blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
cfdccc084372dfcf73094b57b03f4b0b2f5be174
2a88cc221f13d50dcd88ea959193a4b08b21141a
/jsonpatchext/mutators.py
a5bf8fb465376a723fae58f3541a1b2b705508d9
[ "BSD-3-Clause" ]
permissive
RangelReale/python-json-patch-ext
b69bd6ae4090e81ce2bb31ae17f0949e4c2f2387
c4534bf49346a2e05849de490b0b50f2e19dcfaa
refs/heads/master
2023-05-12T15:17:43.168646
2021-06-02T12:24:33
2021-06-02T12:24:33
307,665,517
1
0
null
null
null
null
UTF-8
Python
false
false
1,447
py
import re def UppercaseMutator(current, value): """Uppercase the value.""" return current.upper() def LowercaseMutator(current, value): """Lower the value.""" return current.lower() def CastMutator(current, value): """Cast value.""" return value(current) def RegExMutator(current, value): """RegEx replace value. Value must be a tuple (pattern, repl)""" return re.sub(value[0], value[1], current) def SliceMutator(current, value): """Returns a slice of the current value. Value must be a tuple (start, stop) or (start, stop, step)""" return current[slice(value[0], value[1], value[2] if len(value) > 2 else None)] def InitMutator(current, value): """Initialize the value if it is None""" if current is None: return value return current def InitItemMutator(*item): """Initialize an item in a dict/list if it does not exists or is None. If more than one item, create the full hierarchy""" def m(current, value): # plist, plast = item[:len(item)-1], item[len(item)-1] plist, plast = item[:-1], item[-1] if current is None: current = {} cur = current for i in plist: if i not in cur or cur[i] is None: cur[i] = {} cur = cur[i] if plast not in cur or cur[plast] is None: cur[plast] = value() if callable(value) else value return current return m
[ "rangelspam@gmail.com" ]
rangelspam@gmail.com
382b4289c3b1bb000f2690f9c6f2a63fe5e1583c
f33885d6f1e963586f9e7b1e1a46a271d125e2e7
/ci/nur/fileutils.py
338149b414047c1411f8783359d43a434d120e33
[ "MIT" ]
permissive
nix-community/NUR
cad821a31d965ade9869c21f03edf9f7bb4cdf02
80012e6c2de5ea9c4101948b0d58c745e7813180
refs/heads/master
2023-09-03T05:05:30.497198
2023-09-03T04:32:01
2023-09-03T04:32:01
123,327,588
965
385
MIT
2023-09-12T07:10:52
2018-02-28T18:49:50
Python
UTF-8
Python
false
false
921
py
import json import os import shutil from contextlib import contextmanager from pathlib import Path from tempfile import NamedTemporaryFile from typing import Any, Generator, Union PathType = Union[str, Path] def to_path(path: PathType) -> Path: if isinstance(path, Path): return path else: return Path(path) def write_json_file(data: Any, path: PathType) -> None: path = to_path(path) f = NamedTemporaryFile(mode="w+", prefix=path.name, dir=str(path.parent)) with f as tmp_file: json.dump(data, tmp_file, indent=4, sort_keys=True) shutil.move(tmp_file.name, path) # NamedTemporaryFile tries to delete the file and fails otherwise open(tmp_file.name, "a").close() @contextmanager def chdir(dest: PathType) -> Generator[None, None, None]: previous = os.getcwd() os.chdir(dest) try: yield finally: os.chdir(previous)
[ "joerg@thalheim.io" ]
joerg@thalheim.io
25ac74774aba97bc67419a78e3604816ebe28186
fe91afc3e00028852323b63ce49f74244338f614
/rest_api_ta/wsgi.py
2a033bbf3c52bcd8e5eef89e94e96b828c430a71
[]
no_license
nabilapspta/Backend-Duit
1870fbbc16bcba7a53de51735a9a68844f4a259a
9f20cbcbfc6bf49c588cbaa0cec2a6a81b7d0947
refs/heads/master
2023-03-22T01:40:56.069799
2021-03-17T08:29:46
2021-03-17T08:29:46
348,633,500
1
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for rest_api_ta project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'rest_api_ta.settings') application = get_wsgi_application()
[ "nabilapuspita1@gmail.com" ]
nabilapuspita1@gmail.com
4a59086461f4c14e5aedf3eef1b38135994a18bb
7f490476dafd6663c2598db20b1c0422940af701
/day4/Atm/conf/settings.py
fdaa199b99bae582318b0314c235e3848aded20e
[]
no_license
ChacoLv/python-oldboy
46bc409ef10ecda70c2c6600b38216ab53c4c99c
1c3e18c9ac3e61376927cfa6ce010001d53cdd93
refs/heads/master
2020-04-05T14:10:45.821224
2017-10-14T07:10:39
2017-10-14T07:10:39
94,796,866
0
0
null
null
null
null
UTF-8
Python
false
false
629
py
# -*- coding:utf-8 -*- # LC import os import sys import logging BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(BASE_DIR) DATABASE ={ 'engine':'file_storage', 'name':'accounts', 'path':"%s/db" % BASE_DIR } LOG_LEVEL = logging.INFO LOG_TYPES = { 'transaction' : 'transactions.log', 'access':'access.log' } TRANSACTION_TYPE = { 'repay':{'action':'plus','interest':0,'receipt':0}, 'withdraw':{'action':'minus','interest':0.05,'receipt':0}, 'transfer':{'action':'minus','interest':0.05,'receipt':1}, 'consume':{'action':'minus','interest':0,'receipt':1} }
[ "chenglv@live.com" ]
chenglv@live.com
a9f17ae78f760cc3ece4257ce9addd1dedda6b14
bf99c721ec863fc91e67586a9ad9e477d3bf3643
/test.py
50e26890629a6fb8cf0da77dce38ebd319bd20d7
[]
no_license
HamiltonAgwulonu/Python-Crash-Course
ba1c1c2b76688095b39d87c5d89c9e3d5f7ba192
5eccc71568af34354eaa87717d0399c58d0bf6b2
refs/heads/master
2020-12-12T17:26:28.117237
2020-01-15T23:21:11
2020-01-15T23:21:11
234,184,623
0
0
null
null
null
null
UTF-8
Python
false
false
628
py
# nums = [1, 2, 3, 4, 5] # for num in nums: # if num == 3: # print("Found!") # break # print(num) # for num in nums: # if num == 3: # print("Found!") # continue # print(num) # for num in nums: # for letter in "abc": # print(num, letter) # for i in range(1, 11): # print(i) # x = 0 # while x < 10: # print(x) # x += 1 # we increment x so that at some point it will be greater than or equal to 10 otherwise the condition will not evaluate to # false so that it breaks out. # x = 0 # while x < 10: # if x == 5: # break # print(x) # x += 1 x = 0 while True: if x == 5: break print(x) x += 1
[ "hamilton.agwulonu@gmail.com" ]
hamilton.agwulonu@gmail.com
99d9bcb03ca5a0d8950b41223b64796de4b33c4e
c0a6bf77a648eda8abc828931ee4f19abff2c8e1
/dependencies.py
a1047bfd3ef59cbbb08931882b439995de9fe3f2
[]
no_license
elujambio/OpenCV
bb0b766042301d75c56fe806fe41af531bba870f
e2e392833572ca10d24b89d29e5811eb1e203f0d
refs/heads/master
2020-07-24T01:02:44.435542
2017-06-14T18:38:47
2017-06-14T18:38:47
94,362,035
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
# # # DEPENDENCIES # # # # This programs need the next dependencies # # # 1.- numpy # pip install numpy # brew install numpy # 2.- cv2 # Easiest install is through miniconda # 3.- matplotlib # pip install matplotlib # 4.- FFmpeg
[ "eugeniolujambio@gmail.com" ]
eugeniolujambio@gmail.com
77f5af4c2ac23f8d0dcf8e352325b8f01ef19cd8
e2f71bcc6a5cad8d8f6ad96852a1f9446d05f891
/code/leetcode/self_dividing_numbers.py
e81a6f24af8d503670afcadfa5de5b9e0c8ae834
[]
no_license
GodferyChen/LearnPython
210d1c150f5f6d5b5f086ec9f77a539f5c1770e1
d5cb60a73df946c74b92aa6aeb87c04c4d54788c
refs/heads/master
2021-09-02T15:06:51.207012
2018-01-03T10:28:59
2018-01-03T10:28:59
106,989,159
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- class Solution: @staticmethod def selfDividingNumbers(left, right): def check(num): digits = set(map(int, str(num))) if 0 in digits: return False return not any(num % d for d in digits) return filter(check, range(left, right + 1)) if __name__ == '__main__': dict = Solution().selfDividingNumbers(1, 22) print(list(dict))
[ "chenxh.cz@gmail.com" ]
chenxh.cz@gmail.com
d49992632d1175f8d29c75a113bd6815759d4d70
b3638a57ff986c9af7281f057bd4cb5641c11589
/백준/210720_DFSBFS/7576토마토.py
91a53d3894732bb598ceb410f98498c2b090c2f5
[]
no_license
commGom/pythonStudy
6adc01faddbe3ef88e0cbab9da174caa77857ff7
a5d52e66dfd0b3b7538454ca2b6fcd9665f83e6c
refs/heads/main
2023-08-25T12:21:27.670495
2021-10-04T08:19:42
2021-10-04T08:19:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,077
py
import sys from collections import deque read=sys.stdin.readline # 가로칸 M 세로칸 N M,N=map(int,read().split()) # 익은 토마토 : 1, 익지않은토마토 : 0, 토마토가없을때 : 0 totato_field=[list(map(int,read().split())) for _ in range(N)] # print(totato_field) # BFS 정의 queue=deque() # 상하좌우 dx=[-1,1,0,0] dy=[0,0,-1,1] def BFS(): while queue: print(queue) a, b = queue.popleft() for i in range(4): x = a + dx[i] y = b + dy[i] if 0 <= x < N and 0 <= y < M and totato_field[x][y] == 0: totato_field[x][y] = totato_field[a][b] + 1 queue.append([x, y]) for i in range(N): for j in range(M): if totato_field[i][j] == 1: queue.append([i, j]) BFS() result_YN = False result = -2 for i in totato_field: for j in i: if j == 0: result_YN = True result = max(result, j) if result_YN: print(-1) elif result == -1: print(0) else: print(result - 1) # print(totato_field)
[ "81788884+WhiteBear2021@users.noreply.github.com" ]
81788884+WhiteBear2021@users.noreply.github.com
aa37ac8e2b91292a0ff5a5e7ad68529d95281431
ce519b52e845708a1d2f7ec76ef5cf319209e136
/application.py
e2ec741627574634853fd07a95974f244bccde81
[]
no_license
prsolans/home-search
eca3b3495b2bc2d3e666c9171a85ca5a422e4011
04a4e6f6adc80de16c91c64ff754c7ebf37c3f33
refs/heads/master
2023-05-26T22:06:50.746913
2019-07-01T01:52:48
2019-07-01T01:52:48
193,388,304
0
0
null
2023-05-01T20:35:26
2019-06-23T19:38:17
Python
UTF-8
Python
false
false
548
py
# application.py from flask import Flask import os import logging import schedule import time from utilities.house_search import get_listing_data app = Flask(__name__) def job(): get_listing_data() return ('we are working here...') @app.route("/") def hello(): # listings = get_listing_data() # return listings[0] print('FINALLY!!') return ('starting...') job() # schedule.every().hour.do(job) schedule.every().day.at("07:30").do(job) schedule.every().day.at("14:30").do(job) if __name__ == '__main__': app.run()
[ "prsolans@gmail.com" ]
prsolans@gmail.com
670fe8df03baa050e48bad2abf3ef2e7f2e60071
384497dfcc4cbd789cd35fa3c4b75ececefcf765
/nuclear/message/build_outer_python_binding.py
d8f5568cb0777eeb40b1dc149e0958332e4b2bdb
[ "MIT" ]
permissive
Fastcode/NUClearExample
061947f59f7b8beadbe7a6ab3965ec72927ba03d
1ce424a935a035df20bbc6d8018bd2bcd4194dd9
refs/heads/master
2020-12-08T09:32:46.561577
2018-12-16T00:24:48
2018-12-16T00:24:48
67,031,019
0
1
null
null
null
null
UTF-8
Python
false
false
1,993
py
#!/usr/bin/python import sys import os from generator.textutil import indent, dedent # Get our file we are outputting too base_file = sys.argv[1] # Get our root message directory message_dir = sys.argv[2] # Get our list of functions we have to call functions = [] duplicates = [] for dep_file in sys.argv[3:]: with open(dep_file) as deps: # Extract all dependencies for every message and place them in the list. # Make all paths relative to the root mesage directory and remove any unwanted characters. # Also remove Matrix.proto, Neutron.proto, and Vector.proto from the list and anything to do with google. dependencies = [os.path.relpath(s.strip('\\ \n\t'), message_dir).replace('/', '_').replace('.proto', '_proto') for s in deps.readlines() if not any(exclude in s for exclude in ['google/protobuf', 'Matrix.proto', 'Neutron.proto', 'Vector.proto'])] # Finally, remove duplicates. We must keep the first instance of every message in the list. for function in dependencies: if function not in duplicates: duplicates.append(function) functions.append(function) # Write our file with open(base_file, 'w') as f: f.write(dedent("""\ #include <pybind11/pybind11.h> #include <pybind11/complex.h> #include <pybind11/stl.h> #include <pybind11/eigen.h> // Declare our functions (that we know will be made later) {function_declarations} PYBIND11_PLUGIN(message) {{ pybind11::module module("message", "NUClear message classes"); // Initialise each of the modules {function_calls} return module.ptr(); }} """).format( function_declarations='\n'.join('void init_message_{}(pybind11::module& module);'.format(f) for f in functions), function_calls=indent('\n'.join('init_message_{}(module);'.format(f) for f in functions)), ))
[ "trent@houliston.me" ]
trent@houliston.me
927b63df755b0644229f3e3df8678e837b661a28
a1abd9c305ca803ea298f3de34e11dbdb03dea03
/hackerrank/cutTheSticks.py
7224a79bb98682106f6fe9e110023af56fe14da6
[]
no_license
bayramtuccar/PythonNote
96f80315843208eac359d8f082b3e51a435542e7
446650ef395e04175f2877607ef8671f4ce53721
refs/heads/master
2020-04-08T09:11:58.019490
2018-11-26T18:16:28
2018-11-26T18:16:28
159,211,238
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
#!/bin/python3 import sys def cutTheSticks(arr): ' Find the cutted stick number ' ret_list = [] while True: arr_len = arr.__len__() if arr_len == 0: break ret_list.append(arr_len) min_mem = min(arr) for idx in range(arr_len).__reversed__(): new_value = arr[idx] - min_mem if new_value > 0: arr[idx] = new_value else: del arr[idx] return ret_list if __name__ == "__main__": n = int(input().strip()) arr = list(map(int, input().strip().split(' '))) result = cutTheSticks(arr) print("\n".join(map(str, result)))
[ "noreply@github.com" ]
noreply@github.com
e743150c8f84f40c1a8ed70fe9e7fdb1c26ef371
1f2c5ba0a545bf6793d9f2fbaf172e3478320701
/property/migrations/0003_auto_20200513_2357.py
c2c8f284025db10fd1c93f1b7aa1780847fd4872
[]
no_license
MusawerAli/DjangoRent
537afc4555cf21f9c53384704d1d5a3fc4d2f68e
640110e4f63cd39b556467da63470dbde401cfa0
refs/heads/master
2022-07-07T02:29:43.673984
2020-05-15T21:28:57
2020-05-15T21:28:57
261,726,506
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
# Generated by Django 3.0.6 on 2020-05-13 23:57 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('property', '0002_auto_20200513_2129'), ] operations = [ migrations.AddField( model_name='memberdetail', name='last_login', field=models.DateTimeField(default=datetime.datetime(2020, 5, 13, 23, 57, 32, 478982)), ), migrations.AlterField( model_name='memberdetail', name='created_at', field=models.DateTimeField(default=datetime.datetime(2020, 5, 13, 23, 57, 32, 478903)), ), ]
[ "pakjalihouse@gmail.com" ]
pakjalihouse@gmail.com
00c4b0a22845e040c070e2fe81c9351d6a81b81b
5e0a15fc3abd3e884e68fcd320f9e59f71358898
/cogs/mod.py
022873257297e547860e944cd7c24cab39cb4ea8
[]
no_license
IslaWoof/PikaBot
c1d69446f3a56a647218735b854e96fa8a8001b7
e8f926a7caf19d31fa76b641de7d22cb319a09fd
refs/heads/master
2021-04-15T04:03:48.403668
2018-03-23T16:00:11
2018-03-23T16:00:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,205
py
import discord from discord.ext import commands import datetime class mod: '''Moderation commands!''' def __init__(self, bot): self.bot = bot now = datetime.datetime.utcnow() @commands.command() @commands.has_permissions(kick_members=True) async def kick(self, ctx ,user: discord.Member=None, *, reason: str=None): '''Kick a member from the server!''' now = datetime.datetime.utcnow() if not user: await ctx.send("Please mention a member for this command to work") try: embed = discord.Embed(title=f"Kick | {ctx.guild.name}", color=0xff0000, inline=True) embed.add_field(name=f"Moderator:", value=f"{ctx.author.name}", inline=True) embed.add_field(name=f"User:", value=f"{user.name}", inline=True) embed.add_field(name=f"Reason:", value=reason, inline=True) embed.add_field(name=f"Issued At:", value=now, inline=True) embed.set_thumbnail(url=user.avatar_url) channel = discord.utils.get(ctx.guild.channels, name='mod-log') if not channel: channel = await ctx.guild.create_text_channel(name="mod-log") await channel.send(embed=embed) else: await channel.send(embed=embed) await user.send(embed=embed) await ctx.guild.kick(user) except discord.Forbidden: await ctx.send("I could not kick the member, Please check my permissions") except discord.HTTPException: await ctx.send("You do not have permission to execute this command") @commands.command() @commands.has_permissions(ban_members=True) async def ban(self, ctx ,user: discord.Member=None, *, reason: str=None): '''Ban a member from the server!''' now = datetime.datetime.utcnow() if not user: await ctx.send("Please mention a member for this command to work") try: embed = discord.Embed(title=f"Ban | {ctx.guild.name}", color=0xff0000, inline=True) embed.add_field(name=f"Moderator:", value=f"{ctx.author.name}", inline=True) embed.add_field(name=f"User:", value=f"{user.name}", inline=True) embed.add_field(name=f"Reason:", value=reason, inline=True) embed.add_field(name=f"Issued At:", value=now, inline=True) embed.set_thumbnail(url=user.avatar_url) channel = discord.utils.get(ctx.guild.channels, name='mod-log') if not channel: channel = await ctx.guild.create_text_channel(name="mod-log") await channel.send(embed=embed) else: await channel.send(embed=embed) await user.send(embed=embed) await ctx.guild.ban(user) except discord.Forbidden: await ctx.send("I could not ban the member, Please check my permissions") except discord.HTTPException: await ctx.send("You do not have permission to execute this command") @commands.command() @commands.has_permissions(manage_messages=True) async def purge(self, ctx, messages: int): '''Delete messages a certain number of messages from a channel.''' if messages > 99: messages = 99 try: await ctx.channel.purge(limit=messages + 1) except Exception as e: await ctx.send("I cannot delete the messages. Make sure I have the manage messages permission.") else: await ctx.send(f'{messages} messages deleted. 👌', delete_after=3) @commands.command() @commands.has_permissions(kick_members=True) async def warn(self, ctx, user: discord.Member, *, reason: str): '''Warn a member via DMs''' warning = f"You have been warned in **{ctx.message.guild}** by **{ctx.message.author}** for {reason}" if not reason: warning = f"You have been warned in **{ctx.message.guild}** by **{ctx.message.author}**" await user.send(warning) await ctx.send(f"**{user}** has been **warned**") def setup(bot): bot.add_cog(mod(bot))
[ "noreply@github.com" ]
noreply@github.com
6009e18ce7b448841305b9ec9dd106d22a075c9a
5f509aec51f0df62691de51b5aa7ba1c64ec7455
/redis_map.py
17fb58ea49d9eae8fccd4310efc1cf3323112635
[]
no_license
rfyiamcool/redis_map
233f86c2b9bede4c0e12eea73be232145b75da55
87c17dc923af9a29a7c8549d781870fb43579842
refs/heads/master
2020-03-18T17:51:47.209557
2018-05-27T15:05:14
2018-05-27T15:05:14
135,055,849
0
0
null
null
null
null
UTF-8
Python
false
false
4,848
py
# coding:utf-8 from contextlib import contextmanager from future.utils import python_2_unicode_compatible from redis import StrictRedis @python_2_unicode_compatible class RedisDict(object): def __init__(self, *args, **kwargs): self.namespace = '' if 'namespace' in kwargs: # Todo validate namespace self.namespace = kwargs['namespace'] + ':' del kwargs['namespace'] self.expire = None if 'expire' in kwargs: self.expire = kwargs['expire'] del kwargs['expire'] self.redis = StrictRedis(*args, decode_responses=True, **kwargs) self.sentinel_none = '<META __None__ 9cab>' def _raw_get_item(self, k): return self.redis.get(k) def _get_item(self, k): result = self._raw_get_item(self.namespace + k) return result def __getitem__(self, k): result = self._get_item(k) if result is None: raise KeyError return result if result != self.sentinel_none else None def __setitem__(self, k, v): if v is None: v = self.sentinel_none self.redis.set(self.namespace + k, v, ex=self.expire) def __delitem__(self, k): self.redis.delete(self.namespace + k) def __contains__(self, k): return self._get_item(k) is not None def __repr__(self): return str(self.to_dict()) def __str__(self): return self.__repr__() def __len__(self): return len(self._keys()) def _scan_keys(self, search_term=''): return self.redis.scan(match=self.namespace + search_term + '*') def _keys(self, search_term=''): return self._scan_keys(search_term)[1] def keys(self): to_rm = len(self.namespace) return [item[to_rm:] for item in self._keys()] def to_dict(self): to_rm = len(self.namespace) return {item[to_rm:]: self._raw_get_item(item) for item in self._keys()} def chain_set(self, iterable, v): self[':'.join(iterable)] = v def chain_get(self, iterable): return self[':'.join(iterable)] def chain_del(self, iterable): return self.__delitem__(':'.join(iterable)) @contextmanager def expire_at(self, sec_epoch): self.expire, temp = sec_epoch, self.expire yield self.expire = temp def __iter__(self): self.keys_iter = self.keys() return self def next(self): return self.__next__() def __next__(self): try: return self.keys_iter.pop() except (IndexError, KeyError): raise StopIteration def multi_get(self, key): found_keys = self._keys(key) if len(found_keys) == 0: return [] return self.redis.mget(found_keys) def multi_chain_get(self, keys): return self.multi_get(':'.join(keys)) def multi_dict(self, key): keys = self._keys(key) if len(keys) == 0: return {} to_rm = len(self.namespace) return dict(zip([i[to_rm:] for i in keys], self.redis.mget(keys))) def multi_del(self, key): keys = self._keys(key) if len(keys) == 0: return 0 return self.redis.delete(*keys) def items(self): return zip(self.keys(), self.multi_get(self._keys())) class RedisListIterator(object): def __init__(self, redis_instance, key, start=0, end=-1): """Creates a redis list iterator. Args: redis_instance (object): instance of redis key (str): redis list key start (int): list slice start (inclusive) end (int): list slice end (exclusive) """ self.position = start self.key = key self.redis = redis_instance llen = redis_instance.llen(key) self.endpos = llen if (end == -1 or (end - start) > llen) else end def __iter__(self): return self def __next__(self): if self.position >= self.endpos: raise StopIteration item = self.redis.lindex(self.key, self.position) self.position += 1 return item next = __next__ class RedisList(object): def __init__(self, redis_instance, key): self.key = key self.redis = redis_instance def __len__(self): return self.redis.llen(self.key) def __getitem__(self, index): if isinstance(index, slice): start = index.start or 0 end = (index.stop - 1) if index.stop is not None else -1 return self.redis.lrange(self.key, start, end) if index + 1 > len(self): raise IndexError("Index out of bounds.") return self.redis.lindex(self.key, index) def __iter__(self): return RedisListIterator(self.redis, self.key)
[ "rfyiamcool@163.com" ]
rfyiamcool@163.com
59778d5cfdb33ed8ffbcd1d7c0f2b05cd15a366d
5d22d9b2cb5cad7970c1055aeef55d2e2a5acb8e
/py/google/cj2014/round1A/FullBinaryTree.py
df737dafe506eb93570aed7b49ecc60662a2dc43
[ "MIT" ]
permissive
shhuan/algorithms
36d70f1ab23dab881bf1a15573fbca7b2a3f4235
2830c7e2ada8dfd3dcdda7c06846116d4f944a27
refs/heads/master
2021-05-07T14:21:15.362588
2017-11-07T08:20:16
2017-11-07T08:20:16
109,799,698
0
1
null
null
null
null
UTF-8
Python
false
false
2,055
py
# -*- coding: utf-8 -*- """ created by huash06 at 2015-04-08 10:48 """ __author__ = 'huash06' import sys import os import py.lib.Utils as Utils from datetime import datetime # sys.stdin = open('input/sample.txt', 'r') sys.stdin = open('input/B-large-practice.in', 'r') # sys.stdout = open('output/B-large-practice.out', 'w') MAXNN = 301 def count_node(graph, node, parent): cc = 1 for i in range(len(graph)): if i != parent and graph[node][i]: cc += count_node(graph, i, node) return cc def dfs(graph, node, parent, memo): """ 返回以node為根的子樹變成完全二叉樹時,剪掉的節點數量和剩餘的節點數量 :param graph: :param node: :param parent: :param memo: record calculated result :return: how many node in this full-binary tree rooted at node """ max1 = -1 max2 = -1 if memo[node][parent] == -1 or True: for child in graph[node]: if child != parent: nc = dfs(graph, child, node, memo) if nc > max1: max2 = max1 max1 = nc elif nc > max2: max2 = nc if max2 == -1: memo[node][parent] = 1 else: memo[node][parent] = 1 + max1 + max2 return memo[node][parent] T = int(sys.stdin.readline()) sys.setrecursionlimit(3000) # start_time = datetime.now() for ti in range(1, T + 1): N = int(sys.stdin.readline()) GRAPH = dict() for ei in range(1, N+1): GRAPH[ei] = list() for ni in range(N-1): S, T = map(int, sys.stdin.readline().strip().split(' ')) GRAPH[S].append(T) GRAPH[T].append(S) count = N memo = [[-1 for c in range(N+1)] for r in range(N+1)] for r in range(1, N+1): c = N - dfs(GRAPH, r, 0, memo) if c < count: count = c print('Case #{}: {}'.format(ti, count)) # end_time = datetime.now() # time_cost = end_time-start_time # print('Time Cost: {}s'.format(time_cost.seconds))
[ "shuangquanhuang@gmail.com" ]
shuangquanhuang@gmail.com
fe349175bcf2d83467e3ea5f80a2ff52d08a06f6
d84c107e6da7e03b41382409987ae5d46b59bca2
/source/game/script/compiledscript/makeversion.py
57dc5e89bee7c7fbacb9a7fc0fbabe137b756991
[ "MIT" ]
permissive
JasonHutton/QWTA
b3854cd4873a46a8a9089ee3481a47074b62236b
7f42dc70eb230cf69a8048fc98d647a486e752f1
refs/heads/main
2023-04-13T02:15:14.639793
2021-05-01T21:29:18
2021-05-01T21:29:18
363,500,974
6
1
null
null
null
null
UTF-8
Python
false
false
3,293
py
#!/usr/bin/env python # # version management # import os import sys import re def GetVersion(): keys = ( 'ENGINE_VERSION_MAJOR', 'ENGINE_VERSION_MINOR', 'ENGINE_SRC_REVISION', 'ENGINE_MEDIA_REVISION' ) version = [ '-1','-1','-1','-1' ] buildVersion = {} try: f = file( 'BuildVersion.cpp', 'r' ) except IOError, (errno, strerror): return version for line in f.readlines(): m = re.match( 'int\s+(\w+) = ([\-0-9]+);', line ) if m: buildVersion[ m.group( 1 ) ] = m.group( 2 ) f.close() i = 0 for key in keys: if buildVersion.has_key( key ): version[ i ] = buildVersion[ key ] i = i + 1 sys.stdout.write( "Version major: %s minor: %s src: %s media: %s\n" % ( version[0], version[1], version[2], version[3] ) ) return version def WriteRc( filename, modulename, engineVersionMajor, engineVersionMinor, srcVersion, mediaVersion ): try: f = file( filename + '.template', 'r' ) except IOError, ( errno, strerror ): sys.stdout.write( 'Failed to open %s: %s\n' % ( filename, strerror ) ) return False versionrc = f.readlines() f.close() valueDict = { 'CompanyName' : 'Splash Damage, Ltd.', 'FileDescription' : 'Enemy Territory: Quake Wars', 'InternalName' : modulename, 'LegalCopyright' : 'Copyright (C) 2007 Splash Damage, Ltd.', 'OriginalFilename' : modulename, 'ProductName' : 'Enemy Territory: Quake Wars', } try: f = file( filename, 'w' ) except IOError, ( errno, strerror ): sys.stdout.write( 'Failed to open %s: %s\n' % ( filename, strerror ) ) return False for line in versionrc: m = re.match( '^\s+FILEVERSION (\d+),(\d+),(\d+),(\d+)', line ) if m: f.write( ' FILEVERSION %s,%s,%s,%s\n' % ( engineVersionMajor, engineVersionMinor, srcVersion, mediaVersion ) ) continue m = re.match( '^\s+PRODUCTVERSION (\d+),(\d+),(\d+),(\d+)', line ) if m: f.write( ' PRODUCTVERSION %s,%s,%s,%s\n' % ( engineVersionMajor, engineVersionMinor, srcVersion, mediaVersion ) ) continue m = re.match( '^\s+VALUE \"(\S+)\", \"(.+)\"', line ) if m: if m.group( 1 ) == 'FileVersion': f.write( ' VALUE "FileVersion", "%s.%s.%s.%s"\n' % ( engineVersionMajor, engineVersionMinor, srcVersion, mediaVersion ) ) continue elif m.group( 1 ) == 'ProductVersion': f.write( ' VALUE "ProductVersion", "%s.%s.%s.%s"\n' % ( engineVersionMajor, engineVersionMinor, srcVersion, mediaVersion ) ) continue elif valueDict.has_key( m.group( 1 ) ): f.write( ' VALUE "%s", "%s"\n' % ( m.group( 1 ), valueDict[ m.group( 1 ) ] ) ) continue f.write( line ) f.close() return True def main(): version = GetVersion() WriteRc( 'version.rc', 'compiledscriptx86.dll', version[0], version[1], version[2], version[3] ) # can be used as module or by direct call if __name__ == '__main__': main()
[ "azuvector@gmail.com" ]
azuvector@gmail.com
128977c94ecd89aa750a22dabc12b410e6ef0ebc
9039294895cc5334d1f42f3c9f5fad11103c4e5e
/mars/learn/neighbors/_faiss.py
eb9d6c065c65c661f9ed5289b3fe1436e3a1ee22
[ "BSD-3-Clause", "OFL-1.1", "LicenseRef-scancode-unknown-license-reference", "CC0-1.0", "Apache-2.0", "BSD-2-Clause", "MIT" ]
permissive
rg070836rg/mars
27362aa50fa556768b8824a5600aab5f864ad0ab
f7909869bc3c2995e4eeb7c898db9e33b636f9ca
refs/heads/master
2023-04-29T05:18:04.739725
2020-09-29T11:17:31
2020-09-29T11:17:31
299,794,632
0
1
Apache-2.0
2020-09-30T02:59:21
2020-09-30T02:59:21
null
UTF-8
Python
false
false
28,996
py
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atexit import os import operator import tempfile from enum import Enum import numpy as np try: import faiss except ImportError: # pragma: no cover faiss = None from ... import opcodes as OperandDef from ...context import RunningMode from ...operands import OperandStage from ...serialize import KeyField, StringField, Int64Field, \ Int32Field, BoolField, Int8Field from ...tiles import TilesError from ...tensor import tensor as astensor from ...tensor.core import TensorOrder from ...tensor.random import RandomState from ...tensor.array_utils import as_same_device, device from ...tensor.utils import check_random_state, gen_random_seeds from ...utils import check_chunks_unknown_shape, require_not_none, recursive_tile from ..operands import LearnOperand, LearnOperandMixin, OutputType class MemoryRequirementGrade(Enum): minimum = 0 low = 1 high = 2 maximum = 3 if faiss is not None: METRIC_TO_FAISS_METRIC_TYPE = { 'l2': faiss.METRIC_L2, 'euclidean': faiss.METRIC_L2, 'innerproduct': faiss.METRIC_INNER_PRODUCT, 'cosine': faiss.METRIC_INNER_PRODUCT, } else: # pragma: no cover METRIC_TO_FAISS_METRIC_TYPE = {} @require_not_none(faiss) class FaissBuildIndex(LearnOperand, LearnOperandMixin): _op_type_ = OperandDef.FAISS_BUILD_INDEX _input = KeyField('input') _metric = StringField('metric') _faiss_index = StringField('faiss_index') _n_sample = Int64Field('n_sample') _seed = Int32Field('seed') _same_distribution = BoolField('same_distribution') _accuracy = BoolField('accuracy') _memory_require = Int8Field('memory_require', on_serialize=operator.attrgetter('value'), on_deserialize=MemoryRequirementGrade) # for test purpose, could be 'object', 'filename' or 'bytes' _return_index_type = StringField('return_index_type') def __init__(self, metric=None, faiss_index=None, n_sample=None, seed=None, same_distribution=None, return_index_type=None, accuracy=None, memory_require=None, stage=None, output_types=None, gpu=None, **kw): super().__init__(_metric=metric, _faiss_index=faiss_index, _n_sample=n_sample, _seed=seed, _same_distribution=same_distribution, _return_index_type=return_index_type, _accuracy=accuracy, _memory_require=memory_require, _gpu=gpu, _stage=stage, _output_types=output_types, **kw) if self.output_types is None: self.output_types = [OutputType.object] @property def input(self): return self._input @property def metric(self): return self._metric @property def faiss_metric_type(self): return METRIC_TO_FAISS_METRIC_TYPE[self._metric] @property def faiss_index(self): return self._faiss_index @property def n_sample(self): return self._n_sample @property def seed(self): return self._seed @property def same_distribution(self): return self._same_distribution @property def accuracy(self): return self._accuracy @property def memory_require(self): return self._memory_require @property def return_index_type(self): return self._return_index_type def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] def __call__(self, X): return self.new_tileable([X]) @classmethod def tile(cls, op): check_chunks_unknown_shape(op.inputs, TilesError) in_tensor = astensor(op.input, np.dtype(np.float32))._inplace_tile() if op.faiss_index == 'auto': faiss_index, n_sample = _gen_index_string_and_sample_count( in_tensor.shape, op.n_sample, op.accuracy, op.memory_require, gpu=op.gpu, **op.extra_params) op._n_sample = n_sample else: faiss_index, n_sample = op.faiss_index, op.n_sample if len(in_tensor.chunks) == 1: return cls._tile_one_chunk(op, faiss_index, n_sample) if in_tensor.chunk_shape[1] != 1: # make sure axis 1 has 1 chunk in_tensor = in_tensor.rechunk({1: in_tensor.shape[1]})._inplace_tile() return cls._tile_chunks(op, in_tensor, faiss_index, n_sample) @classmethod def _tile_one_chunk(cls, op, faiss_index, n_sample): in_chunk = op.input.chunks[0] chunk_op = op.copy().reset_key() chunk_op._faiss_index = faiss_index chunk_op._n_sample = n_sample chunk = chunk_op.new_chunk([in_chunk], index=in_chunk.index) new_op = op.copy() kw = op.outputs[0].params kw['chunks'] = [chunk] kw['nsplits'] = ((1,),) return new_op.new_tileables(op.inputs, kws=[kw]) @classmethod def _tile_chunks(cls, op, in_tensor, faiss_index, n_sample): """ If the distribution on each chunk is the same, refer to: https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-distribute-index-building-on-several-machines 1. train an IndexIVF* on a representative sample of the data, store it. 2. for each node, load the trained index, add the local data to it, store the resulting populated index 3. on a central node, load all the populated indexes and merge them. """ faiss_index_ = faiss.index_factory(in_tensor.shape[1], faiss_index, op.faiss_metric_type) # Training on sample data when two conditions meet # 1. the index type requires for training, e.g. Flat does not require # 2. distributions of chunks are the same, in not, # train separately on each chunk data need_sample_train = not faiss_index_.is_trained and op.same_distribution need_merge_index = hasattr(faiss_index_, 'merge_from') if need_sample_train else False train_chunk = None if need_sample_train: # sample data to train rs = RandomState(op.seed) sampled_index = rs.choice(in_tensor.shape[0], size=n_sample, replace=False, chunk_size=n_sample) sample_tensor = recursive_tile(in_tensor[sampled_index]) assert len(sample_tensor.chunks) == 1 sample_chunk = sample_tensor.chunks[0] train_op = FaissTrainSampledIndex(faiss_index=faiss_index, metric=op.metric, return_index_type=op.return_index_type) train_chunk = train_op.new_chunk([sample_chunk]) elif op.gpu: # pragma: no cover # if not need train, and on gpu, just merge data together to train in_tensor = in_tensor.rechunk(in_tensor.shape)._inplace_tile() # build index for each input chunk build_index_chunks = [] for i, chunk in enumerate(in_tensor.chunks): build_index_op = op.copy().reset_key() build_index_op._stage = OperandStage.map build_index_op._faiss_index = faiss_index if train_chunk is not None: build_index_chunk = build_index_op.new_chunk( [chunk, train_chunk], index=(i,)) else: build_index_chunk = build_index_op.new_chunk([chunk], index=(i,)) build_index_chunks.append(build_index_chunk) out_chunks = [] if need_merge_index: assert op.n_sample is not None # merge all indices into one, do only when trained on sample data out_chunk_op = op.copy().reset_key() out_chunk_op._faiss_index = faiss_index out_chunk_op._stage = OperandStage.agg out_chunk = out_chunk_op.new_chunk(build_index_chunks, index=(0,)) out_chunks.append(out_chunk) else: out_chunks.extend(build_index_chunks) new_op = op.copy() return new_op.new_tileables(op.inputs, chunks=out_chunks, nsplits=((len(out_chunks),),)) @classmethod def _execute_one_chunk(cls, ctx, op): (inp,), device_id, xp = as_same_device( [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True) with device(device_id): inp = inp.astype(np.float32, copy=False) # create index index = faiss.index_factory(inp.shape[1], op.faiss_index, op.faiss_metric_type) # GPU if device_id >= 0: # pragma: no cover index = _index_to_gpu(index, device_id) # train index if not index.is_trained: assert op.n_sample is not None sample_indices = xp.random.choice(inp.shape[0], size=op.n_sample, replace=False) sampled = inp[sample_indices] index.train(sampled) if op.metric == 'cosine': # faiss does not support cosine distances directly, # data needs to be normalize before adding to index, # refer to: # https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-index-vectors-for-cosine-distance faiss.normalize_L2(inp) # add vectors to index if device_id >= 0: # pragma: no cover # gpu index.add_c(inp.shape[0], _swig_ptr_from_cupy_float32_array(inp)) else: index.add(inp) ctx[op.outputs[0].key] = _store_index(ctx, op, index, device_id) @classmethod def _execute_map(cls, ctx, op): (data,), device_id, _ = as_same_device( [ctx[op.inputs[0].key]], device=op.device, ret_extra=True) index = ctx[op.inputs[1].key] if len(op.inputs) == 2 else None with device(device_id): if index is not None: # fetch the trained index trained_index = _load_index(ctx, op, index, device_id) return_index_type = _get_index_type(op.return_index_type, ctx) if return_index_type == 'object': # clone a new one, # because faiss does not ensure thread-safe for operations that change index # https://github.com/facebookresearch/faiss/wiki/Threads-and-asynchronous-calls#thread-safety trained_index = faiss.clone_index(trained_index) else: trained_index = faiss.index_factory(data.shape[1], op.faiss_index, op.faiss_metric_type) if op.same_distribution: # no need to train, just create index pass else: # distribution no the same, train on each chunk trained_index.train(data) if device_id >= 0: # pragma: no cover trained_index = _index_to_gpu(trained_index, device_id) if op.metric == 'cosine': # faiss does not support cosine distances directly, # data needs to be normalize before adding to index, # refer to: # https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-index-vectors-for-cosine-distance faiss.normalize_L2(data) # add data into index if device_id >= 0: # pragma: no cover # gpu trained_index.add_c(data.shape[0], _swig_ptr_from_cupy_float32_array(data)) else: trained_index.add(data) ctx[op.outputs[0].key] = _store_index(ctx, op, trained_index, device_id) @classmethod def _execute_agg(cls, ctx, op): device_id = op.device if device_id is None: device_id = -1 inputs = [ctx[inp.key] for inp in op.inputs] with device(device_id): merged_index = None indexes = [] for index in inputs: index = _load_index(ctx, op, index, device_id) indexes.append(index) assert hasattr(index, 'merge_from') if merged_index is None: merged_index = index else: merged_index.merge_from(index, index.ntotal) ctx[op.outputs[0].key] = _store_index(ctx, op, merged_index, device_id) @classmethod def execute(cls, ctx, op): if op.stage == OperandStage.map: cls._execute_map(ctx, op) elif op.stage == OperandStage.agg: cls._execute_agg(ctx, op) else: assert op.stage is None cls._execute_one_chunk(ctx, op) def _get_index_type(return_index_type, ctx): if return_index_type is None: # pragma: no cover if ctx.running_mode == RunningMode.local: return_index_type = 'object' elif ctx.running_mode == RunningMode.local_cluster: return_index_type = 'filename' else: return_index_type = 'bytes' return return_index_type def _store_index(ctx, op, index, device_id): return_index_type = _get_index_type(op.return_index_type, ctx) if return_index_type == 'object': # no need to serialize return index elif return_index_type == 'filename': # save to file, then return filename if device_id >= 0: # pragma: no cover # for gpu, convert to cpu first index = faiss.index_gpu_to_cpu(index) fn = tempfile.mkstemp('.index', prefix='faiss_')[1] faiss.write_index(index, fn) atexit.register(lambda: os.remove(fn)) return fn else: if device_id >= 0: # pragma: no cover # for gpu, convert to cpu first index = faiss.index_gpu_to_cpu(index) # distributed, save to file, then return in memory bytes fn = tempfile.mkstemp('.index', prefix='faiss_')[1] faiss.write_index(index, fn) try: with open(fn, 'rb') as f: return f.read() finally: os.remove(fn) def _load_index(ctx, op, index, device_id): return_index_type = _get_index_type(op.return_index_type, ctx) if return_index_type == 'object': # local return index elif return_index_type == 'filename': # local cluster return faiss.read_index(index) else: # distributed fn = tempfile.mkstemp('.index', prefix='faiss_')[1] with open(fn, 'wb') as f: f.write(index) index = faiss.read_index(f.name) if device_id >= 0: # pragma: no cover index = _index_to_gpu(index, device_id) return index def _index_to_gpu(index, device_id): # pragma: no cover res = faiss.StandardGpuResources() return faiss.index_cpu_to_gpu(res, device_id, index) def _swig_ptr_from_cupy_float32_array(x): # pragma: no cover assert x.flags.c_contiguous assert x.dtype == np.float32 data_ptr = x.__cuda_array_interface__['data'][0] return faiss.cast_integer_to_float_ptr(data_ptr) def _swig_ptr_from_cupy_int64_array(x): # pragma: no cover assert x.flags.c_contiguous assert x.dtype == np.int64 data_ptr = x.__cuda_array_interface__['data'][0] return faiss.cast_integer_to_long_ptr(data_ptr) @require_not_none(faiss) class FaissTrainSampledIndex(LearnOperand, LearnOperandMixin): _op_type_ = OperandDef.FAISS_TRAIN_SAMPLED_INDEX _input = KeyField('input') _metric = StringField('metric') _faiss_index = StringField('faiss_index') # for test purpose, could be 'object', 'filename' or 'bytes' _return_index_type = StringField('return_index_type') def __init__(self, faiss_index=None, metric=None, return_index_type=None, output_types=None, **kw): super().__init__(_faiss_index=faiss_index, _metric=metric, _return_index_type=return_index_type, _output_types=output_types, **kw) if self.output_types is None: self.output_types = [OutputType.object] @property def input(self): return self._input @property def metric(self): return self._metric @property def faiss_metric_type(self): return METRIC_TO_FAISS_METRIC_TYPE[self.metric] @property def faiss_index(self): return self._faiss_index @property def return_index_type(self): return self._return_index_type def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] @classmethod def execute(cls, ctx, op): (data,), device_id, _ = as_same_device( [ctx[op.input.key]], device=op.device, ret_extra=True) with device(device_id): index = faiss.index_factory(data.shape[1], op.faiss_index, op.faiss_metric_type) if device_id >= 0: # pragma: no cover # GPU index = _index_to_gpu(index, device_id) index.train_c(data.shape[0], _swig_ptr_from_cupy_float32_array(data)) else: index.train(data) ctx[op.outputs[0].key] = _store_index( ctx, op, index, device_id) def _gen_index_string_and_sample_count(shape, n_sample, accuracy, memory_require, gpu=False, **kw): """ Generate index string and sample count according to guidance of faiss: https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index """ size, dim = shape memory_require = _get_memory_require(memory_require) if accuracy or size < 10 ** 5: # Flat is the only index that guarantees exact results # no need to train, thus sample count is None return 'Flat', None if memory_require == MemoryRequirementGrade.maximum and not gpu: x = kw.get('M', 32) # get medium number by default if x < 4 or x > 64: raise ValueError(f'HNSWx requires M that between 4 and 64, got {x}') return f'HNSW{x}', None if memory_require in (MemoryRequirementGrade.high, MemoryRequirementGrade.maximum): basement = '{},Flat' elif memory_require == MemoryRequirementGrade.low: x = kw.get('dim', dim // 2) basement = f'PCAR{x},{{}},SQ8' elif memory_require == MemoryRequirementGrade.minimum: x = kw.get('M', min(64, dim // 2)) if x > 64: raise ValueError(f'PQx requires M <= 64, got {x}') y = kw.get('dim', None) if y is not None and y % x != 0: raise ValueError(f'OPQx_y requires dim is a multiple of M({x}), got dim: {y}') y = min(dim, 4 * x) y = x * (y // x) # make sure y is a multiple of x basement = f'OPQ{x}_{y},{{}},PQ{x}' else: # pragma: no cover raise ValueError('unknown memory require') # now choose the clustering options if size < 10 ** 6 or (size < 10 ** 7 and gpu): # < 1M, or <10M but need GPU k = kw.get('k', 5 * int(np.sqrt(size))) if k < 4 * int(np.sqrt(size)) or k > 16 * int(np.sqrt(size)): raise ValueError(f'k should be between 4 * sqrt(N) and 16 * sqrt(N), got {k}') index_str = basement.format(f'IVF{k}') if n_sample is None: # 30 * k - 256 * k n_sample = min(30 * k, size) elif size < 10 ** 7 and not gpu: # 1M - 10M index_str = basement.format('IVF65536_HNSW32') if n_sample is None: # between 30 * 65536 and 256 * 65536 n_sample = 32 * 65536 elif size < 10 ** 8: index_str = basement.format('IVF65536_HNSW32') n_sample = 64 * 65536 if n_sample is None else n_sample else: index_str = basement.format('IVF1048576_HNSW32') n_sample = 64 * 65536 if n_sample is None else n_sample return index_str, n_sample def _get_memory_require(memory_require): if isinstance(memory_require, str): return getattr(MemoryRequirementGrade, memory_require) elif isinstance(memory_require, MemoryRequirementGrade): return memory_require return MemoryRequirementGrade(memory_require) @require_not_none(faiss) def build_faiss_index(X, index_name='auto', n_sample=None, metric="euclidean", random_state=None, same_distribution=True, accuracy=False, memory_require=None, **kw): X = astensor(X) if metric not in METRIC_TO_FAISS_METRIC_TYPE: raise ValueError(f'unknown metric: {metric}') if index_name != 'auto': try: faiss.index_factory(X.shape[1], index_name, METRIC_TO_FAISS_METRIC_TYPE[metric]) except RuntimeError: raise ValueError(f'illegal faiss index: {index_name}') rs = check_random_state(random_state) if isinstance(rs, RandomState): rs = rs.to_numpy() seed = gen_random_seeds(1, rs)[0] if memory_require is None: memory_require = MemoryRequirementGrade.low else: memory_require = _get_memory_require(memory_require) op = FaissBuildIndex(faiss_index=index_name, metric=metric, n_sample=n_sample, gpu=X.op.gpu, seed=seed, same_distribution=same_distribution, accuracy=accuracy, memory_require=memory_require, **kw) return op(X) class FaissQuery(LearnOperand, LearnOperandMixin): _op_type_ = OperandDef.FAISS_QUERY _input = KeyField('input') _faiss_index = KeyField('faiss_index') _metric = StringField('metric') _n_neighbors = Int32Field('n_neighbors') _return_distance = BoolField('return_distance') _nprobe = Int64Field('nprobe') # for test purpose, could be 'object', 'filename' or 'bytes' _return_index_type = StringField('return_index_type') def __init__(self, faiss_index=None, metric=None, n_neighbors=None, return_distance=None, return_index_type=None, nprobe=None, output_types=None, gpu=None, **kw): super().__init__(_faiss_index=faiss_index, _n_neighbors=n_neighbors, _metric=metric, _return_distance=return_distance, _output_types=output_types, _nprobe=nprobe, _return_index_type=return_index_type, _gpu=gpu, **kw) if self.output_types is None: self.output_types = [OutputType.tensor] * self.output_limit @property def input(self): return self._input @property def faiss_index(self): return self._faiss_index @property def metric(self): return self._metric @property def n_neighbors(self): return self._n_neighbors @property def nprobe(self): return self._nprobe @property def return_distance(self): return self._return_distance @property def return_index_type(self): return self._return_index_type @property def output_limit(self): return 2 if self._return_distance else 1 def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] if self._faiss_index is not None: self._faiss_index = self._inputs[1] def __call__(self, y): kws = [] if self._return_distance: kws.append({'shape': (y.shape[0], self._n_neighbors), 'dtype': np.dtype(np.float32), 'order': TensorOrder.C_ORDER, 'type': 'distance'}) kws.append({ 'shape': (y.shape[0], self._n_neighbors), 'dtype': np.dtype(np.int64), 'order': TensorOrder.C_ORDER, 'type': 'indices' }) return self.new_tileables([y, self._faiss_index], kws=kws) @classmethod def tile(cls, op): in_tensor = astensor(op.input) if in_tensor.chunk_shape[1] != 1: check_chunks_unknown_shape([in_tensor], TilesError) in_tensor = in_tensor.rechunk({1: in_tensor.shape[1]})._inplace_tile() out_chunks = [], [] for chunk in in_tensor.chunks: chunk_op = op.copy().reset_key() chunk_kws = [] if op.return_distance: chunk_kws.append({ 'shape': (chunk.shape[0], op.n_neighbors), 'dtype': np.dtype(np.float32), 'order': TensorOrder.C_ORDER, 'index': chunk.index, 'type': 'distance' }) chunk_kws.append({ 'shape': (chunk.shape[0], op.n_neighbors), 'dtype': np.dtype(np.int64), 'order': TensorOrder.C_ORDER, 'index': chunk.index, 'type': 'indices' }) in_chunks = [chunk] in_chunks.extend(op.faiss_index.chunks) chunks = chunk_op.new_chunks(in_chunks, kws=chunk_kws) if op.return_distance: out_chunks[0].append(chunks[0]) out_chunks[1].append(chunks[-1]) new_op = op.copy() kws = [out.params for out in op.outputs] if op.return_distance: kws[0]['chunks'] = out_chunks[0] kws[0]['nsplits'] = (in_tensor.nsplits[0], (op.n_neighbors,)) kws[-1]['chunks'] = out_chunks[1] kws[-1]['nsplits'] = (in_tensor.nsplits[0], (op.n_neighbors,)) return new_op.new_tileables(op.inputs, kws=kws) @classmethod def execute(cls, ctx, op): (y,), device_id, xp = as_same_device( [ctx[op.input.key]], device=op.device, ret_extra=True) indexes = [_load_index(ctx, op, ctx[index.key], device_id) for index in op.inputs[1:]] with device(device_id): y = xp.ascontiguousarray(y, dtype=np.float32) if len(indexes) == 1: index = indexes[0] else: index = faiss.IndexShards(indexes[0].d) [index.add_shard(ind) for ind in indexes] if op.metric == 'cosine': # faiss does not support cosine distances directly, # data needs to be normalize before searching, # refer to: # https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-index-vectors-for-cosine-distance faiss.normalize_L2(y) if op.nprobe is not None: index.nprobe = op.nprobe if device_id >= 0: # pragma: no cover n = y.shape[0] k = op.n_neighbors distances = xp.empty((n, k), dtype=xp.float32) indices = xp.empty((n, k), dtype=xp.int64) index.search_c(n, _swig_ptr_from_cupy_float32_array(y), k, _swig_ptr_from_cupy_float32_array(distances), _swig_ptr_from_cupy_int64_array(indices)) else: distances, indices = index.search(y, op.n_neighbors) if op.return_distance: if index.metric_type == faiss.METRIC_L2: # make it equivalent to `pairwise.euclidean_distances` distances = xp.sqrt(distances, out=distances) elif op.metric == 'cosine': # make it equivalent to `pairwise.cosine_distances` distances = xp.subtract(1, distances, out=distances) ctx[op.outputs[0].key] = distances ctx[op.outputs[-1].key] = indices @require_not_none(faiss) def faiss_query(faiss_index, data, n_neighbors, return_distance=True, nprobe=None): data = astensor(data) op = FaissQuery(faiss_index=faiss_index, n_neighbors=n_neighbors, metric=faiss_index.op.metric, return_distance=return_distance, return_index_type=faiss_index.op.return_index_type, nprobe=nprobe, gpu=data.op.gpu) ret = op(data) if not return_distance: return ret[0] return ret
[ "noreply@github.com" ]
noreply@github.com
bc89d5b081e0e99dac177fc3c5169ae89ad3b7c1
5fbcd2d59b38b5b3d28b0f13c762f0a968a21133
/application/scroll.py
f19286ad1e181feac83b95a051e3d6395004dfba
[]
no_license
Walia666/Alerter
1a03e482a2cd05719d601bc22552471eedffc30e
83267d0d004c11e331eaf7d7a6145fe40a11cc8a
refs/heads/master
2020-03-19T07:45:59.185918
2018-06-05T08:38:54
2018-06-05T08:38:54
136,146,559
0
0
null
null
null
null
UTF-8
Python
false
false
3,516
py
def docsnew(request): client = Elasticsearch() values=[] if request.method == 'POST': log_field=request.POST['log_field'] array=request.POST['data'] kibanaquery=request.POST['kibana_query'] datefrom = request.POST['datetime_from_name'] dateto= request.POST['datetime_to_name'] pattern = '%d-%m-%Y %H:%M:%S' datefromsec = int(time.mktime(time.strptime(datefrom, pattern))) datetosec=int(time.mktime(time.strptime(dateto, pattern))) keyarray=array.split(',') for item in keyarray: marked=request.POST.get(item,) values.append(marked) newlstvalues = [str(x) for x in values] current_timestamp=time.time() from_date=abs(current_timestamp - datefromsec) to_date=abs(current_timestamp- datetosec) from_date_int=int(from_date) to_date_int=int(to_date) objs = Log.objects.raw('SELECT * FROM application_log WHERE log_field = %s', [log_field]) for obj in objs: index=obj.index ipendpoint=obj.ip_endpoint logfield=obj.log_field data=ipendpoint.split(":") hostmain=data[0] portmain=data[1] portint=int(portmain) client=Elasticsearch(host=hostmain, port=portint) document = { "size": 100, "query": { "bool": { "must": [ { "query_string": { "query":kibanaquery, "analyze_wildcard": 'true' } }, { "range": { "@timestamp": { "from": "now-"+str(from_date_int)+"s", "to": "now-"+str(to_date_int)+"s" } } } ], "must_not": [] } }, "docvalue_fields": [ "@timestamp" ] } result= client.search(index=index, body=document,scroll='2m') sid = result['_scroll_id'] scroll_size = result['hits']['total'] scroll=[] result1=[] newlist=[] newlist1=[] keyarray1=[] keyarray2=[] resultlist=[] list1=zip(keyarray,newlstvalues) for row in result['hits']['hits']: resultx=row["_source"] t1=resultx.keys() for c,d in list1: for e in t1: if c == e: newlist.append(c) newlist1.append(d) for c,d in zip(newlist,newlist1): if d != "None": keyarray1.append(c) l=len(keyarray1) for c,d in list1: if d != "None": keyarray2.append(c) keyarray3=list(set(keyarray2) - set(keyarray1)) t3 = result['hits']['total'] while (scroll_size > 0): result = client.scroll(scroll_id = sid, scroll = '2m') #zipped list that contains fields of index and its values for row in result['hits']['hits']: for x in keyarray1: result1=row["_source"][x] resultlist.append(result1) sid = result['_scroll_id'] scroll_size = len(result['hits']['hits']) res=len(resultlist) def chunks(l, n): for i in range(0, len(l), n): yield l[i:i+n] splitlist=list(chunks(resultlist, l)) #adding the field element at the end of the list keyarray1.extend(keyarray3) import csv with open("fields.csv", "wb") as myfile: writer = csv.writer(myfile, quoting=csv.QUOTE_ALL) writer.writerow(keyarray1) for row in splitlist: writer.writerow(row) #code to read the csv file with open('fields.csv', 'rb') as myfile: response = HttpResponse(myfile, content_type='text/csv') response['Content-Disposition'] = 'attachment; filename=fields.csv' return response return render(request, 'application/docs.html', {'res1':t3,'scroll':res})
[ "anshulwaia128@gmail.com" ]
anshulwaia128@gmail.com
2641b37d027fbff1ece30b7f2825fb2fcbd20653
7950c4faf15ec1dc217391d839ddc21efd174ede
/leetcode-cn/0150.0_Evaluate_Reverse_Polish_Notation.py
0a7404c8bbd5ea8d7d771e5b14d18c16066b3ef5
[]
no_license
lixiang2017/leetcode
f462ecd269c7157aa4f5854f8c1da97ca5375e39
f93380721b8383817fe2b0d728deca1321c9ef45
refs/heads/master
2023-08-25T02:56:58.918792
2023-08-22T16:43:36
2023-08-22T16:43:36
153,090,613
5
0
null
null
null
null
UTF-8
Python
false
false
1,151
py
''' approach: Stack Time: O(N) Space: O(N) 执行用时:32 ms, 在所有 Python 提交中击败了60.21%的用户 内存消耗:14.3 MB, 在所有 Python 提交中击败了76.44%的用户 ''' class Solution(object): def evalRPN(self, tokens): """ :type tokens: List[str] :rtype: int """ stack = [] for token in tokens: stack.append(token) while len(stack) >= 3 and stack[-1] in ['+', '-', '*', '/']: operator = stack.pop() operand2 = int(stack.pop()) operand1 = int(stack.pop()) result = 0 if operator == '+': result = operand1 + operand2 elif operator == '-': result = operand1 - operand2 elif operator == '*': result = operand1 * operand2 elif operator == '/': # Note that division between two integers should truncate toward zero. result = int(operand1 * 1.0/ operand2) stack.append(result) return int(stack[-1])
[ "lixiang@rxthinking.com" ]
lixiang@rxthinking.com
0d51a3c5f0b0c6421d7aa1d1e00845b6402846f4
aacb6439137be5b0ad694ebb5ecae1844223d0aa
/ex001.py
643b0abf024e25f17116526058958999be8c92bb
[]
no_license
raphaelsmuniz/cursoEmVideoPython
3a47507347a79267b1efd6e4dff9fda4bb424a7a
08f7baeba3fd9a848adf87b403284da9fba17932
refs/heads/master
2021-12-15T10:04:53.576411
2021-12-08T18:46:30
2021-12-08T18:46:30
128,147,369
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
nome = input('Qual é o seu nome? ') print('É um grande prazer te conhecer', nome)
[ "raphaelnsx@gmail.com" ]
raphaelnsx@gmail.com
c63b1fa4e04f7ce429a6950d384a4e64e36fe1b8
3017e7f0e8cd99469c7c98ec8a4b9b75d39c0c2f
/pythonkitabi/ingilizce/ch11/mia/splitspace.py
61f80bf9bd1d710ebaf5c34572bcbad903ed206a
[]
no_license
Rmys/projects
de6cb9d5d3f027d98c812647369d1e487d902c4b
60ce197bc1fb7ad3fa31f12559b74ee450b69df1
refs/heads/master
2020-03-19T15:36:11.603931
2011-09-16T00:15:34
2011-09-16T00:15:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
869
py
""" splitspace.py - splitter view manager for the mdi framework copyright: (C) 2001, Boudewijn Rempt email: boud@rempt.xs4all.nl """ from qt import * from resources import TRUE, FALSE class SplitSpace(QSplitter): def __init__(self, *args): apply(QSplitter.__init__,(self, ) + args) self.views=[] def addView(self, view): self.views.append(view) def removeView(self, view): pass def activeWindow(self): for view in self.views: if view.hasFocus(): return view return self.views[0] def cascade(self): pass def windowList(self): return self.views def tile(self): pass def canCascade(self): return FALSE def canTile(self): return FALSE def activateWindow(self, view): view.setFocus()
[ "ismail@users.noreply.github.com" ]
ismail@users.noreply.github.com
d34afd28088c387fc104acc632df1276df76726e
b2c070e09bff49241fcff98bcde825cfa96e93ca
/HackerEarth/Recursion/SubsetGeneration.py
9af011b3289a694f328f9d18d4a03292e2e93f09
[ "MIT" ]
permissive
Beryl2208/CI-2
dcb1b923f9c4f1f8b167c36c8b22a80522322c53
f671292dad2695e37458866442a6b951ba4e1a71
refs/heads/master
2022-12-26T19:11:28.559911
2020-10-06T06:27:51
2020-10-06T06:27:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
743
py
# Subset or Subsequence generation # Input - "abc", Output - "a", "b", "c", "ab", "ac", "abc", "bc" # Input - "abcd", Output - "a", "b", "c", "d", "ab", "ac", "ad", "abc", "acd", "abd", "abcd", "bc", "bcd", "bd", "cd" # "abc" "ab" "ac" "a" "bc" "b" "c" "" # \ / \ / \ / \ / # "ab" "a" "b" "" # \ / \ / # "a" "" # \ / # curr = "" # Options - # 1) Consider curr as a part of subset # 2) Do not consider curr as a part of subset def Subset(s, index = 0, curr = ''): if index == len(s): print(curr, end = ' ') return Subset(s, index + 1, curr + s[index]) Subset(s, index + 1, curr) Subset("abc") print() Subset("abcd") print()
[ "AbhiSaphire@github.com" ]
AbhiSaphire@github.com
a2455184714558aeedd27f30413d548c77e63c4b
7e260342bb04eba9bff4289da938e859b8d68b82
/contrib/scripts.py
d6d2ef643382ab83ba2df65618bc02d78d78ab2f
[ "MIT" ]
permissive
christopherjenness/fava
72c2d0e201f7792ac32a643be0479fa7623efc27
71c25d8a0ae08aa84150e33d464000d0161610ea
refs/heads/master
2020-04-28T15:29:34.446050
2019-03-12T17:58:03
2019-03-12T17:58:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,374
py
#!/usr/bin/env python3 """Various utilities.""" import json import os from beancount.query import query_env from beancount.query import query_parser import click import requests BASE_PATH = os.path.normpath( os.path.join(os.path.dirname(__file__), "../fava") ) LANGUAGES = ["de", "es", "fr", "nl", "pt", "ru", "zh-CN", "sk", "uk"] @click.group() def cli(): """Various utilities.""" def _env_to_list(attributes): for name in attributes.keys(): if isinstance(name, tuple): name = name[0] yield name @cli.command() def generate_bql_grammar_json(): """Generate a JSON file with BQL grammar attributes. The online code editor needs to have the list of available columns, functions, and keywords for syntax highlighting and completion. Should be run whenever the BQL changes.""" target_env = query_env.TargetsEnvironment() data = { "columns": sorted(set(_env_to_list(target_env.columns))), "functions": sorted(set(_env_to_list(target_env.functions))), "keywords": sorted({kw.lower() for kw in query_parser.Lexer.keywords}), } path = os.path.join( os.path.dirname(__file__), "../fava/static/javascript/codemirror/bql-grammar.json", ) with open(path, "w") as json_file: json.dump(data, json_file) @cli.command() def download_translations(): """Fetch updated translations from POEditor.com.""" token = os.environ.get("POEDITOR_TOKEN") if not token: raise click.UsageError( "The POEDITOR_TOKEN environment variable needs to be set." ) for language in LANGUAGES: download_from_poeditor(language, "po", token) download_from_poeditor(language, "mo", token) @cli.command() def upload_translations(): """Upload .pot message catalog to POEditor.com.""" token = os.environ.get("POEDITOR_TOKEN") if not token: raise click.UsageError( "The POEDITOR_TOKEN environment variable needs to be set." ) path = os.path.join(BASE_PATH, f"translations/messages.pot") click.echo(f"Uploading message catalog: {path}") data = { "api_token": token, "id": 90283, "updating": "terms", "sync_terms": 1, } files = {"file": open(path, "rb")} request = requests.post( "https://api.poeditor.com/v2/projects/upload", data=data, files=files ) click.echo("Done: " + str(request.json()["result"]["terms"])) def download_from_poeditor(language, format_, token): """Download .{po,mo}-file from POEditor and save to disk.""" click.echo(f'Downloading .{format_}-file for language "{language}"') language_short = language[:2] data = { "api_token": token, "id": 90283, "language": language, "type": format_, } request = requests.post( "https://api.poeditor.com/v2/projects/export", data=data ) url = request.json()["result"]["url"] content = requests.get(url).content folder = os.path.join( BASE_PATH, "translations", language_short, "LC_MESSAGES" ) if not os.path.exists(folder): os.makedirs(folder) path = os.path.join(folder, f"messages.{format_}") with open(path, "wb") as file_: file_.write(content) click.echo(f'Downloaded to "{path}"') if __name__ == "__main__": cli()
[ "mail@jakobschnitzer.de" ]
mail@jakobschnitzer.de
2a06563b85200a8f318510a6b133096d34966f34
a920ae4837161ba75d82efaec118a73f846bab7b
/eelbrain/vessels/process.py
e5d0644f55af1db1505ee74f7ff4a883853c55f3
[]
no_license
kriek197/Eelbrain
316b422e7137d32003d9c787c3aee7c444f2a438
03c06ba4517307821ff2c1811a3edd34b7274cf0
refs/heads/master
2020-12-25T09:00:40.915929
2012-03-07T16:44:31
2012-03-07T16:44:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,394
py
''' Created on Feb 24, 2012 @author: christian ''' import mdp as _mdp import data as _data def rm_pca(ds, rm=[], source='MEG', target='MEG'): """ Perform PCA and remove certain components. Use gui.pca to find components initially. Algorithm from the gui! """ if not rm: raise ValueError("No components selected") if isinstance(source, basestring): source = ds[source] rm = sorted(rm) n_comp = max(rm) + 1 # do the pca pca = _mdp.nodes.PCANode(output_dim=n_comp) for epoch in source.data: pca.train(epoch) pca.stop_training() # remove the components n_epochs, n_t, n_sensors = source.data.shape data = source.data.copy() # output data # take serialized data views for working with the PCANode new_data = data.view() old_data = source.data.view() # reshape the views new_data.shape = (n_epochs * n_t, n_sensors) old_data.shape = (n_epochs * n_t, n_sensors) # project the components and remove proj = pca.execute(old_data) for i in xrange(proj.shape[1]): if i not in rm: proj[:,i] = 0 rm_comp_data = pca.inverse(proj) new_data -= rm_comp_data # create the output new ndvar dims = source.dims properties = source.properties ds[target] = _data.ndvar(dims, data, properties, name=target)
[ "christian@Christian-Brodbecks-MacBook-Pro.local" ]
christian@Christian-Brodbecks-MacBook-Pro.local
0d049d8ba10dab9d75bd9355eb364b3565a2349b
6a7e9e0e9c08132166f566bd88ae1c46ff8f9c0a
/azure-mgmt-recoveryservicesbackup/azure/mgmt/recoveryservicesbackup/models/generic_container.py
f6e8fff7ae9f79d55e3c6619b9dd2ff2044fb9c6
[ "MIT" ]
permissive
ashirey-msft/azure-sdk-for-python
d92381d11c48f194ec9f989f5f803db614fb73f2
e04778e13306dad2e8fb044970215bad6296afb6
refs/heads/master
2020-03-23T06:05:39.283442
2018-09-15T00:18:26
2018-09-15T00:18:26
141,188,192
0
1
MIT
2018-07-16T20:02:52
2018-07-16T20:02:52
null
UTF-8
Python
false
false
2,678
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .protection_container import ProtectionContainer class GenericContainer(ProtectionContainer): """Base class for generic container of backup items. All required parameters must be populated in order to send to Azure. :param friendly_name: Friendly name of the container. :type friendly_name: str :param backup_management_type: Type of backup managemenent for the container. Possible values include: 'Invalid', 'AzureIaasVM', 'MAB', 'DPM', 'AzureBackupServer', 'AzureSql', 'AzureStorage', 'AzureWorkload', 'DefaultBackup' :type backup_management_type: str or ~azure.mgmt.recoveryservicesbackup.models.BackupManagementType :param registration_status: Status of registration of the container with the Recovery Services Vault. :type registration_status: str :param health_status: Status of health of the container. :type health_status: str :param container_type: Required. Constant filled by server. :type container_type: str :param fabric_name: Name of the container's fabric :type fabric_name: str :param extended_information: Extended information (not returned in List container API calls) :type extended_information: ~azure.mgmt.recoveryservicesbackup.models.GenericContainerExtendedInfo """ _validation = { 'container_type': {'required': True}, } _attribute_map = { 'friendly_name': {'key': 'friendlyName', 'type': 'str'}, 'backup_management_type': {'key': 'backupManagementType', 'type': 'str'}, 'registration_status': {'key': 'registrationStatus', 'type': 'str'}, 'health_status': {'key': 'healthStatus', 'type': 'str'}, 'container_type': {'key': 'containerType', 'type': 'str'}, 'fabric_name': {'key': 'fabricName', 'type': 'str'}, 'extended_information': {'key': 'extendedInformation', 'type': 'GenericContainerExtendedInfo'}, } def __init__(self, **kwargs): super(GenericContainer, self).__init__(**kwargs) self.fabric_name = kwargs.get('fabric_name', None) self.extended_information = kwargs.get('extended_information', None) self.container_type = 'GenericContainer'
[ "noreply@github.com" ]
noreply@github.com
91b770c32ce191e1618b591a09cd70ba96ab08fe
96449d8ba4addbf1758ea923097aaa8b799c9283
/chapter 6/in_and_is.py
e5a786aed37096bbae3d40b1a5cc8d1592073ea1
[]
no_license
Pravin2796/python-practice-
446905714f9cb592e091c858719ff045005329a3
d8d631ba1ccd7d1b7863d7b0f58099eae93ec54d
refs/heads/master
2023-07-18T12:10:44.989715
2021-08-30T12:29:24
2021-08-30T12:29:24
401,336,363
0
0
null
null
null
null
UTF-8
Python
false
false
116
py
# a = None # if (a is a None): # print("yes") # else: # print("no") a = [45,20,654] print(45 in a)
[ "praviinjd@gmail.com" ]
praviinjd@gmail.com
1e65974aa90d149f18d9f0db6df93ae6acdfea77
2273e24209e914b106482b1d3950e3e340f57ead
/netmiko_ex1.py
a95c4055c955a7757226a2d337c64aef1b287392
[ "Apache-2.0" ]
permissive
bashamshaik/pynet_test8
3bf416dc93b801ee4ba902a07e8555dae5f5d7ed
e2561b016b9627d9ae31cc8bdcfa005a9c773232
refs/heads/master
2020-06-24T04:01:41.211031
2017-07-13T19:11:28
2017-07-13T19:11:28
96,918,166
0
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
#!/usr/bin/env python """Exercises using Netmiko""" from __future__ import print_function from getpass import getpass from netmiko import ConnectHandler pynet_rtr1 = { 'device_type': 'cisco_ios', 'ip': '184.105.247.70', 'username': 'pyclass', 'password': getpass, } pynet_srx = { 'device_type': 'juniper_junos', 'ip': '184.105.247.76', 'username': 'pyclass', 'password': getpass, } for a_device in (pynet_rtr1, pynet_srx): net_connect = ConnectHandler(**a_device) print("Current Prompt: " + net_connect.find_prompt()) show_ver = net_connect.send_command("show version") print() print('#' * 80) print(show_ver) print('#' * 80) print() if 'cisco' in a_device['device_type']: cmd = "show run" elif 'juniper' in a_device['device_type']: cmd = "show configuration" show_run = net_connect.send_command(cmd) filename = net_connect.base_prompt + ".txt" print("Save show run output: {}\n".format(filename)) save_file(filename, show_run) if __name__ == "__main__": main()
[ "jdoe@domain.com" ]
jdoe@domain.com
09fc27c0d2db4456503b39b6e34088fd5e8e840b
a553c852772514ee392a359cb306128381a85b6c
/mysite/mysite/settings.py
c49fceaff2b3e63c7da2ad4c85e6ad2c32742546
[]
no_license
YenHengLin/login-bootdjango
0ba78cc55eff7e75c0063121de01106e504ed71c
9b0fb9e8a5ef4fc16536edc0867e4c5c678a1e69
refs/heads/master
2022-12-19T01:50:32.986362
2020-08-28T21:27:39
2020-08-28T21:27:39
289,205,928
0
0
null
null
null
null
UTF-8
Python
false
false
3,101
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 3.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve(strict=True).parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '-z7-a+7kf$k38xo1%d^u!j5tm^ws@isvyrikdqgbcqnl10jdda' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'login.apps.LoginConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
[ "NE6081098@gs.ncku.edu.tw" ]
NE6081098@gs.ncku.edu.tw
36e4e2986c5061bf137f8a9132190a868617ee89
2205147e87a78f6056188ef20459f193e7601ae6
/paillierself.py
f314edcf51f4e8039b80935a2e1de186a1e8799b
[]
no_license
chenggang12138/decision
1f707447d0d6f55f0c38316bfbd7df0a2c7c96f7
320dc0667cefa5b537aaac498f2e08eb2966770b
refs/heads/main
2023-06-02T00:46:26.460597
2021-06-22T07:32:25
2021-06-22T07:32:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,788
py
"""Paillier encryption library for partially homomorphic encryption.""" import random try: from collections.abc import Mapping except ImportError: Mapping = dict from phe import EncodedNumber from phe.util import invert, powmod, getprimeover, isqrt DEFAULT_KEYSIZE = 2048 def generate_paillier_keypair(private_keyring=None, n_length=DEFAULT_KEYSIZE): p = q = n = None n_len = 0 while n_len != n_length: p = getprimeover(n_length // 2) q = p while q == p: q = getprimeover(n_length // 2) n = p * q n_len = n.bit_length() public_key = PaillierPublicKey(n) private_key = PaillierPrivateKey(public_key, p, q) if private_keyring is not None: private_keyring.add(private_key) return n,public_key, private_key class PaillierPublicKey(object): def __init__(self, n): self.g = n + 1 self.n = n self.nsquare = n * n self.max_int = n // 3 - 1 def __repr__(self): publicKeyHash = hex(hash(self))[2:] return "<PaillierPublicKey {}>".format(publicKeyHash[:10]) def __eq__(self, other): return self.n == other.n def __hash__(self): return hash(self.n) def raw_encrypt(self, plaintext, r_value=None): if not isinstance(plaintext, int): raise TypeError('Expected int type plaintext but got: %s' % type(plaintext)) if self.n - self.max_int <= plaintext < self.n: # Very large plaintext, take a sneaky shortcut using inverses neg_plaintext = self.n - plaintext # = abs(plaintext - nsquare) neg_ciphertext = (self.n * neg_plaintext + 1) % self.nsquare nude_ciphertext = invert(neg_ciphertext, self.nsquare) else: # we chose g = n + 1, so that we can exploit the fact that # (n+1)^plaintext = n*plaintext + 1 mod n^2 nude_ciphertext = (self.n * plaintext + 1) % self.nsquare r = r_value or self.get_random_lt_n() obfuscator = powmod(r, self.n, self.nsquare) return (nude_ciphertext * obfuscator) % self.nsquare def get_random_lt_n(self): """Return a cryptographically random number less than :attr:`n`""" return random.SystemRandom().randrange(1, self.n) def encrypt(self, value, precision=None, r_value=None): if isinstance(value, EncodedNumber): encoding = value else: encoding = EncodedNumber.encode(self, value, precision) return self.encrypt_encoded(encoding, r_value) def encrypt_encoded(self, encoding, r_value): # If r_value is None, obfuscate in a call to .obfuscate() (below) obfuscator = r_value or 1 ciphertext = self.raw_encrypt(encoding.encoding, r_value=obfuscator) encrypted_number = EncryptedNumber(self, ciphertext, encoding.exponent) if r_value is None: encrypted_number.obfuscate() return encrypted_number class PaillierPrivateKey(object): def __init__(self, public_key, p, q): if not p*q == public_key.n: raise ValueError('given public key does not match the given p and q.') if p == q: # check that p and q are different, otherwise we can't compute p^-1 mod q raise ValueError('p and q have to be different') self.public_key = public_key if q < p: #ensure that p < q. self.p = q self.q = p else: self.p = p self.q = q self.psquare = self.p * self.p self.qsquare = self.q * self.q self.p_inverse = invert(self.p, self.q) self.hp = self.h_function(self.p, self.psquare) self.hq = self.h_function(self.q, self.qsquare) @staticmethod def from_totient(public_key, totient): p_plus_q = public_key.n - totient + 1 p_minus_q = isqrt(p_plus_q * p_plus_q - public_key.n * 4) q = (p_plus_q - p_minus_q) // 2 p = p_plus_q - q if not p*q == public_key.n: raise ValueError('given public key and totient do not match.') return PaillierPrivateKey(public_key, p, q) def __repr__(self): pub_repr = repr(self.public_key) return "<PaillierPrivateKey for {}>".format(pub_repr) def decrypt(self, encrypted_number): encoded = self.decrypt_encoded(encrypted_number) return encoded.decode() def decrypt_encoded(self, encrypted_number, Encoding=None): if not isinstance(encrypted_number, EncryptedNumber): raise TypeError('Expected encrypted_number to be an EncryptedNumber' ' not: %s' % type(encrypted_number)) if self.public_key != encrypted_number.public_key: raise ValueError('encrypted_number was encrypted against a ' 'different key!') if Encoding is None: Encoding = EncodedNumber encoded = self.raw_decrypt(encrypted_number.ciphertext(be_secure=False)) return Encoding(self.public_key, encoded, encrypted_number.exponent) def raw_decrypt(self, ciphertext): if not isinstance(ciphertext, int): raise TypeError('Expected ciphertext to be an int, not: %s' % type(ciphertext)) decrypt_to_p = self.l_function(powmod(ciphertext, self.p-1, self.psquare), self.p) * self.hp % self.p decrypt_to_q = self.l_function(powmod(ciphertext, self.q-1, self.qsquare), self.q) * self.hq % self.q return self.crt(decrypt_to_p, decrypt_to_q) def h_function(self, x, xsquare): """Computes the h-function as defined in Paillier's paper page 12, 'Decryption using Chinese-remaindering'. """ return invert(self.l_function(powmod(self.public_key.g, x - 1, xsquare),x), x) def l_function(self, x, p): """Computes the L function as defined in Paillier's paper. That is: L(x,p) = (x-1)/p""" return (x - 1) // p def crt(self, mp, mq): u = (mq - mp) * self.p_inverse % self.q return mp + (u * self.p) def __eq__(self, other): return self.p == other.p and self.q == other.q def __hash__(self): return hash((self.p, self.q)) class PaillierPrivateKeyring(Mapping): def __init__(self, private_keys=None): if private_keys is None: private_keys = [] public_keys = [k.public_key for k in private_keys] self.__keyring = dict(zip(public_keys, private_keys)) def __getitem__(self, key): return self.__keyring[key] def __len__(self): return len(self.__keyring) def __iter__(self): return iter(self.__keyring) def __delitem__(self, public_key): del self.__keyring[public_key] def add(self, private_key): if not isinstance(private_key, PaillierPrivateKey): raise TypeError("private_key should be of type PaillierPrivateKey, " "not %s" % type(private_key)) self.__keyring[private_key.public_key] = private_key def decrypt(self, encrypted_number): relevant_private_key = self.__keyring[encrypted_number.public_key] return relevant_private_key.decrypt(encrypted_number) class EncryptedNumber(object): def __init__(self, public_key, ciphertext, exponent=0): self.public_key = public_key self.__ciphertext = ciphertext self.exponent = exponent self.__is_obfuscated = False if isinstance(self.ciphertext, EncryptedNumber): raise TypeError('ciphertext should be an integer') if not isinstance(self.public_key, PaillierPublicKey): raise TypeError('public_key should be a PaillierPublicKey') def __add__(self, other): """Add an int, float, `EncryptedNumber` or `EncodedNumber`.""" if isinstance(other, EncryptedNumber): return self._add_encrypted(other) elif isinstance(other, EncodedNumber): return self._add_encoded(other) else: return self._add_scalar(other) def __radd__(self, other): """Called when Python evaluates `34 + <EncryptedNumber>` Required for builtin `sum` to work. """ return self.__add__(other) def __mul__(self, other): """Multiply by an int, float, or EncodedNumber.""" if isinstance(other, EncryptedNumber): raise NotImplementedError('Good luck with that...') if isinstance(other, EncodedNumber): encoding = other else: encoding = EncodedNumber.encode(self.public_key, other) product = self._raw_mul(encoding.encoding) exponent = self.exponent + encoding.exponent return EncryptedNumber(self.public_key, product, exponent) def __rmul__(self, other): return self.__mul__(other) def __sub__(self, other): return self + (other * -1) def __rsub__(self, other): return other + (self * -1) def __truediv__(self, scalar): return self.__mul__(1 / scalar) def ciphertext(self, be_secure=True): if be_secure and not self.__is_obfuscated: self.obfuscate() return self.__ciphertext def decrease_exponent_to(self, new_exp): if new_exp > self.exponent: raise ValueError('New exponent %i should be more negative than ' 'old exponent %i' % (new_exp, self.exponent)) multiplied = self * pow(EncodedNumber.BASE, self.exponent - new_exp) multiplied.exponent = new_exp return multiplied def obfuscate(self): r = self.public_key.get_random_lt_n() r_pow_n = powmod(r, self.public_key.n, self.public_key.nsquare) self.__ciphertext = self.__ciphertext * r_pow_n % self.public_key.nsquare self.__is_obfuscated = True def _add_scalar(self, scalar): encoded = EncodedNumber.encode(self.public_key, scalar, max_exponent=self.exponent) return self._add_encoded(encoded) def _add_encoded(self, encoded): if self.public_key != encoded.public_key: raise ValueError("Attempted to add numbers encoded against " "different public keys!") # In order to add two numbers, their exponents must match. a, b = self, encoded if a.exponent > b.exponent: a = self.decrease_exponent_to(b.exponent) elif a.exponent < b.exponent: b = b.decrease_exponent_to(a.exponent) # Don't bother to salt/obfuscate in a basic operation, do it # just before leaving the computer. encrypted_scalar = a.public_key.raw_encrypt(b.encoding, 1) sum_ciphertext = a._raw_add(a.ciphertext(False), encrypted_scalar) return EncryptedNumber(a.public_key, sum_ciphertext, a.exponent) def _add_encrypted(self, other): if self.public_key != other.public_key: raise ValueError("Attempted to add numbers encrypted against " "different public keys!") # In order to add two numbers, their exponents must match. a, b = self, other if a.exponent > b.exponent: a = self.decrease_exponent_to(b.exponent) elif a.exponent < b.exponent: b = b.decrease_exponent_to(a.exponent) sum_ciphertext = a._raw_add(a.ciphertext(False), b.ciphertext(False)) return EncryptedNumber(a.public_key, sum_ciphertext, a.exponent) def _raw_add(self, e_a, e_b): return e_a * e_b % self.public_key.nsquare def _raw_mul(self, plaintext): if not isinstance(plaintext, int): raise TypeError('Expected ciphertext to be int, not %s' % type(plaintext)) if plaintext < 0 or plaintext >= self.public_key.n: raise ValueError('Scalar out of bounds: %i' % plaintext) if self.public_key.n - self.public_key.max_int <= plaintext: # Very large plaintext, play a sneaky trick using inverses neg_c = invert(self.ciphertext(False), self.public_key.nsquare) neg_scalar = self.public_key.n - plaintext return powmod(neg_c, neg_scalar, self.public_key.nsquare) else: return powmod(self.ciphertext(False), plaintext, self.public_key.nsquare)
[ "noreply@github.com" ]
noreply@github.com
fae49df9e810cfda124a6a5a4f2482b7634a7e3d
2b95304dd1d5eb74b7fe55929d04d42ad7617cfe
/nursery/migrations/0005_auto_20210109_1707.py
5ee8a517166acef6190733ed3c34a6c72c579266
[]
no_license
dicegame363/Plant-and-Nursery
4e04bb29af74236730e3b75209dac99d1f74d6a0
7ad105a37af7f429be6d55fc8160c2ca45e4001c
refs/heads/main
2023-02-15T21:57:09.375526
2021-01-13T05:34:36
2021-01-13T05:34:36
328,098,784
0
0
null
null
null
null
UTF-8
Python
false
false
630
py
# Generated by Django 3.1.5 on 2021-01-09 11:37 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('nursery', '0004_auto_20210109_1701'), ] operations = [ migrations.RemoveField( model_name='orderproperty', name='plant', ), migrations.AddField( model_name='orderproperty', name='plant', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='nursery.plant'), preserve_default=False, ), ]
[ "dicegamemail@gmail.com" ]
dicegamemail@gmail.com
3efb1c41585980c718232ed289499bfcb00fe969
9b852d13a5cb849b42a56959d80af13de9124381
/predict.py
e26395c9906cfde3f2441f74a58b53d51a8b11a6
[ "MIT" ]
permissive
HungUnicorn/udacity-flower-image-classifier
086228f689fe70f34a62c90be50330482288df93
9625d3e94f178cd6090168f5a97c8d278cebc5c8
refs/heads/master
2022-09-19T03:08:45.251131
2020-06-01T13:22:26
2020-06-01T13:22:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,682
py
import argparse import json from util import process_image, load_model import torch def predict(): args = cli() device = torch.device("cuda" if args.gpu else "cpu") print(f'Device: {device}') image = process_image(args.image_path) model = load_model() with open(args.category_names, 'r') as f: cat_to_name = json.load(f) top_ps, top_class = _predict(model, image, args.top_k, device) for i, c in enumerate(top_class): print(f"Prediction {i + 1}: " f"{cat_to_name[c]} .. " f"({100.0 * top_ps[i]:.3f}%)") def cli(): parser = argparse.ArgumentParser() parser.add_argument("image_path") parser.add_argument("checkpoint") parser.add_argument("--top_k", default=1, type=int) parser.add_argument("--category_names", default="cat_to_name.json") parser.add_argument("--gpu", action="store_true") return parser.parse_args() def _predict(model, image, topk, device): tensor_image = torch.from_numpy(image).type(torch.FloatTensor) tensor_image = tensor_image.unsqueeze_(0) model.to(device) model.eval() with torch.no_grad(): print(f'Device: {device}') output = model(tensor_image.to(device)).cpu() probs = torch.exp(output) top_p, top_class = probs.topk(topk, dim=1) top_p = top_p.numpy()[0] top_class = top_class.numpy()[0] idx_to_class = {val: key for key, val in model.class_to_idx.items()} top_class = [idx_to_class[i] for i in top_class] return top_p, top_class if __name__ == "__main__": predict()
[ "hungchang@hungchang.fritz.box" ]
hungchang@hungchang.fritz.box
e98613e9520a652001c93b17ff4600e2c67e99bf
0db8032fc10ffee088736dc19f5e766a8d4bc72d
/02-array-seq/list_slice.py
942778ef6bdd142fba0099be3b61dd1730cc3b73
[ "MIT" ]
permissive
niyunsheng/fluent-python
9ddec1ed09b819b3a2d920c3b1bc092094719150
26d91e56a58c7423253066f65ffb03b90d822e86
refs/heads/master
2022-10-22T22:27:05.787416
2020-06-13T15:42:29
2020-06-13T15:42:29
256,383,732
3
0
null
null
null
null
UTF-8
Python
false
false
484
py
# 建立由列表组成的列表 board = [['_'] * 3 for _ in range(3)] print(board) board[1][2] = 'X' print(board) # 上面这个代码等同于 board = [] for i in range(3): row=['_'] * 3 board.append(row) # 下面这种方法不对,因为外面的列表其实包含 3 个指向同一个列表的引用 board = [['_'] * 3 ]*3 print(board) board[1][2] = 'X' print(board) # 上面这个代码等同于 row=['_'] * 3 board = [] for i in range(3): board.append(row)
[ "ni-ys13@tsinghua.org.cn" ]
ni-ys13@tsinghua.org.cn
dc0b8088b98d3de65f6b57c8d2a62cb0d9a6c470
913d46cbc5abe5556e05b59ffd1b55009a848e32
/lanenet-lane-detection/tools/my2train_dense.py
2c0f51d4ba0b5671c4a937609deedc2e30051218
[ "Apache-2.0" ]
permissive
yeyang1021/Sparse-to-Dense
7c3fcd34c1d41e16369788471c0040cdac1dc7fb
785c1dc5f05ebf4c267d5c3e46b37463f291e14b
refs/heads/master
2022-11-27T17:48:00.209011
2019-06-06T03:10:20
2019-06-06T03:10:20
190,501,005
1
1
null
2022-11-21T22:27:55
2019-06-06T02:32:59
Python
UTF-8
Python
false
false
12,068
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : # @Author : # @Site : # @File : my2train_dense.py # @IDE: PyCharm Community Edition """ 训练lanenet模型 """ import argparse import math import os import os.path as ops import time import cv2 import glog as log import numpy as np import tensorflow as tf try: from cv2 import cv2 except ImportError: pass from config import global_config from lanenet_model import mylanenet1_merge_model from data_provider import my2_data_processor CFG = global_config.cfg VGG_MEAN = [103.939, 116.779, 123.68] def init_args(): """ :return: """ parser = argparse.ArgumentParser() parser.add_argument('--dataset_dir', type=str, help='The training dataset dir path') parser.add_argument('--net', type=str, help='Which base net work to use', default='vgg') parser.add_argument('--weights_path', type=str, help='The pretrained weights path') return parser.parse_args() def train_net(dataset_dir, weights_path=None, net_flag='vgg'): """ :param dataset_dir: :param net_flag: choose which base network to use :param weights_path: :return: """ train_dataset_file = ops.join(dataset_dir, 'train.txt') val_dataset_file = ops.join(dataset_dir, 'val.txt') assert ops.exists(train_dataset_file) c = [] d = [] e = [] f = [] for dd in ['/gpu:0', '/gpu:1']: with tf.device(dd): train_dataset = my2_data_processor.DataSet(train_dataset_file) val_dataset = my2_data_processor.DataSet(val_dataset_file) input_tensor1 = tf.placeholder(dtype=tf.float32, shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT, CFG.TRAIN.IMG_WIDTH, 3], name='input_tensor1') input_tensor2 = tf.placeholder(dtype=tf.float32, shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT, CFG.TRAIN.IMG_WIDTH, 1], name='input_tensor2') gt_label = tf.placeholder(dtype=tf.float32, shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT, CFG.TRAIN.IMG_WIDTH, 1], name='gt_label') mask_label = tf.placeholder(dtype=tf.float32, shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT, CFG.TRAIN.IMG_WIDTH, 1], name='mask_label') cam_label = tf.placeholder(dtype=tf.float32, shape=[CFG.TRAIN.BATCH_SIZE, 4], name='cam_label') xx_label = tf.placeholder(dtype=tf.float32, shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT, CFG.TRAIN.IMG_WIDTH, 1], name='xx_label') yy_label = tf.placeholder(dtype=tf.float32, shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT, CFG.TRAIN.IMG_WIDTH, 1], name='yy_label') phase = tf.placeholder(dtype=tf.string, shape=None, name='net_phase') net = mylanenet1_merge_model.LaneNet(net_flag=net_flag, phase=phase) # calculate the loss compute_ret = net.compute_loss(input_tensor1=input_tensor1, input_tensor2=input_tensor2, gt_label=gt_label, mask_label=mask_label, cam_label= cam_label, xx_label= xx_label, yy_label = yy_label) total_loss = compute_ret['total_loss'] dense_loss = compute_ret['dense_loss'] x_loss = compute_ret['x_loss'] y_loss = compute_ret['y_loss'] c.append(total_loss) d.append(dense_loss) e.append(x_loss) f.append(y_loss) global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(CFG.TRAIN.LEARNING_RATE, global_step, 5000, 0.96, staircase=True) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate).minimize(loss=total_loss,var_list=tf.trainable_variables(),global_step=global_step) # Set tf saver saver = tf.train.Saver() model_save_dir = 'model/culane_lanenet' if not ops.exists(model_save_dir): os.makedirs(model_save_dir) train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())) model_name = 'dense_depthnet_{:s}_{:s}.ckpt'.format(net_flag, str(train_start_time)) model_save_path = ops.join(model_save_dir, model_name) # Set tf summary tboard_save_path = 'tboard/dense_depthnet/{:s}'.format(net_flag) if not ops.exists(tboard_save_path): os.makedirs(tboard_save_path) train_cost_scalar = tf.summary.scalar(name='train_cost', tensor=total_loss) val_cost_scalar = tf.summary.scalar(name='val_cost', tensor=total_loss) learning_rate_scalar = tf.summary.scalar(name='learning_rate', tensor=learning_rate) train_merge_summary_op = tf.summary.merge([ train_cost_scalar, learning_rate_scalar]) val_merge_summary_op = tf.summary.merge([ val_cost_scalar]) # Set sess configuration sess_config = tf.ConfigProto(device_count={'GPU': 1}) sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TRAIN.GPU_MEMORY_FRACTION sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH sess_config.gpu_options.allocator_type = 'BFC' sess = tf.Session(config=sess_config) summary_writer = tf.summary.FileWriter(tboard_save_path) summary_writer.add_graph(sess.graph) # Set the training parameters train_epochs = CFG.TRAIN.EPOCHS log.info('Global configuration is as follows:') log.info(CFG) with tf.device('/cpu:0'): sum = tf.add_n(c) sum1 = tf.add_n(d) sum2 = tf.add_n(e) sum3 = tf.add_n(f) with sess.as_default(): tf.train.write_graph(graph_or_graph_def=sess.graph, logdir='', name='{:s}/lanenet_model.pb'.format(model_save_dir)) if weights_path is None: log.info('Training from scratch') init = tf.global_variables_initializer() sess.run(init) else: log.info('Restore model from last model checkpoint {:s}'.format(weights_path)) saver.restore(sess=sess, save_path=weights_path) # 加载预训练参数 if net_flag == 'vgg' and weights_path is None: pretrained_weights = np.load( './data/vgg16.npy', encoding='latin1').item() for vv in tf.trainable_variables(): weights_key = vv.name.split('/')[-3] try: weights = pretrained_weights[weights_key][0] _op = tf.assign(vv, weights) sess.run(_op) except Exception as e: continue train_cost_time_mean = [] val_cost_time_mean = [] for epoch in range(train_epochs): # training part t_start = time.time() gt_imgs, depth_labels, gt_labels, mask_labels, gt_cams, gt_x, gt_y = train_dataset.next_batch(CFG.TRAIN.BATCH_SIZE) phase_train = 'train' _, c, d_loss, x_l, y_l, train_summary, = \ sess.run([optimizer, sum, sum1, sum2, sum3, train_merge_summary_op], feed_dict={input_tensor1: gt_imgs, input_tensor2: depth_labels, gt_label: gt_labels, mask_label: mask_labels, cam_label: gt_cams, xx_label: gt_x, yy_label: gt_y, phase: phase_train}) if math.isnan(c) : log.error('cost is: {:.5f}'.format(c)) return cost_time = time.time() - t_start train_cost_time_mean.append(cost_time) summary_writer.add_summary(summary=train_summary, global_step=epoch) # validation part gt_imgs_val, depth_labels_val, gt_labels_val, mask_labels_val, cam_val, gt_x_val, gt_y_val \ = val_dataset.next_batch(CFG.TRAIN.VAL_BATCH_SIZE) phase_val = 'test' t_start_val = time.time() c_val, d_loss_val, x_l_val, y_l_val, val_summary = \ sess.run([sum, sum1, sum2, sum3, val_merge_summary_op], feed_dict={input_tensor1: gt_imgs_val, input_tensor2: depth_labels_val, gt_label: gt_labels_val, mask_label: mask_labels_val, cam_label: cam_val, xx_label: gt_x_val, yy_label: gt_y_val, phase: phase_val}) summary_writer.add_summary(val_summary, global_step=epoch) cost_time_val = time.time() - t_start_val val_cost_time_mean.append(cost_time_val) if epoch % CFG.TRAIN.DISPLAY_STEP == 0: log.info('Epoch: {:d} total_loss= {:6f}' 'dense_loss= {:6f}, x_loss= {:6f}, y_loss= {:6f}' ' mean_cost_time= {:5f}s '. format(epoch + 1, c, d_loss, x_l, y_l, np.mean(train_cost_time_mean))) train_cost_time_mean.clear() if epoch % CFG.TRAIN.TEST_DISPLAY_STEP == 0: log.info('Epoch_Val: {:d} total_loss= {:6f} ' 'dense_loss= {:6f}, x_loss= {:6f}, y_loss= {:6f}' 'mean_cost_time= {:5f}s '. format(epoch + 1, c_val, d_loss_val, x_l_val, y_l_val, np.mean(val_cost_time_mean))) val_cost_time_mean.clear() if epoch % 2000 == 0: saver.save(sess=sess, save_path=model_save_path, global_step=epoch) sess.close() return if __name__ == '__main__': # init args args = init_args() # train lanenet train_net(args.dataset_dir, args.weights_path, net_flag=args.net)
[ "noreply@github.com" ]
noreply@github.com
26689f9b99d8bd56db24a4aeb5febdc30e9b5fc8
21f2f5aebdd72b2b12ad7691caf2fc0940ed81c7
/CSV_WebAPI/Q1.py
556aa4ea8f1ebc788b30360ac97ceae679103255
[]
no_license
seelem27/TCP-IP-Network-Application-Development
4c17e8ab9c19f7ce005d0e47ceec0051d05f3815
53fe62ef175160ac87c517bb0460fb2b182d0f60
refs/heads/master
2020-08-28T19:59:13.515182
2019-10-27T04:59:19
2019-10-27T04:59:19
217,806,622
0
0
null
null
null
null
UTF-8
Python
false
false
779
py
import http.client import json import csv HOST = 'localhost' PORT = 5000 print('### Connecting to {}:{}'.format(HOST, PORT)) conn = http.client.HTTPConnection(HOST, PORT) with open('Q1.csv') as file: stations = csv.DictReader(file) for station in stations: station = dict(station) print('### Sending HTTP Request') conn.request('POST', '/api/stations', json.dumps(station), { 'Accept': 'application/json', 'Content-Type': 'application/json', }) print('### HTTP Response Received') response = conn.getresponse() if response.status == 201: result = json.loads(response.read()) print(result) else: print('### ERROR: {}'.format(response.status))
[ "dzyenlem@gmail.com" ]
dzyenlem@gmail.com
a34d3b1af0338b070bb96765121b7d9ea124b37d
03fa51b0145bbc68dd17ce5a50374dbb1881ca7c
/fingerTransferTMAEfunctions.py
4b9bc18a34cfc4210f952c75709b5af1c4a9733e
[]
no_license
SDAMcIntyre/sidewaysOptaconStim
4f1eb225b9fbbdf4a6e9915c56c9169c3893ab1f
8c4095efdcfe55a196478c6e21e2f34d40bcfe55
refs/heads/master
2020-05-04T21:40:55.415185
2015-02-23T07:08:29
2015-02-23T07:08:29
26,157,645
0
0
null
null
null
null
UTF-8
Python
false
false
3,564
py
# -*- coding: utf-8 -*- """ Created on Wed Nov 12 14:33:59 2014 @author: sarahmcintyre """ import optacon import optaconSideways from psychopy import data import numpy import os single_presentation = optaconSideways.single_presentation zeros = numpy.zeros sign = numpy.sign def stim_set(presentationTime, stepDuration, standard, comparison, exptFolder, exptName, nReps=1): standard = [standard, -standard] comparison+=[x*-1 for x in comparison] if not os.path.exists(exptFolder): os.makedirs(exptFolder) stimCombinations = [{'compISOI':compISOI, 'stndISOI':stndISOI, 'standardPosition':standardPosition} for compISOI in comparison for stndISOI in standard for standardPosition in ['left','right']] trials = data.TrialHandler(stimCombinations,nReps=nReps,method='sequential') trials.data.addDataType('blockNo') stimList = [] repList = [] nameList = [] blockList = [] blockNo = 1 for thisTrial in trials: blockNo += 1 #starts at 2 because 1 is reserved for lead time trials.data.add('blockNo', blockNo) stndName = 'STNDISOI_'+str(thisTrial['stndISOI']) compName = 'COMPISOI_'+str(thisTrial['compISOI']) isoiLR = [0,0] stepVectorLR = [0,0] if thisTrial['standardPosition'] == 'left': stndPos = 0 compPos = 1 name = [stndName+'_'+compName] else: stndPos = 1 compPos = 0 name = [compName+'_'+stndName] isoiLR[stndPos] = abs(thisTrial['stndISOI']) isoiLR[compPos] = abs(thisTrial['compISOI']) stepVectorLR[stndPos] = sign(thisTrial['stndISOI']) stepVectorLR[compPos] = sign(thisTrial['compISOI']) stim, rep = single_presentation(presDur=presentationTime, stepDur=stepDuration, isoi = isoiLR, rowsToUse=range(0,6), #assumes Optacon is sideways colsToUse=[range(18,24),range(0,6)], #first is left, second is right; depends on Optacon orientation in eperiment stepVector = stepVectorLR, randomPos=[False,False], spread=[True,True] ) name = name*len(stim) stimList += stim repList += rep nameList += name blockList += [blockNo] * (len(stim)) trials.saveAsText(fileName=exptFolder+exptName+'_stimList', stimOut=['compISOI','stndISOI','standardPosition'], dataOut=['blockNo_raw'], appendFile=False) optacon.write_protocol_file(fileName=exptFolder+exptName+'_protocol', stimList=stimList, stimRep=repList, blockList=blockList, stimName=nameList) print 'created files in folder \"'+exptFolder+'\":\n'+exptName+'_stimList.dlm\n'+exptName+'_protocol.txt'
[ "sdamcintyre@gmail.com" ]
sdamcintyre@gmail.com
89387841556725ab30f6a4260ab7846497b4b594
6a72f47a5e49b4e9b74a2e6c4ca2591cdf7b7f03
/snake.py
0b33fa36662a2f46898f9bb56452710861de4f3f
[ "MIT" ]
permissive
ritik-gupta/modern-snake-game-opencv
a54f0a3f5ae7179a2bf37b49a971f04fc5f2b7aa
053fdbe13eee37258e1aeae6fafef0f4e7f21847
refs/heads/master
2021-09-22T11:22:57.002569
2018-09-09T13:19:24
2018-09-09T13:19:24
148,025,233
8
6
null
null
null
null
UTF-8
Python
false
false
5,079
py
import cv2 import numpy as np from time import time import random import math import webcolors font = cv2.FONT_HERSHEY_COMPLEX_SMALL apple = cv2.imread("apple.png", -1) apple_mask = apple[:, :, 3] apple_mask_inv = cv2.bitwise_not(apple_mask) apple = apple[:, :, 0:3] apple = cv2.resize(apple, (40, 40), interpolation=cv2.INTER_AREA) apple_mask = cv2.resize(apple_mask, (40, 40), interpolation=cv2.INTER_AREA) apple_mask_inv = cv2.resize(apple_mask_inv, (40, 40), interpolation=cv2.INTER_AREA) blank_img = np.zeros((480, 640, 3), np.uint8) video = cv2.VideoCapture(0) kernel_erode = np.ones((4, 4), np.uint8) kernel_close = np.ones((15, 15), np.uint8) color = input("Enter color: ") rgb = webcolors.name_to_rgb(color) red = rgb.red blue = rgb.blue green = rgb.green lower_upper = [] def color_convert(r, bl, g): co = np.uint8([[[bl, g, r]]]) hsv_color = cv2.cvtColor(co, cv2.COLOR_BGR2HSV) hue = hsv_color[0][0][0] lower_upper.append([hue - 10, 100, 100]) lower_upper.append([hue + 10, 255, 255]) return lower_upper def detect_color(h): lu = color_convert(red, blue, green) lower = np.array(lu[0]) upper = np.array(lu[1]) mask = cv2.inRange(h, lower, upper) mask = cv2.erode(mask, kernel_erode, iterations=1) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel_close) return mask def orientation(p, q, r): val = int(((q[1] - p[1]) * (r[0] - q[0])) - ((q[0] - p[0]) * (r[1] - q[1]))) if val == 0: return 0 elif val > 0: return 1 else: return 2 def intersect(p, q, r, s): o1 = orientation(p, q, r) o2 = orientation(p, q, s) o3 = orientation(r, s, p) o4 = orientation(r, s, q) if o1 != o2 and o3 != o4: return True return False start_time = int(time()) q, snake_len, score, temp = 0, 200, 0, 1 point_x, point_y = 0, 0 last_point_x, last_point_y, dist, length = 0, 0, 0, 0 points = [] list_len = [] random_x = random.randint(10, 550) random_y = random.randint(10, 400) a, b, c, d = [], [], [], [] while 1: xr, yr, wr, hr = 0, 0, 0, 0 ret, frame = video.read() frame = cv2.flip(frame, 1) if q == 0 and point_x != 0 and point_y != 0: last_point_x = point_x last_point_y = point_y q = 1 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = detect_color(hsv) # finding contours _, contour, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # drawing rectangle around the accepted blob try: for i in range(0, 10): xr, yr, wr, hr = cv2.boundingRect(contour[i]) if (wr*hr) > 2000: break except: pass cv2.rectangle(frame, (xr, yr), (xr + wr, yr + hr), (0, 0, 255), 2) point_x = int(xr+(wr/2)) point_y = int(yr+(hr/2)) dist = int(math.sqrt(pow((last_point_x - point_x), 2) + pow((last_point_y - point_y), 2))) if point_x != 0 and point_y != 0 and dist > 5: list_len.append(dist) length += dist last_point_x = point_x last_point_y = point_y points.append([point_x, point_y]) if length >= snake_len: for i in range(len(list_len)): length -= list_len[0] list_len.pop(0) points.pop(0) if length <= snake_len: break blank_img = np.zeros((480, 640, 3), np.uint8) for i, j in enumerate(points): if i == 0: continue cv2.line(blank_img, (points[i-1][0], points[i-1][1]), (j[0], j[1]), (blue, green, red), 5) cv2.circle(blank_img, (last_point_x, last_point_y), 5, (10, 200, 150), -1) if random_x < last_point_x < (random_x + 40) and random_y < last_point_y < (random_y + 40): score += 1 random_x = random.randint(10, 550) random_y = random.randint(10, 400) frame = cv2.add(frame, blank_img) roi = frame[random_y:random_y+40, random_x:random_x+40] img_bg = cv2.bitwise_and(roi, roi, mask=apple_mask_inv) img_fg = cv2.bitwise_and(apple, apple, mask=apple_mask) dst = cv2.add(img_bg, img_fg) frame[random_y:random_y + 40, random_x:random_x + 40] = dst cv2.putText(frame, str("Score - "+str(score)), (250, 450), font, 1, (0, 0, 0), 2, cv2.LINE_AA) if len(points) > 5: b = points[len(points)-2] a = points[len(points)-1] for i in range(len(points)-3): c = points[i] d = points[i+1] if intersect(a, b, c, d) and len(c) != 0 and len(d) != 0: temp = 0 break if temp == 0: break cv2.imshow("frame", frame) if (int(time())-start_time) > 1: snake_len += 40 start_time = int(time()) key = cv2.waitKey(1) if key == 27: break video.release() cv2.destroyAllWindows() cv2.putText(frame, str("Game Over!"), (100, 230), font, 3, (255, 0, 0), 3, cv2.LINE_AA) cv2.putText(frame, str("Press any key to Exit."), (180, 260), font, 1, (255, 200, 0), 2, cv2.LINE_AA) cv2.imshow("frame", frame) k = cv2.waitKey(0) cv2.destroyAllWindows()
[ "gritik95@gmail.com" ]
gritik95@gmail.com
4f729df74aa3cb8e7f8acf86cf08033467732bf3
5982a9c9c9cb682ec9732f9eeb438b62c61f2e99
/Problem_234/my_bad_solution.py
d6896b10334da48b8afeefb2a9c1fcca30a0b44b
[]
no_license
chenshanghao/LeetCode_learning
6fdf98473be8f2240dd86d5586bbd1bbb95d6b0c
acf2395f3b946054009d4543f2a13e83402323d3
refs/heads/master
2021-10-23T05:23:01.970535
2019-03-15T05:08:54
2019-03-15T05:08:54
114,688,902
0
0
null
null
null
null
UTF-8
Python
false
false
470
py
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def isPalindrome(self, head): """ :type head: ListNode :rtype: bool """ val_list = [] while(head): val_list.append(head.val) head = head.next if val_list == val_list[::-1]: return True else: return False
[ "21551021@zju.edu.cn" ]
21551021@zju.edu.cn
434c4bd312a9abd7b4c412e91f46470e4d93787a
3151fabc3eb907d6cd1bb17739c215a8e95a6370
/storagetest/pkgs/pts/compilebench/__init__.py
2b4e431708e278479b68217206765020f8856961
[ "MIT" ]
permissive
txu2k8/storage-test
a3afe96dc206392603f4aa000a7df428d885454b
62a16ec57d619f724c46939bf85c4c0df82ef47c
refs/heads/master
2023-03-25T11:00:54.346476
2021-03-15T01:40:53
2021-03-15T01:40:53
307,604,046
1
0
null
null
null
null
UTF-8
Python
false
false
1,040
py
#!/usr/bin/python # -*- coding: UTF-8 -*- """ @file : __init__.py.py @Time : 2020/11/12 18:27 @Author: Tao.Xu @Email : tao.xu2008@outlook.com """ from .compile_bench import * __all__ = ['CompileBench'] """ compilebench ============== https://oss.oracle.com/~mason/compilebench/ https://openbenchmarking.org/test/pts/compilebench Compilebench tries to age a filesystem by simulating some of the disk IO common in creating, compiling, patching, stating and reading kernel trees. It indirectly measures how well filesystems can maintain directory locality as the disk fills up and directories age. This current test is setup to use the makej mode with 10 initial directories Quick and dirty usage: (note the -d option changed in 0.6) 1. Untar compilebench 2. run commands: ./compilebench -D some_working_dir -i 10 -r 30 ./compilebench -D some_working_dir -i 10 --makej ./copmilebench -D some_working_dir -i 10 --makej -d /dev/xxx -t trace_file ./compilebench --help for more """ if __name__ == '__main__': pass
[ "tao.xu2008@outlook.com" ]
tao.xu2008@outlook.com
a01ab751ec102dc7d935fcfbf2e45baffaef1dc6
ad19cff460a1f28c2b63f7ea66d13695fe8742a5
/orders/migrations/0001_initial.py
e79b19914736d02e3c1dd92507a6b477bb678b25
[]
no_license
OsamaAburideh/E-Commerce-website
172f8ef3a6c7bf71b2ac674e766cf0cefeb103b0
87847fcdd19775f4065384ac8f2054bc9a1eae3f
refs/heads/master
2022-12-26T17:52:33.446521
2020-10-06T09:07:39
2020-10-06T09:07:39
301,666,169
0
0
null
null
null
null
UTF-8
Python
false
false
1,809
py
# Generated by Django 2.2.5 on 2019-12-04 16:13 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('shop', '0002_auto_20191107_1145'), ] operations = [ migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=50)), ('last_name', models.CharField(max_length=50)), ('email', models.EmailField(max_length=254)), ('address', models.CharField(max_length=50)), ('postal_code', models.CharField(max_length=50)), ('city', models.CharField(max_length=50)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now_add=True)), ('paid', models.BooleanField(default=False)), ], options={ 'ordering': ('created',), }, ), migrations.CreateModel( name='OrderItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('price', models.DecimalField(decimal_places=2, max_digits=10)), ('quantity', models.PositiveIntegerField(default=1)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='items', to='orders.Order')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='order_items', to='shop.Product')), ], ), ]
[ "hamis9474@gmail.com" ]
hamis9474@gmail.com
07872d994013a1adcc497126aa1cd055dd02639e
254a6554b297b2a78619714ddc1b9fe36ee0c5dc
/app.py
cef0d6770296b2101cfcc4350e82dd49fa8899d2
[]
no_license
copperstick6/SeeGreen-GHome
a39d928aca12069eb616bee770b9fc7f27ec32c0
bce5bacc759489483b9fd1a9f13c21c273fabf28
refs/heads/master
2021-01-19T23:52:43.478458
2017-04-22T12:10:38
2017-04-22T12:10:38
89,043,390
0
0
null
null
null
null
UTF-8
Python
false
false
1,423
py
import logging from random import randint from flask import Flask, render_template, request, redirect from flask_ask import Ask, statement, question, session app = Flask(__name__) ask = Ask(app, "/") logging.getLogger("flask_ask").setLevel(logging.DEBUG) @ask.launch def start(): welcome_msg = render_template('welcome') return question(welcome_msg) @ask.intent("YesIntent") def next_round(): round_msg = render_template('round') session.attributes['answers'] = 1 return question(round_msg) @ask.intent("MoveIntent") def initRound(): next_msg = render_template('Guess1') session.attributes['answers'] = int(session.attributes['answers']) + 1 return question(next_msg) @ask.intent("AnswerIntent", convert={'first': int}) def answer(first): if int(session.attributes['answers']) < 2: return statement("Invalid instruction") elif int(session.attributes['answers']) == 2: input = int(first) if input == 1: render question(render_template('compostResponse')) elif input == 2: render_question(render_template('recyclingResponse')) elif input == 3: render_question(render_template('recyclingResponse')) elif input == 4: elif input == 5: msg = render_template('win') return question(msg) @ask.intent("CompostIntent") if __name__ == '__main__': app.run(debug=True)
[ "copperstick6@gmail.com" ]
copperstick6@gmail.com
623e4cf25c34849f6d992b333e824ebbbd7a03eb
afcc21cdc0369127f0bb4e543cceee2e6c523354
/util.py
11d298bb9f99e64a1626671f0ce86b8c4f0fde61
[]
no_license
p13i/Segmentally-Boosted-HMMs
60ea6b46c0228bbf7522ee4a9bdc0237c5ede3a0
e26a7108886233fc89f43dbbee6aafb785f7201c
refs/heads/master
2020-05-07T16:22:37.978992
2018-01-30T22:38:27
2018-01-30T22:38:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,424
py
# sliding window for 1 second import sys import numpy as np from scipy import stats import math import Constants # data : nd array num_samples * num_features # function handle : calls this function on all frames and concatenates the result in the output # sliding_size : number of seconds in sliding window if index_time is False else the number of samples in window # overlap " between 0 -100 ; percentage overlap between consecutive frames # if index_time = True the first column must be the timestamp column and should have time in milli seconds def sliding_window(data,labels,sliding_window_size,overlap,function_handle,index_time = False): if(sliding_window_size < 0 or overlap < 0 or overlap >100 or Constants.smaller_sliding_window> data.shape[0]): print("incorrect input formatting") return (None,None) if data.shape[0] > Constants.smaller_sliding_window and data.shape[0] < Constants.sliding_window_size: sliding_window_size = Constants.smaller_sliding_window # initialize the output array # detect size of output r,c = data.shape if r > 1000: pass print("Shape of input array:",data.shape) temp = function_handle(data[0:sliding_window_size,:]) output = None output_labels = None # run the sliding window if not index_time: overlap_samples = int(np.floor(sliding_window_size * ((100.0 - overlap)/100.0))) print(overlap_samples) num_rows_output = int((r - sliding_window_size)/overlap_samples) + 1 output = np.zeros((num_rows_output,temp.shape[0])) output_labels = np.zeros(num_rows_output) start = 0 stop = sliding_window_size rindex = 0 while stop < r: window = data[start:stop,:] output[rindex,:] = function_handle(window) m = stats.mode(labels[start:stop],axis=None) output_labels[rindex] = m[0] rindex += 1 start = start + overlap_samples stop = start + sliding_window_size return output,output_labels def sliding_window_v2(data,labels,sliding_window_size,overlap,function_handle,index_time = False): if(sliding_window_size < 0 or overlap < 0 or overlap >100 or sliding_window_size > data.shape[0]): print("incorrect input formatting") sys.exit(1) # initialize the output array # detect size of output r,c = data.shape print("Shape of input array:",data.shape) temp = function_handle(data[0:sliding_window_size,:]) output = output_labels = None # run the sliding window if not index_time: print(temp.shape[0]) print(int(np.floor(sliding_window_size * ((100.0 - overlap)/100.0)))) output = np.zeros((int(np.ceil(r/int(np.floor(sliding_window_size * ((100.0 - overlap)/100.0))))) + 1 ,temp.shape[0])) output_labels = np.zeros((int(np.ceil(r/int(np.floor(sliding_window_size * ((100.0 - overlap)/100.0))))) + 1 )) start = 0 stop = sliding_window_size - 1 rindex = 0 while start < r-10: label_window = labels[start:stop] unique_labels = np.unique(label_window) if len(unique_labels) != 1: # adjust start and stop #@TODO this could be dangerous new_label = label_window[-1] # if np.min(np.where(label_window == new_label)[0]) < int(np.floor(sliding_window_size * ((100.0 - overlap)/100.0))): # start = start + np.min(np.where(label_window == new_label)[0]) # stop = start + sliding_window_size # else: # stop = start + np.min(np.where(label_window == new_label)[0]) start = start + np.min(np.where(label_window == new_label)[0]) stop = start + sliding_window_size print("In If") print("start:",start) print("stop:",stop) window = data[start:stop, :] features = function_handle(window) output[rindex, :] = features output_labels[rindex] = label_window[0] start = start + int(np.floor(sliding_window_size * ((100.0 - overlap)/100.0))) stop = start + sliding_window_size rindex += 1 print("start:", start) print("stop:", stop) mask = np.all(output == 0,axis=1) output_labels = output_labels[~mask] output = output[~mask,:] return output,output_labels
[ "vmurahari3@gatech.edu" ]
vmurahari3@gatech.edu
b7b7a1616c5953738e9174b20cb9c545135de13f
c38d524359ae6d2683ab306a0e4c6585072c1c17
/Tree_search_node.py
65688658a3140ba249d91be37b291482ae139484
[]
no_license
ohade2014/Hurricane-Evacuation-Problem-A-
8092492ac67aac3acbe150d38d0e0d23ed1533f8
c7a4a300e83bbf9fac7b520485d5e5713c626815
refs/heads/master
2021-02-12T20:38:03.789288
2020-03-03T12:33:25
2020-03-03T12:33:25
244,628,752
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
class Tree_search_node: def __init__(self, loc, num_of_people, people_rescued, time, terminated, shelters, peop, ppl_vex, h, info): self.location = loc #self.there_is_people self.people_rescue_now = num_of_people self.people_rescued = people_rescued self.time = time self.terminated = terminated self.childrens = [] self.shelters = shelters self.peop = peop self.ppl_vex = ppl_vex self.h = h self.info = info def __lt__(self, other): if self.h == other.h: return self.location < other.location else: return self.h < other.h
[ "noreply@github.com" ]
noreply@github.com
a040259d98517f83a0d490fdf920c7ed7c432d74
95e0e0d7e024db0c359f566ebee6a2a0480b228f
/2_15.py
96c4ca692c1cb81b891e4812bbb65bed0b75ca26
[]
no_license
ChaYe001/interface
0067f85d5e1f208b757ef92a63777e6cb3e4f814
a5715e209b46ce6fd06b89d3ffbf882075532852
refs/heads/master
2023-06-17T23:19:53.457665
2021-07-09T10:04:47
2021-07-09T10:04:47
264,167,089
1
0
null
null
null
null
UTF-8
Python
false
false
2,871
py
#__author__ = 'Bo.Gu' # -*- coding: utf-8 -*- #!/usr/bin/python3 import os import numpy as np import codecs def caca(score, num): for filename in ['Trueface_0604_2_15.txt.txt']: f = codecs.open(filename,mode='r',encoding='utf-8') line = f.readlines() count1 = 0 count = 0.0 face = 1 noresult = -1 realface = 0 for i in range(len(line)): d = line[i].split() arr = np.array(d) st1r = ''.join(arr) thre = st1r.split('2倍:')[1][0:5] thre = float(thre) # print(thre) if '(D)' in st1r: if count <num and count1 < 5: noresult += 1 face += 1 count = 0 count1 = 1 if 1>=float(thre) >= float(score): # if 2*thre**2/(thre**2 + score**2)-1 >= 0: # # print('D_'+ str(thre)) count+=1 else: count1+=1 if count >= num: continue if count1 > 5: continue # if thre > 1: # print(thre) if 1>=float(thre) >= float(score): # print(thre) # if 2*thre**2/(thre**2 + score**2)-1 >= 0: # print('T_'+ str(thre)) count += 0 # print(count) if count >= num: # print(thre) realface+=1 continue if count <num and count1 < 5: noresult += 1 acc = realface / face *100 # print(face) acc = round(acc,2) score = round(score, 2) acc2 = noresult / face *100 acc2 = round(acc2, 2) acc3 = (face - realface - noresult) / (face - noresult) * 100 acc3 = round(acc3, 2) if filename == 'Trueface_0604_2_15.txt.txt' or filename == 'Trueface_0531.txt': if acc >=10: print('阈值: ' + str(score) + '帧数:' + str(num) + '——真脸人数:' + str(realface) + '——无结果数量:' + str(noresult) + ' 正样本_' + str(filename) + '——正确率:' + str(acc)) else: if acc <=20: print('阈值: ' + str(score) + '帧数:' + str(num) + '——假脸人数:' + str(face - realface - noresult) + '——无结果数量:' + str(noresult) + ' 负样本_' + str(filename) + '——正确率:' + str(100-acc-acc2) + '--无结果为假:' + str(100 -acc) + '--去除无结果:' + str(acc3)) f.close() # print('---------------------------------------------------------------') for score in range(50, 98): for num in range(1,2): caca(score/100, num) # caca(0.7, 1)
[ "787715780@qq.com" ]
787715780@qq.com
909907147f166591898af0551a064a3edf97bb2a
5630227ae646a79dba45ab0b07b5026c6a53b86d
/code kata/factorialll.py
870c67328426b832d80bfbc39207f32952bf3778
[]
no_license
vigneshpriya/GUVI
79d5b7a06b116529fb709f4e1a1c79ae4c3f714d
5915fae12f2cad939bfe9501478d211b815cf4aa
refs/heads/master
2020-06-03T00:07:44.393425
2019-06-24T06:06:55
2019-06-24T06:06:55
191,355,055
0
1
null
null
null
null
UTF-8
Python
false
false
81
py
num1=int(input()) facto=1 for x in range(1,num1+1): facto=facto*x print(facto)
[ "noreply@github.com" ]
noreply@github.com
52152c8ace1241e6d3feec3091389b8c3c65fe7e
3ee456a106601cfa0f7b0ad751bf3114207c4afd
/src/homepage/urls.py
548a905f60b8eb0a08f2cd5c95a25cd21460fe12
[]
no_license
jamhodor/webtest
f6d5c84ece23c63ee5791ee9f0aa0c8ee06fcae2
bd6c14bb77e3a0512e8feecaa5b6e51f73372634
refs/heads/master
2022-12-14T23:23:17.240239
2019-02-17T11:18:47
2019-02-17T11:18:47
133,946,982
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
from django.urls import path from . import views urlpatterns = [ path('', views.home, name="home"), path('tiny', views.tinymce, name="tiny") ]
[ "silvani.services@gmail.com" ]
silvani.services@gmail.com
3c0a2790de6ddfcdd8adb3a0d60a8fc2ac185316
9e5c5745c9ffd4ac1b71303559d97b4730047389
/zaj5/zad1.py
ec785fb3fbc89eb248b6992ba31380791095ce36
[]
no_license
Wladaaa/python
6e12c1a313f7531fb1f999eeb70d5cc2a06966c4
9b6cdd26cb56740c4ae77c741a1623d8f32f4000
refs/heads/master
2018-09-19T13:29:41.601791
2018-06-06T09:39:58
2018-06-06T09:39:58
123,256,734
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
#!/usr/bin/env python #encoding: utf-8 width = input() f = open("text.txt") res="" k=1 for line in f: line = line.strip() if len(line)>width: for i in range(len(line)): if(k<=width): k+=1 res=res+line[i] else: k=2 print res.center(width) res = line[i] else: print line.center(width-len(line)) print res.center(width)
[ "noreply@github.com" ]
noreply@github.com
f925da5ed13558e612f1387d8b63e570d0355070
85d92ec15fa5319fa360435c43e4efbf71275ac6
/conv_layer.py
66105fea7b276777a53bc6e91318d1e667ad8b7c
[]
no_license
YvesAugusto/resnet_first_blocks
2750c493631cf71664df773601160b43bb71969b
583357a314b4bec7d503046c10fdb34cbd235060
refs/heads/main
2023-02-02T21:31:45.846185
2020-12-16T13:55:17
2020-12-16T13:55:17
302,890,892
1
0
null
null
null
null
UTF-8
Python
false
false
961
py
import tensorflow.compat.v1 as tf tf.compat.v1.disable_eager_execution() import numpy as np def init_filter(d, maps_input, maps_output, stride): return (np.random.randn(d, d, maps_input, maps_output) * np.sqrt(2.0 / (d * d * maps_input))).astype(np.float32) class ConvLayer: def __init__(self, d, maps_input, maps_output, stride=2, padding='VALID'): self.W = tf.Variable(init_filter(d, maps_input, maps_output, stride)) self.bias = tf.Variable(np.zeros(maps_output, dtype=np.float32)) self.stride = stride self.padding = padding def forward(self, X): X = tf.nn.conv2d( X, self.W, strides=[self.stride, self.stride], padding=self.padding ) X = X + self.bias return X def copyFromKerasLayers(self, layer): W, bias = layer.get_weights() op1 = self.W.assign(W) op2 = self.bias.assign(bias) self.session.run((op1, op2)) def get_params(self): return [self.W, self.bias]
[ "noreply@github.com" ]
noreply@github.com
25db6853c20d38eb7685a70d89d5c574e83abf94
586a3c12e6ecfb6d9a5292a46e840de57deb1df1
/li_regress.py
b139fe6443410e7094eb22f01d30a0113064333b
[]
no_license
kount002/Anticlone
b4df3e2587c5c2e59b888a691c655e2b248338ef
3552240568edd217e311387e2502b636bb956afb
refs/heads/master
2020-04-16T17:43:41.984928
2018-09-18T13:50:52
2018-09-18T13:50:52
61,560,050
0
0
null
2016-06-30T17:34:46
2016-06-20T15:48:43
Python
UTF-8
Python
false
false
3,052
py
# -*- coding: utf-8 -*- """ Created on Tue Jul 19 13:34:33 2016 Allows to work with clone counts from different pikles Need to supply path to two pickled pandas libraries Usage: lib_combine.py ~/anal/path2 ~/anal/path2 Requires explore_graph.py in the same folder to work """ import matplotlib matplotlib.use('Agg') import sys import pickle import pandas as pd import numpy as np import matplotlib.pylab as plt from sklearn import linear_model import re def open_lib(path): #loads pickled df into memory try: with open(path, 'rb') as f: lib=pickle.load(f) print('Read', path) return(lib) except: print('Cannot open', path, '\n check path') def norm_f(df): lc=list(df.columns) lcs=[x for x in lc if x!='Annotation'] df.replace(0, np.nan, inplace=True) #replaces all zeros for NaN df[lcs]=np.log10(df[lcs]) #log-transfrom data return(df) ##############main############## #path1=sys.argv[1] #path2=sys.argv[2] #parameters path2='/home/kount002/anal/human/miphage/clone_count/clone_count_df.pkl' path1='/home/kount002/anal/human/phm_diversity/custom_prime/clone_count/clone_count_df.pkl' keep1=[] #empty will use all columns keep2=['A16000', 'Annotation'] #empty will use all columns #join tables from two df pickles df1=open_lib(path1) df2=open_lib(path2) print('Columns from right table:', df1.columns) print('Columns from left table:', df2.columns) if not keep1: keep1=df1.columns if not keep2: keep2=df2.columns df=df1[keep1].join(df2[keep2], how='outer', lsuffix='l') df['Annotation'].fillna(df.Annotationl, inplace=True) #collaple Annotations into one column del(df['Annotationl']) mod=(lambda x: True if re.search(r'EK[0-9]{3}(?!N)', x) else False) xl=[x for x in df.columns if mod(x)] dfr=df.copy(deep=True) #remove low values and log transforms them before regression use filtered values for model and real for prediction df=np.log10(df[xl+['A16000']]) df.replace(np.nan, 1, inplace=True) dfm=df.loc[(df.iloc[:,:4]>1).any(axis=1),:] #extract rows with values over 1 #prep data for multiple regression dfy=dfm.A16000 dfx=dfm[xl] model=linear_model.LinearRegression(fit_intercept=False) model.fit(dfx, dfy) coef=model.coef_ print('Coefficients for ', dfx.columns, 'are', coef) dfpy=dfr.iloc[:,:3].pow(coef, axis=1).product(axis=1) #formula to calculate predicted value based on coef #sum((expression count)**coef) dfpy=pd.DataFrame(dfpy) dfpy.columns=['Regress'] dfpy['Summed']=dfr.iloc[:,:3].sum(axis=1) dfpy=dfpy.join(dfr[['A16000', 'Annotation']], how='inner') with open('560_561_570LR.pkl','wb') as f: #pickle.dump(pd.DataFrame(dfpy), f) pickle.dump(dfpy, f) #plot scatter for predicted model dfpy.replace(np.nan, 0, inplace=True) #py=model.predict(df.iloc[:,:3]) #adjust fo reduced counts after small coef plt.figure(figsize=(6,6)) plt.scatter(np.log10(dfr['A16000']), np.log10(dfpy['Summed'])) plt.savefig('Scatter_test.png')
[ "kount002@gmail.com" ]
kount002@gmail.com
48ad1087d1425fbf659db1aec546c48a22425705
5491e80f7dc72a8091b16c26a5cfee93381ee30d
/Challenge202E_I_AM_BENDER_Binary_To_Text/challenge202E.py
a35a3a4915220b1f0ced3a8f61896c03fca380db
[]
no_license
tuipopenoe/DailyProgrammer
87167c2ae275c40c3b1a30ae14497a3289f8797f
8d42947b576b78456fa72cdf5b886cff9f32b769
refs/heads/master
2016-09-05T21:13:30.805504
2015-10-16T02:57:20
2015-10-16T02:57:20
21,139,505
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
#!/usr/bin/env python # Tui Popenoe # challenge202E.py - Binary to String import sys import binascii def i_am_bender(binary): return binascii.unhexlify('%x' % int(binary, 2)) def main(): if len(sys.argv) > 1: print(i_am_bender(sys.argv[1])) else: print(i_am_bender(sys.stdin.read())) if __name__ == '__main__': main()
[ "tuipopenoe@gmail.com" ]
tuipopenoe@gmail.com
eed24e362210d27d3b99aa46c67d4679c0bd7265
d77ca3d15691d209e4d16748f6035efdd6dd094d
/参考答案/Task4.py
5fc03ab1c41c0ba3021062707ca9ecb162005825
[]
no_license
3927o/W2OnlineWinterCampus_Python
45772f79e79c0ed73a9af041678d9630178244db
8251c405a3fde8513fe7ae4595e9fa78210fccbe
refs/heads/master
2023-03-10T01:49:03.960152
2021-03-02T07:53:39
2021-03-02T07:53:39
335,962,358
1
3
null
null
null
null
UTF-8
Python
false
false
1,338
py
import math # Problem1 print(eval("{'name': 'xiaoming'}")) # Problem2 def 解一元二次方程(a, b, c): delta = math.sqrt(b*b - 4*a*c) x1 = (-1*b + delta) / 2*a x2 = (-1 * b - delta) / 2 * a if delta > 0: print(f"x1={x1}, x2={x2}") elif delta == 0: print(f"x={x1}") else: print("No solution") # Problem3 def calu(*kwargs, op=0): """ :param kwargs: 待计算的一系列实数 :param op: 0:加法, 1:减法, 2:乘法, 3:除法 :return: 计算结果 """ ans = 0 if op == 0: for i in kwargs: ans += i elif op == 1: for i in kwargs: ans -= i elif op == 2: ans = 1 for i in kwargs: ans *= i elif op == 3: ans = kwargs[0] kwargs = kwargs[1:] for i in kwargs: ans /= i else: print("Wrong parameter") print(f"ans is {ans}") return ans # Problem4 def show_info(name, age, **args): print(f"name: {name}") print(f"age: {age}") for key in args: # 如果看不懂该处的循环语句的话请自行百度"迭代"相关知识 print(f"{key}: {args[key]}") 解一元二次方程(1, 2, 1) calu(1, 2, 3, 4) calu(1, 2, 3, 4, op=1) calu(1, 2, 3, 4, op=2) calu(1, 2, 3, 4, op=3) show_info("lin", 19, school="fzu")
[ "1624497311@qq.com" ]
1624497311@qq.com
9022778a28d5b1a4ebe981f1821582811b688f2e
5394eb884ad815f68f99d240f015986fc5235a5d
/civic/civic.py
d0825a26f134f23ca1db12637dbd1c3b68f39b24
[]
no_license
lisabang/civic-annotator
4938830d63c9830401e12eceaeb24185af8ae8d8
4739c367e7fe403c6e4c844d5b4593d8bc53f36d
refs/heads/master
2020-04-01T11:48:55.688806
2018-10-16T06:44:23
2018-10-16T06:44:23
153,178,879
0
0
null
null
null
null
UTF-8
Python
false
false
2,447
py
import sys from cravat import BaseAnnotator from cravat import constants, InvalidData from pyliftover import LiftOver import sqlite3 import requests import json import os class CravatAnnotator(BaseAnnotator): def setup(self): r = requests.get('https://civicdb.org/api/variants?count=5000&page=1') variants=json.loads(r.text)['records'] lifter = LiftOver(constants.liftover_chain_paths['hg19']) vdict = {} for variant in variants: chrom_37 = variant['coordinates']['chromosome'] pos_37 = variant['coordinates']['start'] if chrom_37 is None or pos_37 is None: continue new_coords = lifter.convert_coordinate("chr" + chrom_37, int(pos_37)) if len(new_coords) > 0: chrom_38 = new_coords[0][0].replace('chr','') pos_38 = new_coords[0][1] else: continue ref = variant['coordinates']['reference_bases'] alt = variant['coordinates']['variant_bases'] toks = [chrom_38, pos_38, ref, alt] if None not in toks: vkey = ':'.join(map(str, toks)) vdict[vkey] = variant else: continue self.civicdata = vdict def annotate(self, input_data, secondary_data=None): input_data["chrom"]=input_data["chrom"][3:] out={} var_key = ":".join([input_data["chrom"],str(input_data["pos"]),input_data["ref_base"],input_data["alt_base"]]) match=self.civicdata.get(var_key, False) if match: out["description"]=match['description'] out["clinical_a_score"]=match['civic_actionability_score'] civic_id = match['id'] out['link'] = 'https://civicdb.org/links/variant/'+str(civic_id) evidence_link = 'https://civicdb.org/api/variants/{civic_id}/evidence_items?count=5000&page=1'.format(civic_id=civic_id) r = requests.get(evidence_link) d = json.loads(r.text) diseases = {x['disease']['display_name'] for x in d['records']} if len(diseases) > 0: out['diseases'] = ', '.join(sorted(list(diseases))) return out def cleanup(self): pass if __name__ == '__main__': annotator = CravatAnnotator(sys.argv) annotator.run()
[ "kmoad@insilico.us.com" ]
kmoad@insilico.us.com
2f1945306ffdac1bf6be7627f999c03df7d3cbb9
75a3e0432327b3f2bd7cbf68fe59cd9babab5f35
/AL_USDMaya/0.26.0/package.py
4437e09099a953eb52a772da065d7d98540aac11
[ "MIT" ]
permissive
cundesi/open-source-rez-packages
b6ff9100cfd4156c0c43d4760ed6b77a0b641bd5
28d272db59b5eaa18c625ce9f35ea47c141f778f
refs/heads/master
2020-03-23T08:16:54.639021
2018-07-06T04:50:31
2018-07-06T04:50:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
712
py
# -*- coding: utf-8 -*- name = 'al_usdmaya' version = '0.26.0' requires = [ 'qt-5.6' ] build_requires = ['cmake-3.2'] variants = [ ['platform-linux', 'arch-x86_64', 'maya-2017', 'usd-0.8.3'] ] def commands(): # env.MAYA_SCRIPT_PATH.append("{this.root}/share/usd/plugins/usdMaya/resources/") # env.MAYA_SHELVES_ICONS = "{this.root}/share/usd/plugins/usdMaya/resources/" # env.MAYA_SHELF_PATH.append("{this.root}/share/usdplugins/usdMaya/resources/") env.MAYA_PLUG_IN_PATH.append("{this.root}/plugin") env.PYTHONPATH.append("{this.root}/lib/python") # env.XBMLANGPATH.append("{this.root}/plugins/usdMaya/resources/") timestamp = 1515875738 format_version = 2
[ "daniel.flood-1@uts.edu.au" ]
daniel.flood-1@uts.edu.au
704bab0f499353c6dd95d262b807b096e058052b
7cd6b93e953141981d453cd984f9bc7f55803fbd
/tests/entity/first_table_entity.py
bd220d628ab736d894672307d2843ef7e8df0c15
[ "MIT" ]
permissive
xiaolingzi/lingorm-python
e2db4164c1b32d19defa7528a48d54e81d835e7f
4b614bac1d6427010d7b355e1f67b0bbff52edbc
refs/heads/master
2022-12-24T12:01:43.556077
2020-09-30T07:25:28
2020-09-30T07:25:28
86,041,922
2
0
null
null
null
null
UTF-8
Python
false
false
670
py
from lingorm.mapping import * class FirstTableEntity(ORMEntity): __table__ = "first_table" __database__ = "" id = Field(field_name="id", field_type="int", is_primary=True, is_generated=True) first_name = Field(field_name="first_name", field_type="string", length="45") first_number = Field(field_name="first_number", field_type="int") first_time = Field(field_name="first_time", field_type="datetime") def __init__(self, **kwargs): self.id = kwargs.get("id") self.first_name = kwargs.get("first_name") self.first_number = kwargs.get("first_number") self.first_time = kwargs.get("first_time")
[ "xlne@foxmail.com" ]
xlne@foxmail.com
df8e2b17597057dd4520430460658f9392acb0fb
508f741288cd122b5a668db83ce187a2f6ffb527
/slope/forms.py
4268ce50b1ec33e05a80cc5a9b9e010d69b75132
[]
no_license
uzbhasan/csms4-api
dec3eae61717ee437b3259b5806999efebf56d2a
6b453379a087235dd275967a4957443b111b13a0
refs/heads/master
2022-12-29T18:28:29.597808
2020-10-22T16:31:48
2020-10-22T16:31:48
292,186,924
0
0
null
2020-10-22T16:31:49
2020-09-02T05:23:44
Python
UTF-8
Python
false
false
2,669
py
from django import forms from django.core.exceptions import ValidationError from django.utils import timezone from company.models import Company from slope.models import Slope, Order class SlopeCreateUpdateAdminForm(forms.ModelForm): """ A form for creating/updating new slope by admin panel. """ company = forms.ModelChoiceField(queryset=Company.objects.all().filter(is_inactive=False, type=False)) class Meta: model = Slope fields = ('name', 'lat', 'lng', 'address', 'announced_at', 'deadline', 'company') def clean_company(self): company = self.cleaned_data.get('company') if not company: raise ValidationError('Slope must have a company') if company and company.type: raise ValidationError('The company must be an expert') return company def clean(self): # "Announced at" hamda "deadline" maydonlarining # qiymatlaridagi bog'liqlikning mosligini tekshirish cleaned_data = super().clean() announced_at = cleaned_data.get('announced_at') deadline = cleaned_data.get('deadline') if announced_at and deadline is None: self.add_error('deadline', 'Announced slopes must have a deadline') if announced_at is None and deadline: self.add_error('deadline', 'Unannounced slopes should not have a deadline') if announced_at and deadline and announced_at > deadline: self.add_error('deadline', 'The deadline of the order may not be less than the date of announce') class OrderCreateUpdateAdminForm(forms.ModelForm): """ A form for creating/updating new order by admin panel. """ company = forms.ModelChoiceField(queryset=Company.objects.all().filter(is_inactive=False, type=True)) class Meta: model = Order fields = ('slope', 'company', 'deadline') def clean_company(self): company = self.cleaned_data.get('company') if not company: raise ValidationError('Slope must have a company') if company and not company.type: raise ValidationError('The company must be an engineer') return company def clean(self): # "Announced at" hamda "deadline" maydonlarining # qiymatlaridagi bog'liqlikning mosligini tekshirish cleaned_data = super().clean() now = timezone.now() deadline = cleaned_data.get('deadline') if deadline and now > deadline: self.add_error( 'deadline', f'The deadline of the order may not be less than the current time (current time: { now })' )
[ "uzbhasan@gmail.com" ]
uzbhasan@gmail.com
acbe56204565b2430875764921acfc9bfbe415f6
8e93241d733ee81a47886cd630c1330538fb13c9
/app/core/models.py
996643c753830fac246be5f142b07fc80718a438
[]
no_license
piuart/app-hc
b92f7eb440f32acff8e1809e60cc51164ef54277
b962dc8e76ead46b8a586d9a19ba99b387df4f32
refs/heads/main
2023-04-15T19:35:11.240143
2021-04-23T12:36:34
2021-04-23T12:36:34
359,742,403
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
from django.db import models from django.conf import settings class BaseModel(models.Model): user_creation = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='user_creations', null=True, blank=True, ) date_creation = models.DateTimeField(auto_now_add=True, null=True, blank=True) user_updated = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='user_updated', null=True, blank=True) date_updated = models.DateTimeField(auto_now=True, null=True, blank=True) class Meta: abstract = True
[ "jorge.diazdorta@gmail.com" ]
jorge.diazdorta@gmail.com
5f91841d99dce028ef4112a7f1b5929f5529de42
729aa3af1e6de25c0e46192ef62aaf77cc622979
/comentarios/models.py
68e967afb7853be71fb6423710c8f2e8619ff015
[]
no_license
xuting1108/API-Pontos-Tur-sticos
8b583869006b8570c44eebfc885bb3db7eff4f1d
7a01434e806a7b3b1409f7c490071ba682525ad3
refs/heads/master
2022-11-19T15:09:48.057402
2020-06-15T21:38:00
2020-06-15T21:38:00
267,150,058
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
from django.db import models from django.contrib.auth.models import User class Comentario(models.Model): usuario = models.ForeignKey(User, on_delete=models.CASCADE) comentarios = models.TextField() data = models.DateTimeField(auto_now_add=True) aprovado = models.BooleanField(default=True) def __str__(self): return self.usuario.username
[ "xuting1108@hotmail.com" ]
xuting1108@hotmail.com
7f48901ffb7957bdfddcefdc91daa54ac94994a7
10ab15571c44a1c6f115b6145d45e14eba2c82d4
/judges/generic/tests/OK/solutions/solution.py
41a54231e987ecfc0d4065ec30664ecd2cd66764
[ "MIT" ]
permissive
kolejka/kolejka-judge
d669b04b0f011a4a8df75165b5c3da2834356807
0614c861c08d3196b4c5e7c0e7bf9aae92a9845f
refs/heads/master
2022-11-07T17:05:32.094084
2022-11-02T14:13:51
2022-11-02T14:13:51
199,710,634
2
1
MIT
2021-10-08T20:03:14
2019-07-30T18:58:58
Python
UTF-8
Python
false
false
126
py
import sys count = int(sys.stdin.readline()) for c in range(count): sys.stdout.write(sys.stdin.readline().strip()+'\n')
[ "grzegorz.gutowski@uj.edu.pl" ]
grzegorz.gutowski@uj.edu.pl
67086c4670dfe4cb66c73ee192fb47a5a8183bcf
4597f9e8c2772f276904b76c334b4d181fa9f839
/Python/Compare-Version-Numbers.py
85b753029af257cf562da8fb4d2fb870da2c0e73
[]
no_license
xxw1122/Leetcode
258ee541765e6b04a95e225284575e562edc4db9
4c991a8cd024b504ceb0ef7abd8f3cceb6be2fb8
refs/heads/master
2020-12-25T11:58:00.223146
2015-08-11T02:10:25
2015-08-11T02:10:25
40,542,869
2
6
null
2020-09-30T20:54:57
2015-08-11T13:21:17
C++
UTF-8
Python
false
false
872
py
class Solution: # @param a, a string # @param b, a string # @return a boolean def compareVersion(self, version1, version2): seq1 = [] seq2 = [] if version1.find('.') >= 0: seq1 = version1.split('.') else: seq1.append(version1) if version2.find('.') >= 0: seq2 = version2.split('.') else: seq2.append(version2) for i in range(len(seq1)): seq1[i] = int(seq1[i]) for i in range(len(seq2)): seq2[i] = int(seq2[i]) maxlen = max(len(seq1), len(seq2)) for i in range(len(seq1), maxlen): seq1.append(0) for i in range(len(seq2), maxlen): seq2.append(0) if seq1 < seq2: return -1 elif seq1 > seq2: return 1 else: return 0
[ "jiangyi0425@gmail.com" ]
jiangyi0425@gmail.com
65da41f502db3348a39743f88ed5359debb87fa3
6489f80c1bc2c51f41c186c260a3370f899acd20
/hpm_generator/trans_hpm_dict.py
fd85253aeac1f3c8790ad0c5d78ac4bb781d9dcc
[]
no_license
Este1le/Auto-tuning
16bc316359d97c3dfff0e41c5aad9a18122b7b25
856b6176af770b200897f56b7a46f6699402ef28
refs/heads/master
2020-04-13T21:27:57.516254
2019-09-16T17:19:07
2019-09-16T17:19:07
163,456,912
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
""" Hyperparameter dictionary for Transformer Neural Machine Translation models. """ hpm_dict = {} # Preprocessing hpm_dict['bpe_symbols'] = [10000, 30000, 50000] # Model architecture hpm_dict['num_embed'] = ["\"256:256\"", "\"512:512\"", "\"1024:1024\""] hpm_dict['num_layers'] = ["\"2:2\"", "\"4:4\""] # Training configuration hpm_dict['batch_size'] = [2048, 4096] hpm_dict['initial_learning_rate'] = [0.0003, 0.0006, 0.001] # Transformer hpm_dict['transformer_model_size'] = [256, 512, 1024] hpm_dict['transformer_attention_heads'] = [8, 16] hpm_dict['transformer_feed_forward_num_hidden'] = [1024, 2048]
[ "xuanzhang@jhu.edu" ]
xuanzhang@jhu.edu
9fb2b348d1dece719559d459a60ef6d70f2c461d
af0195a1489600d2f6f82aaec5f2026da10b91f8
/overSpeeding.py
31192019bb68583a8b3b725f7b2dd7a9076ec97f
[]
no_license
AnupKumarPanwar/Traffic-violation-detection
7736ee29da57f4f7ba666cfa1365a7d110b53481
366bb489a9cbeedb4ac73e66f4491e8d54ae476d
refs/heads/master
2021-04-15T13:25:04.142666
2018-03-30T06:29:26
2018-03-30T06:29:26
126,157,226
1
0
null
null
null
null
UTF-8
Python
false
false
3,005
py
import numpy as np import cv2 # cap = cv2.VideoCapture(0) has_detected=False tracker = cv2.TrackerKCF_create() haar_face_cascade = cv2.CascadeClassifier('./cars.xml') cap = cv2.VideoCapture('http://192.168.5.165:8080/video') detection_array=[0]*10 image_count=0 enterFrame=False exitFrame=False enterFrameY=0 lastFrameY=0 totalFrames=0 while(True): # Capture frame-by-frame ret, frame = cap.read() # Our operations on the frame come here # gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(frame, cv2.IMREAD_COLOR) # cv2.putText(gray, "Tracking failure detected", (10,50), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2) #load cascade classifier training file for haarcascade cars = haar_face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5); cv2.line(gray,(0, 400), (500,400),(0,0,255),20) #print the number of faces found # print('Cars found: ', len(cars)) # if len(cars)==1 and !has_detected: # has_detected=True # imwrite('./uploads/car.jpg') # elif len(cars)==0: # has_detected=False if enterFrame: totalFrames+=1 # if has_detected: ok, bbox = tracker.update(gray) if ok: p1 = (int(bbox[0]), int(bbox[1])) p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) cv2.rectangle(gray, p1, p2, (255,0,0), 2, 1) detection_array=detection_array[1:] detection_array.append(1) if 0 not in detection_array: lastFrameY=int(bbox[1]) if not enterFrame: enterFrameY=int(bbox[1]) enterFrame=True print ("Enter frame : ", str(enterFrameY)) # print('Cars found: 1') else: # print ("condition") detection_array=detection_array[1:] detection_array.append(0) has_detected=False # print (detection_array) if 1 not in detection_array and not exitFrame: if enterFrame: exitFrameY=lastFrameY exitFrame=True pxCovered=exitFrameY - enterFrameY print ("Px covered : "+str(pxCovered)) print ("Total Frames : "+str(totalFrames)) print ("Speed : "+str(round(abs(pxCovered*21/totalFrames)),2)) # print('Cars found: 0') #go over list of faces and draw them as rectangles on original colored if len(cars)==1: for (x, y, w, h) in cars: bbox = (x, y, w, h) if has_detected==False: tracker = cv2.TrackerKCF_create() has_detected=True ok = tracker.init(gray, bbox) # imwrite('./uploads/car.jpg') if cv2.waitKey(1) & 0xFF == ord('q'): break # Display the resulting frame cv2.imshow('frame', gray) # When everything done, release the capture cap.release() cv2.destroyAllWindows()
[ "1anuppanwar@gmail.com" ]
1anuppanwar@gmail.com
b5dcb853f578c7877f1e458fff4ed77f236bb315
5d293f040ae1a86e8da752b3fa5c6823504fc3ca
/RaspberryPi_Therm/plataform-device.py
345df366aace20865e42925f422b83e30b776673
[]
no_license
rzarref/konker-devices
8c99ce829853b9d2cc636a123a5e5d59c4546809
109dfcc049fe4c5e79775952fb923d5ceaf5e030
refs/heads/master
2020-12-02T16:43:56.666694
2017-02-04T17:33:16
2017-02-04T17:33:16
96,576,301
1
0
null
null
null
null
UTF-8
Python
false
false
2,019
py
#! /usr/bin/python3 import paho.mqtt.client as mqtt import json import os import threading from threading import Timer import time import RPi.GPIO as GPIO GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.IN) os.system('modprobe w1-gpio') os.system('modprobe w1-therm') ### Temperature Sensor DS18B20 ## Nota: mudar o diretório de 28-0415a444b2ff para o nome visto em /sys/bus/w1/devices/ base_dir = '/sys/bus/w1/devices/28-0415a444b2ff/' device_file = base_dir + '/w1_slave' def read_temp_raw(): f = open(device_file, 'r') lines = f.readlines() f.close() return lines def read_temp(): lines = read_temp_raw() while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw() equals_pos = lines[1].find('t=') if equals_pos != -1: temp_string = lines[1][equals_pos+2:] temp_c = float(temp_string) / 1000.0 return temp_c ### End of Temperature Sensor DS18B20 ### MQTT code def on_connect(client, userdata, rc): print("Connected with result code "+str(rc)) mqttc.subscribe("sub/" + dev_name + "/sub") def on_message(mqttc, userdata, msg): json_data = msg.payload.decode('utf-8') print("Message received: "+json_data) global firmware_ver, measure_type, measure_value, measure_unit data = json.loads(json_data) firmware_ver = data.get("fw") measure_type = data.get("metric") measure_value = data.get("value") measure_unit = data.get("unit") dev_name = "" passkey = "" ip = "" mqttc = mqtt.Client("Konker" + dev_name) mqttc.username_pw_set(dev_name, passkey) mqttc.on_message = on_message mqttc.on_connect = on_connect mqttc.connect(ip, 1883) mqttc.loop_start() ### End of MQTT code current_milli_time = lambda: int(round(time.time() * 1000)) def TempMessage(): temp=read_temp() (rc, mid) = mqttc.publish("pub/"+ dev_name +"/temperature", json.dumps({"ts": current_milli_time(), "metric": "temperature", "value": temp, "unit": "Celsius"})) print(rc) t = threading.Timer(10.0, TempMessage) t.start()
[ "noreply@github.com" ]
noreply@github.com
d5e1d94b0f4269311fc4634072447854264afac3
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/CDqMdrTvfn2Wa8igp_16.py
12713c2aa2161258166fab90eabe089a4b047990
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
""" Create a function that returns the next element in an **arithmetic sequence**. In an arithmetic sequence, each element is formed by adding the same constant to the previous element. ### Examples next_element([3, 5, 7, 9]) ➞ 11 next_element([-5, -6, -7]) ➞ -8 next_element([2, 2, 2, 2, 2]) ➞ 2 ### Notes All input arrays will contain **integers only**. """ def next_element(lst): a = lst[-1] - lst[-2] return lst[-1] + a
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
bd4bfd2045243258a2936d602e25e747bd5817ce
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_quivered.py
ae5ecb9ccecdd6d0e423ea42fa27b78863065fdc
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from xai.brain.wordbase.nouns._quiver import _QUIVER #calss header class _QUIVERED(_QUIVER, ): def __init__(self,): _QUIVER.__init__(self) self.name = "QUIVERED" self.specie = 'nouns' self.basic = "quiver" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
f7ba672b11d8d99d484ebed80a07211c25e5f2e1
e0915e453dc9ccab98381b96f476bcfb34f51b8f
/tests/test_transformations/manual_test_affine.py
5ec086b996293db3653d066f5e3043141fa920e2
[ "MIT" ]
permissive
AsajuHuishi/hylfm-net
a1f34b451ccb5bc71e056b2f3eb29efa486db603
baf447a75a30b67cd2929ab2a4427afb3d5e0f78
refs/heads/master
2023-01-13T04:22:40.633352
2020-11-20T13:45:53
2020-11-20T13:45:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,809
py
import collections from hylfm.datasets import ZipDataset, get_dataset_from_info, get_tensor_info import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable def compare_slices(sample, title, *names): fig, axes = plt.subplots(ncols=len(names)) fig.suptitle(title) for name, ax in zip(names, axes): im = ax.imshow(sample[name].squeeze()) ax.set_title(f"{name}") # fig.colorbar(im, cax=ax, orientation='horizontal') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(im, cax=cax, orientation="vertical") plt.show() def manual_test_this(): meta = { "nnum": 19, "z_out": 49, "scale": 4, "shrink": 8, "interpolation_order": 2, "z_ls_rescaled": 241, "pred_z_min": 0, "pred_z_max": 838, "crop_names": ["wholeFOV"], } # z_min full: 0, z_max full: 838; 60/209*838=241; 838-10/209*838=798 ls_info = get_tensor_info("heart_static.beads_ref_wholeFOV", "ls", meta=meta) ls_trf_info = get_tensor_info("heart_static.beads_ref_wholeFOV", "ls_trf", meta=meta) ls_reg_info = get_tensor_info("heart_static.beads_ref_wholeFOV", "ls_reg", meta=meta) dataset = ZipDataset( collections.OrderedDict( [ ("ls", get_dataset_from_info(info=ls_info, cache=True)), ("ls_trf", get_dataset_from_info(info=ls_trf_info, cache=True)), ("ls_reg", get_dataset_from_info(info=ls_reg_info, cache=True)), ] ) ) sample = dataset[0] compare_slices({"ls_reg": sample["ls_reg"].max(2), "ls_trf": sample["ls_trf"].max(2)}, "lala", "ls_reg", "ls_trf") if __name__ == "__main__": manual_test_this()
[ "thefynnbe@gmail.com" ]
thefynnbe@gmail.com
5a102571e72e68d6537181a5c74ddaaa6cc4da2c
51a80d87fd9f009d8b97573288d6ebd0b420b995
/baekjoon/DP/실3-2579.py
d80de7b2ec3eb6eb4b90c942f29c8b74388aa257
[]
no_license
kim-ellen821/mycoding
02858509c9bf0892d81d73f01e838c762644c3cf
20c03c529d07f0a776fd909a60cabaca3a8fcc34
refs/heads/master
2023-08-15T08:06:50.872463
2021-04-01T09:19:43
2021-10-13T13:02:25
353,621,725
0
0
null
2021-04-01T09:19:44
2021-04-01T08:00:52
Python
UTF-8
Python
false
false
322
py
n = int(input()) stairs =[int(input()) for _ in range(n)] dp = [0 for _ in range(n)] dp[0] = stairs[0] if n>1: dp[1] = stairs[0] + stairs[1] dp[2] = max(stairs[0]+stairs[2], stairs[1]+stairs[2]) for i in range(3, n): dp[i] = max(dp[i-3]+stairs[i-1]+stairs[i], dp[i-2] + stairs[i]) print(dp[n-1])
[ "ellenkim821@gmail.com" ]
ellenkim821@gmail.com
4163616ca559754ae87d91b4c6028ae70537bcbb
52984f7f9241a14313d4ab8b4bce17df8b28cbed
/blog/views.py
419f5eebf831be063e865b49d2dddddb7e8f9d80
[]
no_license
aevans1910/happy-me
703e3c7f0829d7f0c6059af62c57240432d54ae4
fe4b6012db935c33d4135780b6c846683d7056c2
refs/heads/master
2021-09-26T04:42:58.680987
2020-03-07T03:03:02
2020-03-07T03:03:02
244,538,436
0
0
null
2021-09-22T18:42:04
2020-03-03T04:06:59
Python
UTF-8
Python
false
false
1,413
py
from django.shortcuts import render from django.views.generic.list import ListView from django.views.generic.detail import DetailView from django.views.generic import CreateView from django.http import HttpResponseRedirect from django.urls import reverse_lazy from blog.models import Posts from blog.forms import PostsForm class PostsListView(ListView): """ Renders a list of all the Posts """ model = Posts def get(self, request): """ GET a list of Posts """ posts = self.get_queryset().all() return render(request, 'blog/list.html', { 'posts': posts }) class PostsDetailView(DetailView): """ Renders a specific post based on it's slug """ model = Posts def get(self, request, slug): """ Returns a specific blog post by slug """ post = self.get_queryset().get(slug__iexact=slug) return render(request, 'blog/post.html', { 'post': post }) class PostsCreateView(CreateView): def get(self, request, *args, **kwargs): context = {'form': PostsForm()} return render(request, 'blog/new.html', context) def post(self, request, *args, **kwargs): form = PostsForm(request.POST) if form.is_valid(): post = form.save() return HttpResponseRedirect(reverse_lazy('blog-list-page')) return render(request, 'blog/new.html', {'form':form})
[ "ariane.evans@student.makeschool.com" ]
ariane.evans@student.makeschool.com
e93bfd5399e5ab1d1e5fa8e1374a7859d94a0446
512b388a53022f561e2375b4621f78572d3b4f04
/clients/migrations/0010_auto_20200904_1044.py
cb1046a194005d2c79ecd0cc9708388a797fa99b
[]
no_license
Madoka09/Worker15
006d5ac44dc55c3ae7f72d3b8300f3567395cdff
181012d309052b2df3d4ef99a197e8acef73a185
refs/heads/master
2023-03-24T05:29:02.060796
2021-03-16T21:56:21
2021-03-16T21:56:21
336,394,683
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
# Generated by Django 3.0.4 on 2020-09-04 15:44 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('clients', '0009_auto_20200903_2132'), ] operations = [ migrations.RenameField( model_name='clientsaddress', old_name='altern_phone', new_name='alternate_phone', ), ]
[ "personal.galvan.francisco@gmail.com" ]
personal.galvan.francisco@gmail.com
4591ae12de8f049e5e206fe3071156c3140089ff
e431b0938da36d2a400e7a4b2e8849a27bc83f17
/test/Python/Test_Gasmix.py
52533662301f312fc3113601e14e0e4004c5cfd1
[]
no_license
abhikv/MAGBOLTZ-py
c9541a98114d16c3e8b947a9b4bd36fed65bdf06
50ed30dd8ccafddce96a5650d9bdc9bfed6dbc9f
refs/heads/master
2020-04-19T03:26:17.293723
2019-01-23T03:57:35
2019-01-23T03:57:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,100
py
import sys import warnings import time warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") sys.path.append('../../src/Scripts/Python') from Gasmix import Gasmix t1 = time.time() TestObj = Gasmix() NGS = [] for i in range(6): NGS.append(0) NGS[0]=2 EROOT = [] QT1 = [] QT2 = [] QT3 = [] QT4 = [] DEN = [1 for i in range(4000)] DENS = 0 NGAS = 1 NSTEP = 4000 NANISO = 2 ESTEP = 1.25e-4 EG = [6.25e-5 + i * (ESTEP) for i in range(4000)] EFINAL = 0.5 AKT = 2.6037269846599997e-2 ARY = 0 TEMPC = 0 TORR = 0 IPEN = 0 TestObj.setCommons(NGS, EG, EROOT, QT1, QT2, QT3, QT4, DEN, DENS, NGAS, NSTEP, NANISO, ESTEP, EFINAL, AKT, ARY, TEMPC, TORR, IPEN) if __name__ == '__main__': TestObj.Run() print(TestObj.Gases[0].Q[0][0]) print(TestObj.Gases[1].Q[0][0]) print(TestObj.Gases[2].Q[0][0]) print(TestObj.Gases[3].Q[0][0]) print(TestObj.Gases[4].Q[0][0]) print(TestObj.Gases[0].Q[0][0]) print("hi") t2 = time.time() print("time:") print(t2 - t1)
[ "atoumbashar@gmail.com" ]
atoumbashar@gmail.com
cbd6a1d2b982c797f5f2c66a32486edd99e62acf
b27954c892897fbe0186464eb2460745b7eeaa86
/API Test App/ConcertAPI/env/bin/easy_install
fca567f124fa8685c1172b52d0aff85bfe7a8b81
[]
no_license
bounswe/bounswe2017group2
c7ef702b663460ada41ab0a334273074df9739bd
5e3bd50228faf8eb327d21588c2854f6215973f9
refs/heads/master
2021-01-22T03:57:46.299748
2019-08-16T14:15:17
2019-08-16T14:15:17
81,464,305
8
6
null
2019-08-16T14:15:18
2017-02-09T15:26:15
Python
UTF-8
Python
false
false
278
#!/Users/berkkocabagli/ConcertAPI/ConcertAPI/env/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "kberkkocabagli@gmail.com" ]
kberkkocabagli@gmail.com
342fb839f815e73042d5f54cba60d89c396936c7
8e9ea4e7300a51ad3251526e5a1dfdcef7e9bff5
/Tasks/Kostin-Rozhkov/PyTasks/11.py
b86436bbe2740c82fd5a976abab4e01421fcb218
[]
no_license
BlackenedJustice/testRepo
2baff560ed2d9d7de38bb1a0f813ac044c2bf217
81fa3893bfd4bba61d81928528b48255aaafdd33
refs/heads/master
2020-05-19T17:42:58.062510
2019-07-15T07:30:26
2019-07-15T07:30:26
185,140,879
6
30
null
2019-08-03T10:52:56
2019-05-06T06:58:20
Python
UTF-8
Python
false
false
204
py
print("Введите скорость v и время t: ") v, t = map(int, input().split()) print("Через {} часов Вася окажется на {} километре".format(t, v * t % 109))
[ "fulstocky@gmail.com" ]
fulstocky@gmail.com
d1b1f4eb1db480a94e0fb5a36e25b96368b38a44
efe946e6fab19f948aa81a36b67d56feae322094
/nn/io.py
bdbc60c8afccadd949b9fbdb9855a044e09b9e90
[]
no_license
krivacic/BMI203_final
f3a148b51c99cd2dd742d4eeadf0c7c1f6195ec7
537c8e79e3865df9588a08009baa7ea5dc6978f8
refs/heads/master
2021-01-23T03:53:27.907540
2017-03-25T06:30:24
2017-03-25T06:30:24
86,131,770
0
0
null
null
null
null
UTF-8
Python
false
false
2,494
py
import numpy as np """ A note on data parsing: Most of this is self-explanatory. Each basepair is a 4-bit byte consisting of a single 1 and three 0s. What I want to point out is that for the negative test set, I am just taking every 17 basepairs as one unit of data, rather than every possible 17-basepair stretch. I tried this at first; the datafile alone is over 200 mb, and training the neural network was impossible. """ def parse(l): Xt = [] i = 0 for item in l: Xt.append([]) for ch in item: if ch == 'A': Xt[i].extend([0,0,0,1]) elif ch == 'T': Xt[i].extend([0,0,1,0]) elif ch == 'G': Xt[i].extend([0,1,0,0]) elif ch == 'C': Xt[i].extend([1,0,0,0]) i += 1 X = np.array(Xt) return X def get_data(filename): Xt =[] with open(filename) as f: i = 0 for line in f: Xt.append([]) for ch in line: if ch == 'A': Xt[i].extend([0,0,0,1]) elif ch == 'T': Xt[i].extend([0,0,1,0]) elif ch == 'G': Xt[i].extend([0,1,0,0]) elif ch == 'C': Xt[i].extend([1,0,0,0]) i += 1 X = np.array(Xt) #print("Finished parsing positives") return X """ To be run only once. Makes a file that has every possible 17-length read of the negative data. """ def get_negatives(): temp = [[]] i = 0 with open("yeast-upstream-1k-negative.fa") as f: for line in f: if line[0:1] == '>': temp.append([]) i +=1 elif line[0:1] != '>': for ch in line: if ch != '\n': temp[i].extend(ch) X = [] k = 0 for i in temp: n = 0 for j in i: X.append([]) X[k].extend(i[n:n+17]) n += 17 k += 1 new = [s for s in X if len(s) > 16] out = open('negative_formatted_less.txt','w') for item in new: out.write("%s\n"%item) def read_negatives(): X = [] with open('negative_formatted_less.txt','r') as inf: for line in inf: X.append(eval(line)) #print("Finished reading negatives") return X """ X1 = get_data() l = read_negatives() X = parse(l) print("done parsing negatives") print(X1) print(X) """
[ "krivacic@gmail.com" ]
krivacic@gmail.com
b58af860125842d181ec3ff20c4bc93e788bb891
913653e54fc434b50ac1445be1f8537107e25678
/MVC/Main.py
49144281594225b35231db4456ffbcda3afdb4a0
[]
no_license
Rafael-Marinho/ES3_Cota-es
90b9baeb1881bacfa4b3e19df7f82e3b9e88d4d5
ec8d3721c5e5289ded14928e4bb1cecdc07c7ff0
refs/heads/master
2021-08-23T03:47:17.703921
2017-12-03T01:54:44
2017-12-03T01:54:44
105,531,589
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Created on 8 de ago de 2017 @author: Rafael Marinho ''' from MVC import View from MVC import Controller ''' # O "Main" tem a função de iniciar o programa, # e pra isso ele busca os valores das cotações # das moedas e da IBOVESPA, e prontamente # chama a interface principal do usuário. ''' Controller.ControllerSearch.Sources.ControllerSources(None, '3') View.Observer.View.menu(None)
[ "noreply@github.com" ]
noreply@github.com
93d6bca660ec3009959a781aec2acb3664d4890f
17bc840981c87626f4de91017ee1d9d1a650510c
/cnn8.py
6ef34b7d4c542623a84c39efa8c8c1da928c993d
[]
no_license
mhusseinsh/RaceCarControl
6e0bb99d96cb9d15b78a2945c0724fdadc2f038d
af58251311b001e6f521826946da57e7f26ccb8f
refs/heads/master
2021-09-10T13:41:25.034934
2018-03-27T01:34:01
2018-03-27T01:34:01
112,090,949
0
0
null
null
null
null
UTF-8
Python
false
false
10,017
py
#!/usr/bin/python # import the necessary packages from skimage.measure import compare_ssim import argparse import imutils import cv2 ## import os import sys import csv import numpy as np import tensorflow as tf import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import keras.backend as K from keras.preprocessing.image import img_to_array, load_img from keras.models import Sequential, model_from_json from keras.optimizers import Adam, SGD from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Dropout, Flatten, BatchNormalization from keras.utils import np_utils from keras.utils import plot_model from keras.callbacks import EarlyStopping from tensorflow.python import debug as tf_debug # global variables cursor_index = 0 images = list() labels_list = list() count = 0 fps = 0 fig = 0 # figure object for veiwing frames and navigation # function that handels csv data supported # ----------------------------------------------------------------------------- def process_dataset(images_path, labels_path): global images global labels_list with open(labels_path) as f: read_file = csv.reader(f, delimiter=',') for row in read_file: labels_list.append([row[0], row[2], row[3], row[4]]) # print(row[1]) image_names = [x[0] for x in labels_list] for image_name in image_names: for filename in os.listdir(images_path): # print(os.path.splitext(filename)[0]) if filename.endswith(".jpg") and (os.path.splitext(filename)[0]) == image_name: images.append(img_to_array(load_img(images_path + '/' + filename))) break for row in labels_list: del row[0] # print(labels_list) # print('--------------------------------------------------------') # print('--------------------------------------------------------') # print('--------------------------------------------------------') # print('--------------------------------------------------------') # print('--------------------------------------------------------') # print(images[0].shape) # print('--------------------------------------------------------') # print('--------------------------------------------------------') # print('--------------------------------------------------------') def split_train_valid(): global count shuffled_index = np.random.permutation(len(images)) indices_train = shuffled_index[0:int(0.9*len(images))] indices_valid = shuffled_index[int(0.9*len(images)):len(images)] count = indices_valid train_data = [images[i] for i in indices_train] train_labels = [labels_list[i] for i in indices_train] valid_data = [images[i] for i in indices_valid] valid_labels = [labels_list[i] for i in indices_valid] return train_data, train_labels, valid_data, valid_labels class cnn(): def __init__(self): self.model = Sequential() def train_network(): #sess = K.get_session() #sess = tf_debug.LocalCLIDebugWrapperSession(sess) #K.set_session(sess) x, y, x_val, y_val = split_train_valid() print(len(x[0])) print(x[0].shape) rows = x[0].shape[0] cols = x[0].shape[1] channels = x[0].shape[2] print(np.array(x).shape) y = np.array(y).astype(float) y_val = np.array(y_val).astype(float) cnn_m = cnn() # Create cnn #cnn_m.model.add(Conv2D(256, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same', data_format="channels_last", input_shape=(rows, cols, channels))) #cnn_m.model.add(Activation('relu')) #cnn_m.model.add(MaxPooling2D(pool_size=(2, 2))) #cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None)) #cnn_m.model.add(MaxPooling2D(pool_size=(2, 2))) cnn_m.model.add(Conv2D(128, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same', data_format="channels_last", input_shape=(rows, cols, channels))) #cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None)) cnn_m.model.add(Activation('relu')) cnn_m.model.add(MaxPooling2D(pool_size=(2, 2))) #cnn_m.model.add(MaxPooling2D(pool_size=(2, 2))) cnn_m.model.add(Conv2D(64, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same')) #cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None)) cnn_m.model.add(Activation('relu')) #cnn_m.model.add(MaxPooling2D(pool_size=(2, 2))) cnn_m.model.add(Conv2D(32, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same')) #cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None)) cnn_m.model.add(Activation('relu')) #cnn_m.model.add(MaxPooling2D(pool_size=(2, 2))) cnn_m.model.add(Conv2D(16, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same')) #cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None)) cnn_m.model.add(Activation('relu')) cnn_m.model.add(Dropout(0.2)) cnn_m.model.add(Flatten()) cnn_m.model.add(Dense(64)) cnn_m.model.add(Activation('relu')) cnn_m.model.add(Dense(32)) cnn_m.model.add(Activation('relu')) cnn_m.model.add(Dropout(0.2)) cnn_m.model.add(Dense(3)) #cnn_m.model.add(Activation('linear')) adam = Adam(lr=0.001, decay=0.0005) #sgd = SGD(lr=0.00001, decay=0.0005) # Define attributes of the cnn; categorial, optimizer_type, performance metrics cnn_m.model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']) #cnn_m.model.compile(loss='mean_squared_error', optimizer=sgd, metrics=['accuracy']) # Fit the model to the training data #early_stopping = EarlyStopping(monitor='val_loss', patience=2) history = cnn_m.model.fit(np.array(x), y, epochs=1, batch_size=16, validation_data=(np.asarray(x_val), y_val), shuffle=True) #history = cnn_m.model.fit(np.array(x), y, epochs=200, batch_size=16, validation_data=(np.asarray(x_val), y_val), shuffle=True, callbacks=[early_stopping]) #score = cnn_m.model.evaluate(np.array(x_val), y_val, batch_size=8) #print('score', score) # 2. save your trained model # serialize model to JSON model_json = cnn_m.model.to_json() with open("model_test.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 cnn_m.model.save_weights("model_test.h5") print("Saved model to disk") # list all data in history print(history.history.keys()) print(count) # summarize history for accuracy fig1 = plt.figure() plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') #fig1.savefig("model accuracy.png") #plt.show() # summarize history for loss fig2 = plt.figure() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') #fig2.savefig("model loss.png") #plt.show() # # function responsible for processing the video and extracting the frames # # ----------------------------------------------------------------------------- # def process_video(video_path):#, timestamp, events_id): # # variables initialization # global count # global fps # success = True # # creating directory for new images # video_name = os.path.basename(os.path.splitext(video_path)[0]) # print("Start processing: " + video_name) # if not os.path.isdir(video_name): # os.mkdir(video_name) # # initialize captured video and retrieve the frames per second for the video # vidcap = cv2.VideoCapture(video_path) # fps = vidcap.get(cv2.CAP_PROP_FPS) # success, image = vidcap.read() # images are numpy.ndarray # # saving video frames into images list # while success: # images.append((timestamp_list[count], image)) # # save frame as JPEG file, uncomment if needed # # cv2.imwrite(os.path.join(video_name, "frame%d.jpg" % count), image) # count += 1 # success, image = vidcap.read() # print("finished reading %d frames" %count) # main function # ----------------------------------------------------------------------------- def main(): if len(sys.argv) == 3: images_path = sys.argv[1] labels_path = sys.argv[2] process_dataset(images_path, labels_path) train_network() else: print('Wrong number of arguments') if __name__ == '__main__': main()
[ "mh806@tf.uni-freiburg.de" ]
mh806@tf.uni-freiburg.de
7741d2640a25fdf9bfc3c4d3a9f38b475e4ced61
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02753/s804894259.py
636735cbd5323d345ac8e012b55a33a9143478c1
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
line = list(input()) line.sort() if line[0] == line[2]: print("No") else: print("Yes")
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
1d34bc71726742a51fd0ca6d27499f22e06c5e75
8e1a2833732102e5e421c34f98240de9dfa3172f
/reference_scripts/client_1.py
4a8305bfd8d4e4932bd711bcdd03f88698ecd407
[]
no_license
NoPainsNoGains33/Network-Security
6f9306548d907276502c8e279eb73feafd15507a
39af41d7bea91e1b6289e2c9d4904c227481aa10
refs/heads/main
2021-02-16T07:44:56.987954
2019-12-05T06:26:20
2019-12-05T06:26:20
244,981,879
0
0
null
null
null
null
UTF-8
Python
false
false
5,565
py
import socket import sys import time import base64 import argparse import os import json # import the message type from message_head_pb2 import MESS from threading import Thread # to handle Ctrl+C from signal import signal, SIGINT arg_parser = argparse.ArgumentParser(description="Client-side application script to communicate via P2P chat") arg_parser.add_argument("-sp", type=int, help="Port address for the server", dest="server_port", required=True) arg_parser.add_argument("-sip", type=str, help="IP address for the server", dest="server_ip", required=True) arg_parser.add_argument("-u", type=str, help="Username for the client", dest="username", required=True) args = arg_parser.parse_args() message_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) message_socket.bind((socket.gethostname(), 0)) # store the list of users on the network when requested from the server AVAILABLE_USERS = dict() # use stdout to print output over 'print', to avoid carriage returns in the prompts def printout(text): sys.stdout.write(text) sys.stdout.flush() # signal handler to kill the client def kill_client(kill_code, frame): raise Exception # advertise that the server is either coming online on the network, or confirm that it is still online def sign_in(): client_message = MESS() client_message.type = MESS.Type.SIGN_IN client_message.payload = args.username message_socket.sendto(client_message.SerializeToString(), (args.server_ip, args.server_port)) # method body for the thread to send chat commands def user_send(): try: # create a protobuf message for chat commands command_message = MESS() global AVAILABLE_USERS while True: command = raw_input() # command type: list # description: retrieve a list of all the clients currently on the network, # from the server if (command == "list"): command_message.type = MESS.Type.LIST message_socket.sendto(command_message.SerializeToString(), (args.server_ip, args.server_port)) continue; # command type: send # description: send a chat message to another client in the # form 'send <peer-name> <message>' if (("send" in command)): if (command.split()[1] in AVAILABLE_USERS.keys()): command_message.type = MESS.Type.SEND # prepend the message payload, i.e, the message to send, with the sender name command_message.payload = command.replace("send " + command.split()[1], args.username) message_socket.sendto(command_message.SerializeToString(), ( AVAILABLE_USERS[command.split()[1]][0], AVAILABLE_USERS[command.split()[1]][1])) printout("+> ") continue; # if the peer is no longer in the network, i.e, stale entry in AVAILABLE_USERS else: printout("Sorry, this user is not on the network.\n") printout("+> ") # if command entered is invalid else: printout("Sorry, invalid command\n") printout("+> ") # should catch network exceptions except Exception, e: print "Exception occurred!: " + str(e) sys.exit(1) def user_receive(): try: global AVAILABLE_USERS # sign in and register with server when client is booted sign_in() printout("+> ") received_message = MESS() while True: data, node_address = message_socket.recvfrom(4096) received_message.ParseFromString(data) # when the client receives a list of available users from the server on bootup if (received_message.type == MESS.Type.USER_LIST): AVAILABLE_USERS = json.loads(received_message.payload) printout("<- Signed In Users: " + ", ".join(AVAILABLE_USERS.keys()) + "\n") printout("+> ") # when the client sends a message to another peer/client if (received_message.type == MESS.Type.SEND): sender = received_message.payload.split()[0] AVAILABLE_USERS[sender] = node_address # prepare the sender id to display along with received mesage sender_string = "<From " + str(node_address[0]) + ":" + str(node_address[1]) + ":" + sender + ">:" printout("\n<- " + sender_string + received_message.payload.replace(sender, "") + "\n") printout("+> ") if (received_message.type == MESS.Type.USER_POLL): sign_in() except Exception, e: print "Sorry, an error occurred: " + str(e) sys.exit(1) if __name__ == "__main__": try: # call the signal handler in the main thread signal(SIGINT, kill_client) # thread to handle received socket messages receive_thread = Thread(target=user_receive, args=[]) # thread to send socket messages send_thread = Thread(target=user_send, args=[]) # start the thread receive_thread.start() send_thread.start() # keep the main thread alive to maintain context and catch the exit signal while True: time.sleep(0.5) # handle the exit condition except Exception, e: printout("\nClient exited manually.") message_socket.close() os._exit(0)
[ "dsilva.r@husky.neu.edu" ]
dsilva.r@husky.neu.edu
9a75061cef61e257b2fb8173f4084eba8aaf6596
5b1d10b56af48aa2eef4b5735fe74de0b7f22982
/freelancer/forms.py
767432c850982fbc2ec984197204747c1eb31750
[]
no_license
rishabh-1004/econnect
70fbc7458bba9fa5215c246a7e0e0b1db8ed2584
ca1976b260c8d1e795773ced5e6ff006d11fba48
refs/heads/master
2020-04-27T15:59:47.692991
2019-03-08T04:17:49
2019-03-08T04:17:49
115,212,282
0
1
null
null
null
null
UTF-8
Python
false
false
6,413
py
from django import forms from freelancer.models import FreelancerProfile,Test class FreelancerProfileForm(forms.ModelForm): college1=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) college2=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) college3=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) school1=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) school2=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) job1=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) job2=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) job3=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) job4=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) internship1=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) internship2=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) internship3=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) internship4=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) project1=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) project2=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) project3=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) project4=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) skill1=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) skill2=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) skill3=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) skill4=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) research1=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) research2=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) research3=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) research4=forms.CharField(required=False,max_length=200,widget=forms.TextInput( attrs={ 'class':'form-control col-md-6', 'placeholder':'Sample text', } )) additional=forms.CharField(widget=forms.Textarea( attrs={ 'class':'form-control', 'placeholder':'About You', 'rows':"5", 'column':"30", } )) picture = forms.ImageField(help_text="Upload image: ", required=False) class Meta: model=FreelancerProfile fields=[ 'picture','phone','school1','school2','college1','college2','college3','job1','job2','job3','job4','internship1', 'internship2','internship3','internship4','project1','project2','project3','project4','skill1', 'skill2','skill3','skill4','research1','research2','research3','research4','additional', ] def clean(self): self.cleaned_data["jobs"]=self.cleaned_data['job1']+","+self.cleaned_data['job2']+","+self.cleaned_data['job3']+","+self.cleaned_data['job4'] self.cleaned_data["college"]=self.cleaned_data['college1']+","+self.cleaned_data['college2']+","+self.cleaned_data['college3'] self.cleaned_data["school"]=self.cleaned_data['school1']+","+self.cleaned_data['school2'] self.cleaned_data["internships"]=self.cleaned_data['internship1']+","+self.cleaned_data['internship2']+","+self.cleaned_data['internship3']+","+self.cleaned_data['internship4'] self.cleaned_data["projects"]=self.cleaned_data['project1']+","+self.cleaned_data['project2']+","+self.cleaned_data['project3']+","+self.cleaned_data['project4'] self.cleaned_data["skills"]=self.cleaned_data['skill1']+","+self.cleaned_data['skill2']+","+self.cleaned_data['skill3']+","+self.cleaned_data['skill4'] self.cleaned_data["research"]=self.cleaned_data['research1']+","+self.cleaned_data['research2']+","+self.cleaned_data['research3']+","+self.cleaned_data['research4'] return self.cleaned_data class TestForm(forms.ModelForm): job1=forms.CharField(max_length=120) job2=forms.CharField(max_length=120) job3=forms.CharField(max_length=120) job4=forms.CharField(max_length=120) class Meta: model=Test fields=[ 'jobs','job1','job2','job3','job4','school', ] def clean(self): self.cleaned_data["jobs"]=self.cleaned_data['job1']+self.cleaned_data['job2'],self.cleaned_data['job3']+self.cleaned_data['job4'] return self.cleaned_data
[ "rishabh.sharma@tryscribe.com" ]
rishabh.sharma@tryscribe.com
c8bf10335c7c1e07b2176c968917ab7c4d5ace34
0f3a0be642cd6a2dd792c548cf7212176761e9b1
/pywps_services/r_mult.py
9910ee9228a37f667c6a73112163cb45b3e7d2ec
[]
no_license
huhabla/wps-grass-bridge
63a5d60735d372e295ec6adabe527eec9e72635a
aefdf1516a7517b1b745ec72e2d2481a78e10017
refs/heads/master
2021-01-10T10:10:34.246497
2014-01-22T23:40:58
2014-01-22T23:40:58
53,005,463
0
0
null
null
null
null
UTF-8
Python
false
false
3,141
py
# ################################################ # # This process was generated using GrassXMLtoPyWPS # # Author: Soeren Gebbert # # Mail: soerengebbert <at> googlemail <dot> com # # ################################################ # from pywps.Process import WPSProcess from PyWPSGrassModuleStarter import PyWPSGrassModuleStarter class r_mult(WPSProcess): def __init__(self): WPSProcess.__init__(self, identifier = 'r.mult', title = 'Multiplies a raster map with one or more raster maps', version = 1, statusSupported = True, storeSupported = True, metadata = [{'type': 'simple', 'title': 'raster'}, {'type': 'simple', 'title': 'math'}], abstract = 'http://grass.osgeo.org/grass70/manuals/html70_user/r.mult.html') # Literal and complex inputs self.addComplexInput(identifier = 'inputs', title = 'Raster maps to multiply', minOccurs = 1, maxOccurs = 1024, formats = [{'mimeType': 'image/tiff'}, {'mimeType': 'image/geotiff'}, {'mimeType': 'application/geotiff'}, {'mimeType': 'application/x-geotiff'}, {'mimeType': 'image/png'}, {'mimeType': 'image/gif'}, {'mimeType': 'image/jpeg'}, {'mimeType': 'application/x-erdas-hfa'}, {'mimeType': 'application/netcdf'}, {'mimeType': 'application/x-netcdf'}]) self.addLiteralInput(identifier = 'grass_resolution_ns', title = 'Resolution of the mapset in north-south direction in meters or degrees', abstract = 'This parameter defines the north-south resolution of the mapset in meter or degrees, which should be used to process the input and output raster data. To enable this setting, you need to specify north-south and east-west resolution.', minOccurs = 0, maxOccurs = 1, type = type(0.0), allowedValues = '*') self.addLiteralInput(identifier = 'grass_resolution_ew', title = 'Resolution of the mapset in east-west direction in meters or degrees', abstract = 'This parameter defines the east-west resolution of the mapset in meters or degrees, which should be used to process the input and output raster data. To enable this setting, you need to specify north-south and east-west resolution.', minOccurs = 0, maxOccurs = 1, type = type(0.0), allowedValues = '*') self.addLiteralInput(identifier = 'grass_band_number', title = 'Band to select for processing (default is all bands)', abstract = 'This parameter defines band number of the input raster files which should be processed. As default all bands are processed and used as single and multiple inputs for raster modules.', minOccurs = 0, maxOccurs = 1, type = type(0), allowedValues = '*') # complex outputs self.addComplexOutput(identifier = 'output', title = 'The result of the mathematical operation', formats = [{'mimeType': 'image/tiff'}, {'mimeType': 'image/geotiff'}, {'mimeType': 'application/geotiff'}, {'mimeType': 'application/x-geotiff'}, {'mimeType': 'application/x-erdas-hfa'}, {'mimeType': 'application/netcdf'}, {'mimeType': 'application/x-netcdf'}]) def execute(self): starter = PyWPSGrassModuleStarter() starter.fromPyWPS("r.mult", self.inputs, self.outputs, self.pywps) if __name__ == "__main__": process = r_mult() process.execute()
[ "soerengebbert@23da3d23-e2f9-862c-be8f-f61c6c06f202" ]
soerengebbert@23da3d23-e2f9-862c-be8f-f61c6c06f202
2d51dc8a47690b543abd5f2196e6d22032e34caf
de3b77cb0927f28cbd85e9142c2dfd7c8be7c27e
/tests/migrations/015_user_demographics_up.py
9e08957363737d8cf8968f4a19885fea3c67bec4
[ "MIT" ]
permissive
LoansBot/database
f3dcbccde59fdb80c876d2612f250662946588e6
eeaed26c2dcfdf0f9637b47ebe15cd1e000d8cc4
refs/heads/master
2021-07-02T22:07:18.683278
2021-06-02T04:09:38
2021-06-02T04:09:38
239,400,935
0
1
MIT
2021-06-02T04:14:31
2020-02-10T01:06:53
Python
UTF-8
Python
false
false
1,166
py
import unittest import helper class UpTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.connection = helper.setup_connection() cls.cursor = cls.connection.cursor() @classmethod def tearDownClass(cls): cls.cursor.close() cls.connection.rollback() helper.teardown_connection(cls.connection) def tearDown(self): self.connection.rollback() def test_user_demographics_exist(self): self.assertTrue( helper.check_if_table_exist(self.cursor, 'user_demographics') ) def test_user_demographic_lookups_exist(self): self.assertTrue( helper.check_if_table_exist(self.cursor, 'user_demographic_lookups') ) def test_user_demographic_views_exist(self): self.assertTrue( helper.check_if_table_exist(self.cursor, 'user_demographic_views') ) def test_user_demographic_history_exist(self): self.assertTrue( helper.check_if_table_exist(self.cursor, 'user_demographic_history') ) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
noreply@github.com
8c5ed7790f16d81a0c36ea704e83ed858dde2f9b
71cb8d9eb437a9faf330931f3713ba5dc688405d
/analyze_data.py
20d0de521c42d33cccb15314658cdb6ae2767102
[ "MIT" ]
permissive
mattare2/perceptual-acoustic-similarity
294d967ab2cd47120d33e650f7488d37cec199ca
eced010ee2d1a36c6052c8afd1b8c4af709dc418
refs/heads/master
2021-01-18T11:26:36.763005
2015-04-21T07:21:22
2015-04-21T07:21:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,408
py
import csv import os from functools import partial from acousticsim.main import acoustic_similarity_mapping from acousticsim.helper import get_vowel_points from acousticsim.praat.wrapper import (to_pitch_praat, to_formants_praat, to_intensity_praat, to_mfcc_praat) from acousticsim.distance.point import point_distance, euclidean from acousticsim.distance.dct import dct_distance from acousticsim.distance.dtw import dtw_distance from acousticsim.distance.xcorr import xcorr_distance praat_path = r'C:\Users\michael\Documents\Praat\praatcon.exe' data_dir = r'C:\Users\michael\Documents\Data\ATI_new' model_dir = os.path.join(data_dir, 'Models') shadower_dir = os.path.join(data_dir, 'Shadowers') female_models = os.listdir(os.path.join(model_dir,'Female')) male_models = os.listdir(os.path.join(model_dir,'Male')) female_shadowers = os.listdir(os.path.join(shadower_dir,'Female')) male_shadowers = os.listdir(os.path.join(shadower_dir,'Male')) ## Representations # MFCC (acousticsim) # MFCC (Praat) # Formants (Praat) # Intensity (Praat) # Pitch (Praat) # AmpEnvs (acousticsim) ## Distance functions # DTW # XCorr # DCT # Vowel midpoint # Vowel third def callback(*value): print(*value) praat_mfcc = partial(to_mfcc_praat, praat_path ) praat_formants = partial(to_formants_praat, praat_path) praat_intensity = partial(to_intensity_praat, praat_path ) praat_pitch = partial(to_pitch_praat, praat_path ) def midpoint_distance(rep_one, rep_two): base, _ = os.path.splitext(rep_one._filepath) one_textgrid = base + '.TextGrid' begin,end = get_vowel_points(one_textgrid, tier_name = 'Vowel', vowel_label = 'V') if begin is None or end is None: print(one_textgrid) point_one = begin + ((end - begin)/2) base, _ = os.path.splitext(rep_two._filepath) two_textgrid = base + '.TextGrid' begin,end = get_vowel_points(two_textgrid, tier_name = 'Vowel', vowel_label = 'V') if begin is None or end is None: print(one_textgrid) point_two = begin + ((end - begin)/2) return point_distance(rep_one, rep_two, point_one, point_two) def third_distance(rep_one, rep_two): base, _ = os.path.splitext(rep_one._filepath) one_textgrid = base + '.TextGrid' begin,end = get_vowel_points(one_textgrid, tier_name = 'Vowel', vowel_label = 'V') point_one = begin + ((end - begin)/3) base, _ = os.path.splitext(rep_two._filepath) two_textgrid = base + '.TextGrid' begin,end = get_vowel_points(two_textgrid, tier_name = 'Vowel', vowel_label = 'V') point_two = begin + ((end - begin)/3) return point_distance(rep_one, rep_two, point_one, point_two) def vowel_dist(dist_func, rep_one, rep_two): base, _ = os.path.splitext(rep_one._filepath) one_textgrid = base + '.TextGrid' one_begin,one_end = get_vowel_points(one_textgrid, tier_name = 'Vowel', vowel_label = 'V') base, _ = os.path.splitext(rep_two._filepath) two_textgrid = base + '.TextGrid' two_begin,two_end = get_vowel_points(two_textgrid, tier_name = 'Vowel', vowel_label = 'V') return dist_func(rep_one[one_begin, one_end], rep_two[two_begin, two_end]) def duration_distance(rep_one, rep_two): base, _ = os.path.splitext(rep_one._filepath) one_textgrid = base + '.TextGrid' one_begin,one_end = get_vowel_points(one_textgrid, tier_name = 'Vowel', vowel_label = 'V') if one_begin is None: one_begin = 0 if one_end is None: one_end = rep_one._duration one_durations = [one_begin, one_end - one_begin, rep_one._duration - one_end] base, _ = os.path.splitext(rep_two._filepath) two_textgrid = base + '.TextGrid' two_begin,two_end = get_vowel_points(two_textgrid, tier_name = 'Vowel', vowel_label = 'V') if two_begin is None: two_begin = 0 if two_end is None: two_end = rep_two._duration two_durations = [two_begin, two_end - two_begin, rep_two._duration - two_end] return euclidean(one_durations, two_durations) vowel_dtw = partial(vowel_dist,dtw_distance) vowel_dct = partial(vowel_dist,dct_distance) vowel_xcorr = partial(vowel_dist,xcorr_distance) def load_axb(): path_mapping = list() with open(os.path.join(data_dir,'axb.txt'),'r') as f: reader = csv.DictReader(f, delimiter = '\t') for line in reader: shadower = line['Shadower'][-3:] model = line['Model'][-3:] word = line['Word'] if model in female_models: model_path = os.path.join(model_dir, 'Female',model, '{}_{}.wav'.format(model,word)) else: model_path = os.path.join(model_dir, 'Male',model, '{}_{}.wav'.format(model,word)) if shadower in female_shadowers: baseline_path = os.path.join(shadower_dir, 'Female',shadower, '{}_{}_baseline.wav'.format(shadower,word)) shadowed_path = os.path.join(shadower_dir, 'Female',shadower, '{}_{}_shadowing{}.wav'.format(shadower,word, model)) else: baseline_path = os.path.join(shadower_dir, 'Male',shadower, '{}_{}_baseline.wav'.format(shadower,word)) shadowed_path = os.path.join(shadower_dir, 'Male',shadower, '{}_{}_shadowing{}.wav'.format(shadower,word, model)) path_mapping.append((baseline_path, model_path, shadowed_path)) return list(set(path_mapping)) def output_acousticsim(path_mapping, output, output_filename): with open(output_filename, 'w') as f: writer = csv.writer(f, delimiter = '\t') writer.writerow(['Shadower', 'Model', 'Word', 'BaseToModel', 'ShadToModel']) for pm in path_mapping: baseline_prod = os.path.basename(pm[0]) model_prod = os.path.basename(pm[1]) shad_prod = os.path.basename(pm[2]) shadower = shad_prod[:3] model,ext = os.path.splitext(model_prod) model, word = model.split('_') writer.writerow([shadower, model, word, output[(baseline_prod,model_prod)], output[(shad_prod,model_prod)]]) def get_mfcc_dtw(path_mapping): asim = acoustic_similarity_mapping(path_mapping, rep = 'mfcc', match_function = 'dtw', use_multi=True, num_cores = 6) return asim def get_mfcc_vowel_mid(path_mapping): asim = acoustic_similarity_mapping(path_mapping, rep = 'mfcc', match_function = midpoint_distance, use_multi=True, num_cores = 6, call_back = callback) return asim def convert_path_mapping(path_mapping): new_path_mapping = set() for mapping in path_mapping: new_path_mapping.add((mapping[0],mapping[1])) new_path_mapping.add((mapping[2],mapping[1])) return list(new_path_mapping) def calc_asim(path_mapping, rep, match_func, cache = None): asim, cache = acoustic_similarity_mapping(path_mapping, rep = rep, match_function = match_func, use_multi=True, num_cores = 4, cache = cache, return_rep = True) return asim, cache if __name__ == '__main__': rep_dict = {'mfcc': 'mfcc', 'mfcc_praat':praat_mfcc, 'ampenv': 'envelopes', 'pitch_praat': praat_pitch, 'intensity_praat': praat_intensity, 'formants_praat': praat_formants } dist_dict = {'dtw': 'dtw', 'dct': 'dct', 'xcorr': 'xcorr', 'dtw_vowel': vowel_dtw, 'dct_vowel': vowel_dct, 'xcorr_vowel': vowel_xcorr, 'midpoint': midpoint_distance, 'third': third_distance} path_mapping = load_axb() for_asim = convert_path_mapping(path_mapping) for k,v in rep_dict.items(): cache = None for k2,v2 in dist_dict.items(): if os.path.exists('{}_{}.txt'.format(k, k2)): continue print(k, k2) asim, cache = calc_asim(for_asim, v, v2, cache = cache) output_acousticsim(path_mapping, asim, '{}_{}.txt'.format(k, k2)) #Duration distance asim, cache = calc_asim(for_asim, v, duration_distance, cache = cache) output_acousticsim(path_mapping, asim, 'segmental_duration.txt')
[ "michael.e.mcauliffe@gmail.com" ]
michael.e.mcauliffe@gmail.com
8334889f54f837ede8e0bea0e4beb142a561347e
cf2bfe1cba8a8069ea5f7dd19338140dbcb785fd
/bcs/rsa.py
2004e5058f35cb8e9d50c8432c28373274d53dcc
[]
no_license
mirrorbrain/m2
7f67057bbd748e978f18cdbe64fd27cd3b703263
166ebcf9be8720fc595771e4fcdfa9af89e46049
refs/heads/master
2021-04-09T11:18:00.252505
2019-05-14T14:09:29
2019-05-14T14:09:29
125,514,880
2
0
null
null
null
null
UTF-8
Python
false
false
7,650
py
#!/usr/bin/env python #Auteurs #Nogues Mael #Grandmontagne Mathieu import random from random import randrange #On utilse une fonction de calcul de racine carree pour nombre de longueur indefini car la fonciton fourni par python n'est pas capable de calculer au deca de 256 bits. def exact_sqrt(x): """Calculate the square root of an arbitrarily large integer. The result of exact_exact_sqrt(x) is a tuple (a, r) such that a**2 + r = x, where a is the largest integer such that a**2 <= x, and r is the "remainder". If x is a perfect square, then r will be zero. The algorithm used is the "long-hand square root" algorithm, as described at http://mathforum.org/library/drmath/view/52656.html Tobin Fricke 2014-04-23 Max Planck Institute for Gravitational Physics Hannover, Germany """ N = 0 # Problem so far a = 0 # Solution so far # We'll process the number two bits at a time, starting at the MSB L = x.bit_length() L += (L % 2) # Round up to the next even number for i in xrange(L, -1, -1): # Get the next group of two bits n = (x >> (2*i)) & 0b11 # Check whether we can reduce the remainder if ((N - a*a) << 2) + n >= (a<<2) + 1: b = 1 else: b = 0 a = (a << 1) | b # Concatenate the next bit of the solution N = (N << 2) | n # Concatenate the next bit of the problem return (a, N-a*a) #renvoi (x^y)%n en utilisant l'exponentiation modulaire O(log(n)) def modular_exp(a, n, m): b = 1 while (n != 0): if ((n & 1) != 0): b = (a*b)%m a = (a*a)%m n = n//2 return b #renvoi vrai si 2^p-1 = 3^p-1 = 5^p-1 = 7^p-1 = 1 mod p def prim(p) : return (modular_exp(2,p-1,p) == 1 and modular_exp(3,p-1,p) == 1 and modular_exp(5,p-1,p) == 1 and modular_exp(7,p-1,p) == 1) #renvoi un nombre premier de n bit en utilisant la primalite de PGP def prim_rand(n) : p = 2*(random.getrandbits(n-2) + pow(2,n-1)) + 1 p_mod3 = p%3 p_mod5 = p%5 p_mod7 = p%7 while (p_mod3 == 0 or p_mod5 == 0 or p_mod7 == 0 or not prim(p)): p += 2 p_mod3 = (p_mod3 + 2)%3 p_mod5 = (p_mod5 + 2)%5 p_mod7 = (p_mod7 + 2)%7 return p #renvoi l inverse de a modulo n def modular_inv (a, n) : b = a a = n q = a // b r = a - q * b v_0 = 1 v_1 = -q % n while r != 0 : a = b b = r q = a // b r = a - q * b v = (v_0 - q * v_1) % n v_0 = v_1 v_1 = v return v_0 #genere un le tuple (e, n,p,q,d) pour le couple de cles RSA def keygenerator(size) : p = q = 0 #on prend un premier aleatoire different pour p et q while p == q : p = prim_rand(size) q = prim_rand(size) n = p*q phi_n = (p - 1) * (q - 1) e = (2 ** 16) + 1 d = modular_inv(e, phi_n) #on calcul d td d inverse de e mod phi(n) while d < 0 : #si d < 0 on ajoute phi(n) d = d + phi_n if ((d >= phi_n) or (d == e) ) :#si d est sup a phi(n) ou que e a pour inverse lui meme on creer une nouvelle cle e, n, p, q, d = keygenerator(size) return e, n, p, q, d #####################################TRAPPE##################################### def fermat(n): if n & 1 == 0 : return [n >> 1, 2] temp, _ = exact_sqrt(n) x = long(temp) if x * x == n : return [x, x] x += 1 while True : y2 = x * x - n temp, _ = exact_sqrt(y2) y = long(temp) if y * y == y2 : break else: x += 1 return x - y, x + y def factor_n (n, a): n_trap = n % a return fermat(n_trap) def exploit_trap (p_trap, q_trap, a): k = 1 p = a * k + p_trap while not prim(p) : k += 1 p = a * k + p_trap k = 1 q = a * k + q_trap while not prim(q) : k += 1 q = a * k + q_trap n = p * q return n, p ,q def search_keys (p, q, d): phi_n = (p - 1) * (q - 1) e = modular_inv(d, phi_n) return e def keygenerator_trap(size) : a = random.getrandbits(3*size/4) p = q = 0 #on prend un premier aleatoire different pour p et q while p == q : p_trap = prim_rand(size/4) k = 1 while True : p = a * k + p_trap if prim(p) : break k += 1 q_trap = prim_rand(size/4) k = 1 while True : q = a * k + q_trap if prim(q) : break k += 1 n = p * q phi_n = (p - 1) * (q - 1) e = (2 ** 16) + 1 d = modular_inv(e, phi_n) #on calcul d tel que d est l'inverse de e mod phi(n) while d < 0 : #si d < 0 on ajoute phi(n) d = d + phi_n if (d >= phi_n) or (d == e) :#si d est sup a phi(n) ou que e a pour inverse lui meme on creer une nouvelle cle e, n, p, q, d, a = keygenerator_trap(size) return e, n, p, q, d, a ################################################################################ #genere les tuples cle publique , cle prive def key(size): e,n,p,q,d = keygenerator(size) return (e,n), (d,n) def encrypt(pk, plaintext): #la cle publique d, n = pk #pour chaque caratere on aplique c^e mod n cipher = [modular_exp(ord(char),e,n) for char in plaintext] # on conveti le char en ascii return cipher def decrypt(pk, ciphertext): #la cle privee e, n = pk #pour chaque caractere on aplique c^d mod n plain = [(modular_exp(char,d,n)) for char in ciphertext] return plain if __name__ == '__main__': message = raw_input("entrer un message a chifrer : ") size = int(raw_input("entrer une taille pour p et q : ")) e, n, p, q, d, a = keygenerator_trap(size) print "public : ", d, ", ", n , "\nprivate : ", e, ", ", n print "p : ", p, "\nq : ", q print "####################################################################" p_trap, q_trap = factor_n(n, a) n, p, q = exploit_trap(p_trap, q_trap, a) e = search_keys(p, q, d) print "Exploitation de la trappe" print "\nFactorisation de N\'" print "p\' : ", p_trap print "q\' : ", q_trap print "\nFactorisation de N" print "p : ", p print "q : ", q, "\n" print "####################################################################" print "Production des clefs RSA" public = [d , n] print "Clef publique : " print "n : ", public[1] print "d : ", public[0] private = [e, n] print "\nClef privee : " print "n : ", private[1] print "e : ", private[0] encrypted_msg = encrypt(public, message) decrypted_msg = decrypt(private, encrypted_msg) print "\n Utilisation des clefs" print "chiffre : ", encrypted_msg print "message : ", ''.join(map(chr, decrypted_msg)), "\n" print "####################################################################" # messagetab = [ord(char) for char in message] # on converti le message initiale en ascci # print "message initial" # print messagetab # # encrypted_msg = encrypt(public, message)#chiffrement du message # print "message chiffre" # print encrypted_msg # # print "message dechifre" # decrypt_msg = decrypt(private, encrypted_msg)# dechifrement du message # print decrypt_msg # # if messagetab == decrypt_msg : #si le tableau ascii du dechifrement est identique au tableau du message initial le chiffrement/dechifrement et fonctionnel # print "chifrement/dechifrement fonctionnel" # else : # print "erreur lors du dechiffrement"
[ "mael.nogues@gmail.com" ]
mael.nogues@gmail.com
98f7d82d2aeffaa9258b3f75f8faf29c0d5ff00a
41e91e6321cdaa61a2675436de54e8f951f42a57
/home/admin.py
50e6847e6fd38fde417d32b23d2dcca676906b5a
[]
no_license
tot-samij88/dkp-django
b33d66aa6e3a4f5d2d282129857f29217e2ce255
af5690f20a69c517c989326f634723f1dd0606ea
refs/heads/master
2023-01-02T12:00:00.057399
2020-10-16T02:19:39
2020-10-16T02:19:39
304,496,751
0
0
null
null
null
null
UTF-8
Python
false
false
724
py
from django.contrib import admin from .models import FirstSlide from .models import NextSlide class FirstSlideAdmin(admin.ModelAdmin): list_display = ( 'id', 'title', 'sub_text', 'is_published' ) list_display_links = ( 'id', 'title', 'sub_text', ) list_editable = ('is_published',) class NextSlideAdmin(admin.ModelAdmin): list_display = ( 'id', 'title', 'sub_text', 'is_published' ) list_display_links = ( 'id', 'title', 'sub_text', ) list_editable = ('is_published',) admin.site.register(FirstSlide, FirstSlideAdmin) admin.site.register(NextSlide, NextSlideAdmin)
[ "mizeravladik@gmail.com" ]
mizeravladik@gmail.com
b280a2a7d4766e6375a02765b3244e920e0b405b
a0eb6744e6f7f509b96d21f0bc8b3f8387f6861c
/notebook/list_2d_sort.py
ed70c8ed858f38ef3ada5a56ba0468b997f515fc
[ "MIT" ]
permissive
nkmk/python-snippets
a6c66bdf999502e52f4795a3074ced63bf440817
f9dd286a9cf93f474e20371f8fffc4732cb3c4d5
refs/heads/master
2023-08-03T04:20:05.606293
2023-07-26T13:21:11
2023-07-26T13:21:11
98,900,570
253
77
MIT
2020-10-25T01:12:53
2017-07-31T14:54:47
Jupyter Notebook
UTF-8
Python
false
false
2,885
py
import pprint l_2d = [[20, 3, 100], [1, 200, 30], [300, 10, 2]] pprint.pprint(l_2d, width=20) # [[20, 3, 100], # [1, 200, 30], # [300, 10, 2]] pprint.pprint(sorted(l_2d), width=20) # [[1, 200, 30], # [20, 3, 100], # [300, 10, 2]] pprint.pprint([sorted(l) for l in l_2d], width=20) # [[3, 20, 100], # [1, 30, 200], # [2, 10, 300]] pprint.pprint([list(x) for x in zip(*[sorted(l) for l in zip(*l_2d)])], width=20) # [[1, 3, 2], # [20, 10, 30], # [300, 200, 100]] import numpy as np print(np.sort(l_2d)) # [[ 3 20 100] # [ 1 30 200] # [ 2 10 300]] print(np.sort(l_2d, axis=0)) # [[ 1 3 2] # [ 20 10 30] # [300 200 100]] print(type(np.sort(l_2d))) # <class 'numpy.ndarray'> print(np.sort(l_2d).tolist()) # [[3, 20, 100], [1, 30, 200], [2, 10, 300]] print(type(np.sort(l_2d).tolist())) # <class 'list'> l_2d_error = [[1, 2], [3, 4, 5]] # print(np.sort(l_2d_error)) # ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. pprint.pprint(sorted(l_2d, key=lambda x: x[1]), width=20) # [[20, 3, 100], # [300, 10, 2], # [1, 200, 30]] pprint.pprint(sorted(l_2d, key=lambda x: x[2]), width=20) # [[300, 10, 2], # [1, 200, 30], # [20, 3, 100]] import operator pprint.pprint(sorted(l_2d, key=operator.itemgetter(1)), width=20) # [[20, 3, 100], # [300, 10, 2], # [1, 200, 30]] pprint.pprint(sorted(l_2d, key=operator.itemgetter(2)), width=20) # [[300, 10, 2], # [1, 200, 30], # [20, 3, 100]] l_2d_dup = [[1, 3, 100], [1, 200, 30], [1, 3, 2]] pprint.pprint(l_2d_dup, width=20) # [[1, 3, 100], # [1, 200, 30], # [1, 3, 2]] pprint.pprint(sorted(l_2d_dup), width=20) # [[1, 3, 2], # [1, 3, 100], # [1, 200, 30]] pprint.pprint(sorted(l_2d_dup, key=operator.itemgetter(0, 2)), width=20) # [[1, 3, 2], # [1, 200, 30], # [1, 3, 100]] pprint.pprint(sorted(l_2d_dup, key=lambda x: (x[0], x[2])), width=20) # [[1, 3, 2], # [1, 200, 30], # [1, 3, 100]] import pandas as pd df = pd.DataFrame(l_2d_dup, columns=['A', 'B', 'C'], index=['X', 'Y', 'Z']) print(df) # A B C # X 1 3 100 # Y 1 200 30 # Z 1 3 2 print(df.sort_values('C')) # A B C # Z 1 3 2 # Y 1 200 30 # X 1 3 100 print(df.sort_values('Z', axis=1)) # A C B # X 1 100 3 # Y 1 30 200 # Z 1 2 3 print(df.sort_values(['A', 'C'])) # A B C # Z 1 3 2 # Y 1 200 30 # X 1 3 100 df = pd.DataFrame(l_2d_dup) print(df) # 0 1 2 # 0 1 3 100 # 1 1 200 30 # 2 1 3 2 print(df.sort_values(2)) # 0 1 2 # 2 1 3 2 # 1 1 200 30 # 0 1 3 100 print(df.sort_values(2, axis=1)) # 0 2 1 # 0 1 100 3 # 1 1 30 200 # 2 1 2 3 print(df.sort_values([0, 2])) # 0 1 2 # 2 1 3 2 # 1 1 200 30 # 0 1 3 100
[ "nkmk.on@gmail.com" ]
nkmk.on@gmail.com
e8c5090580a34ad557e421bca450abaa32b7813c
8c1fc7f897b83d0367605836439c7d05673d623b
/part1/get_capabilities.py
43de71ef5ca06f28fd8fdb46c5ab5ed5df256fe8
[]
no_license
inwk6312-summer2018/netconf-yang-tutorial-priyankshah95
071872c364c9065df8d97c75e97b071313867d31
cae171de7d73a922667cb8ad9a844c5f7e99a2fd
refs/heads/master
2020-03-17T11:34:39.921447
2018-05-17T17:26:48
2018-05-17T17:26:48
133,556,470
0
0
null
null
null
null
UTF-8
Python
false
false
482
py
from ncclient import manager import sys HOST = '10.1.98.176' PORT = 830 USER = 'cisco1' PASS = 'cisco1' def main(): with manager.connect(host=HOST,port=PORT,username=USER,password=PASS, hostkey_verify = False, device_params = {'name':'default'},look_for_keys=False,allow_agent=False) as m: print("***Below listed are the remote devices capabilities***") for capability in m.server_capabilities: print(capability.split('?')[0]) if __name__=='__main__': sys.exit(main())
[ "priyank.shah@dal.ca" ]
priyank.shah@dal.ca
d4e081e72a8ec5a06360e56051a15f3f071d84e0
9563128aa1ed41b4eeb4f252f5fcfcb732f94fc4
/2- PYTHON V4/3- Django 2.2v4/1- Django Intro/3- Dojo Survey/dojo_survey_app/views.py
03fa8bc39de883f21fe95dee83f6c2cea848bf62
[]
no_license
alexbarg3000/Coding-Dojo
dcaa7e4ad4b17dd6008b2f1035ab746831f23fc4
aaa44820a26281e7d84f8c4d35d7ea9772230d93
refs/heads/main
2023-03-21T08:36:40.837760
2021-03-15T02:56:45
2021-03-15T02:56:45
347,510,909
0
0
null
null
null
null
UTF-8
Python
false
false
889
py
from django.shortcuts import render, HttpResponse, redirect def index(request): return render(request,"index.html") def create_user(request): if request.method == 'POST': semesters= request.POST.getlist('semester') name_from_form = request.POST['name'] location_from_form = request.POST['location'] language_from_form = request.POST['language'] comment_from_form = request.POST['comment'] preference_from_form = request.POST['preference'] semester_from_form = semesters context = { "name_on_template" : name_from_form, "location_on_template" : location_from_form, "language_on_template" : language_from_form, "comment_on_template" : comment_from_form, "preference_on_template" : preference_from_form, "semester_on_template" : semester_from_form, } return render(request,"show.html",context)
[ "alexbarg3000@yahoo.com" ]
alexbarg3000@yahoo.com
a4a1fc8eb31f932680b72e4e0a52588a352db967
739c75868a776d8e245214a7f0bec77fbd4842cb
/src/main.py
2db044388ca6996d5bb09898c2adfff7a048ad5a
[]
no_license
herman-d/python-playground
cdc114f74d14cf7ef3b259105f9c14b029994a52
c87c76dac68aafd3147c2a5b4c7ab963d9a3d70f
refs/heads/main
2023-02-18T23:01:09.792736
2021-01-17T03:32:29
2021-01-17T03:32:29
330,306,373
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
import sample_pb2 import sys output = sample_pb2.Sample() output.field_one = "test" output.field_two = 999 print("output to sample.bin") f = open("sample.bin", "wb") f.write(output.SerializeToString()) f.close print("input from sample.bin") f = open("sample.bin", "rb") input = sample_pb2.Sample() input.ParseFromString(f.read()) f.close() print("output") print(input)
[ "herman.ng@zendesk.com" ]
herman.ng@zendesk.com
e8ad7c6fc7df5ae3504281a89fd22b8eadb6cdef
b75918b2ac1dfaf2c1219f40d63004900c9338b1
/tests/conftest.py
bdc760d2cb724f587868a0e459829b3640bca13f
[]
no_license
solashirai/ExplainableCourseRecommender
e0f036da9814a0187daa5635da0ff2f86386026d
6a2795cfc4536548ac3679b3d23b953e55a50a37
refs/heads/main
2023-04-14T14:27:36.054830
2021-04-19T02:29:48
2021-04-19T02:29:48
302,346,189
1
0
null
2021-04-18T16:13:48
2020-10-08T13:17:44
Python
UTF-8
Python
false
false
14,309
py
import pytest from escore.models import * from escore.services.course import GraphCourseQueryService from frex.stores import LocalGraph, RemoteGraph from escore.utils.path import DATA_DIR from escore.pipeline import RecommendCoursesPipeline from rdflib import URIRef, Namespace individual_ns = Namespace( "https://tw.rpi.edu/ontology-engineering/oe2020/course-recommender-individuals/" ) @pytest.fixture(scope="session") def course_graph() -> LocalGraph: return LocalGraph( file_paths=( (DATA_DIR / "courses.ttl").resolve(), (DATA_DIR / "scheduled_courses.ttl").resolve(), (DATA_DIR / "rpi_departments.ttl").resolve(), (DATA_DIR / "parsed_grad_requirements.ttl").resolve(), (DATA_DIR / "users.ttl").resolve(), ) ) @pytest.fixture(scope="session") def course_qs(course_graph) -> GraphCourseQueryService: return GraphCourseQueryService(queryable=course_graph) @pytest.fixture(scope="session") def course_rec_pipe(course_qs) -> RecommendCoursesPipeline: return RecommendCoursesPipeline(course_query_service=course_qs) @pytest.fixture(scope="session") def pl_course(csci_dept_code, csci_dept): return Course( uri=individual_ns['crs938c5b7e20ea7e1620a2dd6329e6f0af274b46c3'], course_code=CourseCode( uri=individual_ns['crsCodeed2eaaf90b6625c9f6a5731e3f1a933357cd88b2'], name="CSCI-4430", department_code=csci_dept_code, course_level=4430.0, cross_listed=tuple() ), name="Programming Languages", credits=4, department=csci_dept, description="This course is a study of the important concepts found in current programming languages. " "Topics include language processing (lexical analysis, parsing, type-checking, interpretation " "and compilation, run-time environment), the role of abstraction (data abstraction and control " "abstraction), programming paradigms (procedural, functional, object-oriented, logic-oriented, " "generic), and formal language definition.", special_tags=frozenset(), required_prerequisites=frozenset({ individual_ns['crsd930192130a654416bffd45ce16415ee608df66d'], individual_ns['crs9797fa54cb6f077d0e7cf31e23bdbafbbe00e8af'] }), corequisites=frozenset(), recommended_prerequisites=frozenset(), topics=frozenset({ TopicArea( uri=individual_ns['topic00001'], name='placeholder for topic', sub_topic_of=frozenset(), discipline='placeholder discipline' ), } ), offering_terms=("FALL",), offering_period="ANNUAL" ) @pytest.fixture(scope="session") def csci_dept_code(csci_dept): return DepartmentCode( uri=individual_ns['dptc0026'], name="CSCI", department=csci_dept ) @pytest.fixture(scope="session") def csci_dept(): return Department( uri=individual_ns['dpt0026'], name="Computer Science", offered_major_uris=tuple(), offered_degree_uris=tuple() ) @pytest.fixture(scope="session") def csci_major(csci_dept): return Major( uri=individual_ns['majCSCI'], name="Computer Science Major", department=csci_dept ) @pytest.fixture(scope="session") def csci_top_level_req(csci_dept): return Requirement( uri=individual_ns['reqfd44455d4e7c62e5f83dde9ab7da8583adbfd31e'], fulfilled_by_requirement_uris=frozenset(), sub_requirement_uris=frozenset({ individual_ns['req5f790f12a27e66b3f8c6534a79003cb5910d7fde'], individual_ns['req78e077dfe6014ee50f8fac4e06b2ae06333cc271'], individual_ns['reqa323d5f642970db3393d958ea2e8c6510032e1e2'], individual_ns['reqae4289fd7815ec563f927cc14309b63a797ab630'], individual_ns['reqbbf0c827d4009fdd91575d3974c3e9be28909b6c'], individual_ns['reqe29978dd3d6ce495c371fda071f87f6c36f0739f'], }), share_credits_with_requirement_uris=frozenset({ individual_ns['req5f790f12a27e66b3f8c6534a79003cb5910d7fde'], individual_ns['req78e077dfe6014ee50f8fac4e06b2ae06333cc271'], individual_ns['reqa323d5f642970db3393d958ea2e8c6510032e1e2'], individual_ns['reqae4289fd7815ec563f927cc14309b63a797ab630'], individual_ns['reqbbf0c827d4009fdd91575d3974c3e9be28909b6c'], individual_ns['reqe29978dd3d6ce495c371fda071f87f6c36f0739f'], }), restriction_requirement_uris=frozenset(), requires_credits=128, course_code_restriction=CourseCodeRestriction( uri=individual_ns['ccr79a36c1af79f9c7271a61771aab09de994fccd4f'], valid_course_code_names=frozenset(), required_special_tag_names=frozenset(), valid_department_code_names=frozenset(), ) ) @pytest.fixture(scope="session") def csci_option_req(): return Requirement( uri=individual_ns['req78e077dfe6014ee50f8fac4e06b2ae06333cc271'], requires_credits=16, share_credits_with_requirement_uris=frozenset({ individual_ns['reqfd44455d4e7c62e5f83dde9ab7da8583adbfd31e'], }), sub_requirement_uris=frozenset(), restriction_requirement_uris=frozenset(), fulfilled_by_requirement_uris=frozenset(), course_code_restriction=CourseCodeRestriction( uri=individual_ns['ccr5a9b245b2af51a7b021a10d532b88f33418a97ca'], valid_course_code_names=frozenset(), required_special_tag_names=frozenset(), valid_department_code_names=frozenset({'CSCI'}), min_level=4000 ) ) @pytest.fixture(scope="session") def csci_bs_deg(csci_major, csci_top_level_req): return Degree( uri=individual_ns['degBSInCSCI'], name='BS in Computer Science', major=csci_major, requirements=(csci_top_level_req,) ) @pytest.fixture(scope="session") def owen_pos(csci_major, csci_bs_deg): return PlanOfStudy( uri=individual_ns['pos9a8e6844c6ecbac12f9f92da68ac51c5bd67704f'], class_year=2021, planned_major=csci_major, planned_degree=csci_bs_deg, completed_course_sections=frozenset({ individual_ns["crsSec0838fe4beedeff7709d32d16ca67c9aa2373dba7"], individual_ns["crsSec0cf0d1a768ef7b1d580ac0aaf258257b8c766ecb"], individual_ns["crsSec0d060d8550b4d97fa0aa0188e75a213e37114cb5"], individual_ns["crsSec1d571602ec11f8e32dcde3b985cb277b68b7abb5"], individual_ns["crsSec40567fef852031bad43995aa8cab7c4877bc0a02"], individual_ns["crsSec4d3630ed52401a5362753db61595b8e1aec66bd8"], individual_ns["crsSec5241e24de4b9d40df379b7916e4698ac81354f6f"], individual_ns["crsSec5fd627bdf533aefd6f25ebb995fccc08e57f8dc2"], individual_ns["crsSec615e6c5aee4bbf92e6e193f86346602825bba571"], individual_ns["crsSec663dda052cc6e9647d255c294c71409b1883963f"], individual_ns["crsSec6a1c91448f2bdb49b519784e470a68c37318b45c"], individual_ns["crsSec79431f36805f7d501cc79356e3f69b26340e1d98"], individual_ns["crsSec8102566ff399c31b30351decb38ba3893db8e2f5"], individual_ns["crsSec8281ac09fc60458b13bdfef54b75f0b8e771837e"], individual_ns["crsSec8bb40720e14ff5d40a16d71efbfab65bbcd742eb"], individual_ns["crsSec99b5492130e02e1dcb08692178a020c1c2444195"], individual_ns["crsSecbc29e94fcaa333888baa92efb31dad194e1718b6"], individual_ns["crsSecc4b387e96f764565a80950390b36235fc00eabf1"], individual_ns["crsSeccb117aa26ddc5cf711c70466adcc656492e8a464"], individual_ns["crsSecce866dba24b0cdf1e707f40e0ee7fbb8de068406"], individual_ns["crsSecd5c95ece2b749c2e0beb1d2bfde0e23e5ad45d93"], individual_ns["crsSece04b10767b92aa4d53eb5a5b044ef13673b49448"], individual_ns["crsSece405364a6acf6b819c02915a204114f26ff8551f"], individual_ns["crsSecf5a9dafe85e39b30bdbd45b3371eeefd7520569d"], individual_ns["crsSecf603c709ea539acc6b9bb842d574c3d9eb7c17fa"], individual_ns["crsSecf7b40623128f286084d451d67cc7fb4b60b11c94"], individual_ns["crsSecf8b3e82fd2f512b3db0727642c6a1b7153581d47"], individual_ns["crsSecfb9210e5ca6bd4844b7bf9bdf1cb1c5956f81d08"], }), completed_courses=frozenset({ individual_ns["crsafed9cb99a22f3c1c24a461212de74c061147fdc"], individual_ns["crsd13b01ead0fba8b4aa112ce4a06999a774cf7b2d"], individual_ns["crs16512f1cf1a0772c4b025c3d6ec1edcd0d8fe1fb"], individual_ns["crsfb2686b704f12418fbb57e79c573d4bb0fd2f418"], individual_ns["crsbb2f79ec60f43618cd25567f87e71171d29aee83"], individual_ns["crs3040f719acb6d5f911e4a1e0efdae1aab16e71d5"], individual_ns["crs76deeb1ecf1123e7b7b6918afd3e7e9c65a5bbdc"], individual_ns["crsa9004db87efa99687062b8819ace3f59d4e235cd"], individual_ns["crs8e3b954b259c3b7c341a8839f81fb05deeff68ea"], individual_ns["crs938c5b7e20ea7e1620a2dd6329e6f0af274b46c3"], individual_ns["crs667378d70c52e4a84617225e20e380eb49540f42"], individual_ns["crsd930192130a654416bffd45ce16415ee608df66d"], individual_ns["crs11d22a217c292f1bd278d88b96fa770c9a6fa207"], individual_ns["crs66ece4f97b7ad555666d9477af785bcaa7a40e8a"], individual_ns["crs547b5ccb36b817d3e2df2a96a09aa18f678bc4e0"], individual_ns["crs4b79ba1b9717a21b3aff7a7d656a471eea21448a"], individual_ns["crs0f4511984f6fb0682b0185c2dc94b50dbc4efd2a"], individual_ns["crs70c201e1b37def5c83e4458b044028e8a44f91c7"], individual_ns["crs9797fa54cb6f077d0e7cf31e23bdbafbbe00e8af"], individual_ns["crs1f544a878959fae04cb9d08b258e527007df5491"], individual_ns["crs61c14eb096ee7002039fb8baee948b4495f08440"], individual_ns["crsb195823511b1f4a6f4b656734aab626993defec6"], individual_ns["crs8aabf92b49dce005f10db4d14605ad4d5eb920d7"], individual_ns["crs2a22ca2e61da1be778732a493f944011f5b30519"], individual_ns["crs72de52b44f46d5b08b2917495701f202699880ca"], individual_ns["crsc746a794a800d873f1e5deff86c0c58e25f94848"], individual_ns["crs622f7a32272ea2f04599f688790c2571325b949a"], individual_ns["crs7c03aa6fefaf99476e8158ef5943f5ee91ee6146"], }), ongoing_course_sections=frozenset(), planned_courses=frozenset(), ) @pytest.fixture(scope="session") def placeholder_advisor(): return Advisor( uri=individual_ns['PLACEHOLDER-ADVISOR-URI'], name="Placeholder advisor name", advises_student_uris=tuple() ) @pytest.fixture(scope="session") def owen_student(owen_pos, placeholder_advisor): return Student( uri=individual_ns['usrowen'], study_plan=owen_pos, name="owen", class_year=2021, topics_of_interest=frozenset({TopicArea( uri=individual_ns['hardcodedUserInterest'], name='semantic web', sub_topic_of=frozenset(), discipline="placeholder discipline", )}), registered_courses=frozenset(), advisor=placeholder_advisor, ) @pytest.fixture(scope="session") def blank_student(placeholder_advisor, csci_major, csci_bs_deg): return Student( uri=individual_ns['blank_user'], study_plan=PlanOfStudy( uri=individual_ns['blank_user_pos'], class_year=2023, planned_major=csci_major, planned_degree=csci_bs_deg, completed_courses=frozenset({}), completed_course_sections=frozenset({}), ongoing_course_sections=frozenset(), planned_courses=frozenset(), ), name="blank", class_year=2023, topics_of_interest=frozenset({TopicArea( uri=individual_ns['hardcodedUserInterest'], name='ontology engineering', sub_topic_of=frozenset(), discipline="placeholder discipline", )}), registered_courses=frozenset(), advisor=placeholder_advisor, ) @pytest.fixture(scope="session") def bs2(placeholder_advisor, csci_major, csci_bs_deg): return Student( uri=individual_ns['blank_user'], study_plan=PlanOfStudy( uri=individual_ns['blank_user_pos'], class_year=2023, planned_major=csci_major, planned_degree=csci_bs_deg, completed_courses=frozenset({}), completed_course_sections=frozenset({}), ongoing_course_sections=frozenset(), planned_courses=frozenset(), ), name="blank", class_year=2023, topics_of_interest=frozenset({TopicArea( uri=individual_ns['hardcodedUserInterest'], name='artificial intelligence', sub_topic_of=frozenset(), discipline="placeholder discipline", )}), registered_courses=frozenset(), advisor=placeholder_advisor, ) @pytest.fixture(scope="session") def bs1(placeholder_advisor, csci_major, csci_bs_deg): return Student( uri=individual_ns['blank_user'], study_plan=PlanOfStudy( uri=individual_ns['blank_user_pos'], class_year=2023, planned_major=csci_major, planned_degree=csci_bs_deg, completed_courses=frozenset({}), completed_course_sections=frozenset({}), ongoing_course_sections=frozenset(), planned_courses=frozenset(), ), name="blank", class_year=2023, topics_of_interest=frozenset({TopicArea( uri=individual_ns['hardcodedUserInterest'], name='machine learning', sub_topic_of=frozenset(), discipline="placeholder discipline", )}), registered_courses=frozenset(), advisor=placeholder_advisor, )
[ "solashakashirai@gmail.com" ]
solashakashirai@gmail.com
9a45f1acb0c54622917608aaf57f4470f9c80e65
1a204b3a937af1b600ef44d176aedf006c2cb59c
/venv/bin/pycodestyle
0d16705078b4dafb3f6334f06d5a3977284bd469
[]
no_license
stevenkeezer/pythontodo-r
6c6ba8ba893bc21ed19f0becde4994f4793d74de
fab7783d94526fefb310ca1a246bfe66b1a14e60
refs/heads/master
2020-09-07T19:14:16.927777
2019-11-11T02:52:22
2019-11-11T02:52:22
220,887,568
0
0
null
null
null
null
UTF-8
Python
false
false
264
#!/Users/stevenkeezer/Documents/Sierra/pythontodo-p/venv/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from pycodestyle import _main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(_main())
[ "stevengkeezer@gmail.com" ]
stevengkeezer@gmail.com
225fa3db85cd8e94446ef380a7fa4851213b66d9
1e7aa28fddc02226757ca7d0b253b8bf83ce1e9c
/princess.py
dc6e013749a161b980c1cf3d8cf0ea8f586b826a
[]
no_license
cherianb59/puzzles
7c4bb85d98cc66438fb19eef5e3b6bd7ce5b5706
bbba3a20581807c078e5ca2d55a90fad317d93fd
refs/heads/main
2023-03-30T19:02:27.386411
2021-04-01T07:25:38
2021-04-01T07:25:38
353,611,346
0
0
null
null
null
null
UTF-8
Python
false
false
1,907
py
DOOR_LENGTH=7 DEPTH_LENGTH=10 #array represents the states of the doors, whether the princess could be in them based on the sequence of doors the prince has checked #position is where the prince is cheking this round #the new array outputs possible princess locations #the output for an array position is based on the two adjacent status of the old array def step(array,position): old=array[:] array[0]= int((old[1]) and not (position==1)) #this doesnt apply to first and last door for i in range(len(old[1:-1])): array[i+1]= int((old[i] | old[i+2]) and not (position==i+2)) # print(array,old,position) array[DOOR_LENGTH-1]= int((old[DOOR_LENGTH-2]) and not (position==DOOR_LENGTH)) #print(array,old,position) return array def try_sequence(sequence): #pass a sequence that the prince will try depth=0 #initialise the possible places the princess with be, she can be anywhere at teh start princess=[] for i in range(DOOR_LENGTH): princess.append(1) empty=[] for i in range(DOOR_LENGTH): empty.append(0) while depth<DEPTH_LENGTH and princess != empty: #print(princess) princess=step(princess,sequence[depth]) depth=depth+1 #print(depth) if (princess == empty): print(sequence) success.append(sequence) else: fail.append(sequence) # recursively call function for gradually increasing depths def loop(length,array): if (length==DEPTH_LENGTH): #print array #return array try_sequence(array) else: for i in range(DOOR_LENGTH): array[length]=i+1 loop(length+1,array) sequence=[] #varaible length empty list for i in range(DEPTH_LENGTH): sequence.append(0) #print sequence #how to return all the arrays? success=[] fail=[] loop(0,sequence) #try_sequence([2,3,4,2,3,4]) #try_sequence([2,3,4,5,6,2,3,4,5,6]) #try_sequence([2,3,3,2]) print(len(success))
[ "cherian.b59@gmail.com" ]
cherian.b59@gmail.com
85a9890e0d57ba8ddc27db43d7b86627e0d843a4
179a739d5f4d672b461ecbe88af285e946f898af
/tools/m_map_funcs.py
5350dbed340d764c5742771b1625debfe92295ec
[]
no_license
farisawan-2000/papermario
38e2ef57ce9099202e064ab9b3fb582bb6df8218
3a918a952b1a7ef326c76b03b0d6af26100ab650
refs/heads/master
2023-02-23T07:02:55.730335
2021-01-28T08:39:38
2021-01-28T08:39:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,049
py
#!/usr/bin/python3 import os import sys import subprocess from pathlib import Path script_dir = os.path.dirname(os.path.realpath(__file__)) root_dir = os.path.abspath(os.path.join(script_dir, "..")) src_dir = root_dir + "/src/" asm_dir = root_dir + "/asm/" common_files = [] for root, dirs, files in os.walk(os.path.join(src_dir, "world", "common")): for fname in files: if fname.endswith(".inc.c"): common_files.append(fname[:-6]) for root, dir, files in os.walk(os.path.join(asm_dir, "nonmatchings", "world")): for fname in files: if fname.endswith(".s"): prefix = Path(root).parent.name + "_" with open(os.path.join(root, fname)) as f: orig_text = f.read() new_text = orig_text for common in common_files: new_text = new_text.replace(" " + common, " " + prefix + common) if new_text != orig_text: with open(os.path.join(root, fname), "w", newline="\n") as f: f.write(new_text)
[ "ethteck@gmail.com" ]
ethteck@gmail.com
4e7988d4ea8ba41f28f5989c68714cda98909800
2eabb719792dd552fb98850a571f2d7742bd8530
/10.Sorting&BS/MinMaxDivision.py
24177f567ebeee33c17bf52b89fe63d025233119
[]
no_license
mjmingd/study_algorithm
93772b6849ba4afac61d594a2f6e52bbf0439858
29cb49a166a1dfd19c39613a0e9895c545a6bfe9
refs/heads/master
2022-03-26T11:57:23.383292
2020-01-03T15:07:36
2020-01-03T15:07:36
197,862,178
0
1
null
null
null
null
UTF-8
Python
false
false
2,382
py
''' Codility - MinMaxDivision # similar question : leetcod(Split Array Largest Sum) You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M. You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block. The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0. The large sum is the maximal sum of any block. For example, you are given integers K = 3, M = 5 and array A such that: A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2 The array can be divided, for example, into the following blocks: [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15; [2], [1, 5, 1, 2], [2, 2] with a large sum of 9; [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8; [2, 1], [5, 1], [2, 2, 2] with a large sum of 6. The goal is to minimize the large sum. In the above example, 6 is the minimal large sum. Write a function: def solution(K, M, A) that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum. For example, given K = 3, M = 5 and array A such that: A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2 the function should return 6, as explained above. Write an efficient algorithm for the following assumptions: N and K are integers within the range [1..100,000]; M is an integer within the range [0..10,000]; each element of array A is an integer within the range [0..M]. Copyright 2009–2019 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited. ''' def IsValid(A, K, sumLimit) : blockS, blockCnt = 0, 0 for x in A : if blockS + x > sumLimit : blockS = x blockCnt += 1 else : blockS += x if blockCnt >= K : return False return True def solution(K, M, A): ''' time complexity : O(N*log(N+M)) space complexity : O(1) ''' low = max(A) up = sum(A) if K == 1 : return up if K >= len(A) : return low while low <= up : mid = (low + up) // 2 if IsValid(A,K,mid): up = mid - 1 else : low = mid + 1 return low
[ "noreply@github.com" ]
noreply@github.com
f18aa238412ae3b90eb7279e821825886faaa8c3
60ee4380a9a56c8d6e883b47b1c856646095e234
/lintcode/Easy/109_Triangle.py
4f67ff01d874c514efbaec5eae8390d1971be15e
[ "MIT" ]
permissive
Rhadow/leetcode
e3d143d619a949a5ae6dc1b107b04d29675bdc31
43209626720321113dbfbac67b3841e6efb4fab3
refs/heads/master
2020-12-18T22:32:18.523143
2018-05-11T05:35:51
2018-05-11T05:35:51
42,924,724
3
0
null
null
null
null
UTF-8
Python
false
false
662
py
class Solution: """ @param triangle: a list of lists of integers. @return: An integer, minimum path sum. """ def minimumTotal(self, triangle): # write your code here res = triangle[0] for i in range(1, len(triangle)): for j in range(len(triangle[i]) - 1, -1, -1): left = triangle[i][j] + (res[j] if j < len(res) else sys.maxint) right = triangle[i][j] + (res[j - 1] if j - 1 >= 0 else sys.maxint) if (j >= len(res)): res.append(min(left, right)) else: res[j] = min(left, right) return min(res)
[ "howard3433@gmail.com" ]
howard3433@gmail.com
ff8d820c965642aa2c3f657c8f50044852250de7
95dd3f021a03d408e93b40f498e58c7b07abb796
/gans/cgan.py
4a16c4d40226b0c455b3cbcfd51a9789fdd5e258
[ "MIT" ]
permissive
er-Bot/gans
18e1c46352c7b2d7591eb3ca0e7335bb97ea5e69
fc19446750e10896dd3b1746b0ccb3c4d3b5ed8d
refs/heads/main
2023-03-15T09:04:20.926340
2021-03-09T00:57:57
2021-03-09T00:57:57
345,826,581
0
0
null
null
null
null
UTF-8
Python
false
false
7,594
py
import torch import torch.nn as nn import torch.nn.functional as F from tqdm.auto import tqdm from torchvision.utils import make_grid import matplotlib.pyplot as plt __all__ = ["Discriminator", "Generator", "CGAN"] criterion = nn.BCEWithLogitsLoss() hidden_dim = 128 class Discriminator(nn.Module): def __init__(self, in_dim): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(in_dim, 4 * hidden_dim), nn.LeakyReLU(0.2, inplace=True), nn.Linear(4 * hidden_dim, 2 * hidden_dim), nn.Dropout(0.4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(2 * hidden_dim, hidden_dim), nn.Dropout(0.4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_dim, 1) ) def forward(self, x, y): d_in = torch.cat((x, y), -1) return self.model(d_in) class Generator(nn.Module): def __init__(self, in_dim, out_dim): super(Generator, self).__init__() self.model = nn.Sequential( nn.Linear(in_dim, hidden_dim), nn.BatchNorm1d(hidden_dim), nn.ReLU(inplace=True), nn.Linear(hidden_dim, 2 * hidden_dim), nn.BatchNorm1d(2 * hidden_dim), nn.ReLU(inplace=True), nn.Linear(2 * hidden_dim, 4 * hidden_dim), nn.BatchNorm1d(4 * hidden_dim), nn.ReLU(inplace=True), nn.Linear(4 * hidden_dim, 8 * hidden_dim), nn.BatchNorm1d(8 * hidden_dim), nn.ReLU(inplace=True), nn.Linear(8 * hidden_dim, out_dim), nn.Sigmoid() ) def forward(self, z, y): g_in = torch.cat((z, y), -1) return self.model(g_in) class CGAN: def __init__(self): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # img_size of the form (1, w, h) e.g. for MNIST it's (1, 28, 28) def setup(self, z_dim, n_classes, img_size, lr, betas): self.z_dim = z_dim self.n_classes = n_classes self.img_size = img_size assert len(img_size) == 3, 'size sould be of format : (channel, width, heigt)' x_dim = img_size[1] * img_size[2] self.generator = Generator(z_dim + n_classes, x_dim).to(self.device) self.discriminator = Discriminator(x_dim + n_classes).to(self.device) self.g_opt = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=betas) self.d_opt = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=betas) self.d_loss_history = [] self.g_loss_history = [] self.z = self.noise(100) self.start_epoch = 0 def load_state(self, path): state = torch.load(path, map_location=self.device) self.z_dim = state['z_dim'] self.n_classes = state['n_classes'] self.img_size = state['img_size'] self.generator = state['gen'] self.discriminator = state['disc'] self.g_opt = state['g_opt'] self.d_opt = state['d_opt'] self.d_loss_history = state['d_loss_history'].tolist() self.g_loss_history = state['g_loss_history'].tolist() self.z = state['z'] self.start_epoch = state['start_epoch'] def noise(self, n): return torch.randn(n, self.z_dim, device=self.device) def show_images(self, images, figsize=(10, 10), nrow=10, show=False, path='.'): img_unflat = images.detach().cpu().view(-1, *self.img_size) img_grid = make_grid(img_unflat, nrow=nrow) plt.figure(figsize=figsize) plt.imshow(img_grid.permute(1, 2, 0).squeeze()) if not show: plt.savefig(path) else: plt.show() plt.close(None) def get_discriminator_loss(self, real, labels, batch_size): noise = self.noise(batch_size) fake_image_gen = self.generator(noise, labels) fake_image_pred = self.discriminator(fake_image_gen.detach(), labels) fake_image_loss = criterion(fake_image_pred, torch.zeros_like(fake_image_pred)) real_image_pred = self.discriminator(real, labels) real_image_loss = criterion(real_image_pred, torch.ones_like(real_image_pred)) disc_loss = (fake_image_loss + real_image_loss) / 2 return disc_loss def get_generator_loss(self, labels, batch_size): noise = self.noise(batch_size) fake_image_gen = self.generator(noise, labels) fake_image_pred = self.discriminator(fake_image_gen, labels) gen_loss = criterion(fake_image_pred, torch.ones_like(fake_image_pred)) return gen_loss def one_hot(self, labels): return F.one_hot(labels, self.n_classes).to(self.device) def train(self, dataloader, n_epochs, display_step=1, save_step=50, path='.'): for epoch in range(self.start_epoch, n_epochs + 1): for real, labels in tqdm(dataloader): batch_size = len(real) real = real.view(batch_size, -1).to(self.device) # flatten y = self.one_hot(labels) """ Update discriminator """ self.d_opt.zero_grad() disc_loss = self.get_discriminator_loss(real, y, batch_size) disc_loss.backward() self.d_opt.step() self.d_loss_history += [disc_loss.item()] """ Update generator """ self.g_opt.zero_grad() gen_loss = self.get_generator_loss(y, batch_size) gen_loss.backward() self.g_opt.step() self.g_loss_history += [gen_loss.item()] ### Some visuals ### if epoch % display_step == 0: print(f"Epoch {epoch}: G_loss = {self.g_loss_history[-1]}, D_loss = {self.d_loss_history[-1]}") yy = self.one_hot(torch.arange(0, 100, 1)//10) generated = self.generator(self.z, yy) self.show_images(generated, path=path+'/sample-%04d.png'%epoch) # loss functions step_bins = 20 n_example = (len(self.d_loss_history) // step_bins) * step_bins plt.clf() plt.figure(figsize=(10, 5)) plt.plot( range(n_example // step_bins), torch.Tensor(self.g_loss_history[:n_example]).view(-1, step_bins).mean(1), label="Generator loss" ) plt.plot( range(n_example // step_bins), torch.Tensor(self.d_loss_history[:n_example]).view(-1, step_bins).mean(1), label="Discriminator loss" ) plt.legend() plt.savefig(path+'/loss-%04d.png'%epoch) plt.close(None) ### Model saving ### if epoch % save_step == 0: state = { 'z_dim': self.z_dim, 'n_classes': self.n_classes, 'img_size': self.img_size, 'gen': self.generator, 'disc': self.discriminator, 'd_opt': self.d_opt, 'g_opt': self.g_opt, 'd_loss_history': torch.Tensor(self.d_loss_history), 'g_loss_history': torch.Tensor(self.g_loss_history), 'z': self.z, 'start_epoch': epoch + 1, } torch.save(state, path+'/cgan-%04d.h5'%epoch)
[ "jammalenneiym@gmail.com" ]
jammalenneiym@gmail.com
d7a8c18dd4736731eb4b2c57480333040f07c6da
ffc18cc92b55ef9867a588a2ea0c6c7cbffc9f8a
/venv/bin/gunicorn_paster
c0c8a22f3ee2dd511293e1bf2b0385802e7c6aad
[]
no_license
dculibrk/pathgameweb
4e3c1a13e5045e4af602bf6c4339636b8bd32e05
40482d325a4e38c73bc26222f0ecf7776a8ceb16
refs/heads/master
2023-02-06T07:15:24.821085
2020-06-08T16:48:57
2020-06-08T16:48:57
178,581,137
0
0
null
2023-02-02T03:25:13
2019-03-30T16:08:21
Python
UTF-8
Python
false
false
274
#!/Users/duba/Documents/work/CG/game/deploy_heroku/venv/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from gunicorn.app.pasterapp import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
[ "duba@Dubravkos-MacBook-Pro.local" ]
duba@Dubravkos-MacBook-Pro.local
008e4b6abdfc8b439322dd825a7295685d2716fa
ad9bce4809d413b2595b2a7eb85ef6dbc2660016
/botinterface/nonebotconfig_example.py
f7c2f1bf0db797f9a7d6b15ebf21b7daed14cb83
[ "MIT" ]
permissive
bothbot/awesome-bothbot
7fabee78d24ed92685769492596d8b57321aa40a
764998897f4482614121b0a5a9205312febfb2a9
refs/heads/master
2022-12-14T02:20:36.603647
2020-09-16T01:24:18
2020-09-16T01:24:18
294,954,817
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
# -*- coding: UTF-8 -*- from nonebot.default_config import * # 也可以在此处对nonebot进行设置 # 全局管理员 SUPERUSERS = { #12345, #..., } # 命令起始标识 COMMAND_START = {'!', '!'} # nonebot的debug开关 DEBUG = False # 有命令在运行时的显示 SESSION_RUNNING_EXPRESSION = '您有命令正在运行!'
[ "1362941473@qq.com" ]
1362941473@qq.com
8735a84fe481b35e5e0bc98c2b53e6a0f1d8876c
cb1c4fbf7ce4addaf5092b4951a34717a09b5584
/helloworld/hello_world.py
03f16b8b2e2ed3fca69ab0b536179c29d3c73f60
[]
no_license
neetfreek/python-brushup
25c06c2a08929ba34a1422c40ece9470e97541fa
e6d8dc09eeb4fd51f040d23f4afbf3f9690e0466
refs/heads/master
2023-06-13T01:58:26.160531
2021-07-01T13:07:17
2021-07-01T13:07:17
374,714,220
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
from _datetime import datetime def hello_world(): """Print hello world with greeting based on current time.""" _print_time_based_hello_world() # Print good morning/afternoon/evening and hello world. def _print_time_based_hello_world(): print(f"{_get_message_for_current_time()}, and hello, world!") # Return a suitable message based on the current time. def _get_message_for_current_time(): hour_now = datetime.now().hour if hour_now < 12: return "Good morning" elif hour_now < 18: return "Good afternoon" else: return "Good evening" hello_world()
[ "jonathan.widdowson1@gmail.com" ]
jonathan.widdowson1@gmail.com
c3084d05deb4895e75b4f3656c9386de01067a15
ee6c5924bca5ad4df64c6922129d600ae3e1ba71
/info_Instagram.py
725ff71e88a0df89e7bada35a956061c37bf3195
[]
no_license
jev0m/information-div0m
f30520f912225ab10f95fd95efe6faaaee314df2
447c33588199f610992d7d3421afbf3ccf39e871
refs/heads/main
2023-03-21T13:52:24.434171
2021-03-19T12:59:45
2021-03-19T12:59:45
349,423,827
0
0
null
null
null
null
UTF-8
Python
false
false
1,661
py
import requests import pyfiglet ## By Xcode & @xcodeon1 ## By Twitter : @Matrix0700 R = '\033[31m' G = '\033[32m' B = '\033[34m' print(R+" @xcodeon1") br = pyfiglet.figlet_format("Info.py") print(R+br) user = input(B+"username :") print(R+"-"*40) url = "https://i.instagram.com:443/api/v1/users/lookup/" cookies = {"mid": "XOSINgABAAG1IDmaral3noOozrK0rrNSbPuSbzHq"} headers = {"Connection": "close", "X-IG-Connection-Type": "WIFI", "X-IG-Capabilities": "3R4=", "Accept-Language": "ar-AE", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "User-Agent": "Instagram 99.4.0 S3od_al3nzi (Dmaral3noOoz)", "Accept-Encoding": "gzip, deflate"} data = {"signed_body": "35a2d547d3b6ff400f713948cdffe0b789a903f86117eb6e2f3e573079b2f038.{\"q\":\"%s\"}" % user } re = requests.post(url, headers=headers, cookies=cookies, data=data) info = re.json() # print(info) print(G+"Username :"+user) if info['email_sent'] == False : print(G+"Email_Sent : False") else: print("Sms_Sent : True") if info['sms_sent'] == False : print(G+"sms_Sent : False") else: print("sms : True") def emailPhoneIsuue(info): try: if info['obfuscated_email']: print(G+"His Phone Email Is : "+info['obfuscated_email']) else: pass except KeyError: 'obfuscated_email' pass try: if info['obfuscated_phone']: print(G+"His Phone number Is: "+ info['obfuscated_phone']) else: print("oh") except KeyError: 'obfuscated_phone' pass emailPhoneIsuue(info) print(R+"-"*40) print("\n")
[ "noreply@github.com" ]
noreply@github.com
6bfdd66d686ef7efaf2da0136d5f0114fbfc0a74
6af78ebddf5354d0a61612e36e0ae22304be9210
/venv/Scripts/pip3.8-script.py
b1bc705446e2069def9bdcf9c1bd95c06b274905
[]
no_license
webclinic017/finance-9
f87f537c2965836e4025898bffad9beb111f07f4
d26b35e4186f7d4b1b1fced055950223e4017d25
refs/heads/master
2023-01-13T04:31:03.737958
2020-11-22T05:08:11
2020-11-22T05:08:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
#!C:\Users\pjk14\Desktop\Python\venv\finance\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==20.2.3','console_scripts','pip3.8' __requires__ = 'pip==20.2.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==20.2.3', 'console_scripts', 'pip3.8')() )
[ "pjk1413@gmail.com" ]
pjk1413@gmail.com
107f871602e5d1be87f6b15c3d28bfc62bf8fb3b
696bfb83e741b0ada656c633038098c5a4dcc78a
/manage.py
234ce79ac54748a952e4022175d094416f017afd
[]
no_license
Smorta/Planning-Prom
dee5cb4186f27de596ee375bce78afd6243fb695
169c62f911ef3d3a6f32c949dad4592ca1072e38
refs/heads/main
2023-06-10T01:48:07.473233
2021-07-02T08:57:01
2021-07-02T08:57:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'GestioPro.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "noreply@github.com" ]
noreply@github.com
d7590593aba400293172eda8319a4f422cb65f7f
6655650f052a3b140f02de41b7393a24cd23747a
/D_D/getPDF.py
fb3b0e8242ff5eb0b62cc71c0b0243156728f832
[]
no_license
bivasmaiti26/census2001auto
5238286934c4bd82405aaf3b2830bfebe6ce2162
6c1a2d7e96d80d2b7e75d7a1096611bc4ef9b844
refs/heads/master
2020-04-22T18:48:40.621253
2018-01-08T15:10:47
2018-01-08T15:10:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
import urllib def downloadPDF(state_code): #getting the string fpr state code if (state_code<10): string_state='0'+str(state_code) else: string_state=str(state_code) i=1 while True: #getting the string for district code if (i<10): string_district='0'+str(i) else: string_district=str(i) try: urllib.urlretrieve ("http://censusindia.gov.in/Dist_File/datasheet-"+string_state+string_district+".pdf","district"+string_district+".pdf") except: break i=i+1 #Daman & Diu code=25 downloadPDF(code)
[ "preetskhalsa97@gmail.com" ]
preetskhalsa97@gmail.com
6a244e5d202b43213040fc14188fe4cf309356c2
a7b78ab632b77d1ed6b7e1fa46c33eda7a523961
/src/foreign_if/python/UT/src/eigen/test_049.py
558da13e6a88495e2835d12cb1b59571e2a9938d
[ "BSD-2-Clause" ]
permissive
frovedis/frovedis
80b830da4f3374891f3646a2298d71a3f42a1b2d
875ae298dfa84ee9815f53db5bf7a8b76a379a6f
refs/heads/master
2023-05-12T20:06:44.165117
2023-04-29T08:30:36
2023-04-29T08:30:36
138,103,263
68
13
BSD-2-Clause
2018-12-20T10:46:53
2018-06-21T01:17:51
C++
UTF-8
Python
false
false
926
py
#!/usr/bin/env python import sys from frovedis.exrpc.server import FrovedisServer from frovedis.linalg import eigsh from scipy.sparse import csr_matrix desc = "Testing eigsh() for csr_matrix and which = 'SM': " # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if argc < 2: print ('Please give frovedis_server calling command as the first argument \n' '(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")') quit() FrovedisServer.initialize(argvs[1]) # sample square symmetric sparse matrix (6x6) mat = csr_matrix([[ 2.,-1., 0., 0.,-1., 0.], [-1., 3.,-1., 0.,-1., 0.], [ 0.,-1., 2.,-1., 0., 0.], [ 0., 0.,-1., 3.,-1.,-1], [-1.,-1., 0.,-1., 3., 0.], [ 0., 0., 0.,-1., 0., 1.]]) try: eigen_vals, eigen_vecs = eigsh(mat, k = 3, which = 'SM') print(desc, "Passed") except: print(desc, "Failed") FrovedisServer.shut_down()
[ "takuy_araki@nec.com" ]
takuy_araki@nec.com