blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
281
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
57
| license_type
stringclasses 2
values | repo_name
stringlengths 6
116
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 313
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 18.2k
668M
⌀ | star_events_count
int64 0
102k
| fork_events_count
int64 0
38.2k
| gha_license_id
stringclasses 17
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 107
values | src_encoding
stringclasses 20
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 4
6.02M
| extension
stringclasses 78
values | content
stringlengths 2
6.02M
| authors
listlengths 1
1
| author
stringlengths 0
175
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
74c0f20f27a5b7bcad076b8a5b964d41878080ab
|
0a6b07635bfe1cda46fb9a537c3f5974c091f89a
|
/ExprGCNPPI.py
|
ec9a99c34d0d184b7f45fec3b1df86c652ecaa91
|
[] |
no_license
|
sabdollahi/WinBinVec
|
89096b48612a1efa24c4f9ea63f27cdc185059b4
|
5b4b2e7f0e9d97eccc9d558449d4dfaf36d53da3
|
refs/heads/main
| 2023-07-11T05:24:05.141008
| 2021-08-25T09:50:12
| 2021-08-25T09:50:12
| 309,229,996
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 16,400
|
py
|
from __future__ import division
from __future__ import print_function
import time
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import numpy as np
import seaborn as sns
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import roc_auc_score
import os
import pickle
from sklearn.model_selection import KFold
from torch.autograd import Variable
from sklearn.utils import shuffle
#"GraphConvolution" and "GCN" classes are obtained from the following GitHub repository
#https://github.com/tkipf/pygcn
class GraphConvolution(Module):
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
#ExprGCNPPI implemented by Sina Abdollahi for WinBinVec paper
class ExprGCNPPI(nn.Module):
def __init__(self):
super(ExprGCNPPI, self).__init__()
self.gcn = GCN(nfeat=1, nhid=8, nclass=1, dropout=0.5)
#626: The number of partner proteins involve in the PPIs
self.fc1 = nn.Linear(572, 256)
self.fc2 = nn.Linear(256, 8)
self.fc3 = nn.Linear(8, 2)
self.bn1 = nn.BatchNorm1d(num_features=256)
self.drop1 = torch.nn.Dropout(0.4)
self.bn2 = nn.BatchNorm1d(num_features=8)
self.drop2 = torch.nn.Dropout(0.4)
def forward(self, adj, expr, batch_size):
outs = []
for i in range(batch_size):
outs.append(self.gcn(expr[i,:], adj[i,:]).view(1,adj.size(1)))
concat_gcn = outs[0]
for i in range(1,batch_size):
concat_gcn = torch.cat([concat_gcn, outs[i]], dim=0)
output = self.drop1(F.relu(self.bn1(self.fc1(concat_gcn))))
output = self.drop2(F.relu(self.bn2(self.fc2(output))))
output = self.fc3(output)
return output
ppi_adj_matrix = pickle.load(open("DATASET/Adj.pickle", "rb"))
#adj -> Adjacency matrix (N by N ---> N is the number of nodes)
#expr -> Features (Expression) matrix (N by 1 ---> 1 is for gene expression value for each protein)
tcga_clinical_dataframe = pickle.load(open("DATASET/TCGA_clinical_dataframe.pickle","rb"))
classes = {"adrenal gland":0, "bladder":1, "breast":2, "GYN":3, "bile duct":4, "CRC":5, "bone marrow":6, "esophagus":7, "brain":8, "head and neck":9, "Kidney":10, "liver":11, "Lung":12, "pleura":13, "pancreatic":14, "male reproductive system":15, "other":16, "Melanoma":17, "stomach":18, "thyroid":19, "thymus":20}
which_clinicals = ['cancer_class']
tcga_clinical_dataframe = tcga_clinical_dataframe[which_clinicals]
for cancer_class in classes:
print(">>>>>>" + cancer_class)
folds_accuracy = []
folds_roc_auc = []
folds_PR_auc = []
replace_statement = {}
for cl in classes:
if(cl != cancer_class):
replace_statement[cl] = 0
else:
replace_statement[cl] = 1
specific_cancer_patients = tcga_clinical_dataframe[tcga_clinical_dataframe["cancer_class"] == cancer_class]
specific_cancer_patients = specific_cancer_patients.replace({'cancer_class': replace_statement})
other_cancer_patients = tcga_clinical_dataframe[tcga_clinical_dataframe["cancer_class"] != cancer_class]
other_cancer_patients = shuffle(other_cancer_patients).sample(n = len(specific_cancer_patients))
other_cancer_patients = other_cancer_patients.replace({'cancer_class': replace_statement})
K = 10 #Kfold (number of parts = K)
kf_other = KFold(n_splits = K, shuffle = True)
kf_specific = KFold(n_splits = K, shuffle = True)
parts_specific = kf_specific.split(specific_cancer_patients)
parts_other = kf_other.split(other_cancer_patients)
indices_specific = next(parts_specific, None)
indices_other = next(parts_other, None)
fold = 1
while(indices_specific):
#Define the model
model = ExprGCNPPI()
# Mean Squared Error
criterion = torch.nn.CrossEntropyLoss()
# Stochastic Gradient Descent
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
batch_size = 20
print("Shuffled Epoch (20): ", end="")
for shuffled_epoch in range(20):
if(shuffled_epoch == 19):
print((shuffled_epoch+1))
else:
print((shuffled_epoch+1), end=", ")
training = specific_cancer_patients.iloc[indices_specific[0]]
training_other = other_cancer_patients.iloc[indices_other[0]]
training = shuffle(training.append(training_other))
Y = training[['cancer_class']].values
Y = Variable(torch.LongTensor(Y.flatten()), requires_grad=False)
training = training.index
for epoch in range(50):
for index in range(0, len(training), batch_size):
y = Y[index : index + batch_size]
batch_X = []
kk = 0
for patient in training[index : index + batch_size]:
kk += 1
p_data = pickle.load(open("DATASET/ExpressionInputs/" + patient + "_expressions.pickle", "rb"))
batch_X.append(p_data)
X = np.asarray(batch_X)
adj = np.array([ppi_adj_matrix]*batch_size)
adj = adj.astype(np.float32)
adj = torch.FloatTensor(adj)
X = X.astype(np.float32)
X = torch.FloatTensor(X)
X = X.view(X.size(0), X.size(1), 1)
optimizer.zero_grad()
Y_hat = model(adj, X, kk)
loss = criterion(Y_hat, y)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
test = specific_cancer_patients.iloc[indices_specific[1]]
test_other = other_cancer_patients.iloc[indices_other[1]]
test = shuffle(test.append(test_other))
Y_test = test[['cancer_class']].values
Y_test = Variable(torch.LongTensor(Y_test.flatten()), requires_grad=False)
test = test.index
avg_acc = 0
isFirstTime = True
output_predicted = ""
ii = 0
for index in range(0, len(training), batch_size):
y = Y_test[index : index + batch_size]
test_list = []
kk = 0
for patient in test[index : index + batch_size]:
kk += 1
p_data = pickle.load(open("DATASET/ExpressionInputs/" + patient + "_expressions.pickle", "rb"))
test_list.append(p_data)
#test_list = torch.FloatTensor(test_list)
if(len(test_list) <= 1):
break
X_test = np.asarray(test_list)
adj = np.array([ppi_adj_matrix]*batch_size)
adj = adj.astype(np.float32)
adj = torch.FloatTensor(adj)
X_test = X_test.astype(np.float32)
X_test = torch.FloatTensor(X_test)
X_test = X_test.view(X_test.size(0), X_test.size(1), 1)
test_batch_Y_hat = model.forward(adj, X_test, kk)
if(isFirstTime):
output_predicted = test_batch_Y_hat
isFirstTime = False
else:
output_predicted = torch.cat((output_predicted, test_batch_Y_hat), 0)
dummy, preds_test = torch.max (test_batch_Y_hat, dim = 1)
accuracy_test = (preds_test == y).long().sum().float() / preds_test.size()[0]
avg_acc += accuracy_test
ii += 1
avg_acc = avg_acc / ii
Y_prediction = torch.softmax(output_predicted, dim=1)
Y_prediction = np.array(Y_prediction.tolist())
Y_real = np.array([[1,0] if y == 0 else [0,1] for y in Y_test])
fpr = dict()
tpr = dict()
precision = dict()
recall = dict()
roc_auc = dict()
PR_auc = dict()
for i in range(2):
fpr[i], tpr[i], _ = roc_curve(Y_real[:, i], Y_prediction[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
precision[i], recall[i], _ = precision_recall_curve(Y_real[:, i], Y_prediction[:, i])
PR_auc[i] = auc(recall[i], precision[i])
print("Fold " + str(fold) + " Accuracy: " + str(avg_acc))
print("Fold " + str(fold) + " ROC AUC: " + str(roc_auc[1]))
print("Fold " + str(fold) + " PR AUC: " + str(PR_auc[1]))
fold += 1
folds_accuracy.append(avg_acc)
folds_roc_auc.append(roc_auc[1])
folds_PR_auc.append(PR_auc[1])
indices_specific = next(parts_specific, None)
indices_other = next(parts_other, None)
if not os.path.exists('RESULTS/ExprGCNPPIResults'):
os.makedirs('RESULTS/ExprGCNPPIResults')
pickle.dump(folds_accuracy, open("RESULTS/ExprGCNPPIResults/" + cancer_class + "_Accuracy.pickle","wb"))
pickle.dump(folds_roc_auc, open("RESULTS/ExprGCNPPIResults/" + cancer_class + "_ROC_AUC.pickle","wb"))
pickle.dump(folds_PR_auc, open("RESULTS/ExprGCNPPIResults/" + cancer_class + "_PR_AUC.pickle","wb"))
#Predict Metastasis (Stage IV) or not (Stages I, II, and III)
#tcga_clinical_dataframe[tcga_clinical_dataframe['stage'] == 'Stage IVA']
tcga_clinical_dataframe = pickle.load(open("DATASET/TCGA_clinical_dataframe.pickle","rb"))
which_clinicals = ['stage']
tcga_clinical_dataframe = tcga_clinical_dataframe[which_clinicals]
replace_statement = {}
metastasis_list = ['Stage IV','Stage IVA','Stage IVB','Stage IVC']
other_list = ['Stage I','Stage IA','Stage IB','Stage II','Stage IIA','Stage IIB','Stage IIC','Stage III','Stage IIIA','Stage IIIB','Stage IIIC']
#Metastasis Stage
for m in metastasis_list:
replace_statement[m] = 1
#Non-metastasis Stage
for o in other_list:
replace_statement[o] = 0
metastasis_patients = tcga_clinical_dataframe[tcga_clinical_dataframe["stage"].isin(metastasis_list)]
metastasis_patients = metastasis_patients.replace({'stage': replace_statement})
other_patients = tcga_clinical_dataframe[tcga_clinical_dataframe["stage"].isin(other_list)]
other_patients = other_patients.replace({'stage': replace_statement})
start_and_end_for_other = [0,793,1586,2379,3172,3965,4758,5554]
for i in range(7):
print("PART: " + str(i))
selected_other_patients = other_patients[start_and_end_for_other[i]:start_and_end_for_other[i+1]]
folds_accuracy = []
K = 10 #Kfold (number of parts = K)
kf_other = KFold(n_splits = K, shuffle = True)
kf_metastasis = KFold(n_splits = K, shuffle = True)
parts_metastasis = kf_metastasis.split(metastasis_patients)
parts_other = kf_other.split(selected_other_patients)
indices_metastasis = next(parts_metastasis, None)
indices_other = next(parts_other, None)
fold_number = 1
while(indices_metastasis):
model = ExprGCNPPI()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
batch_size = 20
print("Shuffled Epoch (20): ", end="")
for shuffled_epoch in range(20):
if(shuffled_epoch == 19):
print((shuffled_epoch+1))
else:
print((shuffled_epoch+1), end=", ")
training = metastasis_patients.iloc[indices_metastasis[0]]
training_other = selected_other_patients.iloc[indices_other[0]]
training = shuffle(training.append(training_other))
Y = training[['stage']].values
Y = Variable(torch.LongTensor(Y.flatten()), requires_grad=False)
training = training.index
for epoch in range(50):
for index in range(0, len(training), batch_size):
y = Y[index : index + batch_size]
batch_X = []
kk = 0
for patient in training[index : index + batch_size]:
kk += 1
p_data = pickle.load(open("DATASET/ExpressionInputs/" + patient + "_expressions.pickle", "rb"))
batch_X.append(p_data)
X = np.asarray(batch_X)
adj = np.array([ppi_adj_matrix]*batch_size)
adj = adj.astype(np.float32)
adj = torch.FloatTensor(adj)
X = X.astype(np.float32)
X = torch.FloatTensor(X)
X = X.view(X.size(0), X.size(1), 1)
optimizer.zero_grad()
Y_hat = model(adj, X, kk)
loss = criterion(Y_hat, y)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
test = metastasis_patients.iloc[indices_metastasis[1]]
test_other = selected_other_patients.iloc[indices_other[1]]
test = shuffle(test.append(test_other))
Y_test = test[['stage']].values
Y_test = Variable(torch.LongTensor(Y_test.flatten()), requires_grad=False)
test = test.index
avg_acc = 0
ii = 0
for index in range(0, len(training), batch_size):
y = Y_test[index : index + batch_size]
test_list = []
kk = 0
for patient in test[index : index + batch_size]:
kk += 1
p_data = pickle.load(open("DATASET/ExpressionInputs/" + patient + "_expressions.pickle", "rb"))
test_list.append(p_data)
if(len(test_list) <= 1):
break
X_test = np.asarray(test_list)
adj = np.array([ppi_adj_matrix]*batch_size)
adj = adj.astype(np.float32)
adj = torch.FloatTensor(adj)
X_test = X_test.astype(np.float32)
X_test = torch.FloatTensor(X_test)
X_test = X_test.view(X_test.size(0), X_test.size(1), 1)
test_batch_Y_hat = model.forward(adj, X_test, kk)
dummy, preds_test = torch.max (test_batch_Y_hat, dim = 1)
accuracy_test = (preds_test == y).long().sum().float() / preds_test.size()[0]
avg_acc += accuracy_test
ii += 1
avg_acc = avg_acc / ii
print("Fold: " + str(fold_number) + " ACC: " + str(avg_acc))
fold_number += 1
folds_accuracy.append(avg_acc)
indices_metastasis = next(parts_metastasis, None)
indices_other = next(parts_other, None)
if not os.path.exists('RESULTS/ExprGCNPPI-StagePrediction'):
os.makedirs('RESULTS/ExprGCNPPI-StagePrediction')
pickle.dump(folds_accuracy, open("RESULTS/ExprGCNPPI-StagePrediction/Part" + str(i) + "_folds_accuracy.pickle","wb"))
|
[
"noreply@github.com"
] |
noreply@github.com
|
bf38c9ba21a9178526560f3d4d833892fc472830
|
4ac6645c5925feefc8a3ab8587d08edc6edb220e
|
/school/unit/tests/test_api.py
|
0abf5166aa3e74b405609fa0d4013d54c6ac092d
|
[
"MIT"
] |
permissive
|
yucealiosman/school
|
4a4b701a8ef87fc15b637e655f4d995a0b243adf
|
630059760f411c163db57f980b780d8501aa1a6d
|
refs/heads/main
| 2023-09-04T05:25:36.278730
| 2021-03-19T12:28:33
| 2021-03-19T15:05:17
| 349,236,587
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,007
|
py
|
import json
from unittest.mock import patch
from django.urls import reverse
from rest_framework import status
from rest_framework.test import APITestCase, APIClient
from school.unit import models
from school.unit.tests import factories
from school.unit.tests.factories import SuperUserFactory
class BaseTest(APITestCase):
def setUp(self):
self.client = APIClient()
self.client.force_authenticate(user=SuperUserFactory())
class StudentApiTest(BaseTest):
def test_student_list(self):
student_count = 5
teacher = factories.TeacherFactory()
class_room = factories.ClassRoomFactory(teachers=[teacher])
student_list = factories.StudentFactory.create_batch(
class_room=class_room, size=student_count)
expected_student_pk_set = {str(student.pk) for student in
student_list}
response = self.client.get(reverse('students-list'))
data = response.json()
self.assertEqual(response.status_code, status.HTTP_200_OK,
response.data)
self.assertEqual(data['count'], student_count)
student_pk_set_from_resp = {student["pk"] for student in
data["results"]}
self.assertEqual(expected_student_pk_set, student_pk_set_from_resp)
def test_student_detail(self):
teacher = factories.TeacherFactory()
class_room = factories.ClassRoomFactory(teachers=[teacher])
student = factories.StudentFactory(class_room=class_room)
response = self.client.get(
reverse('students-detail', kwargs={'pk': str(student.pk)}))
self.assertEqual(response.status_code, status.HTTP_200_OK,
response.data)
data = response.json()
self.assertEqual(class_room.code, data["class_room"]["code"])
teacher_pk_list_from_resp = [teacher["pk"] for teacher in
data["class_room"]["teachers"]]
self.assertEqual(teacher_pk_list_from_resp, [str(teacher.pk)])
class HomeWorkApiTest(BaseTest):
@patch('school.unit.services.HomeWorkService.notify')
def test_create_homework(self, notify_mock):
teacher = factories.TeacherFactory()
class_room = factories.ClassRoomFactory(teachers=[teacher])
hw_not_created = factories.ClassHomeWorkFactory.build()
data = {
'title': hw_not_created.title,
'description': hw_not_created.description,
'class_room': str(class_room.pk)
}
response = self.client.post(
reverse('homeworks-by-teacher-list',
kwargs={'teacher__pk': str(teacher.pk)}),
data=json.dumps(data),
content_type='application/json')
self.assertEqual(response.status_code, status.HTTP_201_CREATED,
response.data)
data = response.json()
hw_created = models.ClassHomeWork.objects.get(pk=data["pk"])
self.assertEqual(data["title"], hw_not_created.title)
self.assertEqual(data["description"], hw_not_created.description)
self.assertEqual(data["teacher"], str(teacher.pk))
self.assertEqual(data["class_room"], str(class_room.pk))
notify_mock.assert_called_once_with(hw_created, 'created')
@patch('school.unit.services.HomeWorkService.notify')
def test_update_homework(self, notify_mock):
teacher = factories.TeacherFactory()
class_room = factories.ClassRoomFactory(teachers=[teacher])
homework = factories.ClassHomeWorkFactory(class_room=class_room,
teacher=teacher)
new_description = "New HomeWork description"
update_data = {
'description': new_description
}
response = self.client.patch(
reverse('homeworks-by-teacher-detail',
kwargs={'teacher__pk': str(teacher.pk),
'pk': str(homework.pk)}),
data=json.dumps(update_data),
content_type='application/json')
self.assertEqual(response.status_code, status.HTTP_200_OK,
response.data)
data = response.json()
self.assertEqual(data["description"], new_description)
notify_mock.assert_called_once_with(homework, 'updated')
@patch('school.unit.services.HomeWorkService.notify')
def test_delete_homework(self, notify_mock):
homework = factories.ClassHomeWorkFactory()
response = self.client.delete(
reverse('homeworks-by-teacher-detail',
kwargs={'teacher__pk': str(homework.teacher.pk),
'pk': str(homework.pk)}))
self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT,
response.data)
self.assertFalse(
models.ClassHomeWork.objects.filter(pk=homework.pk).exists())
notify_mock.assert_called_once()
|
[
"aliosmanyuce@gmail"
] |
aliosmanyuce@gmail
|
06d3b8b17c46a0ae3faf7387123f73c73bea8d78
|
4766d241bbc736e070f79a6ae6a919a8b8bb442d
|
/20200215Python-China/0094. Binary Tree Inorder Traversal.py
|
08893a77b8777c433e17edf90f755b8b4b58c958
|
[] |
no_license
|
yangzongwu/leetcode
|
f7a747668b0b5606050e8a8778cc25902dd9509b
|
01f2edd79a1e922bfefecad69e5f2e1ff3a479e5
|
refs/heads/master
| 2021-07-08T06:45:16.218954
| 2020-07-18T10:20:24
| 2020-07-18T10:20:24
| 165,957,437
| 10
| 8
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 733
|
py
|
'''
Given a binary tree, return the inorder traversal of its nodes' values.
Example:
Input: [1,null,2,3]
1
\
2
/
3
Output: [1,3,2]
Follow up: Recursive solution is trivial, could you do it iteratively?
'''
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
rep=[]
self.getInOrderTra(root,rep)
return rep
def getInOrderTra(self,root,rep):
if not root:
return
self.getInOrderTra(root.left,rep)
rep.append(root.val)
self.getInOrderTra(root.right,rep)
|
[
"noreply@github.com"
] |
noreply@github.com
|
e5fefc6b8e0ec0d00e467d6808038193d92e8aa7
|
683b73e0c95c755a08e019529aed3ff1a8eb30f8
|
/machina/apps/forum_moderation/__init__.py
|
f1911a14dbd6195e896b647fa949fa08a0c6abce
|
[
"BSD-3-Clause"
] |
permissive
|
DrJackilD/django-machina
|
b3a7be9da22afd457162e0f5a147a7ed5802ade4
|
76858921f2cd247f3c1faf4dc0d9a85ea99be3e1
|
refs/heads/master
| 2020-12-26T08:19:09.838794
| 2016-03-11T03:55:25
| 2016-03-11T03:55:25
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 217
|
py
|
# -*- coding: utf-8 -*-
# Standard library imports
# Third party imports
# Local application / specific library imports
default_app_config = 'machina.apps.forum_moderation.registry_config.ModerationRegistryConfig'
|
[
"morgan.aubert@zoho.com"
] |
morgan.aubert@zoho.com
|
ec390ae9d26d00c9987dcba374799b70c1c22380
|
704f50b7df466bd30811707f81561a5d8ace3127
|
/screens/admin/delitem.py
|
98c82f6ecbe218fb770c82cb71eed836c5b1a469
|
[] |
no_license
|
Maulik747/LostandFound
|
0e7c4e4c3c3561151fbc35ff463caeda428f1803
|
f31c0e8f9e9e50f1c62c9b7040560d5e21a24426
|
refs/heads/main
| 2023-02-18T22:17:52.377378
| 2021-01-18T19:26:10
| 2021-01-18T19:26:10
| 330,764,457
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,709
|
py
|
#!/usr/bin/env python
import cgitb
import cgi
import mysql.connector
cgitb.enable()
print("Content-Type: text/html;charset=utf-8\n\n")
mydb = mysql.connector.connect(
host="localhost",
user="root",
password="root",
database = 'group6',
auth_plugin='mysql_native_password'
)
cursor = mydb.cursor()
head = '''<html>
<head>
<link rel="stylesheet" href="../admin.css">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body>
<div style="text-align: center;margin-top: 10%;">
<form action="../../scripts/delitem.py" method="POST">
<label class="label">Item Id:</label><br>
<div style="display: inline">
<select name='id'>
'''
print(head)
cursor.execute("select * from Item")
items = cursor.fetchall()
for i in items:
print("<option value = '{}'>{}</option>".format(i[0],i[0]))
body = '''
</select>
</div><br><br>
<label class = 'label'>Moderator</label><br>
<div>
<select name ='mod'>
'''
print(body)
cursor.execute('select * from Moderator')
people = cursor.fetchall()
for j in people:
print('<option value = {}>{}</option>'.format(j[0],j[0]))
footer = '''
</select>
</div><br>
<label class="label">Description:</label><br>
<div style="display: inline">
<div ><textarea name='description' style="width: 25%; height: 15%;">
</textarea></div>
</div>
<input class="button" type="submit" value="Delete">
</form>
</div>
</body>
</html>
'''
print(footer)
|
[
"[maulikchhetri1@gmail.com]"
] |
[maulikchhetri1@gmail.com]
|
075c8636339cb3b08aa5c4c3815994408a005e38
|
853d7bd91f4ba254fba0ff28f2e0a3eb2b74fa48
|
/errata_tool/release.py
|
b5c1211cb9a8c86556c758725ad9297bc11a9fbb
|
[
"MIT"
] |
permissive
|
smunilla/errata-tool
|
b07614daeceda4a1bfc18ce59679be0a93bb084f
|
91bdfb17f15308b46298210fbb2fe5af786276bc
|
refs/heads/master
| 2020-04-10T00:18:12.471123
| 2018-11-19T17:33:02
| 2018-11-28T15:40:08
| 160,681,680
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,800
|
py
|
from __future__ import print_function
import sys
from datetime import date
from errata_tool import ErrataConnector
from errata_tool.product import Product
from errata_tool.product_version import ProductVersion
from errata_tool.user import User
class NoReleaseFoundError(Exception):
pass
class MultipleReleasesFoundError(Exception):
pass
class ReleaseCreationError(Exception):
pass
class Release(ErrataConnector):
def __init__(self, **kwargs):
if 'id' not in kwargs and 'name' not in kwargs:
raise ValueError('missing release "id" or "name" kwarg')
self.id = kwargs.get('id')
self.name = kwargs.get('name')
self.refresh()
def refresh(self):
url = self._url + '/api/v1/releases?'
if self.id is not None:
url += 'filter[id]=%s' % self.id
elif self.name is not None:
url += 'filter[name]=%s' % self.name
result = self._get(url)
if len(result['data']) < 1:
raise NoReleaseFoundError()
if len(result['data']) > 1:
# it's possible to accidentally have identically named releases,
# see engineering RT 461783
raise MultipleReleasesFoundError()
self.data = result['data'][0]
self.id = self.data['id']
self.name = self.data['attributes']['name']
self.description = self.data['attributes']['description']
self.type = self.data['attributes']['type']
self.is_active = self.data['attributes']['is_active']
self.enabled = self.data['attributes']['enabled']
self.blocker_flags = self.data['attributes']['blocker_flags']
self.is_pdc = self.data['attributes']['is_pdc']
self.product_versions = self.data['relationships']['product_versions']
self.url = self._url + '/release/show/%d' % self.id
# For displaying in scripts/logs:
self.edit_url = self._url + '/release/edit/%d' % self.id
def advisories(self):
"""
Find all advisories for this release.
:returns: a list of dicts, one per advisory.
For example:
[{
"id": 32972,
"advisory_name": "RHSA-2018:0546",
"product": "Red Hat Ceph Storage",
"release": "rhceph-3.0",
"synopsis": "Important: ceph security update",
"release_date": None,
"qe_owner": "someone@redhat.com",
"qe_group": "RHC (Ceph) QE",
"status": "SHIPPED_LIVE",
"status_time": "March 15, 2018 18:29"
}]
"""
url = '/release/%d/advisories.json' % self.id
return self._get(url)
@classmethod
def create(klass, name, product, product_versions, type, program_manager,
default_brew_tag, blocker_flags, ship_date=None):
"""
Create a new release in the ET.
See https://bugzilla.redhat.com/1401608 for background.
Note this method enforces certain conventions:
* Always disables PDC for a release
* Always creates the releases as "enabled"
* Always allows multiple advisories per package
* Description is always the combination of the product's own
description (for example "Red Hat Ceph Storage") with the number
from the latter part of the release's name. So a new "rhceph-3.0"
release will have a description "Red Hat Ceph Storage 3.0".
:param name: short name for this release, eg "rhceph-3.0"
:param product: short name, eg. "RHCEPH".
:param product_versions: list of names, eg. ["RHEL-7-CEPH-3"]
:param type: "Zstream" or "QuarterlyUpdate"
:param program_manager: for example "anharris" (Drew Harris, Ceph PgM)
:param default_brew_tag: for example "ceph-3.0-rhel-7-candidate"
:param blocker_flags: for example, "ceph-3.0"
:param ship_date: date formatted as strftime("%Y-%b-%d"). For example,
"2017-Nov-17". If ommitted, the ship_date will
be set to today's date. (This can always be updated
later to match the ship date value in Product
Pages.)
"""
product = Product(product)
(_, number) = name.split('-', 1)
description = '%s %s' % (product.description, number)
program_manager = User(program_manager)
product_version_ids = set([])
for pv_name in product_versions:
pv = ProductVersion(pv_name)
product_version_ids.add(pv.id)
if ship_date is None:
today = date.today()
ship_date = today.strftime("%Y-%b-%d")
et = ErrataConnector()
url = et._url + '/release/create'
payload = {
'type': type,
'release[allow_blocker]': 0,
'release[allow_exception]': 0,
'release[allow_pkg_dupes]': 1,
'release[allow_shadow]': 0,
'release[blocker_flags]': blocker_flags,
'release[default_brew_tag]': default_brew_tag,
'release[description]': description,
'release[enable_batching]': 0,
'release[enabled]': 1,
'release[is_deferred]': 0,
'release[is_pdc]': 0,
'release[name]': name,
'release[product_id]': product.id,
'release[product_version_ids][]': product_version_ids,
'release[program_manager_id]': program_manager.id,
'release[ship_date]': ship_date,
'release[type]': type,
}
result = et._post(url, data=payload)
if (sys.version_info > (3, 0)):
body = result.text
else:
# Found during live testing:
# UnicodeEncodeError: 'ascii' codec can't encode character u'\xe1'
# in position 44306: ordinal not in range(128)
# Not sure why there was a non-ascii character in the ET's HTTP
# response, but this fixes it.
body = result.text.encode('utf-8')
if result.status_code != 200:
# help with debugging:
print(body)
result.raise_for_status()
# We can get a 200 HTTP status_code here even when the POST failed to
# create the release in the ET database. (This happens, for example, if
# there are no Approved Components defined in Bugzilla for the release
# flag, and the ET hits Bugzilla's XMLRPC::FaultException.)
if 'field_errors' in body:
print(body)
raise ReleaseCreationError('see field_errors <div>')
return klass(name=name)
|
[
"kdreyer@redhat.com"
] |
kdreyer@redhat.com
|
552fea4e7e4a404550ffa6236bc4c30f22f33e18
|
3f9f7c73bb2f9da31c586d2b64e2cc94f35239dc
|
/django-polls/polls/tests/test_models.py
|
94b7c24fbee98fcaf5c51ee69dd5ad670600b45b
|
[
"MIT"
] |
permissive
|
jsterling23/DPY_Refresher
|
eb57e37d4bbad14143800719668b990b459fb56d
|
4646b7ebd79ba853f5ccc172183f41257cc12b60
|
refs/heads/master
| 2020-03-23T19:11:32.626731
| 2018-07-29T01:17:49
| 2018-07-29T01:17:49
| 141,959,227
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,141
|
py
|
from django.test import TestCase
import datetime
from django.utils import timezone
from ..models import Question
from django.urls import reverse
class QuestionModelTests(TestCase):
def test_was_published_recently_with_future_question(self):
# method should return false for future dated questions.
time = timezone.now() + datetime.timedelta(days=1, seconds=1)
future_question = Question(pub_date=time)
self.assertIs(future_question.was_published_recently(), False)
def test_was_published_recently_with_past_question(self):
# method should return false for past dated questions.
time = timezone.now() - datetime.timedelta(days=1, seconds=1)
past_question = Question(pub_date=time)
self.assertIs(past_question.was_published_recently(), False)
def test_was_published_recently_with_current_question(self):
# should return True for current question
time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59)
current_question = Question(pub_date=time)
self.assertIs(current_question.was_published_recently(), True)
|
[
"jerrypadilla23@gmail.com"
] |
jerrypadilla23@gmail.com
|
004e7568fbdb3e5a639501d4dd91b45601254179
|
702f403e33c94b32bd95e9284349e3c5aa751361
|
/TextAcquisition.py
|
6823d079b79c833821e7b6ae76b37cacd842ea56
|
[] |
no_license
|
Timmichi/ICSearch-Engine
|
71bcc0cefe24afe974ca13f8a6ee15d254776c43
|
471f3b9cd83fbfe2686037f285cdfb787e003146
|
refs/heads/main
| 2023-03-27T01:30:04.997265
| 2021-03-24T22:07:05
| 2021-03-24T22:07:05
| 351,213,421
| 2
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,935
|
py
|
import json
import re
from bs4 import BeautifulSoup
import os
import sys
import math
from nltk.stem import PorterStemmer
# Index = Token : [(DocID, ((SearchWord*Priority)+(SearchWord*BasicWords)), [Positions in the text])]
# DocID = DocID : URL
# IndexMarkers = InitialLetter : (StartPosition,EndPosition)
# DocIDMarkers = lineNumber : (StartPosition,EndPosition)
def tokenize(token):
tokens = []
try:
ps = PorterStemmer()
tokens += [ps.stem(token.lower())
for token in re.findall('[a-zA-Z0-9]+', token)]
return tokens
except:
print("ERROR: Tokenize Function Error")
return tokens
def computeWordData(tokens):
if not isinstance(tokens, list):
return {}
freq = {}
positions = {}
for i, t in enumerate(tokens):
if t in freq.keys():
freq[t] += 1
positions[t].append(i)
else:
freq[t] = 1
positions[t] = [i]
return freq, positions
def updateIndex(index, tokenFrequency, totalPositions, importantFrequency, totalWordsInDoc, docID):
for k, v in tokenFrequency.items():
# calculate tf score
tf = v
if tf > 0 and k in importantFrequency:
tf = 2 + math.log10(tf) + math.log(importantFrequency[k])
elif tf > 0 and k not in importantFrequency:
tf = 1 + math.log10(tf)
# add tf score and DocID to posting
if k in index.keys():
index[k].append((docID, tf))
else:
index[k] = [(docID, tf)]
return index
def writeIndex(index):
for k, v in index.items():
directory = ".\letters"
fileName = k + ".txt"
filePath = os.path.join(directory, fileName)
if not os.path.exists(filePath):
f = open(filePath, "w", encoding='utf-8')
for key, value in sorted(v.items(), key=lambda posting: len(posting[1]), reverse=True):
f.write(f"{key} {str(value)}\n")
f.close()
continue
storedData = {}
f = open(filePath, "r", encoding='utf-8')
for txt in f:
val = re.search("^([a-zA-Z0-9]+) (.+)", txt)
token = val.group(1)
posting = eval(val.group(2))
storedData[token] = posting
f.close()
f = open(filePath, "w", encoding='utf-8')
for token, posting in v.items():
if token in storedData:
storedData[token] = storedData[token] + posting
else:
storedData[token] = posting
sortedTuple = sorted(storedData.items(),
key=lambda posting: len(posting[1]), reverse=True)
for k, v in sortedTuple:
f.write(f"{k} {str(v)}\n")
f.close()
def writeDocID(docID, IDline):
for k, v in docID.items():
directory = "." + "\\" + "numbers"
fileName = str(IDline) + ".txt"
filePath = os.path.join(directory, fileName)
f = open(filePath, "a", encoding='utf-8')
f.write(f"{k} {v}\n")
f.close()
def mwMarkers(marker, directory, mergeFile):
endPos = 0
for root, dirs, files in os.walk(directory, topdown=False):
for file in files:
filePath = os.path.join(directory, file)
k = file[0:-4]
with open(filePath, "r", encoding='utf-8', errors='ignore') as f, open(mergeFile, "a", encoding='utf-8') as f2:
for line in f:
f2.write(line)
f2.close()
startPos = endPos
f.seek(0, 2)
endPos = f.tell() + startPos
f.close()
v = (startPos, endPos)
marker[k] = v
def convertIndexToAlphaIndex(index):
alphaIndex = {}
for k, v in index.items():
key = k[0]
if key in alphaIndex.keys():
alphaIndex[key][k] = v
else:
alphaIndex[key] = {}
alphaIndex[key][k] = v
return alphaIndex
def getTitleParagraph(soup):
title = soup.find('title')
if title:
title = soup.find('title').getText()
paragraph = soup.findAll('p')
if paragraph:
preParagraph = soup.findAll('p')
paragraph = ''
for p in preParagraph:
for x in p.findAll(text=True):
paragraph += x
else:
paragraph = soup.getText()
paragraph = re.findall("[A-Z].*?[\.!?,]", paragraph,
re.MULTILINE | re.DOTALL)
if title == None and paragraph:
title = ''
if len(paragraph) < 2:
loop = len(paragraph)
else:
loop = 2
for i in range(0, loop):
title += paragraph[i]
if title and len(title) > 65:
l = title.split(" ")
title = ''
if len(l) < 5:
loop = len(l)
else:
loop = 5
for i in range(0, loop):
title += ' ' + l[i]
title += '...'
if paragraph:
tempParagraph = ''
if len(paragraph) < 5:
loop = len(paragraph)
else:
loop = 5
for i in range(0, loop):
tempParagraph += paragraph[i]
paragraph = tempParagraph[0:250] + "..."
return title, paragraph
def getCondensedUrl(preUrl):
preUrl = preUrl.split("//")
preUrl = preUrl[1]
preUrl = preUrl.split("/")
url = f'{preUrl[0]}'
preUrl.pop(0)
iters = 0
while len(url) < 25 and iters < len(preUrl):
segment = preUrl[iters]
if len(segment) > 10:
url += " > " + segment[0:10] + "..."
else:
url += " > " + segment
iters += 1
return url
filePaths = list()
index = dict()
docID = dict()
for root, dirs, files in os.walk(".\DEV", topdown=False):
for name in files:
filePaths.append(os.path.join(root, name))
fileNumber = 1
initIDLine = 1
currIDLine = initIDLine
total = len(filePaths)
count = 0
for filePath in filePaths:
try:
with open(filePath) as f:
data = json.load(f)
soup = BeautifulSoup(data["content"], "html.parser")
# computes frequency of tokens that are "important"
importantList = ["strong", "h1", "h2", "h3", "title", "b"]
importantText = [words.text.strip()
for words in soup.findAll(importantList)]
importantText = ' '.join([elem for elem in importantText])
importantToken = tokenize(importantText)
importantFrequency = computeWordData(importantToken)[0]
url = data["url"]
con = getCondensedUrl(url)
title, paragraph = getTitleParagraph(soup)
docID[fileNumber] = [url, con, title, paragraph]
text = soup.getText()
fileToken = tokenize(text)
totalWordsInDoc = len(fileToken)
tokenFrequency, totalPositions = computeWordData(fileToken)
updateIndex(index, tokenFrequency, totalPositions,
importantFrequency, totalWordsInDoc, fileNumber)
print(int(float(fileNumber)*100/float(total)), "%")
fileNumber += 1
count += 1
currIDLine += 1
# At 1000 iterations, store index/docID, clear index/docID and reset count
if count == 1000:
# key is sorted by alphanumeric characters, values are the postings for tokens that start with those characters
aIndex = convertIndexToAlphaIndex(index)
writeIndex(aIndex)
writeDocID(docID, initIDLine)
count = 0
initIDLine = currIDLine
docID.clear()
index.clear()
aIndex.clear()
except:
print("Error: Error opening JSON file and using BeautifulSoup")
break
# writes remaining index (iteration that didn't make it to 1000)
if index:
aIndex = convertIndexToAlphaIndex(index)
writeIndex(aIndex)
writeDocID(docID, initIDLine)
docID.clear()
index.clear()
aIndex.clear()
print(len(filePaths))
print(len(index))
print(sys.getsizeof(index))
# creates indexMarker.txt and merges index files in index.txt
indexMarker = dict()
indexDirectory = ".\letters"
mergedIndexFile = "index.txt"
mwMarkers(indexMarker, indexDirectory, mergedIndexFile)
# creates docIDMarker.txt and merges docID files in docID.txt
docIDMarker = dict()
docIDDirectory = "." + "\\" + "numbers"
mergedDocIDFile = "docID.txt"
mwMarkers(docIDMarker, docIDDirectory, mergedDocIDFile)
# writes markers to files
f = open("indexMarkers.txt", "w", encoding='utf-8')
f2 = open("docIDMarkers.txt", "w", encoding='utf-8')
f.write(str(indexMarker))
f2.write(str(docIDMarker))
|
[
"noreply@github.com"
] |
noreply@github.com
|
4a9da798422a975372d4ef89f748d76b9d09eea2
|
f4bce35934800e93a2b3eeb14c568001ff70954a
|
/build/catkin_generated/installspace/_setup_util.py
|
e3fd8feae7abd1be35880d57a1957a608abe6e88
|
[] |
no_license
|
SamLyuubc/CarisRoboticsTestbench
|
94d07519ad3c2d210dd09a51c5278af5986edab2
|
5a60aca3c5f0ef5d12f3d617b86282ed00ea5487
|
refs/heads/master
| 2020-05-04T02:30:17.961966
| 2019-04-03T20:36:36
| 2019-04-03T20:36:36
| 178,927,596
| 0
| 0
| null | 2019-04-22T23:12:45
| 2019-04-01T18:56:23
|
C++
|
UTF-8
|
Python
| false
| false
| 13,042
|
py
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Software License Agreement (BSD License)
#
# Copyright (c) 2012, Willow Garage, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of Willow Garage, Inc. nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
'''This file generates shell code for the setup.SHELL scripts to set environment variables'''
from __future__ import print_function
import argparse
import copy
import errno
import os
import platform
import sys
CATKIN_MARKER_FILE = '.catkin'
system = platform.system()
IS_DARWIN = (system == 'Darwin')
IS_WINDOWS = (system == 'Windows')
# subfolder of workspace prepended to CMAKE_PREFIX_PATH
ENV_VAR_SUBFOLDERS = {
'CMAKE_PREFIX_PATH': '',
'LD_LIBRARY_PATH' if not IS_DARWIN else 'DYLD_LIBRARY_PATH': ['lib', os.path.join('lib', 'x86_64-linux-gnu')],
'PATH': 'bin',
'PKG_CONFIG_PATH': [os.path.join('lib', 'pkgconfig'), os.path.join('lib', 'x86_64-linux-gnu', 'pkgconfig')],
'PYTHONPATH': 'lib/python2.7/dist-packages',
}
def rollback_env_variables(environ, env_var_subfolders):
'''
Generate shell code to reset environment variables
by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH.
This does not cover modifications performed by environment hooks.
'''
lines = []
unmodified_environ = copy.copy(environ)
for key in sorted(env_var_subfolders.keys()):
subfolders = env_var_subfolders[key]
if not isinstance(subfolders, list):
subfolders = [subfolders]
value = _rollback_env_variable(unmodified_environ, key, subfolders)
if value is not None:
environ[key] = value
lines.append(assignment(key, value))
if lines:
lines.insert(0, comment('reset environment variables by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH'))
return lines
def _rollback_env_variable(environ, name, subfolders):
'''
For each catkin workspace in CMAKE_PREFIX_PATH remove the first entry from env[NAME] matching workspace + subfolder.
:param subfolders: list of str '' or subfoldername that may start with '/'
:returns: the updated value of the environment variable.
'''
value = environ[name] if name in environ else ''
env_paths = [path for path in value.split(os.pathsep) if path]
value_modified = False
for subfolder in subfolders:
if subfolder:
if subfolder.startswith(os.path.sep) or (os.path.altsep and subfolder.startswith(os.path.altsep)):
subfolder = subfolder[1:]
if subfolder.endswith(os.path.sep) or (os.path.altsep and subfolder.endswith(os.path.altsep)):
subfolder = subfolder[:-1]
for ws_path in _get_workspaces(environ, include_fuerte=True, include_non_existing=True):
path_to_find = os.path.join(ws_path, subfolder) if subfolder else ws_path
path_to_remove = None
for env_path in env_paths:
env_path_clean = env_path[:-1] if env_path and env_path[-1] in [os.path.sep, os.path.altsep] else env_path
if env_path_clean == path_to_find:
path_to_remove = env_path
break
if path_to_remove:
env_paths.remove(path_to_remove)
value_modified = True
new_value = os.pathsep.join(env_paths)
return new_value if value_modified else None
def _get_workspaces(environ, include_fuerte=False, include_non_existing=False):
'''
Based on CMAKE_PREFIX_PATH return all catkin workspaces.
:param include_fuerte: The flag if paths starting with '/opt/ros/fuerte' should be considered workspaces, ``bool``
'''
# get all cmake prefix paths
env_name = 'CMAKE_PREFIX_PATH'
value = environ[env_name] if env_name in environ else ''
paths = [path for path in value.split(os.pathsep) if path]
# remove non-workspace paths
workspaces = [path for path in paths if os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE)) or (include_fuerte and path.startswith('/opt/ros/fuerte')) or (include_non_existing and not os.path.exists(path))]
return workspaces
def prepend_env_variables(environ, env_var_subfolders, workspaces):
'''
Generate shell code to prepend environment variables
for the all workspaces.
'''
lines = []
lines.append(comment('prepend folders of workspaces to environment variables'))
paths = [path for path in workspaces.split(os.pathsep) if path]
prefix = _prefix_env_variable(environ, 'CMAKE_PREFIX_PATH', paths, '')
lines.append(prepend(environ, 'CMAKE_PREFIX_PATH', prefix))
for key in sorted([key for key in env_var_subfolders.keys() if key != 'CMAKE_PREFIX_PATH']):
subfolder = env_var_subfolders[key]
prefix = _prefix_env_variable(environ, key, paths, subfolder)
lines.append(prepend(environ, key, prefix))
return lines
def _prefix_env_variable(environ, name, paths, subfolders):
'''
Return the prefix to prepend to the environment variable NAME, adding any path in NEW_PATHS_STR without creating duplicate or empty items.
'''
value = environ[name] if name in environ else ''
environ_paths = [path for path in value.split(os.pathsep) if path]
checked_paths = []
for path in paths:
if not isinstance(subfolders, list):
subfolders = [subfolders]
for subfolder in subfolders:
path_tmp = path
if subfolder:
path_tmp = os.path.join(path_tmp, subfolder)
# skip nonexistent paths
if not os.path.exists(path_tmp):
continue
# exclude any path already in env and any path we already added
if path_tmp not in environ_paths and path_tmp not in checked_paths:
checked_paths.append(path_tmp)
prefix_str = os.pathsep.join(checked_paths)
if prefix_str != '' and environ_paths:
prefix_str += os.pathsep
return prefix_str
def assignment(key, value):
if not IS_WINDOWS:
return 'export %s="%s"' % (key, value)
else:
return 'set %s=%s' % (key, value)
def comment(msg):
if not IS_WINDOWS:
return '# %s' % msg
else:
return 'REM %s' % msg
def prepend(environ, key, prefix):
if key not in environ or not environ[key]:
return assignment(key, prefix)
if not IS_WINDOWS:
return 'export %s="%s$%s"' % (key, prefix, key)
else:
return 'set %s=%s%%%s%%' % (key, prefix, key)
def find_env_hooks(environ, cmake_prefix_path):
'''
Generate shell code with found environment hooks
for the all workspaces.
'''
lines = []
lines.append(comment('found environment hooks in workspaces'))
generic_env_hooks = []
generic_env_hooks_workspace = []
specific_env_hooks = []
specific_env_hooks_workspace = []
generic_env_hooks_by_filename = {}
specific_env_hooks_by_filename = {}
generic_env_hook_ext = 'bat' if IS_WINDOWS else 'sh'
specific_env_hook_ext = environ['CATKIN_SHELL'] if not IS_WINDOWS and 'CATKIN_SHELL' in environ and environ['CATKIN_SHELL'] else None
# remove non-workspace paths
workspaces = [path for path in cmake_prefix_path.split(os.pathsep) if path and os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE))]
for workspace in reversed(workspaces):
env_hook_dir = os.path.join(workspace, 'etc', 'catkin', 'profile.d')
if os.path.isdir(env_hook_dir):
for filename in sorted(os.listdir(env_hook_dir)):
if filename.endswith('.%s' % generic_env_hook_ext):
# remove previous env hook with same name if present
if filename in generic_env_hooks_by_filename:
i = generic_env_hooks.index(generic_env_hooks_by_filename[filename])
generic_env_hooks.pop(i)
generic_env_hooks_workspace.pop(i)
# append env hook
generic_env_hooks.append(os.path.join(env_hook_dir, filename))
generic_env_hooks_workspace.append(workspace)
generic_env_hooks_by_filename[filename] = generic_env_hooks[-1]
elif specific_env_hook_ext is not None and filename.endswith('.%s' % specific_env_hook_ext):
# remove previous env hook with same name if present
if filename in specific_env_hooks_by_filename:
i = specific_env_hooks.index(specific_env_hooks_by_filename[filename])
specific_env_hooks.pop(i)
specific_env_hooks_workspace.pop(i)
# append env hook
specific_env_hooks.append(os.path.join(env_hook_dir, filename))
specific_env_hooks_workspace.append(workspace)
specific_env_hooks_by_filename[filename] = specific_env_hooks[-1]
env_hooks = generic_env_hooks + specific_env_hooks
env_hooks_workspace = generic_env_hooks_workspace + specific_env_hooks_workspace
count = len(env_hooks)
lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_COUNT', count))
for i in range(count):
lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d' % i, env_hooks[i]))
lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d_WORKSPACE' % i, env_hooks_workspace[i]))
return lines
def _parse_arguments(args=None):
parser = argparse.ArgumentParser(description='Generates code blocks for the setup.SHELL script.')
parser.add_argument('--extend', action='store_true', help='Skip unsetting previous environment variables to extend context')
parser.add_argument('--local', action='store_true', help='Only consider this prefix path and ignore other prefix path in the environment')
return parser.parse_known_args(args=args)[0]
if __name__ == '__main__':
try:
try:
args = _parse_arguments()
except Exception as e:
print(e, file=sys.stderr)
sys.exit(1)
if not args.local:
# environment at generation time
CMAKE_PREFIX_PATH = '/home/samlyu/testbench_ws/devel;/opt/ros/kinetic'.split(';')
else:
# don't consider any other prefix path than this one
CMAKE_PREFIX_PATH = []
# prepend current workspace if not already part of CPP
base_path = os.path.dirname(__file__)
# CMAKE_PREFIX_PATH uses forward slash on all platforms, but __file__ is platform dependent
# base_path on Windows contains backward slashes, need to be converted to forward slashes before comparison
if os.path.sep != '/':
base_path = base_path.replace(os.path.sep, '/')
if base_path not in CMAKE_PREFIX_PATH:
CMAKE_PREFIX_PATH.insert(0, base_path)
CMAKE_PREFIX_PATH = os.pathsep.join(CMAKE_PREFIX_PATH)
environ = dict(os.environ)
lines = []
if not args.extend:
lines += rollback_env_variables(environ, ENV_VAR_SUBFOLDERS)
lines += prepend_env_variables(environ, ENV_VAR_SUBFOLDERS, CMAKE_PREFIX_PATH)
lines += find_env_hooks(environ, CMAKE_PREFIX_PATH)
print('\n'.join(lines))
# need to explicitly flush the output
sys.stdout.flush()
except IOError as e:
# and catch potential "broken pipe" if stdout is not writable
# which can happen when piping the output to a file but the disk is full
if e.errno == errno.EPIPE:
print(e, file=sys.stderr)
sys.exit(2)
raise
sys.exit(0)
|
[
"sam.aandkrobotics@gmail.com"
] |
sam.aandkrobotics@gmail.com
|
818def7bc87a5c0bcf797c372ee7fd1af118ce87
|
cebc0b59e26dc564de8eade8510b1d7cd01cd46a
|
/bspider/master/controller/rabbitmq.py
|
d0cbcbfbc3221e15006b6946d16b74a3335d8272
|
[
"BSD-3-Clause"
] |
permissive
|
littlebai3618/bspider
|
0f18548ef66fbb06a8a95cbcfdaf05db5990c7d1
|
ff4d003cd0825247db4efe62db95f9245c0a303c
|
refs/heads/master
| 2023-04-26T14:47:43.228774
| 2021-05-13T02:58:35
| 2021-05-13T02:58:35
| 255,865,935
| 2
| 0
|
BSD-3-Clause
| 2021-05-12T02:11:18
| 2020-04-15T09:20:28
|
Python
|
UTF-8
|
Python
| false
| false
| 660
|
py
|
from flask import Blueprint
from bspider.core.api import auth
from bspider.master.service.rabbitmq import RabbitMQService
rabbitmq = Blueprint('rabbitmq_bp', __name__)
rabbitmq_service = RabbitMQService()
@rabbitmq.route('/project/<int:project_id>', methods=['GET'])
@auth.login_required
def project_queue_info(project_id):
"""project相关队列的详细信息"""
return rabbitmq_service.get_project_queue_info(project_id)
@rabbitmq.route('/project/purge/<int:project_id>', methods=['DELETE'])
@auth.login_required
def purge_project_queue(project_id):
"""清空待下载链接"""
return rabbitmq_service.purge_project_queue(project_id)
|
[
"baishanglin@renrenche.com"
] |
baishanglin@renrenche.com
|
2261ff42ef53ff6f7e29b4575773ca2548c73283
|
bf348f0a5dbde6052f0cf6e4c9e570bd07c13533
|
/src/ManageDatabases/SettingDatabase.py
|
ef2a44a44127f3c18a555bccf54ff38bc30b8f18
|
[] |
no_license
|
PaoloGraziani/webAppFlask
|
7b114c59108bdfff9d9f768325c3ebcf3b3b90f0
|
7808c276645215f121def4850ada251f708d41ee
|
refs/heads/main
| 2023-07-25T01:33:20.566515
| 2021-09-09T17:28:27
| 2021-09-09T17:28:27
| 383,222,178
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 669
|
py
|
import psycopg2
'''
Inizializzazione DATABASE di Autenticazione
'''
Authentication_HOST = "localhost"
Authentication_DATABASE = "AuthDATA"
Authentication_USERNAME = "postgres"
Authentication_PASSWORD = "postgres"
'''
Inizializzazione DATABASE di Applicazione
'''
Application_HOST = "localhost"
Application_DATABASE = "DbWebApp"
Application_USERNAME = "postgres"
Application_PASSWORD = "postgres"
def closeCursor(cur):
cur.close()
def connectDatabase(host, database, username, password):
newConnection = psycopg2.connect(host=host, database=database, user=username, password=password)
return newConnection
def closeConnection(conn):
conn.close()
|
[
"paolo.graziani@studenti.univr.it"
] |
paolo.graziani@studenti.univr.it
|
b668d29096563112db9bbe2fb4adc91d5dcac26e
|
34354acd20aba20dc78909edb80376d82ee31efb
|
/partsix/TestQueue.py
|
f775be4e01a141aeb458bf93d9d1a12a482c8fe5
|
[] |
no_license
|
yzw1102/study_python
|
40de23db9f4f5270d7b8fae0739148e50e4792d7
|
d8cc929475827925d9135167b5afd5a47232efd0
|
refs/heads/master
| 2020-04-13T10:00:16.405293
| 2019-01-09T07:30:22
| 2019-01-09T07:30:22
| 163,126,969
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 528
|
py
|
from queue import Queue
from threading import Thread
import time
isRead = True
def write(q):
for value in ['ye1','ye2','ye3']:
print('the value write in queue is : {0} '.format(value))
q.put(value)
time.sleep(1)
def read(q):
while isRead:
value = q.get(True)
print('the value get from queue is : {0}'.format(value))
if __name__ == '__main__':
q = Queue()
t1 = Thread(target = write,args = (q,))
t2 = Thread(target = read, args = (q,))
t1.start()
t2.start()
|
[
"ye19861102"
] |
ye19861102
|
0ce1a22c0597a986e8737dfbfc156758588401b4
|
ef44bc7b484f817de597352d948309a98d5b8cf9
|
/request_batcher/monitor.py
|
149462ef5076586029f890899e0ab81c590794ed
|
[] |
no_license
|
j-dutton/request-batcher
|
f5a5771c0b44f3a589cda5e52c1f857e3f38f9a6
|
6d740bc787f4125227f87a28f936196416506687
|
refs/heads/master
| 2022-12-26T01:36:30.422556
| 2020-10-12T21:27:25
| 2020-10-12T21:27:25
| 302,417,954
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,252
|
py
|
from clicks import click_state
from constants import MONITOR_INTERVAL_SECONDS, MAX_OPENS_ALLOWED_IN_STATE, MAX_CLICKS_ALLOWED_IN_STATE
from logger import LOG
from opens import open_state
from utils import repeat
@repeat(seconds=MONITOR_INTERVAL_SECONDS)
async def monitor():
logger = LOG.getChild('monitor')
logger.info('Running Monitor')
awaiting_open_batch = len(open_state)
awaiting_click_batch = len(click_state)
# Opens
if awaiting_open_batch > 0:
logger.info('Batch of OpenData currently awaiting processing', extra={'length': awaiting_open_batch})
if awaiting_open_batch > MAX_OPENS_ALLOWED_IN_STATE:
logger.error(
'Too many OpenData stuck in memory. Dropping all of them.',
extra={'length': awaiting_open_batch}
)
await open_state.flush_all()
# Clicks
if awaiting_click_batch > 0:
logger.info('Batch of ClickData currently awaiting processing', extra={'length': awaiting_click_batch})
if awaiting_click_batch > MAX_CLICKS_ALLOWED_IN_STATE:
logger.error(
'Too many ClickData stuck in memory. Dropping all of them.',
extra={'length': awaiting_click_batch}
)
await click_state.flush_all()
|
[
"j.dutton@iwoca.co.uk"
] |
j.dutton@iwoca.co.uk
|
d8884ed1dbc5f3c83a5ccf73929b638983c841d0
|
218f2672af3c01422c26051432b34986d490d69a
|
/01_catboost_enrichi_tuto.py
|
0d7a620351fb55f660caae721f88ebc8c9425eee
|
[] |
no_license
|
PatDecideOm/DataScience
|
a801aacbfcd0b849eaae66a44f1b55e001f18cd2
|
6818d7859ae49cbe5d19497317b3279fd8c870bf
|
refs/heads/master
| 2023-05-30T18:08:23.413375
| 2021-06-08T09:49:16
| 2021-06-08T09:49:16
| 368,841,937
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,787
|
py
|
# Import libraries
import pandas as pd
import numpy as np
import catboost
from catboost import CatBoostClassifier
import xgboost as xgb
import sklearn
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings("ignore")
print('Scikit Learn: %s' % sklearn.__version__)
print('Catboost: %s' % catboost.__version__)
print('xgboost: %s' % xgb.__version__)
print('numpy: %s' % np.__version__)
print('numpy: %s' % pd.__version__)
print('--- DEB ---')
dataset = pd.read_csv('c:/applis/kaggle/tabular-playground-series-mar-2021/train_enrichi.csv')
unseen = pd.read_csv('c:/applis/kaggle/tabular-playground-series-mar-2021/test_enrichi.csv')
print(dataset.shape)
print(unseen.shape)
dataset = dataset[0:300000]
unseen = unseen[0:200000]
y = dataset.target
X = dataset.drop('target', axis=1)
columns = X.columns[1:]
print('Columns: %s' % columns)
cat_features = columns[:19]
print('Features: %s' % cat_features)
num_features = columns[20:]
print('Numerics: %s' % num_features)
train_test = pd.concat([X, unseen], ignore_index=True)
for feature in cat_features:
le = LabelEncoder()
le.fit(train_test[feature])
X[feature] = le.transform(X[feature])
unseen[feature] = le.transform(unseen[feature])
'''
for feature in num_features:
X[feature] = (X[feature] - X[feature].mean(0)) / X[feature].std(0)
unseen[feature] = (unseen[feature] - unseen[feature].mean(0)) / unseen[feature].std(0)
'''
X_train, X_validation, y_train, y_validation = train_test_split(X, y, train_size=0.80, random_state=2021)
# Initialize CatBoostClassifier
model = CatBoostClassifier(iterations=5000,
learning_rate=0.01,
depth=8,
#loss_function='CrossEntropy',
loss_function='Logloss',
#custom_loss=['AUC', 'Accuracy'],
task_type='GPU',
ignored_features=['id']
)
'''
grid = {'learning_rate': [0.03, 0.1],
'depth': [4, 6, 10],
'l2_leaf_reg': [1, 3, 5, 7, 9]}
grid_search_result = model.grid_search(grid,
X=X_train,
y=y_train,
plot=False)
'''
# Fit model
model.fit(X_train,
y_train,
cat_features,
eval_set=(X_validation, y_validation),
verbose=250,
plot=False)
print('Model is fitted : ' + str(model.is_fitted()))
print('Model params :')
print(model.get_params())
preds = model.predict(unseen)
probs= model.predict_proba(unseen)
unseen['target'] = probs[:,1]
submission = unseen[['id', 'target']]
print(submission.head())
submission.to_csv('c:/applis/kaggle/tabular-playground-series-mar-2021/submission_cat_enrichi.csv',
columns=['id', 'target'], header=True, index=False)
'''
xgb_params = {
"objective": "binary:logistic",
"eval_metric": "logloss",
"learning_rate": 0.010,
"max_depth": 8,
"n_jobs": 2,
"seed": 2021,
'tree_method': "hist"
}
train_df = xgb.DMatrix(X_train, label=y_train)
val_df = xgb.DMatrix(X_validation, label=y_validation)
model = xgb.train(xgb_params, train_df, 500)
temp_target = model.predict(val_df)
best_preds = [0 if line < 0.5 else 1 for line in temp_target]
from sklearn.metrics import precision_score
print(precision_score(best_preds, y_validation, average='macro'))
df_unseen = xgb.DMatrix(unseen)
# preds = model.predict(df_unseen)
'''
print('--- FIN ---')
|
[
"pmazel@decideom.fr"
] |
pmazel@decideom.fr
|
52d3a05067138b36faf6b476467edbebd184d716
|
622bd4fb4cb50361a5e887544d92a04debb0dd2b
|
/databus/client/user.py
|
230a222d78e3993622a008dc484972f4a37cea4f
|
[
"Apache-2.0"
] |
permissive
|
tedrepo/databus
|
aec06bd28f761ca4beff290fc856e93dd2948c07
|
0f1f290c1b061175a652c3f72efc0d091a5e08c9
|
refs/heads/master
| 2022-12-01T03:10:15.182783
| 2020-08-08T18:40:54
| 2020-08-08T18:40:54
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,129
|
py
|
""" Module for web users """
import uuid
class Credential: # pylint: disable=R0903
""" Class defining a user credential """
def __init__(self, username: str = "Guest", password: str = "", token: str = ""):
self.username = username
self.password = password
self.token = token
def generate_token(self):
""" Generates and assigns a new token """
self.token = str(uuid.uuid1())
class User: # pylint: disable=R0903
""" Class defining a web user """
def __init__(self, credential: Credential = None):
if credential is None:
self.credential = Credential()
else:
self.credential = credential
def authenticate(self, credential: Credential) -> bool:
""" Checks if the user & password matches """
if credential.username != self.credential.username:
return False
if credential.password != "" and credential.password == self.credential.password:
return True
if credential.token != "" and credential.token == self.credential.token:
return True
return False
|
[
"kerem@koseoglu.info"
] |
kerem@koseoglu.info
|
83932b497fb4b87191f07e51e57a976f85c5e3b7
|
8005bde2cfeba49c5cd1b88dc2c0d1c0fc4d85dc
|
/manage_class.py
|
6d9d43699f03cfed55fba6a29376876956fd2ed2
|
[] |
no_license
|
coulibaly-mouhamed/Basic_Fake_News_detector
|
85ab75d39a65b98ea2724f02564c196fbbdc08a8
|
7fd985b4ab3335212f6f0ba8242ec1c6f5439658
|
refs/heads/master
| 2023-04-06T17:22:19.180102
| 2021-04-26T10:37:47
| 2021-04-26T10:37:47
| 252,579,017
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 397
|
py
|
##############################################################
class news():
def __init__(self,headline,domain):
self.headline = headline
self.domain = domain
def __str__(self):
return '%.2c:%2.c' %(self.domain,self.headline)
class invalid_input(Exception):
pass
#########################################################
#Prevent dealing with
class not_a_link(Exception):
pass
|
[
"noreply@github.com"
] |
noreply@github.com
|
a42f30fc4aa79865a8e957a7231fab17cdcac3f8
|
568bc70dca53f0d095313f00d572383284243e34
|
/Project/wine_last/wine/device.py
|
16fd35980551f5ec948644712c176cd54a98f7ff
|
[] |
no_license
|
msanchezalcon/Dialogue-Systems-2
|
07d3b1200646bb9a0197eae7fff3c0606a7f40a9
|
a834f819a35457a4954917d82a158147001d29f6
|
refs/heads/master
| 2020-08-03T18:28:48.317591
| 2019-11-04T12:42:58
| 2019-11-04T12:42:58
| 211,845,302
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,594
|
py
|
from tdm.lib.device import DddDevice, DeviceWHQuery, DeviceAction
from urllib2 import Request,urlopen
import json
import requests
class PairingDevice(DddDevice):
key = "e51e73fba2ce4002899dc7aec175063f"
def request_api_wine_pairing(self, food_type, max_price):
"""
Find a wine that goes well with a food. Food can be a dish name ("steak"),
an ingredient name ("salmon"), or a cuisine ("italian").
"""
url = "https://api.spoonacular.com/food/wine/pairing?apiKey=%s&food=%s&price=%s" % (self.key, food_type, max_price)
#print(url)
response = requests.get(url)
data = response.json()
return data
def request_api_wine_recommendation(self, max_price, min_rating, wine_type):
"""
Get a specific wine recommendation (concrete product) for a given wine type, e.g. "merlot".
"""
url = "https://api.spoonacular.com/food/wine/recommendation?apiKey={}&wine={}&maxPrice={}&minRating={}".format(self.key, wine_type, max_price, min_rating)
response = requests.get(url)
data = response.json()
#print(data)
return data
class GetWinePairing(DeviceAction):
def perform(self, max_price, food_type, get_wine_pairing_from_api):
success = True
return success
class GetWineRecommendation(DeviceAction):
def perform(self, max_price, min_rating, wine_type, get_wine_recommendation_from_api):
success = True
return success
class get_wine_pairing_from_api(DeviceWHQuery):
def perform(self, food_type, max_price):
if max_price == '':
max_price = None
data = self.device.request_api_wine_pairing(food_type, max_price)
wine_pairing = str(data["pairedWines"][0])
return [wine_pairing]
class get_wine_recommendation_from_api(DeviceWHQuery):
def perform(self, wine_type, max_price, min_rating):
min_rating = "0.{}".format(min_rating)
if max_price == '':
max_price = None
if min_rating == '':
min_rating = None
data = self.device.request_api_wine_recommendation(max_price, min_rating, wine_type)
wine_recommendation = str(data["recommendedWines"][0]["title"])
#print(wine_recommendation)
return [wine_recommendation]
class ask_min_rating(DeviceWHQuery):
def perform(self):
return [""]
|
[
"gusmiriasa@student.gu.se"
] |
gusmiriasa@student.gu.se
|
0c86204fe5c33368162d5f576953acf36b7bdb95
|
41ea3e67428a59c665fcb189d392a6fb1a374ffe
|
/prg3.py.copy
|
5f7f6337e48a0c9544bcdfefc83a4eead9dc5913
|
[] |
no_license
|
hitesh2402/carrom
|
fcd154f3f760528f0adb15f843fcbf4be763d014
|
0e4fe67eb1be3ed7ea92d7e8775ec92cead30355
|
refs/heads/master
| 2021-05-13T20:43:18.477110
| 2018-01-10T06:53:59
| 2018-01-10T06:53:59
| 116,917,919
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,566
|
copy
|
#!/usr/bin/env python
import pygame
class Colors():
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
class Application(object):
_instance = None
def initialize(title='Empty Title'display_width = 800, display_height = 600):
pygame.init()
gameDisplay = pygame.display.set_mode((display_width,display_height))
pygame.display.set_caption(title)
clock = pygame.time.Clock()
= False
carImg = pygame.image.load('racecar.png')
def car(x,y):
gameDisplay.blit(carImg, (x,y))
x = (display_width * 0.45)
y = (display_height * 0.8)
x_change = 0
y_change = 0
car_speed = 0
while not crashed:
for event in pygame.event.get():
if event.type == pygame.QUIT:
crashed = True
############################
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
x_change = -5
elif event.key == pygame.K_RIGHT:
x_change = 5
elif event.key == pygame.K_UP:
y_change = -5
elif event.key == pygame.K_DOWN:
y_change = 5
if event.type == pygame.KEYUP:
if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT or event.key == pygame.K_UP or event.key == pygame.K_DOWN:
x_change = 0
y_change = 0
######################
##
x += x_change
y += y_change
##
gameDisplay.fill(white)
car(x,y)
pygame.display.update()
clock.tick(60)
pygame.quit()
quit()
|
[
"noreply@github.com"
] |
noreply@github.com
|
85190e278f5252ba76b1a7efadbcd85d7aafd277
|
cdf782224f9b74cf8acce919406d03791254fd3c
|
/assignment3/main.py
|
c17bd67d590ec107763c46e32b476e5acfcc9709
|
[] |
no_license
|
tollefj/information-retrieval
|
1bcc46e9fcc15c74ee8dccb31a015935d7e850a7
|
43535384ace262d0b293c26d249b11622f18e470
|
refs/heads/master
| 2022-07-14T22:11:06.716504
| 2017-10-28T17:10:39
| 2017-10-28T17:10:39
| 106,025,641
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 208
|
py
|
from _gensim import GenSim
if __name__ == '__main__':
gs = GenSim()
gs.read_stopwords()
gs.load()
gs.build_dictionary()
gs.build_bag()
gs.build_tfidf_model()
gs.build_lsi_model()
|
[
"tollefj@gmail.com"
] |
tollefj@gmail.com
|
d8331a4aaa0fc5a0db2f7d9cafbd092f009019ed
|
b62177a84db5d209f37dfc60d56f1dc9ab3174c2
|
/kleague/data/transfercentre.py
|
3f0bc79348879b983945c0a34c1a0687a2a23d83
|
[] |
no_license
|
bsmmoon/kleague
|
12f8e9de8b4131ec37e33da4c822438fb9b8dd2a
|
dfdc1ecb79badb0529fd624ca1743bc69d1408b9
|
refs/heads/master
| 2021-01-09T21:45:00.626003
| 2015-12-05T08:17:44
| 2015-12-05T08:17:44
| 47,249,837
| 0
| 0
| null | 2015-12-05T08:17:45
| 2015-12-02T09:13:17
|
Python
|
UTF-8
|
Python
| false
| false
| 353
|
py
|
class TransferCentre():
def __init__(self):
self._windowList = []
self._contracts = []
@property
def contracts(self):
return self._contracts
def addContract(self, contract):
contract.contractID = len(self._contracts)
self._contracts.append(contract)
def printContracts(self):
for contract in self._contracts:
print(contract)
|
[
"bsmmoon@gmail.com"
] |
bsmmoon@gmail.com
|
4ab4fec920df659a95a12694df60fd03dfca6791
|
08bfc8a1f8e44adc624d1f1c6250a3d9635f99de
|
/SDKs/swig/Examples/test-suite/python/abstract_virtual_runme.py
|
2a8411578017fc06324e210386ddd29a61e19eb8
|
[] |
no_license
|
Personwithhat/CE_SDKs
|
cd998a2181fcbc9e3de8c58c7cc7b2156ca21d02
|
7afbd2f7767c9c5e95912a1af42b37c24d57f0d4
|
refs/heads/master
| 2020-04-09T22:14:56.917176
| 2019-07-04T00:19:11
| 2019-07-04T00:19:11
| 160,623,495
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 127
|
py
|
version https://git-lfs.github.com/spec/v1
oid sha256:fce41bedc93abe3933ce0f2546b68f02a08faf0778e211b1ba7b30a7f3909ed8
size 50
|
[
"personwithhats2@Gmail.com"
] |
personwithhats2@Gmail.com
|
602ee7bb28019e48deae7c70a09530a5bd967e5d
|
b8f718a0265a345512ea4df423d161e84ca2b869
|
/true _skip_1/TrueCase/1qna/1qna_chimera.py
|
deadae6e68203e09882bbb83aed808a7a150b1fc
|
[] |
no_license
|
tunazislam/twist-angle-calculation
|
16894ca19c46f3bc875e9c80b2e62b741ef19511
|
18320d886b8e29bccbdd26e303450cfc0ad606a3
|
refs/heads/master
| 2021-06-14T08:51:31.611126
| 2017-05-04T15:20:51
| 2017-05-04T15:20:51
| 84,751,769
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 550,124
|
py
|
import cPickle, base64
try:
from SimpleSession.versions.v62 import beginRestore,\
registerAfterModelsCB, reportRestoreError, checkVersion
except ImportError:
from chimera import UserError
raise UserError('Cannot open session that was saved in a'
' newer version of Chimera; update your version')
checkVersion([1, 10, 2, 40686])
import chimera
from chimera import replyobj
replyobj.status('Restoring session...', \
blankAfter=0)
replyobj.status('Beginning session restore...', \
blankAfter=0, secondary=True)
beginRestore()
def restoreCoreModels():
from SimpleSession.versions.v62 import init, restoreViewer, \
restoreMolecules, restoreColors, restoreSurfaces, \
restoreVRML, restorePseudoBondGroups, restoreModelAssociations
molInfo = cPickle.loads(base64.b64decode('gAJ9cQEoVRFyaWJib25JbnNpZGVDb2xvcnECSwNOfYdVCWJhbGxTY2FsZXEDSwNHP9AAAAAAAAB9h1UJcG9pbnRTaXplcQRLA0c/8AAAAAAAAH2HVQVjb2xvcnEFSwNLAH1xBihLAV1xB0sBYUsCXXEISwJhdYdVCnJpYmJvblR5cGVxCUsDSwB9h1UKc3RpY2tTY2FsZXEKSwNHP/AAAAAAAAB9h1UMYXJvbWF0aWNNb2RlcQtLA0sBfYdVCnZkd0RlbnNpdHlxDEsDR0AUAAAAAAAAfYdVBmhpZGRlbnENSwOJfYdVDWFyb21hdGljQ29sb3JxDksDTn2HVQ9yaWJib25TbW9vdGhpbmdxD0sDSwB9h1UJYXV0b2NoYWlucRBLA4h9h1UIb3B0aW9uYWxxEX1xElUIb3BlbmVkQXNxE4iJSwMoWHsAAABaOlxTcHJpbmcgMjAxN1xHcmFwaHMgaW4gQmlvaW5mb3JtYXRpY3NcUHJvamVjdFxBQ01fQkNCXzIwMTdcNCBjb25zZWN1dGl2ZV91c2luZyBpbWFnZSBkYXRhXDFxbmFcYmFkXF90cmFuc18wX29yaWVudF82MC5wZGJxFFUDUERCcRVOiXRxFn1xFygoWFwAAABaOlxTcHJpbmcgMjAxN1xHcmFwaHMgaW4gQmlvaW5mb3JtYXRpY3NcUHJvamVjdFxBQ01fQkNCXzIwMTdcMy4yLjE3XDFxbmFcb3V0cHV0X3BkYl8xcW5hLnBkYnEYaBVOiXRxGV1xGksCYShYfAAAAFo6XFNwcmluZyAyMDE3XEdyYXBocyBpbiBCaW9pbmZvcm1hdGljc1xQcm9qZWN0XEFDTV9CQ0JfMjAxN1w0IGNvbnNlY3V0aXZlX3VzaW5nIGltYWdlIGRhdGFcMXFuYVxnb29kXF90cmFuc18wX29yaWVudF8zMC5wZGJxG2gVTol0cRxdcR1LAGF1h4dzVQ9sb3dlckNhc2VDaGFpbnNxHksDiX2HVQlsaW5lV2lkdGhxH0sDRz/wAAAAAAAAfYdVD3Jlc2lkdWVMYWJlbFBvc3EgSwNLAH2HVQRuYW1lcSFLA1gWAAAAX3RyYW5zXzBfb3JpZW50XzYwLnBkYn1xIihYFgAAAF90cmFuc18wX29yaWVudF8zMC5wZGJdcSNLAGFYEwAAAG91dHB1dF9wZGJfMXFuYS5wZGJdcSRLAmF1h1UPYXJvbWF0aWNEaXNwbGF5cSVLA4l9h1UPcmliYm9uU3RpZmZuZXNzcSZLA0c/6ZmZmZmZmn2HVQpwZGJIZWFkZXJzcSddcSgofXEpfXEqfXErZVUDaWRzcSxLA0sDSwCGfXEtKEsCSwCGXXEuSwFhSwFLAIZdcS9LAGF1h1UOc3VyZmFjZU9wYWNpdHlxMEsDR7/wAAAAAAAAfYdVEGFyb21hdGljTGluZVR5cGVxMUsDSwJ9h1UUcmliYm9uSGlkZXNNYWluY2hhaW5xMksDiH2HVQdkaXNwbGF5cTNLA4h9h3Uu'))
resInfo = cPickle.loads(base64.b64decode('gAJ9cQEoVQZpbnNlcnRxAksDVQEgfYdVC2ZpbGxEaXNwbGF5cQNLA4l9h1UEbmFtZXEESwNYAwAAAEhPSH1xBVgDAAAATEVVXXEGSwJhc4dVBWNoYWlucQdLA1gBAAAAQX2HVQ5yaWJib25EcmF3TW9kZXEISwNLAn2HVQJzc3EJSwOJiYZ9h1UIbW9sZWN1bGVxCksDSwB9cQsoSwFOXXEMSwFLAYZxDWGGSwJOXXEOSwJLAYZxD2GGdYdVC3JpYmJvbkNvbG9ycRBLA059h1UFbGFiZWxxEUsDWAAAAAB9h1UKbGFiZWxDb2xvcnESSwNOfYdVCGZpbGxNb2RlcRNLA0sBfYdVBWlzSGV0cRRLA4l9h1ULbGFiZWxPZmZzZXRxFUsDTn2HVQhwb3NpdGlvbnEWXXEXKEsBSwGGcRhLAUsBhnEZS1FLAYZxGmVVDXJpYmJvbkRpc3BsYXlxG0sDiX2HVQhvcHRpb25hbHEcfVUEc3NJZHEdSwNK/////32HdS4='))
atomInfo = cPickle.loads(base64.b64decode('gAJ9cQEoVQdyZXNpZHVlcQJNaS1LA31xAyhLBE5dcQRNlBtNeRGGcQVhhksFTl1xBk0NLUtchnEHYYZ1h1UIdmR3Q29sb3JxCE1pLU59h1UEbmFtZXEJTWktWAEAAABIfXEKWAEAAABTXXELKE0NLU0OLU0PLU0QLU0RLU0SLU0TLU0ULU0VLU0WLU0XLU0YLU0ZLU0aLU0bLU0cLU0dLU0eLU0fLU0gLU0hLU0iLU0jLU0kLU0lLU0mLU0nLU0oLU0pLU0qLU0rLU0sLU0tLU0uLU0vLU0wLU0xLU0yLU0zLU00LU01LU02LU03LU04LU05LU06LU07LU08LU09LU0+LU0/LU1ALU1BLU1CLU1DLU1ELU1FLU1GLU1HLU1ILU1JLU1KLU1LLU1MLU1NLU1OLU1PLU1QLU1RLU1SLU1TLU1ULU1VLU1WLU1XLU1YLU1ZLU1aLU1bLU1cLU1dLU1eLU1fLU1gLU1hLU1iLU1jLU1kLU1lLU1mLU1nLU1oLWVzh1UDdmR3cQxNaS2JfYdVDnN1cmZhY2VEaXNwbGF5cQ1NaS2JfYdVBWNvbG9ycQ5NaS1LA31xDyhLBF1xEChNlBtNlRtNlhtNlxtNmBtNmRtNmhtNmxtNnBtNnRtNnhtNnxtNoBtNoRtNohtNoxtNpBtNpRtNphtNpxtNqBtNqRtNqhtNqxtNrBtNrRtNrhtNrxtNsBtNsRtNshtNsxtNtBtNtRtNthtNtxtNuBtNuRtNuhtNuxtNvBtNvRtNvhtNvxtNwBtNwRtNwhtNwxtNxBtNxRtNxhtNxxtNyBtNyRtNyhtNyxtNzBtNzRtNzhtNzxtN0BtN0RtN0htN0xtN1BtN1RtN1htN1xtN2BtN2RtN2htN2xtN3BtN3RtN3htN3xtN4BtN4RtN4htN4xtN5BtN5RtN5htN5xtN6BtN6RtN6htN6xtN7BtN7RtN7htN7xtN8BtN8RtN8htN8xtN9BtN9RtN9htN9xtN+BtN+RtN+htN+xtN/BtN/RtN/htN/xtNABxNARxNAhxNAxxNBBxNBRxNBhxNBxxNCBxNCRxNChxNCxxNDBxNDRxNDhxNDxxNEBxNERxNEhxNExxNFBxNFRxNFhxNFxxNGBxNGRxNGhxNGxxNHBxNHRxNHhxNHxxNIBxNIRxNIhxNIxxNJBxNJRxNJhxNJxxNKBxNKRxNKhxNKxxNLBxNLRxNLhxNLxxNMBxNMRxNMhxNMxxNNBxNNRxNNhxNNxxNOBxNORxNOhxNOxxNPBxNPRxNPhxNPxxNQBxNQRxNQhxNQxxNRBxNRRxNRhxNRxxNSBxNSRxNShxNSxxNTBxNTRxNThxNTxxNUBxNURxNUhxNUxxNVBxNVRxNVhxNVxxNWBxNWRxNWhxNWxxNXBxNXRxNXhxNXxxNYBxNYRxNYhxNYxxNZBxNZRxNZhxNZxxNaBxNaRxNahxNaxxNbBxNbRxNbhxNbxxNcBxNcRxNchxNcxxNdBxNdRxNdhxNdxxNeBxNeRxNehxNexxNfBxNfRxNfhxNfxxNgBxNgRxNghxNgxxNhBxNhRxNhhxNhxxNiBxNiRxNihxNixxNjBxNjRxNjhxNjxxNkBxNkRxNkhxNkxxNlBxNlRxNlhxNlxxNmBxNmRxNmhxNmxxNnBxNnRxNnhxNnxxNoBxNoRxNohxNoxxNpBxNpRxNphxNpxxNqBxNqRxNqhxNqxxNrBxNrRxNrhxNrxxNsBxNsRxNshxNsxxNtBxNtRxNthxNtxxNuBxNuRxNuhxNuxxNvBxNvRxNvhxNvxxNwBxNwRxNwhxNwxxNxBxNxRxNxhxNxxxNyBxNyRxNyhxNyxxNzBxNzRxNzhxNzxxN0BxN0RxN0hxN0xxN1BxN1RxN1hxN1xxN2BxN2RxN2hxN2xxN3BxN3RxN3hxN3xxN4BxN4RxN4hxN4xxN5BxN5RxN5hxN5xxN6BxN6RxN6hxN6xxN7BxN7RxN7hxN7xxN8BxN8RxN8hxN8xxN9BxN9RxN9hxN9xxN+BxN+RxN+hxN+xxN/BxN/RxN/hxN/xxNAB1NAR1NAh1NAx1NBB1NBR1NBh1NBx1NCB1NCR1NCh1NCx1NDB1NDR1NDh1NDx1NEB1NER1NEh1NEx1NFB1NFR1NFh1NFx1NGB1NGR1NGh1NGx1NHB1NHR1NHh1NHx1NIB1NIR1NIh1NIx1NJB1NJR1NJh1NJx1NKB1NKR1NKh1NKx1NLB1NLR1NLh1NLx1NMB1NMR1NMh1NMx1NNB1NNR1NNh1NNx1NOB1NOR1NOh1NOx1NPB1NPR1NPh1NPx1NQB1NQR1NQh1NQx1NRB1NRR1NRh1NRx1NSB1NSR1NSh1NSx1NTB1NTR1NTh1NTx1NUB1NUR1NUh1NUx1NVB1NVR1NVh1NVx1NWB1NWR1NWh1NWx1NXB1NXR1NXh1NXx1NYB1NYR1NYh1NYx1NZB1NZR1NZh1NZx1NaB1NaR1Nah1Nax1NbB1NbR1Nbh1Nbx1NcB1NcR1Nch1Ncx1NdB1NdR1Ndh1Ndx1NeB1NeR1Neh1Nex1NfB1NfR1Nfh1Nfx1NgB1NgR1Ngh1Ngx1NhB1NhR1Nhh1Nhx1NiB1NiR1Nih1Nix1NjB1NjR1Njh1Njx1NkB1NkR1Nkh1Nkx1NlB1NlR1Nlh1Nlx1NmB1NmR1Nmh1Nmx1NnB1NnR1Nnh1Nnx1NoB1NoR1Noh1Nox1NpB1NpR1Nph1Npx1NqB1NqR1Nqh1Nqx1NrB1NrR1Nrh1Nrx1NsB1NsR1Nsh1Nsx1NtB1NtR1Nth1Ntx1NuB1NuR1Nuh1Nux1NvB1NvR1Nvh1Nvx1NwB1NwR1Nwh1Nwx1NxB1NxR1Nxh1Nxx1NyB1NyR1Nyh1Nyx1NzB1NzR1Nzh1Nzx1N0B1N0R1N0h1N0x1N1B1N1R1N1h1N1x1N2B1N2R1N2h1N2x1N3B1N3R1N3h1N3x1N4B1N4R1N4h1N4x1N5B1N5R1N5h1N5x1N6B1N6R1N6h1N6x1N7B1N7R1N7h1N7x1N8B1N8R1N8h1N8x1N9B1N9R1N9h1N9x1N+B1N+R1N+h1N+x1N/B1N/R1N/h1N/x1NAB5NAR5NAh5NAx5NBB5NBR5NBh5NBx5NCB5NCR5NCh5NCx5NDB5NDR5NDh5NDx5NEB5NER5NEh5NEx5NFB5NFR5NFh5NFx5NGB5NGR5NGh5NGx5NHB5NHR5NHh5NHx5NIB5NIR5NIh5NIx5NJB5NJR5NJh5NJx5NKB5NKR5NKh5NKx5NLB5NLR5NLh5NLx5NMB5NMR5NMh5NMx5NNB5NNR5NNh5NNx5NOB5NOR5NOh5NOx5NPB5NPR5NPh5NPx5NQB5NQR5NQh5NQx5NRB5NRR5NRh5NRx5NSB5NSR5NSh5NSx5NTB5NTR5NTh5NTx5NUB5NUR5NUh5NUx5NVB5NVR5NVh5NVx5NWB5NWR5NWh5NWx5NXB5NXR5NXh5NXx5NYB5NYR5NYh5NYx5NZB5NZR5NZh5NZx5NaB5NaR5Nah5Nax5NbB5NbR5Nbh5Nbx5NcB5NcR5Nch5Ncx5NdB5NdR5Ndh5Ndx5NeB5NeR5Neh5Nex5NfB5NfR5Nfh5Nfx5NgB5NgR5Ngh5Ngx5NhB5NhR5Nhh5Nhx5NiB5NiR5Nih5Nix5NjB5NjR5Njh5Njx5NkB5NkR5Nkh5Nkx5NlB5NlR5Nlh5Nlx5NmB5NmR5Nmh5Nmx5NnB5NnR5Nnh5Nnx5NoB5NoR5Noh5Nox5NpB5NpR5Nph5Npx5NqB5NqR5Nqh5Nqx5NrB5NrR5Nrh5Nrx5NsB5NsR5Nsh5Nsx5NtB5NtR5Nth5Ntx5NuB5NuR5Nuh5Nux5NvB5NvR5Nvh5Nvx5NwB5NwR5Nwh5Nwx5NxB5NxR5Nxh5Nxx5NyB5NyR5Nyh5Nyx5NzB5NzR5Nzh5Nzx5N0B5N0R5N0h5N0x5N1B5N1R5N1h5N1x5N2B5N2R5N2h5N2x5N3B5N3R5N3h5N3x5N4B5N4R5N4h5N4x5N5B5N5R5N5h5N5x5N6B5N6R5N6h5N6x5N7B5N7R5N7h5N7x5N8B5N8R5N8h5N8x5N9B5N9R5N9h5N9x5N+B5N+R5N+h5N+x5N/B5N/R5N/h5N/x5NAB9NAR9NAh9NAx9NBB9NBR9NBh9NBx9NCB9NCR9NCh9NCx9NDB9NDR9NDh9NDx9NEB9NER9NEh9NEx9NFB9NFR9NFh9NFx9NGB9NGR9NGh9NGx9NHB9NHR9NHh9NHx9NIB9NIR9NIh9NIx9NJB9NJR9NJh9NJx9NKB9NKR9NKh9NKx9NLB9NLR9NLh9NLx9NMB9NMR9NMh9NMx9NNB9NNR9NNh9NNx9NOB9NOR9NOh9NOx9NPB9NPR9NPh9NPx9NQB9NQR9NQh9NQx9NRB9NRR9NRh9NRx9NSB9NSR9NSh9NSx9NTB9NTR9NTh9NTx9NUB9NUR9NUh9NUx9NVB9NVR9NVh9NVx9NWB9NWR9NWh9NWx9NXB9NXR9NXh9NXx9NYB9NYR9NYh9NYx9NZB9NZR9NZh9NZx9NaB9NaR9Nah9Nax9NbB9NbR9Nbh9Nbx9NcB9NcR9Nch9Ncx9NdB9NdR9Ndh9Ndx9NeB9NeR9Neh9Nex9lKE18H019H01+H01/H02AH02BH02CH02DH02EH02FH02GH02HH02IH02JH02KH02LH02MH02NH02OH02PH02QH02RH02SH02TH02UH02VH02WH02XH02YH02ZH02aH02bH02cH02dH02eH02fH02gH02hH02iH02jH02kH02lH02mH02nH02oH02pH02qH02rH02sH02tH02uH02vH02wH02xH02yH02zH020H021H022H023H024H025H026H027H028H029H02+H02/H03AH03BH03CH03DH03EH03FH03GH03HH03IH03JH03KH03LH03MH03NH03OH03PH03QH03RH03SH03TH03UH03VH03WH03XH03YH03ZH03aH03bH03cH03dH03eH03fH03gH03hH03iH03jH03kH03lH03mH03nH03oH03pH03qH03rH03sH03tH03uH03vH03wH03xH03yH03zH030H031H032H033H034H035H036H037H038H039H03+H03/H00AIE0BIE0CIE0DIE0EIE0FIE0GIE0HIE0IIE0JIE0KIE0LIE0MIE0NIE0OIE0PIE0QIE0RIE0SIE0TIE0UIE0VIE0WIE0XIE0YIE0ZIE0aIE0bIE0cIE0dIE0eIE0fIE0gIE0hIE0iIE0jIE0kIE0lIE0mIE0nIE0oIE0pIE0qIE0rIE0sIE0tIE0uIE0vIE0wIE0xIE0yIE0zIE00IE01IE02IE03IE04IE05IE06IE07IE08IE09IE0+IE0/IE1AIE1BIE1CIE1DIE1EIE1FIE1GIE1HIE1IIE1JIE1KIE1LIE1MIE1NIE1OIE1PIE1QIE1RIE1SIE1TIE1UIE1VIE1WIE1XIE1YIE1ZIE1aIE1bIE1cIE1dIE1eIE1fIE1gIE1hIE1iIE1jIE1kIE1lIE1mIE1nIE1oIE1pIE1qIE1rIE1sIE1tIE1uIE1vIE1wIE1xIE1yIE1zIE10IE11IE12IE13IE14IE15IE16IE17IE18IE19IE1+IE1/IE2AIE2BIE2CIE2DIE2EIE2FIE2GIE2HIE2IIE2JIE2KIE2LIE2MIE2NIE2OIE2PIE2QIE2RIE2SIE2TIE2UIE2VIE2WIE2XIE2YIE2ZIE2aIE2bIE2cIE2dIE2eIE2fIE2gIE2hIE2iIE2jIE2kIE2lIE2mIE2nIE2oIE2pIE2qIE2rIE2sIE2tIE2uIE2vIE2wIE2xIE2yIE2zIE20IE21IE22IE23IE24IE25IE26IE27IE28IE29IE2+IE2/IE3AIE3BIE3CIE3DIE3EIE3FIE3GIE3HIE3IIE3JIE3KIE3LIE3MIE3NIE3OIE3PIE3QIE3RIE3SIE3TIE3UIE3VIE3WIE3XIE3YIE3ZIE3aIE3bIE3cIE3dIE3eIE3fIE3gIE3hIE3iIE3jIE3kIE3lIE3mIE3nIE3oIE3pIE3qIE3rIE3sIE3tIE3uIE3vIE3wIE3xIE3yIE3zIE30IE31IE32IE33IE34IE35IE36IE37IE38IE39IE3+IE3/IE0AIU0BIU0CIU0DIU0EIU0FIU0GIU0HIU0IIU0JIU0KIU0LIU0MIU0NIU0OIU0PIU0QIU0RIU0SIU0TIU0UIU0VIU0WIU0XIU0YIU0ZIU0aIU0bIU0cIU0dIU0eIU0fIU0gIU0hIU0iIU0jIU0kIU0lIU0mIU0nIU0oIU0pIU0qIU0rIU0sIU0tIU0uIU0vIU0wIU0xIU0yIU0zIU00IU01IU02IU03IU04IU05IU06IU07IU08IU09IU0+IU0/IU1AIU1BIU1CIU1DIU1EIU1FIU1GIU1HIU1IIU1JIU1KIU1LIU1MIU1NIU1OIU1PIU1QIU1RIU1SIU1TIU1UIU1VIU1WIU1XIU1YIU1ZIU1aIU1bIU1cIU1dIU1eIU1fIU1gIU1hIU1iIU1jIU1kIU1lIU1mIU1nIU1oIU1pIU1qIU1rIU1sIU1tIU1uIU1vIU1wIU1xIU1yIU1zIU10IU11IU12IU13IU14IU15IU16IU17IU18IU19IU1+IU1/IU2AIU2BIU2CIU2DIU2EIU2FIU2GIU2HIU2IIU2JIU2KIU2LIU2MIU2NIU2OIU2PIU2QIU2RIU2SIU2TIU2UIU2VIU2WIU2XIU2YIU2ZIU2aIU2bIU2cIU2dIU2eIU2fIU2gIU2hIU2iIU2jIU2kIU2lIU2mIU2nIU2oIU2pIU2qIU2rIU2sIU2tIU2uIU2vIU2wIU2xIU2yIU2zIU20IU21IU22IU23IU24IU25IU26IU27IU28IU29IU2+IU2/IU3AIU3BIU3CIU3DIU3EIU3FIU3GIU3HIU3IIU3JIU3KIU3LIU3MIU3NIU3OIU3PIU3QIU3RIU3SIU3TIU3UIU3VIU3WIU3XIU3YIU3ZIU3aIU3bIU3cIU3dIU3eIU3fIU3gIU3hIU3iIU3jIU3kIU3lIU3mIU3nIU3oIU3pIU3qIU3rIU3sIU3tIU3uIU3vIU3wIU3xIU3yIU3zIU30IU31IU32IU33IU34IU35IU36IU37IU38IU39IU3+IU3/IU0AIk0BIk0CIk0DIk0EIk0FIk0GIk0HIk0IIk0JIk0KIk0LIk0MIk0NIk0OIk0PIk0QIk0RIk0SIk0TIk0UIk0VIk0WIk0XIk0YIk0ZIk0aIk0bIk0cIk0dIk0eIk0fIk0gIk0hIk0iIk0jIk0kIk0lIk0mIk0nIk0oIk0pIk0qIk0rIk0sIk0tIk0uIk0vIk0wIk0xIk0yIk0zIk00Ik01Ik02Ik03Ik04Ik05Ik06Ik07Ik08Ik09Ik0+Ik0/Ik1AIk1BIk1CIk1DIk1EIk1FIk1GIk1HIk1IIk1JIk1KIk1LIk1MIk1NIk1OIk1PIk1QIk1RIk1SIk1TIk1UIk1VIk1WIk1XIk1YIk1ZIk1aIk1bIk1cIk1dIk1eIk1fIk1gIk1hIk1iIk1jIk1kIk1lIk1mIk1nIk1oIk1pIk1qIk1rIk1sIk1tIk1uIk1vIk1wIk1xIk1yIk1zIk10Ik11Ik12Ik13Ik14Ik15Ik16Ik17Ik18Ik19Ik1+Ik1/Ik2AIk2BIk2CIk2DIk2EIk2FIk2GIk2HIk2IIk2JIk2KIk2LIk2MIk2NIk2OIk2PIk2QIk2RIk2SIk2TIk2UIk2VIk2WIk2XIk2YIk2ZIk2aIk2bIk2cIk2dIk2eIk2fIk2gIk2hIk2iIk2jIk2kIk2lIk2mIk2nIk2oIk2pIk2qIk2rIk2sIk2tIk2uIk2vIk2wIk2xIk2yIk2zIk20Ik21Ik22Ik23Ik24Ik25Ik26Ik27Ik28Ik29Ik2+Ik2/Ik3AIk3BIk3CIk3DIk3EIk3FIk3GIk3HIk3IIk3JIk3KIk3LIk3MIk3NIk3OIk3PIk3QIk3RIk3SIk3TIk3UIk3VIk3WIk3XIk3YIk3ZIk3aIk3bIk3cIk3dIk3eIk3fIk3gIk3hIk3iIk3jIk3kIk3lIk3mIk3nIk3oIk3pIk3qIk3rIk3sIk3tIk3uIk3vIk3wIk3xIk3yIk3zIk30Ik31Ik32Ik33Ik34Ik35Ik36Ik37Ik38Ik39Ik3+Ik3/Ik0AI00BI00CI00DI00EI00FI00GI00HI00II00JI00KI00LI00MI00NI00OI00PI00QI00RI00SI00TI00UI00VI00WI00XI00YI00ZI00aI00bI00cI00dI00eI00fI00gI00hI00iI00jI00kI00lI00mI00nI00oI00pI00qI00rI00sI00tI00uI00vI00wI00xI00yI00zI000I001I002I003I004I005I006I007I008I009I00+I00/I01AI01BI01CI01DI01EI01FI01GI01HI01II01JI01KI01LI01MI01NI01OI01PI01QI01RI01SI01TI01UI01VI01WI01XI01YI01ZI01aI01bI01cI01dI01eI01fI01gI01hI01iI01jI2UoTWQjTWUjTWYjTWcjTWgjTWkjTWojTWsjTWwjTW0jTW4jTW8jTXAjTXEjTXIjTXMjTXQjTXUjTXYjTXcjTXgjTXkjTXojTXsjTXwjTX0jTX4jTX8jTYAjTYEjTYIjTYMjTYQjTYUjTYYjTYcjTYgjTYkjTYojTYsjTYwjTY0jTY4jTY8jTZAjTZEjTZIjTZMjTZQjTZUjTZYjTZcjTZgjTZkjTZojTZsjTZwjTZ0jTZ4jTZ8jTaAjTaEjTaIjTaMjTaQjTaUjTaYjTacjTagjTakjTaojTasjTawjTa0jTa4jTa8jTbAjTbEjTbIjTbMjTbQjTbUjTbYjTbcjTbgjTbkjTbojTbsjTbwjTb0jTb4jTb8jTcAjTcEjTcIjTcMjTcQjTcUjTcYjTccjTcgjTckjTcojTcsjTcwjTc0jTc4jTc8jTdAjTdEjTdIjTdMjTdQjTdUjTdYjTdcjTdgjTdkjTdojTdsjTdwjTd0jTd4jTd8jTeAjTeEjTeIjTeMjTeQjTeUjTeYjTecjTegjTekjTeojTesjTewjTe0jTe4jTe8jTfAjTfEjTfIjTfMjTfQjTfUjTfYjTfcjTfgjTfkjTfojTfsjTfwjTf0jTf4jTf8jTQAkTQEkTQIkTQMkTQQkTQUkTQYkTQckTQgkTQkkTQokTQskTQwkTQ0kTQ4kTQ8kTRAkTREkTRIkTRMkTRQkTRUkTRYkTRckTRgkTRkkTRokTRskTRwkTR0kTR4kTR8kTSAkTSEkTSIkTSMkTSQkTSUkTSYkTSckTSgkTSkkTSokTSskTSwkTS0kTS4kTS8kTTAkTTEkTTIkTTMkTTQkTTUkTTYkTTckTTgkTTkkTTokTTskTTwkTT0kTT4kTT8kTUAkTUEkTUIkTUMkTUQkTUUkTUYkTUckTUgkTUkkTUokTUskTUwkTU0kTU4kTU8kTVAkTVEkTVIkTVMkTVQkTVUkTVYkTVckTVgkTVkkTVokTVskTVwkTV0kTV4kTV8kTWAkTWEkTWIkTWMkTWQkTWUkTWYkTWckTWgkTWkkTWokTWskTWwkTW0kTW4kTW8kTXAkTXEkTXIkTXMkTXQkTXUkTXYkTXckTXgkTXkkTXokTXskTXwkTX0kTX4kTX8kTYAkTYEkTYIkTYMkTYQkTYUkTYYkTYckTYgkTYkkTYokTYskTYwkTY0kTY4kTY8kTZAkTZEkTZIkTZMkTZQkTZUkTZYkTZckTZgkTZkkTZokTZskTZwkTZ0kTZ4kTZ8kTaAkTaEkTaIkTaMkTaQkTaUkTaYkTackTagkTakkTaokTaskTawkTa0kTa4kTa8kTbAkTbEkTbIkTbMkTbQkTbUkTbYkTbckTbgkTbkkTbokTbskTbwkTb0kTb4kTb8kTcAkTcEkTcIkTcMkTcQkTcUkTcYkTcckTcgkTckkTcokTcskTcwkTc0kTc4kTc8kTdAkTdEkTdIkTdMkTdQkTdUkTdYkTdckTdgkTdkkTdokTdskTdwkTd0kTd4kTd8kTeAkTeEkTeIkTeMkTeQkTeUkTeYkTeckTegkTekkTeokTeskTewkTe0kTe4kTe8kTfAkTfEkTfIkTfMkTfQkTfUkTfYkTfckTfgkTfkkTfokTfskTfwkTf0kTf4kTf8kTQAlTQElTQIlTQMlTQQlTQUlTQYlTQclTQglTQklTQolTQslTQwlTQ0lTQ4lTQ8lTRAlTRElTRIlTRMlTRQlTRUlTRYlTRclTRglTRklTRolTRslTRwlTR0lTR4lTR8lTSAlTSElTSIlTSMlTSQlTSUlTSYlTSclTSglTSklTSolTSslTSwlTS0lTS4lTS8lTTAlTTElTTIlTTMlTTQlTTUlTTYlTTclTTglTTklTTolTTslTTwlTT0lTT4lTT8lTUAlTUElTUIlTUMlTUQlTUUlTUYlTUclTUglTUklTUolTUslTUwlTU0lTU4lTU8lTVAlTVElTVIlTVMlTVQlTVUlTVYlTVclTVglTVklTVolTVslTVwlTV0lTV4lTV8lTWAlTWElTWIlTWMlTWQlTWUlTWYlTWclTWglTWklTWolTWslTWwlTW0lTW4lTW8lTXAlTXElTXIlTXMlTXQlTXUlTXYlTXclTXglTXklTXolTXslTXwlTX0lTX4lTX8lTYAlTYElTYIlTYMlTYQlTYUlTYYlTYclTYglTYklTYolTYslTYwlTY0lTY4lTY8lTZAlTZElTZIlTZMlTZQlTZUlTZYlTZclTZglTZklTZolTZslTZwlTZ0lTZ4lTZ8lTaAlTaElTaIlTaMlTaQlTaUlTaYlTaclTaglTaklTaolTaslTawlTa0lTa4lTa8lTbAlTbElTbIlTbMlTbQlTbUlTbYlTbclTbglTbklTbolTbslTbwlTb0lTb4lTb8lTcAlTcElTcIlTcMlTcQlTcUlTcYlTcclTcglTcklTcolTcslTcwlTc0lTc4lTc8lTdAlTdElTdIlTdMlTdQlTdUlTdYlTdclTdglTdklTdolTdslTdwlTd0lTd4lTd8lTeAlTeElTeIlTeMlTeQlTeUlTeYlTeclTeglTeklTeolTeslTewlTe0lTe4lTe8lTfAlTfElTfIlTfMlTfQlTfUlTfYlTfclTfglTfklTfolTfslTfwlTf0lTf4lTf8lTQAmTQEmTQImTQMmTQQmTQUmTQYmTQcmTQgmTQkmTQomTQsmTQwmTQ0mTQ4mTQ8mTRAmTREmTRImTRMmTRQmTRUmTRYmTRcmTRgmTRkmTRomTRsmTRwmTR0mTR4mTR8mTSAmTSEmTSImTSMmTSQmTSUmTSYmTScmTSgmTSkmTSomTSsmTSwmTS0mTS4mTS8mTTAmTTEmTTImTTMmTTQmTTUmTTYmTTcmTTgmTTkmTTomTTsmTTwmTT0mTT4mTT8mTUAmTUEmTUImTUMmTUQmTUUmTUYmTUcmTUgmTUkmTUomTUsmTUwmTU0mTU4mTU8mTVAmTVEmTVImTVMmTVQmTVUmTVYmTVcmTVgmTVkmTVomTVsmTVwmTV0mTV4mTV8mTWAmTWEmTWImTWMmTWQmTWUmTWYmTWcmTWgmTWkmTWomTWsmTWwmTW0mTW4mTW8mTXAmTXEmTXImTXMmTXQmTXUmTXYmTXcmTXgmTXkmTXomTXsmTXwmTX0mTX4mTX8mTYAmTYEmTYImTYMmTYQmTYUmTYYmTYcmTYgmTYkmTYomTYsmTYwmTY0mTY4mTY8mTZAmTZEmTZImTZMmTZQmTZUmTZYmTZcmTZgmTZkmTZomTZsmTZwmTZ0mTZ4mTZ8mTaAmTaEmTaImTaMmTaQmTaUmTaYmTacmTagmTakmTaomTasmTawmTa0mTa4mTa8mTbAmTbEmTbImTbMmTbQmTbUmTbYmTbcmTbgmTbkmTbomTbsmTbwmTb0mTb4mTb8mTcAmTcEmTcImTcMmTcQmTcUmTcYmTccmTcgmTckmTcomTcsmTcwmTc0mTc4mTc8mTdAmTdEmTdImTdMmTdQmTdUmTdYmTdcmTdgmTdkmTdomTdsmTdwmTd0mTd4mTd8mTeAmTeEmTeImTeMmTeQmTeUmTeYmTecmTegmTekmTeomTesmTewmTe0mTe4mTe8mTfAmTfEmTfImTfMmTfQmTfUmTfYmTfcmTfgmTfkmTfomTfsmTfwmTf0mTf4mTf8mTQAnTQEnTQInTQMnTQQnTQUnTQYnTQcnTQgnTQknTQonTQsnTQwnTQ0nTQ4nTQ8nTRAnTREnTRInTRMnTRQnTRUnTRYnTRcnTRgnTRknTRonTRsnTRwnTR0nTR4nTR8nTSAnTSEnTSInTSMnTSQnTSUnTSYnTScnTSgnTSknTSonTSsnTSwnTS0nTS4nTS8nTTAnTTEnTTInTTMnTTQnTTUnTTYnTTcnTTgnTTknTTonTTsnTTwnTT0nTT4nTT8nTUAnTUEnTUInTUMnTUQnTUUnTUYnTUcnTUgnTUknTUonTUsnZShNTCdNTSdNTidNTydNUCdNUSdNUidNUydNVCdNVSdNVidNVydNWCdNWSdNWidNWydNXCdNXSdNXidNXydNYCdNYSdNYidNYydNZCdNZSdNZidNZydNaCdNaSdNaidNaydNbCdNbSdNbidNbydNcCdNcSdNcidNcydNdCdNdSdNdidNdydNeCdNeSdNeidNeydNfCdNfSdNfidNfydNgCdNgSdNgidNgydNhCdNhSdNhidNhydNiCdNiSdNiidNiydNjCdNjSdNjidNjydNkCdNkSdNkidNkydNlCdNlSdNlidNlydNmCdNmSdNmidNmydNnCdNnSdNnidNnydNoCdNoSdNoidNoydNpCdNpSdNpidNpydNqCdNqSdNqidNqydNrCdNrSdNridNrydNsCdNsSdNsidNsydNtCdNtSdNtidNtydNuCdNuSdNuidNuydNvCdNvSdNvidNvydNwCdNwSdNwidNwydNxCdNxSdNxidNxydNyCdNySdNyidNyydNzCdNzSdNzidNzydN0CdN0SdN0idN0ydN1CdN1SdN1idN1ydN2CdN2SdN2idN2ydN3CdN3SdN3idN3ydN4CdN4SdN4idN4ydN5CdN5SdN5idN5ydN6CdN6SdN6idN6ydN7CdN7SdN7idN7ydN8CdN8SdN8idN8ydN9CdN9SdN9idN9ydN+CdN+SdN+idN+ydN/CdN/SdN/idN/ydNAChNAShNAihNAyhNBChNBShNBihNByhNCChNCShNCihNCyhNDChNDShNDihNDyhNEChNEShNEihNEyhNFChNFShNFihNFyhNGChNGShNGihNGyhNHChNHShNHihNHyhNIChNIShNIihNIyhNJChNJShNJihNJyhNKChNKShNKihNKyhNLChNLShNLihNLyhNMChNMShNMihNMyhNNChNNShNNihNNyhNOChNOShNOihNOyhNPChNPShNPihNPyhNQChNQShNQihNQyhNRChNRShNRihNRyhNSChNSShNSihNSyhNTChNTShNTihNTyhNUChNUShNUihNUyhNVChNVShNVihNVyhNWChNWShNWihNWyhNXChNXShNXihNXyhNYChNYShNYihNYyhNZChNZShNZihNZyhNaChNaShNaihNayhNbChNbShNbihNbyhNcChNcShNcihNcyhNdChNdShNdihNdyhNeChNeShNeihNeyhNfChNfShNfihNfyhNgChNgShNgihNgyhNhChNhShNhihNhyhNiChNiShNiihNiyhNjChNjShNjihNjyhNkChNkShNkihNkyhNlChNlShNlihNlyhNmChNmShNmihNmyhNnChNnShNnihNnyhNoChNoShNoihNoyhNpChNpShNpihNpyhNqChNqShNqihNqyhNrChNrShNrihNryhNsChNsShNsihNsyhNtChNtShNtihNtyhNuChNuShNuihNuyhNvChNvShNvihNvyhNwChNwShNwihNwyhNxChNxShNxihNxyhNyChNyShNyihNyyhNzChNzShNzihNzyhN0ChN0ShN0ihN0yhN1ChN1ShN1ihN1yhN2ChN2ShN2ihN2yhN3ChN3ShN3ihN3yhN4ChN4ShN4ihN4yhN5ChN5ShN5ihN5yhN6ChN6ShN6ihN6yhN7ChN7ShN7ihN7yhN8ChN8ShN8ihN8yhN9ChN9ShN9ihN9yhN+ChN+ShN+ihN+yhN/ChN/ShN/ihN/yhNAClNASlNAilNAylNBClNBSlNBilNBylNCClNCSlNCilNCylNDClNDSlNDilNDylNEClNESlNEilNEylNFClNFSlNFilNFylNGClNGSlNGilNGylNHClNHSlNHilNHylNIClNISlNIilNIylNJClNJSlNJilNJylNKClNKSlNKilNKylNLClNLSlNLilNLylNMClNMSlNMilNMylNNClNNSlNNilNNylNOClNOSlNOilNOylNPClNPSlNPilNPylNQClNQSlNQilNQylNRClNRSlNRilNRylNSClNSSlNSilNSylNTClNTSlNTilNTylNUClNUSlNUilNUylNVClNVSlNVilNVylNWClNWSlNWilNWylNXClNXSlNXilNXylNYClNYSlNYilNYylNZClNZSlNZilNZylNaClNaSlNailNaylNbClNbSlNbilNbylNcClNcSlNcilNcylNdClNdSlNdilNdylNeClNeSlNeilNeylNfClNfSlNfilNfylNgClNgSlNgilNgylNhClNhSlNhilNhylNiClNiSlNiilNiylNjClNjSlNjilNjylNkClNkSlNkilNkylNlClNlSlNlilNlylNmClNmSlNmilNmylNnClNnSlNnilNnylNoClNoSlNoilNoylNpClNpSlNpilNpylNqClNqSlNqilNqylNrClNrSlNrilNrylNsClNsSlNsilNsylNtClNtSlNtilNtylNuClNuSlNuilNuylNvClNvSlNvilNvylNwClNwSlNwilNwylNxClNxSlNxilNxylNyClNySlNyilNyylNzClNzSlNzilNzylN0ClN0SlN0ilN0ylN1ClN1SlN1ilN1ylN2ClN2SlN2ilN2ylN3ClN3SlN3ilN3ylN4ClN4SlN4ilN4ylN5ClN5SlN5ilN5ylN6ClN6SlN6ilN6ylN7ClN7SlN7ilN7ylN8ClN8SlN8ilN8ylN9ClN9SlN9ilN9ylN+ClN+SlN+ilN+ylN/ClN/SlN/ilN/ylNACpNASpNAipNAypNBCpNBSpNBipNBypNCCpNCSpNCipNCypNDCpNDSpNDipNDypNECpNESpNEipNEypNFCpNFSpNFipNFypNGCpNGSpNGipNGypNHCpNHSpNHipNHypNICpNISpNIipNIypNJCpNJSpNJipNJypNKCpNKSpNKipNKypNLCpNLSpNLipNLypNMCpNMSpNMipNMypNNCpNNSpNNipNNypNOCpNOSpNOipNOypNPCpNPSpNPipNPypNQCpNQSpNQipNQypNRCpNRSpNRipNRypNSCpNSSpNSipNSypNTCpNTSpNTipNTypNUCpNUSpNUipNUypNVCpNVSpNVipNVypNWCpNWSpNWipNWypNXCpNXSpNXipNXypNYCpNYSpNYipNYypNZCpNZSpNZipNZypNaCpNaSpNaipNaypNbCpNbSpNbipNbypNcCpNcSpNcipNcypNdCpNdSpNdipNdypNeCpNeSpNeipNeypNfCpNfSpNfipNfypNgCpNgSpNgipNgypNhCpNhSpNhipNhypNiCpNiSpNiipNiypNjCpNjSpNjipNjypNkCpNkSpNkipNkypNlCpNlSpNlipNlypNmCpNmSpNmipNmypNnCpNnSpNnipNnypNoCpNoSpNoipNoypNpCpNpSpNpipNpypNqCpNqSpNqipNqypNrCpNrSpNripNrypNsCpNsSpNsipNsypNtCpNtSpNtipNtypNuCpNuSpNuipNuypNvCpNvSpNvipNvypNwCpNwSpNwipNwypNxCpNxSpNxipNxypNyCpNySpNyipNyypNzCpNzSpNzipNzypN0CpN0SpN0ipN0ypN1CpN1SpN1ipN1ypN2CpN2SpN2ipN2ypN3CpN3SpN3ipN3ypN4CpN4SpN4ipN4ypN5CpN5SpN5ipN5ypN6CpN6SpN6ipN6ypN7CpN7SpN7ipN7ypN8CpN8SpN8ipN8ypN9CpN9SpN9ipN9ypN+CpN+SpN+ipN+ypN/CpN/SpN/ipN/ypNACtNAStNAitNAytNBCtNBStNBitNBytNCCtNCStNCitNCytNDCtNDStNDitNDytNECtNEStNEitNEytNFCtNFStNFitNFytNGCtNGStNGitNGytNHCtNHStNHitNHytNICtNIStNIitNIytNJCtNJStNJitNJytNKCtNKStNKitNKytNLCtNLStNLitNLytNMCtNMStNMitNMytlKE00K001K002K003K004K005K006K007K008K009K00+K00/K01AK01BK01CK01DK01EK01FK01GK01HK01IK01JK01KK01LK01MK01NK01OK01PK01QK01RK01SK01TK01UK01VK01WK01XK01YK01ZK01aK01bK01cK01dK01eK01fK01gK01hK01iK01jK01kK01lK01mK01nK01oK01pK01qK01rK01sK01tK01uK01vK01wK01xK01yK01zK010K011K012K013K014K015K016K017K018K019K01+K01/K02AK02BK02CK02DK02EK02FK02GK02HK02IK02JK02KK02LK02MK02NK02OK02PK02QK02RK02SK02TK02UK02VK02WK02XK02YK02ZK02aK02bK02cK02dK02eK02fK02gK02hK02iK02jK02kK02lK02mK02nK02oK02pK02qK02rK02sK02tK02uK02vK02wK02xK02yK02zK020K021K022K023K024K025K026K027K028K029K02+K02/K03AK03BK03CK03DK03EK03FK03GK03HK03IK03JK03KK03LK03MK03NK03OK03PK03QK03RK03SK03TK03UK03VK03WK03XK03YK03ZK03aK03bK03cK03dK03eK03fK03gK03hK03iK03jK03kK03lK03mK03nK03oK03pK03qK03rK03sK03tK03uK03vK03wK03xK03yK03zK030K031K032K033K034K035K036K037K038K039K03+K03/K00ALE0BLE0CLE0DLE0ELE0FLE0GLE0HLE0ILE0JLE0KLE0LLE0MLE0NLE0OLE0PLE0QLE0RLE0SLE0TLE0ULE0VLE0WLE0XLE0YLE0ZLE0aLE0bLE0cLE0dLE0eLE0fLE0gLE0hLE0iLE0jLE0kLE0lLE0mLE0nLE0oLE0pLE0qLE0rLE0sLE0tLE0uLE0vLE0wLE0xLE0yLE0zLE00LE01LE02LE03LE04LE05LE06LE07LE08LE09LE0+LE0/LE1ALE1BLE1CLE1DLE1ELE1FLE1GLE1HLE1ILE1JLE1KLE1LLE1MLE1NLE1OLE1PLE1QLE1RLE1SLE1TLE1ULE1VLE1WLE1XLE1YLE1ZLE1aLE1bLE1cLE1dLE1eLE1fLE1gLE1hLE1iLE1jLE1kLE1lLE1mLE1nLE1oLE1pLE1qLE1rLE1sLE1tLE1uLE1vLE1wLE1xLE1yLE1zLE10LE11LE12LE13LE14LE15LE16LE17LE18LE19LE1+LE1/LE2ALE2BLE2CLE2DLE2ELE2FLE2GLE2HLE2ILE2JLE2KLE2LLE2MLE2NLE2OLE2PLE2QLE2RLE2SLE2TLE2ULE2VLE2WLE2XLE2YLE2ZLE2aLE2bLE2cLE2dLE2eLE2fLE2gLE2hLE2iLE2jLE2kLE2lLE2mLE2nLE2oLE2pLE2qLE2rLE2sLE2tLE2uLE2vLE2wLE2xLE2yLE2zLE20LE21LE22LE23LE24LE25LE26LE27LE28LE29LE2+LE2/LE3ALE3BLE3CLE3DLE3ELE3FLE3GLE3HLE3ILE3JLE3KLE3LLE3MLE3NLE3OLE3PLE3QLE3RLE3SLE3TLE3ULE3VLE3WLE3XLE3YLE3ZLE3aLE3bLE3cLE3dLE3eLE3fLE3gLE3hLE3iLE3jLE3kLE3lLE3mLE3nLE3oLE3pLE3qLE3rLE3sLE3tLE3uLE3vLE3wLE3xLE3yLE3zLE30LE31LE32LE33LE34LE35LE36LE37LE38LE39LE3+LE3/LE0ALU0BLU0CLU0DLU0ELU0FLU0GLU0HLU0ILU0JLU0KLU0LLU0MLWVLBV1xEShNDS1NDi1NDy1NEC1NES1NEi1NEy1NFC1NFS1NFi1NFy1NGC1NGS1NGi1NGy1NHC1NHS1NHi1NHy1NIC1NIS1NIi1NIy1NJC1NJS1NJi1NJy1NKC1NKS1NKi1NKy1NLC1NLS1NLi1NLy1NMC1NMS1NMi1NMy1NNC1NNS1NNi1NNy1NOC1NOS1NOi1NOy1NPC1NPS1NPi1NPy1NQC1NQS1NQi1NQy1NRC1NRS1NRi1NRy1NSC1NSS1NSi1NSy1NTC1NTS1NTi1NTy1NUC1NUS1NUi1NUy1NVC1NVS1NVi1NVy1NWC1NWS1NWi1NWy1NXC1NXS1NXi1NXy1NYC1NYS1NYi1NYy1NZC1NZS1NZi1NZy1NaC1ldYdVCWlkYXRtVHlwZXESTWktiX2HVQZhbHRMb2NxE01pLVUAfYdVBWxhYmVscRRNaS1YAAAAAH2HVQ5zdXJmYWNlT3BhY2l0eXEVTWktR7/wAAAAAAAAfYdVB2VsZW1lbnRxFk1pLUsBfXEXSxBdcRgoTQ0tTQ4tTQ8tTRAtTREtTRItTRMtTRQtTRUtTRYtTRctTRgtTRktTRotTRstTRwtTR0tTR4tTR8tTSAtTSEtTSItTSMtTSQtTSUtTSYtTSctTSgtTSktTSotTSstTSwtTS0tTS4tTS8tTTAtTTEtTTItTTMtTTQtTTUtTTYtTTctTTgtTTktTTotTTstTTwtTT0tTT4tTT8tTUAtTUEtTUItTUMtTUQtTUUtTUYtTUctTUgtTUktTUotTUstTUwtTU0tTU4tTU8tTVAtTVEtTVItTVMtTVQtTVUtTVYtTVctTVgtTVktTVotTVstTVwtTV0tTV4tTV8tTWAtTWEtTWItTWMtTWQtTWUtTWYtTWctTWgtZXOHVQpsYWJlbENvbG9ycRlNaS1OfYdVDHN1cmZhY2VDb2xvcnEaTWktTn2HVQ9zdXJmYWNlQ2F0ZWdvcnlxG01pLVgHAAAAc29sdmVudH1xHChYBAAAAGlvbnNOXXEdTQ0tSwKGcR5hhlgEAAAAbWFpbk5dcR9NDy1LWoZxIGGGdYdVBnJhZGl1c3EhTWktRz/wAAAAAAAAfXEiRz/8UeuAAAAAXXEjKE0NLU0OLU0PLU0QLU0RLU0SLU0TLU0ULU0VLU0WLU0XLU0YLU0ZLU0aLU0bLU0cLU0dLU0eLU0fLU0gLU0hLU0iLU0jLU0kLU0lLU0mLU0nLU0oLU0pLU0qLU0rLU0sLU0tLU0uLU0vLU0wLU0xLU0yLU0zLU00LU01LU02LU03LU04LU05LU06LU07LU08LU09LU0+LU0/LU1ALU1BLU1CLU1DLU1ELU1FLU1GLU1HLU1ILU1JLU1KLU1LLU1MLU1NLU1OLU1PLU1QLU1RLU1SLU1TLU1ULU1VLU1WLU1XLU1YLU1ZLU1aLU1bLU1cLU1dLU1eLU1fLU1gLU1hLU1iLU1jLU1kLU1lLU1mLU1nLU1oLWVzh1UKY29vcmRJbmRleHEkXXElKEsATZQbhnEmSwBNeRGGcSdLAEtchnEoZVULbGFiZWxPZmZzZXRxKU1pLU59h1USbWluaW11bUxhYmVsUmFkaXVzcSpNaS1HAAAAAAAAAAB9h1UIZHJhd01vZGVxK01pLUsCfYdVCG9wdGlvbmFscSx9cS0oVQxzZXJpYWxOdW1iZXJxLoiIXXEvKEsBTZQbhnEwSwFNeRGGcTFLV0tchnEyZYdVB2JmYWN0b3JxM4iJTWktRwAAAAAAAAAAfYeHVQlvY2N1cGFuY3lxNIiJTWktRwAAAAAAAAAAfYeHdVUHZGlzcGxheXE1TWktiH2HdS4='))
bondInfo = cPickle.loads(base64.b64decode('gAJ9cQEoVQVjb2xvcnECS1JOfYdVBWF0b21zcQNdcQQoXXEFKE0VLU0WLWVdcQYoTRYtTRctZV1xByhNFy1NGC1lXXEIKE0YLU0ZLWVdcQkoTRktTRotZV1xCihNGi1NGy1lXXELKE0bLU0cLWVdcQwoTRwtTR0tZV1xDShNHS1NHi1lXXEOKE0fLU0gLWVdcQ8oTSAtTSEtZV1xEChNIS1NIi1lXXERKE0iLU0jLWVdcRIoTSMtTSQtZV1xEyhNJC1NJS1lXXEUKE0lLU0mLWVdcRUoTSYtTSctZV1xFihNJy1NKC1lXXEXKE0pLU0qLWVdcRgoTSotTSstZV1xGShNKy1NLC1lXXEaKE0sLU0tLWVdcRsoTS0tTS4tZV1xHChNLi1NLy1lXXEdKE0vLU0wLWVdcR4oTTAtTTEtZV1xHyhNMS1NMi1lXXEgKE0yLU0zLWVdcSEoTTMtTTQtZV1xIihNNS1NNi1lXXEjKE02LU03LWVdcSQoTTctTTgtZV1xJShNOC1NOS1lXXEmKE05LU06LWVdcScoTTotTTstZV1xKChNOy1NPC1lXXEpKE08LU09LWVdcSooTT0tTT4tZV1xKyhNPi1NPy1lXXEsKE0/LU1ALWVdcS0oTUAtTUEtZV1xLihNQS1NQi1lXXEvKE1CLU1DLWVdcTAoTUMtTUQtZV1xMShNRC1NRS1lXXEyKE1FLU1GLWVdcTMoTUctTUgtZV1xNChNSC1NSS1lXXE1KE1JLU1KLWVdcTYoTUotTUstZV1xNyhNSy1NTC1lXXE4KE1MLU1NLWVdcTkoTU0tTU4tZV1xOihNTi1NTy1lXXE7KE1PLU1QLWVdcTwoTVAtTVEtZV1xPShNUS1NUi1lXXE+KE1TLU1ULWVdcT8oTVQtTVUtZV1xQChNVS1NVi1lXXFBKE1WLU1XLWVdcUIoTVctTVgtZV1xQyhNWC1NWS1lXXFEKE1ZLU1aLWVdcUUoTVotTVstZV1xRihNWy1NXC1lXXFHKE1cLU1dLWVdcUgoTV0tTV4tZV1xSShNXy1NYC1lXXFKKE1gLU1hLWVdcUsoTWEtTWItZV1xTChNYi1NYy1lXXFNKE1jLU1kLWVdcU4oTWQtTWUtZV1xTyhNZS1NZi1lXXFQKE1nLU1oLWVdcVEoTWgtTWktZV1xUihNaS1Nai1lXXFTKE1qLU1rLWVdcVQoTWstTWwtZV1xVShNbC1NbS1lXXFWKE1tLU1uLWVlVQVsYWJlbHFXS1JYAAAAAH2HVQhoYWxmYm9uZHFYS1KIfYdVBnJhZGl1c3FZS1JHP8mZmaAAAAB9h1ULbGFiZWxPZmZzZXRxWktSTn2HVQhkcmF3TW9kZXFbS1JLAX2HVQhvcHRpb25hbHFcfVUHZGlzcGxheXFdS1JLAn2HdS4='))
crdInfo = cPickle.loads(base64.b64decode('gAJ9cQEoSwB9cQIoSwBdcQMoR8ACR64UeuFIR0BaLS8an753R0BEpP3ztkWih3EER8ACGp++dsi0R0BaLhR64UeuR0BEpul41P30h3EFR8ACEGJN0vGqR0BaLkWhysCDR0BEp2yLQ5WBh3EGR8ACBiTdLxqgR0BaLnbItDlYR0BEp87ZFocrh3EHR8AB2RaHKwIMR0BaL1wo9cKPR0BEqdsi0OVgh3EIR8AB0OVgQYk3R0BaL41P3ztkR0BEqj1wo9cKh3EJR8ABocrAgxJvR0BaMHKwIMScR0BErEm6XjU/h3EKR8ABmZmZmZmaR0BaMKPXCj1xR0BErKwIMSbph3ELR8ABj1wo9cKPR0BaMNT987ZGR0BErS8an753h3EMR8ABYk3S8an8R0BaMbpeNT99R0BErztkWhysh3ENR8ABWBBiTdLyR0BaMeuFHrhSR0BEr52yLQ5Wh3EOR8ABTdLxqfvnR0BaMhysCDEnR0BEsCDEm6Xjh3EPR8ABIMSbpeNUR0BaMvGp++dtR0BEsgxJul41h3EQR8ABFocrAgxKR0BaMyLQ5WBCR0BEso9cKPXDh3ERR8AA6XjU/fO2R0BaNAgxJul5R0BEtJul41P4h3ESR8AA3ztkWhysR0BaNDlYEGJOR0BEtP3ztkWih3ETR8AA1wo9cKPXR0BaNGp++dsjR0BEtWBBiTdMh3EUR8AAp++dsi0OR0BaNU/fO2RaR0BEt2yLQ5WBh3EVR8AAZmZmZmZmR0BaNpeNT987R0BEul41P3zuh3EWR8AAXjU/fO2RR0BaNrhR64UfR0BEusCDEm6Yh3EXR8AALxqfvnbJR0BaN52yLQ5WR0BEvMzMzMzNh3EYR8AAJul41P30R0BaN87ZFocrR0BEvU/fO2Rah3EZR8AAHKwIMSbpR0BaOAAAAAAAR0BEvbItDlYEh3EaR7//2yLQ5WBCR0BaOOVgQYk3R0BEv752yLQ5h3EbR7//WBBiTdLyR0BaOhysCDEnR0BEwrAgxJumh3EcR7//R64UeuFIR0BaOk3S8an8R0BEwxJul41Qh3EdR7/+6XjU/fO2R0BaOzMzMzMzR0BExR64UeuFh3EeR7/+1P3ztkWiR0BaO2RaHKwIR0BExaHKwIMSh3EfR7/+ZmZmZmZmR0BaPGp++dsjR0BEyBBiTdLyh3EgR7/941P3ztkXR0BaPbItDlYER0BEywIMSbpeh3EhR7/9dLxqfvnbR0BaPrhR64UfR0BEzXCj1wo9h3EiR7/9YEGJN0vHR0BaPul41P30R0BEzfO2RaHLh3EjR7/87ZFocrAhR0BaQAAAAAAAR0BE0GJN0vGqh3EkR7/8xJul41P4R0BaQGJN0vGqR0BE0UeuFHrhh3ElR7/8an752yLRR0BaQTdLxqfwR0BE01P3ztkXh3EmR7/7++dsi0OWR0BaQj1wo9cKR0BE1cKPXCj2h3EnR7/752yLQ5WBR0BaQm6XjU/fR0BE1kWhysCDh3EoR7/70vGp++dtR0BaQp++dsi0R0BE1qfvnbIth3EpR7/7dLxqfvnbR0BaQ4UeuFHsR0BE2LQ5WBBih3EqR7/7YEGJN0vHR0BaQ7ZFocrBR0BE2TdLxqfwh3ErR7/7AgxJul41R0BaRItDlYEGR0BE20OVgQYlh3EsR7/68an752yLR0BaRLxqfvnbR0BE26XjU/fPh3EtR7/63S8an753R0BaRO2RaHKwR0BE3Cj1wo9ch3EuR7/6fvnbItDlR0BaRcKPXCj2R0BE3jU/fO2Rh3EvR7/6an752yLRR0BaRfO2RaHLR0BE3peNT987h3EwR7/6VgQYk3S8R0BaRiTdLxqgR0BE3xqfvnbJh3ExR7/5987ZFocrR0BaRvnbItDlR0BE4SbpeNT+h3EyR7/541P3ztkXR0BaRysCDEm6R0BE4Yk3S8aoh3EzR7/5iTdLxqfwR0BaSBBiTdLyR0BE45WBBiTdh3E0R7/5dLxqfvnbR0BaSEGJN0vHR0BE5BiTdLxqh3E1R7/5YEGJN0vHR0BaSGJN0vGqR0BE5HrhR64Uh3E2R7/5AgxJul41R0BaSUeuFHrhR0BE5ocrAgxKh3E3R7/47ZFocrAhR0BaSXjU/fO2R0BE5wo9cKPXh3E4R7/42RaHKwIMR0BaSan752yLR0BE541P3ztkh3E5R7/4euFHrhR7R0BaSn752yLRR0BE6ZmZmZmah3E6R7/4ZmZmZmZmR0BaSrAgxJumR0BE6fvnbItEh3E7R7/4CDEm6XjVR0BaS4UeuFHsR0BE7AgxJul5h3E8R7/3987ZFocrR0BaS7ZFocrBR0BE7ItDlYEGh3E9R7/33ztkWhysR0BaS+dsi0OWR0BE7O2RaHKwh3E+R7/3hR64UeuFR0BaTLxqfvnbR0BE7vnbItDlh3E/R7/3cKPXCj1xR0BaTO2RaHKwR0BE73ztkWhzh3FAR7/3Em6XjU/fR0BaTcKPXCj2R0BE8Yk3S8aoh3FBR7/2/fO2RaHLR0BaTfO2RaHLR0BE8euFHrhSh3FCR7/26XjU/fO2R0BaTiTdLxqgR0BE8m6XjU/fh3FDR7/2i0OVgQYlR0BaTvnbItDlR0BE9HrhR64Uh3FER7/2dsi0OVgQR0BaTysCDEm6R0BE9P3ztkWih3FFR7/2Yk3S8an8R0BaT1wo9cKPR0BE9WBBiTdMh3FGR7/2BBiTdLxqR0BaUDEm6XjVR0BE92yLQ5WBh3FHR7/1752yLQ5WR0BaUGJN0vGqR0BE9++dsi0Oh3FIR7/1kWhysCDFR0BaUTdLxqfwR0BE+fvnbItEh3FJR7/1fO2RaHKwR0BaUWhysCDFR0BE+n752yLRh3FKR7/1aHKwIMScR0BaUZmZmZmaR0BE+uFHrhR7h3FLR7/1Cj1wo9cKR0BaUm6XjU/fR0BE/O2RaHKwh3FMR7/0fvnbItDlR0BaU6XjU/fPR0BFAAAAAAAAh3FNR7/0DEm6XjU/R0BaVJul41P4R0BFAm6XjU/fh3FOR7/z987ZFocrR0BaVMzMzMzNR0BFAvGp++dth3FPR7/zhR64UeuFR0BaVdLxqfvnR0BFBYEGJN0vh3FQR7/y/fO2RaHLR0BaVwo9cKPXR0BFCHKwIMSch3FRR7/yhysCDEm6R0BaWBBiTdLyR0BFCwIMSbpeh3FSR7/ycrAgxJumR0BaWDEm6XjVR0BFC2RaHKwIh3FTR7/yAAAAAAAAR0BaWTdLxqfwR0BFDfO2RaHLh3FUR7/x1wo9cKPXR0BaWZmZmZmaR0BFDtkWhysCh3FVR7/xeNT987ZGR0BaWm6XjU/fR0BFEOVgQYk3h3FWR7/xAgxJul41R0BaW2RaHKwIR0BFE3S8an76h3FXR7/w7ZFocrAhR0BaW5WBBiTdR0BFE/fO2RaHh3FYR7/w2RaHKwIMR0BaW8an752yR0BFFHrhR64Uh3FZR7/weuFHrhR7R0BaXJul41P4R0BFFocrAgxKh3FaR7/wYk3S8an8R0BaXMzMzMzNR0BFFul41P30h3FbR7/wTdLxqfvnR0BaXP3ztkWiR0BFF2yLQ5WBh3FcR7/v3ztkWhysR0BaXcKPXCj2R0BFGXjU/fO2h3FdR7/vtkWhysCDR0BaXfO2RaHLR0BFGfvnbItEh3FeR7/u8an752yLR0BaXsi0OVgQR0BFHAgxJul5h3FfR7/uyLQ5WBBiR0BaXvnbItDlR0BFHItDlYEGh3FgR7/un752yLQ5R0BaXysCDEm6R0BFHO2RaHKwh3FhR7/t41P3ztkXR0BaYAAAAAAAR0BFHxqfvnbJh3FiR7/tul41P3zuR0BaYCDEm6XjR0BFH3ztkWhzh3FjR7/tiTdLxqfwR0BaYFHrhR64R0BFIAAAAAAAh3FkR7/s9cKPXCj2R0BaYPXCj1wpR0BFIan752yLh3FlR7/szMzMzMzNR0BaYSbpeNT+R0BFIgxJul41h3FmR7/so9cKPXCkR0BaYVgQYk3TR0BFIo9cKPXDh3FnR7/r3ztkWhysR0BaYhysCDEnR0BFJJul41P4h3FoR7/rtkWhysCDR0BaYk3S8an8R0BFJR64UeuFh3FpR7/rjU/fO2RaR0BaYn752yLRR0BFJYEGJN0vh3FqR7/qyLQ5WBBiR0BaY1P3ztkXR0BFJ64UeuFIh3FrR7/qn752yLQ5R0BaY4UeuFHsR0BFKBBiTdLyh3FsR7/p41P3ztkXR0BaZEm6XjU/R0BFKj1wo9cKh3FtR7/pul41P3zuR0BaZHrhR64UR0BFKp++dsi0h3FuR7/piTdLxqfwR0BaZKwIMSbpR0BFKyLQ5WBCh3FvR7/ozMzMzMzNR0BaZYEGJN0vR0BFLS8an753h3FwR7/oo9cKPXCkR0BaZaHKwIMSR0BFLbItDlYEh3FxR7/ocrAgxJumR0BaZdLxqfvnR0BFLjU/fO2Rh3FyR7/ntkWhysCDR0BaZqfvnbItR0BFMEGJN0vHh3FzR7/nhR64UeuFR0BaZsi0OVgQR0BFMMSbpeNUh3F0R7/myLQ5WBBiR0BaZ52yLQ5WR0BFMtDlYEGJh3F1R7/mn752yLQ5R0BaZ87ZFocrR0BFM1P3ztkXh3F2R7/mbpeNT987R0BaaAAAAAAAR0BFM7ZFocrBh3F3R7/lsi0OVgQZR0BaaMSbpeNUR0BFNeNT987Zh3F4R7/kk3S8an76R0BaaeuFHrhSR0BFONT987ZGh3F5R7/kan752yLRR0BaahysCDEnR0BFOVgQYk3Th3F6R7/jpeNT987ZR0BaavGp++dtR0BFO4UeuFHsh3F7R7/ij1wo9cKPR0BabBiTdLxqR0BFPnbItDlYh3F8R7/hocrAgxJvR0BabQ5WBBiTR0BFQQYk3S8bh3F9R7/heNT987ZGR0BabT987ZFoR0BFQYk3S8aoh3F+R7/gi0OVgQYlR0BabjU/fO2RR0BFRBiTdLxqh3F/R7/e2RaHKwIMR0Bab1wo9cKPR0BFRysCDEm6h3GAR7/eNT987ZFoR0Bab64UeuFIR0BFSBBiTdLyh3GBR7/c/fO2RaHLR0BacFHrhR64R0BFSbpeNT99h3GCR7/crAgxJul5R0BacIMSbpeNR0BFSj1wo9cKh3GDR7/a0OVgQYk3R0BacXjU/fO2R0BFTMzMzMzNh3GER7/abpeNT987R0Bacan752yLR0BFTU/fO2Rah3GFR7/aHKwIMSbpR0BaccrAgxJvR0BFTbItDlYEh3GGR7/Yk3S8an76R0Bacp++dsi0R0BFT987ZFodh3GHR7/X3ztkWhysR0BacvGp++dtR0BFUMSbpeNUh3GIR7/WuFHrhR64R0Bac5WBBiTdR0BFUm6XjU/fh3GJR7/WVgQYk3S8R0Bac7ZFocrBR0BFUvGp++dth3GKR7/WBBiTdLxqR0Bac+dsi0OWR0BFU3S8an76h3GLR7/UeuFHrhR7R0BadKwIMSbpR0BFVYEGJN0vh3GMR7/UKPXCj1wpR0BadN0vGp++R0BFVgQYk3S8h3GNR7/TxqfvnbItR0BadQ5WBBiTR0BFVmZmZmZmh3GOR7/SPXCj1wo9R0BaddLxqfvnR0BFWJN0vGp/h3GPR7/R64UeuFHsR0BadgQYk3S8R0BFWRaHKwIMh3GQR7/RmZmZmZmaR0BadjU/fO2RR0BFWXjU/fO2h3GRR7/QYk3S8an8R0Badsi0OVgQR0BFWyLQ5WBCh3GSR7/QAAAAAAAAR0BadvnbItDlR0BFW6XjU/fPh3GTR7/PXCj1wo9cR0BadysCDEm6R0BFXCj1wo9ch3GUR7/MSbpeNT99R0Bad++dsi0OR0BFXjU/fO2Rh3GVR7/LpeNT987ZR0BaeCDEm6XjR0BFXrhR64Ufh3GWR7/K4UeuFHrhR0BaeEGJN0vHR0BFXztkWhysh3GXR7/HztkWhysCR0BaeQYk3S8bR0BFYUeuFHrhh3GYR7/HKwIMSbpeR0BaeTdLxqfwR0BFYcrAgxJvh3GZR7/EGJN0vGp/R0BaefvnbItER0BFY/fO2RaHh3GaR7/DU/fO2RaHR0Baei0OVgQZR0BFZFocrAgxh3GbR7/CsCDEm6XjR0Bael41P3zuR0BFZN0vGp++h3GcR7+/O2RaHKwIR0BaeyLQ5WBCR0BFZwo9cKPXh3GdR7+9si0OVgQZR0Bae1P3ztkXR0BFZ2yLQ5WBh3GeR7+8an752yLRR0Bae3S8an76R0BFZ++dsi0Oh3GfR7+2RaHKwIMSR0BafDlYEGJOR0BFahysCDEnh3GgR7+0vGp++dsjR0BafGp++dsjR0BFan752yLRh3GhR7+tLxqfvnbJR0BafS8an753R0BFbKwIMSbph3GiR7+qn752yLQ5R0BafWBBiTdMR0BFbS8an753h3GjR7+njU/fO2RaR0BafZFocrAhR0BFbbItDlYEh3GkR7+WhysCDEm6R0BaflYEGJN1R0BFb752yLQ5h3GlR7+QYk3S8an8R0BafnbItDlYR0BFcEGJN0vHh3GmRz+AYk3S8an8R0Baf0vGp++eR0BFcm6XjU/fh3GnRz+Kn752yLQ5R0Baf2yLQ5WBR0BFctDlYEGJh3GoRz+TdLxqfvnbR0Baf52yLQ5WR0BFc1P3ztkXh3GpRz+mBBiTdLxqR0BagGJN0vGqR0BFdYEGJN0vh3GqRz+pFocrAgxKR0BagIMSbpeNR0BFdgQYk3S8h3GrRz+rpeNT987ZR0BagLQ5WBBiR0BFdmZmZmZmh3GsRz+0OVgQYk3TR0BagXjU/fO2R0BFeJN0vGp/h3GtRz+1gQYk3S8bR0Bagan752yLR0BFeRaHKwIMh3GuRz+752yLQ5WBR0Bagm6XjU/fR0BFe0OVgQYlh3GvRz++dsi0OVgQR0BagsCDEm6YR0BFfCj1wo9ch3GwRz/CbpeNT987R0Bag4UeuFHsR0BFflYEGJN1h3GxRz/G6XjU/fO2R0BahJul41P4R0BFgWhysCDFh3GyRz/IUeuFHrhSR0BahP3ztkWiR0BFgm6XjU/fh3GzRz/KwIMSbpeNR0BahZFocrAhR0BFhBiTdLxqh3G0Rz/M7ZFocrAhR0BahhR64UeuR0BFhYEGJN0vh3G1Rz/PXCj1wo9cR0BahqfvnbItR0BFhysCDEm6h3G2Rz/RmZmZmZmaR0Bah52yLQ5WR0BFibpeNT99h3G3Rz/R64UeuFHsR0Bah752yLQ5R0BFij1wo9cKh3G4Rz/Sn752yLQ5R0BaiCDEm6XjR0BFi0OVgQYlh3G5Rz/T52yLQ5WBR0BaiLQ5WBBiR0BFjO2RaHKwh3G6Rz/UOVgQYk3TR0BaiNT987ZGR0BFjXCj1wo9h3G7Rz/U7ZFocrAhR0BaiTdLxqfwR0BFjlYEGJN1h3G8Rz/WJN0vGp++R0BaicrAgxJvR0BFkAAAAAAAh3G9Rz/W2RaHKwIMR0BaihysCDEnR0BFkQYk3S8bh3G+Rz/YEGJN0vGqR0BairAgxJumR0BFkrAgxJumh3G/Rz/YcrAgxJumR0BaiuFHrhR7R0BFkxJul41Qh3HARz/ZJul41P30R0BaizMzMzMzR0BFlBiTdLxqh3HBRz/aXjU/fO2RR0Bai8an752yR0BFlcKPXCj2h3HCRz/awIMSbpeNR0Bai/fO2RaHR0BFlkWhysCDh3HDRz/bEm6XjU/fR0BajCj1wo9cR0BFlsi0OVgQh3HERz/crAgxJul5R0BajN0vGp++R0BFmPXCj1wph3HFRz/dDlYEGJN1R0BajQ5WBBiTR0BFmVgQYk3Th3HGRz/dYEGJN0vHR0BajT987ZFoR0BFmdsi0OVgh3HHRz/el41P3ztkR0BajdLxqfvnR0BFm4UeuFHsh3HIRz/e+dsi0OVgR0BajfO2RaHLR0BFnAgxJul5h3HJRz/fS8an752yR0BajiTdLxqgR0BFnItDlYEGh3HKRz/frhR64UeuR0BajlYEGJN1R0BFnO2RaHKwh3HLRz/gcrAgxJumR0Bajul41P30R0BFnrhR64Ufh3HMRz/go9cKPXCkR0Bajwo9cKPXR0BFnxqfvnbJh3HNRz/gzMzMzMzNR0BajztkWhysR0BFn52yLQ5Wh3HORz/hmZmZmZmaR0BakAAAAAAAR0BFocrAgxJvh3HPRz/hysCDEm6YR0BakCDEm6XjR0BFok3S8an8h3HQRz/h87ZFocrBR0BakFHrhR64R0BFotDlYEGJh3HRRz/il41P3ztkR0BakOVgQYk3R0BFpHrhR64Uh3HSRz/iwIMSbpeNR0BakQYk3S8bR0BFpP3ztkWih3HTRz/i8an752yLR0BakTdLxqfwR0BFpWBBiTdMh3HURz/jvnbItDlYR0BakfvnbItER0BFp41P3ztkh3HVRz/j52yLQ5WBR0BakhysCDEnR0BFqBBiTdLyh3HWRz/kGJN0vGp/R0Bakk3S8an8R0BFqJN0vGp/h3HXRz/k5WBBiTdMR0BakwIMSbpeR0BFqsCDEm6Yh3HYRz/lDlYEGJN1R0BakzMzMzMzR0BFq0OVgQYlh3HZRz/lP3ztkWhzR0Bak2RaHKwIR0BFq6XjU/fPh3HaRz/l2yLQ5WBCR0Bak/fO2RaHR0BFrXCj1wo9h3HbRz/mDEm6XjU/R0BalBiTdLxqR0BFrdLxqfvnh3HcRz/mPXCj1wo9R0BalEm6XjU/R0BFrlYEGJN1h3HdRz/nCj1wo9cKR0BalP3ztkWiR0BFsIMSbpeNh3HeRz/nMzMzMzMzR0BalS8an753R0BFsQYk3S8bh3HfRz/nZFocrAgxR0BalU/fO2RaR0BFsYk3S8aoh3HgRz/oMSbpeNT+R0BalhR64UeuR0BFs7ZFocrBh3HhRz/oWhysCDEnR0BalkWhysCDR0BFtDlYEGJOh3HiRz/pLxqfvnbJR0BalvnbItDlR0BFtmZmZmZmh3HjRz/pWBBiTdLyR0BalysCDEm6R0BFtsi0OVgQh3HkRz/piTdLxqfwR0Bal0vGp++eR0BFt0vGp++eh3HlRz/qVgQYk3S8R0BamBBiTdLyR0BFuXjU/fO2h3HmRz/rU/fO2RaHR0BamPXCj1wpR0BFvCj1wo9ch3HnRz/rfO2RaHKwR0BamRaHKwIMR0BFvKwIMSbph3HoRz/rrhR64UeuR0BamUeuFHrhR0BFvS8an753h3HpRz/seuFHrhR7R0BamfvnbItER0BFv1wo9cKPh3HqRz/tBiTdLxqgR0Bamn752yLRR0BFwMSbpeNUh3HrRz/tqfvnbItER0BamxJul41QR0BFwo9cKPXDh3HsRz/up++dsi0OR0Bam/fO2RaHR0BFxT987ZFoh3HtRz/vMzMzMzMzR0BanGp++dsjR0BFxqfvnbIth3HuRz/vztkWhysCR0BanP3ztkWiR0BFyFHrhR64h3HvRz/wLQ5WBBiTR0BanYEGJN0vR0BFydsi0OVgh3HwRz/wfvnbItDlR0BanhR64UeuR0BFy4UeuFHsh3HxRz/wrAgxJul5R0BanmZmZmZmR0BFzItDlYEGh3HyRz/w/fO2RaHLR0BanvnbItDlR0BFzjU/fO2Rh3HzRz/xFocrAgxKR0BanxqfvnbJR0BFzrhR64Ufh3H0Rz/xQ5WBBiTdR0Ban2yLQ5WBR0BFz752yLQ5h3H1Rz/xlYEGJN0vR0BaoAAAAAAAR0BF0WhysCDFh3H2Rz/xwo9cKPXDR0BaoFHrhR64R0BF0k3S8an8h3H3Rz/x2yLQ5WBCR0BaoIMSbpeNR0BF0tDlYEGJh3H4Rz/yFHrhR64UR0BaoOVgQYk3R0BF1BiTdLxqh3H5Rz/yKPXCj1wpR0BaoQYk3S8bR0BF1Jul41P4h3H6Rz/yWhysCDEnR0BaoVgQYk3TR0BF1YEGJN0vh3H7Rz/yrAgxJul5R0BaoeuFHrhSR0BF10vGp++eh3H8Rz/ywIMSbpeNR0BaohysCDEnR0BF187ZFocrh3H9Rz/y2RaHKwIMR0Baoj1wo9cKR0BF2DEm6XjVh3H+Rz/y8an752yLR0Baom6XjU/fR0BF2LQ5WBBih3H/Rz/zP3ztkWhzR0BaovGp++dtR0BF2n752yLRh3IAAQAARz/zWBBiTdLyR0BaoyLQ5WBCR0BF2uFHrhR7h3IBAQAARz/zcKPXCj1xR0Bao0OVgQYlR0BF22RaHKwIh3ICAQAARz/zwo9cKPXDR0Bao9cKPXCkR0BF3S8an753h3IDAQAARz/z1wo9cKPXR0BapAgxJul5R0BF3ZFocrAhh3IEAQAARz/z752yLQ5WR0BapCj1wo9cR0BF3hR64Ueuh3IFAQAARz/0CDEm6XjVR0BapFocrAgxR0BF3peNT987h3IGAQAARz/0WhysCDEnR0BapN0vGp++R0BF4GJN0vGqh3IHAQAARz/0bpeNT987R0BapQ5WBBiTR0BF4MSbpeNUh3IIAQAARz/0hysCDEm6R0BapS8an753R0BF4UeuFHrhh3IJAQAARz/0n752yLQ5R0BapWBBiTdMR0BF4crAgxJvh3IKAQAARz/08an752yLR0BapeNT987ZR0BF43S8an76h3ILAQAARz/1BiTdLxqgR0BaphR64UeuR0BF4/fO2RaHh3IMAQAARz/1HrhR64UfR0BapjU/fO2RR0BF5HrhR64Uh3INAQAARz/1cKPXCj1xR0Bapsi0OVgQR0BF5kWhysCDh3IOAQAARz/1iTdLxqfwR0BapvnbItDlR0BF5qfvnbIth3IPAQAARz/1nbItDlYER0BapxqfvnbJR0BF5ysCDEm6h3IQAQAARz/1tkWhysCDR0Bap0vGp++eR0BF564UeuFIh3IRAQAARz/2CDEm6XjVR0Bap87ZFocrR0BF6VgQYk3Th3ISAQAARz/2IMSbpeNUR0BaqAAAAAAAR0BF6dsi0OVgh3ITAQAARz/2NT987ZFoR0BaqCDEm6XjR0BF6l41P3zuh3IUAQAARz/2n752yLQ5R0BaqNT987ZGR0BF7ItDlYEGh3IVAQAARz/2uFHrhR64R0BaqQYk3S8bR0BF7Q5WBBiTh3IWAQAARz/20OVgQYk3R0BaqSbpeNT+R0BF7ZFocrAhh3IXAQAARz/3ItDlYEGJR0BaqbpeNT99R0BF71wo9cKPh3IYAQAARz/3N0vGp++eR0Baqdsi0OVgR0BF7752yLQ5h3IZAQAARz/3T987ZFodR0BaqgxJul41R0BF8EGJN0vHh3IaAQAARz/3ul41P3zuR0BaqsCDEm6YR0BF8o9cKPXDh3IbAQAARz/30vGp++dtR0BaquFHrhR7R0BF8xJul41Qh3IcAQAARz/352yLQ5WBR0BaqxJul41QR0BF83S8an76h3IdAQAARz/4UeuFHrhSR0Baq8an752yR0BF9cKPXCj2h3IeAQAARz/4an752yLRR0Baq+dsi0OWR0BF9kWhysCDh3IfAQAARz/4gxJul41QR0BarBiTdLxqR0BF9qfvnbIth3IgAQAARz/41P3ztkWiR0BarJul41P4R0BF+HKwIMSch3IhAQAARz/46XjU/fO2R0BarMzMzMzNR0BF+PXCj1wph3IiAQAARz/5AgxJul41R0BarO2RaHKwR0BF+XjU/fO2h3IjAQAARz/5bItDlYEGR0BaraHKwIMSR0BF+6XjU/fPh3IkAQAARz/5hR64UeuFR0BardLxqfvnR0BF/Cj1wo9ch3IlAQAARz/5nbItDlYER0BarfO2RaHLR0BF/KwIMSbph3ImAQAARz/5tkWhysCDR0BariTdLxqgR0BF/S8an753h3InAQAARz/6CDEm6XjVR0BarqfvnbItR0BF/tkWhysCh3IoAQAARz/6HKwIMSbpR0BartkWhysCR0BF/1wo9cKPh3IpAQAARz/6hysCDEm6R0Bar41P3ztkR0BGAan752yLh3IqAQAARz/6uFHrhR64R0Bar87ZFocrR0BGAo9cKPXDh3IrAQAARz/60OVgQYk3R0BasAAAAAAAR0BGAxJul41Qh3IsAQAARz/7ItDlYEGJR0BasIMSbpeNR0BGBN0vGp++h3ItAQAARz/7aHKwIMScR0BasQYk3S8bR0BGBkWhysCDh3IuAQAARz/764UeuFHsR0Basdsi0OVgR0BGCRaHKwIMh3IvAQAARz/8PXCj1wo9R0Basm6XjU/fR0BGCsCDEm6Yh3IwAQAARz/8hysCDEm6R0BasuFHrhR7R0BGDEm6XjU/h3IxAQAARz/82RaHKwIMR0Bas2RaHKwIR0BGDfO2RaHLh3IyAQAARz/9HrhR64UfR0Bas9cKPXCkR0BGD3ztkWhzh3IzAQAARz/9XCj1wo9cR0BatEm6XjU/R0BGEMSbpeNUh3I0AQAARz/9dLxqfvnbR0BatGp++dsjR0BGEUeuFHrhh3I1AQAARz/9ocrAgxJvR0BatLxqfvnbR0BGEi0OVgQZh3I2AQAARz/9987ZFocrR0BatT987ZFoR0BGE/fO2RaHh3I3AQAARz/+PXCj1wo9R0BatbItDlYER0BGFYEGJN0vh3I4AQAARz/+j1wo9cKPR0BatkWhysCDR0BGFysCDEm6h3I5AQAARz/+wIMSbpeNR0BatpeNT987R0BGGDEm6XjVh3I6AQAARz//FocrAgxKR0BatxqfvnbJR0BGGfvnbItEh3I7AQAARz//KwIMSbpeR0BatztkWhysR0BGGl41P3zuh3I8AQAARz//XCj1wo9cR0Bat41P3ztkR0BGG2RaHKwIh3I9AQAARz//rhR64UeuR0BauCDEm6XjR0BGHS8an753h3I+AQAARz//xqfvnbItR0BauEGJN0vHR0BGHbItDlYEh3I/AQAARz//3ztkWhysR0BauGJN0vGqR0BGHjU/fO2Rh3JAAQAARz//987ZFocrR0BauJN0vGp/R0BGHrhR64Ufh3JBAQAAR0AAJN0vGp++R0BauRaHKwIMR0BGIGJN0vGqh3JCAQAAR0AAMSbpeNT+R0BauTdLxqfwR0BGIOVgQYk3h3JDAQAAR0AAPXCj1wo9R0BauWhysCDFR0BGIWhysCDFh3JEAQAAR0AAZmZmZmZmR0BaueuFHrhSR0BGIzMzMzMzh3JFAQAAR0AAcrAgxJumR0BauhysCDEnR0BGI7ZFocrBh3JGAQAAR0AAfvnbItDlR0Bauj1wo9cKR0BGJBiTdLxqh3JHAQAAR0AAi0OVgQYlR0Baul41P3zuR0BGJJul41P4h3JIAQAAR0AAtkWhysCDR0BauvGp++dtR0BGJmZmZmZmh3JJAQAAR0AAwIMSbpeNR0BauxJul41QR0BGJul41P30h3JKAQAAR0AAzMzMzMzNR0BauzMzMzMzR0BGJ2yLQ5WBh3JLAQAAR0AA987ZFocrR0Bau8an752yR0BGKRaHKwIMh3JMAQAAR0ABBBiTdLxqR0Bau+dsi0OWR0BGKZmZmZmah3JNAQAAR0ABDlYEGJN1R0BavAgxJul5R0BGKhysCDEnh3JOAQAAR0ABGp++dsi0R0BavDlYEGJOR0BGKp++dsi0h3JPAQAAR0ABRaHKwIMSR0BavLxqfvnbR0BGLGp++dsjh3JQAQAAR0ABUeuFHrhSR0BavN0vGp++R0BGLO2RaHKwh3JRAQAAR0ABXjU/fO2RR0BavQ5WBBiTR0BGLXCj1wo9h3JSAQAAR0ABaHKwIMScR0BavS8an753R0BGLfO2RaHLh3JTAQAAR0ABk3S8an76R0BavbItDlYER0BGL52yLQ5Wh3JUAQAAR0ABn752yLQ5R0BaveNT987ZR0BGMCDEm6Xjh3JVAQAAR0ABrAgxJul5R0BavgQYk3S8R0BGMKPXCj1xh3JWAQAAR0AB1P3ztkWiR0BavocrAgxKR0BGMm6XjU/fh3JXAQAAR0AB4UeuFHrhR0BavrhR64UfR0BGMvGp++dth3JYAQAAR0AB7ZFocrAhR0BavtkWhysCR0BGM3S8an76h3JZAQAAR0AB+dsi0OVgR0BavvnbItDlR0BGM/fO2RaHh3JaAQAAR0ACJN0vGp++R0Bav41P3ztkR0BGNaHKwIMSh3JbAQAAR0ACLxqfvnbJR0Bav64UeuFIR0BGNiTdLxqgh3JcAQAAR0ACO2RaHKwIR0Bav87ZFocrR0BGNqfvnbIth3JdAQAAR0ACcrAgxJumR0BawIMSbpeNR0BGOPXCj1wph3JeAQAAR0ACfvnbItDlR0BawKPXCj1xR0BGOXjU/fO2h3JfAQAAR0ACi0OVgQYlR0BawNT987ZGR0BGOfvnbItEh3JgAQAAR0ACtDlYEGJOR0BawVgQYk3TR0BGO6XjU/fPh3JhAQAAR0ACwIMSbpeNR0BawXjU/fO2R0BGPCj1wo9ch3JiAQAAR0ACzMzMzMzNR0Bawan752yLR0BGPKwIMSbph3JjAQAAR0AC2RaHKwIMR0BawcrAgxJvR0BGPS8an753h3JkAQAAR0AC5WBBiTdMR0BaweuFHrhSR0BGPbItDlYEh3JlAQAAR0ADBBiTdLxqR0Bawk3S8an8R0BGPvnbItDlh3JmAQAAR0ADEGJN0vGqR0Bawm6XjU/fR0BGP3ztkWhzh3JnAQAAR0ADHKwIMSbpR0Bawp++dsi0R0BGQAAAAAAAh3JoAQAAR0ADUeuFHrhSR0Baw0OVgQYlR0BGQi0OVgQZh3JpAQAAR0ADXjU/fO2RR0Baw3S8an76R0BGQrAgxJumh3JqAQAAR0ADan752yLRR0Baw5WBBiTdR0BGQzMzMzMzh3JrAQAAR0ADdsi0OVgQR0Baw7ZFocrBR0BGQ7ZFocrBh3JsAQAAR0ADlYEGJN0vR0BaxBiTdLxqR0BGRP3ztkWih3JtAQAAR0ADocrAgxJvR0BaxDlYEGJOR0BGRYEGJN0vh3JuAQAAR0ADrhR64UeuR0BaxGp++dsjR0BGRgQYk3S8h3JvAQAAR0AD41P3ztkXR0BaxQ5WBBiTR0BGSFHrhR64h3JwAQAAR0AD++dsi0OWR0BaxWBBiTdMR0BGSTdLxqfwh3JxAQAAR0AECDEm6XjVR0BaxYEGJN0vR0BGSdsi0OVgh3JyAQAAR0AEWBBiTdLyR0BaxnbItDlYR0BGTQ5WBBiTh3JzAQAAR0AEdsi0OVgQR0BaxtkWhysCR0BGTlYEGJN1h3J0AQAAR0AEjU/fO2RaR0BaxysCDEm6R0BGT1wo9cKPh3J1AQAAR0AEm6XjU/fPR0Bax0vGp++eR0BGT987ZFodh3J2AQAAR0AEtDlYEGJOR0Bax52yLQ5WR0BGUOVgQYk3h3J3AQAAR0AExJul41P4R0Bax87ZFocrR0BGUan752yLh3J4AQAAR0AE6XjU/fO2R0BayEGJN0vHR0BGUzMzMzMzh3J5AQAAR0AFFHrhR64UR0BayMSbpeNUR0BGVN0vGp++h3J6AQAAR0AFLQ5WBBiTR0BayRaHKwIMR0BGVeNT987Zh3J7AQAAR0AFRaHKwIMSR0BayVgQYk3TR0BGVul41P30h3J8AQAAR0AFWBBiTdLyR0BayZmZmZmaR0BGV64UeuFIh3J9AQAAR0AFfO2RaHKwR0BaygxJul41R0BGWTdLxqfwh3J+AQAAR0AFp++dsi0OR0Bayo9cKPXDR0BGWwIMSbpeh3J/AQAAR0AFzMzMzMzNR0BaywIMSbpeR0BGXItDlYEGh3KAAQAAR0AF2RaHKwIMR0BayyLQ5WBCR0BGXQ5WBBiTh3KBAQAAR0AF987ZFocrR0Bay4UeuFHsR0BGXjU/fO2Rh3KCAQAAR0AGEGJN0vGqR0Bay8an752yR0BGXztkWhysh3KDAQAAR0AGKPXCj1wpR0BazBiTdLxqR0BGYEGJN0vHh3KEAQAAR0AGO2RaHKwIR0BazEm6XjU/R0BGYQYk3S8bh3KFAQAAR0AGR64UeuFIR0BazGp++dsjR0BGYYk3S8aoh3KGAQAAR0AGU/fO2RaHR0BazJul41P4R0BGYgxJul41h3KHAQAAR0AGXjU/fO2RR0BazLxqfvnbR0BGYo9cKPXDh3KIAQAAR0AGiTdLxqfwR0BazT987ZFoR0BGZFocrAgxh3KJAQAAR0AGlYEGJN0vR0BazWBBiTdMR0BGZN0vGp++h3KKAQAAR0AGocrAgxJvR0BazZFocrAhR0BGZWBBiTdMh3KLAQAAR0AGvGp++dsjR0BazdLxqfvnR0BGZmZmZmZmh3KMAQAAR0AGzMzMzMzNR0BazhR64UeuR0BGZysCDEm6h3KNAQAAR0AG2RaHKwIMR0BazjU/fO2RR0BGZ64UeuFIh3KOAQAAR0AG5WBBiTdMR0BazlYEGJN1R0BGaDEm6XjVh3KPAQAAR0AG8an752yLR0BaznbItDlYR0BGaLQ5WBBih3KQAQAAR0AHHKwIMSbpR0BazvnbItDlR0BGan752yLRh3KRAQAAR0AHKwIMSbpeR0BazysCDEm6R0BGawIMSbpeh3KSAQAAR0AHN0vGp++eR0Baz0vGp++eR0BGa4UeuFHsh3KTAQAAR0AHQ5WBBiTdR0Baz2yLQ5WBR0BGbAgxJul5h3KUAQAAR0AHT987ZFodR0Baz41P3ztkR0BGbItDlYEGh3KVAQAAR0AHbpeNT987R0Baz++dsi0OR0BGbbItDlYEh3KWAQAAR0AHeuFHrhR7R0Ba0BBiTdLyR0BGbjU/fO2Rh3KXAQAAR0AHhysCDEm6R0Ba0EGJN0vHR0BGbrhR64Ufh3KYAQAAR0AHn752yLQ5R0Ba0IMSbpeNR0BGb752yLQ5h3KZAQAAR0AHsi0OVgQZR0Ba0LQ5WBBiR0BGcIMSbpeNh3KaAQAAR0AHvnbItDlYR0Ba0OVgQYk3R0BGcQYk3S8bh3KbAQAAR0AHysCDEm6YR0Ba0QYk3S8bR0BGcYk3S8aoh3KcAQAAR0AH1wo9cKPXR0Ba0SbpeNT+R0BGcgxJul41h3KdAQAAR0AH41P3ztkXR0Ba0VgQYk3TR0BGco9cKPXDh3KeAQAAR0AIAgxJul41R0Ba0an752yLR0BGc9cKPXCkh3KfAQAAR0AIDlYEGJN1R0Ba0crAgxJvR0BGdFocrAgxh3KgAQAAR0AIGp++dsi0R0Ba0fvnbItER0BGdN0vGp++h3KhAQAAR0AIMzMzMzMzR0Ba0j1wo9cKR0BGdeNT987Zh3KiAQAAR0AIUeuFHrhSR0Ba0p++dsi0R0BGdysCDEm6h3KjAQAAR0AIXjU/fO2RR0Ba0sCDEm6YR0BGd64UeuFIh3KkAQAAR0AIan752yLRR0Ba0uFHrhR7R0BGeDEm6XjVh3KlAQAAR0AIlYEGJN0vR0Ba02RaHKwIR0BGefvnbItEh3KmAQAAR0AIocrAgxJvR0Ba04UeuFHsR0BGen752yLRh3KnAQAAR0AIrhR64UeuR0Ba07ZFocrBR0BGewIMSbpeh3KoAQAAR0AIul41P3zuR0Ba09cKPXCkR0BGe4UeuFHsh3KpAQAAR0AIyLQ5WBBiR0Ba0/fO2RaHR0BGfAgxJul5h3KqAQAAR0AI1P3ztkWiR0Ba1Cj1wo9cR0BGfItDlYEGh3KrAQAAR0AI52yLQ5WBR0Ba1FocrAgxR0BGfU/fO2Rah3KsAQAAR0AI87ZFocrBR0Ba1HrhR64UR0BGfdLxqfvnh3KtAQAAR0AJAAAAAAAAR0Ba1Jul41P4R0BGflYEGJN1h3KuAQAAR0AJKwIMSbpeR0Ba1R64UeuFR0BGgCDEm6Xjh3KvAQAAR0AJN0vGp++eR0Ba1T987ZFoR0BGgKPXCj1xh3KwAQAAR0AJQ5WBBiTdR0Ba1XCj1wo9R0BGgSbpeNT+h3KxAQAAR0AJT987ZFodR0Ba1ZFocrAhR0BGgan752yLh3KyAQAAR0AJXCj1wo9cR0Ba1bItDlYER0BGgi0OVgQZh3KzAQAAR0AJeuFHrhR7R0Ba1hR64UeuR0BGg3S8an76h3K0AQAAR0AJhysCDEm6R0Ba1jU/fO2RR0BGg/fO2RaHh3K1AQAAR0AJk3S8an76R0Ba1lYEGJN1R0BGhHrhR64Uh3K2AQAAR0AJrhR64UeuR0Ba1qfvnbItR0BGhYEGJN0vh3K3AQAAR0AJul41P3zuR0Ba1si0OVgQR0BGhgQYk3S8h3K4AQAAR0AJzMzMzMzNR0Ba1vnbItDlR0BGhsi0OVgQh3K5AQAAR0AJ2RaHKwIMR0Ba1xqfvnbJR0BGh0vGp++eh3K6AQAAR0AJ5WBBiTdMR0Ba10vGp++eR0BGh87ZFocrh3K7AQAAR0AJ8an752yLR0Ba12yLQ5WBR0BGiFHrhR64h3K8AQAAR0AKEGJN0vGqR0Ba1752yLQ5R0BGiZmZmZmah3K9AQAAR0AKHKwIMSbpR0Ba1++dsi0OR0BGihysCDEnh3K+AQAAR0AKKPXCj1wpR0Ba2BBiTdLyR0BGip++dsi0h3K/AQAAR0AKQ5WBBiTdR0Ba2FHrhR64R0BGi6XjU/fPh3LAAQAAR0AKT987ZFodR0Ba2IMSbpeNR0BGjCj1wo9ch3LBAQAAR0AKYk3S8an8R0Ba2LQ5WBBiR0BGjO2RaHKwh3LCAQAAR0AKbpeNT987R0Ba2NT987ZGR0BGjXCj1wo9h3LDAQAAR0AKeuFHrhR7R0Ba2PXCj1wpR0BGjfO2RaHLh3LEAQAAR0AKhysCDEm6R0Ba2SbpeNT+R0BGjnbItDlYh3LFAQAAR0AKocrAgxJvR0Ba2WhysCDFR0BGj3ztkWhzh3LGAQAAR0AKsi0OVgQZR0Ba2ZmZmZmaR0BGkEGJN0vHh3LHAQAAR0AK2RaHKwIMR0Ba2gxJul41R0BGkcrAgxJvh3LIAQAAR0AK987ZFocrR0Ba2l41P3zuR0BGkxJul41Qh3LJAQAAR0ALEGJN0vGqR0Ba2rAgxJumR0BGlBiTdLxqh3LKAQAAR0ALKPXCj1wpR0Ba2vGp++dtR0BGlR64UeuFh3LLAQAAR0ALN0vGp++eR0Ba2yLQ5WBCR0BGlaHKwIMSh3LMAQAAR0ALSbpeNT99R0Ba21P3ztkXR0BGlmZmZmZmh3LNAQAAR0ALYk3S8an8R0Ba25WBBiTdR0BGl2yLQ5WBh3LOAQAAR0ALbpeNT987R0Ba27ZFocrBR0BGl++dsi0Oh3LPAQAAR0ALhysCDEm6R0Ba3AgxJul5R0BGmPXCj1wph3LQAQAAR0ALmZmZmZmaR0Ba3DlYEGJOR0BGmbpeNT99h3LRAQAAR0ALwIMSbpeNR0Ba3KwIMSbpR0BGm0OVgQYlh3LSAQAAR0ALzMzMzMzNR0Ba3MzMzMzNR0BGm8an752yh3LTAQAAR0AL987ZFocrR0Ba3T987ZFoR0BGnZFocrAhh3LUAQAAR0AMBBiTdLxqR0Ba3XCj1wo9R0BGnhR64Ueuh3LVAQAAR0AMHrhR64UfR0Ba3bItDlYER0BGnxqfvnbJh3LWAQAAR0AMMSbpeNT+R0Ba3eNT987ZR0BGn987ZFodh3LXAQAAR0AMVgQYk3S8R0Ba3lYEGJN1R0BGoWhysCDFh3LYAQAAR0AMYk3S8an8R0Ba3nbItDlYR0BGogxJul41h3LZAQAAR0AMgxJul41QR0Ba3tkWhysCR0BGozMzMzMzh3LaAQAAR0AMm6XjU/fPR0Ba3xqfvnbJR0BGpDlYEGJOh3LbAQAAR0AMtDlYEGJOR0Ba31wo9cKPR0BGpWBBiTdMh3LcAQAAR0AMxqfvnbItR0Ba352yLQ5WR0BGpiTdLxqgh3LdAQAAR0AM0vGp++dtR0Ba3752yLQ5R0BGpqfvnbIth3LeAQAAR0AM7ZFocrAhR0Ba4AAAAAAAR0BGp64UeuFIh3LfAQAAR0ANGJN0vGp/R0Ba4IMSbpeNR0BGqXjU/fO2h3LgAQAAR0ANJN0vGp++R0Ba4KPXCj1xR0BGqfvnbItEh3LhAQAAR0ANMzMzMzMzR0Ba4MSbpeNUR0BGqn752yLRh3LiAQAAR0ANP3ztkWhzR0Ba4OVgQYk3R0BGqwIMSbpeh3LjAQAAR0ANS8an752yR0Ba4RaHKwIMR0BGq4UeuFHsh3LkAQAAR0ANan752yLRR0Ba4WhysCDFR0BGrMzMzMzNh3LlAQAAR0ANdsi0OVgQR0Ba4Yk3S8aoR0BGrU/fO2Rah3LmAQAAR0ANhR64UeuFR0Ba4an752yLR0BGrdLxqfvnh3LnAQAAR0ANnbItDlYER0Ba4fvnbItER0BGrtkWhysCh3LoAQAAR0ANsCDEm6XjR0Ba4i0OVgQZR0BGr52yLQ5Wh3LpAQAAR0ANvGp++dsjR0Ba4k3S8an8R0BGsCDEm6Xjh3LqAQAAR0ANyLQ5WBBiR0Ba4m6XjU/fR0BGsKPXCj1xh3LrAQAAR0AN1wo9cKPXR0Ba4o9cKPXDR0BGsSbpeNT+h3LsAQAAR0AN41P3ztkXR0Ba4sCDEm6YR0BGsan752yLh3LtAQAAR0AOAgxJul41R0Ba4xJul41QR0BGsvGp++dth3LuAQAAR0AODlYEGJN1R0Ba4zMzMzMzR0BGs3S8an76h3LvAQAAR0AOGp++dsi0R0Ba41P3ztkXR0BGs/fO2RaHh3LwAQAAR0AONT987ZFoR0Ba46XjU/fPR0BGtR64UeuFh3LxAQAAR0AOR64UeuFIR0Ba49cKPXCkR0BGteNT987Zh3LyAQAAR0AOU/fO2RaHR0Ba4/fO2RaHR0BGtmZmZmZmh3LzAQAAR0AOYEGJN0vHR0Ba5BiTdLxqR0BGtul41P30h3L0AQAAR0AObpeNT987R0Ba5DlYEGJOR0BGt2yLQ5WBh3L1AQAAR0AOeuFHrhR7R0Ba5Gp++dsjR0BGt++dsi0Oh3L2AQAAR0AOmZmZmZmaR0Ba5LxqfvnbR0BGuTdLxqfwh3L3AQAAR0AOpeNT987ZR0Ba5N0vGp++R0BGubpeNT99h3L4AQAAR0AOtDlYEGJOR0Ba5P3ztkWiR0BGuj1wo9cKh3L5AQAAR0AOwIMSbpeNR0Ba5R64UeuFR0BGusCDEm6Yh3L6AQAAR0AOzMzMzMzNR0Ba5T987ZFoR0BGu0OVgQYlh3L7AQAAR0AO2yLQ5WBCR0Ba5XCj1wo9R0BGu8an752yh3L8AQAAR0AO64UeuFHsR0Ba5aHKwIMSR0BGvItDlYEGh3L9AQAAR0AO+dsi0OVgR0Ba5cKPXCj2R0BGvQ5WBBiTh3L+AQAAR0APBiTdLxqgR0Ba5eNT987ZR0BGvZFocrAhh3L/AQAAR0APHrhR64UfR0Ba5iTdLxqgR0BGvpeNT987h3IAAgAAR0APMSbpeNT+R0Ba5mZmZmZmR0BGv1wo9cKPh3IBAgAAR0APP3ztkWhzR0Ba5ocrAgxKR0BGv987ZFodh3ICAgAAR0APS8an752yR0Ba5qfvnbItR0BGwGJN0vGqh3IDAgAAR0APWBBiTdLyR0Ba5si0OVgQR0BGwQYk3S8bh3IEAgAAR0APZFocrAgxR0Ba5ul41P30R0BGwYk3S8aoh3IFAgAAR0APcrAgxJumR0Ba5wo9cKPXR0BGwgxJul41h3IGAgAAR0APhR64UeuFR0Ba50vGp++eR0BGwtDlYEGJh3IHAgAAR0APkWhysCDFR0Ba52yLQ5WBR0BGw1P3ztkXh3IIAgAAR0APnbItDlYER0Ba541P3ztkR0BGw9cKPXCkh3IJAgAAR0APuFHrhR64R0Ba587ZFocrR0BGxN0vGp++h3IKAgAAR0APxJul41P4R0Ba5++dsi0OR0BGxWBBiTdMh3ILAgAAR0AP1wo9cKPXR0Ba6CDEm6XjR0BGxiTdLxqgh3IMAgAAR0AP41P3ztkXR0Ba6FHrhR64R0BGxqfvnbIth3INAgAAR0AP752yLQ5WR0Ba6HKwIMScR0BGxysCDEm6h3IOAgAAR0AP/fO2RaHLR0Ba6JN0vGp/R0BGx64UeuFIh3IPAgAAR0AQDlYEGJN1R0Ba6OVgQYk3R0BGyPXCj1wph3IQAgAAR0AQFHrhR64UR0Ba6QYk3S8bR0BGyXjU/fO2h3IRAgAAR0AQG6XjU/fPR0Ba6SbpeNT+R0BGyfvnbItEh3ISAgAAR0AQIcrAgxJvR0Ba6UeuFHrhR0BGyp++dsi0h3ITAgAAR0AQJ++dsi0OR0Ba6XjU/fO2R0BGyyLQ5WBCh3IUAgAAR0AQLxqfvnbJR0Ba6ZmZmZmaR0BGy6XjU/fPh3IVAgAAR0AQOFHrhR64R0Ba6crAgxJvR0BGzGp++dsjh3IWAgAAR0AQPnbItDlYR0Ba6euFHrhSR0BGzO2RaHKwh3IXAgAAR0AQRJul41P4R0Ba6gxJul41R0BGzXCj1wo9h3IYAgAAR0AQWBBiTdLyR0Ba6n752yLRR0BGzvnbItDlh3IZAgAAR0AQYUeuFHrhR0Ba6rAgxJumR0BGz752yLQ5h3IaAgAAR0AQZ2yLQ5WBR0Ba6tDlYEGJR0BG0EGJN0vHh3IbAgAAR0AQbZFocrAhR0Ba6vGp++dtR0BG0MSbpeNUh3IcAgAAR0AQdLxqfvnbR0Ba6xJul41QR0BG0WhysCDFh3IdAgAAR0AQeuFHrhR7R0Ba6zMzMzMzR0BG0euFHrhSh3IeAgAAR0AQhBiTdLxqR0Ba62RaHKwIR0BG0rAgxJumh3IfAgAAR0AQi0OVgQYlR0Ba64UeuFHsR0BG0zMzMzMzh3IgAgAAR0AQkWhysCDFR0Ba67ZFocrBR0BG07ZFocrBh3IhAgAAR0AQnbItDlYER0Ba6/fO2RaHR0BG1Lxqfvnbh3IiAgAAR0AQpN0vGp++R0Ba7BiTdLxqR0BG1T987ZFoh3IjAgAAR0AQrhR64UeuR0Ba7Em6XjU/R0BG1gQYk3S8h3IkAgAAR0AQtDlYEGJOR0Ba7Gp++dsjR0BG1ocrAgxKh3IlAgAAR0AQul41P3zuR0Ba7ItDlYEGR0BG1wo9cKPXh3ImAgAAR0AQwYk3S8aoR0Ba7LxqfvnbR0BG141P3ztkh3InAgAAR0AQ0OVgQYk3R0Ba7Q5WBBiTR0BG2NT987ZGh3IoAgAAR0AQ1wo9cKPXR0Ba7S8an753R0BG2VgQYk3Th3IpAgAAR0AQ3jU/fO2RR0Ba7U/fO2RaR0BG2fvnbItEh3IqAgAAR0AQ6n752yLRR0Ba7ZFocrAhR0BG2wIMSbpeh3IrAgAAR0AQ8an752yLR0Ba7bItDlYER0BG24UeuFHsh3IsAgAAR0AQ+uFHrhR7R0Ba7eNT987ZR0BG3Em6XjU/h3ItAgAAR0ARBysCDEm6R0Ba7jU/fO2RR0BG3U/fO2Rah3IuAgAAR0ARDlYEGJN1R0Ba7lYEGJN1R0BG3dLxqfvnh3IvAgAAR0ARG6XjU/fPR0Ba7peNT987R0BG3vnbItDlh3IwAgAAR0ARI9cKPXCkR0Ba7si0OVgQR0BG352yLQ5Wh3IxAgAAR0ARN0vGp++eR0Ba7ysCDEm6R0BG4UeuFHrhh3IyAgAAR0ARPnbItDlYR0Ba71wo9cKPR0BG4crAgxJvh3IzAgAAR0ARU/fO2RaHR0Ba787ZFocrR0BG45WBBiTdh3I0AgAAR0ARaHKwIMScR0Ba8DEm6XjVR0BG5T987ZFoh3I1AgAAR0ARcan752yLR0Ba8GJN0vGqR0BG5eNT987Zh3I2AgAAR0ARffO2RaHLR0Ba8KPXCj1xR0BG5ul41P30h3I3AgAAR0ARhR64UeuFR0Ba8NT987ZGR0BG541P3ztkh3I4AgAAR0ARm6XjU/fPR0Ba8UeuFHrhR0BG6VgQYk3Th3I5AgAAR0ARrxqfvnbJR0Ba8an752yLR0BG6uFHrhR7h3I6AgAAR0ARtT987ZFoR0Ba8crAgxJvR0BG64UeuFHsh3I7AgAAR0AR0euFHrhSR0Ba8l41P3zuR0BG7dLxqfvnh3I8AgAAR0AR3ztkWhysR0Ba8rAgxJumR0BG7tkWhysCh3I9AgAAR0AR6HKwIMScR0Ba8uFHrhR7R0BG752yLQ5Wh3I+AgAAR0AR++dsi0OWR0Ba80OVgQYlR0BG8SbpeNT+h3I/AgAAR0ASAxJul41QR0Ba82RaHKwIR0BG8crAgxJvh3JAAgAAR0ASEm6XjU/fR0Ba87ZFocrBR0BG8xJul41Qh3JBAgAAR0ASGJN0vGp/R0Ba89cKPXCkR0BG85WBBiTdh3JCAgAAR0ASH752yLQ5R0Ba8/fO2RaHR0BG9BiTdLxqh3JDAgAAR0ASLQ5WBBiTR0Ba9Em6XjU/R0BG9R64UeuFh3JEAgAAR0ASNkWhysCDR0Ba9HrhR64UR0BG9eNT987Zh3JFAgAAR0ASPGp++dsjR0Ba9Jul41P4R0BG9mZmZmZmh3JGAgAAR0ASQo9cKPXDR0Ba9LxqfvnbR0BG9ul41P30h3JHAgAAR0ASSbpeNT99R0Ba9N0vGp++R0BG941P3ztkh3JIAgAAR0AST987ZFodR0Ba9P3ztkWiR0BG+BBiTdLyh3JJAgAAR0ASYEGJN0vHR0Ba9U/fO2RaR0BG+VgQYk3Th3JKAgAAR0ASZmZmZmZmR0Ba9XCj1wo9R0BG+dsi0OVgh3JLAgAAR0ASbItDlYEGR0Ba9ZFocrAhR0BG+l41P3zuh3JMAgAAR0ASc7ZFocrBR0Ba9bItDlYER0BG+uFHrhR7h3JNAgAAR0ASedsi0OVgR0Ba9dLxqfvnR0BG+2RaHKwIh3JOAgAAR0ASgQYk3S8bR0Ba9fO2RaHLR0BG/AgxJul5h3JPAgAAR0ASij1wo9cKR0Ba9iTdLxqgR0BG/MzMzMzNh3JQAgAAR0ASkGJN0vGqR0Ba9kWhysCDR0BG/U/fO2Rah3JRAgAAR0ASlocrAgxKR0Ba9mZmZmZmR0BG/dLxqfvnh3JSAgAAR0ASo9cKPXCkR0Ba9rhR64UfR0BG/tkWhysCh3JTAgAAR0ASrhR64UeuR0Ba9ul41P30R0BG/52yLQ5Wh3JUAgAAR0AStDlYEGJOR0Ba9wo9cKPXR0BHACDEm6Xjh3JVAgAAR0ASul41P3zuR0Ba9ysCDEm6R0BHAKPXCj1xh3JWAgAAR0ASwYk3S8aoR0Ba90vGp++eR0BHASbpeNT+h3JXAgAAR0ASx64UeuFIR0Ba92yLQ5WBR0BHAcrAgxJvh3JYAgAAR0ASztkWhysCR0Ba941P3ztkR0BHAk3S8an8h3JZAgAAR0AS2BBiTdLyR0Ba9752yLQ5R0BHAxJul41Qh3JaAgAAR0AS3jU/fO2RR0Ba9987ZFodR0BHA5WBBiTdh3JbAgAAR0AS5FocrAgxR0Ba+AAAAAAAR0BHBBiTdLxqh3JcAgAAR0AS8an752yLR0Ba+EGJN0vHR0BHBR64UeuFh3JdAgAAR0AS+NT987ZGR0Ba+GJN0vGqR0BHBcKPXCj2h3JeAgAAR0ATAgxJul41R0Ba+JN0vGp/R0BHBocrAgxKh3JfAgAAR0ATCDEm6XjVR0Ba+LQ5WBBiR0BHBwo9cKPXh3JgAgAAR0ATD1wo9cKPR0Ba+NT987ZGR0BHB41P3ztkh3JhAgAAR0ATFYEGJN0vR0Ba+PXCj1wpR0BHCBBiTdLyh3JiAgAAR0ATJeNT987ZR0Ba+VgQYk3TR0BHCVgQYk3Th3JjAgAAR0ATLAgxJul5R0Ba+XjU/fO2R0BHCdsi0OVgh3JkAgAAR0ATMi0OVgQZR0Ba+ZmZmZmaR0BHCl41P3zuh3JlAgAAR0ATOVgQYk3TR0Ba+bpeNT99R0BHCwIMSbpeh3JmAgAAR0ATP3ztkWhzR0Ba+dsi0OVgR0BHC4UeuFHsh3JnAgAAR0ATRqfvnbItR0Ba+fvnbItER0BHDAgxJul5h3JoAgAAR0ATT987ZFodR0Ba+i0OVgQZR0BHDMzMzMzNh3JpAgAAR0ATVgQYk3S8R0Ba+k3S8an8R0BHDU/fO2Rah3JqAgAAR0ATXS8an753R0Ba+m6XjU/fR0BHDdLxqfvnh3JrAgAAR0ATan752yLRR0Ba+rAgxJumR0BHDvnbItDlh3JsAgAAR0ATcKPXCj1xR0Ba+tDlYEGJR0BHD3ztkWhzh3JtAgAAR0ATc7ZFocrBR0Ba+uFHrhR7R0BHD752yLQ5h3JuAgAAR0ATedsi0OVgR0Ba+wIMSbpeR0BHEEGJN0vHh3JvAgAAR0ATgQYk3S8bR0Ba+yLQ5WBCR0BHEMSbpeNUh3JwAgAAR0AThysCDEm6R0Ba+0OVgQYlR0BHEUeuFHrhh3JxAgAAR0ATjlYEGJN1R0Ba+2RaHKwIR0BHEcrAgxJvh3JyAgAAR0ATlHrhR64UR0Ba+4UeuFHsR0BHEm6XjU/fh3JzAgAAR0ATnbItDlYER0Ba+7ZFocrBR0BHExJul41Qh3J0AgAAR0ATpN0vGp++R0Ba+9cKPXCkR0BHE7ZFocrBh3J1AgAAR0ATqwIMSbpeR0Ba+/fO2RaHR0BHFDlYEGJOh3J2AgAAR0ATuFHrhR64R0Ba/DlYEGJOR0BHFT987ZFoh3J3AgAAR0ATv3ztkWhzR0Ba/FocrAgxR0BHFcKPXCj2h3J4AgAAR0ATyLQ5WBBiR0Ba/ItDlYEGR0BHFocrAgxKh3J5AgAAR0ATztkWhysCR0Ba/KwIMSbpR0BHFwo9cKPXh3J6AgAAR0AT1gQYk3S8R0Ba/MzMzMzNR0BHF41P3ztkh3J7AgAAR0AT3Cj1wo9cR0Ba/O2RaHKwR0BHGDEm6XjVh3J8AgAAR0AT7ItDlYEGR0Ba/T987ZFoR0BHGXjU/fO2h3J9AgAAR0AT8rAgxJumR0Ba/WBBiTdMR0BHGfvnbItEh3J+AgAAR0AT+dsi0OVgR0Ba/YEGJN0vR0BHGn752yLRh3J/AgAAR0AUBysCDEm6R0Ba/cKPXCj2R0BHG6XjU/fPh3KAAgAAR0AUDU/fO2RaR0Ba/fO2RaHLR0BHHCj1wo9ch3KBAgAAR0AUFocrAgxKR0Ba/hR64UeuR0BHHO2RaHKwh3KCAgAAR0AUHbItDlYER0Ba/jU/fO2RR0BHHXCj1wo9h3KDAgAAR0AUI9cKPXCkR0Ba/lYEGJN1R0BHHfO2RaHLh3KEAgAAR0AUOFHrhR64R0Ba/si0OVgQR0BHH52yLQ5Wh3KFAgAAR0AUQYk3S8aoR0Ba/ul41P30R0BHIGJN0vGqh3KGAgAAR0AUR64UeuFIR0Ba/wo9cKPXR0BHIOVgQYk3h3KHAgAAR0AUTtkWhysCR0Ba/ysCDEm6R0BHIWhysCDFh3KIAgAAR0AUVP3ztkWiR0Ba/1wo9cKPR0BHIeuFHrhSh3KJAgAAR0AUXCj1wo9cR0Ba/3ztkWhzR0BHIm6XjU/fh3KKAgAAR0AUZWBBiTdMR0Ba/64UeuFIR0BHIzMzMzMzh3KLAgAAR0AUcrAgxJumR0Ba/++dsi0OR0BHJFocrAgxh3KMAgAAR0AUgAAAAAAAR0BbADEm6XjVR0BHJWBBiTdMh3KNAgAAR0AUhysCDEm6R0BbAFHrhR64R0BHJeNT987Zh3KOAgAAR0AUkGJN0vGqR0BbAIMSbpeNR0BHJqfvnbIth3KPAgAAR0AUnKwIMSbpR0BbAMSbpeNUR0BHJ87ZFocrh3KQAgAAR0AUo9cKPXCkR0BbAOVgQYk3R0BHKFHrhR64h3KRAgAAR0AUul41P3zuR0BbAUeuFHrhR0BHKhysCDEnh3KSAgAAR0AUwYk3S8aoR0BbAWhysCDFR0BHKp++dsi0h3KTAgAAR0AUztkWhysCR0BbAbpeNT99R0BHK8an752yh3KUAgAAR0AU1P3ztkWiR0BbAdsi0OVgR0BHLEm6XjU/h3KVAgAAR0AU3ztkWhysR0BbAfvnbItER0BHLQ5WBBiTh3KWAgAAR0AU64UeuFHsR0BbAj1wo9cKR0BHLhR64Ueuh3KXAgAAR0AU8rAgxJumR0BbAl41P3zuR0BHLrhR64Ufh3KYAgAAR0AVAAAAAAAAR0BbArAgxJumR0BHL752yLQ5h3KZAgAAR0AVHbItDlYER0BbAzMzMzMzR0BHMi0OVgQZh3KaAgAAR0AVJN0vGp++R0BbA1P3ztkXR0BHMrAgxJumh3KbAgAAR0AVTtkWhysCR0BbBCj1wo9cR0BHNiTdLxqgh3KcAgAAR0AVbItDlYEGR0BbBLxqfvnbR0BHOHKwIMSch3KdAgAAR0AVc7ZFocrBR0BbBN0vGp++R0BHORaHKwIMh3KeAgAAR0AVhBiTdLxqR0BbBS8an753R0BHOl41P3zuh3KfAgAAR0AVl41P3ztkR0BbBZFocrAhR0BHO+dsi0OWh3KgAgAAR0AVnrhR64UfR0BbBbItDlYER0BHPItDlYEGh3KhAgAAR0AVu2RaHKwIR0BbBkWhysCDR0BHPtkWhysCh3KiAgAAR0AVybpeNT99R0BbBocrAgxKR0BHQAAAAAAAh3KjAgAAR0AV0vGp++dtR0BbBrhR64UfR0BHQMSbpeNUh3KkAgAAR0AV4EGJN0vHR0BbBvnbItDlR0BHQcrAgxJvh3KlAgAAR0AV5mZmZmZmR0BbBwo9cKPXR0BHQk3S8an8h3KmAgAAR0AV7ZFocrAhR0BbBztkWhysR0BHQvGp++dth3KnAgAAR0AV9LxqfvnbR0BbB1wo9cKPR0BHQ3S8an76h3KoAgAAR0AV/fO2RaHLR0BbB3ztkWhzR0BHRDlYEGJOh3KpAgAAR0AWBBiTdLxqR0BbB52yLQ5WR0BHRLxqfvnbh3KqAgAAR0AWC0OVgQYlR0BbB752yLQ5R0BHRT987ZFoh3KrAgAAR0AWGJN0vGp/R0BbCAAAAAAAR0BHRmZmZmZmh3KsAgAAR0AWH752yLQ5R0BbCCDEm6XjR0BHRul41P30h3KtAgAAR0AWKPXCj1wpR0BbCFHrhR64R0BHR64UeuFIh3KuAgAAR0AWLxqfvnbJR0BbCHKwIMScR0BHSDEm6XjVh3KvAgAAR0AWNkWhysCDR0BbCJN0vGp/R0BHSLQ5WBBih3KwAgAAR0AWPXCj1wo9R0BbCLQ5WBBiR0BHSVgQYk3Th3KxAgAAR0AWTdLxqfvnR0BbCQYk3S8bR0BHSp++dsi0h3KyAgAAR0AWWyLQ5WBCR0BbCUeuFHrhR0BHS6XjU/fPh3KzAgAAR0AWYUeuFHrhR0BbCWhysCDFR0BHTCj1wo9ch3K0AgAAR0AWaHKwIMScR0BbCYk3S8aoR0BHTMzMzMzNh3K1AgAAR0AWb52yLQ5WR0BbCan752yLR0BHTU/fO2Rah3K2AgAAR0AWeNT987ZGR0BbCcrAgxJvR0BHThR64Ueuh3K3AgAAR0AWfvnbItDlR0BbCeuFHrhSR0BHTpeNT987h3K4AgAAR0AWhiTdLxqgR0BbCgxJul41R0BHTxqfvnbJh3K5AgAAR0AWk3S8an76R0BbCk3S8an8R0BHUEGJN0vHh3K6AgAAR0AWnKwIMSbpR0BbCn752yLRR0BHUQYk3S8bh3K7AgAAR0AWo9cKPXCkR0BbCp++dsi0R0BHUYk3S8aoh3K8AgAAR0AWqfvnbItER0BbCsCDEm6YR0BHUgxJul41h3K9AgAAR0AWsSbpeNT+R0BbCuFHrhR7R0BHUrAgxJumh3K+AgAAR0AWuFHrhR64R0BbCwIMSbpeR0BHUzMzMzMzh3K/AgAAR0AWvnbItDlYR0BbCyLQ5WBCR0BHU7ZFocrBh3LAAgAAR0AWyLQ5WBBiR0BbC1P3ztkXR0BHVHrhR64Uh3LBAgAAR0AWztkWhysCR0BbC3S8an76R0BHVP3ztkWih3LCAgAAR0AW1gQYk3S8R0BbC5WBBiTdR0BHVaHKwIMSh3LDAgAAR0AW41P3ztkXR0BbC9cKPXCkR0BHVqfvnbIth3LEAgAAR0AW6n752yLRR0BbC/fO2RaHR0BHVysCDEm6h3LFAgAAR0AW87ZFocrBR0BbDBiTdLxqR0BHV++dsi0Oh3LGAgAAR0AW+dsi0OVgR0BbDDlYEGJOR0BHWJN0vGp/h3LHAgAAR0AXAQYk3S8bR0BbDFocrAgxR0BHWRaHKwIMh3LIAgAAR0AXCDEm6XjVR0BbDHrhR64UR0BHWZmZmZmah3LJAgAAR0AXGJN0vGp/R0BbDMzMzMzNR0BHWuFHrhR7h3LKAgAAR0AXHrhR64UfR0BbDO2RaHKwR0BHW4UeuFHsh3LLAgAAR0AXJeNT987ZR0BbDQ5WBBiTR0BHXAgxJul5h3LMAgAAR0AXLAgxJul5R0BbDS8an753R0BHXItDlYEGh3LNAgAAR0AXMzMzMzMzR0BbDU/fO2RaR0BHXQ5WBBiTh3LOAgAAR0AXOl41P3zuR0BbDXCj1wo9R0BHXbItDlYEh3LPAgAAR0AXQ5WBBiTdR0BbDZFocrAhR0BHXnbItDlYh3LQAgAAR0AXSbpeNT99R0BbDbItDlYER0BHXvnbItDlh3LRAgAAR0AXUOVgQYk3R0BbDdLxqfvnR0BHX3ztkWhzh3LSAgAAR0AXXjU/fO2RR0BbDhR64UeuR0BHYIMSbpeNh3LTAgAAR0AXZWBBiTdMR0BbDjU/fO2RR0BHYSbpeNT+h3LUAgAAR0AXbpeNT987R0BbDmZmZmZmR0BHYeuFHrhSh3LVAgAAR0AXdcKPXCj2R0BbDocrAgxKR0BHYm6XjU/fh3LWAgAAR0AXe+dsi0OWR0BbDqfvnbItR0BHYvGp++dth3LXAgAAR0AXgxJul41QR0BbDsi0OVgQR0BHY5WBBiTdh3LYAgAAR0AXij1wo9cKR0BbDul41P30R0BHZBiTdLxqh3LZAgAAR0AXk3S8an76R0BbDwo9cKPXR0BHZN0vGp++h3LaAgAAR0AXoMSbpeNUR0BbD0vGp++eR0BHZeNT987Zh3LbAgAAR0AXrxqfvnbJR0BbD41P3ztkR0BHZwo9cKPXh3LcAgAAR0AXtT987ZFoR0BbD64UeuFIR0BHZ41P3ztkh3LdAgAAR0AXv3ztkWhzR0BbD987ZFodR0BHaFHrhR64h3LeAgAAR0AXxaHKwIMSR0BbEAAAAAAAR0BHaNT987ZGh3LfAgAAR0AXzMzMzMzNR0BbECDEm6XjR0BHaVgQYk3Th3LgAgAAR0AX0vGp++dtR0BbEEGJN0vHR0BHafvnbItEh3LhAgAAR0AX6n752yLRR0BbEKPXCj1xR0BHa8an752yh3LiAgAAR0AX8an752yLR0BbEMSbpeNUR0BHbGp++dsjh3LjAgAAR0AX/vnbItDlR0BbEQYk3S8bR0BHbXCj1wo9h3LkAgAAR0AYBiTdLxqgR0BbESbpeNT+R0BHbhR64Ueuh3LlAgAAR0AYD1wo9cKPR0BbEVgQYk3TR0BHbrhR64Ufh3LmAgAAR0AYHKwIMSbpR0BbEZmZmZmaR0BHb987ZFodh3LnAgAAR0AYI9cKPXCkR0BbEbpeNT99R0BHcGJN0vGqh3LoAgAAR0AYMSbpeNT+R0BbEeuFHrhSR0BHcYk3S8aoh3LpAgAAR0AYO2RaHKwIR0BbEhysCDEnR0BHck3S8an8h3LqAgAAR0AYQYk3S8aoR0BbEj1wo9cKR0BHctDlYEGJh3LrAgAAR0AYT987ZFodR0BbEn752yLRR0BHc/fO2RaHh3LsAgAAR0AYVgQYk3S8R0BbEp++dsi0R0BHdHrhR64Uh3LtAgAAR0AYYEGJN0vHR0BbEsCDEm6YR0BHdT987ZFoh3LuAgAAR0AYbZFocrAhR0BbEwIMSbpeR0BHdkWhysCDh3LvAgAAR0AYeuFHrhR7R0BbE0OVgQYlR0BHd2yLQ5WBh3LwAgAAR0AYggxJul41R0BbE2RaHKwIR0BHd++dsi0Oh3LxAgAAR0AYi0OVgQYlR0BbE5WBBiTdR0BHeLQ5WBBih3LyAgAAR0AYmJN0vGp/R0BbE9cKPXCkR0BHedsi0OVgh3LzAgAAR0AYn752yLQ5R0BbE/fO2RaHR0BHel41P3zuh3L0AgAAR0AYy8an752yR0BbFLxqfvnbR0BHfdLxqfvnh3L1AgAAR0AY0vGp++dtR0BbFN0vGp++R0BHfnbItDlYh3L2AgAAR0AY6XjU/fO2R0BbFT987ZFoR0BHgEGJN0vHh3L3AgAAR0AY8KPXCj1xR0BbFWBBiTdMR0BHgOVgQYk3h3L4AgAAR0AZHKwIMSbpR0BbFiTdLxqgR0BHhFocrAgxh3L5AgAAR0AZI9cKPXCkR0BbFkWhysCDR0BHhN0vGp++h3L6AgAAR0AZKwIMSbpeR0BbFmZmZmZmR0BHhYEGJN0vh3L7AgAAR0AZT987ZFodR0BbFwo9cKPXR0BHiHKwIMSch3L8AgAAR0AZbZFocrAhR0BbF52yLQ5WR0BHiuFHrhR7h3L9AgAAR0AZdLxqfvnbR0BbF752yLQ5R0BHi2RaHKwIh3L+AgAAR0AZkm6XjU/fR0BbGEGJN0vHR0BHjdLxqfvnh3L/AgAAR0AZmZmZmZmaR0BbGGJN0vGqR0BHjlYEGJN1h3IAAwAAR0AZoMSbpeNUR0BbGIMSbpeNR0BHjvnbItDlh3IBAwAAR0AZp++dsi0OR0BbGKPXCj1xR0BHj3ztkWhzh3ICAwAAR0AZvnbItDlYR0BbGQYk3S8bR0BHkUeuFHrhh3IDAwAAR0AZ5FocrAgxR0BbGan752yLR0BHlFocrAgxh3IEAwAAR0AZ6n752yLRR0BbGcrAgxJvR0BHlN0vGp++h3IFAwAAR0AZ8an752yLR0BbGeuFHrhSR0BHlWBBiTdMh3IGAwAAR0AZ+NT987ZGR0BbGgxJul41R0BHlgQYk3S8h3IHAwAAR0AaEGJN0vGqR0BbGm6XjU/fR0BHl87ZFocrh3IIAwAAR0AaHbItDlYER0BbGrAgxJumR0BHmPXCj1wph3IJAwAAR0AaJN0vGp++R0BbGtDlYEGJR0BHmXjU/fO2h3IKAwAAR0AaNT987ZFoR0BbGxJul41QR0BHmsCDEm6Yh3ILAwAAR0AaPGp++dsjR0BbGzMzMzMzR0BHm2RaHKwIh3IMAwAAR0AaQ5WBBiTdR0BbG1P3ztkXR0BHm+dsi0OWh3INAwAAR0AaU/fO2RaHR0BbG6XjU/fPR0BHnU/fO2Rah3IOAwAAR0AaYUeuFHrhR0BbG9cKPXCkR0BHnlYEGJN1h3IPAwAAR0AaaHKwIMScR0BbG/fO2RaHR0BHntkWhysCh3IQAwAAR0Aab52yLQ5WR0BbHBiTdLxqR0BHn3ztkWhzh3IRAwAAR0Aadsi0OVgQR0BbHDlYEGJOR0BHoAAAAAAAh3ISAwAAR0AahysCDEm6R0BbHHrhR64UR0BHoUeuFHrhh3ITAwAAR0AajlYEGJN1R0BbHJul41P4R0BHoeuFHrhSh3IUAwAAR0AaotDlYEGJR0BbHP3ztkWiR0BHo5WBBiTdh3IVAwAAR0AaszMzMzMzR0BbHT987ZFoR0BHpN0vGp++h3IWAwAAR0Aaul41P3zuR0BbHWBBiTdMR0BHpWBBiTdMh3IXAwAAR0AawYk3S8aoR0BbHYEGJN0vR0BHpgQYk3S8h3IYAwAAR0AayLQ5WBBiR0BbHaHKwIMSR0BHpocrAgxKh3IZAwAAR0Aa0euFHrhSR0BbHdLxqfvnR0BHp0vGp++eh3IaAwAAR0Aa3ztkWhysR0BbHgQYk3S8R0BHqHKwIMSch3IbAwAAR0Aa7ZFocrAhR0BbHkWhysCDR0BHqXjU/fO2h3IcAwAAR0Aa9LxqfvnbR0BbHmZmZmZmR0BHqhysCDEnh3IdAwAAR0AbBR64UeuFR0BbHqfvnbItR0BHq2RaHKwIh3IeAwAAR0AbDEm6XjU/R0BbHsi0OVgQR0BHq+dsi0OWh3IfAwAAR0AbEm6XjU/fR0BbHul41P30R0BHrItDlYEGh3IgAwAAR0AbMSbpeNT+R0BbH2yLQ5WBR0BHrvnbItDlh3IhAwAAR0AbP3ztkWhzR0BbH64UeuFIR0BHsAAAAAAAh3IiAwAAR0AbRqfvnbItR0BbH87ZFocrR0BHsKPXCj1xh3IjAwAAR0AbT987ZFodR0BbH++dsi0OR0BHsWhysCDFh3IkAwAAR0AbXjU/fO2RR0BbIDEm6XjVR0BHsm6XjU/fh3IlAwAAR0Aba4UeuFHsR0BbIHKwIMScR0BHs5WBBiTdh3ImAwAAR0AbcrAgxJumR0BbIJN0vGp/R0BHtBiTdLxqh3InAwAAR0AouNT987ZGR0BcAyLQ5WBCR0BG+ZmZmZmah3IoAwAAR0AotkWhysCDR0BcAvGp++dtR0BG+RaHKwIMh3IpAwAAR0AoszMzMzMzR0BcAsCDEm6YR0BG+JN0vGp/h3IqAwAAR0AopFocrAgxR0BcAcrAgxJvR0BG9gQYk3S8h3IrAwAAR0AomJN0vGp/R0BcAQYk3S8bR0BG8/fO2RaHh3IsAwAAR0AolgQYk3S8R0BcANT987ZGR0BG85WBBiTdh3ItAwAAR0AokvGp++dtR0BcAKPXCj1xR0BG8xJul41Qh3IuAwAAR0AohysCDEm6R0Bb/87ZFocrR0BG8QYk3S8bh3IvAwAAR0AogYk3S8aoR0Bb/3ztkWhzR0BG8AAAAAAAh3IwAwAAR0AodcKPXCj2R0Bb/qfvnbItR0BG7fO2RaHLh3IxAwAAR0AoczMzMzMzR0Bb/nbItDlYR0BG7XCj1wo9h3IyAwAAR0AoZ2yLQ5WBR0Bb/bItDlYER0BG62RaHKwIh3IzAwAAR0AoZFocrAgxR0Bb/YEGJN0vR0BG6uFHrhR7h3I0AwAAR0AoYcrAgxJvR0Bb/U/fO2RaR0BG6n752yLRh3I1AwAAR0AoUvGp++dtR0Bb/Em6XjU/R0BG5++dsi0Oh3I2AwAAR0AoRJul41P4R0Bb+1P3ztkXR0BG5WBBiTdMh3I3AwAAR0AoQYk3S8aoR0Bb+yLQ5WBCR0BG5N0vGp++h3I4AwAAR0AoPGp++dsjR0Bb+sCDEm6YR0BG4/fO2RaHh3I5AwAAR0AoNcKPXCj2R0Bb+k3S8an8R0BG4tDlYEGJh3I6AwAAR0AoMCDEm6XjR0Bb+fvnbItER0BG4crAgxJvh3I7AwAAR0AoJFocrAgxR0Bb+SbpeNT+R0BG3752yLQ5h3I8AwAAR0AoIcrAgxJvR0Bb+PXCj1wpR0BG31wo9cKPh3I9AwAAR0AoHCj1wo9cR0Bb+JN0vGp/R0BG3lYEGJN1h3I+AwAAR0AoFgQYk3S8R0Bb+DEm6XjVR0BG3U/fO2Rah3I/AwAAR0AoEvGp++dtR0Bb+AAAAAAAR0BG3MzMzMzNh3JAAwAAR0AoEGJN0vGqR0Bb987ZFocrR0BG3Em6XjU/h3JBAwAAR0AoDdLxqfvnR0Bb952yLQ5WR0BG28an752yh3JCAwAAR0AoBJul41P4R0Bb9vnbItDlR0BG2j1wo9cKh3JDAwAAR0An/Gp++dsjR0Bb9mZmZmZmR0BG2NT987ZGh3JEAwAAR0An8zMzMzMzR0Bb9dLxqfvnR0BG1ysCDEm6h3JFAwAAR0An8KPXCj1xR0Bb9aHKwIMSR0BG1si0OVgQh3JGAwAAR0An7ZFocrAhR0Bb9XCj1wo9R0BG1kWhysCDh3JHAwAAR0An6wIMSbpeR0Bb9T987ZFoR0BG1cKPXCj2h3JIAwAAR0An5N0vGp++R0Bb9MzMzMzNR0BG1Lxqfvnbh3JJAwAAR0An3ztkWhysR0Bb9Gp++dsjR0BG07ZFocrBh3JKAwAAR0An3KwIMSbpR0Bb9DlYEGJOR0BG0zMzMzMzh3JLAwAAR0An03S8an76R0Bb86XjU/fPR0BG0an752yLh3JMAwAAR0An0OVgQYk3R0Bb83S8an76R0BG0SbpeNT+h3JNAwAAR0Any0OVgQYlR0Bb8xJul41QR0BG0EGJN0vHh3JOAwAAR0AnwgxJul41R0Bb8m6XjU/fR0BGzpeNT987h3JPAwAAR0Anv3ztkWhzR0Bb8j1wo9cKR0BGzjU/fO2Rh3JQAwAAR0AnvO2RaHKwR0Bb8gxJul41R0BGzbItDlYEh3JRAwAAR0Anq4UeuFHsR0Bb8OVgQYk3R0BGysCDEm6Yh3JSAwAAR0Anok3S8an8R0Bb8EGJN0vHR0BGyRaHKwIMh3JTAwAAR0Ann752yLQ5R0Bb8BBiTdLyR0BGyJN0vGp/h3JUAwAAR0AnnKwIMSbpR0Bb7987ZFodR0BGyDEm6XjVh3JVAwAAR0Ank/fO2RaHR0Bb7ztkWhysR0BGxocrAgxKh3JWAwAAR0Ani8an752yR0Bb7rhR64UfR0BGxR64UeuFh3JXAwAAR0Ango9cKPXDR0Bb7hR64UeuR0BGw5WBBiTdh3JYAwAAR0AngAAAAAAAR0Bb7eNT987ZR0BGwxJul41Qh3JZAwAAR0AnfXCj1wo9R0Bb7bItDlYER0BGwo9cKPXDh3JaAwAAR0Ancan752yLR0Bb7N0vGp++R0BGwIMSbpeNh3JbAwAAR0AnbpeNT987R0Bb7KwIMSbpR0BGwCDEm6Xjh3JcAwAAR0AnbAgxJul5R0Bb7HrhR64UR0BGv52yLQ5Wh3JdAwAAR0AnWyLQ5WBCR0Bb61P3ztkXR0BGvKwIMSbph3JeAwAAR0AnUeuFHrhSR0Bb6rAgxJumR0BGuwIMSbpeh3JfAwAAR0AnT1wo9cKPR0Bb6n752yLRR0BGup++dsi0h3JgAwAAR0AnTEm6XjU/R0Bb6k3S8an8R0BGuhysCDEnh3JhAwAAR0AnQIMSbpeNR0Bb6XjU/fO2R0BGuBBiTdLyh3JiAwAAR0AnO2RaHKwIR0Bb6RaHKwIMR0BGtwo9cKPXh3JjAwAAR0AnL52yLQ5WR0Bb6FHrhR64R0BGtP3ztkWih3JkAwAAR0AnLQ5WBBiTR0Bb6CDEm6XjR0BGtJul41P4h3JlAwAAR0AnJ2yLQ5WBR0Bb5752yLQ5R0BGs5WBBiTdh3JmAwAAR0AnIUeuFHrhR0Bb50vGp++eR0BGso9cKPXDh3JnAwAAR0AnHjU/fO2RR0Bb5xqfvnbJR0BGsgxJul41h3JoAwAAR0AnG6XjU/fPR0Bb5ul41P30R0BGsYk3S8aoh3JpAwAAR0AnFocrAgxKR0Bb5ocrAgxKR0BGsKPXCj1xh3JqAwAAR0AnDU/fO2RaR0Bb5eNT987ZR0BGrvnbItDlh3JrAwAAR0AnB64UeuFIR0Bb5YEGJN0vR0BGrhR64Ueuh3JsAwAAR0Am/vnbItDlR0Bb5N0vGp++R0BGrItDlYEGh3JtAwAAR0Am/Gp++dsjR0Bb5KwIMSbpR0BGrAgxJul5h3JuAwAAR0Am9si0OVgQR0Bb5FocrAgxR0BGqyLQ5WBCh3JvAwAAR0Am8KPXCj1xR0Bb4+dsi0OWR0BGqfvnbItEh3JwAwAAR0Am6wIMSbpeR0Bb44UeuFHsR0BGqRaHKwIMh3JxAwAAR0Am3752yLQ5R0Bb4rAgxJumR0BGpwo9cKPXh3JyAwAAR0Am3KwIMSbpR0Bb4n752yLRR0BGpocrAgxKh3JzAwAAR0Am141P3ztkR0Bb4hysCDEnR0BGpaHKwIMSh3J0AwAAR0Am0WhysCDFR0Bb4an752yLR0BGpHrhR64Uh3J1AwAAR0AmzlYEGJN1R0Bb4XjU/fO2R0BGpBiTdLxqh3J2AwAAR0Amy8an752yR0Bb4UeuFHrhR0BGo5WBBiTdh3J3AwAAR0AmxqfvnbItR0Bb4OVgQYk3R0BGoo9cKPXDh3J4AwAAR0AmwAAAAAAAR0Bb4HKwIMScR0BGoYk3S8aoh3J5AwAAR0Amt87ZFocrR0Bb3987ZFodR0BGoCDEm6Xjh3J6AwAAR0AmrxqfvnbJR0Bb3ztkWhysR0BGnpeNT987h3J7AwAAR0AmrItDlYEGR0Bb3wo9cKPXR0BGnhR64Ueuh3J8AwAAR0AmqXjU/fO2R0Bb3tkWhysCR0BGnZFocrAhh3J9AwAAR0Ampul41P30R0Bb3rhR64UfR0BGnS8an753h3J+AwAAR0AmoMSbpeNUR0Bb3kWhysCDR0BGnAgxJul5h3J/AwAAR0Amm6XjU/fPR0Bb3eNT987ZR0BGmyLQ5WBCh3KAAwAAR0AmmJN0vGp/R0Bb3bItDlYER0BGmp++dsi0h3KBAwAAR0AmlgQYk3S8R0Bb3YEGJN0vR0BGmhysCDEnh3KCAwAAR0Amj987ZFodR0Bb3Q5WBBiTR0BGmRaHKwIMh3KDAwAAR0AmjMzMzMzNR0Bb3N0vGp++R0BGmJN0vGp/h3KEAwAAR0Amh64UeuFIR0Bb3HrhR64UR0BGl64UeuFIh3KFAwAAR0AmfvnbItDlR0Bb29cKPXCkR0BGlgQYk3S8h3KGAwAAR0Ame+dsi0OWR0Bb26XjU/fPR0BGlaHKwIMSh3KHAwAAR0AmeVgQYk3TR0Bb23S8an76R0BGlR64UeuFh3KIAwAAR0Amdsi0OVgQR0Bb20OVgQYlR0BGlJul41P4h3KJAwAAR0AmcKPXCj1xR0Bb2tDlYEGJR0BGk5WBBiTdh3KKAwAAR0AmaHKwIMScR0Bb2j1wo9cKR0BGki0OVgQZh3KLAwAAR0AmX752yLQ5R0Bb2ZmZmZmaR0BGkIMSbpeNh3KMAwAAR0AmXKwIMSbpR0Bb2WhysCDFR0BGkCDEm6Xjh3KNAwAAR0AmWhysCDEnR0Bb2TdLxqfwR0BGj52yLQ5Wh3KOAwAAR0AmV41P3ztkR0Bb2QYk3S8bR0BGjxqfvnbJh3KPAwAAR0AmS8an752yR0Bb2DEm6XjVR0BGjS8an753h3KQAwAAR0AmSTdLxqfwR0Bb2AAAAAAAR0BGjKwIMSbph3KRAwAAR0AmQIMSbpeNR0Bb11wo9cKPR0BGiyLQ5WBCh3KSAwAAR0AmPXCj1wo9R0Bb1ysCDEm6R0BGip++dsi0h3KTAwAAR0AmOFHrhR64R0Bb1si0OVgQR0BGibpeNT99h3KUAwAAR0AmL52yLQ5WR0Bb1iTdLxqgR0BGiBBiTdLyh3KVAwAAR0AmLItDlYEGR0Bb1fO2RaHLR0BGh64UeuFIh3KWAwAAR0AmKfvnbItER0Bb1cKPXCj2R0BGhysCDEm6h3KXAwAAR0AmGRaHKwIMR0Bb1ItDlYEGR0BGhDlYEGJOh3KYAwAAR0AmEGJN0vGqR0Bb0+dsi0OWR0BGgrAgxJumh3KZAwAAR0AmDdLxqfvnR0Bb07ZFocrBR0BGgi0OVgQZh3KaAwAAR0AmCsCDEm6YR0Bb04UeuFHsR0BGgan752yLh3KbAwAAR0Al/O2RaHKwR0Bb0n752yLRR0BGfztkWhysh3KcAwAAR0Al+l41P3zuR0Bb0k3S8an8R0BGfrhR64Ufh3KdAwAAR0Al7peNT987R0Bb0XjU/fO2R0BGfKwIMSbph3KeAwAAR0Al7AgxJul5R0Bb0UeuFHrhR0BGfEm6XjU/h3KfAwAAR0Al5ul41P30R0Bb0OVgQYk3R0BGe0OVgQYlh3KgAwAAR0Al4EGJN0vHR0Bb0HKwIMScR0BGej1wo9cKh3KhAwAAR0Al3bItDlYER0Bb0EGJN0vHR0BGebpeNT99h3KiAwAAR0Al2yLQ5WBCR0Bb0BBiTdLyR0BGeTdLxqfwh3KjAwAAR0Alyj1wo9cKR0BbztkWhysCR0BGdkWhysCDh3KkAwAAR0Alx64UeuFIR0BbzqfvnbItR0BGdeNT987Zh3KlAwAAR0AlvvnbItDlR0BbzgQYk3S8R0BGdDlYEGJOh3KmAwAAR0Alu+dsi0OWR0BbzdLxqfvnR0BGc9cKPXCkh3KnAwAAR0Altsi0OVgQR0BbzXCj1wo9R0BGcvGp++dth3KoAwAAR0Alq4UeuFHsR0BbzJul41P4R0BGcOVgQYk3h3KpAwAAR0AlqPXCj1wpR0BbzGp++dsjR0BGcGJN0vGqh3KqAwAAR0Aln752yLQ5R0Bby8an752yR0BGbtkWhysCh3KrAwAAR0AlnS8an753R0Bby4UeuFHsR0BGblYEGJN1h3KsAwAAR0AlmBBiTdLyR0BbyyLQ5WBCR0BGbXCj1wo9h3KtAwAAR0Alj1wo9cKPR0Bbyn752yLRR0BGa+dsi0OWh3KuAwAAR0AljEm6XjU/R0Bbyk3S8an8R0BGa2RaHKwIh3KvAwAAR0AlhysCDEm6R0BbyeuFHrhSR0BGan752yLRh3KwAwAAR0AlgQYk3S8bR0BbyXjU/fO2R0BGaVgQYk3Th3KxAwAAR0AlfnbItDlYR0BbyUeuFHrhR0BGaPXCj1wph3KyAwAAR0AleVgQYk3TR0BbyOVgQYk3R0BGZ++dsi0Oh3KzAwAAR0AldDlYEGJOR0BbyIMSbpeNR0BGZwo9cKPXh3K0AwAAR0AlcCDEm6XjR0BbyEGJN0vHR0BGZmZmZmZmh3K1AwAAR0AlbZFocrAhR0BbyBBiTdLyR0BGZgQYk3S8h3K2AwAAR0AlaHKwIMScR0Bbx64UeuFIR0BGZP3ztkWih3K3AwAAR0AlXS8an753R0BbxtkWhysCR0BGYxJul41Qh3K4AwAAR0AlWhysCDEnR0BbxqfvnbItR0BGYo9cKPXDh3K5AwAAR0AlV41P3ztkR0BbxnbItDlYR0BGYgxJul41h3K6AwAAR0AlUWhysCDFR0BbxgQYk3S8R0BGYQYk3S8bh3K7AwAAR0AlTtkWhysCR0BbxcKPXCj2R0BGYIMSbpeNh3K8AwAAR0AlSbpeNT99R0BbxWBBiTdMR0BGX52yLQ5Wh3K9AwAAR0AlRJul41P4R0BbxQ5WBBiTR0BGXrhR64Ufh3K+AwAAR0AlQQYk3S8bR0BbxLxqfvnbR0BGXhR64Ueuh3K/AwAAR0AlPnbItDlYR0BbxItDlYEGR0BGXZFocrAhh3LAAwAAR0AlO2RaHKwIR0BbxFocrAgxR0BGXQ5WBBiTh3LBAwAAR0AlONT987ZGR0BbxCj1wo9cR0BGXKwIMSbph3LCAwAAR0AlMrAgxJumR0Bbw7ZFocrBR0BGW4UeuFHsh3LDAwAAR0AlKwIMSbpeR0BbwyLQ5WBCR0BGWhysCDEnh3LEAwAAR0AlKHKwIMScR0BbwvGp++dtR0BGWbpeNT99h3LFAwAAR0AlIk3S8an8R0Bbwn752yLRR0BGWJN0vGp/h3LGAwAAR0AlH752yLQ5R0Bbwk3S8an8R0BGWDEm6XjVh3LHAwAAR0AlHKwIMSbpR0BbwhysCDEnR0BGV64UeuFIh3LIAwAAR0AlGhysCDEnR0BbweuFHrhSR0BGVysCDEm6h3LJAwAAR0AlFP3ztkWiR0BbwYk3S8aoR0BGVkWhysCDh3LKAwAAR0AlDtkWhysCR0BbwQYk3S8bR0BGVT987ZFoh3LLAwAAR0AlDEm6XjU/R0BbwNT987ZGR0BGVLxqfvnbh3LMAwAAR0AlCbpeNT99R0BbwKPXCj1xR0BGVFocrAgxh3LNAwAAR0AlA5WBBiTdR0BbwDEm6XjVR0BGUzMzMzMzh3LOAwAAR0AlAQYk3S8bR0BbwAAAAAAAR0BGUrAgxJumh3LPAwAAR0Ak++dsi0OWR0Bbv52yLQ5WR0BGUcrAgxJvh3LQAwAAR0Ak8zMzMzMzR0BbvvnbItDlR0BGUEGJN0vHh3LRAwAAR0Ak8CDEm6XjR0Bbvsi0OVgQR0BGT752yLQ5h3LSAwAAR0Ak7ZFocrAhR0BbvpeNT987R0BGT1wo9cKPh3LTAwAAR0Ak6wIMSbpeR0BbvmZmZmZmR0BGTtkWhysCh3LUAwAAR0Ak3S8an753R0BbvU/fO2RaR0BGTGp++dsjh3LVAwAAR0Ak1HrhR64UR0BbvKwIMSbpR0BGSuFHrhR7h3LWAwAAR0Ak0euFHrhSR0BbvHrhR64UR0BGSl41P3zuh3LXAwAAR0AkztkWhysCR0BbvEm6XjU/R0BGSdsi0OVgh3LYAwAAR0AkzMzMzMzNR0BbvBiTdLxqR0BGSXjU/fO2h3LZAwAAR0AkwQYk3S8bR0BbuzMzMzMzR0BGR2yLQ5WBh3LaAwAAR0AkvnbItDlYR0BbuwIMSbpeR0BGRul41P30h3LbAwAAR0AkszMzMzMzR0Bbui0OVgQZR0BGRP3ztkWih3LcAwAAR0AkpWBBiTdMR0BbuSbpeNT+R0BGQo9cKPXDh3LdAwAAR0AkotDlYEGJR0BbuPXCj1wpR0BGQgxJul41h3LeAwAAR0AkoEGJN0vHR0BbuMSbpeNUR0BGQYk3S8aoh3LfAwAAR0Akj1wo9cKPR0Bbt3ztkWhzR0BGPpeNT987h3LgAwAAR0AkjMzMzMzNR0Bbt0vGp++eR0BGPjU/fO2Rh3LhAwAAR0AkhBiTdLxqR0BbtqfvnbItR0BGPKwIMSbph3LiAwAAR0AkgYk3S8aoR0BbtnbItDlYR0BGPCj1wo9ch3LjAwAAR0AkcSbpeNT+R0BbtS8an753R0BGOTdLxqfwh3LkAwAAR0AkbpeNT987R0BbtP3ztkWiR0BGONT987ZGh3LlAwAAR0AkaXjU/fO2R0BbtJul41P4R0BGN++dsi0Oh3LmAwAAR0AkZeNT987ZR0BbtFocrAgxR0BGN0vGp++eh3LnAwAAR0AkY1P3ztkXR0BbtCj1wo9cR0BGNsi0OVgQh3LoAwAAR0AkXjU/fO2RR0Bbs7ZFocrBR0BGNeNT987Zh3LpAwAAR0AkWRaHKwIMR0Bbs1P3ztkXR0BGNP3ztkWih3LqAwAAR0AkVYEGJN0vR0BbsxJul41QR0BGNFocrAgxh3LrAwAAZShHQCRS8an7521HQFuy4UeuFHtHQEYz1wo9cKSHcuwDAABHQCRN0vGp++dHQFuyfvnbItFHQEYy8an7522Hcu0DAABHQCRLQ5WBBiVHQFuyTdLxqfxHQEYybpeNT9+Hcu4DAABHQCRHrhR64UhHQFuyDEm6XjVHQEYxysCDEm+Hcu8DAABHQCRCj1wo9cNHQFuxmZmZmZpHQEYw5WBBiTeHcvADAABHQCRAAAAAAABHQFuxaHKwIMVHQEYwgxJul42HcvEDAABHQCQ64UeuFHtHQFuxBiTdLxtHQEYvnbItDlaHcvIDAABHQCQ3S8an755HQFuwxJul41RHQEYu+dsi0OWHcvMDAABHQCQ0vGp++dtHQFuwk3S8an9HQEYudsi0OViHcvQDAABHQCQvnbItDlZHQFuwMSbpeNVHQEYtkWhysCGHcvUDAABHQCQtDlYEGJNHQFuwAAAAAABHQEYtDlYEGJOHcvYDAABHQCQkWhysCDFHQFuvS8an755HQEYrhR64UeyHcvcDAABHQCQhysCDEm9HQFuvGp++dslHQEYrItDlYEKHcvgDAABHQCQfO2RaHKxHQFuu6XjU/fRHQEYqn752yLSHcvkDAABHQCQcrAgxJulHQFuuuFHrhR9HQEYqPXCj1wqHcvoDAABHQCQZFocrAgxHQFuudsi0OVhHQEYpmZmZmZqHcvsDAABHQCQWhysCDEpHQFuuRaHKwINHQEYpFocrAgyHcvwDAABHQCQRaHKwIMVHQFut0vGp++dHQEYoMSbpeNWHcv0DAABHQCQMSbpeNT9HQFutcKPXCj1HQEYnS8an756Hcv4DAABHQCQItDlYEGJHQFutLxqfvndHQEYmp++dsi2Hcv8DAABHQCQGJN0vGqBHQFus/fO2RaJHQEYmJN0vGqCHcgAEAABHQCQDlYEGJN1HQFuszMzMzM1HQEYlwo9cKPaHcgEEAABHQCQBBiTdLxtHQFusm6XjU/hHQEYlP3ztkWiHcgIEAABHQCP+dsi0OVhHQFusan752yNHQEYk3S8an76HcgMEAABHQCP64UeuFHtHQFusGJN0vGpHQEYkOVgQYk6HcgQEAABHQCP4UeuFHrhHQFur52yLQ5ZHQEYjtkWhysGHcgUEAABHQCPzMzMzMzNHQFurhR64UexHQEYi0OVgQYmHcgYEAABHQCPwo9cKPXFHQFurU/fO2RdHQEYiTdLxqfyHcgcEAABHQCPuFHrhR65HQFurItDlYEJHQEYh64UeuFKHcggEAABHQCPqfvnbItFHQFuq4UeuFHtHQEYhR64UeuGHcgkEAABHQCPn752yLQ5HQFuqsCDEm6ZHQEYgxJul41SHcgoEAABHQCPlYEGJN0xHQFuqfvnbItFHQEYgYk3S8aqHcgsEAABHQCPi0OVgQYlHQFuqPXCj1wpHQEYf3ztkWh2HcgwEAABHQCPgQYk3S8dHQFuqDEm6XjVHQEYffO2RaHOHcg0EAABHQCPdsi0OVgRHQFup2yLQ5WBHQEYe+dsi0OWHcg4EAABHQCPXjU/fO2RHQFupaHKwIMVHQEYd87ZFocuHcg8EAABHQCPU/fO2RaJHQFupN0vGp/BHQEYdcKPXCj2HchAEAABHQCPSbpeNT99HQFupBiTdLxtHQEYdDlYEGJOHchEEAABHQCPP3ztkWh1HQFuo1P3ztkZHQEYci0OVgQaHchIEAABHQCPMSbpeNT9HQFuogxJul41HQEYb52yLQ5aHchMEAABHQCPJul41P31HQFuoUeuFHrhHQEYbZFocrAiHchQEAABHQCPEm6XjU/hHQFun752yLQ5HQEYafvnbItGHchUEAABHQCPCDEm6XjVHQFunvnbItDlHQEYaHKwIMSeHchYEAABHQCO/fO2RaHNHQFunjU/fO2RHQEYZmZmZmZqHchcEAABHQCO752yLQ5ZHQFunS8an755HQEYY9cKPXCmHchgEAABHQCO5WBBiTdNHQFunGp++dslHQEYYk3S8an+HchkEAABHQCO2yLQ5WBBHQFum2RaHKwJHQEYYEGJN0vKHchoEAABHQCO0OVgQYk5HQFump++dsi1HQEYXrhR64UiHchsEAABHQCOxqfvnbItHQFumdsi0OVhHQEYXKwIMSbqHchwEAABHQCOvnbItDlZHQFumRaHKwINHQEYWyLQ5WBCHch0EAABHQCOrhR64UexHQFumBBiTdLxHQEYWJN0vGqCHch4EAABHQCOmZmZmZmZHQFulocrAgxJHQEYVHrhR64WHch8EAABHQCOkWhysCDFHQFulcKPXCj1HQEYUvGp++duHciAEAABHQCOhysCDEm9HQFulLxqfvndHQEYUWhysCDGHciEEAABHQCOeNT987ZFHQFuk7ZFocrBHQEYTtkWhysGHciIEAABHQCObpeNT989HQFukvGp++dtHQEYTMzMzMzOHciMEAABHQCOZFocrAgxHQFuki0OVgQZHQEYSsCDEm6aHciQEAABHQCOWhysCDEpHQFukWhysCDFHQEYSTdLxqfyHciUEAABHQCORaHKwIMVHQFuj987ZFodHQEYRaHKwIMWHciYEAABHQCOLQ5WBBiVHQFujdLxqfvpHQEYQQYk3S8eHcicEAABHQCOItDlYEGJHQFujQ5WBBiVHQEYP3ztkWh2HcigEAABHQCOGJN0vGqBHQFujEm6XjVBHQEYPXCj1wo+HcikEAABHQCODlYEGJN1HQFui4UeuFHtHQEYO+dsi0OWHcioEAABHQCOAAAAAAABHQFuin752yLRHQEYOVgQYk3WHcisEAABHQCN9cKPXCj1HQFuiXjU/fO5HQEYN0vGp++eHciwEAABHQCN4UeuFHrhHQFuh++dsi0RHQEYM7ZFocrCHci0EAABHQCN1wo9cKPZHQFuhysCDEm9HQEYMi0OVgQaHci4EAABHQCNztkWhysFHQFuhmZmZmZpHQEYMCDEm6XmHci8EAABHQCNwIMSbpeNHQFuhWBBiTdNHQEYLZFocrAiHcjAEAABHQCNtkWhysCFHQFuhJul41P5HQEYLAgxJul6HcjEEAABHQCNrAgxJul5HQFug5WBBiTdHQEYKfvnbItGHcjIEAABHQCNocrAgxJxHQFugtDlYEGJHQEYJ++dsi0SHcjMEAABHQCNjU/fO2RdHQFugUeuFHrhHQEYJFocrAgyHcjQEAABHQCNfvnbItDlHQFugEGJN0vJHQEYIcrAgxJyHcjUEAABHQCNan752yLRHQFufnbItDlZHQEYHjU/fO2SHcjYEAABHQCNPXCj1wo9HQFueyLQ5WBBHQEYFocrAgxKHcjcEAABHQCNMzMzMzM1HQFuel41P3ztHQEYFHrhR64WHcjgEAABHQCNFocrAgxJHQFud87ZFoctHQEYD1wo9cKSHcjkEAABHQCM/fO2RaHNHQFudgQYk3S9HQEYCsCDEm6aHcjoEAABHQCM87ZFocrBHQFudT987ZFpHQEYCTdLxqfyHcjsEAABHQCMxqfvnbItHQFucan752yNHQEYAQYk3S8eHcjwEAABHQCMhysCDEm9HQFubItDlYEJHQEX9cKPXCj2Hcj0EAABHQCMfO2RaHKxHQFua8an7521HQEX87ZFocrCHcj4EAABHQCMT987ZFodHQFuaDEm6XjVHQEX7AgxJul6Hcj8EAABHQCMO2RaHKwJHQFuZqfvnbItHQEX5++dsi0SHckAEAABHQCMMSbpeNT9HQFuZeNT987ZHQEX5mZmZmZqHckEEAABHQCMHKwIMSbpHQFuZFocrAgxHQEX4tDlYEGKHckIEAABHQCMEGJN0vGpHQFuYxJul41RHQEX4EGJN0vKHckMEAABHQCMBiTdLxqhHQFuYk3S8an9HQEX3jU/fO2SHckQEAABHQCL8an752yNHQFuYMSbpeNVHQEX2p++dsi2HckUEAABHQCL52yLQ5WBHQFuYAAAAAABHQEX2RaHKwIOHckYEAABHQCLxJul41P5HQFuXS8an755HQEX0vGp++duHckcEAABHQCLul41P3ztHQFuXGp++dslHQEX0OVgQYk6HckgEAABHQCLpeNT987ZHQFuWuFHrhR9HQEXzU/fO2ReHckkEAABHQCLmZmZmZmZHQFuWZmZmZmZHQEXysCDEm6aHckoEAABHQCLj1wo9cKRHQFuWNT987ZFHQEXyTdLxqfyHcksEAABHQCLeuFHrhR9HQFuV0vGp++dHQEXxaHKwIMWHckwEAABHQCLZmZmZmZpHQFuVcKPXCj1HQEXwgxJul42Hck0EAABHQCLWBBiTdLxHQFuVHrhR64VHQEXv3ztkWh2Hck4EAABHQCLTdLxqfvpHQFuU7ZFocrBHQEXvXCj1wo+Hck8EAABHQCLQ5WBBiTdHQFuUvGp++dtHQEXu+dsi0OWHclAEAABHQCLOVgQYk3VHQFuUi0OVgQZHQEXudsi0OViHclEEAABHQCLMSbpeNT9HQFuUWhysCDFHQEXuFHrhR66HclIEAABHQCLItDlYEGJHQFuUCDEm6XlHQEXtcKPXCj2HclMEAABHQCLBBiTdLxtHQFuTdLxqfvpHQEXsCDEm6XmHclQEAABHQCK+dsi0OVhHQFuTQ5WBBiVHQEXrpeNT98+HclUEAABHQCK752yLQ5ZHQFuTAgxJul5HQEXrItDlYEKHclYEAABHQCK41P3ztkZHQFuSwIMSbphHQEXqn752yLSHclcEAABHQCK2RaHKwINHQFuSj1wo9cNHQEXqHKwIMSeHclgEAABHQCKxJul41P5HQFuSLQ5WBBlHQEXpN0vGp/CHclkEAABHQCKul41P3ztHQFuR64UeuFJHQEXotDlYEGKHcloEAABHQCKsCDEm6XlHQFuRul41P31HQEXoUeuFHriHclsEAABHQCKl41P3ztlHQFuRR64UeuFHQEXnKwIMSbqHclwEAABHQCKjU/fO2RdHQFuRBiTdLxtHQEXmyLQ5WBCHcl0EAABHQCKhR64UeuFHQFuQ1P3ztkZHQEXmRaHKwIOHcl4EAABHQCKeuFHrhR9HQFuQo9cKPXFHQEXl41P3ztmHcl8EAABHQCKbItDlYEJHQFuQYk3S8apHQEXlP3ztkWiHcmAEAABHQCKYk3S8an9HQFuQMSbpeNVHQEXk3S8an76HcmEEAABHQCKTdLxqfvpHQFuPvnbItDlHQEXj1wo9cKSHcmIEAABHQCKQ5WBBiTdHQFuPjU/fO2RHQEXjdLxqfvqHcmMEAABHQCKO2RaHKwJHQFuPXCj1wo9HQEXjEm6XjVCHcmQEAABHQCKLQ5WBBiVHQFuPGp++dslHQEXibpeNT9+HcmUEAABHQCKItDlYEGJHQFuO2RaHKwJHQEXh64UeuFKHcmYEAABHQCKGJN0vGqBHQFuOp++dsi1HQEXhiTdLxqiHcmcEAABHQCKDlYEGJN1HQFuOdsi0OVhHQEXhBiTdLxuHcmgEAABHQCKBBiTdLxtHQFuORaHKwINHQEXgo9cKPXGHcmkEAABHQCJ+dsi0OVhHQFuOFHrhR65HQEXgIMSbpeOHcmoEAABHQCJ9cKPXCj1HQFuOBBiTdLxHQEXgAAAAAACHcmsEAABHQCJ64UeuFHtHQFuNwo9cKPZHQEXffO2RaHOHcmwEAABHQCJ2RaHKwINHQFuNYEGJN0xHQEXel41P3zuHcm0EAABHQCJztkWhysFHQFuNLxqfvndHQEXeNT987ZGHcm4EAABHQCJxJul41P5HQFuM/fO2RaJHQEXdsi0OVgSHcm8EAABHQCJtkWhysCFHQFuMrAgxJulHQEXdDlYEGJOHcnAEAABHQCJrAgxJul5HQFuMeuFHrhRHQEXcrAgxJumHcnEEAABHQCJocrAgxJxHQFuMSbpeNT9HQEXcKPXCj1yHcnIEAABHQCJmZmZmZmZHQFuMGJN0vGpHQEXbxqfvnbKHcnMEAABHQCJj1wo9cKRHQFuL52yLQ5ZHQEXbQ5WBBiWHcnQEAABHQCJhR64UeuFHQFuLtkWhysFHQEXa4UeuFHuHcnUEAABHQCJbItDlYEJHQFuLMzMzMzNHQEXZul41P32HcnYEAABHQCJYk3S8an9HQFuLAgxJul5HQEXZWBBiTdOHcncEAABHQCJWBBiTdLxHQFuK0OVgQYlHQEXY1P3ztkaHcngEAABHQCJT987ZFodHQFuKj1wo9cNHQEXYcrAgxJyHcnkEAABHQCJQYk3S8apHQFuKTdLxqfxHQEXXztkWhyuHcnoEAABHQCJN0vGp++dHQFuKHKwIMSdHQEXXS8an756HcnsEAABHQCJItDlYEGJHQFuJqfvnbItHQEXWZmZmZmaHcnwEAABHQCJGJN0vGqBHQFuJeNT987ZHQEXWBBiTdLyHcn0EAABHQCJEGJN0vGpHQFuJR64UeuFHQEXVocrAgxKHcn4EAABHQCJAgxJul41HQFuJBiTdLxtHQEXU/fO2RaKHcn8EAABHQCI987ZFoctHQFuI1P3ztkZHQEXUeuFHrhSHcoAEAABHQCI7ZFocrAhHQFuIk3S8an9HQEXUGJN0vGqHcoEEAABHQCI41P3ztkZHQFuIYk3S8apHQEXTlYEGJN2HcoIEAABHQCI2RaHKwINHQFuIMSbpeNVHQEXTMzMzMzOHcoMEAABHQCI0OVgQYk5HQFuIAAAAAABHQEXSsCDEm6aHcoQEAABHQCIwo9cKPXFHQFuHrhR64UhHQEXSDEm6XjWHcoUEAABHQCIrhR64UexHQFuHS8an755HQEXRJul41P6HcoYEAABHQCIo9cKPXClHQFuHGp++dslHQEXQxJul41SHcocEAABHQCImZmZmZmZHQFuG6XjU/fRHQEXQQYk3S8eHcogEAABHQCIjU/fO2RdHQFuGl41P3ztHQEXPnbItDlaHcokEAABHQCIgxJul41RHQFuGZmZmZmZHQEXPO2RaHKyHcooEAABHQCIeNT987ZFHQFuGNT987ZFHQEXOuFHrhR+HcosEAABHQCIbpeNT989HQFuGBBiTdLxHQEXOVgQYk3WHcowEAABHQCIZFocrAgxHQFuF0vGp++dHQEXN0vGp++eHco0EAABHQCIXCj1wo9dHQFuFkWhysCFHQEXNcKPXCj2Hco4EAABHQCIQ5WBBiTdHQFuFHrhR64VHQEXMan752yOHco8EAABHQCIOVgQYk3VHQFuE3S8an75HQEXL52yLQ5aHcpAEAABHQCILxqfvnbJHQFuErAgxJulHQEXLhR64UeyHcpEEAABHQCIJN0vGp/BHQFuEeuFHrhRHQEXLAgxJul6HcpIEAABHQCIHKwIMSbpHQFuESbpeNT9HQEXKn752yLSHcpMEAABHQCIDlYEGJN1HQFuD987ZFodHQEXJ++dsi0SHcpQEAABHQCH+dsi0OVhHQFuDlYEGJN1HQEXJFocrAgyHcpUEAABHQCH752yLQ5ZHQFuDZFocrAhHQEXIk3S8an+HcpYEAABHQCH52yLQ5WBHQFuDMzMzMzNHQEXIMSbpeNWHcpcEAABHQCHztkWhysFHQFuCsCDEm6ZHQEXHCj1wo9eHcpgEAABHQCHxJul41P5HQFuCfvnbItFHQEXGp++dsi2HcpkEAABHQCHp++dsi0RHQFuB2yLQ5WBHQEXFYEGJN0yHcpoEAABHQCHmZmZmZmZHQFuBmZmZmZpHQEXEvGp++duHcpsEAABHQCHhR64UeuFHQFuBJul41P5HQEXD1wo9cKSHcpwEAABHQCHWhysCDEpHQFuAQYk3S8dHQEXBysCDEm+Hcp0EAABHQCHT987ZFodHQFuAEGJN0vJHQEXBaHKwIMWHcp4EAABHQCHMzMzMzM1HQFt/fO2RaHNHQEXAIMSbpeOHcp8EAABHQCHEGJN0vGpHQFt+yLQ5WBBHQEW+l41P3zuHcqAEAABHQCHBiTdLxqhHQFt+hysCDEpHQEW+FHrhR66HcqEEAABHQCG87ZFocrBHQFt+JN0vGqBHQEW9LxqfvneHcqIEAABHQCG5WBBiTdNHQFt941P3ztlHQEW8i0OVgQaHcqMEAABHQCGyLQ5WBBlHQFt9P3ztkWhHQEW7Q5WBBiWHcqQEAABHQCGp++dsi0RHQFt8i0OVgQZHQEW5ul41P32HcqUEAABHQCGnbItDlYFHQFt8WhysCDFHQEW5WBBiTdOHcqYEAABHQCGfvnbItDlHQFt7tkWhysFHQEW3752yLQ6HcqcEAABHQCGcrAgxJulHQFt7dLxqfvpHQEW3S8an756HcqgEAABHQCGXjU/fO2RHQFt7AgxJul5HQEW2ZmZmZmaHcqkEAABHQCGU/fO2RaJHQFt60OVgQYlHQEW2BBiTdLyHcqoEAABHQCGQYk3S8apHQFt6bpeNT99HQEW1HrhR64WHcqsEAABHQCGMzMzMzM1HQFt6HKwIMSdHQEW0euFHrhSHcqwEAABHQCGKPXCj1wpHQFt564UeuFJHQEW0GJN0vGqHcq0EAABHQCGFHrhR64VHQFt5eNT987ZHQEWzMzMzMzOHcq4EAABHQCGDEm6XjVBHQFt5R64UeuFHQEWysCDEm6aHcq8EAABHQCGAgxJul41HQFt5FocrAgxHQEWyTdLxqfyHcrAEAABHQCF6XjU/fO5HQFt4k3S8an9HQEWxJul41P6HcrEEAABHQCF4UeuFHrhHQFt4Yk3S8apHQEWwxJul41SHcrIEAABHQCF1wo9cKPZHQFt4MSbpeNVHQEWwQYk3S8eHcrMEAABHQCFzMzMzMzNHQFt4AAAAAABHQEWv3ztkWh2HcrQEAABHQCFvnbItDlZHQFt3rhR64UhHQEWvO2RaHKyHcrUEAABHQCFtkWhysCFHQFt3fO2RaHNHQEWu2RaHKwKHcrYEAABHQCFocrAgxJxHQFt3Cj1wo9dHQEWt87ZFocuHcrcEAABHQCFl41P3ztlHQFt22RaHKwJHQEWtcKPXCj2HcrgEAABHQCFj1wo9cKRHQFt2p++dsi1HQEWtDlYEGJOHcrkEAABHQCFgQYk3S8dHQFt2ZmZmZmZHQEWsan752yOHcroEAABHQCFdsi0OVgRHQFt2JN0vGqBHQEWsCDEm6XmHcrsEAABHQCFbItDlYEJHQFt187ZFoctHQEWrhR64UeyHcrwEAABHQCFYk3S8an9HQFt1wo9cKPZHQEWrItDlYEKHcr0EAABHQCFWhysCDEpHQFt1kWhysCFHQEWqn752yLSHcr4EAABHQCFS8an7521HQFt1P3ztkWhHQEWp++dsi0SHcr8EAABHQCFLxqfvnbJHQFt0m6XjU/hHQEWotDlYEGKHcsAEAABHQCFJN0vGp/BHQFt0an752yNHQEWoMSbpeNWHcsEEAABHQCFGp++dsi1HQFt0OVgQYk5HQEWnztkWhyuHcsIEAABHQCFDlYEGJN1HQFtz987ZFodHQEWnKwIMSbqHcsMEAABHQCFBBiTdLxtHQFtztkWhysFHQEWmyLQ5WBCHcsQEAABHQCE+dsi0OVhHQFtzhR64UexHQEWmRaHKwIOHcsUEAABHQCE752yLQ5ZHQFtzU/fO2RdHQEWl41P3ztmHcsYEAABHQCE52yLQ5WBHQFtzItDlYEJHQEWlYEGJN0yHcscEAABHQCE3S8an755HQFty4UeuFHtHQEWk/fO2RaKHcsgEAABHQCExJul41P5HQFtybpeNT99HQEWj987ZFoeHcskEAABHQCEul41P3ztHQFtyLQ5WBBlHQEWjdLxqfvqHcsoEAABHQCEsi0OVgQZHQFtx++dsi0RHQEWjEm6XjVCHcssEAABHQCEp++dsi0RHQFtxysCDEm9HQEWij1wo9cOHcswEAABHQCEmZmZmZmZHQFtxeNT987ZHQEWh64UeuFKHcs0EAABHQCEkWhysCDFHQFtxR64UeuFHQEWhiTdLxqiHcs4EAABHQCEfO2RaHKxHQFtw5WBBiTdHQEWgo9cKPXGHcs8EAABHQCEcrAgxJulHQFtwo9cKPXFHQEWgQYk3S8eHctAEAABHQCEan752yLRHQFtwcrAgxJxHQEWfvnbItDmHctEEAABHQCEXCj1wo9dHQFtwMSbpeNVHQEWfGp++dsmHctIEAABHQCEUeuFHrhRHQFtv752yLQ5HQEWeuFHrhR+HctMEAABHQCER64UeuFJHQFtvvnbItDlHQEWeNT987ZGHctQEAABHQCEP3ztkWh1HQFtvjU/fO2RHQEWd0vGp++eHctUEAABHQCENT987ZFpHQFtvXCj1wo9HQEWdcKPXCj2HctYEAABHQCEKwIMSbphHQFtvGp++dslHQEWc7ZFocrCHctcEAABHQCEHrhR64UhHQFtu2RaHKwJHQEWcSbpeNT+HctgEAABHQCECj1wo9cNHQFtuZmZmZmZHQEWbZFocrAiHctkEAABHQCEAAAAAAABHQFtuNT987ZFHQEWbAgxJul6HctoEAABHQCD987ZFoctHQFtuBBiTdLxHQEWafvnbItGHctsEAABHQCD6XjU/fO5HQFttsi0OVgRHQEWZ++dsi0SHctwEAABHQCD3ztkWhytHQFttgQYk3S9HQEWZeNT987aHct0EAABHQCD1P3ztkWhHQFttT987ZFpHQEWZFocrAgyHct4EAABHQCDzMzMzMzNHQFttDlYEGJNHQEWYk3S8an+Hct8EAABHQCDwo9cKPXFHQFts3S8an75HQEWYMSbpeNWHcuAEAABHQCDuFHrhR65HQFtsrAgxJulHQEWXrhR64UiHcuEEAABHQCDocrAgxJxHQFtsKPXCj1xHQEWWp++dsi2HcuIEAABHQCDl41P3ztlHQFtr987ZFodHQEWWRaHKwIOHcuMEAABHQCDjU/fO2RdHQFtrxqfvnbJHQEWVwo9cKPaHcuQEAABHQCDhR64UeuFHQFtrhR64UexHQEWVYEGJN0yHcuUEAABHQCDeuFHrhR9HQFtrU/fO2RdHQEWU3S8an76HcuYEAABHQCDbItDlYEJHQFtrEm6XjVBHQEWUOVgQYk6HcucEAABHQCDWhysCDEpHQFtqn752yLRHQEWTdLxqfvqHcugEAABHQCDT987ZFodHQFtqbpeNT99HQEWS8an7522HcukEAABHQCDR64UeuFJHQFtqPXCj1wpHQEWSj1wo9cOHcuoEAABHQCDLxqfvnbJHQFtpul41P31HQEWRaHKwIMWHcusEAABHQCDJN0vGp/BHQFtpeNT987ZHQEWRBiTdLxuHcuwEAABHQCDHKwIMSbpHQFtpR64UeuFHQEWQo9cKPXGHcu0EAABHQCDEm6XjU/hHQFtpFocrAgxHQEWQIMSbpeOHcu4EAABHQCDCDEm6XjVHQFto5WBBiTdHQEWPvnbItDmHcu8EAABHQCC++dsi0OVHQFtok3S8an9HQEWPGp++dsmHcvAEAABHQCC52yLQ5WBHQFtoMSbpeNVHQEWONT987ZGHcvEEAABHQCC3ztkWhytHQFtn752yLQ5HQEWN0vGp++eHcvIEAABHQCC1P3ztkWhHQFtnvnbItDlHQEWNT987ZFqHcvMEAABHQCCvGp++dslHQFtnO2RaHKxHQEWMSbpeNT+HcvQEAABHQCCtDlYEGJNHQFtnCj1wo9dHQEWLxqfvnbKHcvUEAABHQCCqfvnbItFHQFtm2RaHKwJHQEWLZFocrAiHcvYEAABHQCCn752yLQ5HQFtmp++dsi1HQEWLAgxJul6HcvcEAABHQCCl41P3ztlHQFtmZmZmZmZHQEWKfvnbItGHcvgEAABHQCCdsi0OVgRHQFtlsi0OVgRHQEWI9cKPXCmHcvkEAABHQCCYk3S8an9HQFtlT987ZFpHQEWIMSbpeNWHcvoEAABHQCCWhysCDEpHQFtlDlYEGJNHQEWHrhR64UiHcvsEAABHQCCS8an7521HQFtkzMzMzM1HQEWHCj1wo9eHcvwEAABHQCCN0vGp++dHQFtkWhysCDFHQEWGJN0vGqCHcv0EAABHQCCJN0vGp/BHQFtj987ZFodHQEWFYEGJN0yHcv4EAABHQCCDlYEGJN1HQFtjdLxqfvpHQEWEOVgQYk6Hcv8EAABHQCCBBiTdLxtHQFtjMzMzMzNHQEWD1wo9cKSHcgAFAABHQCB52yLQ5WBHQFtin752yLRHQEWCj1wo9cOHcgEFAABHQCB2RaHKwINHQFtiTdLxqfxHQEWB64UeuFKHcgIFAABHQCBxqfvnbItHQFth2yLQ5WBHQEWBBiTdLxuHcgMFAABHQCBvGp++dslHQFthqfvnbItHQEWAgxJul42HcgQFAABHQCBm6XjU/fRHQFtg9cKPXClHQEV/Gp++dsmHcgUFAABHQCBk3S8an75HQFtgxJul41RHQEV+l41P3zuHcgYFAABHQCBdsi0OVgRHQFtgIMSbpeNHQEV9T987ZFqHcgcFAABHQCBaHKwIMSdHQFtfztkWhytHQEV8rAgxJumHcggFAABHQCBVgQYk3S9HQFtfbItDlYFHQEV752yLQ5aHcgkFAABHQCBS8an7521HQFtfKwIMSbpHQEV7ZFocrAiHcgoFAABHQCBOVgQYk3VHQFteyLQ5WBBHQEV6fvnbItGHcgsFAABHQCBKwIMSbphHQFtedsi0OVhHQEV5++dsi0SHcgwFAABHQCBIMSbpeNVHQFteRaHKwINHQEV5eNT987aHcg0FAABHQCBDlYEGJN1HQFtd0vGp++dHQEV4k3S8an+Hcg4FAABHQCA++dsi0OVHQFtdcKPXCj1HQEV3rhR64UiHcg8FAABHQCA5WBBiTdNHQFtc7ZFocrBHQEV2p++dsi2HchAFAABHQCAyLQ5WBBlHQFtcSbpeNT9HQEV1YEGJN0yHchEFAABHQCAul41P3ztHQFtb987ZFodHQEV0vGp++duHchIFAABHQCAp++dsi0RHQFtblYEGJN1HQEVz1wo9cKSHchMFAABHQCAnbItDlYFHQFtbU/fO2RdHQEVzdLxqfvqHchQFAABHQCAk3S8an75HQFtbItDlYEJHQEVzEm6XjVCHchUFAABHQCAi0OVgQYlHQFta8an7521HQEVyj1wo9cOHchYFAABHQCAfO2RaHKxHQFtan752yLRHQEVx64UeuFKHchcFAABHQCAcrAgxJulHQFtabpeNT99HQEVxiTdLxqiHchgFAABHQCAYEGJN0vJHQFtZ++dsi0RHQEVwo9cKPXGHchkFAABHQCAWBBiTdLxHQFtZysCDEm9HQEVwQYk3S8eHchoFAABHQCATdLxqfvpHQFtZmZmZmZpHQEVvvnbItDmHchsFAABHQCAN0vGp++dHQFtZFocrAgxHQEVuuFHrhR+HchwFAABHQCALQ5WBBiVHQFtY1P3ztkZHQEVuVgQYk3WHch0FAABHQCAItDlYEGJHQFtYo9cKPXFHQEVt0vGp++eHch4FAABHQCAGp++dsi1HQFtYcrAgxJxHQEVtcKPXCj2Hch8FAABHQCADEm6XjVBHQFtYIMSbpeNHQEVszMzMzM2HciAFAABHQCAAgxJul41HQFtX752yLQ5HQEVsan752yOHciEFAABHQB/3ztkWhytHQFtXfO2RaHNHQEVrhR64UeyHciIFAABHQB/ztkWhysFHQFtXS8an755HQEVrAgxJul6HciMFAABHQB/ul41P3ztHQFtXGp++dslHQEVqn752yLSHciQFAABHQB/jU/fO2RdHQFtWl41P3ztHQEVpmZmZmZqHciUFAABHQB/eNT987ZFHQFtWVgQYk3VHQEVpFocrAgyHciYFAABHQB/ZFocrAgxHQFtWJN0vGqBHQEVotDlYEGKHcicFAABHQB/U/fO2RaJHQFtV87ZFoctHQEVoUeuFHriHcigFAABHQB/P3ztkWh1HQFtVsi0OVgRHQEVnztkWhyuHcikFAABHQB+/fO2RaHNHQFtU/fO2RaJHQEVmZmZmZmaHcioFAABHQB+7ZFocrAhHQFtUzMzMzM1HQEVl41P3ztmHcisFAABHQB+2RaHKwINHQFtUm6XjU/hHQEVlgQYk3S+HciwFAABHQB+wIMSbpeNHQFtUSbpeNT9HQEVk3S8an76Hci0FAABHQB+rAgxJul5HQFtUGJN0vGpHQEVkeuFHrhSHci4FAABHQB+l41P3ztlHQFtT1wo9cKRHQEVj987ZFoeHci8FAABHQB+hysCDEm9HQFtTpeNT989HQEVjlYEGJN2HcjAFAABHQB+crAgxJulHQFtTdLxqfvpHQEVjEm6XjVCHcjEFAABHQB+Yk3S8an9HQFtTMzMzMzNHQEVisCDEm6aHcjIFAABHQB+IMSbpeNVHQFtSfvnbItFHQEVhJul41P6HcjMFAABHQB+DEm6XjVBHQFtSTdLxqfxHQEVgxJul41SHcjQFAABHQB9++dsi0OVHQFtSDEm6XjVHQEVgYk3S8aqHcjUFAABHQB9ysCDEm6ZHQFtRiTdLxqhHQEVfXCj1wo+HcjYFAABHQB9peNT987ZHQFtRJul41P5HQEVedsi0OViHcjcFAABHQB9lYEGJN0xHQFtQ5WBBiTdHQEVd87ZFocuHcjgFAABHQB9gQYk3S8dHQFtQtDlYEGJHQEVdkWhysCGHcjkFAABHQB9U/fO2RaJHQFtQMSbpeNVHQEVci0OVgQaHcjoFAABHQB9P3ztkWh1HQFtQAAAAAABHQEVcCDEm6XmHcjsFAABHQB9LxqfvnbJHQFtPvnbItDlHQEVbpeNT98+HcjwFAABHQB9Gp++dsi1HQFtPjU/fO2RHQEVbQ5WBBiWHcj0FAABHQB9BiTdLxqhHQFtPXCj1wo9HQEVawIMSbpiHcj4FAABHQB87ZFocrAhHQFtPCj1wo9dHQEVaHKwIMSeHcj8FAABHQB8yLQ5WBBlHQFtOl41P3ztHQEVZWBBiTdOHckAFAABHQB8tDlYEGJNHQFtOZmZmZmZHQEVY1P3ztkaHckEFAABHQB8o9cKPXClHQFtONT987ZFHQEVYcrAgxJyHckIFAABHQB8crAgxJulHQFtNsi0OVgRHQEVXbItDlYGHckMFAABHQB8Yk3S8an9HQFtNcKPXCj1HQEVW6XjU/fSHckQFAABHQB8TdLxqfvpHQFtNP3ztkWhHQEVWhysCDEqHckUFAABHQB8PXCj1wo9HQFtNDlYEGJNHQEVWJN0vGqCHckYFAABHQB8KPXCj1wpHQFtMzMzMzM1HQEVVocrAgxKHckcFAABHQB752yLQ5WBHQFtMGJN0vGpHQEVUOVgQYk6HckgFAABHQB71wo9cKPZHQFtL52yLQ5ZHQEVTtkWhysGHckkFAABHQB7wo9cKPXFHQFtLpeNT989HQEVTU/fO2ReHckoFAABHQB7si0OVgQZHQFtLdLxqfvpHQEVS8an7522HcksFAABHQB7lYEGJN0xHQFtLItDlYEJHQEVSTdLxqfyHckwFAABHQB7cKPXCj1xHQFtKsCDEm6ZHQEVRaHKwIMWHck0FAABHQB7XCj1wo9dHQFtKfvnbItFHQEVRBiTdLxuHck4FAABHQB7S8an7521HQFtKTdLxqfxHQEVQgxJul42Hck8FAABHQB7Cj1wo9cNHQFtJiTdLxqhHQEVPGp++dsmHclAFAABHQB69cKPXCj1HQFtJWBBiTdNHQEVOl41P3zuHclEFAABHQB65WBBiTdNHQFtJJul41P5HQEVONT987ZGHclIFAABHQB60OVgQYk5HQFtI5WBBiTdHQEVN0vGp++eHclMFAABHQB6uFHrhR65HQFtIo9cKPXFHQEVNLxqfvneHclQFAABHQB6k3S8an75HQFtIMSbpeNVHQEVMSbpeNT+HclUFAABHQB6bpeNT989HQFtHvnbItDlHQEVLZFocrAiHclYFAABHQB6PXCj1wo9HQFtHO2RaHKxHQEVKXjU/fO6HclcFAABHQB6LQ5WBBiVHQFtHCj1wo9dHQEVJ++dsi0SHclgFAABHQB587ZFocrBHQFtGZmZmZmZHQEVItDlYEGKHclkFAABHQB5tkWhysCFHQFtFocrAgxJHQEVHKwIMSbqHcloFAABHQB5fO2RaHKxHQFtE/fO2RaJHQEVF41P3ztmHclsFAABHQB5YEGJN0vJHQFtEvGp++dtHQEVFP3ztkWiHclwFAABHQB5O2RaHKwJHQFtESbpeNT9HQEVEeuFHrhSHcl0FAABHQB5FocrAgxJHQFtD1wo9cKRHQEVDlYEGJN2Hcl4FAABHQB42RaHKwINHQFtDItDlYEJHQEVCDEm6XjWHcl8FAABHQB4n752yLQ5HQFtCfvnbItFHQEVAxJul41SHcmAFAABHQB4hysCDEm9HQFtCLQ5WBBlHQEVAIMSbpeOHcmEFAABHQB4XjU/fO2RHQFtBul41P31HQEU/XCj1wo+HcmIFAABHQB4TdLxqfvpHQFtBiTdLxqhHQEU+2RaHKwKHcmMFAABHQB4KPXCj1wpHQFtBFocrAgxHQEU+FHrhR66HcmQFAABHQB3++dsi0OVHQFtAk3S8an9HQEU9DlYEGJOHcmUFAABHQB3hR64UeuFHQFs/KwIMSbpHQEU6PXCj1wqHcmYFAABHQB3cKPXCj1xHQFs++dsi0OVHQEU52yLQ5WCHcmcFAABHQB3S8an7521HQFs+hysCDEpHQEU49cKPXCmHcmgFAABHQB2+dsi0OVhHQFs9kWhysCFHQEU3Cj1wo9eHcmkFAABHQB25WBBiTdNHQFs9YEGJN0xHQEU2p++dsi2HcmoFAABHQB21P3ztkWhHQFs9HrhR64VHQEU2JN0vGqCHcmsFAABHQB2p++dsi0RHQFs8m6XjU/hHQEU1HrhR64WHcmwFAABHQB2k3S8an75HQFs8an752yNHQEU0vGp++duHcm0FAABHQB2gxJul41RHQFs8OVgQYk5HQEU0WhysCDGHcm4FAABHQB2bpeNT989HQFs7987ZFodHQEUz1wo9cKSHcm8FAABHQB2HKwIMSbpHQFs7AgxJul5HQEUx64UeuFKHcnAFAABHQB2DEm6XjVBHQFs60OVgQYlHQEUxiTdLxqiHcnEFAABHQB1++dsi0OVHQFs6n752yLRHQEUxJul41P6HcnIFAABHQB1ztkWhysFHQFs6DEm6XjVHQEUwIMSbpeOHcnMFAABHQB1ul41P3ztHQFs52yLQ5WBHQEUvnbItDlaHcnQFAABHQB1peNT987ZHQFs5mZmZmZpHQEUvO2RaHKyHcnUFAABHQB1lYEGJN0xHQFs5aHKwIMVHQEUu2RaHKwKHcnYFAABHQB1hR64UeuFHQFs5N0vGp/BHQEUuVgQYk3WHcncFAABHQB1Q5WBBiTdHQFs4crAgxJxHQEUs7ZFocrCHcngFAABHQB1LxqfvnbJHQFs4QYk3S8dHQEUsan752yOHcnkFAABHQB1HrhR64UhHQFs4AAAAAABHQEUsCDEm6XmHcnoFAABHQB0zMzMzMzNHQFs3Cj1wo9dHQEUqHKwIMSeHcnsFAABHQB0vGp++dslHQFs22RaHKwJHQEUpul41P32HcnwFAABHQB0p++dsi0RHQFs2p++dsi1HQEUpWBBiTdOHcn0FAABHQB0an752yLRHQFs141P3ztlHQEUnztkWhyuHcn4FAABHQB0VgQYk3S9HQFs1si0OVgRHQEUnbItDlYGHcn8FAABHQB0RaHKwIMVHQFs1cKPXCj1HQEUnCj1wo9eHcoAFAABHQB0MSbpeNT9HQFs1P3ztkWhHQEUmhysCDEqHcoEFAABHQBz87ZFocrBHQFs0euFHrhRHQEUlHrhR64WHcoIFAABHQBz3ztkWhytHQFs0SbpeNT9HQEUkm6XjU/iHcoMFAABHQBzztkWhysFHQFs0CDEm6XlHQEUkOVgQYk6HcoQFAABHQBzjU/fO2RdHQFszU/fO2RdHQEUi0OVgQYmHcoUFAABHQBzfO2RaHKxHQFszEm6XjVBHQEUiTdLxqfyHcoYFAABHQBzbItDlYEJHQFsy4UeuFHtHQEUh64UeuFKHcocFAABHQBzWBBiTdLxHQFsysCDEm6ZHQEUhiTdLxqiHcogFAABHQBzGp++dsi1HQFsx64UeuFJHQEUgAAAAAACHcokFAABHQBzBiTdLxqhHQFsxul41P31HQEUfnbItDlaHcooFAABHQBy9cKPXCj1HQFsxeNT987ZHQEUfO2RaHKyHcosFAABHQBy4UeuFHrhHQFsxR64UeuFHQEUeuFHrhR+HcowFAABHQByo9cKPXClHQFswgxJul41HQEUdT987ZFqHco0FAABHQByk3S8an75HQFswUeuFHrhHQEUc7ZFocrCHco4FAABHQByfvnbItDlHQFswEGJN0vJHQEUcan752yOHco8FAABHQByQYk3S8apHQFsvXCj1wo9HQEUbAgxJul6HcpAFAABHQByLQ5WBBiVHQFsvGp++dslHQEUan752yLSHcpEFAABHQByHKwIMSbpHQFsu6XjU/fRHQEUaHKwIMSeHcpIFAABHQByCDEm6XjVHQFsup++dsi1HQEUZul41P32HcpMFAABHQBxysCDEm6ZHQFst87ZFoctHQEUYUeuFHriHcpQFAABHQBxul41P3ztHQFstsi0OVgRHQEUXztkWhyuHcpUFAABHQBxpeNT987ZHQFstgQYk3S9HQEUXbItDlYGHcpYFAABHQBxaHKwIMSdHQFssvGp++dtHQEUWBBiTdLyHcpcFAABHQBxU/fO2RaJHQFssi0OVgQZHQEUVgQYk3S+HcpgFAABHQBxQ5WBBiTdHQFssSbpeNT9HQEUVHrhR64WHcpkFAABHQBxMzMzMzM1HQFssGJN0vGpHQEUUvGp++duHcpoFAABHQBw8an752yNHQFsrU/fO2RdHQEUTMzMzMzOHcpsFAABHQBwzMzMzMzNHQFsq4UeuFHtHQEUSbpeNT9+HcpwFAABHQBwvGp++dslHQFsqsCDEm6ZHQEUR64UeuFKHcp0FAABHQBwfvnbItDlHQFsp64UeuFJHQEUQgxJul42Hcp4FAABHQBwWhysCDEpHQFspeNT987ZHQEUPnbItDlaHcp8FAABHQBwHKwIMSbpHQFsoxJul41RHQEUONT987ZGHcqAFAABHQBv41P3ztkZHQFsoEGJN0vJHQEUM7ZFocrCHcqEFAABHQBvpeNT987ZHQFsnXCj1wo9HQEULhR64UeyHcqIFAABHQBvgQYk3S8dHQFsm6XjU/fRHQEUKn752yLSHcqMFAABHQBvcKPXCj1xHQFsmp++dsi1HQEUKPXCj1wqHcqQFAABHQBvQ5WBBiTdHQFsmJN0vGqBHQEUJN0vGp/CHcqUFAABHQBvDlYEGJN1HQFslgQYk3S9HQEUH752yLQ6HcqYFAABHQBu0OVgQYk5HQFskvGp++dtHQEUGZmZmZmaHcqcFAABHQBum6XjU/fRHQFskGJN0vGpHQEUFP3ztkWiHcqgFAABHQBuWhysCDEpHQFsjU/fO2RdHQEUDtkWhysGHcqkFAABHQBt987ZFoctHQFsiHKwIMSdHQEUBaHKwIMWHcqoFAABHQBtwo9cKPXFHQFsheNT987ZHQEUAQYk3S8eHcqsFAABHQBthR64UeuFHQFsgtDlYEGJHQET+uFHrhR+HcqwFAABHQBtcKPXCj1xHQFsgcrAgxJxHQET+VgQYk3WHcq0FAABHQBtT987ZFodHQFsgEGJN0vJHQET9cKPXCj2Hcq4FAABHQBs/fO2RaHNHQFsfCj1wo9dHQET7peNT98+Hcq8FAABHQBs7ZFocrAhHQFse2RaHKwJHQET7ItDlYEKHcrAFAABHQBssCDEm6XlHQFseFHrhR65HQET5ul41P32HcrEFAABHQBsm6XjU/fRHQFsd0vGp++dHQET5WBBiTdOHcrIFAABHQBsi0OVgQYlHQFsdocrAgxJHQET41P3ztkaHcrMFAABHQBseuFHrhR9HQFsdcKPXCj1HQET4crAgxJyHcrQFAABHQBsKPXCj1wpHQFscan752yNHQET2p++dsi2HcrUFAABHQBsGJN0vGqBHQFscOVgQYk5HQET2JN0vGqCHcrYFAABHQBsCDEm6XjVHQFsb987ZFodHQET1wo9cKPaHcrcFAABHQBrxqfvnbItHQFsbMzMzMzNHQET0WhysCDGHcrgFAABHQBrtkWhysCFHQFsbAgxJul5HQETz1wo9cKSHcrkFAABHQBrpeNT987ZHQFsawIMSbphHQETzdLxqfvqHcroFAABHQBrU/fO2RaJHQFsZysCDEm9HQETxqfvnbIuHcrsFAABHQBrQ5WBBiTdHQFsZmZmZmZpHQETxJul41P6HcrwFAABHQBrMzMzMzM1HQFsZWBBiTdNHQETwxJul41SHcr0FAABHQBq4UeuFHrhHQFsYYk3S8apHQETu+dsi0OWHcr4FAABHQBq0OVgQYk5HQFsYIMSbpeNHQETudsi0OViHcr8FAABHQBqvGp++dslHQFsX752yLQ5HQETuFHrhR66HcsAFAABHQBqfvnbItDlHQFsXKwIMSbpHQETsrAgxJumHcsEFAABHQBqbpeNT989HQFsW6XjU/fRHQETsKPXCj1yHcsIFAABHQBqXjU/fO2RHQFsWuFHrhR9HQETrxqfvnbKHcsMFAABHQBqDEm6XjVBHQFsVwo9cKPZHQETp++dsi0SHcsQFAABHQBp++dsi0OVHQFsVgQYk3S9HQETpeNT987aHcsUFAABHQBp64UeuFHtHQFsVT987ZFpHQETpFocrAgyHcsYFAABHQBprhR64UexHQFsUi0OVgQZHQETnrhR64UiHcscFAABHQBpmZmZmZmZHQFsUSbpeNT9HQETnS8an756HcsgFAABHQBpiTdLxqfxHQFsUGJN0vGpHQETmyLQ5WBCHcskFAABHQBpeNT987ZFHQFsT1wo9cKRHQETmZmZmZmaHcsoFAABHQBpO2RaHKwJHQFsTEm6XjVBHQETk/fO2RaKHcssFAABHQBpJul41P31HQFsS4UeuFHtHQETkm6XjU/iHcswFAABHQBpFocrAgxJHQFsSn752yLRHQETkGJN0vGqHcs0FAABHQBo2RaHKwINHQFsR2yLQ5WBHQETisCDEm6aHcs4FAABHQBoyLQ5WBBlHQFsRqfvnbItHQETiTdLxqfyHcs8FAABHQBouFHrhR65HQFsRaHKwIMVHQETh64UeuFKHctAFAABHQBoo9cKPXClHQFsRN0vGp/BHQEThaHKwIMWHctEFAABHQBoZmZmZmZpHQFsQcrAgxJxHQETgAAAAAACHctIFAABHQBoVgQYk3S9HQFsQMSbpeNVHQETfnbItDlaHctMFAABHQBoRaHKwIMVHQFsQAAAAAABHQETfO2RaHKyHctQFAABHQBoMSbpeNT9HQFsPvnbItDlHQETeuFHrhR+HctUFAABHQBn87ZFocrBHQFsO+dsi0OVHQETdT987ZFqHctYFAABHQBn41P3ztkZHQFsOyLQ5WBBHQETc7ZFocrCHctcFAABHQBn0vGp++dtHQFsOhysCDEpHQETci0OVgQaHctgFAABHQBnlYEGJN0xHQFsNwo9cKPZHQETbAgxJul6HctkFAABHQBnhR64UeuFHQFsNkWhysCFHQETan752yLSHctoFAABHQBncKPXCj1xHQFsNT987ZFpHQETaPXCj1wqHctsFAABHQBnYEGJN0vJHQFsNHrhR64VHQETZ2yLQ5WCHctwFAABHQBnItDlYEGJHQFsMWhysCDFHQETYUeuFHriHct0FAABHQBnAgxJul41HQFsL52yLQ5ZHQETXjU/fO2SHct4FAABHQBm7ZFocrAhHQFsLpeNT989HQETXKwIMSbqHct8FAABHQBmxJul41P5HQFsLItDlYEJHQETWJN0vGqCHcuAFAABHQBmsCDEm6XlHQFsK4UeuFHtHQETVocrAgxKHcuEFAABHQBmj1wo9cKRHQFsKbpeNT99HQETU3S8an76HcuIFAABHQBmUeuFHrhRHQFsJqfvnbItHQETTdLxqfvqHcuMFAABHQBmLQ5WBBiVHQFsJN0vGp/BHQETSj1wo9cOHcuQFAABHQBmHKwIMSbpHQFsJBiTdLxtHQETSLQ5WBBmHcuUFAABHQBl3ztkWhytHQFsIQYk3S8dHQETQxJul41SHcuYFAABHQBlvnbItDlZHQFsHztkWhytHQETP3ztkWh2HcucFAABHQBlgQYk3S8dHQFsG+dsi0OVHQETOdsi0OViHcugFAABHQBlS8an7521HQFsGVgQYk3VHQETNLxqfvneHcukFAABHQBlDlYEGJN1HQFsFkWhysCFHQETLxqfvnbKHcuoFAABHQBk3S8an755HQFsE3S8an75HQETKn752yLSHcusFAABHQBkeuFHrhR9HQFsDpeNT989HQETIUeuFHriHcuwFAABHQBkQYk3S8apHQFsC4UeuFHtHQETG6XjU/fSHcu0FAABHQBkDEm6XjVBHQFsCPXCj1wpHQETFocrAgxKHcu4FAABHQBjvnbItDlZHQFsBN0vGp/BHQETD1wo9cKSHcu8FAABHQBjqfvnbItFHQFsA9cKPXClHQETDU/fO2ReHcvAFAABHQBjmZmZmZmZHQFsAxJul41RHQETC8an7522HcvEFAABHQBjO2RaHKwJHQFr/jU/fO2RHQETAxJul41SHcvIFAABHQBi7ZFocrAhHQFr+hysCDEpHQES+2RaHKwKHcvMFAABHQBi3S8an755HQFr+RaHKwINHQES+dsi0OViHcvQFAABHQBizMzMzMzNHQFr+FHrhR65HQES+FHrhR66HcvUFAABHQBifvnbItDlHQFr9DlYEGJNHQES8KPXCj1yHcvYFAABHQBian752yLRHQFr8zMzMzM1HQES7xqfvnbKHcvcFAABHQBiIMSbpeNVHQFr71wo9cKRHQES5++dsi0SHcvgFAABHQBiDEm6XjVBHQFr7lYEGJN1HQES5mZmZmZqHcvkFAABHQBh++dsi0OVHQFr7ZFocrAhHQES5N0vGp/CHcvoFAABHQBhrhR64UexHQFr6XjU/fO5HQES3S8an756HcvsFAABHQBhnbItDlYFHQFr6HKwIMSdHQES26XjU/fSHcvwFAABHQBhjU/fO2RdHQFr564UeuFJHQES2hysCDEqHcv0FAABHQBhT987ZFodHQFr5FocrAgxHQES1HrhR64WHcv4FAABHQBhP3ztkWh1HQFr45WBBiTdHQES0m6XjU/iHcv8FAABHQBhLxqfvnbJHQFr4o9cKPXFHQES0OVgQYk6HcgAGAABHQBg4UeuFHrhHQFr3nbItDlZHQESybpeNT9+HcgEGAABHQBg0OVgQYk5HQFr3bItDlYFHQESyDEm6XjWHcgIGAABHQBgwIMSbpeNHQFr3O2RaHKxHQESxqfvnbIuHcgMGAABHQBgcrAgxJulHQFr2NT987ZFHQESvvnbItDmHcgQGAABHQBgYk3S8an9HQFr187ZFoctHQESvXCj1wo+HcgUGAABHQBgTdLxqfvpHQFr1wo9cKPZHQESu+dsi0OWHcgYGAABHQBgFHrhR64VHQFr07ZFocrBHQEStkWhysCGHcgcGAABHQBgBBiTdLxtHQFr0vGp++dtHQEStDlYEGJOHcggGAABHQBf87ZFocrBHQFr0euFHrhRHQESsrAgxJumHcgkGAABHQBfpeNT987ZHQFrzdLxqfvpHQESq4UeuFHuHcgoGAABHQBflYEGJN0xHQFrzQ5WBBiVHQESqfvnbItGHcgsGAABHQBfhR64UeuFHQFrzAgxJul5HQESqHKwIMSeHcgwGAABHQBfR64UeuFJHQFryPXCj1wpHQESotDlYEGKHcg0GAABHQBfN0vGp++dHQFrx++dsi0RHQESoMSbpeNWHcg4GAABHQBfJul41P31HQFrxysCDEm9HQESnztkWhyuHcg8GAABHQBfEm6XjU/hHQFrxiTdLxqhHQESnbItDlYGHchAGAABHQBe2RaHKwINHQFrwxJul41RHQESmBBiTdLyHchEGAABHQBeyLQ5WBBlHQFrwgxJul41HQESlocrAgxKHchIGAABHQBeuFHrhR65HQFrwUeuFHrhHQESlP3ztkWiHchMGAABHQBean752yLRHQFrvS8an755HQESjU/fO2ReHchQGAABHQBeWhysCDEpHQFrvCj1wo9dHQESi8an7522HchUGAABHQBeSbpeNT99HQFru2RaHKwJHQESij1wo9cOHchYGAABHQBeDEm6XjVBHQFruBBiTdLxHQEShJul41P6HchcGAABHQBd64UeuFHtHQFrtkWhysCFHQESgYk3S8aqHchgGAABHQBd2yLQ5WBBHQFrtYEGJN0xHQESf3ztkWh2HchkGAABHQBdnbItDlYFHQFrsi0OVgQZHQESedsi0OViHchoGAABHQBdfO2RaHKxHQFrsGJN0vGpHQESdsi0OVgSHchsGAABHQBdP3ztkWh1HQFrrU/fO2RdHQEScSbpeNT+HchwGAABHQBdHrhR64UhHQFrq0OVgQYlHQESbhR64UeyHch0GAABHQBdDlYEGJN1HQFrqn752yLRHQESbAgxJul6Hch4GAABHQBc0OVgQYk5HQFrpysCDEm9HQESZmZmZmZqHch8GAABHQBcsCDEm6XlHQFrpWBBiTdNHQESY1P3ztkaHciAGAABHQBcn752yLQ5HQFrpJul41P5HQESYcrAgxJyHciEGAABHQBcQYk3S8apHQFrn3ztkWh1HQESWJN0vGqCHciIGAABHQBcCDEm6XjVHQFrnGp++dslHQESUvGp++duHciMGAABHQBb1wo9cKPZHQFrmZmZmZmZHQESTlYEGJN2HciQGAABHQBbmZmZmZmZHQFrlkWhysCFHQESSLQ5WBBmHciUGAABHQBbeNT987ZFHQFrlHrhR64VHQESRaHKwIMWHciYGAABHQBbCj1wo9cNHQFrjpeNT989HQESOuFHrhR+HcicGAABHQBawIMSbpeNHQFrin752yLRHQESM7ZFocrCHcigGAABHQBan752yLQ5HQFriLQ5WBBlHQESMKPXCj1yHcikGAABHQBaUeuFHrhRHQFrhFocrAgxHQESKPXCj1wqHcioGAABHQBaQYk3S8apHQFrg5WBBiTdHQESJ2yLQ5WCHcisGAABHQBZ987ZFoctHQFrf3ztkWh1HQESIEGJN0vKHciwGAABHQBZ52yLQ5WBHQFrfnbItDlZHQESHrhR64UiHci0GAABHQBZ1wo9cKPZHQFrfbItDlYFHQESHS8an756Hci4GAABHQBZiTdLxqfxHQFreVgQYk3VHQESFgQYk3S+Hci8GAABHQBZeNT987ZFHQFreJN0vGqBHQESE/fO2RaKHcjAGAABHQBZaHKwIMSdHQFrd41P3ztlHQESEm6XjU/iHcjEGAABHQBZHrhR64UhHQFrc3S8an75HQESC0OVgQYmHcjIGAABHQBZDlYEGJN1HQFrcrAgxJulHQESCbpeNT9+HcjMGAABHQBYwIMSbpeNHQFrblYEGJN1HQESAo9cKPXGHcjQGAABHQBYsCDEm6XlHQFrbZFocrAhHQESAQYk3S8eHcjUGAABHQBYn752yLQ5HQFrbItDlYEJHQER/3ztkWh2HcjYGAABHQBYVgQYk3S9HQFraHKwIMSdHQER+FHrhR66HcjcGAABHQBYRaHKwIMVHQFrZ2yLQ5WBHQER9kWhysCGHcjgGAABHQBX987ZFoctHQFrY1P3ztkZHQER7xqfvnbKHcjkGAABHQBX52yLQ5WBHQFrYk3S8an9HQER7ZFocrAiHcjoGAABHQBX2yLQ5WBBHQFrYYk3S8apHQER7AgxJul6HcjsGAABHQBXjU/fO2RdHQFrXS8an755HQER5N0vGp/CHcjwGAABHQBXfO2RaHKxHQFrXGp++dslHQER41P3ztkaHcj0GAABHQBXbItDlYEJHQFrW2RaHKwJHQER4crAgxJyHcj4GAABHQBXItDlYEGJHQFrV0vGp++dHQER2p++dsi2Hcj8GAABHQBXEm6XjU/hHQFrVkWhysCFHQER2RaHKwIOHckAGAABHQBWyLQ5WBBlHQFrUi0OVgQZHQER0WhysCDGHckEGAABHQBWuFHrhR65HQFrUSbpeNT9HQERz987ZFoeHckIGAABHQBWp++dsi0RHQFrUGJN0vGpHQERzlYEGJN2HckMGAABHQBWWhysCDEpHQFrTAgxJul5HQERxysCDEm+HckQGAABHQBWSbpeNT99HQFrS0OVgQYlHQERxaHKwIMWHckUGAABHQBWOVgQYk3VHQFrSj1wo9cNHQERxBiTdLxuHckYGAABHQBWAAAAAAABHQFrRul41P31HQERvnbItDlaHckcGAABHQBV752yLQ5ZHQFrRiTdLxqhHQERvO2RaHKyHckgGAABHQBV3ztkWhytHQFrRR64UeuFHQERu2RaHKwKHckkGAABHQBVlYEGJN0xHQFrQQYk3S8dHQERtDlYEGJOHckoGAABHQBVhR64UeuFHQFrQAAAAAABHQERsrAgxJumHcksGAABHQBVdLxqfvndHQFrPztkWhytHQERsSbpeNT+HckwGAABHQBVKwIMSbphHQFrOuFHrhR9HQERqfvnbItGHck0GAABHQBVGp++dsi1HQFrOhysCDEpHQERp++dsi0SHck4GAABHQBVCj1wo9cNHQFrORaHKwINHQERpmZmZmZqHck8GAABHQBU0OVgQYk5HQFrNcKPXCj1HQERoMSbpeNWHclAGAABHQBUsCDEm6XlHQFrM/fO2RaJHQERnbItDlYGHclEGAABHQBUZmZmZmZpHQFrL987ZFodHQERlocrAgxKHclIGAABHQBUVgQYk3S9HQFrLtkWhysFHQERlP3ztkWiHclMGAABHQBURaHKwIMVHQFrLdLxqfvpHQERk3S8an76HclQGAABHQBT64UeuFHtHQFrKLQ5WBBlHQERisCDEm6aHclUGAABHQBT2yLQ5WBBHQFrJ++dsi0RHQERiTdLxqfyHclYGAABHQBTocrAgxJxHQFrJJul41P5HQERg5WBBiTeHclcGAABHQBTgQYk3S8dHQFrIo9cKPXFHQERgIMSbpeOHclgGAABHQBTFocrAgxJHQFrHKwIMSbpHQERdkWhysCGHclkGAABHQBSvGp++dslHQFrF41P3ztlHQERbZFocrAiHcloGAABHQBSrAgxJul5HQFrFocrAgxJHQERa4UeuFHuHclsGAABHQBSUeuFHrhRHQFrEWhysCDFHQERYtDlYEGKHclwGAABHQBR52yLQ5WBHQFrC0OVgQYlHQERWJN0vGqCHcl0GAABHQBRnbItDlYFHQFrBul41P31HQERUWhysCDGHcl4GAABHQBRjU/fO2RdHQFrBiTdLxqhHQERT987ZFoeHcl8GAABHQBRJul41P31HQFrAAAAAAABHQERRaHKwIMWHcmAGAABHQBQ3S8an755HQFq+6XjU/fRHQERPnbItDlaHcmEGAABHQBQzMzMzMzNHQFq+p++dsi1HQERPO2RaHKyHcmIGAABHQBQvGp++dslHQFq+dsi0OVhHQERO2RaHKwKHcmMGAABHQBQcrAgxJulHQFq9YEGJN0xHQERNDlYEGJOHcmQGAABHQBQYk3S8an9HQFq9LxqfvndHQERMrAgxJumHcmUGAABHQBQGJN0vGqBHQFq8GJN0vGpHQERK4UeuFHuHcmYGAABHQBQDEm6XjVBHQFq71wo9cKRHQERKfvnbItGHcmcGAABHQBP++dsi0OVHQFq7peNT989HQERKHKwIMSeHcmgGAABHQBPsi0OVgQZHQFq6j1wo9cNHQERIUeuFHriHcmkGAABHQBPocrAgxJxHQFq6TdLxqfxHQERH752yLQ6HcmoGAABHQBPkWhysCDFHQFq6HKwIMSdHQERHjU/fO2SHcmsGAABHQBPR64UeuFJHQFq5BiTdLxtHQERFwo9cKPaHcmwGAABHQBPO2RaHKwJHQFq4xJul41RHQERFYEGJN0yHcm0GAABHQBO8an752yNHQFq3rhR64UhHQERDlYEGJN2Hcm4GAABHQBO4UeuFHrhHQFq3fO2RaHNHQERDMzMzMzOHcm8GAABHQBO0OVgQYk5HQFq3O2RaHKxHQERC0OVgQYmHcnAGAABHQBOhysCDEm9HQFq2JN0vGqBHQERBBiTdLxuHcnEGAABHQBOdsi0OVgRHQFq187ZFoctHQERAo9cKPXGHcnIGAABHQBOan752yLRHQFq1si0OVgRHQERAQYk3S8eHcnMGAABHQBOMSbpeNT9HQFq03S8an75HQEQ+2RaHKwKHcnQGAABHQBOIMSbpeNVHQFq0m6XjU/hHQEQ+dsi0OViHcnUGAABHQBOEGJN0vGpHQFq0WhysCDFHQEQ+FHrhR66HcnYGAABHQBNxqfvnbItHQFqzU/fO2RdHQEQ8an752yOHcncGAABHQBNtkWhysCFHQFqzEm6XjVBHQEQ752yLQ5aHcngGAABHQBNqfvnbItFHQFqy0OVgQYlHQEQ7peNT98+HcnkGAABHQBNYEGJN0vJHQFqxysCDEm9HQEQ52yLQ5WCHcnoGAABHQBNT987ZFodHQFqxiTdLxqhHQEQ5eNT987aHcnsGAABHQBNCj1wo9cNHQFqwcrAgxJxHQEQ3rhR64UiHcnwGAABHQBM+dsi0OVhHQFqwMSbpeNVHQEQ3S8an756Hcn0GAABHQBM6XjU/fO5HQFqwAAAAAABHQEQ26XjU/fSHcn4GAABHQBMn752yLQ5HQFqu6XjU/fRHQEQ1HrhR64WHcn8GAABHQBMj1wo9cKRHQFqup++dsi1HQEQ0vGp++duHcoAGAABHQBMgxJul41RHQFqudsi0OVhHQEQ0WhysCDGHcoEGAABHQBMKPXCj1wpHQFqtHrhR64VHQEQyLQ5WBBmHcoIGAABHQBL41P3ztkZHQFqsCDEm6XlHQEQwYk3S8aqHcoMGAABHQBLwo9cKPXFHQFqrlYEGJN1HQEQvnbItDlaHcoQGAABHQBLbItDlYEJHQFqqPXCj1wpHQEQtcKPXCj2HcoUGAABHQBLXCj1wo9dHQFqp++dsi0RHQEQtDlYEGJOHcoYGAABHQBLBiTdLxqhHQFqotDlYEGJHQEQrAgxJul6HcocGAABHQBKn752yLQ5HQFqnGp++dslHQEQocrAgxJyHcogGAABHQBKRaHKwIMVHQFql0vGp++dHQEQmRaHKwIOHcokGAABHQBKOVgQYk3VHQFqlkWhysCFHQEQl41P3ztmHcooGAABHQBJ3ztkWhytHQFqkOVgQYk5HQEQjtkWhysGHcosGAABHQBJeNT987ZFHQFqisCDEm6ZHQEQhR64UeuGHcowGAABHQBJMzMzMzM1HQFqhmZmZmZpHQEQffO2RaHOHco0GAABHQBJItDlYEGJHQFqhWBBiTdNHQEQfGp++dsmHco4GAABHQBJFocrAgxJHQFqhFocrAgxHQEQeuFHrhR+Hco8GAABHQBIzMzMzMzNHQFqgAAAAAABHQEQc7ZFocrCHcpAGAABHQBIvGp++dslHQFqfztkWhytHQEQci0OVgQaHcpEGAABHQBIdsi0OVgRHQFqep++dsi1HQEQawIMSbpiHcpIGAABHQBIZmZmZmZpHQFqedsi0OVhHQEQaXjU/fO6HcpMGAABHQBIWhysCDEpHQFqeNT987ZFHQEQZ++dsi0SHcpQGAABHQBIEGJN0vGpHQFqdHrhR64VHQEQYUeuFHriHcpUGAABHQBIBBiTdLxtHQFqc3S8an75HQEQX752yLQ6HcpYGAABHQBH87ZFocrBHQFqcrAgxJulHQEQXjU/fO2SHcpcGAABHQBHrhR64UexHQFqbhR64UexHQEQVwo9cKPaHcpgGAABHQBHnbItDlYFHQFqbU/fO2RdHQEQVYEGJN0yHcpkGAABHQBHWBBiTdLxHQFqaPXCj1wpHQEQTlYEGJN2HcpoGAABHQBHR64UeuFJHQFqZ++dsi0RHQEQTMzMzMzOHcpsGAABHQBHN0vGp++dHQFqZul41P31HQEQS8an7522HcpwGAABHQBG8an752yNHQFqYo9cKPXFHQEQRJul41P6Hcp0GAABHQBG4UeuFHrhHQFqYYk3S8apHQEQQxJul41SHcp4GAABHQBGm6XjU/fRHQFqXS8an755HQEQO+dsi0OWHcp8GAABHQBGi0OVgQYlHQFqXCj1wo9dHQEQOl41P3zuHcqAGAABHQBGfvnbItDlHQFqW2RaHKwJHQEQONT987ZGHcqEGAABHQBGOVgQYk3VHQFqVsi0OVgRHQEQMi0OVgQaHcqIGAABHQBGKPXCj1wpHQFqVgQYk3S9HQEQMKPXCj1yHcqMGAABHQBGGJN0vGqBHQFqVP3ztkWhHQEQLxqfvnbKHcqQGAABHQBF0vGp++dtHQFqUKPXCj1xHQEQJ++dsi0SHcqUGAABHQBFwo9cKPXFHQFqT52yLQ5ZHQEQJmZmZmZqHcqYGAABHQBFfO2RaHKxHQFqS0OVgQYlHQEQH752yLQ6HcqcGAABHQBFbItDlYEJHQFqSj1wo9cNHQEQHjU/fO2SHcqgGAABHQBFYEGJN0vJHQFqSTdLxqfxHQEQHKwIMSbqHcqkGAABHQBFGp++dsi1HQFqRN0vGp/BHQEQFYEGJN0yHcqoGAABHQBFCj1wo9cNHQFqQ9cKPXClHQEQE/fO2RaKHcqsGAABHQBE+dsi0OVhHQFqQtDlYEGJHQEQEm6XjU/iHcqwGAABHQBEtDlYEGJNHQFqPnbItDlZHQEQC0OVgQYmHcq0GAABHQBEp++dsi0RHQFqPXCj1wo9HQEQCbpeNT9+Hcq4GAABHQBEYk3S8an9HQFqORaHKwINHQEQAxJul41SHcq8GAABHQBEUeuFHrhRHQFqOBBiTdLxHQEQAYk3S8aqHcrAGAABHQBEQYk3S8apHQFqN0vGp++dHQEQAAAAAAACHcrEGAABHQBD752yLQ5ZHQFqMan752yNHQEP90vGp++eHcrIGAABHQBDqfvnbItFHQFqLU/fO2RdHQEP8KPXCj1yHcrMGAABHQBDiTdLxqfxHQFqK4UeuFHtHQEP7ZFocrAiHcrQGAABHQBDN0vGp++dHQFqJiTdLxqhHQEP5WBBiTdOHcrUGAABHQBDJul41P31HQFqJR64UeuFHQEP49cKPXCmHcrYGAABHQBC1P3ztkWhHQFqH752yLQ5HQEP2yLQ5WBCHcrcGAABHQBCbpeNT989HQFqGVgQYk3VHQEP0WhysCDGHcrgGAABHQBCHKwIMSbpHQFqE7ZFocrBHQEPyLQ5WBBmHcrkGAABHQBCDEm6XjVBHQFqEvGp++dtHQEPxysCDEm+HcroGAABHQBBxqfvnbItHQFqDlYEGJN1HQEPwIMSbpeOHcrsGAABHQBBul41P3ztHQFqDU/fO2RdHQEPvvnbItDmHcrwGAABHQBBWBBiTdLxHQFqBul41P31HQEPtT987ZFqHcr0GAABHQBBEm6XjU/hHQFqAo9cKPXFHQEPrhR64UeyHcr4GAABHQBBAgxJul41HQFqAYk3S8apHQEPrItDlYEKHcr8GAABHQBA9cKPXCj1HQFqAIMSbpeNHQEPqwIMSbpiHcsAGAABHQBAsCDEm6XlHQFp/Cj1wo9dHQEPpFocrAgyHcsEGAABHQBAn752yLQ5HQFp+yLQ5WBBHQEPotDlYEGKHcsIGAABHQBAPXCj1wo9HQFp9LxqfvndHQEPmRaHKwIOHcsMGAABHQA/987ZFoctHQFp8CDEm6XlHQEPkeuFHrhSHcsQGAABHQA/1wo9cKPZHQFp7xqfvnbJHQEPkGJN0vGqHcsUGAABHQA/vnbItDlZHQFp7lYEGJN1HQEPjtkWhysGHcsYGAABHQA/MzMzMzM1HQFp6bpeNT99HQEPiDEm6XjWHcscGAABHQA/Em6XjU/hHQFp6LQ5WBBlHQEPhqfvnbIuHcsgGAABHQA+j1wo9cKRHQFp5FocrAgxHQEPgAAAAAACHcskGAABHQA+bpeNT989HQFp41P3ztkZHQEPfnbItDlaHcsoGAABHQA+VgQYk3S9HQFp4k3S8an9HQEPfO2RaHKyHcssGAABHQA9ysCDEm6ZHQFp3fO2RaHNHQEPdcKPXCj2HcswGAABHQA9qfvnbItFHQFp3O2RaHKxHQEPdDlYEGJOHcs0GAABHQA9kWhysCDFHQFp2+dsi0OVHQEPcrAgxJumHcs4GAABHQA9BiTdLxqhHQFp10vGp++dHQEPbAgxJul6Hcs8GAABHQA87ZFocrAhHQFp1ocrAgxJHQEPan752yLSHctAGAABHQA8Yk3S8an9HQFp0euFHrhRHQEPY9cKPXCmHctEGAABHQA8SbpeNT99HQFp0OVgQYk5HQEPYk3S8an+HctIGAABHQA8KPXCj1wpHQFpz987ZFodHQEPYMSbpeNWHctMGAABHQA7nbItDlYFHQFpy4UeuFHtHQEPWhysCDEqHctQGAABHQA7hR64UeuFHQFpyn752yLRHQEPWJN0vGqCHctUGAABHQA64UeuFHrhHQFpxN0vGp/BHQEPT987ZFoeHctYGAABHQA6wIMSbpeNHQFpw9cKPXClHQEPTtkWhysGHctcGAABHQA6PXCj1wo9HQFpv3ztkWh1HQEPR64UeuFKHctgGAABHQA6HKwIMSbpHQFpvnbItDlZHQEPRiTdLxqiHctkGAABHQA6BBiTdLxtHQFpvXCj1wo9HQEPRJul41P6HctoGAABHQA5eNT987ZFHQFpuNT987ZFHQEPPfO2RaHOHctsGAABHQA5YEGJN0vJHQFpt87ZFoctHQEPPGp++dsmHctwGAABHQA41P3ztkWhHQFps3S8an75HQEPNcKPXCj2Hct0GAABHQA4vGp++dslHQFpsm6XjU/hHQEPNDlYEGJOHct4GAABHQA4m6XjU/fRHQFpsWhysCDFHQEPMrAgxJumHct8GAABHQA4GJN0vGqBHQFprMzMzMzNHQEPLAgxJul6HcuAGAABHQA3987ZFoctHQFpq8an7521HQEPKn752yLSHcuEGAABHQA3O2RaHKwJHQFppWBBiTdNHQEPIMSbpeNWHcuIGAABHQA2uFHrhR65HQFpoMSbpeNVHQEPGhysCDEqHcuMGAABHQA2fvnbItDlHQFpnrhR64UhHQEPFwo9cKPaHcuQGAABHQA12yLQ5WBBHQFpmVgQYk3VHQEPDtkWhysGHcuUGAABHQA1ul41P3ztHQFpmFHrhR65HQEPDU/fO2ReHcuYGAABHQA1HrhR64UhHQFpkrAgxJulHQEPBR64UeuGHcucGAABHQA0WhysCDEpHQFpjEm6XjVBHQEO+2RaHKwKHcugGAABHQAz1wo9cKPZHQFph64UeuFJHQEO9DlYEGJOHcukGAABHQAzvnbItDlZHQFphqfvnbItHQEO8zMzMzM2HcuoGAABHQAznbItDlYFHQFphaHKwIMVHQEO8an752yOHcusGAABHQAzGp++dsi1HQFpgQYk3S8dHQEO6n752yLSHcuwGAABHQAzAgxJul41HQFpgAAAAAABHQEO6XjU/fO6Hcu0GAABHQAyPXCj1wo9HQFpeVgQYk3VHQEO3752yLQ6Hcu4GAABHQAxul41P3ztHQFpdLxqfvndHQEO2JN0vGqCHcu8GAABHQAxocrAgxJxHQFpc/fO2RaJHQEO141P3ztmHcvAGAABHQAw/fO2RaHNHQFpblYEGJN1HQEOztkWhysGHcvEGAABHQAw5WBBiTdNHQFpbU/fO2RdHQEOzdLxqfvqHcvIGAABHQAwYk3S8an9HQFpaLQ5WBBlHQEOxysCDEm+HcvMGAABHQAwQYk3S8apHQFpZ64UeuFJHQEOxaHKwIMWHcvQGAABHQAwKPXCj1wpHQFpZqfvnbItHQEOxBiTdLxuHcvUGAABHQAvpeNT987ZHQFpYgxJul41HQEOvXCj1wo+HcvYGAABHQAvjU/fO2RdHQFpYQYk3S8dHQEOu+dsi0OWHcvcGAABHQAu6XjU/fO5HQFpW2RaHKwJHQEOs7ZFocrCHcvgGAABHQAu0OVgQYk5HQFpWl41P3ztHQEOsi0OVgQaHcvkGAABHQAuTdLxqfvpHQFpVcKPXCj1HQEOq4UeuFHuHcvoGAABHQAuLQ5WBBiVHQFpVLxqfvndHQEOqfvnbItGHcvsGAABHQAuFHrhR64VHQFpU/fO2RaJHQEOqHKwIMSeHcvwGAABHQAtkWhysCDFHQFpTxqfvnbJHQEOocrAgxJyHcv0GAABHQAtcKPXCj1xHQFpTlYEGJN1HQEOoEGJN0vKHcv4GAABHQAs1P3ztkWhHQFpSLQ5WBBlHQEOmBBiTdLyHcv8GAABHQAsvGp++dslHQFpR64UeuFJHQEOlocrAgxKHcgAHAABHQAsOVgQYk3VHQFpQxJul41RHQEOj987ZFoeHcgEHAABHQAsGJN0vGqBHQFpQgxJul41HQEOjlYEGJN2HcgIHAABHQAsAAAAAAABHQFpQQYk3S8dHQEOjU/fO2ReHcgMHAABHQArfO2RaHKxHQFpPGp++dslHQEOhqfvnbIuHcgQHAABHQArZFocrAgxHQFpO2RaHKwJHQEOhR64UeuGHcgUHAABHQAq4UeuFHrhHQFpNsi0OVgRHQEOfnbItDlaHcgYHAABHQAqwIMSbpeNHQFpNcKPXCj1HQEOfO2RaHKyHcgcHAABHQAqp++dsi0RHQFpNLxqfvndHQEOe2RaHKwKHcggHAABHQAqJN0vGp/BHQFpMCDEm6XlHQEOdLxqfvneHcgkHAABHQAqDEm6XjVBHQFpLxqfvnbJHQEOczMzMzM2HcgoHAABHQApT987ZFodHQFpKDEm6XjVHQEOaXjU/fO6HcgsHAABHQAo1P3ztkWhHQFpI5WBBiTdHQEOYtDlYEGKHcgwHAABHQAotDlYEGJNHQFpIo9cKPXFHQEOYUeuFHriHcg0HAABHQAom6XjU/fRHQFpIYk3S8apHQEOYEGJN0vKHcg4HAABHQAoAAAAAAABHQFpG+dsi0OVHQEOWBBiTdLyHcg8HAABHQAnQ5WBBiTdHQFpFT987ZFpHQEOTlYEGJN2HchAHAABHQAmp++dsi0RHQFpD52yLQ5ZHQEORiTdLxqiHchEHAABHQAmj1wo9cKRHQFpDpeNT989HQEORJul41P6HchIHAABHQAmDEm6XjVBHQFpCfvnbItFHQEOPfO2RaHOHchMHAABHQAl87ZFocrBHQFpCPXCj1wpHQEOPO2RaHKyHchQHAABHQAlP3ztkWh1HQFpAgxJul41HQEOMzMzMzM2HchUHAABHQAko9cKPXClHQFo/Gp++dslHQEOKwIMSbpiHchYHAABHQAkgxJul41RHQFo+2RaHKwJHQEOKfvnbItGHchcHAABHQAkCDEm6XjVHQFo9si0OVgRHQEOI1P3ztkaHchgHAABHQAj752yLQ5ZHQFo9cKPXCj1HQEOIcrAgxJyHchkHAABHQAjMzMzMzM1HQFo7tkWhysFHQEOGBBiTdLyHchoHAABHQAiuFHrhR65HQFo6j1wo9cNHQEOEWhysCDGHchsHAABHQAin752yLQ5HQFo6TdLxqfxHQEOEGJN0vGqHchwHAABHQAifvnbItDlHQFo6DEm6XjVHQEODtkWhysGHch0HAABHQAiBBiTdLxtHQFo45WBBiTdHQEOCDEm6XjWHch4HAABHQAh64UeuFHtHQFo4o9cKPXFHQEOBqfvnbIuHch8HAABHQAhT987ZFodHQFo3KwIMSbpHQEN/nbItDlaHciAHAABHQAhN0vGp++dHQFo26XjU/fRHQEN/XCj1wo+HciEHAABHQAgtDlYEGJNHQFo1wo9cKPZHQEN9si0OVgSHciIHAABHQAgm6XjU/fRHQFo1gQYk3S9HQEN9T987ZFqHciMHAABHQAggxJul41RHQFo1P3ztkWhHQEN87ZFocrCHciQHAABHQAgAAAAAAABHQFo0CDEm6XlHQEN7Q5WBBiWHciUHAABHQAf52yLQ5WBHQFozxqfvnbJHQEN7AgxJul6HciYHAABHQAfbItDlYEJHQFoyn752yLRHQEN5WBBiTdOHcicHAABHQAfS8an7521HQFoyXjU/fO5HQEN49cKPXCmHcigHAABHQAfMzMzMzM1HQFoyHKwIMSdHQEN4k3S8an+HcikHAABHQAeuFHrhR65HQFow5WBBiTdHQEN26XjU/fSHcioHAABHQAel41P3ztlHQFowo9cKPXFHQEN2hysCDEqHcisHAABHQAeBBiTdLxtHQFovO2RaHKxHQEN0m6XjU/iHciwHAABHQAd64UeuFHtHQFou+dsi0OVHQEN0OVgQYk6Hci0HAABHQAdaHKwIMSdHQFotwo9cKPZHQENyj1wo9cOHci4HAABHQAdT987ZFodHQFotgQYk3S9HQENyLQ5WBBmHci8HAABHQAdN0vGp++dHQFotP3ztkWhHQENx64UeuFKHcjAHAABHQAcvGp++dslHQFosGJN0vGpHQENwQYk3S8eHcjEHAABHQAcm6XjU/fRHQFor1wo9cKRHQENv3ztkWh2HcjIHAABHQAcCDEm6XjVHQFoqXjU/fO5HQENt87ZFocuHcjMHAABHQAb752yLQ5ZHQFoqHKwIMSdHQENtkWhysCGHcjQHAABHQAbdLxqfvndHQFoo5WBBiTdHQENr52yLQ5aHcjUHAABHQAbU/fO2RaJHQFooo9cKPXFHQENrhR64UeyHcjYHAABHQAawIMSbpeNHQFonO2RaHKxHQENpmZmZmZqHcjcHAABHQAap++dsi0RHQFom+dsi0OVHQENpN0vGp/CHcjgHAABHQAaDEm6XjVBHQFolgQYk3S9HQENnKwIMSbqHcjkHAABHQAZ87ZFocrBHQFolP3ztkWhHQENm6XjU/fSHcjoHAABHQAZeNT987ZFHQFokCDEm6XlHQENlP3ztkWiHcjsHAABHQAZYEGJN0vJHQFojxqfvnbJHQENk3S8an76HcjwHAABHQAYrAgxJul5HQFoiDEm6XjVHQENij1wo9cOHcj0HAABHQAYAAAAAAABHQFogUeuFHrhHQENgQYk3S8eHcj4HAABHQAXbItDlYEJHQFoe6XjU/fRHQENeNT987ZGHcj8HAABHQAW2RaHKwINHQFodcKPXCj1HQENcSbpeNT+HckAHAABHQAWuFHrhR65HQFodLxqfvndHQENb52yLQ5aHckEHAABHQAWDEm6XjVBHQFobdLxqfvpHQENZmZmZmZqHckIHAABHQAVkWhysCDFHQFoaPXCj1wpHQENX752yLQ6HckMHAABHQAVeNT987ZFHQFoZ++dsi0RHQENXjU/fO2SHckQHAABHQAU5WBBiTdNHQFoYgxJul41HQENVocrAgxKHckUHAABHQAUzMzMzMzNHQFoYQYk3S8dHQENVP3ztkWiHckYHAABHQAUIMSbpeNVHQFoWhysCDEpHQENS8an7522HckcHAABHQATpeNT987ZHQFoVT987ZFpHQENRaHKwIMWHckgHAABHQATjU/fO2RdHQFoVDlYEGJNHQENRBiTdLxuHckkHAABHQAS+dsi0OVhHQFoTlYEGJN1HQENO+dsi0OWHckoHAABHQAS4UeuFHrhHQFoTU/fO2RdHQENOuFHrhR+HcksHAABHQASZmZmZmZpHQFoSHKwIMSdHQENNDlYEGJOHckwHAABHQASTdLxqfvpHQFoR2yLQ5WBHQENMrAgxJumHck0HAABHQASNT987ZFpHQFoRmZmZmZpHQENMan752yOHck4HAABHQARul41P3ztHQFoQYk3S8apHQENKwIMSbpiHck8HAABHQARocrAgxJxHQFoQIMSbpeNHQENKXjU/fO6HclAHAABHQARDlYEGJN1HQFoOp++dsi1HQENIcrAgxJyHclEHAABHQAQ9cKPXCj1HQFoOZmZmZmZHQENIEGJN0vKHclIHAABHQAQeuFHrhR9HQFoNLxqfvndHQENGhysCDEqHclMHAABHQAQYk3S8an9HQFoM7ZFocrBHQENGJN0vGqCHclQHAABHQAQSbpeNT99HQFoMrAgxJulHQENFwo9cKPaHclUHAABHQAPztkWhysFHQFoLdLxqfvpHQENEOVgQYk6HclYHAABHQAPtkWhysCFHQFoLItDlYEJHQEND1wo9cKSHclcHAABHQAPKwIMSbphHQFoJqfvnbItHQENB64UeuFKHclgHAABHQAPEm6XjU/hHQFoJaHKwIMVHQENBiTdLxqiHclkHAABHQAOl41P3ztlHQFoIMSbpeNVHQENAAAAAAACHcloHAABHQAOfvnbItDlHQFoH752yLQ5HQEM/nbItDlaHclsHAABHQAN64UeuFHtHQFoGdsi0OVhHQEM9si0OVgSHclwHAABHQAN0vGp++dtHQFoGNT987ZFHQEM9T987ZFqHcl0HAABHQANYEGJN0vJHQFoE/fO2RaJHQEM7xqfvnbKHcl4HAABHQANR64UeuFJHQFoErAgxJulHQEM7ZFocrAiHcl8HAABHQAMtDlYEGJNHQFoDMzMzMzNHQEM5eNT987aHcmAHAABHQAMm6XjU/fRHQFoC8an7521HQEM5FocrAgyHcmEHAABHQAL752yLQ5ZHQFoBN0vGp/BHQEM2yLQ5WBCHcmIHAABHQALfO2RaHKxHQFoAAAAAAABHQEM1P3ztkWiHcmMHAABHQALZFocrAgxHQFn/rhR64UhHQEM03S8an76HcmQHAABHQAKuFHrhR65HQFn987ZFoctHQEMyj1wo9cOHcmUHAABHQAKFHrhR64VHQFn8KPXCj1xHQEMwQYk3S8eHcmYHAABHQAJiTdLxqfxHQFn6sCDEm6ZHQEMuVgQYk3WHcmcHAABHQAI9cKPXCj1HQFn5N0vGp/BHQEMsan752yOHcmgHAABHQAI3S8an755HQFn49cKPXClHQEMsKPXCj1yHcmkHAABHQAIOVgQYk3VHQFn3KwIMSbpHQEMp2yLQ5WCHcmoHAABHQAHrhR64UexHQFn1si0OVgRHQEMn752yLQ6HcmsHAABHQAHGp++dsi1HQFn0KPXCj1xHQEMmBBiTdLyHcmwHAABHQAHAgxJul41HQFnz52yLQ5ZHQEMlocrAgxKHcm0HAABHQAGdsi0OVgRHQFnyXjU/fO5HQEMjtkWhysGHcm4HAABHQAGXjU/fO2RHQFnyHKwIMSdHQEMjU/fO2ReHcm8HAABHQAF64UeuFHtHQFnw5WBBiTdHQEMhysCDEm+HcnAHAABHQAFR64UeuFJHQFnvGp++dslHQEMffO2RaHOHcnEHAABHQAFLxqfvnbJHQFnu2RaHKwJHQEMfO2RaHKyHcnIHAABHQAEo9cKPXClHQFntT987ZFpHQEMdT987ZFqHcnMHAABHQAEi0OVgQYlHQFntDlYEGJNHQEMc7ZFocrCHcnQHAABHQAEGJN0vGqBHQFnr1wo9cKRHQEMbZFocrAiHcnUHAABHQAEAAAAAAABHQFnrhR64UexHQEMbAgxJul6HcnYHAABHQADdLxqfvndHQFnqDEm6XjVHQEMZFocrAgyHcncHAABHQAC0OVgQYk5HQFnoQYk3S8dHQEMW6XjU/fSHcngHAABHQACuFHrhR65HQFnoAAAAAABHQEMWhysCDEqHcnkHAABHQACRaHKwIMVHQFnmuFHrhR9HQEMU/fO2RaKHcnoHAABHQACLQ5WBBiVHQFnmdsi0OVhHQEMUm6XjU/iHcnsHAABHQABocrAgxJxHQFnk7ZFocrBHQEMSsCDEm6aHcnwHAABHQABiTdLxqfxHQFnkrAgxJulHQEMSTdLxqfyHcn0HAABHQABHrhR64UhHQFnjdLxqfvpHQEMQxJul41SHcn4HAABHQABBiTdLxqhHQFnjItDlYEJHQEMQgxJul42Hcn8HAABHQAAeuFHrhR9HQFnhqfvnbItHQEMOl41P3zuHcoAHAABHQAAYk3S8an9HQFnhWBBiTdNHQEMONT987ZGHcoEHAABHP//rhR64UexHQFnf3ztkWh1HQEMMSbpeNT+HcoIHAABHP//fO2RaHKxHQFnfjU/fO2RHQEMMCDEm6XmHcoMHAABHP/+p++dsi0RHQFneVgQYk3VHQEMKfvnbItGHcoQHAABHP/+dsi0OVgRHQFneFHrhR65HQEMKHKwIMSeHcoUHAABHP/9LxqfvnbJHQFncOVgQYk5HQEMHztkWhyuHcoYHAABHP/8GJN0vGqBHQFnawIMSbphHQEMGBBiTdLyHcocHAABHP/752yLQ5WBHQFnabpeNT99HQEMFocrAgxKHcogHAABHP/64UeuFHrhHQFnY9cKPXClHQEMDtkWhysGHcokHAABHP/5mZmZmZmZHQFnXGp++dslHQEMBiTdLxqiHcooHAABHP/4Yk3S8an9HQFnVT987ZFpHQEL/XCj1wo+HcosHAABHP/3S8an7521HQFnTxqfvnbJHQEL9cKPXCj2HcowHAABHP/2RaHKwIMVHQFnSPXCj1wpHQEL7hR64UeyHco0HAABHP/2FHrhR64VHQFnR++dsi0RHQEL7Q5WBBiWHco4HAABHP/z1wo9cKPZHQFnOp++dsi1HQEL3KwIMSbqHco8HAABHP/ywIMSbpeNHQFnNDlYEGJNHQEL1P3ztkWiHcpAHAABHP/yj1wo9cKRHQFnMzMzMzM1HQEL03S8an76HcpEHAABHP/xiTdLxqfxHQFnLQ5WBBiVHQELzEm6XjVCHcpIHAABHP/wgxJul41RHQFnJul41P31HQELxJul41P6HcpMHAABHP/wUeuFHrhRHQFnJaHKwIMVHQELwxJul41SHcpQHAABHP/vS8an7521HQFnH3ztkWh1HQELu+dsi0OWHcpUHAABHP/uFHrhR64VHQFnGFHrhR65HQELszMzMzM2HcpYHAABHP/tDlYEGJN1HQFnEi0OVgQZHQELq4UeuFHuHcpcHAABHP/s3S8an755HQFnEOVgQYk5HQELqfvnbItGHcpgHAABHP/r1wo9cKPZHQFnCsCDEm6ZHQELotDlYEGKHcpkHAABHP/qn752yLQ5HQFnA1P3ztkZHQELmhysCDEqHcpoHAABHP/pmZmZmZmZHQFm/S8an755HQELkm6XjU/iHcpsHAABHP/paHKwIMSdHQFm/Cj1wo9dHQELkWhysCDGHcpwHAABHP/oYk3S8an9HQFm9gQYk3S9HQELibpeNT9+Hcp0HAABHP/nXCj1wo9dHQFm752yLQ5ZHQELgo9cKPXGHcp4HAABHP/nKwIMSbphHQFm7peNT989HQELgQYk3S8eHcp8HAABHP/mNT987ZFpHQFm6HKwIMSdHQELedsi0OViHcqAHAABHP/mBBiTdLxtHQFm5ysCDEm9HQELeFHrhR66HcqEHAABHQC664UeuFHtHQFz90vGp++dHQEWQo9cKPXGHcqIHAABHQC6vGp++dslHQFz8KPXCj1xHQEWONT987ZGHcqMHAABHQC6tDlYEGJNHQFz752yLQ5ZHQEWN0vGp++eHcqQHAABHQC6lYEGJN0xHQFz6wIMSbphHQEWMKPXCj1yHcqUHAABHQC6jU/fO2RdHQFz6fvnbItFHQEWLxqfvnbKHcqYHAABHQC6hysCDEm9HQFz6PXCj1wpHQEWLZFocrAiHcqcHAABHQC6ZmZmZmZpHQFz5Jul41P5HQEWJul41P32HcqgHAABHQC6N0vGp++dHQFz3bItDlYFHQEWHS8an756HcqkHAABHQC6LxqfvnbJHQFz3KwIMSbpHQEWG6XjU/fSHcqoHAABHQC6EGJN0vGpHQFz2FHrhR65HQEWFYEGJN0yHcqsHAABHQC54UeuFHrhHQFz0an752yNHQEWC8an7522HcqwHAABHQC52RaHKwINHQFz0GJN0vGpHQEWCj1wo9cOHcq0HAABHQC5ul41P3ztHQFzzAgxJul5HQEWA5WBBiTeHcq4HAABHQC5si0OVgQZHQFzywIMSbphHQEWAgxJul42Hcq8HAABHQC5rAgxJul5HQFzybpeNT99HQEWAIMSbpeOHcrAHAABHQC5o9cKPXClHQFzyLQ5WBBlHQEV/vnbItDmHcrEHAABHQC5i0OVgQYlHQFzxWBBiTdNHQEV+dsi0OViHcrIHAABHQC5XCj1wo9dHQFzvrhR64UhHQEV8CDEm6XmHcrMHAABHQC5VgQYk3S9HQFzvXCj1wo9HQEV7peNT98+HcrQHAABHQC5TdLxqfvpHQFzvGp++dslHQEV7Q5WBBiWHcrUHAABHQC5NT987ZFpHQFzuRaHKwINHQEV6HKwIMSeHcrYHAABHQC5HrhR64UhHQFztcKPXCj1HQEV49cKPXCmHcrcHAABHQC5BiTdLxqhHQFzsm6XjU/hHQEV3rhR64UiHcrgHAABHQC5AAAAAAABHQFzsSbpeNT9HQEV3S8an756HcrkHAABHQC4987ZFoctHQFzsCDEm6XlHQEV26XjU/fSHcroHAABHQC42RaHKwINHQFzq8an7521HQEV1P3ztkWiHcrsHAABHQC40OVgQYk5HQFzqn752yLRHQEV03S8an76HcrwHAABHQC4ysCDEm6ZHQFzqXjU/fO5HQEV0euFHrhSHcr0HAABHQC4si0OVgQZHQFzpiTdLxqhHQEVzMzMzMzOHcr4HAABHQC4gxJul41RHQFzn3ztkWh1HQEVwxJul41SHcr8HAABHQC4euFHrhR9HQFznjU/fO2RHQEVwYk3S8aqHcsAHAABHQC4dLxqfvndHQFznS8an755HQEVwAAAAAACHcsEHAABHQC4U/fO2RaJHQFzmNT987ZFHQEVudsi0OViHcsIHAABHQC4RaHKwIMVHQFzlocrAgxJHQEVtsi0OVgSHcsMHAABHQC4Jul41P31HQFzkeuFHrhRHQEVsCDEm6XmHcsQHAABHQC4HrhR64UhHQFzkOVgQYk5HQEVrpeNT98+HcsUHAABHQC4AAAAAAABHQFzjEm6XjVBHQEVp++dsi0SHcsYHAABHQC3987ZFoctHQFzi0OVgQYlHQEVpmZmZmZqHcscHAABHQC3752yLQ5ZHQFzij1wo9cNHQEVpN0vGp/CHcsgHAABHQC3yLQ5WBBlHQFzhJul41P5HQEVnKwIMSbqHcskHAABHQC3qfvnbItFHQFzgAAAAAABHQEVlgQYk3S+HcsoHAABHQC3ocrAgxJxHQFzfvnbItDlHQEVlHrhR64WHcssHAABHQC3m6XjU/fRHQFzffO2RaHNHQEVkvGp++duHcswHAABHQC3euFHrhR9HQFzeVgQYk3VHQEVjMzMzMzOHcs0HAABHQC3bItDlYEJHQFzd0vGp++dHQEVibpeNT9+Hcs4HAABHQC3TdLxqfvpHQFzcrAgxJulHQEVgxJul41SHcs8HAABHQC3RaHKwIMVHQFzcan752yNHQEVgYk3S8aqHctAHAABHQC3Jul41P31HQFzbQ5WBBiVHQEVeuFHrhR+HctEHAABHQC3HrhR64UhHQFzbAgxJul5HQEVeVgQYk3WHctIHAABHQC3GJN0vGqBHQFzawIMSbphHQEVd87ZFocuHctMHAABlKEdALbxqfvnbI0dAXNlYEGJN00dARVvnbItDlody1AcAAEdALbKwIMSbpkdAXNfvnbItDkdARVn752yLRIdy1QcAAEdALbCj1wo9cUdAXNedsi0OVkdARVmZmZmZmody1gcAAEdALa0OVgQYk0dAXNcan752yUdARVjU/fO2Rody1wcAAEdALaj1wo9cKUdAXNaHKwIMSkdARVfvnbItDody2AcAAEdALaVgQYk3TEdAXNXztkWhy0dARVcrAgxJuody2QcAAEdALZ0vGp++d0dAXNTMzMzMzUdARVWBBiTdL4dy2gcAAEdALZul41P3z0dAXNSLQ5WBBkdARVUeuFHrhYdy2wcAAEdALZgQYk3S8kdAXNQIMSbpeUdARVRaHKwIMYdy3AcAAEdALZN0vGp++kdAXNNkWhysCEdARVOVgQYk3Ydy3QcAAEdALZHrhR64UkdAXNMi0OVgQkdARVMzMzMzM4dy3gcAAEdALY/fO2RaHUdAXNLhR64Ue0dARVLQ5WBBiYdy3wcAAEdALY5WBBiTdUdAXNKfvnbItEdARVJul41P34dy4AcAAEdALYgxJul41UdAXNG6XjU/fUdARVEm6XjU/ody4QcAAEdALYKPXCj1w0dAXND1wo9cKUdARVAAAAAAAIdy4gcAAEdALXxqfvnbI0dAXNAQYk3S8kdARU64UeuFH4dy4wcAAEdALXrhR64Ue0dAXM/O2RaHK0dARU5WBBiTdYdy5AcAAEdALXjU/fO2RkdAXM987ZFoc0dARU3ztkWhy4dy5QcAAEdALXdLxqfvnkdAXM87ZFocrEdARU2RaHKwIYdy5gcAAEdALXMzMzMzM0dAXM6n752yLUdARUysCDEm6Ydy5wcAAEdALW8an752yUdAXM4UeuFHrkdARUvnbItDlody6AcAAEdALW2RaHKwIUdAXM3S8an750dARUuFHrhR7Idy6QcAAEdALWdsi0OVgUdAXMztkWhysEdARUpeNT987ody6gcAAEdALWVgQYk3TEdAXMysCDEm6UdARUn752yLRIdy6wcAAEdALWHKwIMSb0dAXMwo9cKPXEdARUk3S8an8Idy7AcAAEdALVwo9cKPXEdAXMtDlYEGJUdARUfvnbItDody7QcAAEdALVocrAgxJ0dAXMsCDEm6XkdARUeNT987ZIdy7gcAAEdALViTdLxqf0dAXMrAgxJumEdARUcrAgxJuody7wcAAEdALUzMzMzMzUdAXMkWhysCDEdARUS8an7524dy8AcAAEdALUan752yLUdAXMgxJul41UdARUOVgQYk3Ydy8QcAAEdALUUeuFHrhUdAXMfvnbItDkdARUMzMzMzM4dy8gcAAEdALUMSbpeNUEdAXMedsi0OVkdARULQ5WBBiYdy8wcAAEdALT1wo9cKPUdAXMbItDlYEEdARUGJN0vGqIdy9AcAAEdALTfO2RaHK0dAXMXztkWhy0dARUBiTdLxqody9QcAAEdALTGp++dsi0dAXMUOVgQYk0dART8an752yYdy9gcAAEdALTAgxJul40dAXMTMzMzMzUdART64UeuFH4dy9wcAAEdALS4UeuFHrkdAXMSLQ5WBBkdART5WBBiTdYdy+AcAAEdALSZmZmZmZkdAXMNkWhysCEdARTzMzMzMzYdy+QcAAEdALSRaHKwIMUdAXMMi0OVgQkdARTxqfvnbI4dy+gcAAEdALSLQ5WBBiUdAXMLhR64Ue0dARTwIMSbpeYdy+wcAAEdALReNT987ZEdAXMEm6XjU/kdARTmZmZmZmody/AcAAEdALRFocrAgxUdAXMBBiTdLx0dARThR64UeuIdy/QcAAEdALQ9cKPXCj0dAXMAAAAAAAEdARTfvnbItDody/gcAAEdALQ3S8an750dAXL++dsi0OUdARTeNT987ZIdy/wcAAEdALQYk3S8aoEdAXL6XjU/fO0dARTYEGJN0vIdyAAgAAEdALQKPXCj1w0dAXL4UeuFHrkdARTU/fO2RaIdyAQgAAEdALPpeNT987kdAXLztkWhysEdARTOVgQYk3YdyAggAAEdALPjU/fO2RkdAXLybpeNT+EdARTMzMzMzM4dyAwgAAEdALPU/fO2RaEdAXLwYk3S8akdARTJul41P34dyBAgAAEdALPEm6XjU/kdAXLuFHrhR7EdARTGp++dsi4dyBQgAAEdALO8an752yUdAXLszMzMzM0dARTFHrhR64YdyBggAAEdALO2RaHKwIUdAXLrxqfvnbUdARTDlYEGJN4dyBwgAAEdALOn752yLREdAXLpul41P30dARTAgxJul44dyCAgAAEdALOPXCj1wpEdAXLmJN0vGqEdARS7ZFocrAodyCQgAAEdALOBBiTdLx0dAXLkGJN0vG0dARS4UeuFHrodyCggAAEdALNocrAgxJ0dAXLggxJul40dARSzMzMzMzYdyCwgAAEdALNiTdLxqf0dAXLffO2RaHUdARSxqfvnbI4dyDAgAAEdALNT987ZFokdAXLdLxqfvnkdARSvGp++dsodyDQgAAEdALNDlYEGJN0dAXLa4UeuFH0dARSrhR64Ue4dyDggAAEdALMzMzMzMzUdAXLYk3S8aoEdARSocrAgxJ4dyDwgAAEdALMUeuFHrhUdAXLT987ZFokdARShysCDEnIdyEAgAAEdALMOVgQYk3UdAXLS8an7520dARSgQYk3S8odyEQgAAEdALMAAAAAAAEdAXLQ5WBBiTkdARSdLxqfvnodyEggAAEdALLvnbItDlkdAXLOVgQYk3UdARSaHKwIMSodyEwgAAEdALLnbItDlYEdAXLNT987ZF0dARSYk3S8aoIdyFAgAAEdALLhR64UeuEdAXLMCDEm6XkdARSXCj1wo9odyFQgAAEdALLS8an7520dAXLJ++dsi0UdARST987ZFoodyFggAAEdALLAgxJul40dAXLHbItDlYEdARSQYk3S8aodyFwgAAEdALKsCDEm6XkdAXLEWhysCDEdARSLxqfvnbYdyGAgAAEdALKTdLxqfvkdAXLAxJul41UdARSGp++dsi4dyGQgAAEdALKNT987ZF0dAXK/vnbItDkdARSFocrAgxYdyGggAAEdALKFHrhR64UdAXK+dsi0OVkdARSEGJN0vG4dyGwgAAEdALJ++dsi0OUdAXK9cKPXCj0dARSCj1wo9cYdyHAgAAEdALJul41P3z0dAXK7ItDlYEEdARR++dsi0OYdyHQgAAEdALJgQYk3S8kdAXK41P3ztkUdARR752yLQ5YdyHggAAEdALJYEGJN0vEdAXK3ztkWhy0dARR6XjU/fO4dyHwgAAEdALJR64UeuFEdAXK2yLQ5WBEdARR41P3ztkYdyIAgAAEdALJBiTdLxqkdAXK0OVgQYk0dARR1P3ztkWodyIQgAAEdALI5WBBiTdUdAXKzMzMzMzUdARRztkWhysIdyIggAAEdALIrAgxJumEdAXKxJul41P0dARRxJul41P4dyIwgAAEdALIUeuFHrhUdAXKtkWhysCEdARRsCDEm6XodyJAgAAEdALIMSbpeNUEdAXKsSbpeNUEdARRqfvnbItIdyJQgAAEdALIEGJN0vG0dAXKrQ5WBBiUdARRo9cKPXCodyJggAAEdALH987ZFoc0dAXKqPXCj1w0dARRnbItDlYIdyJwgAAEdALHtkWhysCEdAXKnrhR64UkdARRj1wo9cKYdyKAgAAEdALHXCj1wo9kdAXKkm6XjU/kdARRfO2RaHK4dyKQgAAEdALHAgxJul40dAXKhBiTdLx0dARRan752yLYdyKggAAEdALG4UeuFHrkdAXKgAAAAAAEdARRZFocrAg4dyKwgAAEdALGyLQ5WBBkdAXKeuFHrhSEdARRXjU/fO2YdyLAgAAEdALGp++dsi0UdAXKdsi0OVgUdARRWBBiTdL4dyLQgAAEdALGLQ5WBBiUdAXKZFocrAg0dARRPXCj1wpIdyLggAAEdALGFHrhR64UdAXKYEGJN0vEdARRN0vGp++odyLwgAAEdALFsi0OVgQkdAXKUeuFHrhUdARRJN0vGp/IdyMAgAAEdALFmZmZmZmkdAXKTdLxqfvkdARRHrhR64UodyMQgAAEdALFYEGJN0vEdAXKRJul41P0dARREm6XjU/odyMggAAEdALE/fO2RaHUdAXKNkWhysCEdARQ/fO2RaHYdyMwgAAEdALE5WBBiTdUdAXKMi0OVgQkdARQ987ZFoc4dyNAgAAEdALExJul41P0dAXKLhR64Ue0dARQ8an752yYdyNQgAAEdALEEGJN0vG0dAXKEm6XjU/kdARQzMzMzMzYdyNggAAEdALDtkWhysCEdAXKBBiTdLx0dARQuFHrhR7IdyNwgAAEdALDlYEGJN00dAXKAAAAAAAEdARQsi0OVgQodyOAgAAEdALDfO2RaHK0dAXJ++dsi0OUdARQrAgxJumIdyOQgAAEdALC4UeuFHrkdAXJ5WBBiTdUdARQjU/fO2RodyOggAAEdALCyLQ5WBBkdAXJ4EGJN0vEdARQhysCDEnIdyOwgAAEdALCTdLxqfvkdAXJzdLxqfvkdARQbItDlYEIdyPAgAAEdALCLQ5WBBiUdAXJybpeNT+EdARQZmZmZmZodyPQgAAEdALB++dsi0OUdAXJwYk3S8akdARQWhysCDEodyPggAAEdALBul41P3z0dAXJt0vGp++kdARQTdLxqfvodyPwgAAEdALBmZmZmZmkdAXJszMzMzM0dARQR64UeuFIdyQAgAAEdALBgQYk3S8kdAXJrhR64Ue0dARQQYk3S8aodyQQgAAEdALAzMzMzMzUdAXJk3S8an8EdARQGp++dsi4dyQggAAEdALArAgxJumEdAXJj1wo9cKUdARQFHrhR64YdyQwgAAEdALAUeuFHrhUdAXJgQYk3S8kdARQAgxJul44dyRAgAAEdALAMSbpeNUEdAXJe+dsi0OUdARP++dsi0OYdyRQgAAEdAK/987ZFoc0dAXJc7ZFocrEdARP752yLQ5YdyRggAAEdAK/fO2RaHK0dAXJYUeuFHrkdARP1P3ztkWodyRwgAAEdAK/ZFocrAg0dAXJXCj1wo9kdARP0OVgQYk4dySAgAAEdAK/Cj1wo9cUdAXJTdLxqfvkdARPvGp++dsodySQgAAEdAK+6XjU/fO0dAXJSbpeNT+EdARPtkWhysCIdySggAAEdAK+sCDEm6XkdAXJQYk3S8akdARPqfvnbItIdySwgAAEdAK+VgQYk3TEdAXJMzMzMzM0dARPlYEGJN04dyTAgAAEdAK+NT987ZF0dAXJLxqfvnbUdARPkWhysCDIdyTQgAAEdAK9++dsi0OUdAXJJeNT987kdARPhR64UeuIdyTggAAEdAK9ul41P3z0dAXJG6XjU/fUdARPdsi0OVgYdyTwgAAEdAK9ocrAgxJ0dAXJF41P3ztkdARPcKPXCj14dyUAgAAEdAK9aHKwIMSkdAXJD1wo9cKUdARPZFocrAg4dyUQgAAEdAK9LxqfvnbUdAXJBysCDEnEdARPWhysCDEodyUggAAEdAK9DlYEGJN0dAXJAQYk3S8kdARPUeuFHrhYdyUwgAAEdAK87ZFocrAkdAXI++dsi0OUdARPS8an7524dyVAgAAEdAK8tDlYEGJUdAXI87ZFocrEdARPP3ztkWh4dyVQgAAEdAK8OVgQYk3UdAXI4UeuFHrkdARPJN0vGp/IdyVggAAEdAK8IMSbpeNUdAXI3S8an750dARPHrhR64UodyVwgAAEdAK8CDEm6XjUdAXI2BBiTdL0dARPGJN0vGqIdyWAgAAEdAK7vnbItDlkdAXIzdLxqfvkdARPDEm6XjVIdyWQgAAEdAK7peNT987kdAXIybpeNT+EdARPBiTdLxqodyWggAAEdAK7bItDlYEEdAXIwYk3S8akdARO+dsi0OVodyWwgAAEdAK7O2RaHKwUdAXIuVgQYk3UdARO7ZFocrAodyXAgAAEdAK7Em6XjU/kdAXIszMzMzM0dARO5WBBiTdYdyXQgAAEdAK68an752yUdAXIrxqfvnbUdARO3ztkWhy4dyXggAAEdAK62RaHKwIUdAXIqfvnbItEdARO2RaHKwIYdyXwgAAEdAK6wIMSbpeUdAXIpeNT987kdARO1P3ztkWodyYAgAAEdAK6dsi0OVgUdAXIm6XjU/fUdAROxqfvnbI4dyYQgAAEdAK6JN0vGp/EdAXIj1wo9cKUdAROtDlYEGJYdyYggAAEdAK6DEm6XjVEdAXIij1wo9cUdAROrhR64Ue4dyYwgAAEdAK5ysCDEm6UdAXIgAAAAAAEdAROn752yLRIdyZAgAAEdAK5qfvnbItEdAXIe+dsi0OUdAROm6XjU/fYdyZQgAAEdAK5kWhysCDEdAXId87ZFoc0dAROlYEGJN04dyZggAAEdAK5eNT987ZEdAXIc7ZFocrEdAROj1wo9cKYdyZwgAAEdAK5P3ztkWh0dAXIa4UeuFH0dAROgxJul41YdyaAgAAEdAK4/fO2RaHUdAXIYUeuFHrkdAROdLxqfvnodyaQgAAEdAK43S8an750dAXIXCj1wo9kdARObpeNT99IdyaggAAEdAK4xJul41P0dAXIWBBiTdL0dAROaHKwIMSodyawgAAEdAK4gxJul41UdAXITdLxqfvkdAROXCj1wo9odybAgAAEdAK4Yk3S8aoEdAXISbpeNT+EdAROVgQYk3TIdybQgAAEdAK4MSbpeNUEdAXIQIMSbpeUdAROSbpeNT+IdybggAAEdAK3ztkWhysEdAXIMi0OVgQkdARONT987ZF4dybwgAAEdAK3tkWhysCEdAXILhR64Ue0dAROLxqfvnbYdycAgAAEdAK3lYEGJN00dAXIKfvnbItEdAROKwIMSbpodycQgAAEdAK3fO2RaHK0dAXIJeNT987kdAROJN0vGp/IdycggAAEdAK26XjU/fO0dAXIDlYEGJN0dAROBBiTdLx4dycwgAAEdAK2hysCDEnEdAXIAAAAAAAEdARN8an752yYdydAgAAEdAK2bpeNT99EdAXH++dsi0OUdARN64UeuFH4dydQgAAEdAK2VgQYk3TEdAXH9si0OVgUdARN5WBBiTdYdydggAAEdAK2NT987ZF0dAXH8rAgxJukdARN3ztkWhy4dydwgAAEdAK1ul41P3z0dAXH4EGJN0vEdARNxJul41P4dyeAgAAEdAK1ocrAgxJ0dAXH3Cj1wo9kdARNvnbItDlodyeQgAAEdAK1Jul41P30dAXHyLQ5WBBkdARNpeNT987odyeggAAEdAK0k3S8an8EdAXHsi0OVgQkdARNhysCDEnIdyewgAAEdAK0euFHrhSEdAXHrQ5WBBiUdARNgQYk3S8odyfAgAAEdAK0WhysCDEkdAXHqPXCj1w0dARNeuFHrhSIdyfQgAAEdAKzrhR64Ue0dAXHjU/fO2RkdARNVgQYk3TIdyfggAAEdAKzjU/fO2RkdAXHiTdLxqf0dARNT987ZFoodyfwgAAEdAKzMzMzMzM0dAXHeuFHrhSEdARNO2RaHKwYdygAgAAEdAKzGp++dsi0dAXHdsi0OVgUdARNNT987ZF4dygQgAAEdAKyZmZmZmZkdAXHWyLQ5WBEdARNEGJN0vG4dygggAAEdAKyTdLxqfvkdAXHVwo9cKPUdARNCj1wo9cYdygwgAAEdAKyFHrhR64UdAXHTdLxqfvkdARM/fO2RaHYdyhAgAAEdAKx64UeuFH0dAXHR64UeuFEdARM9cKPXCj4dyhQgAAEdAKx0vGp++d0dAXHQ5WBBiTkdARM752yLQ5YdyhggAAEdAKxmZmZmZmkdAXHO2RaHKwUdARM5WBBiTdYdyhwgAAEdAKxaHKwIMSkdAXHMi0OVgQkdARM2RaHKwIYdyiAgAAEdAKxP3ztkWh0dAXHLQ5WBBiUdARM0OVgQYk4dyiQgAAEdAKxJul41P30dAXHJ++dsi0UdARMysCDEm6YdyiggAAEdAKw7ZFocrAkdAXHH752yLREdARMvnbItDlodyiwgAAEdAKw1P3ztkWkdAXHG6XjU/fUdARMul41P3z4dyjAgAAEdAKwrAgxJumEdAXHFYEGJN00dARMsi0OVgQodyjQgAAEdAKwcrAgxJukdAXHDEm6XjVEdARMpeNT987odyjggAAEdAKwWhysCDEkdAXHCDEm6XjUdARMn752yLRIdyjwgAAEdAKwIMSbpeNUdAXHAAAAAAAEdARMk3S8an8IdykAgAAEdAKwAAAAAAAEdAXG+dsi0OVkdARMi0OVgQYodykQgAAEdAKv3ztkWhy0dAXG9cKPXCj0dARMhysCDEnIdykggAAEdAKvpeNT987kdAXG7ItDlYEEdARMeuFHrhSIdykwgAAEdAKvjU/fO2RkdAXG6HKwIMSkdARMdLxqfvnodylAgAAEdAKvMzMzMzM0dAXG2hysCDEkdARMYEGJN0vIdylQgAAEdAKvEm6XjU/kdAXG1P3ztkWkdARMWhysCDEodylggAAEdAKu+dsi0OVkdAXG0OVgQYk0dARMVgQYk3TIdylwgAAEdAKu4UeuFHrkdAXGzMzMzMzUdARMT987ZFoodymAgAAEdAKuuFHrhR7EdAXGxqfvnbI0dARMR64UeuFIdymQgAAEdAKun752yLREdAXGwo9cKPXEdARMQYk3S8aodymggAAEdAKuZmZmZmZkdAXGuVgQYk3UdARMNT987ZF4dymwgAAEdAKuLQ5WBBiUdAXGsSbpeNUEdARMKwIMSbpodynAgAAEdAKuDEm6XjVEdAXGqwIMSbpkdARMItDlYEGYdynQgAAEdAKt64UeuFH0dAXGpul41P30dARMHKwIMSb4dynggAAEdAKt0vGp++d0dAXGotDlYEGUdARMFocrAgxYdynwgAAEdAKtul41P3z0dAXGnrhR64UkdARMEGJN0vG4dyoAgAAEdAKtmZmZmZmkdAXGmZmZmZmkdARMCj1wo9cYdyoQgAAEdAKteNT987ZEdAXGk3S8an8EdARMAgxJul44dyoggAAEdAKtWBBiTdL0dAXGj1wo9cKUdARL++dsi0OYdyowgAAEdAKtJul41P30dAXGhysCDEnEdARL8an752yYdypAgAAEdAKtBiTdLxqkdAXGgxJul41UdARL64UeuFH4dypQgAAEdAKs7ZFocrAkdAXGffO2RaHUdARL5WBBiTdYdypggAAEdAKsxJul41P0dAXGeNT987ZEdARL3S8an754dypwgAAEdAKsrAgxJumEdAXGc7ZFocrEdARL1wo9cKPYdyqAgAAEdAKsk3S8an8EdAXGb52yLQ5UdARL0OVgQYk4dyqQgAAEdAKscrAgxJukdAXGa4UeuFH0dARLzMzMzMzYdyqggAAEdAKsWhysCDEkdAXGZ2yLQ5WEdARLxqfvnbI4dyqwgAAEdAKsQYk3S8akdAXGYk3S8aoEdARLwIMSbpeYdyrAgAAEdAKsAAAAAAAEdAXGWBBiTdL0dARLsi0OVgQodyrQgAAEdAKr3ztkWhy0dAXGU/fO2RaEdARLrAgxJumIdyrggAAEdAKrxqfvnbI0dAXGT987ZFokdARLpeNT987odyrwgAAEdAKrrhR64Ue0dAXGS8an7520dARLocrAgxJ4dysAgAAEdAKrhR64UeuEdAXGRaHKwIMUdARLmZmZmZmodysQgAAEdAKrbItDlYEEdAXGQIMSbpeUdARLk3S8an8IdysggAAEdAKrMzMzMzM0dAXGOFHrhR7EdARLhysCDEnIdyswgAAEdAKrGp++dsi0dAXGNDlYEGJUdARLgQYk3S8odytAgAAEdAKrAgxJul40dAXGMCDEm6XkdARLeuFHrhSIdytQgAAEdAKq2RaHKwIUdAXGKfvnbItEdARLdLxqfvnodytggAAEdAKqwIMSbpeUdAXGJN0vGp/EdARLbpeNT99IdytwgAAEdAKqn752yLREdAXGIMSbpeNUdARLaHKwIMSodyuAgAAEdAKqhysCDEnEdAXGHKwIMSb0dARLYk3S8aoIdyuQgAAEdAKqbpeNT99EdAXGGJN0vGqEdARLXCj1wo9odyuggAAEdAKqTdLxqfvkdAXGFHrhR64UdARLVgQYk3TIdyuwgAAEdAKqLQ5WBBiUdAXGDlYEGJN0dARLTdLxqfvodyvAgAAEdAKp87ZFocrEdAXGBR64UeuEdARLQ5WBBiTodyvQgAAEdAKp2yLQ5WBEdAXGAQYk3S8kdARLPXCj1wpIdyvggAAEdAKpul41P3z0dAXF/O2RaHK0dARLN0vGp++odyvwgAAEdAKpmZmZmZmkdAXF9si0OVgUdARLLxqfvnbYdywAgAAEdAKpeNT987ZEdAXF8rAgxJukdARLKPXCj1w4dywQgAAEdAKpYEGJN0vEdAXF7ZFocrAkdARLItDlYEGYdywggAAEdAKpR64UeuFEdAXF6XjU/fO0dARLHKwIMSb4dywwgAAEdAKpDlYEGJN0dAXF4UeuFHrkdARLEm6XjU/odyxAgAAEdAKozMzMzMzUdAXF1gQYk3TEdARLBBiTdLx4dyxQgAAEdAKotDlYEGJUdAXF0euFHrhUdARK/fO2RaHYdyxggAAEdAKom6XjU/fUdAXFzdLxqfvkdARK987ZFoc4dyxwgAAEdAKoeuFHrhSEdAXFybpeNT+EdARK87ZFocrIdyyAgAAEdAKoWhysCDEkdAXFw5WBBiTkdARK64UeuFH4dyyQgAAEdAKoOVgQYk3UdAXFv3ztkWh0dARK5WBBiTdYdyyggAAEdAKoCDEm6XjUdAXFtkWhysCEdARK2RaHKwIYdyywgAAEdAKn52yLQ5WEdAXFsi0OVgQkdARK0vGp++d4dyzAgAAEdAKnztkWhysEdAXFrhR64Ue0dARKzMzMzMzYdyzQgAAEdAKnrhR64Ue0dAXFp++dsi0UdARKxJul41P4dyzggAAEdAKnjU/fO2RkdAXFo9cKPXCkdARKwIMSbpeYdyzwgAAEdAKndLxqfvnkdAXFnrhR64UkdARKul41P3z4dy0AgAAEdAKnXCj1wo9kdAXFmp++dsi0dARKtDlYEGJYdy0QgAAEdAKnItDlYEGUdAXFkm6XjU/kdARKp++dsi0Ydy0ggAAEdAKm+dsi0OVkdAXFjEm6XjVEdARKn752yLRIdy0wgAAEdAKmyLQ5WBBkdAXFgxJul41UdARKlYEGJN04dy1AgAAEdAKmTdLxqfvkdAXFcKPXCj10dARKeuFHrhSIdy1QgAAEdAKmNT987ZF0dAXFa4UeuFH0dARKdLxqfvnody1ggAAEdAKl41P3ztkUdAXFXztkWhy0dARKZFocrAg4dy1wgAAEdAKlocrAgxJ0dAXFU/fO2RaEdARKVgQYk3TIdy2AgAAEdAKliTdLxqf0dAXFT987ZFokdARKT987ZFoody2QgAAEdAKlDlYEGJN0dAXFPGp++dskdARKN0vGp++ody2ggAAEdAKkYk3S8aoEdAXFIMSbpeNUdARKEm6XjU/ody2wgAAEdAKkSbpeNT+EdAXFHKwIMSb0dARKDEm6XjVIdy3AgAAEdAKjztkWhysEdAXFCTdLxqf0dARJ87ZFocrIdy3QgAAEdAKjnbItDlYEdAXFAQYk3S8kdARJ52yLQ5WIdy3ggAAEdAKjhR64UeuEdAXE/O2RaHK0dARJ4UeuFHrody3wgAAEdAKjS8an7520dAXE87ZFocrEdARJ1P3ztkWody4AgAAEdAKjItDlYEGUdAXE7ZFocrAkdARJzMzMzMzYdy4QgAAEdAKjCj1wo9cUdAXE6XjU/fO0dARJyLQ5WBBody4ggAAEdAKi2RaHKwIUdAXE4EGJN0vEdARJvGp++dsody4wgAAEdAKiuFHrhR7EdAXE3Cj1wo9kdARJtkWhysCIdy5AgAAEdAKiXjU/fO2UdAXEzdLxqfvkdARJo9cKPXCody5QgAAEdAKiRaHKwIMUdAXEyLQ5WBBkdARJnbItDlYIdy5ggAAEdAKiDEm6XjVEdAXEwIMSbpeUdARJkWhysCDIdy5wgAAEdAKh64UeuFH0dAXEul41P3z0dARJiTdLxqf4dy6AgAAEdAKhysCDEm6UdAXEtkWhysCEdARJgxJul41Ydy6QgAAEdAKhmZmZmZmkdAXErQ5WBBiUdARJeNT987ZIdy6ggAAEdAKhYEGJN0vEdAXEpN0vGp/EdARJbItDlYEIdy6wgAAEdAKhP3ztkWh0dAXEnrhR64UkdARJZFocrAg4dy7AgAAEdAKhHrhR64UkdAXEmp++dsi0dARJXjU/fO2Ydy7QgAAEdAKhBiTdLxqkdAXElYEGJN00dARJWBBiTdL4dy7ggAAEdAKg7ZFocrAkdAXEkWhysCDEdARJU/fO2RaIdy7wgAAEdAKg1P3ztkWkdAXEjU/fO2RkdARJTdLxqfvody8AgAAEdAKgrAgxJumEdAXEhysCDEnEdARJRaHKwIMYdy8QgAAEdAKgWhysCDEkdAXEedsi0OVkdARJMzMzMzM4dy8ggAAEdAKgQYk3S8akdAXEdcKPXCj0dARJLxqfvnbYdy8wgAAEdAKgKPXCj1w0dAXEcan752yUdARJKPXCj1w4dy9AgAAEdAKgAAAAAAAEdAXEa4UeuFH0dARJIMSbpeNYdy9QgAAEdAKf52yLQ5WEdAXEZmZmZmZkdARJGp++dsi4dy9ggAAEdAKfrhR64Ue0dAXEXjU/fO2UdARJDlYEGJN4dy9wgAAEdAKflYEGJN00dAXEWhysCDEkdARJCj1wo9cYdy+AgAAEdAKffO2RaHK0dAXEVP3ztkWkdARJBBiTdLx4dy+QgAAEdAKfO2RaHKwUdAXESsCDEm6UdARI9cKPXCj4dy+ggAAEdAKfItDlYEGUdAXERqfvnbI0dARI752yLQ5Ydy+wgAAEdAKfAgxJul40dAXEQYk3S8akdARI6XjU/fO4dy/AgAAEdAKe6XjU/fO0dAXEPXCj1wpEdARI5WBBiTdYdy/QgAAEdAKeyLQ5WBBkdAXEN0vGp++kdARI3S8an754dy/ggAAEdAKep++dsi0UdAXEMzMzMzM0dARI1wo9cKPYdy/wgAAEdAKedsi0OVgUdAXEKfvnbItEdARIysCDEm6YdyAAkAAEdAKeXjU/fO2UdAXEJeNT987kdARIxJul41P4dyAQkAAEdAKePXCj1wpEdAXEIcrAgxJ0dARIwIMSbpeYdyAgkAAEdAKeHKwIMSb0dAXEG6XjU/fUdARIuFHrhR7IdyAwkAAEdAKd++dsi0OUdAXEF41P3ztkdARIsi0OVgQodyBAkAAEdAKd41P3ztkUdAXEEm6XjU/kdARIrAgxJumIdyBQkAAEdAKdysCDEm6UdAXEDlYEGJN0dARIpeNT987odyBgkAAEdAKdsi0OVgQkdAXECj1wo9cUdARIn752yLRIdyBwkAAEdAKdmZmZmZmkdAXEBiTdLxqkdARIm6XjU/fYdyCAkAAEdAKdiTdLxqf0dAXEBBiTdLx0dARImZmZmZmodyCQkAAEdAKdcKPXCj10dAXEAAAAAAAEdARIk3S8an8IdyCgkAAEdAKdN0vGp++kdAXD9si0OVgUdARIhysCDEnIdyCwkAAEdAKdHrhR64UkdAXD8rAgxJukdARIgQYk3S8odyDAkAAEdAKdBiTdLxqkdAXD7peNT99EdARIfO2RaHK4dyDQkAAEdAKc3S8an750dAXD6HKwIMSkdARIdLxqfvnodyDgkAAEdAKcxJul41P0dAXD41P3ztkUdARIbpeNT99IdyDwkAAEdAKcrAgxJumEdAXD3ztkWhy0dARIaHKwIMSodyEAkAAEdAKck3S8an8EdAXD2yLQ5WBEdARIYk3S8aoIdyEQkAAEdAKccrAgxJukdAXD1wo9cKPUdARIXCj1wo9odyEgkAAEdAKcWhysCDEkdAXD0euFHrhUdARIWBBiTdL4dyEwkAAEdAKcGJN0vGqEdAXDx64UeuFEdARISbpeNT+IdyFAkAAEdAKcAAAAAAAEdAXDw5WBBiTkdARIQ5WBBiTodyFQkAAEdAKb52yLQ5WEdAXDvnbItDlkdARIPXCj1wpIdyFgkAAEdAKbztkWhysEdAXDul41P3z0dARIN0vGp++odyFwkAAEdAKbpeNT987kdAXDtDlYEGJUdARILxqfvnbYdyGAkAAEdAKbjU/fO2RkdAXDsCDEm6XkdARIKwIMSbpodyGQkAAEdAKbU/fO2RaEdAXDpul41P30dARIHrhR64UodyGgkAAEdAKbO2RaHKwUdAXDotDlYEGUdARIGJN0vGqIdyGwkAAEdAKbItDlYEGUdAXDnrhR64UkdARIEm6XjU/odyHAkAAEdAKa+dsi0OVkdAXDmJN0vGqEdARIDEm6XjVIdyHQkAAEdAKa4UeuFHrkdAXDlHrhR64UdARIBiTdLxqodyHgkAAEdAKayLQ5WBBkdAXDj1wo9cKUdARIAAAAAAAIdyHwkAAEdAKap++dsi0UdAXDi0OVgQYkdARH+dsi0OVodyIAkAAEdAKaj1wo9cKUdAXDhysCDEnEdARH87ZFocrIdyIQkAAEdAKadsi0OVgUdAXDgxJul41UdARH752yLQ5YdyIgkAAEdAKaTdLxqfvkdAXDe+dsi0OUdARH5WBBiTdYdyIwkAAEdAKaHKwIMSb0dAXDc7ZFocrEdARH2yLQ5WBIdyJAkAAEdAKaBBiTdLx0dAXDb52yLQ5UdARH1P3ztkWodyJQkAAEdAKZ64UeuFH0dAXDan752yLUdARHztkWhysIdyJgkAAEdAKZwo9cKPXEdAXDZFocrAg0dARHxqfvnbI4dyJwkAAEdAKZqfvnbItEdAXDYEGJN0vEdARHwo9cKPXIdyKAkAAEdAKZiTdLxqf0dAXDXCj1wo9kdARHvGp++dsodyKQkAAEdAKZcKPXCj10dAXDVwo9cKPUdARHtkWhysCIdyKgkAAEdAKZWBBiTdL0dAXDUvGp++d0dARHsCDEm6XodyKwkAAEdAKZP3ztkWh0dAXDTtkWhysEdARHqfvnbItIdyLAkAAEdAKY/fO2RaHUdAXDRJul41P0dARHnbItDlYIdyLQkAAEdAKY5WBBiTdUdAXDP3ztkWh0dARHl41P3ztodyLgkAAEdAKYzMzMzMzUdAXDO2RaHKwUdARHkWhysCDIdyLwkAAEdAKYrAgxJumEdAXDN0vGp++kdARHi0OVgQYodyMAkAAEdAKYk3S8an8EdAXDMzMzMzM0dARHhysCDEnIdyMQkAAEdAKYcrAgxJukdAXDLQ5WBBiUdARHfvnbItDodyMgkAAEdAKYOVgQYk3UdAXDI9cKPXCkdARHcrAgxJuodyMwkAAEdAKYIMSbpeNUdAXDH752yLREdARHbItDlYEIdyNAkAAEdAKYCDEm6XjUdAXDG6XjU/fUdARHZmZmZmZodyNQkAAEdAKXxqfvnbI0dAXDEGJN0vG0dARHWhysCDEodyNgkAAEdAKXrhR64Ue0dAXDDEm6XjVEdARHU/fO2RaIdyNwkAAEdAKXXCj1wo9kdAXC/vnbItDkdARHQ5WBBiTodyOAkAAEdAKXMzMzMzM0dAXC+NT987ZEdARHOVgQYk3YdyOQkAAEdAKXAgxJul40dAXC752yLQ5UdARHLxqfvnbYdyOgkAAEdAKWj1wo9cKUdAXC3Cj1wo9kdARHFocrAgxYdyOwkAAEdAKWdsi0OVgUdAXC2BBiTdL0dARHEGJN0vG4dyPAkAAEdAKWJN0vGp/EdAXCysCDEm6UdARHAAAAAAAIdyPQkAAEdAKVysCDEm6UdAXCvGp++dskdARG64UeuFH4dyPgkAAEdAKVsi0OVgQkdAXCt0vGp++kdARG5WBBiTdYdyPwkAAEdAKVeNT987ZEdAXCrxqfvnbUdARG2yLQ5WBIdyQAkAAEdAKVWBBiTdL0dAXCqPXCj1w0dARG0vGp++d4dyQQkAAEdAKVBiTdLxqkdAXCm6XjU/fUdARGwIMSbpeYdyQgkAAEdAKUrAgxJumEdAXCjEm6XjVEdARGrhR64Ue4dyQwkAAEdAKUk3S8an8EdAXCiDEm6XjUdARGp++dsi0YdyRAkAAEdAKUQYk3S8akdAXCeuFHrhSEdARGl41P3ztodyRQkAAEdAKUIMSbpeNUdAXCdLxqfvnkdARGj1wo9cKYdyRgkAAEdAKT752yLQ5UdAXCa4UeuFH0dARGgxJul41YdyRwkAAEdAKTztkWhysEdAXCZ2yLQ5WEdARGfO2RaHK4dySAkAAEdAKTnbItDlYEdAXCXztkWhy0dARGcrAgxJuodySQkAAEdAKTdLxqfvnkdAXCWRaHKwIUdARGan752yLYdySgkAAEdAKTXCj1wo9kdAXCU/fO2RaEdARGZFocrAg4dySwkAAEdAKTKwIMSbpkdAXCS8an7520dARGWBBiTdL4dyTAkAAEdAKTEm6XjU/kdAXCRqfvnbI0dARGU/fO2RaIdyTQkAAEdAKS8an752yUdAXCQo9cKPXEdARGTdLxqfvodyTgkAAEdAKSuFHrhR7EdAXCOFHrhR7EdARGP3ztkWh4dyTwkAAEdAKSl41P3ztkdAXCMzMzMzM0dARGOVgQYk3YdyUAkAAEdAKSfvnbItDkdAXCLxqfvnbUdARGNT987ZF4dyUQkAAEdAKSZmZmZmZkdAXCKwIMSbpkdARGLxqfvnbYdyUgkAAEdAKSRaHKwIMUdAXCJN0vGp/EdARGJul41P34dyUwkAAEdAKSJN0vGp/EdAXCH752yLREdARGIMSbpeNYdyVAkAAEdAKR87ZFocrEdAXCF41P3ztkdARGFocrAgxYdyVQkAAEdAKR2yLQ5WBEdAXCE3S8an8EdARGEGJN0vG4dyVgkAAEdAKRwo9cKPXEdAXCDlYEGJN0dARGCj1wo9cYdyVwkAAEdAKRmZmZmZmkdAXCCDEm6XjUdARGAgxJul44dyWAkAAEdAKRgQYk3S8kdAXCBBiTdLx0dARF++dsi0OYdyWQkAAEdAKRaHKwIMSkdAXB/vnbItDkdARF987ZFoc4dyWgkAAEdAKRT987ZFokdAXB+uFHrhSEdARF8an752yYdyWwkAAEdAKRLxqfvnbUdAXB9si0OVgUdARF64UeuFH4dyXAkAAEdAKRDlYEGJN0dAXB8KPXCj10dARF41P3ztkYdyXQkAAEdAKQvGp++dskdAXB41P3ztkUdARF0vGp++d4dyXgkAAEdAKQo9cKPXCkdAXB3ztkWhy0dARFzMzMzMzYdyXwkAAEdAKQi0OVgQYkdAXB2hysCDEkdARFxqfvnbI4dyYAkAAEdAKQan752yLUdAXB0/fO2RaEdARFvnbItDlodyYQkAAEdAKQSbpeNT+EdAXBz987ZFokdARFul41P3z4dyYgkAAEdAKQMSbpeNUEdAXBy8an7520dARFtDlYEGJYdyYwkAAEdAKQGJN0vGqEdAXBxqfvnbI0dARFrhR64Ue4dyZAkAAEdAKQAAAAAAAEdAXBwo9cKPXEdARFp++dsi0YdyZQkAAEdAKP52yLQ5WEdAXBvnbItDlkdARFocrAgxJ4dyZgkAAEdAKPpeNT987kdAXBszMzMzM0dARFlYEGJN04dyZwkAAEdAKPjU/fO2RkdAXBrxqfvnbUdARFj1wo9cKYdyaAkAAEdAKPdLxqfvnkdAXBqwIMSbpkdARFiTdLxqf4dyaQkAAEdAKPU/fO2RaEdAXBpeNT987kdARFgxJul41YdyagkAAEdAKPMzMzMzM0dAXBn752yLREdARFfO2RaHK4dyawkAAEdAKPGp++dsi0dAXBm6XjU/fUdARFdsi0OVgYdybAkAAEdAKO4UeuFHrkdAXBkm6XjU/kdARFan752yLYdybQkAAEdAKOyLQ5WBBkdAXBjlYEGJN0dARFZFocrAg4dybgkAAEdAKOsCDEm6XkdAXBij1wo9cUdARFYEGJN0vIdybwkAAEdAKOj1wo9cKUdAXBhBiTdLx0dARFWBBiTdL4dycAkAAEdAKObpeNT99EdAXBfvnbItDkdARFUeuFHrhYdycQkAAEdAKOVgQYk3TEdAXBeuFHrhSEdARFS8an7524dycgkAAEdAKOPXCj1wpEdAXBdsi0OVgUdARFRaHKwIMYdycwkAAEdAKOJN0vGp/EdAXBcan752yUdARFQYk3S8aodydAkAAEdAKODEm6XjVEdAXBbZFocrAkdARFO2RaHKwYdydQkAAEdAKN41P3ztkUdAXBZ2yLQ5WEdARFMzMzMzM4dydgkAAEdAKNsi0OVgQkdAXBXjU/fO2UdARFJul41P34dydwkAAEdAKNmZmZmZmkdAXBWhysCDEkdARFItDlYEGYdyeAkAAEdAKNgQYk3S8kdAXBVgQYk3TEdARFHKwIMSb4dyeQkAAEdAKNWBBiTdL0dAXBT987ZFokdARFFHrhR64YdyegkAAEdAKNP3ztkWh0dAXBSsCDEm6UdARFDlYEGJN4dyewkAAEdAKNJul41P30dAXBRqfvnbI0dARFCDEm6XjYdyfAkAAEdAKNDlYEGJN0dAXBQo9cKPXEdARFBBiTdLx4dyfQkAAEdAKM7ZFocrAkdAXBPXCj1wpEdARE/fO2RaHYdyfgkAAEdAKM1P3ztkWkdAXBOVgQYk3UdARE987ZFoc4dyfwkAAEdAKMm6XjU/fUdAXBLxqfvnbUdARE6XjU/fO4dygAkAAEdAKMeuFHrhSEdAXBKfvnbItEdARE5WBBiTdYdygQkAAEdAKMYk3S8aoEdAXBJeNT987kdARE3ztkWhy4dyggkAAEdAKMSbpeNT+EdAXBIcrAgxJ0dARE2RaHKwIYdygwkAAEdAKMMSbpeNUEdAXBHbItDlYEdARE0vGp++d4dyhAkAAEdAKMEGJN0vG0dAXBFocrAgxUdAREysCDEm6YdyhQkAAEdAKL1wo9cKPUdAXBDlYEGJN0dAREwIMSbpeYdyhgkAAEdAKLvnbItDlkdAXBCTdLxqf0dAREul41P3z4dyhwkAAEdAKLpeNT987kdAXBBR64UeuEdAREtDlYEGJYdyiAkAAEdAKLZFocrAg0dAXA+uFHrhSEdAREp++dsi0YdyiQkAAEdAKLS8an7520dAXA9cKPXCj0dAREocrAgxJ4dyigkAAEdAKLMzMzMzM0dAXA8an752yUdAREm6XjU/fYdyiwkAAEdAKLGp++dsi0dAXA7ZFocrAkdAREl41P3ztodyjAkAAEdAKLAgxJul40dAXA6HKwIMSkdAREkWhysCDIdyjQkAAEdAKK2RaHKwIUdAXA4k3S8aoEdAREiTdLxqf4dyjgkAAEdAKKp++dsi0UdAXA2RaHKwIUdAREfO2RaHK4dyjwkAAEdAKKj1wo9cKUdAXA1P3ztkWkdAREeNT987ZIdykAkAAEdAKKdsi0OVgUdAXA0OVgQYk0dAREcrAgxJuodykQkAAEdAKKNT987ZF0dAXAxaHKwIMUdAREZFocrAg4dykgkAAEdAKKHKwIMSb0dAXAwYk3S8akdAREXjU/fO2YdykwkAAEdAKKBBiTdLx0dAXAvXCj1wpEdAREWhysCDEodylAkAAEdAKJ64UeuFH0dAXAuFHrhR7EdAREU/fO2RaIdylQkAAEdAKJysCDEm6UdAXAtDlYEGJUdARETdLxqfvodylgkAAEdAKJeNT987ZEdAXApN0vGp/EdAREO2RaHKwYdylwkAAEdAKJP3ztkWh0dAXAnKwIMSb0dARELxqfvnbYdymAkAAEdAKJJul41P30dAXAl41P3ztkdAREKPXCj1w4dymQkAAEdAKJBiTdLxqkdAXAkWhysCDEdAREIMSbpeNYdymgkAAEdAKIzMzMzMzUdAXAiTdLxqf0dAREFocrAgxYdymwkAAEdAKIm6XjU/fUdAXAgAAAAAAEdAREDEm6XjVIdynAkAAEdAKIYk3S8aoEdAXAdLxqfvnkdARD/fO2RaHYdynQkAAEdAKIQYk3S8akdAXAcKPXCj10dARD987ZFoc4dyngkAAEdAKH987ZFoc0dAXAY1P3ztkUdARD52yLQ5WIdynwkAAEdAKH1wo9cKPUdAXAXS8an750dARD3ztkWhy4dyoAkAAEdAKHnbItDlYEdAXAU/fO2RaEdARD0vGp++d4dyoQkAAEdAKHhR64UeuEdAXAT987ZFokdARDztkWhysIdyogkAAEdAKHMzMzMzM0dAXAQIMSbpeUdARDul41P3z4dyowkAAEdAKHEm6XjU/kdAXAPGp++dskdARDtDlYEGJYdypAkAAEdAKGyLQ5WBBkdAXALxqfvnbUdARDo9cKPXCodypQkAAEdAKGp++dsi0UdAXAKPXCj1w0dARDm6XjU/fYdypgkAAEdAKGbpeNT99EdAXAH752yLREdARDkWhysCDIdypwkAAEdAKGVgQYk3TEdAXAGp++dsi0dARDi0OVgQYodyqAkAAEdAKGJN0vGp/EdAXAEm6XjU/kdARDgQYk3S8odyqQkAAEdAKGBBiTdLx0dAXADEm6XjVEdARDeNT987ZIdyqgkAAEdAKF41P3ztkUdAXABysCDEnEdARDcrAgxJuodyqwkAAEdAKFsi0OVgQkdAW//vnbItDkdARDZmZmZmZodyrAkAAEdAKFgQYk3S8kdAW/9cKPXCj0dARDXCj1wo9odyrQkAAEdAKFP3ztkWh0dAW/64UeuFH0dARDTdLxqfvodyrgkAAEdAKE9cKPXCj0dAW/3jU/fO2UdARDPXCj1wpIdyrwkAAEdAKE1P3ztkWkdAW/1wo9cKPUdARDNT987ZF4dysAkAAEdAKEm6XjU/fUdAW/ztkWhysEdARDKwIMSbpodysQkAAEdAKEgxJul41UdAW/ybpeNT+EdARDJN0vGp/IdysgkAAEdAKEan752yLUdAW/xaHKwIMUdARDHrhR64UodyswkAAEdAKEUeuFHrhUdAW/wYk3S8akdARDGp++dsi4dytAkAAEdAKEMSbpeNUEdAW/u2RaHKwUdARDEm6XjU/odytQkAAEdAKEEGJN0vG0dAW/tkWhysCEdARDDEm6XjVIdytgkAAEdAKD3ztkWhy0dAW/rQ5WBBiUdARDAAAAAAAIdytwkAAEdAKDxqfvnbI0dAW/qPXCj1w0dARC++dsi0OYdyuAkAAEdAKDrhR64Ue0dAW/pN0vGp/EdARC9cKPXCj4dyuQkAAEdAKDdLxqfvnkdAW/mZmZmZmkdARC52yLQ5WIdyugkAAEdAKDU/fO2RaEdAW/lYEGJN00dARC4UeuFHrodyuwkAAEdAKDO2RaHKwUdAW/kGJN0vG0dARC3S8an754dyvAkAAEdAKDItDlYEGUdAW/jEm6XjVEdARC1wo9cKPYdyvQkAAEdAKDAgxJul40dAW/hiTdLxqkdARCztkWhysIdyvgkAAEdAKC6XjU/fO0dAW/ggxJul40dARCyLQ5WBBodyvwkAAEdAKCsCDEm6XkdAW/eNT987ZEdARCvnbItDlodywAkAAEdAKCl41P3ztkdAW/dLxqfvnkdARCuFHrhR7IdywQkAAEdAKCfvnbItDkdAW/b52yLQ5UdARCsi0OVgQodywgkAAEdAKCRaHKwIMUdAW/ZWBBiTdUdARCpeNT987odywwkAAEdAKCLQ5WBBiUdAW/YEGJN0vEdARCn752yLRIdyxAkAAEdAKCFHrhR64UdAW/XCj1wo9kdARCmZmZmZmodyxQkAAEdAKB++dsi0OUdAW/WBBiTdL0dARClYEGJN04dyxgkAAEdAKB2yLQ5WBEdAW/UvGp++d0dARCj1wo9cKYdyxwkAAEdAKBiTdLxqf0dAW/Q5WBBiTkdARCeuFHrhSIdyyAkAAEdAKBcKPXCj10dAW/P3ztkWh0dARCdsi0OVgYdyyQkAAEdAKBWBBiTdL0dAW/O2RaHKwUdARCcKPXCj14dyygkAAEdAKBLxqfvnbUdAW/NT987ZF0dARCaHKwIMSodyywkAAEdAKBFocrAgxUdAW/MCDEm6XkdARCYk3S8aoIdyzAkAAEdAKA/fO2RaHUdAW/LAgxJumEdARCXjU/fO2YdyzQkAAEdAKA5WBBiTdUdAW/Jul41P30dARCWBBiTdL4dyzgkAAEdAKAzMzMzMzUdAW/ItDlYEGUdARCUeuFHrhYdyzwkAAEdAKAtDlYEGJUdAW/HrhR64UkdARCS8an7524dy0AkAAEdAKAWhysCDEkdAW/D1wo9cKUdARCOVgQYk3Ydy0QkAAEdAKAQYk3S8akdAW/Cj1wo9cUdARCMzMzMzM4dy0gkAAEdAKAKPXCj1w0dAW/BiTdLxqkdARCLxqfvnbYdy0wkAAEdAJ/752yLQ5UdAW++uFHrhSEdARCIMSbpeNYdy1AkAAEdAJ/tkWhysCEdAW+8rAgxJukdARCFHrhR64Ydy1QkAAEdAJ/nbItDlYEdAW+7ZFocrAkdARCEGJN0vG4dy1gkAAEdAJ/hR64UeuEdAW+6XjU/fO0dARCCj1wo9cYdy1wkAAEdAJ/S8an7520dAW+3jU/fO2UdARB++dsi0OYdy2AkAAEdAJ/MzMzMzM0dAW+2hysCDEkdARB987ZFoc4dy2QkAAEdAJ/Gp++dsi0dAW+1gQYk3TEdARB8an752yYdy2gkAAEdAJ++dsi0OVkdAW+0OVgQYk0dARB64UeuFH4dy2wkAAEdAJ+4UeuFHrkdAW+zMzMzMzUdARB52yLQ5WIdy3AkAAEdAJ+wIMSbpeUdAW+xqfvnbI0dARB3ztkWhy4dy3QkAAEdAJ+j1wo9cKUdAW+vXCj1wpEdARB0vGp++d4dy3gkAAEdAJ+dsi0OVgUdAW+uVgQYk3UdARBzMzMzMzYdy3wkAAEdAJ+XjU/fO2UdAW+tDlYEGJUdARByLQ5WBBody4AkAAEdAJ+HKwIMSb0dAW+qfvnbItEdARBul41P3z4dy4QkAAEdAJ+BBiTdLx0dAW+pN0vGp/EdARBtDlYEGJYdy4gkAAEdAJ964UeuFH0dAW+oMSbpeNUdARBsCDEm6Xody4wkAAEdAJ90vGp++d0dAW+nKwIMSb0dARBqfvnbItIdy5AkAAEdAJ9ul41P3z0dAW+l41P3ztkdARBo9cKPXCody5QkAAEdAJ9YEGJN0vEdAW+iDEm6XjUdARBkWhysCDIdy5gkAAEdAJ9R64UeuFEdAW+hBiTdLx0dARBi0OVgQYody5wkAAEdAJ9LxqfvnbUdAW+gAAAAAAEdARBhR64UeuIdy6AkAAEdAJ9FocrAgxUdAW+euFHrhSEdARBgQYk3S8ody6QkAAEdAJ89cKPXCj0dAW+dLxqfvnkdARBeNT987ZIdy6gkAAEdAJ8xJul41P0dAW+a4UeuFH0dARBbItDlYEIdy6wkAAEdAJ8rAgxJumEdAW+Z2yLQ5WEdARBaHKwIMSody7AkAAEdAJ8k3S8an8EdAW+Y1P3ztkUdARBYk3S8aoIdy7QkAAEdAJ8OVgQYk3UdAW+UvGp++d0dARBT987ZFoody7gkAAEdAJ8IMSbpeNUdAW+TtkWhysEdARBSbpeNT+Idy7wkAAEdAJ8CDEm6XjUdAW+SsCDEm6UdARBQ5WBBiTody8AkAAEdAJ7752yLQ5UdAW+RaHKwIMUdARBP3ztkWh4dy8QkAAEdAJ7ztkWhysEdAW+P3ztkWh0dARBN0vGp++ody8gkAAEdAJ7lYEGJN00dAW+NkWhysCEdARBKwIMSbpody8wkAAEdAJ7ZFocrAg0dAW+LhR64Ue0dARBIMSbpeNYdy9AkAAEdAJ7KwIMSbpkdAW+ItDlYEGUdARBEm6XjU/ody9QkAAEdAJ7Em6XjU/kdAW+HrhR64UkdARBDEm6XjVIdy9gkAAEdAJ6yLQ5WBBkdAW+EWhysCDEdARA++dsi0OYdy9wkAAEdAJ6bpeNT99EdAW+AQYk3S8kdARA6XjU/fO4dy+AkAAEdAJ6JN0vGp/EdAW99LxqfvnkdARA2RaHKwIYdy+QkAAEdAJ6BBiTdLx0dAW97ZFocrAkdARA0OVgQYk4dy+gkAAEdAJ50vGp++d0dAW95FocrAg0dARAxJul41P4dy+wkAAEdAJ5ocrAgxJ0dAW93Cj1wo9kdARAul41P3z4dy/AkAAEdAJ5R64UeuFEdAW9zMzMzMzUdARAp++dsi0Ydy/QkAAEdAJ4/fO2RaHUdAW9v3ztkWh0dARAl41P3ztody/gkAAEdAJ43S8an750dAW9uFHrhR7EdARAj1wo9cKYdy/wkAAEdAJ4rAgxJumEdAW9rxqfvnbUdARAgxJul41YdyAAoAAEdAJ4i0OVgQYkdAW9qwIMSbpkdARAfvnbItDodyAQoAAEdAJ4Yk3S8aoEdAW9ocrAgxJ0dARAcrAgxJuodyAgoAAEdAJ4IMSbpeNUdAW9l41P3ztkdARAZmZmZmZodyAwoAAEdAJ3hR64UeuEdAW9edsi0OVkdARAQYk3S8aodyBAoAAEdAJ3ZFocrAg0dAW9dcKPXCj0dARAO2RaHKwYdyBQoAAEdAJ3O2RaHKwUdAW9bItDlYEEdARAMSbpeNUIdyBgoAAEdAJ2yLQ5WBBkdAW9WRaHKwIUdARAGJN0vGqIdyBwoAAEdAJ2sCDEm6XkdAW9U/fO2RaEdARAEm6XjU/odyCAoAAEdAJ2l41P3ztkdAW9T987ZFokdARADlYEGJN4dyCQoAAEdAJ2XjU/fO2UdAW9RJul41P0dARAAAAAAAAIdyCgoAAEdAJ2PXCj1wpEdAW9QIMSbpeUdAQ/+dsi0OVodyCwoAAEdAJ2LQ5WBBiUdAW9O2RaHKwUdAQ/9cKPXCj4dyDAoAAEdAJ2FHrhR64UdAW9N0vGp++kdAQ/752yLQ5YdyDQoAAEdAJ1ocrAgxJ0dAW9ItDlYEGUdAQ/1wo9cKPYdyDgoAAEdAJ1iTdLxqf0dAW9HrhR64UkdAQ/0OVgQYk4dyDwoAAEdAJ1cKPXCj10dAW9Gp++dsi0dAQ/zMzMzMzYdyEAoAAEdAJ1N0vGp++kdAW9D1wo9cKUdAQ/vnbItDlodyEQoAAEdAJ1HrhR64UkdAW9C0OVgQYkdAQ/uFHrhR7IdyEgoAAEdAJ1BiTdLxqkdAW9BiTdLxqkdAQ/tDlYEGJYdyEwoAAEdAJ07ZFocrAkdAW9AgxJul40dAQ/rhR64Ue4dyFAoAAEdAJ01P3ztkWkdAW8/fO2RaHUdAQ/p++dsi0YdyFQoAAEdAJ0euFHrhSEdAW87ZFocrAkdAQ/lYEGJN04dyFgoAAEdAJ0Yk3S8aoEdAW86XjU/fO0dAQ/j1wo9cKYdyFwoAAEdAJ0SbpeNT+EdAW85WBBiTdUdAQ/i0OVgQYodyGAoAAEdAJz3ztkWhy0dAW80OVgQYk0dAQ/crAgxJuodyGQoAAEdAJzxqfvnbI0dAW8zMzMzMzUdAQ/bItDlYEIdyGgoAAEdAJzrhR64Ue0dAW8x64UeuFEdAQ/ZmZmZmZodyGwoAAEdAJzXCj1wo9kdAW8uFHrhR7EdAQ/U/fO2RaIdyHAoAAEdAJzQ5WBBiTkdAW8tDlYEGJUdAQ/TdLxqfvodyHQoAAEdAJzKwIMSbpkdAW8rxqfvnbUdAQ/SbpeNT+IdyHgoAAEdAJzEm6XjU/kdAW8qwIMSbpkdAQ/Q5WBBiTodyHwoAAEdAJyuFHrhR7EdAW8m6XjU/fUdAQ/MSbpeNUIdyIAoAAEdAJyn752yLREdAW8locrAgxUdAQ/KwIMSbpodyIQoAAEdAJyhysCDEnEdAW8km6XjU/kdAQ/JN0vGp/IdyIgoAAEdAJyNT987ZF0dAW8gxJul41UdAQ/Em6XjU/odyIwoAAEdAJyHKwIMSb0dAW8ffO2RaHUdAQ/DEm6XjVIdyJAoAAEdAJyBBiTdLx0dAW8edsi0OVkdAQ/CDEm6XjYdyJQoAAEdAJx64UeuFH0dAW8dcKPXCj0dAQ/AgxJul44dyJgoAAEdAJxmZmZmZmkdAW8ZWBBiTdUdAQ+752yLQ5YdyJwoAAEdAJxgQYk3S8kdAW8YUeuFHrkdAQ+6XjU/fO4dyKAoAAEdAJxaHKwIMSkdAW8XS8an750dAQ+41P3ztkYdyKQoAAEdAJxT987ZFokdAW8WBBiTdL0dAQ+3ztkWhy4dyKgoAAEdAJw9cKPXCj0dAW8SLQ5WBBkdAQ+ysCDEm6YdyKwoAAEdAJw5WBBiTdUdAW8RJul41P0dAQ+xqfvnbI4dyLAoAAEdAJwzMzMzMzUdAW8P3ztkWh0dAQ+wIMSbpeYdyLQoAAEdAJwcrAgxJukdAW8MCDEm6XkdAQ+rhR64Ue4dyLgoAAEdAJwWhysCDEkdAW8LAgxJumEdAQ+p++dsi0YdyLwoAAEdAJwQYk3S8akdAW8Jul41P30dAQ+o9cKPXCodyMAoAAEdAJwKPXCj1w0dAW8ItDlYEGUdAQ+nbItDlYIdyMQoAAEdAJv1wo9cKPUdAW8E3S8an8EdAQ+i0OVgQYodyMgoAAEdAJvvnbItDlkdAW8DlYEGJN0dAQ+hR64UeuIdyMwoAAEdAJvpeNT987kdAW8Cj1wo9cUdAQ+fvnbItDodyNAoAAEdAJvU/fO2RaEdAW7+uFHrhSEdAQ+bItDlYEIdyNQoAAEdAJvO2RaHKwUdAW79cKPXCj0dAQ+ZmZmZmZodyNgoAAEdAJvItDlYEGUdAW78an752yUdAQ+Yk3S8aoIdyNwoAAEdAJvCj1wo9cUdAW77ItDlYEEdAQ+XCj1wo9odyOAoAAEdAJuuFHrhR7EdAW73S8an750dAQ+SbpeNT+IdyOQoAAEdAJuhysCDEnEdAW70/fO2RaEdAQ+PXCj1wpIdyOgoAAEdAJubpeNT99EdAW7z987ZFokdAQ+OVgQYk3YdyOwoAAEdAJuHKwIMSb0dAW7wIMSbpeUdAQ+JN0vGp/IdyPAoAAEdAJt64UeuFH0dAW7t0vGp++kdAQ+Gp++dsi4dyPQoAAEdAJtkWhysCDEdAW7p++dsi0UdAQ+CDEm6XjYdyPgoAAEdAJtT987ZFokdAW7mZmZmZmkdAQ9987ZFoc4dyPwoAAEdAJs9cKPXCj0dAW7ij1wo9cUdAQ95WBBiTdYdyQAoAAEdAJsxJul41P0dAW7gQYk3S8kdAQ92RaHKwIYdyQQoAAEdAJstDlYEGJUdAW7fO2RaHK0dAQ91P3ztkWodyQgoAAEdAJscrAgxJukdAW7can752yUdAQ9xqfvnbI4dyQwoAAEdAJsKPXCj1w0dAW7ZFocrAg0dAQ9tkWhysCIdyRAoAAEdAJr1wo9cKPUdAW7U/fO2RaEdAQ9o9cKPXCodyRQoAAEdAJrjU/fO2RkdAW7RqfvnbI0dAQ9k3S8an8IdyRgoAAEdAJrO2RaHKwUdAW7N0vGp++kdAQ9gQYk3S8odyRwoAAEdAJquFHrhR7EdAW7HrhR64UkdAQ9Yk3S8aoIdySAoAAEdAJqbpeNT99EdAW7EWhysCDEdAQ9UeuFHrhYdySQoAAEdAJqHKwIMSb0dAW7AQYk3S8kdAQ9P3ztkWh4dySgoAAEdAJqBBiTdLx0dAW6/O2RaHK0dAQ9OVgQYk3YdySwoAAEdAJp0vGp++d0dAW687ZFocrEdAQ9LxqfvnbYdyTAoAAEdAJpaHKwIMSkdAW63ztkWhy0dAQ9FocrAgxYdyTQoAAEdAJpT987ZFokdAW62yLQ5WBEdAQ9Em6XjU/odyTgoAAEdAJo/fO2RaHUdAW6ysCDEm6UdAQ8/fO2RaHYdyTwoAAEdAJo5WBBiTdUdAW6xqfvnbI0dAQ8+dsi0OVodyUAoAAEdAJozMzMzMzUdAW6wYk3S8akdAQ887ZFocrIdyUQoAAEdAJovGp++dskdAW6vXCj1wpEdAQ8752yLQ5YdyUgoAAEdAJoSbpeNT+EdAW6qPXCj1w0dAQ81wo9cKPYdyUwoAAEdAJoMSbpeNUEdAW6pN0vGp/EdAQ80OVgQYk4dyVAoAAEdAJoIMSbpeNUdAW6oMSbpeNUdAQ8ysCDEm6YdyVQoAAEdAJnxqfvnbI0dAW6kGJN0vG0dAQ8uFHrhR7IdyVgoAAEdAJntkWhysCEdAW6jEm6XjVEdAQ8si0OVgQodyVwoAAEdAJnnbItDlYEdAW6hysCDEnEdAQ8rhR64Ue4dyWAoAAEdAJnMzMzMzM0dAW6crAgxJukdAQ8lYEGJN04dyWQoAAEdAJnGp++dsi0dAW6bpeNT99EdAQ8j1wo9cKYdyWgoAAEdAJnAgxJul40dAW6an752yLUdAQ8i0OVgQYodyWwoAAEdAJml41P3ztkdAW6VgQYk3TEdAQ8crAgxJuodyXAoAAEdAJmfvnbItDkdAW6UOVgQYk0dAQ8bItDlYEIdyXQoAAEdAJmZmZmZmZkdAW6TMzMzMzUdAQ8aHKwIMSodyXgoAAEdAJmFHrhR64UdAW6PGp++dskdAQ8U/fO2RaIdyXwoAAEdAJl++dsi0OUdAW6OFHrhR7EdAQ8T987ZFoodyYAoAAEdAJl41P3ztkUdAW6NDlYEGJUdAQ8SbpeNT+IdyYQoAAEdAJleNT987ZEdAW6H752yLREdAQ8MSbpeNUIdyYgoAAEdAJlYEGJN0vEdAW6Gp++dsi0dAQ8LQ5WBBiYdyYwoAAEdAJlT987ZFokdAW6FocrAgxUdAQ8Jul41P34dyZAoAAEdAJk9cKPXCj0dAW6BiTdLxqkdAQ8FHrhR64YdyZQoAAEdAJk3S8an750dAW6AgxJul40dAQ8DlYEGJN4dyZgoAAEdAJkzMzMzMzUdAW5/fO2RaHUdAQ8Cj1wo9cYdyZwoAAEdAJktDlYEGJUdAW5+NT987ZEdAQ8BBiTdLx4dyaAoAAEdAJkYk3S8aoEdAW56XjU/fO0dAQ78an752yYdyaQoAAEdAJkSbpeNT+EdAW55FocrAg0dAQ764UeuFH4dyagoAAEdAJkMSbpeNUEdAW54EGJN0vEdAQ752yLQ5WIdyawoAAEdAJj3ztkWhy0dAW5z987ZFokdAQ70vGp++d4dybAoAAEdAJjxqfvnbI0dAW5y8an7520dAQ7ztkWhysIdybQoAAEdAJjrhR64Ue0dAW5x64UeuFEdAQ7yLQ5WBBodybgoAAEdAJjlYEGJN00dAW5wo9cKPXEdAQ7xJul41P4dybwoAAEdAJjQ5WBBiTkdAW5szMzMzM0dAQ7sCDEm6XodycAoAAEdAJjKwIMSbpkdAW5rhR64Ue0dAQ7rAgxJumIdycQoAAEdAJjEm6XjU/kdAW5qfvnbItEdAQ7peNT987odycgoAAEdAJjAgxJul40dAW5pN0vGp/EdAQ7ocrAgxJ4dycwoAAEdAJip++dsi0UdAW5lYEGJN00dAQ7jU/fO2RodydAoAAEdAJil41P3ztkdAW5kGJN0vG0dAQ7iTdLxqf4dydQoAAEdAJifvnbItDkdAW5jEm6XjVEdAQ7gxJul41YdydgoAAEdAJiLQ5WBBiUdAW5e+dsi0OUdAQ7cKPXCj14dydwoAAEdAJiFHrhR64UdAW5d87ZFoc0dAQ7an752yLYdyeAoAAEdAJh++dsi0OUdAW5c7ZFocrEdAQ7ZmZmZmZodyeQoAAEdAJh41P3ztkUdAW5bpeNT99EdAQ7YEGJN0vIdyegoAAEdAJhkWhysCDEdAW5XztkWhy0dAQ7TdLxqfvodyewoAAEdAJhYEGJN0vEdAW5VgQYk3TEdAQ7Q5WBBiTodyfAoAAEdAJhT987ZFokdAW5UOVgQYk0dAQ7PXCj1wpIdyfQoAAEdAJhDlYEGJN0dAW5RaHKwIMUdAQ7MSbpeNUIdyfgoAAEdAJg/fO2RaHUdAW5QYk3S8akdAQ7KwIMSbpodyfwoAAEdAJgzMzMzMzUdAW5OFHrhR7EdAQ7IMSbpeNYdygAoAAEdAJgeuFHrhSEdAW5J++dsi0UdAQ7DlYEGJN4dygQoAAEdAJgSbpeNT+EdAW5H752yLREdAQ7AgxJul44dyggoAAEdAJgMSbpeNUEdAW5Gp++dsi0dAQ6/fO2RaHYdygwoAAEdAJf3ztkWhy0dAW5C0OVgQYkdAQ664UeuFH4dyhAoAAEdAJftkWhysCEdAW5AgxJul40dAQ63ztkWhy4dyhQoAAEdAJfZFocrAg0dAW48an752yUdAQ6zMzMzMzYdyhgoAAEdAJfGp++dsi0dAW45FocrAg0dAQ6vGp++dsodyhwoAAEdAJeyLQ5WBBkdAW40/fO2RaEdAQ6qfvnbItIdyiAoAAEdAJehysCDEnEdAW4xqfvnbI0dAQ6m6XjU/fYdyiQoAAEdAJeBBiTdLx0dAW4rQ5WBBiUdAQ6fO2RaHK4dyigoAAEdAJdsi0OVgQkdAW4nbItDlYEdAQ6an752yLYdyiwoAAEdAJdcKPXCj10dAW4j1wo9cKUdAQ6WhysCDEodyjAoAAEdAJdBiTdLxqkdAW4euFHrhSEdAQ6QYk3S8aodyjQoAAEdAJc7ZFocrAkdAW4dsi0OVgUdAQ6PXCj1wpIdyjgoAAEdAJc1P3ztkWkdAW4can752yUdAQ6N0vGp++odyjwoAAEdAJcWhysCDEkdAW4WRaHKwIUdAQ6Gp++dsi4dykAoAAEdAJb752yLQ5UdAW4RJul41P0dAQ6AgxJul44dykQoAAEdAJb1wo9cKPUdAW4P3ztkWh0dAQ5/fO2RaHYdykgoAAEdAJbxqfvnbI0dAW4O2RaHKwUdAQ5987ZFoc4dykwoAAEdAJbXCj1wo9kdAW4Jul41P30dAQ53ztkWhy4dylAoAAEdAJbQ5WBBiTkdAW4IcrAgxJ0dAQ52yLQ5WBIdylQoAAEdAJa2RaHKwIUdAW4DU/fO2RkdAQ5wo9cKPXIdylgoAAEdAJayLQ5WBBkdAW4CTdLxqf0dAQ5vGp++dsodylwoAAEdAJasCDEm6XkdAW4BBiTdLx0dAQ5uFHrhR7IdymAoAAEdAJaRaHKwIMUdAW3752yLQ5UdAQ5n752yLRIdymQoAAEdAJaLQ5WBBiUdAW364UeuFH0dAQ5m6XjU/fYdymgoAAEdAJaHKwIMSb0dAW35mZmZmZkdAQ5lYEGJN04dymwoAAEdAJZysCDEm6UdAW31gQYk3TEdAQ5gxJul41YdynAoAAEdAJZsi0OVgQkdAW30euFHrhUdAQ5fO2RaHK4dynQoAAEdAJZmZmZmZmkdAW3zdLxqfvkdAQ5eNT987ZIdyngoAAEdAJZLxqfvnbUdAW3uFHrhR7EdAQ5YEGJN0vIdynwoAAEdAJZHrhR64UkdAW3tDlYEGJUdAQ5XCj1wo9odyoAoAAEdAJZBiTdLxqkdAW3sCDEm6XkdAQ5VgQYk3TIdyoQoAAEdAJYm6XjU/fUdAW3mp++dsi0dAQ5PXCj1wpIdyogoAAEdAJYgxJul41UdAW3locrAgxUdAQ5OVgQYk3YdyowoAAEdAJYcrAgxJukdAW3kWhysCDEdAQ5MzMzMzM4dypAoAAEdAJYIMSbpeNUdAW3ggxJul40dAQ5IMSbpeNYdypQoAAEdAJYCDEm6XjUdAW3fO2RaHK0dAQ5Gp++dsi4dypgoAAEdAJX752yLQ5UdAW3eNT987ZEdAQ5FocrAgxYdypwoAAEdAJXjU/fO2RkdAW3ZFocrAg0dAQ4/fO2RaHYdyqAoAAEdAJXdLxqfvnkdAW3XztkWhy0dAQ4+dsi0OVodyqQoAAEdAJXXCj1wo9kdAW3WyLQ5WBEdAQ487ZFocrIdyqgoAAEdAJXCj1wo9cUdAW3SsCDEm6UdAQ44UeuFHrodyqwoAAEdAJW+dsi0OVkdAW3RaHKwIMUdAQ42yLQ5WBIdyrAoAAEdAJW4UeuFHrkdAW3QYk3S8akdAQ41wo9cKPYdyrQoAAEdAJWyLQ5WBBkdAW3PGp++dskdAQ40OVgQYk4dyrgoAAEdAJWdsi0OVgUdAW3LQ5WBBiUdAQ4vnbItDlodyrwoAAEdAJWZmZmZmZkdAW3J++dsi0UdAQ4ul41P3z4dysAoAAEdAJWTdLxqfvkdAW3I9cKPXCkdAQ4tDlYEGJYdysQoAAEdAJV41P3ztkUdAW3D1wo9cKUdAQ4m6XjU/fYdysgoAAEdAJV0vGp++d0dAW3Cj1wo9cUdAQ4l41P3ztodyswoAAEdAJVul41P3z0dAW3BiTdLxqkdAQ4kWhysCDIdytAoAAEdAJVaHKwIMSkdAW29cKPXCj0dAQ4fvnbItDodytQoAAEdAJVP3ztkWh0dAW27ItDlYEEdAQ4dLxqfvnodytgoAAEdAJVJul41P30dAW252yLQ5WEdAQ4cKPXCj14dytwoAAEdAJU1P3ztkWkdAW22BBiTdL0dAQ4XjU/fO2YdyuAoAAEdAJUrAgxJumEdAW2ztkWhysEdAQ4UeuFHrhYdyuQoAAEdAJUWhysCDEkdAW2vnbItDlkdAQ4P3ztkWh4dyugoAAEdAJUKPXCj1w0dAW2tT987ZF0dAQ4NT987ZF4dyuwoAAEdAJUGJN0vGqEdAW2sCDEm6XkdAQ4MSbpeNUIdyvAoAAEdAJTxqfvnbI0dAW2oMSbpeNUdAQ4HrhR64UodyvQoAAEdAJTlYEGJN00dAW2l41P3ztkdAQ4FHrhR64YdyvgoAAEdAJThR64UeuEdAW2km6XjU/kdAQ4DlYEGJN4dyvwoAAEdAJTCj1wo9cUdAW2eNT987ZEdAQ38an752yYdywAoAAEdAJSuFHrhR7EdAW2aXjU/fO0dAQ33ztkWhy4dywQoAAEdAJSdsi0OVgUdAW2WyLQ5WBEdAQ3ztkWhysIdywgoAAEdAJSJN0vGp/EdAW2SsCDEm6UdAQ3vGp++dsodywwoAAEdAJR++dsi0OUdAW2QYk3S8akdAQ3si0OVgQodyxAoAAEdAJRaHKwIMSkdAW2I9cKPXCkdAQ3j1wo9cKYdyxQoAAEdAJQ/fO2RaHUdAW2DlYEGJN0dAQ3eNT987ZIdyxgoAAEdAJQ1P3ztkWkdAW2BiTdLxqkdAQ3bpeNT99IdyxwoAAEdAJQan752yLUdAW18KPXCj10dAQ3VgQYk3TIdyyAoAAEdAJQWhysCDEkdAW17ItDlYEEdAQ3UeuFHrhYdyyQoAAEdAJP752yLQ5UdAW11wo9cKPUdAQ3OVgQYk3YdyygoAAEdAJP3ztkWhy0dAW10vGp++d0dAQ3MzMzMzM4dyywoAAEdAJPxqfvnbI0dAW1zdLxqfvkdAQ3LxqfvnbYdyzAoAAEdAJPZFocrAg0dAW1uVgQYk3UdAQ3FocrAgxYdyzQoAAEdAJPS8an7520dAW1tDlYEGJUdAQ3Em6XjU/odyzgoAAEdAJPMzMzMzM0dAW1sCDEm6XkdAQ3DEm6XjVIdyzwoAAEdAJO0OVgQYk0dAW1mp++dsi0dAQ29cKPXCj4dy0AoAAEdAJOuFHrhR7EdAW1locrAgxUdAQ2752yLQ5Ydy0QoAAEdAJOVgQYk3TEdAW1gQYk3S8kdAQ22RaHKwIYdy0goAAEdAJOPXCj1wpEdAW1fO2RaHK0dAQ20vGp++d4dy0woAAEdAJOLQ5WBBiUdAW1eNT987ZEdAQ2ztkWhysIdy1AoAAEdAJNwo9cKPXEdAW1Y1P3ztkUdAQ2tkWhysCIdy1QoAAEdAJNsi0OVgQkdAW1XjU/fO2UdAQ2sCDEm6Xody1goAAEdAJNR64UeuFEdAW1SbpeNT+EdAQ2mZmZmZmody1woAAEdAJNN0vGp++kdAW1RaHKwIMUdAQ2k3S8an8Idy2AoAAEdAJNHrhR64UkdAW1QIMSbpeUdAQ2j1wo9cKYdy2QoAAEdAJMvGp++dskdAW1LAgxJumEdAQ2dsi0OVgYdy2goAAEdAJMo9cKPXCkdAW1Jul41P30dAQ2crAgxJuody2woAAEdAJMk3S8an8EdAW1ItDlYEGUdAQ2bItDlYEIdy3AoAAEdAJMKPXCj1w0dAW1DU/fO2RkdAQ2VgQYk3TIdy3QoAAEdAJMGJN0vGqEdAW1CTdLxqf0dAQ2T987ZFoody3goAAEdAJLrhR64Ue0dAW087ZFocrEdAQ2OVgQYk3Ydy3woAAEdAJLnbItDlYEdAW0752yLQ5UdAQ2MzMzMzM4dy4AoAAEdAJLhR64UeuEdAW06n752yLUdAQ2LxqfvnbYdy4QoAAEdAJLItDlYEGUdAW01gQYk3TEdAQ2FocrAgxYdy4goAAEdAJLCj1wo9cUdAW00OVgQYk0dAQ2Em6XjU/ody4woAAEdAJK+dsi0OVkdAW0zMzMzMzUdAQ2DEm6XjVIdy5AoAAEdAJKp++dsi0UdAW0vGp++dskdAQ1+dsi0OVody5QoAAEdAJKj1wo9cKUdAW0t0vGp++kdAQ19cKPXCj4dy5goAAEdAJKfvnbItDkdAW0si0OVgQkdAQ1752yLQ5Ydy5woAAEdAJKHKwIMSb0dAW0nbItDlYEdAQ12RaHKwIYdy6AoAAEdAJKBBiTdLx0dAW0mJN0vGqEdAQ10vGp++d4dy6QoAAEdAJJ64UeuFH0dAW0lHrhR64UdAQ1ztkWhysIdy6goAAEdAJJiTdLxqf0dAW0fvnbItDkdAQ1tkWhysCIdy6woAAEdAJJcKPXCj10dAW0euFHrhSEdAQ1si0OVgQody7AoAAEdAJJYEGJN0vEdAW0dcKPXCj0dAQ1rAgxJumIdy7QoAAEdAJJDlYEGJN0dAW0ZWBBiTdUdAQ1mZmZmZmody7goAAEdAJI5WBBiTdUdAW0XCj1wo9kdAQ1j1wo9cKYdy7woAAEdAJIgxJul41UdAW0R64UeuFEdAQ1eNT987ZIdy8AoAAEdAJIan752yLUdAW0Qo9cKPXEdAQ1crAgxJuody8QoAAEdAJIWhysCDEkdAW0PnbItDlkdAQ1bpeNT99Idy8goAAEdAJH3ztkWhy0dAW0I9cKPXCkdAQ1UeuFHrhYdy8woAAEdAJHxqfvnbI0dAW0H752yLREdAQ1S8an7524dy9AoAAEdAJHfO2RaHK0dAW0D1wo9cKUdAQ1OVgQYk3Ydy9QoAAEdAJHU/fO2RaEdAW0BiTdLxqkdAQ1LxqfvnbYdy9goAAEdAJGwIMSbpeUdAWz52yLQ5WEdAQ1DlYEGJN4dy9woAAEdAJGTdLxqfvkdAWzzdLxqfvkdAQ08an752yYdy+AoAAEdAJGNT987ZF0dAWzyLQ5WBBkdAQ064UeuFH4dy+QoAAEdAJFul41P3z0dAWzrxqfvnbUdAQ0ztkWhysIdy+goAAEdAJFLxqfvnbUdAWzkGJN0vG0dAQ0rhR64Ue4dy+woAAEdAJEzMzMzMzUdAWze+dsi0OUdAQ0l41P3ztody/AoAAEdAJEvGp++dskdAWzdsi0OVgUdAQ0kWhysCDIdy/QoAAEdAJEMSbpeNUEdAWzWBBiTdL0dAQ0cKPXCj14dy/goAAEdAJDztkWhysEdAWzQ5WBBiTkdAQ0WBBiTdL4dy/woAAEdAJDtkWhysCEdAWzPnbItDlkdAQ0U/fO2RaIdyAAsAAEdAJDnbItDlYEdAWzOl41P3z0dAQ0TdLxqfvodyAQsAAEdAJDO2RaHKwUdAWzJN0vGp/EdAQ0N0vGp++odyAgsAAEdAJDKwIMSbpkdAWzH752yLREdAQ0MzMzMzM4dyAwsAAEdAJCyLQ5WBBkdAWzC0OVgQYkdAQ0Gp++dsi4dyBAsAAEdAJCsCDEm6XkdAWzBiTdLxqkdAQ0FocrAgxYdyBQsAAEdAJCn752yLREdAWzAgxJul40dAQ0EGJN0vG4dyBgsAAEdAJCPXCj1wpEdAWy7ItDlYEEdAQz+dsi0OVodyBwsAAEdAJCJN0vGp/EdAWy52yLQ5WEdAQz87ZFocrIdyCAsAAEdAJCFHrhR64UdAWy41P3ztkUdAQz752yLQ5YdyCQsAAEdAJBsi0OVgQkdAWyzdLxqfvkdAQz1wo9cKPYdyCgsAAEdAJBmZmZmZmkdAWyyLQ5WBBkdAQz0vGp++d4dyCwsAAEdAJBP3ztkWh0dAWytDlYEGJUdAQzvGp++dsodyDAsAAEdAJBJul41P30dAWyrxqfvnbUdAQztkWhysCIdyDQsAAEdAJBDlYEGJN0dAWyqwIMSbpkdAQzsi0OVgQodyDgsAAEdAJAtDlYEGJUdAWylYEGJN00dAQzmZmZmZmodyDwsAAEdAJAm6XjU/fUdAWykGJN0vG0dAQzlYEGJN04dyEAsAAEdAJAgxJul41UdAWyjEm6XjVEdAQzj1wo9cKYdyEQsAAEdAJAOVgQYk3UdAWyeuFHrhSEdAQzfvnbItDodyEgsAAEdAJAKPXCj1w0dAWydsi0OVgUdAQzeNT987ZIdyEwsAAEdAJAEGJN0vG0dAWycan752yUdAQzdLxqfvnodyFAsAAEdAI/rhR64Ue0dAWyXCj1wo9kdAQzXCj1wo9odyFQsAAEdAI/nbItDlYEdAWyWBBiTdL0dAQzWBBiTdL4dyFgsAAEdAI/hR64UeuEdAWyUvGp++d0dAQzUeuFHrhYdyFwsAAEdAI/ItDlYEGUdAWyPXCj1wpEdAQzO2RaHKwYdyGAsAAEdAI/Em6XjU/kdAWyOVgQYk3UdAQzNT987ZF4dyGQsAAEdAI+sCDEm6XkdAWyI9cKPXCkdAQzHrhR64UodyGgsAAEdAI+n752yLREdAWyHrhR64UkdAQzGp++dsi4dyGwsAAEdAI+hysCDEnEdAWyGp++dsi0dAQzFHrhR64YdyHAsAAEdAI+JN0vGp/EdAWyBR64UeuEdAQy/fO2RaHYdyHQsAAEdAI+FHrhR64UdAWyAAAAAAAEdAQy987ZFoc4dyHgsAAEdAI9++dsi0OUdAWx++dsi0OUdAQy87ZFocrIdyHwsAAEdAI9iTdLxqf0dAWx4UeuFHrkdAQy1wo9cKPYdyIAsAAEdAI9Jul41P30dAWxy8an7520dAQywIMSbpeYdyIQsAAEdAI8/fO2RaHUdAWxwo9cKPXEdAQytkWhysCIdyIgsAAEdAI8i0OVgQYkdAWxqPXCj1w0dAQymZmZmZmodyIwsAAEdAI8crAgxJukdAWxo9cKPXCkdAQylYEGJN04dyJAsAAEdAI8AAAAAAAEdAWxij1wo9cUdAQyeNT987ZIdyJQsAAEdAI7dLxqfvnkdAWxa4UeuFH0dAQyWBBiTdL4dyJgsAAEdAI7AgxJul40dAWxUOVgQYk0dAQyO2RaHKwYdyJwsAAEdAI68an752yUdAWxS8an7520dAQyN0vGp++odyKAsAAEdAI6fvnbItDkdAWxMi0OVgQkdAQyGp++dsi4dyKQsAAEdAI587ZFocrEdAWxE3S8an8EdAQx+dsi0OVodyKgsAAEdAI5mZmZmZmkdAWw/fO2RaHUdAQx41P3ztkYdyKwsAAEdAI5gQYk3S8kdAWw+NT987ZEdAQx3S8an754dyLAsAAEdAI5cKPXCj10dAWw9LxqfvnkdAQx2RaHKwIYdyLQsAAEdAI5DlYEGJN0dAWw3jU/fO2UdAQxwIMSbpeYdyLgsAAEdAI4/fO2RaHUdAWw2hysCDEkdAQxvGp++dsodyLwsAAEdAI4m6XjU/fUdAWwxJul41P0dAQxpeNT987odyMAsAAEdAI4gxJul41UdAWwv3ztkWh0dAQxn752yLRIdyMQsAAEdAI4crAgxJukdAWwu2RaHKwUdAQxm6XjU/fYdyMgsAAEdAI4GJN0vGqEdAWwpeNT987kdAQxhR64UeuIdyMwsAAEdAI4AAAAAAAEdAWwoMSbpeNUdAQxfvnbItDodyNAsAAEdAI3752yLQ5UdAWwnKwIMSb0dAQxeuFHrhSIdyNQsAAEdAI3jU/fO2RkdAWwhiTdLxqkdAQxZFocrAg4dyNgsAAEdAI3fO2RaHK0dAWwggxJul40dAQxXjU/fO2YdyNwsAAEdAI3Gp++dsi0dAWwbItDlYEEdAQxR64UeuFIdyOAsAAEdAI3Cj1wo9cUdAWwZ2yLQ5WEdAQxQ5WBBiTodyOQsAAEdAI28an752yUdAWwY1P3ztkUdAQxPXCj1wpIdyOgsAAEdAI2l41P3ztkdAWwTMzMzMzUdAQxJul41P34dyOwsAAEdAI2fvnbItDkdAWwSLQ5WBBkdAQxIMSbpeNYdyPAsAAEdAI2JN0vGp/EdAWwMzMzMzM0dAQxCj1wo9cYdyPQsAAEdAI2DEm6XjVEdAWwLhR64Ue0dAQxBiTdLxqodyPgsAAEdAI1++dsi0OUdAWwKfvnbItEdAQxAAAAAAAIdyPwsAAEdAI1mZmZmZmkdAWwE3S8an8EdAQw6XjU/fO4dyQAsAAEdAI1iTdLxqf0dAWwD1wo9cKUdAQw5WBBiTdYdyQQsAAEdAI1eNT987ZEdAWwCj1wo9cUdAQw3ztkWhy4dyQgsAAEdAI1FocrAgxUdAWv9LxqfvnkdAQwyLQ5WBBodyQwsAAEdAI1BiTdLxqkdAWv752yLQ5UdAQwxJul41P4dyRAsAAEdAI0o9cKPXCkdAWv2hysCDEkdAQwrhR64Ue4dyRQsAAEdAI0k3S8an8EdAWv1gQYk3TEdAQwp++dsi0YdyRgsAAEdAI0euFHrhSEdAWv0OVgQYk0dAQwo9cKPXCodyRwsAAEdAI0IMSbpeNUdAWvu2RaHKwUdAQwjU/fO2RodySAsAAEdAI0EGJN0vG0dAWvtkWhysCEdAQwhysCDEnIdySQsAAEdAIz987ZFoc0dAWvsi0OVgQkdAQwgxJul41YdySgsAAEdAIznbItDlYEdAWvnKwIMSb0dAQwbItDlYEIdySwsAAEdAIzhR64UeuEdAWvl41P3ztkdAQwZmZmZmZodyTAsAAEdAIzKwIMSbpkdAWvggxJul40dAQwT987ZFoodyTQsAAEdAIzGp++dsi0dAWvfO2RaHK0dAQwS8an7524dyTgsAAEdAIzAgxJul40dAWveNT987ZEdAQwRaHKwIMYdyTwsAAEdAIyj1wo9cKUdAWvXjU/fO2UdAQwKwIMSbpodyUAsAAEdAIyNT987ZF0dAWvSLQ5WBBkdAQwFHrhR64YdyUQsAAEdAIyDEm6XjVEdAWvPnbItDlkdAQwCj1wo9cYdyUgsAAEdAIxocrAgxJ0dAWvI9cKPXCkdAQv7ZFocrAodyUwsAAEdAIxiTdLxqf0dAWvH752yLREdAQv6XjU/fO4dyVAsAAEdAIxHrhR64UkdAWvBR64UeuEdAQvzMzMzMzYdyVQsAAEdAIwm6XjU/fUdAWu5WBBiTdUdAQvrAgxJumIdyVgsAAEdAIwKPXCj1w0dAWuysCDEm6UdAQvkWhysCDIdyVwsAAEdAIwEGJN0vG0dAWuxqfvnbI0dAQvjU/fO2RodyWAsAAEdAIvtkWhysCEdAWusCDEm6XkdAQvdLxqfvnodyWQsAAEdAIvpeNT987kdAWurAgxJumEdAQvcKPXCj14dyWgsAAEdAIvItDlYEGUdAWujEm6XjVEdAQvT987ZFoodyWwsAAEdAIuyLQ5WBBkdAWudsi0OVgUdAQvOVgQYk3YdyXAsAAEdAIusCDEm6XkdAWucan752yUdAQvNT987ZF4dyXQsAAEdAIun752yLREdAWubZFocrAkdAQvLxqfvnbYdyXgsAAEdAIuRaHKwIMUdAWuVwo9cKPUdAQvGJN0vGqIdyXwsAAEdAIuNT987ZF0dAWuUvGp++d0dAQvFHrhR64YdyYAsAAEdAItsi0OVgQkdAWuMzMzMzM0dAQu87ZFocrIdyYQsAAEdAItWBBiTdL0dAWuHKwIMSb0dAQu3S8an754dyYgsAAEdAItP3ztkWh0dAWuGJN0vGqEdAQu2RaHKwIYdyYwsAAEdAItLxqfvnbUdAWuE3S8an8EdAQu0vGp++d4dyZAsAAEdAIs1P3ztkWkdAWt/fO2RaHUdAQuvGp++dsodyZQsAAEdAIsvGp++dskdAWt+NT987ZEdAQuuFHrhR7IdyZgsAAEdAIsYk3S8aoEdAWt41P3ztkUdAQuocrAgxJ4dyZwsAAEdAIsUeuFHrhUdAWt3jU/fO2UdAQum6XjU/fYdyaAsAAEdAIsQYk3S8akdAWt2hysCDEkdAQul41P3ztodyaQsAAEdAIr52yLQ5WEdAWtw5WBBiTkdAQugQYk3S8odyagsAAEdAIrztkWhysEdAWtvnbItDlkdAQufO2RaHK4dyawsAAEdAIrvnbItDlkdAWtul41P3z0dAQudsi0OVgYdybAsAAEdAIrZFocrAg0dAWto9cKPXCkdAQuYEGJN0vIdybQsAAEdAIrU/fO2RaEdAWtn752yLREdAQuXCj1wo9odybgsAAEdAIq+dsi0OVkdAWtiTdLxqf0dAQuRaHKwIMYdybwsAAEdAIq4UeuFHrkdAWthBiTdLx0dAQuP3ztkWh4dycAsAAEdAIq0OVgQYk0dAWtgAAAAAAEdAQuO2RaHKwYdycQsAAEdAIqdsi0OVgUdAWtaXjU/fO0dAQuJN0vGp/IdycgsAAEdAIqXjU/fO2UdAWtZWBBiTdUdAQuIMSbpeNYdycwsAAEdAIp87ZFocrEdAWtSsCDEm6UdAQuBBiTdLx4dydAsAAEdAIp41P3ztkUdAWtRaHKwIMUdAQuAAAAAAAIdydQsAAEdAIpiTdLxqf0dAWtLxqfvnbUdAQt6XjU/fO4dydgsAAEdAIpeNT987ZEdAWtKwIMSbpkdAQt5WBBiTdYdydwsAAEdAIpYEGJN0vEdAWtJeNT987kdAQt3ztkWhy4dyeAsAAEdAIpBiTdLxqkdAWtEGJN0vG0dAQtyLQ5WBBodyeQsAAEdAIo9cKPXCj0dAWtC0OVgQYkdAQtxJul41P4dyegsAAEdAIom6XjU/fUdAWs9LxqfvnkdAQtrhR64Ue4dyewsAAEdAIoi0OVgQYkdAWs8KPXCj10dAQtqfvnbItIdyfAsAAEdAIocrAgxJukdAWs64UeuFH0dAQto9cKPXCodyfQsAAEdAIoIMSbpeNUdAWs1gQYk3TEdAQtjU/fO2RodyfgsAAEdAIoCDEm6XjUdAWs0OVgQYk0dAQtiTdLxqf4dyfwsAAEdAInjU/fO2RkdAWssSbpeNUEdAQtaHKwIMSodygAsAAEdAInMzMzMzM0dAWsmp++dsi0dAQtUeuFHrhYdygQsAAEdAInCj1wo9cUdAWskWhysCDEdAQtSbpeNT+IdyggsAAEdAImn752yLREdAWsdsi0OVgUdAQtLQ5WBBiYdygwsAAEdAImj1wo9cKUdAWscan752yUdAQtKPXCj1w4dyhAsAAEdAImJN0vGp/EdAWsVwo9cKPUdAQtDlYEGJN4dyhQsAAEdAIlqfvnbItEdAWsN0vGp++kdAQs7ZFocrAodyhgsAAEdAIlT987ZFokdAWsIMSbpeNUdAQs1wo9cKPYdyhwsAAEdAIlP3ztkWh0dAWsG6XjU/fUdAQs0vGp++d4dyiAsAAEdAIlJul41P30dAWsF41P3ztkdAQsztkWhysIdyiQsAAEdAIkzMzMzMzUdAWsAQYk3S8kdAQsuFHrhR7IdyigsAAEdAIkvGp++dskdAWr++dsi0OUdAQssi0OVgQodyiwsAAEdAIkQYk3S8akdAWr3Cj1wo9kdAQsk3S8an8IdyjAsAAEdAIj52yLQ5WEdAWrxqfvnbI0dAQsfO2RaHK4dyjQsAAEdAIj1wo9cKPUdAWrwYk3S8akdAQseNT987ZIdyjgsAAEdAIjbItDlYEEdAWrpeNT987kdAQsXCj1wo9odyjwsAAEdAIjXCj1wo9kdAWrocrAgxJ0dAQsWBBiTdL4dykAsAAEdAIjAgxJul40dAWri0OVgQYkdAQsQYk3S8aodykQsAAEdAIi8an752yUdAWrhiTdLxqkdAQsPXCj1wpIdykgsAAEdAIi4UeuFHrkdAWrggxJul40dAQsN0vGp++odykwsAAEdAIihysCDEnEdAWra4UeuFH0dAQsItDlYEGYdylAsAAEdAIidsi0OVgUdAWrZmZmZmZkdAQsHKwIMSb4dylQsAAEdAIiDEm6XjVEdAWrS8an7520dAQsAgxJul44dylgsAAEdAIh++dsi0OUdAWrRqfvnbI0dAQr/fO2RaHYdylwsAAEdAIhocrAgxJ0dAWrMCDEm6XkdAQr52yLQ5WIdymAsAAEdAIhkWhysCDEdAWrLAgxJumEdAQr41P3ztkYdymQsAAEdAIhgQYk3S8kdAWrJul41P30dAQr3S8an754dymgsAAEdAIhJul41P30dAWrEGJN0vG0dAQryLQ5WBBodymwsAAEdAIhFocrAgxUdAWrC0OVgQYkdAQrwo9cKPXIdynAsAAEdAIgrAgxJumEdAWq8KPXCj10dAQrp++dsi0YdynQsAAEdAIgm6XjU/fUdAWq64UeuFH0dAQro9cKPXCodyngsAAEdAIgQYk3S8akdAWq1P3ztkWkdAQrjU/fO2RodynwsAAEdAIgMSbpeNUEdAWq0OVgQYk0dAQriTdLxqf4dyoAsAAEdAIgIMSbpeNUdAWqy8an7520dAQrgxJul41YdyoQsAAEdAIfxqfvnbI0dAWqtT987ZF0dAQrbItDlYEIdyogsAAEdAIftkWhysCEdAWqsCDEm6XkdAQraHKwIMSodyowsAAEdAIfZFocrAg0dAWqmp++dsi0dAQrUeuFHrhYdypAsAAEdAIfS8an7520dAWqlYEGJN00dAQrTdLxqfvodypQsAAEdAIfO2RaHKwUdAWqkGJN0vG0dAQrSbpeNT+IdypgsAAEdAIe6XjU/fO0dAWqedsi0OVkdAQrMzMzMzM4dypwsAAEdAIe0OVgQYk0dAWqdLxqfvnkdAQrLxqfvnbYdyqAsAAEdAIeXjU/fO2UdAWqVP3ztkWkdAQrDlYEGJN4dyqQsAAEdAIeBBiTdLx0dAWqPnbItDlkdAQq+dsi0OVodyqgsAAEdAId87ZFocrEdAWqOl41P3z0dAQq87ZFocrIdyqwsAAEdAId41P3ztkUdAWqNT987ZF0dAQq752yLQ5YdyrAsAAEdAIdeNT987ZEdAWqGZmZmZmkdAQq1P3ztkWodyrQsAAEdAIc/fO2RaHUdAWp+dsi0OVkdAQqtDlYEGJYdyrgsAAEdAIcm6XjU/fUdAWp3jU/fO2UdAQqmZmZmZmodyrwsAAEdAIci0OVgQYkdAWp2RaHKwIUdAQqlYEGJN04dysAsAAEdAIcMSbpeNUEdAWpwo9cKPXEdAQqfvnbItDodysQsAAEdAIcIMSbpeNUdAWpvnbItDlkdAQqeuFHrhSIdysgsAAEdAIbpeNT987kdAWpnbItDlYEdAQqXCj1wo9odyswsAAEdAIbQ5WBBiTkdAWpggxJul40dAQqQYk3S8aodytAsAAEdAIbMzMzMzM0dAWpffO2RaHUdAQqO2RaHKwYdytQsAAEdAIa4UeuFHrkdAWpZ2yLQ5WEdAQqJul41P34dytgsAAEdAIayLQ5WBBkdAWpYk3S8aoEdAQqIMSbpeNYdytwsAAEdAIaVgQYk3TEdAWpQYk3S8akdAQqAgxJul44dyuAsAAEdAIaBBiTdLx0dAWpKwIMSbpkdAQp7ZFocrAodyuQsAAEdAIZ64UeuFH0dAWpJul41P30dAQp52yLQ5WIdyugsAAEdAIZ2yLQ5WBEdAWpIcrAgxJ0dAQp41P3ztkYdyuwsAAGUoR0AhmJN0vGp/R0BakLQ5WBBiR0BCnMzMzMzNh3K8CwAAR0Ahl41P3ztkR0BakGJN0vGqR0BCnItDlYEGh3K9CwAAR0AhkWhysCDFR0BajqfvnbItR0BCmuFHrhR7h3K+CwAAR0Ahj987ZFodR0BajlYEGJN1R0BCmp++dsi0h3K/CwAAR0AhisCDEm6YR0BajO2RaHKwR0BCmTdLxqfwh3LACwAAR0AhibpeNT99R0BajKwIMSbpR0BCmPXCj1wph3LBCwAAR0AhiLQ5WBBiR0BajFocrAgxR0BCmLQ5WBBih3LCCwAAR0Ahg5WBBiTdR0BaivGp++dtR0BCl0vGp++eh3LDCwAAR0Ahgo9cKPXDR0Baip++dsi0R0BClwo9cKPXh3LECwAAR0AhfXCj1wo9R0BaiTdLxqfwR0BClaHKwIMSh3LFCwAAR0Ahe+dsi0OWR0BaiOVgQYk3R0BClWBBiTdMh3LGCwAAR0AheuFHrhR7R0BaiJN0vGp/R0BClP3ztkWih3LHCwAAR0AhdcKPXCj2R0BahysCDEm6R0BCk7ZFocrBh3LICwAAR0AhdLxqfvnbR0BahtkWhysCR0BCk1P3ztkXh3LJCwAAR0AhbpeNT987R0BahS8an753R0BCkcrAgxJvh3LKCwAAR0AhbZFocrAhR0BahN0vGp++R0BCkWhysCDFh3LLCwAAR0AhaHKwIMScR0Bag3S8an76R0BCkCDEm6Xjh3LMCwAAR0AhZ2yLQ5WBR0BagyLQ5WBCR0BCj752yLQ5h3LNCwAAR0AhZmZmZmZmR0BagtDlYEGJR0BCj3ztkWhzh3LOCwAAR0AhYUeuFHrhR0BagWhysCDFR0BCjjU/fO2Rh3LPCwAAR0AhX752yLQ5R0BagRaHKwIMR0BCjdLxqfvnh3LQCwAAR0AhWZmZmZmaR0Baf1wo9cKPR0BCjCj1wo9ch3LRCwAAR0AhWJN0vGp/R0Bafwo9cKPXR0BCi+dsi0OWh3LSCwAAR0AhU3S8an76R0BafaHKwIMSR0BCip++dsi0h3LTCwAAR0AhUm6XjU/fR0BafU/fO2RaR0BCij1wo9cKh3LUCwAAR0AhTEm6XjU/R0Bae5WBBiTdR0BCiLQ5WBBih3LVCwAAR0AhS0OVgQYlR0Bae0OVgQYlR0BCiFHrhR64h3LWCwAAR0AhRR64UeuFR0BaeYk3S8aoR0BChqfvnbIth3LXCwAAR0AhRBiTdLxqR0BaeUeuFHrhR0BChmZmZmZmh3LYCwAAR0AhPvnbItDlR0Bad987ZFodR0BChR64UeuFh3LZCwAAR0AhPfO2RaHLR0Bad41P3ztkR0BChLxqfvnbh3LaCwAAR0AhNsi0OVgQR0BadYEGJN0vR0BCgtDlYEGJh3LbCwAAR0AhL52yLQ5WR0Bac3S8an76R0BCgOVgQYk3h3LcCwAAR0AhKXjU/fO2R0BacbpeNT99R0BCf1wo9cKPh3LdCwAAR0AhI1P3ztkXR0BacAAAAAAAR0BCfbItDlYEh3LeCwAAR0AhIk3S8an8R0Bab64UeuFIR0BCfU/fO2Rah3LfCwAAR0AhGyLQ5WBCR0BabaHKwIMSR0BCe2RaHKwIh3LgCwAAR0AhFgQYk3S8R0BabCj1wo9cR0BCehysCDEnh3LhCwAAR0AhFP3ztkWiR0Baa+dsi0OWR0BCedsi0OVgh3LiCwAAR0AhDtkWhysCR0BaahysCDEnR0BCeDEm6XjVh3LjCwAAR0AhDdLxqfvnR0Baadsi0OVgR0BCd++dsi0Oh3LkCwAAR0AhBqfvnbItR0BaZ87ZFocrR0BCdgQYk3S8h3LlCwAAR0AhAgxJul41R0BaZlYEGJN1R0BCdJul41P4h3LmCwAAR0AhAQYk3S8bR0BaZgQYk3S8R0BCdFocrAgxh3LnCwAAR0Ag+uFHrhR7R0BaZEm6XjU/R0BCcrAgxJumh3LoCwAAR0Ag+dsi0OVgR0BaY/fO2RaHR0BCcm6XjU/fh3LpCwAAR0Ag9LxqfvnbR0BaYo9cKPXDR0BCcSbpeNT+h3LqCwAAR0Ag87ZFocrBR0BaYj1wo9cKR0BCcOVgQYk3h3LrCwAAR0Ag8rAgxJumR0BaYeuFHrhSR0BCcIMSbpeNh3LsCwAAR0Ag7ZFocrAhR0BaYIMSbpeNR0BCbztkWhysh3LtCwAAR0Ag7ItDlYEGR0BaYDEm6XjVR0BCbvnbItDlh3LuCwAAR0Ag5ul41P30R0BaXnbItDlYR0BCbU/fO2Rah3LvCwAAR0Ag5eNT987ZR0BaXiTdLxqgR0BCbQ5WBBiTh3LwCwAAR0Ag4MSbpeNUR0BaXKwIMSbpR0BCa6XjU/fPh3LxCwAAR0Ag3752yLQ5R0BaXFocrAgxR0BCa2RaHKwIh3LyCwAAR0Ag3rhR64UfR0BaXBiTdLxqR0BCayLQ5WBCh3LzCwAAR0Ag2ZmZmZmaR0BaWp++dsi0R0BCabpeNT99h3L0CwAAR0Ag2JN0vGp/R0BaWk3S8an8R0BCaXjU/fO2h3L1CwAAR0Ag0vGp++dtR0BaWJN0vGp/R0BCZ++dsi0Oh3L2CwAAR0Ag0euFHrhSR0BaWEGJN0vHR0BCZ41P3ztkh3L3CwAAR0AgzMzMzMzNR0BaVtkWhysCR0BCZkWhysCDh3L4CwAAR0Agy8an752yR0BaVocrAgxKR0BCZgQYk3S8h3L5CwAAR0AgxiTdLxqgR0BaVLxqfvnbR0BCZFocrAgxh3L6CwAAR0AgxR64UeuFR0BaVGp++dsjR0BCZBiTdLxqh3L7CwAAR0AgwAAAAAAAR0BaUwIMSbpeR0BCYtDlYEGJh3L8CwAAR0AgvvnbItDlR0BaUrAgxJumR0BCYm6XjU/fh3L9CwAAR0AguVgQYk3TR0BaUPXCj1wpR0BCYOVgQYk3h3L+CwAAR0AguFHrhR64R0BaUKPXCj1xR0BCYKPXCj1xh3L/CwAAR0AgsSbpeNT+R0BaTocrAgxKR0BCXrhR64Ufh3IADAAAR0AgrItDlYEGR0BaTR64UeuFR0BCXXCj1wo9h3IBDAAAR0Agq4UeuFHsR0BaTMzMzMzNR0BCXQ5WBBiTh3ICDAAAR0AgpN0vGp++R0BaSsCDEm6YR0BCW0OVgQYlh3IDDAAAR0AgnbItDlYER0BaSKPXCj1xR0BCWVgQYk3Th3IEDAAAR0AgmBBiTdLyR0BaRul41P30R0BCV64UeuFIh3IFDAAAR0Agkm6XjU/fR0BaRR64UeuFR0BCViTdLxqgh3IGDAAAR0AgkWhysCDFR0BaRMzMzMzNR0BCVeNT987Zh3IHDAAAR0AgisCDEm6YR0BaQsCDEm6YR0BCU/fO2RaHh3IIDAAAR0AghJul41P4R0BaQPXCj1wpR0BCUm6XjU/fh3IJDAAAR0AgfvnbItDlR0BaPysCDEm6R0BCUMSbpeNUh3IKDAAAR0AgffO2RaHLR0BaPul41P30R0BCUIMSbpeNh3ILDAAAR0AgeFHrhR64R0BaPR64UeuFR0BCTtkWhysCh3IMDAAAR0Agd0vGp++eR0BaPMzMzMzNR0BCTpeNT987h3INDAAAR0AgcrAgxJumR0BaO1P3ztkXR0BCTU/fO2Rah3IODAAAR0AgbAgxJul5R0BaOUeuFHrhR0BCS2RaHKwIh3IPDAAAR0AgawIMSbpeR0BaOPXCj1wpR0BCSyLQ5WBCh3IQDAAAR0AgZWBBiTdMR0BaNysCDEm6R0BCSZmZmZmah3IRDAAAR0AgZFocrAgxR0BaNtkWhysCR0BCSVgQYk3Th3ISDAAAR0AgX752yLQ5R0BaNWBBiTdMR0BCR++dsi0Oh3ITDAAAR0AgXrhR64UfR0BaNQ5WBBiTR0BCR64UeuFIh3IUDAAAR0AgWRaHKwIMR0BaM1P3ztkXR0BCRiTdLxqgh3IVDAAAR0AgUm6XjU/fR0BaMTdLxqfwR0BCRDlYEGJOh3IWDAAAR0AgUWhysCDFR0BaMOVgQYk3R0BCQ/fO2RaHh3IXDAAAR0AgTMzMzMzNR0BaL2yLQ5WBR0BCQrAgxJumh3IYDAAAR0AgS8an752yR0BaLxqfvnbJR0BCQm6XjU/fh3IZDAAAR0AgRiTdLxqgR0BaLWBBiTdMR0BCQMSbpeNUh3IaDAAAR0AgRR64UeuFR0BaLQ5WBBiTR0BCQIMSbpeNh3IbDAAAR0AgQIMSbpeNR0BaK5WBBiTdR0BCPztkWhysh3IcDAAAR0AgP3ztkWhzR0BaK0OVgQYlR0BCPvnbItDlh3IdDAAAR0AgOl41P3zuR0BaKXjU/fO2R0BCPXCj1wo9h3IeDAAAR0AgOVgQYk3TR0BaKSbpeNT+R0BCPQ5WBBiTh3IfDAAAR0AgM7ZFocrBR0BaJ1wo9cKPR0BCO4UeuFHsh3IgDAAAR0AgMrAgxJumR0BaJwo9cKPXR0BCO0OVgQYlh3IhDAAAR0AgLhR64UeuR0BaJaHKwIMSR0BCOfvnbItEh3IiDAAAR0AgLQ5WBBiTR0BaJU/fO2RaR0BCObpeNT99h3IjDAAAR0AgJmZmZmZmR0BaIzMzMzMzR0BCN87ZFocrh3IkDAAAR0AgIUeuFHrhR0BaIWhysCDFR0BCNkWhysCDh3IlDAAAR0AgIEGJN0vHR0BaIRaHKwIMR0BCNgQYk3S8h3ImDAAAR0AgGp++dsi0R0BaH0vGp++eR0BCNFocrAgxh3InDAAAR0AgE/fO2RaHR0BaHS8an753R0BCMo9cKPXDh3IoDAAAR0AgDdLxqfvnR0BaGxJul41QR0BCMMSbpeNUh3IpDAAAR0AgCDEm6XjVR0BaGUeuFHrhR0BCLxqfvnbJh3IqDAAAR0AgAxJul41QR0BaF3ztkWhzR0BCLZFocrAhh3IrDAAAR0AgAgxJul41R0BaFysCDEm6R0BCLU/fO2Rah3IsDAAAR0Af7ItDlYEGR0BaE0OVgQYlR0BCKdsi0OVgh3ItDAAAR0Af4UeuFHrhR0BaEXjU/fO2R0BCKFHrhR64h3IuDAAAR0Af4EGJN0vHR0BaESbpeNT+R0BCKBBiTdLyh3IvDAAAR0Af1P3ztkWiR0BaD1wo9cKPR0BCJocrAgxKh3IwDAAAR0AfysCDEm6YR0BaDZFocrAhR0BCJP3ztkWih3IxDAAAR0AfyLQ5WBBiR0BaDT987ZFoR0BCJLxqfvnbh3IyDAAAR0AfvXCj1wo9R0BaC3S8an76R0BCIzMzMzMzh3IzDAAAR0AfsSbpeNT+R0BaCUeuFHrhR0BCIUeuFHrhh3I0DAAAR0Afpul41P30R0BaB3ztkWhzR0BCH752yLQ5h3I1DAAAR0AfpN0vGp++R0BaBysCDEm6R0BCH3ztkWhzh3I2DAAAR0Afmp++dsi0R0BaBWBBiTdMR0BCHfO2RaHLh3I3DAAAR0AfjU/fO2RaR0BaA0OVgQYlR0BCHCj1wo9ch3I4DAAAR0AfgxJul41QR0BaAXjU/fO2R0BCGp++dsi0h3I5DAAAR0AfgQYk3S8bR0BaASbpeNT+R0BCGl41P3zuh3I6DAAAR0Afdsi0OVgQR0BZ/0vGp++eR0BCGLQ5WBBih3I7DAAAR0AfbItDlYEGR0BZ/YEGJN0vR0BCFysCDEm6h3I8DAAAR0Afan752yLRR0BZ/S8an753R0BCFul41P30h3I9DAAAR0AfYEGJN0vHR0BZ+2RaHKwIR0BCFWBBiTdMh3I+DAAAR0AfXjU/fO2RR0BZ+xJul41QR0BCFR64UeuFh3I/DAAAR0AfU/fO2RaHR0BZ+UeuFHrhR0BCE5WBBiTdh3JADAAAR0AfR64UeuFIR0BZ9xqfvnbJR0BCEcrAgxJvh3JBDAAAR0AfO2RaHKwIR0BZ9P3ztkWiR0BCEAAAAAAAh3JCDAAAR0AfMSbpeNT+R0BZ8yLQ5WBCR0BCDnbItDlYh3JDDAAAR0AfJN0vGp++R0BZ8QYk3S8bR0BCDKwIMSbph3JEDAAAR0AfGZmZmZmaR0BZ7ul41P30R0BCCuFHrhR7h3JFDAAAR0AfAxJul41QR0BZ6vGp++dtR0BCB41P3ztkh3JGDAAAR0Ae9si0OVgQR0BZ6MSbpeNUR0BCBcKPXCj2h3JHDAAAR0Ae4UeuFHrhR0BZ5MzMzMzNR0BCAm6XjU/fh3JIDAAAR0AeysCDEm6YR0BZ4NT987ZGR0BB/xqfvnbJh3JJDAAAR0AewYk3S8aoR0BZ3vnbItDlR0BB/ZFocrAhh3JKDAAAR0AetT987ZFoR0BZ3MzMzMzNR0BB+8an752yh3JLDAAAR0AeqfvnbItER0BZ2rAgxJumR0BB+fvnbItEh3JMDAAAR0Aen752yLQ5R0BZ2NT987ZGR0BB+JN0vGp/h3JNDAAAR0AenbItDlYER0BZ2IMSbpeNR0BB+DEm6XjVh3JODAAAR0AelHrhR64UR0BZ1qfvnbItR0BB9si0OVgQh3JPDAAAR0AeiDEm6XjVR0BZ1ItDlYEGR0BB9P3ztkWih3JQDAAAR0AefvnbItDlR0BZ0rAgxJumR0BB83S8an76h3JRDAAAR0AefO2RaHKwR0BZ0l41P3zuR0BB8zMzMzMzh3JSDAAAR0Aec7ZFocrBR0BZ0IMSbpeNR0BB8an752yLh3JTDAAAR0AeZ2yLQ5WBR0BZzlYEGJN1R0BB7987ZFodh3JUDAAAR0AeXCj1wo9cR0BZzCj1wo9cR0BB7jU/fO2Rh3JVDAAAR0AeUvGp++dtR0BZyl41P3zuR0BB7KwIMSbph3JWDAAAR0AeR64UeuFIR0BZyDEm6XjVR0BB6uFHrhR7h3JXDAAAR0AePGp++dsjR0BZxgQYk3S8R0BB6RaHKwIMh3JYDAAAR0AeMi0OVgQZR0BZxCj1wo9cR0BB564UeuFIh3JZDAAAR0AeJul41P30R0BZwfvnbItER0BB5eNT987Zh3JaDAAAR0AeEm6XjU/fR0BZvfO2RaHLR0BB4rAgxJumh3JbDAAAR0AeBysCDEm6R0BZu8an752yR0BB4OVgQYk3h3JcDAAAR0Ad6n752yLRR0BZthR64UeuR0BB3Em6XjU/h3JdDAAAR0Ad0/fO2RaHR0BZsXjU/fO2R0BB2LQ5WBBih3JeDAAAR0Adv3ztkWhzR0BZrXCj1wo9R0BB1YEGJN0vh3JfDAAAR0AdtT987ZFoR0BZq0OVgQYlR0BB07ZFocrBh3JgDAAAR0AdoMSbpeNUR0BZpysCDEm6R0BB0IMSbpeNh3JhDAAAR0AdlocrAgxKR0BZpP3ztkWiR0BBztkWhysCh3JiDAAAR0AdggxJul41R0BZoOVgQYk3R0BBy6XjU/fPh3JjDAAAR0Add87ZFocrR0BZnrhR64UfR0BBydsi0OVgh3JkDAAAR0AdZFocrAgxR0BZmp++dsi0R0BBxsi0OVgQh3JlDAAAR0AdWhysCDEnR0BZmGJN0vGqR0BBxP3ztkWih3JmDAAAR0AdRqfvnbItR0BZlFocrAgxR0BBwcrAgxJvh3JnDAAAR0AdPGp++dsjR0BZkhysCDEnR0BBwCDEm6Xjh3JoDAAAR0AdKPXCj1wpR0BZjgQYk3S8R0BBvO2RaHKwh3JpDAAAR0AdDlYEGJN1R0BZiEGJN0vHR0BBuJN0vGp/h3JqDAAAR0AdDEm6XjU/R0BZh64UeuFIR0BBuDEm6XjVh3JrDAAAR0Ac8an752yLR0BZgeuFHrhSR0BBs7ZFocrBh3JsDAAAR0Ac752yLQ5WR0BZgVgQYk3TR0BBs1P3ztkXh3JtDAAAR0Ac3S8an753R0BZfT987ZFoR0BBsCDEm6Xjh3JuDAAAR0Ac0vGp++dtR0BZewIMSbpeR0BBrnbItDlYh3JvDAAAR0AcwIMSbpeNR0BZdtkWhysCR0BBq2RaHKwIh3JwDAAAR0Act0vGp++eR0BZdJul41P4R0BBqbpeNT99h3JxDAAAR0AcpN0vGp++R0BZcHKwIMScR0BBpqfvnbIth3JyDAAAR0AcjEm6XjU/R0BZarAgxJumR0BBok3S8an8h3JzDAAAR0AciTdLxqfwR0BZahysCDEnR0BBocrAgxJvh3J0DAAAR0AccKPXCj1xR0BZZEm6XjU/R0BBnZFocrAhh3J1DAAAR0AcbpeNT987R0BZY6XjU/fPR0BBnQ5WBBiTh3J2DAAAR0AcVgQYk3S8R0BZXdLxqfvnR0BBmNT987ZGh3J3DAAAR0AcUvGp++dtR0BZXT987ZFoR0BBmFHrhR64h3J4DAAAR0AcO2RaHKwIR0BZV2yLQ5WBR0BBlBiTdLxqh3J5DAAAR0AcJ++dsi0OR0BZUp++dsi0R0BBkKPXCj1xh3J6DAAAR0AcEGJN0vGqR0BZTLxqfvnbR0BBjGp++dsjh3J7DAAAR0AcDlYEGJN1R0BZTCj1wo9cR0BBi+dsi0OWh3J8DAAAR0Ab9si0OVgQR0BZRkWhysCDR0BBh64UeuFIh3J9DAAAR0Ab9LxqfvnbR0BZRbItDlYER0BBh0vGp++eh3J+DAAAR0Ab3S8an753R0BZP87ZFocrR0BBgxJul41Qh3J/DAAAR0Ab2yLQ5WBCR0BZPysCDEm6R0BBgrAgxJumh3KADAAAR0AbxJul41P4R0BZOUeuFHrhR0BBfnbItDlYh3KBDAAAR0Abwo9cKPXDR0BZOLQ5WBBiR0BBffO2RaHLh3KCDAAAR0AbrQ5WBBiTR0BZMsCDEm6YR0BBedsi0OVgh3KDDAAAR0Abl41P3ztkR0BZLN0vGp++R0BBdcKPXCj2h3KEDAAAR0AbggxJul41R0BZJvnbItDlR0BBcan752yLh3KFDAAAR0AbbItDlYEGR0BZIQYk3S8bR0BBbZFocrAhh3KGDAAAR0AbVwo9cKPXR0BZGyLQ5WBCR0BBaXjU/fO2h3KHDAAAR0AbRJul41P4R0BZFfO2RaHLR0BBZeNT987Zh3KIDAAAR0AbMCDEm6XjR0BZEAAAAAAAR0BBYcrAgxJvh3KJDAAAR0AqI1P3ztkXR0BZ+p++dsi0R0BA5BiTdLxqh3KKDAAAR0AqJ2yLQ5WBR0BZ/ztkWhysR0BA5ocrAgxKh3KLDAAAR0AqKXjU/fO2R0BaAbpeNT99R0BA5++dsi0Oh3KMDAAAR0AqLQ5WBBiTR0BaBkWhysCDR0BA6n752yLRh3KNDAAAR0AqL52yLQ5WR0BaCMSbpeNUR0BA6+dsi0OWh3KODAAAR0AqMzMzMzMzR0BaDU/fO2RaR0BA7nbItDlYh3KPDAAAR0AqONT987ZGR0BaE3S8an76R0BA8euFHrhSh3KQDAAAR0AqPfO2RaHLR0BaGPXCj1wpR0BA9P3ztkWih3KRDAAAR0AqQAAAAAAAR0BaG2RaHKwIR0BA9mZmZmZmh3KSDAAAR0AqRBiTdLxqR0BaH++dsi0OR0BA+PXCj1wph3KTDAAAR0AqRqfvnbItR0BaIm6XjU/fR0BA+l41P3zuh3KUDAAAR0AqSLQ5WBBiR0BaJHrhR64UR0BA+4UeuFHsh3KVDAAAR0AqSsCDEm6YR0BaJvnbItDlR0BA/O2RaHKwh3KWDAAAR0AqTU/fO2RaR0BaKWhysCDFR0BA/lYEGJN1h3KXDAAAR0AqT1wo9cKPR0BaK4UeuFHsR0BA/52yLQ5Wh3KYDAAAR0AqUWhysCDFR0BaLfO2RaHLR0BBAQYk3S8bh3KZDAAAR0AqU/fO2RaHR0BaMHKwIMScR0BBAm6XjU/fh3KaDAAAR0AqVgQYk3S8R0BaMn752yLRR0BBA5WBBiTdh3KbDAAAR0AqVocrAgxKR0BaMuFHrhR7R0BBA9cKPXCkh3KcDAAAR0AqWJN0vGp/R0BaNO2RaHKwR0BBBP3ztkWih3KdDAAAR0AqWp++dsi0R0BaN2yLQ5WBR0BBBmZmZmZmh3KeDAAAR0AqXKwIMSbpR0BaOXjU/fO2R0BBB41P3ztkh3KfDAAAR0AqXS8an753R0BaOdsi0OVgR0BBB87ZFocrh3KgDAAAR0AqXztkWhysR0BaO+dsi0OWR0BBCPXCj1wph3KhDAAAR0AqYcrAgxJvR0BaPmZmZmZmR0BBCl41P3zuh3KiDAAAR0AqZFocrAgxR0BaQNT987ZGR0BBC+dsi0OWh3KjDAAAR0AqZmZmZmZmR0BaQuFHrhR7R0BBDQ5WBBiTh3KkDAAAR0AqawIMSbpeR0BaR2yLQ5WBR0BBD752yLQ5h3KlDAAAR0Aqb52yLQ5WR0BaS/fO2RaHR0BBEk3S8an8h3KmDAAAR0Aqci0OVgQZR0BaTmZmZmZmR0BBE7ZFocrBh3KnDAAAR0Aqdsi0OVgQR0BaUuFHrhR7R0BBFmZmZmZmh3KoDAAAR0AqeVgQYk3TR0BaVU/fO2RaR0BBF87ZFocrh3KpDAAAR0Aqe+dsi0OWR0BaV87ZFocrR0BBGTdLxqfwh3KqDAAAR0AqfnbItDlYR0BaWdsi0OVgR0BBGn752yLRh3KrDAAAR0AqgQYk3S8bR0BaXEm6XjU/R0BBG+dsi0OWh3KsDAAAR0Aqg5WBBiTdR0BaXrhR64UfR0BBHU/fO2Rah3KtDAAAR0AqhaHKwIMSR0BaYMSbpeNUR0BBHpeNT987h3KuDAAAR0AqhiTdLxqgR0BaYSbpeNT+R0BBHrhR64Ufh3KvDAAAR0AqiDEm6XjVR0BaYzMzMzMzR0BBIAAAAAAAh3KwDAAAR0AqiLQ5WBBiR0BaY5WBBiTdR0BBIEGJN0vHh3KxDAAAR0Aqi0OVgQYlR0BaZaHKwIMSR0BBIWhysCDFh3KyDAAAR0AqjU/fO2RaR0BaZ64UeuFIR0BBIrAgxJumh3KzDAAAR0AqjdLxqfvnR0BaaBBiTdLyR0BBItDlYEGJh3K0DAAAR0Aqj987ZFodR0BaahysCDEnR0BBJBiTdLxqh3K1DAAAR0AqkvGp++dtR0BabItDlYEGR0BBJYEGJN0vh3K2DAAAR0AqlP3ztkWiR0BabpeNT987R0BBJsi0OVgQh3K3DAAAR0AqlYEGJN0vR0BabvnbItDlR0BBJul41P30h3K4DAAAR0Aql41P3ztkR0BacQYk3S8bR0BBKDEm6XjVh3K5DAAAR0Aqmp++dsi0R0Bac3S8an76R0BBKZmZmZmah3K6DAAAR0AqnKwIMSbpR0BadYEGJN0vR0BBKuFHrhR7h3K7DAAAR0AqnS8an753R0BadeNT987ZR0BBKyLQ5WBCh3K8DAAAR0Aqn752yLQ5R0Bad++dsi0OR0BBLEm6XjU/h3K9DAAAR0AqocrAgxJvR0BaefvnbItER0BBLZFocrAhh3K+DAAAR0Aqok3S8an8R0Bael41P3zuR0BBLdLxqfvnh3K/DAAAR0AqpN0vGp++R0BafGp++dsjR0BBLvnbItDlh3LADAAAR0AqqfvnbItER0BagOVgQYk3R0BBMan752yLh3LBDAAAR0Aqqn752yLRR0BagUeuFHrhR0BBMeuFHrhSh3LCDAAAR0AqrItDlYEGR0Bag1P3ztkXR0BBMzMzMzMzh3LDDAAAR0AqrxqfvnbJR0BahWBBiTdMR0BBNFocrAgxh3LEDAAAR0Aqsi0OVgQZR0Bah87ZFocrR0BBNeNT987Zh3LFDAAAR0AqtLxqfvnbR0Baii0OVgQZR0BBN0vGp++eh3LGDAAAR0Aqt0vGp++eR0BajDlYEGJOR0BBOJN0vGp/h3LHDAAAR0Aqt87ZFocrR0BajJul41P4R0BBONT987ZGh3LIDAAAR0Aqudsi0OVgR0BajqfvnbItR0BBOfvnbItEh3LJDAAAR0AqvO2RaHKwR0BakRaHKwIMR0BBO4UeuFHsh3LKDAAAR0AqvXCj1wo9R0BakWhysCDFR0BBO6XjU/fPh3LLDAAAR0Aqv3ztkWhzR0BakyLQ5WBCR0BBPKwIMSbph3LMDAAAR0AqwAAAAAAAR0Bak3S8an76R0BBPO2RaHKwh3LNDAAAR0Aqwo9cKPXDR0BalYEGJN0vR0BBPjU/fO2Rh3LODAAAR0AqwxJul41QR0BaleNT987ZR0BBPnbItDlYh3LPDAAAR0AqxR64UeuFR0Bal++dsi0OR0BBP52yLQ5Wh3LQDAAAR0AqxaHKwIMSR0BamFHrhR64R0BBP987ZFodh3LRDAAAR0Aqx64UeuFIR0BamfvnbItER0BBQOVgQYk3h3LSDAAAR0AqyDEm6XjVR0Bamk3S8an8R0BBQSbpeNT+h3LTDAAAR0AqysCDEm6YR0BanFocrAgxR0BBQk3S8an8h3LUDAAAR0Aqy0OVgQYlR0BanLxqfvnbR0BBQo9cKPXDh3LVDAAAR0AqzU/fO2RaR0BanmZmZmZmR0BBQ5WBBiTdh3LWDAAAR0AqzdLxqfvnR0Bansi0OVgQR0BBQ9cKPXCkh3LXDAAAR0Aq0OVgQYk3R0BaoSbpeNT+R0BBRT987ZFoh3LYDAAAR0Aq03S8an76R0BaozMzMzMzR0BBRocrAgxKh3LZDAAAR0Aq03S8an76R0Bao5WBBiTdR0BBRsi0OVgQh3LaDAAAR0Aq1gQYk3S8R0BapT987ZFoR0BBR87ZFocrh3LbDAAAR0Aq1gQYk3S8R0BapaHKwIMSR0BBSBBiTdLyh3LcDAAAR0Aq2JN0vGp/R0Bap64UeuFIR0BBSVgQYk3Th3LdDAAAR0Aq2RaHKwIMR0BaqAAAAAAAR0BBSXjU/fO2h3LeDAAAR0Aq3Cj1wo9cR0Baqm6XjU/fR0BBSwIMSbpeh3LfDAAAR0Aq3jU/fO2RR0BarBiTdLxqR0BBTAgxJul5h3LgDAAAR0Aq3rhR64UfR0BarHrhR64UR0BBTEm6XjU/h3LhDAAAR0Aq4UeuFHrhR0BarocrAgxKR0BBTZFocrAhh3LiDAAAR0Aq4crAgxJvR0BartkWhysCR0BBTbItDlYEh3LjDAAAR0Aq5FocrAgxR0BasOVgQYk3R0BBTvnbItDlh3LkDAAAR0Aq5ul41P30R0BasvGp++dtR0BBUEGJN0vHh3LlDAAAR0Aq6fvnbItER0BatU/fO2RaR0BBUan752yLh3LmDAAAR0Aq6n752yLRR0BatbItDlYER0BBUeuFHrhSh3LnDAAAR0Aq7Q5WBBiTR0Bat752yLQ5R0BBUzMzMzMzh3LoDAAAR0Aq752yLQ5WR0BaubpeNT99R0BBVHrhR64Uh3LpDAAAR0Aq8zMzMzMzR0BavCj1wo9cR0BBVgQYk3S8h3LqDAAAR0Aq9kWhysCDR0BavocrAgxKR0BBV2yLQ5WBh3LrDAAAR0Aq9si0OVgQR0Bavul41P30R0BBV64UeuFIh3LsDAAAR0Aq+NT987ZGR0BawJN0vGp/R0BBWLQ5WBBih3LtDAAAR0Aq++dsi0OWR0BawvGp++dtR0BBWj1wo9cKh3LuDAAAR0Aq/Gp++dsjR0Baw1P3ztkXR0BBWl41P3zuh3LvDAAAR0Aq/vnbItDlR0BaxU/fO2RaR0BBW6XjU/fPh3LwDAAAR0Aq/3ztkWhzR0BaxbItDlYER0BBW+dsi0OWh3LxDAAAR0ArAYk3S8aoR0Bax1wo9cKPR0BBXO2RaHKwh3LyDAAAR0ArAgxJul41R0Bax752yLQ5R0BBXS8an753h3LzDAAAR0ArBR64UeuFR0BaybpeNT99R0BBXnbItDlYh3L0DAAAR0ArBaHKwIMSR0BayhysCDEnR0BBXrhR64Ufh3L1DAAAR0ArB64UeuFIR0Bay8an752yR0BBX752yLQ5h3L2DAAAR0ArCDEm6XjVR0BazCj1wo9cR0BBYAAAAAAAh3L3DAAAR0ArCsCDEm6YR0BaziTdLxqgR0BBYUeuFHrhh3L4DAAAR0ArC0OVgQYlR0BazocrAgxKR0BBYWhysCDFh3L5DAAAR0ArDU/fO2RaR0Ba0DEm6XjVR0BBYm6XjU/fh3L6DAAAR0ArDdLxqfvnR0Ba0IMSbpeNR0BBYrAgxJumh3L7DAAAR0ArDlYEGJN1R0Ba0OVgQYk3R0BBYvGp++dth3L8DAAAR0ArEOVgQYk3R0Ba0o9cKPXDR0BBY/fO2RaHh3L9DAAAR0ArEWhysCDFR0Ba0vGp++dtR0BBZDlYEGJOh3L+DAAAR0ArE/fO2RaHR0Ba1O2RaHKwR0BBZYEGJN0vh3L/DAAAR0ArFHrhR64UR0Ba1U/fO2RaR0BBZcKPXCj2h3IADQAAR0ArFocrAgxKR0Ba1vnbItDlR0BBZsi0OVgQh3IBDQAAR0ArFwo9cKPXR0Ba10vGp++eR0BBZwo9cKPXh3ICDQAAR0ArF41P3ztkR0Ba164UeuFIR0BBZysCDEm6h3IDDQAAR0ArGhysCDEnR0Ba2VgQYk3TR0BBaFHrhR64h3IEDQAAR0ArGp++dsi0R0Ba2bpeNT99R0BBaHKwIMSch3IFDQAAR0ArHS8an753R0Ba27ZFocrBR0BBabpeNT99h3IGDQAAR0ArHbItDlYER0Ba3BiTdLxqR0BBafvnbItEh3IHDQAAR0ArIEGJN0vHR0Ba3cKPXCj2R0BBawIMSbpeh3IIDQAAR0ArI1P3ztkXR0Ba4CDEm6XjR0BBbItDlYEGh3IJDQAAR0ArI9cKPXCkR0Ba4IMSbpeNR0BBbMzMzMzNh3IKDQAAR0ArJmZmZmZmR0Ba4n752yLRR0BBbhR64Ueuh3ILDQAAR0ArJul41P30R0Ba4uFHrhR7R0BBblYEGJN1h3IMDQAAR0ArKXjU/fO2R0Ba5ItDlYEGR0BBb1wo9cKPh3INDQAAR0ArLItDlYEGR0Ba5ul41P30R0BBcOVgQYk3h3IODQAAR0ArLQ5WBBiTR0Ba5ztkWhysR0BBcQYk3S8bh3IPDQAAR0ArMCDEm6XjR0Ba6UeuFHrhR0BBck3S8an8h3IQDQAAR0ArMrAgxJumR0Ba60OVgQYlR0BBc5WBBiTdh3IRDQAAR0ArNkWhysCDR0Ba7aHKwIMSR0BBdR64UeuFh3ISDQAAR0ArOdsi0OVgR0Ba8AAAAAAAR0BBdqfvnbIth3ITDQAAR0ArOl41P3zuR0Ba8GJN0vGqR0BBdul41P30h3IUDQAAR0ArPGp++dsjR0Ba8gxJul41R0BBd++dsi0Oh3IVDQAAR0ArPO2RaHKwR0Ba8l41P3zuR0BBeDEm6XjVh3IWDQAAR0ArQAAAAAAAR0Ba9Gp++dsjR0BBeXjU/fO2h3IXDQAAR0ArQIMSbpeNR0Ba9LxqfvnbR0BBebpeNT99h3IYDQAAR0ArQxJul41QR0Ba9si0OVgQR0BBewIMSbpeh3IZDQAAR0ArQ5WBBiTdR0Ba9xqfvnbJR0BBe0OVgQYlh3IaDQAAR0ArRiTdLxqgR0Ba+MSbpeNUR0BBfEm6XjU/h3IbDQAAR0ArRqfvnbItR0Ba+SbpeNT+R0BBfItDlYEGh3IcDQAAR0ArSbpeNT99R0Ba+yLQ5WBCR0BBfdLxqfvnh3IdDQAAR0ArSj1wo9cKR0Ba+4UeuFHsR0BBfhR64Ueuh3IeDQAAR0ArTEm6XjU/R0Ba/S8an753R0BBfxqfvnbJh3IfDQAAR0ArTMzMzMzNR0Ba/YEGJN0vR0BBf1wo9cKPh3IgDQAAR0ArTdLxqfvnR0Ba/eNT987ZR0BBf52yLQ5Wh3IhDQAAR0ArT987ZFodR0Ba/3ztkWhzR0BBgKPXCj1xh3IiDQAAR0ArUGJN0vGqR0Ba/987ZFodR0BBgOVgQYk3h3IjDQAAR0ArU3S8an76R0BbAdsi0OVgR0BBgi0OVgQZh3IkDQAAR0ArU/fO2RaHR0BbAj1wo9cKR0BBgm6XjU/fh3IlDQAAR0ArVocrAgxKR0BbA+dsi0OWR0BBg3S8an76h3ImDQAAR0ArVwo9cKPXR0BbBDlYEGJOR0BBg7ZFocrBh3InDQAAR0ArV41P3ztkR0BbBJul41P4R0BBg9cKPXCkh3IoDQAAR0ArWZmZmZmaR0BbBkWhysCDR0BBhP3ztkWih3IpDQAAR0ArWhysCDEnR0BbBpeNT987R0BBhT987ZFoh3IqDQAAR0ArXKwIMSbpR0BbCEGJN0vHR0BBhkWhysCDh3IrDQAAR0ArXS8an753R0BbCJN0vGp/R0BBhocrAgxKh3IsDQAAR0ArXbItDlYER0BbCPXCj1wpR0BBhsi0OVgQh3ItDQAAR0ArYEGJN0vHR0BbCp++dsi0R0BBh87ZFocrh3IuDQAAR0ArYMSbpeNUR0BbCvGp++dtR0BBiBBiTdLyh3IvDQAAR0ArY9cKPXCkR0BbDP3ztkWiR0BBiVgQYk3Th3IwDQAAR0ArZFocrAgxR0BbDU/fO2RaR0BBiZmZmZmah3IxDQAAR0ArZul41P30R0BbDvnbItDlR0BBip++dsi0h3IyDQAAR0ArZ2yLQ5WBR0BbD1wo9cKPR0BBiuFHrhR7h3IzDQAAR0ArZ++dsi0OR0BbD64UeuFIR0BBiyLQ5WBCh3I0DQAAR0Aran752yLRR0BbEVgQYk3TR0BBjCj1wo9ch3I1DQAAR0ArbZFocrAhR0BbE7ZFocrBR0BBjbItDlYEh3I2DQAAR0ArbhR64UeuR0BbFAgxJul5R0BBjfO2RaHLh3I3DQAAR0ArcKPXCj1xR0BbFbItDlYER0BBjvnbItDlh3I4DQAAR0ArcSbpeNT+R0BbFgQYk3S8R0BBjztkWhysh3I5DQAAR0ArdDlYEGJOR0BbGBBiTdLyR0BBkIMSbpeNh3I6DQAAR0Ard87ZFocrR0BbGl41P3zuR0BBkgxJul41h3I7DQAAR0AreFHrhR64R0BbGsCDEm6YR0BBkk3S8an8h3I8DQAAR0AreuFHrhR7R0BbHFocrAgxR0BBk1P3ztkXh3I9DQAAR0Are2RaHKwIR0BbHLxqfvnbR0BBk5WBBiTdh3I+DQAAR0ArfnbItDlYR0BbHrhR64UfR0BBlN0vGp++h3I/DQAAR0ArggxJul41R0BbIRaHKwIMR0BBlmZmZmZmh3JADQAAR0ArhR64UeuFR0BbIxJul41QR0BBl64UeuFIh3JBDQAAR0ArhaHKwIMSR0BbI3S8an76R0BBl++dsi0Oh3JCDQAAR0ArhiTdLxqgR0BbI8an752yR0BBmDEm6XjVh3JDDQAAR0AriLQ5WBBiR0BbJXCj1wo9R0BBmVgQYk3Th3JEDQAAR0ArjEm6XjU/R0BbJ87ZFocrR0BBmuFHrhR7h3JFDQAAR0ArjMzMzMzNR0BbKCDEm6XjR0BBmwIMSbpeh3JGDQAAR0Arj1wo9cKPR0BbKcrAgxJvR0BBnCj1wo9ch3JHDQAAR0Arj987ZFodR0BbKhysCDEnR0BBnGp++dsjh3JIDQAAR0ArkOVgQYk3R0BbKn752yLRR0BBnKwIMSbph3JJDQAAR0ArkvGp++dtR0BbLBiTdLxqR0BBnbItDlYEh3JKDQAAR0Ark/fO2RaHR0BbLHrhR64UR0BBnfO2RaHLh3JLDQAAR0ArlocrAgxKR0BbLiTdLxqgR0BBnvnbItDlh3JMDQAAR0Arlwo9cKPXR0BbLnbItDlYR0BBnztkWhysh3JNDQAAR0Arl41P3ztkR0BbLtkWhysCR0BBn3ztkWhzh3JODQAAR0ArmhysCDEnR0BbMHKwIMScR0BBoIMSbpeNh3JPDQAAR0Armp++dsi0R0BbMNT987ZGR0BBoMSbpeNUh3JQDQAAR0ArnbItDlYER0BbMtDlYEGJR0BBogxJul41h3JRDQAAR0ArnjU/fO2RR0BbMyLQ5WBCR0BBok3S8an8h3JSDQAAR0AroMSbpeNUR0BbNMzMzMzNR0BBo3S8an76h3JTDQAAR0AroUeuFHrhR0BbNR64UeuFR0BBo5WBBiTdh3JUDQAAR0ArocrAgxJvR0BbNYEGJN0vR0BBo9cKPXCkh3JVDQAAR0ArpFocrAgxR0BbNxqfvnbJR0BBpP3ztkWih3JWDQAAR0ArpN0vGp++R0BbN3ztkWhzR0BBpT987ZFoh3JXDQAAR0Arp++dsi0OR0BbOXjU/fO2R0BBpocrAgxKh3JYDQAAR0ArqPXCj1wpR0BbOcrAgxJvR0BBpsi0OVgQh3JZDQAAR0Arq4UeuFHsR0BbO3S8an76R0BBp87ZFocrh3JaDQAAR0ArrAgxJul5R0BbO8an752yR0BBqBBiTdLyh3JbDQAAR0ArrItDlYEGR0BbPCj1wo9cR0BBqFHrhR64h3JcDQAAR0ArrxqfvnbJR0BbPdLxqfvnR0BBqVgQYk3Th3JdDQAAR0Arr52yLQ5WR0BbPiTdLxqgR0BBqZmZmZmah3JeDQAAR0ArsrAgxJumR0BbQCDEm6XjR0BBquFHrhR7h3JfDQAAR0ArszMzMzMzR0BbQIMSbpeNR0BBqyLQ5WBCh3JgDQAAR0ArtcKPXCj2R0BbQhysCDEnR0BBrEm6XjU/h3JhDQAAR0Arudsi0OVgR0BbRHrhR64UR0BBrdLxqfvnh3JiDQAAR0Arul41P3zuR0BbRMzMzMzNR0BBrhR64Ueuh3JjDQAAR0ArvO2RaHKwR0BbRnbItDlYR0BBrxqfvnbJh3JkDQAAR0ArvXCj1wo9R0BbRsi0OVgQR0BBr1wo9cKPh3JlDQAAR0ArvfO2RaHLR0BbRysCDEm6R0BBr52yLQ5Wh3JmDQAAR0ArwIMSbpeNR0BbSMSbpeNUR0BBsKPXCj1xh3JnDQAAR0ArxJul41P4R0BbSyLQ5WBCR0BBsk3S8an8h3JoDQAAR0Arx64UeuFIR0BbTQ5WBBiTR0BBs5WBBiTdh3JpDQAAR0AryDEm6XjVR0BbTXCj1wo9R0BBs9cKPXCkh3JqDQAAR0Ary0OVgQYlR0BbT2yLQ5WBR0BBtR64UeuFh3JrDQAAR0ArzMzMzMzNR0BbUCDEm6XjR0BBtaHKwIMSh3JsDQAAR0Arz1wo9cKPR0BbUbpeNT99R0BBtqfvnbIth3JtDQAAR0Ar0vGp++dtR0BbVBiTdLxqR0BBuFHrhR64h3JuDQAAR0Ar03S8an76R0BbVGp++dsjR0BBuHKwIMSch3JvDQAAR0Ar1ocrAgxKR0BbVhR64UeuR0BBuZmZmZmah3JwDQAAR0Ar1wo9cKPXR0BbVmZmZmZmR0BBudsi0OVgh3JxDQAAR0Ar141P3ztkR0BbVsi0OVgQR0BBuhysCDEnh3JyDQAAR0Ar2hysCDEnR0BbWGJN0vGqR0BBuyLQ5WBCh3JzDQAAR0Ar2p++dsi0R0BbWMSbpeNUR0BBu2RaHKwIh3J0DQAAR0Ar3bItDlYER0BbWl41P3zuR0BBvItDlYEGh3J1DQAAR0Ar3jU/fO2RR0BbWrAgxJumR0BBvKwIMSbph3J2DQAAR0Ar3rhR64UfR0BbWxJul41QR0BBvO2RaHKwh3J3DQAAR0Ar4UeuFHrhR0BbXKwIMSbpR0BBvhR64Ueuh3J4DQAAR0Ar4crAgxJvR0BbXQ5WBBiTR0BBvlYEGJN1h3J5DQAAR0Ar5WBBiTdMR0BbXwo9cKPXR0BBv52yLQ5Wh3J6DQAAR0Ar5eNT987ZR0BbX1wo9cKPR0BBv987ZFodh3J7DQAAR0Ar6HKwIMScR0BbYQYk3S8bR0BBwOVgQYk3h3J8DQAAR0Ar6PXCj1wpR0BbYVgQYk3TR0BBwSbpeNT+h3J9DQAAR0Ar6XjU/fO2R0BbYbpeNT99R0BBwWhysCDFh3J+DQAAR0Ar7ItDlYEGR0BbY1P3ztkXR0BBwo9cKPXDh3J/DQAAR0Ar7Q5WBBiTR0BbY6XjU/fPR0BBwtDlYEGJh3KADQAAR0Ar752yLQ5WR0BbZU/fO2RaR0BBw9cKPXCkh3KBDQAAR0Ar8CDEm6XjR0BbZaHKwIMSR0BBxBiTdLxqh3KCDQAAR0Ar8KPXCj1xR0BbZgQYk3S8R0BBxFocrAgxh3KDDQAAR0Ar87ZFocrBR0BbZ52yLQ5WR0BBxWBBiTdMh3KEDQAAR0Ar9DlYEGJOR0BbZ++dsi0OR0BBxaHKwIMSh3KFDQAAR0Ar9LxqfvnbR0BbaFHrhR64R0BBxeNT987Zh3KGDQAAR0Ar90vGp++eR0BbaeuFHrhSR0BBxwo9cKPXh3KHDQAAR0Ar+FHrhR64R0Bbak3S8an8R0BBx0vGp++eh3KIDQAAR0Ar+uFHrhR7R0Bba+dsi0OWR0BByFHrhR64h3KJDQAAR0Ar+2RaHKwIR0BbbEm6XjU/R0BByJN0vGp/h3KKDQAAR0Ar++dsi0OWR0BbbJul41P4R0BByNT987ZGh3KLDQAAR0Ar/vnbItDlR0BbbjU/fO2RR0BBydsi0OVgh3KMDQAAR0AsAo9cKPXDR0BbcJN0vGp/R0BBy4UeuFHsh3KNDQAAR0AsA5WBBiTdR0BbcOVgQYk3R0BBy8an752yh3KODQAAR0AsBiTdLxqgR0Bbcn752yLRR0BBzMzMzMzNh3KPDQAAR0AsBqfvnbItR0BbcuFHrhR7R0BBzQ5WBBiTh3KQDQAAR0AsBysCDEm6R0BbczMzMzMzR0BBzU/fO2Rah3KRDQAAR0AsCj1wo9cKR0BbdN0vGp++R0BBznbItDlYh3KSDQAAR0AsDdLxqfvnR0BbdysCDEm6R0BB0AAAAAAAh3KTDQAAR0AsDtkWhysCR0Bbd3ztkWhzR0BB0EGJN0vHh3KUDQAAR0AsEWhysCDFR0BbeSbpeNT+R0BB0UeuFHrhh3KVDQAAR0AsEeuFHrhSR0BbeXjU/fO2R0BB0Yk3S8aoh3KWDQAAR0AsFYEGJN0vR0Bbe3S8an76R0BB0vGp++dth3KXDQAAR0AsGZmZmZmaR0BbfcKPXCj2R0BB1HrhR64Uh3KYDQAAR0AsHKwIMSbpR0Bbf752yLQ5R0BB1eNT987Zh3KZDQAAR0AsHbItDlYER0BbgBBiTdLyR0BB1iTdLxqgh3KaDQAAR0AsIMSbpeNUR0BbggxJul41R0BB12yLQ5WBh3KbDQAAR0AsIk3S8an8R0BbgsCDEm6YR0BB1++dsi0Oh3KcDQAAR0AsJN0vGp++R0BbhFocrAgxR0BB2PXCj1wph3KdDQAAR0AsKHKwIMScR0BbhlYEGJN1R0BB2l41P3zuh3KeDQAAR0AsKPXCj1wpR0BbhqfvnbItR0BB2p++dsi0h3KfDQAAR0AsKXjU/fO2R0Bbhwo9cKPXR0BB2uFHrhR7h3KgDQAAR0AsLItDlYEGR0BbiKPXCj1xR0BB2+dsi0OWh3KhDQAAR0AsLQ5WBBiTR0BbiPXCj1wpR0BB3Cj1wo9ch3KiDQAAR0AsL52yLQ5WR0Bbip++dsi0R0BB3U/fO2Rah3KjDQAAR0AsMKPXCj1xR0BbivGp++dtR0BB3ZFocrAhh3KkDQAAR0AsMSbpeNT+R0Bbi0OVgQYlR0BB3dLxqfvnh3KlDQAAR0AsM7ZFocrBR0BbjN0vGp++R0BB3tkWhysCh3KmDQAAR0AsNDlYEGJOR0BbjT987ZFoR0BB3xqfvnbJh3KnDQAAR0AsNT987ZFoR0BbjaHKwIMSR0BB31wo9cKPh3KoDQAAR0AsN87ZFocrR0BbjztkWhysR0BB4IMSbpeNh3KpDQAAR0AsOFHrhR64R0Bbj41P3ztkR0BB4MSbpeNUh3KqDQAAR0AsO2RaHKwIR0BbkSbpeNT+R0BB4crAgxJvh3KrDQAAR0AsO+dsi0OWR0BbkYk3S8aoR0BB4gxJul41h3KsDQAAR0AsPGp++dsjR0Bbkdsi0OVgR0BB4k3S8an8h3KtDQAAR0AsP3ztkWhzR0Bbk3S8an76R0BB43S8an76h3KuDQAAR0AsQAAAAAAAR0Bbk9cKPXCkR0BB47ZFocrBh3KvDQAAR0AsQIMSbpeNR0BblCj1wo9cR0BB4/fO2RaHh3KwDQAAR0AsQ5WBBiTdR0BblcKPXCj2R0BB5P3ztkWih3KxDQAAR0AsRBiTdLxqR0BbliTdLxqgR0BB5T987ZFoh3KyDQAAR0AsRysCDEm6R0Bbl752yLQ5R0BB5mZmZmZmh3KzDQAAR0AsR64UeuFIR0BbmBBiTdLyR0BB5qfvnbIth3K0DQAAR0AsSDEm6XjVR0BbmHKwIMScR0BB5ul41P30h3K1DQAAR0AsS0OVgQYlR0BbmgxJul41R0BB5++dsi0Oh3K2DQAAR0AsS8an752yR0Bbml41P3zuR0BB6DEm6XjVh3K3DQAAR0AsTtkWhysCR0BbnAgxJul5R0BB6VgQYk3Th3K4DQAAR0AsT1wo9cKPR0BbnFocrAgxR0BB6ZmZmZmah3K5DQAAR0AsT987ZFodR0BbnKwIMSbpR0BB6dsi0OVgh3K6DQAAR0AsUvGp++dtR0BbnlYEGJN1R0BB6uFHrhR7h3K7DQAAR0AsU3S8an76R0BbnqfvnbItR0BB6yLQ5WBCh3K8DQAAR0AsU/fO2RaHR0BbnvnbItDlR0BB62RaHKwIh3K9DQAAR0AsVwo9cKPXR0BboKPXCj1xR0BB7ItDlYEGh3K+DQAAR0AsV41P3ztkR0BboPXCj1wpR0BB7MzMzMzNh3K/DQAAR0AsWp++dsi0R0Bboo9cKPXDR0BB7dLxqfvnh3LADQAAR0AsWyLQ5WBCR0BbovGp++dtR0BB7hR64Ueuh3LBDQAAR0AsW6XjU/fPR0Bbo0OVgQYlR0BB7lYEGJN1h3LCDQAAR0AsXrhR64UfR0BbpN0vGp++R0BB73ztkWhzh3LDDQAAR0AsYtDlYEGJR0BbpysCDEm6R0BB8QYk3S8bh3LEDQAAR0AsZmZmZmZmR0BbqRaHKwIMR0BB8m6XjU/fh3LFDQAAR0AsZul41P30R0BbqXjU/fO2R0BB8rAgxJumh3LGDQAAR0Asan752yLRR0Bbq2RaHKwIR0BB9BiTdLxqh3LHDQAAR0AsbpeNT987R0BbrbItDlYER0BB9aHKwIMSh3LIDQAAR0Asci0OVgQZR0Bbr64UeuFIR0BB9wo9cKPXh3LJDQAAR0AsczMzMzMzR0BbsAAAAAAAR0BB90vGp++eh3LKDQAAR0Asdsi0OVgQR0BbsfvnbItER0BB+JN0vGp/h3LLDQAAR0Asd87ZFocrR0BbsrAgxJumR0BB+RaHKwIMh3LMDQAAR0AseuFHrhR7R0BbtEm6XjU/R0BB+j1wo9cKh3LNDQAAR0AsfnbItDlYR0BbtjU/fO2RR0BB+4UeuFHsh3LODQAAR0AsfvnbItDlR0BbtpeNT987R0BB+8an752yh3LPDQAAR0Asf3ztkWhzR0Bbtul41P30R0BB/AgxJul5h3LQDQAAR0Asgo9cKPXDR0BbuIMSbpeNR0BB/S8an753h3LRDQAAR0AsgxJul41QR0BbuNT987ZGR0BB/XCj1wo9h3LSDQAAR0AshBiTdLxqR0BbuTdLxqfwR0BB/bItDlYEh3LTDQAAR0AshqfvnbItR0BbutDlYEGJR0BB/tkWhysCh3LUDQAAR0Ash64UeuFIR0BbuyLQ5WBCR0BB/xqfvnbJh3LVDQAAR0Asij1wo9cKR0BbvLxqfvnbR0BCACDEm6Xjh3LWDQAAR0Asi0OVgQYlR0BbvR64UeuFR0BCAGJN0vGqh3LXDQAAR0Asi8an752yR0BbvXCj1wo9R0BCAKPXCj1xh3LYDQAAR0AsjtkWhysCR0Bbvwo9cKPXR0BCAcrAgxJvh3LZDQAAR0Asj1wo9cKPR0Bbv1wo9cKPR0BCAgxJul41h3LaDQAAR0Asj987ZFodR0Bbv752yLQ5R0BCAk3S8an8h3LbDQAAR0Askm6XjU/fR0BbwQYk3S8bR0BCAzMzMzMzh3LcDQAAR0AskvGp++dtR0BbwVgQYk3TR0BCA1P3ztkXh3LdDQAAR0Ask3S8an76R0Bbwan752yLR0BCA5WBBiTdh3LeDQAAR0AslocrAgxKR0Bbw0OVgQYlR0BCBLxqfvnbh3LfDQAAR0Asl41P3ztkR0Bbw6XjU/fPR0BCBP3ztkWih3LgDQAAR0AsmBBiTdLyR0Bbw/fO2RaHR0BCBT987ZFoh3LhDQAAR0AsmyLQ5WBCR0BbxZFocrAhR0BCBmZmZmZmh3LiDQAAR0Asm6XjU/fPR0BbxeNT987ZR0BCBqfvnbIth3LjDQAAR0AsnrhR64UfR0Bbx3ztkWhzR0BCB87ZFocrh3LkDQAAR0AsnztkWhysR0Bbx987ZFodR0BCB++dsi0Oh3LlDQAAR0Asn752yLQ5R0BbyDEm6XjVR0BCCDEm6XjVh3LmDQAAR0AsotDlYEGJR0BbycrAgxJvR0BCCVgQYk3Th3LnDQAAR0Aso1P3ztkXR0Bbyi0OVgQZR0BCCZmZmZmah3LoDQAAR0AspFocrAgxR0Bbyn752yLRR0BCCdsi0OVgh3LpDQAAR0Asp2yLQ5WBR0BbzBiTdLxqR0BCCwIMSbpeh3LqDQAAR0Asp++dsi0OR0BbzGp++dsjR0BCC0OVgQYlh3LrDQAAR0AsqwIMSbpeR0BbzgQYk3S8R0BCDEm6XjU/h3LsDQAAR0Asq4UeuFHsR0BbzmZmZmZmR0BCDItDlYEGh3LtDQAAR0AsrAgxJul5R0BbzrhR64UfR0BCDMzMzMzNh3LuDQAAR0AsrxqfvnbJR0Bb0FHrhR64R0BCDfO2RaHLh3LvDQAAR0Ass7ZFocrBR0Bb0p++dsi0R0BCD52yLQ5Wh3LwDQAAR0AstDlYEGJOR0Bb0vGp++dtR0BCD987ZFodh3LxDQAAR0Ast0vGp++eR0Bb1ItDlYEGR0BCEQYk3S8bh3LyDQAAR0Asu2RaHKwIR0Bb1tkWhysCR0BCEo9cKPXDh3LzDQAAR0Asv3ztkWhzR0Bb2MSbpeNUR0BCE/fO2RaHh3L0DQAAR0AswAAAAAAAR0Bb2SbpeNT+R0BCFDlYEGJOh3L1DQAAR0Asw5WBBiTdR0Bb2xJul41QR0BCFaHKwIMSh3L2DQAAR0AsyDEm6XjVR0Bb3U/fO2RaR0BCFysCDEm6h3L3DQAAR0AsyTdLxqfwR0Bb3gQYk3S8R0BCF64UeuFIh3L4DQAAR0Asy8an752yR0Bb30vGp++eR0BCGJN0vGp/h3L5DQAAR0AszEm6XjU/R0Bb352yLQ5WR0BCGNT987ZGh3L6DQAAR0As0GJN0vGqR0Bb4Yk3S8aoR0BCGj1wo9cKh3L7DQAAR0As0OVgQYk3R0Bb4euFHrhSR0BCGn752yLRh3L8DQAAR0As0WhysCDFR0Bb4j1wo9cKR0BCGsCDEm6Yh3L9DQAAR0As1HrhR64UR0Bb49cKPXCkR0BCG8an752yh3L+DQAAR0As1gQYk3S8R0Bb5ItDlYEGR0BCHEm6XjU/h3L/DQAAR0As2JN0vGp/R0Bb5cKPXCj2R0BCHS8an753h3IADgAAR0As2RaHKwIMR0Bb5iTdLxqgR0BCHXCj1wo9h3IBDgAAR0As2ZmZmZmaR0Bb5nbItDlYR0BCHbItDlYEh3ICDgAAR0As3KwIMSbpR0Bb6BBiTdLyR0BCHtkWhysCh3IDDgAAR0As3bItDlYER0Bb6GJN0vGqR0BCHxqfvnbJh3IEDgAAR0As3jU/fO2RR0Bb6MSbpeNUR0BCH1wo9cKPh3IFDgAAR0As4UeuFHrhR0Bb6k3S8an8R0BCIIMSbpeNh3IGDgAAR0As4crAgxJvR0Bb6rAgxJumR0BCIMSbpeNUh3IHDgAAR0As4tDlYEGJR0Bb6wIMSbpeR0BCIQYk3S8bh3IIDgAAR0As5N0vGp++R0Bb7Em6XjU/R0BCIcrAgxJvh3IJDgAAR0As5eNT987ZR0Bb7Jul41P4R0BCIgxJul41h3IKDgAAR0As5mZmZmZmR0Bb7P3ztkWiR0BCIk3S8an8h3ILDgAAR0As6XjU/fO2R0Bb7ocrAgxKR0BCI3S8an76h3IMDgAAR0As6fvnbItER0Bb7ul41P30R0BCI7ZFocrBh3INDgAAR0As6wIMSbpeR0Bb7ztkWhysR0BCI/fO2RaHh3IODgAAR0As7hR64UeuR0Bb8NT987ZGR0BCJR64UeuFh3IPDgAAR0As7peNT987R0Bb8SbpeNT+R0BCJWBBiTdMh3IQDgAAR0As8an752yLR0Bb8sCDEm6YR0BCJocrAgxKh3IRDgAAR0As8i0OVgQZR0Bb8xJul41QR0BCJsi0OVgQh3ISDgAAR0As8zMzMzMzR0Bb83S8an76R0BCJwo9cKPXh3ITDgAAR0As9kWhysCDR0Bb9P3ztkWiR0BCKDEm6XjVh3IUDgAAR0As9si0OVgQR0Bb9WBBiTdMR0BCKHKwIMSch3IVDgAAR0As90vGp++eR0Bb9bItDlYER0BCKJN0vGp/h3IWDgAAR0As+l41P3zuR0Bb90vGp++eR0BCKbpeNT99h3IXDgAAR0As+2RaHKwIR0Bb964UeuFIR0BCKfvnbItEh3IYDgAAR0As/nbItDlYR0Bb+TdLxqfwR0BCKyLQ5WBCh3IZDgAAR0As/vnbItDlR0Bb+ZmZmZmaR0BCK2RaHKwIh3IaDgAAR0AtAAAAAAAAR0Bb+euFHrhSR0BCK6XjU/fPh3IbDgAAR0AtAxJul41QR0Bb+4UeuFHsR0BCLMzMzMzNh3IcDgAAR0AtA5WBBiTdR0Bb+9cKPXCkR0BCLQ5WBBiTh3IdDgAAR0AtBqfvnbItR0Bb/XCj1wo9R0BCLjU/fO2Rh3IeDgAAR0AtBysCDEm6R0Bb/cKPXCj2R0BCLnbItDlYh3IfDgAAR0AtCDEm6XjVR0Bb/iTdLxqgR0BCLrhR64Ufh3IgDgAAR0AtC0OVgQYlR0Bb/752yLQ5R0BCL987ZFodh3IhDgAAR0AtC8an752yR0BcABBiTdLyR0BCMCDEm6Xjh3IiDgAAR0AtDMzMzMzNR0BcAGJN0vGqR0BCMGJN0vGqh3IjDgAAR0AtD987ZFodR0BcAfvnbItER0BCMWhysCDFh3IkDgAAR0AtEGJN0vGqR0BcAk3S8an8R0BCMan752yLh3IlDgAAR0AtE3S8an76R0BcA+dsi0OWR0BCMtDlYEGJh3ImDgAAR0AtFP3ztkWiR0BcBJul41P4R0BCM1P3ztkXh3InDgAAR0AtGBBiTdLyR0BcBjU/fO2RR0BCNHrhR64Uh3IoDgAAR0AtHKwIMSbpR0BcCHKwIMScR0BCNiTdLxqgh3IpDgAAR0AtHjU/fO2RR0BcCSbpeNT+R0BCNqfvnbIth3IqDgAAR0AtIMSbpeNUR0BcCl41P3zuR0BCN41P3ztkh3IrDgAAR0AtItDlYEGJR0BcC2RaHKwIR0BCOFHrhR64h3IsDgAAR0AtJN0vGp++R0BcDKwIMSbpR0BCOTdLxqfwh3ItDgAAR0AtKPXCj1wpR0BcDpeNT987R0BCOp++dsi0h3IuDgAAR0AtKXjU/fO2R0BcDul41P30R0BCOsCDEm6Yh3IvDgAAR0AtKwIMSbpeR0BcD52yLQ5WR0BCO0OVgQYlh3IwDgAAR0AtLZFocrAhR0BcENT987ZGR0BCPCj1wo9ch3IxDgAAR0AtLhR64UeuR0BcESbpeNT+R0BCPGp++dsjh3IyDgAAR0AtL52yLQ5WR0BcEdsi0OVgR0BCPO2RaHKwh3IzDgAAR0AtMi0OVgQZR0BcExJul41QR0BCPdLxqfvnh3I0DgAAR0AtM7ZFocrBR0BcE8an752yR0BCPlYEGJN1h3I1DgAAR0AtNcKPXCj2R0BcFP3ztkWiR0BCPztkWhysh3I2DgAAR0AtNsi0OVgQR0BcFWBBiTdMR0BCP3ztkWhzh3I3DgAAR0AtOFHrhR64R0BcFhR64UeuR0BCQAAAAAAAh3I4DgAAR0AtOl41P3zuR0BcF0vGp++eR0BCQOVgQYk3h3I5DgAAR0AtO2RaHKwIR0BcF52yLQ5WR0BCQSbpeNT+h3I6DgAAR0AtO+dsi0OWR0BcGAAAAAAAR0BCQWhysCDFh3I7DgAAR0AtPvnbItDlR0BcGYk3S8aoR0BCQo9cKPXDh3I8DgAAR0AtQAAAAAAAR0BcGeuFHrhSR0BCQtDlYEGJh3I9DgAAR0AtQIMSbpeNR0BcGj1wo9cKR0BCQxJul41Qh3I+DgAAR0AtQxJul41QR0BcG3S8an76R0BCQ/fO2RaHh3I/DgAAR0AtQ5WBBiTdR0BcG9cKPXCkR0BCRDlYEGJOh3JADgAAR0AtRJul41P4R0BcHCj1wo9cR0BCRHrhR64Uh3JBDgAAR0AtRR64UeuFR0BcHItDlYEGR0BCRLxqfvnbh3JCDgAAR0AtR64UeuFIR0BcHcKPXCj2R0BCRaHKwIMSh3JDDgAAR0AtSDEm6XjVR0BcHhR64UeuR0BCReNT987Zh3JEDgAAR0AtSTdLxqfwR0BcHmZmZmZmR0BCRiTdLxqgh3JFDgAAR0AtTEm6XjU/R0BcIAAAAAAAR0BCR0vGp++eh3JGDgAAR0AtTMzMzMzNR0BcIFHrhR64R0BCR41P3ztkh3JHDgAAR0AtTdLxqfvnR0BcILQ5WBBiR0BCR87ZFocrh3JIDgAAR0AtUGJN0vGqR0BcIeuFHrhSR0BCSJN0vGp/h3JJDgAAR0AtUOVgQYk3R0BcIj1wo9cKR0BCSNT987ZGh3JKDgAAR0AtUeuFHrhSR0BcIp++dsi0R0BCSRaHKwIMh3JLDgAAR0AtVP3ztkWiR0BcJCj1wo9cR0BCSj1wo9cKh3JMDgAAR0AtVYEGJN0vR0BcJItDlYEGR0BCSn752yLRh3JNDgAAR0AtVocrAgxKR0BcJN0vGp++R0BCSsCDEm6Yh3JODgAAR0AtWZmZmZmaR0BcJnbItDlYR0BCS+dsi0OWh3JPDgAAR0AtWhysCDEnR0BcJsi0OVgQR0BCTCj1wo9ch3JQDgAAR0AtWyLQ5WBCR0BcJxqfvnbJR0BCTGp++dsjh3JRDgAAR0AtXbItDlYER0BcKFHrhR64R0BCTU/fO2Rah3JSDgAAR0AtXjU/fO2RR0BcKLQ5WBBiR0BCTZFocrAhh3JTDgAAR0AtXrhR64UfR0BcKQYk3S8bR0BCTdLxqfvnh3JUDgAAR0AtYk3S8an8R0BcKp++dsi0R0BCTvnbItDlh3JVDgAAR0AtYtDlYEGJR0BcKvGp++dtR0BCTztkWhysh3JWDgAAR0AtY1P3ztkXR0BcK1P3ztkXR0BCT3ztkWhzh3JXDgAAR0AtZul41P30R0BcLN0vGp++R0BCUKPXCj1xh3JYDgAAR0AtZ2yLQ5WBR0BcLT987ZFoR0BCUOVgQYk3h3JZDgAAR0AtawIMSbpeR0BcLsi0OVgQR0BCUgxJul41h3JaDgAAR0Ata4UeuFHsR0BcLxqfvnbJR0BCUk3S8an8h3JbDgAAR0AtbAgxJul5R0BcL3ztkWhzR0BCUo9cKPXDh3JcDgAAR0Atb52yLQ5WR0BcMRaHKwIMR0BCU7ZFocrBh3JdDgAAR0AtczMzMzMzR0BcMvGp++dtR0BCVR64UeuFh3JeDgAAR0AtdDlYEGJOR0BcM1P3ztkXR0BCVWBBiTdMh3JfDgAAR0AtdLxqfvnbR0BcM6XjU/fPR0BCVaHKwIMSh3JgDgAAR0AteFHrhR64R0BcNT987ZFoR0BCVsi0OVgQh3JhDgAAR0Atel41P3zuR0BcNkWhysCDR0BCV41P3ztkh3JiDgAAR0AtfO2RaHKwR0BcN3ztkWhzR0BCWHKwIMSch3JjDgAAR0AtgQYk3S8bR0BcOWhysCDFR0BCWdsi0OVgh3JkDgAAR0AtgxJul41QR0BcOm6XjU/fR0BCWp++dsi0h3JlDgAAR0AthaHKwIMSR0BcO6XjU/fPR0BCW4UeuFHsh3JmDgAAR0Ath64UeuFIR0BcPKwIMSbpR0BCXEm6XjU/h3JnDgAAR0Atij1wo9cKR0BcPeNT987ZR0BCXS8an753h3JoDgAAR0Ati8an752yR0BcPpeNT987R0BCXbItDlYEh3JpDgAAR0AtjlYEGJN1R0BcP87ZFocrR0BCXpeNT987h3JqDgAAR0AtjtkWhysCR0BcQDEm6XjVR0BCXtkWhysCh3JrDgAAR0AtkGJN0vGqR0BcQNT987ZGR0BCX1wo9cKPh3JsDgAAR0AtkvGp++dtR0BcQgxJul41R0BCYEGJN0vHh3JtDgAAR0AtlHrhR64UR0BcQsCDEm6YR0BCYMSbpeNUh3JuDgAAR0AtlP3ztkWiR0BcQyLQ5WBCR0BCYQYk3S8bh3JvDgAAR0Atlwo9cKPXR0BcQ/fO2RaHR0BCYan752yLh3JwDgAAR0Atl41P3ztkR0BcRFocrAgxR0BCYeuFHrhSh3JxDgAAR0AtmRaHKwIMR0BcRP3ztkWiR0BCYm6XjU/fh3JyDgAAR0Atm6XjU/fPR0BcRjU/fO2RR0BCY1P3ztkXh3JzDgAAR0AtnKwIMSbpR0BcRpeNT987R0BCY5WBBiTdh3J0DgAAR0AtnS8an753R0BcRul41P30R0BCY9cKPXCkh3J1DgAAR0AtnjU/fO2RR0BcR0vGp++eR0BCZBiTdLxqh3J2DgAAR0AtoMSbpeNUR0BcSIMSbpeNR0BCZP3ztkWih3J3DgAAR0AtoUeuFHrhR0BcSNT987ZGR0BCZT987ZFoh3J4DgAAR0AtocrAgxJvR0BcSSbpeNT+R0BCZYEGJN0vh3J5DgAAR0AtpFocrAgxR0BcSl41P3zuR0BCZmZmZmZmh3J6DgAAR0AtpWBBiTdMR0BcSsCDEm6YR0BCZqfvnbIth3J7DgAAR0AtpeNT987ZR0BcSxJul41QR0BCZul41P30h3J8DgAAR0Atpul41P30R0BcS3S8an76R0BCZysCDEm6h3J9DgAAR0AtqXjU/fO2R0BcTJul41P4R0BCaBBiTdLyh3J+DgAAR0AtqfvnbItER0BcTP3ztkWiR0BCaFHrhR64h3J/DgAAR0AtqwIMSbpeR0BcTU/fO2RaR0BCaJN0vGp/h3KADgAAR0Atq4UeuFHsR0BcTbItDlYER0BCaNT987ZGh3KBDgAAR0AtrhR64UeuR0BcTul41P30R0BCabpeNT99h3KCDgAAR0AtrxqfvnbJR0BcTztkWhysR0BCafvnbItEh3KDDgAAR0Atr52yLQ5WR0BcT41P3ztkR0BCaj1wo9cKh3KEDgAAR0Atsi0OVgQZR0BcUMSbpeNUR0BCayLQ5WBCh3KFDgAAR0AtsrAgxJumR0BcUSbpeNT+R0BCa2RaHKwIh3KGDgAAR0Ats7ZFocrBR0BcUXjU/fO2R0BCa6XjU/fPh3KHDgAAR0AttDlYEGJOR0BcUdsi0OVgR0BCa+dsi0OWh3KIDgAAR0Attsi0OVgQR0BcUxJul41QR0BCbMzMzMzNh3KJDgAAR0Att87ZFocrR0BcU2RaHKwIR0BCbQ5WBBiTh3KKDgAAR0AtuFHrhR64R0BcU7ZFocrBR0BCbU/fO2Rah3KLDgAAR0Atu+dsi0OWR0BcVU/fO2RaR0BCbnbItDlYh3KMDgAAR0AtvGp++dsjR0BcVaHKwIMSR0BCbrhR64Ufh3KNDgAAR0AtvXCj1wo9R0BcVfO2RaHLR0BCbvnbItDlh3KODgAAR0AtwAAAAAAAR0BcVysCDEm6R0BCb987ZFodh3KPDgAAR0AtwIMSbpeNR0BcV41P3ztkR0BCcCDEm6Xjh3KQDgAAR0AtwYk3S8aoR0BcV987ZFodR0BCcGJN0vGqh3KRDgAAR0AtxJul41P4R0BcWXjU/fO2R0BCcYk3S8aoh3KSDgAAR0AtxaHKwIMSR0BcWcrAgxJvR0BCccrAgxJvh3KTDgAAR0AtxiTdLxqgR0BcWhysCDEnR0BCcgxJul41h3KUDgAAR0AtyTdLxqfwR0BcW7ZFocrBR0BCczMzMzMzh3KVDgAAR0Atyj1wo9cKR0BcXAgxJul5R0BCc3S8an76h3KWDgAAR0AtysCDEm6YR0BcXFocrAgxR0BCc7ZFocrBh3KXDgAAR0AtzU/fO2RaR0BcXZFocrAhR0BCdJul41P4h3KYDgAAR0AtzlYEGJN1R0BcXfO2RaHLR0BCdN0vGp++h3KZDgAAR0AtztkWhysCR0BcXkWhysCDR0BCdR64UeuFh3KaDgAAR0At0m6XjU/fR0BcX87ZFocrR0BCdkWhysCDh3KbDgAAR0At0vGp++dtR0BcYDEm6XjVR0BCdocrAgxKh3KcDgAAR0At0/fO2RaHR0BcYIMSbpeNR0BCdsi0OVgQh3KdDgAAR0At1HrhR64UR0BcYOVgQYk3R0BCdwo9cKPXh3KeDgAAR0At1wo9cKPXR0BcYhysCDEnR0BCd++dsi0Oh3KfDgAAR0At2BBiTdLyR0BcYm6XjU/fR0BCeDEm6XjVh3KgDgAAR0At2yLQ5WBCR0BcY/fO2RaHR0BCeXjU/fO2h3KhDgAAR0At3KwIMSbpR0BcZKwIMSbpR0BCedsi0OVgh3KiDgAAR0At3bItDlYER0BcZQ5WBBiTR0BCej1wo9cKh3KjDgAAR0At4EGJN0vHR0BcZkWhysCDR0BCeyLQ5WBCh3KkDgAAR0At4k3S8an8R0BcZ0vGp++eR0BCe+dsi0OWh3KlDgAAR0At5mZmZmZmR0BcaSbpeNT+R0BCfU/fO2Rah3KmDgAAR0At6PXCj1wpR0Bcal41P3zuR0BCfjU/fO2Rh3KnDgAAR0At64UeuFHsR0Bca2RaHKwIR0BCfvnbItDlh3KoDgAAR0At7hR64UeuR0BcbJul41P4R0BCf987ZFodh3KpDgAAR0At8CDEm6XjR0BcbaHKwIMSR0BCgKPXCj1xh3KqDgAAR0At8i0OVgQZR0BcbocrAgxKR0BCgUeuFHrhh3KrDgAAR0At8rAgxJumR0BcbtkWhysCR0BCgYk3S8aoh3KsDgAAR0At9DlYEGJOR0Bcb41P3ztkR0BCggxJul41h3KtDgAAR0At90vGp++eR0BccMSbpeNUR0BCgvGp++dth3KuDgAAR0At+VgQYk3TR0BcccrAgxJvR0BCg7ZFocrBh3KvDgAAR0At++dsi0OWR0BccwIMSbpeR0BChJul41P4h3KwDgAAR0At/XCj1wo9R0Bcc7ZFocrBR0BChR64UeuFh3KxDgAAR0AuAAAAAAAAR0BcdO2RaHKwR0BChgQYk3S8h3KyDgAAR0AuAQYk3S8bR0BcdT987ZFoR0BChkWhysCDh3KzDgAAR0AuAo9cKPXDR0BcdfO2RaHLR0BChsi0OVgQh3K0DgAAR0AuBR64UeuFR0BcdysCDEm6R0BCh64UeuFIh3K1DgAAR0AuBaHKwIMSR0Bcd3ztkWhzR0BCh++dsi0Oh3K2DgAAR0AuBqfvnbItR0Bcd87ZFocrR0BCiFHrhR64h3K3DgAAR0AuBysCDEm6R0BceDEm6XjVR0BCiJN0vGp/h3K4DgAAR0AuCbpeNT99R0BceWhysCDFR0BCiXjU/fO2h3K5DgAAR0AuCsCDEm6YR0BcebpeNT99R0BCibpeNT99h3K6DgAAR0AuC0OVgQYlR0BcegxJul41R0BCifvnbItEh3K7DgAAR0AuDlYEGJN1R0Bce0OVgQYlR0BCiuFHrhR7h3K8DgAAR0AuDtkWhysCR0Bce6XjU/fPR0BCiyLQ5WBCh3K9DgAAR0AuD1wo9cKPR0Bce/fO2RaHR0BCi2RaHKwIh3K+DgAAR0AuEGJN0vGqR0BcfEm6XjU/R0BCi6XjU/fPh3K/DgAAR0AuEvGp++dtR0BcfYEGJN0vR0BCjItDlYEGh3LADgAAR0AuE/fO2RaHR0BcfeNT987ZR0BCjMzMzMzNh3LBDgAAR0AuFHrhR64UR0BcfjU/fO2RR0BCjQ5WBBiTh3LCDgAAR0AuFwo9cKPXR0Bcf2yLQ5WBR0BCjfO2RaHLh3LDDgAAR0AuGBBiTdLyR0Bcf752yLQ5R0BCjjU/fO2Rh3LEDgAAR0AuGJN0vGp/R0BcgCDEm6XjR0BCjnbItDlYh3LFDgAAR0AuGZmZmZmaR0BcgHKwIMScR0BCjrhR64Ufh3LGDgAAR0AuHCj1wo9cR0Bcgan752yLR0BCj52yLQ5Wh3LHDgAAR0AuHKwIMSbpR0BcgfvnbItER0BCj987ZFodh3LIDgAAR0AuHbItDlYER0Bcgk3S8an8R0BCkCDEm6Xjh3LJDgAAR0AuHjU/fO2RR0BcgrAgxJumR0BCkGJN0vGqh3LKDgAAR0AuIUeuFHrhR0Bcg+dsi0OWR0BCkUeuFHrhh3LLDgAAR0AuIcrAgxJvR0BchDlYEGJOR0BCkYk3S8aoh3LMDgAAR0AuItDlYEGJR0BchItDlYEGR0BCkcrAgxJvh3LNDgAAR0AuJWBBiTdMR0BchcKPXCj2R0BCkrAgxJumh3LODgAAR0AuJeNT987ZR0BchiTdLxqgR0BCkvGp++dth3LPDgAAR0AuJul41P30R0BchnbItDlYR0BCk1P3ztkXh3LQDgAAR0AuJ2yLQ5WBR0Bchsi0OVgQR0BCk5WBBiTdh3LRDgAAR0AuKfvnbItER0BciAAAAAAAR0BClHrhR64Uh3LSDgAAR0AuKwIMSbpeR0BciGJN0vGqR0BClLxqfvnbh3LTDgAAR0AuK4UeuFHsR0BciLQ5WBBiR0BClP3ztkWih3LUDgAAR0AuLxqfvnbJR0Bcij1wo9cKR0BCliTdLxqgh3LVDgAAR0AuMCDEm6XjR0Bcio9cKPXDR0BClmZmZmZmh3LWDgAAR0AuMKPXCj1xR0BcivGp++dtR0BClqfvnbIth3LXDgAAR0AuMzMzMzMzR0BcjCj1wo9cR0BCl41P3ztkh3LYDgAAR0AuNDlYEGJOR0BcjHrhR64UR0BCl87ZFocrh3LZDgAAR0AuNLxqfvnbR0BcjMzMzMzNR0BCmBBiTdLyh3LaDgAAR0AuNcKPXCj2R0BcjS8an753R0BCmFHrhR64h3LbDgAAR0AuNkWhysCDR0BcjYEGJN0vR0BCmJN0vGp/h3LcDgAAR0AuOFHrhR64R0BcjmZmZmZmR0BCmTdLxqfwh3LdDgAAR0AuOVgQYk3TR0BcjrhR64UfR0BCmXjU/fO2h3LeDgAAR0AuOdsi0OVgR0Bcjwo9cKPXR0BCmbpeNT99h3LfDgAAR0AuPXCj1wo9R0BckJN0vGp/R0BCmuFHrhR7h3LgDgAAR0AuPfO2RaHLR0BckPXCj1wpR0BCmyLQ5WBCh3LhDgAAR0AuPvnbItDlR0BckUeuFHrhR0BCm2RaHKwIh3LiDgAAR0AuP3ztkWhzR0Bckan752yLR0BCm8an752yh3LjDgAAR0AuQYk3S8aoR0Bckn752yLRR0BCnGp++dsjh3LkDgAAR0AuQo9cKPXDR0BcktDlYEGJR0BCnKwIMSbph3LlDgAAR0AuQxJul41QR0BckzMzMzMzR0BCnO2RaHKwh3LmDgAAR0AuRqfvnbItR0BclLxqfvnbR0BCnhR64Ueuh3LnDgAAR0AuSDEm6XjVR0BclXCj1wo9R0BCnpeNT987h3LoDgAAR0AuSLQ5WBBiR0BclcKPXCj2R0BCntkWhysCh3LpDgAAR0AuTdLxqfvnR0BcmAAAAAAAR0BCoIMSbpeNh3LqDgAAR0AuT987ZFodR0BcmNT987ZGR0BCoSbpeNT+h3LrDgAAR0AuUWhysCDFR0BcmYk3S8aoR0BCoan752yLh3LsDgAAR0AuUeuFHrhSR0BcmeuFHrhSR0BCoeuFHrhSh3LtDgAAR0AuU3S8an76R0Bcmo9cKPXDR0BCom6XjU/fh3LuDgAAR0AuVP3ztkWiR0BcmxJul41QR0BCotDlYEGJh3LvDgAAR0AuVwo9cKPXR0BcnBiTdLxqR0BCo7ZFocrBh3LwDgAAR0AuWZmZmZmaR0BcnU/fO2RaR0BCpJul41P4h3LxDgAAR0AuWyLQ5WBCR0BcngQYk3S8R0BCpR64UeuFh3LyDgAAR0AuXS8an753R0BcnrhR64UfR0BCpaHKwIMSh3LzDgAAR0AuXjU/fO2RR0BcnztkWhysR0BCpgQYk3S8h3L0DgAAR0AuYEGJN0vHR0BcoEGJN0vHR0BCpsi0OVgQh3L1DgAAR0AuY1P3ztkXR0BcoWhysCDFR0BCp64UeuFIh3L2DgAAR0AuZWBBiTdMR0Bcon752yLRR0BCqHKwIMSch3L3DgAAR0AuZmZmZmZmR0BcotDlYEGJR0BCqLQ5WBBih3L4DgAAR0AuZ++dsi0OR0Bco6XjU/fPR0BCqVgQYk3Th3L5DgAAR0AuaXjU/fO2R0BcpFocrAgxR0BCqdsi0OVgh3L6DgAAR0AuawIMSbpeR0BcpQ5WBBiTR0BCqn752yLRh3L7DgAAR0AubItDlYEGR0BcpZFocrAhR0BCquFHrhR7h3L8DgAAR0AubQ5WBBiTR0BcpeNT987ZR0BCqyLQ5WBCh3L9DgAAR0AubhR64UeuR0BcpjU/fO2RR0BCq2RaHKwIh3L+DgAAR0AubpeNT987R0BcppeNT987R0BCq6XjU/fPh3L/DgAAR0Aucan752yLR0Bcp87ZFocrR0BCrItDlYEGh3IADwAAR0Auci0OVgQZR0BcqCDEm6XjR0BCrMzMzMzNh3IBDwAAR0AuczMzMzMzR0BcqHKwIMScR0BCrQ5WBBiTh3ICDwAAR0AudLxqfvnbR0BcqSbpeNT+R0BCrZFocrAhh3IDDwAAR0AudcKPXCj2R0Bcqan752yLR0BCrfO2RaHLh3IEDwAAR0AudkWhysCDR0BcqfvnbItER0BCrjU/fO2Rh3IFDwAAR0Aud0vGp++eR0Bcql41P3zuR0BCrnbItDlYh3IGDwAAR0Aud87ZFocrR0BcqrAgxJumR0BCrrhR64Ufh3IHDwAAR0AueuFHrhR7R0Bcq+dsi0OWR0BCr52yLQ5Wh3IIDwAAR0Aue2RaHKwIR0BcrDlYEGJOR0BCr987ZFodh3IJDwAAR0AufGp++dsjR0BcrJul41P4R0BCsCDEm6Xjh3IKDwAAR0AufO2RaHKwR0BcrO2RaHKwR0BCsGJN0vGqh3ILDwAAR0AuffO2RaHLR0BcrT987ZFoR0BCsKPXCj1xh3IMDwAAR0AugAAAAAAAR0BcriTdLxqgR0BCsUeuFHrhh3INDwAAR0AugIMSbpeNR0BcrnbItDlYR0BCsan752yLh3IODwAAR0AugYk3S8aoR0Bcrsi0OVgQR0BCseuFHrhSh3IPDwAAR0AugxJul41QR0Bcr3ztkWhzR0BCsm6XjU/fh3IQDwAAR0AuhBiTdLxqR0BcsAAAAAAAR0BCstDlYEGJh3IRDwAAR0AuhR64UeuFR0BcsFHrhR64R0BCsxJul41Qh3ISDwAAR0AuhaHKwIMSR0BcsLQ5WBBiR0BCs1P3ztkXh3ITDwAAR0AuhqfvnbItR0BcsQYk3S8bR0BCs5WBBiTdh3IUDwAAR0AuhysCDEm6R0BcsWhysCDFR0BCs9cKPXCkh3IVDwAAR0AuiTdLxqfwR0Bcsj1wo9cKR0BCtHrhR64Uh3IWDwAAR0AuibpeNT99R0Bcso9cKPXDR0BCtLxqfvnbh3IXDwAAR0AuisCDEm6YR0BcsvGp++dtR0BCtP3ztkWih3IYDwAAR0AujEm6XjU/R0Bcs5WBBiTdR0BCtYEGJN0vh3IZDwAAR0AujlYEGJN1R0BctHrhR64UR0BCtiTdLxqgh3IaDwAAR0AujtkWhysCR0BctMzMzMzNR0BCtmZmZmZmh3IbDwAAR0Auj987ZFodR0BctR64UeuFR0BCtqfvnbIth3IcDwAAR0Aukm6XjU/fR0BctlYEGJN1R0BCt64UeuFIh3IdDwAAR0Auk3S8an76R0BctqfvnbItR0BCt++dsi0Oh3IeDwAAR0Auk/fO2RaHR0Bctwo9cKPXR0BCuDEm6XjVh3IfDwAAR0AulP3ztkWiR0Bct1wo9cKPR0BCuHKwIMSch3IgDwAAR0AulYEGJN0vR0Bct752yLQ5R0BCuLQ5WBBih3IhDwAAR0AulocrAgxKR0BcuBBiTdLyR0BCuPXCj1wph3IiDwAAR0Aul41P3ztkR0BcuJN0vGp/R0BCuVgQYk3Th3IjDwAAR0AumJN0vGp/R0BcuOVgQYk3R0BCuZmZmZmah3IkDwAAR0AumRaHKwIMR0BcuTdLxqfwR0BCudsi0OVgh3IlDwAAR0AunCj1wo9cR0Bcum6XjU/fR0BCusCDEm6Yh3ImDwAAR0AunKwIMSbpR0BcutDlYEGJR0BCuwIMSbpeh3InDwAAR0AunbItDlYER0BcuyLQ5WBCR0BCu0OVgQYlh3IoDwAAR0AunjU/fO2RR0Bcu3S8an76R0BCu4UeuFHsh3IpDwAAR0AunztkWhysR0Bcu9cKPXCkR0BCu8an752yh3IqDwAAR0AuoUeuFHrhR0BcvKwIMSbpR0BCvGp++dsjh3IrDwAAR0AuocrAgxJvR0BcvP3ztkWiR0BCvKwIMSbph3IsDwAAR0AuotDlYEGJR0BcvWBBiTdMR0BCvO2RaHKwh3ItDwAAR0AupFocrAgxR0BcvhR64UeuR0BCvZFocrAhh3IuDwAAR0AupN0vGp++R0BcvmZmZmZmR0BCvdLxqfvnh3IvDwAAR0AupmZmZmZmR0Bcvul41P30R0BCvjU/fO2Rh3IwDwAAR0Aupul41P30R0BcvztkWhysR0BCvnbItDlYh3IxDwAAR0Aup++dsi0OR0Bcv41P3ztkR0BCvrhR64Ufh3IyDwAAR0AuqHKwIMScR0Bcv++dsi0OR0BCvvnbItDlh3IzDwAAR0Auqn752yLRR0BcwMSbpeNUR0BCv52yLQ5Wh3I0DwAAR0Auq4UeuFHsR0BcwRaHKwIMR0BCv987ZFodh3I1DwAAR0AurAgxJul5R0BcwXjU/fO2R0BCwCDEm6Xjh3I2DwAAR0AurZFocrAhR0Bcwi0OVgQZR0BCwKPXCj1xh3I3DwAAR0AurpeNT987R0Bcwn752yLRR0BCwOVgQYk3h3I4DwAAR0Aur52yLQ5WR0BcwwIMSbpeR0BCwUeuFHrhh3I5DwAAR0AusKPXCj1xR0Bcw1P3ztkXR0BCwYk3S8aoh3I6DwAAR0AusSbpeNT+R0Bcw6XjU/fPR0BCwcrAgxJvh3I7DwAAR0Ausi0OVgQZR0BcxAgxJul5R0BCwgxJul41h3I8DwAAR0Aus7ZFocrBR0BcxLxqfvnbR0BCwrAgxJumh3I9DwAAR0AutLxqfvnbR0BcxS8an753R0BCwxJul41Qh3I+DwAAR0Aut0vGp++eR0BcxkWhysCDR0BCw9cKPXCkh3I/DwAAR0AuuNT987ZGR0BcxxqfvnbJR0BCxHrhR64Uh3JADwAAR0AuuuFHrhR7R0Bcx87ZFocrR0BCxP3ztkWih3JBDwAAR0AuvGp++dsjR0BcyHKwIMScR0BCxYEGJN0vh3JCDwAAR0AuvO2RaHKwR0BcyNT987ZGR0BCxcKPXCj2h3JDDwAAR0AuvnbItDlYR0BcyVgQYk3TR0BCxiTdLxqgh3JEDwAAR0AuwAAAAAAAR0BcyfvnbItER0BCxqfvnbIth3JFDwAAR0AuwIMSbpeNR0Bcyl41P3zuR0BCxul41P30h3JGDwAAR0AuwgxJul41R0BcyxJul41QR0BCx41P3ztkh3JHDwAAR0Auw5WBBiTdR0Bcy4UeuFHsR0BCx++dsi0Oh3JIDwAAR0AuxaHKwIMSR0BczItDlYEGR0BCyLQ5WBBih3JJDwAAR0AuxqfvnbItR0BczO2RaHKwR0BCyPXCj1wph3JKDwAAR0AuyTdLxqfwR0BczhR64UeuR0BCydsi0OVgh3JLDwAAR0Auyj1wo9cKR0BcznbItDlYR0BCyhysCDEnh3JMDwAAR0Auy8an752yR0BczysCDEm6R0BCyp++dsi0h3JNDwAAR0AuzMzMzMzNR0Bcz52yLQ5WR0BCywIMSbpeh3JODwAAR0Auz1wo9cKPR0Bc0KPXCj1xR0BCy8an752yh3JPDwAAR0Auz987ZFodR0Bc0QYk3S8bR0BCzAgxJul5h3JQDwAAR0Au0euFHrhSR0Bc0dsi0OVgR0BCzKwIMSbph3JRDwAAR0Au03S8an76R0Bc0o9cKPXDR0BCzU/fO2Rah3JSDwAAR0Au1P3ztkWiR0Bc00OVgQYlR0BCzdLxqfvnh3JTDwAAR0Au1ocrAgxKR0Bc07ZFocrBR0BCzjU/fO2Rh3JUDwAAR0Au1wo9cKPXR0Bc1BiTdLxqR0BCznbItDlYh3JVDwAAR0Au2JN0vGp/R0Bc1LxqfvnbR0BCzvnbItDlh3JWDwAAR0Au26XjU/fPR0Bc1fO2RaHLR0BCz987ZFodh3JXDwAAR0Au3Cj1wo9cR0Bc1kWhysCDR0BC0CDEm6Xjh3JYDwAAR0Au3S8an753R0Bc1qfvnbItR0BC0GJN0vGqh3JZDwAAR0Au3bItDlYER0Bc1vnbItDlR0BC0KPXCj1xh3JaDwAAR0Au3rhR64UfR0Bc11wo9cKPR0BC0OVgQYk3h3JbDwAAR0Au4MSbpeNUR0Bc2DEm6XjVR0BC0Yk3S8aoh3JcDwAAR0Au4UeuFHrhR0Bc2IMSbpeNR0BC0euFHrhSh3JdDwAAR0Au4k3S8an8R0Bc2NT987ZGR0BC0i0OVgQZh3JeDwAAR0Au49cKPXCkR0Bc2Yk3S8aoR0BC0rAgxJumh3JfDwAAR0Au5N0vGp++R0Bc2gxJul41R0BC0xJul41Qh3JgDwAAR0Au5eNT987ZR0Bc2l41P3zuR0BC01P3ztkXh3JhDwAAR0Au5ul41P30R0Bc2sCDEm6YR0BC05WBBiTdh3JiDwAAR0Au52yLQ5WBR0Bc2xJul41QR0BC09cKPXCkh3JjDwAAR0Au6HKwIMScR0Bc23S8an76R0BC1BiTdLxqh3JkDwAAR0Au6n752yLRR0Bc3Em6XjU/R0BC1Lxqfvnbh3JlDwAAR0Au6wIMSbpeR0Bc3Jul41P4R0BC1P3ztkWih3JmDwAAR0Au7AgxJul5R0Bc3O2RaHKwR0BC1T987ZFoh3JnDwAAR0Au7ZFocrAhR0Bc3aHKwIMSR0BC1cKPXCj2h3JoDwAAR0Au7peNT987R0Bc3iTdLxqgR0BC1iTdLxqgh3JpDwAAR0Au752yLQ5WR0Bc3nbItDlYR0BC1ocrAgxKh3JqDwAAR0Au8CDEm6XjR0Bc3tkWhysCR0BC1si0OVgQh3JrDwAAR0Au8SbpeNT+R0Bc3ysCDEm6R0BC1wo9cKPXh3JsDwAAR0Au8an752yLR0Bc341P3ztkR0BC10vGp++eh3JtDwAAR0Au87ZFocrBR0Bc4GJN0vGqR0BC1++dsi0Oh3JuDwAAR0Au9LxqfvnbR0Bc4LQ5WBBiR0BC2DEm6XjVh3JvDwAAR0Au9T987ZFoR0Bc4QYk3S8bR0BC2HKwIMSch3JwDwAAR0Au9kWhysCDR0Bc4WhysCDFR0BC2LQ5WBBih3JxDwAAR0Au90vGp++eR0Bc4bpeNT99R0BC2PXCj1wph3JyDwAAR0Au987ZFocrR0Bc4hysCDEnR0BC2TdLxqfwh3JzDwAAR0Au+NT987ZGR0Bc4o9cKPXDR0BC2ZmZmZmah3J0DwAAR0Au+dsi0OVgR0Bc4vGp++dtR0BC2dsi0OVgh3J1DwAAR0Au+uFHrhR7R0Bc40OVgQYlR0BC2hysCDEnh3J2DwAAR0Au/Gp++dsjR0Bc4/fO2RaHR0BC2sCDEm6Yh3J3DwAAR0Au/XCj1wo9R0Bc5HrhR64UR0BC2yLQ5WBCh3J4DwAAR0Au/nbItDlYR0Bc5MzMzMzNR0BC22RaHKwIh3J5DwAAR0Au/vnbItDlR0Bc5R64UeuFR0BC26XjU/fPh3J6DwAAR0AvAAAAAAAAR0Bc5XCj1wo9R0BC2+dsi0OWh3J7DwAAR0AvAIMSbpeNR0Bc5dLxqfvnR0BC3Cj1wo9ch3J8DwAAR0AvAYk3S8aoR0Bc5jU/fO2RR0BC3Gp++dsjh3J9DwAAR0AvAo9cKPXDR0Bc5qfvnbItR0BC3MzMzMzNh3J+DwAAR0AvA5WBBiTdR0Bc5vnbItDlR0BC3Q5WBBiTh3J/DwAAR0AvBBiTdLxqR0Bc51wo9cKPR0BC3U/fO2Rah3KADwAAR0AvBiTdLxqgR0Bc6BBiTdLyR0BC3dLxqfvnh3KBDwAAR0AvBqfvnbItR0Bc6GJN0vGqR0BC3hR64Ueuh3KCDwAAR0AvB64UeuFIR0Bc6OVgQYk3R0BC3nbItDlYh3KDDwAAR0AvCLQ5WBBiR0Bc6TdLxqfwR0BC3rhR64Ufh3KEDwAAR0AvCbpeNT99R0Bc6Yk3S8aoR0BC3vnbItDlh3KFDwAAR0AvCj1wo9cKR0Bc6euFHrhSR0BC31wo9cKPh3KGDwAAR0AvDEm6XjU/R0Bc6sCDEm6YR0BC4AAAAAAAh3KHDwAAR0AvDU/fO2RaR0Bc6xJul41QR0BC4EGJN0vHh3KIDwAAR0AvDdLxqfvnR0Bc63S8an76R0BC4IMSbpeNh3KJDwAAR0AvDtkWhysCR0Bc68an752yR0BC4MSbpeNUh3KKDwAAR0AvD1wo9cKPR0Bc7BiTdLxqR0BC4QYk3S8bh3KLDwAAR0AvEGJN0vGqR0Bc7HrhR64UR0BC4UeuFHrhh3KMDwAAR0AvEWhysCDFR0Bc7P3ztkWiR0BC4an752yLh3KNDwAAR0AvEm6XjU/fR0Bc7U/fO2RaR0BC4euFHrhSh3KODwAAR0AvEvGp++dtR0Bc7aHKwIMSR0BC4i0OVgQZh3KPDwAAR0AvFYEGJN0vR0Bc7rhR64UfR0BC4vGp++dth3KQDwAAR0AvFocrAgxKR0Bc7ysCDEm6R0BC41P3ztkXh3KRDwAAR0AvF41P3ztkR0Bc73ztkWhzR0BC45WBBiTdh3KSDwAAR0AvGJN0vGp/R0Bc7987ZFodR0BC4/fO2RaHh3KTDwAAR0AvGRaHKwIMR0Bc8DEm6XjVR0BC5DlYEGJOh3KUDwAAR0AvGhysCDEnR0Bc8JN0vGp/R0BC5HrhR64Uh3KVDwAAR0AvGyLQ5WBCR0Bc8QYk3S8bR0BC5N0vGp++h3KWDwAAR0AvHCj1wo9cR0Bc8WhysCDFR0BC5R64UeuFh3KXDwAAR0AvHKwIMSbpR0Bc8bpeNT99R0BC5WBBiTdMh3KYDwAAR0AvHjU/fO2RR0Bc8m6XjU/fR0BC5eNT987Zh3KZDwAAR0AvHztkWhysR0Bc8sCDEm6YR0BC5iTdLxqgh3KaDwAAR0AvIEGJN0vHR0Bc80OVgQYlR0BC5ocrAgxKh3KbDwAAR0AvIUeuFHrhR0Bc85WBBiTdR0BC5si0OVgQh3KcDwAAR0AvIcrAgxJvR0Bc8/fO2RaHR0BC5wo9cKPXh3KdDwAAR0AvItDlYEGJR0Bc9Em6XjU/R0BC50vGp++eh3KeDwAAR0AvJN0vGp++R0Bc9R64UeuFR0BC6BBiTdLyh3KfDwAAR0AvJWBBiTdMR0Bc9XCj1wo9R0BC6FHrhR64h3KgDwAAR0AvJmZmZmZmR0Bc9dLxqfvnR0BC6JN0vGp/h3KhDwAAR0AvJ++dsi0OR0Bc9ocrAgxKR0BC6RaHKwIMh3KiDwAAR0AvKPXCj1wpR0Bc9tkWhysCR0BC6VgQYk3Th3KjDwAAZShHQC8p++dsi0RHQFz3XCj1wo9HQELpul41P32HcqQPAABHQC8rhR64UexHQFz4AAAAAABHQELqPXCj1wqHcqUPAABHQC8si0OVgQZHQFz4Yk3S8apHQELqfvnbItGHcqYPAABHQC8uFHrhR65HQFz5FocrAgxHQELrAgxJul6HcqcPAABHQC8vGp++dslHQFz5iTdLxqhHQELrZFocrAiHcqgPAABHQC8xqfvnbItHQFz6j1wo9cNHQELsSbpeNT+HcqkPAABHQC8ysCDEm6ZHQFz68an7521HQELsi0OVgQaHcqoPAABHQC81P3ztkWhHQFz8GJN0vGpHQELtcKPXCj2HcqsPAABHQC83ztkWhytHQFz9HrhR64VHQELuNT987ZGHcqwPAABHQC841P3ztkZHQFz9ocrAgxJHQELul41P3zuHcq0PAABHQC864UeuFHtHQFz+VgQYk3VHQELvGp++dsmHcq4PAABHQC87ZFocrAhHQFz+p++dsi1HQELvXCj1wo+Hcq8PAABHQC8+dsi0OVhHQFz/3ztkWh1HQELwYk3S8aqHcrAPAABHQC9AgxJul41HQF0A5WBBiTdHQELxJul41P6HcrEPAABHQC9BiTdLxqhHQF0BN0vGp/BHQELxaHKwIMWHcrIPAABHQC9FHrhR64VHQF0CwIMSbphHQELyj1wo9cOHcrMPAABHQC9Gp++dsi1HQF0DdLxqfvpHQELzEm6XjVCHcrQPAABHQC9IMSbpeNVHQF0D52yLQ5ZHQELzdLxqfvqHcrUPAABHQC9KPXCj1wpHQF0E7ZFocrBHQEL0WhysCDGHcrYPAABHQC9LQ5WBBiVHQF0FT987ZFpHQEL0m6XjU/iHcrcPAABHQC9NT987ZFpHQF0GJN0vGqBHQEL1P3ztkWiHcrgPAABHQC9OVgQYk3VHQF0Gdsi0OVhHQEL1gQYk3S+HcrkPAABHQC9O2RaHKwJHQF0G2RaHKwJHQEL1wo9cKPaHcroPAABHQC9QYk3S8apHQF0HfO2RaHNHQEL2RaHKwIOHcrsPAABHQC9R64UeuFJHQF0IAAAAAABHQEL2p++dsi2HcrwPAABHQC9SbpeNT99HQF0IUeuFHrhHQEL26XjU/fSHcr0PAABHQC9TdLxqfvpHQF0ItDlYEGJHQEL3KwIMSbqHcr4PAABHQC9UeuFHrhRHQF0JBiTdLxtHQEL3jU/fO2SHcr8PAABHQC9U/fO2RaJHQF0JaHKwIMVHQEL3ztkWhyuHcsAPAABHQC9XCj1wo9dHQF0KPXCj1wpHQEL4crAgxJyHcsEPAABHQC9YEGJN0vJHQF0Kj1wo9cNHQEL4tDlYEGKHcsIPAABHQC9Yk3S8an9HQF0K4UeuFHtHQEL49cKPXCmHcsMPAABHQC9ZmZmZmZpHQF0LQ5WBBiVHQEL5N0vGp/CHcsQPAABHQC9an752yLRHQF0LlYEGJN1HQEL5eNT987aHcsUPAABHQC9bItDlYEJHQF0L987ZFodHQEL5ul41P32HcsYPAABHQC9cKPXCj1xHQF0Man752yNHQEL6HKwIMSeHcscPAABHQC9dLxqfvndHQF0MvGp++dtHQEL6XjU/fO6HcsgPAABHQC9eNT987ZFHQF0NHrhR64VHQEL6n752yLSHcskPAABHQC9fvnbItDlHQF0Nwo9cKPZHQEL7Q5WBBiWHcsoPAABHQC9gxJul41RHQF0ORaHKwINHQEL7peNT98+HcssPAABHQC9hysCDEm9HQF0Op++dsi1HQEL752yLQ5aHcswPAABHQC9iTdLxqfxHQF0O+dsi0OVHQEL8KPXCj1yHcs0PAABHQC9jU/fO2RdHQF0PS8an755HQEL8an752yOHcs4PAABHQC9kWhysCDFHQF0PrhR64UhHQEL8rAgxJumHcs8PAABHQC9k3S8an75HQF0QAAAAAABHQEL87ZFocrCHctAPAABHQC9mZmZmZmZHQF0QgxJul41HQEL9T987ZFqHctEPAABHQC9m6XjU/fRHQF0Q1P3ztkZHQEL9kWhysCGHctIPAABHQC9n752yLQ5HQF0RJul41P5HQEL90vGp++eHctMPAABHQC9peNT987ZHQF0R2yLQ5WBHQEL+VgQYk3WHctQPAABHQC9qfvnbItFHQF0SPXCj1wpHQEL+uFHrhR+HctUPAABHQC9rhR64UexHQF0SsCDEm6ZHQEL/Gp++dsmHctYPAABHQC9sCDEm6XlHQF0TAgxJul5HQEL/XCj1wo+HctcPAABHQC9tDlYEGJNHQF0TZFocrAhHQEL/nbItDlaHctgPAABHQC9uFHrhR65HQF0TtkWhysFHQEL/3ztkWh2HctkPAABHQC9wIMSbpeNHQF0Ui0OVgQZHQEMAgxJul42HctoPAABHQC9wo9cKPXFHQF0U7ZFocrBHQEMAxJul41SHctsPAABHQC9xqfvnbItHQF0VP3ztkWhHQEMBBiTdLxuHctwPAABHQC9yLQ5WBBlHQF0VkWhysCFHQEMBR64UeuGHct0PAABHQC9zMzMzMzNHQF0V87ZFoctHQEMBiTdLxqiHct4PAABHQC90OVgQYk5HQF0WRaHKwINHQEMBysCDEm+Hct8PAABHQC91P3ztkWhHQF0WyLQ5WBBHQEMCLQ5WBBmHcuAPAABHQC92RaHKwINHQF0XGp++dslHQEMCbpeNT9+HcuEPAABHQC92yLQ5WBBHQF0XbItDlYFHQEMC0OVgQYmHcuIPAABHQC941P3ztkZHQF0YIMSbpeNHQEMDU/fO2ReHcuMPAABHQC95WBBiTdNHQF0YgxJul41HQEMDlYEGJN2HcuQPAABHQC952yLQ5WBHQF0Yo9cKPXFHQEMDtkWhysGHcuUPAABHQC96XjU/fO5HQF0Y9cKPXClHQEMD987ZFoeHcuYPAABHQC97ZFocrAhHQF0ZWBBiTdNHQEMEOVgQYk6HcucPAABHQC98an752yNHQF0ZqfvnbItHQEMEeuFHrhSHcugPAABHQC987ZFocrBHQF0Z++dsi0RHQEMEvGp++duHcukPAABHQC9987ZFoctHQF0aXjU/fO5HQEME/fO2RaKHcuoPAABHQC9++dsi0OVHQF0a0OVgQYlHQEMFYEGJN0yHcusPAABHQC+AAAAAAABHQF0bMzMzMzNHQEMFocrAgxKHcuwPAABHQC+AgxJul41HQF0bhR64UexHQEMF41P3ztmHcu0PAABHQC+Cj1wo9cNHQF0cOVgQYk5HQEMGhysCDEqHcu4PAABHQC+DEm6XjVBHQF0ci0OVgQZHQEMGyLQ5WBCHcu8PAABHQC+Em6XjU/hHQF0dDlYEGJNHQEMHKwIMSbqHcvAPAABHQC+FHrhR64VHQF0dYEGJN0xHQEMHbItDlYGHcvEPAABHQC+GJN0vGqBHQF0dsi0OVgRHQEMHrhR64UiHcvIPAABHQC+HKwIMSbpHQF0eFHrhR65HQEMH752yLQ6HcvMPAABHQC+ItDlYEGJHQF0e6XjU/fRHQEMIk3S8an+HcvQPAABHQC+Jul41P31HQF0fO2RaHKxHQEMI1P3ztkaHcvUPAABHQC+KwIMSbphHQF0fnbItDlZHQEMJFocrAgyHcvYPAABHQC+MSbpeNT9HQF0gQYk3S8dHQEMJul41P32HcvcPAABHQC+NT987ZFpHQF0go9cKPXFHQEMJ++dsi0SHcvgPAABHQC+OVgQYk3VHQF0hFocrAgxHQEMKXjU/fO6HcvkPAABHQC+O2RaHKwJHQF0heNT987ZHQEMKn752yLSHcvoPAABHQC+P3ztkWh1HQF0hysCDEm9HQEMK4UeuFHuHcvsPAABHQC+SbpeNT99HQF0i0OVgQYlHQEMLpeNT98+HcvwPAABHQC+TdLxqfvpHQF0jU/fO2RdHQEMMCDEm6XmHcv0PAABHQC+UeuFHrhRHQF0jpeNT989HQEMMSbpeNT+Hcv4PAABHQC+VgQYk3S9HQF0j987ZFodHQEMMi0OVgQaHcv8PAABHQC+WBBiTdLxHQF0kWhysCDFHQEMMzMzMzM2HcgAQAABHQC+XCj1wo9dHQF0krAgxJulHQEMNLxqfvneHcgEQAABHQC+YEGJN0vJHQF0lLxqfvndHQEMNkWhysCGHcgIQAABHQC+ZmZmZmZpHQF0l0vGp++dHQEMOFHrhR66HcgMQAABHQC+bpeNT989HQF0mhysCDEpHQEMOl41P3zuHcgQQAABHQC+cKPXCj1xHQF0m6XjU/fRHQEMO2RaHKwKHcgUQAABHQC+dsi0OVgRHQF0nXCj1wo9HQEMPO2RaHKyHcgYQAABHQC+fO2RaHKxHQF0oEGJN0vJHQEMPvnbItDmHcgcQAABHQC+fvnbItDlHQF0oYk3S8apHQEMQAAAAAACHcggQAABHQC+i0OVgQYlHQF0pmZmZmZpHQEMRBiTdLxuHcgkQAABHQC+j1wo9cKRHQF0p64UeuFJHQEMRR64UeuGHcgoQAABHQC+lYEGJN0xHQF0qn752yLRHQEMRysCDEm+HcgsQAABHQC+mZmZmZmZHQF0q8an7521HQEMSDEm6XjWHcgwQAABHQC+nbItDlYFHQF0rdLxqfvpHQEMSbpeNT9+Hcg0QAABHQC+o9cKPXClHQF0sGJN0vGpHQEMS8an7522Hcg4QAABHQC+p++dsi0RHQF0seuFHrhRHQEMTMzMzMzOHcg8QAABHQC+rhR64UexHQF0tLxqfvndHQEMT1wo9cKSHchAQAABHQC+vGp++dslHQF0up++dsi1HQEMU/fO2RaKHchEQAABHQC+wIMSbpeNHQF0vCj1wo9dHQEMVP3ztkWiHchIQAABHQC+1P3ztkWhHQF0xN0vGp/BHQEMXCj1wo9eHchMQAABHQC+5WBBiTdNHQF0ywIMSbphHQEMYMSbpeNWHchQQAABHQC+52yLQ5WBHQF0zEm6XjVBHQEMYcrAgxJyHchUQAABHQC+752yLQ5ZHQF0z52yLQ5ZHQEMZFocrAgyHchYQAABHQC++dsi0OVhHQF007ZFocrBHQEMZ2yLQ5WCHchcQAABHQC+/fO2RaHNHQF01T987ZFpHQEMaPXCj1wqHchgQAABHQC/DEm6XjVBHQF02yLQ5WBBHQEMbZFocrAiHchkQAABHQC/Em6XjU/hHQF03fO2RaHNHQEMb52yLQ5aHchoQAABHQC/GJN0vGqBHQF04AAAAAABHQEMcSbpeNT+HchsQAABHQC/HrhR64UhHQF04o9cKPXFHQEMczMzMzM2HchwQAABHQC/ItDlYEGJHQF05BiTdLxtHQEMdDlYEGJOHch0QAABHQC/JN0vGp/BHQF05WBBiTdNHQEMdcKPXCj2Hch4QAABHQC/KPXCj1wpHQF05ul41P31HQEMdsi0OVgSHch8QAABHQC/LQ5WBBiVHQF06LQ5WBBlHQEMeFHrhR66HciAQAABHQC/MSbpeNT9HQF06fvnbItFHQEMeVgQYk3WHciEQAABHQC/MzMzMzM1HQF064UeuFHtHQEMel41P3zuHciIQAABHQC/O2RaHKwJHQF07hR64UexHQEMfGp++dsmHciMQAABHQC/PXCj1wo9HQF0752yLQ5ZHQEMfXCj1wo+HciQQAABHQC/Q5WBBiTdHQF08WhysCDFHQEMfvnbItDmHciUQAABHQC/RaHKwIMVHQF08vGp++dtHQEMgAAAAAACHciYQAABHQC/SbpeNT99HQF09DlYEGJNHQEMgQYk3S8eHcicQAABHQC/TdLxqfvpHQF09YEGJN0xHQEMgo9cKPXGHcigQAABHQC/VgQYk3S9HQF0+NT987ZFHQEMhR64UeuGHcikQAABHQC/XCj1wo9dHQF0+6XjU/fRHQEMhysCDEm+HcioQAABHQC/YEGJN0vJHQF0/O2RaHKxHQEMiDEm6XjWHcisQAABHQC/Yk3S8an9HQF0/nbItDlZHQEMiTdLxqfyHciwQAABHQC/ZmZmZmZpHQF0/752yLQ5HQEMij1wo9cOHci0QAABHQC/an752yLRHQF1AcrAgxJxHQEMi8an7522Hci4QAABHQC/bpeNT989HQF1AxJul41RHQEMjMzMzMzOHci8QAABHQC/cKPXCj1xHQF1BFocrAgxHQEMjdLxqfvqHcjAQAABHQC/eNT987ZFHQF1BysCDEm9HQEMkGJN0vGqHcjEQAABHQC/fO2RaHKxHQF1CTdLxqfxHQEMkeuFHrhSHcjIQAABHQC/gQYk3S8dHQF1Cn752yLRHQEMkvGp++duHcjMQAABHQC/gxJul41RHQF1C8an7521HQEMk/fO2RaKHcjQQAABHQC/hysCDEm9HQF1DU/fO2RdHQEMlP3ztkWiHcjUQAABHQC/i0OVgQYlHQF1DpeNT989HQEMlgQYk3S+HcjYQAABHQC/jU/fO2RdHQF1ECDEm6XlHQEMlwo9cKPaHcjcQAABHQC/k3S8an75HQF1EeuFHrhRHQEMmJN0vGqCHcjgQAABHQC/lYEGJN0xHQF1EzMzMzM1HQEMmZmZmZmaHcjkQAABHQC/mZmZmZmZHQF1FLxqfvndHQEMmp++dsi2HcjoQAABHQC/n752yLQ5HQF1F0vGp++dHQEMnS8an756HcjsQAABHQC/o9cKPXClHQF1GNT987ZFHQEMnjU/fO2SHcjwQAABHQC/p++dsi0RHQF1Gp++dsi1HQEMn752yLQ6Hcj0QAABHQC/rAgxJul5HQF1HCj1wo9dHQEMoMSbpeNWHcj4QAABHQC/sCDEm6XlHQF1HXCj1wo9HQEMocrAgxJyHcj8QAABHQC/si0OVgQZHQF1HvnbItDlHQEMotDlYEGKHckAQAABHQC/ul41P3ztHQF1Ik3S8an9HQEMpWBBiTdOHckEQAABHQC/vnbItDlZHQF1I5WBBiTdHQEMpmZmZmZqHckIQAABHQC/wIMSbpeNHQF1JN0vGp/BHQEMp2yLQ5WCHckMQAABHQC/xJul41P5HQF1JiTdLxqhHQEMqPXCj1wqHckQQAABHQC/yLQ5WBBlHQF1J64UeuFJHQEMqfvnbItGHckUQAABHQC/ysCDEm6ZHQF1KPXCj1wpHQEMqwIMSbpiHckYQAABHQC/0OVgQYk5HQF1KwIMSbphHQEMrItDlYEKHckcQAABHQC/0vGp++dtHQF1LEm6XjVBHQEMrZFocrAiHckgQAABHQC/1wo9cKPZHQF1LZFocrAhHQEMrpeNT98+HckkQAABHQC/3S8an755HQF1MGJN0vGpHQEMsKPXCj1yHckoQAABHQC/4UeuFHrhHQF1MeuFHrhRHQEMsan752yOHcksQAABHQC/5WBBiTdNHQF1M7ZFocrBHQEMszMzMzM2HckwQAABHQC/6XjU/fO5HQF1NP3ztkWhHQEMtDlYEGJOHck0QAABHQC/7ZFocrAhHQF1NocrAgxJHQEMtcKPXCj2Hck4QAABHQC/752yLQ5ZHQF1N87ZFoctHQEMtsi0OVgSHck8QAABHQC/87ZFocrBHQF1OVgQYk3VHQEMt87ZFocuHclAQAABHQC/987ZFoctHQF1OyLQ5WBBHQEMuVgQYk3WHclEQAABHQDAAAAAAAABHQF1PfO2RaHNHQEMu2RaHKwKHclIQAABHQDAAxJul41RHQF1QIMSbpeNHQEMvXCj1wo+HclMQAABHQDABR64UeuFHQF1QgxJul41HQEMvnbItDlaHclQQAABHQDABysCDEm9HQF1Q9cKPXClHQEMwAAAAAACHclUQAABHQDACTdLxqfxHQF1RWBBiTdNHQEMwYk3S8aqHclYQAABHQDACj1wo9cNHQF1RqfvnbItHQEMwo9cKPXGHclcQAABHQDADEm6XjVBHQF1R++dsi0RHQEMw5WBBiTeHclgQAABHQDAEm6XjU/hHQF1TMzMzMzNHQEMxysCDEm+HclkQAABHQDAE3S8an75HQF1ThR64UexHQEMyDEm6XjWHcloQAABHQDAF41P3ztlHQF1UOVgQYk5HQEMyj1wo9cOHclsQAABHQDAGJN0vGqBHQF1Ui0OVgQZHQEMy8an7522HclwQAABHQDAG6XjU/fRHQF1VDlYEGJNHQEMzMzMzMzOHcl0QAABHQDAHrhR64UhHQF1Vsi0OVgRHQEMz1wo9cKSHcl4QAABHQDAIMSbpeNVHQF1WFHrhR65HQEM0GJN0vGqHcl8QAABHQDAI9cKPXClHQF1WyLQ5WBBHQEM0m6XjU/iHcmAQAABHQDAJeNT987ZHQF1XO2RaHKxHQEM0/fO2RaKHcmEQAABHQDAJ++dsi0RHQF1XjU/fO2RHQEM1P3ztkWiHcmIQAABHQDAKwIMSbphHQF1YQYk3S8dHQEM1wo9cKPaHcmMQAABHQDALQ5WBBiVHQF1Yo9cKPXFHQEM2JN0vGqCHcmQQAABHQDALxqfvnbJHQF1ZFocrAgxHQEM2hysCDEqHcmUQAABHQDAMi0OVgQZHQF1ZysCDEm9HQEM3Cj1wo9eHcmYQAABHQDANkWhysCFHQF1abpeNT99HQEM3jU/fO2SHcmcQAABHQDAOFHrhR65HQF1a0OVgQYlHQEM3ztkWhyuHcmgQAABHQDAOl41P3ztHQF1bQ5WBBiVHQEM4MSbpeNWHcmkQAABHQDAPXCj1wo9HQF1b987ZFodHQEM4tDlYEGKHcmoQAABHQDAP3ztkWh1HQF1cSbpeNT9HQEM5FocrAgyHcmsQAABHQDASbpeNT99HQF1ehysCDEpHQEM6wIMSbpiHcmwQAABHQDAS8an7521HQF1e2RaHKwJHQEM7AgxJul6Hcm0QAABHQDAUeuFHrhRHQF1gAAAAAABHQEM752yLQ5aHcm4QAABHQDAUvGp++dtHQF1gYk3S8apHQEM8SbpeNT+Hcm8QAABHQDAXjU/fO2RHQF1ij1wo9cNHQEM987ZFocuHcnAQAABHQDAYEGJN0vJHQF1i4UeuFHtHQEM+NT987ZGHcnEQAABHQDAYk3S8an9HQF1jQ5WBBiVHQEM+l41P3zuHcnIQAABHQDAa4UeuFHtHQF1lHrhR64VHQENAAAAAAACHcnMQAABHQDAcrAgxJulHQF1ml41P3ztHQENBJul41P6HcnQQAABHQDAdLxqfvndHQF1m+dsi0OVHQENBiTdLxqiHcnUQAABHQDAe+dsi0OVHQF1ocrAgxJxHQENCsCDEm6aHcnYQAABHQDAffO2RaHNHQF1oxJul41RHQENC8an7522HcncQAABHQDAfvnbItDlHQF1pJul41P5HQENDMzMzMzOHcngQAABHQDAgQYk3S8dHQF1peNT987ZHQENDdLxqfvqHcnkQAABHQDAhysCDEm9HQF1qn752yLRHQENEWhysCDGHcnoQAABHQDAkGJN0vGpHQF1seuFHrhRHQENF41P3ztmHcnsQAABHQDAkWhysCDFHQF1s3S8an75HQENGJN0vGqCHcnwQAABHQDAk3S8an75HQF1tLxqfvndHQENGZmZmZmaHcn0QAABHQDAlYEGJN0xHQF1tgQYk3S9HQENGp++dsi2Hcn4QAABHQDAmp++dsi1HQF1up++dsi1HQENHrhR64UiHcn8QAABHQDAnrhR64UhHQF1vXCj1wo9HQENIMSbpeNWHcoAQAABHQDAn752yLQ5HQF1vvnbItDlHQENIcrAgxJyHcoEQAABHQDAo9cKPXClHQF1wgxJul41HQENJFocrAgyHcoIQAABHQDApeNT987ZHQF1w5WBBiTdHQENJWBBiTdOHcoMQAABHQDAp++dsi0RHQF1xN0vGp/BHQENJmZmZmZqHcoQQAABHQDArAgxJul5HQF1yDEm6XjVHQENKXjU/fO6HcoUQAABHQDArxqfvnbJHQF1ywIMSbphHQENK4UeuFHuHcoYQAABHQDAsSbpeNT9HQF1zEm6XjVBHQENLItDlYEKHcocQAABHQDAszMzMzM1HQF1zZFocrAhHQENLZFocrAiHcogQAABHQDAtDlYEGJNHQF1zxqfvnbJHQENLpeNT98+HcokQAABHQDAuFHrhR65HQF10m6XjU/hHQENMSbpeNT+HcooQAABHQDAul41P3ztHQF107ZFocrBHQENMi0OVgQaHcosQAABHQDAv3ztkWh1HQF1187ZFoctHQENNcKPXCj2HcowQAABHQDAw5WBBiTdHQF12yLQ5WBBHQENOFHrhR66Hco0QAABHQDAxaHKwIMVHQF13Gp++dslHQENOVgQYk3WHco4QAABHQDAxqfvnbItHQF13fO2RaHNHQENOl41P3zuHco8QAABHQDAyLQ5WBBlHQF13ztkWhytHQENO2RaHKwKHcpAQAABHQDAysCDEm6ZHQF14UeuFHrhHQENPO2RaHKyHcpEQAABHQDAztkWhysFHQF149cKPXClHQENP3ztkWh2HcpIQAABHQDA0euFHrhRHQF15qfvnbItHQENQYk3S8aqHcpMQAABHQDA0/fO2RaJHQF15++dsi0RHQENQo9cKPXGHcpQQAABHQDA2BBiTdLxHQF160OVgQYlHQENRR64UeuGHcpUQAABHQDA2RaHKwINHQF17ItDlYEJHQENRiTdLxqiHcpYQAABHQDA2yLQ5WBBHQF17hR64UexHQENRysCDEm+HcpcQAABHQDA41P3ztkZHQF18/fO2RaJHQENTEm6XjVCHcpgQAABHQDA5mZmZmZpHQF19si0OVgRHQENTlYEGJN2HcpkQAABHQDA6HKwIMSdHQF1+BBiTdLxHQENT1wo9cKSHcpoQAABHQDA6n752yLRHQF1+hysCDEpHQENUOVgQYk6HcpsQAABHQDA7ZFocrAhHQF1/KwIMSbpHQENUvGp++duHcpwQAABHQDA8an752yNHQF1/3ztkWh1HQENVYEGJN0yHcp0QAABHQDA8rAgxJulHQF2AQYk3S8dHQENVocrAgxKHcp4QAABHQDA9si0OVgRHQF2BBiTdLxtHQENWRaHKwIOHcp8QAABHQDA+uFHrhR9HQF2Bul41P31HQENWyLQ5WBCHcqAQAABHQDA++dsi0OVHQF2CDEm6XjVHQENXCj1wo9eHcqEQAABHQDBAgxJul41HQF2DMzMzMzNHQENYEGJN0vKHcqIQAABHQDBBiTdLxqhHQF2D52yLQ5ZHQENYk3S8an+HcqMQAABHQDBBysCDEm9HQF2ESbpeNT9HQENY1P3ztkaHcqQQAABHQDBDU/fO2RdHQF2FcKPXCj1HQENZul41P32HcqUQAABHQDBD1wo9cKRHQF2Fwo9cKPZHQENZ++dsi0SHcqYQAABHQDBFocrAgxJHQF2HS8an755HQENbQ5WBBiWHcqcQAABHQDBGZmZmZmZHQF2H752yLQ5HQENbxqfvnbKHcqgQAABHQDBG6XjU/fRHQF2IUeuFHrhHQENcCDEm6XmHcqkQAABHQDBIcrAgxJxHQF2JeNT987ZHQENc7ZFocrCHcqoQAABHQDBI9cKPXClHQF2JysCDEm9HQENdT987ZFqHcqsQAABHQDBLhR64UexHQF2L987ZFodHQENe+dsi0OWHcqwQAABHQDBMCDEm6XlHQF2MWhysCDFHQENfO2RaHKyHcq0QAABHQDBMi0OVgQZHQF2MrAgxJulHQENfnbItDlaHcq4QAABHQDBNkWhysCFHQF2NgQYk3S9HQENgQYk3S8eHcq8QAABHQDBOVgQYk3VHQF2ONT987ZFHQENgxJul41SHcrAQAABHQDBO2RaHKwJHQF2OhysCDEpHQENhBiTdLxuHcrEQAABHQDBQo9cKPXFHQF2QAAAAAABHQENiLQ5WBBmHcrIQAABHQDBRJul41P5HQF2QYk3S8apHQENij1wo9cOHcrMQAABHQDBTdLxqfvpHQF2SPXCj1wpHQENj987ZFoeHcrQQAABHQDBT987ZFodHQF2Sj1wo9cNHQENkOVgQYk6HcrUQAABHQDBUeuFHrhRHQF2S8an7521HQENkeuFHrhSHcrYQAABHQDBVwo9cKPZHQF2UCDEm6XlHQENlgQYk3S+HcrcQAABHQDBYk3S8an9HQF2WRaHKwINHQENnKwIMSbqHcrgQAABHQDBZFocrAgxHQF2Wl41P3ztHQENnbItDlYGHcrkQAABHQDBZmZmZmZpHQF2W+dsi0OVHQENnztkWhyuHcroQAABHQDBa4UeuFHtHQF2YIMSbpeNHQENotDlYEGKHcrsQAABHQDBb52yLQ5ZHQF2YxJul41RHQENpN0vGp/CHcrwQAABHQDBcKPXCj1xHQF2ZJul41P5HQENpeNT987aHcr0QAABHQDBdsi0OVgRHQF2aTdLxqfxHQENqfvnbItGHcr4QAABHQDBeNT987ZFHQF2an752yLRHQENqwIMSbpiHcr8QAABHQDBgAAAAAABHQF2cKPXCj1xHQENr52yLQ5aHcsAQAABHQDBggxJul41HQF2ceuFHrhRHQENsKPXCj1yHcsEQAABHQDBhBiTdLxtHQF2czMzMzM1HQENsan752yOHcsIQAABHQDBhR64UeuFHQF2dLxqfvndHQENszMzMzM2HcsMQAABHQDBi0OVgQYlHQF2eVgQYk3VHQENtsi0OVgSHcsQQAABHQDBkGJN0vGpHQF2fXCj1wo9HQENudsi0OViHcsUQAABHQDBlHrhR64VHQF2gMSbpeNVHQENvGp++dsmHcsYQAABHQDBlocrAgxJHQF2ggxJul41HQENvXCj1wo+HcscQAABHQDBmJN0vGqBHQF2g1P3ztkZHQENvvnbItDmHcsgQAABHQDBmZmZmZmZHQF2hN0vGp/BHQENwAAAAAACHcskQAABHQDBn752yLQ5HQF2iXjU/fO5HQENw5WBBiTeHcsoQAABHQDBo9cKPXClHQF2jAgxJul5HQENxaHKwIMWHcssQAABHQDBpN0vGp/BHQF2jZFocrAhHQENxysCDEm+HcswQAABHQDBqPXCj1wpHQF2kOVgQYk5HQENybpeNT9+Hcs0QAABHQDBqwIMSbphHQF2ki0OVgQZHQENysCDEm6aHcs4QAABHQDBrQ5WBBiVHQF2k3S8an75HQENy8an7522Hcs8QAABHQDBsCDEm6XlHQF2lkWhysCFHQENzdLxqfvqHctAQAABHQDBtDlYEGJNHQF2mZmZmZmZHQEN0GJN0vGqHctEQAABHQDBtkWhysCFHQF2muFHrhR9HQEN0WhysCDGHctIQAABHQDBuFHrhR65HQF2nCj1wo9dHQEN0vGp++duHctMQAABHQDBuVgQYk3VHQF2nbItDlYFHQEN0/fO2RaKHctQQAABHQDBv3ztkWh1HQF2ok3S8an9HQEN141P3ztmHctUQAABHQDBxJul41P5HQF2pmZmZmZpHQEN2p++dsi2HctYQAABHQDByLQ5WBBlHQF2qbpeNT99HQEN3bItDlYGHctcQAABHQDBzMzMzMzNHQF2rEm6XjVBHQEN3752yLQ6HctgQAABHQDBzdLxqfvpHQF2rdLxqfvpHQEN4MSbpeNWHctkQAABHQDBz987ZFodHQF2rxqfvnbJHQEN4crAgxJyHctoQAABHQDB0/fO2RaJHQF2sm6XjU/hHQEN5FocrAgyHctsQAABHQDB2BBiTdLxHQF2tP3ztkWhHQEN5ul41P32HctwQAABHQDB2RaHKwINHQF2tocrAgxJHQEN5++dsi0SHct0QAABHQDB4UeuFHrhHQF2vGp++dslHQEN7ItDlYEKHct4QAABHQDB5FocrAgxHQF2vztkWhytHQEN7xqfvnbKHct8QAABHQDB6HKwIMSdHQF2wo9cKPXFHQEN8an752yOHcuAQAABHQDB7ItDlYEJHQF2xR64UeuFHQEN87ZFocrCHcuEQAABHQDB7ZFocrAhHQF2xqfvnbItHQEN9LxqfvneHcuIQAABHQDB87ZFocrBHQF2y0OVgQYlHQEN+FHrhR66HcuMQAABHQDB987ZFoctHQF2zdLxqfvpHQEN+uFHrhR+HcuQQAABHQDB/O2RaHKxHQF20rAgxJulHQEN/nbItDlaHcuUQAABHQDCAQYk3S8dHQF21T987ZFpHQEOAIMSbpeOHcuYQAABHQDCAxJul41RHQF21si0OVgRHQEOAYk3S8aqHcucQAABHQDCBBiTdLxtHQF22BBiTdLxHQEOAxJul41SHcugQAABHQDCCDEm6XjVHQF222RaHKwJHQEOBaHKwIMWHcukQAABHQDCDEm6XjVBHQF23fO2RaHNHQEOB64UeuFKHcuoQAABHQDCDlYEGJN1HQF233ztkWh1HQEOCLQ5WBBmHcusQAABHQDCFYEGJN0xHQF25WBBiTdNHQEODU/fO2ReHcuwQAABHQDCGJN0vGqBHQF26DEm6XjVHQEOD987ZFoeHcu0QAABHQDCIMSbpeNVHQF27hR64UexHQEOFHrhR64WHcu4QAABHQDCItDlYEGJHQF2752yLQ5ZHQEOFYEGJN0yHcu8QAABHQDCI9cKPXClHQF28OVgQYk5HQEOFwo9cKPaHcvAQAABHQDCKfvnbItFHQF29YEGJN0xHQEOGp++dsi2HcvEQAABHQDCNT987ZFpHQF2/jU/fO2RHQEOIUeuFHriHcvIQAABHQDCN0vGp++dHQF2/752yLQ5HQEOItDlYEGKHcvMQAABHQDCOVgQYk3VHQF3AQYk3S8dHQEOI9cKPXCmHcvQQAABHQDCQIMSbpeNHQF3Bul41P31HQEOKHKwIMSeHcvUQAABHQDCQo9cKPXFHQF3CHKwIMSdHQEOKXjU/fO6HcvYQAABHQDCRJul41P5HQF3CbpeNT99HQEOKwIMSbpiHcvcQAABHQDCSbpeNT99HQF3DlYEGJN1HQEOLpeNT98+HcvgQAABHQDCT987ZFodHQF3Em6XjU/hHQEOMan752yOHcvkQAABHQDCVP3ztkWhHQF3Fwo9cKPZHQEONT987ZFqHcvoQAABHQDCVwo9cKPZHQF3GJN0vGqBHQEONsi0OVgSHcvsQAABHQDCWRaHKwINHQF3Gdsi0OVhHQEON87ZFocuHcvwQAABHQDCXjU/fO2RHQF3HnbItDlZHQEOO2RaHKwKHcv0QAABHQDCaXjU/fO5HQF3JysCDEm9HQEOQo9cKPXGHcv4QAABHQDCa4UeuFHtHQF3KLQ5WBBlHQEOQ5WBBiTeHcv8QAABHQDCbZFocrAhHQF3KfvnbItFHQEORJul41P6HcgARAABHQDCc7ZFocrBHQF3LpeNT989HQEOSDEm6XjWHcgERAABHQDCdsi0OVgRHQF3MWhysCDFHQEOSsCDEm6aHcgIRAABHQDCeNT987ZFHQF3MrAgxJulHQEOS8an7522HcgMRAABHQDCfvnbItDlHQF3N0vGp++dHQEOT1wo9cKSHcgQRAABHQDCgAAAAAABHQF3OJN0vGqBHQEOUGJN0vGqHcgURAABHQDChBiTdLxtHQF3O2RaHKwJHQEOUvGp++duHcgYRAABHQDCiDEm6XjVHQF3PrhR64UhHQEOVYEGJN0yHcgcRAABHQDCij1wo9cNHQF3QAAAAAABHQEOVocrAgxKHcggRAABHQDCi0OVgQYlHQF3QUeuFHrhHQEOV41P3ztmHcgkRAABHQDCjU/fO2RdHQF3QtDlYEGJHQEOWJN0vGqCHcgoRAABHQDCk3S8an75HQF3R2yLQ5WBHQEOXKwIMSbqHcgsRAABHQDCmJN0vGqBHQF3S4UeuFHtHQEOX752yLQ6HcgwRAABHQDCnrhR64UhHQF3UCDEm6XlHQEOY1P3ztkaHcg0RAABHQDCoMSbpeNVHQF3UWhysCDFHQEOZFocrAgyHcg4RAABHQDCocrAgxJxHQF3UvGp++dtHQEOZeNT987aHcg8RAABHQDCo9cKPXClHQF3VDlYEGJNHQEOZul41P32HchARAABHQDCp++dsi0RHQF3V41P3ztlHQEOaXjU/fO6HchERAABHQDCrAgxJul5HQF3WhysCDEpHQEOa4UeuFHuHchIRAABHQDCrQ5WBBiVHQF3W6XjU/fRHQEObItDlYEKHchMRAABHQDCtT987ZFpHQF3YYk3S8apHQEOcan752yOHchQRAABHQDCuFHrhR65HQF3ZFocrAgxHQEOc7ZFocrCHchURAABHQDCvGp++dslHQF3Z64UeuFJHQEOdkWhysCGHchYRAABHQDCwIMSbpeNHQF3aj1wo9cNHQEOeNT987ZGHchcRAABHQDCwo9cKPXFHQF3a8an7521HQEOedsi0OViHchgRAABHQDCy8an7521HQF3cvGp++dtHQEOf3ztkWh2HchkRAABHQDC1P3ztkWhHQF3el41P3ztHQEOhaHKwIMWHchoRAABHQDC1wo9cKPZHQF3e6XjU/fRHQEOhqfvnbIuHchsRAABHQDC2RaHKwINHQF3fS8an755HQEOh64UeuFKHchwRAABHQDC4EGJN0vJHQF3gxJul41RHQEOjMzMzMzOHch0RAABHQDC4k3S8an9HQF3hFocrAgxHQEOjdLxqfvqHch4RAABHQDC6n752yLRHQF3in752yLRHQEOkm6XjU/iHch8RAABHQDC7ZFocrAhHQF3jU/fO2RdHQEOlP3ztkWiHciARAABHQDC9cKPXCj1HQF3kzMzMzM1HQEOmZmZmZmaHciERAABHQDC9si0OVgRHQF3lHrhR64VHQEOmp++dsi2HciIRAABHQDC+NT987ZFHQF3lgQYk3S9HQEOm6XjU/fSHciMRAABHQDDAQYk3S8dHQF3m+dsi0OVHQEOoMSbpeNWHciQRAABHQDDCj1wo9cNHQF3o1P3ztkZHQEOpmZmZmZqHciURAABHQDDDEm6XjVBHQF3pJul41P5HQEOp++dsi0SHciYRAABHQDDDU/fO2RdHQF3piTdLxqhHQEOqPXCj1wqHcicRAABHQDDFYEGJN0xHQF3rAgxJul5HQEOrZFocrAiHcigRAABHQDDF41P3ztlHQF3rU/fO2RdHQEOrpeNT98+HcikRAABHQDDHrhR64UhHQF3szMzMzM1HQEOs7ZFocrCHcioRAABHQDDItDlYEGJHQF3tgQYk3S9HQEOtcKPXCj2HcisRAABHQDDKfvnbItFHQF3u+dsi0OVHQEOuuFHrhR+HciwRAABHQDDLAgxJul5HQF3vXCj1wo9HQEOu+dsi0OWHci0RAABHQDDLhR64UexHQF3vrhR64UhHQEOvO2RaHKyHci4RAABHQDDOVgQYk3VHQF3x64UeuFJHQEOxBiTdLxuHci8RAABHQDDP3ztkWh1HQF3zAgxJul5HQEOx64UeuFKHcjARAABHQDDQIMSbpeNHQF3zZFocrAhHQEOyLQ5WBBmHcjERAABHQDDQo9cKPXFHQF3ztkWhysFHQEOybpeNT9+HcjIRAABHQDDSsCDEm6ZHQF31LxqfvndHQEOztkWhysGHcjMRAABHQDDS8an7521HQF31kWhysCFHQEOz987ZFoeHcjQRAABHQDDTdLxqfvpHQF3141P3ztlHQEO0OVgQYk6HcjURAABHQDDU/fO2RaJHQF33Cj1wo9dHQEO1HrhR64WHcjYRAABHQDDWRaHKwINHQF34EGJN0vJHQEO2BBiTdLyHcjcRAABHQDDXztkWhytHQF35N0vGp/BHQEO26XjU/fSHcjgRAABHQDDYUeuFHrhHQF35iTdLxqhHQEO3KwIMSbqHcjkRAABHQDDY1P3ztkZHQF3564UeuFJHQEO3jU/fO2SHcjoRAABHQDDbpeNT989HQF38GJN0vGpHQEO5N0vGp/CHcjsRAABHQDDc7ZFocrBHQF39P3ztkWhHQEO6PXCj1wqHcjwRAABHQDDdcKPXCj1HQF39kWhysCFHQEO6fvnbItGHcj0RAABHQDDd87ZFoctHQF3987ZFoctHQEO6wIMSbpiHcj4RAABHQDDedsi0OVhHQF3+RaHKwINHQEO7AgxJul6Hcj8RAABHQDDgQYk3S8dHQF3/vnbItDlHQEO8KPXCj1yHckARAABHQDDgxJul41RHQF4AIMSbpeNHQEO8i0OVgQaHckERAABHQDDjlYEGJN1HQF4CTdLxqfxHQEO+VgQYk3WHckIRAABHQDDlocrAgxJHQF4DxqfvnbJHQEO/fO2RaHOHckMRAABHQDDl41P3ztlHQF4EGJN0vGpHQEO/vnbItDmHckQRAABHQDDo9cKPXClHQF4GVgQYk3VHQEPBiTdLxqiHckURAABHQDDqwIMSbphHQF4HztkWhytHQEPCsCDEm6aHckYRAABHQDDrQ5WBBiVHQF4IIMSbpeNHQEPDEm6XjVCHckcRAABHQDDrxqfvnbJHQF4IcrAgxJxHQEPDU/fO2ReHckgRAABHQDDtkWhysCFHQF4J++dsi0RHQEPEeuFHrhSHckkRAABHQDDuFHrhR65HQF4KTdLxqfxHQEPEvGp++duHckoRAABHQDDw5WBBiTdHQF4MeuFHrhRHQEPGhysCDEqHcksRAABHQDDy8an7521HQF4N87ZFoctHQEPHztkWhyuHckwRAABHQDDzMzMzMzNHQF4OVgQYk3VHQEPIEGJN0vKHck0RAABHQDDztkWhysFHQF4Op++dsi1HQEPIUeuFHriHck4RAABHQDD1wo9cKPZHQF4QIMSbpeNHQEPJeNT987aHck8RAABHQDD4EGJN0vJHQF4R++dsi0RHQEPLAgxJul6HclARAABHQDD4k3S8an9HQF4STdLxqfxHQEPLQ5WBBiWHclERAABHQDD5FocrAgxHQF4SsCDEm6ZHQEPLhR64UeyHclIRAABHQDD64UeuFHtHQF4UKPXCj1xHQEPMzMzMzM2HclMRAABHQDD7ZFocrAhHQF4UeuFHrhRHQEPNDlYEGJOHclQRAABHQDD9cKPXCj1HQF4WBBiTdLxHQEPONT987ZGHclURAABHQDD+NT987ZFHQF4WuFHrhR9HQEPO2RaHKwKHclYRAABHQDEAQYk3S8dHQF4YMSbpeNVHQEPQAAAAAACHclcRAABHQDEAgxJul41HQF4YgxJul41HQEPQQYk3S8eHclgRAABHQDEBBiTdLxtHQF4Y5WBBiTdHQEPQo9cKPXGHclkRAABHQDEDEm6XjVBHQF4aXjU/fO5HQEPRysCDEm+HcloRAABHQDED1wo9cKRHQF4bEm6XjVBHQEPSTdLxqfyHclsRAABHQDEFYEGJN0xHQF4cKPXCj1xHQEPTU/fO2ReHclwRAABHQDEF41P3ztlHQF4ci0OVgQZHQEPTlYEGJN2Hcl0RAABHQDEGZmZmZmZHQF4c3S8an75HQEPT1wo9cKSHcl4RAABHQDEIMSbpeNVHQF4eVgQYk3VHQEPU/fO2RaKHcl8RAABHQDEItDlYEGJHQF4euFHrhR9HQEPVYEGJN0yHcmARAABHQDEJN0vGp/BHQF4fCj1wo9dHQEPVocrAgxKHcmERAABHQDELhR64UexHQF4g5WBBiTdHQEPXCj1wo9eHcmIRAABHQDEMCDEm6XlHQF4hN0vGp/BHQEPXbItDlYGHcmMRAABHQDENkWhysCFHQF4iXjU/fO5HQEPYUeuFHriHcmQRAABHQDEOFHrhR65HQF4isCDEm6ZHQEPYk3S8an+HcmURAABHQDEOVgQYk3VHQF4jEm6XjVBHQEPY1P3ztkaHcmYRAABHQDEQYk3S8apHQF4ki0OVgQZHQEPaHKwIMSeHcmcRAABHQDERJul41P5HQF4lP3ztkWhHQEPan752yLSHcmgRAABHQDESsCDEm6ZHQF4mZmZmZmZHQEPbhR64UeyHcmkRAABHQDETMzMzMzNHQF4muFHrhR9HQEPb52yLQ5aHcmoRAABHQDETtkWhysFHQF4nGp++dslHQEPcKPXCj1yHcmsRAABHQDEUOVgQYk5HQF4nbItDlYFHQEPcan752yOHcmwRAABHQDEVgQYk3S9HQF4ok3S8an9HQEPdT987ZFqHcm0RAABHQDEWBBiTdLxHQF4o5WBBiTdHQEPdkWhysCGHcm4RAABHQDEWhysCDEpHQF4pR64UeuFHQEPd87ZFocuHcm8RAABHQDEZWBBiTdNHQF4rdLxqfvpHQEPfnbItDlaHcnARAABHQDEa4UeuFHtHQF4si0OVgQZHQEPgo9cKPXGHcnERAABHQDEbZFocrAhHQF4s7ZFocrBHQEPg5WBBiTeHcnIRAABHQDEbpeNT989HQF4tP3ztkWhHQEPhJul41P6HcnMRAABHQDEeuFHrhR9HQF4vbItDlYFHQEPi8an7522HcnQRAABHQDEggxJul41HQF4w5WBBiTdHQEPkGJN0vGqHcnURAABHQDEhBiTdLxtHQF4xR64UeuFHQEPkWhysCDGHcnYRAABHQDEhiTdLxqhHQF4xmZmZmZpHQEPkvGp++duHcncRAABHQDEjU/fO2RdHQF4zEm6XjVBHQEPl41P3ztmHcngRAABHQDEj1wo9cKRHQF4zdLxqfvpHQEPmJN0vGqCHcnkRAABHQDEmp++dsi1HQF41ocrAgxJHQEPn752yLQ6HcnoRAABHQDEotDlYEGJHQF43Gp++dslHQEPpN0vGp/CHcnsRAABHQDEpN0vGp/BHQF43bItDlYFHQEPpeNT987aHcnwRAABHQDEpeNT987ZHQF43ztkWhytHQEPpul41P32Hcn0RAABHQDErhR64UexHQF45R64UeuFHQEPq4UeuFHuHcn4RAABHQDEsCDEm6XlHQF45qfvnbItHQEPrQ5WBBiWHcn8RAABHQDEt0vGp++dHQF47ItDlYEJHQEPsan752yOHcoARAABHQDEuVgQYk3VHQF47dLxqfvpHQEPsrAgxJumHcoERAABHQDEu2RaHKwJHQF471wo9cKRHQEPs7ZFocrCHcoIRAABHQDEw5WBBiTdHQF49T987ZFpHQEPuNT987ZGHcoMRAABHQDExJul41P5HQF49ocrAgxJHQEPudsi0OViHcoQRAABHQDE0OVgQYk5HQF4/ztkWhytHQEPwQYk3S8eHcoURAABHQDE2BBiTdLxHQF5BR64UeuFHQEPxaHKwIMWHcoYRAABHQDE2hysCDEpHQF5BqfvnbItHQEPxqfvnbIuHcocRAABHQDE3Cj1wo9dHQF5B++dsi0RHQEPyDEm6XjWHcogRAABHQDE41P3ztkZHQF5DdLxqfvpHQEPzMzMzMzOHcokRAABHQDE7ZFocrAhHQF5FT987ZFpHQEP0vGp++duHcooRAABHQDE7peNT989HQF5FocrAgxJHQEP0/fO2RaKHcosRAABHQDE8KPXCj1xHQF5GBBiTdLxHQEP1P3ztkWiHcowRAABHQDE+NT987ZFHQF5HfO2RaHNHQEP2hysCDEqHco0RAABHQDE+uFHrhR9HQF5HztkWhytHQEP2yLQ5WBCHco4RAABHQDFBiTdLxqhHQF5J++dsi0RHQEP4k3S8an+Hco8RAABHQDFDU/fO2RdHQF5LdLxqfvpHQEP5ul41P32HcpARAABHQDFD1wo9cKRHQF5L1wo9cKRHQEP5++dsi0SHcpERAABHQDFEWhysCDFHQF5MKPXCj1xHQEP6PXCj1wqHcpIRAABHQDFGZmZmZmZHQF5NocrAgxJHQEP7hR64UeyHcpMRAABHQDFHKwIMSbpHQF5OVgQYk3VHQEP8CDEm6XmHcpQRAABHQDFItDlYEGJHQF5PfO2RaHNHQEP9DlYEGJOHcpURAABHQDFJN0vGp/BHQF5P3ztkWh1HQEP9T987ZFqHcpYRAABHQDFJul41P31HQF5QMSbpeNVHQEP9kWhysCGHcpcRAABHQDFLhR64UexHQF5RqfvnbItHQEP+uFHrhR+HcpgRAABHQDFMCDEm6XlHQF5R++dsi0RHQEP/Gp++dsmHcpkRAABHQDFMi0OVgQZHQF5SXjU/fO5HQEP/XCj1wo+HcpoRAABHQDFO2RaHKwJHQF5UOVgQYk5HQEQAxJul41SHcpsRAABHQDFPXCj1wo9HQF5Ui0OVgQZHQEQBJul41P6HcpwRAABHQDFQ5WBBiTdHQF5Vsi0OVgRHQEQCDEm6XjWHcp0RAABHQDFRJul41P5HQF5WBBiTdLxHQEQCTdLxqfyHcp4RAABHQDFRqfvnbItHQF5WVgQYk3VHQEQCj1wo9cOHcp8RAABHQDFTtkWhysFHQF5X3ztkWh1HQEQD1wo9cKSHcqARAABHQDFUeuFHrhRHQF5Yk3S8an9HQEQEWhysCDGHcqERAABHQDFWhysCDEpHQF5aDEm6XjVHQEQFocrAgxKHcqIRAABHQDFXCj1wo9dHQF5aXjU/fO5HQEQF41P3ztmHcqMRAABHQDFXjU/fO2RHQF5awIMSbphHQEQGJN0vGqCHcqQRAABHQDFY1P3ztkZHQF5b1wo9cKRHQEQHCj1wo9eHcqURAABHQDFZWBBiTdNHQF5cOVgQYk5HQEQHS8an756HcqYRAABHQDFZ2yLQ5WBHQF5ci0OVgQZHQEQHrhR64UiHcqcRAABHQDFcKPXCj1xHQF5eZmZmZmZHQEQJFocrAgyHcqgRAABHQDFcrAgxJulHQF5euFHrhR9HQEQJWBBiTdOHcqkRAABHQDFeuFHrhR9HQF5gMSbpeNVHQEQKn752yLSHcqoRAABHQDFfO2RaHKxHQF5gk3S8an9HQEQK4UeuFHuHcqsRAABHQDFiDEm6XjVHQF5iwIMSbphHQEQMrAgxJumHcqwRAABHQDFj1wo9cKRHQF5kOVgQYk5HQEQN0vGp++eHcq0RAABHQDFkWhysCDFHQF5ki0OVgQZHQEQONT987ZGHcq4RAABHQDFk3S8an75HQF5k7ZFocrBHQEQOdsi0OViHcq8RAABHQDFm6XjU/fRHQF5mZmZmZmZHQEQPnbItDlaHcrARAABHQDFnKwIMSbpHQF5muFHrhR9HQEQP3ztkWh2HcrERAABHQDFpul41P31HQF5ok3S8an9HQEQRaHKwIMWHcrIRAABHQDFqPXCj1wpHQF5o5WBBiTdHQEQRqfvnbIuHcrMRAABHQDFsCDEm6XlHQF5qXjU/fO5HQEQS8an7522HcrQRAABHQDFsi0OVgQZHQF5qwIMSbphHQEQTMzMzMzOHcrURAABHQDFtDlYEGJNHQF5rEm6XjVBHQEQTdLxqfvqHcrYRAABHQDFu2RaHKwJHQF5si0OVgQZHQEQUm6XjU/iHcrcRAABHQDFvXCj1wo9HQF5s7ZFocrBHQEQU/fO2RaKHcrgRAABHQDFxaHKwIMVHQF5uZmZmZmZHQEQWJN0vGqCHcrkRAABHQDFx64UeuFJHQF5uuFHrhR9HQEQWZmZmZmaHcroRAABHQDFyLQ5WBBlHQF5vGp++dslHQEQWyLQ5WBCHcrsRAABHQDF0OVgQYk5HQF5wk3S8an9HQEQX752yLQ6HcrwRAABHQDF0vGp++dtHQF5w5WBBiTdHQEQYMSbpeNWHcr0RAABHQDF3jU/fO2RHQF5zEm6XjVBHQEQZ++dsi0SHcr4RAABHQDF5mZmZmZpHQF50m6XjU/hHQEQbItDlYEKHcr8RAABHQDF52yLQ5WBHQF507ZFocrBHQEQbhR64UeyHcsARAABHQDF6XjU/fO5HQF51P3ztkWhHQEQbxqfvnbKHcsERAABHQDF8an752yNHQF52uFHrhR9HQEQc7ZFocrCHcsIRAABHQDF/O2RaHKxHQF549cKPXClHQEQeuFHrhR+HcsMRAABHQDF/vnbItDlHQF55R64UeuFHQEQe+dsi0OWHcsQRAABHQDGBiTdLxqhHQF56wIMSbphHQEQgQYk3S8eHcsURAABHQDGCDEm6XjVHQF57Em6XjVBHQEQggxJul42HcsYRAABHQDGE3S8an75HQF59T987ZFpHQEQiTdLxqfyHcscRAABHQDGFYEGJN0xHQF59ocrAgxJHQEQij1wo9cOHcsgRAABHQDGG6XjU/fRHQF5+yLQ5WBBHQEQjdLxqfvqHcskRAABHQDGHbItDlYFHQF5/Gp++dslHQEQjtkWhysGHcsoRAABHQDGH752yLQ5HQF5/bItDlYFHQEQkGJN0vGqHcssRAABHQDGJul41P31HQF6A9cKPXClHQEQlP3ztkWiHcswRAABHQDGKwIMSbphHQF6BqfvnbItHQEQl41P3ztmHcs0RAABHQDGMi0OVgQZHQF6DItDlYEJHQEQnCj1wo9eHcs4RAABHQDGNDlYEGJNHQF6DdLxqfvpHQEQnS8an756Hcs8RAABHQDGPGp++dslHQF6E7ZFocrBHQEQok3S8an+HctARAABHQDGPnbItDlZHQF6FT987ZFpHQEQo1P3ztkaHctERAABHQDGP3ztkWh1HQF6FocrAgxJHQEQpFocrAgyHctIRAABHQDGSbpeNT99HQF6HfO2RaHNHQEQqn752yLSHctMRAABHQDGS8an7521HQF6HztkWhytHQEQq4UeuFHuHctQRAABHQDGUvGp++dtHQF6JR64UeuFHQEQsCDEm6XmHctURAABHQDGVP3ztkWhHQF6JqfvnbItHQEQsSbpeNT+HctYRAABHQDGXS8an755HQF6LItDlYEJHQEQtkWhysCGHctcRAABHQDGXjU/fO2RHQF6LdLxqfvpHQEQt0vGp++eHctgRAABHQDGYEGJN0vJHQF6L1wo9cKRHQEQuFHrhR66HctkRAABHQDGaHKwIMSdHQF6NT987ZFpHQEQvXCj1wo+HctoRAABHQDGan752yLRHQF6NocrAgxJHQEQvnbItDlaHctsRAABHQDGa4UeuFHtHQF6OBBiTdLxHQEQv3ztkWh2HctwRAABHQDGc7ZFocrBHQF6PfO2RaHNHQEQxJul41P6Hct0RAABHQDGdcKPXCj1HQF6PztkWhytHQEQxaHKwIMWHct4RAABHQDGfvnbItDlHQF6RqfvnbItHQEQy0OVgQYmHct8RAABHQDGgQYk3S8dHQF6R++dsi0RHQEQzMzMzMzOHcuARAABHQDGiTdLxqfxHQF6TdLxqfvpHQEQ0WhysCDGHcuERAABHQDGij1wo9cNHQF6T1wo9cKRHQEQ0m6XjU/iHcuIRAABHQDGlHrhR64VHQF6VocrAgxJHQEQ2JN0vGqCHcuMRAABHQDGlocrAgxJHQF6WBBiTdLxHQEQ2ZmZmZmaHcuQRAABHQDGnbItDlYFHQF6XfO2RaHNHQEQ3rhR64UiHcuURAABHQDGn752yLQ5HQF6XztkWhytHQEQ3752yLQ6HcuYRAABHQDGocrAgxJxHQF6YMSbpeNVHQEQ4MSbpeNWHcucRAABHQDGqPXCj1wpHQF6ZqfvnbItHQEQ5WBBiTdOHcugRAABHQDGqwIMSbphHQF6Z++dsi0RHQEQ5ul41P32HcukRAABHQDGtT987ZFpHQF6b1wo9cKRHQEQ7ItDlYEKHcuoRAABHQDGtkWhysCFHQF6cKPXCj1xHQEQ7hR64UeyHcusRAABHQDGvnbItDlZHQF6docrAgxJHQEQ8rAgxJumHcuwRAABHQDGwIMSbpeNHQF6eBBiTdLxHQEQ87ZFocrCHcu0RAABHQDGwo9cKPXFHQF6eVgQYk3VHQEQ9LxqfvneHcu4RAABHQDGybpeNT99HQF6fztkWhytHQEQ+dsi0OViHcu8RAABHQDG1P3ztkWhHQF6h++dsi0RHQERAQYk3S8eHcvARAABHQDG1wo9cKPZHQF6iXjU/fO5HQERAgxJul42HcvERAABHQDG3ztkWhytHQF6j1wo9cKRHQERBqfvnbIuHcvIRAABHQDG4UeuFHrhHQF6kKPXCj1xHQERB64UeuFKHcvMRAABHQDG7ItDlYEJHQF6mVgQYk3VHQERDtkWhysGHcvQRAABHQDG87ZFocrBHQF6n3ztkWh1HQERE/fO2RaKHcvURAABHQDG9cKPXCj1HQF6oMSbpeNVHQERFP3ztkWiHcvYRAABHQDG987ZFoctHQF6ogxJul41HQERFgQYk3S+HcvcRAABHQDHAAAAAAABHQF6p++dsi0RHQERGyLQ5WBCHcvgRAABHQDHAxJul41RHQF6qwIMSbphHQERHS8an756HcvkRAABHQDHC0OVgQYlHQF6sOVgQYk5HQERIcrAgxJyHcvoRAABHQDHDU/fO2RdHQF6si0OVgQZHQERI1P3ztkaHcvsRAABHQDHFHrhR64VHQF6uBBiTdLxHQERJ++dsi0SHcvwRAABHQDHFocrAgxJHQF6uVgQYk3VHQERKPXCj1wqHcv0RAABHQDHIcrAgxJxHQF6wk3S8an9HQERMCDEm6XmHcv4RAABHQDHI9cKPXClHQF6w5WBBiTdHQERMSbpeNT+Hcv8RAABHQDHLAgxJul5HQF6yXjU/fO5HQERNkWhysCGHcgASAABHQDHLQ5WBBiVHQF6ywIMSbphHQERN0vGp++eHcgESAABHQDHNT987ZFpHQF60OVgQYk5HQERO+dsi0OWHcgISAABHQDHN0vGp++dHQF60i0OVgQZHQERPXCj1wo+HcgMSAABHQDHOVgQYk3VHQF607ZFocrBHQERPnbItDlaHcgQSAABHQDHQIMSbpeNHQF62ZmZmZmZHQERQxJul41SHcgUSAABHQDHQo9cKPXFHQF62uFHrhR9HQERRBiTdLxuHcgYSAABHQDHSsCDEm6ZHQF64MSbpeNVHQERSTdLxqfyHcgcSAABHQDHS8an7521HQF64k3S8an9HQERSj1wo9cOHcggSAABHQDHTdLxqfvpHQF645WBBiTdHQERS0OVgQYmHcgkSAABHQDHWBBiTdLxHQF66wIMSbphHQERUWhysCDGHcgoSAABHQDHWRaHKwINHQF67Em6XjVBHQERUm6XjU/iHcgsSAABHQDHYUeuFHrhHQF68i0OVgQZHQERV41P3ztmHcgwSAABHQDHY1P3ztkZHQF687ZFocrBHQERWJN0vGqCHcg0SAABHQDHbItDlYEJHQF6+uFHrhR9HQERXjU/fO2SHcg4SAABHQDHbpeNT989HQF6/Gp++dslHQERX752yLQ6Hcg8SAABHQDHdcKPXCj1HQF7Ak3S8an9HQERZFocrAgyHchASAABHQDHd87ZFoctHQF7A5WBBiTdHQERZWBBiTdOHchESAABHQDHedsi0OVhHQF7BR64UeuFHQERZmZmZmZqHchISAABHQDHggxJul41HQF7CwIMSbphHQERa4UeuFHuHchMSAABHQDHgxJul41RHQF7DEm6XjVBHQERbItDlYEKHchQSAABHQDHjU/fO2RdHQF7E7ZFocrBHQERcrAgxJumHchUSAABHQDHj1wo9cKRHQF7FP3ztkWhHQERc7ZFocrCHchYSAABHQDHlocrAgxJHQF7GuFHrhR9HQEReFHrhR66HchcSAABHQDHmJN0vGqBHQF7HGp++dslHQERedsi0OViHchgSAABHQDHocrAgxJxHQF7I5WBBiTdHQERf3ztkWh2HchkSAABHQDHo9cKPXClHQF7JR64UeuFHQERgIMSbpeOHchoSAABHQDHrhR64UexHQF7LEm6XjVBHQERhqfvnbIuHchsSAABHQDHrxqfvnbJHQF7LdLxqfvpHQERh64UeuFKHchwSAABHQDHt0vGp++dHQF7M7ZFocrBHQERjMzMzMzOHch0SAABHQDHuVgQYk3VHQF7NP3ztkWhHQERjdLxqfvqHch4SAABHQDHwo9cKPXFHQF7PGp++dslHQERk/fO2RaKHch8SAABHQDHxJul41P5HQF7PfO2RaHNHQERlP3ztkWiHciASAABHQDHzMzMzMzNHQF7Q9cKPXClHQERmZmZmZmaHciESAABHQDHzdLxqfvpHQF7RR64UeuFHQERmp++dsi2HciISAABHQDHz987ZFodHQF7RmZmZmZpHQERnCj1wo9eHciMSAABHQDH2BBiTdLxHQF7TItDlYEJHQERoMSbpeNWHciQSAABHQDH41P3ztkZHQF7VT987ZFpHQERp++dsi0SHciUSAABHQDH5WBBiTdNHQF7VocrAgxJHQERqPXCj1wqHciYSAABHQDH7ItDlYEJHQF7XGp++dslHQERrZFocrAiHcicSAABHQDH7peNT989HQF7XfO2RaHNHQERrxqfvnbKHcigSAABHQDH+dsi0OVhHQF7ZqfvnbItHQERtcKPXCj2HcikSAABHQDIAgxJul41HQF7bItDlYEJHQERuuFHrhR+HcioSAABHQDIBBiTdLxtHQF7bdLxqfvpHQERu+dsi0OWHcisSAABHQDIBR64UeuFHQF7b1wo9cKRHQERvO2RaHKyHciwSAABHQDIDU/fO2RdHQF7dT987ZFpHQERwgxJul42Hci0SAABHQDID1wo9cKRHQF7docrAgxJHQERwxJul41SHci4SAABHQDIEWhysCDFHQF7eBBiTdLxHQERxBiTdLxuHci8SAABHQDIGJN0vGqBHQF7ffO2RaHNHQERyTdLxqfyHcjASAABHQDIGp++dsi1HQF7fztkWhytHQERyj1wo9cOHcjESAABHQDIIcrAgxJxHQF7hR64UeuFHQERztkWhysGHcjISAABHQDII9cKPXClHQF7hqfvnbItHQERz987ZFoeHcjMSAABHQDILxqfvnbJHQF7j1wo9cKRHQER1wo9cKPaHcjQSAABHQDIMSbpeNT9HQF7kKPXCj1xHQER2BBiTdLyHcjUSAABHQDIOVgQYk3VHQF7lsi0OVgRHQER3S8an756HcjYSAABHQDIO2RaHKwJHQF7mBBiTdLxHQER3jU/fO2SHcjcSAABHQDIQo9cKPXFHQF7nfO2RaHNHQER4tDlYEGKHcjgSAABHQDIRJul41P5HQF7nztkWhytHQER5FocrAgyHcjkSAABHQDIRqfvnbItHQF7oMSbpeNVHQER5WBBiTdOHcjoSAABHQDITdLxqfvpHQF7pqfvnbItHQER6fvnbItGHcjsSAABHQDIT987ZFodHQF7qDEm6XjVHQER6wIMSbpiHcjwSAABHQDIWRaHKwINHQF7r1wo9cKRHQER8SbpeNT+Hcj0SAABHQDIWyLQ5WBBHQF7sOVgQYk5HQER8i0OVgQaHcj4SAABHQDIZWBBiTdNHQF7uBBiTdLxHQER+FHrhR66Hcj8SAABHQDIZmZmZmZpHQF7uZmZmZmZHQER+VgQYk3WHckASAABHQDIbpeNT989HQF7v3ztkWh1HQER/nbItDlaHckESAABHQDIcKPXCj1xHQF7wMSbpeNVHQER/3ztkWh2HckISAABHQDIedsi0OVhHQF7yDEm6XjVHQESBR64UeuGHckMSAABHQDIe+dsi0OVHQF7yXjU/fO5HQESBqfvnbIuHckQSAABHQDIhR64UeuFHQF70OVgQYk5HQESDEm6XjVCHckUSAABHQDIhysCDEm9HQF70i0OVgQZHQESDU/fO2ReHckYSAABHQDIj1wo9cKRHQF72BBiTdLxHQESEm6XjU/iHckcSAABHQDIkGJN0vGpHQF72ZmZmZmZHQESE3S8an76HckgSAABHQDImp++dsi1HQF74QYk3S8dHQESGZmZmZmaHckkSAABHQDIm6XjU/fRHQF74k3S8an9HQESGp++dsi2HckoSAABHQDIo9cKPXClHQF76DEm6XjVHQESHztkWhyuHcksSAABHQDIpeNT987ZHQF76bpeNT99HQESIEGJN0vKHckwSAABHQDIrxqfvnbJHQF78OVgQYk5HQESJmZmZmZqHck0SAABHQDIul41P3ztHQF7+ZmZmZmZHQESLZFocrAiHck4SAABHQDIvGp++dslHQF7+yLQ5WBBHQESLpeNT98+Hck8SAABHQDIxJul41P5HQF8AQYk3S8dHQESMzMzMzM2HclASAABHQDIxaHKwIMVHQF8Ak3S8an9HQESNLxqfvneHclESAABHQDI0euFHrhRHQF8CwIMSbphHQESO+dsi0OWHclISAABHQDI2RaHKwINHQF8EOVgQYk5HQESQIMSbpeOHclMSAABHQDI2yLQ5WBBHQF8Em6XjU/hHQESQYk3S8aqHclQSAABHQDI3S8an755HQF8E7ZFocrBHQESQo9cKPXGHclUSAABHQDI5FocrAgxHQF8GZmZmZmZHQESR64UeuFKHclYSAABHQDI5mZmZmZpHQF8GyLQ5WBBHQESSLQ5WBBmHclcSAABHQDI752yLQ5ZHQF8Io9cKPXFHQESTtkWhysGHclgSAABHQDI8an752yNHQF8I9cKPXClHQEST987ZFoeHclkSAABHQDI+dsi0OVhHQF8KbpeNT99HQESVHrhR64WHcloSAABHQDI+uFHrhR9HQF8K0OVgQYlHQESVYEGJN0yHclsSAABHQDJBysCDEm9HQF8M/fO2RaJHQESXKwIMSbqHclwSAABHQDJEGJN0vGpHQF8OyLQ5WBBHQESYtDlYEGKHcl0SAABHQDJEm6XjU/hHQF8PKwIMSbpHQESY9cKPXCmHcl4SAABHQDJGZmZmZmZHQF8Qo9cKPXFHQESaHKwIMSeHcl8SAABHQDJG6XjU/fRHQF8Q9cKPXClHQESafvnbItGHcmASAABHQDJHbItDlYFHQF8RWBBiTdNHQESawIMSbpiHcmESAABHQDJJN0vGp/BHQF8S0OVgQYlHQESb52yLQ5aHcmISAABHQDJJul41P31HQF8TMzMzMzNHQEScKPXCj1yHcmMSAABHQDJMCDEm6XlHQF8U/fO2RaJHQESdsi0OVgSHcmQSAABHQDJMi0OVgQZHQF8VT987ZFpHQESd87ZFocuHcmUSAABHQDJO2RaHKwJHQF8XKwIMSbpHQESffO2RaHOHcmYSAABHQDJPXCj1wo9HQF8XjU/fO2RHQESfvnbItDmHcmcSAABHQDJRaHKwIMVHQF8ZBiTdLxtHQESg5WBBiTeHcmgSAABHQDJRqfvnbItHQF8ZWBBiTdNHQEShR64UeuGHcmkSAABHQDJUOVgQYk5HQF8bMzMzMzNHQESisCDEm6aHcmoSAABHQDJUvGp++dtHQF8bhR64UexHQESi8an7522HcmsSAABHQDJXCj1wo9dHQF8dYEGJN0xHQESkeuFHrhSHcmwSAABHQDJXjU/fO2RHQF8dsi0OVgRHQESkvGp++duHcm0SAABHQDJZWBBiTdNHQF8fO2RaHKxHQESmBBiTdLyHcm4SAABHQDJZ2yLQ5WBHQF8fjU/fO2RHQESmRaHKwIOHcm8SAABHQDJcKPXCj1xHQF8haHKwIMVHQESnrhR64UiHcnASAABHQDJcrAgxJulHQF8hul41P31HQESoEGJN0vKHcnESAABHQDJeuFHrhR9HQF8jMzMzMzNHQESpN0vGp/CHcnISAABHQDJe+dsi0OVHQF8jlYEGJN1HQESpeNT987aHcnMSAABHQDJhiTdLxqhHQF8lYEGJN0xHQESrAgxJul6HcnQSAABHQDJhysCDEm9HQF8lwo9cKPZHQESrQ5WBBiWHcnUSAABHQDJkWhysCDFHQF8nnbItDlZHQESszMzMzM2HcnYSAABHQDJkm6XjU/hHQF8n752yLQ5HQEStDlYEGJOHcncSAABHQDJmp++dsi1HQF8paHKwIMVHQESuNT987ZGHcngSAABHQDJnKwIMSbpHQF8pysCDEm9HQESudsi0OViHcnkSAABHQDJpeNT987ZHQF8rlYEGJN1HQESwAAAAAACHcnoSAABHQDJp++dsi0RHQF8r987ZFodHQESwQYk3S8eHcnsSAABHQDJsSbpeNT9HQF8two9cKPZHQESxysCDEm+HcnwSAABHQDJul41P3ztHQF8vnbItDlZHQESzMzMzMzOHcn0SAABHQDJvGp++dslHQF8v752yLQ5HQESzdLxqfvqHcn4SAABHQDJxaHKwIMVHQF8xysCDEm9HQES0/fO2RaKHcn8SAABHQDJx64UeuFJHQF8yLQ5WBBlHQES1P3ztkWiHcoASAABHQDJz987ZFodHQF8zpeNT989HQES2hysCDEqHcoESAABHQDJ0OVgQYk5HQF8z987ZFodHQES2yLQ5WBCHcoISAABHQDJ2yLQ5WBBHQF810vGp++dHQES4MSbpeNWHcoMSAABHQDJ3Cj1wo9dHQF82JN0vGqBHQES4k3S8an+HcoQSAABHQDJ5mZmZmZpHQF84AAAAAABHQES5++dsi0SHcoUSAABHQDJ52yLQ5WBHQF84UeuFHrhHQES6PXCj1wqHcoYSAABHQDJ752yLQ5ZHQF852yLQ5WBHQES7hR64UeyHcocSAABHQDJ8an752yNHQF86LQ5WBBlHQES7xqfvnbKHcogSAABHQDJ+uFHrhR9HQF88CDEm6XlHQES9T987ZFqHcokSAABHQDJ/O2RaHKxHQF88WhysCDFHQES9kWhysCGHcooSAABHQDKBBiTdLxtHQF890vGp++dHQES+uFHrhR+HcosSAABHQDKBiTdLxqhHQF8+NT987ZFHQES++dsi0OWHcowSAABHQDKD1wo9cKRHQF9AAAAAAABHQETAgxJul42Hco0SAABHQDKEWhysCDFHQF9AYk3S8apHQETAxJul41SHco4SAABHQDKGp++dsi1HQF9CPXCj1wpHQETCTdLxqfyHco8SAABHQDKHKwIMSbpHQF9Cj1wo9cNHQETCj1wo9cOHcpASAABHQDKI9cKPXClHQF9ECDEm6XlHQETDtkWhysGHcpESAABHQDKJeNT987ZHQF9Ean752yNHQETD987ZFoeHcpISAABHQDKJ++dsi0RHQF9EvGp++dtHQETEWhysCDGHcpMSAABHQDKMSbpeNT9HQF9Gl41P3ztHQETFwo9cKPaHcpQSAABHQDKOl41P3ztHQF9IcrAgxJxHQETHS8an756HcpUSAABHQDKPGp++dslHQF9IxJul41RHQETHjU/fO2SHcpYSAABHQDKRaHKwIMVHQF9Kn752yLRHQETI9cKPXCmHcpcSAABHQDKR64UeuFJHQF9K8an7521HQETJWBBiTdOHcpgSAABHQDKT987ZFodHQF9Man752yNHQETKfvnbItGHcpkSAABHQDKUOVgQYk5HQF9MzMzMzM1HQETKwIMSbpiHcpoSAABHQDKWyLQ5WBBHQF9Ol41P3ztHQETMSbpeNT+HcpsSAABHQDKXCj1wo9dHQF9O+dsi0OVHQETMi0OVgQaHcpwSAABHQDKZmZmZmZpHQF9Q1P3ztkZHQETOFHrhR66Hcp0SAABHQDKb52yLQ5ZHQF9Sn752yLRHQETPfO2RaHOHcp4SAABHQDKcan752yNHQF9TAgxJul5HQETPvnbItDmHcp8SAABHQDKeuFHrhR9HQF9UzMzMzM1HQETRR64UeuGHcqASAABHQDKfO2RaHKxHQF9VLxqfvndHQETRiTdLxqiHcqESAABHQDKhiTdLxqhHQF9XCj1wo9dHQETTEm6XjVCHcqISAABHQDKj1wo9cKRHQF9Y1P3ztkZHQETUeuFHrhSHcqMSAABHQDKkWhysCDFHQF9ZN0vGp/BHQETUvGp++duHcqQSAABHQDKmp++dsi1HQF9bEm6XjVBHQETWRaHKwIOHcqUSAABHQDKnKwIMSbpHQF9bZFocrAhHQETWhysCDEqHcqYSAABHQDKo9cKPXClHQF9c3S8an75HQETXrhR64UiHcqcSAABHQDKpeNT987ZHQF9dP3ztkWhHQETYEGJN0vKHcqgSAABHQDKrxqfvnbJHQF9fCj1wo9dHQETZeNT987aHcqkSAABHQDKsSbpeNT9HQF9fbItDlYFHQETZul41P32HcqoSAABHQDKul41P3ztHQF9hR64UeuFHQETbQ5WBBiWHcqsSAABHQDKw5WBBiTdHQF9jEm6XjVBHQETcrAgxJumHcqwSAABHQDKxaHKwIMVHQF9jdLxqfvpHQETdDlYEGJOHcq0SAABHQDKztkWhysFHQF9lT987ZFpHQETedsi0OViHcq4SAABHQDK0OVgQYk5HQF9locrAgxJHQETeuFHrhR+Hcq8SAABHQDK2BBiTdLxHQF9nGp++dslHQETgAAAAAACHcrASAABHQDK2hysCDEpHQF9nfO2RaHNHQETgQYk3S8eHcrESAABHQDK41P3ztkZHQF9pR64UeuFHQEThqfvnbIuHcrISAABHQDK5WBBiTdNHQF9pqfvnbItHQETiDEm6XjWHcrMSAABHQDK7peNT989HQF9rhR64UexHQETjdLxqfvqHcrQSAABHQDK8KPXCj1xHQF9r1wo9cKRHQETjtkWhysGHcrUSAABHQDK987ZFoctHQF9tT987ZFpHQETk/fO2RaKHcrYSAABHQDK+dsi0OVhHQF9tsi0OVgRHQETlP3ztkWiHcrcSAABHQDLBR64UeuFHQF9v3ztkWh1HQETnCj1wo9eHcrgSAABHQDLDlYEGJN1HQF9xul41P31HQETocrAgxJyHcrkSAABHQDLF41P3ztlHQF9zhR64UexHQETp++dsi0SHcroSAABHQDLGZmZmZmZHQF9z52yLQ5ZHQETqPXCj1wqHcrsSAABHQDLItDlYEGJHQF91wo9cKPZHQETrpeNT98+HcrwSAABHQDLJN0vGp/BHQF92FHrhR65HQETsCDEm6XmHcr0SAABHQDLLhR64UexHQF93752yLQ5HQETtcKPXCj2Hcr4SAABHQDLOVgQYk3VHQF96HKwIMSdHQETvO2RaHKyHcr8SAABHQDLQo9cKPXFHQF97987ZFodHQETwo9cKPXGHcsASAABHQDLRJul41P5HQF98SbpeNT9HQETw5WBBiTeHcsESAABHQDLTdLxqfvpHQF9+JN0vGqBHQETybpeNT9+HcsISAABHQDLT987ZFodHQF9+hysCDEpHQETysCDEm6aHcsMSAABHQDLWRaHKwINHQF+AUeuFHrhHQET0OVgQYk6HcsQSAABHQDLYk3S8an9HQF+CLQ5WBBlHQET1ocrAgxKHcsUSAABHQDLbZFocrAhHQF+EWhysCDFHQET3bItDlYGHcsYSAABHQDLdsi0OVgRHQF+GNT987ZFHQET41P3ztkaHcscSAABHQDLeNT987ZFHQF+Gl41P3ztHQET5N0vGp/CHcsgSAABHQDLggxJul41HQF+IYk3S8apHQET6n752yLSHcskSAABHQDLgxJul41RHQF+IxJul41RHQET64UeuFHuHcsoSAABHQDLjU/fO2RdHQF+Kn752yLRHQET8an752yOHcssSAABHQDLlocrAgxJHQF+Man752yNHQET90vGp++eHcswSAABHQDLl41P3ztlHQF+MzMzMzM1HQET+FHrhR66Hcs0SAABHQDLoMSbpeNVHQF+Op++dsi1HQET/nbItDlaHcs4SAABHQDLotDlYEGJHQF+O+dsi0OVHQET/3ztkWh2Hcs8SAABHQDLrAgxJul5HQF+Q1P3ztkZHQEUBaHKwIMWHctASAABHQDLtT987ZFpHQF+SsCDEm6ZHQEUC0OVgQYmHctESAABHQDLt0vGp++dHQF+TAgxJul5HQEUDEm6XjVCHctISAABHQDLwIMSbpeNHQF+U3S8an75HQEUEm6XjU/iHctMSAABHQDLybpeNT99HQF+WuFHrhR9HQEUGBBiTdLyHctQSAABHQDLy8an7521HQF+XCj1wo9dHQEUGZmZmZmaHctUSAABHQDL1P3ztkWhHQF+Y5WBBiTdHQEUHztkWhyuHctYSAABHQDL1wo9cKPZHQF+ZR64UeuFHQEUIEGJN0vKHctcSAABHQDL4EGJN0vJHQF+bEm6XjVBHQEUJmZmZmZqHctgSAABHQDL6XjU/fO5HQF+c7ZFocrBHQEULAgxJul6HctkSAABHQDL64UeuFHtHQF+dT987ZFpHQEULQ5WBBiWHctoSAABHQDL9LxqfvndHQF+fGp++dslHQEUMzMzMzM2HctsSAABHQDL9cKPXCj1HQF+ffO2RaHNHQEUNDlYEGJOHctwSAABHQDL/fO2RaHNHQF+g9cKPXClHQEUONT987ZGHct0SAABHQDL/vnbItDlHQF+hWBBiTdNHQEUOdsi0OViHct4SAABHQDMCDEm6XjVHQF+jItDlYEJHQEUQAAAAAACHct8SAABHQDMCj1wo9cNHQF+jhR64UexHQEUQQYk3S8eHcuASAABHQDME3S8an75HQF+lYEGJN0xHQEURysCDEm+HcuESAABHQDMFYEGJN0xHQF+lsi0OVgRHQEUSDEm6XjWHcuISAABHQDMHKwIMSbpHQF+nO2RaHKxHQEUTMzMzMzOHcuMSAABHQDMHrhR64UhHQF+njU/fO2RHQEUTdLxqfvqHcuQSAABHQDMKfvnbItFHQF+pul41P31HQEUVP3ztkWiHcuUSAABHQDMMzMzMzM1HQF+rlYEGJN1HQEUWp++dsi2HcuYSAABHQDMPXCj1wo9HQF+t0vGp++dHQEUYcrAgxJyHcucSAABHQDMRqfvnbItHQF+vnbItDlZHQEUZ++dsi0SHcugSAABHQDMSLQ5WBBlHQF+wAAAAAABHQEUaPXCj1wqHcukSAABHQDMUeuFHrhRHQF+x2yLQ5WBHQEUbpeNT98+HcuoSAABHQDMXS8an755HQF+0CDEm6XlHQEUdcKPXCj2HcusSAABHQDMZmZmZmZpHQF+141P3ztlHQEUe2RaHKwKHcuwSAABHQDMcKPXCj1xHQF+4EGJN0vJHQEUgo9cKPXGHcu0SAABHQDMe+dsi0OVHQF+6TdLxqfxHQEUiTdLxqfyHcu4SAABHQDMhR64UeuFHQF+8GJN0vGpHQEUj1wo9cKSHcu8SAABHQDMkGJN0vGpHQF++VgQYk3VHQEUlocrAgxKHcvASAABHQDMmZmZmZmZHQF/AMSbpeNVHQEUnCj1wo9eHcvESAABHQDMmp++dsi1HQF/AgxJul41HQEUnS8an756HcvISAABHQDMo9cKPXClHQF/CXjU/fO5HQEUo1P3ztkaHcvMSAABHQDMrxqfvnbJHQF/Em6XjU/hHQEUqfvnbItGHcvQSAABHQDMuFHrhR65HQF/GZmZmZmZHQEUsCDEm6XmHcvUSAABHQDMul41P3ztHQF/GyLQ5WBBHQEUsSbpeNT+HcvYSAABHQDMwo9cKPXFHQF/Io9cKPXFHQEUtsi0OVgSHcvcSAABHQDMzdLxqfvpHQF/K0OVgQYlHQEUvfO2RaHOHcvgSAABHQDM1wo9cKPZHQF/MrAgxJulHQEUw5WBBiTeHcvkSAABHQDM2RaHKwINHQF/NDlYEGJNHQEUxJul41P6HcvoSAABHQDM4k3S8an9HQF/O6XjU/fRHQEUysCDEm6aHcvsSAABHQDM6n752yLRHQF/QtDlYEGJHQEU0GJN0vGqHcvwSAABHQDM7ItDlYEJHQF/RFocrAgxHQEU0euFHrhSHcv0SAABHQDM987ZFoctHQF/TQ5WBBiVHQEU2JN0vGqCHcv4SAABHQDNAQYk3S8dHQF/VHrhR64VHQEU3jU/fO2SHcv8SAABHQDNCj1wo9cNHQF/W+dsi0OVHQEU5FocrAgyHcgATAABHQDNC0OVgQYlHQF/XXCj1wo9HQEU5WBBiTdOHcgETAABHQDNFHrhR64VHQF/ZN0vGp/BHQEU6wIMSbpiHcgITAABHQDNFocrAgxJHQF/ZiTdLxqhHQEU7ItDlYEKHcgMTAABHQDNH752yLQ5HQF/bZFocrAhHQEU8i0OVgQaHcgQTAABHQDNKfvnbItFHQF/docrAgxJHQEU+VgQYk3WHcgUTAABHQDNMzMzMzM1HQF/fbItDlYFHQEU/vnbItDmHcgYTAABHQDNPnbItDlZHQF/hqfvnbItHQEVBiTdLxqiHcgcTAABHQDNSLQ5WBBlHQF/j1wo9cKRHQEVDMzMzMzOHcggTAABHQDNUeuFHrhRHQF/lsi0OVgRHQEVEm6XjU/iHcgkTAABHQDNXS8an755HQF/n752yLQ5HQEVGZmZmZmaHcgoTAABHQDNZWBBiTdNHQF/pysCDEm9HQEVHztkWhyuHcgsTAABHQDNeuFHrhR9HQF/uNT987ZFHQEVLZFocrAiHcgwTAABHQDNhBiTdLxtHQF/wEGJN0vJHQEVMzMzMzM2Hcg0TAABHQDNj1wo9cKRHQF/yPXCj1wpHQEVOdsi0OViHcg4TAABHQDNmZmZmZmZHQF/0euFHrhRHQEVQQYk3S8eHcg8TAABHQDNotDlYEGJHQF/2VgQYk3VHQEVRqfvnbIuHchATAABHQDNrQ5WBBiVHQF/4gxJul41HQEVTdLxqfvqHchETAABHQDNtkWhysCFHQF/6XjU/fO5HQEVU3S8an76HchITAABHQDNuFHrhR65HQF/6wIMSbphHQEVVHrhR64WHchMTAABHQDNy8an7521HQF/+yLQ5WBBHQEVYUeuFHriHchQTAABHQDN1P3ztkWhHQGAAUeuFHrhHQEVZ2yLQ5WCHchUTAABHQDN1gQYk3S9HQGAAgxJul41HQEVaHKwIMSeHchYTAABHQDN3ztkWhytHQGABcKPXCj1HQEVbhR64UeyHchcTAABHQDN6XjU/fO5HQGAChysCDEpHQEVdT987ZFqHchgTAABHQDN9LxqfvndHQGADpeNT989HQEVe+dsi0OWHchkTAABHQDN/fO2RaHNHQGAEk3S8an9HQEVgYk3S8aqHchoTAABHQDOCDEm6XjVHQGAFsi0OVgRHQEViLQ5WBBmHchsTAABHQDOEm6XjU/hHQGAGyLQ5WBBHQEVj1wo9cKSHchwTAABHQDOG6XjU/fRHQGAHtkWhysFHQEVlYEGJN0yHch0TAABHQDOJeNT987ZHQGAI1P3ztkZHQEVnCj1wo9eHch4TAABHQDOLxqfvnbJHQGAJwo9cKPZHQEVok3S8an+Hch8TAABHQDOOVgQYk3VHQGAK2RaHKwJHQEVqPXCj1wqHciATAABHQDORJul41P5HQGAL987ZFodHQEVsCDEm6XmHciETAABHQDOTMzMzMzNHQGAM5WBBiTdHQEVtcKPXCj2HciITAABHQDOWBBiTdLxHQGAOBBiTdLxHQEVvGp++dsmHciMTAABHQDOcrAgxJulHQGAQ5WBBiTdHQEVzlYEGJN2HciQTAABHQDOdcKPXCj1HQGARJul41P5HQEV0GJN0vGqHciUTAABHQDOkGJN0vGpHQGAUCDEm6XlHQEV4crAgxJyHciYTAABHQDOm6XjU/fRHQGAVN0vGp/BHQEV6XjU/fO6HcicTAABHQDOpul41P31HQGAWVgQYk3VHQEV8CDEm6XmHcigTAABHQDOuVgQYk3VHQGAYYk3S8apHQEV/O2RaHKyHcikTAABHQDOxJul41P5HQGAZgQYk3S9HQEWBBiTdLxuHcioTAABHQDOztkWhysFHQGAan752yLRHQEWCsCDEm6aHcisTAABHQDO6XjU/fO5HQGAdgQYk3S9HQEWHKwIMSbqHciwTAABHQDO7ItDlYEJHQGAdwo9cKPZHQEWHjU/fO2SHci0TAABHQDO/vnbItDlHQGAfztkWhytHQEWKwIMSbpiHci4TAABHQDPCTdLxqfxHQGAg7ZFocrBHQEWMan752yOHci8TAABHQDGLQ5WBBiVHQFzUeuFHrhRHQEC3ztkWhyuHcjATAABHQDGLQ5WBBiVHQFzWZmZmZmZHQEC4k3S8an+HcjETAABHQDGLQ5WBBiVHQFzZBiTdLxtHQEC5ul41P32HcjITAABHQDGLQ5WBBiVHQFzZ2yLQ5WBHQEC6HKwIMSeHcjMTAABHQDGLQ5WBBiVHQFzbU/fO2RdHQEC6wIMSbpiHcjQTAABHQDGLQ5WBBiVHQFzci0OVgQZHQEC7Q5WBBiWHcjUTAABHQDGLQ5WBBiVHQFzd87ZFoctHQEC752yLQ5aHcjYTAABHQDGLQ5WBBiVHQFzgQYk3S8dHQEC8zMzMzM2HcjcTAABHQDGLAgxJul5HQFzgo9cKPXFHQEC9DlYEGJOHcjgTAABHQDGLAgxJul5HQFzheNT987ZHQEC9T987ZFqHcjkTAABHQDGLAgxJul5HQFzi4UeuFHtHQEC987ZFocuHcjoTAABHQDGLAgxJul5HQFzjU/fO2RdHQEC+NT987ZGHcjsTAABHQDGLAgxJul5HQFzkKPXCj1xHQEC+dsi0OViHcjwTAABHQDGLAgxJul5HQFzlkWhysCFHQEC/Gp++dsmHcj0TAABHQDGLAgxJul5HQFzmZmZmZmZHQEC/fO2RaHOHcj4TAABHQDGLAgxJul5HQFznztkWhytHQEDAIMSbpeOHcj8TAABHQDGLAgxJul5HQFzoQYk3S8dHQEDAQYk3S8eHckATAABHQDGLAgxJul5HQFzpFocrAgxHQEDAo9cKPXGHckETAABHQDGLAgxJul5HQFzqfvnbItFHQEDBR64UeuGHckITAABHQDGLAgxJul5HQFzq4UeuFHtHQEDBaHKwIMWHckMTAABHQDGLAgxJul5HQFzrU/fO2RdHQEDBiTdLxqiHckQTAABHQDGLAgxJul5HQFztLxqfvndHQEDCbpeNT9+HckUTAABHQDGLAgxJul5HQFztkWhysCFHQEDCj1wo9cOHckYTAABHQDGLAgxJul5HQFzuBBiTdLxHQEDCsCDEm6aHckcTAABHQDGKwIMSbphHQFzvbItDlYFHQEDDU/fO2ReHckgTAABHQDGKwIMSbphHQFzvztkWhytHQEDDdLxqfvqHckkTAABHQDGKwIMSbphHQFzwQYk3S8dHQEDDtkWhysGHckoTAABHQDGKwIMSbphHQFzwo9cKPXFHQEDD1wo9cKSHcksTAABHQDGKwIMSbphHQFzyHKwIMSdHQEDEeuFHrhSHckwTAABHQDGKwIMSbphHQFzyfvnbItFHQEDEm6XjU/iHck0TAABHQDGKwIMSbphHQFzy4UeuFHtHQEDE3S8an76Hck4TAABHQDGKwIMSbphHQFz0vGp++dtHQEDFocrAgxKHck8TAABHQDGKwIMSbphHQFz1LxqfvndHQEDFwo9cKPaHclATAABHQDGKwIMSbphHQFz1kWhysCFHQEDGBBiTdLyHclETAABHQDGKwIMSbphHQFz3Cj1wo9dHQEDGp++dsi2HclITAABHQDGKwIMSbphHQFz3bItDlYFHQEDGyLQ5WBCHclMTAABHQDGKwIMSbphHQFz3ztkWhytHQEDG6XjU/fSHclQTAABHQDGKwIMSbphHQFz5qfvnbItHQEDHrhR64UiHclUTAABHQDGKwIMSbphHQFz6HKwIMSdHQEDH752yLQ6HclYTAABHQDGKwIMSbphHQFz6fvnbItFHQEDIEGJN0vKHclcTAABHQDGKwIMSbphHQFz8WhysCDFHQEDI1P3ztkaHclgTAABHQDGKwIMSbphHQFz8vGp++dtHQEDJFocrAgyHclkTAABHQDGKwIMSbphHQFz9LxqfvndHQEDJN0vGp/CHcloTAABHQDGKwIMSbphHQFz+l41P3ztHQEDJ2yLQ5WCHclsTAABHQDGKwIMSbphHQFz/Cj1wo9dHQEDJ++dsi0SHclwTAABHQDGKfvnbItFHQFz/bItDlYFHQEDKPXCj1wqHcl0TAABHQDGKfvnbItFHQF0BR64UeuFHQEDLAgxJul6Hcl4TAABHQDGKfvnbItFHQF0BqfvnbItHQEDLItDlYEKHcl8TAABHQDGKfvnbItFHQF0CHKwIMSdHQEDLZFocrAiHcmATAABHQDGKfvnbItFHQF0D987ZFodHQEDMKPXCj1yHcmETAABHQDGKfvnbItFHQF0EWhysCDFHQEDMSbpeNT+HcmITAABHQDGKfvnbItFHQF0GNT987ZFHQEDNDlYEGJOHcmMTAABHQDGKfvnbItFHQF0Gl41P3ztHQEDNT987ZFqHcmQTAABHQDGKfvnbItFHQF0HCj1wo9dHQEDNcKPXCj2HcmUTAABHQDGKfvnbItFHQF0I5WBBiTdHQEDONT987ZGHcmYTAABHQDGKfvnbItFHQF0LItDlYEJHQEDPO2RaHKyHcmcTAABHQDGKfvnbItFHQF0LhR64UexHQEDPXCj1wo+HcmgTAABHQDGKfvnbItFHQF0L987ZFodHQEDPnbItDlaHcmkTAABHQDGKfvnbItFHQF0N0vGp++dHQEDQYk3S8aqHcmoTAABHQDGKfvnbItFHQF0PCj1wo9dHQEDQ5WBBiTeHcmsTAABHQDGKfvnbItFHQF0QgxJul41HQEDRiTdLxqiHcmwTAABHQDGKPXCj1wpHQF0SwIMSbphHQEDSbpeNT9+Hcm0TAABHQDGKPXCj1wpHQF0T987ZFodHQEDTEm6XjVCHcm4TAABHQDGKPXCj1wpHQF0VYEGJN0xHQEDTlYEGJN2Hcm8TAABHQDGKPXCj1wpHQF0Wp++dsi1HQEDUOVgQYk6HcnATAABHQDGKPXCj1wpHQF0YEGJN0vJHQEDUvGp++duHcnETAABHQDGKPXCj1wpHQF0Y5WBBiTdHQEDVHrhR64WHcnITAABHQDGKPXCj1wpHQF0aTdLxqfxHQEDVwo9cKPaHcnMTAABHQDGKPXCj1wpHQF0awIMSbphHQEDV41P3ztmHcnQTAABHQDGKPXCj1wpHQF0blYEGJN1HQEDWRaHKwIOHcnUTAABHQDGKPXCj1wpHQF0c/fO2RaJHQEDW6XjU/fSHcnYTAABHQDGKPXCj1wpHQF0d0vGp++dHQEDXS8an756HcncTAABHQDGKPXCj1wpHQF0eNT987ZFHQEDXbItDlYGHcngTAABHQDGKPXCj1wpHQF0fO2RaHKxHQEDX752yLQ6HcnkTAABHQDGKPXCj1wpHQF0frhR64UhHQEDYEGJN0vKHcnoTAABHQDGKPXCj1wpHQF0ggxJul41HQEDYcrAgxJyHcnsTAABHQDGKPXCj1wpHQF0h64UeuFJHQEDY9cKPXCmHcnwTAABHQDGKPXCj1wpHQF0iTdLxqfxHQEDZN0vGp/CHcn0TAABHQDGKPXCj1wpHQF0iwIMSbphHQEDZWBBiTdOHcn4TAABHQDGKPXCj1wpHQF0jItDlYEJHQEDZmZmZmZqHcn8TAABHQDGKPXCj1wpHQF0km6XjU/hHQEDaHKwIMSeHcoATAABHQDGKPXCj1wpHQF0k/fO2RaJHQEDaXjU/fO6HcoETAABHQDGKPXCj1wpHQF0lYEGJN0xHQEDafvnbItGHcoITAABHQDGJ++dsi0RHQF0m2RaHKwJHQEDbItDlYEKHcoMTAABHQDGJ++dsi0RHQF0nO2RaHKxHQEDbQ5WBBiWHcoQTAABHQDGJ++dsi0RHQF0nrhR64UhHQEDbhR64UeyHcoUTAABHQDGJ++dsi0RHQF0oEGJN0vJHQEDbpeNT98+HcoYTAABHQDGJ++dsi0RHQF0piTdLxqhHQEDcSbpeNT+HcocTAABHQDGJ++dsi0RHQF0p64UeuFJHQEDcan752yOHcogTAABHQDGJ++dsi0RHQF0qTdLxqfxHQEDcrAgxJumHcokTAABHQDGJ++dsi0RHQF0qwIMSbphHQEDczMzMzM2HcooTAABHQDGJ++dsi0RHQF0sKPXCj1xHQEDdcKPXCj2HcosTAABlKEdAMYn752yLREdAXSybpeNT+EdAQN2RaHKwIYdyjBMAAEdAMYn752yLREdAXSz987ZFokdAQN3S8an754dyjRMAAEdAMYn752yLREdAXS5mZmZmZkdAQN52yLQ5WIdyjhMAAEdAMYn752yLREdAXS7ZFocrAkdAQN6XjU/fO4dyjxMAAEdAMYn752yLREdAXS87ZFocrEdAQN64UeuFH4dykBMAAEdAMYn752yLREdAXS+uFHrhSEdAQN752yLQ5YdykRMAAEdAMYn752yLREdAXTEWhysCDEdAQN987ZFoc4dykhMAAEdAMYn752yLREdAXTGJN0vGqEdAQN++dsi0OYdykxMAAEdAMYn752yLREdAXTHrhR64UkdAQN/fO2RaHYdylBMAAEdAMYn752yLREdAXTPGp++dskdAQOCj1wo9cYdylRMAAEdAMYn752yLREdAXTQo9cKPXEdAQODlYEGJN4dylhMAAEdAMYn752yLREdAXTSbpeNT+EdAQOEGJN0vG4dylxMAAEdAMYn752yLREdAXTYEGJN0vEdAQOGp++dsi4dymBMAAEdAMYn752yLREdAXTZmZmZmZkdAQOHKwIMSb4dymRMAAEdAMYn752yLREdAXTbZFocrAkdAQOIMSbpeNYdymhMAAEdAMYn752yLREdAXTi0OVgQYkdAQOLQ5WBBiYdymxMAAEdAMYn752yLREdAXTkWhysCDEdAQOLxqfvnbYdynBMAAEdAMYn752yLREdAXTl41P3ztkdAQOMzMzMzM4dynRMAAEdAMYn752yLREdAXTtT987ZF0dAQOP3ztkWh4dynhMAAEdAMYn752yLREdAXTvGp++dskdAQOQYk3S8aodynxMAAEdAMYn752yLREdAXTwo9cKPXEdAQORaHKwIMYdyoBMAAEdAMYn752yLREdAXT2hysCDEkdAQOT987ZFoodyoRMAAEdAMYn752yLREdAXT4EGJN0vEdAQOUeuFHrhYdyohMAAEdAMYn752yLREdAXT5mZmZmZkdAQOU/fO2RaIdyoxMAAEdAMYm6XjU/fUdAXUBBiTdLx0dAQOYk3S8aoIdypBMAAEdAMYm6XjU/fUdAXUC0OVgQYkdAQOZFocrAg4dypRMAAEdAMYm6XjU/fUdAXUEWhysCDEdAQOZmZmZmZodyphMAAEdAMYm6XjU/fUdAXUGJN0vGqEdAQOan752yLYdypxMAAEdAMYm6XjU/fUdAXULxqfvnbUdAQOdLxqfvnodyqBMAAEdAMYm6XjU/fUdAXUNT987ZF0dAQOdsi0OVgYdyqRMAAEdAMYm6XjU/fUdAXUUvGp++d0dAQOgxJul41YdyqhMAAEdAMYm6XjU/fUdAXUYEGJN0vEdAQOiTdLxqf4dyqxMAAEdAMYm6XjU/fUdAXUZ2yLQ5WEdAQOi0OVgQYodyrBMAAEdAMYm6XjU/fUdAXUffO2RaHUdAQOlYEGJN04dyrRMAAEdAMYm6XjU/fUdAXUkWhysCDEdAQOnbItDlYIdyrhMAAEdAMYm6XjU/fUdAXUtT987ZF0dAQOrhR64Ue4dyrxMAAEdAMYm6XjU/fUdAXUzMzMzMzUdAQOuFHrhR7IdysBMAAEdAMYm6XjU/fUdAXU4EGJN0vEdAQOwIMSbpeYdysRMAAEdAMYm6XjU/fUdAXU987ZFoc0dAQOysCDEm6YdyshMAAEdAMYm6XjU/fUdAXVC0OVgQYkdAQO0vGp++d4dysxMAAEdAMYm6XjU/fUdAXVG6XjU/fUdAQO2RaHKwIYdytBMAAEdAMYm6XjU/fUdAXVIcrAgxJ0dAQO3S8an754dytRMAAEdAMYm6XjU/fUdAXVLxqfvnbUdAQO4UeuFHrodythMAAEdAMYm6XjU/fUdAXVRaHKwIMUdAQO64UeuFH4dytxMAAEdAMYm6XjU/fUdAXVWhysCDEkdAQO87ZFocrIdyuBMAAEdAMYm6XjU/fUdAXVcKPXCj10dAQO/fO2RaHYdyuRMAAEdAMYm6XjU/fUdAXVffO2RaHUdAQPBBiTdLx4dyuhMAAEdAMYm6XjU/fUdAXVlHrhR64UdAQPDlYEGJN4dyuxMAAEdAMYm6XjU/fUdAXVm6XjU/fUdAQPEGJN0vG4dyvBMAAEdAMYm6XjU/fUdAXVqPXCj1w0dAQPFocrAgxYdyvRMAAEdAMYl41P3ztkdAXVv3ztkWh0dAQPIMSbpeNYdyvhMAAEdAMYl41P3ztkdAXVxaHKwIMUdAQPItDlYEGYdyvxMAAEdAMYl41P3ztkdAXVzMzMzMzUdAQPJul41P34dywBMAAEdAMYl41P3ztkdAXV0vGp++d0dAQPKPXCj1w4dywRMAAEdAMYl41P3ztkdAXV6n752yLUdAQPMzMzMzM4dywhMAAEdAMYl41P3ztkdAXV8KPXCj10dAQPNT987ZF4dywxMAAEdAMYl41P3ztkdAXV9si0OVgUdAQPOVgQYk3YdyxBMAAEdAMYl41P3ztkdAXWDlYEGJN0dAQPQYk3S8aodyxRMAAEdAMYl41P3ztkdAXWFHrhR64UdAQPRaHKwIMYdyxhMAAEdAMYl41P3ztkdAXWG6XjU/fUdAQPR64UeuFIdyxxMAAEdAMYl41P3ztkdAXWIcrAgxJ0dAQPSbpeNT+IdyyBMAAEdAMYl41P3ztkdAXWOFHrhR7EdAQPU/fO2RaIdyyRMAAEdAMYl41P3ztkdAXWP3ztkWh0dAQPWBBiTdL4dyyhMAAEdAMYl41P3ztkdAXWRaHKwIMUdAQPWhysCDEodyyxMAAEdAMYl41P3ztkdAXWXS8an750dAQPZFocrAg4dyzBMAAEdAMYl41P3ztkdAXWY1P3ztkUdAQPZmZmZmZodyzRMAAEdAMYl41P3ztkdAXWan752yLUdAQPan752yLYdyzhMAAEdAMYl41P3ztkdAXWcKPXCj10dAQPbItDlYEIdyzxMAAEdAMYl41P3ztkdAXWhysCDEnEdAQPdsi0OVgYdy0BMAAEdAMYl41P3ztkdAXWjlYEGJN0dAQPeNT987ZIdy0RMAAEdAMYl41P3ztkdAXWlHrhR64UdAQPfO2RaHK4dy0hMAAEdAMYl41P3ztkdAXWm6XjU/fUdAQPfvnbItDody0xMAAEdAMYl41P3ztkdAXWsi0OVgQkdAQPiTdLxqf4dy1BMAAEdAMYl41P3ztkdAXWuFHrhR7EdAQPi0OVgQYody1RMAAEdAMYl41P3ztkdAXWv3ztkWh0dAQPj1wo9cKYdy1hMAAEdAMYl41P3ztkdAXW1gQYk3TEdAQPl41P3ztody1xMAAEdAMYl41P3ztkdAXW3S8an750dAQPm6XjU/fYdy2BMAAEdAMYl41P3ztkdAXW41P3ztkUdAQPnbItDlYIdy2RMAAEdAMYl41P3ztkdAXW6XjU/fO0dAQPocrAgxJ4dy2hMAAEdAMYl41P3ztkdAXXAQYk3S8kdAQPqfvnbItIdy2xMAAEdAMYl41P3ztkdAXXBysCDEnEdAQPrhR64Ue4dy3BMAAEdAMYl41P3ztkdAXXDlYEGJN0dAQPsCDEm6Xody3RMAAEdAMYl41P3ztkdAXXKwIMSbpkdAQPvGp++dsody3hMAAEdAMYl41P3ztkdAXXMi0OVgQkdAQPwIMSbpeYdy3xMAAEdAMYl41P3ztkdAXXOFHrhR7EdAQPwo9cKPXIdy4BMAAEdAMYl41P3ztkdAXXT987ZFokdAQPzMzMzMzYdy4RMAAEdAMYl41P3ztkdAXXVgQYk3TEdAQPztkWhysIdy4hMAAEdAMYl41P3ztkdAXXXS8an750dAQP0vGp++d4dy4xMAAEdAMYl41P3ztkdAXXY1P3ztkUdAQP1P3ztkWody5BMAAEdAMYl41P3ztkdAXXan752yLUdAQP2RaHKwIYdy5RMAAEdAMYl41P3ztkdAXXedsi0OVkdAQP3ztkWhy4dy5hMAAEdAMYl41P3ztkdAXXgQYk3S8kdAQP4UeuFHrody5xMAAEdAMYl41P3ztkdAXXhysCDEnEdAQP5WBBiTdYdy6BMAAEdAMYl41P3ztkdAXXpN0vGp/EdAQP8an752yYdy6RMAAEdAMYl41P3ztkdAXXqwIMSbpkdAQP87ZFocrIdy6hMAAEdAMYl41P3ztkdAXXsi0OVgQkdAQP987ZFoc4dy6xMAAEdAMYl41P3ztkdAXXuFHrhR7EdAQP+dsi0OVody7BMAAEdAMYl41P3ztkdAXXyLQ5WBBkdAQQAgxJul44dy7RMAAEdAMYl41P3ztkdAXXz987ZFokdAQQBBiTdLx4dy7hMAAEdAMYk3S8an8EdAXX1gQYk3TEdAQQBiTdLxqody7xMAAEdAMYk3S8an8EdAXX87ZFocrEdAQQFHrhR64Ydy8BMAAEdAMYk3S8an8EdAXYAQYk3S8kdAQQGJN0vGqIdy8RMAAEdAMYk3S8an8EdAXYBysCDEnEdAQQHKwIMSb4dy8hMAAEdAMYk3S8an8EdAXYMi0OVgQkdAQQLxqfvnbYdy8xMAAEdAMYk3S8an8EdAXYQo9cKPXEdAQQNT987ZF4dy9BMAAEdAMYk3S8an8EdAXYT987ZFokdAQQO2RaHKwYdy9RMAAEdAMYk3S8an8EdAXYVgQYk3TEdAQQPXCj1wpIdy9hMAAEdAMYk3S8an8EdAXYY1P3ztkUdAQQQ5WBBiTody9xMAAEdAMYk3S8an8EdAXYbZFocrAkdAQQR64UeuFIdy+BMAAEdAMYk3S8an8EdAXYgQYk3S8kdAQQT987ZFoody+RMAAEdAMYk3S8an8EdAXYl41P3ztkdAQQWhysCDEody+hMAAEdAMYk3S8an8EdAXYpN0vGp/EdAQQYEGJN0vIdy+xMAAEdAMYk3S8an8EdAXYsi0OVgQkdAQQZmZmZmZody/BMAAEdAMYk3S8an8EdAXYu2RaHKwUdAQQan752yLYdy/RMAAEdAMYk3S8an8EdAXYz987ZFokdAQQcrAgxJuody/hMAAEdAMYk3S8an8EdAXY5mZmZmZkdAQQfO2RaHK4dy/xMAAEdAMYk3S8an8EdAXY+dsi0OVkdAQQhR64UeuIdyABQAAEdAMYk3S8an8EdAXZAQYk3S8kdAQQhysCDEnIdyARQAAEdAMYk3S8an8EdAXZEWhysCDEdAQQj1wo9cKYdyAhQAAEdAMYk3S8an8EdAXZHrhR64UkdAQQk3S8an8IdyAxQAAEdAMYk3S8an8EdAXZLAgxJumEdAQQmZmZmZmodyBBQAAEdAMYk3S8an8EdAXZNT987ZF0dAQQnbItDlYIdyBRQAAEdAMYk3S8an8EdAXZO2RaHKwUdAQQocrAgxJ4dyBhQAAEdAMYk3S8an8EdAXZQo9cKPXEdAQQo9cKPXCodyBxQAAEdAMYk3S8an8EdAXZSLQ5WBBkdAQQpeNT987odyCBQAAEdAMYk3S8an8EdAXZYEGJN0vEdAQQsCDEm6XodyCRQAAEdAMYk3S8an8EdAXZZmZmZmZkdAQQtDlYEGJYdyChQAAEdAMYk3S8an8EdAXZbItDlYEEdAQQtkWhysCIdyCxQAAEdAMYk3S8an8EdAXZedsi0OVkdAQQvGp++dsodyDBQAAEdAMYk3S8an8EdAXZhBiTdLx0dAQQwIMSbpeYdyDRQAAEdAMYk3S8an8EdAXZij1wo9cUdAQQwo9cKPXIdyDhQAAEdAMYk3S8an8EdAXZkWhysCDEdAQQxqfvnbI4dyDxQAAEdAMYk3S8an8EdAXZl41P3ztkdAQQyLQ5WBBodyEBQAAEdAMYk3S8an8EdAXZrhR64Ue0dAQQ0vGp++d4dyERQAAEdAMYk3S8an8EdAXZtT987ZF0dAQQ1P3ztkWodyEhQAAEdAMYk3S8an8EdAXZu2RaHKwUdAQQ2RaHKwIYdyExQAAEdAMYk3S8an8EdAXZwo9cKPXEdAQQ2yLQ5WBIdyFBQAAEdAMYk3S8an8EdAXZyLQ5WBBkdAQQ3S8an754dyFRQAAEdAMYk3S8an8EdAXZ2RaHKwIUdAQQ5WBBiTdYdyFhQAAEdAMYk3S8an8EdAXZ3ztkWhy0dAQQ52yLQ5WIdyFxQAAEdAMYk3S8an8EdAXZ5mZmZmZkdAQQ64UeuFH4dyGBQAAEdAMYk3S8an8EdAXZ87ZFocrEdAQQ752yLQ5YdyGRQAAEdAMYk3S8an8EdAXZ/O2RaHK0dAQQ87ZFocrIdyGhQAAEdAMYk3S8an8EdAXaBBiTdLx0dAQQ987ZFoc4dyGxQAAEdAMYk3S8an8EdAXaCj1wo9cUdAQQ+dsi0OVodyHBQAAEdAMYj1wo9cKUdAXaEWhysCDEdAQQ/fO2RaHYdyHRQAAEdAMYj1wo9cKUdAXaF41P3ztkdAQRAAAAAAAIdyHhQAAEdAMYj1wo9cKUdAXaJ++dsi0UdAQRBiTdLxqodyHxQAAEdAMYj1wo9cKUdAXaLhR64Ue0dAQRCj1wo9cYdyIBQAAEdAMYj1wo9cKUdAXaNT987ZF0dAQRDEm6XjVIdyIRQAAEdAMYj1wo9cKUdAXaQo9cKPXEdAQREm6XjU/odyIhQAAEdAMYj1wo9cKUdAXaUvGp++d0dAQRGJN0vGqIdyIxQAAEdAMYj1wo9cKUdAXaWRaHKwIUdAQRHKwIMSb4dyJBQAAEdAMYj1wo9cKUdAXaXztkWhy0dAQRHrhR64UodyJRQAAEdAMYj1wo9cKUdAXadsi0OVgUdAQRKPXCj1w4dyJhQAAEdAMYj1wo9cKUdAXafO2RaHK0dAQRKwIMSbpodyJxQAAEdAMYj1wo9cKUdAXahBiTdLx0dAQRLxqfvnbYdyKBQAAEdAMYj1wo9cKUdAXaij1wo9cUdAQRMSbpeNUIdyKRQAAEdAMYj1wo9cKUdAXakWhysCDEdAQRNT987ZF4dyKhQAAEdAMYj1wo9cKUdAXal41P3ztkdAQRN0vGp++odyKxQAAEdAMYj1wo9cKUdAXaoMSbpeNUdAQRO2RaHKwYdyLBQAAEdAMYj1wo9cKUdAXap++dsi0UdAQRPXCj1wpIdyLRQAAEdAMYj1wo9cKUdAXarhR64Ue0dAQRQYk3S8aodyLhQAAEdAMYj1wo9cKUdAXaxaHKwIMUdAQRS8an7524dyLxQAAEdAMYj1wo9cKUdAXay8an7520dAQRTdLxqfvodyMBQAAEdAMYj1wo9cKUdAXa0euFHrhUdAQRT987ZFoodyMRQAAEdAMYj1wo9cKUdAXa2RaHKwIUdAQRU/fO2RaIdyMhQAAEdAMYj1wo9cKUdAXa4EGJN0vEdAQRVgQYk3TIdyMxQAAEdAMYj1wo9cKUdAXa752yLQ5UdAQRXjU/fO2YdyNBQAAEdAMYj1wo9cKUdAXa9si0OVgUdAQRYEGJN0vIdyNRQAAEdAMYj1wo9cKUdAXa/O2RaHK0dAQRYk3S8aoIdyNhQAAEdAMYj1wo9cKUdAXbCj1wo9cUdAQRaHKwIMSodyNxQAAEdAMYj1wo9cKUdAXbEWhysCDEdAQRbItDlYEIdyOBQAAEdAMYj1wo9cKUdAXbGp++dsi0dAQRcKPXCj14dyORQAAEdAMYj1wo9cKUdAXbIMSbpeNUdAQRcrAgxJuodyOhQAAEdAMYj1wo9cKUdAXbJ++dsi0UdAQRdLxqfvnodyOxQAAEdAMYj1wo9cKUdAXbLhR64Ue0dAQReNT987ZIdyPBQAAEdAMYj1wo9cKUdAXbPnbItDlkdAQRfvnbItDodyPRQAAEdAMYj1wo9cKUdAXbRaHKwIMUdAQRgxJul41YdyPhQAAEdAMYj1wo9cKUdAXbS8an7520dAQRhR64UeuIdyPxQAAEdAMYj1wo9cKUdAXbWRaHKwIUdAQRi0OVgQYodyQBQAAEdAMYj1wo9cKUdAXbYEGJN0vEdAQRjU/fO2RodyQRQAAEdAMYj1wo9cKUdAXbaXjU/fO0dAQRkWhysCDIdyQhQAAEdAMYj1wo9cKUdAXbb52yLQ5UdAQRlYEGJN04dyQxQAAEdAMYj1wo9cKUdAXbdsi0OVgUdAQRl41P3ztodyRBQAAEdAMYj1wo9cKUdAXbfO2RaHK0dAQRmZmZmZmodyRRQAAEdAMYj1wo9cKUdAXbij1wo9cUdAQRn752yLRIdyRhQAAEdAMYj1wo9cKUdAXbk3S8an8EdAQRo9cKPXCodyRxQAAEdAMYj1wo9cKUdAXbp++dsi0UdAQRrAgxJumIdySBQAAEdAMYj1wo9cKUdAXbuFHrhR7EdAQRtDlYEGJYdySRQAAEdAMYj1wo9cKUdAXbxJul41P0dAQRuFHrhR7IdyShQAAEdAMYj1wo9cKUdAXb0vGp++d0dAQRvnbItDlodySxQAAEdAMYj1wo9cKUdAXb2RaHKwIUdAQRwo9cKPXIdyTBQAAEdAMYj1wo9cKUdAXb41P3ztkUdAQRxqfvnbI4dyTRQAAEdAMYj1wo9cKUdAXb752yLQ5UdAQRysCDEm6YdyThQAAEdAMYj1wo9cKUdAXb9si0OVgUdAQRztkWhysIdyTxQAAEdAMYj1wo9cKUdAXcBBiTdLx0dAQR1P3ztkWodyUBQAAEdAMYj1wo9cKUdAXcDU/fO2RkdAQR2RaHKwIYdyURQAAEdAMYj1wo9cKUdAXcIMSbpeNUdAQR4UeuFHrodyUhQAAEdAMYj1wo9cKUdAXcJ++dsi0UdAQR41P3ztkYdyUxQAAEdAMYi0OVgQYkdAXcPnbItDlkdAQR7ZFocrAodyVBQAAEdAMYi0OVgQYkdAXcRaHKwIMUdAQR752yLQ5YdyVRQAAEdAMYi0OVgQYkdAXcUvGp++d0dAQR9cKPXCj4dyVhQAAEdAMYi0OVgQYkdAXcXCj1wo9kdAQR+dsi0OVodyVxQAAEdAMYi0OVgQYkdAXcb52yLQ5UdAQSAgxJul44dyWBQAAEdAMYi0OVgQYkdAXcdsi0OVgUdAQSBiTdLxqodyWRQAAEdAMYi0OVgQYkdAXchysCDEnEdAQSDEm6XjVIdyWhQAAEdAMYi0OVgQYkdAXclHrhR64UdAQSEm6XjU/odyWxQAAEdAMYi0OVgQYkdAXcocrAgxJ0dAQSGJN0vGqIdyXBQAAEdAMYi0OVgQYkdAXcqwIMSbpkdAQSHKwIMSb4dyXRQAAEdAMYi0OVgQYkdAXcsSbpeNUEdAQSHrhR64UodyXhQAAEdAMYi0OVgQYkdAXcvnbItDlkdAQSJN0vGp/IdyXxQAAEdAMYi0OVgQYkdAXc1gQYk3TEdAQSLxqfvnbYdyYBQAAEdAMYi0OVgQYkdAXc3Cj1wo9kdAQSMSbpeNUIdyYRQAAEdAMYi0OVgQYkdAXc4k3S8aoEdAQSNT987ZF4dyYhQAAEdAMYi0OVgQYkdAXc6XjU/fO0dAQSN0vGp++odyYxQAAEdAMYi0OVgQYkdAXc752yLQ5UdAQSOVgQYk3YdyZBQAAEdAMYi0OVgQYkdAXdAAAAAAAEdAQSQYk3S8aodyZRQAAEdAMYi0OVgQYkdAXdBysCDEnEdAQSQ5WBBiTodyZhQAAEdAMYi0OVgQYkdAXdDU/fO2RkdAQSR64UeuFIdyZxQAAEdAMYi0OVgQYkdAXdGp++dsi0dAQSS8an7524dyaBQAAEdAMYi0OVgQYkdAXdI9cKPXCkdAQST987ZFoodyaRQAAEdAMYi0OVgQYkdAXdKwIMSbpkdAQSU/fO2RaIdyahQAAEdAMYi0OVgQYkdAXdMSbpeNUEdAQSVgQYk3TIdyaxQAAEdAMYi0OVgQYkdAXdOFHrhR7EdAQSWhysCDEodybBQAAEdAMYi0OVgQYkdAXdPnbItDlkdAQSXCj1wo9odybRQAAEdAMYi0OVgQYkdAXdTtkWhysEdAQSYk3S8aoIdybhQAAEdAMYi0OVgQYkdAXdVgQYk3TEdAQSZmZmZmZodybxQAAEdAMYi0OVgQYkdAXdXCj1wo9kdAQSaHKwIMSodycBQAAEdAMYi0OVgQYkdAXdaXjU/fO0dAQSbpeNT99IdycRQAAEdAMYi0OVgQYkdAXdcrAgxJukdAQScrAgxJuodychQAAEdAMYi0OVgQYkdAXdedsi0OVkdAQSdLxqfvnodycxQAAEdAMYi0OVgQYkdAXdgAAAAAAEdAQSeNT987ZIdydBQAAEdAMYi0OVgQYkdAXdhysCDEnEdAQSeuFHrhSIdydRQAAEdAMYi0OVgQYkdAXdjU/fO2RkdAQSfvnbItDodydhQAAEdAMYi0OVgQYkdAXdnbItDlYEdAQShR64UeuIdydxQAAEdAMYi0OVgQYkdAXdo9cKPXCkdAQShysCDEnIdyeBQAAEdAMYi0OVgQYkdAXdqwIMSbpkdAQSi0OVgQYodyeRQAAEdAMYi0OVgQYkdAXdsSbpeNUEdAQSjU/fO2RodyehQAAEdAMYi0OVgQYkdAXduFHrhR7EdAQSkWhysCDIdyexQAAEdAMYi0OVgQYkdAXdv3ztkWh0dAQSk3S8an8IdyfBQAAEdAMYi0OVgQYkdAXdyLQ5WBBkdAQSl41P3ztodyfRQAAEdAMYi0OVgQYkdAXdztkWhysEdAQSmZmZmZmodyfhQAAEdAMYi0OVgQYkdAXd1P3ztkWkdAQSnbItDlYIdyfxQAAEdAMYi0OVgQYkdAXd41P3ztkUdAQSocrAgxJ4dygBQAAEdAMYi0OVgQYkdAXd7ItDlYEEdAQSp++dsi0YdygRQAAEdAMYi0OVgQYkdAXd8rAgxJukdAQSqfvnbItIdyghQAAEdAMYi0OVgQYkdAXd+dsi0OVkdAQSrAgxJumIdygxQAAEdAMYi0OVgQYkdAXeAAAAAAAEdAQSsCDEm6XodyhBQAAEdAMYhysCDEnEdAXeBysCDEnEdAQSsi0OVgQodyhRQAAEdAMYhysCDEnEdAXeDU/fO2RkdAQStkWhysCIdyhhQAAEdAMYhysCDEnEdAXeF41P3ztkdAQSuFHrhR7IdyhxQAAEdAMYhysCDEnEdAXeHbItDlYEdAQSvGp++dsodyiBQAAEdAMYhysCDEnEdAXeI9cKPXCkdAQSvnbItDlodyiRQAAEdAMYhysCDEnEdAXeMSbpeNUEdAQSxJul41P4dyihQAAEdAMYhysCDEnEdAXeOFHrhR7EdAQSxqfvnbI4dyixQAAEdAMYhysCDEnEdAXeQYk3S8akdAQSysCDEm6YdyjBQAAEdAMYhysCDEnEdAXeSLQ5WBBkdAQSztkWhysIdyjRQAAEdAMYhysCDEnEdAXeTtkWhysEdAQS0OVgQYk4dyjhQAAEdAMYhysCDEnEdAXeVgQYk3TEdAQS1P3ztkWodyjxQAAEdAMYhysCDEnEdAXeZWBBiTdUdAQS2yLQ5WBIdykBQAAEdAMYhysCDEnEdAXebItDlYEEdAQS3S8an754dykRQAAEdAMYhysCDEnEdAXecrAgxJukdAQS4UeuFHrodykhQAAEdAMYhysCDEnEdAXeedsi0OVkdAQS41P3ztkYdykxQAAEdAMYhysCDEnEdAXegAAAAAAEdAQS52yLQ5WIdylBQAAEdAMYhysCDEnEdAXehysCDEnEdAQS6XjU/fO4dylRQAAEdAMYhysCDEnEdAXekGJN0vG0dAQS7ZFocrAodylhQAAEdAMYhysCDEnEdAXelocrAgxUdAQS752yLQ5YdylxQAAEdAMYhysCDEnEdAXenbItDlYEdAQS87ZFocrIdymBQAAEdAMYhysCDEnEdAXesi0OVgQkdAQS++dsi0OYdymRQAAEdAMYhysCDEnEdAXeu2RaHKwUdAQTAAAAAAAIdymhQAAEdAMYhysCDEnEdAXewYk3S8akdAQTAgxJul44dymxQAAEdAMYhysCDEnEdAXeyLQ5WBBkdAQTBiTdLxqodynBQAAEdAMYhysCDEnEdAXeztkWhysEdAQTCDEm6XjYdynRQAAEdAMYhysCDEnEdAXe1gQYk3TEdAQTDEm6XjVIdynhQAAEdAMYhysCDEnEdAXe3ztkWhy0dAQTEGJN0vG4dynxQAAEdAMYhysCDEnEdAXe5WBBiTdUdAQTEm6XjU/odyoBQAAEdAMYhysCDEnEdAXe7ItDlYEEdAQTFHrhR64YdyoRQAAEdAMYhysCDEnEdAXe+dsi0OVkdAQTGp++dsi4dyohQAAEdAMYhysCDEnEdAXfAQYk3S8kdAQTHrhR64UodyoxQAAEdAMYhysCDEnEdAXfCj1wo9cUdAQTItDlYEGYdypBQAAEdAMYhysCDEnEdAXfEGJN0vG0dAQTJN0vGp/IdypRQAAEdAMYhysCDEnEdAXfFocrAgxUdAQTJul41P34dyphQAAEdAMYhysCDEnEdAXfHbItDlYEdAQTKwIMSbpodypxQAAEdAMYhysCDEnEdAXfLhR64Ue0dAQTMSbpeNUIdyqBQAAEdAMYhysCDEnEdAXfNDlYEGJUdAQTMzMzMzM4dyqRQAAEdAMYhysCDEnEdAXfO2RaHKwUdAQTN0vGp++odyqhQAAEdAMYhysCDEnEdAXfSLQ5WBBkdAQTPXCj1wpIdyqxQAAEdAMYhysCDEnEdAXfTtkWhysEdAQTP3ztkWh4dyrBQAAEdAMYhysCDEnEdAXfWRaHKwIUdAQTQ5WBBiTodyrRQAAEdAMYhysCDEnEdAXfZWBBiTdUdAQTSbpeNT+IdyrhQAAEdAMYhysCDEnEdAXfbItDlYEEdAQTS8an7524dyrxQAAEdAMYhysCDEnEdAXfedsi0OVkdAQTUeuFHrhYdysBQAAEdAMYhysCDEnEdAXfgxJul41UdAQTVgQYk3TIdysRQAAEdAMYgxJul41UdAXfl41P3ztkdAQTXjU/fO2YdyshQAAEdAMYgxJul41UdAXfnbItDlYEdAQTYk3S8aoIdysxQAAEdAMYgxJul41UdAXftDlYEGJUdAQTan752yLYdytBQAAEdAMYgxJul41UdAXfyLQ5WBBkdAQTdLxqfvnodytRQAAEdAMYgxJul41UdAXf0euFHrhUdAQTeNT987ZIdythQAAEdAMYgxJul41UdAXf3ztkWhy0dAQTfO2RaHK4dytxQAAEdAMYgxJul41UdAXf5mZmZmZkdAQTgQYk3S8odyuBQAAEdAMYgxJul41UdAXf/O2RaHK0dAQTi0OVgQYodyuRQAAEdAMYgxJul41UdAXgEGJN0vG0dAQTk3S8an8IdyuhQAAEdAMYgxJul41UdAXgF41P3ztkdAQTlYEGJN04dyuxQAAEdAMYgxJul41UdAXgNT987ZF0dAQTocrAgxJ4dyvBQAAEdAMYgxJul41UdAXgQo9cKPXEdAQTp++dsi0YdyvRQAAEdAMYgxJul41UdAXgS8an7520dAQTrAgxJumIdyvhQAAEdAMYgxJul41UdAXgXztkWhy0dAQTtDlYEGJYdyvxQAAEdAMYgxJul41UdAXgZmZmZmZkdAQTuFHrhR7IdywBQAAEdAMYgxJul41UdAXgdsi0OVgUdAQTvnbItDlodywRQAAEdAMYgxJul41UdAXgfO2RaHK0dAQTwIMSbpeYdywhQAAEdAMYgxJul41UdAXggxJul41UdAQTxJul41P4dywxQAAEdAMYgxJul41UdAXgkWhysCDEdAQTysCDEm6YdyxBQAAEdAMYgxJul41UdAXgmp++dsi0dAQTztkWhysIdyxRQAAEdAMYgxJul41UdAXgoMSbpeNUdAQT0OVgQYk4dyxhQAAEdAMYgxJul41UdAXgp++dsi0UdAQT0vGp++d4dyxxQAAEdAMYgxJul41UdAXgrhR64Ue0dAQT1wo9cKPYdyyBQAAEdAMYgxJul41UdAXgtT987ZF0dAQT2RaHKwIYdyyRQAAEdAMYgxJul41UdAXgxaHKwIMUdAQT4UeuFHrodyyhQAAEdAMYgxJul41UdAXgy8an7520dAQT41P3ztkYdyyxQAAEdAMYgxJul41UdAXg0euFHrhUdAQT5WBBiTdYdyzBQAAEdAMYgxJul41UdAXg2RaHKwIUdAQT6XjU/fO4dyzRQAAEdAMYgxJul41UdAXg3ztkWhy0dAQT64UeuFH4dyzhQAAEdAMYgxJul41UdAXg5mZmZmZkdAQT752yLQ5YdyzxQAAEdAMYfvnbItDkdAXg752yLQ5UdAQT87ZFocrIdy0BQAAEdAMYfvnbItDkdAXg9si0OVgUdAQT9cKPXCj4dy0RQAAEdAMYfvnbItDkdAXg/O2RaHK0dAQT987ZFoc4dy0hQAAEdAMYfvnbItDkdAXhCj1wo9cUdAQT/fO2RaHYdy0xQAAEdAMYfvnbItDkdAXhE3S8an8EdAQUAgxJul44dy1BQAAEdAMYfvnbItDkdAXhGp++dsi0dAQUBiTdLxqody1RQAAEdAMYfvnbItDkdAXhIMSbpeNUdAQUCDEm6XjYdy1hQAAEdAMYfvnbItDkdAXhJ++dsi0UdAQUCj1wo9cYdy1xQAAEdAMYfvnbItDkdAXhLhR64Ue0dAQUDlYEGJN4dy2BQAAEdAMYfvnbItDkdAXhNT987ZF0dAQUEGJN0vG4dy2RQAAEdAMYfvnbItDkdAXhPnbItDlkdAQUFHrhR64Ydy2hQAAEdAMYfvnbItDkdAXhRaHKwIMUdAQUFocrAgxYdy2xQAAEdAMYfvnbItDkdAXhS8an7520dAQUGp++dsi4dy3BQAAEdAMYfvnbItDkdAXhWRaHKwIUdAQUIMSbpeNYdy3RQAAEdAMYfvnbItDkdAXhYEGJN0vEdAQUItDlYEGYdy3hQAAEdAMYfvnbItDkdAXhaXjU/fO0dAQUJul41P34dy3xQAAEdAMYfvnbItDkdAXhb52yLQ5UdAQUKPXCj1w4dy4BQAAEdAMYfvnbItDkdAXhdsi0OVgUdAQULQ5WBBiYdy4RQAAEdAMYfvnbItDkdAXhfO2RaHK0dAQULxqfvnbYdy4hQAAEdAMYfvnbItDkdAXhjU/fO2RkdAQUN0vGp++ody4xQAAEdAMYfvnbItDkdAXhlHrhR64UdAQUOVgQYk3Ydy5BQAAEdAMYfvnbItDkdAXhmp++dsi0dAQUO2RaHKwYdy5RQAAEdAMYfvnbItDkdAXhoMSbpeNUdAQUP3ztkWh4dy5hQAAEdAMYfvnbItDkdAXhp++dsi0UdAQUQYk3S8aody5xQAAEdAMYfvnbItDkdAXhrxqfvnbUdAQURaHKwIMYdy6BQAAEdAMYfvnbItDkdAXhuFHrhR7EdAQUSbpeNT+Idy6RQAAEdAMYfvnbItDkdAXhvnbItDlkdAQUS8an7524dy6hQAAEdAMYfvnbItDkdAXhxaHKwIMUdAQUTdLxqfvody6xQAAEdAMYfvnbItDkdAXh0vGp++d0dAQUU/fO2RaIdy7BQAAEdAMYfvnbItDkdAXh2RaHKwIUdAQUWBBiTdL4dy7RQAAEdAMYfvnbItDkdAXh3Cj1wo9kdAQUWBBiTdL4dy7hQAAEdAMYfvnbItDkdAXh4k3S8aoEdAQUXCj1wo9ody7xQAAEdAMYfvnbItDkdAXh6XjU/fO0dAQUXjU/fO2Ydy8BQAAEdAMYfvnbItDkdAXh752yLQ5UdAQUYEGJN0vIdy8RQAAEdAMYfvnbItDkdAXh9si0OVgUdAQUZFocrAg4dy8hQAAEdAMYfvnbItDkdAXh/fO2RaHUdAQUZmZmZmZody8xQAAEdAMYfvnbItDkdAXiBysCDEnEdAQUan752yLYdy9BQAAEdAMYfvnbItDkdAXiDU/fO2RkdAQUbItDlYEIdy9RQAAEdAMYfvnbItDkdAXiFHrhR64UdAQUcKPXCj14dy9hQAAEdAMYeuFHrhSEdAXiIcrAgxJ0dAQUdsi0OVgYdy9xQAAEdAMYeuFHrhSEdAXiJ++dsi0UdAQUeNT987ZIdy+BQAAEdAMYeuFHrhSEdAXiMSbpeNUEdAQUfO2RaHK4dy+RQAAEdAMYeuFHrhSEdAXiOFHrhR7EdAQUfvnbItDody+hQAAEdAMYeuFHrhSEdAXiPnbItDlkdAQUgxJul41Ydy+xQAAEdAMYeuFHrhSEdAXiRaHKwIMUdAQUhR64UeuIdy/BQAAEdAMYeuFHrhSEdAXiVgQYk3TEdAQUjU/fO2Rody/RQAAEdAMYeuFHrhSEdAXiXCj1wo9kdAQUj1wo9cKYdy/hQAAEdAMYeuFHrhSEdAXiY1P3ztkUdAQUkWhysCDIdy/xQAAEdAMYeuFHrhSEdAXicKPXCj10dAQUl41P3ztodyABUAAEdAMYeuFHrhSEdAXidsi0OVgUdAQUm6XjU/fYdyARUAAEdAMYeuFHrhSEdAXigAAAAAAEdAQUn752yLRIdyAhUAAEdAMYeuFHrhSEdAXihysCDEnEdAQUocrAgxJ4dyAxUAAEdAMYeuFHrhSEdAXijU/fO2RkdAQUo9cKPXCodyBBUAAEdAMYeuFHrhSEdAXiocrAgxJ0dAQUrhR64Ue4dyBRUAAEdAMYeuFHrhSEdAXiqwIMSbpkdAQUsi0OVgQodyBhUAAEdAMYeuFHrhSEdAXisSbpeNUEdAQUtDlYEGJYdyBxUAAEdAMYeuFHrhSEdAXiuFHrhR7EdAQUtkWhysCIdyCBUAAEdAMYeuFHrhSEdAXiv3ztkWh0dAQUul41P3z4dyCRUAAEdAMYeuFHrhSEdAXixaHKwIMUdAQUvGp++dsodyChUAAEdAMYeuFHrhSEdAXiztkWhysEdAQUwIMSbpeYdyCxUAAEdAMYeuFHrhSEdAXi3Cj1wo9kdAQUxqfvnbI4dyDBUAAEdAMYeuFHrhSEdAXi6XjU/fO0dAQUzMzMzMzYdyDRUAAEdAMYeuFHrhSEdAXi8KPXCj10dAQUztkWhysIdyDhUAAEdAMYeuFHrhSEdAXi+dsi0OVkdAQU0vGp++d4dyDxUAAEdAMYeuFHrhSEdAXjBysCDEnEdAQU2RaHKwIYdyEBUAAEdAMYeuFHrhSEdAXjDlYEGJN0dAQU2yLQ5WBIdyERUAAEdAMYdsi0OVgUdAXjJN0vGp/EdAQU5WBBiTdYdyEhUAAEdAMYdsi0OVgUdAXjKwIMSbpkdAQU52yLQ5WIdyExUAAEdAMYdsi0OVgUdAXjOFHrhR7EdAQU7ZFocrAodyFBUAAEdAMYdsi0OVgUdAXjP3ztkWh0dAQU8an752yYdyFRUAAEdAMYdsi0OVgUdAXjSLQ5WBBkdAQU9cKPXCj4dyFhUAAEdAMYdsi0OVgUdAXjVgQYk3TEdAQU+dsi0OVodyFxUAAEdAMYdsi0OVgUdAXjXS8an750dAQU/fO2RaHYdyGBUAAEdAMYdsi0OVgUdAXjan752yLUdAQVBBiTdLx4dyGRUAAEdAMYdsi0OVgUdAXjhysCDEnEdAQVEGJN0vG4dyGhUAAEdAMYdsi0OVgUdAXjjlYEGJN0dAQVEm6XjU/odyGxUAAEdAMYdsi0OVgUdAXjuVgQYk3UdAQVJN0vGp/IdyHBUAAEdAMYdsi0OVgUdAXj1gQYk3TEdAQVMSbpeNUIdyHRUAAEdAMYdsi0OVgUdAXj3S8an750dAQVNT987ZF4dyHhUAAEdAMYdsi0OVgUdAXj7ZFocrAkdAQVO2RaHKwYdyHxUAAEdAMYdsi0OVgUdAXkAQYk3S8kdAQVQ5WBBiTodyIBUAAEdAMYdsi0OVgUdAXkCDEm6XjUdAQVRaHKwIMYdyIRUAAEdAMYcrAgxJukdAXkJN0vGp/EdAQVU/fO2RaIdyIhUAAEdAMYcrAgxJukdAXkMi0OVgQkdAQVWBBiTdL4dyIxUAAEdAMYcrAgxJukdAXkPGp++dskdAQVXCj1wo9odyJBUAAEdAMYcrAgxJukdAXkSbpeNT+EdAQVYk3S8aoIdyJRUAAEdAMYcrAgxJukdAXkT987ZFokdAQVZmZmZmZodyJhUAAEdAMYcrAgxJukdAXkVwo9cKPUdAQVaHKwIMSodyJxUAAEdAMYcrAgxJukdAXkXS8an750dAQVan752yLYdyKBUAAEdAMYcrAgxJukdAXkZmZmZmZkdAQVbpeNT99IdyKRUAAEdAMYcrAgxJukdAXkbZFocrAkdAQVcrAgxJuodyKhUAAEdAMYcrAgxJukdAXkc7ZFocrEdAQVdLxqfvnodyKxUAAEdAMYcrAgxJukdAXkgQYk3S8kdAQVeuFHrhSIdyLBUAAEdAMYcrAgxJukdAXkiDEm6XjUdAQVfO2RaHK4dyLRUAAEdAMYcrAgxJukdAXkkWhysCDEdAQVgQYk3S8odyLhUAAEdAMYcrAgxJukdAXkmJN0vGqEdAQVhR64UeuIdyLxUAAEdAMYcrAgxJukdAXknrhR64UkdAQVhysCDEnIdyMBUAAEdAMYcrAgxJukdAXkpeNT987kdAQViTdLxqf4dyMRUAAEdAMYcrAgxJukdAXktT987ZF0dAQVkWhysCDIdyMhUAAEdAMYcrAgxJukdAXkwo9cKPXEdAQVl41P3ztodyMxUAAEdAMYcrAgxJukdAXkybpeNT+EdAQVmZmZmZmodyNBUAAEdAMYcrAgxJukdAXkz987ZFokdAQVm6XjU/fYdyNRUAAEdAMYcrAgxJukdAXk1wo9cKPUdAQVn752yLRIdyNhUAAEdAMYcrAgxJukdAXk4EGJN0vEdAQVo9cKPXCodyNxUAAEdAMYbpeNT99EdAXk52yLQ5WEdAQVpeNT987odyOBUAAEdAMYbpeNT99EdAXk7ZFocrAkdAQVqfvnbItIdyORUAAEdAMYbpeNT99EdAXk+uFHrhSEdAQVrhR64Ue4dyOhUAAEdAMYbpeNT99EdAXlBBiTdLx0dAQVsi0OVgQodyOxUAAEdAMYbpeNT99EdAXlC0OVgQYkdAQVtkWhysCIdyPBUAAEdAMYbpeNT99EdAXlEWhysCDEdAQVuFHrhR7IdyPRUAAEdAMYbpeNT99EdAXlGJN0vGqEdAQVul41P3z4dyPhUAAEdAMYbpeNT99EdAXlHrhR64UkdAQVvnbItDlodyPxUAAEdAMYbpeNT99EdAXlJeNT987kdAQVwIMSbpeYdyQBUAAEdAMYbpeNT99EdAXlLxqfvnbUdAQVxJul41P4dyQRUAAEdAMYbpeNT99EdAXlNkWhysCEdAQVyLQ5WBBodyQhUAAEdAMYbpeNT99EdAXlPGp++dskdAQVysCDEm6YdyQxUAAEdAMYbpeNT99EdAXlSbpeNT+EdAQV0OVgQYk4dyRBUAAEdAMYbpeNT99EdAXlUOVgQYk0dAQV0vGp++d4dyRRUAAEdAMYbpeNT99EdAXlWhysCDEkdAQV1wo9cKPYdyRhUAAEdAMYbpeNT99EdAXlYEGJN0vEdAQV2yLQ5WBIdyRxUAAEdAMYbpeNT99EdAXlZ2yLQ5WEdAQV3S8an754dySBUAAEdAMYbpeNT99EdAXlbZFocrAkdAQV3ztkWhy4dySRUAAEdAMYbpeNT99EdAXlffO2RaHUdAQV52yLQ5WIdyShUAAEdAMYbpeNT99EdAXlhR64UeuEdAQV6XjU/fO4dySxUAAEdAMYbpeNT99EdAXli0OVgQYkdAQV64UeuFH4dyTBUAAEdAMYbpeNT99EdAXlkm6XjU/kdAQV752yLQ5YdyTRUAAEdAMYbpeNT99EdAXlmJN0vGqEdAQV8an752yYdyThUAAEdAMYbpeNT99EdAXln752yLREdAQV9cKPXCj4dyTxUAAEdAMYan752yLUdAXlqPXCj1w0dAQV+dsi0OVodyUBUAAEdAMYan752yLUdAXlrxqfvnbUdAQV++dsi0OYdyURUAAEdAMYan752yLUdAXltkWhysCEdAQV/fO2RaHYdyUhUAAEdAMYan752yLUdAXlw5WBBiTkdAQWBBiTdLx4dyUxUAAEdAMYan752yLUdAXlysCDEm6UdAQWCDEm6XjYdyVBUAAEdAMYan752yLUdAXl0/fO2RaEdAQWDEm6XjVIdyVRUAAEdAMYan752yLUdAXl2hysCDEkdAQWDlYEGJN4dyVhUAAEdAMYan752yLUdAXl4UeuFHrkdAQWEGJN0vG4dyVxUAAEdAMYan752yLUdAXl52yLQ5WEdAQWFHrhR64YdyWBUAAEdAMYan752yLUdAXl7peNT99EdAQWFocrAgxYdyWRUAAEdAMYan752yLUdAXl987ZFoc0dAQWGp++dsi4dyWhUAAEdAMYan752yLUdAXmBR64UeuEdAQWIMSbpeNYdyWxUAAEdAMYan752yLUdAXmEm6XjU/kdAQWJul41P34dyXBUAAEdAMYan752yLUdAXmGZmZmZmkdAQWKPXCj1w4dyXRUAAEdAMYan752yLUdAXmItDlYEGUdAQWLQ5WBBiYdyXhUAAEdAMYan752yLUdAXmKPXCj1w0dAQWLxqfvnbYdyXxUAAEdAMYan752yLUdAXmMCDEm6XkdAQWMzMzMzM4dyYBUAAEdAMYan752yLUdAXmNkWhysCEdAQWNT987ZF4dyYRUAAEdAMYan752yLUdAXmTdLxqfvkdAQWP3ztkWh4dyYhUAAEdAMYan752yLUdAXmU/fO2RaEdAQWQYk3S8aodyYxUAAEdAMYZmZmZmZkdAXmYUeuFHrkdAQWR64UeuFIdyZBUAAEdAMYZmZmZmZkdAXmaHKwIMSkdAQWSbpeNT+IdyZRUAAEdAMYZmZmZmZkdAXmcan752yUdAQWTdLxqfvodyZhUAAEdAMYZmZmZmZkdAXmfvnbItDkdAQWU/fO2RaIdyZxUAAEdAMYZmZmZmZkdAXmhR64UeuEdAQWWBBiTdL4dyaBUAAEdAMYZmZmZmZkdAXmkm6XjU/kdAQWXCj1wo9odyaRUAAEdAMYZmZmZmZkdAXmnKwIMSb0dAQWYEGJN0vIdyahUAAEdAMYZmZmZmZkdAXmotDlYEGUdAQWZFocrAg4dyaxUAAEdAMYZmZmZmZkdAXmsCDEm6XkdAQWaHKwIMSodybBUAAEdAMYZmZmZmZkdAXmt0vGp++kdAQWbItDlYEIdybRUAAEdAMYZmZmZmZkdAXmwIMSbpeUdAQWcKPXCj14dybhUAAEdAMYZmZmZmZkdAXmzdLxqfvkdAQWdsi0OVgYdybxUAAEdAMYZmZmZmZkdAXm2yLQ5WBEdAQWeuFHrhSIdycBUAAEdAMYZmZmZmZkdAXm4k3S8aoEdAQWfvnbItDodycRUAAEdAMYZmZmZmZkdAXm64UeuFH0dAQWgxJul41YdychUAAEdAMYZmZmZmZkdAXm+NT987ZEdAQWiTdLxqf4dycxUAAEdAMYZmZmZmZkdAXm/vnbItDkdAQWi0OVgQYodydBUAAEdAMYYk3S8aoEdAXnKfvnbItEdAQWnbItDlYIdydRUAAEdAMYYk3S8aoEdAXnMSbpeNUEdAQWn752yLRIdydhUAAEdAMYYk3S8aoEdAXnR64UeuFEdAQWqfvnbItIdydxUAAEdAMYYk3S8aoEdAXnTdLxqfvkdAQWrAgxJumIdyeBUAAEdAMYYk3S8aoEdAXneNT987ZEdAQWvnbItDlodyeRUAAEdAMYYk3S8aoEdAXngAAAAAAEdAQWwo9cKPXIdyehUAAEdAMYYk3S8aoEdAXnhiTdLxqkdAQWxJul41P4dyexUAAEdAMYXjU/fO2UdAXnqwIMSbpkdAQW1P3ztkWodyfBUAAEdAMYXjU/fO2UdAXnx64UeuFEdAQW4UeuFHrodyfRUAAEdAMYXjU/fO2UdAXnztkWhysEdAQW41P3ztkYdyfhUAAEdAMYXjU/fO2UdAXn7ItDlYEEdAQW752yLQ5YdyfxUAAEdAMYXjU/fO2UdAXn8rAgxJukdAQW87ZFocrIdygBUAAEdAMYXjU/fO2UdAXn+dsi0OVkdAQW9cKPXCj4dygRUAAEdAMYXjU/fO2UdAXoAAAAAAAEdAQW987ZFoc4dyghUAAEdAMYXjU/fO2UdAXoFocrAgxUdAQXAgxJul44dygxUAAEdAMYWhysCDEkdAXoO2RaHKwUdAQXEm6XjU/odyhBUAAEdAMYWhysCDEkdAXoQYk3S8akdAQXFHrhR64YdyhRUAAEdAMYWhysCDEkdAXoSLQ5WBBkdAQXFocrAgxYdyhhUAAEdAMYWhysCDEkdAXoT987ZFokdAQXGp++dsi4dyhxUAAEdAMYWhysCDEkdAXoZmZmZmZkdAQXItDlYEGYdyiBUAAEdAMYWhysCDEkdAXoc7ZFocrEdAQXKPXCj1w4dyiRUAAEdAMYWhysCDEkdAXoedsi0OVkdAQXLQ5WBBiYdyihUAAEdAMYWhysCDEkdAXoij1wo9cUdAQXMzMzMzM4dyixUAAEdAMYWhysCDEkdAXokGJN0vG0dAQXNT987ZF4dyjBUAAEdAMYWhysCDEkdAXol41P3ztkdAQXOVgQYk3YdyjRUAAEdAMYWhysCDEkdAXop++dsi0UdAQXP3ztkWh4dyjhUAAEdAMYWhysCDEkdAXotT987ZF0dAQXRaHKwIMYdyjxUAAEdAMYWhysCDEkdAXou2RaHKwUdAQXR64UeuFIdykBUAAEdAMYWhysCDEkdAXowo9cKPXEdAQXS8an7524dykRUAAEdAMYVgQYk3TEdAXoyLQ5WBBkdAQXTdLxqfvodykhUAAEdAMYVgQYk3TEdAXo2RaHKwIUdAQXU/fO2RaIdykxUAAEdAMYVgQYk3TEdAXo3ztkWhy0dAQXWBBiTdL4dylBUAAEdAMYVgQYk3TEdAXo87ZFocrEdAQXYEGJN0vIdylRUAAEdAMYVgQYk3TEdAXpBBiTdLx0dAQXZmZmZmZodylhUAAEdAMYVgQYk3TEdAXpCj1wo9cUdAQXan752yLYdylxUAAEdAMYVgQYk3TEdAXpEWhysCDEdAQXbItDlYEIdymBUAAEdAMYVgQYk3TEdAXpGJN0vGqEdAQXbpeNT99IdymRUAAEdAMYVgQYk3TEdAXpIcrAgxJ0dAQXcrAgxJuodymhUAAEdAMYVgQYk3TEdAXpLxqfvnbUdAQXeNT987ZIdymxUAAEdAMYVgQYk3TEdAXpPGp++dskdAQXfvnbItDodynBUAAEdAMYVgQYk3TEdAXpQo9cKPXEdAQXgQYk3S8odynRUAAEdAMYUeuFHrhUdAXpUvGp++d0dAQXiTdLxqf4dynhUAAEdAMYUeuFHrhUdAXpWRaHKwIUdAQXi0OVgQYodynxUAAEdAMYUeuFHrhUdAXpYEGJN0vEdAQXjU/fO2RodyoBUAAEdAMYUeuFHrhUdAXpffO2RaHUdAQXm6XjU/fYdyoRUAAEdAMYUeuFHrhUdAXpi0OVgQYkdAQXn752yLRIdyohUAAEdAMYUeuFHrhUdAXpkm6XjU/kdAQXo9cKPXCodyoxUAAEdAMYUeuFHrhUdAXpm6XjU/fUdAQXp++dsi0YdypBUAAEdAMYUeuFHrhUdAXpqPXCj1w0dAQXrAgxJumIdypRUAAEdAMYUeuFHrhUdAXptkWhysCEdAQXsi0OVgQodyphUAAEdAMYUeuFHrhUdAXpvGp++dskdAQXtkWhysCIdypxUAAEdAMYTdLxqfvkdAXpzMzMzMzUdAQXvGp++dsodyqBUAAEdAMYTdLxqfvkdAXp2hysCDEkdAQXwo9cKPXIdyqRUAAEdAMYTdLxqfvkdAXp4UeuFHrkdAQXxJul41P4dyqhUAAEdAMYTdLxqfvkdAXp987ZFoc0dAQXztkWhysIdyqxUAAEdAMYTdLxqfvkdAXqBR64UeuEdAQX1P3ztkWodyrBUAAEdAMYTdLxqfvkdAXqDEm6XjVEdAQX1wo9cKPYdyrRUAAEdAMYTdLxqfvkdAXqItDlYEGUdAQX4UeuFHrodyrhUAAEdAMYTdLxqfvkdAXqKPXCj1w0dAQX41P3ztkYdyrxUAAEdAMYSbpeNT+EdAXqRqfvnbI0dAQX752yLQ5YdysBUAAEdAMYSbpeNT+EdAXqU/fO2RaEdAQX9cKPXCj4dysRUAAEdAMYSbpeNT+EdAXqWyLQ5WBEdAQX987ZFoc4dyshUAAEdAMYSbpeNT+EdAXqcan752yUdAQYAgxJul44dysxUAAEdAMYSbpeNT+EdAXqeNT987ZEdAQYBBiTdLx4dytBUAAEdAMYSbpeNT+EdAXqotDlYEGUdAQYFocrAgxYdytRUAAEdAMYSbpeNT+EdAXqqfvnbItEdAQYGp++dsi4dythUAAEdAMYSbpeNT+EdAXqsSbpeNUEdAQYHKwIMSb4dytxUAAEdAMYRaHKwIMUdAXqwIMSbpeUdAQYItDlYEGYdyuBUAAEdAMYRaHKwIMUdAXqzdLxqfvkdAQYKPXCj1w4dyuRUAAEdAMYRaHKwIMUdAXq1P3ztkWkdAQYLQ5WBBiYdyuhUAAEdAMYRaHKwIMUdAXq8rAgxJukdAQYOVgQYk3YdyuxUAAEdAMYRaHKwIMUdAXq+NT987ZEdAQYO2RaHKwYdyvBUAAEdAMYRaHKwIMUdAXrHKwIMSb0dAQYSbpeNT+IdyvRUAAEdAMYRaHKwIMUdAXrI9cKPXCkdAQYTdLxqfvodyvhUAAEdAMYQYk3S8akdAXrKwIMSbpkdAQYT987ZFoodyvxUAAEdAMYQYk3S8akdAXrQYk3S8akdAQYWhysCDEodywBUAAEdAMYQYk3S8akdAXrbItDlYEEdAQYbItDlYEIdywRUAAEdAMYQYk3S8akdAXrcrAgxJukdAQYbpeNT99IdywhUAAEdAMYQYk3S8akdAXredsi0OVkdAQYcrAgxJuodywxUAAEdAMYQYk3S8akdAXrkGJN0vG0dAQYeuFHrhSIdyxBUAAEdAMYPXCj1wpEdAXrnbItDlYEdAQYgQYk3S8odyxRUAAEdAMYPXCj1wpEdAXrpN0vGp/EdAQYgxJul41YdyxhUAAEdAMYPXCj1wpEdAXru2RaHKwUdAQYjU/fO2RodyxxUAAEdAMYPXCj1wpEdAXrwo9cKPXEdAQYj1wo9cKYdyyBUAAEdAMYPXCj1wpEdAXr3ztkWhy0dAQYnbItDlYIdyyRUAAEdAMYPXCj1wpEdAXr5mZmZmZkdAQYn752yLRIdyyhUAAEdAMYPXCj1wpEdAXr7ZFocrAkdAQYocrAgxJ4dyyxUAAEdAMYPXCj1wpEdAXr87ZFocrEdAQYpeNT987odyzBUAAEdAMYOVgQYk3UdAXsCj1wo9cUdAQYrhR64Ue4dyzRUAAEdAMYOVgQYk3UdAXsHrhR64UkdAQYuFHrhR7IdyzhUAAEdAMYOVgQYk3UdAXsLxqfvnbUdAQYvnbItDlodyzxUAAEdAMYOVgQYk3UdAXsNT987ZF0dAQYwIMSbpeYdy0BUAAEdAMYOVgQYk3UdAXsPGp++dskdAQYxJul41P4dy0RUAAEdAMYOVgQYk3UdAXsQ5WBBiTkdAQYxqfvnbI4dy0hUAAEdAMYOVgQYk3UdAXsWhysCDEkdAQY0OVgQYk4dy0xUAAEdAMYNT987ZF0dAXsZ2yLQ5WEdAQY1P3ztkWody1BUAAEdAMYNT987ZF0dAXsbZFocrAkdAQY2RaHKwIYdy1RUAAEdAMYNT987ZF0dAXsffO2RaHUdAQY3ztkWhy4dy1hUAAEdAMYNT987ZF0dAXshR64UeuEdAQY41P3ztkYdy1xUAAEdAMYNT987ZF0dAXsi0OVgQYkdAQY5WBBiTdYdy2BUAAEdAMYNT987ZF0dAXsmZmZmZmkdAQY64UeuFH4dy2RUAAEdAMYNT987ZF0dAXsqPXCj1w0dAQY8an752yYdy2hUAAEdAMYNT987ZF0dAXsrxqfvnbUdAQY87ZFocrIdy2xUAAEdAMYNT987ZF0dAXstkWhysCEdAQY987ZFoc4dy3BUAAEdAMYNT987ZF0dAXsvXCj1wpEdAQY+dsi0OVody3RUAAEdAMYMSbpeNUEdAXs0/fO2RaEdAQZBBiTdLx4dy3hUAAEdAMYMSbpeNUEdAXs6HKwIMSkdAQZDEm6XjVIdy3xUAAEdAMYMSbpeNUEdAXs987ZFoc0dAQZEm6XjU/ody4BUAAEdAMYMSbpeNUEdAXtBR64UeuEdAQZGJN0vGqIdy4RUAAEdAMYMSbpeNUEdAXtDEm6XjVEdAQZGp++dsi4dy4hUAAEdAMYMSbpeNUEdAXtE3S8an8EdAQZHrhR64Uody4xUAAEdAMYLQ5WBBiUdAXtItDlYEGUdAQZJN0vGp/Idy5BUAAEdAMYLQ5WBBiUdAXtMCDEm6XkdAQZKwIMSbpody5RUAAEdAMYLQ5WBBiUdAXtN0vGp++kdAQZLQ5WBBiYdy5hUAAEdAMYLQ5WBBiUdAXtVP3ztkWkdAQZOVgQYk3Ydy5xUAAEdAMYLQ5WBBiUdAXtYk3S8aoEdAQZP3ztkWh4dy6BUAAEdAMYLQ5WBBiUdAXtcrAgxJukdAQZRaHKwIMYdy6RUAAEdAMYKPXCj1w0dAXtgAAAAAAEdAQZS8an7524dy6hUAAEdAMYKPXCj1w0dAXthiTdLxqkdAQZT987ZFoody6xUAAEdAMYKPXCj1w0dAXtnKwIMSb0dAQZWBBiTdL4dy7BUAAEdAMYKPXCj1w0dAXtqwIMSbpkdAQZXjU/fO2Ydy7RUAAEdAMYKPXCj1w0dAXtwYk3S8akdAQZaHKwIMSody7hUAAEdAMYKPXCj1w0dAXtztkWhysEdAQZbItDlYEIdy7xUAAEdAMYJN0vGp/EdAXt1gQYk3TEdAQZcKPXCj14dy8BUAAEdAMYJN0vGp/EdAXt3Cj1wo9kdAQZcrAgxJuody8RUAAEdAMYJN0vGp/EdAXt7ItDlYEEdAQZeNT987ZIdy8hUAAEdAMYJN0vGp/EdAXt+dsi0OVkdAQZfvnbItDody8xUAAEdAMYJN0vGp/EdAXuAQYk3S8kdAQZgxJul41Ydy9BUAAEdAMYJN0vGp/EdAXuHbItDlYEdAQZj1wo9cKYdy9RUAAEdAMYIMSbpeNUdAXuLAgxJumEdAQZk3S8an8Idy9hUAAEdAMYIMSbpeNUdAXuSLQ5WBBkdAQZn752yLRIdy9xUAAEdAMYIMSbpeNUdAXuT987ZFokdAQZo9cKPXCody+BUAAEdAMYIMSbpeNUdAXuVwo9cKPUdAQZpeNT987ody+RUAAEdAMYIMSbpeNUdAXubZFocrAkdAQZsCDEm6Xody+hUAAEdAMYHKwIMSb0dAXumJN0vGqEdAQZwo9cKPXIdy+xUAAEdAMYHKwIMSb0dAXun752yLREdAQZxJul41P4dy/BUAAEdAMYHKwIMSb0dAXupeNT987kdAQZxqfvnbI4dy/RUAAEdAMYHKwIMSb0dAXuw5WBBiTkdAQZ0vGp++d4dy/hUAAEdAMYHKwIMSb0dAXuybpeNT+EdAQZ1wo9cKPYdy/xUAAEdAMYHKwIMSb0dAXu0OVgQYk0dAQZ2RaHKwIYdyABYAAEdAMYGJN0vGqEdAXu52yLQ5WEdAQZ41P3ztkYdyARYAAEdAMYGJN0vGqEdAXu++dsi0OUdAQZ64UeuFH4dyAhYAAEdAMYGJN0vGqEdAXvEm6XjU/kdAQZ9cKPXCj4dyAxYAAEdAMYGJN0vGqEdAXvGZmZmZmkdAQZ987ZFoc4dyBBYAAEdAMYGJN0vGqEdAXvIMSbpeNUdAQZ+dsi0OVodyBRYAAEdAMYFHrhR64UdAXvN0vGp++kdAQaBBiTdLx4dyBhYAAEdAMYFHrhR64UdAXvYk3S8aoEdAQaFocrAgxYdyBxYAAEdAMYFHrhR64UdAXvaHKwIMSkdAQaGJN0vGqIdyCBYAAEdAMYFHrhR64UdAXvb52yLQ5UdAQaHKwIMSb4dyCRYAAEdAMYEGJN0vG0dAXvhiTdLxqkdAQaJN0vGp/IdyChYAAEdAMYEGJN0vG0dAXvk3S8an8EdAQaKwIMSbpodyCxYAAEdAMYEGJN0vG0dAXvmp++dsi0dAQaLQ5WBBiYdyDBYAAEdAMYEGJN0vG0dAXvsSbpeNUEdAQaN0vGp++odyDRYAAEdAMYEGJN0vG0dAXvuFHrhR7EdAQaOVgQYk3YdyDhYAAEdAMYDEm6XjVEdAXvxaHKwIMUdAQaP3ztkWh4dyDxYAAEdAMYDEm6XjVEdAXv1gQYk3TEdAQaRaHKwIMYdyEBYAAEdAMYDEm6XjVEdAXv3Cj1wo9kdAQaSbpeNT+IdyERYAAEdAMYDEm6XjVEdAXv41P3ztkUdAQaS8an7524dyEhYAAEdAMYDEm6XjVEdAXv6n752yLUdAQaT987ZFoodyExYAAEdAMYDEm6XjVEdAXwAQYk3S8kdAQaWBBiTdL4dyFBYAAEdAMYCDEm6XjUdAXwFYEGJN00dAQaYEGJN0vIdyFRYAAEdAMYCDEm6XjUdAXwLAgxJumEdAQaan752yLYdyFhYAAEdAMYCDEm6XjUdAXwMi0OVgQkdAQabItDlYEIdyFxYAAEdAMYCDEm6XjUdAXwOVgQYk3UdAQacKPXCj14dyGBYAAEdAMYCDEm6XjUdAXwQIMSbpeUdAQacrAgxJuodyGRYAAEdAMYCDEm6XjUdAXwT987ZFokdAQaeNT987ZIdyGhYAAEdAMYBBiTdLx0dAXwXS8an750dAQafvnbItDodyGxYAAEdAMYBBiTdLx0dAXwZFocrAg0dAQagxJul41YdyHBYAAEdAMYBBiTdLx0dAXwggxJul40dAQaj1wo9cKYdyHRYAAEdAMYBBiTdLx0dAXwj1wo9cKUdAQak3S8an8IdyHhYAAEdAMYAAAAAAAEdAXwn752yLREdAQam6XjU/fYdyHxYAAEdAMYAAAAAAAEdAXwrQ5WBBiUdAQan752yLRIdyIBYAAEdAMYAAAAAAAEdAXwtDlYEGJUdAQao9cKPXCodyIRYAAEdAMYAAAAAAAEdAXw2BBiTdL0dAQasi0OVgQodyIhYAAEdAMX++dsi0OUdAXw++dsi0OUdAQawIMSbpeYdyIxYAAEdAMX++dsi0OUdAXxAxJul41UdAQaxJul41P4dyJBYAAEdAMX++dsi0OUdAXxCj1wo9cUdAQaxqfvnbI4dyJRYAAEdAMX987ZFoc0dAXxJul41P30dAQa0vGp++d4dyJhYAAEdAMX987ZFoc0dAXxLhR64Ue0dAQa1wo9cKPYdyJxYAAEdAMX987ZFoc0dAXxS8an7520dAQa41P3ztkYdyKBYAAEdAMX987ZFoc0dAXxWRaHKwIUdAQa52yLQ5WIdyKRYAAEdAMX87ZFocrEdAXxdsi0OVgUdAQa87ZFocrIdyKhYAAEdAMX87ZFocrEdAXxffO2RaHUdAQa987ZFoc4dyKxYAAEdAMX87ZFocrEdAXxhBiTdLx0dAQa+dsi0OVodyLBYAAEdAMX87ZFocrEdAXxocrAgxJ0dAQbBiTdLxqodyLRYAAEdAMX752yLQ5UdAXxxqfvnbI0dAQbFHrhR64YdyLhYAAEdAMX752yLQ5UdAXxzMzMzMzUdAQbGJN0vGqIdyLxYAAEdAMX752yLQ5UdAXx0/fO2RaEdAQbGp++dsi4dyMBYAAEdAMX64UeuFH0dAXx8an752yUdAQbJul41P34dyMRYAAEdAMX64UeuFH0dAXx987ZFoc0dAQbKwIMSbpodyMhYAAEdAMX64UeuFH0dAXyFYEGJN00dAQbN0vGp++odyMxYAAEdAMX64UeuFH0dAXyI9cKPXCkdAQbO2RaHKwYdyNBYAAEdAMX52yLQ5WEdAXyQIMSbpeUdAQbR64UeuFIdyNRYAAEdAMX52yLQ5WEdAXyR64UeuFEdAQbS8an7524dyNhYAAEdAMX52yLQ5WEdAXyTtkWhysEdAQbTdLxqfvodyNxYAAEdAMX41P3ztkUdAXyedsi0OVkdAQbYEGJN0vIdyOBYAAEdAMX41P3ztkUdAXykGJN0vG0dAQbaHKwIMSodyORYAAEdAMX41P3ztkUdAXyl41P3ztkdAQbbItDlYEIdyOhYAAEdAMX41P3ztkUdAXynbItDlYEdAQbbpeNT99IdyOxYAAEdAMX3ztkWhy0dAXyu2RaHKwUdAQbeuFHrhSIdyPBYAAEdAMX3ztkWhy0dAXywo9cKPXEdAQbfO2RaHK4dyPRYAAEdAMX3ztkWhy0dAXyyLQ5WBBkdAQbgQYk3S8odyPhYAAEdAMX3ztkWhy0dAXy4EGJN0vEdAQbiTdLxqf4dyPxYAAEdAMX2yLQ5WBEdAXy9LxqfvnkdAQbk3S8an8IdyQBYAAEdAMX2yLQ5WBEdAXzC0OVgQYkdAQbm6XjU/fYdyQRYAAEdAMX2yLQ5WBEdAXzEWhysCDEdAQbn752yLRIdyQhYAAEdAMX2yLQ5WBEdAXzGJN0vGqEdAQbocrAgxJ4dyQxYAAEdAMX1wo9cKPUdAXzQ5WBBiTkdAQbtDlYEGJYdyRBYAAEdAMX0vGp++d0dAXzWhysCDEkdAQbvGp++dsodyRRYAAEdAMX0vGp++d0dAXzYUeuFHrkdAQbwIMSbpeYdyRhYAAEdAMX0vGp++d0dAXzaHKwIMSkdAQbwo9cKPXIdyRxYAAEdAMX0vGp++d0dAXzb52yLQ5UdAQbxJul41P4dySBYAAEdAMX0vGp++d0dAXzjEm6XjVEdAQb0OVgQYk4dySRYAAEdAMX0vGp++d0dAXzk3S8an8EdAQb1P3ztkWodyShYAAEdAMXztkWhysEdAXzvnbItDlkdAQb5WBBiTdYdySxYAAEdAMXysCDEm6UdAXz3Cj1wo9kdAQb8an752yYdyTBYAAEdAMXysCDEm6UdAXz41P3ztkUdAQb9cKPXCj4dyTRYAAEdAMXxqfvnbI0dAX0DlYEGJN0dAQcBiTdLxqodyThYAAEdAMXxqfvnbI0dAX0LAgxJumEdAQcEm6XjU/odyTxYAAEdAMXxqfvnbI0dAX0Mi0OVgQkdAQcFocrAgxYdyUBYAAEdAMXxqfvnbI0dAX0OVgQYk3UdAQcGJN0vGqIdyURYAAEdAMXwo9cKPXEdAX0Vwo9cKPUdAQcJN0vGp/IdyUhYAAEdAMXwo9cKPXEdAX0XS8an750dAQcJul41P34dyUxYAAEdAMXvnbItDlkdAX0iTdLxqf0dAQcOVgQYk3YdyVBYAAEdAMXvnbItDlkdAX0pul41P30dAQcRaHKwIMYdyVRYAAEdAMXul41P3z0dAX0rQ5WBBiUdAQcR64UeuFIdyVhYAAEdAMXul41P3z0dAX0tDlYEGJUdAQcS8an7524dyVxYAAEdAMXul41P3z0dAX00euFHrhUdAQcWBBiTdL4dyWBYAAEdAMXtkWhysCEdAX09cKPXCj0dAQcZmZmZmZodyWRYAAEdAMXtkWhysCEdAX0/O2RaHK0dAQcaHKwIMSodyWhYAAEdAMXtkWhysCEdAX1BBiTdLx0dAQcbItDlYEIdyWxYAAEdAMXsi0OVgQkdAX1IMSbpeNUdAQceNT987ZIdyXBYAAEdAMXsi0OVgQkdAX1J++dsi0UdAQceuFHrhSIdyXRYAAEdAMXsi0OVgQkdAX1RaHKwIMUdAQchysCDEnIdyXhYAAEdAMXrhR64Ue0dAX1U/fO2RaEdAQcjU/fO2RodyXxYAAEdAMXrhR64Ue0dAX1cKPXCj10dAQcmZmZmZmodyYBYAAEdAMXrhR64Ue0dAX1d87ZFoc0dAQcm6XjU/fYdyYRYAAEdAMXqfvnbItEdAX1fvnbItDkdAQcnbItDlYIdyYhYAAEdAMXqfvnbItEdAX1m6XjU/fUdAQcqfvnbItIdyYxYAAEdAMXqfvnbItEdAX1qfvnbItEdAQcsCDEm6XodyZBYAAEdAMXpeNT987kdAX1wIMSbpeUdAQcul41P3z4dyZRYAAEdAMXpeNT987kdAX1x64UeuFEdAQcvGp++dsodyZhYAAEdAMXpeNT987kdAX1ztkWhysEdAQcvnbItDlodyZxYAAEdAMXocrAgxJ0dAX164UeuFH0dAQcysCDEm6YdyaBYAAEdAMXocrAgxJ0dAX18rAgxJukdAQcztkWhysIdyaRYAAEdAMXocrAgxJ0dAX1+dsi0OVkdAQc0OVgQYk4dyahYAAEdAMXnbItDlYEdAX2HrhR64UkdAQc3ztkWhy4dyaxYAAEdAMXnbItDlYEdAX2JN0vGp/EdAQc41P3ztkYdybBYAAEdAMXnbItDlYEdAX2O2RaHKwUdAQc64UeuFH4dybRYAAEdAMXmZmZmZmkdAX2Qo9cKPXEdAQc752yLQ5YdybhYAAEdAMXmZmZmZmkdAX2SbpeNT+EdAQc8an752yYdybxYAAEdAMXmZmZmZmkdAX2ZmZmZmZkdAQc/fO2RaHYdycBYAAEdAMXlYEGJN00dAX2dLxqfvnkdAQdBBiTdLx4dycRYAAEdAMXlYEGJN00dAX2i0OVgQYkdAQdDEm6XjVIdychYAAEdAMXlYEGJN00dAX2km6XjU/kdAQdDlYEGJN4dycxYAAEdAMXlYEGJN00dAX2mZmZmZmkdAQdEm6XjU/odydBYAAEdAMXlYEGJN00dAX2n752yLREdAQdFHrhR64YdydRYAAEdAMXkWhysCDEdAX2tkWhysCEdAQdHrhR64UodydhYAAEdAMXkWhysCDEdAX2vXCj1wpEdAQdIMSbpeNYdydxYAAEdAMXkWhysCDEdAX2xJul41P0dAQdItDlYEGYdyeBYAAEdAMXjU/fO2RkdAX2752yLQ5UdAQdNT987ZF4dyeRYAAEdAMXiTdLxqf0dAX3BiTdLxqkdAQdP3ztkWh4dyehYAAEdAMXiTdLxqf0dAX3DU/fO2RkdAQdQYk3S8aodyexYAAEdAMXiTdLxqf0dAX3FHrhR64UdAQdQ5WBBiTodyfBYAAEdAMXhR64UeuEdAX3P3ztkWh0dAQdVgQYk3TIdyfRYAAEdAMXgQYk3S8kdAX3XS8an750dAQdYk3S8aoIdyfhYAAEdAMXgQYk3S8kdAX3ZFocrAg0dAQdZFocrAg4dyfxYAAEdAMXgQYk3S8kdAX3a4UeuFH0dAQdaHKwIMSodygBYAAEdAMXfO2RaHK0dAX3iDEm6XjUdAQdcrAgxJuodygRYAAEdAMXfO2RaHK0dAX3j1wo9cKUdAQddsi0OVgYdyghYAAEdAMXeNT987ZEdAX3ul41P3z0dAQdiTdLxqf4dygxYAAEdAMXeNT987ZEdAX32BBiTdL0dAQdk3S8an8IdyhBYAAEdAMXeNT987ZEdAX33ztkWhy0dAQdl41P3ztodyhRYAAEdAMXdLxqfvnkdAX35mZmZmZkdAQdmZmZmZmodyhhYAAEdAMXdLxqfvnkdAX4AxJul41UdAQdpeNT987odyhxYAAEdAMXdLxqfvnkdAX4C0OVgQYkdAQdp++dsi0YdyiBYAAEdAMXcKPXCj10dAX4J++dsi0UdAQdtDlYEGJYdyiRYAAEdAMXcKPXCj10dAX4LxqfvnbUdAQduFHrhR7IdyihYAAEdAMXcKPXCj10dAX4NkWhysCEdAQdul41P3z4dyixYAAEdAMXbItDlYEEdAX4U/fO2RaEdAQdxqfvnbI4dyjBYAAEdAMXbItDlYEEdAX4WhysCDEkdAQdyLQ5WBBodyjRYAAEdAMXaHKwIMSkdAX4hiTdLxqkdAQd2yLQ5WBIdyjhYAAEdAMXZFocrAg0dAX4o9cKPXCkdAQd52yLQ5WIdyjxYAAEdAMXZFocrAg0dAX4qfvnbItEdAQd6XjU/fO4dykBYAAEdAMXZFocrAg0dAX4sSbpeNUEdAQd64UeuFH4dykRYAAEdAMXYEGJN0vEdAX4ztkWhysEdAQd987ZFoc4dykhYAAEdAMXXCj1wo9kdAX487ZFocrEdAQeBiTdLxqodykxYAAEdAMXXCj1wo9kdAX4+dsi0OVkdAQeCj1wo9cYdylBYAAEdAMXXCj1wo9kdAX5AQYk3S8kdAQeDEm6XjVIdylRYAAEdAMXWBBiTdL0dAX5HrhR64UkdAQeGJN0vGqIdylhYAAEdAMXWBBiTdL0dAX5JeNT987kdAQeGp++dsi4dylxYAAEdAMXU/fO2RaEdAX5UOVgQYk0dAQeLQ5WBBiYdymBYAAEdAMXT987ZFokdAX5bpeNT99EdAQeOVgQYk3YdymRYAAEdAMXT987ZFokdAX5dcKPXCj0dAQeO2RaHKwYdymhYAAEdAMXT987ZFokdAX5fO2RaHK0dAQeP3ztkWh4dymxYAAEdAMXS8an7520dAX5mZmZmZmkdAQeSbpeNT+IdynBYAAEdAMXS8an7520dAX5p++dsi0UdAQeT987ZFoodynRYAAEdAMXR64UeuFEdAX5vnbItDlkdAQeWhysCDEodynhYAAEdAMXR64UeuFEdAX5xaHKwIMUdAQeXCj1wo9odynxYAAEdAMXR64UeuFEdAX5zMzMzMzUdAQeXjU/fO2YdyoBYAAEdAMXQ5WBBiTkdAX56n752yLUdAQean752yLYdyoRYAAEdAMXQ5WBBiTkdAX58KPXCj10dAQebItDlYEIdyohYAAEdAMXQ5WBBiTkdAX5987ZFoc0dAQecKPXCj14dyoxYAAEdAMXP3ztkWh0dAX6HKwIMSb0dAQefvnbItDodypBYAAEdAMXO2RaHKwUdAX6I9cKPXCkdAQegQYk3S8odypRYAAEdAMXO2RaHKwUdAX6Ol41P3z0dAQei0OVgQYodyphYAAEdAMXO2RaHKwUdAX6QYk3S8akdAQejU/fO2RodypxYAAEdAMXN0vGp++kdAX6R64UeuFEdAQekWhysCDIdyqBYAAEdAMXN0vGp++kdAX6ZWBBiTdUdAQem6XjU/fYdyqRYAAEdAMXMzMzMzM0dAX6c7ZFocrEdAQeocrAgxJ4dyqhYAAEdAMXMzMzMzM0dAX6kWhysCDEdAQerhR64Ue4dyqxYAAEdAMXLxqfvnbUdAX6mJN0vGqEdAQesCDEm6XodyrBYAAEdAMXLxqfvnbUdAX6nrhR64UkdAQetDlYEGJYdyrRYAAEdAMXLxqfvnbUdAX6tT987ZF0dAQevGp++dsodyrhYAAEdAMXKwIMSbpkdAX6vGp++dskdAQevnbItDlodyrxYAAEdAMXKwIMSbpkdAX6w5WBBiTkdAQewo9cKPXIdysBYAAEdAMXJul41P30dAX66HKwIMSkdAQe0OVgQYk4dysRYAAEdAMXJul41P30dAX6752yLQ5UdAQe0vGp++d4dyshYAAEdAMXItDlYEGUdAX7DEm6XjVEdAQe3ztkWhy4dysxYAAEdAMXItDlYEGUdAX7E3S8an8EdAQe41P3ztkYdytBYAAEdAMXHrhR64UkdAX7P3ztkWh0dAQe87ZFocrIdytRYAAEdAMXGp++dsi0dAX7XS8an750dAQfAAAAAAAIdythYAAEdAMXGp++dsi0dAX7Y1P3ztkUdAQfAgxJul44dytxYAAEdAMXGp++dsi0dAX7an752yLUdAQfBiTdLxqodyuBYAAEdAMXFocrAgxUdAX7iDEm6XjUdAQfEGJN0vG4dyuRYAAEdAMXFocrAgxUdAX7j1wo9cKUdAQfFHrhR64YdyuhYAAEdAMXEm6XjU/kdAX7tDlYEGJUdAQfItDlYEGYdyuxYAAEdAMXDlYEGJN0dAX7u2RaHKwUdAQfJN0vGp/IdyvBYAAEdAMXDlYEGJN0dAX72BBiTdL0dAQfMSbpeNUIdyvRYAAEdAMXCj1wo9cUdAX73ztkWhy0dAQfMzMzMzM4dyvhYAAEdAMXCj1wo9cUdAX75mZmZmZkdAQfN0vGp++odyvxYAAEdAMXBiTdLxqkdAX8BBiTdLx0dAQfQ5WBBiTodywBYAAEdAMXBiTdLxqkdAX8C0OVgQYkdAQfRaHKwIMYdywRYAAEdAMXAgxJul40dAX8KPXCj1w0dAQfUeuFHrhYdywhYAAEdAMXAgxJul40dAX8MCDEm6XkdAQfU/fO2RaIdywxYAAEdAMXAgxJul40dAX8NkWhysCEdAQfVgQYk3TIdyxBYAAEdAMW/fO2RaHUdAX8U/fO2RaEdAQfYk3S8aoIdyxRYAAEdAMW/fO2RaHUdAX8WyLQ5WBEdAQfZmZmZmZodyxhYAAEdAMW+dsi0OVkdAX8hysCDEnEdAQfdsi0OVgYdyxxYAAEdAMW9cKPXCj0dAX8pN0vGp/EdAQfgxJul41YdyyBYAAEdAMW8an752yUdAX8qwIMSbpkdAQfhR64UeuIdyyRYAAEdAMW8an752yUdAX8si0OVgQkdAQfhysCDEnIdyyhYAAEdAMW7ZFocrAkdAX8z987ZFokdAQfk3S8an8IdyyxYAAEdAMW6XjU/fO0dAX8++dsi0OUdAQfpeNT987odyzBYAAEdAMW6XjU/fO0dAX9AxJul41UdAQfp++dsi0YdyzRYAAEdAMW5WBBiTdUdAX9H752yLREdAQftDlYEGJYdyzhYAAEdAMW5WBBiTdUdAX9Jul41P30dAQftkWhysCIdyzxYAAEdAMW3S8an750dAX9UvGp++d0dAQfyLQ5WBBody0BYAAEdAMW3S8an750dAX9WhysCDEkdAQfysCDEm6Ydy0RYAAEdAMW3S8an750dAX9cKPXCj10dAQf0vGp++d4dy0hYAAEdAMW2RaHKwIUdAX9d87ZFoc0dAQf1wo9cKPYdy0xYAAEdAMW2RaHKwIUdAX9ffO2RaHUdAQf2RaHKwIYdy1BYAAEdAMW1P3ztkWkdAX9m6XjU/fUdAQf5WBBiTdYdy1RYAAEdAMW1P3ztkWkdAX9qfvnbItEdAQf64UeuFH4dy1hYAAEdAMW0OVgQYk0dAX9x64UeuFEdAQf9cKPXCj4dy1xYAAEdAMW0OVgQYk0dAX9ztkWhysEdAQf+dsi0OVody2BYAAEdAMWzMzMzMzUdAX97ItDlYEEdAQgBBiTdLx4dy2RYAAEdAMWyLQ5WBBkdAX987ZFocrEdAQgCDEm6XjYdy2hYAAEdAMWyLQ5WBBkdAX9+dsi0OVkdAQgCj1wo9cYdy2xYAAEdAMWxJul41P0dAX+HrhR64UkdAQgGJN0vGqIdy3BYAAEdAMWxJul41P0dAX+JeNT987kdAQgHKwIMSb4dy3RYAAEdAMWwIMSbpeUdAX+Q5WBBiTkdAQgJul41P34dy3hYAAEdAMWwIMSbpeUdAX+SsCDEm6UdAQgKwIMSbpody3xYAAEdAMWvGp++dskdAX+aHKwIMSkdAQgNT987ZF4dy4BYAAEdAMWuFHrhR7EdAX+b52yLQ5UdAQgOVgQYk3Ydy4RYAAEdAMWuFHrhR7EdAX+dsi0OVgUdAQgO2RaHKwYdy4hYAAEdAMWtDlYEGJUdAX+lHrhR64UdAQgR64UeuFIdy4xYAAEdAMWtDlYEGJUdAX+m6XjU/fUdAQgSbpeNT+Idy5BYAAEdAMWtDlYEGJUdAX+ocrAgxJ0dAQgTdLxqfvody5RYAAEdAMWsCDEm6XkdAX+v3ztkWh0dAQgWBBiTdL4dy5hYAAEdAMWsCDEm6XkdAX+xqfvnbI0dAQgXCj1wo9ody5xYAAEdAMWp++dsi0UdAX+64UeuFH0dAQgan752yLYdy6BYAAEdAMWp++dsi0UdAX+8rAgxJukdAQgbItDlYEIdy6RYAAEdAMWo9cKPXCkdAX/EGJN0vG0dAQgeNT987ZIdy6hYAAEdAMWo9cKPXCkdAX/F41P3ztkdAQgeuFHrhSIdy6xYAAEdAMWn752yLREdAX/O2RaHKwUdAQgiTdLxqf4dy7BYAAEdAMWn752yLREdAX/Q5WBBiTkdAQgjU/fO2Rody7RYAAEdAMWm6XjU/fUdAX/YUeuFHrkdAQgl41P3ztody7hYAAEdAMWl41P3ztkdAX/Z2yLQ5WEdAQgm6XjU/fYdy7xYAAEdAMWl41P3ztkdAX/bpeNT99EdAQgnbItDlYIdy8BYAAEdAMWk3S8an8EdAX/jEm6XjVEdAQgqfvnbItIdy8RYAAEdAMWk3S8an8EdAX/k3S8an8EdAQgrAgxJumIdy8hYAAEdAMWj1wo9cKUdAX/uFHrhR7EdAQgul41P3z4dy8xYAAEdAMWi0OVgQYkdAX/v3ztkWh0dAQgvGp++dsody9BYAAEdAMWhysCDEnEdAX/3S8an750dAQgyLQ5WBBody9RYAAEdAMWhysCDEnEdAX/5FocrAg0dAQgysCDEm6Ydy9hYAAEdAMWhysCDEnEdAX/6n752yLUdAQgztkWhysIdy9xYAAEdAMWgxJul41UdAYABBiTdLx0dAQg2RaHKwIYdy+BYAAEdAMWeuFHrhSEdAYAGhysCDEkdAQg64UeuFH4dy+RYAAEdAMWeuFHrhSEdAYAHbItDlYEdAQg7ZFocrAody+hYAAEdAMWdsi0OVgUdAYALItDlYEEdAQg+dsi0OVody+xYAAEdAMWdsi0OVgUdAYAMCDEm6XkdAQg++dsi0OYdy/BYAAEdAMWbpeNT99EdAYARiTdLxqkdAQhDlYEGJN4dy/RYAAEdAMWan752yLUdAYAVP3ztkWkdAQhGJN0vGqIdy/hYAAEdAMWan752yLUdAYAWJN0vGqEdAQhHKwIMSb4dy/xYAAEdAMWan752yLUdAYAXCj1wo9kdAQhHrhR64UodyABcAAEdAMWYk3S8aoEdAYAawIMSbpkdAQhKwIMSbpodyARcAAEdAMWYk3S8aoEdAYAcan752yUdAQhLxqfvnbYdyAhcAAEdAMWXjU/fO2UdAYAgIMSbpeUdAQhO2RaHKwYdyAxcAAEdAMWXjU/fO2UdAYAhBiTdLx0dAQhPXCj1wpIdyBBcAAEdAMWWhysCDEkdAYAkvGp++d0dAQhSbpeNT+IdyBRcAAEdAMWVgQYk3TEdAYAlocrAgxUdAQhS8an7524dyBhcAAEdAMWUeuFHrhUdAYArItDlYEEdAQhXjU/fO2YdyBxcAAEdAMWTdLxqfvkdAYAsCDEm6XkdAQhYEGJN0vIdyCBcAAEdAMWSbpeNT+EdAYAvvnbItDkdAQhbItDlYEIdyCRcAAEdAMWSbpeNT+EdAYAwo9cKPXEdAQhbpeNT99IdyChcAAEdAMWRaHKwIMUdAYA0WhysCDEdAQheuFHrhSIdyCxcAAEdAMWRaHKwIMUdAYA1P3ztkWkdAQhfO2RaHK4dyDBcAAEdAMWQYk3S8akdAYA2JN0vGqEdAQhfvnbItDodyDRcAAEdAMWPXCj1wpEdAYA52yLQ5WEdAQhi0OVgQYodyDhcAAEdAMWPXCj1wpEdAYA6wIMSbpkdAQhjU/fO2RodyDxcAAEdAMWOVgQYk3UdAYA+dsi0OVkdAQhmZmZmZmodyEBcAAEdAMWOVgQYk3UdAYA/XCj1wpEdAQhm6XjU/fYdyERcAAEdAMWNT987ZF0dAYBAIMSbpeUdAQhn752yLRIdyEhcAAEdAMWMSbpeNUEdAYBE3S8an8EdAQhrhR64Ue4dyExcAAEdAMWMSbpeNUEdAYBFocrAgxUdAQhsCDEm6XodyFBcAAEdAMWKPXCj1w0dAYBJWBBiTdUdAQhvGp++dsodyFRcAAEdAMWKPXCj1w0dAYBKPXCj1w0dAQhvnbItDlodyFhcAAEdAMWJN0vGp/EdAYBO2RaHKwUdAQhzMzMzMzYdyFxcAAEdAMWJN0vGp/EdAYBPvnbItDkdAQhztkWhysIdyGBcAAEdAMWHKwIMSb0dAYBTdLxqfvkdAQh2yLQ5WBIdyGRcAAEdAMWHKwIMSb0dAYBUWhysCDEdAQh3S8an754dyGhcAAEdAMWHKwIMSb0dAYBVP3ztkWkdAQh3ztkWhy4dyGxcAAEdAMWGJN0vGqEdAYBY9cKPXCkdAQh64UeuFH4dyHBcAAEdAMWFHrhR64UdAYBZ2yLQ5WEdAQh7ZFocrAodyHRcAAEdAMWEGJN0vG0dAYBedsi0OVkdAQh++dsi0OYdyHhcAAEdAMWEGJN0vG0dAYBfXCj1wpEdAQiAAAAAAAIdyHxcAAEdAMWCDEm6XjUdAYBjEm6XjVEdAQiCj1wo9cYdyIBcAAEdAMWCDEm6XjUdAYBj987ZFokdAQiDlYEGJN4dyIRcAAEdAMWBBiTdLx0dAYBok3S8aoEdAQiHKwIMSb4dyIhcAAEdAMWAAAAAAAEdAYBpeNT987kdAQiHrhR64UodyIxcAAEdAMV++dsi0OUdAYBuFHrhR7EdAQiLQ5WBBiYdyJBcAAEdAMV++dsi0OUdAYBu+dsi0OUdAQiLxqfvnbYdyJRcAAEdAMV87ZFocrEdAYBysCDEm6UdAQiO2RaHKwYdyJhcAAEdAMV87ZFocrEdAYBzlYEGJN0dAQiPXCj1wpIdyJxcAAEdAMV752yLQ5UdAYB4MSbpeNUdAQiS8an7524dyKBcAAEdAMV64UeuFH0dAYB5FocrAg0dAQiTdLxqfvodyKRcAAEdAMV52yLQ5WEdAYB8zMzMzM0dAQiWhysCDEodyKhcAAEdAMV52yLQ5WEdAYB9si0OVgUdAQiXCj1wo9odyKxcAAEdAMV41P3ztkUdAYB+l41P3z0dAQiYEGJN0vIdyLBcAAEdAMV3ztkWhy0dAYCCTdLxqf0dAQian752yLYdyLRcAAEdAMV1wo9cKPUdAYCHztkWhy0dAQifO2RaHK4dyLhcAAEdAMV1wo9cKPUdAYCItDlYEGUdAQifvnbItDodyLxcAAEdAMV0vGp++d0dAYCMan752yUdAQiiTdLxqf4dyMBcAAEdAMVztkWhysEdAYCNT987ZF0dAQijU/fO2RodyMRcAAEdAMVysCDEm6UdAYCS0OVgQYkdAQinbItDlYIdyMhcAAEdAMVwo9cKPXEdAYCWhysCDEkdAQiqfvnbItIdyMxcAAEdAMVwo9cKPXEdAYCXbItDlYEdAQirAgxJumIdyNBcAAEdAMVwo9cKPXEdAYCYUeuFHrkdAQirhR64Ue4dyNRcAAEdAMVul41P3z0dAYCcCDEm6XkdAQiul41P3z4dyNhcAAEdAMVul41P3z0dAYCc7ZFocrEdAQivGp++dsodyNxcAAEdAMVul41P3z0dAYCd0vGp++kdAQivnbItDlodyOBcAAEdAMVtkWhysCEdAYChiTdLxqkdAQiysCDEm6YdyORcAAEdAMVsi0OVgQkdAYCibpeNT+EdAQizMzMzMzYdyOhcAAEdAMVrhR64Ue0dAYCmJN0vGqEdAQi2RaHKwIYdyOxcAAEdAMVrhR64Ue0dAYCnCj1wo9kdAQi2yLQ5WBIdyPBcAAEdAMVpeNT987kdAYCsi0OVgQkdAQi64UeuFH4dyPRcAAEdAMVocrAgxJ0dAYCtcKPXCj0dAQi752yLQ5YdyPhcAAEdAMVnbItDlYEdAYCxJul41P0dAQi+dsi0OVodyPxcAAEdAMVnbItDlYEdAYCyDEm6XjUdAQi/fO2RaHYdyQBcAAEdAMVlYEGJN00dAYC1wo9cKPUdAQjCDEm6XjYdyQRcAAEdAMVlYEGJN00dAYC2p++dsi0dAQjCj1wo9cYdyQhcAAEdAMVlYEGJN00dAYC3jU/fO2UdAQjDlYEGJN4dyQxcAAEdAMVjU/fO2RkdAYC7Q5WBBiUdAQjGJN0vGqIdyRBcAAEdAMVjU/fO2RkdAYC8KPXCj10dAQjHKwIMSb4dyRRcAAEdAMVhR64UeuEdAYDAxJul41UdAQjKwIMSbpodyRhcAAEdAMVhR64UeuEdAYDBqfvnbI0dAQjLQ5WBBiYdyRxcAAEdAMVfO2RaHK0dAYDGZmZmZmkdAQjO2RaHKwYdySBcAAEdAMVfO2RaHK0dAYDHS8an750dAQjPXCj1wpIdySRcAAEdAMVeNT987ZEdAYDLAgxJumEdAQjSbpeNT+IdyShcAAEdAMVdLxqfvnkdAYDL52yLQ5UdAQjS8an7524dySxcAAEdAMVcKPXCj10dAYDQgxJul40dAQjWhysCDEodyTBcAAEdAMVbItDlYEEdAYDRaHKwIMUdAQjXCj1wo9odyTRcAAEdAMVaHKwIMSkdAYDWBBiTdL0dAQjan752yLYdyThcAAEdAMVZFocrAg0dAYDW6XjU/fUdAQjbItDlYEIdyTxcAAEdAMVYEGJN0vEdAYDan752yLUdAQjeNT987ZIdyUBcAAEdAMVYEGJN0vEdAYDbhR64Ue0dAQjeuFHrhSIdyURcAAEdAMVWBBiTdL0dAYDgIMSbpeUdAQjiTdLxqf4dyUhcAAEdAMVU/fO2RaEdAYDhBiTdLx0dAQji0OVgQYodyUxcAAEdAMVT987ZFokdAYDkvGp++d0dAQjl41P3ztodyVBcAAEdAMVT987ZFokdAYDlocrAgxUdAQjmZmZmZmodyVRcAAEdAMVR64UeuFEdAYDqPXCj1w0dAQjp++dsi0YdyVhcAAEdAMVP3ztkWh0dAYDv3ztkWh0dAQjuFHrhR7IdyVxcAAEdAMVP3ztkWh0dAYDwxJul41UdAQjul41P3z4dyWBcAAEdAMVN0vGp++kdAYD0euFHrhUdAQjxqfvnbI4dyWRcAAEdAMVN0vGp++kdAYD1YEGJN00dAQjyLQ5WBBodyWhcAAEdAMVLxqfvnbUdAYD64UeuFH0dAQj2RaHKwIYdyWxcAAEdAMVJul41P30dAYD+l41P3z0dAQj5WBBiTdYdyXBcAAEdAMVJul41P30dAYD/fO2RaHUdAQj52yLQ5WIdyXRcAAEdAMVItDlYEGUdAYEAYk3S8akdAQj6XjU/fO4dyXhcAAEdAMVHrhR64UkdAYEEGJN0vG0dAQj9cKPXCj4dyXxcAAEdAMVHrhR64UkdAYEE/fO2RaEdAQj987ZFoc4dyYBcAAEdAMVFocrAgxUdAYEJul41P30dAQkBiTdLxqodyYRcAAEdAMVEm6XjU/kdAYEKn752yLUdAQkCDEm6XjYdyYhcAAEdAMVDlYEGJN0dAYEOVgQYk3UdAQkFHrhR64YdyYxcAAEdAMVDlYEGJN0dAYEPO2RaHK0dAQkFocrAgxYdyZBcAAEdAMVAgxJul40dAYEUvGp++d0dAQkJul41P34dyZRcAAEdAMU+dsi0OVkdAYEZWBBiTdUdAQkNT987ZF4dyZhcAAEdAMU+dsi0OVkdAYEaPXCj1w0dAQkN0vGp++odyZxcAAEdAMU9cKPXCj0dAYEeFHrhR7EdAQkQ5WBBiTodyaBcAAEdAMU8an752yUdAYEe+dsi0OUdAQkRaHKwIMYdyaRcAAEdAMU8an752yUdAYEf3ztkWh0dAQkR64UeuFIdyahcAAEdAMU6XjU/fO0dAYEjlYEGJN0dAQkU/fO2RaIdyaxcAAEdAMU6XjU/fO0dAYEkeuFHrhUdAQkVgQYk3TIdybBcAAEdAMU4UeuFHrkdAYEpFocrAg0dAQkZFocrAg4dybRcAAEdAMU4UeuFHrkdAYEp++dsi0UdAQkZmZmZmZodybhcAAEdAMU2RaHKwIUdAYEuuFHrhSEdAQkdLxqfvnodybxcAAEdAMU1P3ztkWkdAYEvnbItDlkdAQkdsi0OVgYdycBcAAEdAMU0OVgQYk0dAYEzU/fO2RkdAQkgxJul41YdycRcAAEdAMUzMzMzMzUdAYE0OVgQYk0dAQkhR64UeuIdychcAAEdAMUyLQ5WBBkdAYE41P3ztkUdAQkk3S8an8IdycxcAAGUoR0AxTEm6XjU/R0BgTm6XjU/fR0BCSVgQYk3Th3J0FwAAR0AxS8an752yR0BgT52yLQ5WR0BCSj1wo9cKh3J1FwAAR0AxS8an752yR0BgT87ZFocrR0BCSl41P3zuh3J2FwAAR0AxS0OVgQYlR0BgUMSbpeNUR0BCSwIMSbpeh3J3FwAAR0AxS0OVgQYlR0BgUP3ztkWiR0BCS0OVgQYlh3J4FwAAR0AxSsCDEm6YR0BgUiTdLxqgR0BCTAgxJul5h3J5FwAAR0AxSn752yLRR0BgUl41P3zuR0BCTEm6XjU/h3J6FwAAR0AxSj1wo9cKR0BgU1P3ztkXR0BCTO2RaHKwh3J7FwAAR0AxSfvnbItER0BgU4UeuFHsR0BCTQ5WBBiTh3J8FwAAR0AxSXjU/fO2R0BgVLQ5WBBiR0BCTfO2RaHLh3J9FwAAR0AxSXjU/fO2R0BgVO2RaHKwR0BCTjU/fO2Rh3J+FwAAR0AxSPXCj1wpR0BgVhR64UeuR0BCTvnbItDlh3J/FwAAR0AxSPXCj1wpR0BgVk3S8an8R0BCTztkWhysh3KAFwAAR0AxSHKwIMScR0BgV0OVgQYlR0BCT987ZFodh3KBFwAAR0AxSHKwIMScR0BgV3ztkWhzR0BCUAAAAAAAh3KCFwAAR0AxR++dsi0OR0BgWKPXCj1xR0BCUOVgQYk3h3KDFwAAR0AxR64UeuFIR0BgWN0vGp++R0BCUQYk3S8bh3KEFwAAR0AxRysCDEm6R0BgWgQYk3S8R0BCUeuFHrhSh3KFFwAAR0AxRqfvnbItR0BgWzMzMzMzR0BCUtDlYEGJh3KGFwAAR0AxRqfvnbItR0BgW2yLQ5WBR0BCUvGp++dth3KHFwAAR0AxRiTdLxqgR0BgXJN0vGp/R0BCU9cKPXCkh3KIFwAAR0AxReNT987ZR0BgXMzMzMzNR0BCU/fO2RaHh3KJFwAAR0AxRaHKwIMSR0BgXcKPXCj2R0BCVJul41P4h3KKFwAAR0AxRWBBiTdMR0BgXfvnbItER0BCVN0vGp++h3KLFwAAR0AxRN0vGp++R0BgXyLQ5WBCR0BCVaHKwIMSh3KMFwAAR0AxRN0vGp++R0BgX1wo9cKPR0BCVeNT987Zh3KNFwAAR0AxRBiTdLxqR0BgYItDlYEGR0BCVqfvnbIth3KOFwAAR0AxRBiTdLxqR0BgYLxqfvnbR0BCVsi0OVgQh3KPFwAAR0AxQ5WBBiTdR0BgYbItDlYER0BCV41P3ztkh3KQFwAAR0AxQ5WBBiTdR0BgYeuFHrhSR0BCV64UeuFIh3KRFwAAR0AxQxJul41QR0BgYxqfvnbJR0BCWJN0vGp/h3KSFwAAR0AxQtDlYEGJR0BgY0vGp++eR0BCWLQ5WBBih3KTFwAAR0AxQo9cKPXDR0BgZEGJN0vHR0BCWVgQYk3Th3KUFwAAR0AxQk3S8an8R0BgZHrhR64UR0BCWZmZmZmah3KVFwAAR0AxQcrAgxJvR0BgZaHKwIMSR0BCWl41P3zuh3KWFwAAR0AxQcrAgxJvR0BgZdsi0OVgR0BCWp++dsi0h3KXFwAAR0AxQQYk3S8bR0BgZwo9cKPXR0BCW2RaHKwIh3KYFwAAR0AxQQYk3S8bR0BgZ0OVgQYlR0BCW6XjU/fPh3KZFwAAR0AxQIMSbpeNR0BgaDEm6XjVR0BCXEm6XjU/h3KaFwAAR0AxQIMSbpeNR0BgaGp++dsjR0BCXGp++dsjh3KbFwAAR0AxQEGJN0vHR0BgaKPXCj1xR0BCXItDlYEGh3KcFwAAR0AxP752yLQ5R0BgadLxqfvnR0BCXXCj1wo9h3KdFwAAR0AxPztkWhysR0BgavnbItDlR0BCXlYEGJN1h3KeFwAAR0AxPztkWhysR0BgazMzMzMzR0BCXnbItDlYh3KfFwAAR0AxPnbItDlYR0BgbGJN0vGqR0BCX1wo9cKPh3KgFwAAR0AxPnbItDlYR0BgbJul41P4R0BCX3ztkWhzh3KhFwAAR0AxPfO2RaHLR0BgbZFocrAhR0BCYCDEm6Xjh3KiFwAAR0AxPfO2RaHLR0BgbcKPXCj2R0BCYEGJN0vHh3KjFwAAR0AxPS8an753R0BgbvGp++dtR0BCYSbpeNT+h3KkFwAAR0AxPS8an753R0BgbysCDEm6R0BCYUeuFHrhh3KlFwAAR0AxPKwIMSbpR0BgcFocrAgxR0BCYi0OVgQZh3KmFwAAR0AxO+dsi0OWR0BgcYEGJN0vR0BCYxJul41Qh3KnFwAAR0AxO+dsi0OWR0BgcbpeNT99R0BCYzMzMzMzh3KoFwAAR0AxO2RaHKwIR0Bgcul41P30R0BCY/fO2RaHh3KpFwAAR0AxOyLQ5WBCR0BgcyLQ5WBCR0BCZDlYEGJOh3KqFwAAR0AxOp++dsi0R0BgdEm6XjU/R0BCZP3ztkWih3KrFwAAR0AxOdsi0OVgR0BgdXjU/fO2R0BCZeNT987Zh3KsFwAAR0AxOdsi0OVgR0BgdbItDlYER0BCZgQYk3S8h3KtFwAAR0AxOVgQYk3TR0BgduFHrhR7R0BCZul41P30h3KuFwAAR0AxORaHKwIMR0BgdxqfvnbJR0BCZwo9cKPXh3KvFwAAR0AxOJN0vGp/R0BgeAgxJul5R0BCZ64UeuFIh3KwFwAAR0AxOJN0vGp/R0BgeEGJN0vHR0BCZ++dsi0Oh3KxFwAAR0AxN87ZFocrR0BgeXCj1wo9R0BCaLQ5WBBih3KyFwAAR0AxN87ZFocrR0Bgean752yLR0BCaNT987ZGh3KzFwAAR0AxN0vGp++eR0BgetkWhysCR0BCabpeNT99h3K0FwAAR0AxNocrAgxKR0BgfAAAAAAAR0BCan752yLRh3K1FwAAR0AxNocrAgxKR0BgfDlYEGJOR0BCasCDEm6Yh3K2FwAAR0AxNcKPXCj2R0BgfWhysCDFR0BCa4UeuFHsh3K3FwAAR0AxNcKPXCj2R0BgfaHKwIMSR0BCa8an752yh3K4FwAAR0AxNT987ZFoR0BgfpeNT987R0BCbGp++dsjh3K5FwAAR0AxNP3ztkWiR0BgftDlYEGJR0BCbItDlYEGh3K6FwAAR0AxNHrhR64UR0Bgf/fO2RaHR0BCbXCj1wo9h3K7FwAAR0AxNHrhR64UR0BggDEm6XjVR0BCbZFocrAhh3K8FwAAR0AxM7ZFocrBR0BggWBBiTdMR0BCblYEGJN1h3K9FwAAR0AxM7ZFocrBR0BggZmZmZmaR0BCbpeNT987h3K+FwAAR0AxMzMzMzMzR0Bggo9cKPXDR0BCbztkWhysh3K/FwAAR0AxMvGp++dtR0Bggsi0OVgQR0BCb1wo9cKPh3LAFwAAR0AxMi0OVgQZR0BghCj1wo9cR0BCcGJN0vGqh3LBFwAAR0AxMan752yLR0BghVgQYk3TR0BCcSbpeNT+h3LCFwAAR0AxMOVgQYk3R0BghocrAgxKR0BCcgxJul41h3LDFwAAR0AxMOVgQYk3R0BghsCDEm6YR0BCci0OVgQZh3LEFwAAR0AxMCDEm6XjR0Bgh++dsi0OR0BCcxJul41Qh3LFFwAAR0AxMCDEm6XjR0BgiCj1wo9cR0BCczMzMzMzh3LGFwAAR0AxL1wo9cKPR0BgiU/fO2RaR0BCc/fO2RaHh3LHFwAAR0AxLpeNT987R0BgirhR64UfR0BCdP3ztkWih3LIFwAAR0AxLhR64UeuR0Bgi+dsi0OWR0BCdeNT987Zh3LJFwAAR0AxLdLxqfvnR0BgjCDEm6XjR0BCdgQYk3S8h3LKFwAAR0AxLQ5WBBiTR0BgjU/fO2RaR0BCdsi0OVgQh3LLFwAAR0AxLQ5WBBiTR0BgjYk3S8aoR0BCdwo9cKPXh3LMFwAAR0AxLEm6XjU/R0BgjrhR64UfR0BCd87ZFocrh3LNFwAAR0AxK8an752yR0Bgj987ZFodR0BCeJN0vGp/h3LOFwAAR0AxKwIMSbpeR0BgkUeuFHrhR0BCeZmZmZmah3LPFwAAR0AxKj1wo9cKR0BgknbItDlYR0BCen752yLRh3LQFwAAR0AxKfvnbItER0BgkrAgxJumR0BCep++dsi0h3LRFwAAR0AxKXjU/fO2R0Bgk987ZFodR0BCe2RaHKwIh3LSFwAAR0AxKTdLxqfwR0BglBiTdLxqR0BCe6XjU/fPh3LTFwAAR0AxKLQ5WBBiR0BglUeuFHrhR0BCfGp++dsjh3LUFwAAR0AxJ++dsi0OR0BglnbItDlYR0BCfS8an753h3LVFwAAR0AxJ64UeuFIR0BglrAgxJumR0BCfXCj1wo9h3LWFwAAR0AxJysCDEm6R0Bgl987ZFodR0BCfjU/fO2Rh3LXFwAAR0AxJul41P30R0BgmBiTdLxqR0BCflYEGJN1h3LYFwAAR0AxJiTdLxqgR0BgmT987ZFoR0BCfztkWhysh3LZFwAAR0AxJaHKwIMSR0Bgmm6XjU/fR0BCgAAAAAAAh3LaFwAAR0AxJWBBiTdMR0BgmrAgxJumR0BCgCDEm6Xjh3LbFwAAR0AxJJul41P4R0Bgm9cKPXCkR0BCgQYk3S8bh3LcFwAAR0AxJBiTdLxqR0BgnQYk3S8bR0BCgcrAgxJvh3LdFwAAR0AxI9cKPXCkR0BgnT987ZFoR0BCgeuFHrhSh3LeFwAAR0AxIxJul41QR0Bgnm6XjU/fR0BCgtDlYEGJh3LfFwAAR0AxIxJul41QR0BgnqfvnbItR0BCgvGp++dth3LgFwAAR0AxIk3S8an8R0Bgn9cKPXCkR0BCg7ZFocrBh3LhFwAAR0AxIYk3S8aoR0BgoQYk3S8bR0BChJul41P4h3LiFwAAR0AxIYk3S8aoR0BgoT987ZFoR0BChLxqfvnbh3LjFwAAR0AxIMSbpeNUR0Bgom6XjU/fR0BChYEGJN0vh3LkFwAAR0AxIIMSbpeNR0BgoqfvnbItR0BChcKPXCj2h3LlFwAAR0AxIAAAAAAAR0Bgo52yLQ5WR0BChmZmZmZmh3LmFwAAR0AxIAAAAAAAR0Bgo9cKPXCkR0BChocrAgxKh3LnFwAAR0AxHztkWhysR0BgpQYk3S8bR0BCh0vGp++eh3LoFwAAR0AxHvnbItDlR0BgpT987ZFoR0BCh41P3ztkh3LpFwAAR0AxHjU/fO2RR0Bgpm6XjU/fR0BCiFHrhR64h3LqFwAAR0AxHjU/fO2RR0BgpqfvnbItR0BCiHKwIMSch3LrFwAAR0AxHXCj1wo9R0Bgp52yLQ5WR0BCiRaHKwIMh3LsFwAAR0AxHXCj1wo9R0Bgp9cKPXCkR0BCiTdLxqfwh3LtFwAAR0AxHGp++dsjR0BgqT987ZFoR0BCij1wo9cKh3LuFwAAR0AxG+dsi0OWR0Bgqm6XjU/fR0BCiwIMSbpeh3LvFwAAR0AxGuFHrhR7R0Bgq9cKPXCkR0BCjAgxJul5h3LwFwAAR0AxGhysCDEnR0BgrQYk3S8bR0BCjMzMzMzNh3LxFwAAR0AxGhysCDEnR0BgrT987ZFoR0BCjO2RaHKwh3LyFwAAR0AxGVgQYk3TR0Bgrm6XjU/fR0BCjdLxqfvnh3LzFwAAR0AxGFHrhR64R0Bgr987ZFodR0BCjrhR64Ufh3L0FwAAR0AxF41P3ztkR0BgsQ5WBBiTR0BCj52yLQ5Wh3L1FwAAR0AxFocrAgxKR0BgsnbItDlYR0BCkIMSbpeNh3L2FwAAR0AxFcKPXCj2R0Bgs987ZFodR0BCkYk3S8aoh3L3FwAAR0AxFP3ztkWiR0BgtQ5WBBiTR0BCkk3S8an8h3L4FwAAR0AxE/fO2RaHR0BgtnbItDlYR0BCkzMzMzMzh3L5FwAAR0AxEzMzMzMzR0Bgt6XjU/fPR0BClBiTdLxqh3L6FwAAR0AxEzMzMzMzR0Bgt987ZFodR0BClDlYEGJOh3L7FwAAR0AxEi0OVgQZR0BguQ5WBBiTR0BClP3ztkWih3L8FwAAR0AxEWhysCDFR0Bgun752yLRR0BCleNT987Zh3L9FwAAR0AxEKPXCj1xR0Bgu64UeuFIR0BClsi0OVgQh3L+FwAAR0AxEGJN0vGqR0Bgu+dsi0OWR0BClul41P30h3L/FwAAR0AxD52yLQ5WR0BgvRaHKwIMR0BCl64UeuFIh3IAGAAAR0AxDpeNT987R0Bgvn752yLRR0BCmLQ5WBBih3IBGAAAR0AxDdLxqfvnR0Bgv64UeuFIR0BCmXjU/fO2h3ICGAAAR0AxDZFocrAhR0Bgv++dsi0OR0BCmZmZmZmah3IDGAAAR0AxDMzMzMzNR0BgwR64UeuFR0BCml41P3zuh3IEGAAAR0AxDAgxJul5R0Bgwk3S8an8R0BCmyLQ5WBCh3IFGAAAR0AxC8an752yR0BgwocrAgxKR0BCm2RaHKwIh3IGGAAAR0AxCwIMSbpeR0Bgw/fO2RaHR0BCnEm6XjU/h3IHGAAAR0AxCfvnbItER0BgxSbpeNT+R0BCnQ5WBBiTh3IIGAAAR0AxCTdLxqfwR0BgxlYEGJN1R0BCndLxqfvnh3IJGAAAR0AxCTdLxqfwR0Bgxo9cKPXDR0BCnhR64Ueuh3IKGAAAR0AxCDEm6XjVR0Bgx752yLQ5R0BCntkWhysCh3ILGAAAR0AxCDEm6XjVR0Bgx/fO2RaHR0BCnvnbItDlh3IMGAAAR0AxBysCDEm6R0BgyS8an753R0BCn752yLQ5h3INGAAAR0AxBmZmZmZmR0BgypeNT987R0BCoMSbpeNUh3IOGAAAR0AxBWBBiTdMR0Bgy8an752yR0BCoYk3S8aoh3IPGAAAR0AxBFocrAgxR0BgzTdLxqfwR0BCom6XjU/fh3IQGAAAR0AxA1P3ztkXR0Bgzp++dsi0R0BCo1P3ztkXh3IRGAAAR0AxAo9cKPXDR0Bgz87ZFocrR0BCpDlYEGJOh3ISGAAAR0AxAYk3S8aoR0Bg0T987ZFoR0BCpR64UeuFh3ITGAAAR0AxAMSbpeNUR0Bg0m6XjU/fR0BCpeNT987Zh3IUGAAAR0Aw/nbItDlYR0Bg1UeuFHrhR0BCp87ZFocrh3IVGAAAR0Aw/bItDlYER0Bg1n752yLRR0BCqJN0vGp/h3IWGAAAR0Aw/KwIMSbpR0Bg1+dsi0OWR0BCqXjU/fO2h3IXGAAAR0Aw+6XjU/fPR0Bg2VgQYk3TR0BCql41P3zuh3IYGAAAR0Aw+p++dsi0R0Bg2ocrAgxKR0BCqyLQ5WBCh3IZGAAAR0Aw+ZmZmZmaR0Bg2/fO2RaHR0BCrCj1wo9ch3IaGAAAR0AvBqfvnbItR0Bg+KPXCj1xR0A/SPXCj1wph3IbGAAAR0AvCDEm6XjVR0Bg+FocrAgxR0A/SLQ5WBBih3IcGAAAR0AvCTdLxqfwR0Bg+BiTdLxqR0A/SLQ5WBBih3IdGAAAR0AvDlYEGJN1R0Bg9vnbItDlR0A/SDEm6XjVh3IeGAAAR0AvFgQYk3S8R0Bg9U/fO2RaR0A/R64UeuFIh3IfGAAAR0AvF41P3ztkR0Bg9QYk3S8bR0A/R2yLQ5WBh3IgGAAAR0AvHKwIMSbpR0Bg8+dsi0OWR0A/RysCDEm6h3IhGAAAR0AvHbItDlYER0Bg86XjU/fPR0A/Rul41P30h3IiGAAAR0AvJWBBiTdMR0Bg8fvnbItER0A/RmZmZmZmh3IjGAAAR0AvKwIMSbpeR0Bg8NT987ZGR0A/ReNT987Zh3IkGAAAR0AvLAgxJul5R0Bg8JN0vGp/R0A/RaHKwIMSh3IlGAAAR0AvLQ5WBBiTR0Bg8FHrhR64R0A/RaHKwIMSh3ImGAAAR0AvMi0OVgQZR0Bg7ysCDEm6R0A/RR64UeuFh3InGAAAR0AvM7ZFocrBR0Bg7ul41P30R0A/RR64UeuFh3IoGAAAR0AvOdsi0OVgR0Bg7YEGJN0vR0A/RJul41P4h3IpGAAAR0AvO2RaHKwIR0Bg7T987ZFoR0A/RFocrAgxh3IqGAAAR0AvQIMSbpeNR0Bg7CDEm6XjR0A/Q9cKPXCkh3IrGAAAR0AvQYk3S8aoR0Bg6987ZFodR0A/Q9cKPXCkh3IsGAAAR0AvSDEm6XjVR0Bg6nbItDlYR0A/Q1P3ztkXh3ItGAAAR0AvSTdLxqfwR0Bg6jU/fO2RR0A/QxJul41Qh3IuGAAAR0AvT987ZFodR0Bg6MzMzMzNR0A/Qo9cKPXDh3IvGAAAR0AvUOVgQYk3R0Bg6ItDlYEGR0A/Qo9cKPXDh3IwGAAAR0AvVgQYk3S8R0Bg52yLQ5WBR0A/QgxJul41h3IxGAAAR0AvVwo9cKPXR0Bg5yLQ5WBCR0A/QcrAgxJvh3IyGAAAR0AvXbItDlYER0Bg5cKPXCj2R0A/QUeuFHrhh3IzGAAAR0AvXrhR64UfR0Bg5XjU/fO2R0A/QUeuFHrhh3I0GAAAR0AvY9cKPXCkR0Bg5FocrAgxR0A/QMSbpeNUh3I1GAAAR0AvZWBBiTdMR0Bg5BiTdLxqR0A/QIMSbpeNh3I2GAAAR0AvZmZmZmZmR0Bg49cKPXCkR0A/QIMSbpeNh3I3GAAAR0Ava4UeuFHsR0Bg4rhR64UfR0A/QAAAAAAAh3I4GAAAR0AvbItDlYEGR0Bg4m6XjU/fR0A/QAAAAAAAh3I5GAAAR0AvczMzMzMzR0Bg4Q5WBBiTR0A/PztkWhysh3I6GAAAR0AvdDlYEGJOR0Bg4MSbpeNUR0A/PztkWhysh3I7GAAAR0AveVgQYk3TR0Bg36XjU/fPR0A/PrhR64Ufh3I8GAAAR0Avel41P3zuR0Bg32RaHKwIR0A/PrhR64Ufh3I9GAAAR0AvgQYk3S8bR0Bg3fvnbItER0A/PfO2RaHLh3I+GAAAR0AvggxJul41R0Bg3bpeNT99R0A/PfO2RaHLh3I/GAAAR0AvgxJul41QR0Bg3XjU/fO2R0A/PfO2RaHLh3JAGAAAR0AviDEm6XjVR0Bg3FocrAgxR0A/PXCj1wo9h3JBGAAAR0AvibpeNT99R0Bg3BBiTdLyR0A/PS8an753h3JCGAAAR0AvjtkWhysCR0Bg2vGp++dtR0A/PKwIMSbph3JDGAAAR0Avj987ZFodR0Bg2rAgxJumR0A/PKwIMSbph3JEGAAAR0AvkOVgQYk3R0Bg2mZmZmZmR0A/PGp++dsjh3JFGAAAR0AvlgQYk3S8R0Bg2UeuFHrhR0A/PCj1wo9ch3JGGAAAR0Avlwo9cKPXR0Bg2QYk3S8bR0A/O+dsi0OWh3JHGAAAR0AvnCj1wo9cR0Bg1+dsi0OWR0A/O2RaHKwIh3JIGAAAR0AvnbItDlYER0Bg16XjU/fPR0A/O2RaHKwIh3JJGAAAR0AvpN0vGp++R0Bg1fvnbItER0A/Op++dsi0h3JKGAAAR0AvpmZmZmZmR0Bg1bpeNT99R0A/Op++dsi0h3JLGAAAR0AvqwIMSbpeR0Bg1Jul41P4R0A/OhysCDEnh3JMGAAAR0AvrItDlYEGR0Bg1FHrhR64R0A/Odsi0OVgh3JNGAAAR0Avsan752yLR0Bg0zMzMzMzR0A/OVgQYk3Th3JOGAAAR0Avs7ZFocrBR0Bg0rAgxJumR0A/ORaHKwIMh3JPGAAAR0AvuNT987ZGR0Bg0ZFocrAhR0A/OJN0vGp/h3JQGAAAR0Avudsi0OVgR0Bg0UeuFHrhR0A/OJN0vGp/h3JRGAAAR0Avu2RaHKwIR0Bg0QYk3S8bR0A/OJN0vGp/h3JSGAAAR0AvwIMSbpeNR0Bgz+dsi0OWR0A/OBBiTdLyh3JTGAAAR0Avx64UeuFIR0Bgzj1wo9cKR0A/N0vGp++eh3JUGAAAR0AvyLQ5WBBiR0BgzfvnbItER0A/Nwo9cKPXh3JVGAAAR0AvzdLxqfvnR0BgzN0vGp++R0A/NocrAgxKh3JWGAAAR0AvztkWhysCR0BgzJul41P4R0A/NocrAgxKh3JXGAAAR0Av1ocrAgxKR0BgyvGp++dtR0A/NcKPXCj2h3JYGAAAR0Av26XjU/fPR0BgydLxqfvnR0A/NT987ZFoh3JZGAAAR0Av3KwIMSbpR0BgyZFocrAhR0A/NT987ZFoh3JaGAAAR0Av3bItDlYER0BgyU/fO2RaR0A/NP3ztkWih3JbGAAAR0Av4tDlYEGJR0BgyDEm6XjVR0A/NHrhR64Uh3JcGAAAR0Av49cKPXCkR0Bgx++dsi0OR0A/NHrhR64Uh3JdGAAAR0Av6fvnbItER0BgxocrAgxKR0A/M7ZFocrBh3JeGAAAR0Av6wIMSbpeR0BgxkWhysCDR0A/M7ZFocrBh3JfGAAAR0Av8CDEm6XjR0BgxSbpeNT+R0A/MzMzMzMzh3JgGAAAR0Av8SbpeNT+R0BgxOVgQYk3R0A/MzMzMzMzh3JhGAAAR0Av8rAgxJumR0BgxJul41P4R0A/MvGp++dth3JiGAAAR0Av90vGp++eR0Bgw4UeuFHsR0A/Mm6XjU/fh3JjGAAAR0Av+NT987ZGR0BgwztkWhysR0A/Mm6XjU/fh3JkGAAAR0Av/vnbItDlR0Bgwdsi0OVgR0A/Man752yLh3JlGAAAR0AwAAAAAAAAR0BgwZmZmZmaR0A/Man752yLh3JmGAAAR0AwAo9cKPXDR0BgwHrhR64UR0A/MSbpeNT+h3JnGAAAR0AwAxJul41QR0BgwDlYEGJOR0A/MOVgQYk3h3JoGAAAR0AwBiTdLxqgR0BgvtDlYEGJR0A/MGJN0vGqh3JpGAAAR0AwBqfvnbItR0Bgvo9cKPXDR0A/MCDEm6Xjh3JqGAAAR0AwCTdLxqfwR0BgvXCj1wo9R0A/L52yLQ5Wh3JrGAAAR0AwCbpeNT99R0BgvS8an753R0A/L52yLQ5Wh3JsGAAAR0AwCj1wo9cKR0BgvO2RaHKwR0A/L1wo9cKPh3JtGAAAR0AwDMzMzMzNR0Bgu87ZFocrR0A/LtkWhysCh3JuGAAAR0AwDU/fO2RaR0Bgu4UeuFHsR0A/LtkWhysCh3JvGAAAR0AwDdLxqfvnR0Bgu0OVgQYlR0A/LpeNT987h3JwGAAAR0AwEGJN0vGqR0BguiTdLxqgR0A/LhR64Ueuh3JxGAAAR0AwEOVgQYk3R0BgueNT987ZR0A/LhR64Ueuh3JyGAAAR0AwE3S8an76R0BguMSbpeNUR0A/LZFocrAhh3JzGAAAR0AwE/fO2RaHR0BguIMSbpeNR0A/LU/fO2Rah3J0GAAAR0AwFwo9cKPXR0BgtyLQ5WBCR0A/LMzMzMzNh3J1GAAAR0AwF41P3ztkR0BgttkWhysCR0A/LItDlYEGh3J2GAAAR0AwGBBiTdLyR0BgtpeNT987R0A/LItDlYEGh3J3GAAAR0AwGp++dsi0R0BgtXjU/fO2R0A/LAgxJul5h3J4GAAAR0AwGyLQ5WBCR0BgtTdLxqfwR0A/K8an752yh3J5GAAAR0AwHbItDlYER0BgtBiTdLxqR0A/K0OVgQYlh3J6GAAAR0AwHrhR64UfR0Bgs5WBBiTdR0A/KwIMSbpeh3J7GAAAR0AwIUeuFHrhR0BgsnbItDlYR0A/Kn752yLRh3J8GAAAR0AwIcrAgxJvR0BgsjU/fO2RR0A/Kn752yLRh3J9GAAAR0AwIk3S8an8R0BgsfO2RaHLR0A/Kj1wo9cKh3J+GAAAR0AwJBiTdLxqR0BgsRaHKwIMR0A/KfvnbItEh3J/GAAAR0AwJN0vGp++R0BgsNT987ZGR0A/KbpeNT99h3KAGAAAR0AwKHKwIMScR0BgrysCDEm6R0A/KPXCj1wph3KBGAAAR0AwKPXCj1wpR0Bgrul41P30R0A/KPXCj1wph3KCGAAAR0AwK0OVgQYlR0BgrcrAgxJvR0A/KHKwIMSch3KDGAAAR0AwLAgxJul5R0BgrYk3S8aoR0A/KDEm6XjVh3KEGAAAR0AwL52yLQ5WR0Bgq+dsi0OWR0A/J2yLQ5WBh3KFGAAAR0AwMeuFHrhSR0Bgqsi0OVgQR0A/Jul41P30h3KGGAAAR0AwMm6XjU/fR0BgqocrAgxKR0A/Jul41P30h3KHGAAAR0AwMvGp++dtR0BgqkWhysCDR0A/JqfvnbIth3KIGAAAR0AwNYEGJN0vR0BgqSbpeNT+R0A/JiTdLxqgh3KJGAAAR0AwORaHKwIMR0Bgp3ztkWhzR0A/JWBBiTdMh3KKGAAAR0AwOZmZmZmaR0BgpztkWhysR0A/JWBBiTdMh3KLGAAAR0AwO+dsi0OWR0BgpiTdLxqgR0A/JJul41P4h3KMGAAAR0AwPKwIMSbpR0Bgpdsi0OVgR0A/JJul41P4h3KNGAAAR0AwPS8an753R0BgpZmZmZmaR0A/JFocrAgxh3KOGAAAR0AwP3ztkWhzR0BgpIMSbpeNR0A/I9cKPXCkh3KPGAAAR0AwQAAAAAAAR0BgpDlYEGJOR0A/I9cKPXCkh3KQGAAAR0AwQo9cKPXDR0BgoxqfvnbJR0A/I1P3ztkXh3KRGAAAR0AwQxJul41QR0BgotkWhysCR0A/IxJul41Qh3KSGAAAR0AwQ5WBBiTdR0BgopeNT987R0A/IxJul41Qh3KTGAAAR0AwRiTdLxqgR0BgoXjU/fO2R0A/Io9cKPXDh3KUGAAAR0AwRqfvnbItR0BgoTdLxqfwR0A/Ik3S8an8h3KVGAAAR0AwSXjU/fO2R0Bgn9cKPXCkR0A/IYk3S8aoh3KWGAAAR0AwSj1wo9cKR0Bgn5WBBiTdR0A/IYk3S8aoh3KXGAAAR0AwTItDlYEGR0BgnnbItDlYR0A/IQYk3S8bh3KYGAAAR0AwTQ5WBBiTR0BgnjU/fO2RR0A/IMSbpeNUh3KZGAAAR0AwTZFocrAhR0BgnfO2RaHLR0A/IMSbpeNUh3KaGAAAR0AwT987ZFodR0BgnNT987ZGR0A/IEGJN0vHh3KbGAAAR0AwU3S8an76R0BgmzMzMzMzR0A/H3ztkWhzh3KcGAAAR0AwU/fO2RaHR0BgmvGp++dtR0A/HztkWhysh3KdGAAAR0AwVocrAgxKR0BgmdLxqfvnR0A/HrhR64Ufh3KeGAAAR0AwVwo9cKPXR0BgmZFocrAhR0A/HnbItDlYh3KfGAAAR0AwWdsi0OVgR0BgmDEm6XjVR0A/HfO2RaHLh3KgGAAAR0AwWp++dsi0R0Bgl++dsi0OR0A/HbItDlYEh3KhGAAAR0AwWyLQ5WBCR0Bgl64UeuFIR0A/HbItDlYEh3KiGAAAR0AwXO2RaHKwR0BgltDlYEGJR0A/HS8an753h3KjGAAAR0AwXXCj1wo9R0Bglo9cKPXDR0A/HS8an753h3KkGAAAR0AwXfO2RaHLR0Bglk3S8an8R0A/HO2RaHKwh3KlGAAAR0AwYEGJN0vHR0BglS8an753R0A/HGp++dsjh3KmGAAAR0AwYYk3S8aoR0BglKwIMSbpR0A/HCj1wo9ch3KnGAAAR0AwY9cKPXCkR0Bgk41P3ztkR0A/G6XjU/fPh3KoGAAAR0AwZFocrAgxR0Bgk0vGp++eR0A/G2RaHKwIh3KpGAAAR0AwZN0vGp++R0Bgkwo9cKPXR0A/G2RaHKwIh3KqGAAAR0AwZqfvnbItR0Bgki0OVgQZR0A/GuFHrhR7h3KrGAAAR0AwZysCDEm6R0BgkeuFHrhSR0A/Gp++dsi0h3KsGAAAR0Awaj1wo9cKR0BgkItDlYEGR0A/GhysCDEnh3KtGAAAR0AwasCDEm6YR0BgkEm6XjU/R0A/Gdsi0OVgh3KuGAAAR0Awa0OVgQYlR0BgkAgxJul5R0A/Gdsi0OVgh3KvGAAAR0AwbZFocrAhR0Bgjul41P30R0A/GVgQYk3Th3KwGAAAR0AwblYEGJN1R0BgjqfvnbItR0A/GRaHKwIMh3KxGAAAR0AwbtkWhysCR0BgjmZmZmZmR0A/GRaHKwIMh3KyGAAAR0AwcKPXCj1xR0BgjZFocrAhR0A/GJN0vGp/h3KzGAAAR0Awcan752yLR0BgjQYk3S8bR0A/GFHrhR64h3K0GAAAR0Awc/fO2RaHR0Bgi++dsi0OR0A/F87ZFocrh3K1GAAAR0AwdHrhR64UR0Bgi6XjU/fPR0A/F41P3ztkh3K2GAAAR0AwdP3ztkWiR0Bgi2RaHKwIR0A/F41P3ztkh3K3GAAAR0Awd41P3ztkR0Bgik3S8an8R0A/Fsi0OVgQh3K4GAAAR0AweuFHrhR7R0BgiKwIMSbpR0A/FgQYk3S8h3K5GAAAR0Awe2RaHKwIR0BgiGp++dsjR0A/FgQYk3S8h3K6GAAAR0AwfbItDlYER0Bgh0vGp++eR0A/FT987ZFoh3K7GAAAR0AwfjU/fO2RR0Bghwo9cKPXR0A/FT987ZFoh3K8GAAAR0AwfvnbItDlR0Bghsi0OVgQR0A/FP3ztkWih3K9GAAAR0AwgcrAgxJvR0BghWhysCDFR0A/FDlYEGJOh3K+GAAAR0AwhBiTdLxqR0BghEm6XjU/R0A/E7ZFocrBh3K/GAAAR0AwhJul41P4R0BghAgxJul5R0A/E7ZFocrBh3LAGAAAR0AwhR64UeuFR0Bgg8an752yR0A/E3S8an76h3LBGAAAR0Awh2yLQ5WBR0BggrAgxJumR0A/EvGp++dth3LCGAAAR0AwiwIMSbpeR0BggQ5WBBiTR0A/Ei0OVgQZh3LDGAAAR0Awi4UeuFHsR0BggMSbpeNUR0A/EeuFHrhSh3LEGAAAR0AwjdLxqfvnR0Bgf64UeuFIR0A/EWhysCDFh3LFGAAAR0AwjlYEGJN1R0Bgf2yLQ5WBR0A/ESbpeNT+h3LGGAAAR0AwjtkWhysCR0BgfysCDEm6R0A/ESbpeNT+h3LHGAAAR0AwkSbpeNT+R0BgfgxJul41R0A/EKPXCj1xh3LIGAAAR0Awkan752yLR0BgfcrAgxJvR0A/EGJN0vGqh3LJGAAAR0Awk/fO2RaHR0BgfKwIMSbpR0A/D987ZFodh3LKGAAAR0AwlHrhR64UR0BgfGp++dsjR0A/D52yLQ5Wh3LLGAAAR0AwlP3ztkWiR0BgfCj1wo9cR0A/D52yLQ5Wh3LMGAAAR0Awl0vGp++eR0BgexJul41QR0A/DtkWhysCh3LNGAAAR0AwmuFHrhR7R0BgeXCj1wo9R0A/DhR64Ueuh3LOGAAAR0Awm2RaHKwIR0BgeS8an753R0A/DdLxqfvnh3LPGAAAR0AwnbItDlYER0BgeBBiTdLyR0A/DU/fO2Rah3LQGAAAR0AwnjU/fO2RR0Bgd87ZFocrR0A/DU/fO2Rah3LRGAAAR0AwnrhR64UfR0Bgd41P3ztkR0A/DQ5WBBiTh3LSGAAAR0AwoQYk3S8bR0BgdnbItDlYR0A/DItDlYEGh3LTGAAAR0AwpFocrAgxR0BgdNT987ZGR0A/C4UeuFHsh3LUGAAAR0AwpN0vGp++R0BgdJN0vGp/R0A/C4UeuFHsh3LVGAAAR0AwpWBBiTdMR0BgdFHrhR64R0A/C0OVgQYlh3LWGAAAR0AwpysCDEm6R0Bgc3S8an76R0A/CwIMSbpeh3LXGAAAR0Awqn752yLRR0BgcdLxqfvnR0A/CfvnbItEh3LYGAAAR0AwqwIMSbpeR0BgcZFocrAhR0A/CfvnbItEh3LZGAAAR0Awq4UeuFHsR0BgcU/fO2RaR0A/CbpeNT99h3LaGAAAR0AwrU/fO2RaR0BgcHrhR64UR0A/CTdLxqfwh3LbGAAAR0AwrdLxqfvnR0BgcDlYEGJOR0A/CTdLxqfwh3LcGAAAR0AwrlYEGJN1R0Bgb/fO2RaHR0A/CPXCj1wph3LdGAAAR0AwrtkWhysCR0Bgb7ZFocrBR0A/CPXCj1wph3LeGAAAR0AwsKPXCj1xR0BgbtkWhysCR0A/CHKwIMSch3LfGAAAR0Awsan752yLR0BgblYEGJN1R0A/CDEm6XjVh3LgGAAAR0Aws/fO2RaHR0BgbT987ZFoR0A/B64UeuFIh3LhGAAAR0AwtHrhR64UR0BgbP3ztkWiR0A/B2yLQ5WBh3LiGAAAR0AwtP3ztkWiR0BgbLQ5WBBiR0A/BysCDEm6h3LjGAAAR0Awtsi0OVgQR0Bga987ZFodR0A/Bul41P30h3LkGAAAR0Awt0vGp++eR0Bga52yLQ5WR0A/BqfvnbIth3LlGAAAR0AwuhysCDEnR0Bgaj1wo9cKR0A/BeNT987Zh3LmGAAAR0Awup++dsi0R0BgafvnbItER0A/BeNT987Zh3LnGAAAR0AwuyLQ5WBCR0BgabpeNT99R0A/BaHKwIMSh3LoGAAAR0AwvXCj1wo9R0BgaKPXCj1xR0A/BR64UeuFh3LpGAAAR0AwvfO2RaHLR0BgaGJN0vGqR0A/BN0vGp++h3LqGAAAR0AwvnbItDlYR0BgaCDEm6XjR0A/BN0vGp++h3LrGAAAR0AwwEGJN0vHR0BgZ0vGp++eR0A/BFocrAgxh3LsGAAAR0AwwUeuFHrhR0BgZsCDEm6YR0A/BBiTdLxqh3LtGAAAR0Aww5WBBiTdR0BgZan752yLR0A/A1P3ztkXh3LuGAAAR0AwxBiTdLxqR0BgZWhysCDFR0A/A1P3ztkXh3LvGAAAR0AwxJul41P4R0BgZSbpeNT+R0A/AxJul41Qh3LwGAAAR0Awxul41P30R0BgZAgxJul5R0A/Ao9cKPXDh3LxGAAAR0Awx++dsi0OR0BgY4UeuFHsR0A/Ak3S8an8h3LyGAAAR0Awyj1wo9cKR0BgYm6XjU/fR0A/AYk3S8aoh3LzGAAAR0AwysCDEm6YR0BgYiTdLxqgR0A/AYk3S8aoh3L0GAAAR0AwzQ5WBBiTR0BgYQ5WBBiTR0A/AMSbpeNUh3L1GAAAR0AwzZFocrAhR0BgYMzMzMzNR0A/AMSbpeNUh3L2GAAAR0AwzhR64UeuR0BgYItDlYEGR0A/AIMSbpeNh3L3GAAAR0Aw0OVgQYk3R0BgXysCDEm6R0A+/752yLQ5h3L4GAAAR0Aw0vGp++dtR0BgXhR64UeuR0A+/ztkWhysh3L5GAAAR0Aw07ZFocrBR0BgXdLxqfvnR0A+/vnbItDlh3L6GAAAR0Aw1DlYEGJOR0BgXZFocrAhR0A+/vnbItDlh3L7GAAAR0Aw1kWhysCDR0BgXHrhR64UR0A+/nbItDlYh3L8GAAAR0Aw2ZmZmZmaR0BgWtkWhysCR0A+/XCj1wo9h3L9GAAAR0Aw2hysCDEnR0BgWpeNT987R0A+/S8an753h3L+GAAAR0Aw3Gp++dsjR0BgWYEGJN0vR0A+/KwIMSbph3L/GAAAR0Aw3O2RaHKwR0BgWT987ZFoR0A+/Gp++dsjh3IAGQAAR0Aw3XCj1wo9R0BgWP3ztkWiR0A+/Gp++dsjh3IBGQAAR0Aw3752yLQ5R0BgV+dsi0OWR0A++6XjU/fPh3ICGQAAR0Aw4tDlYEGJR0BgVkWhysCDR0A++uFHrhR7h3IDGQAAR0Aw41P3ztkXR0BgVgQYk3S8R0A++p++dsi0h3IEGQAAR0Aw5aHKwIMSR0BgVO2RaHKwR0A++hysCDEnh3IFGQAAR0Aw6PXCj1wpR0BgU0vGp++eR0A++RaHKwIMh3IGGQAAR0Aw6XjU/fO2R0BgUwo9cKPXR0A++RaHKwIMh3IHGQAAR0Aw64UeuFHsR0BgUfO2RaHLR0A++FHrhR64h3IIGQAAR0Aw7AgxJul5R0BgUbItDlYER0A++FHrhR64h3IJGQAAR0Aw7ItDlYEGR0BgUXCj1wo9R0A++BBiTdLyh3IKGQAAR0Aw7U/fO2RaR0BgUS8an753R0A++BBiTdLyh3ILGQAAR0Aw7tkWhysCR0BgUFocrAgxR0A+941P3ztkh3IMGQAAR0Aw8i0OVgQZR0BgTrhR64UfR0A+9ocrAgxKh3INGQAAR0Aw8rAgxJumR0BgTnbItDlYR0A+9ocrAgxKh3IOGQAAR0Aw8zMzMzMzR0BgTjU/fO2RR0A+9kWhysCDh3IPGQAAR0Aw9LxqfvnbR0BgTWBBiTdMR0A+9cKPXCj2h3IQGQAAR0Aw9kWhysCDR0BgTJul41P4R0A+9T987ZFoh3IRGQAAR0Aw+BBiTdLyR0BgS752yLQ5R0A+9P3ztkWih3ISGQAAR0Aw+JN0vGp/R0BgS3ztkWhzR0A+9Lxqfvnbh3ITGQAAR0Aw+RaHKwIMR0BgSztkWhysR0A+9HrhR64Uh3IUGQAAR0Aw+2RaHKwIR0BgSiTdLxqgR0A+8/fO2RaHh3IVGQAAR0Aw++dsi0OWR0BgSeNT987ZR0A+87ZFocrBh3IWGQAAR0Aw/Gp++dsjR0BgSaHKwIMSR0A+87ZFocrBh3IXGQAAR0Aw/fO2RaHLR0BgSMzMzMzNR0A+8zMzMzMzh3IYGQAAR0AxAUeuFHrhR0BgRysCDEm6R0A+8i0OVgQZh3IZGQAAR0AxAcrAgxJvR0BgRul41P30R0A+8i0OVgQZh3IaGQAAR0AxAk3S8an8R0BgRqfvnbItR0A+8euFHrhSh3IbGQAAR0AxBFocrAgxR0BgRZFocrAhR0A+8WhysCDFh3IcGQAAR0AxBWBBiTdMR0BgRQ5WBBiTR0A+8OVgQYk3h3IdGQAAR0AxB64UeuFIR0BgQ/fO2RaHR0A+8GJN0vGqh3IeGQAAR0AxCDEm6XjVR0BgQ7ZFocrBR0A+8CDEm6Xjh3IfGQAAR0AxCj1wo9cKR0BgQp++dsi0R0A+752yLQ5Wh3IgGQAAR0AxCsCDEm6YR0BgQl41P3zuR0A+71wo9cKPh3IhGQAAR0AxC0OVgQYlR0BgQhysCDEnR0A+71wo9cKPh3IiGQAAR0AxDhR64UeuR0BgQLxqfvnbR0A+7peNT987h3IjGQAAR0AxECDEm6XjR0BgP6XjU/fPR0A+7dLxqfvnh3IkGQAAR0AxEKPXCj1xR0BgP2RaHKwIR0A+7dLxqfvnh3IlGQAAR0AxESbpeNT+R0BgPyLQ5WBCR0A+7ZFocrAhh3ImGQAAR0AxE3S8an76R0BgPgxJul41R0A+7MzMzMzNh3InGQAAR0AxFHrhR64UR0BgPYk3S8aoR0A+7ItDlYEGh3IoGQAAR0AxFocrAgxKR0BgPHKwIMScR0A+7AgxJul5h3IpGQAAR0AxFwo9cKPXR0BgPDEm6XjVR0A+68an752yh3IqGQAAR0AxGVgQYk3TR0BgOxJul41QR0A+60OVgQYlh3IrGQAAR0AxGdsi0OVgR0BgOtDlYEGJR0A+6wIMSbpeh3IsGQAAR0AxGl41P3zuR0BgOo9cKPXDR0A+6sCDEm6Yh3ItGQAAR0AxHO2RaHKwR0BgOTdLxqfwR0A+6fvnbItEh3IuGQAAR0AxH3ztkWhzR0BgN987ZFodR0A+6TdLxqfwh3IvGQAAR0AxIAAAAAAAR0BgN52yLQ5WR0A+6TdLxqfwh3IwGQAAR0AxIQYk3S8bR0BgNxqfvnbJR0A+6LQ5WBBih3IxGQAAR0AxIk3S8an8R0BgNocrAgxKR0A+6HKwIMSch3IyGQAAR0AxI1P3ztkXR0BgNgQYk3S8R0A+6DEm6XjVh3IzGQAAR0AxJWBBiTdMR0BgNO2RaHKwR0A+52yLQ5WBh3I0GQAAR0AxJeNT987ZR0BgNKwIMSbpR0A+52yLQ5WBh3I1GQAAR0AxJul41P30R0BgNCj1wo9cR0A+5ysCDEm6h3I2GQAAR0AxJ++dsi0OR0BgM5WBBiTdR0A+5qfvnbIth3I3GQAAR0AxKHKwIMScR0BgM1P3ztkXR0A+5qfvnbIth3I4GQAAR0AxKPXCj1wpR0BgMxJul41QR0A+5mZmZmZmh3I5GQAAR0AxKXjU/fO2R0BgMtDlYEGJR0A+5iTdLxqgh3I6GQAAR0AxK0OVgQYlR0BgMfvnbItER0A+5aHKwIMSh3I7GQAAR0AxLMzMzMzNR0BgMTdLxqfwR0A+5WBBiTdMh3I8GQAAR0AxLlYEGJN1R0BgMFocrAgxR0A+5N0vGp++h3I9GQAAR0AxLtkWhysCR0BgMBiTdLxqR0A+5Jul41P4h3I+GQAAR0AxL1wo9cKPR0BgL9cKPXCkR0A+5FocrAgxh3I/GQAAR0AxL987ZFodR0BgL52yLQ5WR0A+5FocrAgxh3JAGQAAR0AxMOVgQYk3R0BgLwIMSbpeR0A+5BiTdLxqh3JBGQAAR0AxMeuFHrhSR0BgLn752yLRR0A+45WBBiTdh3JCGQAAR0AxMm6XjU/fR0BgLj1wo9cKR0A+45WBBiTdh3JDGQAAR0AxNDlYEGJOR0BgLWhysCDFR0A+4xJul41Qh3JEGQAAR0AxNHrhR64UR0BgLSbpeNT+R0A+4tDlYEGJh3JFGQAAR0AxNYEGJN0vR0BgLKPXCj1xR0A+4o9cKPXDh3JGGQAAR0AxN0vGp++eR0BgK87ZFocrR0A+4gxJul41h3JHGQAAR0AxN87ZFocrR0BgK41P3ztkR0A+4crAgxJvh3JIGQAAR0AxOFHrhR64R0BgK0vGp++eR0A+4crAgxJvh3JJGQAAR0AxO2RaHKwIR0BgKbItDlYER0A+4MSbpeNUh3JKGQAAR0AxPO2RaHKwR0BgKN0vGp++R0A+4EGJN0vHh3JLGQAAR0AxPXCj1wo9R0BgKJul41P4R0A+4AAAAAAAh3JMGQAAR0AxPfO2RaHLR0BgKFocrAgxR0A+4AAAAAAAh3JNGQAAR0AxP3ztkWhzR0BgJ4UeuFHsR0A+33ztkWhzh3JOGQAAR0AxQQYk3S8bR0BgJsCDEm6YR0A+3vnbItDlh3JPGQAAR0AxQtDlYEGJR0BgJeuFHrhSR0A+3nbItDlYh3JQGQAAR0AxQ1P3ztkXR0BgJan752yLR0A+3jU/fO2Rh3JRGQAAR0AxQ5WBBiTdR0BgJWhysCDFR0A+3jU/fO2Rh3JSGQAAR0AxReNT987ZR0BgJFHrhR64R0A+3XCj1wo9h3JTGQAAR0AxRmZmZmZmR0BgJBBiTdLyR0A+3XCj1wo9h3JUGQAAR0AxRul41P30R0BgI87ZFocrR0A+3S8an753h3JVGQAAR0AxSfvnbItER0BgIjU/fO2RR0A+3Cj1wo9ch3JWGQAAR0AxS4UeuFHsR0BgIWBBiTdMR0A+26XjU/fPh3JXGQAAR0AxTAgxJul5R0BgIR64UeuFR0A+26XjU/fPh3JYGQAAR0AxTItDlYEGR0BgIN0vGp++R0A+22RaHKwIh3JZGQAAR0AxTpeNT987R0BgH8an752yR0A+2p++dsi0h3JaGQAAR0AxT52yLQ5WR0BgH0OVgQYlR0A+2l41P3zuh3JbGQAAR0AxUan752yLR0BgHi0OVgQZR0A+2ZmZmZmah3JcGQAAR0AxUi0OVgQZR0BgHeuFHrhSR0A+2ZmZmZmah3JdGQAAR0AxUzMzMzMzR0BgHWhysCDFR0A+2VgQYk3Th3JeGQAAR0AxVDlYEGJOR0BgHNT987ZGR0A+2NT987ZGh3JfGQAAR0AxVLxqfvnbR0BgHJN0vGp/R0A+2NT987ZGh3JgGQAAR0AxVT987ZFoR0BgHFHrhR64R0A+2JN0vGp/h3JhGQAAR0AxVkWhysCDR0BgG87ZFocrR0A+2FHrhR64h3JiGQAAR0AxV87ZFocrR0BgGvnbItDlR0A+187ZFocrh3JjGQAAR0AxWNT987ZGR0BgGnbItDlYR0A+10vGp++eh3JkGQAAR0AxWl41P3zuR0BgGaHKwIMSR0A+1si0OVgQh3JlGQAAR0AxWuFHrhR7R0BgGWBBiTdMR0A+1si0OVgQh3JmGQAAR0AxW+dsi0OWR0BgGN0vGp++R0A+1ocrAgxKh3JnGQAAR0AxXO2RaHKwR0BgGEm6XjU/R0A+1gQYk3S8h3JoGQAAR0AxXfO2RaHLR0BgF8an752yR0A+1cKPXCj2h3JpGQAAR0AxYAAAAAAAR0BgFrAgxJumR0A+1P3ztkWih3JqGQAAR0AxYIMSbpeNR0BgFm6XjU/fR0A+1P3ztkWih3JrGQAAR0AxYYk3S8aoR0BgFeuFHrhSR0A+1HrhR64Uh3JsGQAAR0AxYo9cKPXDR0BgFVgQYk3TR0A+1DlYEGJOh3JtGQAAR0AxYxJul41QR0BgFRaHKwIMR0A+0/fO2RaHh3JuGQAAR0AxY5WBBiTdR0BgFNT987ZGR0A+0/fO2RaHh3JvGQAAR0AxZJul41P4R0BgFFocrAgxR0A+07ZFocrBh3JwGQAAR0AxZaHKwIMSR0BgE752yLQ5R0A+0zMzMzMzh3JxGQAAR0AxZysCDEm6R0BgEwIMSbpeR0A+0rAgxJumh3JyGQAAR0AxaLQ5WBBiR0BgEiTdLxqgR0A+0i0OVgQZh3JzGQAAR0AxaTdLxqfwR0BgEeNT987ZR0A+0i0OVgQZh3J0GQAAR0AxabpeNT99R0BgEaHKwIMSR0A+0euFHrhSh3J1GQAAR0Axaj1wo9cKR0BgEWhysCDFR0A+0an752yLh3J2GQAAR0Axa0OVgQYlR0BgENT987ZGR0A+0WhysCDFh3J3GQAAR0AxbEm6XjU/R0BgEFHrhR64R0A+0SbpeNT+h3J4GQAAR0AxbMzMzMzNR0BgEBBiTdLyR0A+0OVgQYk3h3J5GQAAR0AxbU/fO2RaR0BgD87ZFocrR0A+0KPXCj1xh3J6GQAAR0AxblYEGJN1R0BgDztkWhysR0A+0GJN0vGqh3J7GQAAR0AxbtkWhysCR0BgDvnbItDlR0A+0CDEm6Xjh3J8GQAAR0Axb987ZFodR0BgDnbItDlYR0A+z987ZFodh3J9GQAAR0AxcWhysCDFR0BgDaHKwIMSR0A+z1wo9cKPh3J+GQAAR0AxceuFHrhSR0BgDWBBiTdMR0A+zxqfvnbJh3J/GQAAR0Axcm6XjU/fR0BgDR64UeuFR0A+zxqfvnbJh3KAGQAAR0AxcvGp++dtR0BgDN0vGp++R0A+ztkWhysCh3KBGQAAR0Axc/fO2RaHR0BgDEm6XjU/R0A+zpeNT987h3KCGQAAR0AxdYEGJN0vR0BgC4UeuFHsR0A+zhR64Ueuh3KDGQAAR0Axdwo9cKPXR0BgCrAgxJumR0A+zZFocrAhh3KEGQAAR0Axd41P3ztkR0BgCm6XjU/fR0A+zU/fO2Rah3KFGQAAR0AxeBBiTdLyR0BgCi0OVgQZR0A+zU/fO2Rah3KGGQAAR0AxeFHrhR64R0BgCfO2RaHLR0A+zQ5WBBiTh3KHGQAAR0Axel41P3zuR0BgCN0vGp++R0A+zEm6XjU/h3KIGQAAR0AxeuFHrhR7R0BgCJul41P4R0A+zEm6XjU/h3KJGQAAR0AxfKwIMSbpR0BgB752yLQ5R0A+y8an752yh3KKGQAAR0AxfO2RaHKwR0BgB3ztkWhzR0A+y4UeuFHsh3KLGQAAR0AxffO2RaHLR0BgBwIMSbpeR0A+y0OVgQYlh3KMGQAAR0Axf3ztkWhzR0BgBi0OVgQZR0A+ysCDEm6Yh3KNGQAAR0AxgAAAAAAAR0BgBeuFHrhSR0A+yn752yLRh3KOGQAAR0AxgIMSbpeNR0BgBan752yLR0A+yj1wo9cKh3KPGQAAR0Axg5WBBiTdR0BgBBBiTdLyR0A+yTdLxqfwh3KQGQAAR0AxhR64UeuFR0BgAztkWhysR0A+yLQ5WBBih3KRGQAAR0AxhaHKwIMSR0BgAvnbItDlR0A+yLQ5WBBih3KSGQAAR0AxhiTdLxqgR0BgArhR64UfR0A+yHKwIMSch3KTGQAAR0AxiLQ5WBBiR0BgAWhysCDFR0A+x64UeuFIh3KUGQAAR0AxiPXCj1wpR0BgASbpeNT+R0A+x2yLQ5WBh3KVGQAAR0AxiwIMSbpeR0BgABBiTdLyR0A+xqfvnbIth3KWGQAAR0Axi4UeuFHsR0Bf/52yLQ5WR0A+xqfvnbIth3KXGQAAR0AxjItDlYEGR0Bf/peNT987R0A+xiTdLxqgh3KYGQAAR0AxjZFocrAhR0Bf/XCj1wo9R0A+xeNT987Zh3KZGQAAR0AxjhR64UeuR0Bf/O2RaHKwR0A+xaHKwIMSh3KaGQAAR0AxjpeNT987R0Bf/Gp++dsjR0A+xaHKwIMSh3KbGQAAR0Axkan752yLR0Bf+TdLxqfwR0A+xJul41P4h3KcGQAAR0AxkeuFHrhSR0Bf+MSbpeNUR0A+xFocrAgxh3KdGQAAR0Axk7ZFocrBR0Bf9wo9cKPXR0A+w9cKPXCkh3KeGQAAR0Axk/fO2RaHR0Bf9peNT987R0A+w5WBBiTdh3KfGQAAR0AxlP3ztkWiR0Bf9ZFocrAhR0A+w1P3ztkXh3KgGQAAR0Axlwo9cKPXR0Bf82RaHKwIR0A+wo9cKPXDh3KhGQAAR0Axl41P3ztkR0Bf8uFHrhR7R0A+wo9cKPXDh3KiGQAAR0AxmRaHKwIMR0Bf8TdLxqfwR0A+wcrAgxJvh3KjGQAAR0AxmZmZmZmaR0Bf8LQ5WBBiR0A+wcrAgxJvh3KkGQAAR0Axml41P3zuR0Bf7752yLQ5R0A+wYk3S8aoh3KlGQAAR0AxnCj1wo9cR0Bf7gQYk3S8R0A+wMSbpeNUh3KmGQAAR0AxnGp++dsjR0Bf7ZFocrAhR0A+wMSbpeNUh3KnGQAAR0AxnXCj1wo9R0Bf7ItDlYEGR0A+wEGJN0vHh3KoGQAAR0AxnnbItDlYR0Bf62RaHKwIR0A+wAAAAAAAh3KpGQAAR0AxnvnbItDlR0Bf6uFHrhR7R0A+v752yLQ5h3KqGQAAR0AxoAAAAAAAR0Bf6dsi0OVgR0A+v3ztkWhzh3KrGQAAR0AxoMSbpeNUR0Bf6OVgQYk3R0A+vztkWhysh3KsGQAAR0AxoYk3S8aoR0Bf6DEm6XjVR0A+vvnbItDlh3KtGQAAR0AxogxJul41R0Bf564UeuFIR0A+vrhR64Ufh3KuGQAAR0AxotDlYEGJR0Bf5rhR64UfR0A+vnbItDlYh3KvGQAAR0AxpN0vGp++R0Bf5ItDlYEGR0A+vbItDlYEh3KwGQAAR0AxpWBBiTdMR0Bf5AgxJul5R0A+vbItDlYEh3KxGQAAR0AxpeNT987ZR0Bf44UeuFHsR0A+vXCj1wo9h3KyGQAAR0Axpul41P30R0Bf4l41P3zuR0A+vO2RaHKwh3KzGQAAR0Axp2yLQ5WBR0Bf4dsi0OVgR0A+vO2RaHKwh3K0GQAAR0AxqHKwIMScR0Bf4NT987ZGR0A+vKwIMSbph3K1GQAAR0AxqTdLxqfwR0Bf3987ZFodR0A+vCj1wo9ch3K2GQAAR0AxqfvnbItER0Bf3ysCDEm6R0A+u+dsi0OWh3K3GQAAR0Axqn752yLRR0Bf3qfvnbItR0A+u+dsi0OWh3K4GQAAR0AxqsCDEm6YR0Bf3iTdLxqgR0A+u6XjU/fPh3K5GQAAR0Axq0OVgQYlR0Bf3bItDlYER0A+u2RaHKwIh3K6GQAAR0AxrEm6XjU/R0Bf3HrhR64UR0A+uyLQ5WBCh3K7GQAAR0AxrdLxqfvnR0Bf2wIMSbpeR0A+up++dsi0h3K8GQAAR0AxrlYEGJN1R0Bf2n752yLRR0A+ul41P3zuh3K9GQAAR0Axr1wo9cKPR0Bf2VgQYk3TR0A+uhysCDEnh3K+GQAAR0Axr987ZFodR0Bf2NT987ZGR0A+udsi0OVgh3K/GQAAR0AxsGJN0vGqR0Bf2FHrhR64R0A+udsi0OVgh3LAGQAAR0AxsKPXCj1xR0Bf187ZFocrR0A+uZmZmZmah3LBGQAAR0Axsan752yLR0Bf1tkWhysCR0A+uVgQYk3Th3LCGQAAR0AxsrAgxJumR0Bf1aHKwIMSR0A+uNT987ZGh3LDGQAAR0AxszMzMzMzR0Bf1S8an753R0A+uJN0vGp/h3LEGQAAR0Axs7ZFocrBR0Bf1KwIMSbpR0A+uJN0vGp/h3LFGQAAR0AxtLxqfvnbR0Bf04UeuFHsR0A+uBBiTdLyh3LGGQAAR0AxtT987ZFoR0Bf0wIMSbpeR0A+uBBiTdLyh3LHGQAAR0AxtgQYk3S8R0Bf0fvnbItER0A+t41P3ztkh3LIGQAAR0Axt41P3ztkR0Bf0FHrhR64R0A+two9cKPXh3LJGQAAR0AxuBBiTdLyR0Bfz87ZFocrR0A+two9cKPXh3LKGQAAR0AxuJN0vGp/R0Bfz0vGp++eR0A+tsi0OVgQh3LLGQAAR0AxuRaHKwIMR0BfztkWhysCR0A+tocrAgxKh3LMGQAAR0Axu6XjU/fPR0BfzCj1wo9cR0A+tcKPXCj2h3LNGQAAR0AxvS8an753R0Bfyn752yLRR0A+tT987ZFoh3LOGQAAR0AxvXCj1wo9R0BfyfvnbItER0A+tP3ztkWih3LPGQAAR0AxvfO2RaHLR0BfyXjU/fO2R0A+tLxqfvnbh3LQGQAAR0AxvnbItDlYR0BfyPXCj1wpR0A+tLxqfvnbh3LRGQAAR0AxwIMSbpeNR0BfxtkWhysCR0A+s/fO2RaHh3LSGQAAR0AxwQYk3S8bR0BfxlYEGJN1R0A+s7ZFocrBh3LTGQAAR0AxwtDlYEGJR0BfxCj1wo9cR0A+svGp++dth3LUGQAAR0AxxWBBiTdMR0BfwXjU/fO2R0A+si0OVgQZh3LVGQAAR0AxxeNT987ZR0BfwPXCj1wpR0A+seuFHrhSh3LWGQAAR0AxxiTdLxqgR0BfwIMSbpeNR0A+seuFHrhSh3LXGQAAR0AxyTdLxqfwR0BfvU/fO2RaR0A+sKPXCj1xh3LYGQAAR0AxybpeNT99R0BfvMzMzMzNR0A+sKPXCj1xh3LZGQAAR0Axy0OVgQYlR0BfuyLQ5WBCR0A+sCDEm6Xjh3LaGQAAR0Axy4UeuFHsR0Bfup++dsi0R0A+r987ZFodh3LbGQAAR0AxzpeNT987R0Bft3ztkWhzR0A+rtkWhysCh3LcGQAAR0AxztkWhysCR0BftvnbItDlR0A+rpeNT987h3LdGQAAR0Axz987ZFodR0BftgQYk3S8R0A+rlYEGJN1h3LeGQAAR0Ax0GJN0vGqR0BftU/fO2RaR0A+rhR64Ueuh3LfGQAAR0Ax0OVgQYk3R0BftMzMzMzNR0A+rdLxqfvnh3LgGQAAR0Ax0euFHrhSR0Bfs9cKPXCkR0A+rZFocrAhh3LhGQAAR0Ax0rAgxJumR0BfsuFHrhR7R0A+rU/fO2Rah3LiGQAAR0Ax03S8an76R0Bfsi0OVgQZR0A+rQ5WBBiTh3LjGQAAR0Ax07ZFocrBR0Bfsan752yLR0A+rMzMzMzNh3LkGQAAR0Ax1LxqfvnbR0BfsLQ5WBBiR0A+rItDlYEGh3LlGQAAR0Ax1T987ZFoR0BfsDEm6XjVR0A+rEm6XjU/h3LmGQAAR0Ax1cKPXCj2R0Bfr3ztkWhzR0A+rAgxJul5h3LnGQAAR0Ax1si0OVgQR0BfrocrAgxKR0A+q8an752yh3LoGQAAR0Ax10vGp++eR0BfrgQYk3S8R0A+q4UeuFHsh3LpGQAAR0Ax2BBiTdLyR0BfrQ5WBBiTR0A+q0OVgQYlh3LqGQAAR0Ax2JN0vGp/R0BfrFocrAgxR0A+qwIMSbpeh3LrGQAAR0Ax2RaHKwIMR0Bfq9cKPXCkR0A+qsCDEm6Yh3LsGQAAR0Ax2hysCDEnR0BfquFHrhR7R0A+qn752yLRh3LtGQAAR0Ax2l41P3zuR0Bfql41P3zuR0A+qj1wo9cKh3LuGQAAR0Ax2+dsi0OWR0BfqLQ5WBBiR0A+qbpeNT99h3LvGQAAR0Ax3Gp++dsjR0BfqDEm6XjVR0A+qXjU/fO2h3LwGQAAR0Ax3O2RaHKwR0Bfp64UeuFIR0A+qXjU/fO2h3LxGQAAR0Ax3XCj1wo9R0BfpztkWhysR0A+qTdLxqfwh3LyGQAAR0Ax3fO2RaHLR0BfpocrAgxKR0A+qPXCj1wph3LzGQAAR0Ax3nbItDlYR0BfpgQYk3S8R0A+qPXCj1wph3L0GQAAR0Ax3ztkWhysR0BfpQ5WBBiTR0A+qHKwIMSch3L1GQAAR0Ax4EGJN0vHR0BfpAgxJul5R0A+qDEm6XjVh3L2GQAAR0Ax4MSbpeNUR0Bfo2RaHKwIR0A+p++dsi0Oh3L3GQAAR0Ax4UeuFHrhR0BfouFHrhR7R0A+p64UeuFIh3L4GQAAR0Ax4crAgxJvR0Bfol41P3zuR0A+p64UeuFIh3L5GQAAR0Ax4k3S8an8R0Bfodsi0OVgR0A+p2yLQ5WBh3L6GQAAR0Ax4o9cKPXDR0BfoWhysCDFR0A+pysCDEm6h3L7GQAAR0Ax41P3ztkXR0BfoLQ5WBBiR0A+pysCDEm6h3L8GQAAR0Ax49cKPXCkR0BfoDEm6XjVR0A+pul41P30h3L9GQAAR0Ax5Jul41P4R0BfnztkWhysR0A+pqfvnbIth3L+GQAAR0Ax5R64UeuFR0BfnrhR64UfR0A+pmZmZmZmh3L/GQAAR0Ax5WBBiTdMR0BfnjU/fO2RR0A+piTdLxqgh3IAGgAAR0Ax5iTdLxqgR0BfnZFocrAhR0A+peNT987Zh3IBGgAAR0Ax5qfvnbItR0BfnQ5WBBiTR0A+peNT987Zh3ICGgAAR0Ax5ul41P30R0BfnItDlYEGR0A+paHKwIMSh3IDGgAAR0Ax52yLQ5WBR0BfnAgxJul5R0A+pWBBiTdMh3IEGgAAR0Ax5++dsi0OR0Bfm5WBBiTdR0A+pWBBiTdMh3IFGgAAR0Ax6HKwIMScR0BfmxJul41QR0A+pR64UeuFh3IGGgAAR0Ax6XjU/fO2R0BfmeuFHrhSR0A+pJul41P4h3IHGgAAR0Ax6fvnbItER0BfmWhysCDFR0A+pJul41P4h3IIGgAAR0Ax6j1wo9cKR0BfmOVgQYk3R0A+pFocrAgxh3IJGgAAR0Ax6sCDEm6YR0BfmHKwIMScR0A+pBiTdLxqh3IKGgAAR0Ax60OVgQYlR0Bfl752yLQ5R0A+o9cKPXCkh3ILGgAAR0Ax68an752yR0BflztkWhysR0A+o9cKPXCkh3IMGgAAR0Ax7MzMzMzNR0BfljU/fO2RR0A+o1P3ztkXh3INGgAAR0Ax7Q5WBBiTR0BflcKPXCj2R0A+o1P3ztkXh3IOGgAAR0Ax7ZFocrAhR0BflT987ZFoR0A+oxJul41Qh3IPGgAAR0Ax7lYEGJN1R0BflJul41P4R0A+otDlYEGJh3IQGgAAR0Ax7peNT987R0BflBiTdLxqR0A+otDlYEGJh3IRGgAAR0Ax7xqfvnbJR0Bfk5WBBiTdR0A+oo9cKPXDh3ISGgAAR0Ax752yLQ5WR0BfkxJul41QR0A+ok3S8an8h3ITGgAAR0Ax8CDEm6XjR0Bfkp++dsi0R0A+ok3S8an8h3IUGgAAR0Ax8GJN0vGqR0BfkhysCDEnR0A+ogxJul41h3IVGgAAR0Ax8SbpeNT+R0BfkWhysCDFR0A+ocrAgxJvh3IWGgAAR0Ax8euFHrhSR0BfkHKwIMScR0A+oYk3S8aoh3IXGgAAR0Ax8m6XjU/fR0Bfj++dsi0OR0A+oUeuFHrhh3IYGgAAR0Ax8vGp++dtR0Bfj3ztkWhzR0A+oQYk3S8bh3IZGgAAR0Ax83S8an76R0Bfjsi0OVgQR0A+oMSbpeNUh3IaGgAAR0Ax8/fO2RaHR0BfjkWhysCDR0A+oMSbpeNUh3IbGgAAR0Ax9HrhR64UR0BfjcKPXCj2R0A+oIMSbpeNh3IcGgAAR0Ax9LxqfvnbR0BfjT987ZFoR0A+oEGJN0vHh3IdGgAAR0Ax9cKPXCj2R0BfjEm6XjU/R0A+oAAAAAAAh3IeGgAAR0Ax9si0OVgQR0BfiyLQ5WBCR0A+n3ztkWhzh3IfGgAAR0Ax90vGp++eR0Bfip++dsi0R0A+n3ztkWhzh3IgGgAAR0Ax941P3ztkR0BfihysCDEnR0A+nztkWhysh3IhGgAAR0Ax+BBiTdLyR0Bfian752yLR0A+nztkWhysh3IiGgAAR0Ax+NT987ZGR0BfiPXCj1wpR0A+nvnbItDlh3IjGgAAR0Ax+RaHKwIMR0BfiHKwIMScR0A+nrhR64Ufh3IkGgAAR0Ax+hysCDEnR0Bfh3ztkWhzR0A+nnbItDlYh3IlGgAAR0Ax+l41P3zuR0BfhvnbItDlR0A+njU/fO2Rh3ImGgAAR0Ax+uFHrhR7R0BfhocrAgxKR0A+nfO2RaHLh3InGgAAR0Ax+6XjU/fPR0BfhdLxqfvnR0A+nbItDlYEh3IoGgAAR0Ax++dsi0OWR0BfhU/fO2RaR0A+nbItDlYEh3IpGgAAR0Ax/Gp++dsjR0BfhMzMzMzNR0A+nXCj1wo9h3IqGgAAR0Ax/O2RaHKwR0BfhFocrAgxR0A+nS8an753h3IrGgAAR0Ax/bItDlYER0Bfg1P3ztkXR0A+nO2RaHKwh3IsGgAAR0Ax/nbItDlYR0Bfgp++dsi0R0A+nKwIMSbph3ItGgAAR0Ax/ztkWhysR0Bfgan752yLR0A+nGp++dsjh3IuGgAAR0AyAUeuFHrhR0Bff3ztkWhzR0A+m6XjU/fPh3IvGgAAR0AyAYk3S8aoR0BffvnbItDlR0A+m2RaHKwIh3IwGgAAR0AyAtDlYEGJR0BffZFocrAhR0A+muFHrhR7h3IxGgAAR0AyBBiTdLxqR0BffFocrAgxR0A+ml41P3zuh3IyGgAAR0AyBFocrAgxR0Bfe9cKPXCkR0A+ml41P3zuh3IzGgAAR0AyBmZmZmZmR0Bfean752yLR0A+mZmZmZmah3I0GgAAR0AyCTdLxqfwR0BfdocrAgxKR0A+mJN0vGp/h3I1GgAAR0AyCbpeNT99R0BfdhR64UeuR0A+mFHrhR64h3I2GgAAR0AyC4UeuFHsR0Bfc+dsi0OWR0A+l41P3ztkh3I3GgAAR0AyDItDlYEGR0BfcuFHrhR7R0A+l0vGp++eh3I4GgAAR0AyDMzMzMzNR0Bfcm6XjU/fR0A+lwo9cKPXh3I5GgAAR0AyDdLxqfvnR0BfcWhysCDFR0A+lsi0OVgQh3I6GgAAR0AyDlYEGJN1R0BfcMSbpeNUR0A+locrAgxKh3I7GgAAR0AyDtkWhysCR0BfcEGJN0vHR0A+lkWhysCDh3I8GgAAR0AyD52yLQ5WR0BfbztkWhysR0A+lgQYk3S8h3I9GgAAR0AyECDEm6XjR0Bfbsi0OVgQR0A+lcKPXCj2h3I+GgAAR0AyEan752yLR0BfbR64UeuFR0A+lT987ZFoh3I/GgAAR0AyEi0OVgQZR0BfbJul41P4R0A+lP3ztkWih3JAGgAAR0AyEvGp++dtR0Bfa6XjU/fPR0A+lLxqfvnbh3JBGgAAR0AyE3S8an76R0BfavGp++dtR0A+lHrhR64Uh3JCGgAAR0AyE/fO2RaHR0Bfam6XjU/fR0A+lDlYEGJOh3JDGgAAR0AyFLxqfvnbR0BfaXjU/fO2R0A+k/fO2RaHh3JEGgAAR0AyFcKPXCj2R0BfaIMSbpeNR0A+k3S8an76h3JFGgAAR0AyFkWhysCDR0BfZ87ZFocrR0A+kzMzMzMzh3JGGgAAR0AyFsi0OVgQR0BfZ0vGp++eR0A+kzMzMzMzh3JHGgAAR0AyF0vGp++eR0BfZsi0OVgQR0A+kvGp++dth3JIGgAAR0AyF41P3ztkR0BfZlYEGJN1R0A+krAgxJumh3JJGgAAR0AyGBBiTdLyR0BfZdLxqfvnR0A+krAgxJumh3JKGgAAR0AyGJN0vGp/R0BfZS8an753R0A+km6XjU/fh3JLGgAAR0AyGhysCDEnR0BfY6XjU/fPR0A+keuFHrhSh3JMGgAAR0AyGl41P3zuR0BfYzMzMzMzR0A+kan752yLh3JNGgAAR0AyGuFHrhR7R0BfYrAgxJumR0A+kWhysCDFh3JOGgAAR0AyG2RaHKwIR0BfYgxJul41R0A+kSbpeNT+h3JPGgAAR0AyG+dsi0OWR0BfYYk3S8aoR0A+kSbpeNT+h3JQGgAAR0AyHKwIMSbpR0BfYIMSbpeNR0A+kKPXCj1xh3JRGgAAR0AyHS8an753R0BfYBBiTdLyR0A+kKPXCj1xh3JSGgAAR0AyHbItDlYER0BfX41P3ztkR0A+kGJN0vGqh3JTGgAAR0AyHrhR64UfR0BfXmZmZmZmR0A+j987ZFodh3JUGgAAR0AyHztkWhysR0BfXeNT987ZR0A+j987ZFodh3JVGgAAR0AyH3ztkWhzR0BfXWBBiTdMR0A+j52yLQ5Wh3JWGgAAR0AyIAAAAAAAR0BfXO2RaHKwR0A+j1wo9cKPh3JXGgAAR0AyIIMSbpeNR0BfXDlYEGJOR0A+jxqfvnbJh3JYGgAAR0AyIQYk3S8bR0BfW7ZFocrBR0A+jxqfvnbJh3JZGgAAR0AyIcrAgxJvR0BfWsCDEm6YR0A+jpeNT987h3JaGgAAR0AyIk3S8an8R0BfWj1wo9cKR0A+jlYEGJN1h3JbGgAAR0AyItDlYEGJR0BfWcrAgxJvR0A+jlYEGJN1h3JcGgAAR0AyI1P3ztkXR0BfWRaHKwIMR0A+jhR64Ueuh3JdGgAAR0AyI9cKPXCkR0BfWJN0vGp/R0A+jdLxqfvnh3JeGgAAR0AyJFocrAgxR0BfWBBiTdLyR0A+jZFocrAhh3JfGgAAR0AyJJul41P4R0BfV52yLQ5WR0A+jZFocrAhh3JgGgAAR0AyJR64UeuFR0BfVxqfvnbJR0A+jU/fO2Rah3JhGgAAR0AyJaHKwIMSR0BfVqfvnbItR0A+jQ5WBBiTh3JiGgAAR0AyJaHKwIMSR0BfVnbItDlYR0A+jQ5WBBiTh3JjGgAAR0AyJiTdLxqgR0BfVfO2RaHLR0A+jMzMzMzNh3JkGgAAR0AyJul41P30R0BfVO2RaHKwR0A+jItDlYEGh3JlGgAAR0AyJ2yLQ5WBR0BfVHrhR64UR0A+jEm6XjU/h3JmGgAAR0AyJ++dsi0OR0BfU/fO2RaHR0A+jEm6XjU/h3JnGgAAR0AyKHKwIMScR0BfU1P3ztkXR0A+jAgxJul5h3JoGgAAR0AyKPXCj1wpR0BfUtDlYEGJR0A+i8an752yh3JpGgAAR0AyKTdLxqfwR0BfUk3S8an8R0A+i4UeuFHsh3JqGgAAR0AyKbpeNT99R0BfUcrAgxJvR0A+i4UeuFHsh3JrGgAAR0AyKj1wo9cKR0BfUVgQYk3TR0A+i0OVgQYlh3JsGgAAR0AyKn752yLRR0BfUNT987ZGR0A+iwIMSbpeh3JtGgAAR0AyK8an752yR0BfT64UeuFIR0A+isCDEm6Yh3JuGgAAR0AyLAgxJul5R0BfTysCDEm6R0A+in752yLRh3JvGgAAR0AyLItDlYEGR0BfTqfvnbItR0A+ij1wo9cKh3JwGgAAR0AyLQ5WBBiTR0BfTjU/fO2RR0A+ij1wo9cKh3JxGgAAR0AyLZFocrAhR0BfTYEGJN0vR0A+ifvnbItEh3JyGgAAR0AyLhR64UeuR0BfTP3ztkWiR0A+ibpeNT99h3JzGgAAR0AyLtkWhysCR0BfTAgxJul5R0A+iXjU/fO2h3J0GgAAR0AyL1wo9cKPR0BfS4UeuFHsR0A+iTdLxqfwh3J1GgAAR0AyL52yLQ5WR0BfSxJul41QR0A+iPXCj1wph3J2GgAAR0AyMGJN0vGqR0BfSl41P3zuR0A+iLQ5WBBih3J3GgAAR0AyMKPXCj1xR0BfSdsi0OVgR0A+iLQ5WBBih3J4GgAAR0AyMSbpeNT+R0BfSVgQYk3TR0A+iHKwIMSch3J5GgAAR0AyMan752yLR0BfSOVgQYk3R0A+iDEm6XjVh3J6GgAAR0AyMeuFHrhSR0BfSGJN0vGqR0A+iDEm6XjVh3J7GgAAR0AyMm6XjU/fR0BfR++dsi0OR0A+h++dsi0Oh3J8GgAAR0AyMvGp++dtR0BfRztkWhysR0A+h64UeuFIh3J9GgAAR0AyM/fO2RaHR0BfRjU/fO2RR0A+h2yLQ5WBh3J+GgAAR0AyNDlYEGJOR0BfRcKPXCj2R0A+hysCDEm6h3J/GgAAR0AyNLxqfvnbR0BfRT987ZFoR0A+hul41P30h3KAGgAAR0AyNT987ZFoR0BfRJul41P4R0A+hqfvnbIth3KBGgAAR0AyNcKPXCj2R0BfRBiTdLxqR0A+hmZmZmZmh3KCGgAAR0AyNkWhysCDR0BfQ5WBBiTdR0A+hmZmZmZmh3KDGgAAR0AyNsi0OVgQR0BfQyLQ5WBCR0A+hiTdLxqgh3KEGgAAR0AyNwo9cKPXR0BfQp++dsi0R0A+heNT987Zh3KFGgAAR0AyN41P3ztkR0BfQhysCDEnR0A+heNT987Zh3KGGgAAR0AyOJN0vGp/R0BfQPXCj1wpR0A+hWBBiTdMh3KHGgAAR0AyORaHKwIMR0BfQHKwIMScR0A+hR64UeuFh3KIGgAAR0AyOVgQYk3TR0BfQAAAAAAAR0A+hR64UeuFh3KJGgAAR0AyOdsi0OVgR0BfP3ztkWhzR0A+hN0vGp++h3KKGgAAR0AyOl41P3zuR0BfPwo9cKPXR0A+hJul41P4h3KLGgAAR0AyOuFHrhR7R0BfPlYEGJN1R0A+hFocrAgxh3KMGgAAR0AyO6XjU/fPR0BfPU/fO2RaR0A+hBiTdLxqh3KNGgAAR0AyPCj1wo9cR0BfPN0vGp++R0A+g9cKPXCkh3KOGgAAR0AyPKwIMSbpR0BfPFocrAgxR0A+g9cKPXCkh3KPGgAAR0AyPbItDlYER0BfOzMzMzMzR0A+g1P3ztkXh3KQGgAAR0AyPfO2RaHLR0BfOrAgxJumR0A+gxJul41Qh3KRGgAAR0AyPztkWhysR0BfOTdLxqfwR0A+go9cKPXDh3KSGgAAR0AyQAAAAAAAR0BfOIMSbpeNR0A+gk3S8an8h3KTGgAAR0AyQMSbpeNUR0BfN41P3ztkR0A+ggxJul41h3KUGgAAR0AyQo9cKPXDR0BfNWBBiTdMR0A+gUeuFHrhh3KVGgAAR0AyQxJul41QR0BfNO2RaHKwR0A+gQYk3S8bh3KWGgAAR0AyRFocrAgxR0BfM3S8an76R0A+gIMSbpeNh3KXGgAAR0AyReNT987ZR0BfMcrAgxJvR0A+gAAAAAAAh3KYGgAAR0AyRiTdLxqgR0BfMUeuFHrhR0A+f752yLQ5h3KZGgAAR0AyRysCDEm6R0BfMFHrhR64R0A+f3ztkWhzh3KaGgAAR0AyR64UeuFIR0BfL52yLQ5WR0A+fztkWhysh3KbGgAAR0AySPXCj1wpR0BfLiTdLxqgR0A+fnbItDlYh3KcGgAAR0AySn752yLRR0BfLHrhR64UR0A+ffO2RaHLh3KdGgAAR0AySsCDEm6YR0BfK/fO2RaHR0A+fbItDlYEh3KeGgAAR0AyTAgxJul5R0BfKo9cKPXDR0A+fS8an753h3KfGgAAR0AyTMzMzMzNR0BfKdsi0OVgR0A+fO2RaHKwh3KgGgAAR0AyTZFocrAhR0BfKOVgQYk3R0A+fKwIMSbph3KhGgAAR0AyThR64UeuR0BfKGJN0vGqR0A+fGp++dsjh3KiGgAAR0AyTtkWhysCR0BfJ2yLQ5WBR0A+fCj1wo9ch3KjGgAAR0AyT1wo9cKPR0BfJrhR64UfR0A+e+dsi0OWh3KkGgAAR0AyT987ZFodR0BfJjU/fO2RR0A+e6XjU/fPh3KlGgAAR0AyUKPXCj1xR0BfJT987ZFoR0A+e2RaHKwIh3KmGgAAR0AyUSbpeNT+R0BfJLxqfvnbR0A+eyLQ5WBCh3KnGgAAR0AyUWhysCDFR0BfJEm6XjU/R0A+euFHrhR7h3KoGgAAR0AyUm6XjU/fR0BfIxJul41QR0A+ep++dsi0h3KpGgAAR0AyUvGp++dtR0BfIp++dsi0R0A+el41P3zuh3KqGgAAR0AyU3S8an76R0BfIhysCDEnR0A+ehysCDEnh3KrGgAAR0AyU7ZFocrBR0BfIan752yLR0A+ehysCDEnh3KsGgAAR0AyVHrhR64UR0BfIPXCj1wpR0A+edsi0OVgh3KtGgAAR0AyVLxqfvnbR0BfIHKwIMScR0A+eZmZmZmah3KuGgAAR0AyVcKPXCj2R0BfH3ztkWhzR0A+eVgQYk3Th3KvGgAAR0AyVgQYk3S8R0BfHvnbItDlR0A+eRaHKwIMh3KwGgAAR0AyVocrAgxKR0BfHocrAgxKR0A+eNT987ZGh3KxGgAAR0AyVwo9cKPXR0BfHdLxqfvnR0A+eJN0vGp/h3KyGgAAR0AyV41P3ztkR0BfHU/fO2RaR0A+eFHrhR64h3KzGgAAR0AyWBBiTdLyR0BfHMzMzMzNR0A+eFHrhR64h3K0GgAAR0AyWFHrhR64R0BfHFocrAgxR0A+eBBiTdLyh3K1GgAAR0AyWNT987ZGR0BfG9cKPXCkR0A+d87ZFocrh3K2GgAAR0AyWVgQYk3TR0BfGzMzMzMzR0A+d41P3ztkh3K3GgAAR0AyWp++dsi0R0BfGbpeNT99R0A+dwo9cKPXh3K4GgAAR0AyWyLQ5WBCR0BfGTdLxqfwR0A+dwo9cKPXh3K5GgAAR0AyW2RaHKwIR0BfGMSbpeNUR0A+dsi0OVgQh3K6GgAAR0AyXCj1wo9cR0BfGBBiTdLyR0A+docrAgxKh3K7GgAAR0AyXGp++dsjR0BfF41P3ztkR0A+dkWhysCDh3K8GgAAR0AyXO2RaHKwR0BfFwo9cKPXR0A+dgQYk3S8h3K9GgAAR0AyXXCj1wo9R0BfFpeNT987R0A+dgQYk3S8h3K+GgAAR0AyXbItDlYER0BfFhR64UeuR0A+dcKPXCj2h3K/GgAAR0AyXjU/fO2RR0BfFaHKwIMSR0A+dYEGJN0vh3LAGgAAR0AyXztkWhysR0BfFGp++dsjR0A+dT987ZFoh3LBGgAAR0AyX752yLQ5R0BfE+dsi0OWR0A+dP3ztkWih3LCGgAAR0AyYAAAAAAAR0BfE3S8an76R0A+dLxqfvnbh3LDGgAAR0AyYIMSbpeNR0BfEvGp++dtR0A+dLxqfvnbh3LEGgAAR0AyYQYk3S8bR0BfEk3S8an8R0A+dHrhR64Uh3LFGgAAR0AyYYk3S8aoR0BfEcrAgxJvR0A+dDlYEGJOh3LGGgAAR0AyYk3S8an8R0BfENT987ZGR0A+c7ZFocrBh3LHGgAAR0AyYtDlYEGJR0BfEFHrhR64R0A+c7ZFocrBh3LIGgAAR0AyYxJul41QR0BfD987ZFodR0A+c3S8an76h3LJGgAAR0AyY9cKPXCkR0BfDysCDEm6R0A+czMzMzMzh3LKGgAAR0AyZBiTdLxqR0BfDqfvnbItR0A+cvGp++dth3LLGgAAR0AyZJul41P4R0BfDiTdLxqgR0A+cvGp++dth3LMGgAAR0AyZN0vGp++R0BfDbItDlYER0A+crAgxJumh3LNGgAAR0AyZWBBiTdMR0BfDS8an753R0A+cm6XjU/fh3LOGgAAR0AyZeNT987ZR0BfDLxqfvnbR0A+cm6XjU/fh3LPGgAAR0AyZmZmZmZmR0BfDAgxJul5R0A+ci0OVgQZh3LQGgAAR0AyZysCDEm6R0BfCxJul41QR0A+can752yLh3LRGgAAR0AyZ64UeuFIR0BfCo9cKPXDR0A+cWhysCDFh3LSGgAAR0AyaDEm6XjVR0BfChysCDEnR0A+cWhysCDFh3LTGgAAR0AyaLQ5WBBiR0BfCWhysCDFR0A+cSbpeNT+h3LUGgAAR0AyaTdLxqfwR0BfCOVgQYk3R0A+cOVgQYk3h3LVGgAAR0AyaXjU/fO2R0BfCGJN0vGqR0A+cKPXCj1xh3LWGgAAR0AyafvnbItER0BfB++dsi0OR0A+cKPXCj1xh3LXGgAAR0Ayaj1wo9cKR0BfB2yLQ5WBR0A+cGJN0vGqh3LYGgAAR0AyasCDEm6YR0BfBvnbItDlR0A+cCDEm6Xjh3LZGgAAR0Aya8an752yR0BfBcKPXCj2R0A+b987ZFodh3LaGgAAR0AybEm6XjU/R0BfBU/fO2RaR0A+b52yLQ5Wh3LbGgAAR0AybItDlYEGR0BfBMzMzMzNR0A+b1wo9cKPh3LcGgAAR0AybQ5WBBiTR0BfBFocrAgxR0A+bxqfvnbJh3LdGgAAR0AybU/fO2RaR0BfA9cKPXCkR0A+bxqfvnbJh3LeGgAAR0AybhR64UeuR0BfAyLQ5WBCR0A+btkWhysCh3LfGgAAR0AybtkWhysCR0BfAi0OVgQZR0A+blYEGJN1h3LgGgAAR0Ayb1wo9cKPR0BfAan752yLR0A+blYEGJN1h3LhGgAAR0Ayb52yLQ5WR0BfATdLxqfwR0A+bhR64Ueuh3LiGgAAR0AycKPXCj1xR0BfAAAAAAAAR0A+bZFocrAhh3LjGgAAR0AycSbpeNT+R0Be/41P3ztkR0A+bU/fO2Rah3LkGgAAR0AycWhysCDFR0Be/wo9cKPXR0A+bU/fO2Rah3LlGgAAR0AyceuFHrhSR0Be/peNT987R0A+bQ5WBBiTh3LmGgAAR0Aycm6XjU/fR0Be/hR64UeuR0A+bMzMzMzNh3LnGgAAR0AycvGp++dtR0Be/WBBiTdMR0A+bItDlYEGh3LoGgAAR0Ayc7ZFocrBR0Be/Gp++dsjR0A+bEm6XjU/h3LpGgAAR0AydDlYEGJOR0Be++dsi0OWR0A+bAgxJul5h3LqGgAAR0AydHrhR64UR0Be+3S8an76R0A+a8an752yh3LrGgAAR0AydYEGJN0vR0Be+j1wo9cKR0A+a4UeuFHsh3LsGgAAR0AydgQYk3S8R0Be+crAgxJvR0A+a0OVgQYlh3LtGgAAR0AydocrAgxKR0Be+UeuFHrhR0A+awIMSbpeh3LuGgAAR0Aydsi0OVgQR0Be+NT987ZGR0A+awIMSbpeh3LvGgAAR0Ayd0vGp++eR0Be+FHrhR64R0A+asCDEm6Yh3LwGgAAR0AyeJN0vGp/R0Be9qfvnbItR0A+afvnbItEh3LxGgAAR0AyeZmZmZmaR0Be9bItDlYER0A+abpeNT99h3LyGgAAR0Ayedsi0OVgR0Be9S8an753R0A+aXjU/fO2h3LzGgAAR0Ayep++dsi0R0Be9ItDlYEGR0A+aTdLxqfwh3L0GgAAR0Aye2RaHKwIR0Be84UeuFHsR0A+aPXCj1wph3L1GgAAR0AyfCj1wo9cR0Be8o9cKPXDR0A+aLQ5WBBih3L2GgAAR0AyfS8an753R0Be8WhysCDFR0A+aDEm6XjVh3L3GgAAR0AyfbItDlYER0Be8OVgQYk3R0A+Z++dsi0Oh3L4GgAAR0AyfrhR64UfR0Be73ztkWhzR0A+Z2yLQ5WBh3L5GgAAR0Ayf3ztkWhzR0Be7si0OVgQR0A+ZysCDEm6h3L6GgAAR0AygEGJN0vHR0Be7cKPXCj2R0A+Zul41P30h3L7GgAAR0AygMSbpeNUR0Be7U/fO2RaR0A+ZqfvnbIth3L8GgAAR0AyggxJul41R0Be66XjU/fPR0A+ZeNT987Zh3L9GgAAR0Aygo9cKPXDR0Be6yLQ5WBCR0A+ZeNT987Zh3L+GgAAR0Ayg5WBBiTdR0Be6bpeNT99R0A+ZWBBiTdMh3L/GgAAR0AyhFocrAgxR0Be6QYk3S8bR0A+ZR64UeuFh3IAGwAAR0AyhR64UeuFR0Be6BBiTdLyR0A+ZJul41P4h3IBGwAAR0AyhaHKwIMSR0Be541P3ztkR0A+ZFocrAgxh3ICGwAAR0AyhmZmZmZmR0Be5peNT987R0A+ZBiTdLxqh3IDGwAAR0Ayhul41P30R0Be5eNT987ZR0A+Y9cKPXCkh3IEGwAAR0Ayh2yLQ5WBR0Be5WBBiTdMR0A+Y5WBBiTdh3IFGwAAR0AyiDEm6XjVR0Be5Gp++dsjR0A+Y1P3ztkXh3IGGwAAR0AyiPXCj1wpR0Be43S8an76R0A+YtDlYEGJh3IHGwAAR0AyifvnbItER0Be4k3S8an8R0A+Yo9cKPXDh3IIGwAAR0Ayi0OVgQYlR0Be4NT987ZGR0A+YcrAgxJvh3IJGwAAR0Ayi8an752yR0Be4CDEm6XjR0A+YYk3S8aoh3IKGwAAR0AyjItDlYEGR0Be3ysCDEm6R0A+YUeuFHrhh3ILGwAAR0AyjQ5WBBiTR0Be3qfvnbItR0A+YQYk3S8bh3IMGwAAR0AyjZFocrAhR0Be3jU/fO2RR0A+YQYk3S8bh3INGwAAR0AyjdLxqfvnR0Be3cKPXCj2R0A+YMSbpeNUh3IOGwAAR0AyjlYEGJN1R0Be3Q5WBBiTR0A+YIMSbpeNh3IPGwAAR0AyjtkWhysCR0Be3ItDlYEGR0A+YEGJN0vHh3IQGwAAR0Ayj52yLQ5WR0Be25WBBiTdR0A+YAAAAAAAh3IRGwAAR0AykCDEm6XjR0Be2xJul41QR0A+X752yLQ5h3ISGwAAR0AykGJN0vGqR0Be2p++dsi0R0A+X3ztkWhzh3ITGwAAR0AykWhysCDFR0Be2WhysCDFR0A+XztkWhysh3IUGwAAR0AykeuFHrhSR0Be2OVgQYk3R0A+XvnbItDlh3IVGwAAR0Ayki0OVgQZR0Be2HKwIMScR0A+XrhR64Ufh3IWGwAAR0AykrAgxJumR0Be2AAAAAAAR0A+XnbItDlYh3IXGwAAR0AykzMzMzMzR0Be10vGp++eR0A+XjU/fO2Rh3IYGwAAR0Ayk7ZFocrBR0Be1si0OVgQR0A+XjU/fO2Rh3IZGwAAR0AylHrhR64UR0Be1dLxqfvnR0A+XbItDlYEh3IaGwAAR0AylP3ztkWiR0Be1U/fO2RaR0A+XXCj1wo9h3IbGwAAR0AylT987ZFoR0Be1N0vGp++R0A+XXCj1wo9h3IcGwAAR0AylkWhysCDR0Be06XjU/fPR0A+XO2RaHKwh3IdGwAAR0Aylsi0OVgQR0Be0zMzMzMzR0A+XKwIMSbph3IeGwAAR0Aylwo9cKPXR0Be0rAgxJumR0A+XKwIMSbph3IfGwAAR0Ayl41P3ztkR0Be0j1wo9cKR0A+XGp++dsjh3IgGwAAR0AymBBiTdLyR0Be0bpeNT99R0A+XCj1wo9ch3IhGwAAR0AymVgQYk3TR0Be0BBiTdLyR0A+W6XjU/fPh3IiGwAAR0Aymdsi0OVgR0Bez52yLQ5WR0A+W2RaHKwIh3IjGwAAR0AymhysCDEnR0BezxqfvnbJR0A+WyLQ5WBCh3IkGwAAR0Aymp++dsi0R0BeznbItDlYR0A+WuFHrhR7h3IlGwAAR0AymyLQ5WBCR0BezfO2RaHLR0A+WuFHrhR7h3ImGwAAR0Aym6XjU/fPR0BezXCj1wo9R0A+Wp++dsi0h3InGwAAR0Aym+dsi0OWR0BezP3ztkWiR0A+Wl41P3zuh3IoGwAAR0AynGp++dsjR0BezHrhR64UR0A+WhysCDEnh3IpGwAAR0AynKwIMSbpR0BezAgxJul5R0A+WhysCDEnh3IqGwAAR0AynjU/fO2RR0Beyk3S8an8R0A+WVgQYk3Th3IrGwAAR0AynnbItDlYR0Beydsi0OVgR0A+WRaHKwIMh3IsGwAAR0AynvnbItDlR0BeyVgQYk3TR0A+WRaHKwIMh3ItGwAAR0AyoAAAAAAAR0BeyDEm6XjVR0A+WJN0vGp/h3IuGwAAR0AyoMSbpeNUR0BexztkWhysR0A+WFHrhR64h3IvGwAAR0AyoUeuFHrhR0BexrhR64UfR0A+WBBiTdLyh3IwGwAAR0AyoYk3S8aoR0BexkWhysCDR0A+V87ZFocrh3IxGwAAR0Ayoo9cKPXDR0BexQ5WBBiTR0A+V0vGp++eh3IyGwAAR0AyoxJul41QR0BexJul41P4R0A+V0vGp++eh3IzGwAAR0Ayo1P3ztkXR0BexBiTdLxqR0A+Vwo9cKPXh3I0GwAAR0Ayo9cKPXCkR0Bew6XjU/fPR0A+Vsi0OVgQh3I1GwAAR0AypBiTdLxqR0BewyLQ5WBCR0A+VocrAgxKh3I2GwAAR0AypN0vGp++R0Bewm6XjU/fR0A+VkWhysCDh3I3GwAAR0AypaHKwIMSR0BewXjU/fO2R0A+VgQYk3S8h3I4GwAAR0AypeNT987ZR0BewQYk3S8bR0A+VcKPXCj2h3I5GwAAR0AypmZmZmZmR0BewIMSbpeNR0A+VcKPXCj2h3I6GwAAR0Ayp2yLQ5WBR0Bev1wo9cKPR0A+VT987ZFoh3I7GwAAR0Ayp64UeuFIR0BevtkWhysCR0A+VP3ztkWih3I8GwAAR0AyqDEm6XjVR0BevmZmZmZmR0A+VLxqfvnbh3I9GwAAR0AyqLQ5WBBiR0BeveNT987ZR0A+VLxqfvnbh3I+GwAAR0AyqPXCj1wpR0BevXCj1wo9R0A+VHrhR64Uh3I/GwAAR0Ayqn752yLRR0Beu8an752yR0A+U7ZFocrBh3JAGwAAR0AyqsCDEm6YR0Beu0OVgQYlR0A+U7ZFocrBh3JBGwAAR0Ayq0OVgQYlR0BeutDlYEGJR0A+U3S8an76h3JCGwAAR0Ayq4UeuFHsR0Beuk3S8an8R0A+UzMzMzMzh3JDGwAAR0AyrEm6XjU/R0BeuZmZmZmaR0A+UvGp++dth3JEGwAAR0AyrQ5WBBiTR0BeuKPXCj1xR0A+UrAgxJumh3JFGwAAR0AyrU/fO2RaR0BeuDEm6XjVR0A+Um6XjU/fh3JGGwAAR0AyrdLxqfvnR0Bet64UeuFIR0A+Ui0OVgQZh3JHGwAAR0AyrxqfvnbJR0BetgQYk3S8R0A+Uan752yLh3JIGwAAR0Ayr52yLQ5WR0BetYEGJN0vR0A+UWhysCDFh3JJGwAAR0Ayr987ZFodR0BetQ5WBBiTR0A+USbpeNT+h3JKGwAAR0AysGJN0vGqR0BetJul41P4R0A+USbpeNT+h3JLGwAAR0AysOVgQYk3R0Bes+dsi0OWR0A+UOVgQYk3h3JMGwAAR0Aysan752yLR0BesuFHrhR7R0A+UGJN0vGqh3JNGwAAR0Aysm6XjU/fR0BeseuFHrhSR0A+UCDEm6Xjh3JOGwAAR0Ays3S8an76R0BesMSbpeNUR0A+T52yLQ5Wh3JPGwAAR0Ays/fO2RaHR0BesEGJN0vHR0A+T1wo9cKPh3JQGwAAR0AytT987ZFoR0BertkWhysCR0A+TtkWhysCh3JRGwAAR0AytocrAgxKR0BerS8an753R0A+ThR64Ueuh3JSGwAAR0Ayt87ZFocrR0Beq7ZFocrBR0A+TZFocrAhh3JTGwAAR0AyuFHrhR64R0BeqxJul41QR0A+TU/fO2Rah3JUGwAAR0AyuRaHKwIMR0BeqgxJul41R0A+TQ5WBBiTh3JVGwAAR0Ayudsi0OVgR0BeqRaHKwIMR0A+TItDlYEGh3JWGwAAR0Ayu2RaHKwIR0Bep2yLQ5WBR0A+TAgxJul5h3JXGwAAR0AyvGp++dsjR0BepgQYk3S8R0A+S4UeuFHsh3JYGwAAR0AyvS8an753R0BepU/fO2RaR0A+S0OVgQYlh3JZGwAAR0AyvfO2RaHLR0BepFocrAgxR0A+SsCDEm6Yh3JaGwAAR0AyvjU/fO2RR0Beo9cKPXCkR0A+Sn752yLRh3JbGwAAZShHQDK++dsi0OVHQF6i4UeuFHtHQD5KPXCj1wqHclwbAABHQDLAAAAAAABHQF6hul41P31HQD5Jul41P32Hcl0bAABHQDLCj1wo9cNHQF6el41P3ztHQD5IcrAgxJyHcl4bAABHQDLDEm6XjVBHQF6eJN0vGqBHQD5IcrAgxJyHcl8bAABHQDLD1wo9cKRHQF6dLxqfvndHQD5H752yLQ6HcmAbAABHQDLFocrAgxJHQF6bAgxJul5HQD5HKwIMSbqHcmEbAABHQDLF41P3ztlHQF6aj1wo9cNHQD5G6XjU/fSHcmIbAABHQDLGZmZmZmZHQF6aDEm6XjVHQD5G6XjU/fSHcmMbAABHQDLHbItDlYFHQF6Y5WBBiTdHQD5GZmZmZmaHcmQbAABHQDLHrhR64UhHQF6YYk3S8apHQD5GJN0vGqCHcmUbAABHQDLIMSbpeNVHQF6X752yLQ5HQD5F41P3ztmHcmYbAABHQDLIcrAgxJxHQF6XbItDlYFHQD5F41P3ztmHcmcbAABHQDLKPXCj1wpHQF6VT987ZFpHQD5E3S8an76HcmgbAABHQDLKwIMSbphHQF6UzMzMzM1HQD5E3S8an76HcmkbAABHQDLLAgxJul5HQF6UWhysCDFHQD5Em6XjU/iHcmobAABHQDLMCDEm6XlHQF6TItDlYEJHQD5EGJN0vGqHcmsbAABHQDLMi0OVgQZHQF6SsCDEm6ZHQD5D1wo9cKSHcmwbAABHQDLMzMzMzM1HQF6SLQ5WBBlHQD5D1wo9cKSHcm0bAABHQDLNT987ZFpHQF6Rul41P31HQD5DlYEGJN2Hcm4bAABHQDLNkWhysCFHQF6RN0vGp/BHQD5DU/fO2ReHcm8bAABHQDLPGp++dslHQF6PjU/fO2RHQD5C0OVgQYmHcnAbAABHQDLPXCj1wo9HQF6PGp++dslHQD5Cj1wo9cOHcnEbAABHQDLP3ztkWh1HQF6Ol41P3ztHQD5CTdLxqfyHcnIbAABHQDLRqfvnbItHQF6MeuFHrhRHQD5BiTdLxqiHcnMbAABHQDLR64UeuFJHQF6L987ZFodHQD5BR64UeuGHcnQbAABHQDLSbpeNT99HQF6LhR64UexHQD5BBiTdLxuHcnUbAABHQDLTtkWhysFHQF6J2yLQ5WBHQD5AgxJul42HcnYbAABHQDLUOVgQYk5HQF6JWBBiTdNHQD5AQYk3S8eHcncbAABHQDLUeuFHrhRHQF6I5WBBiTdHQD5AAAAAAACHcngbAABHQDLU/fO2RaJHQF6IYk3S8apHQD5AAAAAAACHcnkbAABHQDLWRaHKwINHQF6GuFHrhR9HQD4/O2RaHKyHcnobAABHQDLWyLQ5WBBHQF6GRaHKwINHQD4++dsi0OWHcnsbAABHQDLXCj1wo9dHQF6F0vGp++dHQD4++dsi0OWHcnwbAABHQDLYUeuFHrhHQF6EGJN0vGpHQD4+NT987ZGHcn0bAABHQDLY1P3ztkZHQF6DpeNT989HQD4987ZFocuHcn4bAABHQDLZFocrAgxHQF6DMzMzMzNHQD4987ZFocuHcn8bAABHQDLZmZmZmZpHQF6CsCDEm6ZHQD49si0OVgSHcoAbAABHQDLa4UeuFHtHQF6BBiTdLxtHQD487ZFocrCHcoEbAABHQDLbZFocrAhHQF6Ak3S8an9HQD487ZFocrCHcoIbAABHQDLbpeNT989HQF6AEGJN0vJHQD48rAgxJumHcoMbAABHQDLcKPXCj1xHQF5/nbItDlZHQD48an752yOHcoQbAABHQDLdcKPXCj1HQF5987ZFoctHQD4752yLQ5aHcoUbAABHQDLd87ZFoctHQF59cKPXCj1HQD47peNT98+HcoYbAABHQDLeNT987ZFHQF58/fO2RaJHQD47ZFocrAiHcocbAABHQDLfvnbItDlHQF57U/fO2RdHQD464UeuFHuHcogbAABHQDLgAAAAAABHQF560OVgQYlHQD46n752yLSHcokbAABHQDLggxJul41HQF56XjU/fO5HQD46XjU/fO6HcoobAABHQDLgxJul41RHQF552yLQ5WBHQD46HKwIMSeHcosbAABHQDLiTdLxqfxHQF54MSbpeNVHQD45mZmZmZqHcowbAABHQDLij1wo9cNHQF53vnbItDlHQD45WBBiTdOHco0bAABHQDLjEm6XjVBHQF53O2RaHKxHQD45FocrAgyHco4bAABHQDLkWhysCDFHQF51kWhysCFHQD44k3S8an+Hco8bAABHQDLkm6XjU/hHQF51HrhR64VHQD44UeuFHriHcpAbAABHQDLlHrhR64VHQF50rAgxJulHQD44EGJN0vKHcpEbAABHQDLlYEGJN0xHQF50KPXCj1xHQD44EGJN0vKHcpIbAABHQDLm6XjU/fRHQF5yfvnbItFHQD43S8an756HcpMbAABHQDLnrhR64UhHQF5xiTdLxqhHQD43Cj1wo9eHcpQbAABHQDLn752yLQ5HQF5xFocrAgxHQD42yLQ5WBCHcpUbAABHQDLpeNT987ZHQF5vbItDlYFHQD42BBiTdLyHcpYbAABHQDLqPXCj1wpHQF5udsi0OVhHQD41wo9cKPaHcpcbAABlVQZhY3RpdmVymBsAAEsAdUsBfXKZGwAAKEsAXXKaGwAAKEfABQAAAAAAAEdAWmcKPXCj10dARkm6XjU/fYdymxsAAEfABKPXCj1wpEdAWmfO2RaHK0dARkrAgxJumIdynBsAAEfABBBiTdLxqkdAWmj1wo9cKUdARkxqfvnbI4dynRsAAEfAA8CDEm6XjUdAWmmZmZmZmkdARk1P3ztkWodynhsAAEfAA2RaHKwIMUdAWmpeNT987kdARk5WBBiTdYdynxsAAEfAAxR64UeuFEdAWmsCDEm6XkdARk8an752yYdyoBsAAEfAArhR64UeuEdAWmu2RaHKwUdARlAgxJul44dyoRsAAEfAAoMSbpeNUEdAWmwo9cKPXEdARlDEm6XjVIdyohsAAEfAAibpeNT99EdAWmztkWhysEdARlHKwIMSb4dyoxsAAEfAAgxJul41P0dAWm0euFHrhUdARlIMSbpeNYdypBsAAEfAAdcKPXCj10dAWm2RaHKwIUdARlKwIMSbpodypRsAAEfAAXrhR64Ue0dAWm5WBBiTdUdARlO2RaHKwYdyphsAAEfAAUWhysCDEkdAWm64UeuFH0dARlQ5WBBiTodypxsAAEfAASsCDEm6XkdAWm752yLQ5UdARlR64UeuFIdyqBsAAEfAAOl41P3ztkdAWm987ZFoc0dARlU/fO2RaIdyqRsAAEfAAM7ZFocrAkdAWm++dsi0OUdARlWBBiTdL4dyqhsAAEfAAJmZmZmZmkdAWnAgxJul40dARlYk3S8aoIdyqxsAAEfAAD1wo9cKPUdAWnDlYEGJN0dARlcrAgxJuodyrBsAAEfAACLQ5WBBiUdAWnEm6XjU/kdARldsi0OVgYdyrRsAAEfAAAgxJul41UdAWnFYEGJN00dARleuFHrhSIdyrhsAAEe//9si0OVgQkdAWnGJN0vGqEdARlfvnbItDodyrxsAAEe//yLQ5WBBiUdAWnJN0vGp/EdARlj1wo9cKYdysBsAAEe//u2RaHKwIUdAWnKPXCj1w0dARlk3S8an8IdysRsAAEe//rhR64UeuEdAWnLAgxJumEdARlmZmZmZmodyshsAAEe//gAAAAAAAEdAWnOFHrhR7EdARlp++dsi0YdysxsAAEe//crAgxJumEdAWnO2RaHKwUdARlrhR64Ue4dytBsAAEe//ZWBBiTdL0dAWnP3ztkWh0dARlsi0OVgQodytRsAAEe//WRaHKwIMUdAWnQo9cKPXEdARltkWhysCIdythsAAEe//KwIMSbpeUdAWnTtkWhysEdARlxqfvnbI4dytxsAAEe//HbItDlYEEdAWnUvGp++d0dARlysCDEm6YdyuBsAAEe//EGJN0vGqEdAWnVgQYk3TEdARlztkWhysIdyuRsAAEe//AxJul41P0dAWnWRaHKwIUdARl1P3ztkWodyuhsAAEe/+1P3ztkWh0dAWnZWBBiTdUdARl41P3ztkYdyuxsAAEe/+x64UeuFH0dAWnaXjU/fO0dARl6XjU/fO4dyvBsAAEe/+ul41P3ztkdAWnbItDlYEEdARl7ZFocrAodyvRsAAEe/+jU/fO2RaEdAWneNT987ZEdARl/fO2RaHYdyvhsAAEe/+gAAAAAAAEdAWnfO2RaHK0dARmAgxJul44dyvxsAAEe/+crAgxJumEdAWngAAAAAAEdARmBiTdLxqodywBsAAEe/+ZWBBiTdL0dAWnhBiTdLx0dARmCj1wo9cYdywRsAAEe/+N0vGp++d0dAWnkGJN0vG0dARmGp++dsi4dywhsAAEe/+KfvnbItDkdAWnk3S8an8EdARmHrhR64UodywxsAAEe/+HbItDlYEEdAWnlocrAgxUdARmItDlYEGYdyxBsAAEe/94k3S8an8EdAWnpul41P30dARmN0vGp++odyxRsAAEe/91P3ztkWh0dAWnqfvnbItEdARmPXCj1wpIdyxhsAAEe/9x64UeuFH0dAWnrhR64Ue0dARmQYk3S8aodyxxsAAEe/9mp++dsi0UdAWnul41P3z0dARmT987ZFoodyyBsAAEe/9jU/fO2RaEdAWnvXCj1wpEdARmVgQYk3TIdyyRsAAEe/9gAAAAAAAEdAWnwYk3S8akdARmWhysCDEodyyhsAAEe/9RaHKwIMSkdAWn0euFHrhUdARmbpeNT99IdyyxsAAEe/9OFHrhR64UdAWn1P3ztkWkdARmcrAgxJuodyzBsAAEe/9KwIMSbpeUdAWn2BBiTdL0dARmdsi0OVgYdyzRsAAEe/88KPXCj1w0dAWn6HKwIMSkdARmi0OVgQYodyzhsAAEe/841P3ztkWkdAWn7ItDlYEEdARmj1wo9cKYdyzxsAAEe/81gQYk3S8kdAWn752yLQ5UdARmk3S8an8Idy0BsAAEe/8qPXCj1wpEdAWn++dsi0OUdARmo9cKPXCody0RsAAEe/8m6XjU/fO0dAWoAAAAAAAEdARmp++dsi0Ydy0hsAAEe/8jlYEGJN00dAWoAxJul41UdARmrAgxJumIdy0xsAAEe/8U/fO2RaHUdAWoE3S8an8EdARmwIMSbpeYdy1BsAAEe/8RqfvnbItEdAWoF41P3ztkdARmxJul41P4dy1RsAAEe/8Ol41P3ztkdAWoGp++dsi0dARmyLQ5WBBody1hsAAEe/8LAgxJul40dAWoHrhR64UkdARmztkWhysIdy1xsAAEe/7/fO2RaHK0dAWoKwIMSbpkdARm3S8an754dy2BsAAEe/75WBBiTdL0dAWoLhR64Ue0dARm4UeuFHrody2RsAAEe/7bpeNT987kdAWoPnbItDlkdARm9cKPXCj4dy2hsAAEe/7O2RaHKwIUdAWoRaHKwIMUdARm/fO2RaHYdy2xsAAEe/7IMSbpeNUEdAWoSbpeNT+EdARnBBiTdLx4dy3BsAAEe/6xqfvnbItEdAWoVgQYk3TEdARnEm6XjU/ody3RsAAEe/6dsi0OVgQkdAWoYUeuFHrkdARnIMSbpeNYdy3hsAAEe/56XjU/fO2UdAWodLxqfvnkdARnOVgQYk3Ydy3xsAAEe/5j1wo9cKPUdAWoggxJul40dARnR64UeuFIdy4BsAAEe/5QYk3S8aoEdAWojEm6XjVEdARnVgQYk3TIdy4RsAAEe/45WBBiTdL0dAWomZmZmZmkdARnZFocrAg4dy4hsAAEe/4l41P3ztkUdAWopN0vGp/EdARncKPXCj14dy4xsAAEe/4WBBiTdLx0dAWorQ5WBBiUdARnfO2RaHK4dy5BsAAEe/4PXCj1wo9kdAWosSbpeNUEdARngQYk3S8ody5RsAAEe/4Cj1wo9cKUdAWouFHrhR7EdARniTdLxqf4dy5hsAAEe/3YEGJN0vG0dAWoxaHKwIMUdARnmZmZmZmody5xsAAEe/2xJul41P30dAWoz987ZFokdARnpeNT987ody6BsAAEe/2EGJN0vGqEdAWo3S8an750dARntDlYEGJYdy6RsAAEe/1qfvnbItDkdAWo5FocrAg0dARnvnbItDlody6hsAAEe/09cKPXCj10dAWo8an752yUdARnzMzMzMzYdy6xsAAEe/0wIMSbpeNUdAWo9LxqfvnkdARn0OVgQYk4dy7BsAAEe/0WhysCDEnEdAWo/O2RaHK0dARn2RaHKwIYdy7RsAAEe/zS8an752yUdAWpCTdLxqf0dARn6XjU/fO4dy7hsAAEe/y6XjU/fO2UdAWpDU/fO2RkdARn7ZFocrAody7xsAAEe/yfvnbItDlkdAWpEGJN0vG0dARn8an752yYdy8BsAAEe/yFHrhR64UkdAWpFHrhR64UdARn9cKPXCj4dy8RsAAEe/wtDlYEGJN0dAWpIcrAgxJ0dARoBBiTdLx4dy8hsAAEe/wSbpeNT99EdAWpJN0vGp/EdARoCDEm6XjYdy8xsAAEe/vvnbItDlYEdAWpKPXCj1w0dARoDlYEGJN4dy9BsAAEe/s/fO2RaHK0dAWpNkWhysCEdARoHKwIMSb4dy9RsAAEe/sKPXCj1wpEdAWpOVgQYk3UdARoIMSbpeNYdy9hsAAEe/qyLQ5WBBiUdAWpPXCj1wpEdARoJN0vGp/Idy9xsAAEe/pHrhR64Ue0dAWpQYk3S8akdARoKPXCj1w4dy+BsAAEc/cGJN0vGp/EdAWpTdLxqfvkdARoN0vGp++ody+RsAAEc/kGJN0vGp/EdAWpUeuFHrhUdARoPXCj1wpIdy+hsAAEc/nbItDlYEGUdAWpVgQYk3TEdARoQYk3S8aody+xsAAEc/srAgxJul40dAWpYk3S8aoEdARoT987ZFoody/BsAAEc/tcKPXCj1w0dAWpZmZmZmZkdARoU/fO2RaIdy/RsAAEc/uRaHKwIMSkdAWpan752yLUdARoWBBiTdL4dy/hsAAEc/vCj1wo9cKUdAWpbZFocrAkdARoXCj1wo9ody/xsAAEc/w7ZFocrAg0dAWpeuFHrhSEdARoan752yLYdyABwAAEc/xT987ZFoc0dAWpfvnbItDkdARobpeNT99IdyARwAAEc/xul41P3ztkdAWpggxJul40dARodLxqfvnodyAhwAAEc/yHKwIMSbpkdAWphiTdLxqkdARoeNT987ZIdyAxwAAEc/zhR64UeuFEdAWpk3S8an8EdARohysCDEnIdyBBwAAEc/z52yLQ5WBEdAWpl41P3ztkdARoi0OVgQYodyBRwAAEc/0KPXCj1wpEdAWpmp++dsi0dARoj1wo9cKYdyBhwAAEc/03S8an7520dAWpp++dsi0UdARonbItDlYIdyBxwAAEc/1DlYEGJN00dAWprAgxJumEdARoocrAgxJ4dyCBwAAEc/1P3ztkWhy0dAWpsCDEm6XkdARopeNT987odyCRwAAEc/1dLxqfvnbUdAWpszMzMzM0dARoqfvnbItIdyChwAAEc/2JN0vGp++kdAWpwIMSbpeUdARoul41P3z4dyCxwAAEc/2WhysCDEnEdAWpxJul41P0dARovnbItDlodyDBwAAEc/2i0OVgQYk0dAWpyLQ5WBBkdARowo9cKPXIdyDRwAAEc/3cKPXCj1w0dAWp2RaHKwIUdARo1P3ztkWodyDhwAAEc/3peNT987ZEdAWp3S8an750dARo2RaHKwIYdyDxwAAEc/31wo9cKPXEdAWp4UeuFHrkdARo3S8an754dyEBwAAEc/4RaHKwIMSkdAWp7peNT99EdARo64UeuFH4dyERwAAEc/4XjU/fO2RkdAWp8an752yUdARo752yLQ5YdyEhwAAEc/4dsi0OVgQkdAWp9cKPXCj0dARo87ZFocrIdyExwAAEc/4kWhysCDEkdAWp+dsi0OVkdARo987ZFoc4dyFBwAAEc/4rAgxJul40dAWp/fO2RaHUdARo++dsi0OYdyFRwAAEc/46XjU/fO2UdAWqBysCDEnEdARpBiTdLxqodyFhwAAEc/5BBiTdLxqkdAWqC0OVgQYkdARpCj1wo9cYdyFxwAAEc/5HKwIMSbpkdAWqDlYEGJN0dARpDlYEGJN4dyGBwAAEc/5j1wo9cKPUdAWqH752yLREdARpItDlYEGYdyGRwAAEc/5p++dsi0OUdAWqI9cKPXCkdARpJul41P34dyGhwAAEc/5wIMSbpeNUdAWqJ++dsi0UdARpKwIMSbpodyGxwAAEc/52yLQ5WBBkdAWqLAgxJumEdARpLxqfvnbYdyHBwAAEc/6Gp++dsi0UdAWqNT987ZF0dARpOVgQYk3YdyHRwAAEc/6MzMzMzMzUdAWqOFHrhR7EdARpPXCj1wpIdyHhwAAEc/6S8an752yUdAWqPGp++dskdARpQYk3S8aodyHxwAAEc/6vnbItDlYEdAWqTdLxqfvkdARpU/fO2RaIdyIBwAAEc/68an752yLUdAWqVgQYk3TEdARpXCj1wo9odyIRwAAEc/7Cj1wo9cKUdAWqWhysCDEkdARpYEGJN0vIdyIhwAAEc/7sCDEm6XjUdAWqcrAgxJukdARpeuFHrhSIdyIxwAAEc/77ZFocrAg0dAWqfO2RaHK0dARphR64UeuIdyJBwAAEc/8EGJN0vGqEdAWqhBiTdLx0dARpjU/fO2RodyJRwAAEc/8HKwIMSbpkdAWqiDEm6XjUdARpkWhysCDIdyJhwAAEc/8NkWhysCDEdAWqkGJN0vG0dARpmZmZmZmodyJxwAAEc/8SLQ5WBBiUdAWqlYEGJN00dARpn752yLRIdyKBwAAEc/8bpeNT987kdAWqocrAgxJ0dARprAgxJumIdyKRwAAEc/8mp++dsi0UdAWqrxqfvnbUdARpul41P3z4dyKhwAAEc/8tDlYEGJN0dAWqtkWhysCEdARpwo9cKPXIdyKxwAAEc/8zdLxqfvnkdAWqvnbItDlkdARpysCDEm6YdyLBwAAEc/84EGJN0vG0dAWqxJul41P0dARp0OVgQYk4dyLRwAAEc/9BiTdLxqf0dAWqz987ZFokdARp3S8an754dyLhwAAEc/9Mi0OVgQYkdAWq3jU/fO2UdARp64UeuFH4dyLxwAAEc/9Vwo9cKPXEdAWq6XjU/fO0dARp9cKPXCj4dyMBwAAEc/9ZFocrAgxUdAWq7ZFocrAkdARp++dsi0OYdyMRwAAEc/9gxJul41P0dAWq9si0OVgUdARqBBiTdLx4dyMhwAAEc/9nKwIMSbpkdAWq/vnbItDkdARqDEm6XjVIdyMxwAAEc/9tkWhysCDEdAWrBysCDEnEdARqFHrhR64YdyNBwAAEc/9x64UeuFH0dAWrDU/fO2RkdARqGp++dsi4dyNRwAAEc/91P3ztkWh0dAWrEGJN0vG0dARqHrhR64UodyNhwAAEc/94UeuFHrhUdAWrFHrhR64UdARqItDlYEGYdyNxwAAEc/97ZFocrAg0dAWrGJN0vGqEdARqJul41P34dyOBwAAEc/+GZmZmZmZkdAWrJul41P30dARqNT987ZF4dyORwAAEc/+JeNT987ZEdAWrKfvnbItEdARqOVgQYk3YdyOhwAAEc/+Mi0OVgQYkdAWrLhR64Ue0dARqPXCj1wpIdyOxwAAEc/+S8an752yUdAWrNkWhysCEdARqRaHKwIMYdyPBwAAEc/+XjU/fO2RkdAWrPGp++dskdARqS8an7524dyPRwAAEc/+an752yLREdAWrQIMSbpeUdARqT987ZFoodyPhwAAEc/+dsi0OVgQkdAWrRJul41P0dARqUeuFHrhYdyPxwAAEc/+gxJul41P0dAWrR64UeuFEdARqVgQYk3TIdyQBwAAEc/+rxqfvnbI0dAWrVgQYk3TEdARqZFocrAg4dyQRwAAEc/+u2RaHKwIUdAWrWhysCDEkdARqaHKwIMSodyQhwAAEc/+x64UeuFH0dAWrXjU/fO2UdARqbItDlYEIdyQxwAAEc/+0/fO2RaHUdAWrYk3S8aoEdARqcKPXCj14dyRBwAAEc/+4UeuFHrhUdAWrZmZmZmZkdARqdLxqfvnodyRRwAAEc//AAAAAAAAEdAWrb52yLQ5UdARqfvnbItDodyRhwAAEc//DEm6XjU/kdAWrc7ZFocrEdARqgxJul41YdyRxwAAEc//GJN0vGp/EdAWrd87ZFoc0dARqhysCDEnIdySBwAAEc//Mi0OVgQYkdAWrgAAAAAAEdARqj1wo9cKYdySRwAAEc//RJul41P30dAWrhiTdLxqkdARqk3S8an8IdyShwAAEc//UOVgQYk3UdAWrij1wo9cUdARql41P3ztodySxwAAEc//XS8an7520dAWrjlYEGJN0dARqm6XjU/fYdyTBwAAEc//aXjU/fO2UdAWrkWhysCDEdARqn752yLRIdyTRwAAEc//dsi0OVgQkdAWrlocrAgxUdARqo9cKPXCodyThwAAEc//lYEGJN0vEdAWrn752yLREdARqrhR64Ue4dyTxwAAEc//ocrAgxJukdAWro9cKPXCkdARqsi0OVgQodyUBwAAEc//rhR64UeuEdAWrp++dsi0UdARqtkWhysCIdyURwAAEc//x64UeuFH0dAWrsCDEm6XkdARqvnbItDlodyUhwAAEc//5WBBiTdL0dAWrul41P3z0dARqxqfvnbI4dyUxwAAEc//8rAgxJumEdAWrvnbItDlkdARqysCDEm6YdyVBwAAEc///vnbItDlkdAWrwYk3S8akdARqztkWhysIdyVRwAAEdAAFP3ztkWh0dAWrz987ZFokdARq3S8an754dyVhwAAEdAAGyLQ5WBBkdAWr0/fO2RaEdARq4UeuFHrodyVxwAAEdAAIUeuFHrhUdAWr2BBiTdL0dARq5WBBiTdYdyWBwAAEdAAJ2yLQ5WBEdAWr3Cj1wo9kdARq52yLQ5WIdyWRwAAEdAALhR64UeuEdAWr4EGJN0vEdARq64UeuFH4dyWhwAAEdAANDlYEGJN0dAWr5FocrAg0dARq752yLQ5YdyWxwAAEdAAPXCj1wo9kdAWr6n752yLUdARq9cKPXCj4dyXBwAAEdAAQ5WBBiTdUdAWr7peNT99EdARq+dsi0OVodyXRwAAEdAASbpeNT99EdAWr8rAgxJukdARq/fO2RaHYdyXhwAAEdAAXztkWhysEdAWsAQYk3S8kdARrDEm6XjVIdyXxwAAEdAAZWBBiTdL0dAWsBR64UeuEdARrDlYEGJN4dyYBwAAEdAAa4UeuFHrkdAWsCTdLxqf0dARrEm6XjU/odyYRwAAEdAAcan752yLUdAWsDEm6XjVEdARrFocrAgxYdyYhwAAEdAAeFHrhR64UdAWsEWhysCDEdARrGp++dsi4dyYxwAAEdAAhysCDEm6UdAWsGp++dsi0dARrJN0vGp/IdyZBwAAEdAAjU/fO2RaEdAWsHrhR64UkdARrKPXCj1w4dyZRwAAEdAAk3S8an750dAWsItDlYEGUdARrLQ5WBBiYdyZhwAAEdAAoEGJN0vG0dAWsKwIMSbpkdARrMzMzMzM4dyZxwAAEdAApmZmZmZmkdAWsMCDEm6XkdARrN0vGp++odyaBwAAEdAArxqfvnbI0dAWsNT987ZF0dARrPXCj1wpIdyaRwAAEdAAtT987ZFokdAWsOVgQYk3UdARrQYk3S8aodyahwAAEdAAu2RaHKwIUdAWsPXCj1wpEdARrRaHKwIMYdyaxwAAEdAAwgxJul41UdAWsQYk3S8akdARrSbpeNT+IdybBwAAEdAA0OVgQYk3UdAWsS8an7520dARrUeuFHrhYdybRwAAEdAA1wo9cKPXEdAWsT987ZFokdARrVgQYk3TIdybhwAAEdAA3S8an7520dAWsU/fO2RaEdARrWhysCDEodybxwAAEdAA6fvnbItDkdAWsXCj1wo9kdARrYk3S8aoIdycBwAAEdAA8CDEm6XjUdAWsYEGJN0vEdARrZmZmZmZodycRwAAEdAA+NT987ZF0dAWsZmZmZmZkdARran752yLYdychwAAEdAA/vnbItDlkdAWsan752yLUdARrbpeNT99IdycxwAAEdABBR64UeuFEdAWsbpeNT99EdARrcrAgxJuodydBwAAEdABC8an752yUdAWscrAgxJukdARrdsi0OVgYdydRwAAEdABGBBiTdLx0dAWseuFHrhSEdARrfvnbItDodydhwAAEdABIMSbpeNUEdAWsgQYk3S8kdARrgxJul41YdydxwAAEdABM7ZFocrAkdAWsjU/fO2RkdARrj1wo9cKYdyeBwAAEdABQo9cKPXCkdAWsl41P3ztkdARrmZmZmZmodyeRwAAEdABTtkWhysCEdAWsn752yLREdARrn752yLRIdyehwAAEdABWyLQ5WBBkdAWsqPXCj1w0dARrp++dsi0YdyexwAAEdABYcrAgxJukdAWsrQ5WBBiUdARrrAgxJumIdyfBwAAEdABan752yLREdAWsszMzMzM0dARrsi0OVgQodyfRwAAEdABdsi0OVgQkdAWsu2RaHKwUdARruFHrhR7IdyfhwAAEdABfO2RaHKwUdAWsv3ztkWh0dARrvGp++dsodyfxwAAEdABiTdLxqfvkdAWsx64UeuFEdARrxJul41P4dygBwAAEdABkm6XjU/fUdAWszdLxqfvkdARrysCDEm6YdygRwAAEdABpN0vGp++kdAWs2hysCDEkdARr1P3ztkWodyghwAAEdABqwIMSbpeUdAWs3jU/fO2UdARr2RaHKwIYdygxwAAEdABwAAAAAAAEdAWs7ItDlYEEdARr5WBBiTdYdyhBwAAEdABxiTdLxqf0dAWs8an752yUdARr6XjU/fO4dyhRwAAEdAB0m6XjU/fUdAWs+dsi0OVkdARr8an752yYdyhhwAAEdAB26XjU/fO0dAWtAAAAAAAEdARr9cKPXCj4dyhxwAAEdAB7ZFocrAg0dAWtDEm6XjVEdARsAgxJul44dyiBwAAEdAB9DlYEGJN0dAWtEGJN0vG0dARsBiTdLxqodyiRwAAEdACAxJul41P0dAWtGp++dsi0dARsDlYEGJN4dyihwAAEdACD1wo9cKPUdAWtItDlYEGUdARsFocrAgxYdyixwAAEdACG6XjU/fO0dAWtLAgxJumEdARsHKwIMSb4dyjBwAAEdACJFocrAgxUdAWtMi0OVgQkdARsItDlYEGYdyjRwAAEdACKn752yLREdAWtNkWhysCEdARsJul41P34dyjhwAAEdACNsi0OVgQkdAWtPnbItDlkdARsLQ5WBBiYdyjxwAAEdACS8an752yUdAWtTMzMzMzUdARsO2RaHKwYdykBwAAEdACUeuFHrhSEdAWtUeuFHrhUdARsP3ztkWh4dykRwAAEdACWBBiTdLx0dAWtVgQYk3TEdARsQYk3S8aodykhwAAEdACXjU/fO2RkdAWtWhysCDEkdARsRaHKwIMYdykxwAAEdACZFocrAgxUdAWtXjU/fO2UdARsSbpeNT+IdylBwAAEdACczMzMzMzUdAWtaHKwIMSkdARsUeuFHrhYdylRwAAEdACeVgQYk3TEdAWtbItDlYEEdARsVgQYk3TIdylhwAAEdACf3ztkWhy0dAWtcKPXCj10dARsWhysCDEodylxwAAEdACi8an752yUdAWtedsi0OVkdARsYk3S8aoIdymBwAAEdAClHrhR64UkdAWtgAAAAAAEdARsZmZmZmZodymRwAAEdACmp++dsi0UdAWthBiTdLx0dARsan752yLYdymhwAAEdACoMSbpeNUEdAWtiDEm6XjUdARsbpeNT99IdymxwAAEdACpmZmZmZmkdAWtjEm6XjVEdARscrAgxJuodynBwAAEdACrQ5WBBiTkdAWtkWhysCDEdARsdLxqfvnodynRwAAEdACu+dsi0OVkdAWtm6XjU/fUdARsfvnbItDodynhwAAEdACwYk3S8aoEdAWtn752yLREdARsgxJul41YdynxwAAEdACx64UeuFH0dAWto9cKPXCkdARshR64UeuIdyoBwAAEdAC0/fO2RaHUdAWtrQ5WBBiUdARsjU/fO2RodyoRwAAEdAC3KwIMSbpkdAWtszMzMzM0dARskWhysCDIdyohwAAEdAC4tDlYEGJUdAWtt0vGp++kdARslYEGJN04dyoxwAAEdAC6PXCj1wpEdAWtu2RaHKwUdARsmZmZmZmodypBwAAEdAC7xqfvnbI0dAWtv3ztkWh0dARsnbItDlYIdypRwAAEdAC9T987ZFokdAWtw5WBBiTkdARsocrAgxJ4dyphwAAEdADBBiTdLxqkdAWtztkWhysEdARsqfvnbItIdypxwAAEdADCj1wo9cKUdAWt0vGp++d0dARsrhR64Ue4dyqBwAAEdADD987ZFoc0dAWt1wo9cKPUdARssCDEm6XodyqRwAAEdADFgQYk3S8kdAWt2yLQ5WBEdARstDlYEGJYdyqhwAAEdADHCj1wo9cUdAWt4EGJN0vEdARsuFHrhR7IdyqxwAAEdADIk3S8an8EdAWt5FocrAg0dARsvGp++dsodyrBwAAEdADKwIMSbpeUdAWt6n752yLUdARswIMSbpeYdyrRwAAEdADMSbpeNT+EdAWt7peNT99EdARsxJul41P4dyrhwAAEdADN0vGp++d0dAWt8rAgxJukdARsyLQ5WBBodyrxwAAEdADQxJul41P0dAWt++dsi0OUdARsztkWhysIdysBwAAEdADTEm6XjU/kdAWuAgxJul40dARs1P3ztkWodysRwAAEdADUeuFHrhSEdAWuBiTdLxqkdARs2RaHKwIYdyshwAAEdADWBBiTdLx0dAWuCj1wo9cUdARs2yLQ5WBIdysxwAAEdADXjU/fO2RkdAWuD1wo9cKUdARs3ztkWhy4dytBwAAEdADZFocrAgxUdAWuE3S8an8EdARs41P3ztkYdytRwAAEdADan752yLREdAWuF41P3ztkdARs52yLQ5WIdythwAAEdADczMzMzMzUdAWuHbItDlYEdARs64UeuFH4dytxwAAEdADeNT987ZF0dAWuIcrAgxJ0dARs752yLQ5YdyuBwAAEdADfvnbItDlkdAWuJul41P30dARs87ZFocrIdyuRwAAEdADi0OVgQYk0dAWuLxqfvnbUdARs+dsi0OVodyuhwAAEdADkWhysCDEkdAWuNDlYEGJUdARs/fO2RaHYdyuxwAAEdADmhysCDEnEdAWuOl41P3z0dARtAgxJul44dyvBwAAEdADn752yLQ5UdAWuPnbItDlkdARtBiTdLxqodyvRwAAEdADpeNT987ZEdAWuQo9cKPXEdARtCj1wo9cYdyvhwAAEdADrAgxJul40dAWuRqfvnbI0dARtDlYEGJN4dyvxwAAEdADuuFHrhR7EdAWuUeuFHrhUdARtFocrAgxYdywBwAAEdADwIMSbpeNUdAWuVgQYk3TEdARtGp++dsi4dywRwAAEdADxqfvnbItEdAWuWhysCDEkdARtHKwIMSb4dywhwAAEdADzMzMzMzM0dAWuXztkWhy0dARtIMSbpeNYdywxwAAEdAD0vGp++dskdAWuY1P3ztkUdARtJN0vGp/IdyxBwAAEdAD2RaHKwIMUdAWuZ2yLQ5WEdARtKPXCj1w4dyxRwAAEdAD4UeuFHrhUdAWubZFocrAkdARtLQ5WBBiYdyxhwAAEdAD52yLQ5WBEdAWucrAgxJukdARtMSbpeNUIdyxxwAAEdAD7ZFocrAg0dAWudsi0OVgUdARtMzMzMzM4dyyBwAAEdAEAAAAAAAAEdAWuhBiTdLx0dARtP3ztkWh4dyyRwAAEdAEBBiTdLxqkdAWuij1wo9cUdARtQ5WBBiTodyyhwAAEdAEBysCDEm6UdAWujlYEGJN0dARtR64UeuFIdyyxwAAEdAECfvnbItDkdAWuk3S8an8EdARtS8an7524dyzBwAAEdAEDQ5WBBiTkdAWul41P3ztkdARtTdLxqfvodyzRwAAEdAEECDEm6XjUdAWum6XjU/fUdARtUeuFHrhYdyzhwAAEdAEFHrhR64UkdAWuocrAgxJ0dARtVgQYk3TIdyzxwAAEdAEF41P3ztkUdAWupul41P30dARtWhysCDEody0BwAAEdAEGl41P3ztkdAWuqwIMSbpkdARtXjU/fO2Ydy0RwAAEdAEIIMSbpeNUdAWutDlYEGJUdARtZFocrAg4dy0hwAAEdAEI5WBBiTdUdAWuuFHrhR7EdARtaHKwIMSody0xwAAEdAEJ64UeuFH0dAWuvnbItDlkdARtbItDlYEIdy1BwAAEdAEKsCDEm6XkdAWuw5WBBiTkdARtcKPXCj14dy1RwAAEdAELdLxqfvnkdAWux64UeuFEdARtdLxqfvnody1hwAAEdAEMOVgQYk3UdAWuy8an7520dARteNT987ZIdy1xwAAEdAEOBBiTdLx0dAWu1wo9cKPUdARtgQYk3S8ody2BwAAEdAEOyLQ5WBBkdAWu2yLQ5WBEdARtgxJul41Ydy2RwAAEdAEPfO2RaHK0dAWu3ztkWhy0dARthysCDEnIdy2hwAAEdAERBiTdLxqkdAWu6HKwIMSkdARtjU/fO2Rody2xwAAEdAERysCDEm6UdAWu7ZFocrAkdARtkWhysCDIdy3BwAAEdAES0OVgQYk0dAWu87ZFocrEdARtl41P3ztody3RwAAEdAEUSbpeNT+EdAWu++dsi0OUdARtnbItDlYIdy3hwAAEdAEVDlYEGJN0dAWvAQYk3S8kdARtocrAgxJ4dy3xwAAEdAEWl41P3ztkdAWvCj1wo9cUdARtp++dsi0Ydy4BwAAEdAEXnbItDlYEdAWvEGJN0vG0dARtrAgxJumIdy4RwAAEdAEZ2yLQ5WBEdAWvHbItDlYEdARttkWhysCIdy4hwAAEdAEan752yLREdAWvIcrAgxJ0dARtul41P3z4dy4xwAAEdAEdLxqfvnbUdAWvMSbpeNUEdARtxqfvnbI4dy5BwAAEdAEfbItDlYEEdAWvP3ztkWh0dARt0OVgQYk4dy5RwAAEdAEggxJul41UdAWvRaHKwIMUdARt1P3ztkWody5hwAAEdAEh64UeuFH0dAWvTdLxqfvkdARt3S8an754dy5xwAAEdAEisCDEm6XkdAWvUvGp++d0dARt3ztkWhy4dy6BwAAEdAElT987ZFokdAWvYk3S8aoEdARt64UeuFH4dy6RwAAEdAEnfO2RaHK0dAWvb52yLQ5UdARt9cKPXCj4dy6hwAAEdAEoQYk3S8akdAWvdLxqfvnkdARt+dsi0OVody6xwAAEdAErhR64UeuEdAWviDEm6XjUdARuCDEm6XjYdy7BwAAEdAEs/fO2RaHUdAWvkWhysCDEdARuDlYEGJN4dy7RwAAEdAEuFHrhR64UdAWvmJN0vGqEdARuFHrhR64Ydy7hwAAEdAEwQYk3S8akdAWvpeNT987kdARuHKwIMSb4dy7xwAAEdAExBiTdLxqkdAWvqfvnbItEdARuIMSbpeNYdy8BwAAEdAEy0OVgQYk0dAWvtT987ZF0dARuKPXCj1w4dy8RwAAEdAEzlYEGJN00dAWvul41P3z0dARuLQ5WBBiYdy8hwAAEdAE0SbpeNT+EdAWvvnbItDlkdARuLxqfvnbYdy8xwAAEdAE1wo9cKPXEdAWvx64UeuFEdARuN0vGp++ody9BwAAEdAE22RaHKwIUdAWvzdLxqfvkdARuO2RaHKwYdy9RwAAEdAE3nbItDlYEdAWv0vGp++d0dARuP3ztkWh4dy9hwAAEdAE4UeuFHrhUdAWv1wo9cKPUdARuQYk3S8aody9xwAAEdAE5BiTdLxqkdAWv3Cj1wo9kdARuRaHKwIMYdy+BwAAEdAE5ysCDEm6UdAWv4EGJN0vEdARuR64UeuFIdy+RwAAEdAE7lYEGJN00dAWv64UeuFH0dARuT987ZFoody+hwAAEdAE8WhysCDEkdAWv752yLQ5UdARuU/fO2RaIdy+xwAAEdAE9DlYEGJN0dAWv9LxqfvnkdARuWBBiTdL4dy/BwAAEdAE9wo9cKPXEdAWv+NT987ZEdARuWhysCDEody/RwAAEdAE+hysCDEnEdAWv/fO2RaHUdARuXjU/fO2Ydy/hwAAEdAE/S8an7520dAWwAgxJul40dARuYk3S8aoIdy/xwAAEdAFAUeuFHrhUdAWwCTdLxqf0dARuZmZmZmZodyAB0AAEdAFBFocrAgxUdAWwDU/fO2RkdARuaHKwIMSodyAR0AAEdAFBysCDEm6UdAWwEm6XjU/kdARubItDlYEIdyAh0AAEdAFDQ5WBBiTkdAWwG6XjU/fUdARucrAgxJuodyAx0AAEdAFEWhysCDEkdAWwIcrAgxJ0dARueNT987ZIdyBB0AAEdAFFDlYEGJN0dAWwJul41P30dARueuFHrhSIdyBR0AAEdAFFwo9cKPXEdAWwKwIMSbpkdARufvnbItDodyBh0AAEdAFGhysCDEnEdAWwMCDEm6XkdARugQYk3S8odyBx0AAEdAFHO2RaHKwUdAWwNDlYEGJUdARuhR64UeuIdyCB0AAEdAFIAAAAAAAEdAWwOVgQYk3UdARuiTdLxqf4dyCR0AAEdAFJBiTdLxqkdAWwP3ztkWh0dARujU/fO2RodyCh0AAEdAFJysCDEm6UdAWwRJul41P0dARuj1wo9cKYdyCx0AAEdAFKfvnbItDkdAWwSLQ5WBBkdARuk3S8an8IdyDB0AAEdAFL987ZFoc0dAWwUeuFHrhUdARumZmZmZmodyDR0AAEdAFMvGp++dskdAWwVwo9cKPUdARunbItDlYIdyDh0AAEdAFNwo9cKPXEdAWwXS8an750dARuocrAgxJ4dyDx0AAEdAFOdsi0OVgUdAWwYk3S8aoEdARupeNT987odyEB0AAEdAFPO2RaHKwUdAWwZmZmZmZkdARup++dsi0YdyER0AAEdAFP752yLQ5UdAWwa4UeuFH0dARurAgxJumIdyEh0AAEdAFRul41P3z0dAWwdsi0OVgUdARutDlYEGJYdyEx0AAEdAFSbpeNT99EdAWweuFHrhSEdARutkWhysCIdyFB0AAEdAFTMzMzMzM0dAWwgAAAAAAEdARuul41P3z4dyFR0AAEdAFT52yLQ5WEdAWwhBiTdLx0dARuvGp++dsodyFh0AAEdAFUrAgxJumEdAWwiTdLxqf0dARuwIMSbpeYdyFx0AAEdAFVYEGJN0vEdAWwjlYEGJN0dARuxJul41P4dyGB0AAEdAFWZmZmZmZkdAWwlHrhR64UdARuyLQ5WBBodyGR0AAEdAFXKwIMSbpkdAWwmJN0vGqEdARuysCDEm6YdyGh0AAEdAFX3ztkWhy0dAWwnbItDlYEdARuztkWhysIdyGx0AAEdAFZWBBiTdL0dAWwpul41P30dARu1P3ztkWodyHB0AAEdAFaHKwIMSb0dAWwrAgxJumEdARu2RaHKwIYdyHR0AAEdAFaXjU/fO2UdAWwrhR64Ue0dARu2RaHKwIYdyHh0AAEdAFbItDlYEGUdAWwsi0OVgQkdARu3S8an754dyHx0AAEdAFb1wo9cKPUdAWwt0vGp++kdARu3ztkWhy4dyIB0AAEdAFci0OVgQYkdAWwu2RaHKwUdARu41P3ztkYdyIR0AAEdAFdT987ZFokdAWwwIMSbpeUdARu5WBBiTdYdyIh0AAEdAFeBBiTdLx0dAWwxaHKwIMUdARu6XjU/fO4dyIx0AAEdAFfCj1wo9cUdAWwy8an7520dARu7ZFocrAodyJB0AAEdAFfztkWhysEdAWw0OVgQYk0dARu8an752yYdyJR0AAEdAFggxJul41UdAWw1P3ztkWkdARu87ZFocrIdyJh0AAEdAFh++dsi0OUdAWw3jU/fO2UdARu+dsi0OVodyJx0AAEdAFisCDEm6XkdAWw41P3ztkUdARu/fO2RaHYdyKB0AAEdAFjtkWhysCEdAWw6XjU/fO0dARvAgxJul44dyKR0AAEdAFkeuFHrhSEdAWw7peNT99EdARvBiTdLxqodyKh0AAEdAFlLxqfvnbUdAWw87ZFocrEdARvCDEm6XjYdyKx0AAEdAFl87ZFocrEdAWw987ZFoc0dARvDEm6XjVIdyLB0AAEdAFnrhR64Ue0dAWxAxJul41UdARvFHrhR64YdyLR0AAEdAFoYk3S8aoEdAWxCDEm6XjUdARvFocrAgxYdyLh0AAEdAFpFocrAgxUdAWxDU/fO2RkdARvGp++dsi4dyLx0AAEdAFqj1wo9cKUdAWxFocrAgxUdARvIMSbpeNYdyMB0AAEdAFrU/fO2RaEdAWxG6XjU/fUdARvItDlYEGYdyMR0AAEdAFsWhysCDEkdAWxIcrAgxJ0dARvJul41P34dyMh0AAEdAFtDlYEGJN0dAWxJul41P30dARvKwIMSbpodyMx0AAEdAFtwo9cKPXEdAWxKwIMSbpkdARvLQ5WBBiYdyNB0AAEdAFwAAAAAAAEdAWxOVgQYk3UdARvN0vGp++odyNR0AAEdAFw9cKPXCj0dAWxQIMSbpeUdARvO2RaHKwYdyNh0AAEdAFxul41P3z0dAWxRJul41P0dARvP3ztkWh4dyNx0AAEdAFybpeNT99EdAWxSbpeNT+EdARvQYk3S8aodyOB0AAEdAFzItDlYEGUdAWxTtkWhysEdARvRaHKwIMYdyOR0AAEdAFz52yLQ5WEdAWxUvGp++d0dARvR64UeuFIdyOh0AAEdAF07ZFocrAkdAWxWhysCDEkdARvS8an7524dyOx0AAEdAF2VgQYk3TEdAWxY1P3ztkUdARvUeuFHrhYdyPB0AAEdAF3ztkWhysEdAWxbZFocrAkdARvWBBiTdL4dyPR0AAEdAF4gxJul41UdAWxcan752yUdARvXCj1wo9odyPh0AAEdAF5iTdLxqf0dAWxeNT987ZEdARvYEGJN0vIdyPx0AAEdAF68an752yUdAWxggxJul40dARvZmZmZmZodyQB0AAEdAF7tkWhysCEdAWxhysCDEnEdARvan752yLYdyQR0AAEdAF+JN0vGp/EdAWxl41P3ztkdARvdLxqfvnodyQh0AAEdAF+2RaHKwIUdAWxm6XjU/fUdARvdsi0OVgYdyQx0AAEdAGAUeuFHrhUdAWxpeNT987kdARvfO2RaHK4dyRB0AAEdAGBFocrAgxUdAWxqwIMSbpkdARvgQYk3S8odyRR0AAEdAGCDEm6XjVEdAWxsSbpeNUEdARvhR64UeuIdyRh0AAEdAGDdLxqfvnkdAWxul41P3z0dARvi0OVgQYodyRx0AAEdAGEOVgQYk3UdAWxv3ztkWh0dARvjU/fO2RodySB0AAEdAGFsi0OVgQkdAWxybpeNT+EdARvk3S8an8IdySR0AAEdAGI1P3ztkWkdAWx3jU/fO2UdARvocrAgxJ4dySh0AAEdAGJiTdLxqf0dAWx41P3ztkUdARvo9cKPXCodySx0AAEdAGOJN0vGp/EdAWyAxJul41UdARvuFHrhR7IdyTB0AAEdAGRR64UeuFEdAWyF41P3ztkdARvxJul41P4dyTR0AAEdAGSDEm6XjVEdAWyHKwIMSb0dARvyLQ5WBBodyTh0AAEdAGTxqfvnbI0dAWyKPXCj1w0dARvztkWhysIdyTx0AAEdAGV41P3ztkUdAWyN0vGp++kdARv2RaHKwIYdyUB0AAEdAGWl41P3ztkdAWyPGp++dskdARv2yLQ5WBIdyUR0AAEdAGZul41P3z0dAWyUeuFHrhUdARv52yLQ5WIdyUh0AAEdAGbMzMzMzM0dAWyWyLQ5WBEdARv7ZFocrAodyUx0AAEdAGcOVgQYk3UdAWyYk3S8aoEdARv8an752yYdyVB0AAEdAGdkWhysCDEdAWybItDlYEEdARv987ZFoc4dyVR0AAEdAGeRaHKwIMUdAWycKPXCj10dARv++dsi0OYdyVh0AAEdAGfCj1wo9cUdAWydcKPXCj0dARv/fO2RaHYdyVx0AAEdAGfvnbItDlkdAWyeuFHrhSEdARwAgxJul44dyWB0AAEdAGgxJul41P0dAWyggxJul40dARwBiTdLxqodyWR0AAEdAGheNT987ZEdAWyhysCDEnEdARwCDEm6XjYdyWh0AAEdAGiLQ5WBBiUdAWyi0OVgQYkdARwCj1wo9cYdyWx0AAEdAGjlYEGJN00dAWylYEGJN00dARwEGJN0vG4dyXB0AAEdAGkSbpeNT+EdAWymp++dsi0dARwFHrhR64YdyXR0AAEdAGlT987ZFokdAWyocrAgxJ0dARwGJN0vGqIdyXh0AAEdAGmBBiTdLx0dAWypeNT987kdARwGp++dsi4dyXx0AAEdAGmuFHrhR7EdAWyqwIMSbpkdARwHKwIMSb4dyYB0AAEdAGnbItDlYEEdAWysCDEm6XkdARwIMSbpeNYdyYR0AAEdAGpJul41P30dAWyvGp++dskdARwJul41P34dyYh0AAEdAGqj1wo9cKUdAWyxaHKwIMUdARwLQ5WBBiYdyYx0AAEdAGrQ5WBBiTkdAWyysCDEm6UdARwMSbpeNUIdyZB0AAEdAGr987ZFoc0dAWyz987ZFokdARwMzMzMzM4dyZR0AAEdAGsrAgxJumEdAWy1P3ztkWkdARwNT987ZF4dyZh0AAEdAGtsi0OVgQkdAWy3Cj1wo9kdARwOVgQYk3YdyZx0AAEdAGuZmZmZmZkdAWy4EGJN0vEdARwPXCj1wpIdyaB0AAEdAGvCj1wo9cUdAWy5WBBiTdUdARwP3ztkWh4dyaR0AAEdAGwgxJul41UdAWy752yLQ5UdARwRaHKwIMYdyah0AAEdAGxeNT987ZEdAWy9si0OVgUdARwSbpeNT+Idyax0AAEdAGyLQ5WBBiUdAWy++dsi0OUdARwS8an7524dybB0AAEdAGy4UeuFHrkdAWzAAAAAAAEdARwT987ZFoodybR0AAEdAGzlYEGJN00dAWzBR64UeuEdARwUeuFHrhYdybh0AAEdAG0SbpeNT+EdAWzCj1wo9cUdARwU/fO2RaIdybx0AAEdAG1DlYEGJN0dAWzD1wo9cKUdARwWBBiTdL4dycB0AAEdAG2BBiTdLx0dAWzFocrAgxUdARwXCj1wo9odycR0AAEdAG2uFHrhR7EdAWzG6XjU/fUdARwXjU/fO2Ydych0AAEdAG3bItDlYEEdAWzH752yLREdARwYk3S8aoIdycx0AAEdAG41P3ztkWkdAWzKfvnbItEdARwZmZmZmZodydB0AAEdAG5iTdLxqf0dAWzLxqfvnbUdARwan752yLYdydR0AAEdAG6fvnbItDkdAWzNkWhysCEdARwbpeNT99Idydh0AAEdAG7MzMzMzM0dAWzO2RaHKwUdARwcKPXCj14dydx0AAEdAG752yLQ5WEdAWzQIMSbpeUdARwcrAgxJuodyeB0AAEdAG8m6XjU/fUdAWzRaHKwIMUdARwdsi0OVgYdyeR0AAEdAG+VgQYk3TEdAWzUeuFHrhUdARwfO2RaHK4dyeh0AAEdAG/Cj1wo9cUdAWzVgQYk3TEdARwgQYk3S8odyex0AAEdAG/rhR64Ue0dAWzWyLQ5WBEdARwgxJul41YdyfB0AAEdAHAYk3S8aoEdAWzYEGJN0vEdARwhR64UeuIdyfR0AAEdAHBJul41P30dAWzZWBBiTdUdARwiTdLxqf4dyfh0AAEdAHB2yLQ5WBEdAWzan752yLUdARwi0OVgQYodyfx0AAEdAHC0OVgQYk0dAWzcan752yUdARwj1wo9cKYdygB0AAEdAHDhR64UeuEdAWzdsi0OVgUdARwkWhysCDIdygR0AAEdAHEOVgQYk3UdAWze+dsi0OUdARwlYEGJN04dygh0AAEdAHFocrAgxJ0dAWzhR64UeuEdARwmZmZmZmodygx0AAEdAHGVgQYk3TEdAWzij1wo9cUdARwnbItDlYIdyhB0AAEdAHHS8an7520dAWzkWhysCDEdARwocrAgxJ4dyhR0AAEdAHIAAAAAAAEdAWzlocrAgxUdARwo9cKPXCodyhh0AAEdAHItDlYEGJUdAWzm6XjU/fUdARwpeNT987odyhx0AAEdAHJaHKwIMSkdAWzoMSbpeNUdARwqfvnbItIdyiB0AAEdAHKHKwIMSb0dAWzpeNT987kdARwrAgxJumIdyiR0AAEdAHLEm6XjU/kdAWzrQ5WBBiUdARwsCDEm6Xodyih0AAEdAHMeuFHrhSEdAWzt0vGp++kdARwtkWhysCIdyix0AAEdAHN41P3ztkUdAWzwYk3S8akdARwul41P3z4dyjB0AAEdAHOl41P3ztkdAWzxqfvnbI0dARwvnbItDlodyjR0AAEdAHPjU/fO2RkdAWzzdLxqfvkdARwwIMSbpeYdyjh0AAEdAHQQYk3S8akdAWz0vGp++d0dARwxJul41P4dyjx0AAEdAHQ5WBBiTdUdAWz1wo9cKPUdARwxqfvnbI4dykB0AAEdAHRqfvnbItEdAWz3S8an750dARwyLQ5WBBodykR0AAEdAHUCDEm6XjUdAWz7ZFocrAkdARw0vGp++d4dykh0AAEdAHUrAgxJumEdAWz8rAgxJukdARw1P3ztkWodykx0AAEdAHWFHrhR64UdAWz/O2RaHK0dARw2yLQ5WBIdylB0AAEdAHWyLQ5WBBkdAW0AgxJul40dARw3S8an754dylR0AAEdAHXvnbItDlkdAW0CTdLxqf0dARw4UeuFHrodylh0AAEdAHZJul41P30dAW0E3S8an8EdARw52yLQ5WIdylx0AAEdAHZ2yLQ5WBEdAW0GJN0vGqEdARw6XjU/fO4dymB0AAEdAHbQ5WBBiTkdAW0ItDlYEGUdARw752yLQ5YdymR0AAEdAHcOVgQYk3UdAW0KfvnbItEdARw87ZFocrIdymh0AAEdAHc3S8an750dAW0LxqfvnbUdARw9cKPXCj4dymx0AAEdAHeRaHKwIMUdAW0OVgQYk3UdARw+dsi0OVodynB0AAEdAHe+dsi0OVkdAW0PnbItDlkdARw/fO2RaHYdynR0AAEdAHf752yLQ5UdAW0RaHKwIMUdARxAgxJul44dynh0AAEdAHhWBBiTdL0dAW0T987ZFokdARxBiTdLxqodynx0AAEdAHisCDEm6XkdAW0WhysCDEkdARxDEm6XjVIdyoB0AAEdAHjZFocrAg0dAW0XztkWhy0dARxDlYEGJN4dyoR0AAEdAHkWhysCDEkdAW0Z2yLQ5WEdARxEm6XjU/odyoh0AAEdAHlwo9cKPXEdAW0cKPXCj10dARxFocrAgxYdyox0AAEdAHmdsi0OVgUdAW0dsi0OVgUdARxGp++dsi4dypB0AAEdAHq4UeuFHrkdAW0l41P3ztkdARxKwIMSbpodypR0AAEdAHrlYEGJN00dAW0nKwIMSb0dARxLQ5WBBiYdyph0AAEdAHt41P3ztkUdAW0rhR64Ue0dARxNT987ZF4dypx0AAEdAHul41P3ztkdAW0szMzMzM0dARxOVgQYk3YdyqB0AAEdAHy8an752yUdAW01P3ztkWkdARxSbpeNT+IdyqR0AAEdAHzpeNT987kdAW02hysCDEkdARxS8an7524dyqh0AAEdAH0WhysCDEkdAW03ztkWhy0dARxTdLxqfvodyqx0AAEdAH4EGJN0vG0dAW0+uFHrhSEdARxXCj1wo9odyrB0AAEdAH7Em6XjU/kdAW1Em6XjU/kdARxaHKwIMSodyrR0AAEdAH7xqfvnbI0dAW1F41P3ztkdARxan752yLYdyrh0AAEdAH+uFHrhR7EdAW1LhR64Ue0dARxdLxqfvnodyrx0AAEdAH/bItDlYEEdAW1MzMzMzM0dARxeNT987ZIdysB0AAEdAIAEGJN0vG0dAW1OVgQYk3UdARxeuFHrhSIdysR0AAEdAIAan752yLUdAW1PnbItDlkdARxfO2RaHK4dysh0AAEdAIBiTdLxqf0dAW1T987ZFokdARxhR64UeuIdysx0AAEdAIDZFocrAg0dAW1bItDlYEEdARxk3S8an8IdytB0AAEdAIDtkWhysCEdAW1can752yUdARxlYEGJN04dytR0AAEdAIEEGJN0vG0dAW1dsi0OVgUdARxl41P3ztodyth0AAEdAIEan752yLUdAW1fO2RaHK0dARxmZmZmZmodytx0AAEdAIFkWhysCDEdAW1jlYEGJN0dARxo9cKPXCodyuB0AAEdAIGPXCj1wpEdAW1mJN0vGqEdARxp++dsi0YdyuR0AAEdAIGl41P3ztkdAW1nrhR64UkdARxqfvnbItIdyuh0AAEdAIHZFocrAg0dAW1qwIMSbpkdARxsCDEm6Xodyux0AAEdAIHvnbItDlkdAW1sCDEm6XkdARxsi0OVgQodyvB0AAEdAIIEGJN0vG0dAW1tT987ZF0dARxtDlYEGJYdyvR0AAEdAII5WBBiTdUdAW1wo9cKPXEdARxul41P3z4dyvh0AAEdAIJkWhysCDEdAW1zMzMzMzUdARxwIMSbpeYdyvx0AAEdAIJ41P3ztkUdAW10euFHrhUdARxwo9cKPXIdywB0AAEdAIKPXCj1wpEdAW12BBiTdL0dARxxJul41P4dywR0AAEdAIKl41P3ztkdAW13S8an750dARxxqfvnbI4dywh0AAEdAILZFocrAg0dAW16XjU/fO0dARxzMzMzMzYdywx0AAEdAILtkWhysCEdAW17peNT99EdARxztkWhysIdyxB0AAEdAIMvGp++dskdAW1/vnbItDkdARx1wo9cKPYdyxR0AAEdAINiTdLxqf0dAW2DEm6XjVEdARx3S8an754dyxh0AAEdAIN2yLQ5WBEdAW2EWhysCDEdARx3ztkWhy4dyxx0AAEdAIONT987ZF0dAW2FocrAgxUdARx4UeuFHrodyyB0AAEdAIOj1wo9cKUdAW2G6XjU/fUdARx41P3ztkYdyyR0AAEdAIPAgxJul40dAW2I9cKPXCkdARx52yLQ5WIdyyh0AAEdAIPrhR64Ue0dAW2LhR64Ue0dARx64UeuFH4dyyx0AAEdAIQWhysCDEkdAW2OVgQYk3UdARx752yLQ5YdyzB0AAEdAIQtDlYEGJUdAW2PnbItDlkdARx87ZFocrIdyzR0AAEdAIRgQYk3S8kdAW2SsCDEm6UdARx987ZFoc4dyzh0AAEdAIR0vGp++d0dAW2UOVgQYk0dARx+dsi0OVodyzx0AAEdAISLQ5WBBiUdAW2VgQYk3TEdARx/fO2RaHYdy0B0AAEdAITpeNT987kdAW2bZFocrAkdARyCDEm6XjYdy0R0AAEdAIVcKPXCj10dAW2wYk3S8akdARx9cKPXCj4dy0h0AAEdAIXQ5WBBiTkdAW3FYEGJN00dARx5WBBiTdYdy0x0AAEdAIZDlYEGJN0dAW3aXjU/fO0dARx1P3ztkWody1B0AAEdAIa2RaHKwIUdAW3vnbItDlkdARxwo9cKPXIdy1R0AAEdAIcrAgxJumEdAW4Em6XjU/kdARxsi0OVgQody1h0AAEdAIedsi0OVgUdAW4ZmZmZmZkdARxocrAgxJ4dy1x0AAEdAIgSbpeNT+EdAW4ul41P3z0dARxkWhysCDIdy2B0AAEdAIiFHrhR64UdAW5DlYEGJN0dARxfvnbItDody2R0AAEdAIj52yLQ5WEdAW5Yk3S8aoEdARxbpeNT99Idy2h0AAEdAIlsi0OVgQkdAW5tkWhysCEdARxXjU/fO2Ydy2x0AAEdAInhR64UeuEdAW6Cj1wo9cUdARxS8an7524dy3B0AAEdAIpT987ZFokdAW6XztkWhy0dARxO2RaHKwYdy3R0AAEdAIrItDlYEGUdAW6szMzMzM0dARxKwIMSbpody3h0AAEdAIs7ZFocrAkdAW7BysCDEnEdARxGp++dsi4dy3x0AAEdAIuuFHrhR7EdAW7WyLQ5WBEdARxCDEm6XjYdy4B0AAEdAIwi0OVgQYkdAW7rxqfvnbUdARw987ZFoc4dy4R0AAEdAIyVgQYk3TEdAW8AxJul41UdARw52yLQ5WIdy4h0AAEdAI0KPXCj1w0dAW8Vwo9cKPUdARw1P3ztkWody4x0AAEdAI187ZFocrEdAW8qwIMSbpkdARwxJul41P4dy5B0AAEdAI3xqfvnbI0dAW9AAAAAAAEdARwtDlYEGJYdy5R0AAEdAI5kWhysCDEdAW9U/fO2RaEdARwo9cKPXCody5h0AAEdAI7ZFocrAg0dAW9p++dsi0UdARwkWhysCDIdy5x0AAEdAI9LxqfvnbUdAW9++dsi0OUdARwgQYk3S8ody6B0AAEdAI++dsi0OVkdAW+T987ZFokdARwcKPXCj14dy6R0AAEdAJAzMzMzMzUdAW+o9cKPXCkdARwYEGJN0vIdy6h0AAEdAJCl41P3ztkdAW+987ZFoc0dARwTdLxqfvody6x0AAEdAJEan752yLUdAW/S8an7520dARwPXCj1wpIdy7B0AAEdAJGNT987ZF0dAW/oMSbpeNUdARwLQ5WBBiYdy7R0AAEdAJICDEm6XjUdAW/9LxqfvnkdARwGp++dsi4dy7h0AAEdAJJ0vGp++d0dAXASLQ5WBBkdARwCj1wo9cYdy7x0AAEdAJLpeNT987kdAXAnKwIMSb0dARv+dsi0OVody8B0AAEdAJNcKPXCj10dAXA8KPXCj10dARv6XjU/fO4dy8R0AAEdAJPQ5WBBiTkdAXBRJul41P0dARv1wo9cKPYdy8h0AAEdAJRDlYEGJN0dAXBmJN0vGqEdARvxqfvnbI4dy8x0AAEdAJS2RaHKwIUdAXB7ItDlYEEdARvtkWhysCIdy9B0AAEdAJUrAgxJumEdAXCQYk3S8akdARvo9cKPXCody9R0AAEdAJWdsi0OVgUdAXClYEGJN00dARvk3S8an8Idy9h0AAEdAJYSbpeNT+EdAXC6XjU/fO0dARvgxJul41Ydy9x0AAEdAJaFHrhR64UdAXDPXCj1wpEdARvcrAgxJuody+B0AAEdAJb52yLQ5WEdAXDkWhysCDEdARvYEGJN0vIdy+R0AAEdAJdsi0OVgQkdAXD5WBBiTdUdARvT987ZFoody+h0AAEdAJfhR64UeuEdAXEOVgQYk3UdARvP3ztkWh4dy+x0AAEdAJhT987ZFokdAXEjU/fO2RkdARvLQ5WBBiYdy/B0AAEdAJjGp++dsi0dAXE4k3S8aoEdARvHKwIMSb4dy/R0AAEdAJk7ZFocrAkdAXFNkWhysCEdARvDEm6XjVIdy/h0AAEdAJmuFHrhR7EdAXFij1wo9cUdARu++dsi0OYdy/x0AAEdAJoi0OVgQYkdAXF3jU/fO2UdARu6XjU/fO4dyAB4AAEdAJqVgQYk3TEdAXGMi0OVgQkdARu2RaHKwIYdyAR4AAEdAJsKPXCj1w0dAXGhiTdLxqkdARuyLQ5WBBodyAh4AAEdAJt87ZFocrEdAXG2hysCDEkdARutkWhysCIdyAx4AAEdAJvxqfvnbI0dAXHLxqfvnbUdARupeNT987odyBB4AAEdAJxkWhysCDEdAXHgxJul41UdARulYEGJN04dyBR4AAEdAJzXCj1wo9kdAXH1wo9cKPUdARuhR64UeuIdyBh4AAEdAJ1LxqfvnbUdAXIKwIMSbpkdARucrAgxJuodyBx4AAEdAJ2+dsi0OVkdAXIfvnbItDkdARuYk3S8aoIdyCB4AAEdAJ4zMzMzMzUdAXI0vGp++d0dARuUeuFHrhYdyCR4AAEdAJ6l41P3ztkdAXJJul41P30dARuP3ztkWh4dyCh4AAEdAJ8an752yLUdAXJeuFHrhSEdARuLxqfvnbYdyCx4AAEdAJ+NT987ZF0dAXJz987ZFokdARuHrhR64UodyDB4AAEdAKACDEm6XjUdAXKI9cKPXCkdARuDlYEGJN4dyDR4AAEdAKB0vGp++d0dAXKd87ZFoc0dARt++dsi0OYdyDh4AAEdAKDpeNT987kdAXKy8an7520dARt64UeuFH4dyDx4AAEdAKFcKPXCj10dAXLH752yLREdARt2yLQ5WBIdyEB4AAEdAKHO2RaHKwUdAXLc7ZFocrEdARtyLQ5WBBodyER4AAEdAKJDlYEGJN0dAXLx64UeuFEdARtuFHrhR7IdyEh4AAEdAKK2RaHKwIUdAXMG6XjU/fUdARtp++dsi0YdyEx4AAEdAKMrAgxJumEdAXMcKPXCj10dARtl41P3ztodyFB4AAEdAKOdsi0OVgUdAXMxJul41P0dARthR64UeuIdyFR4AAEdAKQSbpeNT+EdAXNGJN0vGqEdARtdLxqfvnodyFh4AAEdAKSFHrhR64UdAXNbItDlYEEdARtZFocrAg4dyFx4AAEdAKT52yLQ5WEdAXNwIMSbpeUdARtU/fO2RaIdyGB4AAEdAKVsi0OVgQkdAXOFHrhR64UdARtQYk3S8aodyGR4AAEdAKXfO2RaHK0dAXOaHKwIMSkdARtMSbpeNUIdyGh4AAEdAKZT987ZFokdAXOvGp++dskdARtIMSbpeNYdyGx4AAEdAKbGp++dsi0dAXPEWhysCDEdARtDlYEGJN4dyHB4AAEdAKc7ZFocrAkdAXPZWBBiTdUdARs/fO2RaHYdyHR4AAEdAKeuFHrhR7EdAXPuVgQYk3UdARs7ZFocrAodyHh4AAEdAKgi0OVgQYkdAXQDU/fO2RkdARs3S8an754dyHx4AAEdAKiVgQYk3TEdAXQYUeuFHrkdARsysCDEm6YdyIB4AAEdAKkKPXCj1w0dAXQtT987ZF0dARsul41P3z4dyIR4AAEdAKl87ZFocrEdAXRCTdLxqf0dARsqfvnbItIdyIh4AAEdAKnxqfvnbI0dAXRXS8an750dARsl41P3ztodyIx4AAEdAKpkWhysCDEdAXRsi0OVgQkdARshysCDEnIdyJB4AAEdAKrXCj1wo9kdAXSBiTdLxqkdARsdsi0OVgYdyJR4AAEdAKtLxqfvnbUdAXSWhysCDEkdARsZmZmZmZodyJh4AAEdAKu+dsi0OVkdAXSrhR64Ue0dARsU/fO2RaIdyJx4AAEdAKwzMzMzMzUdAXTAgxJul40dARsQ5WBBiTodyKB4AAEdAKyl41P3ztkdAXTVgQYk3TEdARsMzMzMzM4dyKR4AAEdAK0an752yLUdAXTqfvnbItEdARsIMSbpeNYdyKh4AAEdAK2NT987ZF0dAXT/fO2RaHUdARsEGJN0vG4dyKx4AAEdAK4CDEm6XjUdAXUUvGp++d0dARsAAAAAAAIdyLB4AAEdAK50vGp++d0dAXUpul41P30dARr752yLQ5YdyLR4AAEdAK7nbItDlYEdAXU+uFHrhSEdARr3S8an754dyLh4AAEdAK9cKPXCj10dAXVTtkWhysEdARrzMzMzMzYdyLx4AAEdAK/O2RaHKwUdAXVotDlYEGUdARrvGp++dsodyMB4AAEdALBDlYEGJN0dAXV9si0OVgUdARrqfvnbItIdyMR4AAEdALC2RaHKwIUdAXWSsCDEm6UdARrmZmZmZmodyMh4AAEdALErAgxJumEdAXWnrhR64UkdARriTdLxqf4dyMx4AAEdALGdsi0OVgUdAXW87ZFocrEdARreNT987ZIdyNB4AAEdALISbpeNT+EdAXXR64UeuFEdARrZmZmZmZodyNR4AAEdALKFHrhR64UdAXXm6XjU/fUdARrVgQYk3TIdyNh4AAEdALL52yLQ5WEdAXX752yLQ5UdARrRaHKwIMYdyNx4AAEdALNsi0OVgQkdAXYQ5WBBiTkdARrMzMzMzM4dyOB4AAEdALPfO2RaHK0dAXYl41P3ztkdARrItDlYEGYdyOR4AAEdALRT987ZFokdAXY64UeuFH0dARrEm6XjU/odyOh4AAEdALTGp++dsi0dAXZP3ztkWh0dARrAgxJul44dyOx4AAEdALU7ZFocrAkdAXZlHrhR64UdARq752yLQ5YdyPB4AAEdALWuFHrhR7EdAXZ6HKwIMSkdARq3ztkWhy4dyPR4AAEdALYi0OVgQYkdAXaPGp++dskdARqztkWhysIdyPh4AAEdALaVgQYk3TEdAXakGJN0vG0dARqvnbItDlodyPx4AAEdALcKPXCj1w0dAXa5FocrAg0dARqrAgxJumIdyQB4AAEdALd87ZFocrEdAXbOFHrhR7EdARqm6XjU/fYdyQR4AAEdALfvnbItDlkdAXbjEm6XjVEdARqi0OVgQYodyQh4AAEdALhkWhysCDEdAXb4UeuFHrkdARqeNT987ZIdyQx4AAEdALjXCj1wo9kdAXcNT987ZF0dARqaHKwIMSodyRB4AAEdALlLxqfvnbUdAXciTdLxqf0dARqWBBiTdL4dyRR4AAEdALm+dsi0OVkdAXc3S8an750dARqR64UeuFIdyRh4AAEdALozMzMzMzUdAXdMSbpeNUEdARqNT987ZF4dyRx4AAEdALql41P3ztkdAXdhR64UeuEdARqJN0vGp/IdySB4AAEdALsan752yLUdAXd2RaHKwIUdARqFHrhR64YdySR4AAEdALuNT987ZF0dAXeLQ5WBBiUdARqAgxJul44dySh4AAEdALwCDEm6XjUdAXeggxJul40dARp8an752yYdySx4AAEdALx0vGp++d0dAXe1gQYk3TEdARp4UeuFHrodyTB4AAEdALznbItDlYEdAXfKfvnbItEdARp0OVgQYk4dyTR4AAEdAL1cKPXCj10dAXfffO2RaHUdARpvnbItDlodyTh4AAEdAL3O2RaHKwUdAXf0euFHrhUdARprhR64Ue4dyTx4AAEdAL5DlYEGJN0dAXgJeNT987kdARpnbItDlYIdyUB4AAEdAL62RaHKwIUdAXgedsi0OVkdARpi0OVgQYodyUR4AAEdAL8rAgxJumEdAXgzdLxqfvkdARpeuFHrhSIdyUh4AAEdAL+dsi0OVgUdAXhItDlYEGUdARpan752yLYdyUx4AAEdAMAJN0vGp/EdAXhdsi0OVgUdARpWhysCDEodyVB4AAEdAMBCj1wo9cUdAXhysCDEm6UdARpR64UeuFIdyVR4AAEdAMB752yLQ5UdAXiHrhR64UkdARpN0vGp++odyVh4AAEdAMC2RaHKwIUdAXicrAgxJukdARpJul41P34dyVx4AAEdAMDvnbItDlkdAXixqfvnbI0dARpFHrhR64YdyWB4AAEdAMEp++dsi0UdAXjGp++dsi0dARpBBiTdLx4dyWR4AAEdAMFjU/fO2RkdAXjbpeNT99EdARo87ZFocrIdyWh4AAEdAMGdsi0OVgUdAXjw5WBBiTkdARo41P3ztkYdyWx4AAEdAMHXCj1wo9kdAXkF41P3ztkdARo0OVgQYk4dyXB4AAEdAMIRaHKwIMUdAXka4UeuFH0dARowIMSbpeYdyXR4AAEdAMJKwIMSbpkdAXkv3ztkWh0dARosCDEm6XodyXh4AAEdAMKEGJN0vG0dAXlE3S8an8EdARonbItDlYIdyXx4AAEdAMK+dsi0OVkdAXlZ2yLQ5WEdARojU/fO2RodyYB4AAEdAML3ztkWhy0dAXlu2RaHKwUdARofO2RaHK4dyYR4AAEdAMMyLQ5WBBkdAXmD1wo9cKUdARobItDlYEIdyYh4AAEdAMNrhR64Ue0dAXmZFocrAg0dARoWhysCDEodyYx4AAEdAMOl41P3ztkdAXmuFHrhR7EdARoSbpeNT+IdyZB4AAEdAMPfO2RaHK0dAXnDEm6XjVEdARoOVgQYk3YdyZR4AAEdAMQZmZmZmZkdAXnYEGJN0vEdARoJul41P34dyZh4AAEdAMRS8an7520dAXntDlYEGJUdARoFocrAgxYdyZx4AAEdAMSNT987ZF0dAXoCDEm6XjUdARoBiTdLxqodyaB4AAEdAMTGp++dsi0dAXoXCj1wo9kdARn9cKPXCj4dyaR4AAEdAMUAAAAAAAEdAXosCDEm6XkdARn41P3ztkYdyah4AAEdAMU6XjU/fO0dAXpBR64UeuEdARn0vGp++d4dyax4AAEdAMVztkWhysEdAXpWRaHKwIUdARnwo9cKPXIdybB4AAEdAMWuFHrhR7EdAXprQ5WBBiUdARnsi0OVgQodybR4AAEdAMXnbItDlYEdAXqAQYk3S8kdARnn752yLRIdybh4AAEdAMYhysCDEnEdAXqVP3ztkWkdARnj1wo9cKYdybx4AAEdAMZbItDlYEEdAXqqPXCj1w0dARnfvnbItDodycB4AAEdAMaVgQYk3TEdAXq/O2RaHK0dARnbItDlYEIdycR4AAEdAMbO2RaHKwUdAXrUOVgQYk0dARnXCj1wo9odych4AAEdAMcIMSbpeNUdAXrpeNT987kdARnS8an7524dycx4AAEdAMdCj1wo9cUdAXr+dsi0OVkdARnO2RaHKwYdydB4AAEdAMd752yLQ5UdAXsTdLxqfvkdARnKPXCj1w4dydR4AAEdAMe2RaHKwIUdAXsocrAgxJ0dARnGJN0vGqIdydh4AAEdAMfvnbItDlkdAXs9cKPXCj0dARnCDEm6XjYdydx4AAEdAMgp++dsi0UdAXtSbpeNT+EdARm9cKPXCj4dyeB4AAEdAMhjU/fO2RkdAXtnbItDlYEdARm5WBBiTdYdyeR4AAEdAMidsi0OVgUdAXt8an752yUdARm1P3ztkWodyeh4AAEdAMjXCj1wo9kdAXuRqfvnbI0dARmxJul41P4dyex4AAEdAMkRaHKwIMUdAXump++dsi0dARmsi0OVgQodyfB4AAEdAMlKwIMSbpkdAXu7peNT99EdARmocrAgxJ4dyfR4AAEdAMmEGJN0vG0dAXvQo9cKPXEdARmkWhysCDIdyfh4AAEdAMm+dsi0OVkdAXvlocrAgxUdARmfvnbItDodyfx4AAEdAMn3ztkWhy0dAXv6n752yLUdARmbpeNT99IdygB4AAEdAMoyLQ5WBBkdAXwPnbItDlkdARmXjU/fO2YdygR4AAEdAMprhR64Ue0dAXwk3S8an8EdARmTdLxqfvodygh4AAEdAMql41P3ztkdAXw52yLQ5WEdARmO2RaHKwYdygx4AAEdAMrfO2RaHK0dAXxO2RaHKwUdARmKwIMSbpodyhB4AAEdAMsZmZmZmZkdAXxj1wo9cKUdARmGp++dsi4dyhR4AAEdAMtS8an7520dAXx41P3ztkUdARmCDEm6XjYdyhh4AAEdAMuMSbpeNUEdAXyN0vGp++kdARl987ZFoc4dyhx4AAEdAMvGp++dsi0dAXyi0OVgQYkdARl52yLQ5WIdyiB4AAEdAMwAAAAAAAEdAXy3ztkWhy0dARl1wo9cKPYdyiR4AAEdAMw6XjU/fO0dAXzNDlYEGJUdARlxJul41P4dyih4AAEdAMxztkWhysEdAXziDEm6XjUdARltDlYEGJYdyix4AAEdAMyuFHrhR7EdAXz3Cj1wo9kdARlo9cKPXCodyjB4AAEdAMznbItDlYEdAX0MCDEm6XkdARlkWhysCDIdyjR4AAEdAM0hysCDEnEdAX0hBiTdLx0dARlgQYk3S8odyjh4AAEdAM1bItDlYEEdAX02BBiTdL0dARlcKPXCj14dyjx4AAEdAM2VgQYk3TEdAX1LAgxJumEdARlYEGJN0vIdykB4AAEdAM3O2RaHKwUdAX1gAAAAAAEdARlTdLxqfvodykR4AAEdAM4IMSbpeNUdAX11P3ztkWkdARlPXCj1wpIdykh4AAEdAM5Cj1wo9cUdAX2KPXCj1w0dARlLQ5WBBiYdykx4AAEdAM5752yLQ5UdAX2fO2RaHK0dARlHKwIMSb4dylB4AAEdAM62RaHKwIUdAX20OVgQYk0dARlCj1wo9cYdylR4AAEdAM7vnbItDlkdAX3JN0vGp/EdARk+dsi0OVodylh4AAEdAM8p++dsi0UdAX3eNT987ZEdARk6XjU/fO4dylx4AAEdAM9jU/fO2RkdAX3zMzMzMzUdARk1wo9cKPYdymB4AAEdAM+dsi0OVgUdAX4IMSbpeNUdARkxqfvnbI4dymR4AAEdAM/XCj1wo9kdAX4dcKPXCj0dARktkWhysCIdymh4AAEdANAQYk3S8akdAX4ybpeNT+EdARkpeNT987odymx4AAEdANBKwIMSbpkdAX5HbItDlYEdARkk3S8an8IdynB4AAEdANCEGJN0vG0dAX5can752yUdARkgxJul41YdynR4AAEdANC+dsi0OVkdAX5xaHKwIMUdARkcrAgxJuodynh4AAEdAND3ztkWhy0dAX6GZmZmZmkdARkYEGJN0vIdynx4AAEdANEl41P3ztkdAX6XCj1wo9kdARkU/fO2RaIdyoB4AAEdANEm6XjU/fUdAX6rhR64Ue0dARkKPXCj1w4dyoR4AAEdANEn752yLREdAX7EGJN0vG0dARj87ZFocrIdyoh4AAEdANEn752yLREdAX7Qo9cKPXEdARj2RaHKwIYdyox4AAEdAMKNT987ZF0dAYOTU/fO2RkdAQjk3S8an8IdypB4AAEdAMKm6XjU/fUdAYOHjU/fO2UdAQj0OVgQYk4dypR4AAEdAMKo9cKPXCkdAYOGyLQ5WBEdAQj1wo9cKPYdyph4AAEdAMKuFHrhR7EdAYOEvGp++d0dAQj4UeuFHrodypx4AAEdAMLEm6XjU/kdAYN6HKwIMSkdAQkGp++dsi4dyqB4AAEdAMLbItDlYEEdAYNvnbItDlkdAQkUeuFHrhYdyqR4AAEdAMLfO2RaHK0dAYNtkWhysCEdAQkXCj1wo9odyqh4AAEdAML1wo9cKPUdAYNjEm6XjVEdAQklYEGJN04dyqx4AAEdAMMOVgQYk3UdAYNXS8an750dAQk1P3ztkWodyrB4AAEdAMMQYk3S8akdAYNWp++dsi0dAQk1wo9cKPYdyrR4AAEdAMMl41P3ztkdAYNMSbpeNUEdAQlDlYEGJN4dyrh4AAEdAMMp++dsi0UdAYNKPXCj1w0dAQlGp++dsi4dyrx4AAEdAMM/fO2RaHUdAYM/vnbItDkdAQlUeuFHrhYdysB4AAEdAMNYEGJN0vEdAYMz987ZFokdAQlkWhysCDIdysR4AAEdAMNZFocrAg0dAYMzU/fO2RkdAQlk3S8an8Idysh4AAEdAMNul41P3z0dAYMo9cKPXCkdAQlysCDEm6Ydysx4AAEdAMNysCDEm6UdAYMnCj1wo9kdAQl1P3ztkWodytB4AAEdAMOHKwIMSb0dAYMcrAgxJukdAQmDEm6XjVIdytR4AAEdAMOfvnbItDkdAYMQxJul41UdAQmS8an7524dyth4AAEdAMOgxJul41UdAYMQQYk3S8kdAQmTdLxqfvodytx4AAEdAMO1P3ztkWkdAYMGBBiTdL0dAQmhR64UeuIdyuB4AAEdAMPLxqfvnbUdAYL6HKwIMSkdAQmwo9cKPXIdyuR4AAEdAMPMzMzMzM0dAYL5ul41P30dAQmxJul41P4dyuh4AAEdAMPkWhysCDEdAYLt0vGp++kdAQnBBiTdLx4dyux4AAEdAMPlYEGJN00dAYLtcKPXCj0dAQnBiTdLxqodyvB4AAEdAMP41P3ztkUdAYLjMzMzMzUdAQnO2RaHKwYdyvR4AAEdAMQPXCj1wpEdAYLXS8an750dAQneNT987ZIdyvh4AAEdAMQQYk3S8akdAYLW6XjU/fUdAQneuFHrhSIdyvx4AAEdAMQj1wo9cKUdAYLMrAgxJukdAQnsCDEm6XodywB4AAEdAMQm6XjU/fUdAYLKwIMSbpkdAQnul41P3z4dywR4AAEdAMQ6XjU/fO0dAYLAgxJul40dAQn752yLQ5Ydywh4AAEdAMRP3ztkWh0dAYK0m6XjU/kdAQoLxqfvnbYdywx4AAEdAMRQ5WBBiTkdAYK0WhysCDEdAQoLxqfvnbYdyxB4AAEdAMRjU/fO2RkdAYKqPXCj1w0dAQoZFocrAg4dyxR4AAEdAMR41P3ztkUdAYKeVgQYk3UdAQoocrAgxJ4dyxh4AAEdAMR41P3ztkUdAYKeNT987ZEdAQoo9cKPXCodyxx4AAEdAMR87ZFocrEdAYKcKPXCj10dAQorhR64Ue4dyyB4AAEdAMSLQ5WBBiUdAYKT987ZFokdAQo2RaHKwIYdyyR4AAEdAMSPXCj1wpEdAYKSDEm6XjUdAQo41P3ztkYdyyh4AAEdAMSgxJul41UdAYKH752yLREdAQpFocrAgxYdyyx4AAEdAMSj1wo9cKUdAYKF41P3ztkdAQpIMSbpeNYdyzB4AAEdAMS2RaHKwIUdAYJ752yLQ5UdAQpVgQYk3TIdyzR4AAEdAMS5WBBiTdUdAYJ5++dsi0UdAQpXjU/fO2Ydyzh4AAEdAMTHrhR64UkdAYJxysCDEnEdAQpiTdLxqf4dyzx4AAEdAMTKwIMSbpkdAYJv3ztkWh0dAQpk3S8an8Idy0B4AAEdAMTcKPXCj10dAYJl41P3ztkdAQpxqfvnbI4dy0R4AAEdAMTfO2RaHK0dAYJj1wo9cKUdAQp0OVgQYk4dy0h4AAEdAMTwo9cKPXEdAYJZ2yLQ5WEdAQqBBiTdLx4dy0x4AAEdAMUBBiTdLx0dAYJP3ztkWh0dAQqN0vGp++ody1B4AAEdAMUEGJN0vG0dAYJN87ZFoc0dAQqQYk3S8aody1R4AAEdAMUUeuFHrhUdAYJD987ZFokdAQqdLxqfvnody1h4AAEdAMUYk3S8aoEdAYJCDEm6XjUdAQqfvnbItDody1x4AAEdAMUn752yLREdAYI4EGJN0vEdAQqsi0OVgQody2B4AAEdAMU4UeuFHrkdAYIuNT987ZEdAQq41P3ztkYdy2R4AAEdAMU7ZFocrAkdAYIsKPXCj10dAQq7ZFocrAody2h4AAEdAMVLxqfvnbUdAYIiTdLxqf0dAQrIMSbpeNYdy2x4AAEdAMVbItDlYEEdAYIYUeuFHrkdAQrUeuFHrhYdy3B4AAEdAMVeNT987ZEdAYIWhysCDEkdAQrXCj1wo9ody3R4AAEdAMVtkWhysCEdAYIMi0OVgQkdAQrj1wo9cKYdy3h4AAEdAMVwo9cKPXEdAYIKn752yLUdAQrl41P3ztody3x4AAEdAMWAAAAAAAEdAYIAxJul41UdAQrysCDEm6Ydy4B4AAEdAMWOVgQYk3UdAYH26XjU/fUdAQr++dsi0OYdy4R4AAEdAMWRaHKwIMUdAYH0/fO2RaEdAQsBiTdLxqody4h4AAEdAMWgxJul41UdAYHrQ5WBBiUdAQsN0vGp++ody4x4AAEdAMWi0OVgQYkdAYHpWBBiTdUdAQsQYk3S8aody5B4AAEdAMWxJul41P0dAYHffO2RaHUdAQscrAgxJuody5R4AAEdAMXCj1wo9cUdAYHT1wo9cKUdAQsrAgxJumIdy5h4AAEdAMXQ5WBBiTkdAYHKHKwIMSkdAQs3S8an754dy5x4AAEdAMXeNT987ZEdAYHAYk3S8akdAQtDlYEGJN4dy6B4AAEdAMXhR64UeuEdAYG+dsi0OVkdAQtGJN0vGqIdy6R4AAEdAMXul41P3z0dAYG0vGp++d0dAQtR64UeuFIdy6h4AAEdAMXxqfvnbI0dAYGy0OVgQYkdAQtUeuFHrhYdy6x4AAEdAMX++dsi0OUdAYGpFocrAg0dAQtgxJul41Ydy7B4AAEdAMYOVgQYk3UdAYGdkWhysCEdAQtvGp++dsody7R4AAEdAMYbpeNT99EdAYGT1wo9cKUdAQt64UeuFH4dy7h4AAEdAMYdsi0OVgUdAYGSDEm6XjUdAQt9cKPXCj4dy7x4AAEdAMYrAgxJumEdAYGIUeuFHrkdAQuJN0vGp/Idy8B4AAEdAMYtDlYEGJUdAYGGhysCDEkdAQuLQ5WBBiYdy8R4AAEdAMY5WBBiTdUdAYF8zMzMzM0dAQuXjU/fO2Ydy8h4AAEdAMZFocrAgxUdAYFzMzMzMzUdAQujU/fO2Rody8x4AAEdAMZT987ZFokdAYFnztkWhy0dAQuxJul41P4dy9B4AAEdAMZWBBiTdL0dAYFl41P3ztkdAQuztkWhysIdy9R4AAEdAMZgQYk3S8kdAYFeNT987ZEdAQu87ZFocrIdy9h4AAEdAMZiTdLxqf0dAYFcan752yUdAQu/fO2RaHYdy9x4AAEdAMZtkWhysCEdAYFS0OVgQYkdAQvLQ5WBBiYdy+B4AAEdAMZvnbItDlkdAYFQ5WBBiTkdAQvNT987ZF4dy+R4AAEdAMZ752yLQ5UdAYFHbItDlYEdAQvZFocrAg4dy+h4AAEdAMZ987ZFoc0dAYFFocrAgxUdAQvbItDlYEIdy+x4AAEdAMaGJN0vGqEdAYE987ZFoc0dAQvk3S8an8Idy/B4AAEdAMaIMSbpeNUdAYE8CDEm6XkdAQvm6XjU/fYdy/R4AAEdAMaTdLxqfvkdAYEyj1wo9cUdAQvysCDEm6Ydy/h4AAEdAMaVgQYk3TEdAYEwxJul41UdAQv0vGp++d4dy/x4AAEdAMagxJul41UdAYEnS8an750dAQwAAAAAAAIdyAB8AAEdAMarAgxJumEdAYEd0vGp++kdAQwLxqfvnbYdyAR8AAEdAMatDlYEGJUdAYEb52yLQ5UdAQwN0vGp++odyAh8AAEdAMa3S8an750dAYESbpeNT+EdAQwZmZmZmZodyAx8AAEdAMa5WBBiTdUdAYEQo9cKPXEdAQwbpeNT99IdyBB8AAEdAMbBiTdLxqkdAYEJFocrAg0dAQwk3S8an8IdyBR8AAEdAMbDlYEGJN0dAYEHS8an750dAQwm6XjU/fYdyBh8AAEdAMbMzMzMzM0dAYD90vGp++kdAQwyLQ5WBBodyBx8AAEdAMbO2RaHKwUdAYD8CDEm6XkdAQw0OVgQYk4dyCB8AAEdAMbYEGJN0vEdAYDysCDEm6UdAQw/fO2RaHYdyCR8AAEdAMbiTdLxqf0dAYDpWBBiTdUdAQxKwIMSbpodyCh8AAEdAMbjU/fO2RkdAYDnjU/fO2UdAQxNT987ZF4dyCx8AAEdAMbsi0OVgQkdAYDeFHrhR7EdAQxYk3S8aoIdyDB8AAEdAMbul41P3z0dAYDcSbpeNUEdAQxan752yLYdyDR8AAEdAMb3ztkWhy0dAYDS8an7520dAQxlYEGJN04dyDh8AAEdAMcAAAAAAAEdAYDJul41P30dAQxwo9cKPXIdyDx8AAEdAMcCDEm6XjUdAYDHztkWhy0dAQxysCDEm6YdyEB8AAEdAMcKPXCj1w0dAYC+l41P3z0dAQx987ZFoc4dyER8AAEdAMcMSbpeNUEdAYC8zMzMzM0dAQyAAAAAAAIdyEh8AAEdAMcSbpeNT+EdAYC1P3ztkWkdAQyItDlYEGYdyEx8AAEdAMcUeuFHrhUdAYCzlYEGJN0dAQyLQ5WBBiYdyFB8AAEdAMccrAgxJukdAYCqPXCj1w0dAQyWBBiTdL4dyFR8AAEdAMcdsi0OVgUdAYCocrAgxJ0dAQyYEGJN0vIdyFh8AAEdAMcl41P3ztkdAYCfO2RaHK0dAQyi0OVgQYodyFx8AAEdAMctDlYEGJUdAYCWBBiTdL0dAQyuFHrhR7IdyGB8AAEdAMcvGp++dskdAYCUOVgQYk0dAQywIMSbpeYdyGR8AAEdAMcwIMSbpeUdAYCSbpeNT+EdAQyyLQ5WBBodyGh8AAEdAMc2RaHKwIUdAYCLAgxJumEdAQy64UeuFH4dyGx8AAEdAMc3S8an750dAYCJN0vGp/EdAQy87ZFocrIdyHB8AAEdAMc+dsi0OVkdAYCAIMSbpeUdAQzHrhR64UodyHR8AAEdAMdAgxJul40dAYB+VgQYk3UdAQzJul41P34dyHh8AAEdAMdHrhR64UkdAYB1HrhR64UdAQzUeuFHrhYdyHx8AAEdAMdItDlYEGUdAYBzU/fO2RkdAQzWhysCDEodyIB8AAEdAMdN0vGp++kdAYBsCDEm6XkdAQzfO2RaHK4dyIR8AAEdAMdO2RaHKwUdAYBqPXCj1w0dAQzhR64UeuIdyIh8AAEdAMdWBBiTdL0dAYBhBiTdLx0dAQzsCDEm6XodyIx8AAEdAMdXCj1wo9kdAYBfXCj1wpEdAQzuFHrhR7IdyJB8AAEdAMdcKPXCj10dAYBX752yLREdAQz2RaHKwIYdyJR8AAEdAMddLxqfvnkdAYBWRaHKwIUdAQz4UeuFHrodyJh8AAEdAMdjU/fO2RkdAYBNLxqfvnkdAQ0DEm6XjVIdyJx8AAEdAMdkWhysCDEdAYBLZFocrAkdAQ0FHrhR64YdyKB8AAEdAMdqfvnbItEdAYBCTdLxqf0dAQ0PXCj1wpIdyKR8AAEdAMdrhR64Ue0dAYBAo9cKPXEdAQ0RaHKwIMYdyKh8AAEdAMdwo9cKPXEdAYA5N0vGp/EdAQ0aHKwIMSodyKx8AAEdAMdxqfvnbI0dAYA3jU/fO2UdAQ0cKPXCj14dyLB8AAEdAMd2yLQ5WBEdAYAudsi0OVkdAQ0mZmZmZmodyLR8AAEdAMd3ztkWhy0dAYAsrAgxJukdAQ0ocrAgxJ4dyLh8AAEdAMd87ZFocrEdAYAjtkWhysEdAQ0ysCDEm6YdyLx8AAEdAMeCDEm6XjUdAYAawIMSbpkdAQ087ZFocrIdyMB8AAEdAMeDEm6XjVEdAYAY9cKPXCkdAQ0++dsi0OYdyMR8AAEdAMeIMSbpeNUdAYAQAAAAAAEdAQ1JN0vGp/IdyMh8AAEdAMeJN0vGp/EdAYAOVgQYk3UdAQ1LQ5WBBiYdyMx8AAEdAMeMSbpeNUEdAYAHCj1wo9kdAQ1TdLxqfvodyNB8AAEdAMeNT987ZF0dAYAFYEGJN00dAQ1VgQYk3TIdyNR8AAEdAMeSbpeNT+EdAX/41P3ztkUdAQ1fvnbItDodyNh8AAEdAMeSbpeNT+EdAX/1P3ztkWkdAQ1hysCDEnIdyNx8AAEdAMeXjU/fO2UdAX/jU/fO2RkdAQ1sCDEm6XodyOB8AAEdAMeXjU/fO2UdAX/gAAAAAAEdAQ1tkWhysCIdyOR8AAEdAMean752yLUdAX/RqfvnbI0dAQ11wo9cKPYdyOh8AAEdAMebpeNT99EdAX/OVgQYk3UdAQ13ztkWhy4dyOx8AAEdAMefvnbItDkdAX+8an752yUdAQ2CDEm6XjYdyPB8AAEdAMegxJul41UdAX+5FocrAg0dAQ2DlYEGJN4dyPR8AAEdAMei0OVgQYkdAX+qwIMSbpkdAQ2LxqfvnbYdyPh8AAEdAMej1wo9cKUdAX+nKwIMSb0dAQ2N0vGp++odyPx8AAEdAMem6XjU/fUdAX+VgQYk3TEdAQ2XjU/fO2YdyQB8AAEdAMen752yLREdAX+SLQ5WBBkdAQ2ZmZmZmZodyQR8AAEdAMerAgxJumEdAX+AgxJul40dAQ2jU/fO2RodyQh8AAEdAMesCDEm6XkdAX99LxqfvnkdAQ2lYEGJN04dyQx8AAEdAMeuFHrhR7EdAX9u2RaHKwUdAQ2tkWhysCIdyRB8AAEdAMeuFHrhR7EdAX9rhR64Ue0dAQ2vGp++dsodyRR8AAEdAMexJul41P0dAX9Z2yLQ5WEdAQ25WBBiTdYdyRh8AAEdAMeyLQ5WBBkdAX9WhysCDEkdAQ264UeuFH4dyRx8AAEdAMe0OVgQYk0dAX9E3S8an8EdAQ3Em6XjU/odySB8AAEdAMe1P3ztkWkdAX9BiTdLxqkdAQ3Gp++dsi4dySR8AAEdAMe2RaHKwIUdAX8zdLxqfvkdAQ3OVgQYk3YdySh8AAEdAMe3S8an750dAX8v3ztkWh0dAQ3QYk3S8aodySx8AAEdAMe3S8an750dAX8si0OVgQkdAQ3SbpeNT+IdyTB8AAEdAMe5WBBiTdUdAX8edsi0OVkdAQ3aHKwIMSodyTR8AAEdAMe5WBBiTdUdAX8bItDlYEEdAQ3bpeNT99IdyTh8AAEdAMe7ZFocrAkdAX8Jul41P30dAQ3lYEGJN04dyTx8AAEdAMe9cKPXCj0dAX70vGp++d0dAQ3xJul41P4dyUB8AAEdAMe9cKPXCj0dAX7xqfvnbI0dAQ3ysCDEm6YdyUR8AAEdAMe/fO2RaHUdAX7jlYEGJN0dAQ36XjU/fO4dyUh8AAEdAMe/fO2RaHUdAX7gQYk3S8kdAQ38an752yYdyUx8AAEdAMfAgxJul40dAX7O2RaHKwUdAQ4FocrAgxYdyVB8AAEdAMfAgxJul40dAX7LhR64Ue0dAQ4HrhR64UodyVR8AAEdAMfBiTdLxqkdAX69cKPXCj0dAQ4PXCj1wpIdyVh8AAEdAMfBiTdLxqkdAX66HKwIMSkdAQ4Q5WBBiTodyVx8AAEdAMfBiTdLxqkdAX62yLQ5WBEdAQ4S8an7524dyWB8AAEdAMfCj1wo9cUdAX6o9cKPXCkdAQ4an752yLYdyWR8AAEdAMfDlYEGJN0dAX6UOVgQYk0dAQ4l41P3ztodyWh8AAEdAMfDlYEGJN0dAX6Q5WBBiTkdAQ4nbItDlYIdyWx8AAEdAMfDlYEGJN0dAX6DEm6XjVEdAQ4vGp++dsodyXB8AAEdAMfDlYEGJN0dAX5/vnbItDkdAQ4wo9cKPXIdyXR8AAEdAMfEm6XjU/kdAX5rQ5WBBiUdAQ4752yLQ5YdyXh8AAEdAMfEm6XjU/kdAX5aHKwIMSkdAQ5FHrhR64YdyXx8AAEdAMfEm6XjU/kdAX5WyLQ5WBEdAQ5Gp++dsi4dyYB8AAEdAMfDlYEGJN0dAX5I9cKPXCkdAQ5OVgQYk3YdyYR8AAEdAMfDlYEGJN0dAX5F41P3ztkdAQ5P3ztkWh4dyYh8AAEdAMfDlYEGJN0dAX40vGp++d0dAQ5ZFocrAg4dyYx8AAEdAMfDlYEGJN0dAX4xaHKwIMUdAQ5bItDlYEIdyZB8AAEdAMfCj1wo9cUdAX4jlYEGJN0dAQ5iTdLxqf4dyZR8AAEdAMfCj1wo9cUdAX4ggxJul40dAQ5j1wo9cKYdyZh8AAEdAMfBiTdLxqkdAX4PXCj1wpEdAQ5tDlYEGJYdyZx8AAEdAMfBiTdLxqkdAX4MCDEm6XkdAQ5vGp++dsodyaB8AAEdAMfAgxJul40dAX37ItDlYEEdAQ53ztkWhy4dyaR8AAEdAMfAgxJul40dAX34EGJN0vEdAQ55WBBiTdYdyah8AAEdAMe/fO2RaHUdAX3qPXCj1w0dAQ6BBiTdLx4dyax8AAEdAMe/fO2RaHUdAX3m6XjU/fUdAQ6Cj1wo9cYdybB8AAEdAMe+dsi0OVkdAX3WBBiTdL0dAQ6LQ5WBBiYdybR8AAEdAMe9cKPXCj0dAX3S8an7520dAQ6NT987ZF4dybh8AAEdAMe8an752yUdAX3CDEm6XjUdAQ6WBBiTdL4dybx8AAEdAMe7ZFocrAkdAX2+uFHrhSEdAQ6XjU/fO2YdycB8AAEdAMe6XjU/fO0dAX2xJul41P0dAQ6euFHrhSIdycR8AAEdAMe6XjU/fO0dAX2t0vGp++kdAQ6gxJul41Ydych8AAEdAMe5WBBiTdUdAX2qwIMSbpkdAQ6iTdLxqf4dycx8AAEdAMe4UeuFHrkdAX2dLxqfvnkdAQ6peNT987odydB8AAEdAMe3S8an750dAX2Z2yLQ5WEdAQ6rAgxJumIdydR8AAEdAMe1P3ztkWkdAX2MSbpeNUEdAQ6yLQ5WBBodydh8AAEdAMe1P3ztkWkdAX2JN0vGp/EdAQ6ztkWhysIdydx8AAEdAMeyLQ5WBBkdAX11P3ztkWkdAQ6987ZFoc4dyeB8AAEdAMeyLQ5WBBkdAX1yLQ5WBBkdAQ7AAAAAAAIdyeR8AAEdAMewIMSbpeUdAX1km6XjU/kdAQ7Gp++dsi4dyeh8AAEdAMevGp++dskdAX1hR64UeuEdAQ7ItDlYEGYdyex8AAEdAMetDlYEGJUdAX1T987ZFokdAQ7PXCj1wpIdyfB8AAEdAMesCDEm6XkdAX1Qo9cKPXEdAQ7RaHKwIMYdyfR8AAEdAMesCDEm6XkdAX1NkWhysCEdAQ7S8an7524dyfh8AAEdAMeo9cKPXCkdAX1AAAAAAAEdAQ7ZmZmZmZodyfx8AAEdAMeo9cKPXCkdAX087ZFocrEdAQ7bItDlYEIdygB8AAEdAMen752yLREdAX052yLQ5WEdAQ7dLxqfvnodygR8AAEdAMel41P3ztkdAX0sSbpeNUEdAQ7j1wo9cKYdygh8AAGUoR0Ax6HKwIMScR0BfRiTdLxqgR0BDu4UeuFHsh3KDHwAAR0Ax6DEm6XjVR0BfRWBBiTdMR0BDu+dsi0OWh3KEHwAAR0Ax52yLQ5WBR0BfQgxJul41R0BDvZFocrAhh3KFHwAAR0Ax5ysCDEm6R0BfQTdLxqfwR0BDvfO2RaHLh3KGHwAAR0Ax5iTdLxqgR0BfPEm6XjU/R0BDwIMSbpeNh3KHHwAAR0Ax5WBBiTdMR0BfOPXCj1wpR0BDwi0OVgQZh3KIHwAAR0Ax5R64UeuFR0BfODEm6XjVR0BDwo9cKPXDh3KJHwAAR0Ax5N0vGp++R0BfN2yLQ5WBR0BDwvGp++dth3KKHwAAR0Ax5BiTdLxqR0BfNBiTdLxqR0BDxLxqfvnbh3KLHwAAR0Ax49cKPXCkR0BfM1P3ztkXR0BDxR64UeuFh3KMHwAAR0Ax4o9cKPXDR0BfLztkWhysR0BDxysCDEm6h3KNHwAAR0Ax4o9cKPXDR0BfLnbItDlYR0BDx41P3ztkh3KOHwAAR0Ax4Yk3S8aoR0BfKyLQ5WBCR0BDyTdLxqfwh3KPHwAAR0Ax4UeuFHrhR0BfKl41P3zuR0BDyZmZmZmah3KQHwAAR0Ax4AAAAAAAR0BfJkWhysCDR0BDy6XjU/fPh3KRHwAAR0Ax3752yLQ5R0BfJYEGJN0vR0BDzAgxJul5h3KSHwAAR0Ax3nbItDlYR0BfIWhysCDFR0BDzhR64Ueuh3KTHwAAR0Ax3nbItDlYR0BfIKPXCj1xR0BDznbItDlYh3KUHwAAR0Ax3S8an753R0BfHWBBiTdMR0BD0CDEm6Xjh3KVHwAAR0Ax3O2RaHKwR0BfHJul41P4R0BD0IMSbpeNh3KWHwAAR0Ax26XjU/fPR0BfGIMSbpeNR0BD0o9cKPXDh3KXHwAAR0Ax22RaHKwIR0BfF752yLQ5R0BD0vGp++dth3KYHwAAR0Ax2l41P3zuR0BfFHrhR64UR0BD1HrhR64Uh3KZHwAAR0Ax2hysCDEnR0BfE7ZFocrBR0BD1N0vGp++h3KaHwAAR0Ax2ZmZmZmaR0BfEvGp++dtR0BD1T987ZFoh3KbHwAAR0Ax2JN0vGp/R0BfD64UeuFIR0BD1ul41P30h3KcHwAAR0Ax2FHrhR64R0BfDul41P30R0BD10vGp++eh3KdHwAAR0Ax1si0OVgQR0BfCuFHrhR7R0BD2TdLxqfwh3KeHwAAR0Ax1ocrAgxKR0BfChysCDEnR0BD2ZmZmZmah3KfHwAAR0Ax1T987ZFoR0BfBtkWhysCR0BD20OVgQYlh3KgHwAAR0Ax1P3ztkWiR0BfBiTdLxqgR0BD26XjU/fPh3KhHwAAR0Ax0zMzMzMzR0BfAhysCDEnR0BD3ZFocrAhh3KiHwAAR0Ax0vGp++dtR0BfAVgQYk3TR0BD3fO2RaHLh3KjHwAAR0Ax0rAgxJumR0BfAJN0vGp/R0BD3lYEGJN1h3KkHwAAR0Ax0WhysCDFR0Be/U/fO2RaR0BD3987ZFodh3KlHwAAR0Ax0OVgQYk3R0Be/ItDlYEGR0BD4EGJN0vHh3KmHwAAR0Axz52yLQ5WR0Be+VgQYk3TR0BD4crAgxJvh3KnHwAAR0Axz1wo9cKPR0Be+JN0vGp/R0BD4i0OVgQZh3KoHwAAR0AxztkWhysCR0Be987ZFocrR0BD4o9cKPXDh3KpHwAAR0AxzZFocrAhR0Be9Jul41P4R0BD5BiTdLxqh3KqHwAAR0AxzQ5WBBiTR0Be89cKPXCkR0BD5HrhR64Uh3KrHwAAR0Axy8an752yR0Be8KPXCj1xR0BD5gQYk3S8h3KsHwAAR0Axy0OVgQYlR0Be7987ZFodR0BD5mZmZmZmh3KtHwAAR0AxyTdLxqfwR0Be6yLQ5WBCR0BD6LQ5WBBih3KuHwAAR0AxyLQ5WBBiR0Be6l41P3zuR0BD6RaHKwIMh3KvHwAAR0AxxysCDEm6R0Be5ysCDEm6R0BD6p++dsi0h3KwHwAAR0Axxul41P30R0Be5mZmZmZmR0BD6wIMSbpeh3KxHwAAR0AxxWBBiTdMR0Be4zMzMzMzR0BD7ItDlYEGh3KyHwAAR0AxxJul41P4R0Be4an752yLR0BD7S8an753h3KzHwAAR0AxwtDlYEGJR0Be3ocrAgxKR0BD7rhR64Ufh3K0HwAAR0Axwo9cKPXDR0Be3cKPXCj2R0BD7xqfvnbJh3K1HwAAR0AxwgxJul41R0Be3P3ztkWiR0BD73ztkWhzh3K2HwAAR0AxwIMSbpeNR0Be2dsi0OVgR0BD8OVgQYk3h3K3HwAAR0AxvfO2RaHLR0Be1R64UeuFR0BD8zMzMzMzh3K4HwAAR0AxvbItDlYER0Be1Gp++dsjR0BD85WBBiTdh3K5HwAAR0Axu+dsi0OWR0Be0TdLxqfwR0BD9P3ztkWih3K6HwAAR0Axu2RaHKwIR0Be0IMSbpeNR0BD9WBBiTdMh3K7HwAAR0AxuNT987ZGR0Bey9cKPXCkR0BD941P3ztkh3K8HwAAR0Axtwo9cKPXR0BeyKPXCj1xR0BD+RaHKwIMh3K9HwAAR0AxtocrAgxKR0Bex++dsi0OR0BD+VgQYk3Th3K+HwAAR0AxtgQYk3S8R0BexysCDEm6R0BD+bpeNT99h3K/HwAAR0AxtDlYEGJOR0BexAgxJul5R0BD+yLQ5WBCh3LAHwAAR0Axs/fO2RaHR0Bew0OVgQYlR0BD+4UeuFHsh3LBHwAAR0AxsWhysCDFR0Bev1wo9cKPR0BD/U/fO2Rah3LCHwAAR0AxsSbpeNT+R0BevqfvnbItR0BD/bItDlYEh3LDHwAAR0AxrxqfvnbJR0Beu4UeuFHsR0BD/xqfvnbJh3LEHwAAR0AxrpeNT987R0BeutDlYEGJR0BD/3ztkWhzh3LFHwAAR0AxrhR64UeuR0BeugxJul41R0BD/987ZFodh3LGHwAAR0AxrEm6XjU/R0Betul41P30R0BEAUeuFHrhh3LHHwAAR0Axq8an752yR0BetiTdLxqgR0BEAan752yLh3LIHwAAR0AxqTdLxqfwR0Besk3S8an8R0BEA1P3ztkXh3LJHwAAR0AxqLQ5WBBiR0BesZmZmZmaR0BEA7ZFocrBh3LKHwAAR0AxpqfvnbItR0BernbItDlYR0BEBR64UeuFh3LLHwAAR0AxpiTdLxqgR0BercKPXCj2R0BEBYEGJN0vh3LMHwAAR0Axo5WBBiTdR0Beqdsi0OVgR0BEB0vGp++eh3LNHwAAR0AxoxJul41QR0BeqSbpeNT+R0BEB41P3ztkh3LOHwAAR0AxoQYk3S8bR0BepgQYk3S8R0BECPXCj1wph3LPHwAAR0AxoIMSbpeNR0BepU/fO2RaR0BECVgQYk3Th3LQHwAAR0AxoAAAAAAAR0BepJul41P4R0BECZmZmZmah3LRHwAAR0AxnfO2RaHLR0BeoXjU/fO2R0BECwIMSbpeh3LSHwAAR0AxnXCj1wo9R0BeoMSbpeNUR0BEC2RaHKwIh3LTHwAAR0AxnO2RaHKwR0BeoAAAAAAAR0BEC8an752yh3LUHwAAR0Axmp++dsi0R0BenO2RaHKwR0BEDQ5WBBiTh3LVHwAAR0AxmhysCDEnR0BenDlYEGJOR0BEDXCj1wo9h3LWHwAAR0Axl87ZFocrR0BemSbpeNT+R0BEDtkWhysCh3LXHwAAR0Axl0vGp++eR0BemGJN0vGqR0BEDxqfvnbJh3LYHwAAR0AxlHrhR64UR0BelJul41P4R0BEEOVgQYk3h3LZHwAAR0Axk/fO2RaHR0Bek9cKPXCkR0BEESbpeNT+h3LaHwAAR0Axk3S8an76R0BekyLQ5WBCR0BEEYk3S8aoh3LbHwAAR0AxkSbpeNT+R0BekBBiTdLyR0BEEtDlYEGJh3LcHwAAR0AxkKPXCj1xR0Bej1wo9cKPR0BEEzMzMzMzh3LdHwAAR0AxjhR64UeuR0BejEm6XjU/R0BEFHrhR64Uh3LeHwAAR0AxjQ5WBBiTR0BeitDlYEGJR0BEFT987ZFoh3LfHwAAR0AxisCDEm6YR0Beh87ZFocrR0BEFocrAgxKh3LgHwAAR0AxifvnbItER0Behwo9cKPXR0BEFul41P30h3LhHwAAR0AxiXjU/fO2R0BehlYEGJN1R0BEFysCDEm6h3LiHwAAR0Axh64UeuFIR0BehAgxJul5R0BEGDEm6XjVh3LjHwAAR0AxhysCDEm6R0Beg1P3ztkXR0BEGJN0vGp/h3LkHwAAR0Axg5WBBiTdR0Befsi0OVgQR0BEGn752yLRh3LlHwAAR0AxgtDlYEGJR0BefhR64UeuR0BEGsCDEm6Yh3LmHwAAR0AxgEGJN0vHR0BeexJul41QR0BEHCj1wo9ch3LnHwAAR0Axf752yLQ5R0Beel41P3zuR0BEHGp++dsjh3LoHwAAR0Axe+dsi0OWR0BedeNT987ZR0BEHlYEGJN1h3LpHwAAR0AxeVgQYk3TR0BectDlYEGJR0BEH752yLQ5h3LqHwAAR0AxeNT987ZGR0BechysCDEnR0BEIAAAAAAAh3LrHwAAR0AxeFHrhR64R0BecWhysCDFR0BEIEGJN0vHh3LsHwAAR0AxdYEGJN0vR0BebmZmZmZmR0BEIan752yLh3LtHwAAR0Axcan752yLR0BeafvnbItER0BEI5WBBiTdh3LuHwAAR0AxcOVgQYk3R0BeaUeuFHrhR0BEI9cKPXCkh3LvHwAAR0AxblYEGJN1R0BeZkWhysCDR0BEJR64UeuFh3LwHwAAR0AxbZFocrAhR0BeZZFocrAhR0BEJWBBiTdMh3LxHwAAR0AxbQ5WBBiTR0BeZN0vGp++R0BEJcKPXCj2h3LyHwAAR0Axaj1wo9cKR0BeYdsi0OVgR0BEJwo9cKPXh3LzHwAAR0AxabpeNT99R0BeYSbpeNT+R0BEJ0vGp++eh3L0HwAAR0AxZul41P30R0BeXiTdLxqgR0BEKJN0vGp/h3L1HwAAR0AxZiTdLxqgR0BeXXCj1wo9R0BEKNT987ZGh3L2HwAAR0AxZaHKwIMSR0BeXLxqfvnbR0BEKTdLxqfwh3L3HwAAR0AxYtDlYEGJR0BeWbpeNT99R0BEKn752yLRh3L4HwAAR0AxYgxJul41R0BeWQYk3S8bR0BEKsCDEm6Yh3L5HwAAR0AxXnbItDlYR0BeVWBBiTdMR0BELEm6XjU/h3L6HwAAR0AxXfO2RaHLR0BeVKwIMSbpR0BELItDlYEGh3L7HwAAR0AxWuFHrhR7R0BeUan752yLR0BELdLxqfvnh3L8HwAAR0AxWl41P3zuR0BeUPXCj1wpR0BELhR64Ueuh3L9HwAAR0AxWZmZmZmaR0BeUFHrhR64R0BELnbItDlYh3L+HwAAR0AxVsi0OVgQR0BeTU/fO2RaR0BEL52yLQ5Wh3L/HwAAR0AxUm6XjU/fR0BeSPXCj1wpR0BEMWhysCDFh3IAIAAAR0AxUan752yLR0BeSEGJN0vHR0BEMcrAgxJvh3IBIAAAR0AxTpeNT987R0BeRU/fO2RaR0BEMvGp++dth3ICIAAAR0AxTdLxqfvnR0BeRJul41P4R0BEM1P3ztkXh3IDIAAAR0AxSj1wo9cKR0BeQPXCj1wpR0BENLxqfvnbh3IEIAAAR0AxSXjU/fO2R0BeQEGJN0vHR0BENR64UeuFh3IFIAAAR0AxSLQ5WBBiR0BeP41P3ztkR0BENWBBiTdMh3IGIAAAR0AxRmZmZmZmR0BePU/fO2RaR0BENkWhysCDh3IHIAAAR0AxRaHKwIMSR0BePKwIMSbpR0BENocrAgxKh3IIIAAAR0AxRN0vGp++R0BeO/fO2RaHR0BENsi0OVgQh3IJIAAAR0AxQcrAgxJvR0BeOQYk3S8bR0BEOBBiTdLyh3IKIAAAR0AxQEGJN0vHR0BeN52yLQ5WR0BEOJN0vGp/h3ILIAAAR0AxPS8an753R0BeNKwIMSbpR0BEObpeNT99h3IMIAAAR0AxPGp++dsjR0BeNAgxJul5R0BEOhysCDEnh3INIAAAR0AxO6XjU/fPR0BeM1P3ztkXR0BEOl41P3zuh3IOIAAAR0AxOVgQYk3TR0BeMRaHKwIMR0BEO0OVgQYlh3IPIAAAR0AxOJN0vGp/R0BeMGJN0vGqR0BEO4UeuFHsh3IQIAAAR0AxNHrhR64UR0BeLMzMzMzNR0BEPO2RaHKwh3IRIAAAR0AxM7ZFocrBR0BeLBiTdLxqR0BEPU/fO2Rah3ISIAAAR0AxMvGp++dtR0BeK2RaHKwIR0BEPZFocrAhh3ITIAAAR0AxL987ZFodR0BeKIMSbpeNR0BEPrhR64Ufh3IUIAAAR0AxLxqfvnbJR0BeJ87ZFocrR0BEPvnbItDlh3IVIAAAR0AxLlYEGJN1R0BeJysCDEm6R0BEPztkWhysh3IWIAAAR0AxK8an752yR0BeJO2RaHKwR0BEQCDEm6Xjh3IXIAAAR0AxKfvnbItER0BeI4UeuFHsR0BEQKPXCj1xh3IYIAAAR0AxJqfvnbItR0BeIKPXCj1xR0BEQcrAgxJvh3IZIAAAR0AxJeNT987ZR0BeIAAAAAAAR0BEQgxJul41h3IaIAAAR0AxJR64UeuFR0BeH0vGp++eR0BEQm6XjU/fh3IbIAAAR0AxIcrAgxJvR0BeHGp++dsjR0BEQ3S8an76h3IcIAAAR0AxHO2RaHKwR0BeGCDEm6XjR0BERT987ZFoh3IdIAAAR0AxG+dsi0OWR0BeF3ztkWhzR0BERYEGJN0vh3IeIAAAR0AxGJN0vGp/R0BeFJul41P4R0BERocrAgxKh3IfIAAAR0AxF87ZFocrR0BeE+dsi0OWR0BERul41P30h3IgIAAAR0AxFwo9cKPXR0BeE0OVgQYlR0BERysCDEm6h3IhIAAAR0AxErAgxJumR0BeD64UeuFIR0BESHKwIMSch3IiIAAAR0AxDxqfvnbJR0BeDMzMzMzNR0BESZmZmZmah3IjIAAAR0AxDlYEGJN1R0BeDCj1wo9cR0BESdsi0OVgh3IkIAAAR0AxDZFocrAhR0BeC3S8an76R0BEShysCDEnh3IlIAAAR0AxCfvnbItER0BeCKPXCj1xR0BES0OVgQYlh3ImIAAAR0AxBJul41P4R0BeBGp++dsjR0BETMzMzMzNh3InIAAAR0AxA9cKPXCkR0BeA8an752yR0BETQ5WBBiTh3IoIAAAR0AxAEGJN0vHR0BeAOVgQYk3R0BETjU/fO2Rh3IpIAAAR0Aw/ztkWhysR0BeAEGJN0vHR0BETnbItDlYh3IqIAAAR0Aw/nbItDlYR0Bd/41P3ztkR0BETrhR64Ufh3IrIAAAR0Aw+uFHrhR7R0Bd/LxqfvnbR0BET752yLQ5h3IsIAAAR0Aw+dsi0OVgR0Bd/AgxJul5R0BEUAAAAAAAh3ItIAAAR0Aw9kWhysCDR0Bd+TdLxqfwR0BEUSbpeNT+h3IuIAAAR0Aw9T987ZFoR0Bd+JN0vGp/R0BEUWhysCDFh3IvIAAAR0Aw9HrhR64UR0Bd9987ZFodR0BEUan752yLh3IwIAAAR0Aw8KPXCj1xR0Bd9Q5WBBiTR0BEUrAgxJumh3IxIAAAR0Aw60OVgQYlR0Bd8OVgQYk3R0BEVDlYEGJOh3IyIAAAR0Aw6j1wo9cKR0Bd8EGJN0vHR0BEVHrhR64Uh3IzIAAAR0Aw5mZmZmZmR0Bd7XCj1wo9R0BEVYEGJN0vh3I0IAAAR0Aw5aHKwIMSR0Bd7LxqfvnbR0BEVcKPXCj2h3I1IAAAR0Aw5Jul41P4R0Bd7BiTdLxqR0BEVgQYk3S8h3I2IAAAR0Aw4MSbpeNUR0Bd6UeuFHrhR0BEVwo9cKPXh3I3IAAAR0Aw2yLQ5WBCR0Bd5R64UeuFR0BEWJN0vGp/h3I4IAAAR0Aw2hysCDEnR0Bd5HrhR64UR0BEWNT987ZGh3I5IAAAR0Aw2VgQYk3TR0Bd49cKPXCkR0BEWRaHKwIMh3I6IAAAR0Aw1kWhysCDR0Bd4bpeNT99R0BEWdsi0OVgh3I7IAAAR0Aw0GJN0vGqR0Bd3ZFocrAhR0BEW2RaHKwIh3I8IAAAR0Awz52yLQ5WR0Bd3O2RaHKwR0BEW6XjU/fPh3I9IAAAR0AwzpeNT987R0Bd3Em6XjU/R0BEW+dsi0OWh3I+IAAAR0Awy4UeuFHsR0Bd2hysCDEnR0BEXKwIMSbph3I/IAAAR0AwysCDEm6YR0Bd2XjU/fO2R0BEXO2RaHKwh3JAIAAAR0AwybpeNT99R0Bd2NT987ZGR0BEXQ5WBBiTh3JBIAAAR0AwyLQ5WBBiR0Bd2DEm6XjVR0BEXU/fO2Rah3JCIAAAR0AwxaHKwIMSR0Bd1hR64UeuR0BEXhR64Ueuh3JDIAAAR0Aww9cKPXCkR0Bd1LxqfvnbR0BEXpeNT987h3JEIAAAR0Awv752yLQ5R0Bd0fvnbItER0BEX52yLQ5Wh3JFIAAAR0AwvrhR64UfR0Bd0VgQYk3TR0BEX987ZFodh3JGIAAAR0AwvfO2RaHLR0Bd0KPXCj1xR0BEYAAAAAAAh3JHIAAAR0Awup++dsi0R0BdzocrAgxKR0BEYMSbpeNUh3JIIAAAR0Awudsi0OVgR0BdzeNT987ZR0BEYQYk3S8bh3JJIAAAR0AwtLxqfvnbR0Bdyn752yLRR0BEYk3S8an8h3JKIAAAR0Aws7ZFocrBR0Bdydsi0OVgR0BEYm6XjU/fh3JLIAAAR0AwsrAgxJumR0BdySbpeNT+R0BEYrAgxJumh3JMIAAAR0AwrpeNT987R0BdxmZmZmZmR0BEY7ZFocrBh3JNIAAAR0AwrZFocrAhR0BdxcKPXCj2R0BEY/fO2RaHh3JOIAAAR0AwrItDlYEGR0BdxR64UeuFR0BEZBiTdLxqh3JPIAAAR0AwqXjU/fO2R0BdwwIMSbpeR0BEZN0vGp++h3JQIAAAR0Awp2yLQ5WBR0BdwbpeNT99R0BEZWBBiTdMh3JRIAAAR0AwoxJul41QR0BdvvnbItDlR0BEZkWhysCDh3JSIAAAR0AwogxJul41R0BdvlYEGJN1R0BEZocrAgxKh3JTIAAAR0AwoQYk3S8bR0BdvbItDlYER0BEZsi0OVgQh3JUIAAAR0AwnO2RaHKwR0BduvGp++dtR0BEZ64UeuFIh3JVIAAAR0AwmuFHrhR7R0Bduan752yLR0BEaDEm6XjVh3JWIAAAR0AwlocrAgxKR0Bdtul41P30R0BEaRaHKwIMh3JXIAAAR0AwlYEGJN0vR0BdtkWhysCDR0BEaVgQYk3Th3JYIAAAR0AwkSbpeNT+R0Bds5WBBiTdR0BEaj1wo9cKh3JZIAAAR0AwkCDEm6XjR0BdsvGp++dtR0BEan752yLRh3JaIAAAR0AwjxqfvnbJR0Bdsk3S8an8R0BEap++dsi0h3JbIAAAR0AwibpeNT99R0Bdrul41P30R0BEa8an752yh3JcIAAAR0AwhWBBiTdMR0BdrDlYEGJOR0BEbMzMzMzNh3JdIAAAR0AwhFocrAgxR0Bdq5WBBiTdR0BEbO2RaHKwh3JeIAAAR0Awg1P3ztkXR0BdqvGp++dtR0BEbS8an753h3JfIAAAR0AwfrhR64UfR0BdqEGJN0vHR0BEbhR64Ueuh3JgIAAAR0AweBBiTdLyR0BdpDlYEGJOR0BEb3ztkWhzh3JhIAAAR0Awdwo9cKPXR0Bdo6XjU/fPR0BEb52yLQ5Wh3JiIAAAR0AwcrAgxJumR0BdoOVgQYk3R0BEcIMSbpeNh3JjIAAAR0Awcan752yLR0BdoFHrhR64R0BEcMSbpeNUh3JkIAAAR0AwcGJN0vGqR0Bdn64UeuFIR0BEcQYk3S8bh3JlIAAAR0AwbAgxJul5R0BdnP3ztkWiR0BEceuFHrhSh3JmIAAAR0AwZR64UeuFR0BdmQYk3S8bR0BEczMzMzMzh3JnIAAAR0AwZBiTdLxqR0BdmGJN0vGqR0BEc1P3ztkXh3JoIAAAR0AwX3ztkWhzR0BdlbItDlYER0BEdDlYEGJOh3JpIAAAR0AwWJN0vGp/R0BdkcrAgxJvR0BEdYEGJN0vh3JqIAAAR0AwV41P3ztkR0BdkSbpeNT+R0BEdcKPXCj2h3JrIAAAR0AwUvGp++dtR0BdjnbItDlYR0BEdqfvnbIth3JsIAAAR0AwUeuFHrhSR0BdjeNT987ZR0BEdsi0OVgQh3JtIAAAR0AwUKPXCj1xR0BdjT987ZFoR0BEdwo9cKPXh3JuIAAAR0AwT52yLQ5WR0BdjJul41P4R0BEdysCDEm6h3JvIAAAR0AwTAgxJul5R0Bdio9cKPXDR0BEd87ZFocrh3JwIAAAR0AwRN0vGp++R0BdhqfvnbItR0BEeRaHKwIMh3JxIAAAR0AwQ9cKPXCkR0BdhgQYk3S8R0BEeVgQYk3Th3JyIAAAR0AwQtDlYEGJR0BdhXCj1wo9R0BEeXjU/fO2h3JzIAAAR0AwPvnbItDlR0Bdg2RaHKwIR0BEehysCDEnh3J0IAAAR0AwO6XjU/fPR0BdgYk3S8aoR0BEesCDEm6Yh3J1IAAAR0AwOBBiTdLyR0Bdf3ztkWhzR0BEe2RaHKwIh3J2IAAAR0AwNsi0OVgQR0BdftkWhysCR0BEe4UeuFHsh3J3IAAAR0AwNcKPXCj2R0BdfkWhysCDR0BEe8an752yh3J4IAAAR0AwMOVgQYk3R0Bde6XjU/fPR0BEfItDlYEGh3J5IAAAR0AwL52yLQ5WR0BdewIMSbpeR0BEfMzMzMzNh3J6IAAAR0AwLpeNT987R0Bdel41P3zuR0BEfO2RaHKwh3J7IAAAR0AwKsCDEm6YR0BdeGJN0vGqR0BEfZFocrAhh3J8IAAAR0AwI5WBBiTdR0BddHrhR64UR0BEftkWhysCh3J9IAAAR0AwIk3S8an8R0Bdc+dsi0OWR0BEfvnbItDlh3J+IAAAR0AwIUeuFHrhR0Bdc0OVgQYlR0BEfxqfvnbJh3J/IAAAR0AwHGp++dsjR0BdcKPXCj1xR0BEgAAAAAAAh3KAIAAAR0AwGdsi0OVgR0Bdb2yLQ5WBR0BEgGJN0vGqh3KBIAAAR0AwFP3ztkWiR0BdbMzMzMzNR0BEgSbpeNT+h3KCIAAAR0AwE7ZFocrBR0BdbCj1wo9cR0BEgUeuFHrhh3KDIAAAR0AwDtkWhysCR0BdaZmZmZmaR0BEgi0OVgQZh3KEIAAAR0AwDZFocrAhR0BdaPXCj1wpR0BEgk3S8an8h3KFIAAAR0AwDEm6XjU/R0BdaGJN0vGqR0BEgm6XjU/fh3KGIAAAR0AwBiTdLxqgR0BdZR64UeuFR0BEg3S8an76h3KHIAAAR0AwAQYk3S8bR0BdYo9cKPXDR0BEhDlYEGJOh3KIIAAAR0Av/3ztkWhzR0BdYeuFHrhSR0BEhFocrAgxh3KJIAAAR0Av/XCj1wo9R0BdYVgQYk3TR0BEhJul41P4h3KKIAAAR0Av8zMzMzMzR0BdXrhR64UfR0BEhWBBiTdMh3KLIAAAR0Av7hR64UeuR0BdXYEGJN0vR0BEhcKPXCj2h3KMIAAAR0Av49cKPXCkR0BdWvGp++dtR0BEhocrAgxKh3KNIAAAR0Av4UeuFHrhR0BdWk3S8an8R0BEhqfvnbIth3KOIAAAR0Av1wo9cKPXR0BdV752yLQ5R0BEh2yLQ5WBh3KPIAAAR0Av1HrhR64UR0BdVysCDEm6R0BEh41P3ztkh3KQIAAAR0Av0euFHrhSR0BdVocrAgxKR0BEh87ZFocrh3KRIAAAR0AvxR64UeuFR0BdU1P3ztkXR0BEiLQ5WBBih3KSIAAAR0AvuFHrhR64R0BdUDEm6XjVR0BEiZmZmZmah3KTIAAAR0AvtcKPXCj2R0BdT52yLQ5WR0BEibpeNT99h3KUIAAAR0AvsKPXCj1xR0BdTmZmZmZmR0BEihysCDEnh3KVIAAAR0AvqwIMSbpeR0BdTQ5WBBiTR0BEin752yLRh3KWIAAAR0AvpeNT987ZR0BdS9cKPXCkR0BEiuFHrhR7h3KXIAAAR0AvmyLQ5WBCR0BdSUeuFHrhR0BEi4UeuFHsh3KYIAAAR0AvmJN0vGp/R0BdSKPXCj1xR0BEi8an752yh3KZIAAAR0Avk/fO2RaHR0BdR3ztkWhzR0BEjAgxJul5h3KaIAAAR0AvjlYEGJN1R0BdRiTdLxqgR0BEjGp++dsjh3KbIAAAR0Avi8an752yR0BdRYEGJN0vR0BEjItDlYEGh3KcIAAAR0AviTdLxqfwR0BdRO2RaHKwR0BEjMzMzMzNh3KdIAAAR0AvhqfvnbItR0BdREm6XjU/R0BEjO2RaHKwh3KeIAAAR0AvfnbItDlYR0BdQl41P3zuR0BEjXCj1wo9h3KfIAAAR0Avdsi0OVgQR0BdQJN0vGp/R0BEjfO2RaHLh3KgIAAAR0AvbhR64UeuR0BdPqfvnbItR0BEjnbItDlYh3KhIAAAR0Ava4UeuFHsR0BdPgQYk3S8R0BEjrhR64Ufh3KiIAAAR0AvaPXCj1wpR0BdPXCj1wo9R0BEjtkWhysCh3KjIAAAR0AvZul41P30R0BdPN0vGp++R0BEjvnbItDlh3KkIAAAR0AvYMSbpeNUR0BdO4UeuFHsR0BEj1wo9cKPh3KlIAAAR0AvW6XjU/fPR0BdOk3S8an8R0BEj752yLQ5h3KmIAAAR0AvWRaHKwIMR0BdObpeNT99R0BEj987ZFodh3KnIAAAR0AvUGJN0vGqR0BdN87ZFocrR0BEkGJN0vGqh3KoIAAAR0AvTdLxqfvnR0BdNysCDEm6R0BEkIMSbpeNh3KpIAAAR0AvSTdLxqfwR0BdNgQYk3S8R0BEkOVgQYk3h3KqIAAAR0AvQIMSbpeNR0BdNBiTdLxqR0BEkWhysCDFh3KrIAAAR0AvPfO2RaHLR0BdM3S8an76R0BEkYk3S8aoh3KsIAAAR0AvO2RaHKwIR0BdMuFHrhR7R0BEkan752yLh3KtIAAAR0AvKwIMSbpeR0BdLztkWhysR0BEkrAgxJumh3KuIAAAR0AvIk3S8an8R0BdLT987ZFoR0BEkzMzMzMzh3KvIAAAR0AvH752yLQ5R0BdLKwIMSbpR0BEk1P3ztkXh3KwIAAAR0AvHS8an753R0BdLBiTdLxqR0BEk3S8an76h3KxIAAAR0AvFHrhR64UR0BdKi0OVgQZR0BEk/fO2RaHh3KyIAAAR0AvDEm6XjU/R0BdKHKwIMScR0BElHrhR64Uh3KzIAAAR0AvA5WBBiTdR0BdJnbItDlYR0BElP3ztkWih3K0IAAAR0AvAQYk3S8bR0BdJeNT987ZR0BElR64UeuFh3K1IAAAR0Au/nbItDlYR0BdJU/fO2RaR0BElT987ZFoh3K2IAAAR0Au8zMzMzMzR0BdItDlYEGJR0BEleNT987Zh3K3IAAAR0Au8CDEm6XjR0BdIj1wo9cKR0BEliTdLxqgh3K4IAAAR0Au7ZFocrAhR0BdIan752yLR0BElkWhysCDh3K5IAAAR0Au3KwIMSbpR0BdHgQYk3S8R0BElysCDEm6h3K6IAAAR0Au0/fO2RaHR0BdHBiTdLxqR0BEl64UeuFIh3K7IAAAR0Au0WhysCDFR0BdG4UeuFHsR0BEl87ZFocrh3K8IAAAR0AuzlYEGJN1R0BdGvGp++dtR0BEl++dsi0Oh3K9IAAAR0AuwxJul41QR0BdGHKwIMScR0BEmJN0vGp/h3K+IAAAR0AuvXCj1wo9R0BdF0vGp++eR0BEmNT987ZGh3K/IAAAR0Ausan752yLR0BdFMzMzMzNR0BEmXjU/fO2h3LAIAAAR0AurxqfvnbJR0BdFDlYEGJOR0BEmZmZmZmah3LBIAAAR0AuqXjU/fO2R0BdExJul41QR0BEmdsi0OVgh3LCIAAAR0Auo1P3ztkXR0BdEcrAgxJvR0BEmj1wo9cKh3LDIAAAR0AuoMSbpeNUR0BdETdLxqfwR0BEml41P3zuh3LEIAAAR0AunbItDlYER0BdEKPXCj1xR0BEmn752yLRh3LFIAAAR0AumJN0vGp/R0BdD3ztkWhzR0BEmsCDEm6Yh3LGIAAAR0Auj1wo9cKPR0BdDZFocrAhR0BEm0OVgQYlh3LHIAAAR0AuibpeNT99R0BdDGp++dsjR0BEm4UeuFHsh3LIIAAAR0AugIMSbpeNR0BdCo9cKPXDR0BEnAgxJul5h3LJIAAAR0AuffO2RaHLR0BdCfvnbItER0BEnCj1wo9ch3LKIAAAR0AueFHrhR64R0BdCNT987ZGR0BEnGp++dsjh3LLIAAAR0Auci0OVgQZR0BdB41P3ztkR0BEnKwIMSbph3LMIAAAR0AubItDlYEGR0BdBmZmZmZmR0BEnQ5WBBiTh3LNIAAAR0AuYEGJN0vHR0BdA+dsi0OWR0BEnZFocrAhh3LOIAAAR0AuXbItDlYER0BdA1P3ztkXR0BEnbItDlYEh3LPIAAAR0AuWBBiTdLyR0BdAj1wo9cKR0BEnfO2RaHLh3LQIAAAR0AuUWhysCDFR0BdAOVgQYk3R0BEnlYEGJN1h3LRIAAAR0AuTtkWhysCR0BdAFHrhR64R0BEnnbItDlYh3LSIAAAR0AuS8an752yR0Bc/752yLQ5R0BEnpeNT987h3LTIAAAR0AuRiTdLxqgR0Bc/qfvnbItR0BEntkWhysCh3LUIAAAR0AuP3ztkWhzR0Bc/U/fO2RaR0BEnxqfvnbJh3LVIAAAR0AuN0vGp++eR0Bc+6XjU/fPR0BEn3ztkWhzh3LWIAAAR0AuLhR64UeuR0Bc+bpeNT99R0BEoAAAAAAAh3LXIAAAR0AuKwIMSbpeR0Bc+TdLxqfwR0BEoCDEm6Xjh3LYIAAAR0AuJ++dsi0OR0Bc+KPXCj1xR0BEoEGJN0vHh3LZIAAAR0AuJWBBiTdMR0Bc+BBiTdLyR0BEoGJN0vGqh3LaIAAAR0AuHrhR64UfR0Bc9si0OVgQR0BEoKPXCj1xh3LbIAAAR0AuGRaHKwIMR0Bc9aHKwIMSR0BEoOVgQYk3h3LcIAAAR0AuFgQYk3S8R0Bc9Q5WBBiTR0BEoQYk3S8bh3LdIAAAR0AuE3S8an76R0Bc9ItDlYEGR0BEoSbpeNT+h3LeIAAAR0AuDMzMzMzNR0Bc8zMzMzMzR0BEoYk3S8aoh3LfIAAAR0AuCbpeNT99R0Bc8p++dsi0R0BEoan752yLh3LgIAAAR0AuBBiTdLxqR0Bc8Yk3S8aoR0BEocrAgxJvh3LhIAAAR0At+l41P3zuR0Bc764UeuFIR0BEok3S8an8h3LiIAAAR0At987ZFocrR0Bc7xqfvnbJR0BEom6XjU/fh3LjIAAAR0At9LxqfvnbR0Bc7ocrAgxKR0BEoo9cKPXDh3LkIAAAR0At8i0OVgQZR0Bc7gQYk3S8R0BEorAgxJumh3LlIAAAR0At6wIMSbpeR0Bc7KwIMSbpR0BEovGp++dth3LmIAAAR0At4k3S8an8R0Bc6wIMSbpeR0BEo1P3ztkXh3LnIAAAR0At2RaHKwIMR0Bc6SbpeNT+R0BEo7ZFocrBh3LoIAAAR0At1gQYk3S8R0Bc6JN0vGp/R0BEo9cKPXCkh3LpIAAAR0At0vGp++dtR0Bc6BBiTdLyR0BEo/fO2RaHh3LqIAAAR0At0GJN0vGqR0Bc53ztkWhzR0BEpBiTdLxqh3LrIAAAR0Atw5WBBiTdR0Bc5Q5WBBiTR0BEpJul41P4h3LsIAAAR0AtwIMSbpeNR0Bc5ItDlYEGR0BEpLxqfvnbh3LtIAAAR0Attsi0OVgQR0Bc4rAgxJumR0BEpR64UeuFh3LuIAAAR0Ats7ZFocrBR0Bc4hysCDEnR0BEpT987ZFoh3LvIAAAR0AtrhR64UeuR0Bc4QYk3S8bR0BEpYEGJN0vh3LwIAAAR0AtpFocrAgxR0Bc3ysCDEm6R0BEpeNT987Zh3LxIAAAR0AtoUeuFHrhR0Bc3qfvnbItR0BEpgQYk3S8h3LyIAAAR0AtnjU/fO2RR0Bc3hR64UeuR0BEpiTdLxqgh3LzIAAAR0Ati8an752yR0Bc2o9cKPXDR0BEpsi0OVgQh3L0IAAAR0AtgYk3S8aoR0Bc2MSbpeNUR0BEpysCDEm6h3L1IAAAR0AtfvnbItDlR0Bc2DEm6XjVR0BEp0vGp++eh3L2IAAAR0Ate+dsi0OWR0Bc152yLQ5WR0BEp2yLQ5WBh3L3IAAAR0AtbAgxJul5R0Bc1LxqfvnbR0BEqBBiTdLyh3L4IAAAR0AtaPXCj1wpR0Bc1Cj1wo9cR0BEqDEm6XjVh3L5IAAAR0AtW6XjU/fPR0Bc0crAgxJvR0BEqJN0vGp/h3L6IAAAR0AtWJN0vGp/R0Bc0TdLxqfwR0BEqLQ5WBBih3L7IAAAR0AtUvGp++dtR0Bc0CDEm6XjR0BEqPXCj1wph3L8IAAAR0AtS8an752yR0Bczul41P30R0BEqTdLxqfwh3L9IAAAR0AtSLQ5WBBiR0BczlYEGJN1R0BEqVgQYk3Th3L+IAAAR0AtRaHKwIMSR0BczcKPXCj2R0BEqXjU/fO2h3L/IAAAR0AtMrAgxJumR0Bcyk3S8an8R0BEqhysCDEnh3IAIQAAR0AtL52yLQ5WR0BcycrAgxJvR0BEqj1wo9cKh3IBIQAAR0AtJWBBiTdMR0BcyAAAAAAAR0BEqp++dsi0h3ICIQAAR0AtIk3S8an8R0Bcx2yLQ5WBR0BEqsCDEm6Yh3IDIQAAR0AtHCj1wo9cR0BcxlYEGJN1R0BEquFHrhR7h3IEIQAAR0AtDtkWhysCR0Bcw/fO2RaHR0BEq2RaHKwIh3IFIQAAR0AtC8an752yR0Bcw3S8an76R0BEq4UeuFHsh3IGIQAAR0AtAYk3S8aoR0Bcwan752yLR0BEq8an752yh3IHIQAAR0As/nbItDlYR0BcwRaHKwIMR0BEq+dsi0OWh3IIIQAAR0As+FHrhR64R0BcwAAAAAAAR0BErCj1wo9ch3IJIQAAR0As7hR64UeuR0BcvjU/fO2RR0BErGp++dsjh3IKIQAAR0As6wIMSbpeR0BcvbItDlYER0BErItDlYEGh3ILIQAAR0As5N0vGp++R0BcvJul41P4R0BErMzMzMzNh3IMIQAAR0As3bItDlYER0Bcu1P3ztkXR0BErQ5WBBiTh3INIQAAR0As2p++dsi0R0BcutDlYEGJR0BErQ5WBBiTh3IOIQAAR0As1HrhR64UR0BcubpeNT99R0BErU/fO2Rah3IPIQAAR0AszlYEGJN1R0BcuLQ5WBBiR0BErXCj1wo9h3IQIQAAR0AsybpeNT99R0Bct++dsi0OR0BErZFocrAhh3IRIQAAR0AsxqfvnbItR0Bct1wo9cKPR0BErbItDlYEh3ISIQAAR0AswIMSbpeNR0BctlYEGJN1R0BErfO2RaHLh3ITIQAAR0AsszMzMzMzR0Bcs/fO2RaHR0BErlYEGJN1h3IUIQAAR0Asr52yLQ5WR0Bcs3S8an76R0BErnbItDlYh3IVIQAAR0AsrQ5WBBiTR0BcsvGp++dtR0BErpeNT987h3IWIQAAR0AspWBBiTdMR0Bcsan752yLR0BErrhR64Ufh3IXIQAAR0Asok3S8an8R0BcsSbpeNT+R0BErtkWhysCh3IYIQAAR0AsnCj1wo9cR0BcsBBiTdLyR0BErxqfvnbJh3IZIQAAR0AslgQYk3S8R0Bcrwo9cKPXR0BErztkWhysh3IaIQAAR0AskWhysCDFR0BcrkWhysCDR0BEr1wo9cKPh3IbIQAAR0AsjlYEGJN1R0BcrcKPXCj2R0BEr3ztkWhzh3IcIQAAR0Asi0OVgQYlR0BcrS8an753R0BEr3ztkWhzh3IdIQAAR0AsiDEm6XjVR0BcrKwIMSbpR0BEr52yLQ5Wh3IeIQAAR0AsgIMSbpeNR0Bcq3S8an76R0BEr987ZFodh3IfIQAAR0Asdsi0OVgQR0Bcqdsi0OVgR0BEsCDEm6Xjh3IgIQAAR0Asc7ZFocrBR0BcqVgQYk3TR0BEsEGJN0vHh3IhIQAAR0AsbItDlYEGR0BcqBBiTdLyR0BEsGJN0vGqh3IiIQAAR0AsaPXCj1wpR0Bcp41P3ztkR0BEsIMSbpeNh3IjIQAAR0AsZeNT987ZR0BcpvnbItDlR0BEsKPXCj1xh3IkIQAAR0AsYtDlYEGJR0BcpnbItDlYR0BEsMSbpeNUh3IlIQAAR0AsXKwIMSbpR0BcpXCj1wo9R0BEsOVgQYk3h3ImIQAAR0AsVP3ztkWiR0BcpCj1wo9cR0BEsSbpeNT+h3InIQAAR0AsUeuFHrhSR0Bco6XjU/fPR0BEsSbpeNT+h3IoIQAAR0AsTtkWhysCR0BcoyLQ5WBCR0BEsUeuFHrhh3IpIQAAR0AsRysCDEm6R0Bcodsi0OVgR0BEsYk3S8aoh3IqIQAAR0AsQ5WBBiTdR0BcoVgQYk3TR0BEsYk3S8aoh3IrIQAAR0AsPXCj1wo9R0BcoFHrhR64R0BEscrAgxJvh3IsIQAAR0AsMrAgxJumR0BcnocrAgxKR0BEsgxJul41h3ItIQAAR0AsL52yLQ5WR0BcngQYk3S8R0BEsi0OVgQZh3IuIQAAR0AsLAgxJul5R0BcnXCj1wo9R0BEsi0OVgQZh3IvIQAAR0AsKPXCj1wpR0BcnO2RaHKwR0BEsk3S8an8h3IwIQAAR0AsF41P3ztkR0BcmhysCDEnR0BEsrAgxJumh3IxIQAAR0AsDMzMzMzNR0BcmGJN0vGqR0BEsxJul41Qh3IyIQAAR0AsCbpeNT99R0Bcl987ZFodR0BEsxJul41Qh3IzIQAAR0AsBiTdLxqgR0Bcl0vGp++eR0BEszMzMzMzh3I0IQAAR0AsAxJul41QR0Bclsi0OVgQR0BEs1P3ztkXh3I1IQAAR0Ar9LxqfvnbR0BclItDlYEGR0BEs5WBBiTdh3I2IQAAR0Ar8an752yLR0BclAgxJul5R0BEs7ZFocrBh3I3IQAAR0Ar41P3ztkXR0BckbpeNT99R0BEtBiTdLxqh3I4IQAAR0Ar0euFHrhSR0BcjvnbItDlR0BEtHrhR64Uh3I5IQAAR0ArzlYEGJN1R0BcjnbItDlYR0BEtJul41P4h3I6IQAAR0Ary0OVgQYlR0BcjeNT987ZR0BEtJul41P4h3I7IQAAR0ArtkWhysCDR0Bcip++dsi0R0BEtR64UeuFh3I8IQAAR0ArsrAgxJumR0BcihysCDEnR0BEtT987ZFoh3I9IQAAR0Arp++dsi0OR0BciGJN0vGqR0BEtYEGJN0vh3I+IQAAR0ArpFocrAgxR0Bch87ZFocrR0BEtYEGJN0vh3I/IQAAR0Arj1wo9cKPR0BchItDlYEGR0BEtgQYk3S8h3JAIQAAR0Ari8an752yR0BchAgxJul5R0BEtiTdLxqgh3JBIQAAR0ArhaHKwIMSR0BcgwIMSbpeR0BEtkWhysCDh3JCIQAAR0ArgIMSbpeNR0Bcgk3S8an8R0BEtmZmZmZmh3JDIQAAR0ArfXCj1wo9R0BcgcrAgxJvR0BEtmZmZmZmh3JEIQAAR0Ardsi0OVgQR0BcgMSbpeNUR0BEtocrAgxKh3JFIQAAR0ArcCDEm6XjR0Bcf752yLQ5R0BEtqfvnbIth3JGIQAAR0Ara4UeuFHsR0Bcfwo9cKPXR0BEtsi0OVgQh3JHIQAAR0ArZ++dsi0OR0BcfocrAgxKR0BEtul41P30h3JIIQAAR0ArYUeuFHrhR0BcfYEGJN0vR0BEtwo9cKPXh3JJIQAAR0ArXjU/fO2RR0BcfP3ztkWiR0BEtwo9cKPXh3JKIQAAR0ArWZmZmZmaR0BcfEm6XjU/R0BEtysCDEm6h3JLIQAAR0ArUvGp++dtR0Bce0OVgQYlR0BEt0vGp++eh3JMIQAAR0ArT1wo9cKPR0BcesCDEm6YR0BEt2yLQ5WBh3JNIQAAR0ArSLQ5WBBiR0BcebpeNT99R0BEt41P3ztkh3JOIQAAR0ArRBiTdLxqR0BceQYk3S8bR0BEt41P3ztkh3JPIQAAR0ArQIMSbpeNR0BceIMSbpeNR0BEt64UeuFIh3JQIQAAR0ArOdsi0OVgR0Bcd3ztkWhzR0BEt87ZFocrh3JRIQAAR0ArNkWhysCDR0BcdvnbItDlR0BEt++dsi0Oh3JSIQAAR0ArKwIMSbpeR0BcdT987ZFoR0BEuBBiTdLyh3JTIQAAR0ArJ2yLQ5WBR0BcdLxqfvnbR0BEuDEm6XjVh3JUIQAAR0ArJFocrAgxR0BcdDlYEGJOR0BEuDEm6XjVh3JVIQAAR0ArIMSbpeNUR0Bcc8an752yR0BEuFHrhR64h3JWIQAAR0ArHCj1wo9cR0BccxJul41QR0BEuHKwIMSch3JXIQAAR0ArGJN0vGp/R0Bcco9cKPXDR0BEuHKwIMSch3JYIQAAR0ArEeuFHrhSR0BccYk3S8aoR0BEuJN0vGp/h3JZIQAAR0ArC0OVgQYlR0BccIMSbpeNR0BEuLQ5WBBih3JaIQAAR0ArBqfvnbItR0Bcb87ZFocrR0BEuNT987ZGh3JbIQAAR0ArAxJul41QR0Bcb0vGp++eR0BEuNT987ZGh3JcIQAAR0Aq/3ztkWhzR0Bcbsi0OVgQR0BEuPXCj1wph3JdIQAAR0Aq/Gp++dsjR0BcbkWhysCDR0BEuPXCj1wph3JeIQAAR0Aq+NT987ZGR0BcbdLxqfvnR0BEuRaHKwIMh3JfIQAAR0Aq9DlYEGJOR0BcbR64UeuFR0BEuRaHKwIMh3JgIQAAR0Aq8KPXCj1xR0BcbJul41P4R0BEuTdLxqfwh3JhIQAAR0Aq6XjU/fO2R0Bca5WBBiTdR0BEuVgQYk3Th3JiIQAAR0Aq5mZmZmZmR0BcaxJul41QR0BEuVgQYk3Th3JjIQAAR0Aq4tDlYEGJR0Bcao9cKPXDR0BEuXjU/fO2h3JkIQAAR0Aq3jU/fO2RR0Bcadsi0OVgR0BEuXjU/fO2h3JlIQAAR0Aq2p++dsi0R0BcaVgQYk3TR0BEuZmZmZmah3JmIQAAR0Aq1wo9cKPXR0BcaNT987ZGR0BEuZmZmZmah3JnIQAAR0Aq0/fO2RaHR0BcaGJN0vGqR0BEubpeNT99h3JoIQAAR0Aq0GJN0vGqR0BcZ987ZFodR0BEubpeNT99h3JpIQAAR0AqzMzMzMzNR0BcZ1wo9cKPR0BEudsi0OVgh3JqIQAAR0AqxJul41P4R0BcZiTdLxqgR0BEufvnbItEh3JrIQAAR0AqwQYk3S8bR0BcZaHKwIMSR0BEufvnbItEh3JsIQAAR0AqvfO2RaHLR0BcZS8an753R0BEuhysCDEnh3JtIQAAR0Aqul41P3zuR0BcZKwIMSbpR0BEuhysCDEnh3JuIQAAR0AqtcKPXCj2R0BcY/fO2RaHR0BEuj1wo9cKh3JvIQAAR0Aqsi0OVgQZR0BcY3S8an76R0BEuj1wo9cKh3JwIQAAR0AqqwIMSbpeR0BcYm6XjU/fR0BEul41P3zuh3JxIQAAR0Aqp++dsi0OR0BcYfvnbItER0BEun752yLRh3JyIQAAR0AqpFocrAgxR0BcYXjU/fO2R0BEun752yLRh3JzIQAAR0AqnztkWhysR0BcYMSbpeNUR0BEup++dsi0h3J0IQAAR0AqnCj1wo9cR0BcYEGJN0vHR0BEup++dsi0h3J1IQAAR0AqmJN0vGp/R0BcX752yLQ5R0BEusCDEm6Yh3J2IQAAR0AqlP3ztkWiR0BcXztkWhysR0BEusCDEm6Yh3J3IQAAR0AqkWhysCDFR0BcXsi0OVgQR0BEuuFHrhR7h3J4IQAAR0AqjlYEGJN1R0BcXkWhysCDR0BEuuFHrhR7h3J5IQAAR0AqiTdLxqfwR0BcXZFocrAhR0BEuwIMSbpeh3J6IQAAR0AqggxJul41R0BcXItDlYEGR0BEuwIMSbpeh3J7IQAAR0AqfnbItDlYR0BcXBiTdLxqR0BEuyLQ5WBCh3J8IQAAR0Aqe2RaHKwIR0BcW5WBBiTdR0BEuyLQ5WBCh3J9IQAAR0AqdkWhysCDR0BcWuFHrhR7R0BEu0OVgQYlh3J+IQAAR0AqcrAgxJumR0BcWl41P3zuR0BEu0OVgQYlh3J/IQAAR0AqbxqfvnbJR0BcWdsi0OVgR0BEu2RaHKwIh3KAIQAAR0AqbAgxJul5R0BcWWhysCDFR0BEu2RaHKwIh3KBIQAAR0AqZN0vGp++R0BcWHKwIMScR0BEu4UeuFHsh3KCIQAAR0AqXKwIMSbpR0BcVztkWhysR0BEu6XjU/fPh3KDIQAAR0AqWRaHKwIMR0BcVrhR64UfR0BEu6XjU/fPh3KEIQAAR0AqVYEGJN0vR0BcVjU/fO2RR0BEu8an752yh3KFIQAAR0AqUeuFHrhSR0BcVcKPXCj2R0BEu8an752yh3KGIQAAR0AqTMzMzMzNR0BcVQ5WBBiTR0BEu+dsi0OWh3KHIQAAR0AqSTdLxqfwR0BcVItDlYEGR0BEu+dsi0OWh3KIIQAAR0AqQo9cKPXDR0BcU4UeuFHsR0BEvAgxJul5h3KJIQAAR0AqPvnbItDlR0BcUxJul41QR0BEvAgxJul5h3KKIQAAR0AqO2RaHKwIR0BcUo9cKPXDR0BEvCj1wo9ch3KLIQAAR0AqNkWhysCDR0BcUeuFHrhSR0BEvCj1wo9ch3KMIQAAR0AqMrAgxJumR0BcUWhysCDFR0BEvEm6XjU/h3KNIQAAR0AqLxqfvnbJR0BcUOVgQYk3R0BEvEm6XjU/h3KOIQAAR0AqLAgxJul5R0BcUGJN0vGqR0BEvEm6XjU/h3KPIQAAR0AqJN0vGp++R0BcT2yLQ5WBR0BEvGp++dsjh3KQIQAAR0AqH752yLQ5R0BcTrhR64UfR0BEvItDlYEGh3KRIQAAR0AqGJN0vGp/R0BcTcKPXCj2R0BEvItDlYEGh3KSIQAAR0AqCTdLxqfwR0BcS5WBBiTdR0BEvMzMzMzNh3KTIQAAR0AqBR64UeuFR0BcSxJul41QR0BEvMzMzMzNh3KUIQAAR0Ap+uFHrhR7R0BcSan752yLR0BEvO2RaHKwh3KVIQAAR0Ap8i0OVgQZR0BcSHKwIMScR0BEvQ5WBBiTh3KWIQAAR0Ap7peNT987R0BcR++dsi0OR0BEvS8an753h3KXIQAAR0Ap3rhR64UfR0BcRdLxqfvnR0BEvU/fO2Rah3KYIQAAR0Apx64UeuFIR0BcQrAgxJumR0BEvZFocrAhh3KZIQAAR0ApxBiTdLxqR0BcQi0OVgQZR0BEvbItDlYEh3KaIQAAR0AptDlYEGJOR0BcQBBiTdLyR0BEvdLxqfvnh3KbIQAAR0AprQ5WBBiTR0BcPxqfvnbJR0BEvfO2RaHLh3KcIQAAR0ApqXjU/fO2R0BcPpeNT987R0BEvfO2RaHLh3KdIQAAR0Apok3S8an8R0BcPaHKwIMSR0BEvhR64Ueuh3KeIQAAR0ApnS8an753R0BcPO2RaHKwR0BEvhR64Ueuh3KfIQAAR0ApmZmZmZmaR0BcPGp++dsjR0BEvhR64Ueuh3KgIQAAR0Apkm6XjU/fR0BcO3S8an76R0BEvjU/fO2Rh3KhIQAAR0ApjtkWhysCR0BcOwIMSbpeR0BEvjU/fO2Rh3KiIQAAR0ApggxJul41R0BcOVgQYk3TR0BEvlYEGJN1h3KjIQAAR0ApfnbItDlYR0BcONT987ZGR0BEvlYEGJN1h3KkIQAAR0Apd0vGp++eR0BcN++dsi0OR0BEvnbItDlYh3KlIQAAR0Apci0OVgQZR0BcNztkWhysR0BEvnbItDlYh3KmIQAAR0ApbpeNT987R0BcNrhR64UfR0BEvpeNT987h3KnIQAAR0ApZ2yLQ5WBR0BcNcKPXCj2R0BEvpeNT987h3KoIQAAR0ApYEGJN0vHR0BcNMzMzMzNR0BEvrhR64Ufh3KpIQAAR0ApWyLQ5WBCR0BcNCj1wo9cR0BEvrhR64Ufh3KqIQAAR0ApVwo9cKPXR0BcM6XjU/fPR0BEvtkWhysCh3KrIQAAR0ApU3S8an76R0BcMyLQ5WBCR0BEvtkWhysCh3KsIQAAR0ApT987ZFodR0BcMrAgxJumR0BEvtkWhysCh3KtIQAAR0ApTEm6XjU/R0BcMj1wo9cKR0BEvtkWhysCh3KuIQAAR0ApRysCDEm6R0BcMYk3S8aoR0BEvvnbItDlh3KvIQAAR0ApO+dsi0OWR0BcMBBiTdLyR0BEvvnbItDlh3KwIQAAR0ApOFHrhR64R0BcL52yLQ5WR0BEvxqfvnbJh3KxIQAAR0ApNLxqfvnbR0BcLysCDEm6R0BEvxqfvnbJh3KyIQAAR0ApL52yLQ5WR0BcLnbItDlYR0BEvxqfvnbJh3KzIQAAR0ApK4UeuFHsR0BcLfO2RaHLR0BEvztkWhysh3K0IQAAR0ApJFocrAgxR0BcLP3ztkWiR0BEvztkWhysh3K1IQAAR0ApIMSbpeNUR0BcLItDlYEGR0BEvztkWhysh3K2IQAAR0ApHS8an753R0BcLBiTdLxqR0BEv1wo9cKPh3K3IQAAR0ApE/fO2RaHR0BcKvGp++dtR0BEv1wo9cKPh3K4IQAAR0ApEGJN0vGqR0BcKm6XjU/fR0BEv1wo9cKPh3K5IQAAR0ApDMzMzMzNR0BcKfvnbItER0BEv3ztkWhzh3K6IQAAR0ApCTdLxqfwR0BcKXjU/fO2R0BEv3ztkWhzh3K7IQAAR0ApA5WBBiTdR0BcKNT987ZGR0BEv3ztkWhzh3K8IQAAR0ApAAAAAAAAR0BcKFHrhR64R0BEv3ztkWhzh3K9IQAAR0Ao+FHrhR64R0BcJ1wo9cKPR0BEv52yLQ5Wh3K+IQAAR0Ao9LxqfvnbR0BcJul41P30R0BEv52yLQ5Wh3K/IQAAR0Ao8SbpeNT+R0BcJnbItDlYR0BEv52yLQ5Wh3LAIQAAR0Ao7AgxJul5R0BcJcKPXCj2R0BEv752yLQ5h3LBIQAAR0Ao6HKwIMScR0BcJU/fO2RaR0BEv752yLQ5h3LCIQAAR0Ao5FocrAgxR0BcJMzMzMzNR0BEv752yLQ5h3LDIQAAR0Ao4MSbpeNUR0BcJFocrAgxR0BEv752yLQ5h3LEIQAAR0Ao3S8an753R0BcI9cKPXCkR0BEv987ZFodh3LFIQAAR0Ao2ZmZmZmaR0BcI2RaHKwIR0BEv987ZFodh3LGIQAAR0Ao2BBiTdLyR0BcIzMzMzMzR0BEv987ZFodh3LHIQAAR0Ao0/fO2RaHR0BcIrAgxJumR0BEv987ZFodh3LIIQAAR0AozEm6XjU/R0BcIbpeNT99R0BEv987ZFodh3LJIQAAR0AoyLQ5WBBiR0BcIUeuFHrhR0BEwAAAAAAAh3LKIQAAR0AoxR64UeuFR0BcINT987ZGR0BEwAAAAAAAh3LLIQAAR0AowAAAAAAAR0BcIDEm6XjVR0BEwAAAAAAAh3LMIQAAR0Aou+dsi0OWR0BcH64UeuFIR0BEwAAAAAAAh3LNIQAAR0AouFHrhR64R0BcHysCDEm6R0BEwCDEm6Xjh3LOIQAAR0AotLxqfvnbR0BcHrhR64UfR0BEwCDEm6Xjh3LPIQAAR0AosKPXCj1xR0BcHkWhysCDR0BEwCDEm6Xjh3LQIQAAR0AorQ5WBBiTR0BcHdLxqfvnR0BEwCDEm6Xjh3LRIQAAR0Aoo9cKPXCkR0BcHKwIMSbpR0BEwEGJN0vHh3LSIQAAR0AooEGJN0vHR0BcHCj1wo9cR0BEwEGJN0vHh3LTIQAAR0AonKwIMSbpR0BcG7ZFocrBR0BEwEGJN0vHh3LUIQAAR0AomJN0vGp/R0BcG0OVgQYlR0BEwEGJN0vHh3LVIQAAR0Aok3S8an76R0BcGo9cKPXDR0BEwEGJN0vHh3LWIQAAR0Aoj1wo9cKPR0BcGhysCDEnR0BEwGJN0vGqh3LXIQAAR0AoiDEm6XjVR0BcGSbpeNT+R0BEwGJN0vGqh3LYIQAAR0AohBiTdLxqR0BcGLQ5WBBiR0BEwGJN0vGqh3LZIQAAR0AogIMSbpeNR0BcGDEm6XjVR0BEwGJN0vGqh3LaIQAAR0Aoe2RaHKwIR0BcF41P3ztkR0BEwGJN0vGqh3LbIQAAR0Aod0vGp++eR0BcFxqfvnbJR0BEwIMSbpeNh3LcIQAAR0Aoc7ZFocrBR0BcFpeNT987R0BEwIMSbpeNh3LdIQAAR0Aob52yLQ5WR0BcFiTdLxqgR0BEwIMSbpeNh3LeIQAAR0AobAgxJul5R0BcFbItDlYER0BEwIMSbpeNh3LfIQAAR0AoaHKwIMScR0BcFS8an753R0BEwIMSbpeNh3LgIQAAR0AoYtDlYEGJR0BcFItDlYEGR0BEwKPXCj1xh3LhIQAAR0AoWyLQ5WBCR0BcE5WBBiTdR0BEwKPXCj1xh3LiIQAAR0AoV41P3ztkR0BcEyLQ5WBCR0BEwKPXCj1xh3LjIQAAR0AoU/fO2RaHR0BcErAgxJumR0BEwKPXCj1xh3LkIQAAR0AoTlYEGJN1R0BcEfvnbItER0BEwKPXCj1xh3LlIQAAR0AoSj1wo9cKR0BcEYk3S8aoR0BEwKPXCj1xh3LmIQAAR0AoRqfvnbItR0BcERaHKwIMR0BEwMSbpeNUh3LnIQAAR0AoQxJul41QR0BcEJN0vGp/R0BEwMSbpeNUh3LoIQAAR0AoPvnbItDlR0BcECDEm6XjR0BEwMSbpeNUh3LpIQAAR0AoO2RaHKwIR0BcD64UeuFIR0BEwMSbpeNUh3LqIQAAR0AoMi0OVgQZR0BcDocrAgxKR0BEwMSbpeNUh3LrIQAAR0AoLhR64UeuR0BcDhR64UeuR0BEwOVgQYk3h3LsIQAAR0AoKn752yLRR0BcDaHKwIMSR0BEwOVgQYk3h3LtIQAAR0AoJmZmZmZmR0BcDR64UeuFR0BEwOVgQYk3h3LuIQAAR0AoItDlYEGJR0BcDKwIMSbpR0BEwOVgQYk3h3LvIQAAR0AoHS8an753R0BcDAgxJul5R0BEwOVgQYk3h3LwIQAAR0AoFYEGJN0vR0BcCxJul41QR0BEwOVgQYk3h3LxIQAAR0AoEeuFHrhSR0BcCp++dsi0R0BEwOVgQYk3h3LyIQAAR0AoDdLxqfvnR0BcCi0OVgQZR0BEwQYk3S8bh3LzIQAAR0AoBJul41P4R0BcCQYk3S8bR0BEwQYk3S8bh3L0IQAAR0AoAIMSbpeNR0BcCJN0vGp/R0BEwQYk3S8bh3L1IQAAR0An9T987ZFoR0BcBysCDEm6R0BEwQYk3S8bh3L2IQAAR0An752yLQ5WR0BcBocrAgxKR0BEwQYk3S8bh3L3IQAAR0An5++dsi0OR0BcBZFocrAhR0BEwSbpeNT+h3L4IQAAR0An1wo9cKPXR0BcA5WBBiTdR0BEwSbpeNT+h3L5IQAAR0An0vGp++dtR0BcAxJul41QR0BEwSbpeNT+h3L6IQAAR0Anx64UeuFIR0BcAbpeNT99R0BEwSbpeNT+h3L7IQAAR0Anul41P3zuR0BcACDEm6XjR0BEwUeuFHrhh3L8IQAAR0AntkWhysCDR0Bb/64UeuFIR0BEwUeuFHrhh3L9IQAAR0AnrpeNT987R0Bb/si0OVgQR0BEwUeuFHrhh3L+IQAAR0AnqPXCj1wpR0Bb/hR64UeuR0BEwUeuFHrhh3L/IQAAR0AnnS8an753R0Bb/KwIMSbpR0BEwUeuFHrhh3IAIgAAR0Anj987ZFodR0Bb+yLQ5WBCR0BEwUeuFHrhh3IBIgAAR0AnjEm6XjU/R0Bb+rAgxJumR0BEwWhysCDFh3ICIgAAR0AngIMSbpeNR0Bb+UeuFHrhR0BEwWhysCDFh3IDIgAAR0AneuFHrhR7R0Bb+KPXCj1xR0BEwWhysCDFh3IEIgAAR0AnczMzMzMzR0Bb9752yLQ5R0BEwWhysCDFh3IFIgAAR0AnbxqfvnbJR0Bb90vGp++eR0BEwWhysCDFh3IGIgAAR0AnZ2yLQ5WBR0Bb9mZmZmZmR0BEwWhysCDFh3IHIgAAR0AnYcrAgxJvR0Bb9cKPXCj2R0BEwWhysCDFh3IIIgAAR0AnXbItDlYER0Bb9T987ZFoR0BEwWhysCDFh3IJIgAAR0AnVgQYk3S8R0Bb9FocrAgxR0BEwWhysCDFh3IKIgAAR0AnUeuFHrhSR0Bb8+dsi0OWR0BEwWhysCDFh3ILIgAAR0AnTdLxqfvnR0Bb83S8an76R0BEwWhysCDFh3IMIgAAR0AnRJul41P4R0Bb8l41P3zuR0BEwWhysCDFh3INIgAAR0AnQIMSbpeNR0Bb8dsi0OVgR0BEwWhysCDFh3IOIgAAR0AnPGp++dsjR0Bb8WhysCDFR0BEwWhysCDFh3IPIgAAR0AnONT987ZGR0Bb8PXCj1wpR0BEwWhysCDFh3IQIgAAR0AnMzMzMzMzR0Bb8FHrhR64R0BEwWhysCDFh3IRIgAAR0AnLxqfvnbJR0Bb7987ZFodR0BEwWhysCDFh3ISIgAAR0AnJul41P30R0Bb7vnbItDlR0BEwYk3S8aoh3ITIgAAR0AnI1P3ztkXR0Bb7ocrAgxKR0BEwYk3S8aoh3IUIgAAR0AnHztkWhysR0Bb7hR64UeuR0BEwYk3S8aoh3IVIgAAR0AnGZmZmZmaR0Bb7XCj1wo9R0BEwYk3S8aoh3IWIgAAR0AnFYEGJN0vR0Bb7P3ztkWiR0BEwYk3S8aoh3IXIgAAR0AnEWhysCDFR0Bb7HrhR64UR0BEwYk3S8aoh3IYIgAAR0AnDdLxqfvnR0Bb7AgxJul5R0BEwYk3S8aoh3IZIgAAR0AnCbpeNT99R0Bb65WBBiTdR0BEwYk3S8aoh3IaIgAAR0AnBBiTdLxqR0Bb6vGp++dtR0BEwYk3S8aoh3IbIgAAR0Am+FHrhR64R0Bb6ZmZmZmaR0BEwYk3S8aoh3IcIgAAR0Am9DlYEGJOR0Bb6SbpeNT+R0BEwYk3S8aoh3IdIgAAR0Am8CDEm6XjR0Bb6LQ5WBBiR0BEwYk3S8aoh3IeIgAAR0Am6n752yLRR0Bb6BBiTdLyR0BEwYk3S8aoh3IfIgAAR0Am5mZmZmZmR0Bb552yLQ5WR0BEwYk3S8aoh3IgIgAAR0Am4k3S8an8R0Bb5ysCDEm6R0BEwYk3S8aoh3IhIgAAR0Am3rhR64UfR0Bb5rhR64UfR0BEwYk3S8aoh3IiIgAAR0Am2p++dsi0R0Bb5kWhysCDR0BEwYk3S8aoh3IjIgAAR0Am1ocrAgxKR0Bb5dLxqfvnR0BEwWhysCDFh3IkIgAAR0AmzMzMzMzNR0Bb5LxqfvnbR0BEwWhysCDFh3IlIgAAR0AmyLQ5WBBiR0Bb5DlYEGJOR0BEwWhysCDFh3ImIgAAR0AmxJul41P4R0Bb49cKPXCkR0BEwWhysCDFh3InIgAAR0AmwQYk3S8bR0Bb42RaHKwIR0BEwWhysCDFh3IoIgAAR0Amu2RaHKwIR0Bb4sCDEm6YR0BEwWhysCDFh3IpIgAAR0Amt0vGp++eR0Bb4k3S8an8R0BEwWhysCDFh3IqIgAAR0AmrxqfvnbJR0Bb4VgQYk3TR0BEwWhysCDFh3IrIgAAR0AmqwIMSbpeR0Bb4OVgQYk3R0BEwWhysCDFh3IsIgAAR0Ampul41P30R0Bb4IMSbpeNR0BEwWhysCDFh3ItIgAAR0AmoUeuFHrhR0Bb3987ZFodR0BEwWhysCDFh3IuIgAAR0AmnS8an753R0Bb32yLQ5WBR0BEwWhysCDFh3IvIgAAR0AmmRaHKwIMR0Bb3ul41P30R0BEwWhysCDFh3IwIgAAR0AmlYEGJN0vR0Bb3nbItDlYR0BEwWhysCDFh3IxIgAAR0AmkWhysCDFR0Bb3hR64UeuR0BEwWhysCDFh3IyIgAAR0AmjU/fO2RaR0Bb3aHKwIMSR0BEwWhysCDFh3IzIgAAR0Amh64UeuFIR0Bb3P3ztkWiR0BEwWhysCDFh3I0IgAAR0Amf3ztkWhzR0Bb3BiTdLxqR0BEwWhysCDFh3I1IgAAR0Ame2RaHKwIR0Bb26XjU/fPR0BEwWhysCDFh3I2IgAAR0Amd0vGp++eR0Bb2zMzMzMzR0BEwWhysCDFh3I3IgAAR0Amcan752yLR0Bb2o9cKPXDR0BEwWhysCDFh3I4IgAAR0AmbZFocrAhR0Bb2hysCDEnR0BEwUeuFHrhh3I5IgAAR0AmaXjU/fO2R0Bb2an752yLR0BEwUeuFHrhh3I6IgAAR0AmZWBBiTdMR0Bb2TdLxqfwR0BEwUeuFHrhh3I7IgAAR0AmYUeuFHrhR0Bb2MSbpeNUR0BEwUeuFHrhh3I8IgAAR0AmXS8an753R0Bb2FHrhR64R0BEwUeuFHrhh3I9IgAAR0AmU3S8an76R0Bb1ztkWhysR0BEwUeuFHrhh3I+IgAAR0AmT1wo9cKPR0Bb1si0OVgQR0BEwUeuFHrhh3I/IgAAR0AmS0OVgQYlR0Bb1lYEGJN1R0BEwUeuFHrhh3JAIgAAR0AmRysCDEm6R0Bb1eNT987ZR0BEwUeuFHrhh3JBIgAAR0AmQ5WBBiTdR0Bb1XCj1wo9R0BEwUeuFHrhh3JCIgAAR0AmPXCj1wo9R0Bb1MzMzMzNR0BEwUeuFHrhh3JDIgAAR0AmNT987ZFoR0Bb0/fO2RaHR0BEwSbpeNT+h3JEIgAAR0AmMSbpeNT+R0Bb04UeuFHsR0BEwSbpeNT+h3JFIgAAR0AmLQ5WBBiTR0Bb0xJul41QR0BEwSbpeNT+h3JGIgAAR0AmI1P3ztkXR0Bb0fvnbItER0BEwSbpeNT+h3JHIgAAR0AmHztkWhysR0Bb0Yk3S8aoR0BEwSbpeNT+h3JIIgAAR0AmGyLQ5WBCR0Bb0RaHKwIMR0BEwSbpeNT+h3JJIgAAR0AmFwo9cKPXR0Bb0KPXCj1xR0BEwSbpeNT+h3JKIgAAR0AmEvGp++dtR0Bb0DEm6XjVR0BEwSbpeNT+h3JLIgAAR0AmDU/fO2RaR0Bbz41P3ztkR0BEwSbpeNT+h3JMIgAAR0AmBJul41P4R0BbzrhR64UfR0BEwQYk3S8bh3JNIgAAR0AmAQYk3S8bR0BbzkWhysCDR0BEwQYk3S8bh3JOIgAAR0Al/O2RaHKwR0BbzdLxqfvnR0BEwQYk3S8bh3JPIgAAR0Al8rAgxJumR0BbzLxqfvnbR0BEwQYk3S8bh3JQIgAAR0Al7peNT987R0BbzEm6XjU/R0BEwQYk3S8bh3JRIgAAR0Al6n752yLRR0Bby9cKPXCkR0BEwQYk3S8bh3JSIgAAR0Al5mZmZmZmR0Bby3S8an76R0BEwQYk3S8bh3JTIgAAR0Al4k3S8an8R0BbywIMSbpeR0BEwOVgQYk3h3JUIgAAR0Al0/fO2RaHR0BbyXjU/fO2R0BEwOVgQYk3h3JVIgAAR0Aly8an752yR0BbyJN0vGp/R0BEwOVgQYk3h3JWIgAAR0AlyDEm6XjVR0BbyDEm6XjVR0BEwOVgQYk3h3JXIgAAR0AlwgxJul41R0Bbx41P3ztkR0BEwMSbpeNUh3JYIgAAR0Aludsi0OVgR0BbxqfvnbItR0BEwMSbpeNUh3JZIgAAR0Alsan752yLR0BbxcKPXCj2R0BEwMSbpeNUh3JaIgAAR0Alp2yLQ5WBR0BbxLxqfvnbR0BEwMSbpeNUh3JbIgAAR0Alo1P3ztkXR0BbxEm6XjU/R0BEwKPXCj1xh3JcIgAAR0Allwo9cKPXR0BbwwIMSbpeR0BEwKPXCj1xh3JdIgAAR0AlkOVgQYk3R0Bbwl41P3zuR0BEwKPXCj1xh3JeIgAAR0AliLQ5WBBiR0BbwXjU/fO2R0BEwIMSbpeNh3JfIgAAR0AlhBiTdLxqR0BbwQYk3S8bR0BEwIMSbpeNh3JgIgAAR0AldkWhysCDR0Bbv41P3ztkR0BEwIMSbpeNh3JhIgAAR0Alci0OVgQZR0BbvxqfvnbJR0BEwIMSbpeNh3JiIgAAR0AlZWBBiTdMR0BbvdLxqfvnR0BEwGJN0vGqh3JjIgAAR0AlX752yLQ5R0BbvS8an753R0BEwGJN0vGqh3JkIgAAR0AlVwo9cKPXR0BbvEm6XjU/R0BEwGJN0vGqh3JlIgAAR0AlUvGp++dtR0Bbu9cKPXCkR0BEwEGJN0vHh3JmIgAAR0AlSsCDEm6YR0BbuwIMSbpeR0BEwEGJN0vHh3JnIgAAR0AlRJul41P4R0Bbul41P3zuR0BEwEGJN0vHh3JoIgAAR0AlQIMSbpeNR0BbufvnbItER0BEwEGJN0vHh3JpIgAAR0AlN87ZFocrR0BbuRaHKwIMR0BEwCDEm6Xjh3JqIgAAR0AlL52yLQ5WR0BbuEGJN0vHR0BEwCDEm6Xjh3JrIgAAR0AlJWBBiTdMR0BbtysCDEm6R0BEwAAAAAAAh3JsIgAAR0AlGRaHKwIMR0BbteNT987ZR0BEwAAAAAAAh3JtIgAAR0AlEvGp++dtR0BbtT987ZFoR0BEwAAAAAAAh3JuIgAAR0AlCsCDEm6YR0BbtGp++dsjR0BEv987ZFodh3JvIgAAR0AlBiTdLxqgR0Bbs/fO2RaHR0BEv987ZFodh3JwIgAAR0AlAgxJul41R0Bbs4UeuFHsR0BEv987ZFodh3JxIgAAR0Ak/fO2RaHLR0BbsyLQ5WBCR0BEv987ZFodh3JyIgAAR0Ak987ZFocrR0Bbsn752yLRR0BEv752yLQ5h3JzIgAAR0Ak87ZFocrBR0BbsgxJul41R0BEv752yLQ5h3J0IgAAR0Ak6wIMSbpeR0BbsTdLxqfwR0BEv752yLQ5h3J1IgAAR0Ak5ul41P30R0BbsMSbpeNUR0BEv52yLQ5Wh3J2IgAAR0Ak4tDlYEGJR0BbsFHrhR64R0BEv52yLQ5Wh3J3IgAAR0Ak2JN0vGp/R0Bbr0vGp++eR0BEv52yLQ5Wh3J4IgAAR0Ak0/fO2RaHR0BbrtkWhysCR0BEv3ztkWhzh3J5IgAAR0Akz987ZFodR0BbrnbItDlYR0BEv3ztkWhzh3J6IgAAR0Aky8an752yR0BbrgQYk3S8R0BEv3ztkWhzh3J7IgAAR0AkxaHKwIMSR0BbrXCj1wo9R0BEv3ztkWhzh3J8IgAAR0AkwYk3S8aoR0BbrP3ztkWiR0BEv1wo9cKPh3J9IgAAR0AkuNT987ZGR0BbrBiTdLxqR0BEv1wo9cKPh3J+IgAAR0AktLxqfvnbR0Bbq7ZFocrBR0BEv1wo9cKPh3J/IgAAR0AksKPXCj1xR0Bbq0OVgQYlR0BEv1wo9cKPh3KAIgAAR0AkpeNT987ZR0Bbqj1wo9cKR0BEvztkWhysh3KBIgAAR0AkocrAgxJvR0BbqcrAgxJvR0BEvztkWhysh3KCIgAAR0AknbItDlYER0BbqVgQYk3TR0BEvxqfvnbJh3KDIgAAR0AkmRaHKwIMR0BbqPXCj1wpR0BEvxqfvnbJh3KEIgAAR0AklP3ztkWiR0BbqIMSbpeNR0BEvxqfvnbJh3KFIgAAR0AkhiTdLxqgR0Bbpwo9cKPXR0BEvvnbItDlh3KGIgAAR0AkggxJul41R0BbppeNT987R0BEvvnbItDlh3KHIgAAR0AkffO2RaHLR0BbpjU/fO2RR0BEvvnbItDlh3KIIgAAR0Akd87ZFocrR0BbpaHKwIMSR0BEvtkWhysCh3KJIgAAR0Akc7ZFocrBR0BbpS8an753R0BEvtkWhysCh3KKIgAAR0AkbxqfvnbJR0BbpLxqfvnbR0BEvtkWhysCh3KLIgAAR0AkawIMSbpeR0BbpEm6XjU/R0BEvtkWhysCh3KMIgAAR0AkZul41P30R0Bbo+dsi0OWR0BEvrhR64Ufh3KNIgAAR0AkYk3S8an8R0Bbo3S8an76R0BEvrhR64Ufh3KOIgAAR0AkU3S8an76R0BbofvnbItER0BEvpeNT987h3KPIgAAR0AkT1wo9cKPR0BboZmZmZmaR0BEvpeNT987h3KQIgAAR0AkS0OVgQYlR0BboSbpeNT+R0BEvpeNT987h3KRIgAAR0AkQIMSbpeNR0BboCDEm6XjR0BEvnbItDlYh3KSIgAAR0AkN87ZFocrR0Bbn0vGp++eR0BEvlYEGJN1h3KTIgAAR0AkM7ZFocrBR0BbntkWhysCR0BEvlYEGJN1h3KUIgAAR0AkL52yLQ5WR0BbnnbItDlYR0BEvlYEGJN1h3KVIgAAR0AkJN0vGp++R0BbnXCj1wo9R0BEvjU/fO2Rh3KWIgAAR0AkIMSbpeNUR0BbnP3ztkWiR0BEvjU/fO2Rh3KXIgAAR0AkHCj1wo9cR0BbnItDlYEGR0BEvhR64Ueuh3KYIgAAR0AkGBBiTdLyR0BbnCj1wo9cR0BEvhR64Ueuh3KZIgAAR0AkE/fO2RaHR0Bbm7ZFocrBR0BEvhR64Ueuh3KaIgAAR0AkDU/fO2RaR0BbmyLQ5WBCR0BEvfO2RaHLh3KbIgAAR0AkBJul41P4R0Bbmj1wo9cKR0BEvfO2RaHLh3KcIgAAR0AkAIMSbpeNR0Bbmdsi0OVgR0BEvfO2RaHLh3KdIgAAR0Aj/Gp++dsjR0BbmWhysCDFR0BEvdLxqfvnh3KeIgAAR0Aj8an752yLR0BbmGJN0vGqR0BEvdLxqfvnh3KfIgAAR0Aj7Q5WBBiTR0BbmAAAAAAAR0BEvbItDlYEh3KgIgAAR0Aj6PXCj1wpR0Bbl41P3ztkR0BEvbItDlYEh3KhIgAAR0Aj5N0vGp++R0BblysCDEm6R0BEvbItDlYEh3KiIgAAR0Aj4EGJN0vHR0BblrhR64UfR0BEvZFocrAhh3KjIgAAR0Aj0WhysCDFR0BblU/fO2RaR0BEvXCj1wo9h3KkIgAAR0AjzU/fO2RaR0BblN0vGp++R0BEvXCj1wo9h3KlIgAAR0AjyLQ5WBBiR0BblHrhR64UR0BEvXCj1wo9h3KmIgAAR0AjxJul41P4R0BblAgxJul5R0BEvU/fO2Rah3KnIgAAR0AjvnbItDlYR0Bbk3S8an76R0BEvU/fO2Rah3KoIgAAR0AjtT987ZFoR0Bbkp++dsi0R0BEvS8an753h3KpIgAAR0AjsSbpeNT+R0Bbki0OVgQZR0BEvS8an753h3KqIgAAR0AjrQ5WBBiTR0BbkcrAgxJvR0BEvS8an753h3KrIgAAR0AjnbItDlYER0BbkFHrhR64R0BEvO2RaHKwh3KsIgAAR0AjmZmZmZmaR0Bbj++dsi0OR0BEvO2RaHKwh3KtIgAAR0AjlP3ztkWiR0Bbj3ztkWhzR0BEvO2RaHKwh3KuIgAAR0AjkOVgQYk3R0BbjxqfvnbJR0BEvMzMzMzNh3KvIgAAR0Ajij1wo9cKR0BbjnbItDlYR0BEvMzMzMzNh3KwIgAAR0AjgYk3S8aoR0BbjaHKwIMSR0BEvKwIMSbph3KxIgAAR0AjeNT987ZGR0BbjMzMzMzNR0BEvKwIMSbph3KyIgAAR0AjbhR64UeuR0Bbi9cKPXCkR0BEvItDlYEGh3KzIgAAR0AjafvnbItER0Bbi2RaHKwIR0BEvGp++dsjh3K0IgAAR0AjXKwIMSbpR0Bbii0OVgQZR0BEvEm6XjU/h3K1IgAAR0AjTU/fO2RaR0BbiLQ5WBBiR0BEvCj1wo9ch3K2IgAAR0AjQIMSbpeNR0Bbh3ztkWhzR0BEvAgxJul5h3K3IgAAR0AjOdsi0OVgR0Bbhul41P30R0BEu+dsi0OWh3K4IgAAR0AjMSbpeNT+R0BbhhR64UeuR0BEu+dsi0OWh3K5IgAAR0AjKHKwIMScR0BbhT987ZFoR0BEu8an752yh3K6IgAAR0AjGRaHKwIMR0Bbg9cKPXCkR0BEu6XjU/fPh3K7IgAAR0AjDEm6XjU/R0Bbgo9cKPXDR0BEu2RaHKwIh3K8IgAAR0AjBaHKwIMSR0BbgfvnbItER0BEu2RaHKwIh3K9IgAAR0Ai/O2RaHKwR0BbgSbpeNT+R0BEu0OVgQYlh3K+IgAAR0Ai+FHrhR64R0BbgMSbpeNUR0BEu0OVgQYlh3K/IgAAR0Ai752yLQ5WR0Bbf++dsi0OR0BEuyLQ5WBCh3LAIgAAR0Ai5FocrAgxR0Bbful41P30R0BEuwIMSbpeh3LBIgAAR0AiyDEm6XjVR0BbfEm6XjU/R0BEup++dsi0h3LCIgAAR0Aiw5WBBiTdR0Bbe9cKPXCkR0BEup++dsi0h3LDIgAAR0AiuuFHrhR7R0BbexJul41QR0BEun752yLRh3LEIgAAR0Aipul41P30R0BbeTdLxqfwR0BEuj1wo9cKh3LFIgAAR0Aiok3S8an8R0BbeNT987ZGR0BEuj1wo9cKh3LGIgAAR0AinbItDlYER0BbeHKwIMScR0BEuhysCDEnh3LHIgAAR0AikvGp++dtR0Bbd2yLQ5WBR0BEufvnbItEh3LIIgAAR0AijlYEGJN1R0Bbdwo9cKPXR0BEufvnbItEh3LJIgAAR0AiibpeNT99R0BbdpeNT987R0BEufvnbItEh3LKIgAAR0AihaHKwIMSR0BbdjU/fO2RR0BEudsi0OVgh3LLIgAAR0Aican752yLR0BbdGp++dsjR0BEuZmZmZmah3LMIgAAR0AibQ5WBBiTR0Bbc/fO2RaHR0BEuZmZmZmah3LNIgAAR0AiaPXCj1wpR0Bbc5WBBiTdR0BEuXjU/fO2h3LOIgAAR0AiXbItDlYER0Bbcp++dsi0R0BEuVgQYk3Th3LPIgAAR0AiWRaHKwIMR0Bbci0OVgQZR0BEuVgQYk3Th3LQIgAAR0AiVHrhR64UR0BbccrAgxJvR0BEuTdLxqfwh3LRIgAAR0AiUGJN0vGqR0BbcWhysCDFR0BEuTdLxqfwh3LSIgAAR0AiS8an752yR0BbcPXCj1wpR0BEuTdLxqfwh3LTIgAAR0AiPGp++dsjR0Bbb52yLQ5WR0BEuPXCj1wph3LUIgAAR0AiN87ZFocrR0BbbysCDEm6R0BEuNT987ZGh3LVIgAAR0AiMzMzMzMzR0Bbbsi0OVgQR0BEuNT987ZGh3LWIgAAR0AiHztkWhysR0BbbP3ztkWiR0BEuJN0vGp/h3LXIgAAR0AiGp++dsi0R0BbbJul41P4R0BEuJN0vGp/h3LYIgAAR0AiFgQYk3S8R0BbbCj1wo9cR0BEuHKwIMSch3LZIgAAR0AiBqfvnbItR0BbatDlYEGJR0BEuDEm6XjVh3LaIgAAR0AiAgxJul41R0Bbal41P3zuR0BEuDEm6XjVh3LbIgAAR0Ah/XCj1wo9R0BbafvnbItER0BEuDEm6XjVh3LcIgAAR0Ah+VgQYk3TR0BbaZmZmZmaR0BEuBBiTdLyh3LdIgAAR0Ah6XjU/fO2R0BbaDEm6XjVR0BEt87ZFocrh3LeIgAAR0Ah5N0vGp++R0BbZ87ZFocrR0BEt87ZFocrh3LfIgAAR0Ah4EGJN0vHR0BbZ2yLQ5WBR0BEt64UeuFIh3LgIgAAR0Ah0GJN0vGqR0BbZgQYk3S8R0BEt41P3ztkh3LhIgAAR0AhzEm6XjU/R0BbZaHKwIMSR0BEt2yLQ5WBh3LiIgAAR0Ahx64UeuFIR0BbZT987ZFoR0BEt2yLQ5WBh3LjIgAAR0AhwxJul41QR0BbZMzMzMzNR0BEt0vGp++eh3LkIgAAR0AhszMzMzMzR0BbY3S8an76R0BEtysCDEm6h3LlIgAAR0AhrpeNT987R0BbYxJul41QR0BEtwo9cKPXh3LmIgAAR0Ahqn752yLRR0BbYp++dsi0R0BEtwo9cKPXh3LnIgAAR0AhpeNT987ZR0BbYj1wo9cKR0BEtul41P30h3LoIgAAR0AhlgQYk3S8R0BbYOVgQYk3R0BEtqfvnbIth3LpIgAAR0AhkWhysCDFR0BbYHKwIMScR0BEtqfvnbIth3LqIgAAR0AhjMzMzMzNR0BbYBBiTdLyR0BEtocrAgxKh3LrIgAAR0AhfO2RaHKwR0BbXrhR64UfR0BEtmZmZmZmh3LsIgAAR0AheFHrhR64R0BbXlYEGJN1R0BEtkWhysCDh3LtIgAAR0AhdDlYEGJOR0BbXeNT987ZR0BEtiTdLxqgh3LuIgAAR0Ahb52yLQ5WR0BbXYEGJN0vR0BEtiTdLxqgh3LvIgAAR0AhX752yLQ5R0BbXCj1wo9cR0BEteNT987Zh3LwIgAAR0AhWyLQ5WBCR0BbW8an752yR0BEteNT987Zh3LxIgAAR0AhVocrAgxKR0BbW1P3ztkXR0BEtcKPXCj2h3LyIgAAR0AhRqfvnbItR0BbWfvnbItER0BEtYEGJN0vh3LzIgAAR0AhQgxJul41R0BbWZmZmZmaR0BEtYEGJN0vh3L0IgAAR0AhPXCj1wo9R0BbWTdLxqfwR0BEtWBBiTdMh3L1IgAAR0AhONT987ZGR0BbWNT987ZGR0BEtWBBiTdMh3L2IgAAR0AhKPXCj1wpR0BbV2yLQ5WBR0BEtR64UeuFh3L3IgAAR0AhH752yLQ5R0BbVqfvnbItR0BEtP3ztkWih3L4IgAAR0AhGyLQ5WBCR0BbVkWhysCDR0BEtN0vGp++h3L5IgAAR0AhC0OVgQYlR0BbVO2RaHKwR0BEtJul41P4h3L6IgAAR0AhAgxJul41R0BbVBiTdLxqR0BEtHrhR64Uh3L7IgAAR0Ag8i0OVgQZR0BbUsCDEm6YR0BEtDlYEGJOh3L8IgAAR0Ag5FocrAgxR0BbUZmZmZmaR0BEtBiTdLxqh3L9IgAAR0Ag0/fO2RaHR0BbUDEm6XjVR0BEs9cKPXCkh3L+IgAAR0AgysCDEm6YR0BbT2yLQ5WBR0BEs5WBBiTdh3L/IgAAR0AgxiTdLxqgR0BbTwo9cKPXR0BEs5WBBiTdh3IAIwAAR0AguuFHrhR7R0BbThR64UeuR0BEs1P3ztkXh3IBIwAAR0AgrQ5WBBiTR0BbTO2RaHKwR0BEszMzMzMzh3ICIwAAR0AgnKwIMSbpR0BbS5WBBiTdR0BEsvGp++dth3IDIwAAR0AgjtkWhysCR0BbSm6XjU/fR0BEsrAgxJumh3IEIwAAR0AgfvnbItDlR0BbSQYk3S8bR0BEsm6XjU/fh3IFIwAAR0AgZWBBiTdMR0BbRul41P30R0BEsgxJul41h3IGIwAAR0AgV41P3ztkR0BbRcKPXCj2R0BEscrAgxJvh3IHIwAAR0AgRysCDEm6R0BbRGp++dsjR0BEsYk3S8aoh3IIIwAAR0AgQo9cKPXDR0BbRAgxJul5R0BEsWhysCDFh3IJIwAAR0AgOVgQYk3TR0BbQ0OVgQYlR0BEsUeuFHrhh3IKIwAAR0AgI9cKPXCkR0BbQYk3S8aoR0BEsOVgQYk3h3ILIwAAR0AgHztkWhysR0BbQSbpeNT+R0BEsOVgQYk3h3IMIwAAR0AgD1wo9cKPR0BbP87ZFocrR0BEsIMSbpeNh3INIwAAR0AgCj1wo9cKR0BbP2yLQ5WBR0BEsIMSbpeNh3IOIwAAR0AgBaHKwIMSR0BbPwo9cKPXR0BEsGJN0vGqh3IPIwAAR0AgAYk3S8aoR0BbPqfvnbItR0BEsEGJN0vHh3IQIwAAR0Af2BBiTdLyR0BbPO2RaHKwR0BEsAAAAAAAh3IRIwAAR0AfztkWhysCR0BbPItDlYEGR0BEr987ZFodh3ISIwAAR0AfxaHKwIMSR0BbPDlYEGJOR0BEr752yLQ5h3ITIwAAR0AfpN0vGp++R0BbOuFHrhR7R0BEr3ztkWhzh3IUIwAAR0Afm6XjU/fPR0BbOn752yLRR0BEr1wo9cKPh3IVIwAAR0AfkWhysCDFR0BbOhysCDEnR0BEr1wo9cKPh3IWIwAAR0AfZ2yLQ5WBR0BbOGJN0vGqR0BErvnbItDlh3IXIwAAR0AfXjU/fO2RR0BbOAAAAAAAR0BErtkWhysCh3IYIwAAR0AfVP3ztkWiR0BbN52yLQ5WR0BErtkWhysCh3IZIwAAR0AfKfvnbItER0BbNeNT987ZR0BErnbItDlYh3IaIwAAR0AfIMSbpeNUR0BbNZFocrAhR0BErlYEGJN1h3IbIwAAR0AfF41P3ztkR0BbNS8an753R0BErjU/fO2Rh3IcIwAAR0Ae9si0OVgQR0BbM9cKPXCkR0BErfO2RaHLh3IdIwAAR0Ae7ZFocrAhR0BbM3S8an76R0BErdLxqfvnh3IeIwAAR0Ae41P3ztkXR0BbMxJul41QR0BErdLxqfvnh3IfIwAAR0AeuVgQYk3TR0BbMWhysCDFR0BErXCj1wo9h3IgIwAAR0AesCDEm6XjR0BbMQYk3S8bR0BErU/fO2Rah3IhIwAAR0Aepul41P30R0BbMKPXCj1xR0BErS8an753h3IiIwAAR0AehR64UeuFR0BbL0vGp++eR0BErO2RaHKwh3IjIwAAR0Aee+dsi0OWR0BbLul41P30R0BErMzMzMzNh3IkIwAAR0Aecan752yLR0BbLocrAgxKR0BErMzMzMzNh3IlIwAAR0AeaHKwIMScR0BbLiTdLxqgR0BErKwIMSbph3ImIwAAR0AeR64UeuFIR0BbLN0vGp++R0BErEm6XjU/h3InIwAAR0AePXCj1wo9R0BbLHrhR64UR0BErEm6XjU/h3IoIwAAR0AeNDlYEGJOR0BbLBiTdLxqR0BErCj1wo9ch3IpIwAAR0AeE3S8an76R0BbKtDlYEGJR0BEq+dsi0OWh3IqIwAAR0AeCTdLxqfwR0BbKm6XjU/fR0BEq8an752yh3IrIwAAR0AeAAAAAAAAR0BbKgxJul41R0BEq6XjU/fPh3IsIwAAR0Ad9si0OVgQR0BbKan752yLR0BEq6XjU/fPh3ItIwAAR0Ad1P3ztkWiR0BbKGJN0vGqR0BEq0OVgQYlh3IuIwAAR0Ady8an752yR0BbKAAAAAAAR0BEqyLQ5WBCh3IvIwAAR0Adwo9cKPXDR0BbJ52yLQ5WR0BEqyLQ5WBCh3IwIwAAR0AduFHrhR64R0BbJztkWhysR0BEqwIMSbpeh3IxIwAAR0Adl41P3ztkR0BbJfO2RaHLR0BEqp++dsi0h3IyIwAAR0AdjU/fO2RaR0BbJZFocrAhR0BEqp++dsi0h3IzIwAAR0AdhBiTdLxqR0BbJS8an753R0BEqn752yLRh3I0IwAAR0AdYk3S8an8R0BbI+dsi0OWR0BEqhysCDEnh3I1IwAAR0AdWRaHKwIMR0BbI4UeuFHsR0BEqhysCDEnh3I2IwAAR0AdT987ZFodR0BbIyLQ5WBCR0BEqfvnbItEh3I3IwAAR0AdRaHKwIMSR0BbIsCDEm6YR0BEqdsi0OVgh3I4IwAAR0AdI9cKPXCkR0BbIXjU/fO2R0BEqZmZmZmah3I5IwAAR0AdEWhysCDFR0BbILQ5WBBiR0BEqVgQYk3Th3I6IwAAR0AdBysCDEm6R0BbIGJN0vGqR0BEqTdLxqfwh3I7IwAAR0Ac752yLQ5WR0BbH2yLQ5WBR0BEqRaHKwIMh3I8IwAAR0Ac5WBBiTdMR0BbHwo9cKPXR0BEqPXCj1wph3I9IwAAR0Ac0vGp++dtR0BbHlYEGJN1R0BEqLQ5WBBih3I+IwAAR0AcsSbpeNT+R0BbHP3ztkWiR0BEqHKwIMSch3I/IwAAR0AcnbItDlYER0BbHEm6XjU/R0BEqDEm6XjVh3JAIwAAR0Ack3S8an76R0BbG+dsi0OWR0BEqDEm6XjVh3JBIwAAR0Accan752yLR0BbGp++dsi0R0BEp87ZFocrh3JCIwAAR0AcXztkWhysR0BbGdsi0OVgR0BEp41P3ztkh3JDIwAAR0AcPXCj1wo9R0BbGJN0vGp/R0BEp0vGp++eh3JEIwAAR0AcH752yLQ5R0BbF3ztkWhzR0BEpul41P30h3JFIwAAR0Ab/fO2RaHLR0BbFjU/fO2RR0BEpqfvnbIth3JGIwAAR0Ab4UeuFHrhR0BbFR64UeuFR0BEpkWhysCDh3JHIwAAR0AbrAgxJul5R0BbExJul41QR0BEpcKPXCj2h3JIIwAAR0AbiTdLxqfwR0BbEcrAgxJvR0BEpWBBiTdMh3JJIwAAR0AbbItDlYEGR0BbELQ5WBBiR0BEpR64UeuFh3JKIwAAR0AbQIMSbpeNR0BbDwo9cKPXR0BEpJul41P4h3JLIwAAR0AbNkWhysCDR0BbDrhR64UfR0BEpJul41P4h3JMIwAAR0AbLQ5WBBiTR0BbDlYEGJN1R0BEpHrhR64Uh3JNIwAAR0Aa9si0OVgQR0BbDFocrAgxR0BEo9cKPXCkh3JOIwAAR0AaysCDEm6YR0BbCrAgxJumR0BEo3S8an76h3JPIwAAR0AawYk3S8aoR0BbCk3S8an8R0BEo1P3ztkXh3JQIwAAR0Aat0vGp++eR0BbCfvnbItER0BEozMzMzMzh3JRIwAAR0Aai0OVgQYlR0BbCFHrhR64R0BEorAgxJumh3JSIwAAR0AagQYk3S8bR0BbB++dsi0OR0BEoo9cKPXDh3JTIwAAR0AaVP3ztkWiR0BbBlYEGJN1R0BEoi0OVgQZh3JUIwAAR0AaS8an752yR0BbBfO2RaHLR0BEogxJul41h3JVIwAAR0AaQYk3S8aoR0BbBaHKwIMSR0BEoeuFHrhSh3JWIwAAR0AaFYEGJN0vR0BbA/fO2RaHR0BEoWhysCDFh3JXIwAAR0AaC0OVgQYlR0BbA6XjU/fPR0BEoWhysCDFh3JYIwAAR0AaAgxJul41R0BbA0OVgQYlR0BEoUeuFHrhh3JZIwAAR0AZ3ztkWhysR0BbAfvnbItER0BEoOVgQYk3h3JaIwAAR0AZ1P3ztkWiR0BbAan752yLR0BEoMSbpeNUh3JbIwAAR0AZysCDEm6YR0BbAUeuFHrhR0BEoKPXCj1xh3JcIwAAR0AZnrhR64UfR0Ba/64UeuFIR0BEoCDEm6Xjh3JdIwAAR0AZlHrhR64UR0Ba/0vGp++eR0BEoAAAAAAAh3JeIwAAR0AZi0OVgQYlR0Ba/vnbItDlR0BEn987ZFodh3JfIwAAR0AZXjU/fO2RR0Ba/WBBiTdMR0BEn3ztkWhzh3JgIwAAR0AZVP3ztkWiR0Ba/P3ztkWiR0BEn1wo9cKPh3JhIwAAR0AZSsCDEm6YR0Ba/Jul41P4R0BEnztkWhysh3JiIwAAR0AZJ++dsi0OR0Ba+2RaHKwIR0BEntkWhysCh3JjIwAAR0AZHbItDlYER0Ba+wIMSbpeR0BEnrhR64Ufh3JkIwAAR0AZFHrhR64UR0Ba+rAgxJumR0BEnpeNT987h3JlIwAAR0AY52yLQ5WBR0Ba+QYk3S8bR0BEnhR64Ueuh3JmIwAAR0AY3S8an753R0Ba+LQ5WBBiR0BEnfO2RaHLh3JnIwAAR0AY0/fO2RaHR0Ba+GJN0vGqR0BEndLxqfvnh3JoIwAAR0AYsSbpeNT+R0Ba9xqfvnbJR0BEnXCj1wo9h3JpIwAAR0AYpul41P30R0Ba9rhR64UfR0BEnU/fO2Rah3JqIwAAZShHQBicrAgxJulHQFr2ZmZmZmZHQESdT987ZFqHcmsjAABHQBiSbpeNT99HQFr2BBiTdLxHQESdLxqfvneHcmwjAABHQBhvnbItDlZHQFr0zMzMzM1HQESczMzMzM2Hcm0jAABHQBhmZmZmZmZHQFr0an752yNHQEScrAgxJumHcm4jAABHQBhcKPXCj1xHQFr0GJN0vGpHQESci0OVgQaHcm8jAABHQBgvGp++dslHQFryfvnbItFHQEScCDEm6XmHcnAjAABHQBgk3S8an75HQFryHKwIMSdHQESb52yLQ5aHcnEjAABHQBgan752yLRHQFrxysCDEm9HQESbxqfvnbKHcnIjAABHQBf3ztkWhytHQFrwgxJul41HQESbZFocrAiHcnMjAABHQBfkWhysCDFHQFrvztkWhytHQESbItDlYEKHcnQjAABHQBfaHKwIMSdHQFrvfO2RaHNHQESbAgxJul6HcnUjAABHQBe3S8an755HQFruNT987ZFHQESan752yLSHcnYjAABHQBei0OVgQYlHQFrtgQYk3S9HQESaXjU/fO6HcncjAABHQBeAAAAAAABHQFrsSbpeNT9HQESZ++dsi0SHcngjAABHQBdrhR64UexHQFrrlYEGJN1HQESZul41P32HcnkjAABHQBdhR64UeuFHQFrrQ5WBBiVHQESZmZmZmZqHcnojAABHQBc+dsi0OVhHQFrqDEm6XjVHQESZN0vGp/CHcnsjAABHQBcp++dsi0RHQFrpWBBiTdNHQESY9cKPXCmHcnwjAABHQBcfvnbItDlHQFro9cKPXClHQESY1P3ztkaHcn0jAABHQBbocrAgxJxHQFrnCj1wo9dHQESYMSbpeNWHcn4jAABHQBbFocrAgxJHQFrl0vGp++dHQESXrhR64UiHcn8jAABHQBam6XjU/fRHQFrkvGp++dtHQESXbItDlYGHcoAjAABHQBaDEm6XjVBHQFrjhR64UexHQESW6XjU/fSHcoEjAABHQBZvnbItDlZHQFri0OVgQYlHQESWp++dsi2HcoIjAABHQBYtDlYEGJNHQFrgk3S8an9HQESV41P3ztmHcoMjAABHQBX++dsi0OVHQFre+dsi0OVHQESVYEGJN0yHcoQjAABHQBXrhR64UexHQFreVgQYk3VHQESVHrhR64WHcoUjAABHQBW9cKPXCj1HQFrcvGp++dtHQESUeuFHrhSHcoYjAABHQBWzMzMzMzNHQFrcan752yNHQESUWhysCDGHcocjAABHQBWFHrhR64VHQFra4UeuFHtHQEST1wo9cKSHcogjAABHQBV64UeuFHtHQFrafvnbItFHQESTtkWhysGHcokjAABHQBVwo9cKPXFHQFraLQ5WBBlHQESTlYEGJN2HcoojAABHQBVCj1wo9cNHQFrYk3S8an9HQESTEm6XjVCHcosjAABHQBU4UeuFHrhHQFrYQYk3S8dHQESS8an7522HcowjAABHQBUvGp++dslHQFrX752yLQ5HQESS0OVgQYmHco0jAABHQBUAAAAAAABHQFrWVgQYk3VHQESSLQ5WBBmHco4jAABHQBT2yLQ5WBBHQFrWBBiTdLxHQESSDEm6XjWHco8jAABHQBTHrhR64UhHQFrUeuFHrhRHQESRiTdLxqiHcpAjAABHQBS9cKPXCj1HQFrUKPXCj1xHQESRaHKwIMWHcpEjAABHQBS0OVgQYk5HQFrTxqfvnbJHQESRR64UeuGHcpIjAABHQBSFHrhR64VHQFrSPXCj1wpHQESQo9cKPXGHcpMjAABHQBR64UeuFHtHQFrR64UeuFJHQESQgxJul42HcpQjAABHQBRMzMzMzM1HQFrQYk3S8apHQESP3ztkWh2HcpUjAABHQBRCj1wo9cNHQFrQAAAAAABHQESPvnbItDmHcpYjAABHQBQ4UeuFHrhHQFrPrhR64UhHQESPnbItDlaHcpcjAABHQBQKPXCj1wpHQFrOJN0vGqBHQESPGp++dsmHcpgjAABHQBQAAAAAAABHQFrN0vGp++dHQESO+dsi0OWHcpkjAABHQBP1wo9cKPZHQFrNgQYk3S9HQESO2RaHKwKHcpojAABHQBPGp++dsi1HQFrL52yLQ5ZHQESONT987ZGHcpsjAABHQBO8an752yNHQFrLlYEGJN1HQESOFHrhR66HcpwjAABHQBOOVgQYk3VHQFrKDEm6XjVHQESNcKPXCj2Hcp0jAABHQBOEGJN0vGpHQFrJul41P31HQESNT987ZFqHcp4jAABHQBN52yLQ5WBHQFrJaHKwIMVHQESNLxqfvneHcp8jAABHQBNKwIMSbphHQFrH3ztkWh1HQESMi0OVgQaHcqAjAABHQBNAgxJul41HQFrHfO2RaHNHQESMan752yOHcqEjAABHQBM2RaHKwINHQFrHKwIMSbpHQESMSbpeNT+HcqIjAABHQBMRaHKwIMVHQFrGBBiTdLxHQESL52yLQ5aHcqMjAABHQBMHKwIMSbpHQFrFocrAgxJHQESLxqfvnbKHcqQjAABHQBL87ZFocrBHQFrFT987ZFpHQESLhR64UeyHcqUjAABHQBLN0vGp++dHQFrDxqfvnbJHQESLAgxJul6HcqYjAABHQBLDlYEGJN1HQFrDdLxqfvpHQESK4UeuFHuHcqcjAABHQBK5WBBiTdNHQFrDItDlYEJHQESKwIMSbpiHcqgjAABHQBKKPXCj1wpHQFrBmZmZmZpHQESKHKwIMSeHcqkjAABHQBKAAAAAAABHQFrBR64UeuFHQESJ++dsi0SHcqojAABHQBJ1wo9cKPZHQFrA9cKPXClHQESJ2yLQ5WCHcqsjAABHQBJQ5WBBiTdHQFq/vnbItDlHQESJWBBiTdOHcqwjAABHQBI8an752yNHQFq/Gp++dslHQESJFocrAgyHcq0jAABHQBINT987ZFpHQFq9kWhysCFHQESIcrAgxJyHcq4jAABHQBIDEm6XjVBHQFq9P3ztkWhHQESIUeuFHriHcq8jAABHQBH41P3ztkZHQFq87ZFocrBHQESIMSbpeNWHcrAjAABHQBG/fO2RaHNHQFq7Em6XjVBHQESHbItDlYGHcrEjAABHQBG1P3ztkWhHQFq6wIMSbphHQESHKwIMSbqHcrIjAABHQBGQYk3S8apHQFq5iTdLxqhHQESGyLQ5WBCHcrMjAABHQBF64UeuFHtHQFq45WBBiTdHQESGZmZmZmaHcrQjAABHQBE3S8an755HQFq2uFHrhR9HQESFgQYk3S+HcrUjAABHQBD87ZFocrBHQFq07ZFocrBHQESEvGp++duHcrYjAABHQBDysCDEm6ZHQFq0i0OVgQZHQESEm6XjU/iHcrcjAABHQBC5WBBiTdNHQFqywIMSbphHQESD1wo9cKSHcrgjAABHQBB0vGp++dtHQFqwk3S8an9HQESC0OVgQYmHcrkjAABHQBBEm6XjU/hHQFqvGp++dslHQESCLQ5WBBmHcrojAABHQBA6XjU/fO5HQFquyLQ5WBBHQESCDEm6XjWHcrsjAABHQA/rhR64UexHQFqsm6XjU/hHQESBJul41P6HcrwjAABHQA+LQ5WBBiVHQFqrItDlYEJHQESAgxJul42Hcr0jAABHQA92yLQ5WBBHQFqq0OVgQYlHQESAQYk3S8eHcr4jAABHQA9iTdLxqfxHQFqqfvnbItFHQESAIMSbpeOHcr8jAABHQA8CDEm6XjVHQFqpBiTdLxtHQER/fO2RaHOHcsAjAABHQA7tkWhysCFHQFqotDlYEGJHQER/XCj1wo+HcsEjAABHQA6NT987ZFpHQFqnO2RaHKxHQER+uFHrhR+HcsIjAABHQA52yLQ5WBBHQFqm6XjU/fRHQER+dsi0OViHcsMjAABHQA5iTdLxqfxHQFqml41P3ztHQER+VgQYk3WHcsQjAABHQA4CDEm6XjVHQFqlDlYEGJNHQER9si0OVgSHcsUjAABHQA3tkWhysCFHQFqkvGp++dtHQER9kWhysCGHcsYjAABHQA3ZFocrAgxHQFqkan752yNHQER9cKPXCj2HcscjAABHQA12yLQ5WBBHQFqi8an7521HQER8rAgxJumHcsgjAABHQA1iTdLxqfxHQFqin752yLRHQER8i0OVgQaHcskjAABHQA0CDEm6XjVHQFqhJul41P5HQER752yLQ5aHcsojAABHQAztkWhysCFHQFqg1P3ztkZHQER7xqfvnbKHcssjAABHQAzZFocrAgxHQFqggxJul41HQER7peNT98+HcswjAABHQAx2yLQ5WBBHQFqfCj1wo9dHQER64UeuFHuHcs0jAABHQAxiTdLxqfxHQFqeuFHrhR9HQER6wIMSbpiHcs4jAABHQAxN0vGp++dHQFqeZmZmZmZHQER6n752yLSHcs8jAABHQAwCDEm6XjVHQFqdT987ZFpHQER6HKwIMSeHctAjAABHQAvrhR64UexHQFqc7ZFocrBHQER52yLQ5WCHctEjAABHQAvXCj1wo9dHQFqcm6XjU/hHQER5ul41P32HctIjAABHQAt2yLQ5WBBHQFqbMzMzMzNHQER5FocrAgyHctMjAABHQAtgQYk3S8dHQFqa4UeuFHtHQER49cKPXCmHctQjAABHQAtLxqfvnbJHQFqaj1wo9cNHQER4tDlYEGKHctUjAABHQArrhR64UexHQFqZFocrAgxHQER4EGJN0vKHctYjAABHQArU/fO2RaJHQFqYxJul41RHQER3752yLQ6HctcjAABHQAp0vGp++dtHQFqXS8an755HQER3KwIMSbqHctgjAABHQApgQYk3S8dHQFqW+dsi0OVHQER3Cj1wo9eHctkjAABHQApJul41P31HQFqWp++dsi1HQER26XjU/fSHctojAABHQAnpeNT987ZHQFqVP3ztkWhHQER2JN0vGqCHctsjAABHQAnS8an7521HQFqU7ZFocrBHQER2BBiTdLyHctwjAABHQAm+dsi0OVhHQFqUm6XjU/hHQER141P3ztmHct0jAABHQAlHrhR64UhHQFqS0OVgQYlHQER0/fO2RaKHct4jAABHQAjlYEGJN0xHQFqRaHKwIMVHQER0OVgQYk6Hct8jAABHQAi6XjU/fO5HQFqQxJul41RHQERz987ZFoeHcuAjAABHQAhDlYEGJN1HQFqO+dsi0OVHQERzEm6XjVCHcuEjAABHQAgvGp++dslHQFqOp++dsi1HQERy8an7522HcuIjAABHQAe2RaHKwINHQFqM7ZFocrBHQERyDEm6XjWHcuMjAABHQAcrAgxJul5HQFqK4UeuFHtHQERxBiTdLxuHcuQjAABHQAayLQ5WBBlHQFqJFocrAgxHQERwIMSbpeOHcuUjAABHQAadsi0OVgRHQFqIxJul41RHQERwAAAAAACHcuYjAABHQAYk3S8an75HQFqHCj1wo9dHQERvGp++dsmHcucjAABHQAWXjU/fO2RHQFqE/fO2RaJHQERt87ZFocuHcugjAABHQAU1P3ztkWhHQFqDlYEGJN1HQERtLxqfvneHcukjAABHQAUeuFHrhR9HQFqDQ5WBBiVHQERtDlYEGJOHcuojAABHQAUKPXCj1wpHQFqC8an7521HQERs7ZFocrCHcusjAABHQASl41P3ztlHQFqBiTdLxqhHQERsKPXCj1yHcuwjAABHQASRaHKwIMVHQFqBN0vGp/BHQERsCDEm6XmHcu0jAABHQAQvGp++dslHQFp/ztkWhytHQERrQ5WBBiWHcu4jAABHQAQYk3S8an9HQFp/fO2RaHNHQERrItDlYEKHcu8jAABHQAQEGJN0vGpHQFp/KwIMSbpHQERq4UeuFHuHcvAjAABHQAOfvnbItDlHQFp9wo9cKPZHQERqHKwIMSeHcvEjAABHQAOLQ5WBBiVHQFp9cKPXCj1HQERp++dsi0SHcvIjAABHQAN0vGp++dtHQFp9HrhR64VHQERp2yLQ5WCHcvMjAABHQAMQYk3S8apHQFp7tkWhysFHQERpFocrAgyHcvQjAABHQAL752yLQ5ZHQFp7dLxqfvpHQERo9cKPXCmHcvUjAABHQAKXjU/fO2RHQFp6DEm6XjVHQERoMSbpeNWHcvYjAABHQAKDEm6XjVBHQFp5ul41P31HQERn752yLQ6HcvcjAABHQAJsi0OVgQZHQFp5aHKwIMVHQERnztkWhyuHcvgjAABHQAIKPXCj1wpHQFp4AAAAAABHQERnCj1wo9eHcvkjAABHQAHztkWhysFHQFp3rhR64UhHQERm6XjU/fSHcvojAABHQAGPXCj1wo9HQFp2RaHKwINHQERmJN0vGqCHcvsjAABHQAF64UeuFHtHQFp187ZFoctHQERl41P3ztmHcvwjAABHQAFkWhysCDFHQFp1si0OVgRHQERlwo9cKPaHcv0jAABHQAEAAAAAAABHQFp0SbpeNT9HQERk/fO2RaKHcv4jAABHQADrhR64UexHQFpz987ZFodHQERk3S8an76Hcv8jAABHQADU/fO2RaJHQFpzpeNT989HQERkvGp++duHcgAkAABHQABwo9cKPXFHQFpyPXCj1wpHQERj1wo9cKSHcgEkAABHQABcKPXCj1xHQFpx++dsi0RHQERjtkWhysGHcgIkAABHP//vnbItDlZHQFpwk3S8an9HQERi8an7522HcgMkAABHP//Cj1wo9cNHQFpwQYk3S8dHQERi0OVgQYmHcgQkAABHP/+ZmZmZmZpHQFpv752yLQ5HQERij1wo9cOHcgUkAABHP/7Q5WBBiTdHQFpul41P3ztHQERhysCDEm+HcgYkAABHP/6j1wo9cKRHQFpuRaHKwINHQERhqfvnbIuHcgckAABHP/52yLQ5WBBHQFpt87ZFoctHQERhiTdLxqiHcggkAABHP/2uFHrhR65HQFpsi0OVgQZHQERgo9cKPXGHcgkkAABHP/2BBiTdLxtHQFpsSbpeNT9HQERggxJul42HcgokAABHP/y8an752yNHQFpq4UeuFHtHQERfvnbItDmHcgskAABHP/yPXCj1wo9HQFpqj1wo9cNHQERffO2RaHOHcgwkAABHP/xiTdLxqfxHQFpqTdLxqfxHQERfXCj1wo+Hcg0kAABHP/tsi0OVgQZHQFpok3S8an9HQERedsi0OViHcg4kAABHP/qj1wo9cKRHQFpnO2RaHKxHQERdkWhysCGHcg8kAABHP/pN0vGp++dHQFpml41P3ztHQERdT987ZFqHchAkAABHP/lYEGJN0vJHQFpk7ZFocrBHQERcSbpeNT+HchEkAABHP/krAgxJul5HQFpkm6XjU/hHQERcKPXCj1yHchIkAABHP/g1P3ztkWhHQFpi8an7521HQERbItDlYEKHchMkAABHP/cSbpeNT99HQFpg9cKPXClHQERZ++dsi0SHchQkAABHP/YcrAgxJulHQFpfS8an755HQERY9cKPXCmHchUkAABHP/XvnbItDlZHQFpe+dsi0OVHQERY1P3ztkaHchYkAABHP/Ui0OVgQYlHQFpdocrAgxJHQERX752yLQ6HchckAABHP/T52yLQ5WBHQFpdT987ZFpHQERXztkWhyuHchgkAABHP/PS8an7521HQFpbZFocrAhHQERWp++dsi2HchkkAABHP/MGJN0vGqBHQFpaDEm6XjVHQERVwo9cKPaHchokAABHP/LdLxqfvndHQFpZul41P31HQERVocrAgxKHchskAABHP/KwIMSbpeNHQFpZaHKwIMVHQERVYEGJN0yHchwkAABHP/HjU/fO2RdHQFpYEGJN0vJHQERUm6XjU/iHch0kAABHP/G6XjU/fO5HQFpXztkWhytHQERUeuFHrhSHch4kAABHP/CTdLxqfvpHQFpV0vGp++dHQERTMzMzMzOHch8kAABHP++NT987ZFpHQFpUeuFHrhRHQERSbpeNT9+HciAkAABHP+8zMzMzMzNHQFpUKPXCj1xHQERSLQ5WBBmHciEkAABHP+7ZFocrAgxHQFpT52yLQ5ZHQERSDEm6XjWHciIkAABHP+0/fO2RaHNHQFpSj1wo9cNHQERRJul41P6HciMkAABHP+ztkWhysCFHQFpSPXCj1wpHQERRBiTdLxuHciQkAABHP+tT987ZFodHQFpQ5WBBiTdHQERQIMSbpeOHciUkAABHP+r52yLQ5WBHQFpQk3S8an9HQERQAAAAAACHciYkAABHP+qfvnbItDlHQFpQUeuFHrhHQERP3ztkWh2HcickAABHP+kGJN0vGqBHQFpO+dsi0OVHQERO+dsi0OWHcigkAABHP+isCDEm6XlHQFpOp++dsi1HQEROuFHrhR+HcikkAABHP+hR64UeuFJHQFpOZmZmZmZHQEROl41P3zuHciokAABHP+a4UeuFHrhHQFpNDlYEGJNHQERNsi0OVgSHciskAABHP+ZeNT987ZFHQFpMvGp++dtHQERNkWhysCGHciwkAABHP+TEm6XjU/hHQFpLZFocrAhHQERMrAgxJumHci0kAABHP+RqfvnbItFHQFpLEm6XjVBHQERMi0OVgQaHci4kAABHP+QQYk3S8apHQFpK0OVgQYlHQERMSbpeNT+Hci8kAABHP+J2yLQ5WBBHQFpJeNT987ZHQERLhR64UeyHcjAkAABHP+IcrAgxJulHQFpJJul41P5HQERLQ5WBBiWHcjEkAABHP+Ao9cKPXClHQFpHjU/fO2RHQERKPXCj1wqHcjIkAABHP9+dsi0OVgRHQFpHS8an755HQERKHKwIMSeHcjMkAABHP9xaHKwIMSdHQFpF87ZFoctHQERJN0vGp/CHcjQkAABHP9ul41P3ztlHQFpFocrAgxJHQERI9cKPXCmHcjUkAABHP9sCDEm6XjVHQFpFYEGJN0xHQERI1P3ztkaHcjYkAABHP9e+dsi0OVhHQFpECDEm6XlHQERH752yLQ6HcjckAABHP9cKPXCj1wpHQFpDtkWhysFHQERHztkWhyuHcjgkAABHP9PXCj1wo9dHQFpCbpeNT99HQERG6XjU/fSHcjkkAABHP9MSbpeNT99HQFpCHKwIMSdHQERGp++dsi2HcjokAABHP9JeNT987ZFHQFpB2yLQ5WBHQERGhysCDEqHcjskAABHP85WBBiTdLxHQFpAgxJul41HQERFocrAgxKHcjwkAABHP8ztkWhysCFHQFpAMSbpeNVHQERFgQYk3S+Hcj0kAABHP8OVgQYk3S9HQFo+VgQYk3VHQEREOVgQYk6Hcj4kAABHP7peNT987ZFHQFo8/fO2RaJHQERDU/fO2ReHcj8kAABHP7S8an752yNHQFo8an752yNHQERC8an7522HckAkAABHP5N0vGp++dtHQFo60OVgQYlHQERB64UeuFKHckEkAABHP4BiTdLxqfxHQFo6j1wo9cNHQERBqfvnbIuHckIkAABHv6ul41P3ztlHQFo49cKPXClHQERAo9cKPXGHckMkAABHv8BBiTdLxqhHQFo3Cj1wo9dHQEQ/XCj1wo+HckQkAABHv8bItDlYEGJHQFo1wo9cKPZHQEQ+dsi0OViHckUkAABHv8gxJul41P5HQFo1cKPXCj1HQEQ+NT987ZGHckYkAABHv8mZmZmZmZpHQFo1LxqfvndHQEQ+FHrhR66HckckAABHv9AQYk3S8apHQFoz52yLQ5ZHQEQ9LxqfvneHckgkAABHv9DEm6XjU/hHQFozlYEGJN1HQEQ87ZFocrCHckkkAABHv9Vwo9cKPXFHQFoxul41P31HQEQ7peNT98+HckokAABHv9i0OVgQYk5HQFowcrAgxJxHQEQ6wIMSbpiHckskAABHv9locrAgxJxHQFowIMSbpeNHQEQ6n752yLSHckwkAABHv91wo9cKPXFHQFouhysCDEpHQEQ5eNT987aHck0kAABHv94k3S8an75HQFouRaHKwINHQEQ5WBBiTdOHck4kAABHv+C0OVgQYk5HQFos/fO2RaJHQEQ4UeuFHriHck8kAABHv+EOVgQYk3VHQFosrAgxJulHQEQ4MSbpeNWHclAkAABHv+FocrAgxJxHQFosan752yNHQEQ3752yLQ6HclEkAABHv+MSbpeNT99HQForItDlYEJHQEQ3Cj1wo9eHclIkAABHv+NkWhysCDFHQFoq0OVgQYlHQEQ26XjU/fSHclMkAABHv+VocrAgxJxHQFopR64UeuFHQEQ1wo9cKPaHclQkAABHv+XCj1wo9cNHQFopBiTdLxtHQEQ1gQYk3S+HclUkAABHv+dsi0OVgQZHQFonrhR64UhHQEQ0m6XjU/iHclYkAABHv+fGp++dsi1HQFonbItDlYFHQEQ0euFHrhSHclckAABHv+ggxJul41RHQFonKwIMSbpHQEQ0OVgQYk6HclgkAABHv+nCj1wo9cNHQFol0vGp++dHQEQzU/fO2ReHclkkAABHv+ocrAgxJulHQFolkWhysCFHQEQzEm6XjVCHclokAABHv+wgxJul41RHQFokCDEm6XlHQEQyDEm6XjWHclskAABHv+x64UeuFHtHQFojtkWhysFHQEQxysCDEm+HclwkAABHv+4k3S8an75HQFoibpeNT99HQEQw5WBBiTeHcl0kAABHv+5++dsi0OVHQFoiLQ5WBBlHQEQwo9cKPXGHcl4kAABHv+7ZFocrAgxHQFoh64UeuFJHQEQwgxJul42Hcl8kAABHv/BBiTdLxqhHQFogo9cKPXFHQEQvfO2RaHOHcmAkAABHv/Bul41P3ztHQFogUeuFHrhHQEQvXCj1wo+HcmEkAABHv/FDlYEGJN1HQFofCj1wo9dHQEQudsi0OViHcmIkAABHv/Fwo9cKPXFHQFoeyLQ5WBBHQEQuNT987ZGHcmMkAABHv/Gdsi0OVgRHQFoehysCDEpHQEQt87ZFocuHcmQkAABHv/JysCDEm6ZHQFodP3ztkWhHQEQtDlYEGJOHcmUkAABHv/KfvnbItDlHQFoc7ZFocrBHQEQszMzMzM2HcmYkAABHv/PS8an7521HQFobItDlYEJHQEQrhR64UeyHcmckAABHv/Sj1wo9cKRHQFoZ2yLQ5WBHQEQqn752yLSHcmgkAABHv/TU/fO2RaJHQFoZmZmZmZpHQEQqXjU/fO6HcmkkAABHv/UCDEm6XjVHQFoZR64UeuFHQEQqHKwIMSeHcmokAABHv/YEGJN0vGpHQFoXvnbItDlHQEQo9cKPXCmHcmskAABHv/c3S8an755HQFoV87ZFoctHQEQnrhR64UiHcmwkAABHv/g5WBBiTdNHQFoUan752yNHQEQmhysCDEqHcm0kAABHv/hmZmZmZmZHQFoUKPXCj1xHQEQmRaHKwIOHcm4kAABHv/k7ZFocrAhHQFoS4UeuFHtHQEQlYEGJN0yHcm8kAABHv/locrAgxJxHQFoSn752yLRHQEQlHrhR64WHcnAkAABHv/qbpeNT989HQFoQ1P3ztkZHQEQjtkWhysGHcnEkAABHQC8Gp++dsi1HQGD3Q5WBBiVHQD8euFHrhR+HcnIkAABHQC8JN0vGp/BHQGD2wIMSbphHQD8gQYk3S8eHcnMkAABHQC8MSbpeNT9HQGD2NT987ZFHQD8hysCDEm+HcnQkAABHQC8XjU/fO2RHQGD0AAAAAABHQD8n752yLQ6HcnUkAABHQC8aHKwIMSdHQGDzfO2RaHNHQD8peNT987aHcnYkAABHQC8ocrAgxJxHQGDwtDlYEGJHQD8xJul41P6HcnckAABHQC8rAgxJul5HQGDwMSbpeNVHQD8ybpeNT9+HcngkAABHQC82RaHKwINHQGDt++dsi0RHQD84k3S8an+HcnkkAABHQC841P3ztkZHQGDteNT987ZHQD86HKwIMSeHcnokAABHQC9Gp++dsi1HQGDquFHrhR9HQD9BysCDEm+HcnskAABHQC9JN0vGp/BHQGDqLQ5WBBlHQD9DEm6XjVCHcnwkAABHQC9XCj1wo9dHQGDndLxqfvpHQD9KwIMSbpiHcn0kAABHQC9ZmZmZmZpHQGDm8an7521HQD9MCDEm6XmHcn4kAABHQC9kWhysCDFHQGDkvGp++dtHQD9SLQ5WBBmHcn8kAABHQC9m6XjU/fRHQGDkOVgQYk5HQD9TtkWhysGHcoAkAABHQC90vGp++dtHQGDhgQYk3S9HQD9bItDlYEKHcoEkAABHQC93S8an755HQGDg9cKPXClHQD9crAgxJumHcoIkAABHQC+CDEm6XjVHQGDeyLQ5WBBHQD9ij1wo9cOHcoMkAABHQC+Em6XjU/hHQGDeRaHKwINHQD9kGJN0vGqHcoQkAABHQC+HKwIMSbpHQGDdwo9cKPZHQD9lYEGJN0yHcoUkAABHQC+RaHKwIMVHQGDbjU/fO2RHQD9rhR64UeyHcoYkAABHQC+UeuFHrhRHQGDbCj1wo9dHQD9tDlYEGJOHcockAABHQC+hR64UeuFHQGDYUeuFHrhHQD90euFHrhSHcogkAABHQC+j1wo9cKRHQGDXztkWhytHQD91wo9cKPaHcokkAABHQC+uFHrhR65HQGDVocrAgxJHQD9752yLQ5aHcookAABHQC+wo9cKPXFHQGDVHrhR64VHQD99LxqfvneHcoskAABHQC+987ZFoctHQGDSZmZmZmZHQD+Em6XjU/iHcowkAABHQC/AAAAAAABHQGDR41P3ztlHQD+GJN0vGqCHco0kAABHQC/Cj1wo9cNHQGDRYEGJN0xHQD+HbItDlYGHco4kAABHQC/MzMzMzM1HQGDPMzMzMzNHQD+NT987ZFqHco8kAABHQC/PXCj1wo9HQGDOsCDEm6ZHQD+O2RaHKwKHcpAkAABHQC/ZmZmZmZpHQGDMi0OVgQZHQD+UvGp++duHcpEkAABHQC/cKPXCj1xHQGDMAAAAAABHQD+WRaHKwIOHcpIkAABHQC/eNT987ZFHQGDLfO2RaHNHQD+XjU/fO2SHcpMkAABHQC/ocrAgxJxHQGDJT987ZFpHQD+dcKPXCj2HcpQkAABHQC/rAgxJul5HQGDIzMzMzM1HQD+euFHrhR+HcpUkAABHQC/0vGp++dtHQGDGp++dsi1HQD+km6XjU/iHcpYkAABHQC/3S8an755HQGDGJN0vGqBHQD+mJN0vGqCHcpckAABHQDACTdLxqfxHQGDDO2RaHKxHQD+uFHrhR66HcpgkAABHQDADEm6XjVBHQGDC8an7521HQD+u2RaHKwKHcpkkAABHQDAEGJN0vGpHQGDCbpeNT99HQD+wIMSbpeOHcpokAABHQDAJN0vGp/BHQGDASbpeNT9HQD+2BBiTdLyHcpskAABHQDAKPXCj1wpHQGC/xqfvnbJHQD+3S8an756HcpwkAABHQDAPGp++dslHQGC9ocrAgxJHQD+9LxqfvneHcp0kAABHQDARaHKwIMVHQGC8m6XjU/hHQD/AAAAAAACHcp4kAABHQDAWRaHKwINHQGC6dsi0OVhHQD/F41P3ztmHcp8kAABHQDAXjU/fO2RHQGC587ZFoctHQD/HKwIMSbqHcqAkAABHQDAYk3S8an9HQGC5cKPXCj1HQD/IcrAgxJyHcqEkAABHQDAdcKPXCj1HQGC3S8an755HQD/OVgQYk3WHcqIkAABHQDAj1wo9cKRHQGC0Yk3S8apHQD/WRaHKwIOHcqMkAABHQDAkWhysCDFHQGC0IMSbpeNHQD/WyLQ5WBCHcqQkAABHQDAlYEGJN0xHQGCzpeNT989HQD/YUeuFHriHcqUkAABHQDAqPXCj1wpHQGCxgQYk3S9HQD/d87ZFocuHcqYkAABHQDArQ5WBBiVHQGCw/fO2RaJHQD/fO2RaHKyHcqckAABHQDAxqfvnbItHQGCuDEm6XjVHQD/nKwIMSbqHcqgkAABHQDAyLQ5WBBlHQGCt2yLQ5WBHQD/nrhR64UiHcqkkAABHQDA2yLQ5WBBHQGCrtkWhysFHQD/tkWhysCGHcqokAABHQDA3ztkWhytHQGCrO2RaHKxHQD/u2RaHKwKHcqskAABHQDA41P3ztkZHQGCquFHrhR9HQD/wIMSbpeOHcqwkAABHQDA9cKPXCj1HQGCom6XjU/hHQD/2BBiTdLyHcq0kAABHQDA+dsi0OVhHQGCoGJN0vGpHQD/3S8an756Hcq4kAABHQDBEGJN0vGpHQGCleNT987ZHQD/+NT987ZGHcq8kAABHQDBFYEGJN0xHQGCk9cKPXClHQD//vnbItDmHcrAkAABHQDBJul41P31HQGCi2RaHKwJHQEACsCDEm6aHcrEkAABHQDBKwIMSbphHQGCiVgQYk3VHQEADU/fO2ReHcrIkAABHQDBLxqfvnbJHQGCh2yLQ5WBHQEAD987ZFoeHcrMkAABHQDBQIMSbpeNHQGCfvnbItDlHQEAGyLQ5WBCHcrQkAABHQDBRaHKwIMVHQGCfO2RaHKxHQEAHbItDlYGHcrUkAABHQDBWyLQ5WBBHQGCcm6XjU/hHQEAK4UeuFHuHcrYkAABHQDBXztkWhytHQGCcIMSbpeNHQEALpeNT98+HcrckAABHQDBcKPXCj1xHQGCaBBiTdLxHQEAOVgQYk3WHcrgkAABHQDBdLxqfvndHQGCZiTdLxqhHQEAPGp++dsmHcrkkAABHQDBij1wo9cNHQGCW6XjU/fRHQEASj1wo9cOHcrokAABHQDBjlYEGJN1HQGCWbpeNT99HQEATMzMzMzOHcrskAABHQDBnrhR64UhHQGCUUeuFHrhHQEAWBBiTdLyHcrwkAABHQDBotDlYEGJHQGCT1wo9cKRHQEAWp++dsi2Hcr0kAABHQDBpul41P31HQGCTU/fO2RdHQEAXS8an756Hcr4kAABHQDBt0vGp++dHQGCRP3ztkWhHQEAZ++dsi0SHcr8kAABHQDBu2RaHKwJHQGCQvGp++dtHQEAawIMSbpiHcsAkAABHQDBv3ztkWh1HQGCQQYk3S8dHQEAbZFocrAiHcsEkAABHQDBz987ZFodHQGCOJN0vGqBHQEAeFHrhR66HcsIkAABHQDB0/fO2RaJHQGCNqfvnbItHQEAeuFHrhR+HcsMkAABHQDB5FocrAgxHQGCLlYEGJN1HQEAhiTdLxqiHcsQkAABHQDB6HKwIMSdHQGCLGp++dslHQEAiLQ5WBBmHcsUkAABHQDB/O2RaHKxHQGCIgxJul41HQEAlgQYk3S+HcsYkAABHQDCAQYk3S8dHQGCIAAAAAABHQEAmJN0vGqCHcsckAABHQDCBBiTdLxtHQGCHhR64UexHQEAm6XjU/fSHcsgkAABHQDCFHrhR64VHQGCFcKPXCj1HQEApmZmZmZqHcskkAABHQDCGJN0vGqBHQGCE9cKPXClHQEAqPXCj1wqHcsokAABHQDCJ++dsi0RHQGCC4UeuFHtHQEAs7ZFocrCHcsskAABHQDCMCDEm6XlHQGCB41P3ztlHQEAuNT987ZGHcswkAABHQDCP3ztkWh1HQGB/ztkWhytHQEAw5WBBiTeHcs0kAABHQDCQ5WBBiTdHQGB/U/fO2RdHQEAxiTdLxqiHcs4kAABHQDCRqfvnbItHQGB+2RaHKwJHQEAyLQ5WBBmHcs8kAABHQDCUvGp++dtHQGB9R64UeuFHQEA0WhysCDGHctAkAABHQDCVgQYk3S9HQGB8xJul41RHQEA0/fO2RaKHctEkAABHQDCbItDlYEJHQGB50vGp++dHQEA41P3ztkaHctIkAABHQDCbZFocrAhHQGB5ul41P31HQEA49cKPXCmHctMkAABHQDCcKPXCj1xHQGB5P3ztkWhHQEA5mZmZmZqHctQkAABHQDCgAAAAAABHQGB3MzMzMzNHQEA8SbpeNT+HctUkAABHQDChBiTdLxtHQGB2uFHrhR9HQEA8zMzMzM2HctYkAABHQDCmZmZmZmZHQGBzvnbItDlHQEBAxJul41SHctckAABHQDCmZmZmZmZHQGBzrhR64UhHQEBAxJul41SHctgkAABHQDCqPXCj1wpHQGBxocrAgxJHQEBDdLxqfvqHctkkAABHQDCrAgxJul5HQGBxHrhR64VHQEBEGJN0vGqHctokAABHQDCsCDEm6XlHQGBwo9cKPXFHQEBEvGp++duHctskAABHQDCvnbItDlZHQGBul41P3ztHQEBHbItDlYGHctwkAABHQDC0/fO2RaJHQGBrnbItDlZHQEBLQ5WBBiWHct0kAABHQDC0/fO2RaJHQGBrlYEGJN1HQEBLQ5WBBiWHct4kAABHQDC1wo9cKPZHQGBrGp++dslHQEBL52yLQ5aHct8kAABHQDC5WBBiTdNHQGBpDlYEGJNHQEBOl41P3zuHcuAkAABHQDC6XjU/fO5HQGBok3S8an9HQEBPO2RaHKyHcuEkAABHQDC7ItDlYEJHQGBoGJN0vGpHQEBPvnbItDmHcuIkAABHQDC+uFHrhR9HQGBmFHrhR65HQEBSbpeNT9+HcuMkAABHQDC/fO2RaHNHQGBlkWhysCFHQEBTEm6XjVCHcuQkAABHQDDDEm6XjVBHQGBjjU/fO2RHQEBVocrAgxKHcuUkAABHQDDD1wo9cKRHQGBjEm6XjVBHQEBWRaHKwIOHcuYkAABHQDDEm6XjU/hHQGBil41P3ztHQEBW6XjU/fSHcuckAABHQDDIMSbpeNVHQGBgi0OVgQZHQEBZeNT987aHcugkAABHQDDI9cKPXClHQGBgGJN0vGpHQEBaHKwIMSeHcukkAABHQDDNDlYEGJNHQGBdkWhysCFHQEBdT987ZFqHcuokAABHQDDN0vGp++dHQGBdFocrAgxHQEBd87ZFocuHcuskAABHQDDRaHKwIMVHQGBbEm6XjVBHQEBggxJul42HcuwkAABHQDDSLQ5WBBlHQGBal41P3ztHQEBhJul41P6Hcu0kAABHQDDS8an7521HQGBaHKwIMSdHQEBhysCDEm+Hcu4kAABHQDDWRaHKwINHQGBYGJN0vGpHQEBkWhysCDGHcu8kAABHQDDbItDlYEJHQGBVHrhR64VHQEBoMSbpeNWHcvAkAABHQDDb52yLQ5ZHQGBUo9cKPXFHQEBotDlYEGKHcvEkAABHQDDe+dsi0OVHQGBSn752yLRHQEBrQ5WBBiWHcvIkAABHQDDfvnbItDlHQGBSLQ5WBBlHQEBr52yLQ5aHcvMkAABHQDDj1wo9cKRHQGBPrhR64UhHQEBvGp++dsmHcvQkAABHQDDkm6XjU/hHQGBPMzMzMzNHQEBvvnbItDmHcvUkAABHQDDlYEGJN0xHQGBOuFHrhR9HQEBwQYk3S8eHcvYkAABHQDDnrhR64UhHQGBNLxqfvndHQEByLQ5WBBmHcvckAABHQDDocrAgxJxHQGBMvGp++dtHQEBy0OVgQYmHcvgkAABHQDDpN0vGp/BHQGBMQYk3S8dHQEBzdLxqfvqHcvkkAABHQDDsSbpeNT9HQGBKRaHKwINHQEB2BBiTdLyHcvokAABHQDDt0vGp++dHQGBJT987ZFpHQEB3KwIMSbqHcvskAABHQDDw5WBBiTdHQGBHS8an755HQEB5ul41P32HcvwkAABHQDDxqfvnbItHQGBG2RaHKwJHQEB6PXCj1wqHcv0kAABHQDDyLQ5WBBlHQGBGXjU/fO5HQEB64UeuFHuHcv4kAABHQDD0euFHrhRHQGBE1P3ztkZHQEB8zMzMzM2Hcv8kAABHQDD1P3ztkWhHQGBEYk3S8apHQEB9cKPXCj2HcgAlAABHQDD5FocrAgxHQGBB64UeuFJHQECAgxJul42HcgElAABHQDD5mZmZmZpHQGBBcKPXCj1HQECBJul41P6HcgIlAABHQDD6XjU/fO5HQGBA9cKPXClHQECBqfvnbIuHcgMlAABHQDD9LxqfvndHQGA++dsi0OVHQECEOVgQYk6HcgQlAABHQDD987ZFoctHQGA+hysCDEpHQECEvGp++duHcgUlAABHQDD+uFHrhR9HQGA+DEm6XjVHQECFYEGJN0yHcgYlAABHQDEAxJul41RHQGA8i0OVgQZHQECHS8an756HcgclAABHQDECTdLxqfxHQGA7lYEGJN1HQECIcrAgxJyHcgglAABHQDEFHrhR64VHQGA5ocrAgxJHQECK4UeuFHuHcgklAABHQDEF41P3ztlHQGA5Jul41P5HQECLhR64UeyHcgolAABHQDEGZmZmZmZHQGA4tDlYEGJHQECMCDEm6XmHcgslAABHQDEJN0vGp/BHQGA2uFHrhR9HQECOl41P3zuHcgwlAABHQDENT987ZFpHQGAzztkWhytHQECSLQ5WBBmHcg0lAABHQDEOFHrhR65HQGAzU/fO2RdHQECS0OVgQYmHcg4lAABHQDEQo9cKPXFHQGAxYEGJN0xHQECVP3ztkWiHcg8lAABHQDERaHKwIMVHQGAw7ZFocrBHQECVwo9cKPaHchAlAABHQDER64UeuFJHQGAwcrAgxJxHQECWZmZmZmaHchElAABHQDEVP3ztkWhHQGAuBBiTdLxHQECZWBBiTdOHchIlAABHQDEYEGJN0vJHQGAsEGJN0vJHQECbxqfvnbKHchMlAABHQDEYk3S8an9HQGArlYEGJN1HQECcan752yOHchQlAABHQDEZFocrAgxHQGArItDlYEJHQECc7ZFocrCHchUlAABHQDEbpeNT989HQGApLxqfvndHQECfXCj1wo+HchYlAABHQDEffO2RaHNHQGAmTdLxqfxHQECi8an7522HchclAABHQDEgQYk3S8dHQGAl0vGp++dHQECjlYEGJN2HchglAABHQDEij1wo9cNHQGAj52yLQ5ZHQECl41P3ztmHchklAABHQDEjU/fO2RdHQGAjbItDlYFHQECmhysCDEqHcholAABHQDEj1wo9cKRHQGAi+dsi0OVHQECnCj1wo9eHchslAABHQDEmZmZmZmZHQGAhBiTdLxtHQECpeNT987aHchwlAABHQDEm6XjU/fRHQGAgi0OVgQZHQECqHKwIMSeHch0lAABHQDEpN0vGp/BHQGAen752yLRHQECsan752yOHch4lAABHQDEp++dsi0RHQGAeLQ5WBBlHQECtDlYEGJOHch8lAABHQDEqfvnbItFHQGAdsi0OVgRHQECtkWhysCGHciAlAABHQDEszMzMzM1HQGAbxqfvnbJHQECwAAAAAACHciElAABHQDEwYk3S8apHQGAY5WBBiTdHQECzdLxqfvqHciIlAABHQDEw5WBBiTdHQGAYcrAgxJxHQECz987ZFoeHciMlAABHQDEzMzMzMzNHQGAWhysCDEpHQEC2ZmZmZmaHciQlAABHQDEztkWhysFHQGAWFHrhR65HQEC26XjU/fSHciUlAABHQDE0OVgQYk5HQGAVocrAgxJHQEC3bItDlYGHciYlAABHQDE2hysCDEpHQGATrhR64UhHQEC52yLQ5WCHciclAABHQDE52yLQ5WBHQGAQ3S8an75HQEC9T987ZFqHciglAABHQDE6XjU/fO5HQGAQYk3S8apHQEC90vGp++eHciklAABHQDE64UeuFHtHQGAP752yLQ5HQEC+VgQYk3WHciolAABHQDE8an752yNHQGAOfvnbItFHQEDAIMSbpeOHcislAABHQDE/fO2RaHNHQGALpeNT989HQEDDlYEGJN2HciwlAABHQDFAAAAAAABHQGALMzMzMzNHQEDEGJN0vGqHci0lAABHQDFAgxJul41HQGAKwIMSbphHQEDEvGp++duHci4lAABHQDFCTdLxqfxHQGAJR64UeuFHQEDGZmZmZmaHci8lAABHQDFC0OVgQYlHQGAI1P3ztkZHQEDHCj1wo9eHcjAlAABHQDFDEm6XjVBHQGAIYk3S8apHQEDHjU/fO2SHcjElAABHQDFDlYEGJN1HQGAH752yLQ5HQEDIEGJN0vKHcjIlAABHQDFFHrhR64VHQGAGfvnbItFHQEDJ2yLQ5WCHcjMlAABHQDFGJN0vGqBHQGAFkWhysCFHQEDLAgxJul6HcjQlAABHQDFIMSbpeNVHQGADrhR64UhHQEDNT987ZFqHcjUlAABHQDFItDlYEGJHQGADO2RaHKxHQEDN0vGp++eHcjYlAABHQDFJN0vGp/BHQGACyLQ5WBBHQEDOVgQYk3WHcjclAABHQDFKwIMSbphHQGABT987ZFpHQEDQIMSbpeOHcjglAABHQDFLAgxJul5HQGAA3S8an75HQEDQo9cKPXGHcjklAABHQDFNkWhysCFHQF/8/fO2RaJHQEDTdLxqfvqHcjolAABHQDFN0vGp++dHQF/8KPXCj1xHQEDT987ZFoeHcjslAABHQDFOVgQYk3VHQF/7Q5WBBiVHQEDUeuFHrhSHcjwlAABHQDFQYk3S8apHQF/3bItDlYFHQEDWyLQ5WBCHcj0lAABHQDFQo9cKPXFHQF/2l41P3ztHQEDXS8an756Hcj4lAABHQDFRJul41P5HQF/1si0OVgRHQEDXztkWhyuHcj8lAABHQDFSbpeNT99HQF/ywIMSbphHQEDZmZmZmZqHckAlAABHQDFTdLxqfvpHQF/w9cKPXClHQEDan752yLSHckElAABHQDFVP3ztkWhHQF/tLxqfvndHQEDc7ZFocrCHckIlAABHQDFVwo9cKPZHQF/sSbpeNT9HQEDdcKPXCj2HckMlAABHQDFWBBiTdLxHQF/rdLxqfvpHQEDd87ZFocuHckQlAABHQDFXztkWhytHQF/nrhR64UhHQEDgQYk3S8eHckUlAABHQDFYk3S8an9HQF/l41P3ztlHQEDhR64UeuGHckYlAABHQDFaXjU/fO5HQF/iHKwIMSdHQEDjlYEGJN2HckclAABHQDFa4UeuFHtHQF/hN0vGp/BHQEDkGJN0vGqHckglAABHQDFcan752yNHQF/dcKPXCj1HQEDmRaHKwIOHckklAABHQDFc7ZFocrBHQF/cm6XjU/hHQEDmyLQ5WBCHckolAABHQDFdLxqfvndHQF/btkWhysFHQEDnS8an756HckslAABHQDFfO2RaHKxHQF/XCj1wo9dHQEDqHKwIMSeHckwlAABHQDFgxJul41RHQF/TU/fO2RdHQEDsSbpeNT+Hck0lAABHQDFhR64UeuFHQF/SbpeNT99HQEDszMzMzM2Hck4lAABHQDFhiTdLxqhHQF/RiTdLxqhHQEDtT987ZFqHck8lAABHQDFjEm6XjVBHQF/N0vGp++dHQEDvfO2RaHOHclAlAABHQDFlYEGJN0xHQF/IUeuFHrhHQEDy0OVgQYmHclElAABHQDFlocrAgxJHQF/HbItDlYFHQEDzU/fO2ReHclIlAABHQDFnKwIMSbpHQF/DtkWhysFHQED1gQYk3S+HclMlAABHQDFnbItDlYFHQF/C4UeuFHtHQED2BBiTdLyHclQlAABHQDFn752yLQ5HQF/B++dsi0RHQED2hysCDEqHclUlAABHQDFpN0vGp/BHQF++RaHKwINHQED4tDlYEGKHclYlAABHQDFrQ5WBBiVHQF+4xJul41RHQED752yLQ5aHclclAABHQDFrxqfvnbJHQF+3752yLQ5HQED8an752yOHclglAABHQDFtDlYEGJNHQF+0OVgQYk5HQED+dsi0OViHclklAABHQDFu2RaHKwJHQF+uyLQ5WBBHQEEBqfvnbIuHclolAABHQDFvXCj1wo9HQF+t41P3ztlHQEECLQ5WBBmHclslAABHQDFwo9cKPXFHQF+qPXCj1wpHQEEEWhysCDGHclwlAABHQDFw5WBBiTdHQF+pWBBiTdNHQEEE3S8an76Hcl0lAABHQDFxJul41P5HQF+ogxJul41HQEEFYEGJN0yHcl4lAABHQDFxaHKwIMVHQF+nnbItDlZHQEEF41P3ztmHcl8lAABHQDFybpeNT99HQF+kzMzMzM1HQEEHbItDlYGHcmAlAABHQDF0OVgQYk5HQF+fbItDlYFHQEEKn752yLSHcmElAABHQDF0euFHrhRHQF+ehysCDEpHQEELItDlYEKHcmIlAABHQDF0vGp++dtHQF+dsi0OVgRHQEELpeNT98+HcmMlAABHQDF1gQYk3S9HQF+a4UeuFHtHQEENLxqfvneHcmQlAABHQDF2RaHKwINHQF+YUeuFHrhHQEEOuFHrhR+HcmUlAABHQDF3S8an755HQF+VgQYk3S9HQEEQQYk3S8eHcmYlAABHQDF3jU/fO2RHQF+Um6XjU/hHQEEQxJul41SHcmclAABHQDF3ztkWhytHQF+TxqfvnbJHQEERR64UeuGHcmglAABHQDF41P3ztkZHQF+QIMSbpeNHQEETdLxqfvqHcmklAABHQDF5FocrAgxHQF+PO2RaHKxHQEET1wo9cKSHcmolAABHQDF5WBBiTdNHQF+OZmZmZmZHQEEUWhysCDGHcmslAABHQDF6HKwIMSdHQF+LpeNT989HQEEWBBiTdLyHcmwlAABHQDF7ZFocrAhHQF+GRaHKwINHQEEZFocrAgyHcm0lAABHQDF7peNT989HQF+FYEGJN0xHQEEZmZmZmZqHcm4lAABHQDF752yLQ5ZHQF+Ei0OVgQZHQEEZ++dsi0SHcm8lAABHQDF87ZFocrBHQF+A5WBBiTdHQEEcCDEm6XmHcnAlAABHQDF9cKPXCj1HQF9/O2RaHKxHQEEdDlYEGJOHcnElAABHQDF+NT987ZFHQF97lYEGJN1HQEEfGp++dsmHcnIlAABHQDF+dsi0OVhHQF96sCDEm6ZHQEEfnbItDlaHcnMlAABHQDF/O2RaHKxHQF93Gp++dslHQEEhqfvnbIuHcnQlAABHQDF/fO2RaHNHQF92RaHKwINHQEEiLQ5WBBmHcnUlAABHQDF/vnbItDlHQF91YEGJN0xHQEEisCDEm6aHcnYlAABHQDGAxJul41RHQF9w5WBBiTdHQEElHrhR64WHcnclAABHQDGBiTdLxqhHQF9tT987ZFpHQEEnKwIMSbqHcnglAABHQDGBysCDEm9HQF9seuFHrhRHQEEnrhR64UiHcnklAABHQDGBysCDEm9HQF9rpeNT989HQEEoMSbpeNWHcnolAABHQDGCj1wo9cNHQF9oEGJN0vJHQEEqPXCj1wqHcnslAABHQDGDEm6XjVBHQF9mVgQYk3VHQEErItDlYEKHcnwlAABHQDGDlYEGJN1HQF9iwIMSbphHQEEtLxqfvneHcn0lAABHQDGD1wo9cKRHQF9h64UeuFJHQEEtsi0OVgSHcn4lAABHQDGEm6XjU/hHQF9eVgQYk3VHQEEvnbItDlaHcn8lAABHQDGEm6XjU/hHQF9dcKPXCj1HQEEwIMSbpeOHcoAlAABHQDGE3S8an75HQF9cm6XjU/hHQEEwo9cKPXGHcoElAABHQDGFocrAgxJHQF9YMSbpeNVHQEEzEm6XjVCHcoIlAABHQDGGZmZmZmZHQF9TxqfvnbJHQEE1gQYk3S+HcoMlAABHQDGGZmZmZmZHQF9S8an7521HQEE2BBiTdLyHcoQlAABHQDGGp++dsi1HQF9RR64UeuFHQEE26XjU/fSHcoUlAABHQDGG6XjU/fRHQF9PbItDlYFHQEE3752yLQ6HcoYlAABHQDGHKwIMSbpHQF9Nsi0OVgRHQEE49cKPXCmHcoclAABHQDGHrhR64UhHQF9KHKwIMSdHQEE64UeuFHuHcoglAABHQDGH752yLQ5HQF9JR64UeuFHQEE7ZFocrAiHcoklAABHQDGIMSbpeNVHQF9HrhR64UhHQEE8SbpeNT+HcoolAABHQDGIcrAgxJxHQF9Fwo9cKPZHQEE9T987ZFqHcoslAABHQDGIcrAgxJxHQF9E7ZFocrBHQEE90vGp++eHcowlAABHQDGIcrAgxJxHQF9EGJN0vGpHQEE+NT987ZGHco0lAABHQDGItDlYEGJHQF9DQ5WBBiVHQEE+uFHrhR+Hco4lAABHQDGI9cKPXClHQF9Ak3S8an9HQEFAQYk3S8eHco8lAABHQDGJN0vGp/BHQF8+FHrhR65HQEFBqfvnbIuHcpAlAABHQDGJeNT987ZHQF87U/fO2RdHQEFDEm6XjVCHcpElAABHQDGJul41P31HQF86fvnbItFHQEFDlYEGJN2HcpIlAABHQDGJul41P31HQF85qfvnbItHQEFD987ZFoeHcpMlAABHQDGJul41P31HQF845WBBiTdHQEFEeuFHrhSHcpQlAABHQDGJ++dsi0RHQF82+dsi0OVHQEFFgQYk3S+HcpUlAABHQDGKPXCj1wpHQF81T987ZFpHQEFGZmZmZmaHcpYlAABHQDGKPXCj1wpHQF80euFHrhRHQEFG6XjU/fSHcpclAABHQDGKfvnbItFHQF8xysCDEm9HQEFIUeuFHriHcpglAABHQDGKfvnbItFHQF8w9cKPXClHQEFI1P3ztkaHcpklAABHQDGKwIMSbphHQF8vXCj1wo9HQEFJul41P32HcpolAABHQDGKwIMSbphHQF8sm6XjU/hHQEFLItDlYEKHcpslAABHQDGLAgxJul5HQF8rxqfvnbJHQEFLpeNT98+HcpwlAABHQDGLAgxJul5HQF8q8an7521HQEFMKPXCj1yHcp0lAABHQDGLQ5WBBiVHQF8l0vGp++dHQEFO2RaHKwKHcp4lAABHQDGLhR64UexHQF8jItDlYEJHQEFQYk3S8aqHcp8lAABHQDGLhR64UexHQF8iTdLxqfxHQEFQ5WBBiTeHcqAlAABHQDGLhR64UexHQF8heNT987ZHQEFRR64UeuGHcqElAABHQDGLxqfvnbJHQF8eyLQ5WBBHQEFSsCDEm6aHcqIlAABHQDGLxqfvnbJHQF8cWhysCDFHQEFUGJN0vGqHcqMlAABHQDGLxqfvnbJHQF8ZqfvnbItHQEFVgQYk3S+HcqQlAABHQDGLxqfvnbJHQF8Y1P3ztkZHQEFWBBiTdLyHcqUlAABHQDGLxqfvnbJHQF8YAAAAAABHQEFWZmZmZmaHcqYlAABHQDGMCDEm6XlHQF8Ui0OVgQZHQEFYUeuFHriHcqclAABHQDGMCDEm6XlHQF8TtkWhysFHQEFYtDlYEGKHcqglAABHQDGMCDEm6XlHQF8S4UeuFHtHQEFZN0vGp/CHcqklAABHQDGMCDEm6XlHQF8N0vGp++dHQEFb52yLQ5aHcqolAABHQDGMCDEm6XlHQF8LItDlYEJHQEFdcKPXCj2HcqslAABHQDGMCDEm6XlHQF8KTdLxqfxHQEFd0vGp++eHcqwlAABHQDGMCDEm6XlHQF8JeNT987ZHQEFeNT987ZGHcq0lAABHQDGMCDEm6XlHQF8GBBiTdLxHQEFgIMSbpeOHcq4lAABHQDGMCDEm6XlHQF8Ean752yNHQEFhBiTdLxuHcq8lAABHQDGLxqfvnbJHQF8A9cKPXClHQEFi0OVgQYmHcrAlAABHQDGLxqfvnbJHQF8AIMSbpeNHQEFjU/fO2ReHcrElAABHQDGLxqfvnbJHQF7+hysCDEpHQEFkGJN0vGqHcrIlAABHQDGLxqfvnbJHQF78rAgxJulHQEFlHrhR64WHcrMlAABHQDGLxqfvnbJHQF7752yLQ5ZHQEFlgQYk3S+HcrQlAABHQDGLxqfvnbJHQF77Em6XjVBHQEFmBBiTdLyHcrUlAABHQDGLhR64UexHQF75eNT987ZHQEFmyLQ5WBCHcrYlAABHQDGLhR64UexHQF72yLQ5WBBHQEFoUeuFHriHcrclAABHQDGLhR64UexHQF71LxqfvndHQEFpFocrAgyHcrglAABHQDGLQ5WBBiVHQF7yj1wo9cNHQEFqfvnbItGHcrklAABHQDGLQ5WBBiVHQF7xul41P31HQEFq4UeuFHuHcrolAABHQDGLAgxJul5HQF7wMSbpeNVHQEFrxqfvnbKHcrslAABHQDGLAgxJul5HQF7uVgQYk3VHQEFszMzMzM2HcrwlAABHQDGKwIMSbphHQF7svGp++dtHQEFtkWhysCGHcr0lAABHQDGKfvnbItFHQF7pR64UeuFHQEFvfO2RaHOHcr4lAABHQDGKfvnbItFHQF7ocrAgxJxHQEFv3ztkWh2Hcr8lAABHQDGKfvnbItFHQF7m6XjU/fRHQEFwo9cKPXGHcsAlAABHQDGKPXCj1wpHQF7lDlYEGJNHQEFxqfvnbIuHcsElAABHQDGKPXCj1wpHQF7kOVgQYk5HQEFyDEm6XjWHcsIlAABHQDGJ++dsi0RHQF7jdLxqfvpHQEFyj1wo9cOHcsMlAABHQDGJ++dsi0RHQF7h2yLQ5WBHQEFzU/fO2ReHcsQlAABHQDGJul41P31HQF7gAAAAAABHQEF0WhysCDGHcsUlAABHQDGJeNT987ZHQF7docrAgxJHQEF1gQYk3S+HcsYlAABHQDGJN0vGp/BHQF7bAgxJul5HQEF26XjU/fSHcsclAABHQDGI9cKPXClHQF7aPXCj1wpHQEF3S8an756HcsglAABHQDGI9cKPXClHQF7ZaHKwIMVHQEF3ztkWhyuHcsklAABHQDGI9cKPXClHQF7Yo9cKPXFHQEF4MSbpeNWHcsolAABHQDGItDlYEGJHQF7W2RaHKwJHQEF5FocrAgyHcsslAABHQDGIcrAgxJxHQF7VP3ztkWhHQEF5++dsi0SHcswlAABHQDGIcrAgxJxHQF7Uan752yNHQEF6XjU/fO6Hcs0lAABHQDGIMSbpeNVHQF7TpeNT989HQEF6wIMSbpiHcs4lAABHQDGH752yLQ5HQF7RysCDEm9HQEF7xqfvnbKHcs8lAABHQDGH752yLQ5HQF7RBiTdLxtHQEF8KPXCj1yHctAlAABHQDGHrhR64UhHQF7PfO2RaHNHQEF87ZFocrCHctElAABHQDGHKwIMSbpHQF7M3S8an75HQEF+VgQYk3WHctIlAABHQDGHKwIMSbpHQF7MCDEm6XlHQEF+uFHrhR+HctMlAABHQDGG6XjU/fRHQF7LQ5WBBiVHQEF/Gp++dsmHctQlAABHQDGG6XjU/fRHQF7KfvnbItFHQEF/fO2RaHOHctUlAABHQDGGp++dsi1HQF7Io9cKPXFHQEGAgxJul42HctYlAABHQDGGJN0vGqBHQF7GVgQYk3VHQEGBqfvnbIuHctclAABHQDGF41P3ztlHQF7DtkWhysFHQEGDEm6XjVCHctglAABHQDGFocrAgxJHQF7C8an7521HQEGDdLxqfvqHctklAABHQDGFYEGJN0xHQF7CHKwIMSdHQEGD1wo9cKSHctolAABHQDGFYEGJN0xHQF7BWBBiTdNHQEGEOVgQYk6HctslAABHQDGEm6XjU/hHQF6987ZFoctHQEGGBBiTdLyHctwlAABHQDGEm6XjU/hHQF69LxqfvndHQEGGZmZmZmaHct0lAABHQDGEGJN0vGpHQF66n752yLRHQEGHztkWhyuHct4lAABHQDGD1wo9cKRHQF65ysCDEm9HQEGIMSbpeNWHct8lAABHQDGDlYEGJN1HQF64QYk3S8dHQEGI9cKPXCmHcuAlAABHQDGDEm6XjVBHQF61si0OVgRHQEGKPXCj1wqHcuElAABHQDGC0OVgQYlHQF603S8an75HQEGKwIMSbpiHcuIlAABHQDGC0OVgQYlHQF60GJN0vGpHQEGLItDlYEKHcuMlAABHQDGBysCDEm9HQF6vO2RaHKxHQEGNkWhysCGHcuQlAABHQDGBBiTdLxtHQF6sm6XjU/hHQEGO+dsi0OWHcuUlAABHQDGAxJul41RHQF6r1wo9cKRHQEGPXCj1wo+HcuYlAABHQDGAxJul41RHQF6rEm6XjVBHQEGPvnbItDmHcuclAABHQDF/vnbItDlHQF6m+dsi0OVHQEGRysCDEm+HcuglAABHQDF/fO2RaHNHQF6mJN0vGqBHQEGSLQ5WBBmHcuklAABHQDF+uFHrhR9HQF6i0OVgQYlHQEGT987ZFoeHcuolAABHQDF+dsi0OVhHQF6iDEm6XjVHQEGUWhysCDGHcuslAABHQDF+NT987ZFHQF6ggxJul41HQEGVHrhR64WHcuwlAABHQDF9si0OVgRHQF6euFHrhR9HQEGWBBiTdLyHcu0lAABHQDF9cKPXCj1HQF6d87ZFoctHQEGWZmZmZmaHcu4lAABHQDF9LxqfvndHQF6dLxqfvndHQEGWyLQ5WBCHcu8lAABHQDF752yLQ5ZHQF6YUeuFHrhHQEGZN0vGp/CHcvAlAABHQDF7peNT989HQF6XjU/fO2RHQEGZmZmZmZqHcvElAABHQDF64UeuFHtHQF6U/fO2RaJHQEGa4UeuFHuHcvIlAABHQDF6n752yLRHQF6UOVgQYk5HQEGbQ5WBBiWHcvMlAABHQDF6HKwIMSdHQF6SsCDEm6ZHQEGcCDEm6XmHcvQlAABHQDF5FocrAgxHQF6PXCj1wo9HQEGdsi0OVgSHcvUlAABHQDF5FocrAgxHQF6Ol41P3ztHQEGeFHrhR66HcvYlAABHQDF4EGJN0vJHQF6MCDEm6XlHQEGfXCj1wo+HcvclAABHQDF3ztkWhytHQF6LQ5WBBiVHQEGfvnbItDmHcvglAABHQDF3jU/fO2RHQF6Jul41P31HQEGggxJul42HcvklAABHQDF2hysCDEpHQF6HO2RaHKxHQEGhysCDEm+HcvolAABHQDF2RaHKwINHQF6Gdsi0OVhHQEGiLQ5WBBmHcvslAABHQDF1wo9cKPZHQF6E7ZFocrBHQEGi8an7522HcvwlAABHQDF1P3ztkWhHQF6DItDlYEJHQEGj1wo9cKSHcv0lAABHQDF0/fO2RaJHQF6CXjU/fO5HQEGkOVgQYk6Hcv4lAABHQDF0euFHrhRHQF6A5WBBiTdHQEGk/fO2RaKHcv8lAABHQDFz987ZFodHQF5/XCj1wo9HQEGlocrAgxKHcgAmAABHQDFztkWhysFHQF5+VgQYk3VHQEGmJN0vGqCHcgEmAABHQDFzdLxqfvpHQF59kWhysCFHQEGmhysCDEqHcgImAABHQDFysCDEm6ZHQF58CDEm6XlHQEGnS8an756HcgMmAABHQDFxqfvnbItHQF54xJul41RHQEGo9cKPXCmHcgQmAABHQDFxaHKwIMVHQF54AAAAAABHQEGpWBBiTdOHcgUmAABHQDFxJul41P5HQF53S8an755HQEGpul41P32HcgYmAABHQDFwYk3S8apHQF51gQYk3S9HQEGqn752yLSHcgcmAABHQDFwIMSbpeNHQF50vGp++dtHQEGrAgxJul6HcggmAABHQDFvnbItDlZHQF5zMzMzMzNHQEGrpeNT98+HcgkmAABHQDFvGp++dslHQF5xul41P31HQEGsan752yOHcgomAABHQDFul41P3ztHQF5wtDlYEGJHQEGs7ZFocrCHcgsmAABHQDFuVgQYk3VHQF5v752yLQ5HQEGtT987ZFqHcgwmAABHQDFuFHrhR65HQF5vKwIMSbpHQEGtsi0OVgSHcg0mAABHQDFtkWhysCFHQF5udsi0OVhHQEGuFHrhR66Hcg4mAABHQDFtDlYEGJNHQF5srAgxJulHQEGu2RaHKwKHcg8mAABHQDFsCDEm6XlHQF5qbpeNT99HQEGwAAAAAACHchAmAABHQDFrxqfvnbJHQF5pqfvnbItHQEGwYk3S8aqHchEmAABHQDFrAgxJul5HQF5n752yLQ5HQEGxR64UeuGHchImAABHQDFqwIMSbphHQF5nKwIMSbpHQEGxqfvnbIuHchMmAABHQDFqfvnbItFHQF5mZmZmZmZHQEGx64UeuFKHchQmAABHQDFqPXCj1wpHQF5locrAgxJHQEGyTdLxqfyHchUmAABHQDFpeNT987ZHQF5kOVgQYk5HQEGzEm6XjVCHchYmAABHQDFotDlYEGJHQF5iXjU/fO5HQEGz987ZFoeHchcmAABHQDFocrAgxJxHQF5hqfvnbItHQEG0OVgQYk6HchgmAABHQDFoMSbpeNVHQF5g5WBBiTdHQEG0m6XjU/iHchkmAABHQDFnbItDlYFHQF5fKwIMSbpHQEG1gQYk3S+HchomAABHQDFm6XjU/fRHQF5eZmZmZmZHQEG141P3ztmHchsmAABHQDFmZmZmZmZHQF5c7ZFocrBHQEG2hysCDEqHchwmAABHQDFlYEGJN0xHQF5abpeNT99HQEG3ztkWhyuHch0mAABHQDFk3S8an75HQF5ZqfvnbItHQEG4MSbpeNWHch4mAABHQDFkm6XjU/hHQF5Y5WBBiTdHQEG4k3S8an+Hch8mAABHQDFkWhysCDFHQF5YMSbpeNVHQEG41P3ztkaHciAmAABHQDFij1wo9cNHQF5UKPXCj1xHQEG6wIMSbpiHciEmAABHQDFhR64UeuFHQF5Rul41P31HQEG8CDEm6XmHciImAABHQDFhBiTdLxtHQF5Q9cKPXClHQEG8an752yOHciMmAABHQDFggxJul41HQF5QMSbpeNVHQEG8rAgxJumHciQmAABHQDFgQYk3S8dHQF5PfO2RaHNHQEG9DlYEGJOHciUmAABHQDFeuFHrhR9HQF5MOVgQYk5HQEG+l41P3zuHciYmAABHQDFeNT987ZFHQF5LdLxqfvpHQEG++dsi0OWHcicmAABHQDFcrAgxJulHQF5IQYk3S8dHQEHAgxJul42HcigmAABHQDFan752yLRHQF5EWhysCDFHQEHCbpeNT9+HcikmAABHQDFaXjU/fO5HQF5DlYEGJN1HQEHCsCDEm6aHciomAABHQDFZ2yLQ5WBHQF5C0OVgQYlHQEHDEm6XjVCHcismAABHQDFXjU/fO2RHQF4+JN0vGqBHQEHFYEGJN0yHciwmAABHQDFXCj1wo9dHQF49YEGJN0xHQEHFocrAgxKHci0mAABHQDFVwo9cKPZHQF468an7521HQEHGyLQ5WBCHci4mAABHQDFVgQYk3S9HQF46LQ5WBBlHQEHHKwIMSbqHci8mAABHQDFS8an7521HQF41kWhysCFHQEHJWBBiTdOHcjAmAABHQDFSbpeNT99HQF40zMzMzM1HQEHJul41P32HcjEmAABHQDFRqfvnbItHQF4zZFocrAhHQEHKXjU/fO6HcjImAABHQDFRJul41P5HQF4yXjU/fO5HQEHK4UeuFHuHcjMmAABHQDFQo9cKPXFHQF4xmZmZmZpHQEHLQ5WBBiWHcjQmAABHQDFP3ztkWh1HQF4wIMSbpeNHQEHL52yLQ5aHcjUmAABHQDFPGp++dslHQF4uuFHrhR9HQEHMi0OVgQaHcjYmAABHQDFOl41P3ztHQF4tsi0OVgRHQEHNDlYEGJOHcjcmAABHQDFOFHrhR65HQF4s/fO2RaJHQEHNcKPXCj2HcjgmAABHQDFNT987ZFpHQF4rhR64UexHQEHOFHrhR66HcjkmAABHQDFMzMzMzM1HQF4q0OVgQYlHQEHOdsi0OViHcjomAABHQDFMSbpeNT9HQF4pysCDEm9HQEHO2RaHKwKHcjsmAABHQDFLhR64UexHQF4oUeuFHrhHQEHPnbItDlaHcjwmAABHQDFLAgxJul5HQF4nnbItDlZHQEHP3ztkWh2Hcj0mAABHQDFKPXCj1wpHQF4mNT987ZFHQEHQo9cKPXGHcj4mAABHQDFJeNT987ZHQF4lLxqfvndHQEHRBiTdLxuHcj8mAABHQDFJN0vGp/BHQF4kan752yNHQEHRaHKwIMWHckAmAABHQDFIMSbpeNVHQF4jAgxJul5HQEHSDEm6XjWHckEmAABHQDFH752yLQ5HQF4iTdLxqfxHQEHSbpeNT9+HckImAABHQDFGZmZmZmZHQF4fztkWhytHQEHTlYEGJN2HckMmAABHQDFF41P3ztlHQF4fGp++dslHQEHT1wo9cKSHckQmAABHQDFFYEGJN0xHQF4eZmZmZmZHQEHUOVgQYk6HckUmAABHQDFFHrhR64VHQF4docrAgxJHQEHUm6XjU/iHckYmAABHQDFEWhysCDFHQF4crAgxJulHQEHU/fO2RaKHckcmAABHQDFD1wo9cKRHQF4b52yLQ5ZHQEHVYEGJN0yHckgmAABHQDFDEm6XjVBHQF4afvnbItFHQEHWBBiTdLyHckkmAABHQDFCDEm6XjVHQF4ZFocrAgxHQEHWp++dsi2HckomAABHQDFBiTdLxqhHQF4YEGJN0vJHQEHXKwIMSbqHcksmAABHQDFBBiTdLxtHQF4XS8an755HQEHXbItDlYGHckwmAABHQDFAgxJul41HQF4Wl41P3ztHQEHXztkWhyuHck0mAABHQDFAQYk3S8dHQF4V41P3ztlHQEHYMSbpeNWHck4mAABHQDE/vnbItDlHQF4VLxqfvndHQEHYcrAgxJyHck8mAABHQDE++dsi0OVHQF4UKPXCj1xHQEHY9cKPXCmHclAmAABHQDE+dsi0OVhHQF4TdLxqfvpHQEHZN0vGp/CHclEmAABHQDE9si0OVgRHQF4R++dsi0RHQEHZ++dsi0SHclImAABHQDE9LxqfvndHQF4RR64UeuFHQEHaPXCj1wqHclMmAABHQDE8rAgxJulHQF4Qk3S8an9HQEHan752yLSHclQmAABHQDE8KPXCj1xHQF4PnbItDlZHQEHbAgxJul6HclUmAABHQDE7peNT989HQF4O2RaHKwJHQEHbZFocrAiHclYmAABHQDE7ItDlYEJHQF4OJN0vGqBHQEHbpeNT98+HclcmAABHQDE6n752yLRHQF4NcKPXCj1HQEHcCDEm6XmHclgmAABHQDE6HKwIMSdHQF4MvGp++dtHQEHcSbpeNT+HclkmAABHQDE5mZmZmZpHQF4MCDEm6XlHQEHcrAgxJumHclomAABHQDE4k3S8an9HQF4KTdLxqfxHQEHdcKPXCj2HclsmAABHQDE4EGJN0vJHQF4JiTdLxqhHQEHd0vGp++eHclwmAABHQDE3jU/fO2RHQF4I5WBBiTdHQEHeFHrhR66Hcl0mAABHQDE3Cj1wo9dHQF4IMSbpeNVHQEHedsi0OViHcl4mAABHQDE2hysCDEpHQF4HKwIMSbpHQEHe2RaHKwKHcl8mAABHQDE2BBiTdLxHQF4Gdsi0OVhHQEHfO2RaHKyHcmAmAABHQDE0/fO2RaJHQF4E/fO2RaJHQEHf3ztkWh2HcmEmAABHQDE0euFHrhRHQF4ESbpeNT9HQEHgIMSbpeOHcmImAABHQDEz987ZFodHQF4DlYEGJN1HQEHggxJul42HcmMmAABHQDEzMzMzMzNHQF4Cn752yLRHQEHg5WBBiTeHcmQmAABHQDEysCDEm6ZHQF4B2yLQ5WBHQEHhR64UeuGHcmUmAABHQDEyLQ5WBBlHQF4BJul41P5HQEHhqfvnbIuHcmYmAABHQDExqfvnbItHQF4AcrAgxJxHQEHh64UeuFKHcmcmAABHQDExJul41P5HQF3/vnbItDlHQEHiLQ5WBBmHcmgmAABHQDEw5WBBiTdHQF3/Cj1wo9dHQEHij1wo9cOHcmkmAABHQDEwIMSbpeNHQF3+BBiTdLxHQEHjEm6XjVCHcmomAABHQDEvGp++dslHQF38m6XjU/hHQEHjtkWhysGHcmsmAABHQDEul41P3ztHQF3752yLQ5ZHQEHj987ZFoeHcmwmAABHQDEuFHrhR65HQF37MzMzMzNHQEHkOVgQYk6Hcm0mAABHQDEtT987ZFpHQF36PXCj1wpHQEHkvGp++duHcm4mAABHQDEszMzMzM1HQF35iTdLxqhHQEHk/fO2RaKHcm8mAABHQDEsSbpeNT9HQF34xJul41RHQEHlYEGJN0yHcnAmAABHQDErxqfvnbJHQF34EGJN0vJHQEHlocrAgxKHcnEmAABHQDEqwIMSbphHQF32uFHrhR9HQEHmRaHKwIOHcnImAABHQDEpeNT987ZHQF30/fO2RaJHQEHnCj1wo9eHcnMmAABHQDEo9cKPXClHQF30SbpeNT9HQEHnbItDlYGHcnQmAABHQDEocrAgxJxHQF3zlYEGJN1HQEHnrhR64UiHcnUmAABHQDEn752yLQ5HQF3y4UeuFHtHQEHoEGJN0vKHcnYmAABHQDEnKwIMSbpHQF3x2yLQ5WBHQEHocrAgxJyHcncmAABHQDEmp++dsi1HQF3xJul41P5HQEHo1P3ztkaHcngmAABHQDElocrAgxJHQF3vvnbItDlHQEHpeNT987aHcnkmAABHQDElHrhR64VHQF3vCj1wo9dHQEHpul41P32HcnomAABHQDEkm6XjU/hHQF3uVgQYk3VHQEHqHKwIMSeHcnsmAABHQDEj1wo9cKRHQF3tYEGJN0xHQEHqfvnbItGHcnwmAABHQDEjU/fO2RdHQF3srAgxJulHQEHqwIMSbpiHcn0mAABHQDEi0OVgQYlHQF3r52yLQ5ZHQEHrItDlYEKHcn4mAABHQDEiTdLxqfxHQF3rQ5WBBiVHQEHrZFocrAiHcn8mAABHQDEhBiTdLxtHQF3p2yLQ5WBHQEHsCDEm6XmHcoAmAABHQDEgQYk3S8dHQF3o1P3ztkZHQEHsi0OVgQaHcoEmAABHQDEfO2RaHKxHQF3nbItDlYFHQEHtLxqfvneHcoImAABHQDEc7ZFocrBHQF3kWhysCDFHQEHudsi0OViHcoMmAABHQDEcan752yNHQF3jpeNT989HQEHu2RaHKwKHcoQmAABHQDEan752yLRHQF3hmZmZmZpHQEHvvnbItDmHcoUmAABHQDEZWBBiTdNHQF3f3ztkWh1HQEHwgxJul42HcoYmAABHQDEY1P3ztkZHQF3fKwIMSbpHQEHwxJul41SHcocmAABHQDEWRaHKwINHQF3cGJN0vGpHQEHyLQ5WBBmHcogmAABHQDESsCDEm6ZHQF3XnbItDlZHQEH0GJN0vGqHcokmAABHQDER64UeuFJHQF3W6XjU/fRHQEH0WhysCDGHcoomAABHQDEPXCj1wo9HQF3T1wo9cKRHQEH1wo9cKPaHcosmAABHQDEOVgQYk3VHQF3SbpeNT99HQEH2ZmZmZmaHcowmAABHQDEN0vGp++dHQF3Rul41P31HQEH2p++dsi2Hco0mAABHQDEMi0OVgQZHQF3QYk3S8apHQEH3S8an756Hco4mAABHQDELxqfvnbJHQF3PbItDlYFHQEH3rhR64UiHco8mAABHQDELAgxJul5HQF3OuFHrhR9HQEH3752yLQ6HcpAmAABHQDEJ++dsi0RHQF3NT987ZFpHQEH4k3S8an+HcpEmAABHQDEJN0vGp/BHQF3Mm6XjU/hHQEH41P3ztkaHcpImAABHQDEHKwIMSbpHQF3KPXCj1wpHQEH52yLQ5WCHcpMmAABHQDEGp++dsi1HQF3JiTdLxqhHQEH6PXCj1wqHcpQmAABHQDEFYEGJN0xHQF3IMSbpeNVHQEH6wIMSbpiHcpUmAABHQDEEm6XjU/hHQF3HO2RaHKxHQEH7Q5WBBiWHcpYmAABHQDEEGJN0vGpHQF3GhysCDEpHQEH7hR64UeyHcpcmAABHQDEC0OVgQYlHQF3FHrhR64VHQEH8KPXCj1yHcpgmAABHQDEBiTdLxqhHQF3DxqfvnbJHQEH8rAgxJumHcpkmAABHQDEAxJul41RHQF3C0OVgQYlHQEH9DlYEGJOHcpomAABHQDEAAAAAAABHQF3CHKwIMSdHQEH9cKPXCj2HcpsmAABHQDD/fO2RaHNHQF3BaHKwIMVHQEH9si0OVgSHcpwmAABHQDD++dsi0OVHQF3AtDlYEGJHQEH987ZFocuHcp0mAABHQDD+NT987ZFHQF3AAAAAAABHQEH+VgQYk3WHcp4mAABHQDD9cKPXCj1HQF2/Cj1wo9dHQEH+uFHrhR+Hcp8mAABHQDD7ZFocrAhHQF28/fO2RaJHQEH/nbItDlaHcqAmAABHQDD64UeuFHtHQF28SbpeNT9HQEH/3ztkWh2HcqEmAABHQDD6XjU/fO5HQF27peNT989HQEIAIMSbpeOHcqImAABHQDD5WBBiTdNHQF26sCDEm6ZHQEIAo9cKPXGHcqMmAABHQDD41P3ztkZHQF25++dsi0RHQEIA5WBBiTeHcqQmAABHQDD3jU/fO2RHQF24k3S8an9HQEIBiTdLxqiHcqUmAABHQDD2yLQ5WBBHQF233ztkWh1HQEIBysCDEm+HcqYmAABHQDD2RaHKwINHQF23O2RaHKxHQEICDEm6XjWHcqcmAABHQDD0vGp++dtHQF21kWhysCFHQEIC0OVgQYmHcqgmAABHQDDz987ZFodHQF203S8an75HQEIDEm6XjVCHcqkmAABHQDDzdLxqfvpHQF20KPXCj1xHQEIDU/fO2ReHcqomAABHQDDysCDEm6ZHQF2zhR64UexHQEIDlYEGJN2HcqsmAABHQDDx64UeuFJHQF2yj1wo9cNHQEIEGJN0vGqHcqwmAABHQDDxJul41P5HQF2x2yLQ5WBHQEIEWhysCDGHcq0mAABHQDDv3ztkWh1HQF2wcrAgxJxHQEIE3S8an76Hcq4mAABHQDDvXCj1wo9HQF2vztkWhytHQEIFP3ztkWiHcq8mAABHQDDul41P3ztHQF2vGp++dslHQEIFgQYk3S+HcrAmAABHQDDt0vGp++dHQF2uJN0vGqBHQEIF41P3ztmHcrEmAABHQDDtDlYEGJNHQF2tgQYk3S9HQEIGJN0vGqCHcrImAABHQDDsSbpeNT9HQF2szMzMzM1HQEIGhysCDEqHcrMmAABHQDDrxqfvnbJHQF2sGJN0vGpHQEIGyLQ5WBCHcrQmAABHQDDrAgxJul5HQF2rdLxqfvpHQEIHCj1wo9eHcrUmAABHQDDqfvnbItFHQF2qwIMSbphHQEIHS8an756HcrYmAABHQDDqPXCj1wpHQF2qfvnbItFHQEIHbItDlYGHcrcmAABHQDDpeNT987ZHQF2pysCDEm9HQEIHrhR64UiHcrgmAABHQDDoMSbpeNVHQF2oYk3S8apHQEIIUeuFHriHcrkmAABHQDDnbItDlYFHQF2nvnbItDlHQEIIk3S8an+HcromAABHQDDm6XjU/fRHQF2nCj1wo9dHQEII1P3ztkaHcrsmAABHQDDl41P3ztlHQF2mJN0vGqBHQEIJN0vGp/CHcrwmAABHQDDlHrhR64VHQF2lcKPXCj1HQEIJmZmZmZqHcr0mAABHQDDkm6XjU/hHQF2kvGp++dtHQEIJ2yLQ5WCHcr4mAABHQDDj1wo9cKRHQF2kCDEm6XlHQEIKHKwIMSeHcr8mAABHQDDjU/fO2RdHQF2jZFocrAhHQEIKXjU/fO6HcsAmAABHQDDij1wo9cNHQF2isCDEm6ZHQEIKwIMSbpiHcsEmAABHQDDhBiTdLxtHQF2hFocrAgxHQEILZFocrAiHcsImAABHQDDgQYk3S8dHQF2gYk3S8apHQEILpeNT98+HcsMmAABHQDDffO2RaHNHQF2frhR64UhHQEIL52yLQ5aHcsQmAABHQDDe+dsi0OVHQF2fCj1wo9dHQEIMSbpeNT+HcsUmAABHQDDd87ZFoctHQF2eFHrhR65HQEIMrAgxJumHcsYmAABHQDDdLxqfvndHQF2dYEGJN0xHQEIM7ZFocrCHcscmAABHQDDb52yLQ5ZHQF2cCDEm6XlHQEINcKPXCj2HcsgmAABHQDDbItDlYEJHQF2bZFocrAhHQEINsi0OVgSHcskmAABHQDDaXjU/fO5HQF2asCDEm6ZHQEIOFHrhR66HcsomAABHQDDZmZmZmZpHQF2Zul41P31HQEIOdsi0OViHcssmAABHQDDY1P3ztkZHQF2ZBiTdLxtHQEIOuFHrhR+HcswmAABHQDDYEGJN0vJHQF2YYk3S8apHQEIO+dsi0OWHcs0mAABHQDDXS8an755HQF2XrhR64UhHQEIPO2RaHKyHcs4mAABHQDDWyLQ5WBBHQF2XCj1wo9dHQEIPfO2RaHOHcs8mAABHQDDWBBiTdLxHQF2WVgQYk3VHQEIP3ztkWh2HctAmAABHQDDU/fO2RaJHQF2VYEGJN0xHQEIQQYk3S8eHctEmAABHQDDTtkWhysFHQF2UCDEm6XlHQEIQxJul41SHctImAABHQDDS8an7521HQF2TZFocrAhHQEIRBiTdLxuHctMmAABHQDDSLQ5WBBlHQF2SsCDEm6ZHQEIRR64UeuGHctQmAABHQDDRJul41P5HQF2RysCDEm9HQEIRqfvnbIuHctUmAABHQDDQo9cKPXFHQF2RFocrAgxHQEISDEm6XjWHctYmAABHQDDP3ztkWh1HQF2QYk3S8apHQEISTdLxqfyHctcmAABHQDDPGp++dslHQF2PvnbItDlHQEISj1wo9cOHctgmAABHQDDOVgQYk3VHQF2PCj1wo9dHQEIS0OVgQYmHctkmAABHQDDN0vGp++dHQF2OZmZmZmZHQEITEm6XjVCHctomAABHQDDMCDEm6XlHQF2MvGp++dtHQEITtkWhysGHctsmAABHQDDLQ5WBBiVHQF2MGJN0vGpHQEIUGJN0vGqHctwmAABHQDDKfvnbItFHQF2LZFocrAhHQEIUWhysCDGHct0mAABHQDDJul41P31HQF2KwIMSbphHQEIUm6XjU/iHct4mAABHQDDJN0vGp/BHQF2KHKwIMSdHQEIU3S8an76Hct8mAABHQDDIMSbpeNVHQF2JJul41P5HQEIVP3ztkWiHcuAmAABHQDDGp++dsi1HQF2HztkWhytHQEIVwo9cKPaHcuEmAABHQDDF41P3ztlHQF2HGp++dslHQEIWBBiTdLyHcuImAABHQDDFHrhR64VHQF2Gdsi0OVhHQEIWRaHKwIOHcuMmAABHQDDDU/fO2RdHQF2E3S8an75HQEIXCj1wo9eHcuQmAABHQDDC0OVgQYlHQF2EKPXCj1xHQEIXS8an756HcuUmAABHQDDAgxJul41HQF2CLQ5WBBlHQEIYEGJN0vKHcuYmAABHQDC/fO2RaHNHQF2BN0vGp/BHQEIYcrAgxJyHcucmAABHQDC987ZFoctHQF1/3ztkWh1HQEIY9cKPXCmHcugmAABHQDC6n752yLRHQF187ZFocrBHQEIaHKwIMSeHcukmAABHQDC52yLQ5WBHQF18OVgQYk5HQEIafvnbItGHcuomAABHQDC3ztkWhytHQF16TdLxqfxHQEIbQ5WBBiWHcusmAABHQDC1P3ztkWhHQF14AAAAAABHQEIcKPXCj1yHcuwmAABHQDC0euFHrhRHQF13S8an755HQEIcan752yOHcu0mAABHQDCy8an7521HQF12BBiTdLxHQEIc7ZFocrCHcu4mAABHQDCx64UeuFJHQF11DlYEGJNHQEIdT987ZFqHcu8mAABHQDCvnbItDlZHQF1zEm6XjVBHQEIeFHrhR66HcvAmAABHQDCszMzMzM1HQF1w1P3ztkZHQEIe+dsi0OWHcvEmAABHQDCsCDEm6XlHQF1wIMSbpeNHQEIfO2RaHKyHcvImAABHQDCpul41P31HQF1uJN0vGqBHQEIgAAAAAACHcvMmAABHQDCotDlYEGJHQF1tLxqfvndHQEIgYk3S8aqHcvQmAABHQDCnKwIMSbpHQF1r52yLQ5ZHQEIg5WBBiTeHcvUmAABHQDCmZmZmZmZHQF1rMzMzMzNHQEIhJul41P6HcvYmAABHQDCk3S8an75HQF1p64UeuFJHQEIhysCDEm+HcvcmAABHQDCj1wo9cKRHQF1o9cKPXClHQEIiDEm6XjWHcvgmAABHQDCjEm6XjVBHQF1oUeuFHrhHQEIiTdLxqfyHcvkmAABHQDChR64UeuFHQF1m+dsi0OVHQEIi0OVgQYmHcvomAABHQDCggxJul41HQF1mVgQYk3VHQEIjEm6XjVCHcvsmAABHQDCfvnbItDlHQF1lsi0OVgRHQEIjU/fO2ReHcvwmAABHQDCd87ZFoctHQF1kGJN0vGpHQEIj987ZFoeHcv0mAABHQDCdLxqfvndHQF1jZFocrAhHQEIkOVgQYk6Hcv4mAABHQDCcan752yNHQF1iwIMSbphHQEIkeuFHrhSHcv8mAABHQDCbpeNT989HQF1iHKwIMSdHQEIkvGp++duHcgAnAABHQDCaXjU/fO5HQF1hN0vGp/BHQEIlHrhR64WHcgEnAABHQDCZmZmZmZpHQF1ggxJul41HQEIlYEGJN0yHcgInAABHQDCYEGJN0vJHQF1fKwIMSbpHQEIl41P3ztmHcgMnAABHQDCXS8an755HQF1ehysCDEpHQEImJN0vGqCHcgQnAABHQDCWRaHKwINHQF1d41P3ztlHQEImZmZmZmaHcgUnAABHQDCVP3ztkWhHQF1c/fO2RaJHQEImyLQ5WBCHcgYnAABHQDCUeuFHrhRHQF1cSbpeNT9HQEInCj1wo9eHcgcnAABHQDCTtkWhysFHQF1bpeNT989HQEInS8an756HcggnAABHQDCS8an7521HQF1bAgxJul5HQEInjU/fO2SHcgknAABHQDCR64UeuFJHQF1aXjU/fO5HQEInztkWhyuHcgonAABHQDCQ5WBBiTdHQF1ZaHKwIMVHQEIoMSbpeNWHcgsnAABHQDCOVgQYk3VHQF1XbItDlYFHQEIo9cKPXCmHcgwnAABHQDCNkWhysCFHQF1WyLQ5WBBHQEIpN0vGp/CHcg0nAABHQDCMzMzMzM1HQF1WJN0vGqBHQEIpeNT987aHcg4nAABHQDCLxqfvnbJHQF1VP3ztkWhHQEIpul41P32Hcg8nAABHQDCKwIMSbphHQF1Ui0OVgQZHQEIp++dsi0SHchAnAABHQDCJ++dsi0RHQF1T52yLQ5ZHQEIqPXCj1wqHchEnAABHQDCJN0vGp/BHQF1TQ5WBBiVHQEIqfvnbItGHchInAABHQDCIcrAgxJxHQF1Sn752yLRHQEIqwIMSbpiHchMnAABHQDCHbItDlYFHQF1R++dsi0RHQEIrAgxJul6HchQnAABHQDCFocrAgxJHQF1QYk3S8apHQEIrpeNT98+HchUnAABHQDCEm6XjU/hHQF1PrhR64UhHQEIr52yLQ5aHchYnAABHQDCD1wo9cKRHQF1PCj1wo9dHQEIsKPXCj1yHchcnAABHQDCDEm6XjVBHQF1OZmZmZmZHQEIsan752yOHchgnAABHQDCBysCDEm9HQF1NgQYk3S9HQEIszMzMzM2HchknAABHQDCBBiTdLxtHQF1M3S8an75HQEItDlYEGJOHchonAABHQDB/O2RaHKxHQF1LhR64UexHQEItcKPXCj2HchsnAABHQDB+dsi0OVhHQF1K4UeuFHtHQEItsi0OVgSHchwnAABHQDB9si0OVgRHQF1KPXCj1wpHQEIt87ZFocuHch0nAABHQDB8an752yNHQF1JWBBiTdNHQEIuVgQYk3WHch4nAABHQDB7peNT989HQF1Io9cKPXFHQEIul41P3zuHch8nAABHQDB64UeuFHtHQF1IAAAAAABHQEIu2RaHKwKHciAnAABHQDB52yLQ5WBHQF1HXCj1wo9HQEIvGp++dsmHciEnAABHQDB5FocrAgxHQF1GuFHrhR9HQEIvXCj1wo+HciInAABHQDB4UeuFHrhHQF1GFHrhR65HQEIvnbItDlaHciMnAABHQDB3Cj1wo9dHQF1FHrhR64VHQEIv3ztkWh2HciQnAABHQDB1P3ztkWhHQF1D1wo9cKRHQEIwYk3S8aqHciUnAABHQDB0euFHrhRHQF1DMzMzMzNHQEIwo9cKPXGHciYnAABHQDBztkWhysFHQF1Cj1wo9cNHQEIw5WBBiTeHcicnAABHQDBybpeNT99HQF1BqfvnbItHQEIxR64UeuGHcignAABHQDBxqfvnbItHQF1BBiTdLxtHQEIxiTdLxqiHciknAABHQDBwo9cKPXFHQF1AUeuFHrhHQEIxqfvnbIuHcionAABHQDBv3ztkWh1HQF0/rhR64UhHQEIx64UeuFKHcisnAABHQDBvGp++dslHQF0/Cj1wo9dHQEIyLQ5WBBmHciwnAABHQDBuFHrhR65HQF0+ZmZmZmZHQEIybpeNT9+Hci0nAABHQDBsCDEm6XlHQF083S8an75HQEIzEm6XjVCHci4nAABHQDBrQ5WBBiVHQF08KPXCj1xHQEIzU/fO2ReHci8nAABHQDBqPXCj1wpHQF07lYEGJN1HQEIzdLxqfvqHcjAnAABHQDBpeNT987ZHQF068an7521HQEIztkWhysGHcjEnAABHQDBotDlYEGJHQF06TdLxqfxHQEIz987ZFoeHcjInAABHQDBnbItDlYFHQF05WBBiTdNHQEI0WhysCDGHcjMnAABHQDBlocrAgxJHQF04EGJN0vJHQEI03S8an76HcjQnAABHQDBkm6XjU/hHQF03bItDlYFHQEI1HrhR64WHcjUnAABHQDBj1wo9cKRHQF02yLQ5WBBHQEI1P3ztkWiHcjYnAABHQDBhysCDEm9HQF01P3ztkWhHQEI141P3ztmHcjcnAABHQDBgxJul41RHQF00i0OVgQZHQEI2JN0vGqCHcjgnAABHQDBgAAAAAABHQF0z52yLQ5ZHQEI2ZmZmZmaHcjknAABHQDBe+dsi0OVHQF0zU/fO2RdHQEI2hysCDEqHcjonAABHQDBeNT987ZFHQF0ysCDEm6ZHQEI2yLQ5WBCHcjsnAABHQDBc7ZFocrBHQF0xul41P31HQEI3KwIMSbqHcjwnAABHQDBbItDlYEJHQF0wcrAgxJxHQEI3rhR64UiHcj0nAABHQDBaXjU/fO5HQF0vztkWhytHQEI3752yLQ6Hcj4nAABHQDBZWBBiTdNHQF0vKwIMSbpHQEI4EGJN0vKHcj8nAABHQDBXS8an755HQF0tocrAgxJHQEI4tDlYEGKHckAnAABHQDBWRaHKwINHQF0s/fO2RaJHQEI49cKPXCmHckEnAABHQDBVgQYk3S9HQF0sWhysCDFHQEI5N0vGp/CHckInAABHQDBUeuFHrhRHQF0rtkWhysFHQEI5WBBiTdOHckMnAABHQDBTtkWhysFHQF0rEm6XjVBHQEI5mZmZmZqHckQnAABHQDBQo9cKPXFHQF0o5WBBiTdHQEI6XjU/fO6HckUnAABHQDBO2RaHKwJHQF0nnbItDlZHQEI64UeuFHuHckYnAABHQDBN0vGp++dHQF0m+dsi0OVHQEI7ItDlYEKHckcnAABHQDBMi0OVgQZHQF0mFHrhR65HQEI7ZFocrAiHckgnAABHQDBKwIMSbphHQF0kzMzMzM1HQEI752yLQ5aHckknAABHQDBI9cKPXClHQF0jhR64UexHQEI8an752yOHckonAABHQDBGp++dsi1HQF0h++dsi0RHQEI87ZFocrCHcksnAABHQDBF41P3ztlHQF0hWBBiTdNHQEI9LxqfvneHckwnAABHQDBDEm6XjVBHQF0fbItDlYFHQEI90vGp++eHck0nAABHQDBBysCDEm9HQF0ehysCDEpHQEI+NT987ZGHck4nAABHQDBAAAAAAABHQF0dP3ztkWhHQEI+l41P3zuHck8nAABHQDA++dsi0OVHQF0cm6XjU/hHQEI+2RaHKwKHclAnAABHQDA752yLQ5ZHQF0abpeNT99HQEI/nbItDlaHclEnAABHQDA64UeuFHtHQF0ZysCDEm9HQEI/3ztkWh2HclInAABlKEdAMDgQYk3S8kdAXRfvnbItDkdAQkCDEm6XjYdyUycAAEdAMDbItDlYEEdAXRcKPXCj10dAQkDlYEGJN4dyVCcAAEdAMDS8an7520dAXRXCj1wo9kdAQkFHrhR64YdyVScAAEdAMDP3ztkWh0dAXRUOVgQYk0dAQkGJN0vGqIdyVicAAEdAMDItDlYEGUdAXRPXCj1wpEdAQkIMSbpeNYdyVycAAEdAMDCj1wo9cUdAXRLxqfvnbUdAQkJN0vGp/IdyWCcAAEdAMC+dsi0OVkdAXRJN0vGp/EdAQkKPXCj1w4dyWScAAEdAMC3S8an750dAXREGJN0vG0dAQkLxqfvnbYdyWicAAEdAMCwIMSbpeUdAXQ/O2RaHK0dAQkN0vGp++odyWycAAEdAMCm6XjU/fUdAXQ5FocrAg0dAQkP3ztkWh4dyXCcAAEdAMCan752yLUdAXQxaHKwIMUdAQkSbpeNT+IdyXScAAEdAMCVgQYk3TEdAXQt0vGp++kdAQkT987ZFoodyXicAAEdAMCOVgQYk3UdAXQo9cKPXCkdAQkVgQYk3TIdyXycAAEdAMCKPXCj1w0dAXQmZmZmZmkdAQkWhysCDEodyYCcAAEdAMCGJN0vGqEdAXQj1wo9cKUdAQkXjU/fO2YdyYScAAEdAMCDEm6XjVEdAXQhiTdLxqkdAQkYEGJN0vIdyYicAAEdAMB87ZFocrEdAXQdsi0OVgUdAQkZmZmZmZodyYycAAEdAMB41P3ztkUdAXQbItDlYEEdAQkan752yLYdyZCcAAEdAMBxqfvnbI0dAXQWRaHKwIUdAQkcKPXCj14dyZScAAEdAMBtkWhysCEdAXQTtkWhysEdAQkdLxqfvnodyZicAAEdAMBpeNT987kdAXQRJul41P0dAQkdsi0OVgYdyZycAAEdAMBgQYk3S8kdAXQLQ5WBBiUdAQkgQYk3S8odyaCcAAEdAMBcKPXCj10dAXQIcrAgxJ0dAQkgxJul41YdyaScAAEdAMBYEGJN0vEdAXQGJN0vGqEdAQkhysCDEnIdyaicAAEdAMBU/fO2RaEdAXQDlYEGJN0dAQki0OVgQYodyaycAAEdAMBO2RaHKwUdAXQAAAAAAAEdAQkj1wo9cKYdybCcAAEdAMBKwIMSbpkdAXP9cKPXCj0dAQkk3S8an8IdybScAAEdAMBDlYEGJN0dAXP4k3S8aoEdAQkmZmZmZmodybicAAEdAMA/fO2RaHUdAXP2BBiTdL0dAQknbItDlYIdybycAAEdAMA7ZFocrAkdAXPztkWhysEdAQkocrAgxJ4dycCcAAEdAMAyLQ5WBBkdAXPtkWhysCEdAQkqfvnbItIdycScAAEdAMAuFHrhR7EdAXPrAgxJumEdAQkrAgxJumIdycicAAEdAMAp++dsi0UdAXPocrAgxJ0dAQksCDEm6XodycycAAEdAMAl41P3ztkdAXPmJN0vGqEdAQktDlYEGJYdydCcAAEdAMAhysCDEnEdAXPjlYEGJN0dAQktkWhysCIdydScAAEdAMAUeuFHrhUdAXPa4UeuFH0dAQkwo9cKPXIdydicAAEdAMAQYk3S8akdAXPYk3S8aoEdAQkxqfvnbI4dydycAAEdAMAMSbpeNUEdAXPWBBiTdL0dAQkyLQ5WBBodyeCcAAEdAMAHKwIMSb0dAXPSsCDEm6UdAQkztkWhysIdyeScAAEdAMADEm6XjVEdAXPQIMSbpeUdAQk0OVgQYk4dyeicAAEdAL/752yLQ5UdAXPNkWhysCEdAQk1P3ztkWodyeycAAEdAL/1wo9cKPUdAXPLAgxJumEdAQk2RaHKwIYdyfCcAAEdAL/tkWhysCEdAXPIcrAgxJ0dAQk2yLQ5WBIdyfScAAEdAL/lYEGJN00dAXPGJN0vGqEdAQk3ztkWhy4dyficAAEdAL/ItDlYEGUdAXO9cKPXCj0dAQk64UeuFH4dyfycAAEdAL/AgxJul40dAXO7ItDlYEEdAQk7ZFocrAodygCcAAEdAL+4UeuFHrkdAXO4k3S8aoEdAQk8an752yYdygScAAEdAL+l41P3ztkdAXOysCDEm6UdAQk+dsi0OVodygicAAEdAL+VgQYk3TEdAXOtkWhysCEdAQlAAAAAAAIdygycAAEdAL+NT987ZF0dAXOrQ5WBBiUdAQlBBiTdLx4dyhCcAAEdAL+FHrhR64UdAXOotDlYEGUdAQlBiTdLxqodyhScAAEdAL9wo9cKPXEdAXOi0OVgQYkdAQlDlYEGJN4dyhicAAEdAL9ocrAgxJ0dAXOgQYk3S8kdAQlEm6XjU/odyhycAAEdAL9gQYk3S8kdAXOdsi0OVgUdAQlFocrAgxYdyiCcAAEdAL9YEGJN0vEdAXObZFocrAkdAQlGJN0vGqIdyiScAAEdAL9P3ztkWh0dAXOY1P3ztkUdAQlHKwIMSb4dyiicAAEdAL9DlYEGJN0dAXOVP3ztkWkdAQlIMSbpeNYdyiycAAEdAL8zMzMzMzUdAXOQYk3S8akdAQlJul41P34dyjCcAAEdAL8rAgxJumEdAXOOFHrhR7EdAQlKwIMSbpodyjScAAEdAL8i0OVgQYkdAXOLhR64Ue0dAQlLQ5WBBiYdyjicAAEdAL8QYk3S8akdAXOFocrAgxUdAQlNT987ZF4dyjycAAEdAL8GJN0vGqEdAXODEm6XjVEdAQlOVgQYk3YdykCcAAEdAL7987ZFoc0dAXOAgxJul40dAQlPXCj1wpIdykScAAEdAL71wo9cKPUdAXN+NT987ZEdAQlP3ztkWh4dykicAAEdAL7tkWhysCEdAXN7peNT99EdAQlQ5WBBiTodykycAAEdAL7Q5WBBiTkdAXNzMzMzMzUdAQlTdLxqfvodylCcAAEdAL7ItDlYEGUdAXNw5WBBiTkdAQlUeuFHrhYdylScAAEdAL7AgxJul40dAXNuVgQYk3UdAQlU/fO2RaIdylicAAEdAL64UeuFHrkdAXNsCDEm6XkdAQlWBBiTdL4dylycAAEdAL6sCDEm6XkdAXNocrAgxJ0dAQlXCj1wo9odymCcAAEdAL6bpeNT99EdAXNjlYEGJN0dAQlYk3S8aoIdymScAAEdAL6TdLxqfvkdAXNhBiTdLx0dAQlZmZmZmZodymicAAEdAL6LQ5WBBiUdAXNeuFHrhSEdAQlaHKwIMSodymycAAEdAL5ul41P3z0dAXNWRaHKwIUdAQldLxqfvnodynCcAAEdAL5mZmZmZmkdAXNTtkWhysEdAQldsi0OVgYdynScAAEdAL5cKPXCj10dAXNRaHKwIMUdAQleuFHrhSIdynicAAEdAL5T987ZFokdAXNO2RaHKwUdAQlfO2RaHK4dynycAAEdAL5HrhR64UkdAXNLhR64Ue0dAQlgxJul41YdyoCcAAEdAL43S8an750dAXNGZmZmZmkdAQliTdLxqf4dyoScAAEdAL4m6XjU/fUdAXNBysCDEnEdAQlj1wo9cKYdyoicAAEdAL4SbpeNT+EdAXM752yLQ5UdAQll41P3ztodyoycAAEdAL4IMSbpeNUdAXM5WBBiTdUdAQlmZmZmZmodypCcAAEdAL3vnbItDlkdAXMyLQ5WBBkdAQlo9cKPXCodypScAAEdAL3Q5WBBiTkdAXMpul41P30dAQlrhR64Ue4dypicAAEdAL24UeuFHrkdAXMij1wo9cUdAQltkWhysCIdypycAAEdAL2sCDEm6XkdAXMe+dsi0OUdAQlvGp++dsodyqCcAAEdAL2ZmZmZmZkdAXMaHKwIMSkdAQlwo9cKPXIdyqScAAEdAL2JN0vGp/EdAXMVP3ztkWkdAQlyLQ5WBBodyqicAAEdAL1qfvnbItEdAXMMzMzMzM0dAQl0vGp++d4dyqycAAEdAL1P3ztkWh0dAXMFocrAgxUdAQl2yLQ5WBIdyrCcAAEdAL1DlYEGJN0dAXMCTdLxqf0dAQl3ztkWhy4dyrScAAEdAL0xJul41P0dAXL9cKPXCj0dAQl5WBBiTdYdyricAAEdAL0o9cKPXCkdAXL64UeuFH0dAQl6XjU/fO4dyrycAAEdAL0Yk3S8aoEdAXL2RaHKwIUdAQl752yLQ5YdysCcAAEdAL0CDEm6XjUdAXLwIMSbpeUdAQl9cKPXCj4dysScAAEdALzItDlYEGUdAXLgxJul41UdAQmCj1wo9cYdysicAAEdALzAgxJul40dAXLeNT987ZEdAQmDEm6XjVIdysycAAEdALyuFHrhR7EdAXLZmZmZmZkdAQmEm6XjU/odytCcAAEdALyHKwIMSb0dAXLO2RaHKwUdAQmIMSbpeNYdytScAAEdALx87ZFocrEdAXLMi0OVgQkdAQmItDlYEGYdyticAAEdALx0vGp++d0dAXLKPXCj1w0dAQmJul41P34dytycAAEdALxeNT987ZEdAXLEWhysCDEdAQmLQ5WBBiYdyuCcAAEdALxWBBiTdL0dAXLBysCDEnEdAQmMSbpeNUIdyuScAAEdALxLxqfvnbUdAXK/fO2RaHUdAQmMzMzMzM4dyuicAAEdALxDlYEGJN0dAXK9LxqfvnkdAQmNT987ZF4dyuycAAEdALwan752yLUdAXKybpeNT+EdAQmQ5WBBiTodyvCcAAEdALwSbpeNT+EdAXKwIMSbpeUdAQmRaHKwIMYdyvScAAEdALwKPXCj1w0dAXKt0vGp++kdAQmSbpeNT+IdyvicAAEdALvztkWhysEdAXKn752yLREdAQmT987ZFoodyvycAAEdALvpeNT987kdAXKlYEGJN00dAQmU/fO2RaIdywCcAAEdALvhR64UeuEdAXKjEm6XjVEdAQmVgQYk3TIdywScAAEdALvXCj1wo9kdAXKgxJul41UdAQmWBBiTdL4dywicAAEdALvO2RaHKwUdAXKedsi0OVkdAQmXCj1wo9odywycAAEdALuuFHrhR7EdAXKWRaHKwIUdAQmZmZmZmZodyxCcAAEdALul41P3ztkdAXKTtkWhysEdAQmaHKwIMSodyxScAAEdALudsi0OVgUdAXKRaHKwIMUdAQman752yLYdyxicAAEdALt0vGp++d0dAXKG6XjU/fUdAQmeNT987ZIdyxycAAEdALtqfvnbItEdAXKEm6XjU/kdAQmeuFHrhSIdyyCcAAEdALtiTdLxqf0dAXKCTdLxqf0dAQmfO2RaHK4dyyScAAEdALtBiTdLxqkdAXJ6HKwIMSkdAQmhysCDEnIdyyicAAEdALs3S8an750dAXJ3jU/fO2UdAQmi0OVgQYodyyycAAEdALsvGp++dskdAXJ1P3ztkWkdAQmjU/fO2RodyzCcAAEdALsk3S8an8EdAXJy8an7520dAQmj1wo9cKYdyzScAAEdALsGJN0vGqEdAXJqwIMSbpkdAQmmZmZmZmodyzicAAEdALr752yLQ5UdAXJocrAgxJ0dAQmm6XjU/fYdyzycAAEdALrztkWhysEdAXJmJN0vGqEdAQmn752yLRIdy0CcAAEdALrS8an7520dAXJd87ZFoc0dAQmp++dsi0Ydy0ScAAEdALrItDlYEGUdAXJbpeNT99EdAQmrAgxJumIdy0icAAEdALrAgxJul40dAXJZWBBiTdUdAQmrhR64Ue4dy0ycAAEdALq2RaHKwIUdAXJWyLQ5WBEdAQmsCDEm6Xody1CcAAEdALqVgQYk3TEdAXJO2RaHKwUdAQmul41P3z4dy1ScAAEdALqNT987ZF0dAXJMSbpeNUEdAQmvGp++dsody1icAAEdALqDEm6XjVEdAXJJ++dsi0UdAQmwIMSbpeYdy1ycAAEdALp41P3ztkUdAXJHrhR64UkdAQmwo9cKPXIdy2CcAAEdALpYEGJN0vEdAXI/fO2RaHUdAQmzMzMzMzYdy2ScAAEdALpP3ztkWh0dAXI9LxqfvnkdAQmztkWhysIdy2icAAEdALpFocrAgxUdAXI64UeuFH0dAQm0OVgQYk4dy2ycAAEdALok3S8an8EdAXIy8an7520dAQm2yLQ5WBIdy3CcAAEdALoan752yLUdAXIwYk3S8akdAQm3S8an754dy3ScAAEdALoSbpeNT+EdAXIuFHrhR7EdAQm4UeuFHrody3icAAEdALoIMSbpeNUdAXIrxqfvnbUdAQm41P3ztkYdy3ycAAEdALnnbItDlYEdAXIj1wo9cKUdAQm7ZFocrAody4CcAAEdALndLxqfvnkdAXIhiTdLxqkdAQm752yLQ5Ydy4ScAAEdALnU/fO2RaEdAXIfO2RaHK0dAQm8an752yYdy4icAAEdALmyLQ5WBBkdAXIXCj1wo9kdAQm++dsi0OYdy4ycAAEdALmp++dsi0UdAXIUvGp++d0dAQm/fO2RaHYdy5CcAAEdALmfvnbItDkdAXISbpeNT+EdAQnAAAAAAAIdy5ScAAEdALmVgQYk3TEdAXIQIMSbpeUdAQnAgxJul44dy5icAAEdALl0vGp++d0dAXIH752yLREdAQnDEm6XjVIdy5ycAAEdALliTdLxqf0dAXIDU/fO2RkdAQnEm6XjU/ody6CcAAEdALlYEGJN0vEdAXIBBiTdLx0dAQnFHrhR64Ydy6ScAAEdALk1P3ztkWkdAXH5FocrAg0dAQnHKwIMSb4dy6icAAEdALki0OVgQYkdAXH0euFHrhUdAQnItDlYEGYdy6ycAAEdALkAAAAAAAEdAXHsSbpeNUEdAQnKwIMSbpody7CcAAEdALjjU/fO2RkdAXHlYEGJN00dAQnMzMzMzM4dy7ScAAEdALjAgxJul40dAXHdcKPXCj0dAQnO2RaHKwYdy7icAAEdALiuFHrhR7EdAXHY1P3ztkUdAQnQYk3S8aody7ycAAEdALij1wo9cKUdAXHWhysCDEkdAQnQ5WBBiTody8CcAAEdALiLQ5WBBiUdAXHQ5WBBiTkdAQnSbpeNT+Idy8ScAAEdALhul41P3z0dAXHJ++dsi0UdAQnUeuFHrhYdy8icAAEdALhLxqfvnbUdAXHCDEm6XjUdAQnWhysCDEody8ycAAEdALgtDlYEGJUdAXG7ItDlYEEdAQnYk3S8aoIdy9CcAAEdALgKPXCj1w0dAXGzMzMzMzUdAQnan752yLYdy9ScAAEdALfU/fO2RaEdAXGmp++dsi0dAQneNT987ZIdy9icAAEdALe2RaHKwIUdAXGfvnbItDkdAQnfvnbItDody9ycAAEdALeTdLxqfvkdAXGXztkWhy0dAQnhysCDEnIdy+CcAAEdALeJN0vGp/EdAXGVgQYk3TEdAQni0OVgQYody+ScAAEdALd0vGp++d0dAXGQ5WBBiTkdAQnj1wo9cKYdy+icAAEdALdHrhR64UkdAXGGp++dsi0dAQnmZmZmZmody+ycAAEdALc9cKPXCj0dAXGEWhysCDEdAQnnbItDlYIdy/CcAAEdALcan752yLUdAXF8rAgxJukdAQnpeNT987ody/ScAAEdALcQYk3S8akdAXF6HKwIMSkdAQnp++dsi0Ydy/icAAEdALcGJN0vGqEdAXF4EGJN0vEdAQnqfvnbItIdy/ycAAEdALb752yLQ5UdAXF1wo9cKPUdAQnrAgxJumIdyACgAAEdALbO2RaHKwUdAXFrhR64Ue0dAQntkWhysCIdyASgAAEdALbEm6XjU/kdAXFpN0vGp/EdAQnuFHrhR7IdyAigAAEdALa6XjU/fO0dAXFnKwIMSb0dAQnvGp++dsodyAygAAEdALaVgQYk3TEdAXFfO2RaHK0dAQnxJul41P4dyBCgAAEdALaLQ5WBBiUdAXFc7ZFocrEdAQnxqfvnbI4dyBSgAAEdALaBBiTdLx0dAXFan752yLUdAQnyLQ5WBBodyBigAAEdALZR64UeuFEdAXFQYk3S8akdAQn0vGp++d4dyBygAAEdALZHrhR64UkdAXFOVgQYk3UdAQn1P3ztkWodyCCgAAEdALY/fO2RaHUdAXFMCDEm6XkdAQn1wo9cKPYdyCSgAAEdALYQYk3S8akdAXFBysCDEnEdAQn4UeuFHrodyCigAAEdALYGJN0vGqEdAXE/vnbItDkdAQn5WBBiTdYdyCygAAEdALX752yLQ5UdAXE9cKPXCj0dAQn52yLQ5WIdyDCgAAEdALXXCj1wo9kdAXE1gQYk3TEdAQn752yLQ5YdyDSgAAEdALXMzMzMzM0dAXEzMzMzMzUdAQn8an752yYdyDigAAEdALXCj1wo9cUdAXExJul41P0dAQn87ZFocrIdyDygAAEdALWTdLxqfvkdAXEm6XjU/fUdAQn/fO2RaHYdyECgAAEdALWJN0vGp/EdAXEk3S8an8EdAQoAAAAAAAIdyESgAAEdALV++dsi0OUdAXEij1wo9cUdAQoAgxJul44dyEigAAEdALVaHKwIMSkdAXEan752yLUdAQoCj1wo9cYdyEygAAEdALVP3ztkWh0dAXEYk3S8aoEdAQoDEm6XjVIdyFCgAAEdALVDlYEGJN0dAXEWRaHKwIUdAQoDlYEGJN4dyFSgAAEdALU5WBBiTdUdAXET987ZFokdAQoEGJN0vG4dyFigAAEdALUUeuFHrhUdAXEMSbpeNUEdAQoGJN0vGqIdyFygAAEdALUKPXCj1w0dAXEJ++dsi0UdAQoGp++dsi4dyGCgAAEdALUAAAAAAAEdAXEHrhR64UkdAQoHKwIMSb4dyGSgAAEdALTbItDlYEEdAXEAAAAAAAEdAQoJN0vGp/IdyGigAAEdALTQ5WBBiTkdAXD9si0OVgUdAQoJul41P34dyGygAAEdALTGp++dsi0dAXD7ZFocrAkdAQoKPXCj1w4dyHCgAAEdALS6XjU/fO0dAXD5WBBiTdUdAQoKwIMSbpodyHSgAAEdALSVgQYk3TEdAXDxaHKwIMUdAQoMzMzMzM4dyHigAAEdALSLQ5WBBiUdAXDvXCj1wpEdAQoNT987ZF4dyHygAAEdALSBBiTdLx0dAXDtDlYEGJUdAQoN0vGp++odyICgAAEdALR2yLQ5WBEdAXDqwIMSbpkdAQoOVgQYk3YdyISgAAEdALRP3ztkWh0dAXDjEm6XjVEdAQoQYk3S8aodyIigAAEdALRFocrAgxUdAXDgxJul41UdAQoQ5WBBiTodyIygAAEdALQ7ZFocrAkdAXDeuFHrhSEdAQoRaHKwIMYdyJCgAAEdALQUeuFHrhUdAXDXCj1wo9kdAQoS8an7524dyJSgAAEdALQKPXCj1w0dAXDUvGp++d0dAQoTdLxqfvodyJigAAEdALQAAAAAAAEdAXDSbpeNT+EdAQoT987ZFoodyJygAAEdALP1wo9cKPUdAXDQYk3S8akdAQoUeuFHrhYdyKCgAAEdALPO2RaHKwUdAXDItDlYEGUdAQoWhysCDEodyKSgAAEdALO6XjU/fO0dAXDEGJN0vG0dAQoXjU/fO2YdyKigAAEdALOuFHrhR7EdAXDCDEm6XjUdAQoYEGJN0vIdyKygAAEdALOTdLxqfvkdAXC8an752yUdAQoZmZmZmZodyLCgAAEdALOJN0vGp/EdAXC6XjU/fO0dAQoaHKwIMSodyLSgAAEdALNysCDEm6UdAXC1wo9cKPUdAQobItDlYEIdyLigAAEdALNN0vGp++kdAXCuFHrhR7EdAQocrAgxJuodyLygAAEdALM3S8an750dAXCpul41P30dAQodsi0OVgYdyMCgAAEdALMtDlYEGJUdAXCnrhR64UkdAQoeNT987ZIdyMSgAAEdALMGJN0vGqEdAXCgAAAAAAEdAQogQYk3S8odyMigAAEdALLvnbItDlkdAXCbZFocrAkdAQohR64UeuIdyMygAAEdALLKwIMSbpkdAXCTtkWhysEdAQoi0OVgQYodyNCgAAEdALKn752yLREdAXCNT987ZF0dAQokWhysCDIdyNSgAAEdALKDEm6XjVEdAXCFocrAgxUdAQomZmZmZmodyNigAAEdALJgQYk3S8kdAXB++dsi0OUdAQon752yLRIdyNygAAEdALIk3S8an8EdAXBzMzMzMzUdAQoqfvnbItIdyOCgAAEdALH987ZFoc0dAXBrhR64Ue0dAQosCDEm6XodyOSgAAEdALHbItDlYEEdAXBk3S8an8EdAQotkWhysCIdyOigAAEdALGn752yLREdAXBbItDlYEEdAQovnbItDlodyOygAAEdALGdsi0OVgUdAXBY1P3ztkUdAQowIMSbpeYdyPCgAAEdALGTdLxqfvkdAXBWyLQ5WBEdAQowo9cKPXIdyPSgAAEdALFWBBiTdL0dAXBLAgxJumEdAQozMzMzMzYdyPigAAEdALEgxJul41UdAXBBBiTdLx0dAQo1wo9cKPYdyPygAAEdALEWhysCDEkdAXA++dsi0OUdAQo1wo9cKPYdyQCgAAEdALEMSbpeNUEdAXA87ZFocrEdAQo2RaHKwIYdyQSgAAEdALDZFocrAg0dAXAy8an7520dAQo4UeuFHrodyQigAAEdALDMzMzMzM0dAXAw5WBBiTkdAQo41P3ztkYdyQygAAEdALCZmZmZmZkdAXAnKwIMSb0dAQo64UeuFH4dyRCgAAEdALCNT987ZF0dAXAlHrhR64UdAQo7ZFocrAodyRSgAAEdALCDEm6XjVEdAXAi0OVgQYkdAQo752yLQ5YdyRigAAEdALBP3ztkWh0dAXAZFocrAg0dAQo987ZFoc4dyRygAAEdALBDlYEGJN0dAXAXCj1wo9kdAQo+dsi0OVodySCgAAEdALA5WBBiTdUdAXAU/fO2RaEdAQo++dsi0OYdySSgAAEdALAQYk3S8akdAXANT987ZF0dAQpAgxJul44dySigAAEdALAEGJN0vG0dAXALQ5WBBiUdAQpBBiTdLx4dySygAAEdAK/52yLQ5WEdAXAI9cKPXCkdAQpBiTdLxqodyTCgAAEdAK/Em6XjU/kdAW//fO2RaHUdAQpDlYEGJN4dyTSgAAEdAK+6XjU/fO0dAW/9LxqfvnkdAQpEGJN0vG4dyTigAAEdAK+uFHrhR7EdAW/7ItDlYEEdAQpEm6XjU/odyTygAAEdAK964UeuFH0dAW/xaHKwIMUdAQpGp++dsi4dyUCgAAEdAK9ul41P3z0dAW/vXCj1wpEdAQpGp++dsi4dyUSgAAEdAK9iTdLxqf0dAW/tT987ZF0dAQpHKwIMSb4dyUigAAEdAK85WBBiTdUdAW/locrAgxUdAQpItDlYEGYdyUygAAEdAK8vGp++dskdAW/jlYEGJN0dAQpJN0vGp/IdyVCgAAEdAK8i0OVgQYkdAW/hiTdLxqkdAQpJul41P34dyVSgAAEdAK7tkWhysCEdAW/XztkWhy0dAQpLxqfvnbYdyVigAAEdAK7jU/fO2RkdAW/Vwo9cKPUdAQpMSbpeNUIdyVygAAEdAK7XCj1wo9kdAW/TtkWhysEdAQpMSbpeNUIdyWCgAAEdAK6uFHrhR7EdAW/MSbpeNUEdAQpN0vGp++odyWSgAAEdAK6hysCDEnEdAW/J++dsi0UdAQpOVgQYk3YdyWigAAEdAK6VgQYk3TEdAW/H752yLREdAQpO2RaHKwYdyWygAAEdAK6LQ5WBBiUdAW/F41P3ztkdAQpPXCj1wpIdyXCgAAEdAK5iTdLxqf0dAW++dsi0OVkdAQpQ5WBBiTodyXSgAAEdAK5WBBiTdL0dAW+8KPXCj10dAQpRaHKwIMYdyXigAAEdAK5Jul41P30dAW+6HKwIMSkdAQpRaHKwIMYdyXygAAEdAK4UeuFHrhUdAW+wo9cKPXEdAQpTdLxqfvodyYCgAAEdAK4IMSbpeNUdAW+ul41P3z0dAQpT987ZFoodyYSgAAEdAK3987ZFoc0dAW+sSbpeNUEdAQpUeuFHrhYdyYigAAEdAK3S8an7520dAW+k3S8an8EdAQpVgQYk3TIdyYygAAEdAK28an752yUdAW+gxJul41UdAQpWhysCDEodyZCgAAEdAK2wIMSbpeUdAW+euFHrhSEdAQpXCj1wo9odyZSgAAEdAK2FHrhR64UdAW+XS8an750dAQpYk3S8aoIdyZigAAEdAK1ul41P3z0dAW+S8an7520dAQpZFocrAg4dyZygAAEdAK1DlYEGJN0dAW+LxqfvnbUdAQpan752yLYdyaCgAAEdAK0tDlYEGJUdAW+HbItDlYEdAQpbpeNT99IdyaSgAAEdAK0gxJul41UdAW+FYEGJN00dAQpbpeNT99IdyaigAAEdAKz1wo9cKPUdAW9987ZFoc0dAQpdLxqfvnodyaygAAEdAKzfO2RaHK0dAW952yLQ5WEdAQpeNT987ZIdybCgAAEdAKzS8an7520dAW93ztkWhy0dAQpeNT987ZIdybSgAAEdAKyPXCj1wpEdAW9sCDEm6XkdAQpgxJul41YdybigAAEdAKxmZmZmZmkdAW9k3S8an8EdAQphysCDEnIdybygAAEdAKxBiTdLxqkdAW9edsi0OVkdAQpi0OVgQYodycCgAAEdAKwWhysCDEkdAW9XS8an750dAQpkWhysCDIdycSgAAEdAKv987ZFoc0dAW9S8an7520dAQpk3S8an8IdycigAAEdAKuuFHrhR7EdAW9FYEGJN00dAQpnbItDlYIdycygAAEdAKt2yLQ5WBEdAW88KPXCj10dAQppeNT987odydCgAAEdAKtgQYk3S8kdAW84EGJN0vEdAQpp++dsi0YdydSgAAEdAKsm6XjU/fUdAW8ul41P3z0dAQprhR64Ue4dydigAAEdAKscrAgxJukdAW8si0OVgQkdAQpsCDEm6XodydygAAEdAKrjU/fO2RkdAW8jEm6XjVEdAQptkWhysCIdyeCgAAEdAKrXCj1wo9kdAW8hBiTdLx0dAQpuFHrhR7IdyeSgAAEdAKrKwIMSbpkdAW8e+dsi0OUdAQpuFHrhR7IdyeigAAEdAKqTdLxqfvkdAW8Vwo9cKPUdAQpwIMSbpeYdyeygAAEdAKqHKwIMSb0dAW8TtkWhysEdAQpwIMSbpeYdyfCgAAEdAKp64UeuFH0dAW8RqfvnbI0dAQpwo9cKPXIdyfSgAAEdAKpBiTdLxqkdAW8IMSbpeNUdAQpyLQ5WBBodyfigAAEdAKo3S8an750dAW8GJN0vGqEdAQpysCDEm6YdyfygAAEdAKn987ZFoc0dAW787ZFocrEdAQp0OVgQYk4dygCgAAEdAKnxqfvnbI0dAW764UeuFH0dAQp0OVgQYk4dygSgAAEdAKnlYEGJN00dAW741P3ztkUdAQp0vGp++d4dygigAAEdAKmsCDEm6XkdAW7vnbItDlkdAQp2RaHKwIYdygygAAEdAKmfvnbItDkdAW7tkWhysCEdAQp2yLQ5WBIdyhCgAAEdAKlmZmZmZmkdAW7kWhysCDEdAQp4UeuFHrodyhSgAAEdAKlaHKwIMSkdAW7iTdLxqf0dAQp4UeuFHrodyhigAAEdAKlN0vGp++kdAW7gQYk3S8kdAQp41P3ztkYdyhygAAEdAKkUeuFHrhUdAW7WyLQ5WBEdAQp6XjU/fO4dyiCgAAEdAKkIMSbpeNUdAW7UvGp++d0dAQp64UeuFH4dyiSgAAEdAKj752yLQ5UdAW7S8an7520dAQp64UeuFH4dyiigAAEdAKjCj1wo9cUdAW7Jul41P30dAQp8an752yYdyiygAAEdAKi2RaHKwIUdAW7HrhR64UkdAQp87ZFocrIdyjCgAAEdAKh87ZFocrEdAW6+dsi0OVkdAQp+dsi0OVodyjSgAAEdAKhwo9cKPXEdAW68an752yUdAQp+dsi0OVodyjigAAEdAKhkWhysCDEdAW66XjU/fO0dAQp++dsi0OYdyjygAAEdAKgrAgxJumEdAW6xJul41P0dAQqAgxJul44dykCgAAEdAKgcrAgxJukdAW6vGp++dskdAQqAgxJul44dykSgAAEdAKgQYk3S8akdAW6tDlYEGJUdAQqBBiTdLx4dykigAAEdAKfjU/fO2RkdAW6l41P3ztkdAQqCDEm6XjYdykygAAEdAKfXCj1wo9kdAW6j1wo9cKUdAQqCDEm6XjYdylCgAAEdAKfKwIMSbpkdAW6hysCDEnEdAQqCj1wo9cYdylSgAAEdAKePXCj1wpEdAW6Y1P3ztkUdAQqEGJN0vG4dyligAAEdAKeDEm6XjVEdAW6WyLQ5WBEdAQqEGJN0vG4dylygAAEdAKd2yLQ5WBEdAW6UvGp++d0dAQqEm6XjU/odymCgAAEdAKc9cKPXCj0dAW6LhR64Ue0dAQqGJN0vGqIdymSgAAEdAKcvGp++dskdAW6JeNT987kdAQqGJN0vGqIdymigAAEdAKci0OVgQYkdAW6HbItDlYEdAQqGp++dsi4dymygAAEdAKb1wo9cKPUdAW6AgxJul40dAQqHrhR64UodynCgAAEdAKbbItDlYEEdAW58an752yUdAQqIMSbpeNYdynSgAAEdAKahysCDEnEdAW5zMzMzMzUdAQqJul41P34dynigAAEdAKaTdLxqfvkdAW5xaHKwIMUdAQqJul41P34dynygAAEdAKaHKwIMSb0dAW5vXCj1wpEdAQqKPXCj1w4dyoCgAAEdAKY/fO2RaHUdAW5kGJN0vG0dAQqLxqfvnbYdyoSgAAEdAKYzMzMzMzUdAW5iTdLxqf0dAQqLxqfvnbYdyoigAAEdAKYEGJN0vG0dAW5bItDlYEEdAQqMzMzMzM4dyoygAAEdAKXpeNT987kdAW5XCj1wo9kdAQqNT987ZF4dypCgAAEdAKWVgQYk3TEdAW5J++dsi0UdAQqPXCj1wpIdypSgAAEdAKVLxqfvnbUdAW4++dsi0OUdAQqQ5WBBiTodypigAAEdAKU/fO2RaHUdAW49LxqfvnkdAQqQ5WBBiTodypygAAEdAKT1wo9cKPUdAW4yLQ5WBBkdAQqSbpeNT+IdyqCgAAEdAKSfvnbItDkdAW4lHrhR64UdAQqT987ZFoodyqSgAAEdAKRkWhysCDEdAW4cKPXCj10dAQqVgQYk3TIdyqigAAEdAKRYEGJN0vEdAW4aHKwIMSkdAQqVgQYk3TIdyqygAAEdAKQAAAAAAAEdAW4NT987ZF0dAQqXCj1wo9odyrCgAAEdAKPCj1wo9cUdAW4EWhysCDEdAQqYk3S8aoIdyrSgAAEdAKO2RaHKwIUdAW4CTdLxqf0dAQqYk3S8aoIdyrigAAEdAKOp++dsi0UdAW4AQYk3S8kdAQqZFocrAg4dyrygAAEdAKNsi0OVgQkdAW33S8an750dAQqaHKwIMSodysCgAAEdAKNgQYk3S8kdAW31gQYk3TEdAQqaHKwIMSodysSgAAEdAKMi0OVgQYkdAW3si0OVgQkdAQqbItDlYEIdysigAAEdAKMUeuFHrhUdAW3qfvnbItEdAQqbpeNT99IdysygAAEdAKMIMSbpeNUdAW3otDlYEGUdAQqbpeNT99IdytCgAAEdAKLKwIMSbpkdAW3fvnbItDkdAQqcrAgxJuodytSgAAEdAKK8an752yUdAW3dsi0OVgUdAQqdLxqfvnodytigAAEdAKKwIMSbpeUdAW3b52yLQ5UdAQqdLxqfvnodytygAAEdAKJysCDEm6UdAW3S8an7520dAQqeNT987ZIdyuCgAAEdAKJkWhysCDEdAW3Q5WBBiTkdAQqeuFHrhSIdyuSgAAEdAKIm6XjU/fUdAW3IMSbpeNUdAQqfvnbItDodyuigAAEdAKIYk3S8aoEdAW3GJN0vGqEdAQqfvnbItDodyuygAAEdAKIMSbpeNUEdAW3EWhysCDEdAQqfvnbItDodyvCgAAEdAKHO2RaHKwUdAW27ZFocrAkdAQqgxJul41YdyvSgAAEdAKHAgxJul40dAW25WBBiTdUdAQqhR64UeuIdyvigAAEdAKG0OVgQYk0dAW23jU/fO2UdAQqhR64UeuIdyvygAAEdAKGDEm6XjVEdAW2wo9cKPXEdAQqiTdLxqf4dywCgAAEdAKF0vGp++d0dAW2ul41P3z0dAQqiTdLxqf4dywSgAAEdAKFocrAgxJ0dAW2si0OVgQkdAQqiTdLxqf4dywigAAEdAKEo9cKPXCkdAW2j1wo9cKUdAQqjU/fO2RodywygAAEdAKEcrAgxJukdAW2hysCDEnEdAQqj1wo9cKYdyxCgAAEdAKEOVgQYk3UdAW2gAAAAAAEdAQqj1wo9cKYdyxSgAAEdAKDQ5WBBiTkdAW2XS8an750dAQqk3S8an8IdyxigAAEdAKDCj1wo9cUdAW2VP3ztkWkdAQqk3S8an8IdyxygAAEdAKCFHrhR64UdAW2Mi0OVgQkdAQql41P3ztodyyCgAAEdAKB2yLQ5WBEdAW2KfvnbItEdAQqmZmZmZmodyySgAAEdAKBocrAgxJ0dAW2ItDlYEGUdAQqmZmZmZmodyyigAAEdAKArAgxJumEdAW1/vnbItDkdAQqnbItDlYIdyyygAAEdAKAcrAgxJukdAW1987ZFoc0dAQqnbItDlYIdyzCgAAEdAKAOVgQYk3UdAW18KPXCj10dAQqnbItDlYIdyzSgAAEdAJ/Cj1wo9cUdAW1xaHKwIMUdAQqocrAgxJ4dyzigAAEdAJ+DEm6XjVEdAW1otDlYEGUdAQqpeNT987odyzygAAEdAJ9mZmZmZmkdAW1km6XjU/kdAQqp++dsi0Ydy0CgAAEdAJ8an752yLUdAW1aHKwIMSkdAQqrAgxJumIdy0SgAAEdAJ8MSbpeNUEdAW1YEGJN0vEdAQqrAgxJumIdy0igAAEdAJ6+dsi0OVkdAW1NkWhysCEdAQqsCDEm6Xody0ygAAEdAJ5iTdLxqf0dAW1BBiTdLx0dAQqtDlYEGJYdy1CgAAEdAJ4UeuFHrhUdAW02hysCDEkdAQquFHrhR7Idy1SgAAEdAJ4IMSbpeNUdAW00euFHrhUdAQquFHrhR7Idy1igAAEdAJ24UeuFHrkdAW0p++dsi0UdAQqvGp++dsody1ygAAEdAJ1cKPXCj10dAW0dsi0OVgUdAQqwIMSbpeYdy2CgAAEdAJ0crAgxJukdAW0U/fO2RaEdAQqwo9cKPXIdy2SgAAEdAJ0OVgQYk3UdAW0TMzMzMzUdAQqxJul41P4dy2igAAEdAJ0AAAAAAAEdAW0RJul41P0dAQqxJul41P4dy2ygAAEdAJy+dsi0OVkdAW0ItDlYEGUdAQqxqfvnbI4dy3CgAAEdAJyyLQ5WBBkdAW0Gp++dsi0dAQqyLQ5WBBody3SgAAEdAJxwo9cKPXEdAWz+NT987ZEdAQqysCDEm6Ydy3igAAEdAJxiTdLxqf0dAWz8KPXCj10dAQqysCDEm6Ydy3ygAAEdAJxT987ZFokdAWz6XjU/fO0dAQqysCDEm6Ydy4CgAAEdAJwSbpeNT+EdAWzxqfvnbI0dAQqztkWhysIdy4SgAAEdAJwEGJN0vG0dAWzv3ztkWh0dAQqztkWhysIdy4igAAEdAJv1wo9cKPUdAWzuFHrhR7EdAQqztkWhysIdy4ygAAEdAJu0OVgQYk0dAWzlYEGJN00dAQq0OVgQYk4dy5CgAAEdAJun752yLREdAWzjlYEGJN0dAQq0vGp++d4dy5SgAAEdAJtmZmZmZmkdAWzbItDlYEEdAQq1P3ztkWody5igAAEdAJtYEGJN0vEdAWzZFocrAg0dAQq1P3ztkWody5ygAAEdAJtJul41P30dAWzXS8an750dAQq1P3ztkWody6CgAAEdAJsIMSbpeNUdAWzO2RaHKwUdAQq2RaHKwIYdy6SgAAEdAJr3ztkWhy0dAWzMzMzMzM0dAQq2RaHKwIYdy6igAAEdAJq2RaHKwIUdAWzEWhysCDEdAQq2yLQ5WBIdy6ygAAEdAJqn752yLREdAWzCj1wo9cUdAQq2yLQ5WBIdy7CgAAEdAJqbpeNT99EdAWzAxJul41UdAQq2yLQ5WBIdy7SgAAEdAJpYEGJN0vEdAWy4EGJN0vEdAQq3S8an754dy7igAAEdAJpJul41P30dAWy2RaHKwIUdAQq3ztkWhy4dy7ygAAEdAJo7ZFocrAkdAWy0euFHrhUdAQq3ztkWhy4dy8CgAAEdAJn52yLQ5WEdAWysCDEm6XkdAQq4UeuFHrody8SgAAEdAJnrhR64Ue0dAWyp++dsi0UdAQq4UeuFHrody8igAAEdAJmn752yLREdAWyhysCDEnEdAQq41P3ztkYdy8ygAAEdAJmZmZmZmZkdAWyfvnbItDkdAQq41P3ztkYdy9CgAAEdAJmLQ5WBBiUdAWyd87ZFoc0dAQq41P3ztkYdy9SgAAEdAJlJul41P30dAWyVgQYk3TEdAQq5WBBiTdYdy9igAAEdAJk7ZFocrAkdAWyTtkWhysEdAQq52yLQ5WIdy9ygAAEdAJktDlYEGJUdAWyR64UeuFEdAQq52yLQ5WIdy+CgAAEdAJjpeNT987kdAWyJeNT987kdAQq6XjU/fO4dy+SgAAEdAJjbItDlYEEdAWyHbItDlYEdAQq6XjU/fO4dy+igAAEdAJiXjU/fO2UdAWx/O2RaHK0dAQq64UeuFH4dy+ygAAEdAJiJN0vGp/EdAWx9LxqfvnkdAQq64UeuFH4dy/CgAAEdAJh64UeuFH0dAWx7ZFocrAkdAQq64UeuFH4dy/SgAAEdAJgo9cKPXCkdAWxxJul41P0dAQq7ZFocrAody/igAAEdAJflYEGJN00dAWxotDlYEGUdAQq752yLQ5Ydy/ygAAEdAJfItDlYEGUdAWxlHrhR64UdAQq752yLQ5YdyACkAAEdAJd2yLQ5WBEdAWxa4UeuFH0dAQq8an752yYdyASkAAEdAJdmZmZmZmkdAWxZFocrAg0dAQq8an752yYdyAikAAEdAJcUeuFHrhUdAWxO2RaHKwUdAQq87ZFocrIdyAykAAEdAJayLQ5WBBkdAWxC0OVgQYkdAQq9cKPXCj4dyBCkAAEdAJZgQYk3S8kdAWw41P3ztkUdAQq987ZFoc4dyBSkAAEdAJZR64UeuFEdAWw3Cj1wo9kdAQq987ZFoc4dyBikAAEdAJYMSbpeNUEdAWwul41P3z0dAQq+dsi0OVodyBykAAEdAJX987ZFoc0dAWwszMzMzM0dAQq+dsi0OVodyCCkAAEdAJWbpeNT99EdAWwhBiTdLx0dAQq+dsi0OVodyCSkAAEdAJVYEGJN0vEdAWwYk3S8aoEdAQq++dsi0OYdyCikAAEdAJVHrhR64UkdAWwWyLQ5WBEdAQq++dsi0OYdyCykAAEdAJU5WBBiTdUdAWwU/fO2RaEdAQq++dsi0OYdyDCkAAEdAJTztkWhysEdAWwMzMzMzM0dAQq/fO2RaHYdyDSkAAEdAJTlYEGJN00dAWwLAgxJumEdAQq/fO2RaHYdyDikAAEdAJSDEm6XjVEdAWv++dsi0OUdAQq/fO2RaHYdyDykAAEdAJQ9cKPXCj0dAWv2yLQ5WBEdAQrAAAAAAAIdyECkAAEdAJQtDlYEGJUdAWv0/fO2RaEdAQrAAAAAAAIdyESkAAEdAJQeuFHrhSEdAWvzMzMzMzUdAQrAAAAAAAIdyEikAAEdAJPZFocrAg0dAWvrAgxJumEdAQrAAAAAAAIdyEykAAEdAJPKwIMSbpkdAWvpN0vGp/EdAQrAAAAAAAIdyFCkAAEdAJOFHrhR64UdAWvhBiTdLx0dAQrAgxJul44dyFSkAAEdAJN2yLQ5WBEdAWvfO2RaHK0dAQrAgxJul44dyFikAAEdAJNmZmZmZmkdAWvdcKPXCj0dAQrAgxJul44dyFykAAEdAJMgxJul41UdAWvVP3ztkWkdAQrAgxJul44dyGCkAAEdAJMSbpeNT+EdAWvTdLxqfvkdAQrAgxJul44dyGSkAAEdAJMEGJN0vG0dAWvRqfvnbI0dAQrAgxJul44dyGikAAEdAJK8an752yUdAWvJeNT987kdAQrAgxJul44dyGykAAEdAJKuFHrhR7EdAWvHrhR64UkdAQrBBiTdLx4dyHCkAAEdAJJocrAgxJ0dAWu/fO2RaHUdAQrBBiTdLx4dyHSkAAEdAJJYEGJN0vEdAWu9si0OVgUdAQrBBiTdLx4dyHikAAEdAJJJul41P30dAWu752yLQ5UdAQrBBiTdLx4dyHykAAEdAJIEGJN0vG0dAWuz987ZFokdAQrBBiTdLx4dyICkAAEdAJHztkWhysEdAWux64UeuFEdAQrBBiTdLx4dyISkAAEdAJGdsi0OVgUdAWuoMSbpeNUdAQrBBiTdLx4dyIikAAEdAJGPXCj1wpEdAWumZmZmZmkdAQrBBiTdLx4dyIykAAEdAJFHrhR64UkdAWueNT987ZEdAQrBBiTdLx4dyJCkAAEdAJE5WBBiTdUdAWucan752yUdAQrBBiTdLx4dyJSkAAEdAJEo9cKPXCkdAWua4UeuFH0dAQrBBiTdLx4dyJikAAEdAJDjU/fO2RkdAWuSsCDEm6UdAQrBBiTdLx4dyJykAAEdAJDS8an7520dAWuQ5WBBiTkdAQrBBiTdLx4dyKCkAAEdAJCNT987ZF0dAWuItDlYEGUdAQrBBiTdLx4dyKSkAAEdAJB87ZFocrEdAWuG6XjU/fUdAQrBBiTdLx4dyKikAAEdAJBsi0OVgQkdAWuFHrhR64UdAQrBBiTdLx4dyKykAAEdAJAm6XjU/fUdAWt9LxqfvnkdAQrBBiTdLx4dyLCkAAEdAJAWhysCDEkdAWt7ZFocrAkdAQrBBiTdLx4dyLSkAAEdAI+wIMSbpeUdAWtv3ztkWh0dAQrBBiTdLx4dyLikAAEdAI9ocrAgxJ0dAWtn752yLREdAQrBBiTdLx4dyLykAAEdAI9Jul41P30dAWtkWhysCDEdAQrBBiTdLx4dyMCkAAEdAI7ztkWhysEdAWtan752yLUdAQrBBiTdLx4dyMSkAAEdAI7jU/fO2RkdAWtY1P3ztkUdAQrBBiTdLx4dyMikAAEdAI6LQ5WBBiUdAWtPGp++dskdAQrBBiTdLx4dyMykAAEdAI4k3S8an8EdAWtDlYEGJN0dAQrBBiTdLx4dyNCkAAEdAI3bItDlYEEdAWs7ZFocrAkdAQrAgxJul44dyNSkAAEdAI3MzMzMzM0dAWs52yLQ5WEdAQrAgxJul44dyNikAAEdAI28an752yUdAWs4EGJN0vEdAQrAgxJul44dyNykAAEdAI10vGp++d0dAWswIMSbpeUdAQrAgxJul44dyOCkAAEdAI1kWhysCDEdAWsuVgQYk3UdAQrAgxJul44dyOSkAAEdAIz752yLQ5UdAWsi0OVgQYkdAQrAgxJul44dyOikAAEdAIy0OVgQYk0dAWsa4UeuFH0dAQrAAAAAAAIdyOykAAEdAIyj1wo9cKUdAWsZWBBiTdUdAQrAAAAAAAIdyPCkAAEdAIxLxqfvnbUdAWsPnbItDlkdAQrAAAAAAAIdyPSkAAEdAIw7ZFocrAkdAWsN0vGp++kdAQrAAAAAAAIdyPikAAEdAIvztkWhysEdAWsF41P3ztkdAQq/fO2RaHYdyPykAAEdAIvjU/fO2RkdAWsEGJN0vG0dAQq/fO2RaHYdyQCkAAEdAIvS8an7520dAWsCj1wo9cUdAQq/fO2RaHYdyQSkAAEdAIuJN0vGp/EdAWr6n752yLUdAQq/fO2RaHYdyQikAAEdAIt64UeuFH0dAWr41P3ztkUdAQq++dsi0OYdyQykAAEdAIsgxJul41UdAWrvXCj1wpEdAQq++dsi0OYdyRCkAAEdAIsQYk3S8akdAWrtkWhysCEdAQq++dsi0OYdyRSkAAEdAIrGp++dsi0dAWrlocrAgxUdAQq+dsi0OVodyRikAAEdAIq2RaHKwIUdAWrj1wo9cKUdAQq+dsi0OVodyRykAAEdAIqn752yLREdAWriTdLxqf0dAQq+dsi0OVodySCkAAEdAIpeNT987ZEdAWraXjU/fO0dAQq+dsi0OVodySSkAAEdAIpN0vGp++kdAWrY1P3ztkUdAQq987ZFoc4dySikAAEdAInztkWhysEdAWrPGp++dskdAQq987ZFoc4dySykAAEdAInjU/fO2RkdAWrNkWhysCEdAQq987ZFoc4dyTCkAAEdAImZmZmZmZkdAWrFocrAgxUdAQq9cKPXCj4dyTSkAAEdAImJN0vGp/EdAWrD1wo9cKUdAQq9cKPXCj4dyTikAAEdAIl41P3ztkUdAWrCTdLxqf0dAQq9cKPXCj4dyTykAAEdAIkvGp++dskdAWq6XjU/fO0dAQq87ZFocrIdyUCkAAEdAIkeuFHrhSEdAWq4k3S8aoEdAQq87ZFocrIdyUSkAAEdAIjU/fO2RaEdAWqw5WBBiTkdAQq8an752yYdyUikAAEdAIjEm6XjU/kdAWqvGp++dskdAQq8an752yYdyUykAAEdAIi0OVgQYk0dAWqtkWhysCEdAQq8an752yYdyVCkAAEdAIhqfvnbItEdAWqlocrAgxUdAQq752yLQ5YdyVSkAAEdAIhaHKwIMSkdAWqkGJN0vG0dAQq752yLQ5YdyVikAAEdAIftkWhysCEdAWqY1P3ztkUdAQq7ZFocrAodyVykAAEdAIej1wo9cKUdAWqRJul41P0dAQq64UeuFH4dyWCkAAEdAIeTdLxqfvkdAWqPXCj1wpEdAQq64UeuFH4dyWSkAAEdAIeDEm6XjVEdAWqNkWhysCEdAQq64UeuFH4dyWikAAEdAIcm6XjU/fUdAWqEWhysCDEdAQq6XjU/fO4dyWykAAEdAIa8an752yUdAWp5FocrAg0dAQq52yLQ5WIdyXCkAAEdAIZgQYk3S8kdAWpv3ztkWh0dAQq5WBBiTdYdyXSkAAEdAIZP3ztkWh0dAWpuFHrhR7EdAQq41P3ztkYdyXikAAEdAIYEGJN0vG0dAWpmZmZmZmkdAQq4UeuFHrodyXykAAEdAIXztkWhysEdAWpkm6XjU/kdAQq4UeuFHrodyYCkAAEdAIWHKwIMSb0dAWpZmZmZmZkdAQq3ztkWhy4dyYSkAAEdAIUrAgxJumEdAWpQYk3S8akdAQq3S8an754dyYikAAEdAIUan752yLUdAWpOl41P3z0dAQq2yLQ5WBIdyYykAAEdAITO2RaHKwUdAWpG6XjU/fUdAQq2RaHKwIYdyZCkAAEdAIS+dsi0OVkdAWpFYEGJN00dAQq2RaHKwIYdyZSkAAEdAIRR64UeuFEdAWo6XjU/fO0dAQq1wo9cKPYdyZikAAEdAIQEGJN0vG0dAWoysCDEm6UdAQq1P3ztkWodyZykAAEdAIPztkWhysEdAWoxJul41P0dAQq0vGp++d4dyaCkAAEdAIPjU/fO2RkdAWovXCj1wpEdAQq0vGp++d4dyaSkAAEdAIOXjU/fO2UdAWonrhR64UkdAQq0OVgQYk4dyaikAAEdAIOHKwIMSb0dAWomJN0vGqEdAQq0OVgQYk4dyaykAAEdAIMo9cKPXCkdAWocrAgxJukdAQqzMzMzMzYdybCkAAEdAIMYk3S8aoEdAWobItDlYEEdAQqzMzMzMzYdybSkAAEdAILMzMzMzM0dAWoTdLxqfvkdAQqysCDEm6YdybikAAEdAIK6XjU/fO0dAWoR64UeuFEdAQqysCDEm6YdybykAAEdAIKp++dsi0UdAWoQYk3S8akdAQqyLQ5WBBodycCkAAEdAIJeNT987ZEdAWoItDlYEGUdAQqxqfvnbI4dycSkAAEdAIJN0vGp++kdAWoHKwIMSb0dAQqxqfvnbI4dycikAAEdAIIAAAAAAAEdAWn/fO2RaHUdAQqxJul41P4dycykAAEdAIHvnbItDlkdAWn9si0OVgUdAQqwo9cKPXIdydCkAAEdAIHfO2RaHK0dAWn8KPXCj10dAQqwo9cKPXIdydSkAAEdAIGRaHKwIMUdAWn0vGp++d0dAQqwIMSbpeYdydikAAEdAIGBBiTdLx0dAWny8an7520dAQqvnbItDlodydykAAEdAIEi0OVgQYkdAWnpul41P30dAQqvGp++dsodyeCkAAEdAIESbpeNT+EdAWnoMSbpeNUdAQqvGp++dsodyeSkAAEdAIDEm6XjU/kdAWnggxJul40dAQquFHrhR7IdyeikAAEdAICyLQ5WBBkdAWne+dsi0OUdAQquFHrhR7IdyeykAAEdAIChysCDEnEdAWndcKPXCj0dAQquFHrhR7IdyfCkAAEdAIBT987ZFokdAWnVwo9cKPUdAQqtDlYEGJYdyfSkAAEdAIBDlYEGJN0dAWnUOVgQYk0dAQqtDlYEGJYdyfikAAEdAH/KwIMSbpkdAWnLAgxJumEdAQqsCDEm6XodyfykAAEdAH+l41P3ztkdAWnJeNT987kdAQqsCDEm6XodygCkAAEdAH8OVgQYk3UdAWnCDEm6XjUdAQqrAgxJumIdygSkAAEdAH7peNT987kdAWnAQYk3S8kdAQqrAgxJumIdygikAAEdAH4tDlYEGJUdAWm3S8an750dAQqp++dsi0YdygykAAEdAH4IMSbpeNUdAWm1gQYk3TEdAQqp++dsi0YdyhCkAAEdAH1LxqfvnbUdAWmsi0OVgQkdAQqo9cKPXCodyhSkAAEdAH0rAgxJumEdAWmqwIMSbpkdAQqo9cKPXCodyhikAAEdAHyLQ5WBBiUdAWmjU/fO2RkdAQqn752yLRIdyhykAAEdAHxqfvnbItEdAWmhysCDEnEdAQqn752yLRIdyiCkAAEdAHuJN0vGp/EdAWmXCj1wo9kdAQqm6XjU/fYdyiSkAAEdAHqn752yLREdAWmMi0OVgQkdAQqlYEGJN04dyiikAAEdAHnnbItDlYEdAWmDU/fO2RkdAQqkWhysCDIdyiykAAEdAHkm6XjU/fUdAWl6XjU/fO0dAQqjU/fO2RodyjCkAAEdAHkGJN0vGqEdAWl41P3ztkUdAQqjU/fO2RodyjSkAAEdAHggxJul41UdAWluVgQYk3UdAQqiTdLxqf4dyjikAAEdAHeBBiTdLx0dAWlm6XjU/fUdAQqhR64UeuIdyjykAAEdAHdgQYk3S8kdAWllYEGJN00dAQqgxJul41YdykCkAAEdAHafvnbItDkdAWlcKPXCj10dAQqfvnbItDodykSkAAEdAHZ64UeuFH0dAWlan752yLUdAQqfvnbItDodykikAAEdAHWVgQYk3TEdAWlQIMSbpeUdAQqeNT987ZIdykykAAEdAHT1wo9cKPUdAWlItDlYEGUdAQqdsi0OVgYdylCkAAEdAHTU/fO2RaEdAWlHKwIMSb0dAQqdLxqfvnodylSkAAEdAHQQYk3S8akdAWk+NT987ZEdAQqcKPXCj14dylikAAEdAHPvnbItDlkdAWk8rAgxJukdAQqbpeNT99IdylykAAEdAHNP3ztkWh0dAWk1P3ztkWkdAQqbItDlYEIdymCkAAEdAHMrAgxJumEdAWkztkWhysEdAQqan752yLYdymSkAAEdAHMKPXCj1w0dAWkyLQ5WBBkdAQqan752yLYdymikAAEdAHJqfvnbItEdAWkrAgxJumEdAQqZmZmZmZodymykAAEdAHJFocrAgxUdAWkpN0vGp/EdAQqZFocrAg4dynCkAAEdAHGBBiTdLx0dAWkggxJul40dAQqYEGJN0vIdynSkAAEdAHFgQYk3S8kdAWke+dsi0OUdAQqYEGJN0vIdynikAAEdAHDAgxJul40dAWkXjU/fO2UdAQqXCj1wo9odynykAAEdAHCbpeNT99EdAWkWBBiTdL0dAQqWhysCDEodyoCkAAEdAHB64UeuFH0dAWkUeuFHrhUdAQqWhysCDEodyoSkAAEdAG/XCj1wo9kdAWkNDlYEGJUdAQqVgQYk3TIdyoikAAEdAG+yLQ5WBBkdAWkLhR64Ue0dAQqU/fO2RaIdyoykAAEdAG7xqfvnbI0dAWkC0OVgQYkdAQqT987ZFoodypCkAAEdAG7MzMzMzM0dAWkBR64UeuEdAQqTdLxqfvodypSkAAEdAG4tDlYEGJUdAWj52yLQ5WEdAQqSbpeNT+IdypikAAEdAG4IMSbpeNUdAWj4UeuFHrkdAQqSbpeNT+IdypykAAEdAG1DlYEGJN0dAWjvnbItDlkdAQqQ5WBBiTodyqCkAAEdAG0euFHrhSEdAWjuFHrhR7EdAQqQ5WBBiTodyqSkAAEdAGx++dsi0OUdAWjm6XjU/fUdAQqP3ztkWh4dyqikAAEdAGxaHKwIMSkdAWjlHrhR64UdAQqPXCj1wpIdyqykAAEdAGuVgQYk3TEdAWjcan752yUdAQqOVgQYk3YdyrCkAAEdAGtwo9cKPXEdAWja4UeuFH0dAQqN0vGp++odyrSkAAEdAGqHKwIMSb0dAWjQo9cKPXEdAQqMSbpeNUIdyrikAAEdAGnjU/fO2RkdAWjJeNT987kdAQqLQ5WBBiYdyrykAAEdAGm+dsi0OVkdAWjH752yLREdAQqKwIMSbpodysCkAAEdAGjU/fO2RaEdAWi9cKPXCj0dAQqJN0vGp/IdysSkAAEdAGfnbItDlYEdAWizMzMzMzUdAQqHrhR64UodysikAAEdAGci0OVgQYkdAWiqfvnbItEdAQqGJN0vGqIdysykAAEdAGZaHKwIMSkdAWihysCDEnEdAQqEm6XjU/odytCkAAEdAGY1P3ztkWkdAWigQYk3S8kdAQqEm6XjU/odytSkAAEdAGVHrhR64UkdAWiWBBiTdL0dAQqCj1wo9cYdytikAAEdAGSDEm6XjVEdAWiNkWhysCEdAQqBBiTdLx4dytykAAEdAGO2RaHKwIUdAWiE3S8an8EdAQp/fO2RaHYdyuCkAAEdAGOVgQYk3TEdAWiDU/fO2RkdAQp/fO2RaHYdyuSkAAEdAGLItDlYEGUdAWh6n752yLUdAQp987ZFoc4dyuikAAEdAGKn752yLREdAWh5FocrAg0dAQp9cKPXCj4dyuykAAEdAGIAAAAAAAEdAWhyLQ5WBBkdAQp8an752yYdyvCkAAEdAGESbpeNT+EdAWhn752yLREdAQp6XjU/fO4dyvSkAAEdAGDtkWhysCEdAWhmZmZmZmkdAQp6XjU/fO4dyvikAAEdAGAk3S8an8EdAWhdsi0OVgUdAQp41P3ztkYdyvykAAEdAGAAAAAAAAEdAWhcan752yUdAQp4UeuFHrodywCkAAEdAF9YEGJN0vEdAWhVP3ztkWkdAQp3S8an754dywSkAAEdAF8zMzMzMzUdAWhTtkWhysEdAQp2yLQ5WBIdywikAAEdAF5qfvnbItEdAWhLQ5WBBiUdAQp1P3ztkWodywykAAEdAF141P3ztkUdAWhBBiTdLx0dAQpzMzMzMzYdyxCkAAEdAF1YEGJN0vEdAWg/fO2RaHUdAQpzMzMzMzYdyxSkAAEdAFywIMSbpeUdAWg4k3S8aoEdAQpxqfvnbI4dyxikAAEdAFyLQ5WBBiUdAWg3Cj1wo9kdAQpxJul41P4dyxykAAEdAFu+dsi0OVkdAWgul41P3z0dAQpvnbItDlodyyCkAAEdAFuZmZmZmZkdAWgtDlYEGJUdAQpvGp++dsodyySkAAEdAFrxqfvnbI0dAWgmJN0vGqEdAQpuFHrhR7IdyyikAAEdAFrMzMzMzM0dAWgkm6XjU/kdAQptkWhysCIdyyykAAEdAFoAAAAAAAEdAWgcKPXCj10dAQpsCDEm6XodyzCkAAEdAFnbItDlYEEdAWgan752yLUdAQprhR64Ue4dyzSkAAEdAFkOVgQYk3UdAWgSLQ5WBBkdAQpp++dsi0YdyzikAAEdAFjpeNT987kdAWgQo9cKPXEdAQppeNT987odyzykAAEdAFhBiTdLxqkdAWgJul41P30dAQpocrAgxJ4dy0CkAAEdAFgcrAgxJukdAWgIMSbpeNUdAQpn752yLRIdy0SkAAEdAFcrAgxJumEdAWf+NT987ZEdAQpl41P3ztody0ikAAEdAFZeNT987ZEdAWf1wo9cKPUdAQpj1wo9cKYdy0ykAAEdAFY1P3ztkWkdAWf0OVgQYk0dAQpj1wo9cKYdy1CkAAEdAFVocrAgxJ0dAWfrxqfvnbUdAQphysCDEnIdy1SkAAEdAFR2yLQ5WBEdAWfhysCDEnEdAQpfvnbItDody1ikAAEdAFOBBiTdLx0dAWfYEGJN0vEdAQpdsi0OVgYdy1ykAAEdAFK0OVgQYk0dAWfPnbItDlkdAQpbpeNT99Idy2CkAAEdAFHjU/fO2RkdAWfHKwIMSb0dAQpaHKwIMSody2SkAAEdAFG+dsi0OVkdAWfF41P3ztkdAQpZmZmZmZody2ikAAEdAFBmZmZmZmkdAWe4EGJN0vEdAQpWhysCDEody2ykAAEdAE/3ztkWhy0dAWeztkWhysEdAQpVgQYk3TIdy3CkAAEdAE8m6XjU/fUdAWerQ5WBBiUdAQpTdLxqfvody3SkAAEdAE8CDEm6XjUdAWepul41P30dAQpTdLxqfvody3ikAAEdAE4xJul41P0dAWehiTdLxqkdAQpRaHKwIMYdy3ykAAEdAE1gQYk3S8kdAWeZFocrAg0dAQpPXCj1wpIdy4CkAAEdAE07ZFocrAkdAWeXztkWhy0dAQpPXCj1wpIdy4SkAAEdAExqfvnbItEdAWePXCj1wpEdAQpNT987ZF4dy4ikAAEdAEtwo9cKPXEdAWeFocrAgxUdAQpKwIMSbpody4ykAAEdAEqfvnbItDkdAWd9cKPXCj0dAQpItDlYEGYdy5CkAAEdAEp64UeuFH0dAWd752yLQ5UdAQpItDlYEGYdy5SkAAEdAEmp++dsi0UdAWdztkWhysEdAQpGp++dsi4dy5ikAAEdAEiwIMSbpeUdAWdp++dsi0UdAQpEGJN0vG4dy5ykAAEdAEffO2RaHK0dAWdhysCDEnEdAQpCDEm6XjYdy6CkAAEdAEe2RaHKwIUdAWdgQYk3S8kdAQpBiTdLxqody6SkAAEdAEblYEGJN00dAWdYEGJN0vEdAQo/fO2RaHYdy6ikAAEdAEYQYk3S8akdAWdP3ztkWh0dAQo9cKPXCj4dy6ykAAEdAEXrhR64Ue0dAWdOl41P3z0dAQo9cKPXCj4dy7CkAAEdAEUWhysCDEkdAWdGZmZmZmkdAQo7ZFocrAody7SkAAEdAETxqfvnbI0dAWdE3S8an8EdAQo64UeuFH4dy7ikAAEdAEQcrAgxJukdAWc8rAgxJukdAQo41P3ztkYdy7ykAAEdAEMi0OVgQYkdAWczMzMzMzUdAQo2RaHKwIYdy8CkAAEdAEIo9cKPXCkdAWcpeNT987kdAQoztkWhysIdy8SkAAEdAEFT987ZFokdAWchR64UeuEdAQoxqfvnbI4dy8ikAAEdAEBaHKwIMSkdAWcXztkWhy0dAQovGp++dsody8ykAAEdAD64UeuFHrkdAWcOVgQYk3UdAQosi0OVgQody9CkAAEdADwAAAAAAAEdAWcBBiTdLx0dAQoo9cKPXCody9SkAAEdADsan752yLUdAWb8rAgxJukdAQonbItDlYIdy9ikAAEdADkeuFHrhSEdAWbzMzMzMzUdAQok3S8an8Idy9ykAAEdADZeNT987ZEdAWbl41P3ztkdAQohR64UeuIdy+CkAAEdADV41P3ztkUdAWbhiTdLxqkdAQogQYk3S8ody+SkAAEdADK4UeuFHrkdAWbUeuFHrhUdAQocrAgxJuody+ikAAEdADHKwIMSbpkdAWbQIMSbpeUdAQobItDlYEIdy+ykAAEdADAYk3S8aoEdAWbIMSbpeNUdAQoZFocrAg4dy/CkAAEdAC4crAgxJukdAWa+uFHrhSEdAQoWBBiTdL4dy/SkAAEdACwgxJul41UdAWa1P3ztkWkdAQoTdLxqfvody/ikAAEdACpul41P3z0dAWatT987ZF0dAQoQ5WBBiTody/ykAAEdACocrAgxJukdAWarxqfvnbUdAQoQ5WBBiTodyACoAAEdAChysCDEm6UdAWaj1wo9cKUdAQoOVgQYk3YdyASoAAEdACZul41P3z0dAWaan752yLUdAQoLxqfvnbYdyAioAAEdACS8an752yUdAWaSsCDEm6UdAQoJN0vGp/IdyAyoAAEdACRysCDEm6UdAWaRJul41P0dAQoItDlYEGYdyBCoAAEdACK4UeuFHrkdAWaJN0vGp/EdAQoGJN0vGqIdyBSoAAEdACC8an752yUdAWaAAAAAAAEdAQoDlYEGJN4dyBioAAEdAB64UeuFHrkdAWZ2hysCDEkdAQoAgxJul44dyByoAAEdAIlDlYEGJN0dAWR87ZFocrEdAQRP3ztkWh4dyCCoAAEdAInbItDlYEEdAWSOVgQYk3UdAQRP3ztkWh4dyCSoAAEdAIpmZmZmZmkdAWSd87ZFoc0dAQRP3ztkWh4dyCioAAEdAIr752yLQ5UdAWSvXCj1wpEdAQRP3ztkWh4dyCyoAAEdAIuHKwIMSb0dAWS/O2RaHK0dAQRP3ztkWh4dyDCoAAEdAIwWhysCDEkdAWTRaHKwIMUdAQRO2RaHKwYdyDSoAAEdAIyl41P3ztkdAWTj1wo9cKUdAQRN0vGp++odyDioAAEdAI01P3ztkWkdAWT2BBiTdL0dAQRMzMzMzM4dyDyoAAEdAI3Em6XjU/kdAWUIcrAgxJ0dAQRLQ5WBBiYdyECoAAEdAI5R64UeuFEdAWUan752yLUdAQRKPXCj1w4dyESoAAEdAI7hR64UeuEdAWUszMzMzM0dAQRJN0vGp/IdyEioAAEdAI9wo9cKPXEdAWU/O2RaHK0dAQRIMSbpeNYdyEyoAAEdAJAAAAAAAAEdAWVRaHKwIMUdAQRHKwIMSb4dyFCoAAEdAJCPXCj1wpEdAWVj1wo9cKUdAQRGJN0vGqIdyFSoAAEdAJEeuFHrhSEdAWV2BBiTdL0dAQRFHrhR64YdyFioAAEdAJGuFHrhR7EdAWWIcrAgxJ0dAQREGJN0vG4dyFyoAAEdAJI9cKPXCj0dAWWan752yLUdAQRDEm6XjVIdyGCoAAEdAJLMzMzMzM0dAWWtDlYEGJUdAQRCDEm6XjYdyGSoAAEdAJNcKPXCj10dAWW/O2RaHK0dAQRAgxJul44dyGioAAEdAJPrhR64Ue0dAWXRaHKwIMUdAQQ/fO2RaHYdyGyoAAEdAJR64UeuFH0dAWXj1wo9cKUdAQQ+dsi0OVodyHCoAAEdAJUKPXCj1w0dAWX2BBiTdL0dAQQ9cKPXCj4dyHSoAAEdAJWZmZmZmZkdAWYIcrAgxJ0dAQQ8an752yYdyHioAAEdAJYo9cKPXCkdAWYan752yLUdAQQ7ZFocrAodyHyoAAEdAJa4UeuFHrkdAWYtDlYEGJUdAQQ6XjU/fO4dyICoAAEdAJdFocrAgxUdAWY/O2RaHK0dAQQ5WBBiTdYdyISoAAEdAJfU/fO2RaEdAWZRqfvnbI0dAQQ4UeuFHrodyIioAAEdAJhkWhysCDEdAWZj1wo9cKUdAQQ3S8an754dyIyoAAEdAJjztkWhysEdAWZ2BBiTdL0dAQQ1wo9cKPYdyJCoAAEdAJmDEm6XjVEdAWaIcrAgxJ0dAQQ0vGp++d4dyJSoAAEdAJoSbpeNT+EdAWaan752yLUdAQQztkWhysIdyJioAAEdAJqhysCDEnEdAWatDlYEGJUdAQQysCDEm6YdyJyoAAEdAJsxJul41P0dAWa/O2RaHK0dAQQxqfvnbI4dyKCoAAEdAJvAgxJul40dAWbRqfvnbI0dAQQwo9cKPXIdyKSoAAEdAJxP3ztkWh0dAWbj1wo9cKUdAQQvnbItDlodyKioAAEdAJzfO2RaHK0dAWb2RaHKwIUdAQQul41P3z4dyKyoAAEdAJ1ul41P3z0dAWcIcrAgxJ0dAQQtkWhysCIdyLCoAAEdAJ3987ZFoc0dAWcan752yLUdAQQsi0OVgQodyLSoAAEdAJ6NT987ZF0dAWctDlYEGJUdAQQrAgxJumIdyLioAAEdAJ8crAgxJukdAWc/O2RaHK0dAQQp++dsi0YdyLyoAAEdAJ+sCDEm6XkdAWdRqfvnbI0dAQQo9cKPXCodyMCoAAEdAKA5WBBiTdUdAWdj1wo9cKUdAQQn752yLRIdyMSoAAEdAKDItDlYEGUdAWd2RaHKwIUdAQQm6XjU/fYdyMioAAEdAKFYEGJN0vEdAWeIcrAgxJ0dAQQl41P3ztodyMyoAAEdAKHnbItDlYEdAWea4UeuFH0dAQQk3S8an8IdyNCoAAEdAKIOVgQYk3UdAWefvnbItDkdAQQkWhysCDIdyNSoAAEdAKJocrAgxJ0dAWesi0OVgQkdAQQjU/fO2RodyNioAAEdAKLtkWhysCEdAWe/vnbItDkdAQQgxJul41YdyNyoAAEdAKMMSbpeNUEdAWfEGJN0vG0dAQQgQYk3S8odyOCoAAEdAKNkWhysCDEdAWfQ5WBBiTkdAQQeuFHrhSIdyOSoAAEdAKPpeNT987kdAWfkGJN0vG0dAQQcrAgxJuodyOioAAEdAKQGJN0vGqEdAWfocrAgxJ0dAQQcKPXCj14dyOyoAAEdAKReNT987ZEdAWf1P3ztkWkdAQQan752yLYdyPCoAAEdAKThR64UeuEdAWgItDlYEGUdAQQYEGJN0vIdyPSoAAEdAKT987ZFoc0dAWgNDlYEGJUdAQQXjU/fO2YdyPioAAEdAKWDEm6XjVEdAWggxJul41UdAQQU/fO2RaIdyPyoAAEdAKYGJN0vGqEdAWg0OVgQYk0dAQQSbpeNT+IdyQCoAAEdAKaJN0vGp/EdAWhH752yLREdAQQP3ztkWh4dyQSoAAEdAKaVgQYk3TEdAWhJ++dsi0UdAQQP3ztkWh4dyQioAAEdAKbrhR64Ue0dAWhWyLQ5WBEdAQQOVgQYk3YdyQyoAAEdAKdsi0OVgQkdAWhqfvnbItEdAQQLQ5WBBiYdyRCoAAEdAKeJN0vGp/EdAWhu2RaHKwUdAQQKwIMSbpodyRSoAAEdAKffO2RaHK0dAWh752yLQ5UdAQQJN0vGp/IdyRioAAEdAKgm6XjU/fUdAWiG6XjU/fUdAQQHrhR64UodyRyoAAEdAKh64UeuFH0dAWiUOVgQYk0dAQQFocrAgxYdySCoAAEdAKjO2RaHKwUdAWihR64UeuEdAQQDlYEGJN4dySSoAAEdAKkWhysCDEkdAWisSbpeNUEdAQQCDEm6XjYdySioAAEdAKlqfvnbItEdAWi5mZmZmZkdAQQAAAAAAAIdySyoAAEdAKm+dsi0OVkdAWjGp++dsi0dAQP+dsi0OVodyTCoAAEdAKoGJN0vGqEdAWjR64UeuFEdAQP8an752yYdyTSoAAEdAKoSbpeNT+EdAWjTtkWhysEdAQP8an752yYdyTioAAEdAKpYEGJN0vEdAWje+dsi0OUdAQP6XjU/fO4dyTyoAAEdAKqsCDEm6XkdAWjsSbpeNUEdAQP4UeuFHrodyUCoAAEdAKrxqfvnbI0dAWj3jU/fO2UdAQP2yLQ5WBIdyUSoAAEdAKsAAAAAAAEdAWj5mZmZmZkdAQP2RaHKwIYdyUioAAEdAKtFocrAgxUdAWkEm6XjU/kdAQP0vGp++d4dyUyoAAEdAKuXjU/fO2UdAWkR64UeuFEdAQPysCDEm6YdyVCoAAEdAKvpeNT987kdAWkfO2RaHK0dAQPwo9cKPXIdyVSoAAEdAKwvGp++dskdAWkqfvnbItEdAQPul41P3z4dyVioAAEdAKyp++dsi0UdAWk++dsi0OUdAQPrhR64Ue4dyVyoAAEdAKzGp++dsi0dAWlDU/fO2RkdAQPqfvnbItIdyWCoAAEdAK1BiTdLxqkdAWlXztkWhy0dAQPm6XjU/fYdyWSoAAEdAK1cKPXCj10dAWlcKPXCj10dAQPmZmZmZmodyWioAAEdAK2sCDEm6XkdAWlpeNT987kdAQPkWhysCDIdyWyoAAEdAK4m6XjU/fUdAWl987ZFoc0dAQPgxJul41YdyXCoAAEdAK5BiTdLxqkdAWmCTdLxqf0dAQPfvnbItDodyXSoAAEdAK6RaHKwIMUdAWmP3ztkWh0dAQPdsi0OVgYdyXioAAEdAK7hR64UeuEdAWmdcKPXCj0dAQPbItDlYEIdyXyoAAEdAK8k3S8an8EdAWmotDlYEGUdAQPZFocrAg4dyYCoAAEdAK90vGp++d0dAWm2RaHKwIUdAQPWhysCDEodyYSoAAEdAK/Cj1wo9cUdAWnD1wo9cKUdAQPT987ZFoodyYioAAEdALAGJN0vGqEdAWnPXCj1wpEdAQPR64UeuFIdyYyoAAEdALASbpeNT+EdAWnRqfvnbI0dAQPRaHKwIMYdyZCoAAEdALBT987ZFokdAWndLxqfvnkdAQPPXCj1wpIdyZSoAAEdALBgQYk3S8kdAWnfO2RaHK0dAQPPXCj1wpIdyZioAAEdALChysCDEnEdAWnqwIMSbpkdAQPMzMzMzM4dyZyoAAEdALDlYEGJN00dAWn2RaHKwIUdAQPKwIMSbpodyaCoAAEdALDxqfvnbI0dAWn4UeuFHrkdAQPKPXCj1w4dyaSoAAEdALEzMzMzMzUdAWoD1wo9cKUdAQPIMSbpeNYdyaioAAEdALGBBiTdLx0dAWoRqfvnbI0dAQPFocrAgxYdyayoAAEdALHCj1wo9cUdAWodLxqfvnkdAQPDEm6XjVIdybCoAAEdALHMzMzMzM0dAWoffO2RaHUdAQPDEm6XjVIdybSoAAEdALIOVgQYk3UdAWorAgxJumEdAQPAgxJul44dybioAAEdALJcKPXCj10dAWo41P3ztkUdAQO987ZFoc4dybyoAAEdALKbpeNT99EdAWpEWhysCDEdAQO7ZFocrAodycCoAAEdALKn752yLREdAWpGp++dsi0dAQO7ZFocrAodycSoAAEdALLpeNT987kdAWpSLQ5WBBkdAQO41P3ztkYdycioAAEdALMo9cKPXCkdAWpd87ZFoc0dAQO2RaHKwIYdycyoAAEdALM1P3ztkWkdAWpgAAAAAAEdAQO2RaHKwIYdydCoAAEdALN0vGp++d0dAWpsCDEm6XkdAQOztkWhysIdydSoAAEdALPnbItDlYEdAWqBBiTdLx0dAQOvGp++dsodydioAAEdALQAAAAAAAEdAWqFocrAgxUdAQOul41P3z4dydyoAAEdALQMSbpeNUEdAWqHrhR64UkdAQOuFHrhR7IdyeCoAAEdALRLxqfvnbUdAWqTdLxqfvkdAQOrhR64Ue4dyeSoAAEdALSLQ5WBBiUdAWqfO2RaHK0dAQOo9cKPXCodyeioAAEdALTU/fO2RaEdAWqtT987ZF0dAQOl41P3ztodyeyoAAEdALUgxJul41UdAWq7ItDlYEEdAQOjU/fO2RodyfCoAAEdALVeNT987ZEdAWrHKwIMSb0dAQOgxJul41YdyfSoAAEdALVqfvnbItEdAWrJN0vGp/EdAQOgQYk3S8odyfioAAEdALWn752yLREdAWrU/fO2RaEdAQOdsi0OVgYdyfyoAAEdALXxqfvnbI0dAWrjEm6XjVEdAQOan752yLYdygCoAAEdALX987ZFoc0dAWrlYEGJN00dAQOaHKwIMSodygSoAAEdALYxJul41P0dAWrvGp++dskdAQOYEGJN0vIdygioAAEdALY7ZFocrAkdAWrxJul41P0dAQOXjU/fO2YdygyoAAEdALZ41P3ztkUdAWr9LxqfvnkdAQOU/fO2RaIdyhCoAAEdALaFHrhR64UdAWr/O2RaHK0dAQOUeuFHrhYdyhSoAAEdALbCj1wo9cUdAWsLQ5WBBiUdAQORaHKwIMYdyhioAAEdALbMzMzMzM0dAWsNT987ZF0dAQOQ5WBBiTodyhyoAAEdALcAAAAAAAEdAWsXS8an750dAQOO2RaHKwYdyiCoAAEdALcKPXCj1w0dAWsZWBBiTdUdAQOOVgQYk3YdyiSoAAEdALdHrhR64UkdAWslYEGJN00dAQOLxqfvnbYdyiioAAEdALdR64UeuFEdAWsnrhR64UkdAQOLQ5WBBiYdyiyoAAEdALeFHrhR64UdAWsxaHKwIMUdAQOItDlYEGYdyjCoAAEdALePXCj1wpEdAWszdLxqfvkdAQOItDlYEGYdyjSoAAEdALfXCj1wo9kdAWtBysCDEnEdAQOFHrhR64YdyjioAAEdALgUeuFHrhUdAWtN0vGp++kdAQOCj1wo9cYdyjyoAAEdALgeuFHrhSEdAWtQIMSbpeUdAQOCDEm6XjYdykCoAAEdALhP3ztkWh0dAWtZ2yLQ5WEdAQN/fO2RaHYdykSoAAEdALhcKPXCj10dAWtcKPXCj10dAQN++dsi0OYdykioAAEdALiXjU/fO2UdAWtoMSbpeNUdAQN8an752yYdykyoAAEdALihysCDEnEdAWtqPXCj1w0dAQN752yLQ5YdylCoAAEdALjpeNT987kdAWt4k3S8aoEdAQN4UeuFHrodylSoAAEdALkan752yLUdAWuCj1wo9cUdAQN2RaHKwIYdylioAAEdALkk3S8an8EdAWuE3S8an8EdAQN1wo9cKPYdylyoAAEdALlgQYk3S8kdAWuQ5WBBiTkdAQNysCDEm6YdymCoAAEdALlqfvnbItEdAWuTMzMzMzUdAQNyLQ5WBBodymSoAAEdALml41P3ztkdAWuffO2RaHUdAQNvGp++dsodymioAAEdALnhR64UeuEdAWurhR64Ue0dAQNsCDEm6XodymyoAAEdALom6XjU/fUdAWu52yLQ5WEdAQNocrAgxJ4dynCoAAEdALoxJul41P0dAWu8KPXCj10dAQNn752yLRIdynSoAAEdALpqfvnbItEdAWvIcrAgxJ0dAQNlYEGJN04dynioAAEdALql41P3ztkdAWvUvGp++d0dAQNiTdLxqf4dynyoAAEdALrpeNT987kdAWvjEm6XjVEdAQNeuFHrhSIdyoCoAAEdALstDlYEGJUdAWvxqfvnbI0dAQNan752yLYdyoSoAAEdALs5WBBiTdUdAWvz987ZFokdAQNaHKwIMSodyoioAAEdALtocrAgxJ0dAWv987ZFoc0dAQNXjU/fO2YdyoyoAAEdALusCDEm6XkdAWwMi0OVgQkdAQNT987ZFoodypCoAAEdALu2RaHKwIUdAWwO2RaHKwUdAQNTdLxqfvodypSoAAEdALvvnbItDlkdAWwbItDlYEEdAQNQYk3S8aodypioAAEdALv52yLQ5WEdAWwdcKPXCj0dAQNP3ztkWh4dypyoAAEdALwm6XjU/fUdAWwnbItDlYEdAQNNT987ZF4dyqCoAAEdALwxJul41P0dAWwpul41P30dAQNMzMzMzM4dyqSoAAEdALxqfvnbItEdAWw2BBiTdL0dAQNJN0vGp/IdyqioAAEdALx0vGp++d0dAWw4UeuFHrkdAQNItDlYEGYdyqyoAAEdALyj1wo9cKUdAWxCj1wo9cUdAQNGJN0vGqIdyrCoAAEdALysCDEm6XkdAWxEm6XjU/kdAQNFocrAgxYdyrSoAAEdALzlYEGJN00dAWxRJul41P0dAQNCj1wo9cYdyrioAAEdALzvnbItDlkdAWxTdLxqfvkdAQNBiTdLxqodyryoAAEdAL0crAgxJukdAWxdsi0OVgUdAQM++dsi0OYdysCoAAEdAL0m6XjU/fUdAWxfvnbItDkdAQM+dsi0OVodysSoAAEdAL0xJul41P0dAWxiDEm6XjUdAQM987ZFoc4dysioAAEdAL1eNT987ZEdAWxsSbpeNUEdAQM64UeuFH4dysyoAAEdAL1ocrAgxJ0dAWxul41P3z0dAQM6XjU/fO4dytCoAAEdAL2fvnbItDkdAWx7ItDlYEEdAQM3S8an754dytSoAAEdAL2p++dsi0UdAWx9LxqfvnkdAQM2yLQ5WBIdytioAAEdAL3XCj1wo9kdAWyHrhR64UkdAQMztkWhysIdytyoAAEdAL3hR64UeuEdAWyJul41P30dAQMzMzMzMzYdyuCoAAEdAL3rhR64Ue0dAWyMCDEm6XkdAQMysCDEm6YdyuSoAAEdAL4Yk3S8aoEdAWyWhysCDEkdAQMvnbItDlodyuioAAEdAL4i0OVgQYkdAWyYk3S8aoEdAQMvGp++dsodyuyoAAEdAL5aHKwIMSkdAWylHrhR64UdAQMsCDEm6XodyvCoAAEdAL5iTdLxqf0dAWynbItDlYEdAQMrAgxJumIdyvSoAAEdAL6PXCj1wpEdAWyx64UeuFEdAQMocrAgxJ4dyvioAAEdAL7O2RaHKwUdAWzAxJul41UdAQMkWhysCDIdyvyoAAEdAL7ZFocrAg0dAWzC0OVgQYkdAQMj1wo9cKYdywCoAAEdAL8QYk3S8akdAWzPnbItDlkdAQMgQYk3S8odywSoAAEdAL8Yk3S8aoEdAWzRqfvnbI0dAQMfvnbItDodywioAAEdAL9FocrAgxUdAWzcKPXCj10dAQMcrAgxJuodywyoAAEdAL+FHrhR64UdAWzrAgxJumEdAQMYk3S8aoIdyxCoAAEdAL+NT987ZF0dAWztT987ZF0dAQMYEGJN0vIdyxSoAAEdAL/Cj1wo9cUdAWz6HKwIMSkdAQMUeuFHrhYdyxioAAEdAL/3ztkWhy0dAW0Gp++dsi0dAQMQ5WBBiTodyxyoAAEdAMAbpeNT99EdAW0Vwo9cKPUdAQMMSbpeNUIdyyCoAAEdAMA6XjU/fO0dAW0k3S8an8EdAQMIMSbpeNYdyySoAAEdAMA/fO2RaHUdAW0nKwIMSb0dAQMHrhR64UodyyioAAEdAMBU/fO2RaEdAW0xqfvnbI0dAQMEm6XjU/odyyyoAAEdAMBZFocrAg0dAW0z987ZFokdAQMEGJN0vG4dyzCoAAEdAMBztkWhysEdAW1AxJul41UdAQMAAAAAAAIdyzSoAAEdAMB3ztkWhy0dAW1DEm6XjVEdAQL/fO2RaHYdyzioAAEdAMCRaHKwIMUdAW1P3ztkWh0dAQL752yLQ5YdyzyoAAEdAMCWhysCDEkdAW1SLQ5WBBkdAQL64UeuFH4dy0CoAAEdAMCsCDEm6XkdAW1crAgxJukdAQL3ztkWhy4dy0SoAAEdAMCwIMSbpeUdAW1e+dsi0OUdAQL3S8an754dy0ioAAEdAMDJul41P30dAW1rxqfvnbUdAQLztkWhysIdy0yoAAEdAMDgQYk3S8kdAW2EGJN0vG0dAQLo9cKPXCody1CoAAEdAMD2yLQ5WBEdAW2crAgxJukdAQLeuFHrhSIdy1SoAAEdAMENT987ZF0dAW20/fO2RaEdAQLUeuFHrhYdy1ioAAEdAMEi0OVgQYkdAW3NkWhysCEdAQLJul41P34dy1yoAAEdAME5WBBiTdUdAW3l41P3ztkdAQK/fO2RaHYdy2CoAAEdAMFP3ztkWh0dAW3+dsi0OVkdAQK1P3ztkWody2SoAAEdAMFmZmZmZmkdAW4WyLQ5WBEdAQKqfvnbItIdy2ioAAEdAMF87ZFocrEdAW4vGp++dskdAQKgQYk3S8ody2yoAAEdAMGSbpeNT+EdAW5HrhR64UkdAQKWBBiTdL4dy3CoAAEdAMGo9cKPXCkdAW5gAAAAAAEdAQKLQ5WBBiYdy3SoAAEdAMG/fO2RaHUdAW54k3S8aoEdAQKBBiTdLx4dy3ioAAEdAMHWBBiTdL0dAW6Q5WBBiTkdAQJ2RaHKwIYdy3yoAAEdAMHsi0OVgQkdAW6peNT987kdAQJsCDEm6Xody4CoAAEdAMICDEm6XjUdAW7BysCDEnEdAQJhysCDEnIdy4SoAAEdAMIYk3S8aoEdAW7aXjU/fO0dAQJXCj1wo9ody4ioAAEdAMIvGp++dskdAW7ysCDEm6UdAQJMzMzMzM4dy4yoAAEdAMJFocrAgxUdAW8LAgxJumEdAQJCj1wo9cYdy5CoAAEdAMJcKPXCj10dAW8jlYEGJN0dAQI3ztkWhy4dy5SoAAEdAMJxqfvnbI0dAW8752yLQ5UdAQItkWhysCIdy5ioAAEdAMKIMSbpeNUdAW9UeuFHrhUdAQIjU/fO2Rody5yoAAEdAMKeuFHrhSEdAW9szMzMzM0dAQIYk3S8aoIdy6CoAAEdAMK1P3ztkWkdAW+FYEGJN00dAQIOVgQYk3Ydy6SoAAEdAMLLxqfvnbUdAW+dsi0OVgUdAQIEGJN0vG4dy6ioAAEdAMLhR64UeuEdAW+2RaHKwIUdAQH5WBBiTdYdy6yoAAEdAML3ztkWhy0dAW/Ol41P3z0dAQHvGp++dsody7CoAAEdAMMOVgQYk3UdAW/nKwIMSb0dAQHkWhysCDIdy7SoAAEdAMMk3S8an8EdAW//fO2RaHUdAQHaHKwIMSody7ioAAEdAMM7ZFocrAkdAXAXztkWhy0dAQHP3ztkWh4dy7yoAAEdAMNR64UeuFEdAXAwYk3S8akdAQHFHrhR64Ydy8CoAAEdAMNnbItDlYEdAXBItDlYEGUdAQG64UeuFH4dy8SoAAEdAMN987ZFoc0dAXBhR64UeuEdAQGwo9cKPXIdy8ioAAEdAMOUeuFHrhUdAXB5mZmZmZkdAQGl41P3ztody8yoAAEdAMOrAgxJumEdAXCSLQ5WBBkdAQGbpeNT99Idy9CoAAEdAMPBiTdLxqkdAXCqfvnbItEdAQGRaHKwIMYdy9SoAAEdAMPXCj1wo9kdAXDDEm6XjVEdAQGGp++dsi4dy9ioAAEdAMPtkWhysCEdAXDbZFocrAkdAQF8an752yYdy9yoAAEdAMQEGJN0vG0dAXDztkWhysEdAQFyLQ5WBBody+CoAAEdAMQan752yLUdAXEMSbpeNUEdAQFnbItDlYIdy+SoAAEdAMQxJul41P0dAXEkm6XjU/kdAQFdLxqfvnody+ioAAEdAMRGp++dsi0dAXE9LxqfvnkdAQFSbpeNT+Idy+yoAAEdAMRdLxqfvnkdAXFVgQYk3TEdAQFIMSbpeNYdy/CoAAEdAMRztkWhysEdAXFuFHrhR7EdAQE987ZFoc4dy/SoAAEdAMSKPXCj1w0dAXGGZmZmZmkdAQEzMzMzMzYdy/ioAAEdAMSgxJul41UdAXGe+dsi0OUdAQEo9cKPXCody/yoAAEdAMS2RaHKwIUdAXG3S8an750dAQEeuFHrhSIdyACsAAEdAMTMzMzMzM0dAXHPnbItDlkdAQET987ZFoodyASsAAEdAMTjU/fO2RkdAXHoMSbpeNUdAQEJul41P34dyAisAAEdAMT52yLQ5WEdAXIAgxJul40dAQD/fO2RaHYdyAysAAEdAMUQYk3S8akdAXIZFocrAg0dAQD0vGp++d4dyBCsAAEdAMUl41P3ztkdAXIxaHKwIMUdAQDqfvnbItIdyBSsAAEdAMU8an752yUdAXJJ++dsi0UdAQDgQYk3S8odyBisAAEdAMVS8an7520dAXJiTdLxqf0dAQDVgQYk3TIdyBysAAEdAMVpeNT987kdAXJ64UeuFH0dAQDLQ5WBBiYdyCCsAAEdAMWAAAAAAAEdAXKTMzMzMzUdAQDAgxJul44dyCSsAAEdAMWVgQYk3TEdAXKrhR64Ue0dAQC2RaHKwIYdyCisAAEdAMWsCDEm6XkdAXLEGJN0vG0dAQCsCDEm6XodyCysAAEdAMXCj1wo9cUdAXLcan752yUdAQChR64UeuIdyDCsAAEdAMXZFocrAg0dAXL0/fO2RaEdAQCXCj1wo9odyDSsAAEdAMXvnbItDlkdAXMNT987ZF0dAQCMzMzMzM4dyDisAAEdAMYFHrhR64UdAXMl41P3ztkdAQCCDEm6XjYdyDysAAEdAMYbpeNT99EdAXM+NT987ZEdAQB3ztkWhy4dyECsAAEdAMYyLQ5WBBkdAXNWyLQ5WBEdAQBtkWhysCIdyESsAAEdAMZItDlYEGUdAXNvGp++dskdAQBi0OVgQYodyEisAAEdAMZfO2RaHK0dAXOHbItDlYEdAQBYk3S8aoIdyEysAAEdAMZ0vGp++d0dAXOgAAAAAAEdAQBOVgQYk3YdyFCsAAEdAMaLQ5WBBiUdAXO4UeuFHrkdAQBDlYEGJN4dyFSsAAEdAMahysCDEnEdAXPQ5WBBiTkdAQA5WBBiTdYdyFisAAEdAMa4UeuFHrkdAXPpN0vGp/EdAQAul41P3z4dyFysAAEdAMbO2RaHKwUdAXQBysCDEnEdAQAkWhysCDIdyGCsAAEdAMblYEGJN00dAXQaHKwIMSkdAQAaHKwIMSodyGSsAAEdAMb64UeuFH0dAXQysCDEm6UdAQAPXCj1wpIdyGisAAEdAMcRaHKwIMUdAXRLAgxJumEdAQAFHrhR64YdyGysAAEdAMcn752yLREdAXRjlYEGJN0dAP/1wo9cKPYdyHCsAAEdAMc+dsi0OVkdAXR752yLQ5UdAP/gQYk3S8odyHSsAAEdAMdU/fO2RaEdAXSUOVgQYk0dAP/LxqfvnbYdyHisAAEdAMdqfvnbItEdAXSszMzMzM0dAP+3S8an754dyHysAAEdAMeBBiTdLx0dAXTFHrhR64UdAP+hysCDEnIdyICsAAEdAMeXjU/fO2UdAXTdsi0OVgUdAP+NT987ZF4dyISsAAEdAMeuFHrhR7EdAXT2BBiTdL0dAP941P3ztkYdyIisAAEdAMfEm6XjU/kdAXUOl41P3z0dAP9jU/fO2RodyIysAAEdAMfaHKwIMSkdAXUm6XjU/fUdAP9O2RaHKwYdyJCsAAEdAMfwo9cKPXEdAXU/fO2RaHUdAP85WBBiTdYdyJSsAAEdAMgHKwIMSb0dAXVXztkWhy0dAP8k3S8an8IdyJisAAEdAMgdsi0OVgUdAXVwIMSbpeUdAP8QYk3S8aodyJysAAEdAMg0OVgQYk0dAXWItDlYEGUdAP764UeuFH4dyKCsAAEdAMhJul41P30dAXWhBiTdLx0dAP7mZmZmZmodyKSsAAEdAMhgQYk3S8kdAXW5mZmZmZkdAP7R64UeuFIdyKisAAEdAMh2yLQ5WBEdAXXR64UeuFEdAP68an752yYdyKysAAEdAMiNT987ZF0dAXXqfvnbItEdAP6n752yLRIdyLCsAAEdAMij1wo9cKUdAXYC0OVgQYkdAP6TdLxqfvodyLSsAAEdAMi5WBBiTdUdAXYbZFocrAkdAP5987ZFoc4dyLisAAEdAMjP3ztkWh0dAXYztkWhysEdAP5peNT987odyLysAAEdAMjmZmZmZmkdAXZMCDEm6XkdAP5U/fO2RaIdyMCsAAEdAMj87ZFocrEdAXZkm6XjU/kdAP4/fO2RaHYdyMSsAAEdAMkTdLxqfvkdAXZ87ZFocrEdAP4rAgxJumIdyMisAAEdAMko9cKPXCkdAXaVgQYk3TEdAP4VgQYk3TIdyMysAAEdAMk/fO2RaHUdAXat0vGp++kdAP4BBiTdLx4dyNCsAAEdAMlWBBiTdL0dAXbGZmZmZmkdAP3si0OVgQodyNSsAAEdAMlsi0OVgQkdAXbeuFHrhSEdAP3XCj1wo9odyNisAAEdAMmDEm6XjVEdAXb3S8an750dAP3Cj1wo9cYdyNysAAEdAMmYk3S8aoEdAXcPnbItDlkdAP2uFHrhR7IdyOCsAAEdAMmvGp++dskdAXcn752yLREdAP2Yk3S8aoIdyOSsAAEdAMnFocrAgxUdAXdAgxJul40dAP2EGJN0vG4dyOisAAGUoR0Aydwo9cKPXR0Bd1jU/fO2RR0A/W+dsi0OWh3I7KwAAR0AyfKwIMSbpR0Bd3FocrAgxR0A/VocrAgxKh3I8KwAAR0AyggxJul41R0Bd4m6XjU/fR0A/UWhysCDFh3I9KwAAR0Ayh64UeuFIR0Bd6JN0vGp/R0A/TEm6XjU/h3I+KwAAR0AyjU/fO2RaR0Bd7qfvnbItR0A/Rul41P30h3I/KwAAR0AykvGp++dtR0Bd9MzMzMzNR0A/QcrAgxJvh3JAKwAAR0AymJN0vGp/R0Bd+uFHrhR7R0A/PGp++dsjh3JBKwAAR0AynjU/fO2RR0BeAQYk3S8bR0A/N0vGp++eh3JCKwAAR0Ayo5WBBiTdR0BeBxqfvnbJR0A/Mi0OVgQZh3JDKwAAR0AyqTdLxqfwR0BeDS8an753R0A/LMzMzMzNh3JEKwAAR0AyrtkWhysCR0BeE1P3ztkXR0A/J64UeuFIh3JFKwAAR0AytHrhR64UR0BeGWhysCDFR0A/Io9cKPXDh3JGKwAAR0AyuJN0vGp/R0BeHhR64UeuR0A/HnbItDlYh3JHKwAAR0AyuJN0vGp/R0BeIGJN0vGqR0A/G+dsi0OWh3JIKwAAR0AyuJN0vGp/R0BeIl41P3zuR0A/Gdsi0OVgh3JJKwAAR0AyuJN0vGp/R0BeIyLQ5WBCR0A/GRaHKwIMh3JKKwAAR0AyuJN0vGp/R0BeJLxqfvnbR0A/F0vGp++eh3JLKwAAR0AyuJN0vGp/R0BeJ2yLQ5WBR0A/FHrhR64Uh3JMKwAAR0AyuJN0vGp/R0BeKcrAgxJvR0A/EeuFHrhSh3JNKwAAR0AyuJN0vGp/R0BeLItDlYEGR0A/DtkWhysCh3JOKwAAR0AyuJN0vGp/R0BeLiTdLxqgR0A/DU/fO2Rah3JPKwAAR0AyuJN0vGp/R0BeMOVgQYk3R0A/Cj1wo9cKh3JQKwAAR0AyuJN0vGp/R0BeMan752yLR0A/CXjU/fO2h3JRKwAAR0AyuFHrhR64R0BeM0OVgQYlR0A/B64UeuFIh3JSKwAAR0AyuFHrhR64R0BeNgQYk3S8R0A/BJul41P4h3JTKwAAR0AyuFHrhR64R0BeNsi0OVgQR0A/A9cKPXCkh3JUKwAAR0AyuFHrhR64R0BeN41P3ztkR0A/AtDlYEGJh3JVKwAAR0AyuFHrhR64R0BeOGJN0vGqR0A/AgxJul41h3JWKwAAR0AyuBBiTdLyR0BeOyLQ5WBCR0A+/vnbItDlh3JXKwAAR0AyuBBiTdLyR0BeO+dsi0OWR0A+/jU/fO2Rh3JYKwAAR0AyuBBiTdLyR0BePLxqfvnbR0A+/XCj1wo9h3JZKwAAR0Ayt87ZFocrR0BeP3ztkWhzR0A++l41P3zuh3JaKwAAR0Ayt87ZFocrR0BeQEGJN0vHR0A++ZmZmZmah3JbKwAAR0Ayt87ZFocrR0BeQRaHKwIMR0A++JN0vGp/h3JcKwAAR0Ayt87ZFocrR0BeQdsi0OVgR0A+987ZFocrh3JdKwAAR0Ayt41P3ztkR0BeRJul41P4R0A+9Lxqfvnbh3JeKwAAR0Ayt41P3ztkR0BeRXCj1wo9R0A+8/fO2RaHh3JfKwAAR0Ayt41P3ztkR0BeRjU/fO2RR0A+8vGp++dth3JgKwAAR0Ayt0vGp++eR0BeSQYk3S8bR0A+7987ZFodh3JhKwAAR0Ayt0vGp++eR0BeScrAgxJvR0A+7xqfvnbJh3JiKwAAR0Aytwo9cKPXR0BeSo9cKPXDR0A+7hR64Ueuh3JjKwAAR0Aytwo9cKPXR0BeS2RaHKwIR0A+7U/fO2Rah3JkKwAAR0Aytsi0OVgQR0BeTiTdLxqgR0A+6j1wo9cKh3JlKwAAR0Aytsi0OVgQR0BeTvnbItDlR0A+6XjU/fO2h3JmKwAAR0Aytsi0OVgQR0BeT752yLQ5R0A+6HKwIMSch3JnKwAAR0AytocrAgxKR0BeUIMSbpeNR0A+564UeuFIh3JoKwAAR0AytkWhysCDR0BeU1P3ztkXR0A+5Jul41P4h3JpKwAAR0AytkWhysCDR0BeVCj1wo9cR0A+45WBBiTdh3JqKwAAR0AytkWhysCDR0BeVO2RaHKwR0A+4tDlYEGJh3JrKwAAR0AytcKPXCj2R0BeV752yLQ5R0A+3752yLQ5h3JsKwAAR0AytcKPXCj2R0BeWIMSbpeNR0A+3vnbItDlh3JtKwAAR0AytcKPXCj2R0BeWVgQYk3TR0A+3fO2RaHLh3JuKwAAR0AytYEGJN0vR0BeWhysCDEnR0A+3S8an753h3JvKwAAR0AytT987ZFoR0BeXO2RaHKwR0A+2hysCDEnh3JwKwAAR0AytT987ZFoR0BeXbItDlYER0A+2RaHKwIMh3JxKwAAR0AytP3ztkWiR0BeXocrAgxKR0A+2FHrhR64h3JyKwAAR0AytLxqfvnbR0BeYhysCDEnR0A+1DlYEGJOh3JzKwAAR0AytHrhR64UR0BeYvGp++dtR0A+03S8an76h3J0KwAAR0AytHrhR64UR0BeY7ZFocrBR0A+0m6XjU/fh3J1KwAAR0Ays/fO2RaHR0BeZocrAgxKR0A+z1wo9cKPh3J2KwAAR0Ays/fO2RaHR0BeZ0vGp++eR0A+zpeNT987h3J3KwAAR0Ays/fO2RaHR0BeaCDEm6XjR0A+zZFocrAhh3J4KwAAR0Ays7ZFocrBR0BeaOVgQYk3R0A+zMzMzMzNh3J5KwAAR0Ays7ZFocrBR0BeacrAgxJvR0A+y8an752yh3J6KwAAR0Ays3S8an76R0Bea7ZFocrBR0A+yXjU/fO2h3J7KwAAR0AyszMzMzMzR0BebItDlYEGR0A+yLQ5WBBih3J8KwAAR0AyszMzMzMzR0BebWBBiTdMR0A+x64UeuFIh3J9KwAAR0Aysm6XjU/fR0BecPXCj1wpR0A+w9cKPXCkh3J+KwAAR0Aysm6XjU/fR0BeccrAgxJvR0A+wtDlYEGJh3J/KwAAR0Aysi0OVgQZR0Beco9cKPXDR0A+wgxJul41h3KAKwAAR0Aysi0OVgQZR0Bec2RaHKwIR0A+wQYk3S8bh3KBKwAAR0AyseuFHrhSR0BedWBBiTdMR0A+vrhR64Ufh3KCKwAAR0Aysan752yLR0BedjU/fO2RR0A+vfO2RaHLh3KDKwAAR0Aysan752yLR0Bedwo9cKPXR0A+vO2RaHKwh3KEKwAAR0AysOVgQYk3R0Beep++dsi0R0A+uNT987ZGh3KFKwAAR0AysKPXCj1xR0BefEm6XjU/R0A+two9cKPXh3KGKwAAR0AysGJN0vGqR0BefR64UeuFR0A+tkWhysCDh3KHKwAAR0Ayr1wo9cKPR0Begl41P3zuR0A+sCDEm6Xjh3KIKwAAR0AyrxqfvnbJR0BehGp++dsjR0A+rhR64Ueuh3KJKwAAR0AyrtkWhysCR0BehfO2RaHLR0A+rEm6XjU/h3KKKwAAR0AyrpeNT987R0BehtkWhysCR0A+q0OVgQYlh3KLKwAAR0AyrlYEGJN1R0BeiIMSbpeNR0A+qXjU/fO2h3KMKwAAR0AyrhR64UeuR0Beian752yLR0A+p++dsi0Oh3KNKwAAR0AyrZFocrAhR0BejBiTdLxqR0A+pWBBiTdMh3KOKwAAR0AyrMzMzMzNR0BejvnbItDlR0A+ogxJul41h3KPKwAAR0AyrItDlYEGR0BekJN0vGp/R0A+oEGJN0vHh3KQKwAAR0AyrEm6XjU/R0Bekj1wo9cKR0A+nnbItDlYh3KRKwAAR0AyrAgxJul5R0Bek3S8an76R0A+nO2RaHKwh3KSKwAAR0Ayq0OVgQYlR0BeleNT987ZR0A+mhysCDEnh3KTKwAAR0AyqsCDEm6YR0BemLQ5WBBiR0A+lwo9cKPXh3KUKwAAR0AyqfvnbItER0BemzMzMzMzR0A+lDlYEGJOh3KVKwAAR0AyqfvnbItER0BenAgxJul5R0A+kzMzMzMzh3KWKwAAR0AyqXjU/fO2R0BengQYk3S8R0A+kOVgQYk3h3KXKwAAR0AyqPXCj1wpR0Ben64UeuFIR0A+jxqfvnbJh3KYKwAAR0AyqLQ5WBBiR0BeoVgQYk3TR0A+jQ5WBBiTh3KZKwAAR0AyqDEm6XjVR0Beoo9cKPXDR0A+i8an752yh3KaKwAAR0AyqDEm6XjVR0Beo2RaHKwIR0A+iwIMSbpeh3KbKwAAR0Ayp++dsi0OR0BepCj1wo9cR0A+ifvnbItEh3KcKwAAR0Ayp64UeuFIR0BepP3ztkWiR0A+iPXCj1wph3KdKwAAR0Aypul41P30R0Bep987ZFodR0A+haHKwIMSh3KeKwAAR0AypqfvnbItR0BeqLQ5WBBiR0A+hN0vGp++h3KfKwAAR0AypmZmZmZmR0BeqYk3S8aoR0A+g9cKPXCkh3KgKwAAR0AypeNT987ZR0BeqzMzMzMzR0A+ggxJul41h3KhKwAAR0AypaHKwIMSR0BerGp++dsjR0A+gIMSbpeNh3KiKwAAR0AypWBBiTdMR0BerT987ZFoR0A+f752yLQ5h3KjKwAAR0AypR64UeuFR0BergQYk3S8R0A+frhR64Ufh3KkKwAAR0AypR64UeuFR0BertkWhysCR0A+fbItDlYEh3KlKwAAR0AypBiTdLxqR0BesbpeNT99R0A+el41P3zuh3KmKwAAR0Ayo9cKPXCkR0Beso9cKPXDR0A+eZmZmZmah3KnKwAAR0Ayo5WBBiTdR0Bes2RaHKwIR0A+eJN0vGp/h3KoKwAAR0Ayo5WBBiTdR0BetDlYEGJOR0A+d41P3ztkh3KpKwAAR0Ayo1P3ztkXR0BetQ5WBBiTR0A+docrAgxKh3KqKwAAR0Ayoo9cKPXDR0BetxqfvnbJR0A+dDlYEGJOh3KrKwAAR0Ayok3S8an8R0Bet++dsi0OR0A+c3S8an76h3KsKwAAR0AyogxJul41R0BeuMSbpeNUR0A+cm6XjU/fh3KtKwAAR0AyoYk3S8aoR0Beum6XjU/fR0A+cGJN0vGqh3KuKwAAR0AyoUeuFHrhR0Beu6XjU/fPR0A+bxqfvnbJh3KvKwAAR0AyoQYk3S8bR0BevHrhR64UR0A+bhR64Ueuh3KwKwAAR0AyoMSbpeNUR0BevU/fO2RaR0A+bQ5WBBiTh3KxKwAAR0AyoIMSbpeNR0BeviTdLxqgR0A+bEm6XjU/h3KyKwAAR0AyoEGJN0vHR0BevvnbItDlR0A+a0OVgQYlh3KzKwAAR0Ayn752yLQ5R0BewQYk3S8bR0A+aPXCj1wph3K0KwAAR0AynztkWhysR0Bewdsi0OVgR0A+Z++dsi0Oh3K1KwAAR0AynvnbItDlR0BewrAgxJumR0A+Zul41P30h3K2KwAAR0AynnbItDlYR0BexFocrAgxR0A+ZR64UeuFh3K3KwAAR0AynfO2RaHLR0BexmZmZmZmR0A+Yo9cKPXDh3K4KwAAR0AynbItDlYER0BexztkWhysR0A+YcrAgxJvh3K5KwAAR0AynXCj1wo9R0BeyBBiTdLyR0A+YMSbpeNUh3K6KwAAR0AynGp++dsjR0BeyvGp++dtR0A+XXCj1wo9h3K7KwAAR0AynCj1wo9cR0Bey8an752yR0A+XGp++dsjh3K8KwAAR0Aym+dsi0OWR0BezJul41P4R0A+W2RaHKwIh3K9KwAAR0Aym6XjU/fPR0BezXCj1wo9R0A+Wl41P3zuh3K+KwAAR0Aym2RaHKwIR0BezlYEGJN1R0A+WZmZmZmah3K/KwAAR0AymuFHrhR7R0BezysCDEm6R0A+WJN0vGp/h3LAKwAAR0Aymp++dsi0R0Be0GJN0vGqR0A+Vwo9cKPXh3LBKwAAR0Ayml41P3zuR0Be0TdLxqfwR0A+VgQYk3S8h3LCKwAAR0AymhysCDEnR0Be0gxJul41R0A+VT987ZFoh3LDKwAAR0AymRaHKwIMR0Be1O2RaHKwR0A+Uan752yLh3LEKwAAR0AymNT987ZGR0Be1cKPXCj2R0A+UOVgQYk3h3LFKwAAR0AymFHrhR64R0Be1peNT987R0A+T987ZFodh3LGKwAAR0AymBBiTdLyR0Be13ztkWhzR0A+TtkWhysCh3LHKwAAR0Ayl87ZFocrR0Be2FHrhR64R0A+TdLxqfvnh3LIKwAAR0Aylwo9cKPXR0Be2l41P3zuR0A+S4UeuFHsh3LJKwAAR0Aylsi0OVgQR0Be2zMzMzMzR0A+Sn752yLRh3LKKwAAR0AylocrAgxKR0Be3AgxJul5R0A+SXjU/fO2h3LLKwAAR0AylcKPXCj2R0Be3cKPXCj2R0A+R2yLQ5WBh3LMKwAAR0AylYEGJN0vR0Be3peNT987R0A+RmZmZmZmh3LNKwAAR0AylP3ztkWiR0Be387ZFocrR0A+RR64UeuFh3LOKwAAR0AylLxqfvnbR0Be4KPXCj1xR0A+RBiTdLxqh3LPKwAAR0AylHrhR64UR0Be4XjU/fO2R0A+QxJul41Qh3LQKwAAR0AylDlYEGJOR0Be4l41P3zuR0A+QgxJul41h3LRKwAAR0Ayk3S8an76R0Be5Gp++dsjR0A+P752yLQ5h3LSKwAAR0AykvGp++dtR0Be5T987ZFoR0A+PrhR64Ufh3LTKwAAR0AykrAgxJumR0Be5hR64UeuR0A+PbItDlYEh3LUKwAAR0Ayki0OVgQZR0Be587ZFocrR0A+O+dsi0OWh3LVKwAAR0Aykan752yLR0Be6LQ5WBBiR0A+OuFHrhR7h3LWKwAAR0AykSbpeNT+R0Be6dsi0OVgR0A+OVgQYk3Th3LXKwAAR0AykOVgQYk3R0Be6rAgxJumR0A+OFHrhR64h3LYKwAAR0AykKPXCj1xR0Be64UeuFHsR0A+N0vGp++eh3LZKwAAR0AykGJN0vGqR0Be7Gp++dsjR0A+NkWhysCDh3LaKwAAR0Ayj52yLQ5WR0Be7iTdLxqgR0A+NHrhR64Uh3LbKwAAR0AyjxqfvnbJR0Be71wo9cKPR0A+MvGp++dth3LcKwAAR0AyjhR64UeuR0Be8dsi0OVgR0A+L987ZFodh3LdKwAAR0AyjU/fO2RaR0Be8/fO2RaHR0A+LZFocrAhh3LeKwAAR0AyjItDlYEGR0Be9aHKwIMSR0A+K4UeuFHsh3LfKwAAR0Ayi8an752yR0Be91wo9cKPR0A+KXjU/fO2h3LgKwAAR0Ayi4UeuFHsR0Be+EGJN0vHR0A+KHKwIMSch3LhKwAAR0AyiwIMSbpeR0Be+XjU/fO2R0A+Jul41P30h3LiKwAAR0Ayij1wo9cKR0Be+yLQ5WBCR0A+JR64UeuFh3LjKwAAR0AyifvnbItER0Be/AgxJul5R0A+JBiTdLxqh3LkKwAAR0AyiTdLxqfwR0Be/bItDlYER0A+IgxJul41h3LlKwAAR0AyiLQ5WBBiR0Be/vnbItDlR0A+IIMSbpeNh3LmKwAAR0Ayh64UeuFIR0BfAXjU/fO2R0A+HXCj1wo9h3LnKwAAR0AyhysCDEm6R0BfAl41P3zuR0A+HGp++dsjh3LoKwAAR0AyheNT987ZR0BfBT987ZFoR0A+GRaHKwIMh3LpKwAAR0AyhaHKwIMSR0BfBiTdLxqgR0A+GBBiTdLyh3LqKwAAR0AyhN0vGp++R0BfB987ZFodR0A+FgQYk3S8h3LrKwAAR0AyhFocrAgxR0BfCSbpeNT+R0A+FHrhR64Uh3LsKwAAR0AygxJul41QR0BfC6XjU/fPR0A+EWhysCDFh3LtKwAAR0Aygo9cKPXDR0BfDItDlYEGR0A+EGJN0vGqh3LuKwAAR0AygcrAgxJvR0BfDqfvnbItR0A+DhR64Ueuh3LvKwAAR0AygQYk3S8bR0BfEFHrhR64R0A+DAgxJul5h3LwKwAAR0AygEGJN0vHR0BfEgxJul41R0A+CfvnbItEh3LxKwAAR0Ayf3ztkWhzR0BfE1P3ztkXR0A+CHKwIMSch3LyKwAAR0AyfztkWhysR0BfFCj1wo9cR0A+B2yLQ5WBh3LzKwAAR0AyfnbItDlYR0BfFeNT987ZR0A+BWBBiTdMh3L0KwAAR0AyfO2RaHKwR0BfGNT987ZGR0A+AcrAgxJvh3L1KwAAR0AyfKwIMSbpR0BfGbpeNT99R0A+AMSbpeNUh3L2KwAAR0AyfCj1wo9cR0BfGo9cKPXDR0A9/752yLQ5h3L3KwAAR0Aye6XjU/fPR0BfG2RaHKwIR0A9/rhR64Ufh3L4KwAAR0Aye2RaHKwIR0BfHEm6XjU/R0A9/bItDlYEh3L5KwAAR0Ayel41P3zuR0BfHmZmZmZmR0A9+yLQ5WBCh3L6KwAAR0Ayedsi0OVgR0BfHztkWhysR0A9+hysCDEnh3L7KwAAR0AyeZmZmZmaR0BfICDEm6XjR0A9+RaHKwIMh3L8KwAAR0AyeJN0vGp/R0BfIdsi0OVgR0A99wo9cKPXh3L9KwAAR0AyeBBiTdLyR0BfIyLQ5WBCR0A99YEGJN0vh3L+KwAAR0Ayd41P3ztkR0BfI/fO2RaHR0A99HrhR64Uh3L/KwAAR0Ayd0vGp++eR0BfJMzMzMzNR0A983S8an76h3IALAAAR0Aydsi0OVgQR0BfJbItDlYER0A98m6XjU/fh3IBLAAAR0AydkWhysCDR0BfJpeNT987R0A98WhysCDFh3ICLAAAR0AydT987ZFoR0BfKLQ5WBBiR0A97tkWhysCh3IDLAAAR0AydLxqfvnbR0BfKYk3S8aoR0A97dLxqfvnh3IELAAAR0AydHrhR64UR0BfKl41P3zuR0A97MzMzMzNh3IFLAAAR0Ayc3S8an76R0BfLCj1wo9cR0A96sCDEm6Yh3IGLAAAR0AycvGp++dtR0BfLWBBiTdMR0A96TdLxqfwh3IHLAAAR0Aycm6XjU/fR0BfLkWhysCDR0A96DEm6XjVh3IILAAAR0AyceuFHrhSR0BfLxqfvnbJR0A95ysCDEm6h3IJLAAAR0Aycan752yLR0BfMAAAAAAAR0A95iTdLxqgh3IKLAAAR0AycSbpeNT+R0BfMNT987ZGR0A95R64UeuFh3ILLAAAR0AycCDEm6XjR0BfMwIMSbpeR0A94o9cKPXDh3IMLAAAR0Ayb52yLQ5WR0BfM9cKPXCkR0A94Yk3S8aoh3INLAAAR0AybxqfvnbJR0BfNKwIMSbpR0A94IMSbpeNh3IOLAAAR0AybpeNT987R0BfNZFocrAhR0A933ztkWhzh3IPLAAAR0AybhR64UeuR0BfNnbItDlYR0A93jU/fO2Rh3IQLAAAR0AybdLxqfvnR0BfN1wo9cKPR0A93S8an753h3IRLAAAR0AybQ5WBBiTR0BfOJN0vGp/R0A926XjU/fPh3ISLAAAR0AybItDlYEGR0BfOWhysCDFR0A92p++dsi0h3ITLAAAR0AybEm6XjU/R0BfOk3S8an8R0A92ZmZmZmah3IULAAAR0Aya0OVgQYlR0BfPAgxJul5R0A9141P3ztkh3IVLAAAR0Ayan752yLRR0BfPU/fO2RaR0A91gQYk3S8h3IWLAAAR0AyafvnbItER0BfPjU/fO2RR0A91P3ztkWih3IXLAAAR0AyabpeNT99R0BfPwo9cKPXR0A90/fO2RaHh3IYLAAAR0AyaTdLxqfwR0BfP++dsi0OR0A90vGp++dth3IZLAAAR0AyaLQ5WBBiR0BfQNT987ZGR0A90euFHrhSh3IaLAAAR0AyaDEm6XjVR0BfQbpeNT99R0A90KPXCj1xh3IbLAAAR0AyZ2yLQ5WBR0BfQvGp++dtR0A9zxqfvnbJh3IcLAAAR0AyZysCDEm6R0BfQ8an752yR0A9zhR64Ueuh3IdLAAAR0AyZqfvnbItR0BfRKwIMSbpR0A9zQ5WBBiTh3IeLAAAR0AyZaHKwIMSR0BfRmZmZmZmR0A9ywIMSbpeh3IfLAAAR0AyZR64UeuFR0BfR0vGp++eR0A9yfvnbItEh3IgLAAAR0AyZFocrAgxR0BfSJN0vGp/R0A9yHKwIMSch3IhLAAAR0AyY9cKPXCkR0BfSWhysCDFR0A9x2yLQ5WBh3IiLAAAR0AyY1P3ztkXR0BfSk3S8an8R0A9xmZmZmZmh3IjLAAAR0AyYtDlYEGJR0BfSzMzMzMzR0A9xR64UeuFh3IkLAAAR0AyYcrAgxJvR0BfTU/fO2RaR0A9wo9cKPXDh3IlLAAAR0AyYUeuFHrhR0BfTjU/fO2RR0A9wYk3S8aoh3ImLAAAR0AyYMSbpeNUR0BfTwo9cKPXR0A9wIMSbpeNh3InLAAAR0AyYEGJN0vHR0BfT++dsi0OR0A9v3ztkWhzh3IoLAAAR0AyX752yLQ5R0BfUNT987ZGR0A9vnbItDlYh3IpLAAAR0AyXztkWhysR0BfUbpeNT99R0A9vS8an753h3IqLAAAR0AyXnbItDlYR0BfUvGp++dtR0A9u6XjU/fPh3IrLAAAR0AyXfO2RaHLR0BfU9cKPXCkR0A9up++dsi0h3IsLAAAR0AyXXCj1wo9R0BfVLxqfvnbR0A9uZmZmZmah3ItLAAAR0AyW+dsi0OWR0BfV1wo9cKPR0A9tkWhysCDh3IuLAAAR0AyWyLQ5WBCR0BfWKPXCj1xR0A9tLxqfvnbh3IvLAAAR0AyWp++dsi0R0BfWXjU/fO2R0A9s7ZFocrBh3IwLAAAR0AyWhysCDEnR0BfWl41P3zuR0A9srAgxJumh3IxLAAAR0AyWZmZmZmaR0BfW0OVgQYlR0A9san752yLh3IyLAAAR0AyWRaHKwIMR0BfXCj1wo9cR0A9sKPXCj1xh3IzLAAAR0AyWFHrhR64R0BfXXCj1wo9R0A9rxqfvnbJh3I0LAAAR0AyV87ZFocrR0BfXkWhysCDR0A9rdLxqfvnh3I1LAAAR0AyV0vGp++eR0BfXysCDEm6R0A9rMzMzMzNh3I2LAAAR0AyVkWhysCDR0BfYPXCj1wpR0A9qsCDEm6Yh3I3LAAAR0AyVcKPXCj2R0BfYdsi0OVgR0A9qXjU/fO2h3I4LAAAR0AyVP3ztkWiR0BfYxJul41QR0A9p++dsi0Oh3I5LAAAR0AyVHrhR64UR0BfY/fO2RaHR0A9pul41P30h3I6LAAAR0AyU/fO2RaHR0BfZN0vGp++R0A9peNT987Zh3I7LAAAR0AyU3S8an76R0BfZcKPXCj2R0A9pN0vGp++h3I8LAAAR0AyUi0OVgQZR0BfZ987ZFodR0A9ogxJul41h3I9LAAAR0AyUan752yLR0BfaMSbpeNUR0A9oQYk3S8bh3I+LAAAR0AyUSbpeNT+R0Bfaan752yLR0A9oAAAAAAAh3I/LAAAR0AyT987ZFodR0Bfa3S8an76R0A9nfO2RaHLh3JALAAAR0AyT1wo9cKPR0BfbFocrAgxR0A9nKwIMSbph3JBLAAAR0AyTpeNT987R0BfbZFocrAhR0A9myLQ5WBCh3JCLAAAR0AyTZFocrAhR0Bfb1wo9cKPR0A9mRaHKwIMh3JDLAAAR0AyTQ5WBBiTR0BfcEGJN0vHR0A9l87ZFocrh3JELAAAR0AyS8an752yR0BfcgxJul41R0A9lcKPXCj2h3JFLAAAR0AySwIMSbpeR0Bfc0OVgQYlR0A9lDlYEGJOh3JGLAAAR0AySXjU/fO2R0BfdfO2RaHLR0A9kOVgQYk3h3JHLAAAR0AySLQ5WBBiR0BfdtkWhysCR0A9j987ZFodh3JILAAAR0AyRul41P30R0Bfedsi0OVgR0A9jAgxJul5h3JJLAAAR0AyRR64UeuFR0BffJul41P4R0A9iLQ5WBBih3JKLAAAR0AyRFocrAgxR0BffeNT987ZR0A9hysCDEm6h3JLLAAAR0AyQxJul41QR0Bff52yLQ5WR0A9hN0vGp++h3JMLAAAR0AyQo9cKPXDR0BfgIMSbpeNR0A9g9cKPXCkh3JNLAAAR0AyQIMSbpeNR0Bfg6XjU/fPR0A9gAAAAAAAh3JOLAAAR0AyPrhR64UfR0BfhkWhysCDR0A9fKwIMSbph3JPLAAAR0AyPjU/fO2RR0BfhysCDEm6R0A9e6XjU/fPh3JQLAAAR0AyO6XjU/fPR0BfiyLQ5WBCR0A9dsi0OVgQh3JRLAAAR0AyOl41P3zuR0BfjO2RaHKwR0A9dHrhR64Uh3JSLAAAR0AyOZmZmZmaR0BfjjU/fO2RR0A9cvGp++dth3JTLAAAR0AyN87ZFocrR0BfkOVgQYk3R0A9b52yLQ5Wh3JULAAAR0AyNwo9cKPXR0BfkcrAgxJvR0A9blYEGJN1h3JVLAAAR0AyNYEGJN0vR0Bfk/fO2RaHR0A9a8an752yh3JWLAAAR0AyNP3ztkWiR0BflN0vGp++R0A9an752yLRh3JXLAAAR0AyNHrhR64UR0BflcKPXCj2R0A9aXjU/fO2h3JYLAAAR0AyMzMzMzMzR0Bfl41P3ztkR0A9ZysCDEm6h3JZLAAAR0AyMi0OVgQZR0BfmOVgQYk3R0A9ZaHKwIMSh3JaLAAAR0AyMan752yLR0BfmcrAgxJvR0A9ZJul41P4h3JbLAAAR0AyMSbpeNT+R0Bfmp++dsi0R0A9Y1P3ztkXh3JcLAAAR0AyMGJN0vGqR0Bfm4UeuFHsR0A9Yk3S8an8h3JdLAAAR0AyL987ZFodR0BfnHrhR64UR0A9YQYk3S8bh3JeLAAAR0AyLlYEGJN1R0BfnqfvnbItR0A9XnbItDlYh3JfLAAAR0AyLZFocrAhR0Bfn41P3ztkR0A9XS8an753h3JgLAAAR0AyLQ5WBBiTR0BfoHKwIMScR0A9XCj1wo9ch3JhLAAAR0AyLEm6XjU/R0BfoVgQYk3TR0A9WyLQ5WBCh3JiLAAAR0AyK8an752yR0Bfoj1wo9cKR0A9Wdsi0OVgh3JjLAAAR0AyKwIMSbpeR0BfozMzMzMzR0A9WNT987ZGh3JkLAAAR0AyKj1wo9cKR0BfpHrhR64UR0A9Vwo9cKPXh3JlLAAAR0AyKXjU/fO2R0BfpU/fO2RaR0A9VgQYk3S8h3JmLAAAR0AyKPXCj1wpR0BfpjU/fO2RR0A9VP3ztkWih3JnLAAAR0AyJ64UeuFIR0BfqBBiTdLyR0A9UrAgxJumh3JoLAAAR0AyJqfvnbItR0BfqVgQYk3TR0A9UOVgQYk3h3JpLAAAR0AyJiTdLxqgR0Bfqj1wo9cKR0A9T987ZFodh3JqLAAAR0AyJWBBiTdMR0BfqyLQ5WBCR0A9TtkWhysCh3JrLAAAR0AyJN0vGp++R0BfrAgxJul5R0A9TZFocrAhh3JsLAAAR0AyJBiTdLxqR0BfrP3ztkWiR0A9TItDlYEGh3JtLAAAR0AyI1P3ztkXR0BfreNT987ZR0A9S0OVgQYlh3JuLAAAR0AyIo9cKPXDR0BfrysCDEm6R0A9SbpeNT99h3JvLAAAR0AyIcrAgxJvR0BfsBBiTdLyR0A9SLQ5WBBih3JwLAAAR0AyIUeuFHrhR0BfsPXCj1wpR0A9R2yLQ5WBh3JxLAAAR0AyH752yLQ5R0BfstDlYEGJR0A9RR64UeuFh3JyLAAAR0AyHztkWhysR0Bfs7ZFocrBR0A9RBiTdLxqh3JzLAAAR0AyHjU/fO2RR0BftP3ztkWiR0A9Qk3S8an8h3J0LAAAR0AyHXCj1wo9R0BfteNT987ZR0A9QUeuFHrhh3J1LAAAR0AyHO2RaHKwR0Bftsi0OVgQR0A9QEGJN0vHh3J2LAAAR0AyHCj1wo9cR0Bft752yLQ5R0A9PvnbItDlh3J3LAAAR0AyGp++dsi0R0BfueuFHrhSR0A9PCj1wo9ch3J4LAAAR0AyGdsi0OVgR0BfutDlYEGJR0A9OyLQ5WBCh3J5LAAAR0AyGVgQYk3TR0Bfu7ZFocrBR0A9Odsi0OVgh3J6LAAAR0AyGJN0vGp/R0BfvJul41P4R0A9ONT987ZGh3J7LAAAR0AyF87ZFocrR0BfvZFocrAhR0A9N41P3ztkh3J8LAAAR0AyFwo9cKPXR0BfvnbItDlYR0A9NocrAgxKh3J9LAAAR0AyFkWhysCDR0Bfv752yLQ5R0A9NLxqfvnbh3J+LAAAR0AyFYEGJN0vR0BfwLQ5WBBiR0A9M7ZFocrBh3J/LAAAR0AyFLxqfvnbR0BfwZmZmZmaR0A9MrAgxJumh3KALAAAR0AyE3S8an76R0Bfw2RaHKwIR0A9MCDEm6Xjh3KBLAAAR0AyErAgxJumR0BfxFocrAgxR0A9LxqfvnbJh3KCLAAAR0AyEm6XjU/fR0BfxLxqfvnbR0A9LpeNT987h3KDLAAAR0AyEan752yLR0BfxaHKwIMSR0A9LZFocrAhh3KELAAAR0AyESbpeNT+R0BfxocrAgxKR0A9LEm6XjU/h3KFLAAAR0AyEGJN0vGqR0Bfx2yLQ5WBR0A9K0OVgQYlh3KGLAAAR0AyD52yLQ5WR0BfyGJN0vGqR0A9KfvnbItEh3KHLAAAR0AyDtkWhysCR0BfyUeuFHrhR0A9KLQ5WBBih3KILAAAR0AyDhR64UeuR0Bfyo9cKPXDR0A9JysCDEm6h3KJLAAAR0AyDU/fO2RaR0Bfy4UeuFHsR0A9JiTdLxqgh3KKLAAAR0AyDItDlYEGR0BfzGp++dsjR0A9JN0vGp++h3KLLAAAR0AyCwIMSbpeR0BfzjU/fO2RR0A9Io9cKPXDh3KMLAAAR0AyCn752yLRR0BfzysCDEm6R0A9IUeuFHrhh3KNLAAAR0AyCXjU/fO2R0Bf0HKwIMScR0A9H752yLQ5h3KOLAAAR0AyCLQ5WBBiR0Bf0VgQYk3TR0A9HnbItDlYh3KPLAAAR0AyB++dsi0OR0Bf0j1wo9cKR0A9HXCj1wo9h3KQLAAAR0AyBysCDEm6R0Bf0zMzMzMzR0A9HCj1wo9ch3KRLAAAR0AyBaHKwIMSR0Bf1XCj1wo9R0A9GVgQYk3Th3KSLAAAR0AyBN0vGp++R0Bf1lYEGJN1R0A9GFHrhR64h3KTLAAAR0AyBBiTdLxqR0Bf1ztkWhysR0A9Fwo9cKPXh3KULAAAR0AyAo9cKPXDR0Bf2RaHKwIMR0A9FLxqfvnbh3KVLAAAR0AyAcrAgxJvR0Bf2gxJul41R0A9E3S8an76h3KWLAAAR0AyAMSbpeNUR0Bf21P3ztkXR0A9EeuFHrhSh3KXLAAAR0AyAAAAAAAAR0Bf3DlYEGJOR0A9EKPXCj1xh3KYLAAAR0Ax/3ztkWhzR0Bf3R64UeuFR0A9D52yLQ5Wh3KZLAAAR0Ax/S8an753R0Bf3++dsi0OR0A9DAgxJul5h3KaLAAAR0Ax/Cj1wo9cR0Bf4TdLxqfwR0A9Cn752yLRh3KbLAAAR0Ax+2RaHKwIR0Bf4i0OVgQZR0A9CTdLxqfwh3KcLAAAR0Ax+p++dsi0R0Bf4xJul41QR0A9CDEm6XjVh3KdLAAAR0Ax+dsi0OVgR0Bf5AgxJul5R0A9Bul41P30h3KeLAAAR0Ax+RaHKwIMR0Bf5O2RaHKwR0A9BaHKwIMSh3KfLAAAR0Ax+BBiTdLyR0Bf5kWhysCDR0A9BBiTdLxqh3KgLAAAR0Ax9ocrAgxKR0Bf6BBiTdLyR0A9AcrAgxJvh3KhLAAAR0Ax9P3ztkWiR0Bf6euFHrhSR0A8/ztkWhysh3KiLAAAR0Ax9DlYEGJOR0Bf6uFHrhR7R0A8/jU/fO2Rh3KjLAAAR0Ax8zMzMzMzR0Bf7Cj1wo9cR0A8/Gp++dsjh3KkLAAAR0Ax8an752yLR0Bf7gQYk3S8R0A8+hysCDEnh3KlLAAAR0Ax8OVgQYk3R0Bf7ul41P30R0A8+NT987ZGh3KmLAAAR0Ax7lYEGJN1R0Bf8hysCDEnR0A89P3ztkWih3KnLAAAR0Ax7ZFocrAhR0Bf8wIMSbpeR0A887ZFocrBh3KoLAAAR0Ax7AgxJul5R0Bf9N0vGp++R0A88WhysCDFh3KpLAAAR0Ax60OVgQYlR0Bf9dLxqfvnR0A88CDEm6Xjh3KqLAAAR0Ax6j1wo9cKR0Bf9xqfvnbJR0A87lYEGJN1h3KrLAAAR0Ax6LQ5WBBiR0Bf+PXCj1wpR0A87AgxJul5h3KsLAAAR0Ax564UeuFIR0Bf+euFHrhSR0A86sCDEm6Yh3KtLAAAR0Ax5iTdLxqgR0Bf+8an752yR0A86HKwIMSch3KuLAAAR0Ax4tDlYEGJR0Bf/987ZFodR0A84xJul41Qh3KvLAAAR0Ax4crAgxJvR0BgAGp++dsjR0A84gxJul41h3KwLAAAR0Ax3KwIMSbpR0BgA2RaHKwIR0A82l41P3zuh3KxLAAAR0Ax3KwIMSbpR0BgA2RaHKwIR0A82l41P3zuh3KyLAAAR0Ax2VgQYk3TR0BgBXCj1wo9R0A81P3ztkWih3KzLAAAR0Ax2FHrhR64R0BgBeuFHrhSR0A807ZFocrBh3K0LAAAR0Ax1ocrAgxKR0BgBxJul41QR0A80OVgQYk3h3K1LAAAR0Ax0/fO2RaHR0BgCHKwIMScR0A8zU/fO2Rah3K2LAAAR0Ax0zMzMzMzR0BgCO2RaHKwR0A8zAgxJul5h3K3LAAAR0Axz52yLQ5WR0BgCvnbItDlR0A8xqfvnbIth3K4LAAAR0AxzdLxqfvnR0BgC++dsi0OR0A8xFocrAgxh3K5LAAAR0AxzItDlYEGR0BgDJul41P4R0A8wo9cKPXDh3K6LAAAR0AxywIMSbpeR0BgDYk3S8aoR0A8wAAAAAAAh3K7LAAAR0Axyj1wo9cKR0BgDfvnbItER0A8vvnbItDlh3K8LAAAR0AxyTdLxqfwR0BgDnbItDlYR0A8vbItDlYEh3K9LAAAR0AxyHKwIMScR0BgDvGp++dtR0A8vGp++dsjh3K+LAAAR0AxxysCDEm6R0BgD52yLQ5WR0A8up++dsi0h3K/LAAAR0AxxmZmZmZmR0BgEBBiTdLyR0A8uZmZmZmah3LALAAAR0AxxaHKwIMSR0BgEItDlYEGR0A8uFHrhR64h3LBLAAAR0Axw9cKPXCkR0BgEXjU/fO2R0A8tcKPXCj2h3LCLAAAR0AxwxJul41QR0BgEfO2RaHLR0A8tHrhR64Uh3LDLAAAR0AxwcrAgxJvR0BgEp++dsi0R0A8svGp++dth3LELAAAR0AxwQYk3S8bR0BgExJul41QR0A8san752yLh3LFLAAAR0AxwEGJN0vHR0BgE41P3ztkR0A8sGJN0vGqh3LGLAAAR0AxvztkWhysR0BgFAgxJul5R0A8rxqfvnbJh3LHLAAAR0AxvS8an753R0BgFS8an753R0A8rEm6XjU/h3LILAAAR0Axu2RaHKwIR0BgFhysCDEnR0A8qbpeNT99h3LJLAAAR0Axup++dsi0R0BgFo9cKPXDR0A8qLQ5WBBih3LKLAAAR0AxuZmZmZmaR0BgFwo9cKPXR0A8p2yLQ5WBh3LLLAAAR0AxuNT987ZGR0BgF41P3ztkR0A8piTdLxqgh3LMLAAAR0Axt41P3ztkR0BgGDEm6XjVR0A8pFocrAgxh3LNLAAAR0Axtsi0OVgQR0BgGKwIMSbpR0A8oxJul41Qh3LOLAAAR0AxtcKPXCj2R0BgGR64UeuFR0A8ogxJul41h3LPLAAAR0AxtDlYEGJOR0BgGhR64UeuR0A8n3ztkWhzh3LQLAAAR0AxsvGp++dtR0BgGsCDEm6YR0A8nbItDlYEh3LRLAAAR0AxseuFHrhSR0BgGztkWhysR0A8nGp++dsjh3LSLAAAR0AxsSbpeNT+R0BgG7ZFocrBR0A8myLQ5WBCh3LTLAAAR0AxsCDEm6XjR0BgHCj1wo9cR0A8mhysCDEnh3LULAAAR0Axr1wo9cKPR0BgHKPXCj1xR0A8mNT987ZGh3LVLAAAR0AxrlYEGJN1R0BgHR64UeuFR0A8l41P3ztkh3LWLAAAR0AxrQ5WBBiTR0BgHcrAgxJvR0A8lcKPXCj2h3LXLAAAR0AxrEm6XjU/R0BgHkWhysCDR0A8lHrhR64Uh3LYLAAAR0Axq0OVgQYlR0BgHrhR64UfR0A8kzMzMzMzh3LZLAAAR0AxqXjU/fO2R0BgH64UeuFIR0A8kOVgQYk3h3LaLAAAR0AxqLQ5WBBiR0BgICj1wo9cR0A8j52yLQ5Wh3LbLAAAR0Axp2yLQ5WBR0BgINT987ZGR0A8jdLxqfvnh3LcLAAAR0AxpmZmZmZmR0BgIU/fO2RaR0A8jItDlYEGh3LdLAAAR0AxpaHKwIMSR0BgIcKPXCj2R0A8i0OVgQYlh3LeLAAAR0AxpJul41P4R0BgIkWhysCDR0A8ifvnbItEh3LfLAAAR0Axoo9cKPXDR0BgI2yLQ5WBR0A8hul41P30h3LgLAAAR0AxoYk3S8aoR0BgI987ZFodR0A8heNT987Zh3LhLAAAR0AxoMSbpeNUR0BgJFocrAgxR0A8hJul41P4h3LiLAAAR0Axn752yLQ5R0BgJNT987ZGR0A8g1P3ztkXh3LjLAAAR0AxnvnbItDlR0BgJU/fO2RaR0A8ggxJul41h3LkLAAAR0AxnfO2RaHLR0BgJcrAgxJvR0A8gMSbpeNUh3LlLAAAR0AxnKwIMSbpR0BgJnbItDlYR0A8fvnbItDlh3LmLAAAR0Axm6XjU/fPR0BgJvGp++dtR0A8fbItDlYEh3LnLAAAR0AxmuFHrhR7R0BgJ2RaHKwIR0A8fKwIMSbph3LoLAAAR0AxmNT987ZGR0BgKFocrAgxR0A8ehysCDEnh3LpLAAAR0AxmBBiTdLyR0BgKN0vGp++R0A8eNT987ZGh3LqLAAAR0Axlsi0OVgQR0BgKYEGJN0vR0A8dwo9cKPXh3LrLAAAR0AxlcKPXCj2R0BgKfvnbItER0A8dcKPXCj2h3LsLAAAR0AxlLxqfvnbR0BgKnbItDlYR0A8dHrhR64Uh3LtLAAAR0Axk/fO2RaHR0BgKvGp++dtR0A8czMzMzMzh3LuLAAAR0AxkvGp++dtR0BgK2yLQ5WBR0A8ceuFHrhSh3LvLAAAR0Axkan752yLR0BgLBiTdLxqR0A8cCDEm6Xjh3LwLAAAR0Axj987ZFodR0BgLQ5WBBiTR0A8bZFocrAhh3LxLAAAR0AxjdLxqfvnR0BgLgQYk3S8R0A8a0OVgQYlh3LyLAAAR0AxjMzMzMzNR0BgLn752yLRR0A8afvnbItEh3LzLAAAR0Axi4UeuFHsR0BgLysCDEm6R0A8aDEm6XjVh3L0LAAAR0AxisCDEm6YR0BgL6XjU/fPR0A8Zul41P30h3L1LAAAR0AxibpeNT99R0BgMCDEm6XjR0A8ZaHKwIMSh3L2LAAAR0AxiLQ5WBBiR0BgMJul41P4R0A8ZFocrAgxh3L3LAAAR0AxhWBBiTdMR0BgMj1wo9cKR0A8YAAAAAAAh3L4LAAAR0AxhJul41P4R0BgMrhR64UfR0A8XrhR64Ufh3L5LAAAR0Axgo9cKPXDR0BgM64UeuFIR0A8XCj1wo9ch3L6LAAAR0AxgYk3S8aoR0BgNCj1wo9cR0A8WuFHrhR7h3L7LAAAR0AxgEGJN0vHR0BgNNT987ZGR0A8WRaHKwIMh3L8LAAAR0AxfjU/fO2RR0BgNcrAgxJvR0A8VocrAgxKh3L9LAAAR0AxfXCj1wo9R0BgNkWhysCDR0A8VT987ZFoh3L+LAAAR0Axe2RaHKwIR0BgN0OVgQYlR0A8UrAgxJumh3L/LAAAR0AxehysCDEnR0BgN++dsi0OR0A8UOVgQYk3h3IALQAAR0AxeRaHKwIMR0BgOGp++dsjR0A8T52yLQ5Wh3IBLQAAR0Axdwo9cKPXR0BgOWBBiTdMR0A8TQ5WBBiTh3ICLQAAR0AxdgQYk3S8R0BgOdsi0OVgR0A8S8an752yh3IDLQAAR0AxdLxqfvnbR0BgOocrAgxKR0A8SfvnbItEh3IELQAAR0AxcrAgxJumR0BgO3ztkWhzR0A8R2yLQ5WBh3IFLQAAR0AxcKPXCj1xR0BgPHKwIMScR0A8RN0vGp++h3IGLQAAR0Axb52yLQ5WR0BgPPXCj1wpR0A8Q5WBBiTdh3IHLQAAR0AxaXjU/fO2R0BgP+dsi0OWR0A8O6XjU/fPh3IILQAAR0AxY1P3ztkXR0BgQtkWhysCR0A8M/fO2RaHh3IJLQAAR0AxXS8an753R0BgRcrAgxJvR0A8LAgxJul5h3IKLQAAR0AxWNT987ZGR0BgR+dsi0OWR0A8JmZmZmZmh3ILLQAAR0AxV87ZFocrR0BgSGp++dsjR0A8JR64UeuFh3IMLQAAR0AxVsi0OVgQR0BgSOVgQYk3R0A8I5WBBiTdh3INLQAAR0AxUSbpeNT+R0BgS4UeuFHsR0A8HKwIMSbph3IOLQAAR0AxTItDlYEGR0BgTan752yLR0A8Fwo9cKPXh3IPLQAAR0AxS4UeuFHsR0BgTi0OVgQZR0A8FYEGJN0vh3IQLQAAR0AxRul41P30R0BgUFHrhR64R0A8D987ZFodh3IRLQAAR0AxRaHKwIMSR0BgUMzMzMzNR0A8DpeNT987h3ISLQAAR0AxRJul41P4R0BgUU/fO2RaR0A8DU/fO2Rah3ITLQAAZWqYGwAASwB1SwJ9chQtAAAoSwBdchUtAAAoR0Awu+dsi0OWR0BgvbpeNT99R0A8HvnbItDlh3IWLQAAR0AsmyLQ5WBCR0Bg7euFHrhSR0A9t0vGp++eh3IXLQAAR0At987ZFocrR0BgxrhR64UfR0BBo1P3ztkXh3IYLQAAR0Au3Cj1wo9cR0BgqU/fO2RaR0BBF++dsi0Oh3IZLQAAR0Av4EGJN0vHR0BgiysCDEm6R0BAlgQYk3S8h3IaLQAAR0AwgYk3S8aoR0BgbFHrhR64R0BAHXCj1wo9h3IbLQAAR0AxIo9cKPXDR0BgTMSbpeNUR0A/XKwIMSbph3IcLQAAR0Ax0vGp++dtR0BgLHrhR64UR0A+kSbpeNT+h3IdLQAAR0AykvGp++dtR0BgC3S8an76R0A92FHrhR64h3IeLQAAR0AzYo9cKPXDR0Bf03S8an76R0A9Mm6XjU/fh3IfLQAAR0A0QcrAgxJvR0BfjpeNT987R0A8n3ztkWhzh3IgLQAAR0A1MKPXCj1xR0BfSEGJN0vHR0A8HztkWhysh3IhLQAAR0AyTtkWhysCR0Beo0OVgQYlR0A/TlYEGJN1h3IiLQAAR0Ax8i0OVgQZR0Be6fvnbItER0BAHbItDlYEh3IjLQAAR0AxqbpeNT99R0BfMXjU/fO2R0BAkk3S8an8h3IkLQAAR0AxdYEGJN0vR0Bfean752yLR0BBBP3ztkWih3IlLQAAR0AxVT987ZFoR0Bfwo9cKPXDR0BBdYEGJN0vh3ImLQAAR0AxSTdLxqfwR0BgBhysCDEnR0BB5BiTdLxqh3InLQAAR0AxUSbpeNT+R0BgK0vGp++eR0BCUMSbpeNUh3IoLQAAR0AxbZFocrAhR0BgUN0vGp++R0BCu0OVgQYlh3IpLQAAR0AxnfO2RaHLR0Bgdsi0OVgQR0BDI9cKPXCkh3IqLQAAR0Ax4k3S8an8R0BgnQ5WBBiTR0BDin752yLRh3IrLQAAR0Azz987ZFodR0BgNLxqfvnbR0BFSHKwIMSch3IsLQAAR0AzNYEGJN0vR0BgDl41P3zuR0BE0xJul41Qh3ItLQAAR0AyrhR64UeuR0Bf0LQ5WBBiR0BEX1wo9cKPh3IuLQAAR0AyOZmZmZmaR0BfhT987ZFoR0BD7U/fO2Rah3IvLQAAR0Ax187ZFocrR0BfOm6XjU/fR0BDfO2RaHKwh3IwLQAAR0AxiTdLxqfwR0Be8EGJN0vHR0BDDjU/fO2Rh3IxLQAAR0AxTU/fO2RaR0BeprhR64UfR0BCoUeuFHrhh3IyLQAAR0AxJFocrAgxR0BeXdLxqfvnR0BCNgQYk3S8h3IzLQAAR0AxDlYEGJN1R0BeFYEGJN0vR0BBzGp++dsjh3I0LQAAR0AxCwIMSbpeR0BdzeNT987ZR0BBZHrhR64Uh3I1LQAAR0AxGp++dsi0R0BdhtkWhysCR0BA/jU/fO2Rh3I2LQAAR0AxPS8an753R0BdQIMSbpeNR0BAmZmZmZmah3I3LQAAR0Au/vnbItDlR0BalCj1wo9cR0BBNul41P30h3I4LQAAR0AudkWhysCDR0Ba7iTdLxqgR0BBWHKwIMSch3I5LQAAR0AuHjU/fO2RR0BbRlYEGJN1R0BBgrAgxJumh3I6LQAAR0At9kWhysCDR0BbnJul41P4R0BBtYEGJN0vh3I7LQAAR0At/vnbItDlR0Bb8RaHKwIMR0BB8QYk3S8bh3I8LQAAR0AuOFHrhR64R0BcQ6XjU/fPR0BCNT987ZFoh3I9LQAAR0AuocrAgxJvR0BclGp++dsjR0BCgi0OVgQZh3I+LQAAR0AvO+dsi0OWR0Bc40OVgQYlR0BC187ZFocrh3I/LQAAR0AwA1P3ztkXR0BdMFHrhR64R0BDNgQYk3S8h3JALQAAR0Awf752yLQ5R0Bde8an752yR0BDmsCDEm6Yh3JBLQAAR0AxESbpeNT+R0BdxnbItDlYR0BEAAAAAAAAh3JCLQAAR0Axtsi0OVgQR0BeEFHrhR64R0BEZT987ZFoh3JDLQAAR0AycOVgQYk3R0BeWWhysCDFR0BEyn752yLRh3JELQAAR0AzP3ztkWhzR0BeobpeNT99R0BFL987ZFodh3JFLQAAR0A0Io9cKPXDR0Be6UeuFHrhR0BFlT987ZFoh3JGLQAAR0A1GhysCDEnR0BfMBBiTdLyR0BF+p++dsi0h3JHLQAAR0A2JeNT987ZR0BfdhR64UeuR0BGYAAAAAAAh3JILQAAR0A3RmZmZmZmR0Bfu1P3ztkXR0BGxYEGJN0vh3JJLQAAR0AsPGp++dsjR0Bch64UeuFIR0BFD987ZFodh3JKLQAAR0ArUGJN0vGqR0BcQTdLxqfwR0BEhcKPXCj2h3JLLQAAR0AqYk3S8an8R0Bb+DEm6XjVR0BEBP3ztkWih3JMLQAAR0ApcrAgxJumR0BbrJul41P4R0BDjZFocrAhh3JNLQAAR0AogQYk3S8bR0BbXocrAgxKR0BDH1wo9cKPh3JOLQAAR0AnjdLxqfvnR0BbDdLxqfvnR0BCul41P3zuh3JPLQAAR0AmmJN0vGp/R0Baup++dsi0R0BCXrhR64Ufh3JQLQAAR0AlocrAgxJvR0BaZN0vGp++R0BCDGp++dsjh3JRLQAAR0AkqPXCj1wpR0BaDJul41P4R0BBw1P3ztkXh3JSLQAAR0AjrpeNT987R0BZsbpeNT99R0BBg3S8an76h3JTLQAAR0Aisi0OVgQZR0BZVFocrAgxR0BBTO2RaHKwh3JULQAAR0AhtDlYEGJOR0BY9Gp++dsjR0BBH752yLQ5h3JVLQAAR0ATFocrAgxKR0BZfnbItDlYR0BBY7ZFocrBh3JWLQAAR0AVBiTdLxqgR0BZzXCj1wo9R0BB1aHKwIMSh3JXLQAAR0AXBiTdLxqgR0BaGGJN0vGqR0BCSZmZmZmah3JYLQAAR0AZFocrAgxKR0BaX1wo9cKPR0BCwAAAAAAAh3JZLQAAR0AbN0vGp++eR0Baok3S8an8R0BDOJN0vGp/h3JaLQAAR0AdaHKwIMScR0Ba4UeuFHrhR0BDs1P3ztkXh3JbLQAAR0AfqfvnbItER0BbHEm6XjU/R0BEMGJN0vGqh3JcLQAAR0Ag/fO2RaHLR0BbU0OVgQYlR0BEr752yLQ5h3JdLQAAR0AiLxqfvnbJR0BbhkWhysCDR0BFMUeuFHrhh3JeLQAAR0AjaHKwIMScR0BbtT987ZFoR0BFtR64UeuFh3JfLQAAR0Akqn752yLRR0Bb4DEm6XjVR0BGOyLQ5WBCh3JgLQAAR0Al9DlYEGJOR0BcBysCDEm6R0BGw3S8an76h3JhLQAAR0AXZWBBiTdMR0BbLmZmZmZmR0BHEYk3S8aoh3JiLQAAR0AU/O2RaHKwR0BbFkWhysCDR0BGdiTdLxqgh3JjLQAAR0AShBiTdLxqR0Ba+rAgxJumR0BF3987ZFodh3JkLQAAR0AP987ZFocrR0Ba27ZFocrBR0BFTrhR64Ufh3JlLQAAR0AKxqfvnbItR0BauVgQYk3TR0BEwrAgxJumh3JmLQAAR0AFdLxqfvnbR0Bak4UeuFHsR0BEO8an752yh3JnLQAAR0AABBiTdLxqR0Baak3S8an8R0BDufvnbItEh3JoLQAARz/05WBBiTdMR0BaPbItDlYER0BDPU/fO2Rah3JpLQAAR8AEZFocrAgxR0Baqan752yLR0BEdJul41P4h3JqLQAAR7/+gxJul41QR0BasLQ5WBBiR0BFCp++dsi0h3JrLQAAR7/z3ztkWhysR0BatWBBiTdMR0BFnrhR64Ufh3JsLQAAR7/hul41P3zuR0Bat752yLQ5R0BGMOVgQYk3h3JtLQAARz/EGJN0vGp/R0Bat752yLQ5R0BGwSbpeNT+h3JuLQAARz/sgxJul41QR0BatWBBiTdMR0BHT3ztkWhzh3JvLQAARz/6Yk3S8an8R0BasKPXCj1xR0BH28an752yh3JwLQAAR0ADcKPXCj1xR0BaqYk3S8aoR0BIZkWhysCDh3JxLQAAZWqYGwAASwB1dS4='))
surfInfo = {'category': (0, None, {}), 'probeRadius': (0, None, {}), 'pointSize': (0, None, {}), 'name': [], 'density': (0, None, {}), 'colorMode': (0, None, {}), 'useLighting': (0, None, {}), 'transparencyBlendMode': (0, None, {}), 'molecule': [], 'smoothLines': (0, None, {}), 'lineWidth': (0, None, {}), 'allComponents': (0, None, {}), 'twoSidedLighting': (0, None, {}), 'customVisibility': [], 'drawMode': (0, None, {}), 'display': (0, None, {}), 'customColors': []}
vrmlInfo = {'subid': (0, None, {}), 'display': (0, None, {}), 'id': (0, None, {}), 'vrmlString': [], 'name': (0, None, {})}
colors = {'Ru': ((0.141176, 0.560784, 0.560784), 1, u'default'), 'Re': ((0.14902, 0.490196, 0.670588), 1, u'default'), 'Rf': ((0.8, 0, 0.34902), 1, u'default'), 'Ra': ((0, 0.490196, 0), 1, u'default'), 'Rb': ((0.439216, 0.180392, 0.690196), 1, u'default'), 'Rn': ((0.258824, 0.509804, 0.588235), 1, u'default'), 'Rh': ((0.0392157, 0.490196, 0.54902), 1, u'default'), 'Be': ((0.760784, 1, 0), 1, u'default'), 'Ba': ((0, 0.788235, 0), 1, u'default'), 'Bh': ((0.878431, 0, 0.219608), 1, u'default'), 'Bi': ((0.619608, 0.309804, 0.709804), 1, u'default'), 'Bk': ((0.541176, 0.309804, 0.890196), 1, u'default'), 'Br': ((0.65098, 0.160784, 0.160784), 1, u'default'), 'H': ((1, 1, 1), 1, u'default'), 'P': ((1, 0.501961, 0), 1, u'default'), 'Os': ((0.14902, 0.4, 0.588235), 1, u'default'), 'Ge': ((0.4, 0.560784, 0.560784), 1, u'default'), 'Gd': ((0.270588, 1, 0.780392), 1, u'default'), 'Ga': ((0.760784, 0.560784, 0.560784), 1, u'default'), 'Pr': ((0.85098, 1, 0.780392), 1, u'default'), 'Pt': ((0.815686, 0.815686, 0.878431), 1, u'default'), 'Pu': ((0, 0.419608, 1), 1, u'default'),
'C': ((0.564706, 0.564706, 0.564706), 1, u'default'), 'Pb': ((0.341176, 0.34902, 0.380392), 1, u'default'), 'Pa': ((0, 0.631373, 1), 1, u'default'), 'Pd': ((0, 0.411765, 0.521569), 1, u'default'), 'Cd': ((1, 0.85098, 0.560784), 1, u'default'), 'Po': ((0.670588, 0.360784, 0), 1, u'default'), 'Pm': ((0.639216, 1, 0.780392), 1, u'default'), 'Hs': ((0.901961, 0, 0.180392), 1, u'default'), 'Ho': ((0, 1, 0.611765), 1, u'default'), 'Hf': ((0.301961, 0.760784, 1), 1, u'default'), 'Hg': ((0.721569, 0.721569, 0.815686), 1, u'default'), 'He': ((0.85098, 1, 1), 1, u'default'), 'Md': ((0.701961, 0.0509804, 0.65098), 1, u'default'), 'Mg': ((0.541176, 1, 0), 1, u'default'), 'K': ((0.560784, 0.25098, 0.831373), 1, u'default'), 'Mn': ((0.611765, 0.478431, 0.780392), 1, u'default'), 'O': ((1, 0.0509804, 0.0509804), 1, u'default'), 'Mt': ((0.921569, 0, 0.14902), 1, u'default'), 'S': ((1, 1, 0.188235), 1, u'default'), 'W': ((0.129412, 0.580392, 0.839216), 1, u'default'), 'sky blue': ((0.529412, 0.807843, 0.921569), 1, u'default'), 'Zn': ((0.490196, 0.501961, 0.690196), 1, u'default'),
'plum': ((0.866667, 0.627451, 0.866667), 1, u'default'), 'Eu': ((0.380392, 1, 0.780392), 1, u'default'), 'Zr': ((0.580392, 0.878431, 0.878431), 1, u'default'), 'Er': ((0, 0.901961, 0.458824), 1, u'default'), 'Ni': ((0.313725, 0.815686, 0.313725), 1, u'default'), 'No': ((0.741176, 0.0509804, 0.529412), 1, u'default'), 'Na': ((0.670588, 0.360784, 0.94902), 1, u'default'), 'Nb': ((0.45098, 0.760784, 0.788235), 1, u'default'), 'Nd': ((0.780392, 1, 0.780392), 1, u'default'), 'Ne': ((0.701961, 0.890196, 0.960784), 1, u'default'), 'Np': ((0, 0.501961, 1), 1, u'default'), 'Fr': ((0.258824, 0, 0.4), 1, u'default'), 'Fe': ((0.878431, 0.4, 0.2), 1, u'default'), 'Fm': ((0.701961, 0.121569, 0.729412), 1, u'default'), 'B': ((1, 0.709804, 0.709804), 1, u'default'), 'F': ((0.564706, 0.878431, 0.313725), 1, u'default'), 'Sr': ((0, 1, 0), 1, u'default'), 'N': ((0.188235, 0.313725, 0.972549), 1, u'default'), 'Kr': ((0.360784, 0.721569, 0.819608), 1, u'default'), 'Si': ((0.941176, 0.784314, 0.627451), 1, u'default'), 'Sn': ((0.4, 0.501961, 0.501961), 1, u'default'), 'Sm': ((0.560784, 1, 0.780392), 1, u'default'),
'V': ((0.65098, 0.65098, 0.670588), 1, u'default'), 'Sc': ((0.901961, 0.901961, 0.901961), 1, u'default'), 'Sb': ((0.619608, 0.388235, 0.709804), 1, u'default'), 'Sg': ((0.85098, 0, 0.270588), 1, u'default'), 'Se': ((1, 0.631373, 0), 1, u'default'), 'Co': ((0.941176, 0.564706, 0.627451), 1, u'default'), 'Cm': ((0.470588, 0.360784, 0.890196), 1, u'default'), 'Cl': ((0.121569, 0.941176, 0.121569), 1, u'default'), 'Ca': ((0.239216, 1, 0), 1, u'default'), 'Cf': ((0.631373, 0.211765, 0.831373), 1, u'default'), 'Ce': ((1, 1, 0.780392), 1, u'default'), 'Xe': ((0.258824, 0.619608, 0.690196), 1, u'default'), 'Tm': ((0, 0.831373, 0.321569), 1, u'default'), 'light green': ((0.564706, 0.933333, 0.564706), 1, u'default'), 'Cs': ((0.341176, 0.0901961, 0.560784), 1, u'default'), 'Cr': ((0.541176, 0.6, 0.780392), 1, u'default'), 'Cu': ((0.784314, 0.501961, 0.2), 1, u'default'), 'La': ((0.439216, 0.831373, 1), 1, u'default'), 'Li': ((0.8, 0.501961, 1), 1, u'default'), 'Tl': ((0.65098, 0.329412, 0.301961), 1, u'default'), 'Lu': ((0, 0.670588, 0.141176), 1, u'default'),
'Lr': ((0.780392, 0, 0.4), 1, u'default'), 'Th': ((0, 0.729412, 1), 1, u'default'), 'Ti': ((0.74902, 0.760784, 0.780392), 1, u'default'), 'tan': ((0.823529, 0.705882, 0.54902), 1, u'default'), 'Te': ((0.831373, 0.478431, 0), 1, u'default'), 'Tb': ((0.188235, 1, 0.780392), 1, u'default'), 'Tc': ((0.231373, 0.619608, 0.619608), 1, u'default'), 'Ta': ((0.301961, 0.65098, 1), 1, u'default'), 'Yb': ((0, 0.74902, 0.219608), 1, u'default'), 'Db': ((0.819608, 0, 0.309804), 1, u'default'), 'Dy': ((0.121569, 1, 0.780392), 1, u'default'), 'At': ((0.458824, 0.309804, 0.270588), 1, u'default'), 'I': ((0.580392, 0, 0.580392), 1, u'default'), 'U': ((0, 0.560784, 1), 1, u'default'), 'Y': ((0.580392, 1, 1), 1, u'default'), 'Ac': ((0.439216, 0.670588, 0.980392), 1, u'default'), 'Ag': ((0.752941, 0.752941, 0.752941), 1, u'default'), 'Ir': ((0.0901961, 0.329412, 0.529412), 1, u'default'), 'Am': ((0.329412, 0.360784, 0.94902), 1, u'default'), 'Al': ((0.74902, 0.65098, 0.65098), 1, u'default'), 'As': ((0.741176, 0.501961, 0.890196), 1, u'default'), 'Ar': ((0.501961, 0.819608, 0.890196), 1, u'default'),
'Au': ((1, 0.819608, 0.137255), 1, u'default'), 'Es': ((0.701961, 0.121569, 0.831373), 1, u'default'), 'In': ((0.65098, 0.458824, 0.45098), 1, u'default'), 'Mo': ((0.329412, 0.709804, 0.709804), 1, u'default')}
materials = {u'default': ((0.85, 0.85, 0.85), 30)}
pbInfo = {'category': [u'distance monitor'], 'bondInfo': [{'color': (0, None, {}), 'atoms': [], 'label': (0, None, {}), 'halfbond': (0, None, {}), 'labelColor': (0, None, {}), 'drawMode': (0, None, {}), 'display': (0, None, {})}], 'lineType': (1, 2, {}), 'color': (1, 6, {}), 'optional': {'fixedLabels': (True, False, (1, False, {}))}, 'display': (1, True, {}), 'showStubBonds': (1, False, {}), 'lineWidth': (1, 1, {}), 'stickScale': (1, 1, {}), 'id': [-2]}
modelAssociations = {}
colorInfo = (8, (u'green', (0, 1, 0, 1)), {(u'', (1, 1, 0, 1)): [3], (u'', (1, 0, 0, 1)): [4], (u'sky blue', (0.529412, 0.807843, 0.921569, 1)): [0], (u'plum', (0.866667, 0.627451, 0.866667, 1)): [1], (u'light green', (0.564706, 0.933333, 0.564706, 1)): [2], (u'', (0, 0.952381, 1, 1)): [5], (u'yellow', (1, 1, 0, 1)): [6]})
viewerInfo = {'cameraAttrs': {'center': (14.603, 89.716, 42.4525), 'fieldOfView': 21.047063176378, 'nearFar': (72.430564952483, 25.667731025121), 'ortho': False, 'eyeSeparation': 50.8, 'focal': 42.4525}, 'viewerAttrs': {'silhouetteColor': None, 'clipping': False, 'showSilhouette': False, 'showShadows': False, 'viewSize': 64.859737679711, 'labelsOnTop': True, 'depthCueRange': (0.5, 1), 'silhouetteWidth': 2, 'singleLayerTransparency': True, 'shadowTextureSize': 2048, 'backgroundImage': [None, 1, 2, 1, 0, 0], 'backgroundGradient': [('Chimera default', [(1, 1, 1, 1), (0, 0, 1, 1)], 1), 1, 0, 0], 'depthCue': True, 'highlight': 0, 'scaleFactor': 1.190519264642, 'angleDependentTransparency': True, 'backgroundMethod': 0}, 'viewerHL': 7, 'cameraMode': 'mono', 'detail': 1.5, 'viewerFog': None, 'viewerBG': None}
replyobj.status("Initializing session restore...", blankAfter=0,
secondary=True)
from SimpleSession.versions.v62 import expandSummary
init(dict(enumerate(expandSummary(colorInfo))))
replyobj.status("Restoring colors...", blankAfter=0,
secondary=True)
restoreColors(colors, materials)
replyobj.status("Restoring molecules...", blankAfter=0,
secondary=True)
restoreMolecules(molInfo, resInfo, atomInfo, bondInfo, crdInfo)
replyobj.status("Restoring surfaces...", blankAfter=0,
secondary=True)
restoreSurfaces(surfInfo)
replyobj.status("Restoring VRML models...", blankAfter=0,
secondary=True)
restoreVRML(vrmlInfo)
replyobj.status("Restoring pseudobond groups...", blankAfter=0,
secondary=True)
restorePseudoBondGroups(pbInfo)
replyobj.status("Restoring model associations...", blankAfter=0,
secondary=True)
restoreModelAssociations(modelAssociations)
replyobj.status("Restoring camera...", blankAfter=0,
secondary=True)
restoreViewer(viewerInfo)
try:
restoreCoreModels()
except:
reportRestoreError("Error restoring core models")
replyobj.status("Restoring extension info...", blankAfter=0,
secondary=True)
try:
import StructMeasure
from StructMeasure.DistMonitor import restoreDistances
registerAfterModelsCB(restoreDistances, 1)
except:
reportRestoreError("Error restoring distances in session")
def restoreMidasBase():
formattedPositions = {}
import Midas
Midas.restoreMidasBase(formattedPositions)
try:
restoreMidasBase()
except:
reportRestoreError('Error restoring Midas base state')
def restoreMidasText():
from Midas import midas_text
midas_text.aliases = {}
midas_text.userSurfCategories = {}
try:
restoreMidasText()
except:
reportRestoreError('Error restoring Midas text state')
geomData = {'AxisManager': {}, 'CentroidManager': {}, 'PlaneManager': {}}
try:
from StructMeasure.Geometry import geomManager
geomManager._restoreSession(geomData)
except:
reportRestoreError("Error restoring geometry objects in session")
def restoreSession_RibbonStyleEditor():
import SimpleSession
import RibbonStyleEditor
userScalings = []
userXSections = []
userResidueClasses = []
residueData = [(3, 'Chimera default', 'rounded', u'unknown'), (4, 'Chimera default', 'rounded', u'unknown'), (5, 'Chimera default', 'rounded', u'unknown')]
flags = RibbonStyleEditor.NucleicDefault1
SimpleSession.registerAfterModelsCB(RibbonStyleEditor.restoreState,
(userScalings, userXSections,
userResidueClasses, residueData, flags))
try:
restoreSession_RibbonStyleEditor()
except:
reportRestoreError("Error restoring RibbonStyleEditor state")
trPickle = 'gAJjQW5pbWF0ZS5UcmFuc2l0aW9ucwpUcmFuc2l0aW9ucwpxASmBcQJ9cQMoVQxjdXN0b21fc2NlbmVxBGNBbmltYXRlLlRyYW5zaXRpb24KVHJhbnNpdGlvbgpxBSmBcQZ9cQcoVQZmcmFtZXNxCEsBVQ1kaXNjcmV0ZUZyYW1lcQlLAVUKcHJvcGVydGllc3EKXXELVQNhbGxxDGFVBG5hbWVxDWgEVQRtb2RlcQ5VBmxpbmVhcnEPdWJVCGtleWZyYW1lcRBoBSmBcRF9cRIoaAhLFGgJSwFoCl1xE2gMYWgNaBBoDmgPdWJVBXNjZW5lcRRoBSmBcRV9cRYoaAhLAWgJSwFoCl1xF2gMYWgNaBRoDmgPdWJ1Yi4='
scPickle = 'gAJjQW5pbWF0ZS5TY2VuZXMKU2NlbmVzCnEBKYFxAn1xA1UHbWFwX2lkc3EEfXNiLg=='
kfPickle = 'gAJjQW5pbWF0ZS5LZXlmcmFtZXMKS2V5ZnJhbWVzCnEBKYFxAn1xA1UHZW50cmllc3EEXXEFc2Iu'
def restoreAnimation():
'A method to unpickle and restore animation objects'
# Scenes must be unpickled after restoring transitions, because each
# scene links to a 'scene' transition. Likewise, keyframes must be
# unpickled after restoring scenes, because each keyframe links to a scene.
# The unpickle process is left to the restore* functions, it's
# important that it doesn't happen prior to calling those functions.
import SimpleSession
from Animate.Session import restoreTransitions
from Animate.Session import restoreScenes
from Animate.Session import restoreKeyframes
SimpleSession.registerAfterModelsCB(restoreTransitions, trPickle)
SimpleSession.registerAfterModelsCB(restoreScenes, scPickle)
SimpleSession.registerAfterModelsCB(restoreKeyframes, kfPickle)
try:
restoreAnimation()
except:
reportRestoreError('Error in Animate.Session')
def restoreLightController():
import Lighting
Lighting._setFromParams({'ratio': 1.25, 'brightness': 1.16, 'material': [30.0, (0.85, 0.85, 0.85), 1.0], 'back': [(0.35740674433659325, 0.6604015517481454, -0.6604015517481455), (1.0, 1.0, 1.0), 0.0], 'mode': 'two-point', 'key': [(-0.35740674433659325, 0.6604015517481454, 0.6604015517481455), (1.0, 1.0, 1.0), 1.0], 'contrast': 0.83, 'fill': [(0.25056280708573153, 0.25056280708573153, 0.9351131265310293), (1.0, 1.0, 1.0), 0.0]})
try:
restoreLightController()
except:
reportRestoreError("Error restoring lighting parameters")
def restoreRemainder():
from SimpleSession.versions.v62 import restoreWindowSize, \
restoreOpenStates, restoreSelections, restoreFontInfo, \
restoreOpenModelsAttrs, restoreModelClip, restoreSilhouettes
curSelIds = []
savedSels = []
openModelsAttrs = { 'cofrMethod': 4 }
windowSize = (1920, 1096)
xformMap = {0: (((-0.43076895843878, 0.84411264441503, 0.31923650791259), 139.26044960081), (81.330245324059, 17.786246295259, 56.868896721571), True), 1: (((-0.43076895843878, 0.84411264441503, 0.31923650791259), 139.26044960081), (81.330245324059, 17.786246295259, 56.868896721571), True), 2: (((-0.43076895843878, 0.84411264441503, 0.31923650791259), 139.26044960081), (81.330245324059, 17.786246295259, 56.868896721571), True)}
fontInfo = {'face': ('Sans Serif', 'Normal', 16)}
clipPlaneInfo = {}
silhouettes = {0: True, 1: True, 2: True, 11713: True}
replyobj.status("Restoring window...", blankAfter=0,
secondary=True)
restoreWindowSize(windowSize)
replyobj.status("Restoring open states...", blankAfter=0,
secondary=True)
restoreOpenStates(xformMap)
replyobj.status("Restoring font info...", blankAfter=0,
secondary=True)
restoreFontInfo(fontInfo)
replyobj.status("Restoring selections...", blankAfter=0,
secondary=True)
restoreSelections(curSelIds, savedSels)
replyobj.status("Restoring openModel attributes...", blankAfter=0,
secondary=True)
restoreOpenModelsAttrs(openModelsAttrs)
replyobj.status("Restoring model clipping...", blankAfter=0,
secondary=True)
restoreModelClip(clipPlaneInfo)
replyobj.status("Restoring per-model silhouettes...", blankAfter=0,
secondary=True)
restoreSilhouettes(silhouettes)
replyobj.status("Restoring remaining extension info...", blankAfter=0,
secondary=True)
try:
restoreRemainder()
except:
reportRestoreError("Error restoring post-model state")
from SimpleSession.versions.v62 import makeAfterModelsCBs
makeAfterModelsCBs()
from SimpleSession.versions.v62 import endRestore
replyobj.status('Finishing restore...', blankAfter=0, secondary=True)
endRestore({})
replyobj.status('', secondary=True)
replyobj.status('Restore finished.')
|
[
"tisla003@odu.edu"
] |
tisla003@odu.edu
|
499d54707352d375b0249f2363e74f7d7f707d4c
|
7317d386b760a6a3db9bfa071c6c5a7243a5d4c2
|
/USA_COVID19.py
|
fcf3d2fbd17e113f7ddda8062e57206b5b9d665a
|
[] |
no_license
|
KKanda900/Covid_Insight
|
db0ec607e2bd3faa55b83e38e793ea198a7f61cd
|
dce7e8c55aee42623d6be84e45928b3d1a882e40
|
refs/heads/master
| 2023-02-22T06:01:07.082541
| 2021-01-19T03:39:47
| 2021-01-19T03:39:47
| 329,475,361
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,225
|
py
|
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import BayesianRidge
from sklearn.linear_model import Ridge
import datetime as dt
import Data as d
import os
def bayesian_prediction(state, days): # takes in argument for the number of days in future that theres going to be a increase
d.update()
pathname = d.find_file(state)
dataset = pd.read_csv(pathname)
dataset['date'] = pd.to_datetime(dataset['date'])
dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D')
X = dataset[['date_f']]
y = dataset[['cases']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
regressor = BayesianRidge()
regressor.fit(X_train, y_train)
X_prediction_array = X[-days:] # sample in the next 5 days
y_pred = regressor.predict(X_prediction_array)
return 'Using the Bayesian Model: In the next {} days in {}, these will be the positive cases {}'.format(days, state, y_pred)
def linear_prediction(state, days):
d.update()
pathname = d.find_file(state)
dataset = pd.read_csv(pathname)
dataset['date'] = pd.to_datetime(dataset['date'])
dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D')
X = dataset[['date_f']]
y = dataset[['cases']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
X_prediction_array = X[-days:] # sample in the next 5 days
y_pred = regressor.predict(X_prediction_array)
return 'Using the Linear Regression Model: In the next {} days in {}, these will be the positive cases {}'.format(days, state, y_pred)
def ridge_prediction(state, days): # takes in argument for the number of days in future that theres going to be a increase
d.update()
pathname = d.find_file(state)
dataset = pd.read_csv(pathname)
dataset['date'] = pd.to_datetime(dataset['date'])
dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D')
X = dataset[['date_f']]
y = dataset[['cases']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
regressor = Ridge()
regressor.fit(X_train, y_train)
X_prediction_array = X[-days:] # sample in the next 5 days
y_pred = regressor.predict(X_prediction_array)
return 'Using the Ridge Model: In the next {} days in {}, these will be the positive cases {}'.format(days, state, y_pred)
def get_rate_of_change(state): # takes in argument for the number of days in future that theres going to be a increase
d.update()
pathname = d.find_file(state)
dataset = pd.read_csv(pathname)
dataset['date'] = pd.to_datetime(dataset['date'])
dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D')
X = dataset[['date_f']]
y = dataset[['cases']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
regressor = BayesianRidge() # most accurate model prediction
regressor.fit(X_train, y_train)
return 'In {} the COVID-19 cases are increasing by {} daily'.format(state, regressor.intercept_)
def positive_case_update(state): # initials of the state you want
d.update()
pathname = d.find_file(state)
dataset = pd.read_csv(pathname)
latest_cases = dataset.iloc[-1] # dataset.iloc[] is a dataframe object that contains the columns of the csv in this case (date, cases)
return '{} positive cases on {}'.format(latest_cases.cases, latest_cases.date)
def train_test_graphs(): # linear regression model => should i make more?
d.update()
dataset = pd.read_csv('NJ_Data.csv')
dataset['date'] = pd.to_datetime(dataset['date'])
dataset['date_f'] = (dataset['date'] - dataset['date'].min()) / np.timedelta64(1,'D')
X = dataset[['date_f']]
y = dataset[['cases']]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=1/3, random_state=0)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
'''
Lets split the data into a training set and test set which:
1. the training set will help train the data
2. the test set will run test to test accuracy
3. using the combination of the two will help make predictions based on the linear regression line created
'''
# Training Set
viz_train = plt
viz_train.scatter(X_train, y_train, color='red')
viz_train.plot(X_train, regressor.predict(X_train), color='blue')
viz_train.title('Positive Cases (Training set)')
viz_train.xlabel('Date')
viz_train.ylabel('Case')
viz_train.show()
# Test Set
viz_test = plt
viz_test.scatter(X_test, y_test, color='red')
viz_test.plot(X_train, regressor.predict(X_train), color='blue')
viz_test.title('Positive Cases (Test set)')
viz_test.xlabel('Date')
viz_test.ylabel('Case')
viz_test.show()
if __name__ == "__main__":
num = cases_prediction('HI', 5)
print(num)
|
[
"kkanda900@gmail.com"
] |
kkanda900@gmail.com
|
1199528ac1386f543e6f07285d31d2c26cdf9b81
|
a9c5a1e0ab8427f249b2068cf93edffc8bd5c4de
|
/8 pics/8picsPvalue.py
|
c537fed3b8fac0ab5cd9080e7c0e3cc6af731eca
|
[] |
no_license
|
DianaAtlas/Anomaly-Detection
|
b79680a581c7922f9286827d30415e87d0100ce1
|
d3c3a899f195a1da899350ede79f1d5d00cbe6f6
|
refs/heads/main
| 2023-03-31T04:20:57.003247
| 2021-04-07T13:12:19
| 2021-04-07T13:12:19
| 354,071,310
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,726
|
py
|
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
import math
import scipy.stats as st
import pandas as pd
# ============================================================
# =================creating DATA==============================
# ============================================================
def manPvalue8(signal, baground, amp1):
precision = 500
indexv = []
for i in range(precision):
indexv.append(i)
indexv = np.array(indexv)
def gaussian_generator8(mu1, mu2, mu3, mu4, mu5, mu6, mu7, mu8, sigma, amp, bground):
result = 0.5*(amp*((stats.norm.pdf(indexv, mu1, sigma)) + stats.norm.pdf(indexv+1, mu1, sigma) +
(stats.norm.pdf(indexv, mu2, sigma)) + stats.norm.pdf(indexv+1, mu2, sigma) +
(stats.norm.pdf(indexv, mu3, sigma)) + stats.norm.pdf(indexv+1, mu3, sigma) +
(stats.norm.pdf(indexv, mu4, sigma)) + stats.norm.pdf(indexv+1, mu4, sigma) +
(stats.norm.pdf(indexv, mu5, sigma)) + stats.norm.pdf(indexv+1, mu5, sigma) +
(stats.norm.pdf(indexv, mu6, sigma)) + stats.norm.pdf(indexv+1, mu6, sigma) +
(stats.norm.pdf(indexv, mu7, sigma)) + stats.norm.pdf(indexv+1, mu7, sigma) +
(stats.norm.pdf(indexv, mu8, sigma)) + stats.norm.pdf(indexv+1, mu8, sigma))) + bground
return result
def fluctuation_manufacture(numofevents_1, bground):
np.array(numofevents_1)
data_si_bg = np.random.poisson(numofevents_1, np.array(numofevents_1).shape)
data_bg = np.random.poisson(1 * bground, np.array(numofevents_1).shape)
return data_si_bg, data_bg
def sum_all_values_over_manual(array, number):
value_returned = 0
for i in range(len(array)):
if array[i] >= number:
value_returned += 1
return value_returned
# ============================================================
# =================creating TRAINING data=====================
# ============================================================
baground = baground
mu2 = 30
mu3 = 90
Mu1 = 150
mu4 = 210
mu5 = 270
mu6 = 330
mu7 = 390
mu8 = 450
amp = amp1
sigma_training = signal
bground_training = np.zeros(precision) + baground
numofpredictions = 60000
normalization = 2 * math.sqrt(baground)
# ============================================================
# =================creating TEST data=========================
# ============================================================
gaussian_test = gaussian_generator8(Mu1, mu2, mu3, mu4, mu5, mu6, mu7, mu8, sigma_training, amp, bground_training)
from1 = int(Mu1 - 1.5*sigma_training)
to = int(Mu1 + 1.5*sigma_training)
from2 = int(mu2 - 1.5*sigma_training)
to2 = int(mu2 + 1.5*sigma_training)
from3 = int(mu3 - 1.5*sigma_training)
to3 = int(mu3 + 1.5*sigma_training)
from4 = int(mu4 - 1.5*sigma_training)
to4 = int(mu4 + 1.5*sigma_training)
from5 = int(mu5 - 1.5*sigma_training)
to5 = int(mu5 + 1.5*sigma_training)
from6 = int(mu6 - 1.5*sigma_training)
to6 = int(mu6 + 1.5*sigma_training)
from7 = int(mu7 - 1.5*sigma_training)
to7 = int(mu7 + 1.5*sigma_training)
from8 = int(mu8 - 1.5*sigma_training)
to8 = int(mu8 + 1.5*sigma_training)
gausaray = []
for _ in range(numofpredictions):
gausaray.append(gaussian_test)
aa, bb = fluctuation_manufacture(gausaray, baground)
aanorm = (np.array(aa) - baground) / normalization
bbnorm = (np.array(bb) - baground) / normalization
# manual_01 = (np.trapz(aanorm[:, from1:to], axis=1) + np.trapz(aanorm[:, from2:to2], axis=1)
# + np.trapz(aanorm[:, from3:to3], axis=1) + np.trapz(aanorm[:, from4:to4], axis=1)
# + np.trapz(aanorm[:, from5:to5], axis=1) + np.trapz(aanorm[:, from6:to6], axis=1)
# + np.trapz(aanorm[:, from7:to7], axis=1) + np.trapz(aanorm[:, from8:to8], axis=1))
#
# manual_00 = (np.trapz(bbnorm[:, from1:to]) + np.trapz(bbnorm[:, from2:to2])
# + np.trapz(bbnorm[:, from3:to3]) + np.trapz(bbnorm[:, from4:to4])
# + np.trapz(bbnorm[:, from5:to5]) + np.trapz(bbnorm[:, from6:to6])
# + np.trapz(bbnorm[:, from7:to7]) + np.trapz(bbnorm[:, from8:to8]))
manual_01 = np.trapz(aanorm[:, ])
manual_00 = np.trapz(bbnorm[:, ])
manualmedian_00 = np.median(manual_01)
manualsum_00 = sum_all_values_over_manual(manual_00, manualmedian_00)
print('\033[1m', 'manual calc', '\033[0m')
print('#of values after median manual', manualsum_00)
print('presantage', manualsum_00 / numofpredictions, '+-', math.sqrt(manualsum_00 / numofpredictions))
pvalue = manualsum_00 / numofpredictions
# print('z-score', abs(st.norm.ppf(pvalue)), 'sigma')
# return abs(st.norm.ppf(pvalue))
return pvalue
# ======== p value VS background 3 different sigma===============
# bg1222 = []
# pvalue1 = []
# pvalue2 = []
# pvalue3 = []
#
# bg = 20
# sigma1 = 3
# sigma2 = 5
# sigma3 = 10
# for i in range(100):
#
# bg = bg + 5
# bg1222.append(bg)
# pvalue1.append(manPvalue8(3, bg, 30))
# pvalue2.append(manPvalue8(5, bg, 30))
# pvalue3.append(manPvalue8(10, bg, 30))
#
#
# bg1222 = np.array(bg1222)
# pvalue1 = np.array(pvalue1)
# pvalue2 = np.array(pvalue2)
# pvalue3 = np.array(pvalue3)
#
# print(pvalue1)
# print(bg1222)
#
# plt.title('Sigma VS Background')
# plt.ylabel('Sigma')
# plt.xlabel('Background')
# plt.plot(bg1222, pvalue2, label='\u03C3=5')
# plt.plot(bg1222, pvalue3, label='\u03C3=10')
# plt.plot(bg1222, pvalue1, label='\u03C3=3')
# plt.legend()
# # plt.yscale('log')
# plt.grid()
# plt.show()
#
# df1 = pd.DataFrame([bg1222, pvalue1, pvalue2, pvalue3],
# index=['bg', 'sigma3', 'sigma5', 'sigma10'])
# df1.to_excel("8picmanbg.xlsx")
# =======p value VS signals amp ================
bg1222 = []
pvalue1 = []
pvalue2 = []
pvalue3 = []
amp = 0
for i in range(70):
bg1222.append(amp)
pvalue2.append(manPvalue8(5, 200, amp))
amp = amp + 1
bg1222 = np.array(bg1222)
pvalue1 = np.array(pvalue1)
pvalue2 = np.array(pvalue2)
pvalue3 = np.array(pvalue3)
plt.title('P-Value VS Signal Magnitude')
plt.ylabel('P-Value')
plt.yscale('log')
plt.xlabel('Signal Magnitude [Events/GeV]')
plt.plot(bg1222, pvalue2, label='\u03C3=5')
plt.legend()
plt.grid()
plt.show()
df1 = pd.DataFrame([bg1222, pvalue1, pvalue2, pvalue3],
index=['amp', 'sigma3', 'sigma5', 'sigma10'])
df1.to_excel("8pic_Naivefull.xlsx")
|
[
"atlasdian@gmail.com"
] |
atlasdian@gmail.com
|
22214c4cf02d9139ebf68302682f68b55190d51e
|
3a7adfdcf7a5048045c8e95a93369a1796cfd532
|
/conftest.py
|
377ddc7028f2964dd5cf5621a68dc74e7967e513
|
[
"BSD-3-Clause"
] |
permissive
|
theGreenJedi/nixpy
|
e06025077d5d224a7d051532ebfbd48845339c58
|
40b5ecdaa9b074c7bf73137d1a94cb84fcbae5be
|
refs/heads/master
| 2022-02-01T15:14:22.133157
| 2019-06-03T09:10:57
| 2019-06-03T09:10:57
| 197,896,640
| 1
| 0
| null | 2019-07-20T07:37:03
| 2019-07-20T07:37:02
| null |
UTF-8
|
Python
| false
| false
| 808
|
py
|
import pytest
import tempfile
from nixio.test.xcompat.compile import maketests
BINDIR = tempfile.mkdtemp(prefix="nixpy-tests-")
def pytest_addoption(parser):
parser.addoption("--nix-compat", action="store_true", default=False,
help=("Run nix compatibility tests "
"(requires NIX library)"))
@pytest.fixture
def bindir(request):
return BINDIR
def pytest_collection_modifyitems(config, items):
if config.getoption("--nix-compat"):
print("Compiling NIX compatibility tests")
maketests(BINDIR)
return
skip_compat = pytest.mark.skip(
reason="Use --nix-compat option to run compatibility tests"
)
for item in items:
if "compatibility" in item.keywords:
item.add_marker(skip_compat)
|
[
"achilleas.k@gmail.com"
] |
achilleas.k@gmail.com
|
f872923d34e36892434be17b6427b39bcc4f8677
|
fb746b30a02ca6226498acf9ac66c849d74bf684
|
/Data_Ingestor/streaming.py
|
296f220dcc5eeafd98922f38f4c4639bc4a319c0
|
[] |
no_license
|
miaozeyu/hackerjobnow
|
0d47eca65e4d9b9e936ce6d570a0d8d42801c4a8
|
7e7cf1fe5ede8075dae4b7c82428443b92ddef10
|
refs/heads/master
| 2022-12-09T22:04:15.014630
| 2019-04-26T15:13:11
| 2019-04-26T15:13:11
| 180,033,869
| 0
| 0
| null | 2022-12-08T05:00:47
| 2019-04-07T22:59:38
|
Python
|
UTF-8
|
Python
| false
| false
| 6,803
|
py
|
#!/usr/bin/env python
# coding: utf-8
# In[12]:
from flask import jsonify, make_response
import sys
sys.path.append("../") # go to parent dir
import tweepy
from tweepy import OAuthHandler, Stream, StreamListener
from Data_Ingestor.accessconfig import *
import json
import re
from time import sleep
from Data_Ingestor.twitter_rest_producer import tweetParser
from random import random
# 1. Create a class inheriting from StreamListener
# 2. Using that class create a Stream object
# 3. Connect to the Twitter API using the Stream.
def retrieve_authentication():
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_secret)
return auth
def makeJobpost(tweet):
# must match
def matchTitle(txt):
find = re.findall(
r"(software|data|bi|business intelligence|sales|solutions)\s?(engineer|developer|scientist|architect|consultant)",
txt, re.IGNORECASE)
if find:
find = [' '.join(tp) for tp in find]
return find
else:
return None
# preferable
def matchSkills(txt):
find = re.findall(r"python|sql|sqlalchmey|flask|pandas|etl|aws|backend|spark|streaming|jinja", txt,
re.IGNORECASE)
if find:
return list(set(find))
else:
return None
# optional
def matchLocation(txt):
find = re.findall(r"(new)\s?(york)|(new)\s?(jersey)|ny|nj|nyc|(jersey)\s?(city)|hoboken|brooklyn", txt,
re.IGNORECASE)
if find:
find = [' '.join(tp) for tp in find]
return find
else:
return None
# optional: even if it's not in text, it's okay
def matchFulltime(txt):
find = re.findall(r"full(\s|\-)?time", txt, re.IGNORECASE)
if find:
return find
else:
return None
created_at = tweet['created_at']
text = tweet['text']
hashtags = ''.join(tweet['hashtags'])
place = tweet['place']
coordinates = tweet['coordinates']
urls = tweet['urls']
find_title = matchTitle(text)
find_title_htag = matchTitle(hashtags)
find_skills = matchSkills(text)
find_skills_htag = matchSkills(hashtags)
find_city = matchLocation(text)
find_city_htag = matchLocation(hashtags)
find_type = matchFulltime(text)
find_type_htag = matchFulltime(hashtags)
jobpost = {
"city": None,
"company": None,
"date": None,
"job_title": None,
"job_type": None,
"links": None,
"technologies": None,
"text": None
}
jobpost['text'] = text
jobpost['date'] = created_at
if find_title or find_title_htag:
jobpost["job_title"] = ' '.join(find_title or find_title_htag)
if find_skills or find_skills_htag:
jobpost["technologies"] = ','.join(find_skills or find_skills_htag)
if find_city or find_city_htag or place or coordinates:
jobpost["city"] = ','.join(find_city or find_city_htag) or place or coordinates
if find_type or find_type_htag:
jobpost["job_type"] = ','.join(find_type or find_type_htag)
if urls:
jobpost["links"] = ', '.join(urls)
return jobpost
else:
return None
# In[42]:
class TweeterStreamListener(StreamListener):
def __init__(self, socketio):
print("TweeterStreamListener is intiated")
super().__init__()
self.socketio = socketio
def on_connect(self):
print("Successfully connected to the Twitter stream")
def on_data(self, data):
number = round(random() * 10, 3)
print(number)
print("I'm getting tweets")
all_data = json.loads(data)
tweet = tweetParser(all_data)
print(tweet)
try:
jobpost = makeJobpost(tweet)
if jobpost:
# data = {"jobpost": jobpost}
# response = make_response(jsonify(data), 200)
# print(jsonify(data))
#return response
#sendToFirehose(jobpost)
self.socketio.emit('newtweet', {'tweet': number}, namespace='/test')
except tweepy.TweepError as e:
self.log.error("Error when sending tweet: %s" % e)
def on_error(self, status_code):
print(status_code)
if status_code == 420:
return False
class UndefinedChildClass(Exception):
pass
class DataFlow():
def __init__(self):
print("initiated dataflow")
self.auth = retrieve_authentication()
@staticmethod
def factory(child):
print("factory")
if child == 'historical':
return HistoricalFlow()
if child == 'live':
return LiveFlow()
err = 'The provided child argument (' + child + ') is not supported'
raise UndefinedChildClass(err)
class HistoricalFlow(DataFlow):
def __init__(self):
print("initiated historical")
super().__init__()
self.api = tweepy.API(self.auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)
def start(self, socketio):
query = """-hour -senior -frontend -staff -principal -contract -lead
"data engineer" OR "data scientist" OR "software engineer" OR "software developer" OR "backend engineer" OR "python developer" OR flask
(hiring OR "looking for" OR opening OR job)"""
maxTweets = 10000000 # Some arbitrary large number
tweetsPerQry = 100 # this is the max the API permits
tweetCount = 0
while tweetCount < maxTweets:
try:
print("I'm trying to get historical tweets")
tweets = tweepy.Cursor(self.api.search, q=query, lang="en", geocode="40.730610,-73.935242,40.0mi").items(tweetsPerQry)
print('newsearch')
for tweet in tweets:
tweet = tweetParser(tweet._json)
socketio.emit('newtweet', {'tweet': tweet['text']}, namespace='/test')
sleep(3)
tweetCount += len(tweets)
print('currentTotalTweets: {}'.format(tweetCount))
except tweepy.TweepError as err:
print(err)
def stop(self):
print('stop')
class LiveFlow(DataFlow):
def __init__(self):
print("initiated live")
super().__init__()
self.stream = None
def start(self, socketio):
listener = TweeterStreamListener(socketio)
self.stream = tweepy.Stream(self.auth, listener)
self.stream.filter(languages=["en"])
def stop(self):
self.stream.disconnect()
|
[
"miaozeyu@gmail.com"
] |
miaozeyu@gmail.com
|
c7ebc6f32e1358ed20f23dc25b3df7d6a66daf88
|
4aeaca4c58858125e844aad1cd988182201b5120
|
/crane/files/timeHistoryParser.py
|
be957dd91e6668776b4c071a376eeffa2a646763
|
[] |
no_license
|
tkarna/crane
|
f18442a010af0909b7f5af9358cf9080ca1dd1e4
|
b8313d0373d8206685d81aadccc425e432c6a010
|
refs/heads/master
| 2020-05-21T23:39:07.707777
| 2017-11-16T15:58:14
| 2017-11-16T15:58:14
| 53,163,424
| 1
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,357
|
py
|
"""
Read SELFE time history (.th) files to a data container.
Jesse Lopez - 2016-04-15
"""
import datetime
import argparse
import numpy as np
from crane.data import timeArray
from crane.data import dataContainer
class thParser(object):
def __init__(self, filename, start_time):
self.filename = filename
self.start_date = start_time
self.time = None
self.data = None
def readFile(self):
"""Read time history file."""
th = np.loadtxt(self.filename)
self.time = timeArray.simulationToEpochTime(th[:, 0], self.start_date)
self.data = th[:, 1]
def genDataContainer(self, variable='variable', station='bvao',
depth='0', bracket='A', save=False):
"""Generate data container."""
x = y = z = 0
coordSys = ''
meta = {}
meta['tag'] = 'timeHistory'
meta['variable'] = variable
meta['location'] = station
meta['msldepth'] = depth
meta['bracket'] = bracket
dc = dataContainer.dataContainer.fromTimeSeries(
self.time, self.data, fieldNames=[variable],
x=x, y=y, z=z, timeFormat='epoch', coordSys=coordSys,
metaData=meta)
if save:
fname = './'+station+'_'+variable+'_'+'0'+'_'+self.start_date.strftime('%Y-%m-%d')+'.nc'
print fname
dc.saveAsNetCDF(fname)
return dc
def parseCommandLine():
parser = argparse.ArgumentParser(description='Read time history to dataContainer.')
parser.add_argument('filepath', type=str, help='Path to time history file.')
parser.add_argument('starttime', type=str, help='Start time of simulation YYYY-MM-DD')
parser.add_argument('variable', type=str, help='Variable name (e.g. - salinity, temp, turbidity)')
parser.add_argument('station', type=str, help='Station name (e.g. - saturn01, tpoin)')
parser.add_argument('depth', type=str, help='Station depth (e.g. - 0.1, 4.0)')
parser.add_argument('bracket', type=str, help='Bracket (e.g. - F, A, R)')
args = parser.parse_args()
st = datetime.datetime.strptime(args.starttime, '%Y-%m-%d')
th = thParser(args.filepath, st)
th.readFile()
th.genDataContainer(args.variable, args.station, args.depth, args.bracket, True)
if __name__ == '__main__':
parseCommandLine()
|
[
"tuomas.karna@gmail.com"
] |
tuomas.karna@gmail.com
|
7abf55677fdd5bfc466f4fc561c0487c4a3fda26
|
8f213f498bbd5a12aacdb57bd2921f11a336eb62
|
/test_shuzi.py
|
65fec5d71985b15d39c6c296efc6d50ee1e17ba2
|
[] |
no_license
|
xiaocaiji945/HogwartsHttp
|
dd81641a2e34044dd845d589b113c0d5af61cc0e
|
66294964f978da238a052e0184f78e4b15884212
|
refs/heads/master
| 2023-01-12T22:34:52.067503
| 2020-11-20T10:10:33
| 2020-11-20T10:10:33
| 296,506,180
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,471
|
py
|
arr = [20459440, 20458987, 20458733, 20458586, 20458284, 20458202, 20457860, 20457611, 20456391, 20455888, 20455269,
20454830, 20454212, 20454184, 20454146, 20453922, 20452542, 20450716, 20447814, 20438557, 20424174, 20419436,
20409217, 20394189, 20378130, 20356098, 20352091, 20343586, 20338069, 20337799, 20333280, 20318024, 20275819,
20269554, 20262684, 20258563, 20219905, 20142943, 20133957, 20121781, 20085324, 19987253, 19969031, 19942288,
19844122, 19804714, 19789399, 19770693, 19700226, 19576007, 19483542, 19425997, 19042165, 19000064, 18909725,
18904145, 18669822, 18565022, 18389987, 18259359, 18208953, 17988689, 17884456, 17790401, 17621170, 17553892,
17473537, 17466361, 17365278, 17328129, 17185953, 17152062, 17049913, 17002217, 16957514, 16924540, 16911050,
16644262, 16390849, 16120793, 15767106, 15712028, 15687846, 15649054, 15620747, 15559984, 15540739, 15525037,
15274479, 15188702, 15088029, 15005839, 14904846, 14711057, 14570473, 14493796, 14440953, 14434577, 14377384,
14222650, 14216684, 14164919, 14111535, 14089191, 13819282, 13717991, 13467012, 13272225, 13155286, 2904628,
2708180, 2495704, 2060841, 2025011, 2023169, 2007456, 1851034, 1338200, 1325433, 898261, 440324,440324,898261]
def test_same():
n = len(arr)
for i in range(0, n):
for j in range(i + 1, n):
if (arr[i] == arr[j]):
print(f'相同的数字:{arr[i]}')
|
[
"412278432@qq.com"
] |
412278432@qq.com
|
815fb4585091df66257a95e1e8b6fb45ebc6863f
|
fb65c39e3dffdc058fef85a58a43a3796aad09f4
|
/myweb/useroperations/models.py
|
963621c2ef221158f0792dc2338e930d5d72cfe7
|
[] |
no_license
|
goodjobig/personal_site
|
8e130577dfb072f55e1cf832151a3069c67a9640
|
e13c7de978f3a890d05fa8793621ec861c9bc883
|
refs/heads/master
| 2020-04-14T16:48:54.679691
| 2019-01-10T03:37:13
| 2019-01-10T03:37:13
| 163,962,182
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 837
|
py
|
from django.db import models
from django.contrib.auth.models import User
from blog.models import Blog
# Create your models here.
class UserProfile(models.Model):
user = models.OneToOneField(User,on_delete=models.CASCADE)
nickname = models.CharField(max_length=30,verbose_name='昵称')
photo = models.ImageField(upload_to='userImage/',default='userImage/default_photo.jpg')
collect = models.ManyToManyField(Blog,blank=True)
number = models.CharField(max_length=11)
class Meta:
verbose_name = '用户信息'
def __str__(self):
return self.nickname
# @property
# def get_username_or_nickname(self):
# if self.userprofile.nickname:
# return self.userprofile.nickname
# return self.username
# User.get_username_or_nickname = get_username_or_nickname
|
[
"283541784@qq.com"
] |
283541784@qq.com
|
8f7c4d3034f61a9ab811f38f93dc56ef056af395
|
3fb45a8d4760a3de6d2a666210b396e371b83e46
|
/PictoDedection/helpers/detect Camera.py
|
cc459331952c03df243b07b344a854558639e384
|
[] |
no_license
|
josh2joshi/pren2
|
d40ec0e577f8c6c99b1619ea9b9696d7672ecb28
|
6a6be66fd41705db5c65182c6089509775a811fe
|
refs/heads/main
| 2023-06-04T00:39:13.001923
| 2021-06-27T11:34:08
| 2021-06-27T11:34:08
| 380,166,034
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 107
|
py
|
import cv2 as cv
for x in range(10):
cap = cv.VideoCapture(x)
if cap.isOpened():
print(x)
|
[
"joshua.heller@conx.ch"
] |
joshua.heller@conx.ch
|
8272a86881ba02c1d2a978d26fea4bdf43312b44
|
58c6e5eb626c7993472c74d635bcda79260e1dcb
|
/article07.py
|
0fd3de0562d97f68ac6dd3fc71ed2dffd9bb546f
|
[] |
no_license
|
littlecoon/EffectivePython
|
8de8a531f8fc9a7ecabc0de999cbe84bcbe13906
|
a33ea90daefbf0f06450f13f0b2e88c87dee89e0
|
refs/heads/main
| 2023-03-12T12:32:33.008959
| 2021-02-28T09:00:14
| 2021-02-28T09:00:14
| 342,180,584
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 498
|
py
|
a = [1,2,3,4,5,6,7,8,9,10]
#squares = [x**2 for x in a]
squares = map(lambda x:x**2,a)
print(list(squares))
even_squares = [x**2 for x in a if x %2 == 0]
print(even_squares)
alt = map(lambda x:x**2,filter(lambda x:x%2 == 0,a))
assert even_squares == list(alt)
chile_ranks = {'ghost':1, 'habanero':2, 'cayenne':3}
rank_dict = {rank:name for name,rank in chile_ranks.items()} # 把字典反过来
chile_len_set = {len(name) for name in rank_dict.values()}
print(rank_dict)
print(chile_len_set)
|
[
"1261010110@qq.com"
] |
1261010110@qq.com
|
d39dbb85f0ea8a843010ed2ff417e14430ec8b04
|
ae381913c23385f004b82161624097645ba8c4c8
|
/Huaxian_eemd/projects/plot_decompositions.py
|
8dbd45db6556f91e1ce3f8e7adbb1107c6385152
|
[
"MIT"
] |
permissive
|
zjy8006/MonthlyRunoffForecastByAutoReg
|
aa37910fdc66276d0df9d30af6885209d4a4ebfc
|
661fcb5dcdfbbb2ec6861e1668a035b50e69f7c2
|
refs/heads/master
| 2020-12-12T05:25:48.768993
| 2020-08-20T07:21:12
| 2020-08-20T07:21:12
| 259,588,564
| 7
| 3
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 271
|
py
|
import pandas as pd
import os
root_path = os.path.dirname(os.path.abspath('__file__'))
import sys
sys.path.append(root_path)
from tools.plot_utils import plot_decompositions
signal = pd.read_csv(root_path+'/Huaxian_eemd/data/EEMD_TRAIN.csv')
plot_decompositions(signal)
|
[
"zuojianyi@outlook.com"
] |
zuojianyi@outlook.com
|
356818e7291c93fdbeb0b4e58bad4cb1e752aa41
|
55cb166b9d060d89d13848447a08a2b875e49e73
|
/CapitalCities/CapitalCities/CapitalCities.py
|
3d5962a73f828dde4f8e5270bb859adf640e0621
|
[] |
no_license
|
mandyfarrugia2001/FundamentalsOfScripting
|
e39153a5047167f51fdc56a95517d57a0c94eea7
|
adaff9b90affd5af2d7d68c11c883487f1b74574
|
refs/heads/master
| 2022-04-06T03:57:50.042737
| 2020-02-19T16:29:54
| 2020-02-19T16:29:54
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,364
|
py
|
#Importing built-in Python modules to be used in this program.
import random #To generate random country and capital city from the text file.
"""
These values represent the final score,
thus values change according to user's guesses.
"""
timesWon = 0
timesLost = 0
def returnListCountries():
"""
Filling list with countries and capital cities delimited by a dash.
The text file will then be populated with all elements in the list.
"""
countriesCities = ["Albania-Tirana", "Andorra-Andorra la Vella",
"Armenia-Yerevan", "Austria-Vienna",
"Azerbaijan-Baku", "Belarus-Minsk",
"Belgium-Brussels", "Bosnia and Herzegovina-Sarajevo",
"Bulgaria-Sofia", "Croatia-Zagreb",
"Cyprus-Nicosia", "Czech Republic-Prague",
"Denmark-Copenhagen", "Estonia-Tallinn",
"Finland-Helsinki", "France-Paris",
"Georgia-Tbilisi", "Germany-Berlin",
"Greece-Athens", "Hungary-Budapest",
"Iceland-Reykjavik", "Ireland-Dublin",
"Italy-Rome", "Kazakhstan-Astana",
"Kosovo-Pristina", "Latvia-Riga",
"Liechtenstein-Vaduz", "Lithuania-Vilnius",
"Luxembourg-Luxembourg city", "Macedonia (FYROM)-Skopje",
"Malta-Valletta", "Moldova-Chisinau", "Monaco-Monaco city",
"Montenegro-Podgorica", "Netherlands-Amsterdam",
"Norway-Oslo", "Poland-Warsaw", "Portugal-Lisbon",
"Romania-Bucharest", "Russia-Moscow",
"San Marino-San Marino city", "Serbia-Belgrade",
"Slovakia-Bratislava", "Spain-Madrid",
"Sweden-Stockholm", "Switzerland-Bern",
"Turkey-Ankara", "Ukraine-Kyiv",
"United Kingdom-London"]
#Return list to be used in populateTextFile function.
return countriesCities
"""
Accepts only one parameter (read/write rights accordingly).
In case of issues with loading the text files,
the author has taken care of handling I/O related exceptions.
"""
def accessFile(mode):
"""
By default, the try block should be executed,
it contains potentially erroneous code.
In case an exception arises, run the except block
to prevent the program from crashing.
"""
try:
#By default, we will only be using the text file created in populateTextField function.
textFile = open("countries.txt", mode)
return textFile
except IOError:
#Print a so-to-speak user-friendly error message.
print("Could not access file! Try again later.")
#Display the amount of times the user lost and won after all questions are answered.
def displayScore():
#f and {} embody string interpolation.
print(f"Total times won: {timesWon}\nTotal times lost: {timesLost}\n")
def generateQuiz():
"""
The scores are now accessible within generateQuiz()
as they have been declared as global.
The randomly generated country and capital city
has been retrieved from splitData().
The user will be asked to guess the capital city
of the country generated at random.
If the user's guess is correct, a message is displayed
and they are awarded one point. (increment timesWon by 1)
The author has taken input validation into consideration,
thus numeric input and blank spaces are penalized
as though they are incorrect answers.
Display a message and increment timesLost by 1.
Same applies for incorrect guesses.
"""
global timesWon
global timesLost
#Retrieve values from splitData function.
country, capitalCity = splitData()
#Prompt user to guess the capital city of the randomly generated country.
guessCapitalCity = input(f"What is the capital city of {country}?: ")
"""
Input validation stage:
1) If the input matches the capital city stored in its variable,
award user with one point and display a message.
(increment timesWon by 1)
2) If If the input contains numbers or input is blank,
increment timesLost by 1 and display a message.
Same applies for incorrect guesses.
"""
if guessCapitalCity == capitalCity:
print("Correct!\n\n")
timesWon += 1
elif guessCapitalCity.isdigit() or guessCapitalCity == "":
print("Numeric input and blank spaces are not allowed!", end='\n\n')
timesLost += 1
else:
print(f"Incorrect! The answer was {capitalCity}.", end='\n\n')
timesLost += 1
def splitData():
"""
Split the country and capital city.
Store each of them in their own variable.
Then return the two values for use in other functions.
"""
#Access the file created in populateTextFile.
file = accessFile("r").read().splitlines() #Read and split each line.
#Select a random line from the text file.
randomData = random.choice(file)
#Get the index representing the first occurrence of the dash.
delimiter = randomData.find('-')
#Get the country from the first character to the delimiter.
country = randomData[0:delimiter]
#Exclude the delimiter and get the remaining characters representing the capital city.
capitalCity = randomData[(delimiter + 1):]
#Return country and capitalCity for use in other functions.
return(country, capitalCity)
def populateTextFile():
#Prepare the text file for creation.
file = accessFile("w")
"""
Return the list from returnListCountries function.
Stored in a variable to avoid having to refer
to the function all the time.
"""
countriesCities = returnListCountries()
#Copy every element in the list to the text file.
for index in range(len(countriesCities)):
#Leave a blank line between one element and another.
file.write(countriesCities[index] + '\n')
#It is important to close I/O operations.
file.close()
#Call the populateTextFile within the main method.
populateTextFile() #Create the text file.
#Ask three questions.
for index in range(3):
generateQuiz()
#Display the score after all the questions are answered.
displayScore()
|
[
"56023961+mauren9401@users.noreply.github.com"
] |
56023961+mauren9401@users.noreply.github.com
|
04cbe077af6340cc04df22cf2ff03d306579a859
|
d7f1618d4269cd424ae6240aefa4046be6f764c3
|
/text/precommit.py
|
0d2d9e2c55d403a61a22409af57b9a06bd686b56
|
[] |
no_license
|
slin63/talon_community
|
15e12459324d01e2fdb8005cf359f409a4cca000
|
a9b56684605407435ea5d08867d416dc81e0c614
|
refs/heads/master
| 2021-07-11T19:26:06.074440
| 2020-08-04T16:44:40
| 2020-08-04T16:44:40
| 181,937,276
| 0
| 0
| null | 2019-04-17T17:19:32
| 2019-04-17T17:19:32
| null |
UTF-8
|
Python
| false
| false
| 2,455
|
py
|
from talon.voice import Key, press, Str, Context
from talon.webview import Webview
from talon import app, clip, cron, resource
from ..utils import parse_word
from datetime import datetime
ctx = Context("precommit")
pick_context = Context("precommitpick")
date = datetime.now().strftime("%m/%d/%Y")
CLIPBOARD_DEFAULT = ["prettier $(git diff --name-only --cached) --write"]
CLIPBOARD = CLIPBOARD_DEFAULT.copy()
webview = Webview()
css_template = """
<style type="text/css">
body {
padding: 0;
margin: 0;
font-size: 18px;
min-width: 600px;
}
td {
text-align: left;
margin: 0;
padding: 5px 10px;
}
h3 {
padding: 5px 0px;
}
table {
counter-reset: rowNumber;
}
table .count {
counter-increment: rowNumber;
}
.count td:first-child::after {
content: counter(rowNumber);
min-with: 1em;
margin-right: 0.5em;
}
.pick {
font-weight: normal;
font-style: italic;
font-family: Arial, Helvetica, sans-serif;
}
.cancel {
text-align: center;
}
</style>
"""
template = (
css_template
+ """
<div class="contents">
<h3>clipboard</h3>
<table>
{% for v in data %}
<tr class="count"><td class="pick">🔊 </td><td>{{ v[0:50] }}</td></tr>
{% endfor %}
<tr><td colspan="2" class="pick cancel">🔊 cancel</td></tr>
</table>
</div>
"""
)
def close_directories():
webview.hide()
pick_context.unload()
def set_selection(m):
with clip.capture() as sel:
press("cmd-c")
print("sel:", sel.get())
value = sel.get()
if value not in CLIPBOARD:
CLIPBOARD.append(value)
clip.set(value)
def make_selection(m):
cron.after("0s", close_directories)
words = m._words
print("CLIPBOARD:", CLIPBOARD)
d = None
if len(words) == 1:
d = int(parse_word(words[0]))
else:
d = int(parse_word(words[1]))
w = CLIPBOARD[d - 1]
Key("ctrl-c")(None)
Str(w)(None)
press("enter")()
def get_selection(m):
valid_indices = range(len(CLIPBOARD))
webview.render(template, data=CLIPBOARD)
webview.show()
keymap = {"(cancel | 0)": lambda x: close_directories()}
keymap.update(
{"[pick] %s" % (i + 1): lambda m: make_selection(m) for i in valid_indices}
)
pick_context.keymap(keymap)
pick_context.load()
def clear_clipboard(_):
global CLIPBOARD
CLIPBOARD = CLIPBOARD_DEFAULT.copy()
PREFIX = "(pre)"
keymap = {
f"{PREFIX} paste": get_selection,
}
ctx.keymap(keymap)
|
[
"sheanlin@granular.ag"
] |
sheanlin@granular.ag
|
c77fd07345b4fa49db9df43bb116aed6515d6331
|
84b08a60e49e702e51b8c3bd0c558fbd957e11ae
|
/AlgoLatestPrints/MLPerceptron.py
|
b872b52cb75df4afcda480bb4c40b39e466c1c69
|
[] |
no_license
|
akhalayly/GoldenBoy
|
787732656250bc52ad0076dca35f15abbd2f4f14
|
fb88b656525c3bc614a24b982acf4d1ae745aa8b
|
refs/heads/main
| 2023-02-06T02:17:53.197336
| 2020-12-28T20:07:14
| 2020-12-28T20:07:14
| 304,894,027
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,439
|
py
|
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import KFold
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import Positions_Traits as posT
import helperFunctions as hf
if __name__ == '__main__':
files = ["CAMS", "CBs", "CMs", "CDMs", "GKs", "LBs", "LMs", "RBs", "RMs",
"Strikers"]
for file in files:
dataset = pd.read_csv("Success_" + file + ".csv")
attrbs = []
attrbs_names = []
attrbs = attrbs + hf.roleTraitIndexesFinder(["Age"], dataset.columns, hf.year_2012)
attrbs = attrbs + hf.roleTraitIndexesFinder(posT.General_Info, dataset.columns, "")
attrbs = attrbs + hf.roleTraitIndexesFinder(posT.Positive_Traits, dataset.columns, hf.year_2012)
for role in posT.positionToTraits[file]:
attrbs = attrbs + hf.roleTraitIndexesFinder(role, dataset.columns, hf.year_2012)
attrbs = list(set(attrbs))
attrbs_names = list(set(attrbs_names))
X = dataset.iloc[:, attrbs].values.astype(float)
y = dataset.iloc[:, -1].values
X = hf.normalizeAge(hf.normalizeMarketValue(hf.normalizeCA(X, 1), -1, file), 0)
kf = KFold(n_splits=5)
splits = []
results = 0
for train, test in kf.split(X):
splits.append((train, test))
last_results = {
'relu': [],
'logistic': [],
'tanh': [],
'identity': []
}
for activation in ['relu', 'logistic', 'tanh', 'identity']:
results = [0] * 3
index = 0
for solver in ['lbfgs', 'adam', 'sgd']:
for train_index, test_index in splits:
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = MLPClassifier(activation=activation, solver=solver, max_iter=10000, alpha=1)
clf.fit(X_train, y_train)
pred_i = clf.predict(X_test)
results[index] += ((1 - np.mean(pred_i != y_test)) / splits.__len__())
index += 1
last_results[activation] = results
plt.figure(figsize=(12, 6))
plt.plot(['lbfgs', 'adam', 'sgd'], last_results['relu'], color='red', marker='o',
markerfacecolor='red', markersize=10)
plt.plot(['lbfgs', 'adam', 'sgd'], last_results['logistic'], color='blue', marker='o',
markerfacecolor='blue', markersize=10)
plt.plot(['lbfgs', 'adam', 'sgd'], last_results['tanh'], color='black', marker='o',
markerfacecolor='black', markersize=10)
plt.plot(['lbfgs', 'adam', 'sgd'], last_results['identity'], color='brown', marker='o',
markerfacecolor='brown', markersize=10)
plt.title('Accuracy Rate Multi-Layer Perceptron ' + file)
plt.xlabel('Solver')
plt.ylabel('Mean Accuracy')
plt.legend([str(i) for i in last_results.keys()])
plt.savefig("Results/MultiLayerPerceptron/Graph_" + file + ".png")
plt.show()
fig, ax = plt.subplots()
# hide axes
fig.patch.set_visible(False)
ax.axis('off')
ax.axis('tight')
for key in last_results.keys():
for idx in range(len(last_results[key])):
last_results[key][idx] = float("{:.4f}".format(last_results[key][idx]))
df = pd.DataFrame(last_results, columns=last_results.keys())
header = ax.table(cellText=[['']],
colLabels=['Activation'],
loc='bottom', bbox=[0, -0.025, 1.0, 0.15]
)
table = ax.table(cellText=df.values, rowLabels=['lbfgs', 'adam', 'sgd'], colLabels=df.columns,
colWidths=[0.3, 0.3, 0.3, 0.3, 0.3], loc='bottom', cellLoc='center',
rowColours=['r', 'r', 'r'],
colColours=['r', 'r', 'r', 'r'], bbox=[0, -0.35, 1.0, 0.4])
table.auto_set_font_size(False)
table.scale(1, 1.3)
table.set_fontsize(7)
table.add_cell(0, -1, width=0.4, height=0.090, text="Solver")
plt.figure(figsize=(20, 10))
fig.tight_layout()
fig.savefig("Results/MultiLayerPerceptron/" + file + ".png")
plt.show()
|
[
"noreply@github.com"
] |
noreply@github.com
|
6a337ebcad790f7341970c4a3e71d1686f6229c6
|
333b405c1775475ddfa9ed3f4fa05c06b4c2e3f2
|
/cv2/cvbackup/mycv_0.510464.py
|
c1b80110eb76fc4413a5cbbc9977af4cd86de47d
|
[] |
no_license
|
daxiongshu/network
|
b77d5bb73dd353537f7687e61855d982cbd34464
|
842a778d310410ae39e58925257a9e9960ef560a
|
refs/heads/master
| 2020-04-15T16:11:31.101188
| 2016-02-16T01:32:21
| 2016-02-16T01:32:21
| 51,798,576
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,405
|
py
|
from xgb_classifier import xgb_classifier
import pandas as pd
import numpy as np
import pickle
from sklearn.ensemble import AdaBoostClassifier,ExtraTreesClassifier,RandomForestRegressor
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import roc_auc_score, f1_score, log_loss, make_scorer
from sklearn.linear_model import SGDClassifier
from sklearn.svm import LinearSVC,SVC
from sklearn.cross_validation import cross_val_score, train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split,KFold,StratifiedKFold
from math import log, exp, sqrt,factorial
import numpy as np
from scipy import sparse
from sklearn.ensemble import RandomForestRegressor
from sklearn.externals.joblib import Memory
from sklearn.datasets import load_svmlight_file
def rmsle(y,yp):
return (np.mean((yp-y)**2))**0.5
def multiclass_log_loss(y_true, y_pred, eps=1e-15):
predictions = np.clip(y_pred, eps, 1 - eps)
# normalize row sums to 1
predictions /= predictions.sum(axis=1)[:, np.newaxis]
actual = np.zeros(y_pred.shape)
n_samples = actual.shape[0]
#y_true-=1
actual[np.arange(n_samples), y_true.astype(int)] = 1
vectsum = np.sum(actual * np.log(predictions))
loss = -1.0 / n_samples * vectsum
return loss
def new_clf_train_predict(X,y,Xt):
clf=single_model()
clf.fit(X,y)
return clf.predict_proba(Xt)
def cut(yp):
yp[yp<0]=0
yp[yp>7]=7
yp=yp.astype(int)
return yp
def kfold_cv(X_train, y_train,k):
kf = StratifiedKFold(y_train,n_folds=k)
xx=[]
zz=[]
ypred=np.zeros((y_train.shape[0],3))
for train_index, test_index in kf:
X_train_cv, X_test_cv = X_train[train_index,:],X_train[test_index,:]
y_train_cv, y_test_cv = y_train[train_index],y_train[test_index]
clf=xgb_classifier(eta=0.1,gamma=0,col=0.4,min_child_weight=1,depth=7,num_round=160)
y_pred=clf.multi(X_train_cv,y_train_cv,X_test_cv,3,y_test=y_test_cv)
xx.append(multiclass_log_loss(y_test_cv,y_pred))
print xx[-1]#,y_pred.shape,zz[-1]
ypred[test_index]=y_pred
print xx
print 'average:',np.mean(xx),'std',np.std(xx)
return ypred,np.mean(xx)
mem = Memory("./mycache")
@mem.cache
def get_data(name):
data = load_svmlight_file(name)
return data[0], data[1]
X, _ = get_data('../sparse/rebuild1.svm')
X1, _ =get_data('../sparse/rebuild2.svm')
X2, _ = get_data('../sparse/rebuild3.svm')
X3, _ =get_data('../sparse/rebuild4.svm')
X4, _ =get_data('../sparse/rebuild5.svm')
X5, _ =get_data('../sparse/rebuild6.svm')
xx=[]
xx.append(np.sum(X.todense(),axis=1))
xx.append(np.sum(X1.todense(),axis=1))
xx.append(np.sum(X2.todense(),axis=1))
xx.append(np.sum(X3.todense(),axis=1))
xx.append(np.sum(X4.todense(),axis=1))
xx.append(np.std(X.todense(),axis=1))
xx.append(np.std(X1.todense(),axis=1))
xx.append(np.std(X2.todense(),axis=1))
xx.append(np.std(X3.todense(),axis=1))
xx.append(np.std(X4.todense(),axis=1))
#xx.append(np.sum(sparse.hstack([X,X1,X2,X3,X4],format='csr').todense(),axis=1))
#xx.append(np.max(X.todense(),axis=1)-np.min(X.todense(),axis=1))
#xx.append(np.max(X1.todense(),axis=1)-np.min(X1.todense(),axis=1))
#xx.append(np.max(X2.todense(),axis=1)-np.min(X2.todense(),axis=1))
#xx.append(np.max(X3.todense(),axis=1)-np.min(X3.todense(),axis=1))
#xx.append(np.max(X4.todense(),axis=1)-np.min(X4.todense(),axis=1))
xx=np.hstack(xx)
X=sparse.hstack([X,X1,X2,X3,X4,xx,pickle.load(open('../explore/X2.p'))],format='csr').todense()
train=pd.read_csv('../explore/train1.csv')
idname='id'
label='fault_severity'
idx=train[idname].as_matrix()
y=np.array(train[label])
import pickle
X=np.hstack([X,train.drop([label,idname],axis=1).as_matrix()])
#X=np.hstack([X,train[['location','volume']].as_matrix()])
print X.shape, y.shape
from scipy.stats import pearsonr
xx=[]
for i in X.T:
score=pearsonr(np.array(i.T).ravel(),y)[0]
if np.abs(score)>1e-2:
xx.append(np.array(i.T).ravel())
X=np.array(xx).T
print X.shape, y.shape
yp,score=kfold_cv(X,y,4)
print X.shape, y.shape
print yp.shape
s=pd.DataFrame({idname:idx,'predict_0':yp[:,0],'predict_1':yp[:,1],'predict_2':yp[:,2],'real':y})
s.to_csv('va.csv',index=False)
import subprocess
cmd='cp mycv.py cvbackup/mycv_%f.py'%(score)
subprocess.call(cmd,shell=True)
cmd='cp va.csv cvbackup/va_%f.csv'%(score)
subprocess.call(cmd,shell=True)
|
[
"aixueer4ever@gmail.com"
] |
aixueer4ever@gmail.com
|
d711e028e5332f253d0de88ffe70a4eef5991499
|
bbdb856e9a0b96600668ac1f86d2ef009af74a41
|
/app/lib/HEM/centroid_peaks.py
|
3d91aaab0dd1b5d6cfea4d57b2c5a32483e1d776
|
[] |
no_license
|
jarosenb/UV_POSIT
|
ce68646c377f6565ab25e606ebf70b675a8baec7
|
7230cc47cad9fc476af11af3ded6db59685aada2
|
refs/heads/master
| 2020-06-27T10:49:44.042408
| 2018-02-12T23:58:43
| 2018-02-12T23:58:43
| 97,050,603
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,562
|
py
|
import math
def centroid_peaks(mz_array, intensity_array):
"""
Perform a Gauss fit to centroid the peaks for the property
:py:attr:`centroidedPeaks`
"""
tmp = []
print intensity_array
for pos, i in enumerate(intensity_array[:-1]):
if pos <= 1:
continue
if 0 < intensity_array[pos - 1] < i > intensity_array[pos + 1] > 0:
# local maximum ...
# if 827 <= mz_array[pos] <= 828:
# print("::",i,"@",mz_array[pos])
# print("Found maximum",i,"@",mz_array[pos],intensity_array[pos-1] ,'<' ,i ,"> ",intensity_array[pos+1] )
x1 = mz_array[pos - 1]
y1 = intensity_array[pos - 1]
x2 = mz_array[pos]
y2 = intensity_array[pos]
x3 = mz_array[pos + 1]
y3 = intensity_array[pos + 1]
if x2 - x1 > (x3 - x2) * 10 or (x2 - x1) * 10 < x3 - x2:
# no gauss fit if distance between mz values is too large
continue
if y3 == y1:
# i.e. a reprofiledSpec
# we start a bit closer to the mid point.
before = 3
after = 4
# while (not 0 < y1 < y2 > y3 > 0) and y1 == y3 and after < 10: #we dont want to go too far
# This used to be in here and I cannpt make sense out of it
#
while y1 == y3 and after < 10: # we dont want to go too far
if pos - before < 0:
lower_pos = 0
else:
lower_pos = pos - before
if pos + after >= len(mz_array):
upper_pos = len(mz_array) - 1
else:
upper_pos = pos + after
x1 = mz_array[lower_pos]
y1 = intensity_array[lower_pos]
x3 = mz_array[upper_pos]
y3 = intensity_array[upper_pos]
if before % 2 == 0:
after += 1
else:
before += 1
# if not (0 < y1 < y2 > y3 > 0):# or y1 == y3:
# # Then we wouldnt be in this loop
# #If we dont check this, there is a chance to apply gauss fit to a section
# #where there is no peak.
# continue
try:
doubleLog = math.log(y2 / y1) / math.log(y3 / y1)
mue = (doubleLog * (x1 * x1 - x3 * x3) - x1 * x1 + x2 * x2) / (
2 * (x2 - x1) - 2 * doubleLog * (x3 - x1))
cSquarred = (x2 * x2 - x1 * x1 - 2 * x2 * mue + 2 * x1 * mue) / (2 * math.log(y1 / y2))
A = y1 * math.exp((x1 - mue) * (x1 - mue) / (2 * cSquarred))
# if A > 1e20:
# print(mue, A, doubleLog, cSquarred)
# print(x1, "\t", y1)
# print(x2, "\t", y2)
# print(x3, "\t", y3)
# print()
except:
# doubleLog = math.log(y2 / y1) / math.log(y3 / y1)
# mue = (doubleLog * ( x1 * x1 - x3 * x3 ) - x1 * x1 + x2 * x2 ) / (2 * (x2 - x1) - 2 * doubleLog * (x3 - x1))
# cSquarred = ( x2*x2 - x1*x1 - 2*x2*mue + 2*x1*mue )/ ( 2* math.log(y1/y2 ))
# A = y1 * math.exp( (x1 - mue) * (x1 - mue) / ( 2 * cSquarred ) )
continue
tmp.append((mue, A))
# for mue, A in tmp:
# print(mue, "\t", A)
return tmp
|
[
"jake.rosenberg@utexas.edu"
] |
jake.rosenberg@utexas.edu
|
47c779bd08214c78b338335b09535b2076a65080
|
32e910718743cde564c5bdb042b5a3dfbf198fa8
|
/limbic/integrations/imdb.py
|
4dca4aa77c6838ffe9cc024dac762042ade2611a
|
[
"MIT"
] |
permissive
|
maesfahani/limbic
|
3735d9c89ce6c63c9179501e495972311d7337b1
|
c7436d5243ed5e2819b7a4acee046f396e75a234
|
refs/heads/master
| 2023-01-20T08:14:44.751136
| 2020-11-21T16:17:42
| 2020-11-21T16:17:42
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,269
|
py
|
import json
import os
import time
from collections import defaultdict
from typing import Any, Dict, List, Optional
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
_OMDB_API_KEY = os.environ['OMDB_API_KEY']
_OMDB_API_BASE_URL = 'http://www.omdbapi.com/'
_OMDB_API_WAIT_TIME = 0.3
_IMDB_BASE_URL = 'https://www.imdb.com/title/'
def get_imdb_data(show_imdb_id: str, num_seasons: int,
output_path: Optional[str]) -> Dict[int, List[Any]]:
"""
Given show_imdb_id and the number of seasons, get all metadata from IMDB, including
ratings, viewers, etc..
"""
seasons_episodes = _get_episodes_imdb_ids(show_imdb_id, num_seasons)
seasons_data = _get_imdb_data(seasons_episodes)
if output_path:
with open(output_path, 'w') as imdb_file:
json.dump(seasons_data, imdb_file)
return seasons_data
def _get_episodes_imdb_ids(show_imdb_id: str, seasons: int) -> Dict[int, List[str]]:
"""
Given a show imdb_id, gets all the IDs for the episodes of the show
"""
base_url = f'{_IMDB_BASE_URL}{show_imdb_id}/'
seasons_episodes: Dict[int, List[str]] = defaultdict(list)
for i in tqdm(range(1, seasons + 1)):
season_url = base_url + f'episodes?season={i}'
soup = BeautifulSoup(requests.get(season_url).content, 'lxml')
for element in soup.find_all('a'):
if 'ttep' in element['href'] and 'ttep_ep_tt' not in element['href'] and element.get(
'itemprop') == 'url':
seasons_episodes[i].append(element['href'].split('/')[2])
return seasons_episodes
def _get_imdb_data(seasons_episodes: Dict[int, List[str]]) -> Dict[int, List[Any]]:
"""
Using the OMDB API, get all episodes information given a
"""
seasons_data: Dict[int, List[Any]] = defaultdict(list)
for season, episodes in seasons_episodes.items():
for episode_id in episodes:
get_request = requests.get(
_OMDB_API_BASE_URL, params={
'apikey': _OMDB_API_KEY,
'i': episode_id
})
seasons_data[season].append(json.loads(get_request.content.decode('utf-8')))
time.sleep(_OMDB_API_WAIT_TIME)
return seasons_data
|
[
"g@zapship.com"
] |
g@zapship.com
|
a7ace6a20bcb3bff13acaebfd48d19888ddf1099
|
ff3cb8b03374645eccd2bffcd386479793f38c3c
|
/Clustering.py
|
6dddbbc7a8703e652e24392b8c4c430b4e2e32b5
|
[] |
no_license
|
ChunchunKumar/ML-DL
|
e39e6026aa2fc926d5f3136b46118593cfc87f2d
|
db06c967d69acb1f5c53a4b6669778d78ae696be
|
refs/heads/master
| 2021-05-05T02:59:35.360479
| 2018-04-08T00:05:07
| 2018-04-08T00:05:07
| 119,772,243
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,918
|
py
|
import matplotlib.pyplot as plt
import numpy as np
import xlrd as x
from scipy.stats import norm
from random import randint
def model(X1,X2,mean,Var):
n=mean.shape[0]
mult=norm(mean[0][0],var[0][0]).pdf(X1)*norm(mean[1][0],var[1][0]).pdf(X2)
return mult
file_location="E:/ML/Clustering/Data_KMean.xlsx"
work_book=x.open_workbook(file_location)
sheet=work_book.sheet_by_index(0)
a=np.array([[sheet.cell_value(r,c) for c in range(sheet.ncols)] for r in range(sheet.nrows)])
train=a.T
#plt.scatter(train[0,:],train[1,:])
def clustering(K,data):
mean = np.random.uniform(3, 6, (data.shape[0],K))
C = np.zeros((1, data.shape[1]))
for k in range(20):
for i in range(data.shape[1]):
min_index = 0
min = np.sum(np.square(data[:, i] - mean[:, 0]))
for j in range(K):
if (np.sum(np.square(data[:, i] - mean[:, j])) < min):
min = np.sum(np.square(data[:, i] - mean[:, j]))
min_index = j
C[0][i] = min_index
# print(C)
for i in range(K):
sum = np.zeros((data.shape[0], 1))
p = 0
for j in range(data.shape[1]):
if (C[0][j] == i):
sum[:, 0] = sum[:, 0] + data[:, j]
p = p + 1
if (p != 0):
mean[:, i] = sum[:, 0] / (p)
return C, mean
Error_K=np.zeros((1,10))
K=2
for u in range(10):
error_final = 10000
C_final = np.zeros((1, train.shape[1]))
mean_final = np.random.uniform(0, 20, (train.shape[0], K))
for i in range(20):
C, mean = clustering(K, train)
error = 0
for i in range(train.shape[1]):
error = error+np.sum(np.square(train[:, i] - mean[:, int(C[0][i])]))
error = error / train.shape[1]
if (error_final > error):
C_final = C
error_final = error
mean_final = mean
Error_K[0][u]=error_final
print(C_final)
print(error_final)
plot=np.zeros(train.shape)
for j in range(K):
plot = np.zeros(train.shape)
for l in range(train.shape[1]):
if (C[0][l] == j):
plot[:, l] = train[:, l]
plt.scatter(plot[0, :], plot[1, :], marker='*')
plt.scatter(mean[0, :], mean[1, :])
plt.title(K)
plt.show()
'''plot = np.zeros(train.shape)
for j in range(K):
plot = np.zeros(train.shape)
for l in range(train.shape[1]):
if (C_final[0][l] == j):
plot[:, l] = train[:, l]
plt.scatter(plot[0, :], plot[1, :], marker='*')
plt.scatter(mean_final[0, :], mean_final[1, :])
plt.show() '''
K=K+1
plt.scatter(np.linspace(2,11,10),Error_K)
plt.show()
|
[
"chunchunkuma01@gmail.com"
] |
chunchunkuma01@gmail.com
|
c6b283e81159a9fb6bf45114451caef761c95c9a
|
8d530e384f97d010f1d6d0a0f49ead48f9c90768
|
/TreaProject/dynamicForms/views.py
|
5327852e07af62c7f15fca054bfb6ffbf717ad9e
|
[
"Apache-2.0"
] |
permissive
|
trea-uy/django-survey
|
e805e27d258f4be2b29681d45acf594038ef7fdb
|
2a04be76b92fc42dbc9ec8a634f9eea25d49328c
|
refs/heads/master
| 2021-01-19T17:59:43.703774
| 2014-09-11T21:22:37
| 2014-09-11T21:22:37
| 23,546,400
| 0
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 102
|
py
|
from django.shortcuts import render
def index(request):
return render(request, 'index.html', [])
|
[
"federico@federico"
] |
federico@federico
|
bf7b00e36b31a0a37313b18848b1f49598da38fb
|
ce53487c613503926315611e135854ca072bbbb8
|
/Codewars/Disemvowel_Trolls.py
|
5f7eb0bc77762cac1ac09f0b84362ff6d72b6204
|
[] |
no_license
|
thequinn/Coding_Problems
|
8708ff30f51916c3ce29a608f6f34e5f020729ec
|
59e68780eef90f8a677abcd18ebbcef9e60b6272
|
refs/heads/master
| 2023-02-07T05:04:55.818652
| 2020-12-27T02:13:27
| 2020-12-27T02:13:27
| 205,428,717
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 63
|
py
|
def disemvowel(s):
return s.translate(None, 'aeiouAEIOU')
|
[
"annasun.usa@gmail.com"
] |
annasun.usa@gmail.com
|
df38200ba8f918671e616c6c8421dcbd97a60bcc
|
febf14390cc5548365077f0c72e3aac55e8d6bd5
|
/views/frame.py
|
92e4c7744937f702e21c84aa9fa7bb829c6f0cbb
|
[] |
no_license
|
new-rich/Software-engineering
|
b932a71150bb84d5b50e8a73c3e15cb002193a26
|
487aba2fe21d9a2ff529ce694d8f0126608f1f93
|
refs/heads/master
| 2022-04-18T21:22:32.066740
| 2020-04-06T08:01:36
| 2020-04-06T08:01:36
| 252,339,948
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 992
|
py
|
import wx
import wx.aui
from .editor import TextEditor
class frame(wx.Frame):
def __init__(self):
super().__init__(None, title='Editor',size=(800,600))
self.aui_manager = wx.aui.AuiManager(self,wx.aui.AUI_MGR_TRANSPARENT_HINT)
self.editor_panel = TextEditor(self)
self.aui_manager.AddPane(self.editor_panel, self._get_default_pane_info().CenterPane().Position(0).BestSize(400,-1))
self.aui_manager.GetArtProvider().SetMetric(wx.aui.AUI_DOCKART_SASH_SIZE,0)
self.aui_manager.Update()
#self.Maximize(True)
self._register_listeners()
def _get_default_pane_info(self):
return wx.aui.AuiPaneInfo().CaptionVisible(False).PaneBorder(False).CloseButton(False).PinButton(False).Gripper(
False)
def on_frame_closing(self, e):
self.aui_manager.UnInit()
del self.aui_manager
self.Destroy()
def _register_listeners(self):
self.Bind(wx.EVT_CLOSE, self.on_frame_closing)
|
[
"3220114556@qq.com"
] |
3220114556@qq.com
|
b9470a6364fcb617b3b2bbeb23ef97dce22221d7
|
de6fb3a55196b6bd36a4fda0e08ad658679fb7a1
|
/optin_manager/src/python/openflow/common/utils/formfields.py
|
adec249dc39015d89a6d299354718c9fd0f8e896
|
[
"BSD-3-Clause",
"Apache-2.0"
] |
permissive
|
dana-i2cat/felix
|
4a87af639e4c7db686bfa03f1ae4ce62711615e3
|
059ed2b3308bda2af5e1942dc9967e6573dd6a53
|
refs/heads/master
| 2021-01-02T23:12:43.840754
| 2016-02-04T10:04:24
| 2016-02-04T10:04:24
| 17,132,912
| 4
| 4
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 388
|
py
|
'''
Created on Jul 17, 2010
@author: jnaous
'''
from django import forms
from expedient.common.utils import validators
class MACAddressField(forms.CharField):
"""
A MAC Address form field.
"""
default_error_messages = {
'invalid': u'Enter a valid MAC address in "xx:xx:xx:xx:xx:xx" format.',
}
default_validators = [validators.validate_mac_address]
|
[
"jenkins@integration.localhost"
] |
jenkins@integration.localhost
|
7355b8d086777562985e5de5563d15a37060c3e1
|
940b69579fdd126d254020469bbe54e553f8d7ea
|
/tests/test_markdown_light.py
|
0721fce994eb753acb8fe43a962d73ad7bb3ca13
|
[
"MIT"
] |
permissive
|
nvtkaszpir/MarkdownLight
|
9edca79dc5fb513cfa6ab3aae52b5ab4e7360b91
|
38ad22267aa7b6327e39564f7c6c864104353e21
|
refs/heads/master
| 2021-01-18T10:45:31.864370
| 2015-03-27T15:51:00
| 2015-03-27T15:57:35
| 32,994,951
| 2
| 0
| null | 2015-03-27T15:48:46
| 2015-03-27T15:48:46
|
Python
|
UTF-8
|
Python
| false
| false
| 22,066
|
py
|
import syntax_test
class TestMarkdownLight(syntax_test.SyntaxTestCase):
def setUp(self):
super().setUp()
self.set_syntax_file("Packages/MarkdownLight/MarkdownLight.tmLanguage")
def check_default(self, patterns):
self.check_in_single_scope(patterns, 'text')
def test_simple_text(self):
self.set_text('A B C')
self.check_default('A B C')
def test_italic(self):
self.set_text('''
A *B* _C_ D
*E*
''')
self.check_eq_scope([ r'\*B\*', '_C_', r'\*E\*' ], 'markup.italic')
self.check_eq_scope(r'[\*_]', 'punctuation.definition')
self.check_default(list('AD '))
def test_bold(self):
self.set_text('''
A **B** __C__ D
**E**
''')
self.check_eq_scope([ r'\*\*B\*\*', r'__C__', r'\*\*E\*\*' ], 'markup.bold')
self.check_eq_scope(r'[\*_]+', 'punctuation.definition')
self.check_default(list('AD '))
def test_inline_markup_inside_inline_markup(self):
self.set_text('''
A *B **C** D* E
F **G *H* I** J
''')
self.check_eq_scope(r'\*B \*\*C\*\* D\*', 'markup.italic')
self.check_eq_scope(r'\*H\*', 'markup.italic')
self.check_eq_scope(r'\*\*C\*\*', 'markup.bold')
self.check_eq_scope(r'\*\*G \*H\* I\*\*', 'markup.bold')
self.check_eq_scope(r'\*+', 'punctuation.definition')
self.check_default(list('AEFJ'))
def test_bold_italic(self):
self.set_text('''
AA *__AB__* AC
BA _**BB**_ BC
CA **_CB_** CC
DA __*DB*__ DC
EA ***EB*** EC
FA ___FB___ FC
''')
self.check_eq_scope(r'\*__AB__\*', 'markup.italic')
self.check_eq_scope(r'_\*\*BB\*\*_', 'markup.italic')
self.check_eq_scope([ '_CB_', r'\*DB\*' ], 'markup.italic')
self.check_eq_scope([ '__AB__', r'\*\*BB\*\*' ], 'markup.bold')
self.check_eq_scope(r'\*\*_CB_\*\*', 'markup.bold')
self.check_eq_scope(r'__\*DB\*__', 'markup.bold')
self.check_eq_scope(r'\*+|_+', 'punctuation.definition')
self.check_eq_scope(r'\*\*\*EB\*\*\*', 'markup.bold')
self.check_eq_scope(r'\*\*\*EB\*\*\*', 'markup.italic')
self.check_eq_scope(r'___FB___', 'markup.bold')
self.check_eq_scope(r'___FB___', 'markup.italic')
self.check_default([ r'[A-Z]A ', r' [A-Z]C\n' ])
def test_multiline_markup_not_supported(self):
# Multiline inline markup is not supported due to
# limitations in syntax definition language.
self.set_text('''
A **B
C** D
E _F
G_ H
''')
self.check_default('.+')
def test_inline_markup_before_punctuation(self):
self.set_text('''
A *B*: *C*; *D*, *E*. *F*? G
K **L**: **M**; **N**, **O**. **P**? Q
''')
self.check_eq_scope([
r'\*B\*', r'\*C\*', r'\*D\*', r'\*E\*', r'\*F\*'
], 'markup.italic')
self.check_eq_scope([
r'\*\*L\*\*', r'\*\*M\*\*', r'\*\*N\*\*',
r'\*\*O\*\*', r'\*\*P\*\*'
], 'markup.bold')
self.check_eq_scope(r'\*+', 'punctuation.definition')
self.check_default(r'[AGKQ:;,\.?]')
def test_inline_markup_inside_quotes_and_brackets(self):
self.set_text('''
A "*B*" (*C*) '*D*' E
K "**L**" (**M**) '**N**' O
''')
self.check_eq_scope([ r'\*B\*', r'\*C\*', r'\*D\*' ], 'markup.italic')
self.check_eq_scope([ r'\*\*L\*\*', r'\*\*M\*\*', r'\*\*N\*\*' ], 'markup.bold')
self.check_eq_scope(r'\*+', 'punctuation.definition')
self.check_default(r'''[AEKQ"\(\)'\.]''')
def test_inline_markup_outside_quotes_and_brackets(self):
self.set_text('''
*"A"* *(B)* *'C'*
**"D"** **(E)** **'F'**
*"A";* *(B).* *'C':*
**"D"!** **(E)?** **'F',**
Z
''')
self.check_eq_scope([ r'\*"A"\*', r'\*\(B\)\*', r"\*'C'\*" ], 'markup.italic')
self.check_eq_scope([ r'\*\*"D"\*\*', r'\*\*\(E\)\*\*', r"\*\*'F'\*\*" ], 'markup.bold')
self.check_eq_scope([ r'\*"A";\*', r'\*\(B\)\.\*', r"\*'C':\*" ], 'markup.italic')
self.check_eq_scope([ r'\*\*"D"!\*\*', r'\*\*\(E\)\?\*\*', r"\*\*'F',\*\*" ], 'markup.bold')
self.check_default('Z')
def test_brackets_inside_inline_markup(self):
self.set_text('''
*A (B C)*: D
*(K)* **(L)**
''')
self.check_eq_scope([ r'\*A \(B C\)\*', r'\*\(K\)\*' ] , 'markup.italic')
self.check_eq_scope( r'\*\*\(L\)\*\*', 'markup.bold')
self.check_eq_scope(r'\*+', 'punctuation.definition')
self.check_default(r': D')
def test_inline_markup_combinations(self):
self.set_text('_A _ B_C D_E _ F_ *G* **H** <a>_I_</a>')
self.check_eq_scope([ '_A _ B_C D_E _ F_',
r'\*G\*', '_I_' ], 'markup.italic')
self.check_eq_scope(r'\*\*H\*\*', 'markup.bold')
def test_escaping_of_inline_punctuation(self):
self.set_text(r'A *\*B\** C **D\*** E')
self.check_eq_scope(r'\*\\\*B\\\*\*', 'markup.italic')
self.check_eq_scope(r'\*\*D\\\*\*\*', 'markup.bold')
self.check_default(list('ACE '))
def test_inline_markup_does_not_work_inside_words(self):
self.set_text('A_B C_D_E')
self.check_default('.+')
def test_inline_markup_does_not_work_without_text(self):
self.set_text('''
A ____ B
''')
self.check_default('^.+$')
def test_valid_ampersands(self):
self.set_text('''
&
&&
A & B
A && B
& A &B && C &&D E& F&&
&G;
''')
self.check_no_scope('^.+$', 'invalid')
def test_valid_brackets(self):
self.set_text('''
<
<<
A < B
A << B
A<
A<<
''')
self.check_no_scope('^.+$', 'invalid')
def test_headings(self):
self.set_text('''
# A
## B
### C
#### D
##### E
###### F
G
#K
##L#
### M ##
#### N ###########
O
''')
self.check_eq_scope(list('ABCDEFKLMN'), 'entity.name.section')
self.check_in_scope(list('ABCDEFKLMN# '), 'markup.heading')
self.check_eq_scope(r'#+', 'punctuation.definition')
self.check_default(list('GO'))
def test_setext_headings(self):
self.set_text('''
A
===
B
---
C
D
=======
E
F
-------
Z
''')
self.check_eq_scope('=+', 'markup.heading.1')
self.check_eq_scope('-+', 'markup.heading.2')
self.check_default(r'\w+')
def test_not_setext_headings(self):
self.set_text('''
- A
===
> B
---
C
=======
D
--
E
- - -
-------
-------
========
Z
''')
self.check_no_scope('.+', 'markup.heading')
def test_inline_markup_inside_headings(self):
self.set_text('''
#_A_
## B _C_
### D _E_ F
#### K _L M_ N #
Z
''')
self.check_eq_scope([
'_A_', 'B _C_', 'D _E_ F', 'K _L M_ N'
], 'entity.name.section')
self.check_in_scope(list('ABCDEFKLMN#_ '), 'markup.heading')
self.check_eq_scope([ '_A_', '_C_', '_E_', '_L M_' ], 'markup.italic')
self.check_eq_scope(r'#+', 'punctuation.definition')
self.check_default(r'Z')
def test_fenced_paragraph(self):
self.set_text('''
K
```
A
```
L
''')
self.check_eq_scope(r'```\nA\n```\n', 'markup.raw.block.fenced')
self.check_eq_scope('`+', 'punctuation.definition')
self.check_default([ r'K\n\n', r'\nL\n' ])
def test_fenced_block_inside_paragraph(self):
self.set_text('''
K
```
A
```
L
''')
self.check_eq_scope(r'```\nA\n```\n', 'markup.raw.block.fenced')
self.check_eq_scope('`+', 'punctuation.definition')
self.check_default([ r'\nK\n', r'L\n\n' ])
def test_syntax_highlighting_inside_fenced_blocks(self):
self.set_text('''
``` c++
int x = 123;
```
```python
def g():
return 567
```
''')
self.check_eq_scope([ 'int', 'def' ], 'storage.type')
self.check_eq_scope([ '123', '567' ], 'constant.numeric')
self.check_eq_scope('g', 'entity.name')
self.check_eq_scope('return', 'keyword.control')
def test_indented_raw_blocks(self):
self.set_text('''
A
B
C
''')
self.check_eq_scope(r' B\n', 'markup.raw.block')
self.check_default([ r'\nA\n\n', r'\nC\n' ])
def test_multiline_indented_raw_blocks(self):
self.set_text('''
A
B
''')
self.check_eq_scope(r' A\n B\n', 'markup.raw.block')
def test_indented_raw_blocks_glued_to_text(self):
self.set_text('''
A
B
C
D
''')
self.check_eq_scope(r' C\n', 'markup.raw.block')
self.check_default([ r'\nA\n B\n\n', r'D\n' ])
def test_blank_line_is_not_indented_raw_block(self):
self.set_text('\n\n \n\n')
self.check_default(r'\n[ ]+\n')
def test_inline_raw_text(self):
self.set_text('''
A `B` C
D`E`F
K `L **M` N** O
''')
self.check_eq_scope(list('BE') + [ r'L \*\*M' ], 'markup.raw.inline.content')
self.check_eq_scope('`', 'punctuation.definition')
self.check_default(list('ACDFK') + [ r' N\*\* O' ])
def test_incomplete_or_multiline_inline_raw_text(self):
self.set_text('''
A `B
C` D
''')
self.check_default('.+')
def test_multiple_backquotes_as_inline_raw_delimiters(self):
self.set_text('''
``A``
```B``
``C```
''')
self.check_eq_scope(list('AC'), 'markup.raw.inline.content')
self.check_eq_scope('`B', 'markup.raw.inline.content')
self.check_eq_scope([ r'^``', r'(?<=\w)``' ], 'punctuation.definition')
self.check_default([ r'(?<=C``)`', r'\n' ])
def test_inline_raw_delimiters_do_not_start_fenced_block(self):
self.set_text('''
```A```
B
''')
self.check_eq_scope('```A```', 'markup.raw.inline.markdown')
self.check_eq_scope('A', 'markup.raw.inline.content')
self.check_eq_scope('```', 'punctuation.definition')
self.check_default(r'B')
def test_quoted_text_alone(self):
self.set_text('>A\n')
self.check_eq_scope(r'>A\n', 'markup.quote')
self.check_eq_scope(r'>', 'punctuation.definition')
def test_one_line_quoted_block(self):
self.set_text('''
>A
B
''')
self.check_eq_scope(r'>A\n', 'markup.quote')
self.check_eq_scope(r'>', 'punctuation.definition')
self.check_default(r'\nB\n')
def test_type_1_multiline_quoted_block(self):
self.set_text('''
>A
B
C
''')
self.check_eq_scope(r'>A\nB\n', 'markup.quote')
self.check_eq_scope(r'>', 'punctuation.definition')
self.check_default(r'\nC\n')
def test_type_2_multiline_quoted_block(self):
self.set_text('''
>A
>B
C
''')
self.check_eq_scope(r'>A\n>B\n', 'markup.quote')
self.check_eq_scope(r'>', 'punctuation.definition')
self.check_default(r'\nC\n')
def test_quoted_block_inside_paragraph(self):
self.set_text('''
A
>B
C
''')
self.check_eq_scope(r'>B\n', 'markup.quote')
self.check_default([ r'\nA\n', r'\nC\n' ])
def test_spaces_before_and_after_quote_signs(self):
self.set_text('''
> A
> B
> C
D
''')
self.check_eq_scope(r' > A\n {2}> {2}B\n {3}> {3}C\n', 'markup.quote')
self.check_eq_scope(r'>', 'punctuation.definition')
self.check_default(r'\nD\n')
def test_inline_markup_inside_quoted_text(self):
self.set_text('''
> `A`
> _B_
> **C**
''')
self.check_eq_scope('`A`', 'markup.raw.inline.markdown')
self.check_eq_scope('_B_', 'markup.italic')
self.check_eq_scope(r'\*\*C\*\*', 'markup.bold')
def test_list_item_alone(self):
self.set_text(
'''- A
''')
self.check_eq_scope(r'- A\n', 'meta.paragraph.list')
self.check_eq_scope(r'-', 'punctuation.definition')
def test_multiline_list(self):
self.set_text('''
- A
- B
C
''')
self.check_eq_scope(r'- A\n- B\n', 'meta.paragraph.list')
self.check_eq_scope(r'-', 'punctuation.definition')
self.check_default(r'\nC\n')
def test_different_types_of_unnumbered_list_bullets(self):
self.set_text('''
- A
+ B
* C
D
''')
self.check_eq_scope(r'- A\n\+ B\n\* C\n', 'meta.paragraph.list')
self.check_eq_scope([ r'\+', r'\*', '-' ], 'punctuation.definition')
self.check_default(r'D')
def test_numbered_list(self):
self.set_text('''
0. A
1. B
12345. C
D
''')
self.check_eq_scope(r'0\. A\n1\. B\n\d+\. C\n', 'meta.paragraph.list')
self.check_eq_scope([ r'0\.', r'1\.', '12345\.' ], 'punctuation.definition')
self.check_default(r'D')
def test_nested_lists(self):
self.set_text('''
- A
* B
+ C
1. D
2. E
Z
''')
self.check_eq_scope(r'- A\n \* B\n \+ C\n +1\. D\n2\. E\n', 'meta.paragraph.list')
self.check_eq_scope([ '-', r'\*', r'\+', r'1\.', r'2\.' ], 'punctuation.definition')
self.check_default('Z')
def test_spaces_after_bullet(self):
self.set_text('''
-A
- B
- C
Z
''')
self.check_eq_scope(r'- B\n- +C\n', 'meta.paragraph.list')
self.check_eq_scope([ r'-(?= B)', r'-(?= +C)' ], 'punctuation.definition')
self.check_default('Z')
def test_list_inside_paragraph(self):
self.set_text('''
A
- B
''')
self.check_eq_scope(r'- B\n', 'meta.paragraph.list')
self.check_default(r'\nA\n')
def test_inline_markup_inside_list_items(self):
self.set_text('''
- `A`
- _B_
- **C**
''')
self.check_in_scope(r'-.*$\n', 'meta.paragraph.list')
self.check_eq_scope('`A`', 'markup.raw.inline.markdown')
self.check_eq_scope('_B_', 'markup.italic')
self.check_eq_scope(r'\*\*C\*\*', 'markup.bold')
def test_multiline_list_items(self):
self.set_text('''
- A
B
- C
D
Z
''')
self.check_eq_scope(r' - A\n B\n - C\nD\n', 'meta.paragraph.list')
self.check_default('Z')
def test_multiline_list_item_with_paragraph(self):
self.set_text('''
- A
B
C
- D
E
F
Z
''')
self.check_eq_scope(r'- A\n', 'meta.paragraph.list')
self.check_eq_scope(r' B\nC\n- D\n', 'meta.paragraph.list')
self.check_eq_scope(r' E\nF\n', 'meta.paragraph.list')
self.check_default('Z')
def test_4_spaces_in_multiline_list_item(self):
self.set_text('''
- A
B
C
- D
E
F
Z
''')
self.check_eq_scope(r'- A\n {4}B\n {4}C\n', 'meta.paragraph.list')
self.check_eq_scope(r'- D\n', 'meta.paragraph.list')
self.check_eq_scope(r' {4}E\n {4}F\n', 'meta.paragraph.list')
self.check_default('Z')
def test_4_spaces_before_nested_list_items(self):
self.set_text('''
- A
- B
- C
Z
''')
self.check_eq_scope(r'- A\n {4}- B\n {8}- C\n', 'meta.paragraph.list')
self.check_default('Z')
def test_fenced_block_is_not_part_of_a_list_item(self):
self.set_text('''
- A
```
B
```
Z
''')
self.check_eq_scope(r'- A\n', 'meta.paragraph.list')
self.check_eq_scope(r'```\nB\b\n```\n', 'markup.raw.block.fenced')
self.check_default('Z')
def test_inline_links(self):
self.set_text('''
[A](B)
[C] (D)
[E](F "G")

![C] (D)

Z
''')
self.check_eq_scope([
r'^\[A\]\(B\)',
r'^\[C\]\s+\(D\)',
r'^\[E\]\(F "G"\)'
], 'meta.link.inline')
self.check_eq_scope([
r'^!\[A\]\(B\)',
r'^!\[C\]\s+\(D\)',
r'^!\[E\]\(F "G"\)'
], 'meta.image.inline')
self.check_eq_scope(list('ACE'), 'string.other.link.title')
self.check_eq_scope(list('BDF'), 'markup.underline.link')
self.check_eq_scope('G', 'string.other.link.description.title')
self.check_eq_scope([ r'!', r'\[', r'\]' ], 'punctuation.definition')
self.check_default('Z')
def test_reference_links(self):
self.set_text('''
[A][B]
[C] [D]
![E][F]
![G] [H]
Z
''')
self.check_eq_scope(r'\[A\]\[B\]', 'meta.link.reference')
self.check_eq_scope(r'\[C\]\s+\[D\]', 'meta.link.reference')
self.check_eq_scope(r'!\[E\]\[F\]', 'meta.image.reference')
self.check_eq_scope(r'!\[G\]\s+\[H\]', 'meta.image.reference')
self.check_eq_scope(list('ACEG'), 'string.other.link.title')
self.check_eq_scope(list('BDFH'), 'constant.other.reference.link')
self.check_eq_scope([ r'!', r'\[', r'\]' ], 'punctuation.definition')
self.check_default('Z')
def test_implicit_links(self):
self.set_text('''
[A][]
[B] []
![C][]
![D] []
Z
''')
self.check_eq_scope([ r'\[A\]\[\]', r'\[B\] \[\]' ],
'meta.link.reference')
self.check_eq_scope([ r'!\[C\]\[\]', r'!\[D\] \[\]' ],
'meta.image.reference')
self.check_eq_scope(list('ABCD'), 'constant.other.reference.link')
self.check_eq_scope(r'[!\[\]]', 'punctuation.definition')
self.check_default('Z')
def test_multiline_links_not_supported(self):
self.set_text('''
[A
B](C)
[D
E][F]

![D
E][F]
''')
self.check_default('.+')
def test_inline_markup_inside_links(self):
self.set_text('''
[__A__](B)
[_C_][D]

![_G_][H]
Z
''')
self.check_eq_scope(r'\[__A__\]\(B\)', 'meta.link.inline')
self.check_eq_scope(r'\[_C_\]\[D\]', 'meta.link.reference')
self.check_eq_scope(r'!\[__E__\]\(F\)', 'meta.image.inline')
self.check_eq_scope(r'!\[_G_\]\[H\]', 'meta.image.reference')
self.check_eq_scope([ '__A__', '__E__' ], 'markup.bold')
self.check_eq_scope([ '_C_', '_G_' ], 'markup.italic')
self.check_default('Z')
def test_inline_markup_outside_links(self):
self.set_text('''
**[A](X)**
__[B][X]__
**
_![D][X]_
Z
''')
self.check_eq_scope(r'\*\*\[A\]\(X\)\*\*', 'markup.bold')
self.check_eq_scope(r'__\[B\]\[X\]__', 'markup.bold')
self.check_eq_scope(r'\*!\[C\]\(X\)\*', 'markup.italic')
self.check_eq_scope(r'_!\[D\]\[X\]_', 'markup.italic')
self.check_default('Z')
def test_references(self):
self.set_text('''
[A]: B "C"
[D]:<E> 'F'
[K]: L (M)
[N]: O
Z
''')
self.check_eq_scope(r'\[.*?(?=\s*$)', 'meta.link.reference.def')
self.check_eq_scope(r'''[\[\]:'"()]''', 'punctuation')
self.check_eq_scope(list('ADKN'), 'constant.other.reference.link')
self.check_eq_scope(list('BELO'), 'markup.underline.link')
self.check_eq_scope(list('CFM'), 'string.other.link.description.title')
self.check_default('Z')
def test_supported_urls(self):
self.set_text('''
http://A.B
https://C.D
ftp://E.F
http://H.I.J
http://K.L/
http://M.N/O?P=Q&R=S
http://Q.W:123
http://Q.W.E:123/
Z
''')
self.check_eq_scope(r'^.+://.+$', 'markup.underline.link')
self.check_eq_scope(r'^.+://.+$', 'meta.link.inet')
self.check_default('Z')
def test_unsupported_urls(self):
self.set_text('''
http://A
http://A:80
http://A:80.C
ssh://B.C
http://D/E
http://A?B.C
''')
self.check_default('.+')
def test_urls_in_brackes(self):
self.set_text('''
<http://A.B>
<https://C.D>
<ftp://E.F>
<http://H.I.J>
<http://K.L/>
<http://M.N/O?P=Q&R=S>
<http://Q.W:123>
<http://Q.W.E:123/>
Z
''')
self.check_eq_scope(r'http://A\.B', 'markup.underline.link')
self.check_eq_scope(r'^.+://.+$', 'meta.link.inet')
self.check_eq_scope(r'[<>]', 'punctuation.definition')
self.check_default('Z')
def test_emails(self):
self.set_text('''
<A@B.C>
<mailto:D@E.F>
O@P.Q
mailto:R@S.T
Z
''')
self.check_eq_scope(r'A@B.C', 'markup.underline.link')
self.check_eq_scope(r'mailto:R@S.T', 'markup.underline.link')
self.check_eq_scope(r'[^\s@]+@\S+', 'meta.link.email')
self.check_eq_scope(r'[<>]', 'punctuation.definition')
self.check_default('Z')
def test_strikethrough(self):
self.set_text('''
A ~~B~~ ~~C D~~ E
''')
self.check_eq_scope([ '~~B~~', '~~C D~~' ], 'markup.strikethrough')
self.check_eq_scope('~~', 'punctuation.definition.strikethrough')
self.check_default(list('AE'))
def test_unsupported_strikethrough(self):
self.set_text('''
~~A
B~~
~~ C~~
~~D ~~
E~~F~~
''')
self.check_default('.+')
def test_strikethrough_with_bold_italic(self):
self.set_text('''
*__~~A~~__*
*~~__B__~~*
~~*__C__*~~
___~~D~~___
~~___E___~~
Z
''')
self.check_eq_scope([
r'~~A~~', r'~~__B__~~', r'~~\*__C__\*~~',
r'~~D~~', r'~~___E___~~'
], 'markup.strikethrough')
self.check_eq_scope([
r'__~~A~~__', r'__B__', r'__C__',
r'___~~D~~___', r'___E___'
], 'markup.bold')
self.check_eq_scope([
r'\*__~~A~~__\*', r'\*~~__B__~~\*', r'\*__C__\*',
r'___~~D~~___', r'___E___'
], 'markup.italic')
self.check_eq_scope(r'~+|_+|\*+', 'punctuation.definition')
self.check_default('Z')
def test_html_tags(self):
self.set_text('''
A<br>
<li>B
<a href="http://C.D">E</a>
''')
self.check_default([ r'\nA', r'\n', r'B\n', 'E' ])
self.check_eq_scope([ '<br>', '<li>',
'<a href="http://C.D">', '</a>' ],
'meta.tag')
def test_block_tags_turn_off_markdown_markup(self):
self.set_text('''
<p>
*A* ~~B~~ __C__
</p>
<div>*D* ~~E~~ __F__</div>
''')
self.check_no_scope(list('ABCDEF'), 'markup')
def test_inline_markup_combined_with_html(self):
self.set_text('<a>_A_</a>')
self.check_eq_scope('_A_', 'markup.italic')
self.check_eq_scope([ '<a>', '</a>' ], 'meta.tag')
def test_horisontal_lines(self):
self.set_text('''
***
* * *
___
__ __ __
- - -
----------------
---_---
Z
''')
self.check_eq_scope([
r'\*\*\*\n',
r'\* \* \*\n',
r'___\n',
r' __ __ __\n',
r' - - - \n',
r' -----+ +\n'
], 'meta.separator')
self.check_default(['---_---', 'Z'])
def test_horisontal_lines_break_paragraphs(self):
self.set_text('''
A
- - -
Z
''')
self.check_eq_scope('- - -\n', 'meta.separator')
self.check_default(['A', 'Z'])
|
[
"sekogan@gmail.com"
] |
sekogan@gmail.com
|
1400cc7e36dc1608eda6cf944b667fb37a1ea0b3
|
b19dfd6a3ba5d107d110fb936de2e91d1d92bb99
|
/venv/lib/python3.7/site-packages/Satchmo-0.9.3-py3.7.egg/shipping/modules/ups/config.py
|
5c8e90a363eefc21999a9a0da571173a720a91b8
|
[] |
no_license
|
siddhant3030/djangoecommerce
|
d8f5b21f29d17d2979b073fd9389badafc993b5c
|
b067cb1155c778fece4634d0a98631a0646dacff
|
refs/heads/master
| 2022-12-13T15:28:39.229377
| 2019-09-28T10:30:02
| 2019-09-28T10:30:02
| 207,240,716
| 2
| 1
| null | 2022-12-11T01:34:25
| 2019-09-09T06:35:36
|
Python
|
UTF-8
|
Python
| false
| false
| 3,913
|
py
|
from decimal import Decimal
from django.utils.translation import ugettext_lazy as _
from livesettings.values import StringValue,ConfigurationGroup,BooleanValue,DecimalValue,MultipleStringValue
from livesettings.functions import config_register_list,config_get
SHIP_MODULES = config_get('SHIPPING', 'MODULES')
SHIP_MODULES.add_choice(('shipping.modules.ups', 'UPS'))
SHIPPING_GROUP = ConfigurationGroup('shipping.modules.ups',
_('UPS Shipping Settings'),
requires = SHIP_MODULES,
ordering = 101)
config_register_list(
StringValue(SHIPPING_GROUP,
'XML_KEY',
description=_("UPS XML Access Key"),
help_text=_("XML Access Key Provided by UPS"),
default=""),
StringValue(SHIPPING_GROUP,
'USER_ID',
description=_("UPS User ID"),
help_text=_("User ID provided by UPS site."),
default=""),
StringValue(SHIPPING_GROUP,
'ACCOUNT',
description=_("UPS Account Number"),
help_text=_("UPS Account Number."),
default=""),
StringValue(SHIPPING_GROUP,
'USER_PASSWORD',
description=_("UPS User Password"),
help_text=_("User password provided by UPS site."),
default=""),
MultipleStringValue(SHIPPING_GROUP,
'UPS_SHIPPING_CHOICES',
description=_("UPS Shipping Choices Available to customers. These are valid domestic codes only."),
choices = (
(('01', 'Next Day Air')),
(('02', 'Second Day Air')),
(('03', 'Ground')),
(('12', '3 Day Select')),
(('13', 'Next Day Air Saver')),
(('14', 'Next Day Air Early AM')),
(('59', '2nd Day Air AM')),
),
default = ('03',)),
DecimalValue(SHIPPING_GROUP,
'HANDLING_FEE',
description=_("Handling Fee"),
help_text=_("The cost of packaging and getting the package off"),
default=Decimal('0.00')),
StringValue(SHIPPING_GROUP,
'SHIPPING_CONTAINER',
description=_("Type of container used to ship product."),
choices = (
(('00', 'Unknown')),
(('01', 'UPS LETTER')),
(('02', 'PACKAGE / CUSTOMER SUPPLIED')),
),
default = "00"),
BooleanValue(SHIPPING_GROUP,
'SINGLE_BOX',
description=_("Single Box?"),
help_text=_("Use just one box and ship by weight? If no then every item will be sent in its own box."),
default=True),
BooleanValue(SHIPPING_GROUP,
'TIME_IN_TRANSIT',
description=_("Time in Transit?"),
help_text=_("Use the UPS Time In Transit API? It is slower but delivery dates are more accurate."),
default=False),
StringValue(SHIPPING_GROUP,
'PICKUP_TYPE',
description=_("UPS Pickup option."),
choices = (
(('01', 'DAILY PICKUP')),
(('03', 'CUSTOMER COUNTER')),
(('06', 'ONE TIME PICKUP')),
(('07', 'ON CALL PICKUP')),
),
default = "07"),
BooleanValue(SHIPPING_GROUP,
'LIVE',
description=_("Access production UPS server"),
help_text=_("Use this when your store is in production."),
default=False),
StringValue(SHIPPING_GROUP,
'CONNECTION',
description=_("Submit to URL"),
help_text=_("Address to submit live transactions."),
default="https://onlinetools.ups.com/ups.app/xml/Rate"),
StringValue(SHIPPING_GROUP,
'CONNECTION_TEST',
description=_("Submit to TestURL"),
help_text=_("Address to submit test transactions."),
default="https://wwwcie.ups.com/ups.app/xml/Rate"),
BooleanValue(SHIPPING_GROUP,
'VERBOSE_LOG',
description=_("Verbose logs"),
help_text=_("Send the entire request and response to the log - for debugging help when setting up UPS."),
default=False)
)
|
[
"ssiddhant3030@gmail.com"
] |
ssiddhant3030@gmail.com
|
9c0801b8cdc06c03a0ea60a845b46f24d9fdb6f2
|
bd19ce3bbe4e79fd8be757fa1d7bad5324680973
|
/conf/settings.py
|
56cbd0c8e0cefd91694ea821643f83a8e36c3f85
|
[] |
no_license
|
lushenao/Skycn.com
|
014026d9fa5d153a7dd8d2ff51c1191a68925b6b
|
b7531e080cef71253fa55437b7a23f6dc6fdaae8
|
refs/heads/master
| 2020-11-30T02:07:33.559455
| 2019-12-30T07:47:57
| 2019-12-30T07:47:57
| 230,271,269
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 593
|
py
|
#__auth__:"Sky lu"
# -*- coding:utf-8 -*-
import os,sys
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)
'''
定义了mysql连接配置信息
'''
DATABASE_mysql = {
'engine':'mysql',
'host': '',
'port': 3306,
'user': '',
'pwd': '',
'db': '',
'file_path': '%s/db' % BASE_DIR
}
soft_desc = {
'`soft_size`':'',
'`soft_version`':'',
'`soft_update_time`':'',
'`soft_operating_system_bit`':'',
'`soft_language`':'',
'`soft_auth`':'',
'`soft_operating_system`':'',
'`soft_comment`':''
}
|
[
"183923316@qq.com"
] |
183923316@qq.com
|
65ae8cba1ea4bcaf9819e245c5a7fdc2485f4a60
|
564a2f5a5a4269ce7e013511f78f8b8cd26ee81f
|
/toy_problem/data_preprocessing/transform.py
|
12ccb9a9232c6cf857470178d2cede9822bd9790
|
[] |
no_license
|
sb-nmt-team/sb-nmt
|
7345cb967ec92dd87b5d649213ecd0483cba7d60
|
852418728642063967625c1a1473aa8e2b944d4d
|
refs/heads/master
| 2021-04-28T07:11:13.073176
| 2018-06-16T17:49:41
| 2018-06-16T17:49:41
| 122,219,302
| 0
| 0
| null | 2018-04-27T09:35:42
| 2018-02-20T15:49:32
|
Python
|
UTF-8
|
Python
| false
| false
| 4,670
|
py
|
import numpy as np
import unicodedata
import collections
import matplotlib.pyplot as plt
from collections import Counter, defaultdict
import string
import sys
import pickle
bad_characters = set(string.punctuation + string.digits)
def read_dataset(dataset_name):
dataset = defaultdict(list)
rtlm = "\u200F"
bos = '_'
eos = ';'
en_characters = set(["<\s>"])
he_characters = set(["<\s>"])
with open(dataset_name, "r") as fin:
for line in fin:
en,he = line.strip().lower().replace(bos,' ').replace(eos,' ').replace(rtlm, '').split('\t')
word, trans = he, en
en_characters |= set(en)
he_characters |= set(he)
# if len(word) < 3: continue
# if EASY_MODE:
# if max(len(word),len(trans))>20:
# continue
dataset[word].append(trans)
en_characters = list(sorted(list(en_characters)))
he_characters = list(sorted(list(he_characters)))
# print ("size = ",len(dataset))
return dataset, en_characters, he_characters
def filter_multiple_translations(data):
result = {}
for original, translations in data.items():
if len(set(translations)) > 1:
continue
if ' ' in translations[0]:
continue
result[original] = translations[0]
# print ("size = ",len(result))
return result
def filter_bad_characters(data, bad_characters):
result = {}
for source, translation in data.items():
assert isinstance(translation, str)
if len(set(source) & bad_characters) != 0:
continue
if len(set(translation) & bad_characters) != 0:
continue
result[source] = translation
# print ("size = ",len(result))
return result
def filter_copied_words(data):
result = {}
for original, translation in data.items():
assert isinstance(translation, str)
if len(set(original) & set(translation)) > 0:
continue
result[original] = translation
# print ("size = ",len(result))
return result
def filter_short_targets(data, target_threshold=2):
result = {}
for original, translation in data.items():
assert isinstance(translation, str)
if len(translation) <= target_threshold:
continue
result[original] = translation
# print ("size = ",len(result))
return result
def split_train_test(data, valid_size=0.1, test_size=0.1):
assert valid_size >= 0 and valid_size < 1.0
assert test_size >= 0 and test_size < 1.0
train_size = 1.0 - (valid_size + test_size)
np.random.seed(42)
sources = np.array(list(data.keys()))
# print(sources)
n_sources = len(sources)
index_permutation = np.random.permutation(np.arange(n_sources))
train_border = int(n_sources * train_size)
valid_border = int(n_sources * (train_size + valid_size))
train_sources = sources[index_permutation[: train_border]]
valid_sources = sources[index_permutation[train_border : valid_border]]
test_sources = sources[index_permutation[valid_border :]]
def create_dataset(sources):
result = {}
for source in sources:
result[source] = data[source]
return result
return create_dataset(train_sources), create_dataset(valid_sources), create_dataset(test_sources)
def pipeline(dataset):
filtered_dataset = filter_multiple_translations(dataset)
f1 = filter_short_targets(filtered_dataset)
f2 = filter_bad_characters(f1, bad_characters)
f3 = filter_copied_words(f2)
f4 = filter_bad_characters(f3, bad_characters | set([' ']))
return [dataset, filtered_dataset, f1, f2, f3, f4]
def transformation_pipeline(dataset, valid_size=0.1, test_size=0.1):
train, valid, test = split_train_test(dataset)
trains = pipeline(train)
valids = pipeline(valid)
tests = pipeline(test)
# plt.title('Dataset changes with refinement')
# plt.plot([len(x) for x in trains], label='train')
# plt.plot([len(x) for x in valids], label='valid')
# plt.plot([len(x) for x in tests], label='test')
# plt.legend()
# plt.show()
return trains, valids, tests
if __name__ == "__main__":
dataset, en_characters, he_characters = read_dataset(sys.argv[1])
trains, valids, tests = transformation_pipeline(dataset)
result = {
"data" : dict(trains=trains, valids=valids, tests=tests),
"characters": dict(en=en_characters, he=he_characters)
}
pickle.dump(result, open(sys.argv[2], "wb"))
|
[
"itasarom@gmail.com"
] |
itasarom@gmail.com
|
4af4c6c67883138cb403bc55c20a57a17f3abf94
|
53fab060fa262e5d5026e0807d93c75fb81e67b9
|
/backup/user_143/ch40_2020_03_25_11_34_14_842288.py
|
7b4cd03ca35996a28aee9136ab7f8fc3ef414f7a
|
[] |
no_license
|
gabriellaec/desoft-analise-exercicios
|
b77c6999424c5ce7e44086a12589a0ad43d6adca
|
01940ab0897aa6005764fc220b900e4d6161d36b
|
refs/heads/main
| 2023-01-31T17:19:42.050628
| 2020-12-16T05:21:31
| 2020-12-16T05:21:31
| 306,735,108
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 113
|
py
|
def soma_valores(s):
i=0
y[i]=s[i]
while(i<=len(s)):
y[i+1]+=s[i+1]
i+=1
return y
|
[
"you@example.com"
] |
you@example.com
|
07283b22209cfb94b928672e53ed1049ea4b9c9d
|
0e719bc0915f83d0fb96a252ab24af9159624a44
|
/Learning-python/Section 14 - Advanced Python Modules/scratch.py
|
86c443015441d8a7990c8567ccccb6af2b1a11f8
|
[] |
no_license
|
skhadka007/learning_algos
|
09a0d89194fe610186e5af03a4683b971d1c7f2c
|
a9f7e432f5b6b5a2ccefb713e029c43be9421969
|
refs/heads/master
| 2023-09-02T03:11:27.855951
| 2021-10-04T14:11:34
| 2021-10-04T14:11:34
| 286,854,625
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 30
|
py
|
# import math
print(18 % 2)
|
[
"skhadka.code@gmail.com"
] |
skhadka.code@gmail.com
|
2f5ddf89ea28919dce8937425bcddb68926a662d
|
a115b4a830b7d4a1e9efed9cdc429ea7233df2f1
|
/6_het/3_szokoev.py
|
593c8ca06fb65825f581ff46e46fb8f1ceafb9f2
|
[
"Unlicense"
] |
permissive
|
ArDrift/InfoPy_scripts
|
b8dc78a8891a4c4e05adb4c2c0d6fcba9d3a8417
|
a8fb46c9b9f652d43094f886549b05c50f3ee9d2
|
refs/heads/master
| 2022-09-01T06:38:36.737921
| 2021-01-26T21:52:50
| 2021-01-26T21:52:50
| 333,116,648
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 264
|
py
|
#!/usr/bin/env python3
def szokoev_e(ev):
return ev % 4 == 0 and (ev % 100 != 0 or ev % 400 == 0)
def main():
evszam = int(input("Add meg az évszámot: "))
if szokoev_e(evszam):
print("Szökőév.")
else:
print("Nem szökőév.")
main()
|
[
"ardrift@gmail.com"
] |
ardrift@gmail.com
|
0837ba02b802ee63615c49bcee086fe4059f3cdb
|
b980ac3d6ba8eac0902070c460ad1634ee19585b
|
/object_detection/utils/shape_utils.py
|
798c80cce647ff307d9f96a9f2c72e2f6a4f3682
|
[
"MIT"
] |
permissive
|
gourav108/coreml
|
3d7d5ea6851bf9ae1fb77876bbec2fa2b8f9b763
|
6bc2d494dff23cff923368e735992a4f4a47483c
|
refs/heads/master
| 2022-11-28T19:56:27.172125
| 2019-01-07T18:44:33
| 2019-01-07T18:44:33
| 161,968,738
| 0
| 1
|
MIT
| 2022-11-21T18:48:27
| 2018-12-16T04:50:08
|
Python
|
UTF-8
|
Python
| false
| false
| 11,437
|
py
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utils used to manipulate tensor shapes."""
import tensorflow as tf
from utils import static_shape
def _is_tensor(t):
"""Returns a boolean indicating whether the input is a tensor.
Args:
t: the input to be tested.
Returns:
a boolean that indicates whether t is a tensor.
"""
return isinstance(t, (tf.Tensor, tf.SparseTensor, tf.Variable))
def _set_dim_0(t, d0):
"""Sets the 0-th dimension of the input tensor.
Args:
t: the input tensor, assuming the rank is at least 1.
d0: an integer indicating the 0-th dimension of the input tensor.
Returns:
the tensor t with the 0-th dimension set.
"""
t_shape = t.get_shape().as_list()
t_shape[0] = d0
t.set_shape(t_shape)
return t
def pad_tensor(t, length):
"""Pads the input tensor with 0s along the first dimension up to the length.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after padding, assuming length <= t.shape[0].
Returns:
padded_t: the padded tensor, whose first dimension is length. If the length
is an integer, the first dimension of padded_t is set to length
statically.
"""
t_rank = tf.rank(t)
t_shape = tf.shape(t)
t_d0 = t_shape[0]
pad_d0 = tf.expand_dims(length - t_d0, 0)
pad_shape = tf.cond(
tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0),
lambda: tf.expand_dims(length - t_d0, 0))
padded_t = tf.concat([t, tf.zeros(pad_shape, dtype=t.dtype)], 0)
if not _is_tensor(length):
padded_t = _set_dim_0(padded_t, length)
return padded_t
def clip_tensor(t, length):
"""Clips the input tensor along the first dimension up to the length.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after clipping, assuming length <= t.shape[0].
Returns:
clipped_t: the clipped tensor, whose first dimension is length. If the
length is an integer, the first dimension of clipped_t is set to length
statically.
"""
clipped_t = tf.gather(t, tf.range(length))
if not _is_tensor(length):
clipped_t = _set_dim_0(clipped_t, length)
return clipped_t
def pad_or_clip_tensor(t, length):
"""Pad or clip the input tensor along the first dimension.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after processing.
Returns:
processed_t: the processed tensor, whose first dimension is length. If the
length is an integer, the first dimension of the processed tensor is set
to length statically.
"""
processed_t = tf.cond(
tf.greater(tf.shape(t)[0], length),
lambda: clip_tensor(t, length),
lambda: pad_tensor(t, length))
if not _is_tensor(length):
processed_t = _set_dim_0(processed_t, length)
return processed_t
def combined_static_and_dynamic_shape(tensor):
"""Returns a list containing static and dynamic values for the dimensions.
Returns a list of static and dynamic values for shape dimensions. This is
useful to preserve static shapes when available in reshape operation.
Args:
tensor: A tensor of any type.
Returns:
A list of size tensor.shape.ndims containing integers or a scalar tensor.
"""
static_tensor_shape = tensor.shape.as_list()
dynamic_tensor_shape = tf.shape(tensor)
combined_shape = []
for index, dim in enumerate(static_tensor_shape):
if dim is not None:
combined_shape.append(dim)
else:
combined_shape.append(dynamic_tensor_shape[index])
return combined_shape
def static_or_dynamic_map_fn(fn, elems, dtype=None,
parallel_iterations=32, back_prop=True):
"""Runs map_fn as a (static) for loop when possible.
This function rewrites the map_fn as an explicit unstack input -> for loop
over function calls -> stack result combination. This allows our graphs to
be acyclic when the batch size is static.
For comparison, see https://www.tensorflow.org/api_docs/python/tf/map_fn.
Note that `static_or_dynamic_map_fn` currently is not *fully* interchangeable
with the default tf.map_fn function as it does not accept nested inputs (only
Tensors or lists of Tensors). Likewise, the output of `fn` can only be a
Tensor or list of Tensors.
TODO(jonathanhuang): make this function fully interchangeable with tf.map_fn.
Args:
fn: The callable to be performed. It accepts one argument, which will have
the same structure as elems. Its output must have the
same structure as elems.
elems: A tensor or list of tensors, each of which will
be unpacked along their first dimension. The sequence of the
resulting slices will be applied to fn.
dtype: (optional) The output type(s) of fn. If fn returns a structure of
Tensors differing from the structure of elems, then dtype is not optional
and must have the same structure as the output of fn.
parallel_iterations: (optional) number of batch items to process in
parallel. This flag is only used if the native tf.map_fn is used
and defaults to 32 instead of 10 (unlike the standard tf.map_fn default).
back_prop: (optional) True enables support for back propagation.
This flag is only used if the native tf.map_fn is used.
Returns:
A tensor or sequence of tensors. Each tensor packs the
results of applying fn to tensors unpacked from elems along the first
dimension, from first to last.
Raises:
ValueError: if `elems` a Tensor or a list of Tensors.
ValueError: if `fn` does not return a Tensor or list of Tensors
"""
if isinstance(elems, list):
for elem in elems:
if not isinstance(elem, tf.Tensor):
raise ValueError('`elems` must be a Tensor or list of Tensors.')
elem_shapes = [elem.shape.as_list() for elem in elems]
# Fall back on tf.map_fn if shapes of each entry of `elems` are None or fail
# to all be the same size along the batch dimension.
for elem_shape in elem_shapes:
if (not elem_shape or not elem_shape[0]
or elem_shape[0] != elem_shapes[0][0]):
return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop)
arg_tuples = zip(*[tf.unstack(elem) for elem in elems])
outputs = [fn(arg_tuple) for arg_tuple in arg_tuples]
else:
if not isinstance(elems, tf.Tensor):
raise ValueError('`elems` must be a Tensor or list of Tensors.')
elems_shape = elems.shape.as_list()
if not elems_shape or not elems_shape[0]:
return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop)
outputs = [fn(arg) for arg in tf.unstack(elems)]
# Stack `outputs`, which is a list of Tensors or list of lists of Tensors
if all([isinstance(output, tf.Tensor) for output in outputs]):
return tf.stack(outputs)
else:
if all([isinstance(output, list) for output in outputs]):
if all([all(
[isinstance(entry, tf.Tensor) for entry in output_list])
for output_list in outputs]):
return [tf.stack(output_tuple) for output_tuple in zip(*outputs)]
raise ValueError('`fn` should return a Tensor or a list of Tensors.')
def check_min_image_dim(min_dim, image_tensor):
"""Checks that the image width/height are greater than some number.
This function is used to check that the width and height of an image are above
a certain value. If the image shape is static, this function will perform the
check at graph construction time. Otherwise, if the image shape varies, an
Assertion control dependency will be added to the graph.
Args:
min_dim: The minimum number of pixels along the width and height of the
image.
image_tensor: The image tensor to check size for.
Returns:
If `image_tensor` has dynamic size, return `image_tensor` with a Assert
control dependency. Otherwise returns image_tensor.
Raises:
ValueError: if `image_tensor`'s' width or height is smaller than `min_dim`.
"""
image_shape = image_tensor.get_shape()
image_height = static_shape.get_height(image_shape)
image_width = static_shape.get_width(image_shape)
if image_height is None or image_width is None:
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim),
tf.greater_equal(tf.shape(image_tensor)[2], min_dim)),
['image size must be >= {} in both height and width.'.format(min_dim)])
with tf.control_dependencies([shape_assert]):
return tf.identity(image_tensor)
if image_height < min_dim or image_width < min_dim:
raise ValueError(
'image size must be >= %d in both height and width; image dim = %d,%d' %
(min_dim, image_height, image_width))
return image_tensor
def assert_shape_equal(shape_a, shape_b):
"""Asserts that shape_a and shape_b are equal.
If the shapes are static, raises a ValueError when the shapes
mismatch.
If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes
mismatch.
Args:
shape_a: a list containing shape of the first tensor.
shape_b: a list containing shape of the second tensor.
Returns:
Either a tf.no_op() when shapes are all static and a tf.assert_equal() op
when the shapes are dynamic.
Raises:
ValueError: When shapes are both static and unequal.
"""
if (all(isinstance(dim, int) for dim in shape_a) and
all(isinstance(dim, int) for dim in shape_b)):
if shape_a != shape_b:
raise ValueError('Unequal shapes {}, {}'.format(shape_a, shape_b))
else: return tf.no_op()
else:
return tf.assert_equal(shape_a, shape_b)
def assert_shape_equal_along_first_dimension(shape_a, shape_b):
"""Asserts that shape_a and shape_b are the same along the 0th-dimension.
If the shapes are static, raises a ValueError when the shapes
mismatch.
If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes
mismatch.
Args:
shape_a: a list containing shape of the first tensor.
shape_b: a list containing shape of the second tensor.
Returns:
Either a tf.no_op() when shapes are all static and a tf.assert_equal() op
when the shapes are dynamic.
Raises:
ValueError: When shapes are both static and unequal.
"""
if isinstance(shape_a[0], int) and isinstance(shape_b[0], int):
if shape_a[0] != shape_b[0]:
raise ValueError('Unequal first dimension {}, {}'.format(
shape_a[0], shape_b[0]))
else: return tf.no_op()
else:
return tf.assert_equal(shape_a[0], shape_b[0])
|
[
"gourav@rudrainfotech.org"
] |
gourav@rudrainfotech.org
|
f84d0aaecefbe157929448dd97c574189ee4c716
|
acf190f6699975140a01b26546a52e94ec245f51
|
/sqrt_lasso_cvxpy.py
|
eecc2608f805aa9e9af3b7870e8bf787a37844f5
|
[] |
no_license
|
HMJiangGatech/smoothed_concomitant_lasso
|
ffb6ed32f8a4eb65bf3e0d49008f429f3f0ac87b
|
776013a4e657f9c8c1dde239574e83d4958118d7
|
refs/heads/master
| 2021-05-12T16:02:10.468441
| 2018-01-10T21:14:10
| 2018-01-10T21:14:10
| 116,999,219
| 0
| 0
| null | 2018-01-10T19:07:55
| 2018-01-10T19:07:55
| null |
UTF-8
|
Python
| false
| false
| 859
|
py
|
from __future__ import division
import numpy as np
import cvxpy as cvx
def belloni_path(X, y, lambda_grid, solver='ECOS'):
'''
solve:
min ||y - X*beta|| / sqrt(n_samples) + lambda ||beta||_1
'''
n_samples, n_features = X.shape
lambda_ = cvx.Parameter(sign="Positive")
beta = cvx.Variable(n_features)
objective = cvx.Minimize(cvx.norm(X * beta - y, 2) / np.sqrt(n_samples) +
lambda_ * cvx.norm(beta, 1))
prob = cvx.Problem(objective)
betas = np.zeros((len(lambda_grid), n_features))
sigmas = np.zeros(len(lambda_grid))
for i, l in enumerate(lambda_grid):
lambda_.value = l
prob.solve(solver=solver)
betas[i] = np.ravel(beta.value)
sigmas[i] = \
np.linalg.norm(y - np.dot(X, betas[i])) / np.sqrt(n_samples)
return sigmas, betas
|
[
"eugene.ndiaye@telecom-paristech.fr"
] |
eugene.ndiaye@telecom-paristech.fr
|
118979bd5416c57a7c0e05109b92aa948efde4fa
|
adebcb38fb5abf69b05168c728271266c08bfd11
|
/main.py
|
ba05bbc0c664fbe9776ba176ea87ee68a2526b47
|
[] |
no_license
|
ralcant/aws_diarization
|
5b403a17f3b35a4b9b4797a12263f019fc478ae2
|
ea35a979dd8902717797f55f2ec1decdf592935e
|
refs/heads/master
| 2022-04-28T07:07:12.080243
| 2020-04-30T21:12:38
| 2020-04-30T21:12:38
| 260,317,694
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 10,819
|
py
|
from __future__ import print_function
import json
import time
import boto3
import pprint
import datetime
import os
from bucket_handler import upload_file
import requests
transcribe = boto3.client('transcribe')
s3 = boto3.resource('s3')
transcribe = boto3.client('transcribe')
s3 = boto3.resource('s3')
## Note to self: in order to get the print statement as they happen in the command line, do "python -u main.py"
class Project:
def __init__(self, bucket_name="prgdiarization", video_folder_name="videos/"):
super().__init__()
self.video_to_transcription = dict() # maps the video -> MediaFileUri of the transcription
self.bucket_name = bucket_name # bucket to be used for all the transactions
self.transciption_job_name = "prg_diarization_test"
self.video_folder_name = video_folder_name
'''
Main method of the project class. It updates the output.json file with the results of the transcription for such video.
'''
def get_transcription(self, video):
print('started transcription!')
video_name = self.get_video_name(video)
# t = datetime.datetime.now()
time_transcription_started = time.time() #to calculate how much time it takes to do the job
job_uri = "https://{}.s3-us-west-1.amazonaws.com/{}{}".format(self.bucket_name, self.video_folder_name, video)
if (video_name not in self.video_to_transcription.keys()):
self.start_job(job_uri)
while True:
status = transcribe.get_transcription_job(TranscriptionJobName=self.transciption_job_name)
if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']:
break
print("Not ready yet...")
time.sleep(5)
print('already got response and it took {} seconds!'.format(time.time() - time_transcription_started))
response = status
MediaFileURI = response["TranscriptionJob"]["Transcript"]["TranscriptFileUri"]
self.video_to_transcription[video_name] = MediaFileURI #for future reference
#self.delete_job()
else:
print("it already exists!")
MediaFileURI = self.video_to_transcription[video_name] #'https://s3.us-west-1.amazonaws.com/aws-transcribe-us-west-1-prod/115847983408/prg_diarization_test_9/946d2d28-827b-49b7-9136-55e17b1b6eb6/asrOutput.json?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEHYaCXVzLXdlc3QtMSJHMEUCIGeiQRZoD22XmzdRasfvXOEbpIGcKYFKSGJzaSlfHjUiAiEA9CRg8SIHAskooNPVB%2BurejmIvAiKldYTO9h5Pb6y3A0qtAMIbxABGgw5NzEzODk5ODIxNjgiDCzAQQqVwGhTjzYcsyqRA%2FF8yOgyiYMepEqlOR7Wel%2BLlP2Ol32C5pljhoCALRUQjpnlclBDpzQqAkcdEhSNlF3xehp0bB5QTwi0BwLF1tizzN5F8kPLLEtM%2FK40b4yV1RhT3kzFlVv9rXFRMvUMPM4cfunr%2BUiLkC%2F4h8uyedEIo4RTq584u0R1JIYTsMHTm9XiInlruqw%2BS%2BOedWDlksOvI1z4PF6uhYrxo87Hy8Jjb3Ws7nEBPFP8mJexybX53RxgXJ7sNnoe7ichWG9JU3d31wJSNjnsNdtCdpikaZPGJC8oAXN0tE057tC9NUqYaag4wTaF9tX6llII45RXnCHVY0xG14Cq8mTXKdiMxFFgDjKvsITMNsHr6XNhgu%2BU%2B7s%2BFzdTHnpzPBrvRUi7JcDrJ%2Fdy3IILyJe3hHHsyIFqjjCrbQrXO%2Bwq6WV7%2FfLfh4%2BLGtKNuvd34b1u5wgWrzChpN2ha5sibJxBVcN3%2FqtghhvhZvuORwGQdFVrSkD%2BtbJNSSf72I2CuWsnsCctV8VAJl6rxHatD3%2Btcvlm9FpXMJjv6%2FMFOusBABniLSVZHh54XvoJ4NPAqE44fj%2BbKdABKV8%2BuUxbG97IGRuBVFcZjG%2B5GZYHFlpcFz1k3vNXixYaXdeznrOKalJBGRYXUSEfirQbty2s%2B4MHxdIhrFVR%2BofgMy6CE1L%2Bi%2BYdEJ%2FOWCprKT7ztYTLESgbLClMyUFkCPMRCQrMez9m5JTgucjc3As6mWlgREjxUfu3kHujqG592wydfbaegIRzqcYpAEcXPx2rsBorx9UJn%2BDk1lv97imTpqXVDXQOVDy%2FzEChpJBLPDaysQfBbf2gRKU70k%2Bj5%2BCNtfuavse5A7AJy53sAwusqg%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200325T070254Z&X-Amz-SignedHeaders=host&X-Amz-Expires=900&X-Amz-Credential=ASIA6EK222XMPPCNL4OQ%2F20200325%2Fus-west-1%2Fs3%2Faws4_request&X-Amz-Signature=3e6e2b818c4617412e3d094e46e3e05e03691845816f0e994c26da9cdf5a879d'
#self.delete_job()
r = requests.get(MediaFileURI)
#response = r.json()
response = json.loads(r.text) #getting the response from the given url
self.delete_job() #we have the response, we can delete the job
with open("outputs.json") as f:
output = json.load(f)
f.close()
with open("outputs.json", "w") as json_output:
#output= json.load(json_output)
new_data = {
video_name: {
"name": video,
"video_URI": job_uri,
#"transcription_URI": MediaFileURI, #ignored because this is usually a very long name
"transcription": self.extract_useful_information(response),
}
}
output["items"].update(new_data)
json.dump(output, json_output, indent=4)
json_output.close()
print("\n")
'''
Starts a transciption job for a certain video.
TODO: Need to add more security constraints, or everything public is fine for now?
'''
def start_job(self, job_uri):
transcribe.start_transcription_job(
TranscriptionJobName = self.transciption_job_name,
Media={'MediaFileUri': job_uri},
MediaFormat='mp4',
LanguageCode='en-US',
Settings = {
"MaxSpeakerLabels": 2,
"ShowSpeakerLabels": True,
}
)
# Useful for when a transcription is suddenly stopped, and we are not allowed to do
# any other job because the name is already taken
def delete_job(self):
transcribe.delete_transcription_job(
TranscriptionJobName= self.transciption_job_name
)
print("deleted job with name {}".format(self.transciption_job_name))
'''
segments: a dictionarly that maps each speaker label to a list of the times that this speaker talked
Returns a mapping from each interval (start, end) to the speaker label that happened during that time.
'''
@staticmethod
def get_interval_to_speaker_label(segments):
interval_to_speaker = dict()
for speaker_n in range(len(segments)):
all_items = segments[speaker_n]["items"]
for interval in all_items:
start = interval["start_time"]
end = interval["end_time"]
speaker_label = interval["speaker_label"]
interval_to_speaker[(start, end)] = speaker_label
return interval_to_speaker
'''
Converts a response from AWS Transcribe into a (maybe) more readable version of it.
It returns a dictionary with the following keys, values:
- "num_speakers" -> The number of speaker determined by AWS. Defaults to "undetermined" if none were found.
- "transcripts" -> The complete transcript of the video.
- "items" -> a list of dictionaries, where each item represents one word said,
and it has info about the start_time, end_time, speaker_label and the text used for such word.
'''
def extract_useful_information(self, response_dict):
transcripts = response_dict["results"]["transcripts"]
items = response_dict["results"]["items"]
if "speaker_labels" not in response_dict["results"]: # when AWS doesnt detect speakers. This *usually* means
return { # that there is no transcript detected either.
"num_speakers": "undetermined",
"transcripts": transcripts,
"items": items,
}
speaker_labels = response_dict["results"]["speaker_labels"]
num_speakers = speaker_labels["speakers"]
interval_to_label = self.get_interval_to_speaker_label(speaker_labels["segments"])
timestamps_with_speaker_labels = []
for item in items:
## item is a dict for a particular timestamp
if (item['type'] == "pronunciation"): #ignoring punctuation
start = item["start_time"]
end = item["end_time"]
try:
speaker_label = interval_to_label[(start, end)]
item_copy = item.copy()
item_copy["speaker_label"] = speaker_label #just adding this new key of the "item" dictionary
timestamps_with_speaker_labels.append(item_copy)
except:
print("Didnt find {} as a valid timestamp!".format((start, end)))
## now timestamps_with_speaker_labels is a list of all the relevant info ###
#TODO: sort them by the (start, end)
return {
"num_speakers": num_speakers,
"transcript": transcripts,
"items": timestamps_with_speaker_labels
}
'''
Extracts the name of a video. "example.mp4" --> "example"
'''
def get_video_name(self, video):
return video.split(".")[0]
'''
Updates a certain video to our designed bucket. The video can be found in the directory video_folder_name/filename
Filename includes the .mp4 extension.
'''
def upload_video(self, filename):
upload_file(self.bucket_name , self.video_folder_name, filename)
'''
Helper method to update the outputs.json file with the videos found in self.video_folder_name
If lazy_update = True, then it will only update the file with the elements that dont already exist. If not, then
it will update the complete json file with all videos available. Assumes that all videos are mp4 files.
'''
def update_output_json(self, lazy_update = False): #by default this is gonna do everything again
with open("outputs.json") as f:
output = json.load(f)
f.close()
for filename in os.listdir(self.video_folder_name):
if (lazy_update and self.get_video_name(filename) in output["items"].keys()):
print("lazy_update is True and the filename {} already exists in output.json, so we ignore this file.".format(filename))
else:
if filename.endswith(".mp4"): #if a video
print("uploading file {}...".format(filename))
upload_file(self.bucket_name , self.video_folder_name, filename) #uploading file to our bucket
self.get_transcription(filename) #updates output.json
print("done updating the json of the video: {}\n".format(filename))
else:
print("not an .mp4 file! : {}. Ignoring :/ \n".format(filename))
if __name__ == "__main__":
p = Project()
### updating the json file #######
p.update_output_json(lazy_update=True)
#p.upload_video("clip-42.mp4")
#p.get_transcription("clip-54.mp4")
# with open("outputs.json", "r") as transcript:
# pprint.pprint(json.load(transcript))
|
[
"ralcanta@mit.edu"
] |
ralcanta@mit.edu
|
ef47575bb0a287208ee8f7a68519ff8275a7a1ac
|
14615571ee476a8c074832da94bc373ef92fd31c
|
/tdn.py
|
1ad57c6507c3fb40ed0ce6ec4e4e494397676aeb
|
[] |
no_license
|
Maestro-Zacht/utilities_ghia
|
5b341c3226119c3b85164cc2e47eb6713756e484
|
6b8c5e16cd0d4a2f9d668b970778bc381693678f
|
refs/heads/master
| 2022-12-14T20:35:48.260443
| 2020-09-02T13:59:37
| 2020-09-02T13:59:37
| 291,035,644
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 986
|
py
|
from math import sqrt
elenco_numeri_primi = []
numeri_primi_caricati = False
def is_primo(num):
for i in range(2, int(sqrt(num)) + 1):
if num % i == 0:
return False
return True
def fattorizzazione(num):
if not numeri_primi_caricati:
with open('D:\\programmazione\\file per path\\utilities_ghia\\ris_feef.txt') as f:
for numero in f.readlines():
elenco_numeri_primi.append(int(numero))
numeri_primi_caricati = True
fattori = []
for i in elenco_numeri_primi:
if num % i == 0:
fattori.append([i, 1])
mul = i**2
while num % mul == 0:
mul *= i
fattori[-1][1] += 1
num //= fattori[-1][0]**fattori[-1][1]
if num == 1:
break
return fattori
def phi(num):
fatt = fattorizzazione(num)
R = 1
for base, esponente in fatt:
R *= base**(esponente - 1) * (base - 1)
return R
|
[
"61846068+Maestro-Zacht@users.noreply.github.com"
] |
61846068+Maestro-Zacht@users.noreply.github.com
|
b6e0f50c9cbfc562e8f08c57b09d6864f63b1bc0
|
8db243a61d43e133aac01a67294d26df3381a8f5
|
/Tree/AE_BST_Find_Closest_Value.py
|
362a28df3347e842a7bd6eaa7cdd8b1aeacadff0
|
[] |
no_license
|
Jyoti1706/Algortihms-and-Data-Structures
|
ccdd93ad0811585f9b3e1e9f639476ccdf15a359
|
3458a80e02b9957c9aeaf00bf691cc7aebfd3bff
|
refs/heads/master
| 2023-06-21T18:07:13.419498
| 2023-06-16T17:42:55
| 2023-06-16T17:42:55
| 149,984,584
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 404
|
py
|
# This is the class of the input tree. Do not edit.
import math
class BST:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def findClosestValueInBst(tree, target):
# Write your code here.
diff = math.inf
if tree.value == target:
return target
if target > tree.value :
findClosestValueInBst(tree.right, target)
|
[
"jyotikrisharma10@gmail.com"
] |
jyotikrisharma10@gmail.com
|
613939625c016e2ed72cd4b6885baa6b413b8c7e
|
5946112229fe1d9a04b7536f076a656438fcd05b
|
/dev_env/lib/python3.8/site-packages/pygments/styles/rrt.py
|
2b1908794c8703c74074b3c356e1d1022988809b
|
[] |
no_license
|
Gear-Droid/openCV_study_project
|
3b117967eb8a28bb0c90088e1556fbc1d306a98b
|
28c9a494680c4a280f87dd0cc87675dfb2262176
|
refs/heads/main
| 2023-05-14T14:27:42.284265
| 2021-06-05T00:16:09
| 2021-06-05T00:16:09
| 307,807,458
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 885
|
py
|
# -*- coding: utf-8 -*-
"""
pygments.styles.rrt
~~~~~~~~~~~~~~~~~~~
pygments "rrt" theme, based on Zap and Emacs defaults.
:copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS.
:license: BSD, see LICENSE for details.
"""
from pygments.style import Style
from pygments.token import Comment, Name, Keyword, String
class RrtStyle(Style):
"""
Minimalistic "rrt" theme, based on Zap and Emacs defaults.
"""
background_color = '#000000'
highlight_color = '#0000ff'
styles = {
Comment: '#00ff00',
Name.Function: '#ffff00',
Name.Variable: '#eedd82',
Name.Constant: '#7fffd4',
Keyword: '#ff0000',
Comment.Preproc: '#e5e5e5',
String: '#87ceeb',
Keyword.Type: '#ee82ee',
}
|
[
"Vladi003@yandex.ru"
] |
Vladi003@yandex.ru
|
5c0afd4b948ed839e06840db0f25384ad08fef7f
|
92661a6d27ac816b4227204bb66b3cb4bde21054
|
/primenumbers.py
|
2874e0dc40d038b59decab2fdb29bb737b0f1140
|
[] |
no_license
|
masonbot/Wave-3
|
02d244565033d07eb6bb0454c2fbca1c99cac8ca
|
b6ecc8c68da6d680d94db87e28becfee5c4992ed
|
refs/heads/master
| 2022-08-06T16:32:39.849975
| 2020-05-20T22:34:56
| 2020-05-20T22:34:56
| 261,534,782
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 264
|
py
|
def integer(n):
if (n==1):
return False
elif (n==2):
return True;
else:
for x in range(2,n):
if(n % x==0):
return False
return True
print(integer(int(input("Insert integer: "))))
|
[
"62023052+masonbot@users.noreply.github.com"
] |
62023052+masonbot@users.noreply.github.com
|
a8406818db1d2c025ee9daacb525168889da4d61
|
454f2125c2d49b6be8113e756f5f68fd75678b84
|
/effectivePython/tap7/tap7_2.py
|
61d678c925d65d1a2bf6c9c2344e8c856f0d05ff
|
[] |
no_license
|
JackLovel/excuise-
|
c8a6977c96b8d6e41a937212f8e7dfc606328b4b
|
60418044c9387868043982c071ea1365b0d24057
|
refs/heads/master
| 2021-06-27T17:06:16.708054
| 2020-10-24T03:27:31
| 2020-10-24T03:27:31
| 164,762,577
| 0
| 0
| null | 2020-07-17T01:14:39
| 2019-01-09T01:27:43
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 179
|
py
|
chile_ranks = {'ghost': 1, 'habanero': 2, 'cayenne': 3}
rank_dict = {rank: name for name, rank in chile_ranks.items()}
chile_len_set = {len(name) for name in rank_dict.values()}
|
[
"210172130@qq.com"
] |
210172130@qq.com
|
703af6d3a3cd3e56e504a86f62c96136cac18b77
|
d941938417bab130154c78f732606daa7b107e4a
|
/testing_runtime/web/modules.py
|
5fa49e68e735185df2dcf8c001a735ef8ec2370a
|
[] |
no_license
|
skliarpawlo/ganymede
|
abc8c7fac03b51a41cf92efacdf4170dd271d890
|
3a847635634d383d01dbeb70ef969202b0b7a8c9
|
refs/heads/master
| 2016-09-07T18:55:51.680687
| 2013-11-01T15:18:25
| 2013-11-01T15:18:25
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,315
|
py
|
# coding: utf-8
from decorators import html
from django.shortcuts import render_to_response
from django.http import HttpResponse
from django.template import RequestContext
from django.utils.translation import ugettext as _
from testing_runtime import models
import json
from core import db
import traceback
def verify_module(module_id=None,code=None) :
errors = []
try :
dc = {}
exec code in dc
except :
errors.append( u'exec модуля рыгнул exception: {0}'.format(traceback.format_exc().decode('utf-8')) )
return errors
def gather_modules_info() :
res = []
all = db.session.query( models.Module ).all()
for m in all :
res.append( {
"module_id" : m.module_id,
"name" : m.name,
"path" : m.path
} )
return res
def list_modules( request ) :
title = html.title( [ _('Modules'), 'Ganymede' ] )
modules = gather_modules_info()
return render_to_response(
'modules/list.html',
{ "modules" : modules, 'title' : title },
context_instance=RequestContext(request)
)
def add_module(request) :
title = html.title( [ _('Add module'), _('Modules'), 'Ganymede' ] )
if request.method == 'POST' :
err = verify_module( module_id=None, code=request.POST['code'] )
if len(err) == 0 :
name = request.POST['name']
code = request.POST['code']
path = request.POST['path']
test = models.Module( name=name, path=path, code=code )
db.session.add( test )
json_resp = json.dumps( { "status" : "ok" } )
return HttpResponse(json_resp, mimetype="application/json")
else :
json_resp = json.dumps( { "status" : "error", "content" : err } )
return HttpResponse(json_resp, mimetype="application/json")
else :
return render_to_response(
'modules/add.html',
{ 'title' : title },
context_instance=RequestContext(request)
)
def update_module(request, module_id) :
title = html.title( [ _('Update module'), _('Modules'), 'Ganymede' ] )
module = db.session.query( models.Module ).get( module_id )
if request.method == 'POST' :
err = verify_module( module_id=None, code=request.POST['code'] )
if len(err) == 0 :
module.name = request.POST['name']
module.code = request.POST['code']
module.path = request.POST['path']
json_resp = json.dumps( { "status" : "ok" } )
return HttpResponse(json_resp, mimetype="application/json")
else :
json_resp = json.dumps( { "status" : "error", "content" : err } )
return HttpResponse(json_resp, mimetype="application/json")
else :
return render_to_response(
'modules/update.html',
{ 'title' : title, 'module' : module },
context_instance=RequestContext(request)
)
def remove_module(request) :
if request.method == 'POST' :
module = db.session.query( models.Module ).get( int(request.POST[ "module_id" ]) )
db.session.delete( module )
json_resp = json.dumps( { "status" : "ok" } )
return HttpResponse(json_resp, mimetype="application/json")
|
[
"skliarpawlo@rambler.ru"
] |
skliarpawlo@rambler.ru
|
6b04ea00f8344a41a4c7af569e7ecea8d405d265
|
dd00da0254875c877a35a59ae372391484a9631c
|
/ngo_app_code/helpers.py
|
309f36088ce1a62bcfc25b5fe03112e9d0f1b8ff
|
[] |
no_license
|
disissaikat/cfc_2020
|
9da8476f0eb26946b2d5fd1e63191e44573e8ab2
|
8222f9d1f6a8ba66190cf0dce19f9a5f15ebe789
|
refs/heads/master
| 2022-11-21T11:37:58.781244
| 2020-07-30T16:05:26
| 2020-07-30T16:05:26
| 282,971,756
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 677
|
py
|
username_helper = """
MDTextField:
hint_text: "Enter Phone Number"
pos_hint: {'center_x':0.5, 'center_y':0.6}
size_hint_x: None
width: 200
max_text_length: 10
required: True
icon_right: "cellphone"
icon_right_color: app.theme_cls.primary_color
"""
password_helper = """
MDTextField:
password: True
hint_text: "Enter Password"
pos_hint: {'center_x':0.5, 'center_y':0.5}
helper_text: "Click Forgot Password if you do not remember it"
helper_text_mode: "on_focus"
size_hint_x: None
width: 200
required: True
icon_right: "cellphone-key"
icon_right_color: app.theme_cls.primary_color
"""
|
[
"noreply@github.com"
] |
noreply@github.com
|
3681c80ec59ac350c54b44f44a5944f4e755ddaa
|
2cbcfb9b9046ac131dc01a6fd048b6920d29cd42
|
/57. 插入区间.py
|
4b791d583f9803e977bfe4e1c5a3179d6edf7b92
|
[] |
no_license
|
pulinghao/LeetCode_Python
|
6b530a0e491ea302b1160fa73582e838338da3d1
|
82ece6ed353235dcd36face80f5d87df12d56a2c
|
refs/heads/master
| 2022-08-12T21:19:43.510729
| 2022-08-08T03:04:52
| 2022-08-08T03:04:52
| 252,371,954
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,114
|
py
|
#!/usr/bin/env python
# _*_coding:utf-8 _*_
"""
@Time :2020/11/4 8:26 下午
@Author :pulinghao@baidu.com
@File :57. 插入区间.py
@Description :
"""
class Solution(object):
def insert(self, intervals, newInterval):
"""
:type intervals: List[List[int]]
:type newInterval: List[int]
:rtype: List[List[int]]
"""
res = []
i = 0
# 1.先找到需要合并的位置
while i < len(intervals) and intervals[i][1] < newInterval[0]:
res.append(intervals[i])
i += 1
# 2. 合并区间
while i < len(intervals) and intervals[i][0] <= newInterval[1]:
newInterval[0] = min(newInterval[0],intervals[i][0])
newInterval[1] = max(newInterval[1],intervals[i][1])
i += 1
res.append(newInterval)
while i < len(intervals):
res.append(intervals[i])
i += 1
return res
if __name__ == '__main__':
intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]]
newInterval = [4,8]
print Solution().insert(intervals,newInterval)
|
[
"pulinghao@baidu.com"
] |
pulinghao@baidu.com
|
f658dece9539cbce28833455e98d4617eab50735
|
88084a0735b6f10081b2367f27c8c598f350c269
|
/dev/ucb.py
|
600aef995bac446c3e00bb767db8c2afccaba2f8
|
[] |
no_license
|
xnie/cMLE-debias
|
ceb2eef7a5f99c2264bb7b915708d1d31923adfc
|
16adc22b57c8ed5b39dda8c8a376e94840074621
|
refs/heads/master
| 2021-05-06T02:21:29.809063
| 2017-12-17T07:09:08
| 2017-12-17T07:09:08
| 114,514,961
| 6
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,472
|
py
|
import math
import pdb
import random
import copy
import numpy as np
from debias import CD, payoff_matrix
def ucb(scen, greedy=False, lil_ucb=False, egreedy=False, rand=None, alpha=9, beta=1, lil_epsilon=0.01, greedy_epsilon=0.05, delta=0.005, gumbel_t_varies=False, held=False):
# scen: a list of reward distr
# rand: randomization noise generator
num_actions = len(scen)
payoff_sums = np.zeros(num_actions)
payoff_sums_held = np.zeros(num_actions)
num_pulls = np.zeros(num_actions, dtype=np.int8)
num_pulls_held = np.zeros(num_actions, dtype=np.int8)
ucbs = np.zeros(num_actions)
debiaser = ucb_sgd(scen)
if egreedy:
debiaser.set_eps(greedy_epsilon)
# initialize empirical sums
for t in range(num_actions):
payoff_sums[t] = scen[t].get_reward()
payoff_sums_held[t] = payoff_sums[t]
num_pulls[t] += 1
num_pulls_held[t] += 1
debiaser.update(t, payoff_sums[t], 0, ucbs)
ind_sample = True
yield t, payoff_sums[t], num_pulls, payoff_sums, ucbs, debiaser, num_pulls_held, payoff_sums_held, ind_sample
t = num_actions
last_action = None
while True:
if held and last_action is not None:
action = last_action
ind_sample = True
last_action = None
else:
ind_sample = False
if greedy or egreedy:
ucbs_bound = np.zeros(num_actions)
else:
ucbs_bound = np.array([scen[i].get_upper_bound(t, num_pulls[i], lil_ucb, alpha, beta, lil_epsilon, delta) for i in range(num_actions)])
ucbs = np.array([payoff_sums[i] / num_pulls[i] + ucbs_bound[i] for i in range(num_actions)])
if rand:
if gumbel_t_varies:
ucbs += rand.rvs(size=num_actions) / np.sqrt(t)
else:
ucbs += rand.rvs(size=num_actions)
mx = max(ucbs)
all_maxes = [i for i in range(num_actions) if ucbs[i] == mx]
if egreedy:
if random.random() < greedy_epsilon:
action = random.choice(range(num_actions))
else:
action = random.choice(all_maxes)
else:
action = random.choice(all_maxes)
last_action = action
reward = scen[action].get_reward()
if not held or (held and not ind_sample):
num_pulls[action] += 1
payoff_sums[action] += reward
else:
num_pulls_held[action] += 1
payoff_sums_held[action] += reward
if rand:
if gumbel_t_varies:
scale = rand.kwds["scale"] / np.sqrt(t)
else:
scale = rand.kwds["scale"]
else:
scale = 0
debiaser.update(action, reward, scale, ucbs_bound)
yield action, reward, num_pulls, payoff_sums, ucbs_bound, debiaser, num_pulls_held, payoff_sums_held, ind_sample
t = t + 1
class ucb_sgd(CD):
"""
This is a subclass of CD that implements the
SGD for UCB type bandit algorithms
"""
def __init__(self, scen):
CD.__init__(self, scen)
# The UCB bounds are specific to UCB algorithms
self.ucb_bounds = []
def set_eps(self, epsilon):
self._eps = epsilon
def update(self, action, reward, rand_scale, extra):
"""
extra: ucb_bounds
"""
CD.update(self, action, reward, rand_scale)
self.ucb_bounds.append(extra)
def get_decision_stat(self):
"""
add the ucb bounds to the arm means.
X: is the arms averages up to time T
"""
if not hasattr(self, "X"):
raise ValueError("Data matrix self.X is not computed.")
self.ucb_upward = np.array(self.ucb_bounds)
S = self.decision_stat(self.X)
return S
def proposal(self, mcmc_stepsize=0.5):
"""
The proposal distribution used for the reward is to add
normal distribution with the known variances.
"""
new = [self.state[t] + mcmc_stepsize * self.scen[a].get_sigma() * np.random.standard_normal()\
for t, a in enumerate(self.choices)]
X_new, _ = payoff_matrix(self.num_actions, self.choices, new)
S_new = self.decision_stat(X_new)
ll_new = self.log_likelihood(new, self.choices, self.hmu)
if hasattr(self, "_eps"):
ll_S_new = self.eps_log_likelihood(S_new)
else:
ll_S_new = self.softmax(S_new)
grad = self.log_likelihood_gradient(X_new[-1,:], self.hmu)
return new, ll_new, ll_S_new, grad, 0
def set_state(self, reward, grad):
self.state = copy.deepcopy(list(reward))
self.state_grad = copy.deepcopy(grad)
def init_sampler(self):
self.total, self.accept = 0, 0
self.ll = self.log_likelihood(self.rewards, self.choices, self.hmu)
if hasattr(self, "_eps"):
self.ll_S = self.eps_log_likelihood(self.S)
else:
self.ll_S = self.softmax(self.S)
# gradient evaluated on the data at last iteratio of hmu
self.data_grad = self.log_likelihood_gradient(self.X[-1,:], self.hmu)
self.ll_pos = 0
# initialize the state to the data
self.set_state(self.rewards, self.data_grad)
def decision_stat(self, X):
if not hasattr(self, "ucb_upward"):
raise ValueError("self.ucb_upward does not exist!")
S = np.zeros(X.shape)
T = S.shape[0] # total rounds
start = S.shape[1] # time to start making decisions based on data
for t in range(start, T):
# the decision statistic at round t is the sums of
# PREVIOUS means and UCB bounds at current time.
S[t,:] = X[(t-1),:] + self.ucb_upward[t,:]
return S
def eps_log_likelihood(self, S):
ll_S = 0
for t, action in enumerate(self.choices):
if t >= self.num_actions:
if self.scales[t] == 0:
ll_S += np.log((1-self._eps) + self._eps / self.num_actions) if action == np.argmax(S[t,:]) else np.log(self._eps / self.num_actions)
else:
ll_S += np.log((1-self._eps) * np.exp(S[t, action] / self.scales[t]) / np.exp(S[t, :] / self.scales[t]).sum() +
self._eps / self.num_actions)
return ll_S
|
[
"xnie@mit.edu"
] |
xnie@mit.edu
|
b25e6e9b2e19fe92e8f056172956ab4e7ce1587e
|
aae858329f9fe013cbd3d4d86f5608314f57f170
|
/private_rest_api/rest_api/sawtooth_rest_api/protobuf/state_context_pb2.py
|
d700f1d5541293d2b95ae2ef45f8fe5bfc2e5755
|
[
"LicenseRef-scancode-proprietary-license",
"Apache-2.0",
"LicenseRef-scancode-openssl",
"OpenSSL",
"MIT",
"Zlib",
"LicenseRef-scancode-unknown-license-reference",
"BSD-3-Clause"
] |
permissive
|
b2lead/private-transaction-families
|
8c4abc8f30c5ba26e9f431911d06c9dd6ff4e0d3
|
2a52b430a947dc8e39ed4fcf664a44176f0547e3
|
refs/heads/master
| 2020-09-27T21:58:44.401120
| 2019-12-09T12:39:27
| 2019-12-09T12:39:27
| 226,619,397
| 0
| 0
|
Apache-2.0
| 2019-12-08T05:27:58
| 2019-12-08T05:27:57
| null |
UTF-8
|
Python
| false
| true
| 23,078
|
py
|
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: state_context.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from . import events_pb2 as events__pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name='state_context.proto',
package='',
syntax='proto3',
serialized_pb=_b('\n\x13state_context.proto\x1a\x0c\x65vents.proto\"-\n\x0cTpStateEntry\x12\x0f\n\x07\x61\x64\x64ress\x18\x01 \x01(\t\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\":\n\x11TpStateGetRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x11\n\taddresses\x18\x02 \x03(\t\"\x9d\x01\n\x12TpStateGetResponse\x12\x1e\n\x07\x65ntries\x18\x01 \x03(\x0b\x32\r.TpStateEntry\x12*\n\x06status\x18\x02 \x01(\x0e\x32\x1a.TpStateGetResponse.Status\";\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\x17\n\x13\x41UTHORIZATION_ERROR\x10\x02\"G\n\x11TpStateSetRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x1e\n\x07\x65ntries\x18\x02 \x03(\x0b\x32\r.TpStateEntry\"\x90\x01\n\x12TpStateSetResponse\x12\x11\n\taddresses\x18\x01 \x03(\t\x12*\n\x06status\x18\x02 \x01(\x0e\x32\x1a.TpStateSetResponse.Status\";\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\x17\n\x13\x41UTHORIZATION_ERROR\x10\x02\"=\n\x14TpStateDeleteRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x11\n\taddresses\x18\x02 \x03(\t\"\x96\x01\n\x15TpStateDeleteResponse\x12\x11\n\taddresses\x18\x01 \x03(\t\x12-\n\x06status\x18\x02 \x01(\x0e\x32\x1d.TpStateDeleteResponse.Status\";\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\x17\n\x13\x41UTHORIZATION_ERROR\x10\x02\";\n\x17TpReceiptAddDataRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x0c\n\x04\x64\x61ta\x18\x03 \x01(\x0c\"{\n\x18TpReceiptAddDataResponse\x12\x30\n\x06status\x18\x02 \x01(\x0e\x32 .TpReceiptAddDataResponse.Status\"-\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\t\n\x05\x45RROR\x10\x02\">\n\x11TpEventAddRequest\x12\x12\n\ncontext_id\x18\x01 \x01(\t\x12\x15\n\x05\x65vent\x18\x02 \x01(\x0b\x32\x06.Event\"o\n\x12TpEventAddResponse\x12*\n\x06status\x18\x02 \x01(\x0e\x32\x1a.TpEventAddResponse.Status\"-\n\x06Status\x12\x10\n\x0cSTATUS_UNSET\x10\x00\x12\x06\n\x02OK\x10\x01\x12\t\n\x05\x45RROR\x10\x02\x42,\n\x15sawtooth.sdk.protobufP\x01Z\x11state_context_pb2b\x06proto3')
,
dependencies=[events__pb2.DESCRIPTOR,])
_TPSTATEGETRESPONSE_STATUS = _descriptor.EnumDescriptor(
name='Status',
full_name='TpStateGetResponse.Status',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='STATUS_UNSET', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='OK', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='AUTHORIZATION_ERROR', index=2, number=2,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=243,
serialized_end=302,
)
_sym_db.RegisterEnumDescriptor(_TPSTATEGETRESPONSE_STATUS)
_TPSTATESETRESPONSE_STATUS = _descriptor.EnumDescriptor(
name='Status',
full_name='TpStateSetResponse.Status',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='STATUS_UNSET', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='OK', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='AUTHORIZATION_ERROR', index=2, number=2,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=243,
serialized_end=302,
)
_sym_db.RegisterEnumDescriptor(_TPSTATESETRESPONSE_STATUS)
_TPSTATEDELETERESPONSE_STATUS = _descriptor.EnumDescriptor(
name='Status',
full_name='TpStateDeleteResponse.Status',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='STATUS_UNSET', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='OK', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='AUTHORIZATION_ERROR', index=2, number=2,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=243,
serialized_end=302,
)
_sym_db.RegisterEnumDescriptor(_TPSTATEDELETERESPONSE_STATUS)
_TPRECEIPTADDDATARESPONSE_STATUS = _descriptor.EnumDescriptor(
name='Status',
full_name='TpReceiptAddDataResponse.Status',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='STATUS_UNSET', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='OK', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='ERROR', index=2, number=2,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=879,
serialized_end=924,
)
_sym_db.RegisterEnumDescriptor(_TPRECEIPTADDDATARESPONSE_STATUS)
_TPEVENTADDRESPONSE_STATUS = _descriptor.EnumDescriptor(
name='Status',
full_name='TpEventAddResponse.Status',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='STATUS_UNSET', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='OK', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='ERROR', index=2, number=2,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=879,
serialized_end=924,
)
_sym_db.RegisterEnumDescriptor(_TPEVENTADDRESPONSE_STATUS)
_TPSTATEENTRY = _descriptor.Descriptor(
name='TpStateEntry',
full_name='TpStateEntry',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='address', full_name='TpStateEntry.address', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='data', full_name='TpStateEntry.data', index=1,
number=2, type=12, cpp_type=9, label=1,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=37,
serialized_end=82,
)
_TPSTATEGETREQUEST = _descriptor.Descriptor(
name='TpStateGetRequest',
full_name='TpStateGetRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='context_id', full_name='TpStateGetRequest.context_id', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='addresses', full_name='TpStateGetRequest.addresses', index=1,
number=2, type=9, cpp_type=9, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=84,
serialized_end=142,
)
_TPSTATEGETRESPONSE = _descriptor.Descriptor(
name='TpStateGetResponse',
full_name='TpStateGetResponse',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='entries', full_name='TpStateGetResponse.entries', index=0,
number=1, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='status', full_name='TpStateGetResponse.status', index=1,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
_TPSTATEGETRESPONSE_STATUS,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=145,
serialized_end=302,
)
_TPSTATESETREQUEST = _descriptor.Descriptor(
name='TpStateSetRequest',
full_name='TpStateSetRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='context_id', full_name='TpStateSetRequest.context_id', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='entries', full_name='TpStateSetRequest.entries', index=1,
number=2, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=304,
serialized_end=375,
)
_TPSTATESETRESPONSE = _descriptor.Descriptor(
name='TpStateSetResponse',
full_name='TpStateSetResponse',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='addresses', full_name='TpStateSetResponse.addresses', index=0,
number=1, type=9, cpp_type=9, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='status', full_name='TpStateSetResponse.status', index=1,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
_TPSTATESETRESPONSE_STATUS,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=378,
serialized_end=522,
)
_TPSTATEDELETEREQUEST = _descriptor.Descriptor(
name='TpStateDeleteRequest',
full_name='TpStateDeleteRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='context_id', full_name='TpStateDeleteRequest.context_id', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='addresses', full_name='TpStateDeleteRequest.addresses', index=1,
number=2, type=9, cpp_type=9, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=524,
serialized_end=585,
)
_TPSTATEDELETERESPONSE = _descriptor.Descriptor(
name='TpStateDeleteResponse',
full_name='TpStateDeleteResponse',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='addresses', full_name='TpStateDeleteResponse.addresses', index=0,
number=1, type=9, cpp_type=9, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='status', full_name='TpStateDeleteResponse.status', index=1,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
_TPSTATEDELETERESPONSE_STATUS,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=588,
serialized_end=738,
)
_TPRECEIPTADDDATAREQUEST = _descriptor.Descriptor(
name='TpReceiptAddDataRequest',
full_name='TpReceiptAddDataRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='context_id', full_name='TpReceiptAddDataRequest.context_id', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='data', full_name='TpReceiptAddDataRequest.data', index=1,
number=3, type=12, cpp_type=9, label=1,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=740,
serialized_end=799,
)
_TPRECEIPTADDDATARESPONSE = _descriptor.Descriptor(
name='TpReceiptAddDataResponse',
full_name='TpReceiptAddDataResponse',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='status', full_name='TpReceiptAddDataResponse.status', index=0,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
_TPRECEIPTADDDATARESPONSE_STATUS,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=801,
serialized_end=924,
)
_TPEVENTADDREQUEST = _descriptor.Descriptor(
name='TpEventAddRequest',
full_name='TpEventAddRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='context_id', full_name='TpEventAddRequest.context_id', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='event', full_name='TpEventAddRequest.event', index=1,
number=2, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=926,
serialized_end=988,
)
_TPEVENTADDRESPONSE = _descriptor.Descriptor(
name='TpEventAddResponse',
full_name='TpEventAddResponse',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='status', full_name='TpEventAddResponse.status', index=0,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
_TPEVENTADDRESPONSE_STATUS,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=990,
serialized_end=1101,
)
_TPSTATEGETRESPONSE.fields_by_name['entries'].message_type = _TPSTATEENTRY
_TPSTATEGETRESPONSE.fields_by_name['status'].enum_type = _TPSTATEGETRESPONSE_STATUS
_TPSTATEGETRESPONSE_STATUS.containing_type = _TPSTATEGETRESPONSE
_TPSTATESETREQUEST.fields_by_name['entries'].message_type = _TPSTATEENTRY
_TPSTATESETRESPONSE.fields_by_name['status'].enum_type = _TPSTATESETRESPONSE_STATUS
_TPSTATESETRESPONSE_STATUS.containing_type = _TPSTATESETRESPONSE
_TPSTATEDELETERESPONSE.fields_by_name['status'].enum_type = _TPSTATEDELETERESPONSE_STATUS
_TPSTATEDELETERESPONSE_STATUS.containing_type = _TPSTATEDELETERESPONSE
_TPRECEIPTADDDATARESPONSE.fields_by_name['status'].enum_type = _TPRECEIPTADDDATARESPONSE_STATUS
_TPRECEIPTADDDATARESPONSE_STATUS.containing_type = _TPRECEIPTADDDATARESPONSE
_TPEVENTADDREQUEST.fields_by_name['event'].message_type = events__pb2._EVENT
_TPEVENTADDRESPONSE.fields_by_name['status'].enum_type = _TPEVENTADDRESPONSE_STATUS
_TPEVENTADDRESPONSE_STATUS.containing_type = _TPEVENTADDRESPONSE
DESCRIPTOR.message_types_by_name['TpStateEntry'] = _TPSTATEENTRY
DESCRIPTOR.message_types_by_name['TpStateGetRequest'] = _TPSTATEGETREQUEST
DESCRIPTOR.message_types_by_name['TpStateGetResponse'] = _TPSTATEGETRESPONSE
DESCRIPTOR.message_types_by_name['TpStateSetRequest'] = _TPSTATESETREQUEST
DESCRIPTOR.message_types_by_name['TpStateSetResponse'] = _TPSTATESETRESPONSE
DESCRIPTOR.message_types_by_name['TpStateDeleteRequest'] = _TPSTATEDELETEREQUEST
DESCRIPTOR.message_types_by_name['TpStateDeleteResponse'] = _TPSTATEDELETERESPONSE
DESCRIPTOR.message_types_by_name['TpReceiptAddDataRequest'] = _TPRECEIPTADDDATAREQUEST
DESCRIPTOR.message_types_by_name['TpReceiptAddDataResponse'] = _TPRECEIPTADDDATARESPONSE
DESCRIPTOR.message_types_by_name['TpEventAddRequest'] = _TPEVENTADDREQUEST
DESCRIPTOR.message_types_by_name['TpEventAddResponse'] = _TPEVENTADDRESPONSE
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
TpStateEntry = _reflection.GeneratedProtocolMessageType('TpStateEntry', (_message.Message,), dict(
DESCRIPTOR = _TPSTATEENTRY,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpStateEntry)
))
_sym_db.RegisterMessage(TpStateEntry)
TpStateGetRequest = _reflection.GeneratedProtocolMessageType('TpStateGetRequest', (_message.Message,), dict(
DESCRIPTOR = _TPSTATEGETREQUEST,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpStateGetRequest)
))
_sym_db.RegisterMessage(TpStateGetRequest)
TpStateGetResponse = _reflection.GeneratedProtocolMessageType('TpStateGetResponse', (_message.Message,), dict(
DESCRIPTOR = _TPSTATEGETRESPONSE,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpStateGetResponse)
))
_sym_db.RegisterMessage(TpStateGetResponse)
TpStateSetRequest = _reflection.GeneratedProtocolMessageType('TpStateSetRequest', (_message.Message,), dict(
DESCRIPTOR = _TPSTATESETREQUEST,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpStateSetRequest)
))
_sym_db.RegisterMessage(TpStateSetRequest)
TpStateSetResponse = _reflection.GeneratedProtocolMessageType('TpStateSetResponse', (_message.Message,), dict(
DESCRIPTOR = _TPSTATESETRESPONSE,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpStateSetResponse)
))
_sym_db.RegisterMessage(TpStateSetResponse)
TpStateDeleteRequest = _reflection.GeneratedProtocolMessageType('TpStateDeleteRequest', (_message.Message,), dict(
DESCRIPTOR = _TPSTATEDELETEREQUEST,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpStateDeleteRequest)
))
_sym_db.RegisterMessage(TpStateDeleteRequest)
TpStateDeleteResponse = _reflection.GeneratedProtocolMessageType('TpStateDeleteResponse', (_message.Message,), dict(
DESCRIPTOR = _TPSTATEDELETERESPONSE,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpStateDeleteResponse)
))
_sym_db.RegisterMessage(TpStateDeleteResponse)
TpReceiptAddDataRequest = _reflection.GeneratedProtocolMessageType('TpReceiptAddDataRequest', (_message.Message,), dict(
DESCRIPTOR = _TPRECEIPTADDDATAREQUEST,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpReceiptAddDataRequest)
))
_sym_db.RegisterMessage(TpReceiptAddDataRequest)
TpReceiptAddDataResponse = _reflection.GeneratedProtocolMessageType('TpReceiptAddDataResponse', (_message.Message,), dict(
DESCRIPTOR = _TPRECEIPTADDDATARESPONSE,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpReceiptAddDataResponse)
))
_sym_db.RegisterMessage(TpReceiptAddDataResponse)
TpEventAddRequest = _reflection.GeneratedProtocolMessageType('TpEventAddRequest', (_message.Message,), dict(
DESCRIPTOR = _TPEVENTADDREQUEST,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpEventAddRequest)
))
_sym_db.RegisterMessage(TpEventAddRequest)
TpEventAddResponse = _reflection.GeneratedProtocolMessageType('TpEventAddResponse', (_message.Message,), dict(
DESCRIPTOR = _TPEVENTADDRESPONSE,
__module__ = 'state_context_pb2'
# @@protoc_insertion_point(class_scope:TpEventAddResponse)
))
_sym_db.RegisterMessage(TpEventAddResponse)
DESCRIPTOR.has_options = True
DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\025sawtooth.sdk.protobufP\001Z\021state_context_pb2'))
# @@protoc_insertion_point(module_scope)
|
[
"yoni.wolf@intel.com"
] |
yoni.wolf@intel.com
|
4da4aa68a0cd83d1a57b20435439e06bad9395a2
|
fc6f709f916fcd201938157990c77fa9202eefa7
|
/model/optimizer.py
|
4a9ee5afce8f27d52a2e33ea778b94ad326ffc29
|
[
"MIT"
] |
permissive
|
chenchy/StyleSpeech
|
441ffd6d71ac0269d205ad66c9536fe00cb5267c
|
e0e4ad25681f9ecc2a01ba1b87cbe0c59472b792
|
refs/heads/main
| 2023-05-27T21:39:04.790584
| 2021-06-13T10:32:03
| 2021-06-13T11:26:38
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,650
|
py
|
import torch
import numpy as np
class ScheduledOptimMain:
""" A simple wrapper class for learning rate scheduling """
def __init__(self, model, train_config, model_config, current_step):
self._optimizer = torch.optim.Adam(
model.parameters(),
betas=train_config["optimizer"]["betas"],
eps=train_config["optimizer"]["eps"],
weight_decay=train_config["optimizer"]["weight_decay"],
)
self.n_warmup_steps = train_config["optimizer"]["warm_up_step"]
self.anneal_steps = train_config["optimizer"]["anneal_steps"]
self.anneal_rate = train_config["optimizer"]["anneal_rate"]
self.current_step = current_step
self.init_lr = np.power(model_config["transformer"]["encoder_hidden"], -0.5)
def step_and_update_lr(self):
self._update_learning_rate()
self._optimizer.step()
def zero_grad(self):
# print(self.init_lr)
self._optimizer.zero_grad()
def load_state_dict(self, path):
self._optimizer.load_state_dict(path)
def _get_lr_scale(self):
lr = np.min(
[
np.power(self.current_step, -0.5),
np.power(self.n_warmup_steps, -1.5) * self.current_step,
]
)
for s in self.anneal_steps:
if self.current_step > s:
lr = lr * self.anneal_rate
return lr
def _update_learning_rate(self):
""" Learning rate scheduling per step """
self.current_step += 1
lr = self.init_lr * self._get_lr_scale()
for param_group in self._optimizer.param_groups:
param_group["lr"] = lr
class ScheduledOptimDisc:
""" A simple wrapper class for learning rate scheduling """
def __init__(self, model, train_config):
self._optimizer = torch.optim.Adam(
model.parameters(),
betas=train_config["optimizer"]["betas"],
eps=train_config["optimizer"]["eps"],
weight_decay=train_config["optimizer"]["weight_decay"],
)
self.init_lr = train_config["optimizer"]["lr_disc"]
self._init_learning_rate()
def step_and_update_lr(self):
self._optimizer.step()
def zero_grad(self):
# print(self.init_lr)
self._optimizer.zero_grad()
def load_state_dict(self, path):
self._optimizer.load_state_dict(path)
def _init_learning_rate(self):
lr = self.init_lr
for param_group in self._optimizer.param_groups:
param_group["lr"] = lr
|
[
"keonlee9420@gmail.com"
] |
keonlee9420@gmail.com
|
7208ed98c23ba5ea533900ee0bf6dfbbb82d5a92
|
bbb89d13318df191b83716ad28633c6dd87147a5
|
/curso_em_video/mundo_03/ex095.py
|
d16fa09f866332300e254db544c647cd9c0b08f7
|
[] |
no_license
|
matheusvictor/estudos_python
|
50745522d2801fd5e9c2c3307eb251c1f18dcdbd
|
627c01a5e89192388fb5c34f5fdccbc7a3129d9f
|
refs/heads/master
| 2022-10-28T09:00:52.972993
| 2022-10-06T17:45:28
| 2022-10-06T17:45:28
| 192,107,427
| 5
| 0
| null | 2022-10-05T18:09:22
| 2019-06-15T17:43:49
|
Python
|
UTF-8
|
Python
| false
| false
| 2,658
|
py
|
lista_jogadores = list()
continua = True
while continua:
nome_jogador = str(input('Nome do jogador: '))
partidas_jogadas = int(input(f'Quantas partidas foram jogadas por {nome_jogador}?: '))
quantidade_gols_partida = list()
total_gols = 0
for partida in range(partidas_jogadas):
quantidade_gols_partida.append(int(input(f'Quantidade de gols feitos na {partida + 1}ª partida: ')))
total_gols += quantidade_gols_partida[partida]
estatisticas_jogador = {'nome': nome_jogador, 'partidas_jogadas': partidas_jogadas,
'gols_por_partida': quantidade_gols_partida, 'total_gols': total_gols}
lista_jogadores.append(estatisticas_jogador.copy())
estatisticas_jogador.clear()
resposta = str(input('Deseja continuar? [S/N]: '))
while resposta not in 'SsNn':
resposta = str(input('Opção inválida! Tente novamente [S/N]: ')).upper()[0]
if resposta in 'Nn':
continua = False
break
print('-=' * 40)
print(f'{"COD":<10}{"NOME":<10}{"GOLS":<10}{"TOTAL":<10}')
print('-' * 40)
for index, jogador in enumerate(lista_jogadores):
print(f'{index:<5}{"":<5}{jogador["nome"]}{"":<10}{jogador["gols_por_partida"]}{"":<10}{jogador["total_gols"]}')
print('-' * 40)
while True:
opcao = int(input('Deseja mostrar os dados de qual jogador? (999 para encerrar o programa): '))
while opcao != 999 and (opcao < 0 or opcao > len(lista_jogadores) - 1):
opcao = int(input('Opção inválida! Tente novamente ou digite 999 para encerrar o programa: '))
if opcao <= len(lista_jogadores) - 1:
print('-=' * 40)
print(f'* Jogador: {lista_jogadores[opcao]["nome"]}.')
print(f'* Nº partidas: {lista_jogadores[opcao]["partidas_jogadas"]}.')
print(f'* Nº gols/partida: ', end='')
if lista_jogadores[opcao]["partidas_jogadas"] == 0:
print('Não houve partidas disputadas.')
else:
for partida in range(lista_jogadores[opcao]["partidas_jogadas"]):
print(f'\n - {partida + 1}ª partida = {lista_jogadores[opcao]["gols_por_partida"][partida]} gol(s)')
print(f'* Total de gol(s): {lista_jogadores[opcao]["total_gols"]}.')
print('-=' * 40)
elif opcao == 999:
break
print('Programa encerrado!')
# print('-=' * 20)
# print(f'O jogador {estatisticas_jogador["nome"]} jogou {estatisticas_jogador["partidas_jogadas"]} partida(s).')
# for i, v in enumerate(estatisticas_jogador['gols_por_partida']):
# print(f'Na {i + 1}ª partida fez {v} gol(s)')
# print(f'Foi um total de {estatisticas_jogador["total_gols"]} gol(s)!')
# print('-=' * 20)
|
[
"matheusvictor.salles@gmail.com"
] |
matheusvictor.salles@gmail.com
|
9ebd7cc9e4666b0fb2c0d367f8dc2c3e0cea1522
|
bd5240c87cd9699cae088395cac180276210566f
|
/Day2/day2part2.py
|
83131ed0c1ff569d573e398610498f7e91b6236d
|
[] |
no_license
|
GruberQZ/AoC-2016
|
decb15665b409be8fa57576f1d72aea1834ce98a
|
377ae2557225bdd61c19adcf72fed549ba363d56
|
refs/heads/master
| 2020-06-15T23:23:34.827074
| 2017-06-22T02:31:06
| 2017-06-22T02:31:06
| 75,258,578
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,648
|
py
|
file = open('input.txt','r')
password = ''
cannotMoveLeft = [1,2,5,10,13]
cannotMoveRight = [1,4,9,12,13]
cannotMoveUp = [1,2,4,5,9]
cannotMoveDown = [5,9,10,12,13]
for line in file:
# Starting number
number = 5
# Go character by character
for char in line:
if char == 'U':
if number not in cannotMoveUp:
if number in [3,13]:
number = number - 2
elif number in [6,7,8]:
number = number - 4
elif number in [10,11,12]:
number = number - 4
elif char == 'D':
if number not in cannotMoveDown:
if number in [1,11]:
number = number + 2
elif number in [2,3,4]:
number = number + 4
elif number in [6,7,8]:
number = number + 4
elif char == 'R':
if number not in cannotMoveRight:
number = number + 1
elif char == 'L':
if number not in cannotMoveLeft:
number = number - 1
# Add character to the password string
password = password + str(number) + ','
# Decode password
split = password.split(',')
finalPass = ''
for char in split:
if char != '':
if int(char) < 10:
finalPass = finalPass + char
elif char == '10':
finalPass = finalPass + 'A'
elif char == '11':
finalPass = finalPass + 'B'
elif char == '12':
finalPass = finalPass + 'C'
elif char == '13':
finalPass = finalPass + 'D'
print(finalPass)
|
[
"ambsneakysnack@gmail.com"
] |
ambsneakysnack@gmail.com
|
d950e9415f72c06a87c46adf8103dce0dae9f4fb
|
df52429f63a1983ec725fe1197edad77f0504d7d
|
/Python_Study/BUPT_homework/spider/test1/test1/spiders/spider.py
|
01613d207c0938b0c8b4c97eb3e26f10446594ab
|
[] |
no_license
|
StupidRabbit29/Python_Practice
|
38b16baa7ecd4bd6f0bbd4840f37ba565c387857
|
0f7c43026410b4b7f07a9a266b2cf885de5d53b9
|
refs/heads/master
| 2020-05-31T07:26:32.631067
| 2019-12-05T11:19:26
| 2019-12-05T11:19:26
| 190,165,619
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 961
|
py
|
import scrapy
from test1.items import MyItem
class mySpider(scrapy.spiders.Spider):
name = "xuetang" # 爬虫名称
allowed_domains = ["www.xuetangx.com/"] # 允许爬取的网站域名
start_urls = ["http://www.xuetangx.com/partners"] # 初始URL
def parse(self, response): # 解析爬取的内容
item = MyItem()
# 生成一个MyItem对象,接收爬取的数据
# 一共爬取143所大学的课程信息
for i in range(1, 144):
item['university'] = response.xpath("/html/body/article[1]/section/ul/li[{}]"
"/a/div[1]/span/img/@title".format(i)).extract()
item['classnum'] = response.xpath("/html/body/article[1]/section/ul/li[{}]"
"/a/div[2]/p/text()".format(i)).extract()
if item['university'] and item['classnum']: # 去掉空值
yield(item)
|
[
"2922282053@qq.com"
] |
2922282053@qq.com
|
56a09542f43d048bd4db774cddb2d81219f39b2a
|
99124299af27232720ad19df377cb90c20f514bb
|
/Ending_Animation.py
|
14eba34dfb108cc562dcd4bdd87915b78266901a
|
[] |
no_license
|
senweim/JumpKingAtHome
|
7a2ae684fafffa1f910c68d8b02ea98e4e900ed6
|
6c3d1a7ba9246181b89e67b1f4857df99c85fa01
|
refs/heads/master
| 2023-01-12T15:01:31.174697
| 2020-11-10T06:49:45
| 2020-11-10T06:49:45
| 311,570,473
| 14
| 5
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,129
|
py
|
#!/usr/bin/env python
#
#
#
#
import pygame
import os
import sys
import math
class Ending_Animation:
def __init__(self):
self.end_counter = 0
self.end_pan = (-90, 90)
self.stall_x = 240
self.stall_y = 220
self.channel = pygame.mixer.Channel(1)
self.ending_music = pygame.mixer.Sound("Audio\\Misc\\ending.wav")
self.end_image = pygame.image.load("images\\sheets\\imagecrown.png").convert()
def update(self, level, king, babe):
king_command = None
babe_command = None
if self.move_screen(level, king, babe):
if self.end_counter < 50:
pass
elif self.end_counter == 50:
babe_command = "Crouch"
elif self.end_counter < 60:
pass
elif self.end_counter == 60:
babe_command = "Jump"
elif self.end_counter <= 120:
pass
elif self.end_counter <= 150:
babe_command = "WalkLeft"
elif self.end_counter <= 175:
babe_command = "Kiss"
elif self.end_counter <= 190:
level.flyer.active = True
elif self.end_counter <= 205:
king_command = "LookUp"
babe_command = "WalkRight"
elif 330 <= self.end_counter < 360:
king_command = "Crouch"
elif self.end_counter == 360:
king_command = "Jump"
elif self.end_counter <= 420:
if king.y <= level.flyer.rect.bottom:
king.isWearingCrown = True
king.rect_y = level.flyer.rect.bottom + (king.y - king.rect_y - 7)
king_command = "Freeze"
if self.end_counter == 360:
level.flyer.channel.play(level.flyer.audio)
elif self.end_counter <= 460:
level.flyer.active = False
elif self.end_counter <= 500:
king.isHoldingUpHands = True
elif self.end_counter == 501:
king.isSnatch = True
elif self.end_counter == 502:
king.isSnatch = False
king.isHoldingBabe = True
babe_command = "Snatched"
babe.channel.play(babe.audio["babe_pickup"])
elif self.end_counter <= 670:
king_command = "WalkLeft"
elif self.end_counter <= 730:
pass
elif self.end_counter <= 820:
if self.end_counter == 731:
babe.channel.play(babe.audio["babe_surprised2"])
self.scroll_screen(level, king)
king_command = "WalkRight"
king.update(king_command)
elif self.end_counter <= 850:
self.scroll_screen(level, king)
king_command = "Crouch"
elif self.end_counter == 851:
babe.channel.play(babe.audio["babe_jump"])
self.scroll_screen(level, king)
king_command = "JumpRight"
elif self.end_counter <= 1700:
self.scroll_screen(level, king)
if self.end_counter == 930:
king.channel.play(king.audio["Land"]["king_jump"])
if self.end_counter > 1000:
king.isAdmiring = True
if self.end_counter == 1100:
babe.channel.play(babe.audio["babe_mou"])
if self.end_counter > 1200:
king.isAdmiring = False
else:
if self.end_counter > 3000:
sys.exit()
return True
self.end_counter += 1
king.update(king_command)
babe.update(king, babe_command)
def scroll_screen(self, level, king):
if king.rect_x > self.stall_x:
rel_x = self.stall_x - king.rect_x
king.rect_x += rel_x
if level.midground:
level.midground.x += rel_x
if level.props:
for prop in level.props:
prop.x += rel_x
if level.npc:
level.npc.x += rel_x
if level.foreground:
level.foreground.x += rel_x
if level.platforms:
for platform in level.platforms:
platform.x += rel_x
if king.rect_y > self.stall_y:
rel_y = self.stall_y - king.rect_y
if self.stall_y > level.screen.get_height() / 2:
self.stall_y -= 2
king.rect_y += rel_y
if level.midground:
level.midground.y -= math.sqrt(abs(rel_y))
if level.props:
for prop in level.props:
prop.y -= math.sqrt(abs(rel_y))
if level.npc:
level.npc.y -= math.sqrt(abs(rel_y))
if level.foreground:
level.foreground.y -= math.sqrt(abs(rel_y))
if level.platforms:
for platform in level.platforms:
platform.y -= math.sqrt(abs(rel_y))
def move_screen(self, level, king, babe):
if self.end_pan[0] != 0 or self.end_pan[1] != 0:
try:
x = self.end_pan[0]/abs(self.end_pan[0])
except ZeroDivisionError:
x = 0
try:
y = self.end_pan[1]/abs(self.end_pan[1])
except ZeroDivisionError:
y = 0
if level.midground:
level.midground.x += x
level.midground.y += y
if level.props:
for prop in level.props:
prop.x += x
prop.y += y
if level.npc:
level.npc.x += x
level.npc.y += y
if level.foreground:
level.foreground.x += x
level.foreground.y += y
if level.platforms:
for platform in level.platforms:
platform.x += x
platform.y += y
king.rect_x += x
king.rect_y += y
babe.rect_x += x
babe.rect_y += y
self.end_pan = (self.end_pan[0] - x, self.end_pan[1] - y)
return False
else:
return True
def update_audio(self):
try:
if not self.channel.get_busy():
self.channel.play(self.ending_music)
except Exception as e:
print("ENDINGUPDATEAUDIO ERROR: ", e)
def blitme(self, screen):
screen.blit(self.end_image, (0, 0))
|
[
"67669987+thien137@users.noreply.github.com"
] |
67669987+thien137@users.noreply.github.com
|
0593545ee04a253e13349dd65da2311fddaf8735
|
6ec7a7b7bec26ae583ac0c1a29cffeb3875a6887
|
/learning_sites/basic_app/migrations/0002_auto_20190818_0321.py
|
a04ffe511222640813a7144448465ae87fde86c7
|
[] |
no_license
|
MuhammadAhmedSiddiqui/Django-Deployment-Example
|
048420d562b5eb85562a8cf85efbaf7dcffd1082
|
fcef550ac6fa2d9986dfc2483f094f19294446a7
|
refs/heads/master
| 2021-07-10T20:24:32.377185
| 2019-08-18T21:02:06
| 2019-08-18T21:02:06
| 203,053,430
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 516
|
py
|
# Generated by Django 2.2.1 on 2019-08-17 22:21
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('basic_app', '0001_initial'),
]
operations = [
migrations.AlterField(
model_name='userprofileinfo',
name='user',
field=models.OneToOneField(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL),
),
]
|
[
"mahmed.siddiqui97@gmail.com"
] |
mahmed.siddiqui97@gmail.com
|
e3dc9fa2d3b12729be5417ea7d8dcfe2a1af40f1
|
57b639ef18f16cad499f56e74694b8109a2370e0
|
/IPN/__init__.py
|
cce32ae0f6274de65ccc173fe06ba3112e256a90
|
[] |
no_license
|
Cranbaerry/RainyCogs
|
7eaf3e77650b2ea0393099f1507bf874b6888114
|
13d49439703731b3d705458b1f14c8af1677c3b0
|
refs/heads/master
| 2023-08-16T02:56:46.771142
| 2021-09-15T14:11:46
| 2021-09-15T14:11:46
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 74
|
py
|
from .IPN import IPN
def setup(bot):
n = IPN(bot)
bot.add_cog(n)
|
[
"naufalh39@gmail.com"
] |
naufalh39@gmail.com
|
fbfcb0f207218d893dde5197920947a501840b4e
|
bebde3481cc5cae5c29d40e7492344dfc1cea388
|
/main.py
|
13c0f23cb3147c165b1fc90e44410804b686f484
|
[] |
no_license
|
erichadley8/headless-firefox
|
dac87659569d63ad77f6a024303f745a15d02be8
|
198ebb2c954fe840de0ebf4823682e68ec772f8a
|
refs/heads/master
| 2023-01-18T17:55:31.575480
| 2020-12-01T02:18:25
| 2020-12-01T02:18:25
| 317,334,635
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,331
|
py
|
import os
import datetime
from colorama import Fore, Back
from selenium import webdriver
from selenium.webdriver.firefox.options import Options
while True:
try:
### Firefox Parameters
executable_path = os.getcwd() + "/geckodriver"
### Firefox Options
options = Options()
options.headless = True
### Proxy Configuration
'''
proxy = "34.203.142.175:80"
webdriver.DesiredCapabilities.FIREFOX['proxy'] = {
"httpProxy": proxy,
"ftpProxy":proxy,
"sslProxy":proxy,
"proxyType":"MANUAL",
}
'''
### Firefox Webdriver
browser = webdriver.Firefox(options=options, executable_path=executable_path)
### Webdriver Logic
browser.get('http://www.porngifs.xyz/')
print(Fore.GREEN + browser.page_source)
### Popunder
body = browser.find_element_by_tag_name("body")
body.click()
browser.save_screenshot("popunder.png")
print(Fore.CYAN + "Clicked for popunder")
ct = datetime.datetime.now()
print("current time:-", ct)
browser.switch_to.window(browser.window_handles[1])
print("Switched back from popunder")
ct = datetime.datetime.now()
print("current time:-", ct)
### Ads
print(Fore.YELLOW + "Getting ads and clicking ads")
ct = datetime.datetime.now()
print("current time:-", ct)
elements = browser.find_elements_by_tag_name('iframe')
for element in elements:
try:
if "jads" in element.get_attribute("src"):
try:
element.click()
print("Clicked " + str(element))
ct = datetime.datetime.now()
print("current time:-", ct)
except:
print("Failed to click " +str(element))
ct = datetime.datetime.now()
print("current time:-", ct)
except:
print("Element detached from dom")
page = 1
print(Fore.RED + "Closing ads and tabs")
ct = datetime.datetime.now()
print("current time:-", ct)
try:
for tab in browser.window_handles:
try:
browser.switch_to.window(tab)
browser.save_screenshot(str(page) + "_page.png")
browser.close()
print("Closed " + str(tab))
ct = datetime.datetime.now()
print("current time:-", ct)
page = page + 1
except:
print("Failed to close")
ct = datetime.datetime.now()
print("current time:-", ct)
except:
print("Failed to close all tabs")
finally:
try:
browser.quit()
except:
pass
|
[
"erichadley8@gmail.com"
] |
erichadley8@gmail.com
|
7a264a8db4f4e8e02988b7289dd89107a02032e9
|
a30d505835c2376634279488878811eacc2de056
|
/landing_page/views.py
|
58d90cb2b886c86b6f4311194f888892ca78399c
|
[] |
no_license
|
Aim-Entity/journalist-web
|
d996419b1177ea1405a9f45ff405c7502c721673
|
8deef8254c7823c6afd713fba36f2d73a9840412
|
refs/heads/master
| 2023-04-27T23:50:24.997849
| 2020-03-29T15:16:11
| 2020-03-29T15:16:11
| 251,063,144
| 0
| 0
| null | 2023-04-21T20:51:06
| 2020-03-29T15:18:03
|
HTML
|
UTF-8
|
Python
| false
| false
| 110
|
py
|
from django.shortcuts import render
def index(request):
return render(request, "landing/index.htm", {})
|
[
"bilaluddin474@Gmail.com"
] |
bilaluddin474@Gmail.com
|
2e43f3798da5e37da76cc29d9895006b9acebf33
|
71baccb6082a2324ba9dc7d66dbc2ad04d4d5ff3
|
/complaint/views.py
|
8c7c5d048c0ebb203e34127e0cd6f9d45dc0d066
|
[] |
no_license
|
pradyumnamahajan52/SVPCET-Hackathon-The-Hack-Backpackers-02
|
60eec408fd5f290f079b85b5c4982aac52dbd366
|
2c4df3ece041a0494c98d920c9538f01464d3c48
|
refs/heads/main
| 2023-01-12T01:19:41.794920
| 2020-11-08T05:15:15
| 2020-11-08T05:15:15
| 330,423,482
| 1
| 0
| null | 2021-01-17T15:33:13
| 2021-01-17T15:33:13
| null |
UTF-8
|
Python
| false
| false
| 535
|
py
|
from django.shortcuts import render
from .models import Complaint_Category,Complaint_Subcategory,Complaint_User
from user.models import Users
# Create your views here.
def user_solver(request):
complaint_subcategory = Complaint_Subcategory.objects.get(solver_role=request.user.user_role)
complaint_user = Complaint_User.objects.filter(complaint_subcategory=complaint_subcategory,is_otp_verify=True).all()
params = {
'complaint_user':complaint_user,
}
return render(request,'user/user_solver.html',params)
|
[
"noreply@github.com"
] |
noreply@github.com
|
46eb00aff3aeab2753beda53a5752b341bbe772b
|
3d308edef9d4f9feead0e024f08d45c00a45de95
|
/07_files/task_7_3b_script.py
|
dddc81ba98ff91185428ea3cf56181a0cfa39ec6
|
[] |
no_license
|
noatre/pyneng
|
86ac9ff6cce16eef5e418d93e296a6255843b984
|
0b29d811fbae1bef9e0a3972f12edc82c7de52e0
|
refs/heads/master
| 2020-04-22T15:49:07.228343
| 2019-03-20T17:28:21
| 2019-03-20T17:28:21
| 170,488,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 346
|
py
|
#!/usr/bin/env python3
vlan_input = input('Enter VLAN number: ')
mac_list = []
with open('CAM_table.txt') as f:
for line in f:
if line.count('Gi') == 1:
line = line.replace('DYNAMIC', '')
line = line.split()
mac_list.append(line)
for i in mac_list:
if i[0] == vlan_input:
print(i)
|
[
"noatre@yandex.ru"
] |
noatre@yandex.ru
|
79fe6c6b4898f0cefa5a2ee82429b88161af2822
|
23f754a39b996ad3e50e539ac1ea88217545df8b
|
/app/models/host.py
|
830a796f3155ebb3a9e5d8f945ee6fd7cb954430
|
[] |
no_license
|
huhaiqng/YWSystemB
|
576b0310cfe49086eaafb99eaa83042621d6fab5
|
cf601fe4b97e96187e66a084a7e43a0cd259e92f
|
refs/heads/master
| 2022-12-11T06:19:46.025055
| 2021-04-27T07:48:46
| 2021-04-27T07:48:46
| 245,122,835
| 0
| 0
| null | 2022-12-08T11:57:56
| 2020-03-05T09:40:26
|
Python
|
UTF-8
|
Python
| false
| false
| 1,241
|
py
|
from django.db import models
from django.utils import timezone
# 主机
class Host(models.Model):
name = models.CharField('主机名', max_length=200)
ip = models.GenericIPAddressField('内网 IP')
outside_ip = models.GenericIPAddressField('外网 IP', default='0.0.0.0')
manage_port = models.IntegerField('管理端口号', default=22)
version = models.CharField('版本', max_length=200)
cpu = models.IntegerField('CPU 核数', default=4)
memory = models.CharField('内存大小', max_length=10, default='8G')
disk = models.CharField('硬盘大小', max_length=10, default='80G')
position = models.CharField('位置', max_length=200)
admin = models.CharField('系统管理员', max_length=200, default='root')
password = models.CharField('密码', max_length=200)
type = models.CharField('类别', max_length=200)
env = models.CharField('环境', max_length=200, default='test')
ins_num = models.IntegerField('实例数量', default='0')
status = models.BooleanField('状态', default=True)
created = models.DateTimeField('创建时间', default=timezone.now)
def __str__(self):
return self.ip
class Meta:
unique_together = ['ip', 'type', 'name']
|
[
"lixin@gainhon.com"
] |
lixin@gainhon.com
|
ec125359dc7d22f74de7a96d3cb57b767553b680
|
9650b24ac61edb013cc6264263eea67fd967783b
|
/FlightPy.py
|
569f3e3603e6143c904bc714d73c69995d83288e
|
[] |
no_license
|
Delphae/flightaware
|
7e83dd11d9e714051070e15fd6815b3873510141
|
aa190221765015fcffae4e5b6ee92e1ef84cec49
|
refs/heads/master
| 2020-04-09T02:52:57.495731
| 2018-12-06T14:27:05
| 2018-12-06T14:27:05
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,395
|
py
|
#!/usr/bin/env python
# coding: utf-8
'''
____ _ _
| _ \ ___| |_ __ | |__ __ _ ___
| | | |/ _ \ | '_ \| '_ \ / _` |/ _ \
| |_| | __/ | |_) | | | | (_| | __/
|____/ \___|_| .__/|_| |_|\__,_|\___|
|_|
1.1 2018-11-30 initial version
1.2 2018-12-01 AirportBoards
1.3 2018-12-02 validate username & apikey
WeatherConditions
1.4 TailOwner
'''
VERSION = '1.4'
DATE = '2018-12-02'
import requests, json
from datetime import datetime as dt
def readjson(method, params, auth):
url = "https://flightxml.flightaware.com/json/FlightXML3/"
response = requests.get(url+method, params=params, auth=auth)
# print response.url
# print response.status_code
return response.json()
class FlightResult:
def __init__(self, result=dict()):
self.__dict__ = result
class FlightInfo:
def __init__(self, info=dict()):
self.__dict__ = info
self.AAT = dt.fromtimestamp(self.actual_arrival_time['epoch'])
self.EAT = dt.fromtimestamp(self.estimated_arrival_time['epoch'])
self.ADT = dt.fromtimestamp(self.actual_departure_time['epoch'])
self.EDT = dt.fromtimestamp(self.estimated_departure_time['epoch'])
self.origin_code = self.origin['code']
self.origin_airport = self.origin['airport_name']
self.destination_code = self.destination['code']
self.destination_airport = self.destination['airport_name']
def __repr__(self):
return self.faFlightID
def __str__(self):
try:
origincity = self.origin['city']
destincity = self.destination['city']
return '%-3s %-5s %5s %-25s %5s %s' % (self.airline_iata,
self.flightnumber,
str(self.ADT.time())[:-3],
origincity.encode('iso-8859-1'),
str(self.AAT.time())[:-3],
destincity.encode('iso-8859-1'))
except:
return ''
class FlightRoute:
def __init__(self, route=dict()):
self.__dict__ = route
self.last_departuretime = dt.fromtimestamp(self.last_departuretime)
def __repr__(self):
return self.route
class FlightAware(object):
__version__ = VERSION
__date__ = DATE
def __init__(self, username='', apikey=''):
if not username or not apikey:
conf = json.load(open('flightaware.json'))
username = conf['username']
apikey = conf['apikey']
self.auth = (username,apikey)
url = "https://flightxml.flightaware.com/json/FlightXML3/WeatherConditions"
params = {'airport_code':'AMS'}
response = requests.get(url, params=params, auth=self.auth)
print ('%s %s' % (response.status_code, response.reason))
def AirportInfo(self, airport):
result = readjson('AirportInfo', {'airport_code':airport}, self.auth)
return FlightResult(result['AirportInfoResult'])
def AirlineInfo(self, airline):
result = readjson('AirlineInfo', {'airline_code':airline}, self.auth)
return FlightResult (result['AirlineInfoResult'])
def FlightInfoStatus(self, ident):
result = readjson('FlightInfoStatus', {'ident':ident}, self.auth)
flightresults = result['FlightInfoStatusResult']['flights']
return [FlightInfo(flight) for flight in flightresults]
def RoutesBetweenAirports (self, origin, destination):
result = readjson('RoutesBetweenAirports', {'origin':origin, 'destination':destination}, self.auth)
routeresults = result['RoutesBetweenAirportsResult']['data']
return [FlightRoute(route) for route in routeresults]
def LatLongsToDistance (self, (lat1,lon1), (lat2,lon2)):
result = readjson('LatLongsToDistance', {'lat1':lat1, 'lon1':lon1, 'lat2':lat2, 'lon2':lon2}, self.auth)
self.miles = result['LatLongsToDistanceResult']
self.km = self.miles * 1.609344
return FlightResult({'miles':self.miles, 'km':self.km})
def AirportBoards(self, airport):
result = readjson('AirportBoards', {'airport_code':airport}, self.auth)
boards = result['AirportBoardsResult']
arrivals = [FlightInfo(flight) for flight in boards['arrivals']['flights']]
departures = [FlightInfo(flight) for flight in boards['departures']['flights']]
enroute = [FlightInfo(flight) for flight in boards['enroute']['flights']]
scheduled = [FlightInfo(flight) for flight in boards['scheduled']['flights']]
resultdict = dict(arrivals=arrivals,
departures=departures,
enroute=enroute,
scheduled=scheduled)
return FlightResult(resultdict)
def WeatherConditions(self, airport):
result = readjson('WeatherConditions', {'airport_code':airport}, self.auth)
conditionsresult = result['WeatherConditionsResult']['conditions']
return [FlightResult(condition) for condition in conditionsresult ]
def TailOwner(self, ident):
result = readjson('TailOwner', {'ident':ident}, self.auth)
return FlightResult(result['TailOwnerResult'])
|
[
"noreply@github.com"
] |
noreply@github.com
|
d4aac1f8ce31e6e240ac03540de859ff1aadfa10
|
c768e0fad0fd7faa0e727ab650a95424bb5fe45a
|
/ltp_cloud.py
|
484445858099785be975d738b9884e590fd4cb06
|
[] |
no_license
|
shenwei0329/Irrigation-Proj
|
bcc2b2f8e6e0e9ef21ebe5d302f4fba051a84aae
|
98113cb7a71e49b3831d799ea28afba7c9b1c5e2
|
refs/heads/master
| 2020-11-30T07:20:12.628615
| 2019-12-30T08:13:24
| 2019-12-30T08:13:24
| 230,345,341
| 1
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,588
|
py
|
# -*- coding:UTF-8 -*-
#
import sys
from pyltp import Segmentor
from pyltp import Postagger
from pyltp import Parser
from pyltp import SentenceSplitter
from pyltp import NamedEntityRecognizer
import re
seg = Segmentor()
seg.load_with_lexicon('ltp_data_v3.4.0/cws.model', './ext_word_cloud')
post = Postagger()
post.load_with_lexicon('ltp_data_v3.4.0/pos.model', './ext_word_cloud_pos')
recognizer = NamedEntityRecognizer()
recognizer.load('ltp_data_v3.4.0/ner.model')
parser = Parser()
parser.load('ltp_data_v3.4.0/parser.model')
def segmentor(sentence):
"""
断词
:param sentence: 语句
:return: 词列表
"""""
global seg
words = seg.segment(sentence)
words_list = list(words)
return words_list
def postagger(words):
"""
获取词性
:param words: 词
:return: 词性
"""
global post
pos = post.postag(words)
pos_list = list(pos)
return pos_list
def hasSBV(arcs):
sbv = False
vob = False
hed = False
for nn in arcs:
if "SBV" in nn.relation:
sbv = True
if "VOB" in nn.relation:
vob = True
if "HED" in nn.relation:
hed = True
if (hed and sbv) or (vob and sbv):
return True
return False
"""获取文本文件"""
f = open(sys.argv[1])
while True:
"""读一段文本"""
sentence = f.readline()
if (sentence is "") or (len(sentence) == 0):
""" Eof """
break
"""断句"""
sents = SentenceSplitter.split(sentence)
for ss in sents:
"""语句处理"""
print ss
words = segmentor(ss)
# print words
"""
for _w in words:
print _w
"""
pos = postagger(words)
# print pos
_idx = 0
_s = ""
_cont = False
for _p in pos:
if "ws" in _p:
_s = words[_idx]
print _s,
if "n" in _p:
if not _cont:
_s = words[_idx]
_cont = True
else:
_s += words[_idx]
else:
_cont = False
if len(_s)>0:
print _s,
_s = ""
_idx += 1
print ""
"""
netags = list(recognizer.recognize(words, pos))
print netags
_idx = 0
for _n in netags:
if "Nh" in _n:
print words[_idx]
_idx += 1
"""
parser.release()
post.release()
seg.release()
print("Done.")
|
[
"shenwei0329@hotmail.com"
] |
shenwei0329@hotmail.com
|
36310f74f8eaef7d3da7ef4f11b6d1c95f1ac4da
|
e52b9bbe2345d87b406caee4817a1770b45a6ae2
|
/scripts/BatchDefineProjection.py
|
453a2f66c343c7eb2ba97203805237bfffdc0e62
|
[] |
no_license
|
tomay/marxan_toolbox
|
8712b2f1d56e185156a884a0888f2c03b5ed20f5
|
a6e002cf47b8388660365de7ab2aee22b543c12a
|
refs/heads/master
| 2020-06-06T06:15:59.018433
| 2013-04-08T16:53:52
| 2013-04-08T16:53:52
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,542
|
py
|
import sys, os, arcgisscripting, traceback
def AddMsgAndPrint(message):
gp.AddMessage(message)
print message
return 0
gp = arcgisscripting.create()
gp.overwriteoutput = 1
try:
# Get the parameters.
gp.workspace = sys.argv[1]
pattern = sys.argv[3]
sr = sys.argv[2]
#AddMsgAndPrint(pattern) ## TO DO: NOT WORKING
#gp.workspace = r"C:\atom\python\shapes\test_shapes" ## TO DO: NOT WORKING
# MANUAL FIX WORKS
## WHAT? IS IT BECAUSE sys.argv[3] and [2] were reversed? I fixed above 7/29/2011
pattern = "*.shp"
sr = "PROJCS['laborde_wcs_2000',GEOGCS['GCS_Tananarive_1925',DATUM['D_Tananarive_1925',SPHEROID['International_1924',6378388.0,297.0]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Hotine_Oblique_Mercator_Azimuth_Natural_Origin'],PARAMETER['False_Easting',1113136.3146],PARAMETER['False_Northing',2882900.7279],PARAMETER['Scale_Factor',0.9995],PARAMETER['Azimuth',18.9],PARAMETER['Longitude_Of_Center',46.43722917],PARAMETER['Latitude_Of_Center',-18.9],UNIT['Meter',1.0]]"
# find only specified features or datasets
if pattern == "*.shp":
datasets = gp.ListFeatureClasses("", "POLYGON")
elif pattern == "RASTER":
datasets = gp.ListDatasets("", "RASTER")
datasets.Reset()
dataset = datasets.next()
z = 0
while dataset:
z = z + 1
dataset = datasets.next()
i = 1
datasets.Reset()
dataset = datasets.next()
while dataset:
AddMsgAndPrint("Defining: " + dataset + ". (" + str(i) + " of " + str(z) + ")")
gp.defineprojection_management(dataset,sr)
i = i + 1
dataset = datasets.next()
AddMsgAndPrint("Done")
except:
# get the traceback object
tb = sys.exc_info()[2]
# tbinfo contains the line number that the code failed on and the code from that line
tbinfo = traceback.format_tb(tb)[0]
# concatenate information together concerning the error into a message string
pymsg = "PYTHON ERRORS:\nTraceback Info:\n" + tbinfo + "\nError Info:\n " + \
str(sys.exc_type)+ ": " + str(sys.exc_value) + "\n"
# generate a message string for any geoprocessing tool errors
msgs = "GP ERRORS:\n" + gp.GetMessages(2) + "\n"
# return gp messages for use with a script tool
gp.AddError(msgs)
gp.AddError(pymsg)
# print messages for use in Python/PythonWin
print msgs
print pymsg
print "done"
|
[
"tom.allnutt@gmail.com"
] |
tom.allnutt@gmail.com
|
eb388016f65246c4c31124d34d29159a438dc564
|
3d7039903da398ae128e43c7d8c9662fda77fbdf
|
/database/CSS/juejin_1927.py
|
4cf0fa0be8441db15c31d26e93685b0b19eb0256
|
[] |
no_license
|
ChenYongChang1/spider_study
|
a9aa22e6ed986193bf546bb567712876c7be5e15
|
fe5fbc1a5562ff19c70351303997d3df3af690db
|
refs/heads/master
| 2023-08-05T10:43:11.019178
| 2021-09-18T01:30:22
| 2021-09-18T01:30:22
| 406,727,214
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 78,514
|
py
|
{"err_no": 0, "err_msg": "success", "data": [{"article_id": "6844903865737822216", "article_info": {"article_id": "6844903865737822216", "user_id": "1380642335503256", "category_id": "6809637767543259144", "tag_ids": [6809640392770715656, 6809640407484334093, 6809640614175604744, 6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903865737822216", "cover_image": "", "is_gfw": 0, "title": "[译] 将第三方动画库集成到项目中 — 第 1 部分", "brief_content": "创建以 CSS 为基础的动画可能是一个挑战。它们可能是复杂且耗时的。你是否需要在时间紧迫的情况下调整出一个完美的动画(库)来推进项目?这时,你该考虑使用一个拥有现成的动画插件的第三方 CSS 动画库。可是,你仍然会想:它们是什么?它们提供什么?我如何使用它们? 我们来看看吧。 …", "is_english": 0, "is_original": 1, "user_index": 8.7806176006279, "original_type": 0, "original_author": "", "content": "", "ctime": "1560509321", "mtime": "1599966935", "rtime": "1560509321", "draft_id": "6845076341839101965", "view_count": 578, "collect_count": 2, "digg_count": 4, "comment_count": 0, "hot_index": 32, "is_hot": 0, "rank_index": 0.00010607, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1380642335503256", "user_name": "掘金翻译计划", "company": "掘金", "job_title": "", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/cf1ff385ef84b2ef6001a7caa39476f7~300x300.image", "level": 3, "description": "可能是世界最大最好的英译中技术社区,最懂读者和译者的翻译平台 🤔", "followee_count": 25, "follower_count": 3400, "post_article_count": 55, "digg_article_count": 63, "got_digg_count": 1372, "got_view_count": 311309, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 1, "power": 4485, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546515, "tag_id": "6809640392770715656", "tag_name": "HTML", "color": "#E44D25", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f18965b2a0ef9cac862e.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239419, "mtime": 1631683077, "id_type": 9, "tag_alias": "", "post_article_count": 6109, "concern_user_count": 240134}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546676, "tag_id": "6809640614175604744", "tag_name": "掘金翻译计划", "color": "#0081ff", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/95f7e8be776556ab8d82.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1454716787, "mtime": 1631689800, "id_type": 9, "tag_alias": "", "post_article_count": 2502, "concern_user_count": 42848}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903865737822216, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": {"org_type": 1, "org_id": "6930489296285597696", "online_version_id": 6937212594310610981, "latest_version_id": 6937212594310610981, "power": 10141, "ctime": 1613630284, "mtime": 1631692819, "audit_status": 2, "status": 0, "org_version": {"version_id": "6937212594310610981", "icon": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/9763b1fa556f4cbd8ced21b60d3ed40c~tplv-k3u1fbpfcp-watermark.image", "background": "https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/2254bf401c3444129f8e3612c4b16308~tplv-k3u1fbpfcp-watermark.image", "name": "掘金翻译计划", "introduction": "# 掘金翻译计划\n\n\n[掘金翻译计划](https://juejin.im/tag/%E6%8E%98%E9%87%91%E7%BF%BB%E8%AF%91%E8%AE%A1%E5%88%92) 是一个翻译优质互联网技术文章的社区,文章来源为 [掘金](https://juejin.im) 上的英文分享文章。内容覆盖[区块链](#区块链)、[人工智能](#ai--deep-learning--machine-learning)、[Android](#android)、[iOS](#ios)、[前端](#前端)、[后端](#后端)、[设计](#设计)、[产品](#产品)、[算法](https://github.com/xitu/gold-miner/blob/master/algorithm.md)和[其他](#其他)等领域,以及各大型优质 [官方文档及手册](#官方文档及手册),读者为热爱新技术的新锐开发者。\n\n掘金翻译计划目前翻译完成 [2027](#近期文章列表) 余篇文章,官方文档及手册 [13](#官方文档及手册) 个,共有 [1000](https://github.com/xitu/gold-miner/wiki/%E8%AF%91%E8%80%85%E7%A7%AF%E5%88%86%E8%A1%A8) 余名译者贡献翻译和校对。\n\n# 官方指南\n\n[**推荐优质英文文章到掘金翻译计划**](https://github.com/xitu/gold-miner/issues/new/choose)\n\n<!--\nhttps://github.com/xitu/gold-miner/issues/new?title=推荐优秀英文文章&body=-%20原文链接:推荐文章前%20Google%20一下,尽量保证本文未被翻译%0A-%20简要介绍:介绍一下好不好啦,毕竟小编也看不太懂哎_(:з」∠)_)\n-->\n\n### 翻译计划译者教程\n\n1. [如何参与翻译](https://github.com/xitu/gold-miner/wiki/%E5%A6%82%E4%BD%95%E5%8F%82%E4%B8%8E%E7%BF%BB%E8%AF%91)\n2. [关于如何提交翻译以及后续更新的教程](https://github.com/xitu/gold-miner/wiki/%E5%85%B3%E4%BA%8E%E5%A6%82%E4%BD%95%E6%8F%90%E4%BA%A4%E7%BF%BB%E8%AF%91%E4%BB%A5%E5%8F%8A%E5%90%8E%E7%BB%AD%E6%9B%B4%E6%96%B0%E7%9A%84%E6%95%99%E7%A8%8B)\n3. [如何参与校对及校对的正确姿势](https://github.com/xitu/gold-miner/wiki/%E5%8F%82%E4%B8%8E%E6%A0%A1%E5%AF%B9%E7%9A%84%E6%AD%A3%E7%A1%AE%E5%A7%BF%E5%8A%BF)\n4. [文章分享到掘金指南](https://github.com/xitu/gold-miner/wiki/%E5%88%86%E4%BA%AB%E5%88%B0%E6%8E%98%E9%87%91%E6%8C%87%E5%8D%97)\n5. [译文排版规则指北](https://github.com/xitu/gold-miner/wiki/%E8%AF%91%E6%96%87%E6%8E%92%E7%89%88%E8%A7%84%E5%88%99%E6%8C%87%E5%8C%97)\n6.[积分兑换:小礼物列表](https://github.com/xitu/gold-miner/wiki/%E7%A7%AF%E5%88%86%E5%85%91%E6%8D%A2)\n\n\n\n\n", "weibo_link": "", "github_link": "https://github.com/xitu/gold-miner", "homepage_link": "", "ctime": 1615486318, "mtime": 1615486318, "org_id": "6930489296285597696", "brief_introduction": "一个帮助开发者成长的社区", "introduction_preview": "掘金翻译计划\n掘金翻译计划 是一个翻译优质互联网技术文章的社区,文章来源为 掘金 上的英文分享文章。内容覆盖区块链、人工智能、Android、iOS、前端、后端、设计、产品、算法和其他等领域,以及各大型优质 官方文档及手册,读者为热爱新技术的新锐开发者。\n掘金翻译计划目前翻译完成 2027 余篇文章,官方文档及手册 13 个,共有 1000 余名译者贡献翻译和校对。\n官方指南\n推荐优质英文文章到掘金翻译计划\n翻译计划译者教程\n\n如何参与翻译\n关于如何提交翻译以及后续更新的教程\n如何参与校对及校对的正确姿势\n文章分享到掘金指南\n译文排版规则指北\n6.积分兑换:小礼物列表\n"}, "follower_count": 1080, "article_view_count": 504149, "article_digg_count": 5100}, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903542549905416", "article_info": {"article_id": "6844903542549905416", "user_id": "2488950053713863", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093], "visible_level": 0, "link_url": "https://www.w3cplus.com/css/aspect-ratio.html", "cover_image": "", "is_gfw": 0, "title": "CSS实现长宽比的几种方案", "brief_content": "", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1514429375", "mtime": "1598443303", "rtime": "1514429375", "draft_id": "0", "view_count": 740, "collect_count": 16, "digg_count": 41, "comment_count": 0, "hot_index": 78, "is_hot": 0, "rank_index": 0.00010604, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2488950053713863", "user_name": "tony1915", "company": "", "job_title": "前端工程师、PHP工程师", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/mosaic-legacy/3791/5070639578~300x300.image", "level": 1, "description": "", "followee_count": 12, "follower_count": 0, "post_article_count": 6, "digg_article_count": 16, "got_digg_count": 41, "got_view_count": 1667, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 5, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6844903542549905416, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903849723969544", "article_info": {"article_id": "6844903849723969544", "user_id": "2664871915159992", "category_id": "6809637767543259144", "tag_ids": [6809640392770715656, 6809640407484334093, 6809640614175604744, 6809640398105870343, 6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903849723969544", "cover_image": "", "is_gfw": 0, "title": "[译] 为什么 HTML 中复选框样式难写 — 本文给你答案", "brief_content": "在当今世界,大多数网页开发者认为掌握 JavaScript 是优先选择,这理所当然,因为 JS 是浏览器脚本语言。虽然 HTML 和 CSS 决定网站的样式,但是 JS 凭借它能调用 HTML 和 CSS API,优良性能以及它的多功能性,深受网页开发者喜爱。像 React、V…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1558602504", "mtime": "1598505345", "rtime": "1558612678", "draft_id": "6845076318858510343", "view_count": 737, "collect_count": 8, "digg_count": 6, "comment_count": 0, "hot_index": 42, "is_hot": 0, "rank_index": 0.00010561, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2664871915159992", "user_name": "JiLanlan", "company": "", "job_title": "前端", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/414db4da0d7bba57c2bba82f4f61daab~300x300.image", "level": 1, "description": "这个人很懒", "followee_count": 25, "follower_count": 9, "post_article_count": 1, "digg_article_count": 17, "got_digg_count": 6, "got_view_count": 737, "post_shortmsg_count": 19, "digg_shortmsg_count": 20, "isfollowed": false, "favorable_author": 0, "power": 13, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546515, "tag_id": "6809640392770715656", "tag_name": "HTML", "color": "#E44D25", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f18965b2a0ef9cac862e.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239419, "mtime": 1631683077, "id_type": 9, "tag_alias": "", "post_article_count": 6109, "concern_user_count": 240134}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546676, "tag_id": "6809640614175604744", "tag_name": "掘金翻译计划", "color": "#0081ff", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/95f7e8be776556ab8d82.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1454716787, "mtime": 1631689800, "id_type": 9, "tag_alias": "", "post_article_count": 2502, "concern_user_count": 42848}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903849723969544, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903506370002958", "article_info": {"article_id": "6844903506370002958", "user_id": "413072061127479", "category_id": "6809637767543259144", "tag_ids": [6809640369764958215, 6809640562514198535, 6809640394175971342, 6809640956946546702], "visible_level": 0, "link_url": "https://css-tricks.com/creating-vue-js-transitions-animations/", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2017/10/26/adeb3e07b36267bd0bc6899754a96842~tplv-t2oaga2asx-image.image", "is_gfw": 1, "title": "[英] 如何使用 Vue.js 里的 Transition 和 Animation", "brief_content": "好用", "is_english": 1, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1508989799", "mtime": "1598617695", "rtime": "1508989799", "draft_id": "0", "view_count": 1081, "collect_count": 8, "digg_count": 28, "comment_count": 0, "hot_index": 82, "is_hot": 0, "rank_index": 0.00010511, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "413072061127479", "user_name": "阴明", "company": "TikTok", "job_title": "PM", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/26ad64c3c75daaff920a9eae4a6a7fa1~300x300.image", "level": 4, "description": "🌈 Crazy Monster!", "followee_count": 847, "follower_count": 78189, "post_article_count": 961, "digg_article_count": 3875, "got_digg_count": 33540, "got_view_count": 1805862, "post_shortmsg_count": 1359, "digg_shortmsg_count": 7099, "isfollowed": false, "favorable_author": 1, "power": 7189, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546498, "tag_id": "6809640369764958215", "tag_name": "Vue.js", "color": "#41B883", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/7b5c3eb591b671749fee.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234520, "mtime": 1631692660, "id_type": 9, "tag_alias": "", "post_article_count": 31256, "concern_user_count": 313520}, {"id": 2546639, "tag_id": "6809640562514198535", "tag_name": "动效", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/b08d8f2616e6e236fd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1441745685, "mtime": 1631632027, "id_type": 9, "tag_alias": "", "post_article_count": 1137, "concern_user_count": 60264}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546923, "tag_id": "6809640956946546702", "tag_name": "Element", "color": "#000000", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/2c670995272515e48cea.svg~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489435335, "mtime": 1631690287, "id_type": 9, "tag_alias": "", "post_article_count": 1925, "concern_user_count": 15229}], "user_interact": {"id": 6844903506370002958, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6977353622891790366", "article_info": {"article_id": "6977353622891790366", "user_id": "1918010987388829", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/39e4eaeb23ec44019017374f1125cec7~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "CSS基础知识要点(Y5)", "brief_content": "1.【border】边框(布局时会占用空间) 1.1设置边框 1.2边框方向 1.3边框宽度 1.4圆角边框 2.【outline】轮廓线(不影响布局) (同边框一致)", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1624541928", "mtime": "1624608507", "rtime": "1624608507", "draft_id": "6977348211337855007", "view_count": 54, "collect_count": 0, "digg_count": 0, "comment_count": 0, "hot_index": 2, "is_hot": 0, "rank_index": 0.00010498, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1918010987388829", "user_name": "Web程序贵", "company": "南京巅峰数据服务有限公司", "job_title": "前端开发实习生", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/6790a317242054936b8b900663fa6fc5~300x300.image", "level": 1, "description": "前端小白,只会基础知识。", "followee_count": 5, "follower_count": 6, "post_article_count": 25, "digg_article_count": 8, "got_digg_count": 17, "got_view_count": 1455, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 31, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6977353622891790366, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903645373267981", "article_info": {"article_id": "6844903645373267981", "user_id": "1275089218971021", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640394175971342], "visible_level": 0, "link_url": "https://zhuanlan.zhihu.com/p/40148221", "cover_image": "", "is_gfw": 0, "title": "使用CSS Grid的九大误区", "brief_content": "在Web世界中,大家都知道,使用任何一项新技术都易于犯错,特别是像CSS Grid这样的与过去有很大变化的东西。初学者或者有一定经验的Web开发人员,都无法一时之间就能把控所有。@Jen Simmons录制了一个视频,向大家阐述了使用CSS Grid的九大误区,也是使用CSS …", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1532409305", "mtime": "1598460652", "rtime": "1532409305", "draft_id": "0", "view_count": 875, "collect_count": 10, "digg_count": 19, "comment_count": 0, "hot_index": 62, "is_hot": 0, "rank_index": 0.00010467, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1275089218971021", "user_name": "清蒸不是水煮", "company": "前东家是掘金", "job_title": "前沸点运营", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/7/2/16459c1e94f61f29~tplv-t2oaga2asx-image.image", "level": 3, "description": "how r u today,掘金沸点了解下", "followee_count": 431, "follower_count": 13067, "post_article_count": 92, "digg_article_count": 2555, "got_digg_count": 2045, "got_view_count": 209280, "post_shortmsg_count": 267, "digg_shortmsg_count": 8818, "isfollowed": false, "favorable_author": 0, "power": 2713, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903645373267981, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903958452895752", "article_info": {"article_id": "6844903958452895752", "user_id": "2418581312908605", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903958452895752", "cover_image": "", "is_gfw": 0, "title": "CSS梳理之流的破坏float与BFC", "brief_content": "“流”,文档流,是CSS中最基本的定位和布局机制。 浏览器中的元素默认的从左到右(内联元素),从上到下(块级元素)如同流水一般堆砌的布局方式。 被设置了float属性的元素呈现包裹性,即其自身的width不是默认撑满父元素,而是和height属性一样由子元素决定。 脱离文档流,…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1570500757", "mtime": "1600147960", "rtime": "1570527267", "draft_id": "6845076485842141191", "view_count": 612, "collect_count": 0, "digg_count": 3, "comment_count": 0, "hot_index": 33, "is_hot": 0, "rank_index": 0.00010457, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2418581312908605", "user_name": "一不小心就😍 😞 😒", "company": "jsd", "job_title": "前端工程师", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/16c69bd772ce8163f5b~tplv-t2oaga2asx-image.image", "level": 1, "description": "js、css、html一把梭", "followee_count": 5, "follower_count": 4, "post_article_count": 6, "digg_article_count": 3, "got_digg_count": 22, "got_view_count": 4855, "post_shortmsg_count": 0, "digg_shortmsg_count": 1, "isfollowed": false, "favorable_author": 0, "power": 70, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903958452895752, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6902797258434019336", "article_info": {"article_id": "6902797258434019336", "user_id": "4195392104709821", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "2d和3d变换", "brief_content": "transform-origin将当前变换原点(x1,y1,z1)变为(x1+x2,y1+y2,z1+z2)%pxem水平方向取值,相对元素的宽,leftcenterbottom垂直方向取值,相对元素", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1607182834", "mtime": "1607223129", "rtime": "1607223129", "draft_id": "6902793496462098445", "view_count": 170, "collect_count": 2, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010438, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4195392104709821", "user_name": "moonlightop", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/c69001f5df60f71b0dea1a46c99115d5~300x300.image", "level": 1, "description": "一个前端小白", "followee_count": 62, "follower_count": 3, "post_article_count": 32, "digg_article_count": 40, "got_digg_count": 19, "got_view_count": 3597, "post_shortmsg_count": 0, "digg_shortmsg_count": 19, "isfollowed": false, "favorable_author": 0, "power": 55, "study_point": 1130, "university": {"university_id": "6888594362209402887", "name": "广州大学", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 2, "select_event_count": 0, "select_online_course_count": 0, "identity": 1, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6902797258434019336, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903846930546695", "article_info": {"article_id": "6844903846930546695", "user_id": "694547079240798", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903846930546695", "cover_image": "", "is_gfw": 0, "title": "移动端适配--meta标签玩的是什么", "brief_content": "基本一直都在做移动端的开发,rem布局也写了很久,不过对于实现的原理有些模棱两可的盲点,自己总结一下留着以后回顾。 本文分以下几个层面,主打用最最通俗的语言来阐述。 viewport是什么?翻译过来就是视窗的意思,只不过在移动端,视窗稍微有点绕。在解释这个之前,不得不引出几个词…", "is_english": 0, "is_original": 1, "user_index": 0.65875638216419, "original_type": 0, "original_author": "", "content": "", "ctime": "1558275477", "mtime": "1599905366", "rtime": "1558275940", "draft_id": "6845076314139918350", "view_count": 746, "collect_count": 10, "digg_count": 4, "comment_count": 0, "hot_index": 41, "is_hot": 0, "rank_index": 0.00010411, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "694547079240798", "user_name": "Ace7523", "company": "58·转转", "job_title": "前端", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2019/2/7/168c5bafba01c7e8~tplv-t2oaga2asx-image.image", "level": 2, "description": "一个前端", "followee_count": 6, "follower_count": 258, "post_article_count": 15, "digg_article_count": 0, "got_digg_count": 517, "got_view_count": 35896, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 875, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903846930546695, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903551945146381", "article_info": {"article_id": "6844903551945146381", "user_id": "958429868601117", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903551945146381", "cover_image": "", "is_gfw": 0, "title": "【前端Talkking】CSS3系列-css3之线性渐变初探", "brief_content": "入行前端一年多的时间,想提高自己的css技术水平,于是在网上看了些关于css的书籍,想买几本比较好的css书籍啃啃,找来找去,终于找到了《CSS揭秘》这本书。入手这本书后,从开始看到后面,发现书中的很多效果都可以使用渐变来实现,于是,我对渐变产生了兴趣,决定好好掌握css3中的…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1516243112", "mtime": "1598687005", "rtime": "1516243112", "draft_id": "6845075367766540296", "view_count": 774, "collect_count": 18, "digg_count": 37, "comment_count": 0, "hot_index": 75, "is_hot": 0, "rank_index": 0.00010406, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "958429868601117", "user_name": "micstone", "company": "", "job_title": "前端工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/d38a1911eeb141a4525bd8219e57ba81~300x300.image", "level": 2, "description": "", "followee_count": 63, "follower_count": 38, "post_article_count": 14, "digg_article_count": 42, "got_digg_count": 242, "got_view_count": 8691, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 257, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903551945146381, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903602125799431", "article_info": {"article_id": "6844903602125799431", "user_id": "958429868601117", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903602125799431", "cover_image": "", "is_gfw": 0, "title": "【前端Talkking】CSS系列——CSS深入理解之absolute定位", "brief_content": "1. 写在前面 本篇将要介绍的绝对定位absolute属性和此前介绍的CSS系列——CSS深入理解之float浮动有着几分的相似性,可以认为两者是兄弟关系,都具有“包裹性”、“高度塌陷”、“块状化”的特性,它们在很多场合都可以互相替代。很多人可能有这样的疑问:一个属性名是“po…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1525501365", "mtime": "1599468445", "rtime": "1525748308", "draft_id": "6845075421478780936", "view_count": 846, "collect_count": 12, "digg_count": 25, "comment_count": 0, "hot_index": 67, "is_hot": 0, "rank_index": 0.00010393, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "958429868601117", "user_name": "micstone", "company": "", "job_title": "前端工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/d38a1911eeb141a4525bd8219e57ba81~300x300.image", "level": 2, "description": "", "followee_count": 63, "follower_count": 38, "post_article_count": 14, "digg_article_count": 42, "got_digg_count": 242, "got_view_count": 8691, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 257, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903602125799431, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6946083880734556167", "article_info": {"article_id": "6946083880734556167", "user_id": "1530949760190653", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "css布局----flex弹性布局(移动端完美解决方案)", "brief_content": "Flexible Box 模型,通常被称为 flexbox,是一种一维的布局模型。它给 flexbox 的子元素之间提供了强大的空间分布和对齐能力。本文给出了 flexbox 的主要特性。 我们说 flexbox 是一种一维的布局,是因为一个 flexbox 一次只能处理一个维…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1617261260", "mtime": "1617268073", "rtime": "1617268073", "draft_id": "6946083236044865544", "view_count": 64, "collect_count": 1, "digg_count": 2, "comment_count": 0, "hot_index": 5, "is_hot": 0, "rank_index": 0.00010386, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1530949760190653", "user_name": "李不要熬夜", "company": "", "job_title": "", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/d2ea4973fef32ce3195174fc72296119~300x300.image", "level": 1, "description": "", "followee_count": 2, "follower_count": 2, "post_article_count": 73, "digg_article_count": 0, "got_digg_count": 20, "got_view_count": 4330, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 63, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6946083880734556167, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903656135852046", "article_info": {"article_id": "6844903656135852046", "user_id": "3298190613550462", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://www.zcfy.cc/article/everything-you-need-to-know-about-css-variables", "cover_image": "", "is_gfw": 0, "title": "关于CSS变量你需要知道的一切", "brief_content": "这是我新书的第一章(PDF和Mobi格式都有)。 多数编程语言都支持变量。但是CSS从最初就一直缺少对原生变量的功能支持。 你写CSS吧?那你就没办法用变量。不过,你还可以用Sass这样的预编译器。 Sass这样的预编译器就把变量作为一个巨大的卖点,一个尝试新东西的原因。你知道…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1534158219", "mtime": "1598463380", "rtime": "1534158219", "draft_id": "0", "view_count": 620, "collect_count": 8, "digg_count": 29, "comment_count": 0, "hot_index": 60, "is_hot": 0, "rank_index": 0.00010366, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3298190613550462", "user_name": "众成翻译", "company": "", "job_title": "翻译,求知的另一种表达", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/3/30/16275a86e4bb52a2~tplv-t2oaga2asx-image.image", "level": 2, "description": "众成翻译官方账号", "followee_count": 35, "follower_count": 7819, "post_article_count": 567, "digg_article_count": 235, "got_digg_count": 8123, "got_view_count": 268377, "post_shortmsg_count": 1, "digg_shortmsg_count": 6, "isfollowed": false, "favorable_author": 0, "power": 416, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903656135852046, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903655770947597", "article_info": {"article_id": "6844903655770947597", "user_id": "1398234520749448", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640394175971342, 6809641113071124493, 6809640482725953550], "visible_level": 0, "link_url": "https://juejin.im/post/6844903655770947597", "cover_image": "", "is_gfw": 0, "title": "BFC 初体验", "brief_content": "BFC(Block Formatting Context),中文翻译为“块格式化上下文”。它有一个明显的特性,那就是如果一个元素拥有了 BFC 特性,那么它内部元素不受外部元素的影响,外部元素也不会受其内部元素的影响。 先来看看 MDN 对 BFC 的解释。 好像也没具体的说什…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1534134794", "mtime": "1599566968", "rtime": "1534140750", "draft_id": "6845075593206202382", "view_count": 802, "collect_count": 19, "digg_count": 19, "comment_count": 1, "hot_index": 60, "is_hot": 0, "rank_index": 0.00010363, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1398234520749448", "user_name": "yyzclyang", "company": "平安", "job_title": "前端", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/168e08f23f2be8bbb96~tplv-t2oaga2asx-image.image", "level": 3, "description": "", "followee_count": 1, "follower_count": 51, "post_article_count": 27, "digg_article_count": 2, "got_digg_count": 675, "got_view_count": 40454, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 1079, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2547036, "tag_id": "6809641113071124493", "tag_name": "容器", "color": "", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/153024333442233331e5dd27e1829e0d4f73b714ce46b.jpg~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1530152271, "mtime": 1631452898, "id_type": 9, "tag_alias": "docker", "post_article_count": 2140, "concern_user_count": 4343}, {"id": 2546581, "tag_id": "6809640482725953550", "tag_name": "程序员", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/63baec1130bde0284e98.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1438712834, "mtime": 1631686409, "id_type": 9, "tag_alias": "", "post_article_count": 16341, "concern_user_count": 275512}], "user_interact": {"id": 6844903655770947597, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6902063717236604936", "article_info": {"article_id": "6902063717236604936", "user_id": "4195392104709821", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "box-shadow和text-shadow", "brief_content": "box盒模型定义参考文章:https://zhuanlan.zhihu.com/p/291489867盒子内部盒子外部content-box(标准盒模型)boxWidth=width+border2+", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1607012831", "mtime": "1607057355", "rtime": "1607057355", "draft_id": "6902062718887395341", "view_count": 167, "collect_count": 1, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010347, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4195392104709821", "user_name": "moonlightop", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/c69001f5df60f71b0dea1a46c99115d5~300x300.image", "level": 1, "description": "一个前端小白", "followee_count": 62, "follower_count": 3, "post_article_count": 32, "digg_article_count": 40, "got_digg_count": 19, "got_view_count": 3597, "post_shortmsg_count": 0, "digg_shortmsg_count": 19, "isfollowed": false, "favorable_author": 0, "power": 55, "study_point": 1130, "university": {"university_id": "6888594362209402887", "name": "广州大学", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 2, "select_event_count": 0, "select_online_course_count": 0, "identity": 1, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6902063717236604936, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903568923688967", "article_info": {"article_id": "6844903568923688967", "user_id": "3562073403955902", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093, 6809640381920051207, 6809640625856577549], "visible_level": 0, "link_url": "https://www.liayal.com/article/5a96599bca0de01ec9713c43", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/3/2/161e571ddff83cc6~tplv-t2oaga2asx-image.image", "is_gfw": 0, "title": "初探CSS Grid布局", "brief_content": "在CSS3中纳入的Flex Box布局给前端开发者带来了极大的便利,它的强大是有目共睹的。很多以前需要以前复查代码实现的布局,现在通过 Flex Box 很容易就实现。而在下一版本的CSS规范中正在讨论纳入一个更加强大的布局系统,它就是今天要说的: CSS Grid Layou…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1519972901", "mtime": "1598689120", "rtime": "1520219199", "draft_id": "0", "view_count": 812, "collect_count": 15, "digg_count": 30, "comment_count": 1, "hot_index": 71, "is_hot": 0, "rank_index": 0.0001031, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3562073403955902", "user_name": "MaelWeb", "company": "记小栈", "job_title": "Web攻城狮", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/168e08807ec8e0f3c6b~tplv-t2oaga2asx-image.image", "level": 0, "description": "游走在技术与艺术的边缘地带,偶是一枚前端攻城狮!", "followee_count": 3, "follower_count": 3, "post_article_count": 13, "digg_article_count": 10, "got_digg_count": 236, "got_view_count": 10228, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 0, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546507, "tag_id": "6809640381920051207", "tag_name": "Chrome", "color": "#4586F2", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/084db5f7bc6a239be270.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234593, "mtime": 1631675564, "id_type": 9, "tag_alias": "", "post_article_count": 2663, "concern_user_count": 131553}, {"id": 2546683, "tag_id": "6809640625856577549", "tag_name": "浏览器", "color": "#47ebc7", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/baf3558e2acdfa623201.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1460153459, "mtime": 1631677186, "id_type": 9, "tag_alias": "", "post_article_count": 3341, "concern_user_count": 28324}], "user_interact": {"id": 6844903568923688967, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6859685285127520269", "article_info": {"article_id": "6859685285127520269", "user_id": "1011206429616429", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/1f473330ce8d4127a0219a933de1f60f~tplv-k3u1fbpfcp-zoom-1.image", "is_gfw": 0, "title": "Re:从零开始の CSS 学习笔记——布局(下)", "brief_content": "container 中的子元素,与列数一一对应。且默认只占据第一行。所以添加 border 后 效果如下图所示", "is_english": 0, "is_original": 1, "user_index": 1.419022582702909, "original_type": 0, "original_author": "", "content": "", "ctime": "1597144973", "mtime": "1597210097", "rtime": "1597210097", "draft_id": "6859683107088531469", "view_count": 255, "collect_count": 0, "digg_count": 2, "comment_count": 0, "hot_index": 14, "is_hot": 0, "rank_index": 0.000103, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1011206429616429", "user_name": "SamRock", "company": "", "job_title": "随缘更新", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/7b99cc610e9bcf77091bfbe7c6414a2e~300x300.image", "level": 2, "description": "这人在尝试成为段子手/键盘侠/杠精失败后,终于回来老老实实的搬砖了 ~", "followee_count": 16, "follower_count": 29, "post_article_count": 38, "digg_article_count": 2, "got_digg_count": 58, "got_view_count": 12004, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 178, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6859685285127520269, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6901614433013858318", "article_info": {"article_id": "6901614433013858318", "user_id": "3799550220589549", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "CSS盒模型", "brief_content": "在 CSS 中,所有的元素都被一个个的“盒子(box)”包围。每一个盒子包括内容(content)、内边距(padding)、边框(border)、外边距(margin),这些元素共同组成盒模型。", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1606907364", "mtime": "1606972920", "rtime": "1606963918", "draft_id": "6901488070235947022", "view_count": 178, "collect_count": 0, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010296, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3799550220589549", "user_name": "远方的朋友", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/mosaic-legacy/3793/3131589739~300x300.image", "level": 1, "description": "", "followee_count": 1, "follower_count": 0, "post_article_count": 23, "digg_article_count": 1, "got_digg_count": 5, "got_view_count": 1269, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 17, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6901614433013858318, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903552637206535", "article_info": {"article_id": "6844903552637206535", "user_id": "4388906147515367", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640858137133064, 6809640394175971342, 6809640381920051207], "visible_level": 0, "link_url": "https://juejin.im/post/6844903552637206535", "cover_image": "", "is_gfw": 0, "title": "奇舞周刊第 244 期:Web 前端中的 AR 开发技术", "brief_content": "“在使用 React Native 开发中,我们熟练的采用 JavaScript 的方式发送请求的方式发送一个请求到服务端,但是处理这个请求的过程其实和处理 Web 应用中发送的请求的过程是不一样的。” 科普文一篇,前端方向的 AR 技术总结。 “我们需要明确的一点是: 重构不…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1516349545", "mtime": "1598444833", "rtime": "1516349545", "draft_id": "6845075368387280904", "view_count": 765, "collect_count": 9, "digg_count": 36, "comment_count": 0, "hot_index": 74, "is_hot": 0, "rank_index": 0.0001028, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4388906147515367", "user_name": "奇舞精选", "company": "奇虎360", "job_title": "前端", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/8235463c80ecb19922c8ee10c40a1ca6~300x300.image", "level": 4, "description": "《奇舞精选》是由奇舞团维护的前端技术社区。除周五外,每天向大家推荐一篇前端相关技术文章,每周五向大家推送汇总的奇舞周刊。", "followee_count": 17, "follower_count": 7188, "post_article_count": 35, "digg_article_count": 39, "got_digg_count": 6416, "got_view_count": 246181, "post_shortmsg_count": 0, "digg_shortmsg_count": 5, "isfollowed": false, "favorable_author": 1, "power": 8858, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 1, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546852, "tag_id": "6809640858137133064", "tag_name": "ECharts", "color": "#000000", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/31cb8ecaf02c4a8f966b.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489098685, "mtime": 1631675169, "id_type": 9, "tag_alias": "", "post_article_count": 882, "concern_user_count": 13707}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546507, "tag_id": "6809640381920051207", "tag_name": "Chrome", "color": "#4586F2", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/084db5f7bc6a239be270.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234593, "mtime": 1631675564, "id_type": 9, "tag_alias": "", "post_article_count": 2663, "concern_user_count": 131553}], "user_interact": {"id": 6844903552637206535, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": {"org_type": 1, "org_id": "6930504142150434824", "online_version_id": 6932281596162605059, "latest_version_id": 6932281596162605059, "power": 20675, "ctime": 1613635306, "mtime": 1631692819, "audit_status": 2, "status": 0, "org_version": {"version_id": "6932281596162605059", "icon": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/067e419907a94f4aa1099af8d9ba3ed5~tplv-k3u1fbpfcp-watermark.image", "background": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/051403ec6e1c482fa371dea0ab6b6475~tplv-k3u1fbpfcp-watermark.image", "name": "奇舞团", "introduction": "奇舞团(75.team)是360集团最大的大前端团队,代表集团参与W3C和Ecma会员(TC39)工作,拥有Web前端、服务端、Android、iOS、设计等岗位人员,旗下的品牌和产品有SpriteJS、ThinkJS、MeshJS、Chimee、Firekylin、QMap、QCharts、JARVIS、QiShare、aTaller、声享、即视、众成翻译、奇舞学院、奇舞周刊等。\n\n奇舞团是一个向内赋能的团队。我们为新人设定合适的成长计划和方案,提供工程师、培训师和翻译官等多种角色定位,提供丰富的专业力、通用力和领导力培训课程;\n\n奇舞团是一个产生影响的团队。我们通过奇舞周刊传播Web前端技术,通过QiShare传播移动端技术,通过众成翻译传播高质量图书内容,通过成员和业务传播团队文化。\n\n奇舞团是一个开放和欢乐的团队,有着丰富和浓厚的团队文化。 每周一晚上,我们在泛前端分享会上交流知识; 每月末周四下午,我们在员工生日趴上喝茶吃瓜; 每月末周五上午,我们在周会上总结工作和认识新人; 每季度末,我们在颁奖会上为季度之星鼓掌; 每季度,我们都有机会在大草原上策马,在轰趴馆里玩耍,在农家院里打牌,携手朝山顶出发; 在每年7月5日,我们会拍一张全家福。", "weibo_link": "http://weibo.com/u/2565405913", "github_link": "", "homepage_link": "https://75.team/", "ctime": 1614052668, "mtime": 1614052668, "org_id": "6930504142150434824", "brief_introduction": "360奇舞团(奇虎75Team)是奇虎360公司技术中台前端工程师 + 部分特约嘉宾 组成的一个前端团队。 在这里,我们一起工作学习、一起沉淀、一起分享、一起为前端贡献影响。 开放是我们的特色,快乐是我们的使命。", "introduction_preview": "奇舞团(75.team)是360集团最大的大前端团队,代表集团参与W3C和Ecma会员(TC39)工作,拥有Web前端、服务端、Android、iOS、设计等岗位人员,旗下的品牌和产品有SpriteJS、ThinkJS、MeshJS、Chimee、Firekylin、QMap、QCharts、JARVIS、QiShare、aTaller、声享、即视、众成翻译、奇舞学院、奇舞周刊等。\n奇舞团是一个向内赋能的团队。我们为新人设定合适的成长计划和方案,提供工程师、培训师和翻译官等多种角色定位,提供丰富的专业力、通用力和领导力培训课程;\n奇舞团是一个产生影响的团队。我们通过奇舞周刊传播Web前端技术,通过QiShare传播移动端技术,通过众成翻译传播高质量图书内容,通过成员和业务传播团队文化。\n奇舞团是一个开放和欢乐的团队,有着丰富和浓厚的团队文化。 每周一晚上,我们在泛前端分享会上交流知识; 每月末周四下午,我们在员工生日趴上喝茶吃瓜; 每月末周五上午,我们在周会上总结工作和认识新人; 每季度末,我们在颁奖会上为季度之星鼓掌; 每季度,我们都有机会在大草原上策马,在轰趴馆里玩耍,在农家院里打牌,携手朝山顶出发; 在每年7月5日,我们会拍一张全家福。"}, "follower_count": 8019, "article_view_count": 894502, "article_digg_count": 11730}, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903590843121671", "article_info": {"article_id": "6844903590843121671", "user_id": "800100193937240", "category_id": "6809637767543259144", "tag_ids": [6809640837895585805, 6809640398105870343, 6809640407484334093, 6809640394175971342], "visible_level": 0, "link_url": "https://codeburst.io/front-end-v-back-end-explained-by-waiting-tables-at-a-restaurant-174000a4498d", "cover_image": "", "is_gfw": 0, "title": "只要你去过餐厅就能理解的前后端通俗解释", "brief_content": "If you have ever visited a sit-down restaurant, then you can understand the difference between front-end and back-end in web development. W…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1523602862", "mtime": "1599463623", "rtime": "1523604632", "draft_id": "0", "view_count": 818, "collect_count": 8, "digg_count": 24, "comment_count": 4, "hot_index": 68, "is_hot": 0, "rank_index": 0.00010279, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "800100193937240", "user_name": "误入理工科的疯子", "company": "", "job_title": "前端", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/a48c3088705b3cb173ade00b5f3974a4~300x300.image", "level": 2, "description": "我们生活中最大的现实就是超现实", "followee_count": 1, "follower_count": 185, "post_article_count": 18, "digg_article_count": 50, "got_digg_count": 261, "got_view_count": 35314, "post_shortmsg_count": 0, "digg_shortmsg_count": 4, "isfollowed": false, "favorable_author": 0, "power": 515, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546837, "tag_id": "6809640837895585805", "tag_name": "服务器", "color": "#a3abad", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/be1879c7e9983dab0049.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489042149, "mtime": 1631666741, "id_type": 9, "tag_alias": "", "post_article_count": 10408, "concern_user_count": 20830}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903590843121671, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}], "cursor": "eyJ2IjoiNzAwNzgwMzIxNDc1ODE1MDE3NSIsImkiOjQyMjB9", "count": 4601, "has_more": true}
|
[
"www.1759633997@qq.com"
] |
www.1759633997@qq.com
|
e432d53bf4acc34ba503bf71fa4f3cd3b005e150
|
59150a7613e2ba56dc94b0f0e236d2950bc3f854
|
/Practice/24/Python/24.py
|
2b9d6db6e2a9c4ec21fab36e18f5dcabc04ac233
|
[] |
no_license
|
DONR69/Programming
|
9817aecf2708836c3e3d909bb922058eddbff5a1
|
6c91e33c5da5d931deb4f54d3bca51bfe5cd8082
|
refs/heads/main
| 2023-04-03T12:28:24.336901
| 2021-04-19T05:37:35
| 2021-04-19T05:37:35
| 334,436,608
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 738
|
py
|
import json
from array import *
c=0
p=0
m=list('')
x='a'
with open('in.json','r') as f:
a=f.read()
data=json.loads(a)
h=dict(data[0])
k=h['userId']
for l in range(len(data)):
h=dict(data[l])
if (k==h['userId']):
if (h['completed']==1):
c+=1
else:
d={'userId':k,
'task_completed':c
}
m.append(x)
m[p]=d
p+=1
c=0
k=h['userId']
if (h['completed']==1):
c+=1
d={'userId':k,
'task_completed':c
}
m.append(x)
m[p]=d
print(m)
with open ('out.json','w') as b:
b=json.dump(m,b,indent=3)
|
[
"02dandy02@mail.ru"
] |
02dandy02@mail.ru
|
8894a20e0f77e0e21c8eacd3308da64ff355e0b3
|
d0ad48ac376a7b8e54291ac3f920b90f43f4ab72
|
/apps/index/views.py
|
5913312194dfe756342f96eeaa63a5b6ed14624d
|
[] |
no_license
|
LceRain/torna
|
a38d6f1ba2caf8ce8271fd52c2bcb28213dc3185
|
057d1cfdee9efa83ae6724f1c0fc3f2526811590
|
refs/heads/master
| 2022-11-06T06:28:47.891326
| 2020-06-17T10:19:16
| 2020-06-17T10:19:16
| 272,942,780
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 867
|
py
|
import json
import time
from json import JSONEncoder
import tornado.web
from abase.baseResponse.baseresponse import JsonResponse
from abase.baseorm._sqlalchemy.basesqlal import session
from abase.baseorm.models.basemodels import Model
from apps.index.models import Person
class A(JSONEncoder):
def default(self, o):
if isinstance(o, Model):
dic = o.__dict__
print(dic)
dic.pop("_sa_instance_state")
return dic
class IndextHandler(tornado.web.RequestHandler):
async def get(self):
persons = Person.objects.filter(Person.name == 'jerry').all()
print(persons)
# p = Person(name='jerry', age=13)
# session.add(p)
# session.commit()
jso = {'data': persons}
print(jso)
self.write(json.dumps(jso, cls=A))
|
[
"2460047746@qq.com"
] |
2460047746@qq.com
|
7c9d4bb9050e33900812f41157440397e1ba71db
|
f7f429aa2425049a7c787b2be0cf5ec431371988
|
/coding_problems/feb/feb8.py
|
1d202038978fd67c3e31a22427b512ae0a7a0f64
|
[] |
no_license
|
happy96026/interview-prep
|
7fbef8642ff7e4f8746403c2a18eae8b173b64a2
|
5b8e974b9541a80dbb9e15055d76f78cd957637f
|
refs/heads/master
| 2021-12-28T17:26:01.347919
| 2020-07-26T07:10:59
| 2020-07-26T07:10:59
| 246,656,096
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 305
|
py
|
class Solution:
def lengthOfLongestString(self, s):
d = {}
i = 0
max_len = 0
for j, c in enumerate(s):
if c in d:
i = max(i, d[c] + 1)
d[c] = j
max_len = max(max_len, j - i + 1)
return max_len
print(Solution().lengthOfLongestString('abrkaabcdefghijjxxx'))
|
[
"m.choi960@gmail.com"
] |
m.choi960@gmail.com
|
88d706f4905e832162170794813647dc558628f1
|
7b2295bf19163e65449e502636ca1aa5224f3289
|
/orders/migrations/0008_auto__add_field_order_customer.py
|
2edb97ff3edfa727c860670db256fc40a3f2a9f3
|
[] |
no_license
|
renata-ms/control_panel
|
7e22d4b627942dac7e0b61b33220eef8e15a5cec
|
746a6bbc62e09b8c1693893a5792c186ee69355d
|
refs/heads/master
| 2016-08-04T11:31:18.564018
| 2013-11-30T07:23:28
| 2013-11-30T07:23:28
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,447
|
py
|
# -*- coding: utf-8 -*-
import datetime
from south.db import db
from south.v2 import SchemaMigration
from django.db import models
class Migration(SchemaMigration):
def forwards(self, orm):
# Adding field 'Order.customer'
db.add_column(u'orders_order', 'customer',
self.gf('django.db.models.fields.related.ForeignKey')(default=1, to=orm['orders.Customer']),
keep_default=False)
def backwards(self, orm):
# Deleting field 'Order.customer'
db.delete_column(u'orders_order', 'customer_id')
models = {
u'library.author': {
'Meta': {'object_name': 'Author'},
'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'null': 'True'}),
'first_name': ('django.db.models.fields.CharField', [], {'max_length': '32'}),
u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'last_name': ('django.db.models.fields.CharField', [], {'max_length': '32'})
},
u'library.book': {
'Meta': {'object_name': 'Book'},
'authors': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['library.Author']", 'symmetrical': 'False'}),
u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'publication_date': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 11, 8, 0, 0)'}),
'publisher': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['library.Publisher']"}),
'title': ('django.db.models.fields.CharField', [], {'max_length': '128'})
},
u'library.publisher': {
'Meta': {'object_name': 'Publisher'},
'address': ('django.db.models.fields.TextField', [], {}),
'city': ('django.db.models.fields.CharField', [], {'max_length': '64'}),
'country': ('django.db.models.fields.CharField', [], {'max_length': '64'}),
u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'title': ('django.db.models.fields.CharField', [], {'max_length': '32'}),
'website': ('django.db.models.fields.URLField', [], {'max_length': '32'})
},
u'orders.customer': {
'Meta': {'object_name': 'Customer'},
'address': ('django.db.models.fields.TextField', [], {}),
'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'null': 'True'}),
'first_name': ('django.db.models.fields.CharField', [], {'max_length': '32'}),
u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'is_approved': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'last_name': ('django.db.models.fields.CharField', [], {'max_length': '32'})
},
u'orders.order': {
'Meta': {'object_name': 'Order'},
'created': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 11, 8, 0, 0)'}),
'customer': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['orders.Customer']"}),
u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'itemld': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['library.Book']"})
}
}
complete_apps = ['orders']
|
[
"renata_ms@mail.ru"
] |
renata_ms@mail.ru
|
b42d9be8b182ddbef90e8894bb504742aed40a34
|
4fc407dd0763ae41002dc74de68603b576e5cc51
|
/extractor/extractor.py
|
722299420d5da5bb8af80c6a1f404a5568e50a23
|
[
"MIT"
] |
permissive
|
tenda-cn/icesat2webview
|
331e162e3d0b20b439ee416a2ebca2a16157170c
|
c310986ceb8efb1f3a9937ca6b9eb29b020cb0ec
|
refs/heads/main
| 2023-02-10T19:20:31.584381
| 2021-01-10T02:16:23
| 2021-01-10T02:16:23
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,584
|
py
|
#!/usr/bin/python3
"""
syntax: db-path -[fd] [file-1.h5 [file-2.h5 [...]]]
-f forces
-d add debug info
the h5 files will be all parsed and the relevant data extracted into tiles at zoomlevel 11,
the tiles are saved in the db path
tile format:
each tile consists of a simple csv file
"""
import gzip
import sys
import h5py
import numpy as np
import os
import re
import datetime
import math
CHANNELS = ['1l', '1r','2l', '2r','3l', '3r']
#CHANNELS =['1l']
ZOOM_LEVEL=11
tilesStore= {}
coordsCnt=0
# https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
def coords2tilexy(lat_deg, lon_deg, zoom):
lat_rad = math.radians(lat_deg)
n = 2.0 ** zoom
xtile = int((lon_deg + 180.0) / 360.0 * n)
ytile = int((1.0 - math.asinh(math.tan(lat_rad)) / math.pi) / 2.0 * n)
return (xtile, ytile)
def recordPoint(filename,channel,rgt,time,lat,lon,terrain,canopy,direction):
global coordsCnt
key=coords2tilexy(lat,lon,ZOOM_LEVEL)
payload=filename+";"+channel+";"+str(rgt)+";"+str(round(time,3))+";"+str(lat)+";"+str(lon)+";"+str(terrain)+";"+str(canopy)+";"+str(direction)
#print("=="+payload)
tilesStore.setdefault(key, []).append(payload)
coordsCnt=coordsCnt+1
def dumpAll(prefix,group,maxRow):
for key in group.keys():
is_dataset = isinstance(group[key], h5py.Dataset)
#print(key+": "+str(is_dataset))
if (not is_dataset):
dumpAll(prefix+"/"+key,group[key],maxRow)
else:
for i in range(min(maxRow,len(group[key]))) :
print(prefix+"/"+key+"["+str(i)+"]:"+str(group[key][i]))
def processFile(filename,addDebugInfo):
print("processFile "+filename)
f = h5py.File(filename)
#dumpAll("", f,3306)
#return
#list(f.keys())
#['METADATA', 'ancillary_data', 'ds_geosegments', 'ds_metrics', 'ds_surf_type', 'gt1l', 'gt1r', 'gt2l', 'gt2r', 'gt3l', 'gt3r', 'orbit_info', 'quality_assessment']
debugInfo=""
if (addDebugInfo):
debugInfo=os.path.basename(filename)
for channel in CHANNELS:
ancillary_data=f['/ancillary_data']
orbit_info=f['/orbit_info']
#dump('/orbit_info',orbit_info,0)
print(filename+":"+" reading channel:"+channel)
land_segments=f['/gt'+channel+'/land_segments']
terrain=f['/gt'+channel+'/land_segments/terrain']
canopy=f['/gt'+channel+'/land_segments/canopy']
signal_photons=f['/gt'+channel+'/signal_photons']
#print("ancillary_data" ,ancillary_data.keys())
##start_delta_time=ancillary_data['start_delta_time'][0]
##print("start_delta_time:",start_delta_time)
##print("land_segments" ,land_segments.keys())
##print("terrain" ,terrain.keys())
##print("canopy" ,canopy.keys())
# previous latitude - 999 means uninitialized
plat=-999
for i, x in enumerate(zip(
land_segments['rgt'],
land_segments['delta_time'],
land_segments['latitude'],
land_segments['longitude'],
terrain['h_te_best_fit'],
#canopy['canopy_flag'],
canopy['h_canopy'],
signal_photons['ph_segment_id'],
signal_photons['classed_pc_indx']
)):
if (x[5]<1000):
#print("#"+str(i))
lat=x[2]
#dump("signal_photons",signal_photons,i)
#dump("land_segments",land_segments,i)
#dump("canopy",canopy,i)
#dump("terrain",terrain,i)
# hacky detection of rgt direction
if (not (plat == -999) and plat>lat):
direction='s'
else:
direction='n'
recordPoint(debugInfo,channel,x[0],x[1],lat,x[3],x[4],x[5],direction)
#print("ph_segment_id:",str(x[6]))
#print("classed_pc_indx:",str(x[7]))
#return
plat=lat
#
# empty the store
#
def resetStore():
global tilesStore
tilesStore={}
global coordsCnt
coordsCnt=0
#
# store the store :)
#
def saveStore(storePath):
for tile in tilesStore:
# print(tile)
# tile[0]
latDir=storePath+"/"+str(ZOOM_LEVEL)+"/"+str(tile[0])
os.makedirs(latDir, exist_ok=True)
tileCsv=latDir+"/"+str(tile[1])+".csv"
tileCsvGz=tileCsv+".gz"
# print(tileCsv+" has "+str(len(tilesStore[tile]))+" records")
if (os.path.exists(tileCsvGz)):
with gzip.open(tileCsvGz, 'rt') as fin:
tileCsvText = fin.read()
else:
tileCsvText=""
#if (tile[0]==1103 and tile[1]==694):
# print("====================================")
# print("tileCsvGz:"+tileCsvGz)
# print("tileCsvText:"+tileCsvText)
# print("new lines:"+tileCsvText)
# for line in tilesStore[tile]:
# print(line)
# print("====================================")
# BRITTLE
with gzip.open(tileCsvGz, 'wt') as fout:
fout.write(tileCsvText)
for line in tilesStore[tile]:
print(line,file=fout)
#-- main --
def main(storePath,options,granules):
addDebugInfo="d" in options
force="f" in options
srcs={}
# open or create src.txt (the list of already processed h5 files)
if (not os.path.exists(storePath)):
print("new tiles db will be created: "+storePath)
os.mkdir(storePath)
open(storePath+"/src.txt", 'a').close()
else:
print("found existing tiles db: "+storePath)
with open(storePath+"/src.txt") as f:
for line in f.read().splitlines():
tokens=re.split(';',line)
srcs[tokens[0]]=tokens[1:]
print(tokens[0]+";"+line)
print("channels:"+str(CHANNELS))
# process each h5 file
for filename in granules:
if (not os.path.exists(filename)):
print(filename+": does not exists")
elif (not force and os.path.basename(filename) in srcs):
print(filename+":already loaded")
else :
resetStore()
processFile(filename,addDebugInfo)
saveStore(storePath)
srcInfoLine=datetime.datetime.now().replace(microsecond=0).isoformat()+";"+str(coordsCnt)+" records in "+str(len(tilesStore))+" tiles "
print(os.path.basename(filename)+":"+srcInfoLine)
with open(storePath+"/src.txt", 'a+') as out:
print(os.path.basename(filename)+";"+srcInfoLine,file=out)
# main
if (not sys.argv[2].startswith("-")):
print ("2nd param must start with dash")
exit(1)
main ( storePath=sys.argv[1], options=sys.argv[2],granules=sys.argv[3:])
|
[
"bruno.carle@gmail.com"
] |
bruno.carle@gmail.com
|
187f0791b1a01c11df6c79633e0e5dd286b10dd7
|
e644c0a10c8d6b339106a34b67a393b57e038093
|
/source_code/data_cleaning.py
|
97ca7fe342c83ed2051bee3f6cee18cc09fc8195
|
[] |
no_license
|
hvijay3/User-Review-Based-New-Business-Affinity-Prediction-System
|
f8c7c57b5d6e2e2e034b24b6435ad9b53164a973
|
77f74fe7f39f9e0e6263eb1752d3047f42889090
|
refs/heads/master
| 2021-05-13T15:24:47.418392
| 2018-01-09T04:55:18
| 2018-01-09T04:55:18
| 116,767,593
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,021
|
py
|
import pandas as pd
import pandasql as ps
sentiment1 = pd.read_csv('AllFoodBusiness_Features&Sentiments.csv')
sentiment = ps.sqldf("""select
business_id,
round(sentimental_rating,0) as sentimental_rating
from sentiment1""", locals())
sentiment.describe()
sentiment.head()
business = pd.read_csv('business.csv')
business.rename(columns = {'stars':'business_stars'}, inplace = True)
business.head()
business.describe()
business.columns
####### REVIEW
review = pd.read_csv('review.csv', iterator=True, chunksize=500)
review = pd.concat(review, ignore_index =True)
review.describe()
review.columns
review.head()
business.head()
business_eateries = business[(business['categories'].str.contains(pat = 'Restaurants',na=False)) |
(business['categories'].str.contains(pat = 'Lounges',na=False)) |
(business['categories'].str.contains(pat = 'Nightlife',na=False)) |
(business['categories'].str.contains(pat = 'Bars',na=False)) |
(business['categories'].str.contains(pat = 'Food',na=False)) |
(business['categories'].str.contains(pat = 'Coffee&Tea',na=False))|
(business['categories'].str.contains(pat = 'Bakeries',na=False))|
(business['categories'].str.contains(pat = 'Pubs',na=False))|
(business['categories'].str.contains(pat = 'Pizza',na=False))]
business_eateries.describe()
business_eateries.columns
business_eateries.head()
cols = business_eateries.columns
cols = cols.map(lambda x: x.replace('.', '_'))
business_eateries.columns = cols
# write business_eateries csv
business_eateries.to_csv('Businesses_Eateries.csv')
business_eateries.head()
business_eateries_sentiment = pd.merge(business_eateries, sentiment, on = 'business_id')
business_eateries_sentiment.to_csv('Business_Eateries_Sentiment.csv')
business_review = pd.merge(business, review, on = 'business_id')
review_grouped = business_review.groupby(['city' , 'business_id'], as_index=False).mean()
data = review_grouped[['business_id','stars']]
review_eateries = data.apply(lambda x: x)
review_eateries.rename(columns={'stars': 'review_avg_stars'}, inplace=True)
review_eateries.head()
business_reviews_eateries = pd.merge(business_eateries, review_eateries, on = 'business_id')
business_reviews_eateries.head()
print(business_reviews_eateries.columns)
business_relevant_review_eateries = business_reviews_eateries[['business_id','latitude', 'longitude','review_count'
,'business_stars','review_avg_stars','attributes_RestaurantsPriceRange2','attributes_BusinessAcceptsCreditCards','attributes_RestaurantsTakeOut','attributes_RestaurantsDelivery',
'attributes_WheelchairAccessible','attributes_GoodForMeal_breakfast','attributes_GoodForMeal_latenight','attributes_GoodForMeal_dessert','attributes_GoodForMeal_lunch',
'attributes_GoodForMeal_brunch','attributes_RestaurantsReservations','attributes_BusinessParking_validated','attributes_BusinessParking_valet','attributes_BusinessParking_lot','attributes_BusinessParking_garage',
'attributes_BusinessParking_street','attributes_BikeParking','state','city','name','attributes_GoodForKids','attributes_RestaurantsGoodForGroups','attributes_Ambience_trendy','attributes_Ambience_casual','attributes_Ambience_classy','attributes_Ambience_touristy','attributes_Ambience_intimate'
,'attributes_Ambience_hipster']]
business_relevant_review_eateries.head()
business_relevant_review_eateries_sentiment = pd.merge(business_relevant_review_eateries, sentiment, on = 'business_id')
business_relevant_review_eateries_sentiment.to_csv('Model_Input.csv')
business_relevant_review_eateries_sentiment.head()
|
[
"Vijayvargiyah@gmail.com"
] |
Vijayvargiyah@gmail.com
|
c8a58abf83afbf6366b65b7dc1ee8f6a5d6ef831
|
24ffbd64e1892ab633ca785e969ccef43f17a9f2
|
/picomotor/devices/h2_yr.py
|
efa1098cd7f197e7875e4fee3720cf40bfa6fb58
|
[] |
no_license
|
yesrgang/labrad_tools.srq
|
e29fcbfc4f5228955de1faddab6a66df52ccdd03
|
0dfbf2609d2f7a7e499167decedb0d9ea3677978
|
refs/heads/master
| 2021-06-18T19:59:21.448762
| 2021-02-04T22:03:49
| 2021-02-04T22:03:49
| 155,478,765
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 155
|
py
|
from picomotor.devices.nf8742.device import NF8742
class Motor(NF8742):
socket_address = ('192.168.1.20', 23)
controller_axis = 4
Device = Motor
|
[
"yesrgang@gmail.com"
] |
yesrgang@gmail.com
|
7bae5ccf98dd1173f76aac2b3c90247bbe4be0fd
|
b74a22c9e6da60a5085104d9ab9252d61a5d5dfe
|
/app.py
|
4e0c4b1cca9fcd5459600f681dd688c97730af71
|
[] |
no_license
|
VinayKatare/Sab-Pool-Karo
|
1413a759eb00f7c105d78b1874e2c383390489b5
|
6a4c2b26a42c8d9d92e207c687823dc059ab1ba0
|
refs/heads/master
| 2020-04-20T00:46:38.983792
| 2019-04-10T18:38:46
| 2019-04-10T18:38:46
| 168,529,166
| 1
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,153
|
py
|
from flask import Flask,render_template,request,url_for,redirect,session,flash
from db import *
from passlib.hash import sha256_crypt
from functools import wraps
app = Flask(__name__)
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'
global temp
temp = False
conn = connectDB()
cursor = conn.cursor(dictionary=True)
def login_required(f):
@wraps(f)
def decorated_function(*args, **kwargs):
if 'logged_in' is session:
return f(*args, **kwargs)
else:
return 'cannot access'
return decorated_function
@app.route("/")
def menu():
return render_template("search.html",flag=temp)
@app.route("/signup", methods = ['POST','GET'])
def signup():
if request.method == 'POST':
userdetails=request.form
email = userdetails['email']
name = userdetails['name']
password = userdetails['password']
confirmPassword = userdetails['confirmPassword']
gender = userdetails['gender']
car = userdetails['car']
mobile = userdetails['mobile']
govtid = userdetails['govtid']
if password!=confirmPassword:
return "not matched"
pwd = sha256_crypt.encrypt(str(password))
cursor.execute('insert into users values(null,%s,%s,%s,%s,%s,%s,%s)',(pwd,name,gender,mobile,email,car,govtid))
conn.commit()
return redirect(url_for('menu'))
return render_template("signup.html",flag=temp)
@app.route("/login",methods = ['POST','GET'])
def login():
if request.method == 'POST':
userdetails = request.form
userid = userdetails['email']
passwed = userdetails['password']
cursor.execute('select * from users where email = %s', (userid,))
res = cursor.fetchone()
#print(res)
if res is None:
return ("invalid user name")
else:
pwd= res['pwd']
if sha256_crypt.verify(passwed,pwd):
session['logged_in']=True
global temp
temp= True
#print("this is ",temp)
session['userid']=int(res['userid'])
#return 'You are now logged in','success'
return redirect(url_for('menu'))
else:
return "invalid password"
return render_template("login.html",flag=temp)
@app.route("/searchresult")
def searchresult():
src = request.args.get('source')
dest = request.args.get('destination')
#cursor.execute('select * from pool')
#res=cursor.fetchall()
cursor.execute('select * from pool p,users u, dest d, src s where p.userid= u.userid and p.src=s.srcid and p.dest=d.destid and p.src=%s and p.dest=%s',(src,dest))
res = cursor.fetchall()
print(res)
return render_template("searchresult.html",rows=res,l=len(res),flag=temp)
@app.route("/createpool",methods = ['POST','GET'])
def createpool():
if request.method == 'POST':
userdetails=request.form
userid = session['userid']
source = userdetails['source']
destination = userdetails['destination']
vacancy = userdetails['vacancy']
time = userdetails['time']
cost = userdetails['cost']
print("this is ",time)
cursor.execute('insert into pool values(%s,null,%s,%s,%s,%s,%s)',(userid,source,destination,vacancy,time,cost))
conn.commit()
return redirect(url_for('menu'))
return render_template("createpool.html",flag=temp)
# requestpool
@app.route("/requestpool",methods = ['POST','GET'])
def requestpool():
if request.method == 'GET':
poolid = request.args.get('poolid')
return render_template("requestpool.html", poolid=poolid)
else:
if not session['logged_in']:
return redirect(url_for('menu'))
userid = session['userid']
status='Requested'
userdetails = request.form
src=userdetails['source']
dest=userdetails['destination']
poolid = userdetails['poolid']
cursor.execute('insert into joinpool values(null,%s,%s,%s,%s,%s)',(userid, poolid, status, src, dest))
conn.commit()
return "Success"
#return redirect(url_for('menu'))
@app.route("/mypools",methods = ['POST','GET'])
def mypools():
if request.method == 'GET':
userid = session['userid']
cursor.execute('select * from users u,joinpool j, pool p where j.userid=%s and p.poolid=j.poolid and j.userid= u.userid', (userid,))
res = cursor.fetchall()
#print(res, len(res))
req=[]
accreq=[]
rejreq=[]
for i in range(len(res)):
if res[i]['status'] == 'Requested':
req.append(res[i])
elif res[i]['status'] == 'Accepted':
accreq.append(res[i])
else:
rejreq.append(res[i])
return render_template("poolrequest.html",req=req,accreq=accreq,flag=temp,rejreq=rejreq,l=len(req),l1=len(accreq),l2=len(rejreq))
@app.route("/logout")
def logout():
global temp
temp= False
session.clear()
return redirect(url_for('menu'))
if __name__ == '__main__':
app.run(debug=True)
|
[
"vinaykatare1234@gmail.com"
] |
vinaykatare1234@gmail.com
|
40397ccb95d1078ee9372f43fc59a3eb63a11174
|
e868cd3e0eb56ac8b4aa4290510b2d393ae8eaac
|
/relations-finder/tests/wikipedia_data_fetcher_test.py
|
fd2b8319b464c1010f09f9590af94aa2a70c661f
|
[
"MIT"
] |
permissive
|
trisongz/wiki-relations
|
2ba0c24deb0d804633dbe1796443fbeabd36b5a3
|
9f8d20c512f993cab6065cb2695c996c076b6d13
|
refs/heads/main
| 2023-03-24T22:08:29.722531
| 2021-03-13T17:49:13
| 2021-03-13T17:49:13
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,180
|
py
|
import os
import sys
from unittest import TestCase
from unittest.mock import patch
import wikipedia
sys.path.append(os.path.abspath('..'))
from wikipedia_data_fetcher import Wikipedia_data_fetcher
class Test_wikipedia_data_fetcher(TestCase):
def setUp(self):
self.fetcher = Wikipedia_data_fetcher()
@patch('wikipedia_data_fetcher.wikipedia.page')
@patch.object(Wikipedia_data_fetcher, 'chunk_page_content')
def test_that_get_article_returns_correct_result(self, mock_chunk_page_content,
mock_wikipedia_page):
url = 'fake url'
title = 'fake title'
content = 'fake content'
class Object:
def __init__(self):
self.url = url
self.title = title
mock_wikipedia_page.return_value = Object()
mock_chunk_page_content.return_value = content
expected = {'name': title, 'url': url, 'content_chunks': content}
actual = self.fetcher.get_article('')
self.assertDictEqual(expected, actual)
@patch('wikipedia_data_fetcher.wikipedia.page')
def test_that_get_article_returns_empty_dict_on_page_error(self, mock_wikipedia_page):
page_error = wikipedia.exceptions.PageError('fake page id')
mock_wikipedia_page.side_effect = page_error
expected = {}
actual = self.fetcher.get_article('')
self.assertDictEqual(expected, actual)
def test_that_get_section_titles_strips_title_names_from_text(self):
content = '\n\n\n= First Title =\n text...\n\n\n== Second Title '\
'==\n\n more text...\n=== Sub Title ===\n finish.'
expected = ['First Title', 'Second Title', 'Sub Title']
actual = self.fetcher.get_sections_titels(content)
self.assertListEqual(expected, actual)
def test_that_filter_sections_removes_unwanted_sections(self):
sections = ['Foo', 'Publications', 'References', 'External links', 'Further reading', 'Bar']
sections_to_remove = {'Publications', 'References', 'External links', 'Further reading'}
expected = ['Foo', 'Bar']
actual = self.fetcher.filter_sections(sections)
self.assertListEqual(expected, actual)
def test_that_clean_text_removes_quotes_and_newlines(self):
text = 'Some text\n"quoted text"\nend.'
expected = 'Some text quoted text end.'
actual = self.fetcher.clean_text(text)
self.assertEqual(expected, actual)
def test_that_chunk_page_content_returns_list_with_sections_contents(self):
summary = 'summary'
content = '\n= Foo =\nFirst chunk\n\n== Bar ==\nSecond chunk.'
expected = ['summary', 'First chunk', 'Second chunk.']
class Object:
def __init__(self):
self.summary = summary
self.content = content
def section(self, title):
if title == 'Foo':
return 'First chunk'
elif title == 'Bar':
return 'Second chunk.'
actual = self.fetcher.chunk_page_content(Object())
self.assertEqual(expected, actual)
|
[
"ahmed91abbas@hotmail.com"
] |
ahmed91abbas@hotmail.com
|
36cc3d83758e405e7b09ba3ceb504ad2feb85195
|
3282ccae547452b96c4409e6b5a447f34b8fdf64
|
/SimModel_Python_API/simmodel_swig/Release/ObtainPipeInfo.py
|
05eb5c5394e33c9bacfea57f6770abb9744c6491
|
[
"MIT"
] |
permissive
|
EnEff-BIM/EnEffBIM-Framework
|
c8bde8178bb9ed7d5e3e5cdf6d469a009bcb52de
|
6328d39b498dc4065a60b5cc9370b8c2a9a1cddf
|
refs/heads/master
| 2021-01-18T00:16:06.546875
| 2017-04-18T08:03:40
| 2017-04-18T08:03:40
| 28,960,534
| 3
| 0
| null | 2017-04-18T08:03:40
| 2015-01-08T10:19:18
|
C++
|
UTF-8
|
Python
| false
| false
| 9,971
|
py
|
import os
import networkx as nx
# load SimModel hierarchy
import SimModel_Hierachy
# load SimModel mapped data
import SimModel_Mapping
# load SimModel translation engine
import SimModel_Translator
# load the SimModel classes you wanna access their properties,
# e.g., if you need to access a class named A, then import A
# as shown in the following code
import SimProject_Project_DesignAlternative
import SimSite_BuildingSite_Default
import SimBuilding_Building_Default
import SimBuildingStory_BuildingStory_Default
import SimGroup_SpatialZoneGroup_ZoneGroup
import SimGroup_SpatialZoneGroup_ZoneHvacGroup
import SimSpatialZone_ThermalZone_Default
import SimSpace_Occupied_Default
import SimList_EquipmentList_ZoneHvac
import SimSpaceBoundary_SecondLevel_SubTypeA
import SimSlab_Default_Default
import SimSlab_RoofSlab_RoofUnderAir
import SimSlab_Floor_FloorOverEarth
import SimSlab_Floor_InterzoneFloor
import SimWall_Wall_Default
import SimWall_Wall_ExteriorAboveGrade
import SimWall_Wall_Interior
import SimWindow_Window_Exterior
import SimMaterialLayerSet_Default_Default
import SimMaterialLayerSet_OpaqueLayerSet_Roof
import SimMaterialLayerSet_OpaqueLayerSet_Floor
import SimMaterialLayerSet_OpaqueLayerSet_Wall
import SimMaterialLayerSet_GlazingLayerSet_Window
import SimFeatureElementSubtraction_Void_Opening
import SimMaterialLayer_OpaqueMaterialLayer_Default
import SimMaterialLayer_GlazingMaterialLayer_Default
import SimMaterial_Default_Default
import SimMaterial_OpaqueMaterial_Default
import SimMaterial_OpaqueMaterial_AirGap
import SimMaterial_GlazingMaterial_Gas
import SimMaterial_GlazingMaterial_SimpleGlazingSystem
import SimMaterial_GlazingMaterial_Glazing
import SimModelRepresentationContext_GeometricRepresentationContext_Default
import SimPlacement_Axis2Placement3D_Default
import SimGeomVector_Vector_Direction
import SimSystem_HvacHotWater_FullSystem
import SimSystem_HvacHotWater_Control
import SimController_SupplyWater_Temperature
import SimSensor_TemperatureSensor_DryBulb
import SimSystem_HvacHotWater_Demand
import SimFlowController_Valve_Default
import SimFlowController_Valve_TemperingValve
import SimFlowEnergyTransfer_ConvectiveHeater_Water
import SimFlowEnergyTransfer_ConvectiveHeater_Radiant_Water
import SimFlowEnergyTransferStorage_HotWaterTank_Expansion
import SimFlowEnergyTransferStorage_HotWaterTank_Mixed
import SimFlowFitting_Default_Default
import SimFlowFitting_Mixer_DemandProxyMixerWater
import SimFlowFitting_Splitter_DemandProxySplitterWater
import SimFlowSegment_Pipe_Indoor
import SimSystem_HvacHotWater_Supply
import SimFlowMover_Pump_VariableSpeedReturn
import SimFlowPlant_Boiler_BoilerHotWater
import SimConnection_HotWaterFlow_Default
import SimNode_HotWaterFlowPort_Water_Out
import SimNode_HotWaterFlowPort_Water_In
import SimDistributionPort_HotWaterFlowPort_Water_Out
import SimDistributionPort_HotWaterFlowPort_Water_In
import SimDistributionPort_HotWaterFlowPort_Water_InOrOut
import SimNode_DigitalControl_HWLoop_DigitalSignal_In
import SimTimeSeriesSchedule_Year_Default
import SimTimeSeriesSchedule_Week_Daily
import SimTimeSeriesSchedule_Day_Interval
import SimTemplateZoneLoads_ZoneLoads_Default
import SimTemplateZoneConditions_ZoneConditions_Default
import SimInternalLoad_Equipment_Electric
import SimInternalLoad_People_Default
import SimInternalLoad_Lights_Default
import SimController_ZoneControlTemperature_Thermostat
import SimControlScheme_SetpointScheme_SingleHeating
import SimPerformanceCurve_Mathematical_Cubic
from SimModel_Translator import SimTranslator
# create SimModel translator object
translator = SimTranslator()
# load and parse multiple SimXML files
zoneFile_path = ("UseCase1_1_BoilerGasRadiatorFromSimergy.simxml")
hvacFile_path = ("1.1_Architecture+HVAC+Zone_Curve+Schedule_korr.simxml")
pathList = [zoneFile_path, hvacFile_path]
simxml_data = translator.loadSimModel(zoneFile_path, hvacFile_path)
# get SimModel mapped data
simxml_mapped_data = translator.getSimMappedData(".\\mapping_rule\\mapping_rule_xml\\AixLib_v2.6.xml")
mappedComonentList = simxml_mapped_data.getMappedComponentList()
sim_hierarchy = translator.getSimHierarchy()
nodeList = sim_hierarchy.getHierarchyNodeList()
# iterate each hierarchy node saved in the list
Structured_HVAC = []
for id in range(0, nodeList.size()):
hierarchy_node = nodeList[id]
#print("node ", id, ":", hierarchy_node.getSimModelObject().RefId())
# check the class type of the hierarchy node
if hierarchy_node.isClassType("SimSystem_HvacHotWater_Supply") or hierarchy_node.isClassType("SimSystem_HvacHotWater_Demand"):
# We are in Supply System: --> obtain child list.
print("Extract childs from ", hierarchy_node.getSimModelObject().RefId())
child_node_list = hierarchy_node.getChildList()
#print("child_node_list: ", child_node_list)
#sim_object = hierarchy_node.getSimModelObject()
#sim_object_id = sim_object.RefId()
#print("current SimModel object id: ", sim_object_id, " has the childs: ", child_node_list, "\n")
for child in child_node_list:
#print("child: ", child.getSimModelObject().RefId())
selected_info = []
# Every child will eventually become a modelica component. Thus we need:
# Name/ID - Type - & if applicable InPort and Outport from each TargePort and SourcePort
# The following structure (list of lists) will be used:
# for each node: [RefId,Type,[list of InPorts],[list of OutPorts],[list of InOrOutPorts]] where each element of the list InPorts
# is a list of the form: [TargetPort,SourcePort]
objectRefId = child.getSimModelObject().RefId()
objectType = child.ClassType()
selected_info.extend([objectRefId,objectType])
#InPort and Outport
child_node_list_2 = child.getChildList()
InPortlist = [] #SimDistributionPort_HotWaterFlowPort_Water_Out
OutPortlist = [] #SimDistributionPort_HotWaterFlowPort_Water_In
for child_2lvl in child_node_list_2:
# We need to go 1 level deeper to get Source- and TargetPort. Both are in class SimConnection_HotWaterFlow_Default (Port[0])
# Attribute TargetPort = OutPort.RefId() (Water_In) and Attribute SourcePort = InPort.RefId() (Water_Out)
#EXAMPLE:
#ID0LMbjl8XfFaui1YxJs_D6D
#InPort: ID3zs117w1n5lwSRidPGhKht (Water_Out)
# SourcePort: ID3zs117w1n5lwSRidPGhKht
# TargetPort: ID13UhRNCnX1rAwEBMyxljsq
#OutPort: ID1a5meudDCPOBQD1vrPCFy (Water_In)
# SourcePort: ID3mJZcz594IfdQpbAKBQkZ
# TargetPort: ID1a5meudDCPOBQD1vrPCFy
#
# In case the calss is HotWaterFlowPort_Water_InOrOut
# The above rule (compare attribute SourcePort and TargetPort with object RefId)
# helps to know whether the object is an InPort or OutPort.
# We will later associate InPort with OutPorts.
# InPort.RefId() = InPort.SourcePort = OutPort.SourcePort --> Alternative --> InPort.TargetPort = OutPort.TargetPort = OutPort.RefId()
# we use -> TargetPort
if child_2lvl.isClassType("SimDistributionPort_HotWaterFlowPort_Water_In"):
Port = child_2lvl.getChildList()
obj = Port[0].getSimModelObject()
OutPortlist.append(child_2lvl.getSimModelObject().RefId())
if child_2lvl.isClassType("SimDistributionPort_HotWaterFlowPort_Water_Out"):
Port = child_2lvl.getChildList()
obj = Port[0].getSimModelObject()
class_name = getattr(obj,"TargetPort")
instance = class_name()
Port_Id = class_name().getValue()
InPortlist.append(Port_Id)
if child_2lvl.isClassType("SimDistributionPort_HotWaterFlowPort_Water_InOrOut"):
Port = child_2lvl.getChildList()
obj = Port[0].getSimModelObject()
class_name = getattr(obj,"TargetPort")
instance = class_name()
TargetPort_Id = class_name().getValue()
class_name = getattr(obj,"SourcePort")
instance = class_name()
SourcePort_Id = class_name().getValue()
# If TargetPort_Id = child_2lvl.getSimModelObject().RefId() we have an OutPort (Water_In class)
# we append SourcePort_Id to OutPortlist otherwise
# we have an InPort (Water_Out class) so we append SourcePort_Id to the InPort list!
if child_2lvl.getSimModelObject().RefId() == TargetPort_Id:
OutPortlist.append(TargetPort_Id)
else:
InPortlist.append(TargetPort_Id)
# Finish reading second lvl childs: add list of OutPort and InPort into selected info
selected_info.extend([InPortlist,OutPortlist])
# Finisch with HVAC child. append structured information of the node into global list.
Structured_HVAC.append(selected_info)
G=nx.DiGraph()
listof_RefId = [elem[0] for elem in Structured_HVAC]
listof_type = [elem[1] for elem in Structured_HVAC]
listof_InPorts = [elem[2] for elem in Structured_HVAC]
listof_OutPorts = [elem[3] for elem in Structured_HVAC]
G.add_nodes_from(listof_RefId)
for node in Structured_HVAC:
G.node[node[0]]['Text'] = node[0]
G.node[node[0]]['Description'] = node[1]
for element_in in Structured_HVAC:
for InPort in element_in[2]:
for element_out in Structured_HVAC:
for OutPort in element_out[3]:
if InPort == OutPort:
print("ElementIN: ", element_in[0]," with InPort: ", InPort, "found OutPort: ", OutPort, " in element ", element_out[0])
G.add_edge(element_in[0],element_out[0])
print("number of edges: ", G.number_of_edges(), " - number of nodes: ", G.number_of_nodes())
nx.write_graphml(G,"test.graphml")
print("finish")
|
[
"c.ribastugores@udk-berlin.de"
] |
c.ribastugores@udk-berlin.de
|
092db6afd0b046dcf1485a91be052fd57d5c502e
|
a177931c2914cc9820c578add9d57aa6c75084ce
|
/tips/customHTML/test_genTABHTML.py
|
cfd92464403354ae73e44a3df5bc666a81d2eb93
|
[] |
no_license
|
zhangshoug/others
|
45d94f96701362cb077eb994c27295247a6fb712
|
3a8a8366f2598a5e88b44d18d346e81f4eef659e
|
refs/heads/master
| 2022-12-18T22:37:13.505543
| 2020-09-28T08:54:28
| 2020-09-28T08:54:28
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,021
|
py
|
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
File Name: test_genTABHTML
Description : tab css style test
Author : pchaos
date: 2019/9/9
-------------------------------------------------
Change Activity:
2019/9/9:
-------------------------------------------------
"""
import unittest
from unittest import TestCase
from .genTabHTML import genTABHTML
class TestGenTABHTML(TestCase):
def test_genHTML(self):
# 需要生成的文件名list。模板文件为:template.html,模板数据文件名为:需要生成的文件名+".ini"
flist = ["main.htm", "main_tech.htm", "hacker.html"]
# inifile = '{}.ini'.format(flist[0])
renderList = []
for fn in flist:
inifile = '{}.ini'.format(fn)
gh = genTABHTML()
# gh.outputFilename = fn
gh.outputFilename = "test"
gh.iniFilename = inifile
try:
templateFile = "customHTML/template.tab.table.html"
of, render = gh.genHTML(None,
# of, render = gh.genHTML("a{}".format(fn),
title=fn.split(".")[0],
prettify=False,
template=templateFile)
except Exception as e:
templateFile = "template.tab.table.html"
of, render = gh.genHTML(None,
# of, render = gh.genHTML("a{}".format(fn),
title=fn.split(".")[0],
prettify=False,
template=templateFile)
print("输出文件完成 {}".format(of))
# print(render)
self.assertTrue(len(render) > 100)
renderList.append(render)
print(renderList)
# main
inifile = '{}.ini'.format(flist[0])
gh = genTABHTML()
# gh.outputFilename = fn
gh.iniFilename = inifile
try:
templateFile = "template.tab.html"
render = gh.renders(renderList,
prettify=True,
# template="customHTML/template.tab.html",
template=templateFile,
title="Main")
except Exception as e:
templateFile = "customHTML/template.tab.html"
render = gh.renders(renderList,
prettify=True,
# template="customHTML/template.tab.html",
template=templateFile,
title="Main")
saveText = ""
for r in render:
saveText += r
gh.save('main.htm', saveText)
print("输出文件完成 {}".format(render))
if __name__ == '__main__':
unittest.main()
|
[
"drifthua@gmail.com"
] |
drifthua@gmail.com
|
c06bcf0c5bf8278caf07c0496ba1c817c184ba8d
|
3d2e5d1092acccfb73c07d68b6beeffc44b3f776
|
/imitation/src/environments/simulation/pybullet_env.py
|
10ef9e12e56c2333e0813282dd5bdfe598ed1611
|
[] |
no_license
|
MatthijsBiondina/WorldModels
|
f6cbcfe5349da7119329ef10831810d1b85c9d02
|
ab468f1aa978e3aa4e05174db24922085d1e33b1
|
refs/heads/master
| 2022-12-22T11:54:46.040828
| 2020-09-23T11:41:48
| 2020-09-23T11:41:48
| 248,212,491
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,560
|
py
|
import gym
import pybulletgym
import numpy as np
from src.environments.general.environment_template import Environment
from src.utils import config as cfg
_ = pybulletgym
PREP_VECTORS = {'InvertedPendulumSwingupPyBulletEnv-v0': np.array([1, 0.2, 1, 1, 0.067], dtype=np.float16)}
def preprocess_observation(obs):
"""
:param obs: unprocessed observation
:return: normalized observation
"""
return np.clip(obs * PREP_VECTORS[cfg.env_name], -1., 1.)
class SimEnv(Environment):
def __init__(self, save_loc: str):
super().__init__(save_loc)
self.env = gym.make(cfg.env_name)
self.t = 0
self.actions = [np.zeros(self.action_size)] * cfg.latency
def reset(self):
"""
Reset environment
:return: observation at t=0
"""
self.t = 0
self.actions = [np.zeros(self.action_size)] * cfg.latency
return preprocess_observation(self.env.reset())
def step(self, action: np.ndarray):
"""
Perform action and observe next state. Action is repeated 'action_repeat' times.
:param action: the action to take
:return: next observation, reward, terminal state
"""
obs, done = None, None
reward = 0
self.actions.append(action)
for k in range(cfg.action_repeat):
obs, reward_k, done, _ = self.env.step(self.actions[0])
reward += reward_k
done = done or self.t == cfg.max_episode_length
if done:
break
self.actions.pop(0)
return preprocess_observation(obs), reward, done
def render(self) -> np.ndarray:
"""
Renders the environment to RGB array
:return: frame capture of environment
"""
return self.env.render(mode='rgb_array')
def close(self):
"""
Cleanup
:return: n/a
"""
self.env.close()
def sample_random_action(self) -> np.ndarray:
"""
Sample an action randomly from a uniform distribution over all valid actions
:return: random action
"""
return self.env.action_space.sample()
@property
def obs_size(self) -> int:
"""
GETTER METHOD
:return: size of observations in this environment
"""
return self.env.observation_space.shape[0]
@property
def action_size(self):
"""
GETTER METHOD
:return: size of actions in this environment
"""
return self.env.action_space.shape[0]
|
[
"biondina.matthijs@gmail.com"
] |
biondina.matthijs@gmail.com
|
e3f0fa8530d803d47671f975bfbbc686baaee7bb
|
73be09853a2a303597825a5fe765610eeebbc5ef
|
/ForGPU/KerasCnn5.py
|
f6163ee71736ad8085652a59616dc5a78c1d025c
|
[
"MIT"
] |
permissive
|
Annarien/GravitationalLenses
|
7375cded8a028f39b4426687f90b5d0f8ca92cde
|
c2606aacc62d2534fb199f5228dc21c0ea604251
|
refs/heads/main
| 2023-06-02T21:25:29.543234
| 2021-06-19T18:20:07
| 2021-06-19T18:20:07
| 341,883,049
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 55,630
|
py
|
"""
This is file performs the convolutional neural network algorithm, in which the k fold is performed as well.
The results were saved in a csv file.
"""
import os
import sys
import random
from datetime import datetime
import numpy as np
import tensorflow
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
from matplotlib import pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.utils import shuffle
from tensorflow.python.keras import Sequential
from tensorflow.python.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.python.keras.layers.convolutional import Conv2D, MaxPooling2D
from tensorflow.python.keras.layers.core import Dense, Dropout, Flatten
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.utils.vis_utils import plot_model
from tensorflow.python.keras.models import save_model
# added Adam opt for learning rate
from tensorflow.python.keras.optimizers import Adam
# from tensorflow.keras.optimizers import Adam
from tensorflow.python.keras import backend as K
from ExcelUtils import createExcelSheet, writeToFile
print(tensorflow.__version__)
now = datetime.now()
dt_string = now.strftime("%d_%m_%Y_%H_%M_%S")
print(dt_string)
excel_headers = []
excel_dictionary = []
excel_headers.append("Date and Time")
excel_dictionary.append(dt_string)
# Globals
makeNewCSVFile = True
max_num = sys.maxsize # Set to sys.maxsize when running entire data set
max_num_testing = sys.maxsize # Set to sys.maxsize when running entire data set
max_num_prediction = sys.maxsize # Set to sys.maxsize when running entire data set
validation_split = 0.2 # A float value between 0 and 1 that determines what percentage of the training
# data is used for validation.
k_fold_num = 5 # A number between 2 and 10 that determines how many times the k-fold classifier
# is trained.
epochs = 50 # A number that dictates how many iterations should be run to train the classifier
batch_size = 128 # The number of items batched together during training.
run_k_fold_validation = True # Set this to True if you want to run K-Fold validation as well.
input_shape = (100, 100, 3) # The shape of the images being learned & evaluated.
augmented_multiple = 2 # This uses data augmentation to generate x-many times as much data as there is on file.
use_augmented_data = True # Determines whether to use data augmentation or not.
patience_num = 5 # Used in the early stopping to determine how quick/slow to react.
use_early_stopping = True # Determines whether to use early stopping or not.
use_model_checkpoint = True # Determines whether the classifiers keeps track of the most accurate iteration of itself.
monitor_early_stopping = 'val_loss'
monitor_model_checkpoint = 'val_acc'
use_shuffle = True
learning_rate = 0.001
training_positive_path = 'Training/PositiveAll'
# training_positive_path = 'UnseenData/KnownLenses_training'
training_negative_path = 'Training/Negative'
testing_positive_path = 'Testing/PositiveAll'
testing_negative_path = 'Testing/Negative'
# unseen_known_file_path = 'UnseenData/Known131'
unseen_known_file_path_select = 'UnseenData/SelectingSimilarLensesToPositiveSimulated'
unseen_known_file_path_all = 'UnseenData/KnownLenses'
# Adding global parameters to excel
excel_headers.append("Max Training Num")
excel_dictionary.append(max_num)
excel_headers.append("Max Testing Num")
excel_dictionary.append(max_num_testing)
excel_headers.append("Max Prediction Num")
excel_dictionary.append(max_num_prediction)
excel_headers.append("Validation Split")
excel_dictionary.append(validation_split)
excel_headers.append("K fold Num")
excel_dictionary.append(k_fold_num)
excel_headers.append("Epochs")
excel_dictionary.append(epochs)
excel_headers.append("Batch Size")
excel_dictionary.append(batch_size)
excel_headers.append("Run K fold")
excel_dictionary.append(run_k_fold_validation)
excel_headers.append("Input Shape")
excel_dictionary.append(input_shape)
excel_headers.append("Augmented Multiple")
excel_dictionary.append(augmented_multiple)
excel_headers.append("Use Augmented Data")
excel_dictionary.append(use_augmented_data)
excel_headers.append("Patience")
excel_dictionary.append(patience_num)
excel_headers.append("Use Early Stopping")
excel_dictionary.append(use_early_stopping)
excel_headers.append("Use Model Checkpoint")
excel_dictionary.append(use_model_checkpoint)
excel_headers.append("Monitor Early Stopping")
excel_dictionary.append(monitor_early_stopping)
excel_headers.append("Monitor Model Checkpoint")
excel_dictionary.append(monitor_model_checkpoint)
excel_headers.append("Use Shuffle")
excel_dictionary.append(use_shuffle)
excel_headers.append("Learning Rate")
excel_dictionary.append(learning_rate)
if not os.path.exists('../Results/%s/' % dt_string):
os.mkdir('../Results/%s/' % dt_string)
# Helper methods
def getPositiveImages(images_dir, max_num, input_shape):
"""
This gets the positively simulated images in the g, r and i bands.
Args:
images_dir(string): This is the file path address of the positively simulated images.
max_num(integer): This is the number of sources of the positively simulated images to be used.
input_shape(tuple): This is the shape of the images.
Returns:
positive_images(numpy array): This is the numpy array of the positively simulated images with the shape of
(num of images, input_shape[0], input_shape[1], input_shape[2]) =
(num_of_images, 100, 100, 3).
"""
global g_img_path, r_img_path, i_img_path
for root, dirs, _ in os.walk(images_dir):
num_of_images = min(max_num, len(dirs))
positive_images = np.zeros([num_of_images, 3, 100, 100])
index = 0
print('image_dir: ' + str(images_dir))
for folder in dirs:
if images_dir == 'Training/PositiveAll':
g_img_path = get_pkg_data_filename('%s/%s_g_norm.fits' % (os.path.join(root, folder), folder))
r_img_path = get_pkg_data_filename('%s/%s_r_norm.fits' % (os.path.join(root, folder), folder))
i_img_path = get_pkg_data_filename('%s/%s_i_norm.fits' % (os.path.join(root, folder), folder))
elif images_dir == 'UnseenData/KnownLenses_training':
g_img_path = get_pkg_data_filename('%s/g_norm.fits' % (os.path.join(root, folder)))
r_img_path = get_pkg_data_filename('%s/r_norm.fits' % (os.path.join(root, folder)))
i_img_path = get_pkg_data_filename('%s/i_norm.fits' % (os.path.join(root, folder)))
# print('g_img_path: ' + str(g_img_path))
# print('r_img_path: ' + str(r_img_path))
# print('i_img_path: ' + str(i_img_path))
g_data = fits.open(g_img_path)[0].data[0:100, 0:100]
r_data = fits.open(r_img_path)[0].data[0:100, 0:100]
i_data = fits.open(i_img_path)[0].data[0:100, 0:100]
img_data = [g_data, r_data, i_data]
positive_images[index] = img_data
index += 1
if index >= num_of_images:
break
return positive_images.reshape(num_of_images, input_shape[0], input_shape[1], input_shape[2])
def getNegativeImages(images_dir, max_num, input_shape):
"""
This gets the negative images in the g, r and i bands.
Args:
images_dir(string): This is the file path address of the negative images.
max_num(integer): This is the number of sources of the negative images to be used.
input_shape(tuple): This is the shape of the images.
Returns:
negative_images(numpy array): This is the numpy array of the negative images with the shape of
(num of images, input_shape[0], input_shape[1], input_shape[2]) =
(num_of_images, 100, 100, 3).
"""
for root, dirs, _ in os.walk(images_dir):
num_of_images = min(max_num, len(dirs))
negative_images = np.zeros([num_of_images, 3, 100, 100])
index = 0
for folder in dirs:
g_img_path = get_pkg_data_filename('%s/g_norm.fits' % (os.path.join(root, folder)))
r_img_path = get_pkg_data_filename('%s/r_norm.fits' % (os.path.join(root, folder)))
i_img_path = get_pkg_data_filename('%s/i_norm.fits' % (os.path.join(root, folder)))
g_data = fits.open(g_img_path)[0].data[0:100, 0:100]
r_data = fits.open(r_img_path)[0].data[0:100, 0:100]
i_data = fits.open(i_img_path)[0].data[0:100, 0:100]
img_data = [g_data, r_data, i_data]
negative_images[index] = img_data
index += 1
if index >= num_of_images:
break
return negative_images.reshape(num_of_images, input_shape[0], input_shape[1], input_shape[2])
def getUnseenData(images_dir, max_num, input_shape):
"""
This gets the unseen images in the g, r and i bands containing the identified known lenses.
Args:
images_dir(string): This is the file path address of the unseen images.
max_num(integer): This is the number of sources of the unseen images to be used.
input_shape(tuple): This is the shape of the images.
Returns:
des_tiles(dictionary): This is the dictionary of the unseen images with the shape of
(num of images, input_shape[0], input_shape[1], input_shape[2]) =
(num_of_images, 100, 100, 3).
"""
des_tiles = {}
for root, dirs, _ in os.walk(images_dir):
num_of_images = min(max_num, len(dirs))
index = 0
for folder in dirs:
g_img_path = get_pkg_data_filename('%s/g_norm.fits' % (os.path.join(root, folder)))
r_img_path = get_pkg_data_filename('%s/r_norm.fits' % (os.path.join(root, folder)))
i_img_path = get_pkg_data_filename('%s/i_norm.fits' % (os.path.join(root, folder)))
# print(g_img_path)
g_data = fits.open(g_img_path)[0].data[0:100, 0:100]
# print(np.shape(g_data))
r_data = fits.open(r_img_path)[0].data[0:100, 0:100]
i_data = fits.open(i_img_path)[0].data[0:100, 0:100]
img_data = np.array([g_data, r_data, i_data]).reshape(input_shape[0], input_shape[1], input_shape[2])
des_tiles.update({folder: img_data})
index += 1
if index >= num_of_images:
break
return des_tiles
def makeImageSet(positive_images, negative_images=None, tile_names=None, shuffle_needed=use_shuffle):
"""
This is used to create data set of images and labels, in which the positive and negative images are all
combined and shuffled.
Args:
positive_images(numpy array): This is the numpy array of the positively simulated images.
negative_images(numpy array): This is the numpy array of the negative images, this is set to a
default of None.
tile_names(list): This is the dictionary of the unseen known lenses, this is set to a
default of None.
shuffle_needed(boolean): This is a boolean value to determine whether or not shuffling of the given data
sets is required.
Returns:
image_set(numpy array): This is the image data set of numpy array of the combination positive
and negative images.
label_set(numpy array): This is the label data set of numpy array of the combination positive
and negative label.
des_names_set(numpy array): This is the des name data set of the known lenses and negative images used.
"""
image_set = []
label_set = []
tile_name_set = []
if positive_images is not None:
for index in range(0, len(positive_images)):
image_set.append(positive_images[index])
label_set.append(1)
if tile_names is not None:
tile_name_set.append(tile_names[index])
if negative_images is not None:
for index in range(0, len(negative_images)):
image_set.append(negative_images[index])
label_set.append(0)
if tile_names is not None:
tile_name_set.append(tile_names[index])
# print("Label Set: " + str(label_set))
if shuffle_needed:
if tile_names is not None:
image_set, label_set, tile_name_set = shuffle(image_set, label_set, tile_name_set)
else:
image_set, label_set = shuffle(image_set, label_set)
# print("Shuffled Label Set: " + str(label_set))
return np.array(image_set), np.array(label_set), np.array(tile_name_set)
def buildClassifier(input_shape=(100, 100, 3)):
"""
This creates the CNN algorithm.
Args:
input_shape(tuple): This is the image shape of (100,100,3)
Returns:
classifier(sequential): This is the sequential model.
"""
# Initialising the CNN
opt = Adam(lr=learning_rate) # lr = learning rate
# classifier = Sequential()
# classifier.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape, padding='same'))
# classifier.add(MaxPooling2D(pool_size=(4, 4), padding='same'))
# classifier.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
# classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
# classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
# classifier.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
# classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
# classifier.add(Dropout(0.2)) # antes era 0.25
# classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
# classifier.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
# classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
# classifier.add(Dropout(0.2))# antes era 0.25
# classifier.add(Flatten())
# # classifier.add(Dense(units=512, activation='relu'))
# classifier.add(Dropout(0.2))
# classifier.add(Dense(units=1, activation='sigmoid'))
# classifier.summary()
#
# # Compiling the CNN
# classifier.compile(optimizer=opt,loss = 'binary_crossentropy',metrics = ['accuracy'])
# classifier.add(Conv2D(96, kernel_size=(2, 2), activation='relu', input_shape=input_shape)) # padding='same'
# classifier.add(MaxPooling2D(pool_size=(2, 2))) # padding='same'
# classifier.add(Dropout(0.2))
# classifier.add(Conv2D(128, (2, 2), activation='relu')) # padding='same'
# classifier.add(MaxPooling2D(pool_size=(2, 2))) # padding='same'
# classifier.add(Dropout(0.2))
# classifier.add(Conv2D(256, (2, 2), activation='relu')) # padding='same'
# classifier.add(MaxPooling2D(pool_size=(2, 2)))
# classifier.add(Dropout(0.2))
# classifier.add(Conv2D(256, (2, 2), activation='relu')) # padding='same'
# classifier.add(Dropout(0.2))
# classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same')) # padding='same'
# classifier.add(Dropout(0.2))
# classifier.add(Flatten())
# classifier.add(Dense(units=2048, activation='relu')) # added new dense layer
# classifier.add(Dense(units=1024, activation='relu')) # added new dense layer
# classifier.add(Dropout(0.2))
# classifier.add(Dense(units=1024, activation='relu')) # added new dense layer
# classifier.add(Dropout(0.2))
# classifier.add(Dense(units=1, activation='sigmoid'))
# classifier.summary()
#
# # Compiling the CNN
# classifier.compile(optimizer=opt,
# loss='binary_crossentropy',
# metrics=['accuracy'])
classifier = Sequential()
classifier.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape, padding='same'))
classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
classifier.add(Dropout(0.5)) # added extra Dropout layer
classifier.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
classifier.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
classifier.add(Dropout(0.5)) # added extra dropout layer
classifier.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
classifier.add(Dropout(0.2)) # antes era 0.25
# Adding a third convolutional layer
classifier.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
classifier.add(MaxPooling2D(2,2))
classifier.add(Conv2D(1024, (3, 3), activation='relu', padding='same'))
classifier.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
classifier.add(Dropout(0.2)) # antes era 0.25
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dropout(0.2))
classifier.add(Dense(units=1, activation='sigmoid'))
classifier.summary()
# Compiling the CNN
classifier.compile(optimizer=opt,
loss='binary_crossentropy',
metrics=['accuracy'])
plot_model(classifier, to_file='model_plot.png', show_shapes=True, show_layer_names=True)
return classifier
def visualiseActivations(img_tensor, base_dir):
"""
This makes images of the activations, as the selected image passed through the model
Args:
img_tensor(numpy array): This is the numpy array of the selected image
base_dir(string): This is the file path name
Saves:
This saves the activation images of the selected source.
"""
global predicted_class, size
# Run prediction on that image
predicted_class = classifier.predict_classes(img_tensor, batch_size=10)
print("Predicted class is: ", predicted_class)
# Visualize activations
layer_outputs = [layer.output for layer in classifier.layers[:12]]
activation_model = Model(inputs=classifier.input, outputs=layer_outputs)
activations = activation_model.predict(img_tensor)
layer_names = []
for layer in classifier.layers[:12]:
layer_names.append(layer.name)
images_per_row = 3
count = 0
for layer_name, layer_activation in zip(layer_names, activations):
number_of_features = layer_activation.shape[-1]
size = layer_activation.shape[1]
number_of_columns = number_of_features // images_per_row
display_grid = np.zeros((size * number_of_columns, images_per_row * size))
for col in range(number_of_columns):
for row in range(images_per_row):
channel_image = layer_activation[0, :, :, col * images_per_row + row]
channel_image -= channel_image.mean()
channel_image /= channel_image.std()
channel_image *= 64
channel_image += 128
channel_image = np.clip(channel_image, 0, 255).astype('uint8')
display_grid[col * size: (col + 1) * size, row * size: (row + 1) * size] = channel_image
scale = 1. / size
activations_figure = plt.figure(figsize=(scale * display_grid.shape[1],
scale * display_grid.shape[0]))
plt.title(layer_name)
plt.grid(False)
plt.imshow(display_grid, aspect='auto', cmap='viridis')
activations_figure.savefig('%s/%s_Activation_%s.png' % (base_dir, count, layer_name))
plt.close()
count += 1
def usingCnnModel(training_data, training_labels, val_data, val_labels):
"""
This is using the CNN model and setting it up.
Args:
training_data(numpy arrays): This is the numpy array of the training data.
training_labels(numpy arrays): This is the numpy array of the training labels.
val_data(numpy arrays): This is the numpy array of the validation data.
val_labels(numpy arrays): This is the numpy array of the validation labels.
Returns:
history(history): This is the history of the classifier.
classifier(sequential): This is the cnn model classifier fitted to the training data and labels.
"""
model_checkpoint = ModelCheckpoint(filepath="best_weights.hdf5",
monitor=monitor_model_checkpoint,
save_best_only=True)
early_stopping = EarlyStopping(monitor=monitor_early_stopping, patience=patience_num) # original patience =3
classifier = buildClassifier()
callbacks_array = []
if use_early_stopping:
callbacks_array.append(early_stopping)
if use_model_checkpoint:
callbacks_array.append(model_checkpoint)
print(len(training_data))
history = classifier.fit(training_data,
training_labels,
epochs=epochs,
validation_data=(val_data, val_labels),
callbacks=callbacks_array,
batch_size=batch_size
# steps_per_epoch=int(len(training_data) / batch_size),
)
return history, classifier
def createAugmentedData(training_data, training_labels):
"""
This is creates the augmented data.
Args:
training_data(numpy arrays): This is the numpy array of the training data.
training_labels(numpy arrays): This is the numpy array of the training labels.
Returns:
complete_training_data_set(numpy array): This is the numpy array of the total training data, which is has
undergone augmentation.
complete_training_labels_set(numpy array): This is the numpy array of the total training labels, which is has
undergone augmentation.
"""
complete_training_data_set = []
complete_training_labels_set = []
for data in training_data:
complete_training_data_set.append(data)
print("Complete Training Data: " + str(len(complete_training_data_set)))
for label in training_labels:
complete_training_labels_set.append(label)
print("Complete Training Label: " + str(len(complete_training_labels_set)))
# create augmented data
data_augmented = ImageDataGenerator(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
vertical_flip=True)
# data_augmented = ImageDataGenerator(featurewise_center=False,
# featurewise_std_normalization=False,
# rotation_range=90,
# horizontal_flip=True,
# vertical_flip=True)
data_augmented.fit(training_data)
training_data_size = training_data.shape[0]
aug_counter = 0
while aug_counter < (augmented_multiple - 1):
iterator = data_augmented.flow(training_data, training_labels, batch_size=training_data_size)
# iterator = data_augmented.flow(training_data, training_labels, batch_size=batch_size)
augmented_data = iterator.next()
for data in augmented_data[0]:
complete_training_data_set.append(data)
for label in augmented_data[1]:
complete_training_labels_set.append(label)
aug_counter += 1
print("Size of All Training Data: " + str(len(complete_training_data_set)))
print("Size of All Training Labels: " + str(len(complete_training_labels_set)))
array_training_data = np.array(complete_training_data_set)
array_training_labels = np.array(complete_training_labels_set)
print("Shape of complete training data: " + str(array_training_data.shape))
print("Shape of complete training labels: " + str(array_training_labels.shape))
return np.array(complete_training_data_set), np.array(complete_training_labels_set)
def savePredictedLenses(des_names_array, predicted_class_probabilities, predicted_lenses_filepath, text_file_path):
"""
This saves the names of the predicted lenses in the respective textfiles.
Args:
des_names_array(numpy array): This is a list of the des names of the sources.
predicted_class_probabilities(list): This is a list of the probabilities in which lenses are predicted by
the algorithm.
predicted_lenses_filepath(string): This is the string of the predicted lenses filepath, where this needs
to be saved in the directory.
text_file_path(string): This is the text file path address to which these images are saved.
Saves:
text_file(.txt file): This is the text file saved containing the predicted lenses DES names.
"""
predicted_lenses = []
predicted_no_lenses = []
if not os.path.exists(predicted_lenses_filepath):
os.mkdir('%s/' % predicted_lenses_filepath)
text_file = open('%s' % text_file_path, "a+")
text_file.write('\n')
text_file.write('Predicted Lenses: \n')
for lens_index in range(len(predicted_class_probabilities)):
if predicted_class_probabilities[lens_index] == 1:
text_file.write("%s \n " % des_names_array[lens_index])
predicted_lenses.append(des_names_array[lens_index])
text_file.write('\n')
text_file.write('No Lenses Predicted: \n')
for lens_index in range(len(predicted_class_probabilities)):
if predicted_class_probabilities[lens_index] == 0:
text_file.write("%s \n " % des_names_array[lens_index])
predicted_no_lenses.append(des_names_array[lens_index])
text_file.close()
return predicted_lenses, predicted_no_lenses
def gettingTrueFalsePositiveNegatives(testing_data, testing_labels, text_file_path,
predicted_lenses_filepath, kf_counter=0):
"""
This is used to get the True/False Positive and Negative values gained from the CNN confusion matrix.
Args:
testing_data(numpy array): This is the unseen testing data numpy array.
testing_labels(numpy array): This is the unseen testing label numpy array.
text_file_path(string): This is the file path name of the text file in which the confusion
matrix is saved.
predicted_lenses_filepath(string): This is the file path in which the text file is saved.
Saves:
This saves a confusion matrix of the True/False Positive and Negative values.
"""
if not os.path.exists(predicted_lenses_filepath):
os.mkdir('%s/' % predicted_lenses_filepath)
predicted_data = classifier.predict_classes(testing_data)
rounded_predicted_data = predicted_data.round()
conf_matrix = confusion_matrix(testing_labels, rounded_predicted_data, labels=[0, 1])
print(str(conf_matrix) + ' \n ')
true_negative, false_positive, false_negative, true_positive = conf_matrix.ravel()
print("True Positive: %s \n" % true_positive)
print("False Negative: %s \n" % false_negative)
print("False Positive: %s \n" % false_positive)
print("True Negative: %s \n" % true_negative)
text_file = open('%s' % text_file_path, "a+")
text_file.write('\n')
text_file.write('KFold Number: %s \n' % str(kf_counter))
text_file.write('Predicted vs True Matrix: \n')
text_file.write(str(conf_matrix) + " \n ")
text_file.write("True Negative: %s \n" % str(true_negative))
text_file.write("False Positive: %s \n" % str(false_positive))
text_file.write("False Negative: %s \n" % str(false_negative))
text_file.write("True Positive: %s \n" % str(true_positive))
text_file.write("\n")
text_file.close()
confusion_matrix_array = [true_negative, false_positive, false_negative, true_positive]
return confusion_matrix_array
def gettingKFoldConfusionMatrix(test_data, test_labels, unseen_images, unseen_labels, select_known_images,
select_known_labels, kf_counter):
test_confusion_matrix = gettingTrueFalsePositiveNegatives(test_data,
test_labels,
text_file_path='../Results/%s/TrainingTestingResults'
'/KFold_PredictedMatrix.txt' % dt_string,
predicted_lenses_filepath='../Results/%s'
'/TrainingTestingResults '
% dt_string,
kf_counter=kf_counter)
unseen_confusion_matrix = gettingTrueFalsePositiveNegatives(unseen_images,
unseen_labels,
text_file_path='../Results/%s/UnseenKnownLenses/'
'KFold_LensesPredicted.txt' % dt_string,
predicted_lenses_filepath='../Results/%s'
'/UnseenKnownLenses/ '
% dt_string,
kf_counter=kf_counter)
select_confusion_matrix = gettingTrueFalsePositiveNegatives(select_known_images,
select_known_labels,
text_file_path='../Results/%s/UnseenKnownLensesSelect/'
'KFold_LensesPredicted.txt' % dt_string,
predicted_lenses_filepath='../Results/%s'
'/UnseenKnownLensesSelect/ '
% dt_string,
kf_counter=kf_counter)
return test_confusion_matrix, unseen_confusion_matrix, select_confusion_matrix
def gettingRandomUnseenImage(filepath):
g_img_path = get_pkg_data_filename('%s/g_norm.fits' % filepath)
r_img_path = get_pkg_data_filename('%s/r_norm.fits' % filepath)
i_img_path = get_pkg_data_filename('%s/i_norm.fits' % filepath)
g_data = fits.open(g_img_path)[0].data[0:100, 0:100]
r_data = fits.open(r_img_path)[0].data[0:100, 0:100]
i_data = fits.open(i_img_path)[0].data[0:100, 0:100]
img_data = np.array([g_data, r_data, i_data]).reshape(input_shape[0], input_shape[1], input_shape[2])
return img_data
def executeKFoldValidation(train_data, train_labels, val_data, val_labels, testing_data, testing_labels,
known_images, known_labels, known_des_names,
select_known_images, select_known_labels):
"""
This does the k fold cross validation which is tested against the unseen testing and known lenses.
Args:
train_data(numpy arrays): This is the numpy array of the training data.
train_labels(numpy arrays): This is the numpy array of the training labels.
val_data(numpy arrays): This is the numpy array of the validation data.
val_labels(numpy arrays): This is the numpy array of the validation labels.
testing_data(numpy array): This is the numpy array of the unseen testing data.
testing_labels(numpy array): This is the numpy array of the unseen testing label.
images_47(numpy array): This is the numpy array of the unseen DES images data.
labels_47(numpy array): This is the numpy array of the unseen DES images labels.
images_84(numpy array): This is the numpy array of the unseen Jacobs images data.
labels_84(numpy array): This is the numpy array of the unseen Jacobs images labels.
all_unseen_images(numpy array): This is the numpy array of the unseen DES + Jacobs images data.
all_unseen_labels(numpy array): This is the numpy array of the unseen DES + Jacobs images labels.
Saves:
This saves the scores, mean and std. of the unseen data that is evaluated in the k fold cross validation.
"""
if run_k_fold_validation:
print("In executingKFoldValidation")
# this is doing it manually:
kfold = StratifiedKFold(n_splits=k_fold_num, shuffle=True)
test_scores_list = []
test_loss_list = []
unseen_scores_list = []
unseen_loss_list = []
select_unseen_scores_list = []
select_unseen_loss_list = []
test_matrix_list = []
unseen_matrix_list = []
select_matrix_list = []
kf_counter = 0
true_positives = {}
false_negatives = {}
for train, test in kfold.split(train_data, train_labels):
kf_counter += 1
print('KFold #:', kf_counter)
model = buildClassifier()
# fit the model
model.fit(train_data[train],
train_labels[train],
epochs=epochs,
validation_data=(val_data, val_labels),
batch_size=batch_size)
test_scores = model.evaluate(testing_data, testing_labels, batch_size=batch_size)
test_scores_list.append(test_scores[1])
test_loss_list.append(test_scores[0])
print("Test Score: " + str(test_scores_list))
print("Test Loss: " + str(test_loss_list))
unseen_scores = model.evaluate(known_images, known_labels, batch_size=batch_size)
unseen_scores_list.append(unseen_scores[1])
unseen_loss_list.append(unseen_scores[0])
print("Unseen Score: " + str(unseen_scores_list))
print("Unseen Loss: " + str(unseen_loss_list))
select_scores = model.evaluate(select_known_images, select_known_labels, batch_size=batch_size)
select_unseen_scores_list.append(select_scores[1])
select_unseen_loss_list.append(select_scores[0])
# show confusion matrix
test_confusion_matrix, unseen_confusion_matrix, select_confusion_matrix = gettingKFoldConfusionMatrix(
testing_data,
testing_labels, known_images,
known_labels, select_known_images, select_known_labels, kf_counter)
probabilities_known_lenses = classifier.predict_classes(known_images, batch_size=batch_size)
predicted_lens = np.count_nonzero(probabilities_known_lenses == 1)
predicted_no_lens = np.count_nonzero(probabilities_known_lenses == 0)
print("%s/%s known lenses predicted" % (predicted_lens, len(known_images)))
print("%s/%s non known lenses predicted" % (predicted_no_lens, len(known_images)))
predicted_lenses, predicted_no_lenses = savePredictedLenses(known_des_names,
predicted_class_probabilities_known_lenses,
text_file_path='../Results/%s'
'/UnseenKnownLenses/'
'KFold_LensesPredicted.txt'
% dt_string,
predicted_lenses_filepath='../Results/%s/'
'UnseenKnownLenses'
% dt_string)
randomTP = None
imageTP = None
if predicted_lenses:
randomTP = random.choice(predicted_lenses)
filepathTP = unseen_known_file_path_all + '/%s' % randomTP
imageTP = gettingRandomUnseenImage(filepathTP)
true_positives[kf_counter] = (randomTP, imageTP)
randomFN = None
imageFN = None
if predicted_no_lenses:
randomFN = random.choice(predicted_no_lenses)
filepathFN = unseen_known_file_path_all + '/%s' % randomFN
imageFN = gettingRandomUnseenImage(filepathFN)
false_negatives[kf_counter] = (randomFN, imageFN)
# print("Lenses Predicted: " + str(randomTP))
# print("Lenses Not Predicted: " + str(randomFN))
test_matrix_list.append(test_confusion_matrix)
unseen_matrix_list.append(unseen_confusion_matrix)
select_matrix_list.append(select_confusion_matrix)
test_scores_mean = np.mean(test_scores_list)
test_loss_mean = np.mean(test_loss_list)
test_scores_std = np.std(test_scores_list)
unseen_scores_mean = np.mean(unseen_scores_list)
unseen_loss_mean = np.mean(unseen_loss_list)
unseen_scores_std = np.std(unseen_scores_list)
select_scores_mean = np.mean(select_unseen_scores_list)
select_loss_mean = np.mean(select_unseen_loss_list)
select_scores_std = np.std(select_unseen_scores_list)
print("Test Confusion Matrices: " + str(test_matrix_list))
print("Test Scores: " + str(test_scores_list))
print("Test Scores Mean: " + str(test_scores_mean))
print("Test Scores Std: " + str(test_scores_std))
print("Test Loss: " + str(test_loss_list))
print("Test Loss Mean: " + str(test_loss_mean))
print("Unseen Confusion Matrices: " + str(unseen_matrix_list))
print("Unseen Scores: " + str(unseen_scores_list))
print("Unseen Scores Mean: " + str(unseen_scores_mean))
print("Unseen Scores Std: " + str(unseen_scores_std))
print("Unseen Loss: " + str(unseen_loss_list))
print("Unseen Loss Mean: " + str(unseen_loss_mean))
print("Select Confusion Matrices: " + str(select_matrix_list))
print("Select Score: " + str(select_unseen_scores_list))
print("Select Scores Mean: " + str(select_scores_mean))
print("Select Unseen Scores Std: " + str(select_scores_std))
print("Select Loss: " + str(select_unseen_loss_list))
print("Unseen Loss Mean: " + str(select_loss_mean))
excel_headers.append("Test Loss Mean")
excel_dictionary.append(test_loss_mean)
excel_headers.append("Test Scores Mean")
excel_dictionary.append(test_scores_mean)
excel_headers.append("Test Scores Std")
excel_dictionary.append(test_scores_std)
excel_headers.append("Unseen Loss Mean")
excel_dictionary.append(unseen_loss_mean)
excel_headers.append("Unseen Known Lenses Mean")
excel_dictionary.append(unseen_scores_mean)
excel_headers.append("Unseen Known Lenses Std")
excel_dictionary.append(unseen_scores_std)
excel_headers.append("Select Loss Mean")
excel_dictionary.append(select_loss_mean)
excel_headers.append("Select Scores Mean")
excel_dictionary.append(select_scores_mean)
excel_headers.append("Select Std")
excel_dictionary.append(select_scores_std)
plt.plot(test_scores_list, color='red', label='Testing Scores')
plt.plot(unseen_scores_list, color='blue', label='Unseen Known Lenses Scores')
plt.plot(select_unseen_scores_list, color='green', label="Selected Unseen Known Lenses Scores")
plt.xlabel('Folds')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
plt.savefig('../Results/%s/KFoldAccuracyScores.png' % dt_string)
plotKFold(true_positives, false_negatives)
def viewActivationLayers():
# make positive and negative directory
if not os.path.exists('../Results/%s/PositiveResults/' % dt_string):
os.mkdir('../Results/%s/PositiveResults/' % dt_string)
if not os.path.exists('../Results/%s/NegativeResults/' % dt_string):
os.mkdir('../Results/%s/NegativeResults/' % dt_string)
# Plot original positive image
img_positive_tensor = getPositiveImages('Training/PositiveAll', 1, input_shape=input_shape)
positive_train_figure = plt.figure()
plt.imshow(img_positive_tensor[0])
# plt.show()
print(img_positive_tensor.shape)
positive_train_figure.savefig('../Results/%s/PositiveResults/PositiveTrainingFigure.png' % dt_string)
plt.close()
# Visualise Activations of positive image
visualiseActivations(img_positive_tensor, base_dir='../Results/%s/PositiveResults/' % dt_string)
# Plot original negative image
img_negative_tensor = getNegativeImages('Training/Negative', 1, input_shape=input_shape)
negative_train_figure = plt.figure()
plt.imshow(img_negative_tensor[0])
# plt.show()
print(img_negative_tensor.shape)
negative_train_figure.savefig('../Results/%s/NegativeResults/NegativeTrainingFigure.png' % dt_string)
plt.close()
# Visualise Activations of negative image
visualiseActivations(img_negative_tensor, base_dir='../Results/%s/NegativeResults/' % dt_string)
def plotKFold(true_positives, false_negatives):
# print('True Positives: ' + str(true_positives))
# print('False Negatives: ' + str(false_negatives))
fig, axs = plt.subplots(k_fold_num, 2)
fig.tight_layout(pad=3.0)
cols = ['True Positive', 'False Negative']
for ax, col in zip(axs[0], cols):
ax.set_title(col)
# for ax, col in zip(axs[0], cols):
# for i in range(len(cols)):
# # axs[0, i].text(x=0.5, y=12, s="", ha="center", fontsize=12)
# # axs[k_fold_num - 1, i].set_xlabel(cols[i])
# axs[0, i].set_title(cols[i])
# # ax.set_title(col)
for i in range(0, k_fold_num):
axs[i, 0].text(x=-0.8, y=5, s="", rotation=90, va="center")
axs[i, 0].set_ylabel("k = %s" % (i + 1))
true_positive_tuple = true_positives[k_fold_num]
if not true_positive_tuple[0] is None:
axs[i, 0].set_xlabel(true_positive_tuple[0], fontsize=8)
# axs[i, 0].set_title(true_positive_tuple[0], fontsize=6)
axs[i, 0].imshow(true_positive_tuple[1])
axs[i, 0].set_xticks([], [])
axs[i, 0].set_yticks([], [])
false_negative_tuple = false_negatives[k_fold_num]
if not false_negative_tuple[0] is None:
axs[i, 1].set_xlabel(false_negative_tuple[0], fontsize=8)
# axs[i, 1].set_title(false_negative_tuple[0], fontsize=6)
axs[i, 1].imshow(false_negative_tuple[1])
axs[i, 1].set_xticks([], [])
axs[i, 1].set_yticks([], [])
fig.tight_layout()
plt.show()
fig.savefig('../Results/%s/UnseenKnownLenses/KFoldImages.png' % dt_string)
# __________________________________________________________________________
# MAIN
# Get positive training data
train_pos = getPositiveImages(images_dir=training_positive_path, max_num=max_num, input_shape=input_shape)
print("Train Positive Shape: " + str(train_pos.shape))
excel_headers.append("Train_Positive_Shape")
excel_dictionary.append(train_pos.shape)
# Get negative training data
train_neg = getNegativeImages(images_dir=training_negative_path, max_num=max_num, input_shape=input_shape)
print("Train Negative Shape: " + str(train_neg.shape))
excel_headers.append("Train_Negative_Shape")
excel_dictionary.append(train_neg.shape)
all_training_data, all_training_labels, _ = makeImageSet(train_pos, train_neg, shuffle_needed=use_shuffle)
if use_augmented_data:
all_training_data, all_training_labels = createAugmentedData(all_training_data, all_training_labels)
training_data, val_data, training_labels, val_labels = train_test_split(all_training_data,
all_training_labels,
test_size=validation_split,
shuffle=True)
excel_headers.append("All_Training_Data_Shape")
excel_dictionary.append(all_training_labels.shape)
excel_headers.append("All_Training_Labels_Shape")
excel_dictionary.append(all_training_labels.shape)
excel_headers.append("Training_Data_Shape")
excel_dictionary.append(training_data.shape)
excel_headers.append("Validation_Data_Shape")
excel_dictionary.append(val_data.shape)
excel_headers.append("Training_Labels_Shape")
excel_dictionary.append(training_labels.shape)
excel_headers.append("Validation_Labels_Shape")
excel_dictionary.append(val_labels.shape)
excel_headers.append("Validation_Split")
excel_dictionary.append(validation_split)
history, classifier = usingCnnModel(training_data,
training_labels,
val_data,
val_labels)
#classifier.load_weights('best_weights.hdf5')
#classifier.save_weights('galaxies_cnn.h5')
excel_headers.append("Epochs")
excel_dictionary.append(epochs)
excel_headers.append("Batch_size")
excel_dictionary.append(batch_size)
# Plot run metrics
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
number_of_completed_epochs = range(1, len(acc) + 1)
# Accuracies
train_val_accuracy_figure = plt.figure()
plt.plot(number_of_completed_epochs, acc, label='Training acc')
plt.plot(number_of_completed_epochs, val_acc, label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.show()
train_val_accuracy_figure.savefig('../Results/%s/TrainingValidationAccuracy.png' % dt_string)
plt.close()
# Losses
train_val_loss_figure = plt.figure()
plt.plot(number_of_completed_epochs, loss, label='Training loss')
plt.plot(number_of_completed_epochs, val_loss, label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.show()
train_val_loss_figure.savefig('../Results/%s/TrainingValidationLoss.png' % dt_string)
plt.close()
# make positive and negative results and plotting the activations of positive and negative images
viewActivationLayers()
# Classifier evaluation
test_pos = getPositiveImages(images_dir=testing_positive_path, max_num=max_num_testing, input_shape=input_shape)
test_neg = getNegativeImages(images_dir=testing_negative_path, max_num=max_num_testing, input_shape=input_shape)
testing_data, testing_labels, _ = makeImageSet(test_pos, test_neg, shuffle_needed=True)
print("Testing Data Shape: " + str(testing_data.shape))
print("Testing Labels Shape: " + str(testing_labels.shape))
print("Got Unseen Testing data")
scores = classifier.evaluate(testing_data, testing_labels, batch_size=batch_size)
loss = scores[0]
accuracy = scores[1]
print("Test loss: %s" % loss)
print("Test accuracy: %s" % accuracy)
excel_headers.append("Test_Loss")
excel_dictionary.append(loss)
excel_headers.append("Test_Accuracy")
excel_dictionary.append(accuracy)
gettingTrueFalsePositiveNegatives(testing_data,
testing_labels,
text_file_path='../Results/%s/TrainingTestingResults/PredictedMatrixBeforeKFOLD.txt'
% dt_string,
predicted_lenses_filepath='../Results/%s/TrainingTestingResults' % dt_string)
unseen_known_images = getUnseenData(images_dir=unseen_known_file_path_all,
max_num=max_num_prediction,
input_shape=input_shape)
known_images, known_labels, known_des_names = makeImageSet(positive_images=list(unseen_known_images.values()),
tile_names=list(unseen_known_images.keys()),
shuffle_needed=True)
print("Unseen Known Images Shape: " + str(known_images.shape))
print("Unseen Known Labels Shape: " + str(known_labels.shape))
print("Got Unseen Known Lenses Data")
unseen_scores = classifier.evaluate(known_images, known_labels, batch_size=batch_size)
unseen_loss_score = unseen_scores[0]
unseen_accuracy_score = unseen_scores[1]
print("Unseen loss: %s" % unseen_loss_score)
print("Unseen accuracy: %s" % unseen_accuracy_score)
excel_headers.append("Unseen_Loss")
excel_dictionary.append(unseen_loss_score)
excel_headers.append("Unseen_Accuracy")
excel_dictionary.append(unseen_accuracy_score)
predicted_class_probabilities_known_lenses = classifier.predict_classes(known_images, batch_size=batch_size)
lens_predicted = np.count_nonzero(predicted_class_probabilities_known_lenses == 1)
non_lens_predicted = np.count_nonzero(predicted_class_probabilities_known_lenses == 0)
print("%s/%s known lenses predicted" % (lens_predicted, len(known_images)))
print("%s/%s non known lenses predicted" % (non_lens_predicted, len(known_images)))
gettingTrueFalsePositiveNegatives(known_images, known_labels,
text_file_path='../Results/%s/UnseenKnownLenses/PredictedMatrixBeforeKFOLD.txt' % dt_string,
predicted_lenses_filepath='../Results/%s/UnseenKnownLenses' % dt_string)
predicted_lenses, predicted_no_lenses = savePredictedLenses(known_des_names,
predicted_class_probabilities_known_lenses,
text_file_path='../Results/%s/UnseenKnownLenses/'
'PredictedMatrixBeforeKFOLD.txt' % dt_string,
predicted_lenses_filepath='../Results/%s/UnseenKnownLenses'
% dt_string)
######################################################################################
unseen_known_images_select = getUnseenData(images_dir=unseen_known_file_path_select,
max_num=max_num_prediction,
input_shape=input_shape)
select_known_images, select_known_labels, select_known_des_names = makeImageSet(
positive_images=list(unseen_known_images_select.values()),
tile_names=list(unseen_known_images_select.keys()),
shuffle_needed=True)
print("Unseen Selected Known Images Shape: " + str(select_known_images.shape))
print("Unseen Selected Known Labels Shape: " + str(select_known_labels.shape))
print("Got Unseen Selected Known Lenses Data")
select_unseen_scores = classifier.evaluate(select_known_images, select_known_labels, batch_size=batch_size)
select_unseen_loss_score = select_unseen_scores[0]
select_unseen_accuracy_score = select_unseen_scores[1]
print("Unseen Selected loss: %s" % select_unseen_loss_score)
print("Unseen Selected accuracy: %s" % select_unseen_accuracy_score)
excel_headers.append("Selected Unseen_Loss")
excel_dictionary.append(select_unseen_loss_score)
excel_headers.append("Select Unseen_Accuracy")
excel_dictionary.append(select_unseen_accuracy_score)
select_predicted_class_probabilities_known_lenses = classifier.predict_classes(select_known_images,
batch_size=batch_size)
select_lens_predicted = np.count_nonzero(select_predicted_class_probabilities_known_lenses == 1)
select_non_lens_predicted = np.count_nonzero(select_predicted_class_probabilities_known_lenses == 0)
print("%s/%s known lenses predicted" % (select_lens_predicted, len(select_known_images)))
print("%s/%s non known lenses predicted" % (select_non_lens_predicted, len(select_known_images)))
gettingTrueFalsePositiveNegatives(select_known_images, select_known_labels,
text_file_path='../Results/%s/UnseenKnownLensesSelect/PredictedMatrixBeforeKFOLD.txt' % dt_string,
predicted_lenses_filepath='../Results/%s/UnseenKnownLensesSelect' % dt_string)
select_predicted_lenses, select_predicted_no_lenses = savePredictedLenses(select_known_des_names,
select_predicted_class_probabilities_known_lenses,
text_file_path='../Results/%s'
'/UnseenKnownLensesSelect/ '
'PredictedMatrixBeforeKFOLD'
'.txt' % dt_string,
predicted_lenses_filepath='../Results/%s'
'/UnseenKnownLensesSelect'
% dt_string)
excel_headers.append("Selected Unseen_Known_Lenses_Predicted")
excel_dictionary.append(select_lens_predicted)
excel_headers.append("Selected Unseen_Known_Lenses_No_Lens_Predicted")
excel_dictionary.append(select_non_lens_predicted)
# K fold for training data
executeKFoldValidation(training_data,
training_labels,
val_data,
val_labels,
testing_data,
testing_labels,
known_images,
known_labels,
known_des_names,
select_known_images, select_known_labels)
if makeNewCSVFile:
createExcelSheet('../Results/Architecture_kerasCNN_Results.csv', excel_headers)
writeToFile('../Results/Architecture_kerasCNN_Results.csv', excel_dictionary)
else:
writeToFile('../Results/Architecture_kerasCNN_Results.csv', excel_dictionary)
|
[
"annarien.bester@gmail.com"
] |
annarien.bester@gmail.com
|
77cf3b81b38c32c26216a33749bc6f9e06bdd2f2
|
4f696b0712f530f0d8e7d968ee52ed4dda97a2c6
|
/admix/data/_geno.py
|
a9c94134a7a46b25037b8f1cab3bb634c3dd4e7f
|
[] |
no_license
|
KangchengHou/admix-kit
|
5d0e1f4225f6339f10bece6fded7c156794bccbe
|
136e8999d94440d604a2dcfb7b7d1a340a5f6e67
|
refs/heads/main
| 2023-09-01T08:58:05.219692
| 2023-08-24T17:33:58
| 2023-08-24T17:33:58
| 335,100,490
| 7
| 1
| null | 2022-08-20T23:01:26
| 2021-02-01T22:23:02
|
Python
|
UTF-8
|
Python
| false
| false
| 22,616
|
py
|
import numpy as np
import pandas as pd
from tqdm import tqdm
import dask.array as da
import admix
import dask
from typing import Union, Tuple, List
import dapgen
def calc_snp_prior_var(df_snp_info, her_model):
"""
Calculate the SNP prior variance from SNP information
"""
assert her_model in ["uniform", "gcta", "ldak", "mafukb"]
if her_model == "uniform":
return np.ones(len(df_snp_info))
elif her_model == "gcta":
freq = df_snp_info["FREQ"].values
assert np.all(freq > 0), "frequencies should be larger than zero"
return np.float_power(freq * (1 - freq), -1)
elif her_model == "mafukb":
# MAF-dependent genetic architecture, \alpha = -0.38 estimated from meta-analysis in UKB traits
freq = df_snp_info["FREQ"].values
assert np.all(freq > 0), "frequencies should be larger than zero"
return np.float_power(freq * (1 - freq), -0.38)
elif her_model == "ldak":
freq, weight = df_snp_info["FREQ"].values, df_snp_info["LDAK_WEIGHT"].values
return np.float_power(freq * (1 - freq), -0.25) * weight
else:
raise NotImplementedError
def impute_with_mean(mat, inplace=False, axis=1):
"""impute the each entry using the mean of the input matrix np.mean(mat, axis=axis)
axis = 1 corresponds to row-wise imputation
axis = 0 corresponds to column-wise imputation
Parameters
----------
mat : np.ndarray
input matrix. For reminder, the genotype matrix is with shape (n_snp, n_indiv)
inplace : bool
whether to return a new dataset or modify the input dataset
axis : int
axis to impute along
Returns
-------
if inplace:
mat : np.ndarray
(n_snp, n_indiv) matrix
else:
None
"""
assert axis in [0, 1], "axis should be 0 or 1"
if not inplace:
mat = mat.copy()
# impute the missing genotypes with the mean of each row
mean = np.nanmean(mat, axis=axis)
nanidx = np.where(np.isnan(mat))
# index the mean using the nanidx[1 - axis]
# axis = 1, row-wise imputation, index the mean using the nanidx[0]
# axis = 0, columnw-ise imputation, index the mean using the nanidx[1]
mat[nanidx] = mean[nanidx[1 - axis]]
if not inplace:
return mat
else:
return None
def geno_mult_mat(
geno: da.Array,
mat: np.ndarray,
impute_geno: bool = True,
mat_dim: str = "snp",
return_snp_var: bool = False,
) -> np.ndarray:
"""Multiply genotype matrix with another matrix
Chunk of genotype matrix will be read sequentially along the SNP dimension,
and multiplied with the `mat`.
Without transpose, result will be (n_snp, n_rep)
With transpose, result will be (n_indiv, n_rep)
Missing values in geno will be imputed with the mean of the genotype matrix.
Parameters
----------
geno : da.Array
Genotype matrix with shape (n_snp, n_indiv)
geno.chunk contains the chunk of genotype matrix to be multiplied
mat : np.ndarray
Matrix to be multiplied with the genotype matrix. If the passed variable
is a vector, it will be transformed to be a 1-column matrix.
impute_geno : bool
Whether to impute missing values with the mean of the genotype matrix
mat_dim : str
First dimension of the `mat`, either "snp" or "indiv"
Whether to transpose the genotype matrix and calulate geno.T @ mat
return_snp_var : bool
Whether to return the variance of each SNP, useful in simple linear
regression
Returns
-------
np.ndarray
Result of the multiplication
"""
assert mat_dim in ["snp", "indiv"], "mat_dim should be `snp` or `indiv`"
if mat.ndim == 1:
mat = mat[:, np.newaxis]
# chunks over SNPs
chunks = geno.chunks[0]
indices = np.insert(np.cumsum(chunks), 0, 0)
n_snp, n_indiv = geno.shape
n_rep = mat.shape[1]
snp_var = np.zeros(n_snp)
if mat_dim == "indiv":
# geno: (n_snp, n_indiv)
# mat: (n_indiv, n_rep)
assert (
mat.shape[0] == n_indiv
), "when mat_dim is 'indiv', matrix should be of shape (n_indiv, n_rep)"
ret = np.zeros((n_snp, n_rep))
for i in tqdm(range(len(indices) - 1), desc="admix.data.geno_mult_mat"):
start, stop = indices[i], indices[i + 1]
geno_chunk = geno[start:stop, :].compute()
# impute missing genotype
if impute_geno:
impute_with_mean(geno_chunk, inplace=True)
ret[start:stop, :] = np.dot(geno_chunk, mat)
if return_snp_var:
snp_var[start:stop] = np.var(geno_chunk, axis=0)
elif mat_dim == "snp":
# geno: (n_indiv, n_snp)
# mat: (n_snp, n_rep)
assert (
mat.shape[0] == n_snp
), "when mat_dim is 'snp', matrix should be of shape (n_snp, n_rep)"
ret = np.zeros((n_indiv, n_rep))
for i in tqdm(range(len(indices) - 1), desc="admix.data.geno_mult_mat"):
start, stop = indices[i], indices[i + 1]
geno_chunk = geno[start:stop, :].compute()
# impute missing genotype
if impute_geno:
impute_with_mean(geno_chunk, inplace=True)
ret += np.dot(geno_chunk.T, mat[start:stop, :])
if return_snp_var:
snp_var[start:stop] = np.var(geno_chunk, axis=0)
else:
raise ValueError("mat_dim should be `snp` or `indiv`")
if return_snp_var:
return ret, snp_var
else:
return ret
def grm(geno: da.Array, subpopu: np.ndarray = None, std_method: str = "std"):
"""Calculate the GRM matrix
This function is to serve as an alternative of GCTA --make-grm
Parameters
----------
geno: admix.Dataset
genotype (n_snp, n_indiv) matrix
subpopu : np.ndarray
subpopulation labels, with shape (n_indiv,). The allele frequencies and
normalization are performed separately within each subpopulation.
std_method : str
Method to standardize the GRM. Currently supported:
"std" (standardize to have mean 0 and variance 1),
"allele" (standardize to have mean 0 but no scaling)
Returns
-------
np.ndarray
GRM matrix (n_indiv, n_indiv)
"""
def normalize_geno(g):
"""Normalize the genotype matrix"""
# impute missing genotypes
g = impute_with_mean(g, inplace=False, axis=1)
# normalize
if std_method == "std":
g = (g - np.mean(g, axis=1)[:, None]) / np.std(g, axis=1)[:, None]
elif std_method == "allele":
g = g - np.mean(g, axis=1)[:, None]
else:
raise ValueError("std_method should be either `std` or `allele`")
return g
assert std_method in ["std", "allele"], "std_method should be `std` or `allele`"
n_snp = geno.shape[0]
n_indiv = geno.shape[1]
if subpopu is not None:
assert (
n_indiv == subpopu.shape[0]
), "subpopu should have the same length as the number of individuals"
unique_subpopu = np.unique(subpopu)
admix.logger.info(
f"{len(unique_subpopu)} subpopulations found: {unique_subpopu}"
)
admix.logger.info(
f"Calculating GRM matrix with {n_snp} SNPs and {n_indiv} individuals"
)
mat = 0
snp_chunks = geno.chunks[0]
indices = np.insert(np.cumsum(snp_chunks), 0, 0)
for i in tqdm(range(len(indices) - 1), desc="admix.data.grm"):
start, stop = indices[i], indices[i + 1]
geno_chunk = geno[start:stop, :].compute()
if subpopu is not None:
for popu in np.unique(subpopu):
geno_chunk[:, subpopu == popu] = normalize_geno(
geno_chunk[:, subpopu == popu]
)
else:
geno_chunk = normalize_geno(geno_chunk)
mat += np.dot(geno_chunk.T, geno_chunk) / n_snp
return mat
def admix_grm(
geno: da.Array, lanc: da.Array, n_anc: int = 2, snp_prior_var: np.ndarray = None
):
"""Calculate ancestry specific GRM matrix
Parameters
----------
geno : da.Array
Genotype matrix with shape (n_snp, n_indiv, 2)
lanc : np.ndarray
Local ancestry matrix with shape (n_snp, n_indiv, 2)
n_anc : int
Number of ancestral populations
snp_prior_var : np.ndarray
Prior variance of each SNP, shape (n_snp,)
Returns
-------
G1: np.ndarray
ancestry specific GRM matrix for the 1st ancestry
G2: np.ndarray
ancestry specific GRM matrix for the 2nd ancestry
G12: np.ndarray
ancestry specific GRM matrix for cross term of the 1st and 2nd ancestry
"""
assert n_anc == 2, "only two-way admixture is implemented"
assert np.all(geno.shape == lanc.shape)
apa = admix.data.allele_per_anc(geno, lanc, n_anc=n_anc)
n_snp, n_indiv = apa.shape[0:2]
if snp_prior_var is None:
snp_prior_var = np.ones(n_snp)
snp_prior_var_sum = snp_prior_var.sum()
G1 = np.zeros([n_indiv, n_indiv])
G2 = np.zeros([n_indiv, n_indiv])
G12 = np.zeros([n_indiv, n_indiv])
snp_chunks = apa.chunks[0]
indices = np.insert(np.cumsum(snp_chunks), 0, 0)
for i in tqdm(range(len(indices) - 1), desc="admix.data.admix_grm"):
start, stop = indices[i], indices[i + 1]
apa_chunk = apa[start:stop, :, :].compute()
# multiply by the prior variance on each SNP
apa_chunk *= np.sqrt(snp_prior_var[start:stop])[:, None, None]
a1_chunk, a2_chunk = apa_chunk[:, :, 0], apa_chunk[:, :, 1]
G1 += np.dot(a1_chunk.T, a1_chunk) / snp_prior_var_sum
G2 += np.dot(a2_chunk.T, a2_chunk) / snp_prior_var_sum
G12 += np.dot(a1_chunk.T, a2_chunk) / snp_prior_var_sum
return G1, G2, G12
def admix_grm_equal_var(
geno: da.Array, lanc: da.Array, n_anc: int, snp_prior_var: np.ndarray = None
):
"""Calculate ancestry specific GRM matrix K1, K2 (assuming equal variances for ancestries)
Parameters
----------
geno : da.Array
Genotype matrix with shape (n_snp, n_indiv, 2)
lanc : np.ndarray
Local ancestry matrix with shape (n_snp, n_indiv, 2)
n_anc : int
Number of ancestral populations
snp_prior_var : np.ndarray
Prior variance of each SNP, shape (n_snp,)
Returns
-------
K1: np.ndarray
sum of diagonal terms
K2: np.ndarray
off-diagonal terms
"""
assert np.all(geno.shape == lanc.shape)
apa = admix.data.allele_per_anc(geno, lanc, n_anc=n_anc)
n_snp, n_indiv = apa.shape[0:2]
if snp_prior_var is None:
snp_prior_var = np.ones(n_snp)
snp_prior_var_sum = snp_prior_var.sum()
K1 = np.zeros([n_indiv, n_indiv])
K2 = np.zeros([n_indiv, n_indiv])
snp_chunks = apa.chunks[0]
indices = np.insert(np.cumsum(snp_chunks), 0, 0)
for i in tqdm(range(len(indices) - 1), desc="admix.data.admix_grm_equal_var"):
start, stop = indices[i], indices[i + 1]
apa_chunk = apa[start:stop, :, :].compute()
# multiply by the prior variance on each SNP
apa_chunk *= np.sqrt(snp_prior_var[start:stop])[:, None, None]
# diagonal terms
for i_anc in range(n_anc):
a_chunk = apa_chunk[:, :, i_anc]
K1 += np.dot(a_chunk.T, a_chunk) / snp_prior_var_sum
# off-diagonal terms
for i_anc in range(n_anc):
for j_anc in range(i_anc + 1, n_anc):
a1_chunk, a2_chunk = apa_chunk[:, :, i_anc], apa_chunk[:, :, j_anc]
K2 += np.dot(a1_chunk.T, a2_chunk) / snp_prior_var_sum
K2 = K2 + K2.T
return K1, K2
def admix_ld(dset: admix.Dataset, cov: np.ndarray = None):
"""Calculate ancestry specific LD matrices
Parameters
----------
dset: admix.Dataset
dataset containing geno, lanc
cov : Optional[np.ndarray]
(n_indiv, n_cov) covariates of the genotypes, an all `1` intercept covariate will always be added
so there is no need to add the intercept in covariates.
Returns
-------
K1: np.ndarray
ancestry specific LD matrix for the 1st ancestry
K2: np.ndarray
ancestry specific LD matrix for the 2nd ancestry
K12: np.ndarray
ancestry specific LD matrix for cross term of the 1st and 2nd ancestry
"""
assert dset.n_anc == 2, "admix_ld only works for 2 ancestries for now"
apa = dset.allele_per_anc()
n_snp, n_indiv = apa.shape[0:2]
a1, a2 = apa[:, :, 0], apa[:, :, 1]
if cov is None:
cov = np.ones((n_indiv, 1))
else:
cov = np.hstack([np.ones((n_indiv, 1)), cov])
# projection = I - X * (X'X)^-1 * X'
cov_proj_mat = np.eye(n_indiv) - np.linalg.multi_dot(
[cov, np.linalg.inv(np.dot(cov.T, cov)), cov.T]
)
a1 = np.dot(a1, cov_proj_mat)
a2 = np.dot(a2, cov_proj_mat)
# center with row mean
# a1 -= a1.mean(axis=1, keepdims=True)
# a2 -= a2.mean(axis=1, keepdims=True)
ld1 = np.dot(a1, a1.T) / n_indiv
ld2 = np.dot(a2, a2.T) / n_indiv
ld12 = np.dot(a1, a2.T) / n_indiv
ld1, ld2, ld12 = dask.compute(ld1, ld2, ld12)
return {"11": ld1, "22": ld2, "12": ld12}
def af_per_anc(
geno, lanc, n_anc=2, return_nhaplo=False
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
"""
Calculate allele frequency per ancestry
If at one particular SNP locus, no SNP from one particular ancestry can be found
the corresponding entries will be filled with np.NaN.
Parameters
----------
geno: np.ndarray
genotype matrix
lanc: np.ndarray
local ancestry matrix
n_anc: int
number of ancestries
return_nhaplo: bool
whether to return the number of haplotypes per ancestry
Returns
-------
np.ndarray
(n_snp, n_anc) length list of allele frequencies.
"""
assert np.all(geno.shape == lanc.shape)
n_snp = geno.shape[0]
af = np.zeros((n_snp, n_anc))
lanc_nhaplo = np.zeros((n_snp, n_anc))
snp_chunks = geno.chunks[0]
indices = np.insert(np.cumsum(snp_chunks), 0, 0)
for i in tqdm(range(len(indices) - 1), desc="admix.data.af_per_anc"):
start, stop = indices[i], indices[i + 1]
geno_chunk = geno[start:stop, :, :].compute()
lanc_chunk = lanc[start:stop, :, :].compute()
for anc_i in range(n_anc):
lanc_mask = lanc_chunk == anc_i
lanc_nhaplo[start:stop, anc_i] = np.sum(lanc_mask, axis=(1, 2))
# mask SNPs with local ancestry not `i_anc`
af[start:stop, anc_i] = (
np.ma.masked_where(np.logical_not(lanc_mask), geno_chunk)
.sum(axis=(1, 2))
.data
) / lanc_nhaplo[start:stop, anc_i]
if return_nhaplo:
return af, lanc_nhaplo
else:
return af
def allele_per_anc(
geno: da.Array,
lanc: da.Array,
n_anc: int,
center=False,
):
"""Get allele count per ancestry
Parameters
----------
geno: da.Array
genotype data
lanc: da.Array
local ancestry data
n_anc: int
number of ancestries
Returns
-------
Return allele counts per ancestries
"""
assert center is False, "center=True should not be used"
assert np.all(geno.shape == lanc.shape), "shape of `hap` and `lanc` are not equal"
assert geno.ndim == 3, "`hap` and `lanc` should have three dimension"
n_snp, n_indiv, n_haplo = geno.shape
assert n_haplo == 2, "`n_haplo` should equal to 2, check your data"
assert isinstance(geno, da.Array) & isinstance(
lanc, da.Array
), "`geno` and `lanc` should be dask array"
# make sure the chunk size along the ploidy axis to be 2
geno = geno.rechunk({2: 2})
lanc = lanc.rechunk({2: 2})
assert (
geno.chunks == lanc.chunks
), "`geno` and `lanc` should have the same chunk size"
assert len(geno.chunks[1]) == 1, (
"geno / lanc should not be chunked across the second dimension"
"(individual dimension)"
)
def helper(geno_chunk, lanc_chunk, n_anc):
n_snp, n_indiv, n_haplo = geno_chunk.shape
apa = np.zeros((n_snp, n_indiv, n_anc), dtype=np.float64)
for i_haplo in range(n_haplo):
haplo_hap = geno_chunk[:, :, i_haplo]
haplo_lanc = lanc_chunk[:, :, i_haplo]
for i_anc in range(n_anc):
apa[:, :, i_anc][haplo_lanc == i_anc] += haplo_hap[haplo_lanc == i_anc]
return apa
# the resulting chunk sizes will be the same as the input for snp, indiv
# while the third dimension will be (n_anc, )
output_chunks = (geno.chunks[0], geno.chunks[1], (n_anc,))
res = da.map_blocks(
lambda geno_chunk, lanc_chunk: helper(
geno_chunk=geno_chunk, lanc_chunk=lanc_chunk, n_anc=n_anc
),
geno,
lanc,
dtype=np.float64,
chunks=output_chunks,
)
return res
def calc_pgs(dset: admix.Dataset, df_weights: pd.DataFrame, method: str):
"""Calculate PGS for each individual
Parameters
----------
dset: admix.Dataset
dataset object
df_weights: pd.DataFrame
weights for each individual
method: str
method to calculate PGS. Options are:
- "total": vanilla PGS
- "partial": partial PGS, calculate partial PGS for each local ancestry
Returns
-------
np.ndarray
PGS for each individual
- method = "total": (n_indiv, )
- method = "partial": (n_indiv, n_anc)
"""
assert method in [
"total",
"partial",
], "method should be either 'total' or 'partial'"
assert np.all(
dset.snp.index == df_weights.index
), "`dset` and `df_weights` should have exactly the same index"
assert len(df_weights.columns) == 1, "`df_weights` should have only one column"
if method == "total":
pgs = admix.data.geno_mult_mat(
dset.geno.sum(axis=2), df_weights.values
).flatten()
elif method == "partial":
n_anc = dset.n_anc
pgs = np.zeros((dset.n_indiv, n_anc))
apa = dset.allele_per_anc()
for i_anc in range(n_anc):
pgs[:, i_anc] = admix.data.geno_mult_mat(
apa[:, :, i_anc], df_weights.values
).flatten()
else:
raise ValueError("method should be either 'total' or 'partial'")
return pgs
def calc_partial_pgs(
dset: admix.Dataset,
df_weights: pd.DataFrame,
dset_ref: admix.Dataset = None,
ref_pop_indiv: List[List[str]] = None,
weight_col="WEIGHT",
) -> pd.DataFrame:
"""Calculate PGS for each individual
Parameters
----------
dset: admix.Dataset
dataset object
df_weights: pd.DataFrame
weights for each individual
dset_ref: admix.Dataset
reference dataset object, use `dapgen.align_snp` to align the SNPs between
`dset` and `dset_ref`. `CHROM` and `POS` must match, with potential flips of
`REF` and `ALT` allele coding.
ref_pop: List[List[str]]
list of reference individual ID in `dset_ref`
Returns
-------
pd.DataFrame
PGS for each individual
- (n_indiv, n_anc)
"""
assert (dset_ref is None) == (
ref_pop_indiv is None
), "both `dset_ref` and `ref_pop_indiv` should be None or not None"
CALC_REF = dset_ref is not None
CHECK_COLS = ["CHROM", "POS", "REF", "ALT"]
## check input
idx1, idx2, sample_wgt_flip = dapgen.align_snp(
df1=dset.snp[CHECK_COLS], df2=df_weights[CHECK_COLS]
)
assert np.all(idx1 == dset.snp.index) & np.all(
idx2 == df_weights.index
), "`dset` and `df_weights` should align, with potential allele flip"
if CALC_REF:
idx1, idx2, ref_wgt_flip = dapgen.align_snp(
df1=dset.snp[CHECK_COLS], df2=dset_ref.snp[CHECK_COLS]
)
assert np.all(idx1 == dset.snp.index) & np.all(
idx2 == dset_ref.snp.index
), "`dset` and `dset_ref` should align, with potential allele flip"
weights = df_weights[weight_col].values
sample_weights = weights * sample_wgt_flip
if CALC_REF:
ref_weights = weights * ref_wgt_flip * sample_wgt_flip
assert (
len(ref_pop_indiv) == dset.n_anc
), "`len(ref_pops)` should match with `dset.n_anc`"
## scoring
dset_geno, dset_lanc = dset.geno.compute(), dset.lanc.compute()
sample_pgs = np.zeros((dset.n_indiv, dset.n_anc))
if CALC_REF:
ref_geno_list = [dset_ref[:, pop].geno.compute() for pop in ref_pop_indiv]
ref_pgs = [[] for pop in ref_pop_indiv]
# iterate over each individuals
for indiv_i in tqdm(range(dset.n_indiv), desc="admix.data.calc_partial_pgs"):
indiv_ref_pgs = [0, 0]
# pgs for sample individuals
for haplo_i in range(2):
geno = dset_geno[:, indiv_i, haplo_i]
lanc = dset_lanc[:, indiv_i, haplo_i]
for lanc_i in range(dset.n_anc):
# sample
sample_pgs[indiv_i, lanc_i] += np.dot(
geno[lanc == lanc_i], sample_weights[lanc == lanc_i]
)
# pgs for reference individuals
if CALC_REF:
ref_geno = ref_geno_list[lanc_i][lanc == lanc_i, :, :]
if ref_geno.shape[0] > 0:
ref_geno = ref_geno.reshape(ref_geno.shape[0], -1)
s = np.dot(ref_weights[lanc == lanc_i], ref_geno)
else:
s = np.zeros(ref_geno.shape[1] * 2)
indiv_ref_pgs[lanc_i] += s
if CALC_REF:
for lanc_i in range(dset.n_anc):
ref_pgs[lanc_i].append(indiv_ref_pgs[lanc_i])
# format ref_pgs: for each ancestry, we have n_indiv x (n_ref_indiv x 2)
# each reference has 2 haplotypes
if CALC_REF:
ref_pgs = [
pd.DataFrame(
data=np.vstack(ref_pgs[i]),
index=dset.indiv.index,
columns=np.concatenate(
[[str(i) + "_1", str(i) + "_2"] for i in ref_pop_indiv[i]]
),
)
for i in range(dset.n_anc)
]
sample_pgs = pd.DataFrame(
data=sample_pgs,
index=dset.indiv.index,
columns=[f"ANC{i}" for i in range(1, dset.n_anc + 1)],
)
if CALC_REF:
return sample_pgs, ref_pgs
else:
return sample_pgs
|
[
"kangchenghou@gmail.com"
] |
kangchenghou@gmail.com
|
2f15f7e40c8b0c4d24d57fc4badf32a92ac1ad85
|
989ce02251979f07d1b00f1c0baba18e1077e716
|
/cute/settings.py
|
a51be9375b1faef75b866ac12ea97b2378bc63b2
|
[] |
no_license
|
Sara1527/cute
|
29f66ac3ffd88e8aeac4e9665f874f8f41016927
|
54c25132c1f04e8fdbd64339f273ae44d592b8a5
|
refs/heads/master
| 2023-03-23T01:02:55.027199
| 2021-03-21T13:36:26
| 2021-03-21T13:36:26
| 350,008,240
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,330
|
py
|
"""
Django settings for cute project.
Generated by 'django-admin startproject' using Django 2.2.
For more information on this file, see
https://docs.djangoproject.com/en/2.2/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.2/ref/settings/
"""
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '0x!yix%$)6^h17&$rdr2&01z^!mzis1g4v$68kd@7vndv8f&99'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['*'] # manually add * as wild character for server public private
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'import_export', # manually added
'gtalentpro', # manually added
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'cute.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'cute.wsgi.application'
# Database
# https://docs.djangoproject.com/en/2.2/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
# Password validation
# https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/2.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'Asia/Kolkata'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.2/howto/static-files/
STATIC_URL = '/static/'
# manually defined login redirection url for @login_required decorator
LOGIN_URL = '/login/'
|
[
"rahul.cherub@gmail.com"
] |
rahul.cherub@gmail.com
|
c7ac23c922c80e2332218811b21011cadfc091bc
|
e1d11efb8ed3f58ca1a4e3ac2ca3da45beb0a758
|
/automated_picture_translator_api.py
|
d1d5ec7262917224a5f25953e8b6658b29f3188f
|
[] |
no_license
|
ShanSanear/AutomatedPictureTranslator
|
0ed09914e813145d42260ab8f3e885217066037e
|
27250624d079590aabd72a12ce9be98c424f699e
|
refs/heads/master
| 2023-07-30T10:52:39.312198
| 2021-09-22T18:54:51
| 2021-09-22T18:54:51
| 332,493,568
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,802
|
py
|
from typing import Optional
import uvicorn
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import translation_processing
from picture_processing import PictureProcessing
from utils import CapturePosition
app = FastAPI()
picture_processing = PictureProcessing()
class Translation(BaseModel):
sentence: str
sentence_words: list[str]
translated_sentence: str
translated_words: list[str]
@app.get("/")
async def read_root():
return {"Hello": "World!"}
@app.get("/translate")
async def translate_screen_part(position: CapturePosition):
pic = picture_processing.capture_picture(top_left=position.top_left, size=position.size)
sentence = picture_processing.process_picture_white_to_black(pic)
if not sentence:
sentence = picture_processing.process_picture_ocr(pic)
if not sentence:
raise HTTPException(status_code=404, detail="Couldn't translate right now")
translated_sentence = translation_processing.translate_text(sentence, source_language='en', target_language='pl')
sentence_words = translation_processing.get_single_words_to_translate(sentence)
translated_words = translation_processing.translate_all_words(sentence_words, source_language='en',
target_language='pl')
return Translation(
sentence=sentence,
sentence_words=sentence_words,
translated_sentence=translated_sentence,
translated_words=translated_words
)
@app.get("/item/{item_id}")
async def read_item(item_id: int, q: Optional[str] = None):
return {"item_id": item_id, "q": q}
def main():
uvicorn.run("automated_picture_translator_api:app", port=8000, reload=True, access_log=False)
if __name__ == '__main__':
main()
|
[
"pruskimateusz93@gmail.com"
] |
pruskimateusz93@gmail.com
|
5b8aced9977d9f12adf0d4b703c3e25b1e55c899
|
e16911f1fae7bf90f405e055e0f90731ae8c8042
|
/etc/st2packgen/files/actions/lib/k8sbase.py
|
89df63259b4fbf47136ae2a8cdf29077dfb9461e
|
[] |
no_license
|
bobhenkel/stackstorm-kubernetes
|
87136448434b1a6c821cfeb757f88833ca8ecf02
|
32b8538597bc5290a18cefadbf98fea7f8bb38bd
|
refs/heads/master
| 2021-04-25T22:06:36.392650
| 2017-11-02T04:30:02
| 2017-11-02T04:30:02
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,242
|
py
|
from __future__ import absolute_import
from pyswagger.core import BaseClient
from requests import Session, Request
import six
import json
import base64
class Client(BaseClient):
# declare supported schemes here
__schemes__ = set(['http', 'https'])
def __init__(self, config=None, auth=None, send_opt=None, extraheaders=None):
""" constructor
:param auth pyswagger.SwaggerAuth: auth info used when requesting
:param send_opt dict: options used in requests.send, ex verify=False
"""
super(Client, self).__init__(auth)
if send_opt is None:
send_opt = {}
self.__s = Session()
self.__send_opt = send_opt
self.extraheaders = extraheaders
auth = base64.b64encode(config['user'] + ":" + config['password'])
self.authhead = {"authorization": "Basic " + auth}
def request(self, req_and_resp, opt):
# passing to parent for default patching behavior,
# applying authorizations, ...etc.
req, resp = super(Client, self).request(req_and_resp, opt)
req.prepare(scheme=self.prepare_schemes(req).pop(), handle_files=False)
req._patch(opt)
file_obj = []
def append(name, obj):
f = obj.data or open(obj.filename, 'rb')
if 'Content-Type' in obj.header:
file_obj.append((name, (obj.filename, f, obj.header['Content-Type'])))
else:
file_obj.append((name, (obj.filename, f)))
for k, v in six.iteritems(req.files):
if isinstance(v, list):
for vv in v:
append(k, vv)
else:
append(k, v)
rq = Request(
method=req.method.upper(),
url=req.url,
params=req.query,
data=req.data,
headers=req.header,
files=file_obj
)
rq = self.__s.prepare_request(rq)
rq.headers.update(self.authhead)
rs = self.__s.send(rq, stream=True, **self.__send_opt)
myresp = {}
myresp['status'] = rs.status_code
myresp['data'] = json.loads(rs.content.rstrip())
# myresp['headers'] = rs.headers
return myresp
|
[
"andy@impulsed.net"
] |
andy@impulsed.net
|
6b7ec47b7dfaed08aeefb1d1ec11acaff71addf7
|
447e9ec821dc7505cc9b73fb7abeb220fe2b3a86
|
/rvpy/logistic.py
|
2d66e011e93fb9f8e4dc0e7ab086276b4445ba04
|
[
"MIT"
] |
permissive
|
timbook/rvpy
|
ecd574f91ed50fd47b6ead8517954f01e33c03a7
|
301fd61df894d4b300176e287bf9e725378c38eb
|
refs/heads/master
| 2020-03-19T04:01:49.283213
| 2018-12-18T19:21:07
| 2018-12-18T19:21:07
| 135,788,512
| 1
| 0
|
MIT
| 2018-12-18T19:21:08
| 2018-06-02T04:55:39
|
Python
|
UTF-8
|
Python
| false
| false
| 3,722
|
py
|
import numpy as np
from math import log, exp
from scipy.stats import logistic, fisk
from . import distribution
class Logistic(distribution.Distribution):
"""
Logistic Distribution using the following parameterization:
f(x | loc, scale) = exp(-z) / (s * (1 + exp(-z))^2)
where z = (x - loc) / scale
Parameters
----------
loc : float, positive
Location parameter
scale : float, positive
Scale parameter
Methods
-------
exp()
Transforms self to LogLogistic
Relationships
-------------
Let X be Logistic, a, b float. Then:
* aX + b is Logistic
* exp(X) is Log-Logistic
"""
def __init__(self, loc=0, scale=1):
"""
Parameters
----------
loc : float, positive
Location parameter
scale : float, positive
Scale parameter
"""
assert scale > 0, "scale parameter must be positive"
# Parameters
self.loc = loc
self.scale = scale
# Scipy backend
self.sp = logistic(loc=loc, scale=scale)
super().__init__()
def __repr__(self):
return f"Logistic(loc={self.loc}, scale={self.scale})"
def __add__(self, other):
if isinstance(other, (int, float)):
return Logistic(self.loc + other, self.scale)
else:
raise TypeError(f"Can't add or subtract objects of type {type(other)} to Logistic")
def __mul__(self, other):
if isinstance(other, (int, float)):
return Logistic(other * self.loc, other * self.scale)
else:
raise TypeError(f"Can't multiply objects of type {type(other)} by Logistic")
def __truediv__(self, other):
if isinstance(other, (int, float)):
return self.__mul__(1/other)
else:
raise TypeError(f"Can't divide objects of type {type(other)} by Logistic")
def exp(self):
return LogLogistic(alpha=exp(self.loc), beta=1/self.scale)
# TODO: Gumbel - Gumbel = Logistic
class LogLogistic(distribution.Distribution):
"""
LogLogistic Distribution using the following parameterization:
f(x | a, b) = (b/a) * (x/a)^(b-1) / (1 + (x/a)^b)^2
Parameters
----------
alpha : float, positive
Scale parameter
beta : float, positive
Shape parameter
Methods
-------
log()
Transforms self to Logistic
Relationships
-------------
Let X be LogLogistic, k > 0 float. Then:
* kX is LogLogistic
* log(X) is Logistic
"""
def __init__(self, alpha, beta):
"""
Parameters
----------
alpha : float, positive
Scale parameter
beta : float, positive
Shape parameter
"""
assert alpha > 0, "alpha must be positive"
assert beta > 0, "alpha must be positive"
# Parameters
self.alpha = alpha
self.beta = beta
# Scipy backend
self.sp = fisk(c=beta, scale=alpha)
super().__init__()
def __repr__(self):
return f"LogLogistic(alpha={self.alpha}, beta={self.beta})"
def __mul__(self, other):
if isinstance(other, (int, float)):
return LogLogistic(other*self.alpha, self.beta)
else:
raise TypeError(f"Can't multiply objects of type {type(other)} by LogLogistic")
def __truediv__(self, other):
if isinstance(other, (int, float)):
return self.__mul__(1/other)
else:
raise TypeError(f"Can't divide objects of type {type(other)} by LogLogistic")
def log(self):
return Logistic(loc=np.log(self.alpha), scale=1/self.beta)
|
[
"timothykbook@gmail.com"
] |
timothykbook@gmail.com
|
a2d362eaf614a13071c77fff4712da108a1d9924
|
b1e8f4b70208c5d35fbe9aedd6239652960d99dc
|
/pgdrive/envs/pgdrive_env_v2.py
|
ed7917d3a1a9a9843bc4443b706e58204c024bec
|
[
"Apache-2.0"
] |
permissive
|
Fredtoby/pgdrive
|
72b7cbcc22cbdb6d03adca8e344ce376c27c2ecb
|
d91fa9c7da3b0892765a4c163cf9da309997b310
|
refs/heads/main
| 2023-04-01T06:49:39.810785
| 2021-04-03T08:28:58
| 2021-04-03T08:28:58
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,057
|
py
|
import logging
import os.path as osp
import numpy as np
from pgdrive.constants import DEFAULT_AGENT
from pgdrive.envs.pgdrive_env import PGDriveEnv as PGDriveEnvV1
from pgdrive.scene_manager.traffic_manager import TrafficMode
from pgdrive.utils import PGConfig, clip
pregenerated_map_file = osp.join(osp.dirname(osp.dirname(osp.abspath(__file__))), "assets", "maps", "PGDrive-maps.json")
class PGDriveEnvV2(PGDriveEnvV1):
DEFAULT_AGENT = DEFAULT_AGENT
@staticmethod
def default_config() -> PGConfig:
config = PGDriveEnvV1.default_config()
config.update(
dict(
# ===== Traffic =====
traffic_density=0.1,
traffic_mode=TrafficMode.Trigger, # "reborn", "trigger", "hybrid"
random_traffic=False, # Traffic is randomized at default.
# ===== Cost Scheme =====
crash_vehicle_cost=1.,
crash_object_cost=1.,
out_of_road_cost=1.,
# ===== Reward Scheme =====
# See: https://github.com/decisionforce/pgdrive/issues/283
success_reward=10.0,
out_of_road_penalty=5.0,
crash_vehicle_penalty=5.0,
crash_object_penalty=5.0,
acceleration_penalty=0.0,
driving_reward=1.0,
general_penalty=0.0,
speed_reward=0.5,
use_lateral=False,
# See: https://github.com/decisionforce/pgdrive/issues/297
vehicle_config=dict(lidar=dict(num_lasers=120, distance=50, num_others=0)),
# Disable map loading!
load_map_from_json=False,
_load_map_from_json="",
)
)
config.remove_keys([])
return config
def __init__(self, config: dict = None):
super(PGDriveEnvV2, self).__init__(config=config)
def done_function(self, vehicle_id: str):
vehicle = self.vehicles[vehicle_id]
done = False
done_info = dict(crash_vehicle=False, crash_object=False, out_of_road=False, arrive_dest=False)
if vehicle.arrive_destination:
done = True
logging.info("Episode ended! Reason: arrive_dest.")
done_info["arrive_dest"] = True
elif vehicle.crash_vehicle:
done = True
logging.info("Episode ended! Reason: crash. ")
done_info["crash_vehicle"] = True
elif vehicle.out_of_route or not vehicle.on_lane or vehicle.crash_sidewalk:
done = True
logging.info("Episode ended! Reason: out_of_road.")
done_info["out_of_road"] = True
elif vehicle.crash_object:
done = True
done_info["crash_object"] = True
# for compatibility
# crash almost equals to crashing with vehicles
done_info["crash"] = done_info["crash_vehicle"] or done_info["crash_object"]
return done, done_info
def cost_function(self, vehicle_id: str):
vehicle = self.vehicles[vehicle_id]
step_info = dict()
step_info["cost"] = 0
if vehicle.crash_vehicle:
step_info["cost"] = self.config["crash_vehicle_cost"]
elif vehicle.crash_object:
step_info["cost"] = self.config["crash_object_cost"]
elif vehicle.out_of_route:
step_info["cost"] = self.config["out_of_road_cost"]
return step_info['cost'], step_info
def reward_function(self, vehicle_id: str):
"""
Override this func to get a new reward function
:param vehicle_id: id of BaseVehicle
:return: reward
"""
vehicle = self.vehicles[vehicle_id]
step_info = dict()
# Reward for moving forward in current lane
current_lane = vehicle.lane if vehicle.lane in vehicle.routing_localization.current_ref_lanes else \
vehicle.routing_localization.current_ref_lanes[0]
long_last, _ = current_lane.local_coordinates(vehicle.last_position)
long_now, lateral_now = current_lane.local_coordinates(vehicle.position)
reward = 0.0
# reward for lane keeping, without it vehicle can learn to overtake but fail to keep in lane
if self.config["use_lateral"]:
lateral_factor = clip(
1 - 2 * abs(lateral_now) / vehicle.routing_localization.get_current_lane_width(), 0.0, 1.0
)
else:
lateral_factor = 1.0
reward += self.config["driving_reward"] * (long_now - long_last) * lateral_factor
reward += self.config["speed_reward"] * (vehicle.speed / vehicle.max_speed)
step_info["step_reward"] = reward
if vehicle.crash_vehicle:
reward = -self.config["crash_vehicle_penalty"]
elif vehicle.crash_object:
reward = -self.config["crash_object_penalty"]
elif vehicle.out_of_route:
reward = -self.config["out_of_road_penalty"]
elif vehicle.arrive_destination:
reward = +self.config["success_reward"]
return reward, step_info
def _get_reset_return(self):
ret = {}
self.for_each_vehicle(lambda v: v.update_state())
for v_id, v in self.vehicles.items():
self.observations[v_id].reset(self, v)
ret[v_id] = self.observations[v_id].observe(v)
return ret[DEFAULT_AGENT] if self.num_agents == 1 else ret
if __name__ == '__main__':
def _act(env, action):
assert env.action_space.contains(action)
obs, reward, done, info = env.step(action)
assert env.observation_space.contains(obs)
assert np.isscalar(reward)
assert isinstance(info, dict)
env = PGDriveEnvV2()
try:
obs = env.reset()
assert env.observation_space.contains(obs)
_act(env, env.action_space.sample())
for x in [-1, 0, 1]:
env.reset()
for y in [-1, 0, 1]:
_act(env, [x, y])
finally:
env.close()
|
[
"noreply@github.com"
] |
noreply@github.com
|
df016bf13355458c6083ae6c2005a1cebd3ceecb
|
7b6313d1c4e0e8a5bf34fc8ac163ad446bc69354
|
/datastructure and algorithms/[hackerrank]The Hurdle Race.py
|
5bcab2ab43d0415da1bf267cba2ff15bee29380b
|
[] |
no_license
|
menuka-maharjan/competitive_programming
|
c6032ae3ddcbc974e0e62744989a2aefa30864b2
|
22d0cea0f96d8bd6dc4d81b146ba20ea627022dd
|
refs/heads/master
| 2023-05-01T05:23:09.641733
| 2021-05-23T16:22:21
| 2021-05-23T16:22:21
| 332,250,476
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 144
|
py
|
nk=input().split()
n=int(nk[0])
k=int(nk[1])
l=list(map(int,input().rstrip().split()))
x=max(l)
if((x-k)>=0):
print(x-k)
else:
print(0)
|
[
"maharjanmenuka8@gmail.com"
] |
maharjanmenuka8@gmail.com
|
8881f72660102dd5e42f6fb6a136b8c7c3c59e94
|
a3e80242b3e32c0779e9ab78c3de9ecfec499cb6
|
/models.py
|
4077b2094761e52c5c2242a8526ac736874fabee
|
[] |
no_license
|
gitzart/multi-user-blog
|
c8924d8d9c0aae79a8ed46ec460c986b738a965a
|
c8fa7c2bd8e67e2ad1fabbb574ac060fdd465dca
|
refs/heads/master
| 2021-04-28T23:02:50.708986
| 2017-01-23T10:04:38
| 2017-01-23T10:04:38
| 77,741,138
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,623
|
py
|
"""models.py: Google Datastore models and query related methods."""
__author__ = 'Alan'
__copyright__ = 'Copyright 2017, Multi User Project'
from google.appengine.ext import ndb
class User(ndb.Model):
username = ndb.StringProperty(required=True)
password = ndb.StringProperty(required=True)
email = ndb.StringProperty()
created_on = ndb.DateTimeProperty(auto_now_add=True)
@classmethod
def pk(cls, group='default'):
"""Parent key of user."""
return ndb.Key(cls, group)
@classmethod
def create(cls, username, password, email):
"""Create a new user to add to the datastore."""
return cls(
parent=cls.pk(), username=username, password=password, email=email
)
@classmethod
def by_name(cls, username):
"""Query a user by name."""
return cls.query(cls.username==username).get()
class Post(ndb.Model):
author = ndb.StringProperty(required=True)
title = ndb.StringProperty(required=True)
content = ndb.TextProperty(required=True)
excerpt = ndb.StringProperty()
likes = ndb.IntegerProperty(repeated=True)
pub_date = ndb.DateTimeProperty(auto_now_add=True)
update_date = ndb.DateTimeProperty(auto_now=True)
@classmethod
def pk(cls, name='default'):
"""Parent key of post."""
return ndb.Key(cls, name, parent=User.pk())
@classmethod
def create(cls, author, title, content, excerpt, likes=[]):
"""Create a new post to add to the datastore."""
return cls(
parent=cls.pk(),
author=author,
title=title,
content=content,
excerpt=excerpt,
likes=likes
)
@classmethod
def by_id(cls, pid):
"""Query post by post id."""
return cls.get_by_id(pid, parent=cls.pk())
@classmethod
def delete_post(cls, pid):
"""Delete individual post by post id."""
cls.by_id(pid).key.delete()
@classmethod
def query_post(cls):
"""Query all the posts in the descending publishing date order."""
return cls.query(ancestor=cls.pk()).order(-cls.pub_date)
class Comment(ndb.Model):
author = ndb.StringProperty()
author_email = ndb.StringProperty()
content = ndb.TextProperty(required=True)
pub_date = ndb.DateTimeProperty(auto_now_add=True)
update_date = ndb.DateTimeProperty(auto_now=True)
@classmethod
def pk(cls, pid):
"""Parent key of comment."""
return ndb.Key('Post', pid, parent=Post.pk())
@classmethod
def create(cls, pid, author, email, content):
"""Create a new comment to add to the datastore."""
return cls(
parent=cls.pk(pid),
author=author, author_email=email, content=content
)
@classmethod
def by_id(cls, pid, cid):
"""Query comment by comment id."""
return cls.get_by_id(cid, parent=cls.pk(pid))
@classmethod
def delete_comment(cls, pid, cid):
"""Delete individual comment by comment id
and the post id it belongs to.
"""
cls.by_id(pid, cid).key.delete()
@classmethod
def delete_multi_comment(cls, pid):
"""Delete multiple comments by comment ids.
and the post id they belong to.
"""
keys = cls.query_comment(cls.pk(pid)).fetch(keys_only=True)
if keys: ndb.delete_multi(keys)
@classmethod
def query_comment(cls, ancestor_key):
"""Query all the comments in the descending update date order."""
return cls.query(ancestor=ancestor_key).order(-cls.update_date)
|
[
"windowxpxp@gmail.com"
] |
windowxpxp@gmail.com
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.