape data for {district_name}") instance, _ = District.objects.update_or_create( tea_id=district_id, defaults={ "name": district_name, "slug": slugify(district_name, allow_unicode=True), "charter": is_charter, "region": region, "county": county, "shape": geometry, }, )
[ "rdmurphy@users.noreply.github.com" ]
rdmurphy@users.noreply.github.com
233ca755a7a06a8bb3b16af8bdf0e8b4b9d705fd
cdb92a30ff6e0fd12a782d91af915f4975c8bdce
/video.py
21b1947d5d8b30efce3fd68aa308b346cd6a4d2a
[]
no_license
Ravenking7675/Screen-Sharing-using-PubSub-
0295b1b8f1bbbe2031bdb074be255e207a9b9f15
d3aba9cfe4bdc7db5b6d0fe960945f322cf42753
refs/heads/master
2022-12-06T18:02:54.371487
2020-09-04T08:26:21
2020-09-04T08:26:21
292,794,352
0
0
null
null
null
null
UTF-8
Python
false
false
57
py
from capture import capture_image print(capture_image())
[ "superavinash2000gmail.com" ]
superavinash2000gmail.com
1d630546bb190a52d8d5854bcb6b460288e43877
ffc224baf2393bc6a5d0c24eebd5da689bbfafe1
/ass2ex2.py
87ebbb883645591dc553aa7c7d4a7f8531b2351d
[]
no_license
Ranjeth83/assignment-
dd84f4df9abe7a7b61f48626eab4c096516237d0
c1dc2cf8b03128b4a93a1b41ff69083f297f486b
refs/heads/master
2022-11-06T09:31:22.711445
2020-06-22T02:13:58
2020-06-22T02:13:58
273,515,018
0
0
null
null
null
null
UTF-8
Python
false
false
42
py
val = input("enter your name:") print(val)
[ "noreply@github.com" ]
noreply@github.com
e606b3c1a271a2e229c69bc0923948d3028a7129
41a515a85c8116ad95eedf8e6f75825eef044d09
/app.py
4ce1afbc9182266a06af5ab3d7cae746fb85c1f3
[]
no_license
ionagamed/ds-lab-09
ffa3fe2dc70ec9e000ad9ecc8f65b5b6e852a726
219259a2647a4a11631705572d6905a15b1fee72
refs/heads/master
2020-08-30T19:16:32.501191
2019-10-30T07:23:53
2019-10-30T07:23:53
218,466,786
0
0
null
null
null
null
UTF-8
Python
false
false
681
py
from flask import Flask, request, render_template from pymongo import MongoClient client_url = ",".join( f"mongodb-replicaset-{i}.mongodb-replicaset" for i in range(3) ) client = MongoClient(client_url, 27017) db = client.chat.messages app = Flask(__name__) @app.route("/", methods=["GET", "POST"]) def index(): if request.method == "POST": doc = { "username": request.form["username"], "message": request.form["message"], } db.insert_one(doc) messages = reversed(list(db.find())) return render_template("index.html", messages=messages) if __name__ == "__main__": app.run(host="0.0.0.0", port=5000)
[ "ionagamed@gmail.com" ]
ionagamed@gmail.com
4565b9d512665043f48b45c2190f63f7c94d3f14
3b059132c1ef89671416fbf1d2b91b5709f24321
/singly_linked.py
b78d6f888ac15a58e2fd3ff4116db24779633ba5
[]
no_license
Philipwallen/Data-Structures
0eeae94b9322d4c0a012df0871e187f4498ec86e
7c6b9c42aec1002a97f52b079e599ac57a36a2dc
refs/heads/master
2020-12-03T00:07:20.851363
2017-07-07T14:59:05
2017-07-07T14:59:05
95,990,013
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
def Node(object): def __init__(self, value): self.value = value self.nextnode = None ''' Here we have a singly linked list class. '''
[ "philipwallen1@gmail.com" ]
philipwallen1@gmail.com
050ede100f804daccbc9e5d1be042cf7b8a52937
32e0e3ad8bf23aa2c3672d5a803069e80c1d33e1
/commonsrc/Log.py
fb2019f580468d59829cecb3f1db2bb3795ccb03
[]
no_license
abao0713/interfaceTest2
d0c5ba0718c7b4b50f6ce327b641567d00209ad0
854a31f3b9c6ea75e8a9d457dac7f6f21009e676
refs/heads/master
2020-03-18T09:09:39.153793
2019-05-22T01:07:14
2019-05-22T01:07:14
134,547,795
0
0
null
null
null
null
UTF-8
Python
false
false
2,691
py
import os import readConfig as readConfig import logging from datetime import datetime import threading localReadConfig = readConfig.ReadConfig() class Log: def __init__(self): global logPath, resultPath, proDir proDir = readConfig.proDir resultPath = os.path.join(proDir, "result") if not os.path.exists(resultPath): os.mkdir(resultPath) logPath = os.path.join(resultPath, str(datetime.now().strftime("%Y%m%d%H%M%S"))) if not os.path.exists(logPath): os.mkdir(logPath) self.logger = logging.getLogger() self.logger.setLevel(logging.INFO) # defined handler handler = logging.FileHandler(os.path.join(logPath, "output.log")) # defined formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) self.logger.addHandler(handler) def get_logger(self): """ get logger :return: """ return self.logger def build_start_line(self, case_no): """ write start line :return: """ self.logger.info("--------" + case_no + " START--------") def build_end_line(self, case_no): """ write end line :return: """ self.logger.info("--------" + case_no + " END--------") def build_case_line(self, case_name, msg): """ write test case line :param case_name: :param code: :param msg: :return: """ self.logger.info(case_name+"----msg:"+msg) def get_report_path(self): """ get report file path :return: """ report_path = os.path.join(logPath, "report.html") return report_path def get_result_path(self): """ get test result path :return: """ return logPath def write_result(self, result): """ :param result: :return: """ result_path = os.path.join(logPath, "report.txt") fb = open(result_path, "wb") try: fb.write(result) except FileNotFoundError as ex: logger.error(str(ex)) class MyLog: log = None mutex = threading.Lock() def __init__(self): pass @staticmethod def get_log(): if MyLog.log is None: MyLog.mutex.acquire() MyLog.log = Log() MyLog.mutex.release() return MyLog.log if __name__ == "__main__": log = MyLog.get_log() logger = log.get_logger() logger.debug("test debug") logger.info("test info")
[ "13686821736@163.com" ]
13686821736@163.com
0041805ec3ee73af537e19673e3b48a1208a44fa
78604a99d488889e2932ed713b209d19178f2c95
/src/models/pieces/strategies/move_strategy.py
4aa8cc683e5fef4b330c6acbbba96a628e1bdf27
[]
no_license
AdnanZahid/Chess_Neural_Networks_With_Python_Chess
8173706cf97fcf818dc0049054a81659d3346274
c4d760bed1951bda24c84ed0681b9ca3820550e1
refs/heads/master
2021-01-24T04:19:59.626876
2018-02-26T07:37:30
2018-02-26T07:37:30
122,931,577
1
0
null
null
null
null
UTF-8
Python
false
false
730
py
# This class manages mobility and list of moves for a piece class MoveStrategy: def __init__(self,piece,color,directionsList,board): self.piece = piece self.color = color self.directionsList = directionsList self.board = board def getMobility(self,position): return len(generateAllMoves(position)) def generateAllMoves(self): possibleMovesToSquaresList = [] if self.color == self.board.currentTurnColor: for direction in self.directionsList: possibleMovesToSquaresList.extend(self.generateMove(self.piece.position,direction)) return possibleMovesToSquaresList
[ "adnaan.zaahid@gmail.com" ]
adnaan.zaahid@gmail.com
c02607f0370710a5f23cb44e48f0bff1b7cdeaaf
fc74436ab3e11ba2978ebb81600dcd3799a74d1f
/lstm_based_seq_2_seq/alad_seq2seq.py
fa019e23d362ca3df50f06ee529e7350ed98120f
[]
no_license
vrahul1997/nlp_from_scratch
f119d8736edbf81474d4916eba6d87de8d73a936
08984d7a3900419995df0bd0e99ab4794a7f54dc
refs/heads/main
2023-02-16T22:04:26.678253
2021-01-07T13:04:38
2021-01-07T13:04:38
314,092,477
1
0
null
null
null
null
UTF-8
Python
false
false
7,947
py
import torch import torch.nn as nn import torch.optim as optim from torchtext.datasets import Multi30k from torchtext.data import Field, BucketIterator import numpy as np import spacy import random from torch.utils.tensorboard import SummaryWriter # to print to tensorboard from utils import translate_sentence, bleu, save_checkpoint, load_checkpoint spacy_ger = spacy.load("de") spacy_eng = spacy.load("en") def tokenize_ger(text): return [tok.text for tok in spacy_ger.tokenizer(text)] def tokenize_eng(text): return [tok.text for tok in spacy_eng.tokenizer(text)] german = Field(tokenize=tokenize_ger, lower=True, init_token="<sos>", eos_token="<eos>") english = Field( tokenize=tokenize_eng, lower=True, init_token="<sos>", eos_token="<eos>" ) train_data, valid_data, test_data = Multi30k.splits( exts=(".de", ".en"), fields=(german, english) ) german.build_vocab(train_data, max_size=10000, min_freq=2) english.build_vocab(train_data, max_size=10000, min_freq=2) class Encoder(nn.Module): def __init__(self, input_size, embedding_size, hidden_size, num_layers, p): super(Encoder, self).__init__() self.dropout = nn.Dropout(p) self.hidden_size = hidden_size self.num_layers = num_layers self.embedding = nn.Embedding(input_size, embedding_size) self.rnn = nn.LSTM(embedding_size, hidden_size, num_layers, dropout=p) def forward(self, x): # x shape: (seq_length, N) where N is batch size embedding = self.dropout(self.embedding(x)) # embedding shape: (seq_length, N, embedding_size) outputs, (hidden, cell) = self.rnn(embedding) # outputs shape: (seq_length, N, hidden_size) return hidden, cell class Decoder(nn.Module): def __init__( self, input_size, embedding_size, hidden_size, output_size, num_layers, p ): super(Decoder, self).__init__() self.dropout = nn.Dropout(p) self.hidden_size = hidden_size self.num_layers = num_layers self.embedding = nn.Embedding(input_size, embedding_size) self.rnn = nn.LSTM(embedding_size, hidden_size, num_layers, dropout=p) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, hidden, cell): # x shape: (N) where N is for batch size, we want it to be (1, N), seq_length # is 1 here because we are sending in a single word and not a sentence x = x.unsqueeze(0) embedding = self.dropout(self.embedding(x)) # embedding shape: (1, N, embedding_size) outputs, (hidden, cell) = self.rnn(embedding, (hidden, cell)) # outputs shape: (1, N, hidden_size) predictions = self.fc(outputs) # predictions shape: (1, N, length_target_vocabulary) to send it to # loss function we want it to be (N, length_target_vocabulary) so we're # just gonna remove the first dim predictions = predictions.squeeze(0) return predictions, hidden, cell class Seq2Seq(nn.Module): def __init__(self, encoder, decoder): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder = decoder def forward(self, source, target, teacher_force_ratio=0.5): batch_size = source.shape[1] target_len = target.shape[0] target_vocab_size = len(english.vocab) outputs = torch.zeros(target_len, batch_size, target_vocab_size).to(device) hidden, cell = self.encoder(source) # Grab the first input to the Decoder which will be <SOS> token x = target[0] for t in range(1, target_len): # Use previous hidden, cell as context from encoder at start output, hidden, cell = self.decoder(x, hidden, cell) # Store next output prediction outputs[t] = output # Get the best word the Decoder predicted (index in the vocabulary) best_guess = output.argmax(1) # With probability of teacher_force_ratio we take the actual next word # otherwise we take the word that the Decoder predicted it to be. # Teacher Forcing is used so that the model gets used to seeing # similar inputs at training and testing time, if teacher forcing is 1 # then inputs at test time might be completely different than what the # network is used to. This was a long comment. x = target[t] if random.random() < teacher_force_ratio else best_guess return outputs ### We're ready to define everything we need for training our Seq2Seq model ### # Training hyperparameters num_epochs = 100 learning_rate = 0.001 batch_size = 64 # Model hyperparameters load_model = False device = torch.device("cuda" if torch.cuda.is_available() else "cpu") input_size_encoder = len(german.vocab) input_size_decoder = len(english.vocab) output_size = len(english.vocab) encoder_embedding_size = 300 decoder_embedding_size = 300 hidden_size = 1024 # Needs to be the same for both RNN's num_layers = 2 enc_dropout = 0.5 dec_dropout = 0.5 # Tensorboard to get nice loss plot writer = SummaryWriter(f"runs/loss_plot") step = 0 train_iterator, valid_iterator, test_iterator = BucketIterator.splits( (train_data, valid_data, test_data), batch_size=batch_size, sort_within_batch=True, sort_key=lambda x: len(x.src), device=device, ) encoder_net = Encoder( input_size_encoder, encoder_embedding_size, hidden_size, num_layers, enc_dropout ).to(device) decoder_net = Decoder( input_size_decoder, decoder_embedding_size, hidden_size, output_size, num_layers, dec_dropout, ).to(device) model = Seq2Seq(encoder_net, decoder_net).to(device) optimizer = optim.Adam(model.parameters(), lr=learning_rate) pad_idx = english.vocab.stoi["<pad>"] criterion = nn.CrossEntropyLoss(ignore_index=pad_idx) if load_model: load_checkpoint(torch.load("my_checkpoint.pth.tar"), model, optimizer) sentence = "ein boot mit mehreren männern darauf wird von einem großen pferdegespann ans ufer gezogen." for epoch in range(num_epochs): print(f"[Epoch {epoch} / {num_epochs}]") checkpoint = {"state_dict": model.state_dict(), "optimizer": optimizer.state_dict()} save_checkpoint(checkpoint, filename="alad_my_checkpoint.pth.tar") model.eval() translated_sentence = translate_sentence( model, sentence, german, english, device, max_length=50 ) print(f"Translated example sentence: \n {translated_sentence}") model.train() for batch_idx, batch in enumerate(train_iterator): # Get input and targets and get to cuda inp_data = batch.src.to(device) target = batch.trg.to(device) # Forward prop output = model(inp_data, target) # Output is of shape (trg_len, batch_size, output_dim) but Cross Entropy Loss # doesn't take input in that form. For example if we have MNIST we want to have # output to be: (N, 10) and targets just (N). Here we can view it in a similar # way that we have output_words * batch_size that we want to send in into # our cost function, so we need to do some reshapin. While we're at it # Let's also remove the start token while we're at it output = output[1:].reshape(-1, output.shape[2]) target = target[1:].reshape(-1) optimizer.zero_grad() loss = criterion(output, target) # Back prop loss.backward() # Clip to avoid exploding gradient issues, makes sure grads are # within a healthy range torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1) # Gradient descent step optimizer.step() # Plot to tensorboard writer.add_scalar("Training loss", loss, global_step=step) step += 1 score = bleu(test_data[1:100], model, german, english, device) print(f"Bleu score {score*100:.2f}")
[ "vijayvenu1997@gmail.com" ]
vijayvenu1997@gmail.com
c5a0ff62b99e765cf2248885b7536589d03a6b90
13f6d3ff4764956d61ebb5ca8ad55927e2fea919
/session1/list1.py
81f398f7ba7f504c34d9d0da0abe33ab9c7f5198
[]
no_license
Kit-Data-Science-Telecom-2021-2022/Kit-Data_Marie-Elisabeth-Campo
73390bf073ee68843f34ca3e354142ba6c9397bf
522cf35558401557aa74263d09ecc0d6ab3c55fb
refs/heads/main
2023-09-05T22:35:18.090965
2021-11-07T23:24:07
2021-11-07T23:24:07
409,204,002
0
0
null
null
null
null
UTF-8
Python
false
false
3,105
py
#!/usr/bin/python -tt # Copyright 2010 Google Inc. # Licensed under the Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # Google's Python Class # http://code.google.com/edu/languages/google-python-class/ # Basic list exercises # Fill in the code for the functions below. main() is already set up # to call the functions with a few different inputs, # printing 'OK' when each function is correct. # The starter code for each function includes a 'return' # which is just a placeholder for your code. # It's ok if you do not complete all the functions, and there # are some additional functions to try in list2.py. # A. match_ends # Given a list of strings, return the count of the number of # strings where the string length is 2 or more and the first # and last chars of the string are the same. # Note: python does not have a ++ operator, but += works. def match_ends(words): return len([w for w in words if len(w)>=2 and w[0]==w[-1]]) # B. front_x # Given a list of strings, return a list with the strings # in sorted order, except group all the strings that begin with 'x' first. # e.g. ['mix', 'xyz', 'apple', 'xanadu', 'aardvark'] yields # ['xanadu', 'xyz', 'aardvark', 'apple', 'mix'] # Hint: this can be done by making 2 lists and sorting each of them # before combining them. def front_x(words): o = list(w for w in words if w[0] != 'x') o = sorted(o) x = list(w for w in words if w[0] == 'x') x = sorted(x) return x + o # C. sort_last # Given a list of non-empty tuples, return a list sorted in increasing # order by the last element in each tuple. # e.g. [(1, 7), (1, 3), (3, 4, 5), (2, 2)] yields # [(2, 2), (1, 3), (3, 4, 5), (1, 7)] # Hint: use a custom key= function to extract the last element form each tuple. def sort_last(tuples): l = sorted(list(t[::-1] for t in tuples)) l1 = list(t[::-1] for t in l) return l1 return # Simple provided test() function used in main() to print # what each function returns vs. what it's supposed to return. def test(got, expected): if got == expected: prefix = ' OK ' else: prefix = ' X ' print ('%s got: %s expected: %s' % (prefix, repr(got), repr(expected))) # Calls the above functions with interesting inputs. def main(): print ('match_ends') test(match_ends(['aba', 'xyz', 'aa', 'x', 'bbb']), 3) test(match_ends(['', 'x', 'xy', 'xyx', 'xx']), 2) test(match_ends(['aaa', 'be', 'abc', 'hello']), 1) print print ('front_x') test(front_x(['bbb', 'ccc', 'axx', 'xzz', 'xaa']), ['xaa', 'xzz', 'axx', 'bbb', 'ccc']) test(front_x(['ccc', 'bbb', 'aaa', 'xcc', 'xaa']), ['xaa', 'xcc', 'aaa', 'bbb', 'ccc']) test(front_x(['mix', 'xyz', 'apple', 'xanadu', 'aardvark']), ['xanadu', 'xyz', 'aardvark', 'apple', 'mix']) print print ('sort_last') test(sort_last([(1, 3), (3, 2), (2, 1)]), [(2, 1), (3, 2), (1, 3)]) test(sort_last([(2, 3), (1, 2), (3, 1)]), [(3, 1), (1, 2), (2, 3)]) test(sort_last([(1, 7), (1, 3), (3, 4, 5), (2, 2)]), [(2, 2), (1, 3), (3, 4, 5), (1, 7)]) if __name__ == '__main__': main()
[ "marinette@gmx.fr" ]
marinette@gmx.fr
c1d95549cd754be59496169e8ee446c75643f18f
62dd39e19d2b839d8e01f6d2d6b0d22bc348be77
/test_PokerScoring.py
fad8fd4d48b9370a068e0d9f6f2e175b647a3093
[]
no_license
MattMorris1996/PythonPoker
6c6cc64f39c138dd2c4c73e5bf793f2b0f6cca33
dd174f0019c618f4754d3630cd5f5bd66048d639
refs/heads/master
2020-12-04T14:46:18.741751
2020-09-01T23:23:42
2020-09-01T23:23:42
231,806,220
0
0
null
null
null
null
UTF-8
Python
false
false
2,916
py
import unittest import PokerScoring import CardDeck import random class TestPokerHands(unittest.TestCase): def setUp(self): # suit values diamonds = 0 hearts = 1 spade = 2 clubs = 3 # duplicates setup self.multiples = [CardDeck.Card(diamonds, 4),CardDeck.Card(hearts, 4),CardDeck.Card(spade, 4),CardDeck.Card(clubs, 4)] # full house setup self.doubles = [[CardDeck.Card(diamonds, 4), CardDeck.Card(spade, 4)],[CardDeck.Card(hearts, 1), CardDeck.Card(clubs, 1)]] self.doubles_same = [[CardDeck.Card(diamonds, 4), CardDeck.Card(spade, 4)],[CardDeck.Card(hearts, 0), CardDeck.Card(clubs, 0)]] self.only_triples = [[CardDeck.Card(diamonds, 0), CardDeck.Card(spade, 0),CardDeck.Card(hearts, 0)]] self.straight_test = [] # straight setup for i in range(7): self.straight_test.append(CardDeck.Card(clubs, i)) self.flush_test = [] # flush setup for i in range(7): self.flush_test.append(CardDeck.Card(hearts, random.randint(0, 13))) # straight flush setup self.straights = [] self.flushes = [] straight = [] flush = [] # generate straight flush for i in range(5): straight.append(CardDeck.Card(hearts, i)) for i in range(5): flush.append(CardDeck.Card(hearts, i)) self.flushes.append(flush) self.straights.append(straight) pass def test_duplicates(self): dupl = PokerScoring.duplicates(self.multiples) self.assertEqual(3, len(dupl)) def test_full_house(self): # test doubles and triples with unique values full_house = PokerScoring.full_house(self.only_triples, self.doubles) self.assertEqual(2, len(full_house)) for hands in full_house: self.assertEqual(5, len(hands)) # test doubles and triples where values arent unique full_house = PokerScoring.full_house(self.only_triples, self.doubles_same) self.assertEqual(1, len(full_house)) for hands in full_house: self.assertEqual(5, len(hands)) def test_two_pair(self): two_pair = PokerScoring.two_pair(self.doubles) self.assertEqual(2, len(two_pair)) def test_straights(self): straights = PokerScoring.connectivity(self.straight_test) self.assertEqual(3, len(straights)) for straight in straights: self.assertEqual(5, len(straight)) def test_flushes(self): flushes = PokerScoring.same_suit(self.flush_test) self.assertEqual(3, len(flushes)) for flush in flushes: self.assertEqual(5, len(flush)) def test_straight_flush(self): straight_flushes = PokerScoring.connected_flushes(self.flushes, self.straights) self.assertEqual(1, len(straight_flushes))
[ "matthew.m1996@gmail.com" ]
matthew.m1996@gmail.com
a3999bae68200d01e0d1c7cfcc0ba9cd188bd945
9d8bd40159f119cea1c2c3fd86743c5bc1d9907c
/examples/spatial_filter.py
45583d7527bc32d44ff66ff560834c812c30a7f8
[ "BSD-3-Clause" ]
permissive
mihaieduard/Diffraction-Simulations--Angular-Spectrum-Method
70757b315d06de40c7914184b4015e53a5f3dd1f
4ec7abcc1a726c5e7b65d05455cab2467fdca9cf
refs/heads/main
2023-03-23T16:46:52.097425
2021-03-19T18:36:12
2021-03-19T18:36:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
515
py
from diffractsim import MonochromaticField, nm, mm, cm F = MonochromaticField( wavelength=632.8 * nm, extent_x=25. * mm, extent_y=25. * mm, Nx=2000, Ny=2000,power = 0.1 ) F.add_gaussian_beam(0.7*mm) F.add_spatial_noise(noise_radius = 2.2*mm, f_mean = 1/(0.2*mm), f_size = 1/(0.5*mm), A = 0.2, N= 50) F.add_lens(f = 50*cm) F.propagate(50*cm) F.add_circular_slit( 0, 0, 0.28*mm) F.propagate(50*cm) F.add_lens(f = 50*cm) F.propagate(30*cm) rgb = F.get_colors() F.plot(rgb, xlim=[-2.5,2.5], ylim=[-2.5,2.5])
[ "rafael.fuente.herrezuelo@gmail.com" ]
rafael.fuente.herrezuelo@gmail.com
bb45d0593e0bed3aa6c10277e34775a2e6257981
4a216a1d968cb3f3ed78f24def35773ed7c04459
/main.py
c17f90b508427d9ff451d5ab5497d96d8f8826fd
[]
no_license
luizgdias/kafka_producer_topic_consumer
a43d15b40aed048271e37b64f24af3adf2fe47e2
b4484ece16443423e7e1f2dfe16b5084e98f2abf
refs/heads/master
2020-06-28T15:44:06.080711
2019-08-02T18:09:21
2019-08-02T18:09:21
200,271,917
0
0
null
null
null
null
UTF-8
Python
false
false
5,230
py
# -*- Coding: UTF-8 -*- #coding: utf-8 ######################################################### # author: Luiz Gustavo Dias # date : 07/23/2019 ######################################################### # At First time is necessary to run in terminal: # $ docker run -d --name zookeeper jplock/zookeeper:3.4.6 # $ docker run -d --name kafka --link zookeeper:zookeeper ches/kafka # $ export ZK_IP=$(docker inspect --format "{{ .NetworkSettings.IPAddress }}" zookeeper) # $ export KAFKA_IP=$(docker inspect --format "{{ .NetworkSettings.IPAddress }}" kafka) # $ docker run --rm ches/kafka kafka-topics.sh --create --topic test --replication-factor 1 --partitions 1 --zookeeper $ZK_IP:2181 # Created topic "test". ######################################################### # Description: The script list all files in ./Files directory on a txt file, # after a kafka producer is created, the producer reads the file # and sendsd all the files name to kafka consumer that uses the # same kafka topic. # docker run --rm --interactive ches/kafka kafka-console-producer.sh --broker-list 172.17.0.3:9092 --topic test # docker run --rm ches/kafka kafka-console-consumer.sh --topic test --from-beginning --zookeeper 172.17.0.2:2181 ######################################################### from kafka import KafkaConsumer from kafka import KafkaProducer from json import loads import os, sys, subprocess, shlex import json from json import dumps from time import sleep def buffering(): os.system("touch buffer-list-files.json") buffer_list_files = open("buffer-list-files.json").readlines() print(buffer_list_files) buffer_list_files2 = open("buffer-list-files.json", "a") for root, dirs, files in os.walk("./Files", topdown=False): for name in files: json_lista = '{"file_path":"'+os.path.join(root,name)+'", "submited":" "}\n' if json_lista in buffer_list_files: print("O arquivo <"+name+"> já está bo buffer!") else: print("O arquivo <"+name+"> não está no buffer....\nPreparando para inserir o arquivo <"+name+"> no buffer...") #print(os.path.join(root,name)) buffer_list_files2.write('{"file_path":"'+os.path.join(root,name)+'", "submited":" "}\n') print("Arquivo <"+name+"> inserido no buffer.") buffer_list_files2.close() def connection(): x = "docker start zookeeper kafka" process = subprocess.Popen(x, stdout=subprocess.PIPE, shell=True) process.communicate() def sendToTopic(): # os.system('docker stop zookeeper kafka') # os.system('docker rm zookeeper kafka') # os.system('docker run -d --name zookeeper jplock/zookeeper:3.4.6') # os.system('docker run -d --name kafka --link zookeeper:zookeeper ches/kafka') # os.system('export KAFKA_IP=$(docker inspect --format "{{ .NetworkSettings.IPAddress }}" kafka)') # os.system('echo $KAFKA_IP') x = "docker start zookeeper kafka" process = subprocess.Popen(x, stdout=subprocess.PIPE, shell=True) process.communicate() producer = KafkaProducer(bootstrap_servers=['172.17.0.3:9092'], api_version=(0,10,1), value_serializer=lambda x: dumps(x).encode('utf-8')) for e in range(10): data = {'id': e,'x1': '1', 'y1': '1','x2': '2', 'y2': '2','page': '3', 'type': '3', 'path': '/out'} producer.send('test', value=data) print("Producer to topic: "+str(e)) sleep(1) #os.system('docker stop zookeeper kafka') def getKafkaMessages(topicName): #os.system('docker run --rm ches/kafka kafka-console-consumer.sh --topic testTopic --from-beginning --zookeeper 172.17.0.2:2181') # x = "docker start zookeeper kafka" # process = subprocess.Popen('export ZK_IP=$(docker inspect --format \'{{ .NetworkSettings.IPAddress }}\' zookeeper) && echo $ZK_IP', stdout=subprocess.PIPE, shell=True) # zookeeper_ip = process.communicate()[0] # zookeeper_ip = (str(zookeeper_ip, 'UTF-8')).strip('\n') # print(zookeeper_ip) os.system('docker run --rm ches/kafka kafka-console-consumer.sh --topic image-detection-topic --from-beginning --zookeeper 192.168.1.112:2181') # process.communicate() #buffering() def getKafkaMessagesV2(topic, kafka_ip): ## Collect Messages from Bus consumer = KafkaConsumer(topic, auto_offset_reset='earliest', bootstrap_servers=[kafka_ip], api_version=(0, 10, 1)) consumer.subscribe([topic]) print('after consumer') print(consumer) for msg in consumer: print('inside for') print(msg[6]) #sendToTopic() #getKafkaMessages('image-detection-topic') getKafkaMessagesV2('image-detection-topic', '10.100.14.107:9092') #getKafkaMessagesV2('test', '172.17.0.3:9092') #bin/kafka-console-consumer --zookeeper localhost:2181 --topic kafkatest --from-beginning #bin/kafka-console-consumer --zookeeper localhost:2181 /kafka --topic kafkatest --from-beginning #kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic my-topic --from-beginning
[ "gusttavodiias@gmail.com" ]
gusttavodiias@gmail.com
05fc046d63ad0da119f177a76e959f80d9d8f37b
d184d1fc998a300feee2d716d97209b9fbc78468
/probability.py
dbeb07713ae4103f2e739fabfa5eb51dd35d80c9
[]
no_license
MickeyKen/plot_node_master_thesis
df196d7a037b1960c1ee95268a1ae3b1e8f24148
5182ea79cb8cfbc6bead60d97eda9307f7e53c10
refs/heads/master
2023-02-16T21:17:49.284973
2021-01-19T09:19:40
2021-01-19T09:19:40
330,574,321
0
0
null
null
null
null
UTF-8
Python
false
false
3,316
py
#!/usr/bin/python import matplotlib.pyplot as plt path = 'data/param_UD-v95_output.txt' isServiceCount = True ACTOR_NUM = 3 AVERAGE_NUM = 100 LIMIT = 5000 if __name__ == '__main__': collision = [[] for j in range(ACTOR_NUM)] average_collision = [] success = [[] for j in range(ACTOR_NUM)] average_success = [] no_action = [[] for j in range(ACTOR_NUM)] average_no_action = [] eps = [] average_eps = [] epsilons = [[] for j in range(ACTOR_NUM)] flag = 0 count = 0 fig = plt.figure(figsize=(8.27,3.9), dpi=100) plt.ion() plt.xlabel('Episode') # plt.ylabel('P') plt.grid() cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] with open(path) as f: for s_line in f: eps_num = int(s_line.split(',')[0]) actor_num = int(s_line.split(',')[1]) step = int(s_line.split(',')[3]) reward = float(s_line.split(',')[5]) if step < 150 and reward < -200: collision[actor_num].append(1.0) success[actor_num].append(0.0) no_action[actor_num].append(0.0) elif step < 150 and reward > 0: collision[actor_num].append(0.0) success[actor_num].append(1.0) no_action[actor_num].append(0.0) else: collision[actor_num].append(0.0) success[actor_num].append(0.0) no_action[actor_num].append(1.0) collision_sum = 0.0 success_sum = 0.0 no_action_sum = 0.0 average_collision_sum = 0.0 average_success_sum = 0.0 average_no_action_sum = 0.0 count = 1 for index in range(min(len(v) for v in collision)): collision_sum = 0.0 success_sum = 0.0 no_action_sum = 0.0 if index <= LIMIT: for n in range(ACTOR_NUM): collision_sum += collision[n][index] success_sum += success[n][index] no_action_sum += no_action[n][index] average_collision_sum += collision_sum / float(ACTOR_NUM) average_success_sum += success_sum / float(ACTOR_NUM) average_no_action_sum += no_action_sum / float(ACTOR_NUM) if index % AVERAGE_NUM == 0 and index > 0: average_eps.append(count*AVERAGE_NUM) average_collision.append(average_collision_sum / float(AVERAGE_NUM)) average_success.append(average_success_sum / float(AVERAGE_NUM)) average_no_action.append(average_no_action_sum / float(AVERAGE_NUM)) average_collision_sum = 0.0 average_success_sum = 0.0 average_no_action_sum = 0.0 count += 1 eps.append(index + 1) plt.plot(average_eps, average_success, color='#e41a1c', label="success") plt.plot(average_eps, average_collision, color='#00529a', label="collision") plt.plot(average_eps, average_no_action, color='#3FBF00', label="past 150 steps") plt.legend( loc='upper left', borderaxespad=1) plt.draw() fig.savefig("result_multi_probability.png") plt.pause(0)
[ "mickey333ff@gmail.com" ]
mickey333ff@gmail.com
d2d9b448996e36b3842f5c9574cb580f9715777c
34b6995f57f5f599e93df6f3e3841bbb9616b85f
/gym_electric_motor/envs/gym_dcm/dcm_base_env.py
4d5cae80381ab8a7d50999601947b03aaae29c65
[ "MIT" ]
permissive
zizai/gym-electric-motor
ec86584315b4abf91f5d3ee7978272e00085728e
48a0232edf3474e441453126df0f52dc391aed11
refs/heads/master
2020-11-24T20:39:37.934074
2019-12-20T10:01:53
2019-12-20T10:01:53
228,333,802
0
0
MIT
2019-12-16T08:02:48
2019-12-16T08:02:47
null
UTF-8
Python
false
false
33,923
py
import gym from scipy.integrate import ode import numpy as np import json from .models import dcmotor_model, converter_models, load_models from ..dashboard import MotorDashboard from ..utils import EulerSolver class _DCMBaseEnv(gym.Env): """ **Description:** An abstract environment for common functions of the DC motors **Observation:** Specified by the concrete motor. It is always a concatenation of the state variables, voltages, torque and next reference values. **Actions:** Depending on the converter type the action space may be discrete or continuous Type: Discrete(2 / 3 / 4) Num Action: Depend on the converter 1Q Converter: (only positive voltage and positive current) - 0: transistor block - 1: positive DC-link voltage applied 2Q Converter: (only positive voltage and both current directions) - 0: both transistors blocking - 1: positive DC-link voltage applied - 2: 0V applied 4Q Converter (both voltage and current directions) - 0: short circuit with upper transistors, 0V applied - 1: positive DC-link voltage - 2: negative DC-link voltage - 3: short circuit with lower transistors, 0V applied Type: Box() Defines the duty cycle for the transistors.\n [0, 1]: 1Q and 2Q\n [-1, 1]: 4Q For an externally excited motor it is a two dimensional box from [-1, 1] or [0, 1] **Reward:** The reward is the cumulative squared error (se) or the cumulative absolute error (ae) between the current value and the current reference of the state variables. Both are also available in a shifted form with an added on such that the reward is positive. More details are given below. The variables are normalised by their maximal values and weighted by the reward_weights. **Starting State:** All observations are assigned a random value. **Episode Termination**: An episode terminates, when all the steps in the reference have been simulated or a limit has been violated. **Attributes:** +----------------------------+----------------------------------------------------------+ | **Name** | **Description** | +============================+==========================================================+ | **state_vars** | Names of all the quantities that can be observed | +----------------------------+----------------------------------------------------------+ | **state_var_positions** | Inverse dict of the state vars. Mapping of key to index. | +----------------------------+----------------------------------------------------------+ | **limits** | Maximum allowed values of the state variables | +----------------------------+----------------------------------------------------------+ | **reward_weights** | Ratio of the weight of the state variable for the reward | +----------------------------+----------------------------------------------------------+ | **on_dashboard** | Flag indicating if the state var is shown on dashboard | +----------------------------+----------------------------------------------------------+ | **noise_levels** | Percentage of the noise power to the signal power | +----------------------------+----------------------------------------------------------+ | **zero_refs** | State variables that get a fixed zero reference | +----------------------------+----------------------------------------------------------+ """ OMEGA_IDX = 0 MOTOR_IDX = None # region Properties @property def tau(self): """ Returns: the step size of the environment Default: 1e-5 for discrete / 1e-4 for continuous action space """ return self._tau @property def episode_length(self): """ Returns: The length of the current episode """ return self._episode_length @episode_length.setter def episode_length(self, episode_length): """ Set the length of the episode in the environment. Must be larger than the prediction horizon. """ self._episode_length = max(self._prediction_horizon + 1, episode_length) @property def k(self): """ Returns: The current step in the running episode """ return self._k @property def limit_observer(self): return self._limit_observer @property def safety_margin(self): return self._safety_margin @property def prediction_horizon(self): return self._prediction_horizon @property def motor_parameter(self): """ Returns: motor parameter with calculated limits """ params = self.motor_model.motor_parameter params['safety_margin'] = self.safety_margin params['episode_length'] = self._episode_length params['prediction_horizon'] = self._prediction_horizon params['tau'] = self._tau params['limits'] = self._limits.tolist() return params @property def _reward(self): return self._reward_function # endregion def __init__(self, motor_type, state_vars, zero_refs, converter_type, tau, episode_length=10000, load_parameter=None, motor_parameter=None, reward_weight=(('omega', 1.0),), on_dashboard=('omega',), integrator='euler', nsteps=1, prediction_horizon=0, interlocking_time=0.0, noise_levels=0.0, reward_fct='swsae', limit_observer='off', safety_margin=1.3, gamma=0.9, dead_time=True): """ Basic setting of all the common motor parameters. Args: motor_type: Can be 'dc-series', 'dc-shunt', 'dc-extex' or 'dc-permex'. Set by the child classes. state_vars: State variables of the DC motor. Set by the child classes. zero_refs: State variables that get zero references. (E.g. to punish high control power) motor_parameter: A dict of motor parameters that differ from the default ones. \n For details look into the dc_motor model. load_parameter: A dict of load parameters that differ from the default ones. \n For details look into the load model. converter_type: The specific converter type.'{disc/cont}-{1Q/2Q/4Q}'. For details look into converter tau: The step size or sampling time of the environment. episode_length: The episode length of the environment reward_weight: Iterable of key/value pairs that specifies how the rewards in the environment are weighted. E.g. :: (('omega', 0.9),('u', 0.1)) on_dashboard: Iterable that specifies the variables on the dashboard. E.g.:: ['omega','u'] integrator: Select which integrator to choose from 'euler', 'dopri5' nsteps: Maximum allowed number of steps for the integrator. prediction_horizon: The length of future reference points that are shown to the agents interlocking_time: interlocking time of the converter noise_levels: Noise levels of the state variables in percentage of the signal power. reward_fct: Select the reward function between: (Each one normalised to [0,1] or [-1,0]) \n 'swae': Absolute Error between references and state variables [-1,0] \n 'swse': Squared Error between references and state variables [-1,0]\n 'swsae': Shifted absolute error / 1 + swae [0,1] \n 'swsse': Shifted squared error / 1 + swse [0,1] \n limit_observer: Select the limit observing function. \n 'off': No limits are observed. Episode goes on. \n 'no_punish': Limits are observed, no punishment term for violation. This function should be used with shifted reward functions. \n 'const_punish': Limits are observed. Punishment in the form of -1 / (1-gamma) to punish the agent with the maximum negative reward for the further steps. This function should be used with non shifted reward functions. safety_margin: Ratio between maximal and nominal power of the motor parameters. gamma: Parameter for the punishment of a limit violation. Should equal agents gamma parameter. """ self._gamma = gamma self._safety_margin = safety_margin self._reward_function, self.reward_range = self._reward_functions(reward_fct) self._limit_observer = self._limit_observers(limit_observer) self._tau = tau self._episode_length = episode_length self.state_vars = np.array(state_vars) #: dict(int): Inverse state vars. Dictionary to map state names to positions in the state arrays self._state_var_positions = {} for ind, val in enumerate(state_vars): self._state_var_positions[val] = ind self._prediction_horizon = max(0, prediction_horizon) self._zero_refs = zero_refs #: array(bool): True, if the state variable on the index is a zero_reference. For fast access self._zero_ref_flags = np.isin(self.state_vars, self._zero_refs) self.load_model = load_models.Load(load_parameter) self.motor_model = dcmotor_model.make(motor_type, self.load_model.load, motor_parameter) self.converter_model = converter_models.Converter.make(converter_type, self._tau, interlocking_time, dead_time) self._k = 0 self._dashboard = None self._state = np.zeros(len(state_vars)) self._reference = np.zeros((len(self.state_vars), episode_length + prediction_horizon)) self._reward_weights = np.zeros(len(self._state)) self.reference_vars = np.zeros_like(self.state_vars, dtype=bool) self._on_dashboard = np.ones_like(self.state_vars, dtype=bool) if on_dashboard[0] == 'True': self._on_dashboard *= True elif on_dashboard[0] == 'False': self._on_dashboard *= False else: self._on_dashboard *= False for key in on_dashboard: self._on_dashboard[self._state_var_positions[key]] = True for key, val in reward_weight: self._reward_weights[self._state_var_positions[key]] = val for i in range(len(state_vars)): if self._reward_weights[i] > 0 and self.state_vars[i] not in self._zero_refs: self.reference_vars[i] = True integrators = ['euler', 'dopri5'] assert integrator in integrators, f'Integrator was {integrator}, but has to be in {integrators}' if integrator == 'euler': self.system = EulerSolver(self._system_eq, nsteps) else: self.system = ode(self._system_eq, self._system_jac).set_integrator(integrator, nsteps=nsteps) self.integrate = self.system.integrate self.action_space = self.converter_model.action_space self._limits = np.zeros(len(self.state_vars)) self._set_limits() self._set_observation_space() self._noise_levels = np.zeros(len(state_vars)) if type(noise_levels) is tuple: for state_var, noise_level in noise_levels: self._noise_levels[self._state_var_positions[state_var]] = noise_level else: self._noise_levels = np.ones(len(self.state_vars)) * noise_levels self._noise = None self._resetDashboard = True def seed(self, seed=None): """ Seed the random generators in the environment Args: seed: The value to seed the random number generator with """ np.random.seed(seed) def _set_observation_space(self): """ Child classes need to write their concrete observation space into self.observation_space here """ raise NotImplementedError def _set_limits(self): """ Child classes need to write their concrete limits of the state variables into self._limits here """ raise NotImplementedError def _step_integrate(self, action): """ The integration is done for one time period. The converter considers the dead time and interlocking time. Args: action: switching state of the converter that should be applied """ raise NotImplementedError def step(self, action): """ Clips the action to its limits and performs one step of the environment. Args: action: The action from the action space that will be performed on the motor Returns: Tuple(array(float), float, bool, dict): **observation:** The observation from the environment \n **reward:** The reward for the taken action \n **bool:** Flag if the episode has ended \n **info:** An always empty dictionary \n """ last_state = np.array(self._state, copy=True) self._step_integrate(action) rew = self._reward(self._state/self._limits, self._reference[:, self._k].T) done, punish = self.limit_observer(self._state) observation_references = self._reference[self.reference_vars, self._k:self._k + self._prediction_horizon + 1] # normalize the observation observation = np.concatenate(( self._state/self._limits + self._noise[:, self._k], observation_references.flatten() )) self._k += 1 if done == 0: # Check if period is finished done = self._k == self._episode_length else: rew = punish return observation, rew, done, {} def _set_initial_value(self): """ call self.system.set_initial_value(initial_state, 0.0) to reset the state to initial. """ self.system.set_initial_value(self._state[self.MOTOR_IDX], 0.0) def reset(self): """ Resets the environment. All state variables will be set to a random value in [-nominal value, nominal value]. New references will be generated. Returns: The initial observation for the episode """ self._k = 0 # Set new state self._set_initial_state() # New References self._generate_references() # Reset Integrator self._set_initial_value() # Reset Dashboard Flag self._resetDashboard = True # Generate new gaussian noise for the state variables self._noise = ( np.sqrt(self._noise_levels/6) / self._safety_margin * np.random.randn(self._episode_length+1, len(self.state_vars)) ).T # Calculate initial observation observation_references = self._reference[self.reference_vars, self._k:self._k + self._prediction_horizon+1] observation = np.concatenate((self._state/self._limits, observation_references.flatten())) return observation def render(self, mode='human'): """ Call this function once a cycle to update the visualization with the current values. """ if not self._on_dashboard.any(): return if self._dashboard is None: # First Call: No dashboard was initialised before self._dashboard = MotorDashboard(self.state_vars[self._on_dashboard], self._tau, self.observation_space.low[:len(self.state_vars)][self._on_dashboard] * self._limits[self._on_dashboard], self.observation_space.high[:len(self.state_vars)][self._on_dashboard] * self._limits[self._on_dashboard], self._episode_length, self._safety_margin, self._reward_weights[self._on_dashboard] > 0) if self._resetDashboard: self._resetDashboard = False self._dashboard.reset((self._reference[self._on_dashboard].T * self._limits[self._on_dashboard]).T) self._dashboard.step(self._state[self._on_dashboard], self._k) # Update the plot in the dashboard def close(self): """ When the environment is closed the dashboard will also be closed. This function does not need to be called explicitly. """ if self._dashboard is not None: self._dashboard.close() def _system_eq(self, t, state, u_in, noise): """ The differential equation of the whole system consisting of the converter, load and motor. This function is called by the integrator. Args: t: Current time of the system state: The current state as a numpy array. u_in: Applied input voltage Returns: The solution of the system. The first derivatives of all the state variables of the system. """ t_load = self.load_model.load(state[self.OMEGA_IDX]) return self.motor_model.model(state, t_load, u_in + noise) def _system_jac(self, t, state): """ The Jacobian matrix of the systems equation. Args: t: Current time of the system. state: Current state Returns: The solution of the Jacobian matrix for the current state """ load_jac = self.load_model.jac(state) return self.motor_model.jac(state, load_jac) # region Reference Generation def _reference_sin(self, bandwidth=20): """ Set sinus references for the state variables with a random amplitude, offset and phase shift Args: bandwidth: bandwidth of the system """ x = np.arange(0, (self._episode_length + self._prediction_horizon)) if self.observation_space.low[0] == 0.0: amplitude = np.random.rand() / 2 offset = np.random.rand() * (1 - 2*amplitude) + amplitude else: amplitude = np.random.rand() offset = (2 * np.random.rand() - 1) * (1 - amplitude) t_min, t_max = self._set_time_interval_reference('sin', bandwidth) # specify range for period time t_s = np.random.rand() * (t_max - t_min) + t_min phase_shift = 2 * np.pi * np.random.rand() self._reference = amplitude * np.sin(2 * np.pi / t_s * x * self.tau + phase_shift) + offset self._reference = self._reference*np.ones((len(self.state_vars), 1))/self._safety_margin def _reference_rect(self, bandwidth=20): """ Set rect references for the state variables with a random amplitude, offset and phase shift Args: bandwidth: bandwidth of the system """ x = np.arange(0, (self._episode_length + self._prediction_horizon)) if self.observation_space.low[self.OMEGA_IDX] == 0.0: amplitude = np.random.rand() offset = np.random.rand() * (1 - amplitude) else: amplitude = 2 * np.random.rand() - 1 offset = (-1 + np.random.rand() * (2 - np.abs(amplitude))) * np.sign(amplitude) t_min, t_max = self._set_time_interval_reference('rect', bandwidth) # specify range for period time t_s = np.random.rand() * (t_max - t_min) + t_min # time period on amplitude + offset value t_on = np.random.rand() * t_s # time period on offset value t_off = t_s - t_on reference = np.zeros(self._episode_length + self._prediction_horizon) reference[x * self.tau % (t_on + t_off) > t_off] = amplitude reference += offset self._reference = reference * np.ones((len(self.state_vars), 1)) / self._safety_margin def _reference_tri(self, bandwidth=20): """ Set triangular reference with random amplitude, offset, times for rise and fall for all state variables Args: bandwidth: bandwidth of the system """ t_min, t_max = self._set_time_interval_reference('tri', bandwidth) # specify range for period time t_s = np.random.rand() * (t_max-t_min) + t_min t_rise = np.random.rand() * t_s t_fall = t_s - t_rise if self.observation_space.low[self.OMEGA_IDX] == 0.0: amplitude = np.random.rand() offset = np.random.rand() * (1 - amplitude) else: amplitude = 2 * np.random.rand() - 1 offset = (-1 + np.random.rand() * (2 - np.abs(amplitude))) * np.sign(amplitude) reference = np.ones(self._episode_length + self._prediction_horizon) for t in range(0, (self._episode_length + self._prediction_horizon)): # use a triangular function if (t*self.tau) % t_s <= t_rise: reference[t] = ((t * self.tau) % t_s) / t_rise * amplitude + offset else: reference[t] = -((t * self.tau) % t_s - t_s) / t_fall * amplitude + offset self._reference = reference*np.ones((len(self.state_vars), 1))/self._safety_margin def _reference_sawtooth(self, bandwidth=20): """ Sawtooth signal generator with random time period and amplitude Args: bandwidth: bandwidth of the system """ t_min, t_max = self._set_time_interval_reference('sawtooth', bandwidth) # specify range for period time t_s = np.random.rand() * (t_max - t_min) + t_min if self.observation_space.low[self.OMEGA_IDX] == 0.0: amplitude = np.random.rand() else: amplitude = 2 * np.random.rand() - 1 x = np.arange(self.episode_length + self._prediction_horizon, dtype=float) self._reference = np.ones_like(x, dtype=float) self._reference *= (x * self.tau) % t_s * amplitude / t_s self._reference = self._reference * np.ones((len(self.state_vars), 1)) / self._safety_margin def _generate_references(self, bandwidth=20): """ Select which reference to generate. The shaped references (rect, sin, triangular, sawtooth) are equally probable with 12,5% and a random reference is generated with a probability of 50% Args: bandwidth: bandwidth of the system """ val = np.random.rand() if val < 0.125: self._reference_rect(bandwidth) elif val < 0.25: self._reference_sin(bandwidth) elif val < 0.375: self._reference_tri(bandwidth) elif val < 0.5: self._reference_sawtooth(bandwidth) else: self._generate_random_references() # Set the supply voltage. # In this step an additive noise to the supply voltage can be implemented in the future. u_sup = np.ones(self.episode_length + self._prediction_horizon) * self.motor_model.u_sup \ / self._limits[self._state_var_positions['u_sup']] self._reference[self._state_var_positions['u_sup']] = u_sup # Reset all zero references to zero. self._reference[self._zero_ref_flags] = np.zeros((len(self._zero_refs), self.episode_length + self._prediction_horizon)) def _generate_random_references(self): """ Each subclass needs to define its own random reference generation here. """ raise NotImplementedError() def _generate_random_control_sequence(self, bw, maximum): """ Function that is called by the random reference generation in the motors to generate a random control sequence. A random control sequence is applied onto the system and generates the reference trajectories. Args: bw: Bandwidth for the control sequence maximum: Maximum value for the control sequence Returns: A random control sequence that is following the bandwidth and power constraints at most. """ ref_len = self.episode_length + self._prediction_horizon rands = np.random.randn(2, ref_len // 2) u = rands[0] + 1j * rands[1] bw_noise = np.random.rand() * 0.5 bw *= bw_noise delta_w = 2 * np.pi / ref_len / self._tau u[int(bw / delta_w) + 1:] = 0.0 sigma = np.linspace(1, 0, int(bw / delta_w) + 1) if len(sigma) < len(u): u[:len(sigma)] *= sigma else: u *= sigma[:len(u)] fourier = np.concatenate((np.random.randn(1), u, np.flip(np.conjugate(u)))) u = np.fft.ifft(fourier).real power_noise = np.random.rand() + 0.5 u = u * maximum / np.sqrt((u ** 2).sum() / ref_len) * power_noise leakage = np.random.rand(1) * 0.1 voltage_offset = maximum * ((self.converter_model.voltages[1] - self.converter_model.voltages[0]) * np.random.rand() + self.converter_model.voltages[0]) u += voltage_offset u = np.clip(u, (self.converter_model.voltages[0] - leakage) * maximum, (self.converter_model.voltages[1] + leakage) * maximum) return u[:ref_len] def _set_time_interval_reference(self, shape=None, bandwidth=20): """ This function returns the minimum and maximum time period specified by the bandwidth of the motor, episode length and individual modifications for each shape At least on time period of a shape should fit in an episode, but not to fast that the motor can not follow the reference properly. Args: shape: shape of the reference Returns: Minimal and maximal time period """ bw = self._maximal_bandwidth(bandwidth) # Bandwidth of reference limited t_episode = (self.episode_length+self._prediction_horizon)*self.tau t_min = min(1 / bw, t_episode) t_max = max(1 / bw, t_episode) # In this part individual modifications can be made for each shape # Modify the values to get useful references. Some testing necessary to find practical values. if shape == 'sin': t_min = t_min t_max = t_max / 3 elif shape == 'rect': t_min = t_min t_max = t_max / 3 elif shape == 'tri': t_min = t_min t_max = t_max / 5 elif shape == 'sawtooth': t_min = t_min t_max = t_max / 5 else: t_min = t_min t_max = t_max/5 return min(t_min, t_max), max(t_min, t_max) # make sure that the order is correct def _maximal_bandwidth(self, bandwidth=20): """ Computes the maximal allowed bandwidth, considering a user defined limit and the technical limit. Args: bandwidth: Maximal user defined value for the bandwidth Returns: Maximal bandwidth for the reference """ return min(self.motor_model.bandwidth(), bandwidth) # endregion def _set_initial_state(self): """ Defined in each motor itself. Sets the initial environment state. """ raise NotImplementedError # region Reward Functions def _reward_functions(self, key): """ Selector for the concrete reward function selected by the key string Returns: The selected reward function. """ return { # (Reward Function, Reward Range) 'swae': (self._absolute_error, (-1, 0)), 'swse': (self._squared_error, (-1, 0)), 'swsae': (self._shifted_absolute_error, (0, 1)), 'swsse': (self._shifted_squared_error, (0, 1)), }[key] def _absolute_error(self, state, reference): """ The weighted, absolute error between the reference and state variables normalised to [-1,0] Args: state: the current state of the environment reference: the current reference values of the observation variables Returns: The reward value """ return -(self._reward_weights * np.abs(state - reference) / (self.observation_space.high[:len(self.state_vars)] - self.observation_space.low[:len(self.state_vars)]) ).sum() def _squared_error(self, state, reference): """ The weighted, squared absolute error between the reference and state variables normalised to [-1,0] Args: state: the current state of the environment reference: the current reference values of the observation variables Returns: The reward value """ return -(self._reward_weights * ((state - reference) / (self.observation_space.high[:len(self.state_vars)] - self.observation_space.low[:len(self.state_vars)]) )**2 ).sum() def _shifted_squared_error(self, state, reference): """ The weighted, squared error between the reference and state variables normalised to [0,1] Args: state: the current state of the environment reference: the current reference values of the observation variables Returns: The reward value """ return 1 + self._squared_error(state, reference) def _shifted_absolute_error(self, state, reference): """ The weighted, absolute error between the reference and state variables normalised to [0,1] Args: state: the current state of the environment reference: the current reference values of the observation variables Returns: The reward value """ return 1 + self._absolute_error(state, reference) # endregion # region Limit Observers def _limit_observers(self, key): """ Selector for the concrete limit observer by the key string. Returns: The selected limit observer function. """ return { 'off': self._no_observation, 'no_punish': self._no_punish, 'const_punish': self._const_punish, }[key] def _no_punish(self, state): """ No reward punishment, only break the episode when limits are violated. Recommended for positive rewards. Args: state: Current state of the environment Returns: Tuple of a flag if the episode should be terminated and the punishment for the reward """ if self._limits_violated(state): return False, 0.0 else: return True, 0.0 def _const_punish(self, state): """ Punishment, if constraints are violated and termination of the episode. The punishment equals -1 / (1 - self.gamma), which is equivalent to the by gamma discounted reward a learner would receive, if it receives always the minimum reward after the limit violation. This punishment is recommended, when taking a negative reward function. Args: state: Current state of the environment Returns: Tuple of a flag if the episode should be terminated and the punishment for the reward """ if self._limits_violated(state): return False, 0.0 else: # Terminate the episode if constraints are violated return True, -1 * 1 / (1 - self._gamma) def _limits_violated(self, state): """ Check, if any limit is violated. Args: state: Current state of the environment Returns: True, if any limit is violated, false otherwise. """ return (np.abs(state) <= self.observation_space.high[:len(self.state_vars)] * self._limits).all() def _no_observation(self, *_): """ No limit violations are observed. No punishment and the episode continues even after limit violations. Args: state: Current state of the motor Returns: Tuple of a flag if the episode should be terminated (here always false) and the punishment for the reward (here always 0) """ return False, 0.0 # endregion def get_motor_param(self): """ Returns: This function returns all motor parameters, sampling time, safety margin and converter limits """ params = self.motor_parameter params['converter_voltage'] = self.converter_model.voltages params['converter_current'] = self.converter_model.currents return params
[ "wilhelmk@campus.uni-paderborn.de" ]
wilhelmk@campus.uni-paderborn.de
db5af6c9ccb8290c2b3765b621537f4f20a2bf9b
fc85f6e336d4d5624af45d58e4d2b6a7b6edafaf
/image_diet/tests/test_commands.py
2948470b1b1960159a208d6f7081a138281c1f53
[ "MIT" ]
permissive
ArabellaTech/django-image-diet
2d0cf77369035c2ebfe6685e2f4ffe347507e092
dcf904d89f65a5123509a0718ef3758ea5674579
refs/heads/master
2020-04-05T22:54:17.661895
2016-07-25T07:35:21
2016-07-25T07:35:21
31,337,651
1
1
null
2016-07-25T07:12:47
2015-02-25T21:52:16
Python
UTF-8
Python
false
false
1,018
py
import os from os.path import join, dirname from shutil import copyfile from django.test import TestCase from image_diet.management.commands import diet_images TEST_DIR = join(dirname(__file__), 'test_files') class DietCommandTest(TestCase): def setUp(self): image_path = join(TEST_DIR, 'stockholm.jpg') self.nested_dir = join('dir1', 'dir2', 'dir3') self.test_root_dir = join(TEST_DIR, 'dir1') os.makedirs(join(TEST_DIR, self.nested_dir)) self.test_image_path = join(TEST_DIR, self.nested_dir, 'stockholm.jpg') copyfile(image_path, self.test_image_path) def tearDown(self): os.remove(self.test_image_path) os.chdir(TEST_DIR) os.removedirs(self.nested_dir) def test_diet_images(self): old_size = os.stat(self.test_image_path).st_size action = diet_images.Command() action.handle(self.test_root_dir) new_size = os.stat(self.test_image_path).st_size self.assertTrue(new_size < old_size)
[ "markos@gaivo.net" ]
markos@gaivo.net
466524b45d53aaa85ccff0695a52ed8c641b06bf
8a0297dbf9b90f001077ba487f6d7c9263e1242b
/setup.py
0205937a6520d9311cb7270c3353578328a97bbe
[ "MIT", "LicenseRef-scancode-public-domain" ]
permissive
shea256/pybitcointools
b2173fe2735229380384460315f00185e3310d3c
f7223208e5ce260f27a447fcef22a98957e938c2
refs/heads/master
2021-01-17T11:52:18.686497
2013-12-10T02:13:02
2013-12-10T02:13:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
347
py
#!/usr/bin/env python from distutils.core import setup setup(name='pybitcointools', version='1.0', description='Python Bitcoin Tools', author='Vitalik Buterin', author_email='vbuterin@gmail.com', url='http://github.com/vbuterin/pybitcointools', packages=['pybitcointools'], scripts=['pybtctool'] )
[ "vub@gmail.com" ]
vub@gmail.com
7df7704850cb5541240900662aa18de7e49573fc
ec9f242c13c271910cf9db0fb8202ab6f2fcdf9c
/Chapter_3/Chapter_3_1_1_1.py
78c42c8309e6f85f8ca0065f4b9ca077ec018a47
[ "Apache-2.0" ]
permissive
flytian/python_machinelearning
0f32807c73e92b98b008cea1e6d8fb92702cb4fb
004707c3e66429f102272a7da97e532255cca293
refs/heads/master
2021-08-30T12:52:20.259662
2017-12-16T07:16:29
2017-12-16T07:16:29
114,345,987
0
0
Apache-2.0
2017-12-16T07:16:30
2017-12-15T08:23:23
Python
UTF-8
Python
false
false
5,622
py
# coding:utf-8 # 定义一组字典列表,用来表示多个数据样本(每个字典代表一个数据样本)。 measurements = [{'city': 'Dubai', 'temperature': 33.}, {'city': 'London', 'temperature': 12.}, {'city': 'San Fransisco', 'temperature': 18.}] # 从sklearn.feature_extraction 导入 DictVectorizer from sklearn.feature_extraction import DictVectorizer # 初始化DictVectorizer特征抽取器 vec = DictVectorizer() # 输出转化之后的特征矩阵。 print vec.fit_transform(measurements).toarray() # 输出各个维度的特征含义。 print vec.get_feature_names() # ['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature'] # 从sklearn.datasets里导入20类新闻文本数据抓取器。 from sklearn.datasets import fetch_20newsgroups # 从互联网上即时下载新闻样本,subset='all'参数代表下载全部近2万条文本存储在变量news中。 news = fetch_20newsgroups(subset='all') # 从sklearn.cross_validation导入train_test_split模块用于分割数据集。 from sklearn.cross_validation import train_test_split # 对news中的数据data进行分割,25%的文本用作测试集;75%作为训练集。 X_train, X_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25, random_state=33) # 从sklearn.feature_extraction.text里导入CountVectorizer from sklearn.feature_extraction.text import CountVectorizer # 采用默认的配置对CountVectorizer进行初始化(默认配置不去除英文停用词),并且赋值给变量count_vec。 count_vec = CountVectorizer() # 只使用词频统计的方式将原始训练和测试文本转化为特征向量。 X_count_train = count_vec.fit_transform(X_train) X_count_test = count_vec.transform(X_test) # 从sklearn.naive_bayes里导入朴素贝叶斯分类器。 from sklearn.naive_bayes import MultinomialNB # 使用默认的配置对分类器进行初始化。 mnb_count = MultinomialNB() # 使用朴素贝叶斯分类器,对CountVectorizer(不去除停用词)后的训练样本进行参数学习。 mnb_count.fit(X_count_train, y_train) # 输出模型准确性结果。 print 'The accuracy of classifying 20newsgroups using Naive Bayes (CountVectorizer without filtering stopwords):', mnb_count.score( X_count_test, y_test) # 将分类预测的结果存储在变量y_count_predict中。 y_count_predict = mnb_count.predict(X_count_test) # 从sklearn.metrics 导入 classification_report。 from sklearn.metrics import classification_report # 输出更加详细的其他评价分类性能的指标。 print classification_report(y_test, y_count_predict, target_names=news.target_names) # 从sklearn.feature_extraction.text里分别导入TfidfVectorizer。 from sklearn.feature_extraction.text import TfidfVectorizer # 采用默认的配置对TfidfVectorizer进行初始化(默认配置不去除英文停用词),并且赋值给变量tfidf_vec。 tfidf_vec = TfidfVectorizer() # 使用tfidf的方式,将原始训练和测试文本转化为特征向量。 X_tfidf_train = tfidf_vec.fit_transform(X_train) X_tfidf_test = tfidf_vec.transform(X_test) # 依然使用默认配置的朴素贝叶斯分类器,在相同的训练和测试数据上,对新的特征量化方式进行性能评估。 mnb_tfidf = MultinomialNB() mnb_tfidf.fit(X_tfidf_train, y_train) print 'The accuracy of classifying 20newsgroups with Naive Bayes (TfidfVectorizer without filtering stopwords):', mnb_tfidf.score( X_tfidf_test, y_test) y_tfidf_predict = mnb_tfidf.predict(X_tfidf_test) print classification_report(y_test, y_tfidf_predict, target_names=news.target_names) # 继续沿用代码56与代码57中导入的工具包(在同一份源代码中,或者不关闭解释器环境),分别使用停用词过滤配置初始化CountVectorizer与TfidfVectorizer。 count_filter_vec, tfidf_filter_vec = CountVectorizer(analyzer='word', stop_words='english'), TfidfVectorizer( analyzer='word', stop_words='english') # 使用带有停用词过滤的CountVectorizer对训练和测试文本分别进行量化处理。 X_count_filter_train = count_filter_vec.fit_transform(X_train) X_count_filter_test = count_filter_vec.transform(X_test) # 使用带有停用词过滤的TfidfVectorizer对训练和测试文本分别进行量化处理。 X_tfidf_filter_train = tfidf_filter_vec.fit_transform(X_train) X_tfidf_filter_test = tfidf_filter_vec.transform(X_test) # 初始化默认配置的朴素贝叶斯分类器,并对CountVectorizer后的数据进行预测与准确性评估。 mnb_count_filter = MultinomialNB() mnb_count_filter.fit(X_count_filter_train, y_train) print 'The accuracy of classifying 20newsgroups using Naive Bayes (CountVectorizer by filtering stopwords):', mnb_count_filter.score( X_count_filter_test, y_test) y_count_filter_predict = mnb_count_filter.predict(X_count_filter_test) # 初始化另一个默认配置的朴素贝叶斯分类器,并对TfidfVectorizer后的数据进行预测与准确性评估。 mnb_tfidf_filter = MultinomialNB() mnb_tfidf_filter.fit(X_tfidf_filter_train, y_train) print 'The accuracy of classifying 20newsgroups with Naive Bayes (TfidfVectorizer by filtering stopwords):', mnb_tfidf_filter.score( X_tfidf_filter_test, y_test) y_tfidf_filter_predict = mnb_tfidf_filter.predict(X_tfidf_filter_test) # 对上述两个模型进行更加详细的性能评估。 from sklearn.metrics import classification_report print classification_report(y_test, y_count_filter_predict, target_names=news.target_names) print classification_report(y_test, y_tfidf_filter_predict, target_names=news.target_names)
[ "flytonus@sina.cn" ]
flytonus@sina.cn
71d68c642a70a8d625599303258d762986ccd3f6
46537fe6906fa10ed515baf36598168ff948aeaf
/mq/apps.py
bd83a9c748c327fc22707100d3383b38124cd392
[]
no_license
dima-kov/django-mq
6b0538499a6091601ada1ecb962875d5f5634104
08c458780173e64785d30f87536121fa9e8a29ae
refs/heads/master
2023-07-31T10:33:40.209376
2021-09-19T10:18:34
2021-09-19T10:18:34
408,092,675
2
0
null
null
null
null
UTF-8
Python
false
false
139
py
from django.apps import AppConfig class MqAppConfig(AppConfig): def ready(self): from mq.facade import QueuesFacade # noqa
[ "dima.kovalchuk.v@gmail.com" ]
dima.kovalchuk.v@gmail.com
9f9baa8b7fa3b27ad62e12bd7f6621fcb8b83ba6
9bbf1cb7b0cd2444f2830efb696640ad42a2bfd4
/python/__init__.py
611fda76681e56175d3830d41a6a4dd31dbb5d14
[]
no_license
idaohang/KalmanAnalyzer
aad4dfd209c1c160a5cdd8258d5ee77a01bfc769
12cdfc1f8ff480c2a2b8a5ca795eb982e1936ed9
refs/heads/master
2021-01-22T08:19:11.261942
2014-11-17T13:25:14
2014-11-17T13:25:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
#Automatically created by SCRAM import os __path__.append(os.path.dirname(os.path.abspath(__file__).rsplit('/UserCode/KalmanAnalyzer/',1)[0])+'/cfipython/slc6_amd64_gcc472/UserCode/KalmanAnalyzer')
[ "e.bouvier@ipnl.in2p3.fr" ]
e.bouvier@ipnl.in2p3.fr
b31250d3654352faa232e299e85343692965b7ff
1951c50108892a1b89777749dd951cf49a4361ae
/blog/__init__.py
696460cf82c714d5d021fca0e6d398d58b4308b0
[]
no_license
bluewhale1207/myblog
3e04c7b4a3d598d52890624a361b16cc752250d9
e8351cf68b36dfdbd8290cffaaa0915fc182a1b7
refs/heads/master
2016-09-05T16:16:30.627316
2015-11-16T11:25:07
2015-11-16T11:25:07
31,940,336
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
# -*- coding: utf-8 -*- import os from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from blog.models.model_user import User app = Flask(__name__) app.config.from_object(os.environ['BLOG_SETTINGS']) # 登录 login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = '.user_login_required' login_manager.login_message = u'请登录' db = SQLAlchemy() db.init_app(app) @login_manager.user_loader def load_user(username): return User.query.filter_by(name=username).first() from blog.views import general from blog.views import user app.register_blueprint(general.mod) app.register_blueprint(user.mod)
[ "liushujie@papayamobile.com" ]
liushujie@papayamobile.com
056bd878933e3e8f3a603973ac2a820ac07bce18
fd43e56e22254e8a653e32ad7262c1f41c670391
/lcov/__init__.py
468b86309784894323139b90053882aff64f7019
[ "MIT" ]
permissive
hubiao7/scons-lcov
0ba681537aa8b81d1e5668b4bc011c182bf47eee
0c88bea03c787d001691f970faf5e9b7a3fe98ba
refs/heads/master
2021-06-01T05:49:25.356588
2016-06-01T20:47:08
2016-06-01T20:47:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
import SCons from SCons.Builder import Builder from SCons.Script import Dir, Flatten, Mkdir from os import path class ToolLCovWarning(SCons.Warnings.Warning): pass class LCovExecutableNotFound(ToolLCovWarning): pass def lcov_generator(source, target, env, for_signature): cmd = ['lcov --capture'] cmd += ['--output-file', target[0].abspath] if 'LCOVDIR' in env: cmd += ['--directory', str(Dir(env['LCOVDIR']))] if 'LCOVBASEDIR' in env: cmd += ['--base-directory', str(Dir(env['LCOVBASEDIR']))] return ' '.join(Flatten(cmd)) _lcov_builder = Builder(generator=lcov_generator) def generate(env): env['LCov'] = _detect(env) env['BUILDERS']['LCov'] = _lcov_builder def _detect(env): try: return env['LCov'] except KeyError: pass lcov = env.WhereIs('lcov') if lcov: return lcov raise SCons.Errors.StopError(LCovExecutableNotFound, 'Cound not detect lcov executable') return None def exists(env): return _detect(env)
[ "rhythm.mail@gmail.com" ]
rhythm.mail@gmail.com
d5f4573a4e213f3cc96fd81d923189be3a18f7b8
e7b5561944ca0cbec321110e17618815e4ff627c
/backend/app/migrations/garpix_notify/0002_auto_20210720_2244.py
9371a081124611fbdb04a0a27df63a7bec829035
[]
no_license
AlexandrMikhailovich/cms_test3
3a6ac4be10ef7ae5bda2bfdaf2ff38ad9bc5c641
1579f853cc2c526f0fdaab9f14baf9659c23d178
refs/heads/master
2023-06-23T01:34:19.806972
2021-07-21T06:08:39
2021-07-21T06:08:39
388,012,831
0
0
null
null
null
null
UTF-8
Python
false
false
3,345
py
# Generated by Django 3.1 on 2021-07-20 19:44 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('auth', '0012_alter_user_first_name_max_length'), ('garpix_notify', '0001_initial'), ] operations = [ migrations.AddField( model_name='notifyuserlistparticipant', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='user_lists', to=settings.AUTH_USER_MODEL, verbose_name='Пользователь (получатель)'), ), migrations.AddField( model_name='notifyuserlistparticipant', name='user_list', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='participants', to='garpix_notify.notifyuserlist', verbose_name='Список пользователей для рассылки'), ), migrations.AddField( model_name='notifyuserlist', name='user_groups', field=models.ManyToManyField(blank=True, to='auth.Group', verbose_name='Группы пользователей'), ), migrations.AddField( model_name='notifytemplate', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='templates', to='garpix_notify.notifycategory', verbose_name='Категория'), ), migrations.AddField( model_name='notifytemplate', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, verbose_name='Пользователь (получатель)'), ), migrations.AddField( model_name='notifytemplate', name='user_lists', field=models.ManyToManyField(blank=True, to='garpix_notify.NotifyUserList', verbose_name='Списки пользователей, которые получат копию уведомления'), ), migrations.AddField( model_name='notifyerrorlog', name='notify', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='logs', to='garpix_notify.notify', verbose_name='Notify'), ), migrations.AddField( model_name='notify', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='notifies', to='garpix_notify.notifycategory', verbose_name='Категория'), ), migrations.AddField( model_name='notify', name='files', field=models.ManyToManyField(to='garpix_notify.NotifyFile', verbose_name='Файлы'), ), migrations.AddField( model_name='notify', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='notifies', to=settings.AUTH_USER_MODEL, verbose_name='Пользователь (получатель)'), ), ]
[ "Alexandr1990@gitlab.com" ]
Alexandr1990@gitlab.com
8e6db07c7045df813af567ff7094d94f80b3b8c6
fb6482e5d6c6f93b6d04165048e32ba47ab0f605
/CSCI 127/Labs/lab12.py
ba610d51fe0d1d80d44ec6d31c607ae79398ced5
[]
no_license
Risauce/Pre2015Code
3a5a13bc38769708b151b9a790cf7ccfc0251574
fc0e641e7bebbaeec8202550ece880b98b48c1fc
refs/heads/master
2020-08-28T09:33:18.171859
2019-10-26T05:54:24
2019-10-26T05:54:24
217,662,210
0
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
import numpy as np import matplotlib.pyplot as plt # ----------------------------------------------------- # CSCI 127, Lab 12 # November 21, 2017 # Your Name # ----------------------------------------------------- def read_file(name): input_file = open(name, "r") number_buckets = int(input_file.readline()) total_counties = int(input_file.readline()) county_populations = np.zeros([total_counties], dtype="int") for county_number in range(total_counties): line = input_file.readline().split(",") county_populations[county_number] = int(line[1]) county_populations.sort() input_file.close() return number_buckets, county_populations # ----------------------------------------------------- def print_summary(averages): print("Population Grouping Summary") print("---------------------------") for grouping in range(len(averages)): print("Grouping", grouping + 1, "has a population average of", averages[grouping]) # ----------------------------------------------------- # Do not change anything above this line # ----------------------------------------------------- def calculate_averages(number_buckets, county_populations): numberOfSplit = len(county_populations) / number_buckets for i in range(number_buckets): if i == 0: average = np.average(county_populations[0:numberOfSplit]) print(average) else: print("none") # ----------------------------------------------------- def graph_summary(averages): pass # ----------------------------------------------------- number_buckets, county_populations = read_file("montana-counties.txt") averages = calculate_averages(number_buckets, county_populations) print_summary(averages) graph_summary(averages)
[ "noreply@github.com" ]
noreply@github.com
92167807a2c7f1bf7c9b2fa2d8c101cf3984620c
2f1a2a175bd3b6ef646b6329169dda18127e34b2
/todoclass/urls.py
2397da1dd7a14e1820678879959d92ca02b8dd8b
[]
no_license
Alisher007/todomain
13608ca796a47b69f86ca709c1fafd2b424978b4
cdd08a21f2bdd0b80bf2f6ae2ebc6825ed760869
refs/heads/master
2022-12-14T04:50:09.869081
2020-09-11T11:47:00
2020-09-11T11:47:00
294,675,849
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
from django.contrib import admin from django.urls import path from .views import TodoListView, TodoDetailView, TodoCreateView, TodoUpdateView, TodoDeleteView app_name = 'todoclass' urlpatterns = [ path('', TodoListView.as_view(), name='list'), path('create/', TodoCreateView.as_view(), name='create'), path('<int:pk>/', TodoDetailView.as_view(), name='detail'), path('<int:pk>/update/', TodoUpdateView.as_view(), name='update'), path('<int:pk>/delete/', TodoDeleteView.as_view(), name='delete'), ]
[ "alisher.khalikulov@jaresorts.com" ]
alisher.khalikulov@jaresorts.com
11fffdf455b5b2de1d41093e5db837b67414fb80
5cd8fb2e84e5f50f39505a97e9021198700920e3
/src/employees/models.py
9e10dd1d3e77cc6a7f661f1a78ffe127e549711f
[]
no_license
danliu277/openbag_python
81a597f72bfc943f8ff98e8b732fe7d6fb936999
aef1596709042f66a93883d67114b5b08f8f504f
refs/heads/master
2022-12-04T03:23:09.670440
2020-08-26T20:49:18
2020-08-26T20:49:18
287,374,863
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
from django.db import models class Employee(models.Model): name = models.CharField(max_length=120) username = models.CharField(max_length=120) password = models.CharField(max_length=120) address = models.CharField(max_length=120) email = models.CharField(max_length=120) def __str__(self): return self.name
[ "danliu277@gmail.com" ]
danliu277@gmail.com
145e5904cf2bc4e6e47030788b2461978b486ece
6318f1458f9c6cca91cb00aa415638a599d8ba26
/arcade/python/arcade-theCore/11_SpringOfIntegration/091_Combs.py
ec81b4e9bfbc202b226d08d5d49310be3d66ef37
[ "MIT" ]
permissive
netor27/codefights-solutions
836016a048086cd2bc644b2c40b7686102b6f179
69701ab06d45902c79ec9221137f90b75969d8c8
refs/heads/master
2021-10-28T13:04:42.940059
2019-01-16T23:12:08
2019-01-16T23:12:08
110,753,675
0
0
null
null
null
null
UTF-8
Python
false
false
1,377
py
''' Miss X has only two combs in her possession, both of which are old and miss a tooth or two. She also has many purses of different length, in which she carries the combs. The only way they fit is horizontally and without overlapping. Given teeth' positions on both combs, find the minimum length of the purse she needs to take them with her. It is guaranteed that there is at least one tooth at each end of the comb. It is also guaranteed that the total length of two strings is smaller than 32. Note, that the combs can not be rotated/reversed. Example For comb1 = "*..*" and comb2 = "*.*", the output should be combs(comb1, comb2) = 5. Although it is possible to place the combs like on the first picture, the best way to do this is either picture 2 or picture 3. ''' def combs(comb1, comb2): n1, n2 = len(comb1), len(comb2) res = n1 + n2 m1, m2 = mask(comb1), mask(comb2) for i in range(n1 + 1): if (m2 << i) & m1 == 0: temp = max(n2 + i, n1) if temp < res: res = temp for i in range(n2 + 1): if (m1 << i) & m2 == 0: temp = max(n1 + i, n2) if temp < res: res = temp return res def mask(s): r = 0 for c in s: digit = 0 if c == '*': digit = 1 r = (r << 1) + digit return r
[ "neto.r27@gmail.com" ]
neto.r27@gmail.com
b2a3440874508491785688101a4108cfd7f6edcc
5d2ad10a424fd71cc2f12e1ca78d278362435c3b
/Day4/newPkg/src/myPkg/scripts/comp_sub.py
4617429fc49187b0c83bde193dc654ee8ec0815b
[]
no_license
IsraaFahmy/ROS-training-
ec7034f55692c062ed42aa2cd9a63d9201db67e8
61924149a170292b9e7b049cfd704ed807c01e9a
refs/heads/master
2022-12-03T00:51:11.341733
2020-08-23T22:06:41
2020-08-23T22:06:41
287,059,743
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
#!/usr/bin/env python import rospy from myPkg.msg import comp def callback(message): rospy.loginfo("complex number recieved: %d + %d i", message.real,message.imaginary) rospy.init_node('comp_node2', anonymous=True) rospy.Subscriber("comp_topic", comp, callback) rospy.spin()
[ "israafahmy@aucegypt.edu" ]
israafahmy@aucegypt.edu
f723cbdc7b1832a6b9940919ccfcb541b77cc299
a6b010255c544b51edef707fa675a2f2f120c159
/_site/lib/ml_level.py
4e13a8dd97eb2bbb2361ca372f122f4491c5faa6
[]
no_license
StonyBrookNLP/irene
f30d3dcdc5b336f4816c37017d6cbfd9d4eb80a5
54862c65f65bd4eb302344e110401d45c36af49c
refs/heads/master
2023-07-18T03:54:40.400352
2021-09-08T22:01:28
2021-09-08T22:01:28
371,047,659
8
0
null
null
null
null
UTF-8
Python
false
false
4,211
py
import argparse from typing import Tuple, List, Dict import json import copy import pickle # may be change to dill? from collections import defaultdict import numpy as np from sklearn.preprocessing import StandardScaler from sklearn import linear_model from lib.tree_node import TreeNode np.random.seed(13370) def train_linear_regressor(features: np.array, ground_truths: np.array) -> Tuple: """ Scales data and trains a simple linear regressor. """ regressor = linear_model.LinearRegression() scale_standardizer = StandardScaler().fit(features) features = scale_standardizer.transform(features) transformations = [scale_standardizer] regressor = regressor.fit(features, ground_truths) return regressor, transformations def predict_linear_regressor( regressor, transformations: List, features: np.array, ids: List[str] ) -> Dict[str, float]: """ Generates prediction using trained regressor on the passed features and returns a dictionary of id to predictions. """ for transformation in transformations: features = transformation.transform(features) predicted_outputs = regressor.predict(features) id_to_predicted_values = { id_: pred for id_, pred in zip(list(ids), list(predicted_outputs)) } return id_to_predicted_values def train_ml_level_models(train_trees: List[TreeNode]) -> Tuple[Dict, Dict]: """ Trains ML-level regressor on the leaf nodes of training trees and outputs trained regressor and scalars. """ operationwise_ml_level_instances = defaultdict(list) for tree in train_trees: for operation_type, ml_level_instances in tree.get_ml_level_data().items(): operationwise_ml_level_instances[operation_type].extend(ml_level_instances) operationwise_ml_level_model = {} operationwise_ml_level_transformations = {} for operation_type, ml_level_instances in operationwise_ml_level_instances.items(): features = np.stack( [np.array(instance["features"]) for instance in ml_level_instances], axis=0 ) ground_truths = np.array( [instance["gold_energy"] for instance in ml_level_instances] ) regressor, transformations = train_linear_regressor( features=features, ground_truths=ground_truths ) operationwise_ml_level_model[operation_type] = regressor operationwise_ml_level_transformations[operation_type] = transformations return operationwise_ml_level_model, operationwise_ml_level_transformations def predict_ml_level_models( operationwise_ml_level_model: Dict, operationwise_ml_level_transformations: Dict, predict_trees: List[TreeNode], ) -> List[TreeNode]: """ Runs regressor on the leaf/ml-level nodes of the predic_trees and saves the predicted_energy field into it. Returns predicted_energy annotated trees. """ assert set(operationwise_ml_level_model.keys()) == set( operationwise_ml_level_transformations.keys() ) predict_trees = copy.deepcopy(predict_trees) for predict_tree in predict_trees: operationwise_ml_level_instances = predict_tree.get_ml_level_data() for ( operation_type, ml_level_instances, ) in operationwise_ml_level_instances.items(): if operation_type not in operationwise_ml_level_model: raise Exception( f"Given model isn't trained on operation_type {operation_type}" ) regressor = operationwise_ml_level_model[operation_type] transformations = operationwise_ml_level_transformations[operation_type] features = np.stack( [np.array(instance["features"]) for instance in ml_level_instances], axis=0, ) ids = [instance["id"] for instance in ml_level_instances] id_to_predicted_values = predict_linear_regressor( regressor, transformations, features, ids ) predict_tree.update_tree_node_attributes( "predicted_energy", id_to_predicted_values ) return predict_trees
[ "yklal95@gmail.com" ]
yklal95@gmail.com
2baa1ddb9774e7deee027fc888daf5f6d3280f5e
a63bd0c2b9ce527a163ebc7f326316dc1d8c50b0
/tests/fileSizeTest.py
b4346abaa5df91e031f403931282400d1a85f57c
[]
no_license
jan-polaczek/isodBot-demo
902c20d49ffce225736f82a696fef69e914a7c44
e963b1835f6706f526249f83237223557ef27f02
refs/heads/master
2020-06-04T16:49:33.686587
2019-06-15T18:20:45
2019-06-15T18:20:45
192,110,375
0
0
null
null
null
null
UTF-8
Python
false
false
2,433
py
import os,sys,inspect current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) from Registration import * def run(): errorMessages = {} number_of_test = 5 counter = 0 if Registration.fileSize('anonek.tst') == 1: errorMessages['anonek'] = 'test: podano tylko login' elif Registration.fileSize('anonek.tst') == 2: errorMessages['anonek'] = 'test: podano login i hasło' elif Registration.fileSize('anonek.tst') > 2: errorMessages['anonek'] = 'test: za dużo linijek w pliku' else: #errorMessages['anonek'] = 'test: plik nie istnieje' counter += 1 if Registration.fileSize('balasm.tst') == 1: errorMessages['balasm'] = 'test: podano tylko login' elif Registration.fileSize('balasm.tst') == 2: errorMessages['balasm'] = 'test: podano login i hasło' elif Registration.fileSize('balasm.tst') > 2: #errorMessages['balasm'] = 'test: za dużo linijek w pliku' counter += 1 else: errorMessages['balasm'] = 'test: plik nie istnieje' if Registration.fileSize('boguszj.tst') == 1: errorMessages['boguszj'] = 'test: podano tylko login' elif Registration.fileSize('boguszj.tst') == 2: errorMessages['boguszj'] = 'test: podano login i hasło' elif Registration.fileSize('boguszj.tst') > 2: #errorMessages['boguszj'] = 'test: za dużo linijek w pliku' counter += 1 else: errorMessages['boguszj'] = 'test: plik nie istnieje' if Registration.fileSize('polaczej.tst') == 1: #errorMessages['polaczej'] = 'test: podano tylko login' counter += 1 elif Registration.fileSize('polaczej.tst') == 2: errorMessages['polaczej'] = 'test: podano login i hasło' elif Registration.fileSize('polaczej.tst') > 2: errorMessages['polaczej'] = 'test: za dużo linijek w pliku' else: errorMessages['polaczej'] = 'test: plik nie istnieje' if Registration.fileSize('ktokolwiek.tst') == 1: errorMessages['ktokolwiek'] = 'test: podano tylko login' elif Registration.fileSize('ktokolwiek.tst') == 2: errorMessages['ktokolwiek'] = 'test: podano login i hasło' elif Registration.fileSize('ktokolwiek.tst') > 2: errorMessages['ktokolwiek'] = 'test: za dużo linijek w pliku' else: #errorMessages['ktokolwiek'] = 'test: plik nie istnieje' counter += 1 errorMessages['ilość testów'] = number_of_test errorMessages['ilość testów zaliczonych'] = counter return errorMessages
[ "jan.polaczek@interia.pl" ]
jan.polaczek@interia.pl
cbae2ad04a7ab972f74b8a1132069e8c30ab885a
dac5f6f1314fa1b2cc19ccc5e3f6ba35dcb04672
/Loop_for.py
2be2ca49cbe2584c3de74e2729b3d964c1b88a72
[]
no_license
mohamedasa2019/PYTHON-ALL-CODE
f0942f3c37847dc301a4e873efdfa279dfa175f0
5ab782662c0c4489130b841cc0d953b5ef485bf5
refs/heads/master
2020-04-30T09:40:20.204921
2019-03-20T15:08:01
2019-03-20T15:08:01
176,754,829
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
def main(): L=[1,3,4.5,"hi"] # تستخدم for loop لطباعه كل عنصر قي سطر في for item in L: print(item) if __name__ == '__main__': main()
[ "noreply@github.com" ]
noreply@github.com
261f0667d897b235c0624553e90745571f971418
43e8e14e9ffa1a85d4383334d1e9bd0a041131fb
/setup.py
5fc4d7d525f17172d05a6ce9bc7d98c975aaafbf
[ "BSD-3-Clause" ]
permissive
Python3pkg/PandaRSS
a952d24762ceec0e65a44859590a6e9e49ae49fb
8e8727744c8a876b314879193ae01422831a76dd
refs/heads/master
2021-01-21T17:38:48.551614
2017-05-21T17:48:59
2017-05-21T17:48:59
91,976,509
0
0
null
2017-05-21T17:48:57
2017-05-21T17:48:57
null
UTF-8
Python
false
false
1,307
py
#!/usr/bin/python from setuptools import setup, find_packages import pandarss install_requires = [ 'Twisted>=15.0.0', 'bottle>=0.12.7' ] package_data={ 'pandarss': [ 'views/css/*', 'views/js/*', 'views/*.html' ] } setup(name='pandarss', version='0.2', author='pandaman', author_email='pandaman1999@foxmail.com', url='https://github.com/PandaPark/PandaRSS', license='BSD', description='ToughRADIUS Self-service Portal', long_description=open('README.md').read(), classifiers=[ 'Development Status :: 6 - Mature', 'Intended Audience :: Developers', 'Programming Language :: Python :: 2.7', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Systems Administration :: Authentication/Directory', ], packages=find_packages(), package_data=package_data, keywords=['radius','toughradius','self-service ','pandarss'], zip_safe=True, include_package_data=True, eager_resources=['pandarss'], install_requires=install_requires, entry_points={ 'console_scripts': [ 'pandarss = pandarss.pandarss:main', 'pandarss_txrun = pandarss.pandarss:txrun', ] } )
[ "pandaman1999@foxmail.com" ]
pandaman1999@foxmail.com
5429b29c77f91823ead2f1173cbc0e47dd660763
d95e6dbbcd0673b8adb81b4bd8c6bf5b8917a6c4
/spatial_paper_data_archive.py
d4feb4e672e31530d051c3031367e3ff7b3d0e81
[ "MIT" ]
permissive
Timothy-W-Hilton/COS_Spatial_Analyses
ab907c811605ab6cbd406451bd1dbb386e88695c
dfb6f99f8c7181739c2079936dce83a4d86f5c1f
refs/heads/master
2021-01-20T20:39:00.748486
2016-06-17T20:56:25
2016-06-17T20:56:25
61,402,018
0
0
null
null
null
null
UTF-8
Python
false
false
2,481
py
"""Calculate total size of COS spatial paper data files and copy the data files to a single directory tree for archiving """ import os import os.path import shutil from stem_pytools import NERSC_data_paths as ndp def Get_Human_Readable(size, precision=2): """http://stackoverflow.com/questions/5194057/better-way-to-convert-file-sizes-in-python """ suffixes = ['B', 'KB', 'MB', 'GB', 'TB'] suffixIndex = 0 while size > 1024 and suffixIndex < 4: suffixIndex += 1 # increment the index of the suffix size = size/1024.0 # apply the division return "%.*f%s" % (precision, size, suffixes[suffixIndex]) def get_spatial_paper_data_total(runs): all_data_sum = 0 for k, this_run in runs.items(): for this_file in (this_run.aqout_path, this_run.gpp_path, this_run.gppraw_path, this_run.fcos_path): if this_file is not None: all_data_sum += os.path.getsize(this_file) print "Spatial paper data total: " + Get_Human_Readable(all_data_sum) return all_data_sum def make_data_archive(root_dir, runs): """Copy all non-regridded GPP, regridded GPP, STEM AQOUT, and fCOS netcdf files to a single directory tree for archiving. """ if os.path.exists(root_dir): try: shutil.rmtree(root_dir) except: print "unable to delete".format(root_dir) try: os.makedirs(root_dir) except: print "unable to create {}".format(root_dir) for k, this_run in runs.items(): print "copying {} files".format(k) this_run_dir = os.path.join(root_dir, k) os.makedirs(this_run_dir) for this_file in (this_run.aqout_path, this_run.gpp_path, this_run.gppraw_path, this_run.fcos_path): if this_file is not None: print " copying {}".format(os.path.basename(this_file)) shutil.copy(this_file, this_run_dir) if k is 'climatological_bnd': for this_bnd in (runs[k].top_bounds_path, runs[k].lateral_bounds_path): print " copying {}".format(os.path.basename(this_bnd)) shutil.copy(this_bnd, this_run_dir) if __name__ == "__main__": runs = ndp.get_Spatial_Paper_runs() total = get_spatial_paper_data_total(runs) archive_dir = os.path.join(os.getenv('SCRATCH'), 'SpatialPaperData') make_data_archive(archive_dir, runs)
[ "thilton@ucmerced.edu" ]
thilton@ucmerced.edu
85e36f729f2df6e0df523fa8d40795f65a763c64
44576656e6be64c8a8f6823f989ecaae1ffc32c8
/blog/migrations/0007_auto_20200225_2025.py
456bf4d0c25b73c63c0ce130bb7946c4d9bdca5f
[]
no_license
Rainysponge/mysite
ecbaf5d08a0b4863894e9037af82d4c7b18818a7
4ee8aff0c5b90a91041853cea0a14d2a3d063144
refs/heads/master
2021-01-26T01:56:21.129558
2020-02-26T13:37:10
2020-02-26T13:37:10
243,265,221
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
# Generated by Django 2.1.15 on 2020-02-25 20:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0006_auto_20200212_1741'), ] operations = [ migrations.AlterField( model_name='blog', name='content', field=models.TextField(), ), ]
[ "375364412@qq.com" ]
375364412@qq.com
2d2699072eae36c651fe088d627f69f90b657d58
b39ec77a8f5a5779edcecf5a09c39224472fd139
/Clase03/contar.py
0b60d0a7381ff2765efd0891e4b3ce879ffe2a47
[]
no_license
GonzaloMonteodorisio/ejercicios-python-unsam
76b6288491ccba8f44b819c26bed4811268e995e
37ba16197107717a4c582eb552175e1c981c286b
refs/heads/main
2023-07-28T07:18:10.178029
2021-09-15T05:42:46
2021-09-15T05:42:46
406,627,663
0
0
null
null
null
null
UTF-8
Python
false
false
56
py
for n in range(10,0,-1): print(n, end=' ')
[ "gonzalomonteodorisio@gmail.com" ]
gonzalomonteodorisio@gmail.com
a5e6bca6ad202cb0a10c51af6c42e62ce5c65b3c
a113ca707799131092e5e5ad9feb71e69c3659e7
/Employee_project/urls.py
7816a4acebf308e0c7be98e0f351ad69e90bb4b0
[]
no_license
thuytran-team/Employee_Project
648680e9a1fb9ab7827ae17d21b569b05e007ccc
6bf588b5d294da12a5cfb380b062203bfd68f9e2
refs/heads/master
2022-12-17T06:53:39.358047
2020-09-12T22:55:12
2020-09-12T22:55:12
295,039,394
0
0
null
null
null
null
UTF-8
Python
false
false
823
py
"""Employee_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('employee/',include('employee_register.urls')) ]
[ "thuytran898@gmail.com" ]
thuytran898@gmail.com
9041c058921688f8d5835b092cb95e45d74fffcf
042f3881f11f9fc7f7d70aa8d7822c40f21c8fd0
/crankycoin/__init__.py
5526dd401e47ec089c0926d4f6b50b5e590db7c3
[ "MIT" ]
permissive
benthomasson/crankycoin
1e3801c06a1e9e217de0a171f2b6d5f6926d2446
37dc3048cef9b17745da0d21b0c9095a081a87a0
refs/heads/master
2021-01-01T15:21:37.481370
2017-07-17T09:00:04
2017-07-17T09:00:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
from block import * from blockchain import * from node import * from wallet import * from errors import *
[ "cranklin@gmail.com" ]
cranklin@gmail.com
20635375b97f4e276fbfab8866c1ba60fc8aff05
ffddf50985bd61a6bb4d7001fe838f8d5c709bf4
/Builders/TechnologyBUILD
3833e5eef716d6e008e45dbb6d8221286f31d5c2
[]
no_license
NoahBarrett98/Lost-and-Found
9a7216e401aa5f3e31da637f1c20e75d681eb12d
0d828029c466aeda9e5aac27695d22335e574e26
refs/heads/master
2021-01-26T07:44:06.501000
2020-03-22T19:47:42
2020-03-22T19:47:42
243,370,004
1
1
null
2020-03-10T13:58:11
2020-02-26T21:31:06
Python
UTF-8
Python
false
false
752
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 8 09:27:37 2020 @author: hannahmacdonell """ #H: Technology(itemID, tBrand, device, serialNo) import random import csv d = [] c = open("device.txt", "r") for line in c: d.append(line.strip().split('\n')[0]) c.close() l = [] c = open("tBrand.txt", "r") for line in c: l.append(line.strip().split('\n')[0]) c.close() with open('tech.csv', mode='w') as data_file: data_writer = csv.writer(data_file, delimiter=',') data_writer.writerow(['tBrand','Device','SerialNo']) for x in range(1000): data_writer.writerow([l[random.randint(0,len(l)-1)],d[random.randint(0,len(d)-1)],str(random.randint(4123456,9123456))]) data_file.close()
[ "noreply@github.com" ]
noreply@github.com
3c70c973d79447bece9afe2d49c5fd583a4173dd
4bfe4afd1b1e11f9a03d8e3640aa297c875c076d
/demos/basic.py
9a86954581726ae9f13bad67294d6355e90d696a
[]
no_license
pankajti/capstone
81cdd2187e71e8d1bf327579b574ea7cf91a7e76
af57a52d34dbcdd40e8e81f1d72c142263a98893
refs/heads/master
2021-03-02T09:49:51.054153
2020-07-09T02:28:58
2020-07-09T02:28:58
245,857,468
0
0
null
2020-03-22T00:54:01
2020-03-08T17:26:43
null
UTF-8
Python
false
false
240
py
from tensorflow.keras.layers import Dense,SimpleRNN from tensorflow.keras import Sequential import numpy as np from tensorflow.keras.utils import plot_model model =Sequential() model.add(Dense(2)) model.add(Dense(1)) plot_model(model)
[ "pankaj.tiwari2@gmail.com" ]
pankaj.tiwari2@gmail.com
add2368027110c4b923645c5840c3a6f70084c32
a354f18367975097f0b19de816e763425e31f599
/lists/admin.py
ea9e3c8fc9bfcb1226d740be04827446a4be89a3
[]
no_license
egibney/listapp
56f02c4a3311059aca0c73933241bff4d01f177a
f15875c304ff622985eb2dad7b8a20cc4def8b3f
refs/heads/master
2021-01-22T17:47:59.312735
2012-09-14T03:04:55
2012-09-14T03:04:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
145
py
from lists.models import List from lists.models import Item from django.contrib import admin admin.site.register(List) admin.site.register(Item)
[ "epgibney@gmail.com" ]
epgibney@gmail.com
237ae19dcd1861ce4f5ee4f9d3bcf53f20e82e1f
ca152095b72ce93b6ca79042084f5ef70c658576
/search_hparam.py
ae2d717cf0cdbbb6e9de860e789f8fc2287a1fcc
[]
no_license
fl16180/SeqModel
72806eca1ec21b564262f8d444366a984ede7c64
3bba92bc23d0fef55a479f18e731c50e1feed186
refs/heads/master
2020-12-14T16:49:13.468564
2020-05-12T00:24:17
2020-05-12T00:24:17
234,813,501
0
0
null
null
null
null
UTF-8
Python
false
false
6,639
py
import argparse import numpy as np # hide sklearn deprecation message triggered within skorch from warnings import simplefilter simplefilter('ignore', category=FutureWarning) import torch from skorch import NeuralNetClassifier from skorch.callbacks import LRScheduler from skorch.callbacks import EpochScoring from sklearn.metrics import plot_roc_curve, roc_auc_score from sklearn.metrics import plot_precision_recall_curve, average_precision_score from constants import * from datasets import * import models from utils.model_utils import * from utils.data_utils import get_roadmap_col_order DATA_CHOICES = ['mpra', 'mpra+scores', 'neighbor', 'neighbor+scores'] MODEL_CFG = { 'mpra': None, 'mpra+scores': None, 'neighbor': None, 'neighbor+scores': None } def fit_model(args): torch.manual_seed(1000) print(f'Fitting model for {args.data}:') project = args.project auc = EpochScoring(scoring='roc_auc', lower_is_better=False) apr = EpochScoring(scoring='average_precision', lower_is_better=False) if args.data == 'mpra': train_df = load_train_set(project, datasets=['roadmap']) proc = Processor(project) train_df = proc.fit_transform(train_df, na_thresh=0.05) proc.save(args.data) X_train = train_df.drop(['chr', 'pos', 'Label'], axis=1) \ .values \ .astype(np.float32) y_train = train_df['Label'].values.astype(np.int64) net = NeuralNetClassifier( models.MpraDense, batch_size=256, optimizer=torch.optim.Adam, optimizer__weight_decay=2e-6, lr=1e-4, max_epochs=20, module__n_input=1016, module__n_units=(400, 250), module__dropout=0.3, callbacks=[auc, apr], iterator_train__shuffle=True, train_split=None ) elif args.data == 'mpra+scores': train_df = load_train_set(project, datasets=['roadmap', 'eigen', 'regbase']) proc = Processor(project) train_df = proc.fit_transform(train_df, na_thresh=0.05) proc.save(args.data) X_train = train_df.drop(['chr', 'pos', 'Label'], axis=1) \ .values \ .astype(np.float32) y_train = train_df['Label'].values.astype(np.int64) net = NeuralNetClassifier( models.MpraDense, batch_size=256, optimizer=torch.optim.Adam, optimizer__weight_decay=2e-6, lr=1e-4, max_epochs=20, module__n_input=1079, module__n_units=(400, 250), module__dropout=0.3, callbacks=[auc, apr], iterator_train__shuffle=True, train_split=None ) elif args.data == 'neighbor': X_train = load_train_neighbors(project).astype(np.float32) tmp = load_train_set(project, datasets=['roadmap', 'eigen', 'regbase'], make_new=False) y_train = tmp['Label'].values.astype(np.int64) assert X_train.shape[0] == y_train.shape[0] net = NeuralNetClassifier( models.MpraCNN, batch_size=256, optimizer=torch.optim.Adam, optimizer__weight_decay=1e-4, lr=5e-4, max_epochs=20, callbacks=[auc, apr], iterator_train__shuffle=True ) elif args.data == 'neighbor+scores': print('\tLoading neighbors') X_neighbor = load_train_neighbors(project).astype(np.float32) print('\tLoading scores') train_df = load_train_set(project, datasets=['roadmap', 'eigen', 'regbase']) proc = Processor(project) train_df = proc.fit_transform(train_df, na_thresh=0.05) proc.save(args.data) print('\tArranging data') rm_cols = [f'{x}-E116' for x in ROADMAP_MARKERS] # rm_cols = [x for x in get_roadmap_col_order(order='marker') if 'E116' in x] X_score = train_df.drop(['chr', 'pos', 'Label'] + rm_cols, axis=1) \ .values \ .astype(np.float32) y_train = train_df['Label'].values.astype(np.int64) X_train = (X_neighbor, X_score) net = NeuralNetClassifier( models.MpraFullCNN, batch_size=256, optimizer=torch.optim.Adam, optimizer__weight_decay=0, lr=5e-4, max_epochs=20, callbacks=[auc, apr], iterator_train__shuffle=True ) # import sys; sys.exit() net.fit(X_train, y_train) class_pred = net.predict(X_train) score_pred = net.predict_proba(X_train) print('\tAUROC: ', roc_auc_score(y_train, score_pred[:, 1])) print('\tAUPR: ', average_precision_score(y_train, score_pred[:, 1])) save_model(net, project, args.data) def evaluate_model(args): print(f"Evaluating model for {args.data}:") project = args.project net = load_model(project, args.data) X_test = load_test_neighbors(project) X_test = X_test.astype(np.float32) tmp = load_test_set(project, datasets=['roadmap', 'eigen', 'regbase']) y_test = tmp['Label'].values.astype(np.int64) # test_df = load_test_set(project, datasets=['roadmap', 'eigen', 'roadmap']) # proc = Processor(project) # proc.load(args.data) # test_df = proc.transform(test_df) # X_test = test_df.drop(['chr', 'pos', 'Label'], axis=1) \ # .values \ # .astype(np.float32) # y_test = test_df['Label'].values.astype(np.int64) class_pred = net.predict(X_test) score_pred = net.predict_proba(X_test) print('\tAUROC: ', roc_auc_score(y_test, score_pred[:, 1])) print('\tAUPR: ', average_precision_score(y_test, score_pred[:, 1])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--project', '-p', choices=PROJ_CHOICES, required=True) parser.add_argument('--data', '-d', default='mpra+scores', choices=DATA_CHOICES, help='Which data/model to train on') parser.add_argument('--full', default=False, help='Fit all models (overrides --data)') parser.add_argument('--evaluate', '-e', action='store_true', default=False, help='Evaluate model on test set after fitting') args = parser.parse_args() fit_model(args) if args.evaluate: evaluate_model(args)
[ "fredlu.flac@gmail.com" ]
fredlu.flac@gmail.com
55dc1576cdd1996d90d1c4d72010b67b9c856d33
a54809b430481f1b0047f046d412ffc3f0c7fe68
/myenv/lib/python3.6/encodings/mbcs.py
fef3c7ee1eaa9a11983fb638e663bd09cc620156
[]
no_license
vineet0713/PaaS-ProberS-AWS-EB-
2521d4ee7e41e6d25c839cfea672d5706b4dbd85
1f9ca9e5d59ddcb3f94d7aaa96ca66719bc805cf
refs/heads/master
2020-04-30T05:47:55.793035
2019-03-20T02:54:43
2019-03-20T02:54:43
176,635,164
0
1
null
null
null
null
UTF-8
Python
false
false
105
py
/usr/local/Cellar/python/3.6.4_3/Frameworks/Python.framework/Versions/3.6/lib/python3.6/encodings/mbcs.py
[ "vineet0713@gmail.com" ]
vineet0713@gmail.com
46296617c7f07b0473680d71fe3811728becd60d
5f3902453ad41436382bb77e3e6a06dfe94deaed
/ask7.py
b2b9666cc40348812f8a3686d3d5bcd7c8b2a150
[]
no_license
dimitrisadam/askhseis
23a6c45a33004c2b50837a42e10dae72479adc34
504f270056e2afa6e331bd501a8f476bf35dd991
refs/heads/master
2021-01-21T08:21:33.339580
2017-02-27T18:13:38
2017-02-27T18:13:38
83,341,566
0
0
null
null
null
null
UTF-8
Python
false
false
2,647
py
import tweepy from tweepy import OAuthHandler import sys consumer_key = '' consumer_secret = '' access_token = '' access_secret = '' auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) api = tweepy.API(auth) #pairnei thn lista me ta tweets (sunolika 10).Ta bazei ta epejergazetai ena ena #afairwntas ta https-links ka8ws den einai lejeis kai lejeis pou periexoun mesa ton xarakthra # '\' ka8ws upodikniei oti einai photografia.Epishs afairei memonomenes paules kai dipla kena. #Telos, epistrefei to a8roisma twn lejewn pou metrhse sta tweets. def countWords(alltweets): httpFlag = "http" delimeter = "\\" paula="-" doublespace="" totalWords = 0 test =" " for i in range(len(alltweets)): test = str(alltweets[i]) test = test.split(" ") for j in range(len(test)): if delimeter not in test[j] and httpFlag not in test[j] and test[j] is not paula and test[j] is not doublespace: totalWords+=1 #print test[j] return totalWords firstUser = raw_input("Dwste to tweeter username tou prwtou xrhsth: \n") secondUser = raw_input("Dwste to tweeter username tou deuterou xrhsth: \n") #firstUserTweets = api.user_timeline(screen_name="RollingStones",count=10) #edw diavazw kai vazei sto firsttweets ta 10 pio prosfata tweets tou prwtou user firstUserTweets = api.user_timeline(screen_name=firstUser,count=10) firsttweets = [[tweet.text.encode('utf-8')] for tweet in firstUserTweets] #print firsttweets #secondUserTweets = api.user_timeline(screen_name="rogerfederer",count=10) #edw diavazw kai vazei sto secondtweets ta 10 pio prosfata tweets tou deuterou user secondUserTweets = api.user_timeline(screen_name=secondUser,count=10) secondtweets = [[tweet.text.encode('utf-8')] for tweet in secondUserTweets] #print secondtweets # Elegxos gia an exoun ginei ta 10 tweets. An oxi to afhnw na sunexisei 8a borousa omws na kanw kai ena sys.exit(0) if len(firsttweets) < 10: print '\nWARNING: O xrhsths',firstUser,'den exei kanei 10 tweets' if len(secondtweets) < 10: print '\nWARNING: O xrhsths',secondUser,'den exei kanei 10 tweets' firstUserTotalWorlds = countWords(firsttweets) secondUserTolalWorlds = countWords(secondtweets) if firstUserTotalWorlds > secondUserTolalWorlds: print '\nPerissoteres lexeis exei o user',firstUser,'pou exei',firstUserTotalWorlds,'lexeis.O user',secondUser,'exei',secondUserTolalWorlds,'lexeis' else: print '\nPerissoteres lexeis exei o user',secondUser,'pou exei',secondUserTolalWorlds,'lexeis.O user',firstUser,'exei',firstUserTotalWorlds,'lexeis' #print 'totalwords =',countWords(firsttweets) #print 'totalwords =',countWords(secondtweets)
[ "mitsoseleysina2@gmail.com" ]
mitsoseleysina2@gmail.com
cc74a182310695445168f47a0e42b74f72ac72f7
6026c5fa42c561256510fd997286c21cb935690b
/volumeWidgets.py
be70dd6721a0fd5913db0939ec99b7a62eba1e57
[]
no_license
frankbx/Volume
b5894e7ac13491e0c52af2ec39ebfea5a695ecf2
516815a1498e26b43d73f0c7f55da5fb2765b2d2
refs/heads/master
2020-04-03T22:40:43.346951
2017-03-13T04:37:05
2017-03-13T04:37:05
58,268,339
0
0
null
null
null
null
UTF-8
Python
false
false
3,676
py
import pyqtgraph as pg from PyQt4 import QtCore, QtGui # Create a subclass of GraphicsObject. # The only required methods are paint() and boundingRect() # (see QGraphicsItem documentation) class CandlestickItem(pg.GraphicsObject): def __init__(self): pg.GraphicsObject.__init__(self) self.flagHasData = False def set_data(self, data): self.data = data # data must have fields: time, open, close, min, max self.flagHasData = True self.generatePicture() self.informViewBoundsChanged() def generatePicture(self): # pre-computing a QPicture object allows paint() to run much more quickly, # rather than re-drawing the shapes every time. self.picture = QtGui.QPicture() p = QtGui.QPainter(self.picture) p.setPen(pg.mkPen('w')) barWidth = 1 / 3. for (open, close, min, max, index) in self.data: p.drawLine(QtCore.QPointF(index, min), QtCore.QPointF(index, max)) if open > close: p.setBrush(pg.mkBrush('r')) else: p.setBrush(pg.mkBrush('g')) p.drawRect(QtCore.QRectF(index - barWidth, open, barWidth * 2, close - open)) p.end() def paint(self, p, *args): if self.flagHasData: p.drawPicture(0, 0, self.picture) def boundingRect(self): # boundingRect _must_ indicate the entire area that will be drawn on # or else we will get artifacts and possibly crashing. # (in this case, QPicture does all the work of computing the bouning rect for us) return QtCore.QRectF(self.picture.boundingRect()) class CandleWidget(pg.PlotWidget): def __init__(self, raw_data): super(CandleWidget, self).__init__() self.update(raw_data) # self.candle_data = raw_data.loc[:, ['open', 'close', 'low', 'high']] # r, c = self.candle_data.shape # self.candle_data['num'] = range(1, r + 1) # self.item = CandlestickItem() # self.item.set_data(self.candle_data.values) self.addItem(self.item) def update(self, raw_data): # raw_data.sort_index(axis=0, inplace=True) self.candle_data = raw_data.loc[:, ['open', 'close', 'low', 'high']] r, c = self.candle_data.shape self.candle_data['num'] = range(1, r + 1) self.item = CandlestickItem() self.item.set_data(self.candle_data.values) # app = QtGui.QApplication([]) # df = ts.get_hist_data('000681', '2015-01-01', ktype='w') # r, c = df.shape # print(r) # cData = df.copy().loc[:, ['open', 'close', 'low', 'high']] # cData['num'] = range(1, r + 1) # # print(cData) # # cData = np.array(cData) # item = CandlestickItem() # item.set_data(cData.values) # # plt = pg.plot() # plt.addItem(item) # plt.setWindowTitle('pyqtgraph example: customGraphicsItem') # # # def update(): # global item # df = ts.get_hist_data('000681', '2015-01-01', ktype='d') # r, c = df.shape # print(r) # cData = df.loc[:, ['open', 'close', 'low', 'high']] # cData['num'] = range(1, r + 1) # item.set_data(cData.values) # # app.processEvents() ## force complete redraw for every plot # # # timer = QtCore.QTimer() # timer.timeout.connect(update) # timer.start(10000) # df = ts.get_hist_data('000681', '2015-01-01', ktype='w') # print(enumerate(df)) # for (value) in df.head(10).values: # print(value) # print(type(value)) ## Start Qt event loop unless running in interactive mode or using pyside. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()
[ "xiang.bao.frank@gmail.com" ]
xiang.bao.frank@gmail.com
5f1d4ae6e02e4e33bd1e5716d22ee7da2b0c0cbd
f774ccfe88871fbe37b52487253108144c07f968
/exer95.py
d4a749738c38516b4e2e8805d75fdd3495a48c8e
[]
no_license
capy-larit/exercicios_python
4bcfdc8985983dc69c63f315931c200c4c9f1100
c92b8ff31e2eb0c87f2dfdad9d97149db6f1181e
refs/heads/master
2023-03-23T05:29:07.409948
2020-09-08T22:42:48
2020-09-08T22:42:48
245,882,895
0
0
null
2021-03-15T21:43:15
2020-03-08T20:28:15
Python
UTF-8
Python
false
false
675
py
""" Faça um programa utilizando um dict (dicionário) que leia dados de entrada do usuário. O usuário deve entrar com os dados de uma pessoa como nome, idade e cidade onde mora. Após isso, você deve imprimir os dados como o exemplo abaixo: nome: João idade: 20 cidade: São Paulo """ def chamar_menu(): nome = input('Digite seu nome: ') idade = int(input('Digite sua idade: ')) cidade = input('Digite sua cidade: ') dict[nome]=[idade, cidade] dict = {} try: chamar_menu() except: print('A idade deve ser um número inteiro.') chamar_menu() for chave, item in dict.items(): print(f'Nome: {chave}\nIdade: {item[0]}\nCidade: {item[1]}')
[ "larissa.laritt@icloud.com" ]
larissa.laritt@icloud.com
48201b6182773eb907fb42c0093c1f0bf47efc96
853c189602a667990eda858db98d163fb597caa1
/tfx/orchestration/experimental/core/constants.py
e5a5208afa70ef912a346dc02d4fe9ccce962866
[ "Apache-2.0" ]
permissive
swap-10/tfx
9bef96fc592810ed2d7dfa5dd60044c9ac481e02
8e80ce2486b4d7b219dcff906d6930e62c5fdd45
refs/heads/master
2023-07-15T22:54:18.642120
2021-09-06T06:17:48
2021-09-06T06:17:48
402,296,955
0
0
Apache-2.0
2021-09-02T05:49:03
2021-09-02T05:09:23
null
UTF-8
Python
false
false
823
py
# Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Constants shared across modules.""" EXECUTION_ERROR_MSG_KEY = '__execution_error_msg__' IMPORTER_NODE_TYPE = 'tfx.dsl.components.common.importer.Importer' RESOLVER_NODE_TYPE = 'tfx.dsl.components.common.resolver.Resolver'
[ "tensorflow-extended-nonhuman@googlegroups.com" ]
tensorflow-extended-nonhuman@googlegroups.com
71a4c69ae3c773949b3127804ef78ee861a60fee
f9407b6f9454640b35753a39ac3fc57c1a105630
/parse_out_email_text.py
16017ff5240a650c9e78703bc219d8a033e475aa
[]
no_license
saeidmoha/tools
5e91c7efc79fe75a1a780565233cdcd9b23c000d
18f20dfdade5a374c5ec2cbd71f4b661d61788db
refs/heads/master
2021-08-14T14:43:31.181434
2017-11-16T02:00:27
2017-11-16T02:00:27
110,909,987
0
0
null
null
null
null
UTF-8
Python
false
false
1,703
py
#!/usr/bin/python from nltk.stem.snowball import SnowballStemmer import string def parseOutText(f): """ given an opened email file f, parse out all text below the metadata block at the top (in Part 2, you will also add stemming capabilities) and return a string that contains all the words in the email (space-separated) example use case: f = open("email_file_name.txt", "r") text = parseOutText(f) """ f.seek(0) ### go back to beginning of file (annoying) all_text = f.read() ### split off metadata content = all_text.split("X-FileName:") #print ("content[0] = ", content[0], "content[1] = ", content[1]) words = "" stemmer = SnowballStemmer("english") if len(content) > 1: ### remove punctuation #text_string = content[1].translate(string.maketrans("", ""), string.punctuation) text_string = content[1].translate(str.maketrans("", "", string.punctuation)) ### project part 2: comment out the line below #words = text_string ### split the text string into individual words, stem each word, ### and append the stemmed word to words (make sure there's a single ### space between each stemmed word) text_string = ' '.join(text_string.split()) for word in text_string.split(" "): stemword = stemmer.stem(word) words += stemword + ' ' return words def main(): ff = open("../text_learning/test_email.txt", "r") #ff = open("../maildir/bailey-s/deleted_items/101.", "r") text = parseOutText(ff) print (text) if __name__ == '__main__': main()
[ "saeid@saeidm.com" ]
saeid@saeidm.com
482b54447b3f7cd5d3fb519221920951b5b68ed0
d9764a604c85c134ff217747d243eac8fe28e792
/src/demo2.py
e3c0801f18c91206c2e18df08c2caacf8e0007bf
[]
no_license
afcarl/INF421-project
5a0130c3ba6e0c767323001048d3f191379dbc6e
dc6eef684f6d277b6a9bbbc227a9e20a1525e115
refs/heads/master
2020-03-19T21:21:53.465240
2017-08-14T13:39:52
2017-08-14T13:39:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,334
py
#!/usr/bin/env python3 """ Special notes : This implementation supports MULTIPLE shortest path. (except for the number_of_possible_locations_with_mindist_simple function) """ import random from Graph import Graph from algo import * from unused import * from Dijkstra import * from util import timeit from reach import reach #################### data = '/Users/louisabraham/Downloads/RoadNetworks/data/france.in' logging = '/Users/louisabraham/Downloads/RoadNetworks/vis/points.js' hour = 3600000 # We can control the display of chronos using timeit.activated timeit.activated = True #################### # graph importation g = Graph.from_file(data) # we chose a random starting point v = random.choice(list(g.keys())) # # # Question 1.1 # print(number_of_possible_locations(g, v, 1 * hour)) # # # the same result is computed # print(number_of_possible_locations_with_mindist_dijkstra( # g, v, 1 * hour, 0)) # print(number_of_possible_locations_with_mindist_dijkstra( # g, v, 1 * hour, 0)) print(number_of_possible_locations_with_mindist_dijkstra( g, v, 1 * hour, 2 * hour, logging=logging)) input() g.generate_converse() print(number_of_possible_locations_with_mindist_dijkstra( g.converse, v, 1 * hour, 2 * hour, logging=logging)) # print(reach(g, v)) # # # We can free memory like this # dijkstra.clean()
[ "louis.abraham@yahoo.fr" ]
louis.abraham@yahoo.fr
e253dc4bc39f59c0d01f1734c35d33edfc76853a
c5e7926ffa9af44e3d3fea7c854c013898b8f346
/scrap_tenders/scrap_tenders/items.py
da60390af0bf3875f87e8865f44838ec5e8df41d
[ "MIT" ]
permissive
Salomari1987/med-tenders-egypt
a821cd1064a5c68cbd7318c8ade254667692b7d9
31b5061fe28c56d5e9a8bb4b267148848bfeaf5a
refs/heads/master
2021-01-19T18:32:36.773483
2017-04-19T00:36:02
2017-04-19T00:40:26
88,364,697
0
0
null
null
null
null
UTF-8
Python
false
false
520
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html # from scrapy.item import Item, Field # # # class StackItem(Item): # Tender_Notice_Type = Field() # Country = Field() # Category = Field() # Description = Field() # Deadline = Field() # Ref = Field() from scrapy_djangoitem import DjangoItem from tenders_django_app.models import Tender class StackItem(DjangoItem): django_model = Tender
[ "s.z.alomari.1987@gmail.com" ]
s.z.alomari.1987@gmail.com
5c80ed9e14391ad32e4cc6fd9fcae8dce388c672
479518429066a4200b0c9ffbc42f22620dee1749
/app.py
5074f7904d2af983e17faf125c1a1f1f6874b9a4
[]
no_license
nikhilkumarsingh/nitdhack
d2b4871c2aa3ef461c409a2f75e4f346759f1797
633ddf770c19fb8b0dd66479bc8e865e36181ffa
refs/heads/master
2021-01-19T21:33:27.880021
2017-04-18T23:43:06
2017-04-18T23:43:06
88,665,337
0
1
null
2018-10-03T05:33:57
2017-04-18T19:59:40
JavaScript
UTF-8
Python
false
false
1,291
py
import flask app = flask.Flask(__name__,static_folder='static') app.config.from_object(__name__) app.config['SECRET_KEY'] = '7d441f27d441f27567d441f2b6176a' @app.route('/') def home(): return flask.render_template('index.html') def NearbySearch(lat,lng,keyword,radius=1000): key="AIzaSyApuFoKxVMRQ2einlsA0rkx2S4WJjJIh34" url="https://maps.googleapis.com/maps/api/place/nearbysearch/json?" url+="location=%f,%f&" % (lat,lng) url+="radius=%i&" % radius url+="type=%s&" % keyword url+="key=%s" % key response=requests.get(url) json_dict=response.json() res=json_dict['results'] info_pack=[] for x in res: placeid = x['place_id'] url = "https://maps.googleapis.com/maps/api/place/details/json?placeid={}&key={}".format(placeid,key) r = requests.get(url).json()['result'] info = {} info['name'] = r['name'] info['lat'] = r['geometry']['location']['lat'] info['lng'] = r['geometry']['location']['lng'] info_pack.append(info) return info_pack @app.route('/query', methods = ['POST']) def query(): if flask.request.method == 'POST': # lat,lang = lat, lang = 28,76 data = {'locations':NearbySearch(lat,lng,'doctor')} print(flask.request.form['query']) return data if __name__ == "__main__": app.run(debug = True, port=5003)
[ "nikhilksingh97@gmail.com" ]
nikhilksingh97@gmail.com
d43e3d2d2a4cade3e15bd4256deff2b47f891672
2e4c9dafb6fc03d48df9f80d506474b87438056d
/fibers.py
55b6a4bd996a1723437447420a402201d3353313
[]
no_license
ericwang915/pypbc
fd35d2d91d2f50c6b0353abc84b3dcd72261006f
22c97949c549867103e667d998e8be2cfb1911a6
refs/heads/master
2020-06-11T00:01:54.795875
2009-09-23T09:00:41
2009-09-23T09:00:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,479
py
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Basic functions to read and write TrackVis .trk files and to play with fibers. Copyright (c) 2009 Emanuele Olivetti <emanuele_AT_relativita.com> This library is free software; you can redistribute it and/or modify it either under the terms of the GNU General Public License version 3 as published by the Free Software Foundation. """ import numpy as N import sys # Definition of trackvis header structure. # See http://www.trackvis.org/docs/?subsect=fileformat # See http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html trk_header_structure = [['id_string', 1, 'S6'], ['dim', 3, '<h'], ['voxel_size', 3, '<f4'], ['origin', 3, '<f4'], ['n_scalars', 1, '<h'], ['scalar_name', 10, 'S20'], ['n_properties', 1, '<h'], ['property_name', 10, 'S20'], ['reserved', 1, 'S508'], ['voxel_order', 1, 'S4'], ['pad2', 1, 'S4'], ['image_orientation_patient', 6, '<f4'], ['pad1', 1, 'S2'], ['invert_x', 1, 'S1'], ['invert_y', 1, 'S1'], ['invert_z', 1, 'S1'], ['swap_xy', 1, 'S1'], ['swap_yz', 1, 'S1'], ['swap_zx', 1, 'S1'], ['n_count', 1, '<i4'], ['version', 1, '<i4'], ['hdr_size', 1, '<i4'], ] def read_header(f): """ Read and parse .trk file header structure. """ header = {} for field_name, count, dtype in trk_header_structure: header[field_name] = N.fromfile(f, dtype=dtype, count=count) pass assert(f.tell()==1000) # header is always 1000 bytes. return header def write_header(f, header): """Write .trk header to file. """ for field_name, count, dtype in trk_header_structure: # Note that ".astype(dtype)" is just to be sure or correct types: header[field_name].astype(dtype).tofile(f) pass assert(f.tell()==1000) # header is always 1000 bytes. return def print_header(header): """Print relevant info of .trk header. """ print "Header:" relevant_fields = ['dim', 'voxel_size', 'origin', 'n_count' ] for field in relevant_fields: print '\t',field, ':', header[field] pass return def progress_meter(position, total, message, steps=10): """Simple progress meter. """ if position%(int(total/steps))==0: print message, str(1+int(100.0*position/total))+'%' sys.stdout.flush() pass return def read_fibers(f, header): """Read fibers from .trk file and fill a list. """ fiber = [] # structure of each entry of the list: # [[X1,Y1,Z1,SCALAR1...],...,[Xn,Yn,Zn,SCALARn...]], [PROPERTIES] # Note that in PBC2009 trckvis files there are no scalars or # properties, which means that the actual structure of the fiber # list is simply: # fiber_id : [[X1,Y1,Z1],...,[Xn,Yn,Zn]], [] n_scalars = header['n_scalars'][0] n_fibers = header['n_count'][0] for fiber_id in range(n_fibers): num_points = N.fromfile(f, dtype='<i4', count=1)[0] xyz_scalar = N.fromfile(f, dtype='<f4', count=num_points*(3+n_scalars)).reshape(num_points, 3+n_scalars) properties = N.fromfile(f, dtype='<f4', count=header['n_properties'][0]) fiber.append([xyz_scalar, properties]) progress_meter(fiber_id, n_fibers, 'Reading fibers...') pass return fiber def write_fibers(f, fiber, header): """Write fibers to file in .trk format. Assumption: header has already been written. """ n_scalars = header['n_scalars'][0] n_fibers = header['n_count'][0] for fiber_id in range(n_fibers): num_points = N.array((fiber[fiber_id][0]).shape[0], dtype='<i4') num_points.tofile(f) xyz_scalar = N.array(fiber[fiber_id][0], dtype='<f4') xyz_scalar.tofile(f) properties = N.array(fiber[fiber_id][1], dtype='<f4') properties.tofile(f) progress_meter(fiber_id, n_fibers, 'Writing fibers...') pass return def mm2voxel(xyz, header): """Converts coordinates from mm to voxel. """ return N.floor(xyz/header['voxel_size']).astype('i') def voxel2mm(Vxyz, header): """Converts coordinates from voxel to mm. """ return (Vxyz+0.5)*header['voxel_size'] def build_voxel_fibers_dict(fiber, header): """Build a dictionary that given a voxel returns all fibers (IDs) crossing it. """ voxel2fibers = {} n_fibers = len(fiber) for fiber_id in range(n_fibers): xyz = fiber[fiber_id][0] ijk = mm2voxel(xyz, header) for i in range(xyz.shape[0]): try: voxel2fibers[tuple(ijk[i,:])].append(fiber_id) except KeyError: voxel2fibers[tuple(ijk[i,:])] = [fiber_id] pass pass progress_meter(fiber_id, n_fibers, 'Mapping voxels to fibers...') pass n_voxels = len(voxel2fibers.keys()) # Now transform each list of IDs in an array of IDs: for n, ijk in enumerate(voxel2fibers.keys()): voxel2fibers[ijk] = N.array(voxel2fibers[ijk]) progress_meter(n, n_voxels, 'Converting lists to arrays...') pass return voxel2fibers if __name__=="__main__": print "This simple program reads a TrackVis .trk file, parse it, build" print "structures to represent fibers as Python list of arrays" print "and then saves structures in TrackVis .trk file format." print "The resulting file is expected to be identical to the original." print "As a further step a dictionary, mapping voxel to fibers, is built" print "and some examples using it are shown." # filename = "dsi.trk" # filename = "dti.trk" filename = "hardiO10.trk" print print "file:", filename f = open(filename) header = read_header(f) print_header(header) fiber = read_fibers(f, header) f.close() print fiber_id = 1000 print "Example: fiber_id=",fiber_id print fiber[fiber_id] print "Convert points from mm to voxel coordinates:" Vxyz = mm2voxel(fiber[fiber_id][0], header) print Vxyz print "Convert back and check whether differences are less than grid size...", assert(((voxel2mm(Vxyz, header)-fiber[fiber_id][0])<header['voxel_size']).all()) print "OK." print filename2 = filename+"_COPY.trk" print "Saving to:", filename2 f = open(filename2,'w') write_header(f, header) write_fibers(f, fiber, header) f.close() print print "Building voxel2fibers dictionary:" voxel2fibers = build_voxel_fibers_dict(fiber, header) voxel = tuple(header['dim'] / 2) print "Example: fibers crossing voxel", voxel try: print voxel2fibers[voxel] except KeyError: print [] print "There are no fibers crossing this voxel." pass print x = header['dim'][0] / 2 print "Example: counting fibers crossing plane x =", x counter = 0 for y in range(header['dim'][1]): for z in range(header['dim'][2]): try: counter += voxel2fibers[(x,y,z)].size except KeyError: pass pass pass print "Number of fibers:", counter print fiber_id = 2000 print "Which fibers cross (the voxels of) fiber[fiber_id=",fiber_id,"] ?" xyz = fiber[fiber_id][0] ijk = mm2voxel(xyz, header) fiber_id_list = N.unique(N.hstack([voxel2fibers[i,j,k] for i,j,k in ijk])) print fiber_id_list print fiber_id_list.size, "fibers." print print "Saving .trk file with just the previous list of fibers." filename3 = filename+'_cross_fiber_id_'+str(fiber_id)+'.trk' print "Saving to:", filename3 import copy fiber2 = [fiber[fiber_id] for fiber_id in fiber_id_list] header2 = copy.deepcopy(header) header2['n_count'] = N.array([fiber_id_list.size]) f = open(filename3, 'w') write_header(f, header2) write_fibers(f, fiber2, header2) f.close()
[ "emanuele@relativita.com" ]
emanuele@relativita.com
73ea759b8c4f767004d46136a4cb1eec0f7feabe
eb99e1d5008f90e5a54724863dacba4878fb2cea
/tests/test_basic.py
875207f11e43de580d9a19a086b9fd20315d8529
[]
no_license
machow/hoof
fe529ef6573ecae35ba51704cd5c95c188c50295
4c9460492f283abd539ab3577982226efe15db5a
refs/heads/master
2022-05-20T03:43:33.847717
2020-04-25T21:47:48
2020-04-25T21:47:48
256,900,890
1
0
null
2020-04-25T21:38:26
2020-04-19T02:56:58
Python
UTF-8
Python
false
false
1,519
py
from hoof import Hoof, AntlrAst class Program(AntlrAst): _fields = ["body"] class BinaryExpr(AntlrAst): _fields = ["left", "right", "op"] class RunExpr(AntlrAst): _fields = ["op", "expr"] _remap = ["RUN->op"] _rules = "RunExpr" hoof = Hoof("hoof_examples.Expr") class AstVisitor(hoof.Visitor): def visitParentheses(self, ctx): # skip parentheses return self.visit(ctx.expr()) def visitTerminal(self, ctx): return ctx.getText() hoof.register("Prog", Program, ["expr->body"]) # no config on node hoof.register("BinaryExpr", BinaryExpr) # no need to remap hoof.register(RunExpr) # rule and remap on node hoof.bind(AstVisitor) def test_program(): node = hoof.parse("1 + 2; 3 - 4;", "prog") assert isinstance(node, Program) assert len(node.body) == 2 assert isinstance(node.body[0], BinaryExpr) def test_binary(): node = hoof.parse("1 + 2", "expr") assert isinstance(node, BinaryExpr) assert node.left == "1" assert node.right == "2" assert node.op == "+" def test_put(): node = hoof.parse("run 2", "expr") assert isinstance(node, RunExpr) assert node.expr == "2" def test_parentheses(): node = hoof.parse("(1 + 1)", "expr") assert isinstance(node, BinaryExpr) def test_expr_integer(): # this is a Token (INT) with no explicit shaping, so is result of visitTerminal node = hoof.parse("1", "expr") node == "1"
[ "machow@princeton.edu" ]
machow@princeton.edu
4faba1910def77457e265813a6749d9fcdc2c9fa
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/ec2_write_3/managed-prefix-list_create.py
a37a54b7d58925db27ffcd48c98d760451977f82
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,393
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_three_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-managed-prefix-list.html if __name__ == '__main__': """ delete-managed-prefix-list : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/delete-managed-prefix-list.html describe-managed-prefix-lists : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-managed-prefix-lists.html modify-managed-prefix-list : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/modify-managed-prefix-list.html """ parameter_display_string = """ # prefix-list-name : A name for the prefix list. Constraints: Up to 255 characters in length. The name cannot start with com.amazonaws . # max-entries : The maximum number of entries for the prefix list. # address-family : The IP address type. Valid Values: IPv4 | IPv6 """ add_option_dict = {} add_option_dict["parameter_display_string"] = parameter_display_string # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" write_three_parameter("ec2", "create-managed-prefix-list", "prefix-list-name", "max-entries", "address-family", add_option_dict)
[ "hcseo77@gmail.com" ]
hcseo77@gmail.com
c081b2cc5c19aacf9997f2dcf145d5c6d6a94c75
a985c0797ed10fc7eef59c527b0490dbfeadd2af
/Docker Model/utils/makeprediction.py
c5e55cdb241d98d033c0a7d78c01784c14785250
[]
no_license
etheleon/data-science-for-fun
1bd0c9f04a8c5f0e533d42816a085c8e0656092d
7488c3f9a3a0e36371905c71fdf7f2528e9d0e95
refs/heads/master
2021-07-23T14:21:08.860090
2017-10-30T02:30:43
2017-10-30T02:30:43
108,791,255
0
0
null
2017-10-30T02:19:55
2017-10-30T02:19:54
null
UTF-8
Python
false
false
520
py
from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier def predict(inputFeatures): iris = datasets.load_iris() knn = KNeighborsClassifier() knn.fit(iris.data, iris.target) predictInt = knn.predict(inputFeatures) if predictInt[0] == 0: predictString = 'setosa' elif predictInt[0] == 1: predictString = 'versicolor' elif predictInt[0] == 2: predictString = 'virginica' else: predictString = 'null' return predictString
[ "A0134553@u.nus.edu" ]
A0134553@u.nus.edu
837341341225792eaf8191f24e39c25694df9f97
726d8518a8c7a38b0db6ba9d4326cec172a6dde6
/0909. Snakes and Ladders/Solution.py
29b98be3c2e7335ac5e219780c47380b948657d7
[]
no_license
faterazer/LeetCode
ed01ef62edbcfba60f5e88aad401bd00a48b4489
d7ba416d22becfa8f2a2ae4eee04c86617cd9332
refs/heads/master
2023-08-25T19:14:03.494255
2023-08-25T03:34:44
2023-08-25T03:34:44
128,856,315
4
0
null
null
null
null
UTF-8
Python
false
false
1,069
py
from collections import deque from typing import List class Solution: def snakesAndLadders(self, board: List[List[int]]) -> int: n = len(board) visited = [False] * (n * n + 1) queue = deque([1]) steps = 0 while queue: size = len(queue) for _ in range(size): pos = queue.popleft() for i in range(pos + 1, min(pos + 7, n * n + 1)): if visited[i]: continue visited[i] = True if i == n * n: return steps + 1 r, c = divmod(i - 1, n) if r & 1: c = n - 1 - c r = n - 1 - r if board[r][c] != -1 and board[r][c] == n * n: return steps + 1 if board[r][c] == -1: queue.append(i) else: queue.append(board[r][c]) steps += 1 return -1
[ "yubowen.ssr@bytedance.com" ]
yubowen.ssr@bytedance.com
d6b4abc7fbe0628b62ce4ae5c4de91acedb25971
962feeffee41625ff841f6590f97bb09cef9be4c
/torch_glow/tests/nodes/avgpool3d_test.py
93e26349ac4e677a2d89d2388568725436963f2f
[ "Apache-2.0" ]
permissive
SushantDaga/glow
8c4c3fbc58c3ae760bdd8e1df2e8c05a72ff07bc
aab22c3e0421dadd29950c2ebfa88b86027cecf5
refs/heads/master
2022-11-03T08:39:33.958233
2020-06-19T17:03:14
2020-06-19T17:05:42
273,568,864
2
0
Apache-2.0
2020-06-19T19:12:31
2020-06-19T19:12:30
null
UTF-8
Python
false
false
860
py
from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.nn.functional as F from tests.utils import jitVsGlow import unittest class TestAvgPool3d(unittest.TestCase): def test_avg_pool3d_basic(self): """Basic test of the PyTorch avg_pool3d Node on Glow.""" def test_f(inputs): return F.avg_pool3d(inputs, 3) inputs = torch.randn(1, 4, 5, 5, 5) jitVsGlow(test_f, inputs, expected_fused_ops={"aten::avg_pool3d"}) def test_avg_pool3d_with_args(self): """Test of the PyTorch avg_pool3d Node with arguments on Glow.""" def test_f(inputs): return F.avg_pool3d(inputs, padding=2, kernel_size=(4, 7, 7)) inputs = torch.randn(1, 4, 10, 10, 10) jitVsGlow(test_f, inputs, expected_fused_ops={"aten::avg_pool3d"})
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
3e4c84c039144eaf018a0dbe4dfa92d68101bbe8
f745231568d2f15c75a82638ffa4fd86c5b682ea
/assignment_4/shapes.py
2856f2733a4a28e8f7ad12c5634c596f054b3aef
[ "WTFPL" ]
permissive
gauravjuvekar/ppl
c53dccd274e93207f543afc8ded787cff9319085
fc5592623fa294c18a6e24444b9e06e2a08b2f6c
refs/heads/master
2016-09-12T21:31:07.960658
2016-04-26T07:16:00
2016-04-26T07:16:00
57,103,970
0
0
null
null
null
null
UTF-8
Python
false
false
1,886
py
#!/usr/bin/env python3 import math class Shape(object): def __init__(self, turtle=None): self.turtle = turtle class Polygon(Shape): def __init__(self, points, turtle=None): Shape.__init__(self, turtle) self.points = points def draw(self, turtle=None): if turtle is None: turtle = self.turtle turtle.penup() pos = turtle.pos() relative = lambda x, y: (pos[0] + x, pos[1] + y) turtle.goto(relative(*(self.points[-1]))) turtle.pendown() for point in self.points: turtle.goto(relative(*point)) turtle.penup() turtle.goto(pos) turtle.pendown() def transform(self, matrix): if not (len(matrix) == 2 and (len(matrix[0]) == len(matrix[1]) == 2)): raise ValueError("Transformation matrix must be order 2 square") apply = lambda point, matrix: ( (point[0] * matrix[0][0]) + (point[1] * matrix[0][1]), (point[0] * matrix[1][0]) + (point[1] * matrix[1][1])) self.points = [apply(point, matrix) for point in self.points] class RegularPolygon(Polygon): def __init__(self, sides, radius, turtle=None): step_angle = 360 / sides points = [] angle = 0 while angle < 360: points.append(( radius * math.cos(math.radians(angle)), radius * math.sin(math.radians(angle)))) angle += step_angle Polygon.__init__(self, points, turtle) class Ellipse(RegularPolygon): def __init__(self, rad_x, rad_y, turtle=None): sides = max((rad_x, rad_y)) RegularPolygon.__init__(self, sides, min((rad_x, rad_y)), turtle) if rad_x < rad_y: self.transform(((1, 0), (0, rad_y / rad_x))) else: self.transform(((rad_x / rad_y, 0), (0, 1)))
[ "gauravjuvekar@gmail.com" ]
gauravjuvekar@gmail.com
1186138ee1bd98ce6cc3c24b6d4b5d7158920d79
f81099738d3ab7d4a4773a04ed9e36e493632590
/angelos-portfolio/test/test_domain_update.py
2ccd8c81f1a7ea5f7e2d64656a9b8ccd5a5df49a
[ "MIT" ]
permissive
kristoffer-paulsson/angelos
eff35753e4d7e4465d2aadac39265f206b09fcf9
d789f47766fe3a63a6752b92e4ea955f420dbaf9
refs/heads/master
2022-05-05T15:16:59.340527
2022-03-27T16:05:51
2022-03-27T16:05:51
142,691,235
9
0
null
null
null
null
UTF-8
Python
false
false
1,287
py
# # Copyright (c) 2018-2020 by Kristoffer Paulsson <kristoffer.paulsson@talenten.se>. # # This software is available under the terms of the MIT license. Parts are licensed under # different terms if stated. The legal terms are attached to the LICENSE file and are # made available on: # # https://opensource.org/licenses/MIT # # SPDX-License-Identifier: MIT # # Contributors: # Kristoffer Paulsson - initial implementation # """Security tests putting the policies to the test.""" from unittest import TestCase from angelos.common.policy import evaluate from angelos.lib.policy.types import PersonData from angelos.portfolio.domain.create import CreateDomain from angelos.portfolio.domain.update import UpdateDomain from angelos.portfolio.entity.create import CreatePersonEntity from test.fixture.generate import Generate class TestUpdateDomain(TestCase): def test_perform(self): data = PersonData(**Generate.person_data()[0]) portfolio = CreatePersonEntity().perform(data) CreateDomain().perform(portfolio) self.assertIsNotNone(portfolio.domain) with evaluate("Domain:Update") as report: domain = UpdateDomain().perform(portfolio) self.assertIs(domain, portfolio.domain) self.assertTrue(report)
[ "kristoffer.paulsson@talenten.se" ]
kristoffer.paulsson@talenten.se
8b95e2ada92485e2e3e8915583d7b6c7899d04f7
5022b48f311ba4710e1851855552b9546a3142c5
/unittest/case_test.py
3b355326b97f14c7a95801f1b8d7f47cb5b04d82
[]
no_license
18786262315/python_lx
a7a15a294312b8382c3d1fd97a8d0ede38f1c5a5
a870d49cc4ca6efd1b54c2b89dfbf5e3d911a568
refs/heads/master
2020-03-21T12:37:30.748759
2020-03-18T09:31:31
2020-03-18T09:31:31
138,563,274
1
2
null
null
null
null
UTF-8
Python
false
false
5,228
py
''' unittest条件断言 tester: cc 此文仅做翻译只用,不介绍具体使用 ''' Skiptest() # 在测试中引发此异常以跳过该异常。 _ShouldStop() # 停止测试 _UnexpectedSuccess() # 测试本来应该是失败的,但是没有失败 Skip() # 无条件跳过测试。 skipIf(condition, reason) # 条件为真时跳过测试 skipUnless(condition, reason) # 条件为假时跳过测试 expectedFailure(test_item) # 标记该测试预期就是失败,如果运行失败时,不算作失败用例。 _is_subtype(expected, basetype) # 判断类型是否符合预期 addTypeEqualityFunc(typeobj, function) # 为自定义检查类提供检查方法 addCleanup( function , *args , **kwargs ) #添加针对每个测试用例执行完tearDown()方法之后的清理方法,添加进去的函数按照后进先出(LIFO)的顺序执行,当然,如果setUp()方法执行失败,那么不会执行tearDown()方法,自然也不会执行addCleanup()里添加的函数。 setUp()#在执行每个测试用例之前被执行,任何异常(除了unittest.SkipTest和AssertionError异常以外)都会当做是error而不是failure,且会终止当前测试用例的执行。 tearDown()#执行了setUp()方法后,不论测试用例执行是否成功,都执行tearDown()方法。如果tearDown()的代码有异常(除了unittest.SkipTest和AssertionError异常以外),会多算一个error。 setUpClass( cls )与tearDownClass( cls )#测试用例们被执行前、后执行的方法,定义时必须加上classmethod装饰符 countTestCases()#返回测试用例的个数,对于TestCase实例来说,这个返回值一直是1. defaultTestResult()#如果在run()方法中未提供result参数,该函数返回一个包含本用例测试结果的TestResult对象。 shortDescription()#返回测试用例的描述,即函数的docstring,如果没有,返回None。可以用于测试结果输出中描述测试内容。 id()#返回测试用例的编号,通常是如下格式:模块名.类名.函数名。可以用于测试结果的输出。 subTest( msg=_subtest_msg_sentinel, **params)#返回一个上下文管理器,它将返回由可选消息和关键字参数标识的子测试中的封闭代码块。子测试中的失败标志着测试用例失败,但在封闭块结束时恢复执行,允许执行进一步的测试代码。 run( result =None)#运行一个测试用例,将测试结果收集到result变量中,测试结果不返回给调用者。如果result参数的值为None,则测试结果在下面提到的defaultTestResult()方法的返回值中 doCleanups()#无条件强制调用addCleanup()添加的函数,适用于setUp()方法执行失败但是需要执行清理函数的场景,或者希望在tearDown()方法之前执行这些清理函数。 debug()#与run方法将测试结果存储到result变量中不同,debug方法运行测试用例将异常信息上报给调用者。 fail( msg =None)#无条件声明一个测试用例失败,msg是失败信息。 assertEqual(set1,set2,msg=None) #检测两个值是否相等 assertFalse( expr, msg=None) #检查表达式是否为假 assertTrue( expr, msg=None) #检查表达式是否为真 assertAlmostEqual与assertNotAlmostEqual(, first, second, places=None, msg=None,delta=None) #判断两个值是否约等于或者不约等于,places表示小数点后精确的位数 assertSequenceEqual(seq1, seq2, msg=None, seq_type=None) #有序序列的相等断言,如元组、列表 assertListEqual( list1, list2, msg=None) #列表相等的特定断言 assertTupleEqual(tuple1, tuple2, msg=None) #元组相等的特定断言 assertSetEqual( set1, set2, msg=None) #集合相等的特定断言 assertIn与assertNotIn( member, container, msg=None) #判断a 是否存在b中 assertIs与assertIsNot( expr1, expr2, msg=None) #判断a是不是b assertDictEqual( d1, d2, msg=None) #检查两个字典是否相等 assertDictContainsSubset( subset, dictionary, msg=None) #检查字典是否是子集的超集。 assertCountEqual(first, second, msg=None) #判断两个无序列表内所出现的内容是否相等 assertMultiLineEqual( first, second, msg=None) #断言两个多行字符串相等 assertLess( a, b, msg=None) #断言a<b assertLessEqual( a, b, msg=None) #断言a<=b assertGreater( a, b, msg=None) #断言a>b assertGreaterEqual(a, b, msg=None) #断言a>=b assertIsNone与assertIsNotNone( obj, msg=None) #判断obj是否为空 assertIsInstance(a, b)与assertNotIsInstance(a, b)# 与assertTrue相同,其中的类型b,既可以是一个类型,也可以是类型组成的元组。 assertRaisesRegex( expected_exception, expected_regex,*args, **kwargs)#断言在引发异常中的消息与正则表达式匹配。 assertWarnsRegex( expected_warning, expected_regex,*args, **kwargs)#断言触发警告中的消息与ReGEXP匹配。基本功能类似于AdvestWr.NS.()只有消息与正则表达式匹配的警告。被认为是成功的匹配 assertRegex与assertNotRegex(text, expected_regex, msg=None) #判断文本与正则表达式是否匹配 shortDescription()#返回测试用例的描述,即函数的docstring,如果没有,返回None。可以用于测试结果输出中描述测试内容。
[ "843092012@qq.com" ]
843092012@qq.com
a720e9e9dba4c9e67cd739029eb1e94d9b40b70b
7b532a7d7c79601a5a8dd7beaf6b06e7a23b3666
/Inception_model/softmax.py
7f2dd55bc8779ae70bfbfb3f2fe90788f2300a17
[]
no_license
lanardo/Image_processing_server
e3d3151cf825ebca01a64d851642bca0e99b0646
957ab8d82a453049885f85f440efcfc60c0e7d7f
refs/heads/master
2021-05-14T13:13:27.358287
2018-07-04T19:41:06
2018-07-04T19:41:06
116,435,267
0
0
null
null
null
null
UTF-8
Python
false
false
4,287
py
import tensorflow as tf import csv import os import argparse parser = argparse.ArgumentParser() parser.add_argument("--input_dir", help="path to folder containing the trainning data") parser.add_argument("--output_dir", help="path to folder containing the result coef files") parser.add_argument("--restore", default="yes", help="restore from the checkpoint") parser.add_argument("--rate", type=float, default=0.0001, help="rate(alpha) for trainning") parser.add_argument("--epochs", type=int, default=200000, help="max epoches") parser.add_argument("--strip", type=int, default=50, help="step for writing the result on loop") a = parser.parse_args() # a.input_dir = './model' # a.output_dir = './model' # a.restore = "no" def xaver_init(n_inputs, n_outputs, uniform=True): if uniform: init_range = tf.sqrt(6.0 / (n_inputs + n_outputs)) return tf.random_uniform_initializer(-init_range, init_range) else: stddev = tf.sqrt(3.0 / (n_inputs + n_outputs)) return tf.truncated_normal_initializer(stddev=stddev) def acc(d1, d2): cnt = 0 for i in range(d1.__len__()): if d1[i] == d2[i]: cnt += 1 return float(cnt)/d1.__len__() def sel_max(data): ret_ind = [] for i in range(data.__len__()): if data[i][0] == 1: ret_ind.append(0) else: ret_ind.append(1) return ret_ind if __name__ == '__main__': learning_rate = a.rate in_dir = a.input_dir out_dir = a.output_dir epochs = a.epochs strip = a.strip train_data_path = os.path.join(in_dir, 'train_data.csv') w_coef_path = os.path.join(out_dir, 'w.csv') b_coef_path = os.path.join(out_dir, 'b.csv') ckpt_path = os.path.join(out_dir, 'model_bin.ckpt') labels = ['front', 'front_3_quarter', 'side', 'rear_3_quarter', 'rear', 'interior', 'tire'] directions = [ [1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1] ] x_data = [] y_data = [] """ Loading training data from csv files """ print('[Step 1] Loading training data ...') # for python 2x with open(train_data_path) as fp: csv_reader = csv.reader(fp, delimiter=',') for row in csv_reader: x_data.append([float(row[i]) for i in range(0, len(row)-7)]) y_data.append([float(row[i]) for i in range(len(row)-7, len(row))]) print("total features :" + str(len(x_data))) print("length of feature :" + str(len(x_data[0]))) print("length of label :" + str(len(y_data[0]))) """ Placeholder """ print('[Step 2] Placeholder') x = tf.placeholder('float', [None, 2048]) # len(feature) = 2048 y = tf.placeholder('float', [None, 7]) # len(Directions) = 7 : classes W1 = tf.get_variable('W1', shape=[2048, 7], initializer=xaver_init(2048, 7)) b1 = tf.Variable(tf.zeros([7])) activation = tf.add(tf.matmul(x, W1), b1) t1 = tf.nn.softmax(activation) """ Minimize error using cross entropy """ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=activation, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Gradient Descent """ Initializing the variables """ print('[Step 3] Initializing the variables.') # init = tf.initialize_all_variables() # python 3x init = tf.global_variables_initializer() # python 2x sess = tf.Session() sess.run(init) saver = tf.train.Saver() print(a.restore) if a.restore == "yes": print('Loading the last learning Session.') saver.restore(sess, ckpt_path) """ Training cycle """ print('[Step 4] Training...') for step in range(epochs): sess.run(optimizer, feed_dict={x: x_data, y: y_data}) if step % strip == 0: ret = sess.run(t1, feed_dict={x: x_data}) acc1 = acc(sess.run(tf.arg_max(ret, 1)), sess.run(tf.arg_max(y_data, 1))) * 100 print(' ' + str(step) + ' ' + str(sess.run(cost, feed_dict={x: x_data, y: y_data})) + ' ' + str(acc1)) saver.save(sess, ckpt_path) print('Optimization Finished!')
[ "williams.lanardo@gmail.com" ]
williams.lanardo@gmail.com
e1bea179688f6a672cd83a7f2b9f861bbb702425
4b5c21db88a80fcca418c0c8b431d93774d9336a
/envfarmaciaveterinaria/Scripts/viewer.py
fb21137537dab877fe83180aef6958ef73bea3df
[]
no_license
laMoradaPostrera/FarmaciaVeterinariaUnillanos
e9620b1b108ab53956a50e754dd7f339e237f150
2312ccee591c4991c3ee0627ea4815de65e7a1eb
refs/heads/master
2020-10-01T23:43:19.395012
2018-06-14T05:15:36
2018-06-14T05:15:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,076
py
#!c:\users\lenovo~1\mispro~1\unilla~1\farmac~2\envfar~1\scripts\python.exe # # The Python Imaging Library # $Id$ # from __future__ import print_function import sys if sys.version_info[0] > 2: import tkinter else: import Tkinter as tkinter from PIL import Image, ImageTk # # an image viewer class UI(tkinter.Label): def __init__(self, master, im): if im.mode == "1": # bitmap image self.image = ImageTk.BitmapImage(im, foreground="white") tkinter.Label.__init__(self, master, image=self.image, bd=0, bg="black") else: # photo image self.image = ImageTk.PhotoImage(im) tkinter.Label.__init__(self, master, image=self.image, bd=0) # # script interface if __name__ == "__main__": if not sys.argv[1:]: print("Syntax: python viewer.py imagefile") sys.exit(1) filename = sys.argv[1] root = tkinter.Tk() root.title(filename) im = Image.open(filename) UI(root, im).pack() root.mainloop()
[ "diegoasencio96@gmail.com" ]
diegoasencio96@gmail.com
e9f935855c936f7be736e9cada0f8dfb9d5cbf2c
6f444f025f27a10dd7b1bf61083ea2832ffcb196
/backend/location/api/v1/serializers.py
f4a37f977e26a6abd08e6dffcee6108c10dadd98
[]
no_license
crowdbotics-apps/ledger-wallet-29295
2fe0eee9e06cb1f5c8e514ad650df8276aac789b
d96542a71685ce6d335882c10cf840355c8252f7
refs/heads/master
2023-06-24T00:46:30.889717
2021-07-30T20:37:03
2021-07-30T20:37:03
391,182,590
0
0
null
null
null
null
UTF-8
Python
false
false
669
py
from rest_framework import serializers from location.models import TaskLocation, CustomerLocation, TaskerLocation, MapLocation class CustomerLocationSerializer(serializers.ModelSerializer): class Meta: model = CustomerLocation fields = "__all__" class MapLocationSerializer(serializers.ModelSerializer): class Meta: model = MapLocation fields = "__all__" class TaskerLocationSerializer(serializers.ModelSerializer): class Meta: model = TaskerLocation fields = "__all__" class TaskLocationSerializer(serializers.ModelSerializer): class Meta: model = TaskLocation fields = "__all__"
[ "team@crowdbotics.com" ]
team@crowdbotics.com
f8a4758b89fce2ae01dfdac0c57540060c9a0e3f
1f416c5f06c6ccf14e0f9778e52a2e556e6888b7
/Config/ssd_config.py
73fd796b7d333e67b702743a2931a59f96af67bd
[]
no_license
LLLibra/yolo-v3
0a8961b3e7c8d099174c72685176b82c3e627f59
6dedf28f5b9d07cb609dc1c91119c328d02b6e17
refs/heads/master
2020-09-24T17:54:22.993738
2019-12-28T08:04:11
2019-12-28T08:04:11
225,812,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,108
py
# -*- coding:UTF-8 -*- from utils.ssd_loss import * from Model.SSD import build_SSD extras = { '300': [[1024,256,512],[512,128,256],[256,128,256],[256,128,256]], '512': [], } mbox = { '300': [4, 6, 6, 6, 4, 4], # 最终特征图中每个点有多少个box '512': [], } ##SSD 300 config voc = { 'num_classes': 21, 'feature_maps':[38,19,10,5,3,1], 'min_dim':300, 'img_size':300, 'xywh':False, 'steps':[8,16,32,64,100,300], 'min_sizes':[30,60,111,162,216,264], 'max_sizes':[60,111,162,213,264,315], 'aspect_ratio':[[2],[2,3],[2,3],[2,3],[2],[2]], 'variance':[0.1,0.2], 'clip':True, 'name':'VOC', } coco = { 'num_classes': 201, 'lr_steps': (280000, 360000, 400000), 'max_iter': 400000, 'feature_maps': [38, 19, 10, 5, 3, 1], 'min_dim': 300, 'img_size':300, 'steps': [8, 16, 32, 64, 100, 300], 'min_sizes': [21, 45, 99, 153, 207, 261], 'max_sizes': [45, 99, 153, 207, 261, 315], 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]], 'variance': [0.1, 0.2], 'clip': True, 'name': 'COCO', }
[ "245407754@qq.com" ]
245407754@qq.com
4fe2cf1c3b72558c9e48a68238cf6abf7425b930
073e5c1775886ec42ed741378e682534e79bb856
/kdb/MTS_patch.py
3ff2e1324c47467096b8afed52a839baa28a898d
[]
no_license
tt9024/huan
97edd01e280651720a7556ff75dd64cc91184a04
48dcc7ef0ea40902e33bc67faf0298736a3ebe6b
refs/heads/master
2023-07-26T12:30:53.116852
2023-07-11T02:30:14
2023-07-11T02:30:14
134,997,307
0
0
null
null
null
null
UTF-8
Python
false
false
4,463
py
import numpy as np import repo_dbar as repo import l1 import os import glob import dill # patch vbs of various barseconds def patch_vbs(dbar, day, utc, vbs, barsec): bar, col, bs = dbar.load_day(day) if bar is None or len(bar)==0: print('problem getting bars from repo on ', day) return # make sure it's a multiple bs_mul = barsec//bs if bs_mul*bs != barsec: print('barsec ', barsec, ' is not a multiple of repo barsec ', bs, ' on ', day) return utc_bs = dbar._make_daily_utc(day, barsec) nbar = len(utc) ix = np.clip(np.searchsorted(utc, utc_bs),0,nbar-1) ixz = np.nonzero(utc[ix] == utc_bs)[0] if len(ixz) == 0: print('nothing found in repo on ', day) return # reuse the existing if not provided, but aggregated at barsec #vbs_bs = np.zeros(len(utc_bs)) vbs_bs = np.sum(bar[:,repo.vbsc].reshape((len(utc_bs),bs_mul)),axis=1) vbs_bs[ixz] = vbs[ix][ixz] # calculate the weight to be vol within the barsec vbs0 = bar[:,repo.volc].reshape((len(utc_bs),bs_mul)) vbs0 = (vbs0.T/np.sum(vbs0,axis=1)).T vbs0[np.isinf(vbs0)] = 1.0/bs_mul vbs0[np.isnan(vbs0)] = 1.0/bs_mul vbs_bs0 = (vbs0.T*vbs_bs).T.reshape((len(utc_bs)*bs_mul,1)) # write this day back dbar.overwrite([vbs_bs0], [day], [[repo.vbsc]], bs) print('!!DONE ', day) def update_array(dbar, vbs_array, barsec): """ vbs_array shape [nndays, 2], of utc and vbs """ nndays, nc = vbs_array.shape assert nc == 2, 'vbs_array expected shape 2 (utc,vbs)' utc=vbs_array[:,0] vbs=vbs_array[:,1] assert utc[1]-utc[0] == barsec, 'barsec mismatch! ' + str((utc[1]-utc[0],barsec)) start_day = l1.trd_day(vbs_array[0,0]) end_day = l1.trd_day(vbs_array[-1,0]) tdi = l1.TradingDayIterator(start_day) day = tdi.yyyymmdd() while day != end_day: patch_vbs(dbar, day, utc, vbs, barsec) tdi.next() day = tdi.yyyymmdd() def update_array_path(array_path='/home/bfu/kisco/kr/vbs/2021_1125_2022_0114', barsec=15, repo_path = '/home/bfu/kisco/kr/repo'): os.system('gunzip ' + os.path.join(array_path,'*.npy.gz')) fn = glob.glob(os.path.join(array_path, '*.npy')) for f in fn: print('processing ', f) # expect file name as CL.npy symbol = f.split('/')[-1].split('.')[0] vsarr = np.load(open(f,'rb')) dbar = repo.RepoDailyBar(symbol, repo_path=repo_path) update_array(dbar, vsarr, barsec) def update_dict(dict_file, barsec, repo_path='/home/bfu/kisco/kr/repo', symbol_list=None): """dict: {symbol : { 'utc': shape [ndays,2], 'vbs': shape [ndays, n] } } where utc has each day's first/last utc the barsec is given for verification purpose: barsec = (utc1-utc0)/n """ d = dill.load(open(dict_file, 'rb')) for symbol in d.keys(): if symbol_list is not None: if symbol not in symbol_list: continue utc=d[symbol]['utc'] vbs=d[symbol]['vbs'] ndays, nc = utc.shape assert nc==2, 'utc shape not 2 for ' + symbol print('got ',ndays,' for ', symbol) dbar = repo.RepoDailyBar(symbol, repo_path=repo_path) for u, v in zip(utc, vbs): (u0,u1)=u day = l1.trd_day(u0) # LCO could have utc up until 18:00 # turn it on when fixed in mts_repo #assert day == l1.trd_day(u1), 'not same trade day for %s on %d: %f-%f'%(symbol, day, u0, u1) utc0 = np.arange(u0,u1+barsec,barsec).astype(int) n = len(v) assert len(utc0)==n, 'vbs shape mismatch with utc for %s on %s: %d-%d'%(symbol, day, (u1-u0)//barsec,n) print('process %s on %s'%(symbol, day)) patch_vbs(dbar, day, utc0, v, barsec) def update_dict_all(): # a scripted update, modify as needed # the 2 _N1 from 20220223 to 20220415 with barsec=5 path = '/home/bfu/kisco/kr/vbs/update_0415' dict_files = ['0223_0302_5s.dill', '0303_0415_5s.dill'] barsec=5 repo_path = '/home/bfu/kisco/kr/repo' for df in dict_files: update_dict(os.path.join(path, df), barsec, repo_path=repo_path) # the _N2 from 20211125 to 20220415 with barsec=30 dict_files = ['20211125_2022_0415_N2_30s.dill'] barsec=30 repo_path = '/home/bfu/kisco/kr/repo_nc' for df in dict_files: update_dict(os.path.join(path, df), barsec, repo_path=repo_path)
[ "joy@joy.com" ]
joy@joy.com
81f726744a38d25f6099ad36107663ac8a5d3212
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/stdlib-big-2805.py
b2c7ae07ef65cab60cc16a7073cc6a18c9d869b1
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
8,992
py
# ChocoPy library functions def int_to_str(x: int) -> str: digits:[str] = None result:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str2(x: int, x2: int) -> str: digits:[str] = None digits2:[str] = None result:str = "" result2:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str3(x: int, x2: int, x3: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None result:str = "" result2:str = "" result3:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str4(x: int, x2: int, x3: int, x4: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None digits4:[str] = None result:str = "" result2:str = "" result3:str = "" result4:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str5(x: int, x2: int, x3: int, x4: int, x5: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None digits4:[str] = None digits5:[str] = None result:str = "" result2:str = "" result3:str = "" result4:str = "" result5:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def str_to_int(x: str) -> int: result:int = 0 digit:int = 0 char:str = "" sign:int = 1 first_char:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int2(x: str, x2: str) -> int: result:int = 0 result2:int = 0 digit:int = 0 digit2:int = 0 char:str = "" char2:str = "" sign:int = 1 sign2:int = 1 first_char:bool = True first_char2:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int3(x: str, x2: str, x3: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 char:str = "" char2:str = "" char3:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int4(x: str, x2: str, x3: str, x4: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 result4:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 digit4:int = 0 char:str = "" char2:str = "" char3:str = "" char4:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 sign4:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True first_char4:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int5(x: str, x2: str, x3: str, x4: str, x5: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 result4:int = 0 result5:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 digit4:int = 0 digit5:int = 0 char:str = "" char2:str = "" char3:str = "" char4:str = "" char5:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 sign4:int = 1 sign5:int = 1 first_char:bool = True first_char2:bool = True $TypedVar = True first_char4:bool = True first_char5:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign # Input parameters c:int = 42 c2:int = 42 c3:int = 42 c4:int = 42 c5:int = 42 n:int = 10 n2:int = 10 n3:int = 10 n4:int = 10 n5:int = 10 # Run [-nc, nc] with step size c s:str = "" s2:str = "" s3:str = "" s4:str = "" s5:str = "" i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 i = -n * c # Crunch while i <= n * c: s = int_to_str(i) print(s) i = str_to_int(s) + c
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
7a8949c381732e07d4f492876a8541503b3d5db0
8f7b755a7d21332ae26a9d2e59dc0da00da8affb
/euler-081.py
ab42d76c52e73ce1d22a8a8550abf38c61c371fb
[]
no_license
msbelal/Project-Euler
95204d1ea455f45a49e9ce517d427db80fe15e36
1eda6b8a1786f0613023193d3dcde3090edaac9a
refs/heads/master
2020-04-12T12:07:41.921989
2012-04-01T15:41:12
2012-04-01T15:41:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
from __future__ import with_statement with open ("matrix-81.txt") as f: lines = [ line.strip().split(",") for line in f.readlines() ] q = {} for i in xrange(159) : for j in xrange(0,i+1) : x, y = j, i - j if (0 <= x < 80) and (0 <= y < 80) : if x == 0 and y == 0: q[x,y] = 0 elif x == 0 : q[x,y] = q[x,y-1] elif y == 0 : q[x,y] = q[x-1,y] else : q[x,y] = min(q[x-1,y], q[x, y-1]) q[x,y] += int(lines[x][y]) print q[79,79]
[ "hughdbrown@.(none)" ]
hughdbrown@.(none)
4120b422aab2e14830f4047978f9995ac06fa5c4
430722ea44c3704706f506554bb3ce64a7ee6596
/tests/image/test_backbones.py
60369275557cfe450f81d029b1bc533270f6f016
[ "Apache-2.0", "LicenseRef-scancode-proprietary-license" ]
permissive
ethanwharris/lightning-flash
462907c7e7dbbbf0840917ae72a67b5ddbdc7138
48bdfd86639aa4aad493d264cd8a6eeeb50a394f
refs/heads/master
2023-06-07T10:06:06.672478
2021-07-12T11:55:15
2021-07-12T11:55:15
385,288,776
0
0
Apache-2.0
2021-07-12T15:09:39
2021-07-12T15:09:39
null
UTF-8
Python
false
false
2,080
py
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import urllib.error import pytest from pytorch_lightning.utilities import _TORCHVISION_AVAILABLE from flash.core.utilities.imports import _BOLTS_AVAILABLE, _TIMM_AVAILABLE from flash.image.backbones import catch_url_error, IMAGE_CLASSIFIER_BACKBONES @pytest.mark.parametrize(["backbone", "expected_num_features"], [ pytest.param("resnet34", 512, marks=pytest.mark.skipif(not _TORCHVISION_AVAILABLE, reason="No torchvision")), pytest.param("mobilenetv2_100", 1280, marks=pytest.mark.skipif(not _TIMM_AVAILABLE, reason="No timm")), pytest.param("simclr-imagenet", 2048, marks=pytest.mark.skipif(not _BOLTS_AVAILABLE, reason="No bolts")), pytest.param("swav-imagenet", 2048, marks=pytest.mark.skipif(not _BOLTS_AVAILABLE, reason="No bolts")), pytest.param("mobilenet_v2", 1280, marks=pytest.mark.skipif(not _TORCHVISION_AVAILABLE, reason="No torchvision")), ]) def test_image_classifier_backbones_registry(backbone, expected_num_features): backbone_fn = IMAGE_CLASSIFIER_BACKBONES.get(backbone) backbone_model, num_features = backbone_fn(pretrained=False) assert backbone_model assert num_features == expected_num_features def test_pretrained_backbones_catch_url_error(): def raise_error_if_pretrained(pretrained=False): if pretrained: raise urllib.error.URLError('Test error') with pytest.warns(UserWarning, match="Failed to download pretrained weights"): catch_url_error(raise_error_if_pretrained)(pretrained=True)
[ "noreply@github.com" ]
noreply@github.com
820ed298b2d0d51b64a647c759fec6a4a95c79e1
0c4b33d04cf7fb73b3752b03af89eeaf76b8a0d2
/第14章-网络编程/client.py
93a57207689113ca5cbd684fb77a81dba69d2db4
[]
no_license
kingflyfly/python_study
3b3ab427d23174b61b8f14c223059cfa9f303219
8a63a7c11b408bbc11a2b636517beaa424b37725
refs/heads/master
2020-06-11T01:39:52.655730
2020-03-24T16:09:39
2020-03-24T16:09:39
193,817,757
0
0
null
null
null
null
UTF-8
Python
false
false
275
py
import socket import sys s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host = socket.gethostname() port = 9992 # 连接服务,指定主机和端口 s.connect((host, port)) # 接收小于 1024 字节的数据 msg = s.recv(1024) s.close() print (msg.decode('utf-8'))
[ "542001608@qq.com" ]
542001608@qq.com
096c2a0a7401aae836823744ed882e946775d8c3
74309d28c3c966ab46fe1d7bd7c6d6ca9e7009d4
/setup.py
86192f497fb7f45cf50128f2fc1870d69363a8a8
[ "MIT" ]
permissive
seporaitis/graphqlpy
c476b4632c3d117a95663ee88d1710a4999f22e7
c16623a00a851a785eaef7b27a72c35d49b0c4a4
refs/heads/master
2023-01-05T06:52:14.647528
2017-09-07T20:56:48
2017-09-07T20:56:48
102,777,202
1
0
MIT
2022-12-26T19:45:27
2017-09-07T19:25:20
Python
UTF-8
Python
false
false
1,497
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import re from setuptools import find_packages, setup def get_version(package): """ Return package version as listed in `__version__` in `init.py`. """ init_py = open(os.path.join(package, '__init__.py')).read() return re.search("__version__ = ['\"]([^'\"]+)['\"]", init_py).group(1) version = get_version('graphqlpy') with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read().replace('.. :changelog:', '') requirements = [] test_requirements = [] setup( name='graphqlpy', version=version, description="A humble attempt at a library generating GraphQL queries programatically.", long_description=readme + '\n\n' + history, author="Julius Seporaitis", author_email='julius@seporaitis.net', url='https://github.com/seporaitis/graphqlpy', packages=find_packages(exclude=['tests', 'tests.*']), package_dir={ 'graphqlpy': 'graphqlpy', }, include_package_data=True, install_requires=requirements, license="MIT", zip_safe=False, keywords='graphql', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', ], test_suite='tests', tests_require=test_requirements )
[ "julius@seporaitis.net" ]
julius@seporaitis.net
5258a863174e0b8e1845a0504b06107374ae09f5
357eaed9e37bc97357261098e06a1219cfba73ff
/fpeg_helion/wsgi.py
9cc2d70e23adb4bb095d5e1310b1c62a795b0075
[ "MIT" ]
permissive
andrewschreiber/fpeg
7acc6d39b7eb3fb6e662a5ac205f38f5372a3680
16fc3afb795040aea2e41216d6a9f88cedff2ba4
refs/heads/master
2021-07-12T09:19:31.461056
2020-06-30T21:43:17
2020-06-30T21:43:17
30,467,410
5
1
null
null
null
null
UTF-8
Python
false
false
937
py
import bottle from bottle import route, request, post, template import logging import json import os logging.basicConfig() log = logging.getLogger("fpeg") log.setLevel(logging.DEBUG) STATIC_ROOT = os.path.join(os.path.dirname(__file__), 'static') @route('/') def home(): bottle.TEMPLATE_PATH.insert(0, './views') return bottle.template('home', sent=False, body=None) @post('/compress') def compress(): data = request.files.get("upload") if data and data.file: raw = data.file.read() filename = data.filename log.debug("uploaded {} ({} bytes).".format(filename, len(raw))) else: log.error("upload failed") @route('/static/:filename') def serve_static(filename): log.debug("serving static assets") return bottle.static_file(filename, root=STATIC_ROOT) application = bottle.app() application.catchall = False bottle.run(application, host='0.0.0.0', port=os.getenv('PORT', 8080))
[ "Andrew Stocker" ]
Andrew Stocker
ace0c793df344ee3d16d8b97ce61547ac0670a0d
7accb98587c694db57507468525261458e707138
/fabfile.py
f12579758e7aff044a31e3975c7fa50ea643997a
[]
no_license
kotechkice/kicekriea
47f6ce4b9fa162b3dafe8dda45c640876a3e4aeb
6457e97aeea13f768488287abc4a8afcf40f8131
refs/heads/master
2021-01-01T03:46:39.199835
2016-04-26T05:57:16
2016-04-26T05:57:16
57,111,058
0
0
null
null
null
null
UTF-8
Python
true
false
22,058
py
from __future__ import print_function, unicode_literals, with_statement from future.builtins import input, open import os import re import sys from functools import wraps from getpass import getpass, getuser from glob import glob from contextlib import contextmanager from posixpath import join from os.path import basename, dirname from fabric.api import env, cd, prefix, sudo as _sudo, run as _run, hide, task #from fabric.api import settings from fabric.api import puts from fabric.contrib.files import exists, upload_template from fabric.colors import yellow, green, blue, red from fabric.utils import warn import pdb ############### # Fab Command # ############### #fab command #fab install ################ # Config setup # ################ conf = {} if sys.argv[0].split(os.sep)[-1] in ("fab", "fab-script.py"): # Ensure we import settings from the current dir try: #conf = __import__("settings", globals(), locals(), [], 0).FABRIC #conf = __import__("project.settings", globals(), locals(), [], 0).FABRIC from project import settings conf = settings.FABRIC try: conf["HOSTS"][0] except (KeyError, ValueError): raise ImportError except (ImportError, AttributeError): print("Aborting, no hosts defined.") exit() env.db_pass = conf.get("DB_PASS", None) env.db_root_pass = env.db_pass #env.admin_pass = conf.get("ADMIN_PASS", None) env.user = conf.get("SSH_USER", getuser()) env.password = conf.get("SSH_PASS", None) env.key_filename = conf.get("SSH_KEY_PATH", None) env.hosts = conf.get("HOSTS", [""]) env.proj_name = conf.get("PROJECT_NAME", os.getcwd().split(os.sep)[-1]) env.venv_home = conf.get("VIRTUALENV_HOME", "/home/%s" % env.user) env.venv_path = "%s/%s" % (env.venv_home, env.proj_name) env.proj_dirname = "project" env.proj_path = "%s/%s" % (env.venv_path, env.proj_dirname) env.manage = "%s/bin/python %s/project/manage.py" % ((env.venv_path,) * 2) env.domains = conf.get("DOMAINS", [conf.get("LIVE_HOSTNAME", env.hosts[0])]) env.domains_nginx = " ".join(env.domains) env.domains_python = ", ".join(["'%s'" % s for s in env.domains]) env.ssl_disabled = "#" if len(env.domains) > 1 else "" env.repo_url = conf.get("REPO_URL", "") env.git = env.repo_url.startswith("git") or env.repo_url.endswith(".git") env.reqs_path = conf.get("REQUIREMENTS_PATH", None) env.locale = conf.get("LOCALE", "en_US.UTF-8") env.secret_key = conf.get("SECRET_KEY", "") env.nevercache_key = conf.get("NEVERCACHE_KEY", "") env.django_user = conf.get("DJANGO_USER", "duser") env.django_user_group = env.django_user env.django_project_settings = "settings" env.gunicorn_workers = 2 env.gunicorn_logfile = '%(venv_path)s/logs/projects/%(proj_name)s_gunicorn.log' % env #env.rungunicorn_script = '%(venv_path)s/scripts/rungunicorn_%(proj_name)s.sh' % env env.rungunicorn_script = '%(venv_path)s/bin/gunicorn_start' % env env.gunicorn_worker_class = "eventlet" env.gunicorn_loglevel = "info" env.gunicorn_port = conf.get("GUNICORN_PORT", 8000) env.supervisor_program_name = env.proj_name env.supervisorctl = '/usr/bin/supervisorctl' env.supervisor_autostart = 'true' env.supervisor_autorestart = 'true' env.supervisor_redirect_stderr = 'true' env.supervisor_stdout_logfile = '%(venv_path)s/logs/projects/supervisord_%(proj_name)s.log' % env #env.supervisord_conf_file = '%(venv_path)s/configs/supervisord/%(proj_name)s.conf' % env env.supervisord_conf_file = '/etc/supervisor/conf.d/%(proj_name)s.conf' % env ################## # Template setup # ################## # Each template gets uploaded at deploy time, only if their # contents has changed, in which case, the reload command is # also run. templates = { "nginx": { "local_path": "deploy/nginx.conf", "remote_path": "/etc/nginx/sites-enabled/%(proj_name)s.conf", }, "supervisor": { "local_path": "deploy/supervisord.conf", "remote_path": env.supervisord_conf_file, }, "cron": { "local_path": "deploy/crontab", "remote_path": "/etc/cron.d/%(proj_name)s", "owner": "root", "mode": "600", }, "gunicorn": { "local_path": "deploy/gunicorn_start", "remote_path": "%(venv_path)s/bin/gunicorn_start", }, "settings": { "local_path": "deploy/local_settings", "remote_path": "%(proj_path)s/project/local_settings.py", }, "mysql": { "local_path": "deploy/mysql.cnf", "remote_path": "/etc/mysql/my.cnf", } } ###################################### # Context for virtualenv and project # ###################################### @contextmanager def virtualenv(): """ Runs commands within the project's virtualenv. """ with cd(env.venv_path): with prefix("source %s/bin/activate" % env.venv_path): yield @contextmanager def project(): """ Runs commands within the project's directory. """ with virtualenv(): with cd(env.proj_dirname): yield @contextmanager def update_changed_requirements(): """ Checks for changes in the requirements file across an update, and gets new requirements if changes have occurred. """ reqs_path = join(env.proj_path, env.reqs_path) get_reqs = lambda: run("cat %s" % reqs_path, show=False) old_reqs = get_reqs() if env.reqs_path else "" yield if old_reqs: new_reqs = get_reqs() if old_reqs == new_reqs: # Unpinned requirements should always be checked. for req in new_reqs.split("\n"): if req.startswith("-e"): if "@" not in req: # Editable requirement without pinned commit. break elif req.strip() and not req.startswith("#"): if not set(">=<") & set(req): # PyPI requirement without version. break else: # All requirements are pinned. return pip("-r %s/%s" % (env.proj_path, env.reqs_path)) ########################################### # Utils and wrappers for various commands # ########################################### def _print(output): print() print(output) print() def print_command(command): _print(blue("$ ", bold=True) + yellow(command, bold=True) + red(" ->", bold=True)) @task def run(command, show=True): """ Runs a shell comand on the remote server. """ if show: print_command(command) with hide("running"): return _run(command) @task def sudo(command, show=True): """ Runs a command as sudo. """ if show: print_command(command) with hide("running"): return _sudo(command) def log_call(func): @wraps(func) def logged(*args, **kawrgs): header = "-" * len(func.__name__) _print(green("\n".join([header, func.__name__, header]), bold=True)) return func(*args, **kawrgs) return logged def get_templates(): """ Returns each of the templates with env vars injected. """ injected = {} for name, data in templates.items(): injected[name] = dict([(k, v % env) for k, v in data.items()]) return injected def upload_template_and_reload(name): """ Uploads a template only if it has changed, and if so, reload a related service. """ template = get_templates()[name] local_path = template["local_path"] if not os.path.exists(local_path): project_root = os.path.dirname(os.path.abspath(__file__)) local_path = os.path.join(project_root, local_path) remote_path = template["remote_path"] reload_command = template.get("reload_command") owner = template.get("owner") mode = template.get("mode") remote_data = "" if exists(remote_path): with hide("stdout"): remote_data = sudo("cat %s" % remote_path, show=False) with open(local_path, "r") as f: local_data = f.read() # Escape all non-string-formatting-placeholder occurrences of '%': local_data = re.sub(r"%(?!\(\w+\)s)", "%%", local_data) if "%(db_pass)s" in local_data: env.db_pass = db_pass() local_data %= env clean = lambda s: s.replace("\n", "").replace("\r", "").strip() if clean(remote_data) == clean(local_data): return upload_template(local_path, remote_path, env, use_sudo=True, backup=False) if owner: sudo("chown %s %s" % (owner, remote_path)) if mode: sudo("chmod %s %s" % (mode, remote_path)) if reload_command: sudo(reload_command) def db_pass(): """ Prompts for the database password if unknown. """ if not env.db_pass: env.db_pass = getpass("Enter the database password: ") return env.db_pass @task def apt(packages): """ Installs one or more system packages via apt. """ return sudo("apt-get install -y -q " + packages) @task def pip(packages): """ Installs one or more Python packages within the virtual environment. """ with virtualenv(): return sudo("pip install %s" % packages) def postgres(command): """ Runs the given command as the postgres user. """ show = not command.startswith("psql") return run("sudo -u root sudo -u postgres %s" % command, show=show) @task def psql(sql, show=True): """ Runs SQL against the project's database. """ out = postgres('psql -c "%s"' % sql) if show: print_command(sql) return out @task def backup(filename): """ Backs up the database. """ return postgres("pg_dump -Fc %s > %s" % (env.proj_name, filename)) @task def restore(filename): """ Restores the database. """ return postgres("pg_restore -c -d %s %s" % (env.proj_name, filename)) @task def python(code, show=True): """ Runs Python code in the project's virtual environment, with Django loaded. """ #pdb.set_trace() setup = "import os; os.environ[\'DJANGO_SETTINGS_MODULE\']=\'settings\';" full_code = 'python -c "%s%s"' % (setup, code.replace("`", "\\\`")) with project(): result = run(full_code, show=False) if show: print_command(code) return result def static(): """ Returns the live STATIC_ROOT directory. """ return python("from django.conf import settings;" "print settings.STATIC_ROOT", show=False).split("\n")[-1] @task def manage(command): """ Runs a Django management command. """ return run("%s %s" % (env.manage, command)) ######################### # Install and configure # ######################### @task @log_call def all(): """ Installs everything required on a new system and deploy. From the base software, up to the deployed project. """ install() create_virtualenv() create_SSH() create_git() #create_DB() set_SSL() create_django_user() set_password_django_user() upload_rungunicorn_script() upload_supervisord_conf() create_nginx() set_project() @task @log_call def install(): """ Installs the base system and Python requirements for the entire server. """ #locale = "LC_ALL=%s" % env.locale #with hide("stdout"): # if locale not in sudo("cat /etc/default/locale"): # sudo("update-locale %s" % locale) # run("exit") sudo("apt-get update -y -q") apt("nginx libjpeg-dev python-dev python-setuptools git-core " "libpq-dev memcached supervisor") #apt("mysql-server mysql-client") apt("openssh-server libev-dev python-all-dev build-essential") apt("debconf-utils") sudo("easy_install pip") #sudo("pip install virtualenv mercurial") apt("python-virtualenv virtualenvwrapper") #sudo("apt-get install -y python-virtualenv virtualenvwrapper") @task @log_call def create_virtualenv(): """ Create a new virtual environment & git. """ #pdb.set_trace() if not exists(env.venv_home): run("mkdir %s" % env.venv_home) with cd(env.venv_home): if exists(env.proj_name): prompt = input("\nVirtualenv exists: %s" "\nWould you like to replace it? (yes/no) " % env.proj_name) if prompt.lower() != "yes": print("\nAborting!") return False remove() run("export WORKON_HOME=$HOME/.virtualenvs") run("export PIP_VIRTUALENV_BASE=$WORKON_HOME") run("source /usr/share/virtualenvwrapper/virtualenvwrapper.sh && mkvirtualenv %s"% env.proj_name) @task @log_call def create_SSH(): """ Create a new ssh key. """ #pdb.set_trace() ssh_path = "/home/%s/.ssh" % env.user if not exists(ssh_path): run("mkdir %s" % env.ssh_path) pub_path = ssh_path+"/id_rsa.pub" with cd(ssh_path): if not exists(pub_path): run('ssh-keygen -t rsa') run("cat %s"% pub_path) input("\nSet SSH & Press Enter!") @task @log_call def create_git(): """ Create a new git. """ if not exists(env.venv_path): print("\nVirtual env path isn't exists!") return False run("git clone %s %s" % (env.repo_url, env.proj_path)) def mysql_execute(sql, user, password): """ Executes passed sql command using mysql shell. """ #user = user or env.conf.DB_USER from fabric.api import prompt sql = sql.replace('"', r'\"') #if password == None: # password = prompt('Please enter MySQL root password:') return run('echo "%s" | mysql --user="%s" --password="%s"' % (sql, user , password)) @task @log_call def create_DB(): """ Create DB and DB user. """ from fabric.api import settings, prompt with settings(hide('warnings', 'stderr'), warn_only=True): result = sudo('dpkg-query --show mysql-server') if result.failed is False: warn('MySQL is already installed') else: #sudo('echo "mysql-server-5.0 mysql-server/root_password password %s" | debconf-set-selections' % env.db_root_pass) #sudo('echo "mysql-server-5.0 mysql-server/root_password_again password %s" | debconf-set-selections' % env.db_root_pass) run('echo "mysql-server-5.0 mysql-server/root_password password %s" | sudo debconf-set-selections' % env.db_root_pass) run('echo "mysql-server-5.0 mysql-server/root_password_again password %s" | sudo debconf-set-selections' % env.db_root_pass) apt('mysql-server mysql-client') upload_template_and_reload("mysql") sql = 'CREATE DATABASE %(proj_name)s DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci' % env mysql_execute(sql, 'root', env.db_root_pass) sql = """CREATE USER '%(proj_name)s'@'%%' IDENTIFIED BY '%(db_pass)s';""" % env #sql = """CREATE USER '%(proj_name)s'@'localhost' IDENTIFIED BY '%(db_pass)s';""" % env mysql_execute(sql, 'root', env.db_root_pass) sql = """GRANT ALL ON %(proj_name)s.* TO '%(proj_name)s'@'%%'; FLUSH PRIVILEGES;""" % env #sql = """GRANT ALL ON %(proj_name)s.* TO '%(proj_name)s'@'localhost'; FLUSH PRIVILEGES;""" % env mysql_execute(sql, 'root', env.db_root_pass) sudo('service mysql restart') @task @log_call def remove_DB(): """ Remove DB and DB user. """ sql = 'DROP DATABASE %(proj_name)s' % env mysql_execute(sql, 'root', env.db_root_pass) sql = """DROP USER '%(proj_name)s';""" % env mysql_execute(sql, 'root', env.db_root_pass) sudo("service mysql stop") sudo("apt-get remove -y --purge mysql-server mysql-client") #sudo("netstat -tap | grep mysql") sudo("apt-get remove -y --purge mysql-server*") sudo("apt-get remove -y --purge mysql-client*") @task @log_call def set_SSL(): """ # Set up SSL certificate. """ if not env.ssl_disabled: conf_path = "/etc/nginx/conf" if not exists(conf_path): sudo("mkdir %s" % conf_path) with cd(conf_path): crt_file = env.proj_name + ".crt" key_file = env.proj_name + ".key" if not exists(crt_file) and not exists(key_file): try: crt_local, = glob(join("deploy", "*.crt")) key_local, = glob(join("deploy", "*.key")) except ValueError: parts = (crt_file, key_file, env.domains[0]) sudo("openssl req -new -x509 -nodes -out %s -keyout %s " "-subj '/CN=%s' -days 3650" % parts) else: upload_template(crt_local, crt_file, use_sudo=True) upload_template(key_local, key_file, use_sudo=True) @task @log_call def migrate(): """ migrate. """ manage('migrate') @task @log_call def set_project(): """ Set up project. """ upload_template_and_reload("settings") with project(): if env.reqs_path: pip("-r %s/%s" % (env.proj_path, env.reqs_path)) apt('libmysqlclient-dev') pip("fabric django python-social-auth " "gunicorn django-hosts mysql-python django-crontab pytz django-dbbackup") manage('migrate') manage('createsuperuser') @task @log_call def create_django_user(): """ create django user """ sudo('groupadd --system %(django_user)s' % env) sudo('useradd --system --gid %(django_user)s --home %(venv_path)s %(django_user)s' % env) sudo('chown -R %(django_user)s:%(django_user)s %(venv_path)s' % env) sudo('chmod -R g+w %(venv_path)s' % env) sudo('usermod -a -G %(django_user)s %(user)s' % env) @task @log_call def set_password_django_user(): """ set password django user """ sudo('passwd %(django_user)s' % env) @task @log_call def upload_rungunicorn_script(): """ upload rungunicorn conf """ sudo('mkdir -p %s' % dirname(env.gunicorn_logfile)) sudo('chown %s %s' % (env.django_user, dirname(env.gunicorn_logfile))) sudo('chmod -R 775 %s' % dirname(env.gunicorn_logfile)) sudo('touch %s' % env.gunicorn_logfile) sudo('chown %s %s' % (env.django_user, env.gunicorn_logfile)) sudo('mkdir -p %s' % dirname(env.rungunicorn_script)) upload_template_and_reload("gunicorn") sudo('chmod u+x %s' % env.rungunicorn_script) sudo('chown -R %(django_user)s:%(django_user)s %(rungunicorn_script)s' % env) @task @log_call def upload_supervisord_conf(): ''' upload supervisor conf ''' sudo('mkdir -p %s' % dirname(env.supervisor_stdout_logfile)) sudo('chown %s %s' % (env.django_user, dirname(env.supervisor_stdout_logfile))) sudo('chmod -R 775 %s' % dirname(env.supervisor_stdout_logfile)) sudo('touch %s' % env.supervisor_stdout_logfile) sudo('chown %s %s' % (env.django_user, env.supervisor_stdout_logfile)) sudo('mkdir -p %s' % dirname(env.supervisord_conf_file)) upload_template_and_reload("supervisor") sudo('%(supervisorctl)s reread' % env) sudo('%(supervisorctl)s update' % env) @task @log_call def create_nginx(): ''' create nginx ''' upload_template_and_reload("nginx") sudo('unlink /etc/nginx/sites-enabled/default') sudo("service nginx restart") @task @log_call def restart(): """ Restart gunicorn worker processes for the project. """ pid_path = "%s/gunicorn.pid" % env.proj_path if exists(pid_path): #sudo("kill -HUP `cat %s`" % pid_path) #$sudo("kill -HUP $(cat %s)" % pid_path) run("cat %s" % pid_path) prompt = input("\npid number(upper number) : ") sudo("kill -HUP %s" % prompt) else: start_args = (env.proj_name, env.proj_name) sudo("supervisorctl start %s:gunicorn_%s" % start_args) ########## # Deploy # ########## @task @log_call def pull_git(): """ run git pull """ with cd(env.proj_path): run("git pull") @task @log_call def collectstatic(): """ collect static for mangae django """ manage('collectstatic') @task @log_call def restart_supervisor(): """ restart supervisor """ sudo("supervisorctl restart %(proj_name)s" % env) @task @log_call def upload_local_settings(): """ upload_local_settings """ upload_template_and_reload("settings") @task @log_call def upload_nginx(): ''' create nginx ''' upload_template_and_reload("nginx") sudo("service nginx restart") @task @log_call def deploy(): """ Deploy latest version of the project. Check out the latest version of the project from version control, install new requirements, sync and migrate the database, collect any new static assets, and restart gunicorn's work processes for the project. """ for name in get_templates(): upload_template_and_reload(name) with project(): #backup("last.db") #static_dir = static() #if exists(static_dir): # run("tar -cf last.tar %s" % static_dir) git = env.git last_commit = "git rev-parse HEAD" run("%s > last.commit" % last_commit) with update_changed_requirements(): run("git pull origin master -f") #manage("collectstatic -v 0 --noinput") #manage("syncdb --noinput") #manage("migrate --noinput") restart() return True @task @log_call def remove(): """ Blow away the current project. """ if exists(env.venv_path): sudo("rm -rf %s" % env.venv_path) #for template in get_templates().values(): # remote_path = template["remote_path"] # if exists(remote_path): # sudo("rm %s" % remote_path) #psql("DROP DATABASE IF EXISTS %s;" % env.proj_name) #psql("DROP USER IF EXISTS %s;" % env.proj_name)
[ "wogud86@gmail.com" ]
wogud86@gmail.com
136b1182e8e9b3bb6006d82097af6a64457a1413
817965ef6ee70672eabedbbafe336ca07d6443ff
/0x0B-python-input_output/8-load_from_json_file.py
34f8ae593948ca8fc24e3410cf357a351c626b5f
[]
no_license
julianfrancor/holbertonschool-higher_level_programming
f021086eb2a86b366c391452b13581c87587a3a8
bd2a291c725ba09d88e9a629d0b22cf4ed7122e7
refs/heads/master
2022-12-23T05:27:27.942300
2020-09-24T21:22:56
2020-09-24T21:22:56
257,935,813
0
1
null
null
null
null
UTF-8
Python
false
false
662
py
#!/usr/bin/python3 """ function that creates an Object from a “JSON file” """ import json def load_from_json_file(filename): """ Args filename: JSON file form where the string is going to be read json.dumps() method can convert a Python object into a JSON string. json.dump() method can be used to write to file a JSON file directly. can Write in an open file json.loads() expects to get its text from a string object json.load() expects to get the text from a file can Read from an open file an convert """ with open(filename, mode="r", encoding="UTF8") as file: return json.load(file)
[ "julianfrancor@gmail.com" ]
julianfrancor@gmail.com
0fd5b6297580acd6887f5d68daa551292c7e1c7a
ab3e6cee73c76e1bda1ac8d4e9cb82286de757fe
/190605_Day7_Class_Model_CRUD/django/crud_review/boards/migrations/0001_initial.py
998b0a6ce4811fcda7f8db94df926fc4d27a1226
[]
no_license
arara90/TIL_django
cc961535feba95e55d531c90a5d274cb5ec5f02e
5aa5fcb839dceb0abc9c5b09fdcb5a478dca34f4
refs/heads/master
2020-05-27T20:15:46.663200
2020-03-21T06:13:40
2020-03-21T06:13:40
188,775,950
0
0
null
null
null
null
UTF-8
Python
false
false
676
py
# Generated by Django 2.2.1 on 2019-06-10 05:49 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Board', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=15)), ('content', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], ), ]
[ "arara90@hotmail.com" ]
arara90@hotmail.com
73d6c871a33247c5a769ff502a2741d904f94c16
8813753442439c5408db80ed07a97f54ee90a115
/check_memavail.py
3a7da71db15642d156598096f164d05ee7b87032
[ "Unlicense" ]
permissive
Rattkener/Check_MemAvail
7a0e801e01ca9aa4677a9e9646b36c30881902da
e963636d7421533d0d0019c98805bfd810262af3
refs/heads/master
2021-06-20T14:16:11.478011
2021-05-06T20:37:21
2021-05-06T20:37:21
206,613,265
0
0
null
null
null
null
UTF-8
Python
false
false
5,867
py
#!/usr/bin/env python #import# import paramiko import argparse #end import# parser = argparse.ArgumentParser( description='Remote Memory check for Linux servers. Intended for use on OpsView/Nagios monitoring systems.', usage = '%(prog)s -n [--hostname] HOSTNAME -w [--warning] warning%% -c [--critical] critical%% -m [--metric] {commit,consumed,swap,hybrid} -v [--verbose] -s [--swap] swap_limit%%', ) ### define arguments to be used. secondary metric will be the only non-required metric for now given the progression of the script. parser.add_argument("-n","--hostname", type=str, required=True, help='hostname which check should run against. Assumes passwordless access') parser.add_argument("-w","--warning", type=int, required=False, default=85, help='Warning alert threshold in percent, defaults to 85') parser.add_argument("-c","--critical", type=int, required=False, default=95, help='Critical alert thresehold in percent, defaults to 95') parser.add_argument("-m","--metric", type=str, required=True, choices=('commit','consumed','swap','hybrid'), help='Select alert metric. If Hybrid you should supply \'-s\' otherwise default is 85%%') parser.add_argument("-v","--verbose", action='store_true', help='Display more memory stats used in determining alert status.') parser.add_argument("-s","--swap", type=int, required=False, default=85, help='Value that is only used in Hybrid mode. Percentage of swap used to trigger hybrid alert defaults to 85') ### define argument catchall for future use args = parser.parse_args() ### Ensure that Critical is greater than Warning if args.warning > args.critical: parser.error("Warning threshold is higher than Critical threshold!") ### predefine metrics array a = {} ####Paramiko SSH & SFTP link to target host#### tgt_client = paramiko.SSHClient() # create paramiko client #tgt_client.load_system_host_keys() # load system host keys to allow recognition of known hosts tgt_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # allow paramiko to add hosts. This opens the script up to man in the middle attacks but may be necessary for our enviornment. tgt_client.connect(args.hostname, username='root') # open connection to host to allow SFTP link tgt_sftp = tgt_client.open_sftp() # define SFTP method meminfo = tgt_sftp.open('/proc/meminfo') # method for grabbing mem info low_Watermark = int(tgt_sftp.open('/proc/sys/vm/min_free_kbytes').readline().strip()) # grab absolute minimum amount of memory system can run on try: for entry in map( lambda x: x.strip().split( 'kB' )[0].strip(), meminfo.readlines()): a[ entry.split( ':' )[0].strip() ] = int( entry.split( ':' )[1].split( 'kB' )[0].strip() ) finally: #close files we're working with. Don't trust garbage collectors meminfo.close() tgt_client.close() ### define metrics that aren't available on all systems ### if 'MemAvailable' in a: #define what "memory available" looks like. Older OS's do not calculate this in /proc/meminfo memAvail = a['MemAvailable'] # But if they do why not use it? else: memAvail = a['MemFree'] - low_Watermark + (a['Cached'] - min(a['Cached'] / 2, low_Watermark)) #and if they don't then we'll make our own. https://github.com/torvalds/linux/blob/master/mm/page_alloc.c#L5089 ### set testing metrics ### total = a['MemTotal'] # Set memory total commit = a['Committed_AS'] # Define the current system committed memory. This is NOT memory in use, just committed pressure = ((commit * 100.0) / total) ptotal_used = (100.0 - (memAvail * 100.0 / total) ) pswap = (100.0 - (a['SwapFree'] * 100.0 / a['SwapTotal'])) ### High verbosity output ### if args.verbose: print("Memory Available: " + str(memAvail) + " kb") print("Lower Watermark: " + str(low_Watermark) + " kb") print("Total Memory: " + str(total) + " kb") print("Total Commit: " + str(commit) + " kb") print("Total Memory Used: %.2f%%" % ptotal_used) print("Swap Used: %.2f%%" % pswap) ### Alert logic based on primary metric. Start with highest check first if args.metric == "commit": if pressure >= args.critical: print('CRITICAL - Commit: {0:.2f}'.format(pressure,)) exit(2) elif pressure >= args.warning: print('WARNING - Commit: {0:.2f}'.format(pressure,)) exit(1) else: print('OK - Commit: {0:.2f}'.format(pressure,)) exit(0) elif args.metric == "consumed": if ptotal_used >= args.critical: print("CRITICAL - UsedMemory: {0:.2f}".format( ptotal_used, ) ) exit(2) elif ptotal_used >= args.warning: print("WARNING - UsedMemory: {0:.2f}".format( ptotal_used, ) ) exit(1) else: print("OK - UsedMemory: {0:.2f}".format( ptotal_used, ) ) exit(0) elif args.metric == "swap": if pswap >= args.critical: print("CRITICAL - SwapUsed: {0:.2f}".format( pswap, ) ) exit(2) elif pswap >= args.warning: print("WARNING - SwapUsed: {0:.2f}".format( pswap, ) ) exit(1) else: print("OK - SwapUsed: {0:.2f}".format( pswap, ) ) exit(0) elif args.metric == "hybrid": if ptotal_used >= args.critical: if pswap >= args.swap: print("CRITICAL - UsedMemory: {0:.2f} -- UsedSwap: {1:.2f}".format( ptotal_used, pswap ) ) exit(2) elif ptotal_used >= args.warning: if pswap >= args.swap: print("WARNING - UsedMemory: {0:.2f} -- UsedSwap: {1:.2f}".format( ptotal_used, pswap ) ) exit(1) else: print("OK - UsedMemory: {0:.2f} -- UsedSwap: {1:.2f}".format( ptotal_used, pswap ) ) exit(0)
[ "29561978+ProficientPanda@users.noreply.github.com" ]
29561978+ProficientPanda@users.noreply.github.com
18bd370f71f589cf2bcef712de9b7795ea1f4538
d6a182d1ab766f47ccdfbb7862bf4cd4c1d5cf48
/delete.py
025abad5ef6777be447639a89ed1c3ee6a504fbe
[]
no_license
mlnsvbd/CRUD_SqLite_Python
e7db43bf154776b92b27f5489e563f3caf968b25
18f88ecb036017a92ac308f6aac3df3294e5192f
refs/heads/master
2021-05-28T14:16:35.306800
2015-01-25T22:21:12
2015-01-25T22:21:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
236
py
import sqlite3 as lite con = lite.connect('text.db') cur = con.cursor() sql = "DELETE FROM users WHERE id = '1'" try: cur.execute(sql) con.commit() print("Delete ok!!!") except Exception as e: print(e.args) finally: con.close()
[ "welser.m.r@gmail.com" ]
welser.m.r@gmail.com
b9691e61dfe1e73f0cfed348461860d2ce4d6495
16ecabb5d9010c7fa4aebb8ab852f7c6a19193db
/src/0809.py
0ba2428a1bbf7638358e2412cd9b40399abf0b68
[]
no_license
LeeSM0518/OpenCV-python
74ff0d899d291a35f9cd82d2ef37835a0c5ccdf2
46c234879f5d48876ca0888bdede8bfb347b7c30
refs/heads/master
2020-04-30T19:35:33.201278
2020-02-25T14:35:20
2020-02-25T14:35:20
177,043,146
0
0
null
null
null
null
UTF-8
Python
false
false
535
py
# 0809.py import cv2 import numpy as np #1 src = cv2.imread('./data/momentTest.jpg') gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) ret, bImage = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY) #2 ##M = cv2.moments(bImage) M = cv2.moments(bImage, True) for key, value in M.items(): print('{}={}'.format(key, value)) #3 cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) dst = src.copy() cv2.circle(dst, (cx, cy), 5, (0,0,255), 2) cv2.imshow('dst', dst) cv2.waitKey() cv2.destroyAllWindows()
[ "nalsm98@naver.com" ]
nalsm98@naver.com
9af53ed594299e5bca7f79a0631bb772ce8737c6
f2f96ef63c721dbc985dae99f294aa49e7c5fe48
/Server/database/__init__.py
5825c14821c76e90269bc986588ee40a40b21363
[ "MIT" ]
permissive
Ricky-Hao/IMPK-Server
6e44e7ea81563908dfad3ea6347b2ca0da6cbb0c
786e24269e7cc506a82ae8aa0fa0d1df8c478f51
refs/heads/master
2018-09-25T05:17:24.551553
2018-06-07T05:42:20
2018-06-07T05:42:20
124,077,971
0
0
null
null
null
null
UTF-8
Python
false
false
62
py
from Server.database.database import Database db = Database()
[ "a471558277@gmail.com" ]
a471558277@gmail.com
b08a51aeb6644672aa2d6a3f7fcc2d9b19c3f3a1
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/insights/v20210401/data_collection_rule_association.py
e5cc8f03d180c23ad08149bb40a76e212462e4f5
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
12,201
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = ['DataCollectionRuleAssociationArgs', 'DataCollectionRuleAssociation'] @pulumi.input_type class DataCollectionRuleAssociationArgs: def __init__(__self__, *, resource_uri: pulumi.Input[str], association_name: Optional[pulumi.Input[str]] = None, data_collection_endpoint_id: Optional[pulumi.Input[str]] = None, data_collection_rule_id: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a DataCollectionRuleAssociation resource. :param pulumi.Input[str] resource_uri: The identifier of the resource. :param pulumi.Input[str] association_name: The name of the association. The name is case insensitive. :param pulumi.Input[str] data_collection_endpoint_id: The resource ID of the data collection endpoint that is to be associated. :param pulumi.Input[str] data_collection_rule_id: The resource ID of the data collection rule that is to be associated. :param pulumi.Input[str] description: Description of the association. """ pulumi.set(__self__, "resource_uri", resource_uri) if association_name is not None: pulumi.set(__self__, "association_name", association_name) if data_collection_endpoint_id is not None: pulumi.set(__self__, "data_collection_endpoint_id", data_collection_endpoint_id) if data_collection_rule_id is not None: pulumi.set(__self__, "data_collection_rule_id", data_collection_rule_id) if description is not None: pulumi.set(__self__, "description", description) @property @pulumi.getter(name="resourceUri") def resource_uri(self) -> pulumi.Input[str]: """ The identifier of the resource. """ return pulumi.get(self, "resource_uri") @resource_uri.setter def resource_uri(self, value: pulumi.Input[str]): pulumi.set(self, "resource_uri", value) @property @pulumi.getter(name="associationName") def association_name(self) -> Optional[pulumi.Input[str]]: """ The name of the association. The name is case insensitive. """ return pulumi.get(self, "association_name") @association_name.setter def association_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "association_name", value) @property @pulumi.getter(name="dataCollectionEndpointId") def data_collection_endpoint_id(self) -> Optional[pulumi.Input[str]]: """ The resource ID of the data collection endpoint that is to be associated. """ return pulumi.get(self, "data_collection_endpoint_id") @data_collection_endpoint_id.setter def data_collection_endpoint_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "data_collection_endpoint_id", value) @property @pulumi.getter(name="dataCollectionRuleId") def data_collection_rule_id(self) -> Optional[pulumi.Input[str]]: """ The resource ID of the data collection rule that is to be associated. """ return pulumi.get(self, "data_collection_rule_id") @data_collection_rule_id.setter def data_collection_rule_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "data_collection_rule_id", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description of the association. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) class DataCollectionRuleAssociation(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, association_name: Optional[pulumi.Input[str]] = None, data_collection_endpoint_id: Optional[pulumi.Input[str]] = None, data_collection_rule_id: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, resource_uri: Optional[pulumi.Input[str]] = None, __props__=None): """ Definition of generic ARM proxy resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] association_name: The name of the association. The name is case insensitive. :param pulumi.Input[str] data_collection_endpoint_id: The resource ID of the data collection endpoint that is to be associated. :param pulumi.Input[str] data_collection_rule_id: The resource ID of the data collection rule that is to be associated. :param pulumi.Input[str] description: Description of the association. :param pulumi.Input[str] resource_uri: The identifier of the resource. """ ... @overload def __init__(__self__, resource_name: str, args: DataCollectionRuleAssociationArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Definition of generic ARM proxy resource. :param str resource_name: The name of the resource. :param DataCollectionRuleAssociationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(DataCollectionRuleAssociationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, association_name: Optional[pulumi.Input[str]] = None, data_collection_endpoint_id: Optional[pulumi.Input[str]] = None, data_collection_rule_id: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, resource_uri: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = DataCollectionRuleAssociationArgs.__new__(DataCollectionRuleAssociationArgs) __props__.__dict__["association_name"] = association_name __props__.__dict__["data_collection_endpoint_id"] = data_collection_endpoint_id __props__.__dict__["data_collection_rule_id"] = data_collection_rule_id __props__.__dict__["description"] = description if resource_uri is None and not opts.urn: raise TypeError("Missing required property 'resource_uri'") __props__.__dict__["resource_uri"] = resource_uri __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:insights/v20210401:DataCollectionRuleAssociation"), pulumi.Alias(type_="azure-native:insights:DataCollectionRuleAssociation"), pulumi.Alias(type_="azure-nextgen:insights:DataCollectionRuleAssociation"), pulumi.Alias(type_="azure-native:insights/v20191101preview:DataCollectionRuleAssociation"), pulumi.Alias(type_="azure-nextgen:insights/v20191101preview:DataCollectionRuleAssociation")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(DataCollectionRuleAssociation, __self__).__init__( 'azure-native:insights/v20210401:DataCollectionRuleAssociation', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'DataCollectionRuleAssociation': """ Get an existing DataCollectionRuleAssociation resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = DataCollectionRuleAssociationArgs.__new__(DataCollectionRuleAssociationArgs) __props__.__dict__["data_collection_endpoint_id"] = None __props__.__dict__["data_collection_rule_id"] = None __props__.__dict__["description"] = None __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None return DataCollectionRuleAssociation(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="dataCollectionEndpointId") def data_collection_endpoint_id(self) -> pulumi.Output[Optional[str]]: """ The resource ID of the data collection endpoint that is to be associated. """ return pulumi.get(self, "data_collection_endpoint_id") @property @pulumi.getter(name="dataCollectionRuleId") def data_collection_rule_id(self) -> pulumi.Output[Optional[str]]: """ The resource ID of the data collection rule that is to be associated. """ return pulumi.get(self, "data_collection_rule_id") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description of the association. """ return pulumi.get(self, "description") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ Resource entity tag (ETag). """ return pulumi.get(self, "etag") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The resource provisioning state. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.DataCollectionRuleAssociationProxyOnlyResourceResponseSystemData']: """ Metadata pertaining to creation and last modification of the resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type")
[ "noreply@github.com" ]
noreply@github.com
d1a7559941c43363cdb920c3cdf95dfd113e5caa
4ba0b403637e7aa3e18c9bafae32034e3c394fe4
/python/PyProfiler/profiler6/test.py
bfa05d76fd1e3862c546d51554804efb9d66d939
[]
no_license
ASMlover/study
3767868ddae63ac996e91b73700d40595dd1450f
1331c8861fcefbef2813a2bdd1ee09c1f1ee46d6
refs/heads/master
2023-09-06T06:45:45.596981
2023-09-01T08:19:49
2023-09-01T08:19:49
7,519,677
23
6
null
null
null
null
UTF-8
Python
false
false
1,620
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (c) 2023 ASMlover. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list ofconditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materialsprovided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import sys sys.path.append("../") import py_profiler as pprof from common import test_common as _tc def test() -> None: pprof.start_stats() _tc.TestEntry().run() pprof.print_stats() if __name__ == "__main__": test()
[ "ASMlover@126.com" ]
ASMlover@126.com
59c2ab248f18fdadf951a4ecbbc12b55c6db470a
8e050e70e597102ccfebe9dce91cf804ae73260b
/cdd.py
4b16530762ea2f40ef1414f12a4fa8da9fbb5d2a
[]
no_license
AngeloMendes/LogDel12
aac23176f9bb3357f38443692285d735009b8f20
266c99f3185242ac8e4b6e04d1ba9d4f50ed0634
refs/heads/master
2021-03-24T23:14:16.468273
2020-03-15T23:49:38
2020-03-15T23:49:38
247,571,030
1
0
null
null
null
null
UTF-8
Python
false
false
1,951
py
#esse codigo eh para avaliar a qtd de grupos existem e agrupar os distribuidores import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans def get_name(names, lat): for key in names['latitude']: if names['latitude'][key] == lat: return names['client_name'][key] def elbow_curve(): K_clusters = range(1, 10) kmeans = [KMeans(n_clusters=i) for i in K_clusters] Y_axis = df[['latitude']] X_axis = df[['longitude']] score = [kmeans[i].fit(Y_axis).score(Y_axis) for i in range(len(kmeans))] # Visualize plt.plot(K_clusters, score) plt.xlabel('Numero de Grupos') plt.ylabel('Score') plt.title('Elbow Curve') plt.show() def cluster(df): names = df[['client_name', 'latitude']].to_dict() df = df.drop(['client_name', 'date'], axis=1) kmeans = KMeans(n_clusters=5, init='k-means++') kmeans.fit(df[df.columns[0:6]]) df['cluster_label'] = kmeans.fit_predict(df[df.columns[0:6]]) centers = kmeans.cluster_centers_ labels = kmeans.predict(df[df.columns[0:6]]) # print centers # print labels length = len(df) df.plot.scatter(x='latitude', y='longitude', c=labels, s=100, cmap='viridis') center_x = [] center_y = [] for i in centers: center_x.append(i[4]) for i in centers: center_y.append(i[5]) # print(center_x) # print(center_y) plt.scatter(center_x, center_y, c='black', s=200, alpha=0.5) # plt.scatter(centers[5:6, 0], centers[5:6, 1], c='black', s=200, alpha=0.5) for i in range(0, length): plt.annotate(get_name(names, df['latitude'][i]), (df['latitude'][i], df['longitude'][i]), horizontalalignment='right', fontsize=13, verticalalignment='bottom') plt.title("Grupos de Bares Moema -SP") plt.show() if __name__ == '__main__': df = pd.read_csv('dist.csv') elbow_curve() cluster(df)
[ "contato.angelomendes@gmail.com" ]
contato.angelomendes@gmail.com
722bf8448ff08e49ce1034f948b5d66e67fbe025
9eeddfe1707dfd5a899fab157432b77e4a4892b5
/code/get_embeddings.py
eeab87a1e8ff1b27af73502273d48d2a0e725ac9
[]
no_license
ksenia007/humor_recognition
f523870945480c8ba4a83a7cabb49e40da4a3073
2f4077ace36f1e961a30f358eb73ed21ded1ff6f
refs/heads/master
2023-02-21T01:36:31.688257
2021-01-22T00:35:57
2021-01-22T00:35:57
261,538,901
1
0
null
null
null
null
UTF-8
Python
false
false
1,111
py
from dataset import * from train import * from models import * import torch.optim as optim import pickle import uuid import warnings from helper_functions import * warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=UserWarning) dataset_function = BasicWeighted folder_data = 'data/training_datasets/' datafile_opt = ['humicroedit', 'puns','oneliners', 'short'] base_file = 'output/embeddings/' bert_model = BertModel.from_pretrained('bert-base-uncased') bert_model = bert_model.eval() bert_model = bert_model.cuda() for idata, dataf in enumerate(datafile_opt): train_set = dataset_function(filename = folder_data+dataf+'_train.csv', maxlen = 30, weight=1) print('Work with', dataf) results = np.zeros((len(train_set), 768)) for i in range(len(train_set)): tokens = train_set[i][0].unsqueeze(0).cuda() attn_mask = train_set[i][1].unsqueeze(0).cuda() _, cls_head = bert_model(tokens, attention_mask = attn_mask) results[i, :] = cls_head.cpu().detach() filename = base_file+dataf+'_embeddings.npy' np.save(filename, results)
[ "26440954+ksenia007@users.noreply.github.com" ]
26440954+ksenia007@users.noreply.github.com
d5a4535689e5faed501055cb510fae7e65574690
f4e7b66391205df44ea15e3bd9e93e4439393df0
/inputcheck.py
8037747f04d28cb4eb79fef72fd11160dbda0821
[]
no_license
thakurakhil/chemical-NER
a2fcf93ad3bfaec95e3e6af42e75fe044354284d
9b47ab96f178e0e665688e4bcaf677f44db2919b
refs/heads/master
2021-08-08T20:36:15.448621
2017-11-11T04:01:12
2017-11-11T04:01:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
209
py
import csv f = open('./inputtext/ninefilefeatures.txt', 'rb') reader = csv.reader(f,delimiter='\t') for row in reader: if(len(row)!=8): break else: for i in row: if(i==''): print row break
[ "singhakhil33@gmail.com" ]
singhakhil33@gmail.com
a2c60c899f14d1dd9b97de4c9161123df14940e5
753a569a2ce6466d236220d0ba8c61c39656cb87
/BP_gradient_descent/gradient_descent.py
6b569c8056faf552630e34d6a8c8f3d7eef9b218
[]
no_license
RabbitTea/AI_DS-Learning
e26c5fa453bf5434ddbefbc323a94c74faaa282e
66db4e6079c1210447776b3324b30b6667af2172
refs/heads/master
2020-04-05T18:00:27.943196
2018-11-21T09:45:17
2018-11-21T09:45:17
157,084,907
0
0
null
null
null
null
UTF-8
Python
false
false
4,524
py
#实现梯度下降算法 import matplotlib.pyplot as plt import numpy as np import pandas as pd import xlrd #Some helper functions for plotting and drawing lines def plot_points(X, y):#将两个类别的点按照标签绘图 admitted = X[np.argwhere(y==1)] rejected = X[np.argwhere(y==0)] plt.scatter([s[0][0] for s in rejected], [s[0][1] for s in rejected], s = 25, color = 'blue', edgecolor = 'k') plt.scatter([s[0][0] for s in admitted], [s[0][1] for s in admitted], s = 25, color = 'red', edgecolor = 'k') def display(m, b, color='g--'):#绘制当前的分割直线 plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) x = np.arange(-10, 10, 0.1) plt.plot(x, m*x+b, color) # Activation (sigmoid) function def sigmoid(x):#激活函数 采用sigmod函数 return 1 / (1 + np.exp(-x)) #实现计算sigmoid(w1*x2+w2*x2+b),即计算输出预测值 def output_formula(features, weights, bias): return sigmoid(np.dot(features, weights) + bias) #dot是矩阵乘法,feature是2*n矩阵,weight是n*1 def error_formula(y, output):#计算误差函数 针对每一个yi计算 return - y*np.log(output) - (1 - y) * np.log(1-output) def update_weights(x, y, weights, bias, learnrate):#权重更新方法,根据梯度下降法来更新 output = output_formula(x, weights, bias) d_error = -(y - output) weights -= learnrate * d_error * x bias -= learnrate * d_error return weights, bias #训练函数,用于训练分界线 def train(features, targets, epochs, learnrate, graph_lines=False): errors = [] n_records, n_features = features.shape#n_records=100,n_features=2 last_loss = None weights = np.random.normal(scale=1 / n_features ** .5, size=n_features) #初始值用随机数生成权重 2*1 bias = 0 display(-weights[0] / weights[1], -bias / weights[1]) # 画当前求解出来的分界线 for e in range(epochs): #迭代1000次 del_w = np.zeros(weights.shape) for x, y in zip(features, targets):#通过zip拉锁函数将X与y的每个点结合起来 output = output_formula(x, weights, bias) #计算输出预测值yi 其中x是1*2,weight是2*1 error = error_formula(y, output)#计算每一个yi的误差 weights, bias = update_weights(x, y, weights, bias, learnrate) print(weights,bias) print(e)#注意 每次迭代里都对xi即100组数进行计算都更新了权重,即更新了100*迭代次数次,每次迭代都是以上次的结果重新计算100组数 # Printing out the log-loss error on the training set out = output_formula(features, weights, bias)#计算迭代后的预测值,这里feature是n*2,weight是2*1,out是n*1的一列预测值 loss = np.mean(error_formula(targets, out))#对每个预测值的误差做算术平均 errors.append(loss) if e % (epochs / 10) == 0: print("\n========== Epoch", e, "==========") if last_loss and last_loss < loss: print("Train loss: ", loss, " WARNING - Loss Increasing") else: print("Train loss: ", loss) last_loss = loss predictions = out > 0.5 accuracy = np.mean(predictions == targets) print("Accuracy: ", accuracy) if graph_lines :#and e % (epochs / 100) == 0 display(-weights[0] / weights[1], -bias / weights[1])#画当前求解出来的分界线 # Plotting the solution boundary plt.title("Solution boundary") display(-weights[0] / weights[1], -bias / weights[1], 'black')#画最后一根求解出来的分界线 # Plotting the data plot_points(features, targets) plt.show() # Plotting the error plt.title("Error Plot") plt.xlabel('Number of epochs') plt.ylabel('Error') plt.plot(errors) plt.show() if __name__ == '__main__': np.random.seed(44) epochs = 100 learnrate = 0.01 data = xlrd.open_workbook('F:\工程实践\工作安排\work3_BPGradientDescent\data.xls') X = [] table = data.sheets()[0] # 打开第一张表 X1 = table.col_values(0) X2 = table.col_values(1) X.append(X1) X.append(X2) X = np.array(X).T # 将X转换为100*2的矩阵 Y = np.array(table.col_values(2)) # 第三列数据:数据点的标签 plot_points(X,Y) plt.show() train(X, Y, epochs, learnrate, True)
[ "354496262@qq.com" ]
354496262@qq.com
829fb8cdd606f109189879a5e3ad261af91f8278
ca5bac9deca017e02b8af87ffaaa91d1eb6c6d07
/Si_Nd/example_code/plot_2D_Seasonal.py
a194819969a902c3d8ba3f4bf7a50b45dd6fcae3
[]
no_license
ndoyesiny/metrics_workshop
36dcc0b444a8ab3b8a0f897c81ada142a5ba6ad1
b74f062c27243eb0705eab367167d1fb9eaf0cd8
refs/heads/master
2020-06-14T10:29:58.282850
2017-03-30T11:20:19
2017-03-30T11:20:19
75,197,976
0
0
null
2016-11-30T15:04:27
2016-11-30T15:04:26
null
UTF-8
Python
false
false
1,738
py
''' plot_Func.py This function make some plot Author: Siny NDOYE, December 2016 ''' import os import iris import iris.quickplot as qplt import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.basemap as bm #import pdb #def plot_Func(cube2plot,outpath,mnth,nlevc): def plot_Func_SAT(cube2plot,figpath,mnth,nlevc,xstart,xend,ystart,yend,title_name): # pdb.set_trace() # print cube2plot.collapsed(['time', 'latitude','longitude'],iris.analysis.MIN), nlevc #levels = np.linspace(iris.analysis.MIN(cube2plot),iris.analysis.MAX(cube2plot) , nlevc) plt.clf() levels=np.linspace(282,302,nlevc) levels=np.linspace(8,32,nlevc) qplt.contourf(cube2plot, levels = levels, extend = 'max') m = bm.Basemap(projection='cyl', llcrnrlat=ystart, urcrnrlat=yend, llcrnrlon=xstart, urcrnrlon=xend, resolution='c') # coarse resolution for grid #m = bm.Basemap(projection='cyl', llcrnrlat=8.0, urcrnrlat=16.0, llcrnrlon=-20.0, urcrnrlon=20.0, resolution='c') # coarse resolution for grid m.drawcoastlines(linewidth=2) m.drawcountries(linewidth=1) plt.title(title_name) if not os.path.exists(figpath): os.makedirs(figpath) if mnth == 0: plt.savefig(figpath +'Seasonal_average_DJF.png' ) plt.show() if mnth == 1: plt.savefig(figpath +'Seasonal_average_MAM.png' ) plt.show() if mnth == 2: plt.savefig(figpath +'Seasonal_average_JJA.png' ) plt.show() if mnth == 3: plt.savefig(figpath +'Seasonal_average_SON.png' ) plt.show() #if __name__== '__main__': # plot_Func(cube2plot,outpath,mnth,nlevc) #plot_Func(cube2plot,outpath,mnth,nlevc,xstart,xend,ystart,yend) ny """
[ "siny@lodyn416.locean-ipsl.upmc.fr" ]
siny@lodyn416.locean-ipsl.upmc.fr
94d547688e8c427036b8536f3210d9fa20b16541
792d26133b5504fef31ab56138db28a2c7f666db
/LINETCR/Api/Talk.py
be91375f5bef0da83ce54dbdd2d4ae6fbc4df023
[]
no_license
GieVh4/aisya
333f18f7806ca99d242213ef41248335ac111c4c
6f14e06fa7c9df13d4830a435a11c1751b230038
refs/heads/master
2020-03-07T10:17:14.854975
2018-04-24T07:46:47
2018-04-24T07:46:47
127,427,855
0
0
null
null
null
null
UTF-8
Python
false
false
3,662
py
# -*- coding: utf-8 -*- import os, sys path = os.path.join(os.path.dirname(__file__), '../lib/') sys.path.insert(0, path) import requests, rsa from thrift.transport import THttpClient from thrift.protocol import TCompactProtocol from curve import LineService from curve.ttypes import * class Talk: client = None auth_query_path = "/api/v4/TalkService.do"; http_query_path = "/S4"; wait_for_mobile_path = "/Q"; host = "gd2.line.naver.jp"; port = 443; UA = "Line/2018.07421.2455.Tanduri/760.1.6 WIN10/18.2.1" LA = "CHROMEOS 8.3.2 HELLO-WORLD 12.1.1" authToken = None cert = None def __init__(self): self.transport = THttpClient.THttpClient('https://gd2.line.naver.jp:443'+self.auth_query_path) self.transport.setCustomHeaders({ "User-Agent" : self.UA, "X-Line-Application" : self.LA, }) self.transport.open() self.protocol = TCompactProtocol.TCompactProtocol(self.transport); self.client = LineService.Client(self.protocol) def login(self, mail, passwd, cert=None, callback=None): self.transport.path = self.auth_query_path rsakey = self.client.getRSAKeyInfo(IdentityProvider.LINE) crypt = self.__crypt(mail, passwd, rsakey) result = self.client.loginWithIdentityCredentialForCertificate( IdentityProvider.LINE, rsakey.keynm, crypt, True, '127.0.0.1', 'http://dg.b9dm.com/KoenoKatachi.mp4', cert ) if result.type == 3: callback(result.pinCode) header = {"X-Line-Access": result.verifier} r = requests.get(url="https://" + self.host + self.wait_for_mobile_path, headers=header) result = self.client.loginWithVerifierForCerificate(r.json()["result"]["verifier"]) self.transport.setCustomHeaders({ "X-Line-Application" : self.LA, "User-Agent" : self.UA, "X-Line-Access" : result.authToken }) self.authToken = result.authToken self.cert = result.certificate self.transport.path = self.http_query_path elif result.type == 1: self.authToken = result.authToken self.cert = result.certificate self.transport.setCustomHeaders({ "X-Line-Application" : self.LA, "User-Agent" : self.UA, "X-Line-Access" : result.authToken }) self.transport.path = self.http_query_path def TokenLogin(self, authToken): self.transport.setCustomHeaders({ "X-Line-Application" : self.LA, "User-Agent" : self.UA, "X-Line-Access" : authToken, }) self.authToken = authToken self.transport.path = self.http_query_path def qrLogin(self, callback): self.transport.path = self.auth_query_path qr = self.client.getAuthQrcode(True, "Bot") callback("Copy Kode QR nya Plak\nJangan Lama2\nBatas 1 menit:\n line://au/q/" + qr.verifier) r = requests.get("https://" + self.host + self.wait_for_mobile_path, headers={ "X-Line-Application": self.LA, "X-Line-Access": qr.verifier, }) vr = r.json()["result"]["verifier"] lr = self.client.loginWithVerifierForCerificate(vr) self.transport.setCustomHeaders({ "X-Line-Application" : self.LA, "User-Agent" : self.UA, "X-Line-Access": lr.authToken }) self.authToken = lr.authToken self.cert = lr.certificate self.transport.path = self.http_query_path def __crypt(self, mail, passwd, RSA): message = (chr(len(RSA.sessionKey)) + RSA.sessionKey + chr(len(mail)) + mail + chr(len(passwd)) + passwd).encode('utf-8') pub_key = rsa.PublicKey(int(RSA.nvalue, 16), int(RSA.evalue, 16)) crypto = rsa.encrypt(message, pub_key).encode('hex') return crypto
[ "noreply@github.com" ]
noreply@github.com
1e342c9a885841dca5ceca8cad3414989c843045
abd2a91cb26dd7ca8d3fca6f9c4f5ef9dea2f066
/logReg.py
95a8eee77371997300560c19e27f423c142fc9fc
[]
no_license
Saniewski/multiclass-perceptron
dd0018ce7cde93bec978c24e920853e19e16d938
36a475dc4c2f5142b5205259a69ee403248d6eea
refs/heads/master
2022-04-15T07:13:44.429956
2020-04-08T20:20:12
2020-04-08T20:20:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,638
py
import numpy as np import matplotlib.pylab as plt from sklearn import datasets from sklearn.model_selection import train_test_split from scipy.special import expit from plotka import plot_decision_regions class LogisticRegressionGD(object): def __init__(self, learningRate=0.05, epochs=100, random_state=1): self.lr = learningRate self.epochs = epochs self.random_state = random_state def fit(self, X, y): rgen = np.random.RandomState(self.random_state) self.weights = rgen.normal(loc=0.0, scale=0.01, size=X.shape[1]) self.bias = rgen.normal(loc=0.0, scale=0.01) self.costs = [] for i in range(self.epochs): net_input = self.net_input(X) output = expit(net_input) errors = (y - output) self.weights += self.lr * X.T.dot(errors) self.bias += self.lr * errors.sum() cost = (-y.dot(np.log(output)) - ((1 - y).dot(np.log(1 - output)))) self.costs.append(cost) return self def net_input(self, X): return np.dot(X, self.weights) + self.bias def predict(self, X): return np.where(self.net_input(X) >= 0.0, 1, 0) class Multiclass(object): def __init__(self, reg1, reg2): self.reg1 = reg1 self.reg2 = reg2 def predict(self, X): result = [] for data in X: if self.reg1.predict(data) == 1: result.append(0) elif self.reg2.predict(data) == 1: result.append(1) else: result.append(2) return np.array(result) def main(): r8 = float(input('Learning rate: ')) epochs = int(input('Epochs: ')) iris = datasets.load_iris() X = iris.data[:, [1, 3]] y = iris.target y1 = y.copy() y2 = y.copy() y3 = y.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y) y1[(y1 != 0)] = -3 y1[y1 == 0] = 1 y1[y1 == -3] = 0 y3[(y3 != 2)] = -3 y3[y3 == 2] = 1 y3[y3 == -3] = 0 reg1 = LogisticRegressionGD(r8, epochs, 1) reg1.fit(X, y1) reg3 = LogisticRegressionGD(r8, epochs, 1) reg3.fit(X, y3) multi = Multiclass(reg1, reg3) print(multi.predict(X_test)) print(reg1.predict(X_test)) plot_decision_regions(X=X_test, y=y_test, classifier=multi) plt.xlabel(r'$x_1$') plt.ylabel(r'$x_2$') plt.legend(loc='upper left') plt.show() if __name__ == '__main__': main()
[ "pawel.san16@gmail.com" ]
pawel.san16@gmail.com
8d63e564dff2869969a823b0cef0bf2bc6eef4ef
064a954c8dd7d50720aa8fa748d24e8495b8f7d9
/OpenCv/字符投影.py
0258d496027be7b77d2b2ad6e748db532e8445a9
[]
no_license
xianyichi/keras
73169c248dde73f0e49e19f117b21080d1b3ba14
7ca5ab7e0ef1291b97b985e5ec9c78785e2ff3ec
refs/heads/master
2021-06-10T23:02:02.354669
2021-05-20T12:59:41
2021-05-20T12:59:41
182,005,230
0
0
null
null
null
null
UTF-8
Python
false
false
2,386
py
import cv2 import numpy img = cv2.imread ('/Users/apple/PycharmProjects/keras/image/data/images/0_00h_0.png', cv2.COLOR_BGR2GRAY) height, width = img.shape [ :2 ] # print height, width # resized = cv2.resize(img, (2*width,2*height), interpolation=cv2.INTER_CUBIC) gray = cv2.cvtColor (img, cv2.COLOR_BGR2GRAY) (_, thresh) = cv2.threshold (gray, 140, 255, cv2.THRESH_BINARY) # 使文字增长成块 kernel = cv2.getStructuringElement (cv2.MORPH_RECT, (2, 2)) # 形态学处理,定义矩形结构 closed = cv2.erode (thresh, None, iterations=7) # cv2.imshow('erode',closed) height, width = closed.shape [ :2 ] # print height, width z = [ 0 ] * height v = [ 0 ] * width hfg = [ [ 0 for col in range (2) ] for row in range (height) ] lfg = [ [ 0 for col in range (2) ] for row in range (width) ] box = [ 0, 0, 0, 0 ] # 水平投影 a = 0 emptyImage1 = numpy.zeros ((height, width, 3), numpy.uint8) for y in range (0, height): for x in range (0, width): cp = closed [ y, x ] # if np.any(closed[y,x]): if cp == 0: a = a + 1 else: continue z [ y ] = a # print z[y] a = 0 # 根据水平投影值选定行分割点 inline = 1 start = 0 j = 0 for i in range (0, height): if inline == 1 and z [ i ] >= 150: # 从空白区进入文字区 start = i # 记录起始行分割点 # print i inline = 0 elif (i - start > 3) and z [ i ] < 150 and inline == 0: # 从文字区进入空白区 inline = 1 hfg [ j ] [ 0 ] = start - 2 # 保存行分割位置 hfg [ j ] [ 1 ] = i + 2 j = j + 1 # 对每一行垂直投影、分割 a = 0 for p in range (0, j): for x in range (0, width): for y in range (hfg [ p ] [ 0 ], hfg [ p ] [ 1 ]): cp1 = closed [ y, x ] if cp1 == 0: a = a + 1 else: continue v [ x ] = a # 保存每一列像素值 a = 0 # print width # 垂直分割点 incol = 1 start1 = 0 j1 = 0 z1 = hfg [ p ] [ 0 ] z2 = hfg [ p ] [ 1 ] for i1 in range (0, width): if incol == 1 and v [ i1 ] >= 20: # 从空白区进入文字区 start1 = i1 # 记录起始列分割点 incol = 0 elif (i1 - start1 > 3) and v [ i1 ] < 20 and incol == 0: # 从文字区进入空白区 incol = 1 lfg [ j1 ] [ 0 ] = start1 - 2 # 保存列分割位置 lfg [ j1 ] [ 1 ] = i1 + 2 l1 = start1 - 2 l2 = i1 + 2 j1 = j1 + 1 cv2.rectangle (img, (l1, z1), (l2, z2), (255, 0, 0), 2) cv2.imshow ('result', img) cv2.waitKey (0)
[ "1369362296@qq.com" ]
1369362296@qq.com
7dd4a52eccf53f87ba02f0c31ca36819d8d641e7
6cd799da036e019e61ca25351c3c2b368aeda6f4
/lossScreenTest.py
30158367f332718455312c2b49e234747e0a7977
[]
no_license
Tammon23/IceCream-Jump-recreate
d78f3c7c6352d8bef540df4cc5b182fdd76f543e
bfcdf2bb823b9ebae6e9e399c974f358d8d2c61e
refs/heads/master
2021-05-09T20:56:00.489803
2018-01-28T03:47:05
2018-01-28T03:47:05
118,714,755
0
0
null
null
null
null
UTF-8
Python
false
false
1,336
py
import math, random import pygame from pygame.locals import * from settings import * from functions import * lossScreen = True while lossScreen: pygame.event.pump() k = pygame.key.get_pressed() if k[pygame.K_q] or k[pygame.K_ESCAPE]: break #start Splash screen screen.fill(sBackground) line1 = font2.render("You Lose!", True, BLACK) line2 = font5.render("Your final score was: " + str(points), True, BLACK) screen.blit(line1, (90, 100)) screen.blit(line2, (90, 210)) line3 = font1.render("- By Ikenna Uduh", True, BLACK) screen.blit(line3, (w - 150, h - 25)) x,y = pygame.mouse.get_pos() pygame.draw.circle(screen, sPAgainButtonClr, (int(w/2), int(h/2 + 50)), RAD3) pygame.draw.circle(screen, BLACK, (int(w/2), int(h/2 + 50)), RAD3, 10) line3 = font3.render("PLAY", True, BLACK) line4 = font3.render("AGAIN", True, BLACK) screen.blit(line3, (int(w/2) - 120, 400)) screen.blit(line4, (int(w/2) - 120, 500)) # Checking to see if the clicked mouse is pressing the PLAY or HELP buttons if checkInCir(int(w/2), int(h/2 + 50), y, x, RAD3): sPAgainButtonClr = sButtonClrPressed if pygame.mouse.get_pressed()[0]: gameStart = True else: sPAgainButtonClr = sButtonClr pygame.display.flip() pygame.quit()
[ "Tammon2000@gmail.com" ]
Tammon2000@gmail.com
1c6a094af068444ca3d28073d89315729267ff26
e57613c79e9a7a014ae67c00ccaf7c8014011954
/lab3/Ast.py
fbe23583ed7d7db393eef7caeaf51eec4008e320
[]
no_license
szymon-rogus/CompilersLabs
cfebbab381e8ded24a122b03baba23c1a011b60b
d0f878bdaf8cf584ff28cd2449e2fe2dd4aa6c90
refs/heads/master
2021-04-02T15:28:58.725704
2020-06-10T09:01:59
2020-06-10T09:01:59
248,289,803
0
0
null
2020-04-30T11:44:18
2020-03-18T16:51:10
Python
UTF-8
Python
false
false
6,214
py
class Node(object): def __init__(self, type, children=None, leaf=None): self.type = type self.leaf = leaf if children: self.children = children else: self.children = [] class BinaryExpression(Node): def __init__(self, left, operator, right): super().__init__(self.__class__, [left, right], operator) self.left = left self.operator = operator self.right = right def __repr__(self): return '{} {} {}'.format(self.left, self.operator, self.right) class UnaryExpression(Node): def __init__(self, operator, operand, left=True): super().__init__(self.__class__, [operand], operator) self.operator = operator self.operand = operand self.left = left def __repr__(self): order = [self.operator, self.operand] if self.left else [self.operand, self.operator] return '{}{}'.format(order[0], order[1]) class Negation(UnaryExpression): def __init__(self, operand): super().__init__('-', operand) class Transposition(UnaryExpression): def __init__(self, operand): super().__init__('\'', operand, False) class Assignment(BinaryExpression): pass class Function(Node): def __init__(self, name, argument): super().__init__(self.__class__, [argument], name) self.name = name self.argument = argument def __repr__(self): return "{}({})".format(self.name, self.argument) class Variable(Node): def __init__(self, name): super().__init__(self.__class__, [], name) self.name = name def __repr__(self): return '{}'.format(self.name) class If(Node): def __init__(self, condition, expression, else_expression=None): super().__init__(self.__class__, [condition, expression, else_expression], ["IF", "THEN", "ELSE"]) self.condition = condition self.expression = expression self.else_expression = else_expression if else_expression == None: self.children = self.children[:-1] self.leaf = self.leaf[:-1] def __repr__(self): representation = 'IF {} THEN {}'.format(self.condition, self.expression) result = representation + ' ELSE {}'.format(self.else_expression) \ if self.else_expression else representation return result class While(Node): def __init__(self, condition, body): super().__init__(self.__class__, [condition, body], "WHILE") self.condition = condition self.body = body def __repr__(self): return 'WHILE {} DO {}'.format(self.condition, self.body) class Range(Node): def __init__(self, start, end, step=1): super().__init__(self.__class__, [start, end, step], "RANGE") if step == 1: self.children = self.children[:-1] self.start = start self.end = end self.step = step def __repr__(self): return '{}:{}:{}'.format(self.start, self.end, self.step) class For(Node): def __init__(self, id, range, body): super().__init__(self.__class__, [id, range, body], "FOR") self.id = id self.range = range self.body = body def __repr__(self): return 'FOR {} IN {} DO {}'.format(self.id, self.range, self.body) class Break(Node): def __init__(self): super().__init__(self.__class__, [], "BREAK") def __repr__(self): return 'BREAK' class Continue(Node): def __init__(self): super().__init__(self.__class__, [], "CONTINUE") def __repr__(self): return 'CONTINUE' class Return(Node): def __init__(self, result): super().__init__(self.__class__, [result], "RETURN") self.result = result def __repr__(self): return 'RETURN( {} )'.format(self.result) class Print(Node): def __init__(self, expression): super().__init__(self.__class__, [expression], "PRINT") self.expression = expression def __repr__(self): return 'PRINT( {} )'.format(self.expression) class VariableAttribute(Node): def __init__(self, variable, key): super().__init__(self.__class__, [variable, key], "REF") self.variable = variable self.key = key def __repr__(self): return '{}[{}]'.format(self.variable, self.key) class Error(Node): pass class CodeBlock(Node): def __init__(self, instruction): super().__init__(self.__class__, [instruction]) self.instructions = self.children def __repr__(self): return "{\n" + "\n".join(map(str, self.instructions)) + "\n}" class Program(Node): def __init__(self, program): super().__init__(self.__class__, [program]) self.program = program def __repr__(self): return str(self.program) class Instruction(Node): def __init__(self, line): super().__init__(self.__class__, [line]) self.line = line def __repr__(self): return str(self.line) class Matrix(Node): def __init__(self, rows): super().__init__(self.__class__, [rows], "MATRIX") self.dims = len(rows), len(rows[0]) self.rows = rows def __repr__(self): return str(self.rows) class Value(Node): def __init__(self, val): super().__init__(self.__class__, [], val) self.val = val def __repr__(self): return "{}({})".format(type(self.val).__name__, self.val) class Rows(Node): def __init__(self, sequence): super().__init__(self.__class__, [sequence]) self.row_list = self.children def __repr__(self): return "[" + ", ".join(map(str, self.row_list)) + "]" def __len__(self): return len(self.row_list) def __getitem__(self, item): return self.row_list[item] class Sequence(Node): def __init__(self, expression): super().__init__(self.__class__, [expression], "SEQ") self.expressions = self.children def __repr__(self): return "[" + ", ".join(map(str, self.expressions)) + "]" def __len__(self): return len(self.expressions) def __getitem__(self, item): return self.expressions[item]
[ "benroszko@gmail.com" ]
benroszko@gmail.com
0572ff0cec28243d6b72452f3f61deda3e6df64b
5be2bbf713c09e4f03f29a1c2fd071f3a8e90b5f
/src/main/local.py
684bfa9db184d454a15afb02d248836c50bdb193
[ "MIT" ]
permissive
amrutadharmapurikar/hmr2.0
47a4c5ebfb64ce6349ad4e6446d84a033c8f0e05
a566fe424618f4cbdefe6441f8b91c9efeaa1219
refs/heads/master
2023-06-26T08:06:10.593071
2021-07-12T00:58:49
2021-07-12T00:58:49
382,423,981
0
0
MIT
2021-07-02T17:54:05
2021-07-02T17:54:04
null
UTF-8
Python
false
false
1,265
py
import os from datetime import datetime from main.config import Config from main.model import Model class LocalConfig(Config): ROOT_DATA_DIR = os.path.abspath(os.path.join(__file__, '..', '..', '..')) LOG_DIR = os.path.join(ROOT_DATA_DIR, 'logs', datetime.now().strftime("%d%m%Y-%H%M%S")) DATA_DIR = os.path.join(ROOT_DATA_DIR, 'src', 'tests', 'files') SMPL_DATA_DIR = os.path.join(ROOT_DATA_DIR, 'src', 'tests', 'files') SMPL_MODEL_PATH = os.path.join(ROOT_DATA_DIR, 'models', 'neutral_smpl_coco_regressor.pkl') SMPL_MEAN_THETA_PATH = os.path.join(ROOT_DATA_DIR, 'models', 'neutral_smpl_mean_params.h5') CUSTOM_REGRESSOR_PATH = os.path.join(ROOT_DATA_DIR, 'src', 'tests', 'files', 'regressors') CUSTOM_REGRESSOR_IDX = { 0: 'regressor_test.npy', } DATASETS = ['dataset'] SMPL_DATASETS = ['smpl'] BATCH_SIZE = 2 JOINT_TYPE = 'cocoplus' NUM_KP2D = 19 NUM_KP3D = 14 def __init__(self): super(LocalConfig, self).__init__() self.SEED = 1 self.NUM_TRAINING_SAMPLES = 1 self.NUM_TRAIN_SMPL_SAMPLES = 4 self.NUM_VALIDATION_SAMPLES = 1 self.NUM_TEST_SAMPLES = 1 if __name__ == '__main__': LocalConfig() model = Model() model.train()
[ "alessandro.russo@allianz.de" ]
alessandro.russo@allianz.de
bc0b91140f22fc81bcbba5bcd8f3452133cf725e
207f0427e0ffb10941db14d8de08ccbeac83dac1
/gmail.py
45dc9d762624648a1e30049e1f655efb972a3d08
[]
no_license
appollo88/py
0d9182b64928bcda6be0a3a36906b6144371acd7
1644d3f45a9b948a76f2a08df046db05d2f329a3
refs/heads/master
2021-01-20T14:39:24.128069
2017-02-22T05:46:33
2017-02-22T05:46:33
82,765,152
0
0
null
null
null
null
UTF-8
Python
false
false
901
py
"""import smtplib server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login("liuxun931@gmail.com", "lx061511") msg = "YOUR MESSAGE!" server.sendmail("liuxun931@gmail.com", "liuxun931@163.com", msg) server.quit() """ # smtplib module send mail import smtplib TO = 'liuxun931@163.com' SUBJECT = 'TEST MAIL' TEXT = 'Here is a message from python.' # Gmail Sign In gmail_sender = 'liuxun931@gmail.com' gmail_passwd = 'lx061511' server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login(gmail_sender, gmail_passwd) BODY = '\r\n'.join(['To: %s' % TO, 'From: %s' % gmail_sender, 'Subject: %s' % SUBJECT, '', TEXT]) try: server.sendmail(gmail_sender, [TO], BODY) print ('email sent') except: print ('error sending mail') server.quit()
[ "noreply@github.com" ]
noreply@github.com
339289d6118565d385d545357077d0aeb36d8cc1
2a2def196a68319147631a4af93095d1a03de754
/MuZero/game/gym_wrappers.py
62ee3e3e4cc0c785f3b6090d3fd5fecc49ca4076
[]
no_license
colindbrown/columbia-deep-learning-project
8b7d2dc791046426ff6030ec52d1c9dddc99de3c
9046552bd631270838b0e49a2b8c9c524d40f1ed
refs/heads/master
2023-05-25T14:39:55.978535
2020-04-29T20:16:59
2020-04-29T20:16:59
248,585,231
2
2
null
2022-06-22T01:52:03
2020-03-19T19:13:58
Jupyter Notebook
UTF-8
Python
false
false
631
py
import gym import numpy as np class ScalingObservationWrapper(gym.ObservationWrapper): """ Wrapper that apply a min-max scaling of observations. """ def __init__(self, env, low=None, high=None): super().__init__(env) assert isinstance(env.observation_space, gym.spaces.Box) low = np.array(self.observation_space.low if low is None else low) high = np.array(self.observation_space.high if high is None else high) self.mean = (high + low) / 2 self.max = high - self.mean def observation(self, observation): return (observation - self.mean) / self.max
[ "jayantsubramanian2020@Jayants-MacBook-Air.local" ]
jayantsubramanian2020@Jayants-MacBook-Air.local
980bdcafecbd81a687de64b1aa498e359f541eb6
6a90c88cd3898a0936f83c7d2a8f713943d440db
/POSTagging/rnn_easy.py
245cb834e3e35727bcafae2471703f73190745f7
[ "Apache-2.0" ]
permissive
LindgeW/POS-Tagging
3be4bc5da30444b22722a15e3e39350231d42c76
358570047e8ad8403bcab4a1e9e3b082b9bea5fc
refs/heads/master
2022-02-17T23:21:58.504742
2019-07-25T09:11:03
2019-07-25T09:11:03
186,325,676
0
0
null
null
null
null
UTF-8
Python
false
false
11,426
py
import torch import torch.nn as nn ''' LSTMCell 输入: input, (h_0, c_0) input (seq_len, batch, input_size): 包含输入序列特征的Tensor。也可以是packed variable h_0 (batch, hidden_size): 保存着batch中每个元素的初始化隐状态的Tensor c_0 (batch, hidden_size): 保存着batch中每个元素的初始化细胞状态的Tensor 输出:h_1, c_1 h_1 (batch, hidden_size): 下一个时刻的隐状态。 c_1 (batch, hidden_size): 下一个时刻的细胞状态。 LSTM 输入: input, (h_0, c_0) input (seq_len, batch, input_size): 包含输入序列特征的Tensor。也可以是packed variable ,详见 [pack_padded_sequence](#torch.nn.utils.rnn.pack_padded_sequence(input, lengths, batch_first=False[source]) h_0 (num_layers * num_directions, batch, hidden_size):保存着batch中每个元素的初始化隐状态的Tensor c_0 (num_layers * num_directions, batch, hidden_size): 保存着batch中每个元素的初始化细胞状态的Tensor 输出: output, (h_n, c_n) output (seq_len, batch, hidden_size * num_directions): 保存RNN最后一层的输出的Tensor。 如果输入是torch.nn.utils.rnn.PackedSequence,那么输出也是torch.nn.utils.rnn.PackedSequence。 h_n (num_layers * num_directions, batch, hidden_size): Tensor,保存着RNN最后一个时间步的隐状态。 c_n (num_layers * num_directions, batch, hidden_size): Tensor,保存着RNN最后一个时间步的细胞状态。 ''' class RNNEncoder(nn.Module): def __init__(self, input_size=0, hidden_size=0, num_layers=1, batch_first=False, bidirectional=False, dropout=0.0, rnn_type='lstm'): super(RNNEncoder, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.batch_first = batch_first self.bidirectional = bidirectional self.dropout = dropout self.num_directions = 2 if self.bidirectional else 1 self._rnn_types = ['RNN', 'LSTM', 'GRU'] self.rnn_type = rnn_type.upper() assert self.rnn_type in self._rnn_types # 获取torch.nn对象中相应的的构造函数 self._rnn_cell = getattr(nn, self.rnn_type+'Cell') # getattr获取对象的属性或者方法 # ModuleList是Module的子类,当在Module中使用它的时候,就能自动识别为子module # 当添加 nn.ModuleList作为nn.Module对象的一个成员时(即当我们添加模块到我们的网络时), # 所有nn.ModuleList内部的nn.Module的parameter也被添加作为我们的网络的parameter self.fw_cells, self.bw_cells = nn.ModuleList(), nn.ModuleList() for layer_i in range(self.num_layers): layer_input_size = self.input_size if layer_i == 0 else self.num_directions * self.hidden_size self.fw_cells.append(self._rnn_cell(input_size=layer_input_size, hidden_size=self.hidden_size)) if self.bidirectional: self.bw_cells.append(self._rnn_cell(input_size=layer_input_size, hidden_size=self.hidden_size)) # self.cell = nn.LSTMCell( # input_size=self.input_size, # 输入的特征维度 # hidden_size=self.hidden_size # 隐层的维度 # ) def init_hidden(self, batch_size=1, retain=True, device=torch.device('cpu')): if retain: # 是否保证每轮迭代都初始化隐层 torch.manual_seed(3357) # hidden = torch.randn(batch_size, self.hidden_size, device=device) hidden = torch.zeros(batch_size, self.hidden_size, device=device) if self.rnn_type == 'LSTM': hidden = (hidden, hidden) return hidden def _forward_mask(self, cell, inputs, lens, init_hidden, drop_mask=None): out_fw = [] seq_len = inputs.size(0) hx_fw = init_hidden assert torch.is_tensor(lens) for xi in range(seq_len): # print('data in device: ', inputs.device, hx_fw.device) # print('cell: ', next(cell.parameters()).is_cuda) hidden = cell(input=inputs[xi], hx=hx_fw) if self.rnn_type == 'LSTM': h_next, c_next = hidden mask = (xi < lens).float().unsqueeze(1).expand_as(h_next) # mask = torch.tensor((xi < lens), dtype=torch.float, device=inputs.device).unsqueeze(1).expand_as(h_next) h_next = h_next * mask + init_hidden[0] * (1 - mask) c_next = c_next * mask + init_hidden[1] * (1 - mask) out_fw.append(h_next) if drop_mask is not None: # 循环层使用dropout h_next = h_next * drop_mask hx_next = (h_next, c_next) else: h_next = hidden mask = (xi < lens).float().unsqueeze(1).expand_as(h_next) # mask = torch.tensor((xi < lens), dtype=torch.float, device=inputs.device).unsqueeze(1).expand_as(h_next) h_next = h_next * mask + init_hidden * (1 - mask) out_fw.append(h_next) if drop_mask is not None: # 循环层使用dropout h_next = h_next * drop_mask hx_next = h_next hx_fw = hx_next out_fw = torch.stack(tuple(out_fw), dim=0) return out_fw, hx_fw def _backward_mask(self, cell, inputs, lens, init_hidden, drop_mask=None): out_bw = [] seq_len = inputs.size(0) hx_bw = init_hidden assert torch.is_tensor(lens) for xi in reversed(range(seq_len)): hidden = cell(input=inputs[xi], hx=hx_bw) if self.rnn_type == 'LSTM': h_next, c_next = hidden mask = (xi < lens).float().unsqueeze(1).expand_as(h_next) # mask = torch.tensor((xi < lens), dtype=torch.float, device=inputs.device).unsqueeze(1).expand_as(h_next) h_next = h_next * mask + init_hidden[0] * (1 - mask) c_next = c_next * mask + init_hidden[1] * (1 - mask) out_bw.append(h_next) if drop_mask is not None: # 循环层使用dropout h_next = h_next * drop_mask hx_next = (h_next, c_next) else: h_next = hidden mask = (xi < lens).float().unsqueeze(1).expand_as(h_next) # mask = torch.tensor((xi < lens), dtype=torch.float, device=inputs.device).unsqueeze(1).expand_as(h_next) h_next = h_next * mask + init_hidden * (1 - mask) out_bw.append(h_next) if drop_mask is not None: # 循环层使用dropout h_next = h_next * drop_mask hx_next = h_next hx_bw = hx_next out_bw.reverse() out_bw = torch.stack(tuple(out_bw), dim=0) return out_bw, hx_bw def forward(self, inputs, seq_lens, init_hidden=None): if self.batch_first: inputs = inputs.transpose(0, 1) batch_size = inputs.size(1) if init_hidden is None: init_hidden = self.init_hidden(batch_size, device=inputs.device) # init_hidden = inputs.data.new(batch_size, self.hidden_size).zero_() # if self.rnn_type == 'LSTM': # init_hidden = (init_hidden, init_hidden) hx = init_hidden hn, cn = [], [] for layer in range(self.num_layers): input_drop_mask, hidden_drop_mask = None, None seq_len, batch_size, input_size = inputs.size() if self.training: # print('use dropout...') if layer != 0: input_drop_mask = torch.zeros(batch_size, input_size, device=inputs.device).fill_(1 - self.dropout) # 在相同的设备上创建一个和inputs数据类型相同的tensor # input_drop_mask = inputs.data.new(batch_size, input_size).fill_(1 - self.dropout) input_drop_mask = torch.bernoulli(input_drop_mask) input_drop_mask = torch.div(input_drop_mask, (1 - self.dropout)) input_drop_mask = input_drop_mask.unsqueeze(-1).expand((-1, -1, seq_len)).permute((2, 0, 1)) inputs = inputs * input_drop_mask hidden_drop_mask = torch.zeros(batch_size, self.hidden_size, device=inputs.device).fill_(1 - self.dropout) # hidden_drop_mask = inputs.data.new(batch_size, self.hidden_size).fill_(1 - self.dropout) hidden_drop_mask = torch.bernoulli(hidden_drop_mask) # 以输入值为概率p输出1,(1-p)输出0 hidden_drop_mask = torch.div(hidden_drop_mask, (1 - self.dropout)) # 保证训练和预测时期望值一致 # print('data is in cuda: ', inputs.device, mask.device, hx.device, hidden_drop_mask.device) out_fw, (hn_f, cn_f) = self._forward_mask(cell=self.fw_cells[layer], inputs=inputs, lens=seq_lens, init_hidden=hx, drop_mask=hidden_drop_mask) # print(out_fw.shape, hn_f.shape, cn_f.shape) out_bw, hn_b, cn_b = None, None, None if self.bidirectional: out_bw, (hn_b, cn_b) = self._backward_mask(cell=self.bw_cells[layer], inputs=inputs, lens=seq_lens, init_hidden=hx, drop_mask=hidden_drop_mask) # print(out_bw.shape, hn_b.shape, cn_b.shape) hn.append(torch.cat((hn_f, hn_b), dim=1) if self.bidirectional else hn_f) cn.append(torch.cat((cn_f, cn_b), dim=1) if self.bidirectional else cn_f) inputs = torch.cat((out_fw, out_bw), dim=2) if self.bidirectional else out_fw # print('input shape:', inputs.shape) # (6, 3, 10) hn = torch.stack(tuple(hn), dim=0) cn = torch.stack(tuple(cn), dim=0) output = inputs.transpose(0, 1) if self.batch_first else inputs return output, (hn, cn) # 默认inputs: [seq_len, batch_size, input_size] # batch_first: [batch_size, seq_len, input_size] # def forward(self, inputs, init_hidden=None): # assert torch.is_tensor(inputs) and inputs.dim() == 3 # # if self.batch_first: # inputs = inputs.permute(1, 0, 2) # # batch_size = inputs.size(1) # if init_hidden is None: # init_hidden = self.init_hidden(batch_size) # # hx = init_hidden # # hn, cn = [], [] # for layer in range(self.num_layers): # input_drop_mask, hidden_drop_mask = None, None # seq_len, batch_size, input_size = inputs.size() # if self.training: # print('use dropout...') # if layer != 0: # input_drop_mask = torch.empty(batch_size, input_size).fill_(1 - self.dropout) # input_drop_mask = torch.bernoulli(input_drop_mask) # input_drop_mask = torch.div(input_drop_mask, (1 - self.dropout)) # input_drop_mask = input_drop_mask.unsqueeze(-1).expand((-1, -1, seq_len)).permute((2, 0, 1)) # inputs = inputs * input_drop_mask # # hidden_drop_mask = torch.empty(batch_size, self.hidden_size).fill_(1 - self.dropout) # hidden_drop_mask = torch.bernoulli(hidden_drop_mask) # 以输入值为概率p输出1,(1-p)输出0 # hidden_drop_mask = torch.div(hidden_drop_mask, (1 - self.dropout)) # 保证训练和预测时期望值一致 # # out_fw, (hn_f, cn_f) = RNNEncoder._forward(cell=self.fw_cells[layer], inputs=inputs, init_hidden=hx, drop_mask=hidden_drop_mask) # # print(out_fw.shape, hn_f.shape, cn_f.shape) # # out_bw, hn_b, cn_b = None, None, None # if self.bidirectional: # out_bw, (hn_b, cn_b) = RNNEncoder._backward(cell=self.bw_cells[layer], inputs=inputs, init_hidden=hx, drop_mask=hidden_drop_mask) # # print(out_bw.shape, hn_b.shape, cn_b.shape) # # hn.append(torch.cat((hn_f, hn_b), dim=1) if self.bidirectional else hn_f) # cn.append(torch.cat((cn_f, cn_b), dim=1) if self.bidirectional else cn_f) # # inputs = torch.cat((out_fw, out_bw), dim=2) if self.bidirectional else out_fw # # print('input shape:', inputs.shape) # (6, 3, 10) # # hn = torch.stack(tuple(hn), dim=0) # cn = torch.stack(tuple(cn), dim=0) # # output = inputs.permute((1, 0, 2)) if self.batch_first else inputs # # return output, (hn, cn) if __name__ == '__main__': # [batch_size, seq_len, input_size] inputs = torch.rand(3, 6, 20) mask = torch.zeros(3, 6) mask[0, :3] = torch.ones(3) mask[1, :2] = torch.ones(2) lstm = RNNEncoder(input_size=20, hidden_size=100, num_layers=3, batch_first=True, bidirectional=True, dropout=0.2) # h0, c0 = torch.randn(3, 10), torch.randn(3, 10) # out, (hn, cn) = lstm(inputs, (h0, c0)) out, (hn, cn) = lstm(inputs, mask) print(out.shape) # [6, 3, 20] print(hn.shape, cn.shape) # [2, 3, 20] [2, 3, 20]
[ "ncu151wlz@qq.com" ]
ncu151wlz@qq.com
4e98ab90157e2164c540617da24de059870e5e34
3071ce441681abbfea11c9cc5a5ba853aecff2d2
/game_over.py
56bb93d1293913866d464c7cc38a5f883a36e269
[]
no_license
xodapi/python_learning
d75ffc7c8312f52be3c5123fd003537943d75fe7
afd7ff56b8ccdfea42ccb3dc52ef25dfd44d3d68
refs/heads/master
2016-09-11T04:58:55.524656
2015-04-21T10:51:28
2015-04-21T10:51:28
28,742,488
0
0
null
null
null
null
UTF-8
Python
false
false
20
py
print('Game over')
[ "faneropi@gmail.com" ]
faneropi@gmail.com
5d8cd2c7638647e1cdd05a42eaf90febc0a95726
5ebe757ed6a2a339525c349922a3218b9d2b3f94
/lstm-language-model/preprocess.py
3930b2bf16a8a4194f5abff4da1756b269b70a3c
[]
no_license
esun0087/self_parser
aa3ef6103c470c5f85627fe59e6d82239bcd63d6
cae1f45be1c954839980334e16d343bfae27dbe6
refs/heads/master
2020-03-21T10:27:18.247597
2018-08-07T08:26:29
2018-08-07T08:26:29
138,451,449
0
0
null
null
null
null
UTF-8
Python
false
false
1,516
py
import torch import argparse import data def preprocess(opt): print('Begin preprocessing') train_dataset = data.DataSet(opt.train_data, display_freq=opt.display_freq) train_dataset.max_dict = opt.dict_size train_dataset.build_dict() print('Save training data') torch.save(train_dataset, opt.train_data + '.prep.train.pt') val_dataset = data.DataSet(opt.val_data, display_freq=opt.display_freq) val_dataset.change_dict(train_dataset.dictionary) print('Save validation data') torch.save(val_dataset, opt.val_data + '.prep.val.pt') print('Preprocessing done') if __name__ == '__main__': parser = argparse.ArgumentParser('Preprocessing') parser.add_argument('--train_data', type=str, default='data/penn/train.txt', help='Training data path') parser.add_argument('--val_data', type=str, default='data/penn/valid.txt', help='Validation data path') parser.add_argument('--dict_size', type=int, default=50000, help='Reduce dictionary if overthis size') parser.add_argument('--display_freq', type=int, default=100000, help='Display progress every this number of sentences, 0 for no diplay') parser.add_argument('--max_len', type=int, default=100, help='Maximum length od=f sentence') parser.add_argument('--trunc_len',type=int, default=100, help='Truncate the sentence that longer than maximum length') opt = parser.parse_args() preprocess(opt)
[ "a1a2a3a4a5" ]
a1a2a3a4a5
f555f4db1b57f5a3fdb41deb28cc1c6151bd4ea2
6cde76beabb943b4de4ab9f7516ebffca51f6da6
/generate.py
ea8517289fa84e335e308416701d7c7449ebf6f2
[]
no_license
A1exRey/ReflectionOfNAR
801bf23eb098f03e663f89f553355f43eb6a7d9e
79ed86873322d45cbfc28f98a4e224c961d5bad2
refs/heads/main
2023-05-13T23:00:54.703916
2021-06-01T11:01:02
2021-06-01T11:01:02
372,795,504
0
0
null
null
null
null
UTF-8
Python
false
false
10,600
py
#!/usr/bin/env python3 -u # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. """ Translate pre-processed data with a trained model. """ import torch from fairseq import bleu, checkpoint_utils, options, progress_bar, tasks, utils from fairseq.meters import StopwatchMeter, TimeMeter import re from interactive import translate_corpus, parse_head_pruning_descriptors, mask_heads def main(args): assert args.path is not None, '--path required for generation!' assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert args.replace_unk is None or args.raw_text, \ '--replace-unk requires a raw text dataset (--raw-text)' utils.import_user_module(args) if args.max_tokens is None and args.max_sentences is None: args.max_tokens = 12000 print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) # Set dictionaries try: src_dict = getattr(task, 'source_dictionary', None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(':'), arg_overrides=eval(args.model_overrides), task=task, ) to_prune = {'E': {}, 'A': {}, 'D': {}} to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {2, 4, 7}, 2: {3}}, 'A': {}, 'D': {}} to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {2, 4, 7}, 2: {3, 7}, 4: {0, 3, 7}, 5: {0, 7}, 11: {2, 5}, 6: {0}, 9: {3}, 3: {0}}, 'A': {}, 'D': {}} to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {0, 1, 2, 4, 6, 7}, 2: {3, 5, 7}, 3: {0, 1, 4}, 4: {0, 2, 3, 7}, 5: {0, 7}, 6: {0, 1}, 9: {3}, 11: {2, 5}, 10: {0, 3}}, 'A': {0: {1}}, 'D': {}} to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {0, 1, 2, 4, 6, 7}, 2: {3, 5, 7}, 3: {0, 1, 4, 6}, 4: {0, 2, 3, 7}, 5: {0, 3, 7}, 6: {0, 1, 2}, 9: {1, 3, 6}, 10: {0, 3, 5}, 11: {2, 5, 7}, 8: {3, 4, 5, 7}}, 'A': {0: {1}}, 'D': {}} to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {0, 1, 2, 4, 5, 6, 7}, 2: {0, 3, 5, 7}, 3: {0, 1, 4, 5, 6}, 4: {0, 1, 2, 3, 7}, 5: {0, 2, 3, 4, 5, 7}, 6: {0, 1, 2, 3, 6}, 8: {3, 4, 5, 7}, 9: {1, 3, 6}, 10: {0, 3, 5}, 11: {2, 5, 7}, 7: {2, 4}}, 'A': {0: {1}}, 'D': {}} to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {0, 1, 2, 4, 5, 6, 7}, 2: {0, 2, 3, 4, 5, 6, 7}, 3: {0, 1, 4, 5, 6}, 4: {0, 1, 2, 3, 6, 7}, 5: {0, 2, 3, 4, 5, 7}, 6: {0, 1, 2, 3, 6}, 7: {2, 4, 6}, 8: {0, 3, 4, 5, 6, 7}, 9: {1, 3, 6}, 10: {0, 1, 3, 5, 7}, 11: {0, 2, 5, 7}}, 'A': {0: {1}}, 'D': {0: {1, 4}}} to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {0, 1, 2, 3, 4, 5, 6, 7}, 2: {0, 2, 3, 4, 5, 6, 7}, 3: {0, 1, 3, 4, 5, 6, 7}, 4: {0, 1, 2, 3, 4, 5, 6, 7}, 5: {0, 2, 3, 4, 5, 6, 7}, 6: {0, 1, 2, 3, 6, 7}, 7: {0, 2, 3, 4, 6}, 8: {0, 3, 4, 5, 6, 7}, 9: {1, 2, 3, 6, 7}, 10: {0, 1, 3, 5, 7}, 11: {0, 2, 5, 7}}, 'A': {0: {1}}, 'D': {0: {1, 4}}} to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {0, 1, 2, 3, 4, 5, 6, 7}, 2: {0, 1, 2, 3, 4, 5, 6, 7}, 3: {0, 1, 3, 4, 5, 6, 7}, 4: {0, 1, 2, 3, 4, 5, 6, 7}, 5: {0, 1, 2, 3, 4, 5, 6, 7}, 6: {0, 1, 2, 3, 5, 6, 7}, 7: {0, 2, 3, 4, 6, 7}, 8: {0, 1, 3, 4, 5, 6, 7}, 9: {1, 2, 3, 6, 7}, 10: {0, 1, 2, 3, 5, 7}, 11: {0, 2, 5, 6, 7}}, 'A': {0: {1, 4, 7}}, 'D': {0: {0, 1, 4, 7}}} #to_prune = {'E': {0: {0, 1, 2, 3, 4, 5, 6, 7}, 1: {0, 1, 2, 3, 4, 5, 6, 7}, 2: {0, 1, 2, 3, 4, 5, 6, 7}, 3: {0, 1, 2, 3, 4, 5, 6, 7}, 4: {0, 1, 2, 3, 4, 5, 6, 7}, 5: {0, 1, 2, 3, 4, 5, 6, 7}, 6: {0, 1, 2, 3, 4, 5, 6, 7}, 7: {0, 2, 3, 4, 5, 6, 7}, 8: {0, 1, 2, 3, 4, 5, 6, 7}, 9: {1, 2, 3, 4, 5, 6, 7}, 10: {0, 1, 2, 3, 5, 7}, 11: {0, 2, 5, 6, 7}}, 'A': {0: {0, 1, 2, 3, 4, 5, 6, 7}}, 'D': {0: {0, 1, 4, 7}}} # Optimize ensemble for generation for model in models: mask_heads(model, to_prune, False) model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) # Initialize generator gen_timer = StopwatchMeter() generator = task.build_generator(models,args) # Generate and compute BLEU score if args.sacrebleu: scorer = bleu.SacrebleuScorer() else: scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk()) num_sentences = 0 has_target = True with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() for sample in t: sample = utils.move_to_cuda(sample) if use_cuda else sample if 'net_input' not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample['target'][:, :args.prefix_size] gen_timer.start() hypos = task.inference_step(generator, models, sample, prefix_tokens) num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample['id'].tolist()): has_target = sample['target'] is not None # Remove padding src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad()) target_tokens = None if has_target: target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu() # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id) target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id) else: if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) else: src_str = "" if has_target: target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True) if not args.quiet: if src_dict is not None: print('S-{}\t{}'.format(sample_id, src_str)) if has_target: print('T-{}\t{}'.format(sample_id, target_str)) # Process top predictions for j, hypo in enumerate(hypos[i][:args.nbest]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None, align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, ) if not args.quiet: print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str)) print('P-{}\t{}'.format( sample_id, ' '.join(map( lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist(), )) )) if args.print_alignment: print('A-{}\t{}'.format( sample_id, ' '.join(map(lambda x: str(utils.item(x)), alignment)) )) # Score only the top hypothesis if has_target and j == 0: if align_dict is not None or args.remove_bpe is not None: # Convert back to tokens for evaluation with unk replacement and/or without BPE target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True) if hasattr(scorer, 'add_string'): if args.dehyphenate: print('dehyphenating') target_str = dehyphenate(target_str) hypo_str = dehyphenate(hypo_str) scorer.add_string(target_str, hypo_str) else: scorer.add(target_tokens, hypo_tokens) wps_meter.update(num_generated_tokens) t.log({'wps': round(wps_meter.avg)}) num_sentences += sample['nsentences'] print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg)) if has_target: print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string())) return scorer def cli_main(): parser = options.get_generation_parser() args = options.parse_args_and_arch(parser) main(args) def dehyphenate(sent): return re.sub(r'(\S)-(\S)', r'\1 ##AT##-##AT## \2', sent).replace('##AT##', '@') if __name__ == '__main__': cli_main()
[ "noreply@github.com" ]
noreply@github.com
a60cce92b01defcbf4760f93cdbc9f636e0e3cef
1503bb33834c463657977765e821620f189a4685
/p007.py
79f340ac96bd0e0708ffbde2fc2002a0b35e7944
[]
no_license
JackPound/Euler-Problems
94a2ff36d92cc28c4a23586847698d33710f24b0
fac5975d4fa323b3f992daedc12aec1246dbdb82
refs/heads/master
2020-03-22T20:53:26.655150
2018-07-12T22:51:57
2018-07-12T22:51:57
140,639,403
0
0
null
null
null
null
UTF-8
Python
false
false
555
py
# By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. # What is the 10 001st prime number? def is_prime(number_to_check): prime = True for x in range (2, number_to_check): if number_to_check % x == 0: prime = False break return prime def prime_position(at_position): prime_list = [] count = 2 while len(prime_list) < at_position: if is_prime(count): prime_list.append(count) count += 1 else: count += 1 print(prime_list[-1]) prime_position(10001)
[ "jackpound@live.com" ]
jackpound@live.com
4edfcf8e234bf582b8a3e06752421dff27a5d562
679b923d6ba62d00ab5ad8aef3f82f42df71a58c
/Server_Kapfumvuti_Patel.py
3a730631bb548c6f480757df43a85d6b5b03bea9
[]
no_license
GurenMarkV/Go-Back-N-Protocol
957086dbca5e4c60ed18ff2ee418016cb102e8f6
949c3db7bd38cc9e09a847853bc45531517a3620
refs/heads/master
2020-03-18T22:30:12.789811
2018-05-29T20:21:56
2018-05-29T20:21:56
135,348,768
0
0
null
null
null
null
UTF-8
Python
false
false
2,023
py
# Project 1: Implementation of Go-Back-N Protocol # Group Member: Daksh Patel ID: 104 030 031 # Group Member: Nyasha Kapfumvuti ID: 104 121 166 # Date: Mar 30th, 2018 import socket import numpy import time import json from random import randint acked = [] # acknowledged packets unAcked = [] # unacknowledged packets ticker = 0 # 0.2 loss rate = 1/5 packets get "lost" => placed in unAcked lostItem = 5 # every 5th item gets placed in unacked returnVals = [] # array of values to be returned as acks/unacks timer = time.localtime packets = [] packet = '' server_address = ('localhost', 10000) serverSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) serverSocket.bind(server_address) serverSocket.listen(1) print('The server is ready to receive') while True: print('waiting for a connection') connection, client_address = serverSocket.accept() try: print('client connected:', client_address) while True: data = connection.recv(1024) # data arrives as a string. Need to convert this back to an array newPack = int(data) if(randint(0,5) == 5): print('packet was lost/corrupted') connection.sendto(str(newPack).encode(), server_address) else: if newPack not in acked: acked.append(newPack) print('recieved sequence # ', str(newPack), ' successfully. Sending ack') connection.sendto(str(newPack).encode(), server_address) print('sent') ticker += 1 # loss rate leads to every nth item getting lost if data: # send acknowledgement # connection.sendto(str(newPack).encode(), server_address) print('') else: break finally: connection.close() print(acked)
[ "noreply@github.com" ]
noreply@github.com
8177accba9ea1009914fc04bc9522e187b19a4bc
82008bbe06f77d17898565e20d08bf34bf28c313
/test/functional/wallet_scriptaddress2.py
4c431a5ed81f6d5e0aac1749f833e51d0f3e9782
[ "MIT" ]
permissive
hantobi-europe/aox
6e6884c852fcb08f8c5d89384c9ae60746d3f149
74cd6d07a0d4058648dbb5bc42d829a04a0e5327
refs/heads/main
2023-02-07T20:36:36.487504
2020-12-28T18:11:13
2020-12-28T18:11:13
323,902,355
0
0
null
null
null
null
UTF-8
Python
false
false
3,968
py
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test new aox multisig prefix functionality. # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, ) class ScriptAddress2Test(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.setup_clean_chain = True self.extra_args = [['-addresstype=legacy', '-deprecatedrpc=accounts', '-txindex=1'], [], ['-txindex=1']] def setup_network(self, split=False): self.setup_nodes() connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) self.sync_all() def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): cnt = self.nodes[0].getblockcount() # Mine some blocks self.nodes[1].generate(101) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 101): raise AssertionError("Failed to mine 100 blocks") addr = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() multisig_addr = self.nodes[0].addmultisigaddress(2, [addr, addr2], "multisigaccount")['address'] assert_equal(multisig_addr[0], 'Q') # Send to a new multisig address txid = self.nodes[1].sendtoaddress(multisig_addr, 1) self.nodes[1].generate(101) self.sync_all() tx = self.nodes[0].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr in dest_addrs) # Spend from the new multisig address addr3 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(addr3, 0.8) self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("*", 1) < 0.2) assert(self.nodes[1].listtransactions()[-1]['address'] == addr3) # Send to an old multisig address. The api addmultisigaddress # can only generate a new address so we manually compute # multisig_addr_old beforehand using an old client. priv_keys = ["cU7eeLPKzXeKMeZvnEJhvZZ3tLqVF3XGeo1BbM8dnbmV7pP3Qg89", "cTw7mRhSvTfzqCt6MFgBoTBqwBpYu2rWugisXcwjv4cAASh3iqPt"] addrs = ["mj6gNGRXPXrD69R5ApjcsDerZGrYKSfb6v", "mqET4JA3L7P7FoUjUP3F6m6YsLpCkyzzou"] self.nodes[0].importprivkey(priv_keys[0]) self.nodes[0].importprivkey(priv_keys[1]) multisig_addr_new = self.nodes[0].addmultisigaddress(2, addrs, "multisigaccount2")['address'] assert_equal(multisig_addr_new, 'QZ974ZrPrmqMmm1PSVp4m8YEgo3bCQZBbe') multisig_addr_old = "2N5nLwYz9qfnGdaFLpPn3gS6oYQbmLTWPjq" # Let's send to the old address. We can then find it in the # new address with the new client. So basically the old # address and the new one are the same thing. txid = self.nodes[1].sendtoaddress(multisig_addr_old, 1) self.nodes[1].generate(1) self.sync_all() tx = self.nodes[2].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr_new in dest_addrs) assert(multisig_addr_old not in dest_addrs) # Spend from the new multisig address addr4 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(addr4, 0.8) self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("*", 1) < 0.4) assert(self.nodes[1].listtransactions()[-1]['address'] == addr4) if __name__ == '__main__': ScriptAddress2Test().main()
[ "hantobieurope@gmail.com" ]
hantobieurope@gmail.com
d670fc71f610fb31b49e00a8c5c71b54ca6ed4ef
83a59e255f681e85828399c6c2323f2cf0997e10
/kibble/scanners/scanners/git-evolution.py
8f4a83698faccdae147d2985f32bfb605884f6ff
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
kaxil/kibble
f4ab6f1039086adcb37c544c60bbbc27e8538128
96959acec06fed4d91d5da73fee1aa1200ffbb3c
refs/heads/main
2023-02-01T03:14:53.813091
2020-12-16T23:04:45
2020-12-16T23:04:45
320,881,184
1
0
Apache-2.0
2020-12-12T17:04:54
2020-12-12T17:04:54
null
UTF-8
Python
false
false
8,447
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Git Evolution scanner """ import calendar import datetime import hashlib import os import subprocess import time from kibble.configuration import conf from kibble.scanners.utils import sloc title = "Git Evolution Scanner" version = "0.1.0" def accepts(source): """ Do we accept this source? """ if source["type"] == "git": return True # There are cases where we have a github repo, but don't wanna analyze the code, just issues if source["type"] == "github" and source.get("issuesonly", False) == False: return True return False def get_first_ref(gpath): try: return subprocess.check_output( "cd %s && git log `git rev-list --max-parents=0 HEAD` --pretty=format:%%ct" % gpath, shell=True, ) except: # pylint: disable=bare-except print("Could not get first ref, exiting!") return None def acquire(kibble_bit, source): source["steps"]["evolution"] = { "time": time.time(), "status": "Evolution scan started at " + time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.gmtime()), "running": True, "good": True, } kibble_bit.update_source(source) def release(kibble_bit, source, status, exception=None, good=False): source["steps"]["evolution"] = { "time": time.time(), "status": status, "running": False, "good": good, } if exception: source["steps"]["evolution"].update({"exception": exception}) kibble_bit.update_source(source) def check_branch(gpath, date, branch): try: subprocess.check_call( 'cd %s && git rev-list -n 1 --before="%s" %s' % (gpath, date, branch), shell=True, ) return True except: # pylint: disable=bare-except return False def checkout(gpath, date, branch): # print("Ready to cloc...checking out %s " % date) try: ref = ( subprocess.check_output( 'cd %s && git rev-list -n 1 --before="%s" "%s"' % (gpath, date, branch), shell=True, stderr=subprocess.STDOUT, ) .decode("ascii", "replace") .strip() ) subprocess.check_output( "cd %s && git checkout %s -- " % (gpath, ref), shell=True, stderr=subprocess.STDOUT, ) except subprocess.CalledProcessError as err: print(err.output) def find_branch(date, gpath): try: os.chdir(gpath) subprocess.check_call( 'cd %s && git rev-list -n 1 --before="%s" master' % (gpath, date), shell=True, stderr=subprocess.DEVNULL, ) return "master" except: # pylint: disable=bare-except os.chdir(gpath) try: return ( subprocess.check_output( "cd %s && git rev-parse --abbrev-ref HEAD" % gpath, shell=True, stderr=subprocess.DEVNULL, ) .decode("ascii", "replace") .strip() .strip("* ") ) except: # pylint: disable=bare-except # print("meh! no branch") return None def scan(kibble_bit, source): rid = source["sourceID"] rootpath = "%s/%s/git" % ( conf.get("scanner", "scratchdir"), source["organisation"], ) gpath = os.path.join(rootpath, rid) gname = source["sourceID"] kibble_bit.pprint("Doing evolution scan of %s" % gname) inp = get_first_ref(gpath) if inp: ts = int(inp.split()[0]) ts -= ts % 86400 date = time.strftime("%Y-%b-%d 0:00", time.gmtime(ts)) # print("Starting from %s" % date) now = time.time() rid = source["sourceID"] url = source["sourceURL"] rootpath = "%s/%s/git" % ( conf.get("scanner", "scratchdir"), source["organisation"], ) gpath = os.path.join(rootpath, rid) if source["steps"]["sync"]["good"] and os.path.exists(gpath): acquire(kibble_bit, source) branch = find_branch(date, gpath) if not branch: release( source, "Could not do evolutionary scan of code", "No default branch was found in this repository", ) return branch_exists = check_branch(gpath, date, branch) if not branch_exists: kibble_bit.pprint("Not trunk either (bad repo?), skipping") release( source, "Could not do evolutionary scan of code", "No default branch was found in this repository", ) return try: d = time.gmtime(now) year = d[0] quarter = d[1] - (d[1] % 3) if quarter <= 0: quarter += 12 year -= 1 while now > ts: pd = ( datetime.datetime(year, quarter, 1) .replace(tzinfo=datetime.timezone.utc) .timetuple() ) date = time.strftime("%Y-%b-%d 0:00", pd) unix = calendar.timegm(pd) # Skip the dates we've already processed dhash = hashlib.sha224( (source["sourceID"] + date).encode("ascii", "replace") ).hexdigest() found = kibble_bit.exists("evolution", dhash) if not found: checkout(gpath, date, branch) kibble_bit.pprint( "Running cloc on %s (%s) at %s" % (gname, source["sourceURL"], date) ) languages, codecount, comment, blank, years, cost = sloc.count( gpath ) js = { "time": unix, "sourceID": source["sourceID"], "sourceURL": source["sourceURL"], "organisation": source["organisation"], "loc": codecount, "comments": comment, "blank": blank, "years": years, "cost": cost, "languages": languages, } kibble_bit.index("evolution", dhash, js) quarter -= 3 if quarter <= 0: quarter += 12 year -= 1 # decrease month by 3 now = time.mktime(datetime.date(year, quarter, 1).timetuple()) except Exception as e: kibble_bit.pprint(e) release( kibble_bit, source, "Evolution scan failed at " + time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.gmtime()), str(e), ) return release( kibble_bit, source, "Evolution scan completed at " + time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.gmtime()), good=True, )
[ "noreply@github.com" ]
noreply@github.com
e0c97f958b39a77c224ebe75cd5b1fe26876f2f1
0c265021768e72b91b40d77e0c7d78fcf0e70935
/Recursion/Module1/SumOfNnumbers.py
6ea101cae243b483a2db6144bc28d7b927e62a97
[]
no_license
pawarvishal/cninjads_python_problems
0b49fb987cb3b8571ff0fe2e6f617174d36fc7d6
380fea5e9e507087dbb5743a30770cae2d9bc0ae
refs/heads/master
2020-12-12T12:33:34.759314
2020-02-02T06:24:53
2020-02-02T06:24:53
234,127,793
1
0
null
null
null
null
UTF-8
Python
false
false
191
py
# Calculate sum of n numbers def sum_n(n): if n == 0: return 0 small_output = sum_n(n-1) output = small_output + n return output num = int(input()) print(sum_n(num))
[ "openstack.vishal@gmail.com" ]
openstack.vishal@gmail.com