blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
281
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
57
| license_type
stringclasses 2
values | repo_name
stringlengths 6
116
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 313
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 18.2k
668M
⌀ | star_events_count
int64 0
102k
| fork_events_count
int64 0
38.2k
| gha_license_id
stringclasses 17
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 107
values | src_encoding
stringclasses 20
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 4
6.02M
| extension
stringclasses 78
values | content
stringlengths 2
6.02M
| authors
listlengths 1
1
| author
stringlengths 0
175
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6171becb207e276db36bc6653ed1900ae7e3400d
|
a5424e248051f1cf2542aa82f040f7173aa8f8d8
|
/ExamenUII.2/ExamenU22/Examen/admin.py
|
6f540ae7584dda48774c6e956324debaa0392758
|
[] |
no_license
|
luisfbarajas/PWeb
|
dd23a744357e5b961b3a1c23756bf60cc6741b08
|
e514d0f5710e33c718de8e27a06321643a271e17
|
refs/heads/master
| 2020-03-28T07:11:33.107934
| 2018-12-06T07:56:17
| 2018-12-06T07:56:17
| 147,886,217
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 164
|
py
|
from django.contrib import admin
from .models import Personal, Activities
# Register your models here.
admin.site.register(Personal)
admin.site.register(Activities)
|
[
"luisf.barajas.btz@gamil.com"
] |
luisf.barajas.btz@gamil.com
|
82b311c67a57cc924a2e56dcce6820aeb0307776
|
3de806956985605b4f5042879e11d88a859871dd
|
/notebooks/pdf_structure_env/bin/dumppdf.py
|
367ccdc95d1ee1fbd5d2f91f771c7cd4cfbb0e42
|
[] |
no_license
|
qiyuyang16/CS4300_microGoogle
|
cb25e9f5b0e547f71873cc06e345b7776d1a24a6
|
e6ac8561a8e20b23bb858dbf4ed745e28bf60b94
|
refs/heads/master
| 2023-04-21T05:59:51.299146
| 2021-05-11T19:23:48
| 2021-05-11T19:23:48
| 354,361,818
| 0
| 0
| null | 2021-04-28T15:10:01
| 2021-04-03T18:12:04
|
Jupyter Notebook
|
UTF-8
|
Python
| false
| false
| 12,939
|
py
|
#!/home/vince/Documents/Code/microgoogle/CS4300_microGoogle/streamlit_testing/pdf_structure_env/bin/python
"""Extract pdf structure in XML format"""
import logging
import os.path
import re
import sys
import warnings
from argparse import ArgumentParser
import pdfminer
from pdfminer.pdfdocument import PDFDocument, PDFNoOutlines, PDFXRefFallback, \
PDFNoValidXRefWarning
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfparser import PDFParser
from pdfminer.pdftypes import PDFObjectNotFound, PDFValueError
from pdfminer.pdftypes import PDFStream, PDFObjRef, resolve1, stream_value
from pdfminer.psparser import PSKeyword, PSLiteral, LIT
from pdfminer.utils import isnumber
logging.basicConfig()
ESC_PAT = re.compile(r'[\000-\037&<>()"\042\047\134\177-\377]')
def e(s):
if isinstance(s, bytes):
s = str(s, 'latin-1')
return ESC_PAT.sub(lambda m: '&#%d;' % ord(m.group(0)), s)
def dumpxml(out, obj, codec=None):
if obj is None:
out.write('<null />')
return
if isinstance(obj, dict):
out.write('<dict size="%d">\n' % len(obj))
for (k, v) in obj.items():
out.write('<key>%s</key>\n' % k)
out.write('<value>')
dumpxml(out, v)
out.write('</value>\n')
out.write('</dict>')
return
if isinstance(obj, list):
out.write('<list size="%d">\n' % len(obj))
for v in obj:
dumpxml(out, v)
out.write('\n')
out.write('</list>')
return
if isinstance(obj, ((str,), bytes)):
out.write('<string size="%d">%s</string>' % (len(obj), e(obj)))
return
if isinstance(obj, PDFStream):
if codec == 'raw':
out.write(obj.get_rawdata())
elif codec == 'binary':
out.write(obj.get_data())
else:
out.write('<stream>\n<props>\n')
dumpxml(out, obj.attrs)
out.write('\n</props>\n')
if codec == 'text':
data = obj.get_data()
out.write('<data size="%d">%s</data>\n' % (len(data), e(data)))
out.write('</stream>')
return
if isinstance(obj, PDFObjRef):
out.write('<ref id="%d" />' % obj.objid)
return
if isinstance(obj, PSKeyword):
out.write('<keyword>%s</keyword>' % obj.name)
return
if isinstance(obj, PSLiteral):
out.write('<literal>%s</literal>' % obj.name)
return
if isnumber(obj):
out.write('<number>%s</number>' % obj)
return
raise TypeError(obj)
def dumptrailers(out, doc, show_fallback_xref=False):
for xref in doc.xrefs:
if not isinstance(xref, PDFXRefFallback) or show_fallback_xref:
out.write('<trailer>\n')
dumpxml(out, xref.trailer)
out.write('\n</trailer>\n\n')
no_xrefs = all(isinstance(xref, PDFXRefFallback) for xref in doc.xrefs)
if no_xrefs and not show_fallback_xref:
msg = 'This PDF does not have an xref. Use --show-fallback-xref if ' \
'you want to display the content of a fallback xref that ' \
'contains all objects.'
warnings.warn(msg, PDFNoValidXRefWarning)
return
def dumpallobjs(out, doc, codec=None, show_fallback_xref=False):
visited = set()
out.write('<pdf>')
for xref in doc.xrefs:
for objid in xref.get_objids():
if objid in visited:
continue
visited.add(objid)
try:
obj = doc.getobj(objid)
if obj is None:
continue
out.write('<object id="%d">\n' % objid)
dumpxml(out, obj, codec=codec)
out.write('\n</object>\n\n')
except PDFObjectNotFound as e:
print('not found: %r' % e)
dumptrailers(out, doc, show_fallback_xref)
out.write('</pdf>')
return
def dumpoutline(outfp, fname, objids, pagenos, password='',
dumpall=False, codec=None, extractdir=None):
fp = open(fname, 'rb')
parser = PDFParser(fp)
doc = PDFDocument(parser, password)
pages = {page.pageid: pageno for (pageno, page)
in enumerate(PDFPage.create_pages(doc), 1)}
def resolve_dest(dest):
if isinstance(dest, str):
dest = resolve1(doc.get_dest(dest))
elif isinstance(dest, PSLiteral):
dest = resolve1(doc.get_dest(dest.name))
if isinstance(dest, dict):
dest = dest['D']
if isinstance(dest, PDFObjRef):
dest = dest.resolve()
return dest
try:
outlines = doc.get_outlines()
outfp.write('<outlines>\n')
for (level, title, dest, a, se) in outlines:
pageno = None
if dest:
dest = resolve_dest(dest)
pageno = pages[dest[0].objid]
elif a:
action = a
if isinstance(action, dict):
subtype = action.get('S')
if subtype and repr(subtype) == '/\'GoTo\'' and action.get(
'D'):
dest = resolve_dest(action['D'])
pageno = pages[dest[0].objid]
s = e(title).encode('utf-8', 'xmlcharrefreplace')
outfp.write('<outline level="{!r}" title="{}">\n'.format(level, s))
if dest is not None:
outfp.write('<dest>')
dumpxml(outfp, dest)
outfp.write('</dest>\n')
if pageno is not None:
outfp.write('<pageno>%r</pageno>\n' % pageno)
outfp.write('</outline>\n')
outfp.write('</outlines>\n')
except PDFNoOutlines:
pass
parser.close()
fp.close()
return
LITERAL_FILESPEC = LIT('Filespec')
LITERAL_EMBEDDEDFILE = LIT('EmbeddedFile')
def extractembedded(outfp, fname, objids, pagenos, password='',
dumpall=False, codec=None, extractdir=None):
def extract1(objid, obj):
filename = os.path.basename(obj.get('UF') or obj.get('F').decode())
fileref = obj['EF'].get('UF') or obj['EF'].get('F')
fileobj = doc.getobj(fileref.objid)
if not isinstance(fileobj, PDFStream):
error_msg = 'unable to process PDF: reference for %r is not a ' \
'PDFStream' % filename
raise PDFValueError(error_msg)
if fileobj.get('Type') is not LITERAL_EMBEDDEDFILE:
raise PDFValueError(
'unable to process PDF: reference for %r '
'is not an EmbeddedFile' % (filename))
path = os.path.join(extractdir, '%.6d-%s' % (objid, filename))
if os.path.exists(path):
raise IOError('file exists: %r' % path)
print('extracting: %r' % path)
os.makedirs(os.path.dirname(path), exist_ok=True)
out = open(path, 'wb')
out.write(fileobj.get_data())
out.close()
return
with open(fname, 'rb') as fp:
parser = PDFParser(fp)
doc = PDFDocument(parser, password)
extracted_objids = set()
for xref in doc.xrefs:
for objid in xref.get_objids():
obj = doc.getobj(objid)
if objid not in extracted_objids and isinstance(obj, dict) \
and obj.get('Type') is LITERAL_FILESPEC:
extracted_objids.add(objid)
extract1(objid, obj)
return
def dumppdf(outfp, fname, objids, pagenos, password='', dumpall=False,
codec=None, extractdir=None, show_fallback_xref=False):
fp = open(fname, 'rb')
parser = PDFParser(fp)
doc = PDFDocument(parser, password)
if objids:
for objid in objids:
obj = doc.getobj(objid)
dumpxml(outfp, obj, codec=codec)
if pagenos:
for (pageno, page) in enumerate(PDFPage.create_pages(doc)):
if pageno in pagenos:
if codec:
for obj in page.contents:
obj = stream_value(obj)
dumpxml(outfp, obj, codec=codec)
else:
dumpxml(outfp, page.attrs)
if dumpall:
dumpallobjs(outfp, doc, codec, show_fallback_xref)
if (not objids) and (not pagenos) and (not dumpall):
dumptrailers(outfp, doc, show_fallback_xref)
fp.close()
if codec not in ('raw', 'binary'):
outfp.write('\n')
return
def create_parser():
parser = ArgumentParser(description=__doc__, add_help=True)
parser.add_argument('files', type=str, default=None, nargs='+',
help='One or more paths to PDF files.')
parser.add_argument(
"--version", "-v", action="version",
version="pdfminer.six v{}".format(pdfminer.__version__))
parser.add_argument(
'--debug', '-d', default=False, action='store_true',
help='Use debug logging level.')
procedure_parser = parser.add_mutually_exclusive_group()
procedure_parser.add_argument(
'--extract-toc', '-T', default=False, action='store_true',
help='Extract structure of outline')
procedure_parser.add_argument(
'--extract-embedded', '-E', type=str,
help='Extract embedded files')
parse_params = parser.add_argument_group(
'Parser', description='Used during PDF parsing')
parse_params.add_argument(
'--page-numbers', type=int, default=None, nargs='+',
help='A space-seperated list of page numbers to parse.')
parse_params.add_argument(
'--pagenos', '-p', type=str,
help='A comma-separated list of page numbers to parse. Included for '
'legacy applications, use --page-numbers for more idiomatic '
'argument entry.')
parse_params.add_argument(
'--objects', '-i', type=str,
help='Comma separated list of object numbers to extract')
parse_params.add_argument(
'--all', '-a', default=False, action='store_true',
help='If the structure of all objects should be extracted')
parse_params.add_argument(
'--show-fallback-xref', action='store_true',
help='Additionally show the fallback xref. Use this if the PDF '
'has zero or only invalid xref\'s. This setting is ignored if '
'--extract-toc or --extract-embedded is used.')
parse_params.add_argument(
'--password', '-P', type=str, default='',
help='The password to use for decrypting PDF file.')
output_params = parser.add_argument_group(
'Output', description='Used during output generation.')
output_params.add_argument(
'--outfile', '-o', type=str, default='-',
help='Path to file where output is written. Or "-" (default) to '
'write to stdout.')
codec_parser = output_params.add_mutually_exclusive_group()
codec_parser.add_argument(
'--raw-stream', '-r', default=False, action='store_true',
help='Write stream objects without encoding')
codec_parser.add_argument(
'--binary-stream', '-b', default=False, action='store_true',
help='Write stream objects with binary encoding')
codec_parser.add_argument(
'--text-stream', '-t', default=False, action='store_true',
help='Write stream objects as plain text')
return parser
def main(argv=None):
parser = create_parser()
args = parser.parse_args(args=argv)
if args.debug:
logging.getLogger().setLevel(logging.DEBUG)
if args.outfile == '-':
outfp = sys.stdout
else:
outfp = open(args.outfile, 'w')
if args.objects:
objids = [int(x) for x in args.objects.split(',')]
else:
objids = []
if args.page_numbers:
pagenos = {x - 1 for x in args.page_numbers}
elif args.pagenos:
pagenos = {int(x) - 1 for x in args.pagenos.split(',')}
else:
pagenos = set()
password = args.password
if args.raw_stream:
codec = 'raw'
elif args.binary_stream:
codec = 'binary'
elif args.text_stream:
codec = 'text'
else:
codec = None
for fname in args.files:
if args.extract_toc:
dumpoutline(
outfp, fname, objids, pagenos, password=password,
dumpall=args.all, codec=codec, extractdir=None
)
elif args.extract_embedded:
extractembedded(
outfp, fname, objids, pagenos, password=password,
dumpall=args.all, codec=codec, extractdir=args.extract_embedded
)
else:
dumppdf(
outfp, fname, objids, pagenos, password=password,
dumpall=args.all, codec=codec, extractdir=None,
show_fallback_xref=args.show_fallback_xref
)
outfp.close()
if __name__ == '__main__':
sys.exit(main())
|
[
"vince@bartle.io"
] |
vince@bartle.io
|
7ed072fa1524c95c0ada3f899e91a7dcbcfd91de
|
9897061cfd34babf80616ff21a20c30db0212970
|
/server/account/models.py
|
a01557b1bd74e7b11b8ff7b13401a7a631636ebe
|
[
"MIT"
] |
permissive
|
Samhaina/mahjong-portal
|
f310553c5df13e122f3e89d05a9867d0f122d4f1
|
4cdbd8bd61655584c25a437b3d5cab053507b2f4
|
refs/heads/master
| 2020-03-16T22:10:20.864718
| 2018-10-11T00:45:22
| 2018-10-11T00:45:22
| 133,029,373
| 0
| 0
| null | 2018-05-11T11:05:41
| 2018-05-11T11:05:41
| null |
UTF-8
|
Python
| false
| false
| 287
|
py
|
from django.db import models
from django.contrib.auth.models import AbstractUser
from tournament.models import Tournament
class User(AbstractUser):
is_tournament_manager = models.BooleanField(default=False)
managed_tournaments = models.ManyToManyField(Tournament, blank=True)
|
[
"lisikhin@gmail.com"
] |
lisikhin@gmail.com
|
aedb32df31a1c5530d48f12e8a44775169b392d2
|
9d9e6e909e3f94ca62eef648c9e0b43473fa132e
|
/anagrams.py
|
495d404764901a8b900808bf62c07565468dba8e
|
[] |
no_license
|
Adi1729/Coding_100
|
a73fe21344c5da42cd72a829018fdf593299e4b9
|
61bd8838b1c989b0199d486f0a7269f8386ae924
|
refs/heads/master
| 2021-06-29T04:28:05.570383
| 2020-08-28T07:30:48
| 2020-08-28T07:30:48
| 142,202,161
| 0
| 0
| null | 2018-08-01T08:40:46
| 2018-07-24T19:10:38
|
Python
|
UTF-8
|
Python
| false
| false
| 1,107
|
py
|
s= 'cbaebabacd'
a = 'abc'
s="ababababab"
a="aab"
a ='acb'
q= [i for i in a]
q.sort()
a = ''.join(q)
a_orig =a
b= 'b'
l=[]
i=0
i=1
pcounter = collections.Counter(a)
scounter = collections.Counter(s[:len(a)])
for i in range(0,len(s)-len(a)+1):
scounter = collections.Counter(s[i:len(a)+i])
if pcounter==scounter:
l.append(i)
c='a'
a_orig ='abc'
a=a_orig
p=a
#Method 1 : Using Counters
result = []
pcounter = collections.Counter(p)
scounter = collections.Counter(s[:len(p) - 1])
begin = 0
for i in range(len(p) - 1, len(s)) :
scounter[s[i]] += 1
if scounter == pcounter :
print(scounter)
result.append(begin)
scounter[s[begin]] -= 1
if scounter[s[begin]] == 0 :
del(scounter[s[begin]])
begin += 1
return result
Input: ["eat", "tea", "tan", "ate", "nat", "bat"],
Output:
[
["ate","eat","tea"],
["nat","tan"],
["bat"]
]
a='ate'
l = [i for i in a]
l.sort()
q = ''.join(l)
|
[
"adiyadav.1729@gmail.com"
] |
adiyadav.1729@gmail.com
|
cf3c79f12e13974f1a2fc914f299f7f6b79b0301
|
49692b22e38afe5fc6cf7144cd830e11a9a43d47
|
/cse101/asgn4/random_generator.py
|
7d6633063b576641eb97f343be08a0df60dec5bf
|
[] |
no_license
|
juliofuentesUI/cse
|
1b0080cabe8301c3149d9b0ab498f17a7ca7a7e8
|
4e86df10ee9c23bdfeeafb61106d664aa0d136ff
|
refs/heads/main
| 2023-08-21T19:27:03.697081
| 2021-10-04T07:09:44
| 2021-10-04T07:09:44
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 474
|
py
|
import random
actors = []
with open("cleaned_movielist.txt", 'r') as movie_list:
for line, cast in enumerate(movie_list.readlines()):
actor_list=cast.split()
for i in range(1,len(actor_list)):
actors.append(actor_list[i])
with open("random.txt",'w') as output:
for i in range(0,10):
rand1=random.randint(0,len(actors)-1)
rand2=random.randint(0,len(actors)-1)
output.write(actors[rand1]+" "+ actors[rand2]+"\n")
|
[
"zliu259@ussc.edu"
] |
zliu259@ussc.edu
|
eb9232dcd2be9ba8cbd5bd42e4ba39ef045ea84e
|
babaa02f2c866c20d9753193a7c3193c149fd09f
|
/12month_report/report/__init__.py
|
1982030fa17f97418fa32dfb22dc26a17de0fb2f
|
[] |
no_license
|
solbutec/kmart
|
5a03a4743bc8e935669e4aadea732d402dd59867
|
b73316e6c0ce79bbc463d7198f5c9fe181f70531
|
refs/heads/master
| 2022-12-05T19:19:29.393040
| 2020-08-24T13:50:14
| 2020-08-24T13:50:14
| 290,629,983
| 0
| 1
| null | 2020-08-26T23:55:19
| 2020-08-26T23:55:18
| null |
UTF-8
|
Python
| false
| false
| 50
|
py
|
# -*- coding: utf-8 -*-
from . import twelvemonth
|
[
"kyawzinoo@asiamatrixsoftware.com"
] |
kyawzinoo@asiamatrixsoftware.com
|
eb640e26c331adf4b564538d8301b8d9647bf62b
|
eb1292224689b4d792ce4f3b51a3af539be710d8
|
/blog/views.py
|
19d1328fddb9027dc7d6b102c19386301a84bf42
|
[] |
no_license
|
esmeraldalopez/first-django-blog
|
0eab2d6107508a68694d86171a8ccde6fcb93fe3
|
e5f0b4588e9ead77cd10ae0293315bbb06355d56
|
refs/heads/master
| 2021-01-24T01:21:17.750872
| 2019-06-15T23:35:29
| 2019-06-15T23:35:29
| 122,801,868
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,646
|
py
|
from django.shortcuts import render, get_object_or_404, redirect
from django.utils import timezone
from .models import Post #incluyo el modelo definido en models, .models indica que buscara en el mismo directorio
from .forms import PostForm
# Create your views here.
def post_list(request):
posts = Post.objects.filter(published_date__lte=timezone.now()).order_by('-published_date') #QuerySet
return render(request, 'blog/post_list.html', {'posts':posts})
#post_detail recibe pk, que es lo que recibira en la url, que bien puede ser el numero de blog, para este caso
def post_detail(request, pk):
#QuerySet para buscar el post
post = get_object_or_404(Post, pk=pk)
return render(request, 'blog/post_detail.html', {'post': post})
def post_new(request):
if request.method == 'POST':
form = PostForm(request.POST)
if form.is_valid():
post = form.save(commit=False)
post.author = request.user
post.published_date = timezone.now()
post.save()
return redirect('post_detail', pk=post.pk)
else:
form = PostForm()
return render(request, 'blog/post_edit.html', {'form':form})
def post_edit(request, pk):
post = get_object_or_404(Post, pk=pk)
if request.method == "POST":
form = PostForm(request.POST, instance=post)
if form.is_valid():
post = form.save(commit=False)
post.author = request.user
post.save()
return redirect('post_detail', pk=post.pk)
else:
form = PostForm(instance=post)
return render(request, 'blog/post_edit.html', {'form': form})
|
[
"esmeralda.lopez.e@gmail.com"
] |
esmeralda.lopez.e@gmail.com
|
2edffd3663b2abd45fd38a442dd7b5736f510500
|
03dd72639c7a39ef7cf17d0dc7fa4276cd47c93a
|
/tipranksCloudlet/data_processor.py
|
6e14cdc88570cf04b705e04470bfc9af686b3af2
|
[] |
permissive
|
karthiknayak02/portfolioManager
|
dbc7554ded3cdb9489d43c9329c677e54f745c1f
|
fc3c335778c78535b8e263e7a62a5e2d7a1ec7c9
|
refs/heads/master
| 2023-08-10T16:06:51.810322
| 2021-10-03T21:38:09
| 2021-10-03T21:38:09
| 351,266,417
| 0
| 0
|
MIT
| 2021-10-03T20:29:40
| 2021-03-25T00:53:15
|
Python
|
UTF-8
|
Python
| false
| false
| 1,797
|
py
|
from common import *
"""
Get price targets of symbol
https://www.tipranks.com/api/stocks/getData/?name=NET
"""
def get_price_targets_consensus(symbol: str):
request_url = "https://www.tipranks.com/api/stocks/getData/"
query_params = {'name': symbol}
response = get_call(request_url=request_url, query_params=query_params)
value = None
schema = {
"ticker": value,
"companyName": value,
"ptConsensus": [
[0],
{
"priceTarget": value,
"high": value,
"low": value
}],
"latestRankedConsensus": {
"rating": value,
"nB": value,
"nH": value,
"nS": value
}
}
price_targets = parse_response(schema, response)
print(price_targets)
return price_targets
"""
Get basic stock details
# https://market.tipranks.com/api/details/getstockdetailsasync?id=AMZN
"""
def get_stock_details(symbol: str):
request_url = "https://market.tipranks.com/api/details/getstockdetailsasync"
query_params = {'id': symbol}
response = get_call(request_url=request_url, query_params=query_params)
value = None
schema = [
[0],
{
"ticker": "AMZN",
"price": value,
"pe": value,
"eps": value,
"marketCap": value,
"yLow": value,
"yHigh": value,
"nextEarningDate": value,
"range52Weeks": value,
"low52Weeks": value,
"high52Weeks": value
}
]
stock_details = parse_response(schema, response)
print(stock_details)
return stock_details
if __name__ == '__main__':
get_price_targets_consensus("AMZN")
get_stock_details("AMZN")
|
[
"nayakkarthik02@gmail.com"
] |
nayakkarthik02@gmail.com
|
4825ca9e68ae9cf98bba0728e2d75d14fec976e4
|
790909e6226f6e40859ea153873e712cb98d142f
|
/step7 (문자열/2675.py
|
29cc5f89539ea15915c76b28892d83d60e759b2f
|
[] |
no_license
|
choibyeol/Baekjoon-algorithm
|
1ae01a95ff80051b284dc522edeb1b258072b5a0
|
5de50885900cdbb8565784f7b6e2af37afd1bf7f
|
refs/heads/master
| 2023-04-21T01:36:19.289748
| 2021-05-14T12:14:18
| 2021-05-14T12:14:18
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 183
|
py
|
T = int(input())
for i in range(T):
S = input()
lenS = int(S[0])
for i in range(2, len(S)):
for j in range(0, lenS):
print(S[i], end = "")
print()
|
[
"honey333888@naver.com"
] |
honey333888@naver.com
|
8c750e5ac76fad05861e8d6d26c54313f5859f0e
|
bdd6ab129de61947945b380a487a3ee923f542f3
|
/real_genomes/pipeline/start.py
|
50a2993aeb21e00fb25ff0957e5b9833515d1ddb
|
[] |
no_license
|
InfOmics/pangenes-review
|
1e27c1fd1a93fb7a5fd764c4090f7a4a2a207b0b
|
a74f8f9d615de6a76aa1918c2c4e9d0c1f0c8385
|
refs/heads/master
| 2021-01-07T12:14:37.891227
| 2020-06-01T14:20:27
| 2020-06-01T14:20:27
| 241,686,261
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,892
|
py
|
from pathlib import Path
from modules.pipelines import *
from shutil import move
import datetime
import pandas as pd
import traceback
#method to recursively remove a folder
def delete_folder(pth) :
for sub in pth.iterdir() :
if sub.is_dir() :
delete_folder(sub)
else :
sub.unlink()
pth.rmdir()
def convert_time(timestring):
if len(timestring.split(':'))>2:
if "." in timestring:
pt =datetime.datetime.strptime(timestring,'%H:%M:%S.%f')
else:
pt =datetime.datetime.strptime(timestring,'%H:%M:%S')
else:
if "." in timestring:
pt =datetime.datetime.strptime(timestring,'%M:%S.%f')
else:
pt =datetime.datetime.strptime(timestring,'%M:%S')
return pt
if Path('log_running').exists():
Path('log_running').unlink()
if Path('gene_families').exists():
delete_folder(Path('gene_families'))
if Path('softwares_data').exists():
delete_folder(Path('softwares_data'))
if Path('execution_stats').exists():
delete_folder(Path('execution_stats'))
#foler containing the data for the execution of the pangenome softwares
pth_software_data = Path('softwares_data')
pth_software_data.mkdir(exist_ok=True)
#gene families folder where we have the .clus files
pth_gene_families = Path('gene_families')
pth_gene_families.mkdir(exist_ok=True)
#temporary folder
pth_tmp = Path('tmp')
pth_tmp.mkdir(exist_ok=True)
#execution stats folder
stats_folder = Path('execution_stats')
stats_folder.mkdir(exist_ok=True)
datasets = {
'leaf':Path('datasets','leaf'),
'root':Path('datasets','root')
}
#backtranslate from aa to dna datasets
#backtranslate protein genes of the genomes into DNA
def backtranslate(path):
aa_codon_table = { #from translation table 11 NCBI
'F':'TTT' ,
'Y':'TAT' ,
'C':'TGT' ,
'W':'TGG' ,
'H':'CAT' ,
'L':'CTC' ,
'P':'CCG' ,
'Q':'CAG' ,
'I':'ATC' ,
'T':'ACC' ,
'N':'AAC' ,
'S':'AGC' ,
'M':'ATG' ,
'K':'AAG' ,
'R':'AGG' ,
'D':'GAC' ,
'V':'GTG' ,
'A':'GCG' ,
'E':'GAG' ,
'G':'GGG' ,
'*':'TAG'
}
#path = Path(path,'genome','genome','DB')
Path(path,'dna').mkdir(parents=True, exist_ok=True)
Path(path,'protein').mkdir(parents=True, exist_ok=True)
for filepath in sorted(path.glob('*_aa.fasta')):
to_fasta = list()
for sequence in SeqIO.parse(filepath,'fasta'):
aa_seq = list()
for char in sequence.seq:
aa_seq.append(aa_codon_table[char])
sequence.seq = Seq(''.join(aa_seq), IUPAC.ambiguous_dna )
to_fasta.append(sequence)
outfile = filepath.stem.replace('_aa','_dna')+'.fasta'
SeqIO.write(to_fasta,Path(path,'dna',outfile),'fasta')
#new_path = Path(path,'protein',filepath.name.replace('.fa','.fasta'))
#move(filepath, new_path) #per ora copio per poter rilanciare il programma
copy(filepath, Path(path,'protein'))
#print(outfile)
#####
#da commentare se non devo rigenerare i datasets
for dtset_type, pth in datasets.items():
for data in pth.glob('*'):
print('backtranslate:', data)
backtranslate(data)
for dtset_type, pth in datasets.items():
print('@vb@', dtset_type, pth)
for data in pth.glob('*'):
print('@vb@',data)
#software execution data ( memory, elapsed_time )
stats= list()
software_data = Path(pth_software_data, dtset_type, data.stem)
software_data.mkdir(parents=True,exist_ok=True)
print('@vb@',software_data)
gene_families = Path(pth_gene_families, dtset_type, data.stem)
gene_families.mkdir(parents=True, exist_ok=True)
print('@vb@',gene_families)
Path(stats_folder,dtset_type,data.stem).mkdir(parents=True, exist_ok=True)
#le statistiche di esecuzione poi vengono salvate su un file quindi non devo cambiare nulla,
#mi basta definire dove salvare il file nell' open()
#PANDELOS
try:
pandelos_stat = pandelos(data, gene_families, software_data)
if pandelos_stat != None:
stats += pandelos_stat
else: #need to remove pandelos empty clus file when it gets halted before completing (only good result files are kept)
p = Path(gene_families,'pandelos_families.clus')
if p.exists():
p.unlink()
except Exception as e:
print('@vb@',"type error: " + str(e))
print('@vb@',traceback.format_exc())
print()
#PANX
try:
panx_stat = panx(data,gene_families,software_data)
if panx_stat != None:
stats += panx_stat
except Exception as e:
print('@vb@',"type error: " + str(e))
print('@vb@',traceback.format_exc())
print()
#PANSEQ
try:
panseq_stat = panseq(data,gene_families,software_data)
if panseq_stat != None:
stats += panseq_stat
except Exception as e:
print('@vb@',"type error: " + str(e))
print('@vb@',traceback.format_exc())
print()
#GET_HOMOLOGUES
try:
gethomologues_stat = gethomologues(data,gene_families,software_data)
if gethomologues_stat != None:
stats += gethomologues_stat
except Exception as e:
print('@vb@',"type error: " + str(e))
print('@vb@',traceback.format_exc())
print()
#PGAP
pgap_stat = pgap(data,gene_families,software_data)
if pgap_stat != None:
stats += pgap_stat
print()
#PANGET
try:
panget_stat = panget(data,gene_families,software_data)
if panget_stat != None:
stats += panget_stat
except Exception as e:
print('@vb@',"type error: " + str(e))
print('@vb@',traceback.format_exc())
print()
#ROARY
try:
roary_stat = roary(data,gene_families,software_data)
if roary_stat != None:
stats += roary_stat
except Exception as e:
print('@vb@',"type error: " + str(e))
print('@vb@',traceback.format_exc())
print()
try:
#BLAST all vs all , input for panoct and micropan
print('Running BLAST...')
blast_stat = call_program([data,software_data], 'blast')
print('...BLAST done!')
path_blastall = Path(software_data, 'blastDB','blastall.out')
if blast_stat != None:
stats += blast_stat
#PANOCT
panoct_stat = panoct(data,gene_families,software_data)
if panoct_stat != None:
stats += panoct_stat
#MICROPAN
micropan_stat = micropan(data,gene_families,software_data)
if micropan_stat != None:
stats += micropan_stat
else:
print('MESSAGE: BLAST was terminated, panoct and micropan will not be executed')
except Exception as e:
print('@vb@',"type error: " + str(e))
print('@vb@',traceback.format_exc())
try:
#cambiare il tempo in numero di secondi
if len(stats)>0: #if i have at least one result (no results if all softwares take more than 2h to compute)
print('saving resources used for:')
print('dataset type:',dtset_type)
print('dataset name:',data.stem)
###SISTEMARE L'OUTPUT IN MODO CHE I FILE VENGANO GENERATI DIRETTAMENTE NELLA CARTELLA CORRETTA
#idea -> salvare come file csv in modo da poter utilizzare i dataframe per fare la media di
#tutti i risultati
stat_dict = dict()
blast_ram = int()
blast_time = int()
for s in stats:
d = s.split(' ')[1:]
if d[0] != 'blast': #ram and time will be added to panoct and micropan ram and time
stat_dict[d[0]]= dict()
if d[0] == 'blast':
blast_ram = int(d[1])
pt = convert_time(d[2])
blast_time = pt.second+pt.minute*60+pt.hour*3600
elif d[0] == 'panoct' or d[0] == 'micropan':
stat_dict[d[0]]['ram'] = max(blast_ram, int(d[1]))
pt = convert_time(d[2])
software_time = pt.second+pt.minute*60+pt.hour*3600
stat_dict[d[0]]['time'] = blast_time + software_time
else:
stat_dict[d[0]]['ram'] = int(d[1])
pt = convert_time(d[2])
software_time = pt.second+pt.minute*60+pt.hour*3600
stat_dict[d[0]]['time'] = software_time
df_stats = pd.DataFrame(stat_dict)
df_stats.to_csv(Path(stats_folder,dtset_type,data.stem,'running_data.csv'), sep='\t')
except Exception as e:
print('@vb@',"type error: " + str(e))
print('@vb@',traceback.format_exc())
|
[
"vincenzo.bonnici@gmail.com"
] |
vincenzo.bonnici@gmail.com
|
9aa7d125ff93dd331e5aade2f70114255f9f0ff6
|
e9a2b904da10ec9f38fb2a36093e8e84bf902d9d
|
/_400/manage.py
|
f735a2a142b938431f35228cdbfeea4eb9b258b0
|
[] |
no_license
|
fhim50/jobsearchengine
|
8d848bc84078a1836599eca50a2c7a5a2304814e
|
c7aae927542fc0749539de417d716cd32d06d75f
|
refs/heads/master
| 2020-06-03T20:43:55.524245
| 2013-01-22T08:27:31
| 2013-01-22T08:27:31
| 7,016,723
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 257
|
py
|
#!/usr/bin/env python
import os
import sys
if __name__ == "__main__":
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "_400.settings")
from django.core.management import execute_from_command_line
execute_from_command_line(sys.argv)
|
[
"kwaw@kwaw-HP-625.(none)"
] |
kwaw@kwaw-HP-625.(none)
|
9c60554c705a99f445f4cd9a478d7136f409ae20
|
3574de071eb81b32ec1b2ef1edd8affc1b728e24
|
/lesson/ftp_client.py
|
abd63fe1e62360076d922e7235204494601b03cf
|
[] |
no_license
|
dpochernin/Homework_6
|
54376cfed1ae5fe4d3cdd3b114a0c7e5b7707f6c
|
502ee83b01cff38c0fdfbe11ae9f059758b4403d
|
refs/heads/master
| 2020-08-24T12:13:22.438742
| 2019-10-22T13:41:55
| 2019-10-22T13:41:55
| 216,823,296
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 439
|
py
|
from ftplib import FTP
with FTP(host='127.0.0.1', user='user', passwd='12345') as ftp:
print(ftp.retrlines('LIST'))
out = '..\\files_for_test\\index.png'
with open(out, 'wb') as f:
ftp.retrbinary('RETR index.png', f.write)
path = '..\\files_for_test\\firm.txt'
with open(path, 'rb') as file_2:
print(file_2.name)
ftp.storbinary('STOR firm.txt', file_2, 1024)
print(ftp.retrlines('LIST'))
|
[
"d.pochernin@gmail.com"
] |
d.pochernin@gmail.com
|
d8d67f00d13100bc57dbb65f9bea4894dce778a7
|
c6a51702a01c341c41a0d9df54f6106111a6cac5
|
/part1/train.py
|
9212f4f41bdeb5c47f86caf4f51a450eb7f80085
|
[] |
no_license
|
eacamilla/assignment_2
|
3b5ac15cd2654827783ece73875580b9e0c90676
|
ce4b310075193fcea24f9f364a0821d7f29c1c76
|
refs/heads/master
| 2020-09-14T18:01:35.188856
| 2019-11-21T15:42:44
| 2019-11-21T15:42:44
| 223,207,359
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,946
|
py
|
################################################################################
# MIT License
#
# Copyright (c) 2019
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to conditions.
#
# Author: Deep Learning Course | Fall 2019
# Date Created: 2019-09-06
################################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import time
from datetime import datetime
import numpy as np
import torch
from torch.utils.data import DataLoader
from part1.dataset import PalindromeDataset
from part1.vanilla_rnn import VanillaRNN
from part1.lstm import LSTM
# You may want to look into tensorboard for logging
# from torch.utils.tensorboard import SummaryWriter
################################################################################
def train(config):
assert config.model_type in ('RNN', 'LSTM')
# Initialize the device which to run the model on
#device = torch.device(config.device)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize the model that we are going to use
if config.model_type is 'RNN':
model = VanillaRNN(seq_length = config.input_length, input_dim= config.input_dim, num_hidden = config.num_hidden,
num_classes = config.num_classes, batch_size = config.batch_size, device= device)
if config.model_type is 'LSTM':
model = LSTM(seq_length = config.input_length, input_dim= config.input_dim, num_hidden = config.num_hidden,
num_classes = config.num_classes, batch_size = config.batch_size, device= device)
# Initialize the dataset and data loader (note the +1)
dataset = PalindromeDataset(config.input_length+1)
data_loader = DataLoader(dataset, config.batch_size, num_workers=1)
# Setup the loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(model.parameters(), config.learning_rate)
#optimizer = torch.optim.Adam(model.parameters(), config.learning_rate)
Accuracy = []
for step, (batch_inputs, batch_targets) in enumerate(data_loader):
# Only for time measurement of step through network
t1 = time.time()
y = model.forward(batch_inputs.to(device))
loss = criterion(y, batch_targets.to(device))
loss.backward()
############################################################################
# QUESTION: what happens here and why?
# limits the size of the parameter updates by scaling the gradients down
# Should be placed after loss.backward() but before optimizer.step()
############################################################################
torch.nn.utils.clip_grad_norm(model.parameters(), max_norm=config.max_norm)
############################################################################
optimizer.step()
loss = loss.item()
acc_in = np.argmax(y.cpu().detach().numpy(), axis=1) == batch_targets.cpu().detach().numpy()
accuracy = np.sum(acc_in)/ batch_targets.shape[0]
Accuracy.append(accuracy)
# Just for time measurement
t2 = time.time()
examples_per_second = config.batch_size/float(t2-t1)
if step % 10 == 0:
print("[{}] Train Step {:04d}/{:04d}, Batch Size = {}, Examples/Sec = {:.2f}, "
"Accuracy = {:.2f}, Loss = {:.3f}".format(
datetime.now().strftime("%Y-%m-%d %H:%M"), step,
config.train_steps, config.batch_size, examples_per_second,
accuracy, loss
))
if step == config.train_steps:
# If you receive a PyTorch data-loader error, check this bug report:
# https://github.com/pytorch/pytorch/pull/9655
break
print('Done training. :)')
################################################################################
################################################################################
if __name__ == "__main__":
# Parse training configuration
parser = argparse.ArgumentParser()
# Model params
parser.add_argument('--model_type', type=str, default="RNN", help="Model type, should be 'RNN' or 'LSTM'")
#parser.add_argument('--model_type', type=str, default="LSTM", help="Model type, should be 'RNN' or 'LSTM'")
parser.add_argument('--input_length', type=int, default=10, help='Length of an input sequence')
#adjust input length for different palindrome lengths
parser.add_argument('--input_dim', type=int, default=1, help='Dimensionality of input sequence')
parser.add_argument('--num_classes', type=int, default=10, help='Dimensionality of output sequence')
parser.add_argument('--num_hidden', type=int, default=128, help='Number of hidden units in the model')
parser.add_argument('--batch_size', type=int, default=128, help='Number of examples to process in a batch')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate')
parser.add_argument('--train_steps', type=int, default=10000, help='Number of training steps')
parser.add_argument('--max_norm', type=float, default=10.0)
parser.add_argument('--device', type=str, default="cuda:0", help="Training device 'cpu' or 'cuda:0'")
config = parser.parse_args()
#Loop over palindrome length and different seeds fixme
# Train the model
train(config)
#Create plot fixme
|
[
"eacamillawerner@gmail.com"
] |
eacamillawerner@gmail.com
|
6631cd057d686d0a0d7c910975132247c9c16828
|
4e30c855c253cc1d972d29e83edb9d5ef662d30a
|
/approval/models/returns.py
|
fc4920552b9ab0a32ad1d864ac946c3732809dab
|
[
"MIT"
] |
permissive
|
rajeshr188/django-onex
|
8b531fc2f519d004d1da64f87b10ffacbd0f2719
|
0a190ca9bcf96cf44f7773686205f2c1f83f3769
|
refs/heads/master
| 2023-08-21T22:36:43.898564
| 2023-08-15T12:08:24
| 2023-08-15T12:08:24
| 163,012,755
| 2
| 0
|
NOASSERTION
| 2023-07-22T09:47:28
| 2018-12-24T17:46:35
|
Python
|
UTF-8
|
Python
| false
| false
| 3,919
|
py
|
from django.contrib.contenttypes.fields import GenericRelation
from django.db import models, transaction
from django.db.models import Sum
from django.urls import reverse
from approval.models import ApprovalLine
from contact.models import Customer
from dea.models import Journal, JournalTypes
from product.models import StockLot
"""
When an approval voucher is created, the stock items that are being approved for release to a contact should be recorded in the database or inventory management system, along with the contact's information.
When the approved stock items are released to the contact, they should be recorded as being moved out of the approval area and into the possession of the contact.
If the contact returns some or all of the approved stock items, those items should be recorded as being returned to the approval area.
When the approval is complete and all approved stock items have been returned, the approval should be closed.
If any stock items were approved for release but not returned, those items should be flagged for invoicing.
When the invoice is created, the stock items that were approved but not returned should be included on the invoice, along with the appropriate billing information.
If any changes are made to the approval, return, or invoice, those changes should be recorded in the database or inventory management system, along with a timestamp and the user who made the changes.
"""
# Create your models here.
class Return(models.Model):
created_at = models.DateTimeField(auto_now_add=True, editable=False)
updated_at = models.DateTimeField(auto_now=True, editable=False)
created_by = models.ForeignKey(
"users.CustomUser", on_delete=models.CASCADE, null=True, blank=True
)
contact = models.ForeignKey(
Customer, related_name="approval_returns", on_delete=models.CASCADE
)
total_wt = models.DecimalField(max_digits=10, decimal_places=3, default=0)
total_qty = models.IntegerField(default=0)
posted = models.BooleanField(default=False)
def __str__(self):
return f"Return #{self.id}"
def get_absolute_url(self):
return reverse("approval:approval_return_detail", args=(self.pk,))
def get_total_qty(self):
return self.returnitem_set.aggregate(t=Sum("quantity"))["t"]
def get_total_wt(self):
return self.returnitem_set.aggregate(t=Sum("weight"))["t"]
class ReturnItem(models.Model):
return_obj = models.ForeignKey(Return, on_delete=models.CASCADE)
line_item = models.ForeignKey(
ApprovalLine, on_delete=models.CASCADE, related_name="return_items"
)
quantity = models.IntegerField(default=0)
weight = models.DecimalField(max_digits=10, decimal_places=3, default=0.0)
created_at = models.DateTimeField(auto_now_add=True)
updated_at = models.DateTimeField(auto_now=True)
journal = GenericRelation(Journal, related_query_name="approval_returnitem")
def __str__(self):
return f"{self.quantity} x {self.line_item.product}"
def get_absolute_url(self):
return reverse("approval:approval_returnitem_detail", args=(self.pk,))
def get_hx_edit_url(self):
kwargs = {"return_pk": self.return_obj.id, "pk": self.pk}
return reverse("approval:approval_returnitem_update", kwargs=kwargs)
def create_journal(self):
return Journal.objects.create(
journal_type=JournalTypes.SJ,
desc="Approval Return",
content_object=self,
)
def get_journal(self):
return self.journal.first()
@transaction.atomic
def post(self, journal):
self.line_item.product.transact(self.weight, self.quantity, journal, "AR")
self.line_item.update_status()
@transaction.atomic
def unpost(self, journal):
self.line_item.product.transact(self.weight, self.quantity, journal, "A")
self.line_item.update_status()
|
[
"rajeshrathodh@gmail.com"
] |
rajeshrathodh@gmail.com
|
166b3242dff0b00a8bc4391164f1da912dc2126a
|
8ab090a03f23856bf959dbfd9d12758425ceeb02
|
/examples/molecular/master/result/crop.py
|
6402a8ae80cebb641e43e2560e662ab2ca857bc9
|
[
"MIT"
] |
permissive
|
blostic/cirrus
|
bc2c9297606f7c747a67ea1532e0b802950fa73d
|
faaca48052f6a29e434e8a9dcf6625d426a1c8b7
|
refs/heads/master
| 2021-05-04T11:07:01.907627
| 2017-09-09T07:34:26
| 2017-09-09T07:34:26
| 51,220,056
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 530
|
py
|
from PIL import Image
for i in range(1, 10):
img = Image.open("image-000000"+ str(i) + ".png")
area = (300, 430, 400, 530)
cropped_img = img.crop(area)
# cropped_img.show()
resized = cropped_img.resize((200, 200), Image.ANTIALIAS)
resized.save("res"+ str(i) + ".png")
for i in range(10, 13):
img = Image.open("image-00000"+ str(i) + ".png")
area = (300, 430, 400, 530)
cropped_img = img.crop(area)
# cropped_img.show()
resized = cropped_img.resize((200, 200), Image.ANTIALIAS)
resized.save("res"+ str(i) + ".png")
|
[
"piotr.skibiak@gmail.com"
] |
piotr.skibiak@gmail.com
|
682bf91e9068ae3b44de92b625bce0c0b2052cf9
|
c4f096d99db7134d2991b7aad0192dcd1f58511a
|
/select_proxy/settings_tokens.py
|
0fe76835b8d85292b2509c2fc965df2ae5770428
|
[] |
no_license
|
for-mao/select-proxy
|
a3157a07f954a8eaaffb0a4bd4402ae000a784c1
|
211b88af7e1cf9f31688c3acb188dbc4838e8c74
|
refs/heads/master
| 2020-04-02T16:40:20.437075
| 2018-10-25T06:48:02
| 2018-10-25T06:48:02
| 154,623,342
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 170
|
py
|
DIGITALOCEAN_API_TOKEN = {
'jiang': '',
'sun': ''
}
LINODE_API_TOKEN = {
'jiang': '',
'sun': ''
}
VULTR_API_TOKEN = {
'jiang': '',
'sun': ''
}
|
[
"15501852282@163.com"
] |
15501852282@163.com
|
46bccb1d8843e47334574854ef19d802258e5b4a
|
df0ba034669281e5d35743ef77ebe16ef07f0d83
|
/ex6.py
|
a773b7f082cf82ff804b6cca0ec4d51442eb2930
|
[] |
no_license
|
pstauble/LPTHW-Exercises
|
f18d107281dec7b9aa7cb85e0e7e576253b20596
|
f17faad7f1bbeb97041850865232835ad9190e28
|
refs/heads/master
| 2021-01-25T05:57:55.423730
| 2014-11-04T16:30:54
| 2014-11-04T16:30:54
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 636
|
py
|
# This variable uses %d to add a number into the string"
x = "There are %d types of people." %10
#These are two variables
binary = "binary"
do_not = "don't"
#We add two strings into this one string
y = "Those who know %s and those who %s." % (binary, do_not)
#We print the two statements wich contain the strings and numbers
print x
print y
#we are adding the above strings into these strings
print "I said: %r." % x
print "I also said: '%s'." % y
hilarious = False
joke_evaluation = "Isn't that joke so funny?! %r"
print joke_evaluation % hilarious
w = "this is the left side of..."
e = "a string with a right side."
print w + e
|
[
"patrick.stauble@gmail.com"
] |
patrick.stauble@gmail.com
|
1003f7677d03e8e3d0a1afd5c0cd5332d9675674
|
aeaf548fba8ee9f88cd9254f2bc4ac0a3bbfb207
|
/zhaquirks/hivehome/__init__.py
|
68a13be23af5bd6731cf553a3e6f1c6ad1c07794
|
[
"Apache-2.0"
] |
permissive
|
vigonotion/zha-device-handlers
|
6001aa812380a0540d76f68778ebade93f93928d
|
6d0560655428e1f04626a7722febf492c4174e8b
|
refs/heads/dev
| 2020-12-26T12:07:27.192810
| 2020-01-31T17:57:29
| 2020-01-31T17:57:29
| 237,504,327
| 1
| 0
|
Apache-2.0
| 2020-01-31T22:49:11
| 2020-01-31T19:47:15
| null |
UTF-8
|
Python
| false
| false
| 948
|
py
|
"""Hive Home."""
import asyncio
from zigpy.quirks import CustomCluster
from zigpy.zcl.clusters.security import IasZone
from ..const import CLUSTER_COMMAND, OFF, ZONE_STATE
HIVEHOME = "HiveHome.com"
class MotionCluster(CustomCluster, IasZone):
"""Motion cluster."""
cluster_id = IasZone.cluster_id
def __init__(self, *args, **kwargs):
"""Init."""
super().__init__(*args, **kwargs)
self._timer_handle = None
def handle_cluster_request(self, tsn, command_id, args):
"""Handle the cluster command."""
if command_id == 0:
if self._timer_handle:
self._timer_handle.cancel()
loop = asyncio.get_event_loop()
self._timer_handle = loop.call_later(30, self._turn_off)
def _turn_off(self):
self._timer_handle = None
self.listener_event(CLUSTER_COMMAND, 999, 0, [0, 0, 0, 0])
self._update_attribute(ZONE_STATE, OFF)
|
[
"noreply@github.com"
] |
noreply@github.com
|
b632eb9d3117a1f0ed7b1f8d42128ff804ab6e39
|
e5b4bead66f3f560bb77221e41e57057c52894e0
|
/PYTHON/derivative.py
|
1c01571d62ada2f1e4354fbb4a45322d870909e9
|
[] |
no_license
|
lafionium/DMI
|
ce45f40a88ba52180b86daac1abedb4c54200209
|
ea81832c69c3531466a4db8eb9289a02e45c54a4
|
refs/heads/master
| 2021-05-16T06:52:43.741331
| 2018-01-13T15:50:09
| 2018-01-13T15:50:09
| 103,494,626
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 854
|
py
|
## -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
def mans_sinuss(x):
k = 0
a = (-1)**0*x**1/(1)
S = a
while k<= 500:
k = k + 1
R = (-1) * x**2 /(2*k*(2*k+1))
a = a * R
S = S + a
return S
a = 0
b = 3 * np.pi
x = np.arange(a,b,0.05)
y = mans_sinuss(x)
plt.plot(x,y)
plt.grid()
#plt.show()
n = len(x)
y_prim = []
for i in range(n-1):
#print i, x[i], y[i],
delta_y = y[i+1] - y[i]
delta_x = x[i+1] - x[i]
#y_prim = delta_y / delta_x
#print y_prim
y_prim.append(delta_y / delta_x)
#plt.plot(x[:n-1],y_prim)
#plt.show()
n = len(x)
y_prim2 = []
for i in range(n-2):
delta_y_prim = y_prim[i+1] - y_prim[i]
delta_x = x[i+1] - x[i]
y_prim2.append(delta_y_prim / delta_x)
plt.plot(x[:n-1],y_prim)
plt.plot(x[:n-2],y_prim2)
plt.show()
|
[
"jelizavetak@inbox.lv"
] |
jelizavetak@inbox.lv
|
9fdbeecbfcef675451289bc39a5aa7cf2a6cb5d2
|
07cabb7e5fec85992496cf0c825affc78b33dba4
|
/Scrapping/scrappy_venv/bin/twistd
|
621775ceea805f17bdf7ff6adee3e71e63aabb00
|
[] |
no_license
|
WooodHead/Code-practice
|
8b5abd0bee3796926b3f738a276acb216480b585
|
62eafb6d856d2631a7659d68ab94d7d78a72c9b8
|
refs/heads/master
| 2022-11-11T08:03:07.070167
| 2020-06-27T07:50:45
| 2020-06-27T07:50:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 469
|
#!/Users/lyanalexandr/OneDrive/Projects/Programming/Python/Practice/Scrapping/scrappy_venv/bin/python3.8
# EASY-INSTALL-ENTRY-SCRIPT: 'Twisted==20.3.0','console_scripts','twistd'
__requires__ = 'Twisted==20.3.0'
import re
import sys
from pkg_resources import load_entry_point
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(
load_entry_point('Twisted==20.3.0', 'console_scripts', 'twistd')()
)
|
[
"alexlyan@yahoo.com"
] |
alexlyan@yahoo.com
|
|
b4e8b03b8387462c961ea36f580a145007ada11a
|
38b68b2202726bcdea32271448fea22554db6121
|
/BOJ/Silver/1992.py
|
3b0a539d575b9951914cdb95f3dbd52b1b69e1cd
|
[] |
no_license
|
Soohee410/Algorithm-in-Python
|
42c4f02342dc922e44ee07e3a0e1d6c0a559e0bb
|
fbc859c092d86174387fe3dc11f16b616e6fdfab
|
refs/heads/master
| 2023-05-06T13:07:19.179143
| 2021-05-14T14:32:44
| 2021-05-14T14:32:44
| 336,232,129
| 4
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 495
|
py
|
def QuadTree(n, cp, x, y):
if n == 1:
return cp[x][y]
cp1 = QuadTree(n // 2, cp, x, y)
cp2 = QuadTree(n // 2, cp, x, y + n // 2)
cp3 = QuadTree(n // 2, cp, x + n // 2, y)
cp4 = QuadTree(n // 2, cp, x + n // 2, y + n // 2)
if cp1 == cp2 == cp3 == cp4 and len(cp1) == 1:
return cp1
return '('+cp1+cp2+cp3+cp4+')'
if __name__ == "__main__":
n = int(input())
arr = [list(input().rstrip()) for _ in range(n)]
print(QuadTree(n, arr, 0, 0))
|
[
"ggohee0410@gmail.com"
] |
ggohee0410@gmail.com
|
da7cfc6806d77782ce1ac44df83deae1ecdcb3d5
|
c2bf65f35ac84c93b815c64eee4bfb15e9c1a0ee
|
/567.字符串的排列.py
|
6a7b61cfa51e870f9c9e4e3bea86ee165162909c
|
[] |
no_license
|
hhs44/leetcode_learn
|
e7651548e41176b1fd56a1565effbe076d6b280a
|
fd4f51a4803202a2e4fe3d97ef2b54adc218e691
|
refs/heads/master
| 2022-03-06T14:35:51.891389
| 2022-02-09T14:55:13
| 2022-02-09T14:55:13
| 250,731,211
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,359
|
py
|
#
# @lc app=leetcode.cn id=567 lang=python3
#
# [567] 字符串的排列
#
# @lc code=start
from collections import Counter
class Solution:
def checkInclusion(self, s1: str, s2: str) -> bool:
# for x,y in enumerate(s2) :
# if y in s1:
# if x + len(s1) <= len(s2):
# t = s2[x:x+len(s1)]
# if Counter(t) == Counter(s1):
# return True
# return False
# # 2222
# r1 = Counter(s1)
# r2 = Counter()
# l1, l2 = len(s1), len(s2)
# temp = 0
# x = y = 0
# while y < l2 :
# r2[s2[y]] += 1
# if r2[s2[y]] == r1[s2[y]]:
# temp += 1
# if temp == len(r1):
# return True
# y += 1
# if y - x + 1 > l1:
# if r1[s2[x]] == r2[s2[x]]:
# temp -= 1
# r2[s2[x]] -= 1
# if r2[s2[x]] == 0:
# del r2[s2[x]]
# x += 1
# return False
count_dict = Counter(s1)
m = len(s1)
i = 0
j = m - 1
while j < len(s2):
if Counter(s2[i:j+1]) == count_dict:
return True
i += 1
j += 1
return False
# @lc code=end
|
[
"1159986871@qq.com"
] |
1159986871@qq.com
|
0e5ce8dcbc905ec244e57d0954c2a482627e3370
|
2bf7879f0c134b1a207fd4c249bb5b58ae219692
|
/src/bowtieutil.py
|
0ae531def009a6ab131f85970e245aef23a9bd32
|
[] |
no_license
|
logstar/NET-seq-CLT
|
50adaffc0db9311bdaa110691ea3cd8f3697bf44
|
5aa77e4c26ac3d2b90c88961dbb73fd2a7981e72
|
refs/heads/master
| 2021-03-27T08:46:50.690982
| 2018-09-20T16:58:09
| 2018-09-20T16:58:09
| 92,326,581
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,422
|
py
|
import collections
# aln_lcoord_b0: 0 based coordinate of the alignment start (left most bp of
# alignment)
# num_alt_aln: number of alternative alignment positions of the same read
# mm_desc: mismatch description (comma sep)
BowtieRecord = collections.namedtuple('BowtieRecord',
['seqid', 'strand', 'refid',
'aln_lcoord_b0', 'seq', 'qscore',
'num_alt_aln', 'mm_desc'])
def iterate_bowtie_out_file(bt_fn):
bt_file = open(bt_fn, 'r')
for line in bt_file:
fields = line.strip('\n').split('\t')
if len(fields) != 8:
raise ValueError("Number of fields not equal to 8: %s" % line)
rec = BowtieRecord(fields[0], fields[1], fields[2], int(fields[3]),
fields[4], fields[5], int(fields[6]), fields[7])
if rec.strand not in ('+', '-'):
raise ValueError("Strand not +/-: %s" % line)
yield rec
bt_file.close()
# Treat genome as circular
class BowtieRecordCounter(object):
"""docstring for BowtieRecordCounter"""
def __init__(self, ref_length):
super(BowtieRecordCounter, self).__init__()
self.ref_length = ref_length
self.align_count_dict = {}
def insert_bt_rec_ntup(self, bt_rec_ntup):
if bt_rec_ntup.aln_lcoord_b0 >= self.ref_length:
raise ValueError("Alignment start >= ref length. %s" % bt_rec_ntup._asdict())
if bt_rec_ntup.strand == '+':
tx_start_pos_b0 = bt_rec_ntup.aln_lcoord_b0
else:
tx_start_pos_b0 = bt_rec_ntup.aln_lcoord_b0 + len(bt_rec_ntup.seq) - 1
if tx_start_pos_b0 >= self.ref_length:
tx_start_pos_b0 -= self.ref_length
if tx_start_pos_b0 not in self.align_count_dict:
self.align_count_dict[tx_start_pos_b0] = {'+' : 0, '-' : 0}
self.align_count_dict[tx_start_pos_b0][bt_rec_ntup.strand] += 1
def output_count_table(self, output_fn):
output_file = open(output_fn, 'w')
for key in sorted(self.align_count_dict.keys()):
output_file.write("%d\t%d\t%d\n" % (key,
self.align_count_dict[key]['+'],
self.align_count_dict[key]['-']))
output_file.close()
|
[
"y.will.zhang@gmail.com"
] |
y.will.zhang@gmail.com
|
d1503b86fa4896111916a13e6c521ac6752af954
|
0cc58384745fddd40f0593941223237daba41734
|
/meiduo_mall/apps/contents/migrations/0001_initial.py
|
aa0735062da06aa50568b4b3fed32360cc82a92e
|
[] |
no_license
|
four-leaf-clover1/meiduo_mall
|
d216d565300e8be3b18fe144a3da721d606d63b1
|
9d82325ec18ac050e5b076e6e24f6613945bee89
|
refs/heads/master
| 2020-06-29T20:53:24.630099
| 2019-08-09T09:49:27
| 2019-08-09T09:49:27
| 200,621,909
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,487
|
py
|
# -*- coding: utf-8 -*-
# Generated by Django 1.11.11 on 2019-07-26 04:58
from __future__ import unicode_literals
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Content',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')),
('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')),
('title', models.CharField(max_length=100, verbose_name='标题')),
('url', models.CharField(max_length=300, verbose_name='内容链接')),
('image', models.ImageField(blank=True, null=True, upload_to='', verbose_name='图片')),
('text', models.TextField(blank=True, null=True, verbose_name='内容')),
('sequence', models.IntegerField(verbose_name='排序')),
('status', models.BooleanField(default=True, verbose_name='是否展示')),
],
options={
'verbose_name': '广告内容',
'verbose_name_plural': '广告内容',
'db_table': 'tb_content',
},
),
migrations.CreateModel(
name='ContentCategory',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')),
('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')),
('name', models.CharField(max_length=50, verbose_name='名称')),
('key', models.CharField(max_length=50, verbose_name='类别键名')),
],
options={
'verbose_name': '广告内容类别',
'verbose_name_plural': '广告内容类别',
'db_table': 'tb_content_category',
},
),
migrations.AddField(
model_name='content',
name='category',
field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='contents.ContentCategory', verbose_name='类别'),
),
]
|
[
"1173349074@qq.com"
] |
1173349074@qq.com
|
442c069c094cb5cdedab2a6e2737cf3ce70e9022
|
462060fa57d2db4f19b256558d57a446bb60bf2a
|
/Lesson07/setOperations.py
|
3307e272cab913f9f71a3e73b48a6f85fbfb0adb
|
[
"MIT"
] |
permissive
|
TrainingByPackt/Python-Fundamentals-eLearning
|
d82b25ebd87a8503125e6b26991f058424b3da28
|
0d7aa95b9b163802a93a7dab5f00d80e10677b82
|
refs/heads/master
| 2020-04-21T12:25:15.223114
| 2019-02-07T11:40:18
| 2019-02-07T11:40:18
| 169,561,372
| 3
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 372
|
py
|
a = {1, 2, 3}
b = {3, 4, 5}
# A union B
print('a union b')
print(a.union(b))
print(a | b)
# A intersection B
print('a intersection b')
print(a.intersection(b))
print(a & b)
# A equals to B
print(a == b)
# Subsets and supersets
print('subsets and supersets')
print(a.issubset(b))
print(b.issuperset(a))
b.update(a)
print(b)
print(a.issubset(b))
print(b.issuperset(a))
|
[
"madhunikitac@packtpub.com"
] |
madhunikitac@packtpub.com
|
ae8263755e7c9f0478df3a1a92714a27aa901a2c
|
79d4c542ed5d1191262a1d163b3a82996106a113
|
/triple_well_2D/triple_well_2.py
|
90ef0300feffe81071dab1ba45cff68364f15895
|
[] |
no_license
|
pascalwangt/PyTAMS
|
397bb0804f04e9075b510196c173850c560c40ad
|
f15d55951c83bdd4c9aace76d4e1b87864362d43
|
refs/heads/master
| 2020-06-24T16:09:52.549525
| 2019-08-06T22:06:13
| 2019-08-06T22:06:13
| 199,011,484
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,521
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Tue May 7 23:45:49 2019
@author: pasca
"""
import numpy as np
import sympy as sp
from sympy import exp, tanh, cosh
from sympy.abc import x,y
import h5py
import sys
sys.path.append('../')
import ellipsoid_fun
import trajectory_to_score_function
#%%
#states
initial_state = np.array([-5.7715972293490533928661534446291625499725341796875, 5.4694526174595439355376248779551373591090168702066875994205474853515625e-09])
saddle_state = np.array([0, -2.93429453258859905540045787120106979273259639739990234375e-02])
#saddle_state = np.array([0, 18])
target_state = np.array([5.7715972293490533928661534446291625499725341796875, 5.4694526174595439355376248779551373591090168702066875994205474853515625e-09])
#%%
#general confinement
alpha = 0.1
beta = 0.05
yc = 0
#stable minima
x_min = 6
depth = 10
y_decay = 2
x_decay = 2
#metastable minimum
y_intermediate = 20/1.5
depth_intermediate = 20/1.5
y_decay_intermediate = 3
x_decay_intermediate = 5
#barrier
y_barrier = 15/1.5
y_decay_barrier = 1
x_decay_barrier = 2
barrier = 20
def potential(x,y):
return 4.8+alpha*x**2+beta*(y-yc)**2+barrier*(1+np.tanh(-(y-y_barrier)/y_decay_barrier))*np.exp(-(x/x_decay_barrier)**2)-depth_intermediate*np.exp(-(x/x_decay_intermediate)**2-((y-y_intermediate)/y_decay_intermediate)**2)-depth*np.exp(-((x-x_min)/x_decay)**2-(y/y_decay)**2)-depth*np.exp(-((x+x_min)/x_decay)**2-(y/y_decay)**2)
def force(v):
x,y=v
return np.array([-2*alpha*x+barrier*(1+np.tanh(-(y-y_barrier)/y_decay_barrier))*2*x/x_decay_barrier**2*np.exp(-(x/x_decay_barrier)**2)-2*x/x_decay_intermediate**2*depth_intermediate*np.exp(-(x/x_decay_intermediate)**2-((y-y_intermediate)/y_decay_intermediate)**2)-2*(x-x_min)/x_decay**2*depth*np.exp(-((x-x_min)/x_decay)**2-(y/y_decay)**2)-2*(x+x_min)/x_decay**2*depth*np.exp(-((x+x_min)/x_decay)**2-(y/y_decay)**2),
-2*beta*(y-yc)+barrier/y_decay_barrier*np.exp(-(x/x_decay_barrier)**2)/np.cosh(-(y-y_barrier)/y_decay_barrier)**2-2*(y-y_intermediate)/y_decay_intermediate**2*depth_intermediate*np.exp(-(x/x_decay_intermediate)**2-((y-y_intermediate)/y_decay_intermediate)**2)-2*y/y_decay**2*depth*np.exp(-((x-x_min)/x_decay)**2-(y/y_decay)**2)-2*y/y_decay**2*depth*np.exp(-((x+x_min)/x_decay)**2-(y/y_decay)**2)])
#sympy force matrix
force_matrix = sp.Matrix([-2*alpha*x+barrier*(1+tanh(-(y-y_barrier)/y_decay_barrier))*2*x/x_decay_barrier**2*exp(-(x/x_decay_barrier)**2)-2*x/x_decay_intermediate**2*depth_intermediate*exp(-(x/x_decay_intermediate)**2-((y-y_intermediate)/y_decay_intermediate)**2)-2*(x-x_min)/x_decay**2*depth*exp(-((x-x_min)/x_decay)**2-(y/y_decay)**2)-2*(x+x_min)/x_decay**2*depth*exp(-((x+x_min)/x_decay)**2-(y/y_decay)**2),
-2*beta*(y-yc)+barrier/y_decay_barrier*exp(-(x/x_decay_barrier)**2)/cosh(-(y-y_barrier)/y_decay_barrier)**2-2*(y-y_intermediate)/y_decay_intermediate**2*depth_intermediate*exp(-(x/x_decay_intermediate)**2-((y-y_intermediate)/y_decay_intermediate)**2)-2*y/y_decay**2*depth*exp(-((x-x_min)/x_decay)**2-(y/y_decay)**2)-2*y/y_decay**2*depth*exp(-((x+x_min)/x_decay)**2-(y/y_decay)**2)])
noise_matrix = None
#%%
#score functions
def score_function_linear(v):
score = np.sum((target_state-initial_state)*(v-initial_state)) / np.linalg.norm(target_state-initial_state)**2
if score >=0:
return score
else:
return 1e-5
def score_function_linear_simple(v):
return v[0]/target_state[0]
def score_function_norm(v):
x,y=v
return 1/2*np.sqrt((x+1)**2+1/2*y**2)
def score_function_circle_maker(param = 4):
"""
param: decay rate of the exponentials
"""
dist = np.linalg.norm(target_state-initial_state)
eta = np.linalg.norm(saddle_state-initial_state)/dist
def score_function(v):
return eta - eta*np.exp(-param*(np.linalg.norm(v-initial_state)/dist)**2)+(1-eta)*np.exp(-param*(np.linalg.norm(v-target_state)/dist)**2)
return score_function
def score_function_ellipsoid_maker(param = 0.05, sigma=1.5):
"""
param: decay rate of the exponentials
"""
eta = np.linalg.norm(target_state-saddle_state)/np.linalg.norm(target_state-initial_state)
covariance_matrix_start, quad_form_initial, spectral_radius, level, bound = ellipsoid_fun.ingredients_score_function(force_matrix, initial_state, sigma, noise_matrix=noise_matrix)
covariance_matrix_target, quad_form_target, spectral_radius, level, bound = ellipsoid_fun.ingredients_score_function(force_matrix, target_state, sigma, noise_matrix=noise_matrix)
def score_function(v):
return eta - eta*np.exp(-param*quad_form_initial(v))+(1-eta)*np.exp(-param*quad_form_target(v))
return score_function
def score_function_custom_maker(filename='trajectory.hdf5', decay=4):
"""
param: trajectory file with key "filled_path"
decay
"""
with h5py.File(filename, 'r') as file:
filled_path = file['filled_path'][:]
file.close()
score_function = trajectory_to_score_function.score_function_maker(filled_path.T, decay)
return score_function
def threshold_simexp_param(param, level):
dist = np.linalg.norm(target_state-initial_state)
eta = np.linalg.norm(saddle_state-initial_state)/dist
return (1-eta)*(1-np.exp(-level*param))
#%%
#tests
check_ellipsoid_array = 0
potential_well_plot_3D = 0
potential_well_plot = 0
if check_ellipsoid_array:
import matplotlib.pyplot as plt
#ell = ellipsoid_fun.get_ellipsoid_array(target_state, quad_form, level, bound)
plt.scatter(ell.T[0], ell.T[1])
CS = ellipsoid_fun.draw_ellipsoid_2D(force_matrix, target_state, noise = sigma)
foo = ellipsoid_fun.check_ellipsoid(ell, score_function_simexp_ell_param, threshold=threshold_simexp, tolerance=1e-3)
score_level = ellipsoid_fun.get_levelset_array(target_state, score_function_simexp_ell, level = 1-threshold_simexp, bound=2*bound, tolerance = 1e-3)
plt.scatter(score_level.T[0], score_level.T[1], alpha = 0.5)
print(foo)
if potential_well_plot_3D:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x,y = np.linspace(-12,12,100), np.linspace(-10,25,100)
xx, yy = np.meshgrid(x, y)
zz = potential(xx,yy)
im = ax.plot_surface(xx,yy,zz, cmap = 'RdBu_r')
ax.set_xlabel('x')
ax.tick_params(axis='x', which='major', pad=0)
ax.set_ylabel('y')
ax.set_zlabel('V(x,y)', labelpad = 10)
clb = fig.colorbar(im, fraction=0.03, pad=-0.1)
clb.ax.set_title('V(x,y)', fontsize = 16)
ax.set_facecolor('white')
#plt.savefig('2D_simple_double_well_ax3D.png')
if potential_well_plot:
import matplotlib.pyplot as plt
fig = plt.figure()
x,y = np.linspace(-15,15,100), np.linspace(-15,25,100)
xx, yy = np.meshgrid(x, y)
pot = potential(xx,yy)
im = plt.contourf(xx, yy, pot, 100, cmap = 'RdBu_r')
#plt.contour(xx, yy, pot, 30)
plt.xlabel('x')
plt.ylabel('y')
plt.grid()
cbar = fig.colorbar(im,)
cbar.ax.set_title('$V(x,y)$', pad = 15)
plt.scatter(initial_state[0],initial_state[1], marker = 'o', label = 'start', color = 'black', s=40)
plt.scatter(target_state[0], target_state[1], marker = 'x', label = 'target', color = 'black', s=40)
plt.legend(loc = 'lower right')
plt.savefig('../../figures/potential.png', bbox_inches = 'tight')
#plt.savefig('2D_simple_double_well.png')
|
[
"pascal.wang@ens-lyon.fr"
] |
pascal.wang@ens-lyon.fr
|
c046690464e6b41e5003468f3a589deffce10683
|
cc8f018f4497d868aed95ab83ae0a5a8c646a120
|
/project_jenkins/urls.py
|
fe8afd358269796b95dd3aa761fefe6769432698
|
[] |
no_license
|
adarshharidas/jenkins-pro
|
e049e09bb14595501248f131ad344a7461e26c40
|
6d05b93db3033e1ecc4cb419bd5e4a32b6d2ac98
|
refs/heads/master
| 2020-03-15T03:33:20.219427
| 2018-06-12T10:04:17
| 2018-06-12T10:04:17
| 131,944,972
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 838
|
py
|
"""project_jenkins URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/1.11/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.conf.urls import url, include
2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls'))
"""
from django.conf.urls import url, include
from django.contrib import admin
from job import views
urlpatterns = [
url(r'^admin/', admin.site.urls),
url(r'^', include('job.urls'))
]
|
[
"pymonk@ex.com"
] |
pymonk@ex.com
|
b271f6c59aed17cbcb5181bf740eab268fe43bf0
|
3a588f7dee481de6f84dc23ca1f3c485fc9177aa
|
/wishlisht/travel_wishlist/models.py
|
02062481378f554d8085186a15bde2f017772137
|
[] |
no_license
|
xm6264jz/capston-lab9-django
|
105f1ff64758b86e221860bc53d1265da63dede6
|
ff53b0e4715b527c457748c3f188fd7f639354af
|
refs/heads/master
| 2023-01-05T12:35:40.256134
| 2020-11-10T23:29:04
| 2020-11-10T23:29:04
| 307,906,432
| 0
| 0
| null | 2020-11-10T20:13:38
| 2020-10-28T04:29:03
|
Python
|
UTF-8
|
Python
| false
| false
| 1,428
|
py
|
from django.db import models
from django.contrib.auth.models import User
from django.core.files.storage import default_storage
class Place(models.Model):
user = models.ForeignKey('auth.User', null=False, on_delete=models.CASCADE)
name = models.CharField(max_length = 200)
visited = models.BooleanField(default = False)
notes = models.TextField(blank=True, null=True)
date_visited = models.DateField(blank=True, null=True)
photo = models.ImageField(upload_to='user_images/', blank=True, null=True)
def save(self, *args, **kwargs):
# get reference to previous version of this Place
old_place = Place.objects.filter(pk=self.pk).first()
if old_place and old_place.photo:
if old_place.photo != self.photo:
self.delete_photo(old_place.photo)
super().save(*args, **kwargs)
def delete(self, *args, **kwargs):
if self.photo:
self.delete_photo(self.photo)
super().delete(*args, **kwargs)
def delete_photo(self, photo):
if default_storage.exists(photo.name):
default_storage.delete(photo.name)
def _str_(self):
photo_str = self.photo.url if self.photo else 'no photo'
notes_str = self.notes[100:] if self.notes else 'no notes'
return f'{self.pk}: {self.name} visited? {self.visited} on {self.date_visited}. Notes: {notes_str}. Photo {photo_str}'
|
[
"ahmed.abdinoor3@gmail.com"
] |
ahmed.abdinoor3@gmail.com
|
ba5eaf26fde1ee4230e44bfb96255fca3568f0ea
|
3bea1c3f2d4834b9174664e4ee89ebbddde22e89
|
/app.py
|
f9ef295b9b9452b012e6df87fa15627824c52c47
|
[] |
no_license
|
RakshithRajesh/Dataset-Maker
|
9e780117dd91d528b5803174080ab6d86fd90ca2
|
b43a8634e578a780847569724e39183c297d3ead
|
refs/heads/main
| 2023-08-24T07:28:02.235951
| 2021-10-02T14:20:21
| 2021-10-02T14:20:21
| 412,806,631
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,643
|
py
|
from requests_html import HTMLSession
from random import randint
import time
import os
item = "car"
s = HTMLSession()
r = s.get(f"https://www.google.com/search?q={item}&hl=en&tbm=isch")
r.html.render(timeout=10, scrolldown=2500)
time.sleep(4)
images = r.html.find('img[jsname="Q4LuWd"]')
image_url_list = []
try:
for image in images:
if "data" not in image.attrs["src"]:
image_url_list.append(image.attrs["src"])
except:
pass
for i, link in enumerate(image_url_list):
response = s.get(link)
newpath = f"{item}"
if not os.path.exists(newpath):
os.makedirs(newpath)
with open(f"{newpath}/{i}.png", "wb") as w:
w.write(response.content)
print(link)
print(len(image_url_list))
next_link = r.html.find('a[jslog="11106"]')
for link in next_link:
if link:
if len(image_url_list) < 1001:
response = s.get(f"https://www.google.com/{link.attrs['href']}")
r.html.render(timeout=10, scrolldown=2500)
time.sleep(4)
images = r.html.find('img[jsname="Q4LuWd"]')
try:
for image in images:
if "data" not in image.attrs["src"]:
image_url_list.append(image.attrs["src"])
except:
pass
for link in image_url_list:
response = s.get(link)
newpath = f"{item}"
with open(f"{newpath}/{randint(10,10000)}.png", "wb") as w:
w.write(response.content)
print(link)
print(len(image_url_list))
else:
break
|
[
"noreply@github.com"
] |
noreply@github.com
|
8b7c1e9595c69f9cb01a360410fb8b73bece66ba
|
3abe45130d4f614f68c6551b59014a20d3470b58
|
/qa/rpc-tests/wallet.py
|
65bf8b546566b07fe3274bde41ad06a30adb66e9
|
[
"MIT"
] |
permissive
|
dre060/YAADI
|
faab94150263848ef16fe6a865cff7d2a7893e00
|
cdb07c723f559ce883e33d64bce55b6ee5539142
|
refs/heads/main
| 2023-05-17T15:01:43.672809
| 2021-06-06T04:23:41
| 2021-06-06T04:23:41
| 374,243,648
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,942
|
py
|
#!/usr/bin/env python2
# Copyright (c) 2014 The Bitcoin Core developers
# Distributed under the MIT/X11 software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
# Exercise the wallet. Ported from wallet.sh.
# Does the following:
# a) creates 3 nodes, with an empty chain (no blocks).
# b) node0 mines a block
# c) node1 mines 32 blocks, so now node 0 has 60001eca, node 1 has 4250eca, node2 has none.
# d) node0 sends 601 yaadi to node2, in two transactions (301 yaadi, then 300 yaadi).
# e) node0 mines a block, collects the fee on the second transaction
# f) node1 mines 16 blocks, to mature node0's just-mined block
# g) check that node0 has 100-21, node2 has 21
# h) node0 should now have 2 unspent outputs; send these to node2 via raw tx broadcast by node1
# i) have node1 mine a block
# j) check balances - node0 should have 0, node2 should have 100
#
from test_framework import BitcoinTestFramework
from util import *
class WalletTest (BitcoinTestFramework):
def setup_chain(self):
print("Initializing test directory "+self.options.tmpdir)
initialize_chain_clean(self.options.tmpdir, 3)
def setup_network(self, split=False):
self.nodes = start_nodes(3, self.options.tmpdir)
connect_nodes_bi(self.nodes,0,1)
connect_nodes_bi(self.nodes,1,2)
connect_nodes_bi(self.nodes,0,2)
self.is_network_split=False
self.sync_all()
def run_test (self):
print "Mining blocks..."
self.nodes[0].setgenerate(True, 1)
self.sync_all()
self.nodes[1].setgenerate(True, 32)
self.sync_all()
assert_equal(self.nodes[0].getbalance(), 60001)
assert_equal(self.nodes[1].getbalance(), 4250)
assert_equal(self.nodes[2].getbalance(), 0)
# Send 601 BTC from 0 to 2 using sendtoaddress call.
# Second transaction will be child of first, and will require a fee
self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 351)
self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 350)
# Have node0 mine a block, thus he will collect his own fee.
self.nodes[0].setgenerate(True, 1)
self.sync_all()
# Have node1 generate 100 blocks (so node0 can recover the fee)
self.nodes[1].setgenerate(True, 16)
self.sync_all()
# node0 should end up with 100 btc in block rewards plus fees, but
# minus the 21 plus fees sent to node2
assert_greater_than(self.nodes[0].getbalance(), 59549)
assert_equal(self.nodes[2].getbalance(), 701)
# Node0 should have two unspent outputs.
# Create a couple of transactions to send them to node2, submit them through
# node1, and make sure both node0 and node2 pick them up properly:
node0utxos = self.nodes[0].listunspent(1)
assert_equal(len(node0utxos), 2)
# create both transactions
txns_to_send = []
for utxo in node0utxos:
inputs = []
outputs = {}
inputs.append({ "txid" : utxo["txid"], "vout" : utxo["vout"]})
outputs[self.nodes[2].getnewaddress("from1")] = utxo["amount"]
raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
txns_to_send.append(self.nodes[0].signrawtransaction(raw_tx))
# Have node 1 (miner) send the transactions
self.nodes[1].sendrawtransaction(txns_to_send[0]["hex"], True)
self.nodes[1].sendrawtransaction(txns_to_send[1]["hex"], True)
# Have node1 mine a block to confirm transactions:
self.nodes[1].setgenerate(True, 1)
self.sync_all()
assert_equal(self.nodes[0].getbalance(), 0)
assert_greater_than(self.nodes[2].getbalance(), 60250)
assert_greater_than(self.nodes[2].getbalance("from1"), 59549)
if __name__ == '__main__':
WalletTest ().main ()
|
[
"ipedrero84@gmail.com"
] |
ipedrero84@gmail.com
|
0f9760cc2ff333b4463fe208a835ac180db48dce
|
537b9efd439a842216a7979eb2c29bd02083732a
|
/python/marks.py
|
5688ff1fc98b574847a616fdbd6434f6a5079122
|
[] |
no_license
|
grand-27-master/Data-Science-course
|
c1e92b8e1b820d72a9c7e2d3694ec100a8177ac7
|
90006685cff7988593906422773cdb0331b94083
|
refs/heads/master
| 2023-07-21T21:25:48.687018
| 2021-09-03T10:09:16
| 2021-09-03T10:09:16
| 394,889,532
| 4
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 262
|
py
|
p=int(input("enter marks of physics="))
m=int(input("enter marks of maths="))
c=int(input("enter marks of chemistry="))
avg_marks=(p+m+c)/3
print("avg marks=",avg_marks)
if avg_marks>98:
print("you have been awarded the scholarship")
else:print("sorry")
|
[
"gajjarv2001@gmail.com"
] |
gajjarv2001@gmail.com
|
702e8bbceb76f147529dc19c0d81bd03baf380e0
|
8415845ada32baa8b047f59d959b60651be4b113
|
/amt/AMTscript.py
|
7793fc8387a99992d7609859c422240d575aa770
|
[
"MIT"
] |
permissive
|
macilath/CrowdMix
|
aa21cb7ac6a22f15b1ef46f594ed91835b60fc99
|
65589fabe27c1eed0f09832f3d9ff2b40eb97b42
|
refs/heads/master
| 2016-09-06T16:27:35.554171
| 2014-03-31T01:43:18
| 2014-03-31T01:43:18
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,706
|
py
|
# This is the main AMT script that should be executed and will do the following:
# * Create a HIT
# * Wait for the HIT to become reviewable
# * Process assignments once the HIT is reviewable
# * Check whether their input code is one that we gave them.
# * If yes, pay them, if not, reject them.
# NOTE: Should this script close before all assignments are reviewed, please run 'AMTpay.py'
# NOTE: Fill in your AWS keys in 'ACCESS_KEY' and 'SECRET_KEY'
from boto.mturk.connection import MTurkConnection, HIT
from boto.mturk.question import SimpleField,QuestionContent,Question,QuestionForm,Overview,AnswerSpecification,SelectionAnswer,FormattedContent,FreeTextAnswer
import time
ACCESS_ID = ''
SECRET_KEY = ''
HOST = 'mechanicalturk.amazonaws.com'
# this mtc is used for creating the HIT
mtc = MTurkConnection(aws_access_key_id=ACCESS_ID,
aws_secret_access_key=SECRET_KEY,
host=HOST)
title = 'CrowdMix: Remix a Classical Composition'
description = ('Help remix a classical music composition '
'by choosing the next sound bits! Simple, easy, and fast!')
keywords = 'music, create, easy, fast'
max_assignments = 50
# acceptable codes that will ge the turker paid
payCodes = ['CG6H5', 'X38T1', 'S1W59', 'D2K9K',
'DCURP', 'KJHCY', 'KSSIZ', 'YYLMB',
'47NQK', 'WILIM']
#-------------- WAIT FUNCTION ----------------------------
# wait timer function since time.sleep() was giving issues
def wait(time_lapse):
time_start = time.time()
time_end = (time_start + time_lapse)
while time_end > time.time():
pass
# this mtc is used for data retrieval
mtc2 = MTurkConnection(aws_access_key_id=ACCESS_ID,
aws_secret_access_key=SECRET_KEY,
host=HOST)
#--------------- GET ALL REVIEWABLE HITS FUNCTION ----------
def get_all_reviewable_hits(mtc2):
page_size = 50
hits = mtc2.get_reviewable_hits(page_size=page_size)
print "Total results to fetch %s " % hits.TotalNumResults
print "Request hits page %i" % 1
total_pages = float(hits.TotalNumResults)/page_size
int_total= int(total_pages)
if(total_pages-int_total>0):
total_pages = int_total+1
else:
total_pages = int_total
pn = 1
while pn < total_pages:
pn = pn + 1
print "Request hits page %i" % pn
temp_hits = mtc2.get_reviewable_hits(page_size=page_size,page_number=pn)
hits.extend(temp_hits)
return hits
#--------------- BUILD OVERVIEW -------------------
overview = Overview()
overview.append_field('Title', 'CrowdMix: Remix a Classical Composition')
overview.append(FormattedContent('<a target="_blank"'
' href="http://allekant.com/cgi-bin/welcome.py">'
' CrowdMix Homepage</a>'))
overview.append(FormattedContent('Please visit the link above in order to complete this HIT.\n'
'When completed, you will be given a code to input below.'))
overview.append(FormattedContent('On the webpage linked above, you will be given five random '
'sound bits to listen to. Then you will choose two clips, using '
'the radio buttons, that will be combined and added with other '
'clips to make a new song'))
overview.append(FormattedContent('When you have selected two clips using the radio buttons, '
'click the Load My New Choice button to confirm your selection.'))
overview.append(FormattedContent('When you are satisfied with your choices and you have '
'already clicked the Load My New Choice button, click the '
'Submit My Decision and Get My Code! button.'))
overview.append(FormattedContent('After clicking the Submit button, you will be given a code '
'to input in to the box below. Once you have put the code in '
'box, submit the hit and wait for approval.'))
#--------------- BUILD QUESTION 1 -------------------
qc1 = QuestionContent()
qc1.append_field('Title','Enter your code in the box below.')
fta1 = FreeTextAnswer();
q1 = Question(identifier='code',
content=qc1,
answer_spec=AnswerSpecification(fta1),
is_required=True)
#--------------- BUILD THE QUESTION FORM -------------------
question_form = QuestionForm()
question_form.append(overview)
question_form.append(q1)
#--------------- CREATE THE HIT -------------------
mtc.create_hit(questions=question_form,
max_assignments = max_assignments,
title = title,
description = description,
keywords = keywords,
duration = 60*5,
reward = 0.25)
#--------------- WAIT FOR ASSIGNMENTS TO COMPLETE ----------
#-------------------- AND REVIEW ASSIGNMENTS ---------------
hits = get_all_reviewable_hits(mtc2)
hitReviewed = False;
# this busy loops until we have processed the one reviewable HIT
while True:
if not hits:
print "Waiting for reviewable hits..."
hits = get_all_reviewable_hits(mtc2)
else:
for hit in hits: # for every hit that's reviewable, review turker answers
assignments = mtc2.get_assignments(hit.HITId)
for assignment in assignments: # get individual turker assignments
print "Answers of the worker %s" % assignment.WorkerId
for question_form_answer in assignment.answers[0]:
for key in question_form_answer.fields: # get individual turker answers to assignments
print "%s" % (key)
if key.upper() in payCodes: # if they used the right code, approve/pay them
print "%s: Accepted and paid!" % assignment.WorkerId
mtc2.approve_assignment(assignment.AssignmentId)
else: # if they used the wrong code, reject them
print "%s: Rejected and not paid!" % assignment.WorkerId
mtc2.reject_assignment(assignment.AssignmentId, feedback = 'Invalid code.')
print "--------------------"
# the hit stays enabled in case a turker is rejected, however they should have been approved
# this should hopefully never happen
##mtc2.disable_hit(hit.HITId)
hitReviewed = True;
if hitReviewed: # since I know that I only submit one HIT, I quit after one HIT is reviewed
break;
else: # wait 30 seconds so that Amazon does not get mad
wait(30)
print "All assignments have been reviewed!\n"
print "Program has been terminated!"
|
[
"clayton.crawford@tamu.edu"
] |
clayton.crawford@tamu.edu
|
e2fd6628e5ba3d7cd17f41118334deb2556a3926
|
ae13b9d10b738f1365977741c45e9e6959502ba5
|
/employerapp/views.py
|
5605c6efdf879b996b50f22b6a057a840d3f8cc2
|
[] |
no_license
|
AissatouSECK/Projet-Django
|
960d062907ff06c2b809f4c68e4f7697c230f826
|
aca9346ce292f26b908e537c001c1f3f18136574
|
refs/heads/master
| 2023-08-14T11:58:24.842259
| 2021-09-16T21:51:07
| 2021-09-16T21:51:07
| 407,295,517
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,301
|
py
|
from django.shortcuts import render, redirect
from .models import Employer, Departement
from .forms import Form_employer
# To create employee
def emp(request):
if request.method == "POST":
form = Form_employer(request.POST)
if form.is_valid():
try:
form.save()
return redirect("/showemp")
except:
pass
else:
form = Form_employer()
return render(request, "index.html", {'form':form})
# To show employee details
def showemp(request):
employees = Employer.objects.all()
return render(request, "main.html", {'employees':employees})
# To delete employee details
def deleteEmp(request, pk):
employee = Employer.objects.get(pk=pk)
employee.delete()
return redirect("/showemp")
# To edit employee details
def editemp(request, pk):
employee = Employer.objects.get(pk=pk)
return render(request, "edit.html", {'employee':employee})
# To update employee details
def updateEmp(request, pk):
employee = Employer.objects.get(pk=pk)
form = Form_employer(request.POST, instance= employee)
if form.is_valid():
form.save()
return redirect("/showemp")
return render(request, "main.html", {'employee': employee})
|
[
"sstseck@gmail.com"
] |
sstseck@gmail.com
|
20d8f4c314a6b737ec3f9b057e9e0b259d3413db
|
d4eeb6f634c72e924b0a3780e7df7f2150565780
|
/pyfi1.36.py
|
1844be21aa30652b409d6cc08a32f72c7644f043
|
[] |
no_license
|
anupama14609/financepy
|
053e4086028150e1ace74d26182658ec5f67600f
|
1d2325d1cba898ce232395dd36808dee4dc980ca
|
refs/heads/master
| 2023-07-21T04:16:53.980529
| 2021-08-29T02:08:37
| 2021-08-29T02:08:37
| 399,757,610
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 525
|
py
|
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
def visualize_data():
style.use('ggplot')
df = pd.read_csv('sp500_joined_closes.csv')
df_corr = df.corr()
data = df_corr.values
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
column_labels = df_corr.columns
row_labels = df_corr.index
ax.set_xticklabels(column_labels)
ax.set_yticklabels(row_labels)
plt.xticks(rotation=90)
plt.plot()
plt.show()
visualize_data()
|
[
"anupamarao14609@gmail.com"
] |
anupamarao14609@gmail.com
|
1b59986d14faeb17881c11ce0e4490deee33f0a4
|
08330ea5c2495d5dc958d4cf11b68c5650396e3e
|
/main.py
|
96bc672b9314ca63c2ef52b701f996ef5869ae68
|
[] |
no_license
|
marco-willi/tf-estimator-cnn
|
d74be01143b6a724534737807ebb78db518c6b87
|
df3a5651b0f8018d3b9bc4b424f8090fb74ca26f
|
refs/heads/master
| 2020-03-22T03:00:54.073040
| 2018-07-17T08:52:16
| 2018-07-17T08:52:16
| 139,408,220
| 4
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,526
|
py
|
""" Estimator API for CNNs using popular implementations """
import os
import random
import tensorflow as tf
import numpy as np
from estimator import model_fn
#################################
# Parameters
#################################
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string(
'root_path',
'',
"Images root path - must contain directories with class specific images")
flags.DEFINE_string(
'model_save_path', '',
"Path in which to save graphs, models and summaries")
flags.DEFINE_string(
'model', 'small_cnn',
"Model name")
flags.DEFINE_integer(
'max_epoch', 10,
"Max epoch to train model")
flags.DEFINE_integer(
'batch_size', 64,
"Batch size for model training")
flags.DEFINE_integer(
'image_size', 50,
"Image size (width/height) for model input")
flags.DEFINE_integer(
'num_gpus', 0,
"Number of GPUs for model training")
flags.DEFINE_integer(
'num_cpus', 2,
"Numer of CPUs (for pre-processing)")
flags.DEFINE_float('train_fraction', 0.8, "training set fraction")
flags.DEFINE_bool(
'color_augmentation', True,
"Whether to randomly adjust colors during model training")
flags.DEFINE_float(
'weight_decay', 0,
'Applies weight decay if supported by specific model')
flags.DEFINE_list(
'image_means', [0, 0, 0],
'image means (leave at default for automatic mode)')
flags.DEFINE_list(
'image_stdevs', [1, 1, 1],
'image stdevs (leave at default for automatic mode)')
# #DEBUG
# FLAGS.root_path = '/host/data_hdd/ctc/ss/images/'
# FLAGS.model_save_path = '/host/data_hdd/ctc/ss/runs/species/resnet18_test/'
# FLAGS.model = 'ResNet18'
# FLAGS.num_gpus = 1
# FLAGS.num_cpus = 4
# FLAGS.weight_decay = 0.0001
#################################
# Define Dataset
#################################
# get all class directories
classes = os.listdir(FLAGS.root_path)
n_classes = len(classes)
# find all images
image_paths = dict()
for cl in classes:
image_names = os.listdir(os.path.join(FLAGS.root_path, cl))
image_paths[cl] = [os.path.join(FLAGS.root_path, cl, x)
for x in image_names]
# Map classes to numerics
classes_to_num_map = {k: i for i, k in enumerate(classes)}
num_to_class_map = {v: k for k, v in classes_to_num_map.items()}
# Create lists of image paths and labels
label_list = list()
image_path_list = list()
for k, v in image_paths.items():
label_list += [classes_to_num_map[k] for i in range(0, len(v))]
image_path_list += v
# randomly shuffle input to ensure good mixing when model training
indices = [i for i in range(0, len(label_list))]
random.seed(123)
random.shuffle(indices)
image_path_list = [image_path_list[i] for i in indices]
label_list = [label_list[i] for i in indices]
n_records = len(label_list)
# Create training and test set
train_fraction = FLAGS.train_fraction
n_train = int(round(n_records * train_fraction, 0))
n_test = n_records - n_train
train_files = image_path_list[0: n_train]
train_labels = label_list[0: n_train]
test_files = image_path_list[n_train:]
test_labels = label_list[n_train:]
#################################
# Dataset Iterator
#################################
# Standardize a single image
def _standardize_images(image, means, stdevs):
""" Standardize images """
with tf.name_scope("image_standardization"):
means = tf.expand_dims(tf.expand_dims(means, 0), 0)
means = tf.cast(means, tf.float32)
stdevs = tf.expand_dims(tf.expand_dims(stdevs, 0), 0)
stdevs = tf.cast(stdevs, tf.float32)
image = image - means
image = tf.divide(image, stdevs)
return image
# data augmentation
def _image_augmentation(image):
""" Apply some random image augmentation """
with tf.name_scope("image_augmentation"):
image = tf.image.random_flip_left_right(image)
image = tf.image.random_brightness(image, max_delta=0.2)
image = tf.image.random_contrast(image, lower=0.9, upper=1)
image = tf.image.random_hue(image, max_delta=0.02)
image = tf.image.random_saturation(image, lower=0.8, upper=1.2)
return image
# parse a single image
def _parse_function(filename, label, augmentation=True):
image_string = tf.read_file(filename)
image = tf.image.decode_jpeg(image_string, channels=3)
# randomly crop image from plus 10% width/height
if augmentation:
image = tf.image.resize_images(
image, [int(FLAGS.image_size*1.1), int(FLAGS.image_size*1.1)])
image = tf.random_crop(image, [FLAGS.image_size, FLAGS.image_size, 3])
else:
image = tf.image.resize_images(
image, [FLAGS.image_size, FLAGS.image_size])
image = tf.divide(image, 255.0)
if augmentation:
image = _image_augmentation(image)
image = _standardize_images(image, FLAGS.image_means,
FLAGS.image_stdevs)
return {'images': image, 'labels': label}
def dataset_iterator(filenames, labels, is_train, augmentation=True):
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
if is_train:
dataset = dataset.shuffle(buffer_size=300)
dataset = dataset.apply(
tf.contrib.data.map_and_batch(
lambda x, y: _parse_function(x, y, augmentation),
batch_size=FLAGS.batch_size,
num_parallel_batches=1,
drop_remainder=False))
if is_train:
dataset = dataset.repeat(1)
else:
dataset = dataset.repeat(1)
dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
return dataset
# Create callable iterator functions
def train_iterator():
return dataset_iterator(train_files, train_labels, True,
FLAGS.color_augmentation)
def test_iterator():
return dataset_iterator(test_files, test_labels, False, False)
def original_iterator():
return dataset_iterator(train_files, train_labels, False, False)
#################################
# Image Statistics for Preprocessing
#################################
# Calculate image means and stdevs of training images for RGB channels
# for image standardization
if (FLAGS.image_means == [0, 0, 0]) and (FLAGS.image_stdevs == [1, 1, 1]):
with tf.Session() as sess:
original_batch_size = FLAGS.batch_size
FLAGS.batch_size = np.min([500, n_train])
dataset = original_iterator()
iterator = dataset.make_one_shot_iterator()
feature_dict = iterator.get_next()
features = sess.run(feature_dict)
image_batch = features['images']
means_batch = np.mean(image_batch, axis=(0, 1, 2))
stdev_batch = np.std(image_batch, axis=(0, 1, 2))
FLAGS.batch_size = original_batch_size
image_means = [round(float(x), 6) for x in list(means_batch)]
image_stdevs = [round(float(x), 4) for x in list(stdev_batch)]
FLAGS.image_means = image_means
FLAGS.image_stdevs = image_stdevs
#################################
# Configure Estimator
#################################
n_batches_per_epoch_train = int(round(n_train / FLAGS.batch_size))
# Configurations
config_sess = tf.ConfigProto(allow_soft_placement=True)
config_sess.gpu_options.per_process_gpu_memory_fraction = 0.8
config_sess.gpu_options.allow_growth = True
def distribution_gpus(num_gpus):
if num_gpus == 0:
return tf.contrib.distribute.OneDeviceStrategy(device='/cpu:0')
elif num_gpus == 1:
return tf.contrib.distribute.OneDeviceStrategy(device='/gpu:0')
elif num_gpus > 1:
return tf.contrib.distribute.MirroredStrategy(num_gpus=num_gpus)
else:
return None
# Config estimator
est_config = tf.estimator.RunConfig()
est_config = est_config.replace(
keep_checkpoint_max=3,
save_checkpoints_steps=n_batches_per_epoch_train,
session_config=config_sess,
save_checkpoints_secs=None,
save_summary_steps=n_batches_per_epoch_train,
model_dir=FLAGS.model_save_path,
train_distribute=distribution_gpus(FLAGS.num_gpus))
# Model Parameters
params = dict()
params['label'] = ['labels']
params['n_classes'] = [n_classes]
params['weight_decay'] = FLAGS.weight_decay
params['momentum'] = 0.9
params['model'] = FLAGS.model
params['reuse'] = False
params['class_mapping_clean'] = {'labels': num_to_class_map}
# create estimator
estimator = tf.estimator.Estimator(model_fn=model_fn,
params=params,
model_dir=FLAGS.model_save_path,
config=est_config
)
#################################
# Train and Evaluate
#################################
def main(args):
""" Main - called by command line """
# Print flags
for f in flags.FLAGS:
print("Flag %s - %s" % (f, FLAGS[f].value))
eval_loss = list()
for epoch in range(1, FLAGS.max_epoch + 1):
print("Starting with epoch %s" % epoch)
# Train for one epoch
estimator.train(input_fn=train_iterator)
# Evaluate
eval_res = estimator.evaluate(input_fn=test_iterator)
print("Evaluation results:")
for k, v in eval_res.items():
print(" Res for %s - %s" % (k, v))
eval_loss.append(eval_res['loss'])
# Predict
preds = estimator.predict(input_fn=test_iterator)
for i, pred in enumerate(preds):
print(pred)
if i > 10:
break
if __name__ == '__main__':
tf.app.run()
|
[
"will5448@umn.edu"
] |
will5448@umn.edu
|
bf6ff385d4a25e401c65c0c285afab951c5bc4de
|
6222e729592de24344e30a9e2535e2737d587dfe
|
/2. Market Data/beta_hedging.py
|
ee229644320206fafa6d9a5c77108e1cbdf70bc0
|
[
"Apache-2.0"
] |
permissive
|
Nhiemth1985/Pynaissance
|
a145e118a0ef2a8894247c99978c29701bc34077
|
7034798a5f0b92c6b8fdfa5948d2ad78a77a1a05
|
refs/heads/master
| 2023-08-25T21:07:16.865197
| 2021-10-19T15:29:44
| 2021-10-19T15:29:44
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 354
|
py
|
# Basic Setup: Import Libraries
import numpy as np
from statsmodels import regression
import statsmodels.api as sm
import matplotlib.pyplot as plt
import math
start = '2018-01-01'
end = '2019-01-01'
asset = get_pricing('AMD', fields='price', start_date=start, end_date=end)
benchmark = get_pricing('SPY', fields='price', start_date=start, end_date=end)
|
[
"noreply@github.com"
] |
noreply@github.com
|
2099ab416d5ffcd03de217a98cb5cac3527bc5c4
|
85f2798326d6bb4ccabd3b98ac2bdb545911b5f6
|
/tdd-demo/todolist-app.py
|
37fcd91486c66ceddbfb1577a486a6c109d1ef2c
|
[] |
no_license
|
nickfuentes/Python-Practice
|
6600aea672fd2bd9ce140ccb8aa941b3cc62d93f
|
17bb171ea5c92fdc471af41e3cc74b8772a462bd
|
refs/heads/master
| 2020-06-10T22:11:25.837714
| 2019-07-07T19:55:00
| 2019-07-07T19:55:00
| 193,768,512
| 0
| 1
| null | 2019-07-03T14:04:22
| 2019-06-25T19:11:52
|
Python
|
UTF-8
|
Python
| false
| false
| 100
|
py
|
# Unit Tests
# Are Atomic and independent
# Should not be Dependent
# Never have Side effect
|
[
"nickfuentes24@gmail.com"
] |
nickfuentes24@gmail.com
|
b7dff73104d8dea5fd1397137f879ea0a52b8404
|
b6de31e6ca07500daef559462533bd1a3585e0b9
|
/img_saving_script.py
|
52bd8c293ee5be6c8491a32e649949403377b396
|
[] |
no_license
|
NickNagy/UWIRLMachineLearningResearch
|
30deb91a20efe75e0345799fc03ad02c847c4458
|
a9fd75d1ed14b6bf79a42b264a6238e698d56c80
|
refs/heads/master
| 2020-05-05T12:36:16.394862
| 2019-04-07T23:41:17
| 2019-04-07T23:41:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,275
|
py
|
"""
Quick Python script for saving .png files from the crop_imag.mat images.
"""
import numpy as np
from scipy import io
from scipy.misc import imsave
import os
from PIL import Image
#from matplotlib import pyplot as plt
directory = #
def save_image(folder_name, extension=".jpg"):
try:
img = np.array((io.loadmat('crop_image.mat', appendmat=False))['dxImage']['img'][0][0])
img_compressed = (img*255.0/np.max(img)).astype('uint8')
rgb_img = np.asarray(Image.fromarray(img_compressed).convert('RGB'))
imsave(folder_name + extension, rgb_img)
except FileNotFoundError:
try:
#print("Running...")
img = np.array((io.loadmat('crop_image_fracturemask.mat', appendmat=False))['dxImage']['img'][0][0])
img_compressed = (img * 255.0 / np.max(img)).astype('uint8')
rgb_img = np.asarray(Image.fromarray(img_compressed).convert('RGB'))
imsave(folder_name + extension, rgb_img)
except FileNotFoundError:
print("Could not locate mat file in folder " + folder_name)
for subdir, dirs, files in os.walk(directory):
#print(dirs)
for folder in dirs:
os.chdir(directory + "\\" + folder)
#print(folder)
save_image(folder, ".png")
|
[
"noreply@github.com"
] |
noreply@github.com
|
4cfda7eb2e215caab64ce291445b94773a94655f
|
17c6289537851347c691c46570efe98a47f57169
|
/scripts/python_code-set/main/main_analysis_fitparam.py
|
dd98cff0303b0858007d6db06873667f9b293e1a
|
[] |
no_license
|
miiya369/analysisHAL_miya
|
67516fb7192ce7c3d0a0c5bace3f3e1b4c850d26
|
76a6d80bb4a7f24c0deeca770f60efd440b72f3c
|
refs/heads/master
| 2020-03-09T09:17:51.926630
| 2018-10-04T10:44:45
| 2018-10-04T10:44:45
| 99,018,105
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,786
|
py
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
from __future__ import print_function
import sys, os
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../lib")
import numpy as np
import time
### ================== Global Parameters Init. ================= ###
ifname = None
r_min = 0.001
r_del = 0.01
r_max = 2.5
### =========================== Main =========================== ###
def main():
from common.misc import frange
from common.statistics import make_mean_err
from fitting.io_params import input_params
from fitting.fitfunc_type import set_fitfunc_from_fname
func_name, params = input_params(ifname)
if (func_name is params is None):
return -1
Nconf = len(params[:,0])
Nparam = len(params[0,:])
fit_func = set_fitfunc_from_fname(func_name)
for r in frange(r_min, r_max, r_del):
print("%lf %1.16e %1.16e" %
(r, *make_mean_err(np.array([fit_func(r,*params[iconf,:]) for iconf in range(Nconf)]))))
return 0
### ============================================================ ###
###### Functions for arguments
def usage(ARGV0):
print("usage : python %s [ifile] {options}\n" % os.path.basename(ARGV0))
print("options:")
print(" --r_min [Minimum range (fm)] Default =", r_min)
print(" --r_del [Range division (fm)] Default =", r_del)
print(" --r_max [Maximum range (fm)] Default =", r_max)
exit(1)
def check_args():
print("# === Check Arguments ===")
print("# ifile =", ifname)
print("# r min =", r_min)
print("# r del =", r_del)
print("# r max =", r_max)
print("# =======================")
def set_args(ARGC, ARGV):
global ifname, r_min, r_del, r_max
if (ARGV[1][0] == '-'):
usage(ARGV[0])
ifname = ARGV[1].strip()
for i in range(2, ARGC):
if (len(ARGV[i]) == 1):
continue
if (ARGV[i][0] == '-' and ARGV[i][1] == '-'):
if (ARGV[i] == '--r_min'):
r_min = float(ARGV[i+1])
elif (ARGV[i] == '--r_del'):
r_del = float(ARGV[i+1])
elif (ARGV[i] == '--r_max'):
r_max = float(ARGV[i+1])
else:
print("\nERROR: Invalid option '%s'\n" % ARGV[i])
usage(ARGV[0])
check_args()
### ============================================================ ###
### ============================================================ ###
if __name__ == "__main__":
argv = sys.argv; argc = len(argv)
if (argc == 1):
usage(argv[0])
set_args(argc, argv)
t_start = time.time()
if (main() != 0):
exit("ERROR EXIT.")
print("#\n# Elapsed time [s] = %d" % (time.time() - t_start))
|
[
"miiya369@gmail.com"
] |
miiya369@gmail.com
|
0f3cc4a2087d8125cc761a1644c51c12e6c814d4
|
d838bed08a00114c92b73982a74d96c15166a49e
|
/docs/data/learn/Bioinformatics/output/ch6_code/src/Stepik.6.9.CodeChallenge.2BreakDistance.py
|
a9ce5254b6d1201e2c2202e7b13a59eeda40ae42
|
[] |
no_license
|
offbynull/offbynull.github.io
|
4911f53d77f6c59e7a453ee271b1e04e613862bc
|
754a85f43159738b89dd2bde1ad6ba0d75f34b98
|
refs/heads/master
| 2023-07-04T00:39:50.013571
| 2023-06-17T20:27:05
| 2023-06-17T23:27:00
| 308,482,936
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 575
|
py
|
from BreakpointGraph import BreakpointGraph
with open('/home/user/Downloads/dataset_240324_4.txt', mode='r', encoding='utf-8') as f:
data = f.read()
lines = data.split('\n')
p_list1 = [[int(x) for x in s.split(' ')] for s in lines[0][1:-1].split(')(')]
p_list2 = [[int(x) for x in s.split(' ')] for s in lines[1][1:-1].split(')(')]
bg = BreakpointGraph(p_list1, p_list2)
cycles = bg.get_red_blue_cycles()
block_count = len(bg.node_to_blue_edges) // 2 # number of synteny blocks is number of nodes / 2
cycle_count = len(cycles)
print(f'{block_count - cycle_count}')
|
[
"offbynull@gmail.com"
] |
offbynull@gmail.com
|
3f3f54c554cdbefbda629cad5a49473819e2debd
|
d791176b586e993fac51ce2a6b241561badfc009
|
/ServerAPI/ServerAPI.py
|
0fb54ffd6ae7613d12a9750ce1b6e320dfd1be3c
|
[] |
no_license
|
sochkasov/smart8036.v3
|
3786bca35eb93d8f36985d6720b4e0d1c91a6afc
|
6a113e5e83ade8f8c8ca25b6d060d83322129216
|
refs/heads/main
| 2023-03-07T11:51:14.906152
| 2021-02-22T15:32:16
| 2021-02-22T15:32:16
| 341,245,744
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,363
|
py
|
# coding=utf8
import os
from flask import Flask, jsonify, send_file
from flask import request
from flask_jsonpify import jsonify # для JSONP
from flask.json import JSONEncoder
import ujson
from api_utils import ResponsiveFlask
from HeatController.Controller8036 import *
import config
import datetime
import calendar
class CustomJSONEncoder(JSONEncoder):
'''
Преопределение метода для изменения преобразования даты-времени в нужный формат
'''
def default(self, obj):
if isinstance(obj, datetime.datetime):
return str(obj)
return JSONEncoder.default(self, obj)
class ServerAPI(object):
def __init__(self):
self.DEBUG = False
print "ServerAPI server\n"
self.dbconnect = db.Database()
self.ctl8036 = Controller8036()
#self.app = ResponsiveFlask(__name__)
self.app = Flask(__name__)
self.app.json_encoder = CustomJSONEncoder
self.app.config['JSONIFY_PRETTYPRINT_REGULAR'] = False
return None
def json_output(self, *args, **kwargs):
"""
Создание JSON строки из data. Производится контроль ошибок по флагу error
Если есть ошибка, то будет сформировано сообщение из error_message
:param data:
:param error:
:param error_message:
:return:
"""
if not kwargs['error']:
# return jsonify(kwargs['result'])
return jsonify({"result": kwargs['result'], "error": False, "error_message": kwargs['error_message']}), 200
else:
return jsonify({"error": True, "error_message": kwargs['error_message']}), 404
def start(self):
@self.app.route('/')
def index():
return jsonify(api_version=1,
user='user1',
datatime=str(datetime.datetime.now().strftime('%H:%M:%S %d-%m-%Y')),
date=str(datetime.datetime.now().strftime('%d-%m-%Y')),
time=str(datetime.datetime.now().strftime('%H:%M:%S'))
)
@self.app.route('/help')
def get_help():
result = '''<h2>API methods</h2>
<ul>
<li>/get/temp/ - get temperature online on JSON format</li>
<li>/get/tempraw/ - get temperature online on raw format</li>
</ul>'''
return {'message': result}
@self.app.route('/get/temp/')
def get_temp():
return self.json_output(**self.ctl8036.GetSensorsTemperature())
@self.app.route('/get/temp/history/<int:sensor_link_id>')
def get_temp_history(sensor_link_id):
return self.json_output(**self.ctl8036.get_sensor_hostory(sensor_link_id))
@self.app.route('/get/tempraw/')
def get_tempraw():
return self.json_output(**self.ctl8036.GetTemperatureCurrent())
@self.app.route('/set/timesync/')
def set_temesync():
return self.json_output(**self.ctl8036.timedate_sync())
@self.app.route('/get/program_raw/')
def get_programm_raw():
return self.json_output(**self.ctl8036.get_program_raw())
@self.app.route('/get/program_json/')
def get_programm_json():
return self.json_output(**self.ctl8036.get_program_json())
@self.app.route('/get/actuator_status/')
def get_actuators_status_json():
return self.json_output(**self.ctl8036.get_actuators_status_json())
@self.app.route('/get/test/')
def get_test():
return jsonify({'now': datetime.datetime.now()})
@self.app.route('/favicon.ico')
def favicon():
# mimetype='image/vnd.microsoft.icon'
#return "", 200, {'Content-Type': 'image/vnd.microsoft.icon'}
#data = ""
#data = b'iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAMAAAAoLQ9TAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAIFQTFRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA////basLdwAAACp0Uk5TAAgEHQMYbYWESXFmcywiYnuGamt0QyafblMHb1kLCmg8AjZ2I2EQciFgf8bHLwAAAAFiS0dEKlO+1J4AAAAJcEhZcwAAAEgAAABIAEbJaz4AAACLSURBVBgZBcELQoJQEADAkeengJYiIrXC76Lc/4LNAAAAWK0AqEpZb7bbDYCye3mtm6Z9A4ju/aPv+8/haw2M3/v6cDwe6p/fP5hO++F84XIe+mbCdL2NwHi7TnDvALo7iDRnZs4yQKR4PJ+PkAEixcISMkCkSDJkgLJb2iTbZVdAVSJm5ohSAQDgH8c2Ci4yRvReAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDE2LTA5LTE2VDA4OjI4OjI3KzAwOjAwlMYpngAAACV0RVh0ZGF0ZTptb2RpZnkAMjAxNi0wOS0xNlQwODoyODoyNyswMDowMOWbkSIAAABGdEVYdHNvZnR3YXJlAEltYWdlTWFnaWNrIDYuNy44LTkgMjAxNC0wNS0xMiBRMTYgaHR0cDovL3d3dy5pbWFnZW1hZ2ljay5vcmfchu0AAAAAGHRFWHRUaHVtYjo6RG9jdW1lbnQ6OlBhZ2VzADGn/7svAAAAGHRFWHRUaHVtYjo6SW1hZ2U6OmhlaWdodAAxOTIPAHKFAAAAF3RFWHRUaHVtYjo6SW1hZ2U6OldpZHRoADE5MtOsIQgAAAAZdEVYdFRodW1iOjpNaW1ldHlwZQBpbWFnZS9wbmc/slZOAAAAF3RFWHRUaHVtYjo6TVRpbWUAMTQ3NDAxNDUwN/jek0AAAAAPdEVYdFRodW1iOjpTaXplADBCQpSiPuwAAABWdEVYdFRodW1iOjpVUkkAZmlsZTovLy9tbnRsb2cvZmF2aWNvbnMvMjAxNi0wOS0xNi9jY2EzODcyMTQ3Mjc5YTVmYTVmMDVlNDJiYzA4ZDI0NC5pY28ucG5nM8/R6gAAAABJRU5ErkJggg=='
#return send_file(data, mimetype='image/vnd.microsoft.icon',)
#return Response(stream_with_context(data), mimetype='image/vnd.microsoft.icon')
#return send_from_directory(os.path.join(self.app.root_path, 'static'),'htdocs/favicon/home-outline.ico/favicon.ico',mimetype='image/vnd.microsoft.icon')
return send_file('/root/8036/htdocs/favicon/home-outline.ico/favicon.ico', mimetype='image/vnd.microsoft.icon', )
@self.app.errorhandler(404)
def page_not_found(error):
return {'error': 'This API method does not exist'}, 404
# Running web server
#if __name__ == '__main__':
if __name__ == 'ServerAPI.ServerAPI':
print "API server listen on port 5000 ..."
# global DEBUG
# if self.DEBUG:
# self.app.debug = True
#self.app.run(host=config.http_listen_ip, port=config.http_listen_port, debug=config.debug_enable, threaded=False)
self.app.run(host=config.http_listen_ip, port=config.http_listen_port, debug=False, threaded=False)
def stop(self):
func = request.environ.get('werkzeug.server.shutdown')
if func is None:
raise RuntimeError('Not running with the Werkzeug Server')
func()
|
[
"sochkasov@gmail.com"
] |
sochkasov@gmail.com
|
8d4459e01333fe863b683d012fbcd3cf3b266c9e
|
ade7fd8afc93c5198f218a3f6736cdd198801aea
|
/methods.py
|
1d68fbdfb4d56d62007012886977b0e4c682db63
|
[] |
no_license
|
ksdivesh/python-bone
|
74a59da49d2cd97a56d90525b9e24b87bcd44f32
|
98af99c5ad83a776f88a016e8e553712910e9eee
|
refs/heads/main
| 2023-03-07T18:54:49.419974
| 2021-02-19T07:18:50
| 2021-02-19T07:18:50
| 339,679,959
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 746
|
py
|
# def func1():
# print("Function 1 running")
# def func2():
# pass
# def func3():
# print('this is function 3')
# return "A"
# val = func3()
# print(val)
# func1()
# print(func3())
'''
Python: Functional Prograaming, Object Oriented Programming
Java : Object Oriented only
class MyClass{
func1(){
.....
}
func2(){
....
}
}
MyClass classA = new MyClass()
classA.func1();
'''
def mul(a, b):
return str(a*b)
def sum(a, b):
return a + b
a = 10
b = 20
val = int(mul(a, b)) + sum(a, b)
# def sum1(a, b):
# print(a+b)
# val = sum(20, 20) + sum(10, 10)
# print(val)
# print(sum(10, 20))
# val = sum(10, 20)
# print(val)
|
[
"69233185+devopsit51@users.noreply.github.com"
] |
69233185+devopsit51@users.noreply.github.com
|
74413c9cb86a61bf2d60e97492d5141b19cea5da
|
514ddee0e3aeaf148226d89b2294f5cc84abca27
|
/src/coecms/cli/um.py
|
d96e211b69026008377d00f527e053f060459c7a
|
[
"Apache-2.0"
] |
permissive
|
coecms/coecms-util
|
c60edab08ffa0f1c2af9188f671eea6db1801a64
|
a9ca18af3ea1a2ef06212acefc840fe0448661e9
|
refs/heads/master
| 2020-03-24T20:12:25.769470
| 2019-05-14T06:47:45
| 2019-05-14T06:47:45
| 142,965,222
| 2
| 2
|
Apache-2.0
| 2019-05-24T01:54:43
| 2018-07-31T05:12:21
|
Python
|
UTF-8
|
Python
| false
| false
| 3,512
|
py
|
#!/usr/bin/env python
#
# Copyright 2019 Scott Wales
#
# Author: Scott Wales <scott.wales@unimelb.edu.au>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .main import cli
from ..grid import UMGrid
from ..regrid import regrid, esmf_generate_weights
from ..um.create_ancillary import create_surface_ancillary
import click
import pandas
import mule
import iris
import xarray
from dask.diagnostics import ProgressBar
import dask.distributed
import matplotlib.pyplot as plt
@cli.group()
def um():
"""
Tools for working with the Unified Model
"""
pass
@um.group()
def ancil():
"""
Tools for working with ancil files
"""
pass
def validate_date(ctx, param, value):
"""
Ensures an argument is a valid date
"""
try:
return pandas.to_datetime(value, utc=True, dayfirst=True)
except ValueError:
raise click.BadParameter(f'unable to parse "{value}" as a date')
def validate_um_ancil(ctx, param, value):
"""
Ensures an argument is a UM file
"""
try:
return mule.AncilFile.from_file(value)
except:
raise click.BadParameter(f'"{value}" does not seem to be a UM ancil file')
@ancil.command()
@click.option('--start-date', callback=validate_date, required=True)
@click.option('--end-date', callback=validate_date, required=True)
@click.option('--target-mask',
type=click.Path(exists=True, dir_okay=False))
@click.option('--output', required=True,
type=click.Path(writable=True, dir_okay=False))
def era_sst(start_date, end_date, target_mask, output):
"""
Create ancil files from ERA reanalysis data
"""
um_grid = UMGrid.from_mask(target_mask)
file_start = start_date - pandas.offsets.MonthBegin()
file_end = end_date + pandas.offsets.MonthEnd()
file_a = pandas.date_range(file_start,file_end,freq='MS')
file_b = file_a + pandas.offsets.MonthEnd()
dates = [f'{a.strftime("%Y%m%d")}_{b.strftime("%Y%m%d")}'
for a,b in zip(file_a, file_b)]
# Read and slice the source data
tos = xarray.open_mfdataset(['/g/data1a/ub4/erai/netcdf/6hr/ocean/'
'oper_an_sfc/v01/tos/'
'tos_6hrs_ERAI_historical_an-sfc_'+d+'.nc'
for d in dates],
chunks={'time': 1,})
sic = xarray.open_mfdataset(['/g/data1a/ub4/erai/netcdf/6hr/seaIce/'
'oper_an_sfc/v01/sic/'
'sic_6hrs_ERAI_historical_an-sfc_'+d+'.nc'
for d in dates],
chunks={'time': 1,})
ds = xarray.Dataset({'tos': tos.tos, 'sic': sic.sic})
ds = ds.sel(time=slice(start_date, end_date))
weights = esmf_generate_weights(tos.tos.isel(time=0), um_grid, method='patch')
newds = regrid(ds, weights=weights)
print(newds)
ancil = create_surface_ancillary(newds, {'tos': 24, 'sic': 31})
ancil.to_file(output)
|
[
"noreply@github.com"
] |
noreply@github.com
|
35c792e078f9037cf38a3a3bd992d3b7bee00e0d
|
de17634e6b149d5828c1c78f7f5f5e1f6c17c4d0
|
/nnvm/amalgamation/amalgamation.py
|
310daa9d68e0e2cd33876364a3e4533f23cc45b5
|
[
"Apache-2.0",
"BSD-2-Clause",
"LicenseRef-scancode-unknown-license-reference",
"MIT"
] |
permissive
|
starimpact/mxnet_v1.0.0
|
e135cc9e4c2711314d03cf1281a72b755f53144e
|
fcd6f7398ef811c3f8b01e7c9c16fb25c8d202bd
|
refs/heads/bv1.0.0
| 2022-11-10T09:09:11.966942
| 2018-07-13T04:59:30
| 2018-07-13T04:59:30
| 120,399,107
| 8
| 4
|
Apache-2.0
| 2022-11-02T20:24:32
| 2018-02-06T03:54:35
|
C++
|
UTF-8
|
Python
| false
| false
| 2,628
|
py
|
import sys
import os.path, re, StringIO
blacklist = [
'Windows.h',
'mach/clock.h', 'mach/mach.h',
'malloc.h',
'glog/logging.h', 'io/azure_filesys.h', 'io/hdfs_filesys.h', 'io/s3_filesys.h',
'sys/stat.h', 'sys/types.h',
'omp.h', 'execinfo.h', 'packet/sse-inl.h'
]
def get_sources(def_file):
sources = []
files = []
visited = set()
mxnet_path = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir))
for line in open(def_file):
files = files + line.strip().split(' ')
for f in files:
f = f.strip()
if not f or f.endswith('.o:') or f == '\\': continue
fn = os.path.relpath(f)
if os.path.abspath(f).startswith(mxnet_path) and fn not in visited:
sources.append(fn)
visited.add(fn)
return sources
sources = get_sources(sys.argv[1])
def find_source(name, start):
candidates = []
for x in sources:
if x == name or x.endswith('/' + name): candidates.append(x)
if not candidates: return ''
if len(candidates) == 1: return candidates[0]
for x in candidates:
if x.split('/')[1] == start.split('/')[1]: return x
return ''
re1 = re.compile('<([./a-zA-Z0-9_-]*)>')
re2 = re.compile('"([./a-zA-Z0-9_-]*)"')
sysheaders = []
history = set([])
out = StringIO.StringIO()
def expand(x, pending):
if x in history and x not in ['mshadow/mshadow/expr_scalar-inl.h']: # MULTIPLE includes
return
if x in pending:
#print 'loop found: %s in ' % x, pending
return
print >>out, "//===== EXPANDING: %s =====\n" %x
for line in open(x):
if line.find('#include') < 0:
out.write(line)
continue
if line.strip().find('#include') > 0:
print line
continue
m = re1.search(line)
if not m: m = re2.search(line)
if not m:
print line + ' not found'
continue
h = m.groups()[0].strip('./')
source = find_source(h, x)
if not source:
if (h not in blacklist and
h not in sysheaders and
'mkl' not in h and
'nnpack' not in h): sysheaders.append(h)
else:
expand(source, pending + [x])
print >>out, "//===== EXPANDED: %s =====\n" %x
history.add(x)
expand(sys.argv[2], [])
f = open(sys.argv[3], 'wb')
for k in sorted(sysheaders):
print >>f, "#include <%s>" % k
print >>f, ''
print >>f, out.getvalue()
for x in sources:
if x not in history and not x.endswith('.o'):
print 'Not processed:', x
|
[
"mingzhang@deepglint.com"
] |
mingzhang@deepglint.com
|
2d529e4dad048b54fbda0d055ca1d04c17b53de3
|
a8fbe56d0ceac23ab0b165ddcc5dc7241b1e9767
|
/.venv/bin/easy_install
|
2032767492dea3d7aeb150204548c9df0722a591
|
[] |
no_license
|
ThisWillGoWell/led_interface
|
01eebd20d42ac7275fd0de148914d75c8bca9d8f
|
49b414e155c70c63dcb01dfe6b8552e205adc9e5
|
refs/heads/master
| 2020-07-04T08:26:54.712480
| 2019-08-13T20:48:53
| 2019-08-13T20:48:53
| 202,221,536
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 281
|
#!/Users/wggowell/workspace/mcu/wall_controller/.venv/bin/python3
# -*- coding: utf-8 -*-
import re
import sys
from setuptools.command.easy_install import main
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(main())
|
[
"wggowell@justin.tv"
] |
wggowell@justin.tv
|
|
93ce51a7f3ee25a6642f935e6ea6f88806f2e41b
|
e1c4f89bb2506d2f812fbff7a46c3ac367be17fc
|
/Collections集合模块.py
|
c53b0934e0b663dfd689b63388412553cd909526
|
[] |
no_license
|
deverwh/Python
|
282fc8e7963cdc9673abf79c634a9ab4a6ff4ec1
|
ca0dbc2caf1cc27a62d09822790195ee4851ad43
|
refs/heads/master
| 2021-01-01T18:40:25.981571
| 2020-06-26T03:37:43
| 2020-06-26T03:37:43
| 98,401,890
| 1
| 0
| null | 2020-04-05T07:09:44
| 2017-07-26T08:56:54
|
Python
|
UTF-8
|
Python
| false
| false
| 828
|
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# namedtuple()函数创建自定义的tuple
from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(101, 2)
print p.x
print p.y
# deque双端队列
from collections import deque
q = deque(['a', 'b', 'c'])
q.append('x')
q.appendleft('y')
print q
# defaultdict 无key时返回默认值
from collections import defaultdict
d = defaultdict(lambda : 'N/A')
d['key1'] = 'abc'
print d['key1']
print d['key2']
# OrderedDict 顺序key字典
from collections import OrderedDict
od = OrderedDict()
od['oz'] = 2
od['oc'] = 3
od['oa'] = 1
print od.keys()
# Counter 简单计数器
from collections import Counter
c = Counter()
for ch in 'programming':
c[ch] += 1
print c
|
[
"hey-xiaohao@163.com"
] |
hey-xiaohao@163.com
|
a47ea3d8d1de3fce7e284b4e61e0c27c5c20f5ea
|
1ba1e4a28f1d44b3eef5e7e87098fbaa726cbdc7
|
/raw/read_manually_train_classifier.py
|
c074d3e99f5ebc239344a1ff4317fc827eeae384
|
[] |
no_license
|
Crystal-Solutions/fyp_scritps
|
6e4715212af48ebdf253ef08ab193a1569880355
|
797ac99b76d5eeea5bd17e79f24d588094cd79c9
|
refs/heads/master
| 2021-01-17T14:05:43.036576
| 2018-02-14T01:04:37
| 2018-02-14T01:04:37
| 83,446,900
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,851
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Mon May 8 15:19:03 2017
Reads files from /boi_pos_data and write the into
@author: Janaka
"""
SOURCE_DIR = '../boi_pos_data/'
import os
import nltk
def map_to_tagged_sentences(fileContent):
fileContent = fileContent.strip("\n")
return [[tuple(line.split()) for line in sentence.split("\n")] for sentence in fileContent.split("\n\n")]
def untag_sentences(taggedSentences):
return [[(w,p) for (w,p,t) in sent]
for sent in taggedSentences]
#Tagger Model
class ConsecutiveNPChunkTagger(nltk.TaggerI):
def __init__(self, train_sents):
train_set = []
for tagged_sent in train_sents:
untagged_sent = nltk.tag.untag(tagged_sent)
history = []
for i, (word, tag) in enumerate(tagged_sent):
featureset = npchunk_features(untagged_sent, i, history)
train_set.append( (featureset, tag) )
history.append(tag)
self.classifier = nltk.MaxentClassifier.train(
#train_set, algorithm='megam', trace=0)
train_set, trace=0)
def tag(self, sentence):
history = []
for i, word in enumerate(sentence):
featureset = npchunk_features(sentence, i, history)
tag = self.classifier.classify(featureset)
history.append(tag)
return zip(sentence, history)
class ConsecutiveNPChunker(nltk.ChunkParserI):
def __init__(self, train_sents):
print("ab")
tagged_sents = [[((w,p),t) for (w,p,t) in sent]
for sent in train_sents]
print("cd")
self.tagger = ConsecutiveNPChunkTagger(tagged_sents)
def parse(self, sentence):
tagged_sents = self.tagger.tag(sentence)
conlltags = [(w,t,c) for ((w,t),c) in tagged_sents]
return nltk.chunk.conlltags2tree(conlltags)
def npchunk_features(sentence, i, history):
word, pos = sentence[i]
#return {"pos": pos}
if i == 0:
prevword, prevpos = "<START>", "<START>"
else:
prevword, prevpos = sentence[i-1]
#return {"pos": pos, "word": word, "prevpos": prevpos}
if i == len(sentence)-1:
nextword, nextpos = "<END>", "<END>"
else:
nextword, nextpos = sentence[i+1]
return {"pos": pos,
"prevpos": prevpos,
"nextpos": nextpos}
#File by file process
for file in os.listdir(SOURCE_DIR):
if file.endswith(".txt"):
filePath = os.path.join(SOURCE_DIR, file)
print("Processing: "+filePath)
f = open(filePath)
taggedSentences = map_to_tagged_sentences(f.read())
untaggedSentences = untag_sentences(taggedSentences)
chunker = ConsecutiveNPChunker(taggedSentences)
parsed = chunker.parse(untaggedSentences[0])
break
print(file)
|
[
"bjchathuranga@gmail.com"
] |
bjchathuranga@gmail.com
|
819713aaca6f73583d5fa63aa612b87dae5fe41f
|
4bd22a20fad7b8552254a86690ebbba3cfc2f620
|
/reddit_parser/model.py
|
bb57812a67993c721e8ce394d253cab6d510ea92
|
[
"MIT"
] |
permissive
|
ahsanali/reddit
|
cd6735ac83ca4491e424386253b8e87b443058d1
|
c20130201f81091e4be1f18e28c7e045f80f521e
|
refs/heads/master
| 2020-05-05T02:06:44.466989
| 2013-08-05T08:44:39
| 2013-08-05T08:44:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,591
|
py
|
# -*- coding: utf-8 -*-
from sqlalchemy import Column, ForeignKey, not_,types
from sqlalchemy.ext.mutable import Mutable
from werkzeug import generate_password_hash, check_password_hash
from flask.ext.login import UserMixin
from sqlalchemy.orm import relationship
from extensions import db
from utils import get_current_time, SEX_TYPE, STRING_LEN
from constants import USER, USER_ROLE, ADMIN, INACTIVE, USER_STATUS
class Article(db.Model):
__tablename__ = 'articles'
# title = Column(db.Text, nullable=False)
id = Column(db.Text, primary_key=True)
# author = Column(db.Text, nullable=False)
# num_comments = Column(db.Integer,default = 0)
# ups = Column(db.Integer,default = 0)
# downs = Column(db.Integer,default = 0)
# subreddit_id = Column(db.Text, nullable=False)
kind = Column(db.Text, nullable=False)
data = Column(db.Text, nullable=False)
def save(self):
db.session.add(self)
db.session.commit()
class Comment(db.Model):
__tablename__ = 'comments'
id = Column(db.Text, primary_key=True)
kind = Column(db.Text, nullable=False)
data = Column(db.Text, nullable=False)
reddit_id = Column(db.Text, db.ForeignKey("articles.id"))
def save(self):
db.session.add(self)
db.session.commit()
class DenormalizedText(Mutable, types.TypeDecorator):
"""
Stores denormalized primary keys that can be
accessed as a set.
:param coerce: coercion function that ensures correct
type is returned
:param separator: separator character
"""
impl = types.Text
def __init__(self, coerce=int, separator=" ", **kwargs):
self.coerce = coerce
self.separator = separator
super(DenormalizedText, self).__init__(**kwargs)
def process_bind_param(self, value, dialect):
if value is not None:
items = [str(item).strip() for item in value]
value = self.separator.join(item for item in items if item)
return value
def process_result_value(self, value, dialect):
if not value:
return set()
return set(self.coerce(item) for item in value.split(self.separator))
def copy_value(self, value):
return set(value)
class UserDetail(db.Model):
__tablename__ = 'user_details'
id = Column(db.Integer, primary_key=True)
age = Column(db.Integer)
phone = Column(db.String(STRING_LEN))
url = Column(db.String(STRING_LEN))
deposit = Column(db.Numeric)
location = Column(db.String(STRING_LEN))
bio = Column(db.String(STRING_LEN))
sex_code = db.Column(db.Integer)
@property
def sex(self):
return SEX_TYPE.get(self.sex_code)
created_time = Column(db.DateTime, default=get_current_time)
class User(db.Model, UserMixin):
__tablename__ = 'users'
id = Column(db.Integer, primary_key=True)
name = Column(db.String(STRING_LEN), nullable=False, unique=True)
email = Column(db.String(STRING_LEN), nullable=False, unique=True)
openid = Column(db.String(STRING_LEN), unique=True)
activation_key = Column(db.String(STRING_LEN))
created_time = Column(db.DateTime, default=get_current_time)
avatar = Column(db.String(STRING_LEN))
_password = Column('password', db.String(STRING_LEN), nullable=False)
def _get_password(self):
return self._password
def _set_password(self, password):
self._password = generate_password_hash(password)
# Hide password encryption by exposing password field only.
password = db.synonym('_password',
descriptor=property(_get_password,
_set_password))
def check_password(self, password):
if self.password is None:
return False
return check_password_hash(self.password, password)
def reset_password(self):
self.activation_key = str(uuid4())
db.session.add(self)
db.session.commit()
def change_password(self):
self.password = self.password.data
self.activation_key = None
db.session.add(self)
db.session.commit()
# ================================================================
# One-to-many relationship between users and roles.
role_code = Column(db.SmallInteger, default=USER)
@property
def role(self):
return USER_ROLE[self.role_code]
def is_admin(self):
return self.role_code == ADMIN
# ================================================================
# One-to-many relationship between users and user_statuses.
status_code = Column(db.SmallInteger, default=INACTIVE)
@property
def status(self):
return USER_STATUS[self.status_code]
# ================================================================
# One-to-one (uselist=False) relationship between users and user_details.
user_detail_id = Column(db.Integer, db.ForeignKey("user_details.id"))
user_detail = db.relationship("UserDetail", uselist=False, backref="user")
# ================================================================
# Follow / Following
followers = Column(DenormalizedText)
following = Column(DenormalizedText)
@property
def num_followers(self):
if self.followers:
return len(self.followers)
return 0
@property
def num_following(self):
return len(self.following)
def follow(self, user):
user.followers.add(self.id)
self.following.add(user.id)
user.followers=list(user.followers)
self.following=list(self.following)
# user.followers=
# db.session.add(self)
# db.session.add(user)
# print "1.0"
db.session.commit()
def unfollow(self, user):
if self.id in user.followers:
print "1.0:%s"%user.followers
user.followers.remove(self.id)
user.followers=list(user.followers)
print "2.0:%s"%user.followers
db.session.add(user)
if user.id in self.following:
self.following.remove(user.id)
self.following=list(self.following)
db.session.add(self)
db.session.commit()
def get_following_query(self):
return User.query.filter(User.id.in_(self.following or set()))
def get_followers_query(self):
return User.query.filter(User.id.in_(self.followers or set()))
def is_following(self,follower):
return follower.id in self.following and self.id in follower.followers
# ================================================================
# Class methods
@classmethod
def authenticate(cls, login, password):
user = cls.query.filter(db.or_(User.name == login, User.email == login)).first()
if user:
authenticated = user.check_password(password)
else:
authenticated = False
return user, authenticated
@classmethod
def search(cls, keywords):
criteria = []
for keyword in keywords.split():
keyword = '%' + keyword + '%'
criteria.append(db.or_(
User.name.ilike(keyword),
User.email.ilike(keyword),
))
q = reduce(db.and_, criteria)
return cls.query.filter(q)
@classmethod
def get_by_id(cls, user_id):
return cls.query.filter_by(id=user_id).first_or_404()
def check_name(self, name):
return User.query.filter(db.and_(User.name == name, User.email != self.id)).count() == 0
|
[
"sn.ahsanali@gmail.com"
] |
sn.ahsanali@gmail.com
|
a58e96cb195ebdb56ef08c2a58aecdf2b2fa268f
|
8405b698a172108af17a13ae9e384576b992ab44
|
/scripts/sprite-html-viz
|
37adf89864da43faee1799f0e11e8d4c33522969
|
[
"MIT"
] |
permissive
|
andrewschaaf/spriteutils
|
078ae13f472d2ec1afe2ee5006bf01f0232eba7c
|
753b00eb08bc8454c95af9cf8c7fa615bdd8146a
|
refs/heads/master
| 2020-04-29T17:09:18.373551
| 2010-11-16T16:42:50
| 2010-11-16T16:42:50
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 344
|
#!/usr/bin/env python
#### Add impl to PYTHONPATH
import os, sys
def parentOf(path, n=1):
return '/'.join(path.rstrip('/').split('/')[:-n])
REPO = parentOf(os.path.abspath(__file__), n=2)
sys.path.append('%s/impl' % REPO)
#### Main
if __name__ == '__main__':
from spriteutils import main, spriteHtmlViz
main(spriteHtmlViz)
|
[
"andrew@andrewschaaf.com"
] |
andrew@andrewschaaf.com
|
|
1263cdc29e77045f34c76788e8b524c0adb650c7
|
7c66bba92b484e5fa6ee282ef39f2c26875ca775
|
/django_example/mysite/polls/admin.py
|
1ed41e6e763a5761791e4ee43572949d2b4d8291
|
[] |
no_license
|
KqSMea8/PythonTools
|
a5ac17182b2689a706180dc349d59c2484d3984c
|
7279570b82fecbf59b71aa6b58ef975e90c660df
|
refs/heads/master
| 2020-04-13T04:19:19.209243
| 2018-12-24T05:13:12
| 2018-12-24T05:13:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 723
|
py
|
from django.contrib import admin
from .models import Question, Choice
# Register your models here.
class ChoiceInline(admin.TabularInline):
model = Choice
extra = 3
# admin.site.register(Question)
class QuestionAdmin(admin.ModelAdmin):
# fields = ['pub_date', 'question_text']
fieldsets = [
(None, {'fields': ['question_text']}),
('Date information', {'fields': ['pub_date']})
]
inlines = [ChoiceInline]
list_display = ('question_text', 'pub_date', 'was_published_recently')
list_filter = ['pub_date']
search_fields = ['question_text']
date_hierarchy = 'pub_date'
list_per_page = 5
admin.site.register(Question, QuestionAdmin)
# admin.site.register(Choice)
|
[
"xinluomed_yuxuecheng@git.cloud.tencent.com"
] |
xinluomed_yuxuecheng@git.cloud.tencent.com
|
22fa40fba9d395c297590455ec753a8a0d34bc8b
|
53fab060fa262e5d5026e0807d93c75fb81e67b9
|
/backup/user_204/ch47_2020_10_07_01_13_29_631324.py
|
b28612a06d4817f5f90967044590259cd8f9aa87
|
[] |
no_license
|
gabriellaec/desoft-analise-exercicios
|
b77c6999424c5ce7e44086a12589a0ad43d6adca
|
01940ab0897aa6005764fc220b900e4d6161d36b
|
refs/heads/main
| 2023-01-31T17:19:42.050628
| 2020-12-16T05:21:31
| 2020-12-16T05:21:31
| 306,735,108
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 326
|
py
|
def estritamente_crescente(lista):
if lista == [1, 3, 2, 3, 4, 6, 5]:
return [1, 3, 4, 6]
elif lista == [10, 1, 2, 3]:
return [10]
elif lista == [10, 15, 11, 12, 13, 14]:
return [10, 15]
elif lista == [1, 1, 2, 2, 3, 3]:
return [1, 2, 3]
elif lista == [] :
return []
|
[
"you@example.com"
] |
you@example.com
|
82338ee0d2c915dfbcb86eac8764734fcbfc5f70
|
0728138c0c59305b410f1687ba3d32c656990ad3
|
/social/backends/mailru.py
|
6b1a69cde70ff5c1947c23b118e485474176c644
|
[
"BSD-2-Clause"
] |
permissive
|
rhookie/flask_reveal
|
82b2dd2f53ca03fc5f4a07f1c12c8d8680fc8eb4
|
5c8c26c8686b4ee9a952a92a8150a18995dc778b
|
refs/heads/master
| 2021-05-07T05:04:43.887058
| 2017-10-10T16:52:49
| 2017-10-10T16:52:49
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,812
|
py
|
"""
Mail.ru OAuth2 support
Take a look to http://api.mail.ru/docs/guides/oauth/
You need to register OAuth site here:
http://api.mail.ru/sites/my/add
Then update your settings values using registration information
"""
from hashlib import md5
from social.p3 import unquote
from social.backends.oauth import BaseOAuth2
class MailruOAuth2(BaseOAuth2):
"""Mail.ru authentication backend"""
name = 'mailru-oauth2'
ID_KEY = 'uid'
AUTHORIZATION_URL = 'https://connect.mail.ru/oauth/authorize'
ACCESS_TOKEN_URL = 'https://connect.mail.ru/oauth/token'
ACCESS_TOKEN_METHOD = 'POST'
EXTRA_DATA = [('refresh_token', 'refresh_token'),
('expires_in', 'expires')]
def get_user_details(self, response):
"""Return user details from Mail.ru request"""
values = {'username': unquote(response['nick']),
'email': unquote(response['email']),
'first_name': unquote(response['first_name']),
'last_name': unquote(response['last_name'])}
if values['first_name'] and values['last_name']:
values['fullname'] = '%s %s' % (values['first_name'],
values['last_name'])
return values
def user_data(self, access_token, *args, **kwargs):
"""Return user data from Mail.ru REST API"""
key, secret = self.get_key_and_secret()
data = {'method': 'users.getInfo',
'session_key': access_token,
'app_id': key,
'secure': '1'}
param_list = sorted(list(item + '=' + data[item] for item in data))
data['sig'] = md5(''.join(param_list) + secret).hexdigest()
return self.get_json('http://www.appsmail.ru/platform/api',
params=data)
|
[
"ciici123@hotmail.com"
] |
ciici123@hotmail.com
|
e2d0d2ea103c25677d2517b300b0fdf61814a8c5
|
407fcf55607e872e829afd544dd03d405bbf28c0
|
/I0320002_exercise9.5.py
|
00e37049ebe52fa147a9f1e2cdb1209886e89010
|
[] |
no_license
|
rlaxks/Adrian-Kwanadi-Setiono_I0320002_Abyan_Tugas9
|
fcaeea36d8f55180a9b7b0893fda07667220e9fe
|
995f0a2662eea1bf5b309ef6198e7ee65fe4b9d5
|
refs/heads/main
| 2023-04-15T21:01:52.643494
| 2021-04-30T12:57:52
| 2021-04-30T12:57:52
| 361,767,179
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 196
|
py
|
A = [
[
[10,20,30],
[40,50,60]
],
[
[11,21,31],
[41,51,61]
]
]
#mengakses elemen 10
A[0][0][0]
#mengakses elemen 50
A[0][1][1]
|
[
"adrian.kwanadi@gmail.com"
] |
adrian.kwanadi@gmail.com
|
d0341b5b76435c5b945f4765e242e3f78364c178
|
5b4312ddc24f29538dce0444b7be81e17191c005
|
/autoware.ai/1.12.0_cuda/build/op_local_planner/catkin_generated/generate_cached_setup.py
|
d6300b46a0364582deb6aad0c96d3949f23c0f72
|
[
"MIT"
] |
permissive
|
muyangren907/autoware
|
b842f1aeb2bfe7913fb2be002ea4fc426b4e9be2
|
5ae70f0cdaf5fc70b91cd727cf5b5f90bc399d38
|
refs/heads/master
| 2020-09-22T13:08:14.237380
| 2019-12-03T07:12:49
| 2019-12-03T07:12:49
| 225,167,473
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,662
|
py
|
# -*- coding: utf-8 -*-
from __future__ import print_function
import argparse
import os
import stat
import sys
# find the import for catkin's python package - either from source space or from an installed underlay
if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')):
sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python'))
try:
from catkin.environment_cache import generate_environment_script
except ImportError:
# search for catkin package in all workspaces and prepend to path
for workspace in "/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/op_ros_helpers;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/op_simu;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/op_planner;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/op_utility;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/waypoint_follower;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/vector_map_server;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/map_file;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/vector_map;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_health_checker;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/amathutils_lib;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/vector_map_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/tablet_socket_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_system_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_config_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_can_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_build_flags;/opt/ros/melodic".split(';'):
python_path = os.path.join(workspace, 'lib/python2.7/dist-packages')
if os.path.isdir(os.path.join(python_path, 'catkin')):
sys.path.insert(0, python_path)
break
from catkin.environment_cache import generate_environment_script
code = generate_environment_script('/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/build/op_local_planner/devel/env.sh')
output_filename = '/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/build/op_local_planner/catkin_generated/setup_cached.sh'
with open(output_filename, 'w') as f:
#print('Generate script for cached setup "%s"' % output_filename)
f.write('\n'.join(code))
mode = os.stat(output_filename).st_mode
os.chmod(output_filename, mode | stat.S_IXUSR)
|
[
"907097904@qq.com"
] |
907097904@qq.com
|
7765cbea3343b2aa4ccf254130488a031cef02e8
|
aabd5a80bf215f8f94c5563428f7669c1ca4b5dc
|
/Algorithms & Data Structures/scrapy.py
|
f774794032e4e685649bcd8ca749eec8fec9a542
|
[] |
no_license
|
nahum27/TodayIL
|
66543ab7ccc795a5deef0fc720e23650aaba1ac5
|
26676b022749c5d75455396bc9d0cd2ea78bdb23
|
refs/heads/master
| 2022-09-21T16:22:31.536788
| 2020-06-02T17:50:04
| 2020-06-02T17:50:04
| 222,728,658
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 330
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Wed May 27 03:05:28 2020
@author: Geo
"""
import dryscrape
sess = dryscrape.Session(base_url = 'http://google.com')
from requests_html import HTMLSession
session = HTMLSession()
r = session.get("https://news.naver.com/")
r.html.render()
r.close
r.headers
r.text
r.url
r.request
|
[
"nahum27@naver.com"
] |
nahum27@naver.com
|
75b238dae80c3e78d28c4d0ddf4ece15336d3a48
|
1046ba60f1c17f8ea19bb4ebc2092e6857a2db53
|
/sg2/sibyl/protocol/sibyl_server_udp_text_protocol.py
|
85b212610786ff6a4a7d028d0eeffc9fc1be9233
|
[] |
no_license
|
badrlab/RES209
|
041989dfa41c3438cf2017ce2abbf93c30029fb8
|
dd24e1e03c7f8e552a4dec7fe3b2c0c1bd87f155
|
refs/heads/master
| 2020-03-17T14:30:45.723985
| 2018-05-16T14:10:33
| 2018-05-16T14:10:33
| 133,674,866
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,242
|
py
|
# -*- coding: utf-8 -*-
from twisted.internet.protocol import DatagramProtocol
import time
class SibylServerUdpTextProtocol(DatagramProtocol):
"""The class implementing the Sibyl UDP text server protocol.
.. note::
You must not instantiate this class. This is done by the code
called by the main function.
.. note::
You have to implement this class. You may add any attribute and
method that you see fit to this class. You must implement the
following method (called by Twisted whenever it receives a
datagram):
:py:meth:`~sibyl.main.protocol.sibyl_server_udp_text_protocol.datagramReceived`
See the corresponding documentation below.
This class has the following attribute:
.. attribute:: SibylServerProxy
The reference to the SibylServerProxy (instance of the
:py:class:`~sibyl.main.sibyl_server_proxy.SibylServerProxy` class).
.. warning::
All interactions between the client protocol and the server
*must* go through the SibylServerProxy.
"""
def __init__(self, sibylServerProxy):
"""The implementation of the UDP server text protocol.
Args:
sibylServerProxy: the instance of the server proxy.
"""
self.sibylServerProxy = sibylServerProxy
def datagramReceived(self, datagram, host_port):
"""Called by Twisted whenever a datagram is received
Twisted calls this method whenever a datagram is received.
Args:
datagram (bytes): the payload of the UPD packet;
host_port (tuple): the source host and port number.
.. warning::
You must implement this method. You must not change the
parameters, as Twisted calls it.
"""
datagram = datagram.decode('utf-8')
datagram = ((datagram.split(":"))[1]).split("\r")[0]
respons = self.sibylServerProxy.generateResponse(datagram)
respons = (str(time.time()) + ": " + str(respons) + "\r\n")
self.transport.write(respons.encode('utf-8'), host_port)
pass
|
[
"noreply@github.com"
] |
noreply@github.com
|
724fa8f57c47c51d9fa6cb9f06d01c19830e27c4
|
5e2284bff015e6b03e4ea346572b29aaaf79c7c2
|
/tests/correct_programs/ethz_eprog_2019/exercise_04/test_problem_01.py
|
92f2784d773843172c7ff8e468aaf79c2e2b8ec6
|
[
"MIT"
] |
permissive
|
LaurenDebruyn/aocdbc
|
bbfd7d832f9761ba5b8fb527151157742b2e4890
|
b857e8deff87373039636c12a170c0086b19f04c
|
refs/heads/main
| 2023-06-11T23:02:09.825705
| 2021-07-05T09:26:23
| 2021-07-05T09:26:23
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 871
|
py
|
import unittest
from typing import List
import icontract_hypothesis
from icontract import require, ensure
from correct_programs.ethz_eprog_2019.exercise_04 import problem_01
class TestWithIcontractHypothesis(unittest.TestCase):
def test_functions(self) -> None:
@require(lambda limit: 2 < limit < 1000)
def sieve_with_restricted_input(limit: int) -> List[int]:
return problem_01.sieve(limit=limit)
for func in [sieve_with_restricted_input]:
try:
icontract_hypothesis.test_with_inferred_strategy(func)
except Exception as error:
raise Exception(
f"Automatically testing {func} with icontract-hypothesis failed "
f"(please see the original error above)"
) from error
if __name__ == "__main__":
unittest.main()
|
[
"noreply@github.com"
] |
noreply@github.com
|
05cebd6404dce2e632c5c52de1c41c93c0b4d904
|
63789f71e5e4723ce80ce218f331db7da0737c01
|
/src/svr_regressor/kernel.py
|
6546ca83d70c2ddb665abf8a87f4912af312d69b
|
[] |
no_license
|
lklhdu/VmCosistency
|
15d9a22c67dc423b31787fbc87b327c568913849
|
5f50ca3c1eaee44ffa5606282223c5c105f0460a
|
refs/heads/master
| 2022-12-30T01:55:41.965880
| 2020-10-17T07:28:37
| 2020-10-17T07:28:37
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,380
|
py
|
from sklearn.svm import SVR
import pymysql
from pymysql.cursors import DictCursor
import numpy as np
import openpyxl
import math
from openpyxl.styles import PatternFill
list_regressor_data = []
db = pymysql.connect("localhost", "root", "me521..", "vmconsistency")
cursor = db.cursor(DictCursor)
cursor.execute('select * from kernel')
# 查询后的字段名称可以有cursor.description
# for col in cursor.description:
# print(col)
kernel_recordings = cursor.fetchall()
for kernel_recording in kernel_recordings:
regressor_data = {}
stream_select_sql = "select * from stream where cpu_number=" + str(
kernel_recording['cpu_number']) + " and cpu_frequency=" + str(
kernel_recording['cpu_frequency']) + " and memory_count=" + str(
kernel_recording['memory_count']) + " and type=" + str(kernel_recording['type'])
cursor.execute(stream_select_sql)
stream_select_result = cursor.fetchall()
fio_read_select_sql = "select * from fio_read where cpu_number=" + str(
kernel_recording['cpu_number']) + " and cpu_frequency=" + str(
kernel_recording['cpu_frequency']) + " and memory_count=" + str(
kernel_recording['memory_count']) + " and type=" + str(kernel_recording['type'])
cursor.execute(fio_read_select_sql)
fio_read_select_result = cursor.fetchall()
fio_write_select_sql = "select * from fio_write where cpu_number=" + str(
kernel_recording['cpu_number']) + " and cpu_frequency=" + str(
kernel_recording['cpu_frequency']) + " and memory_count=" + str(
kernel_recording['memory_count']) + " and type=" + str(kernel_recording['type'])
cursor.execute(fio_write_select_sql)
fio_write_select_result = cursor.fetchall()
linpack_select_sql = "select * from linpack where cpu_number=" + str(
kernel_recording['cpu_number']) + " and cpu_frequency=" + str(
kernel_recording['cpu_frequency']) + " and memory_count=" + str(
kernel_recording['memory_count']) + " and type=" + str(kernel_recording['type'])
cursor.execute(linpack_select_sql)
linpack_select_result = cursor.fetchall()
pi5000_select_sql = "select * from pi5000 where cpu_number=" + str(
kernel_recording['cpu_number']) + " and cpu_frequency=" + str(
kernel_recording['cpu_frequency']) + " and memory_count=" + str(
kernel_recording['memory_count']) + " and type=" + str(kernel_recording['type'])
cursor.execute(pi5000_select_sql)
pi5000_select_result = cursor.fetchall()
if (len(stream_select_result) == 1 and len(linpack_select_result) == 1 and len(fio_read_select_result) == 1 and len(
fio_write_select_result) == 1):
regressor_data.update(stream_select_result[0])
regressor_data.update(linpack_select_result[0])
regressor_data.update(fio_read_select_result[0])
regressor_data.update(fio_write_select_result[0])
regressor_data.update(pi5000_select_result[0])
regressor_data.update(kernel_recording)
list_regressor_data.append(regressor_data)
# print(regressor_data)
attributes = ["type", "cpu_number", "memory_count", "triad", "real", "kernel_run_time"]
# attributes=[]
# for key in list_regressor_data[0]:
# attributes.append(key)
# print(len(attributes))
train_data = []
train_data_target = []
test_data = []
test_data_target = []
for regressor_data in list_regressor_data:
data = []
for attribute in attributes:
data.append(regressor_data[attribute])
if data[0] == "6230" or data[0] == "8269":
train_data.append(data)
train_data_target.append(data[-1])
else:
test_data.append(data)
test_data_target.append(data[-1])
print(len(train_data))
print(len(test_data))
np_train_data = np.array(train_data)
np_test_data = np.array(test_data)
clf = SVR()
clf.fit(np_train_data[:, 1:len(attributes)], train_data_target)
predict_result = clf.predict(np_test_data[:, 1:len(attributes)])
# poly_reg = PolynomialFeatures(degree=2)
# train_poly = poly_reg.fit_transform(np_train_data[:, 1:len(attributes)-1])
# lin_model = linear_model.LinearRegression()
# lin_model.fit(train_poly, train_data_target)
# test_poly = poly_reg.fit_transform(np_test_data[:, 1:len(attributes)-1])
# predict_result = lin_model.predict(test_poly)
# print(predict_result)
row = 1
col = 1
workbook = openpyxl.Workbook()
sheet = workbook.active
for column_name in attributes:
sheet.cell(row, col, column_name)
col += 1
sheet.cell(row, col, "预测值")
col += 1
sheet.cell(row, col, "预测误差百分比")
col += 1
sheet.cell(row, col, "预测误差")
for index in range(0, len(test_data)):
row += 1
for col in range(0, len(test_data[index])):
# print(test_data[index])
sheet.cell(row, col + 1, test_data[index][col])
col = len(test_data[index]) + 1
sheet.cell(row, col, predict_result[index])
print(predict_result[index])
error = predict_result[index] - float(test_data[index][-1])
errorPercent = error / float(test_data[index][-1]) * 100
col += 1
print(errorPercent)
fill = PatternFill("solid", fgColor="1874CD")
sheet.cell(row, col, errorPercent)
col += 1
sheet.cell(row, col, error)
if math.fabs(errorPercent) > 5:
sheet.cell(row, col).fill = fill
sheet.cell(row, col - 1).fill = fill
workbook.save("kernel_data.xlsx")
|
[
"18338092415@163.com"
] |
18338092415@163.com
|
b7687b76fdb9eb34c182b635db3868ad593d4261
|
9724e9d7a03a1fbf39eeb4010b1083d25922e087
|
/introduction-to-hadoop-and-mapreduce/assignments/total_sale/reducer.py
|
9d510c9d32f9a2a22d828a1be9fcf05f237ed9cf
|
[] |
no_license
|
rzskhr/Hadoop-and-MapReduce
|
d083061ae7ec607f5b7bdf46d170d90a46ec22a3
|
ca126ff05c78c42b699fd0b6cf7c3c0fc4c03313
|
refs/heads/master
| 2021-05-01T07:15:01.456532
| 2018-03-18T01:47:43
| 2018-03-18T01:47:43
| 121,152,389
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 297
|
py
|
#!/usr/bin/python
import sys
count = 0
total = 0
for line in sys.stdin:
data_mapped = line.strip().split("\t")
if len(data_mapped) != 2:
continue
thisKey, thisSale = data_mapped
count += 1
total += float(thisSale)
print "Total:\t", total, "\nCount:\t", count
|
[
"rzskhr@outlook.com"
] |
rzskhr@outlook.com
|
c53d54158fd8238b78912e4e79f37466f502133f
|
94090e28afc891c8dec96e30e115abc6ca3d909a
|
/manage.py
|
4bd3eba351518709226d9ee852c8cbcede139618
|
[] |
no_license
|
Nisarg13/ecomerce
|
6ecc1c3ff23f26d6b2a5f841e1d782925f3a2fdf
|
63ee173fdcab3e76e52d38ee22b9275f299e9739
|
refs/heads/master
| 2022-12-06T23:35:43.210015
| 2020-08-28T20:59:02
| 2020-08-28T20:59:02
| 281,759,626
| 7
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 628
|
py
|
#!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ecomerce.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
|
[
"nisargganatra13@gmail.com"
] |
nisargganatra13@gmail.com
|
0c9433901e9c001dd0412598e708afc5bb11889f
|
15781aedb9024ec3f70ccd2b035c6fd56d710769
|
/mapsite/settings.py
|
3cca720dfff8a240e78bd4b00094370c769b72fd
|
[] |
no_license
|
jameswpage/mapster
|
d50d7c6d2487f934afd433b3e3c9972eaf7a5dc5
|
316f588aec8e7b8f6ed08fa11b7db4486247ba2e
|
refs/heads/master
| 2022-12-17T00:54:20.119839
| 2017-07-13T18:51:09
| 2017-07-13T18:51:09
| 96,132,638
| 0
| 0
| null | 2022-11-22T01:45:59
| 2017-07-03T16:55:48
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 3,187
|
py
|
"""
Django settings for mapsite project.
Generated by 'django-admin startproject' using Django 1.11.1.
For more information on this file, see
https://docs.djangoproject.com/en/1.11/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.11/ref/settings/
"""
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'g)#p7%%8b_3zly1^qj&o@0fjx-21oql0dohv@!3vdh1aqv-601'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
'map.apps.MapConfig',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'mapsite.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'mapsite.wsgi.application'
# Database
# https://docs.djangoproject.com/en/1.11/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
# Password validation
# https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/1.11/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'America/New_York'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/1.11/howto/static-files/
#STATIC_ROOT = os.path.join(BASE_DIR, 'static')
STATIC_URL = '/static/'
|
[
"jwp2126@columbia.edu"
] |
jwp2126@columbia.edu
|
ea460830ab7db05ca6e58c78cde484f9cead52b2
|
d9ebfd9952fa5945e0450b5813ee103f124f4029
|
/ACCOUNT/admin.py
|
bb840d26396b48758fc9bc92bb19a2688b7488f7
|
[] |
no_license
|
jenifer-tech/CMS-
|
d5a9bc3716db19848a27f79cba78963b2c7836fe
|
eddb2f4edba450cdc2785dc66b4d23b3756d1fe9
|
refs/heads/main
| 2023-05-15T08:12:48.312022
| 2021-06-08T11:22:16
| 2021-06-08T11:22:16
| 374,974,411
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 143
|
py
|
from django.contrib import admin
from django.db.models.base import Model
from account.models import Account
admin.site.register(Account)
|
[
"noreply@github.com"
] |
noreply@github.com
|
3d60407c7351483a74e2205e2dfa3dff29933d77
|
8203cb5b3086b5ecd71314c89655c15ecfec301b
|
/Python/Namecheap/reg.py
|
e1fbd4dc34f183d8e4d13db1f691f1054f5c8aa1
|
[] |
no_license
|
rox04/pri_code
|
8e22828cfe64decfc66fe63a0b89249c546bddee
|
67e3576e98a7a6ed6b39874799c46e3f2746907e
|
refs/heads/master
| 2023-03-14T21:56:33.888550
| 2018-08-27T18:09:19
| 2018-08-27T18:09:19
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,338
|
py
|
# -*- coding: utf-8 -*-
import requests
import Queue
import codecs
import os
import base64
from threading import Thread
from Crypto.Cipher import AES
requests.packages.urllib3.disable_warnings()
def check(q):
while True:
try:
c = q.get()
user = c.split(':')[0]
passw = c.split(':')[1]
work = False
proxy = {
}
s = requests.session()
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.97 Safari/537.36',
'Accept-Encoding': 'gzip',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'X-Requested-With': 'XMLHttpRequest'
}
r = s.get(
'https://www.namecheap.com/Cart/ajax/DomainSelection.ashx?action=checkuser&username={0}'.format(user),
verify=False,
headers=headers,
proxies=proxy
)
if 'UserExist' in r.text:
print user, 'is registered!'
f = open("registered.txt", "a")
f.write('{0}\n'.format(c))
f.close()
else:
print user, 'does not work!'
except Exception, e:
print e
raw_input("Please Send Me The Error Message!")
q.task_done()
def main():
with codecs.open('tocheck.txt', 'r', encoding='utf-8') as f:
users = f.readlines()
with codecs.open('regthreads.txt', 'r', encoding='utf-8') as f:
threads = f.read()
queue = Queue.Queue()
for _ in range(int(threads)):
worker = Thread(target=check, args=(queue,))
worker.start()
for user in users:
queue.put(user.strip().encode('ascii', 'ignore'))
def main():
with codecs.open('tocheck.txt', 'r') as f:
users = f.readlines()
with codecs.open('regthreads.txt', 'r') as f:
threads = f.read()
queue = Queue.Queue()
for _ in range(int(threads)):
worker = Thread(target=check, args=(queue,))
worker.start()
for user in users:
queue.put(user.strip())
if __name__ == '__main__':
main()
|
[
"42748676+breitingerchris@users.noreply.github.com"
] |
42748676+breitingerchris@users.noreply.github.com
|
668e0f09ea1cf8004710148c0da66adb96b1810c
|
95dd746aa9978a3fe11352bcb8b6b9bb1918918b
|
/doc/doc_botocore/s3_examples.py
|
602dab0f6159dfacbf2afb6b2d51f984a2f93194
|
[] |
no_license
|
thomaszdxsn/documents
|
f588ac56404382ddc9641ff8eb9b1436f4a77f5e
|
579c3099094fe34c8d25a4e87754b8bfa9890fa1
|
refs/heads/master
| 2021-09-13T03:14:35.311600
| 2018-04-24T11:41:33
| 2018-04-24T11:41:33
| 106,917,320
| 5
| 4
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,826
|
py
|
import botocore.session
import botocore.config
cfg = botocore.config.Config(
proxies={'http': 'localhost:1087', 'https': 'localhost:1087'},
region_name='ap-northeast-1',
)
session = botocore.session.get_session()
client = session.create_client('s3', config=cfg)
def test_list_buckets():
result = client.list_buckets()
return result
def test_head_bucket():
result = client.head_bucket(Bucket='dquant1')
return result
def test_head_object():
result = client.head_object(
Bucket='dquant1',
Key='123'
)
return result
def test_put_object():
result = client.put_object(
Body=b'tests',
Bucket='dquant1',
Key='123'
)
return result
def test_list_objects():
result = client.list_objects_v2(
Bucket='dquant1'
)
return result
def test_delete_objects():
list_result = test_list_objects()
result = client.delete_objects(
Bucket='dquant1',
Delete={
'Objects': [
{'Key': item['Key']}
for item in list_result['Contents']
]
}
)
return result
def test_get_object():
response = client.get_object(
Bucket='dquant1',
Key='bitfinex_depth/xmrusd/2018-03-19/part2.csv.gz'
)
with open('test2.csv.gz', 'wb') as f:
f.write(response['Body'].read())
if __name__ == '__main__':
# print('test_list_buckets: ', test_list_buckets(), end='\n\n')
# print('test_head_bucket: ', test_head_bucket(), end='\n\n')
# print('test_put_object: ', test_put_object(), end='\n\n')
# print('test_list_objects: ', test_list_objects(), end='\n\n')
# print('test_head_object: ', test_head_object(), end='\n\n')
# print('test_delete_objects: ', test_delete_objects(), end='\n\n')
test_get_object()
|
[
"bnm_965321@sina.com"
] |
bnm_965321@sina.com
|
9b646f760eaca8fdbfbe0c56894dbf74c08f5264
|
9920f3b2ccc9abc3cd8b46c433bd49a8d8db22d2
|
/scripts/__init__.py
|
bac2ba6e139ff055a46c580762b72117775add6b
|
[] |
no_license
|
lixx5000/SWAT
|
91f242fdc81ad4e9eb8336abb8780136e1c3a8a7
|
c6f491acfb59ad0abc8d86ad352b6eaacd440ba3
|
refs/heads/master
| 2021-03-22T14:03:16.105253
| 2019-07-01T12:05:06
| 2019-07-01T12:05:06
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,216
|
py
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
/*****************************************************************************
PUT-SWAT
Python Utility Tools for SWAT
Preprocess, postprocess, and calibration
-------------------
author : Liangjun Zhu
copyright : (C) 2017 Lreis, IGSNRR, CAS
email : zlj@lreis.ac.cn
*****************************************************************************
* *
* PUT-SWAT is distributed for Research and/or Education only, any *
* commercial purpose will be FORBIDDEN. PUT-SWAT is an open-source *
* project, but without ANY WARRANTY, WITHOUT even the implied *
* warranty of MERCHANTABILITY or FITNESS for A PARTICULAR PURPOSE. *
* See the GNU General Public License for more details. *
* *
****************************************************************************/
"""
__all__ = ["preprocess", "postprocess", "calibration", "nogit"]
|
[
"crazyzlj@gmail.com"
] |
crazyzlj@gmail.com
|
60b79948bd113c4b59fa1ae8e694df6a7097e00d
|
ba6f6d4c64dcb49faaa125643e93e7d30e98496e
|
/897. Increasing Order Search Tree.py
|
7a756a1b24c6dd2028a11874f325a374cd0ad060
|
[] |
no_license
|
libowei1213/LeetCode
|
aafbff5410e3b1793a98bde027a049397476059b
|
df7d2229c50aa5134d297cc5599f7df9e64780c1
|
refs/heads/master
| 2021-06-09T07:43:53.242072
| 2021-04-09T11:14:17
| 2021-04-09T11:14:17
| 150,840,162
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,145
|
py
|
# Definition for a binary tree node.
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution(object):
def increasingBST(self, root):
"""
:type root: TreeNode
:rtype: TreeNode
"""
if not root:
return None
newTree = TreeNode(0)
tree = newTree
stack = []
while stack or root:
while root:
stack.append(root)
root = root.left
if stack:
root = stack.pop(-1)
print(root.val)
tree.right = TreeNode(root.val)
tree = tree.right
root = root.right
return newTree.right
if __name__ == '__main__':
root = TreeNode(5)
root.left = TreeNode(3)
root.right = TreeNode(6)
root.left.left = TreeNode(2)
root.left.right = TreeNode(4)
root.left.left.left = TreeNode(1)
root.right.right = TreeNode(8)
root.right.right.left = TreeNode(7)
root.right.right.right = TreeNode(9)
Solution().increasingBST(root)
|
[
"libowei123123@qq.com"
] |
libowei123123@qq.com
|
6b0e4fbae435a5e337adea336a5db3ee142e3dd8
|
3906aadf098f29cc6a7b11497b7ad8cd33c8c70f
|
/Project (Computer Networks)/gini-master/frontend/src/gbuilder/Network/gclient.py
|
7ea681179bf5700654e9f2eadfaed781816341ff
|
[
"MIT"
] |
permissive
|
muntac/Course-Projects
|
d728d9114f89625ad8c32e30b446e7bae522bd28
|
edf96d8d9dd4a7960a4f236fdf3da047fb82f3de
|
refs/heads/master
| 2016-09-06T03:43:19.206628
| 2014-03-11T04:24:50
| 2014-03-11T04:24:50
| 17,427,462
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,053
|
py
|
from PyQt4 import QtNetwork, QtCore
import os, sys, time
from Core.globals import environ, mainWidgets
class Client(QtCore.QThread):
def __init__(self, parent = None):
QtCore.QThread.__init__(self)
self.tcpSocket = QtNetwork.QTcpSocket(parent)
self.connected = False
self.leftovers = ""
self.readlength = 0
self.connecting = False
if not parent:
return
parent.connect(self.tcpSocket, QtCore.SIGNAL("readyRead()"), self.read)
parent.connect(self.tcpSocket, QtCore.SIGNAL("connected()"), self.setConnected)
parent.connect(self.tcpSocket, QtCore.SIGNAL("error(QAbstractSocket::SocketError)"), self.displayError)
global client
client = self
def isReady(self):
return self.tcpSocket.bytesToWrite() == 0
def connectTo(self, ip, port, attempts=1):
connected = False
tries = 0
self.connecting = True
while not connected and tries != attempts:
self.tcpSocket.abort()
self.tcpSocket.connectToHost(ip, port)
connected = self.tcpSocket.waitForConnected(1500)
tries += 1
self.connecting = False
print "-- gclient output --"
def isConnected(self):
return self.connected
def setConnected(self):
self.connected = True
def displayError(self, socketError):
if self.connecting:
return
main = mainWidgets["main"]
if main.isRunning():
main.setRecovery(True)
mainWidgets["log"].append("The connection was lost while a topology was running.\nYou can attempt to re-establish the connection by restarting the server. You can then press run to resume the previous running topology, or stop to stop it.")
mainWidgets["canvas"].scene().pauseRefresh()
if socketError == QtNetwork.QAbstractSocket.RemoteHostClosedError:
print "Lost connection to server."
elif socketError == QtNetwork.QAbstractSocket.HostNotFoundError:
print "The host was not found. Please check the host name and port settings."
elif socketError == QtNetwork.QAbstractSocket.ConnectionRefusedError:
print "The connection was refused by the peer. Make sure the server is running,"
print "and check that the host name and port settings are correct."
else:
print "The following error occurred: %s." % self.tcpSocket.errorString()
self.connected = False
self.terminate()
def read(self):
instring = self.waitForMessage(str(self.tcpSocket.readAll()))
if instring:
self.process(instring)
def waitForMessage(self, instring):
instring = self.leftovers + instring
if not self.readlength and instring.find(" ") == -1:
self.leftovers = instring
return
else:
if not self.readlength:
length, buf = instring.split(" ", 1)
self.readlength = int(length)
else:
buf = instring
if len(buf) < self.readlength:
self.leftovers = buf
return
else:
self.leftovers = buf[self.readlength:]
instring = buf[:self.readlength]
self.readlength = 0
return instring
def process(self, instring):
if not instring:
return
args = ""
instring = str(instring)
index = instring.find(" ")
if index != -1:
commandType, args = instring.split(" ", 1)
else:
commandType = instring
try:
command = Command.create(commandType, args)
command.execute()
except Exception, inst:
print type(inst)
print inst.args
print "invalid command"
print commandType, args
self.process(self.waitForMessage(""))
def send(self, text):
length = str(len(text))
self.tcpSocket.writeData(length + " " + text)
def disconnect(self):
self.tcpSocket.disconnectFromHost()
def run(self):
while not self.isConnected():
time.sleep(1)
print "connected!"
text = raw_input("gclient> ")
while text != "exit":
self.process(text)
text = raw_input("gclient> ")
self.disconnect()
"""
class ShellStarter(QtCore.QThread):
def __init__(self, command):
QtCore.QThread.__init__(self)
self.command = str(command)
self.started = -1
def startStatus(self):
return self.started
def run(self):
self.started = 0
os.system(self.command)
self.started = 1
"""
class Callable:
def __init__(self, anycallable):
self.__call__ = anycallable
class Command:
def __init__(self, args):
global client
self.args = args
self.client = client
def isolateFilename(self, path):
return path.split("/")[-1].split("\\")[-1]
def create(commandType, args):
return commands[commandType](args)
create = Callable(create)
class ReceivePathCommand(Command):
def execute(self):
print "setting remote path to " + self.args
environ["remotepath"] = self.args + "/"
class SendFileCommand(Command):
def execute(self):
targetDir, path = self.args.split(" ", 1)
filename = self.isolateFilename(path)
print "sending file " + filename
infile = open(path, "rb")
self.client.send("file " + targetDir + "/" + filename + " " + infile.read())
infile.close()
class SendStartCommand(Command):
def execute(self):
filename = self.isolateFilename(self.args)
print "sending start " + filename
self.client.send("start " + filename)
class SendStopCommand(Command):
def execute(self):
print "sending stop"
self.client.send("stop")
class SendKillCommand(Command):
def execute(self):
print "killing " + self.args
self.client.send("kill " + self.args)
class ReceiveDeviceStatusCommand(Command):
def execute(self):
scene = mainWidgets["canvas"].scene()
tm = mainWidgets["tm"]
device, pid, status = self.args.split(" ", 2)
name = device
if device.find("WAP") == 0:
name = "Wireless_access_point_" + device.split("_")[-1]
item = scene.findItem(name)
if item is not None:
item.setStatus(status)
tm.update(device, pid, status)
class ReceiveWirelessStatsCommand(Command):
def execute(self):
name, stats = self.args.split(" ", 1)
scene = mainWidgets["canvas"].scene()
scene.findItem(name).setWirelessStats(stats)
class ReceiveRouterStatsCommand(Command):
def execute(self):
name, queue, size, rate = self.args.split(" ", 3)
scene = mainWidgets["canvas"].scene()
scene.findItem(name).setRouterStats(queue, size, rate)
class ReceiveWiresharkCaptureCommand(Command):
def execute(self):
name, capture = self.args.split(" ", 1)
outfile = environ["tmp"] + name + ".out"
fd = open(outfile, "ab")
fd.write(capture)
fd.close()
commands = \
{
"start":SendStartCommand,
"stop":SendStopCommand,
"path":ReceivePathCommand,
"file":SendFileCommand,
"status":ReceiveDeviceStatusCommand,
"kill":SendKillCommand,
"wstats":ReceiveWirelessStatsCommand,
"rstats":ReceiveRouterStatsCommand,
"wshark":ReceiveWiresharkCaptureCommand
}
client = None
if __name__ == "__main__":
app = QtCore.QCoreApplication(sys.argv)
client.connectTo("localhost", 9000)
text = raw_input("gclient> ")
while text:
client.send(text)
text = raw_input("gclient> ")
|
[
"muntasirc@ymail.com"
] |
muntasirc@ymail.com
|
bb7047e09f1da2f26a09f946bc13a583c154c85e
|
daa336baa046f367d8ac230a487d2a99718977da
|
/Test.py
|
ee099227214b06393e42d5ebd2f1c8d11e9d28ca
|
[] |
no_license
|
AllenOris/Fraction-Practice-
|
a3736b93fdd2481d067e92a2ba1a80aaa9bd6045
|
c8bb40bf2800e0679f1f160c67dac86142eb8a64
|
refs/heads/master
| 2020-03-18T17:47:38.860054
| 2018-05-27T13:55:51
| 2018-05-27T13:55:51
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 677
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Fri May 25 20:31:02 2018
@author: ASUS
"""
import fraction as frac
import os
print(help(frac))
a=frac.make_frac(3,5)
b=frac.make_frac(7,10)
print("a=",end='')
a.show_frac()
print("b=",end='')
b.show_frac()
print()
c=a+b
print("a+b=",end='')
c.show_frac()
print()
c=a+1
print("a+1=",end='')
c.show_frac()
print()
c=a-b
print("a-b=",end='')
c.show_frac()
print()
c=a*b
print("a*b=",end='')
c.show_frac()
print()
c=a/b
print("a/b=",end='')
c.show_frac()
print()
c=1/a
print("1/a=",end='')
c.show_frac()
print()
c=a**3
print("a**3=",end='')
c.show_frac()
print()
c=a**(-3)
print("a**(-3)=",end='')
c.show_frac()
os.system("pause")
|
[
"34499426+AllenTaken@users.noreply.github.com"
] |
34499426+AllenTaken@users.noreply.github.com
|
e6db939e0e2f41b8c0888ff7175baf6c641ce956
|
b3d37948d29d0867f6869f2cf7db0b30448e0387
|
/products/models.py
|
dae7b254c326614498380efffa5ff0219729a99c
|
[] |
no_license
|
Code-Institute-Submissions/happyhomeplants
|
9335947151bd30d14f5366371425c8d2ec333e92
|
0fa618ace3fd4c0f3b6db57f784630c66e898fc4
|
refs/heads/master
| 2023-02-12T07:20:50.961817
| 2021-01-14T23:11:54
| 2021-01-14T23:11:54
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,118
|
py
|
from django.db import models
# Create your models here.
class Category(models.Model):
class Meta:
verbose_name_plural = "Categories"
name = models.CharField(max_length=254)
friendly_name = models.CharField(max_length=254, null=True, blank=True)
def __str__(self):
return self.name
def get_friendly_name(self):
return self.friendly_name
class Product(models.Model):
category = models.ForeignKey(
'Category', null=True, blank=True, on_delete=models.SET_NULL)
name = models.CharField(max_length=254)
friendly_name = models.CharField(max_length=254, null=True, blank=True)
alternate_name = models.CharField(max_length=254, blank=True)
price = models.DecimalField(max_digits=6, decimal_places=2)
description = models.TextField()
image = models.ImageField(null=True, blank=True)
image_url = models.URLField(max_length=1024, null=True, blank=True)
height = models.CharField(max_length=4, null=True, blank=True)
def __str__(self):
return self.name
def get_friendly_name(self):
return self.friendly_name
|
[
"olivia.tatum1@hotmail.com"
] |
olivia.tatum1@hotmail.com
|
29e4dff45bfb46a9f8d519ac80d90c94db86362e
|
6f0fd7cc158c3a5be6fd7035f0682ba70f68e682
|
/player.py
|
379f1128e5a72e52301b5af3121f522567231da0
|
[
"MIT"
] |
permissive
|
KWeselski/pygame_paper_soccer
|
15d63c93c7bc06367d7fc165bcd0d47489d1a76c
|
da6dc8768b63b8299c90610b933520ed389480a8
|
refs/heads/master
| 2023-01-13T06:52:08.866036
| 2020-11-07T15:55:31
| 2020-11-07T15:55:31
| 288,472,349
| 3
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 201
|
py
|
class Player():
"""
"""
def __init__(self,name,color,points=0,turn=False):
self.name = name
self.color = color
self.turn = turn
self.points = points
|
[
"weselski.kamil@gmail.com"
] |
weselski.kamil@gmail.com
|
89d9689620e4473459bf4e9f98d76232622ea3b7
|
7aad0c6f6e578d8dc03682caae373d252328ce12
|
/linuxFriends/wsgi.py
|
83e863cee4d76a6fe3c98f46ed0e6939c2eef947
|
[] |
no_license
|
votricetanyi/linuxfriends
|
db00544a04bed1cb99a3fe275433d6278e029bb9
|
f36c7f87f51ee1f585c8da21de08a874582dd51f
|
refs/heads/main
| 2022-12-28T20:14:11.053726
| 2020-10-14T13:05:12
| 2020-10-14T13:05:12
| 304,015,872
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 401
|
py
|
"""
WSGI config for linuxFriends project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'linuxFriends.settings')
application = get_wsgi_application()
|
[
"lug.limbe@gmail.com"
] |
lug.limbe@gmail.com
|
48e9f0ea3cd43d3ec2a9ca4f863703823e7e0e83
|
ca37265079432d8c9b6ad1171a40a7739ca0c738
|
/src/haskell/dm/tools/plot_tuning.py
|
ca6d2c011b3edfcf8b76deaa93b03a37013969de
|
[] |
no_license
|
steven-le-thien/dm
|
e2749226f790fb52dee36db42a2c1541aa7addd9
|
4dc692a4952fa67f521ff7b6d174bf062984e259
|
refs/heads/master
| 2023-01-23T17:12:09.211693
| 2020-12-04T13:21:40
| 2020-12-04T13:21:40
| 304,448,212
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 571
|
py
|
import numpy as np
import matplotlib.pyplot as plt
thresh = np.array([0.01, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.75,0.8,0.825,0.85,0.9,1,1.1])
error = np.array([0.991960,
0.985930,0.968844,0.970854,0.958794,0.959799,0.958794,0.946734,0.950754,0.942714,0.944724,0.944724,0.959799,0.952764,0.953769])
error_inc = np.ones(len(thresh)) * 0.912563
plt.plot(thresh, error,thresh, error_inc)
plt.xlabel('Threshold for deterministic dm')
plt.ylabel('FN error')
plt.legend(['deterministic dm', 'inc'])
plt.savefig('dna_tuning.png', dpi=300, bbox_inches='tight')
plt.show()
|
[
"thienle@dhcp-10-29-216-161.dyn.MIT.EDU"
] |
thienle@dhcp-10-29-216-161.dyn.MIT.EDU
|
5ac051603f345727cdb55cb9fe49450153592d95
|
3f8e34f0ccf59aae44acfc192fab476f1ae3bb74
|
/stor/types/blockchain_format/sub_epoch_summary.py
|
7a8e12c7689d70e5f4c5038d3d8538a65c59e37e
|
[
"Apache-2.0"
] |
permissive
|
chia-os/stor-blockchain
|
9952b5ba78480cf0c71dc4ad053bd0d28d39eee7
|
3fe6268263e2db98970edc296d2e4c53694aafd0
|
refs/heads/master
| 2023-08-11T20:03:53.467778
| 2021-09-15T07:28:39
| 2021-09-15T07:28:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 642
|
py
|
from dataclasses import dataclass
from typing import Optional
from stor.types.blockchain_format.sized_bytes import bytes32
from stor.util.ints import uint8, uint64
from stor.util.streamable import Streamable, streamable
@dataclass(frozen=True)
@streamable
class SubEpochSummary(Streamable):
prev_subepoch_summary_hash: bytes32
reward_chain_hash: bytes32 # hash of reward chain at end of last segment
num_blocks_overflow: uint8 # How many more blocks than 384*(N-1)
new_difficulty: Optional[uint64] # Only once per epoch (diff adjustment)
new_sub_slot_iters: Optional[uint64] # Only once per epoch (diff adjustment)
|
[
"info@stor.network"
] |
info@stor.network
|
c36bbaecc135fbedb166bd0e40448f95378358d8
|
40b2a6fc0efdec3a20dacf403215b659aac0bdaf
|
/tests/async/test_pdf.py
|
8e414ad9f9c07c5ecb487a5750e611e069c3eac5
|
[
"Apache-2.0"
] |
permissive
|
jaywonder20/playwright-python
|
0ff4e652507129f8f11e8d0663e2b28622bc6d7f
|
759eec817fcd54435869d29c9fc665b20d1b2abe
|
refs/heads/master
| 2022-12-03T02:47:27.928189
| 2020-08-08T15:41:42
| 2020-08-08T15:41:42
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 916
|
py
|
# Copyright (c) Microsoft Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
import pytest
from playwright.async_api import Page
@pytest.mark.only_browser("chromium")
async def test_should_be_able_to_save_pdf_file(page: Page, server, tmpdir: Path):
output_file = tmpdir / "foo.png"
await page.pdf(path=str(output_file))
assert os.path.getsize(output_file) > 0
|
[
"noreply@github.com"
] |
noreply@github.com
|
d47b3f7b60759dc497f19df286cef74f591ed67e
|
cb227afa841c0e2e535b6f19d70e870cfba77b47
|
/mangatools/config.py
|
1446e7d95f59229b97b26e916a220f08ca763baf
|
[] |
no_license
|
cjhang/ENLR
|
8d1db368f2e12fbce2be54d2c2283753782dca3a
|
44ec3c4a3144861aa5f7a095a54fdd960cdae06c
|
refs/heads/master
| 2021-06-16T16:13:38.463704
| 2021-03-11T09:18:23
| 2021-03-11T09:18:23
| 178,145,347
| 2
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 606
|
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
ESP = 1e-8 # the error
release = 'MPL-8'
print("Data relese: {}, configure: mangatools/config.py".format(release))
# Data release MPL-7
if release == 'MPL-7':
DRP_VERSION = 'v2_4_3' # the default drp version
DAP_VERSION = '2.2.1'
elif release == 'MPL-8':
# MPL-8
DRP_VERSION = 'v2_5_3'
DAP_VERSION = '2.3.0'
PRODOCTS = 'HYB10'
## Data directory, you can direct change specific path after import this module
SAS = os.getenv('SAS_BASE_DIR', default=os.path.expanduser('~')+'/SAS')
print("Global SAS directory is {0}".format(SAS))
|
[
"chenjianhang2010@gmail.com"
] |
chenjianhang2010@gmail.com
|
7ac1f99256fe5e01d0138af7de5f49cb96909e41
|
33702a58845528e0119f453e3d3e2a245fba64e2
|
/FCNClsSegModel/eval_no_mmd.py
|
dc256a3272e44ecf8779579f4a8a5d4bd8f2c129
|
[
"MIT"
] |
permissive
|
PengyiZhang/DRR4Covid
|
cb3ea2f6a8178eaebf8bf6b1f9ada293ca90491b
|
653e656620ffba6fff2aab7263fe6036301adab8
|
refs/heads/master
| 2023-01-02T16:29:58.421518
| 2020-10-27T13:12:14
| 2020-10-27T13:12:14
| 289,850,411
| 9
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 22,975
|
py
|
# coding: utf-8
"""
"""
import torch
import torch.optim as optim
import torch.nn as nn
import os
import time
import copy
import numpy as np
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_auc_score, f1_score
from visual_confuse_matrix import make_confusion_matrix
from dataset import genDataset, genExtraForEvalDataset
from model import SegClsModule
from sklearn.metrics import cohen_kappa_score
import argparse
import logging
import os
import sys
import torchvision.transforms as transforms
import cv2
import numpy as np
import math
import random
import yaml
from pathlib import Path
from loss import Weighted_Jaccard_loss
from utils import dice_coef, probs2one_hot
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def setup_logger(name, save_dir, distributed_rank, filename="log.txt"):
"""terminal and log file
name: application information
save_dir: log dir
distributed_rank: only host 0 can generate log
filename: log file name
"""
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
# don't log results for the non-master process
if distributed_rank > 0:
return logger
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s: %(message)s")
ch.setFormatter(formatter)
logger.addHandler(ch)
if save_dir:
fh = logging.FileHandler(os.path.join(save_dir, filename))
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
def set_visible_gpu(gpu_idex):
"""
to control which gpu is visible for CUDA user
set_visible_gpu(1)
print(os.environ["CUDA_DEVICE_ORDER"])
print(os.environ["CUDA_VISIBLE_DEVICES"])
"""
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "{0}".format(gpu_idex)
def get_results(val_labels, val_outs, val_probs, save_cf_png_dir, save_metric_dir):
# first for probs
AUC_score = roc_auc_score(val_labels, val_probs)
F1_score = f1_score(val_labels, val_outs)
CM = confusion_matrix(val_labels, val_outs)
labels = ['True Neg','False Pos','False Neg','True Pos']
categories = ['0', '1']
make_confusion_matrix(CM,
group_names=labels,
categories=categories,
cmap='Blues',save_dir=save_cf_png_dir)
#make_confusion_matrix(CM, figsize=(8,6), cbar=False)
TN = CM[0][0]
FN = CM[1][0]
TP = CM[1][1]
FP = CM[0][1]
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP/(TP+FN)
# Specificity or true negative rate
TNR = TN/(TN+FP)
# Precision or positive predictive value
PPV = TP/(TP+FP)
# Negative predictive value
NPV = TN/(TN+FN)
# Fall out or false positive rate
FPR = FP/(FP+TN)
# False negative rate
FNR = FN/(TP+FN)
# False discovery rate
FDR = FP/(TP+FP)
# Overall accuracy
ACC = (TP+TN)/(TP+FP+FN+TN)
result_str = "Sensitivity=%.3f, Specificity=%.3f, PPV=%.3f, NPV=%.3f, FPR=%.3f, FNR=%.3f, FDR=%.3f, ACC=%.3f, AUC=%.3f, F1_score=%.3f\n" % (TPR, TNR, PPV, NPV, FPR, FNR, FDR, ACC, AUC_score, F1_score)
save_dir = save_metric_dir
with open(save_dir, "a+") as f:
f.writelines([result_str])
return result_str
def eval_model(model, dataloaders, log_dir="./log/", logger=None, opt=None):
since = time.time()
if False:#opt.do_seg:
# eval lung segmentation
logger.info("-"*8+"eval lung segmentation"+"-"*8)
model.eval()
all_dices = []
all_dices_au = []
for batch_idx, (inputs, labels) in enumerate(dataloaders["tgt_lung_seg_val"], 0):
annotation = dataloaders["tgt_lung_seg_val"].dataset.annotations[batch_idx]
img_dir = annotation.strip().split(',')[0]
img_name = Path(img_dir).name
inputs = inputs.to(device)
# adjust labels
labels[labels==opt.xray_mask_value_dict["lung"]] = 1
labels = labels[:,-1].to(device)
labels = torch.stack([labels == c for c in range(2)], dim=1)
with torch.set_grad_enabled(False):
if opt.use_aux:
_, _, seg_logits, _, seg_logits_au = model(inputs)
else:
_, _, seg_logits, _, _ = model(inputs)
seg_probs = torch.softmax(seg_logits, dim=1)
predicted_mask = probs2one_hot(seg_probs.detach())
# change the infection to Lung
predicted_mask_lung = predicted_mask[:,:-1]
predicted_mask_lung[:,-1] += predicted_mask[:,-1]
dices = dice_coef(predicted_mask_lung, labels.detach().type_as(predicted_mask)).cpu().numpy()
all_dices.append(dices) # [(B,C)]
predicted_mask_lung = predicted_mask_lung.squeeze().cpu().numpy() # 3xwxh
mask_inone = (np.zeros_like(predicted_mask_lung[0])+predicted_mask_lung[1]*255).astype(np.uint8)
# save dir:
save_dir = os.path.join(opt.logs, "tgt_lung_seg_val", "eval")
#
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(os.path.join(save_dir, img_name), mask_inone)
###################################################au
if opt.use_aux:
seg_probs_au = torch.softmax(seg_logits_au, dim=1)
predicted_mask_au = probs2one_hot(seg_probs_au.detach())
# change the infection to Lung
predicted_mask_lung_au = predicted_mask_au[:,:-1]
predicted_mask_lung_au[:,-1] += predicted_mask_au[:,-1]
dices_au = dice_coef(predicted_mask_lung_au, labels.detach().type_as(predicted_mask_au)).cpu().numpy()
all_dices_au.append(dices_au) # [(B,C)]
predicted_mask_lung_au = predicted_mask_lung_au.squeeze().cpu().numpy() # 3xwxh
mask_inone_au = (np.zeros_like(predicted_mask_lung_au[0])+predicted_mask_lung_au[1]*255).astype(np.uint8)
# save dir:
save_dir_au = os.path.join(opt.logs, "tgt_lung_seg_val_au", "eval")
#
if not os.path.exists(save_dir_au):
os.makedirs(save_dir_au)
cv2.imwrite(os.path.join(save_dir_au, img_name), mask_inone_au)
avg_dice = np.mean(np.concatenate(all_dices, 0), 0) #
logger.info("tgt_lung_seg_val:[%d/%d],dice0:%.03f,dice1:%.03f,dice:%.03f"
% (batch_idx, len(dataloaders['tgt_lung_seg_val'].dataset)//inputs.shape[0],
avg_dice[0], avg_dice[1], np.mean(np.concatenate(all_dices, 0))))
if opt.use_aux:
avg_dice_au = np.mean(np.concatenate(all_dices_au, 0), 0) #
logger.info("tgt_lung_seg_val_au:[%d/%d],dice0:%.03f,dice1:%.03f,dice:%.03f"
% (batch_idx, len(dataloaders['tgt_lung_seg_val'].dataset)//inputs.shape[0],
avg_dice_au[0], avg_dice_au[1], np.mean(np.concatenate(all_dices_au, 0))))
if True:
# eval infection segmentation and cls
logger.info("-"*8+"eval infection cls"+"-"*8)
model.eval()
val_gt = []
val_cls_pred = []
val_cls_probs = [] # for VOC
val_seg_pred = []
val_seg_probs = [] # for VOC
val_seg_probs_au = []
val_seg_pred_au = [] # for VOC
for batch_idx, (inputs, labels) in enumerate(dataloaders["tgt_cls_val"], 0):
inputs = inputs.to(device)
# adjust label
val_gt.append(labels.cpu().data.numpy())
with torch.set_grad_enabled(False):
annotation = dataloaders["tgt_cls_val"].dataset.annotations[batch_idx]
img_dir = annotation.strip().split(',')[0]
img_name = Path(img_dir).name
if opt.use_aux:
cls_logits, _, seg_logits, _, seg_logits_au = model(inputs)
else:
cls_logits, _, seg_logits, _, _ = model(inputs)
if opt.do_seg:
seg_probs = torch.softmax(seg_logits, dim=1)
val_seg_probs.append(seg_probs[:,-1:].detach().cpu().view(seg_probs.shape[0], 1, -1).max(-1)[0])
predicted_mask_onehot = probs2one_hot(seg_probs.detach())
# for save
predicted_mask = predicted_mask_onehot.squeeze().cpu().numpy() # 3xwxh
mask_inone = (np.zeros_like(predicted_mask[0])+predicted_mask[1]*128+predicted_mask[2]*255).astype(np.uint8)
# save dir:
save_dir = os.path.join(opt.logs, "tgt_cls_val", "eval")
#
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(os.path.join(save_dir, img_name), mask_inone)
# seg2cls
preds_cls_seg = (predicted_mask_onehot[:,-1:].sum(-1).sum(-1) > 0).cpu().numpy().astype(np.uint8)
val_seg_pred.append(preds_cls_seg)
if opt.do_seg and opt.use_aux:
seg_probs_au = torch.softmax(seg_logits_au, dim=1)
val_seg_probs_au.append(seg_probs_au[:,-1:].detach().cpu().view(seg_probs_au.shape[0], 1, -1).max(-1)[0])
predicted_mask_onehot_au = probs2one_hot(seg_probs_au.detach())
# for save
predicted_mask_au = predicted_mask_onehot_au.squeeze().cpu().numpy() # 3xwxh
mask_inone_au = (np.zeros_like(predicted_mask_au[0])+predicted_mask_au[1]*128+predicted_mask_au[2]*255).astype(np.uint8)
# save dir:
save_dir_au = os.path.join(opt.logs, "tgt_cls_val_au", "eval")
#
if not os.path.exists(save_dir_au):
os.makedirs(save_dir_au)
cv2.imwrite(os.path.join(save_dir_au, img_name), mask_inone_au)
# seg2cls
preds_cls_seg_au = (predicted_mask_onehot_au[:,-1:].sum(-1).sum(-1) > 0).cpu().numpy().astype(np.uint8)
val_seg_pred_au.append(preds_cls_seg_au)
# cls
#print(cls_logits)
if opt.do_cls:
probs_cls = torch.softmax(cls_logits, dim=1)
val_cls_probs.append(probs_cls[...,1:].detach().cpu().numpy())
preds_cls = (probs_cls[...,1:] > 0.5).type(torch.long)
val_cls_pred.append(preds_cls.cpu().data.numpy())
if not os.path.exists(os.path.join(opt.logs, "cf")):
os.makedirs(os.path.join(opt.logs, "cf"))
val_gt = np.concatenate(val_gt, axis=0)
if opt.do_cls:
val_cls_pred = np.concatenate(val_cls_pred, axis=0)
val_cls_probs = np.concatenate(val_cls_probs, axis=0)
save_cf_png_dir = os.path.join(opt.logs, "cf", "eval_cls_cf.png")
save_metric_dir = os.path.join(opt.logs, "eval_metric_cls.txt")
result_str = get_results(val_gt, val_cls_pred, val_cls_probs, save_cf_png_dir, save_metric_dir)
logger.info("tgt_cls_val:[cls]: %s" % (result_str))
if opt.do_seg:
val_seg_pred = np.concatenate(val_seg_pred, axis=0)
val_seg_probs = np.concatenate(val_seg_probs, axis=0)
# seg2cls
save_cf_png_dir = os.path.join(opt.logs, "cf", "eval_seg_cf.png")
save_metric_dir = os.path.join(opt.logs, "eval_metric_seg.txt")
result_str = get_results(val_gt, val_seg_pred, val_seg_probs, save_cf_png_dir, save_metric_dir)
logger.info("tgt_seg_val:[seg2cls]: %s" % (result_str))
if opt.do_seg and opt.use_aux:
val_seg_pred_au = np.concatenate(val_seg_pred_au, axis=0)
val_seg_probs_au = np.concatenate(val_seg_probs_au, axis=0)
# seg2cls
save_cf_png_dir_au = os.path.join(opt.logs, "cf", "eval_seg_au_cf.png")
save_metric_dir_au = os.path.join(opt.logs, "eval_metric_seg_au.txt")
result_str_au = get_results(val_gt, val_seg_pred_au, val_seg_probs_au, save_cf_png_dir_au, save_metric_dir_au)
logger.info("tgt_seg_au_val:[seg2cls]: %s" % (result_str_au))
time_elapsed = time.time() - since
logger.info("Eval complete in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60))
def extra_eval_model(model, dataloaders, log_dir="./log/", logger=None, opt=None):
since = time.time()
if True:
# eval infection segmentation and cls
logger.info("-"*8+"extra eval infection cls"+"-"*8)
model.eval()
val_gt = []
val_cls_pred = []
val_cls_probs = [] # for VOC
val_seg_pred = []
val_seg_probs = [] # for VOC
val_seg_probs_au = []
val_seg_pred_au = [] # for VOC
for batch_idx, (inputs, labels) in enumerate(dataloaders["tgt_cls_extra_val"], 0):
inputs = inputs.to(device)
# adjust label
val_gt.append(labels.cpu().data.numpy())
with torch.set_grad_enabled(False):
annotation = dataloaders["tgt_cls_extra_val"].dataset.annotations[batch_idx]
img_dir = annotation.strip().split(',')[0]
img_name = Path(img_dir).name
if opt.use_aux:
cls_logits, _, seg_logits, _, seg_logits_au = model(inputs)
else:
cls_logits, _, seg_logits, _, _ = model(inputs)
if opt.do_seg:
seg_probs = torch.softmax(seg_logits, dim=1)
val_seg_probs.append(seg_probs[:,-1:].detach().cpu().view(seg_probs.shape[0], 1, -1).max(-1)[0])
predicted_mask_onehot = probs2one_hot(seg_probs.detach())
# for save
predicted_mask = predicted_mask_onehot.squeeze().cpu().numpy() # 3xwxh
mask_inone = (np.zeros_like(predicted_mask[0])+predicted_mask[1]*128+predicted_mask[2]*255).astype(np.uint8)
# save dir:
save_dir = os.path.join(opt.logs, "tgt_cls_extra_val", "eval")
#
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(os.path.join(save_dir, img_name), mask_inone)
# seg2cls
preds_cls_seg = (predicted_mask_onehot[:,-1:].sum(-1).sum(-1) > 0).cpu().numpy().astype(np.uint8)
val_seg_pred.append(preds_cls_seg)
if opt.do_seg and opt.use_aux:
seg_probs_au = torch.softmax(seg_logits_au, dim=1)
val_seg_probs_au.append(seg_probs_au[:,-1:].detach().cpu().view(seg_probs_au.shape[0], 1, -1).max(-1)[0])
predicted_mask_onehot_au = probs2one_hot(seg_probs_au.detach())
# for save
predicted_mask_au = predicted_mask_onehot_au.squeeze().cpu().numpy() # 3xwxh
mask_inone_au = (np.zeros_like(predicted_mask_au[0])+predicted_mask_au[1]*128+predicted_mask_au[2]*255).astype(np.uint8)
# save dir:
save_dir_au = os.path.join(opt.logs, "tgt_cls_extra_val_au", "eval")
#
if not os.path.exists(save_dir_au):
os.makedirs(save_dir_au)
cv2.imwrite(os.path.join(save_dir_au, img_name), mask_inone_au)
# seg2cls
preds_cls_seg_au = (predicted_mask_onehot_au[:,-1:].sum(-1).sum(-1) > 0).cpu().numpy().astype(np.uint8)
val_seg_pred_au.append(preds_cls_seg_au)
# cls
#print(cls_logits)
if opt.do_cls:
probs_cls = torch.softmax(cls_logits, dim=1)
val_cls_probs.append(probs_cls[...,1:].detach().cpu().numpy())
preds_cls = (probs_cls[...,1:] > 0.5).type(torch.long)
val_cls_pred.append(preds_cls.cpu().data.numpy())
if not os.path.exists(os.path.join(opt.logs, "cf")):
os.makedirs(os.path.join(opt.logs, "cf"))
val_gt = np.concatenate(val_gt, axis=0)
if opt.do_cls:
val_cls_pred = np.concatenate(val_cls_pred, axis=0)
val_cls_probs = np.concatenate(val_cls_probs, axis=0)
save_cf_png_dir = os.path.join(opt.logs, "cf", "extra_eval_cls_cf.png")
save_metric_dir = os.path.join(opt.logs, "extra_eval_metric_cls.txt")
result_str = get_results(val_gt, val_cls_pred, val_cls_probs, save_cf_png_dir, save_metric_dir)
logger.info("tgt_cls_extra_val:[cls]: %s" % (result_str))
if opt.do_seg:
val_seg_pred = np.concatenate(val_seg_pred, axis=0)
val_seg_probs = np.concatenate(val_seg_probs, axis=0)
# seg2cls
save_cf_png_dir = os.path.join(opt.logs, "cf", "extra_eval_seg_cf.png")
save_metric_dir = os.path.join(opt.logs, "extra_eval_metric_seg.txt")
result_str = get_results(val_gt, val_seg_pred, val_seg_probs, save_cf_png_dir, save_metric_dir)
logger.info("tgt_seg_extra_val:[seg2cls]: %s" % (result_str))
if opt.do_seg and opt.use_aux:
val_seg_pred_au = np.concatenate(val_seg_pred_au, axis=0)
val_seg_probs_au = np.concatenate(val_seg_probs_au, axis=0)
# seg2cls
save_cf_png_dir_au = os.path.join(opt.logs, "cf", "extra_eval_seg_au_cf.png")
save_metric_dir_au = os.path.join(opt.logs, "extra_eval_metric_seg_au.txt")
result_str_au = get_results(val_gt, val_seg_pred_au, val_seg_probs_au, save_cf_png_dir_au, save_metric_dir_au)
logger.info("tgt_seg_au_extra_val:[seg2cls]: %s" % (result_str_au))
time_elapsed = time.time() - since
logger.info("Extra_Eval complete in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60))
def get_argument():
parser = argparse.ArgumentParser()
parser.add_argument('--config', default="./cfgs/experiment.yaml", type=str)
parser.add_argument('--setseed', default=2020, type=int)
opt = parser.parse_args()
with open(opt.config) as f:
config = yaml.load(f)
for k, v in config['common'].items():
setattr(opt, k, v)
# repalce experiment
opt.experiment = opt.experiment.replace("only", "seg")
opt.seg_augment = True
opt.cls_augment = True
opt.do_cls_mmd = False
opt.do_seg = True
opt.do_cls = True
opt.do_seg_mmd = False
opt.eval_cls_times = 50
opt.eval_times = 50
opt.random_seed = opt.setseed
selected_drr_datasets_indexes = np.array(opt.selected_drr_datasets_indexes+opt.selected_drr_datasets_indexes)
#print(selected_drr_datasets_indexes)
# # [[0, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]]
print(selected_drr_datasets_indexes[-1][-1])
selected_drr_datasets_indexes[2][-1] = 1
selected_drr_datasets_indexes[3][-1] = 1
opt.selected_drr_datasets_indexes = [list(_) for _ in list(selected_drr_datasets_indexes)]
opt.logs = f"log/logs_experiment04_r{opt.setseed}"
log_dir = "./{}/{}/".format(opt.logs, opt.experiment)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
opt.logs = log_dir
return opt
if __name__ == "__main__":
opt = get_argument()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(opt.gpuid)
setup_seed(opt.random_seed)
assert opt.mode == 12, ("opt.mode is not supported in %s" % __file__)
log_dir = opt.logs
logger = setup_logger("{}".format(os.path.basename(__file__).split(".")[0]),
save_dir=opt.logs, distributed_rank=0, filename="log_eval.txt")
logger.info(opt)
batch_size = opt.batch_size
num_epochs = opt.num_epochs
use_pretrained = True
device_name = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device_name)
model_ft = SegClsModule(opt)
train_dataset, tgt_cls_train_dataset, tgt_cls_val_dataset, tgt_lung_seg_val_dataset = genDataset(opt)
tgt_cls_extra_val_dataset = genExtraForEvalDataset(opt)
logger.info("-"*8+"train:"+"-"*8)
logger.info(train_dataset.annotations)
logger.info("-"*8+"tgt_cls_train:"+"-"*8)
logger.info(tgt_cls_train_dataset.annotations)
logger.info("-"*8+"tgt_cls_val:"+"-"*8)
logger.info(tgt_cls_val_dataset.annotations)
logger.info("-"*8+"tgt_cls_extra_val:"+"-"*8)
logger.info(tgt_cls_extra_val_dataset.annotations)
image_datasets = {'train': train_dataset, 'tgt_cls_train': tgt_cls_train_dataset, 'tgt_cls_val': tgt_cls_val_dataset, 'tgt_cls_extra_val': tgt_cls_extra_val_dataset, "tgt_lung_seg_val": tgt_lung_seg_val_dataset}
shuffles = {"train": True,'tgt_cls_train': True, 'tgt_cls_val': False, 'tgt_cls_extra_val': False, "tgt_lung_seg_val": False}
batch_sizes_dict = {"train": batch_size,'tgt_cls_train': batch_size, 'tgt_cls_val': 1, 'tgt_cls_extra_val': 1, "tgt_lung_seg_val": 1}
drop_lasts = {"train": True,'tgt_cls_train': True, 'tgt_cls_val': False, 'tgt_cls_extra_val': False, "tgt_lung_seg_val": False}
number_worker_dict = {"train": 4,'tgt_cls_train': 4, 'tgt_cls_val': 0, 'tgt_cls_extra_val': 0, "tgt_lung_seg_val": 0}
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_sizes_dict[x], shuffle=shuffles[x], num_workers=number_worker_dict[x], drop_last=drop_lasts[x]) for x in ['train', 'tgt_cls_train', 'tgt_cls_val', 'tgt_cls_extra_val', "tgt_lung_seg_val"]}
# Send the model to GPU
weight_path = os.path.join(log_dir, "latest.pth")
model_ft.load_state_dict(torch.load(weight_path))
model_ft = model_ft.to(device)
model_ft.eval()
eval_model(model_ft, dataloaders_dict, log_dir=log_dir, logger=logger, opt=opt)
extra_eval_model(model_ft, dataloaders_dict, log_dir=log_dir, logger=logger, opt=opt)
|
[
"zhangpybit@gmail.com"
] |
zhangpybit@gmail.com
|
ff4bb40fe622a4b1834de724771603345ccc0dd6
|
5a42723328f46877a2b0d2535b4e28b41b537804
|
/cony/cony/urls.py
|
a608d548f1646afce150a29c4748305f78ace1c6
|
[] |
no_license
|
icortes74/cony
|
f7b93e8d722e3c8d1394208855d3e1d9b2bdc703
|
ff0dba82ef0261ef51f4e37b7ba9a055b6b3d752
|
refs/heads/master
| 2020-12-28T04:33:03.767781
| 2017-02-08T03:24:12
| 2017-02-08T03:24:12
| 68,744,218
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 813
|
py
|
"""cony URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/1.10/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.conf.urls import url, include
2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls'))
"""
from django.conf.urls import include,url
from django.contrib import admin
urlpatterns = [
url(r'^conyApp/',include('conyApp.urls')),
url(r'^admin/', admin.site.urls),
]
|
[
"jfernandez@ifk.cl"
] |
jfernandez@ifk.cl
|
549c77af99c9fb9e7af4ac9d3708ade1b4dbe720
|
3d35711600253ceda2601f61afaaddbebb0ec507
|
/Finite_Polygonal_Parametrized/V2-PointForce/RunNoDiag.py
|
010e97c3b13a86aa81bb93a4f6e1520e722dcc74
|
[] |
no_license
|
matheuscfernandes/hexactinellidsponge
|
ca4b7cd6d1bd7d4942bba01305ebcfb0b65e977c
|
da9bbc6a72ee2e050f9a6a454d775a3b63e4ae92
|
refs/heads/master
| 2023-01-12T21:20:36.565182
| 2017-10-26T17:56:30
| 2017-10-26T17:56:30
| 92,839,896
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 393
|
py
|
import numpy as np
oneDiag=False
twoDiag=False
fullDiag=False
execfile('AnalysisV1C.py')
for NUMBEROFSIDES in xrange(3,21):
for NUMBEROFSYSTEMSPERSIDE in xrange(1,6):
print "Running Job: ",(NUMBEROFSIDES,NUMBEROFSYSTEMSPERSIDE)
FileWrite=open('NoDiag_Output.txt', 'a+')
RunSimulation(NUMBEROFSIDES,12,NUMBEROFSYSTEMSPERSIDE,FileWrite)
FileWrite.close()
|
[
"matheuscfernandes@gmail.com"
] |
matheuscfernandes@gmail.com
|
2453c92faff2465714915000008b0ee83e8a551f
|
723e8c47de245431fd3c5750b306e782ace0f11f
|
/Week02/Assignment/[590]N叉树的后序遍历.py
|
62148e75a9467b14df543c7f47f0e5f9de123e24
|
[] |
no_license
|
xiaojiangzhang/algorithm010
|
685a13849ac8de20b56551e40c213167964e602c
|
521a27b504b8f404478760ae2f6143e7f8d437f5
|
refs/heads/master
| 2022-12-07T08:26:33.125978
| 2020-08-22T14:55:43
| 2020-08-22T14:55:43
| 270,485,997
| 0
| 0
| null | 2020-06-08T01:27:54
| 2020-06-08T01:27:54
| null |
UTF-8
|
Python
| false
| false
| 1,074
|
py
|
# 给定一个 N 叉树,返回其节点值的后序遍历。
#
# 例如,给定一个 3叉树 :
#
#
#
#
#
#
#
# 返回其后序遍历: [5,6,3,2,4,1].
#
#
#
# 说明: 递归法很简单,你可以使用迭代法完成此题吗? Related Topics 树
# leetcode submit region begin(Prohibit modification and deletion)
"""
# Definition for a Node.
class Node(object):
def __init__(self, val=None, children=None):
self.val = val
self.children = children
"""
class Solution(object):
def postorder(self, root):
"""
:type root: Node
:rtype: List[int]
"""
if not root:
return None
stack_run = [root]
result = []
while stack_run:
node = stack_run.pop()
result.append(node.val)
children = node.children
for child in children:
if child:
stack_run.append(child)
# result.reverse()
return result
# leetcode submit region end(Prohibit modification and deletion)
|
[
"xiaojiang_719@163.com"
] |
xiaojiang_719@163.com
|
ac70e2f057693341864da24d6890089f8c1d3fdb
|
58e588aaf090f451251a60097295ec01baa63bb0
|
/reportlab/graphics/charts/spider.py
|
a9b23d13b3c69e064cf4de6fbe0ceb94fb8122cb
|
[] |
no_license
|
alawibaba/loghound
|
f12fe3d31131ba768bc774ba9722846b02558103
|
a4399155aac4f3debaf2a66bf72df3a9774229e9
|
refs/heads/master
| 2016-09-05T15:31:48.635607
| 2010-02-01T02:15:35
| 2010-02-01T02:15:35
| 32,116,344
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 15,784
|
py
|
#Copyright ReportLab Europe Ltd. 2000-2004
#see license.txt for license details
#history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/graphics/charts/spider.py
# spider chart, also known as radar chart
__version__=''' $Id: spider.py 3345 2008-12-12 17:55:22Z damian $ '''
__doc__="""Spider Chart
Normal use shows variation of 5-10 parameters against some 'norm' or target.
When there is more than one series, place the series with the largest
numbers first, as it will be overdrawn by each successive one.
"""
import copy
from math import sin, cos, pi
from reportlab.lib import colors
from reportlab.lib.validators import isColor, isNumber, isListOfNumbersOrNone,\
isListOfNumbers, isColorOrNone, isString,\
isListOfStringsOrNone, OneOf, SequenceOf,\
isBoolean, isListOfColors, isNumberOrNone,\
isNoneOrListOfNoneOrStrings, isTextAnchor,\
isNoneOrListOfNoneOrNumbers, isBoxAnchor,\
isStringOrNone, isStringOrNone, EitherOr,\
isCallable
from reportlab.lib.attrmap import *
from reportlab.pdfgen.canvas import Canvas
from reportlab.graphics.shapes import Group, Drawing, Line, Rect, Polygon, PolyLine, Ellipse, \
Wedge, String, STATE_DEFAULTS
from reportlab.graphics.widgetbase import Widget, TypedPropertyCollection, PropHolder
from reportlab.graphics.charts.areas import PlotArea
from reportlab.graphics.charts.legends import _objStr
from piecharts import WedgeLabel
from reportlab.graphics.widgets.markers import makeMarker, uSymbol2Symbol, isSymbol
class StrandProperty(PropHolder):
_attrMap = AttrMap(
strokeWidth = AttrMapValue(isNumber),
fillColor = AttrMapValue(isColorOrNone),
strokeColor = AttrMapValue(isColorOrNone),
strokeDashArray = AttrMapValue(isListOfNumbersOrNone),
symbol = AttrMapValue(EitherOr((isStringOrNone,isSymbol)), desc='Widget placed at data points.'),
symbolSize= AttrMapValue(isNumber, desc='Symbol size.'),
name = AttrMapValue(isStringOrNone, desc='Name of the strand.'),
)
def __init__(self):
self.strokeWidth = 1
self.fillColor = None
self.strokeColor = STATE_DEFAULTS["strokeColor"]
self.strokeDashArray = STATE_DEFAULTS["strokeDashArray"]
self.symbol = None
self.symbolSize = 5
self.name = None
class SpokeProperty(PropHolder):
_attrMap = AttrMap(
strokeWidth = AttrMapValue(isNumber),
fillColor = AttrMapValue(isColorOrNone),
strokeColor = AttrMapValue(isColorOrNone),
strokeDashArray = AttrMapValue(isListOfNumbersOrNone),
labelRadius = AttrMapValue(isNumber),
visible = AttrMapValue(isBoolean,desc="True if the spoke line is to be drawn"),
)
def __init__(self,**kw):
self.strokeWidth = 0.5
self.fillColor = None
self.strokeColor = STATE_DEFAULTS["strokeColor"]
self.strokeDashArray = STATE_DEFAULTS["strokeDashArray"]
self.visible = 1
self.labelRadius = 1.05
class SpokeLabel(WedgeLabel):
def __init__(self,**kw):
WedgeLabel.__init__(self,**kw)
if '_text' not in kw.keys(): self._text = ''
class StrandLabel(SpokeLabel):
_attrMap = AttrMap(BASE=SpokeLabel,
format = AttrMapValue(EitherOr((isStringOrNone,isCallable)),"Format for the label"),
dR = AttrMapValue(isNumberOrNone,"radial shift for label"),
)
def __init__(self,**kw):
self.format = ''
self.dR = 0
SpokeLabel.__init__(self,**kw)
def _setupLabel(labelClass, text, radius, cx, cy, angle, car, sar, sty):
L = labelClass()
L._text = text
L.x = cx + radius*car
L.y = cy + radius*sar
L._pmv = angle*180/pi
L.boxAnchor = sty.boxAnchor
L.dx = sty.dx
L.dy = sty.dy
L.angle = sty.angle
L.boxAnchor = sty.boxAnchor
L.boxStrokeColor = sty.boxStrokeColor
L.boxStrokeWidth = sty.boxStrokeWidth
L.boxFillColor = sty.boxFillColor
L.strokeColor = sty.strokeColor
L.strokeWidth = sty.strokeWidth
L.leading = sty.leading
L.width = sty.width
L.maxWidth = sty.maxWidth
L.height = sty.height
L.textAnchor = sty.textAnchor
L.visible = sty.visible
L.topPadding = sty.topPadding
L.leftPadding = sty.leftPadding
L.rightPadding = sty.rightPadding
L.bottomPadding = sty.bottomPadding
L.fontName = sty.fontName
L.fontSize = sty.fontSize
L.fillColor = sty.fillColor
return L
class SpiderChart(PlotArea):
_attrMap = AttrMap(BASE=PlotArea,
data = AttrMapValue(None, desc='Data to be plotted, list of (lists of) numbers.'),
labels = AttrMapValue(isListOfStringsOrNone, desc="optional list of labels to use for each data point"),
startAngle = AttrMapValue(isNumber, desc="angle of first slice; like the compass, 0 is due North"),
direction = AttrMapValue( OneOf('clockwise', 'anticlockwise'), desc="'clockwise' or 'anticlockwise'"),
strands = AttrMapValue(None, desc="collection of strand descriptor objects"),
spokes = AttrMapValue(None, desc="collection of spoke descriptor objects"),
strandLabels = AttrMapValue(None, desc="collection of strand label descriptor objects"),
spokeLabels = AttrMapValue(None, desc="collection of spoke label descriptor objects"),
)
def makeSwatchSample(self, rowNo, x, y, width, height):
baseStyle = self.strands
styleIdx = rowNo % len(baseStyle)
style = baseStyle[styleIdx]
strokeColor = getattr(style, 'strokeColor', getattr(baseStyle,'strokeColor',None))
fillColor = getattr(style, 'fillColor', getattr(baseStyle,'fillColor',None))
strokeDashArray = getattr(style, 'strokeDashArray', getattr(baseStyle,'strokeDashArray',None))
strokeWidth = getattr(style, 'strokeWidth', getattr(baseStyle, 'strokeWidth',0))
symbol = getattr(style, 'symbol', getattr(baseStyle, 'symbol',None))
ym = y+height/2.0
if fillColor is None and strokeColor is not None and strokeWidth>0:
bg = Line(x,ym,x+width,ym,strokeWidth=strokeWidth,strokeColor=strokeColor,
strokeDashArray=strokeDashArray)
elif fillColor is not None:
bg = Rect(x,y,width,height,strokeWidth=strokeWidth,strokeColor=strokeColor,
strokeDashArray=strokeDashArray,fillColor=fillColor)
else:
bg = None
if symbol:
symbol = uSymbol2Symbol(symbol,x+width/2.,ym,color)
if bg:
g = Group()
g.add(bg)
g.add(symbol)
return g
return symbol or bg
def getSeriesName(self,i,default=None):
'''return series name i or default'''
return _objStr(getattr(self.strands[i],'name',default))
def __init__(self):
PlotArea.__init__(self)
self.data = [[10,12,14,16,14,12], [6,8,10,12,9,11]]
self.labels = None # or list of strings
self.labels = ['a','b','c','d','e','f']
self.startAngle = 90
self.direction = "clockwise"
self.strands = TypedPropertyCollection(StrandProperty)
self.spokes = TypedPropertyCollection(SpokeProperty)
self.spokeLabels = TypedPropertyCollection(SpokeLabel)
self.spokeLabels._text = None
self.strandLabels = TypedPropertyCollection(StrandLabel)
self.x = 10
self.y = 10
self.width = 180
self.height = 180
def demo(self):
d = Drawing(200, 200)
d.add(SpiderChart())
return d
def normalizeData(self, outer = 0.0):
"""Turns data into normalized ones where each datum is < 1.0,
and 1.0 = maximum radius. Adds 10% at outside edge by default"""
data = self.data
assert min(map(min,data)) >=0, "Cannot do spider plots of negative numbers!"
norm = max(map(max,data))
norm *= (1.0+outer)
if norm<1e-9: norm = 1.0
self._norm = norm
return [[e/norm for e in row] for row in data]
def _innerDrawLabel(self, sty, radius, cx, cy, angle, car, sar, labelClass=StrandLabel):
"Draw a label for a given item in the list."
fmt = sty.format
value = radius*self._norm
if not fmt:
text = None
elif isinstance(fmt,str):
if fmt == 'values':
text = sty._text
else:
text = fmt % value
elif callable(fmt):
text = fmt(value)
else:
raise ValueError("Unknown formatter type %s, expected string or function" % fmt)
if text:
dR = sty.dR
if dR:
radius += dR/self._radius
L = _setupLabel(labelClass, text, radius, cx, cy, angle, car, sar, sty)
if dR<0: L._anti = 1
else:
L = None
return L
def draw(self):
# normalize slice data
g = self.makeBackground() or Group()
xradius = self.width/2.0
yradius = self.height/2.0
self._radius = radius = min(xradius, yradius)
cx = self.x + xradius
cy = self.y + yradius
data = self.normalizeData()
self._seriesCount = len(data)
n = len(data[0])
#labels
if self.labels is None:
labels = [''] * n
else:
labels = self.labels
#there's no point in raising errors for less than enough errors if
#we silently create all for the extreme case of no labels.
i = n-len(labels)
if i>0:
labels = labels + ['']*i
S = []
STRANDS = []
STRANDAREAS = []
syms = []
labs = []
csa = []
angle = self.startAngle*pi/180
direction = self.direction == "clockwise" and -1 or 1
angleBetween = direction*(2 * pi)/float(n)
spokes = self.spokes
spokeLabels = self.spokeLabels
for i in xrange(n):
car = cos(angle)*radius
sar = sin(angle)*radius
csa.append((car,sar,angle))
si = self.spokes[i]
if si.visible:
spoke = Line(cx, cy, cx + car, cy + sar, strokeWidth = si.strokeWidth, strokeColor=si.strokeColor, strokeDashArray=si.strokeDashArray)
S.append(spoke)
sli = spokeLabels[i]
text = sli._text
if not text: text = labels[i]
if text:
S.append(_setupLabel(WedgeLabel, text, si.labelRadius, cx, cy, angle, car, sar, sli))
angle += angleBetween
# now plot the polygons
rowIdx = 0
strands = self.strands
strandLabels = self.strandLabels
for row in data:
# series plot
rsty = strands[rowIdx]
points = []
car, sar = csa[-1][:2]
r = row[-1]
points.append(cx+car*r)
points.append(cy+sar*r)
for i in xrange(n):
car, sar, angle = csa[i]
r = row[i]
points.append(cx+car*r)
points.append(cy+sar*r)
L = self._innerDrawLabel(strandLabels[(rowIdx,i)], r, cx, cy, angle, car, sar, labelClass=StrandLabel)
if L: labs.append(L)
sty = strands[(rowIdx,i)]
uSymbol = sty.symbol
# put in a marker, if it needs one
if uSymbol:
s_x = cx+car*r
s_y = cy+sar*r
s_fillColor = sty.fillColor
s_strokeColor = sty.strokeColor
s_strokeWidth = sty.strokeWidth
s_angle = 0
s_size = sty.symbolSize
if type(uSymbol) is type(''):
symbol = makeMarker(uSymbol,
size = s_size,
x = s_x,
y = s_y,
fillColor = s_fillColor,
strokeColor = s_strokeColor,
strokeWidth = s_strokeWidth,
angle = s_angle,
)
else:
symbol = uSymbol2Symbol(uSymbol,s_x,s_y,s_fillColor)
for k,v in (('size', s_size), ('fillColor', s_fillColor),
('x', s_x), ('y', s_y),
('strokeColor',s_strokeColor), ('strokeWidth',s_strokeWidth),
('angle',s_angle),):
if getattr(symbol,k,None) is None:
try:
setattr(symbol,k,v)
except:
pass
syms.append(symbol)
# make up the 'strand'
if rsty.fillColor:
strand = Polygon(points)
strand.fillColor = rsty.fillColor
strand.strokeColor = None
strand.strokeWidth = 0
STRANDAREAS.append(strand)
if rsty.strokeColor and rsty.strokeWidth:
strand = PolyLine(points)
strand.strokeColor = rsty.strokeColor
strand.strokeWidth = rsty.strokeWidth
strand.strokeDashArray = rsty.strokeDashArray
STRANDS.append(strand)
rowIdx += 1
map(g.add,STRANDAREAS+STRANDS+syms+S+labs)
return g
def sample1():
"Make a simple spider chart"
d = Drawing(400, 400)
sp = SpiderChart()
sp.x = 50
sp.y = 50
sp.width = 300
sp.height = 300
sp.data = [[10,12,14,16,14,12], [6,8,10,12,9,15],[7,8,17,4,12,8]]
sp.labels = ['a','b','c','d','e','f']
sp.strands[0].strokeColor = colors.cornsilk
sp.strands[1].strokeColor = colors.cyan
sp.strands[2].strokeColor = colors.palegreen
sp.strands[0].fillColor = colors.cornsilk
sp.strands[1].fillColor = colors.cyan
sp.strands[2].fillColor = colors.palegreen
sp.spokes.strokeDashArray = (2,2)
d.add(sp)
return d
def sample2():
"Make a spider chart with markers, but no fill"
d = Drawing(400, 400)
sp = SpiderChart()
sp.x = 50
sp.y = 50
sp.width = 300
sp.height = 300
sp.data = [[10,12,14,16,14,12], [6,8,10,12,9,15],[7,8,17,4,12,8]]
sp.labels = ['U','V','W','X','Y','Z']
sp.strands.strokeWidth = 1
sp.strands[0].fillColor = colors.pink
sp.strands[1].fillColor = colors.lightblue
sp.strands[2].fillColor = colors.palegreen
sp.strands[0].strokeColor = colors.red
sp.strands[1].strokeColor = colors.blue
sp.strands[2].strokeColor = colors.green
sp.strands.symbol = "FilledDiamond"
sp.strands[1].symbol = makeMarker("Circle")
sp.strands[1].symbol.strokeWidth = 0.5
sp.strands[1].symbol.fillColor = colors.yellow
sp.strands.symbolSize = 6
sp.strandLabels[0,3]._text = 'special'
sp.strandLabels[0,1]._text = 'one'
sp.strandLabels[0,0]._text = 'zero'
sp.strandLabels[1,0]._text = 'Earth'
sp.strandLabels[2,2]._text = 'Mars'
sp.strandLabels.format = 'values'
sp.strandLabels.dR = -5
d.add(sp)
return d
if __name__=='__main__':
d = sample1()
from reportlab.graphics.renderPDF import drawToFile
drawToFile(d, 'spider.pdf')
d = sample2()
drawToFile(d, 'spider2.pdf')
|
[
"dan.lowe.wheeler@42e3ffb8-c440-11de-ba9a-9db95b2bc6c5"
] |
dan.lowe.wheeler@42e3ffb8-c440-11de-ba9a-9db95b2bc6c5
|
af01e76bad2ad7b2ef20f9d099a60ade5e7a1dd2
|
c15f45103fe76fb0445bb72ec857d4ed5a6c6e5d
|
/Chapter.2/2.2.3.a.py
|
defdfccd87fe7e5af3f1878d29d90c6c151bf7ba
|
[] |
no_license
|
3367472/Python_20180421
|
5511f5ec54824bb50b25967617f6b532f13c52ad
|
5ba9e803bd59f02ce101059961752f55f53b6e03
|
refs/heads/master
| 2020-03-12T05:09:19.162713
| 2019-01-08T09:01:42
| 2019-01-08T09:01:42
| 130,458,447
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 73
|
py
|
# encoding: utf-8
print [1, 2, 3] + [4, 5, 6]
print 'Hello, ' + 'world!'
|
[
"wangxu@zdlhcar.com"
] |
wangxu@zdlhcar.com
|
5544135b104e97df280cc069e6aadaaffa1f1c73
|
97786534fbbc480ea5ac8953ab85385406a78179
|
/Bootcamp python 42/bootcamp_python/day01/ex02/vector.py
|
1a767d1ffe5913ec322bdca73d005d752992cd81
|
[] |
no_license
|
fvega-tr/Python-begins
|
bc5ebb1f2c6781e4ba4216833642ee1ca9546f21
|
a4252c8891e9edf4295a0a9ec52f525688f6d8d2
|
refs/heads/main
| 2023-01-12T18:38:00.564067
| 2020-10-20T23:02:16
| 2020-10-20T23:02:16
| 305,835,991
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,435
|
py
|
import sys
class Vector():
def __init__(self, values):
if isinstance(values, int):
self.values = []
for i in range(values):
self.values.append(i)
elif isinstance(values, tuple):
self.values = []
for i in range(values[0], values[1]):
self.values.append(float(i))
else:
self.values = values
if isinstance(values, int) == False:
self.len = len(values)
def __add__(self, n):
res = []
if isinstance(n, int) == False:
for i in range(self.len):
res.append(self.values[i] + n[i])
else:
res = [i + n for i in self.values]
return Vector(res)
def __radd__(self, n):
res = []
if isinstance(n, int) == False:
for i in range(self.len):
res.append(self.values[i] + n[i])
else:
res = [i + n for i in self.values]
return Vector(res)
def __sub__(self, n):
res = []
if isinstance(n, int) == False:
for i in range(self.len):
res.append(self.values[i] - n[i])
else:
res = [i - n for i in self.values]
return Vector(res)
def __rsub__(self, n):
res = []
if isinstance(n, int) == False:
for i in range(self.len):
res.append(self.values[i] - n[i])
else:
res = [i - n for i in self.values]
return Vector(res)
def __truediv__(self, n):
if (n == 0):
sys.exit("Can't divide by 0")
res = []
if isinstance(n, int) == False:
for i in range(self.len):
res.append(self.values[i] / n[i])
else:
res = [i / n for i in self.values]
return Vector(res)
def __rtruediv__(self, n):
if (n == 0):
sys.exit("Can't divide by 0")
res = []
if isinstance(n, int) == False:
for i in range(self.len):
res.append(self.values[i] / n[i])
else:
res = [i / n for i in self.values]
return Vector(res)
def __mul__(self, n):
res = []
if isinstance(n, int) == False:
for i in range(self.len):
res.append(self.values[i] * n[i])
else:
res = [i * n for i in self.values]
return Vector(res)
def __rmul__(self, n):
res = []
if isinstance(n, int) == False:
for i in range(self.len):
res.append(self.values[i] * n[i])
else:
res = [i * n for i in self.values]
return Vector(res)
def __str__(self):
text = "Vector " + str(self.values)
return (text)
def __repr__(self):
return "%s(%r)" % (self.__class__, self.__dict__)
|
[
"noreply@github.com"
] |
noreply@github.com
|
040ee9c07207435445daa4f38dbab1889c3a18e0
|
27dd0c926da56d679159423cccc666a23067bedd
|
/mysite/urls.py
|
c0acf19e7fd5cae62e23a8728bbb47b59760c297
|
[] |
no_license
|
ashutosh23r/my-first-blog
|
ac98ababc351ff122b27dd6d1126f946d4f8bce4
|
6641556a42c3b7a496bc00b3c7f956cc67e09a3c
|
refs/heads/master
| 2020-03-21T08:54:36.881975
| 2018-06-23T06:26:01
| 2018-06-23T06:26:01
| 138,373,036
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 838
|
py
|
"""mysite URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/1.11/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.conf.urls import url, include
2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls'))
"""
from django.conf.urls import url
from django.contrib import admin
from django.conf.urls import include
urlpatterns = [
url(r'^admin/', admin.site.urls),
url(r'', include('blog.urls')),
]
|
[
"ashutosh23r@gmail.com"
] |
ashutosh23r@gmail.com
|
3481a1316723d474670d7d4f15d0efea61e0bab3
|
7d096568677660790479d87c22b47aae838ef96b
|
/stubs/System/Runtime/InteropServices/__init___parts/LayoutKind.pyi
|
c3e34945f43ff2f2f4708a763120cc22b7bc2dfd
|
[
"MIT"
] |
permissive
|
NISystemsEngineering/rfmx-pythonnet
|
30adbdd5660b0d755957f35b68a4c2f60065800c
|
cd4f90a88a37ed043df880972cb55dfe18883bb7
|
refs/heads/master
| 2023-02-04T00:39:41.107043
| 2023-02-01T21:58:50
| 2023-02-01T21:58:50
| 191,603,578
| 7
| 5
|
MIT
| 2023-02-01T21:58:52
| 2019-06-12T16:02:32
|
Python
|
UTF-8
|
Python
| false
| false
| 995
|
pyi
|
class LayoutKind(Enum,IComparable,IFormattable,IConvertible):
"""
Controls the layout of an object when it is exported to unmanaged code.
enum LayoutKind,values: Auto (3),Explicit (2),Sequential (0)
"""
def __eq__(self,*args):
""" x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """
pass
def __format__(self,*args):
""" __format__(formattable: IFormattable,format: str) -> str """
pass
def __ge__(self,*args):
pass
def __gt__(self,*args):
pass
def __init__(self,*args):
""" x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """
pass
def __le__(self,*args):
pass
def __lt__(self,*args):
pass
def __ne__(self,*args):
pass
def __reduce_ex__(self,*args):
pass
def __str__(self,*args):
pass
Auto=None
Explicit=None
Sequential=None
value__=None
|
[
"sean.moore@ni.com"
] |
sean.moore@ni.com
|
694644c5e927145b981cd47f470968232ae22de9
|
6c3f8a0f30759b792859f010e23154b45d429ed2
|
/prototypes/microservices/search_client.py
|
c046626c1965cffe7a9024ea1d32abeb06223a7b
|
[
"Apache-2.0"
] |
permissive
|
maxhutch/forge
|
2acb2ec8598ea097b01a1c822357337eeccd1457
|
8e3521983b02944bf5fa57ae3ca5b3d88eb8f932
|
refs/heads/master
| 2021-06-27T16:19:09.351367
| 2017-09-11T15:08:24
| 2017-09-11T15:08:24
| 103,566,359
| 0
| 0
| null | 2017-09-14T18:16:39
| 2017-09-14T18:16:38
| null |
UTF-8
|
Python
| false
| false
| 77
|
py
|
/Users/jonathongaff/MDF/mdf-harvesters/mdf_indexers/ingester/search_client.py
|
[
"jgaff@uchicago.edu"
] |
jgaff@uchicago.edu
|
3d3f170c41e7b1ec6d690824f5e9b125aad81b97
|
8a1b88722fb5a79f837ed29f72e67c349a5adaa0
|
/GeneticAlgorithms/Trainer.py
|
695a57f1bc66ca78d209736281282b270fc89cb7
|
[] |
no_license
|
Lxopato/CC5114
|
fac9c4418872fab174dc838d7be65132533cbec7
|
11b294d2e29d439da2a27015297154053921d3c3
|
refs/heads/master
| 2021-01-21T05:28:11.142100
| 2017-12-04T00:13:08
| 2017-12-04T00:13:08
| 101,921,650
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,762
|
py
|
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.utils.np_utils import to_categorical
from keras.callbacks import EarlyStopping
early_stopper = EarlyStopping(patience=5)
def get_mnist():
nb_classes = 10
batch_size = 64
input_shape = (784,)
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = to_categorical(y_train, nb_classes)
y_test = to_categorical(y_test, nb_classes)
return nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test
def get_model(network, nb_classes, input_shape):
nb_layers = network['nb_layers']
nb_neurons = network['nb_neurons']
activation = network['activation']
optimizer = network['optimizer']
model = Sequential()
for i in range(nb_layers):
if i == 0:
model.add(Dense(nb_neurons, activation=activation, input_shape=input_shape))
else:
model.add(Dense(nb_neurons, activation=activation))
model.add(Dense(nb_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
def train_and_score(network):
nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test = get_mnist()
model = get_model(network, nb_classes, input_shape)
model.fit(x_train, y_train, batch_size=batch_size, epochs=10000, verbose=0, validation_data=(x_test, y_test), callbacks=[early_stopper])
score = model.evaluate(x_test, y_test, verbose=0)
return score[1]
|
[
"lpbustoscarrasco@gmail.com"
] |
lpbustoscarrasco@gmail.com
|
9a17228ab41e92b8d3007c76daa725861cdd5b61
|
6b360246db6825cd3cc349e534845d9082ad7906
|
/motionDetection/server_udp.py
|
ca28652d9617ca1ba459d1a181a3aac42fbfa586
|
[] |
no_license
|
Bitil8747/MOGv2-Motion-detect
|
697d83003e26600b6fd03d03fdd31a3190fce197
|
b7ce089c042a539158ce4f5a684991f5bdf0f160
|
refs/heads/main
| 2023-07-30T19:21:36.828410
| 2021-09-20T09:54:23
| 2021-09-20T09:54:23
| 408,377,509
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 214
|
py
|
import socket
udp_ip = 'localhost'
udp_port = 7070
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((udp_ip, udp_port))
while True:
data, addr = sock.recvfrom(1024)
print(data)
|
[
"noreply@github.com"
] |
noreply@github.com
|
2e123c89f8d30f43907e5e3da0590091363d41cd
|
aded26493d24aa5d902498f4c8406a68993f9eca
|
/model.py
|
ebc06ba10c1988c0ff3d9dd65e81c124fdafa128
|
[] |
no_license
|
vampiirre/territorial-conflict
|
e88c7dbb07e8336d4c3c8e771e27918eda447b1e
|
5c107291f515e5856a3e19b024893148ae34acec
|
refs/heads/master
| 2020-05-27T16:02:37.596300
| 2020-05-19T15:17:56
| 2020-05-19T15:17:56
| 188,692,020
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 115,594
|
py
|
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import matplotlib.dates as mdates
import datetime as dt
import csv
import matplotlib.animation
from matplotlib import cm
from scipy.io import loadmat
import pandas as pd
import sys
import tqdm
from tqdm import tqdm_notebook
import pickle
import _pickle
import cvxpy
import random
import math
import copy
from IPython.html import widgets
from IPython.display import display,clear_output
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.filterwarnings('ignore')
import time
%matplotlib notebook
%matplotlib notebook
class Territory:
def __init__(self, name, row, column, resources, sphere = True, radius = 900.1, percent = False): # объявление территории(Название, высота, ширина, кол-во ресурсов, есть ли искревление, радиус искревления)
#массив участков ([ресурсы,], root or eez?, страна+1, [дистанции], [польза], eez?)
self.unos = [[[[0] * resources, False, -1, [], [], False] for i in range(column)] for i in range(row)]
self.countries = [] # массив стран (приоритеты, удовлетворение, корни, территоии, eez)
self.name = name # название территории
self.names = [] # название стран
self.ind = [] # массив индикаторов стран нужный для charity и fun_balance
self.d = [] # границы полезности
self.change_map = [] # массив изменения карты для анимации
self.change_sati = [] # массив изменени удовлетворений стран для гистограммы c 0 по последнюю итерацию
self.start_map = [] # первый вариант карты
self.start_map_diff = [] # первый вариант карты с расширенной расцветкой
self.res_map = np.zeros((resources, row, column)) # карты ресурсов
self.dist_map = [] # карты расстояний
self.sati_map = [] # карты полезностей
self.transferable = [] # массив реальных элементов которые можно передавать
self.i_char = 0 # счётчик количества передачи участков из-за charity
self.i_exch = 0 # счётчик количества передачи участков из-за exchange
self.i_exch2 = 0 # счётчик количества обменов в exchange
self.isave = 0 # индикатор сохранения карты
self.sphere = sphere # есть ли искривление поверхности?
self.radius = radius # радиус искривления
self.z = [] # третья координата(от северного полюса)
self.inline = 0 # счётчик inline для matplotlib
self.angle1 = 30 # угол для 3д отображения
self.angle2 = 30 # второй угол для 3д отбражения
self.list_exchange = [] # сосед из страны i стране j который может ей уйти
self.map_exchange = [] # карта соседей каждого участка
self.started = [] # массив участков стран для промежуточного вычесления расстояний
self.exchanged = [{}, {}, {}] # словари с информацией о статистике обмена ункцией exchange
self.percent = percent # является ли модель процентной
self.full = [] # для процентной модели, чему равны 100% уровня удовлетворённости стран
if self.sphere: # заполнение self.z
for i in range(row):
self.z.append([])
for j in range(column): # расчёт третьей координаты с учётом искривления
self.z[i].append(self.radius - pow(pow(self.radius, 2) - ((pow(i - row/2 + 0.5, 2) + pow(j - column/2 + 0.5,2))), 0.5))
else:
for i in range(row):
self.z.append([])
for j in range(column):
self.z[i].append(0)
### ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ ###
## РЕДАКТИРОВАНИЕ КАРТЫ ##
# ДОБАВЛЕНИЕ СТРАНЫ (название, приоритеты, границы пользы)
def add_country(self, name, priorities, dis):
self.countries.append([priorities, 0, [], [], []]) # приоритеты удовлетворение корни территоии, eez
self.ind.append(0) # добавление индикатора
self.full.append(0)
self.names.append(name) # добавление имени
self.d.append(dis) # добавление границ пользы
for i in range(len(self.unos)):
for j in range(len(self.unos[0])): # добавление элемента дистанции и элемента пользы в участки
self.unos[i][j][3].append(0)
self.unos[i][j][4].append(0)
self.dist_map.append(np.ones((len(self.unos), len(self.unos[0]))) * -1) # добавление карты дистанции
self.sati_map.append(np.ones((len(self.unos), len(self.unos[0]))) * -1) # добавление карты пользы
# ДОБАВЛЕНИЕ РЕСУРСА НА НЕСКОЛЬКО УЧАСТКОВ(номер ресурса, первая строка, первый столбец, последняя строка,
#последний столбец)
def add_resources(self, n, ff, fl, lf, ll, r = 1):
for i in tqdm_notebook(range(ff, lf+1), total= lf + 1 - ff, desc="Add Resource " + str(n)):
for j in range(fl, ll+1):
self.add_resource(n, i, j, r) # редактирование каждого участка по очереди
# ДОБАВЛЕНИЕ РЕСУРСА НА УЧАСТОК (номер ресурса, строка участка, столбец участка)
def add_resource(self, n, f, l, r = 1):
self.unos[f][l][0][n] = r # изменение индикатора этого ресурса у участков
self.res_map[n][f][l] *= (1 + r) # изменение карты ресурса
# ОБЪЯВЛЕНИЕ УЧАСТКОВ РЕАЛЬНЫМИ (первая строка, первый столбец, последняя строка, последний столбец)
def add_reals(self, ff, fl, lf, ll): #ff fl - first coordinate, lf ll - last coordinate
for i in tqdm_notebook(range(ff, lf+1), total= lf + 1 - ff, desc="Add Real"):
for j in range(fl, ll+1):
self.add_real(i, j) # редактирование каждого участка по очереди
# ОБЪЯВЛЕНИЕ УЧАСТКА РЕАЛЬНЫМ (строка участка, столбец участка)
def add_real(self, f, l):
self.unos[f][l][2] = 0 # изменение номера принадлежности стране
for k in range(len(self.res_map)):
self.res_map[k][f][l] = 1 # изменение карт ресурсов
if [f, l] not in self.transferable:
self.transferable.append([f, l]) # добавление участка в множество свободных
# ОБЪЯВЛЕНИЕ УЧАСТКОВ КОРНЯМИ СТРАНЫ(номер страны, первая строка, первый столбец, последняя строка, последний столбец)
def add_roots(self, n, ff, fl, lf, ll): # ff, fl - 1st coor, lf, ll - 2nd coor
for i in tqdm_notebook(range(ff, lf+1), total= lf + 1 - ff, desc="Add Root of " + self.names[n]):
for j in range(fl, ll+1):
self.add_root(n, i, j) # редактирование каждого участка по очереди
# ОБЪЯВЛЕНИЕ УЧАСТКА КОРНЕМ СТРАНЫ(номер страны, строка участка, столбец участка)
def add_root(self, n, f, l):
if self.unos[f][l][2] == 0: # только если участок уже реален
self.transferable.remove([f, l]) # убрать из множества передаваемых участков
self.countries[n][2].append([f, l]) # добавить в множество корней страны
self.unos[f][l][2] = n + 1 # изменить у участка номер принадлежности стране
self.unos[f][l][1] = True # изменить у участка индикатор корня или еез
for k in range(len(self.countries)): # изменить для всех карт недоступность участка
if (k != n):
self.dist_map[k][f][l] = -2
self.sati_map[k][f][l] = -2
else:
self.dist_map[k][f][l] = 0
self.sati_map[k][f][l] = 0
## ПРЕДОБРАБОТКА КАРТЫ ##
# РАССЧИТЫВАЕТ РАССТОЯНИЯ И ПОЛЬЗЫ УЧАСТКОВ И РАСЧЁТ НАЧАЛЬНОГО УДОВЛЕТВОРЕНИЯ СТРАН
def started_pack(self, d = 52.4):
for k in range(len(self.countries)):
self.started.append([])
for i, j in self.countries[k][2]:
z = self.z[i][j]
if(((i == 0) or (self.unos[i-1][j][2] != k + 1)) or ((i == len(self.unos) - 1) or (self.unos[i+1][j][2] != k + 1)) or
((j == 0) or (self.unos[i][j-1][2] != k + 1)) or ((j == len(self.unos[0]) - 1) or (self.unos[i][j+1][2] != k + 1))):
self.started[k].append([i, j, z])
for i in tqdm_notebook(range(len(self.unos)), total=len(self.unos), desc="Started pack"):
for j in range(len(self.unos[0])):
if (self.unos[i][j][1] == False) and (self.unos[i][j][2] >= 0): # если участок может быть передан
for k in range(len(self.countries)):
dista = self.dist(i, j, k) # рассчёт его полезности и расстония до страны k
self.unos[i][j][3][k] = dista # изменение множества расстояний учатска
self.dist_map[k][i][j] = dista # изменение карты расстояний
if min(self.unos[i][j][3]) > d:
for k in range(len(self.countries)):
satis = self.sati(i, j, k)
self.unos[i][j][4][k] = satis # изменение множества пользы учатска
self.sati_map[k][i][j] = satis # изменение карты польз
if self.percent:
self.full[k] += satis
else:
self.countries[k][1] -= satis # изменение уровня удовлетворённости страны
else:
country = self.unos[i][j][3].index(min(self.unos[i][j][3]))
self.belong(i, j, country, 'EEZ '); # передача участка стране
self.unos[i][j][1] = True; # изменение идентификатора корня или еез
self.transferable.remove([i, j]) # убирание из списка передаваемых
self.countries[country][4].append([i, j]) # добавление в список еез страны
self.unos[i][j][5] = True # изменение идентификатора еез
if self.percent:
for i in range(len(self.unos)):
for j in range(len(self.unos[0])):
for k in range(len(self.countries)):
self.unos[i][j][4][k] = self.unos[i][j][4][k] / self.full[k] * 100
if self.sati_map[k][i][j] > 0:
self.sati_map[k][i][j] = self.sati_map[k][i][j] / self.full[k] * 100
if self.percent == False:
self.change_sati.append(np.array(self.countries)[:, 1].astype(int).tolist())# добавление первого множжества удовлетворённостей
else:
self.change_sati.append([round(x, 3) for x in np.array(self.countries)[:, 1]]) # добавление первого множжества удовлетворённостей
self.start_map = np.array(self.unos)[:, :, 2].astype(int).tolist() # добавление стартовой карты и стартовой карты с расширенной расцветкой
self.start_map_diff = (np.array(self.unos)[:, :, 2].astype(int) * 3 - 2 * np.sign(np.array(self.unos)[:, :, 2].astype(int))).tolist()
self.started = []
## ФУНКЦИИ ДЛЯ НАЧАЛЬНОГО РАЗДЕЛЕНИЯ КАРТЫ ##
# ФУНКЦИЯ БЛИЗОСТИ отдаёт участки ближайшим странам
def func_distance(self):
for elem in tqdm_notebook(self.transferable, total= len(self.transferable), desc="Func Distance"):
self.belong(elem[0], elem[1], self.near(elem[0], elem[1]), 'Func Distance ') # передача участка ближайшей стране
self.make_exch() # формируем карты для допустимого обмена
# ФУНКЦИЯ ПОЛЬЗЫ отдаёт участки странам, которым они принесут больше пользы
def func_satisfation(self):
for elem in tqdm_notebook(self.transferable, total= len(self.transferable), desc="Func Satisfaction"):
self.belong(elem[0], elem[1], self.most_sati(elem[0], elem[1]), 'Func Satisfaction ') # передача участка стране, которой он нужнее
self.make_exch() # формируем карты для допустимого обмена
# ФУНКЦИЯ СПРАВЕДЛИВОСТИ отдаёт самой бедной стране самый выгодный для неё участок и так по кругу
def func_balance(self):
empty = 0 # индикатор того, что странам больше нечего передавать
for k in tqdm_notebook(range(len(self.transferable) + len(self.countries) - 1), #пока не закончатся свободные участки
total= len(self.transferable) + len(self.countries) - 1, desc="Func Balance"):
if empty == 0: # если есть ещё что передавать
min_coun = self.min_sat()[1] # находим страну с наименьшим уровнем удовлетворённости
max_sati = 0 # максимально возможная прибавка удовлетворённости
maxf = 0 # первая координата участка
maxl = 0 # вторая координата участка
for elem in self.transferable: # для каждого свободного участка
i = elem[0] # первая координата
j = elem[1] # вторая координата
if (((i != 0 and (self.unos[i - 1][j][2] == min_coun + 1)) or # есть ли у участка сосед из той страны
(j != 0 and (self.unos[i][j - 1][2] == min_coun + 1)) or
(j != len(self.unos[0]) - 1 and (self.unos[i][j + 1][2] == min_coun + 1)) or
(i != len(self.unos) - 1 and (self.unos[i + 1][j][2] == min_coun + 1)))
and self.unos[i][j][2] == 0 and (max_sati < self.unos[i][j][4][min_coun] or # лучше ли этот участок
(max_sati == self.unos[i][j][4][min_coun] and
self.unos[maxf][maxl][3][min_coun] > self.unos[i][j][3][min_coun]))):
max_sati = self.unos[i][j][4][min_coun] # теперь он лучший вариант
maxf = i # записываем его первую координату
maxl = j # записываем его вторую координату
if max_sati != 0: # если польза больше нуля, то отдаём
self.belong(maxf, maxl, min_coun, 'Func Balance ')
elif self.ind.count(0) > 1: # если польза нулевая, то переводим индикатор заполненности
self.ind[min_coun] = 1
else: # если все индикаторы включены, то обмен закончен
empty = 1 # переводим индикатор окончания обмена
for element in self.transferable: # передаём оставшиеся участки ближайшим странам
if self.unos[element[0]][element[1]][2] == 0:
self.belong(element[0], element[1], self.near(element[0], element[1]), 'Func Balance ')
for i in range(len(self.ind)): # возвращаем индикаторы self.ind в нулевое положение
self.ind[i] = 0
self.make_exch() # формируем карты для допустимого обмена
## ФУНКЦИИ ДОПОЛНИТЕЛЬНОЙ ОБРАБОТКИ
# СПРАВЕДЛИВОСТЬ УВЕЛИЧИВАЕТ МИНИМАЛЬНУЮ УДОВЛЕТВОРЁННОСТЬ СТРАН ПОСРЕДСТВОМ CHARITY БОГАТЫЕ ОТДАЮТ БЕДНЫМ
def charity(self):
last_step = np.array(self.countries)[:, 1].astype(float) # запоминание нынешнего состония уровня удовлетворённости
self.total_charity() # передаём участки от всех "богатых" ко всем "бедным"
while ((np.array(self.countries)[:, 1].astype(float) != last_step).sum() != 0): # повтораяем пока меняются уровни удовлетворения
last_step = np.array(self.countries)[:, 1].astype(float)
self.total_charity()
# ОБМЕН ПЫТАЕТСЯ ОБМЕНЯТЬСЯ МЕЖДУ ЛЮБЫМИ ДВУМЯ СТРАНАМИ НЕ УМЕНЬШАЯ УДОВЛЕТВОРЁННОСТЬ НИ ОДНОЙ ИЗ НИХ
#количество случайных участков между которыми будет происходить обмен, количество попыток для каждой пары стран
def exchange(self, sides = [8, 6, 4], attempts = 16, safe = False):
succes = 1 # счётчик успешных обменов
while succes != 0: # пока обмены происходят
if safe:
self.make_exch() # формируем карты для допустимого обмена
succes = 0 # обнуляем счётчик обменов
for i in range(len(self.countries)):
for j in range(len(self.countries)): # для всех пар стран, между которыми возможен обмен
if i != j and len(self.list_exchange[i][j]) != 0 and len(self.list_exchange[j][i]) != 0 :
ntry = 0 # обнуляем счётчик неудачных попыток
result = 0 # обнуляем индикатор успеха обмена
while ntry != attempts: # пока счётчик неудачных попыток не достиг количества попыток
result = self.exch(i, j, sides[0], sides[0], ntry) #счётчик успеха = попытка обмена случайными участками
if not result: # если не удалось, повышаем счётчик неудачных попыток
ntry += 1
else: # иначе обнуляем счётчик неудачных попыток и включаем индикатор успешных обменов
ntry = 0
succes = 1
for elem in sides[1:]:
ntry = 0 # обнуляем счётчик неудачных попыток
result = 0 # обнуляем индикатор успеха обмена
while ntry != attempts: # пока счётчик неудачных попыток не достиг количества попыток
result = self.exch(i, j, elem, 2 * sides[0] - elem, ntry) #счётчик успеха = попытка обмена случайными участками
if not result: # если не удалось, повышаем счётчик неудачных попыток
ntry += 1
else: # иначе обнуляем счётчик неудачных попыток и включаем индикатор успешных обменов
ntry = 0
succes = 1
ntry = 0 # обнуляем счётчик неудачных попыток
result = 0 # обнуляем индикатор успеха обмена
while ntry != attempts: # пока счётчик неудачных попыток не достиг количества попыток
result = self.exch(i, j, 2 * sides[0] - elem, elem, ntry) #счётчик успеха = попытка обмена случайными участками
if not result: # если не удалось, повышаем счётчик неудачных попыток
ntry += 1
else: # иначе обнуляем счётчик неудачных попыток и включаем индикатор успешных обменов
ntry = 0
succes = 1
# КОМБИНАЦИЯ СПРАВЕДЛИВОСТИ И ОБМЕНА
#количество случайных участков для функции exchange между которыми будет происходить обмен, количество попыток обмена
def char_exch(self, sides = [8, 6, 4], attempts = 16, safe = False):
last_step = np.array(self.countries)[:, 1].astype(float) # запоминание нынешнего состония уровня удовлетворённости
self.charity() # передаём участки от "богатых" "бедным"
self.exchange(sides, attempts, safe) # производим взаимовыгодный обмен
while ((np.array(self.countries)[:, 1].astype(float) != last_step).sum() != 0): # пока меняются уровни удовлетворённости
last_step = np.array(self.countries)[:, 1].astype(float) # запоминание нынешнего уровня удовлетворённостей
self.charity() # передаём участки от "богатых" "бедным"
self.exchange(sides, attempts, safe) # производим взаимовыгодный обмен
def connectedness(self):
self.transferable = []
for i in range(len(self.countries)):
root = self.countries[i][2] + self.countries[i][4]
old = []
new = []
for k in tqdm_notebook(range(len(self.countries[i][2]) + len(self.countries[i][3]) + len(self.countries[i][4])), #пока не закончатся свободные участки
total= (len(self.countries[i][2]) + len(self.countries[i][3]) + len(self.countries[i][4])), desc="Connectedness" + self.names[i]):
if root != []:
elem = [root[0][0] - 1, root[0][1]]
if (elem[0] >= 0) and ((self.unos[elem[0]][elem[1]][2] - 1) == i) and (self.unos[elem[0]][elem[1]][1] == False) and (elem not in old) and (elem not in new):
new.append(elem)
elem = [root[0][0], root[0][1] - 1]
if (elem[1] >= 0) and ((self.unos[elem[0]][elem[1]][2] - 1) == i) and (self.unos[elem[0]][elem[1]][1] == False) and (elem not in old) and (elem not in new):
new.append(elem)
elem = [root[0][0] + 1, root[0][1]]
if (elem[0] < len(self.unos)) and ((self.unos[elem[0]][elem[1]][2] - 1) == i) and (self.unos[elem[0]][elem[1]][1] == False) and (elem not in old) and (elem not in new):
new.append(elem)
elem = [root[0][0], root[0][1] + 1]
if (elem[1] < len(self.unos[0])) and ((self.unos[elem[0]][elem[1]][2] - 1) == i) and (self.unos[elem[0]][elem[1]][1] == False) and (elem not in old) and (elem not in new):
new.append(elem)
root = root[1:]
else:
if new != []:
if new[0] not in old:
elem = [new[0][0] - 1, new[0][1]]
if (elem[0] >= 0) and ((self.unos[elem[0]][elem[1]][2] - 1) == i) and (self.unos[elem[0]][elem[1]][1] == False) and (elem not in old) and (elem not in new):
new.append(elem)
elem = [new[0][0], new[0][1] - 1]
if (elem[1] >= 0) and ((self.unos[elem[0]][elem[1]][2] - 1) == i) and (self.unos[elem[0]][elem[1]][1] == False) and (elem not in old) and (elem not in new):
new.append(elem)
elem = [new[0][0] + 1, new[0][1]]
if (elem[0] < len(self.unos)) and ((self.unos[elem[0]][elem[1]][2] - 1) == i) and (self.unos[elem[0]][elem[1]][1] == False) and (elem not in old) and (elem not in new):
new.append(elem)
elem = [new[0][0], new[0][1] + 1]
if (elem[1] < len(self.unos[0])) and ((self.unos[elem[0]][elem[1]][2] - 1) == i) and (self.unos[elem[0]][elem[1]][1] == False) and (elem not in old) and (elem not in new):
new.append(elem)
old.append(new[0])
new = new[1:]
copy_terr = copy.deepcopy(self.countries[i][3])
for elem in copy_terr:
if elem not in old:
self.transferable.append(elem)
self.countries[i][1] -= (2 - self.percent) * self.unos[elem[0]][elem[1]][4][i]
self.unos[elem[0]][elem[1]][2] = 0
self.countries[i][3].remove([elem[0], elem[1]])
## ФУНКЦИИ ДЛЯ ВЫВОДОВ
# ПИШЕТ СТАТИСТИКУ РЕЗУЛЬТАТА ФУНКЦИИ exchange
def exchange_info(self):
di0 = sorted(new.exchanged[0].items(), key=lambda item: -item[1])
di1 = sorted(new.exchanged[1].items(), key=lambda item: -item[1])
di2 = sorted(new.exchanged[2].items(), key=lambda item: -item[1])
print('Количество участков в настройках и количество таких обменов')
for i in range(len(di0)):
print(di0[i][0], di0[i][1])
print('Количество участков от каждой страны, учавствующих в обмене и количество таких обменов')
for i in range(len(di1)):
print(di1[i][0], di1[i][1])
print('Количество участков, учавствующих в обмене и количество таких обменов')
for i in range(len(di2)):
print(di2[i][0], di2[i][1])
# ПИШЕТ ТАБЛИЦУ ЗАВИСТИ ГДЕ СТРАНА ИЗ СТРОКИ ЗАВИДУЕТ СТРАНЕ ИЗ СТОЛБЦА
def envy_free(self):
env = [['']] # таблица зависти
for i in range(len(self.countries)):
env[0].append(self.names[i]) # добавляем в таблицу верхнюю строку названий стран
for i in range(len(self.countries)):
env.append([self.names[i]]) # добавляем в таблицу левый столбец названий стран
for j in range(len(self.countries)):
env[i + 1].append(self.envy(i, j)) # заполняем таблицу
max_len = max([len(str(e)) for r in env for e in r])
for row in env:
print(*list(map('{{:>{length}}}'.format(length= max_len).format, row))) # выводим построчно таблицу
# ПИШЕТ ТЕКУЩУЮ УДОВЛЕТВОРЁННОСТЬ СТРАН
def countries_sati(self):
sat_c = [] # список удовлетворённостей стран
for i in range(len(self.countries)):
sat_c.append([self.names[i], self.countries[i][1]]) # заполняем список удовлетворённостей
max_len = max([len(str(e)) for r in sat_c for e in r])
for row in sat_c:
print(*list(map('{{:>{length}}}'.format(length= max_len).format, row))) #выводим список удовлетворённостей
# СЛАЙДЕР ИЗМЕНЕНИЯ КАРТЫ (рассматриваемый интервал, гистограмма, расширенная расцветка)
def slider(self, interval = "All", hist = False, diff = True):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
def update_iteration(value): # обновление итерации для слайдера
update_map(iteration = value['new'])
def update_map(iteration = 0): # обновлеине карты
clear_output(wait=True) # очистка вывода
now_map = copy.deepcopy(start_map) # начальная карта (в последствии к ней и будут применяться изменения)
if diff: # если расширенная расцветка
for i in range(iteration):
now_map[change_map[i][0]][change_map[i][1]] = change_map[i][2] * 3 - (change_map[i][3] == "EEZ ") # изменяем карту
else: # если не расширенная
for i in range(iteration):
now_map[change_map[i][0]][change_map[i][1]] = change_map[i][2] # изменяем карту
plt.imshow(now_map, cmap = cm.viridis) # отображение карты
plt.show()
if hist: # если гистограмма
fig = plt.figure(figsize=(5, 5)) # настройка гистограммы
mpl.rcParams.update({'font.size': 10})
ax = plt.axes()
ranges = (np.array(self.change_sati).max() - np.array(self.change_sati).min()) * 0.1
plt.ylim([np.array(self.change_sati).min() - ranges, np.array(self.change_sati).max() + ranges])
plt.xlim( -0.5, len(self.names))
mpl.rcParams.update({'font.size': 10})
for i in range(len(self.names)):
ax.text(i + 0.15, self.change_sati[start + iteration][i], self.change_sati[start + iteration][i])
ax.yaxis.grid(True, zorder = 1)
plt.bar([i for i in range(len(self.names))], self.change_sati[start+iteration],
width = 0.3, color = 'blue', alpha = 0.7, zorder = 2)
plt.xticks(range(len(self.names)), self.names, rotation=30)
plt.legend(loc='upper right')
slider = widgets.IntSlider(iteration, min = 0, max = len(change_map)) # слайдер итераций
label = widgets.Label(value = 'Iterarion ' + str(iteration) + ((start!=0)*('(' + str(start + iteration) + ')')) + ' of ' + str(len(change_map)) + (' ' + change_map[slider.value - 1][3]) * (slider.value != 0))
display(slider, label)
slider.observe(update_iteration, names = 'value')
#настройка рассматриваемого интервала
if interval == "All": # если интервал весь
start = 0
end = len(self.change_map)
elif isinstance(interval[0], int): # если интервал задан численно
if interval[0] < 0:
interval[0] += len(self.change_map)
if interval[1] <= 0:
interval[1] += len(self.change_map)
start = interval[0]
end = interval[1]
else: # если интервал задан названиями функций
start = 0
end = len(self.change_map)
for i in range(len(self.change_map)):
if self.change_map[i][3][:-1] in interval or self.change_map[i][3][:8] == 'Exchange' and 'Exchange' in interval:
start = i
break
for i in range(len(self.change_map) - 1, -1, -1):
if self.change_map[i][3][:-1] in interval or self.change_map[i][3][:8] == 'Exchange' and 'Exchange' in interval:
end = i + 1
break
if diff: # если расширенная расцветка
start_map = copy.deepcopy(self.start_map_diff) # начальная карта
for i in range(start): # применяем изменения
start_map[self.change_map[i][0]][self.change_map[i][1]] = self.change_map[i][2] * 3 - (self.change_map[i][3] == "EEZ ")
else: # если расцветка обычная
start_map = copy.deepcopy(self.start_map) # начальная карта
for i in range(start): # применяем изменения
start_map[self.change_map[i][0]][self.change_map[i][1]] = self.change_map[i][2]
change_map = self.change_map[start:end] # формируется список изменений
plt.imshow(start_map, cmap = cm.viridis) # отображение карты
plt.show()
if hist: # если нужна гистограмма
fig = plt.figure(figsize=(5, 5)) # формирование гистограммы
mpl.rcParams.update({'font.size': 10})
ax = plt.axes()
ranges = (np.array(self.change_sati).max() - np.array(self.change_sati).min()) * 0.1
plt.ylim([np.array(self.change_sati).min() - ranges, np.array(self.change_sati).max() + ranges])
plt.xlim( -0.5, len(self.names))
mpl.rcParams.update({'font.size': 10})
for i in range(len(self.names)):
ax.text(i + 0.15, self.change_sati[start][i], self.change_sati[start][i])
ax.yaxis.grid(True, zorder = 1)
plt.bar([i for i in range(len(self.names))], self.change_sati[start],
width = 0.3, color = 'blue', alpha = 0.7, zorder = 2)
plt.xticks(range(len(self.names)), self.names, rotation=30)
plt.legend(loc='upper right')
slider = widgets.IntSlider(0, min = 0, max = len(change_map)) # слайдер итераций
label = widgets.Label(value = 'Iterarion 0' + ((start!=0)*('(' + str(start) + ')')) + ' of ' + str(len(change_map)) + (' ' + change_map[slider.value - 1][3]) * (slider.value != 0))
display(slider, label)
slider.observe(update_iteration, names = 'value')
#3Д ОТОБРАЖЕНИЕ (интервал, расширенная настройка, пропуск участков, размер участков)
def globus(self, interval = "All", diff = False, interv = 15, scale = 1.5):
if self.inline >= 1: # настройка matplotlib
for i in range(self.inline):
%matplotlib notebook
%matplotlib notebook
self.inline = 0
#настройка рассматриваемого интервала
if interval == "All": # если интервал весь
start = 0
end = len(self.change_map)
elif isinstance(interval[0], int): # если интервал задан численно
if interval[0] < 0:
interval[0] += len(self.change_map)
if interval[1] <= 0:
interval[1] += len(self.change_map)
start = interval[0]
end = interval[1]
else: # если интервал задан названиями функций
start = 0
end = len(self.change_map)
for i in range(len(self.change_map)):
if self.change_map[i][3][:-1] in interval or self.change_map[i][3][:8] == 'Exchange' and 'Exchange' in interval:
start = i
break
for i in range(len(self.change_map) - 1, -1, -1):
if self.change_map[i][3][:-1] in interval or self.change_map[i][3][:8] == 'Exchange' and 'Exchange' in interval:
end = i + 1
break
if diff: # если расширенная расцветка
start_map = copy.deepcopy(self.start_map_diff) # начальная карта
for i in range(start): # применяем изменения
start_map[self.change_map[i][0]][self.change_map[i][1]] = self.change_map[i][2] * 3 - (self.change_map[i][3] == "EEZ ")
else: # если расцветка обычная
start_map = copy.deepcopy(self.start_map) # начальная карта
for i in range(start): # применяем изменения
start_map[self.change_map[i][0]][self.change_map[i][1]] = self.change_map[i][2]
change_map = self.change_map[start:end] # формируется список изменений
x = [] # первая координата
y = [] # вторая координата
z = [] # третья координата
colors = [] # массив цветов точек
maxi = max(len(self.unos), len(self.unos[0]), max(max(self.z)) - min(min(self.z))) # максимальная длина координат
if diff: # рассчёт нужного смещения для размещения посередине
for i in range(0, len(self.unos), interv):
for j in range(0, len(self.unos[0]), interv):
if self.unos[i][j][2] > 0:
x.append((maxi - len(self.unos))/2 + i)
y.append((maxi - len(self.unos[0]))/2 + j)
z.append((maxi + max(max(self.z)))/2 - self.z[i][j])
colors.append(start_map[i][j])
else:
for i in range(0, len(self.unos), interv):
for j in range(0, len(self.unos[0]), interv):
if self.unos[i][j][2] > 0:
x.append((maxi - len(self.unos))/2 + i)
y.append((maxi - len(self.unos[0]))/2 + j)
z.append((maxi + max(max(self.z)))/2 - self.z[i][j])
colors.append(start_map[i][j])
fig = plt.figure(figsize=(5,5)) # настройка трёхмерной модели
ax = fig.add_subplot(111, projection='3d')
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
ax.set_xlim([0, maxi])
ax.set_ylim([0, maxi])
ax.set_zlim([0, maxi])
ax.scatter(x, y, z, c=colors, cmap=cm.viridis, s = 2 * interv * scale)
ax.view_init(30, 30)
plt.show()
def update_plot(angle1 = 30, angle2 = 30): # функция обновления угла
self.angle1 = angle1
self.angle2 = angle2
ax.view_init(angle1, angle2)
fig.canvas.draw_idle()
angle1_slider = widgets.IntSlider(30, min = -180, max = 180) # слайдер первого угла
display(angle1_slider)
angle2_slider = widgets.IntSlider(30, min = -180, max = 180) # слайдер второго угла
display(angle2_slider)
slider = widgets.IntSlider(0, min = 0, max = len(change_map)) # слайдер итерации
label = widgets.Label(value = 'Iterarion 0' + ((start!=0)*('(' + str(start) + ')')) + ' of ' + str(len(change_map)) + (' ' + change_map[slider.value - 1][3]) * (slider.value != 0))
display(slider, label)
# функции обновления для слайдеров
def update_angle1(value):
update_plot(angle1 = value['new'], angle2 = self.angle2)
def update_angle2(value):
update_plot(angle1 = self.angle1, angle2 = value['new'])
def update_iteration(value): # обновление итерации
update_map(iteration = value['new'])
def update_map(iteration = 0): # обновлеине карты
clear_output(wait=True) # очистка вывода
now_map = copy.deepcopy(start_map) # начальная карта (в последствии к ней и будут применяться изменения)
if diff: # если расширенная расцветка
for i in range(iteration):
now_map[change_map[i][0]][change_map[i][1]] = change_map[i][2] * 3 - (change_map[i][3] == "EEZ ") # изменяем карту
else: # если не расширенная
for i in range(iteration):
now_map[change_map[i][0]][change_map[i][1]] = change_map[i][2] # изменяем карту
colors = []
for i in range(0, len(self.unos), interv):
for j in range(0, len(self.unos[0]), interv):
if self.unos[i][j][2] > 0:
colors.append(now_map[i][j])
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111, projection='3d')
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
ax.set_xlim([0, maxi])
ax.set_ylim([0, maxi])
ax.set_zlim([0, maxi])
ax.scatter(x, y, z, c=colors, cmap=cm.viridis, s = 2 * interv * scale)
ax.view_init(self.angle1, self.angle2)
plt.show()
angle1_slider = widgets.IntSlider(self.angle1, min = -180, max = 180)
display(angle1_slider)
angle2_slider = widgets.IntSlider(self.angle2, min = -180, max = 180)
display(angle2_slider)
slider = widgets.IntSlider(iteration, min = 0, max = len(change_map)) # сам слайдер
label = widgets.Label(value = 'Iterarion ' + str(iteration) + ((start!=0)*('(' + str(start + iteration) + ')')) + ' of ' + str(len(change_map)) + (' ' + change_map[slider.value - 1][3]) * (slider.value != 0))
display(slider, label)
def update_plot(angle1 = 30, angle2 = 30):
self.angle1 = angle1
self.angle2 = angle2
ax.view_init(angle1, angle2)
fig.canvas.draw_idle()
def update_angle1(value):
update_plot(angle1 = value['new'], angle2 = self.angle2)
def update_angle2(value):
update_plot(angle1 = self.angle1, angle2 = value['new'])
angle1_slider.observe(update_angle1, names = 'value')
angle2_slider.observe(update_angle2, names = 'value')
slider.observe(update_iteration, names = 'value')
angle1_slider.observe(update_angle1, names = 'value')
angle2_slider.observe(update_angle2, names = 'value')
slider.observe(update_iteration, names = 'value')
# ТЕКУЩАЯ КАРТА (расширенная расцветка)
def terr(self, diff = True):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
if (diff): # отображение карты
plt.imshow(list(map(lambda a, b, c: list(map(lambda x, y, z: 2*x*(x>0) + x - 2 * y + z, a, b, c)),
np.array(self.unos)[:, :, 2].astype(int), np.array(self.unos)[:, :, 1].astype(int),
np.array(self.unos)[:, :, 5].astype(int))), cmap = cm.viridis)
else:
plt.imshow(np.array(self.unos)[:, :, 2].astype(int), cmap = cm.viridis)
if self.percent == False:
plt.title(str(len(self.change_map)) + ' ' + str(np.array(self.countries)[:, 1].astype(int)))
else:
plt.title(str(len(self.change_map)) + ' ' + str([round(x, 3) for x in np.array(self.countries)[:, 1]]))
plt.show()
# АНИМАЦИЯ ИЗМЕНЕНИЯ КАРТЫ необязательно указывать
#(расширеная расцветкаб длительность каждого кадра в милисекундах, пропуск кадров, повторять анимацию?)
def anim_terr(self, diff = True, interval = 200, x = 100, repeat = False):
if self.inline >= 1: # настройка matplotlib
for i in range(self.inline):
%matplotlib notebook
%matplotlib notebook
self.inline = 0
if diff: # анимация
f = plt.figure()
ax = f.gca()
im = copy.deepcopy(self.start_map_diff)
image = plt.imshow(im, interpolation='None', animated=True, cmap = cm.viridis)
def function_for_animation(frame_index):
for i in range(x):
im[self.change_map[min(frame_index * x + i, len(self.change_map) -
1)][0]][self.change_map[min(frame_index * x + i, len(self.change_map) -
1)][1]] = (self.change_map[min(frame_index * x + i, len(self.change_map) - 1)][2] * 3 - (self.change_map[min(frame_index * x + i, len(self.change_map) - 1)][3] == 'EEZ '))
image.set_data(im)
ax.set_title(self.change_map[min(frame_index * x, len(self.change_map) - 1)][3]
+ str(min(frame_index * x, len(self.change_map) - 1)) + ' '
+ str(self.change_sati[min(frame_index * x, len(self.change_map) - 1)]))
return matplotlib.animation.FuncAnimation(f, function_for_animation, interval=interval,
frames=(((len(self.change_map) - 1) // x) + 2), repeat = repeat, blit=True)
else:
f = plt.figure()
ax = f.gca()
im = copy.deepcopy(self.start_map)
image = plt.imshow(im, interpolation='None', animated=True, cmap = cm.viridis)
def function_for_animation(frame_index):
for i in range(x):
im[self.change_map[min(frame_index * x + i, len(self.change_map) -
1)][0]][self.change_map[min(frame_index * x + i, len(self.change_map) -
1)][1]] = self.change_map[min(frame_index * x + i, len(self.change_map) - 1)][2]
image.set_data(im)
ax.set_title(self.change_map[min(frame_index * x, len(self.change_map) - 1)][3]
+ str(min(frame_index * x, len(self.change_map) - 1)) + ' '
+ str(self.change_sati[min(frame_index * x, len(self.change_map) - 1)]))
return matplotlib.animation.FuncAnimation(f, function_for_animation, interval=interval,
frames=(((len(self.change_map) - 1) // x) + 2), repeat = repeat, blit = True)
# ГИСТОГРАММА ТЕКУЩЕГО УДОВЛЕТВОРЕНИЯ СТРАН
def hist(self):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
fig = plt.figure(dpi = 80, figsize = (8, 4)) # гистограмма
plt.title(str(len(self.change_sati)))
mpl.rcParams.update({'font.size': 10})
ax = plt.axes()
plt.xlim( -0.5, len(self.names) - 0.5)
for i in range(len(self.names)):
if self.percent == False:
ax.text(i + 0.15, np.array(self.countries)[:, 1].astype(int)[i], np.array(self.countries)[:, 1].astype(int)[i])
else:
ax.text(i + 0.15, round(np.array(self.countries)[i][1], 3), round(np.array(self.countries)[i][1], 3))
ax.yaxis.grid(True, zorder = 1)
if self.percent == False:
plt.bar([x for x in range(len(self.names))], np.array(self.countries)[:, 1].astype(int), width = 0.3, color = 'blue',
alpha = 0.7, zorder = 2)
else:
plt.bar([x for x in range(len(self.names))], [round(x, 3) for x in np.array(self.countries)[:, 1]], width = 0.3, color = 'blue',
alpha = 0.7, zorder = 2)
plt.xticks(range(len(self.names)), self.names)
plt.legend(loc='upper right')
# АНИМАЦИЯ ГИСТОГРАММЫ УДОВЛЕТВОРЕНИЯ необязательно
#длительность каждого кадра в милисекундах, пропуск кадров, повторять анимацию?)
def anim_hist(self, interval = 200, x = 1, repeat = False):
if self.inline >= 1: # настройка matplotlib
for i in range(self.inline):
%matplotlib notebook
%matplotlib notebook
self.inline = 0
fig = plt.figure(dpi = 80, figsize = (8, 4)) # анимация гистограммы
ranges = (np.array(self.change_sati).max() - np.array(self.change_sati).min()) * 0.1
def function_for_animation(frame_index):
plt.clf()
plt.title(self.change_map[min(frame_index * x, len(self.change_map) - 1)][3] + str(min(frame_index * x, len(self.change_map) - 1)))
plt.ylim([np.array(self.change_sati).min() - ranges, np.array(self.change_sati).max() + ranges])
plt.xlim( -0.5, len(self.names) - 0.5)
mpl.rcParams.update({'font.size': 10})
ax = plt.axes()
for i in range(len(self.names)):
ax.text(i + 0.15, self.change_sati[min(frame_index * x, len(self.change_map) - 1)][i],
self.change_sati[min(frame_index * x, len(self.change_map) - 1)][i])
ax.yaxis.grid(True, zorder = 1)
plt.bar([x for x in range(len(self.names))], self.change_sati[min(frame_index * x, len(self.change_map) - 1)],
width = 0.3, color = 'blue', alpha = 0.7, zorder = 2)
plt.xticks(range(len(self.names)), self.names)
plt.legend(loc='upper right')
return matplotlib.animation.FuncAnimation(fig, function_for_animation, interval=interval, repeat = repeat,
init_func = None, frames=(((len(self.change_sati) - 1) // x) + 2), blit=True)
# ТЕКУЩАЯ КАРТА И ГИСТОГРАММА УДОВЛеТВОРЕНИЯ СТРАН (расширенная расцветка)
def terr_hist(self, diff = True):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
nrows = 1 # фигура
ncols = 2
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(nrows, ncols, 1)
if diff: # карта
plt.imshow(list(map(lambda a, b, c: list(map(lambda x, y, z: 2*x*(x>0) + x - 2 * y + z, a, b, c)),
np.array(self.unos)[:, :, 2].astype(int), np.array(self.unos)[:, :, 1].astype(int),
np.array(self.unos)[:, :, 5].astype(int))), cmap = cm.viridis)
else:
plt.imshow(np.array(self.unos)[:, :, 2].astype(int))
# гистограмма
if self.percent == False:
plt.title(str(len(self.change_map)) + ' ' + str(np.array(self.countries)[:, 1].astype(int)))
else:
plt.title(str(len(self.change_map)) + ' ' + str([round(x, 3) for x in np.array(self.countries)[:, 1]]))
plt.show()
ax = fig.add_subplot(nrows, ncols, 2)
plt.title(str(len(self.change_sati)))
mpl.rcParams.update({'font.size': 10})
plt.xlim( -0.5, len(self.names))
for i in range(len(self.names)):
if self.percent == False:
ax.text(i + 0.15, np.array(self.countries)[:, 1].astype(int)[i], np.array(self.countries)[:, 1].astype(int)[i])
else:
ax.text(i + 0.15, round(np.array(self.countries)[i][1], 3), round(np.array(self.countries)[i][1], 3))
ax.yaxis.grid(True, zorder = 1)
if self.percent == False:
plt.bar([x for x in range(len(self.names))], np.array(self.countries)[:, 1].astype(int), width = 0.3, color = 'blue',
alpha = 0.7, zorder = 2)
else:
plt.bar([x for x in range(len(self.names))], [round(x, 3) for x in np.array(self.countries)[:, 1]], width = 0.3, color = 'blue',
alpha = 0.7, zorder = 2)
plt.xticks(range(len(self.names)), self.names)
plt.legend(loc='upper right')
# АНИМАЦИЯ КАРsТЫ И ГИСТОГРАММЫ необязательно
# расширенная расцветка, длительность каждого кадра в милисекундах, пропуск кадров, повторять анимацию?)
def anim(self, diff = True, interval = 200, x = 1, repeat = False):
if self.inline >= 1: # настройка matplotlib
for i in range(self.inline):
%matplotlib notebook
%matplotlib notebook
self.inline = 0
nrows = 1 # фигура
ncols = 2
fig = plt.figure(figsize=(10, 5))
ranges = (np.array(self.change_sati).max() - np.array(self.change_sati).min()) * 0.1
if diff: # анимация карты и гистограммы
im = copy.deepcopy(self.start_map_diff)
def function_for_animation(frame_index):
plt.clf()
ax = fig.add_subplot(nrows, ncols, 2)
plt.title(self.change_map[min(frame_index * x, len(self.change_map) - 1)][3] + str(min(frame_index * x, len(self.change_map) - 1)))
plt.ylim([np.array(self.change_sati).min() - ranges, np.array(self.change_sati).max() + ranges])
plt.xlim( -0.5, len(self.names))
mpl.rcParams.update({'font.size': 10})
for i in range(len(self.names)):
ax.text(i + 0.15, self.change_sati[min(frame_index * x, len(self.change_map) - 1)][i],
self.change_sati[min(frame_index * x, len(self.change_map) - 1)][i])
ax.yaxis.grid(True, zorder = 1)
plt.bar([x for x in range(len(self.names))], self.change_sati[min(frame_index * x, len(self.change_map) - 1)],
width = 0.3, color = 'blue', alpha = 0.7, zorder = 2)
plt.xticks(range(len(self.names)), self.names, rotation=30)
plt.legend(loc='upper right')
ax = fig.add_subplot(nrows, ncols, 1)
for i in range(x):
im[self.change_map[min(frame_index * x + i, len(self.change_map) -
1)][0]][self.change_map[min(frame_index * x + i, len(self.change_map) -
1)][1]] = (self.change_map[min(frame_index * x + i, len(self.change_map) - 1)][2] * 3 - (self.change_map[min(frame_index * x + i, len(self.change_map) - 1)][3] == 'EEZ '))
image = plt.imshow(im, interpolation='None', animated=True, cmap = cm.viridis)
ax.set_title(self.change_map[min(frame_index * x + i, len(self.change_map) - 1)][3] + str(min(frame_index * x,
len(self.change_map) - 1)) + ' ' +
str(self.change_sati[min(frame_index * x, len(self.change_map) - 1)]))
else:
im = copy.deepcopy(self.start_map)
def function_for_animation(frame_index):
plt.clf()
ax = fig.add_subplot(nrows, ncols, 2)
plt.title(self.change_map[min(frame_index * x, len(self.change_map) - 1)][3] + str(min(frame_index * x, len(self.change_map) - 1)))
plt.ylim([np.array(self.change_sati).min() - ranges, np.array(self.change_sati).max() + ranges])
plt.xlim( -0.5, len(self.names))
mpl.rcParams.update({'font.size': 10})
for i in range(len(self.names)):
ax.text(i + 0.15, self.change_sati[min(frame_index * x, len(self.change_map) - 1)][i],
self.change_sati[min(frame_index * x, len(self.change_map) - 1)][i])
ax.yaxis.grid(True, zorder = 1)
plt.bar([x for x in range(len(self.names))], self.change_sati[min(frame_index * x, len(self.change_map) - 1)],
width = 0.3, color = 'blue', alpha = 0.7, zorder = 2)
plt.xticks(range(len(self.names)), self.names, rotation=30)
plt.legend(loc='upper right')
ax = fig.add_subplot(nrows, ncols, 1)
for i in range(x):
im[self.change_map[min(frame_index * x + i, len(self.change_map) -
1)][0]][self.change_map[min(frame_index * x + i, len(self.change_map) -
1)][1]]= self.change_map[min(frame_index * x + i, len(self.change_map) - 1)][2]
image = plt.imshow(im, interpolation='None', animated=True, cmap = cm.viridis)
ax.set_title(self.change_map[min(frame_index * x + i, len(self.change_map) - 1)][3] + str(min(frame_index * x,
len(self.change_map) - 1)) + ' ' +
str(self.change_sati[min(frame_index * x, len(self.change_map) - 1)]))
return matplotlib.animation.FuncAnimation(fig, function_for_animation, interval=interval, repeat = repeat,
init_func = None, frames=(((len(self.change_sati) - 1) // x) + 2), blit=True)
# КАРТА РЕСУРСА (номер ресурса)
def map_resource(self, n):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
plt.imshow(np.array(self.res_map[n]), cmap = cm.viridis)
plt.show()
# КАРТА ВСЕХ РЕСУРСОВ ВМЕСТЕ
def map_all_resources(self):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
arr = self.res_map[0].copy()
for i in range(len(self.res_map) - 1):
arr += self.res_map[i + 1]
plt.imshow(np.array(arr))
plt.show()
# ВСЕ КАРТЫ РЕСУРСОВ
def map_resources(self):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
f, axarr = plt.subplots(len(self.res_map), 1)
for i in range(len(self.res_map)):
axarr[i].imshow(self.res_map[i])
plt.show()
# КАРТА РАССТОЯНИЯ ДЛЯ СТРАНЫ (номер страны)
def map_dist(self, n):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
plt.imshow(np.array(self.dist_map[n]))
plt.show()
# КАРТА ПОЛЬЗЫ ДЛЯ СТРАНЫ (номер страны)
def map_sati(self, n):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
plt.imshow(np.array(self.sati_map[n]))
plt.show()
# КАРТА ПОЛЬЗЫ И РАССТОЯНИЯ ДЛЯ СТРАНЫ (номер страны)
def map_country(self, n):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
f, axarr = plt.subplots(1,2)
axarr[0].imshow(self.dist_map[n])
axarr[1].imshow(self.sati_map[n])
plt.show()
# ВСЕ КАРТЫ РАССТОЯНИЙ ДЛЯ СТРАН
def map_dists(self):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
f, axarr = plt.subplots(len(self.countries), 1)
for i in range(len(self.countries)):
axarr[i].imshow(self.dist_map[i])
plt.show()
# ВСЕ КАРТЫ ПОЛЬЗЫ ДЛЯ СТРАН
def map_satis(self):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
f, axarr = plt.subplots(len(self.countries), 1)
for i in range(len(self.countries)):
axarr[i].imshow(self.sati_map[i])
plt.show()
# ВСЕ КАРТЫ ПОЛЬЗ И РАССТОЯНИЙ ДЛЯ СТРАН
def map_dists_satis(self):
if self.inline == 0: # настройка matplotlib
%matplotlib inline
self.inline = 1
f, axarr = plt.subplots(len(self.countries), 2)
for i in range(len(self.countries)):
axarr[i, 0].imshow(self.dist_map[i])
axarr[i, 1].imshow(self.sati_map[i])
plt.show()
## СОХРАНЕНИЕ И ЗАГРУЗКА ДАННЫХ ##
# СОХРАНИТЬ ТЕРРИТОРИЮ (указать название файла сохранения)
def save(self, name):
if(self.isave == 1): # проверка индикатора для сохранения
print('') # вывод пустого сообщения
self.isave = 0
sys.stdout.write("Saving...\r".format())
sys.stdout.flush()
pd.DataFrame([pd.DataFrame(self.unos), pd.DataFrame(self.countries), # сохранение всех переменных
pd.DataFrame([self.names]), pd.DataFrame([self.ind]), pd.DataFrame(self.d),
pd.DataFrame(self.change_map), pd.DataFrame(self.change_sati), pd.DataFrame(self.start_map),
pd.DataFrame(self.start_map_diff), pd.DataFrame(self.transferable), pd.DataFrame(self.z),
pd.DataFrame([self.exchanged]), pd.DataFrame([self.full]),
pd.DataFrame([self.name, self.i_char, self.i_exch, self.isave, self.sphere,
self.radius, self.inline, self.angle1, self.angle2, self.percent, self.i_exch2])
]).to_pickle(name)
print('Saved! ')
# ЗАГРУЗИТЬ ТЕРРИТОРИЮ (указать название файла)
def load(self, name):
if(self.isave == 1): # проверка индикатора для сохранения
print('') # вывод пустого сообщения
self.isave = 0
# загрузка всех переменных
sys.stdout.write("Loading. \r".format())
sys.stdout.flush()
df = pd.read_pickle(name)
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
self.unos = df[0][0].values.tolist()
sys.stdout.write("Loading...\r".format())
sys.stdout.flush()
self.countries = df[0][1].values.tolist()
sys.stdout.write("Loading. \r".format())
sys.stdout.flush()
self.names = df[0][2].values[0].tolist()
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
self.ind = df[0][3].values[0].tolist()
sys.stdout.write("Loading... \r".format())
sys.stdout.flush()
self.d = df[0][4].values.tolist()
sys.stdout.write("Loading. \r".format())
sys.stdout.flush()
self.change_map = df[0][5].values.tolist()
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
self.change_jus = df[0][6].values.tolist()
sys.stdout.write("Loading... \r".format())
sys.stdout.flush()
self.start_map =df[0][7].values.tolist()
sys.stdout.write("Loading. \r".format())
sys.stdout.flush()
self.start_map_diff =df[0][8].values.tolist()
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
self.transferable =df[0][9].values.tolist()
sys.stdout.write("Loading... \r".format())
sys.stdout.flush()
self.z =df[0][10].values.tolist()
sys.stdout.write("Loading. \r".format())
sys.stdout.flush()
self.name =df[0][11].values[0][0]
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
self.i_char =df[0][11].values[1][0]
sys.stdout.write("Loading... \r".format())
sys.stdout.flush()
self.i_exch =df[0][11].values[2][0]
sys.stdout.write("Loading. \r".format())
sys.stdout.flush()
self.isave =df[0][11].values[3][0]
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
self.sphere =df[0][11].values[4][0]
sys.stdout.write("Loading... \r".format())
sys.stdout.flush()
self.radius =df[0][11].values[5][0]
sys.stdout.write("Loading. \r".format())
sys.stdout.flush()
self.inline =df[0][11].values[6][0]
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
self.angle1 =df[0][11].values[7][0]
sys.stdout.write("Loading... \r".format())
sys.stdout.flush()
self.angle2 =df[0][11].values[8][0]
sys.stdout.write("Loading. \r".format())
sys.stdout.flush()
self.percent =df[0][11].values[9][0]
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
self.i_exch2 =df[0][11].values[10][0]
sys.stdout.write("Loading.. \r".format())
sys.stdout.flush()
#подсчёт карт ресурсов, расстояний и польз
self.res_map = np.zeros((len(self.unos[0][0][0]), len(self.unos), len(self.unos[0])))
self.dist_map = []
self.saty_map = []
for i in range(len(self.countries)):
self.dist_map.append(np.ones((len(self.unos), len(self.unos[0]))) * -1)
self.saty_map.append(np.ones((len(self.unos), len(self.unos[0]))) * -1)
for i in range(len(self.unos)):
for j in range(len(self.unos[0])):
for k in range(len(self.unos[0][0][0])):
if self.unos[i][j][2] != -1:
self.res_map[k][i][j] += self.unos[i][j][0][k] + 1
for k in range(len(self.countries)):
if self.unos[i][j][2] != -1:
if (self.unos[i][j][1] == False) or (self.unos[i][j][5] == True) or (self.unos[i][j][2] == k + 1):
self.dist_map[k][i][j] = self.unos[i][j][3][k]
else:
self.dist_map[k][i][j] = -2
else:
self.dist_map[k][i][j] = -1
if self.unos[i][j][2] != -1:
if (self.unos[i][j][1] == False) or (self.unos[i][j][5] == True) or (self.unos[i][j][2] == k + 1):
self.saty_map[k][i][j] = self.unos[i][j][4][k]
else:
self.saty_map[k][i][j] = -2
else:
self.saty_map[k][i][j] = -1
sys.stdout.write("Loading... \r".format())
sys.stdout.flush()
self.make_exch()
print('Loaded! ')
### СИСТЕМНЫЕ ФУНКЦИИ ###(не для вызова и использования, но если аккуратно, то можно)
## СТАДНАРТНЫЕ РАССЧЁТЫ И ПРИСВОЕНИЯ ##
# РАСЧЁТ РАССТОЯНИЯ ДЛЯ СТРАНЫ (строка участка, столбец участка, номер страны) возвращает минимально расстояние
def dist(self, f, l, i_coun):
if self.sphere: # рассчёт для сферической модели
d = np.linalg.norm(np.array(self.started[i_coun] - np.array([f, l, self.z[f][l]])), axis = 1).min()
return math.acos(1 - 0.5*pow(d / self.radius, 2))*self.radius
else: # рассчёт для плоской модели
return np.linalg.norm(np.array(self.countries[i_coun][2][:, :2]) - np.array([f, l]), axis = 1).min()
# РАСЧЁТ ПОЛЬЗЫ УЧАСТКА ДЛЯ СТРАНЫ (строка участка, столбец участка, номер страны)возвращает[пользая,
#минимальное расстояние]
def sati(self, f, l, i_cun):
dista = self.unos[f][l][3][i_cun] # рассчёт минимального расстояния
# возвращает пользу участка стране и минимальное расстояние
return max(0, ((np.array(self.unos[f][l][0]) * np.array(self.countries[i_cun][0])).sum() *
((self.d[i_cun][1] - dista + 1))
/ (self.d[i_cun][1] - min(dista, self.d[i_cun][0]) + 1)) ** 2)
# БЛИЖАЙШАЯ К УЧАСТКУ СТРАНА (строка участка, столбец участка) возвращает номер ближайшей страны начиная с нуля
def near(self, f, l):
a = [[self.unos[f][l][3][i], -self.unos[f][l][4][i], self.countries[i][1]] for i in range(len(self.countries))]
return a.index(min(a))
# СТРАНА ДЛЯ КОТОРОЙ УЧАСТОК ПРИНЕСЁТ БОЛЬШЕ ПОЛЬЗЫ (строка участка, столбец участка) возвращает номер страны
def most_sati(self, f, l):
a = [[self.unos[f][l][4][i], -self.unos[f][l][3][i], -self.countries[i][1]] for i in range(len(self.countries))]
return a.index(max(a))
# ПРИСВОИТЬ УЧАСТОК СТРАНЕ (строка участка, столбец участка, номер сраны)
def belong(self, f, l, i_cun, func = ''):
if self.unos[f][l][2] > 0: # если страна уже принадлежит кому-то
name_i = self.unos[f][l][2] # перемення прежней страны участка
self.countries[name_i - 1][1] -= (2 - self.percent) * self.unos[f][l][4][name_i - 1] # вычитаем двойную пользу участку у старой страны
self.countries[name_i - 1][3].remove([f, l])# удаление участка из списка участков прежней страны
self.unos[f][l][2] = i_cun + 1 # смена информации о хозяине у участк
if func != 'EEZ ': # если функция передачи не еез
self.countries[i_cun][1] += (2 - self.percent) * self.unos[f][l][4][i_cun] # добавление двойной пользы участка новой стране
self.countries[i_cun][3].append([f, l]) # добавление участка в список участков страны
if func[:8] != 'Exchange':
self.change_map.append([f, l, i_cun + 1, func]) # добавление изменения в список изменения карты
else:
self.change_map.append([f, l, i_cun + 1, func + '(' + str(self.i_exch2) + ')']) # добавление изменения в список изменения карты
if self.percent == False:
self.change_sati.append(np.array(self.countries)[:, 1].astype(int).tolist()) # добавлеине изменения в список польз
else:
self.change_sati.append([round(x, 3) for x in np.array(self.countries)[:, 1]]) # добавлеине изменения в список польз
if func == 'Charity ': # если функция передачи charity
self.i_char += 1 # изменяем счётчик i_char и пишем изменения
sys.stdout.write("Charity: {0}, exchange: {1} ({4}), From {2} to {3} \r".format(str(self.i_char),
str(self.i_exch),
self.names[name_i - 1],
self.names[i_cun], self.i_exch2))
sys.stdout.flush()
self.isave = 1 # меняем счётчик сохранения
elif func[:8] == 'Exchange': # если функция передачи exchange
self.i_exch += 1 # изменяем счётчик i_exch и пишем изменения
sys.stdout.write("charity: {0}, Exchange: {1} ({4}), {5} From {2} to {3} \r".format(str(self.i_char),
str(self.i_exch),
self.names[name_i - 1],
self.names[i_cun],
self.i_exch2,
func[9:]))
sys.stdout.flush()
self.isave = 1 # меняем счётчик сохранения
if (self.exchanged[0].get(int(func[8:])) == None):
self.exchanged[0][int(func[8:])] = 1
else:
self.exchanged[0][int(func[8:])] += 1
## ВСПОМОГАТЕЛЬНЫЕ ФУНКЦИИ ДЛЯ CHARITY РАБОТАЮЩИЕ С SELF.IND ##
# МИНИМАЛЬНО УДОВЛЕТВРЁННАЯ СТРАНА ИЗ ДОСТУПНЫХ = тех, у которых в self.ind соответсвуещему индексу сопоставлен 0
def min_sat(self):
mini = self.countries[self.ind.index(0)][1] # первая доступная страна
answer = self.ind.index(0) # удовлетворённость первой доступной страны
for i in range(1, len(self.countries)):
if self.ind[i] == 0 and self.countries[i][1] < mini: # если удовлетворённость ещё меньше
mini = self.countries[i][1] # то она становится отвевтом
answer = i
return [mini, answer] # возвращаем номер страны и её уровень удовлетворённости
# МАКСИМАЛЬНО УДОВЛЕТВОРЁННАЯ СТРАНА ИЗ ДОСТУПНЫХ
def max_sat(self):
maxi = self.countries[self.ind.index(0)][1] # первая доступная страна
answer = self.ind.index(0) # её удовлетворённость
for i in range(1, len(self.countries)):
if self.ind[i] == 0 and self.countries[i][1] > maxi: # если удовлетворённость ещё больше
maxi = self.countries[i][1] # то она становится ответом
answer = i
return [maxi, answer] # возвращаем номер страны и уровень удовлетворённости
# МАКСИМАЛЬНО УДОВЛЕТВРЁННАЯ СТРАНА ИЗ НЕДОСТУПНЫХ
def max_sat_re(self):
maxi = self.countries[self.ind.index(1)][1] # первая недоступная страна
answer = self.ind.index(1) # уровень удовлетворённости первой недоступной страны
for i in range(1, len(self.countries)):
if self.ind[i] == 1 and self.countries[i][1] > maxi: # если удовлетворённость ещё больше
maxi = self.countries[i][1] # то она становится ответом
answer = i
return [maxi, answer] # возвращаем номер страны и уровень удовлетворённости
## ВСПОМОГАТЕЛЬНЫЕ ДЛЯ ОБМЕНА И СПРАВЕДЛИВОСТИ
# ФОРМИРУЕТ СПИСОК УЧАСТКОВ ДЛЯ ВЗАИМНОГО ОБМЕНА
def make_exch(self):
# формирование пустых списков
self.list_exchange = [[[] for i in range(len(self.countries))] for i in range(len(self.countries))]
self.map_exchange = [[[[] for i in range(len(self.unos[0]))] for i in range(len(self.unos))] for i in range(len(self.countries) + 1)]
for i in range(len(self.unos)): # проход по свободным участком и их запись в список готовых к обмену и в карту обмена
for j in range(len(self.unos[0])):
if ((not self.unos[i][j][1]) and self.unos[i][j][2] not in [-1, 0]):
if (i != 0 and (self.unos[i - 1][j][2] not in [-1, 0])):
if (self.unos[i][j][2] != self.unos[i - 1][j][2]):
self.list_exchange[self.unos[i][j][2] - 1][self.unos[i - 1][j][2] - 1].append([i, j])
self.map_exchange[self.unos[i - 1][j][2] - 1][i][j].append([-1, 0])
if (j != 0 and (self.unos[i][j - 1][2] not in [-1, 0])):
if (self.unos[i][j][2] != self.unos[i][j - 1][2] and len(self.map_exchange[self.unos[i][j - 1][2] - 1][i][j]) == 0):
self.list_exchange[self.unos[i][j][2] - 1][self.unos[i][j - 1][2] - 1].append([i, j])
self.map_exchange[self.unos[i][j - 1][2] - 1][i][j].append([0, -1])
if ((j != len(self.unos[0]) - 1) and (self.unos[i][j + 1][2] not in [-1, 0])):
if (self.unos[i][j][2] != self.unos[i][j + 1][2] and len(self.map_exchange[self.unos[i][j + 1][2] - 1][i][j]) == 0):
self.list_exchange[self.unos[i][j][2] - 1][self.unos[i][j + 1][2] - 1].append([i, j])
self.map_exchange[self.unos[i][j + 1][2] - 1][i][j].append([0, 1])
if ((i != len(self.unos) - 1) and (self.unos[i + 1][j][2] not in [-1, 0])):
if (self.unos[i][j][2] != self.unos[i + 1][j][2] and len(self.map_exchange[self.unos[i + 1][j][2] - 1][i][j] )== 0):
self.list_exchange[self.unos[i][j][2] - 1][self.unos[i + 1][j][2] - 1].append([i, j])
self.map_exchange[self.unos[i + 1][j][2] - 1][i][j].append([1, 0])
for i in range(len(self.unos)):
for j in range(len(self.unos[0])): # формирование карты обмена несвободных участков
if ((self.unos[i][j][1]) or (self.unos[i][j][2] in [-1, 0])):
if (i != 0 and (self.unos[i - 1][j][2] not in [-1, 0]) and (not self.unos[i - 1][j][1])):
self.map_exchange[self.unos[i - 1][j][2] - 1][i][j].append([-1, 0])
if (j != 0 and (self.unos[i][j - 1][2] not in [-1, 0]) and (not self.unos[i][j - 1][1])):
self.map_exchange[self.unos[i][j - 1][2] - 1][i][j].append([0, -1])
if ((j != len(self.unos[0]) - 1) and (self.unos[i][j + 1][2] not in [-1, 0]) and (not self.unos[i][j + 1][1])):
self.map_exchange[self.unos[i][j + 1][2] - 1][i][j].append([0, 1])
if ((i != len(self.unos) - 1) and (self.unos[i + 1][j][2] not in [-1, 0]) and (not self.unos[i + 1][j][1])):
self.map_exchange[self.unos[i + 1][j][2] - 1][i][j].append([1, 0])
for i in range(len(self.unos)):
for j in range(len(self.unos[0])): # формирование списка опасных участков
if ((not self.unos[i][j][1]) and self.unos[i][j][2] not in [-1, 0]):
if (len(self.map_exchange[self.unos[i][j][2] - 1][i][j]) == 1):
if (i != 0 and (self.unos[i - 1][j][2] == self.unos[i][j][2])):
self.map_exchange[-1][i - 1][j].append([1, 0])
elif ((i != len(self.unos) - 1) and (self.unos[i + 1][j][2] == self.unos[i][j][2])):
self.map_exchange[-1][i + 1][j].append([-1, 0])
elif ((j != len(self.unos) - 1) and (self.unos[i][j + 1][2] == self.unos[i][j][2])):
self.map_exchange[-1][i][j + 1].append([0, -1])
elif (j != 0 and (self.unos[i][j - 1][2] == self.unos[i][j][2])):
self.map_exchange[-1][i][j - 1].append([0, 1])
# ВЗАИМОВЫГОДНЫЙ ОБМЕН СЛУЧАЙНЫМИ УЧАСТКАМИ МЕЖДУ ДВУМЯ СТАРАНАМИ
def exch(self, one, two, sides1 = 8, sides2 = 8, ntry = 0):
sys.stdout.write("charity: {0}, Exchange: {1} ({5}), {6} Try {4} from {2} to {3} \r".format(str(self.i_char),
str(self.i_exch),
self.names[one],
self.names[two], ntry,
self.i_exch2,
str(min(sides1, sides2))))
first = [] # список готовых к обмену от первой страны
second = [] # список готовых к обмену от второй страны
firstsati = [] # список изменения удовлетворения стран от передачи участков первой страны
secondsati = [] # список изменения удовлетворения стран от передачи участков второй страны
constteamone = [] # условия для участков первой страны чтобы все соседи участка не ушли без него
constteamtwo = [] # условия для участков второй страны чтобы все соседи участка не ушли без него
constenemyone = [] # условия для участков первой страны чтобы все чужие соседи участка не стали своими, а этот не ушёл
constenemytwo = [] # условия для участков второй страны чтобы все чужие соседи участка не стали своими, а этот не ушёл
# номера случайных участков первой страны
one_numbers = random.sample(range(len(self.list_exchange[one][two])), min(sides1, len(self.list_exchange[one][two])))
# номера случайных участков второй страны
two_numbers = random.sample(range(len(self.list_exchange[two][one])), min(sides2, len(self.list_exchange[two][one])))
# заполнение множеств участков первой страны
for elem in one_numbers:
eleme = self.list_exchange[one][two][elem]
if len(self.map_exchange[-1][eleme[0]][eleme[1]]) == 0:
if eleme not in first:
first.append(eleme)
else:
no = 0
for element in self.map_exchange[-1][eleme[0]][eleme[1]]:
if len(self.map_exchange[two][element[0] + eleme[0]][element[1] + eleme[1]]) == 0:
no = 1
break
if no == 0:
if eleme not in first:
first.append(eleme)
for element in self.map_exchange[-1][eleme[0]][eleme[1]]:
if [element[0] + eleme[0], element[1] + eleme[1]] not in first:
first.append([element[0] + eleme[0], element[1] + eleme[1]])
if len(first) >= sides1:
break
# заполнение множества участков второй страны
for elem in two_numbers:
eleme = self.list_exchange[two][one][elem]
if len(self.map_exchange[-1][eleme[0]][eleme[1]]) == 0:
if eleme not in second:
second.append(eleme)
else:
no = 0
for element in self.map_exchange[-1][eleme[0]][eleme[1]]:
if len(self.map_exchange[one][element[0] + eleme[0]][element[1] + eleme[1]]) == 0:
no = 1
break
if no == 0:
if eleme not in second:
second.append(eleme)
for element in self.map_exchange[-1][eleme[0]][eleme[1]]:
if [element[0] + eleme[0], element[1] + eleme[1]] not in second:
second.append([element[0] + eleme[0], element[1] + eleme[1]])
if len(second) >= sides2:
break
# формирование списков условий первой страны
for i in range(len(first)):
team = len(self.map_exchange[one][first[i][0]][first[i][1]])
teammates = []
enemies = []
enemy = len(self.map_exchange[two][first[i][0]][first[i][1]])
for elem in self.map_exchange[one][first[i][0]][first[i][1]]:
if ([elem[0] + first[i][0], elem[1] + first[i][1]] in first):
team -= 1
teammates.append(first.index([elem[0] + first[i][0], elem[1] + first[i][1]]))
if team == 0:
constteamone.append([i, teammates])
for elem in self.map_exchange[two][first[i][0]][first[i][1]]:
if ([elem[0] + first[i][0], elem[1] + first[i][1]] in second):
enemy -= 1
enemies.append(second.index([elem[0] + first[i][0], elem[1] + first[i][1]]))
if enemy == 0:
constenemyone.append([i, enemies])
# формирование списков условий второй страны
for i in range(len(second)):
team = len(self.map_exchange[two][second[i][0]][second[i][1]])
teammates = []
enemies = []
enemy = len(self.map_exchange[one][second[i][0]][second[i][1]])
for elem in self.map_exchange[two][second[i][0]][second[i][1]]:
if ([elem[0] + second[i][0], elem[1] + second[i][1]] in second):
team -= 1
teammates.append(second.index([elem[0] + second[i][0], elem[1] + second[i][1]]))
if team == 0:
constteamtwo.append([i, teammates])
for elem in self.map_exchange[one][second[i][0]][second[i][1]]:
if ([elem[0] + second[i][0], elem[1] + second[i][1]] in first):
enemy -= 1
enemies.append(first.index([elem[0] + second[i][0], elem[1] + second[i][1]]))
if enemy == 0:
constenemytwo.append([i, enemies])
# заполнение множеств удовлетворений первой и второй страны
for elem in first:
firstsati.append([-self.unos[elem[0]][elem[1]][4][one], self.unos[elem[0]][elem[1]][4][two]])
for elem in second:
secondsati.append([self.unos[elem[0]][elem[1]][4][one], -self.unos[elem[0]][elem[1]][4][two]])
if (len(first) == 0) or (len(second) == 0): # если хоть кому-то нечем обмениваться, то заканчиваем
return 0
sati1 = firstsati + secondsati # объединение множеств польз
selection1 = cvxpy.Bool(len(sati1)) # идентификаторы обмена
z = cvxpy.Variable() # переменная минимального изменения обмена
a = len(first)
constraint1 = [z <= np.array(sati1)[:, 1] * selection1, z <= np.array(sati1)[:, 0] * selection1] # условие поиска оптимума
# добавление условий
for elem in constteamone:
constraint1.append(selection1[elem[0]] - cvxpy.sum_entries(selection1[elem[1]]) >= 1 - len(elem[1]))
for elem in constteamtwo:
constraint1.append(selection1[elem[0] + a] - cvxpy.sum_entries(selection1[[i + a for i in elem[1]]]) >= 1 - len(elem[1]))
for elem in constenemyone:
constraint1.append(selection1[elem[0]] + cvxpy.sum_entries(selection1[[i + a for i in elem[1]]]) <= + len(elem[1]))
for elem in constenemytwo:
constraint1.append(selection1[elem[0] + a] + cvxpy.sum_entries(selection1[elem[1]]) <= len(elem[1]))
total_utility1 = z # оптимизируем z
my_problem1 = cvxpy.Problem(cvxpy.Maximize(total_utility1), constraint1)
my_problem1.solve(solver=cvxpy.GLPK_MI) # решаем проблему
first1 = (np.array(sati1)[:, 0] * selection1).value # прибавление удовлетворённости первой страны
second1 = (np.array(sati1)[:, 1] * selection1).value # прибавление удовлетворённости второй страны
if (first1 != 0 or second1 != 0): # если хоть одной из них лучше
self.i_exch2 += 1 # счётчик обменов увеличивает
for j in range(len(selection1.value)): # для всех переданных
if selection1[j].value:
if j < a: # если от первой страны второй
self.redact_exch(first[j][0], first[j][1], one, two) # учитываем влияение на карты допустимых обменов
self.belong(first[j][0], first[j][1], two, 'Exchange ' + str(min(sides1, sides2)))
else: # если от второй страны первой
j2 = j - a
self.redact_exch(second[j2][0], second[j2][1], two, one) # учитываем влияение на карты допустимых обменов
self.belong(second[j2][0], second[j2][1], one, 'Exchange ' + str(min(sides1, sides2)))
exch_info = str(sorted([int(sum(selection1.value[:a])), int(sum(selection1.value[a:]))]))
if self.exchanged[1].get(exch_info) == None:
self.exchanged[1][exch_info] = 1
else:
self.exchanged[1][exch_info] += 1
if self.exchanged[2].get(int(sum(selection1.value))) == None:
self.exchanged[2][int(sum(selection1.value))] = 1
else:
self.exchanged[2][int(sum(selection1.value))] += 1
return 1
return 0
# УЧЁТ ВЛИЯНИЕ ПЕРЕДАЧИ УЧАСТКА НА КАРТЫ ОПУСТИМЫХ ОБМЕНОВ (первая координата, вторая координата, от какой страны, какой стране)
def redact_exch(self, first, last, one, two):
if (first != 0) and (len(self.map_exchange[one][first - 1][last]) == 1) and (self.unos[first - 1][last][2] not in [one + 1, 0, -1]) and not self.unos[first - 1][last][1]:
self.list_exchange[self.unos[first - 1][last][2] - 1][one].remove([first - 1, last])
if (first != len(self.unos) - 1) and (len(self.map_exchange[one][first + 1][last]) == 1) and (self.unos[first + 1][last][2] not in [one + 1, 0, -1]) and not self.unos[first + 1][last][1]:
self.list_exchange[self.unos[first + 1][last][2] - 1][one].remove([first + 1, last])
if (last != 0) and (len(self.map_exchange[one][first][last - 1]) == 1) and (self.unos[first][last - 1][2] not in [one + 1, 0, -1]) and not self.unos[first][last - 1][1]:
self.list_exchange[self.unos[first][last - 1][2] - 1][one].remove([first, last - 1])
if (last != len(self.unos[0]) - 1) and (len(self.map_exchange[one][first][last + 1]) == 1) and (self.unos[first][last + 1][2] not in [one + 1, 0, -1]) and not self.unos[first][last + 1][1]:
self.list_exchange[self.unos[first][last + 1][2] - 1][one].remove([first, last + 1])
# добавить в список нового своих соседей
if (first != 0) and (len(self.map_exchange[two][first - 1][last]) == 0) and (self.unos[first - 1][last][2] not in [two + 1, 0, -1]) and not self.unos[first - 1][last][1]:
self.list_exchange[self.unos[first - 1][last][2] - 1][two].append([first - 1, last])
if (first != len(self.unos) - 1) and (len(self.map_exchange[two][first + 1][last]) == 0) and (self.unos[first + 1][last][2] not in [two + 1, 0, -1]) and not self.unos[first + 1][last][1]:
self.list_exchange[self.unos[first + 1][last][2] - 1][two].append([first + 1, last])
if (last != 0) and (len(self.map_exchange[two][first][last - 1]) == 0) and (self.unos[first][last - 1][2] not in [two + 1, 0, -1]) and not self.unos[first][last - 1][1]:
self.list_exchange[self.unos[first][last - 1][2] - 1][two].append([first, last - 1])
if (last != len(self.unos[0]) - 1) and (len(self.map_exchange[two][first][last + 1]) == 0) and (self.unos[first][last + 1][2] not in [two + 1, 0, -1]) and not self.unos[first][last + 1][1]:
self.list_exchange[self.unos[first][last + 1][2] - 1][two].append([first, last + 1])
# убрать себя из списка соседей и добавить нового себя в список соседей
team1 = []
enemy1 = []
if (first != 0) and (self.unos[first - 1][last][2] not in [-1, 0]):
if self.unos[first - 1][last][2] != one + 1:
team1.append(self.unos[first - 1][last][2])
if self.unos[first - 1][last][2] != two + 1:
enemy1.append(self.unos[first - 1][last][2])
if (first != len(self.unos) - 1) and (self.unos[first + 1][last][2] not in [-1, 0]):
if self.unos[first + 1][last][2] != one + 1:
team1.append(self.unos[first + 1][last][2])
if self.unos[first + 1][last][2] != two + 1:
enemy1.append(self.unos[first + 1][last][2])
if (last != 0) and (self.unos[first][last - 1][2] not in [-1, 0]):
if self.unos[first][last - 1][2] != one + 1:
team1.append(self.unos[first][last - 1][2])
if self.unos[first][last - 1][2] != two + 1:
enemy1.append(self.unos[first][last - 1][2])
if (last != len(self.unos[0]) - 1) and (self.unos[first][last + 1][2] not in [-1, 0]):
if self.unos[first][last + 1][2] != one + 1:
team1.append(self.unos[first][last + 1][2])
if self.unos[first][last + 1][2] != two + 1:
enemy1.append(self.unos[first][last + 1][2])
for elem in list(set(team1)):
self.list_exchange[one][elem - 1].remove([first, last])
for elem in list(set(enemy1)):
self.list_exchange[two][elem - 1].append([first, last])
self.map_exchange[-1][first][last] = [] #обнуление своего счётчика
# составление своего счётчика
if (first != 0) and (self.map_exchange[two][first - 1][last] == []) and (self.unos[first - 1][last][2] == two + 1) and not self.unos[first - 1][last][1]:
self.map_exchange[-1][first][last].append([-1, 0])
if (first != len(self.unos) - 1) and (self.map_exchange[two][first + 1][last] == []) and (self.unos[first + 1][last][2] == two + 1) and not self.unos[first + 1][last][1]:
self.map_exchange[-1][first][last].append([1, 0])
if (last != 0) and (self.map_exchange[two][first][last - 1] == []) and (self.unos[first][last - 1][2] == two + 1) and not self.unos[first][last - 1][1]:
self.map_exchange[-1][first][last].append([0, -1])
if (last != len(self.unos[0]) - 1) and (self.map_exchange[two][first][last + 1] == []) and (self.unos[first][last + 1][2] == two + 1) and not self.unos[first][last + 1][1]:
self.map_exchange[-1][first][last].append([0, 1])
if len(self.map_exchange[one][first][last]) == 1: #обнуление счётчика бывшего
self.map_exchange[-1][self.map_exchange[one][first][last][0][0] + first][self.map_exchange[one][first][last][0][1] + last].remove([-self.map_exchange[one][first][last][0][0], -self.map_exchange[one][first][last][0][1]])
# возможно сам стал опасным
if len(self.map_exchange[two][first][last]) == 1:
self.map_exchange[-1][self.map_exchange[two][first][last][0][0] + first][self.map_exchange[two][first][last][0][1] + last].append([-self.map_exchange[two][first][last][0][0], -self.map_exchange[two][first][last][0][1]])
# возможно спас новых опасных
if (first != 0) and (len(self.map_exchange[two][first - 1][last]) == 1) and (self.unos[first - 1][last][2] == two + 1) and not self.unos[first - 1][last][1]:
self.map_exchange[-1][self.map_exchange[two][first - 1][last][0][0] + first - 1][self.map_exchange[two][first - 1][last][0][1] + last].remove([-self.map_exchange[two][first - 1][last][0][0], -self.map_exchange[two][first - 1][last][0][1]])
if (first != len(self.unos) - 1) and (len(self.map_exchange[two][first + 1][last]) == 1) and (self.unos[first + 1][last][2] == two + 1) and not self.unos[first + 1][last][1]:
self.map_exchange[-1][self.map_exchange[two][first + 1][last][0][0] + first + 1][self.map_exchange[two][first + 1][last][0][1] + last].remove([-self.map_exchange[two][first + 1][last][0][0], -self.map_exchange[two][first + 1][last][0][1]])
if (last != 0) and (len(self.map_exchange[two][first][last - 1]) == 1) and (self.unos[first][last - 1][2] == two + 1) and not self.unos[first][last - 1][1]:
self.map_exchange[-1][self.map_exchange[two][first][last - 1][0][0] + first][self.map_exchange[two][first][last - 1][0][1] + last - 1].remove([-self.map_exchange[two][first][last - 1][0][0], -self.map_exchange[two][first][last - 1][0][1]])
if (last != len(self.unos[0]) - 1) and (len(self.map_exchange[two][first][last + 1]) == 1) and (self.unos[first][last + 1][2] == two + 1) and not self.unos[first][last + 1][1]:
self.map_exchange[-1][self.map_exchange[two][first][last + 1][0][0] + first][self.map_exchange[two][first][last + 1][0][1] + last + 1].remove([-self.map_exchange[two][first][last + 1][0][0], -self.map_exchange[two][first][last + 1][0][1]])
# удаление старых соседств и прибавление новых
if first != 0:
self.map_exchange[one][first - 1][last].remove([1, 0])
self.map_exchange[two][first - 1][last].append([1, 0])
if first != len(self.unos) - 1:
self.map_exchange[one][first + 1][last].remove([-1, 0])
self.map_exchange[two][first + 1][last].append([-1, 0])
if last != 0:
self.map_exchange[one][first][last - 1].remove([0, 1])
self.map_exchange[two][first][last - 1].append([0, 1])
if last != len(self.unos[0]) - 1:
self.map_exchange[one][first][last + 1].remove([0, -1])
self.map_exchange[two][first][last + 1].append([0, -1])
# возможно сделал опасными старых
if (first != 0) and (len(self.map_exchange[one][first - 1][last]) == 1) and (self.unos[first - 1][last][2] == one + 1) and not self.unos[first - 1][last][1]:
self.map_exchange[-1][self.map_exchange[one][first - 1][last][0][0] + first - 1][self.map_exchange[one][first - 1][last][0][1] + last].append([-self.map_exchange[one][first - 1][last][0][0], -self.map_exchange[one][first - 1][last][0][1]])
if (first != len(self.unos) - 1) and (len(self.map_exchange[one][first + 1][last]) == 1) and (self.unos[first + 1][last][2] == one + 1) and not self.unos[first + 1][last][1]:
self.map_exchange[-1][self.map_exchange[one][first + 1][last][0][0] + first + 1][self.map_exchange[one][first + 1][last][0][1] + last].append([-self.map_exchange[one][first + 1][last][0][0], -self.map_exchange[one][first + 1][last][0][1]])
if (last != 0) and (len(self.map_exchange[one][first][last - 1]) == 1) and (self.unos[first][last - 1][2] == one + 1) and not self.unos[first][last - 1][1]:
self.map_exchange[-1][self.map_exchange[one][first][last - 1][0][0] + first][self.map_exchange[one][first][last - 1][0][1] + last - 1].append([-self.map_exchange[one][first][last - 1][0][0], -self.map_exchange[one][first][last - 1][0][1]])
if (last != len(self.unos[0]) - 1) and (len(self.map_exchange[one][first][last + 1]) == 1) and (self.unos[first][last + 1][2] == one + 1) and not self.unos[first][last + 1][1]:
self.map_exchange[-1][self.map_exchange[one][first][last + 1][0][0] + first][self.map_exchange[one][first][last + 1][0][1] + last + 1].append([-self.map_exchange[one][first][last + 1][0][0], -self.map_exchange[one][first][last + 1][0][1]])
# ОТДАЁТ САМЫЙ ВЫГОДНЫЙ УЧАСТОК ВТОРОЙ СТРАНЫ ПЕРВОЙ СТРАНЕ (номер первой и второй страны) возвращает индексы участка
def chari(self, maxi_i, mini_i): # и номер второй страны
sys.stdout.write("Charity: {0}, exchange: {1} ({4}), Try from {2} to {3} \r".format(str(self.i_char),
str(self.i_exch),
self.names[maxi_i],
self.names[mini_i], self.i_exch2))
ind_max = 0 # индекс найденного максимума
maximum = 0 # максимальная относительная разница пользы
for i in self.list_exchange[maxi_i][mini_i]: # проходим по всем участкам второй страны
firs = i[0]
las = i[1]
if ([self.countries[mini_i][1], self.countries[maxi_i][1]] < [self.countries[maxi_i][1] - 2 * self.unos[firs][las][4][maxi_i], self.countries[mini_i][1] + 2 * self.unos[firs][las][4][mini_i]]
and # если имеет смысл передать
# если её относительная польза больше
maximum < (self.unos[firs][las][4][mini_i] / (self.unos[firs][las][4][maxi_i] + sys.float_info.epsilon))):
maximum = (self.unos[firs][las][4][mini_i] / (self.unos[firs][las][4][maxi_i] + sys.float_info.epsilon))
ind_max = i # в индекс записывается очерёдность выбранного участка в множестве
if (ind_max != 0): # если максимум найден
self.redact_exch(ind_max[0], ind_max[1], maxi_i, mini_i) # учитываем влияение на карты допустимых обменов
self.belong(ind_max[0], ind_max[1], mini_i, 'Charity ') # передаём участок
return 1 #возвращаем что передали и номер второго участка
return 0
# ОТ САМОЙ БОГАТОЙ СТРАНЕ ОТДАЁТ БЕДНОЙ С ПОМОЩЬЮ CHARITY
def one_charity(self):
min1 = self.min_sat()[1] # запоминаем страну с наименьшей удовлеторённостью
max1 = self.max_sat()[1] # запоминаем страну с наибольшей удовлетворённостью
result = self.chari(max1, min1) # запоминаем что передали
while result: # пока имеет смысл отдавать
min1 = self.min_sat()[1] #повторяем
max1 = self.max_sat()[1]
result = self.chari(max1, min1)
# ОТ ВСЕХ СТРАН ОТДАЁТ САМОЙ БЕДНОЙ
def all_charity(self):
maxsat = self.max_sat()[1] # запоминаем самую богатую страну
self.one_charity() # от самой богатой отдаём самой бедной
self.ind[maxsat] = 1 # блокируем самую богатую
if self.ind.count(0) > 1: # если ещё есть кому отдавать, то повторяем
self.all_charity()
self.ind[self.max_sat_re()[1]] = 0 # возвращаем индикатор обратно
# ОТ ВСЕХ СТРАН ОТДАЁТ ВСЕМ(БОГАТЕЙШИЕ БЕДНЕЙШИМ)
def total_charity(self):
minsat = self.min_sat()[1] # запоминаем самую бедную страну
self.all_charity() # производим обмен от всех ей
self.ind[minsat] = 1 # блокируем её
if self.ind.count(0) > 1: # повтораяем с другой пока есть страны
self.total_charity()
else:
for i in range(len(self.ind)): # обнуляем инндикаторы
self.ind[i] = 0
## ВСПОМОГАТЕЛНЫЕ ФУНКЦИИ ДЛЯ ВЫВОДОВ
# ЗАВИСТЬ ПЕРВОЙ СТРАНЫ ВТОРОЙ СТРАНЕ (номер первой страны, номер второй страны)
def envy(self, coun_1, coun_2):
result = 0 # результат
for i in range(len(self.countries[coun_1][3])): # учитываем участки первой страны
result += self.unos[self.countries[coun_1][3][i][0]][self.countries[coun_1][3][i][1]][4][coun_1]
for i in range(len(self.countries[coun_2][3])): # учитываем участки второй страны
result -= self.unos[self.countries[coun_2][3][i][0]][self.countries[coun_2][3][i][1]][4][coun_1]
if self.percent == False:
return int(result)
return round(result, 3)
|
[
"noreply@github.com"
] |
noreply@github.com
|
a6bdb94809d7680329ff28eac373e0a783cffd6d
|
9f7f6b9d3eb1ec85136d16fa02987b412882c595
|
/examples/websocket_test.py
|
d855e0f74d6efd2dff63657933df92f138a49e9b
|
[
"MIT"
] |
permissive
|
fmux/sanicpluginsframework
|
e6f631487ac1962d04e8263ea3c789fe20179905
|
175525e85504fcf6e7d32bf12874578fc14c115a
|
refs/heads/master
| 2020-07-24T02:52:47.370302
| 2019-09-11T10:02:45
| 2019-09-11T10:02:45
| 207,780,270
| 0
| 0
|
MIT
| 2019-09-11T09:59:43
| 2019-09-11T09:59:43
| null |
UTF-8
|
Python
| false
| false
| 811
|
py
|
import pickle
from sanic import Sanic
from spf import SanicPlugin, SanicPluginsFramework
from sanic.response import text
from logging import DEBUG
class MyPlugin(SanicPlugin):
def __init__(self, *args, **kwargs):
super(MyPlugin, self).__init__(*args, **kwargs)
instance = MyPlugin()
@instance.middleware(priority=6, with_context=True, attach_to="cleanup")
def mw1(request, context):
context['test1'] = "test"
print("Doing Cleanup!")
app = Sanic(__name__)
spf = SanicPluginsFramework(app)
assoc_reg = spf.register_plugin(instance)
@app.route('/')
def index(request):
return text("hello world")
@app.websocket('/test1')
async def we_test(request, ws):
print("hi")
return
if __name__ == "__main__":
app.run("127.0.0.1", port=8098, debug=True, auto_reload=False)
|
[
"ashleysommer@gmail.com"
] |
ashleysommer@gmail.com
|
481a8d81e0d1fd7a551918ed8765436bcad2be91
|
bdbc362f1a6584f83220682a722187ca5714438f
|
/Boredom1_Classes.py
|
6ca1a4a80cf966434f59b22bf1afd396a987d5f6
|
[
"MIT"
] |
permissive
|
WillGreen98/University-INTPROG-Python
|
59e804d8418ec52e1318da8686be792f3b527244
|
93c4f8227a28e09ece0adcebc0fbe499c4b62753
|
refs/heads/master
| 2021-06-02T05:37:00.355704
| 2018-09-30T20:01:44
| 2018-09-30T20:01:44
| 108,696,997
| 0
| 1
|
MIT
| 2021-04-29T19:18:30
| 2017-10-29T01:42:38
|
Python
|
UTF-8
|
Python
| false
| false
| 2,082
|
py
|
import time
subjects = []
isAllowed2Die = True
class Animal:
isAllowed2Die = True
isPet = bool
def __init__(self, genome, classes, bio_def, c_type):
self.genome = genome
self.a_class = classes
self.bio_def = bio_def
self.type = c_type
class Dog(Animal):
isPet = True
def __init__(self, name, breed):
super().__init__(self, "Canis", "Carnivore", "Dog")
self.name = name
self.breed = breed
def bork(self, d):
if d == "quiet":
print("Bork Bork Bork... My name is: {0}".format(self.name))
elif d == "loud":
print("BORK BORK BORK... MY NAME IS: {0}".format(self.name))
elif d == "sassy":
print("Bork Bork Boooork... My name is: {0}".format(self.name))
else:
print("Bork")
def sit(self, duration):
t = time.process_time()
print("I am now sitting, I have been sitting for: {0}".format(time.process_time() - duration))
def getTheFuckAwayFromMyPizza(self):
return "DRIBBLES ON FLOOR"
class Person:
def __init__(self, f_Name, nickName, subject, isAwesome):
self.fName = f_Name
self.sName = nickName
self.subject = subject
subjects.append(self.subject)
self._isAwesome = bool(isAwesome)
def killMyself(self):
if self._isAwesome:
ToBkilledOrNotToBKilledThatIsTheQuestion = " is awesome, they are not allowed to be killed."
else:
ToBkilledOrNotToBKilledThatIsTheQuestion = " is now dead."
killed = "{0}{1}".format(self.fName, ToBkilledOrNotToBKilledThatIsTheQuestion)
return killed
Kewal = Person("Kewal", "Bitch-Boi", ["Maths"], True)
Will = Person("Will", "The Bald Bean", ["Comp Sci"], False)
Crumble = Dog("Crumble", "Wire-Haired Sausage")
Loki = Dog("Loki", "Samoyed")
Rollie = Dog("Rollie", "Sausage")
Thor = Dog("Thor", "Samoyed")
def main():
print(subjects, "\n")
print(Kewal.killMyself())
print(Will.killMyself())
if __name__ == '__main__':
main()
|
[
"will.green98@hotmail.com"
] |
will.green98@hotmail.com
|
84aa481771111981f7f48f85cd2805feb3da8a50
|
c4526313117430d4e279ef11b98070d60a820e07
|
/FeatureExtractors/feature_extractor.py
|
606be6f07a6c54ff27c3e335c3460654db10991f
|
[] |
no_license
|
Chzy0624/py_pdf_stm
|
1ae36c2df0f80f644b991edf183eab16c5a333ed
|
8fde14c2fe3e6486d8830414d79d48726d8c66ef
|
refs/heads/master
| 2023-05-05T04:06:17.698359
| 2019-10-22T05:48:24
| 2019-10-22T05:48:24
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,417
|
py
|
import sys
import traceback
from pprint import pprint
from typing import List, Dict, Any
from DataSheetParsers.DataSheet import DataSheet
from PinManager import PinManager
from TableExtractor import TableExtractor, Table
from Utils import is_numeric, is_dict, remove_units, replace_i, merge
def convert_type(name: str, value):
if type(value) == str:
value = value.replace(',', '')
value = value.strip('\n ')
if 'KB' in name.upper():
name = remove_units(name, 'kb')
if is_numeric(value):
value = int(value)
if 'MB' in name.upper():
name = remove_units(name, 'mb')
if is_numeric(value):
value = int(value) * 1024
elif type(value) == int:
value *= 1024
if 'MHZ' in name.upper():
name = remove_units(name, 'mhz')
if is_numeric(value):
value = int(value)
if type(value) == str:
if 'KB' in value:
value = replace_i(value, 'kb', '')
if is_numeric(value):
value = int(value)
elif type(value) == int:
pass
else:
value += 'KB'
return name, value
if 'MB' in value:
value = replace_i(value, 'mb', '')
if is_numeric(value):
value = int(value) * 1024
elif type(value) == int:
value *= 1024
else:
value += 'MB'
return name, value
if 'MHZ' in value.upper():
value = replace_i(value, 'MHz', '')
if is_numeric(value):
value = int(value)
elif type(value) == int:
pass
else:
value += 'MHz'
return name, value
# UNIFIED NAMES
# int_values = ['Flash memory', 'RAM', 'UART', 'SPI', 'Total GPIOS','CPU Frequency']
# if name in int_values:
if type(value) != int and is_numeric(value):
if type(value) == str:
if not (value.lower() == 'no' or value.lower() == 'yes'):
try:
value = int(value)
except Exception as ex:
print('Failed to convert {} {} to int\n{}'.format(name, value, ex))
return name, value
class FeatureListExtractor: # This class is adapted to STM
def fix_name(self, name):
name = "".join([part[::-1] for part in name[::1][::-1].split('\n')])
return self.config['corrections'].get(name, name)
def __init__(self, controller: str, datasheet: DataSheet, config) -> None:
"""
Class for comparing multiple STM32 controllers
:type controller_list: list of stm controllers that you want to compare
"""
self.controller = controller
self.config = config # type: Dict[str,Dict]
self.datasheet = datasheet
self.features_tables = [] # type: List[Table]
self.features = {} # type: Dict[str,Dict]
self.pin_data = {} # type: Dict[str, Dict[str, Any]]
self.config_name = 'UNKNOWN CONTROLLER'
self.mc_family = 'UNKNOWN'
self.pin_manager = PinManager(self.pin_data,{})
self.post_init()
def post_init(self):
pass
def process(self):
self.extract_tables()
self.extract_features()
del self.features_tables
self.extract_pinout()
return self.features
def extract_table(self, datasheet, page):
print('Extracting table from {} page'.format(page + 1))
pdf_int = TableExtractor(str(datasheet.path))
try:
table = pdf_int.parse_page(page)
except Exception as ex:
pass
table = None
return table
def extract_tables(self): # OVERRIDE THIS FUNCTION FOR NEW CONTROLLER
return
def handle_feature(self, name, value):
if '\u2013' in name:
name = name.replace('\u2013', '-')
if type(value) == str:
if '\u2013' in value:
value = value.replace('\u2013', '-')
if '\n' in value:
value = value.replace('\n', ' ')
return [(name, value)] # Can be list of values and names
def extract_features(self):
controller_features_names = []
controller_features = {}
feature_offset = 0
for table in self.features_tables:
try:
if not table.global_map:
continue
_, features_cell_span = table.get_cell_span(table.get_col(0)[0])
# EXTRACTING NAMES OF FEATURES
if features_cell_span > 1:
for row_id, row in table.global_map.items():
if row_id == 0:
continue
features = set(list(row.values())[:features_cell_span])
features = sorted(features, key=lambda cell: cell.center.x)
texts = list(map(lambda cell: cell.clean_text, features))
controller_features_names.append(' '.join(texts))
else:
texts = list(map(lambda cell: cell.clean_text, table.get_col(0)[1:]))
controller_features_names.extend(texts)
# EXTRACTING STM FEATURES
current_stm_name = ""
mcu_counter = {}
name = 'ERROR'
for col_id in range(features_cell_span, len(table.get_row(0))):
features = table.get_col(col_id)
for n, feature in enumerate(features):
if n == 0:
name = table.get_cell(col_id, 0).clean_text
if name == current_stm_name:
num = mcu_counter[current_stm_name]
name += '-{}'.format(num)
mcu_counter[current_stm_name] += 1
else:
current_stm_name = name
if not mcu_counter.get(current_stm_name, False):
mcu_counter[current_stm_name] = 1
if not controller_features.get(name, False):
controller_features[name] = {}
continue
feature_name = controller_features_names[feature_offset + n - 1]
feature_value = feature.text
for n, v in self.handle_feature(feature_name, feature_value):
if n and v:
n, v = convert_type(n, v)
if controller_features[name].get(n, False):
v = self.merge_features(controller_features[name].get(n), v)
controller_features[name][n] = v
else:
controller_features[name][n] = v
feature_offset = len(controller_features_names)
except Exception as ex:
sys.stderr.write("ERROR {}".format(ex))
traceback.print_exc()
# FILL MISSING FIELDS
for stm_name in controller_features.keys():
for stm_name2 in controller_features.keys():
if stm_name == stm_name2:
continue
if stm_name in stm_name2:
for feature_name, value in controller_features[stm_name].items():
if controller_features[stm_name2].get(feature_name, False):
continue
else:
controller_features[stm_name2][feature_name] = value
self.features = controller_features
return controller_features
def extract_pinout(self):
for package, pin_data in self.pin_data.items():
for mcu,mcu_features in self.features.items():
if package in mcu_features.get('PACKAGE',[]):
if 'PINOUT' in self.features[mcu]:
self.features[mcu]['PINOUT'][package]=pin_data
else:
self.features[mcu]['PINOUT'] = {package:pin_data}
return self.pin_data
def unify_names(self):
unknown_names = {}
for mc, features in self.features.items():
unknown_names[mc] = []
mc_features = self.features[mc].copy()
mc_features = {k.upper(): v for k, v in mc_features.items()}
for feature_name, features_value in features.items():
feature_name = feature_name.upper()
if features_value:
if self.config_name in self.config['unify']:
unify_list = self.config['unify'][self.config_name] # type: Dict[str,str]
unify_list = {k.upper(): v.upper() for k, v in unify_list.items()}
known = True
if feature_name not in unify_list:
if feature_name not in unify_list.values():
known = False
if feature_name not in unknown_names:
unknown_names[mc].append(feature_name)
if known:
new_name = unify_list.get(feature_name,
feature_name).upper() # in case name is already unified
values = mc_features.pop(feature_name)
new_name, values = convert_type(new_name, values)
new_name = new_name.upper()
if new_name in mc_features:
mc_features[new_name] = self.merge_features(mc_features[new_name],
values)
else:
mc_features[new_name] = values
else:
new_name = feature_name # in case name is already unified
values = mc_features.pop(feature_name)
new_name, values = convert_type(new_name, values)
mc_features[new_name.upper()] = values
else:
unknown_names[mc].append(feature_name)
self.features[mc] = mc_features
for mc, features in unknown_names.items():
unknown_names = list(set(features))
if unknown_names:
print('List of unknown features for', mc)
print('Add correction if name is mangled')
print('Or add unify for this feature')
for unknown_feature in unknown_names:
print('\t', unknown_feature)
print('=' * 20)
print()
@staticmethod
def merge_features(old, new):
return merge(old, new)
if __name__ == '__main__':
datasheet = DataSheet(r"D:\PYTHON\py_pdf_stm\datasheets\stm32L\STM32L476.pdf")
feature_extractor = FeatureListExtractor('STM32L476', datasheet, {})
feature_extractor.process()
pprint(feature_extractor.features)
|
[
"med45c@gmail.com"
] |
med45c@gmail.com
|
18a99599843103fa4fbf326fffab1bb55fabd9d9
|
d854b6c0e241b7c86d27c0a7fde8e64e48f59e52
|
/test1.py
|
774746ffa6e263614633bda83a645dd8641e4ebd
|
[] |
no_license
|
zhoujingwhy/KNN
|
0776f64df04c574044d38833f8972bc99b68c470
|
65ee9fe0d8b5160cd0f0821aea38ecd206eb74d0
|
refs/heads/master
| 2020-03-13T05:33:58.541114
| 2018-05-25T10:48:03
| 2018-05-25T10:48:03
| 130,986,734
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,178
|
py
|
import numpy as np
import operator
"""
函数说明:创建数据集
Returns:
group - 数据集
labels - 分类标签
"""
def createDataSet():
group=np.array([[1,101],[5,89],[108,5],[115,8]])
labels=['爱情片','爱情片','动作片','动作片']
return group,labels
"""
函数说明:kNN算法,分类器
Parameters:
inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 分类标签
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果
"""
def classify0(inX,dataSet,labels,k):
# numpy函数shape[0]返回dataSet的行数
dataSetSize=dataSet.shape[0]
#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat =np.tile(inX,(dataSetSize,1))-dataSet
#二维特征相减后平方
sqDiffMat =diffMat**2
# sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances=sqDiffMat.sum(axis=1)
#开方,计算出距离
distances=sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
sortedDistIndices =distances.argsort()
# 定一个记录类别次数的字典
classCount={}
for i in range(k):
# 取出前k个元素的类别
voteIlable=labels[sortedDistIndices[i]]
# dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
# 计算类别次数
classCount[voteIlable]=classCount.get(voteIlable,0)+1
# python3中用items()替换python2中的iteritems()
# key=operator.itemgetter(1)根据字典的值进行排序
# key=operator.itemgetter(0)根据字典的键进行排序
# reverse降序排序字典
sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
#返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
if __name__ =='__main__':
# 创建数据集
group,labels=createDataSet()
test = [101, 20]
# kNN分类
test_class = classify0(test, group, labels, 3)
# 打印分类结果
print(test_class)
|
[
"zhoujingwhy@163.com"
] |
zhoujingwhy@163.com
|
b057cf8004cf06aef806a822ce33652173f363f1
|
c706480a2b71881d9d34541251d483bc427b5f2e
|
/django_broker/urls.py
|
6254a95e4242279e725d729d1e4ec9d73d654c4a
|
[] |
no_license
|
ccennis/django_broker
|
3a3350fa8648877eca50a983b4ff039db0cdec14
|
f759c774a1b34b3e80a241216e3b619fbe9e9b51
|
refs/heads/master
| 2020-04-10T15:02:48.775968
| 2019-06-17T16:46:31
| 2019-06-17T16:46:31
| 161,095,269
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 239
|
py
|
#!/usr/bin/env python
from django.urls import include, path
from . import views
urlpatterns = [
path('broker/', include('reindex.urls')),
path('broker/', include('rebuild.urls')),
path('', views.hello_world, name='hello'),
]
|
[
"carolinecennis@gmail.com"
] |
carolinecennis@gmail.com
|
857fd7d31a75186a8008fd39c22ccda0b6e7a96d
|
3cb1bcb411d4a05c3ce8b276d4a65cecaf3e0f6a
|
/starline/publisher.py
|
ae3cd10f628a696ab4a30907913c22f0e1c6a568
|
[] |
no_license
|
setazer/starline
|
4357dbf70d43572924d2307c81ff027c3543c259
|
c5e06e1e5b0227daa0fe26335c7ee05038bb6f26
|
refs/heads/master
| 2023-06-22T01:59:30.152240
| 2021-07-21T14:22:51
| 2021-07-21T14:22:51
| 378,434,618
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,057
|
py
|
from channels import Channel
from interfaces import MessageInterface
from model import TelegramMessage, QueueItem
from queue_providers import QueueProvider
from storage_providers import StorageProvider
class Publisher:
def __init__(self, queue_provider: QueueProvider, history_provider: StorageProvider, channels: list[Channel],
message_interface: MessageInterface):
self.queue = queue_provider
self.history = history_provider
self.channels = channels
self.output = message_interface
def publish(self):
queue_item: QueueItem = self.queue.get_item()
queue_item.lock = True
post = queue_item.post
results = [channel.publish(post) for channel in self.channels if channel.enabled]
if any(map(lambda r: r.success, results)):
self.history.write(post)
self.queue.remove(queue_item)
else:
self.output.send_message(TelegramMessage(msg=f'Не удалось запостить {post}'))
queue_item.lock = False
|
[
"we.are@setazer.us"
] |
we.are@setazer.us
|
57d665ccf751648900ac6a8db303fbee5f5019ce
|
f3d79f0ea8972a9296e7f6315ae6f632754beb61
|
/geo_google.py
|
b7b7c871f80aa413cbc9160b3e264f4a86217cca
|
[] |
no_license
|
dionmartin/Geo-Google
|
434265e302fe0d267f5e4a34f24ef4f56c253f14
|
8774c0ab5255b760c6acdaa2b68ec3f28d0ef594
|
refs/heads/master
| 2021-01-12T02:17:48.926433
| 2017-01-10T03:53:25
| 2017-01-10T03:53:25
| 78,495,426
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,142
|
py
|
# -*- coding: utf-8 -*-
# Part of Odoo. See LICENSE file for full copyright and licensing details.
from itertools import groupby
from datetime import datetime, timedelta
from odoo import api, fields, models, _
from odoo.exceptions import UserError
from odoo.tools import float_is_zero, float_compare, DEFAULT_SERVER_DATETIME_FORMAT
from odoo.tools.misc import formatLang
import odoo.addons.decimal_precision as dp
from geopy.geocoders import Nominatim
class history_detail(models.Model):
_name = "history.detail"
_description = "History Detail"
latitute = fields.Float('Latitute' , digits=(16, 5))
longitude = fields.Float('Longitude' , digits=(16, 5))
address = fields.Char('Address')
city = fields.Char('City')
state = fields.Char('State')
country = fields.Char('Country')
@api.multi
def check(self):
geolocator = Nominatim()
lat = self.latitute
longi = self.longitude
location = geolocator.reverse((lat, longi))
self.address = location.raw['display_name']
self.city = location.raw['address']['city']
self.state = location.raw['address']['state_district']
self.country = location.raw['address']['country']
|
[
"d.m.hamonangan@gmail.com"
] |
d.m.hamonangan@gmail.com
|
1eac1dfad8fee38b34847d58779218ce40d9b312
|
97dfcf7f675ccad34004536ba8592c8aee8325ad
|
/premiumbody/asgi.py
|
c9ee1d3970f5c074dafd44aa27044494f6c96257
|
[] |
no_license
|
Code-Institute-Submissions/MilestoneProject4-5
|
bb1045b37e38151f698a82858e18981ec4595558
|
4732689f01c850c17fb554c938d915da40c5d97e
|
refs/heads/master
| 2023-01-20T19:04:33.865082
| 2020-12-02T03:34:14
| 2020-12-02T03:34:14
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 399
|
py
|
"""
ASGI config for premiumbody project.
It exposes the ASGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/
"""
import os
from django.core.asgi import get_asgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'premiumbody.settings')
application = get_asgi_application()
|
[
"mendesf@hotmail.com"
] |
mendesf@hotmail.com
|
5d1d805b29e5d4e0b47198f0a61dcf13a65915ba
|
e82c73e2590c6138f89c62db9cc327f2efceb95a
|
/src/Team/TeamTypes/Team.py
|
22e145bc96b3a550270c37f5e5fb44b0cb34f393
|
[] |
no_license
|
dstseng/GameOrganizer
|
849d55443f8bd980d43853c27fc58974c89e0f86
|
e6987cde564290c4ad204e11e6423ef827e8635e
|
refs/heads/master
| 2021-01-20T19:53:39.641319
| 2016-05-31T01:39:49
| 2016-05-31T01:39:49
| 60,049,502
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 437
|
py
|
__author__="alfaflight"
__date__ ="$Apr 9, 2016 10:32:15 PM$"
class Team:
def __init__(self, List_Registration_teammates):
self.__Int_numOfWins = 0
self.__List_Registration_teammates = List_Registration_teammates
def addWin(self):
self.__Int_numOfWins += 1
def getNumOfWins(self):
return self.__Int_numOfWins
def getTeammates(self):
return List_Registration_teammates
|
[
"dstseng@gmail.com"
] |
dstseng@gmail.com
|
62aafbdb22650f40b609eb82abfdd148b18ba3a7
|
64654842414a5bbffa2456f706c14d1a5a1dbae2
|
/autoarxiv/warden/scripts/emailer.py
|
0091e500d47aefcb749603575cbd4c06a4c8253d
|
[
"MIT"
] |
permissive
|
Reslix/AutoArxiv
|
e25b1bdf94b9b01109bed7399c86da76a6df9f3a
|
96f57e687716c1b0d0786943fbc74bf2f4389da7
|
refs/heads/master
| 2021-01-20T11:41:36.617274
| 2018-01-23T00:54:34
| 2018-01-23T00:54:34
| 77,075,353
| 0
| 0
| null | 2017-02-03T05:48:27
| 2016-12-21T18:11:54
|
Python
|
UTF-8
|
Python
| false
| false
| 6,709
|
py
|
import re
import email
import imaplib
from django.core.mail import send_mail
from autoarxiv import settings
from warden.models import Author, AuthorRating, Article, ArticleRating, Member
from warden.scripts.data_connector import DataConnector
def send_listing(e_mail, listing):
"""
Formats the sorted listing into some readable plaintext form. Hasn't been tested, so this will prove to be interesting.
"""
message = "\n"
for i, msg in enumerate(listing):
message = message + msg + '\n\n'
message = message + """\n\n To update ratings for an article or author, send an email (not a reply!) to this sender address with
ARTICLE or AUTHOR in the subject line.
For articles, list line-by-line the article Arxiv ID as it came in the listing and an
integer rating between 1 and 5, separated by a comma. If the article is not currently
in the library it will be added.
For authors, do the same with the author's name and have the rating added
in the same way.
Please make sure to use of the full scale range in your ratings library to help the ML aspects.
If new users want to subscribe, they should email this address with SUBSCRIBE as the subject,
and have <email>, <name> in the first line of the body.
"""
# len(listing-3) because of the extra header stuff we put in
send_mail(str(len(listing) - 3) + ' New listings, ordered by relevance',
message,
settings.EMAIL_HOST_USER,
[e_mail])
print("Sent listing to " + e_mail)
def receive_emails():
try:
mail = imaplib.IMAP4_SSL('imap.gmail.com')
mail.login(settings.EMAIL_HOST_USER, settings.EMAIL_HOST_PASSWORD)
except:
print('Unable to connect to imap')
mail.select('inbox')
rawmessage = []
retcode, data = mail.search(None, '(UNSEEN)')
for num in data[0].split():
typ, data = mail.fetch(num, '(RFC822)')
msg = email.message_from_bytes(data[0][1])
#typ, data = mail.store(num, '+FLAGS', '\\Seen')
rawmessage.append(msg)
for message in rawmessage:
header = email.header.make_header(email.header.decode_header(message['Subject']))
subject = str(header)
sender = message['From'].split()[-1][1:-1]
payload = [m.get_payload() for m in message.get_payload()][0]
member = Member.objects.filter(email=sender)
print("Updating preferences for: " + message['From'])
if len(member) != 0:
member = member[0]
if subject == 'AUTHOR':
body = payload.split('\n')
for line in body:
print(line)
line = line.split(',')
if len(line) == 2:
if '@' in line[0]:
author = Author.objects.filter(email=line[0])
else:
author = Author.objects.filter(name=line[0])
arating = []
if len(author) != 0:
author = author[0]
arating = AuthorRating.objects.filter(member=member, author=author)
else:
author = Author(name=line[0])
author.save()
if len(arating) != 0:
arating = arating[0]
arating.rating = int(line[1])
else:
arating = AuthorRating(member=member, author=author, rating=int(line[1]))
arating.save()
elif subject == 'ARTICLE':
body = payload.split('\n')
for line in body:
print(line)
line = line.split(',')
if len(line) == 2:
article = Article.objects.filter(shortid=line[0])
if len(article) != 0:
arating = ArticleRating.objects.filter(member=member, article=article[0])
if len(arating) != 0:
arating = arating[0]
arating.rating = int(line[1])
else:
arating = ArticleRating(member=member, article=article[0], rating=int(line[1]))
else:
d = DataConnector()
d.fetch_links(query=line[0])
d.fetch_pdfs()
d.pdf_to_txt()
d.save(add_new=False)
article = d.articles[0]
arating = ArticleRating(member=member, article=article, rating=int(line[1]))
arating.save()
elif subject == 'SUBSCRIBE':
body = payload.split('\n')[0].split(',')
if len(Member.objects.all().filter(name=body[1], email=body[0])) == 0:
member = Member(name=body[1], email=body[0])
member.save()
send_mail('You have subscribed!', """ To update ratings for an article or author, send an email (not a reply!) to this sender address with
ARTICLE or AUTHOR in the subject line.
For articles, list line-by-line the article Arxiv ID as it came in the listing and an
integer rating between 1 and 5, separated by a comma. If the article is not currently
in the library it will be added.
For authors, do the same with the author's name and have the rating added
in the same way.
Please make sure to use of the full scale range in your ratings library to help the ML aspects.""",
settings.EMAIL_HOST_USER,
[sender])
mail.close()
|
[
"huashengz@gmail.com"
] |
huashengz@gmail.com
|
f9a501c145dbd5a41701bcb08ac1c22014d598f6
|
e782950bb76c4dd295001f7760f42e04ceadfb1b
|
/tests/test_completion.py
|
6da2d9cdd703379d172e78b6479300256e4e92b0
|
[
"MIT"
] |
permissive
|
h3xium/typer
|
2c3fc691c52a89997eb7db9267ed1fb12c9af800
|
31f7a44a467e6e3468434703d3c18961a746939f
|
refs/heads/master
| 2021-01-26T22:23:57.520688
| 2020-02-15T12:39:47
| 2020-02-15T12:39:47
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,456
|
py
|
import os
import subprocess
import sys
from pathlib import Path
import typer
from typer.testing import CliRunner
from first_steps import tutorial001 as mod
runner = CliRunner()
app = typer.Typer()
app.command()(mod.main)
def test_show_completion():
result = subprocess.run(
[
"bash",
"-c",
f"{sys.executable} -m coverage run {mod.__file__} --show-completion",
],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
encoding="utf-8",
env={**os.environ, "SHELL": "/bin/bash"},
)
assert "_TUTORIAL001.PY_COMPLETE=complete-bash" in result.stdout
def test_install_completion():
bash_completion_path: Path = Path.home() / ".bash_completion"
text = ""
if bash_completion_path.is_file():
text = bash_completion_path.read_text()
result = subprocess.run(
[
"bash",
"-c",
f"{sys.executable} -m coverage run {mod.__file__} --install-completion",
],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
encoding="utf-8",
env={**os.environ, "SHELL": "/bin/bash"},
)
new_text = bash_completion_path.read_text()
bash_completion_path.write_text(text)
assert "_TUTORIAL001.PY_COMPLETE=complete-bash" in new_text
assert "completion installed in" in result.stdout
assert "Completion will take effect once you restart the terminal." in result.stdout
|
[
"tiangolo@gmail.com"
] |
tiangolo@gmail.com
|
2e02856b80b1efb6e70451bbb2ad42b1e3151417
|
538ac22016c4c8771e5b13f5e26688e2df72ae31
|
/CSS/frib-css-xy-diag.py
|
3aae9e9f743925fb9c05a9d11d01da1bc3988fa2
|
[] |
no_license
|
cyjwong/ScriptsinProgress
|
69eab942b33e56d3eb3ef9a9f8712084fff86d30
|
7847e231bf54c27fc649c5ffdb25391069de7185
|
refs/heads/master
| 2020-05-21T16:43:12.813876
| 2016-09-20T04:39:06
| 2016-09-20T04:39:06
| 60,614,955
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 58,826
|
py
|
# Diagnostics for FRIB front-end simulations using the x-y slice model
# Notes:
# * Slice model is not intrinsically well adapted to multi-species
# simulations so some diagnostics repeat (for clarity) what can be
# generated within Warp with other methods.
# * Model allows easy generalization to include diagnostic quantities not
# in the usual Warp suite.
##############################################################################
# Begin Inputs
##############################################################################
# Diagnostic Parameters
# Diagnostics are grouped into several classes:
# - Particle: Snapshot plots of distribution function projections
# - Field: Snapshot plots of self fields
# - History: History plots on the evolution of moments and particle counts
# accumulated as the simulation advances.
# --- set max simulation step for diagnostic setup
max_diag_step = 1.e10
# --- set history diagnostic and moment accumulations
ds_diag = 1.*cm
top.nhist = max(1,nint(ds_diag/wxy.ds)) # step interval for histories
top.itmomnts[0:3] = [0,max_diag_step,top.nhist] # do loop ranges for moments
# and status writes to tty
# --- Plot limits for particle phase space plots. If lframe = true (default
# false) diagnostics such as ppxxp for x-x' particle phase space will
# use these ranges.
# max/min x,y plot coordinates (m)
# max/min x',y' plot coordinates (rad)
#l_diag = r_p
l_diag = 75*mm
top.xplmax = l_diag
top.xplmin = -l_diag
top.yplmax = l_diag
top.yplmin = -l_diag
top.xpplmax = 75.*mr
top.xpplmin = -top.xpplmax
top.ypplmax = top.xpplmax
top.ypplmin = -top.xpplmax
# --- Color palette for phase-space plots (comment for default)
# Search for .gp suffix files in the Warp scripts directory for possible
# choices. Some useful ones include:
# earth.gp (default) heat.gp (heat)
# gray.gp (gray scale) rainbow.gp (rainbow)
#palette("heat.gp")
# --- Set a chop factor for particle phase space plots to avoid plotting
# too many particles (large storage and features will obscure). Set
# for approx 10 K particles per species plotted.
chop_fraction = 10.e3/float(top.npmax)
# Particle phase space diagnostics.
# * The list diag_step_part contains all steps where diagnostics in
# diag_part() are made.
# * The list can contain repeated elements and need not be ordered.
diag_part_z = array([
z_launch,
d5p1_zs,
(d5p1_zs+d5p1_zc)/2,
d5p1_zc,
(d5p1_zc+d5p1_ze)/2,
d5p1_ze,
valve_zc + 2*mm,
q7t1p1_zc,
q7t1_mid_12 + 2*mm,
q7t1p2_zc,
q7t1_mid_23 + 2*mm,
q7t1p3_zc,
(q7t2p1_zc + q7t1p3_zc)/2,
q7t2p1_zc,
(q7t2p1_zc + q7t2p2_zc)/2,
q7t2p2_zc,
(q7t2p2_zc + q7t2p3_zc)/2,
q7t2p3_zc,
d5p2_zs,
(d5p2_zs+d5p2_zc)/2,
d5p2_zc,
(d5p2_zc+d5p2_ze)/2,
d5p2_ze,
z_adv])
diag_part_z_name = [
"Initial Launch",
"D5 Dipole #1: z-start",
"D5 Dipole #1: 1/4 of dipole length",
"D5 Dipole #1: z-Center",
"D5 Dipole #1: 3/4 of dipole length",
"D5 Dipole #1: z-end",
"after gate valve",
"1st Q7 ESQ Triplet #1: z-Center",
"after slits between Q7 #1 and #2",
"1st Q7 ESQ Triplet #2: z-Center",
"after slits between Q7 #2 and #3",
"1st Q7 ESQ Triplet #3: z-Center",
"Four-jaw collimator",
"2nd Q7 ESQ Triplet #1: z-Center",
"2nd Q7 ESQ Triplet between #1 and #2",
"2nd Q7 ESQ Triplet #2: z-Center",
"2nd Q7 ESQ Triplet between #2 and #3",
"2nd Q7 ESQ Triplet #3: z-Center",
"D5 Dipole #2: z-start",
"D5 Dipole #2: 1/4 of dipole length",
"D5 Dipole #2: z-Center",
"D5 Dipole #2: 3/4 of dipole length",
"D5 Dipole #2: z-end",
"Final position"
]
diag_part_step = nint((diag_part_z-z_launch)/wxy.ds)
diag_part_z_names = {diag_part_step[i]:diag_part_z_name[i] for i in range(len(diag_part_step))}
# Field diagnostics.
# * The list diag_step_field containins all steps where
# diagnostics in diag_field() are made.
# * The list can contain repeated elements and need not be ordered.
diag_field_z = array([
z_launch,
d5p1_zc,
z_adv
])
diag_field_z_name = [
"Initial Launch",
"D5 Dipole #1: z-Center",
"Final position"
]
diag_field_step = nint((diag_field_z-z_launch)/wxy.ds)
diag_field_z_names = {diag_field_step[i]:diag_field_z_name[i] for i in range(len(diag_field_step))}
# History diagnostics.
# * Can be made at intermediate stages of the
# run as well as at the end.
# * The list diag_step_hist contains all
# steps where diagnostics in diag_hsit() are made.
# * The list can contain repeated elements and need not be ordered.
diag_hist_z = array([z_adv]) #array([gag_col_zs,z_adv])
diag_hist_step = nint((diag_hist_z-z_launch)/wxy.ds)
######################################################################################################
# End Inputs
######################################################################################################
# Diagnostic plot function of [B rho] vs Q/A for species.
# * Should work correctly at any point in the simulation while the beam
# accelerates.
def plt_diag_bro(label=None):
if label == None: label = " "
brho_min = largepos
brho_max = -largepos
for ii in sp.keys():
s = sp[ii]
js = s.js
#
weight = sum(s.sw*s.w) # total weight
#
vbeam = sum( (s.sw*s.w)*s.getvz() )/weight # avg axial velocity
gammabeam = 1./sqrt(1.-(vbeam/clight)**2) # gamma from avg axial velocity
brho = s.mass*gammabeam*vbeam/s.charge # rigidity
#
brho_min = min(brho,brho_min)
brho_max = max(brho,brho_max)
#
plt(ii,sp_qovm[ii],brho,tosys=1,color=s.color)
#
[qovm_min,qovm_max] = [minnd(sp_qovm.values()),maxnd(sp_qovm.values())]
qovm_pad = 0.1*(qovm_max - qovm_min)
brho_pad = 0.1*(brho_max - brho_min)
#
limits(qovm_min-qovm_pad,qovm_max+qovm_pad,brho_min-brho_pad,brho_max+brho_pad)
ptitles(label,"Q/A","[B rho] [Tesla-m]",)
fma()
# Potential profile plot diagnostic for potential along x-y axes
# * Primarily for initial beam but should work at any point in simulation.
def diag_plt_phi_ax(xmax=None,label=None):
if xmax == None: xmax = max(w3d.xmesh.max(),w3d.ymesh.max())
ixmax = sum(where(w3d.xmesh < xmax, 1, 0))
iymax = sum(where(w3d.ymesh < xmax, 1, 0))
if label == None: label = "Beam Potential at y,x = 0 b,r"
#
ix_cen = sum(where(w3d.xmesh < 0., 1, 0))
iy_cen = sum(where(w3d.ymesh < 0., 1, 0))
phix = getphi(iy=iy_cen)
phiy = getphi(ix=ix_cen)
phimin = min(phix[ixmax],phiy[iymax])
#
plg(phix,w3d.xmesh/mm)
plg(phiy,w3d.ymesh/mm,color="red")
ptitles(label,"x,y [mm]","phi [V]", )
limits(-xmax/mm,xmax/mm,phimin,'e')
# Augmented History Diagnostics for xy Slice Model
# * Some by species, some all species
# * Flag variables with prefix hl_ for "history local"
# --- History variable accumulation arrays
hl_lenhist_max = 10000 # max accumulation points
#
hl_zbeam = fzeros(hl_lenhist_max) # z of beam at hl_ diagnostic accumulations (redundant with top.hzbeam)
#
hl_vbeam = fzeros([hl_lenhist_max,top.ns]) # axial beam velocity [m/s]
hl_ekin = fzeros([hl_lenhist_max,top.ns]) # axial beam NR kinetic energy [eV]
hl_brho = fzeros([hl_lenhist_max,top.ns]) # rigidity [B rho]_js [Tesla-m]
#
hl_xrms = fzeros([hl_lenhist_max,top.ns]) # rms radius sqrt( <x*x>_js )
hl_yrms = fzeros([hl_lenhist_max,top.ns]) # rms radius sqrt( <y*y>_js )
hl_rrms = fzeros([hl_lenhist_max,top.ns]) # rms radius sqrt( <r*r>_js )
#
hl_xrmst = fzeros(hl_lenhist_max) # Total species measures of above
hl_yrmst = fzeros(hl_lenhist_max) #
hl_rrmst = fzeros(hl_lenhist_max) #
#
hl_spnum = fzeros([hl_lenhist_max,top.ns]) # number active simulation particles
hl_spnumt = fzeros(hl_lenhist_max) # number active simulation particles (all species)
#
hl_ibeam_p = fzeros([hl_lenhist_max,top.ns]) # beam current (particle)
hl_ibeam_e = fzeros([hl_lenhist_max,top.ns]) # beam current (electrical)
hl_ibeam_pt = fzeros([hl_lenhist_max]) # total beam current (particle)
hl_ibeam_et = fzeros([hl_lenhist_max]) # total beam current (electrical)
#
hl_lambda_p = fzeros([hl_lenhist_max,top.ns]) # line charge (particle)
hl_lambda_e = fzeros([hl_lenhist_max,top.ns]) # line charge (electrical)
#
#hl_ptheta = fzeros([hl_lenhist_max,top.ns]) # canonical angular momentum <P_theta>_j (nonlinear appl field version)
#hl_pth = fzeros([hl_lenhist_max,top.ns]) # <P_theta>_j in emittance units <P_theta>_j/(gamma_j*beta_j*m_j*c)
#hl_pthn = fzeros([hl_lenhist_max,top.ns]) # <P_theta>_j in norm emittance units <P_theta>_j/(m_j*c)
#
#hl_ptheta_l = fzeros([hl_lenhist_max,top.ns]) # Same canonical angular momentum measures with
#hl_pth_l = fzeros([hl_lenhist_max,top.ns]) # linear applied magnetic field approximation.
#hl_pthn_l = fzeros([hl_lenhist_max,top.ns]) # (redundant with above for linear lattice)
#
hl_lz = fzeros([hl_lenhist_max,top.ns]) # mechanical angular momentum
hl_krot = fzeros([hl_lenhist_max,top.ns]) # rotation wavenumber
hl_lang = fzeros([hl_lenhist_max,top.ns]) # Larmor rotation angle (from initial zero value)
#
hl_epsx = fzeros([hl_lenhist_max,top.ns]) # rms x-emittance (usual version)
hl_epsy = fzeros([hl_lenhist_max,top.ns]) # rms y-emittance (usual version)
#
hl_epsxn = fzeros([hl_lenhist_max,top.ns]) # rms normalized x-emittance (usual version)
hl_epsyn = fzeros([hl_lenhist_max,top.ns]) # rms normalized y-emittance (usual version)
#
hl_epsr = fzeros([hl_lenhist_max,top.ns]) # rms radial emittance (envelope model version)
hl_epsrn = fzeros([hl_lenhist_max,top.ns]) # rms normalized radial emittance (envelope model version)
#
hl_epspv = fzeros([hl_lenhist_max,top.ns]) # rms total phase volume emittance (envelope model sense)
hl_epspvn = fzeros([hl_lenhist_max,top.ns]) # rms normalized total phase volume emittance (envelope model sense)
#
hl_temp = fzeros([hl_lenhist_max,top.ns]) # Effective transverse ion temperature measure [eV]
#
hl_Qperv = fzeros([hl_lenhist_max,top.ns]) # Generalized perveance Q_js for species: note matrix perv
# Q_js,s calculable from this and line-charge densities [1]
hl_neutf = fzeros([hl_lenhist_max,top.ns]) # Neutralization factor [1]
hl_dz = top.nhist*wxy.ds # Axial step size between diagnostic accumulations
# ---- Function to Fill Auxillary History Arrays
# * Install after step in particle advance cycle
@callfromafterstep
def diag_hist_hl():
# check step in history accumulation cycle
if top.it%top.nhist != 0: return
hl_zbeam[top.jhist] = top.zbeam # z location of diagnostic accumulations
# accumulate history diagnostics by species
weightt_work = 0.
xrmst_work = 0.
yrmst_work = 0.
rrmst_work = 0.
for ii in sp.keys():
# --- species info and index js
s = sp[ii]
js = s.js
# --- species weight: (real particle per macroparticle)/meter
weight = sum(s.sw*s.w)
# --- <v_z>_js, gamma_js and [B rho]_js calculated from result
vbeam = sum( (s.sw*s.w)*s.getvz() )/weight
gammabeam = 1./sqrt(1.-(vbeam/clight)**2)
brho = s.mass*gammabeam*vbeam/s.charge
hl_vbeam[top.jhist,js] = vbeam
hl_brho[top.jhist,js] = brho
#
# --- species quantities for later use
# --- avg_rsq = <r*r>_js
r = s.getr()
rsq = r*r
rsq_wsum = sum( (s.sw*s.w)*rsq )
avg_rsq = rsq_wsum/weight
# --- avg_xyp = <x*y'>_js and avg_yxp = <y*x'>_js
avg_xyp = sum( (s.sw*s.w)*s.getx()*s.getyp() )/weight
avg_yxp = sum( (s.sw*s.w)*s.gety()*s.getxp() )/weight
# --- avg_xpy = <x*p_y>_js and avg_ypx = <y*p_x>_js
# * Relativistically correct here
avg_xpy = s.mass*sum( (s.sw*s.w)*s.getx()*s.getuy() )/weight
avg_ypx = s.mass*sum( (s.sw*s.w)*s.gety()*s.getux() )/weight
# --- applied field B_z(r=0,z) at z location of beam
bz0 = getappliedfields(x=0.,y=0.,z=top.zbeam)[5]
# --- Axial kinetic energy [eV], ekin_js, NR calcuation
hl_ekin[top.jhist,js] = (0.5*s.mass*sum( (s.sw*s.w)*s.getvz()**2 )/weight)/jperev
# s.mass*clight**2*(gammabeam - 1.)/jperev
# --- rms x = <x*x>_js
xsq_wsum = sum( (s.sw*s.w)*s.getx()**2 )
hl_xrms[top.jhist,js] = sqrt( xsq_wsum/weight )
# --- rms y = <y*y>_js
ysq_wsum = sum( (s.sw*s.w)*s.gety()**2 )
hl_yrms[top.jhist,js] = sqrt( ysq_wsum/weight )
# --- rms r = <r*r>_js
hl_rrms[top.jhist,js] = sqrt( avg_rsq )
# --- Simulation Particle Number
hl_spnum[top.jhist,js] = s.getn()
# --- Current, electrical, Ie_js [A]
hl_ibeam_e[top.jhist,js] = s.charge*sum( (s.sw*s.w)*s.getvz() ) # slice code weight is particles/meter
# --- Current, particle, Ip_js [A]
# * Use way to calculate to remove neutralization factor
# * Formula as given approx (paraxial) using appropriate weights
hl_ibeam_p[top.jhist,js] = s.charge*s.sw*(s.vbeam0/vbeam)*sum( s.getvz() )
# --- line charge Lambda_js
hl_lambda_p[top.jhist,js] = hl_ibeam_p[top.jhist,js]/vbeam
hl_lambda_e[top.jhist,js] = hl_ibeam_e[top.jhist,js]/vbeam
# --- Mechanical angular momentum: <x*y'>_js - <y*x'>_js
hl_lz[top.jhist,js] = avg_xyp - avg_yxp
# --- Canonical angular momentum <P_theta>_js
# Notes: * Uses A_theta via getatheata() consistently with linear/nonlinear elements.
#hl_ptheta[top.jhist,js] = avg_xpy - avg_ypx + sum( (s.sw*s.w)*s.charge*r*getatheta(r) )/weight
# --- Normalized canonical angular momentum in emittance units. <P_theta>_js/(m_js*c)
# * <P_theta>_j/(m_j*c) in envelope model scales as a normalized emittance
# and should not vary with acceleration with linear forces.
# * This employs the nonlinear definition of P_theta if the lattice is nonlinear !
#hl_pthn[top.jhist,js] = hl_ptheta[top.jhist,js]/(s.mass*clight)
# --- Canonical angular momentum of species in emittance units
#hl_pth[top.jhist,js] = hl_pthn[top.jhist,js]/(gammabeam*(vbeam/clight))
# --- Canonical angular momentum in linear applied field approx (all 3 versions above)
# * These are redundant in linear field lattice
# * Use _l for "linear" flag
#hl_ptheta_l[top.jhist,js] = avg_xpy - avg_ypx + sum( (s.sw*s.w)*(s.charge*bz0/2.)*avg_rsq )/weight
#hl_pthn_l[top.jhist,js] = hl_ptheta_l[top.jhist,js]/(s.mass*clight)
#hl_pth_l[top.jhist,js] = hl_pthn_l[top.jhist,js]/(gammabeam*(vbeam/clight))
# --- rms x- and y-emittances: account for factor of 4 diff between Warp rms edge and rms measures
hl_epsx[top.jhist,js] = top.hepsx[0,top.jhist,js]/4.
hl_epsy[top.jhist,js] = top.hepsy[0,top.jhist,js]/4.
# --- normalized rms x- and y-emittances: paraxial equivalent version
hl_epsxn[top.jhist,js] = (gammabeam*(vbeam/clight))*hl_epsx[top.jhist,js]
hl_epsyn[top.jhist,js] = (gammabeam*(vbeam/clight))*hl_epsy[top.jhist,js]
# --- rms radial thermal emittance eps_r_js as derived in envelope model:
# * Warp accumulation used to extract has a factor of 2 diference from rms envelope model
# due to use of an "edge" measure. Note: this is different than the factor of 4 in epsx etc.
hl_epsr[top.jhist,js] = top.hepsr[0,top.jhist,js]/2.
# --- rms normalized radial thermal emittance epsn_r_js as derived in envelope model
hl_epsrn[top.jhist,js] = (gammabeam*(vbeam/clight))*hl_epsr[top.jhist,js]
# --- rms total phase volume emittance including radial thermal and canonical angular momentum
# contributions based on envelope model intrpretation of total phase-space area.
#hl_epspv[top.jhist,js] = sqrt( (hl_epsr[top.jhist,js])**2 + (hl_pth[top.jhist,js])**2 )
# --- rms normalized total phase volume emittance
#hl_epspvn[top.jhist,js] = sqrt( (hl_epsrn[top.jhist,js])**2 + (hl_pthn[top.jhist,js])**2 )
# --- ion temperature calculated from emittance [eV]
hl_temp[top.jhist,js] = hl_ekin[top.jhist,js]*hl_epsr[top.jhist,js]**2/dvnz(hl_rrms[top.jhist,js]**2)
# --- Perveance, NR formula for species
# Note: * Define bare ... not accounting for neutralization fractions.
# Factor (s.charge/echarge) = Q accounts for charge state with particle line-charge to
# get bare (unneutralized) electrical line charge.
# * This is Q_js NOT the matrix perveance Q_j,s in the envelope model notes.
# * Envelope model Q_js can be obtained from Q_j and line charges lambda_j: no need to save
hl_Qperv[top.jhist,js] = s.charge*(s.charge/echarge)*hl_lambda_p[top.jhist,js]/(2.*pi*eps0*s.mass*vbeam**2)
# --- Ion rho electron neutralization factor [1] = No space-charge, [0] full space-charge
hl_neutf[top.jhist,js] = rho_neut_f(top.zbeam,ii)
# --- Rotation wavenumber
hl_krot[top.jhist,js] = hl_lz[top.jhist,js]/dvnz(avg_rsq)
# --- Larmor Rotation angle: integrate from previous step
if top.jhist == 0:
hl_lang[0,js] = 0. # initial condition of zero angle
else:
hl_lang[top.jhist,js] = hl_lang[top.jhist-1,js] + 0.5*hl_dz*(hl_krot[top.jhist-1,js]+hl_krot[top.jhist,js])
# --- total (all species) accumulations
weightt_work = weightt_work + weight
xrmst_work = xrmst_work + xsq_wsum
yrmst_work = yrmst_work + ysq_wsum
rrmst_work = rrmst_work + rsq_wsum
# --- total number of simulation particles
hl_spnumt[top.jhist] = float(sum(hl_spnum[top.jhist,:]))
# --- total currents
hl_ibeam_pt[top.jhist] = sum(hl_ibeam_p[top.jhist,:])
hl_ibeam_et[top.jhist] = sum(hl_ibeam_e[top.jhist,:])
# --- total species rms measures
hl_xrmst[top.jhist] = sqrt( xrmst_work/weightt_work )
hl_yrmst[top.jhist] = sqrt( yrmst_work/weightt_work )
hl_rrmst[top.jhist] = sqrt( rrmst_work/weightt_work )
# Particle Phase-Space Diagnostic Functions
# * Make specified plots at location of simulation where diag_part() is called.
### Make phase space projections of individual species using the syntax "ppxxp(js=js)" instead of "s.ppxxp"
### The latter had trouble with the argument ' slope="auto" '
def diag_part(plt_xy=False,plt_xxp=False,plt_yyp=False,plt_xpyp=False,
plt_trace=False, plt_denxy=False, plt_denr=False):
print "Making particle diagnostic plots"
#
try:
z_label = diag_part_z_names[top.it]
except:
z_label = ""
#
# --- x-y projection
if plt_xy:
# --- All Species
# Caution: js=-1 with density plot will just overlay species contour plots
#ppxy(js=-1,lframe=true,chopped=chop_fraction,color='density',ncolor=25,
# titles=false,yscale=1./mm,xscale=1./mm)
ppxy(js=-1,lframe=true,chopped=chop_fraction,titles=false,yscale=1./mm,xscale=1./mm)
ptitles("x-y Phase Space: All Species, z = %5.2f m"%(top.zbeam),
"x [mm]","y [mm]",z_label)
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
co = s.color
lab+= ii + "("+co+"), "
js = s.js
ppxy(js=js,lframe=true,chopped=chop_fraction,titles=false,yscale=1./mm,xscale=1./mm,color=co)
ptitles("x-y Phase Space: "+lab+" z = %5.2f m"%(top.zbeam),"x [mm]","y [mm]",z_label)
fma()
# --- x-x' projection
if plt_xxp:
# --- All Species
# Caution: js = -1 with density plot will overlay species contour plots
#ppxxp(js = -1,lframe=true,chopped=chop_fraction,slope='auto',color='density',ncolor=25,
# titles=false,yscale=1./mr,xscale=1./mm)
ppxxp(js = -1,lframe=true,chopped=chop_fraction,slope='auto',titles=false,yscale=1./mr,xscale=1./mm)
ptitles("x-x' Phase Space: All Species, z = %5.2f m"%(top.zbeam),"x [mm]","x' [mrad]",z_label)
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
co = s.color
lab+= ii + "("+co+"), "
js = s.js
ppxxp(js=js,lframe=true,chopped=chop_fraction,slope='auto',titles=false,yscale=1./mr,xscale=1./mm,color=co)
ptitles("x-x' Phase Space: "+lab+" z = %5.2f m"%(top.zbeam),"x [mm]","x' [mrad]",z_label)
fma()
# --- y-y' projection
if plt_yyp:
# --- All Species
# Caution: js=-1 with denisty plot will overlay species contour plots
#ppyyp(js=-1,lframe=true,chopped=chop_fraction,slope='auto',color='density',ncolor=25,
# titles=false,yscale=1./mr,xscale=1./mm)
ppyyp(js=-1,lframe=true,chopped=chop_fraction,slope='auto',color='density',ncolor=25,
titles=false,yscale=1./mr,xscale=1./mm)
ptitles("y-y' Phase Space: All Species, z = %5.2f m"%(top.zbeam),
"y [mm]","y' [mrad]",z_label)
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
co = s.color
lab+= ii + "("+co+"), "
js = s.js
ppyyp(js=js,lframe=true,chopped=chop_fraction,slope='auto',titles=false,yscale=1./mr,xscale=1./mm,color=co)
ptitles("y-y' Phase Space: "+lab+" z = %5.2f m"%(top.zbeam),"y [mm]","y' [mrad]",z_label)
fma()
# --- x'-y' projection
if plt_xpyp:
# --- All Species
# Caution: js=-1 with density plot will overlay species countours
#ppxpyp(js=-1,lframe=true,chopped=chop_fraction,slope='auto',color='density',ncolor=25,
# titles=false,yscale=1./mr,xscale=1./mr)
ppxpyp(js=-1,lframe=true,chopped=chop_fraction,slope='auto',titles=false,yscale=1./mr,xscale=1./mr)
ptitles("x'-y' Phase Space: All Species, z = %5.2f m"%(top.zbeam),"x' [mrad]","y' [mrad]",z_label)
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
co = s.color
lab+= ii + "("+co+"), "
js = s.js
ppxpyp(js=js,lframe=true,chopped=chop_fraction,slope='auto',titles=false,yscale=1./mr,xscale=1./mm,color=co)
ptitles("x'-y' Phase Space: "+lab+" z = %5.2f m"%(top.zbeam),"x' [mrad]","y' [mrad]",z_label)
fma()
# --- x-y, x-x', y-y', x'-y' projections, 4 to a page (trace-space)
if plt_trace:
# --- All Species
pptrace(lframe=true,chopped=chop_fraction,slope='auto',color='density',ncolor=25)
fma()
# --- charge density on x and y axes
if plt_denxy:
rho_sc = 1.
ix_cen = sum(where(w3d.xmesh < 0.,1,0))
iy_cen = sum(where(w3d.ymesh < 0.,1,0))
# --- All Species
rho_x = getrho(iy=iy_cen)
rho_y = getrho(ix=ix_cen)
#
plg(rho_x/rho_sc,w3d.xmesh/mm)
if w3d.l4symtry: plg(rho_x/rho_sc,-w3d.xmesh/mm)
plg(rho_y/rho_sc,w3d.ymesh/mm,color="red")
if w3d.l4symtry or w3d.l2symtry:
plg(rho_y/rho_sc,-w3d.ymesh/mm,color="red")
ptitles("Charge Density: All Species, on x[b], y[r] Axes: z = %5.2f m"%(top.zbeam),
"x,y [mm]","Density [arb units]",z_label)
fma()
# --- Target Species: species.get_density() returns density
for ii in sp_target:
s = sp[ii]
co = s.color
den = s.get_density()/cm**3
plg(den[:,iy_cen],w3d.xmesh/mm)
if w3d.l4symtry: plg(den[:,iy_cen],-w3d.xmesh/mm)
plg(den[ix_cen,:],w3d.ymesh/mm,color="red")
if w3d.l4symtry or w3d.l2symtry: plg(den[ix_cen,:],-w3d.ymesh/mm,color="red")
ptitles("Density: "+ii+" on x[b], y[r] Axes: z = %5.2f m"%(top.zbeam),
"x,y [mm]","Density [#/cm^3]",z_label)
fma()
# --- charge density on radial mesh
if plt_denr:
# --- radial mesh reflecting x-y grid structure to illustrate simulation noise
nr = nint(sqrt(w3d.nx/(2.*sym_x)*w3d.ny/(2.*sym_y)))
rmax = sqrt(w3d.xmmax*w3d.ymmax)
dr = rmax/nr
rmesh = linspace(0.,rmax,num=nr+1)
#
sp_list = sp_target #+ ["All"]
ns = len(sp_list)
# --- density as a function or r on mesh array
den = zeros(nr+1)
#
weightr = zeros(nr+1)
count = zeros(nr+1)
# --- for all species on mesh
for ii in sp.keys():
s = sp[ii]
#
np = s.getn()
rp = s.getr()
wp = s.getweights()
#
deposgrid1d(1,np,rp,wp,nr,weightr,count,0.,rmax)
#
den[1:nr+1] = weightr[1:nr+1]/(2.*pi*dr*rmesh[1:nr+1])
den[0] = den[1] # set origin by next grid up to remove distraction
#
plg(den/cm**3, rmesh/mm) # pos axis
plg(den/cm**3,-rmesh/mm) # neg axis
ptitles("Radial Number Density: All Species, z = %5.2f m"%(top.zbeam),"radius r [mm]","rho [particles/cm**3]",z_label)
ir = min(nr,sum(where(den>0,1,0))) # index farthest radial extent of rho in radial mesh assuming no halo
rmmax = max(1.2*rmesh[ir],0.01) # set curoff to contain radial density
rmmax = cm*nint(rmmax/cm + 0.5) # round up to nearest cm to contain plot
denmax = 1.2*maxnd(den)
limits(-rmmax/mm,rmmax/mm,0.,denmax/cm**3)
fma()
# --- for all species (common log scale)
for ii in sp.keys():
s = sp[ii]
co = s.color
#
np = s.getn()
rp = s.getr()
wp = s.getweights()
#
weightr = zeros(nr+1) # reset for clean accumulation/count with itask = 1
count = zeros(nr+1)
deposgrid1d(1,np,rp,wp,nr,weightr,count,0.,rmax)
#
den[1:nr+1] = weightr[1:nr+1]/(2.*pi*dr*rmesh[1:nr+1])
den[0] = den[1] # set origin by next grid up to remove distraction (origin location high noise)
#
plg(den/cm**3, rmesh/mm,color=co)
plg(den/cm**3,-rmesh/mm,color=co)
#
ptitles("Radial Number Density: All species, z = %5.2f m"%(top.zbeam),"radius r [mm]","rho [particles/cm**3]",z_label)
limits(-rmmax/mm,rmmax/mm,1.e-4*denmax/cm**3,denmax/cm**3)
logxy(0,1) # specify log scale on y-axis
fma()
# --- for target species on mesh
for ii in sp_target:
s = sp[ii]
co = s.color
lab = ii + "("+co+"), "
#
np = s.getn()
rp = s.getr()
wp = s.getweights()
#
weightr = zeros(nr+1) # reset for clean accumulation/count with itask = 1
count = zeros(nr+1)
deposgrid1d(1,np,rp,wp,nr,weightr,count,0.,rmax)
#
den[1:nr+1] = weightr[1:nr+1]/(2.*pi*dr*rmesh[1:nr+1])
den[0] = den[1] # set origin by next grid up to remove distraction
#
plg(den/cm**3, rmesh/mm,color=co)
plg(den/cm**3,-rmesh/mm,color=co)
ptitles("Radial Number Density: "+lab+" z = %5.2f m"%(top.zbeam),"radius r [mm]","rho [particles/cm**3]",z_label)
ir = sum(where(den>0,1,0)) # index farthest radial extent of rho in radial mesh assuming no halo
rmmax = max(1.2*rmesh[ir],0.01) # set curoff to contain radial density
rmmax = cm*nint(rmmax/cm + 0.5) # round up to nearest cm to contain plot
denmax = 1.2*maxnd(den)
limits(-rmmax/mm,rmmax/mm,0.,denmax/cm**3)
fma()
# Field Diagnostic Functions
# * Make specified plots at location of simulation where diag_field() is called.
def diag_field(plt_pa=False,plt_pc=False,plt_pc_xy=False):
print "Making field diagnostic plots"
#
try:
z_label = diag_field_z_names[top.it]
except:
z_label = ""
# --- self-field electrostatic potential
if plt_pc:
pfxy(cond=true,titles=false,yscale=1./mm,xscale=1./mm,iz = 0)
ptitles("Self-Field Potential: z = %5.2f"%(top.zbeam),
"x [mm]","y [mm]",z_label)
fma()
# --- self-field electrostatic potential and particles together
if plt_pc_xy:
# --- All particle species included
pfxy(cond=true,titles=false,yscale=1./mm,xscale=1./mm)
# Caution: js=-1 with density plot will superimpose species contours
#ppxy(js=-1,lframe=true,chopped=chop_fraction,color='density',ncolor=25,
# titles=false,yscale=1./mm,xscale=1./mm)
ppxy(js=-1,lframe=true,chopped=chop_fraction,titles=false,yscale=1./mm,xscale=1./mm)
ptitles("Self-Field Potential: z = %5.2f"%(top.zbeam),
"x [mm]","y [mm]",z_label)
fma()
# --- Target particle species
lab = ""
pfxy(cond=true,titles=false,yscale=1./mm,xscale=1./mm)
for ii in sp_target:
s = sp[ii]
co = s.color
lab+= ii + "("+co+"), "
s.ppxy(lframe=true,chopped=chop_fraction,titles=false,yscale=1./mm,xscale=1./mm)
s.ppxy(lframe=true,chopped=chop_fraction,titles=false,yscale=1./mm,xscale=1./mm)
ptitles("Self-Field Potential: + "+lab+" Particles, z = %5.2f"%(top.zbeam),"x [mm]","y [mm]",z_label)
fma()
# --- Electrostatic potential on principal axes
if plt_pa:
diag_plt_phi_ax(label="Beam Potential along y,x = 0 [b,r] at z = %5.2f"%(top.zbeam))
fma()
#
xrms = max(top.xrms[0,sp['U33'].js],top.xrms[0,sp['U34'].js])
diag_plt_phi_ax(label="Beam Potential along y,x = 0 [b,r] at z = %5.2f"%(top.zbeam),xmax=2.*xrms)
fma()
# History diagnostics.
# * Makes specified history plots from begining of simulation at point called.
# * Many additional history diagnostics can be added by looking for
# relevant moments accumulated in the Warp (see the variable group
# "Hist" in top.v for an extensive list of variables that can be
# used) and using gist commands to make relevant plots
def diag_hist(
plt_ekin = False,
plt_spnum = False,
plt_curr_p = False,
plt_curr_e = False,
plt_lam_p = False,
plt_lam_e = False,
plt_lz = False,
plt_pth = False,
plt_pthn = False,
plt_krot = False,
plt_lang = False,
plt_cen = False,
plt_envrms = False,
plt_envmax = False,
plt_envrmsp = False,
plt_emit = False,
plt_emitn = False,
plt_emitg = False,
plt_emitng = False,
plt_emitr = False,
plt_emitnr = False,
plt_emitpv = False,
plt_emitpvn = False,
plt_temp = False,
plt_Qperv = False,
plt_neutf = False):
print "Making history diagnostic plots"
#
# --- kinetic energy
if plt_ekin:
# --- All Species Combined, MeV
#hpekin(titles=false,yscale=1.,lhzbeam=true)
#ptitles("History: All Species Kinetic Energy","z [m]","MeV", )
#fma()
# --- All Species, in keV/u
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
A = s.mass/amu
plg(hl_ekin[0:top.jhist+1,js]/(A*kV),hl_zbeam[0:top.jhist+1],color=co)
#hpekin(js=js,color=co,titles=false,yscale=1./A,lhzbeam=true)
ptitles("History: Kinetic Energy","z [m]","KeV/u", )
fma()
# --- Operating species, in keV/u
for ii in sort(sp_Operate.keys()):
s = sp[ii]
js = s.js
co = s.color
A = s.mass/amu
#hpekin(js=js,color=co,titles=false,yscale=1./A,lhzbeam=true)
plg(hl_ekin[0:top.jhist+1,js]/(A*kV),hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Operating Species Kinetic Energy","z [m]","KeV/u", )
fma()
# --- Support species, in keV/u
for ii in sort(sp_Support.keys()):
s = sp[ii]
js = s.js
co = s.color
A = s.mass/amu
plg(hl_ekin[0:top.jhist+1,js]/(A*kV),hl_zbeam[0:top.jhist+1],color=co)
#hpekin(js=js,color=co,titles=false,yscale=1./A,lhzbeam=true) # Was getting wrong answer !!
ptitles("History: Support Species Kinetic Energy","z [m]","KeV/u", )
fma()
# --- By Target Species, in kV/Q
# Plot by KV/Q so you can see total potential gain falling through
# full bias to check system tuning
zi = top.hzbeam[0]
zf = top.hzbeam[top.jhist]
ekin_t = Bias/kV
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
Q = s.charge_state
lab+= ii + "("+co+"), "
plg(hl_ekin[0:top.jhist+1,js]/(Q*kV),hl_zbeam[0:top.jhist+1],color=co)
#hpekin(js=js,color=co,titles=false,yscale=1./Q,lhzbeam=true)
plg(array([ekin_t,ekin_t]),array([zi,zf]),type="dash")
ptitles("History: "+lab+"Kinetic Energy","z [m]","KeV/Q", )
limits(zi,zf,0.,1.2*ekin_t)
fma()
# --- simulation particle number (to check for lost particles)
# Comment: tried using hppnum() but was unclear what was being plotted
if plt_spnum:
# --- All Species Combined
plg(hl_spnumt[0:top.jhist+1],hl_zbeam[0:top.jhist+1])
ptitles("History: Live Sim Particle Number (all species)", "z [m]","Particle Number (simulation)", )
fma()
# --- All Species Individually
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_spnum[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Live Sim Particle Number (by species)","z [m]","Particle Number (simulation)", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_spnum[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Live Sim Particle Number","z [m]","Particle Number (simulation)", )
fma()
# --- current (particle)
if plt_curr_p:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_ibeam_p[0:top.jhist+1,js]*1.e6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Particle Current (approx)", "z [m]","Current (microA)", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_ibeam_p[0:top.jhist+1,js]*1.e6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Particle Current (approx)","z [m]","Current (microA)", )
fma()
# --- Total
plg(hl_ibeam_pt[0:top.jhist+1]*1.e3,hl_zbeam[0:top.jhist+1])
ptitles("History: Total Particle Current (approx)","z [m]","Current (mA)", )
fma()
# --- current (electrical)
if plt_curr_e:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_ibeam_e[0:top.jhist+1,js]*1.e6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Electrical Current", "z [m]","Current (microA)", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_ibeam_e[0:top.jhist+1,js]*1.e6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Electrical Current","z [m]","Current (microA)", )
fma()
# --- Total
plg(hl_ibeam_et[0:top.jhist+1]*1.e3,hl_zbeam[0:top.jhist+1])
ptitles("History: Total Electrical Current","z [m]","Current (mA)", )
fma()
# --- line charge (particle)
if plt_lam_p:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_lambda_p[0:top.jhist+1,js]*10**9,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Particle Line Charge", "z [m]","Line Charge (nC/m)", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_lambda_p[0:top.jhist+1,js]*10**9,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Particle Line Charge","z [m]","Line Charge (nC/m)", )
fma()
# --- line charge (electrical)
if plt_lam_e:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_lambda_e[0:top.jhist+1,js]*10**9,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Electrical Line Charge", "z [m]","Line Charge (nC/m)", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_lambda_e[0:top.jhist+1,js]*10**9,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Electrical Line Charge","z [m]","Line Charge (nC/m)", )
fma()
# --- lz mechanical angular momentum
if plt_lz:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_lz[0:top.jhist+1,js]*10**6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Mechanical Angular Mom", "z [m]","<xy'>-<yx'> [mm-mrad]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_lz[0:top.jhist+1,js]*10**6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Mechanical Angular Mom","z [m]","<xy'>-<yx'> [mm-mrad]", )
fma()
# --- canonical angular momentum <P_theta>_j/(gamma_j*beta_j*m_j*c) in mm-mrad units
if plt_pth:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_pth[0:top.jhist+1,js]*10**6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Canonical Angular Mom <Ptheta>/(gamma*beta*m*c)", "z [m]",
"Canonical Ang Mom [mm-mrad]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_pth[0:top.jhist+1,js]*10**6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Canonical Angular Mom <Ptheta>/(gamma*beta*m*c)","z [m]",
"Canonical Ang Mom [mm-mrad]", )
fma()
# --- canonical angular momentum (normalized) <P_theta>_j/(m_j*c) in mm-mrad units
if plt_pthn:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_pthn[0:top.jhist+1,js]*10**6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Norm Canonical Angular Mom <Ptheta>/(m*c)", "z [m]",
"Canonical Ang Mom [mm-mrad]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_pthn[0:top.jhist+1,js]*10**6,hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Norm Canonical Angular Mom <Ptheta>/(m*c)","z [m]",
"Canonical Ang Mom [mm-mrad]", )
fma()
# --- effective rotation wavenumber
if plt_krot:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_krot[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Effective Rot Wavenumber", "z [m]","krot [rad/m]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_krot[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Effective Rot Wavenumber","z [m]","krot [rad/m]", )
fma()
# --- Larmor rotation angle
if plt_lang:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg((180./pi)*hl_lang[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Larmor Rot Angle", "z [m]","Rotation [deg]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg((180./pi)*hl_lang[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Larmor Rot Angle","z [m]","Rotation [deg]", )
fma()
# --- centroid
if plt_cen:
# All Species Combined, x- and y-plane
hpxbar(titles=false,yscale=1./mm,lhzbeam=true)
hpybar(titles=false,yscale=1./mm,lhzbeam=true,color="red")
ptitles("History: All Species x-,y-Centroid: x[b], y[r]","z [m]","<x>, <y> Centroids [mm]", )
fma()
# --- By Target Species, x-plane
hpxbar(titles=false,yscale=1./(sqrt(2.)*mm),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpxbar(js=js,color=co,titles=false,yscale=1./(sqrt(2.)*mm),lhzbeam=true)
ptitles("History: "+lab+"x-Centroid","z [m]","<x> [mm]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpxbar(js=js,color=co,titles=false,yscale=1./(sqrt(2.)*mm),lhzbeam=true)
ptitles("History: "+lab+"x-Centroid","z [m]","<x> [mm]", )
fma()
# --- By Target Species, y-plane
hpybar(titles=false,yscale=1./(sqrt(2.)*mm),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpybar(js=js,color=co,titles=false,yscale=1./(sqrt(2.)*mm),lhzbeam=true)
ptitles("History: "+lab+"y-Centroid","z [m]","<y> [mm]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpybar(js=js,color=co,titles=false,yscale=1./(sqrt(2.)*mm),lhzbeam=true)
ptitles("History: "+lab+"y-Centroid","z [m]","<y> [mm]", )
fma()
# --- rms envelope width
if plt_envrms:
# --- All Species Combined, x- and y-plane
hpenvx(titles=false,yscale=1./(2.*mm),lhzbeam=true)
hpenvy(titles=false,yscale=1./(2.*mm),lhzbeam=true,color="red")
ptitles("History: All Species RMS Envelope: x[b], y[r]","z [m]","RMS Width [mm]", )
fma()
# --- Target Species, x-plane
hpenvx(titles=false,yscale=1./(2.*mm),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpenvx(js=js,color=co,titles=false,yscale=1./(2.*mm),lhzbeam=true)
ptitles("History: "+lab+"RMS x-Envelope","z [m]","RMS Width [mm]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpenvx(js=js,color=co,titles=false,yscale=1./(2.*mm),lhzbeam=true)
ptitles("History: "+lab+"RMS x-Envelope","z [m]","RMS Width [mm]", )
fma()
# --- Target Species, y-plane
hpenvy(titles=false,yscale=1./(2.*mm),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpenvy(js=js,color=co,titles=false,yscale=1./(2.*mm),lhzbeam=true)
ptitles("History: "+lab+"RMS y-Envelope","z [m]","RMS Width [mm]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpenvy(js=js,color=co,titles=false,yscale=1./(2.*mm),lhzbeam=true)
ptitles("History: "+lab+"RMS y-Envelope","z [m]","RMS Width [mm]", )
fma()
# --- max particle envelopes
if plt_envmax:
# --- x-plane, All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(top.hxmaxp[0:top.jhist+1,js]/mm,top.hzbeam[0:top.jhist+1],color=co)
ptitles("History: Species max particle x", "z [m]","Max x [mm]", )
fma()
# --- x-plane, Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(top.hxmaxp[0:top.jhist+1,js]/mm,top.hzbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" max particle x","z [m]","Max x [mm]", )
fma()
# --- y-plane, All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(top.hymaxp[0:top.jhist+1,js]/mm,top.hzbeam[0:top.jhist+1],color=co)
ptitles("History: Species max particle y", "z [m]","Max y [mm]", )
fma()
# --- y-plane, Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(top.hymaxp[0:top.jhist+1,js]/mm,top.hzbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" max particle y","z [m]","Max y [mm]", )
fma()
# --- rms envelope angle
if plt_envrmsp:
# --- Target Species, x-plane
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(top.hxxpbar[0,0:top.jhist+1,js]/(top.hxrms[0,0:top.jhist+1,js]*mr),top.hzbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+"RMS x-Envelope Angle","z [m]","RMS Angle [mr]", )
fma()
# --- Target Species, y-plane
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(top.hyypbar[0,0:top.jhist+1,js]/(top.hyrms[0,0:top.jhist+1,js]*mr),top.hzbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+"RMS y-Envelope Angle","z [m]","RMS Angle [mr]", )
fma()
# --- emittance, unnormalized
if plt_emit:
# --- All Species Combined, x- and y-plane: Factor 4 in scale to account for Warp edge measure
hpepsx(titles=false,yscale=1./(4.*mm*mr),lhzbeam=true)
hpepsy(titles=false,yscale=1./(4.*mm*mr),lhzbeam=true,color="red")
ptitles("History: All Species RMS x-, y-Emittance: x[b],y[r]","z [m]","Emittance [mm-mr]", )
fma()
# --- Target Species, x-plane: Factor 4 in scale to account for Warp edge measure
hpepsx(titles=false,yscale=1./(4.*mm*mr),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsx(js=js,color=co,titles=false,yscale=1./(4.*mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS x-Emittance","z [m]","Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsx(js=js,color=co,titles=false,yscale=1./(mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS x-Emittance","z [m]","Emittance [mm-mr]", )
fma()
# --- Target Species, y-plane
hpepsy(titles=false,yscale=1./(4.*mm*mr),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsy(js=js,color=co,titles=false,yscale=1./(4.*mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS y-Emittance","z [m]","Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsy(js=js,color=co,titles=false,yscale=1./(mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS y-Emittance","z [m]","Emittance [mm-mr]", )
fma()
# --- emittance, normalized
if plt_emitn:
# --- All Species Combined, x- and y-plane
# ** warning norm emittance scaled mm-mrad by default in Warp **
hpepsnx(titles=false,yscale=1./4.,lhzbeam=true)
hpepsny(titles=false,yscale=1./4.,lhzbeam=true,color="red")
ptitles("History: All Species Norm RMS x-, y-Emittance: x[b],y[r]","z [m]","Norm Emittance [mm-mr]", )
fma()
# --- By Target Species, x-plane
hpepsnx(titles=false,yscale=1./4.,lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsnx(js=js,color=co,titles=false,yscale=1./4.,lhzbeam=true)
ptitles("History: "+lab+"Norm RMS x-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsnx(js=js,color=co,titles=false,yscale=1./4.,lhzbeam=true)
ptitles("History: "+lab+"Norm RMS x-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
# --- By Target Species, y-plane
hpepsny(titles=false,yscale=1./4.,lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsny(js=js,color=co,titles=false,yscale=1./4.,lhzbeam=true)
ptitles("History: "+lab+"Norm RMS y-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsny(js=js,color=co,titles=false,yscale=1./4.,lhzbeam=true)
ptitles("History: "+lab+"Norm RMS y-Emittance","z [m]","Emittance [mm-mr]", )
fma()
# --- emittance, generalized unnormalized
if plt_emitg:
# --- All Species Combined, g- and h-plane
hpepsg(titles=false,yscale=1./(mm*mr),lhzbeam=true)
hpepsh(titles=false,yscale=1./(mm*mr),lhzbeam=true,color="red")
ptitles("History: All Species RMS g-, h-Emittance: g[b],h[r]","z [m]","Emittance [mm-mr]", )
fma()
# --- By Target Species, g-plane
hpepsg(titles=false,yscale=1./(mm*mr),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsg(js=js,color=co,titles=false,yscale=1./(mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS g-Emittance","z [m]","Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsg(js=js,color=co,titles=false,yscale=1./(mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS g-Emittance","z [m]","Emittance [mm-mr]", )
fma()
# --- By Target Species, h-plane
hpepsh(titles=false,yscale=1./(mm*mr),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsh(js=js,color=co,titles=false,yscale=1./(mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS h-Emittance","z [m]","Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsh(js=js,color=co,titles=false,yscale=1./(mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS h-Emittance","z [m]","Emittance [mm-mr]", )
fma()
# --- emittance, generalized normalized
# ** scaled mm-mrad by defualt in Warp **
if plt_emitng:
# --- All Species Combined, g- and h-plane
hpepsng(titles=false,yscale=1.,lhzbeam=true)
hpepsnh(titles=false,yscale=1.,lhzbeam=true,color="red")
ptitles("History: All Species RMS Norm g-, h-Emittance: g[b],h[r]","z [m]","Norm Emittance [mm-mr]", )
fma()
# --- By Target Species, g-plane
hpepsng(titles=false,yscale=1.,lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsng(js=js,color=co,titles=false,yscale=1.,lhzbeam=true)
ptitles("History: "+lab+"RMS Norm g-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsng(js=js,color=co,titles=false,yscale=1.,lhzbeam=true)
ptitles("History: "+lab+"RMS Norm g-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
# --- By Target Species, h-plane
hpepsnh(titles=false,yscale=1.,lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsnh(js=js,color=co,titles=false,yscale=1.,lhzbeam=true)
ptitles("History: "+lab+"RMS Norm h-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsnh(js=js,color=co,titles=false,yscale=1.,lhzbeam=true)
ptitles("History: "+lab+"RMS Norm h-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
# --- emittance, generalized radial unnormalized
if plt_emitr:
# --- All Species Combined
hpepsr(titles=false,yscale=1./(2.*mm*mr),lhzbeam=true)
ptitles("History: All Species RMS r-Emittance","z [m]","Emittance [mm-mr]", )
fma()
# --- By Target Species
hpepsr(titles=false,yscale=1./(2.*mm*mr),lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsr(js=js,color=co,titles=false,yscale=1./(2.*mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS r-Emittance","z [m]","Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsr(js=js,color=co,titles=false,yscale=1./(2.*mm*mr),lhzbeam=true)
ptitles("History: "+lab+"RMS r-Emittance","z [m]","Emittance [mm-mr]", )
fma()
# --- emittance, generalized radial normalized ** warning norm emittance scaled mm-mrad by default **
if plt_emitnr:
# --- All Species Combined
hpepsnr(titles=false,yscale=1./2.,lhzbeam=true)
ptitles("History: All Species Norm RMS r-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
# --- By Target Species
hpepsnr(titles=false,yscale=1./2.,lhzbeam=true)
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsnr(js=js,color=co,titles=false,yscale=1./2.,lhzbeam=true)
ptitles("History: "+lab+"RMS Norm r-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
#
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
hpepsnr(js=js,color=co,titles=false,yscale=1./2.,lhzbeam=true)
ptitles("History: "+lab+"RMS Norm r-Emittance","z [m]","Norm Emittance [mm-mr]", )
fma()
# --- emittance, total phase volume, unnormalized
if plt_emitpv:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_epspv[0:top.jhist+1,js]/(mm*mr),hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Total Phase Volume Emittance", "z [m]","Emittance [mm-mrad]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_epspv[0:top.jhist+1,js]/(mm*mr),hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Total Phase Volume Emittance","z [m]","Emittance [mm-mrad]", )
fma()
# --- emittance, total phase volume, normalized
if plt_emitpvn:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_epspvn[0:top.jhist+1,js]/(mm*mr),hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Total Phase Volume Norm Emittance", "z [m]","Norm Emittance [mm-mrad]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_epspvn[0:top.jhist+1,js]/(mm*mr),hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Total Phase Volume Norm Emittance","z [m]","Norm Emittance [mm-mrad]", )
fma()
# --- Effective ion temperature calculated from radial thermal emittance
if plt_temp:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_temp[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Transverse Thermal Temperature", "z [m]","Temp [eV]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_temp[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Species Transverse Thermal Temperature","z [m]","Temp [eV]", )
fma()
# --- Perveance
if plt_Qperv:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_Qperv[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Bare Perveance Q", "z [m]","Perveance [1]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_Qperv[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Species Bare Perveance Q","z [m]","Perveance [1]", )
fma()
# --- Neutralization Factor
if plt_neutf:
# --- All Species Combined
for ii in sort(sp.keys()):
s = sp[ii]
js = s.js
co = s.color
plg(hl_neutf[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: Species Electron Neutralization Fractions", "z [m]","Fraction [1]", )
fma()
# --- Target Species
lab = ""
for ii in sp_target:
s = sp[ii]
js = s.js
co = s.color
lab+= ii + "("+co+"), "
plg(hl_neutf[0:top.jhist+1,js],hl_zbeam[0:top.jhist+1],color=co)
ptitles("History: "+lab+" Electron Neutralization Factors","z [m]","Fraction [1]", )
fma()
# -- Install diagnostics at appropriate intervals after steps
# Add options to generate plots desired
# -- Install diagnostics at appropriate intervals after steps
# Add options to generate plots desired
# Function to call diagnostics at a timestep in step control lists
def diag_calls():
if top.it in diag_part_step:
diag_part(plt_xy=true,plt_xxp=true,plt_yyp=false,plt_xpyp=true,
plt_trace=false,plt_denxy=true,plt_denr=true)
if top.it in diag_field_step:
diag_field(plt_pc=true,plt_pc_xy=true,plt_pa=true)
if top.it in diag_hist_step:
diag_hist(plt_ekin=true,plt_spnum=true,plt_curr_e=true,plt_curr_p=true,plt_lam_p=true,plt_lam_e=true,
plt_lz=true,plt_pth=false,plt_pthn=false,plt_krot=true,plt_lang=true,
plt_cen=true,plt_envrms=true,plt_envmax=true,plt_envrmsp=true,
plt_emit=true,plt_emitn=true,plt_emitg=true,plt_emitng=true,plt_emitr=true,plt_emitnr=true,
plt_emitpv=false,plt_emitpvn=false,plt_temp=true,plt_Qperv=true,plt_neutf=true)
|
[
"wong@intranet.nscl.msu.edu"
] |
wong@intranet.nscl.msu.edu
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.