blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
e03dd7cf9f30096a3fcd724160094c5729decd0e
7949f96ee7feeaa163608dbd256b0b76d1b89258
/toontown/coghq/DistributedBanquetTable.py
a40dee6c0601918967b38ce75552be557387627e
[]
no_license
xxdecryptionxx/ToontownOnline
414619744b4c40588f9a86c8e01cb951ffe53e2d
e6c20e6ce56f2320217f2ddde8f632a63848bd6b
refs/heads/master
2021-01-11T03:08:59.934044
2018-07-27T01:26:21
2018-07-27T01:26:21
71,086,644
8
10
null
2018-06-01T00:13:34
2016-10-17T00:39:41
Python
UTF-8
Python
false
false
50,791
py
# File: t (Python 2.4) import math import random from pandac.PandaModules import NodePath, Point3, VBase4, TextNode, Vec3, deg2Rad, CollisionSegment, CollisionHandlerQueue, CollisionNode, BitMask32, SmoothMover from direct.fsm import FSM from direct.distributed import DistributedObject from direct.distributed.ClockDelta import globalClockDelta from direct.directnotify import DirectNotifyGlobal from direct.interval.IntervalGlobal import Sequence, ProjectileInterval, Parallel, LerpHprInterval, ActorInterval, Func, Wait, SoundInterval, LerpPosHprInterval, LerpScaleInterval from direct.gui.DirectGui import DGG, DirectButton, DirectLabel, DirectWaitBar from direct.task import Task from toontown.suit import Suit from toontown.suit import SuitDNA from toontown.toonbase import ToontownGlobals from toontown.toonbase import TTLocalizer from toontown.coghq import BanquetTableBase from toontown.coghq import DinerStatusIndicator from toontown.battle import MovieUtil class DistributedBanquetTable(DistributedObject.DistributedObject, FSM.FSM, BanquetTableBase.BanquetTableBase): notify = DirectNotifyGlobal.directNotify.newCategory('DistributedBanquetTable') rotationsPerSeatIndex = [ 90, 90, 0, 0, -90, -90, 180, 180] pitcherMinH = -360 pitcherMaxH = 360 rotateSpeed = 30 waterPowerSpeed = base.config.GetDouble('water-power-speed', 15) waterPowerExponent = base.config.GetDouble('water-power-exponent', 0.75) useNewAnimations = True TugOfWarControls = False OnlyUpArrow = True if OnlyUpArrow: BASELINE_KEY_RATE = 3 else: BASELINE_KEY_RATE = 6 UPDATE_KEY_PRESS_RATE_TASK = 'BanquetTableUpdateKeyPressRateTask' YELLOW_POWER_THRESHOLD = 0.75 RED_POWER_THRESHOLD = 0.96999999999999997 def __init__(self, cr): DistributedObject.DistributedObject.__init__(self, cr) FSM.FSM.__init__(self, 'DistributedBanquetTable') self.boss = None self.index = -1 self.diners = { } self.dinerStatus = { } self.serviceLocs = { } self.chairLocators = { } self.sitLocators = { } self.activeIntervals = { } self.dinerStatusIndicators = { } self.preparedForPhaseFour = False self.avId = 0 self.toon = None self.pitcherSmoother = SmoothMover() self.pitcherSmoother.setSmoothMode(SmoothMover.SMOn) self.smoothStarted = 0 self._DistributedBanquetTable__broadcastPeriod = 0.20000000000000001 self.changeSeq = 0 self.lastChangeSeq = 0 self.pitcherAdviceLabel = None self.fireLength = 250 self.fireTrack = None self.hitObject = None self.setupPowerBar() self.aimStart = None self.toonPitcherPosition = Point3(0, -2, 0) self.allowLocalRequestControl = True self.fadeTrack = None self.grabTrack = None self.gotHitByBoss = False self.keyTTL = [] self.keyRate = 0 self.buttons = [ 0, 1] self.lastPowerFired = 0 self.moveSound = None self.releaseTrack = None def disable(self): DistributedObject.DistributedObject.disable(self) taskMgr.remove(self.triggerName) taskMgr.remove(self.smoothName) taskMgr.remove(self.watchControlsName) taskMgr.remove(self.pitcherAdviceName) taskMgr.remove(self.posHprBroadcastName) taskMgr.remove(self.waterPowerTaskName) if self.releaseTrack: self.releaseTrack.finish() self.releaseTrack = None if self.fireTrack: self.fireTrack.finish() self.fireTrack = None self.cleanupIntervals() def delete(self): DistributedObject.DistributedObject.delete(self) self.boss = None self.ignoreAll() for indicator in self.dinerStatusIndicators.values(): indicator.delete() self.dinerStatusIndicators = { } for diner in self.diners.values(): diner.delete() self.diners = { } self.powerBar.destroy() self.powerBar = None self.pitcherMoveSfx.stop() def announceGenerate(self): DistributedObject.DistributedObject.announceGenerate(self) self.loadAssets() self.smoothName = self.uniqueName('pitcherSmooth') self.pitcherAdviceName = self.uniqueName('pitcherAdvice') self.posHprBroadcastName = self.uniqueName('pitcherBroadcast') self.waterPowerTaskName = self.uniqueName('updateWaterPower') self.triggerName = self.uniqueName('trigger') self.watchControlsName = self.uniqueName('watchControls') def setBossCogId(self, bossCogId): self.bossCogId = bossCogId self.boss = base.cr.doId2do[bossCogId] self.boss.setTable(self, self.index) def setIndex(self, index): self.index = index def setState(self, state, avId, extraInfo): self.gotHitByBoss = extraInfo if state == 'F': self.demand('Off') elif state == 'N': self.demand('On') elif state == 'I': self.demand('Inactive') elif state == 'R': self.demand('Free') elif state == 'C': self.demand('Controlled', avId) elif state == 'L': self.demand('Flat', avId) else: self.notify.error('Invalid state from AI: %s' % state) def setNumDiners(self, numDiners): self.numDiners = numDiners def setDinerInfo(self, hungryDurations, eatingDurations, dinerLevels): self.dinerInfo = { } for i in xrange(len(hungryDurations)): hungryDur = hungryDurations[i] eatingDur = eatingDurations[i] dinerLevel = dinerLevels[i] self.dinerInfo[i] = (hungryDur, eatingDur, dinerLevel) def loadAssets(self): self.tableGroup = loader.loadModel('phase_12/models/bossbotHQ/BanquetTableChairs') tableLocator = self.boss.geom.find('**/TableLocator_%d' % (self.index + 1)) if tableLocator.isEmpty(): self.tableGroup.reparentTo(render) self.tableGroup.setPos(0, 75, 0) else: self.tableGroup.reparentTo(tableLocator) self.tableGeom = self.tableGroup.find('**/Geometry') self.setupDiners() self.setupChairCols() self.squirtSfx = loader.loadSfx('phase_4/audio/sfx/AA_squirt_seltzer_miss.mp3') self.hitBossSfx = loader.loadSfx('phase_5/audio/sfx/SA_watercooler_spray_only.mp3') self.hitBossSoundInterval = SoundInterval(self.hitBossSfx, node = self.boss, volume = 1.0) self.serveFoodSfx = loader.loadSfx('phase_4/audio/sfx/MG_sfx_travel_game_bell_for_trolley.mp3') self.pitcherMoveSfx = base.loadSfx('phase_4/audio/sfx/MG_cannon_adjust.mp3') def setupDiners(self): for i in xrange(self.numDiners): newDiner = self.createDiner(i) self.diners[i] = newDiner self.dinerStatus[i] = self.HUNGRY def createDiner(self, i): diner = Suit.Suit() diner.dna = SuitDNA.SuitDNA() level = self.dinerInfo[i][2] level -= 4 diner.dna.newSuitRandom(level = level, dept = 'c') diner.setDNA(diner.dna) if self.useNewAnimations: diner.loop('sit', fromFrame = i) else: diner.pose('landing', 0) locator = self.tableGroup.find('**/chair_%d' % (i + 1)) locatorScale = locator.getNetTransform().getScale()[0] correctHeadingNp = locator.attachNewNode('correctHeading') self.chairLocators[i] = correctHeadingNp heading = self.rotationsPerSeatIndex[i] correctHeadingNp.setH(heading) sitLocator = correctHeadingNp.attachNewNode('sitLocator') base.sitLocator = sitLocator pos = correctHeadingNp.getPos(render) if SuitDNA.getSuitBodyType(diner.dna.name) == 'c': sitLocator.setPos(0.5, 3.6499999999999999, -3.75) else: sitLocator.setZ(-2.3999999999999999) sitLocator.setY(2.5) sitLocator.setX(0.5) self.sitLocators[i] = sitLocator diner.setScale(1.0 / locatorScale) diner.reparentTo(sitLocator) newLoc = NodePath('serviceLoc-%d-%d' % (self.index, i)) newLoc.reparentTo(correctHeadingNp) newLoc.setPos(0, 3.0, 1) self.serviceLocs[i] = newLoc base.serviceLoc = newLoc head = diner.find('**/joint_head') newIndicator = DinerStatusIndicator.DinerStatusIndicator(parent = head, pos = Point3(0, 0, 3.5), scale = 5.0) newIndicator.wrtReparentTo(diner) self.dinerStatusIndicators[i] = newIndicator return diner def setupChairCols(self): for i in xrange(self.numDiners): chairCol = self.tableGroup.find('**/collision_chair_%d' % (i + 1)) colName = 'ChairCol-%d-%d' % (self.index, i) chairCol.setTag('chairIndex', str(i)) chairCol.setName(colName) chairCol.setCollideMask(ToontownGlobals.WallBitmask) self.accept('enter' + colName, self.touchedChair) def touchedChair(self, colEntry): chairIndex = int(colEntry.getIntoNodePath().getTag('chairIndex')) if chairIndex in self.dinerStatus: status = self.dinerStatus[chairIndex] if status in (self.HUNGRY, self.ANGRY): self.boss.localToonTouchedChair(self.index, chairIndex) def serveFood(self, food, chairIndex): self.removeFoodModel(chairIndex) serviceLoc = self.serviceLocs.get(chairIndex) if not food or food.isEmpty(): foodModel = loader.loadModel('phase_12/models/bossbotHQ/canoffood') foodModel.setScale(ToontownGlobals.BossbotFoodModelScale) foodModel.reparentTo(serviceLoc) else: food.wrtReparentTo(serviceLoc) tray = food.find('**/tray') if not tray.isEmpty(): tray.hide() ivalDuration = 1.5 foodMoveIval = Parallel(SoundInterval(self.serveFoodSfx, node = food), ProjectileInterval(food, duration = ivalDuration, startPos = food.getPos(serviceLoc), endPos = serviceLoc.getPos(serviceLoc)), LerpHprInterval(food, ivalDuration, Point3(0, -360, 0))) intervalName = 'serveFood-%d-%d' % (self.index, chairIndex) foodMoveIval.start() self.activeIntervals[intervalName] = foodMoveIval def setDinerStatus(self, chairIndex, status): if chairIndex in self.dinerStatus: oldStatus = self.dinerStatus[chairIndex] self.dinerStatus[chairIndex] = status if oldStatus != status: if status == self.EATING: self.changeDinerToEating(chairIndex) elif status == self.HUNGRY: self.changeDinerToHungry(chairIndex) elif status == self.ANGRY: self.changeDinerToAngry(chairIndex) elif status == self.DEAD: self.changeDinerToDead(chairIndex) elif status == self.HIDDEN: self.changeDinerToHidden(chairIndex) def removeFoodModel(self, chairIndex): serviceLoc = self.serviceLocs.get(chairIndex) if serviceLoc: for i in xrange(serviceLoc.getNumChildren()): serviceLoc.getChild(0).removeNode() def changeDinerToEating(self, chairIndex): indicator = self.dinerStatusIndicators.get(chairIndex) eatingDuration = self.dinerInfo[chairIndex][1] if indicator: indicator.request('Eating', eatingDuration) diner = self.diners[chairIndex] intervalName = 'eating-%d-%d' % (self.index, chairIndex) eatInTime = 32.0 / 24.0 eatOutTime = 21.0 / 24.0 eatLoopTime = 19 / 24.0 rightHand = diner.getRightHand() waitTime = 5 loopDuration = eatingDuration - eatInTime - eatOutTime - waitTime serviceLoc = self.serviceLocs[chairIndex] def foodAttach(self = self, diner = diner): foodModel = self.serviceLocs[chairIndex].getChild(0) (foodModel.reparentTo(diner.getRightHand()),) (foodModel.setHpr(Point3(0, -94, 0)),) (foodModel.setPos(Point3(-0.14999999999999999, -0.69999999999999996, -0.40000000000000002)),) scaleAdj = 1 if SuitDNA.getSuitBodyType(diner.dna.name) == 'c': scaleAdj = 0.59999999999999998 (foodModel.setPos(Point3(0.10000000000000001, -0.25, -0.31)),) else: scaleAdj = 0.80000000000000004 (foodModel.setPos(Point3(-0.25, -0.84999999999999998, -0.34000000000000002)),) oldScale = foodModel.getScale() newScale = oldScale * scaleAdj foodModel.setScale(newScale) def foodDetach(self = self, diner = diner): foodModel = diner.getRightHand().getChild(0) (foodModel.reparentTo(serviceLoc),) (foodModel.setPosHpr(0, 0, 0, 0, 0, 0),) scaleAdj = 1 if SuitDNA.getSuitBodyType(diner.dna.name) == 'c': scaleAdj = 0.59999999999999998 else: scakeAdj = 0.80000000000000004 oldScale = foodModel.getScale() newScale = oldScale / scaleAdj foodModel.setScale(newScale) eatIval = Sequence(ActorInterval(diner, 'sit', duration = waitTime), ActorInterval(diner, 'sit-eat-in', startFrame = 0, endFrame = 6), Func(foodAttach), ActorInterval(diner, 'sit-eat-in', startFrame = 6, endFrame = 32), ActorInterval(diner, 'sit-eat-loop', duration = loopDuration, loop = 1), ActorInterval(diner, 'sit-eat-out', startFrame = 0, endFrame = 12), Func(foodDetach), ActorInterval(diner, 'sit-eat-out', startFrame = 12, endFrame = 21)) eatIval.start() self.activeIntervals[intervalName] = eatIval def changeDinerToHungry(self, chairIndex): intervalName = 'eating-%d-%d' % (self.index, chairIndex) if intervalName in self.activeIntervals: self.activeIntervals[intervalName].finish() self.removeFoodModel(chairIndex) indicator = self.dinerStatusIndicators.get(chairIndex) if indicator: indicator.request('Hungry', self.dinerInfo[chairIndex][0]) diner = self.diners[chairIndex] if random.choice([ 0, 1]): diner.loop('sit-hungry-left') else: diner.loop('sit-hungry-right') def changeDinerToAngry(self, chairIndex): self.removeFoodModel(chairIndex) indicator = self.dinerStatusIndicators.get(chairIndex) if indicator: indicator.request('Angry') diner = self.diners[chairIndex] diner.loop('sit-angry') def changeDinerToDead(self, chairIndex): def removeDeathSuit(suit, deathSuit): if not deathSuit.isEmpty(): deathSuit.detachNode() suit.cleanupLoseActor() self.removeFoodModel(chairIndex) indicator = self.dinerStatusIndicators.get(chairIndex) if indicator: indicator.request('Dead') diner = self.diners[chairIndex] deathSuit = diner locator = self.tableGroup.find('**/chair_%d' % (chairIndex + 1)) deathSuit = diner.getLoseActor() ival = Sequence(Func(self.notify.debug, 'before actorinterval sit-lose'), ActorInterval(diner, 'sit-lose'), Func(self.notify.debug, 'before deathSuit.setHpr'), Func(deathSuit.setHpr, diner.getHpr()), Func(self.notify.debug, 'before diner.hide'), Func(diner.hide), Func(self.notify.debug, 'before deathSuit.reparentTo'), Func(deathSuit.reparentTo, self.chairLocators[chairIndex]), Func(self.notify.debug, 'befor ActorInterval lose'), ActorInterval(deathSuit, 'lose', duration = MovieUtil.SUIT_LOSE_DURATION), Func(self.notify.debug, 'before remove deathsuit'), Func(removeDeathSuit, diner, deathSuit, name = 'remove-death-suit-%d-%d' % (chairIndex, self.index)), Func(self.notify.debug, 'diner.stash'), Func(diner.stash)) spinningSound = base.loadSfx('phase_3.5/audio/sfx/Cog_Death.mp3') deathSound = base.loadSfx('phase_3.5/audio/sfx/ENC_cogfall_apart.mp3') deathSoundTrack = Sequence(Wait(0.80000000000000004), SoundInterval(spinningSound, duration = 1.2, startTime = 1.5, volume = 0.20000000000000001, node = deathSuit), SoundInterval(spinningSound, duration = 3.0, startTime = 0.59999999999999998, volume = 0.80000000000000004, node = deathSuit), SoundInterval(deathSound, volume = 0.32000000000000001, node = deathSuit)) intervalName = 'dinerDie-%d-%d' % (self.index, chairIndex) deathIval = Parallel(ival, deathSoundTrack) deathIval.start() self.activeIntervals[intervalName] = deathIval def changeDinerToHidden(self, chairIndex): self.removeFoodModel(chairIndex) indicator = self.dinerStatusIndicators.get(chairIndex) if indicator: indicator.request('Inactive') diner = self.diners[chairIndex] diner.hide() def setAllDinersToSitNeutral(self): startFrame = 0 for diner in self.diners.values(): if not diner.isHidden(): diner.loop('sit', fromFrame = startFrame) startFrame += 1 continue def cleanupIntervals(self): for interval in self.activeIntervals.values(): interval.finish() self.activeIntervals = { } def clearInterval(self, name, finish = 1): if self.activeIntervals.has_key(name): ival = self.activeIntervals[name] if finish: ival.finish() else: ival.pause() if self.activeIntervals.has_key(name): del self.activeIntervals[name] else: self.notify.debug('interval: %s already cleared' % name) def finishInterval(self, name): if self.activeIntervals.has_key(name): interval = self.activeIntervals[name] interval.finish() def getNotDeadInfo(self): notDeadList = [] for i in xrange(self.numDiners): if self.dinerStatus[i] != self.DEAD: notDeadList.append((self.index, i, 12)) continue return notDeadList def enterOn(self): pass def exitOn(self): pass def enterInactive(self): for chairIndex in xrange(self.numDiners): indicator = self.dinerStatusIndicators.get(chairIndex) if indicator: indicator.request('Inactive') self.removeFoodModel(chairIndex) def exitInactive(self): pass def enterFree(self): self.resetPowerBar() if self.fadeTrack: self.fadeTrack.finish() self.fadeTrack = None self.prepareForPhaseFour() if self.avId == localAvatar.doId: self.tableGroup.setAlphaScale(0.29999999999999999) self.tableGroup.setTransparency(1) taskMgr.doMethodLater(5, self._DistributedBanquetTable__allowDetect, self.triggerName) self.fadeTrack = Sequence(Func(self.tableGroup.setTransparency, 1), self.tableGroup.colorScaleInterval(0.20000000000000001, VBase4(1, 1, 1, 0.29999999999999999))) self.fadeTrack.start() self.allowLocalRequestControl = False else: self.allowLocalRequestControl = True self.avId = 0 def exitFree(self): pass def touchedTable(self, colEntry): tableIndex = int(colEntry.getIntoNodePath().getTag('tableIndex')) if self.state == 'Free' and self.avId == 0 and self.allowLocalRequestControl: self.d_requestControl() def prepareForPhaseFour(self): if not self.preparedForPhaseFour: for i in xrange(8): chair = self.tableGroup.find('**/chair_%d' % (i + 1)) if not chair.isEmpty(): chair.hide() colChairs = self.tableGroup.findAllMatches('**/ChairCol*') for i in xrange(colChairs.getNumPaths()): col = colChairs.getPath(i) col.stash() colChairs = self.tableGroup.findAllMatches('**/collision_chair*') for i in xrange(colChairs.getNumPaths()): col = colChairs.getPath(i) col.stash() tableCol = self.tableGroup.find('**/collision_table') colName = 'TableCol-%d' % self.index tableCol.setTag('tableIndex', str(self.index)) tableCol.setName(colName) tableCol.setCollideMask(ToontownGlobals.WallBitmask | ToontownGlobals.BanquetTableBitmask) self.accept('enter' + colName, self.touchedTable) self.preparedForPhaseFour = True self.waterPitcherModel = loader.loadModel('phase_12/models/bossbotHQ/tt_m_ara_bhq_seltzerBottle') lampNode = self.tableGroup.find('**/lamp_med_5') pos = lampNode.getPos(self.tableGroup) lampNode.hide() bottleLocator = self.tableGroup.find('**/bottle_locator') pos = bottleLocator.getPos(self.tableGroup) self.waterPitcherNode = self.tableGroup.attachNewNode('pitcherNode') self.waterPitcherNode.setPos(pos) self.waterPitcherModel.reparentTo(self.waterPitcherNode) self.waterPitcherModel.ls() self.nozzle = self.waterPitcherModel.find('**/nozzle_tip') self.handLocator = self.waterPitcherModel.find('**/hand_locator') self.handPos = self.handLocator.getPos() def d_requestControl(self): self.sendUpdate('requestControl') def d_requestFree(self, gotHitByBoss): self.sendUpdate('requestFree', [ gotHitByBoss]) def enterControlled(self, avId): self.prepareForPhaseFour() self.avId = avId toon = base.cr.doId2do.get(avId) if not toon: return None self.toon = toon self.grabTrack = self.makeToonGrabInterval(toon) self.notify.debug('grabTrack=%s' % self.grabTrack) self.pitcherCamPos = Point3(0, -50, 40) self.pitcherCamHpr = Point3(0, -21, 0) if avId == localAvatar.doId: self.boss.toMovieMode() self._DistributedBanquetTable__enableControlInterface() self.startPosHprBroadcast() self.grabTrack = Sequence(self.grabTrack, Func(camera.wrtReparentTo, localAvatar), LerpPosHprInterval(camera, 1, self.pitcherCamPos, self.pitcherCamHpr), Func(self.boss.toCraneMode)) if self.TugOfWarControls: self._DistributedBanquetTable__spawnUpdateKeyPressRateTask() self.accept('exitCrane', self.gotBossZapped) else: self.startSmooth() toon.stopSmooth() self.grabTrack.start() def exitControlled(self): self.ignore('exitCrane') if self.grabTrack: self.grabTrack.finish() self.grabTrack = None nextState = self.getCurrentOrNextState() self.notify.debug('nextState=%s' % nextState) if nextState == 'Flat': place = base.cr.playGame.getPlace() self.notify.debug('%s' % place.fsm) if self.avId == localAvatar.doId: self._DistributedBanquetTable__disableControlInterface() elif self.toon and not self.toon.isDisabled(): self.toon.loop('neutral') self.toon.startSmooth() self.releaseTrack = self.makeToonReleaseInterval(self.toon) self.stopPosHprBroadcast() self.stopSmooth() if self.avId == localAvatar.doId: localAvatar.wrtReparentTo(render) self._DistributedBanquetTable__disableControlInterface() camera.reparentTo(base.localAvatar) camera.setPos(base.localAvatar.cameraPositions[0][0]) camera.setHpr(0, 0, 0) self.goToFinalBattle() self.safeBossToFinalBattleMode() else: toon = base.cr.doId2do.get(self.avId) if toon: toon.wrtReparentTo(render) self.releaseTrack.start() def safeBossToFinalBattleMode(self): if self.boss: self.boss.toFinalBattleMode() def goToFinalBattle(self): if self.cr: place = self.cr.playGame.getPlace() if place and hasattr(place, 'fsm'): if place.fsm.getCurrentState().getName() == 'crane': place.setState('finalBattle') def makeToonGrabInterval(self, toon): toon.pose('leverNeutral', 0) toon.update() rightHandPos = toon.rightHand.getPos(toon) self.toonPitcherPosition = Point3(self.handPos[0] - rightHandPos[0], self.handPos[1] - rightHandPos[1], 0) destZScale = rightHandPos[2] / self.handPos[2] grabIval = Sequence(Func(toon.wrtReparentTo, self.waterPitcherNode), Func(toon.loop, 'neutral'), Parallel(ActorInterval(toon, 'jump'), Sequence(Wait(0.42999999999999999), Parallel(ProjectileInterval(toon, duration = 0.90000000000000002, startPos = toon.getPos(self.waterPitcherNode), endPos = self.toonPitcherPosition), LerpHprInterval(toon, 0.90000000000000002, Point3(0, 0, 0)), LerpScaleInterval(self.waterPitcherModel, 0.90000000000000002, Point3(1, 1, destZScale))))), Func(toon.setPos, self.toonPitcherPosition), Func(toon.loop, 'leverNeutral')) return grabIval def makeToonReleaseInterval(self, toon): temp1 = self.waterPitcherNode.attachNewNode('temp1') temp1.setPos(self.toonPitcherPosition) temp2 = self.waterPitcherNode.attachNewNode('temp2') temp2.setPos(0, -10, -self.waterPitcherNode.getZ()) startPos = temp1.getPos(render) endPos = temp2.getPos(render) temp1.removeNode() temp2.removeNode() def getSlideToPos(toon = toon): return render.getRelativePoint(toon, Point3(0, -10, 0)) if self.gotHitByBoss: self.notify.debug('creating zap interval instead') grabIval = Sequence(Func(toon.loop, 'neutral'), Func(toon.wrtReparentTo, render), Parallel(ActorInterval(toon, 'slip-backward'), toon.posInterval(0.5, getSlideToPos, fluid = 1))) else: grabIval = Sequence(Func(toon.loop, 'neutral'), Func(toon.wrtReparentTo, render), Parallel(ActorInterval(toon, 'jump'), Sequence(Wait(0.42999999999999999), ProjectileInterval(toon, duration = 0.90000000000000002, startPos = startPos, endPos = endPos)))) return grabIval def b_clearSmoothing(self): self.d_clearSmoothing() self.clearSmoothing() def d_clearSmoothing(self): self.sendUpdate('clearSmoothing', [ 0]) def clearSmoothing(self, bogus = None): self.pitcherSmoother.clearPositions(1) def doSmoothTask(self, task): self.pitcherSmoother.computeAndApplySmoothHpr(self.waterPitcherNode) return Task.cont def startSmooth(self): if not self.smoothStarted: taskName = self.smoothName taskMgr.remove(taskName) self.reloadPosition() taskMgr.add(self.doSmoothTask, taskName) self.smoothStarted = 1 def stopSmooth(self): if self.smoothStarted: taskName = self.smoothName taskMgr.remove(taskName) self.forceToTruePosition() self.smoothStarted = 0 def _DistributedBanquetTable__enableControlInterface(self): gui = loader.loadModel('phase_3.5/models/gui/avatar_panel_gui') self.closeButton = DirectButton(image = (gui.find('**/CloseBtn_UP'), gui.find('**/CloseBtn_DN'), gui.find('**/CloseBtn_Rllvr'), gui.find('**/CloseBtn_UP')), relief = None, scale = 2, text = TTLocalizer.BossbotPitcherLeave, text_scale = 0.040000000000000001, text_pos = (0, -0.070000000000000007), text_fg = VBase4(1, 1, 1, 1), pos = (1.05, 0, -0.81999999999999995), command = self._DistributedBanquetTable__exitPitcher) self.accept('escape', self._DistributedBanquetTable__exitPitcher) self.accept('control', self._DistributedBanquetTable__controlPressed) self.accept('control-up', self._DistributedBanquetTable__controlReleased) self.accept('InputState-forward', self._DistributedBanquetTable__upArrow) self.accept('InputState-reverse', self._DistributedBanquetTable__downArrow) self.accept('InputState-turnLeft', self._DistributedBanquetTable__leftArrow) self.accept('InputState-turnRight', self._DistributedBanquetTable__rightArrow) self.accept('arrow_up', self._DistributedBanquetTable__upArrowKeyPressed) self.accept('arrow_down', self._DistributedBanquetTable__downArrowKeyPressed) taskMgr.add(self._DistributedBanquetTable__watchControls, self.watchControlsName) taskMgr.doMethodLater(5, self._DistributedBanquetTable__displayPitcherAdvice, self.pitcherAdviceName) self.arrowVert = 0 self.arrowHorz = 0 self.powerBar.show() def _DistributedBanquetTable__disableControlInterface(self): if self.closeButton: self.closeButton.destroy() self.closeButton = None self._DistributedBanquetTable__cleanupPitcherAdvice() self.ignore('escape') self.ignore('control') self.ignore('control-up') self.ignore('InputState-forward') self.ignore('InputState-reverse') self.ignore('InputState-turnLeft') self.ignore('InputState-turnRight') self.ignore('arrow_up') self.ignore('arrow_down') self.arrowVert = 0 self.arrowHorz = 0 taskMgr.remove(self.watchControlsName) taskMgr.remove(self.waterPowerTaskName) self.resetPowerBar() self.aimStart = None self.powerBar.hide() if self.TugOfWarControls: self._DistributedBanquetTable__killUpdateKeyPressRateTask() self.keyTTL = [] self._DistributedBanquetTable__setMoveSound(None) def _DistributedBanquetTable__displayPitcherAdvice(self, task): if self.pitcherAdviceLabel == None: self.pitcherAdviceLabel = DirectLabel(text = TTLocalizer.BossbotPitcherAdvice, text_fg = VBase4(1, 1, 1, 1), text_align = TextNode.ACenter, relief = None, pos = (0, 0, 0.68999999999999995), scale = 0.10000000000000001) def _DistributedBanquetTable__cleanupPitcherAdvice(self): if self.pitcherAdviceLabel: self.pitcherAdviceLabel.destroy() self.pitcherAdviceLabel = None taskMgr.remove(self.pitcherAdviceName) def showExiting(self): if self.closeButton: self.closeButton.destroy() self.closeButton = DirectLabel(relief = None, text = TTLocalizer.BossbotPitcherLeaving, pos = (1.05, 0, -0.88), text_pos = (0, 0), text_scale = 0.059999999999999998, text_fg = VBase4(1, 1, 1, 1)) self._DistributedBanquetTable__cleanupPitcherAdvice() def _DistributedBanquetTable__exitPitcher(self): self.showExiting() self.d_requestFree(False) def _DistributedBanquetTable__controlPressed(self): self._DistributedBanquetTable__cleanupPitcherAdvice() if self.TugOfWarControls: if self.power: self.aimStart = 1 self._DistributedBanquetTable__endFireWater() elif self.state == 'Controlled': self._DistributedBanquetTable__beginFireWater() def _DistributedBanquetTable__controlReleased(self): if self.TugOfWarControls: pass 1 if self.state == 'Controlled': self._DistributedBanquetTable__endFireWater() def _DistributedBanquetTable__upArrow(self, pressed): self._DistributedBanquetTable__incrementChangeSeq() self._DistributedBanquetTable__cleanupPitcherAdvice() if pressed: self.arrowVert = 1 elif self.arrowVert > 0: self.arrowVert = 0 def _DistributedBanquetTable__downArrow(self, pressed): self._DistributedBanquetTable__incrementChangeSeq() self._DistributedBanquetTable__cleanupPitcherAdvice() if pressed: self.arrowVert = -1 elif self.arrowVert < 0: self.arrowVert = 0 def _DistributedBanquetTable__rightArrow(self, pressed): self._DistributedBanquetTable__incrementChangeSeq() self._DistributedBanquetTable__cleanupPitcherAdvice() if pressed: self.arrowHorz = 1 elif self.arrowHorz > 0: self.arrowHorz = 0 def _DistributedBanquetTable__leftArrow(self, pressed): self._DistributedBanquetTable__incrementChangeSeq() self._DistributedBanquetTable__cleanupPitcherAdvice() if pressed: self.arrowHorz = -1 elif self.arrowHorz < 0: self.arrowHorz = 0 def _DistributedBanquetTable__incrementChangeSeq(self): self.changeSeq = self.changeSeq + 1 & 255 def stopPosHprBroadcast(self): taskName = self.posHprBroadcastName taskMgr.remove(taskName) def startPosHprBroadcast(self): taskName = self.posHprBroadcastName self.b_clearSmoothing() self.d_sendPitcherPos() taskMgr.remove(taskName) taskMgr.doMethodLater(self._DistributedBanquetTable__broadcastPeriod, self._DistributedBanquetTable__posHprBroadcast, taskName) def _DistributedBanquetTable__posHprBroadcast(self, task): self.d_sendPitcherPos() taskName = self.posHprBroadcastName taskMgr.doMethodLater(self._DistributedBanquetTable__broadcastPeriod, self._DistributedBanquetTable__posHprBroadcast, taskName) return Task.done def d_sendPitcherPos(self): timestamp = globalClockDelta.getFrameNetworkTime() self.sendUpdate('setPitcherPos', [ self.changeSeq, self.waterPitcherNode.getH(), timestamp]) def setPitcherPos(self, changeSeq, h, timestamp): self.changeSeq = changeSeq if self.smoothStarted: now = globalClock.getFrameTime() local = globalClockDelta.networkToLocalTime(timestamp, now) self.pitcherSmoother.setH(h) self.pitcherSmoother.setTimestamp(local) self.pitcherSmoother.markPosition() else: self.waterPitcherNode.setH(h) def _DistributedBanquetTable__watchControls(self, task): if self.arrowHorz: self._DistributedBanquetTable__movePitcher(self.arrowHorz) else: self._DistributedBanquetTable__setMoveSound(None) return Task.cont def _DistributedBanquetTable__movePitcher(self, xd): dt = globalClock.getDt() h = self.waterPitcherNode.getH() - xd * self.rotateSpeed * dt h %= 360 self.notify.debug('rotSpeed=%.2f curH=%.2f xd =%.2f, dt = %.2f, h=%.2f' % (self.rotateSpeed, self.waterPitcherNode.getH(), xd, dt, h)) limitH = h self.waterPitcherNode.setH(limitH) if xd: self._DistributedBanquetTable__setMoveSound(self.pitcherMoveSfx) def reloadPosition(self): self.pitcherSmoother.clearPositions(0) self.pitcherSmoother.setHpr(self.waterPitcherNode.getHpr()) self.pitcherSmoother.setPhonyTimestamp() def forceToTruePosition(self): if self.pitcherSmoother.getLatestPosition(): self.pitcherSmoother.applySmoothHpr(self.waterPitcherNode) self.pitcherSmoother.clearPositions(1) def getSprayTrack(self, color, origin, target, dScaleUp, dHold, dScaleDown, horizScale = 1.0, vertScale = 1.0, parent = render): track = Sequence() SPRAY_LEN = 1.5 sprayProp = MovieUtil.globalPropPool.getProp('spray') sprayScale = hidden.attachNewNode('spray-parent') sprayRot = hidden.attachNewNode('spray-rotate') spray = sprayRot spray.setColor(color) if color[3] < 1.0: spray.setTransparency(1) def showSpray(sprayScale, sprayRot, sprayProp, origin, target, parent): if callable(origin): origin = origin() if callable(target): target = target() sprayRot.reparentTo(parent) sprayRot.clearMat() sprayScale.reparentTo(sprayRot) sprayScale.clearMat() sprayProp.reparentTo(sprayScale) sprayProp.clearMat() sprayRot.setPos(origin) sprayRot.lookAt(Point3(target)) track.append(Func(showSpray, sprayScale, sprayRot, sprayProp, origin, target, parent)) def calcTargetScale(target = target, origin = origin, horizScale = horizScale, vertScale = vertScale): if callable(target): target = target() if callable(origin): origin = origin() distance = Vec3(target - origin).length() yScale = distance / SPRAY_LEN targetScale = Point3(yScale * horizScale, yScale, yScale * vertScale) return targetScale track.append(LerpScaleInterval(sprayScale, dScaleUp, calcTargetScale, startScale = Point3(0.01, 0.01, 0.01))) track.append(Func(self.checkHitObject)) track.append(Wait(dHold)) def prepareToShrinkSpray(spray, sprayProp, origin, target): if callable(target): target = target() if callable(origin): origin = origin() sprayProp.setPos(Point3(0.0, -SPRAY_LEN, 0.0)) spray.setPos(target) track.append(Func(prepareToShrinkSpray, spray, sprayProp, origin, target)) track.append(LerpScaleInterval(sprayScale, dScaleDown, Point3(0.01, 0.01, 0.01))) def hideSpray(spray, sprayScale, sprayRot, sprayProp, propPool): sprayProp.detachNode() MovieUtil.removeProp(sprayProp) sprayRot.removeNode() sprayScale.removeNode() track.append(Func(hideSpray, spray, sprayScale, sprayRot, sprayProp, MovieUtil.globalPropPool)) return track def checkHitObject(self): if not self.hitObject: return None if self.avId != base.localAvatar.doId: return None tag = self.hitObject.getNetTag('pieCode') pieCode = int(tag) if pieCode == ToontownGlobals.PieCodeBossCog: self.hitBossSoundInterval.start() self.sendUpdate('waterHitBoss', [ self.index]) if self.TugOfWarControls: damage = 1 if self.lastPowerFired < self.YELLOW_POWER_THRESHOLD: damage = 1 elif self.lastPowerFired < self.RED_POWER_THRESHOLD: damage = 2 else: damage = 3 self.boss.d_hitBoss(damage) else: damage = 1 if self.lastPowerFired < self.YELLOW_POWER_THRESHOLD: damage = 1 elif self.lastPowerFired < self.RED_POWER_THRESHOLD: damage = 2 else: damage = 3 self.boss.d_hitBoss(damage) def waterHitBoss(self, tableIndex): if self.index == tableIndex: self.hitBossSoundInterval.start() def setupPowerBar(self): self.powerBar = DirectWaitBar(pos = (0.0, 0, -0.93999999999999995), relief = DGG.SUNKEN, frameSize = (-2.0, 2.0, -0.20000000000000001, 0.20000000000000001), borderWidth = (0.02, 0.02), scale = 0.25, range = 1, sortOrder = 50, frameColor = (0.5, 0.5, 0.5, 0.5), barColor = (0.75, 0.75, 1.0, 0.80000000000000004), text = '', text_scale = 0.26000000000000001, text_fg = (1, 1, 1, 1), text_align = TextNode.ACenter, text_pos = (0, -0.050000000000000003)) self.power = 0 self.powerBar['value'] = self.power self.powerBar.hide() def resetPowerBar(self): self.power = 0 self.powerBar['value'] = self.power self.powerBar['text'] = '' self.keyTTL = [] def _DistributedBanquetTable__beginFireWater(self): if self.fireTrack and self.fireTrack.isPlaying(): return None if self.aimStart != None: return None if not self.state == 'Controlled': return None if not self.avId == localAvatar.doId: return None time = globalClock.getFrameTime() self.aimStart = time messenger.send('wakeup') taskMgr.add(self._DistributedBanquetTable__updateWaterPower, self.waterPowerTaskName) def _DistributedBanquetTable__endFireWater(self): if self.aimStart == None: return None if not self.state == 'Controlled': return None if not self.avId == localAvatar.doId: return None taskMgr.remove(self.waterPowerTaskName) messenger.send('wakeup') self.aimStart = None origin = self.nozzle.getPos(render) target = self.boss.getPos(render) angle = deg2Rad(self.waterPitcherNode.getH() + 90) x = math.cos(angle) y = math.sin(angle) fireVector = Point3(x, y, 0) if self.power < 0.001: self.power = 0.001 self.lastPowerFired = self.power fireVector *= self.fireLength * self.power target = origin + fireVector segment = CollisionSegment(origin[0], origin[1], origin[2], target[0], target[1], target[2]) fromObject = render.attachNewNode(CollisionNode('pitcherColNode')) fromObject.node().addSolid(segment) fromObject.node().setFromCollideMask(ToontownGlobals.PieBitmask | ToontownGlobals.CameraBitmask | ToontownGlobals.FloorBitmask) fromObject.node().setIntoCollideMask(BitMask32.allOff()) queue = CollisionHandlerQueue() base.cTrav.addCollider(fromObject, queue) base.cTrav.traverse(render) queue.sortEntries() self.hitObject = None if queue.getNumEntries(): entry = queue.getEntry(0) target = entry.getSurfacePoint(render) self.hitObject = entry.getIntoNodePath() base.cTrav.removeCollider(fromObject) fromObject.removeNode() self.d_firingWater(origin, target) self.fireWater(origin, target) self.resetPowerBar() def _DistributedBanquetTable__updateWaterPower(self, task): if not self.powerBar: print '### no power bar!!!' return task.done newPower = self._DistributedBanquetTable__getWaterPower(globalClock.getFrameTime()) self.power = newPower self.powerBar['value'] = newPower if self.power < self.YELLOW_POWER_THRESHOLD: self.powerBar['barColor'] = VBase4(0.75, 0.75, 1.0, 0.80000000000000004) elif self.power < self.RED_POWER_THRESHOLD: self.powerBar['barColor'] = VBase4(1.0, 1.0, 0.0, 0.80000000000000004) else: self.powerBar['barColor'] = VBase4(1.0, 0.0, 0.0, 0.80000000000000004) return task.cont def _DistributedBanquetTable__getWaterPower(self, time): elapsed = max(time - self.aimStart, 0.0) t = elapsed / self.waterPowerSpeed exponent = self.waterPowerExponent if t > 1: t = t % 1 power = 1 - math.pow(1 - t, exponent) if power > 1.0: power = 1.0 return power def d_firingWater(self, origin, target): self.sendUpdate('firingWater', [ origin[0], origin[1], origin[2], target[0], target[1], target[2]]) def firingWater(self, startX, startY, startZ, endX, endY, endZ): origin = Point3(startX, startY, startZ) target = Point3(endX, endY, endZ) self.fireWater(origin, target) def fireWater(self, origin, target): color = VBase4(0.75, 0.75, 1, 0.80000000000000004) dScaleUp = 0.10000000000000001 dHold = 0.29999999999999999 dScaleDown = 0.10000000000000001 horizScale = 0.10000000000000001 vertScale = 0.10000000000000001 sprayTrack = self.getSprayTrack(color, origin, target, dScaleUp, dHold, dScaleDown, horizScale, vertScale) duration = self.squirtSfx.length() if sprayTrack.getDuration() < duration: duration = sprayTrack.getDuration() soundTrack = SoundInterval(self.squirtSfx, node = self.waterPitcherModel, duration = duration) self.fireTrack = Parallel(sprayTrack, soundTrack) self.fireTrack.start() def getPos(self, wrt = render): return self.tableGroup.getPos(wrt) def getLocator(self): return self.tableGroup def enterFlat(self, avId): self.prepareForPhaseFour() self.resetPowerBar() self.notify.debug('enterFlat %d' % self.index) if self.avId: toon = base.cr.doId2do.get(self.avId) if toon: toon.wrtReparentTo(render) toon.setZ(0) self.tableGroup.setScale(1, 1, 0.01) if self.avId and self.avId == localAvatar.doId: localAvatar.b_squish(ToontownGlobals.BossCogDamageLevels[ToontownGlobals.BossCogMoveAttack]) def exitFlat(self): self.tableGroup.setScale(1.0) if self.avId: toon = base.cr.doId2do.get(self.avId) if toon: if toon == localAvatar: self.boss.toCraneMode() toon.b_setAnimState('neutral') toon.setAnimState('neutral') toon.loop('leverNeutral') def _DistributedBanquetTable__allowDetect(self, task): if self.fadeTrack: self.fadeTrack.finish() self.fadeTrack = Sequence(self.tableGroup.colorScaleInterval(0.20000000000000001, VBase4(1, 1, 1, 1)), Func(self.tableGroup.clearColorScale), Func(self.tableGroup.clearTransparency)) self.fadeTrack.start() self.allowLocalRequestControl = True def gotBossZapped(self): self.showExiting() self.d_requestFree(True) def _DistributedBanquetTable__upArrowKeyPressed(self): if self.TugOfWarControls: self._DistributedBanquetTable__pressHandler(0) def _DistributedBanquetTable__downArrowKeyPressed(self): if self.TugOfWarControls: self._DistributedBanquetTable__pressHandler(1) def _DistributedBanquetTable__pressHandler(self, index): if index == self.buttons[0]: self.keyTTL.insert(0, 1.0) if not self.OnlyUpArrow: self.buttons.reverse() def _DistributedBanquetTable__spawnUpdateKeyPressRateTask(self): taskMgr.remove(self.taskName(self.UPDATE_KEY_PRESS_RATE_TASK)) taskMgr.doMethodLater(0.10000000000000001, self._DistributedBanquetTable__updateKeyPressRateTask, self.taskName(self.UPDATE_KEY_PRESS_RATE_TASK)) def _DistributedBanquetTable__killUpdateKeyPressRateTask(self): taskMgr.remove(self.taskName(self.UPDATE_KEY_PRESS_RATE_TASK)) def _DistributedBanquetTable__updateKeyPressRateTask(self, task): if self.state not in 'Controlled': return Task.done for i in range(len(self.keyTTL)): self.keyTTL[i] -= 0.10000000000000001 for i in range(len(self.keyTTL)): if self.keyTTL[i] <= 0: a = self.keyTTL[0:i] del self.keyTTL self.keyTTL = a break continue self.keyRate = len(self.keyTTL) keyRateDiff = self.keyRate - self.BASELINE_KEY_RATE diffPower = keyRateDiff / 300.0 if self.power < 1 and diffPower > 0: diffPower = diffPower * math.pow(1 - self.power, 1.25) newPower = self.power + diffPower if newPower > 1: newPower = 1 elif newPower < 0: newPower = 0 self.notify.debug('diffPower=%.2f keyRate = %d, newPower=%.2f' % (diffPower, self.keyRate, newPower)) self.power = newPower self.powerBar['value'] = newPower if self.power < self.YELLOW_POWER_THRESHOLD: self.powerBar['barColor'] = VBase4(0.75, 0.75, 1.0, 0.80000000000000004) elif self.power < self.RED_POWER_THRESHOLD: self.powerBar['barColor'] = VBase4(1.0, 1.0, 0.0, 0.80000000000000004) else: self.powerBar['barColor'] = VBase4(1.0, 0.0, 0.0, 0.80000000000000004) self._DistributedBanquetTable__spawnUpdateKeyPressRateTask() return Task.done def _DistributedBanquetTable__setMoveSound(self, sfx): if sfx != self.moveSound: if self.moveSound: self.moveSound.stop() self.moveSound = sfx if self.moveSound: base.playSfx(self.moveSound, looping = 1, volume = 0.5)
[ "fr1tzanatore@aol.com" ]
fr1tzanatore@aol.com
48056c7a32622758cfb3818b9273a4f1de5b1921
0475b7d5791114c913e0ccc432ea7893fcd5182d
/webServer/webServer.py
f7b6750739694524227ed9c31fa897f53dcbaa67
[]
no_license
jonzhaocn/python_projects
5c7717f5e81248e99f3252bba94c81d0cf3b6d5f
22d171aebd46590661c0ea3fc20a3fa5bef8bafd
refs/heads/master
2021-09-13T00:25:45.990594
2018-04-23T07:20:06
2018-04-23T07:20:06
87,550,515
1
0
null
null
null
null
UTF-8
Python
false
false
7,828
py
import socket import os import logging import subprocess # 自己写的一个简单的we服务器代码,实现了get、post class WebServer(object): def __init__(self): self.HOST = '' self.PORT = 80 self.root_dir = 'd:/root_dir' # 文件的根目录 self.server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 设置协议、套接字 self.server.bind((self.HOST, self.PORT)) # 绑定端口 self.server.listen() self.allowed_readable_text_file_types = ['.html', '.htm', '.txt', '.js', '.css'] # 设置允许访问的文件类型 self.allowed_readable_img_file_types = ['.jpg', '.gif', '.png', '.jpeg'] self.allowed_readable_file = self.allowed_readable_text_file_types + self.allowed_readable_img_file_types self.allow_show_dir = True # 如果文件夹下没有index.html文件是否允许显示文件夹的结构 self.HTTP_version = 'HTTP/1.x' logging.basicConfig(level=logging.DEBUG, # 设置log日志 format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='mylog.log', filemode='w') server_Logging = logging.StreamHandler() server_Logging.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s: %(message)s') server_Logging.setFormatter(formatter) logging.getLogger('').addHandler(server_Logging) def serve_forever(self): # 开启服务的主函数 while True: client, address = self.server.accept() # 接受请求 request = client.recv(1024).decode() if request is None or len(request) == 0: continue else: request_list = request.split(' ') method = request_list[0] # 请求是get还是post file_src = request_list[1] # 请求的文件路径 content = None path = self.root_dir + file_src logging.info(str(address) + ':' + method + ' ' + file_src) if method == 'GET': if os.path.exists(path): # 该路径存在 if os.path.isdir(path): # 该路径是一个文件夹 if self.allow_show_dir: # 如果允许显示文件夹中的内容 content = self.read_index_file(path) if content is None: content = self.display_dir_structure(path) else: content = self.get_head(200, '.html') + content else: # 如果不允许显示文件夹中的内容 content = self.read_index_file(path) # 查找该文件夹中是否存在index.html if content is None: content = self.get_head(403, '.html') + self.create_info_html("Forbidden") else: content = self.get_head(200, '.html') + content elif os.path.isfile(path): # 该路径是一个文件 file_type = self.get_filnameExt(path) if file_type in self.allowed_readable_file: # 如果该文件内容允许读取 content = self.get_head(200, '.html') + self.read_file(path) else: content = self.get_head(403, '.html') + self.create_info_html("Forbidden") else: # 如果该路径不存在 content = self.get_head(404, '.html')+self.create_info_html("file not found") client.sendall(content) client.close() if method == 'POST': # Post请求 # new_process = subprocess.Popen('') content = None if os.path.exists(path): # 处理表单的文件存在 form = request.split('\r\n')[-1] # 表单的内容在request的最后一行 form_list = form.split('&') # 如果表单中有多个内容,内容已&分隔 submit_args = '' for item in form_list: submit_args = submit_args + item + ";" # 提取表单中的内容 # python post.py firstname=1;lastname=2 args = ['python', path, submit_args] try: result = subprocess.check_output(args, shell=True) # 运行请求 except subprocess.CalledProcessError as e: result = self.create_info_html('error') content = self.get_head(200, '.html') + result else: # 处理表单的文件不存在 content = self.get_head(404, '.html') + self.create_info_html('file not found') client.sendall(content) client.close() def display_dir_structure(self, path): # 用于展示指定路径下的目录结构 dir_structure = ''' <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=mbcs"> <title>Directory listing for {path}</title> </head> <body> <h1>Directory listing for {path}</h1> <hr> <ul> ''' for file in os.listdir(path): dir_structure += '<li><a href=\"'+file+'\">'+file+'</a></li>' dir_structure += ''' </ul> <hr> </body> </html>''' index = len(self.root_dir) path = path[index:] dir_structure = dir_structure.format(path=path).encode() dir_structure = self.get_head(200, '.html')+dir_structure return dir_structure def get_head(self, status_code, file_type): # 返回头信息 status_code_dict = { 100: 'Continue', 101: 'Switching Protocols', 102: 'Processing', 200: 'OK', 400: 'Bad Request', 401: 'Unauthorized', 402: 'Payment Required', 403: 'Forbidden', 404: 'Not Found' } content = self.HTTP_version + ' ' + str(status_code) + ' ' + status_code_dict[status_code]+'\n' if file_type in self.allowed_readable_text_file_types: content += 'Content-Type: text/'+file_type.split('.')[-1]+'\n'+'\n' elif file_type in self.allowed_readable_img_file_types: content += 'Content-Type: image/'+file_type.split('.')[-1]+'\n'+'\n' return content.encode() def read_file(self, path): # 读取指定文件并返回 file = open(path, 'rb') content = file.read() file.close() return content def read_index_file(self, path): # 查找制定目录下的index文件,并返回其内容 for file in os.listdir(path): list = file.split('.') if len(list) == 2 and list[0].upper() == 'INDEX' and list[1] == 'html': return self.read_file(path+'/'+file) return None def create_info_html(self, info): # 生成指定内容的网页 content = ''' <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=mbcs"> <title>{info}</title> </head> <body> <h1>{info}</h1> </body> </html> '''.format(info=info).encode() return content def get_filnameExt(self, filename): # 获取文件的扩展名 import os (filepath, tempfilename) = os.path.split(filename); (shotname, extension) = os.path.splitext(tempfilename); return extension if __name__ == '__main__': server = WebServer() server.serve_forever()
[ "1044264932@qq.com" ]
1044264932@qq.com
e5be18291d8f73243a4c9f25f3a48e3ce073b814
a7e40fc92f2681beef1c41afb0e348a910d0dc06
/misc_tool/fixfix.py
07be6bea5d3f88e9f20eff4f8610623fda11e076
[]
no_license
yacheng1127/YW-Python
ae0e7480859e21c6aaab20a166561c818387ec44
e88cfd202c7449a23dd8bb8d659bbdc0df1a1ff9
refs/heads/package
2020-12-24T17:26:23.905392
2013-09-26T13:41:49
2013-09-26T13:41:49
7,425,035
0
1
null
2013-05-14T13:04:40
2013-01-03T15:36:42
Python
UTF-8
Python
false
false
22,076
py
################################################################################################ ## fixfix: post-processes drifter tracks ## xiuling.wu ## August 9, 2011 ## ## Jim Manning modifications ## October 2011 ## March 2012 ## Nov 2012 trouble with ginput causing segfault ## STEPS ARE AS FOLLOWS: # - load all the ascii data file # - for each drifter it conducts 4 basic steps # - eliminate repeat times # - calculate forward and backward differences (velocity) and eliminate bad points # - writes meta data to log file # - check for drogue loss # - clean plots of track (pth) and velocity uv_id_final.png) # - generates oracle ready ascii file ################################################################################################## import sys sys.path.append("/home3/ocn/jmanning/py/jmanning/whython6/") import csv from conversions import ll2uv #To convert from longitude/latitude to unit vectors import numpy as np import matplotlib as mpl import matplotlib.mlab as ml #part1 #import scipy #from scipy import * #import pylab from pylab import * import matplotlib.pyplot as plt #import basemap from matplotlib.dates import num2date,date2num, DateFormatter import math ### HARD CODE ################################################################################ critfactor=8 #multipe of the mean velcity to discard minla=20;maxla=48;minlo=-150;maxlo=-20 # delimiting data to make it easier bathy=True # set to "True" if isobaths are wanted fid=open("/home3/ocn/jmanning/drift/drift.log","a")#permanent log file that is appended to../home3/ocn/jmanning/drift/drift.log # load /data5/jmanning/drift/massdmf/withtemp_2009.dat ##ids with temperature #list(set(line.strip() for line in open('X:/drift/bowdoin/2009/withtemp_2009.dat'))) # ids with temperature #fileformat='bowdoin'; # format of temperature data (sometimes "emolt") if using minilog/dat files #wt='withtemp_2009' direcin="/net/nwebserver/drifter/" # directory where the final plots are stored #direcout='/net/data5/jmanning/drift/umassb/2012' #'/data5/jmanning/drift/css/2011' #fn='drift_umb_2012_1.dat' direcout='/net/data5/jmanning/drift/kocik/2012' #'/data5/jmanning/drift/css/2011' fn='drift_cfcc_2012_1.dat' fid.write('\n'+'#'*40+' below is '+str(fn)+' log '+'#'*40+'\n') depcont=[-10] # depth contour in final plot (apparently not used in 5/2012) year=int(2012) strattle=0 # this will eventually flag to "1" if yeardays change by more than 365 ### END HARDCODES ################################################ #raw data loaded idss,yeardays_all,lat_all,lon_all,day_all,hours_all,minutes_all,depths,temps=[],[],[],[],[],[],[],[],[] csv_reader=csv.reader(open(direcin+fn,"r")) for line in (x for x in csv_reader if x[0][0] !='%'): # if the first line is comment line, skip # print float(line[0].split()[8]) if float(line[0].split()[8])<maxla and float(line[0].split()[8])>minla and float(line[0].split()[7])>minlo and float(line[0].split()[7])<maxlo: idss.append(line[0].split()[0]) yeardays_all.append(line[0].split()[6]) lat_all.append(line[0].split()[8]) lon_all.append(line[0].split()[7]) day_all.append(line[0].split()[3]) hours_all.append(line[0].split()[4]) minutes_all.append(line[0].split()[5]) depths.append(line[0].split()[9]) temps.append(line[0].split()[10]) # get ids id=list(set(idss)) # convert string to float yeardays_all=[float(i)+1 for i in yeardays_all]# in python num2date(), less one day than matlab, so add 1 here lat_all=[float(i) for i in lat_all] lon_all=[float(i) for i in lon_all] #days_all=[float(i) for i in days_all] #ids=[float(i) for i in ids] days_all,ids=[],[] for i in range(len(day_all)): days_all.append(int(float(day_all[i]))) for i in range(len(id)): ids.append(int(float(id[i]))) fido=open(direcout+'/prep_for_oracle_'+fn[6:],'w') ids=np.sort(ids) #ids=[110410712]#,11041073] for k in range(len(ids)): #where "ids" is a list of distinct ids and int # latitude, longitude, time strattle=0 lat,lon,time,yeardays,depth,temp=[],[],[],[],[],[] for i in range(len(idss)): if int(float(idss[i]))==ids[k]: lat.append(lat_all[i]) lon.append(lon_all[i]) if (i>1)&(strattle==0):# here's where we account for a new year if yeardays_all[i]-yeardays_all[i-1]<-200: year=year+1 print 'incremented year to '+str(year) strattle=1 yeardays.append(yeardays_all[i]) #time.append(date2num(num2date(yeardays_all[i]).replace(year=year).replace(day=days_all[i]))) time.append(date2num(num2date(yeardays_all[i]).replace(year=year))) depth.append(depths[i]) temp.append(temps[i]) #print time print "there are ", len(lat), " fixes for id =",ids[k] print "Note: Check to see if any of these already exist in database before loading" # STEP 1a: check to make sure time is monotonic #if len(find(diff(time)<=0))>0: # plot(time) # show() #raw_input('Trouble with time not increasing press return to continue') # close() # STEP 1b: check for repeat times ###### while time[i]==time[i-1], get the del_same_time_index ######## del_same_time_index=[] for i in range(1,len(time)): if int(time[i-1])==int(time[i]) and num2date(time[i-1]).hour== num2date(time[i]).hour and num2date(time[i-1]).minute== num2date(time[i]).minute: del_same_time_index.append(i) del_same_time_index.reverse() if del_same_time_index==[]: print "there is no same time." else: print str(len(del_same_time_index))+' points deleted with the same times' index=range(len(time)) for i in del_same_time_index: del lat[i],lon[i],time[i],yeardays[i],depth[i],temp[i] # STEP 2a: ############ calculate forward and backward velocities of the raw data ########################## forward_u,forward_v,forward_spd,jdn=ll2uv(time,lat,lon)# was yeardays but now uses "time" as of 3/29/2012 backward_u,backward_v,backward_spd,backward_jdn=ll2uv(time[::-1],lat[::-1],lon[::-1]) ## calculate resultants id_fs=list(np.where(np.array(forward_spd)<500)[0]) id_bs=list(np.where(np.array(backward_spd)<500)[0]) idc=[val for val in id_fs if val in id_bs] jdraw,spdraw=[],[] for i in idc: jdraw.append(jdn[i]) spdraw.append(forward_spd[i]) ########### plot the velocities ################################################### ## def plot_speed(time,speed): ## #fig=plt.figure() ## ax = fig.add_subplot(111) #to divide the fig into some area and (line row chose) ## plt.title('Difter#'+str(ids[k])) ## jd=[] ## for i in time: ## jd.append(i) ## plt.plot(jd,speed,'b-') #locator = mpl.dates.AutoDateLocator() #ax.xaxis.set_major_locator(locator) ## if len(jd)<100: ## else: ## monthsFmt = DateFormatter('%b/%d') ## ax.set_ylabel('cm/s') #ax.xaxis.set_major_formatter(monthsFmt) ## ax.set_xlabel(str(year),fontsize=17) ## plt.grid() ## fig=plt.figure() ## plot_speed(jdraw,spdraw)## plot speed ## plt.show() ## plt.close() ####################################################################################### # calculate a reasonable criteria for this drifter crit=np.mean([abs(i) for i in forward_spd])*critfactor print "Velocity criteria set to ", str(critfactor),' times the mean or ',str(crit),' cm/s' # check for drifter going aground (ie very low velocity) idlow=list(np.where(np.array(spdraw)<float(np.mean([abs(i) for i in forward_spd]))/100)[0]) # if idlow is not empty, add the comments in fid file if idlow<>[]: for i in range(len(idlow)): print 'WARNING: Drifter ',str(ids[k]),' may be hung up on gear or aground on ',str(idlow[i]),' where velocity is < 1# mean' #fid.write(str(ids[k]).rjust(10)+' apparently hung-up on '+str(idlow[i])+'\n') idlow_print0=str(sorted(idlow)) idlow_print1=idlow_print0.replace(', ',' ') tempochunk0=str(ids[k]).rjust(10)+' apparently hung-up on '+str(idlow_print1)+'\n'#'from'+str(idlow[0])+'to'+str(idlow[-1])+'\n' else: tempochunk0='There is no point hung up\n' #### find bad velocities where criteria was just calculated idbadf=list(np.where(abs(np.array(forward_spd))>crit)[0]) idbadb=list(np.where(abs(np.array(backward_spd))>crit)[0]) #if it is the 2nd time/point in the bad forward velocity (fu) that caused the problem # then the 2nd time/point associated with the bad backward velocity should match timeb=time[::-1] # backwards time vector badtime=list(set([time[i+1] for i in idbadf]).intersection(set([timeb[i+1] for i in idbadb]))) print "%10.3f percent bad velocities deleted according to velocity criteria" % float(len(badtime)/float(len(lat))*100.) index_badtime=[]# find near the badtime points for i in badtime: index_badtime.append(int(np.interp(i,time,range(len(time))))) if index_badtime<>[]: index_badtime.reverse() for i in index_badtime: index_near_badtimes=[] if i-5<0: ra=range(0,i+5) elif i+5>len(lat): ra=range(i-5,len(lat)-1) else: ra=range(i-5,i+5) for m in ra: index_near_badtimes.append(m) plot_badtime=list(set(index_near_badtimes)) #plot the bad time data and near the bad time data's points #plt.plot([lon[l] for l in plot_badtime],[lat[l] for l in plot_badtime],marker='.',) #plt.plot([lon[l] for l in index_badtime],[lat[l] for l in index_badtime],marker='o',markerfacecolor='r',linestyle='None') fig=plt.figure() plt.plot([lon[l] for l in plot_badtime],[lat[l] for l in plot_badtime],marker='.',) plt.plot(lon[i],lat[i],marker='o',markerfacecolor='r',linestyle='None') plt.show() #plt.close() del_or_not=raw_input('Delete? (y/n or 1 for the end point): ') if del_or_not=='y': del time[i],lat[i],lon[i],yeardays[i],depth[i],temp[i] elif del_or_not=='1': plt.plot(lon[i-1],lat[i-1],marker='o',markerfacecolor='r',linestyle='None') plt.show() raw_input('How is that? press return') del time[i-1],lat[i-1],lon[i-1],yeardays[i-1],depth[i-1],temp[i-1] plt.close() plt.close() # STEP 3: # delelte values bad due to objective criteria #index_badtime.reverse() #for i in index_badtime: # if lat[i]!=999: # del time[i],lat[i],lon[i],yeardays[i],depth[i],temp[i] #print str(float(len(badtime))/len(time)*100),'# editted due to bad velocities > criteria' idgood=len(lat) ############################################################################################### # Step 4a: # calculate forward velocities of the automatically editted data fu,fv,spd1,jd1=ll2uv(time,lat,lon) fig=plt.figure() #plot_speed(jd1,spd1) plt.plot(jd1,spd1) plt.plot(jd1,spd1,marker="o",markerfacecolor="r",linestyle='None') plt.show() print 'click on any obviously bad points and then press the enter key.' badpoints=ginput(n=0) print badpoints#,timeout=10) #badpoints=ginput(0,timeout=10,mouse_stop=3) #badpoints=[] #close() # Step 4b: # eliminate those points clicked as bads # find badpoints index in yeardays index_badpoints=[] badpoints_num=len(badpoints) for i in range(len(badpoints)): index_badpoints.append(int(np.interp(badpoints[i][0],jd1,range(len(jd1))))) print index_badpoints index_badpoints=list(set(index_badpoints)) print "%10.2f percent bad velocities deleted according to manual clicks on velocity" % float(float(badpoints_num)/len(lat)*100.) for i in sorted(index_badpoints)[::-1]: del time[i], lat[i], lon[i], yeardays[i],depth[i],temp[i] #plt.close() plot_again=raw_input("Do you want to replot the figure after delete the bad points?(y/n)") #plot_again='y' if plot_again=="y" or plot_again=="Y" or plot_again=="yes": #plt.close('all') fig=plt.figure() fu2,fv2,spd2,jd2=ll2uv(time,lat,lon) #plot_speed(jd2,spd2) plt.plot(jd2,spd2,'mo-',markersize=5)#marker='o',markerfacecolor="r",linestyle='None') plt.show() #plt.close() #print 'pausing 10 seconds' #sleep(10) # if there are a list of bad points, click the first point and the last point, then delete between them del_between=raw_input('Do you want to delete all the points between two points? input "N" or "Y"' ) #del_between='N' if del_between=="N" or del_between=="n": print "You have choosen NOT to delete all the points between two points." if del_between=="Y" or del_between=="y" : print "Please click the first bad point and the last bad point to choose the range of the bad points" between_badpoints=ginput(n=0) print between_badpoints#,timeout=0)#,mouse_stop=2) index_between_badpoints=[] for i in range(len(between_badpoints)): index_between_badpoints.append(int(np.interp(between_badpoints[i][0],jd2,range(len(jd2))))) print index_between_badpoints index_betweens=[] for i in range(sorted(index_between_badpoints)[0],sorted(index_between_badpoints)[1]+1): index_betweens.append(i) for i in index_betweens[::-1]: del lat[i],lon[i],time[i],yeardays[i],depth[i],temp[i] del_between_badpoints=sorted(index_between_badpoints)[1]-sorted(index_between_badpoints)[0]+1 badpoints_num=len(badpoints)+del_between_badpoints print "%10.2f percent editted due to bad velocities from manual clicks between two points" % float(float(badpoints_num)/len(time)*100.) if ids[k]==1174306915 or ids[k]==1174306911: del time[-1], lat[-1], lon[-1], yeardays[-1],depth[-1],temp[-1] fig=plt.figure() fu3,fv3,spd3,jd3=ll2uv(time,lat,lon) #plot_speed(jd3,spd3) plt.plot(jd3,spd3,'bo-') plt.show() #step 5a: #manually delete points based on track ############################################################################################################## fig=plt.figure() #plt.figure(2) #plt.plot(lon,lat,'k-') plt.plot(lon,lat,'ro-') plt.show() print 'click on any obviously bad points and then press the enter key on the track.' bad=ginput(n=0) print bad badplotpts=[] #index of points that are found to be near the same index of x & y if len(bad)>0: for kbad in range(len(bad)): idxbad=ml.find(abs(lon-bad[kbad][0])==min(abs(lon-bad[kbad][0]))) idybad=ml.find(abs(lat-bad[kbad][1])==min(abs(lat-bad[kbad][1]))) print idxbad,idybad if idxbad==idybad: print lat[int(idxbad)],lon[int(idxbad)],' is bad' badplotpts.append(int(idxbad)) for kk in range(len(badplotpts)): plt.plot(lon[badplotpts[kk]],lat[badplotpts[kk]],'bo') # #thismanager = get_current_fig_manager() # #thismanager.window.SetPosition((1000,500)) plt.show() for i in sorted(badplotpts)[::-1]: del time[i], lat[i], lon[i], yeardays[i],depth[i],temp[i] #fig=plt.figure() plt.plot(lon,lat,'yo-') plt.show() raw_input(str(len(badplotpts))+' deleted from manual click on track. Press return to continue') #plt.close() # write to log file if some data was editted if badpoints_num>0: tempochunk1=(str(ids[k]).rjust(10)+' '+ str(crit).rjust(10)+' '+ str(badpoints_num).rjust(10)+' '+ str(idgood).rjust(10)+" "+str(math.floor(time[-1]-time[0])).rjust(10)+" manual editted uv plot\n") else: tempochunk1='There is no bad point delete manual.\n' if len(badtime)>0: tempochunk2=(str(ids[k]).rjust(10)+' '+ str(crit).rjust(10)+' '+ str(len(badtime)).rjust(10)+' '+ str(idgood).rjust(10)+" "+str(math.floor(time[-1]-time[0])).rjust(10)+" objectively editted\n") else: tempochunk2='There is no bad velocities deleted according to velocity criteria.\n' if len(badplotpts)>0: tempochunk3=(str(ids[k]).rjust(10)+' '+ str(crit).rjust(10)+' '+ str(len(badplotpts)).rjust(10)+' '+ str(idgood).rjust(10)+" "+str(math.floor(time[-1]-time[0])).rjust(10)+" manually editted track points\n") else: tempochunk3='There is no bad point delete manual on track.\n' # clean velocities w/out bad points [u2,v2,spd2,jd2]=ll2uv(time,lat,lon) #was "yeardays" until 3/2012 to deal with strattling new year #plot time, lat,lon fig=plt.figure(figsize=(10,8)) ax = fig.add_subplot(111) print 'calling basemap_usgs ' #print min(lat),min(lon),max(lat),max(lon) #if max(lon)-min(lon)>4.0: # basemap.basemap(lat,lon)#,(float(min(max(lat)-min(lat),max(lon)-min(lon)))+1.0)/5*4) #else: # basemap.basemap_detail(lat,lon,bathy, False,float(min(max(lat)-min(lat),max(lon)-min(lon)))/5*4) #basemap.basemap_usgs(lat,lon,False)#,depcont) print 'past basemap' ax.plot(lon,lat,marker=".",markerfacecolor='r',markersize=10) points_num=10 ax.set_ylabel('latitude') ax.set_xlabel("longitude") #ax.set_xlim(min(lon)-(max(lon)-min(lon))/10.,max(lon)+(max(lon)-min(lon))/10.) #ax.set_ylim(min(lat)-(max(lat)-min(lat))/10.,max(lat)+(max(lat)-min(lat))/10.) ax.set_xlim(min(lon),max(lon)) ax.set_ylim(min(lat),max(lat)) plt.title('Drifter #'+str(ids[k]),fontsize=16) # fig.autofmt_xdate() #display the time "lean" ax.xaxis.set_label_coords(0.5, -0.1)#set the position of the xtick labels ax.yaxis.set_label_coords(-0.08, 0.4) # the last points, annotate "end" self_annotate1=ax.annotate("End", xy=(lon[-1], lat[-1]),xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) self_annotate2=ax.annotate("Start", xy=(lon[0], lat[0]),xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) if time[-1]-time[0]<=2: if len(time)<5: skip=1 else: skip=int(float(len(time))/5) for i in range(0,len(time),skip): self_annotate3=ax.annotate(num2date(time[i]).replace(tzinfo=None).strftime('%d-%b %H:%M'), xy=(lon[i], lat[i]), xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) # self_annotate3.draggable() elif (time[-1]-time[0]>2.0)&(time[-1]-time[0]<20.0): for i in range(1,len(time)): if num2date(time[i-1]).day<>num2date(time[i]).day: self_annotate4=ax.annotate(num2date(time[i]).replace(tzinfo=None).strftime('%d-%b'), xy=(lon[i], lat[i]), xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) else: # place approximately 10 labels for i in range(1,len(time),int(len(time)/10.)): #if num2date(time[i-1]).day<>num2date(time[i]).day: self_annotate4=ax.annotate(num2date(time[i]).replace(tzinfo=None).strftime('%d-%b'), xy=(lon[i], lat[i]), xycoords='data', xytext=(8, 11), textcoords='offset points',arrowprops=dict(arrowstyle="->")) # self_annotate4.draggable() #drag the text if you want thismanager = plt.get_current_fig_manager() thismanager.window.SetPosition((1000, 0)) plt.show() plt.savefig(direcin+'pth_'+str(ids[k])+'_final'+".ps") plt.savefig(direcin+'pth_'+str(ids[k])+'_final'+".png") raw_input('press return to close final track window') plt.close() # plt.show() #plot u & v fig=plt.figure() ax1 = fig.add_subplot(111) plt.plot(jdn,forward_u,"r",label='raw eastward') plt.plot(jdn, forward_v,"b",label='raw northward') plt.plot(jd2,u2,"m",linewidth=2,label='final eastward') plt.plot(jd2,v2,"g",linewidth=2,label='final northward') leg=plt.legend() # leg.draggable() locator = mpl.dates.AutoDateLocator() ax1.xaxis.set_major_locator(locator) if len(jdn)<100: monthsFmt = DateFormatter('%b/%d %H:') else: monthsFmt = DateFormatter('%b/%d') ax1.xaxis.set_major_formatter(monthsFmt) ax1.set_xlabel(str(year)) ax1.set_ylabel('cm/s (where 50 ~ 1 knot)') fig.autofmt_xdate() #display the time "lean" plt.title('Drifter '+str(ids[k])+' cleaned',fontsize=16) plt.savefig(direcin+'uv_'+str(ids[k])+'_final'+'.ps') plt.savefig(direcin+'uv_'+str(ids[k])+'_final'+'.png') plt.show() raw_input('press return to close uv window') # close() # write out id,date,lat,lon,yrday0_gmt,temp, and depth_i depth=[float(i) for i in depth] for i in range(len(time)): fido.write(str(ids[k]).rjust(10)+ " " +num2date(time[i]).replace(tzinfo=None).strftime('%d-%b-%Y:%H:%M')+" ") fido.write(("%10.6f") %(lat[i])) fido.write(" ") fido.write(("%10.6f") %(lon[i])) fido.write(" ") fido.write(("%10.6f") %(yeardays[i]-1)) fido.write(" ") fido.write(temp[i]+ " ") fido.write(("%5.1f") %(depth[i])) fido.write('\n') if k<>len(ids)-1: raw_input("Press Enter to process next drifter") whetherlog=raw_input('Do you want to keep this log?') if whetherlog=="Y" or whetherlog=="y" : fid.write(tempochunk0) fid.write(tempochunk1) fid.write(tempochunk2) fid.write(tempochunk3) print 'log has been saved.' fido.close() fid.close()
[ "james.manning@noaa.gov" ]
james.manning@noaa.gov
4d641b7b452b7e43378724205d8c5690b44cd11a
5b9c50baaa3182868c9f4a744a7361abe422a510
/tests/test_base.py
f7f5133f7951074f1287e3257df0b73b129805e8
[ "MIT" ]
permissive
jasontangxf/geometer
3307889c087a1f498d58b5ae6bbf1b037119ca46
931df0aff6c680ad13a6c5989f2a89c276370c5e
refs/heads/master
2023-01-06T17:39:41.837342
2020-11-07T15:42:10
2020-11-07T15:42:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,251
py
import numpy as np from geometer.base import TensorDiagram, Tensor, TensorCollection, LeviCivitaTensor, KroneckerDelta class TestTensor: def test_arithmetic(self): a = Tensor(2, 3) b = Tensor(5, 4) # vector operations assert a + b == Tensor(7, 7) assert a - b == Tensor(-3, -1) assert -a == Tensor(-2, -3) # scalar operations assert a + 6 == Tensor(8, 9) assert a - 6 == Tensor(-4, -3) assert a * 6 == Tensor(12, 18) assert a / 6 == Tensor(1/3, 0.5) def test_transpose(self): a = Tensor([[1, 2], [3, 4]], covariant=[0]) assert a.transpose() == Tensor([[1, 3], [2, 4]]) assert a.T._covariant_indices == {1} assert a.T.T == a def test_getitem(self): a = Tensor([[1, 2], [3, 4]], covariant=[0]) assert a[0, 1] == 2 assert a[None, 1] == [[3, 4]] assert a[None, 1].tensor_shape == (0, 1) assert a[::-1, 0] == [3, 1] assert a[::-1, 0].tensor_shape == (1, 0) def test_dtype(self): a = Tensor(2, 3, dtype=np.float32) assert a.dtype == np.float32 a = Tensor(2, 3, dtype=np.complex64) assert a.dtype == np.complex64 class TestTensorCollection: def test_init(self): # empty list a = TensorCollection([]) assert len(a) == 0 # numpy array a = TensorCollection(np.ones((1, 2, 3))) assert len(a) == 1 assert a.size == 2 # nested list of numbers a = TensorCollection([[1, 2], [3, 4]]) assert len(a) == 2 assert a.size == 2 # nested tuple of numbers a = TensorCollection(((1, 2), (3, 4))) assert len(a) == 2 assert a.size == 2 # nested list of Tensor objects a = TensorCollection([[Tensor(1, 2, 3), Tensor(3, 4, 5)]]) assert a.shape == (1, 2, 3) assert len(a) == 1 assert a.size == 2 # object with __array__ function class A: def __array__(self): return np.array([Tensor(1, 2), Tensor(3, 4)]) a = TensorCollection(A()) assert len(a) == 2 assert a.size == 2 def test_flat(self): a = [Tensor([[1, 2], [3, 4]]), Tensor([[5, 6], [7, 8]])] b = TensorCollection([a], tensor_rank=2) assert list(b.flat) == a def test_getitem(self): a = Tensor([[1, 2], [3, 4]]) b = Tensor([[5, 6], [7, 8]]) c = TensorCollection([a, b]) assert c[0] == a assert c[1] == b assert list(c) == [a, b] assert c[:, 1] == TensorCollection([Tensor([3, 4]), Tensor([7, 8])]) assert c[:, 0, 0] == [1, 5] class TestTensorDiagram: def test_add_edge(self): a = Tensor([1, 0, 0, 0]) b = Tensor([[42, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], covariant=False) diagram = TensorDiagram((a, b)) assert diagram.calculate() == Tensor([42, 0, 0, 0]) diagram.add_edge(a.copy(), b) assert diagram.calculate() == 42 def test_tensor_product(self): e1 = Tensor(1, 0) e2 = Tensor(0, 1) a = Tensor([0, 1], [1, 0], covariant=[0]) b = Tensor([1, 0], [0, 1], covariant=[0]) m = a.tensor_product(b) e = e1.tensor_product(e2) assert TensorDiagram((e, m), (e, m)).calculate() == (a * e1).tensor_product(b * e2) d = TensorDiagram() d.add_node(a) d.add_node(b) assert d.calculate() == a.tensor_product(b) def test_epsilon_delta_rule(self): e1 = LeviCivitaTensor(3, True) e2 = LeviCivitaTensor(3, False) d = KroneckerDelta(3) d2 = d.tensor_product(d) d1 = d2.transpose((0, 1)) diagram = TensorDiagram((e1, e2.transpose())) assert diagram.calculate() == d1 - d2 def test_kronecker_delta(self): d = KroneckerDelta(4, 3) assert d.array.shape == (4,)*6 assert d.array[0, 1, 2, 0, 1, 2] == 1 assert d.array[0, 2, 1, 0, 1, 2] == -1
[ "jan.rv@t-online.de" ]
jan.rv@t-online.de
9ed2c8e05d8b011321f54977f2d63a7de27935b1
e93117371d0c5c6b3eb0b177fc4b2acc8f9524de
/TestFiles/test_cp.py
8d5a4bfb1545f4f8b2be1b6b96f89b41a25a789c
[]
no_license
marthinwurer/TournamentRecorder
94dfc8af28455e3844628616cef45d1e3a3fdd6c
87f04c4caa68d12935e339d253525e3364ab8f68
refs/heads/master
2021-03-24T09:11:44.460711
2016-11-29T04:47:44
2016-11-29T04:47:44
67,151,794
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
""" This file tests the create player (cp) method of the API Author: TangentTally """ import unittest import sys sys.path.insert(0, "../src") import tr_api class TestAp(unittest.TestCase): def setUp(self): tr_api.createPlayer(1, 'Evan') self.topdict = tr_api.listPlayers() self.topdict2 = tr_api.createPlayer(1, "Fail2") def tearDown(self): tr_api.createPlayer(2, 'Ben') tr_api.createPlayer(3, 'Will') tr_api.createPlayer(4, 'Jon') def test_add_player(self): self.assertEqual(len(self.topdict.get('rows')), 1) def test_new_player_id(self): self.assertEqual(self.topdict.get('rows')[0].get('id'), 1) def test_new_player_name(self): self.assertEqual(self.topdict.get('rows')[0].get('name'), 'Evan') def test_fail_cp_same_id(self): self.assertFalse(self.topdict2.get('outcome')) def test_fail_cp_error_message(self): self.assertEqual(self.topdict2.get('reason'), 'DCI Exists')
[ "evanditto9@gmail.com" ]
evanditto9@gmail.com
f14acc9a228a0a7f5084dd0ecd4364f8fdac0641
5d984b4ece241bf5006a6a36029b2ef0776e643c
/main.py
9d481483b571993648607e4b9db4fdf7dd4fa53d
[]
no_license
teros0/SimpleHTTPServer
596350481f6ce6a12ed0a8cc919f3b724f0243e0
0eaa0f879b66ea0b732d1bbeb0e9f90580b7d574
refs/heads/master
2021-01-19T01:28:59.686423
2017-04-08T09:11:06
2017-04-08T09:11:06
87,244,585
0
0
null
null
null
null
UTF-8
Python
false
false
2,795
py
import os import sys import socket import mimetypes from functools import lru_cache class SimpleHTTPServer: def __init__(self, host, port): self.host = host self.port = port self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.bind((self.host, self.port)) self.sock.listen(5) print("Server initialized on host {} port {}" .format(self.host, self.port)) def process_request(self): conn, addr = self.sock.accept() data = conn.recv(1024) request = data.decode('utf-8') file_path = request.split()[1] full_path = sys.path[0] + file_path try: response = self.create_response(full_path) conn.sendall(response[0]) conn.sendall(response[1]) finally: conn.close() @lru_cache(maxsize=10) def create_head(self, path): headers = "HTTP/1.1 200 OK\n" if os.path.isfile(path): type = mimetypes.guess_type(path)[0] headers += 'Content-Type: {}\n\n'.format(type) else: headers += 'Content-Type: text/html\n\n' return headers.encode('utf-8') def list_dirs(self, path): with open(path + '/.temp_index.html', 'w+') as f: f.write("""<!DOCTYPE html> <html> <title>Directory listing for {0}</title> <body> <h2>Directory listing for {0}</h2> <hr> <ul>\n""".format(path)) for entry in os.listdir(path): if entry == '.temp_index.html': continue f.write("<li><a href='/{0}/{1}'>{1}</a>\n" .format(os.path.relpath(path), entry)) return path + '/.temp_index.html' def create_body(self, path): with open(path, 'rb') as f: body = f.read() return body def create_response(self, path): if os.path.isdir(path): folder_content = os.listdir(path) if 'index.html' in folder_content: path += '/index.html' else: path = self.list_dirs(path) headers = self.create_head(path) body = self.create_body(path) response = (headers, body) return response def serve_forever(self): while True: self.process_request() host = '' if sys.argv[1:]: port = int(sys.argv[1]) else: port = 8000 if __name__ == "__main__": server = SimpleHTTPServer(host, port) try: server.serve_forever() except KeyboardInterrupt: print("\Keyboard interruption, exiting.") sys.exit(0)
[ "best.guess.oni@gmail.com" ]
best.guess.oni@gmail.com
3a24fc4e4e2066ac18fd2bf58725d03a2817ee1f
c8a1424dd8b46636b4e739ad2d3ad77afe9c8b86
/set.py
08f6953ae90f9e6cda8c694fdc294e77f0930df6
[]
no_license
tanakan2544/myscript
b2b504dc3f7c8025776d2523034fc591890e86b8
f390fd72e481a14fa43596bb33cf2d49c6096000
refs/heads/master
2020-07-25T09:00:43.287349
2019-09-13T10:05:36
2019-09-13T10:05:36
208,239,343
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
zoo = ( "Kangaroo" , "Leopard" , "Moose" ) print( "Tuple:" , zoo , "\tLength:" , len( zoo ) ) print( type( zoo ) ) bag = { "Red" , "Green" , "Blue" } bag.add( "Yellow" ) print( "\nSet:" , bag , "\tLength" , len( bag ) ) print( type( bag ) ) print( "\nIs Green In bag Set?:" , "Green" in bag ) print( "Is Orange In bag Set?:" , "Orange" in bag box = { "Red" , "Purple" , "Yellow" } print( "\nSet:" , box , "\t\tLength" , len( box ) ) print( "Common To Both Sets:" , bag.intersection( box ) )
[ "noreply@github.com" ]
noreply@github.com
74292104dd0ffdaadc0625c511ab93c18939e9d0
ebea625962d5864821d7e7b9c63670f4f238efd3
/Contests/Week of Code 28/Boat Trips/boatTrips.py
0a105684bee08ab33772b2afe05e0a2e9a569372
[]
no_license
ThiagoAugustoSM/hackerRank
68ddbee48d2a26e6c0cb9c3f58476c0424feaf85
15d19f1013f7742d6d2587d56f4e2f0ef3579c77
refs/heads/master
2021-08-11T18:52:30.041716
2017-11-14T02:45:56
2017-11-14T02:45:56
78,483,488
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
#!/bin/python3 import sys n,c,m = input().strip().split(' ') n,c,m = [int(n),int(c),int(m)] p = list(map(int, input().strip().split(' '))) if m * c >= max(p): print("Yes") else: print("No")
[ "martinsthiagoaugusto@gmail.com" ]
martinsthiagoaugusto@gmail.com
06592bbd733bf700a6951202c02f4f34307e9454
94790bb61891f99cf0a6bea9ea7c052c6f6c6ed0
/zhaoping/zhaoping/middlewares.py
ec5e29e68f380a29b7d82c2600f6b26169214425
[]
no_license
huazhicai/Douban_scrapy
1ddaac9a1414099aaa00b9813dd93618c64e6199
846adb26b7f52904f056ec6b4d0ea9b2255eed0d
refs/heads/master
2020-03-21T02:42:22.124741
2018-07-14T14:53:38
2018-07-14T14:53:38
138,013,256
0
0
null
null
null
null
UTF-8
Python
false
false
2,982
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # http://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals import random import time class ZhaopingSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class ProxyMiddleware(object): def process_request(self, request, spider): """request对象加上proxy""" proxy = self.get_random_proxy() print("this is request ip:" + proxy) request.meta['proxy'] = proxy def process_response(self, request, response, spider): """对返回的response处理""" # 如果返回的response状态不是200,重新生成当前request对象 if response.status != 200: proxy = self.get_random_proxy() print("this is response ip:" + proxy) # 对当前reque加上代理 request.meta['proxy'] = proxy return request return response def get_random_proxy(self): """随机从文件中读取proxy""" while True: with open('proxies.txt', 'r') as f: proxies = f.readlines() if proxies is not None: break else: time.sleep(1) proxy = random.choice(proxies).strip() return proxy
[ "zhihua cai" ]
zhihua cai
24d38b1c79dc504b389b64276c398a8a39f2423d
d7016f69993570a1c55974582cda899ff70907ec
/sdk/containerregistry/azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2022_02_01_preview/aio/operations/_operations.py
2a6e7c95997bb3ead85375c355f3241e726885e6
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
kurtzeborn/azure-sdk-for-python
51ca636ad26ca51bc0c9e6865332781787e6f882
b23e71b289c71f179b9cf9b8c75b1922833a542a
refs/heads/main
2023-03-21T14:19:50.299852
2023-02-15T13:30:47
2023-02-15T13:30:47
157,927,277
0
0
MIT
2022-07-19T08:05:23
2018-11-16T22:15:30
Python
UTF-8
Python
false
false
4,963
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._operations import build_list_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class Operations: """Operations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.containerregistry.v2022_02_01_preview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, **kwargs: Any ) -> AsyncIterable["_models.OperationListResult"]: """Lists all of the available Azure Container Registry REST API operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either OperationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.containerregistry.v2022_02_01_preview.models.OperationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ api_version = kwargs.pop('api_version', "2022-02-01-preview") # type: str cls = kwargs.pop('cls', None) # type: ClsType["_models.OperationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( api_version=api_version, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( api_version=api_version, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("OperationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': "/providers/Microsoft.ContainerRegistry/operations"} # type: ignore
[ "noreply@github.com" ]
noreply@github.com
ded444c5ef21501ca65e58e3e231f59360fd4b45
49d3e0c50b940773a5c57986a1c222ffd519c2bf
/programs/4_HackTools/Quantum_Listener/key_logger/key_logger.py
3e49ec5a012d4a846d37b839c2f211882255f504
[]
no_license
HelpMeFinishPhD/Qcamp2019
6ff1344471bb6a071ddba67384adcc24d38a1ba9
8d42615bc5838edbbefb6fc5e2d74aafb64d1cd5
refs/heads/master
2021-10-24T15:32:43.919150
2021-10-21T08:37:18
2021-10-21T08:37:18
187,752,697
3
3
null
2019-06-20T14:16:06
2019-05-21T03:10:46
Python
UTF-8
Python
false
false
2,181
py
#!/usr/bin/env python2 ''' Python wrapper program to log the measurement result for Eve This version will log from two devices: Arduino (serial1) and powermeter (serial2) Author: Qcumber 2018 ''' import serial import sys import time import datetime # Serial 1 serial_addr1 = '/dev/ttyACM0' # Arduino # Serial 2 serial_addr2 = '/dev/ttyACM1' # Powermeter print "The JW Eavesdropping... will record any voltages into a file" print "To exit the program, use Ctrl+C \n" # Other parameters declarations # Serial 1 baudrate1 = 9600 # Default in Arduino timeout1 = 0.1 # Serial timeout (in s). refresh_rate= 0.0 # Minimum offset around 115 ms # Serial 2 baudrate2 = 115200 # Default in Arduino timeout2 = 0 # Serial timeout (in s). # Some note (may be a bug in the future): # The pyserial somehow does not properly respond to powermeter timeout # I will just assume it to have 0 timeout, and let the blocking donw # by the other device's response time. # Opens the receiver side serial port receiver1 = serial.Serial(serial_addr1, baudrate1, timeout=timeout1) receiver2 = serial.Serial(serial_addr2, timeout=timeout2) # Waiting until the serial device is open (for some computer models) time.sleep(2) print "Ready!\n" # Setting the range for powermeter receiver2.write("RANGE3\n") # The filename is the current time filename = str(datetime.datetime.now().time())[:8] + '.dat' print "Logging the voltages into:", filename while True: try: receiver1.write("VOLT? ") receiver2.write("VOLT?\n") # Block until receive the reply while True: if receiver1.in_waiting: volt_now1 = receiver1.readlines()[0][:-2] # Remove the /n volt_now2 = receiver2.readlines()[0][1:-2] # Remove the /n break print volt_now1, volt_now2 # Write to a file with open(filename, "a") as myfile: myfile.write(volt_now1 + " " + str(volt_now2) + "\n") # Wait until the next time time.sleep(refresh_rate) except KeyboardInterrupt: print ("\nThank you for using the program!") sys.exit() # Exits the program
[ "anuutama@gmail.com" ]
anuutama@gmail.com
2a8ac94bf969597c274ffb429ddc98534f770588
f538212bf4cc14ccab8eeee87cce3c714045e7fa
/tkproj.py
dee2fe8bd9d235e0539288b86db2c2e4d0f74c41
[]
no_license
Hayden-Neilson/Gui-with-python
956e43cfc49e015b4b171c5e0a6b71514d56fdf4
d0a49e46fa1f745e7f69934100c06e35552cae2a
refs/heads/main
2022-12-30T07:25:35.176051
2020-10-19T00:56:17
2020-10-19T00:56:17
304,502,418
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
from tkinter import * window = Tk() def km_to_miles(): miles = float(el_value.get())*1.6 txt1.insert(END, miles) but1 = Button(window, text="Execute", command=km_to_miles) but1.grid(row=0, column=0) el_value = StringVar() entry1 = Entry(window, textvariable=el_value) entry1.grid(row=0, column=1) txt1 = Text(window, height=1, width=20) txt1.grid(row=0, column=2) window.mainloop()
[ "haydenneilson5@gmail.com" ]
haydenneilson5@gmail.com
e9d6a9e74ae41588308338c09581de2615802eed
26b50d07e15bbbb216dd4e7091a48be9e92a2b78
/In Progress/fast_individualtimeEElimited.py
f176b36ad1cae5977a8cd19d6ad3bc0eefff6e53
[]
no_license
kchang2/pi0-analysis
1ffb2546a674422207688666b917a69d6ee501d2
db4504ad9e24e0bdb3c50bfc8b1e3e8f95e1af15
refs/heads/master
2020-05-30T18:57:21.415496
2015-12-23T16:09:20
2015-12-23T16:09:20
39,848,825
1
1
null
2015-11-21T02:05:43
2015-07-28T17:43:39
Python
UTF-8
Python
false
false
4,441
py
## ## Tutorial for drawing a histogram plot (2D) from tree variables ## in the endcap region. We want a general time resolution to see ## which sections are affected the most. ## ## Updated as of 07/27/2015 ## Running as of 07/27/2015 ## import ROOT as rt import sys, random, math import time import os import stackNfit as snf import numpy as np from FastProgressBar import progressbar if __name__ == "__main__": # input comes in from the fastAnalysis as [script, path of ROOT file, path of Result directory, starting position in the list of files in the 'path of ROOT file', ending position in the list of files in 'path of ROOT file'] fileLocation = sys.argv[1] resultLocation = sys.argv[2] bf = int(sys.argv[3]) ef = int(sys.argv[4]) # Check and change current working directory. stardir = os.getcwd() print "Current working directory %s" % stardir os.chdir(fileLocation) retdir = os.getcwd() print "Directory changed successfully %s" % retdir ## Root file path and file name you analyze ## rootList = os.listdir(fileLocation) rootfilename = p.runNumber + "EcalNtp_" ## Info about the Run ## runinfo = np.array("ROOT info") #ROOT file ## creates histogram for time response ## htimep = rt.TH2F("Time Response in Endcap plus for all photons", "X vs Y",100,0,100,100,0,100) htimem = rt.TH2F("Time Response in Endcap minus for all photons", "X vs Y",100,0,100,100,0,100) #creates histogram for event count #hevent = rt.TH2F("Events in Barrel", "X vs Y",100,0,100,100,0,100) #creation of numpy array to store values for faster analysis(courtesy of Ben Bartlett) dataListp = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]) #(photon, x, y, mean, mean error, sigma, sigma error) dataListm = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]) #(photon, x, y, time response, time response error, time resolution, time resolution error) #creates a list of histograms histListp = [[0 for x in range(101)] for y in range(101)] histListm = [[0 for x in range(101)] for y in range(101)] for x in range (0,101): for y in range (0,101): histnamep = "time on plus sc (%i,%i)" %(x,y) histtitlep = "time response (ns) for plus crystal (%i,%i)" %(x,y) histnamem = "time on minus sc (%i,%i)" %(x,y) histtitlem = "time response (ns) for minus crystal (%i,%i)" %(x,y) histListp[x][y] = rt.TH1F(histnamep,histtitlep,1000,-30,30) histListm[x][y] = rt.TH1F(histnamem,histtitlem,1000,-30,30) #fills the histogram with data runinfo = a.openEE(rTree,histListp, histListm, 0, 0) #fits the histograms htimep = snf.fitTime(histListp,htimep) htimem = snf.fitTime(histListm,htimem) # Same procedure, going back to directory where results are printed retdir = os.getcwd() print "Current working directory %s" % retdir os.chdir(resultLocation + '/' + p.folderName + '/') folder = 'ctEE' + datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') os.system('mkdir ' + folder) os.chdir(os.getcwd() + '/' + folder +'/') retdir = os.getcwd() print "Directory changed successfully %s" % retdir shutil.copyfile(stardir + '/' + 'unpack.py', retdir + '/unpack.py') #saving run info to a numpy file for reference later np.save(p.runNumber+"RunInfoEEAll.npy", runinfo) #saving all 1D histograms in tree f = rt.TFile("timeEB_"+str(int(time.time()))+".root","new") for x in range(0,len(histListp)): for y in range(0, len(histListp[0])): histListp[x][y].Write() histListm[x][y].Write() #Saving value of data in tuple list dataListp = np.vstack((dataListp, ["p", x, y, htimep.GetBinContent(x+1, y)])) dataListm = np.vstack((dataListp, ["m", x, y, htimem.GetBinContent(x+1, y)])) pbar.update(x+1) htimep.Write() htimem.Write() np.save("TimeResponseEEp_0T.npy", dataListp) np.save("TimeResponseEEm_0T.npy", dataListm) pbar.finish() #Tacks on histogram to canvas frame and ouputs on canvas c = rt.TCanvas() htimep.SetFillColor(0) htimep.Draw("colz") c.Print("2DTimeResponseEBp_0T.png") #Tacks on histogram to canvas frame and ouputs on canvas c = rt.TCanvas() htimem.SetFillColor(0) htimem.Draw("colz") c.Print("2DTimeResponseEBm_0T.png")
[ "kchang2@caltech.edu" ]
kchang2@caltech.edu
c972411fa5a6af06b18b1f3009f29e7584e09189
40f5f2a5df486aa9074148d3e3ab22752b52bfa5
/cogs/help.py
308339492064e59f26898aa0d2e936c384a3a346
[]
no_license
NikosSiak/uniwa-discord-bot
f59f667e53b21efa6e0977fe2cc6da9b5599a487
f367cf91ad50f462964204f64936f3e7f46fa4df
refs/heads/master
2021-07-01T01:43:01.767804
2020-12-02T13:41:37
2020-12-02T13:41:37
200,112,722
5
1
null
2020-12-02T13:41:39
2019-08-01T20:08:39
Python
UTF-8
Python
false
false
5,974
py
import time import asyncio import discord from discord.ext import commands class Help(commands.Cog): def __init__(self, bot): self.bot = bot def n_embed(self, ctx, page: int, pages, cogs, cogsD): embed = discord.Embed( description=f"Prefix: `{ctx.prefix}`\n`[argument]` = required, `(argument)` = optional", color=ctx.author.color, timestamp=ctx.message.created_at ) cog_name = cogs[page].replace("_", " ") embed.set_author( name=f"Help - {cog_name} - {len(cogsD[cogs[page]])} command(s)", icon_url=self.bot.user.avatar_url ) embed.set_footer(text=f"Page {page + 1}/{pages}") for command in cogsD[cogs[page]]: aliases = "None" if not command.aliases else [f"`{al}`" for al in command.aliases] embed.add_field( name=command.name, value=f"`{ctx.prefix}{command.help}`\n{command.brief}\nAliases: {'None' if aliases == 'None' else ', '.join(aliases)}", inline=False ) return embed @commands.command(name="help", aliases=["h"], brief="Display this message", hidden=True) async def help_(self, ctx, *, command=None): """help (command)""" if not command: commands_ = [] for command in self.bot.commands: if bool(command.cog_name) and not command.hidden: try: can_run = await command.can_run(ctx) except Exception: can_run = False if can_run: commands_.append(command) cogs = list({command.cog_name for command in commands_}) cogs_dict = {} for cog in cogs: cogs_dict[cog] = [] for command in commands_: if command.cog_name == cog: cogs_dict[cog].append(command) pages = len(cogs_dict) page = 0 if len(cogs) == 0: await ctx.send("It looks like you don't have permissions to run any command") return embed = self.n_embed(ctx, page, pages, cogs, cogs_dict) msg = await ctx.send(embed=embed) await msg.add_reaction('⬅') await msg.add_reaction('➡') await msg.add_reaction('❌') def check(r, user): return user != self.bot.user and r.message.id == msg.id t_end = time.time() + 300 while time.time() < t_end: try: res, user = await self.bot.wait_for('reaction_add', check=check, timeout=60.0) except asyncio.TimeoutError: continue if str(res.emoji) == "➡": try: await msg.remove_reaction('➡', user) except discord.Forbidden: pass page += 1 if page == pages: page -= 1 new_embed = self.n_embed(ctx, page, pages, cogs, cogs_dict) await msg.edit(embed=new_embed) elif str(res.emoji) == "⬅": try: await msg.remove_reaction('⬅', user) except discord.Forbidden: pass page -= 1 if page < 0: page = 0 new_embed = self.n_embed(ctx, page, pages, cogs, cogs_dict) await msg.edit(embed=new_embed) elif str(res.emoji) == "❌": try: await msg.remove_reaction("❌", user) except discord.Forbidden: pass break await msg.remove_reaction('⬅', self.bot.user) await msg.remove_reaction('➡', self.bot.user) await msg.remove_reaction("❌", self.bot.user) await msg.edit(content=f"Type `{ctx.prefix}help` or `{ctx.prefix}h`", embed=None) else: command = self.bot.get_command(command) if not command: await ctx.send(f"Use the right command, try `{ctx.prefix}help`") return sub_commands = [] if isinstance(command, commands.Group): sub_commands = list(command.commands) embed = discord.Embed( description=f"Prefix: `{ctx.prefix}`\n`[argument]` = required, `(argument)` = optional", color=ctx.author.color, timestamp=ctx.message.created_at ) aliases = "None" if not command.aliases else [f"`{al}`" for al in command.aliases] if command.name not in ["+rep", "-rep"]: embed.add_field( name=command.name, value=f"`{ctx.prefix}{command.help}`\n{command.brief}\nAliases: {'None' if aliases == 'None' else ', '.join(aliases)}", ) else: embed.add_field( name=command.name, value=f"`{command.help}`\n{command.brief}\nAliases: {'None' if aliases == 'None' else ', '.join(aliases)}", ) for command in sub_commands: embed.add_field( name=f"**{command.name}**", value=f"`{ctx.prefix}{command.help}`\n{command.brief}\nAliases: {'None' if aliases == 'None' else ', '.join(aliases)}", inline=False ) await ctx.send(embed=embed) def setup(bot): bot.add_cog(Help(bot))
[ "spyrosr1@gmail.com" ]
spyrosr1@gmail.com
29a2473d9b631c2d0c10c2d692539b428748fa59
3731cdf1609a8fe5fa0da5aaadf1c92ebc1f2410
/Vampire extension/get_bdprops_v3b.py
ad2997117dc1d93f6dc83fb8b2eed2259ea0733f
[]
no_license
kukionfr/miscal-codes
19c3bac88769eb05315918a1926d9131eee5e235
56bb822a5a0f7ce365404a201dafe21642ab384d
refs/heads/master
2021-01-08T08:18:33.191412
2020-02-24T17:21:14
2020-02-24T17:21:14
241,968,079
0
0
null
null
null
null
UTF-8
Python
false
false
1,749
py
#! C:\Python27 import numpy as np import os import pandas as pd import time from get_curvature2 import * from get_shape import * from scipy.io import loadmat def get_bdprops_v3b(Bd = None): np.set_printoptions(precision=5,suppress=True) pnum = len(Bd) out_rph = np.zeros((pnum,38)) out_cva = np.zeros((pnum,38)) Bd = Bd[0] #for pickle input, not for cbdt for k in range(pnum): if (k % 20 == 0 or k == pnum-1): print str(k+1) + ' / ' + str(pnum) B=Bd[k] pn = len(B.T[0]) if pn > 50: dist = np.power((B.T[0]-np.mean(B.T[0])),2) + np.power((B.T[1]-np.mean(B.T[1])),2) dist = np.sqrt(dist) cva = get_curvature2(B) rph = get_shape(dist) cvap= get_shape(cva.T[0]) out_rph[k]=rph out_cva[k]=cvap else: out_rph[k]=np.zeros(38) out_cva[k]=np.zeros(38) return out_rph, out_cva def get_bdprops(direc,bd,operators): start = time.time() # mat=loadmat('cbdt') # mdata=mat['cbdt'] # cbdt = pd.DataFrame(mdata)[0] out_rph, out_cva = get_bdprops_v3b(bd) df1 = pd.DataFrame(out_rph,columns=operators) df2 = pd.DataFrame(out_cva,columns=operators) # if not os.path.exists(direc + 'rph.pickle'): # df1.to_pickle(direc + 'rph.pickle') if not os.path.exists(direc + 'rph.csv'): df1.to_csv(direc + 'rph.csv', index = False) # if not os.path.exists(direc + 'cva.pickle'): # df2.to_pickle(direc + 'cva.pickle') if not os.path.exists(direc + 'cva.csv'): df2.to_csv(direc + 'cva.csv', index = False) end = time.time() print 'elapsed time is ' + str(end-start) + 'seconds for get_bdprops' return df1,df2
[ "kyuhan14@gmail.com" ]
kyuhan14@gmail.com
deca3b4423f1e25bc5462950883b449a6943fd75
ef8ea9272d876453b99a22db20fb50ecbef39bf1
/LevelTwo/py_math.py
06b6ca2d748a8f61bea51cd9faa58a3f942ab473
[]
no_license
lalchand-rajak/Python-Learn
b8b3581c2ff8b134900ecae4f73bc4eab07e6412
651b088532e63daddbfd5c718ee4ffa29ad65cdc
refs/heads/master
2023-03-22T04:22:26.413616
2021-03-04T13:24:13
2021-03-04T13:24:13
342,789,679
0
0
null
null
null
null
UTF-8
Python
false
false
371
py
import math print(abs(-45)) print(abs(45)) print(math.fabs(-45)) print(math.ceil(-45.88)) #ceil function chooses nearest highest value print(math.ceil(200.12)) print(math.floor(-45.88)) #floor function chooses nearest lowest value print(math.floor(200.12)) print(max(10,20,40,99,100,205)) print(min(10,20,40,99,100,205)) print(math.sqrt(9)) print(math.sqrt(4))
[ "lalchandrajak05@gmail.com" ]
lalchandrajak05@gmail.com
0f04619c39ba64983e7e79537e3443ea4a1bcd0f
23834bba08b8cba7d383e76bfe77f519b5dd0961
/Spark/11_word_frequency_sort.py
6b99c466b6b47994c9afadb7e4c4ac271c6ad3e6
[ "MIT" ]
permissive
jsainero/SparkvsDask
4d656b07ac624c1cbf1e34860939cd9cfdbd5373
109c2e9b5b15f1cb13c65ebdeeb0c0627a08a635
refs/heads/master
2022-11-28T07:41:46.117205
2020-07-15T12:21:25
2020-07-15T12:21:25
279,263,558
0
0
null
null
null
null
UTF-8
Python
false
false
1,139
py
# -*- coding: utf-8 -*- from pyspark import SparkContext import sys import string import time def replace(word): for a in string.punctuation+'¿¡«»': word = word.replace(a, '') return word def main(sc, filename): data = sc.textFile(filename) t0 = time.time() datanp = data.map(replace) words_rdd = datanp.flatMap(lambda x: x.split()) # print(words_rdd.take(10)) appearances_rdd = words_rdd.map(lambda x: (x.lower(), 1)) # print(appearances_rdd.take(10)) result_rdd = appearances_rdd.reduceByKey(lambda x, y: x+y) # print('RESULTS------------------') #print('words frequency', result_rdd.take(10)) sorted_rdd = result_rdd.sortBy(lambda x: x[1], ascending=False) # print('RESULTS------------------') #print('words frequency sorted', sorted_rdd.take(10)) sorted_rdd.collect() print('Tiempo transcurrido:', time.time()-t0) if __name__ == "__main__": if len(sys.argv) != 2: print("Uso: python3 {0} <file>".format(sys.argv[0])) else: with SparkContext() as sc: sc.setLogLevel("ERROR") main(sc, sys.argv[1])
[ "noreply@github.com" ]
noreply@github.com
591ecbab60adab9ab6407ec13de044b44a65615e
5af138ff15567814de34b1014f359c998bb9684e
/problem with if3.py
b92eed51b3968cb5983dbbc394f816bc38ed4926
[]
no_license
MariannaBeg/homework
a1bae0c8086922d769896d10ea1606d344ae241b
5e418e5a73495e8f34b1ef7acbdaead89c16f3ce
refs/heads/master
2020-07-25T13:51:03.947515
2019-10-25T20:33:42
2019-10-25T20:33:42
208,312,280
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
print("Please insert a word or sentence") user_input=input() if " " in user_input: print("it is a sentence") else: print("it is a word")
[ "mbeglaryan9@gmail.com" ]
mbeglaryan9@gmail.com
7e669347a9821defbb6f31f33633400c6b3a81f1
51d9838e2810c3ac37a514f1fadbf18d1cae395b
/Apps/Predict/myPredict.py
822fc97e6b02dcf7509a693333a86d19fd4afe4d
[]
no_license
player39/TestMLPipLine
2e04ae575afac14d703c4117d61a2061d8779df8
7077d493f83e7eab8809f9a475153adfc8e62942
refs/heads/master
2020-07-29T05:26:36.383679
2019-09-20T02:10:35
2019-09-20T02:10:35
209,684,020
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
from Apps.Model.HEDModelV1 import generateClass
[ "wangyucong95@gmail.com" ]
wangyucong95@gmail.com
9b1ebc326055fd2ddc035181577347d831af00ad
d3a82e7576945619973b1314aaaa1bf9897e74a8
/OnlineShop/main/eshop_accounts/urls.py
2c73f07e5f264ce9146fa6491025990f3e952398
[]
no_license
zahrafarrokhi/learning_django_1
7b0a2b96f251d14ac5f8468d677c95a5eb420905
031a4fb99df74745df8f972df158aed1a17a4862
refs/heads/main
2023-07-06T11:58:33.725572
2021-08-09T06:52:17
2021-08-09T06:52:17
393,140,344
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
from django.urls import path from . import views app_name = 'eshop_accounts' urlpatterns = [ path('login/', views.user_login, name='login'), ]
[ "zahrafarrokhi2017@gmail.com" ]
zahrafarrokhi2017@gmail.com
a892ef66293e61892f089fdb096b5545ddbb5d4a
633acc13e138832b0e5e65e91d5c92f2c5cef273
/zhihu/pipelines.py
b665512b1c4d27c1580bb8e9e61e6462f447a204
[]
no_license
xwj-scarf/zhihuSpider_v1.0
9a6325b5c610ea9a6b4011554e0640247c9601d3
9cf0d5ed677dba3b01794ca8827c26123279410a
refs/heads/master
2021-01-23T16:30:09.971180
2017-06-04T08:27:05
2017-06-04T08:27:05
93,299,929
0
0
null
null
null
null
UTF-8
Python
false
false
899
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo class MongoPipeline(object): def __init__(self,mongo_url,mongo_db): self.mongo_url=mongo_url self.mongo_db=mongo_db @classmethod def from_crawler(cls,crawler): return cls( mongo_url=crawler.settings.get('MONGO_URL'), mongo_db=crawler.settings.get('MONGO_DATABASE','items') ) def open_spider(self,spider): self.client=pymongo.MongoClient(self.mongo_url) self.db = self.client[self.mongo_db] def close_spider(self,spider): self.client.close() def process_item(self, item, spider): self.db['user'].update({'url_token':item['url_token']},{'$set':item},True) return item
[ "xwj_scarf@163.com" ]
xwj_scarf@163.com
23f9781ac175c426b2b801b257618ed97b8661f7
a437d23c87b0b4be0db8be378a09b56cf138d1ff
/gallery/settings.py
c385f8e6ecb3737e00d29f9ed47868695ef381cb
[]
no_license
dsipakou/django_gallery
7647462f462745eb4e934fc9759e18489c4e9448
15d242148b653324e79efac2e773f0b9f46a7de2
refs/heads/master
2021-06-23T17:33:27.043687
2017-08-31T15:54:13
2017-08-31T15:54:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,340
py
""" Django settings for gallery project. Generated by 'django-admin startproject' using Django 1.10.2. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '@aw3()cl_+aogg7$mq*(96!*pz0nmhdu@5tk&2k)imtg689s%%' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app', 'rest_framework', 'corsheaders' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'corsheaders.middleware.CorsMiddleware', ] ROOT_URLCONF = 'gallery.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'gallery.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'flyermc', 'USER': 'root', 'PASSWORD': 'password', } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] CORS_ORIGIN_WHITELIST = ( 'localhost:3000', ) # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/'
[ "denis.sipakov@pandadoc.com" ]
denis.sipakov@pandadoc.com
3d1c874248f328ff324676aff6d647db8ba2e075
79bd668684d8ed38927e20cc46bd1c461dce436d
/blog/views.py
ae4e641314b9deea2feabd12664b8b3be932847d
[]
no_license
BagirThohir/Tugas-2
a0f6890fd0f6def2c5eff8c2125cdec6ababb0fe
1fec92d497cee820e024db42bf8ed72788bc7871
refs/heads/master
2023-03-28T07:47:01.740862
2021-03-26T12:24:01
2021-03-26T12:24:01
351,765,772
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
from django.shortcuts import render from .models import Artikel def index(request): context = { 'articles' : Artikel.objects.all().order_by('-created_date') } return render(request, 'blog/index.html', context) def details(request, article_id): context = { 'article' : Artikel.objects.get(id = article_id) } return render(request, 'blog/details.html', context) def about(request): return render(request, 'blog/about.html')
[ "muhamadbagir99@gmail.com" ]
muhamadbagir99@gmail.com
c118e85ded20e430fa7da66fad7017d4f57958c3
da056df6c920d35de8aebb33985a8fdcce3bd29d
/q0797.py
8977c3170b981c176292e36451e3c48017d81605
[]
no_license
iEuler/leetcode_learn
d27e30d9de29e2396da8448c30d6ce82680de1bf
91a170aa1e6712a1d120c1646db048a97c583049
refs/heads/master
2021-03-28T12:20:56.406970
2020-10-19T12:14:26
2020-10-19T12:14:26
247,863,009
0
0
null
null
null
null
UTF-8
Python
false
false
1,481
py
""" 797. All Paths From Source to Target Medium https://leetcode.com/problems/all-paths-from-source-to-target/ Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1, and return them in any order. The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]). Example 1: Input: graph = [[1,2],[3],[3],[]] Output: [[0,1,3],[0,2,3]] Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3. Example 2: Input: graph = [[4,3,1],[3,2,4],[3],[4],[]] Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]] Example 3: Input: graph = [[1],[]] Output: [[0,1]] Example 4: Input: graph = [[1,2,3],[2],[3],[]] Output: [[0,1,2,3],[0,2,3],[0,3]] Example 5: Input: graph = [[1,3],[2],[3],[]] Output: [[0,1,2,3],[0,3]] Constraints: n == graph.length 2 <= n <= 15 0 <= graph[i][j] < n graph[i][j] != i (i.e., there will be no self-loops). The input graph is guaranteed to be a DAG. """ from typing import List class Solution: def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]: n = len(graph) ans = [] path = [0] def dfs(i): if i == n - 1: ans.append(path[:]) return for j in graph[i]: path.append(j) dfs(j) path.pop() dfs(0) return ans
[ "48609238+iEuler@users.noreply.github.com" ]
48609238+iEuler@users.noreply.github.com
c0b823399038ecc6f70a653d7263714212019101
579250ce2d68382393394d59e8b930718c23870f
/lesson6/67_commandline.py
f7fcd57f4b545562525fa5e95734d10f19484c1b
[]
no_license
Kazzuki/study_python
3fb2a2e387e3dc22dd4b0bf31dcad2d6d940e8d7
e0f78efc9b22866bb4b2398071ff2c403ed2feb0
refs/heads/master
2023-02-26T23:42:57.003100
2021-02-12T12:21:54
2021-02-12T12:21:54
264,119,745
0
0
null
null
null
null
UTF-8
Python
false
false
1,419
py
# コマンドラインの引数が利用できる! """ import sys print(sys.argv) for w in sys.argv: print(w) """ #moduleの話 """ ・関数を読み込むんでなくて、moduleを経由して読み込むこと!(コンフリクトや関数の特定に困る) ・フルパスで読み込みなさい!っていうルールを持つ会社もある ・asをつかってしまうと、どんなモジュールかわからなくなる可能性もある! """ #その①_フルパスで書いてあげる(サードパーティや他のチームが開発したものでも区別がつく!) """ # pakage.moduleの関係(酒井先生はこう読んでいる) import lesson_package.tool.utils r = lesson_package.tool.utils.say_twice('kazuki') print(r) """ #その②_module.メソッドで書いてあげる """ from lesson_package.tool import utils r = utils.say_twice('kazuki') print(r) """ #その③_asで書いてあげる(モジュール名がメチャクチャなときには有効) """ from lesson_package.tool import utils as hoge r = hoge.say_twice('kazuki') print(r) """ from lesson_package.talk import human from lesson_package.talk import animal # *を使ったimportもできるが避けるようにしたほうが良い! # __init__.pyの__all__を始めに読み込む # from lesson_package.talk import * print(human.cry()) print(human.sing()) print(animal.cry()) print(animal.sing())
[ "madakazuki@icloud.com" ]
madakazuki@icloud.com
6cf72e66f2d69c945cf6c8dd2011b157d8cf60a4
b99e2869af7a70d4d847c6efafe8b599db27ab0a
/vDjBook/Scripts/pildriver.py
29eebc94ac25dff1835cab607fbc1f7c35983cde
[]
no_license
Covee/site_practice1_Django
a24fcf9f0122a93132ccc5d2ab3cad19e2988f77
3f824222b4f53ba4a5fc5f3484f0825aa8bc7903
refs/heads/master
2022-12-26T09:39:16.649844
2017-09-26T10:19:40
2017-09-26T10:19:40
104,064,752
0
1
null
2022-12-10T11:28:50
2017-09-19T11:12:22
Python
UTF-8
Python
false
false
15,541
py
#!c:\python~2\blog_p~1\vdjbook\scripts\python.exe """PILdriver, an image-processing calculator using PIL. An instance of class PILDriver is essentially a software stack machine (Polish-notation interpreter) for sequencing PIL image transformations. The state of the instance is the interpreter stack. The only method one will normally invoke after initialization is the `execute' method. This takes an argument list of tokens, pushes them onto the instance's stack, and then tries to clear the stack by successive evaluation of PILdriver operators. Any part of the stack not cleaned off persists and is part of the evaluation context for the next call of the execute method. PILDriver doesn't catch any exceptions, on the theory that these are actually diagnostic information that should be interpreted by the calling code. When called as a script, the command-line arguments are passed to a PILDriver instance. If there are no command-line arguments, the module runs an interactive interpreter, each line of which is split into space-separated tokens and passed to the execute method. In the method descriptions below, a first line beginning with the string `usage:' means this method can be invoked with the token that follows it. Following <>-enclosed arguments describe how the method interprets the entries on the stack. Each argument specification begins with a type specification: either `int', `float', `string', or `image'. All operations consume their arguments off the stack (use `dup' to keep copies around). Use `verbose 1' to see the stack state displayed before each operation. Usage examples: `show crop 0 0 200 300 open test.png' loads test.png, crops out a portion of its upper-left-hand corner and displays the cropped portion. `save rotated.png rotate 30 open test.tiff' loads test.tiff, rotates it 30 degrees, and saves the result as rotated.png (in PNG format). """ # by Eric S. Raymond <esr@thyrsus.com> # $Id$ # TO DO: # 1. Add PILFont capabilities, once that's documented. # 2. Add PILDraw operations. # 3. Add support for composing and decomposing multiple-image files. # from __future__ import print_function from PIL import Image class PILDriver(object): verbose = 0 def do_verbose(self): """usage: verbose <int:num> Set verbosity flag from top of stack. """ self.verbose = int(self.do_pop()) # The evaluation stack (internal only) stack = [] # Stack of pending operations def push(self, item): "Push an argument onto the evaluation stack." self.stack.insert(0, item) def top(self): "Return the top-of-stack element." return self.stack[0] # Stack manipulation (callable) def do_clear(self): """usage: clear Clear the stack. """ self.stack = [] def do_pop(self): """usage: pop Discard the top element on the stack. """ return self.stack.pop(0) def do_dup(self): """usage: dup Duplicate the top-of-stack item. """ if hasattr(self, 'format'): # If it's an image, do a real copy dup = self.stack[0].copy() else: dup = self.stack[0] self.push(dup) def do_swap(self): """usage: swap Swap the top-of-stack item with the next one down. """ self.stack = [self.stack[1], self.stack[0]] + self.stack[2:] # Image module functions (callable) def do_new(self): """usage: new <int:xsize> <int:ysize> <int:color>: Create and push a greyscale image of given size and color. """ xsize = int(self.do_pop()) ysize = int(self.do_pop()) color = int(self.do_pop()) self.push(Image.new("L", (xsize, ysize), color)) def do_open(self): """usage: open <string:filename> Open the indicated image, read it, push the image on the stack. """ self.push(Image.open(self.do_pop())) def do_blend(self): """usage: blend <image:pic1> <image:pic2> <float:alpha> Replace two images and an alpha with the blended image. """ image1 = self.do_pop() image2 = self.do_pop() alpha = float(self.do_pop()) self.push(Image.blend(image1, image2, alpha)) def do_composite(self): """usage: composite <image:pic1> <image:pic2> <image:mask> Replace two images and a mask with their composite. """ image1 = self.do_pop() image2 = self.do_pop() mask = self.do_pop() self.push(Image.composite(image1, image2, mask)) def do_merge(self): """usage: merge <string:mode> <image:pic1> [<image:pic2> [<image:pic3> [<image:pic4>]]] Merge top-of stack images in a way described by the mode. """ mode = self.do_pop() bandlist = [] for band in mode: bandlist.append(self.do_pop()) self.push(Image.merge(mode, bandlist)) # Image class methods def do_convert(self): """usage: convert <string:mode> <image:pic1> Convert the top image to the given mode. """ mode = self.do_pop() image = self.do_pop() self.push(image.convert(mode)) def do_copy(self): """usage: copy <image:pic1> Make and push a true copy of the top image. """ self.dup() def do_crop(self): """usage: crop <int:left> <int:upper> <int:right> <int:lower> <image:pic1> Crop and push a rectangular region from the current image. """ left = int(self.do_pop()) upper = int(self.do_pop()) right = int(self.do_pop()) lower = int(self.do_pop()) image = self.do_pop() self.push(image.crop((left, upper, right, lower))) def do_draft(self): """usage: draft <string:mode> <int:xsize> <int:ysize> Configure the loader for a given mode and size. """ mode = self.do_pop() xsize = int(self.do_pop()) ysize = int(self.do_pop()) self.push(self.draft(mode, (xsize, ysize))) def do_filter(self): """usage: filter <string:filtername> <image:pic1> Process the top image with the given filter. """ from PIL import ImageFilter imageFilter = getattr(ImageFilter, self.do_pop().upper()) image = self.do_pop() self.push(image.filter(imageFilter)) def do_getbbox(self): """usage: getbbox Push left, upper, right, and lower pixel coordinates of the top image. """ bounding_box = self.do_pop().getbbox() self.push(bounding_box[3]) self.push(bounding_box[2]) self.push(bounding_box[1]) self.push(bounding_box[0]) def do_getextrema(self): """usage: extrema Push minimum and maximum pixel values of the top image. """ extrema = self.do_pop().extrema() self.push(extrema[1]) self.push(extrema[0]) def do_offset(self): """usage: offset <int:xoffset> <int:yoffset> <image:pic1> Offset the pixels in the top image. """ xoff = int(self.do_pop()) yoff = int(self.do_pop()) image = self.do_pop() self.push(image.offset(xoff, yoff)) def do_paste(self): """usage: paste <image:figure> <int:xoffset> <int:yoffset> <image:ground> Paste figure image into ground with upper left at given offsets. """ figure = self.do_pop() xoff = int(self.do_pop()) yoff = int(self.do_pop()) ground = self.do_pop() if figure.mode == "RGBA": ground.paste(figure, (xoff, yoff), figure) else: ground.paste(figure, (xoff, yoff)) self.push(ground) def do_resize(self): """usage: resize <int:xsize> <int:ysize> <image:pic1> Resize the top image. """ ysize = int(self.do_pop()) xsize = int(self.do_pop()) image = self.do_pop() self.push(image.resize((xsize, ysize))) def do_rotate(self): """usage: rotate <int:angle> <image:pic1> Rotate image through a given angle """ angle = int(self.do_pop()) image = self.do_pop() self.push(image.rotate(angle)) def do_save(self): """usage: save <string:filename> <image:pic1> Save image with default options. """ filename = self.do_pop() image = self.do_pop() image.save(filename) def do_save2(self): """usage: save2 <string:filename> <string:options> <image:pic1> Save image with specified options. """ filename = self.do_pop() options = self.do_pop() image = self.do_pop() image.save(filename, None, options) def do_show(self): """usage: show <image:pic1> Display and pop the top image. """ self.do_pop().show() def do_thumbnail(self): """usage: thumbnail <int:xsize> <int:ysize> <image:pic1> Modify the top image in the stack to contain a thumbnail of itself. """ ysize = int(self.do_pop()) xsize = int(self.do_pop()) self.top().thumbnail((xsize, ysize)) def do_transpose(self): """usage: transpose <string:operator> <image:pic1> Transpose the top image. """ transpose = self.do_pop().upper() image = self.do_pop() self.push(image.transpose(transpose)) # Image attributes def do_format(self): """usage: format <image:pic1> Push the format of the top image onto the stack. """ self.push(self.do_pop().format) def do_mode(self): """usage: mode <image:pic1> Push the mode of the top image onto the stack. """ self.push(self.do_pop().mode) def do_size(self): """usage: size <image:pic1> Push the image size on the stack as (y, x). """ size = self.do_pop().size self.push(size[0]) self.push(size[1]) # ImageChops operations def do_invert(self): """usage: invert <image:pic1> Invert the top image. """ from PIL import ImageChops self.push(ImageChops.invert(self.do_pop())) def do_lighter(self): """usage: lighter <image:pic1> <image:pic2> Pop the two top images, push an image of the lighter pixels of both. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() self.push(ImageChops.lighter(image1, image2)) def do_darker(self): """usage: darker <image:pic1> <image:pic2> Pop the two top images, push an image of the darker pixels of both. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() self.push(ImageChops.darker(image1, image2)) def do_difference(self): """usage: difference <image:pic1> <image:pic2> Pop the two top images, push the difference image """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() self.push(ImageChops.difference(image1, image2)) def do_multiply(self): """usage: multiply <image:pic1> <image:pic2> Pop the two top images, push the multiplication image. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() self.push(ImageChops.multiply(image1, image2)) def do_screen(self): """usage: screen <image:pic1> <image:pic2> Pop the two top images, superimpose their inverted versions. """ from PIL import ImageChops image2 = self.do_pop() image1 = self.do_pop() self.push(ImageChops.screen(image1, image2)) def do_add(self): """usage: add <image:pic1> <image:pic2> <int:offset> <float:scale> Pop the two top images, produce the scaled sum with offset. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() scale = float(self.do_pop()) offset = int(self.do_pop()) self.push(ImageChops.add(image1, image2, scale, offset)) def do_subtract(self): """usage: subtract <image:pic1> <image:pic2> <int:offset> <float:scale> Pop the two top images, produce the scaled difference with offset. """ from PIL import ImageChops image1 = self.do_pop() image2 = self.do_pop() scale = float(self.do_pop()) offset = int(self.do_pop()) self.push(ImageChops.subtract(image1, image2, scale, offset)) # ImageEnhance classes def do_color(self): """usage: color <image:pic1> Enhance color in the top image. """ from PIL import ImageEnhance factor = float(self.do_pop()) image = self.do_pop() enhancer = ImageEnhance.Color(image) self.push(enhancer.enhance(factor)) def do_contrast(self): """usage: contrast <image:pic1> Enhance contrast in the top image. """ from PIL import ImageEnhance factor = float(self.do_pop()) image = self.do_pop() enhancer = ImageEnhance.Contrast(image) self.push(enhancer.enhance(factor)) def do_brightness(self): """usage: brightness <image:pic1> Enhance brightness in the top image. """ from PIL import ImageEnhance factor = float(self.do_pop()) image = self.do_pop() enhancer = ImageEnhance.Brightness(image) self.push(enhancer.enhance(factor)) def do_sharpness(self): """usage: sharpness <image:pic1> Enhance sharpness in the top image. """ from PIL import ImageEnhance factor = float(self.do_pop()) image = self.do_pop() enhancer = ImageEnhance.Sharpness(image) self.push(enhancer.enhance(factor)) # The interpreter loop def execute(self, list): "Interpret a list of PILDriver commands." list.reverse() while len(list) > 0: self.push(list[0]) list = list[1:] if self.verbose: print("Stack: " + repr(self.stack)) top = self.top() if not isinstance(top, str): continue funcname = "do_" + top if not hasattr(self, funcname): continue else: self.do_pop() func = getattr(self, funcname) func() if __name__ == '__main__': import sys # If we see command-line arguments, interpret them as a stack state # and execute. Otherwise go interactive. driver = PILDriver() if len(sys.argv[1:]) > 0: driver.execute(sys.argv[1:]) else: print("PILDriver says hello.") while True: try: if sys.version_info[0] >= 3: line = input('pildriver> ') else: line = raw_input('pildriver> ') except EOFError: print("\nPILDriver says goodbye.") break driver.execute(line.split()) print(driver.stack) # The following sets edit modes for GNU EMACS # Local Variables: # mode:python # End:
[ "unittop91@gamil.com" ]
unittop91@gamil.com
bc643726dc086d01106b5695c1317266b5900390
f269b417034e397139adf2802514165b0eb26f7c
/Python/food_choice_assay/food_choice.py
cea19764b5e3f648af452c4bde1d79a5a3d5567d
[]
no_license
saulmoore1/PhD_Project
2d333f7fdbd8b2b1932007e7cc6e05b3108ed325
a235bf8700e4b5a311fc1dfd79c474c5467e9c7a
refs/heads/master
2023-08-03T17:51:17.262188
2023-07-26T12:35:37
2023-07-26T12:35:37
158,314,469
1
2
null
null
null
null
UTF-8
Python
false
false
27,255
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ SCRIPT: FOOD CHOICE A script written to analyse the food choice assay videos and Tierpsy-generated feature summary data. It calculates, plots and saves results for worm food preference (for each video separately). @author: sm5911 @date: 21/03/2019 """ #%% Imports import os, time import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import patches as mpatches # Custom imports from time_series.time_series_helper import plot_timeseries_phenix from visualisation.plotting_helper import hexcolours, plot_pie from food_choice_assay.food_choice_helper import foodchoice, summarystats from _deprecated.find import change_path_phenix #%% Globals PROJECT_ROOT_DIR = '/Volumes/behavgenom$/Saul/FoodChoiceAssay/' # Project working directory DATA_DIR = PROJECT_ROOT_DIR.replace('Saul', 'Priota/Data') # Location of features files # Plot parameters fps = 25 # frames per second smooth_window = fps*60*2 # 2-minute moving average window for time-series plot smoothing OpticalDensity600 = 1.8 # E. coli average OD600 NEW = True # Conduct analysis on new videos only? #%% Preamble # Read metadata fullMetaData = pd.read_csv(os.path.join(PROJECT_ROOT_DIR, "fullmetadata.csv"), header=0, index_col=0) if NEW: fullMetaData = fullMetaData[fullMetaData['worm number']==10] n_files = len(fullMetaData['filename']) if NEW: print("%d NEW video file entries found in metadata." % n_files) else: print("%d video file entries found in metadata." % n_files) # Extract assay information pretreatments = list(np.unique(fullMetaData['Prefed_on'])) assaychoices = list(np.unique(fullMetaData['Food_Combination'])) treatments = list(np.unique([assay.split('/') for assay in assaychoices])) treatments.insert(len(treatments),"None") # treatments = [OP50, HB101, None] concentrations = list(np.unique(fullMetaData['Food_Conc'])) # Plot parameters colours = hexcolours(len(treatments)) # Create a dictionary of colours for each treatment (for plotting) colour_dict = {key: value for (key, value) in zip(treatments, colours)} #%% CALCULATE MEAN NUMBER OF WORMS ON/OFF FOOD IN EACH FRAME (FOR EACH VIDEO SEPARATELY) # - PROPORTION of total worms in each frame errorlog = 'ErrorLog_FoodChoice.txt' FAIL = [] tic = time.time() for i, maskedfilepath in enumerate(fullMetaData['filename']): toc = time.time() # Extract file information file_info = fullMetaData.iloc[i,:] date = file_info['date(YEARMODA)'] conc = file_info['Food_Conc'] assaychoice = file_info['Food_Combination'] prefed = file_info['Prefed_on'] print("\nProcessing file: %d/%d\n%s\nAssay: %s\nConc: %.3f\nPrefed: %s" % (i + 1,\ len(fullMetaData['filename']), maskedfilepath, assaychoice, conc, prefed)) try: # Specify file paths onfoodpath = change_path_phenix(maskedfilepath, returnpath='onfood') foodchoicepath = change_path_phenix(maskedfilepath, returnpath='foodchoice') # Read on/off food results onfood_df = pd.read_csv(onfoodpath, header=0, index_col=0) # Calculate mean + count number of worms on/off food in each frame # NB: Store proportions, along with total nworms, ie. mean (worms per frame) and later calculate mean (per frame across videos) choice_df = foodchoice(onfood_df, mean=True, tellme=True) # Save food choice results directory = os.path.dirname(foodchoicepath) if not os.path.exists(directory): os.makedirs(directory) choice_df.to_csv(foodchoicepath) print("Food choice results saved. \n(Time taken: %d seconds)\n" % (time.time() - toc)) except: FAIL.append(maskedfilepath) print("ERROR! Failed to calculate food preference in file:\n %s\n" % maskedfilepath) print("Complete!\n(Total time taken: %d seconds.)\n" % (time.time() - tic)) # If errors, save error log to file if FAIL: fid = open(os.path.join(PROJECT_ROOT_DIR, errorlog), 'w') print(FAIL, file=fid) fid.close() #%% FOOD CHOICE SUMMARY STATS + PIE/BOX PLOTS (FOR EACH VIDEO SEPARATELY) # - Calculate summary statistics for mean proportion worms feeding in each video # - Plot and save box plots + pie charts of mean proportion of worms on food # ============================================================================= # # NB: Cannot pre-allocate full results dataframe to store food choice mean # # proportion feeding per frame across all videos due to file size = 23GB # colnames = ['filename','worm_number','Food_Conc','Food_Combination','Prefed_on',\ # 'Acclim_time_s','frame_number','Food','Mean'] # results_df = pd.DataFrame(columns=colnames) # ============================================================================= tic = time.time() for i, maskedfilepath in enumerate(fullMetaData['filename']): # Extract file information file_info = fullMetaData.iloc[i,:] date = file_info['date(YEARMODA)'] conc = file_info['Food_Conc'] assaychoice = file_info['Food_Combination'] prefed = file_info['Prefed_on'] print("\nProcessing file: %d/%d\n%s\nAssay: %s\nConc: %.3f\nPrefed: %s" % (i + 1,\ len(fullMetaData['filename']), maskedfilepath, assaychoice, conc, prefed)) # Specify file paths foodchoicepath = change_path_phenix(maskedfilepath, returnpath='foodchoice') statspath = change_path_phenix(maskedfilepath, returnpath='summary') pieplotpath = change_path_phenix(maskedfilepath, returnpath='plots', figname='PiePlot.eps') boxplotpath = change_path_phenix(maskedfilepath, returnpath='plots', figname='BoxPlot.eps') try: # READ FOOD CHOICE RESULTS (csv) choice_df = pd.read_csv(foodchoicepath, header=0, index_col=0) # SUMMARY STATISTICS feeding_stats = summarystats(choice_df) # Save summary stats feeding_stats.to_csv(statspath) # Save to CSV # Define plot labels + colours colnames = list(choice_df.columns) labels = [lab.split('_')[0] for lab in colnames] colours = [colour_dict[treatment] for treatment in labels] # Specify seaborn colour palette RGBAcolours = sns.color_palette(colours) palette = {key: val for key, val in zip(colnames, RGBAcolours)} # sns.palplot(sns.color_palette(values)) # PIE CHARTS - mean proportion on food df_pie = feeding_stats.loc['mean'] df_pie.index = df_pie.index.get_level_values(0) df_pie = df_pie.loc[df_pie!=0] # Remove any empty rows plt.close("all") fig = plot_pie(df_pie, rm_empty=False, show=True, labels=df_pie.index,\ colors=colours, textprops={'fontsize': 15}, startangle=90,\ wedgeprops={'edgecolor': 'k', 'linewidth': 1,\ 'linestyle': 'solid', 'antialiased': True}) # Save pie charts directory = os.path.dirname(pieplotpath) if not os.path.exists(directory): os.makedirs(directory) plt.tight_layout() plt.savefig(pieplotpath, dpi=300) # Convert to long format choice_df['frame_number'] = choice_df.index choice_df_long = choice_df.melt(id_vars='frame_number', value_vars=choice_df.columns[:-1],\ var_name='Food', value_name='Mean') # BOX PLOTS (Seaborn) - Mean proportion of worms on each food plt.close("all") fig, ax = plt.subplots(figsize=(9,7)) ax = sns.boxplot(x='Food', y='Mean', hue='Food', data=choice_df_long, palette=palette, dodge=False) # NB: Could also produce violinplots, but why not swarmplots? Too many points? # ax = sns.violinplot(x='Food', y='Mean', hue='Food', data=choice_df_long, palette=palette, dodge=False) ax.set_ylim(-0.1,1.1) ax.set_xlim(-1,len(treatments)+0.25) ax.set_xlabel("Food",fontsize=20) ax.set_ylabel("Mean Proportion Feeding",fontsize=20) ax.xaxis.labelpad = 15; ax.yaxis.labelpad = 15 ax.tick_params(labelsize=13, pad=5) fig.tight_layout(rect=[0.02, 0.07, 0.95, 0.95]) plt.text(0.03, 0.93, "{0} worms".format(file_info['worm number']), transform=ax.transAxes, fontsize=20) plt.text(len(treatments)+0.25, -0.35, "Prefed on: {0}".format(prefed),\ horizontalalignment='right', fontsize=25) plt.legend(loc="upper right", borderaxespad=0.4, frameon=False, fontsize=15) plt.show(); plt.pause(0.0001) # Save box plots plt.tight_layout() plt.savefig(boxplotpath, format='eps', dpi=300) print("Plots saved.\n") # ============================================================================= # # Append file info # choice_df_long['filename'] = maskedfilepath # choice_df_long['worm_number'] = file_info['worm number'] # choice_df_long['Food_Conc'] = conc # choice_df_long['Food_Combination'] = assaychoice # choice_df_long['Prefed_on'] = prefed # choice_df_long['Acclim_time_s'] = file_info['Acclim_time_s'] # # # Append to full results dataframe # results_df = results_df.append(choice_df_long[colnames]) # ============================================================================= except: print("Error processing file:\n%s" % maskedfilepath) continue print("Done.\n(Time taken: %d seconds.)" % (time.time() - tic)) # ============================================================================= # size = sys.getsizeof(results_df) # # File size is too big! Not a good idea to save as full results file # ============================================================================= #%% Time-series plots of proportion feeding through time (FOR EACH VIDEO SEPARATELY) tic = time.time() for i, maskedfilepath in enumerate(fullMetaData['filename']): toc = time.time() # Extract file information file_info = fullMetaData.iloc[i,:] conc = file_info['Food_Conc'] assaychoice = file_info['Food_Combination'] prefed = file_info['Prefed_on'] print("\nProcessing file: %d/%d\n%s\nAssay: %s\nConc: %.3f\nPrefed: %s" % (i + 1,\ len(fullMetaData['filename']), maskedfilepath, assaychoice, conc, prefed)) # Specify file paths onfoodpath = change_path_phenix(maskedfilepath, returnpath='onfood') foodchoicepath = change_path_phenix(maskedfilepath, returnpath='foodchoice') plotpath = change_path_phenix(maskedfilepath, returnpath='plots', figname='FoodChoiceTS.png') # Path to save time series plots onfood_df = pd.read_csv(onfoodpath, header=0, index_col=0) # READ FOOD CHOICE RESULTS # df = pd.read_csv(foodchoicepath, header=0, index_col=0) df = foodchoice(onfood_df, mean=True, std=True, tellme=True) # Shift plot to include acclimation time prior to assay recording (ie. t(0) = pick time) acclim = int(file_info['Acclim_time_s'] * fps) df.index = df.index + acclim # Caclculate mean + standard deviation per frame across videos colnames = list(df.columns.levels[0]) # Remove erroneous frames where on/off food does not sum to 1 frames_to_rm = np.where(np.sum([df[x]['mean'] for x in colnames], axis=0).round(decimals=5)!=1)[0] assert frames_to_rm.size == 0,\ "{:d} frames found in which feeding proportions do not sum to 1.".format(len(frames_to_rm)) # PLOT TIME-SERIES ON/OFF FOOD (count) plt.close("all") fig = plot_timeseries_phenix(df=df, colour_dict=colour_dict, window=smooth_window,\ acclimtime=acclim, annotate=True, legend=True, ls='-') # SAVE TIME SERIES PLOTS directory = os.path.dirname(plotpath) if not os.path.exists(directory): os.makedirs(directory) plt.tight_layout() plt.savefig(plotpath, format='png', dpi=300) print("Time series plots saved.\n(Time taken: %d seconds.)\n" % (time.time() - toc)) print("Complete!\n(Total time taken: %d seconds.)\n" % (time.time() - tic)) #%% FIGURE 1 - Box plots of food choice (Grouped by treatment combination: prefed on (HB101/OP50), food combination (control/choice), and concentration (0.125,0.25,0.5,1)) # - Subset results by grouping files by assay type (control/choice experiment) and by food concentration tic = time.time() # Group files in metadata by prefed, assaychoice and concentration treatment combinations groupedMetaData = fullMetaData.groupby(['Prefed_on','Food_Combination','Food_Conc']) # For each prefood-assaychoice-concentration treatment combination for p, prefood in enumerate(pretreatments): # Initialise plot for prefed group (12 subplots - 3 food combinations, 4 concentrations) plt.close("all") fig, axs = plt.subplots(nrows=len(assaychoices), ncols=len(concentrations),\ figsize=(14,10), sharey=True) for a, assay in enumerate(assaychoices): for c, conc in enumerate(concentrations): try: # Get prefood-assaychoice-concentration group df_conc = groupedMetaData.get_group((prefood,assay,conc)) # Get group info info = df_conc.iloc[0,:] colnames = info['Food_Combination'].split('/') if colnames[0] == colnames[1]: colnames = ["{}_{}".format(food, f + 1) for f, food in enumerate(colnames)] colnames.insert(len(colnames), "None") # Pre-allocate dataframe for boxplots df = pd.DataFrame(index=range(df_conc.shape[0]), columns=colnames) # If single file, read full food choice data (mean proportion feeding) if df_conc.shape[0] == 1: foodchoicepath = change_path_phenix(info['filename'], returnpath='foodchoice') df = pd.read_csv(foodchoicepath, header=0, index_col=0) # Read summary stats for mean proportion feeding in each video elif df_conc.shape[0] > 1: for i in range(df_conc.shape[0]): info = df_conc.iloc[i] # Read in food choice summary stats (mean proportion feeding) statspath = change_path_phenix(info['filename'], returnpath='summary') df.iloc[i] = pd.read_csv(statspath, header=0, index_col=0).loc['mean'] # ============================================================================= # # Read food choice data for each file and compile into df for plotting # df = pd.DataFrame() # for row in range(df_conc.shape[0]): # info = df_conc.iloc[row,:] # foodchoicepath = changepath(info['filename'], returnpath='foodchoice') # tmp_df = pd.read_csv(foodchoicepath, header=0, index_col=0) # if df.empty: # df = tmp_df # else: # df = df.append(tmp_df, sort=True) # ============================================================================= # Plot labels/colours labels = [lab.split('_')[0] for lab in colnames] colours = [colour_dict[treatment] for treatment in labels] # Seaborn colour palette RGBAcolours = sns.color_palette(colours) palette = {key: val for key, val in zip(colnames, RGBAcolours)} # sns.palplot(sns.color_palette(values)) # Convert to long format df['videoID'] = df.index df_long = df.melt(id_vars='videoID', value_vars=df.columns[:-1],\ var_name='Food', value_name='Mean') df_long['Mean'] = df_long['Mean'].astype(float) # ============================================================================= # # Convert to long format # df['frame_number'] = df.index # df_long = df.melt(id_vars='frame_number', value_vars=df.columns[:-1],\ # var_name='Food', value_name='Mean') # ============================================================================= # Plot Seaborn boxplots sns.boxplot(data=df_long, x='Food', y='Mean', hue='Food', ax=axs[a,c], palette=palette, dodge=False) axs[a,c].get_legend().set_visible(False) axs[a,c].set_ylabel('') axs[a,c].set_xlabel('') xlabs = axs[a,c].get_xticklabels() xlabs = [lab.get_text().split('_')[0] for lab in xlabs[:]] axs[a,c].set_xticklabels(labels=xlabs, fontsize=12) axs[a,c].set_ylim(-0.05, 1.05) axs[a,c].set_xlim(-0.75,len(np.unique(df_long['Food']))-0.25) axs[a,c].text(0.81, 0.9, ("n={0}".format(df_conc.shape[0])),\ transform=axs[a,c].transAxes, fontsize=12) if a == 0: axs[a,c].text(0.5, 1.1, "$OD_{{{}}}={}$".format(600, conc*OpticalDensity600),\ horizontalalignment='center', fontsize=18,\ transform=axs[a,c].transAxes) if c == 0: axs[a,c].set_ylabel("{0}".format(assay), labelpad=15, fontsize=18) if a == 1: axs[a,c].text(-2.75, 0.5, "Mean Proportion Feeding",\ fontsize=25, rotation=90, horizontalalignment='center',\ verticalalignment='center') except Exception as e: print("No videos found for concentration: %s\n(Assay: %s, Prefed on: %s)\n" % (e, assay, prefood)) axs[a,c].axis('off') axs[a,c].text(0.81, 0.9, "n=0", fontsize=12, transform=axs[a,c].transAxes) if a == 0: axs[a,c].text(0.5, 1.1, "$OD_{{{}}}={}$".format(600, conc*OpticalDensity600),\ horizontalalignment='center', fontsize=18,\ transform=axs[a,c].transAxes) if c == 0: axs[a,c].set_ylabel("{0}".format(assay), labelpad=15, fontsize=18) if a == 1: axs[a,c].text(-3.2, 0.5, "Mean Proportion Feeding",\ fontsize=25, rotation=90, horizontalalignment='center',\ verticalalignment='center') # plt.text(3, -0.7, "Prefed on: {0}".format(prefood), horizontalalignment='center', fontsize=25) patches = [] for i, (key, value) in enumerate(colour_dict.items()): patch = mpatches.Patch(color=value, label=key) patches.append(patch) fig.legend(handles=patches, labels=list(colour_dict.keys()), loc="upper right", borderaxespad=0.4,\ frameon=False, fontsize=15) fig.tight_layout(rect=[0.07, 0.02, 0.88, 0.95]) fig.subplots_adjust(hspace=0.2, wspace=0.1) plt.show(); plt.pause(2) # Save figure 1 fig_name = "FoodChoiceBox_prefed" + prefood + ".eps" figure_out = os.path.join(PROJECT_ROOT_DIR, "Results", "Plots", fig_name) plt.savefig(figure_out, format='eps', dpi=300) print("Complete!\n(Time taken: %d seconds)" % (time.time() - tic)) #%% FIGURE 2 # - OPTIONAL: Plot as fraction of a constant total? #%% FIGURE 3 - Time series plots of food choice by concentration and by assay type (GROUPED BY ASSAY/CONC) # Plot time series plots - proportion on-food through time tic = time.time() # Group files in metadata by prefed, assaychoice and concentration treatment combinations groupedMetaData = fullMetaData.groupby(['Prefed_on','Food_Combination','Food_Conc']) # For each prefood-assaychoice-concentration treatment combination for p, prefood in enumerate(pretreatments): # Initialise plot for prefed group plt.close("all") xmax = 180000 fig, axs = plt.subplots(nrows=len(assaychoices), ncols=len(concentrations),\ figsize=(16,7), sharex=True) # 12 subplots (3 food combinations, 4 food concentrations) for a, assay in enumerate(assaychoices): for c, conc in enumerate(concentrations): try: # Get prefood-assaychoice-concentration group df_conc = groupedMetaData.get_group((prefood,assay,conc)) # Get acclim time info = df_conc.iloc[0,:] acclim = int(info['Acclim_time_s'] * fps) # If single file, read food choice data (mean proportion feeding) if df_conc.shape[0] == 1: foodchoicepath = change_path_phenix(info['filename'], returnpath='foodchoice') df = pd.read_csv(foodchoicepath, header=0, index_col=0) # Shift df indices to account for acclimation (t0 = pick time) acclim = int(info['Acclim_time_s'] * fps) df.index = df.index + acclim # If multiple files, read food choice data for each file and compile into df for plotting elif df_conc.shape[0] > 1: df = pd.DataFrame() for row in range(df_conc.shape[0]): info = df_conc.iloc[row,:] foodchoicepath = change_path_phenix(info['filename'], returnpath='foodchoice') tmp_df = pd.read_csv(foodchoicepath, header=0, index_col=0) # Shift df indices to account for acclimation (t0 = pick time) acclim = int(info['Acclim_time_s'] * fps) tmp_df.index = tmp_df.index + acclim if df.empty: df = tmp_df else: df = df.append(tmp_df, sort=True) # Caclculate mean + standard deviation per frame across videos colnames = list(df.columns) df['frame'] = df.index fundict = {x:['mean','std'] for x in colnames} df_plot = df.groupby('frame').agg(fundict) # Remove erroneous frames where on/off food does not sum to 1 frames_to_rm = np.where(np.sum([df_plot[x]['mean'] for x in colnames], axis=0).round(decimals=5)!=1)[0] assert frames_to_rm.size == 0,\ "{:d} frames found in which feeding proportions do not sum to 1.".format(len(frames_to_rm)) # Time series plots plot_timeseries_phenix(df_plot, colour_dict, window=smooth_window, legend=False, annotate=False, acclimtime=acclim, ax=axs[a,c]) # Add number of replicates (videos) for each treatment combination axs[a,c].text(0.79, 0.9, ("n={0}".format(df_conc.shape[0])),\ transform=axs[a,c].transAxes, fontsize=13) # Set axis limits if max(df_plot.index) > xmax: xmax = max(df_plot.index) axs[a,c].set_xlim(0, np.round(xmax,-5)) axs[a,c].set_ylim(-0.05, 1.05) # Set column labels on first row if a == 0: axs[a,c].text(0.5, 1.15, "$OD_{{{}}}={}$".format(600, conc*OpticalDensity600),\ horizontalalignment='center', fontsize=18,\ transform=axs[a,c].transAxes) # Set main y axis label + ticks along first column of plots if c == 0: yticks = list(np.round(np.linspace(0,1,num=6,endpoint=True),decimals=1)) axs[a,c].set_yticks(yticks) axs[a,c].set_yticklabels(yticks) axs[a,c].set_ylabel("{0}".format(assay), labelpad=15, fontsize=15) if a == 1: axs[a,c].text(-np.round(xmax,-5)/2, 0.5, "Mean Proportion Feeding",\ fontsize=22, rotation=90, horizontalalignment='center',\ verticalalignment='center') else: axs[a,c].set_yticklabels([]) # Set main x axis label + ticks along final row of plots if a == len(assaychoices) - 1: xticklabels = ["0", "30", "60", "90", "120"] xticks = [int(int(lab)*fps*60) for lab in xticklabels] axs[a,c].set_xticks(xticks) axs[a,c].set_xticklabels(xticklabels) if c == 1: axs[a,c].set_xlabel("Time (minutes)", labelpad=25, fontsize=20, horizontalalignment='left') else: axs[a,c].set_xticklabels([]) except Exception as e: # Empty plots print("No videos found for concentration: %s\n(Assay: %s, Prefed on: %s)\n" % (e, assay, prefood)) # Add number of replicates (videos) for each treatment combination axs[a,c].text(0.79, 0.9, "n=0", fontsize=13, transform=axs[a,c].transAxes) # Set column labels on first row if a == 0: axs[a,c].text(0.5, 1.15, ("conc={0}".format(conc)),\ horizontalalignment='center', fontsize=18,\ transform=axs[a,c].transAxes) axs[a,c].axis('off') # Add 'prefed on' to multiplot # plt.text(max(df_plot.index), -0.7, "Prefed on: {0}".format(prefood), horizontalalignment='right', fontsize=30) # Add legend patches = [] for key, value in colour_dict.items(): patch = mpatches.Patch(color=value, label=key) patches.append(patch) fig.legend(handles=patches, labels=treatments, loc="upper right", borderaxespad=0.4,\ frameon=False, fontsize=15) # Tight-layout + adjustments fig.tight_layout(rect=[0.07, 0.02, 0.9, 0.93]) fig.subplots_adjust(hspace=0.1, wspace=0.1) plt.show(); plt.pause(1) # Save figure 3 fig_name = "FoodChoiceTS_prefed" + prefood + ".png" figure_out = os.path.join(PROJECT_ROOT_DIR, "Results", "Plots", fig_name) plt.savefig(figure_out, saveFormat='png', dpi=300) print("Complete!\n(Time taken: %d seconds)" % (time.time() - tic))
[ "saulmoore1@bitbucket.org" ]
saulmoore1@bitbucket.org
3400d334de7ddd40dbc556d74bff6700ddc27be6
f43b592a338700e872a862a3fcf9e45bc3cd8c89
/paramtools/tree.py
d4a8b6f1477def6aed6d6e0766ca36ca262b221b
[ "MIT" ]
permissive
MaxGhenis/ParamTools
14f316cb6c6aef4b3edb4df07489acba9c90d7af
73ccc4eed917ded10b183014e8e08189f13d32a8
refs/heads/master
2022-11-08T10:23:43.321951
2020-06-29T14:05:07
2020-06-29T14:05:07
275,851,495
1
0
null
2020-06-29T15:14:37
2020-06-29T15:14:36
null
UTF-8
Python
false
false
10,574
py
from collections import defaultdict from typing import List from paramtools.exceptions import ParamToolsError from paramtools.typing import ValueObject, CmpFunc class Tree: """ Builds a tree structure for more efficient searching. The structure is: label --> label value --> set of indices corresponding to value object that has a label with this value. """ def __init__(self, vos: List[ValueObject], label_grid: dict): self.vos = vos self.label_grid = dict(label_grid or {}, _auto=[False, True]) self.tree = None self.new_values = None self.needs_build = True def init(self): """ Initializes tree data structure. Trees are lazy and this method should be called before the tree's methods are used. Cases: 1. If needs_build is false, no action is taken and the existing tree is returned. 2. If the tree has not yet been there are no new values, the tree is built from self.vos. 3. If tree has already been initialized and there are new values, the tree is updated with the new values. """ if not self.needs_build: return self.tree if self.new_values and self.tree: ixs = self.new_values search_tree = self.tree else: search_tree = {} ixs = range(len(self.vos)) for ix in ixs: vo = self.vos[ix] for label, label_value in vo.items(): if label == "value": continue if label not in search_tree: search_tree[label] = defaultdict(set) search_tree[label][label_value].add(ix) self.tree = search_tree self.needs_build = False self.new_values = None return self.tree def update(self, tree: "Tree") -> List[ValueObject]: """ Update this tree's value objects with value objects from the other tree. 1. If this tree is empty, but it has value objects, then it does not use any labels. Thus, we replace self.vos with the other tree's value objects. 2. Find all value objects with labels that match the labels in tree.vos. "Search Hits" are the intersection of all indices in current value objects that have the same value for a given label of a value object in the other tree. Value objects in the other tree that do not match value objects in this tree are added to not_matched and appended to self.vos at the end. 2.a. Loop over all labels used by this project. 2.a.i. Both trees use this label. 2.a.i.1. Find all values that are in both trees for the given label and update the search hits set for matches. 2.a.i.2. Find all values that are in the other tree but are not in this tree and add them to not_matched. (VO's in not matched will be added at the end.) 2.a.ii. The label is in this tree but is not in the other tree. We treat all of the values under this label as search hits and add their values to the search hits set. 2.a.iii. The label is not in this tree but is in the new tree. New labels can not be added to a list of value objects and an error is thrown. 2.a.iv. Neither tree has this label; so, ignore it. 2.b. Loop over all indices in search_hits. 2.a. Replace value of matches with the new value. (if value is None, save to delete later.) 2.b. If there are no matches for a given index, append them to not_matched. 3. Drop all indices from to_delete, and append all items in not_matched. 4. If there were no deletions, save the new values to update the tree when it is used again. If there are deletions, do not save the new values because the tree needs to be re-built from the new value objects. Returns: List of updated value objects. Raises: ParamToolsError if a label is specied in the new value objects that is not present in the default value objects. """ new_values = set([]) not_matched = set([]) to_delete = set([]) # Trees are lazy and need to be initialized before use. self.init() tree.init() # self.tree doesn't have labels -> there are no labels to query. if not self.tree and tree.vos: del self.vos[:] not_matched = range(len(tree.vos)) else: # search_hits saves the intersection of all label matches. # The indices in the sets at the end are the search hits. search_hits = {ix: set([]) for ix in range(len(tree.vos))} for label in self.label_grid: if label in ("_auto",): continue if label in tree.tree and label in self.tree: # All label values that exist in both trees. for label_value in ( tree.tree[label].keys() & self.tree[label].keys() ): for new_ix in tree.tree[label][label_value]: if new_ix in search_hits: if search_hits[new_ix]: search_hits[new_ix] &= self.tree[label][ label_value ] else: search_hits[new_ix] |= self.tree[label][ label_value ] # All label values in the new tree that are not in this tree. # Value objects that have a label value that is not included # in the current tree means that they will not be matched. for label_value in ( tree.tree[label].keys() - self.tree[label].keys() ): for new_ix in tree.tree[label][label_value]: search_hits.pop(new_ix) not_matched.add(new_ix) elif label in self.tree: # All value objects with labels not specified in the other # tree are treated as search hits (for this label). unused_label = set.union(*self.tree[label].values()) for new_ix in search_hits: if search_hits[new_ix]: search_hits[new_ix] &= unused_label else: search_hits[new_ix] |= unused_label elif label in tree.tree: raise ParamToolsError( f"Label {label} was not defined in the defaults." ) for ix, search_hit_ixs in search_hits.items(): if search_hit_ixs: if tree.vos[ix]["value"] is not None: for search_hit_ix in search_hit_ixs: self.vos[search_hit_ix]["value"] = tree.vos[ix][ "value" ] else: to_delete |= search_hit_ixs else: not_matched.add(ix) if to_delete: # Iterate in reverse so that indices point to the correct # value. If iterating ascending then the values will be shifted # towards the front of the list as items are removed. for ix in sorted(to_delete, reverse=True): del self.vos[ix] if not_matched: for ix in not_matched: if tree.vos[ix]["value"] is not None: self.vos.append(tree.vos[ix]) new_values.add(len(self.vos) - 1) # It's faster to just re-build from scratch if values are deleted. if to_delete: self.new_values = None self.needs_build = True else: self.new_values = new_values self.needs_build = True return self.vos def select( self, labels: dict, cmp_func: CmpFunc, strict: bool = False ) -> List[ValueObject]: """ Select all value objects from self.vos according to the label query, labels, and the comparison function, cmp_func. strict dictates whether vos missing a label in the query are eligble for inclusion in the select results. 1. Loop over labels from query. 2. Find all value objects that have a value that returns true from the cmp_func (e.g. it is equal to the query value). 3. Take the intersection of all of the successful matches across the different labels to get the final reasult. Returns: List of value objects satisfying the query. """ if not labels: return self.vos search_hits = set([]) self.init() if not self.tree: return self.vos all_ixs = set(range(len(self.vos))) for label, _label_value in labels.items(): if not isinstance(_label_value, list): label_value = (_label_value,) else: label_value = _label_value label_search_hits = set([]) if label in self.tree: for tree_label_value, ixs in self.tree[label].items(): match = cmp_func(tree_label_value, label_value) if match: label_search_hits |= ixs if search_hits: search_hits &= label_search_hits elif not strict or label_search_hits: search_hits |= label_search_hits if not strict: search_hits |= all_ixs - set.union( *self.tree[label].values() ) return [self.vos[ix] for ix in search_hits]
[ "henrymdoupe@gmail.com" ]
henrymdoupe@gmail.com
a5d16596b2c10dda91ff06d79b767fd2d9c2ae72
69f03048347f0746f089ae6755dcf8c4a2c9d108
/manage.py
51c8cf30e0e27192a8bb6bc357f88da59ae5df8d
[]
no_license
allanraafael/django-react
7625c05c9bd6c2a63c88e941c53fc90cedd38cc7
21c2237da01c1e0ff513b29ec7b24ec610f097ed
refs/heads/master
2023-03-24T13:56:25.214065
2021-03-16T01:30:34
2021-03-16T01:30:34
348,175,700
2
0
null
null
null
null
UTF-8
Python
false
false
570
py
#!/usr/bin/env python import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'backend.core.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "allanrafaelfo@gmail.com" ]
allanrafaelfo@gmail.com
7a09d275bc7d4ff865c287dc116481e4ede3ca2d
563d5bdcdb0f3b40893d0ada11bf68e7338c283c
/datastructures/arrays/python/algorithms/two_sum_2.py
94961b3d8296997633588ee7eedb357551e028a6
[]
no_license
llenroc/interviews-1
8a1342102f2deede2a569d63eb8fbbf9055fcd26
e5f55e48c2b9a4b06a81693b57d3cec65c2d91e9
refs/heads/master
2023-09-06T10:18:40.490289
2021-11-22T18:19:58
2021-11-22T18:19:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
def twoSum(numbers, target): i = 0 j = len(numbers) - 1 sum = 0 while i < j: sum = numbers[i] + numbers[j] if sum > target: j -= 1 elif sum < target: i += 1 elif sum == target: return [i + 1, j + 1] return [-1, -1] def main(): numbers = [2, 7, 11, 15] target = 9 print(twoSum(numbers, target)) if __name__ == "__main__": main()
[ "andrei.visan@kpn.com" ]
andrei.visan@kpn.com
8c347b056cb36c0e390a877ccfc8d7cb252c58d5
6b10fb82c07ba126669990c55b5d8556e0aa7e30
/ushauri/settings.py
0b2aadbf5643c28aafaec2b587b2f96a36daf20a
[]
no_license
chepkoy/ushauri
1c224e7d8a9025f199ac4b5676f3a5df50507d2b
f2ad5ffaa55b9d7ad619bee8568f62cb1312353d
refs/heads/master
2021-05-15T03:40:38.741790
2017-11-08T19:57:56
2017-11-08T19:57:56
110,023,812
0
1
null
null
null
null
UTF-8
Python
false
false
3,143
py
""" Django settings for ushauri project. Generated by 'django-admin startproject' using Django 1.11.7. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '^9o!t90v@a_(!gnt&cii%t@scs1%9r3^z%s5#xitg&71$1$i_8' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ushauri.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ushauri.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
[ "allankiplangat22@gmail.com" ]
allankiplangat22@gmail.com
690ebfa7539e477c986cc44439b64ed513a1e44b
6356b828b1209c409be87783107ad2e96f7fc0e4
/data/main.py
aff69002d470a47b481ce58543aede4cf670b59e
[ "MIT" ]
permissive
vkazei/deeplogs
01e4d1eedbb220b921a2ccd7a2b015b684006086
4f6f853ce608a59e9d4b1a3160eb6b0035f333c0
refs/heads/master
2021-07-09T20:01:48.121545
2020-09-15T16:14:15
2020-09-15T16:14:15
194,487,355
33
18
null
null
null
null
UTF-8
Python
false
false
37,572
py
#%% [markdown] # # Smart velocity analysis : mapping raw data to velocity logs #%% #(c) Vladimir Kazei, Oleg Ovcharenko; KAUST 2020 # cell with imports import importlib import multiprocessing import os import sys import time import pickle import threading import random # learning import keras # madagascar API import m8r as sf import matplotlib import matplotlib.pyplot as plt import numpy as np import seaborn import tensorflow as tf # images from IPython import get_ipython from keras import backend as K from keras.utils import multi_gpu_model from keras.callbacks import (EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, TensorBoard) from keras.layers import (AveragePooling2D, BatchNormalization, Conv2D, Dense, Lambda, Dropout, Flatten, MaxPool2D, Reshape, GaussianNoise, GaussianDropout) from keras.models import load_model from numpy.random import randint, seed from scipy import ndimage from skimage.transform import resize from skimage.util import view_as_windows from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score #import styler from myutils import (cd, cmd, const, elastic_transform, plt_nb_T, toc, aug_flip, upsample, merge_dict, np_to_rsf, rsf_to_np, nrms, tf_random_flip_channels) from myutils import const as c from generate_data import (generate_model, show_model_generation, alpha_deform, sigma_deform, generate_all_data, generate_rsf_data) seed() # set up matplotlib matplotlib.rc('image', cmap='RdBu_r') seaborn.set_context('paper', font_scale=5) CUDA_VISIBLE_DEVICES = "0" os.environ["CUDA_VISIBLE_DEVICES"]=CUDA_VISIBLE_DEVICES os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # Madagascar binaries will be stored in DATAPATH (RAM on Linux recommended) cmd("mkdir /dev/shm/RSFTMP") cmd("chmod 777 /dev/shm/RSFTMP") os.environ["DATAPATH"]="/dev/shm/RSFTMP/" # execution flags generate_rsf_data_flag = True retrain_flag = False #(sys.argv[1] == "--retrain") print(f"retrain_flag = {retrain_flag}") print(type(retrain_flag)) tic_total = time.time() #%% [markdown] # ## Introduction # # ### Why? # FWI provides high resolution models, yet it is very computationally expensive and it can fail with the lack of low frequencies. # # Velocity analysis is on the other hand very cheap computationally, but limited by the assumptions on the background medium. # # ### Goal # Combine advantages of both methods with deep learning # # ### Solution # We will train a deep convolutional neural network to perform velocity analysis in inhomogeneous media ##%% [markdown] # We estimate velocity $v(x_{CMP}, z)$ from presure field # $p_{obs}(x_{CMP}-\varepsilon:x_{CMP}+\varepsilon, 0:h_{max}, f)$, where # $x_{CMP}$ is the central midpoint, # $p_{obs}$ is the observed pressure. # # $\varepsilon = 0$ in this first part of the application => single CMP as input ##%% [markdown] # ## Method # # 0) generate a model set # 1) generate seismic data set # 2) build neural network # 3) train neural network # 4) test it on a model that it has not seen #%% [markdown] # ## Model generation # # we utilize common deep learning image augmentation technique -- elastic transform #%% show_model_generation() #%% [markdown] # ## Gaussian fields to generate a coordinate shift for laterally smooth models # # # # ### Large correlation radius in horizontal direction -- to keep it almost horizontally layered # # ### Small correlation radius in vertical direction -- to make it represent different layering scenarios # # ### Same parameters but different fields for horizontal and vertical components # # ### Large vertical shifts and small horizontal -- to keep it laterally slowly varying #%% [markdown] # ## Modeling data with constant offset on GPU with Madagascar #%% # Setting up parameters _vel = generate_model() N = np.shape(_vel) dt = c.dt dx = c.dx T_max = c.T_max nt = c.nt print(f"number of time steps = {nt}") # check stability print(f"you chose dt = {dt}, dt < {dx/np.max(_vel):.4f} should be chosen for stability \n") # force stability assert dt < dx/np.max(_vel) # ricker wavelet is roughly bounded by 3f_dominant # therefore the sampling rate principally acceptable sampling rate would be central_freq = c.central_freq print(f"dt from Nyquist criterion is {1/(2*3*central_freq)}") print(f"dt chosen for CNN is {c.jdt*dt}, which is {(1/(3*central_freq))/(c.jdt*dt)} samples per cycle") #%% [markdown] # ## Read data into numpy and check that the number of logs is the same as number of shots #%% nCMP=21 def read_rsf_XT(shots_rsf='shots_cmp_full.rsf', logs_rsf='logs_full.rsf', j_log_z=c.jlogz): X = rsf_to_np(shots_rsf) # single model exception if X.ndim == 3: X = np.expand_dims(X, axis=0) X_f = np.flip(X, axis=2) X = np.maximum(np.abs(X), np.abs(X_f)) * np.sign(X+X_f) X = X[:,:,:(np.shape(X)[2] + 1) // 2,:] T = rsf_to_np(logs_rsf) # single model exception if T.ndim == 2: T = np.expand_dims(T, axis=0) # decimate logs in vertical direction --2 times by default T = resize(T, (*T.shape[0:2], np.shape(T)[2] // j_log_z)) T_size = np.shape(T) print(T_size) # ensure that the number of logs is equal to the number of CMPs assert (X.shape[0:2] == T.shape[0:2]) return X, T #%% while not os.path.exists('new_data_ready'): time.sleep(1) print("waiting for new data, run python generate_data.py if you didn't", end="\r") cmd("rm new_data_ready") #%% X, T = read_rsf_XT(shots_rsf='shots_cmp_full.rsf', logs_rsf='logs_full.rsf') T_multi = view_as_windows(T, (1, nCMP, T.shape[2])).squeeze().reshape((-1, nCMP, T.shape[2]))[:,nCMP//2,:].squeeze() # create scaler for the outputs T_scaler = StandardScaler().fit(T_multi) scale = np.copy(T_scaler.scale_) mean = np.copy(T_scaler.mean_) np.save("scale", scale) np.save("mean", mean) #%% T_scaler.scale_[:] = 1 T_scaler.mean_[:] = 0 # X has the format (model, CMP, offset, time) plt_nb_T(X[1,:10, -1,:200], title="Common offset (600 m) gather", dx=c.dx*c.jgx*2, dz=1e3*dt*c.jdt, origin_in_middle=True, ylabel="Time(s)", fname="../latex/Fig/X_short_offset", vmin=-1e-4, vmax=1e-4) plt_nb_T(T[1,:10,:100], title="Model", dx=c.dx*c.jgx*2, dz=c.dx*c.jlogz, origin_in_middle=True, ylabel="Time(s)", fname="../latex/Fig/X_short_offset") #X=X[:,:-3,:,:] #%% def prepare_XT(X,T, T_scaler=T_scaler, gen_plots=False): nCMP = 21 X_multi = view_as_windows(X, (1,nCMP,X.shape[2],X.shape[3])).squeeze().reshape((-1, nCMP, X.shape[2], X.shape[3])) X_multi = np.swapaxes(X_multi,1,3) X_multi = np.swapaxes(X_multi,1,2) T_multi = view_as_windows(T, (1, nCMP, T.shape[2])).squeeze().reshape((-1, nCMP, T.shape[2]))[:,nCMP//2,:].squeeze() X_scaled_multi = X_multi T_scaled_multi = T_scaler.transform(T_multi) # extract central CMPs for singleCMP network X_scaled = X_scaled_multi[:,:,:,nCMP//2:nCMP//2+1] T_scaled = T_scaled_multi #%% if gen_plots: plt_nb_T(T_multi, dx=c.jgx*c.dx, dz=c.jlogz*c.dx, fname="../latex/Fig/T_multi") plt_nb_T(1e3*T_scaled, dx=c.jgx*dx, dz=c.jlogz*c.dx, fname="../latex/Fig/T_scaled") #%% # show single training sample sample_reveal = nCMP plt_nb_T(1e3*np.concatenate((np.squeeze(X_scaled_multi[sample_reveal,:,:,-1]), np.flipud(np.squeeze(X_scaled_multi[sample_reveal,:,:,0]))), axis=0), title="CMP first | CMP last", dx=200, dz=1e3*dt*c.jdt, origin_in_middle=True, ylabel="Time(s)", fname="../latex/Fig/X_scaled", cbar_label = "") print(np.shape(1e3*T_scaled[sample_reveal-(nCMP+1)//2:sample_reveal+(nCMP-1)//2:nCMP])) plt_nb_T(1e3*T_multi[sample_reveal-(nCMP-1)//2:sample_reveal+(nCMP-1)//2,:], dx=100, dz=c.dx*c.jlogz, title="scaled velocity logs") return X_scaled_multi, T_scaled_multi X_scaled_multi, T_scaled_multi = prepare_XT(X,T, T_scaler=T_scaler, gen_plots=False) #%% plot single input into the network plt_nb_T(1e3*np.reshape(X[0, :21, :, :], (21*X.shape[2], X.shape[3])), vmin=-0.1, vmax=0.1, figsize=(48,12), no_labels=True, cbar=True, fname="../latex/Fig/input_multi") #%% [markdown] # # CNN construction single CMP -> log under the CMP # 1D total variation for the output def tv_loss(y_true, y_pred): #b, h, w, c = img.shape.as_list() a = K.abs(y_pred[:, :-1] - y_pred[:, 1:]) tv = 0.0 * K.mean(a, axis=-1) total = tv + K.mean(K.square(y_pred - y_true), axis=-1) return total def random_channel_flip(x): print(x.shape) return K.in_train_phase(tf_random_flip_channels(x), x) def R2(y_true, y_pred): SS_res = K.sum(K.square(y_true-y_pred)) SS_tot = K.sum(K.square(y_true - K.mean(y_true))) return (1 - SS_res/(SS_tot + K.epsilon())) def create_model(inp_shape, out_shape, jlogz=c.jlogz): model = keras.models.Sequential() activation = 'elu' padding = 'same' kernel_size = (3, 11) model.add(Lambda(random_channel_flip, input_shape=inp_shape, output_shape=inp_shape)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=32, kernel_size=kernel_size, activation=activation, padding=padding, input_shape=inp_shape)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=32, kernel_size=kernel_size, strides=(2,2), activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, strides=(2,2), activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=128, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=128, kernel_size=kernel_size, strides=(2,2), activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=32, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=32, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=16, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=16, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=8, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=8, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=4, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=4, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=2, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=2, kernel_size=kernel_size, activation=activation, padding=padding)) model.add(BatchNormalization()) model.add(GaussianNoise(0.1)) model.add(Conv2D(filters=1, kernel_size=(3, 15), activation='linear', padding="valid")) model.add(Flatten()) model.add(Lambda(lambda x: K.tf.add(K.tf.multiply(x, K.variable(scale.squeeze)), K.variable(mean.squeeze)))) return model #%% class threadsafe_iter: """Takes an iterator/generator and makes it thread-safe by serializing call to the `next` method of given iterator/generator. """ def __init__(self, it): self.it = it self.lock = threading.Lock() def __iter__(self): return self def __next__(self): with self.lock: return self.it.__next__() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g @threadsafe_generator def batch_generator(X, T, T_scaler=T_scaler, batch_size = None): batch=[] print("generator restarted !!!!!!!!!!!!!!!!!!!!!!!!!!! waiting for new data") while not os.path.exists("new_data_ready"): time.sleep(1) while True: # it might be a good idea to shuffle your data before each epoch # for iData in range(40): # print(f"loading NEW DATA {iData}") # X_rsf, T_rsf = read_rsf_XT(shots_rsf=f'/data/ibex_data/fullCMP_{iData}/shots_cmp_full.hh', # logs_rsf=f'/data/ibex_data/fullCMP_{iData}/logs_cmp_full.hh') # X, T = prepare_XT(X_rsf, T_rsf, T_scaler) # indices = np.arange(len(X)) # np.random.shuffle(indices) # for i in indices: # # if os.path.exists("new_data_ready"): # # break # batch.append(i) # if len(batch)==batch_size: # yield X[batch], T[batch] # batch=[] if os.path.exists("new_data_ready"): cmd("rm new_data_ready") X_rsf, T_rsf = read_rsf_XT(shots_rsf='shots_cmp_full.rsf', logs_rsf='logs_full.rsf') #cmd("ssh glogin.ibex.kaust.edu.sa 'rm ~/log_estimation/data/new_data_ready'") X, T = prepare_XT(X_rsf, T_rsf, T_scaler) print("new data loaded") else: print("reusing the old data") indices = np.arange(len(X)) np.random.shuffle(indices) print("indices reshuffled") for i in indices: if os.path.exists("new_data_ready"): break batch.append(i) if len(batch)==batch_size: yield X[batch], T[batch] batch=[] #%% # Init callbacks def train_model(prefix="multi", X_scaled=X_scaled_multi, T_scaled=T_scaled_multi, weights=None): cmd("rm new_data_ready") #cmd("ssh 10.109.66.7 'rm ~/log_estimation/data/new_data_ready'") lr_start = 0.001 if weights != None: lr_start = 1e-5 net = create_model(np.shape(X_scaled)[1:], np.shape(T_scaled)[1:]) net.compile(loss=tv_loss, optimizer=keras.optimizers.Nadam(lr_start), metrics=[R2]) #net.summary() if weights != None: net.load_weights(weights) early_stopping = EarlyStopping(monitor='val_loss', patience=21) model_checkpoint = ModelCheckpoint("trained_net", monitor='val_loss', save_best_only=True, verbose=1, period=5) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=7, min_lr=1e-5, verbose=1) X_valid = X_scaled T_valid = T_scaled print(f"X validation data size = {np.shape(X_valid)}") # TRAINING batch_size = 64 # we flip every batch, so, going through whole data needs twice as many batches steps_per_epoch = len(X_scaled)//batch_size print(f"Batch size = {batch_size}, batches per epoch = {steps_per_epoch}") history = net.fit_generator(batch_generator(X_scaled, T_scaled, batch_size=batch_size), validation_data=(X_valid, T_valid), epochs=200, verbose=2, shuffle=True, max_queue_size=200, workers=10, use_multiprocessing=False, steps_per_epoch = steps_per_epoch, callbacks=[model_checkpoint, reduce_lr, early_stopping]) print("Optimization Finished!") return net, history def load_history(fname_history): with open(fname_history,'rb') as f: return pickle.load(f) def save_history(history, fname_history): with open(fname_history,'wb') as f: pickle.dump(history, f) def train_ensemble(prefix, X_scaled, T_scaled): valid_best=1e100 net_dict = {} history_dict = {} for iNet in range(5): if retrain_flag: weights = f"{prefix}_weights.h5" history_prev = load_history(f"history_{prefix}") else: weights = None net, history = train_model(prefix=prefix, X_scaled=X_scaled, T_scaled=T_scaled, weights=weights) cur_val_loss = np.min(history.history['val_loss']) print(cur_val_loss) if cur_val_loss < valid_best: valid_best = cur_val_loss net_best = net history_best = history.history net_dict[f"{iNet}"] = net history_dict[f"{iNet}"] = history.history if retrain_flag: history_best = merge_dict(history_prev, history_best) net_best.save_weights(f"{prefix}_weights.h5") save_history(history_best, f"history_{prefix}") return net_dict, history_dict, net_best, history_best #singleCMP_net_dict, singleCMP_net_best, history_best = train_ensemble("singleCMP", X_scaled, T_scaled) #cmd("rm new_data_ready") multiCMP_net_dict, history_dict, multiCMP_net_best, history_best = train_ensemble("multiCMP", X_scaled_multi, T_scaled_multi) # stop generator cmd("touch training_finished") #%% KOSTYLI for testing history_best = load_history("history_multiCMP") prefix = "multiCMP" plt.figure(figsize=(16,9)) r2_arr = np.zeros((history_dict.__len__(),2)) for iNet in history_dict.keys(): r2_arr[int(iNet),0] = history_dict[iNet]['R2'][-1] r2_arr[int(iNet),1] = history_dict[iNet]['val_R2'][-1] print(f"netN={iNet}, R2={history_dict[iNet]['R2'][-1]},{history_dict[iNet]['val_R2'][-1]}") plt.plot(history_dict[iNet]['R2'][:],'b--') plt.plot(history_dict[iNet]['val_R2'][:],'r') print(f"Average R2={np.mean(r2_arr, 0)}") plt.plot(history_best['R2'][:],'b--', label='Training R2', linewidth=3) plt.plot(history_best['val_R2'][:],'r', label='Validation R2', linewidth=3) plt.xlabel("epoch") plt.legend() plt.savefig(f"../latex/Fig/{prefix}_R2", bbox_inches='tight') plt.grid(True,which="both",ls="-") plt.show(block=False) plt.pause(1) plt.close() plt.figure(figsize=(16,9)) for iNet in history_dict.keys(): print(iNet) plt.plot(history_dict[iNet]['loss'][:],'b--') plt.plot(history_dict[iNet]['val_loss'][:],'r') plt.semilogy(history_best['loss'][:],'b--', label='Training loss', linewidth=3) plt.semilogy(history_best['val_loss'][:],'r', label='Validation loss', linewidth=3) plt.xlabel("epoch") plt.legend() plt.savefig(f"../latex/Fig/{prefix}_loss", bbox_inches='tight') plt.grid(True,which="both",ls="-") plt.show(block=False) plt.pause(1) plt.close() # #%% # multiCMP_net_dict={} # net_best = create_model(np.shape(X_scaled_multi)[1:], np.shape(T_scaled_multi)[1:]) # net_best.summary() # net_best.compile(loss=tv_loss, # optimizer=keras.optimizers.Nadam(1e-6), # metrics=[R2]) # net_best.load_weights("multiCMP_weights.h5") # multiCMP_net_dict["0"] = net_best #%% [markdown] # # We trained the neural net, it fits the training and validation data... # # ## How well does it fit? # # ## Does it fit stretched marmousi itself? # # ## Could we learn more from models like this? # # ## Does it work on something different? # # ## When does it break?! #%% [markdown] # # Testing #%% uncomment for loading initial weights # singleCMP_net_dict={} # net = create_model(np.shape(X_scaled)[1:], np.shape(T_scaled)[1:]) # net.summary() # net.load_weights("singleCMP_weights.h5") # singleCMP_net_dict["0"] = net # multiCMP_net_dict={} # netM = create_model(np.shape(X_scaled_multi)[1:], np.shape(T_scaled_multi)[1:]) # netM.summary() # netM.load_weights("multiCMP_weights.h5") # multiCMP_net_dict["0"] = netM def test_on_model(folder="marmvel1D", net_dict=None, prefix="singleCMP", model_filename=None, distort_flag=False, stretch_X=None, nCMP_max=nCMP, generate_rsf_data_flag=True, jlogz=c.jlogz, jgx=c.jgx, sxbeg=c.sxbeg, gxbeg=c.gxbeg): if model_filename==None: model_filename=f"{folder}.hh" fig_path = f"../latex/Fig/test_{prefix}_{folder}" # expand model model_output="vel_test.rsf" print(model_output) vel_test = generate_model(model_input=model_filename, model_output=model_output, stretch_X=stretch_X, random_state_number=c.random_state_number, distort_flag=distort_flag, crop_flag=False, test_flag=True) # model data if generate_rsf_data_flag: cmd(f"mkdir {folder}") cmd(f"cp {model_output} {folder}/{model_output}") # check stability print(f"you chose dt = {dt}, dt < {dx/np.max(vel_test):.4f} should be chosen for stability \n") # force stability assert dt < dx/np.max(vel_test) generate_rsf_data(model_name=f"{folder}/vel_test.rsf", shots_out=f"{folder}/shots_cmp_test.rsf", logs_out=f"{folder}/logs_test.rsf") # read data X_test, T_test = read_rsf_XT(shots_rsf=f"{folder}/shots_cmp_test.rsf", logs_rsf=f"{folder}/logs_test.rsf") nCMP = int(net_dict["0"].input.shape[3]) # X_scaled, T_test = make_multi_CMP_inputs(X_scaled, T_test, nCMP_max) X_scaled, T_scaled = prepare_XT(X_test, T_test) T_test = T_scaler.inverse_transform(T_scaled) sample_reveal = nCMP_max+1 plt_nb_T(1e3*np.concatenate((np.squeeze(X_scaled[sample_reveal,:,:,-1]), np.flipud(np.squeeze(X_scaled[sample_reveal,:,:,0]))), axis=0), title="CMP first | CMP last", dx=200, dz=1e3*dt*c.jdt, vmin=-0.1, vmax=0.1, origin_in_middle=True, ylabel="Time(s)", fname=f"{fig_path}_X_scaled", cbar_label = "") if nCMP == 1: X_scaled = X_scaled[:,:,:,nCMP_max//2:nCMP_max//2+1] # predict with all networks and save average T_pred_total = np.zeros_like(net_dict["0"].predict(X_scaled)) T_pred_dict = np.zeros((2*len(net_dict), T_pred_total.shape[0], T_pred_total.shape[1])) iNet=0 for net in net_dict.values(): T_pred_tmp = net.predict(X_scaled) T_pred_tmp = T_scaler.inverse_transform(T_pred_tmp) T_pred_dict[iNet,:,:] = T_pred_tmp T_pred_tmp = net.predict(np.flip(X_scaled, axis=3)) T_pred_tmp = T_scaler.inverse_transform(T_pred_tmp) T_pred_dict[iNet+1,:,:] = T_pred_tmp iNet += 2 T_pred = np.mean(T_pred_dict, axis=0) # interpolation for display ups_plot = c.ups_plot T_pred = upsample(T_pred, ups_plot) T_test = upsample(T_test, ups_plot) np_to_rsf(T_pred, f"{folder}/logs_pred.rsf", d1=25, d2=25) np_to_rsf(T_test, f"{folder}/logs_test_m.rsf", d1=25, d2=25) variance = np.var(T_pred_dict, axis=0) plt_nb_T(upsample(np.sqrt(variance), ups_plot), title="Standard deviation", dx=jgx*dx/ups_plot, dz=jlogz*dx/ups_plot, fname=f"{fig_path}_inverted_std_dev", vmin=0, vmax=1, figsize=(16,6)) plt_nb_T(T_pred-T_test, title="Pred-True", dx=jgx*dx, dz=jlogz*dx, fname=f"{fig_path}_inverted_error", vmin=-1, vmax=1) plt_nb_T(T_pred, title=f"DL, R2 = {r2_score(T_test.flatten(), T_pred.flatten()):.2f}, NRMS={nrms(T_pred, T_test):.1f}%", dx=jgx*dx/ups_plot, dz=jgx*dx/ups_plot, vmin=np.min(1e-3*T_test), vmax=np.max(1e-3*T_test), fname=f"{fig_path}_inverted", figsize=(16,6)) plt_nb_T(T_test, dx=jgx*dx/ups_plot, dz=jgx*dx/ups_plot, vmin=np.min(1e-3*T_test), vmax=np.max(1e-3*T_test), fname=f"{fig_path}_true", title=f"True model", figsize=(16,6)) #%% def run_all_tests(net_dict=None, prefix="single", generate_rsf_data_flag=False): # Marmousi-based tests test_on_model("marmvel1D", net_dict=net_dict, prefix=prefix, stretch_X=10, generate_rsf_data_flag=generate_rsf_data_flag) test_on_model("marmvel", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) test_on_model("marm2", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) # Overthrust-based tests test_on_model("overthrust1D", net_dict=net_dict, prefix=prefix, stretch_X=2, generate_rsf_data_flag=generate_rsf_data_flag) # cmd("sfadd < overthrust3D_orig.hh add=-1 | sfclip2 lower=1.5 --out=stdout > overthrust3D.hh") # cmd("sfwindow < overthrust3D_orig.hh n3=120 f1=400 n1=1 | sftransp | sfadd scale=1000 | sfput d1=25 d2=25 --out=stdout > overthrust_test_2D_1.hh") test_on_model("overthrust_test_2D_1", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) # cmd("sfwindow < overthrust3D.hh n3=120 f2=400 n2=1 | sftransp | sfadd scale=1000 | sfput d1=25 d2=25 --out=stdout > overthrust_test_2D_2.hh") test_on_model("overthrust_test_2D_2", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) # SEAM I based tests test_on_model("seam100", net_dict=net_dict, prefix=prefix, stretch_X=2, generate_rsf_data_flag=generate_rsf_data_flag) # cmd("sfwindow < SEAM_I_3D_20m.hh f3=100 n3=151 f1=1400 | sftransp memsize=100000 plane=13 | sfwindow f3=20 n3=1 f2=500 n2=1000 | sfput o1=0 o2=0 --out=stdout > seam_i_sediments.hh") test_on_model("seam_i_sediments", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) test_on_model("seam_karst", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) #cmd("sfwindow < SEAM_I_3D_20m.hh f3=10 n3=151 | sftransp memsize=100000 plane=23 | sftransp memsize=100000 plane=12 | sfwindow f3=1455 n3=1 --out=stdout > seam_i_salt.hh") test_on_model("seam_i_salt", net_dict=net_dict, prefix=prefix, stretch_X=2, generate_rsf_data_flag=generate_rsf_data_flag) test_on_model("seam_arid", net_dict=net_dict, prefix=prefix, stretch_X=1, generate_rsf_data_flag=generate_rsf_data_flag) #run_all_tests(net_dict=singleCMP_net_dict, prefix="singleCMP", generate_rsf_data_flag=True) run_all_tests(net_dict=multiCMP_net_dict, prefix="multiCMP", generate_rsf_data_flag=True) print(f"Total execution time is {toc(tic_total)}") #%% PLOT FWI RESULTS # for folder in ["marm2", # "seam_i_sediments", # "seam100", # "overthrust"]: for folder in ["overthrust"]: with cd(f"fwi_{folder}"): cmd("scons -j 4") fwi1 = rsf_to_np("fwi2.rsf") fwi2 = rsf_to_np("fwi_shi.rsf") velo = rsf_to_np("vel.rsf") velsm = rsf_to_np("smvel.rsf") R2o = r2_score(velo.flatten(), fwi2.flatten()) fwi2 = resize(fwi2, (fwi2.shape[0], 120)) fwi1 = resize(fwi1, (fwi2.shape[0], 120)) plt_nb_T(fwi2, title=f"DL+MSFWI, R2={R2o:.2f}, NRMS={nrms(velo,fwi2):.1f}%", fname=f"../../latex/Fig/msfwi_{folder}", dx=25, dz=25, figsize=(32,6), vmin=1.5, vmax=4.5) plt_nb_T(velsm, title=f"DL, R2={r2_score(velo.flatten(),velsm.flatten()):.2f}, NRMS={nrms(velo,velsm):.1f}%", fname=f"../../latex/Fig/dl_{folder}", dx=25, dz=25, figsize=(16,6), vmin=1.5, vmax=4.5) plt_nb_T(velo, title=f"True model", fname=f"../../latex/Fig/true_{folder}", dx=25, dz=25, figsize=(16,6), vmin=1.5, vmax=4.5) def plot_logs(log_x): plt.figure(figsize=(11,18)) depth = 0.025*np.array(range(120)) plt.plot( 1e-3*velsm[log_x,:], depth, 'r', label="DL", linewidth=6) plt.plot(1e-3*fwi1[log_x,:], depth, 'b--', label="DL+FWI", linewidth=6) plt.plot(1e-3*fwi2[log_x,:], depth, 'bo', label="+MSFWI", markersize=15) plt.plot( 1e-3*velo[log_x,:], depth, 'black', label="True", linewidth=8, alpha=0.6) plt.ylabel("Depth (km)") plt.xlabel("Velocity (km/s)") plt.xlim((1.5, 4.5)) plt.yticks([0,1,2,3]) plt.title(f"Log at {int(0.025*log_x)} km") plt.gca().invert_yaxis() plt.legend() plt.axis("tight") plt.savefig(f"../latex/Fig/log_{int(0.025*log_x)}") plot_logs(240) plot_logs(400) plot_logs(480) # %%
[ "vkazei@gmail.com" ]
vkazei@gmail.com
44ba51191c44e24175419dfd2f44a582f3d362b0
aed2854bbb656b5618a19eb065a41180caa47c4f
/src_lib/models_hub/crop_classifiers.py
bb316fd5b1c53aab22f683dc680de908c5b85961
[]
no_license
rishabhraaj17/MastersThesis
ef20e5c92698b830963d43d873ed007773379daf
6b4e7bac9c1e780723e202fecd27a5d0e12e6729
refs/heads/develop
2023-08-23T00:51:01.413365
2021-09-23T16:39:24
2021-09-23T16:39:24
409,666,585
0
0
null
2021-09-23T16:39:25
2021-09-23T16:30:27
Python
UTF-8
Python
false
false
5,578
py
from typing import Tuple, List, Optional, Callable, Union import torch from mmcls.models import ResNet_CIFAR, GlobalAveragePooling, LinearClsHead from omegaconf import DictConfig from torch import nn from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import Dataset, DataLoader from src_lib.models_hub import Base class CropClassifier(Base): def __init__(self, config: DictConfig, train_dataset: Dataset, val_dataset: Dataset, desired_output_shape: Tuple[int, int] = None, loss_function: nn.Module = None, additional_loss_functions: List[nn.Module] = None, collate_fn: Optional[Callable] = None): super(CropClassifier, self).__init__( config=config, train_dataset=train_dataset, val_dataset=val_dataset, desired_output_shape=desired_output_shape, loss_function=loss_function, additional_loss_functions=additional_loss_functions, collate_fn=collate_fn ) self.backbone = ResNet_CIFAR( depth=18, num_stages=4, out_indices=(3,), style='pytorch' ) self.neck = GlobalAveragePooling() self.head = nn.Sequential(nn.Linear(512, 64), nn.ReLU6(), nn.Linear(64, 1)) @classmethod def from_config(cls, config: DictConfig, train_dataset: Dataset = None, val_dataset: Dataset = None, desired_output_shape: Tuple[int, int] = None, loss_function: nn.Module = None, additional_loss_functions: List[nn.Module] = None, collate_fn: Optional[Callable] = None): return CropClassifier(config=config, train_dataset=train_dataset, val_dataset=val_dataset, desired_output_shape=desired_output_shape, loss_function=loss_function, additional_loss_functions=additional_loss_functions, collate_fn=collate_fn) def forward(self, x): out = self.backbone(x) out = self.neck(out) out = self.head(out) return out def _one_step(self, batch): crops, labels = batch # for offline mode # crops, labels = crops.view(-1, *crops.shape[2:]), labels.view(-1, 1) labels = labels.view(-1, 1) out = self(crops) loss = self.calculate_loss(out, labels) return loss def calculate_loss(self, pred, target): return self.loss_function(pred, target) def configure_optimizers(self): opt = torch.optim.Adam(self.parameters(), lr=self.config.crop_classifier.lr, weight_decay=self.config.crop_classifier.weight_decay, amsgrad=self.config.crop_classifier.amsgrad) schedulers = [ { 'scheduler': ReduceLROnPlateau(opt, patience=self.config.crop_classifier.patience, verbose=self.config.crop_classifier.verbose, factor=self.config.crop_classifier.factor, min_lr=self.config.crop_classifier.min_lr), 'monitor': self.config.crop_classifier.monitor, 'interval': self.config.crop_classifier.interval, 'frequency': self.config.crop_classifier.frequency }] return [opt], schedulers def train_dataloader(self) -> DataLoader: return DataLoader( dataset=self.train_dataset, batch_size=self.config.crop_classifier.batch_size, shuffle=self.config.crop_classifier.shuffle, num_workers=self.config.crop_classifier.num_workers, collate_fn=self.collate_fn, pin_memory=self.config.crop_classifier.pin_memory, drop_last=self.config.crop_classifier.drop_last) def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]: return DataLoader( dataset=self.val_dataset, batch_size=self.config.crop_classifier.batch_size * self.config.crop_classifier.val_batch_size_factor, shuffle=False, num_workers=self.config.crop_classifier.num_workers, collate_fn=self.collate_fn, pin_memory=self.config.crop_classifier.pin_memory, drop_last=self.config.crop_classifier.drop_last) class CropClassifierDDP(CropClassifier): def __init__(self, config: DictConfig, train_dataset: Dataset, val_dataset: Dataset, desired_output_shape: Tuple[int, int] = None, loss_function: nn.Module = None, additional_loss_functions: List[nn.Module] = None, collate_fn: Optional[Callable] = None): super(CropClassifierDDP, self).__init__( config=config, train_dataset=train_dataset, val_dataset=val_dataset, desired_output_shape=desired_output_shape, loss_function=loss_function, additional_loss_functions=additional_loss_functions, collate_fn=collate_fn ) def training_step(self, batch, batch_idx): loss = self._one_step(batch) self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True) return loss def validation_step(self, batch, batch_idx): loss = self._one_step(batch) self.log('val_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True) return loss if __name__ == '__main__': m = CropClassifier.from_config({}) inp = torch.randn((2, 3, 64, 64)) o = m(inp) print()
[ "noreply@github.com" ]
noreply@github.com
75d2c7f495c3d1e8921a7eca9f3573f46656c52a
122496927f93d9715d55812180fff8c599c77e09
/whatsapp.py
e04ef58fd25c0634fd14e37b87857e4ca850aa32
[]
no_license
blauner5/whatsapp-monitor
a1d182ea55d4342350764652aff3278753382313
cc18938c40ec4734bc3fd8b2daa75f8263097f38
refs/heads/master
2020-08-01T02:14:24.610558
2019-09-25T22:19:38
2019-09-25T22:19:38
210,824,567
0
2
null
null
null
null
UTF-8
Python
false
false
2,691
py
from urllib.parse import quote from time import sleep from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.common.exceptions import NoSuchElementException import datetime import mysql.connector mydb = mysql.connector.connect(host="HOST", user="USER", passwd="PASS", database="whatsapp") #<-- Change with your values TARGET = 'TARGET NAME' #<-- Insert TARGET NAME SCANNED = False chrome_options = Options() chrome_options.add_argument('--headless') chrome_options.add_argument('--window-size=1920x1080') chrome_options.add_argument( 'user-agent=Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2227.1 Safari/537.36' ) chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-gpu-sandbox') chrome_options.add_argument('--disable-gpu') chrome_options.add_argument('--disable-impl-side-painting') chrome_options.add_argument('--disable-accelerated-2d-canvas') chrome_options.add_argument('--disable-accelerated-jpeg-decoding') chrome_options.add_argument('--test-type=ui') browser = webdriver.Chrome("PATH") #<-- Insert the path chromedriver es. "C:\chromedriver.exe" browser.get('https://web.whatsapp.com') while SCANNED is False: print('Waiting QR Scanning...') sleep(5) try: notice = browser.find_element_by_class_name('_1cDWi') if notice.text == 'Mantieni il telefono connesso': #<-- Change according to your language es. "Keep the phone connected" SCANNED = True print('Success!') print (browser.service.process.pid) except NoSuchElementException: pass search = browser.find_element_by_class_name('_2HS9r') search.send_keys(TARGET) chats = browser.find_elements_by_class_name('_19RFN') for chat in chats: name = chat.get_attribute('title') if TARGET in name: chat.click() while True: try: sql = "INSERT INTO accessi (nome, data) VALUES (%s, %s)" mycursor = mydb.cursor() nome = TARGET a = str(datetime.datetime.now()) b = a[:-7] data = b val = (nome, data) online = browser.find_element_by_class_name('_3fs0K').text online2 = online[-6:] if online2 == 'online': a = str(datetime.datetime.now()) print(TARGET + ' is online!') print(a[:-7]) mycursor.execute(sql, val) mydb.commit() sleep(1) except NoSuchElementException: pass sleep(2)
[ "riccardociprini@gmail.com" ]
riccardociprini@gmail.com
b47c9a85013089dec45758e6489eb731972070ee
4ece3041f2ed0cd312dc70fd3c7c240924dbb6ae
/pyathena/__init__.py
8335fb21281d596d87e5bc8a90d091895483fde9
[ "MIT" ]
permissive
ivssh/PyAthena
175c5dfff0289a7ceccfe9a47ac490985535f669
156c51f19b46ea2f89612b3383937d78942bc990
refs/heads/master
2020-03-27T13:07:58.417397
2018-07-21T13:08:41
2018-07-21T13:08:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,351
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import unicode_literals import datetime from pyathena.error import * # noqa __version__ = '1.3.0' # Globals https://www.python.org/dev/peps/pep-0249/#globals apilevel = '2.0' threadsafety = 3 paramstyle = 'pyformat' class DBAPITypeObject: """Type Objects and Constructors https://www.python.org/dev/peps/pep-0249/#type-objects-and-constructors """ def __init__(self, *values): self.values = values def __cmp__(self, other): if other in self.values: return 0 if other < self.values: return 1 else: return -1 def __eq__(self, other): return other in self.values # https://docs.aws.amazon.com/athena/latest/ug/data-types.html STRING = DBAPITypeObject('char', 'varchar', 'map', 'array', 'row') BINARY = DBAPITypeObject('varbinary') BOOLEAN = DBAPITypeObject('boolean') NUMBER = DBAPITypeObject('tinyint', 'smallint', 'bigint', 'integer', 'real', 'double', 'float', 'decimal') DATE = DBAPITypeObject('date') DATETIME = DBAPITypeObject('timestamp') Date = datetime.date Time = datetime.time Timestamp = datetime.datetime def connect(*args, **kwargs): from pyathena.connection import Connection return Connection(*args, **kwargs)
[ "laughingman7743@gmail.com" ]
laughingman7743@gmail.com
56b442f8b7bfc47ef533d1a9d1c90373518ecca3
df7736726d5b041e46b490e409a1d4481ef8c7f1
/tools/rosmaster/src/rosmaster/threadpool.py
1261e2f5e4aa3947450c12ff477e0830735e537e
[]
no_license
strawlab/ros_comm
62f5d2bc68d6cbe85c071eabb7487164d6c328be
6f7ea2feeb3c890699518cb6eb3d33faa15c5306
refs/heads/master
2020-05-18T02:26:43.463444
2012-08-05T07:10:58
2012-08-05T07:10:58
5,301,610
13
31
null
2019-09-24T22:49:12
2012-08-05T07:10:44
Python
UTF-8
Python
false
false
8,088
py
# Software License Agreement (BSD License) # # Copyright (c) 2008, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Revision $Id: threadpool.py 8327 2010-02-17 01:23:15Z kwc $ """ Internal threadpool library for zenmaster. Adapted from U{http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/203871} Added a 'marker' to tasks so that multiple tasks with the same marker are not executed. As we are using the thread pool for i/o tasks, the marker is set to the i/o name. This prevents a slow i/o for gobbling up all of our threads """ import threading, logging, traceback from time import sleep class MarkedThreadPool: """Flexible thread pool class. Creates a pool of threads, then accepts tasks that will be dispatched to the next available thread.""" def __init__(self, numThreads): """Initialize the thread pool with numThreads workers.""" self.__threads = [] self.__resizeLock = threading.Condition(threading.Lock()) self.__taskLock = threading.Condition(threading.Lock()) self.__tasks = [] self.__markers = set() self.__isJoining = False self.set_thread_count(numThreads) def set_thread_count(self, newNumThreads): """ External method to set the current pool size. Acquires the resizing lock, then calls the internal version to do real work.""" # Can't change the thread count if we're shutting down the pool! if self.__isJoining: return False self.__resizeLock.acquire() try: self.__set_thread_count_nolock(newNumThreads) finally: self.__resizeLock.release() return True def __set_thread_count_nolock(self, newNumThreads): """Set the current pool size, spawning or terminating threads if necessary. Internal use only; assumes the resizing lock is held.""" # If we need to grow the pool, do so while newNumThreads > len(self.__threads): newThread = ThreadPoolThread(self) self.__threads.append(newThread) newThread.start() # If we need to shrink the pool, do so while newNumThreads < len(self.__threads): self.__threads[0].go_away() del self.__threads[0] def get_thread_count(self): """@return: number of threads in the pool.""" self.__resizeLock.acquire() try: return len(self.__threads) finally: self.__resizeLock.release() def queue_task(self, marker, task, args=None, taskCallback=None): """Insert a task into the queue. task must be callable; args and taskCallback can be None.""" if self.__isJoining == True: return False if not callable(task): return False self.__taskLock.acquire() try: self.__tasks.append((marker, task, args, taskCallback)) return True finally: self.__taskLock.release() def remove_marker(self, marker): """Remove the marker from the currently executing tasks. Only one task with the given marker can be executed at a given time""" if marker is None: return self.__taskLock.acquire() try: self.__markers.remove(marker) finally: self.__taskLock.release() def get_next_task(self): """ Retrieve the next task from the task queue. For use only by ThreadPoolThread objects contained in the pool.""" self.__taskLock.acquire() try: retval = None for marker, task, args, callback in self.__tasks: # unmarked or not currently executing if marker is None or marker not in self.__markers: retval = (marker, task, args, callback) break if retval: # add the marker so we don't do any similar tasks self.__tasks.remove(retval) if marker is not None: self.__markers.add(marker) return retval else: return (None, None, None, None) finally: self.__taskLock.release() def join_all(self, wait_for_tasks = True, wait_for_threads = True): """ Clear the task queue and terminate all pooled threads, optionally allowing the tasks and threads to finish.""" # Mark the pool as joining to prevent any more task queueing self.__isJoining = True # Wait for tasks to finish if wait_for_tasks: while self.__tasks != []: sleep(.1) # Tell all the threads to quit self.__resizeLock.acquire() try: self.__set_thread_count_nolock(0) self.__isJoining = True # Wait until all threads have exited if wait_for_threads: for t in self.__threads: t.join() del t # Reset the pool for potential reuse self.__isJoining = False finally: self.__resizeLock.release() class ThreadPoolThread(threading.Thread): """ Pooled thread class. """ threadSleepTime = 0.1 def __init__(self, pool): """Initialize the thread and remember the pool.""" threading.Thread.__init__(self) self.setDaemon(True) #don't block program exit self.__pool = pool self.__isDying = False def run(self): """ Until told to quit, retrieve the next task and execute it, calling the callback if any. """ while self.__isDying == False: marker, cmd, args, callback = self.__pool.get_next_task() # If there's nothing to do, just sleep a bit if cmd is None: sleep(ThreadPoolThread.threadSleepTime) else: try: try: result = cmd(*args) finally: self.__pool.remove_marker(marker) if callback is not None: callback(result) except Exception, e: logging.getLogger('rosmaster.threadpool').error(traceback.format_exc()) def go_away(self): """ Exit the run loop next time through.""" self.__isDying = True
[ "strawman@astraw.com" ]
strawman@astraw.com
6430ad985b5c08e8f0e7f98428386d3713eb65b2
c45c9e74ffafcceebf395cc1c5f5d31659988c19
/answer_search.py
ff4bf3d7d7e148d57a000bb5cd58779991814eb8
[]
no_license
tedrepo/QABasedOnMedicalKnowledgeGraph
f68ca297254218c72ef18a26c98f1910610f7154
f690b80e2a7fb85455b45d3829b6998be9ebc739
refs/heads/master
2020-03-30T23:14:39.416415
2018-10-05T04:12:19
2018-10-05T04:12:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
643
py
#!/usr/bin/env python3 # coding: utf-8 # File: answer_search.py # Author: lhy<lhy_in_blcu@126.com,https://huangyong.github.io> # Date: 18-10-5 from py2neo import Graph,Node class AnswerSearcher: def __init__(self): self.g = Graph( host="127.0.0.1", http_port=7474, user="lhy", password="lhy123") '''执行cypher查询,并返回相应结果''' def search_main(self, sqls): for sql in sqls: ress = self.g.run(sql).data() for res in ress: print(res) return if __name__ == '__main__': searcher = AnswerSearch()
[ "lhy_in_blcu@126.com" ]
lhy_in_blcu@126.com
c86adca0a5e98f145fd2d56300d83f383f4b36d6
c8dba5315ff0f20395c08a34f1cc27797e052c61
/150050085_lab1/cal-year.py
b7ac53900a1f4ee829204eec3ac47dc9e3d3aea1
[]
no_license
AthletiCoder/PointerLanguageCompiler
27e51b80ad789fc46fe69d3aa1081ead4d1b9776
b530aadae58cc3e55277c5c51ddfc1c424034b94
refs/heads/master
2021-05-03T06:30:02.699452
2018-04-07T05:22:18
2018-04-07T05:22:18
120,595,662
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
import sys yearly = sys.stdin.readlines() row = [0]*3 cal = [0]*35 for i in range(35): cal[i] = list(map(''.join, zip(*[iter(yearly[i+1])]*22))) print(yearly[0]) for j in range(3): for i in range(8): print(cal[i][j]+" "+cal[i+9][j]+" "+cal[i+18][j]+" "+cal[i+27][j]) print("")
[ "noreply@github.com" ]
noreply@github.com
c0077791487a7cdd2f840ea70b68c6dc292acbd2
d9520da6139352f8e8b7ba8b1722938ff7967ebb
/miniflow/nn_sigmoid.py
a4632dfe814df259aa4c3dc34ef9f7d982a2a4e0
[]
no_license
k26dr/sdc_coursework
aa5720da1e559b79a40d2dda7995320cc5725482
71d1e2536b21c9e226bc343cc3aaaff32e151d18
refs/heads/master
2021-01-13T15:03:13.541224
2016-12-30T02:17:25
2016-12-30T02:17:25
76,284,145
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
import numpy as np from miniflow import * inputs, weights, bias = Input(), Input(), Input() f = Linear(inputs, weights, bias) g = Sigmoid(f) x = np.array([[-1., -2.], [-1, -2]]) w = np.array([[2., -3], [2., -3]]) b = np.array([-3., -5]) feed_dict = {inputs: x, weights: w, bias: b} graph = topological_sort(feed_dict) output = forward_pass(g, graph) print(output)
[ "kedarmail@gmail.com" ]
kedarmail@gmail.com
74b341d63a32b49d9cba4ce501dbbd8f5a11fc8e
97399f2976443cc41329c4b289e89db8c895ddb4
/venv/bin/symilar
8647cc903f86267d342557e67697147f20c65454
[]
no_license
kinitkumar1801806/TouristHelperApi
c55393adf2df4c517961f416db0098a73e93c361
d873a9bffd7b8bd681ff600e62243bd9ec656707
refs/heads/master
2023-02-21T08:41:13.656401
2021-01-20T10:39:19
2021-01-20T10:39:19
323,374,394
1
0
null
null
null
null
UTF-8
Python
false
false
263
#!/home/kinit/PycharmProjects/TouristHelperApi/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pylint import run_symilar if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(run_symilar())
[ "www.kinitkumar@gmail.com" ]
www.kinitkumar@gmail.com
fdc137c38ddcc4d02f6616631ac20050ede866f4
40c9408be0b2b9d6eb11b94ef8edbdc3ef7ee7fa
/LOB_simulation/read_json.py
deb98ce3312244f53f7f52eff41be8f8990a036b
[ "MIT" ]
permissive
Izidorf/exchange
ffff6e8414b4943c94f724b01b8dcae30e302577
9c5bae3091f24b832fc7acba979075013492c97a
refs/heads/master
2021-01-15T12:03:44.041923
2016-09-19T18:32:53
2016-09-19T18:32:53
68,633,067
0
0
null
null
null
null
UTF-8
Python
false
false
4,642
py
import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import pandas as pd def JSONStream(fd, buffer_size=4096, decode=None): ''' Decodes distinct JSON objects from a stream (a file-like object) Returns a generator that yields sequential JSON objects as they are retreived from the stream :param fd: A file-like object representing the input stream :param buffer_size: Optional read buffer size :param decode: An optional custom JSON decode function ''' if not decode: import json decode = json.JSONDecoder().raw_decode buf = '' data = fd.read(buffer_size) while data: try: if not buf: data = data.lstrip() buf, data = buf+data, None while buf: obj, i= decode(buf) buf = buf[i:].lstrip() yield(obj) except GeneratorExit: break except ValueError: pass if not fd.closed: data = fd.read(buffer_size) def calc_time_difference(time): if(len(time) < 2): return 0 t = time[0] for i in range(1, len(time)): time[i-1] = abs((time[i]-t)/1000.0) t = time[i] return time[:-1] def load_json(filename): with open(filename, 'r') as fd: ob_state = {} # buy limit orders buy_time = [] buy_size = [] buy_price = [] # sell limit orders sell_time = [] sell_size = [] sell_price = [] # buy limit cancellations buy_c_time = [] buy_c_size = [] buy_c_price = [] # sell limit cancelations sell_c_time = [] sell_c_size = [] sell_c_price = [] # trades trade_b_time = [] trade_b_volume = [] trade_b_price = [] trade_s_time = [] trade_s_volume = [] trade_s_price = [] count = 0 for o in JSONStream(fd): count = count + 1 print count print o # for key, value in o.items(): if 'asks' in o and 'bids' in o: ob_state=o if 'state' in o and 'localTimestamp' in o: value = o['state'] best_ask = ob_state['asks'][0]['limitPrice'] best_bid = ob_state['bids'][0]['limitPrice'] time = o['localTimestamp'] volume = o['orderInfo']['volume'] price = o['orderInfo']['limitPrice'] if value == 'CREATED': if o['direction'] == 'BUY' and best_bid-price < 5 and best_bid-price > -5: buy_time.append(time) buy_size.append(volume) buy_price.append(best_bid-price) elif o['direction'] == 'SELL' and best_ask-price < 5 and best_ask-price > -5: sell_time.append(time) sell_size.append(volume) sell_price.append(best_ask-price) elif value == 'DELETED' and best_bid-price < 5 and best_bid-price > -5: if o['direction'] == 'BUY' : buy_c_time.append(time) buy_c_size.append(volume) buy_c_price.append(best_bid-price) elif o['direction'] == 'SELL' and best_ask-price < 5 and best_ask-price > -5: sell_c_time.append(time) sell_c_size.append(volume) sell_c_price.append(best_ask-price) # elif value == 'UPDATED': # if o['direction'] == 'BUY' : # trade_b_time.append(time) # trade_b_volume.append(volume) # trade_b_price.append(price) # elif o['direction'] == 'SELL': # trade_s_time.append(time) # trade_s_volume.append(volume) # trade_s_price.append(price) if 'exchangeTradeId' in o: time = o['localTimestamp'] volume = o['volume'] price = o['price'] best_bid = ob_state['bids'][0]['limitPrice'] if price >= best_bid and best_bid-price <= 0 and best_bid-price > -5: trade_b_time.append(time) trade_b_volume.append(volume) trade_b_price.append(best_bid-price) elif best_ask-price <= 0 and best_ask-price > -5: trade_s_time.append(time) trade_s_volume.append(volume) trade_s_price.append(best_ask-price) sell_time = calc_time_difference(sell_time) sell_c_time = calc_time_difference(sell_c_time) buy_time = calc_time_difference(buy_time) buy_c_time = calc_time_difference(buy_c_time) trade_b_time = calc_time_difference(trade_b_time) trade_s_time = calc_time_difference(trade_s_time) # buy_size = map(lambda x: float(x)/1000000000.0, buy_size) # trade_size = map(lambda x: float(x)/1000000000.0, trade_size) # trade_b_volume = map(lambda x: float(x)/1000000000.0, trade_b_volume ) # trade_s_volume = map(lambda x: float(x)/1000000000.0, trade_s_volume) # # print trade_b_time # print trade_s_t ime return buy_time, buy_size, buy_price, sell_time, sell_size, sell_price, buy_c_time, buy_c_size, buy_c_price, sell_c_time, sell_c_size, sell_c_price, trade_b_time,trade_s_time,trade_s_volume, trade_b_volume, trade_b_price, trade_s_price # if __name__ == "__main__": # buy_time = load_json('log2.txt') # print buy_time # df.to_csv(path_or_buf ='test.csv')
[ "izidorflajsman@tests-MacBook-Pro-2.local" ]
izidorflajsman@tests-MacBook-Pro-2.local
807c1bda878f4fd044b408e7ea19357e343ca3ec
73eb133e8f7a167d13c02f3db96274ae5e7152e7
/a.py
14dff844ad05865bc4737459fb420fd4b68ca83b
[]
no_license
yunhom/TestGit
1479ccb7976a97cc5d3ce18ff9f9afde8643ad5e
d6f915f04417a349312b71c1da30e4d01af87f6c
refs/heads/master
2021-01-17T17:46:25.283114
2017-12-28T19:40:14
2017-12-28T19:40:14
61,826,147
0
0
null
null
null
null
UTF-8
Python
false
false
2,833
py
import urllib.request from urllib import error from bs4 import BeautifulSoup import os.path import re import operator # 通过中国气象局抓取到所有的城市编码 # 中国气象网基地址 weather_base_url = "http://www.weather.com.cn" # 华北天气预报url weather_hb_url = "http://www.weather.com.cn/textFC/hb.shtml#" # 获得城市列表链接 def get_city_list_url(): city_list_url = [] weather_hb_resp = urllib.request.urlopen(weather_hb_url) weather_hb_html = weather_hb_resp.read().decode('utf-8') weather_hb_soup = BeautifulSoup(weather_hb_html, 'html.parser') weather_box = weather_hb_soup.find(attrs={'class': 'lqcontentBoxheader'}) weather_a_list = weather_box.findAll('a') for i in weather_a_list: city_list_url.append(weather_base_url + i['href']) return city_list_url # 根据传入的城市列表url获取对应城市编码 def get_city_code(city_list_url): city_code_dict = {} # 创建一个空字典 city_pattern = re.compile(r'^<a.*?weather/(.*?).s.*</a>$') # 获取城市编码的正则 weather_hb_resp = urllib.request.urlopen(city_list_url) weather_hb_html = weather_hb_resp.read().decode('utf-8') weather_hb_soup = BeautifulSoup(weather_hb_html, 'html.parser') # 需要过滤一波无效的 div_conMidtab = weather_hb_soup.find_all(attrs={'class': 'conMidtab', 'style': ''}) for mid in div_conMidtab: tab3 = mid.find_all(attrs={'class': 'conMidtab3'}) for tab in tab3: trs = tab.findAll('tr') for tr in trs: a_list = tr.findAll('a') for a in a_list: if a.get_text() != "详情": # 正则拿到城市编码 city_code = city_pattern.match(str(a)).group(1) city_name = a.string city_code_dict[city_code] = city_name return city_code_dict # 写入文件中 def write_to_file(city_code_list): try: with open('/root/city_code.txt', "w+") as f: for city in city_code_list: f.write(city[0] + ":" + city[1] + "\n") except OSError as reason: print(str(reason)) else: print("文件写入完毕!") if __name__ == '__main__': city_result = {} # 创建一个空字典,用来存所有的字典 city_list = get_city_list_url() # get_city_code("http://www.weather.com.cn/textFC/guangdong.shtml") for i in city_list: print("开始查询:" + i) city_result.update(get_city_code(i)) # 根据编码从升序排列一波 sort_list = sorted(city_result.items(), key=operator.itemgetter(0)) # 保存到文件中 write_to_file(sort_list)
[ "noreply@github.com" ]
noreply@github.com
2a012620dfe09c0f6c1c04320e49696991285bed
8e6203db7383475f1c24a590f0456330b969bb4b
/optbinning/binning/distributed/plots.py
dba20f0cab79a00b42588937c020ed96d925680e
[ "Apache-2.0" ]
permissive
guillermo-navas-palencia/optbinning
6fdfc764a214052b4d7d8e0b59114f0a63e6d5a8
73aee82008ebe88b732430e7c5764da57fb4d3ae
refs/heads/master
2023-08-28T13:33:43.536143
2023-08-22T19:20:18
2023-08-22T19:20:18
231,076,826
377
91
Apache-2.0
2023-09-05T20:14:14
2019-12-31T11:17:44
Python
UTF-8
Python
false
false
1,370
py
""" Binning sketch plots. """ # Guillermo Navas-Palencia <g.navas.palencia@gmail.com> # Copyright (C) 2020 import matplotlib.pyplot as plt import numpy as np def plot_progress_divergence(df, divergence): n = len(df) n_add = df.n_add n_records = df.n_records div = df.divergence mv_div_mean = div.rolling(n, min_periods=1).mean() mv_div_std = div.rolling(n, min_periods=1).std() mv_div_std /= np.sqrt(np.arange(1, n+1)) div_low = np.maximum(0, div - mv_div_std * 1.959963984540054) div_high = div + mv_div_std * 1.959963984540054 div_label = "divergence ({:.5f})".format(div.values[-1]) mv_div_label = "moving mean ({:.5f})".format(mv_div_mean.values[-1]) mv_std_label = "standard error ({:.5f})".format(mv_div_std.values[-1]) plt.plot(n_records, div, label=div_label) plt.plot(n_records, mv_div_mean, linestyle="-.", color="green", label=mv_div_label) plt.fill_between(n_records, div_low, div_high, alpha=0.2, color="green", label=mv_std_label) plt.title("Progress after {:} add and {} processed records". format(int(n_add.values[-1]), int(n_records.values[-1])), fontsize=14) plt.xlabel("Processed records", fontsize=12) plt.ylabel("Divergence: {}".format(divergence), fontsize=12) plt.legend(fontsize=12) plt.show()
[ "g.navas.palencia@gmail.com" ]
g.navas.palencia@gmail.com
9a732ee14213ecf26239bb68f65c2699680d42d1
ff1b5b1ea9b9b67cd611458c962b19ba40294368
/codingdiagnostic/codingdiagnostic/buyLotsOfFruit.py
2eadf001f0f649c900b9237ac79a33f148220f31
[]
no_license
mahmoudbadawy243/AI-sheet-Dr-hossiny
05569bbf50dd70522c90f88fb4a396385a0a617f
12a17d162e080f9a1c7a9977a2efe4193c78816c
refs/heads/main
2023-08-27T18:14:16.341875
2021-10-28T05:13:38
2021-10-28T05:13:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,638
py
# buyLotsOfFruit.py # ----------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). """ To run this script, type python buyLotsOfFruit.py Once you have correctly implemented the buyLotsOfFruit function, the script should produce the output: Cost of [('apples', 2.0), ('pears', 3.0), ('limes', 4.0)] is 12.25 """ from __future__ import print_function fruitPrices = {'apples': 2.00, 'oranges': 1.50, 'pears': 1.75, 'limes': 0.75, 'strawberries': 1.00} def buyLotsOfFruit(orderList): """ orderList: List of (fruit, numPounds) tuples Returns cost of order """ totalCost = 0.0 for n,c in orderList: if n in fruitPrices: totalCost=totalCost+c*fruitPrices[n] else: print (n,"None") return None return totalCost # Main Method if __name__ == '__main__': "This code runs when you invoke the script from the command line" orderList = [('apples', 2.0), ('pears', 3.0), ('limes', 4.0)] print('Cost of', orderList, 'is', buyLotsOfFruit(orderList))
[ "noreply@github.com" ]
noreply@github.com
6c28dcf942f472f991296fca7296a7efb8fd6587
967fd4117c72c56000d779970f2c85cc8b661cfe
/BasicSyntax
c0013026d02294c840c2012b10d46212db3662ca
[]
no_license
akrai37/Python-programs
afe0761eb56c81e36bba926b69cc571ad9ac6d62
866fdd585f5c69de28a900e068818d635201fc44
refs/heads/master
2020-05-16T11:24:59.229346
2019-06-04T18:08:41
2019-06-04T18:08:41
183,015,646
1
0
null
null
null
null
UTF-8
Python
false
false
284
skill_completed = "Python Syntax" exercises_completed = 13 #The amount of points for each exercise may change, because points don't exist yet points_per_exercise = 5 point_total = 100 point_total += exercises_completed*points_per_exercise print("I got "+str(point_total)+" points!")
[ "noreply@github.com" ]
noreply@github.com
bcaf40cdeb60c459304ff421cdf6b8ff1a525c1c
4ec1590f65fd7dc1326455876bff3c0b4cb8d7a6
/Lib/site-packages/sqlalchemy/testing/profiling.py
b034dafbf78cbc612521cffcc0e7f4377700c706
[]
no_license
Raja3131/JobsFastapi
b67950cc2e4560f6c76a4008f3052187afafb4b8
b56cf4cbaa3fcb09ad873fd91467923ff67d705b
refs/heads/main
2023-07-24T14:18:16.137728
2021-08-31T05:10:18
2021-08-31T05:10:18
401,579,190
0
0
null
null
null
null
UTF-8
Python
false
false
9,018
py
# testing/profiling.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Profiling support for unit and performance tests. These are special purpose profiling methods which operate in a more fine-grained way than nose's profiling plugin. """ import collections import contextlib import os import platform import pstats import sys from . import config from .util import gc_collect from ..util import update_wrapper try: import cProfile except ImportError: cProfile = None _current_test = None # ProfileStatsFile instance, set up in plugin_base _profile_stats = None class ProfileStatsFile(object): """Store per-platform/fn profiling results in a file. We're still targeting Py2.5, 2.4 on 0.7 with no dependencies, so no json lib :( need to roll something silly """ def __init__(self, filename): self.force_write = ( config.options is not None and config.options.force_write_profiles ) self.write = self.force_write or ( config.options is not None and config.options.write_profiles ) self.fname = os.path.abspath(filename) self.short_fname = os.path.split(self.fname)[-1] self.data = collections.defaultdict( lambda: collections.defaultdict(dict) ) self._read() if self.write: # rewrite for the case where features changed, # etc. self._write() @property def platform_key(self): dbapi_key = config.db.name + "_" + config.db.driver if config.db.name == "sqlite" and config.db.dialect._is_url_file_db( config.db.url ): dbapi_key += "_file" # keep it at 2.7, 3.1, 3.2, etc. for now. py_version = ".".join([str(v) for v in sys.version_info[0:2]]) platform_tokens = [ platform.machine(), platform.system().lower(), platform.python_implementation().lower(), py_version, dbapi_key, ] platform_tokens.append( "nativeunicode" if config.db.dialect.convert_unicode else "dbapiunicode" ) _has_cext = config.requirements._has_cextensions() platform_tokens.append(_has_cext and "cextensions" or "nocextensions") return "_".join(platform_tokens) def has_stats(self): test_key = _current_test return ( test_key in self.data and self.platform_key in self.data[test_key] ) def result(self, callcount): test_key = _current_test per_fn = self.data[test_key] per_platform = per_fn[self.platform_key] if "counts" not in per_platform: per_platform["counts"] = counts = [] else: counts = per_platform["counts"] if "current_count" not in per_platform: per_platform["current_count"] = current_count = 0 else: current_count = per_platform["current_count"] has_count = len(counts) > current_count if not has_count: counts.append(callcount) if self.write: self._write() result = None else: result = per_platform["lineno"], counts[current_count] per_platform["current_count"] += 1 return result def replace(self, callcount): test_key = _current_test per_fn = self.data[test_key] per_platform = per_fn[self.platform_key] counts = per_platform["counts"] current_count = per_platform["current_count"] if current_count < len(counts): counts[current_count - 1] = callcount else: counts[-1] = callcount if self.write: self._write() def _header(self): return ( "# %s\n" "# This file is written out on a per-environment basis.\n" "# For each test in aaa_profiling, the corresponding " "function and \n" "# environment is located within this file. " "If it doesn't exist,\n" "# the test is skipped.\n" "# If a callcount does exist, it is compared " "to what we received. \n" "# assertions are raised if the counts do not match.\n" "# \n" "# To add a new callcount test, apply the function_call_count \n" "# decorator and re-run the tests using the --write-profiles \n" "# option - this file will be rewritten including the new count.\n" "# \n" ) % (self.fname) def _read(self): try: profile_f = open(self.fname) except IOError: return for lineno, line in enumerate(profile_f): line = line.strip() if not line or line.startswith("#"): continue test_key, platform_key, counts = line.split() per_fn = self.data[test_key] per_platform = per_fn[platform_key] c = [int(count) for count in counts.split(",")] per_platform["counts"] = c per_platform["lineno"] = lineno + 1 per_platform["current_count"] = 0 profile_f.close() def _write(self): print(("Writing profile file %s" % self.fname)) profile_f = open(self.fname, "w") profile_f.write(self._header()) for test_key in sorted(self.data): per_fn = self.data[test_key] profile_f.write("\n# TEST: %s\n\n" % test_key) for platform_key in sorted(per_fn): per_platform = per_fn[platform_key] c = ",".join(str(count) for count in per_platform["counts"]) profile_f.write("%s %s %s\n" % (test_key, platform_key, c)) profile_f.close() def function_call_count(variance=0.05, times=1, warmup=0): """Assert a target for a test case's function call count. The main purpose of this assertion is to detect changes in callcounts for various functions - the actual number is not as important. Callcounts are stored in a file keyed to Python version and OS platform information. This file is generated automatically for new tests, and versioned so that unexpected changes in callcounts will be detected. """ def decorate(fn): def wrap(*args, **kw): for warm in range(warmup): fn(*args, **kw) timerange = range(times) with count_functions(variance=variance): for time in timerange: rv = fn(*args, **kw) return rv return update_wrapper(wrap, fn) return decorate @contextlib.contextmanager def count_functions(variance=0.05): if cProfile is None: raise config._skip_test_exception("cProfile is not installed") if not _profile_stats.has_stats() and not _profile_stats.write: config.skip_test( "No profiling stats available on this " "platform for this function. Run tests with " "--write-profiles to add statistics to %s for " "this platform." % _profile_stats.short_fname ) gc_collect() pr = cProfile.Profile() pr.enable() # began = time.time() yield # ended = time.time() pr.disable() # s = compat.StringIO() stats = pstats.Stats(pr, stream=sys.stdout) # timespent = ended - began callcount = stats.total_calls expected = _profile_stats.result(callcount) if expected is None: expected_count = None else: line_no, expected_count = expected print(("Pstats calls: %d Expected %s" % (callcount, expected_count))) stats.sort_stats("cumulative") stats.print_stats() if expected_count: deviance = int(callcount * variance) failed = abs(callcount - expected_count) > deviance if failed or _profile_stats.force_write: if _profile_stats.write: _profile_stats.replace(callcount) else: raise AssertionError( "Adjusted function call count %s not within %s%% " "of expected %s, platform %s. Rerun with " "--write-profiles to " "regenerate this callcount." % ( callcount, (variance * 100), expected_count, _profile_stats.platform_key, ) )
[ "kingraja673@gmail.com" ]
kingraja673@gmail.com
142b4edaf5e0cb5022cd5869f8cbdf4542e77689
a4df0ee67d0d56fc8595877470318aed20dd4511
/vplexapi-6.2.0.3/vplexapi/models/health_state.py
819d13f492a6fb68862c506a14264a4633267ac3
[ "Apache-2.0" ]
permissive
QD888/python-vplex
b5a7de6766840a205583165c88480d446778e529
e2c49faee3bfed343881c22e6595096c7f8d923d
refs/heads/main
2022-12-26T17:11:43.625308
2020-10-07T09:40:04
2020-10-07T09:40:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,553
py
# coding: utf-8 """ VPlex REST API A defnition for the next-gen VPlex API # noqa: E501 OpenAPI spec version: 0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class HealthState(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ allowed enum values """ UNKNOWN = "unknown" OK = "ok" DEGRADED = "degraded" MINOR_FAILURE = "minor-failure" MAJOR_FAILURE = "major-failure" CRITICAL_FAILURE = "critical_failure" NON_RECOVERABLE_ERROR = "non-recoverable-error" ISOLATED = "isolated" """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self): # noqa: E501 """HealthState - a model defined in Swagger""" # noqa: E501 self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, HealthState): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "anil.degwekar@emc.com" ]
anil.degwekar@emc.com
3ec19460ce437a87592c19e706dffcfc90cf10ba
70b1c91530b28d86e0fe8f46187b33322a6b9228
/backend/manage.py
00289a0b69ac55cbdc207727fa8d516788743952
[]
no_license
crowdbotics-apps/satsuscreen-dev-1528
34fd3d6a3c4a717dcc657eb8ef055e736f33b70d
9b910435fc4ef034efe521985446055c688d52d7
refs/heads/master
2022-04-04T20:58:24.447428
2020-01-21T17:16:51
2020-01-21T17:16:51
235,398,078
0
0
null
null
null
null
UTF-8
Python
false
false
640
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'satsuscreen_dev_1528.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "team@crowdbotics.com" ]
team@crowdbotics.com
05f98c995114c13d415121f855678ae770c9123b
d93fe0484fc3b32c8fd9b33cc66cfd636a148ec4
/AtCoder/ABC-D/107probD.py
261c5013ca5189665dd06803268802f1623a399f
[]
no_license
wattaihei/ProgrammingContest
0d34f42f60fa6693e04c933c978527ffaddceda7
c26de8d42790651aaee56df0956e0b206d1cceb4
refs/heads/master
2023-04-22T19:43:43.394907
2021-05-02T13:05:21
2021-05-02T13:05:21
264,400,706
0
0
null
null
null
null
UTF-8
Python
false
false
1,046
py
# 足す時は0~iまで一律に足し、返すのはi番目の値 class imosBIT(): def __init__(self, N): self.N = N self.bit = [0 for _ in range(self.N+1)] def __str__(self): ret = [] for i in range(1, self.N+1): ret.append(self.__getitem__(i)) return "[" + ", ".join([str(a) for a in ret]) + "]" def __getitem__(self, i): s = 0 while i > 0: s += self.bit[i] i -= i & -i return s def add(self, i, x): while i <= self.N: self.bit[i] += x i += i & -i import sys input = sys.stdin.readline N = int(input()) A = list(map(int, input().split())) l = 0 r = max(A) + 1 while r-l > 1: x = (l+r)//2 P = [0] for a in A: p = +1 if a >= x else -1 P.append(P[-1]+p) score = 0 bit = imosBIT(2*N+5) for p in P: p += N+1 score += bit[p] bit.add(p, 1) if score >= (N*(N+1)//2+1)//2: l = x else: r = x print(l)
[ "wattaihei.rapyuta@gmail.com" ]
wattaihei.rapyuta@gmail.com
3cda1ae2b4cd6cb0ed54b4906fae385788620fcd
1e652f1ef9b9a3688d1f8eafc0c7858a698b70e8
/01_Replication/03_Motifs/Motifs.py
472e4eb1497abd0018f802686bea6c846bb0878d
[]
no_license
mtleis/Bioinformatics-Specialisation-UC
2f269f60d2a8dbfbcef7663eb807a5f2a22c954d
aa7485d841f26b290276f209936f11a1af8e6e1c
refs/heads/master
2020-04-25T12:40:35.240960
2019-05-28T07:31:51
2019-05-28T07:31:51
172,785,299
0
0
null
null
null
null
UTF-8
Python
false
false
2,129
py
def Count(Motifs): count = {} k = len(Motifs[0]) for symbol in "ACGT": count[symbol] = [] for j in range(k): count[symbol].append(0) t = len(Motifs) for i in range(t): for j in range(k): symbol = Motifs[i][j] count[symbol][j] += 1 return count # Input: A list of kmers Motifs # Output: the profile matrix of Motifs, as a dictionary of lists. def Profile(Motifs): t = len(Motifs) k = len(Motifs[0]) profile = {} # insert your code here count = Count(Motifs) for symbol in 'ACGT': profile[symbol] = [] for i in range(k): sum = 0 for symbol in 'ACGT': sum = sum + count[symbol][i] for symbol in 'ACGT': profile[symbol].append(count[symbol][i]/sum) return profile # Input: A set of kmers Motifs # Output: A consensus string of Motifs. def Consensus(Motifs): consensus = "" k = len(Motifs[0]) count = Count(Motifs) for j in range(k): m = 0 frequentSymbol = "" for symbol in "ACGT": if count[symbol][j] > m: m = count[symbol][j] frequentSymbol = symbol consensus += frequentSymbol return consensus # Input: A set of kmers Motifs # Output: A consensus string of Motifs. def Consensus(Motifs): consensus = "" k = len(Motifs[0]) count = Count(Motifs) for j in range(k): m = 0 frequentSymbol = "" for symbol in "ACGT": if count[symbol][j] > m: m = count[symbol][j] frequentSymbol = symbol consensus += frequentSymbol return consensus # Input: A set of k-mers Motifs # Output: The score of these k-mers. def Score(Motifs): consensus = Consensus(Motifs) score = 0 for i in range(len(Motifs)): for k in range(len(consensus)): if consensus[k] != Motifs[i][k]: score += 1 return score Motifs = ["ATGCA", "TGGCA", "ATGCT"] print(Count(Motifs)) print(Profile(Motifs)) print(Consensus(Motifs)) print(Score(Motifs))
[ "m.tleis@liacs.leidenuniv.nl" ]
m.tleis@liacs.leidenuniv.nl
1dadfb379c81c86bb5dc817f66cd29c2fda380ad
e00d41c9f4045b6c6f36c0494f92cad2bec771e2
/programming/language/python/python-importlib_resources/actions.py
039be24d23edfb7a60cf2f14d2e783d0ae5ac760
[]
no_license
pisilinux/main
c40093a5ec9275c771eb5fb47a323e308440efef
bfe45a2e84ea43608e77fb9ffad1bf9850048f02
refs/heads/master
2023-08-19T00:17:14.685830
2023-08-18T20:06:02
2023-08-18T20:06:02
37,426,721
94
295
null
2023-09-14T08:22:22
2015-06-14T19:38:36
Python
UTF-8
Python
false
false
383
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 3. # See the file http://www.gnu.org/licenses/gpl.txt from pisi.actionsapi import shelltools from pisi.actionsapi import pythonmodules shelltools.export("SETUPTOOLS_SCM_PRETEND_VERSION","1.5.0") def build(): pythonmodules.compile() def install(): pythonmodules.install()
[ "bluedevil@sctzine.com" ]
bluedevil@sctzine.com
0e3b552414f8ead8c3344be3c90ef387fb41e9b2
8f359c04efb43034f2aa2fa3aa96beaa407d45bb
/ps1/house_hunting_partC.py
57443545924dbcd413a2ffa20249216d5c4cdb75
[]
no_license
Clark229Kent/mitocw6.0001
d6f89692d0c90113e1e8ed06176c4de584d6dd8f
b29a3b6a72433e18374475a50790da91049a020f
refs/heads/main
2023-01-20T22:09:30.366720
2020-11-29T01:27:33
2020-11-29T01:27:33
313,934,081
0
0
null
null
null
null
UTF-8
Python
false
false
1,747
py
total_cost = 1000000 semi_annual_raise = 0.07 annual_return = 0.04 starting_salary = float(input("Enter your starting salary: ")) portion_down_payment = total_cost * 0.25 current_savings = 0 epsilon = 100 number_of_months = 0 def three_year_savings(current_savings, guess, semi_annual_raise, annual_return, starting_salary): for month in range(0,36): if (month + 1) % 6 == 0 and month != 0: starting_salary += semi_annual_raise * starting_salary current_savings += guess * starting_salary / 12 + current_savings * annual_return / 12 else: current_savings += guess * starting_salary / 12 + current_savings * annual_return / 12 return current_savings highest_three_year = three_year_savings(0, 1, 0.07, 0.04, starting_salary) if abs(highest_three_year - portion_down_payment) >= epsilon and highest_three_year < portion_down_payment: print("It is not possible to pay the down payment in three years. Your maximum savings:", highest_three_year) else: low = 0 high = 10000 guess = int((low + high) / 2) guessed_savings_rate = guess / 10000 step = 0 savings = three_year_savings(0, guessed_savings_rate, 0.07, 0.04, starting_salary) while abs(savings - portion_down_payment) >= epsilon and savings < portion_down_payment: if savings > portion_down_payment: low = guess else: high = guess step += 1 guess = int((high + low) / 2) print(guess) guessed_savings_rate = guess/10000 savings = three_year_savings(0, guessed_savings_rate, 0.07, 0.04, starting_salary) print("Best savings rate:", guessed_rate) print("Steps in bisection search:", step)
[ "noreply@github.com" ]
noreply@github.com
5f033902c9de105ad251faa24d395812abd56674
c1ea35519cf44101b873cd752e9eebef9e491813
/zi.py
02d17cfb7465f9a2cfed9d157f9ddcfedd4c8241
[ "MIT" ]
permissive
appendixisu/chooseZi
9aa4190b9e9bfa8ceb211427edeb723469a7af71
579dce0948fb652919eb19931b5af9ed5ebed065
refs/heads/master
2023-04-05T22:14:02.444096
2021-03-30T07:23:48
2021-03-30T07:23:48
287,963,730
1
1
MIT
2020-08-17T11:49:11
2020-08-16T14:49:40
JavaScript
UTF-8
Python
false
false
2,906
py
# !/usr/bin/python # coding:utf-8 # import requests # from bs4 import BeautifulSoup # import io # import time # def sleeptime(hour,min,sec): # return hour*3600 + min*60 + sec # url = "https://shufa.supfree.net/raky.asp?zi=%BF%C9" # resp = requests.get(url) # soup = BeautifulSoup(resp.text, 'lxml') # print(soup.prettify()) from selenium import webdriver import time import urllib import urllib.request from urllib.parse import quote import os from opencc import OpenCC from PIL import Image from parse4808 import read4808 def gif2jpg(path): im = Image.open(path) im = im.convert('RGB') file = path.split('.') im.save(file[0]+'.jpg', 'JPEG', quality=85) if os.path.isfile(path): os.remove(path) word = read4808() # 存圖位置 local_path = '/Users/wei-chilan/Documents/python/chooseZi/imgs' # 目標元素的xpath xpath = '//div[@class="cdiv"]/ul/li/a/img' # 啟動chrome瀏覽器 chromeDriver = r'/Users/wei-chilan/webDriverTool/chromedriver' # chromedriver檔案放的位置 driver = webdriver.Chrome(chromeDriver) # 最大化窗口,因為每一次爬取只能看到視窗内的圖片 driver.maximize_window() # 紀錄下載過的圖片網址,避免重複下載 img_url_dic = {} # 簡體字轉繁體字 cc = OpenCC('s2t') # skip del(word[0:1646]) m = 0 # 圖片編號 for w in word: # 爬取頁面網址 print('left:', len(word) - word.index(w), 'now:', w) url = 'https://shufa.supfree.net/raky.asp?zi=' + quote(w.encode('gbk')) # 瀏覽器打開爬取頁面 driver.get(url) for element in driver.find_elements_by_xpath(xpath): # time.sleep(0.5) try: img_url = element.get_attribute('src') img_alt = element.get_attribute('alt').replace(' ', '').replace('“','').replace('”','') img_alt = cc.convert(img_alt) # print('img_alt:', cc.convert(img_alt)) # 保存圖片到指定路徑 if img_url != None and not img_url in img_url_dic: img_url_dic[img_url] = '' m += 1 # print('img_url:', img_url) ext = img_url.split('/')[-1] # print('ext:', ext) filename = img_alt + '_' + ext # print('filename:', filename) # 保存圖片 filePath = os.path.join(local_path , filename) print('filePath:', filePath) if not os.path.exists(local_path): print('create file') os.mkdir(local_path) urllib.request.urlretrieve(img_url, filePath) gif2jpg(filePath) except OSError as e: print('發生OSError!') print('Error:', e.errno, e.filename, e.strerror) continue driver.close()
[ "andy10189911@hotmail.com" ]
andy10189911@hotmail.com
9c85a3150d50dce18e37c4fd3faae85c74370fc8
32b628faa8b8ca8d11d8837cc495c0013f58b71a
/scripts/matrix2matrix.py
db91bd6468fb706939d9b97cc2c5810de2e084d0
[ "BSD-2-Clause" ]
permissive
jaquol/cgat
40b81617625ae9f0ba352caf38c2afd6a13c58f6
d26fab0dff2192d4accc128d2895e668254d7b65
refs/heads/master
2021-01-12T22:33:46.186451
2016-01-15T16:56:43
2016-01-15T16:56:43
49,868,597
1
0
null
2016-01-18T10:10:24
2016-01-18T10:10:24
null
UTF-8
Python
false
false
17,852
py
''' matrix2matrix.py - operate on matrices ====================================== :Author: Andreas Heger :Release: $Id$ :Date: |today| :Tags: Python Purpose ------- * full: full matrix with row and column headers (unless --no-headers is given.) * sparse: sparse matrix * phylip: phylip formatted matrix, but using tabs as separators and long names. Methods: sort-rows sort rows by order in --rows-tsv-file sort-columns sort columns by order in --columns-tsv-file mask-rows set rows matching ids in --rows-tsv-file to --value mask-columns set columns matching ids in --columns-tsv-file to --value mask-rows-and-columns set rows and columns matching ids in --columns-tsv-file to --value (and) Usage ----- Example:: python matrix2matrix.py --help Type:: python matrix2matrix.py --help for command line help. Command line options -------------------- ''' import sys import math import StringIO import numpy import CGAT.Experiment as E import CGAT.IOTools as IOTools import CGAT.CorrespondenceAnalysis as CorrespondenceAnalysis import CGAT.MatlabTools as MatlabTools import scipy def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if argv is None: argv = sys.argv parser = E.OptionParser( version="%prog version: $Id: matrix2matrix.py 2782 2009-09-10 11:40:29Z andreas $") parser.add_option("-m", "--method", dest="methods", type="choice", action="append", choices=("normalize-by-min-diagonal", "normalize-by-column", "log", "ln", "negzero2value", "set-diagonal", "subtract-matrix", "mix-matrix", "normalize-by-matrix", "normalize-by-column-max", "normalize-by-row-max", "normalize-by-column-min", "normalize-by-row-min", "normalize-by-column-median", "normalize-by-row-median", "normalize-by-column-mean", "normalize-by-row-mean", "normalize-by-column-total", "normalize-by-row-total", "correspondence-analysis", "normalize-by-value", "add-value", "sort-rows", "sort-columns", "transpose", "upper-bound", "lower-bound", "subtract-first-col", "multiply-by-value", "divide-by-value", "mask-rows", "mask-columns", "mask-rows-and-columns", "symmetrize-mean", "symmetrize-max", "symmetrize-min", ), help="""method to use [default=%default]""" ) parser.add_option("-s", "--scale", dest="scale", type="float", help="factor to scale matrix by [default=%default].") parser.add_option("-f", "--format", dest="format", type="string", help="output number format [default=%default].") parser.add_option("--rows-tsv-file", dest="filename_rows", type="string", help="filename with rows to mask [default=%default].") parser.add_option("--columns-tsv-file", dest="filename_columns", type="string", help="filename with columns to mask [default=%default].") parser.add_option("-p", "--parameters", dest="parameters", type="string", help="Parameters for various functions.") parser.add_option("-t", "--header-names", dest="headers", action="store_true", help="matrix has row/column headers.") parser.add_option("--no-headers", dest="headers", action="store_false", help="matrix has no row/column headers.") parser.add_option("-a", "--value", dest="value", type="float", help="value to use for various algorithms.") parser.add_option("-i", "--input-format", dest="input_format", type="choice", choices=("full", "sparse", "phylip"), help="""input format for matrix.""" ) parser.add_option("-o", "--output-format", dest="output_format", type="choice", choices=("full", "sparse", "phylip"), help="""output format for matrix.""" ) parser.add_option("--missing-value", dest="missing", type="float", help="value to use for missing values. If not set, missing values will cause the script to fail [default=%default].") parser.set_defaults( methods=[], scale=1.0, headers=True, format="%6.4f", output_format="full", input_format="full", value=0.0, parameters="", write_separators=True, filename_rows=None, filename_columns=None, missing=None, ) (options, args) = E.Start(parser) options.parameters = options.parameters.split(",") lines = filter(lambda x: x[0] != "#", sys.stdin.readlines()) if len(lines) == 0: raise IOError("no input") chunks = filter(lambda x: lines[x][0] == ">", range(len(lines))) if not chunks: options.write_separators = False chunks = [-1] chunks.append(len(lines)) if options.filename_rows: row_names, n = IOTools.ReadList(open(options.filename_rows, "r")) if options.filename_columns: column_names, n = IOTools.ReadList(open(options.filename_columns, "r")) for chunk in range(len(chunks) - 1): try: raw_matrix, row_headers, col_headers = MatlabTools.readMatrix(StringIO.StringIO("".join(lines[chunks[chunk] + 1:chunks[chunk + 1]])), format=options.input_format, headers=options.headers, missing=options.missing) except ValueError, msg: E.warn("matrix could not be read: %s" % msg) continue nrows, ncols = raw_matrix.shape E.debug("read matrix: %i x %i, %i row titles, %i colum titles" % (nrows, ncols, len(row_headers), len(col_headers))) parameter = 0 for method in options.methods: matrix = numpy.reshape(numpy.array(raw_matrix), raw_matrix.shape) if method in ("normalize-by-matrix", "subtract-matrix", "mix-matrix", "add-matrix"): other_matrix, other_row_headers, other_col_headers = MatlabTools.ReadMatrix(open(options.parameters[parameter], "r"), headers=options.headers) other_nrows, other_ncols = other_matrix.shape if options.loglevel >= 2: options.stdlog.write("# read second matrix from %s: %i x %i, %i row titles, %i colum titles.\n" % (options.parameters[parameter], other_nrows, other_ncols, len(other_row_headers), len(other_col_headers))) parameter += 1 elif method == "normalize-by-min-diagonal": for x in range(nrows): for y in range(ncols): m = min(raw_matrix[x, x], raw_matrix[y, y]) if m > 0: matrix[x, y] = raw_matrix[x, y] / m elif method == "normalize-by-column": if nrows != ncols: raise "only supported for symmeric matrices." for x in range(nrows): for y in range(ncols): if raw_matrix[y, y] > 0: matrix[x, y] = raw_matrix[x, y] / raw_matrix[y, y] elif method == "normalize-by-value": matrix = raw_matrix / float(options.parameters[parameter]) parameter += 1 elif method == "normalize-by-row": if nrows != ncols: raise "only supported for symmeric matrices." for x in range(nrows): for y in range(ncols): if raw_matrix[y, y] > 0: matrix[x, y] = raw_matrix[x, y] / raw_matrix[x, x] elif method == "subtract-first-col": for x in range(nrows): for y in range(ncols): matrix[x, y] -= raw_matrix[x, 0] elif method.startswith("normalize-by-column"): if method.endswith("max"): f = max elif method.endswith("min"): f = min elif method.endswith("median"): f = scipy.median elif method.endswith("mean"): f = scipy.mean elif method.endswith("total"): f = sum for y in range(ncols): m = f(matrix[:, y]) if m != 0: for x in range(nrows): matrix[x, y] = matrix[x, y] / m elif method.startswith("normalize-by-row"): if method.endswith("max"): f = max elif method.endswith("min"): f = min elif method.endswith("median"): f = scipy.median elif method.endswith("mean"): f = scipy.mean elif method.endswith("total"): f = sum for x in range(nrows): m = f(matrix[x, :]) if m != 0: for y in range(ncols): matrix[x, y] = raw_matrix[x, y] / m elif method == "negzero2value": # set zero/negative values to a value for x in range(nrows): for y in range(ncols): if matrix[x, y] <= 0: matrix[x, y] = options.value elif method == "minmax": # set zero/negative values to a value for x in range(nrows): for y in range(ncols): matrix[x, y], matrix[y, x] = \ min(matrix[x, y], matrix[y, x]), \ max(matrix[x, y], matrix[y, x]) elif method == "log": # apply log to all values. for x in range(nrows): for y in range(ncols): if matrix[x, y] > 0: matrix[x, y] = math.log10(matrix[x, y]) elif method == "ln": for x in range(nrows): for y in range(ncols): if matrix[x, y] > 0: matrix[x, y] = math.log(matrix[x, y]) elif method == "transpose": matrix = numpy.transpose(matrix) row_headers, col_headers = col_headers, row_headers nrows, ncols = ncols, nrows elif method == "mul": matrix = numpy.dot(matrix, numpy.transpose(matrix)) col_headers = row_headers elif method == "multiply-by-value": matrix *= options.value elif method == "divide-by-value": matrix /= options.value elif method == "add-value": matrix += options.value elif method == "angle": # write angles between col vectors v1 = numpy.sqrt(numpy.sum(numpy.power(matrix, 2), 0)) matrix = numpy.dot(numpy.transpose(matrix), matrix) row_headers = col_headers nrows = ncols for x in range(nrows): for y in range(ncols): matrix[x, y] /= v1[x] * v1[y] elif method == "euclid": # convert to euclidean distance matrix matrix = numpy.zeros((ncols, ncols), numpy.float) for c1 in range(0, ncols - 1): for c2 in range(c1 + 1, ncols): for r in range(0, nrows): d = raw_matrix[r][c1] - raw_matrix[r][c2] matrix[c1, c2] += (d * d) matrix[c2, c1] = matrix[c1, c2] matrix = numpy.sqrt(matrix) row_headers = col_headers nrows = ncols elif method.startswith("symmetrize"): f = method.split("-")[1] if f == "max": f = max elif f == "min": f = min elif f == "mean": f = lambda x, y: float(x + y) / 2 if nrows != ncols: raise ValueError( "symmetrize only available for symmetric matrices") if row_headers != col_headers: raise ValueError( "symmetrize not available for permuted matrices") for x in range(nrows): for y in range(ncols): matrix[x, y] = matrix[y, x] = f( matrix[x, y], matrix[y, x]) elif method == "sub": matrix = options.value - matrix elif method in ("lower-bound", "upper-bound"): boundary = float(options.parameters[parameter]) new_value = float(options.parameters[parameter + 1]) parameter += 2 if method == "upper-bound": for x in range(nrows): for y in range(ncols): if matrix[x, y] > boundary: matrix[x, y] = new_value else: for x in range(nrows): for y in range(ncols): if matrix[x, y] < boundary: matrix[x, y] = new_value elif method == "subtract-matrix": matrix = matrix - other_matrix elif method == "add-matrix": matrix = matrix + other_matrix elif method == "normalize-by-matrix": # set 0s to 1 in the other matrix for x in range(nrows): for y in range(ncols): if other_matrix[x, y] == 0: other_matrix[x, y] = 1.0 matrix = matrix / other_matrix elif method == "mix-matrix": for x in range(len(other_row_headers) - 1): for y in range(x + 1, len(other_col_headers)): matrix[x, y] = other_matrix[x, y] elif method == "set-diagonal": value = float(options.parameters[parameter]) for x in range(min(nrows, ncols)): matrix[x, x] = value parameter += 1 elif method == "transpose": matrix = numpy.transpose(raw_matrix) row_headers, col_headers = col_headers, row_headers elif method == "correspondence-analysis": row_indices, col_indices = CorrespondenceAnalysis.GetIndices( raw_matrix) map_row_new2old = numpy.argsort(row_indices) map_col_new2old = numpy.argsort(col_indices) matrix, row_headers, col_headers = CorrespondenceAnalysis.GetPermutatedMatrix(raw_matrix, map_row_new2old, map_col_new2old, row_headers=row_headers, col_headers=col_headers) elif method == "mask-rows": r = set(row_names) for x in range(len(row_headers)): if row_headers[x] in r: matrix[x, :] = options.value elif method == "mask-columns": r = set(column_names) for x in range(len(col_headers)): if col_headers[x] in r: matrix[:, x] = options.value elif method == "mask-rows-and-columns": r = set(row_names) c = set(column_names) for x in range(len(row_headers)): for y in range(len(col_headers)): if row_headers[x] in r and col_headers[y] in c: matrix[x, y] = options.value raw_matrix = numpy.reshape(numpy.array(matrix), matrix.shape) else: # for simple re-formatting jobs matrix = raw_matrix if options.write_separators: options.stdout.write(lines[chunks[chunk]]) MatlabTools.writeMatrix(sys.stdout, matrix, value_format=options.format, format=options.output_format, row_headers=row_headers, col_headers=col_headers) E.Stop() if __name__ == "__main__": sys.exit(main(sys.argv))
[ "andreas.heger@gmail.com" ]
andreas.heger@gmail.com
ecacb54265cd97d2192d5166ef0b87a3f1f27cb8
48cfcd07d07919da95d666c26d30f1b979666b1e
/env/bin/pilfont.py
8ea7d0d895cf1f35459b989947995924c3d97857
[]
no_license
asfcarter/vvm
4d390047ae77ec3030d7b64773f7f0bf519a3c7d
dd072dadc8794fc4354700285759571441758351
refs/heads/master
2021-01-20T09:01:37.222878
2015-05-05T10:18:53
2015-05-05T10:18:53
34,862,426
0
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
#!/home/asfcarter/vvm/env/bin/python # # The Python Imaging Library # $Id$ # # PIL raster font compiler # # history: # 1997-08-25 fl created # 2002-03-10 fl use "from PIL import" # from __future__ import print_function VERSION = "0.4" import glob, sys # drivers from PIL import BdfFontFile from PIL import PcfFontFile if len(sys.argv) <= 1: print("PILFONT", VERSION, "-- PIL font compiler.") print() print("Usage: pilfont fontfiles...") print() print("Convert given font files to the PIL raster font format.") print("This version of pilfont supports X BDF and PCF fonts.") sys.exit(1) files = [] for f in sys.argv[1:]: files = files + glob.glob(f) for f in files: print(f + "...", end=' ') try: fp = open(f, "rb") try: p = PcfFontFile.PcfFontFile(fp) except SyntaxError: fp.seek(0) p = BdfFontFile.BdfFontFile(fp) p.save(f) except (SyntaxError, IOError): print("failed") else: print("OK")
[ "asfcarter@yahoo.co.uk" ]
asfcarter@yahoo.co.uk
722c725f1db986f213a767b15664d2a33ca6efd9
0cf1f386f8e396f1ef0b1d558feb42a1c4c9c281
/myapp/store/__init__.py
dafe5cb4e9d3af981a278a59fdf4144ccdfa739d
[]
no_license
leomorpho/flask-website
5583add9cef929c012c830c9b9006432496b35fb
4ca91a37f1424c5f8bcdddc7d1e4ef5b97f86605
refs/heads/master
2023-05-13T10:32:27.734249
2019-06-17T20:36:50
2019-06-17T20:36:50
191,808,022
0
0
null
null
null
null
UTF-8
Python
false
false
95
py
from flask import Blueprint bp = Blueprint('store', __name__) from myapp.store import routes
[ "leonard.audibert@pm.me" ]
leonard.audibert@pm.me
75a15a27dd983c7914437cc5b9cb7b8699823b7a
69117d2879189663a31c5f642e33cf9d1dd6d6a3
/apps/staff/urls.py
59d0c436ac2bba32ab6fb3544f235afca1a42493
[]
no_license
code-axassin/risha-professional-studies
70f35052cd7237d50982e6a7a7efa3130588b9c7
550ff690fb62b2eda241094394e580336a9ad416
refs/heads/main
2023-06-11T13:55:55.893574
2021-07-05T11:45:56
2021-07-05T11:45:56
382,754,489
0
0
null
null
null
null
UTF-8
Python
false
false
860
py
from django.urls import path from apps.staff.api import api_delete_staff from apps.staff.views import AllStaffListView, add_staff, view_staff, edit_staff, StaffUpdate, StaffCreate, staff_search urlpatterns = [ path('', AllStaffListView.as_view(), name="all_staff"), path('add/', add_staff, name="add_staff"), #path('add/save/', add_staff_save, name="add_staff_save"), path('add/save/', StaffCreate.as_view(), name="add_staff_save"), path('view/<int:staff_id>/', view_staff, name="view_staff"), path('edit/<int:staff_id>/', edit_staff, name="edit_staff"), path('edit/save/<int:id>/', StaffUpdate.as_view(), name="edit_staff_save"), path('', view_staff, name="view_staff"), path('api/delete_staff/<int:staff_id>/', api_delete_staff, name="api_delete_staff"), path('staff-search/', staff_search, name="staff_search"), ]
[ "76621558+code-axassin@users.noreply.github.com" ]
76621558+code-axassin@users.noreply.github.com
adcaf241cc21e8b53902c8fd088e45563c540721
68f3146c44a4ef775cddd7418c31a14f5d4d3232
/cc_gen.py
74ae5ff090f2bb2b97b544da50127ca7ffc30d53
[ "MIT" ]
permissive
geixD/jardingUWU
1e4c2aa73226d8ab08ea72c33d433dbce78042fb
f45f852f1a3f7073e10ab55b4d2b70e47960c16d
refs/heads/main
2023-04-02T00:18:01.718837
2021-04-18T03:06:34
2021-04-18T03:06:34
358,755,309
0
0
null
null
null
null
UTF-8
Python
false
false
4,854
py
import os, time, sys, datetime from random import randint from huepy import * __version__ = "1.3.6" def cc_gen(bin): cc = "" if len(bin) != 16: while len(bin) != 16: bin += 'x' else: pass if len(bin) == 16: for x in range(15): if bin[x] in ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9"): cc += bin[x] continue elif bin[x] in ('x'): cc += str(randint(0,9)) else: print(bad(f"Invalid Format Bin: {bin}")) sys.exit() for i in range(10): check_cc = cc check_cc += str(i) if ValidCC(check_cc): cc = check_cc break else: check_cc = cc else: print(bad(f"Invalid Format BIN: {bin}")) return(cc) def ValidCC(card_number): # Luhn Algorithm sum = 0 num_digits = len(card_number) oddeven = num_digits & 1 for count in range(0, num_digits): digit = int(card_number[count]) if not (( count & 1 ) ^ oddeven ): digit = digit * 2 if digit > 9: digit = digit - 9 sum = sum + digit return ( (sum % 10) == 0 ) def dategen(month, year): if month == 'rnd' and year == 'rnd': now = datetime.datetime.now() month = int(randint(1, 12)) current_year = str(now.year) year = str(randint(int(current_year[-2:]) + 1, int(current_year[-2:]) + 6)) if month < 10: month = '0'+str(month) else: month = str(month) date = month + "|" + year return date elif month == 'rnd' and year != 'rnd': now = datetime.datetime.now() month = int(randint(1,12)) if month < 10: month = '0'+str(month) else: month = str(month) date = month + "|" + year return date elif month != 'rnd' and year == 'rnd': now = datetime.datetime.now() current_year = str(now.year) year = str(randint(int(current_year[-2:]) + 1, int(current_year[-2:]) + 6)) date = month + "|" + year return date elif month != 'rnd' and year != 'rnd': date = month + "|" + year return date def ccvgen(cvv): if cvv == 'rnd': ccv = "" num = randint(10,999) if num < 100: ccv = "0" + str(num) else: ccv = str(num) return(ccv) else: return(cvv) def clean(): if os.name == 'nt': os.system('cls') else: os.system('clear') def banner(): print(purple(""" :::. .XXr;;;rrX7 iWa, :@S rM .i;;i;;. Mi @ aXi:,,,iZ .M i2 X. i: @i a ir :r. S ,M Xi X.MM2. ,2MM8i 2Z ;S a;rXMMM @MMSiB. Xr ,8 2i.;:; : : ii;72 i, V V I T T T T T T T T T T O O O B .2 , , X. , V V I T T O O 0:.SX ;ai, 7 :: iS. 8i i; V V I T T O O 2X 7 rr.iXi,:rXX;,:r;i;iiX 2r V I T T O O O iW X :;,.7.. ..,.;i;;: iX M. M X .iiX::i::S7S, X. Br M , ;,XX7SXXX,, S M S0 i : : .. S Z2 @M: .:i ,: : ;;;::iiM0 :72XXBW88SXXi :i..;X2SXXrSXrrS72Xi :7ri: r:i;r;, ,07, ..:; ,ii. B ,;X2 ri .a X :2 Generador de CC \n""")) def main(): clean() banner() try: seses = int(input(info("Quantity > "))) counter = 0 BIN = input(info("BIN > ")) MONTH = input(info("Month [MM / RND] > ")).lower() YEAR = input(info("Year [YY / RND] > ")).lower() CVV = input(info("CVV [CVV / RND] > ")).lower() month = MONTH year = YEAR clean() banner() while counter != seses: print(good(cc_gen(BIN) + "|" + dategen(month, year) + "|" + ccvgen(CVV))) counter +=1 except: print(bad(yellow("An Error Ocurred..."))) sys.exit() if __name__ == "__main__": print(info(lightred(("An Error Ocurred...")))) else: main()
[ "noreply@github.com" ]
noreply@github.com
b6c63959eba8dbb8c0b937893309c42ae2c5647d
84bf3311d6b4977c1a86b9224e06092a9df5ab40
/solutions/circus.py
1bab03b6e6018fe7e0f56ad643ddd850c27bdc72
[]
no_license
walshification/advent-of-code-2017
ce2416d0121b085e43a6915938455be81db46bb0
afb5ea837af8a2e1a9f681f675172707452ef70c
refs/heads/master
2021-09-09T22:00:28.712406
2018-01-09T02:41:02
2018-01-09T02:41:02
112,861,940
0
0
null
2018-03-20T00:21:40
2017-12-02T17:25:31
Python
UTF-8
Python
false
false
4,107
py
import re from collections import defaultdict import yaml class Program: def __init__(self, program): children = [] if '->' in program: program, supports = program.split(' -> ') children.extend(supports.split(', ')) name = re.search('\w+|$', program).group() weight = re.search('\d+|$', program).group() self.name = name self.weight = int(weight) self.children = children self.parent = None self.total_weight = int(weight) class Pyramid: def __init__(self, programs): self.programs = {program.name: program for program in programs} for name, program in self.programs.items(): program.total_weight += sum( self.programs[child].weight for child in program.children ) self._root = None self._unbalanced_program = None @classmethod def build(cls, schemas): programs = [Program(schema) for schema in schemas] for program in programs: for other in programs: if program.name in other.children: program.parent = other.name return cls(programs) @property def root(self): if self._root is None: self._root = self._dig_up_root(self.programs[next(iter(self.programs))]) return self._root @property def unbalanced_program(self): if self._unbalanced_program is None: self._unbalanced_program = self._find_unbalanced_program(self.root) return self._unbalanced_program @property def weight_to_balance(self): sibling = [ self.programs[child] for child in self.programs[self.unbalanced_program.parent].children if child != self.unbalanced_program.name ][0] difference = sibling.total_weight - self.unbalanced_program.total_weight return self.unbalanced_program.weight + difference def is_balanced(self, program_name): program = self.programs[program_name] if not program.children: return True children_weights = set( self.programs[child].total_weight for child in program.children ) return len(children_weights) < 2 def _dig_up_root(self, arbitrary_program): if not arbitrary_program.parent: return arbitrary_program return self._dig_up_root(self.programs[arbitrary_program.parent]) def _supported_weight(self, programs): descendants = self._get_descendants(programs) return sum(descendant.weight for descendant in descendants) def _get_descendants(self, programs): if not programs: return [] children = [ self.programs[child] for program in programs for child in program.children ] return children + self._get_descendants(children) def _find_unbalanced_program(self, root): unbalanced = [ program.name for program in [root] if not self.is_balanced(program.name) ] if unbalanced: child_to_weights_mapping = { child: self.programs[child].total_weight for child in self.programs[unbalanced[0]].children } weight_count = defaultdict(int) for weight in child_to_weights_mapping.values(): weight_count[weight] += 1 oddball = [ child for child, weight in child_to_weights_mapping.items() if weight_count[weight] == 1 and self.programs[child].children ] if oddball: return self._find_unbalanced_program(self.programs[oddball[0]]) else: return root return root if __name__ == '__main__': with open('problem_inputs/circus.yaml', 'r') as programs: test_input = yaml.safe_load(programs) pyramid = Pyramid.build(test_input) print('Part One:', pyramid.root.name) print('Part Two:', pyramid.weight_to_balance, '1072')
[ "walshification@gmail.com" ]
walshification@gmail.com
9afa4e20081e1cfa380b6474b33c811305e13c9a
29623d43b2ab99e55a5d102e8d718015053073a3
/aliyun-python-sdk-mts/aliyunsdkmts/request/v20140618/QueryCensorJobListRequest.py
8bb5ce2996660555cc680f7e5f65657a90cfa511
[ "Apache-2.0" ]
permissive
zxsted/aliyun-openapi-python-sdk
ed41e1d93c63557ecfbcffb6c84f87d4ed2a7f59
a539d6e268fc07f314c5114c21ced4c8ead51dee
refs/heads/master
2021-05-13T19:58:10.000697
2018-01-09T11:16:55
2018-01-09T11:16:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,894
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class QueryCensorJobListRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Mts', '2014-06-18', 'QueryCensorJobList') def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_JobIds(self): return self.get_query_params().get('JobIds') def set_JobIds(self,JobIds): self.add_query_param('JobIds',JobIds) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId)
[ "haowei.yao@alibaba-inc.com" ]
haowei.yao@alibaba-inc.com
2bba30e05df174ce2a696b492bde945a1261ad21
cf302b8399ebfaf8af0baf905b2e928af604095d
/pages/migrations/0003_auto_20200523_0946.py
2be20337d701ddb85d4f3d33fbda1370b16183b3
[]
no_license
FabiolaLa/Webempresa
2dbec95417b218b89a85c819173e03f3c9ebe355
5f8786732be82371262632e511151989b1dd81f8
refs/heads/master
2022-08-26T00:21:24.654470
2020-05-23T19:24:21
2020-05-23T19:24:21
266,407,188
1
0
null
null
null
null
UTF-8
Python
false
false
422
py
# Generated by Django 3.0.3 on 2020-05-23 14:46 import ckeditor.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('pages', '0002_auto_20200522_1859'), ] operations = [ migrations.AlterField( model_name='page', name='content', field=ckeditor.fields.RichTextField(verbose_name='Contenido'), ), ]
[ "“fabi20laureano@gmail.com”" ]
“fabi20laureano@gmail.com”
007d6bb2431b517f4505925708b3e6528096adbd
cd5e93bc606960495287976c0d2c8e5df3c6375d
/main.py
f44f31b7b751ef252ac839a6fb5030b02dd53661
[]
no_license
luluiz01/ProjetoMineradorVagas
f5defb2eecfa2f7f291816ff5d2adcf7e7e99079
b89bf8c1b182017165f5a5a9d90b3756aa23060f
refs/heads/master
2020-09-05T03:07:10.075306
2020-01-25T18:15:20
2020-01-25T18:15:20
219,964,498
0
0
null
null
null
null
UTF-8
Python
false
false
897
py
import funcoes as f import bot import telepot import pprint import scraping as sc #print(soup) # url = 'https://www.apinfo.com/apinfo/inc/list4.cfm' # soup = f.pega_pagina(url) # print(soup) minerar = True if minerar: nome_arquivo = 'apinfo_pagina_1.html' soup = f.carrega_html(nome_arquivo) titulo = f.filtrarPeloTitulo(soup) #print(titulo) datas = f.filtrarPelaData(soup) #print(datas) cidade = f.filtrarPelaCidade(soup) #print(cidade) codigo = f.filtrarPeloCodigo(soup) #print(codigo) link = f.filtrarPeloLink(soup) #print(link) descricao = f.filtrarPelaDescricao(soup) #print(descricao) #token = bot.get_bot_info() #print(token) #update = bot.get_bot_update() #print(update) #mensagem = bot.send_messege() vagas = sc.pega_vagas(nome_arquivo) print("-----------------------------------") #print(vagas) dicio = sc.vagas_to_dict(vagas) print(dicio) bot.send_messege()
[ "luiz.pventura@gmail.com" ]
luiz.pventura@gmail.com
6383999b044cd69bf47c5f63f9a4dd3dc82f14b0
0cac657be64b0e01b20a6c8283ed89ad03a1deeb
/Capitulo 10/final.py
d65a4c1cf80720c3324fa26595a84926ea742d4a
[]
no_license
RenanMarcell/Intro-programacao-python
5b493cdfbed5a97e74e1be7bc60ef192e700b308
f1827d8ad52a83d0241f1fd408415d9c5f950f8a
refs/heads/master
2021-09-03T09:09:57.461812
2018-01-07T23:16:44
2018-01-07T23:16:44
114,700,062
0
0
null
2018-01-07T23:16:45
2017-12-19T00:08:33
Python
UTF-8
Python
false
false
8,539
py
import sys import pickle from functools import total_ordering from listagem_10_13 import ListaUnica from nome import Nome from tipotelefone import TipoTelefone from telefone import Telefone from agenda import TiposTelefone, Agenda, DadoAgenda, Telefones def nulo_ou_vazio(texto): return texto is None or not texto.strip() def valida_faixa_inteiro(pergunta, inicio, fim, padrao=None): while True: try: entrada = input(pergunta) if nulo_ou_vazio(entrada) and padrao is not None: entrada = padrao valor = int(entrada) if inicio <= valor <= fim: return valor except ValueError: print('Valor invalido, favor digitar entre {} e {}'.format(inicio, fim)) def valida_faixa_inteiro_ou_branco(pergunta, inicio, fim): while True: try: entrada = input(pergunta) if nulo_ou_vazio(entrada): return None valor = int(entrada) if inicio <= valor <= fim: return valor except ValueError: print('Valor invalido, favor digitar entre {} e {}'.format(inicio, fim)) class Menu: def __init__(self): self.opcoes = [["Sair", None]] def adiciona_opcao(self, nome, funcao): self.opcoes.append([nome, funcao]) def exibe(self): print("====") print("Menu") print("====\n") for i, opcao in enumerate(self.opcoes): print("[{0}] - {1}".format(i, opcao[0])) print() def execute(self): while True: self.exibe() escolha = valida_faixa_inteiro( "Escolha uma opção: ", 0, len(self.opcoes) ) if escolha == 0: break self.opcoes[escolha][1]() class AppAgenda: @staticmethod def pede_nome(): return input("Nome: ") @staticmethod def pede_telefone(): return input("Telefone: ") @staticmethod def mostra_dados(dados): print("Nome: {}".format(dados.nome)) for telefone in dados.telefone: print("Telefone: {}".format(telefone)) print() @staticmethod def mostra_dados_telefone(dados): print("Nome: {}".format(dados.nome)) for i, telefone in enumerate(dados.telefone): print("{0} - Telefone: {1}".format(i, telefone)) print() @staticmethod def pede_nome_arquivo(): return input("Nome do arquivo: ") def __init__(self): self.agenda = Agenda() self.agenda.adiciona_tipo("Celular") self.agenda.adiciona_tipo("Residencia") self.agenda.adiciona_tipo("Trabalho") self.agenda.adiciona_tipo("Fax") self.menu = Menu() self.menu.adiciona_opcao("Novo", self.novo) self.menu.adiciona_opcao("Altera", self.altera) self.menu.adiciona_opcao("Apaga", self.apaga) self.menu.adiciona_opcao("Lista", self.lista) self.menu.adiciona_opcao("Grava", self.grava) self.menu.adiciona_opcao("Le", self.le) self.menu.adiciona_opcao("Ordena", self.ordena) self.ultimo_nome = None def pede_tipo_telefone(self, padrao=None): for i, tipo in enumerate(self.agenda.tipos_telefone): print(" {0} - {1} ".format(i, tipo), end=None) t = valida_faixa_inteiro("Tipo: ", 0, len(self.agenda.tipos_telefone) - 1, padrao) return self.agenda.tipos_telefone[t] def pesquisa(self, nome): dado = self.agenda.pesquisa_nome(nome) return dado def novo(self): novo = AppAgenda.pede_nome() if nulo_ou_vazio(novo): return nome = Nome(novo) if self.pesquisa(nome) is not None: print("Nome já existe!") return registro = DadoAgenda(nome) self.menu_telefones(registro) self.agenda.adiciona(registro) def apaga(self): if len(self.agenda) == 0: print("Agenda vazia, nada a apagar") nome = AppAgenda.pede_nome() if nulo_ou_vazio(nome): return p = self.pesquisa(nome) if p is not None: self.agenda.remove(p) print("Apagado. A agenda agora possui apenas: {} registros".format(len(self.agenda))) else: print('Nome não encontrado') def altera(self): if len(self.agenda) == 0: print("Agenda vazia, nada a alterar") nome = AppAgenda.pede_nome() if nulo_ou_vazio(nome): return p = self.pesquisa(nome) if p is not None: print("\nEncontrado: \n") AppAgenda.mostra_dados(p) print("Digite enter caso não queira alterar o nome") novo = AppAgenda.pede_nome() if not nulo_ou_vazio(novo): p.nome = Nome(novo) self.menu_telefones(p) else: print("Nome não encontrado") def menu_telefones(self, dados): while True: print("\nEditando telefones\n") AppAgenda.mostra_dados_telefone(dados) if len(dados.telefones) > 0: print("\n[A] - alterar\n[D] - Apagar\n", end="") print("[N] - novo\n[S] - Sair\n") operacao = input("Escolha uma operação") operacao = operacao.lower() if operacao not in ['a', 'd', 'n', 's']: print("Operação inválida, digite A, D, N ou S") continue if operacao == 'a' and len(dados.telefones) > 0: self.altera_telefones(dados) elif operacao == 'd' and len(dados.telefones) > 0: self.apaga_telefone(dados) elif operacao == 'n': self.novo_telefone(dados) elif operacao == 's': break def novo_telefone(self, dados): telefone = AppAgenda.pede_telefone() if nulo_ou_vazio(telefone): return if dados.pesquisa_telefone(telefone) is not None: print("Telefone já existe") tipo = self.pede_tipo_telefone() dados.telefones.adiciona(Telefone(telefone, tipo)) def apaga_telefone(self, dados): t = valida_faixa_inteiro_ou_branco( "Digite a posição do numero a apagar, enter para sair:", 0, len(dados.telefone - 1) ) if t is None: return dados.telefone.remove(dados.telefones[t]) def altera_telefones(self, dados): t = valida_faixa_inteiro_ou_branco( "Digite a posição do numero a alterar, enter para sair:", 0, len(dados.telefone - 1) ) if t is None: return telefone = dados.telefones[t] print("Telefone: %s" % telefone) print("Digite enter caso não queira alterar o número") novotelefone = AppAgenda.pede_telefone() if not nulo_ou_vazio(novotelefone): telefone.numero = novotelefone print("Digite enter caso não queira alterar o tipo") telefone.tipo = self.pede_tipo_telefone( self.agenda.tipos_telefone.pesquisa(telefone.tipo) ) def lista(self): print("\nAgenda") print("-"*60) for e in self.agenda: AppAgenda.mostra_dados(e) print("-"*60) def le(self, nome_arquivo=None): if nome_arquivo is None: nome_arquivo = AppAgenda.pede_nome_arquivo() if nulo_ou_vazio(nome_arquivo): return with open(nome_arquivo, 'rb') as arquivo: self.agenda = pickle.load(arquivo) self.ultimo_nome = nome_arquivo def ordena(self): self.agenda.ordena() print("\nAgenda ordenada") def grava(self): if self.ultimo_nome is not None: print("Ultimo nome ultilizado foi '%s'" % self.ultimo_nome) print("Digite enter caso queira utilizar o mesmo nome") nome_arquivo = AppAgenda.pede_nome_arquivo() if nulo_ou_vazio(nome_arquivo): if self.ultimo_nome is not None: nome_arquivo = self.ultimo_nome else: return with open(nome_arquivo, 'wb') as arquivo: pickle.dump(self.agenda, arquivo) def execute(self): self.menu.execute() if __name__ == "__main__": app = AppAgenda() if len(sys.argv) > 1: app.le(sys.argv[1]) app.execute()
[ "renanm@outlook.com" ]
renanm@outlook.com
16526d6d991321e879d46e8d8cd308ef7e4677b9
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/artificial/transf_Difference/trend_MovingMedian/cycle_5/ar_/test_artificial_1024_Difference_MovingMedian_5__20.py
f424dd4077963cad7c75f615bce42289c823621a
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
274
py
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "MovingMedian", cycle_length = 5, transform = "Difference", sigma = 0.0, exog_count = 20, ar_order = 0);
[ "antoine.carme@laposte.net" ]
antoine.carme@laposte.net
5f8ceb5c2e60994ad6cc254a9719b424f114dd9f
76452f3645acad331878a9dfa6ca3021515cd155
/utils.py
f1916adb742815d9dd6f82fa39919ad1d9311909
[ "MIT" ]
permissive
nishatdhillon/CarND-Behavioral-Cloning
6b436136612512e36cd30e977c4b183225a821c2
0c5cdd253436799e5590a14d7f843f7108b50d90
refs/heads/master
2021-01-25T11:14:50.478986
2017-04-10T00:38:55
2017-04-10T00:38:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,211
py
import numpy as np from scipy.misc import imread, imresize def read_imgs(img_paths): imgs = np.empty([len(img_paths), 160, 320, 3]) for i, path in enumerate(img_paths): imgs[i] = imread(path) return imgs def resize(imgs, shape=(32, 16, 3)): """ Resize images to shape. """ height, width, channels = shape imgs_resized = np.empty([len(imgs), height, width, channels]) for i, img in enumerate(imgs): imgs_resized[i] = imresize(img, shape) return imgs_resized def rgb2gray(imgs): """ Convert images to grayscale. """ return np.mean(imgs, axis=3, keepdims=True) def normalize(imgs): """ Normalize images between [-1, 1]. """ return imgs / (255.0 / 2) - 1 def preprocess(imgs): imgs_processed = resize(imgs) imgs_processed = rgb2gray(imgs_processed) imgs_processed = normalize(imgs_processed) return imgs_processed def random_flip(imgs, angles): """ Augment the data by randomly flipping some angles / images horizontally. """ new_imgs = np.empty_like(imgs) new_angles = np.empty_like(angles) for i, (img, angle) in enumerate(zip(imgs, angles)): if np.random.choice(2): new_imgs[i] = np.fliplr(img) new_angles[i] = angle * -1 else: new_imgs[i] = img new_angles[i] = angle return new_imgs, new_angles def augment(imgs, angles): imgs_augmented, angles_augmented = random_flip(imgs, angles) return imgs_augmented, angles_augmented def gen_batches(imgs, angles, batch_size): """ Generates random batches of the input data. :param imgs: The input images. :param angles: The steering angles associated with each image. :param batch_size: The size of each minibatch. :yield: A tuple (images, angles), where both images and angles have batch_size elements. """ num_elts = len(imgs) while True: indeces = np.random.choice(num_elts, batch_size) batch_imgs_raw, angles_raw = read_imgs(imgs[indeces]), angles[indeces].astype(float) batch_imgs, batch_angles = augment(preprocess(batch_imgs_raw), angles_raw) yield batch_imgs, batch_angles
[ "matthew_cooper@brown.edu" ]
matthew_cooper@brown.edu
9a822e8ca6f1905ffc8bfe053be72103d6bdd50d
16574605a55cf3539e171f66f03938807065d8d9
/ptocr/model/architectures/det_model.py
0f915139bba09c8bf06175ff908b4ba344daae57
[]
no_license
simplew2011/OCR_ZOO
7a0e83cf0c7630f469aaac8994144a5bf13bbab6
8d1da013a9aa9ca53272dc030c8bfcbf25db6738
refs/heads/master
2023-01-12T10:06:53.125201
2020-11-02T10:00:06
2020-11-02T10:00:06
308,555,691
1
0
null
null
null
null
UTF-8
Python
false
false
5,764
py
# -*- coding:utf-8 _*- """ @author:fxw @file: det_model.py @time: 2020/08/07 """ import torch import torch.nn as nn from .. import create_module class DetModel(nn.Module): def __init__(self, config): super(DetModel, self).__init__() self.algorithm = config['base']['algorithm'] self.backbone = create_module(config['backbone']['function'])(config['base']['pretrained']) if(self.algorithm == 'SAST'): self.head = create_module(config['head']['function'])(config['base']['with_attention']) else: self.head = create_module(config['head']['function']) \ (config['base']['in_channels'], config['base']['inner_channels']) if (config['base']['algorithm']) == 'DB': self.seg_out = create_module(config['segout']['function'])(config['base']['inner_channels'], config['base']['k'], config['base']['adaptive']) elif (config['base']['algorithm']) == 'PAN': self.seg_out = create_module(config['segout']['function'])(config['base']['inner_channels'], config['base']['classes']) elif (config['base']['algorithm']) == 'PSE': self.seg_out = create_module(config['segout']['function'])(config['base']['inner_channels'], config['base']['classes']) elif (config['base']['algorithm']) == 'SAST': self.seg_out = create_module(config['segout']['function'])() else: assert True == False, ('not support this algorithm !!!') def forward(self, data): if self.training: if self.algorithm == "DB": img, gt, gt_mask, thresh_map, thresh_mask = data if torch.cuda.is_available(): img, gt, gt_mask, thresh_map, thresh_mask = \ img.cuda(), gt.cuda(), gt_mask.cuda(), thresh_map.cuda(), thresh_mask.cuda() gt_batch = dict(gt=gt) gt_batch['mask'] = gt_mask gt_batch['thresh_map'] = thresh_map gt_batch['thresh_mask'] = thresh_mask elif self.algorithm == "PSE": img, gt_text, gt_kernels, train_mask = data if torch.cuda.is_available(): img, gt_text, gt_kernels, train_mask = \ img.cuda(), gt_text.cuda(), gt_kernels.cuda(), train_mask.cuda() gt_batch = dict(gt_text=gt_text) gt_batch['gt_kernel'] = gt_kernels gt_batch['train_mask'] = train_mask elif self.algorithm == "PAN": img, gt_text, gt_text_key, gt_kernel, gt_kernel_key, train_mask = data if torch.cuda.is_available(): img, gt_text, gt_text_key, gt_kernel, gt_kernel_key, train_mask = \ img.cuda(), gt_text.cuda(), gt_text_key.cuda(), gt_kernel.cuda(), gt_kernel_key.cuda(), train_mask.cuda() gt_batch = dict(gt_text=gt_text) gt_batch['gt_text_key'] = gt_text_key gt_batch['gt_kernel'] = gt_kernel gt_batch['gt_kernel_key'] = gt_kernel_key gt_batch['train_mask'] = train_mask elif self.algorithm == "SAST": img, score_map, border_map, training_mask, tvo_map, tco_map = data if torch.cuda.is_available(): img, score_map, border_map, training_mask, tvo_map, tco_map = \ img.cuda(), score_map.cuda(), border_map.cuda(), training_mask.cuda(), tvo_map.cuda(), tco_map.cuda() gt_batch = dict(input_score=score_map) gt_batch['input_border'] = border_map gt_batch['input_mask'] = training_mask gt_batch['input_tvo'] = tvo_map gt_batch['input_tco'] = tco_map else: img = data x = self.backbone(img) x = self.head(x) x = self.seg_out(x, img) if self.training: return x, gt_batch return x class DetLoss(nn.Module): def __init__(self, config): super(DetLoss, self).__init__() self.algorithm = config['base']['algorithm'] if (config['base']['algorithm']) == 'DB': self.loss = create_module(config['loss']['function'])(config['loss']['l1_scale'], config['loss']['bce_scale']) elif (config['base']['algorithm']) == 'PAN': self.loss = create_module(config['loss']['function'])(config['loss']['kernel_rate'], config['loss']['agg_dis_rate']) elif (config['base']['algorithm']) == 'PSE': self.loss = create_module(config['loss']['function'])(config['loss']['text_tatio']) elif (config['base']['algorithm']) == 'SAST': self.loss = create_module(config['loss']['function'])(config['loss']['tvo_lw'], config['loss']['tco_lw'], config['loss']['score_lw'], config['loss']['border_lw'] ) else: assert True == False, ('not support this algorithm !!!') def forward(self, pre_batch, gt_batch): return self.loss(pre_batch, gt_batch)
[ "simplew2011@163.com" ]
simplew2011@163.com
6c93602e8ac313fc510dc327883b106814e788e8
aa2d3f731f1ebe09578e828e30f6f2b4a9ad75fd
/bhaskara.py
ee4e467c7ebf44467676f08a9dc74fd83cb9737e
[ "Apache-2.0" ]
permissive
cleuton/pythondrops
2d980f4975dbd36c4e4fe18929b62a87925e1982
297f38b2f358ea7621befe9c82a4415243c2978f
refs/heads/master
2022-05-01T01:14:33.758024
2022-04-16T11:55:40
2022-04-16T11:55:40
126,306,109
11
6
Apache-2.0
2020-10-13T12:23:08
2018-03-22T08:48:06
Python
UTF-8
Python
false
false
443
py
import math def calc_delta(a,b,c): delta = b**2 - 4 * a * c return delta a = float(input("a: ")) b = float(input("b: ")) c = float(input("c: ")) delta = calc_delta(a, b, c) if delta > 0: x1 = (-b + math.sqrt(delta)) / (2*a) x2 = (-b - math.sqrt(delta)) / (2*a) print(f"x1: {x1} e x2: {x2}") elif delta == 0: x = (-b + math.sqrt(delta)) / (2*a) print(f"x: {x}") else: print("Não possui raízes reais")
[ "cleuton@tecgraf.puc-rio.br" ]
cleuton@tecgraf.puc-rio.br
b261ab4e92228c3878cdd7b320205880aa010143
6659b5530db19461f32456903da617cb2f819526
/House.py
1f27accd8fb3070e9f00f3131a9d10533eb1282a
[]
no_license
Blikhmania/Draw-using-pyton
5365358533bdb44aa18696350bf6625411214f33
ebeb10642094ec76f1daf4fee9a696d274410f87
refs/heads/master
2022-12-15T23:44:33.865870
2020-09-12T14:06:53
2020-09-12T14:06:53
294,934,630
0
0
null
null
null
null
UTF-8
Python
false
false
2,318
py
import pygame, sys from pygame.locals import * pygame.init() # set up the window DISPLAYSURF = pygame.display.set_mode((500, 400), 0, 32) pygame.display.set_caption('Drawing') # set up the colors #COLOR R G B AQUA = (000, 255, 255) BLACK = (000, 000, 000) BLUE = ( 0, 0, 200) GRAY = (128, 128, 128) GREEN = (000, 255, 000) LIME = ( 40, 128, 40) RED = (255, 000, 000) WHITE = (255, 255, 255) ORANGE= (200, 200, 0) # draw on the surface object DISPLAYSURF.fill(WHITE) pygame.draw.rect(DISPLAYSURF, GREEN, (0,220,500,200)) pygame.draw.rect(DISPLAYSURF, BLUE , (0,0,500,220)) pygame.draw.polygon(DISPLAYSURF, GRAY, ((236, 156), (236, 327), (56, 327), (56, 156))) pygame.draw.polygon(DISPLAYSURF, LIME, ((146, 50), (300, 30), (385, 110), (236, 156))) pygame.draw.polygon(DISPLAYSURF, GRAY, ((236, 156), (385, 110), (385, 275), (236, 327))) pygame.draw.polygon(DISPLAYSURF, BLACK, ((320, 160), (295,170), (295, 190), (320,180))) pygame.draw.polygon(DISPLAYSURF, LIME, ((56,156),(236,156),(146,50))) pygame.draw.aaline(DISPLAYSURF, BLACK, (56, 156), (236, 156), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (146, 50), (56, 156), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (147, 50), (237, 156), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (236, 156), (236, 327), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (236, 327), (56, 327), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (56, 327), (56, 156), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (146, 50), (300, 30), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (300, 30), (385, 110), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (385, 110), (236, 156), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (385, 110), (385, 275), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (385, 275), (236, 327), 2) pygame.draw.aaline(DISPLAYSURF, BLACK, (0,220),(56,220),5) pygame.draw.aaline(DISPLAYSURF, BLACK, (385,220),(500,220),5) pygame.draw.circle(DISPLAYSURF, BLACK, (146, 110), 20, 0) pygame.draw.rect(DISPLAYSURF, BLACK, (95, 200, 110, 127)) pygame.draw.circle(DISPLAYSURF, ORANGE, (450, 90), 20, 0) pixObj = pygame.PixelArray(DISPLAYSURF) del pixObj # run the game loop while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() pygame.display.update()
[ "noreply@github.com" ]
noreply@github.com
6b067efcd0dbc5af3028f691554b9724604944e8
e4652af89da12753710eb225e3905497032486e8
/Conditional Statements Advanced/fruit_and_veggie.py
8239a683f2d336092c6788f9439037a22d85f02f
[]
no_license
paunovaeleonora/SoftUni-Python-Basics-2020
6ef6654aafcc30f8d0d81811f617b808d2f86d85
2f82efa99ba9e0be9c4811c26de5b1543c3fe0bf
refs/heads/master
2023-08-28T17:42:13.261923
2021-10-22T17:14:46
2021-10-22T17:14:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
335
py
item = input() is_fruit = item == 'banana' or item == 'apple' or item == 'kiwi' or item == 'cherry' or item == 'lemon' or item == 'grapes' is_vegetable = item == 'tomato' or item == 'cucumber' or item == 'pepper' or item == 'carrot' if is_fruit: print('fruit') elif is_vegetable: print('vegetable') else: print('unknown')
[ "nora.paunova@gmail.com" ]
nora.paunova@gmail.com
74975e6fc6ed6ea9be93456c6a6a2415df374dcd
a9069fb302c4dc5bb01db2c519dec4762e5d4ce5
/fastAPI_SQL/sql_app/models.py
d45b8ef99f5e00019acffd5245179fb2aad17ea6
[]
no_license
hhsu15/advanced_python
123c73110c2c811895257320ffb639688a8f6a46
cf4a5647814a3a63b67c970e992ae50cafd30265
refs/heads/master
2021-06-10T14:07:20.343336
2021-03-13T02:46:50
2021-03-13T02:46:50
139,370,162
0
1
null
null
null
null
UTF-8
Python
false
false
794
py
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String from sqlalchemy.orm import relationship from .database import Base class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True, index=True) email = Column(String, unique=True, index=True) hashed_password = Column(String) is_active = Column(Boolean, default=True) # a field for items that has relationship with items table items = relationship("Item", back_populates="owner") class Item(Base): __tablename__ = "items" id = Column(Integer, primary_key=True, index=True) title = Column(String, index=True) description = Column(String, index=True) owner_id = Column(Integer, ForeignKey("users.id")) owner = relationship("User", back_populates="items")
[ "hsin@Hsinhengs-MBP.fios-router.home" ]
hsin@Hsinhengs-MBP.fios-router.home
45e4c604a1abb9e87a512ebd9f76d9b0f9c3b196
ac5eb7df8515fb92071f9e0f64d1cf6467f4042d
/Python/rob2.py
f3a88519ae1128202362e9a689cbe3ddc705f124
[]
no_license
Litao439420999/LeetCodeAlgorithm
6ea8060d56953bff6c03c95cf6b94901fbfbe395
9aee4fa0ea211d28ff1e5d9b70597421f9562959
refs/heads/master
2023-07-08T06:17:20.310470
2021-08-08T08:12:23
2021-08-08T08:12:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
983
py
#!/usr/bin/env python3 # encoding: utf-8 """ @Filename: rob2.py @Function: 打家劫舍 II 动态规划 @Link: https://leetcode-cn.com/problems/house-robber-ii/ @Python Version: 3.8 @Author: Wei Li @Date:2021-07-16 """ class Solution: def rob(self, nums) -> int: def robRange(start: int, end: int) -> int: first = nums[start] second = max(nums[start], nums[start + 1]) for i in range(start + 2, end + 1): first, second = second, max(first + nums[i], second) return second length = len(nums) if length == 1: return nums[0] elif length == 2: return max(nums[0], nums[1]) else: return max(robRange(0, length - 2), robRange(1, length - 1)) # ------------------------- if __name__ == "__main__": nums = [2, 3, 2] solution = Solution() max_cash = solution.rob(nums) print(f"The solution of this problem is {max_cash}")
[ "weili_yzzcq@163.com" ]
weili_yzzcq@163.com
c3f07911afb0807ce05def959386ca7075cc8770
78ffdfdeb9a56ba77136f2e9923f6b532332ff30
/Template14/hinderedRotation.py
a99c6bd5f6f9387708ca7997a1a197891ecb5dad
[]
no_license
whm9167/Templates
ae96b1645c4414d17fb0b04118d6a52fe4765043
5195e7833fd1ca53c4e5d20ac8c31c312d6fba15
refs/heads/master
2021-05-01T20:45:25.206459
2015-04-19T07:59:04
2015-04-19T07:59:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,796
py
# READING-------------------------------------------------------------------------------------- import numpy as np from xlrd import * from xlwt import * import pyExcelerator from xlutils.copy import copy import re import os import shutil import matplotlib.pyplot as plt import phys import fourier import chem import lamm #input name = 'rotation' # symbol indicating the position pattern_name = re.compile('^.*.*|.*_scan.*$') pattern_atoms = re.compile('^.*D *([0-9]+) *([0-9]+) *([0-9]+) *([0-9]+).*S *([0-9]+) *(-?[0-9]+\.[0-9]+).*$') pattern_energy = re.compile('^.*SCF Done: E\(U?B3LYP\) = *(-?[0-9]+\.[0-9]+).*$') pattern_optimized = re.compile('^.*Optimized Parameters.*$') pattern_standard = re.compile('^.*Standard orientation:.*$') pattern_input = re.compile('^.*Input orientation:.*$') pattern_endline = re.compile('^.*---------------------------------------------------------------------.*$') pattern_normal = re.compile('^.*Normal termination of Gaussian 09.*$') # constants # the number of rows and columns of the displayed fitting figures FIG_ROW = 6 FIG_COL = 5 # modules phys1 = phys.phys() lamm1 = lamm.lamm() #variables atoms = [] # energy in hatree steps = 0 step_length = 0.0 energy = [] # dihedral in degree dihedral = [] energy_cmm1 = [] dihedral_rad = [] coeff_V = [] deviation_V =[] geoms = [] atomsNum = 0 inertia = [] rotConst = [] coeff_I = [] deviation_I = [] coeff_B = [] deviation_B = [] #flags atoms_done = 0 energy_done = 0 optimized_done = 0 dihedral_done = 0 standard_done = 0 coordinate_done = 0 geom_start = 0 geom_end = 0 # temporary variables tmp_m = [] tmp_energy = 0.0 tmp_dihedral = 0.0 tmp_num = 0 tmp_page = 1 pwd = os.getcwd() wb_new = Workbook() pattern_blue = Pattern() # Create the Pattern pattern_blue.pattern = Pattern.SOLID_PATTERN # May be: NO_PATTERN, SOLID_PATTERN, or 0x00 through 0x12 pattern_blue.pattern_fore_colour = 49 style_blue = XFStyle() # Create the Pattern style_blue.pattern = pattern_blue if os.path.exists(pwd + '/' + 'lammInput'): shutil.rmtree('lammInput') os.mkdir('lammInput') if os.path.exists(pwd + '/' + 'lammOutput'): shutil.rmtree('lammOutput') os.mkdir('lammOutput') tmp_fileLists = os.listdir(pwd) # traverse folders for tmp_file in tmp_fileLists: if not os.path.isdir(pwd + '/' + tmp_file): continue tmp_pwd = pwd + '/' + tmp_file # print tmp_pwd # if target directory found if re.search(name,tmp_file): sh = wb_new.add_sheet(tmp_file) sh_fit = wb_new.add_sheet(tmp_file + '_fit') tmp_page = 1 tmp_fig = plt.figure(figsize=(22,12)) tmp_fig2 = plt.figure(figsize=(22,12)) tmp_fig3 = plt.figure(figsize=(22,12)) print '\n------------------------------------ ' + tmp_file + ' ----------------------------------------' os.mkdir('lammInput/' + tmp_file) os.mkdir('lammOutput/' + tmp_file) # traverse files tmp_fileLists2 = os.listdir(tmp_pwd) tmp_num = 0 for tmp_file2 in tmp_fileLists2: tmp_m = pattern_name.match(tmp_file2[0:-4]) # if target file found if tmp_m: print tmp_file2 tmp_num = tmp_num + 1 # extract data from scan log file atoms_done = 0 energy_done = 0 optimized_done = 0 dihedral_done = 0 atoms = [] steps = 0 step_length = 0.0 energy = [] dihedral = [] energy_cmm1 = [] dihedral_rad = [] coeff_V = [] deviation_V =[] geoms = [] atomsNum = 0 inertia = [] rotConst = [] coeff_I = [] deviation_I = [] coeff_B = [] deviation_B = [] fr = file(tmp_pwd + '/' + tmp_file2,'r') tmp_lines = fr.readlines() for i in range(0,len(tmp_lines)): tmp_line = tmp_lines[i] if atoms_done != 1: tmp_m = pattern_atoms.match(tmp_line) if tmp_m: atoms = map(int,tmp_m.groups()[0:4]) steps = int(tmp_m.group(5)) step_length = float(tmp_m.group(6)) pattern_dihedral = re.compile('^.*D\(' + str(atoms[0]) + ',' + str(atoms[1]) + ',' + str(atoms[2]) + ',' + str(atoms[3]) + '\) *(-?[0-9]+\.[0-9]+).*-DE/DX.*$') atoms_done = 1 elif (standard_done != 1 or coordinate_done != 1 or energy_done != 1 or optimized_done != 1): if geom_start > 0 and coordinate_done != 1: atomsNum += 1 # tmp_m = pattern_standard.match(tmp_line) tmp_m = pattern_input.match(tmp_line) if tmp_m: geom_start = i + 5 atomsNum = -5 coordinate_done = 0 if coordinate_done != 1: tmp_m = pattern_endline.match(tmp_line) if tmp_m: if i > geom_start: geom_end = i coordinate_done = 1 tmp_m = pattern_energy.match(tmp_line) if tmp_m: tmp_energy = float(tmp_m.group(1)) tmp_m = pattern_optimized.match(tmp_line) if tmp_m: energy.append(tmp_energy) if (geom_end - geom_start) != atomsNum: print 'Error! The number of atoms is not correct!' tmp_mole = chem.molecule() tmp_mole.getLogGeom(tmp_lines[geom_start: geom_start + atomsNum]) tmp_mole.changeLabel(tmp_file2[0:-4]) geoms.append(tmp_mole) dihedral_done = 0 standard_done = 1 coordinate_done = 1 energy_done = 1 optimized_done = 1 elif dihedral_done != 1: tmp_m = pattern_dihedral.match(tmp_line) if tmp_m: tmp_dihedral=float(tmp_m.group(1)) if len(dihedral) > 0: if abs(step_length - 10.0) < 1e-2: while tmp_dihedral < dihedral[-1]: tmp_dihedral = tmp_dihedral + 360 elif abs(step_length + 10.0) < 1e-2: while tmp_dihedral > dihedral[-1]: tmp_dihedral = tmp_dihedral - 360 else: print 'Warning! The step length is neither 10 or -10 degree!' dihedral.append(tmp_dihedral) standard_done = 0 coordinate_done = 0 energy_done = 0 optimized_done = 0 dihedral_done = 1 tmp_m = pattern_normal.match(tmp_lines[-1]) if not tmp_m: print 'Notice that job ' + tmp_file2 + ' did not end successfully!' # else: # print tmp_file2 + 'successfully!' # fit potential energy data dihedral = np.array(dihedral) energy = np.array(energy) if step_length < 0: dihedral = 360 - dihedral dihedral_rad = phys1.degreeTorad(dihedral) dihedral_rad = dihedral_rad - dihedral_rad[0] energy_cmm1 = phys1.hatreeTocmm1(energy) energy_cmm1 = energy_cmm1- energy_cmm1[0] # notice that the np.std is sqrt(sum((x-mean)^2)/n) rather than n-1 coeff_V, deviation_V = fourier.fit_fourier_noGuess(dihedral_rad, energy_cmm1, threshold=np.std(energy_cmm1)/1e1) # coeff_V, deviation_V = fourier.fit_fourier(dihedral_rad, energy_cmm1) # generate lamm input files lamm1.genInput(geoms, dihedral, energy_cmm1) #run lamm lamm1.run() # extract lamm data lamm_dihedral, inertia, rotConst = lamm1.extractOutput() lamm_dihedral = np.array(lamm_dihedral) inertia = np.array(inertia) rotConst = np.array(rotConst) lamm1.rename(reFileName = tmp_file2[0: -4]) shutil.move(tmp_file2[0: -4] + '.dat' ,'lammInput/' + tmp_file) shutil.move(tmp_file2[0: -4] + '.out', 'lammOutput/' + tmp_file) # fit lamm data I0s, B0s # coeff_I, deviation_I = fourier.fit_cosFourier_noGuess(dihedral_rad, inertia, threshold=np.std(inertia)) # coeff_B, deviation_B = fourier.fit_cosFourier_noGuess(dihedral_rad, rotConst, threshold=np.std(rotConst)/2) coeff_I, deviation_I = fourier.fit_cosFourier_noGuess(lamm_dihedral, inertia, n=6) coeff_B, deviation_B = fourier.fit_cosFourier_noGuess(lamm_dihedral, rotConst, n=6) # coeff_I, deviation_I = fourier.fit_cosFourier_noGuess(lamm_dihedral, inertia, threshold=np.std(inertia)) # coeff_B, deviation_B = fourier.fit_cosFourier_noGuess(lamm_dihedral, rotConst, threshold=np.std(rotConst)/2) # write to excel # original data if tmp_num > (15*tmp_page) : tmp_page += 1 sh = wb_new.add_sheet(tmp_file + ' (' + str(tmp_page) + ')') tmp_row = 0 tmp_col = 0 + (tmp_num - 15 * (tmp_page-1) - 1) * 15 sh.col(tmp_col).width = 0x1500 sh.write(0, tmp_col+0, tmp_file2,style_blue) sh.write(1, tmp_col+0, 'atoms') sh.write(1, tmp_col+1, atoms[0]) sh.write(1, tmp_col+2, atoms[1]) sh.write(1, tmp_col+3, atoms[2]) sh.write(1, tmp_col+4, atoms[3]) tmp_row = 3 sh.col(tmp_col+1).width = 0x0d00 sh.col(tmp_col+3).width = 0x1000 sh.col(tmp_col+4).width = 0x1400 sh.col(tmp_col+5).width = 0x1400 sh.col(tmp_col+7).width = 0x1000 sh.col(tmp_col+8).width = 0x1400 sh.col(tmp_col+9).width = 0x1400 sh.col(tmp_col+11).width = 0x1000 sh.col(tmp_col+12).width = 0x1400 sh.col(tmp_col+13).width = 0x1400 sh.write(tmp_row, tmp_col+0, 'dihedral (degree)') sh.write(tmp_row, tmp_col+1, 'energy (hatree)') sh.write(tmp_row, tmp_col+3, 'relative dihedral (rad)') sh.write(tmp_row, tmp_col+4, 'relative energy (cm^-1)') sh.write(tmp_row, tmp_col+5, 'fit deviation_V (cm^-1)') sh.write(tmp_row, tmp_col+7, 'relative dihedral (rad)') sh.write(tmp_row, tmp_col+8, 'inertia (amu.A^2)') sh.write(tmp_row, tmp_col+9, 'fit deviation_I (amu.A^2)') sh.write(tmp_row, tmp_col+11, 'relative dihedral (rad)') sh.write(tmp_row, tmp_col+12, 'rot const (cm^-1)') sh.write(tmp_row, tmp_col+13, 'fit deviation_B (cm^-1)') tmp_row = 4 for i in range(0,len(dihedral)): sh.write(tmp_row+i, tmp_col+0, dihedral[i]) sh.write(tmp_row+i, tmp_col+1, energy[i]) sh.write(tmp_row+i, tmp_col+3, dihedral_rad[i]) sh.write(tmp_row+i, tmp_col+4, energy_cmm1[i]) sh.write(tmp_row+i, tmp_col+5, deviation_V[i]) for i in range(0,len(lamm_dihedral)): sh.write(tmp_row+i, tmp_col+7, lamm_dihedral[i]) sh.write(tmp_row+i, tmp_col+8, inertia[i]) sh.write(tmp_row+i, tmp_col+9, deviation_I[i]) sh.write(tmp_row+i, tmp_col+11, lamm_dihedral[i]) sh.write(tmp_row+i, tmp_col+12, rotConst[i]) sh.write(tmp_row+i, tmp_col+13, deviation_B[i]) # fitted data tmp_row2 = 0 + (tmp_num - 1) * 30 tmp_col2 = 0 sh_fit.col(0).width = 0x2000 sh_fit.write(tmp_row2, 0, tmp_file2, style_blue) tmp_row2 = tmp_row2 + 1 sh_fit.write(tmp_row2, 0, 'atoms') sh_fit.write(tmp_row2, 1, atoms[0]) sh_fit.write(tmp_row2, 2, atoms[1]) sh_fit.write(tmp_row2, 3, atoms[2]) sh_fit.write(tmp_row2, 4, atoms[3]) tmp_row2 = tmp_row2 + 1 sh_fit.write(tmp_row2+0, tmp_col2, 'relative dihedral (rad)') sh_fit.write(tmp_row2+1, tmp_col2, 'relative energy (cm^-1)') sh_fit.write(tmp_row2+2, tmp_col2, 'fit deviation_V (cm^-1)') sh_fit.write(tmp_row2+3, tmp_col2, 'relative dihedral (rad)') sh_fit.write(tmp_row2+4, tmp_col2, 'inertia (amu.A^2)') sh_fit.write(tmp_row2+5, tmp_col2, 'fit deviation_I (amu.A^2)') sh_fit.write(tmp_row2+6, tmp_col2, 'relative dihedral (rad)') sh_fit.write(tmp_row2+7, tmp_col2, 'rot const (cm^-1)') sh_fit.write(tmp_row2+8, tmp_col2, 'fit deviation_B (cm^-1)') sh_fit.write(tmp_row2+9, tmp_col2, 'data summary') tmp_col2 = tmp_col2 + 1 for i in range(0, len(dihedral)): sh_fit.write(tmp_row2+0, tmp_col2+i, '%.6f' % dihedral_rad[i]) sh_fit.write(tmp_row2+1, tmp_col2+i, '%.6f' % energy_cmm1[i]) sh_fit.write(tmp_row2+2, tmp_col2+i, '%.6f' % deviation_V[i]) for i in range(0, len(lamm_dihedral)): sh_fit.write(tmp_row2+3, tmp_col2+i, '%.6f' % lamm_dihedral[i]) sh_fit.write(tmp_row2+4, tmp_col2+i, '%.6f' % inertia[i]) sh_fit.write(tmp_row2+5, tmp_col2+i, '%.6f' % deviation_I[i]) sh_fit.write(tmp_row2+6, tmp_col2+i, '%.6f' % lamm_dihedral[i]) sh_fit.write(tmp_row2+7, tmp_col2+i, '%.6f' % rotConst[i]) sh_fit.write(tmp_row2+8, tmp_col2+i, '%.6f' % deviation_B[i]) sh_fit.write(tmp_row2+9, tmp_col2, str(list(dihedral_rad))) sh_fit.write(tmp_row2+10, tmp_col2, str(list(energy_cmm1))) sh_fit.write(tmp_row2+11, tmp_col2, str(list(deviation_V))) sh_fit.write(tmp_row2+12, tmp_col2, str(list(lamm_dihedral))) sh_fit.write(tmp_row2+13, tmp_col2, str(list(inertia))) sh_fit.write(tmp_row2+14, tmp_col2, str(list(deviation_I))) sh_fit.write(tmp_row2+15, tmp_col2, str(list(lamm_dihedral))) sh_fit.write(tmp_row2+16, tmp_col2, str(list(rotConst))) sh_fit.write(tmp_row2+17, tmp_col2, str(list(deviation_B))) tmp_row2 = tmp_row2 + 18 tmp_col2 = 0 sh_fit.write(tmp_row2, tmp_col2, 'fitted V_a coefficients (c=0, a0, a1...)') sh_fit.write(tmp_row2+1, tmp_col2, 'fitted V_b coefficients (b1, b2...)') sh_fit.write(tmp_row2+2, tmp_col2, 'fitted I coefficients (c, a0, a1, a2...)') sh_fit.write(tmp_row2+3, tmp_col2, 'fitted B coefficients (c, a0, a1, a2...)') tmp_col2 = tmp_col2 + 1 for i in range(0, len(coeff_V)/2): sh_fit.write(tmp_row2, tmp_col2+i, coeff_V[i]) if i > 0: sh_fit.write(tmp_row2+1, tmp_col2+i, coeff_V[i+len(coeff_V)/2]) for (i, x) in enumerate(coeff_I): sh_fit.write(tmp_row2+2, tmp_col2+i, x) for (i, x) in enumerate(coeff_B): sh_fit.write(tmp_row2+3, tmp_col2+i, x) tmp_row2 = tmp_row2 + 4 tmp_col2 = 0 sh_fit.write(tmp_row2, tmp_col2, 'fitted parameters summary') tmp_row2 = tmp_row2 + 1 sh_fit.write(tmp_row2, tmp_col2, str(atoms[1]) + ' ' + str(atoms[2])) tmp_row2 = tmp_row2 + 1 sh_fit.row(tmp_row2+0).set_style(style_blue) sh_fit.row(tmp_row2+1).set_style(style_blue) sh_fit.row(tmp_row2+2).set_style(style_blue) sh_fit.write(tmp_row2+0, tmp_col2+0, 0, style_blue) sh_fit.write(tmp_row2+0, tmp_col2+1, 'hrd', style_blue) sh_fit.write(tmp_row2+1, tmp_col2+1, 'Vhrd3', style_blue) sh_fit.write(tmp_row2+2, tmp_col2+1, 'Ihrd1', style_blue) tmp_col2 = tmp_col2 + 2 sh_fit.write(tmp_row2, tmp_col2+0, len(coeff_V)-1, style_blue) sh_fit.write(tmp_row2, tmp_col2+1, len(coeff_I)-1, style_blue) sh_fit.write(tmp_row2, tmp_col2+2, 1, style_blue) sh_fit.write(tmp_row2+1, tmp_col2+0, 1, style_blue) sh_fit.write(tmp_row2+1, tmp_col2+1, '0.0', style_blue) sh_fit.write(tmp_row2+2, tmp_col2+0, 1, style_blue) for i in range(0, len(coeff_V)): if i < len(coeff_V)/2: sh_fit.write(tmp_row2+1, tmp_col2+2+i, '%.6f' % coeff_V[i], style_blue) elif i > len(coeff_V)/2: sh_fit.write(tmp_row2+1, tmp_col2+1+i, '%.6f' % coeff_V[i], style_blue) for (i,x) in enumerate(coeff_I): sh_fit.write(tmp_row2+2, tmp_col2+1+i, x, style_blue) # draw figures tmp_ax = tmp_fig.add_subplot(FIG_ROW,FIG_COL,tmp_num) tmp_fig.subplots_adjust(left=0.04,bottom=0.04,right=0.98,top=0.96,wspace=0.2,hspace=0.4) tmp_ax.plot(dihedral_rad, energy_cmm1, 'b*', dihedral_rad, fourier.func_fourier(dihedral_rad,*coeff_V),'r-') tmp_ax.set_title(tmp_file2) tmp_ax2 = tmp_fig2.add_subplot(FIG_ROW,FIG_COL,tmp_num) tmp_fig2.subplots_adjust(left=0.04,bottom=0.04,right=0.98,top=0.96,wspace=0.2,hspace=0.4) tmp_ax2.plot(lamm_dihedral, inertia, 'b*', dihedral_rad, fourier.func_cosFourier(dihedral_rad,*coeff_I),'r-') tmp_ax2.set_title(tmp_file2) tmp_ax3 = tmp_fig3.add_subplot(FIG_ROW,FIG_COL,tmp_num) tmp_fig3.subplots_adjust(left=0.04,bottom=0.04,right=0.98,top=0.96,wspace=0.2,hspace=0.4) tmp_ax3.plot(lamm_dihedral, rotConst, 'b*', dihedral_rad, fourier.func_cosFourier(dihedral_rad,*coeff_B),'r-') tmp_ax3.set_title(tmp_file2) tmp_fig.show() tmp_fig2.show() tmp_fig3.show() tmp_fig.savefig('V' + tmp_file + '.png',dpi=300) tmp_fig2.savefig('I' + tmp_file + '.png',dpi=300) tmp_fig3.savefig('B' + tmp_file + '.png',dpi=300) plt.close(tmp_fig) plt.close(tmp_fig2) plt.close(tmp_fig3) if os.path.exists('HR_fit.xls'): os.remove('HR_fit.xls') wb_new.save('HR_fit.xls') print 'hindered rotation data extracted successfully!' # THE END
[ "hetanjin@163.com" ]
hetanjin@163.com
25e655d40a6d42517ef5ad9c8bd1badf7733d0dc
3c5754bd81702ab1fa560111a75dae7052ef0df6
/mst(minimumSpanningTree)/prim_adjacancyMatrix.py
4550b8bf1c1f8b8f4d8f19e012bacc3fda763459
[ "MIT" ]
permissive
vsjadhav/DSA_python
e62a8ea970a6f26a8a77cbb07a54c1fef7fcce6f
1dd71b418bb604ebfd561c3dc9b8e123486ad8ef
refs/heads/main
2023-08-17T14:44:32.030375
2021-09-15T12:34:34
2021-09-15T12:34:34
406,753,969
0
0
null
null
null
null
UTF-8
Python
false
false
1,454
py
class Graph: def __init__(self,numberOfVertices, vertices): self.v = numberOfVertices self.vertices = vertices self.graph= self.createGraph() def createGraph(self): g= [] for i in range(self.v): row = [0]*self.v g.append(row) return g def addEdge(self,s,d,w): self.graph[s][d]=w def prim(self): ans=[] visited = [0]*self.v e = 0 visited[0]=True while e< self.v -1: min = float('inf') for i in range(self.v): if visited[i]: for j in range(self.v): if (not visited[j] and self.graph[i][j]): if self.graph[i][j] < min: min = self.graph[i][j] s=i d=j ans.append([self.vertices[s],self.vertices[d],self.graph[s][d]]) visited[d]=True e+=1 print(ans) # graph = "ab8ad1bc1ca4db2dc9" graph = "ab10,ba10,ac20,ca20,bc30,cb30,bd5,db5,cd15,dc15,de8,ed8,ce6,ec6" vertices = "abcde" g =Graph(5,[v for v in vertices]) i=0 for v in vertices: graph= graph.replace(v, str(i)) i+=1 l = graph.split(",") for i in l: s = int(i[0]) d = int(i[1]) w = int(i[2:]) g.addEdge(s,d,w) # print(g.graph) g.prim()
[ "noreply@github.com" ]
noreply@github.com
2d5a531c90bdd9e612a4c53e4dd5fb5bb4137892
970f44beabdbf6df534f7c5ca9d30dd0056e098b
/deep_ch/projections.py
73d8e536e04c7a8bfb64e16e5048f65d4e740289
[]
no_license
AkivaSinai/DeepCognitiveHierarchy
d8c3e05f5ea6dc7feaa61b6aa634c7d6126c1b1f
7c66673275e8019a0414e8066cdebd613351dd6c
refs/heads/master
2020-09-17T19:41:54.315829
2017-04-06T21:32:35
2017-04-06T21:32:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
769
py
import numpy def get_operator(name): if name == 'simplex': return project_simplex elif name == 'bound': return bound else: raise NameError, 'Unkown operator %s' % name def bound(x, a=0., b=1.): return numpy.clip(x, a, b) def project_simplex(x): """ Project an arbitary vector onto the simplex. See [Wang & Carreira-Perpin 2013] for a description and references. TODO: Implement in theano for faster projections """ n = x.shape[0] mu = -numpy.sort(-x) # sort decending sm = 0 for j in xrange(1, n+1): sm += mu[j - 1] t = mu[j - 1] - (1./(j)) * (sm - 1) if t > 0: row = j sm_row = sm theta = (1. / row) * (sm_row - 1) return numpy.abs(numpy.maximum(x - theta, 0))
[ "jasonhar@cs.ubc.ca" ]
jasonhar@cs.ubc.ca
beff490e394e8a5b7b6882f0b03e90a9aafaad28
87f91ccf1ee28679aad24041ac29423c8d393d38
/Python_code/src/chapter13/爬虫/爬虫2.py
2221e0f771180c661f3e55525b1d30df167e3d7a
[]
no_license
FirMoveBrick/MoveBrick
382673ed63cfbf00b43e011eb8f76e0457771f62
ee0effb7bc74ec6fd2fe1184744cf4fce2066805
refs/heads/master
2020-05-07T08:08:28.475439
2019-11-22T13:16:12
2019-11-22T13:16:12
180,308,890
0
0
null
null
null
null
UTF-8
Python
false
false
2,203
py
# -*- coding:UTF-8 -*- import requests, json, time, sys import urllib3 from contextlib import closing class get_photos(object): def __init__(self): self.photos_id = [] self.download_server = 'https://unsplash.com/photos/xxx/download?force=trues' self.target = 'http://unsplash.com/napi/feeds/home' self.headers = {'authorization': 'Client-ID c94869b36aa272dd62dfaeefed769d4115fb3189a9d1ec88ed457207747be626'} """ 函数说明:获取图片ID Parameters: 无 Returns: 无 Modify: 2017-09-13 """ def get_ids(self): req = requests.get(url=self.target, headers=self.headers, verify=False) html = json.loads(req.text) next_page = html['next_page'] for each in html['photos']: self.photos_id.append(each['id']) time.sleep(1) for i in range(5): req = requests.get(url=next_page, headers=self.headers, verify=False) html = json.loads(req.text) next_page = html['next_page'] for each in html['photos']: self.photos_id.append(each['id']) time.sleep(1) """ 函数说明:图片下载 Parameters: 无 Returns: 无 Modify: 2017-09-13 """ def download(self, photo_id, filename): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36'} target = self.download_server.replace('xxx', photo_id) with closing(requests.get(url=target, stream=True, verify=False, headers=self.headers)) as r: with open('%d.jpg' % filename, 'ab+') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) f.flush() # 下载 if __name__ == '__main__': gp = get_photos() urllib3.disable_warnings() print('获取图片连接中:') gp.get_ids() print('图片下载中:') for i in range(len(gp.photos_id)): print(' 正在下载第%d张图片' % (i + 1)) gp.download(gp.photos_id[i], (i + 1))
[ "945184211@qq.com" ]
945184211@qq.com
e93c5f49793bfebeb2025b28d96715deb5ef9d47
accb3a97a376a4d0f52f74a134ddf1f19680d655
/week10_homework_ls/app.py
8434e390e248efc151c9d49fa5a3bf0d8e14baab
[]
no_license
luis-sauceda/bootcamp
5eddf3037cfb77a13975705e9bbacb04841d093a
498320af5c73ca19584cbf4b9fa8ee1ca5c5dcbe
refs/heads/master
2020-06-16T05:42:12.908872
2019-09-28T16:06:34
2019-09-28T16:06:34
195,493,080
0
0
null
null
null
null
UTF-8
Python
false
false
6,622
py
from flask import Flask, jsonify import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func import numpy as np import pandas as pd import datetime as dt ################################################# # Flask Setup ################################################# app = Flask(__name__) ################################################# # Flask Routes ################################################# @app.route("/") def welcome(): return( f"Welcome to the Hawaii climate analysis API!<br/>" f"<br/>" f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/start<br/>" f"/api/v1.0/start/end<br/>" f"<br/>" f"<br/>" f"<br/>" f"*For /api/v1.0/start and /api/v1.0/start/end please replace word START and END with<br/>" f" dates format YYYY-MM-DD<br/>" ) @app.route("/api/v1.0/precipitation") def precipitation(): ################################################# # Create SQL object ################################################# engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save references to each table Measurement = Base.classes.measurement # Create our session (link) from Python to the DB session = Session(engine) #get date on year before the latest date in the datasete query_date = dt.date(2017, 8, 23) - dt.timedelta(days=365) #Selection precipitation and date sel = [func.avg(Measurement.prcp), Measurement.date] #query filtering and ordering by date precipitation = session.query(*sel).\ order_by(func.strftime(Measurement.date).asc()).\ filter(Measurement.date >= query_date).\ group_by(Measurement.date).all() #convert query results into a Data Fame query_df = pd.DataFrame(precipitation, columns=["prcp","date"]) #Changing index to date #query_df["date"] = pd.to_datetime(query_df["date"]) query_df.set_index(query_df["date"], inplace=True) #keeping only prco and station columns query_df = query_df.loc[:,["prcp"]] return jsonify(list(query_df.to_dict().values())) @app.route("/api/v1.0/stations") def stations(): ################################################# # Create SQL object ################################################# engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save references to each table Station = Base.classes.station # Create our session (link) from Python to the DB session = Session(engine) #query the base to get the distinct stations station = session.query(Station.station).distinct(Station.station).all() #convert query results into a Data Fame query_df = pd.DataFrame(station, columns=["station"]) #Return JSON return jsonify(list(query_df.to_dict().values())) @app.route("/api/v1.0/tobs") def tobs(): ################################################# # Create SQL object ################################################# engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save references to each table Measurement = Base.classes.measurement # Create our session (link) from Python to the DB session = Session(engine) query_date = dt.date(2017, 8, 23) - dt.timedelta(days=365) #query for the tobs from one year onwards before the last date tobs = session.query(Measurement.date, Measurement.tobs).\ filter(Measurement.date >= query_date).\ order_by(func.strftime(Measurement.date).asc()).all() #Convert query results into a Data Frame query_df = pd.DataFrame(tobs, columns=["date","tobs"]) #Change index for date query_df.set_index(query_df["date"], inplace=True) #keeping only prco and station columns query_df = query_df.loc[:,["tobs"]] return jsonify(list(query_df.to_dict().values())) @app.route("/api/v1.0/<start>") def average_start(start): ################################################# # Create SQL object ################################################# engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save references to each table Measurement = Base.classes.measurement # Create our session (link) from Python to the DB session = Session(engine) temps = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start).all() #Convert query results into a Data Frame query_df = pd.DataFrame(temps, columns=["min","avg","max"]).transpose() return jsonify(list(query_df.to_dict().values())) @app.route("/api/v1.0/<start>/<end>") def average_period(start, end): ################################################# # Create SQL object ################################################# engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save references to each table Measurement = Base.classes.measurement # Create our session (link) from Python to the DB session = Session(engine) temps = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start).filter(Measurement.date <= end).all() #Convert query results into a Data Frame query_df = pd.DataFrame(temps, columns=["min","avg","max"]).transpose() return jsonify(list(query_df.to_dict().values())) if __name__ == "__main__": app.run(debug=True)
[ "luis.alfonso.sauceda@gmail.com" ]
luis.alfonso.sauceda@gmail.com
419fd0e93a51cee00b17feeb01639772907b12a8
ad02dbf1bd48e408c7584e3c5b4f2a6649fb988e
/production/Leonid_Smirnov_todoapp/userapp/views.py
f2a9dd73fcc4cd9dc577e4231c95d539c36ed033
[]
no_license
Leo-droid-maker/REST_API_Project
b795857de3269e2c9bb402804488ebba3cb27799
c49cd303908100a098072441e9e1ca21f82f93e1
refs/heads/master
2023-08-30T02:19:17.896759
2021-10-15T09:26:18
2021-10-15T09:26:18
398,198,247
0
0
null
null
null
null
UTF-8
Python
false
false
603
py
from rest_framework.viewsets import GenericViewSet from rest_framework import mixins from userapp.models import User from userapp.serializers import UserModelSerializer, UserModelSerializerWithStaffInformation class UserCustomViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.CreateModelMixin, GenericViewSet): queryset = User.objects.all() serializer_class = UserModelSerializer def get_serializer_class(self): if self.request.version == '0.2': return UserModelSerializerWithStaffInformation return UserModelSerializer
[ "jwabeljr@gmail.com" ]
jwabeljr@gmail.com
823bdba8b566f0e5d31459c3e6942b77fac8fbb2
705bdeb17c8732ec5bf6653e34a37f149e1656fd
/orders/migrations/0005_auto_20170610_2147.py
b1e7946a8851b2965ea13e91f3e7ea32fae6a4ed
[]
no_license
igrv4/coilzone
79092ee2792b18c9c5f90f1a0ed138ffee2b3e63
1d7ca77ec3156169284b0dd97caaff44d4cbac84
refs/heads/master
2021-01-21T21:18:46.582108
2017-06-20T19:28:38
2017-06-20T19:28:38
94,809,440
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-06-10 18:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orders', '0004_productincart'), ] operations = [ migrations.AddField( model_name='productinorder', name='coil', field=models.IntegerField(default=0), ), migrations.AddField( model_name='productinorder', name='winding', field=models.CharField(blank=True, default=None, max_length=10, null=True), ), migrations.AlterField( model_name='productinorder', name='nmb', field=models.IntegerField(default=0), ), ]
[ "artur.bykov94@yandex.ru" ]
artur.bykov94@yandex.ru
357f34d7579b60591d6308fc473f39d7d0ddb46c
5f0ffab428b304eb644e54f047ef092cc13c1885
/ex024.py
1512b953a7ddc240df106c9356aa55eb2233f619
[]
no_license
alamyrjunior/pythonExercises
a93ca2301ed8d6a02f452a67318baac6d7c8ac02
bad1860519bf1e62333d2350b706e3dddd350a4d
refs/heads/master
2022-11-17T12:20:28.603351
2020-07-11T22:04:37
2020-07-11T22:04:37
275,353,387
0
0
null
2020-07-05T14:37:41
2020-06-27T10:58:12
Python
UTF-8
Python
false
false
141
py
cidade = str(input('Digite o nome da sua cidade: ')).strip() split = cidade[:5].upper().split() santo = 'SANTO' in split[0] print(santo)
[ "noreply@github.com" ]
noreply@github.com
de08487599db59ec42c8411a915504fbb20fb953
16e25b85246531216c57d5eb7fe1d4198aa41ce7
/django_todo/urls.py
2efbb05ba8c0cd2dc0e117a6e855929c968c9f29
[]
no_license
StuChapman/Code-Institute-fsf-hello-django
0b22318a32c6d9477658cd70869a1ada376868b0
341a916dad8f58244df266774e16180d206f47d6
refs/heads/master
2023-08-17T10:43:59.185573
2021-01-09T12:40:03
2021-01-09T12:40:03
326,421,544
0
0
null
2021-09-22T19:42:04
2021-01-03T14:07:24
HTML
UTF-8
Python
false
false
1,062
py
"""django_todo URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from todo import views urlpatterns = [ path('admin/', admin.site.urls), path('', views.get_todo_list, name='get_todo_list'), path('add', views.add_item, name='add'), path('edit/<item_id>', views.edit_item, name='add'), path('toggle/<item_id>', views.toggle_item, name='toggle'), path('delete/<item_id>', views.delete_item, name='delete') ]
[ "chapman.stuart@sky.com" ]
chapman.stuart@sky.com
b8093a8f605a4b25b1ab786c82386a1b447f02f8
bbe282e2f2e3b6ba560eb4a5bac677e832c6aca9
/apps/LOGIN_APP/views.py
142b20af0b9a759b78a0af551638d6ec63cd45b3
[]
no_license
jhoney92021/djagno_favoriteBooks
20edaa66b6dce1f158fcd8584615105f43e17aaf
013919d4be60976d69c36d78bdfc865628cfecc8
refs/heads/master
2021-06-25T12:30:59.415140
2019-07-17T21:33:43
2019-07-17T21:33:43
197,466,361
0
0
null
2021-06-10T21:43:55
2019-07-17T21:34:37
Python
UTF-8
Python
false
false
2,229
py
from django.shortcuts import render, HttpResponse, redirect from django.contrib import messages from apps.LOGIN_APP.models import Users import random, datetime, bcrypt def index(request): #MAIN INDEX IE LOGIN INDEX return render(request,'LOGIN_APP/index.html') def processRegistration(request): #REGISTRATION PROCESS ROUTE errors = Users.objects.validator(request.POST) if len(errors) > 0: for key, val in errors.items(): messages.error(request, val) return redirect('/') else: newUserPass = request.POST['password'] newUserPassEncrypt = bcrypt.hashpw(newUserPass.encode(), bcrypt.gensalt()) newUser = Users.objects.create( fname= request.POST['fname'], lname= request.POST['lname'], username= request.POST['username'], birthday= request.POST['birthday'], email= request.POST['email'], password= newUserPassEncrypt ) request.session['user_live'] = newUser.id return redirect('/success') def processLogin(request): #LOGIN PROCESS ROUTE errors = Users.objects.loginVal(request.POST) if len(errors) > 1: for key, val in errors.items(): messages.error(request, val) return redirect('/') else: passGiven = request.POST['password'] userQuery = Users.objects.get(email= request.POST['email']) if bcrypt.checkpw(passGiven.encode(), userQuery.password.encode()): request.session['user_live'] = userQuery.id return redirect('/success' ) else: messages.error(request, 'logFail') return redirect('/') def success(request): #RENDER SUCCESS, TO INFORM THE USER THAT THEY ARE IN SESSION liveUser = request.session['user_live'] context ={ 'user': Users.objects.get(id = liveUser), } return render(request, 'LOGIN_APP/success.html', context) def logout(request): #CLEAR USER IN SESSION request.session.clear() return redirect('/') def userPage(request, userID): #FOR RENDERING A USERS PAGE context = { 'thisUser': Users.objects.get(id= userID) } return render(request, "LOGIN_APP/userPage.html", context)
[ "51093828+jhoney92021@users.noreply.github.com" ]
51093828+jhoney92021@users.noreply.github.com
2e6f64de93dc287b2fb60da10ae8273cc7d6b585
25e33d1b4e3546239310514b2c34de10f5390b50
/image_patch_files/system_python_path/site-packages/cloudinit/__init__.py
a2d016e9e8daeb44205b8bac8c9374c23fd5d8e5
[ "Apache-2.0" ]
permissive
jgruberf5/bigiq-cloudinit
8961e261c5fcf41647f8fa881484a3871fbbd12f
d5ef898c3970bdc5822fa6c74938e9959a5e098f
refs/heads/master
2021-10-24T15:35:08.923810
2021-10-14T18:23:45
2021-10-14T18:23:45
212,141,905
2
1
null
null
null
null
UTF-8
Python
false
false
210
py
config_modules = [ 'cc_configdrive_defaults', 'cc_ibm_vpc_gen2_defaults', 'cc_set_passwords', 'cc_bigiq_configdrive_openstack', 'cc_bigiq_static_mgmt', 'cc_bigiq_dhcpv4_tmm', 'cc_bigiq_playbooks' ]
[ "jgruber@f5.com" ]
jgruber@f5.com
f393a262dfa4a67a83872bd7ce0ff658f6611d3d
cfad0044a5d50be42ff78651b1f1460f3dadb014
/python/prac1x2.py
99af3e89abf2be043bd42d376502cc4651d227f0
[ "Unlicense" ]
permissive
sourabh48/python
4c41db76bd6eddf73be8e76e10a782e247373f39
5fbda23133dad1ca0b73d4600b4e00cb6b5e3331
refs/heads/master
2020-05-07T16:19:46.369631
2019-04-10T23:20:22
2019-04-10T23:20:22
180,677,552
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
a = int(input("Enter number 1: ")) b = int(input("Enter number 2: ")) c = int(input("Enter number 3: ")) d = (a+b+c)/3 print("The avarage of 3 numbers are: " ,d )
[ "30088198+sourabh48@users.noreply.github.com" ]
30088198+sourabh48@users.noreply.github.com
a4b433b288892409b40316cf2edd73f31e98e343
903784f4ebc68012041d6f2cfeb903c6b37837a6
/pydenji/userproperties/overrider.py
e581afc404a864e3e30d7e3c8e71a8387c9e2361
[ "Apache-2.0", "LicenseRef-scancode-public-domain" ]
permissive
alanfranz/pydenji
25a45aea5f03f496fe03bf9e4f0f135b9cae4a37
a922f1456e0d698b3e9e0674d980ede746fc2835
refs/heads/master
2020-04-05T12:34:36.629505
2017-07-10T16:20:46
2017-07-10T16:20:46
95,158,029
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # (C) 2010 Alan Franzoni. from configobj import ConfigObj from pydenji._aop.intercept import intercept # TODO: change this name, I don't like it. class override_with(object): def __init__(self, configobj_source, *other_co_srcs): self._co = ConfigObj(configobj_source, unrepr=True) for other_src in other_co_srcs: self._co.merge(ConfigObj(other_src, unrepr=True)) def __call__(self, config_cls): for section_name in self._co.sections: def section_interceptor(context): o = context.proceed() for k, v in self._co[section_name].items(): setattr(o, k, v) return o # this creates a new subclass every time! we should change the way # intercept works?? config_cls = intercept(config_cls, section_name, section_interceptor) return config_cls
[ "username@franzoni.eu" ]
username@franzoni.eu
61a95e5589b6dfb0bbd3e318f3d3bad8468e78cd
d32c1163bbfb27049df0f0f0485cdf5bb5224b92
/src/handelsraad_bot/util.py
8e56e0875e136f89426a48b4d6def23ff5abba6c
[]
no_license
joostsijm/handelsraad_bot
4804453e015260d9d191e93d999ce9fe01b3f471
658fd447c00e411c8ee40212178fae2a64aae2ca
refs/heads/master
2023-08-11T16:43:28.256240
2021-09-26T12:38:31
2021-09-26T12:38:31
355,955,150
0
0
null
null
null
null
UTF-8
Python
false
false
3,153
py
"""Common utilities""" from rival_regions_calc import Value from handelsraad_bot import LOGGER, TESTING, database def check_permission(update, roles, action): """Check permissions""" executor = database.get_user_by_telegram_id( update.message.from_user.id ) if not executor: executor = database.get_user_by_telegram_username( update.message.from_user.username ) if executor: executor.telegram_id = update.message.from_user.id executor = database.save_user(executor) else: executor = database.add_user( update.message.from_user.first_name, update.message.from_user.id, update.message.from_user.username ) if TESTING: return True for role in executor.get_roles(): if role in roles: return True LOGGER.warning( '%s: %s, not allowed', update.message.from_user.username, action ) update.message.reply_text( 'Rollen die recht hebben op dit command: {}'.format( ', '.join(roles) ) ) return False def total_investment(user): """Count user investment""" total = 0 for investment in user.investments: total += investment.amount return total def get_total(): """Get total including average""" total = { 0: { 'amount': 0, 'average': 0 } } for user in database.get_investors(): total[0]['amount'] += total_investment(user) item_details = {} for detail in database.get_transaction_details(): if detail.item_id not in total: total[detail.item_id] = { 'amount': 0, 'average': 0 } if detail.item_id not in item_details: item_details[detail.item_id] = [] total[detail.item_id]['amount'] += detail.amount total[0]['amount'] += detail.money item_details[detail.item_id].append(detail) for item_id, details in item_details.items(): money_total = 0 item_total = total[item_id]['amount'] for detail in reversed(details): if detail.money >= 0: continue if item_total < detail.amount: money_total += round( item_total * (detail.money / detail.amount), 2 ) break money_total += detail.money item_total -= detail.amount if total[item_id]['amount']: total[detail.item_id]['average'] = abs(round( money_total / total[item_id]['amount'], 2 )) else: del total[item_id] return total def round_number(number, length): """Round number""" i = 1 number = Value(number) while len(str(number)) > length: amount = pow(1000, i) number = Value(round(number / amount) * amount) i += 1 return number
[ "joostsijm@gmail.com" ]
joostsijm@gmail.com
82a203f3a27ae3767dc8c58441b3f4644e5a1399
a2e607593dcbe5feaeedd9e9bd4caeaf06e46733
/tests/ui/menus/test_opmenu.py
464f5422d23c0778525972d3ce32d53d5aa537af
[]
no_license
all-in-one-of/Houdini-Toolbox
dd05b2c869e663b185c1997d326bfe7548fbf55f
c10663c46c0f1249a9b3c6b32d4384a4399849ed
refs/heads/master
2020-06-13T01:10:11.832715
2019-08-30T07:24:47
2019-08-30T07:24:47
194,484,242
0
0
null
2019-06-30T06:42:17
2019-06-30T06:42:17
null
UTF-8
Python
false
false
1,738
py
"""Tests for ht.ui.menus.opmenu module.""" # ============================================================================= # IMPORTS # ============================================================================= # Python Imports from mock import MagicMock, patch import unittest # Houdini Toolbox Imports import ht.ui.menus.opmenu # Houdini Imports import hou reload(ht.ui.menus.opmenu) # ============================================================================= # CLASSES # ============================================================================= class Test_create_absolute_reference_copy(unittest.TestCase): """Test ht.ui.menus.opmenu.create_absolute_reference_copy.""" def test(self): """Test creating an absolute reference copy.""" mock_node = MagicMock(spec=hou.Node) scriptargs = { "node": mock_node } mock_ui = MagicMock() hou.ui = mock_ui ht.ui.menus.opmenu.create_absolute_reference_copy(scriptargs) mock_node.parent.return_value.copyItems.assert_called_with([mock_node], channel_reference_originals=True, relative_references=False) del hou.ui class Test_save_item_to_file(unittest.TestCase): """Test ht.ui.menus.opmenu.save_item_to_file.""" @patch("ht.ui.menus.opmenu.copy_item") def test(self, mock_copy): """Test saving an item to a file.""" mock_node = MagicMock(spec=hou.Node) scriptargs = { "node": mock_node } ht.ui.menus.opmenu.save_item_to_file(scriptargs) mock_copy.assert_called_with(mock_node) # ============================================================================= if __name__ == '__main__': unittest.main()
[ "captainhammy@gmail.com" ]
captainhammy@gmail.com
2d9579c4f46e697e49c1ff2919d1f2e549706639
51305c54f8a316b6878a4462e1ba58a55c8e320f
/manager/thumbgen.py
49950650252902242789d77d34a36ed34f1f3ad4
[]
no_license
coinmenace/gck
5b15b460335c0b52925f1875ccb4fecd416008e7
fade84780cda218291cb2066808310c4871a06c8
refs/heads/master
2020-03-27T06:58:54.878353
2018-10-22T12:32:20
2018-10-22T12:32:20
146,153,068
0
0
null
null
null
null
UTF-8
Python
false
false
1,078
py
from PIL import Image, ImageFile import glob, os from threading import * ImageFile.LOAD_TRUNCATED_IMAGES = True class Thumbgen: def __init__(self,file,fullname,identifier): sizes = [(32, 32),(64, 64),(128, 128),(256, 256),(512, 512),(1024, 1024),(2048, 2048)] self.generateThumb(identifier,file,fullname,sizes) def generateThumb(self,identifier,file,fullname,sizes): for size in sizes: t=Thread(target=generateImages,args=(identifier,file,fullname,size,)) t.start() t.join() def generateImages(identifier,file,fullname,size): #print "Open "+fullname im = Image.open(fullname) im.thumbnail(size) if not os.path.exists("website/static/thumbs/"+identifier+"/"): os.mkdir("website/static/thumbs/"+identifier+"/") file="website/static/thumbs/"+identifier+"/"+file.split(".")[0]+"_"+str(size[0])+"_"+str(size[1]) im.save(file + ".png",format="PNG", quality=95, optimize=True, progressive=True) if __name__=="__main__": filename="sample.png" t=Thumbgen(filename)
[ "webframes@gmail.com" ]
webframes@gmail.com
ff04d53e4dd4235eb7334cc856b400d44b802eb2
0d1377c871764252fe2f44e2e6b784c49f18df62
/0x0F-python-object_relational_mapping/model_city.py
2b10f600b8123223e444e6e037e51bc805ba9a23
[]
no_license
ElianaGomez2020/holbertonschool-higher_level_programming
a0ecba588091fe5bae0f529f3fb321cd3c4c7329
53754d496e561fec26ae56ba6f38d07cc3968914
refs/heads/master
2023-03-28T15:19:24.082338
2021-04-02T16:11:06
2021-04-02T16:11:06
291,766,013
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
#!/usr/bin/python3 """contains the class definition of a City""" from sqlalchemy import Column, Integer, String, ForeignKey from model_state import Base class City(Base): """City class""" __tablename__ = "cities" id = Column(Integer, primary_key=True, autoincrement=True, nullable=False) name = Column(String(128), nullable=False) state_id = Column(Integer, ForeignKey("states.id"), nullable=False)
[ "elianagomez.s@outlook.com" ]
elianagomez.s@outlook.com
263b24f9d47303128b0b13be8f3eb6f5571bb848
db8ac9c3a3a3176574bfdd53b91683684f0ca24c
/phase_space_test.py
bcc4d769431883f2b95efe07cdece55c493dc1f0
[]
no_license
skostogl/GPU-Tracking-code
05247364d17987ee17cea696db67589a1a4979d2
41577514021edf3119ddee2673c57a8ce1a097ca
refs/heads/master
2020-12-24T10:58:46.607065
2017-03-16T11:17:55
2017-03-16T11:17:55
73,206,822
2
2
null
2016-11-10T17:42:27
2016-11-08T16:47:41
C++
UTF-8
Python
false
false
1,851
py
import pickle from modules.tracker import * from modules.naff import * from modules.grid import * from modules.tune_resonances import * from modules.FMA import * from mpl_toolkits.axes_grid.anchored_artists import AnchoredText import matplotlib.pyplot as plt import numpy as np from matplotlib.pyplot import cm lattice = Lattice() if ( True ): #if ( False ): lattice.read_twiss_table("LHC/lhc_no_bb.twi") lattice.optimise() lattice.compile() lattice.write_ptx("LHC/lhc_no_bb") else: lattice.read_ptx("LHC/lhc_no_bb") lattice.n_turns = 5000 lattice.norm_emit_x = 2e-6 lattice.norm_emit_y = 2e-6 lattice.collect_tbt_data = 1 # every 1 turn #b,grid = cmp_grid (lattice.sigma_x(), lattice.sigma_x()*8, lattice.sigma_y(), lattice.sigma_y()*8,1,lattice) #n_particles=b.size() n_particles=20 b=HostBunch(n_particles) for i in range (n_particles): b.y[i]=0 b.yp[i]=0 b.x[i]=(i+1)*lattice.sigma_x() b.xp[i]=0 #b.d[i]=100e-5 #lattice.track(b) #for i in range (n_particles): # filename = '/home/skostogl/cuTrack/dat_files/particles/particle_%d.dat'%i # tbt = [ (b.x[i], b.xp[i], b.y[i], b.yp[i]) for b in lattice.turns ] # with open(filename,'w') as outfile: # for t in tbt: # outfile.write("{} {} {} {}\n".format(t[0], t[1], t[2], t[3])) # # #fig,ax=plt.subplots() #color=iter(cm.rainbow (np.linspace(0,1,n_particles))) #for i in range (n_particles): # c=next(color) # for j in (lattice.turns): # plt.plot(j.x[i]*1e3, j.xp[i]*1e3, c=c,marker='o',ms=3,markeredgewidth=0.0) # plt.xlabel(r'$x [mm]$', fontsize=20) plt.ylabel(r'$x_p [mm]$', fontsize=20) plt.xticks(fontsize=20) plt.yticks(fontsize=20) annotation_string=r'$\delta=0$' at = AnchoredText(annotation_string,prop=dict(size=18), frameon=True,loc=1) at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") ax.add_artist(at) plt.tight_layout() plt.show()
[ "sofia.kostoglou@cern.ch" ]
sofia.kostoglou@cern.ch
45733874fe84b5e216c9c12f97d47074eb2cfdaf
83c7fc1aeff81e95412ef0ec284e2c86a3aea448
/pragmatic/urls.py
8f8a97a6a04abf2284d18531925cec72c2f1f043
[]
no_license
diegomazorra1/pragmatic
044b90c94ffc129073c5b1e4212368a287f60db9
94639a161eb1c822802729c415f562832232435d
refs/heads/master
2020-12-04T09:29:13.042970
2020-01-10T20:54:01
2020-01-10T20:54:01
231,711,356
0
0
null
null
null
null
UTF-8
Python
false
false
1,418
py
"""pragmatic URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from apps.cotizacion.views import PagPrincipal from django.contrib.auth.views import LoginView from django.contrib.auth import views as auth_views from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('usuario/',include('apps.usuario.urls', namespace='usuario')), path('cotizacion/', include('apps.cotizacion.urls', namespace='cotizacion')), path('inventario/', include('apps.inventario.urls', namespace='inventario')), path('', PagPrincipal.as_view(),name='inicio'), path('accounts/login/', auth_views.LoginView.as_view(template_name='login/login.html'), name='login'), path('accounts/logout/', auth_views.LogoutView.as_view(), name='logout'), ]
[ "ingenierodiegomazorra@gmail.com" ]
ingenierodiegomazorra@gmail.com
167fad9e892a205acf7896cdaf131a41ea63ec1f
2427bf2ec03b9fc9a01c39962acefdcabd822f9d
/movies/domain/allCombined.py
cd11c57fbc854de2459aaa56647e63d264c2d05b
[]
no_license
adso514/Assignment-2-235-adso514
6cf56125531b5790960d7c8cf3ba458985419cb9
a37d2e48399edf9ee6220d1c267306888733ce0b
refs/heads/master
2023-01-04T15:12:15.191374
2020-10-27T00:39:30
2020-10-27T00:39:30
307,074,504
0
0
null
null
null
null
UTF-8
Python
false
false
8,627
py
from datetime import date, datetime class Actor: def __init__(self, actor_full_name: str): if actor_full_name == "" or type(actor_full_name) is not str: self.__actor_full_name = None else: self.__actor_full_name = actor_full_name.strip() self.__colleagues_list = [] @property def actor_full_name(self) -> str: return self.__actor_full_name @property def colleagues(self) -> list: return self.__colleagues_list def __repr__(self): return f"<Actor {self.__actor_full_name}>" def __eq__(self, other): return self.actor_full_name == other.actor_full_name def __lt__(self, other): return self.actor_full_name < other.actor_full_name def __hash__(self): return hash(self.actor_full_name) def add_actor_colleague(self, colleague): self.__colleagues_list.append(colleague) def check_if_this_actor_worked_with(self, colleague): return colleague in self.__colleagues_list class Director: def __init__(self, director_full_name: str): if director_full_name == "" or type(director_full_name) is not str: self.__director_full_name = None else: self.__director_full_name = director_full_name.strip() @property def director_full_name(self) -> str: return self.__director_full_name def __repr__(self): return f"<Director {self.__director_full_name}>" def __eq__(self, other): return self.director_full_name == other.director_full_name def __lt__(self, other): return self.director_full_name < other.director_full_name def __hash__(self): return hash(self.director_full_name) class Genre: def __init__(self, genre_name: str): if genre_name == "" or type(genre_name) is not str: self.__genre_name = None else: self.__genre_name = genre_name.strip() @property def genre_name(self) -> str: return self.__genre_name def __repr__(self): return f"<Genre {self.__genre_name}>" def __eq__(self, other): return self.genre_name == other.genre_name def __lt__(self, other): return self.genre_name < other.genre_name def __hash__(self): return hash(self.genre_name) class Movie: def __init__(self, movie_title: str, release_year: int): if movie_title == "" or type(movie_title) is not str: self.__movie_title = None else: self.__movie_title = movie_title.strip() if type(release_year) is not int: self.__release_year = None else: if release_year < 1900: self.__release_year = None else: self.__release_year = release_year self.__director = None self.__actors = list() self.__genres = list() self.__description = None self.__runtime_minutes = None self.__id = None self.__reviews = list() self.__imagelink = None # A movie is considered to be uniquely defined by the combination of its title and release year @property def imagelink(self): return self.__imagelink @property def title(self) -> str: return self.__movie_title @property def year(self) -> int: return self.__release_year @property def director(self) -> Director: return self.__director @property def id(self) -> int: return self.__id @director.setter def director(self, director): self.__director = director @property def actors(self) -> list: return self.__actors @property def genres(self) -> list: return self.__genres @property def reviews(self) -> list: return self.__reviews @property def description(self) -> str: return self.__description @description.setter def description(self, description): self.__description = description.strip() @property def runtime_minutes(self) -> int: return self.__runtime_minutes @runtime_minutes.setter def runtime_minutes(self, runtime_minutes): if type(runtime_minutes) is not int: raise ValueError else: if runtime_minutes >= 0: self.__runtime_minutes = runtime_minutes else: raise ValueError def add_id(self, rank: int): self.__id = rank def add_actor(self, actor: Actor): self.__actors.append(actor) def add_director(self, director: Director): self.__director = director def add_imagelink(self, link): self.__imagelink = link def remove_actor(self, actor: Actor): actors_list = self.__actors if actor in actors_list: for i in range(len(actors_list) - 1, -1, -1): if actor == actors_list[i]: actors_list.pop(i) self.__actors = actors_list def add_genre(self, genre: Genre): self.__genres.append(genre) def add_review(self, review): self.__reviews.append(review) def remove_genre(self, genre: Genre): genres_list = self.__genres if genre in genres_list: for i in range(len(genres_list)-1, -1, -1): if genre == genres_list[i]: genres_list.pop(i) self.__genres = genres_list def __repr__(self): return f"<Movie {self.__movie_title}, {self.__release_year}>" def __eq__(self, other): return self.title == other.title and self.__release_year == other.__release_year def __lt__(self, other): return f"{self.__movie_title}{self.__release_year}" < f"{other.__movie_title}{other.__release_year}" def __hash__(self): return hash(f"{self.__movie_title}{self.__release_year}") class User: def __init__(self, username: str, password): self.__user_name = username.strip() self.__watched_movies = [] self.__reviews = [] self.__time_spent_watching_movies_minutes = 0 self.__password = password self.__watchlist = [] @property def username(self) -> str: return self.__user_name @property def watchlist(self) -> list: return self.__watchlist @property def password(self): return self.__password @property def watched_movies(self) -> list: return self.__watched_movies @property def reviews(self) -> list: return self.__reviews @property def time_spent_watching_movies_minutes(self) -> int: return self.__time_spent_watching_movies_minutes def __repr__(self): return f"<User {self.__user_name} {self.__password}>" def __eq__(self, other): return self.username == other.username def __lt__(self, other): return self.username < other.username def __hash__(self): return hash(self.username) def watch_movie(self, movie: Movie): self.__watched_movies.append(movie) self.__time_spent_watching_movies_minutes += movie.runtime_minutes def add_review(self, review): self.__reviews.append(review) def add_to_watchlist(self, movie): self.__watchlist.append(movie) def remove_from_watchlist(self, movie): watchlist = self.__watchlist if movie in watchlist: for i in range(len(watchlist) - 1, -1, -1): if movie == watchlist[i]: watchlist.pop(i) self.__watchlist = watchlist class Review: def __init__(self, user: User, movie: Movie, review_text: str): self.__movie = movie self.__review_text = review_text self.__timestamp = datetime.now() self.__user = user @property def movie(self) -> Movie: return self.__movie @property def user(self) -> User: return self.__user @property def username(self) -> str: return self.__user.username @property def review_text(self) -> str: return self.__review_text @property def timestamp(self) -> datetime: return self.__timestamp def __eq__(self, other): return self.movie == other.movie and self.review_text == other.review_text and self.rating == other.rating and self.timestamp == other.timestamp def make_review(review_text: str, user: User, movie: Movie): review = Review(user, movie, review_text) user.add_review(review) movie.add_review(review) return review
[ "adso514@aucklanduni.ac.nz" ]
adso514@aucklanduni.ac.nz
bf851c29b826417e4b89cc581539ab78bec35eb2
55ce104faddb4a723567ced94dd93e88e40781cf
/week5/w5d5/w5d5exercice1/rock-paper-scissors.py
21e027e3a5ff852576e14728ada20523cba74785
[]
no_license
leasoussan/DIpython
134cd7549e424837189f84cfd063db4db60a044e
1eb83fe9ea53a4881f73cd60ae9b5161b4fb1e20
refs/heads/master
2023-02-08T02:57:21.091078
2020-12-15T21:35:18
2020-12-15T21:35:18
305,334,529
0
0
null
null
null
null
UTF-8
Python
false
false
3,526
py
from game import * # Rock-Paper-Scissors.Py : Create 3 Functions # get_user_menu_choice() - this should display a simple menu, # get the user’s choice (with data validation), and return the choice. No looping should occur here. # print_results(results) – this should print the results of the games played. # It should have a single parameter named results; # which will be a dictionary of the results of the games played. # It should display these results in a user-friendly way, # and thank the user for playing. # Note: results should be in this form: {win: 2,loss: 4,draw: 3}. # Bear in mind that this dictionary will need to be created and populated in some other part of our code, # and passed in to the print_results function at the right time. # main() - the main function. It should take care of 3 things: # displaying the menu repeatedly, until the user types in the value to exit the program: ‘x’ or ‘q’, whatever you decide. (Make use of the get_user_menu_choice function) # When the user chooses to play a game: # Create a new Game object (see below), and call its play()* function, receiving the result of the game that is returned. # Remember the results of every game that is played. More about this below. # When the user chooses to exit the program, call the print_results function in order to display a summary of all the games played. def get_user_menu_choice(): print("Menu") print("(g) Play a game") print("(x) Show scores and Exit") choice_input =input("") if choice_input not in ["x", "g"]: raise ValueError("Please choose g or x") else: print("lets' Start***") return choice_input # # this should print the results of the games played. # It should have a single parameter named results; which will be a dictionary # of the results of the games played. It should display these results in a # user-friendly way, and thank the user for playing. # Note: results should be in this form: {win: 2,loss: 4,draw: 3}. # Bear in mind that this dictionary will need to be created and populated in # some other part of our code, and passed in to the print_results function at # the right time. def print_results(results): print(f"\ Game Results:\n\ Your won: {results['win']} times \n\ You lost: {results['loss']} \n\ You drew {results['draw']} \n\ \n\ Thank you for Playing") # for key, values in results: # You results {results[key]} {results[values]} ") def main(): results = { "win":0, "loss": 0, "draw" :0 } while True: user_menu_choice = get_user_menu_choice() if user_menu_choice == "g": round_result = Game().play() results[round_result] += 1 elif user_menu_choice in ["x", "q"]: print_results(results) break else: print("wrong Input") continue # displaying the menu repeatedly, # until the user types in the value to exit the program: ‘x’ or ‘q’, # whatever you decide. (Make use of the get_user_menu_choice function) # When the user chooses to play a game: # Create a new Game object (see below), and call its play()* function, # receiving the result of the game that is returned. # Remember the results of every game that is played. More about this below. # When the user chooses to exit the program, # call the print_results function in order to display a summary of all # the games played.
[ "leasoussan@hmail.com" ]
leasoussan@hmail.com
6679ecf0979fc944496c2a7be40579a31f7d9871
a32133131ec1153ec9cb1537c757881124cd46b9
/trainers/create_batch_benchmark.py
01624d83c71a94e88b7e1a0be542df83e9b3a867
[]
no_license
yli5/bdtaunu_hadron_learning
d9130bb4ff3f2f10c7f4b5b9c4953a7e8a2e66d6
6d09f3388494afe7ca15663bca21652ac55361ab
refs/heads/master
2021-04-15T17:33:26.378184
2018-05-07T18:13:46
2018-05-07T18:13:46
126,240,103
0
0
null
2018-05-04T20:44:21
2018-03-21T21:00:57
Jupyter Notebook
UTF-8
Python
false
false
6,141
py
import sys import time import numpy as np import bisect import matplotlib.pyplot as plt from os import path lib_path = path.dirname(path.dirname(path.abspath(__file__))) sys.path.append(lib_path) from preprocess.PreProcess import PreProcess, load_data from util.resampling import binary_downsampling, binary_upsampling def get_data(data, fit=True): # Preprocessor process_path = {'imputer': '../preprocess/imputer.pkl', 'scaler': '../preprocess/scaler.pkl', 'encoder': '../preprocess/encoder.pkl'} processor = PreProcess() X, y, w = load_data(data, process_path, fit=fit) # Resample to balance labels X, Y, W = binary_upsampling(X, y, w) # Return labels as 1D array assert X.shape[0] == Y.shape[0] return X, Y, W def alias_setup(probs): K = len(probs) q = np.zeros(K) J = np.zeros(K, dtype=np.int) # Sort the data into the outcomes with probabilities # that are larger and smaller than 1/K. smaller = [] larger = [] for kk, prob in enumerate(probs): q[kk] = K*prob if q[kk] < 1.0: smaller.append(kk) else: larger.append(kk) # Loop though and create little binary mixtures that # appropriately allocate the larger outcomes over the # overall uniform mixture. while len(smaller) > 0 and len(larger) > 0: small = smaller.pop() large = larger.pop() J[small] = large q[large] = q[large] - (1.0 - q[small]) if q[large] < 1.0: smaller.append(large) else: larger.append(large) return J, q def alias_draw(J, q): K = len(J) # Draw from the overall uniform mixture. kk = int(np.floor(np.random.rand()*K)) # Draw from the binary mixture, either keeping the # small one, or choosing the associated larger one. if np.random.rand() < q[kk]: return kk else: return J[kk] if __name__ == '__main__': # Load training data print 'Loading training data and preprocessing ......' start_time = time.time() training_data = '../data/train.csv' x, y, w = get_data(training_data) end = time.time() print 'Done. Took {} seconds.'.format(end - start_time) print # Parameters n = x.shape[0] BATCH_SIZE = 256 NUM_EPOCHS = 1 # Create batches by partitioning # print 'Batch sampling by partitioning ......' # start_time = time.time() # for step in xrange(int(NUM_EPOCHS * n) // BATCH_SIZE): # offset = (step * BATCH_SIZE) % (n - BATCH_SIZE) # x_batch = x[offset:(offset + BATCH_SIZE), ...] # y_batch = y[offset:(offset + BATCH_SIZE)] # end = time.time() # print 'Done. Took {} seconds.'.format(end - start_time) # print # Create batches by sampling by weights J, q = alias_setup(w) cs = np.cumsum(w) # s = np.cumsum(p) print 'Batch sampling by weights ......' print results = [] results_part = [] batch_sizes = [1024, 512, 256, 128, 64] def get_partition_idxs(cs, n_per_batch): ''' cs: cumulative sum of probability vector n_per_batch: size of each batch ''' idxs = [] n = len(cs) approx_batch_weight = float(n_per_batch)/n for i in range(0, n/n_per_batch): idxs.append(bisect.bisect(cs, (i+1)*approx_batch_weight)) return idxs batch_idxs = get_partition_idxs(cs, BATCH_SIZE) for BATCH_SIZE in batch_sizes: print 'Batch size = {}'.format(BATCH_SIZE) start_time = time.time() # Sampling according to weights prev_batch_end_idx = -1 for step in xrange(int(NUM_EPOCHS * n) // BATCH_SIZE): # # Naive; very slow # rand_idxs = np.random.choice(n, size=BATCH_SIZE, # replace=False, p=p) # # # Still too slow # r = np.random.rand(n) # rand_idxs = (s < r).sum() # # Faster rand_idxs = [] for i in range(BATCH_SIZE): rand_idxs.append(bisect.bisect(cs, np.random.random() * cs[-1])) # # # Walker's alias method # rand_idxs = np.zeros(BATCH_SIZE) # for i in xrange(BATCH_SIZE): # rand_idxs[i] = alias_draw(J, q) # rand_idxs = rand_idxs.astype(np.int) # # x_batch = x[rand_idxs] # y_batch = y[rand_idxs] # # # Batch selection # batch_idx = batch_idxs[step % NUM_EPOCHS] # x_batch = x[prev_batch_end_idx+1:batch_idx, ...] # y_batch = y[prev_batch_end_idx+1:batch_idx] # if batch_idx == batch_idxs[-1]: # prev_batch_end_idx = -1 # else: # prev_batch_end_idx = batch_idx # # # Sequential selection # #start_idx = np.random.randint(n/BATCH_SIZE*BATCH_SIZE) # start_idx = 0 # sum_w = 0. # batch_w = float(BATCH_SIZE) / n # i = start_idx # idxs = [] # while sum_w < batch_w: # if np.random.random() < w[i]: # sum_w += w[i] # idxs.append(i) # elif i == start_idx: # start_idx = i + 1 # i += 1 # x_batch = x[idxs, ...] # y_batch = y[idxs] end = time.time() results.append(end-start_time) print 'Done. Took {} seconds.'.format(end - start_time) print # Batch sample by partitioning start_time = time.time() for step in xrange(int(NUM_EPOCHS * n) // BATCH_SIZE): offset = (step * BATCH_SIZE) % (n - BATCH_SIZE) x_batch = x[offset:(offset + BATCH_SIZE), ...] y_batch = y[offset:(offset + BATCH_SIZE)] end = time.time() results_part.append(end-start_time) print 'Done. Took {} seconds.'.format(end - start_time) print ax = plt.figure().gca() ax.plot(batch_sizes, results, color='r') ax2 = ax.twinx() ax2.plot(batch_sizes, results_part) plt.show()
[ "jaehongkim86@gmail.com" ]
jaehongkim86@gmail.com
b524fe5caa3d77e5a88deb2e1aca3844f930eedf
40491d4649bc8f981cfd531657b0970e2577edd1
/Policy_Gradient/Tank_1/params.py
591b4c09a4383ccea277dcc219593c967ce568b8
[]
no_license
emedd33/Reinforcement-Learning-in-Process-Control
d82ddab87dc6727a70ee38d53889aa8af87ade25
24bc1d9b72c0762bd92c215837347d6548099902
refs/heads/master
2022-07-12T02:53:52.208320
2022-04-05T15:23:48
2022-04-05T15:23:48
161,691,463
29
11
null
2022-06-21T21:39:15
2018-12-13T20:29:27
Python
UTF-8
Python
false
false
1,408
py
MAIN_PARAMS = { "EPISODES": 20000, "MEAN_EPISODE": 50, "MAX_TIME": 200, "RENDER": True, "MAX_MEAN_REWARD": 200, # minimum reward before saving model } AGENT_PARAMS = { "N_TANKS": 1, "SS_POSITION": 0.5, "VALVE_START_POSITION": 0.2, "ACTION_DELAY": [5], "INIT_ACTION": 0.3, "VALVEPOS_UNCERTAINTY": 0, "EPSILON_DECAY": [1], "LEARNING_RATE": [0.0005], "HIDDEN_LAYER_SIZE": [[5, 5]], "BATCH_SIZE": 5, "MEMORY_LENGTH": 10000, "OBSERVATIONS": 4, # level, gradient, is_above 0.5, prevous valve position "GAMMA": 0.9, "EPSILON": [0], "EPSILON_MIN": [0], "BASE_LINE_LENGTH": 1, "Z_VARIANCE": [0.05], "SAVE_MODEL": [True], "LOAD_MODEL": [False], "TRAIN_MODEL": [True], "LOAD_MODEL_NAME": [""], "LOAD_MODEL_PATH": "Policy_Gradient/Tank_1/", "SAVE_MODEL_PATH": "Policy_Gradient/Tank_1/", } # Model parameters Tank 1 TANK1_PARAMS = { "height": 10, "init_level": 0.5, "width": 10, "pipe_radius": 0.5, "max_level": 0.75, "min_level": 0.25, } TANK1_DIST = { "add": True, "pre_def_dist": False, "nom_flow": 1, # 2.7503 "var_flow": 0.1, "max_flow": 2, "min_flow": 0.7, "add_step": False, "step_time": int(MAIN_PARAMS["MAX_TIME"] / 2), "step_flow": 2, "max_time": MAIN_PARAMS["MAX_TIME"], } TANK_PARAMS = [TANK1_PARAMS] TANK_DIST = [TANK1_DIST]
[ "eskild.emedd33@gmail.com" ]
eskild.emedd33@gmail.com
f226ecd710abd15e52e47a41bb94ec641d607bef
b2a1813da144ba4a86f6db5378c55eca8fc91e7a
/jump7.py
b1dcc6172f9ad6463ff9c9e86e1e791a26186a70
[]
no_license
yongzhiji/shiyanlou-code
bc201d24fbfd39cb006849394121cfc58ff24d2c
e3061f50014f43f75ad6b26eb3e7d2b42d1410d0
refs/heads/master
2022-03-31T19:46:58.191232
2020-02-15T07:50:21
2020-02-15T07:50:21
240,661,613
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
for x in range(1,101): if x%7==0 : continue elif x%10==7 or x//10==7: continue else: print(x)
[ "985302188@qq.com" ]
985302188@qq.com
012ee645b66bdf19e05e944be0e68d6bbf38c7d0
59934c214dc37e916042a9ef95004cdec59fe461
/image_simplifier.py
11ed7a060c544182169ee7c80fac34dbccd9e868
[]
no_license
thomcchester/boxifier
a27101aaa690ae1f04bc3e6cabe0bd3cf3495f46
48fa1e634374468f73f138ea79c09dbd480ee8ca
refs/heads/master
2020-05-18T15:44:29.672575
2019-05-03T05:15:48
2019-05-03T05:15:48
184,506,776
0
0
null
null
null
null
UTF-8
Python
false
false
979
py
import numpy as np ## This file is just for simplifying the image into constiuent parts #This is a function to flatten value to 0 or 1 for array. I also flipped the values since I wanted to use one as black #and 0 as white, mainly as a preference but also because ones look like lines. The idea is simple, and a bit of an over #simplification, but I am going to say that if the hue amplitude is over half way it is white, and if it is under half #way it is black. I might come back to this to allow for differences in color and what not. def flattenator(value_list): if value_list[1] < 128: return 1 else: return 0 # asciiator is function used to turn the entirety of the array into ascii-art 0 and 1 of the image for later processing def asciiator(image): image_list = [] for i in image: row_list = [] for m in i: row_list.append(flattenator(m)) image_list.append(row_list) return np.array(image_list)
[ "thomcchester@gmail.com" ]
thomcchester@gmail.com
c4db54872f01cdbf61c781d4bffff7eea689d74b
a08a95129f1e976ea6e8e4dd9a2c17260a7f0ef1
/models/CosineClassifier.py
d134b20d6804c930bbcfc2769178e43c17336f44
[]
no_license
UCSD-SVCL/SSLT
9c7b0f6f46ad4f9f000d548d7f275ebbd10f2f8f
2de03dbb3d4c0c38eeeb0d00dffac870df19c51a
refs/heads/main
2023-05-26T18:09:38.950195
2021-06-10T00:28:00
2021-06-10T00:28:00
374,817,518
0
0
null
2021-06-07T22:38:14
2021-06-07T22:38:14
null
UTF-8
Python
false
false
499
py
import torch import torch.nn as nn from torch.nn import Parameter import torch.nn.functional as F class CosineClassifier(nn.Module): def __init__(self, num_classes=1000, feat_dim=2048): super(CosineClassifier, self).__init__() self.weight = Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) return out
[ "boliu@eng.ucsd.edu" ]
boliu@eng.ucsd.edu
cfbc0b358cbc8a73771ab602b38fe9a5b825e242
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/488/usersdata/341/112971/submittedfiles/AvF_Parte3.py
25d6392521b197f54357fe6d625293d8a2655e93
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
153
py
# -*- coding: utf-8 -*- n = int(input('Digite a quantidade de números: ')) a = [] for i in range (n): a.append('Digite os respectivos números: '))
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
201bfe5c7dc0bad1c20ba462e06fb93848253015
758bdc11c72f5348afec8c3bb47549bf85c4d4ca
/levelup/levelup/wsgi.py
09e3b66a6e7905052aed184d814ccb7eea595d85
[ "Apache-2.0" ]
permissive
claudiaw111/cs411project
39020ada1bd2991810f6e4ffd6403ef9e411839d
e1bad3836d932a92deb0297dfc83b1c014ea4f00
refs/heads/master
2021-01-10T13:41:52.207969
2015-12-08T20:31:44
2015-12-08T20:31:44
45,619,629
0
0
null
2015-12-08T20:31:45
2015-11-05T15:19:19
Python
UTF-8
Python
false
false
391
py
""" WSGI config for levelup project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "levelup.settings") application = get_wsgi_application()
[ "yfwang10@bu.edu" ]
yfwang10@bu.edu
96fd8f586922bfca585450a5943f4a0948e56b09
b42ccc28946274e91d1b91dc778f1ec76724ea5f
/authProj/settings.py
d6e28108755f7977598b4612955293c7379019c8
[]
no_license
vlad508/authProjBack
30cc90f332cbce85842efaecc52484b01a9e3d30
536641b3809bc410b7cbe329558963c83e5b793e
refs/heads/master
2022-11-08T14:36:48.597109
2020-06-12T07:48:33
2020-06-16T08:32:51
271,738,662
0
0
null
null
null
null
UTF-8
Python
false
false
3,848
py
""" Django settings for authProj project. Generated by 'django-admin startproject' using Django 3.0.7. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'j__99bn%&si@u9kzuhfa-ztzxa3ilu52tsjh)t5$1^sn_7dxm3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['localhost', '127.0.0.1', '161.35.199.210'] CORS_ORIGIN_ALLOW_ALL = True # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'corsheaders', 'rest_framework', 'rest_framework.authtoken', 'user', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'corsheaders.middleware.CorsMiddleware', ] ROOT_URLCONF = 'authProj.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'authProj.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'myproject', 'USER': 'myprojectuser', 'PASSWORD': 'password', 'HOST': 'localhost', 'PORT': '' } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = [ os.path.join(BASE_DIR, 'django_blog/static') ] REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.AllowAny', ], 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.TokenAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.BasicAuthentication', ], }
[ "vlad508@gmail.com" ]
vlad508@gmail.com