blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
1ab8aa09439b7feb4e64e7287cafca2b7cd40a94
cc2fd2bd9947d97cbd351553dad75044f6978cf9
/driver2.py
e63c6f4cb68c2d2442c635a3df87c770a4d7fbfe
[]
no_license
jsitaraman/MDOF
7dc1178254e14dabb86c4670f8f619546fe75b5f
96162e408c887ccf8954e117b5bff016bd359110
refs/heads/main
2022-12-24T13:44:51.690443
2020-10-08T00:36:51
2020-10-08T00:36:51
301,932,777
0
0
null
null
null
null
UTF-8
Python
false
false
2,107
py
# # driver code for sizing a simple # rotor. # # Design Variables are # [ Cl -> mean Lift Coefficient, # R -> Radius of the rotor, # Omega -> Rotor frequency # sigma -> Rotor solidity] # # Objective: # Maximize pay-load with a constraint of maximum power available # import numpy as np from AeroSolver import AeroModel from WeightSolver import WeightModel from MDOF import MDOFinputs from MDOF import FunctionsAndConstraints from MDOF import optimizer # modelParams={'units': 'SI', 'rho':1.2256, 'bladeDensity':600, 'emptyWeight':49000, 'payLoad':0, 'grossWeight':82000} designvar=['Cl','R','Omega','sigma'] # inputObject=MDOFinputs(designvar) inputs=inputObject.inputVar() aero=AeroModel('momentumTheory',modelParams) weight=WeightModel('simpleWeight',modelParams) # # create the input to output mapping # # input--->----- Aero Model # | | # ----- Weight Model ---> output # x1=aero.getModel(inputs) outputs=weight.getModel(x1) # # create the objective function and # constraints from vehicle response # fc=FunctionsAndConstraints(inputObject,inputs,outputs) objective=fc.get('function','PayLoad',fsign=-1) gradient=fc.get('gradient','PayLoad',fsign=-1) ineqconstraint=[] ineqconstraintgrad=[] eqconstraint=[] eqconstraintgrad=[] eqconstraint.append(fc.get('constraint','Power',constraintValue=1e6)) eqconstraintgrad.append(fc.get('constraintgrad','Power',constraintValue=1e6)) # # intialize optimizer object # provide it the objectives, gradients and constraints # opt2=optimizer(objective,gradient,eqconstraint,eqconstraintgrad,ineqconstraint,ineqconstraintgrad) # # starting values and # bounds # x0=np.array([0.6,7.5,25.0,0.08],'d') lb=[0.1,6.0,10.0,0.06] ub=[1.0,9.0,30.0,0.12] # # perform actual optimization # functions and gradients are only # evaluated here # x=opt2.optimize(x0,lb,ub,1.0,method='SLSQP') # print('designNames :',designvar) print('values :',x) # resp=inputObject.getResponse() print('stateNames :',resp['varNames']) print('values :',resp['values']) #
[ "jaina@onyx.erdc.hpc.mil" ]
jaina@onyx.erdc.hpc.mil
657691f0e148e8ba93dc360f4d8b4aad40fc643d
b249363c964248fbf8e567e14ecd7c1fc7fde5b2
/server/newscraper.py
376c3bd9cd2c28bb5f7a900018ff55e13babbd86
[]
no_license
Justintlai/watersports
fec7e8d9c75ab5b6085f83273207bf851bab5afb
0b443299884e4f558c6a7d802365b3c843a4f7de
refs/heads/master
2021-07-11T21:28:39.253446
2017-10-09T00:12:23
2017-10-09T00:12:23
106,175,648
1
0
null
null
null
null
UTF-8
Python
false
false
7,080
py
import random import time from datetime import datetime import requests from bs4 import BeautifulSoup from pws import Bing from pws.google import strip_tags word_file = "words.txt" WORDS = open(word_file).read().splitlines() def main(): # c = gnp_fixed.get_google_news_query("earth") # print(c) # return # cnn_paper = newspaper.build('http://cnn.com/search/?q=trump') r = Bing.search_news(10, 0, True, 'h', query='github') print(r) return for article in cnn_paper.articles: print(article.url) if "trump" in str(article).lower(): article.download() article.parse() article.nlp() print(article.summary) break def get_articles_test(topic, skipNum): r = [get_article_test(topic, skipNum) for x in range(0, 10)] return sorted(r, key=getKey, reverse=True) def generate_news_url(query, num, start, recent, country_code): query = '+'.join(query.split()) url = 'https://www.google.com/search?q=' + query + '&num=' + num + '&start=' + start url += '&tbm=nws#q=' + query + '&tbas=0&tbs=sbd:1&tbm=nws' if recent in ['h', 'd', 'w', 'm', 'y']: url += '&tbs=qdr:' + recent if country_code is not None: url += '&gl=' + country_code return url def get_info(i): pass def convert_to_epoch_time(param): time_ago = [int(s) for s in param.split(" ") if s.isdigit()][0] if "second" in param: multiplier = 1 elif "minute" in param: multiplier = 60 elif "hour" in param: multiplier = 60 * 60 elif "day" in param: multiplier = 60 * 60 * 24 elif "week" in param: multiplier = 60 * 60 * 24 * 7 elif "month" in param: multiplier = 60 * 60 * 24 * 30 elif "year" in param: multiplier = 60 * 60 * 24 * 365.25 else: try: pattern = '%d %b %Y' return int(time.mktime(time.strptime(param, pattern))) except Exception as e: print(e) raise Exception("Unexpected time duration! {}".format(str(param))) seconds_ago = multiplier * time_ago now_epoch_time = int(time.time()) return now_epoch_time - seconds_ago def scrape_news_result(soup): raw_results = soup.find_all('div', {'class': 'g'}) results = [] for result in raw_results: link = result.find('a').get('href')[7:] raw_link_text = result.find('a') link_text = strip_tags(str(raw_link_text)) raw_link_info = result.find('div', attrs={'class': 'st'}) link_info = strip_tags(str(raw_link_info)) raw_source = result.find('span', attrs={'class': 'f'}) raw_source = strip_tags(str(raw_source)).split(' - ') source = raw_source[0] time = convert_to_epoch_time(raw_source[1]) additional_links = dict() # Crazy hack! Fix it. + Buggy! try: raw_a_links = result.find_all('a')[1:] if raw_a_links: raw_source = list(map(strip_tags, list(map(str, result.find_all('span', attrs={'class': 'f'})[1:])))) for idx in range(len(raw_a_links) - 1): additional_links[strip_tags(str(raw_a_links[idx]))] = ( raw_a_links[idx].get('href'), raw_source[idx]) except Exception as e: print(e) temp = {'link': link, 'link_text': link_text, 'link_info': link_info, 'additional_links': additional_links, 'source': source, 'time': time, } results.append(temp) return results def scrape_news_result_bing(soup): raw_results = soup.find_all('div', attrs={'class': 'newsitem'}) results = [] for result in raw_results: link = result.find('a').get('href') raw_link_text = result.find('a') link_text = strip_tags(str(raw_link_text)) additional_links = dict() # For consistancy raw_link_info = result.find('span', attrs={'class': 'sn_snip'}) link_info = strip_tags(str(raw_link_info)) raw_source = result.find('cite', attrs={'class': 'sn_src'}) source = strip_tags(str(raw_source)) raw_time = result.find('span', attrs={'class': 'sn_tm'}) time = convert_to_epoch_time(strip_tags(str(raw_time))) temp = {'link': link, 'link_text': link_text, 'link_info': link_info, 'additional_links': additional_links, 'source': source, 'time': time, } results.append(temp) return results def generate_news_url_bing(query, first, recent, country_code): """(str, str) -> str A url in the required format is generated. """ query = '+'.join(query.split()) url = 'http://www.bing.com/news/search?q=' + query + '&first' + first if recent in ['h', 'd', 'w', 'm', 'y']: # A True/False would be enough. This is just to maintain consistancy with google. url = url + '&qft=sortbydate%3d%221%22' if country_code is not None: url += '&cc=' + country_code return url def search_news(query, num=10, start=0, recent=None, country_code=None): # url = generate_news_url_bing(query, str(start), recent, country_code) url = generate_news_url(query, str(num), str(start), country_code, recent) soup = BeautifulSoup(requests.get(url).text, "html.parser") if "Our systems have detected unusual traffic from your computer network." in str(soup): pass results = scrape_news_result(soup) # results = scrape_news_result_bing(soup) # raw_total_results = soup.find('div', attrs={'class': 'sd'}).string # total_results = int(str(raw_total_results).replace(",","").replace("About ","").replace(" results","").strip()) temp = {'results': results, 'url': url, 'num': num, 'start': start, 'search_engine': 'google', 'total_results': 0, 'country_code': country_code, } return temp def getKey(item): return item["time"] def get_articles(topic, skipNum): r = search_news(str(topic), 10, skipNum) return sorted(r["results"], key=getKey, reverse=True) def get_random_date(): year = random.choice(range(2001, 2017)) month = random.choice(range(1, 13)) day = random.choice(range(1, 29)) t = datetime(year, month, day) birth_date = (t - datetime(1970, 1, 1)).total_seconds() return str(birth_date) def get_article_test(topic, skipNum): temp = {'link': str(skipNum), 'link_text': "".join([random.choice(WORDS) + " " for x in range(0, 10)]), 'link_info': "link_info", 'additional_links': "additional_links", 'source': str(topic), 'time': get_random_date(), } return temp if __name__ == "__main__": start = "1232131" end = "1232131" r = get_articles("slack", 0) for i in r: print(i["time"]) pass
[ "alexanderfanthome@googlemail.com" ]
alexanderfanthome@googlemail.com
d5c6bf8fc78a0d43c339a77d1a7de8e8d671ddf9
3448030a8da01a4c66ecbf52372bb71e929cd873
/seed2xprv.py
1dbe7932ab0ce4e2fdfb6c9e0ad1a2ef2a9a86cb
[ "MIT" ]
permissive
brunokrauss/crypto-key-derivation
193662816a4a3f1e27a0144157fe1a056ec59c23
78285fca158aaf31a276406286d265318ee359ee
refs/heads/master
2023-06-24T21:30:54.786702
2021-07-06T12:34:23
2021-07-06T12:34:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
#!./venv/bin/python from lib import mbp32, utils xprv = mbp32.XKey.from_seed(bytes.fromhex(utils.one_line_from_stdin())) print(xprv.to_xkey().decode('ascii'))
[ "errge@nilcons.com" ]
errge@nilcons.com
ba6306487c83faeec431bad2bb06879a4608adfe
84cd1e3493cf0020d39a38c90c5eb7e7b103cf54
/card.py
51012e2d75aa1f6030fccf472e6a64e272e98c51
[]
no_license
jbrunsting/poker-player
cf7c8b12a56ce1d52d330bb1ceeb42814476ad90
0e81c9f6bacfbd17bda16b573e3b0641c14e72cc
refs/heads/master
2022-04-21T13:16:48.133194
2020-04-20T16:52:11
2020-04-20T16:52:11
254,972,880
0
0
null
null
null
null
UTF-8
Python
false
false
831
py
SUIT_INDICES = "shdc" MIN_CARD = 2 MAX_CARD = 14 NUM_SUITS = 4 class Card: def __init__(self, suit, val): self.suit = suit self.val = val def __str__(self): unicode_card = ord('🂠') if self.val <= 10: unicode_card += self.val elif self.val == 11: unicode_card += 11 elif self.val == 12: unicode_card += 13 elif self.val == 13: unicode_card += 14 elif self.val == 14: unicode_card += 1 unicode_card += self.suit * 16 return chr(unicode_card) def __eq__(self, other): return self.suit == other.suit and self.val == other.val def __lt__(self, other): if self.val == other.val: return self.suit < other.suit return self.val < other.val
[ "jbrunsting@uwaterloo.ca" ]
jbrunsting@uwaterloo.ca
7b96378092ff574b8986da643f93a35f77f65f61
ab43c27eeac4866aef9b9282d912f24b8238803e
/app/views/__init__.py
8db42f13b7048140839fd65a2b555069cc2f1a09
[]
no_license
RubenVanEldik/solar
31c3018322841f271fa70883eb78759141345dd9
71d48fea12791a72558ddc0d512a1f6b7e8f4574
refs/heads/master
2021-10-18T22:33:05.663817
2019-02-14T19:59:07
2019-02-14T19:59:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
from .charts import * from .index import * from .json import * from .settings import * from .user_management import *
[ "74729@protonmail.com" ]
74729@protonmail.com
962d3aac4478494866be2adb37058437ec68edc0
7922540e2993b3f0ee27649becc6881991f26f8c
/cryptosite/urls.py
eabd33a490445bd108023a6544aaa120d5743498
[]
no_license
anirban-21/Cryptosite
044cbf5f0a0a23362b1fe561bfd9cd312120fb6b
86ec45bdd0e9a2c20f03196c3efe01badedd9238
refs/heads/master
2022-12-25T05:32:29.508577
2020-10-08T09:29:36
2020-10-08T09:29:36
302,286,604
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
"""cryptosite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('crypto.urls')), ]
[ "anirbanraha08@gmail.com" ]
anirbanraha08@gmail.com
a772928bcbefc46afefe57c8cef08919a0e31326
8942d1537271a4f6707db6e81a786ca13451e469
/_examples/example_pipelines/skullstrip_afni_ants_example/porcupine_generated_pipeline.py
6ead358190e3d19af7f227b9bb95aa7b885fddfc
[ "MIT" ]
permissive
GiraffeTools/Documentation
ee78b565ba489e20172e23b88e1cbf6424e2f467
40fe4a141a444aa5f016a5d5073ddffba77187d0
refs/heads/master
2022-11-07T16:18:36.793918
2020-08-16T20:44:37
2020-08-16T20:44:37
174,414,952
1
1
MIT
2022-10-19T22:26:58
2019-03-07T20:26:15
Python
UTF-8
Python
false
false
3,347
py
#This is a Nipype generator. Warning, here be dragons. import sys import nipype import nipype.pipeline as pe import nipype.interfaces.io as io import nipype.interfaces.ants as ants import nipype.interfaces.afni as afni import nipype.interfaces.fsl as fsl WorkingDirectory = "~/Porcupipelines/ThisStudy" #Generic datagrabber module that wraps around glob in an NodeHash_30bb950 = pe.Node(io.S3DataGrabber(outfields=['outfiles']), name = 'NodeName_30bb950') NodeHash_30bb950.inputs.anon = True NodeHash_30bb950.inputs.bucket = 'openneuro' NodeHash_30bb950.inputs.bucket_path = 'ds000101/ds000101_R2.0.0/uncompressed/' NodeHash_30bb950.inputs.local_directory = '/tmp' NodeHash_30bb950.inputs.sort_filelist = True NodeHash_30bb950.inputs.template = 'sub-01/anat/sub-01_T1w.nii.gz' #Wraps command **N4BiasFieldCorrection** NodeHash_1ea4b50 = pe.Node(interface = ants.N4BiasFieldCorrection(), name = 'NodeName_1ea4b50') NodeHash_1ea4b50.inputs.copy_header = False NodeHash_1ea4b50.inputs.dimension = 3 NodeHash_1ea4b50.inputs.num_threads = 4 NodeHash_1ea4b50.inputs.save_bias = True #Wraps command **3dUnifize** NodeHash_291d6d0 = pe.Node(interface = afni.Unifize(), name = 'NodeName_291d6d0') NodeHash_291d6d0.inputs.outputtype = 'NIFTI_GZ' #Wraps command **3dSkullStrip** NodeHash_1ddfa30 = pe.Node(interface = afni.SkullStrip(), name = 'NodeName_1ddfa30') NodeHash_1ddfa30.inputs.outputtype = 'NIFTI_GZ' #Wraps command **3dcalc** NodeHash_3bd6370 = pe.Node(interface = afni.Calc(), name = 'NodeName_3bd6370') NodeHash_3bd6370.inputs.expr = 'a*step(b)' NodeHash_3bd6370.inputs.outputtype = 'NIFTI_GZ' #Wraps command **fslmaths** NodeHash_49ddb10 = pe.Node(interface = fsl.Threshold(), name = 'NodeName_49ddb10') NodeHash_49ddb10.inputs.args = '-bin' NodeHash_49ddb10.inputs.thresh = 1.e-3 #Wraps command **3dUnifize** NodeHash_229c200 = pe.Node(interface = afni.Unifize(), name = 'NodeName_229c200') NodeHash_229c200.inputs.gm = True NodeHash_229c200.inputs.outputtype = 'NIFTI_GZ' #Generic datasink module to store structured outputs NodeHash_3207070 = pe.Node(interface = io.DataSink(), name = 'NodeName_3207070') NodeHash_3207070.inputs.base_directory = '/tmp' #Create a workflow to connect all those nodes analysisflow = nipype.Workflow('MyWorkflow') analysisflow.connect(NodeHash_30bb950, 'outfiles', NodeHash_1ea4b50, 'input_image') analysisflow.connect(NodeHash_1ea4b50, 'output_image', NodeHash_291d6d0, 'in_file') analysisflow.connect(NodeHash_291d6d0, 'out_file', NodeHash_1ddfa30, 'in_file') analysisflow.connect(NodeHash_1ea4b50, 'bias_image', NodeHash_3207070, 'bias_image') analysisflow.connect(NodeHash_291d6d0, 'out_file', NodeHash_3bd6370, 'in_file_a') analysisflow.connect(NodeHash_1ddfa30, 'out_file', NodeHash_3bd6370, 'in_file_b') analysisflow.connect(NodeHash_3bd6370, 'out_file', NodeHash_49ddb10, 'in_file') analysisflow.connect(NodeHash_3bd6370, 'out_file', NodeHash_229c200, 'in_file') analysisflow.connect(NodeHash_49ddb10, 'out_file', NodeHash_3207070, 'out_mask') analysisflow.connect(NodeHash_229c200, 'out_file', NodeHash_3207070, 'out_file') #Run the workflow plugin = 'MultiProc' #adjust your desired plugin here plugin_args = {'n_procs': 1} #adjust to your number of cores analysisflow.write_graph(graph2use='flat', format='png', simple_form=False) analysisflow.run(plugin=plugin, plugin_args=plugin_args)
[ "timvanmourik@gmail.com" ]
timvanmourik@gmail.com
b2cfeb0e568ca923f191916dc1ad85a9a2cad65e
499b280cdaf8714aae193fd9b1aac95926def3b4
/2017038076_조준희 2주차과제.py
906467128e359f1fea673d747c8a1161ab7eb171
[]
no_license
Joonehee-JO/python
2972b52bb2472decffb12a4d13b556ac86adc75b
857d15153f10a583bc4ad6a17ecf4f09fdcb68c5
refs/heads/master
2022-11-05T05:41:57.374225
2020-06-23T12:58:40
2020-06-23T12:58:40
264,381,305
1
0
null
2020-05-16T07:16:20
2020-05-16T07:16:19
null
UTF-8
Python
false
false
218
py
mem = int(input("참석자의 수를 입력하세요 : ")) chicken = mem * 1 beer = mem * 2 cake = mem * 4 print("치킨의 수 : %d\n" %chicken) print("맥주의 수 : %d\n" %beer) print("케잌의 수 : %d\n" %cake)
[ "noreply@github.com" ]
noreply@github.com
5d241edba0322488b4b7f84cee1a16c8cd0b1bd6
cdd0fa35e6867932d9821b54f3e9897306139d1a
/myPracticeProblems/ordered_dict.py
ac21f387d95bb5f5a10a305313ea69109d20cc7d
[]
no_license
jisshub/python-development
cfd4246981999d5bc8cfe4cc15a57ebfada2691e
392e7362bf8e83930d410984e985d73a0a2f40d1
refs/heads/master
2021-01-05T02:25:12.896814
2020-03-23T16:05:25
2020-03-23T16:05:25
240,844,792
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
from collections import OrderedDict ordered_dict = OrderedDict() ordered_dict["jissmon"] = 33 ordered_dict["jissmon"] = 33 ordered_dict["jissmon"] = 33 ordered_dict["jissmon"] = 33 ordered_dict["jissmon"] = 33 print(ordered_dict) new_dict = dict() new_dict["a"] = 44 new_dict["a"] = 44 new_dict["b"] = 44 print(new_dict)
[ "jissmon476@gmail.com" ]
jissmon476@gmail.com
88844da5196efc28ee33108e41edf931aadaebd1
cf54ddb10342bfac8f868eddbfcba11f9729200f
/regex.py
6c2685af92327db7e3c69460aa3e061f6e3419ab
[]
no_license
winters23/projects-python
589a88a7d2828685807685646c1b58e1ce32dfac
d920cc62cd1ccc79d43a6869916713045509fd9e
refs/heads/master
2020-04-23T06:38:55.883746
2019-03-22T08:06:29
2019-03-22T08:06:29
170,980,214
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
import re txt="The rain is in Spain" x=re.search("^The.*Spain$",txt) print(x)
[ "jain.diksha2398@gmail.com" ]
jain.diksha2398@gmail.com
b1a1e15b3a0558a5a77872235e3522ea33bab5cc
43ab33b2f50e47f5dbe322daa03c86a99e5ee77c
/rcc/models/jaxb_element.py
49e4e3b8f1e30a23cafa6a6b5a8c3fbc12ef4791
[]
no_license
Sage-Bionetworks/rcc-client
c770432de2d2950e00f7c7bd2bac22f3a81c2061
57c4a621aecd3a2f3f9faaa94f53b2727992a01a
refs/heads/main
2023-02-23T05:55:39.279352
2021-01-21T02:06:08
2021-01-21T02:06:08
331,486,099
0
0
null
null
null
null
UTF-8
Python
false
false
5,874
py
# coding: utf-8 """ nPhase REST Resource REDCap REST API v.2 # noqa: E501 The version of the OpenAPI document: 2.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from rcc.configuration import Configuration class JAXBElement(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'name': 'QName', 'value': 'object', 'nil': 'bool', 'global_scope': 'bool', 'type_substituted': 'bool' } attribute_map = { 'name': 'name', 'value': 'value', 'nil': 'nil', 'global_scope': 'globalScope', 'type_substituted': 'typeSubstituted' } def __init__(self, name=None, value=None, nil=None, global_scope=None, type_substituted=None, local_vars_configuration=None): # noqa: E501 """JAXBElement - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._name = None self._value = None self._nil = None self._global_scope = None self._type_substituted = None self.discriminator = None if name is not None: self.name = name if value is not None: self.value = value if nil is not None: self.nil = nil if global_scope is not None: self.global_scope = global_scope if type_substituted is not None: self.type_substituted = type_substituted @property def name(self): """Gets the name of this JAXBElement. # noqa: E501 :return: The name of this JAXBElement. # noqa: E501 :rtype: QName """ return self._name @name.setter def name(self, name): """Sets the name of this JAXBElement. :param name: The name of this JAXBElement. # noqa: E501 :type: QName """ self._name = name @property def value(self): """Gets the value of this JAXBElement. # noqa: E501 :return: The value of this JAXBElement. # noqa: E501 :rtype: object """ return self._value @value.setter def value(self, value): """Sets the value of this JAXBElement. :param value: The value of this JAXBElement. # noqa: E501 :type: object """ self._value = value @property def nil(self): """Gets the nil of this JAXBElement. # noqa: E501 :return: The nil of this JAXBElement. # noqa: E501 :rtype: bool """ return self._nil @nil.setter def nil(self, nil): """Sets the nil of this JAXBElement. :param nil: The nil of this JAXBElement. # noqa: E501 :type: bool """ self._nil = nil @property def global_scope(self): """Gets the global_scope of this JAXBElement. # noqa: E501 :return: The global_scope of this JAXBElement. # noqa: E501 :rtype: bool """ return self._global_scope @global_scope.setter def global_scope(self, global_scope): """Sets the global_scope of this JAXBElement. :param global_scope: The global_scope of this JAXBElement. # noqa: E501 :type: bool """ self._global_scope = global_scope @property def type_substituted(self): """Gets the type_substituted of this JAXBElement. # noqa: E501 :return: The type_substituted of this JAXBElement. # noqa: E501 :rtype: bool """ return self._type_substituted @type_substituted.setter def type_substituted(self, type_substituted): """Sets the type_substituted of this JAXBElement. :param type_substituted: The type_substituted of this JAXBElement. # noqa: E501 :type: bool """ self._type_substituted = type_substituted def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, JAXBElement): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, JAXBElement): return True return self.to_dict() != other.to_dict()
[ "thomas.yu@sagebase.org" ]
thomas.yu@sagebase.org
ce72e0f8bc1244eb6aab5eb1508279184c6fec5c
1e5bf133026ff7afa9659652cc3ec1023f98dc1c
/326 - Power of Three/PythonSolution2.py
14af1e155eee448238449ceaea5fa410eb42ddab
[]
no_license
DishantK1807/Leetcode-Practice
51ca7d38889e1e2351968b8802185117ab629e78
094b33b38f81ce2b5572cdfecc1f5fb5bbd55816
refs/heads/master
2022-04-08T14:01:24.534693
2020-03-11T22:13:54
2020-03-11T22:13:54
232,390,299
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
class Solution: def isPowerOfThree(self, n: int) -> bool: return n > 0 and 1853020188851841 % n == 0
[ "dishant.khanna1807@gmail.com" ]
dishant.khanna1807@gmail.com
8dbddfb4997cc91e26fe303a38174baf39a53b42
53eaf9bb812f6f9317a143a08f60bb5515e7de8c
/setup.py
c401f0283d85762481b013d5265207f65a2113b7
[]
no_license
JeffMv/jmm-util-libs
103d77972ee7d3f196593396b4a78a6ce7db6617
137696ec9126ea35512dcb29500d3d7c6ffdde56
refs/heads/master
2023-07-11T20:04:18.782120
2023-07-01T17:44:45
2023-07-01T17:44:45
209,101,111
0
0
null
null
null
null
UTF-8
Python
false
false
4,046
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Note: To use the 'upload' functionality of this file, you must: # $ pipenv install twine --dev import io import os # import sys # from shutil import rmtree from setuptools import find_packages, setup, Command # from jmm import version # Package meta-data. NAME = 'jmm' DESCRIPTION = 'A collection of personal utility functions.' URL = 'https://github.com/JeffMv/jmm-util-libs' EMAIL = 'jeffrey.mvutu@gmail.com' AUTHOR = 'Jeffrey Mvutu Mabilama' REQUIRES_PYTHON = '>=3.0.0' VERSION = "0.1.3.2.0" # What packages are required for this module to be executed? REQUIRED = [ # 'requests', 'maya', 'records', ] # What packages are optional? EXTRAS = { # 'fancy feature': ['django'], 'conversion': ['pandas'], 'selenium': ['selenium', 'requests'], 'parsing': ['bs4', 'lxml'], 'advanced': ['PIL'], } # The rest you shouldn't have to touch too much :) # ------------------------------------------------ # Except, perhaps the License and Trove Classifiers! # If you do change the License, remember to change the Trove Classifier for that! here = os.path.abspath(os.path.dirname(__file__)) # Import the README and use it as the long-description. # Note: this will only work if 'README.md' is present in your MANIFEST.in file! try: with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as fh: long_description = '\n' + fh.read() except FileNotFoundError: long_description = DESCRIPTION # Load the package's __version__.py module as a dictionary. about = {} if not VERSION: project_slug = NAME.lower().replace("-", "_").replace(" ", "_") with open(os.path.join(here, project_slug, '__version__.py')) as fh: exec(fh.read(), about) else: about['__version__'] = VERSION # class UploadCommand(Command): # """Support setup.py upload.""" # description = 'Build and publish the package.' # user_options = [] # @staticmethod # def status(s): # """Prints things in bold.""" # print('\033[1m{0}\033[0m'.format(s)) # def initialize_options(self): # pass # def finalize_options(self): # pass # def run(self): # try: # self.status('Removing previous builds…') # rmtree(os.path.join(here, 'dist')) # except OSError: # pass # self.status('Building Source and Wheel (universal) distribution…') # os.system('{0} setup.py sdist bdist_wheel --universal'.format(sys.executable)) # self.status('Uploading the package to PyPI via Twine…') # os.system('twine upload dist/*') # self.status('Pushing git tags…') # os.system('git tag v{0}'.format(about['__version__'])) # os.system('git push --tags') # sys.exit() # Where the magic happens: setup( name=NAME, version=about['__version__'], description=DESCRIPTION, long_description=long_description, long_description_content_type='text/markdown', author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, packages=find_packages(exclude=["tests", "*.tests", "*.tests.*", "tests.*"]), # If your package is a single module, use this instead of 'packages': # py_modules=['mypackage'], # entry_points={ # 'console_scripts': ['mycli=mymodule:cli'], # }, install_requires=REQUIRED, extras_require=EXTRAS, # include_package_data=True, # license='MIT', classifiers=[ # Trove classifiers # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', # 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', # 'Programming Language :: Python :: Implementation :: CPython', # 'Programming Language :: Python :: Implementation :: PyPy' ], # # $ setup.py publish support. # cmdclass={ # 'upload': UploadCommand, # }, )
[ "jeffrey.mvutu@gmail.com" ]
jeffrey.mvutu@gmail.com
b68437cefbc5ec307c1eb1133f394abe68e27b9f
b2dbc5643ed240f462090aaa796e528a39175de6
/FCN_8s_modified_code/read_MITSceneParsingData.py
cf47c498dd8f91c5d5393b68ca9dcdb392aeb543
[]
no_license
wonikjang/Projects_Python
20c889c315d625d855ab55358958ceff590ebea8
d5bd73f03f224ac00f845bf16dac86e56be5b3be
refs/heads/master
2021-09-20T17:22:55.483973
2018-08-13T09:03:51
2018-08-13T09:03:51
89,209,677
2
0
null
null
null
null
UTF-8
Python
false
false
4,335
py
__author__ = 'charlie' import numpy as np import os import random from six.moves import cPickle as pickle from tensorflow.python.platform import gfile import glob import TensorflowUtils as utils # DATA_URL = 'http://sceneparsing.csail.mit.edu/data/ADEChallengeData2016.zip' DATA_URL = 'http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip' def read_dataset(data_dir): pickle_filename = "MITSceneParsing.pickle" pickle_filepath = os.path.join(data_dir, pickle_filename) if not os.path.exists(pickle_filepath): utils.maybe_download_and_extract(data_dir, DATA_URL, is_zipfile=True) SceneParsing_folder = os.path.splitext(DATA_URL.split("/")[-1])[0] result = create_image_lists(os.path.join(data_dir, SceneParsing_folder)) print ("Pickling ...") with open(pickle_filepath, 'wb') as f: pickle.dump(result, f, pickle.HIGHEST_PROTOCOL) else: print ("Found pickle file!") with open(pickle_filepath, 'rb') as f: result = pickle.load(f) training_records = result['training'] validation_records = result['validation'] del result return training_records, validation_records def create_image_lists(image_dir): if not gfile.Exists(image_dir): print("Image directory '" + image_dir + "' not found.") return None directories = ['training', 'validation'] image_list = {} for directory in directories: file_list = [] image_list[directory] = [] # file_glob = os.path.join(image_dir, "images", directory, '*.' + 'jpg') file_glob = image_dir + "/images/" + directory + '/*.' + 'jpg' ### ====== Modifation : \ or \\ --> / file_globbed = glob.glob(file_glob) file_globbed_slash = [ file_glo.replace("\\","/") for file_glo in file_globbed ] file_list.extend(file_globbed_slash) if not file_list: print('No files found') else: for f in file_list: filename = os.path.splitext(f.split("/")[-1])[0] ### ====== Modifation : \ or \\ --> / # annotation_file = os.path.join(image_dir, "annotations", directory, filename + '.png') annotation_file = image_dir + "/annotations/" + directory + '/'+ filename + '.png' if os.path.exists(annotation_file): record = {'image': f, 'annotation': annotation_file, 'filename': filename} image_list[directory].append(record) else: print("Annotation file not found for %s - Skipping" % filename) random.shuffle(image_list[directory]) no_of_images = len(image_list[directory]) print ('No. of %s files: %d' % (directory, no_of_images)) return image_list #directory = 'training' #image_dir = 'Data_zoo/MIT_SceneParsing/ADEChallengeData2016' #import os # # #file_glob = image_dir + "/images/" + directory + '/*.' + 'jpg' #file_glob #globbed = glob.glob(file_glob) #globbed # #filename = os.path.splitext(file_glob.split("/")[-1])[0] # # # ##f : Data_zoo/MIT_SceneParsing/ADEChallengeData2016\images\training\ADE_train_00009281.jpg #f : Data_zoo/MIT_SceneParsing/ADEChallengeData2016/images/training/ADE_train_00009281.jpg # #filename : ADEChallengeData2016\images\training\ADE_train_00009281 # f 에서 .jpg 없는것 # # # #annotation_file : Data_zoo/MIT_SceneParsing/ADEChallengeData2016\ # annotations\ # training\ # # ADEChallengeData2016\images\training\ADE_train_00009281.png # # #Annotation file not found for ADEChallengeData2016\images\training\ADE_train_00009281 - Skipping # # #image_dir : Data_zoo/MIT_SceneParsing/ADEChallengeData2016 #f : Data_zoo/MIT_SceneParsing/ADEChallengeData2016/images/training\ADE_train_00007983.jpg # filename : training\ADE_train_00007983 # annotation_file : Data_zoo/MIT_SceneParsing/ADEChallengeData2016/annotations/training/training\ADE_train_00007983.png # # #Annotation file not found for training\ADE_train_00007983 - Skipping
[ "noreply@github.com" ]
noreply@github.com
39b00d8dc0c6e5dbaab58ed8f4cb471672f8834e
8d9af8b801aecdba9c1387ccae4b69b52ed8ccad
/read_reddit.py
1887b3c89da5301a2348aa3b4a4ec372f83a47de
[]
no_license
beaugaines/mongo_for_devs
f4ab616f2b908c100fc130f9290bab6363a5f773
08c154700098538e6084a55c17fcee9e2b67abd5
refs/heads/master
2018-12-27T22:45:13.577163
2013-05-12T20:39:48
2013-05-12T20:39:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
772
py
import json import urllib2 import pymongo from pymongo import MongoClient # connect to db connection = MongoClient('localhost', 27017) # connect to reddit db - which does not exist, so - POOF! - it will be created db = connection.reddit stories = db.stories # get the phlegm clot of information that is the Reddit homepage # had to add a Bob Dobbs header, kept getting 429 otherwise url = 'http://www.reddit.com/r/technology/.json' hdrs = { 'User-Agent' : 'Bob Dobbs' } req = urllib2.Request(url, headers=hdrs) reddit_page = urllib2.urlopen(req) # parse json into python objects parsed = json.loads(reddit_page.read()) # iterate through the items on the page for item in parsed['data']['children']: # insert items into Mongo stories.insert(item['data'])
[ "beaugaines@gmail.com" ]
beaugaines@gmail.com
5a22824ddb5f687f87dce78032033bddc8a463e1
79c0b1ed8aff76df7ea783e0f290576e48f52a29
/itertools/repeat.py
26886dd51523e340ca16da10cad58ebce09b24b3
[]
no_license
meghnavarma0/DSA-Python
8e57f145c4bba1e786457b0a1f68009a4750d42f
6b584ffc3c6d8cf4a66e373d723506647b81cc9b
refs/heads/master
2021-05-22T14:51:51.102164
2020-08-21T03:27:09
2020-08-21T03:27:09
252,970,237
1
0
null
null
null
null
UTF-8
Python
false
false
62
py
from itertools import repeat a = list(repeat(15, 7)) print(a)
[ "meghnavarma0@gmail.com" ]
meghnavarma0@gmail.com
79a2bc716579e8f0dc9a8c32e78c97fd20ea8542
a81c14aa16d358c3508abe71aa72506b10bb0d06
/models/stock_loader.py
7cc370f4cbaf90933b280820a506ce3416a73474
[]
no_license
willwallis/StockNotify
d046d5b0a108f008f89982afc5f93b83128522a1
38cfffbeec52079e06d54d1b35db63be0378bf03
refs/heads/master
2020-05-18T13:35:36.373138
2015-07-28T22:03:40
2015-07-28T22:03:40
39,859,842
1
1
null
null
null
null
UTF-8
Python
false
false
1,481
py
#!/usr/bin/env python # Importing some of Google's AppEngine modules: from google.appengine.ext import webapp import os import csv # Import modules used by this controller from models import * # CLASS TO LOAD LIST OF US STOCKS class LoadStocks(webapp.RequestHandler): def get(self): inputid = self.request.get('action') if inputid == 'Load': inputfile = os.path.join(os.path.dirname(__file__), '../data' ,self.request.get('file')) reader = csv.reader(open(inputfile, 'rb'), delimiter=',', quotechar='"') counter = 0 for row in reader: stockrecord = USStockList() stockrecord.exchange = row[0] stockrecord.symbol = row[1] stockrecord.name = row[2] stockrecord.comboname = row[3] stockrecord.put() counter = counter + 1 self.response.out.write('%s records added' % (str(counter))) elif inputid == 'Delete': USStocks = db.GqlQuery("SELECT * " "FROM USStockList ") counter = 0 for record in USStocks: record.delete() counter = counter + 1 self.response.out.write('%s records deleted' % (str(counter))) elif inputid == 'Count': USStocks = db.GqlQuery("SELECT * " "FROM USStockList ") counter = USStocks.count(limit=10000) self.response.out.write('%s records' % (str(counter))) else: self.response.out.write('Please add an ?Action of Load or Delete')
[ "will@knewto.com" ]
will@knewto.com
20f48de587f36ac22f7b751403edee7311221783
49536aafb22a77a6caf249c7fadef46d63d24dfe
/tensorflow/tensorflow/python/ops/linalg/linalg.py
22c87ea697b7d702dec0fb5fe037ea1157fdaf58
[ "Apache-2.0" ]
permissive
wangzhi01/deeplearning-1
4e5ad93f0d9ecd302b74352f80fe1fa6ae70bf0d
46ab82253d956953b8aa98e97ceb6cd290e82288
refs/heads/master
2020-05-28T03:14:55.687567
2018-09-12T16:52:09
2018-09-12T16:52:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,785
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Public API for tf.linalg namespace.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_linalg_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import special_math_ops # go/tf-wildcard-import # pylint: disable=wildcard-import,unused-import from tensorflow.python.ops.linalg.linalg_impl import * from tensorflow.python.ops.linalg.linear_operator import * from tensorflow.python.ops.linalg.linear_operator_composition import * from tensorflow.python.ops.linalg.linear_operator_diag import * from tensorflow.python.ops.linalg.linear_operator_full_matrix import * from tensorflow.python.ops.linalg.linear_operator_identity import * from tensorflow.python.ops.linalg.linear_operator_low_rank_update import * from tensorflow.python.ops.linalg.linear_operator_lower_triangular import * # pylint: enable=wildcard-import # Linear algebra ops. band_part = array_ops.matrix_band_part cholesky = linalg_ops.cholesky cholesky_solve = linalg_ops.cholesky_solve det = linalg_ops.matrix_determinant # pylint: disable=protected-access slogdet = gen_linalg_ops._log_matrix_determinant # pylint: disable=protected-access diag = array_ops.matrix_diag diag_part = array_ops.matrix_diag_part eigh = linalg_ops.self_adjoint_eig eigvalsh = linalg_ops.self_adjoint_eigvals einsum = special_math_ops.einsum eye = linalg_ops.eye inv = linalg_ops.matrix_inverse lstsq = linalg_ops.matrix_solve_ls norm = linalg_ops.norm qr = linalg_ops.qr set_diag = array_ops.matrix_set_diag solve = linalg_ops.matrix_solve svd = linalg_ops.svd tensordot = math_ops.tensordot trace = math_ops.trace transpose = array_ops.matrix_transpose triangular_solve = linalg_ops.matrix_triangular_solve # Seal API. del absolute_import del array_ops del division del gen_linalg_ops del linalg_ops del math_ops del ops del print_function del special_math_ops
[ "hanshuobest@163.com" ]
hanshuobest@163.com
46a6be98cd37c203fd6efd53b180795a67a6b079
ecff7ab1d962ff895b3e9a0b4239329dd03ce966
/webpage_text/__init__.py
b20daaa188f87b44418af0b010d45a46826360d1
[ "MIT" ]
permissive
MSLNZ/pr-webpage-text
ea91e138b3e476688a07210e2b0625cb23538ff8
7790e8bbeb5cfbb9c0d7ac508903acd7414ff9d5
refs/heads/main
2022-09-15T12:26:29.947169
2022-08-05T21:21:26
2022-08-05T21:21:26
227,973,198
0
0
null
null
null
null
UTF-8
Python
false
false
6,399
py
import os import re import sys import argparse import configparser from gevent import monkey monkey.patch_all() import gevent from gevent import pywsgi import requests from flask import ( Flask, Markup, render_template, request, send_from_directory, ) gevent.get_hub().NOT_ERROR += (KeyboardInterrupt,) PORT = 1683 endpoint_dict = {} default_dict = {} default_endpoint = 'defaults' app = Flask(__name__) @app.errorhandler(404) def page_not_found(*args): return render_template('page_not_found.html', names=endpoint_dict.keys(), url=request.host_url), 404 @app.route('/favicon.ico') def favicon(): return send_from_directory('static', 'favicon.ico', mimetype='image/vnd.microsoft.icon') @app.route('/<name>', methods=['GET', 'PUT']) def page(name): if name not in endpoint_dict: return page_not_found() if request.method == 'PUT': data = request.json data['text'] = Markup(re.sub(r'\n|\\n', '<br>', data['text'])) endpoint_dict[name].update(data) return render_template('page.html', title=name, **endpoint_dict[name]) @app.route('/'+default_endpoint, methods=['GET']) def defaults(): return default_dict def run(*args): """Run the web server. This function is only meant to be called from the command line via the `webpage-text` entry point (see setup.py). """ host = '0.0.0.0' text = '' size = 100 refresh = 1.0 use_flask = False enable_log = False parser = argparse.ArgumentParser(description='Start a web server to display text on a web page.') parser.add_argument( '-c', '--config', help='path to a configuration file (INI format)' ) parser.add_argument( '-H', '--host', default=host, help='hostname or IP address of the server [default={}]'.format(host) ) parser.add_argument( '-p', '--port', default=PORT, type=int, help='port to run the server on [default={}]'.format(PORT) ) parser.add_argument( '-e', '--endpoints', nargs='*', help='the names of the URL endpoints' ) parser.add_argument( '-t', '--text', default=text, nargs='*', help='initial text to display at each endpoint [default={!r}]'.format(text) ) parser.add_argument( '-s', '--size', default=size, type=int, help='font size (in px) of the text [default={}]'.format(size) ) parser.add_argument( '-r', '--refresh', default=refresh, type=float, help='number of seconds for a web browser to wait before automatically ' 'refreshing the web page [default={}]'.format(refresh) ) parser.add_argument( '-l', '--log', action='store_true', help='show INFO log messages from the gevent WSGI server' ) parser.add_argument( '-f', '--flask', action='store_true', help='use the flask development server in debug mode' ) if not args: args = sys.argv[1:] args = parser.parse_args(args) if args.config is not None: if not os.path.isfile(args.config): sys.exit('FileNotFoundError: ' + args.config) ini = configparser.ConfigParser() ini.read(args.config) host = ini.get('server', 'host', fallback=host) port = ini.getint('server', 'port', fallback=PORT) endpoints = [e.strip() for e in ini.get('server', 'endpoints', fallback='').split(',') if e.strip()] use_flask = ini.getboolean('server', 'use_flask', fallback=use_flask) enable_log = ini.getboolean('server', 'enable_log', fallback=enable_log) text = ini.get('text', 'initial', fallback=text) size = ini.getint('text', 'size', fallback=size) refresh = ini.getfloat('text', 'refresh', fallback=refresh) else: host = args.host port = args.port endpoints = args.endpoints use_flask = args.flask enable_log = args.log text = ' '.join(args.text) if args.text else args.text size = args.size refresh = args.refresh if not endpoints: sys.exit('You must specify at least 1 endpoint') for endpoint in endpoints: if endpoint == default_endpoint: sys.exit('The name of an endpoint cannot be {!r} because this name is reserved'.format(default_endpoint)) print('Added endpoint http://{}:{}/{}'.format(host, port, endpoint)) endpoint_dict[endpoint] = {'text': text, 'size': size, 'refresh': refresh} default_dict['size'] = size default_dict['refresh'] = refresh if use_flask: # use the development server from flask app.run(host=host, port=port, debug=True) else: print('Server running on http://{}:{}/ (Press CTRL+C to quit)'.format(host, port)) log = 'default' if enable_log else None server = pywsgi.WSGIServer((host, port), application=app.wsgi_app, log=log) try: server.serve_forever() except KeyboardInterrupt: pass def put(text, endpoint, host='127.0.0.1', port=PORT, size=None, refresh=None): """Update the text that is displayed on a web page. The URL of the web page to update follows the ``http://host:port/endpoint`` nomenclature. Parameters ---------- text : str The text to display on the web page. endpoint : str The endpoint of the web page's URL. host : str, optional The hostname or IP address of the web server. port : int, optional The port number of the web server. size : int, optional The font size of the `text`. refresh : float, optional The number of second a web browser will wait before it automatically refreshes. """ url = 'http://{}:{}/'.format(host, port) try: default = default_dict[url] except KeyError: default = requests.get(url+default_endpoint).json() default_dict[url] = {'size': default['size'], 'refresh': default['refresh']} if size is None: size = default['size'] if refresh is None: refresh = default['refresh'] reply = requests.put(url+endpoint.lstrip('/'), json={'text': text, 'size': size, 'refresh': refresh}) if not reply.ok: matches = re.findall(r'/(\w+)</p>', reply.content.decode()) raise ValueError('Invalid endpoint {!r}. Must be one of: {}'.format(endpoint, ', '.join(matches)))
[ "joe.borbely@gmail.com" ]
joe.borbely@gmail.com
2a07c90c6668c494a7b8505df7af945936e34846
eb137779fddf4a6be05bdf4b569ac359f6ce39d0
/src/utils/forecast_type.py
e17da491ee322a8bc8edfd169a18931e60bffde2
[ "MIT" ]
permissive
cmu-delphi/flu-contest
4ad767f151776eccb7f5dfe6b47261b6c8cf6e50
23e1b41313f8863a7732b5861df7c70edd1ee3ad
refs/heads/main
2022-12-06T23:05:59.795151
2020-09-05T19:20:13
2020-09-05T19:20:13
75,351,258
0
3
MIT
2020-09-05T19:20:15
2016-12-02T02:09:19
Python
UTF-8
Python
false
false
47
py
class ForecastType: WILI = 1 HOSP = 2
[ "jiaxians@andrew.cmu.edu" ]
jiaxians@andrew.cmu.edu
42ced21b32a7c64522b3bdfd8516de69b7762605
0688175e67a23facf6ca86b51fd776bcdd6a78d9
/getIssue.py
d0b5f2e48e192b7fe39e37b69a1b762a56ebd037
[]
no_license
MG1333051/IssueSummary
e10d1ecc15bb64e0f004e9a71009229243160c30
d068763dd240399045011d4cfa744977c59dc9c6
refs/heads/master
2021-01-12T21:45:15.184634
2015-11-17T01:55:55
2015-11-17T01:55:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,792
py
''' @author: Lenovo ''' import github import csv import urllib import re gh = github.GitHub() #print(gh.users('michaelliao').get()) headers = ['number', 'id', 'reporter', 'created_at', 'updated_at', 'closed_at', 'state', 'locked', 'assignee', 'milestone', 'comments', 'label_name', 'title', 'pull_request', 'user', 'labels', 'html_url', 'labels_url', 'url', 'events_url', 'diff', 'patch', 'comments_url', 'body'] patch_headers = ['number', 'ncommit', 'hash', 'author', 'date', 'subject', 'nfiles', 'ninsertions', 'ndeletions', 'file','changes', 'insertions', 'deletions', 'locations', 'roots'] def parseDiffFile(diff): location = '' root = '' for line in diff: if line.startswith('@@'): location = location + line.split('@@')[1] + ';' root = root + line.split('@@')[2][1:-1] + ';' return location, root def parseCommit(commit): hash = commit[0][5:12] # print('hash: ', hash) author = commit[1][5:] # print('author: ', author) date = commit[2][5:] # print('date: ', date) subject = commit[3][5:] index = 4 for i in range(index, len(commit)): if commit[i]=='---': break else: subject += commit[i] # print('subject: ', subject) index = i+1 # print(i) nfiles = 0 ninsertions = 0 ndeletions = 0 files = [] changes = [] insertions = [] deletions = [] # print('get changed files.') for j in range(index, len(commit)): # print('j:', j) if '|' not in commit[j]: temp = commit[j].strip().split(',') for str in temp: if 'changed' in str: nfiles = re.findall(r"\d+\.?\d*",str)[0] if 'insertions' in str: ninsertions = re.findall(r"\d+\.?\d*",str)[0] if 'deletions' in str: ndeletions = re.findall(r"\d+\.?\d*",str)[0] break else: temp = commit[j].split('|') files.append(temp[0].strip()) changes.append(re.findall(r"\d+\.?\d*",temp[1])) # print(re.findall(r"\d+\.?\d*",temp[1])) insertions.append(temp[1].count('+')) deletions.append(temp[1].count('-')) index = j + 2 file_index = [] for k in range(index,len(commit)): if commit[k].startswith('diff --'): file_index.append(k) file_index.append(k) # print ('number of files: ', len(file_index)-1) locations = [] roots = [] for fi in range(0,(len(file_index)-1)): # print(commit[file_index[fi]:file_index[fi+1]]) # print('parse file: ', fi+1) location, root = parseDiffFile(commit[file_index[fi]:file_index[fi+1]]) locations.append(location) roots.append(root) results = {'hash':hash, 'author':author, 'date':date, 'subject':subject, 'nfiles':nfiles, 'ninsertions':ninsertions, 'ndeletions':ndeletions, 'files':files, 'changes':changes, 'insertions':insertions, 'deletions':deletions, 'locations':locations, 'roots':roots} return results def getPatch(patch): patch_content = urllib.urlopen(patch) content = patch_content.read().decode("utf8") lines = content.splitlines() # print('patch content length: ', len(lines)) commit_index = [] for n in range(0,len(lines)): if lines[n].startswith('From '): commit_index.append(n) commit_index.append(n) # print ('number of commits: ', len(commit_index)-1) patch = [] for ci in range(0, (len(commit_index)-1)): # print(commit_index[ci+1] - commit_index[ci]) # print(len(lines[commit_index[ci]:commit_index[ci+1]])) # print('parse commit :' , ci+1) patch.append(parseCommit(lines[commit_index[ci]:commit_index[ci+1]])) return patch with open('G:/numpy_patch.csv', 'ab') as patch_file: pf_csv = csv.DictWriter(patch_file, patch_headers) pf_csv.writeheader() with open('G:/numpy.csv','ab') as f: f_csv = csv.DictWriter(f, headers) f_csv.writeheader() for i in range(1,124): print('page: ', i) issues = gh.repos('numpy')('numpy').issues.get(state='closed', page=i) for issue in issues: try: print('issue: ', issue['number']) reporter = issue['user']['login'] label_names = [] for label in issue['labels']: label_names.append(label['name']) sep =';' label_name = sep.join(label_names) diff = '' patch = '' if 'pull_request' in issue.keys(): diff_url = issue['pull_request']['diff_url'] patch_url = issue['pull_request']['patch_url'] patch = getPatch(patch_url) # print('writing_number of commits: ', len(patch)) for commit in patch: commit_basic = {'hash':commit['hash'], 'author':commit['author'], 'date':commit['date'], 'subject':commit['subject'], 'nfiles':commit['nfiles'], 'ninsertions':commit['ninsertions'], 'ndeletions':commit['ndeletions']} # print('writing_number of files: ', len(commit['files'])) files = commit['files'] changes = commit['changes'] insertions = commit['insertions'] deletions = commit['deletions'] locations = commit['locations'] roots = commit['roots'] for nn in range(0, len(commit['files'])): # print('writing file: ', nn+1, files[nn]) commit_file = {'file':files[nn], 'changes':changes[nn],'insertions':insertions[nn], 'deletions':deletions[nn], 'locations':locations[nn], 'roots':roots[nn]} commit = {'number':issue['number'], 'ncommit':len(patch)} commit.update(commit_basic) commit.update(commit_file) # print(commit) with open('G:/numpy_patch.csv', 'ab') as p: p_csv = csv.DictWriter(p, patch_headers) p_csv.writerow(commit) issue_part = {'reporter':reporter, 'label_name':label_name, 'diff':diff_url, 'patch':patch_url} issue_all = {} issue_all.update(issue) issue_all.update(issue_part) f_csv.writerow(issue_all) except Exception as e: print(issue['number'], ': ', e) with open ('G:/exception.txt', 'a') as ef: ef.write(str(issue['number']) + ': ' + str(e) + '\t\n')
[ "xiaobena@live.cn" ]
xiaobena@live.cn
f8c4c166b16e951159465c40816bd0caddb19816
95e6314483e6f238628299150317cf2255437924
/bin/process3_calcFCPV.py
d5ffdc95537af0fde0969398936db27841058420
[ "MIT" ]
permissive
AWHKU/CombiPIPE
53d526cd13690ec56cd8417b129ab3e1cd0ef488
87c8aa0bf0747ee159b66db3211fb2acf81787b1
refs/heads/master
2023-08-15T16:27:32.360598
2021-10-21T13:38:51
2021-10-21T13:38:51
258,078,043
0
1
MIT
2021-10-21T13:38:52
2020-04-23T02:53:19
Python
UTF-8
Python
false
false
2,235
py
import sys, os, math from scipy import stats import numpy as np dir,sampleInfo,nwise=sys.argv[1],sys.argv[2],int(sys.argv[3]) def grabInfo(sampleInfo): file=open(sampleInfo,"r") refd={} for ln in file: ln=ln.strip("\r\n").split(",") if ln[-1] != "": if ln[-1] not in refd: refd[ln[-1]]=[ln[-2]] else: refd[ln[-1]].append(ln[-2]) return refd refd=grabInfo(sampleInfo) filelist=[fn for fn in os.listdir(dir) if fn.startswith("BC")] def CPMd(filelist,nwise): cpmd={} for fn in filelist: file=open("/"+dir+"/"+fn,"r") #file=open(dir+"/"+fn,"r") samp=fn.split("_")[1].split(".")[0] for y in range (8): file.readline() for ln in file: ln=ln.strip("\r\n").split(",") if ln[nwise] not in cpmd: cpmd[ln[nwise]]={} cpmd[ln[nwise]][samp]=ln[-1] else: cpmd[ln[nwise]][samp]=ln[-1] return cpmd cpmd=CPMd(filelist,nwise) def lgFC(cpmd,refd): tot=len(refd["0"])*len(refd["1"]) fcd={} for com in cpmd: sfc=0 for a in refd["0"]: for b in refd["1"]: if a in cpmd[com] and b in cpmd[com]: key=b+"_"+a fc=float(cpmd[com][a])-float(cpmd[com][b]) sfc+=fc if com not in fcd: fcd[com]={} fcd[com][key]=fc else: fcd[com][key]=fc if com in fcd: avfc=sfc/float(len(fcd[com])) fcd[com]["avg"]=avfc return fcd fcd=lgFC(cpmd,refd) def npval(cpmd,refd): pvd={} for com in cpmd: pvd[com]=[[],[]] for a in refd["0"]: if a in cpmd[com]: pvd[com][0].append(float(cpmd[com][a])) for i in refd["1"]: if i in cpmd[com]: pvd[com][1].append(float(cpmd[com][i])) for com in pvd: a=np.array(pvd[com][0]) b=np.array(pvd[com][1]) (ts,pv)=stats.ttest_ind(a,b,equal_var=False) npv=-(math.log(pv+1)) pvd[com].append(npv) return pvd pvd=npval(cpmd,refd) outfile=open("FCPV.csv","w") row="key" for i in range(nwise): row+=",guideRNA"+str(nwise-i) row+=",log2FC,-log10pval" outfile.write(row+"\r\n") for key in pvd: row=key.strip("_") k=key.split("_") for i in k: row+=","+i if key in fcd and key in pvd: row+=","+str(fcd[key]["avg"])+","+str(pvd[key][-1]) outfile.write(row+"\r\n") elif key in fcd and key not in pvd: row+=","+str(fcd[key]["avg"])+",nan" outfile.write(row+"\r\n") outfile.close()
[ "noreply@github.com" ]
noreply@github.com
1a53e8becfa201f64650948dfd44782938e5f479
a4a28e2289fe2b41e3c89f57a3c160bb79520f90
/TLSW_pred/pythonhttp.py
b633584baf90f87c0b264fdcf061cc4002ed9ca1
[ "Apache-2.0" ]
permissive
allinpaybusiness/ACS
69d1e3aca5b1e81f5fa41209c44746cb06a1819a
b9c8fa2a8e316ade366f261b0b7dc54a61fa11ba
refs/heads/master
2021-01-19T21:28:58.539487
2017-06-07T02:51:10
2017-06-07T02:51:10
82,506,792
0
14
null
2017-06-07T07:39:35
2017-02-20T02:10:16
Python
UTF-8
Python
false
false
850
py
# -*- coding: utf-8 -*- """ Created on Fri May 26 14:34:07 2017 @author: s """ import socket import re HOST, PORT = '', 8888 listen_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) listen_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) listen_socket.bind((HOST, PORT)) listen_socket.listen(10) print("Serving HTTP on port %s ..." % PORT) while True: client_connection, client_address = listen_socket.accept() request = client_connection.recv(1024) # request.split("\r\n") st = re.split(" /|,|\r\n".encode('utf-8'),request) print(st[1]) # request.split("\r\n".encode('utf-8')), request) http_response = """\ HTTP/1.1 200 OK Hello, World! """ client_connection.sendall(http_response.encode('utf-8')) client_connection.close()
[ "fengyz@allinpay.com" ]
fengyz@allinpay.com
14d5c5fbf7781549cf6e357efcc0716b5f1896ae
72e8e6829ab51ef041f9388f09e303a0cb07ff58
/CNN/ProgressBar.py
cdee2977e2c7ffbc081afd704f699487ac023d66
[]
no_license
jgslunde/Projects
4c3eefdcf4984e52ed7725a5606ff08f10ff528e
ca927120e8524f24ea194edcf5ab476290ae8e72
refs/heads/master
2021-09-23T23:39:00.053312
2018-09-29T09:47:35
2018-09-29T09:47:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,527
py
import time import sys import subprocess class ProgressBar: def __init__(self, total, update_freq): self.total = total self.update_freq = update_freq rows, colomns = subprocess.check_output(['stty', 'size']).split() # terminal size. self.rows = int(rows.decode("utf-8")) self.colomns = int(colomns.decode("utf-8")) self.bar_width = (self.colomns - 12) def update_progress_bar(self, progress): sys.stdout.write("\b"*(self.bar_width+12)) current_bars = ((progress*self.bar_width) + self.total//2 )//self.total sys.stdout.write(" %5.1f%%" %(float(progress)/(self.total)*100)) sys.stdout.write(" [%s]" % (" "*self.bar_width)) sys.stdout.flush() sys.stdout.write("\b"*(self.bar_width+1)) sys.stdout.write(":"*current_bars) sys.stdout.flush() if (self.total - progress) < self.update_freq: sys.stdout.write("\n") if __name__ == "__main__": import time from ProgressBar import ProgressBar N = 345345 update_freq = N//100 start_time1 = time.clock() for i in range(N+1): x = N/(i-2.5) end_time1 = time.clock() bar = ProgressBar(N, update_freq) start_time2 = time.clock() for i in range(N+1): x = N/(i-2.5) if i%update_freq == 0: bar.update_progress_bar(i) end_time2 = time.clock() print("%d loops.\nNo bar = %.6f seconds\nWith bar = %.6f seconds" % (N, (end_time1-start_time1), (end_time2-start_time2)))
[ "jonas.s.lunde@outlook.com" ]
jonas.s.lunde@outlook.com
09267857397c18219dcb468ef2b121a2fea8f574
c83e356d265a1d294733885c373d0a4c258c2d5e
/mayan/apps/locales/managers.py
b80a4b8368ef07497f74fee837058582ac4e31a0
[ "Apache-2.0" ]
permissive
TrellixVulnTeam/fall-2021-hw2-451-unavailable-for-legal-reasons_6YX3
4160809d2c96707a196b8c94ea9e4df1a119d96a
0e4e919fd2e1ded6711354a0330135283e87f8c7
refs/heads/master
2023-08-21T23:36:41.230179
2021-10-02T03:51:12
2021-10-02T03:51:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
from django.contrib.auth import get_user_model from django.db import models class UserLocaleProfileManager(models.Manager): def get_by_natural_key(self, user_natural_key): User = get_user_model() try: user = User.objects.get_by_natural_key(user_natural_key) except User.DoesNotExist: raise self.model.DoesNotExist return self.get(user__pk=user.pk)
[ "79801878+Meng87@users.noreply.github.com" ]
79801878+Meng87@users.noreply.github.com
5682f517f5c1795e283d9fbc3d17cb77b2c67060
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Wyx_w_M_w_Sob_to_Wz_focus/IN_Sob_k15_EroM/Sob_k15_s001_EroM/pyr_Tcrop255_p60_j15/pyr_5s/L3/step10_a.py
0112794823a31b19968d9437b4bb2fa90a4fd65b
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
35,850
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_5side_L3 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_in_W_gt_W_ch_norm_v2 use_loss_obj = [G_sobel_k15_erose_M_loss_info_builder.set_loss_target("UNet_Wz").copy()] ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ################################## ### 1side1 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_1__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side2 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_2__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_2__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side3 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_3__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_3__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_3__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side4 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_4__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_4__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_4__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_4__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1_5s1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
[ "s89334roy@yahoo.com.tw" ]
s89334roy@yahoo.com.tw
a161394d8fa001e2248fd31803456fde533a463f
3ca80a9a55652e21a7c69008842e86ac72f744d3
/real_python_courses/Class_str_repr.py
cd0b1a98ca16820e38536896cb95a5832737b7bc
[]
no_license
pshapard/New_projects
29ef9f7793e137124d33ca461e3dd686023789c5
8cf0e244cde07dd0f750de6a064deba970c0cf7a
refs/heads/master
2022-02-11T06:13:35.278903
2022-01-25T19:21:14
2022-01-25T19:21:14
253,964,490
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
class Car: def __init__(self, color, mileage): self.color = color self.mileage = mileage def __repr__(self): my_car = Car('red', 37281) print(my_car) #__str__ ==> easy to read, for human consuption #__repr__ ==> unambiguous, more for developers to read import datetime today = datetime.date.today() print(str(today)) print(repr(today)) print(today)
[ "pshapard@outlook.com" ]
pshapard@outlook.com
ce7a32bc88de6857019ede124e9f27c3f04d7544
490f7e5712b2f297adce60ff6c448243076b092b
/third_party/onnx/onnx/backend/test/case/node/pow.py
8eb61089119a1f48348fb6d45846d85f7cd77273
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0", "MIT" ]
permissive
olibd/pytorchDocker
8725993df15fa28b528ef42f98f2014e4206de0d
5ae4c37d4f081128dc1e6d24b158adebd23a3c10
refs/heads/v0.4.0DockerBuild
2022-12-25T06:11:37.436842
2019-12-09T19:13:48
2019-12-09T19:23:43
226,938,896
0
1
NOASSERTION
2022-12-13T23:17:18
2019-12-09T18:23:06
C++
UTF-8
Python
false
false
1,794
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Pow(Base): @staticmethod def export(): node = onnx.helper.make_node( 'Pow', inputs=['x', 'y'], outputs=['z'], ) x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.float32) z = np.power(x, y) # expected output [1., 32., 729.] expect(node, inputs=[x, y], outputs=[z], name='test_pow_example') x = np.arange(60).reshape(3, 4, 5).astype(np.float32) y = np.random.randn(3, 4, 5).astype(np.float32) z = np.power(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_pow') @staticmethod def export_pow_broadcast(): node = onnx.helper.make_node( 'Pow', inputs=['x', 'y'], outputs=['z'], broadcast=1, ) x = np.array([1, 2, 3]).astype(np.float32) y = np.array([2]).astype(np.float32) z = np.power(x, y) # expected output [1., 4., 9.] expect(node, inputs=[x, y], outputs=[z], name='test_pow_bcast') node = onnx.helper.make_node( 'Pow', inputs=['x', 'y'], outputs=['z'], broadcast=1, axis=0, ) x = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) y = np.array([2, 3]).astype(np.float32) z = np.array([[1, 4, 9], [64, 125, 216]]).astype(np.float32) expect(node, inputs=[x, y], outputs=[z], name='test_pow_bcast_axis0')
[ "olibd@hotmail.com" ]
olibd@hotmail.com
cd5ab0ff640c9c8555b6af3aad71c70091b91ec4
2760effda15d884af413ca2a35809d03fabea377
/lc-1222.py
fb44d86b4ecfc652aaac148671173ef0b40bbe00
[]
no_license
UtsavRaychaudhuri/leetcode
31943b98ad89d96d72ee4b6b1d1c8d70429d1e1f
77a13580fd6231830558b1cf8c84f8b3b62b99d0
refs/heads/master
2020-11-27T18:02:23.712639
2020-09-29T19:39:49
2020-09-29T19:39:49
229,552,583
0
0
null
null
null
null
UTF-8
Python
false
false
2,248
py
class Solution(object): def __init__(self): self.outarray=[] def queensAttacktheKing(self, queens, king): """ :type queens: List[List[int]] :type king: List[int] :rtype: List[List[int]] """ self.checkleft(king,queens) self.checkup(king,queens) self.checkdown(king,queens) self.checkright(king,queens) self.checkdiagonal(king,queens) return self.outarray def checkleft(self,king,queens): j=king[1] for i in range(king[0],-1,-1): if [i,j] in queens: self.outarray.append([i,j]) break def checkright(self,king,queens): i=king[0] for j in range(king[1],10): if [i,j] in queens: self.outarray.append([i,j]) break def checkup(self,king,queens): j=king[1] for i in range(king[0],10): if [i,j] in queens: self.outarray.append([i,j]) break def checkdown(self,king,queens): i=king[0] for j in range(king[1],-1,-1): if [i,j] in queens: self.outarray.append([i,j]) break def checkdiagonal(self,king,queens): i=king[0] j=king[1] while(i>=0 and j>=0): if [i,j] in queens and [i,j] not in self.outarray: self.outarray.append([i,j]) break i-=1 j-=1 i,j=king[0],king[1] while(i<=9 and j<=9): if [i,j] in queens and [i,j] not in self.outarray: self.outarray.append([i,j]) break i+=1 j+=1 i,j=king[0],king[1] while(j>=0 and i<=9): if [i,j] in queens and [i,j] not in self.outarray: self.outarray.append([i,j]) break i+=1 j-=1 i,j=king[0],king[1] while(i>=0 and j<=9): if [i,j] in queens and [i,j] not in self.outarray: self.outarray.append([i,j]) break j+=1 i-=1
[ "utsav@pdx.edu" ]
utsav@pdx.edu
2686e9a70975ed195e375cd6f2821ad404bd6b2b
c6db96a3ee9035862e7951bb944f7448335bc313
/smc/elements/profiles.py
741537250e60591eb88cb41b2a7fb0b3f3b451c4
[ "Apache-2.0" ]
permissive
azgaviperr/fp-NGFW-SMC-python
6e8c1b4e7013eadbfacff490eff6dda78db5f014
f8eb3cf725730c7bc7be89c05034ac1eb74163ac
refs/heads/master
2023-08-18T13:51:20.350868
2021-10-14T17:41:09
2021-10-14T17:41:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,206
py
""" Profiles are templates used in other parts of the system to provide default functionality for specific feature sets. For example, to enable DNS Relay on an engine you must specify a DNSRelayProfile to use which defines the common settings (or sub-settings) for that feature. A DNS Relay Profile allows multiple DNS related mappings that can be configured. Example usage:: >>> from smc.elements.profiles import DNSRelayProfile >>> profile = DNSRelayProfile('mynewprofile') .. note:: If the DNSRelayProfile does not exist, it will automatically be created when a DNS relay rule is added to the DNSRelayProfile instance. Add a fixed domain answer rule:: >>> profile.fixed_domain_answer.add([('microsoft3.com', 'foo.com'), ('microsoft4.com',)]) >>> profile.fixed_domain_answer.all() [{u'domain_name': u'microsoft3.com', u'translated_domain_name': u'foo.com'}, {u'domain_name': u'microsoft4.com'}] Translate hostnames (not fqdn) to a specific IP address:: >>> profile.hostname_mapping.add([('hostname1,hostname2', '1.1.1.12')]) >>> profile.hostname_mapping.all() [{u'hostnames': u'hostname1,hostname2', u'ipaddress': u'1.1.1.12'}] Translate an IP address to another:: >>> profile.dns_answer_translation.add([('12.12.12.12', '172.18.1.20')]) >>> profile.dns_answer_translation.all() [{u'translated_ipaddress': u'172.18.1.20', u'original_ipaddress': u'12.12.12.12'}] Specify a DNS server to handle specific domains:: >>> profile.domain_specific_dns_server.add([('myfoo.com', '172.18.1.20')]) >>> profile.domain_specific_dns_server.all() [{u'dns_server_addresses': u'172.18.1.20', u'domain_name': u'myfoo.com'}] """ from smc.base.model import Element, ElementCreator from smc.api.exceptions import ElementNotFound from smc.base.util import element_resolver class DNSRule(object): """ DNSRule is the parent class for all DNS relay rules. """ __slots__ = "profile" def __init__(self, profile): self.profile = profile def add(self, instance, answers): key, left, right = instance._attr json = [dict(zip([left, right], d)) for d in answers] try: self.profile.data[key].extend(json) self.profile.update() except ElementNotFound: j = {"name": self.profile.name, key: json} return ElementCreator(self.profile.__class__, j) def all(self): """ Return all entries :rtype: list(dict) """ attribute = self._attr[0] return self.profile.data.get(attribute, []) class FixedDomainAnswer(DNSRule): """ Direct requests for specific domains to IPv4 addresses, IPv6 addresses, fully qualified domain names (FQDNs), or empty DNS replies """ _attr = ("fixed_domain_answer", "domain_name", "translated_domain_name") def add(self, answers): """ Add a fixed domain answer. This should be a list of two-tuples, the first entry is the domain name, and the second is the translated domain value:: profile = DNSRelayProfile('dnsrules') profile.fixed_domain_answer.add([ ('microsoft.com', 'foo.com'), ('microsoft2.com',)]) :param answers: (domain_name, translated_domain_name) :type answers: tuple[str, str] :raises UpdateElementFailed: failure to add to SMC :return: None .. note:: translated_domain_name can be none, which will cause the NGFW to return NXDomain for the specified domain. """ super(FixedDomainAnswer, self).add(self, answers) class HostnameMapping(DNSRule): """ Statically map host names, aliases for host names, and unqualified names (a host name without the domain suffix) to IPv4 or IPv6 addresses """ _attr = ("hostname_mapping", "hostnames", "ipaddress") def add(self, answers): """ Map specific hostname to specified IP address. Provide a list of two-tuples. The first entry is the hostname/s to translate (you can provide multiple comma separated values). The second entry should be the IP address to map the hostnames to:: profile = DNSRelayProfile('dnsrules') profile.hostname_mapping.add([('hostname1,hostname2', '1.1.1.1')]) :param answers: (hostnames, ipaddress), hostnames can be a comma separated list. :type answers: tuple[str, str] :raises UpdateElementFailed: failure to add to SMC :return: None """ super(HostnameMapping, self).add(self, answers) class DomainSpecificDNSServer(DNSRule): """ Forward DNS requests to different DNS servers based on the requested domain. """ _attr = ("domain_specific_dns_server", "domain_name", "dns_server_addresses") def add(self, answers): """ Relay specific domains to a specified DNS server. Provide a list of two-tuple with first entry the domain name to relay for. The second entry is the DNS server that should handle the query:: profile = DNSRelayProfile('dnsrules') profile.domain_specific_dns_server.add([('myfoo.com', '172.18.1.20')]) :param answers: (domain_name, dns_server_addresses), dns server addresses can be a comma separated string :type answers: tuple[str, str] :raises UpdateElementFailed: failure to add to SMC :return: None """ super(DomainSpecificDNSServer, self).add(self, answers) class DNSAnswerTranslation(DNSRule): """ Map IPv4 addresses resolved by external DNS servers to IPv4 addresses in the internal network. """ _attr = ("dns_answer_translation", "original_ipaddress", "translated_ipaddress") def add(self, answers): """ Takes an IPv4 address and translates to a specified IPv4 value. Provide a list of two-tuple with the first entry providing the original address and second entry specifying the translated address:: profile = DNSRelayProfile('dnsrules') profile.dns_answer_translation.add([('12.12.12.12', '172.18.1.20')]) :param answers: (original_ipaddress, translated_ipaddress) :type answers: tuple[str, str] :raises UpdateElementFailed: failure to add to SMC :return: None """ super(DNSAnswerTranslation, self).add(self, answers) class DNSRelayProfile(Element): """ DNS Relay Settings specify a profile to handle how the engine will interpret DNS queries. The engine can act as a DNS relay, rewrite DNS queries or redirect domains to the specified DNS servers. """ typeof = "dns_relay_profile" @property def fixed_domain_answer(self): """ Add a fixed domain answer entry. :rtype: FixedDomainAnswer """ return FixedDomainAnswer(self) @property def hostname_mapping(self): """ Add a hostname to IP mapping :rtype: HostnameMapping """ return HostnameMapping(self) @property def domain_specific_dns_server(self): """ Add domain to DNS server mapping :rtype: DomainSpecificDNSServer """ return DomainSpecificDNSServer(self) @property def dns_answer_translation(self): """ Add a DNS answer translation :rtype: DNSAnswerTranslation """ return DNSAnswerTranslation(self) class SNMPAgent(Element): """ Minimal implementation of SNMPAgent """ typeof = "snmp_agent" @classmethod def create( cls, name, snmp_users=[], trap_destinations=[], snmp_monitoring_contact=None, snmp_monitoring_listening_port=161, snmp_version="v3", monitoring_user_names=[], trap_user_names=[], comment=None, ): json = { "boot": False, "go_offline": False, "go_online": False, "hardware_alerts": False, "name": name, "policy_applied": False, "shutdown": False, "snmp_monitoring_contact": snmp_monitoring_contact, "snmp_monitoring_listening_port": snmp_monitoring_listening_port, "snmp_monitoring_user_name": monitoring_user_names, "snmp_trap_destination": trap_destinations, "snmp_user_name": snmp_users, "snmp_version": snmp_version, "user_login": False, } return ElementCreator(cls, json) class SandboxService(Element): typeof = "sandbox_service" @classmethod def create(cls, name, sandbox_data_center, portal_username=None, comment=None): """ Create a Sandbox Service element """ json = { "name": name, "sandbox_data_center": element_resolver(sandbox_data_center), "portal_username": portal_username if portal_username else "", "comment": comment, } return ElementCreator(cls, json) class SandboxDataCenter(Element): typeof = "sandbox_data_center"
[ "lmartinson@forcepoint.com" ]
lmartinson@forcepoint.com
81e244eb03a8e7a0240cc64534523a67fb6e8b2b
ca3d8da633cb2b71ff876338c3f2f170298282fd
/compositionality_over_time/coha_preprocessing/feature_extracter_dense_embeddings.py
7830cb5f0ab2b3dc1f205aa8c5f81d12a877eda6
[ "Apache-2.0" ]
permissive
prajitdhar/Compounding
92e4c34d95a7ff8a3ed2daea044f868d64731f22
7b54d2cc84d0d68cc4b847f714dce3e1a7a42dd2
refs/heads/master
2023-08-07T17:32:01.048741
2023-07-30T22:08:30
2023-07-30T22:08:30
139,637,197
2
3
Apache-2.0
2023-09-06T09:45:26
2018-07-03T21:08:28
Jupyter Notebook
UTF-8
Python
false
false
15,323
py
import pandas as pd import numpy as np from sklearn.decomposition import PCA,TruncatedSVD from sklearn.preprocessing import Normalizer import argparse import time import pickle import re from functools import reduce import pickle as pkl def year_binner(year,val=10): if val==0: return 0 else: return year - year%val def dim_reduction(df): dtype = pd.SparseDtype(np.float64, fill_value=0) df=df.astype(dtype) df_sparse, rows, cols = df.sparse.to_coo(row_levels=['common','time'],column_levels=['context'],sort_labels=False) print(len(cols)) rcomp = re.compile(".+\s.+") compound_rows=[] compound_time=[] constituent_rows=[] constituent_time=[] for r in rows: if re.match(rcomp, r[0]): compound_rows.append(r[0]) compound_time.append(r[1]) else: constituent_rows.append(r[0]) constituent_time.append(r[1]) assert (len(compound_rows)+len(constituent_rows))==df_sparse.shape[0] train_df=df_sparse.tocsr()[0:len(compound_rows),:] test_df=df_sparse.tocsr()[len(compound_rows):,:] assert (train_df.shape[0]+test_df.shape[0])==df_sparse.shape[0] svd = TruncatedSVD(n_components=300, algorithm='arpack', random_state=args.seed) print(f'Explained variance ratio {(svd.fit(train_df).explained_variance_ratio_.sum()):2.3f}') compound_reduced = svd.fit_transform(train_df) compound_reduced = Normalizer(copy=False).fit_transform(compound_reduced) compound_reduced=pd.DataFrame(compound_reduced,index=list(zip(compound_rows,compound_time))) compound_reduced.index = pd.MultiIndex.from_tuples(compound_reduced.index, names=['compound', 'time']) compound_reduced.reset_index(inplace=True) compound_reduced[['modifier','head']]=compound_reduced['compound'].str.split(' ',expand=True) compound_reduced.drop(['compound'],axis=1,inplace=True) compound_reduced.set_index(['modifier','head','time'],inplace=True) #compound_reduced.reset_index(inplace=True) constituents_reduced=svd.transform(test_df) constituents_reduced = Normalizer(copy=False).fit_transform(constituents_reduced) constituents_reduced=pd.DataFrame(constituents_reduced,index=list(zip(constituent_rows,constituent_time))) constituents_reduced.index = pd.MultiIndex.from_tuples(constituents_reduced.index, names=['constituent', 'time']) constituents_reduced.reset_index(inplace=True) return compound_reduced,constituents_reduced def productivity_features(df): print("Productivity") all_comps=df.reset_index()[['modifier','head','time']] mod_prod=df.groupby(['modifier','time']).size().to_frame() mod_prod.columns=['mod_prod'] head_prod=df.groupby(['head','time']).size().to_frame() head_prod.columns=['head_prod'] prod1=pd.merge(all_comps,mod_prod.reset_index(),how='left',on=['modifier','time']) productivity=pd.merge(prod1,head_prod.reset_index(),how='left',on=['head','time']) productivity.set_index(['modifier','head','time'],inplace=True) return productivity def freq_features(df): print("Frequency features") compound_decade_counts=df.groupby('time').sum().sum(axis=1).to_frame() compound_decade_counts.columns=['N'] XY=df.groupby(['modifier','head','time']).sum().sum(axis=1).to_frame() X_star=df.groupby(['modifier','time']).sum().sum(axis=1).to_frame() Y_star=df.groupby(['head','time']).sum().sum(axis=1).to_frame() XY.columns=['a'] X_star.columns=['x_star'] Y_star.columns=['star_y'] merge1=pd.merge(XY.reset_index(),X_star.reset_index(),on=['modifier','time']) frequency_feat=pd.merge(merge1,Y_star.reset_index(),on=['head','time']) frequency_feat=frequency_feat.rename(columns = {'a':'comp_freq','x_star':'mod_freq','star_y':'head_freq'}) frequency_feat.set_index(['modifier','head','time'],inplace=True) return frequency_feat def it_features(df): print("Information Theory features") compound_decade_counts=df.groupby('time').sum().sum(axis=1).to_frame() compound_decade_counts.columns=['N'] XY=df.groupby(['modifier','head','time']).sum().sum(axis=1).to_frame() X_star=df.groupby(['modifier','time']).sum().sum(axis=1).to_frame() Y_star=df.groupby(['head','time']).sum().sum(axis=1).to_frame() XY.columns=['a'] X_star.columns=['x_star'] Y_star.columns=['star_y'] merge1=pd.merge(XY.reset_index(),X_star.reset_index(),on=['modifier','time']) information_feat=pd.merge(merge1,Y_star.reset_index(),on=['head','time']) information_feat['b']=information_feat['x_star']-information_feat['a'] information_feat['c']=information_feat['star_y']-information_feat['a'] information_feat=pd.merge(information_feat,compound_decade_counts.reset_index(),on=['time']) information_feat['d']=information_feat['N']-(information_feat['a']+information_feat['b']+information_feat['c']) information_feat['x_bar_star']=information_feat['N']-information_feat['x_star'] information_feat['star_y_bar']=information_feat['N']-information_feat['star_y'] information_feat.set_index(['modifier','head','time'],inplace=True) information_feat['ppmi']=np.log2((information_feat['a']*information_feat['N']+1)/(information_feat['x_star']*information_feat['star_y']+1)) information_feat['local_mi']=information_feat['a']*information_feat['ppmi'] information_feat['log_ratio']=2*(information_feat['local_mi']+\ information_feat['b']*np.log2((information_feat['b']*information_feat['N']+1)/(information_feat['x_star']*information_feat['star_y_bar']+1))+\ information_feat['c']*np.log2((information_feat['c']*information_feat['N']+1)/(information_feat['x_bar_star']*information_feat['star_y']+1))+\ information_feat['d']*np.log2((information_feat['d']*information_feat['N']+1)/(information_feat['x_bar_star']*information_feat['star_y_bar']+1))) information_feat.ppmi.loc[information_feat.ppmi<=0]=0 information_feat.drop(['a','x_star','star_y','b','c','d','N','d','x_bar_star','star_y_bar'],axis=1,inplace=True) return information_feat def cosine_features(compound_df,modifier_df,head_df): print("Cosine Similarity features") compound_modifier_sim=(compound_df*modifier_df).dropna().sum(axis=1).to_frame() compound_modifier_sim.columns=['sim_with_modifier'] compound_modifier_sim=compound_modifier_sim.swaplevel('time','head') compound_head_sim=(compound_df*head_df).dropna().sum(axis=1).to_frame() compound_head_sim.columns=['sim_with_head'] compound_head_sim=compound_head_sim.swaplevel('time','modifier') compound_head_sim=compound_head_sim.swaplevel('head','modifier') constituent_sim=compounds_reduced.reset_index()[['modifier','head','time']].merge(modifiers_reduced.reset_index(),how='left',on=['modifier','time']) constituent_sim.set_index(['modifier','head','time'],inplace=True) constituent_sim=(constituent_sim*heads_reduced).dropna().sum(axis=1).to_frame() constituent_sim.columns=['sim_bw_constituents'] constituent_sim=constituent_sim.swaplevel('time','modifier') constituent_sim=constituent_sim.swaplevel('head','modifier') return compound_modifier_sim,compound_head_sim,constituent_sim parser = argparse.ArgumentParser(description='Compute features from sparse dataset via SVD') parser.add_argument('--temporal', type=int,default=0, help='Value to bin the temporal information: 0 (remove temporal information), 1 (no binning), 10 (binning to decades), 20 (binning each 20 years) or 50 (binning each 50 years)') parser.add_argument('--cutoff', type=int, default=50, help='Cut-off frequency for each compound per time period : none (0), 20, 50 and 100') parser.add_argument('--seed', type=int, default=1991, help='random seed') parser.add_argument('--contextual', action='store_true', help='Is the model contextual') parser.add_argument('--inputdir',type=str, help='Provide directory where features are located') parser.add_argument('--outputdir',type=str, help='Where should the output be stored?') args = parser.parse_args() print(f'Cutoff: {args.cutoff}') print(f'Time span: {args.temporal}') temp_cutoff_str=str(args.temporal)+'_'+str(args.cutoff) context_list = pickle.load( open( f'{args.inputdir}context.pkl', "rb" ) ) if args.contextual: context='CompoundAware' else: context='CompoundAgnostic' save_path=context+'_Dense_'+temp_cutoff_str if args.contextual: print("CompoundCentric Model") print('Reading compounds') compounds=pd.read_pickle(args.inputdir+"/compounds.pkl") print(compounds.shape[0]) compounds.context=compounds.context.str.replace(r'.+_NUM','NUM',regex=True) compounds=compounds.loc[compounds.context.isin(context_list)] print(compounds.shape[0]) compounds.modifier=compounds.modifier.str.replace(r'_.+','',regex=True) compounds['head']=compounds['head'].str.replace(r'_.+','',regex=True) if args.temporal==0: print('No temporal information is stored') else: print(f'Temporal information is stored with intervals {args.temporal}') #compounds=compounds.loc[~compounds.modifier.str.contains('^(?:of|the|-)_.+')] #compounds=compounds.loc[~compounds['head'].str.contains('^(?:of|the|-)_.+')] compounds.year=compounds.year.astype("int32") #compounds.query('1800 <= year <= 2010',inplace=True) compounds['time']=year_binner(compounds['year'].values,args.temporal) compounds=compounds.loc[compounds.groupby(['modifier','head','time'])['count'].transform('sum').gt(args.cutoff)] print(compounds.shape[0]) compounds=compounds.groupby(['modifier','head','time','context'])['count'].sum().to_frame().reset_index() print(compounds.shape[0]) modifier_lst=compounds.modifier.unique().tolist() print(f'Number of unique modifiers {len(modifier_lst)}') head_lst=compounds['head'].unique().tolist() len(head_lst) print(f'Number of unique heads {len(head_lst)}') compounds['common']=compounds['modifier']+" "+compounds['head'] compounds=compounds.groupby(['common','time','context'])['count'].sum() print('Done reading compounds') print('Reading modifiers') modifiers=pd.read_pickle(args.inputdir+"/modifiers.pkl") print(modifiers.shape[0]) modifiers.context=modifiers.context.str.replace(r'.+_NUM','NUM',regex=True) modifiers=modifiers.loc[modifiers.context.isin(context_list)] print(modifiers.shape[0]) modifiers.modifier=modifiers.modifier.str.replace(r'_.+','',regex=True) modifiers.year=modifiers.year.astype("int32") #modifiers.query('1800 <= year <= 2010',inplace=True) modifiers['time']=year_binner(modifiers['year'].values,args.temporal) modifiers=modifiers.groupby(['modifier','time','context'])['count'].sum().to_frame().reset_index() modifiers.columns=['common','time','context','count'] print(modifiers.shape[0]) modifiers=modifiers.loc[modifiers.common.isin(modifier_lst)] print(modifiers.shape[0]) modifiers.common=modifiers.common+"_m" modifiers=modifiers.groupby(['common','time','context'])['count'].sum() print('Done reading modifiers') print('Reading heads') heads=pd.read_pickle(args.inputdir+"/heads.pkl") print(heads.shape[0]) heads.context=heads.context.str.replace(r'.+_NUM','NUM',regex=True) heads=heads.loc[heads.context.isin(context_list)] print(heads.shape[0]) heads['head']=heads['head'].str.replace(r'_.+','',regex=True) heads.year=heads.year.astype("int32") #heads.query('1800 <= year <= 2010',inplace=True) heads['time']=year_binner(heads['year'].values,args.temporal) heads=heads.groupby(['head','time','context'])['count'].sum().to_frame().reset_index() heads.columns=['common','time','context','count'] print(heads.shape[0]) heads=heads.loc[heads.common.isin(modifier_lst)] print(heads.shape[0]) heads.common=heads.common+"_h" heads=heads.groupby(['common','time','context'])['count'].sum() print('Done reading heads') print('Concatenating all the datasets together') df=pd.concat([compounds,heads,modifiers], sort=False) else: print("CompoundAgnostic Model") print('Reading phrases') compounds=pd.read_pickle(args.inputdir+"/phrases.pkl") print(compounds.shape[0]) compounds.context=compounds.context.str.replace(r'.+_NUM','NUM',regex=True) compounds=compounds.loc[compounds.context.isin(context_list)] print(compounds.shape[0]) compounds.modifier=compounds.modifier.str.replace(r'_.+','',regex=True) compounds['head']=compounds['head'].str.replace(r'_.+','',regex=True) if args.temporal==0: print('No temporal information is stored') else: print(f'Temporal information is stored with intervals {args.temporal}') #compounds=compounds.loc[~compounds.modifier.str.contains('^(?:of|the|-)_.+')] #compounds=compounds.loc[~compounds['head'].str.contains('^(?:of|the|-)_.+')] compounds.year=compounds.year.astype("int32") #compounds.query('1800 <= year <= 2010',inplace=True) compounds['time']=year_binner(compounds['year'].values,args.temporal) compounds=compounds.loc[compounds.groupby(['modifier','head','time'])['count'].transform('sum').gt(args.cutoff)] print(compounds.shape[0]) compounds=compounds.groupby(['modifier','head','time','context'])['count'].sum().to_frame().reset_index() constituents_lst=list(set(compounds.modifier.unique().tolist()+compounds['head'].unique().tolist())) compounds['common']=compounds['modifier']+" "+compounds['head'] compounds=compounds.groupby(['common','time','context'])['count'].sum() print('Done reading compounds') print(f'Number of unique constituents {len(constituents_lst)}') print('Reading constituents') constituents=pd.read_pickle(args.inputdir+"/words.pkl") print(constituents.shape[0]) constituents.context=constituents.context.str.replace(r'.+_NUM','NUM',regex=True) constituents=constituents.loc[constituents.context.isin(context_list)] print(constituents.shape[0]) constituents.word=constituents.word.str.replace(r'_.+','',regex=True) constituents=constituents.loc[constituents.word.isin(constituents_lst)] print(constituents.shape[0]) constituents.year=constituents.year.astype("int32") #constituents.query('1800 <= year <= 2010',inplace=True) constituents['time']=year_binner(constituents['year'].values,args.temporal) constituents=constituents.groupby(['word','time','context'])['count'].sum().to_frame().reset_index() constituents.columns=['common','time','context','count'] constituents=constituents.groupby(['common','time','context'])['count'].sum() print(constituents.shape[0]) print('Done reading constituents') print('Concatenating all the datasets together') df=pd.concat([compounds,constituents], sort=False) time_lst=compounds.index.unique(level='time').to_list()
[ "janis.pagel@ims.uni-stuttgart.de" ]
janis.pagel@ims.uni-stuttgart.de
227b6a056fb6d25eccae7d16b9b3363a3999867e
929f43b02defa8b0f37ee734ad97fad8a68712e5
/mundo1/ex029.py
8b579974216c18a04aca1204d1bebace02cd6632
[ "MIT" ]
permissive
Igor3550/Exercicios-de-python
c9395c3d75a20daf83d67716ffda94c624ebf3de
e0f6e043df4f0770ac15968485fbb19698b4ac6b
refs/heads/master
2022-11-10T07:52:51.334570
2020-06-25T21:41:44
2020-06-25T21:41:44
275,020,823
0
0
null
null
null
null
UTF-8
Python
false
false
556
py
#escreva um programa que leia a velocidade de um carro # Se ele ultrapassar 80km/h, mostre uma mensagem dizendo que ele foi multado # A multa vai custar R$7,00 por cada km acima da velocidade veloc = int(input('Digite a velocidade em km/h: ')) if veloc <= 80: print('Você esta no limite de velocidade\nO limite é de 80km/h e sua velocidade foi {}km/h'.format(veloc)) else: multa = (veloc - 80) * 7 print('Você foi multado pois excedeu o limite de velocidade de 80km/h\nSua velocidade: {}km/h\nValor da multa: R${:.2f}'.format(veloc, multa))
[ "igormeloigormelo@gmail.com" ]
igormeloigormelo@gmail.com
53da9f21a7f87160ef47e40054bd952e2946138f
cf33f981a53f899d8e43b0580a22a8a5b708e304
/src/case.py
bb90bdfa7b019a96673dbb52b3aca6d161161038
[]
no_license
YKherzaneColbert59/Sudoku
9e359fc2ea88af49ec77ae27710fcaa988e41848
290691943fc6aede2c790944f4e45974c11f3cb1
refs/heads/main
2023-08-30T14:54:52.235387
2021-11-20T08:47:24
2021-11-20T08:47:24
428,565,654
0
2
null
2021-11-16T10:14:14
2021-11-16T07:55:09
null
UTF-8
Python
false
false
1,334
py
class Case: def __init__(self, pos, value = None): """ Constructeur par défaut Arguments : - pos : position de la case (0--80) - value : valeur de la case (1--9) Tests : >>> Case(0).position, Case(80).position, Case(25).position (0, 80, 25) >>> Case(13).value, Case(13, 3).value (None, 3) >>> Case(0).row, Case(80).row, Case(25).row (0, 8, 7) >>> Case(0).line, Case(80).line, Case(25).line (0, 8, 2) >>> Case(0).region, Case(80).region, Case(25).region (1, 9, 3) """ self.position = pos self.row = pos%9 # Colonne self.line = pos//9 # Ligne self.value = value self.region = (self.line//3)*3+self.row//3+1 self.valid = True # Validité par défaut def setValue(self, value): """ Mutateur de l'attribut value Tests : >>> c = Case(13, 2) >>> c.setValue(8) >>> c.value == 2 False >>> c.value == 8 True """ self.value = value if __name__ == '__main__': import doctest doctest.testmod()
[ "kherzaneyani@gmail.com" ]
kherzaneyani@gmail.com
1cea74f4cade6ca228fd43ae326070c0be4b24c4
f85df4b1eedbabeef82f9ec8d54e10a7a9544e6e
/gameplay/field.py
09f0f7a813526b3aa0d116da972af16c5c10ee5e
[ "MIT" ]
permissive
hristy93/FallingRocks
ce387930ea7eb8173a7244999141556b6736cf4b
42e3dd282e43717cec001578a17ffd3e00a8b410
refs/heads/master
2020-04-04T17:47:36.220197
2016-02-17T16:45:28
2016-02-17T16:45:28
35,620,170
0
1
null
null
null
null
UTF-8
Python
false
false
1,376
py
from player import Player from rock import Rock from powerup import Powerup, PowerupType from bullet import Bullet class Field: def __init__(self, width, height): self.width, self.height = width, height self.rocks = [] self.powerups = [] self.bullets = [] self.__player = Player() self.__rock = Rock() self.__powerup = Powerup(PowerupType.no_powerup) self.__bullet = Bullet() def set_rock_speed(self, new_speed): """Sets the rock's speed to the value of new_speed.""" self.__rock.set_speed(new_speed) @property def rock_speed(self): """Gets the rock's speed.""" return self.__rock.rock_speed @property def player_speed(self): """Gets the player's speed.""" return self.__player.player_speed @property def bullet_speed(self): """Gets the bullet's speed.""" return self.__bullet.bullet_speed @property def player(self): """Gets the player's object.""" return self.__player @property def rock(self): """Gets the rock's object.""" return self.__rock @property def powerup(self): """Gets the powerup's object.""" return self.__powerup @property def bullet(self): """Gets the bullet's speed.""" return self.__bullet
[ "hristi@gbg.bg" ]
hristi@gbg.bg
de90c6a29c7f48707d371e882267c257f4f629e0
90e6a3fc2d98be7cc33edac04985c31cce1bac92
/app/config.py
f10dfba9264a887006d6aea96e50a4362f516dc3
[]
no_license
skarj/devops-examples
f2db47aef175048b437cf5bf98bb8a6410a2c65f
94d88defee4d2372930210c5598bc7a873b6be96
refs/heads/master
2023-05-24T23:23:09.136297
2022-05-07T15:18:47
2022-05-07T15:18:47
157,450,150
2
0
null
2023-05-01T21:13:57
2018-11-13T21:35:03
Python
UTF-8
Python
false
false
669
py
import os class Config(object): DEBUG = False PORT = 5000 HOST = '0.0.0.0' AWS_ACCESS_KEY = os.environ.get('AWS_ACCESS_KEY') AWS_SECRET_KEY = os.environ.get('AWS_SECRET_KEY') AWS_REGION = os.environ.get('AWS_REGION') S3_BUCKET = os.environ.get('S3_BUCKET') S3_ENDPOINT = 'http://{}.s3.amazonaws.com/'.format(S3_BUCKET) DYNAMODB_ENDPOINT = os.environ.get('DYNAMODB_ENDPOINT') class Dev(Config): S3_ENDPOINT = 'http://localhost:8008' DYNAMODB_ENDPOINT = 'http://localhost:8000' DEBUG = True class Test(Config): S3_ENDPOINT = os.environ.get('S3_ENDPOINT') DEBUG = True class Prod(Config): HOST = '127.0.0.1'
[ "skaarj.sergey@gmail.com" ]
skaarj.sergey@gmail.com
521c07cd2ff7dc5d7204594a7e6315b8882b463b
4bd969bb18178e15b750fcaa8b791cc100260e62
/mongoCRUD.py
90c486765a76e7922f411e76bb922f4f2a2bc641
[ "MIT" ]
permissive
codefusser/UserManagerDocker
587f73ee29f23aa34b3df8306d6b432134c0392d
8ba4e3aaaff0419ccdf3ab885fe1fcc0332c32be
refs/heads/master
2021-08-30T04:22:54.084203
2017-12-16T10:23:39
2017-12-16T10:23:39
114,374,599
0
0
null
null
null
null
UTF-8
Python
false
false
1,158
py
#Using Python to interact with the mongodb server with pymongo from pymongo import MongoClient #pprint module will help to improve readability from pprint import pprint DB_connectionString = "mongodb://127.0.0.1:27017" client = MongoClient(DB_connectionString) #use userManager dbase = client.userManager #creating a collection and creating a document #userinfo = dbase.createCollection("usersinfo") info1 = { "_id": "59071791b0lkscm2325794", "name": "John Doe", "email": "john.doe@gmail.com", "password": "johndoe", "__v": "0" } docInsert = dbase.usersinfo.insert(info1) #Performing other CRUD operations #Retrieving a document docObj = dbase.usersinfo.find({"_id":"59071791b0lkscm2325794"}) print("The data retrieved is: ") pprint(docObj) #Update a document with a new field docUpdate = dbase.usersinfo.update({"website":"https://github.com", "__v":"0"}) #updating a document by replacing an existing field docReplace = dbase.usersinfo.replace({"password": "johndoe", "password": "doejohn"}) #delete a document docDelete = dbase.usersinfo.delete({"_id":"59071791b0lkscm2325794"})
[ "softorque@outlook.com" ]
softorque@outlook.com
00da0d7ae1145d2e6bc178fca1111e2d7c21d7ad
01ee722200235e47d5d08d83a44ab72bec421aaf
/LocalServer/Inventory/views/home.py
255a74b77c13a8ba0caba119a252c51584804a5d
[]
no_license
CG3002-Design-Project/CG3002
47d1466dbb0e2e3d53147468406d41ac73fb6247
70b92161689d9ae6515bd0a992682183f5aafde6
refs/heads/master
2018-12-28T17:35:15.774807
2013-12-08T11:51:45
2013-12-08T11:51:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
from django.http import HttpResponse from django.shortcuts import render from django.template import Context, loader, RequestContext from Inventory.models import Inventory, RequestDetails from Inventory.models import Product from Inventory.models import Transaction from datetime import date from decimal import * from django.views.decorators.csrf import csrf_exempt import requests import json import os import time import serial from django.contrib.auth import authenticate, login from django.contrib.auth.decorators import login_required @login_required def home_page(request): return render(request,'home.html');
[ "poo.dav@gmail.com" ]
poo.dav@gmail.com
498488d0e02adf53cce7096cd9c7afa81a6a5814
64267b1f7ca193b0fab949089b86bc7a60e5b859
/slehome/account/migrations/0046_auto_20150130_0600.py
4d7e8d0246f4262cdd73c9abdd7338982e3d2674
[]
no_license
hongdangodori/slehome
6a9f2b4526c2783932627b982df0540762570bff
3e558c78c3943dadf0ec485738a0cc98dea64353
refs/heads/master
2021-01-17T12:00:34.221088
2015-02-06T13:44:00
2015-02-06T13:44:00
28,847,585
1
0
null
null
null
null
UTF-8
Python
false
false
531
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('account', '0045_auto_20150130_0558'), ] operations = [ migrations.AlterField( model_name='basicmemberinformation', name='auth_key', field=models.CharField(default='43f9a685bc7146b4ecc63bdf9bc3e5136b7543f436a42e4a2f2ae749ffb0c6db', max_length=64), preserve_default=True, ), ]
[ "chungdangogo@gmail.com" ]
chungdangogo@gmail.com
54f1cbd6a9ca5855b001c659cc3cfe4b7a0aae71
8452e5d4864ffd69cf528ac1a6504b59c44dfb96
/deam.py
64a9dcfea7f3871a7f7d67462f145f5a0eb505c9
[]
no_license
zhang-python/ssh_lianxi
707c7d112eae3c3e42237e24d9fe5c556ad79f53
ee6822020b8d1513c3bc6a386faa1e89a9db1eb0
refs/heads/master
2020-09-08T02:07:00.622670
2019-11-11T12:24:34
2019-11-11T12:24:34
220,980,511
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
print('one') print('two') print('three') print('four') print('five') print('six') print('seven') print('eight') print('nine')
[ "784913775@qq.com" ]
784913775@qq.com
abdba80e2f5adc1b736189b208ad548770d4a1a7
e4d51669c68bd36448f97b044aa835576db7c708
/instagram/converters.py
ec72631919e3a6997041bfdb49299e4a9acfd4ed
[]
no_license
BigbrotherShin/django_practice-instadjango
92f156db5e2db4b963288628b46ab4acec9c8bd8
c3b6f5f5db88156f9092ac12cdf9159f484eb865
refs/heads/master
2022-11-13T21:44:29.691936
2020-07-06T09:00:04
2020-07-06T09:00:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
class YearConverter: regex = r"20\d{2}" def to_python(self, value): return int(value) def to_url(self, value): return str(value) class MonthConverter(YearConverter): regex = r"\d{1,2}" class DayConverter(YearConverter): regex = r"[0123]\d"
[ "shinjhhp5@gmail.com" ]
shinjhhp5@gmail.com
279eca7baaea7d7e78b5f31eab14828579fa7ef7
af79d5ad4c47c1d9db2cf6cdcc7c7c52658723c9
/pressTv/apps.py
a059e7ce5a0aa1da21d9203cdc591d921c15aff3
[ "MIT" ]
permissive
jafarzadeh-1998/Coronavirus-News-Crawler
8104b4a730bf08e59903ea0c9c8f035ec4e09fb0
aae34075b0f39b4490b6b562a18a195addc8b554
refs/heads/main
2023-01-07T21:41:02.673658
2020-11-03T14:24:50
2020-11-03T14:24:50
308,889,682
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
from django.apps import AppConfig class PresstvConfig(AppConfig): name = 'pressTv'
[ "a.jafarzadeh1998@gmail.com" ]
a.jafarzadeh1998@gmail.com
b3e740a0b9efebccd943477359ab43b75987d7c2
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/7/sw5.py
6ff3c55a6f3707c4e80f76687713728c3404fcd7
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'sw5': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
[ "juliettaylorswift@gmail.com" ]
juliettaylorswift@gmail.com
d318bf8277ce10614e8bd8d84441f8df63363604
22448c6ca28029b0782409a2e4503317efd1f4df
/Programmes tests/Accès soap/clientTest.py
9666b128301f1819fffac942f826af7024e35a83
[]
no_license
Assia-Megueni/bankNTR
396aef84dc542a943a6cbce97f984f3103dee2b5
c46b3c291573b14eea1d7d8a91c97b494fde9890
refs/heads/main
2023-04-19T02:04:06.598433
2021-04-30T12:10:29
2021-04-30T12:10:29
362,913,305
0
0
null
2021-04-29T18:37:35
2021-04-29T18:37:34
null
UTF-8
Python
false
false
3,412
py
from suds.client import Client nomprojet = "servicesoap" port = "8090" urlCommandes = "http://localhost:"+port+"/"+nomprojet+"/services/Commandes?wsdl" urlArticles = "http://localhost:"+port+"/"+nomprojet+"/services/Articles?wsdl" urlFinances = "http://localhost:"+port+"/"+nomprojet+"/services/Finances?wsdl" urlComptes = "http://localhost:"+port+"/"+nomprojet+"/services/Comptes?wsdl" def r(): client = Client(urlCommandes) print(client) client = Client(urlArticles) print(client) client = Client(urlFinances) print(client) client = Client(urlComptes) print(client) def ajouterCompteClient(nom,prenom,mdp): client = Client(urlComptes) print(client.service.creerCompte(nom,prenom,mdp,True)) def ajouterCompteVendeur(nom,prenom,mdp): client = Client(urlComptes) print(client.service.creerCompte(nom,prenom,mdp,False)) def getComptesVendeur(): client = Client(urlComptes) print(client.service.listeComptesVendeur()) def getComptesClient(): client = Client(urlComptes) print(client.service.listeComptesClient()) def isPasswordOK(nom,prenom,mdp,isClient): client = Client(urlComptes) print(client.service.isCorrect(nom,prenom,mdp,isClient)) def getId(nom,prenom,isClient): client = Client(urlComptes) print(client.service.idPersonne(nom,prenom,isClient)) def creerProduit(nom,categorie,prix,idVendeur): client = Client(urlArticles) print(client.service.ajoutArticle(nom,categorie,prix,idVendeur)) def listerProduits(): client = Client(urlArticles) print(client.service.getAllArticles()) def getAProduit(idd): client = Client(urlArticles) print(client.service.getArticle(idd)) def changerCategorieProd(idArticle,cate): client = Client(urlArticles) print(client.service.changerCatégorie(idArticle,cate)) listerProduits() def changerPrixProd(idArticle,prix): client = Client(urlArticles) print(client.service.changerPrix(idArticle,prix)) listerProduits() def ajoutStock(idArticle,nb): client = Client(urlArticles) print(client.service.ajoutStock(idArticle,nb)) listerProduits() def rmStock(idArticle,nb): client = Client(urlArticles) print(client.service.retirerStock(idArticle,nb)) listerProduits() # Commandes def getCommandes(): client = Client(urlCommandes) print(client.service.listeCommandes()) def getCommandesN(nom,prenom): client = Client(urlCommandes) print(client.service.commandesClient(nom,prenom)) def creerCommande(idClient): client = Client(urlCommandes) print(client.service.creerCommande(idClient)) getCommandes() def ajoutArticle(idCommande,idArticle,qte): client = Client(urlCommandes) print(client.service.ajoutArticle(idCommande,idArticle,qte)) getCommandes() def rmArticle(idCommande,idArticle,qte): client = Client(urlCommandes) print(client.service.retraitArticle(idCommande,idArticle,qte)) getCommandes() #Paiements def payer(idcommande): client = Client(urlFinances) print(client.service.payerCommande(idcommande)) getCommandes() def rembourser(idcommande): client = Client(urlFinances) print(client.service.rembourserCommande(idcommande)) getCommandes()
[ "55113456+bverhul@users.noreply.github.com" ]
55113456+bverhul@users.noreply.github.com
100b195881073cab936847756bee9bbca6c61300
c9f26cefc6325503e94e14d7bcc06c26f59ae701
/Shell/Kechocat.py
88eaf85b3538cce5a5c4b93dae5354382bfe70e5
[]
no_license
nivbhaskhar/Tools
92743788fee80f2f339efd1fc0b5e01996f0e774
d6ec4ed338578830b3da3fa8af692319127aebf0
refs/heads/master
2022-12-06T11:34:30.590121
2020-09-04T04:52:00
2020-09-04T04:52:00
268,422,303
0
0
null
2020-06-02T14:08:49
2020-06-01T04:08:33
Jupyter Notebook
UTF-8
Python
false
false
103
py
import sys print(' '.join(sys.argv[1:])) try: while True: print(input()) except EOFError: pass
[ "nivbhaskhar@gmail.com" ]
nivbhaskhar@gmail.com
4a0714091ddd90df0ea8c7a0b01751aad0843151
398089ec2210e1b6a12aecf8ed91cdeced6b36fc
/employer/views.py
37965cec7645b608559570279fbd8da925ea939d
[ "Apache-2.0" ]
permissive
WilliamQLiu/job-waffle
7ca8cb6357884e99a9c054bbd25d10222816dde7
59e4bc550dc1c2131fa427f188fbc2bb287aa938
refs/heads/master
2022-05-04T12:18:53.018609
2015-04-10T03:18:34
2015-04-10T03:18:34
27,843,538
1
1
Apache-2.0
2021-06-10T17:29:08
2014-12-10T22:48:48
JavaScript
UTF-8
Python
false
false
7,702
py
""" A view takes a web request and returns a web response The response can be a web page, a redirect, a 404 error, etc GET is used for requests that do not affect the state of the system POST is used for making changes in the database Under the hood, Django just converts HTTP POST and GET objects into a 'QueryDict', which is a Django dict, which is a Python dict """ from __future__ import absolute_import from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse from django.shortcuts import render, render_to_response, RequestContext, Http404 from django.utils.decorators import method_decorator # Allow LoggedInMixin from django.views.generic import TemplateView, View, ListView, UpdateView, DeleteView, CreateView from django.http import HttpResponse, HttpResponseRedirect from django.utils import timezone from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.contrib import messages import django_filters # For debugging from django.http.request import QueryDict from django.utils.datastructures import MultiValueDict import logging from .models import Job from .forms import JobForm, JobSearchForm from .serializers import JobSerializer from rest_framework import viewsets, authentication, permissions, filters from haystack.query import SearchQuerySet from haystack.inputs import AutoQuery, Exact, Clean, Raw # Debugging: Log levels (DEBUG, INFO, WARNING, ERROR, CRITICAL) logger = logging.getLogger(__name__) # get instance of a logger class LoggedInMixin(object): """ Mixin to ensure user is logged in """ @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(LoggedInMixin, self).dispatch(*args, **kwargs) def find_job(request): """ 'Find Job' Page """ query_what = None query_where = None form = JobSearchForm(request.GET) # <class 'employer.forms.JobSearchForm'> form_search = form.search() # Get Search Results from the form # GET data from the form; make sure fields aren't non-empty values # filter Haystack's SearchQuerySet, for details see: # http://django-haystack.readthedocs.org/en/v2.3.1/searchqueryset_api.html if ('query_what' in request.GET and request.GET['query_what']) or \ ('query_where' in request.GET and request.GET['query_where']): query_what = request.GET['query_what'] # query for what field query_where = request.GET['query_where'] # query for where field myquery = query_what + " " + query_where # combine search queries search_results = form_search.filter(content__contains=myquery) # AND else: query_what = 'You submitted an empty form' query_where = 'You submitted an empty form' search_results = form_search # If you want to filter by Model instead of by Haystack's SearchQuerySet #my_data = Job.objects.filter(active=True).order_by('timestamp_created') context = {'search_results': search_results} return render(request, 'find_job.html', context) def post_job(request): """ 'Post Job' Page """ if request.method == 'POST': form = JobForm(data=request.POST) # create form, populate data from request if form.is_valid(): #Return authenticated user, if any #username = None #if request.user.is_authenticated(): # username = request.user.username company = form.cleaned_data['company'] location = form.cleaned_data['location'] title = form.cleaned_data['title'] description = form.cleaned_data['description'] status = form.cleaned_data['status'] salary_min = form.cleaned_data['salary_min'] salary_max = form.cleaned_data['salary_max'] my_data = Job(created_by=request.user, company=company, location=location, timestamp_created=timezone.now(), title=title, description=description, status=status, salary_min=salary_min, salary_max=salary_max) my_data.save() messages.success(request, 'Thanks!') return HttpResponseRedirect('/') else: # Request is a 'GET' instead of 'POST' form = JobForm() # get a blank form #logger.info("Not a POST") return render(request, 'post_job.html', {'form': form}) def manage_job_posts(request): """ 'Manage Job Posts' Page """ my_data = Job.objects.filter(active=True).order_by('timestamp_created') context = {'my_data': my_data} return render(request, 'manage_job_posts.html', context) class JobCreateView(LoggedInMixin, CreateView): """ Allow Users to Create Jobs """ model = Job template_name = "job_create.html" def get_success_url(self): """ After posting job, go to job management """ return reverse('job-post') def get_context_data(self, **kwargs): context = super(JobCreateView, self).get_context_data(**kwargs) context['action'] = reverse('job-create') return context def form_valid(self, form): form.instance.user = self.request.user return super(JobCreateView, self).form_valid(form) class JobUpdateView(LoggedInMixin, UpdateView): """ Allow Users to Update Job """ model = Job template_name = 'job_update.html' def get_success_url(self): """ After updating a job, takes you back to job profile """ return reverse('manage_job_posts') def get_queryset(self): specific_id = self.kwargs['pk'] # Pass variable 'pk' from urls.py return Job.objects.filter(id=specific_id) class JobListView(LoggedInMixin, ListView): """ View a specific job """ model = Job template_name = "job_view.html" def get_success_url(self): return reverse('job-list') def get_queryset(self): specific_id = self.kwargs['pk'] # Pass variable 'pk' from urls.py return Job.objects.filter(id=specific_id) class JobDeleteView(LoggedInMixin, DeleteView): """ Delete a specific job """ model = Job template_name = "job_delete.html" def get_success_url(self): """ After deleting a job, takes you back to profile """ return reverse('manage_job_posts') def get_queryset(self): specific_id = self.kwargs['pk'] # Pass variable 'pk' from urls.py return Job.objects.filter(id=specific_id) # FOR DJANGO REST FRAMEWORK (DRF) class DefaultsMixin(object): """ Default settings for view authentication, permissions, filtering and pagination """ authentication_classes = ( authentication.BasicAuthentication, authentication.TokenAuthentication, ) permission_classes = ( permissions.IsAuthenticated, # Access to GET, POST, HEAD, OPTIONS #IsReadOnlyRequest, #permissions.IsAuthenticatedOrReadOnly ) filter_backends = ( filters.DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter, ) paginate_by = 50 paginate_by_param = 'page_size' max_paginate_by = 500 # DRF FILTERS class JobFilter(django_filters.FilterSet): company = django_filters.CharFilter(name='company') class Meta: model = Job fields = ('timestamp_updated', 'company', 'title') # DRF VIEWSETS class JobViewSet(DefaultsMixin, viewsets.ModelViewSet): queryset = Job.objects.all() serializer_class = JobSerializer filter_class = JobFilter search_fields = ('name') ordering_fields = ('timestamp_updated')
[ "William.Q.Liu@gmail.com" ]
William.Q.Liu@gmail.com
7e198ce9b23e20291e65927d4cb4929ce449664b
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-kafka/huaweicloudsdkkafka/v2/model/create_reassignment_task_response.py
9d3d17bcac4d36154a7f4e3ba477519e68ca9043
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,225
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class CreateReassignmentTaskResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'job_id': 'str' } attribute_map = { 'job_id': 'job_id' } def __init__(self, job_id=None): """CreateReassignmentTaskResponse The model defined in huaweicloud sdk :param job_id: 任务ID。 :type job_id: str """ super(CreateReassignmentTaskResponse, self).__init__() self._job_id = None self.discriminator = None if job_id is not None: self.job_id = job_id @property def job_id(self): """Gets the job_id of this CreateReassignmentTaskResponse. 任务ID。 :return: The job_id of this CreateReassignmentTaskResponse. :rtype: str """ return self._job_id @job_id.setter def job_id(self, job_id): """Sets the job_id of this CreateReassignmentTaskResponse. 任务ID。 :param job_id: The job_id of this CreateReassignmentTaskResponse. :type job_id: str """ self._job_id = job_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CreateReassignmentTaskResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
6432cf6c0bb2012d7369a431a646f38b43800201
29a4e8ffa77a09c418712bb243e1b4d24336e0c1
/nbgrader/formgrader/base.py
326ee4c2852b3763977915e7b9e277acf09f721b
[ "BSD-3-Clause" ]
permissive
silky/nbgrader
f52634438d79df80de077569e94562f08f123f0b
30f461ee06a03a1e2ed1789016bb49e9f59e61eb
refs/heads/master
2021-01-18T00:23:18.300627
2016-01-08T22:06:45
2016-01-08T22:06:45
50,624,512
1
0
null
2016-01-29T00:21:36
2016-01-29T00:21:36
null
UTF-8
Python
false
false
2,554
py
import json import functools from tornado import web def authenticated(f): @functools.wraps(f) def wrapper(self, *args, **kwargs): result = self.auth.authenticate(self.request) if result is True: return f(self, *args, **kwargs) # Success elif result is False: raise web.HTTPError(403) # Forbidden else: self.redirect(result, permanent=False) # Redirect return wrapper class BaseHandler(web.RequestHandler): @property def gradebook(self): return self.settings['gradebook'] @property def auth(self): return self.settings['auth'] @property def mathjax_url(self): return self.settings['mathjax_url'] @property def notebook_dir(self): return self.settings['notebook_dir'] @property def notebook_dir_format(self): return self.settings['notebook_dir_format'] @property def nbgrader_step(self): return self.settings['nbgrader_step'] @property def exporter(self): return self.settings['exporter'] @property def log(self): return self.settings['log'] def render(self, name, **ns): template = self.settings['jinja2_env'].get_template(name) return template.render(**ns) def write_error(self, status_code, **kwargs): if status_code == 500: html = self.render( 'gradebook_500.tpl', base_url=self.auth.base_url, error_code=500) elif status_code == 502: html = self.render( 'gradebook_500.tpl', base_url=self.auth.base_url, error_code=502) elif status_code == 403: html = self.render( 'gradebook_403.tpl', base_url=self.auth.base_url, error_code=403) else: return super(BaseHandler, self).write_error(status_code, **kwargs) self.write(html) self.finish() class BaseApiHandler(BaseHandler): def get_json_body(self): """Return the body of the request as JSON data.""" if not self.request.body: return None body = self.request.body.strip().decode('utf-8') try: model = json.loads(body) except Exception: self.log.debug("Bad JSON: %r", body) self.log.error("Couldn't parse JSON", exc_info=True) raise web.HTTPError(400, 'Invalid JSON in body of request') return model
[ "jhamrick@berkeley.edu" ]
jhamrick@berkeley.edu
69ed92de644fca515a276845a1ab3c88f930d96c
ecf6fe6aa87b2c3f041acc30fab11b0cafe3dd46
/architecture_py/archi_v3_4.py
c44736bffc6e0190265c5c5a8ec71479998ec8b7
[]
no_license
antgratia/Memoire_code
73c7806c4576c2e73e00d9a84b1063a2c8f6b559
2cdc1339ea24896a6628238f6467edff80f98166
refs/heads/main
2023-06-20T16:19:07.041464
2021-07-13T11:53:48
2021-07-13T11:53:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,719
py
import numpy as np import os from keras import backend as K from tensorflow import keras from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.models import Sequential, Model,load_model from tensorflow.keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D, GlobalAveragePooling2D, MaxPool2D, Concatenate, Dropout from tensorflow.keras.initializers import glorot_uniform from tensorflow.keras.utils import plot_model import tensorflow as tf import sys import traceback import csv from time import time type_archi = 'ALL' epsilon = 0.0 dropout_rate = 0.4 axis = 3 compress_factor = 0.5 # load dataset (train_x, train_y), (test_x, test_y) = keras.datasets.cifar10.load_data() # normalize to range 0-1 train_x = train_x / 255.0 test_x = test_x / 255.0 val_x = train_x[:5000] val_y = train_y[:5000] # init training time training_time = 0 # init result test/train test_result_loss = "" test_result_acc = "" train_result_loss = "" train_result_acc = "" nb_layers = "not build" def id_block(X, f, filters, activation): X_shortcut = X X = Conv2D(filters=filters, kernel_size=(1, 1), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X) if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Activation(activation)(X) X = Conv2D(filters=filters, kernel_size=(f, f), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X) if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Add()([X, X_shortcut])# SKIP Connection X = Activation(activation)(X) return X def conv_block(X, f, filters, activation, s=2): X_shortcut = X X = Conv2D(filters=filters, kernel_size=(1, 1), strides=(s, s), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X) if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Activation(activation)(X) X = Conv2D(filters=filters, kernel_size=(f, f), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X) if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X_shortcut = Conv2D(filters=filters, kernel_size=(1, 1), strides=(s, s), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X_shortcut) if epsilon != 0: X_shortcut = BatchNormalization(epsilon = epsilon, axis=axis)(X_shortcut) X = Add()([X, X_shortcut]) X = Activation(activation)(X) return X def denseBlock(X, f, nb_filter, nb_layer, padding, activation): x_input = X for _ in range(0,nb_layer): if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Activation(activation)(X) X = Conv2D(filters=nb_filter, kernel_size=(f, f), strides=(1, 1), padding=padding)(X) if dropout_rate != 0: X = Dropout(dropout_rate)(X) X = Concatenate()([X, x_input]) return X def transition_block(X, f, nb_filter, padding, activation, op, stride): if epsilon != 0: X = BatchNormalization(epsilon = epsilon, axis=axis)(X) X = Activation(activation)(X) X = Conv2D(filters=nb_filter, kernel_size=(f, f), strides=(1, 1), padding=padding)(X) if dropout_rate != 0: X = Dropout(dropout_rate)(X) if (op == 'avg'): X = AveragePooling2D(pool_size = f, strides=stride, padding=padding)(X) else : X = MaxPooling2D(pool_size=f, strides=stride, padding=padding)(X) return X try: def getModel(): X_input = X = Input([32, 32, 3]) X = Conv2D(18, kernel_size=5, strides=5, activation='relu', padding='valid')(X) X = conv_block(X, 2, 36, 'selu', 1) X = Conv2D(72, kernel_size=7, strides=2, activation='relu', padding='same')(X) X = conv_block(X, 7, 144, 'tanh', 7) X = GlobalMaxPooling2D()(X) X = Dense(10, activation='softmax')(X) model = Model(inputs=X_input, outputs=X) return model model = getModel() #plot_model(model, show_shapes=True, to_file="../architecture_img/archi_v3_4.png") model.compile(optimizer='adam', loss=keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) start = time() es = tf.keras.callbacks.EarlyStopping(monitor='loss', verbose=1, restore_best_weights=True, patience=1) list_cb = [es] history = model.fit(train_x, train_y, epochs=50, batch_size=64, validation_split=0.3, callbacks=list_cb) training_time = time()-start print(model.evaluate(test_x, test_y)) log_file = open("../architecture_log/archi_v3_4.log" , "w") # save test result log_file.write('test result : ' + str(model.evaluate(test_x, test_y))) test_result_loss = model.evaluate(test_x, test_y)[0] test_result_acc = model.evaluate(test_x, test_y)[1] # save train result log_file.write('train result : ' + str(model.evaluate(test_x, test_y))) log_file.write('History train result : ' + str(history.history)) train_result_loss = model.evaluate(train_x, train_y)[0] train_result_acc = model.evaluate(train_x, train_y)[1] print('OK: file ../architecture_log/archi_v3_4.log has been create') nb_layers = len(model.layers) log_file.close() except: print('error: file ../architecture_log/archi_v3_4_error.log has been create') error_file = open("../architecture_log/archi_v3_4_error.log" , "w") traceback.print_exc(file=error_file) result_loss = "Error" result_acc = "Error" error_file.close() finally: file = open('../architecture_results_v3.csv', 'a', newline ='') with file: # identifying header header = ['file_name', 'training_time(s)', 'test_result_loss', 'test_result_acc', 'train_result_acc', 'train_result_loss', 'nb_layers', 'epochs', 'type_archi'] writer = csv.DictWriter(file, fieldnames = header) # writing data row-wise into the csv file # writer.writeheader() writer.writerow({'file_name' : 'archi_v3_4', 'training_time(s)': training_time, 'test_result_loss': test_result_loss, 'test_result_acc': test_result_acc, 'train_result_acc': train_result_acc, 'train_result_loss': train_result_loss, 'nb_layers': nb_layers, 'epochs' : len(history.history['loss']), 'type_archi': type_archi}) print('add line into architecture_results_v3.csv') file.close()
[ "antoine.gratia@student.unamur.be" ]
antoine.gratia@student.unamur.be
717318d0c198f61b25d44184c633b78a922e0488
ef390f231b4d8e11e87f3cbe6066ebe2337ce099
/MyRMS/urls.py
99f166469233f42d271bb3a76adb21f720466711
[]
no_license
ShantanuBadmore/MyRMS
b46943047705e1fd132cae4bb29acb2ba59fc2b4
f47011fc2c04f6534c9a61e36608697ecb4acde9
refs/heads/main
2023-02-02T05:41:35.670591
2020-12-16T13:11:09
2020-12-16T13:11:09
317,527,666
0
0
null
null
null
null
UTF-8
Python
false
false
967
py
"""MyRMS URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from MyRMS import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', include("process.urls")), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "shantanubad21@gmail.com" ]
shantanubad21@gmail.com
1a182f8146133ca9bc2464aae199c57b3fe6bab9
fc6e807c122e77a02bf9fa34fc57e90ebf939b12
/src/read_mat.py
cd8a54936b4e58a27459d9a549dcd6180844193e
[]
no_license
kittenish/Frame-Transformer-Network
e924a522fc833df54446a82414df827f83e93348
2dda0209ad7dca8f014b9f94d6175f297a825646
refs/heads/master
2021-01-20T03:34:50.296022
2017-06-17T02:48:13
2017-06-17T02:48:13
89,558,047
17
0
null
null
null
null
UTF-8
Python
false
false
190
py
import scipy.io as sio import h5py def read_mat(url): data = sio.loadmat(url) return data def read_mat_v(url,name): with h5py.File(url, 'r') as f: data = f[name][()] return data
[ "jrgao0614@gmail.com" ]
jrgao0614@gmail.com
fcc7c1431834b67b33c402bba7abe6602a5fdf0b
972e97bbf213ccd29592618638caac1985fc8ffc
/models/VGG.py
dccb86e182d38b33b92ecca64e609a6a1971f467
[]
no_license
LouisChenki/CNNs-Pytorch
72222297a91b02af73e2ee9edcba0f3094a7ff97
8dfe86c339a1e6ce0d4d4678caa555df7bffbd82
refs/heads/master
2020-08-06T13:24:41.359640
2019-10-08T02:07:22
2019-10-08T02:07:22
212,990,894
5
0
null
null
null
null
UTF-8
Python
false
false
4,365
py
import torch.nn as nn def Conv3x3(in_f, out_f): return nn.Conv2d(in_channels=in_f, out_channels=out_f, kernel_size=3, stride=1, padding=1) def Conv1x1(in_f, out_f): return nn.Conv2d(in_channels=in_f, out_channels=out_f, kernel_size=1, stride=1) def MaxPool(): return nn.MaxPool2d(kernel_size=2, stride=2) class BasicBlock(nn.Module): def __init__(self, inplanes, planes, num, lrn=False, smallconv=False): super(BasicBlock, self).__init__() self.block = self.make_layer(inplanes, planes, num, lrn, smallconv) def make_layer(self, inplanes, planes, num, lrn=False, smallconv=False): block = list() block.append(Conv3x3(in_f=inplanes, out_f=planes)) block.append(nn.ReLU(inplace=True)) for i in range(1, num-1): block.append(Conv3x3(in_f=planes, out_f=planes)) block.append(nn.ReLU(inplace=True)) if lrn is True: block.append(nn.LocalResponseNorm(size=5)) elif smallconv is True: block.append(Conv1x1(in_f=planes, out_f=planes)) block.append(nn.ReLU(inplace=True)) elif num > 1: block.append(Conv3x3(in_f=planes, out_f=planes)) block.append(nn.ReLU(inplace=True)) return nn.Sequential(*block) def forward(self, x): x = self.block(x) return x class Classifer(nn.Module): def __init__(self, num_class=1000): super(Classifer, self).__init__() self.fc1 = nn.Linear(7*7*512, 4096) self.fc2 = nn.Linear(4096, 4096) self.fc3 = nn.Linear(4096, num_class) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout(p=0.5) def forward(self, x): x = self.dropout(self.relu(self.fc1(x))) x = self.dropout(self.relu(self.fc2(x))) x = self.relu(self.fc3(x)) return x class VGG(nn.Module): def __init__(self, num, lrn=False, smallconv=False, num_class=1000): super(VGG, self).__init__() self.block1 = BasicBlock(inplanes=3, planes=64, num=num[0], lrn=lrn, smallconv=False) self.block2 = BasicBlock(inplanes=64, planes=128, num=num[1]) self.block3 = BasicBlock(inplanes=128, planes=256, num=num[2], smallconv=smallconv) self.block4 = BasicBlock(inplanes=256, planes=512, num=num[3], smallconv=smallconv) self.block5 = BasicBlock(inplanes=512, planes=512, num=num[4], smallconv=smallconv) self.pool = MaxPool() self.classifer = Classifer(num_class=num_class) def forward(self, x): x = self.block1(x) x = self.pool(x) x = self.block2(x) x = self.pool(x) x = self.block3(x) x = self.pool(x) x = self.block4(x) x = self.pool(x) x = self.block5(x) x = self.pool(x) x = x.view(x.size(0), -1) x = self.classifer(x) return x def initialization(self): for per in self.modules(): if isinstance(per, nn.Conv2d): nn.init.kaiming_normal_(per.weight, mode='fan_out', nonlinearity='relu') elif isinstance(per, nn.Linear): nn.init.normal_(per.weight, 0, 0.01) nn.init.constant_(per.bias, 0) def vgg_11(num_class, initialize=False): net = VGG(num=[1, 1, 2, 2, 2], num_class=num_class) if initialize: net.initialization() return net def vgg_11_lrn(num_class, initialize=False): net = VGG(num=[1, 1, 2, 2, 2], lrn=True, num_class=num_class) if initialize: net.initialization() return net def vgg_13(num_class, initialize=False): net = VGG(num=[2, 2, 2, 2, 2], num_class=num_class) if initialize: net.initialization() return net def vgg_16_c(num_class, initialize=False): net = VGG(num=[2, 2, 3, 3, 3], smallconv=True, num_class=num_class) if initialize: net.initialization() return net def vgg_16_d(num_class, initialize=False): net = VGG(num=[2, 2, 3, 3, 3], num_class=num_class) if initialize: net.initialization() return net def vgg_19(num_class, initialize=False): net = VGG(num=[2, 2, 4, 4, 4], num_class=num_class) if initialize: net.initialization() return net
[ "noreply@github.com" ]
noreply@github.com
73b652f3a24c54f91a9bbff23c0ecf91a474ae00
76e59b924b91cea92f86bb2563a16d77ed9d4121
/blog/migrations/0001_initial.py
4c7bb15def04552395c315e3566f4a31405d8c3a
[]
no_license
rwalt04/my-first-blog
8325964605ee6fefe5cdc2de9939e9c88e576f62
ee406c259c417c58859278e8e0cb4f31ac636cdd
refs/heads/master
2020-06-16T23:28:16.477740
2017-01-10T21:20:50
2017-01-10T21:20:50
75,058,756
0
0
null
null
null
null
UTF-8
Python
false
false
1,051
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-01-09 04:38 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "rwalt04@gmail.com" ]
rwalt04@gmail.com
c315f03c95140d141e56d7df055e3cacaea8396e
b89ce8c23c4b8a62e98e5ee26fe00563dccd9a57
/ex23.py
5f4b193c45fc74d4368e166349c96dab01bffecf
[]
no_license
LemonGuai/python_study
5cf1fd526059902f82f367dab2ec27ce1b08c584
00b37575610d5a53f6391c6736ffde6ae59691d6
refs/heads/master
2021-06-14T03:37:14.412638
2021-05-21T14:07:19
2021-05-21T14:07:19
181,149,319
0
0
null
null
null
null
UTF-8
Python
false
false
560
py
import sys script, encoding, error = sys.argv def main(language_file, encoding, errors): line = language_file.readline() if line: print_line(line, encoding, errors) return main(language_file, encoding, errors) def print_line(line, encoding, errors): next_lang = line.strip() raw_bytes = next_lang.encode(encoding, errors=errors) cooked_string = raw_bytes.decode(encoding, errors=errors) print(raw_bytes, "<===>", cooked_string) languages = open("languages.txt", encoding="utf-8") main(languages, encoding, error)
[ "csf2412297817@163.com" ]
csf2412297817@163.com
dfb43f4fff46cd2c3b565232d90d955ef89a1bb6
bf6cf5e55349e414ccca0fc674f721f589e06e8f
/src/main/migrations/0016_auto_20170625_1315.py
272f2a8814502db51d4b651ce79756fab5b0ccb4
[ "MIT" ]
permissive
shashankmohabia/gymkhana-master
cc7e3db4847edc2f91fc752da2fc35ad055f237d
a0d399d781797a2f63fb81a1ae287714213d068b
refs/heads/master
2021-05-03T10:29:29.596959
2018-02-06T23:27:16
2018-02-06T23:27:16
120,535,798
1
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-06-25 07:45 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('photologue', '0011_auto_20170625_1315'), ('main', '0015_auto_20170625_1239'), ] operations = [ migrations.AddField( model_name='club', name='gallery', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='photologue.Gallery'), ), migrations.AlterField( model_name='club', name='skin', field=models.CharField(blank=True, choices=[('white-skin', 'White'), ('black-skin', 'Black'), ('cyan-skin', 'Cyan'), ('mdb-skin', 'MDB'), ('deep-purple-skin', 'Deep Purple'), ('navy-blue-skin', 'Navy Blue'), ('pink-skin', 'Pink'), ('indigo-skin', 'Indigo'), ('light-blue-skin', 'Light Blue'), ('grey-skin', 'Grey')], help_text='Choose a skin while displaying club page.', max_length=32, null=True), ), ]
[ "shashankmohabia27@gmail.com" ]
shashankmohabia27@gmail.com
932ed77b62071e2341a521257a94cd2988c67347
1680de86a673db3370327cdedc891b6c4f6a698c
/examples/flask/app/models.py
f5f2962cf79f66bdebdd2087e8067ebaa52c9d12
[ "Apache-2.0" ]
permissive
broadsheet/facebook-sdk
cf477f84de339d6ca9a362fb1a0a283b801f9d79
5d4d4723904ca41a944d2c537a4073a43d0066cf
refs/heads/master
2020-05-29T20:39:02.938799
2019-07-18T01:56:27
2019-07-18T01:56:27
189,357,850
0
0
Apache-2.0
2019-05-30T06:24:39
2019-05-30T06:24:38
null
UTF-8
Python
false
false
532
py
from datetime import datetime from app import db class User(db.Model): __tablename__ = 'users' id = db.Column(db.String, nullable=False, primary_key=True) created = db.Column(db.DateTime, default=datetime.utcnow, nullable=False) updated = db.Column(db.DateTime, default=datetime.utcnow, nullable=False, onupdate=datetime.utcnow) name = db.Column(db.String, nullable=False) profile_url = db.Column(db.String, nullable=False) access_token = db.Column(db.String, nullable=False)
[ "personal.mitchellstewart@gmail.com" ]
personal.mitchellstewart@gmail.com
e62a14fe12df472397d2a04fcbe08d76194ed0ed
c117487299300174881a1fcc33d8214b40a70a05
/_LaunchpadDJ/launchpadchannelstripcomponent.py
7d409c7c8aed4f1dc07dd997188821366fa82923
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
alandrees/RemoteScripts
2e3f2bf72e57249f7bc6b3c47931bde9d02dfeea
468a98c6652e38dc7887bd7e99338ee4f0cfc8b3
refs/heads/master
2020-12-24T16:15:04.714352
2013-06-11T16:27:29
2013-06-11T16:27:29
10,479,183
6
1
null
null
null
null
UTF-8
Python
false
false
9,706
py
import Live from _Framework.ControlSurfaceComponent import ControlSurfaceComponent from _Framework.ChannelStripComponent import ChannelStripComponent from _Framework.ButtonElement import * class LaunchpadChannelStripComponent(ChannelStripComponent): def __init__(self): ChannelStripComponent.__init__(self) self._stopall_button = None def get_track(self): if(self._track != None): return self._track else: return None def sends_count(self): return len(self._track.mixer_device.sends) def set_stopall_button(self, button): if (button != self._stopall_button): if (self._stopall_button != None): self._stopall_button.remove_value_listener(self._stopall_value) self._track.remove_fired_slot_index_listener(self._on_stopall_changed) self._track.remove_playing_slot_index_listener(self._on_stopall_changed) self._stopall_button.reset() self._stopall_pressed = False #added self._stopall_button = button if (self._stopall_button != None): self._stopall_button.add_value_listener(self._stopall_value) self._track.add_fired_slot_index_listener(self._on_stopall_changed) self._track.add_playing_slot_index_listener(self._on_stopall_changed) self.update() def _stopall_value(self,value): if value != 0: self._track.stop_all_clips() self.update() def remove_stopall_button(self): if (self._stopall_button != None): self._stopall_button.remove_value_listener(self._stopall_value) self._track.remove_fired_slot_index_listener(self._on_stopall_changed) self._track.remove_playing_slot_index_listener(self._on_stopall_changed) self._stopall_pressed = False #added def _on_stopall_changed(self): if ((self._track != None) and hasattr(self._track, 'fired_slot_index') and hasattr(self._track, 'fired_slot_index')): if self._stopall_button != None: if self._track.fired_slot_index == -2: self._stopall_button.send_value(59) return None if self._track.playing_slot_index >= 0: self._stopall_button.send_value(29,True) else: self._stopall_button.send_value(13,True) def set_track(self, track): #assert isinstance(track, type(None), Live.Track.Track) assert ((track == None) or isinstance(track, Live.Track.Track)) if (self._track != None): if (self._track != self.song().master_track): if self._track.mixer_device.sends_has_listener(self._on_sends_changed): self._track.mixer_device.remove_sends_listener(self._on_sends_changed) if self._track.mute_has_listener(self._on_mute_changed): self._track.remove_mute_listener(self._on_mute_changed) if self._track.name_has_listener(self._on_track_name_changed): self._track.remove_name_listener(self._on_track_name_changed) if self._track.solo_has_listener(self._on_solo_changed): self._track.remove_solo_listener(self._on_solo_changed) if self._track.mixer_device.crossfade_assign_has_listener(self._on_cf_assign_changed): self._track.mixer_device.remove_crossfade_assign_listener(self._on_cf_assign_changed) if (self._track not in self.song().return_tracks): if (self._track.can_be_armed and self._track.arm_has_listener(self._on_arm_changed)): self._track.remove_arm_listener(self._on_arm_changed) if self._track.current_input_routing_has_listener(self._on_input_routing_changed): self._track.remove_current_input_routing_listener(self._on_input_routing_changed) if (self._pan_control != None): self._pan_control.release_parameter() if (self._volume_control != None): self._volume_control.release_parameter() if (self._send_controls != None): for send_control in self._send_controls: if (send_control != None): send_control.release_parameter() self._track = track if (self._track != None): assert isinstance(self._track, Live.Track.Track) assert (self._track in ((self.song().tracks + self.song().return_tracks) + (self.song().master_track,))) if (self._track != self.song().master_track): self._track.add_solo_listener(self._on_solo_changed) self._track.mixer_device.add_sends_listener(self._on_sends_changed) self._track.add_mute_listener(self._on_mute_changed) self._track.add_name_listener(self._on_track_name_changed) self._track.mixer_device.add_crossfade_assign_listener(self._on_cf_assign_changed) if (self._track not in self.song().return_tracks): if self._track.can_be_armed: self._track.add_arm_listener(self._on_arm_changed) self._track.add_current_input_routing_listener(self._on_input_routing_changed) if (self._track_name_data_source != None): self._track_name_data_source.set_display_string(self._track.name) else: if (self._track_name_data_source != None): self._track_name_data_source.set_display_string(' - ') for button in [self._select_button, self._mute_button, self._solo_button, self._arm_button, self._crossfade_toggle]: #added if button != None: #added button.turn_off() #added self.update() def update(self): if self._allow_updates: if self.is_enabled(): if (self._track != None): if (self._pan_control != None): self._pan_control.connect_to(self._track.mixer_device.panning) if (self._volume_control != None): self._volume_control.connect_to(self._track.mixer_device.volume) if (self._send_controls != None): index = 0 for send_control in self._send_controls: if (send_control != None): if (index < len(self._track.mixer_device.sends)): send_control.connect_to(self._track.mixer_device.sends[index]) else: send_control.release_parameter() index += 1 #self._request_rebuild_callback() self.on_selected_track_changed() self._on_mute_changed() self._on_solo_changed() self._on_arm_changed() self._on_cf_assign_changed() self._on_stopall_changed() else: if (self._track != None): if (self._pan_control != None): self._pan_control.release_parameter() if (self._volume_control != None): self._volume_control.release_parameter() if (self._send_controls != None): for send_control in self._send_controls: if (send_control != None): send_control.release_parameter() #ControlSurfaceComponent._request_rebuild_callback(self) else: self._update_requests += 1 def remove_send_controls(self): for send_control in self._send_controls: send_control.release_parameter() self._send_controls = None def remove_volume_control(self): self._volume_control.release_parameter() self._volume_control = None def external_solo_trigger(self,value): if ((self._track != None) and (self._track != self.song().master_track)): if value != 0: self._track.solo = True else: self._track.solo = False #def _solo_value(self, value): # assert (value in range(128)) # if self.is_enabled(): # if ((self._track != None) and (self._track != self.song().master_track)): # expected_solos_pressed = 0 #added # if self._solo_pressed: #added # expected_solos_pressed = 1 #added # solo_exclusive = (self.song().exclusive_solo != self._shift_pressed) or (ChannelStripComponent.number_of_solos_pressed() == expected_solos_pressed)) #added # new_value = not self._track.solo #added # respect_multi_selection = self._track.is_part_of_selection #added # for track in (self.song().tracks + self.song().return_tracks): # if (track == self._track) or (respect_multi_selection and track.is_part_of_selection): # track.solo = new_value # elif solo_exclusive and track.solo: # track.solo = False
[ "alandrees@theselves.com" ]
alandrees@theselves.com
68c6872a92d545946338db2bc054259b20769654
d584b46ae0b5d6ac340ac3730e87d0ec1050ba00
/tools/adafruit_mlx90640.py
c1cd5a4bf197d9b0df57abe4234bf38764244584
[]
no_license
aaron-c-zhao/PeopleCounter
74d0dfb301273fb8c97fd0df5a8e4de60ccc58d0
b4c15fc5dc082c9198d01005e49a56691c2c0440
refs/heads/master
2022-11-26T17:32:59.183497
2020-08-09T08:36:23
2020-08-09T08:36:23
279,967,633
3
0
null
2020-07-22T18:41:29
2020-07-15T20:11:34
C
UTF-8
Python
false
false
26,928
py
# The MIT License (MIT) # # Copyright (c) 2019 ladyada for Adafruit Industries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ `adafruit_mlx90640` ================================================================================ Driver for the MLX90640 thermal camera * Author(s): ladyada Implementation Notes -------------------- **Software and Dependencies:** * Adafruit CircuitPython firmware for the supported boards: https://github.com/adafruit/circuitpython/releases * Adafruit's Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice * Adafruit's Register library: https://github.com/adafruit/Adafruit_CircuitPython_Register """ import struct import math import time from adafruit_bus_device.i2c_device import I2CDevice __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_MLX90640.git" # We match the melexis library naming, and don't want to change # pylint: disable=invalid-name eeData = [0] * 832 I2C_READ_LEN = 2048 SCALEALPHA = 0.000001 MLX90640_DEVICEID1 = 0x2407 OPENAIR_TA_SHIFT = 8 class RefreshRate: # pylint: disable=too-few-public-methods """ Enum-like class for MLX90640's refresh rate """ REFRESH_0_5_HZ = 0b000 # 0.5Hz REFRESH_1_HZ = 0b001 # 1Hz REFRESH_2_HZ = 0b010 # 2Hz REFRESH_4_HZ = 0b011 # 4Hz REFRESH_8_HZ = 0b100 # 8Hz REFRESH_16_HZ = 0b101 # 16Hz REFRESH_32_HZ = 0b110 # 32Hz REFRESH_64_HZ = 0b111 # 64Hz class MLX90640: # pylint: disable=too-many-instance-attributes """Interface to the MLX90640 temperature sensor.""" kVdd = 0 vdd25 = 0 KvPTAT = 0 KtPTAT = 0 vPTAT25 = 0 alphaPTAT = 0 gainEE = 0 tgc = 0 KsTa = 0 resolutionEE = 0 calibrationModeEE = 0 ksTo = [0] * 5 ct = [0] * 5 alpha = [0] * 768 alphaScale = 0 offset = [0] * 768 kta = [0] * 768 ktaScale = 0 kv = [0] * 768 kvScale = 0 cpAlpha = [0] * 2 cpOffset = [0] * 2 ilChessC = [0] * 3 brokenPixels = [0xFFFF] * 5 outlierPixels = [0xFFFF] * 5 cpKta = 0 cpKv = 0 def __init__(self, i2c_bus, address=0x33): self.i2c_device = I2CDevice(i2c_bus, address) self._I2CReadWords(0x2400, eeData) # print(eeData) self._ExtractParameters() @property def serial_number(self): """ 3-item tuple of hex values that are unique to each MLX90640 """ serialWords = [0, 0, 0] self._I2CReadWords(MLX90640_DEVICEID1, serialWords) return serialWords @property def refresh_rate(self): """ How fast the MLX90640 will spit out data. Start at lowest speed in RefreshRate and then slowly increase I2C clock rate and rate until you max out. The sensor does not like it if the I2C host cannot 'keep up'!""" controlRegister = [0] self._I2CReadWords(0x800D, controlRegister) return (controlRegister[0] >> 7) & 0x07 @refresh_rate.setter def refresh_rate(self, rate): controlRegister = [0] value = (rate & 0x7) << 7 self._I2CReadWords(0x800D, controlRegister) value |= controlRegister[0] & 0xFC7F self._I2CWriteWord(0x800D, value) def getFrame(self, framebuf): """ Request both 'halves' of a frame from the sensor, merge them and calculate the temperature in C for each of 32x24 pixels. Placed into the 768-element array passed in! """ emissivity = 0.95 tr = 23.15 mlx90640Frame = [0] * 834 mFrames = [[0 for x in range(834)] for y in range(2)] for i in range(2): status = self._GetFrameData(mlx90640Frame) mFrames[i] = mlx90640Frame.copy() if status < 0: raise RuntimeError("Frame data error") # For a MLX90640 in the open air the shift is -8 degC. tr = self._GetTa(mlx90640Frame) - OPENAIR_TA_SHIFT self._CalculateTo(mlx90640Frame, emissivity, tr, framebuf) return mFrames def getEeData(self): return eeData def _GetFrameData(self, frameData): dataReady = 0 cnt = 0 statusRegister = [0] controlRegister = [0] while dataReady == 0: self._I2CReadWords(0x8000, statusRegister) dataReady = statusRegister[0] & 0x0008 # print("ready status: 0x%x" % dataReady) while (dataReady != 0) and (cnt < 5): self._I2CWriteWord(0x8000, 0x0030) # print("Read frame", cnt) self._I2CReadWords(0x0400, frameData, end=832) self._I2CReadWords(0x8000, statusRegister) dataReady = statusRegister[0] & 0x0008 # print("frame ready: 0x%x" % dataReady) cnt += 1 if cnt > 4: raise RuntimeError("Too many retries") self._I2CReadWords(0x800D, controlRegister) frameData[832] = controlRegister[0] frameData[833] = statusRegister[0] & 0x0001 return frameData[833] def _GetTa(self, frameData): vdd = self._GetVdd(frameData) ptat = frameData[800] if ptat > 32767: ptat -= 65536 ptatArt = frameData[768] if ptatArt > 32767: ptatArt -= 65536 ptatArt = (ptat / (ptat * self.alphaPTAT + ptatArt)) * math.pow(2, 18) ta = ptatArt / (1 + self.KvPTAT * (vdd - 3.3)) - self.vPTAT25 ta = ta / self.KtPTAT + 25 return ta def _GetVdd(self, frameData): vdd = frameData[810] if vdd > 32767: vdd -= 65536 resolutionRAM = (frameData[832] & 0x0C00) >> 10 resolutionCorrection = math.pow(2, self.resolutionEE) / math.pow( 2, resolutionRAM ) vdd = (resolutionCorrection * vdd - self.vdd25) / self.kVdd + 3.3 return vdd def _CalculateTo(self, frameData, emissivity, tr, result): # pylint: disable=too-many-locals, too-many-branches, too-many-statements subPage = frameData[833] alphaCorrR = [0] * 4 irDataCP = [0, 0] vdd = self._GetVdd(frameData) ta = self._GetTa(frameData) ta4 = ta + 273.15 ta4 = ta4 * ta4 ta4 = ta4 * ta4 tr4 = tr + 273.15 tr4 = tr4 * tr4 tr4 = tr4 * tr4 taTr = tr4 - (tr4 - ta4) / emissivity ktaScale = math.pow(2, self.ktaScale) kvScale = math.pow(2, self.kvScale) alphaScale = math.pow(2, self.alphaScale) alphaCorrR[0] = 1 / (1 + self.ksTo[0] * 40) alphaCorrR[1] = 1 alphaCorrR[2] = 1 + self.ksTo[1] * self.ct[2] alphaCorrR[3] = alphaCorrR[2] * (1 + self.ksTo[2] * (self.ct[3] - self.ct[2])) # --------- Gain calculation ----------------------------------- gain = frameData[778] if gain > 32767: gain -= 65536 gain = self.gainEE / gain # --------- To calculation ------------------------------------- mode = (frameData[832] & 0x1000) >> 5 irDataCP[0] = frameData[776] irDataCP[1] = frameData[808] for i in range(2): if irDataCP[i] > 32767: irDataCP[i] -= 65536 irDataCP[i] *= gain irDataCP[0] -= ( self.cpOffset[0] * (1 + self.cpKta * (ta - 25)) * (1 + self.cpKv * (vdd - 3.3)) ) if mode == self.calibrationModeEE: irDataCP[1] -= ( self.cpOffset[1] * (1 + self.cpKta * (ta - 25)) * (1 + self.cpKv * (vdd - 3.3)) ) else: irDataCP[1] -= ( (self.cpOffset[1] + self.ilChessC[0]) * (1 + self.cpKta * (ta - 25)) * (1 + self.cpKv * (vdd - 3.3)) ) for pixelNumber in range(768): ilPattern = pixelNumber // 32 - (pixelNumber // 64) * 2 chessPattern = ilPattern ^ (pixelNumber - (pixelNumber // 2) * 2) conversionPattern = ( (pixelNumber + 2) // 4 - (pixelNumber + 3) // 4 + (pixelNumber + 1) // 4 - pixelNumber // 4 ) * (1 - 2 * ilPattern) if mode == 0: pattern = ilPattern else: pattern = chessPattern if pattern == frameData[833]: irData = frameData[pixelNumber] if irData > 32767: irData -= 65536 irData *= gain kta = self.kta[pixelNumber] / ktaScale kv = self.kv[pixelNumber] / kvScale irData -= ( self.offset[pixelNumber] * (1 + kta * (ta - 25)) * (1 + kv * (vdd - 3.3)) ) if mode != self.calibrationModeEE: irData += ( self.ilChessC[2] * (2 * ilPattern - 1) - self.ilChessC[1] * conversionPattern ) irData = irData - self.tgc * irDataCP[subPage] irData /= emissivity alphaCompensated = SCALEALPHA * alphaScale / self.alpha[pixelNumber] alphaCompensated *= 1 + self.KsTa * (ta - 25) Sx = ( alphaCompensated * alphaCompensated * alphaCompensated * (irData + alphaCompensated * taTr) ) Sx = math.sqrt(math.sqrt(Sx)) * self.ksTo[1] To = ( math.sqrt( math.sqrt( irData / (alphaCompensated * (1 - self.ksTo[1] * 273.15) + Sx) + taTr ) ) - 273.15 ) if To < self.ct[1]: torange = 0 elif To < self.ct[2]: torange = 1 elif To < self.ct[3]: torange = 2 else: torange = 3 To = ( math.sqrt( math.sqrt( irData / ( alphaCompensated * alphaCorrR[torange] * (1 + self.ksTo[torange] * (To - self.ct[torange])) ) + taTr ) ) - 273.15 ) result[pixelNumber] = To # pylint: enable=too-many-locals, too-many-branches, too-many-statements def _ExtractParameters(self): self._ExtractVDDParameters() self._ExtractPTATParameters() self._ExtractGainParameters() self._ExtractTgcParameters() self._ExtractResolutionParameters() self._ExtractKsTaParameters() self._ExtractKsToParameters() self._ExtractCPParameters() self._ExtractAlphaParameters() self._ExtractOffsetParameters() self._ExtractKtaPixelParameters() self._ExtractKvPixelParameters() self._ExtractCILCParameters() self._ExtractDeviatingPixels() # debug output # print('-'*40) # print("kVdd = %d, vdd25 = %d" % (self.kVdd, self.vdd25)) # print("KvPTAT = %f, KtPTAT = %f, vPTAT25 = %d, alphaPTAT = %f" % # (self.KvPTAT, self.KtPTAT, self.vPTAT25, self.alphaPTAT)) # print("Gain = %d, Tgc = %f, Resolution = %d" % (self.gainEE, self.tgc, self.resolutionEE)) # print("KsTa = %f, ksTo = %s, ct = %s" % (self.KsTa, self.ksTo, self.ct)) # print("cpAlpha:", self.cpAlpha, "cpOffset:", self.cpOffset) # print("alpha: ", self.alpha) # print("alphascale: ", self.alphaScale) # print("offset: ", self.offset) # print("kta:", self.kta) # print("ktaScale:", self.ktaScale) # print("kv:", self.kv) # print("kvScale:", self.kvScale) # print("calibrationModeEE:", self.calibrationModeEE) # print("ilChessC:", self.ilChessC) # print('-'*40) def _ExtractVDDParameters(self): # extract VDD self.kVdd = (eeData[51] & 0xFF00) >> 8 if self.kVdd > 127: self.kVdd -= 256 # convert to signed self.kVdd *= 32 self.vdd25 = eeData[51] & 0x00FF self.vdd25 = ((self.vdd25 - 256) << 5) - 8192 def _ExtractPTATParameters(self): # extract PTAT self.KvPTAT = (eeData[50] & 0xFC00) >> 10 if self.KvPTAT > 31: self.KvPTAT -= 64 self.KvPTAT /= 4096 self.KtPTAT = eeData[50] & 0x03FF if self.KtPTAT > 511: self.KtPTAT -= 1024 self.KtPTAT /= 8 self.vPTAT25 = eeData[49] self.alphaPTAT = (eeData[16] & 0xF000) / math.pow(2, 14) + 8 def _ExtractGainParameters(self): # extract Gain self.gainEE = eeData[48] if self.gainEE > 32767: self.gainEE -= 65536 def _ExtractTgcParameters(self): # extract Tgc self.tgc = eeData[60] & 0x00FF if self.tgc > 127: self.tgc -= 256 self.tgc /= 32 def _ExtractResolutionParameters(self): # extract resolution self.resolutionEE = (eeData[56] & 0x3000) >> 12 def _ExtractKsTaParameters(self): # extract KsTa self.KsTa = (eeData[60] & 0xFF00) >> 8 if self.KsTa > 127: self.KsTa -= 256 self.KsTa /= 8192 def _ExtractKsToParameters(self): # extract ksTo step = ((eeData[63] & 0x3000) >> 12) * 10 self.ct[0] = -40 self.ct[1] = 0 self.ct[2] = (eeData[63] & 0x00F0) >> 4 self.ct[3] = (eeData[63] & 0x0F00) >> 8 self.ct[2] *= step self.ct[3] = self.ct[2] + self.ct[3] * step KsToScale = (eeData[63] & 0x000F) + 8 KsToScale = 1 << KsToScale self.ksTo[0] = eeData[61] & 0x00FF self.ksTo[1] = (eeData[61] & 0xFF00) >> 8 self.ksTo[2] = eeData[62] & 0x00FF self.ksTo[3] = (eeData[62] & 0xFF00) >> 8 for i in range(4): if self.ksTo[i] > 127: self.ksTo[i] -= 256 self.ksTo[i] /= KsToScale self.ksTo[4] = -0.0002 def _ExtractCPParameters(self): # extract CP offsetSP = [0] * 2 alphaSP = [0] * 2 alphaScale = ((eeData[32] & 0xF000) >> 12) + 27 offsetSP[0] = eeData[58] & 0x03FF if offsetSP[0] > 511: offsetSP[0] -= 1024 offsetSP[1] = (eeData[58] & 0xFC00) >> 10 if offsetSP[1] > 31: offsetSP[1] -= 64 offsetSP[1] += offsetSP[0] alphaSP[0] = eeData[57] & 0x03FF if alphaSP[0] > 511: alphaSP[0] -= 1024 alphaSP[0] /= math.pow(2, alphaScale) alphaSP[1] = (eeData[57] & 0xFC00) >> 10 if alphaSP[1] > 31: alphaSP[1] -= 64 alphaSP[1] = (1 + alphaSP[1] / 128) * alphaSP[0] cpKta = eeData[59] & 0x00FF if cpKta > 127: cpKta -= 256 ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8 self.cpKta = cpKta / math.pow(2, ktaScale1) cpKv = (eeData[59] & 0xFF00) >> 8 if cpKv > 127: cpKv -= 256 kvScale = (eeData[56] & 0x0F00) >> 8 self.cpKv = cpKv / math.pow(2, kvScale) self.cpAlpha[0] = alphaSP[0] self.cpAlpha[1] = alphaSP[1] self.cpOffset[0] = offsetSP[0] self.cpOffset[1] = offsetSP[1] def _ExtractAlphaParameters(self): # extract alpha accRemScale = eeData[32] & 0x000F accColumnScale = (eeData[32] & 0x00F0) >> 4 accRowScale = (eeData[32] & 0x0F00) >> 8 alphaScale = ((eeData[32] & 0xF000) >> 12) + 30 alphaRef = eeData[33] accRow = [0] * 24 accColumn = [0] * 32 alphaTemp = [0] * 768 for i in range(6): p = i * 4 accRow[p + 0] = eeData[34 + i] & 0x000F accRow[p + 1] = (eeData[34 + i] & 0x00F0) >> 4 accRow[p + 2] = (eeData[34 + i] & 0x0F00) >> 8 accRow[p + 3] = (eeData[34 + i] & 0xF000) >> 12 for i in range(24): if accRow[i] > 7: accRow[i] -= 16 for i in range(8): p = i * 4 accColumn[p + 0] = eeData[40 + i] & 0x000F accColumn[p + 1] = (eeData[40 + i] & 0x00F0) >> 4 accColumn[p + 2] = (eeData[40 + i] & 0x0F00) >> 8 accColumn[p + 3] = (eeData[40 + i] & 0xF000) >> 12 for i in range(32): if accColumn[i] > 7: accColumn[i] -= 16 for i in range(24): for j in range(32): p = 32 * i + j alphaTemp[p] = (eeData[64 + p] & 0x03F0) >> 4 if alphaTemp[p] > 31: alphaTemp[p] -= 64 alphaTemp[p] *= 1 << accRemScale alphaTemp[p] += ( alphaRef + (accRow[i] << accRowScale) + (accColumn[j] << accColumnScale) ) alphaTemp[p] /= math.pow(2, alphaScale) alphaTemp[p] -= self.tgc * (self.cpAlpha[0] + self.cpAlpha[1]) / 2 alphaTemp[p] = SCALEALPHA / alphaTemp[p] # print("alphaTemp: ", alphaTemp) temp = max(alphaTemp) # print("temp", temp) alphaScale = 0 while temp < 32768: temp *= 2 alphaScale += 1 for i in range(768): temp = alphaTemp[i] * math.pow(2, alphaScale) self.alpha[i] = int(temp + 0.5) self.alphaScale = alphaScale def _ExtractOffsetParameters(self): # extract offset occRow = [0] * 24 occColumn = [0] * 32 occRemScale = eeData[16] & 0x000F occColumnScale = (eeData[16] & 0x00F0) >> 4 occRowScale = (eeData[16] & 0x0F00) >> 8 offsetRef = eeData[17] if offsetRef > 32767: offsetRef -= 65536 for i in range(6): p = i * 4 occRow[p + 0] = eeData[18 + i] & 0x000F occRow[p + 1] = (eeData[18 + i] & 0x00F0) >> 4 occRow[p + 2] = (eeData[18 + i] & 0x0F00) >> 8 occRow[p + 3] = (eeData[18 + i] & 0xF000) >> 12 for i in range(24): if occRow[i] > 7: occRow[i] -= 16 for i in range(8): p = i * 4 occColumn[p + 0] = eeData[24 + i] & 0x000F occColumn[p + 1] = (eeData[24 + i] & 0x00F0) >> 4 occColumn[p + 2] = (eeData[24 + i] & 0x0F00) >> 8 occColumn[p + 3] = (eeData[24 + i] & 0xF000) >> 12 for i in range(32): if occColumn[i] > 7: occColumn[i] -= 16 for i in range(24): for j in range(32): p = 32 * i + j self.offset[p] = (eeData[64 + p] & 0xFC00) >> 10 if self.offset[p] > 31: self.offset[p] -= 64 self.offset[p] *= 1 << occRemScale self.offset[p] += ( offsetRef + (occRow[i] << occRowScale) + (occColumn[j] << occColumnScale) ) def _ExtractKtaPixelParameters(self): # pylint: disable=too-many-locals # extract KtaPixel KtaRC = [0] * 4 ktaTemp = [0] * 768 KtaRoCo = (eeData[54] & 0xFF00) >> 8 if KtaRoCo > 127: KtaRoCo -= 256 KtaRC[0] = KtaRoCo KtaReCo = eeData[54] & 0x00FF if KtaReCo > 127: KtaReCo -= 256 KtaRC[2] = KtaReCo KtaRoCe = (eeData[55] & 0xFF00) >> 8 if KtaRoCe > 127: KtaRoCe -= 256 KtaRC[1] = KtaRoCe KtaReCe = eeData[55] & 0x00FF if KtaReCe > 127: KtaReCe -= 256 KtaRC[3] = KtaReCe ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8 ktaScale2 = eeData[56] & 0x000F for i in range(24): for j in range(32): p = 32 * i + j split = 2 * (p // 32 - (p // 64) * 2) + p % 2 ktaTemp[p] = (eeData[64 + p] & 0x000E) >> 1 if ktaTemp[p] > 3: ktaTemp[p] -= 8 ktaTemp[p] *= 1 << ktaScale2 ktaTemp[p] += KtaRC[split] ktaTemp[p] /= math.pow(2, ktaScale1) # ktaTemp[p] = ktaTemp[p] * mlx90640->offset[p]; temp = abs(ktaTemp[0]) for kta in ktaTemp: temp = max(temp, abs(kta)) ktaScale1 = 0 while temp < 64: temp *= 2 ktaScale1 += 1 for i in range(768): temp = ktaTemp[i] * math.pow(2, ktaScale1) if temp < 0: self.kta[i] = int(temp - 0.5) else: self.kta[i] = int(temp + 0.5) self.ktaScale = ktaScale1 def _ExtractKvPixelParameters(self): KvT = [0] * 4 kvTemp = [0] * 768 KvRoCo = (eeData[52] & 0xF000) >> 12 if KvRoCo > 7: KvRoCo -= 16 KvT[0] = KvRoCo KvReCo = (eeData[52] & 0x0F00) >> 8 if KvReCo > 7: KvReCo -= 16 KvT[2] = KvReCo KvRoCe = (eeData[52] & 0x00F0) >> 4 if KvRoCe > 7: KvRoCe -= 16 KvT[1] = KvRoCe KvReCe = eeData[52] & 0x000F if KvReCe > 7: KvReCe -= 16 KvT[3] = KvReCe kvScale = (eeData[56] & 0x0F00) >> 8 for i in range(24): for j in range(32): p = 32 * i + j split = 2 * (p // 32 - (p // 64) * 2) + p % 2 kvTemp[p] = KvT[split] kvTemp[p] /= math.pow(2, kvScale) # kvTemp[p] = kvTemp[p] * mlx90640->offset[p]; temp = abs(kvTemp[0]) for kv in kvTemp: temp = max(temp, abs(kv)) kvScale = 0 while temp < 64: temp *= 2 kvScale += 1 for i in range(768): temp = kvTemp[i] * math.pow(2, kvScale) if temp < 0: self.kv[i] = int(temp - 0.5) else: self.kv[i] = int(temp + 0.5) self.kvScale = kvScale def _ExtractCILCParameters(self): ilChessC = [0] * 3 self.calibrationModeEE = (eeData[10] & 0x0800) >> 4 self.calibrationModeEE = self.calibrationModeEE ^ 0x80 ilChessC[0] = eeData[53] & 0x003F if ilChessC[0] > 31: ilChessC[0] -= 64 ilChessC[0] /= 16.0 ilChessC[1] = (eeData[53] & 0x07C0) >> 6 if ilChessC[1] > 15: ilChessC[1] -= 32 ilChessC[1] /= 2.0 ilChessC[2] = (eeData[53] & 0xF800) >> 11 if ilChessC[2] > 15: ilChessC[2] -= 32 ilChessC[2] /= 8.0 self.ilChessC = ilChessC def _ExtractDeviatingPixels(self): self.brokenPixels = [0xFFFF] * 5 self.outlierPixels = [0xFFFF] * 5 pixCnt = 0 brokenPixCnt = 0 outlierPixCnt = 0 while (pixCnt < 768) and (brokenPixCnt < 5) and (outlierPixCnt < 5): if eeData[pixCnt + 64] == 0: self.brokenPixels[brokenPixCnt] = pixCnt brokenPixCnt += 1 elif (eeData[pixCnt + 64] & 0x0001) != 0: self.outlierPixels[outlierPixCnt] = pixCnt outlierPixCnt += 1 pixCnt += 1 if brokenPixCnt > 4: raise RuntimeError("More than 4 broken pixels") if outlierPixCnt > 4: raise RuntimeError("More than 4 outlier pixels") if (brokenPixCnt + outlierPixCnt) > 4: raise RuntimeError("More than 4 faulty pixels") # print("Found %d broken pixels, %d outliers" % (brokenPixCnt, outlierPixCnt)) # TODO INCOMPLETE def _I2CWriteWord(self, writeAddress, data): cmd = bytearray(4) cmd[0] = writeAddress >> 8 cmd[1] = writeAddress & 0x00FF cmd[2] = data >> 8 cmd[3] = data & 0x00FF dataCheck = [0] with self.i2c_device as i2c: i2c.write(cmd) # print("Wrote:", [hex(i) for i in cmd]) time.sleep(0.001) self._I2CReadWords(writeAddress, dataCheck) # print("dataCheck: 0x%x" % dataCheck[0]) # if (dataCheck != data): # return -2 def _I2CReadWords(self, addr, buffer, *, end=None): # stamp = time.monotonic() if end is None: remainingWords = len(buffer) else: remainingWords = end offset = 0 addrbuf = bytearray(2) inbuf = bytearray(2 * I2C_READ_LEN) with self.i2c_device as i2c: while remainingWords: addrbuf[0] = addr >> 8 # MSB addrbuf[1] = addr & 0xFF # LSB read_words = min(remainingWords, I2C_READ_LEN) i2c.write_then_readinto( addrbuf, inbuf, in_end=read_words * 2 ) # in bytes # print("-> ", [hex(i) for i in addrbuf]) outwords = struct.unpack( ">" + "H" * read_words, inbuf[0 : read_words * 2] ) # print("<- (", read_words, ")", [hex(i) for i in outwords]) for i, w in enumerate(outwords): buffer[offset + i] = w offset += read_words remainingWords -= read_words addr += read_words # print("i2c read", read_words, "words in", time.monotonic()-stamp) # print("Read: ", [hex(i) for i in buffer[0:10]])
[ "aaron.zhaocr@gmail.com" ]
aaron.zhaocr@gmail.com
722d79cb29211d56a0e6316bfa66ae6081ac3f71
f928722af30cf9b029ec3713d0f430d725281a1f
/Dataset/JigsawImageLoader.py
d34689c542d41f77eaf6bce8cf0f82681e0a78a5
[]
no_license
pneha2612/JigsawPuzzlePytorch
3cbf0efd24698654396b3c574256af8f5cd6ba7c
44ff69656101abd5fe5671fb03d70df4e018f8b8
refs/heads/master
2021-05-04T04:37:43.229224
2018-02-01T15:29:59
2018-02-01T15:29:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,773
py
# -*- coding: utf-8 -*- """ Created on Fri Aug 18 11:58:07 2017 @author: Biagio Brattoli """ import os, numpy as np from time import time import torch.utils.data as data import torchvision.transforms as transforms import torch from PIL import Image class DataLoader(data.Dataset): def __init__(self,data_path,txt_list,classes=1000): self.data_path = data_path self.names, _ = self.__dataset_info(txt_list) self.N = len(self.names) self.permutations = self.__retrive_permutations(classes) self.__image_transformer = transforms.Compose([ transforms.Resize(256,Image.BILINEAR), transforms.CenterCrop(225)]) self.__augment_tile = transforms.Compose([ transforms.RandomCrop(64), transforms.Resize((75,75)), transforms.Lambda(rgb_jittering), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std =[0.229, 0.224, 0.225])]) def __getitem__(self, index): framename = self.data_path+'/'+self.names[index] t_load = time() img = Image.open(framename).convert('RGB') #print 'Load image in %.5f'%(time()-t_load) t_proc = time() img = self.__image_transformer(img) a = 75/2 tiles = [None] * 9 for n in range(9): i = n/3 j = n%3 c = [a*i*2+a,a*j*2+a] tile = img.crop((c[1]-a,c[0]-a,c[1]+a+1,c[0]+a+1)) tile = self.__augment_tile(tile) t = time() # Normalize the patches indipendently to avoid low level features shortcut m = tile.mean() s = tile.std() norm = transforms.Normalize(mean=[m, m, m], std =[s, s, s]) tile = norm(tile) tiles[n] = tile order = np.random.randint(len(self.permutations)) data = [tiles[self.permutations[order][t]] for t in range(9)] data = torch.stack(data,0) #print 'Process image in %.5f'%(time()-t_proc) return data,int(order), np.array(img) def __len__(self): return len(self.names) def __dataset_info(self,txt_labels): with open(txt_labels,'r') as f: images_list = f.readlines() file_names = [] labels = [] for row in images_list: row = row.split(' ') file_names.append(row[0]) labels.append(int(row[1])) return file_names, labels #def __dataset_info(self,data_path='./data/'): #file_names = [] #folders = os.listdir(data_path) #for f in folders: #if self.is_train: #names = os.listdir(data_path+'/'+f) #for ff in names: #if '.JPEG' in ff: #file_names.append(f+'/'+ff) #else: #if '.JPEG' in f: #file_names.append(f) #return file_names def __retrive_permutations(self,classes): all_perm = np.load('permutations_%d.npy'%(classes)) # from range [1,9] to [0,8] if all_perm.min()==1: all_perm = all_perm-1 return all_perm def rgb_jittering(im): im = np.array(im,np.float32)#convert to numpy array for ch in range(3): thisRand = np.random.uniform(0.8, 1.2) im[:,:,ch] *= thisRand shiftVal = np.random.randint(0,6) if np.random.randint(2) == 1: shiftVal = -shiftVal im += shiftVal; im = im.astype(np.uint8) im = im.astype(np.float32) return im
[ "biagio.brattoli@iwr.uni-heidelberg.de" ]
biagio.brattoli@iwr.uni-heidelberg.de
adc1969c730cf5e6bf2379a42761dc2318e0ada4
da738cb496c189c880e09c812874db9a48574df1
/back/app/bets/admin.py
ef2428743df97730bd3831acbc33ccb7759237d0
[]
no_license
SNVC1/mipt-fullstack2019
2972ed20e146394005fa41a29a25fc85674b2271
5dd6d5e61a8312917d68d863f6dca5876fad352a
refs/heads/master
2023-01-08T10:40:58.535068
2020-11-10T17:59:19
2020-11-10T17:59:19
208,422,125
0
0
null
2022-12-12T18:12:35
2019-09-14T10:06:21
TypeScript
UTF-8
Python
false
false
84
py
from django.contrib import admin from . models import Bet admin.site.register(Bet)
[ "iggy99@mail.ru" ]
iggy99@mail.ru
35b45b2be379d6f6d530bbdbd64ba03d01e366ed
3967da624f40f5d865dfdd0a788cbadd3e4a5361
/python/searching/__init__.py
96fff532442fb73a147ab67521c186297489aff8
[]
no_license
hero24/Algorithms
42f459a5c8b98074afb9e453e0e5774bf25964d1
8bdaed13581825bdafa0db835fa5faf00ecc3e10
refs/heads/master
2023-04-16T23:50:02.839615
2023-03-27T16:54:32
2023-03-27T16:54:32
76,741,354
0
0
null
null
null
null
UTF-8
Python
false
false
187
py
from .sequential_search import sequential_search """ Tell me and I forget. Teach me and I remember. Involve me and I learn. -Benjamin Franklin """ __all__ = [ "sequential_search" ]
[ "hero24@interia.pl" ]
hero24@interia.pl
a2766e32c26c9292bc462dff5135525659e4db57
4b126dcb6009fd1e26c1290fa35c931ba5727aea
/blog/views.py
fe837e5f0de0c59e80a16e671f86abf5b172d2ce
[]
no_license
LetitiaWood/django3-personal-portfolio
4438855759a8203d0d841d66e2b090d456d94565
a8ebf2427c8e307702961a3ea8df698a71fcb80d
refs/heads/main
2023-04-11T06:40:43.490232
2021-04-24T02:50:38
2021-04-24T02:50:38
361,054,442
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
from django.shortcuts import render, get_object_or_404 from .models import Blog # Create your views here. def all_blogs(request): blog_count = Blog.objects.count() blogs = Blog.objects.order_by('-date')[:3] #the most current three blogs will pop up; return render(request, 'blog/all_blogs.html', {'blogs':blogs, 'count':blog_count}) def detail(request, blog_id): blog = get_object_or_404(Blog,pk=blog_id) return render(request, 'blog/detail.html', {'blog':blog})
[ "Letitia_wood@icloud.com" ]
Letitia_wood@icloud.com
1a90a7a11a31b6d2bd8d513513d6dff28f93aca6
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/DaVinciDev_v38r1p1/Phys/StrippingArchive/python/StrippingArchive/Stripping23/StrippingRD/StrippingD23MuLines.py
f22c2b8963448ca27883ac74c5c22c1eb3680061
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
18,651
py
""" Module for construction of D+ -> mu l+ l- lines Performance Full.dst: ######### StrippingReport INFO Event 500000, Good event 500000 | *Decision name*|*Rate,%*|*Accepted*| *Mult*|*ms/evt*| |!StrippingD23MuD23MuLine | 0.0014| 7| 1.000| 0.112| |!StrippingD23MuD2MueeLine | 0.0030| 15| 1.000| 0.131| |!StrippingD23MuD23PiLine | 0.0130| 65| 1.354| 0.033| MC: D+ -> 3pi (21163012) ######################## StrippingReport INFO Event 100000, Good event 100000 | *Decision name*|*Rate,%*|*Accepted*| *Mult*|*ms/evt*| |!StrippingD23MuD23PiLine | 0.6500| 650| 1.008| 0.569| MC: D+ -> K 2pi (21163020) ########################## StrippingReport INFO Event 100000, Good event 100000 | *Decision name*|*Rate,%*|*Accepted*| *Mult*|*ms/evt*| |!StrippingD23MuD23PiLine | 0.0130| 13| 1.077| 0.266| Exported symbols (use python help!): - """ __author__ = ["Oliver Gruenberg"] __date__ = "19.05.2015" __version__ = "$Revision: 1.0 $" ############################################################################# __all__ = ("D23MuLinesConf", "config_default", ) ############################################################################# from Gaudi.Configuration import * from Configurables import FilterDesktop, CombineParticles, DaVinci__N3BodyDecays from PhysSelPython.Wrappers import Selection, DataOnDemand from StrippingConf.StrippingLine import StrippingLine from StrippingUtils.Utils import LineBuilder #from StrippingSelections.Utils import checkConfig from GaudiKernel.PhysicalConstants import c_light ############################################################################# default_config = { "NAME" : "D23Mu", "WGs" : [ "RD" ], "STREAMS" : [ "Leptonic" ], "BUILDERTYPE" : "D23MuLinesConf", "CONFIG" : { # TrackCuts "MinTrIPChi2" : 25.0, "MaxTrChi2Dof" : 3.0, "MaxTrGhp" : 0.3, # CombiCuts "MaxDoca" : 0.3, # (mm) "mDiffDLoose" : 150, # (MeV) "mDiffDTight" : 150, # (MeV) # MotherCuts "MaxIPChi2" : 25, "MinVDChi2" : 225, "MaxVtxChi2Dof" : 9, "MinDira" : 0.0, "MinTau" : 0.1, # (ps) # scalings "Postscale" : 1, "D23MuPrescale" : 1, "D2MueePrescale" : 1, "D23PiPrescale" : 0.01, "CommonRelInfoTools" : [ { "Type": "RelInfoVertexIsolation", "Location":"VtxIsoInfo" }, { "Type": "RelInfoVertexIsolationBDT", "Location":"VtxIsoInfoBDT" }, { "Type" : "RelInfoBs2MuMuBIsolations", "RecursionLevel" : 0, "Variables" : [], "Location" : "BsMuMuBIsolation", "tracktype" : 3, "makeTrackCuts" : False, }, ] # closes CommonRelInfoTools } # closes CONFIG } # closes default_config class D23MuLinesConf(LineBuilder) : """ Builder """ __configuration_keys__ = ( # TrackCuts "MinTrIPChi2", "MaxTrChi2Dof", "MaxTrGhp", # CombiCuts "MaxDoca", "mDiffDLoose", "mDiffDTight", # MotherCuts "MaxIPChi2", "MinVDChi2", "MaxVtxChi2Dof", "MinDira", "MinTau", # scalings "Postscale", "D23MuPrescale", "D2MueePrescale", "D23PiPrescale", "CommonRelInfoTools", ) def __init__(self, name = "D23Mu", config = default_config) : LineBuilder.__init__(self, name, config) ############################################################################# self.TrackCuts = """ (MIPCHI2DV(PRIMARY) > %(MinTrIPChi2)s) & (TRCHI2DOF < %(MaxTrChi2Dof)s) & (TRGHP < %(MaxTrGhp)s) """ %config self.Combination12Cuts = "(ADOCA(1,2) < %(MaxDoca)s*mm)" %config self.CombinationCutsLoose = """ (ADAMASS(1920*MeV) < %(mDiffDLoose)s*MeV) & (ADOCA(1,3) < %(MaxDoca)s*mm) & (ADOCA(2,3) < %(MaxDoca)s*mm) """ %config self.CombinationCutsTight = """ (ADAMASS(1920*MeV) < %(mDiffDTight)s*MeV) & (ADOCA(1,3) < %(MaxDoca)s*mm) & (ADOCA(2,3) < %(MaxDoca)s*mm) """ %config self.MotherCuts = """ (BPVIPCHI2() < %(MaxIPChi2)s ) & (BPVVDCHI2 > %(MinVDChi2)s ) & (VFASPF(VCHI2/VDOF) < %(MaxVtxChi2Dof)s ) & (BPVDIRA > %(MinDira)s ) & (BPVLTIME() > %(MinTau)s*ps ) """ %config ############################################################################# D23Mu_name = name+"D23Mu" D2Muee_name = name+"D2Muee" D23Pi_name = name+"D23Pi" self.selD23Mu = self.makeD23Mu(D23Mu_name) self.selD2Muee = self.makeD2Muee(D2Muee_name) self.selD23Pi = self.makeD23Pi(D23Pi_name) ############################################################################# self.D23Mu_Line = StrippingLine(D23Mu_name+"Line", prescale = config["D23MuPrescale"], postscale = config["Postscale"], MDSTFlag = True, selection = self.selD23Mu, RelatedInfoTools = [ { "Type" : "RelInfoConeVariables", "ConeAngle" : 0.5, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD23Mu : "ConeIso05Dp", "Phys/StdAllLooseMuons" : ["ConeIso05mu1", "ConeIso05mu2", "ConeIso05mu3"], }, }, { "Type" : "RelInfoConeVariables", "ConeAngle" : 1.0, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD23Mu : "ConeIso10Dp", "Phys/StdAllLooseMuons" : ["ConeIso10mu1", "ConeIso10mu2", "ConeIso10mu3"], }, }, { "Type" : "RelInfoConeVariables", "ConeAngle" : 1.5, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD23Mu : "ConeIso15Dp", "Phys/StdAllLooseMuons" : ["ConeIso15mu1", "ConeIso15mu2", "ConeIso15mu3"], }, }, { "Type": "RelInfoTrackIsolationBDT", "RecursionLevel" : 1, "Variables" : 0, "Locations": { "Phys/StdAllLooseMuons" : ["TrackIsoBDTmu1","TrackIsoBDTmu2","TrackIsoBDTmu3"], }, }, { "Type" : "RelInfoBs2MuMuTrackIsolations", "RecursionLevel" : 1, "Variables" : [], "IsoTwoBody" : True, "Locations" : { "Phys/StdAllLooseMuons" : ["BsMuMuTrackIsomu1","BsMuMuTrackIsomu2","BsMuMuTrackIsomu3"] ,}, }, ] + config["CommonRelInfoTools"] # end of RelatedInfoTools )# closes Strippingline self.D2Muee_Line = StrippingLine(D2Muee_name+"Line", prescale = config["D2MueePrescale"], postscale = config["Postscale"], MDSTFlag = True, selection = self.selD2Muee, RelatedInfoTools = [ { "Type" : "RelInfoConeVariables", "ConeAngle" : 0.5, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD2Muee : "ConeIso05Dp", "Phys/StdAllLooseMuons" : "ConeIso05mu", "Phys/StdAllLooseElectrons" : ["ConeIso05e1", "ConeIso05e2"], }, }, { "Type" : "RelInfoConeVariables", "ConeAngle" : 1.0, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD2Muee : "ConeIso10Dp", "Phys/StdAllLooseMuons" : "ConeIso10mu", "Phys/StdAllLooseElectrons" : ["ConeIso10e1", "ConeIso10e2"], }, }, { "Type" : "RelInfoConeVariables", "ConeAngle" : 1.5, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD2Muee : "ConeIso15Dp", "Phys/StdAllLooseMuons" : "ConeIso15mu", "Phys/StdAllLooseElectrons" : ["ConeIso15e1", "ConeIso15e2"], }, }, { "Type": "RelInfoTrackIsolationBDT", "RecursionLevel" : 1, "Variables" : 0, "Locations": { "Phys/StdAllLooseMuons" : "TrackIsoBDTmu", "Phys/StdAllLooseElectrons" : ["TrackIsoBDTe1","TrackIsoBDTe2"], }, }, { "Type" : "RelInfoBs2MuMuTrackIsolations", "RecursionLevel" : 1, "Variables" : [], "IsoTwoBody" : True, "Locations" : { "Phys/StdAllLooseMuons" : "BsMuMuTrackIsomu", "Phys/StdAllLooseElectrons" : ["BsMuMuTrackIsoe1","BsMuMuTrackIsoe2"] ,}, }, ] + config["CommonRelInfoTools"] # end of RelatedInfoTools ) # closes Strippingline self.D23Pi_Line = StrippingLine(D23Pi_name+"Line", prescale = config["D23PiPrescale"], postscale = config["Postscale"], MDSTFlag = True, selection = self.selD23Pi, RelatedInfoTools = [ { "Type" : "RelInfoConeVariables", "ConeAngle" : 0.5, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD23Pi : "ConeIso05Dp", "Phys/StdAllLoosePions" : ["ConeIso05pi1", "ConeIso05pi2", "ConeIso05pi3"], }, }, { "Type" : "RelInfoConeVariables", "ConeAngle" : 1.0, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD23Pi : "ConeIso10Dp", "Phys/StdAllLoosePions" : ["ConeIso10pi1", "ConeIso10pi2", "ConeIso10pi3"], }, }, { "Type" : "RelInfoConeVariables", "ConeAngle" : 1.5, "Variables" : [], "RecursionLevel" : 1, "Locations" : { self.selD23Pi : "ConeIso15Dp", "Phys/StdAllLoosePions" : ["ConeIso15pi1", "ConeIso15pi2", "ConeIso15pi3"], }, }, { "Type": "RelInfoTrackIsolationBDT", "RecursionLevel" : 1, "Variables" : 0, "Locations": { "Phys/StdAllLoosePions" : ["TrackIsoBDTpi1","TrackIsoBDTpi2","TrackIsoBDTpi3"], }, }, { "Type" : "RelInfoBs2MuMuTrackIsolations", "RecursionLevel" : 1, "Variables" : [], "IsoTwoBody" : True, "Locations" : { "Phys/StdAllLoosePions" : ["BsMuMuTrackIsopi1","BsMuMuTrackIsopi2","BsMuMuTrackIsopi3"] ,}, }, ] + config["CommonRelInfoTools"] # end of RelatedInfoTools ) # closes Strippingline ############################################################################# self.registerLine(self.D23Mu_Line) self.registerLine(self.D2Muee_Line) self.registerLine(self.D23Pi_Line) ############################################################################# def makeD23Mu(self,name): D23Mu = DaVinci__N3BodyDecays("Combine"+name) D23Mu.DecayDescriptors = [ "[D+ -> mu+ mu+ mu-]cc","[D+ -> mu+ mu+ mu+]cc" ] D23Mu.DaughtersCuts = { "mu+" : self.TrackCuts } D23Mu.Combination12Cut = self.Combination12Cuts D23Mu.CombinationCut = self.CombinationCutsLoose D23Mu.MotherCut = self.MotherCuts _myMuons = DataOnDemand(Location = "Phys/StdLooseMuons/Particles") return Selection (name, Algorithm = D23Mu, RequiredSelections = [ _myMuons ]) ############################################################################# def makeD2Muee(self,name): D2Muee = DaVinci__N3BodyDecays("Combine"+name) D2Muee.DecayDescriptors = [ "[D+ -> mu+ e+ e-]cc","[D+ -> mu- e+ e+]cc","[D+ -> mu+ e+ e+]cc" ] D2Muee.DaughtersCuts = { "mu+" : self.TrackCuts, "e+" : self.TrackCuts } D2Muee.Combination12Cut = self.Combination12Cuts D2Muee.CombinationCut = self.CombinationCutsLoose D2Muee.MotherCut = self.MotherCuts _myMuons = DataOnDemand(Location = "Phys/StdLooseMuons/Particles") _myElectrons = DataOnDemand(Location = "Phys/StdLooseElectrons/Particles") return Selection (name, Algorithm = D2Muee, RequiredSelections = [ _myMuons, _myElectrons ]) ############################################################################# def makeD23Pi(self,name): D23Pi = DaVinci__N3BodyDecays("Combine"+name) D23Pi.DecayDescriptors = [ "[D+ -> pi+ pi+ pi-]cc" ] D23Pi.DaughtersCuts = { "pi+" : self.TrackCuts } D23Pi.Combination12Cut = self.Combination12Cuts D23Pi.CombinationCut = self.CombinationCutsTight D23Pi.MotherCut = self.MotherCuts _myPions = DataOnDemand(Location = "Phys/StdLoosePions/Particles") return Selection (name, Algorithm = D23Pi, RequiredSelections = [ _myPions ]) #############################################################################
[ "slavomirastefkova@b2pcx39016.desy.de" ]
slavomirastefkova@b2pcx39016.desy.de
11ef771bc27ddb7e52d28fc879db132d23f2b521
7ba87be3b62ebd3647762984d7190d4c0abc4aa1
/patternnum5.py
b350698aede947d327dc28bd0f2394ee37f3fe91
[]
no_license
pradeepdevloper1/Learn_Python_CN
7ca0d70e2cb5050bff2e090ec08cf97e4c38da2e
cf2978f52c68511cb93c03922aecae570ae9b009
refs/heads/main
2023-02-03T23:39:17.738748
2020-12-22T18:29:58
2020-12-22T18:29:58
323,703,894
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
## Read input as specified in the question ## Print the required output in given format n=int(input()) if 0<=n<=50: i=1 while i<=n: j=1 while j<=i: print(j,end='') j+=1 print() i+=1
[ "pradeep.kumar@worldfashionexchange.com" ]
pradeep.kumar@worldfashionexchange.com
d81ccc034bd7fcfa57f92932c57ec419606bb49a
0f3138e1c353b1bdc9a6252b6f06c8266767681f
/sparvbot/utils.py
ba19a7bfef0ce71a4250a71acd7a228829d6c87c
[]
no_license
Sparvnastet/sparvbot
46ade580082a49c185278ecfd644a2d9d6a24cdb
9b17ed7ab110d44f5ecf874017d5da063dc94aa8
refs/heads/master
2021-01-01T16:25:31.908508
2014-02-27T21:19:37
2014-02-27T21:19:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
112
py
import sys if 'gevent' in sys.modules: import zmq.green as zmq else: import zmq zmq_ctx = zmq.Context()
[ "adis@blad.is" ]
adis@blad.is
c271cd860b5edf80188b50c7092ffd39060d9bd0
43dd3690516cb86641899d86599c0a1f79a8c97e
/src/lex_learn.py
5138c9fd245cf46f1ae6021ca5edebdd637283d0
[]
no_license
AlexTaran/automorphology
506e1a8b7791aec2b9f172be071bf568513daf4e
744943f41acdd8c1e869f3e8df1a43d712d13afe
refs/heads/master
2021-01-01T19:50:29.369560
2015-04-25T22:33:37
2015-04-25T22:33:37
34,588,669
2
0
null
null
null
null
UTF-8
Python
false
false
12,230
py
#!/usr/local/bin/python # -*- coding: utf-8 -*- # Learn on Russian and apply to Croatian VS. Learn on Croatian and apply to Croatian # Also build automorphology import argparse import codecs import random import cPickle import datetime import build_features from collections import defaultdict import spanish import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import StratifiedKFold LEARN_FEATURES_IDS = [5, 6] + [7, 8] + [9, 10, 11, 12, 13, 14, 15, 16] + [17, 18, 19, 20, 21, 22] + [23] #+ [24, 25, 26] learn_params = {'oob_score': True, 'n_estimators': 30} def convert_features(features, answer_id=2, bin_features = [], float_features=LEARN_FEATURES_IDS): converted = [] for feat in features: converted.append([feat[f_name] for f_name in build_features.OUTPUT_FEATURES]) return process_features(converted) def load_features(filename): with codecs.open(filename, encoding='utf-8') as f: lines = [l.strip().split('\t') for l in f] return process_features(lines) def process_features(feat_data, answer_id=2, bin_features = [], float_features=LEARN_FEATURES_IDS): lines = feat_data Y = [(1 if l[answer_id] == 'True' else 0) for l in lines] binmap = {} for fid in bin_features: binmap[fid] = sorted(list(set([l[fid] for l in lines]))) X = [] for line in lines: feats = [] for fid in float_features: feats.append(float(line[fid])) for fid in bin_features: for x in binmap[fid]: feats.append(1 if x==line[fid] else 0) X.append(feats) return np.array(X), np.array(Y), lines def CV_estimate(X, Y, folds=10): skf = StratifiedKFold(Y, n_folds=folds) scores = [] for train_idx, test_idx in skf: lr = LogisticRegression() lr = RandomForestClassifier(**learn_params) lr.fit(X[train_idx], Y[train_idx]) scores.append(lr.score(X[test_idx], Y[test_idx])) return np.average(scores), np.std(scores) def output_morphology(filename, morphology): total_forms = sum([len(v) for k, v in morphology.iteritems()]) print 'Saving automorphology: %d items with total %d forms' % (len(morphology), total_forms) with codecs.open(filename, 'w', encoding='utf-8') as f: for k, words in sorted(morphology.items()): print >> f, '\t'.join([k] + list(words)) def lex_learn(args, langs): print "Loading nuts features..." nX, nY, nL = load_features(args.nuts_input) print "Loading croatian features..." cX, cY, cL = load_features(args.croatian_learn_data) print "Loading spanish features..." sX, sY, sL = load_features(args.spanish_learn_data) print "Learning..." cls_weights = {1: 1.0, 0: 1.0} model_ru = LogisticRegression() model_ru = RandomForestClassifier(**learn_params) model_ru.fit(nX, nY) cnt = 0 for i, label in enumerate(model_ru.predict(cX)): if label != cY[i]: #print i, ' '.join(cL[i]), cX[i], cY[i], label cnt += 1 model_hr = LogisticRegression() model_hr = RandomForestClassifier(**learn_params) model_hr.fit(cX, cY) for i, label in enumerate(model_hr.predict(nX)): if label != nY[i]: #print i, ' '.join(nL[i]), nX[i], nY[i], label pass model_es = LogisticRegression() model_es = RandomForestClassifier(**learn_params) model_es.fit(sX, sY) print "Total errors: %d" % cnt print "Rus -> Cro score:", model_ru.score(cX, cY) print "Cro -> Rus score:", model_hr.score(nX, nY) print 'OOB RU: %d' % model_ru.oob_score_ print 'OOB HR: %d' % model_hr.oob_score_ print 'OOB ES: %d' % model_es.oob_score_ print model_es.get_params() print '--- importances ---' for imp, i in sorted(zip(model_es.feature_importances_, LEARN_FEATURES_IDS)): print '%f %s %d' % (imp, build_features.OUTPUT_FEATURES[i], i) print '-------------------' #print "Rus -> Rus CV estimate: %f (std %f)" % CV_estimate(nX, nY) #print "Cro -> Cro CV estimate: %f (std %f)" % CV_estimate(cX, cY) # Generating croatian morphology: if langs['HR']: hr_from_hr_morphology = defaultdict(set) hr_from_ru_morphology = defaultdict(set) hr_from_es_morphology = defaultdict(set) feat_group = [] model_morph = zip([model_hr, model_ru, model_es], [hr_from_hr_morphology, hr_from_ru_morphology, hr_from_es_morphology]) for feat_no, feat in enumerate(build_features.build_croatian(args, True)): feat_group.append(feat) if len(feat_group) >= 10000: print 'Generating HR morphology... feat %d' % (feat_no) convertedX, convertedY, convertedL = convert_features(feat_group) for model, morph in model_morph: for i, label in enumerate(model.predict(convertedX)): if label: w1 = feat_group[i]['w1'].lower() w2 = feat_group[i]['w2'].lower() #print 'Detected close forms: %s %s' % (w1, w2) morph[w1].add(w2) morph[w2].add(w1) feat_group = [] output_morphology(args.hr_from_hr_automorphology, hr_from_hr_morphology) output_morphology(args.hr_from_ru_automorphology, hr_from_ru_morphology) output_morphology(args.hr_from_es_automorphology, hr_from_es_morphology) # Generating russian morphology if langs['RU']: ru_from_ru_morphology = defaultdict(set) ru_from_hr_morphology = defaultdict(set) ru_from_es_morphology = defaultdict(set) feat_group = [] model_morph = zip([model_hr, model_ru, model_es], [ru_from_hr_morphology, ru_from_ru_morphology, ru_from_es_morphology]) for feat_no, feat in enumerate(build_features.build_nuts(args, True)): feat_group.append(feat) if len(feat_group) >= 10000: print 'Generating RU morphology... feat %d' % (feat_no) convertedX, convertedY, convertedL = convert_features(feat_group) for model, morph in model_morph: for i, label in enumerate(model.predict(convertedX)): if label: w1 = feat_group[i]['w1'].lower() w2 = feat_group[i]['w2'].lower() #print 'Detected close forms: %s %s' % (w1, w2) morph[w1].add(w2) morph[w2].add(w1) '''for i, label in enumerate(model_ru.predict(convertedX)): if label == True: w1 = feat_group[i]['w1'].lower() w2 = feat_group[i]['w2'].lower() #print 'Detected close forms: %s %s' % (w1, w2) ru_from_ru_morphology[w1].add(w2) ru_from_ru_morphology[w2].add(w1) for i, label in enumerate(model_hr.predict(convertedX)): if label: w1 = feat_group[i]['w1'].lower() w2 = feat_group[i]['w2'].lower() #print 'Detected close forms: %s %s' % (w1, w2) ru_from_hr_morphology[w1].add(w2) ru_from_hr_morphology[w2].add(w1)''' feat_group = [] output_morphology(args.ru_from_hr_automorphology, ru_from_hr_morphology) output_morphology(args.ru_from_ru_automorphology, ru_from_ru_morphology) output_morphology(args.ru_from_es_automorphology, ru_from_es_morphology) # Generating spanish morphology if langs['ES']: es_from_es_morphology = defaultdict(set) es_from_ru_morphology = defaultdict(set) es_from_hr_morphology = defaultdict(set) feat_group = [] model_morph = zip([model_hr, model_ru, model_es], [es_from_hr_morphology, es_from_ru_morphology, es_from_es_morphology]) for feat_no, feat in enumerate(spanish.build_spanish(args, True)): feat_group.append(feat) if len(feat_group) >= 10000: print 'Generating ES morphology... feat %d' % (feat_no) convertedX, convertedY, convertedL = convert_features(feat_group) for model, morph in model_morph: for i, label in enumerate(model.predict(convertedX)): if label: w1 = feat_group[i]['w1'].lower() w2 = feat_group[i]['w2'].lower() #print 'Detected close forms: %s %s' % (w1, w2) morph[w1].add(w2) morph[w2].add(w1) feat_group = [] output_morphology(args.es_from_es_automorphology, es_from_es_morphology) output_morphology(args.es_from_ru_automorphology, es_from_ru_morphology) output_morphology(args.es_from_hr_automorphology, es_from_hr_morphology) def main(): start = datetime.datetime.now() random.seed() parser = argparse.ArgumentParser(description='Croatian-Russian learner') parser.add_argument('--nuts-input', help='Learning data for russian', default='../data/nuts/learn_nuts.txt') parser.add_argument('--croatian-learn-data', help='Learning data for croatian', default='../data/slavic/learn_croatian.txt') parser.add_argument('--spanish-learn-data', help='Learning data for spanish', default='../data/es/learn_es.txt') parser.add_argument('--hr-from-hr-automorphology', help='Croatian automorphology save file', default='../data/slavic/hr_from_hr_automorphology.txt') parser.add_argument('--hr-from-ru-automorphology', help='Croatian automorphology save file', default='../data/slavic/hr_from_ru_automorphology.txt') parser.add_argument('--hr-from-es-automorphology', help='Croatian automorphology save file', default='../data/slavic/hr_from_es_automorphology.txt') parser.add_argument('--ru-from-ru-automorphology', help='Russian automorphology save file', default='../data/nuts/ru_from_ru_automorphology.txt') parser.add_argument('--ru-from-hr-automorphology', help='Russian automorphology save file', default='../data/nuts/ru_from_hr_automorphology.txt') parser.add_argument('--ru-from-es-automorphology', help='Russian automorphology save file', default='../data/nuts/ru_from_es_automorphology.txt') parser.add_argument('--es-from-es-automorphology', help='Spanish automorphology save file', default='../data/es/es_from_es_automorphology.txt') parser.add_argument('--es-from-ru-automorphology', help='Spanish automorphology save file', default='../data/es/es_from_ru_automorphology.txt') parser.add_argument('--es-from-hr-automorphology', help='Spanish automorphology save file', default='../data/es/es_from_hr_automorphology.txt') # Args only for build_features parser.add_argument('--croatian-input', help='Croatian CONLLX corpus', default='../data/slavic/croatian.conllx') parser.add_argument('--croatian-text-vectors', help='Word2vec Croatian vectors in text format', default='../data/slavic/croatian_vectors.txt') parser.add_argument('--croatian-wikidata', help='Croatian wikipedia data corpus', default='../data/temp/hr_data.txt') parser.add_argument('--russian-wikidata', help='Russian wikipedia data corpus', default='../data/temp/ru_data.txt') parser.add_argument('--nuts-corpus', help='Russian nuts-corpus', default='../data/nuts/corpus.cpickle') parser.add_argument('--nuts-text-vectors', help='Word2vec Russian vectors in text format', default='../data/nuts/word2vec_vectors.txt') parser.add_argument('--es-corpus', help='Spanish tagged corpus', default='../data/es/tagged_utf') parser.add_argument('--es-text-vectors', help='Word2vec Spanish vecs built by wiki (text format)', default='../data/es/spanish_wiki_vectors.txt') parser.add_argument('--spanish-wikidata', help='Spanish wikipedia data corpus', default='../data/es/es_data.txt') parser.add_argument('--pos-tags', help='Pos-tags to take for analysis', default='ANVR') parser.add_argument('--gen-pos', help='Positive examples to generate', type=int, default=80000) parser.add_argument('--gen-neg', help='Negative examples to generate', type=int, default=80000) args = parser.parse_args() print 'Running with args:', args lex_learn(args, { 'RU': False, 'HR': True, 'ES': False }) finish = datetime.datetime.now() print 'Time to run:', finish-start if __name__=="__main__": main()
[ "alex.y.taran@gmail.com" ]
alex.y.taran@gmail.com
2641f8cc229f66d4bca9f369bd59614106063569
e8d5eb846842c5145316409ec64a4f393eeeb07d
/dp_baekjoon_9184.py
6110d41fe4277caee520519b777baaa659f268ce
[]
no_license
SheepEatLion/Algorithms
157ac6eb5338d5c6176b66878970ffceaa1f940e
992168b05c524369a4dbd037a04e4c94a8d2c140
refs/heads/main
2023-06-30T11:43:21.917953
2021-08-05T01:37:44
2021-08-05T01:37:44
365,987,864
1
0
null
null
null
null
UTF-8
Python
false
false
2,227
py
import sys memo = dict() while True: A, B, C = map(int, sys.stdin.readline().split()) if A == -1 and B == -1 and C == -1: break print('w({}, {}, {}) = '.format(A, B, C), end='') def w(a, b, c): if (a, b, c) in memo: return memo[(a, b, c)] if a<=0 or b<=0 or c<=0: memo[(a, b, c)] = 1 return memo[(a, b, c)] if a > 20 or b > 20 or c > 20: return w(20, 20, 20) if a < b < c: memo[(a, b, c)] = w(a, b, c - 1) + w(a, b - 1, c - 1) - w(a, b - 1, c) return memo[(a, b, c)] else: memo[(a, b, c)] = w(a - 1, b, c) + w(a - 1, b - 1, c) + w(a - 1, b, c - 1) - w(a - 1, b - 1, c - 1) return memo[(a, b, c)] print(w(A, B, C)) ''' 정해진 재귀함수를 dp로 바꾸는 문제이다. 먼저 1, 1, 1의 예시를 보면 다음과 같이 동작한다. w(0, 1, 1) + w(0, 0, 1) + w(0, 1, 0) - w(0, 0, 0) w(0, 1, 1) return 1 w(0, 0, 1) return 1 전부 1로 리턴되어 3-1이 됨으로 답은 2가 출력된다. 처음 이 문제를 봤을 때는 방향을 잡지 못했다. 재귀를 dp로 바꿔야 한다고 생각해서 모든 재귀를 다 dp로 어떻게 바꿔야할 지 너무 애매했기 때문이다. 그래서 어쩔 수 없이 다른 분들의 코드를 참고했다. 보니까 전부 dp로 옮기는 게 아니라, 재귀반, dp반 형식으로 이루어져야 하는 거였다. 다시 말해, dp에서의 메모이제이션이라는 특성을 가져와서 재귀는 계속 반복하되 메모를 해나가면서 반복하게 된다. 그리고 재귀가 일어날때 마다 가장 먼저 그 값이 이미 메모 해둔 값인지를 확인한다. 그러면 결국 입력데이터가 쌓일 수록 메모또한 증가하고 해당 메모를 만나면 더 이상 재귀를 하지 않고 정답을 알고 있기 때문에 해당 값을 그대로 리턴하게 되면서 가면 갈수록 재귀를 하는 횟수가 줄어들게 된다. dp 문제를 풀이할 생각에 dp 로 다 구현해야한다는 고정관념이 있던 것 같다. 이 문제는 재귀를 유지하면서 dp의 특성을 활용해 동작 시간을 최소로 줄여보는 것이 목표였다. '''
[ "gowjr207@gmail.com" ]
gowjr207@gmail.com
16a022ce2a690a35a8a10124359ea68c2b3f76b7
327e84ccc0d6cb4974186bf18cd513dfcb8b06da
/veiculos/migrations/0002_veiculo_valor.py
884522474b77fdcc2095e9f60a267eebd3eea2ab
[]
no_license
JoaoLucasMB/programacao_comercial
cc8b57a286dd03018c124ce2ab2e6a4baf206dd4
d7f2f50365ac085a4029b29fb1ddf5c39064bb12
refs/heads/main
2023-01-31T21:51:22.466716
2020-12-14T23:33:54
2020-12-14T23:33:54
313,310,784
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
# Generated by Django 3.1.2 on 2020-11-23 23:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('veiculos', '0001_initial'), ] operations = [ migrations.AddField( model_name='veiculo', name='valor', field=models.IntegerField(default=15000), ), ]
[ "jaum998@gmail.com" ]
jaum998@gmail.com
e27635633e6f0adc9349ef2572eaf2bf445bbf9f
035853d5a569123412058061e4edea9bafe67021
/R-Python-scripts/Jumpcount.py
4d46b2be7e455193f75f50fa66cfcf2b2a2f6d2c
[]
no_license
XuetingQiu/FluDiffusionUS
0d7c48814815ac704b16eff93edb57e8e5ba5566
2cce52707152bdb91feeb32ff245ae2ca172cd92
refs/heads/master
2020-04-19T20:08:56.136810
2019-11-01T18:26:28
2019-11-01T18:26:28
168,407,473
0
0
null
null
null
null
UTF-8
Python
false
false
1,073
py
#JumpExtractor.py: Extracts Markov jump counts from a full jump history log file. #for other use, this script needs to update the source of discrete trait state, the input of the log file, and the count of steps in the log file. Here it is 6880. def main(): source = ['AF','EAP','ECA','LAC','MENA','NA','SAS','USA'] # for clock in range(7): infile = open("H1N1-pdasub-trait_geo_compjumpHistory-comb.log", "r") count = {} for line in infile: jumps = line.split("},{") for i in jumps: packet = i.split(",") if packet[2]+" "+packet[3] in count: count[packet[2]+" "+packet[3]] += 1/6880 else: count[packet[2]+" "+ packet[3]] = 1/6880 for x in source: for y in source: if x != y: if x+" "+y not in count: count[x+" "+y] = 0 report = list(count.items()) report.sort() for item in report: locations, average = item print(locations,average) infile.close() main()
[ "noreply@github.com" ]
noreply@github.com
4713ab6f5aae7a77619093867729676a2e15c423
5aefcc44dd516815cd98ccef27a2de4acefba4d9
/otp.py
c80885e00825b8367b8d36f31d0498dffd7b5cc8
[]
no_license
hanshanglin/polyu-comp3334-project
f9bc962316b7179a82ff65d99f77ce71e6a09868
a70103079ba05b16b8a0afdc0bb238f855cac645
refs/heads/master
2022-07-03T18:56:32.632449
2020-05-19T04:00:17
2020-05-19T04:00:17
261,059,581
0
0
null
null
null
null
UTF-8
Python
false
false
2,534
py
import time import random import math import os import modapk_win __PLATFORM__="WINDOWS" class OTP: TickIntervalSeconds=30 PasscodeLength=6 _rng=random.SystemRandom() def __init__(self, tick_interval, passcode_len): self.TickIntervalSeconds=int(abs(tick_interval)) self.PasscodeLength=int(abs(passcode_len)) def generate_seed(self): seed=0 for n in range(1,self.PasscodeLength+1): seed=seed*10+self._rng.randint(0,10) return seed def _get_current_interval(self): sec=int(math.floor(time.time())) return sec//self.TickIntervalSeconds def _get_current_passcode(self, seed): tick=self._get_current_interval() p=tick*tick*seed % (10**self.PasscodeLength) return p def check(self, seed, passcode): _passcode=int(passcode) if isinstance(passcode, str): _passcode=0 a=1 for i in range(self.PasscodeLength): _passcode=_passcode+a*int(passcode[-1-i]) a*=10 return self._get_current_passcode(seed)==_passcode def get_OTP_client_android(self, seed, designated_name=None): if designated_name==None: designated_name="%08x"%random.getrandbits(32)+".apk" if __PLATFORM__=="WINDOWS": modapk_win.genapk(designated_name,seed) return designated_name os.system("./modapk/modapk.sh OTP_PoC.apk 1.apk -w assets/OTP_seed.txt "+str(seed)) os.replace("/modapk/1.apk", "designated_name") return designated_name def get_OTP_client_win(self, seed, designated_name=None): if designated_name==None: designated_name="%08x"%random.getrandbits(32)+".py" f=open(designated_name, "w") f.write("TickIntervalSeconds="+str(self.TickIntervalSeconds)) f.write("\nPasscodeLength="+str(self.PasscodeLength)) f.write("\nseed="+str(seed)) f.write("\n") template=open("otp_win_template.py", "r") f.write(template.read()) return designated_name OTPPreset=OTP(30,6) if __name__=="__main__": _otpobject=OTP(30,6) _sd=_otpobject.generate_seed() print("time: ", time.time()) print(_otpobject._get_current_interval()) print(_otpobject._get_current_passcode(_sd)) print(_otpobject.get_OTP_client_win(_sd)) print(_otpobject.check(_sd,str(_otpobject._get_current_passcode(_sd)).zfill(6)))
[ "noreply@github.com" ]
noreply@github.com
0567fe4ebe88254f30e3acdf850eb08984dcd1e3
8a1f1d72d2672bedc81bc452090110ac3b442852
/dashboard/venv/lib/python3.6/_collections_abc.py
e54681d9f004aad0fe6cfcae94799ca27f04d4cb
[]
no_license
lilyli333/HH-Intervention-Dashboard
2386b97d6ebb705da0d6f6b7c4b4538db27339d7
e55f3751e0780c700fc6b486100d87f0141e891f
refs/heads/master
2020-03-21T04:29:43.159523
2018-06-21T02:47:21
2018-06-21T02:47:21
138,111,002
0
0
null
null
null
null
UTF-8
Python
false
false
58
py
/Users/lilili/miniconda3/lib/python3.6/_collections_abc.py
[ "lily.jiayu@gmail.com" ]
lily.jiayu@gmail.com
f61b69e59a5f3df86af281eb1cb0ccc016d7d18e
63d28241de5d5f8f6ea998865124106761eba317
/beaker/__init__.py
2d669b3124144289cba77e9e8b1cf96bb56f896c
[ "LicenseRef-scancode-warranty-disclaimer", "BSD-2-Clause" ]
permissive
isabella232/beaker-1
e2aba9947d176c4683921b862a6168af68d7e7f6
3d5b74a61eaadd28d6917ab039fb9292cbc533ef
refs/heads/master
2022-01-05T20:44:55.956425
2019-06-17T17:07:58
2019-06-17T17:07:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
28
py
__version__ = '1.9.0+dd.26'
[ "noreply@github.com" ]
noreply@github.com
4e73ef6743cfa15be491eaee70edc8f3aa23a9d4
1f6e3f64cdb087b2c294b3e4c0406c3674b43e7a
/notification_request_queue.py
dd75d7a503f7c9a78f291bbf8534c0c15e5062d1
[]
no_license
rajithakalapatapu/chatclient-offlinemessage-storagedelivery
cfd6c1102144b3d1fcd8675593f1c6006a6c8c34
ab06c8b0e06d39c4f8c5a6eb7824125fc7f213d6
refs/heads/master
2021-05-17T15:42:35.798607
2019-04-25T03:01:51
2019-04-25T03:01:51
250,850,748
0
0
null
null
null
null
UTF-8
Python
false
false
1,823
py
""" Name: Venkata Adilakshmi Rajitha Kalapatapu Student ID: 1001682465 Login ID: vxk2465 """ import queue class NotificationRequestQueue: def __init__(self): # Start a queue self.request_queue = queue.Queue() def add_request(self, student, course, approval_decision): try: # store incoming data into the queue # store it asynchronously - queue takes care of locks self.request_queue.put((student, course, approval_decision), False) return True except queue.Full as e: print(e) return False def get_all_cleared_requests(self): pending_requests = [] try: # as long as queue has items, get data while not self.request_queue.empty(): # get data asynchronously - queue takes care of locks # if there's no data throw queue.Empty error within 1 second pending_request = self.request_queue.get(False, 1) # store it in a list to be returned pending_requests.append(pending_request) # remove item from task self.request_queue.task_done() except queue.Empty as e: print("Nothing to return at the moment") return pending_requests except ValueError as e: print("We had more tasks done than tasks in the queue") return pending_requests return pending_requests if __name__ == "__main__": q = NotificationRequestQueue() q.add_request("student1", "course1", True) q.add_request("student1", "course2", False) q.add_request("student2", "course2", True) print(q.get_all_cleared_requests()) print("Queue empty at the end? {}".format([] == q.get_all_cleared_requests()))
[ "rajithakalapatapu9@gmail.com" ]
rajithakalapatapu9@gmail.com
cbaecb462463a2a78f6aa6396f7b0b1f959eabfb
57cbbe35b1b5a7aa40b732aa6a9be3f7bfd5291f
/RunAlgorithm.py
70756cbd03ea95b39dccef0b3aad1e7377797017
[]
no_license
JoeyChaps/regularization
18d1fb1233231ebd08496ff9a4b8db57d84e2055
235f6c58b28025ef9086e76aa5f7565c98753e97
refs/heads/master
2020-04-15T15:17:33.461376
2014-12-31T05:31:44
2014-12-31T05:31:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,633
py
#!/usr/bin/python ####### # File: RunAlgorithm.py # Project: Regularization # Author: Joe Chapman # Date: 9-8-14 # Url: https://github.com/JoeyChaps/regularization ####### import Regularizer import DataRandomizer from time import gmtime, strftime import os import math import shutil import sys import getopt def isnumber(s): # Returns true if s is numeric bResult = True try: i = float(s) except ValueError, TypeError: bResult = False return bResult def loadData(dataFile): # Reads the csv dataFile and returns a 2d list of pattern data readFile = open(dataFile, 'r') count = 0 prev = 0 cols = 0 a_pats = [] bDeleteColumn = False a_deleteCols = [] for line in readFile: prev = cols a_rowp = [] a_rowp = line.split(",") a_rown = [] cols = len(a_rowp) for c in range(0, cols): if isnumber(a_rowp[c]): a_rown.append(a_rowp[c]) else: if not c in a_deleteCols: a_deleteCols.append(c) cols = len(a_rown) if (cols != prev): if (count != 0): print("unequal line counts: " + str(cols) + " and " + str(prev) \ + " at line " + str(count) + "\n") count += 1 a_pats.append(a_rown) for c in a_deleteCols: print("in load data, deleted column " + str(c)) readFile.close() return list(a_pats) def convertClasses(a_pattern, index, targetVal): # Replaces class values not equal to the targetVal with -1 a_pat = list(a_pattern) if (a_pat[index] != targetVal): a_pat[index] = -1 return list(a_pat) def prepPats(a_pats, clsIndx, cols, bConvert): # Makes sure pattern values are floats and, if bConvert is true, # converts class values to 1 and -1 a_tmp = [] for a_pat in a_pats: for c in range(0, cols + 1): a_pat[c] = float(a_pat[c]) if (bConvert): a_pat = convertClasses(a_pat, clsIndx, 1) a_tmp.append(a_pat) return list(a_tmp) def prepLambdas(sLambdas): # Makes sure lambda values are floats a_tmp = [] a_lams = sLambdas.split(",") for lam in a_lams: a_tmp.append(float(lam)) return list(a_tmp) def main(argv): patsLim = -1 # This number determines how many patterns will be used in # this run of the program. The number is the total number # of train and test patterns combined. Or set patsLim to -1 # to use all the available patterns in the original data # set (the file referenced by the fileName variable below), # however many there may be. bRefreshData = True # When bRefreshData is true, the program generates # new data files for the training and test sets, # randomly selecting and ordering the data for the # new program run. When bRefreshData is false, the # program uses previously generated data files # stored in the saved_data directory. a_lambdas = "0" projectName = "regularize" fileName = "" savedDataDir = "saved_data" savedTrainingFile = "\\regularize_train.csv" rTrainFileName = "" dataSource = "" a_trainPats = [] nTrainPats = 0 bConvertClass = False ncols = -1 classIndex = 1 xIn = 0 yIn = 1 transNum = 3 dataFunc = lambda x: 1 + 9 * x**2 opt = [] arg = [] try: opts, args = getopt.getopt(argv, "l:p:d", ["lambdas=", "pats=", "data"]) except getopt.GetoptError as err: print("blarf") print(str(err)) sys.exit(2) for opt, arg in opts: if opt in ("-p", "--pats"): patsLim = int(arg) elif opt in ("-d", "--data"): bRefreshData = False elif opt in ("-l", "--lambdas"): a_lambdas = arg transNum = 3 nowTime = strftime("%Y-%m-%d_%H-%M-%S", gmtime()) newOutputDir = "" otherFileName = "" if patsLim < 2: patsLim = 5 a_lambdas = prepLambdas(a_lambdas) if bRefreshData: data_randomizer = DataRandomizer.DataRandomizer( fileName, projectName, patsLim) data_randomizer.generateData(patsLim, dataFunc) rTrainFileName = data_randomizer.getTrainFile() dataSource = data_randomizer.getDataDirectory() else: rTrainFileName = savedDataDir + savedTrainingFile a_trainPats = loadData(rTrainFileName) ncols = len(a_trainPats[0]) - 1 a_trainPats = prepPats(a_trainPats, classIndex, ncols, bConvertClass) nTrainPats = len(a_trainPats) newOutputDir = "output\\out_" + nowTime + "_" + str(nTrainPats) if not os.path.exists(newOutputDir): os.makedirs(newOutputDir) if bRefreshData: shutil.move(dataSource, newOutputDir) else: dataDir = newOutputDir + "\\data" if not os.path.exists(dataDir): os.makedirs(dataDir) shutil.copy(rTrainFileName, dataDir) if otherFileName: shutil.copy(otherFileName, dataDir) reg = Regularizer.Regularizer(newOutputDir) reg.runAlgorithm(classIndex, xIn, yIn, ncols, transNum, nTrainPats, a_lambdas, a_trainPats, dataFunc) print("\nDone!") if __name__ == "__main__": main(sys.argv[1:])
[ "jchapmantx@hotmail.com" ]
jchapmantx@hotmail.com
13bd0e18fa8d78f69cd492c552c543a620fc6260
72a77764946ed570d96ae673103f39c35ebf0e00
/test_unittest_1.py
5fb24715d824b6ce1ba8b39cd7fe386de52eab37
[]
no_license
WasAlexHere/AutomationTest
029094b41c467540fe92a70400300bdacd57f99a
b8d3f37e1d53815dbb2f1005907559c9bbb86376
refs/heads/master
2023-05-13T17:28:52.550554
2020-08-02T14:41:17
2020-08-02T14:41:17
280,935,249
0
0
null
2021-06-02T02:43:47
2020-07-19T19:25:20
Python
UTF-8
Python
false
false
2,814
py
import unittest from selenium import webdriver class TestLogin(unittest.TestCase): browser = webdriver.Chrome() def test_login1(self): link = "http://suninjuly.github.io/registration1.html" self.browser.get(link) # Ваш код, который заполняет обязательные поля input1 = self.browser.find_element_by_css_selector(".first:required") input1.send_keys("Ivan") input2 = self.browser.find_element_by_css_selector(".second:required") input2.send_keys("Petrov") input3 = self.browser.find_element_by_css_selector(".third:required") input3.send_keys("Petrov") # Отправляем заполненную форму button = self.browser.find_element_by_tag_name("button") button.click() # находим элемент, содержащий текст welcome_text_elt = self.browser.find_element_by_tag_name("h1") # записываем в переменную welcome_text текст из элемента welcome_text_elt welcome_text = welcome_text_elt.text # с помощью assert проверяем, что ожидаемый текст совпадает с текстом на странице сайта self.assertEqual("Congratulations! You have successfully registered!", welcome_text, "Text is incorrect!") #self.browser.quit() def test_login2(self): link1 = "http://suninjuly.github.io/registration2.html" self.browser.get(link1) # Ваш код, который заполняет обязательные поля input1 = self.browser.find_element_by_css_selector(".first:required") input1.send_keys("Ivan") input2 = self.browser.find_element_by_css_selector(".second:required") input2.send_keys("Petrov") input3 = self.browser.find_element_by_css_selector(".third:required") input3.send_keys("Petrov") # Отправляем заполненную форму button = self.browser.find_element_by_tag_name("button") button.click() # находим элемент, содержащий текст welcome_text_elt = self.browser.find_element_by_tag_name("h1") # записываем в переменную welcome_text текст из элемента welcome_text_elt welcome_text = welcome_text_elt.text # с помощью assert проверяем, что ожидаемый текст совпадает с текстом на странице сайта self.assertEqual("Congratulations! You have successfully registered!", welcome_text, "Text is incorrect!") self.browser.quit() if __name__ == "__main__": unittest.main()
[ "sethtorston@mail.ru" ]
sethtorston@mail.ru
6685eda1a70bab345ddc6f996c018feac6a6c741
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03371/s173081591.py
e631cebeb539f9cb5923fd6e498f3a402e717958
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
import sys read = sys.stdin.read readline = sys.stdin.buffer.readline sys.setrecursionlimit(10 ** 8) INF = float('inf') MOD = 10 ** 9 + 7 def main(): A, B, C, X, Y = map(int, readline().split()) ans = A*X+B*Y if X>=Y: ans = min(ans, C*Y*2+A*(X-Y), C*X*2) else: ans = min(ans, C*X*2+B*(Y-X), C*Y*2) print(ans) if __name__ == '__main__': main()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
1b48913b917116ee78220345bf0711faabb87c05
4d595d16ff3479b2acea959f43ce7e5be46d74ce
/kNN.py
7bcc3f7eea3daa643073fb7024b134970d37fc9e
[]
no_license
WnFg/Machine-Learning
0f120fae457bed3c33f092d97bf40051a0005ba3
17090779998988c98c5d36e2c59fe28038b72630
refs/heads/master
2020-05-17T21:58:20.860201
2015-08-13T01:53:12
2015-08-13T01:53:12
40,249,448
0
0
null
null
null
null
UTF-8
Python
false
false
680
py
from numpy import * import operator def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group, labels def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
[ "496100630@qq.com" ]
496100630@qq.com
21d259e2bd0230f61d9018f3536a28303133178b
e8d4fe2361d71aef6519f666152f14137156159c
/impacket-0.9.11/build/lib.linux-i686-2.6/impacket/dcerpc/dcerpc_v4.py
5099c5aaaf72e06ee8a13bc334ed7399833f905f
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "Apache-1.1", "BSD-2-Clause" ]
permissive
kenzshi/DDoSProject
11d7e676a150964a9f78f1b7e1df4468dd9d973f
9587a2be7f4773d19a96a35d1128f5041f0472da
refs/heads/master
2021-01-10T19:48:21.355849
2015-03-16T09:52:22
2015-03-16T09:52:22
30,205,639
42
32
null
null
null
null
UTF-8
Python
false
false
8,951
py
# Copyright (c) 2003-2012 CORE Security Technologies # # This software is provided under under a slightly modified version # of the Apache Software License. See the accompanying LICENSE file # for more information. # # $Id: dcerpc_v4.py 529 2012-04-29 21:39:46Z bethus@gmail.com $ # # Description: # Handle basic DCE/RPC protocol, version 4. # import array import socket import struct from impacket import ImpactPacket from impacket import uuid from impacket import dcerpc import dcerpc, conv class DCERPC_RawCall(ImpactPacket.Header): def __init__(self, op_num, data = ''): self.OP_NUM = op_num ImpactPacket.Header.__init__(self) self.setData(data) def setData(self, data): self.get_bytes()[:] = array.array('B', data) def get_header_size(self): return len(self.get_bytes()) class MSRPCHeader(ImpactPacket.Header): __SIZE = 80 def __init__(self, aBuffer = None): ImpactPacket.Header.__init__(self, MSRPCHeader.__SIZE) self.set_version(4) self.set_type(dcerpc.MSRPC_REQUEST) self.set_flags((0x08, 0x00)) self.set_representation((0x10, 0x00, 0x00)) self.set_serial((0, 0)) ## self.set_if_version(3) self.set_seq_num(0) self.set_if_hint(0xFFFF) self.set_activity_hint(0xFFFF) if aBuffer: self.load_header(aBuffer) def get_version(self): return self.get_byte(0) def set_version(self, version): self.set_byte(0, version) def get_type(self): return self.get_byte(1) def set_type(self, type): self.set_byte(1, type) def get_flags(self): """ This method returns a tuple in (flags1, flags2) form.""" return (self.get_byte(2), self.get_byte(3)) def set_flags(self, flags): """ This method takes a tuple in (flags1, flags2) form.""" self.set_byte(2, flags[0]) self.set_byte(3, flags[1]) def get_representation(self): """ This method returns a tuple in (major, minor) form.""" return (self.get_byte(4), self.get_byte(5), self.get_byte(6)) def set_representation(self, representation): """ This method takes a tuple in (major, minor) form.""" self.set_byte(4, representation[0]) self.set_byte(5, representation[1]) self.set_byte(6, representation[1]) def get_serial(self): """ This method returns a tuple in (high, low) form.""" return (self.get_byte(7), self.get_byte(79)) def set_serial(self, serial): """ This method takes a tuple in (high, low) form.""" self.set_byte(7, serial[0]) self.set_byte(79, serial[1]) def get_obj_binuuid(self): return self.get_bytes().tolist()[8:8+16] def set_obj_binuuid(self, binuuid): assert 16 == len(binuuid) self.get_bytes()[8:8+16] = array.array('B', binuuid) def get_if_binuuid(self): return self.get_bytes().tolist()[24:24+16] def set_if_binuuid(self, binuuid): assert 16 == len(binuuid) self.get_bytes()[24:24+16] = array.array('B', binuuid) def get_activity_binuuid(self): return self.get_bytes().tolist()[40:40+16] def set_activity_binuuid(self, binuuid): assert 16 == len(binuuid) self.get_bytes()[40:40+16] = array.array('B', binuuid) def get_server_boottime(self): return self.get_long(56, '<') def set_server_boottime(self, time): self.set_long(56, time, '<') def get_if_version(self): return self.get_long(60, '<') def set_if_version(self, version): self.set_long(60, version, '<') def get_seq_num(self): return self.get_long(64, '<') def set_seq_num(self, num): self.set_long(64, num, '<') def get_op_num(self): return self.get_word(68, '<') def set_op_num(self, op): self.set_word(68, op, '<') def get_if_hint(self): return self.get_word(70, '<') def set_if_hint(self, hint): self.set_word(70, hint, '<') def get_activity_hint(self): return self.get_word(72, '<') def set_activity_hint(self, hint): self.set_word(72, hint, '<') def get_frag_len(self): return self.get_word(74, '<') def set_frag_len(self, len): self.set_word(74, len, '<') def get_frag_num(self): return self.get_word(76, '<') def set_frag_num(self, num): self.set_word(76, num, '<') def get_auth_proto(self): return self.get_byte(78) def set_auth_proto(self, proto): self.set_byte(78, proto) def get_header_size(self): return MSRPCHeader.__SIZE def contains(self, aHeader): ImpactPacket.Header.contains(self, aHeader) if self.child(): contents_size = self.child().get_size() self.set_op_num(self.child().OP_NUM) self.set_frag_len(contents_size) def get_ctx_id(self): # return self.get_word(20, '<') return 0 def set_ctx_id(self, id): # self.set_word(20, id, '<') pass class DCERPC_v4(dcerpc.DCERPC): DEFAULT_FRAGMENT_SIZE = 1392 def __init__(self, transport): dcerpc.DCERPC.__init__(self, transport) self.__activity_uuid = uuid.generate() self.__seq_num = 0 self._bind = 0 # Don't attempt binding unless it explicitly requested. self.set_idempotent(0) def set_default_max_fragment_size(self): self.set_max_fragment_size(DCERPC_v4.DEFAULT_FRAGMENT_SIZE) def bind(self, uuid, bogus_binds = ''): """If idempotent is non-zero, the package will be sent with that flag enabled. Certain services react by skiping the CONV phase during the binding. """ self._bind = 1 # Will bind later, when the first packet is transferred. self.__if_uuid = uuid[:16] self.__if_version = struct.unpack('<L', uuid[16:20])[0] def get_idempotent(self): return self.__idempotent def set_idempotent(self, flag): self.__idempotent = flag def conv_bind(self): # Receive CONV handshake. # ImpactDecode: this block. data = self._transport.recv() rpc = MSRPCHeader(data) activity_uuid = rpc.get_activity_binuuid() _conv = conv.WhoAreYou(data[rpc.get_header_size():]) # ImpactDecode rpc = MSRPCHeader() rpc.set_type(dcerpc.MSRPC_RESPONSE) rpc.set_if_binuuid(conv.MSRPC_UUID_CONV) flags = rpc.get_flags() rpc.set_flags((flags[0], 0x04)) rpc.set_activity_binuuid(activity_uuid) _conv = conv.WhoAreYou2() rpc.contains(_conv) # The CONV response must be sent to the endpoint from where the request was received. old_address = self._transport.get_addr() peer_address = self._transport.get_recv_addr() self._transport.set_addr(peer_address) self._transport.send(rpc.get_packet()) self._transport.set_addr(old_address) def send(self, data): if isinstance(data, dcerpc.MSRPCHeader): opnum = data['op_num'] packet = data['pduData'] else: opnum = data.OP_NUM packet = data.get_packet() frag_num = 0 rpc = MSRPCHeader() self.set_ctx_id(self._ctx) rpc.set_if_binuuid(self.__if_uuid) rpc.set_if_version(self.__if_version) rpc.set_activity_binuuid(self.__activity_uuid) rpc.set_seq_num(self.__seq_num) frag = DCERPC_RawCall(opnum) if self._max_frag: offset = 0 while 1: toSend = packet[offset:offset+self._max_frag] if not toSend: break flags = dcerpc.MSRPC_NOTAFRAG | dcerpc.MSRPC_RECRESPOND if self.__idempotent: flags |= dcerpc.MSRPC_NOTFORIDEMP offset += len(toSend) if offset == len(packet): flags |= dcerpc.MSRPC_LASTFRAG rpc.set_flags((flags, 0)) frag.setData(toSend) rpc.contains(frag) rpc.set_frag_num(frag_num) self._transport.send(rpc.get_packet()) frag_num += 1 if self._bind and not self.__idempotent: self._bind = 0 self.conv_bind() self.recv() # Discard RPC_ACK. else: if self.__idempotent: rpc.set_flags((dcerpc.MSRPC_NOTFORIDEMP, 0)) rpc.contains(packet) self._transport.send(rpc.get_packet()) if self._bind and not self.__idempotent: self._bind = 0 self.conv_bind() self.recv() # Discard RPC_ACK. self.__seq_num += 1 def recv(self): data = self._transport.recv() rpc = MSRPCHeader(data) off = rpc.get_header_size() return data[off:]
[ "la236am@users.isi.deterlab.net" ]
la236am@users.isi.deterlab.net
1e905c442fe41f352798eab774b333e0624ba426
4292e22ea0014183186ffbb692eb252552359f86
/infrastructure/tools/get_inventory.py
fb010b4bcea083d4ca4e7f434266765b80d6b5b7
[ "MIT" ]
permissive
nhsx/covid-chest-imaging-database
28127c41b0aa0e2e424594d17cd2f1d3fdebb5e3
9946684521130761e6f39b01d1651e61fc79080f
refs/heads/master
2023-08-24T12:00:13.589048
2023-08-14T14:59:29
2023-08-14T14:59:29
252,395,273
63
13
MIT
2023-09-11T05:01:02
2020-04-02T08:15:51
Python
UTF-8
Python
false
false
1,839
py
#!/usr/bin/env python import argparse import logging from pathlib import Path import boto3 logging.basicConfig(level=logging.INFO) def download_inventory(main_bucket, output_folder): """Downloading the relevant inventory files Parameters ---------- main_bucket : str The main warehouse bucket name (inventory bucket name will be extrapolated from there). output_folder : str The folder where to download the files. """ inventory_bucket = f"{main_bucket}-inventory" s3_client = boto3.client("s3") # Get the latest list of inventory files objs = s3_client.list_objects_v2( Bucket=inventory_bucket, Prefix=f"{main_bucket}/daily-full-inventory/hive", )["Contents"] latest_symlink = sorted([obj["Key"] for obj in objs])[-1] response = s3_client.get_object(Bucket=inventory_bucket, Key=latest_symlink) for line in response["Body"].read().decode("utf-8").split("\n"): inventory_file = line.replace(f"s3://{inventory_bucket}/", "") logging.info(f"Downloading inventory file: {inventory_file}") output_path = Path(output_folder) / Path(inventory_file).name s3_client.download_file(inventory_bucket, inventory_file, str(output_path)) logging.info(f"Saved to: {output_path}") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Download the latest set of S3 inventory files." ) parser.add_argument( "-b", "--bucket", default="nccid-data-warehouse-prod", help="The bucket whose inventory to grab.", ) parser.add_argument( "-o", "--output-folder", default="./", help="Where to download the inventory files", ) args = parser.parse_args() download_inventory(args.bucket, args.output_folder)
[ "gergely.imreh@faculty.ai" ]
gergely.imreh@faculty.ai
e239b9fc54ed81cbc21409cf99891fe420dbbda3
939fbd0184a77bef1e406227320e6bacedc8acfc
/linkerd/datadog_checks/linkerd/__about__.py
3a3af84f9a651aa4f9d19deb558c73f71935b8a2
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
netsil/integrations-core
d08b8df76c4ff7fea293c66404ac7f63153d2e51
ca1502937ed4febc6e426950b209ffd6263197fb
refs/heads/epoch/5.23.0
2023-06-08T01:22:29.394361
2022-10-12T11:32:29
2022-10-12T11:32:29
112,673,395
4
6
BSD-3-Clause
2022-10-12T11:32:30
2017-11-30T23:48:59
Python
UTF-8
Python
false
false
129
py
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) __version__ = "1.0.0"
[ "noreply@github.com" ]
noreply@github.com
8f26465aaa04312133e55a3be07fa3ebfdaba5af
3196460db64eded2daa77457643c8dd1ed1ba99e
/codechef/steve/COINS-wrong2.py
b8ec3851c8d755ef25b8402d188b8199eba086e0
[]
no_license
prototypemagic/proto-mastery
94c649958792f00ea2a057b63ed0f7717b5ab05d
45f7ef2e998fa7dbc071f5c42217a83fd9340f51
refs/heads/master
2020-05-28T08:55:45.769199
2012-09-10T22:12:00
2012-09-10T22:12:00
3,097,117
0
0
null
null
null
null
UTF-8
Python
false
false
823
py
#!/usr/bin/env python # Steve Phillips / elimisteve # 2012.01.04 # The following is wrong, to say the least, because input == 13 should # produce output == 13, not 14. As the problem states, you cannot # exchange Bytelandian coins for other Bytelandian coins. def naive_max(num): # Given in problem description return num/2 + num/3 + num/4 def clever_max(num): '''Turns every 12 bytelandian coins into 13, plus remainder''' # NOT given in problem description naive = naive_max(num) maybe_bigger = (num/12) * 13 + (num % 12) # WRONG! return maybe_bigger if maybe_bigger > naive else naive n = 0 while True: try: n = int( raw_input().strip() ) print max([n, clever_max(n), clever_max(n/2) + clever_max(n/3) + clever_max(n/4)]) except: break
[ "elimisteve@gmail.com" ]
elimisteve@gmail.com
a3bfb2d0297ea76d5536aa7f89ed478033f0da6a
25d65018ce75445949711fb7d9d761cdefeed640
/Q-Learning-for-Trading/envs.py
7de54089df16b44c1513b67a49149d5d3d62ef2d
[]
no_license
kimcaprio/Trading_Stock_Market
a69998198431e8754603b5e018be7120ca4ea8a1
864e54681abdc26500b9cc9dacee4ac732076272
refs/heads/master
2023-01-24T18:17:56.033233
2020-11-25T01:47:54
2020-11-25T01:47:54
275,816,718
0
0
null
null
null
null
UTF-8
Python
false
false
3,728
py
import gym from gym import spaces from gym.utils import seeding import numpy as np import itertools class TradingEnv(gym.Env): """ A 3-stock (MSFT, IBM, QCOM) trading environment. State: [# of stock owned, current stock prices, cash in hand] - array of length n_stock * 2 + 1 - price is discretized (to integer) to reduce state space - use close price for each stock - cash in hand is evaluated at each step based on action performed Action: sell (0), hold (1), and buy (2) - when selling, sell all the shares - when buying, buy as many as cash in hand allows - if buying multiple stock, equally distribute cash in hand and then utilize the balance """ def __init__(self, train_data, init_invest=20000): # data # 개별 int 형 데이터(소숫점포함) 데이터의 사이즈를 줄이기 위해 round 함수를 사용. self.stock_price_history = np.around(train_data) # round up to integer to reduce state space self.n_stock, self.n_step = self.stock_price_history.shape # instance attributes self.init_invest = init_invest self.cur_step = None self.stock_owned = None self.stock_price = None self.cash_in_hand = None # action space self.action_space = spaces.Discrete(3**self.n_stock) # observation space: give estimates in order to sample and build scaler stock_max_price = self.stock_price_history.max(axis=1) stock_range = [[0, init_invest * 2 // mx] for mx in stock_max_price] price_range = [[0, mx] for mx in stock_max_price] cash_in_hand_range = [[0, init_invest * 2]] self.observation_space = spaces.MultiDiscrete(stock_range + price_range + cash_in_hand_range) # seed and start self._seed() self._reset() def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _reset(self): self.cur_step = 0 self.stock_owned = [0] * self.n_stock self.stock_price = self.stock_price_history[:, self.cur_step] self.cash_in_hand = self.init_invest return self._get_obs() def _step(self, action): assert self.action_space.contains(action) prev_val = self._get_val() self.cur_step += 1 self.stock_price = self.stock_price_history[:, self.cur_step] # update price self._trade(action) cur_val = self._get_val() reward = cur_val - prev_val done = self.cur_step == self.n_step - 1 info = {'cur_val': cur_val} return self._get_obs(), reward, done, info def _get_obs(self): obs = [] obs.extend(self.stock_owned) obs.extend(list(self.stock_price)) obs.append(self.cash_in_hand) return obs def _get_val(self): return np.sum(self.stock_owned * self.stock_price) + self.cash_in_hand def _trade(self, action): # all combo to sell(0), hold(1), or buy(2) stocks action_combo = list(map(list, itertools.product([0, 1, 2], repeat=self.n_stock))) # print("action_combo : ", action_combo) action_vec = action_combo[action] # one pass to get sell/buy index sell_index = [] buy_index = [] for i, a in enumerate(action_vec): if a == 0: sell_index.append(i) elif a == 2: buy_index.append(i) # two passes: sell first, then buy; might be naive in real-world settings if sell_index: for i in sell_index: self.cash_in_hand += self.stock_price[i] * self.stock_owned[i] self.stock_owned[i] = 0 if buy_index: can_buy = True while can_buy: for i in buy_index: if self.cash_in_hand > self.stock_price[i]: self.stock_owned[i] += 1 # buy one share self.cash_in_hand -= self.stock_price[i] else: can_buy = False
[ "kimcaprio1@naver.com" ]
kimcaprio1@naver.com
4e8b509ecc099975f3e38d997799d301173a5bf0
59db4cd30b6677ba4f45d9b488d05c20a9f311b2
/temperature_v_time.py
d8b720c559c25e03a3020f1e9c2c4208881c210d
[]
no_license
krmnino/XrayDiffraction-DataReduction
1f11b5759d9efd9edcdb2a1185ab18c641972fee
eeec84220a70eb99a3bac1a624ff79fc797dbe7f
refs/heads/master
2020-11-24T11:17:44.694356
2019-12-15T03:27:44
2019-12-15T03:27:44
228,122,638
0
0
null
null
null
null
UTF-8
Python
false
false
3,857
py
#################################### # temperature_v_time.py # Python 3.x # Kurt Manrique-Nino #################################### import os import numpy as np import matplotlib.pyplot as plt import sys from datetime import datetime def get_delta_time(time1, time2): delta_t = time2 - time1 return delta_t.total_seconds() def parse_time_par_file(path): str_time_arr = [] time_arr = [] delta_time_arr = [] with open(path) as par_file: for line in par_file: str_time_arr.append(line[4:24]) str_time_arr.pop(0) for time in str_time_arr: time_arr.append(datetime.strptime(time, "%b %d %H:%M:%S %Y")) for time in time_arr: delta_time_arr.append(get_delta_time(time_arr[0], time)) return delta_time_arr def parse_temperature_par_file(path): temperature_arr = np.genfromtxt(path, delimiter = ' ', usecols = -2) return temperature_arr def parse_first_scan_par_file(path): scan = 0 with open(path) as par_file: counter = 0 for line in par_file: counter += 1 if(counter == 2): temp = line.split() scan = int(temp[7]) return scan def get_subdirs(root): for src, dirs, files in os.walk(root): return dirs def build_chi_paths(subdirs, root, start_from_scan): sort_subdirs = list(map(int, results)) sort_subdirs.sort() root_dir = root paths = [] full_paths = [] if(root_dir[len(root) - 1] != '/'): root_dir += '/' else: pass for sub in range(0, len(sort_subdirs) + 1): paths.append('%s%d%s'%(root_dir, sub, '/')) trimmed_paths = paths[start_from_scan:] for path in trimmed_paths: for src, dirs, files in os.walk(path): for file in files: if(file.endswith('.chi')): temp = os.path.join(src, file) full_paths.append(temp) return full_paths def parse_angle_chi_files(arrayPaths): angle_arr = np.genfromtxt(arrayPaths[0], delimiter = ' ', usecols = 0) return angle_arr def parse_intensity_chi_files(arrayPaths): collection_intensity = [] for path in arrayPaths: intensity_arr = [] intensity = np.genfromtxt(path, delimiter = ' ', usecols = 1) for i in range(0, intensity.size): collection_intensity.append(intensity[i]) return collection_intensity def display_graphs(angle_arr, time_arr, intensity_arr, temperature_arr, path, zi, zf): #controur graph data x = np.array(angle_arr) y = np.array(time_arr) x1, y1 = np.meshgrid(x, y) z = np.array(intensity_arr).reshape(x1.shape) #subplots f, (g1, g2, g3) = plt.subplots(1, 3) fileName = path.split('/') f.suptitle(fileName[len(fileName) - 2]) #subplot plot g1.plot(temperature_arr, time_arr, 'b') g1.set_xlabel('Temperture') g1.set_ylabel('Time (seconds)') g1.set_ylim([y[0], y[len(y) - 1]]) g1.grid() #subplot contour g2.contourf(x1, y1, z) g2.set_xlabel('Angle (degrees)') g2.set_ylabel('Time (seconds)') #subplot zoom-in if(zi < angle_arr[0] or zi > zf or zf > angle_arr[len(angle_arr) - 1]): print('Invalid values to generate zoomed contour graph') else: g3.contourf(x1, y1, z) g3.set_xlim([zi, zf]) g3.set_xlabel('Angle (degrees)') g3.set_ylabel('Time (seconds)') plt.show() root_directory = input('Enter the path to the root folder path: ') par_file_path = input('Enter the path to the raw .par file: ') print('-----Zoom contour graph by angle (degrees)-----') zoom_contour_from = float(input('From: ')) zoom_contour_to = float(input('To: ')) time_array = parse_time_par_file(par_file_path) temperature_array = parse_temperature_par_file(par_file_path) start_from_scan = parse_first_scan_par_file(par_file_path) raw_subdirs = get_subdirs(root_directory) chi_paths = build_chi_paths(raw_subdirs, root_directory, start_from_scan) angle_array = parse_angle_chi_files(chi_paths) intensity_array = parse_intensity_chi_files(chi_paths) display_graphs(angle_array, time_array, intensity_array, temperature_array, par_file_path, zoom_contour_from, zoom_contour_to)
[ "kurt.manrique.n@gmail.com" ]
kurt.manrique.n@gmail.com
61da67eb396105306a86db070d5dde3620b80f21
71f8ecf0ff44ae70d506d6dc68e933a7f5b2f984
/main/gameModule/events.py
2bdb5c5fe7dadcf33fdb298c918d10dbc36c9024
[]
no_license
CitationNerded/PythonGameFromJad
801b700b0273e25414b36b87ae2c8c157c5cb4ec
937bc754a708ca46ddbd7f652557a0e85fb2221e
refs/heads/master
2022-12-21T12:30:33.793025
2017-08-16T21:51:10
2017-08-16T21:51:10
85,260,221
0
3
null
2022-12-20T02:55:17
2017-03-17T02:03:04
Python
UTF-8
Python
false
false
7,543
py
"""events - contains events and game classes.""" DIRECTION_UP = 0 DIRECTION_DOWN = 1 DIRECTION_LEFT = 2 DIRECTION_RIGHT = 3 class Event: """Event - superclass defines events that any objects that maybe called by the event manager.""" def __init__(self): """Initialise Event Class.""" self.name = 'Generic Event' class TickEvent(Event): """TickEvent - manage tick events while the program runs.""" def __init__(self): """Initialise TickEvent Class.""" self.name = 'CPU Tick Event' class QuitEvent(Event): """QuitEvent - manage quit events.""" def __init__(self): """Initialise Program Quit Event.""" self.name = 'Program Quit Event' class MapBuiltEvent(Event): """MapBuiltEvent - map building event.""" def __init__(self, map): """Initialise Map Built Event.""" self.name = 'Map Built Event' self.map = map class GameStartedEvent(Event): """GameStartedEvent - game starting event.""" def __init__(self, game): """Initialise Game Started Event.""" self.name = 'Game Started Event' self.game = game class CharacterMoveRequest(Event): """CharacterMoveRequest - Request that a character moves.""" def __init__(self, direction): """Initialise Character Move Request.""" self.name = 'Character Move Request' self.direction = direction class CharacterPlaceEvent(Event): """CharacterPlaceRequest - Place Character.""" def __init__(self, character): """Initialise Character Place Event.""" self.name = 'Character Place Event' self.character = character class CharacterMoveEvent(Event): """CharacterMoveEvent - move character.""" def __init__(self, character): """"Initialise Character Move Event.""" self.name = 'Character Move Event' self.character = character class EventManager: """This class is responsible for co-oridnating events across the mvc.""" def __init__(self): """"Initialise Event Manager.""" from weakref import WeakKeyDictionary self.listeners = WeakKeyDictionary() self.eventQueue = [] def RegisterListener(self, listener): """Register Event Listeners.""" self.listeners[listener] = 1 def UnregisterListener(self, listener): """Unregister Event Listeners.""" if listener in self.listeners.keys(): del self.listeners[listener] def Post(self, event): """Post listener events.""" if not isinstance(event, TickEvent): print("Event: %s" % (event.name)) for listener in self.listeners.keys(): listener.Notify(event) class Game: """Game Class - model that looks after the Game.""" STATE_PREPARING = 0 STATE_RUNNING = 1 STATE_PAUSED = 2 def __init__(self, evMananger): """Initialise the Game Class.""" self.evMananger = evMananger self.evMananger.RegisterListener(self) self.state = Game.STATE_PREPARING self.players = [Player(evMananger)] self.map = Map(evMananger) def Start(self): """Start Game - set state to RUNNING.""" self.map.Build() self.state = Game.STATE_RUNNING ev = GameStartedEvent(self) self.evMananger.Post(ev) def Notify(self, event): """Notify - if the program sees a TickEvent start the game.""" if isinstance(event, TickEvent): if self.state == Game.STATE_PREPARING: self.Start() class Player: """Manages players class.""" def __init__(self, evMananger): """Initialise player data.""" self.evMananger = evMananger self.characters = [Character(evMananger)] class Character: """Manages Character Class.""" def __init__(self, evMananger): """Initialise the Character class.""" self.evMananger = evMananger self.evMananger.RegisterListener(self) self.sector = None def Move(self, direction): """Move the character object.""" if self.sector.MovePossible(direction): newSector = self.sector.neighbors[direction] self.sector = newSector ev = CharacterMoveEvent(self) self.evMananger.Post(ev) def Place(self, sector): """Place the character object on screen.""" self.sector = sector ev = CharacterPlaceEvent(self) self.evMananger.Post(ev) def Notify(self, event): """Notify the character objects.""" if isinstance(event, GameStartedEvent): map = event.game.map self.Place(map.sectors[map.startSectorIndex]) elif isinstance(event, CharacterMoveRequest): self.Move(event.direction) class Map: """Manages Map Class object.""" def __init__(self, evMananger): """Initialise Map Class.""" self.evMananger = evMananger self.sectors = list(range(9)) self.startSectorIndex = 0 def Build(self): """Build Relational Map data.""" for i in list(range(9)): self.sectors[i] = Sector(self.evMananger) self.sectors[3].neighbors[DIRECTION_UP] = self.sectors[0] self.sectors[4].neighbors[DIRECTION_UP] = self.sectors[1] self.sectors[5].neighbors[DIRECTION_UP] = self.sectors[2] self.sectors[6].neighbors[DIRECTION_UP] = self.sectors[3] self.sectors[7].neighbors[DIRECTION_UP] = self.sectors[4] self.sectors[8].neighbors[DIRECTION_UP] = self.sectors[5] self.sectors[0].neighbors[DIRECTION_DOWN] = self.sectors[3] self.sectors[1].neighbors[DIRECTION_DOWN] = self.sectors[4] self.sectors[2].neighbors[DIRECTION_DOWN] = self.sectors[5] self.sectors[3].neighbors[DIRECTION_DOWN] = self.sectors[6] self.sectors[4].neighbors[DIRECTION_DOWN] = self.sectors[7] self.sectors[5].neighbors[DIRECTION_DOWN] = self.sectors[8] self.sectors[1].neighbors[DIRECTION_LEFT] = self.sectors[0] self.sectors[2].neighbors[DIRECTION_LEFT] = self.sectors[1] self.sectors[4].neighbors[DIRECTION_LEFT] = self.sectors[3] self.sectors[5].neighbors[DIRECTION_LEFT] = self.sectors[4] self.sectors[7].neighbors[DIRECTION_LEFT] = self.sectors[6] self.sectors[8].neighbors[DIRECTION_LEFT] = self.sectors[7] self.sectors[0].neighbors[DIRECTION_RIGHT] = self.sectors[1] self.sectors[1].neighbors[DIRECTION_RIGHT] = self.sectors[2] self.sectors[3].neighbors[DIRECTION_RIGHT] = self.sectors[4] self.sectors[4].neighbors[DIRECTION_RIGHT] = self.sectors[5] self.sectors[6].neighbors[DIRECTION_RIGHT] = self.sectors[7] self.sectors[7].neighbors[DIRECTION_RIGHT] = self.sectors[8] ev = MapBuiltEvent(self) self.evMananger.Post(ev) class Sector: """Sector Management Class.""" def __init__(self, evMananger): """Initialise Sector class.""" self.evMananger = evMananger #self.evMananger.RegisterListener(self) self.neighbors = list(range(4)) self.neighbors[DIRECTION_UP] = None self.neighbors[DIRECTION_DOWN] = None self.neighbors[DIRECTION_LEFT] = None self.neighbors[DIRECTION_RIGHT] = None def MovePossible(self, direction): """Check and see if the sector has neighbors.""" if self.neighbors[direction]: return 1
[ "jad.pamment@assurity.co.nz" ]
jad.pamment@assurity.co.nz
a8bc57c698c594a2bbcddc5d8812f0eacc6865c7
efbee30a83911a7dda989fb4536dd7132278aca1
/whileLoop.py
b00e004c2c74fa1542762f526fe1ba58b51cc155
[]
no_license
sarvani-chitturi/binary-search
71c9cbb3bf057cddadbdeadd3a5292c687b46d49
6d4b4a41e7a91a2aad5369f47c8060af42fb4f75
refs/heads/master
2023-01-02T12:27:34.542572
2020-10-09T14:25:56
2020-10-09T14:25:56
302,661,354
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
# -*- coding: utf-8 -*- """ Created on Tue Aug 25 10:21:36 2020 @author: Amarnadh """ i=1 while i<=5: print(i) i+=1 print("List using while") x=[10,20,30,40,50] i=0 while i < len(x): print(x[i],end=' ') i+=1
[ "121910301041@gitam.in" ]
121910301041@gitam.in
143fe68d7f6815fea8d18f1fb028024f23bd7c51
bd02997a44218468b155eda45dd9dd592bb3d124
/leetcode_course-schedule2.py
ca4b99612fab4cd4749f3814a1054bbfb691055d
[]
no_license
rheehot/ProblemSolving_Python
88b1eb303ab97624ae6c97e05393352695038d14
4d6dc6aea628f0e6e96530646c66216bf489427f
refs/heads/master
2023-02-13T03:30:07.039231
2021-01-04T06:04:11
2021-01-04T06:04:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,089
py
''' Problem Solving leetcode course-schedule2 Author: Injun Son Date: October 25, 2020 ''' import sys import collections import heapq import functools import itertools import re import math import bisect from typing import * def canFinish(numCourses: int, prerequisites: List[List[int]]) -> bool: graph = collections.defaultdict(list) # 그래프 구성 for x, y in prerequisites: graph[x].append(y) traced = set() visited = set() def dfs(i): # 순환 구조이면 False if i in traced: return False # 이미 방문 했던 노드이면 True if i in visited: return True traced.add(i) for y in graph[i]: if not dfs(y): return False #탐색 종료 후 순환 노드 삭제 traced.remove(i) #탐색 종료 후 방문 노드 추가 visited.add(i) return True for x in list(graph): if not dfs(x): return False return True print(canFinish(2, [[1,0]])) print(canFinish(2, [[1,0], [0,1]]))
[ "ison@sfu.ca" ]
ison@sfu.ca
066e81a0fbe03a8fbc53b78c094138284f850ede
6c80119e02bb29761fc7854c5a2f2a144451ca5a
/tests/fakeIDP.py
971281cd5d87940746d418b565f9b43de490a12b
[ "BSD-2-Clause" ]
permissive
josjevv/pysaml2
c412a21db7a52334bf67feeabc38f877a121f973
f806786f6dad8fc2b03daa0e1d55682daead3ec8
refs/heads/master
2020-12-25T12:17:41.628279
2013-04-22T11:45:25
2013-04-22T11:45:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,520
py
from urlparse import parse_qs from saml2.saml import AUTHN_PASSWORD from saml2.samlp import attribute_query_from_string, logout_request_from_string from saml2 import BINDING_HTTP_REDIRECT, pack from saml2 import BINDING_HTTP_POST from saml2 import BINDING_SOAP from saml2.server import Server from saml2.soap import parse_soap_enveloped_saml_attribute_query from saml2.soap import parse_soap_enveloped_saml_logout_request from saml2.soap import make_soap_enveloped_saml_thingy __author__ = 'rolandh' TYP = { "GET": [BINDING_HTTP_REDIRECT], "POST": [BINDING_HTTP_POST, BINDING_SOAP] } def unpack_form(_str, ver="SAMLRequest"): SR_STR = "name=\"%s\" value=\"" % ver RS_STR = 'name="RelayState" value="' i = _str.find(SR_STR) i += len(SR_STR) j = _str.find('"', i) sr = _str[i:j] k = _str.find(RS_STR, j) k += len(RS_STR) l = _str.find('"', k) rs = _str[k:l] return {ver:sr, "RelayState":rs} class DummyResponse(object): def __init__(self, code, data, headers=None): self.status_code = code self.text = data self.headers = headers or [] class FakeIDP(Server): def __init__(self, config_file=""): Server.__init__(self, config_file) #self.sign = False def receive(self, url, method="GET", **kwargs): """ Interface to receive HTTP calls on :param url: :param method: :param kwargs: :return: """ if method == "GET": path, query = url.split("?") qs_dict = parse_qs(kwargs["data"]) req = qs_dict["SAMLRequest"][0] rstate = qs_dict["RelayState"][0] else: # Could be either POST or SOAP path = url try: qs_dict = parse_qs(kwargs["data"]) req = qs_dict["SAMLRequest"][0] rstate = qs_dict["RelayState"][0] except KeyError: req = kwargs["data"] rstate = "" response = "" # Get service from path for key, vals in self.config.getattr("endpoints", "idp").items(): for endp, binding in vals: if path == endp: assert binding in TYP[method] if key == "single_sign_on_service": return self.authn_request_endpoint(req, binding, rstate) elif key == "single_logout_service": return self.logout_endpoint(req, binding) for key, vals in self.config.getattr("endpoints", "aa").items(): for endp, binding in vals: if path == endp: assert binding in TYP[method] if key == "attribute_service": return self.attribute_query_endpoint(req, binding) return response def authn_request_endpoint(self, req, binding, relay_state): req = self.parse_authn_request(req, binding) if req.message.protocol_binding == BINDING_HTTP_REDIRECT: _binding = BINDING_HTTP_POST else: _binding = req.message.protocol_binding try: resp_args = self.response_args(req.message, [_binding]) except Exception: raise identity = { "surName":"Hedberg", "givenName": "Roland", "title": "supertramp", "mail": "roland@example.com"} userid = "Pavill" authn_resp = self.create_authn_response(identity, userid=userid, authn=(AUTHN_PASSWORD, "http://www.example.com/login"), **resp_args) response = "%s" % authn_resp _dict = pack.factory(_binding, response, resp_args["destination"], relay_state, "SAMLResponse") return DummyResponse(200, **_dict) def attribute_query_endpoint(self, xml_str, binding): if binding == BINDING_SOAP: _str = parse_soap_enveloped_saml_attribute_query(xml_str) else: _str = xml_str aquery = attribute_query_from_string(_str) extra = {"eduPersonAffiliation": "faculty"} userid = "Pavill" name_id = aquery.subject.name_id attr_resp = self.create_attribute_response(extra, aquery.id, None, sp_entity_id=aquery.issuer.text, name_id=name_id, attributes=aquery.attribute) if binding == BINDING_SOAP: # SOAP packing #headers = {"content-type": "application/soap+xml"} soap_message = make_soap_enveloped_saml_thingy(attr_resp) # if self.sign and self.sec: # _signed = self.sec.sign_statement_using_xmlsec(soap_message, # class_name(attr_resp), # nodeid=attr_resp.id) # soap_message = _signed response = "%s" % soap_message else: # Just POST response = "%s" % attr_resp return DummyResponse(200, response) def logout_endpoint(self, xml_str, binding): if binding == BINDING_SOAP: _str = parse_soap_enveloped_saml_logout_request(xml_str) else: _str = xml_str req = logout_request_from_string(_str) _resp = self.create_logout_response(req, [binding]) if binding == BINDING_SOAP: # SOAP packing #headers = {"content-type": "application/soap+xml"} soap_message = make_soap_enveloped_saml_thingy(_resp) # if self.sign and self.sec: # _signed = self.sec.sign_statement_using_xmlsec(soap_message, # class_name(attr_resp), # nodeid=attr_resp.id) # soap_message = _signed response = "%s" % soap_message else: # Just POST response = "%s" % _resp return DummyResponse(200, response)
[ "roland.hedberg@adm.umu.se" ]
roland.hedberg@adm.umu.se
319a3a97837ddfcfbffea4e1f6c5bc6acd3ee2c8
a9ee2f04b70542b2f399dc7ebb803164348aef0e
/mutations.py
c614d08dc3472aa20173fe38ab13d2cd6618ece8
[]
no_license
murilosisnando2003/Hacker_Rank
6617e55f362bf82e8ad73189a3e9075199d31ef9
5ab80e7da2846880bddfb15815afaf3351269a42
refs/heads/master
2021-01-04T15:50:47.381339
2020-03-06T22:50:26
2020-03-06T22:50:26
240,621,886
0
0
null
null
null
null
UTF-8
Python
false
false
262
py
def mutate_string(string, position, character): string = string[:position] + character + string[(position+1):] return string if __name__ == '__main__': s = input() i, c = input().split() s_new = mutate_string(s, int(i), c) print(s_new)
[ "Murilo Rodrigues@DESKTOP-ONT7ENB.EDGE-BR.LOCAL" ]
Murilo Rodrigues@DESKTOP-ONT7ENB.EDGE-BR.LOCAL
898fca67981db8c25af682928af05f412c567dc6
c9f8532ea47337269e3f87cb3d75cccd8146536e
/data_pre.py
9bf2fa09ac73513eac52b6c6267907b9b20e868d
[]
no_license
lianrenbao/huawei_remote-sensing
6d174becb13981339c289f04775d872fe004eaa9
84f54eb5dd50c3eb5c9d2aaed6bdb475b4d5b924
refs/heads/master
2020-06-12T20:10:59.319499
2019-06-28T11:57:46
2019-06-28T11:57:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,734
py
import numpy as np from functools import partial import pandas as pd import os from tqdm import tqdm_notebook, tnrange, tqdm import sys from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader from collections import OrderedDict from torchvision import transforms as T from imgaug import augmenters as iaa import random import pathlib import cv2 # create dataset class class create_test(Dataset): def __init__(self,images_df, base_path,augument=True,mode="train"): if not isinstance(base_path, pathlib.Path): base_path = pathlib.Path(base_path) self.images_df = images_df.copy() #csv self.augument = augument self.images_df.Id = self.images_df.Id.apply(lambda x:base_path / str(x))#.zfill(6)) self.mode = mode def __len__(self): return len(self.images_df) def __getitem__(self,index): X = self.read_images(index) if not self.mode == "test": y = self.images_df.iloc[index].Target else: y = str(self.images_df.iloc[index].Id.absolute()) if self.augument: X = self.augumentor(X) X = T.Compose([T.ToPILImage(),T.ToTensor()])(X) return X.float(),y def read_images(self,index): row = self.images_df.iloc[index] filename = str(row.Id.absolute()) #print(filename) images = cv2.imread(filename)#+'.jpg') return images def augumentor(self,image): augment_img = iaa.Sequential([ iaa.Fliplr(0.5), iaa.Flipud(0.5), iaa.SomeOf((0,4),[ iaa.Affine(rotate=90), iaa.Affine(rotate=180), iaa.Affine(rotate=270), iaa.Affine(shear=(-16, 16)), ]), iaa.OneOf([ iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0 iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7 iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7 ]), #iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images ], random_order=True) image_aug = augment_img.augment_image(image) return image_aug ''' test_files = pd.read_csv("/home/dell/Desktop/1.csv") #train_gen = MultiModalDataset(train_data_list,config.train_data,config.train_vis,mode="train") test_gen = create_test(test_files,'/media/dell/dell/data/遥感/test/',augument=False,mode="test") #test_loader = DataLoader(test_gen,1,shuffle=False,pin_memory=True,num_workers=16) x,y=test_gen[1] print(x) print(y) '''
[ "noreply@github.com" ]
noreply@github.com
d125fd84b86e729ddc089d31810ce1cd547079c7
8a4405ff28d61133d451f187a443f7db9758655c
/pstipspider/pipelines.py
75808af3eba1b95df171e6ee75dd2700f991d38f
[]
no_license
co89757/pstipspider
2dc5ca50528b039972b06023531841abe6bb2618
1b7bf719e8be8589dffa9cbdc49606a3b7d1bdce
refs/heads/master
2021-01-25T00:57:21.251609
2017-06-18T19:47:15
2017-06-18T19:47:15
94,708,753
0
0
null
null
null
null
UTF-8
Python
false
false
927
py
# -*- coding: utf-8 -*- import pstipspider.settings as proj_settings from scrapy.exceptions import DropItem # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class PstipspiderPipeline(object): def process_item(self, item, spider): cutoff_yr = proj_settings.CUTOFF_YEAR if item.get("Date").year < cutoff_yr: raise DropItem( "Dropping item ({0}...) whose publish year is too old: {1}", item["Title"][:15], item["Date"].year) title_low = item["Title"].lower() if not ('power' in title_low): raise DropItem( "Dropping item that has no powershell keyword in it") dt = item.get("Date") dt = dt.date().isoformat() # scrape off time info item["Date"] = dt return item
[ "colin.brat@gmail.com" ]
colin.brat@gmail.com
a839419dd4c4c0aff907413b92ba0217fb42f65a
640b2096a3ff25ac6dbd65fa38a246218cfeac1e
/add_two_numbers_ii.py
3b601220ae2ce72f69d9b805fefd11d213da43d3
[]
no_license
benjiaming/leetcode
53d00082289dd847bb81df674ef68832a89220c7
6e09d1bfe9eb7476125eb31d95616a115f2e6f7f
refs/heads/master
2021-06-12T22:46:06.279667
2019-05-25T18:37:23
2019-05-25T18:37:23
183,532,697
0
0
null
2021-04-20T18:07:59
2019-04-26T01:10:02
Python
UTF-8
Python
false
false
1,690
py
""" Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number. The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Note: Your returned answers (both index1 and index2) are not zero-based. You may assume that each input would have exactly one solution and you may not use the same element twice. Example: Input: numbers = [2,7,11,15], target = 9 Output: [1,2] Explanation: The sum of 2 and 7 is 9. Therefore index1 = 1, index2 = 2. """ def cmp(x, y): """ Replacement for built-in function cmp that was removed in Python 3 Compare the two objects x and y and return an integer according to the outcome. The return value is negative if x < y, zero if x == y and strictly positive if x > y. """ return (x > y) - (x < y) class Solution(object): def twoSumDict(self, numbers, target): """ :type numbers: List[int] :type target: int :rtype: List[int] Uses a dictionary; runs in O(n) """ seen = {} for i, num in enumerate(numbers): if num in seen: return [seen[num]+1, i+1] seen[target-num] = i return [] def twoSumCmp(self, numbers, target): # two pointer technique i = 0 j = len(numbers) - 1 while i < j: result = cmp(numbers[i], target - numbers[j]) if result < 0: i += 1 elif result > 0: j-= 1 else: return [i+1, j+1] return []
[ "ben@blazke.cz" ]
ben@blazke.cz
cd3cc071876da1756cf23e55593a8321a820dca2
7f7d31cc7728ebff806e5ab49321572d08198764
/Chess-Engine/6. EnPassant and Pawn Promotion in Advanced Algo/ChessMain.py
ed4ec4b840b195624701ab281baf414f69cb2d9d
[]
no_license
Aneiongit/Bootcamp
02dff9cda47f109e97faa6732e2b610f3a275452
cf562ec12afd63a47ad5e48e4d1496e98afe4624
refs/heads/main
2023-07-17T14:55:41.699169
2021-09-03T09:40:16
2021-09-03T09:40:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,634
py
""" This is our main driver file. It will be responsible for - handling user input - displaying current GameState object """ import pygame as p import ChessEngineAd as ChessEngine # import ChessEngine p.init() WIDTH = HEIGHT = 480 DIMENTION = 8 # 8*8 CHESS BOARD SQ_SIZE = HEIGHT // DIMENTION MAX_FPS = 15 IMAGES = {} ''' Initialise the global dictionary of images. This will be called exactly once in the main ''' def loadImages(): pieces = ['bP', 'bR', 'bN', 'bB', 'bQ', 'bK', 'wP', 'wR', 'wN', 'wB', 'wQ', 'wK'] for piece in pieces: IMAGES[piece] = p.transform.scale(p.image.load("images/" + piece + ".png"), (SQ_SIZE, SQ_SIZE ) ) # Note: We can access a piece by saying IMAGES['wP'] -> will give white pawn; ''' This will be out main driver. It will handle user input and update the graphics. ''' def main(): screen = p.display.set_mode((WIDTH, HEIGHT)) clock = p.time.Clock() screen.fill(p.Color('white')) gs = ChessEngine.GameState() validMoves = gs.getValidMoves() # get a list of valid moves. moveMade = False # to check if the user made a move. If true recalculate validMoves. loadImages() #only do this once -> before the while loop running = True sqSelected = () #no sq is selected initially, keep track of the last click by the user -> (tuple : (row,col)) playerClicks = [] # contains players clicks => [(6,4),(4,4)] -> pawn at (6,4) moved 2 steps up on (4,4) while running: for e in p.event.get(): if e.type == p.QUIT : runnin = False #MOUSE HANDLERS elif e.type == p.MOUSEBUTTONDOWN: location = p.mouse.get_pos() # (x,y) position of mouse col = location[0]//SQ_SIZE row = location[1]//SQ_SIZE if sqSelected == (row, col): # user selected the same sq. twice -> deselect the selecion sqSelected = () playerClicks = [] else: sqSelected = (row,col) playerClicks.append(sqSelected) # append for both 1st and 2nd click if len(playerClicks) == 2: # when 2nd click move = ChessEngine.Move(playerClicks[0],playerClicks[1], gs.board) for i in range(len(validMoves)): if move == validMoves[i]: gs.makeMove(validMoves[i]) moveMade = True playerClicks = [] # reset platerClicks sqSelected = () # reset user clicks if not moveMade : playerClicks = [sqSelected] #KEY HANDLERS elif e.type == p.KEYDOWN: if e.key == p.K_z: gs.undoMove() moveMade = True #can do `validMoves = gs.validMoves()` but then if we change function name we will have to change the call at various places. if moveMade: validMoves = gs.getValidMoves() moveMade = False drawGameState(screen, gs) clock.tick(MAX_FPS) p.display.flip() ''' responsible for all the graphics in the game ''' def drawGameState(screen, gs): drawBoard(screen) #draw squares on board (should be called before drawing anything else) drawPieces(screen, gs.board) #draw pieces on the board # FUTURE SCOPE : add in piece highlighting or move suggestions ''' draw the squares on the board ''' def drawBoard(screen): colors = [p.Color(235, 235, 208), p.Color(119, 148, 85)] for r in range(DIMENTION): for c in range(DIMENTION): color = colors[(r+c)%2] p.draw.rect(screen, color, p.Rect(SQ_SIZE*c, SQ_SIZE*r , SQ_SIZE, SQ_SIZE)) ''' draw the pieces on the board using ChessEngine.GameState.board. ''' def drawPieces(screen, board): for r in range(DIMENTION): for c in range(DIMENTION): piece = board[r][c] if piece != '--': screen.blit(IMAGES[piece], p.Rect(SQ_SIZE*c, SQ_SIZE*r , SQ_SIZE, SQ_SIZE)) if __name__ == '__main__': main()
[ "Goh15@wp.pl" ]
Goh15@wp.pl
032e56abd8b0c04a05f86672375efe48bbc0e751
ca37c80b43e342dd8013deffbb35b481fab21f5f
/convert.py
c601988bafd133488f7998dda9696b106b146bf6
[ "MIT" ]
permissive
GraphSAINT/GraphSAINT
c95aeeab91acdd4210767e398839b2344ed8a42c
c9b1e340d7b951465ac4a9251eef93832e68b003
refs/heads/master
2022-09-01T02:16:30.441922
2022-08-12T06:08:09
2022-08-12T06:08:09
169,026,799
444
92
MIT
2022-08-12T06:08:10
2019-02-04T04:25:44
Python
UTF-8
Python
false
false
1,409
py
import scipy.sparse as sp import numpy as np import networkx as nx import sys import json import os from networkx.readwrite import json_graph dataset_str=sys.argv[1] baseline_str='data.ignore/'+dataset_str+'/' dataset_str='data/'+dataset_str+'/' if not os.path.exists(baseline_str[:-1]): os.mkdir(baseline_str[:-1]) # G.json adj_full=sp.load_npz(dataset_str+'adj_full.npz') G=nx.from_scipy_sparse_matrix(adj_full) print('nx: finish load graph') data=json_graph.node_link_data(G) role=json.load(open(dataset_str+'role.json','r')) te=set(role['te']) va=set(role['va']) for node in data['nodes']: node['test']=False node['val']=False if node['id'] in te: node['test']=True elif node['id'] in va: node['val']=True for edge in data['links']: del edge['weight'] edge['target']=int(edge['target']) with open(baseline_str+'G.json','w') as f: json.dump(data,f) # id_map.json id_map={} for i in range(G.number_of_nodes()): id_map[str(i)]=i with open(baseline_str+'id_map.json','w') as f: json.dump(id_map,f) # feats.npy feats=np.load(dataset_str+'feats.npy') np.save(baseline_str+'feats.npy',feats) # class_map.json class_map=json.load(open(dataset_str+'class_map.json','r')) for k,v in class_map.items(): class_map[k]=v with open(baseline_str+'class_map.json','w') as f: json.dump(class_map,f)
[ "GraphSAINTKDD19@gmail.com" ]
GraphSAINTKDD19@gmail.com
d6571dd4ac18fe2c876e33b21c8d6e8e9ba84414
4773a4adc5a50e948d34b8b2efe8e67baf4a887b
/FileEmulator/FileEmulator.py
526a727545f90cf9cf74d0040e749c0485f7360a
[ "MIT" ]
permissive
abaker2010/FileSimulator
bb33c943b95db869dfdaff12bf64ba1bbe50ecee
2c3c5fb95be6e54c97c2a82d856d52157bda9f64
refs/heads/master
2020-06-10T05:40:31.919123
2019-06-25T03:12:02
2019-06-25T03:12:02
193,599,299
0
0
null
null
null
null
UTF-8
Python
false
false
1,913
py
#!/usr/bin/python # Wrote by: Aaron Baker from classes.RepeatedTimer import RepeatedTimer from classes.HttpRequestHandler import HttpRequestHandler from http.server import BaseHTTPRequestHandler, HTTPServer import time import threading import urllib.request import colorama # pip install from colorama import Fore, Back, Style global Get_Count # This is used for getting information from the server def Get_From_Server(): global Get_Count global GetFromServer print(Fore.LIGHTYELLOW_EX + "[+] Client Requesting: {%s}" % Get_Count) url = 'http://127.0.0.1:8085/index.html/' response = urllib.request.urlopen(url) data = response.read() text = data.decode('utf-8') Get_Count += 1 if Get_Count % 15 == 0: GetFromServer.stop() time.sleep(5) GetFromServer = RepeatedTimer(0.20, Get_From_Server) return # This is used for setting up and starting the server def StartServer(): # Server settings server_address = ('127.0.0.1', 8085) httpd = HTTPServer(server_address, HttpRequestHandler) print(Fore.LIGHTGREEN_EX + 'running server...\n') Style.RESET_ALL Fore.YELLOW httpd.serve_forever() return # Default main def main(): global GetFromServer global Serverthread global Get_Count Get_Count = 0 colorama.init() print(Fore.LIGHTRED_EX + "Starting server") Serverthread = threading.Thread(target=StartServer) Serverthread.setDaemon(True) Serverthread.start() GetFromServer = RepeatedTimer(0.20, Get_From_Server) while True: time.sleep(1000) return # Exiting the console and stopping HTTP Server def exit_gracefully(): global GetFromServer GetFromServer.stop() print("Stopping...") return # Default main call if __name__ == "__main__": try: main() except KeyboardInterrupt: pass finally: exit_gracefully();
[ "crosby.baker2010@gmail.com" ]
crosby.baker2010@gmail.com
0dba7b476911bf14bd295c3c9931ec58a7c48b12
31779cb000b2f33a1af94fc5919bca40a6a80485
/Snake_pygame.py
ae0413a59f580984c923c9378979b3eac72d2314
[ "MIT" ]
permissive
lfanning8281/Per3_Charlie_pygame
bf10b94f61e97bbbcb5b72c2db292d805ee9c071
8d479c3a31c788cee913280a03b7b019b2523a52
refs/heads/master
2020-03-13T23:00:16.720767
2018-06-07T20:35:38
2018-06-07T20:35:38
131,327,354
0
0
null
null
null
null
UTF-8
Python
false
false
1,918
py
import pygame, random, sys from pygame.locals import * import snake_game def collide(x1, x2, y1, y2, w1, w2, h1, h2): if x1+w1>x2 and x1<x2+w2 and y1+h1>y2 and y1<y2+h2:return True else:return False def die(screen, score): f=pygame.font.SysFont('Arial', 30); t=f.render('Your score was: '+str(score), True, (0, 0, 0)); screen.blit(t, (10, 270)); pygame.display.update(); pygame.time.wait(2000); sys.exit(0) xs = [290, 290, 290, 290, 290]; ys = [290, 270, 250, 230, 210]; dirs = 0; score = 0; applepos = (random.randint(0, 590), random.randint(0, 590)); pygame.init(); s=pygame.display.set_mode((600, 600)); pygame.display.set_caption('Snake'); appleimage = pygame.Surface((10, 10)); appleimage.fill((0, 255, 0)); img = pygame.Surface((20, 20)); img.fill((255, 0, 0)); f = pygame.font.SysFont('Arial', 20); clock = pygame.time.Clock() while True: clock.tick(10) for e in pygame.event.get(): if e.type == QUIT: sys.exit(0) elif e.type == KEYDOWN: if is_up_button_pressed() and dirs != 0:dirs = 2 elif is_down_button_pressed() and dirs != 2:dirs = 0 elif is_left_button_pressed() and dirs != 1:dirs = 3 elif is_right_button_pressed() and dirs != 3:dirs = 1 i = len(xs)-1 while i >= 2: if collide(xs[0], xs[i], ys[0], ys[i], 20, 20, 20, 20):die(s, score) i-= 1 if collide(xs[0], applepos[0], ys[0], applepos[1], 20, 10, 20, 10):score+=1;xs.append(700);ys.append(700);applepos=(random.randint(0,590),random.randint(0,590)) if xs[0] < 0 or xs[0] > 580 or ys[0] < 0 or ys[0] > 580: die(s, score) i = len(xs)-1 while i >= 1: xs[i] = xs[i-1];ys[i] = ys[i-1];i -= 1 if dirs==0:ys[0] += 20 elif dirs==1:xs[0] += 20 elif dirs==2:ys[0] -= 20 elif dirs==3:xs[0] -= 20 s.fill((255, 255, 255)) for i in range(0, len(xs)): s.blit(img, (xs[i], ys[i])) s.blit(appleimage, applepos);t=f.render(str(score), True, (0, 0, 0));s.blit(t, (10, 10));pygame.display.update()
[ "LFanning8281@student.pps.net" ]
LFanning8281@student.pps.net
2ccb58c676f371f045e4777a7fdb56173c709531
86f5f27668717a2a5bb6a9ee31eece98859e672e
/HANDSHAKEEE/server.py
c49fe9d14778513dd1d1d84550696ce03326905f
[]
no_license
GustavoGB/Physical-Layer
7e18f4de33b90507f89f21406024a26bbfc21658
645e91fc341301c58d55eb4c9746edacb2ab4eea
refs/heads/master
2021-01-24T09:04:09.037995
2018-06-17T23:53:08
2018-06-17T23:53:08
123,000,185
0
0
null
null
null
null
UTF-8
Python
false
false
2,997
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ##################################################### # Camada Física da Computação #Carareto #17/02/2018 # Aplicação #################################################### from enlace import * import time # Serial Com Port # para saber a sua porta, execute no terminal : # python -m serial.tools.list_ports #serialName = "/dev/ttyACM0" # Ubuntu (variacao de) #serialName = "/dev/tty.usbmodem1411" # Mac (variacao de) # Windows(variacao de serialName = "COM4" #Inicializa Enlace, ativa a comunicação e arquivo a ser recebifo def main(): # Windows(variacao de) com = enlace(serialName) com.enable() imageW = "./imgs/recebida/recebidaTeste.png" while (True): print("HandShake") #Tipos: # Syn 1 = 1 # Syn 2 = 3 # Ack 1 = 4 # Ack 2 = 5 # Dados = 7 print("***RECEBENDO.....***") rxBuffer,tipo = com.getData() tipo = int.from_bytes(tipo,byteorder='big') print("Esperando Syn 1 para estabelecer contato......") #Recepção Syn1 if tipo == 1 : ("***SYN1 ENCONTRADO***") ("___Enviando ACK1___") data = (8).to_bytes(1,byteorder='big') tipo = (4).to_bytes(1,byteorder='big') #Enviar Ack1!! com.sendData(data,tipo) print("...........Ack1 enviado") time.sleep(2.0) #Enviando Syn2!!! data = (8).to_bytes(1,byteorder='big') tipo = (3).to_bytes(1,byteorder='big') com.sendData(data,tipo) print("...enviando Syn2...") else: print("***ERRO***") print("***INICIANDO HS NOVAMENTE") continue #Recepção Ack2 print("***Esperando ACK2***") rxBuffer, tipo = com.getData() tipo = (int.from_bytes(tipo,byteorder='big')) if tipo == 5: print("***ACK2 RECEBIDO***") print("Comunicação Estabelecida") break else : print("***ERRO***") print("***INICIANDO HS NOVAMENTE") continue print("__________________________________________________") # Faz a recepção dos dados print("Recebendo pacote com payload... ") rxBuffer, tipo = com.getData() # Salva o dado recebido em arquivo print("__________________________________________________") print("Salvando dados no arquivo :") print("{}".format(imageW)) f = open(imageW, 'wb') f.write(rxBuffer) # Fecha arquivo de imagem f.close() # Encerra comunicação print("__________________________________________________") print("Comunicação encerrada") print("__________________________________________________") com.disable() if __name__ == "__main__": main()
[ "gustavo.gobetti98@gmail.com" ]
gustavo.gobetti98@gmail.com
35c9b3e3c688b13470f1b516a72df95ffd4b9d46
020d00c279b04daa7dd0a8ec95347884ce8f7f74
/unittest/test_case/test_pczh/test_loginapi.py
8760e3c5c680906bf52f8a58103b462a5f33a2a8
[]
no_license
JasonTang7/inspiration
ce6efb328b2b4a17e4ffed335a266e4477707faf
567836fc9aebcc67acb2816364ba89ffa8d356db
refs/heads/master
2022-06-05T02:25:01.610248
2022-05-18T03:25:38
2022-05-18T03:25:38
221,389,569
0
0
null
2020-11-19T09:35:22
2019-11-13T06:35:20
Groovy
UTF-8
Python
false
false
1,610
py
import time import unittest from time import sleep from selenium import webdriver from selenium.webdriver.common.by import By from functions import pczhpage,common,pczhpageElements import config import requests import json @unittest.skip("调试用,正式测试不执行此测试类") class TestLogIn(unittest.TestCase): """测试登录接口""" # @classmethod # def setUpClass(cls) : # cls.driver = webdriver.Chrome() # cls.pc_url = "https://www.yamibuy.com" # cls.driver.get("https://www.yamibuy.com") # # @classmethod # # def tearDownClass(cls): # # cls.driver.quit() def test_6login(self): """通过接口实现用户登陆""" login_url="https://customer.yamibuy.com/api/users/login" # header = {"Cookie":"ymb_tnimager=EKTaL8%2BMHEMNoM2ChNe4hw%3D%3D", # "Cache-Control":"no-cache", # "Postman-Token":"<calculated when request is sent>", # "Content-Type":"application/json", # "Content-Length":"<calculated when request is sent>", # "Host":"<calculated when request is sent>", # "Connection":"keep-alive"} body_data_json ={"params": {"email": "autotesting@yamibuy.com","pwd": "111111","imagePosition": 66,"isRest": 1}} response = requests.post(url=login_url,json=body_data_json,verify=False) json_obj = json.loads(response.content) token = json_obj['data']['token'] self.driver.delete_cookie("YMB_TK") self.driver.add_cookie({'name':'YMB_TK', 'value':token}) sleep(2) self.driver.refresh() sleep(5)
[ "jason.tang@yamibuy.com" ]
jason.tang@yamibuy.com
310f0bae44d7f3f1fadeff6ea38b7dca8369a771
635e06886d27732cb35d73fddb14907c9e2f1bda
/bin/NER/Model.py
4ea56f9f4fc4d47ce44befa218f893afc59e04c6
[]
no_license
hoangbao123/chainer-rnn-ner
034c0238fac268155d1273d4e09e1517040ef3c5
829fb640cd627e5d28fb0d162eb2068615d92156
refs/heads/master
2020-04-28T03:02:54.899189
2017-01-27T15:36:26
2017-01-27T15:36:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,724
py
# -*- coding: utf-8 -*- import numpy as np import chainer import chainer.links as L import chainer.functions as F from chainer.links import NStepLSTM """ Model with cross entropy as the loss function. """ class TaggerBase(chainer.Chain): def __init__(self): pass # I want to use this for NERTagger, BiNERTagger, BiCharNERTagger def load_glove(self, path, vocab): with open(path, "r") as fi: for line in fi: line_list = line.strip().split(" ") word = line_list[0] if word in vocab: vec = self.xp.array(line_list[1::], dtype=np.float32) self.embed.W.data[vocab[word]] = vec class NERTagger(TaggerBase): """ Ordinary LSTM """ def __init__(self, n_vocab, n_tag, embed_dim, hidden_dim, dropout): super(TaggerBase, self).__init__( embed=L.EmbedID(n_vocab, embed_dim, ignore_label=-1), l1=L.NStepLSTM(1, embed_dim, embed_dim, dropout=0, use_cudnn=True), l2=L.Linear(embed_dim, n_tag), ) if dropout: self.dropout = True else: self.dropout = False def __call__(self, xs, hx, cx, train=True): xs = [self.embed(item) for item in xs] if self.dropout and train: xs = [F.dropout(item) for item in xs] hy, cy, ys = self.l1(hx, cx, xs, train=train) # don't use dropout y = [self.l2(item) for item in ys] return y class BiNERTagger(TaggerBase): """ Bi-directional LSTM """ def __init__(self, n_vocab, n_tag, embed_dim, hidden_dim, dropout): super(TaggerBase, self).__init__( embed=L.EmbedID(n_vocab, embed_dim, ignore_label=-1), forward_l1=L.NStepLSTM( 1, embed_dim, embed_dim, dropout=0, use_cudnn=True), backward_l1=L.NStepLSTM( 1, embed_dim, embed_dim, dropout=0, use_cudnn=True), l2=L.Linear(embed_dim * 2, n_tag), ) if dropout: self.dropout = True else: self.dropout = False def __call__(self, xs, hx, cx, train=True): xs = [self.embed(item) for item in xs] if self.dropout and train: xs = [F.dropout(item) for item in xs] xs_backward = [item[::-1] for item in xs] forward_hy, forward_cy, forward_ys = self.forward_l1( hx, cx, xs, train=train) # don't use dropout backward_hy, backward_cy, backward_ys = self.backward_l1( hx, cx, xs_backward, train=train) # don't use dropout ys = [F.concat([forward, backward[::-1]], axis=1) for forward, backward in zip(forward_ys, backward_ys)] y = [self.l2(item) for item in ys] return y class BiCharNERTagger(TaggerBase): """ bi-directional LSTM with character-based encoding """ def __init__(self, n_vocab, n_char, n_tag, embed_dim, hidden_dim, dropout): super(TaggerBase, self).__init__( embed=L.EmbedID(n_vocab, embed_dim, ignore_label=-1), # character embeddingは25で決め打ち char_embed=L.EmbedID(n_char, 25, ignore_label=-1), forward_l1=L.NStepLSTM( 1, embed_dim + 50, embed_dim + 50, dropout=0, use_cudnn=True), backward_l1=L.NStepLSTM( 1, embed_dim + 50, embed_dim + 50, dropout=0, use_cudnn=True), l2=L.Linear((embed_dim + 50) * 2, n_tag), forward_char=L.NStepLSTM(1, 25, 25, dropout=0, use_cudnn=True), backward_char=L.NStepLSTM(1, 25, 25, dropout=0, use_cudnn=True), ) if dropout: self.dropout = True else: self.dropout = False def __call__(self, xs, hx, cx, xxs, train=True): forward_char_embeds = [ [self.char_embed(item) for item in items] for items in xxs] backward_char_embeds = [[item[::-1] for item in items] for items in forward_char_embeds] # Encode character sequences forward_encodings = [] backward_encodings = [] for forward, backward in zip(forward_char_embeds, backward_char_embeds): hhx = chainer.Variable( self.xp.zeros((1, len(forward), 25), dtype=self.xp.float32)) ccx = chainer.Variable( self.xp.zeros((1, len(forward), 25), dtype=self.xp.float32)) _, __, forward_char_encs = self.forward_char(hhx, ccx, forward) _, __, backward_char_encs = self.backward_char(hhx, ccx, backward) forward_encodings.append([x[-1] for x in forward_char_encs]) backward_encodings.append([x[-1] for x in backward_char_encs]) forward_encodings = [F.vstack(x) for x in forward_encodings] backward_encodings = [F.vstack(x) for x in backward_encodings] # Encode word embeddings xs = [self.embed(item) for item in xs] xs_forward = [F.concat([x, y, z], axis=1) for x, y, z in zip( xs, forward_encodings, backward_encodings)] xs_backward = [x[::-1] for x in xs_forward] if self.dropout and train: xs_forward = [F.dropout(item) for item in xs_forward] xs_backward = [F.dropout(item) for item in xs_backward] forward_hy, forward_cy, forward_ys = self.forward_l1( hx, cx, xs_forward, train=train) backward_hy, backward_cy, backward_ys = self.backward_l1( hx, cx, xs_backward, train=train) ys = [F.concat([forward, backward[::-1]], axis=1) for forward, backward in zip(forward_ys, backward_ys)] y = [self.l2(item) for item in ys] return y
[ "kiyono@ecei.tohoku.ac.jp" ]
kiyono@ecei.tohoku.ac.jp
ce367ad483dab43120cf161648780ed59c2f69a6
4b54b2b1037d5dea88117840b4f58a82fac2d3ea
/1006.py
b9a2fa2b47ce7f2966860b6c8b611aaae86bedec
[]
no_license
cinereous1/UriJudge
20879ca2067b2eb374e5dc7471a77366dee1a68a
96eab7846e349347d0300d9fc2ac6aa470a2651c
refs/heads/master
2021-08-24T15:32:02.594187
2017-12-10T07:43:01
2017-12-10T07:43:01
113,373,640
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
#!/usr/bin/python3 nota0 = float(input().strip()) nota1 = float(input().strip()) nota2 = float(input().strip()) media = ((nota0 * 2) + (nota1 * 3) + (nota2 * 5)) / 10 print("MEDIA = {:.1f}".format(media))
[ "linktovoid@gmail.com" ]
linktovoid@gmail.com
2e1ed6f855389c38f9ab0d89770b3963a29c5ff3
fef3a61df017422bc2f867538ece7f496fa91416
/icecreamratings/config/urls.py
842634c0b8bca94faa2a14dcb441499d306fe714
[]
no_license
qianzhaicun/my-first-blog
1f7f2cc27c3c75d3c456ecdacb3286a4f4d1a484
a3e03b389423ffb9e85c9fa9464bfb38efdbbde9
refs/heads/master
2020-12-03T09:22:04.555591
2017-06-28T01:23:26
2017-06-28T01:23:26
95,615,681
0
1
null
null
null
null
UTF-8
Python
false
false
1,555
py
from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.views.generic import TemplateView from django.views import defaults as default_views urlpatterns = [ url(r'^$', TemplateView.as_view(template_name='pages/home.html'), name='home'), url(r'^about/$', TemplateView.as_view(template_name='pages/about.html'), name='about'), # Django Admin, use {% url 'admin:index' %} url(settings.ADMIN_URL, admin.site.urls), # User management url(r'^users/', include('icecreamratings.users.urls', namespace='users')), url(r'^accounts/', include('allauth.urls')), # Your stuff: custom urls includes go here ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ url(r'^400/$', default_views.bad_request, kwargs={'exception': Exception('Bad Request!')}), url(r'^403/$', default_views.permission_denied, kwargs={'exception': Exception('Permission Denied')}), url(r'^404/$', default_views.page_not_found, kwargs={'exception': Exception('Page not Found')}), url(r'^500/$', default_views.server_error), ] if 'debug_toolbar' in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [ url(r'^__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
[ "admin@DESKTOP-JCH074F" ]
admin@DESKTOP-JCH074F
f3e4a522d9167b441f81517f2bfe17f834b0dd6b
553ac874ff9eeffffb9ee0567791a101cc68444c
/Mission_to_Mars/scrape_mars.py
480b94d27830f63b65c4830870ef8b269d70488a
[]
no_license
carlmack01/web-scraping-challenge
e770950b094937984a7b1f99aa616296088ae401
3aab6f47e785e8dff4dd8c24bb4dcaf4f792f041
refs/heads/master
2022-11-28T23:33:33.245288
2020-08-13T18:56:21
2020-08-13T18:56:21
287,357,069
0
0
null
null
null
null
UTF-8
Python
false
false
2,449
py
from bs4 import BeautifulSoup as bs from splinter import Browser import pandas as pd import datetime as dt import time import re def scrape(): scrapedict = {} executable_path = {'executable_path': '/usr/local/bin/chromedriver'} browser = Browser('chrome', **executable_path, headless=False) url = "https://mars.nasa.gov/news/" browser.visit(url) time.sleep(1) html_string = browser.html soup = bs(html_string, 'html.parser') title = soup.find("div", class_="list_text").find("div", class_="content_title").text art_para = soup.find("div", class_="list_text").find("div", class_="article_teaser_body").text url = "https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars" browser.visit(url) time.sleep(1) browser.find_by_id('full_image').click() browser.links.find_by_partial_text('more info').click() html_string = browser.html soup = bs(html_string, 'html.parser') image = soup.find("img", class_="main_image")['src'] imagebase = "https://www.jpl.nasa.gov" featured_image_url = imagebase + image url = 'https://space-facts.com/mars/' tables = pd.read_html(url) df = tables[0] html_table = df.to_html() url = "https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars" browser.visit(url) time.sleep(1) aelement = browser.find_by_css('a.product-item h3')[0] firsttext = aelement.text aelement.click() firsturl = browser.links.find_by_text('Sample')[0]['href'] browser.back() aelement = browser.find_by_css('a.product-item h3')[1] secondtext = aelement.text aelement.click() secondurl = browser.links.find_by_text('Sample')[0]['href'] browser.back() aelement = browser.find_by_css('a.product-item h3')[2] thirdtext = aelement.text aelement.click() thirdurl = browser.links.find_by_text('Sample')[0]['href'] browser.back() aelement = browser.find_by_css('a.product-item h3')[3] fourthtext = aelement.text aelement.click() fourthurl = browser.links.find_by_text('Sample')[0]['href'] hemisphere_image_urls = [ {"title": firsttext, "img_url": firsturl}, {"title": secondtext, "img_url": secondurl}, {"title": thirdtext, "img_url": thirdurl}, {"title": fourthtext, "img_url": fourthurl}, ] scrapedict = { "Headline": title, "Paragraph": art_para, "Featured_image_url": featured_image_url, "html_table": html_table, "hemisphere_info": hemisphere_image_urls } browser.quit() return(scrapedict)
[ "carlhmackensen@CARLs-MacBook-Pro.local" ]
carlhmackensen@CARLs-MacBook-Pro.local