blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
8d16a7b317c421b41cb6db551f09e5d6d244cff9
3d8d874ebba15fd065c0a9e74c05e8cd2a24dbe8
/Week 6 - Joining Data with pandas/19-Concatenate and merge to find common songs.py
9ad795f5e20ab5a06eff3519aec9c340843f3813
[]
no_license
RomuloMileris/UCD_Professional_Certificate_in_Data_Analytics
db3e583a6e607e74f3d26b65ba0de59cff64e5a3
a4a77df69a2440132cfa3e89c4a1674e3e02d086
refs/heads/master
2023-02-22T12:48:50.039440
2021-01-15T17:06:07
2021-01-15T17:06:07
319,717,851
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
# Concatenate the classic tables vertically classic_18_19 = pd.concat([classic_18, classic_19], ignore_index=True) # Concatenate the pop tables vertically pop_18_19 = pd.concat([pop_18, pop_19], ignore_index=True) # Concatenate the classic tables vertically classic_18_19 = pd.concat([classic_18, classic_19], ignore_index=True) # Concatenate the pop tables vertically pop_18_19 = pd.concat([pop_18, pop_19], ignore_index=True) # Merge classic_18_19 with pop_18_19 classic_pop = classic_18_19.merge(pop_18_19, on='tid') # Using .isin(), filter classic_18_19 rows where tid is in classic_pop popular_classic = classic_18_19[classic_18_19['tid'].isin(classic_pop['tid'])] # Print popular chart print(popular_classic)
[ "romulosmileris@gmail.com" ]
romulosmileris@gmail.com
569977b9ce4461b125524e9caad267bb700d509d
1a3b527145549c7d69f42831ea12c468e1ebb209
/math.py
ad4498fd08e2a47d2f83cef8a60021d5b965e988
[]
no_license
muhammadagus030201/finalproject
7654094d0549122fb14a04441cb606bc3208f972
3b3fe4a6e13d94ff217f61e6e8bd5aebec678ddd
refs/heads/main
2023-03-21T12:23:22.102040
2021-03-06T16:11:18
2021-03-06T16:11:18
345,130,219
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
x = 10 y = 3 #tambah z1 = x+y print("Hasil Pertambahan {} + {} = {}".format(x,y,z1)) #bagi z2 = x/y print("Hasil Pembagian {} / {} = {}".format(x,y,z2)) #moduloatausisabagi z3 = x%y print("Hasil Modulo {} % {} = {}".format(x,y,z3)) #pangkat z4 = x**y print("Hasil Pangkat {} ** {} = {}".format(x,y,z4))
[ "belajarpython030201@gmail.com" ]
belajarpython030201@gmail.com
b3743862fc7b8de3b6dca5344e37f61f50a634eb
b97a608517f024b81db0bdc4094d143ba87c8af4
/src/oceandata/export_production/mouw.py
5922a9fe193338af1b8d507473dce963eb6aaa90
[ "MIT" ]
permissive
brorfred/oceandata
ff008042cc993a07d9db1de3fa72e70f70d44219
831e0691223da1aa6a6e97175e8c2d7874bf60cd
refs/heads/master
2022-02-14T11:48:13.401206
2022-01-27T17:01:56
2022-01-27T17:01:56
175,451,337
1
1
null
null
null
null
UTF-8
Python
false
false
4,519
py
""" Global ocean particulate organic carbon flux. Ref: https://doi.org/10.1594/PANGAEA.855594, """ import os, pathlib import warnings import pandas as pd import numpy as np import requests DATADIR = pathlib.PurePath(pathlib.Path.home(), ".oceandata") pathlib.Path(DATADIR).mkdir(parents=True, exist_ok=True) DATAURL = "https://doi.pangaea.de/10.1594/PANGAEA.855594" """ def load(): df = pd.read_hdf("h5files/ep_mouw_with_sat.h5") df["Zeu"] = 4.6/df.kd490 df["ep_obs"] = df.POC_flux df["chl"] = df["chl"] * df["Zeu"] #lh = ecoregions.Longhurst() #longh = lh.match("regions", lonvec=dfm.lon, latvec=dfm.lat, jdvec=dfm.lat*0) #dfm["longhurst"] = longh return df """ def load(datadir=DATADIR, filename="GO_flux.tab", with_std=False): """Load tab file and fix some columns""" fn = os.path.join(datadir, filename) if not os.path.isfile(fn): download(datadir=datadir, filename=filename) with open(fn ,"r") as fH: while 1: line = fH.readline() if "*/" in line: break df = pd.read_csv(fH, sep="\t", parse_dates=[1,]) if not with_std: df.drop(columns=['Flux std dev [±]', 'C flux [mg/m**2/day]', 'C flux std dev [±]', 'POC flux std dev [±]', 'PIC flux std dev [±]', 'PON flux std dev [±]', 'POP flux std dev [±]', 'PSi flux std dev [±]', 'PAl std dev [±]', 'CaCO3 flux std dev [±]', 'Reference'], inplace=True) df.rename(columns={'ID (Reference identifier)':"ref_ID", 'ID (Unique location identifier)':"UUID", 'Type (Data type)':"sampling_type", 'Latitude':"lat", 'Longitude':"lon", 'Flux tot [mg/m**2/day]':"tot_flux", 'POC flux [mg/m**2/day]':"POC_flux", 'PIC flux [mg/m**2/day]':"PIC_flux", 'PON flux [mg/m**2/day]':"PON_flux", 'POP flux [mg/m**2/day]':"POP_flux", 'PSi flux [mg/m**2/day]':"PSi_flux", 'PSiO2 flux [mg/m**2/day]':"PSiO2_flux", 'PSi(OH)4 flux [mg/m**2/day]':"PSiOH4_flux", 'PAl [mg/m**2/day]':"PAl_flux", 'Chl flux [mg/m**2/day]':"Chl_flux", 'Pheop flux [µg/m**2/day]':"Pheop_flux", 'CaCO3 flux [mg/m**2/day]':"CaCO3_flux", 'Fe flux [mg/m**2/day]':"Fe_flux", 'Mn flux [µg/m**2/day]':"Mn_flux", 'Ba flux [µg/m**2/day]':"Ba_flux", 'Detrital flux [mg/m**2/day]':"Detr_flux", 'Ti flux [µg/m**2/day]':"Ti_flux", 'Bathy depth [m] (ETOPO1 bathymetry)':"bathy", 'Depth water [m] (Sediment trap deployment depth)':"depth", 'Area [m**2]':"area", 'Duration [days]':"duration", 'Date/Time (Deployed)':"start_time", 'Date/time end (Retrieved)':"end_time", 'Area [m**2] (Surface area of trap)':"trap_area", }, inplace=True) df.drop(columns=['Type (Sediment trap type)', 'Elevation [m a.s.l.] (Total water depth)'], inplace=True) df["start_time"] = pd.DatetimeIndex(df["start_time"]) df["end_time"] = pd.DatetimeIndex(df["end_time"]) df.set_index("end_time", inplace=True) return df def download(datadir=DATADIR, filename="GO_flux.tab"): """Download txt file from BATS server Refs ---- """ local_filename = os.path.join(datadir, filename) try: os.unlink(local_filename) except FileNotFoundError: pass try: r = requests.get(DATAURL, stream=True, timeout=6, params={"format":"textfile"}) except requests.ReadTimeout: warnings.warn("Connection to server timed out.") return False if r.ok: if local_filename is None: return r.text else: with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) f.flush() else: raise IOError(f"Could not download file from server, Error {r.status_code}")
[ "brorfred@gmail.com" ]
brorfred@gmail.com
f525a1f530ac0b939164e1ae587b3a12727bf3d3
e1f78a71c0ce255ab064e0fa9fb3bdb7251bb016
/src/QuickPaint.py
7d9e480cf817e89458f9543abf8c54f0d1bd2c03
[]
no_license
dylansloann/SketchMath
7675f7e40ef5ae31675c1fa062e2718f41390c07
874e624dd3a86a0f879fa54f609115fd393bb1dc
refs/heads/master
2023-05-30T00:55:00.461682
2021-06-13T05:00:44
2021-06-13T05:00:44
294,305,328
4
1
null
null
null
null
UTF-8
Python
false
false
5,745
py
from PyQt5 import QtCore, QtGui, QtWidgets import sys, os class Paint(QtWidgets.QMainWindow): def __init__(self): super(Paint, self).__init__() self.windowSetup() self.menuOptionsSetup() self.saveCommmandSetup() self.eraseCommmandSetup() self.colorsSetup() self.brushSizeSetup() def windowSetup(self): self.setWindowTitle("QuickPaint") self.setGeometry(100, 100, 500, 500) self.setFixedSize(500, 500) self.setWindowIcon(QtGui.QIcon("./icons/painticon.png")) self.image = QtGui.QImage(self.size(), QtGui.QImage.Format_RGB32) self.image.fill(QtCore.Qt.white) # default brush self.brushSize = 2 self.drawing = False self.brushColor = QtCore.Qt.black self.lastPoint = QtCore.QPoint() def menuOptionsSetup(self): global main_menu main_menu = self.menuBar() global file_menu file_menu = main_menu.addMenu("File") global color_menu color_menu = main_menu.addMenu("Color") global size_menu size_menu = main_menu.addMenu("Size") def saveCommmandSetup(self): save_command = QtWidgets.QAction(QtGui.QIcon("./icons/saveicon.png"), "Save", self) save_command.setShortcut("Ctrl + S") file_menu.addAction(save_command) save_command.triggered.connect(self.save) def eraseCommmandSetup(self): erase_command = QtWidgets.QAction(QtGui.QIcon("./icons/brushicon.png"), "Erase", self) erase_command.setShortcut("Ctrl + E") file_menu.addAction(erase_command) erase_command.triggered.connect(self.erase) # designation of menu bar commands def save(self): file_path = QtWidgets.QFileDialog.getSaveFileName(self, "Save Image", "", "PNG;;JPG;;All_Files") if file_path[0] == "": return self.image.save(file_path[0]) def erase(self): self.image.fill(QtCore.Qt.white) self.update() def colorsSetup(self): black = QtWidgets.QAction(QtGui.QIcon("./icons/blackicon.png"), "Black", self) color_menu.addAction(black) black.triggered.connect(self.color_black) white = QtWidgets.QAction(QtGui.QIcon("./icons/whiteicon.png"), "White", self) color_menu.addAction(white) white.triggered.connect(self.color_white) darkCyan = QtWidgets.QAction(QtGui.QIcon("./icons/darkCyanicon.png"), "Cyan", self) color_menu.addAction(darkCyan) darkCyan.triggered.connect(self.color_darkCyan) darkBlue = QtWidgets.QAction(QtGui.QIcon("./icons/darkBlueicon.png"), "Blue", self) color_menu.addAction(darkBlue) darkBlue.triggered.connect(self.color_darkBlue) darkMagenta = QtWidgets.QAction(QtGui.QIcon("./icons/darkMagentaicon.png"), "Magenta", self) color_menu.addAction(darkMagenta) darkMagenta.triggered.connect(self.color_darkMagenta) darkRed = QtWidgets.QAction(QtGui.QIcon("./icons/darkRedicon.png"), "Dark Red", self) color_menu.addAction(darkRed) darkRed.triggered.connect(self.color_darkRed) # designation of colors def color_black(self): self.brushColor = QtCore.Qt.black def color_white(self): self.brushColor = QtCore.Qt.white def color_darkCyan(self): self.brushColor = QtCore.Qt.darkCyan def color_darkBlue(self): self.brushColor = QtCore.Qt.darkBlue def color_darkMagenta(self): self.brushColor = QtCore.Qt.darkMagenta def color_darkRed(self): self.brushColor = QtCore.Qt.darkRed def brushSizeSetup(self): size4 = QtWidgets.QAction(QtGui.QIcon("./icons/4icon.png"), "4 pixels", self) size_menu.addAction(size4) size4.triggered.connect(self.Brush4) size8 = QtWidgets.QAction(QtGui.QIcon("./icons/8icon.png"), "8 pixels", self) size_menu.addAction(size8) size8.triggered.connect(self.Brush8) size12 = QtWidgets.QAction(QtGui.QIcon("./icons/12icon.png"), "12 pixels", self) size_menu.addAction(size12) size12.triggered.connect(self.Brush12) size16 = QtWidgets.QAction(QtGui.QIcon("./icons/16icon.png"), "16 pixels", self) size_menu.addAction(size16) size16.triggered.connect(self.Brush16) # designation of brush sizes def Brush4(self): self.brushSize = 4 def Brush8(self): self.brushSize = 8 def Brush12(self): self.brushSize = 12 def Brush16(self): self.brushSize = 16 # mouse movement and action setup def mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: self.drawing = True self.lastPoint = event.pos() def mouseReleaseEvent(self, action): if action.button() == QtCore.Qt.LeftButton: self.drawing = False def mouseMoveEvent(self, event): if(event.buttons() & QtCore.Qt.LeftButton) & self.drawing: painter = QtGui.QPainter(self.image) painter.setPen(QtGui.QPen(self.brushColor, self.brushSize, QtCore.Qt.SolidLine, QtCore.Qt.RoundCap, QtCore.Qt.RoundJoin)) painter.drawLine(self.lastPoint, event.pos()) self.lastPoint = event.pos() self.update() # setup of painter def paintEvent(self, event): canvasPainter = QtGui.QPainter(self) canvasPainter.drawImage(self.rect(), self.image, self.image.rect())
[ "dylansloann2@gmail.com" ]
dylansloann2@gmail.com
214f9f36330053db1146926c0969362d5663836f
0eb42eb02dcd217b7c41993a99b3b6628a13a04e
/exponential.py
e2d1af3bcfbc5307cacb4cde47cbd5ed33dd56b4
[]
no_license
luckysona/shanthiya
d1f29449c9511e33ce382666b53dd35b70534081
c6d9acfe8e069be5e3c4428e27d4722afd9faa27
refs/heads/master
2020-05-25T22:59:50.235797
2019-07-23T17:40:53
2019-07-23T17:40:53
188,025,917
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
x,y=input().split() x=int(x) y=int(y) if(y==0): print(x) else: print(x**y)
[ "noreply@github.com" ]
noreply@github.com
0cd9df6b49c7bef9b37f49d71c4534f94c55be94
ccf06f8f91a1068fc12edffb379d35dbe4f6388e
/getReplyIds.py
8c510d9a54bfce6441aacd116135fea88e804c7c
[ "Apache-2.0" ]
permissive
online-behaviour/machine-learning
46c37c5e37de4323c778bc2ffc80024f4e34a004
2ff0e83905985ec644699ece44c75dd7422a7426
refs/heads/master
2021-07-09T04:36:48.441324
2021-04-28T13:58:00
2021-04-28T13:58:00
87,834,727
2
3
null
null
null
null
UTF-8
Python
false
false
866
py
#!/usr/bin/python3 -W all # getReplyIds.py: extract ids and reply-ids from tweets in json # usage: getReplyIds.py < file # 20170918 erikt(at)xs4all.nl import csv import json import re import sys COMMAND = sys.argv.pop(0) ID = "id" REPLYTO = "in_reply_to_status_id" SCREENNAME = "screen_name" TEXT = "text" USER = "user" outFile = csv.writer(sys.stdout) for line in sys.stdin: jsonLine = json.loads(line) if not ID in jsonLine or not REPLYTO in jsonLine or not TEXT in jsonLine or\ not USER in jsonLine or not SCREENNAME in jsonLine[USER]: sys.exit(COMMAND+": unexpected line: "+line) pattern = re.compile("\n") jsonLine[TEXT] = pattern.sub(" ",jsonLine[TEXT]) outFile.writerow([str(jsonLine[ID]),str(jsonLine[REPLYTO]),\ str(jsonLine[USER][SCREENNAME]),"PARTY", str(jsonLine[TEXT])])
[ "erikt@xs4all.nl" ]
erikt@xs4all.nl
132c053eb5afe2d84aa47b7ec1f8974eb06f8dce
f34ed25e140a1e9f09d1fb4253674b317b989125
/NURB/manage.py
52c8c2eebf023aad825462247ee388c57a0c342b
[]
no_license
westonpace/NUR
925ae3e01a5315292d3cb96d98603dd77182acec
01b8e657583c549afda0e11abb9b9fb8712147eb
refs/heads/master
2021-01-22T11:51:14.011919
2013-05-22T03:09:01
2013-05-22T03:09:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "NURB.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "weston.pace@gmail.com" ]
weston.pace@gmail.com
c257da7a0180dbf630338ad35acd1a55e212f6fa
703aa4509109552e91e1f3db39146f723b6256d0
/motores.py
5f695b4f176b91edc5fdb5ca8ec9aa0d10a29a45
[]
no_license
alfredobs97/PythonMysqlScript
2334fb0392b8039862e77c382d7a23b4763bc8ed
91bcaab69ee4f518697cc3dd15e7bf43bab4465c
refs/heads/master
2021-01-13T15:47:43.093460
2017-02-09T16:59:01
2017-02-09T16:59:01
79,963,972
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
#!/usr/bin/python import MySQLdb db = MySQLdb.connect(host="192.168.8.16", user="root", passwd="1234", db="mysql") cur = db.cursor() cur.execute("SHOW ENGINES") ver = cur.fetchall() print "Version de Mysql : %s" %ver
[ "alfredobautista1@gmail.com" ]
alfredobautista1@gmail.com
fc56269afc1a9b27972e6ba65f1634e38ca3c907
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/volatil.py
da3fffbd742a2e39d77bda58f2168f2a493c7200
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
586
py
ii = [('EmerRN.py', 1), ('RogePAV2.py', 2), ('GodwWSL2.py', 1), ('FerrSDO3.py', 1), ('WilbRLW.py', 1), ('ProuWCM.py', 5), ('PettTHE.py', 3), ('PeckJNG.py', 1), ('WilbRLW2.py', 7), ('CarlTFR.py', 2), ('CrokTPS.py', 1), ('ClarGE.py', 1), ('BuckWGM.py', 1), ('GilmCRS.py', 1), ('WestJIT2.py', 1), ('SoutRD2.py', 1), ('MedwTAI2.py', 1), ('BuckWGM2.py', 1), ('WestJIT.py', 2), ('FitzRNS4.py', 2), ('EdgeMHT.py', 1), ('LyttELD3.py', 1), ('BellCHM.py', 1), ('WilbRLW3.py', 1), ('AinsWRR2.py', 1), ('BrewDTO.py', 4), ('FitzRNS2.py', 1), ('LyelCPG3.py', 1), ('BeckWRE.py', 1), ('WordWYR.py', 1)]
[ "prabhjyotsingh95@gmail.com" ]
prabhjyotsingh95@gmail.com
7b330a04a2dde22bdff089a6ed4a3ec386cbc41c
a78fa01825c57797d45d57f7e7143ef91024aa1e
/db_tools/import_category_data.py
970b412ad79f732fb880182e770e6ca7a2c8a308
[]
no_license
giwatest/MxShop
8e68fb917d7ccc3f6cca24bc654cb1868f0c1409
4500eb6d4c85110ed3c97209c007be35ceb1cd6b
refs/heads/master
2020-07-19T01:53:49.427411
2020-02-23T14:58:34
2020-02-23T14:58:34
206,355,008
1
4
null
null
null
null
UTF-8
Python
false
false
1,196
py
# encoding: utf-8 __author__ = 'GIWA' #批量导入商品类目 # # import sys import os pwd = os.path.dirname(os.path.realpath(__file__)) sys.path.append(pwd+'../') os.environ.setdefault("DJANGO_SETTINGS_MODULE", "MxShop.settings") import django django.setup() from goods.models import GoodsCategory from db_tools.data.category_data import row_data for lev1_cat in row_data: lev1_instance = GoodsCategory() lev1_instance.name = lev1_cat['name'] lev1_instance.code = lev1_cat['code'] lev1_instance.category_type = 1 lev1_instance.save() for lev2_cat in lev1_cat['sub_categorys']: lev2_instance = GoodsCategory() lev2_instance.name = lev2_cat['name'] lev2_instance.code = lev2_cat['code'] lev2_instance.category_type = 2 lev2_instance.parent_category = lev1_instance lev2_instance.save() for lev3_cat in lev2_cat['sub_categorys']: lev3_instance = GoodsCategory() lev3_instance.name = lev3_cat['name'] lev3_instance.code = lev3_cat['code'] lev3_instance.category_type = 3 lev3_instance.parent_category = lev2_instance lev3_instance.save()
[ "bingna.liu@xinchan.com" ]
bingna.liu@xinchan.com
ba8d9485f114b77345b5bdc786cacf2516b8dba0
b29dcbf879166592b59e34f0e2bc4918c3ac94a0
/cart/views.py
4dfc522e62c9c9e4cc9b815d50b1184bbe3d6954
[]
no_license
samdasoxide/myshop
ce6d4553af04f1ddf5de1cbfa38ef2ff33ac6b11
21115de7748862c8a44ef4dc5a61511ad67746dd
refs/heads/master
2022-12-14T07:39:13.803686
2017-06-20T11:42:30
2017-06-20T11:42:30
92,954,076
0
0
null
2022-12-07T23:58:40
2017-05-31T14:23:18
JavaScript
UTF-8
Python
false
false
1,067
py
from django.shortcuts import render, redirect, get_object_or_404 from django.views.decorators.http import require_POST from shop.models import Product from .cart import Cart from .forms import CartAddProductFrom @require_POST def cart_add(request, product_id): cart = Cart(request) product = get_object_or_404(Product, id=product_id) form = CartAddProductFrom(request.POST) if form.is_valid(): cd = form.cleaned_data cart.add(product=product, quantity=cd['quantity'], update_quantity=cd['update']) return redirect('cart:cart_detail') def cart_remove(request, product_id): cart = Cart(request) product = get_object_or_404(Product, id=product_id) cart.remove(product) return redirect('cart:cart_detail') def cart_detail(request): cart = Cart(request) for item in cart: item['update_quantity_form'] = CartAddProductFrom( initial={'quantity': item['quantity'], 'update': True} ) return render(request, 'cart/detail.html', {'cart': cart})
[ "samdasoxide@gmail.com" ]
samdasoxide@gmail.com
93a759dd1d4ce068810fd67a473fd7f242615fd5
f2fcf807b441aabca1ad220b66770bb6a018b4ae
/coderbyte/StringMerge.py
aee27511c52f7fc9c13b05cde0262bec9a847235
[]
no_license
gokou00/python_programming_challenges
22d1c53ccccf1f438754edad07b1d7ed77574c2c
0214d60074a3b57ff2c6c71a780ce5f9a480e78c
refs/heads/master
2020-05-17T15:41:07.759580
2019-04-27T16:36:56
2019-04-27T16:36:56
183,797,459
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
def StringMerge(string): stringArr = string.split("*") arr1 = stringArr[0] arr2 = stringArr[1] strBuild = "" for i in range(len(arr1)): strBuild+= arr1[i] strBuild+= arr2[i] return strBuild print(StringMerge("123hg*aaabb"))
[ "gamblecua@gmail.com" ]
gamblecua@gmail.com
0ef417ef2ea2ab51e1240c4fc86e2f26be2e0302
509d717f18caad77e00c3261dcf1934f7e5bd95d
/venv/css_selectors/sports_bet_page_locators.py
65e85e02577a73a8730a604977beb681bc7cbdcc
[]
no_license
Swingyboy/pronet_design_testing
8aee2f42e2452ca178fbe34e7a51ce7377156e08
ad3dc5a58983ed6d6c9cef91a40ea8160f699dd0
refs/heads/master
2023-05-06T05:34:47.438023
2020-09-15T09:17:36
2020-09-15T09:17:36
281,055,876
1
1
null
2021-06-02T02:56:51
2020-07-20T08:12:21
Python
UTF-8
Python
false
false
403
py
from selenium.webdriver.common.by import By class SportsBetPageLocators(): UPCOMING_EVENTS_BAR =(By.CSS_SELECTOR, 'upcoming-events > div > div.modul-header') LIVE_BET_BAR = (By.CSS_SELECTOR, 'live-at-now > div > div.modul-header') ESPORTS_BAR = (By.CSS_SELECTOR, 'app-esports > div > div.modul-header') TODAY_EVENT_BAR = (By.CSS_SELECTOR, 'todays-sport-types > div > div.modul-header')
[ "kedonosec@gmail.com" ]
kedonosec@gmail.com
b9ac3eaf94bdd09fd0832248e58d306bcfe3a66b
d8f44692c9f9f0a9a391a49db0f4f659a2ef6fe8
/jsBuilds/jsBuilder.py
c6d54a0f8bcd6b1b48141c786117bd378dc21f5d
[ "MIT" ]
permissive
skylarkgit/sql2phpclass
045e71963574b719313fc98882f5c710435f101f
a79e7f3cfda8cb41ba00e8cbba0de33e9be759d6
refs/heads/master
2020-03-19T02:34:34.229287
2018-07-04T18:58:28
2018-07-04T18:58:28
135,640,687
0
0
null
null
null
null
UTF-8
Python
false
false
4,062
py
import sys sys.path.append('..') from jsBuilds.jsTemplates import * from jsBuilds.jsSupport import * from lib.fileOps import * from dtfSupport import * import jsbeautifier tables=None DEPENDENCIES="$scope,archonAPI,ToolBag,$http,$window,$filter,$mdDialog" def getSelectServices(tableSurface): tableName=tableSurface.alias varList=tableSurface.getForiegnOTMKeys() code="" for v in varList.values(): code+=(ARCHONCALL('"select"',"'"+tables[v.keyReference].alias+"'",'""',POSTSUBMISSION(SCOPE(v.alias+"Select")+'=response.data.data;',ONFAILURE('"COULDN\'t FETCH DATA FROM '+tableName+' : "+response.data.data')))) varList=tableSurface.getForiegnOTOKeys() for v in varList.values(): code+=getSelectServices(tables[v.keyReference]) return code def getShowService(tableSurface): tableName=tableSurface.alias varList=tableSurface.getForiegnOTMKeys() code=ARCHONCALL('"Get"',"'"+tableName+"'",'""',POSTSUBMISSION(SCOPE(tableName+"Data")+'=response.data.data;',ONFAILURE('"COULDN\'t FETCH DATA FROM '+tableName+' : "+response.data.data'))) return code def setTables(tableSurfaces): global tables tables=tableSurfaces def getSubmission(tableSurface): #code="var obj={"+createObjFromScope(tableSurface.getSettable())+"};\n" NV=getAllSettables(tables,tableSurface,{}) print(",".join(NV)) code=SUBMISSION('"add"',CALL('ToolBag.objToCallArgs',createObjFromScope(NV)),"'"+tableSurface.alias+"'",POSTSUBMISSION(ONSUCCESS('"Data Saved"'),ONFAILURE('response.data.data'))) return code def getUpdation(tableSurface): #code="var obj={"+createObjFromScope(tableSurface.getSettable())+"};\n" NV=getAllVars(tables,tableSurface,{}) print(",".join(NV)) code=SUBMISSION('"update"',CALL('ToolBag.objToCallArgs',createObjFromScope(NV)),"'"+tableSurface.alias+"'",POSTSUBMISSION(ONSUCCESS('"Data Saved"'),ONFAILURE('response.data.data'))) return code def getFetchById(tableSurface,obj,code): #code="var obj={"+createObjFromScope(tableSurface.getSettable())+"};\n" code=ARCHONCALL("'fetch'","'"+tableSurface.alias+"'",CALL('ToolBag.objToCallArgs',createObjFromScope(obj)),POSTSUBMISSION(code,ONFAILURE('response.data.data'))) return code def createAddController(tableSurface): tableName=tableSurface.alias varList=tableSurface.getSettable() code=SCOPE(VALIDITY(SCOPE('add'+tableName+'Controller'))) code+=SCOPE('showAdvanced')+'=ToolBag.showAdvanced;\n' code+=getSelectServices(tableSurface) code+=getSubmission(tableSurface) return OBJ('app',CONTROLLER(CONTROLLERNAME('add',tableName),DEPENDENCIES,code)) def buildShowController(tableSurface): tableName=tableSurface.alias code=SCOPE('showAdvanced')+'=ToolBag.showAdvanced;\n' code+=getShowService(tableSurface) return OBJ('app',CONTROLLER(CONTROLLERNAME('show',tableName),DEPENDENCIES,code)) def buildUpdateController(tables,tableSurface): tableName=tableSurface.alias varList=tableSurface.getSettable() keys=tableSurface.getKeys() code=argsToScope(keys) code+=getFetchById(tableSurface,keys,responseToScope(getAllVars(tables,tableSurface,{}))) code+=SCOPE(VALIDITY(SCOPE('update'+tableName+'Controller'))) code+=SCOPE('showAdvanced')+'=ToolBag.showAdvanced;\n' code+=getSelectServices(tableSurface) code+=getUpdation(tableSurface) return OBJ('app',CONTROLLER(CONTROLLERNAME('update',tableName),DEPENDENCIES+","+",".join(keys),code)) def buildControllers(tableSurfaces): global tables tables=tableSurfaces code="" pc="" touchd('js') for t in tables.values(): code+=createAddController(t) pc+=CASE("'"+CONTROLLERNAME('add',t.alias)+"'",'return '+CONTROLLERNAME('add',t.alias)+';') for t in tables.values(): code+=buildShowController(t) pc+=CASE("'"+CONTROLLERNAME('show',t.alias)+"'",'return '+CONTROLLERNAME('show',t.alias)+';') for t in tables.values(): code+=buildUpdateController(tables,t) pc+=CASE("'"+CONTROLLERNAME('update',t.alias)+"'",'return '+CONTROLLERNAME('update',t.alias)+';') pc=SWITCH('ctrl',pc) pc='obj.controllerProvider=function(ctrl){{{code}}}'.format(code=pc) f=open('js\controllers.js','w') f.write(jsbeautifier.beautify(pc+code))
[ "abhay199658@gmail.com" ]
abhay199658@gmail.com
bda1259acf1f9e58440de1958bf26bb65f5b568f
144590772aaa89e5ead8936512b0bd035c215c7b
/resilient-circuits/tests/selftest_tests/mocked_success_script.py
3ea0cb2eea6c0d23aebd1c0b1c2c4e1b72008c59
[ "MIT" ]
permissive
ibmresilient/resilient-python-api
f65dad3f3c832581127026fa3e626eaf3d4749a7
84e8c6d9140ceac0bf47ce0b98e11c7953d95e61
refs/heads/main
2023-07-23T12:36:49.551506
2023-07-11T15:15:43
2023-07-11T15:15:43
101,414,862
37
31
MIT
2023-09-07T14:00:34
2017-08-25T14:59:45
Python
UTF-8
Python
false
false
276
py
def selftest(opts): """ Placeholder for selftest function. An example use would be to test package api connectivity. Suggested return values are be unimplemented, success, or failure. """ return { "state": "success", "reason": None }
[ "Ryan.Gordon1@ibm.com" ]
Ryan.Gordon1@ibm.com
4b23d796e4e6e0eaf5c71897207ec14d8b6168c5
5dc20d163ac874bef45f8aeadbdc8bef1697ea64
/python-asyncio/src/asyncio/basic.py
bdbc3208817df584096fd5999af8abb797074038
[]
no_license
bartfrenk/sandbox
67241860ea35437a0f032a1b656a63908289fe19
563fc0051e742cc735c5da4b58a66ccf926e2b16
refs/heads/master
2022-12-10T04:51:56.396228
2020-02-23T11:18:28
2020-02-23T11:18:28
60,007,554
0
0
null
2016-05-30T12:12:09
2016-05-30T12:12:09
null
UTF-8
Python
false
false
427
py
import asyncio import sys class Test: def __init__(self, number): self.number = number async def run(self): print("The magic number is...", end=" ") sys.stdout.flush() await asyncio.sleep(1) print(self.number) async def main(): print("Hello") await asyncio.sleep(1) print("... World!") if __name__ == "__main__": test = Test(5) asyncio.run(test.run())
[ "bart.frenk@gmail.com" ]
bart.frenk@gmail.com
07e30b5ca44e0780d580e0e6e6bb3d6b3d5b027e
031b1c5b0c404f23ccd61a08845695bd4c3827f2
/python/pyfiles/算术运算符.py
39efec4aa582072f142c44bd1bc23d687686d1e0
[]
no_license
AndyFlower/zixin
c8d957fd8b1e6ca0e1ae63389bc8151ab93dbb55
647705e5f14fae96f82d334ba1eb8a534735bfd9
refs/heads/master
2022-12-23T21:10:44.872371
2021-02-10T07:15:21
2021-02-10T07:15:21
232,578,547
1
0
null
2022-12-16T15:41:14
2020-01-08T14:13:25
Java
UTF-8
Python
false
false
795
py
# -*- coding: utf-8 -*- """ Created on Tue Dec 1 22:57:02 2020 @author: sanglp """ # +运算符 print(3+5) print(3.4+4.5) print((3+4j)+(4+5j)) print('abc'+'def') print([1,2]+[3,4]) print((1,2)+(3,)) # -运算符 print(7.9 -4.5) # 浮点数有误差 print(5-3) num = 3 print(-num) print(--num) print({1,2,3}-{3,4,5}) #计算差集 # *运算符 print(3333*5555) print((3+4j)*(5+6j)) print('重要的事情说3遍'*3) print([0]*5) print((0,)*3) # /和//运算符 print(17 / 4) print(17 // 4) #4 print((-17) / 4) print((-17) // 4) #-5 # %运算符 print(365 %7) print(365 %2) print('%c,%c,%c' %(65,97,48)) # 数字格式化为字符 A,a,0 # **运算符 print(2 ** 4) print(3 ** 3 ** 3) print(3 ** (3**3)) print((3**3)**3) print(9**0.5) print((-1)**0.5) # 对负数计算平方根得到负数
[ "1308445442@qq.com" ]
1308445442@qq.com
b0af71064e926490ac415e9930d72e7cccec1d8c
7464f15c33c74454f2a98dceb7f603919abba4d1
/happy.py
01383a2a50c7506bb341600a3deaf9076a692953
[]
no_license
willingc/my-bit
374bece797c59956e500504cd62940a2c1718013
535768dcb09297f1028e0e111fd062b91e8032c6
refs/heads/master
2016-08-08T21:26:22.119643
2015-11-30T03:23:59
2015-11-30T03:23:59
47,053,915
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
""" happy.py by Carol Willing November 28, 2015 Public Domain Use this to display a 'Happy Face' image on micro:bit's 5x5 pixel grid of LEDs. Remember... Writing a program is similar to planning a birthday party. Program Birthday party ------- -------------- 'Prepare' Prepare the room with balloons; order food; pick up a cake. 'Do' Do things during the party -- sing, dance, play videogames. 'Clean' Clean the table. Tidy up after the party. Take out the rubbish. """ from microbit import * # Prepare. Put the preinstalled images into user friendly variables my_happy_face = Image.HAPPY my_sad_face = Image.SAD # Do things! ----> Show the images on the display. display.show(my_happy_face) sleep(8000) display.show(my_sad_face) sleep(8000) display.show(my_happy_face) sleep(4000) # Clean up stuff. Display 'BYE' and clear display. (Clean your room too.) display.scroll("BYE") display.clear()
[ "carolcode@willingconsulting.com" ]
carolcode@willingconsulting.com
88ed4535cc1d89f37f97af16d48dceabab6add6f
1e39bbec23e4200d84237cb2446e4285736cbf98
/options.py
b17459e6a9edea456a043196dec7c461421c41c3
[]
no_license
JRiyaz/password-manager
00617c4f16f7438c392baf972d66d77eca11e519
215947d5ce5934bd04d11f3cf1d035cf457a5fa9
refs/heads/main
2023-05-31T12:05:06.772659
2021-07-05T09:54:44
2021-07-05T09:54:44
379,824,940
0
0
null
null
null
null
UTF-8
Python
false
false
4,787
py
import sys from colors import Colors from security import PasswordManager class Options: # username of the user __username = '' # Show welcome message for first time __welcome = True @staticmethod def __ask_username() -> None: """ This method prompt the user to enter username through command line """ print(f"{Colors.CYAN}Please register here{Colors.END}") Options.__username = input("Please enter username: ") @staticmethod def __ask_password() -> None: """ This method prompt the user to enter password through command line """ pm = PasswordManager() secure = False while True: msg = secure is True and 'Enter new strong password' or 'Enter your new password' password = input(f"{msg}: ") set_password = pm.set_password(password) if set_password == -1: print(f'{Colors.WARNING}Password must contain at-lease 6 characters{Colors.END}') elif set_password == 1: print(f'{Colors.WARNING}New password must be secured than your old password{Colors.END}') elif set_password == 2: print(f'{Colors.WARNING}Password already exists, it cannot be set.{Colors.END}') else: message = Options.__welcome and 'Your password is set' or 'Password has changed' print(f'{Colors.GREEN}{message}{Colors.END}') break @staticmethod def __show_options() -> int: """ This method continuously prompt the user to select from given option until the user selects the correct option through command line """ wrong = False selection = 0 while True: if not wrong: print(f'{Colors.BLUE}NOTE: please select from following options{Colors.END}') else: print(f'{Colors.WARNING}please select correct option{Colors.END}') options = ( '1. Show all my passwords\n' '2. Get current password\n' '3. Set new password\n' '4. Security level of my current password\n' '5. Logout\n') try: selection = int(input(options)) except ValueError as e: wrong = True continue else: if selection in [1, 2, 3, 4, 5]: break else: wrong = True continue return selection @classmethod def check_password(cls) -> bool: """ This method continuously prompt the user to enter current password to perform the selected action for 3. If you enter wrong password for 3rd time program will terminate """ pm = PasswordManager() pwd = input(f'{cls.__username.title()} Enter your current password to perform the action: ') chances = 0 while True: if pm.is_correct(pwd): return True else: if chances > 2: sys.exit('\nYour account is blocked') print(f'{Colors.WARNING}You have entered wrong password{Colors.END}') pwd = input(f'{Colors.FAIL}You have {3 - chances} attempts left. Please try again: {Colors.END}') chances += 1 @classmethod def main_menu(cls) -> None: """ This method prompt the user to select correct options through command line """ pm = PasswordManager() if not cls.__username: cls.__ask_username() if not pm.get_password(): print(f'{Colors.WARNING}You have not set password for you account{Colors.END}') cls.__ask_password() if cls.__welcome: print(f'\n{Colors.GREEN}', 10 * '*', 'Welcome to Password Manager', 10 * '*', f'{Colors.END}\n') cls.__welcome = False while True: selection = cls.__show_options() if selection == 1 and cls.check_password(): print(f'{Colors.CYAN}{pm.get_all_passwords()}{Colors.END}') elif selection == 2 and cls.check_password(): print(f'{Colors.CYAN}Your current password: {pm.get_password()}{Colors.END}') elif selection == 3 and cls.check_password(): cls.__ask_password() elif selection == 4 and cls.check_password(): level = pm.get_level() strength = level == 0 and 'WEAK' or level == 1 and 'STRONG' or 'VERY STRONG' print(f'{Colors.CYAN}Your password is: {strength}{Colors.END}') elif selection == 5: sys.exit('\nYou are logged out')
[ "j.riyazu@gmail.com" ]
j.riyazu@gmail.com
bfd774f91b26d227ba70c15082fed0194b86585b
c02e5e0730a04b0a16c68d8aad928daedd770948
/App/forms.py
6803dbdd618672636a38b52907a07a83f6c8f902
[ "MIT" ]
permissive
ashtonfei/flask-mini-app
11c005f05496d655078a259cc70347c9664e0738
5a825665caef257d1f0fe3a670fcd1cea650688e
refs/heads/main
2023-03-30T18:12:44.430341
2021-04-09T15:46:06
2021-04-09T15:46:06
355,441,390
0
0
null
null
null
null
UTF-8
Python
false
false
1,392
py
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SelectField, SubmitField from wtforms.validators import DataRequired, Length, EqualTo, Email class LoginForm(FlaskForm): email = StringField(label='Email', validators=[DataRequired(), Email()]) password = PasswordField(label='Password', validators=[ DataRequired(), Length(min=6)]) submit = SubmitField(label='Log In') class RegisterForm(FlaskForm): username = StringField(label='User name', validators=[ Length(min=3, max=12), DataRequired()]) email = StringField(label='Email', validators=[DataRequired(), Email()]) password = PasswordField(label='Password', validators=[ Length(min=6), DataRequired()]) password_confirm = PasswordField( label='Confirm password', validators=[EqualTo('password'), DataRequired()]) first_name = StringField(label='First name', validators=[DataRequired()]) middle_name = StringField(label='Middle name', validators=[]) last_name = StringField(label='Last name', validators=[DataRequired()]) phone = StringField(label='Phone', validators=[DataRequired()]) gender = SelectField(label='Gender', choices=['Male', 'Female'], validators=[ DataRequired()], default="Male") submit = SubmitField(label='Register')
[ "yunjia.fei@gmail.com" ]
yunjia.fei@gmail.com
c27426914cd5012c8f9639773cee57f0c16aeee3
57972581decd1707834a58eefa3b77e9ed24bf28
/service_2/__init__.py
4e910ebf3bd4d91cd523d337209cb03068cfa80c
[]
no_license
abhyasgiri/milestone-serverless-project
8e671288adf3abbf71217e42c3984152da967571
3e1a67859fd0289ae56772b4b5079fa43452a1a4
refs/heads/main
2023-02-23T01:30:23.132175
2021-02-02T16:44:01
2021-02-02T16:44:01
335,349,686
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
import logging import random from string import ascii_lowercase import azure.functions as func def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') letters = "" for _ in range(5): letters += random.choice(ascii_lowercase) return func.HttpResponse( letters, status_code=200 )
[ "abhyasgiri@outlook.com" ]
abhyasgiri@outlook.com
be23dca58eab757909e1b01ac74a7f2f65028785
ee9ddec6307ab76a567b4001cee47278d503b3da
/01. Naive Bayes/01. Spam filtering/classifiers/NaiveBayesClassifier.py
ba39bc3088615798e97486a6ab994a7f35f41607
[]
no_license
Phil9l/probabilistic-graphical-models
ebf6f6366169f6e4cec72a0199a330a1e350818d
9471b79ad7d8f0a511ae94a3719132592c5f79a7
refs/heads/master
2021-01-18T17:23:56.035485
2017-03-31T08:26:30
2017-03-31T08:26:30
86,793,853
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
from collections import defaultdict __all__ = ['NaiveBayesClassifier'] class NaiveBayesClassifier: def __init__(self): self._class_data = defaultdict(dict) def train(self, data, cls): raise NotImplementedError def predict(self, data): raise NotImplementedError
[ "phil9lne@gmail.com" ]
phil9lne@gmail.com
11e303d4c69ca7bcedd509112ad6562b91d12bdc
6a562077f79213f6b2bb89e92d6a16d931268089
/frappe/core/doctype/data_import/importer_new.py
6fccbc89ef1f32fc83abe5d05da1ba572513dd91
[ "MIT" ]
permissive
libracore/frappe
74fe917b75aa1cfad38c71519914180d5d5f1366
92d94a73a3445a252a2828de0053dcce86a18f17
refs/heads/v12
2023-07-17T04:58:08.622228
2023-06-28T17:27:33
2023-06-28T17:27:33
89,392,790
6
8
MIT
2023-08-29T16:29:03
2017-04-25T18:19:40
Python
UTF-8
Python
false
false
27,077
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt import io import os import json import timeit import frappe from datetime import datetime from frappe import _ from frappe.utils import cint, flt, update_progress_bar from frappe.utils.csvutils import read_csv_content from frappe.utils.xlsxutils import ( read_xlsx_file_from_attached_file, read_xls_file_from_attached_file, ) from frappe.model import no_value_fields, table_fields INVALID_VALUES = ["", None] MAX_ROWS_IN_PREVIEW = 10 # pylint: disable=R0201 class Importer: def __init__( self, doctype, data_import=None, file_path=None, content=None, console=False ): self.doctype = doctype self.template_options = frappe._dict({"remap_column": {}}) self.console = console if data_import: self.data_import = data_import if self.data_import.template_options: template_options = frappe.parse_json(self.data_import.template_options) self.template_options.update(template_options) else: self.data_import = None self.header_row = None self.data = None # used to store date formats guessed from data rows per column self._guessed_date_formats = {} # used to store eta during import self.last_eta = 0 # used to collect warnings during template parsing # and show them to user self.warnings = [] self.meta = frappe.get_meta(doctype) self.prepare_content(file_path, content) self.parse_data_from_template() def prepare_content(self, file_path, content): extension = None if self.data_import and self.data_import.import_file: file_doc = frappe.get_doc("File", {"file_url": self.data_import.import_file}) content = file_doc.get_content() extension = file_doc.file_name.split(".")[1] if file_path: content, extension = self.read_file(file_path) if not extension: extension = "csv" if content: self.read_content(content, extension) self.validate_template_content() self.remove_empty_rows_and_columns() def read_file(self, file_path): extn = file_path.split(".")[1] file_content = None with io.open(file_path, mode="rb") as f: file_content = f.read() return file_content, extn def read_content(self, content, extension): if extension == "csv": data = read_csv_content(content) elif extension == "xlsx": data = read_xlsx_file_from_attached_file(fcontent=content) elif extension == "xls": data = read_xls_file_from_attached_file(content) self.header_row = data[0] self.data = data[1:] def validate_template_content(self): column_count = len(self.header_row) if any([len(row) != column_count and len(row) != 0 for row in self.data]): frappe.throw( _("Number of columns does not match with data"), title=_("Invalid Template") ) def remove_empty_rows_and_columns(self): self.row_index_map = [] removed_rows = [] removed_columns = [] # remove empty rows data = [] for i, row in enumerate(self.data): if all(v in INVALID_VALUES for v in row): # empty row removed_rows.append(i) else: data.append(row) self.row_index_map.append(i) # remove empty columns # a column with a header and no data is a valid column # a column with no header and no data will be removed header_row = [] for i, column in enumerate(self.header_row): column_values = [row[i] for row in data] values = [column] + column_values if all(v in INVALID_VALUES for v in values): # empty column removed_columns.append(i) else: header_row.append(column) data_without_empty_columns = [] # remove empty columns from data for i, row in enumerate(data): new_row = [v for j, v in enumerate(row) if j not in removed_columns] data_without_empty_columns.append(new_row) self.data = data_without_empty_columns self.header_row = header_row def get_data_for_import_preview(self): out = frappe._dict() out.data = list(self.rows) out.columns = self.columns out.warnings = self.warnings if len(out.data) > MAX_ROWS_IN_PREVIEW: out.data = out.data[:MAX_ROWS_IN_PREVIEW] out.max_rows_exceeded = True out.max_rows_in_preview = MAX_ROWS_IN_PREVIEW return out def parse_data_from_template(self): columns = self.parse_columns_from_header_row() columns, data = self.add_serial_no_column(columns, self.data) self.columns = columns self.rows = data def parse_columns_from_header_row(self): remap_column = self.template_options.remap_column columns = [] df_by_labels_and_fieldnames = self.build_fields_dict_for_column_matching() for i, header_title in enumerate(self.header_row): header_row_index = str(i) column_number = str(i + 1) skip_import = False fieldname = remap_column.get(header_row_index) if fieldname and fieldname != "Don't Import": df = df_by_labels_and_fieldnames.get(fieldname) self.warnings.append( { "col": column_number, "message": _("Mapping column {0} to field {1}").format( frappe.bold(header_title or "<i>Untitled Column</i>"), frappe.bold(df.label) ), "type": "info", } ) else: df = df_by_labels_and_fieldnames.get(header_title) if not df: skip_import = True else: skip_import = False if fieldname == "Don't Import": skip_import = True self.warnings.append( { "col": column_number, "message": _("Skipping column {0}").format(frappe.bold(header_title)), "type": "info", } ) elif header_title and not df: self.warnings.append( { "col": column_number, "message": _("Cannot match column {0} with any field").format( frappe.bold(header_title) ), "type": "info", } ) elif not header_title and not df: self.warnings.append( {"col": column_number, "message": _("Skipping Untitled Column"), "type": "info"} ) columns.append( frappe._dict( df=df, skip_import=skip_import, header_title=header_title, column_number=column_number, index=i, ) ) return columns def build_fields_dict_for_column_matching(self): """ Build a dict with various keys to match with column headers and value as docfield The keys can be label or fieldname { 'Customer': df1, 'customer': df1, 'Due Date': df2, 'due_date': df2, 'Item Code (Sales Invoice Item)': df3, 'Sales Invoice Item:item_code': df3, } """ out = {} table_doctypes = [df.options for df in self.meta.get_table_fields()] doctypes = table_doctypes + [self.doctype] for doctype in doctypes: # name field name_key = "ID" if self.doctype == doctype else "ID ({})".format(doctype) name_df = frappe._dict( { "fieldtype": "Data", "fieldname": "name", "label": "ID", "reqd": self.data_import.import_type == "Update Existing Records", "parent": doctype, } ) out[name_key] = name_df out["name"] = name_df # other fields meta = frappe.get_meta(doctype) fields = self.get_standard_fields(doctype) + meta.fields for df in fields: fieldtype = df.fieldtype or "Data" parent = df.parent or self.doctype if fieldtype not in no_value_fields: # label as key label = ( df.label if self.doctype == doctype else "{0} ({1})".format(df.label, parent) ) out[label] = df # fieldname as key if self.doctype == doctype: out[df.fieldname] = df else: key = "{0}:{1}".format(doctype, df.fieldname) out[key] = df # if autoname is based on field # add an entry for "ID (Autoname Field)" autoname_field = self.get_autoname_field(self.doctype) if autoname_field: out["ID ({})".format(autoname_field.label)] = autoname_field # ID field should also map to the autoname field out["ID"] = autoname_field out["name"] = autoname_field return out def get_standard_fields(self, doctype): meta = frappe.get_meta(doctype) if meta.istable: standard_fields = [ {"label": "Parent", "fieldname": "parent"}, {"label": "Parent Type", "fieldname": "parenttype"}, {"label": "Parent Field", "fieldname": "parentfield"}, {"label": "Row Index", "fieldname": "idx"}, ] else: standard_fields = [ {"label": "Owner", "fieldname": "owner"}, {"label": "Document Status", "fieldname": "docstatus", "fieldtype": "Int"}, ] out = [] for df in standard_fields: df = frappe._dict(df) df.parent = doctype out.append(df) return out def add_serial_no_column(self, columns, data): columns_with_serial_no = [ frappe._dict({"header_title": "Sr. No", "skip_import": True}) ] + columns # update index for each column for i, col in enumerate(columns_with_serial_no): col.index = i data_with_serial_no = [] for i, row in enumerate(data): data_with_serial_no.append([self.row_index_map[i] + 1] + row) return columns_with_serial_no, data_with_serial_no def parse_value(self, value, df): # convert boolean values to 0 or 1 if df.fieldtype == "Check" and value.lower().strip() in ["t", "f", "true", "false"]: value = value.lower().strip() value = 1 if value in ["t", "true"] else 0 if df.fieldtype in ["Int", "Check"]: value = cint(value) elif df.fieldtype in ["Float", "Percent", "Currency"]: value = flt(value) elif df.fieldtype in ["Date", "Datetime"]: value = self.parse_date_format(value, df) return value def parse_date_format(self, value, df): date_format = self.guess_date_format_for_column(df.fieldname) if date_format: return datetime.strptime(value, date_format) return value def guess_date_format_for_column(self, fieldname): """ Guesses date format for a column by parsing the first 10 values in the column, getting the date format and then returning the one which has the maximum frequency """ PARSE_ROW_COUNT = 10 if not self._guessed_date_formats.get(fieldname): column_index = -1 for i, field in enumerate(self.header_row): if self.meta.has_field(field) and field == fieldname: column_index = i break if column_index == -1: self._guessed_date_formats[fieldname] = None date_values = [ row[column_index] for row in self.data[:PARSE_ROW_COUNT] if row[column_index] ] date_formats = [guess_date_format(d) for d in date_values] if not date_formats: return max_occurred_date_format = max(set(date_formats), key=date_formats.count) self._guessed_date_formats[fieldname] = max_occurred_date_format return self._guessed_date_formats[fieldname] def import_data(self): # set user lang for translations frappe.cache().hdel("lang", frappe.session.user) frappe.set_user_lang(frappe.session.user) if not self.console: self.data_import.db_set("template_warnings", "") # set flags frappe.flags.in_import = True frappe.flags.mute_emails = self.data_import.mute_emails # prepare a map for missing link field values self.prepare_missing_link_field_values() # parse docs from rows payloads = self.get_payloads_for_import() # dont import if there are non-ignorable warnings warnings = [w for w in self.warnings if w.get("type") != "info"] if warnings: if self.console: self.print_grouped_warnings(warnings) else: self.data_import.db_set("template_warnings", json.dumps(warnings)) frappe.publish_realtime( "data_import_refresh", {"data_import": self.data_import.name} ) return # setup import log if self.data_import.import_log: import_log = frappe.parse_json(self.data_import.import_log) else: import_log = [] # remove previous failures from import log import_log = [l for l in import_log if l.get("success") == True] # get successfully imported rows imported_rows = [] for log in import_log: log = frappe._dict(log) if log.success: imported_rows += log.row_indexes # start import total_payload_count = len(payloads) batch_size = frappe.conf.data_import_batch_size or 1000 for batch_index, batched_payloads in enumerate( frappe.utils.create_batch(payloads, batch_size) ): for i, payload in enumerate(batched_payloads): doc = payload.doc row_indexes = [row[0] for row in payload.rows] current_index = (i + 1) + (batch_index * batch_size) if set(row_indexes).intersection(set(imported_rows)): print("Skipping imported rows", row_indexes) if total_payload_count > 5: frappe.publish_realtime( "data_import_progress", { "current": current_index, "total": total_payload_count, "skipping": True, "data_import": self.data_import.name, }, ) continue try: start = timeit.default_timer() doc = self.process_doc(doc) processing_time = timeit.default_timer() - start eta = self.get_eta(current_index, total_payload_count, processing_time) if total_payload_count > 5: frappe.publish_realtime( "data_import_progress", { "current": current_index, "total": total_payload_count, "docname": doc.name, "data_import": self.data_import.name, "success": True, "row_indexes": row_indexes, "eta": eta, }, ) if self.console: update_progress_bar( "Importing {0} records".format(total_payload_count), current_index, total_payload_count, ) import_log.append( frappe._dict(success=True, docname=doc.name, row_indexes=row_indexes) ) # commit after every successful import frappe.db.commit() except Exception: import_log.append( frappe._dict( success=False, exception=frappe.get_traceback(), messages=frappe.local.message_log, row_indexes=row_indexes, ) ) frappe.clear_messages() # rollback if exception frappe.db.rollback() # set status failures = [l for l in import_log if l.get("success") == False] if len(failures) == total_payload_count: status = "Pending" elif len(failures) > 0: status = "Partial Success" else: status = "Success" if self.console: self.print_import_log(import_log) else: self.data_import.db_set("status", status) self.data_import.db_set("import_log", json.dumps(import_log)) frappe.flags.in_import = False frappe.flags.mute_emails = False frappe.publish_realtime("data_import_refresh", {"data_import": self.data_import.name}) return import_log def get_payloads_for_import(self): payloads = [] # make a copy data = list(self.rows) while data: doc, rows, data = self.parse_next_row_for_import(data) payloads.append(frappe._dict(doc=doc, rows=rows)) return payloads def parse_next_row_for_import(self, data): """ Parses rows that make up a doc. A doc maybe built from a single row or multiple rows. Returns the doc, rows, and data without the rows. """ doctypes = set([col.df.parent for col in self.columns if col.df and col.df.parent]) # first row is included by default first_row = data[0] rows = [first_row] # if there are child doctypes, find the subsequent rows if len(doctypes) > 1: # subsequent rows either dont have any parent value set # or have the same value as the parent row # we include a row if either of conditions match parent_column_indexes = [ col.index for col in self.columns if not col.skip_import and col.df and col.df.parent == self.doctype ] parent_row_values = [first_row[i] for i in parent_column_indexes] data_without_first_row = data[1:] for row in data_without_first_row: row_values = [row[i] for i in parent_column_indexes] # if the row is blank, it's a child row doc if all([v in INVALID_VALUES for v in row_values]): rows.append(row) continue # if the row has same values as parent row, it's a child row doc if row_values == parent_row_values: rows.append(row) continue # if any of those conditions dont match, it's the next doc break def get_column_indexes(doctype): return [ col.index for col in self.columns if not col.skip_import and col.df and col.df.parent == doctype ] def validate_value(value, df): if df.fieldtype == "Select": select_options = df.get_select_options() if select_options and value not in select_options: options_string = ", ".join([frappe.bold(d) for d in select_options]) msg = _("Value must be one of {0}").format(options_string) self.warnings.append( { "row": row_number, "field": df.as_dict(convert_dates_to_str=True), "message": msg, } ) return False elif df.fieldtype == "Link": d = self.get_missing_link_field_values(df.options) if value in d.missing_values and not d.one_mandatory: msg = _("Value {0} missing for {1}").format( frappe.bold(value), frappe.bold(df.options) ) self.warnings.append( { "row": row_number, "field": df.as_dict(convert_dates_to_str=True), "message": msg, } ) return value return value def parse_doc(doctype, docfields, values, row_number): # new_doc returns a dict with default values set doc = frappe.new_doc(doctype, as_dict=True) # remove standard fields and __islocal for key in frappe.model.default_fields + ("__islocal",): doc.pop(key, None) for df, value in zip(docfields, values): if value in INVALID_VALUES: value = None value = validate_value(value, df) if value: doc[df.fieldname] = self.parse_value(value, df) check_mandatory_fields(doctype, doc, row_number) return doc def check_mandatory_fields(doctype, doc, row_number): # check if mandatory fields are set (except table fields) meta = frappe.get_meta(doctype) fields = [ df for df in meta.fields if df.fieldtype not in table_fields and df.reqd and doc.get(df.fieldname) in INVALID_VALUES ] if not fields: return if len(fields) == 1: self.warnings.append( { "row": row_number, "message": _("{0} is a mandatory field").format(fields[0].label), } ) else: fields_string = ", ".join([df.label for df in fields]) self.warnings.append( {"row": row_number, "message": _("{0} are mandatory fields").format(fields_string)} ) parsed_docs = {} for row in rows: for doctype in doctypes: if doctype == self.doctype and parsed_docs.get(doctype): # if parent doc is already parsed from the first row # then skip continue row_number = row[0] column_indexes = get_column_indexes(doctype) values = [row[i] for i in column_indexes] if all(v in INVALID_VALUES for v in values): # skip values if all of them are empty continue columns = [self.columns[i] for i in column_indexes] docfields = [col.df for col in columns] doc = parse_doc(doctype, docfields, values, row_number) parsed_docs[doctype] = parsed_docs.get(doctype, []) parsed_docs[doctype].append(doc) # build the doc with children doc = {} for doctype, docs in parsed_docs.items(): if doctype == self.doctype: doc.update(docs[0]) else: table_dfs = self.meta.get( "fields", {"options": doctype, "fieldtype": ["in", table_fields]} ) if table_dfs: table_field = table_dfs[0] doc[table_field.fieldname] = docs # check if there is atleast one row for mandatory table fields mandatory_table_fields = [ df for df in self.meta.fields if df.fieldtype in table_fields and df.reqd and len(doc.get(df.fieldname, [])) == 0 ] if len(mandatory_table_fields) == 1: self.warnings.append( { "row": first_row[0], "message": _("There should be atleast one row for {0} table").format( mandatory_table_fields[0].label ), } ) elif mandatory_table_fields: fields_string = ", ".join([df.label for df in mandatory_table_fields]) self.warnings.append( { "row": first_row[0], "message": _("There should be atleast one row for the following tables: {0}").format(fields_string), } ) return doc, rows, data[len(rows) :] def process_doc(self, doc): import_type = self.data_import.import_type if import_type == "Insert New Records": return self.insert_record(doc) elif import_type == "Update Existing Records": return self.update_record(doc) def insert_record(self, doc): self.create_missing_linked_records(doc) new_doc = frappe.new_doc(self.doctype) new_doc.update(doc) # name shouldn't be set when inserting a new record new_doc.set("name", None) new_doc.insert() if self.meta.is_submittable and self.data_import.submit_after_import: new_doc.submit() return new_doc def create_missing_linked_records(self, doc): """ Finds fields that are of type Link, and creates the corresponding document automatically if it has only one mandatory field """ link_values = [] def get_link_fields(doc, doctype): for fieldname, value in doc.items(): meta = frappe.get_meta(doctype) df = meta.get_field(fieldname) if not df: continue if df.fieldtype == "Link" and value not in INVALID_VALUES: link_values.append([df.options, value]) elif df.fieldtype in table_fields: for row in value: get_link_fields(row, df.options) get_link_fields(doc, self.doctype) for link_doctype, link_value in link_values: d = self.missing_link_values.get(link_doctype) if d and d.one_mandatory and link_value in d.missing_values: # find the autoname field autoname_field = self.get_autoname_field(link_doctype) name_field = autoname_field.fieldname if autoname_field else "name" new_doc = frappe.new_doc(link_doctype) new_doc.set(name_field, link_value) new_doc.insert() d.missing_values.remove(link_value) def update_record(self, doc): id_fieldname = self.get_id_fieldname() id_value = doc[id_fieldname] existing_doc = frappe.get_doc(self.doctype, id_value) existing_doc.flags.via_data_import = self.data_import.name existing_doc.update(doc) existing_doc.save() return existing_doc def export_errored_rows(self): from frappe.utils.csvutils import build_csv_response if not self.data_import: return import_log = frappe.parse_json(self.data_import.import_log or "[]") failures = [l for l in import_log if l.get("success") == False] row_indexes = [] for f in failures: row_indexes.extend(f.get("row_indexes", [])) # de duplicate row_indexes = list(set(row_indexes)) row_indexes.sort() header_row = [col.header_title for col in self.columns[1:]] rows = [header_row] rows += [row[1:] for row in self.rows if row[0] in row_indexes] build_csv_response(rows, self.doctype) def get_missing_link_field_values(self, doctype): return self.missing_link_values.get(doctype, {}) def prepare_missing_link_field_values(self): columns = self.columns rows = self.rows link_column_indexes = [ col.index for col in columns if col.df and col.df.fieldtype == "Link" ] self.missing_link_values = {} for index in link_column_indexes: col = columns[index] column_values = [row[index] for row in rows] values = set([v for v in column_values if v not in INVALID_VALUES]) doctype = col.df.options missing_values = [value for value in values if not frappe.db.exists(doctype, value)] if self.missing_link_values.get(doctype): self.missing_link_values[doctype].missing_values += missing_values else: self.missing_link_values[doctype] = frappe._dict( missing_values=missing_values, one_mandatory=self.has_one_mandatory_field(doctype), df=col.df, ) def get_id_fieldname(self): autoname_field = self.get_autoname_field(self.doctype) if autoname_field: return autoname_field.fieldname return "name" def get_eta(self, current, total, processing_time): remaining = total - current eta = processing_time * remaining if not self.last_eta or eta < self.last_eta: self.last_eta = eta return self.last_eta def has_one_mandatory_field(self, doctype): meta = frappe.get_meta(doctype) # get mandatory fields with default not set mandatory_fields = [df for df in meta.fields if df.reqd and not df.default] mandatory_fields_count = len(mandatory_fields) if meta.autoname and meta.autoname.lower() == "prompt": mandatory_fields_count += 1 return mandatory_fields_count == 1 def get_autoname_field(self, doctype): meta = frappe.get_meta(doctype) if meta.autoname and meta.autoname.startswith("field:"): fieldname = meta.autoname[len("field:") :] return meta.get_field(fieldname) def print_grouped_warnings(self, warnings): warnings_by_row = {} other_warnings = [] for w in warnings: if w.get("row"): warnings_by_row.setdefault(w.get("row"), []).append(w) else: other_warnings.append(w) for row_number, warnings in warnings_by_row.items(): print("Row {0}".format(row_number)) for w in warnings: print(w.get("message")) for w in other_warnings: print(w.get("message")) def print_import_log(self, import_log): failed_records = [l for l in import_log if not l.success] successful_records = [l for l in import_log if l.success] if successful_records: print( "Successfully imported {0} records out of {1}".format( len(successful_records), len(import_log) ) ) if failed_records: print("Failed to import {0} records".format(len(failed_records))) file_name = '{0}_import_on_{1}.txt'.format(self.doctype, frappe.utils.now()) print('Check {0} for errors'.format(os.path.join('sites', file_name))) text = "" for w in failed_records: text += "Row Indexes: {0}\n".format(str(w.get('row_indexes', []))) text += "Messages:\n{0}\n".format('\n'.join(w.get('messages', []))) text += "Traceback:\n{0}\n\n".format(w.get('exception')) with open(file_name, 'w') as f: f.write(text) DATE_FORMATS = [ r"%d-%m-%Y", r"%m-%d-%Y", r"%Y-%m-%d", r"%d-%m-%y", r"%m-%d-%y", r"%y-%m-%d", r"%d/%m/%Y", r"%m/%d/%Y", r"%Y/%m/%d", r"%d/%m/%y", r"%m/%d/%y", r"%y/%m/%d", r"%d.%m.%Y", r"%m.%d.%Y", r"%Y.%m.%d", r"%d.%m.%y", r"%m.%d.%y", r"%y.%m.%d", ] TIME_FORMATS = [ r"%H:%M:%S.%f", r"%H:%M:%S", r"%H:%M", r"%I:%M:%S.%f %p", r"%I:%M:%S %p", r"%I:%M %p", ] def guess_date_format(date_string): date_string = date_string.strip() _date = None _time = None if " " in date_string: _date, _time = date_string.split(" ", 1) else: _date = date_string date_format = None time_format = None for f in DATE_FORMATS: try: # if date is parsed without any exception # capture the date format datetime.strptime(_date, f) date_format = f break except ValueError: pass if _time: for f in TIME_FORMATS: try: # if time is parsed without any exception # capture the time format datetime.strptime(_time, f) time_format = f break except ValueError: pass full_format = date_format if time_format: full_format += " " + time_format return full_format def import_data(doctype, file_path): i = Importer(doctype, file_path) i.import_data()
[ "netchamp.faris@gmail.com" ]
netchamp.faris@gmail.com
f91e0e107d8ae9b3d2e01fcae49d69d459b91219
4ac3571fed09a6f475448ce7555abfe0daf00151
/lettercount.py
562fd93c1e54f46ef9fca3b9d017397542448363
[]
no_license
ThorHlavaty/pythondicts
fb21ffd490ae2c0faa6ea43abcda0cead3f7ba97
d7bc47a28ce1d04b212da277e05a5c624dc1feec
refs/heads/master
2022-12-12T08:24:39.300182
2020-09-04T18:15:46
2020-09-04T18:15:46
290,031,425
0
0
null
null
null
null
UTF-8
Python
false
false
887
py
def letter_counter(a_string): letter_count = {} for letter in a_string: letter_count[letter] = a_string.count(letter) return letter_count def word_histogram(a_string): word_count = {} this_thing = a_string.lower().split() for word in this_thing: word_count[word] = this_thing.count(word) return word_count and this_thing def histogram_rank(a_string): word_count = {} this_thing = a_string.lower().split() for word in this_thing: word_count[word] = this_thing.count(word) word_count_sorted = sorted(word_count.items(), key=lambda x: x[1]) print(f'The top three words are:\n{word_count_sorted[-1]}\n{word_count_sorted[-2]}\n{word_count_sorted[-3]}') print(letter_counter("Bananas")) print(word_histogram("To be or not to be")) histogram_rank("to be or not to be or to be or maybe even to not to be lol")
[ "thorthebore@gmail.com" ]
thorthebore@gmail.com
c69507f367aefa1127fc150a6f8ecc701ddc571a
6aed964b224292fb1d76f9b5dacb0883abe929fc
/ablog/theblog/migrations/0006_auto_20200927_2319.py
2a457ec8fc67c8216b10e0e78141980f6a740de7
[]
no_license
satish-313/OurBlog
e575585c4e0960a552628164f1cd8dee7d99a0c5
ce497682ba1f6be725be7cdb1d1e02241059843f
refs/heads/master
2023-02-09T22:33:47.816592
2020-12-22T16:22:18
2020-12-22T16:22:18
319,668,863
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
# Generated by Django 3.1.1 on 2020-09-27 17:49 import ckeditor.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('theblog', '0005_auto_20200926_2239'), ] operations = [ migrations.AlterField( model_name='post', name='body', field=ckeditor.fields.RichTextField(blank=True, null=True), ), ]
[ "pradhansatish53@gmail.com" ]
pradhansatish53@gmail.com
e5a9e28f6005491c144002425c212dd0d5803423
a2e11ec88ef3c83b9f07129e76a3681a676d164f
/sessionproject3/sessionproject3/wsgi.py
a7a02fa35437ef303c13922290ff105dce0051b2
[]
no_license
qwertypool/lofo
dadd7cd5b149a3a200b7111d803b1d0195d76642
3bc7bd125e7ea5a67f51dd6dd654e38a5f218055
refs/heads/master
2022-05-18T09:31:11.456634
2020-04-18T14:47:44
2020-04-18T14:47:44
256,773,858
3
0
null
null
null
null
UTF-8
Python
false
false
407
py
""" WSGI config for sessionproject3 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'sessionproject3.settings') application = get_wsgi_application()
[ "deepapandey364@gmail.com" ]
deepapandey364@gmail.com
79722b7ad6e4e2c4ed519da6d093a3f52c9824bf
f56d915f46d779b9ed07a8b6bb048b688865cd7b
/passette.py
97f4c671482303943a387b2184856c6fc5a118fc
[]
no_license
deskofcraig/spotifyplayer
42a252a92ab5d9cc3a1ed7bb68b886579bd1178a
759deb180e345712c09a07e1d5e0fa55dd747e3a
refs/heads/master
2020-04-11T05:42:33.882169
2019-01-19T02:47:32
2019-01-19T02:47:32
161,557,770
0
0
null
null
null
null
UTF-8
Python
false
false
2,788
py
#import the GPIO and time package import RPi.GPIO as GPIO import time import os #from mopidy import core GPIO.setmode(GPIO.BOARD) #yellow/back button GPIO.setup(37, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #red/pause button GPIO.setup(36, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #green/play button GPIO.setup(33, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #white/next button GPIO.setup(32, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #encoder | A - red | C - black | B - yellow #pinA GPIO.setup(29, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #pinB GPIO.setup(31, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) count = 0 counter = 10 pinALast = GPIO.input(29) pinBLast = GPIO.input(31) pinCLast = pinALast ^ pinBLast encoderMin = 0 encoderMax = 100 inc = 1 last_state = pinALast * 4 + pinBLast * 2 + pinCLast * 1 #system on start os.system("mpc volume 10") os.system("mpc add spotify:track:6jXPZid0KLorvgIDP6TiSo") os.system("mpc add spotify:track:5GjPQ0eI7AgmOnADn1EO6Q") os.system("mpc add spotify:track:6r20M5DWYdIoCDmDViBxuz") os.system("mpc add spotify:track:17S4XrLvF5jlGvGCJHgF51") while True: #back/yellow button if GPIO.input(37) == GPIO.HIGH: os.system("mpc prev") print("'back' was pushed!") time.sleep(.3) #pause/red button if GPIO.input(36) == GPIO.HIGH: os.system("mpc pause") print("'pause' was pushed!") time.sleep(.3) #play/green button if GPIO.input(33) == GPIO.HIGH: os.system("mpc toggle") print("'play' was pushed!") time.sleep(.3) #next/white button if GPIO.input(32) == GPIO.HIGH: os.system("mpc next") print("'next' was pushed!") time.sleep(.3) #encoder pinA = GPIO.input(29) pinB = GPIO.input(31) pinC = pinA ^ pinB new_state = pinA * 4 + pinB * 2 + pinC * 1 delta = (new_state - last_state) % 4 # delta | pinA | pinB | pinC | new_state # ====================================== # 0 | 0 | 0 | 0 | 0 # 1 | 1 | 0 | 1 | 5 # 2 | 1 | 1 | 0 | 6 # 3 | 0 | 1 | 1 | 3 # https://bobrathbone.com/raspberrypi/documents/Raspberry%20Rotary%20Encoders.pdf if (new_state != last_state): count += 1 if (count % 4 == 1): if (delta == 3): counter += inc if (counter > encoderMax): counter = 100 else: counter -= inc if (counter < encoderMin): counter = 0 volume = "mpc volume " + str(int(counter)) os.system(volume) last_state = new_state
[ "noreply@github.com" ]
noreply@github.com
96d06f52d129d45476dbb90da29283a0859e2776
f6ff601089f678fecbfa22a4d95c1de225bc34b5
/code12.py
eea027367cb9c55e95dee5542ce2b7d981997d76
[]
no_license
Kumar1998/github-upload
94c1fb50dc1bce2c4b76d83c41be2e0ce57b7fa6
ab264537200791c87ef6d505d90be0c0a952ceff
refs/heads/master
2021-07-05T10:14:13.591139
2020-07-26T15:47:30
2020-07-26T15:47:30
143,553,935
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
x=int(input("Enter 1st number:")) y=int(input("Enter 2nd number:")) sum=x+y average=sum/2 print("Sum of the given two numbers is:",sum) print("Average of the given two numbers is:",average)
[ "noreply@github.com" ]
noreply@github.com
5527d366f62eeca1618526aeba69c022f62e9b48
fb887b712b05c5e2a3ab1a02d9349c246fc06922
/app/migrations/0003_auto_20210316_2151.py
5cba198802eba0fe273af13aee79f4ead5b43c65
[]
no_license
kousik-prabu-git/SafeNest
3347b139488053d42abd4997cf6f9e3a11542e1d
b9368a497e37b2076683eb00e7d8f8644647b903
refs/heads/master
2023-04-14T12:15:47.598980
2021-05-02T08:28:27
2021-05-02T08:28:27
347,817,753
1
0
null
null
null
null
UTF-8
Python
false
false
903
py
# Generated by Django 3.1.3 on 2021-03-16 16:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('app', '0002_auto_20210316_1056'), ] operations = [ migrations.AddField( model_name='activity', name='reporter', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='Reporter', to='auth.user'), preserve_default=False, ), migrations.AlterField( model_name='activity', name='volunteer', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='Volunteer', to=settings.AUTH_USER_MODEL), ), ]
[ "uniqfocuz@gmail.com" ]
uniqfocuz@gmail.com
e9ad5aee994bfbdd74e6f30e6aa132036122e60b
437b5b668d6d2c6f089bbeabb2676db46d8cdd07
/temp_ach_multiprocess.py
0037b9c2e1f8db810f86f2e2c4c54c41b7643c81
[ "MIT" ]
permissive
marcelosalles/idf-creator
4e53d185ab42b7f14dbd2d83e9ffe7e015ef07c3
399a68dbee9d275e79df75c55acdec5f246ff07f
refs/heads/master
2020-03-18T13:03:40.804518
2018-12-21T19:33:49
2018-12-21T19:33:49
134,758,816
0
1
null
null
null
null
UTF-8
Python
false
false
3,378
py
# Return EHF from multiple simulation results of Operative Temperature import argparse import csv import datetime import glob from multiprocessing import Pool import os import pandas as pd FOLDER_STDRD = 'cluster' LEN_FOLDER_NAME = len(FOLDER_STDRD) + 2 BASE_DIR = '/media/marcelo/OS/LabEEE_1-2/idf-creator/single_12_20/' # BASE_DIR = 'D:/LabEEE_1-2/idf-creator/sobol_single' MONTH_MEANS = pd.read_csv('month_means_8760.csv') MAX_THREADS = 18 # SIMULATIONS = 108000 # N_CLUSTERS = 18 # batch = SIMULATIONS/N_CLUSTERS def process_folder(folder): line = 0 folder_name = folder[len(folder)-LEN_FOLDER_NAME:] # folder_name = folder[len(folder)-LEN_FOLDER_NAME:] os.chdir(folder) # BASE_DIR+'/'+ # pre_epjson_files = glob.glob('*.epJSON') # i_cluster = int(folder[-1]) # ok_list = ['sobol_single_'+'{:05.0f}'.format(i)+'.epJSON' for i in range(int(i_cluster*batch),int(i_cluster*batch+batch))] epjson_files = glob.glob('*.err') # epJSON') # [] print(len(epjson_files)) # for f in pre_epjson_files: # if f in ok_list: # epjson_files.append(f) df_temp = { 'folder': [], 'file': [], 'temp': [], 'ach': [], 'ehf': [] } for file in epjson_files: print(line,' ',file, end='\r') line += 1 csv_file = file[:-7]+'out.csv' df = pd.read_csv(csv_file) df_temp['file'].append(file[:-7]) df_temp['folder'].append(folder_name) df_temp['temp'].append((df['OFFICE:Zone Operative Temperature [C](Hourly)'][df['SCH_OCUPACAO:Schedule Value [](Hourly)'] > 0]).mean()) df_temp['ach'].append((df['OFFICE:AFN Zone Infiltration Air Change Rate [ach](Hourly)'][df['SCH_OCUPACAO:Schedule Value [](Hourly)'] > 0]).mean()) df['E_hot'] = -1 df['sup_lim'] = MONTH_MEANS['mean_temp'] + 3.5 df.loc[df['OFFICE:Zone Operative Temperature [C](Hourly)'] > df['sup_lim'], 'E_hot'] = 1 df.loc[df['OFFICE:Zone Operative Temperature [C](Hourly)'] <= df['sup_lim'], 'E_hot'] = 0 df_temp['ehf'].append(df['E_hot'][df['SCH_OCUPACAO:Schedule Value [](Hourly)'] > 0].mean()) df_output = pd.DataFrame(df_temp) df_output.to_csv('means_{}.csv'.format(folder_name), index=False) print('\tDone processing folder \'{}\''.format(folder_name)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process output data from Energyplus.') parser.add_argument('-t', action='store', type=int, help='runs T threads') args = parser.parse_args() folders = glob.glob(BASE_DIR+FOLDER_STDRD+'*') print('Processing {} folders in \'{}\':'.format(len(folders), BASE_DIR)) for folder in folders: print('\t{}'.format(folder)) start_time = datetime.datetime.now() if args.t: p = Pool(args.t) p.map(process_folder, folders) else: num_folders = len(folders) p = Pool(min(num_folders, MAX_THREADS)) p.map(process_folder, folders) end_time = datetime.datetime.now() total_time = (end_time - start_time) print("Total processing time: " + str(total_time))
[ "marcelosalles@github.com" ]
marcelosalles@github.com
33a16862ec2f40db072c68c1e4c243096bce805a
abb614790bdf41c7db9d09dfdea4385f78c2be52
/rtk-RQA/rtk/hardware/component/connection/Socket.py
c1454c5a9c43e324ac69b5e3c374fd2decff5864
[ "BSD-3-Clause" ]
permissive
codacy-badger/rtk
f981bb75aadef6aaeb5a6fa427d0a3a158626a2a
bdb9392164b0b32b0da53f8632cbe6e3be808b12
refs/heads/master
2020-03-19T02:46:10.320241
2017-10-26T20:08:12
2017-10-26T20:08:12
135,659,105
0
0
null
2018-06-01T02:43:23
2018-06-01T02:43:23
null
UTF-8
Python
false
false
5,321
py
#!/usr/bin/env python """ ###################################################### Hardware.Component.Connection Package IC Socket Module ###################################################### """ # -*- coding: utf-8 -*- # # rtk.hardware.component.connection.Socket.py is part of the RTK # Project # # All rights reserved. import gettext import locale try: import Configuration import Utilities from hardware.component.connection.Connection import Model as Connection except ImportError: # pragma: no cover import rtk.Configuration as Configuration import rtk.Utilities as Utilities from rtk.hardware.component.connection.Connection import Model as \ Connection __author__ = 'Andrew Rowland' __email__ = 'andrew.rowland@reliaqual.com' __organization__ = 'ReliaQual Associates, LLC' __copyright__ = 'Copyright 2007 - 2015 Andrew "weibullguy" Rowland' # Add localization support. try: locale.setlocale(locale.LC_ALL, Configuration.LOCALE) except locale.Error: # pragma: no cover locale.setlocale(locale.LC_ALL, '') _ = gettext.gettext class Socket(Connection): """ The Socket connection data model contains the attributes and methods of an IC socket connection component. The attributes of an IC socket connection are: :cvar int subcategory: the Connection subcategory. :ivar float base_hr: the MIL-HDBK-217FN2 base/generic hazard rate. :ivar str reason: the reason(s) the Connection is overstressed. :ivar float piE: the MIL-HDBK-217FN2 operating environment factor. Hazard Rate Models: # MIL-HDBK-217FN2, section 15.3. """ # MIL-HDBK-217FN2 hazard rate calculation variables. # ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- _piQ = [1.0, 2.0] _piE = [1.0, 3.0, 14.0, 6.0, 18.0, 8.0, 12.0, 11.0, 13.0, 25.0, 0.5, 14.0, 36.0, 650.0] _lambdab_count = [0.0019, 0.0058, 0.027, 0.012, 0.035, 0.015, 0.023, 0.021, 0.025, 0.048, 0.00097, 0.027, 0.070, 1.3] # ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- subcategory = 74 # Subcategory ID in the common DB. def __init__(self): """ Method to initialize a IC Socket connection data model instance. """ super(Socket, self).__init__() # Define private dictionary attributes. # Define private list attributes. # Define private scalar attributes. # Define public dictionary attributes. # Define public list attributes. # Define public scalar attributes. self.n_active_contacts = 0 self.piP = 0.0 self.base_hr = 0.00042 def set_attributes(self, values): """ Method to set the Multi-Pin Connection data model attributes. :param tuple values: tuple of values to assign to the instance attributes. :return: (_code, _msg); the error code and error message. :rtype: tuple """ _code = 0 _msg = '' (_code, _msg) = Connection.set_attributes(self, values[:133]) try: self.base_hr = 0.00042 self.piP = float(values[133]) self.n_active_contacts = int(values[134]) except IndexError as _err: _code = Utilities.error_handler(_err.args) _msg = "ERROR: Insufficient input values." except(TypeError, ValueError) as _err: _code = Utilities.error_handler(_err.args) _msg = "ERROR: Converting one or more inputs to correct data type." return(_code, _msg) def get_attributes(self): """ Method to retrieve the current values of the Multi-Pin Connection data model attributes. :return: (n_active_contacts, piP) :rtype: tuple """ _values = Connection.get_attributes(self) _values = _values + (self.piP, self.n_active_contacts) return _values def calculate_part(self): """ Method to calculate the hazard rate for the Multi-Pin Connection data model. :return: False if successful or True if an error is encountered. :rtype: bool """ from math import exp self.hazard_rate_model = {} if self.hazard_rate_type == 1: self.hazard_rate_model['equation'] = 'lambdab * piQ' # Quality factor. self.piQ = self._piQ[self.quality - 1] elif self.hazard_rate_type == 2: self.hazard_rate_model['equation'] = 'lambdab * piE * piP' # Active pins correction factor. if self.n_active_contacts >= 2: self.piP = exp(((self.n_active_contacts - 1) / 10.0)**0.51064) else: self.piP = 0.0 self.hazard_rate_model['piP'] = self.piP # Environmental correction factor. self.piE = self._piE[self.environment_active - 1] return Connection.calculate_part(self)
[ "arowland@localhost.localdomain" ]
arowland@localhost.localdomain
105ba1f6775de7f1b066de7bcf5b3977007dfca9
851763767750eea0565b46a339cee37c1273b457
/Interview Questions/LinkedList/IntersectionPointTwoLinkedList.py
ccd068dd9751c34704630b385017c8ae544406f6
[]
no_license
sunamya/Data-Structures-in-Python
f076e4b2febe24fee31b05b83574e4e1f344014e
6c3eec7a4184b93bb18f54071bc0232cb0a76a08
refs/heads/main
2023-06-21T02:54:23.652347
2021-07-18T16:35:12
2021-07-18T16:35:12
379,672,436
0
0
null
null
null
null
UTF-8
Python
false
false
3,503
py
#User function Template for python3 ''' Function to return the value at point of intersection in two linked list, connected in y shaped form. Function Arguments: head_a, head_b (heads of both the lists) Return Type: value in NODE present at the point of intersection or -1 if no common point. Contributed By: Nagendra Jha { # Node Class class Node: def __init__(self, data): # data -> value stored in node self.data = data self.next = None } ''' def size(node): cnt=0 while node: cnt+=1 node=node.next return cnt def npo(head1,head2,d): for i in range(d): head1=head1.next while head1 and head2: if head1==head2: return head1.data head1=head1.next head2=head2.next return None #Function to find intersection point in Y shaped Linked Lists. def intersetPoint(head1,head2): #code here diff=size(head1)-size(head2) if diff<0: #Second list is bigger return npo(head2,head1,diff) else: return npo(head1,head2,diff) #Another approach using hasking #Function to find intersection point in Y shaped Linked Lists. def intersetPoint(head1,head2): nodes=set() #code here while head1: nodes.add(head1) head1 = head1.next # now traverse the second list and find the first node that is # already present in the set while head2: # return the current node if it is found in the set if head2 in nodes: return head2.data head2=head2.next # we reach here if lists do not intersect return None #{ # Driver Code Starts #Initial Template for Python 3 #Contributed by : Nagendra Jha import atexit import io import sys _INPUT_LINES = sys.stdin.read().splitlines() input = iter(_INPUT_LINES).__next__ _OUTPUT_BUFFER = io.StringIO() sys.stdout = _OUTPUT_BUFFER @atexit.register def write(): sys.__stdout__.write(_OUTPUT_BUFFER.getvalue()) # Node Class class Node: def __init__(self, data): # data -> value stored in node self.data = data self.next = None class LinkedList: def __init__(self): self.head = None temp=None # creates a new node with given value and appends it at the end of the linked list def append(self, new_node): if self.head is None: self.head = new_node self.temp = self.head return else: self.temp.next = new_node self.temp = self.temp.next if __name__ == '__main__': t=int(input()) for cases in range(t): x,y,z = map(int,input().strip().split()) a = LinkedList() # create a new linked list 'a'. b = LinkedList() # create a new linked list 'b'. nodes_a = list(map(int, input().strip().split())) nodes_b = list(map(int, input().strip().split())) nodes_common = list(map(int, input().strip().split())) for x in nodes_a: node=Node(x) a.append(node) # add to the end of the list for x in nodes_b: node=Node(x) b.append(node) # add to the end of the list for i in range(len(nodes_common)): node=Node(nodes_common[i]) a.append(node) # add to the end of the list a if i== 0: b.append(node) # add to the end of the list b, only the intersection print(intersetPoint(a.head,b.head)) # } Driver Code Ends
[ "sunamyagupta@gmail.com" ]
sunamyagupta@gmail.com
2bfaceaec7ad594a098bc8fdcd309b8ee2a0c70d
6e42b85d0deb68eeddf18bb1849daf0ee6fc0df1
/main/tests/test_views.py
978e99dee0b28789949a209162916459f411d351
[]
no_license
NotSecretEmmet/TipsCalculator
8980be28412cf4c7353d5a3a4260c19c436a9a85
5251d1ddeaf56e9f968e8d45f265c97ddd328698
refs/heads/main
2023-03-13T06:51:31.422859
2021-03-03T16:32:19
2021-03-03T16:32:19
316,184,975
0
0
null
null
null
null
UTF-8
Python
false
false
726
py
from django.test import TestCase, Client from django.urls import reverse from django.contrib.auth.models import User class TestViews(TestCase): def setUp(self): self.client = Client() self.user = User.objects.create_user('johnlennon', 'lennon@thebeatles.com', 'johnpassword') def test_home_view_GET(self): self.client.force_login(self.user) response = self.client.get(reverse('main-home')) self.assertEquals(response.status_code, 200) self.assertTemplateUsed(response, 'main/home.html') def test_faq_view_GET(self): self.client.force_login(self.user) response = self.client.get(reverse('main-faq')) self.assertEquals(response.status_code, 200) self.assertTemplateUsed(response, 'main/faq.html')
[ "emmet@emkit.nl" ]
emmet@emkit.nl
dc2a482aa68540bad4c20f140f3fc7b3df59ceef
0712a5355fb7b2110df802f0630db3f421ffa08e
/MyoGrapher/__init__.py
5637e8c629fbc81d87154322b678fdf91bbc7f9a
[ "MIT" ]
permissive
nullp0tr/MyoGrapher
6f404bc29034ce585742b0eac7798981d82867ee
153dc26a77585181e8a25f427c7c5493767e20ab
refs/heads/master
2021-01-01T18:13:54.648687
2017-12-14T17:32:28
2017-12-14T17:32:28
98,281,130
1
1
MIT
2017-12-14T17:32:29
2017-07-25T08:06:36
Python
UTF-8
Python
false
false
3,156
py
import pygame class MyoGrapher(object): def __init__(self, width=1200, height=400): self.width, self.height = width, height self.screen = pygame.display.set_mode((self.width, self.height)) self.last_values = [] self.dlast_values = [] def dplot(self, vals, shifts, colors): division_lines = 4 drift = 5 self.screen.scroll(-drift) self.screen.fill((0, 0, 0), (self.width - drift, 0, self.width, self.height)) for n, values in enumerate(vals): values = [val / float(shifts[n]) for val in values] if len(self.dlast_values) < len(vals): self.dlast_values.append(values) return for i, (u, v) in enumerate(zip(self.dlast_values[n], values)): pygame.draw.line(self.screen, colors[n], (self.width - drift, int( self.height / division_lines * ( i + 1 - u))), (self.width, int( self.height / division_lines * ( i + 1 - v)))) pygame.draw.line(self.screen, (255, 255, 255), (self.width - drift, int( self.height / division_lines * ( i + 1))), (self.width, int( self.height / division_lines * ( i + 1)))) self.dlast_values[n] = values def plot(self, values, drawlines=False, curve=True): if self.last_values is None: self.last_values = values return division_lines = len(values) drift = 5 self.screen.scroll(-drift) self.screen.fill((0, 0, 0), (self.width - drift, 0, self.width, self.height)) for i, (u, v) in enumerate(zip(self.last_values, values)): if drawlines: pygame.draw.line(self.screen, (0, 255, 0), (self.width - drift, int(self.height / division_lines * (i + 1 - u))), (self.width, int(self.height / division_lines * (i + 1 - v)))) pygame.draw.line(self.screen, (255, 255, 255), (self.width - drift, int(self.height / division_lines * (i + 1))), (self.width, int(self.height / division_lines * (i + 1)))) else: c = int(255 * max(0, min(1, v))) self.screen.fill((c, c, c), (self.width - drift, i * self.height / division_lines, drift, (i + 1) * self.height / division_lines - i * self.height / division_lines)) if curve: self.last_values = values pygame.display.flip() def emg_plot(self, emg, shift=512, drawlines=False, curve=True): self.plot([e / float(shift) for e in emg], drawlines=drawlines, curve=curve)
[ "ahmeds2000x@gmail.com" ]
ahmeds2000x@gmail.com
42cb4acff470deea4ca9e3b4cc937a546a964c39
dc75ed733ecd023aebc2989c1f956ca575bd9e14
/load_testing/mixed_tomcat.py
2828e6f44380488c2e1649f73646d64b6a838316
[]
no_license
deven810/Web-Projects
fd5e9f1e5fd9c348f4731219052e6f680638e311
4e8cc3f889d95bf3a37513291da50bae7a704918
refs/heads/master
2020-04-17T04:55:20.054883
2018-12-05T22:38:29
2018-12-05T22:38:29
166,253,027
0
0
null
null
null
null
UTF-8
Python
false
false
870
py
# mixed_tomcat.py import sys, random from locust import HttpLocust, TaskSet def readRequest(locust): postid = random.randint(1, 500) locust.client.get('/editor/post?action=open&username=cs144&postid='+str(postid), name='/editor/post?action=open') def writeRequest(locust): postid = random.randint(1, 500) locust.client.post('/editor/post?action=open&username=cs144&postid='+str(postid)+'&title=Loading%20Test&body=***Hello%20World!***', name='/editor/post?action=save') class MyTaskSet(TaskSet): """ the class MyTaskSet inherits from the class TaskSet, defining the behavior of the user """ tasks = {writeRequest:1, readRequest:9} class MyLocust(HttpLocust): """ the class MyLocust inherits from the class HttpLocust, representing an HTTP user """ task_set = MyTaskSet min_wait = 1000 max_wait = 2000
[ "devenagrawal.810@gmail.com" ]
devenagrawal.810@gmail.com
f8f8a93e2b53a4b74d0c41930fd04e417f2189c8
2f418a0f2fcca40f84ec0863b31ff974b574350c
/scripts/addons_extern/cut_mesh-master/op_slice/slice_datastructure.py
6c86f20d47db1178d36c9ecde0f011a0e1296f6c
[]
no_license
JT-a/blenderpython279
57a81b55564218f3b1417c2ffa97f5161897ec79
04846c82f794c22f87d677d9eb8cec1d05c48cda
refs/heads/master
2021-06-25T06:58:07.670613
2017-09-11T11:14:36
2017-09-11T11:14:36
103,723,697
4
2
null
2017-09-16T04:09:31
2017-09-16T04:09:31
null
UTF-8
Python
false
false
7,750
py
''' Created on Oct 8, 2015 @author: Patrick ''' import time import bpy import bmesh from mathutils import Vector, Matrix, kdtree from mathutils.bvhtree import BVHTree from mathutils.geometry import intersect_point_line, intersect_line_plane from bpy_extras import view3d_utils from ..bmesh_fns import grow_selection_to_find_face, flood_selection_faces, edge_loops_from_bmedges from ..cut_algorithms import cross_section_2seeds_ver1, path_between_2_points from ..geodesic import geodesic_walk, continue_geodesic_walk, gradient_descent from .. import common_drawing class Slice(object): ''' A class which manages user placed points on an object to create a piecewise path of geodesics, adapted to the objects surface. ''' def __init__(self,context, cut_object): self.cut_ob = cut_object self.bme = bmesh.new() self.bme.from_mesh(cut_object.data) self.bme.verts.ensure_lookup_table() self.bme.edges.ensure_lookup_table() self.bme.faces.ensure_lookup_table() #non_tris = [f for f in self.bme.faces if len(f.verts) > 3] #bmesh.ops.triangulate(self.bme, faces = non_tris, quad_method = 0, ngon_method = 0) #non_tris = [f for f in self.bme.faces if len(f.verts) > 3] #if len(non_tris): #geom = bmesh.ops.connect_verts_concave(self.bme, non_tris) self.bme.verts.ensure_lookup_table() self.bme.edges.ensure_lookup_table() self.bme.faces.ensure_lookup_table() self.bvh = BVHTree.FromBMesh(self.bme) self.seed = None self.seed_loc = None self.target = None self.target_loc = None self.path = [] def reset_vars(self): ''' ''' self.seed = None self.seed_loc = None self.target = None self.target_loc = None self.geo_data = [dict(), set(), set(), set()] #geos, fixed, close, far self.path = [] def grab_initiate(self): if self.target != None : self.grab_undo_loc = self.target_loc self.target_undo = self.target self.path_undo = self.path return True else: return False def grab_mouse_move(self,context,x,y): region = context.region rv3d = context.region_data coord = x, y view_vector = view3d_utils.region_2d_to_vector_3d(region, rv3d, coord) ray_origin = view3d_utils.region_2d_to_origin_3d(region, rv3d, coord) ray_target = ray_origin + (view_vector * 1000) mx = self.cut_ob.matrix_world imx = mx.inverted() if bversion() < '002.077.000': loc, no, face_ind = self.cut_ob.ray_cast(imx * ray_origin, imx * ray_target) else: res, loc, no, face_ind = self.cut_ob.ray_cast(imx * ray_origin, imx * ray_target - imx * ray_origin) loc2, no2, face_ind2, d = self.bvh.ray_cast(imx * ray_origin, view_vector) if loc != None and loc2 != None: print((loc - loc2).length) if face_ind == -1: self.grab_cancel() return self.target = self.bme.faces[face_ind] self.target_loc = loc vrts, eds, ed_cross, f_cross, error = path_between_2_points(self.bme, self.bvh, mx,mx* self.seed_loc,mx*self.target_loc, max_tests = 10000, debug = True, prev_face = None, use_limit = True) if not error: self.path = vrts #else: #self.path = [] def grab_cancel(self): self.target_loc = self.grab_undo_loc self.target = self.target_undo self.path = self.path_undo return def grab_confirm(self): self.grab_undo_loc = None self.target_undo = None self.path_undo = [] return def click_add_seed(self,context,x,y): ''' x,y = event.mouse_region_x, event.mouse_region_y this will add a point into the bezier curve or close the curve into a cyclic curve ''' region = context.region rv3d = context.region_data coord = x, y view_vector = view3d_utils.region_2d_to_vector_3d(region, rv3d, coord) ray_origin = view3d_utils.region_2d_to_origin_3d(region, rv3d, coord) ray_target = ray_origin + (view_vector * 1000) mx = self.cut_ob.matrix_world imx = mx.inverted() if bversion() < '002.077.000': loc, no, face_ind = self.cut_ob.ray_cast(imx * ray_origin, imx * ray_target) else: res, loc, no, face_ind = self.cut_ob.ray_cast(imx * ray_origin, imx * ray_target - imx * ray_origin) if face_ind == -1: self.selected = -1 return self.seed = self.bme.faces[face_ind] self.seed_loc = loc self.geo_data = [dict(), set(), set(), set()] def click_add_target(self, context, x, y): region = context.region rv3d = context.region_data coord = x, y view_vector = view3d_utils.region_2d_to_vector_3d(region, rv3d, coord) ray_origin = view3d_utils.region_2d_to_origin_3d(region, rv3d, coord) ray_target = ray_origin + (view_vector * 1000) mx = self.cut_ob.matrix_world imx = mx.inverted() if bversion() < '002.077.000': loc, no, face_ind = self.cut_ob.ray_cast(imx * ray_origin, imx * ray_target) else: res, loc, no, face_ind = self.cut_ob.ray_cast(imx * ray_origin, imx * ray_target - imx * ray_origin) if face_ind == -1: return self.target = self.bme.faces[face_ind] self.target_loc = loc vrts, eds, ed_cross, f_cross, error = path_between_2_points(self.bme, self.bvh, mx,mx* self.seed_loc,mx*self.target_loc, max_tests = 10000, debug = True, prev_face = None, use_limit = True) if not error: self.path = vrts else: self.path = [] return def draw(self,context): if len(self.path): mx = self.cut_ob.matrix_world pts = [mx * v for v in self.path] common_drawing.draw_polyline_from_3dpoints(context, pts, (.2,.1,.8,1), 3, 'GL_LINE') if self.seed_loc != None: mx = self.cut_ob.matrix_world common_drawing.draw_3d_points(context, [mx * self.seed_loc], 8, color = (1,0,0,1)) if self.target_loc != None: mx = self.cut_ob.matrix_world common_drawing.draw_3d_points(context, [mx * self.target_loc], 8, color = (0,1,0,1)) class PolyCutPoint(object): def __init__(self,co): self.co = co self.no = None self.face = None self.face_region = set() def find_closest_non_manifold(self): return None class NonManifoldEndpoint(object): def __init__(self,co, ed): if len(ed.link_faces) != 1: return None self.co = co self.ed = ed self.face = ed.link_faces[0]
[ "meta.androcto1@gmail.com" ]
meta.androcto1@gmail.com
cd4f12206ec91523ba27cb33a771f3673c839cd1
cc129db64fc64d1cb9a99526583771c10e245deb
/tests/test_det_next_michigan_development_corporation.py
da9a98ab1e31ab67be68a83440ae713aa016e955
[ "MIT" ]
permissive
avelosa/city-scrapers-det
a42df36b7d2e98f7be68ae17e22c03af7a20280c
964b941b67fb5113cda5e2bebd2ba288ac1422d7
refs/heads/main
2023-02-02T01:19:07.396737
2020-09-29T16:52:11
2020-09-29T16:52:11
300,441,174
1
0
MIT
2020-10-01T22:30:23
2020-10-01T22:30:22
null
UTF-8
Python
false
false
4,826
py
from datetime import datetime from os.path import dirname, join import pytest import scrapy from city_scrapers_core.constants import BOARD, PASSED, TENTATIVE from city_scrapers_core.utils import file_response from freezegun import freeze_time from scrapy.settings import Settings from city_scrapers.spiders.det_next_michigan_development_corporation import ( DetNextMichiganDevelopmentCorporationSpider, ) LOCATION = { "name": "DEGC, Guardian Building", "address": "500 Griswold St, Suite 2200, Detroit, MI 48226", } TITLE = "Board of Directors" test_response = file_response( join(dirname(__file__), "files", "det_next_michigan_development_corporation.html"), url="http://www.degc.org/public-authorities/d-nmdc/", ) freezer = freeze_time("2018-07-26") spider = DetNextMichiganDevelopmentCorporationSpider() spider.settings = Settings(values={"CITY_SCRAPERS_ARCHIVE": False}) freezer.start() parsed_items = [item for item in spider._next_meetings(test_response)] freezer.stop() def test_initial_request_count(): freezer.start() items = list(spider.parse(test_response)) freezer.stop() assert len(items) == 3 urls = {r.url for r in items if isinstance(r, scrapy.Request)} assert urls == { "http://www.degc.org/public-authorities/d-nmdc/fy-2017-2018-meetings/", "http://www.degc.org/public-authorities/d-nmdc/dnmdc-fy-2016-2017-meetings/", } # current meeting http://www.degc.org/public-authorities/ldfa/ def test_title(): assert parsed_items[0]["title"] == TITLE def test_description(): assert parsed_items[0]["description"] == "" def test_start(): assert parsed_items[0]["start"] == datetime(2018, 9, 11, 9) def test_end(): assert parsed_items[0]["end"] is None def test_id(): assert ( parsed_items[0]["id"] == "det_next_michigan_development_corporation/201809110900/x/board_of_directors" ) def test_status(): assert parsed_items[0]["status"] == TENTATIVE def test_location(): assert parsed_items[0]["location"] == LOCATION def test_sources(): assert parsed_items[0]["source"] == "http://www.degc.org/public-authorities/d-nmdc/" def test_links(): assert parsed_items[0]["links"] == [] @pytest.mark.parametrize("item", parsed_items) def test_all_day(item): assert item["all_day"] is False @pytest.mark.parametrize("item", parsed_items) def test_classification(item): assert item["classification"] == BOARD # previous meetings e.g. # http://www.degc.org/public-authorities/ldfa/fy-2017-2018-meetings/ test_prev_response = file_response( join( dirname(__file__), "files", "det_next_michigan_development_corporation_prev.html", ), url="http://www.degc.org/public-authorities/d-nmdc/dnmdc-fy-2016-2017-meetings", ) freezer.start() parsed_prev_items = [item for item in spider._parse_prev_meetings(test_prev_response)] parsed_prev_items = sorted(parsed_prev_items, key=lambda x: x["start"], reverse=True) freezer.stop() def test_prev_request_count(): freezer.start() items = list(spider._prev_meetings(test_response)) freezer.stop() urls = {r.url for r in items if isinstance(r, scrapy.Request)} assert len(urls) == 2 assert urls == { "http://www.degc.org/public-authorities/d-nmdc/fy-2017-2018-meetings/", "http://www.degc.org/public-authorities/d-nmdc/dnmdc-fy-2016-2017-meetings/", } def test_prev_meeting_count(): assert len(parsed_prev_items) == 1 def test_prev_title(): assert parsed_prev_items[0]["title"] == TITLE def test_prev_description(): assert parsed_prev_items[0]["description"] == "" def test_prev_start(): assert parsed_prev_items[0]["start"] == datetime(2017, 8, 8, 9) def test_prev_end(): assert parsed_prev_items[0]["end"] is None def test_prev_id(): assert ( parsed_prev_items[0]["id"] == "det_next_michigan_development_corporation/201708080900/x/board_of_directors" ) def test_prev_status(): assert parsed_prev_items[0]["status"] == PASSED def test_prev_location(): assert parsed_prev_items[0]["location"] == LOCATION def test_prev_source(): assert ( parsed_prev_items[0]["source"] == "http://www.degc.org/public-authorities/d-nmdc/dnmdc-fy-2016-2017-meetings" ) def test_prev_links(): assert parsed_prev_items[0]["links"] == [ { "href": "http://www.degc.org/wp-content/uploads/2016-08-09-DNMDC-Special-Board-Meeting-Agenda-4-1.pdf", # noqa "title": "D-NMDC Agenda", }, ] @pytest.mark.parametrize("item", parsed_prev_items) def test_prev_all_day(item): assert item["all_day"] is False @pytest.mark.parametrize("item", parsed_prev_items) def test_prev_classification(item): assert item["classification"] == BOARD
[ "pjsier@gmail.com" ]
pjsier@gmail.com
a0e34d34734d4acd75e8ed1f3ea57119148e7c08
2b5cb00bda71b5e76843baa84a9ce1ca6be9e13b
/clustering/acquire_zillow.py
930e20b94a5ce08c8b410da6e0c4e28d9207feef
[]
no_license
CodyBrettWatson/ds-methodologies-exercises
07e851b2d08c6c889db4bd849d2d12cc4cc97ecc
902e880b31d2b76eedca8d80ff0de9e0aa0dcd0f
refs/heads/master
2020-05-02T15:29:39.784446
2019-05-20T12:58:06
2019-05-20T12:58:06
178,042,617
1
0
null
null
null
null
UTF-8
Python
false
false
5,613
py
########################################## ## WILL NEED TO PIPE ALL THESE FUNCTIONS## ########################################## # Getting data from SQL databases from env import host, user, password import pandas as pd from sqlalchemy import create_engine def get_db_url( host: str, user: str, password: str, db_name: str ) -> str: """ return url for accessing a mysql database """ return f"mysql+pymysql://{user}:{password}@{host}/{db_name}" def get_sql_conn(host: str, user: str, password: str, db_name: str): """ return a mysql connection object """ return create_engine(get_db_url(host, user, password, db_name)) def df_from_sql(query: str, url: str) -> pd.DataFrame: """ return a Pandas DataFrame resulting from a sql query """ return pd.read_sql(query, url) def get_zillow_data() -> pd.DataFrame: idb = "zillow" query = ("SELECT * " "FROM properties_2016 " "JOIN properties_2017 USING(parcelid);") url = get_db_url(host, user, password, idb) return df_from_sql(query, url) def get_2016_zillow(): idb = "zillow" query = ('\ SELECT p16.*, pred16.logerror, act.airconditioningdesc, ast.architecturalstyledesc, \ bct.buildingclassdesc, hst.heatingorsystemdesc, plut.propertylandusedesc, \ st.storydesc, tct.typeconstructiondesc FROM properties_2016 p16 \ JOIN predictions_2016 pred16 \ ON pred16.parcelid = p16.parcelid \ LEFT JOIN airconditioningtype act \ ON p16.airconditioningtypeid = act.airconditioningtypeid\ LEFT JOIN architecturalstyletype ast \ ON p16.architecturalstyletypeid = ast.architecturalstyletypeid\ LEFT JOIN buildingclasstype bct \ ON p16.buildingclasstypeid = bct.buildingclasstypeid\ LEFT JOIN heatingorsystemtype hst \ ON p16.heatingorsystemtypeid = hst.heatingorsystemtypeid\ LEFT JOIN propertylandusetype plut \ ON p16.propertylandusetypeid = plut.propertylandusetypeid\ LEFT JOIN storytype st \ ON p16.storytypeid = st.storytypeid\ LEFT JOIN typeconstructiontype tct \ ON p16.typeconstructiontypeid = tct.typeconstructiontypeid;') url = get_db_url(host, user, password, idb) return df_from_sql(query, url) def get_2017_zillow(): idb = "zillow" query = ('\ SELECT p17.*, pred17.logerror, act.airconditioningdesc, ast.architecturalstyledesc, \ bct.buildingclassdesc, hst.heatingorsystemdesc, plut.propertylandusedesc, \ st.storydesc, tct.typeconstructiondesc FROM properties_2017 p17 \ JOIN predictions_2017 pred17 \ ON pred17.parcelid = p17.parcelid \ LEFT JOIN airconditioningtype act \ ON p17.airconditioningtypeid = act.airconditioningtypeid\ LEFT JOIN architecturalstyletype ast \ ON p17.architecturalstyletypeid = ast.architecturalstyletypeid\ LEFT JOIN buildingclasstype bct \ ON p17.buildingclasstypeid = bct.buildingclasstypeid\ LEFT JOIN heatingorsystemtype hst \ ON p17.heatingorsystemtypeid = hst.heatingorsystemtypeid\ LEFT JOIN propertylandusetype plut \ ON p17.propertylandusetypeid = plut.propertylandusetypeid\ LEFT JOIN storytype st \ ON p17.storytypeid = st.storytypeid\ LEFT JOIN typeconstructiontype tct \ ON p17.typeconstructiontypeid = tct.typeconstructiontypeid;') url = get_db_url(host, user, password, idb) return df_from_sql(query, url) def merge_dfs(): df16 = get_2016_zillow() df17 = get_2017_zillow() df = pd.concat([df16, df17]) return df def turn_to_csv(): df = merge_dfs() df.to_csv('zillow_16_17.csv', sep='\t', index=False) def drop_columns(df): df = df.drop(columns=(['id', 'airconditioningtypeid', 'architecturalstyletypeid', 'buildingclasstypeid', 'buildingqualitytypeid', 'decktypeid', 'heatingorsystemtypeid', 'propertylandusetypeid', 'storytypeid', 'typeconstructiontypeid'])) return df def reindex_df (df): df = df.reindex(columns=[ 'parcelid','logerror', 'bathroomcnt','bedroomcnt','calculatedbathnbr','fullbathcnt','roomcnt', 'calculatedfinishedsquarefeet','lotsizesquarefeet', 'unitcnt','propertylandusedesc','propertycountylandusecode','propertyzoningdesc', 'latitude','longitude','regionidcity','regionidcounty','fips','regionidneighborhood','regionidzip', 'yearbuilt', 'structuretaxvaluedollarcnt','taxvaluedollarcnt','landtaxvaluedollarcnt','taxamount','assessmentyear', 'rawcensustractandblock','censustractandblock', 'airconditioningdesc','heatingorsystemdesc', 'garagecarcnt','garagetotalsqft', 'basementsqft', 'finishedfloor1squarefeet','finishedsquarefeet12','finishedsquarefeet13', 'finishedsquarefeet15','finishedsquarefeet50','finishedsquarefeet6', 'fireplacecnt','hashottuborspa', 'poolcnt','poolsizesum','pooltypeid10','pooltypeid2','pooltypeid7', 'threequarterbathnbr', 'yardbuildingsqft17','yardbuildingsqft26', 'fireplaceflag', 'taxdelinquencyflag','taxdelinquencyyear', 'architecturalstyledesc', 'buildingclassdesc', 'numberofstories', 'storydesc', 'typeconstructiondesc', ]) return df
[ "codywatson@codys-MacBook-Pro.local" ]
codywatson@codys-MacBook-Pro.local
d3542bde55fffcec1c5d1a1f2685e6561647f06c
616133580e0f01adaa6ac4117329e93e6f7ad931
/Main.py
edb84ae88794d8a239d611b73066c6e7c6e636bc
[]
no_license
ckarnell/kings_cup_app
df09d0c94e9f288eee3df9da72f2b0f32dd52a98
9f1eb5ecf7ea6f1f8403887218f37c3d135150ec
refs/heads/master
2021-01-19T11:26:25.571172
2017-02-17T01:33:35
2017-02-17T01:33:35
82,243,919
0
0
null
null
null
null
UTF-8
Python
false
false
1,492
py
from Tkinter import * from time import sleep from controller.deck import Deck from static.static import Static class App: def __init__(self): self.deck = Deck() self.player = 0 self.root = Tk() self.root.title('King\'s Cup') # Pack the initial card image. logo = PhotoImage(file="./static/gifs/K_S.gif") self.card_image = Label(self.root, image=logo) self.card_image.image = logo self.card_image.pack(side='left') explanation = "King's Cup is a drinking game!\nJust follow the instructions." self.rule = Label(self.root, width = 25, justify=LEFT, padx = 20, text=explanation) self.rule.pack(side="left") self.button = Button(self.root, text="Draw!", command=lambda: self.change()) self.root.bind('<Return>', self.change) self.button.pack(side='left') self.root.mainloop() def change(self, event=None): card = self.deck.getCard() # Set the card image. card_image = PhotoImage(file='./static/gifs/%s_%s.gif' % (card['val'], card['suit'])) self.card_image.config(image=card_image) self.card_image.image = card_image self.rule.config(text = Static.cardRules[card['val']]) self.rule.text = Static.cardRules[card['val']] if __name__ == '__main__': App()
[ "cohen.karnell@gmail.com" ]
cohen.karnell@gmail.com
258e2deac675e627b1e12054d8f0b720e887f41f
aa0fc44d694f2b971bbda827c755296faa44d86f
/test/py2neo/index_test.py
f253623c2f494e062c1e5909427d941f1080a0bb
[ "Apache-2.0" ]
permissive
fugu13/py2neo
8f6a5065883c7eb96bb0d32c45bce2a9533d19a5
d3fa87199b51b554d1d04c7334d1bc7b887f7273
refs/heads/master
2021-01-17T04:52:58.719996
2012-08-01T20:44:43
2012-08-01T20:44:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,211
py
#/usr/bin/env python # -*- coding: utf-8 -*- import sys PY3K = sys.version_info[0] >= 3 __author__ = "Nigel Small <py2neo@nigelsmall.org>" __copyright__ = "Copyright 2011 Nigel Small" __license__ = "Apache License, Version 2.0" from py2neo import neo4j import unittest def default_graph_db(): return neo4j.GraphDatabaseService("http://localhost:7474/db/data/") class NodeIndexTestCase(unittest.TestCase): def setUp(self): self.graph_db = default_graph_db() def test_get_node_index(self): index1 = self.graph_db.get_or_create_index(neo4j.Node, "index1") self.assertIsNotNone(index1) self.assertEqual("index1", index1.name) self.assertEqual(neo4j.Node, index1.content_type) def test_add_node_to_index(self): index1 = self.graph_db.get_or_create_index(neo4j.Node, "index1") index1.remove("surname", "Smith") alice, = self.graph_db.create({"name": "Alice Smith"}) index1.add("surname", "Smith", alice) entities = index1.get("surname", "Smith") self.assertIsNotNone(entities) self.assertTrue(isinstance(entities, list)) self.assertEqual(1, len(entities)) self.assertEqual(alice, entities[0]) def test_add_node_to_index_with_spaces(self): index1 = self.graph_db.get_or_create_index(neo4j.Node, "index1") index1.remove("family name", "von Schmidt") alice, = self.graph_db.create({"name": "Alice von Schmidt"}) index1.add("family name", "von Schmidt", alice) entities = index1.get("family name", "von Schmidt") self.assertIsNotNone(entities) self.assertTrue(isinstance(entities, list)) self.assertEqual(1, len(entities)) self.assertEqual(alice, entities[0]) def test_add_node_to_index_with_odd_chars(self): index1 = self.graph_db.get_or_create_index(neo4j.Node, "index1") index1.remove("@!%#", "!\"£$%^&*()") alice = self.graph_db.create_node({"name": "Alice Smith"}) index1.add("@!%#", "!\"£$%^&*()", alice) entities = index1.get("@!%#", "!\"£$%^&*()") self.assertIsNotNone(entities) self.assertTrue(isinstance(entities, list)) self.assertEqual(1, len(entities)) self.assertEqual(alice, entities[0]) def test_add_multiple_nodes_to_index(self): index1 = self.graph_db.get_or_create_index(neo4j.Node, "index1") index1.remove("surname", "Smith") alice, bob, carol = self.graph_db.create( {"name": "Alice Smith"}, {"name": "Bob Smith"}, {"name": "Carol Smith"} ) index1.add("surname", "Smith", alice, bob, carol) entities = index1.get("surname", "Smith") self.assertIsNotNone(entities) self.assertTrue(isinstance(entities, list)) self.assertEqual(3, len(entities)) for entity in entities: self.assertTrue(entity in (alice, bob, carol)) def test_get_or_create_node(self): index1 = self.graph_db.get_or_create_index(neo4j.Node, "index1") index1.remove("surname", "Smith") alice = index1.get_or_create("surname", "Smith", {"name": "Alice Smith"}) self.assertIsNotNone(alice) self.assertTrue(isinstance(alice, neo4j.Node)) self.assertEqual("Alice Smith", alice["name"]) alice_id = alice.id for i in range(10): alice = index1.get_or_create("surname", "Smith", {"name": "Alice Smith"}) self.assertIsNotNone(alice) self.assertTrue(isinstance(alice, neo4j.Node)) self.assertEqual("Alice Smith", alice["name"]) self.assertEqual(alice_id, alice.id) def test_add_node_if_none(self): index1 = self.graph_db.get_or_create_index(neo4j.Node, "index1") index1.remove("surname", "Smith") alice, bob = self.graph_db.create( {"name": "Alice Smith"}, {"name": "Bob Smith"} ) index1.add_if_none("surname", "Smith", alice) entities = index1.get("surname", "Smith") self.assertIsNotNone(entities) self.assertTrue(isinstance(entities, list)) self.assertEqual(1, len(entities)) self.assertEqual(alice, entities[0]) index1.add_if_none("surname", "Smith", bob) entities = index1.get("surname", "Smith") self.assertIsNotNone(entities) self.assertTrue(isinstance(entities, list)) self.assertEqual(1, len(entities)) self.assertEqual(alice, entities[0]) def test_node_index_query(self): index1 = self.graph_db.get_or_create_index(neo4j.Node, "index1") index1.remove("colour", "red") index1.remove("colour", "green") index1.remove("colour", "blue") red, green, blue = self.graph_db.create({}, {}, {}) index1.add("colour", "red", red) index1.add("colour", "green", green) index1.add("colour", "blue", blue) colours_containing_R = index1.query("colour:*r*") self.assertTrue(red in colours_containing_R) self.assertTrue(green in colours_containing_R) self.assertFalse(blue in colours_containing_R) if __name__ == '__main__': unittest.main()
[ "nigel@nigelsmall.name" ]
nigel@nigelsmall.name
82a251d9f29c640dcd3ba0e0881292074c885c57
caeedf133282db88bb11d5a4ae6fb20fee609103
/AdvpythonDay3/demomutliprocessing/pshttpclient.py
d97fe5bdfba00f99929584fd95bea398c6a04b01
[]
no_license
Shital-andhalkar/Advance_python_course
81190bfdaaf6b4da1f43b592ebe496f65461a05c
d49e25efe52ae13713108572493f15cb4d96ea9d
refs/heads/master
2020-04-03T20:36:25.822808
2018-11-01T07:07:33
2018-11-01T07:07:33
155,551,067
0
0
null
null
null
null
UTF-8
Python
false
false
792
py
import requests import multiprocessing from requests.exceptions import ConnectionError def web_crawler(q): """""" try: p_name=multiprocessing.current_process().name url = q.get() payload=requests.get(url).content print("{}:{}:{}".format(p_name,url,payload[:128])) except ConnectionError as err: print(err) def main(): """parent process""" queue_obj= multiprocessing.Queue() urls=['http://python.org','http://linux.org', 'http://kernel.org/', 'http://google.com'] for url in urls: child=multiprocessing.Process(target=web_crawler,args=(queue_obj,)) child.start() for url in urls: queue_obj.put(url)#add urls in to queue if __name__ == '__main__': main()
[ "noreply@github.com" ]
noreply@github.com
ce51ad1ecc38aea688ceb967a158f3a5b6e99f01
ed12b8d91b207d4bb5cd5bf114184e08c4a9237c
/pe033.py
bab1aa10b62766d72e4407e8447b1d4db87c8972
[]
no_license
Rynant/project-euler
544b4b48dda63913abf7d61201fe3ea0961b118f
c19090a6e0e8db3422c47dcce0fb886840493428
refs/heads/master
2021-01-10T20:43:16.782124
2014-06-11T18:11:28
2014-06-11T18:11:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
668
py
from primes import gcd def answer(): numerator = denominator = 1 for i in range(10, 100): if not i % 10: continue for j in range(i+1, 100): if not j % 10: continue k, l = str(i), str(j) if(k.find(l[0]) >= 0): k, l = float(k[(k.find(l[0])+1)%2]), float(l[1]) elif(k.find(l[1]) >= 0): k, l = float(k[(k.find(l[1])+1)%2]), float(l[0]) else: continue if(i / j == k / l): numerator *= k denominator *= l return denominator / gcd(numerator, denominator) if __name__=='__main__': print(answer())
[ "rgrant@garnethill.com" ]
rgrant@garnethill.com
f407b06b2595c41745867f79d0c2bf69dedc166e
638fa52ac8fc9439f3ad06682c98c21646baf317
/LatinGlyphs.py
30d438949c7076016bea617653261187307fa34f
[ "Apache-2.0" ]
permissive
DunwichType/mixer
68c1965de0a30b34ce9e852fe9e7323e9cb2f6eb
7b82ba851fdb5b3aa26092d5d54d5e5e47f9b8a1
refs/heads/master
2021-01-10T17:10:20.760847
2015-10-19T22:30:52
2015-10-19T22:30:52
44,567,912
1
0
null
null
null
null
UTF-8
Python
false
false
5,631
py
#!/usr/bin/env python # -*- coding: utf-8 -*- #Lists of Latin Glyphs for use with Mixer # Basic Latin Alphabet majbasic = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] minbasic = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] allbasic = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # DTF Latin Character Set majuscules = [u'A', u'À', u'Á', u'Â', u'Ã', u'Ä', u'Å', u'Æ', u'Ā', u'Ă', u'Ą', u'Æ', u'Ǽ', u'Z', u'B', u'C', u'Ç', u'Ć', u'Ĉ', u'Ċ', u'Č', u'D', u'Ď', u'Đ', u'E', u'È', u'É', u'Ê', u'Ë', u'Ē', u'Ĕ', u'Ė', u'Ę', u'Ě', u'F', u'G', u'Ĝ', u'Ğ', u'Ġ', u'Ģ', u'H', u'Ĥ', u'Ħ', u'I', u'Ì', u'Í', u'Î', u'Ï', u'Ĩ', u'Ī', u'Ĭ', u'Į', u'J', u'Ĵ', u'K', u'Ķ', u'L', u'Ĺ', u'Ļ', u'Ľ', u'Ł', u'Ŀ', u'M', u'N', u'Ń', u'Ņ', u'Ň', u'Ŋ', u'Ñ', u'Ò', u'Ó', u'Ô', u'Õ', u'Ö', u'Ō', u'Ŏ', u'Ő', u'Ø', u'Ǿ', u'Œ', u'P', u'Q', u'Þ', u'R', u'Ŕ', u'Ř', u'Ŗ', u'S', u'Ś', u'Ŝ', u'Ş', u'Š', u'Ș', u'T', u'Ţ', u'Ť', u'Ŧ', u'Ț', u'U', u'Ù', u'Ú', u'Û', u'Ü', u'Ũ', u'Ū', u'Ŭ', u'Ů', u'Ű', u'Ų', u'V', u'W', u'Ŵ', u'Ẁ', u'Ẃ', u'Ẅ', u'X', u'Y', u'Ý', u'Ŷ', u'Ÿ', u'Z', u'Ź', u'Ż', u'Ž'] minuscules = [u'a', u'à', u'á', u'â', u'ã', u'ä', u'å', u'æ', u'ā', u'ă', u'ą', u'æ', u'ǽ', u'b', u'v', u'ç', u'ć', u'ĉ', u'ċ', u'č', u'd', u'ď', u'đ', u'e', u'è', u'é', u'ê', u'ë', u'ē', u'ĕ', u'ė', u'ę', u'ě', u'f', u'g', u'ĝ', u'ğ', u'ġ', u'ģ', u'h', u'ĥ', u'ħ', u'i', u'ì', u'í', u'î', u'ï', u'ĩ', u'ī', u'ĭ', u'į', u'j', u'ĵ', u'k', u'ķ', u'l', u'ĺ', u'ļ', u'ľ', u'ł', u'ŀ', u'm', u'n', u'ń', u'ņ', u'ň', u'ŋ', u'ñ', u'o', u'ò', u'ó', u'ô', u'õ', u'ö', u'ō', u'ŏ', u'ő', u'ø', u'ǿ', u'œ', u'p', u'þ', u'q', u'r', u'ŕ', u'ř', u'ŗ', u's', u'ś', u'ŝ', u'ş', u'š', u'ș', u'ß', u't', u'ţ', u'ť', u'ŧ', u'ț', u'u', u'ù', u'ú', u'û', u'ü', u'ũ', u'ū', u'ŭ', u'ů', u'ű', u'ų', u'v', u'w', u'ŵ', u'ẁ', u'ẃ', u'ẅ', u'x', u'y', u'ý', u'ŷ', u'ÿ', u'z', u'ź', u'ż', u'ž'] # Punctuation basicpunct = [u'.', u',', u'\"', u'!', u'?', u'&'] punct = [u'.', u'…', u',', u':', u';', u'?', u'¿', u'!', u'¡', u'\'', u'\"', u'‘', u'’', u'‚', u'“', u'”', u'„', u'‹', u'›', u'«', u'»', u'-', u'–', u'—', u'_', u'†', u'‡', u'•', u'*', u'©', u'®', u'™', u'@', u'¶', u'(', u')', u'[', u']', u'{', u'}', u'/', u'\\', u'|'] # Numbers currency = [u'#', u'%', u'&', u'¢', u'$', u'£', u'¥', u'ƒ', u'€'] numerals = [u'0', u'1', u'2', u'3', u'4', u'5', u'6', u'7', u'8', u'9'] prebuilt = [u'½', u'¼', u'¾', u'⅓', u'⅔', u'⅛', u'⅜', u'⅝'] math = [u'<', u'+', u'−', u'=', u'÷', u'×', u'>', u'±', u'^', u'~', u'|', u'¦', u'§', u'°', u'ª', u'º', u'%'] fractions = [u'½', u'¼', u'¾', u'⅓', u'⅔', u'⅛', u'⅜', u'⅝'] # Prototyping adhesion = [u'a', u'd', u'h', u'e', u's', u'i', u'o', u'n'] ADHESION = [u'A', u'D', u'H', u'E', u'S', u'I', u'O', u'N'] handgloves = [u'h', u'a', u'n', u'd', u'g', u'l', u'o', u'v', u'e', u's'] HANDGLOVES = [u'H', u'A', u'N', u'D', u'G', u'L', u'O', u'V', u'E', u'S'] hamburgefontivs = [u'h', u'a', u'm', u'b', u'u', u'r', u'g', u'e', u'f', u'o', u'n', u't', u'i', u'v', u's'] HAMBURGEFONTIVS = [u'H', u'A', u'M', u'B', u'U', u'R', u'G', u'E', u'F', u'O', u'N', u'T', u'I', u'V', u'S'] #Latin Extended B majLatinXB = [u'Ɓ', u'Ƃ', u'Ƅ', u'Ɔ', u'Ƈ', u'Ɖ', u'Ɗ', u'Ƌ', u'Ǝ', u'Ə', u'Ɛ', u'Ƒ', u'Ɠ', u'Ɣ', u'Ɩ', u'Ɨ', u'Ƙ', u'Ɯ', u'Ɲ', u'Ɵ', u'Ơ', u'Ƣ', u'Ƥ', u'Ʀ', u'Ƨ', u'Ʃ', u'ƪ', u'Ƭ', u'Ʈ', u'Ư', u'Ʊ', u'Ʋ', u'Ƴ', u'Ƶ', u'Ʒ', u'Ƹ', u'ƻ', u'Ƽ', u'ǀ', u'ǁ', u'ǂ', u'ǃ', u'DŽ', u'Dž', u'LJ', u'Lj', u'NJ', u'Nj', u'Ǎ', u'Ǐ', u'Ǒ', u'Ǔ', u'Ǖ', u'Ǘ', u'Ǚ', u'Ǜ', u'Ǟ', u'Ǡ', u'Ǣ', u'Ǥ', u'Ǧ', u'Ǩ', u'Ǫ', u'Ǭ', u'Ǯ', u'DZ', u'Dz', u'Ǵ', u'Ƕ', u'Ƿ', u'Ǹ', u'Ǻ', u'Ǽ', u'Ȁ', u'Ȃ', u'Ȅ', u'Ȇ', u'Ȉ', u'Ȋ', u'Ȍ', u'Ȏ', u'Ȑ', u'Ȓ', u'Ȕ', u'Ȗ', u'Ș', u'Ț', u'Ȝ', u'Ȟ', u'Ƞ', u'Ȣ', u'Ȥ', u'Ȧ', u'Ȩ', u'Ȫ', u'Ȭ', u'Ȯ', u'Ȱ', u'Ȳ', u'Ⱥ', u'Ȼ', u'Ƚ', u'Ⱦ', u'Ɂ', u'Ƀ', u'Ʉ', u'Ʌ', u'Ɇ', u'Ɉ', u'Ɋ', u'Ɍ', u'Ɏ'] minusLatinXB = [u'ƀ', u'ƃ', u'ƅ', u'ƈ', u'ƌ', u'ƍ', u'ƕ', u'ƙ', u'ƚ', u'ƛ', u'ơ', u'ƣ', u'ƥ', u'ƨ', u'ƫ', u'ƭ', u'ư', u'ƴ', u'ƶ', u'ƹ', u'ƺ', u'ƽ', u'ƾ', u'ƿ', u'dž', u'lj', u'nj', u'ǎ', u'ǐ', u'ǒ', u'ǔ', u'ǖ', u'ǘ', u'ǚ', u'ǜ', u'ǝ', u'ǟ', u'ǡ', u'ǣ', u'ǥ', u'ǧ', u'ǩ', u'ǫ', u'ǭ', u'ǯ', u'dz', u'ǵ', u'ǹ', u'ǻ', u'ǽ', u'ȁ', u'ȃ', u'ȅ', u'ȇ', u'ȉ', u'ȋ', u'ȍ', u'ȏ', u'ȑ', u'ȓ', u'ȕ', u'ȗ', u'ș', u'ț', u'ȝ', u'ȟ', u'ȡ', u'ȣ', u'ȥ', u'ȧ', u'ȩ', u'ȫ', u'ȭ', u'ȯ', u'ȱ', u'ȳ', u'ȴ', u'ȵ', u'ȶ', u'ȷ', u'ȸ', u'ȹ', u'ȼ', u'ȿ', u'ɀ', u'ɂ', u'ɇ', u'ɉ', u'ɋ', u'ɍ', u'ɏ'] #Control Characters lc_control = [u'anon ', u'bnon ', u'cnon ', u'dnon ', u'enon ', u'fnon ', u'gnon ', u'hnon ', u'inon ', u'jnon ', u'knon ', u'lnon ', u'mnon ', u'nnon ', u'onon ', u'pnon ', u'qnon ', u'rnon ', u'snon ', u'tnon ', u'unon ', u'vnon ', u'wnon ', u'xnon ', u'ynon ', u'znon '] controls = [u'H', u'O', u'h', u'n', u'o'] majcontrols = [u'H', u'O'] mincontrols = [u'h', u'o', u'n'] figcontrols = [u'0', u'1']
[ "junker@dunwichtype.com" ]
junker@dunwichtype.com
c70b445d6d1bb1da816fcacacadb68decd13d563
b424a13f032d5a607e6df4dd78bc47ad1d06a147
/astroquery/simbad/tests/test_simbad.py
fe66d82dc76fea148ff9163e36a89ec61940870a
[]
no_license
EnjoyLifeFund/macSierra-py36-pkgs
1e7eeb9b55415da6eb12465d67730d76e9cc619a
0ac677fbbfa7b6d8c527fe2c759ba05117b07fd2
refs/heads/master
2021-01-20T10:23:50.044019
2017-09-05T02:53:26
2017-09-05T02:53:26
90,333,987
0
1
null
null
null
null
UTF-8
Python
false
false
17,899
py
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import re from astropy.extern import six import pytest import astropy.units as u from astropy.table import Table import numpy as np from ... import simbad from ...utils.testing_tools import MockResponse from ...utils import commons from ...exceptions import TableParseError from .test_simbad_remote import multicoords GALACTIC_COORDS = commons.GalacticCoordGenerator(l=-67.02084, b=-29.75447, unit=(u.deg, u.deg)) ICRS_COORDS = commons.ICRSCoordGenerator("05h35m17.3s -05h23m28s") FK4_COORDS = commons.FK4CoordGenerator(ra=84.90759, dec=-80.89403, unit=(u.deg, u.deg)) FK5_COORDS = commons.FK5CoordGenerator(ra=83.82207, dec=-80.86667, unit=(u.deg, u.deg)) DATA_FILES = { 'id': 'query_id.data', 'coo': 'query_coo.data', 'cat': 'query_cat.data', 'bibobj': 'query_bibobj.data', 'bibcode': 'query_bibcode.data', 'objectids': 'query_objectids.data', 'error': 'query_error.data', 'sample': 'query_sample.data', 'region': 'query_sample_region.data', } class MockResponseSimbad(MockResponse): query_regex = re.compile(r'query\s+([a-z]+)\s+') def __init__(self, script, cache=True, **kwargs): # preserve, e.g., headers super(MockResponseSimbad, self).__init__(**kwargs) self.content = self.get_content(script) def get_content(self, script): match = self.query_regex.search(script) if match: filename = DATA_FILES[match.group(1)] content = open(data_path(filename), "rb").read() return content def data_path(filename): data_dir = os.path.join(os.path.dirname(__file__), 'data') return os.path.join(data_dir, filename) @pytest.fixture def patch_post(request): try: mp = request.getfixturevalue("monkeypatch") except AttributeError: # pytest < 3 mp = request.getfuncargvalue("monkeypatch") mp.setattr(simbad.SimbadClass, '_request', post_mockreturn) return mp def post_mockreturn(self, method, url, data, timeout, **kwargs): response = MockResponseSimbad(data['script'], **kwargs) class last_query(object): pass self._last_query = last_query() self._last_query.data = data return response @pytest.mark.parametrize(('radius', 'expected_radius'), [('5d0m0s', '5.0d'), ('5d', '5.0d'), ('5.0d', '5.0d'), (5 * u.deg, '5.0d'), (5.0 * u.deg, '5.0d'), (1.2 * u.deg, '1.2d'), (0.5 * u.deg, '30.0m'), ('0d1m12s', '1.2m'), (0.003 * u.deg, '10.8s'), ('0d0m15s', '15.0s') ]) def test_parse_radius(radius, expected_radius): actual = simbad.core._parse_radius(radius) assert actual == expected_radius @pytest.mark.parametrize(('ra', 'dec', 'expected_ra', 'expected_dec'), [(ICRS_COORDS.ra, ICRS_COORDS.dec, u'5:35:17.3', u'-80:52:00') ]) def test_to_simbad_format(ra, dec, expected_ra, expected_dec): actual_ra, actual_dec = simbad.core._to_simbad_format(ra, dec) assert (actual_ra, actual_dec) == (expected_ra, expected_dec) @pytest.mark.parametrize(('coordinates', 'expected_frame'), [(GALACTIC_COORDS, 'GAL'), (ICRS_COORDS, 'ICRS'), (FK4_COORDS, 'FK4'), (FK5_COORDS, 'FK5') ]) def test_get_frame_coordinates(coordinates, expected_frame): actual_frame = simbad.core._get_frame_coords(coordinates)[2] assert actual_frame == expected_frame if actual_frame == 'GAL': l, b = simbad.core._get_frame_coords(coordinates)[:2] np.testing.assert_almost_equal(float(l) % 360, -67.02084 % 360) np.testing.assert_almost_equal(float(b), -29.75447) def test_parse_result(): result1 = simbad.core.Simbad._parse_result( MockResponseSimbad('query id '), simbad.core.SimbadVOTableResult) assert isinstance(result1, Table) with pytest.raises(TableParseError) as ex: simbad.core.Simbad._parse_result(MockResponseSimbad('query error '), simbad.core.SimbadVOTableResult) assert str(ex.value) == ('Failed to parse SIMBAD result! The raw response ' 'can be found in self.last_response, and the ' 'error in self.last_table_parse_error. ' 'The attempted parsed result is in ' 'self.last_parsed_result.\n Exception: 7:115: ' 'no element found') assert isinstance(simbad.Simbad.last_response.text, six.string_types) assert isinstance(simbad.Simbad.last_response.content, six.binary_type) votable_fields = ",".join(simbad.core.Simbad.get_votable_fields()) @pytest.mark.parametrize(('args', 'kwargs', 'expected_script'), [(["m [0-9]"], dict(wildcard=True, caller='query_object_async'), ("\nvotable {" + votable_fields + "}\n" "votable open\n" "query id wildcard m [0-9] \n" "votable close" )), (["2006ApJ"], dict(caller='query_bibcode_async', get_raw=True), ("\n\nquery bibcode 2006ApJ \n")) ]) def test_args_to_payload(args, kwargs, expected_script): script = simbad.Simbad._args_to_payload(*args, **kwargs)['script'] assert script == expected_script @pytest.mark.parametrize(('epoch', 'equinox'), [(2000, 'thousand'), ('J-2000', None), (None, '10e3b') ]) def test_validation(epoch, equinox): with pytest.raises(ValueError): # only one of these has to raise an exception if equinox is not None: simbad.core.validate_equinox(equinox) if epoch is not None: simbad.core.validate_epoch(epoch) @pytest.mark.parametrize(('bibcode', 'wildcard'), [('2006ApJ*', True), ('2005A&A.430.165F', None) ]) def test_query_bibcode_async(patch_post, bibcode, wildcard): response1 = simbad.core.Simbad.query_bibcode_async(bibcode, wildcard=wildcard) response2 = simbad.core.Simbad().query_bibcode_async(bibcode, wildcard=wildcard) assert response1 is not None and response2 is not None assert response1.content == response2.content def test_query_bibcode_class(patch_post): result1 = simbad.core.Simbad.query_bibcode("2006ApJ*", wildcard=True) assert isinstance(result1, Table) def test_query_bibcode_instance(patch_post): S = simbad.core.Simbad() result2 = S.query_bibcode("2006ApJ*", wildcard=True) assert isinstance(result2, Table) def test_query_objectids_async(patch_post): response1 = simbad.core.Simbad.query_objectids_async('Polaris') response2 = simbad.core.Simbad().query_objectids_async('Polaris') assert response1 is not None and response2 is not None assert response1.content == response2.content def test_query_objectids(patch_post): result1 = simbad.core.Simbad.query_objectids('Polaris') result2 = simbad.core.Simbad().query_objectids('Polaris') assert isinstance(result1, Table) assert isinstance(result2, Table) def test_query_bibobj_async(patch_post): response1 = simbad.core.Simbad.query_bibobj_async('2005A&A.430.165F') response2 = simbad.core.Simbad().query_bibobj_async('2005A&A.430.165F') assert response1 is not None and response2 is not None assert response1.content == response2.content def test_query_bibobj(patch_post): result1 = simbad.core.Simbad.query_bibobj('2005A&A.430.165F') result2 = simbad.core.Simbad().query_bibobj('2005A&A.430.165F') assert isinstance(result1, Table) assert isinstance(result2, Table) def test_query_catalog_async(patch_post): response1 = simbad.core.Simbad.query_catalog_async('m') response2 = simbad.core.Simbad().query_catalog_async('m') assert response1 is not None and response2 is not None assert response1.content == response2.content def test_query_catalog(patch_post): result1 = simbad.core.Simbad.query_catalog('m') result2 = simbad.core.Simbad().query_catalog('m') assert isinstance(result1, Table) assert isinstance(result2, Table) @pytest.mark.parametrize(('coordinates', 'radius', 'equinox', 'epoch'), [(ICRS_COORDS, None, 2000.0, 'J2000'), (GALACTIC_COORDS, 5 * u.deg, 2000.0, 'J2000'), (FK4_COORDS, '5d0m0s', 2000.0, 'J2000'), (FK5_COORDS, None, 2000.0, 'J2000'), (multicoords, 0.5*u.arcsec, 2000.0, 'J2000'), ]) def test_query_region_async(patch_post, coordinates, radius, equinox, epoch): response1 = simbad.core.Simbad.query_region_async( coordinates, radius=radius, equinox=equinox, epoch=epoch) response2 = simbad.core.Simbad().query_region_async( coordinates, radius=radius, equinox=equinox, epoch=epoch) assert response1 is not None and response2 is not None assert response1.content == response2.content @pytest.mark.parametrize(('coordinates', 'radius', 'equinox', 'epoch'), [(ICRS_COORDS, None, 2000.0, 'J2000'), (GALACTIC_COORDS, 5 * u.deg, 2000.0, 'J2000'), (FK4_COORDS, '5d0m0s', 2000.0, 'J2000'), (FK5_COORDS, None, 2000.0, 'J2000') ]) def test_query_region(patch_post, coordinates, radius, equinox, epoch): result1 = simbad.core.Simbad.query_region(coordinates, radius=radius, equinox=equinox, epoch=epoch) result2 = simbad.core.Simbad().query_region(coordinates, radius=radius, equinox=equinox, epoch=epoch) assert isinstance(result1, Table) assert isinstance(result2, Table) @pytest.mark.parametrize(('coordinates', 'radius', 'equinox', 'epoch'), [(ICRS_COORDS, 0, 2000.0, 'J2000')]) def test_query_region_radius_error(patch_post, coordinates, radius, equinox, epoch): with pytest.raises(u.UnitsError): simbad.core.Simbad.query_region( coordinates, radius=radius, equinox=equinox, epoch=epoch) with pytest.raises(u.UnitsError): simbad.core.Simbad().query_region( coordinates, radius=radius, equinox=equinox, epoch=epoch) @pytest.mark.parametrize(('coordinates', 'radius', 'equinox', 'epoch'), [(ICRS_COORDS, "0d", 2000.0, 'J2000'), (GALACTIC_COORDS, 1.0 * u.marcsec, 2000.0, 'J2000') ]) def test_query_region_small_radius(patch_post, coordinates, radius, equinox, epoch): result1 = simbad.core.Simbad.query_region(coordinates, radius=radius, equinox=equinox, epoch=epoch) result2 = simbad.core.Simbad().query_region(coordinates, radius=radius, equinox=equinox, epoch=epoch) assert isinstance(result1, Table) assert isinstance(result2, Table) @pytest.mark.parametrize(('object_name', 'wildcard'), [("m1", None), ("m [0-9]", True) ]) def test_query_object_async(patch_post, object_name, wildcard): response1 = simbad.core.Simbad.query_object_async(object_name, wildcard=wildcard) response2 = simbad.core.Simbad().query_object_async(object_name, wildcard=wildcard) assert response1 is not None and response2 is not None assert response1.content == response2.content @pytest.mark.parametrize(('object_name', 'wildcard'), [("m1", None), ("m [0-9]", True), ]) def test_query_object(patch_post, object_name, wildcard): result1 = simbad.core.Simbad.query_object(object_name, wildcard=wildcard) result2 = simbad.core.Simbad().query_object(object_name, wildcard=wildcard) assert isinstance(result1, Table) assert isinstance(result2, Table) def test_list_votable_fields(): simbad.core.Simbad.list_votable_fields() simbad.core.Simbad().list_votable_fields() def test_get_field_description(): simbad.core.Simbad.get_field_description('bibcodelist(y1-y2)') simbad.core.Simbad().get_field_description('bibcodelist(y1-y2)') with pytest.raises(Exception): simbad.core.Simbad.get_field_description('xyz') def test_votable_fields(): simbad.core.Simbad.add_votable_fields('rot', 'ze', 'z') assert (set(simbad.core.Simbad.get_votable_fields()) == set(['main_id', 'coordinates', 'rot', 'ze', 'z'])) try: simbad.core.Simbad.add_votable_fields('z') except KeyError: pass # this is the expected response assert (set(simbad.core.Simbad.get_votable_fields()) == set(['main_id', 'coordinates', 'rot', 'ze', 'z'])) simbad.core.Simbad.remove_votable_fields('rot', 'main_id', 'coordinates') assert set(simbad.core.Simbad.get_votable_fields()) == set(['ze', 'z']) simbad.core.Simbad.remove_votable_fields('rot', 'main_id', 'coordinates') assert set(simbad.core.Simbad.get_votable_fields()) == set(['ze', 'z']) simbad.core.Simbad.remove_votable_fields('ze', 'z') assert (set(simbad.core.Simbad.get_votable_fields()) == set(['main_id', 'coordinates'])) simbad.core.Simbad.add_votable_fields('rot', 'ze', 'z') simbad.core.Simbad.reset_votable_fields() assert (set(simbad.core.Simbad.get_votable_fields()) == set(['main_id', 'coordinates'])) def test_query_criteria1(patch_post): Simbad = simbad.core.Simbad() result = Simbad.query_criteria( "region(box, GAL, 49.89 -0.3, 0.5d 0.5d)", otype='HII') assert isinstance(result, Table) assert "region(box, GAL, 49.89 -0.3, 0.5d 0.5d)" in Simbad._last_query.data['script'] def test_query_criteria2(patch_post): S = simbad.core.Simbad() S.add_votable_fields('ra(d)', 'dec(d)') S.remove_votable_fields('coordinates') assert S.get_votable_fields() == ['main_id', 'ra(d)', 'dec(d)'] result = S.query_criteria(otype='SNR') assert isinstance(result, Table) assert 'otype=SNR' in S._last_query.data['script'] def test_simbad_settings1(): assert simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates'] simbad.core.Simbad.add_votable_fields('ra', 'dec(5)') simbad.core.Simbad.remove_votable_fields('ra', 'dec') assert (simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates', 'dec(5)']) simbad.core.Simbad.reset_votable_fields() def test_simbad_settings2(): assert simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates'] simbad.core.Simbad.add_votable_fields('ra', 'dec(5)') simbad.core.Simbad.remove_votable_fields('ra', 'dec', strip_params=True) assert simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates'] def test_regression_votablesettings(): assert simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates'] simbad.core.Simbad.add_votable_fields('ra', 'dec(5)') # this is now allowed: simbad.core.Simbad.add_votable_fields('ra(d)', 'dec(d)') assert simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates', 'ra', 'dec(5)', 'ra(d)', 'dec(d)'] # cleanup simbad.core.Simbad.remove_votable_fields('ra', 'dec', strip_params=True) assert simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates'] def test_regression_votablesettings2(): assert simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates'] simbad.core.Simbad.add_votable_fields('fluxdata(J)') simbad.core.Simbad.add_votable_fields('fluxdata(H)') simbad.core.Simbad.add_votable_fields('fluxdata(K)') assert (simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates', 'fluxdata(J)', 'fluxdata(H)', 'fluxdata(K)']) simbad.core.Simbad.remove_votable_fields('fluxdata', strip_params=True) assert simbad.Simbad.get_votable_fields() == ['main_id', 'coordinates'] def test_regression_issue388(): # This is a python-3 issue: content needs to be decoded? response = MockResponseSimbad('\nvotable {main_id,coordinates}\nvotable ' 'open\nquery id m1 \nvotable close') with open(data_path('m1.data'), "rb") as f: response.content = f.read() parsed_table = simbad.Simbad._parse_result(response, simbad.core.SimbadVOTableResult) assert parsed_table['MAIN_ID'][0] == b'M 1' assert len(parsed_table) == 1
[ "raliclo@gmail.com" ]
raliclo@gmail.com
4c54b23822c77598fc8746f24f4c1bf18cdad087
d9fb6c246965cbf290186268298859ddb913ee6e
/190813/03_mod.py
3a21a5da1950eb762f029d3aa591e49c9be98f49
[]
no_license
91hongppie/algorithm
1ca6d54de6eab252c708bf83835ace8a109d73fc
4c2fa8178e0ef7afbf0b736387f05cbada72f95d
refs/heads/master
2020-07-20T22:17:40.700366
2020-06-29T00:06:11
2020-06-29T00:06:11
206,717,677
1
0
null
null
null
null
UTF-8
Python
false
false
375
py
import sys sys.stdin = open('sample_input_03.txt', 'r') N = int(input()) for i in range(1, N+1): play = list(map(int, input().split())) test_words = [[] for i in range(play[0])] for j in range(play[0]): test_words[j] = list(map(str, input())) for m in range(play[0]): for n in range(play[0]): mo_list = test_words[m][n:play[0]:]
[ "91hongppie@gmail.com" ]
91hongppie@gmail.com
4ac613dc87fb37cf7e557918be4a06f39615bb70
c3b5e412fd9479c046c09c251dd0688a4fec6130
/solver.py
f360ff7d89db5f41f308259d807e7c2f16ec6ff5
[]
no_license
Pazaak/NaoPickUp
edb45f8d4dbf392d0a4737c3d9e91b2dfd00b2a6
417a20e344fa57272a1481810571287a18c864a4
refs/heads/master
2020-05-20T00:48:28.326318
2015-07-08T08:21:03
2015-07-08T08:21:03
36,508,390
0
0
null
null
null
null
UTF-8
Python
false
false
7,804
py
__author__ = 'Luis Fabregues de los Santos' import heapq as heap import copy import math infty = float('inf') def distance_2d(x1, y1, x2, y2): x = x1 - x2 y = y1 - y2 return math.sqrt(x*x+y*y) def value(list, robots, target): result = 0 for path in xrange(len(list)): for i in xrange(len(list[path])): if i == 0: result += distance_2d(robots[path].x, robots[path].y, list[path][i].x, list[path][i].y) result += distance_2d(target.x, target.y, list[path][i].x, list[path][i].y) else: result += 2 * distance_2d(target.x, target.y, list[path][i].x, list[path][i].y) return result # Evaluation function 1, min total steps def branchAndBound1(robots, target, boxes): maxLen = 2 insertions = 2 creations = 2 extractions = 0 boxes = sorted(boxes, key=lambda x: distance_2d(x.x, x.y, target.x, target.y), reverse=True) pool = [] scores = [] for box in boxes: scores.append(distance_2d(box.x, box.y, target.x, target.y) * 2) current = [] for i in xrange(len(robots)): current.append([]) heap.heappush(pool, (sum(scores), range(len(boxes)), current)) iteraciones = 0 while len(pool) > 0: if len(pool) > maxLen: maxLen = len(pool) extractions += 1 current = heap.heappop(pool) # Si la lista de cajas esta vacia if not current[1]: return [maxLen, insertions, creations, extractions, iteraciones, value(current[2], robots, target), 0], \ current[2] else: # Por cada caja que quede la intentamos asignar a un robot for nbox in current[1]: for i in xrange(len(robots)): temp = copy.deepcopy(current[2]) temp[i].append(boxes[nbox]) # Creamos una nueva lista de cajas newboxes = list(current[1]) newboxes.remove(nbox) creations += 1 plusScore = 0 for scbox in newboxes: plusScore += scores[scbox] temp = (value(temp, robots, target) + plusScore, newboxes, temp) heap.heappush(pool, temp) insertions += 1 iteraciones += 1 def value2(list, robots, target): result = [] for path in xrange(len(list)): result.append(0) for i in xrange(len(list[path])): if i == 0: result[path] += distance_2d(robots[path].x, robots[path].y, list[path][i].x, list[path][i].y) result[path] += distance_2d(target.x, target.y, list[path][i].x, list[path][i].y) else: result[path] += 2 * distance_2d(target.x, target.y, list[path][i].x, list[path][i].y) return max(result) # Evaluation function 2, min max robot steps def branchAndBound2(robots, target, boxes): maxLen = 2 insertions = 2 creations = 2 extractions = 0 boxes = sorted(boxes, key=lambda x: distance_2d(x.x, x.y, target.x, target.y), reverse=True) pool = [] scores = [] for box in boxes: scores.append((distance_2d(box.x, box.y, target.x, target.y) * 2)) current = [] for i in xrange(len(robots)): current.append([]) heap.heappush(pool, (sum(scores), range(len(boxes)), current)) iteraciones = 0 while len(pool) > 0: if len(pool) > maxLen: maxLen = len(pool) extractions += 1 current = heap.heappop(pool) # Si la lista de cajas esta vacia if not current[1]: return [maxLen, insertions, creations, extractions, iteraciones, value(current[2], robots, target), \ value2(current[2], robots, target)], current[2] else: # Por cada caja que quede la intentamos asignar a un robot for nbox in current[1]: for i in xrange(len(robots)): temp = copy.deepcopy(current[2]) temp[i].append(boxes[nbox]) # Creamos una nueva lista de cajas newboxes = list(current[1]) newboxes.remove(nbox) creations += 1 temp = (value2(temp, robots, target), newboxes, temp) heap.heappush(pool, temp) insertions += 1 iteraciones += 1 # Evaluation function 2, with optimistic score, UNSTABLE def branchAndBound3(robots, target, boxes): maxLen = 2 insertions = 2 creations = 2 extractions = 0 boxes = sorted(boxes, key=lambda x: distance_2d(x.x, x.y, target.x, target.y), reverse=True) pool = [] scores = [] for box in boxes: scores.append(distance_2d(box.x, box.y, target.x, target.y) * 2) current = [] for i in xrange(len(robots)): current.append([]) heap.heappush(pool, (sum(scores), range(len(boxes)), current)) iteraciones = 0 while len(pool) > 0: if len(pool) > maxLen: maxLen = len(pool) extractions += 1 current = heap.heappop(pool) # Si la lista de cajas esta vacia if not current[1]: return [maxLen, insertions, creations, extractions, iteraciones, value(current[2], robots, target), \ value2(current[2], robots, target)], current[2] else: # Por cada caja que quede la intentamos asignar a un robot for nbox in current[1]: for i in xrange(len(robots)): temp = copy.deepcopy(current[2]) temp[i].append(boxes[nbox]) # Creamos una nueva lista de cajas newboxes = list(current[1]) newboxes.remove(nbox) creations += 1 temp = (2*value2(temp, robots, target)+len(newboxes), newboxes, temp) heap.heappush(pool, temp) insertions += 1 iteraciones += 1 # Evaluation function 2, save the better, complete state def branchAndBound4(robots, target, boxes): maxLen = 2 insertions = 2 creations = 2 extractions = 0 bestYet = infty boxes = sorted(boxes, key=lambda x: distance_2d(x.x, x.y, target.x, target.y), reverse=True) pool = [] scores = [] for box in boxes: scores.append((distance_2d(box.x, box.y, target.x, target.y) * 2)) current = [] for i in xrange(len(robots)): current.append([]) heap.heappush(pool, (sum(scores), range(len(boxes)), current)) iteraciones = 0 while len(pool) > 0: if len(pool) > maxLen: maxLen = len(pool) extractions += 1 current = heap.heappop(pool) # Si la lista de cajas esta vacia if not current[1]: return [maxLen, insertions, creations, extractions, iteraciones, value(current[2], robots, target), \ value2(current[2], robots, target)], \ current[2] else: # Por cada caja que quede la intentamos asignar a un robot for nbox in current[1]: for i in xrange(len(robots)): temp = copy.deepcopy(current[2]) temp[i].append(boxes[nbox]) # Creamos una nueva lista de cajas newboxes = list(current[1]) newboxes.remove(nbox) creations += 1 temp = (value2(temp, robots, target), newboxes, temp) if temp[0] < bestYet: heap.heappush(pool, temp) insertions += 1 if not temp[1]: bestYet = temp[0] iteraciones += 1
[ "aggalem@gmail.com" ]
aggalem@gmail.com
fdece734fd20e95f571e250da5d3d0bb56e27b8a
5b029c81490df1cd2988108ed23e71aca40a9816
/MusicPredictiveAnalysis_EE660_USCFall2015-master/Code/Machine_Learning_Algos/10k_Tests/ml_classification_simple_pca.py
a9f5f7a9d11effe0c958f66898e4d78676120bad
[ "MIT" ]
permissive
lianghaol/Machine-Learning
e9b9ea009629ee1a0e24a0e55d90a3ed3c92ec05
e3353252ca54b62ff8f5ada87566bab4f373c260
refs/heads/master
2021-12-10T19:19:34.914637
2016-09-16T02:48:30
2016-09-16T02:48:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,835
py
__author__ = 'NishantNath' # !/usr/bin/env python ''' Using : Python 2.7+ (backward compatibility exists for Python 3.x if separate environment created) Required files : hdf5_getters.py Required packages : numpy, pandas, matplotlib, sklearn Steps: 1. # Uses Simple PCA to find the most important features # Uses Simple PCA Iteratively to find performance based on number of components ''' import pandas import matplotlib.pyplot as mpyplot import pylab import numpy from itertools import cycle def plot_2D(data, target, target_names): colors = cycle('rgbcmykw') target_ids = range(len(target_names)) mpyplot.figure() for i, c, label in zip(target_ids, colors, target_names): mpyplot.scatter(data[target == i, 0], data[target == i, 1],c=c, label=label) mpyplot.legend() # mpyplot.show(p) # [0: 'CLASSICAL', 1: 'METAL', 2: 'HIPHOP', 3: 'DANCE', 4: 'JAZZ'] # [5:'FOLK', 6: 'SOUL', 7: 'ROCK', 8: 'POP', 9: 'BLUES'] col_input=['genre', 'year', 'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8', 'col9', 'col10', 'col11', 'col12', 'col13', 'col14', 'col15', 'col16', 'col17', 'col18', 'col19', 'col20', 'col21', 'col22', 'col23', 'col24', 'col25', 'col26', 'col27', 'col28', 'col29', 'col30', 'col31', 'col32', 'col33', 'col34', 'col35', 'col36', 'col37', 'col38', 'col39', 'col40', 'col41', 'col42', 'col43', 'col44', 'col45', 'col46', 'col47', 'col48', 'col49', 'col50', 'col51', 'col52', 'col53', 'col54', 'col55', 'col56', 'col57', 'col58', 'col59', 'col60', 'col61', 'col62', 'col63', 'col64', 'col65', 'col66', 'col67', 'col68', 'col69', 'col70', 'col71', 'col72'] df_input = pandas.read_csv('pandas_output_missing_data_fixed.csv', header=None, delimiter = ",", names=col_input) # range(2,74) means its goes from col 2 to col 73 df_input_data = df_input[list(range(2, 74))] df_input_target = df_input[list(range(0, 1))] colors = numpy.random.rand(len(df_input_target)) # Simple PCA from sklearn.decomposition import PCA pca = PCA(n_components=6) #from optimal pca components chart n_components=6 pca.fit(df_input_data) # Relative weights on features print pca.explained_variance_ratio_ print pca.components_ # performance of number of components vs variance pca2 = PCA().fit(df_input_data) # Plotting Simple PCA mpyplot.figure(1) p1 = mpyplot.plot(numpy.cumsum(pca2.explained_variance_ratio_)) mpyplot.xlabel('number of components') mpyplot.ylabel('cumulative explained variance') mpyplot.show(p1) # Reduced Feature Set df_input_data_reduced = pca.transform(df_input_data) # Plotting Reduced Feature Set mpyplot.figure(2) p2 = mpyplot.scatter(df_input_data_reduced[:, 0], df_input_data_reduced[:, 1], c=colors) mpyplot.colorbar(p2) mpyplot.show(p2) # Plotting in 2D - fix this mpyplot.figure(3) plot_2D(df_input_data_reduced, df_input_target, pandas.unique(df_input_target))
[ "ozbekahmetcan@gmail.com" ]
ozbekahmetcan@gmail.com
4f2d80280f1710eb34ef81a47bbccef522f62c15
af5f6d99a23711725ccf0431a62ca37b96acccf3
/manage.py
0b1d71a459fa7ee0fc39cd93cffd8801fdc5a6cf
[ "MIT" ]
permissive
nimowairimu/Django-IP1
daa58f53c1d94e7d1d8dcbbead081be506c75343
0def901a0a2f34f644ed42bd4d1c8f883743cffe
refs/heads/main
2023-03-23T17:21:50.203551
2021-03-23T17:23:30
2021-03-23T17:23:30
348,981,975
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "vetdaily.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "nimowairimu25@gmail.com" ]
nimowairimu25@gmail.com
90e46fcc82a3f160f8cd2bcfbc49f9442619ab7d
10b43efca8647c86ac0ea9df1dd8368db5dff931
/gen_data.py
0d5b03686f6b71f86f251a59605ce223d2bdd756
[ "MIT" ]
permissive
ruiyangio/latency-graph
ed0244c87d9b6d3d3bff7fa4aaaca1a07f9e40e2
ba0414b11c31f565a5ca41b29e1d0aad9e545aa2
refs/heads/master
2020-03-25T03:36:41.982072
2018-08-03T04:20:27
2018-08-03T04:20:27
143,350,913
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
import csv import random import numpy as np import string nodes = [] for i in range(120): nodes.append(''.join((random.choice(string.ascii_uppercase), random.choice(string.ascii_uppercase), random.choice(string.digits)))) edges = [] for i in range(15000): edges.append( random.choice(nodes) + "\t" + random.choice(nodes) + "\t" + str(np.random.uniform(400)) + "\n" ) with open('data.tsv', 'w') as file: for edge in edges: file.write(edge)
[ "ruiyangwind@gmail.com" ]
ruiyangwind@gmail.com
4212426d83cef5a31b6993b1859aa096f5a86957
c7bb490ef96fda51a946478a4f584814e1665a6a
/backend/urls.py
06c33f1ea3c2e43ed3c886400d353b67ec87d687
[]
no_license
pawanpaudel93/motion-planning-dashboard
e70acc9737cdedf0fd0beac0a0700cc88f9c2559
642f5955d518747dfc14f1f22a93ef20784329d8
refs/heads/master
2023-03-11T14:33:31.643898
2021-02-28T11:26:16
2021-02-28T11:26:16
340,398,506
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
"""MPD URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ """ from django.contrib import admin from django.urls import path, include, re_path from rest_framework import routers from .api import urls as api_urls from .api.views import index_view router = routers.DefaultRouter() urlpatterns = [ path('api/v1/', include(api_urls)), path('admin/', admin.site.urls), re_path(r'^.*$', index_view, name='index') ]
[ "pawanpaudel93@gmail.com" ]
pawanpaudel93@gmail.com
a90e5a8ba7a2476925946904b9c73c06d09cfda9
e7c8bcd6156956123c0ffcd1e3603e8b0ba0fcf8
/tickTacToe.py
0da1e458ef3a0aadf53bbbd2573513c697c80919
[]
no_license
flow0787/python
421efa9c3541d618778e2f7cd3f3aceed946ee6e
38a995568c10ff31c516d85877cb9b0ad9596a3a
refs/heads/master
2020-04-06T06:55:46.278080
2020-02-12T08:32:32
2020-02-12T08:32:32
63,419,040
1
0
null
null
null
null
UTF-8
Python
false
false
598
py
theBoard = {"topL": " ", "topM": " ", "topR": " ", "midL": " ", "midM": " ", "midR": " ", "lowL": " ", "lowM": " ", "lowR": " "} def printBoard(board): print(board['topL'] + '|' + board['topM'] + '|' + board['topR']) print('-+-+-') print(board['midL'] + '|' + board['midM'] + '|' + board['midR']) print('-+-+-') print(board['lowL'] + '|' + board['lowM'] + '|' + board['lowR']) turn = "X" for i in range(9): printBoard(theBoard) move = input("Turn for " + turn + ". Move on which space?") theBoard[move] = turn if turn == 'X': turn = "O" else: turn = "X" printBoard(theBoard)
[ "badeaflorien@gmail.com" ]
badeaflorien@gmail.com
0baadeafe82ed3f2330579af9aeb7806db738dc3
7f8c24fe161fee3f32e206e013ea89fc8eb9a50a
/example_api/urls.py
4c07dd5d1421c42a6038b536a60b6f7e7826f9cc
[]
no_license
vnitikesh/rest-registration
a04f4cf643766d3844e7a63e0616157d1c1f1e9a
0578589f6cb9b9138fa5915395bf616de57eaf0b
refs/heads/main
2023-02-18T12:32:40.392439
2021-01-21T23:55:23
2021-01-21T23:55:23
331,453,447
0
0
null
null
null
null
UTF-8
Python
false
false
575
py
from django.urls import path from . import views from rest_framework.routers import DefaultRouter urlpatterns = [ path('category/', views.CategoryListView.as_view(), name = 'category-list'), path('category/<int:pk>/', views.CategoryDetailView.as_view(), name = 'category-detail'), path('product/', views.ProductRecordView.as_view(), name = 'product-list'), path('cart/', views.CartViewSet.as_view(), name = 'cart'), path('checkout/', views.CheckoutView.as_view(), name = 'checkout'), #path('order/', views.OrderViewSet.as_view(), name = 'order') ]
[ "vnitikesh@gmail.com" ]
vnitikesh@gmail.com
4f9561b6707673dd54e154e177dcfd3d25aebf98
3d276b170ed2255e8cee3b05fca4c6f75ef5eaae
/Consective-evens/solutionB.py
3028f13b47118968e7dfa7109a1f3575ac7ff28e
[]
no_license
xdatageek/math_and_physics
0db5a9e86c54bc7355cb6b0c47189f5de5b097ba
5f1fafce9995c3be6ee02a5f0f4d8c45358e234e
refs/heads/main
2023-02-09T19:00:01.665490
2021-01-02T04:37:35
2021-01-02T04:37:35
324,129,536
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
f = open('input.txt', 'r') next(f) A = [int(i) for i in f.readline().split()] for k in range(int(f.readline())): c = f.readline().split() c1 = int(c[1]) c2 = int(c[2]) if c[0] == '1': S = 0 for j in range(c1, c2+1): S += A[j] print(S) else: A[c1] = c2
[ "noreply@github.com" ]
noreply@github.com
e8c4c60a57463e9f15f1b88dd4eda1629eea2dfc
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/2JHYavYqynX8ZCmMG_5.py
f3bd9ad800ee0f88625397c941672c01b7288b50
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
def ascii_sort(lst): if sum([ord(x) for x in lst[0]]) <= sum([ord(x) for x in lst[1]]): return lst[0] return lst[1]
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
97cb339e8b6bfc2cd89e1ed0be47bb4f41d910d8
1feffdfcdc376ce007d64c911ebbe31826bf217e
/Core/CoreEngine.py
9100c47f796a722de061abd7fb2c2871a97ad97e
[]
no_license
Zaladar/rpgmotor
1c3bfae5c332351b0d69559575ebe5a8cd2fdc55
dccc84f73008132be18a2a9c389d02d68b14b28d
refs/heads/master
2020-12-30T11:38:56.071865
2017-10-20T12:32:47
2017-10-20T12:32:47
91,575,795
0
0
null
null
null
null
UTF-8
Python
false
false
4,185
py
#1 standard livraries from random import * #2 Third party #3 Local dices = {} class Dice: def __init__(self, name, sides, mod): self.name = name self.sides = int(sides) self.mod = int (mod) # här borde finnas decorator som kan applicera mod def rolling(self, t): #printout här kanske ej bör finnas? print("rolling your dice!") res = 0 i = 0 while i < t: res += randint(1, self.sides) return res # what die exists def storeddie(self): if self.name in dices: print("name: " + str(self.name)) print("sides: " + str(self.sides)) # to create new dies if there is a need for it def DiceCreator(self): print(' =[Dice Creator]=') print('=[used to create dice]=') print(' ') sides = input('how many sides does your dice have?:') rn = input("want to name them? default name is d" + sides) if rn.lower() == "yes": name = input("name:") elif rn.lower() == "no": print("ok") name = rn else: print("invalid input") #dices[name] = Dice(name, sides) dettak anske inte ska vara kvar som så, eftersom funktionen borde returnera en variand av Dice print("dices:" + ",".join([x for x in dices.keys()])) def sides(self, name): sidesqq = int(input("what do you wish to set your sides to?")) if isinstance(sidesqq, int): dices[name] = Dice(name, sidesqq) else: print("incvalid input") bootupseq() def rename(self, name): qq = input("This will change the name of the dice proceed?") if qq == "yes": nameqq = input(" what do you want to call these dice?") dices[name] = Dice(nameqq, self.sides) elif qq == "no": print("okay, rebootinng") bootupseq() else: print("invalid input") bootupseq() def DiceBase(): pd = [2, 3, 4, 6, 8, 10, 12, 20, 100] for i in pd: dice = { "name": 'd' + str(i), "sides": i, } dices[dice["name"]] = Dice(**dice) print("db done") # en ny funktion spel kontrol ska skapas och där ska man kunna initiera spel boot up ska bara kunna kalla på spelinitiering karaktärs och tärnings förändringar och information. def Gameinit(): type = input("what kind of game do you wish to play, pathfinder or dark heresy?") if type.lower() == "pathfinder": print("pathfinder is being setup!") elif type.lower() == "dark heresy": print("dark heresy is being setup!") else: print("invalid input,returning to boot up sequence!") bootupseq() def bootupseq(): while True: ans = input('what function do you want to start? type help for... help...:').lower() if ans == 'dice creator': Dice.DiceCreator() elif ans == 'rolling': name = input("what dice do you wish to use?") if name in dices.keys(): Dice.rolling(dices[name]) else: print("invalid input, dices doesn't exist! use dice creator") elif ans == "existing die": print("dices: " + ",".join([x for x in dices.keys()])) req = input("do you want to look at any of the dice? yes/no:") req = req.lower() if req == "yes": name = input("what dice?") if name.lower() in dices.keys(): Dice.storedie(dices[name]) else: print("not in dice") elif ans == "game init": qq = input("what game? Pathfinder or Dark heresy").lower() if qq == ("pathfinder"|"dark heresy"): Gameinit(qq) elif ans == 'help': print('lol noob') print('functions available: Dice creator, Existing die, Game init and Rolling') elif ans == 'break': break else: print('invalid input') print("input:" + ans) DiceBase() bootupseq()
[ "oscarjwhaglund@gmail.com" ]
oscarjwhaglund@gmail.com
966163ac218a00e186e1835d56634756e84143fb
cf72eced416ae5fee75e194b4da7728a00520c54
/Chapter12SpreadSheetCellInverter.py
1c1fd68ab2760d6d47d1bc1f4deba4c7b1928ea9
[]
no_license
spencercorwin/automate-the-boring-stuff-answers
ed08080ec3c38a5cc84510e13995cb3cb95d5809
e564658ae702672670e17c2989a58d75b9110d32
refs/heads/master
2021-09-19T02:50:39.541981
2018-07-22T22:09:13
2018-07-22T22:09:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
702
py
#! usr/bin/env python3 #Chapter 12 Challenge - Spreadsheet Cell Inverter #This program inverts the row and column of cells in a spreadsheet import os, openpyxl, pprint os.chdir('/Users/spencercorwin/Desktop') wb = openpyxl.load_workbook('testFile.xlsx') sheet = wb.active resultSheet = wb.create_sheet(index=2, title='resultSheet') sheetData = [] for r in range(0, sheet.max_row): sheetData.append([]) for c in range(0, sheet.max_column): sheetData[r].append(sheet.cell(row = r+1, column = c+1).value) for r in range(0, sheet.max_row): for c in range(0, sheet.max_column): resultSheet.cell(row = c+1, column = r+1).value = sheetData[r][c] wb.save('myTestResult.xlsx')
[ "noreply@github.com" ]
noreply@github.com
6eb0d30982c51c95fe8b185a70ce7a5e912cdd20
2da72c9f9bbb0b5db33710cddbdee28503e5a606
/UCI/pyQT-matplot-example 2.py
0228e2bce7c9d982c2ca7970f732c4860c0e6cc5
[]
no_license
gddickinson/python_code
2e71fb22b929cb26c2a1456b11dc515af048c441
dbb20e171fb556e122350fb40e12cc76adbb9a66
refs/heads/master
2022-10-26T15:20:40.709820
2022-10-11T16:06:27
2022-10-11T16:06:27
44,060,963
0
0
null
null
null
null
UTF-8
Python
false
false
1,689
py
# -*- coding: utf-8 -*- """ Created on Thu Jul 23 16:50:19 2015 @author: George """ import sys from PyQt4 import QtGui from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib import NavigationToolbar2QTAgg as NavigationToolbar import matplotlib.pyplot as plt import random class Window(QtGui.QDialog): def __init__(self, parent=None): super(Window, self).__init__(parent) # a figure instance to plot on self.figure = plt.figure() # this is the Canvas Widget that displays the `figure` # it takes the `figure` instance as a parameter to __init__ self.canvas = FigureCanvas(self.figure) # this is the Navigation widget # it takes the Canvas widget and a parent self.toolbar = NavigationToolbar(self.canvas, self) # Just some button connected to `plot` method self.button = QtGui.QPushButton('Plot') self.button.clicked.connect(self.plot) # set the layout layout = QtGui.QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) layout.addWidget(self.button) self.setLayout(layout) def plot(self): ''' plot some random stuff ''' # random data data = [random.random() for i in range(10)] # create an axis ax = self.figure.add_subplot(111) # discards the old graph ax.hold(False) # plot data ax.plot(data, '*-') # refresh canvas self.canvas.draw() if __name__ == '__main__': app = QtGui.QApplication(sys.argv) main = Window() main.show() sys.exit(app.exec_())
[ "george.dickinson@gmail.com" ]
george.dickinson@gmail.com
c13f2224b2a218046e61fc2c3ce17a06270f3028
d6a030dfacb63fcb7ede3b1ed97dd723e5aab478
/plotfio.py
fad2a7454bd7ff152db230d88500db0c26b49071
[]
no_license
ahlfors/FIO-scripts
0adabf2ffc164de67b7757aeb7ed6a4eb999b711
b8fcb4998d3516606da965f421a6f6f3c8957dc2
refs/heads/master
2023-03-16T14:53:40.037181
2019-03-18T19:32:32
2019-03-18T19:32:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,417
py
#!/usr/bin/env python3 import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import csv, argparse matplotlib.use('Agg') parser = argparse.ArgumentParser() parser.add_argument('-f', dest="files", type=str, nargs='+', required=True, help='The out.txt files') parser.add_argument('-l', dest="labels", type=str, nargs='+', required=True, help='Label for each curve') parser.add_argument('-m', dest="markers", type=str, nargs='+', required=False, help='Marker for each curve') parser.add_argument('-s', dest="scale", type=str, required=False, help='Scale of y-axis') parser.add_argument('-x', dest="xlabel", type=str, required=True, help='Label of x-axis') parser.add_argument('-y', dest="ylabel", type=str, required=True, help='Label of y-axis') parser.add_argument('-o', dest="outputfolder", required=True, help="Ouput folder") parser.add_argument('-n', dest="name", required=True, help="Name of output plot") parser.add_argument('-t', dest="title", required=True, help="Title of output plot") args = parser.parse_args() scale = None if args.scale is not None: scale = args.scale index = 0 for f in args.files: with open(f, 'r') as csvfile: reader = csv.reader(csvfile, delimiter=',') header = next(reader, None) x, y = [], [] for row in reader: x.append(int(row[0])) if scale == "MB": if "MB" in header[1]: y.append(float(row[1])) elif "KB" in header[1]: y.append(float(row[1]) / float(1024)) elif scale == "GB": if "MB" in header[1]: y.append(float(row[1]) / float(1024)) elif "KB" in header[1]: y.append(float(row[1]) / float(1024*1024)) else: y.append(float(row[1])) N = len(x) x2 = np.arange(N) if args.markers is not None: plt.plot(x2, y, marker=args.markers[index], markersize=7, fillstyle='none', label=args.labels[index]) else: plt.plot(x2, y, label=args.labels[index]) plt.xticks(x2, x, rotation=90) index += 1 plt.xlabel(args.xlabel) plt.ylabel(args.ylabel) plt.xlim(left=0) plt.ylim(bottom=0) plt.title(args.title) plt.legend() plt.tight_layout() #plt.show() plt.savefig(args.outputfolder+"/"+args.name+".eps", format="eps")
[ "batsarasnikos@gmail.com" ]
batsarasnikos@gmail.com
0f983bfba296e9069d60f2ce24011761d28fcdc7
fcfc18039d05878f6156536a6757832a3576147b
/Final_Project_Code_IS590PR_Functions.py
47773ad62be23389aa8a872651a9c749d91fc25a
[]
no_license
rahulrohri/IS590PR-Spring-2020-Final-Project
76fa6d8a0a56e39c155a0cc718ce0f06bd14d225
f101cb2ceacf83c3e24fb07f63e5456497e8d116
refs/heads/master
2022-07-07T12:51:07.558538
2020-05-13T11:45:13
2020-05-13T11:45:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,195
py
""" IS590 PR - University of Illinois - Urbana Champaign This file is a list of functions that have been used for our project and are Intended to support the jupyter notebook titled Final_Project_Code_IS590PR.ipynb Name: NYC_Public_Safety_Functions.py Team Members : Megha Manglani (GitHub id – meghamm2) Rahul Ohri (GitHub id- rahulrohri) """ import pandas as pd import numpy as np import matplotlib.pyplot as plt my_dir = 'C:/Users/rahul/Downloads/UIUC/Sem 2 - Spring 2020/Courses/Programing Analytics/Final Project/DataSets/' #https://github.com/iSchool-590pr/PR_Sp20_examples/blob/master/week_07/class7_pandas_pt2.ipynb NYPD_Arrests = my_dir +'NYPD_Arrests_Data__Historic_.csv' # Loading NYPD Arrest Data file Complaints = my_dir +'NYPD_Complaint_Data_Historic.csv' # Loading NYPD Complaints Data file EMS_incident = my_dir +'EMS_Incident_Dispatch_Data.csv' # Loading EMS incident dispatch Data file def dataset_validation(): """ This function is used to check if the input data files are having the correct column headers that are needed for our hypotheses analysis. The files need to be loaded from the local computer directory since they are very large. If the files are not present , then the user can download it from a google drive link provided by our team or can go to the official website from which the data was downloaded. >>> NYPD_Arrests = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/Arrest_Correct.csv' # Loading NYPD Arrest Data file >>> Complaints = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/Complaints_Correct.csv' # Loading NYPD Complaints Data file >>> EMS_incident = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/EMS_Correct.csv' # Loading EMS incident dispatch Data file >>> dataset_validation() The columns necessary for analysis are present in the EMS data file The columns necessary for analysis are present in the Complaints data file The columns necessary for analysis are present in the Arrests data file """ data_EMS = pd.read_csv(EMS_incident, nrows=1) data_Complaints = pd.read_csv(Complaints, nrows=1) data_Arrest = pd.read_csv(NYPD_Arrests, nrows=1) All_Col_list_EMS = list(data_EMS) All_Col_list_Complaints = list(data_Complaints) All_Col_list_Arrest = list(data_Arrest) Req_Complaints_cols = ['CMPLNT_NUM', 'CMPLNT_FR_DT', 'BORO_NM', 'VIC_RACE', 'OFNS_DESC'] Req_Arrests_cols = ['ARREST_BORO', 'ARREST_DATE', 'ARREST_KEY'] Req_EMS_cols = ['INCIDENT_RESPONSE_SECONDS_QY', 'INCIDENT_DATETIME', 'BOROUGH'] check_EMS = all(item in All_Col_list_EMS for item in Req_EMS_cols) # https://www.techbeamers.com/program-python-list-contains-elements/ if check_EMS is True: print("The columns necessary for analysis are present in the EMS data file") else: print( "The columns necessary for analysis are not present in the EMS data file. Kindly download the dataset files from - https://drive.google.com/open?id=1g_StaWiaWQyNjNOu3wlFKG2dsIJZjyjF or the latest file from https://data.cityofnewyork.us/Public-Safety/EMS-Incident-Dispatch-Data/76xm-jjuj") check_Complaints = all(item in All_Col_list_Complaints for item in Req_Complaints_cols) # https://www.techbeamers.com/program-python-list-contains-elements/ if check_Complaints is True: print("The columns necessary for analysis are present in the Complaints data file") else: print( "The columns necessary for analysis are not present in the Complaints data file. Kindly download the dataset files from - https://drive.google.com/open?id=112LOH-fYjUn5AHVnFbgQYRAAhSCcXvjq or the latest file from https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i ") check_Arrests = all(item in All_Col_list_Arrest for item in Req_Arrests_cols) # https://www.techbeamers.com/program-python-list-contains-elements/ if check_Arrests is True: print("The columns necessary for analysis are present in the Arrests data file") else: print( "The columns necessary for analysis are not present in the Arrests data file. Kindly download the dataset files from - https://drive.google.com/open?id=1g_StaWiaWQyNjNOu3wlFKG2dsIJZjyjF or the latest file from https://catalog.data.gov/dataset/nypd-arrests-data-historic") def get_file(file, cols) -> pd.DataFrame: """ This function produced a dataframe that consists of the columns that are needed fr analysis from a datafile. Since in our project we are using between 2 - 4 columns for each hypothesis analysis rather than loading the entire data file, the dataframe will end up containing only between 2-4 columns. >>> test_file = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/Airplane.csv' >>> print("Enter 'AircraftHex' and 'SessionID' as column names") Enter 'AircraftHex' and 'SessionID' as column names >>> answer = get_file(test_file,2) enter your column name 1 and press enter:enter your column name 2 and press enter: >>> answer.iloc[0]['AircraftHex'] 'A902B5' >>> test_file = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/Airplane.csv' >>> get_file(test_file,5) 'Invalid number of columns' """ if cols == 2: col1 = input('enter your column name 1 and press enter:') # print(type(col1)) col2 = input('enter your column name 2 and press enter:') col_list = [col1, col2] elif cols == 3: col1 = input('enter your column name 1 and press enter:') # print(type(col1)) col2 = input('enter your column name 2 and press enter:') col3 = input('enter your column name 3 and press enter:') col_list = [col1, col2, col3] elif cols == 4: col1 = input('enter your column name 1 inside and press enter:') col2 = input('enter your column name 2 inside and press enter:') col3 = input('enter your column name 3 inside and press enter:') col4 = input('enter your column name 4 inside and press enter:') col_list = [col1, col2, col3, col4] else: return "Invalid number of columns" data_file = pd.read_csv(file, usecols=col_list) # Import only necessary columns from the dataset return data_file # Extracting the Month and Year of the incident def extract_year_month(x, old_col: str, month_column: str, year_column: str): """ This function is used to extract the year and the month from an existing dataframe column that contains date values in the format mm/dd/yyyy. The extraction process results in the formation of two new columns in the dataframe - one containing only the months and the other containing only the year values. :param x: The dataframe on which opeartions are to be performed :param old_col: The dataframe column containing date in format mm/dd/yyyy :param month_column: The dataframe column to be created post extraction of the month from the column name old_col :param year_column: The dataframe column to be created post extraction of the year from the column name old_col >>> sample_csv = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/sample_date_func.csv' >>> sample_df = pd.read_csv(sample_csv) >>> answer = extract_year_month(sample_df,'Date','Month','Year') >>> answer.iloc[0]['Population'] #doctest: +NORMALIZE_WHITESPACE 8300124 """ x[month_column] = x[old_col].str[:2] x[year_column] = x[old_col].str[6:10] return x def get_arrest_or_crime_count(dfname, col_year, col_month, col_boro, col_key) -> pd.core.frame.DataFrame: """ This function is used to create a multilevel index dataframe that groups the data by the neighbourhood, year , and month columns and finally produces a column of the aggragation type as count to display either the total count of arrests or the total count of complaints :param dfname: The dataframe on which opeartions are to be performed :param col_year: Column name containing year value :param col_month: Column name containing month value :param col_boro:Column name containing borough/area value :param col_key: Column name on which aggreagation has to be done :return: a dataframe containing year,month,neighbourhood,aggregated column count >>> sample_csv = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/arrest_crime_count_function.csv' >>> sample_df = pd.read_csv(sample_csv) >>> answer = get_arrest_or_crime_count(sample_df,'Complaint_Filed_Year','Complaint_Filed_Month','BORO_NM','CMPLNT_NUM') >>> answer.index.levels[1] Int64Index([2006, 2009, 2011, 2015], dtype='int64', name='Complaint_Filed_Year') """ # replacing Borough initials with complete names dfname = dfname.dropna(subset=[col_year]) dfname = dfname.astype({col_year: 'int64'}) dfname = dfname[dfname[col_year] > 2005] data_count = dfname.groupby([col_boro, col_year, col_month]).agg({col_key: [ 'count']}) # https://pandas.pydata.org/pandas-docs/version/0.23.1/generated/pandas.core.groupby.DataFrameGroupBy.agg.html return data_count def plot_graph(n, df, l, b, var1: str, var2: str, var3: str, var4: str, var5: str, constant: str): ''' This function is used to plot a line graph for a multilevel index dataframe. The graph has multiple subplots as well depending upon the number of index groups in the first column of the dataframe. eg in one datframe we have 5 boroughs that are used as the grouping column and thus we will have 5 subplots :param n: number of subplots :param df: the dataframe for which graphs have to be plotted :param l: length of the subplot figure :param b: breadth of the subplot figure :param var1: Index value to be plotted :param var2: Index value to be plotted :param var3: Index value to be plotted :param var4: Index value to be plotted :param var5: Index value to be plotted :param constant: Constant part of text to be displayed in the title of the subplot # https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html >>> arrays = [np.array(['india', 'USA', 'italy', 'italy', 'india', 'canada', 'india', 'USA','australia']),np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two','one'])] >>> df_new = pd.DataFrame(np.random.randn(9, 5), index=arrays) #Creating a dummy multi-index dataframe >>> plot_graph(5,df_new,18,20,'india','USA','italy','australia','canada','Just testing') ''' figure, axis = plt.subplots(n, 1, figsize=( l, b)) # https://stackoverflow.com/questions/25386870/pandas-plotting-with-multi-index df.xs(var1).plot(kind='line', ax=axis[0]).set_title( var1 + ' - ' + constant) # https://pandas.pydata.org/pandas-docs/version/0.16.0/visualization.html df.xs(var2).plot(kind='line', ax=axis[1]).set_title(var2 + ' - ' + constant) df.xs(var3).plot(kind='line', ax=axis[2]).set_title(var3 + ' - ' + constant) df.xs(var4).plot(kind='line', ax=axis[3]).set_title(var4 + ' - ' + constant) df.xs(var5).plot(kind='line', ax=axis[4]).set_title(var5 + ' - ' + constant) def race_percentage(row, colname) -> pd.core.series.Series: # https://stackoverflow.com/questions/26886653/pandas-create-new-column-based-on-values-from-other-columns-apply-a-function-o # https://worldpopulationreview.com/us-cities/new-york-city-population/ # total NYC population = 8175133 # Creating a function to add crime per capita values """ This function is used to return a pandas series that has the race percentage value of all the different races present in NYC. :param row: denotes that the operation has to be performed across rows :param colname: Column name on which operation has to be done :return : a specific numeric value if a row match is found >>> data_dummy = {'Race': ['AMERICAN INDIAN/ALASKAN NATIVE','ASIAN / PACIFIC ISLANDER', 'BLACK','BLACK HISPANIC','WHITE','WHITE HISPANIC','UNKNOWN/OTHER'],'Offense': ['FRAUDS', 'BURGLARY','HARRASSMENT 2','FORGERY','FRAUDS','FRAUDS','FRAUDS'],'Comp_no':[1,2,3,4,5,6,7]} >>> df_dummy = pd.DataFrame (data_dummy, columns = ['Race','Offense','Comp_no']) >>> df_dummy.apply (lambda row: race_percentage(row,'Race'), axis=1) 0 0.0043 1 0.1400 2 0.2195 3 0.0233 4 0.3214 5 0.1053 6 0.1862 dtype: float64 """ if row[colname] == 'AMERICAN INDIAN/ALASKAN NATIVE': return 0.0043 if row[colname] == 'ASIAN / PACIFIC ISLANDER': return 0.14 if row[colname] == 'BLACK': return 0.2195 if row[colname] == 'BLACK HISPANIC': return 0.0233 if row[colname] == 'WHITE': return 0.3214 if row[colname] == 'WHITE HISPANIC': return 0.1053 if row[colname] == 'UNKNOWN/OTHER': return 0.1862 def offense_per_victim_race(dataframe_name) -> pd.DataFrame: """ This function returns a dataframe that contains the information pertaining to the offense committed and the victims. It also takes the victim race into consideration and has a column that has normalized complaint numbers based on that race percentage :param dataframe_name: >>> sample = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/offense_per_victim_race_sample.csv' >>> sample_df = pd.read_csv(sample) >>> ans = offense_per_victim_race(sample_df) >>> ans.iloc[0]['race_percentage'] 0.14 """ dataframe_name.VIC_RACE = dataframe_name.VIC_RACE.fillna('UNKNOWN') # replacing nans with 'UNKNOWN' dataframe_name = dataframe_name.replace({'VIC_RACE': 'UNKNOWN'}, 'UNKNOWN/OTHER') dataframe_name = dataframe_name.replace({'VIC_RACE': 'OTHER'}, 'UNKNOWN/OTHER') # Selecting only a particular set of crimes that involve harming another human type_of_crime = ['HARRASSMENT 2', 'BURGLARY', 'ROBBERY', 'FELONY ASSAULT', 'SEX CRIMES', 'OFFENSES INVOLVING FRAUD', 'RAPE', 'THEFT-FRAUD', 'MURDER & NON-NEGL. MANSLAUGHTER', 'KIDNAPPING & RELATED OFFENSES', 'OFFENSES RELATED TO CHILDREN', 'KIDNAPPING', 'OTHER OFFENSES RELATED TO THEF', 'PETIT LARCENY', 'GRAND LARCENY', 'FORGERY', 'FRAUDS', 'ASSAULT 3 & RELATED OFFENSES'] # https://cmdlinetips.com/2018/02/how-to-subset-pandas-dataframe-based-on-values-of-a-column/ dataframe_name = dataframe_name[dataframe_name.OFNS_DESC.isin(type_of_crime)] # race_count = complaints_df_new.groupby(['OFNS_DESC','VIC_RACE']).agg({'CMPLNT_NUM': ['count']}).reset_index() dataframe_name = dataframe_name.groupby(["OFNS_DESC", "VIC_RACE"], as_index=False).count() dataframe_name = dataframe_name[['OFNS_DESC', 'VIC_RACE', 'CMPLNT_NUM']] dataframe_name.apply(lambda row: race_percentage(row, 'VIC_RACE'), axis=1) # https://stackoverflow.com/questions/26886653/pandas-create-new-column-based-on-values-from-other-columns-apply-a-function-o dataframe_name['race_percentage'] = dataframe_name.apply(lambda row: race_percentage(row, 'VIC_RACE'), axis=1) # race_count_new['race_population'] = race_count_new['race_percentage']*8175133 # race_count_new['race_population'] = race_count_new['race_population'].astype('int64') dataframe_name['Normalized results'] = dataframe_name['CMPLNT_NUM'] / dataframe_name['race_percentage'] dataframe_name['Normalized results'] = dataframe_name['Normalized results'].astype('int64') return dataframe_name def population_density_details(filename) -> pd.core.frame.DataFrame: ''' This function returns a dataframe which contains the population density for each neighbourhood. The area in sq.km column is added manually. :param filename: The population CSV file from which dataframe needs to be created >>> nyc_population_sample = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/New_York_City_Population_sample.csv' >>> ans = population_density_details(nyc_population_sample) >>> ans.iloc[0]['Population'] 147388 ''' area_population = pd.read_csv(filename) area_population = area_population[area_population['Year'] > 2000] area_population_sum = area_population.groupby(['Borough'])['Population'].sum() borough_pop_df = area_population_sum.to_frame().reset_index() borough_pop_df['Area in sq. km'] = [109.04, 183.42, 59.13, 281.09, 151.18] # https://en.wikipedia.org/wiki/Demographics_of_New_York_City borough_pop_df['Population Density'] = borough_pop_df['Population'] / borough_pop_df['Area in sq. km'] borough_pop_df['Borough'] = borough_pop_df['Borough'].str.upper() borough_pop_df = borough_pop_df.rename(columns={"Borough": "BORO_NM"}) borough_pop_df['Population Density'] = borough_pop_df['Population Density'].astype('int64') return borough_pop_df def corr_coeff(col1, col2) -> np.float64: """ :param col1: The first dataframe column you want to use for correlation calculation :param col2: The second dataframe column you want to use for correlation calculation :return: The correlation value between the two columns which is of numpy float data type >>> sample_csv = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/Correlation_dummy.csv' >>> sample_df = pd.read_csv(sample_csv) >>> corr_coeff(sample_df['Age'],sample_df['Height(m)']) 0.7723621551319031 >>> data_dummy = {'Weight': [55,66,77,88,99,33],'Age': [22,33,44,55,66,15]} >>> df_dummy = pd.DataFrame (data_dummy, columns = ['Weight','Age']) >>> corr_coeff(df_dummy['Weight'],df_dummy['Age']) 0.9787474369757403 """ plt.scatter(col1, col2) correlation = col1.corr(col2) # rp_corr = rp.corr_pair(col1,col2) return correlation # Selecting only a particular set of crimes that involve harming another human NYC_Population = my_dir + 'New_York_City_Population.csv' # Loading NYPD Arrest Data file Pop_density_df = population_density_details(NYC_Population) def get_crime_results(dfname) -> pd.core.frame.DataFrame: ''' This function returns a dataframe which has the complaints per capita for each borough and offense :param dfname: NYC complaints dataframe on which operations have to be performed >>> sample_NYC_csv = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/NYC_get_crime.csv' >>> sample_NYC_dframe = pd.read_csv(sample_NYC_csv) >>> Pop_density_csv = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/Dummy_pop_density.csv' >>> Pop_density_df = pd.read_csv(Pop_density_csv) >>> ans = get_crime_results(sample_NYC_dframe) >>> ans.iloc[0]['Population'] 2504700 ''' type_of_crime = ['HARRASSMENT 2', 'BURGLARY', 'ROBBERY', 'FELONY ASSAULT', 'SEX CRIMES', 'OFFENSES INVOLVING FRAUD', 'RAPE', 'THEFT-FRAUD', 'MURDER & NON-NEGL. MANSLAUGHTER', 'KIDNAPPING & RELATED OFFENSES', 'OFFENSES RELATED TO CHILDREN', 'KIDNAPPING', 'OTHER OFFENSES RELATED TO THEF', 'PETIT LARCENY', 'GRAND LARCENY', 'FORGERY', 'FRAUDS', 'ASSAULT 3 & RELATED OFFENSES'] # https://cmdlinetips.com/2018/02/how-to-subset-pandas-dataframe-based-on-values-of-a-column/ dfname = dfname[dfname.OFNS_DESC.isin(type_of_crime)] # complaints_df_new.OFNS_DESC.unique() g1 = dfname.groupby(["OFNS_DESC", "BORO_NM"], as_index=False).count() g1 = g1[["OFNS_DESC", "BORO_NM", "CMPLNT_NUM"]] # merging with population density dataframe to add necessary density columns Crime_result_df = pd.merge(g1, Pop_density_df, how='left', left_on='BORO_NM', right_on='BORO_NM') # creating the per capita values by dividing complaint numbers and population Crime_result_df['complaints per capita'] = Crime_result_df['CMPLNT_NUM'] / Crime_result_df['Population'] Crime_result_df['complaints per capita'] = Crime_result_df['complaints per capita'].astype('float64') return Crime_result_df #EMS_incident_response_avg = EMS_Data[['INCIDENT_RESPONSE_SECONDS_QY','BOROUGH']] def EMS_details(dfname) -> pd.DataFrame: ''' This function returns a dataframe containing details of the incident response time, incident datetime, borough There are also details pertaining to the population density , which is a result of the 2 dataframes being joined :param dfname: EMS dataframe to be passed as input >>> ems_sample_csv = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/EMS_incidentResponse.csv' >>> ems_sample_df = pd.read_csv(ems_sample_csv) >>> Pop_density_csv = 'https://raw.githubusercontent.com/rahulrohri/final_project_2020Sp/master/DocTest%20Dummy%20Files/Dummy_pop_density.csv' >>> Pop_density_df = pd.read_csv(Pop_density_csv) >>> ans = EMS_details(ems_sample_df) >>> ans.iloc[0]['Population'] 2504700 ''' EMS_incident_response_avg = dfname EMS_incident_response_avg = EMS_incident_response_avg.groupby(['BOROUGH','Incident_Year','Incident_Month'],as_index = False)['INCIDENT_RESPONSE_SECONDS_QY'].mean() EMS_incident_response_avg['AVG_INCIDENT_RESPONSE (Minutes)'] = EMS_incident_response_avg['INCIDENT_RESPONSE_SECONDS_QY']/60 #Renaming the index to Staten Island EMS_incident_response_avg = EMS_incident_response_avg.replace({'BOROUGH': 'RICHMOND / STATEN ISLAND'}, 'STATEN ISLAND') result_inc_resp_df = pd.merge(Pop_density_df, EMS_incident_response_avg, how='inner', left_on='BORO_NM', right_on='BOROUGH') return result_inc_resp_df
[ "noreply@github.com" ]
noreply@github.com
803d74d1d4c3dd4a3fb7412c178cd596d5ac7f41
2f3278709d2409a4a20b7f79d31dfed43aac6557
/LiTS_Decide_Preprocessing/TumorNetAvgpoolRelu.py
893eb9d11c26f76fac1a4be2dec161ac10e44d82
[]
no_license
HaoW14/Preprocess-of-CT-data
8678ff749c644a0881d8305d6c6b51d8bf87912a
811d95f28c11abc2b4b0305806397602ab4d51ba
refs/heads/master
2022-12-28T01:02:39.929089
2020-10-18T10:31:27
2020-10-18T10:31:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,773
py
# TumorNet without source; Downsample by pooling; activation is relu # Which can use transfer lerning directly import torch from torch import nn import numpy as np import SimpleITK as sitk from medpy import metric def saved_preprocessed(savedImg,origin,direction,xyz_thickness,saved_name): origin = tuple(k.item() for k in origin) direction = tuple(k.item() for k in direction) xyz_thickness = tuple(k.item() for k in xyz_thickness) savedImg = np.squeeze(np.argmax(savedImg.detach().cpu().numpy(),axis=1),0).astype(np.float32) newImg = sitk.GetImageFromArray(savedImg) newImg.SetOrigin(origin) newImg.SetDirection(direction) newImg.SetSpacing(xyz_thickness) sitk.WriteImage(newImg, saved_name) def Dice(output2, target): pred_lesion = np.argmax(output2.detach().cpu().numpy(), axis=1) target = np.squeeze(target.detach().cpu().numpy(), axis=1) true_lesion = target == 2 # Compute per-case (per patient volume) dice. if not np.any(pred_lesion) and not np.any(true_lesion): tumor_dice = 1. print('tumor_dice = 1') else: tumor_dice = metric.dc(pred_lesion, true_lesion) return tumor_dice def one_hot(scores, labels): _labels = torch.zeros_like(scores) _labels.scatter_(dim=1, index=labels.long(), value=1)#scatter_(input, dim, index, src) return _labels class DiceLoss(nn.Module): def __init__(self): super().__init__() self.smooth = 1e-5 def forward(self, output2, target): temp = target.clone() # deep clone temp[target == 2] = 1 temp[target <= 1] = 0 target2 = one_hot(output2, temp) intersection2 = 2. * (output2 * target2).sum() denominator2 = output2.sum() + target2.sum() dice2 = (intersection2 + self.smooth) / (denominator2 + self.smooth) dice = 1 - dice2 return dice class PostRes(nn.Module): def __init__(self, n_in, n_out, stride = 1): super(PostRes, self).__init__() self.resBlock = nn.Sequential( nn.Conv3d(n_in, n_out, kernel_size=3, stride=stride, padding=1), nn.InstanceNorm3d(n_out), nn.ReLU(inplace=True), # nn.PReLU(), nn.Conv3d(n_out, n_out, kernel_size=3, padding=1), nn.InstanceNorm3d(n_out) ) self.relu = nn.ReLU(inplace=True) # self.prelu = nn.PReLU() if stride != 1 or n_out != n_in: self.shortcut = nn.Sequential( nn.Conv3d(n_in, n_out, kernel_size = 1, stride = stride), nn.InstanceNorm3d(n_out)) else: self.shortcut = None def forward(self, x): residual = x if self.shortcut is not None: residual = self.shortcut(x) out = self.resBlock(x) out += residual out = self.relu(out) # out = self.prelu(out) return out class Decoder2(nn.Module): def __init__(self): super().__init__() self.num_blocks_back = [3, 3, 2, 2] # [5-2] self.nff = [1, 8, 16, 32, 64, 128] # NumFeature_Forw[0-5] self.nfb = [64, 32, 16, 8, 2] # NunFeaturn_Back[5-0] #deconv4-1,output self.deconv4 = nn.Sequential( nn.ConvTranspose3d(self.nff[5], self.nfb[0], kernel_size=2, stride=2), nn.InstanceNorm3d(self.nfb[0]), nn.ReLU(inplace=True) # nn.PReLU() ) self.deconv3 = nn.Sequential( nn.ConvTranspose3d(self.nfb[0], self.nfb[1], kernel_size=2, stride=2), nn.InstanceNorm3d(self.nfb[1]), nn.ReLU(inplace=True) # nn.PReLU() ) self.deconv2 = nn.Sequential( nn.ConvTranspose3d(self.nfb[1], self.nfb[2], kernel_size=2, stride=2), nn.InstanceNorm3d(self.nfb[2]), nn.ReLU(inplace=True) # nn.PReLU() ) self.deconv1 = nn.Sequential( nn.ConvTranspose3d(self.nfb[2], self.nfb[3], kernel_size=2, stride=2), nn.InstanceNorm3d(self.nfb[3]), nn.ReLU(inplace=True) # nn.PReLU() ) self.output = nn.Sequential( nn.Conv3d(self.nfb[3], self.nfb[3], kernel_size=1), nn.InstanceNorm3d(self.nfb[3]), nn.ReLU(inplace=True), # nn.PReLU(), # nn.Dropout3d(p = 0.3), nn.Conv3d(self.nfb[3], self.nfb[4], kernel_size=1)) # since class number = 3 and split into 2 branch #backward4-1 for i in range(len(self.num_blocks_back)): blocks = [] for j in range(self.num_blocks_back[i]): if j == 0: blocks.append(PostRes(self.nfb[i] * 2, self.nfb[i])) else: blocks.append(PostRes(self.nfb[i], self.nfb[i])) setattr(self, 'backward' + str(4-i), nn.Sequential(*blocks)) self.drop = nn.Dropout3d(p=0.5, inplace=False) self.softmax = nn.Softmax(dim=1)#(NCDHW) def forward(self, layer1, layer2, layer3, layer4, layer5): # decoder up4 = self.deconv4(layer5) cat_4 = torch.cat((up4, layer4), 1) layer_4 = self.backward4(cat_4) up3 = self.deconv3(layer_4) cat_3 = torch.cat((up3, layer3), 1) layer_3 = self.backward3(cat_3) up2 = self.deconv2(layer_3) cat_2 = torch.cat((up2, layer2), 1) layer_2 = self.backward2(cat_2) up1 = self.deconv1(layer_2) cat_1 = torch.cat((up1, layer1), 1) layer_1 = self.backward1(cat_1) layer_1 = self.output(layer_1) layer_1 = self.softmax(layer_1) return layer_1 class TumorNet(nn.Module): def __init__(self): super(TumorNet, self).__init__() self. nff = [1, 8, 16, 32, 64, 128]#NumFeature_Forw[0-5] self.num_blocks_forw = [2, 2, 3, 3]#[2-5] # forward1 self.forward1 = nn.Sequential( nn.Conv3d(self.nff[0], self.nff[1], kernel_size=3, padding=1), nn.InstanceNorm3d(self.nff[1]), nn.ReLU(inplace=True), # nn.PReLU(), nn.Conv3d(self.nff[1], self.nff[1], kernel_size=3, padding=1), nn.InstanceNorm3d(self.nff[1]), nn.ReLU(inplace=True) # nn.PReLU() ) # forward2-5 for i in range(len(self.num_blocks_forw)): # 4 blocks = [] for j in range(self.num_blocks_forw[i]): # {2,2,3,3} if j == 0: # conv ###plus source connection blocks.append(PostRes(self.nff[i + 1], self.nff[i + 2])) else: blocks.append(PostRes(self.nff[i + 2], self.nff[i + 2])) setattr(self, 'forward' + str(i + 2), nn.Sequential(*blocks)) self.avgpool = nn.AvgPool3d(kernel_size=2, stride=2) self.maxpool = nn.MaxPool3d(kernel_size=2, stride=2) # downsamp1-4 by stride convolution # self.downsamp1 = nn.Conv3d(self.nff[1], self.nff[2], kernel_size=3, stride=2, padding=1) # self.downsamp2 = nn.Conv3d(self.nff[2], self.nff[3], kernel_size=3, stride=2, padding=1) # self.downsamp3 = nn.Conv3d(self.nff[3], self.nff[4], kernel_size=3, stride=2, padding=1) # self.downsamp4 = nn.Conv3d(self.nff[4], self.nff[5], kernel_size=3, stride=2, padding=1) self.decoder2 = Decoder2() self.drop = nn.Dropout3d(p=0.5, inplace=False) def forward(self, input): #encoder layer1 = self.forward1(input) down1 = self.maxpool(layer1) # down1 = self.downsamp1(layer1) layer2 = self.forward2(down1) down2 = self.maxpool(layer2) # down2 = self.downsamp2(layer2) layer3 = self.forward3(down2) down3 = self.maxpool(layer3) # down3 = self.downsamp3(layer3) layer4 = self.forward4(down3) down4 = self.maxpool(layer4) # down4 = self.downsamp4(layer4) layer5 = self.forward5(down4) # decoder branch2 = self.decoder2(layer1, layer2, layer3, layer4, layer5) return branch2 def main(): net = TumorNet().cuda()#necessary for torchsummary, must to cuda from torchsummary import summary summary(net, input_size=(1,64,256,256))#must remove the number of N # input = torch.randn([1,1,64,256,256]).cuda()#(NCDHW) # output = net(input) # print(output.shape) # print('############net.named_parameters()#############') # for name, param in net.named_parameters(): # print(name) if __name__ == '__main__': main()
[ "lihuiyu23@gmail.com" ]
lihuiyu23@gmail.com
99b49fca33ce2929cfd1a125527e1ee432ccfad4
42d58ba3005263744a04e6eb6e5a7e550b4eef29
/Day2_Tip_Calculator.py
b63dca6d2e892a1ae8ef34186a247a15cec8473e
[]
no_license
ShaneNelsonCodes/100Days_Python
8828ccfba0873084316f46bc98a53c603de452ae
4cea2ba5fe0459a4676c7d164b5402dd244ff11b
refs/heads/main
2023-02-12T14:01:10.726683
2021-01-12T13:59:04
2021-01-12T13:59:04
317,283,355
0
0
null
null
null
null
UTF-8
Python
false
false
571
py
#If the bill was $150.00, split between 5 people, with 12% tip. #Each person should pay (150.00 / 5) * 1.12 = 33.6 #Format the result to 2 decimal places = 33.60 #Tip: You might need to do some research in Google to figure out how to do this. print("Welcome to the tip calculator\n") bill = float(input("What was the total bill?\n$")) tip = int(input("What percentage would you like to give? 10, 12, or 15\n%"))/100 split = int(input("How many people to split the bill?\n")) amount = round(((bill * (1 + tip)) / split),2) print(f"Each person should pay: ${amount}")
[ "Shane.Nelson@kp.org" ]
Shane.Nelson@kp.org
0bc44e39ed3c0411a6484900df8dc4ccda28fa3a
67b0379a12a60e9f26232b81047de3470c4a9ff9
/profile/migrations/0042_auto_20170225_1639.py
6f002bfd9f51f8ca97ff8153953db520d0afe6e9
[]
no_license
vintkor/whitemandarin
8ea9022b889fac718e0858873a07c586cf8da729
5afcfc5eef1bb1cc2febf519b04a4819a7b9648f
refs/heads/master
2021-05-06T03:35:09.367375
2017-12-20T15:43:08
2017-12-20T15:43:08
114,904,110
0
0
null
null
null
null
UTF-8
Python
false
false
565
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-02-25 14:39 from __future__ import unicode_literals import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('profile', '0041_auto_20170217_1405'), ] operations = [ migrations.AlterField( model_name='user', name='date_of_birth', field=models.DateField(default=datetime.datetime(2017, 2, 25, 14, 39, 18, 342403, tzinfo=utc)), ), ]
[ "alkv84@yandex.ru" ]
alkv84@yandex.ru
bf5bf6f46c12b9cda5cfa83050001a0e72113069
79e45fa0e495be5aa967b21467771a27970df99b
/178.py
c1be11f9ea4f1241ffac13ed1324ae98de88788d
[]
no_license
kisa77/Crawl
7d3b6d7077e60a47f5336b2976b226646cfe2cdb
ec25b563007481b169165f06ca04560d64a1ea74
refs/heads/master
2016-09-02T11:19:14.152200
2013-07-16T10:12:09
2013-07-16T10:12:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,896
py
#/usr/bin/python #coding=utf8 import urllib2,urlparse import os,sys,bs4,chardet,MySQLdb import re from datetime import datetime from HTMLParser import HTMLParser class Crawl: """ Class Crawl crawl data from db.178.com """ __data = '' __connect = '' __retryMax = 3 def __init__(self): self.connect(c_host='localhost', c_user='root', c_passwd='root12') def request_url(self,url): try: request = urllib2.Request(url) request.add_header('User-Agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) \ AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.116 ') return urllib2.urlopen(request) except CrawlError as e: return def write_file(self,file_name, content_list): file = open(file_name, 'w') for item in content_list: file.write(item.prettify()) file.close() def parse_web_page(self, cont, from_encoding='utf-8'): return bs4.BeautifulSoup(cont, from_encoding='utf-8') def connect(self, c_host, c_user, c_passwd): if not self.__connect: self.__connect = MySQLdb.connect(host=c_host, user=c_user, passwd=c_passwd) return self.__connect else: return self.__connect def output_log(self, msg): print "[" + datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "]\t" + msg def save_to_db(self, data): self.output_log("---\tsave to db...") self.__connect.select_db('weixin') cursor = self.__connect.cursor() cursor.execute("select id from wow_items where id = %s", data['id']) tmpResult = cursor.fetchall() if tmpResult: self.output_log("item " + data['id'] + " already exists! skip...") return insertData = [data['id'], data['name'], 0, 0, data['position'], data['attribute'], ''] insertData += [data['quality'], data['qnumber'], data['img'], data['html']] cursor.execute("insert into wow_items values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)", insertData) self.__connect.commit() del(cursor) self.output_log("---\tsave to db success!") return def crawl_item(self, url): self.__data = {} for i in range(1, self.__retryMax): self.output_log("crawling " + url + " ... retry:" + str(i)) tmpCont = self.request_url(url) if not tmpCont : continue if tmpCont.readline() == 'no data': self.output_log("---\t no data") return tmpSoup = self.parse_web_page(tmpCont.read()) bbCode = tmpSoup.find(id='bbcode_content') try : self.__data['img'] = re.compile(r'\[img\](.*)\[\/img\]').findall(bbCode.prettify())[0] except: self.__data['img'] = '' try : self.__data['quality'] = re.compile(r'(\d)').findall(tmpSoup.find(id='item_detail').find('h2')['class'][0])[0] except: self.__data['quality'] = '' try : self.__data['name'] = tmpSoup.find(id='item_detail').find('strong').text except: self.__data['name'] = '' try : self.__data['id'] = re.compile(r'ID:([0-9]*)').findall(tmpSoup.find(id='item_detail').find('span').text)[0] except: self.__data['id'] = '' try : self.__data['qnumber'] = tmpSoup.find(id='item_detail').find(id='ilv').text except: self.__data['qnumber'] = '' try : self.__data['position'] = tmpSoup.find(id='item_detail').find('table').find('table').find('th').text except: self.__data['position'] = '' try : self.__data['html'] = tmpSoup.find(id='main').find_all('div')[1].prettify() except: self.__data['html'] = '' try : """ strip html tag """ parser = HTMLParser() tmpList = [] parser.handle_data = tmpList.append parser.feed(tmpSoup.find(id='item_detail').find(id='_dps').prettify().strip("\n")) parser.close() self.__data['attribute'] = ''.join(tmpList) except: self.__data['attribute'] = '' """ del temporary variables""" del(parser,tmpList,tmpSoup,bbCode,tmpCont) if not self.__data: continue return self.save_to_db(self.__data) crawl = Crawl() for num in range(1495, 100000): try : request_url = 'http://db.178.com/wow/cn/item/' + str(num) + '.html' crawl.crawl_item(url=request_url) except : print crawl.output_log('Exception! skip..')
[ "lixiao@comsenz.com" ]
lixiao@comsenz.com
929d4cbe14e60aaf7683f78e7b8e87aa8cf4d89d
a2490d50c85bc8385cdda1e2eaf88f02951dc808
/client/verta/verta/_protos/public/modeldb/metadata/MetadataService_pb2.py
f7435b6df5e8379dcdef0246f8e30430db6a2fe6
[ "Apache-2.0" ]
permissive
Atharex/modeldb
2e379bc87df054dc5c1a9058620aef8a3ada9108
3a286d5861c1dd14342084793dd7d7584ff8a29b
refs/heads/master
2022-11-08T09:23:37.799241
2020-07-01T12:16:31
2020-07-01T12:16:31
275,455,778
0
0
Apache-2.0
2020-06-27T21:26:05
2020-06-27T21:26:05
null
UTF-8
Python
false
true
16,824
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: modeldb/metadata/MetadataService.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='modeldb/metadata/MetadataService.proto', package='ai.verta.modeldb.metadata', syntax='proto3', serialized_options=b'P\001ZGgithub.com/VertaAI/modeldb/protos/gen/go/protos/public/modeldb/metadata', serialized_pb=b'\n&modeldb/metadata/MetadataService.proto\x12\x19\x61i.verta.modeldb.metadata\x1a\x1cgoogle/api/annotations.proto\"U\n\nIDTypeEnum\"G\n\x06IDType\x12\x0b\n\x07UNKNOWN\x10\x00\x12\x19\n\x15VERSIONING_REPOSITORY\x10\x01\x12\x15\n\x11VERSIONING_COMMIT\x10\x02\"\x80\x01\n\x12IdentificationType\x12=\n\x07id_type\x18\x01 \x01(\x0e\x32,.ai.verta.modeldb.metadata.IDTypeEnum.IDType\x12\x10\n\x06int_id\x18\x02 \x01(\x04H\x00\x12\x13\n\tstring_id\x18\x03 \x01(\tH\x00\x42\x04\n\x02id\"i\n\x10GetLabelsRequest\x12\x39\n\x02id\x18\x01 \x01(\x0b\x32-.ai.verta.modeldb.metadata.IdentificationType\x1a\x1a\n\x08Response\x12\x0e\n\x06labels\x18\x01 \x03(\t\"y\n\x10\x41\x64\x64LabelsRequest\x12\x39\n\x02id\x18\x01 \x01(\x0b\x32-.ai.verta.modeldb.metadata.IdentificationType\x12\x0e\n\x06labels\x18\x02 \x03(\t\x1a\x1a\n\x08Response\x12\x0e\n\x06status\x18\x01 \x01(\x08\"|\n\x13\x44\x65leteLabelsRequest\x12\x39\n\x02id\x18\x01 \x01(\x0b\x32-.ai.verta.modeldb.metadata.IdentificationType\x12\x0e\n\x06labels\x18\x02 \x03(\t\x1a\x1a\n\x08Response\x12\x0e\n\x06status\x18\x01 \x01(\x08\x32\xca\x03\n\x0fMetadataService\x12\x8b\x01\n\tGetLabels\x12+.ai.verta.modeldb.metadata.GetLabelsRequest\x1a\x34.ai.verta.modeldb.metadata.GetLabelsRequest.Response\"\x1b\x82\xd3\xe4\x93\x02\x15\x12\x13/v1/metadata/labels\x12\x8e\x01\n\tAddLabels\x12+.ai.verta.modeldb.metadata.AddLabelsRequest\x1a\x34.ai.verta.modeldb.metadata.AddLabelsRequest.Response\"\x1e\x82\xd3\xe4\x93\x02\x18\x1a\x13/v1/metadata/labels:\x01*\x12\x97\x01\n\x0c\x44\x65leteLabels\x12..ai.verta.modeldb.metadata.DeleteLabelsRequest\x1a\x37.ai.verta.modeldb.metadata.DeleteLabelsRequest.Response\"\x1e\x82\xd3\xe4\x93\x02\x18*\x13/v1/metadata/labels:\x01*BKP\x01ZGgithub.com/VertaAI/modeldb/protos/gen/go/protos/public/modeldb/metadatab\x06proto3' , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _IDTYPEENUM_IDTYPE = _descriptor.EnumDescriptor( name='IDType', full_name='ai.verta.modeldb.metadata.IDTypeEnum.IDType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNKNOWN', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='VERSIONING_REPOSITORY', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='VERSIONING_COMMIT', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=113, serialized_end=184, ) _sym_db.RegisterEnumDescriptor(_IDTYPEENUM_IDTYPE) _IDTYPEENUM = _descriptor.Descriptor( name='IDTypeEnum', full_name='ai.verta.modeldb.metadata.IDTypeEnum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _IDTYPEENUM_IDTYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=99, serialized_end=184, ) _IDENTIFICATIONTYPE = _descriptor.Descriptor( name='IdentificationType', full_name='ai.verta.modeldb.metadata.IdentificationType', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id_type', full_name='ai.verta.modeldb.metadata.IdentificationType.id_type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='int_id', full_name='ai.verta.modeldb.metadata.IdentificationType.int_id', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='string_id', full_name='ai.verta.modeldb.metadata.IdentificationType.string_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='id', full_name='ai.verta.modeldb.metadata.IdentificationType.id', index=0, containing_type=None, fields=[]), ], serialized_start=187, serialized_end=315, ) _GETLABELSREQUEST_RESPONSE = _descriptor.Descriptor( name='Response', full_name='ai.verta.modeldb.metadata.GetLabelsRequest.Response', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='labels', full_name='ai.verta.modeldb.metadata.GetLabelsRequest.Response.labels', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=396, serialized_end=422, ) _GETLABELSREQUEST = _descriptor.Descriptor( name='GetLabelsRequest', full_name='ai.verta.modeldb.metadata.GetLabelsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='ai.verta.modeldb.metadata.GetLabelsRequest.id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_GETLABELSREQUEST_RESPONSE, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=317, serialized_end=422, ) _ADDLABELSREQUEST_RESPONSE = _descriptor.Descriptor( name='Response', full_name='ai.verta.modeldb.metadata.AddLabelsRequest.Response', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='status', full_name='ai.verta.modeldb.metadata.AddLabelsRequest.Response.status', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=519, serialized_end=545, ) _ADDLABELSREQUEST = _descriptor.Descriptor( name='AddLabelsRequest', full_name='ai.verta.modeldb.metadata.AddLabelsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='ai.verta.modeldb.metadata.AddLabelsRequest.id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='labels', full_name='ai.verta.modeldb.metadata.AddLabelsRequest.labels', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_ADDLABELSREQUEST_RESPONSE, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=424, serialized_end=545, ) _DELETELABELSREQUEST_RESPONSE = _descriptor.Descriptor( name='Response', full_name='ai.verta.modeldb.metadata.DeleteLabelsRequest.Response', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='status', full_name='ai.verta.modeldb.metadata.DeleteLabelsRequest.Response.status', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=519, serialized_end=545, ) _DELETELABELSREQUEST = _descriptor.Descriptor( name='DeleteLabelsRequest', full_name='ai.verta.modeldb.metadata.DeleteLabelsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='ai.verta.modeldb.metadata.DeleteLabelsRequest.id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='labels', full_name='ai.verta.modeldb.metadata.DeleteLabelsRequest.labels', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_DELETELABELSREQUEST_RESPONSE, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=547, serialized_end=671, ) _IDTYPEENUM_IDTYPE.containing_type = _IDTYPEENUM _IDENTIFICATIONTYPE.fields_by_name['id_type'].enum_type = _IDTYPEENUM_IDTYPE _IDENTIFICATIONTYPE.oneofs_by_name['id'].fields.append( _IDENTIFICATIONTYPE.fields_by_name['int_id']) _IDENTIFICATIONTYPE.fields_by_name['int_id'].containing_oneof = _IDENTIFICATIONTYPE.oneofs_by_name['id'] _IDENTIFICATIONTYPE.oneofs_by_name['id'].fields.append( _IDENTIFICATIONTYPE.fields_by_name['string_id']) _IDENTIFICATIONTYPE.fields_by_name['string_id'].containing_oneof = _IDENTIFICATIONTYPE.oneofs_by_name['id'] _GETLABELSREQUEST_RESPONSE.containing_type = _GETLABELSREQUEST _GETLABELSREQUEST.fields_by_name['id'].message_type = _IDENTIFICATIONTYPE _ADDLABELSREQUEST_RESPONSE.containing_type = _ADDLABELSREQUEST _ADDLABELSREQUEST.fields_by_name['id'].message_type = _IDENTIFICATIONTYPE _DELETELABELSREQUEST_RESPONSE.containing_type = _DELETELABELSREQUEST _DELETELABELSREQUEST.fields_by_name['id'].message_type = _IDENTIFICATIONTYPE DESCRIPTOR.message_types_by_name['IDTypeEnum'] = _IDTYPEENUM DESCRIPTOR.message_types_by_name['IdentificationType'] = _IDENTIFICATIONTYPE DESCRIPTOR.message_types_by_name['GetLabelsRequest'] = _GETLABELSREQUEST DESCRIPTOR.message_types_by_name['AddLabelsRequest'] = _ADDLABELSREQUEST DESCRIPTOR.message_types_by_name['DeleteLabelsRequest'] = _DELETELABELSREQUEST _sym_db.RegisterFileDescriptor(DESCRIPTOR) IDTypeEnum = _reflection.GeneratedProtocolMessageType('IDTypeEnum', (_message.Message,), { 'DESCRIPTOR' : _IDTYPEENUM, '__module__' : 'modeldb.metadata.MetadataService_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.metadata.IDTypeEnum) }) _sym_db.RegisterMessage(IDTypeEnum) IdentificationType = _reflection.GeneratedProtocolMessageType('IdentificationType', (_message.Message,), { 'DESCRIPTOR' : _IDENTIFICATIONTYPE, '__module__' : 'modeldb.metadata.MetadataService_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.metadata.IdentificationType) }) _sym_db.RegisterMessage(IdentificationType) GetLabelsRequest = _reflection.GeneratedProtocolMessageType('GetLabelsRequest', (_message.Message,), { 'Response' : _reflection.GeneratedProtocolMessageType('Response', (_message.Message,), { 'DESCRIPTOR' : _GETLABELSREQUEST_RESPONSE, '__module__' : 'modeldb.metadata.MetadataService_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.metadata.GetLabelsRequest.Response) }) , 'DESCRIPTOR' : _GETLABELSREQUEST, '__module__' : 'modeldb.metadata.MetadataService_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.metadata.GetLabelsRequest) }) _sym_db.RegisterMessage(GetLabelsRequest) _sym_db.RegisterMessage(GetLabelsRequest.Response) AddLabelsRequest = _reflection.GeneratedProtocolMessageType('AddLabelsRequest', (_message.Message,), { 'Response' : _reflection.GeneratedProtocolMessageType('Response', (_message.Message,), { 'DESCRIPTOR' : _ADDLABELSREQUEST_RESPONSE, '__module__' : 'modeldb.metadata.MetadataService_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.metadata.AddLabelsRequest.Response) }) , 'DESCRIPTOR' : _ADDLABELSREQUEST, '__module__' : 'modeldb.metadata.MetadataService_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.metadata.AddLabelsRequest) }) _sym_db.RegisterMessage(AddLabelsRequest) _sym_db.RegisterMessage(AddLabelsRequest.Response) DeleteLabelsRequest = _reflection.GeneratedProtocolMessageType('DeleteLabelsRequest', (_message.Message,), { 'Response' : _reflection.GeneratedProtocolMessageType('Response', (_message.Message,), { 'DESCRIPTOR' : _DELETELABELSREQUEST_RESPONSE, '__module__' : 'modeldb.metadata.MetadataService_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.metadata.DeleteLabelsRequest.Response) }) , 'DESCRIPTOR' : _DELETELABELSREQUEST, '__module__' : 'modeldb.metadata.MetadataService_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.metadata.DeleteLabelsRequest) }) _sym_db.RegisterMessage(DeleteLabelsRequest) _sym_db.RegisterMessage(DeleteLabelsRequest.Response) DESCRIPTOR._options = None _METADATASERVICE = _descriptor.ServiceDescriptor( name='MetadataService', full_name='ai.verta.modeldb.metadata.MetadataService', file=DESCRIPTOR, index=0, serialized_options=None, serialized_start=674, serialized_end=1132, methods=[ _descriptor.MethodDescriptor( name='GetLabels', full_name='ai.verta.modeldb.metadata.MetadataService.GetLabels', index=0, containing_service=None, input_type=_GETLABELSREQUEST, output_type=_GETLABELSREQUEST_RESPONSE, serialized_options=b'\202\323\344\223\002\025\022\023/v1/metadata/labels', ), _descriptor.MethodDescriptor( name='AddLabels', full_name='ai.verta.modeldb.metadata.MetadataService.AddLabels', index=1, containing_service=None, input_type=_ADDLABELSREQUEST, output_type=_ADDLABELSREQUEST_RESPONSE, serialized_options=b'\202\323\344\223\002\030\032\023/v1/metadata/labels:\001*', ), _descriptor.MethodDescriptor( name='DeleteLabels', full_name='ai.verta.modeldb.metadata.MetadataService.DeleteLabels', index=2, containing_service=None, input_type=_DELETELABELSREQUEST, output_type=_DELETELABELSREQUEST_RESPONSE, serialized_options=b'\202\323\344\223\002\030*\023/v1/metadata/labels:\001*', ), ]) _sym_db.RegisterServiceDescriptor(_METADATASERVICE) DESCRIPTOR.services_by_name['MetadataService'] = _METADATASERVICE # @@protoc_insertion_point(module_scope)
[ "noreply@github.com" ]
noreply@github.com
ddeca087ba585f1d6f5c7bf63b5f45edb6aef713
0fee9fa700f769b8fbdbe0549d4b518a4a84b66e
/node/image_predict/image_predict2.py
b3bd45bb143b4f919421a68b3a6a414f33851551
[]
no_license
KoGaYoung/2019_Capstone-design
c885b7fd31abf92cad303e26746eb310d5093a65
00e9815600157bb2f452a09f5e0c300a73deaf0b
refs/heads/master
2020-09-15T17:45:41.785488
2020-04-27T14:46:46
2020-04-27T14:46:46
223,519,294
2
3
null
2019-11-23T02:31:13
2019-11-23T02:31:12
null
UTF-8
Python
false
false
2,128
py
import matplotlib import numpy as np import os from PIL import Image from keras.preprocessing.image import ImageDataGenerator import operator from keras.models import load_model from keras.preprocessing import image import base64 import ast import sys def recommand(predictions, class_dict): # Recommend top 3 predictions = predictions[0].tolist() predict = [] for i in range(len(predictions)): predict.insert(i, [i, predictions[i]]) predict2 = sorted(predict, key=lambda x: x[1], reverse=True) re_str = "" for i in range(10): recommend = [name for name, target in class_dict.items() if target == predict2[i][0]] re_str = re_str + str(recommend)[2:len(recommend)-3] if i == 9: break re_str += "," # recommand_percent = predict2[i][1] # print(recommand, " ", round(recommand_percent, 3) * 100, "%")\ return re_str # base64.txt -> image -> save folder remove_str = 'data:image/png;base64,' image_path = '/home/student/2019_Capstone-design/node/image_predict/predict_image/12/out.png' g = open(image_path, 'wb') g.write(base64.b64decode(sys.argv[1][len(remove_str):])) g.close() model1 = load_model('/home/student/2019_Capstone-design/node/image_predict/v2.01.h5') model1.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Print test prediction f2 = open('/home/student/2019_Capstone-design/node/image_predict/label_dict.txt') label_dict = eval(f2.read()) f2.close() batchsize = 64 image_size = (255, 255) pred_gen = ImageDataGenerator().flow_from_directory( '/home/student/2019_Capstone-design/node/image_predict/predict_image/', class_mode='categorical', batch_size=batchsize, target_size=image_size ) predictions = model1.predict_generator(pred_gen) np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) import operator index, value = max(enumerate(predictions[0]), key=operator.itemgetter(1)) pred_result = [name for name, target in label_dict.items() if target == index] #recommand_top3 re_list = recommand(predictions, label_dict) print(re_list)
[ "4723515@naver.com" ]
4723515@naver.com
f832144531d3e829e3b9637112237b07b3bc34c5
290e0f86fd9cd2881e82b44a308beb1b7f657fb7
/assistant_utils.py
577de88ddc415bc0298dcd7c491b48e2555c4adb
[]
no_license
essalj/ai_assistant
0d2696a90a3a29e28461f95abec6fb8685298f1c
5a592b86015a8e0fc6ea961eeddf1b885dbe900d
refs/heads/main
2023-04-22T21:57:22.568114
2021-04-25T12:45:20
2021-04-25T12:45:20
325,210,808
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
import pyautogui #screen_shot(file_name) def screen_shot(file_name): screenshot = pyautogui.screenshot() file_name = file_name + ".png" screenshot.save(file_name) print("file saved here: " + file_name) #screen_shot("test_fil")
[ "noreply@github.com" ]
noreply@github.com
e195f2cada6fd440c8ec551ec4c3ca40c8efe9b4
f0af90e1a5e9cd73682a42f0295574d70450c62e
/test.py
a4640244851e505dad79503dd608447c9eebf3f1
[]
no_license
k3ch-jo/mocha
9c4899e1157ad547b60c5e86c6587b9f4e917899
4142da6dd12a866d3d82f0e311c023f00fed83a7
refs/heads/main
2022-12-23T08:37:37.497990
2020-10-05T07:38:03
2020-10-05T07:38:03
301,324,930
0
0
null
2020-10-05T07:38:04
2020-10-05T07:21:42
Python
UTF-8
Python
false
false
44
py
#says goodmorning print("Good Morning")
[ "noreply@github.com" ]
noreply@github.com
e2072af249848ec0134b8e52255016c3d1ed8c07
6270ed787bfa3080975ce4f0a27a733b391f4f84
/22Septembre.py
1adf9ba336df6550b653abf92fdcb14a6d3712dd
[]
no_license
lucasdavid47/IPT_Sup
b6a8aec625e32903af1704f95f356205e6d43ba4
72ee4fa79c8b5f305cbe82d72d5161d6da32e86d
refs/heads/master
2023-01-07T19:04:15.092690
2020-11-04T07:10:05
2020-11-04T07:10:05
294,027,099
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
#Somme A=[] B=[] n =len(A) #nombre de lignes de A C=[] for i in range(0, n): L=[] for j in range(0, n): L.append(A[i][j]+B[i][j]) C.append(L) for x in C: print(x) #affichage ligne par ligne de C #Produit n = len(A) D=[] for i in range(0, n): L=[] for j in range(0, n): S=0 for k in range(0,n): S += A[i][k]*B[k][j] L.append(S) D.append(L) for x in D: print(x) #Python L=[1,2,3,4,5,6] for k in range(0, len(L)): if(L[k]>3): L[k] *=2 else: L[k] *=3 print[L]
[ "lucas.david44000@gmail.com" ]
lucas.david44000@gmail.com
203c4c5c65469b178d194de6b85feec2a5037e9a
129941a1fb7c0bbd9969f0dd8843b057ce9f3666
/VAJets/PKUTreeMaker/test/Wcrab/crab3_analysismu.py
09dc3efeef0cc17499456da57454ef8dcc335da1
[]
no_license
PKUHEPEWK/VBS_WGamma
7cf43f136dd92777ab7a8a742c163e222b1f4dbf
0f94abb2d4303b1c08d62971a74f25b100cbe042
refs/heads/master
2020-03-25T04:36:21.119377
2019-07-15T02:56:32
2019-07-15T02:56:32
143,404,007
0
4
null
null
null
null
UTF-8
Python
false
false
1,416
py
from WMCore.Configuration import Configuration config = Configuration() config.section_("General") config.General.requestName = 'SMu16B-v1' config.General.transferLogs = True config.section_("JobType") config.JobType.pluginName = 'Analysis' config.JobType.inputFiles =['Summer16_23Sep2016BCDV4_DATA_L1FastJet_AK4PFchs.txt','Summer16_23Sep2016BCDV4_DATA_L2Relative_AK4PFchs.txt','Summer16_23Sep2016BCDV4_DATA_L3Absolute_AK4PFchs.txt','Summer16_23Sep2016BCDV4_DATA_L2L3Residual_AK4PFchs.txt','Summer16_23Sep2016BCDV4_DATA_L1FastJet_AK4PFPuppi.txt','Summer16_23Sep2016BCDV4_DATA_L2Relative_AK4PFPuppi.txt','Summer16_23Sep2016BCDV4_DATA_L3Absolute_AK4PFPuppi.txt','Summer16_23Sep2016BCDV4_DATA_L2L3Residual_AK4PFPuppi.txt'] # Name of the CMSSW configuration file config.JobType.psetName = 'analysis_data.py' config.JobType.allowUndistributedCMSSW = True config.section_("Data") config.Data.inputDataset = '/SingleMuon/Run2016B-03Feb2017_ver2-v2/MINIAOD' config.Data.inputDBS = 'global' config.Data.splitting = 'LumiBased' config.Data.unitsPerJob = 40 config.Data.lumiMask = 'Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON.txt' #config.Data.runRange = '246908-258750' #config.Data.outLFNDirBase = '/store/user/%s/' % (getUsernameFromSiteDB()) config.Data.publication = False config.Data.outputDatasetTag = 'SMu16B-v1' config.section_("Site") config.Site.storageSite = 'T3_US_FNALLPC' #T2_CN_Beijing'
[ "jiexiao@pku.edu.cn" ]
jiexiao@pku.edu.cn
803d49b2b49af27d2ac57b3a4e8ff335cdd579a8
c96eab97976aa7fa60320d8b7de74f5148c7bf25
/edf/g1997.py
02cd9c1f7ee960c1bd6fc5b13dd077532754084c
[]
no_license
alexis-roche/scripts
869eb9063e8b31a0e13284aeb777cc152f822f02
aaae389a3fa5a0c6ff619034bdc5825a5f77a995
refs/heads/master
2021-01-02T23:07:33.730063
2012-05-08T06:59:06
2012-05-08T06:59:06
1,047,301
0
0
null
null
null
null
UTF-8
Python
false
false
2,019
py
from game import Game g1997 = [] # g = Game('22 Jan 1997','portugal','f','away',2,0) g.players = ['barthez','thuram','blanc','desailly','laigle','karembeu', 'deschamps','zidane','ba','dugarry','pires'] g.subs = ['ngotty','djorkaeff','loko','blondeau'] g1997.append(g) # g = Game('26 Feb 1997','netherlands','f','home',2,1) g.players = ['lama','thuram','blanc','desailly','lizarazu','karembeu', 'vieira','zidane','laigle','ba','dugarry'] g.subs = ['candela','ngotty','pires','loko'] g1997.append(g) # g = Game('2 Apr 1997','sweden','f','home',1,0) g.players = ['barthez','thuram','blanc','desailly','candela','ba', 'makelele','zidane','vieira','djorkaeff','dugarry'] g.subs = ['blondeau','keller','gava','djetou','loko'] g1997.append(g) # g = Game('3 Jun 1997','brazil','f','home',1,1) g.players = ['barthez','candela','blanc','desailly','lizarazu','karembeu', 'deschamps','zidane','ba','maurice','pires'] g.subs = ['thuram','vieira','keller'] g1997.append(g) # g = Game('7 Jun 1997','england','f','home',0,1) g.players = ['barthez','thuram','blanc','ngotty','laigle','djorkaeff', 'vieira','deschamps','dugarry','ouedec','keller'] g.subs = ['lizarazu','zidane','loko'] g1997.append(g) # g = Game('11 Jun 1997','italy','f','home',2,2) g.players = ['charbonnier','thuram','leboeuf','desailly','lizarazu','ba', 'karembeu','zidane','deschamps','dugarry','maurice'] g.subs = ['ngotty','vieira','djorkaeff'] g1997.append(g) # g = Game('11 Oct 1997','south africa','f','home',2,1) g.players = ['letizi','thuram','blanc','desailly','candela','deschamps', 'djorkaeff','petit','pires','guivarch','henry'] g.subs = ['laigle','ba','boghossian','zidane'] g1997.append(g) # g = Game('12 Nov 1997','scotland','f','home',2,1) g.players = ['barthez','thuram','blanc','desailly','laigle','ba', 'deschamps','zidane','petit','laslandes','guivarch'] g.subs = ['candela','gava','boghossian','djorkaeff'] g1997.append(g)
[ "alexis.roche@gmail.com" ]
alexis.roche@gmail.com
bd8527aee37e224f869349bec2f6fb2bdadc1d5b
a140fe192fd643ce556fa34bf2f84ddbdb97f091
/.history/예외처리_20200709144804.py
9b8a16ecb397905296a8e33b88abcd084eadb309
[]
no_license
sangha0719/py-practice
826f13cb422ef43992a69f822b9f04c2cb6d4815
6d71ce64bf91cc3bccee81378577d84ba9d9c121
refs/heads/master
2023-03-13T04:40:55.883279
2021-02-25T12:02:04
2021-02-25T12:02:04
342,230,484
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
try: print("나누기 전용 계산기입니다.") num1 = int(input("첫 번째 숫자를 입력하세요 : ")) num2 = int(input("두 번째 숫자를 입력하세요 : ")) print("{0} / {1} = {2}".format(n))
[ "sangha0719@gmail.com" ]
sangha0719@gmail.com
91503fa1a7ffe5118597d43b74f8c1563b6bdca6
b4c164c9c6f91badb305bae23246ab0c5ba5fcbe
/Problem Set 3/Motion.py
3d2b43cec29e675115eb800b8faf2a7e42d0d3c2
[]
no_license
KhrulSergey/AI_Robotics_Udacity
e2b25a5b9d752b2daaa5195b7b487738aae83231
ff41e877f2af87348de8a0d44bc8f51ea29523f8
refs/heads/master
2021-04-26T22:31:06.456066
2019-03-30T20:33:49
2019-03-30T20:34:20
124,104,643
0
0
null
null
null
null
UTF-8
Python
false
false
7,159
py
# ----------------- # USER INSTRUCTIONS # # Write a function in the class robot called move() # # that takes self and a motion vector (this # motion vector contains a steering* angle and a # distance) as input and returns an instance of the class # robot with the appropriate x, y, and orientation # for the given motion. # # *steering is defined in the video # which accompanies this problem. # # For now, please do NOT add noise to your move function. # # Please do not modify anything except where indicated # below. # # There are test cases which you are free to use at the # bottom. If you uncomment them for testing, make sure you # re-comment them before you submit. from math import * import random # -------- # # the "world" has 4 landmarks. # the robot's initial coordinates are somewhere in the square # represented by the landmarks. # # NOTE: Landmark coordinates are given in (y, x) form and NOT # in the traditional (x, y) format! landmarks = [[0.0, 100.0], [0.0, 0.0], [100.0, 0.0], [100.0, 100.0]] # position of 4 landmarks world_size = 100.0 # world is NOT cyclic. Robot is allowed to travel "out of bounds" max_steering_angle = pi / 4 # You don't need to use this value, but it is good to keep in mind the limitations of a real car. # ------------------------------------------------ # # this is the robot class # class robot: # -------- # init: # creates robot and initializes location/orientation # def __init__(self, length=10.0): self.x = random.random() * world_size # initial x position self.y = random.random() * world_size # initial y position self.orientation = random.random() * 2.0 * pi # initial orientation self.length = length # length of robot self.bearing_noise = 0.0 # initialize bearing noise to zero self.steering_noise = 0.0 # initialize steering noise to zero self.distance_noise = 0.0 # initialize distance noise to zero def __repr__(self): return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y), str(self.orientation)) # -------- # set: # sets a robot coordinate # def set(self, new_x, new_y, new_orientation): if new_orientation < 0 or new_orientation >= 2 * pi: raise (ValueError, 'Orientation must be in [0..2pi]') self.x = float(new_x) self.y = float(new_y) self.orientation = float(new_orientation) # -------- # set_noise: # sets the noise parameters # def set_noise(self, new_b_noise, new_s_noise, new_d_noise): # makes it possible to change the noise parameters # this is often useful in particle filters self.bearing_noise = float(new_b_noise) self.steering_noise = float(new_s_noise) self.distance_noise = float(new_d_noise) ############# ONLY ADD/MODIFY CODE BELOW HERE ################### # -------- # move: # move along a section of a circular path according to motion # motion[0] - angle of steering # motion[1] - move_distance = x # def move(self, motion): # Do not change the name of this function stearing_angle = motion[0] distance = motion[1] if abs(stearing_angle) > max_steering_angle: raise (ValueError, 'Exceed max steering angle') if distance < 0: raise (ValueError, 'Moving backwards is not permited') epsilon = 0.001 result = robot() result.set_noise(self.bearing_noise, self.steering_noise, self.distance_noise) result.length = self.length # apply noise to future stearing_angle2 = random.gauss(stearing_angle, self.steering_noise) dist2 = random.gauss(distance, self.distance_noise) turn_angle = dist2/result.length * tan(stearing_angle2) if(abs(turn_angle) < epsilon): # approximate by straight line motion result.x = self.x + dist2 * cos(self.orientation) result.y = self.y + dist2 * sin(self.orientation) result.orientation = (self.orientation + turn_angle)%(2.0*pi) else: # approximate bycicle model for motion R = dist2/turn_angle cx = self.x - sin(self.orientation)*R cy = self.y + cos(self.orientation)*R result.orientation = (self.orientation + turn_angle) % (2.0 * pi) result.x = cx + (sin(result.orientation)* R) result.y = cy - (cos(result.orientation)* R) return result # make sure your move function returns an instance # of the robot class with the correct coordinates. ############## ONLY ADD/MODIFY CODE ABOVE HERE #################### ## IMPORTANT: You may uncomment the test cases below to test your code. ## But when you submit this code, your test cases MUST be commented ## out. Our testing program provides its own code for testing your ## move function with randomized motion data. ## -------- ## TEST CASE: ## ## 1) The following code should print: ## Robot: [x=0.0 y=0.0 orient=0.0] ## Robot: [x=10.0 y=0.0 orient=0.0] ## Robot: [x=19.861 y=1.4333 orient=0.2886] ## Robot: [x=39.034 y=7.1270 orient=0.2886] ## ## # length = 20. # bearing_noise = 0.0 # steering_noise = 0.0 # distance_noise = 0.0 # # myrobot = robot(length) # myrobot.set(0.0, 0.0, 0.0) # myrobot.set_noise(bearing_noise, steering_noise, distance_noise) # # motions = [[0.0, 10.0], [pi / 6.0, 10], [0.0, 20.0]] # T = len(motions) # # print ('Robot: ', myrobot) # for t in range(T): # myrobot = myrobot.move(motions[t]) # print ('Robot: ', myrobot) ## IMPORTANT: You may uncomment the test cases below to test your code. ## But when you submit this code, your test cases MUST be commented ## out. Our testing program provides its own code for testing your ## move function with randomized motion data. ## 2) The following code should print: ## Robot: [x=0.0 y=0.0 orient=0.0] ## Robot: [x=9.9828 y=0.5063 orient=0.1013] ## Robot: [x=19.863 y=2.0201 orient=0.2027] ## Robot: [x=29.539 y=4.5259 orient=0.3040] ## Robot: [x=38.913 y=7.9979 orient=0.4054] ## Robot: [x=47.887 y=12.400 orient=0.5067] ## Robot: [x=56.369 y=17.688 orient=0.6081] ## Robot: [x=64.273 y=23.807 orient=0.7094] ## Robot: [x=71.517 y=30.695 orient=0.8108] ## Robot: [x=78.027 y=38.280 orient=0.9121] ## Robot: [x=83.736 y=46.485 orient=1.0135] ## length = 20. bearing_noise = 0.0 steering_noise = 0.0 distance_noise = 0.0 myrobot = robot(length) myrobot.set(0.0, 0.0, 0.0) myrobot.set_noise(bearing_noise, steering_noise, distance_noise) motions = [[0.2, 10.] for row in range(10)] T = len(motions) print ('Robot: ', myrobot) for t in range(T): myrobot = myrobot.move(motions[t]) print ('Robot: ', myrobot) ## IMPORTANT: You may uncomment the test cases below to test your code. ## But when you submit this code, your test cases MUST be commented ## out. Our testing program provides its own code for testing your ## move function with randomized motion data.
[ "siberianodis@gmail.com" ]
siberianodis@gmail.com
8f1d3b33b6976f1a8d134f8df6ee8b3eb067f5b5
2ecc0f925df105282b5c725d5441f73ff7bf8317
/py31파일처리/py31_17_encrypt.py
5bf5c6f4f34a9da7baec6fa9c9b436b956584c32
[]
no_license
anhduong2020/anhduong3202
8ed8e7cd7782fb7eec507d4abbbac7f64576a65b
e06e27d8dd56130fc66271f1013de61ceea89335
refs/heads/master
2021-01-13T20:09:02.994695
2020-03-15T09:08:22
2020-03-15T09:08:22
242,481,004
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
key = "abcdefghijklmnopqrstuvwxyz" # 평문을 받아서 암호화하고 암호문을 반환한다. # 암호문을 받아서 복호화하고 평문을 반환한다.
[ "hdfj@naver.com" ]
hdfj@naver.com
674c893b5c3d74c716ca8d94e1128a7f82ceea42
fbf22c2f482f47d45f1ddd024cc2a12236c25dbe
/transfer/lib/gitCom.py
146f8682c71806418ebca2a3ee96da78ba44e153
[]
no_license
LofOWL/Jupyter-code-tracker
3068e7e71ad9ecc43e8118257434b00fdb0cb9d9
2cdf55dc3d7f7f697ae57fe7661b23150b1a5edf
refs/heads/master
2022-02-18T05:25:51.427151
2022-02-13T22:03:38
2022-02-13T22:03:38
234,213,419
0
0
null
null
null
null
UTF-8
Python
false
false
729
py
import os import subprocess class git: def __init__(self,path): print(path) os.chdir(path) self.path = path self.ipynb_commit = "git log --pretty=%H --follow *.ipynb" self.commit_name_status = "" self.commit_parent = "" def set_commit_name_status(self,commit): self.commit_name_status = "git show "+str(commit)+" --name-status --pretty=\"\" " def set_commit_parent(self,commit): self.commit_parent = "git show "+str(commit)+" --name-status --pretty=\"raw\" " def run(self,commond): os.chdir(self.path) diff = subprocess.check_output(commond,shell=True) alist = diff.decode("utf-8").split("\n") return alist[:-1]
[ "jeffersonjjin@gmail.com" ]
jeffersonjjin@gmail.com
68bda07db08e3d6b58a8cbb0bf86ce63b584f900
5a1f77b71892745656ec9a47e58a078a49eb787f
/4_Backwoods_Forest/140-A_Fine_Mint/fine_mint.py
f17553bc8c35e99e05fe9b3bbd9916adfeaa85f8
[ "MIT" ]
permissive
ripssr/Code-Combat
78776e7e67c033d131e699dfeffb72ca09fd798e
fbda1ac0ae4a2e2cbfce21492a2caec8098f1bef
refs/heads/master
2020-06-11T20:17:59.817187
2019-07-21T09:46:04
2019-07-21T09:46:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
def pickUpCoin(): coin = hero.findNearestItem() if coin: hero.moveXY(coin.pos.x, coin.pos.y) def attackEnemy(): enemy = hero.findNearestEnemy() if enemy: if hero.isReady("cleave"): hero.cleave(enemy) else: hero.attack(enemy) while True: attackEnemy() pickUpCoin()
[ "katik.hello@gmail.com" ]
katik.hello@gmail.com
66c605b31758d9dc44858b8868ef503970bdaba6
4ea7855ef54e1a62df5d25aa30acfc564c676ab9
/catalog/tests/test_models.py
dae7890e4f8af49e7b195ea6714413e628481aa5
[ "CC0-1.0" ]
permissive
Novel-Public-Health/Novel-Public-Health
00282b9d3801494f7fc25f5f44c33070fa119bef
fbb7dd0da64ae4fc9641097ca8056152129bd83b
refs/heads/main
2023-04-29T19:27:51.440301
2021-05-07T03:42:10
2021-05-07T03:42:10
337,804,511
0
0
null
null
null
null
UTF-8
Python
false
false
3,617
py
from django.test import TestCase # Create your tests here. from catalog.models import Director, Genre, Language, Movie, Profile class DirectorModelTest(TestCase): @classmethod def setUpTestData(cls): # Set up non-modified objects used by all test methods. Director.objects.create(name='Big Bob') def test_name_label(self): director = Director.objects.get(id=1) field_label = director._meta.get_field('name').verbose_name self.assertEquals(field_label, 'name') def test_date_of_birth_label(self): director = Director.objects.get(id=1) field_label = director._meta.get_field('date_of_birth').verbose_name self.assertEquals(field_label, 'date of birth') def test_date_of_death_label(self): director = Director.objects.get(id=1) field_label = director._meta.get_field('date_of_death').verbose_name self.assertEquals(field_label, 'died') def test_get_absolute_url(self): director = Director.objects.get(id=1) # This will also fail if the urlconf is not defined. self.assertEquals(director.get_absolute_url(), '/directors/1') class GenreModelTest(TestCase): @classmethod def setUpTestData(cls): # Set up most popular genres. cls.genres = ['Action', 'Fantasy', 'Comedy', 'Romance', 'Documentary'] for name in cls.genres: Genre.objects.create(name=name) def test_name_label(self): for num, name in enumerate(self.genres, start=1): genre = Genre.objects.get(id=num) field_label = genre._meta.get_field('name').verbose_name self.assertEquals(field_label, 'name') # test the name of the genre self.assertEquals(genre.name, name) class LanguageModelTest(TestCase): @classmethod def setUpTestData(cls): # Set up most popular languages. cls.languages = ['Mandarin Chinese', 'Spanish', 'English', 'Hindi'] for name in cls.languages: Language.objects.create(name=name) def test_name_label(self): for num, name in enumerate(self.languages, start=1): language = Language.objects.get(id=num) field_label = language._meta.get_field('name').verbose_name self.assertEquals(field_label, 'name') # test the name of the language self.assertEquals(language.name, name) import re class MovieModelTest(TestCase): @classmethod def setUpTestData(cls): cls.imdb_movie = Movie.objects.create( title='Concussion', imdb_link='https://www.imdb.com/title/tt3322364/' ) cls.non_imdb_movie = Movie.objects.create( title='Public Health YOU Should Know', director=Director.objects.create(name='Big Bob'), language=Language.objects.create(name='English'), summary="This movie is the greatest thing to ever see. \ Forreal.", genre=Genre.objects.create(name='Documentary'), year='2021' ) def test_non_imdb_movie(self): self.assertEquals(self.non_imdb_movie.director.name, 'Big Bob') self.assertEquals(self.non_imdb_movie.language.name, 'English') self.assertEquals(self.non_imdb_movie.genre.name, 'Documentary') def test_imdb_movie(self): imdb_stats = self.imdb_movie.get_imdb_stats() self.assertEquals(imdb_stats[0], 2015) self.assertEquals(imdb_stats[1]['name'], 'Peter Landesman') self.assertTrue(re.match(r'(Biography|Drama|Sport)', imdb_stats[2]))
[ "haleau@live.unc.edu" ]
haleau@live.unc.edu
6b9e64cf6ae66302800054f71df69a98d2400cb1
44754d4b76b59c91ec700e4b07fc7c20930eedd2
/app.py
3a5cc4daa936e681a3271a060c3939094f3e2ce7
[ "MIT" ]
permissive
ghostcat404/simple_ml_model
f18b8e18a06b30ffc46e7b709473a6793f2ff335
0a65fb4a376d1781d356dbcedd5335f3d6803ab1
refs/heads/master
2023-06-10T18:30:07.288304
2021-06-17T23:39:57
2021-06-17T23:39:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,539
py
import logging import argparse from textwrap import dedent import mlflow from sklearn.pipeline import Pipeline from dotenv import load_dotenv from utils import ModelMapper, DatasetMapper, save_model, get_model_params # TODO: дописать применение модели def run_train(args): if args.params_path is not None: params = get_model_params(args.params_path)['params'] else: params = None model = ModelMapper.get_model(args.model_type)(params) model = Pipeline([ ('estimator', model) ]) logging.info('Load model %s', model) X, y = DatasetMapper.get_data('iris') logging.info('Fit model') mlflow.set_tracking_uri("http://194.67.111.68:5000") mlflow.set_experiment(args.exp_name) with mlflow.start_run() as run: model.fit(X, y) if params: mlflow.log_params(params) mlflow.sklearn.log_model(model, artifact_path="model") if args.model_name is not None: logging.info('Save %s to %s', model, args.model_name) save_model(args.model_name, model) def setup_parser(parser: argparse.ArgumentParser): subparsers = parser.add_subparsers( help='Choose command. Type <command> -h for more help' ) train_parser = subparsers.add_parser( 'train', help='train choosen model', formatter_class=argparse.RawTextHelpFormatter, ) train_parser.add_argument( '--model', help=dedent(''' Choose model type Available types: - logistic: sklearn.linear_models.LogisticRegression '''), dest='model_type', type=str, required=True ) train_parser.add_argument( '--config-params-path', help='path to model params .yml file', dest='params_path', type=str, required=False, default=None ) train_parser.add_argument( '--model-name', help='name of model', dest='model_name', type=str, required=False, default=None ) train_parser.add_argument( '--exp-name', help='name of experiment', dest='exp_name', type=str, required=False, default='test_exp' ) train_parser.set_defaults(callback=run_train) def main(): load_dotenv() parser = argparse.ArgumentParser('Simple ML project') setup_parser(parser) args = parser.parse_args() args.callback(args) if __name__ == '__main__': main()
[ "aechesnov@yandex.ru" ]
aechesnov@yandex.ru
ab90b58745ab3cc097586354bf150248a81ee6f9
6938ecea830f45abbef0218fa33be5ab21986eca
/ucpe/bcm_controller/bcm_controller.py
af406abae3955b4333e7333c1c19c771b0721204
[]
no_license
AnEscapist/sdn-orchestrator
16ea20d8cdcd817990bd34da071b03451a2cf3dd
f242bb2ab42864cde9f0bafb1a92acbb33173b24
refs/heads/master
2020-07-01T09:22:29.835594
2019-08-11T19:46:44
2019-08-11T19:46:44
201,121,197
0
0
null
null
null
null
UTF-8
Python
false
false
4,367
py
from inspect import signature, Parameter from ucpe.bcm_controller.utils import get_caller_function_name import ucpe.bcm_controller.grpc.autobcm_pb2 as autobcm_pb2 import ucpe.bcm_controller.grpc.autobcm_pb2_grpc as autobcm_pb2_grpc import grpc hostname = "10.10.81.250:50051" class BCMController: @staticmethod def bcm_controller_show_active_ports(**kwargs): func = show_active_ports return _call_function(func, **kwargs) @staticmethod def bcm_controller_create_vlan(**kwargs): func = create_vlan return _call_function(func, **kwargs) @staticmethod def bcm_controller_destroy_vlan(**kwargs): func = destroy_vlan return _call_function(func, **kwargs) @staticmethod def bcm_controller_show_vlans(**kwargs): func = show_vlans return _call_function(func, **kwargs) @staticmethod def bcm_controller_add_ports(**kwargs): func = add_ports return _call_function(func, **kwargs) @staticmethod def bcm_controller_rem_ports(**kwargs): func = rem_ports return _call_function(func, **kwargs) @staticmethod def bcm_controller_set_pvlan(**kwargs): func = set_pvlan return _call_function(func, **kwargs) @staticmethod def bcm_controller_show_pvlans(**kwargs): func = show_pvlans return _call_function(func, **kwargs) def show_active_ports(): channel = grpc.insecure_channel(hostname) stub = autobcm_pb2_grpc.AutoBCMStub(channel) request = autobcm_pb2.ConfigRequest() response = stub.ShowActivePorts(request) return response.message def create_vlan(vlanid, pbm='', ubm=''): channel = grpc.insecure_channel(hostname) stub = autobcm_pb2_grpc.AutoBCMStub(channel) request = autobcm_pb2.ConfigRequest(vlanid=vlanid, pbm=pbm, ubm=ubm) rv = '' response = stub.CreateVLAN(request) rv = rv + response.message if pbm != '': response = stub.AddPorts(request) rv = rv + '\n' + response.message return rv def destroy_vlan(vlanid): channel = grpc.insecure_channel(hostname) stub = autobcm_pb2_grpc.AutoBCMStub(channel) request = autobcm_pb2.ConfigRequest(vlanid=vlanid) response = stub.DestroyVLAN(request) return response.message def show_vlans(): channel = grpc.insecure_channel(hostname) stub = autobcm_pb2_grpc.AutoBCMStub(channel) request = autobcm_pb2.ConfigRequest() response = stub.ShowVLANs(request) return response.message def add_ports(vlanid, pbm, ubm=''): channel = grpc.insecure_channel(hostname) stub = autobcm_pb2_grpc.AutoBCMStub(channel) request = autobcm_pb2.ConfigRequest(vlanid=vlanid, pbm=pbm, ubm=ubm) response = stub.AddPorts(request) return response.message def rem_ports(vlanid, pbm): channel = grpc.insecure_channel(hostname) stub = autobcm_pb2_grpc.AutoBCMStub(channel) request = autobcm_pb2.ConfigRequest(vlanid=vlanid, pbm=pbm) response = stub.RemovePorts(request) return response.message def set_pvlan(vlanid, pbm): channel = grpc.insecure_channel(hostname) stub = autobcm_pb2_grpc.AutoBCMStub(channel) request = autobcm_pb2.ConfigRequest(vlanid=vlanid, pbm=pbm) response = stub.SetPVLAN(request) return response.message def show_pvlans(): channel = grpc.insecure_channel(hostname) stub = autobcm_pb2_grpc.AutoBCMStub(channel) request = autobcm_pb2.ConfigRequest() response = stub.ShowPVLANs(request) return response.message def _call_function(func, **kwargs): body = kwargs["body"] # todo: bad params = signature(func).parameters # get the function arguments relevant_kwargs = {} # todo: this is REALLY bad for param in params: if params[param].default == Parameter.empty: try: relevant_kwargs[param] = body[param] except KeyError: raise KeyError("missing argument " + param + " in call to " + func.__name__) else: # todo: this is REALLY bad - depends on the arg name, but so does the request/response relevant_kwargs[param] = body.get(param, params[param].default) return_dict = {} return_dict["result"] = func(**relevant_kwargs) caller_name = get_caller_function_name() return_dict["function"] = caller_name return return_dict
[ "azhang307@gatech.edu" ]
azhang307@gatech.edu
637aebc9dc0ee30985a63efc692a3f892fbed308
c6f9a46393048add6fad888d382978b9be12dd4c
/python/ql/test/experimental/dataflow/strange-pointsto-interaction-investigation/src/urandom_problem.py
d4a06529cf60991084b7d954d234703134c192b9
[ "MIT", "LicenseRef-scancode-python-cwi", "LicenseRef-scancode-other-copyleft", "GPL-1.0-or-later", "LicenseRef-scancode-free-unknown", "Python-2.0" ]
permissive
luchua-bc/ql
6e9480e8c92cbb12570fcc7f65366bfdd54dad06
a1d9228a66cb80329041fa8d95b08ce5697dec54
refs/heads/master
2023-01-23T17:11:54.776916
2022-07-20T14:36:37
2022-07-20T14:36:37
248,313,302
4
0
MIT
2023-01-16T09:13:30
2020-03-18T18:35:48
CodeQL
UTF-8
Python
false
false
920
py
# These are defined so that we can evaluate the test code. NONSOURCE = "not a source" SOURCE = "source" def is_source(x): return x == "source" or x == b"source" or x == 42 or x == 42.0 or x == 42j def SINK(x): if is_source(x): print("OK") else: print("Unexpected flow", x) def SINK_F(x): if is_source(x): print("Unexpected flow", x) else: print("OK") # ------------------------------------------------------------------------------ # Actual tests # ------------------------------------------------------------------------------ def give_src(): return SOURCE foo = give_src() SINK(foo) # $ flow="SOURCE, l:-3 -> foo" import os cond = os.urandom(1)[0] > 128 # $ unresolved_call=os.urandom(..) if cond: pass if cond: pass foo = give_src() # $ unresolved_call=give_src() SINK(foo) # $ unresolved_call=SINK(..) MISSING: flow="SOURCE, l:-15 -> foo"
[ "rasmuswl@github.com" ]
rasmuswl@github.com
cc878c320008f8db66aa030c2f2f6bc3e205a9cc
6d1728bf105a7d6481d0bbca2b88f4478e0632d9
/study/ch1/area.py
1a498690da37f4f891110371603717db2e529035
[]
no_license
Phantomn/Python
00c63aceb2d4aa0db71fe5e33fe8b5159b41aadd
12808adf4b52c60cfe94befb6daa1e8187224beb
refs/heads/Python
2022-11-09T16:49:49.165884
2019-08-05T07:30:07
2019-08-05T07:30:07
44,149,995
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
horizon=0 vertical=0 print("Input horizon length : ", end="") horizon=int(input()) print("Input vertical length : ",end="") vertical=int(input()) print("rectangle is %d."%(horizon*vertical))
[ "tmdvyr123@naver.com" ]
tmdvyr123@naver.com
bd1236dee44cc218e34f71aa057ce6aeaae640d8
4f365fbdfd4701c3a294dfba17c1377d4eb369d8
/jinja2htmlcompress.py
507c7509a9a3a8418fcb4ce187fb21809e76fc26
[ "BSD-3-Clause" ]
permissive
Orvillar/jinja2-htmlcompress
4e725f9b6ceb6f327d4247d7dab6f55d344039ea
b34dc409762aaf205ccd59e37ad4b3dc5331904d
refs/heads/master
2020-04-07T16:06:54.607802
2018-11-21T08:31:21
2018-11-21T08:31:21
158,515,466
0
0
NOASSERTION
2018-11-21T08:29:20
2018-11-21T08:29:19
null
UTF-8
Python
false
false
6,354
py
# -*- coding: utf-8 -*- """ jinja2htmlcompress ~~~~~~~~~~~~~~~~~~ A Jinja2 extension that eliminates useless whitespace at template compilation time without extra overhead. :copyright: (c) 2011 by Armin Ronacher. :license: BSD, see LICENSE for more details. """ import re from jinja2.ext import Extension from jinja2.lexer import Token, describe_token from jinja2 import TemplateSyntaxError _tag_re = re.compile(r'(?:<(/?)([a-zA-Z0-9_-]+)\s*|(>\s*))(?s)') _ws_normalize_re = re.compile(r'[ \t\r\n]+') class StreamProcessContext(object): def __init__(self, stream): self.stream = stream self.token = None self.stack = [] def fail(self, message): raise TemplateSyntaxError(message, self.token.lineno, self.stream.name, self.stream.filename) def _make_dict_from_listing(listing): rv = {} for keys, value in listing: for key in keys: rv[key] = value return rv class HTMLCompress(Extension): isolated_elements = set(['script', 'style', 'noscript', 'textarea']) void_elements = set(['br', 'img', 'area', 'hr', 'param', 'input', 'embed', 'col']) block_elements = set(['div', 'p', 'form', 'ul', 'ol', 'li', 'table', 'tr', 'tbody', 'thead', 'tfoot', 'tr', 'td', 'th', 'dl', 'dt', 'dd', 'blockquote', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'pre']) breaking_rules = _make_dict_from_listing([ (['p'], set(['#block'])), (['li'], set(['li'])), (['td', 'th'], set(['td', 'th', 'tr', 'tbody', 'thead', 'tfoot'])), (['tr'], set(['tr', 'tbody', 'thead', 'tfoot'])), (['thead', 'tbody', 'tfoot'], set(['thead', 'tbody', 'tfoot'])), (['dd', 'dt'], set(['dl', 'dt', 'dd'])) ]) def is_isolated(self, stack): for tag in reversed(stack): if tag in self.isolated_elements: return True return False def is_breaking(self, tag, other_tag): breaking = self.breaking_rules.get(other_tag) return breaking and (tag in breaking or ('#block' in breaking and tag in self.block_elements)) def enter_tag(self, tag, ctx): while ctx.stack and self.is_breaking(tag, ctx.stack[-1]): self.leave_tag(ctx.stack[-1], ctx) if tag not in self.void_elements: ctx.stack.append(tag) def leave_tag(self, tag, ctx): if not ctx.stack: ctx.fail('Tried to leave "%s" but something closed ' 'it already' % tag) if tag == ctx.stack[-1]: ctx.stack.pop() return for idx, other_tag in enumerate(reversed(ctx.stack)): if other_tag == tag: for num in xrange(idx + 1): ctx.stack.pop() elif not self.breaking_rules.get(other_tag): break def normalize(self, ctx): pos = 0 buffer = [] def write_data(value): if not self.is_isolated(ctx.stack): value = _ws_normalize_re.sub(' ', value.strip()) buffer.append(value) for match in _tag_re.finditer(ctx.token.value): closes, tag, sole = match.groups() preamble = ctx.token.value[pos:match.start()] write_data(preamble) if sole: write_data(sole) else: buffer.append(match.group()) (closes and self.leave_tag or self.enter_tag)(tag, ctx) pos = match.end() write_data(ctx.token.value[pos:]) return u''.join(buffer) def filter_stream(self, stream): ctx = StreamProcessContext(stream) for token in stream: if token.type != 'data': yield token continue ctx.token = token value = self.normalize(ctx) yield Token(token.lineno, 'data', value) class SelectiveHTMLCompress(HTMLCompress): def filter_stream(self, stream): ctx = StreamProcessContext(stream) strip_depth = 0 while 1: if stream.current.type == 'block_begin': if stream.look().test('name:strip') or \ stream.look().test('name:endstrip'): stream.skip() if stream.current.value == 'strip': strip_depth += 1 else: strip_depth -= 1 if strip_depth < 0: ctx.fail('Unexpected tag endstrip') stream.skip() if stream.current.type != 'block_end': ctx.fail('expected end of block, got %s' % describe_token(stream.current)) stream.skip() if strip_depth > 0 and stream.current.type == 'data': ctx.token = stream.current value = self.normalize(ctx) yield Token(stream.current.lineno, 'data', value) else: yield stream.current stream.next() def test(): from jinja2 import Environment env = Environment(extensions=[HTMLCompress]) tmpl = env.from_string(''' <html> <head> <title>{{ title }}</title> </head> <script type=text/javascript> if (foo < 42) { document.write('Foo < Bar'); } </script> <body> <li><a href="{{ href }}">{{ title }}</a><br>Test Foo <li><a href="{{ href }}">{{ title }}</a><img src=test.png> </body> </html> ''') print tmpl.render(title=42, href='index.html') env = Environment(extensions=[SelectiveHTMLCompress]) tmpl = env.from_string(''' Normal <span> unchanged </span> stuff {% strip %}Stripped <span class=foo > test </span> <a href="foo"> test </a> {{ foo }} Normal <stuff> again {{ foo }} </stuff> <p> Foo<br>Bar Baz <p> Moep <span>Test</span> Moep </p> {% endstrip %} ''') print tmpl.render(foo=42) if __name__ == '__main__': test()
[ "armin.ronacher@active-4.com" ]
armin.ronacher@active-4.com
272977aa9883b7e270a1e4aa51d6f4540f0c7ef8
ada39040fa1e56fb7de6147ff62e6c8dee1f69bb
/Backend.py
9d49833595073ea3e4fab7d29b580bc74cec35ea
[]
no_license
hendpraz/chatbot-pattern-matching
c18880fde6df9663768ee482c233e5804823b756
478c873f1e53398c6f37919cda9e0f77a0194a88
refs/heads/master
2020-05-09T21:09:52.091634
2019-04-25T01:13:50
2019-04-25T01:13:50
181,433,838
0
0
null
null
null
null
UTF-8
Python
false
false
12,956
py
#!/usr/bin/python import sys import re from utils import stopwords, listSynonym, FAQs #from Sastrawi.StopWordRemover.StopWordRemoverFactory import StopWordRemoverFactory #from ntlk.corpus import stopwords #from ntlk.tokenize import word_tokenize numOfQuestion = 0 questionDB = [] answerDB = [] #factory = StopWordRemoverFactory() #stopwords = factory.get_stop_words() # KNUTH MORRIS PRAT # def bigThree(value,idxes): #Mengembalikan indeks indeks dengan nilai terbesar newIdxes = [0]*3 #SelectionSort for i in range(3): max = 0 maxIdx = -1 for j in range(i,len(idxes)): if(value[j] > max): max = value[j] maxIdx = j #Swap temp = idxes[i] idxes[i] = idxes[maxIdx] idxes[maxIdx] = temp temp = value[i] value[i] = value[maxIdx] value[maxIdx] = temp for i in range(3): newIdxes[i] = idxes[i] return newIdxes def borderFunctionKMP(str, m): suffLen = 0 border = [0]*m i = 1 while (i < m): if (str[i] == str[suffLen]): suffLen = suffLen + 1 border[i] = suffLen i = i + 1 else: if (suffLen != 0): suffLen = border[suffLen - 1] else: border[i] = 0 i = i + 1 return border def knuthMorrisPrat(string1, txt): n = len(txt) #Dikurangi tanda tanya m = len(string1) match = False wholeScore = m * 100 / n if(wholeScore >= 90) and (wholeScore <= 110): # Periksa seluruh string secara eksak border = borderFunctionKMP(string1,m) i = 0 j = 0 while (i < n): if (string1[j] == txt[i]): i = i + 1 j = j + 1 if (j == m): #Pattern ditemukan match = True j = border[j-1] elif (i < n) and (string1[j] != txt[i]): #Tidak cocok, geser if(j != 0): j = border[j-1] else: i = i + 1 if(match): return wholeScore countMatch = 0 if(not match): tokenizedString = string1.split() totalLength = len(txt) n = len(txt) - 1 # Dikurangi tanda tanya for substring in tokenizedString: #Cari setiap sinonimnya listOfPattern = findSynonym(substring) for pattern in listOfPattern: m = len(pattern) border = borderFunctionKMP(pattern,m) patternMatch = False i = 0 j = 0 while (i < n): if (pattern[j] == txt[i]): i = i + 1 j = j + 1 if (j == m): #Pattern ditemukan countMatch = countMatch + m + 1 #Ditambah sebuah spasi j = border[j-1] patternMatch = True break #BreakWhile elif (i < n) and (pattern[j] != txt[i]): #Tidak cocok, geser if(j != 0): j = border[j-1] else: i = i + 1 if(patternMatch): break #BreakFor if(wholeScore <= 110): return (countMatch * 100.0 / totalLength) elif(countMatch > 0): return (totalLength * 100.0 / countMatch) else: return 0 #Kemungkinan lain return 0 def resultKMP(string): #knuth-morris-Prat max = 0 maxIdx = -1 countOfResult = 0 idxes = [] maxValues =[] for i in range(numOfQuestion): # Kode x = knuthMorrisPrat(string,questionDB[i]) if(x >= 90): #Ketemu countOfResult = countOfResult + 1 maxValues.append(x) idxes.append(i) if(x > max): max = x maxIdx = i if(countOfResult == 0): if(maxIdx != -1): idxes.append(maxIdx) elif(countOfResult > 3): idxes = bigThree(maxValues,idxes) return ((countOfResult > 0), idxes) # BOYER MOORE # def badCharBM(string): #Banyak jenis karakter = 256 #Diinisialisasi dengan -1 badChar = [-1]*256 m = len(string) for i in range(m): #Mengubah ke nilai char (tabel ASCII) badChar[ord(string[i])] = i return badChar def boyerMoore(string1,txt): n = len(txt) #Dikurangi tanda tanya m = len(string1) wholeScore = m * 100 / n match = False if(wholeScore >= 90) and (wholeScore <= 110): # Seluruh string dicocokan badChar = badCharBM(string1) shift = 0 while(shift <= n-m): j = m - 1 while(j >= 0) and (string1[j] == txt[shift+j]): j = j - 1 if(j < 0): # Pattern ditemukan match = True break #BreakWhile else: shift = shift + max(1, j-badChar[ord(txt[shift+j])]) if(match): return wholeScore if(not match): #Per substring tokenizedString = string1.split() countMatch = 0 totalLength = len(txt) n = len(txt) - 1 for substring in tokenizedString: #Cari setiap sinonimnya listOfPattern = findSynonym(substring) patternMatch = False for pattern in listOfPattern: m = len(pattern) badChar = badCharBM(pattern) shift = 0 while(shift <= n-m): j = m - 1 while(j >= 0) and (pattern[j] == txt[shift+j]): j = j - 1 if(j < 0): # Pattern ditemukan countMatch = countMatch + m + 1 #Ditambah sebuah spasi patternMatch = True break #BreakWhile else: shift = shift + max(1, j-badChar[ord(txt[shift+j])]) if(patternMatch): break #BreakFor if(wholeScore <= 110): return (countMatch * 100.0 / totalLength) elif(countMatch > 0): return (totalLength * 100.0 / countMatch) else: return 0 #kemungkinan lain return 0 def resultBM(str): #boyer moore max = 0 maxIdx = -1 countOfResult = 0 idxes = [] maxValues = [] for i in range(numOfQuestion): # Kode x = boyerMoore(str,questionDB[i]) if(x >= 90): #Ketemu countOfResult = countOfResult + 1 idxes.append(i) if(x > max): max = x maxIdx = i if(countOfResult == 0): if(maxIdx != -1): idxes.append(maxIdx) elif(countOfResult > 3): idxes = bigThree(maxValues,idxes) return ((countOfResult > 0), idxes) # REGULAR EXPRESSION # def buildString(tokenizedString, line, j): stringBuilt = "(.*)" for i in range(len(tokenizedString)): if(i == j): stringBuilt = stringBuilt + line + "(.*)" else: stringBuilt = stringBuilt + tokenizedString[i] + "(.*)" def resultRegex(string): #Regular expression maxIdx = -1 max = 0 countOfResult = 0 idxes = [] maxValues = [] for i in range(numOfQuestion): #Change this later tokenizedString = string.split() j = 0 for substring in tokenizedString: substringSynonyms = findSynonym(substring) for line in substringSynonyms: pattern = buildString(tokenizedString, line, j) x = re.search(string,questionDB[i],re.M|re.I) if(x): score = len(string) * 100.0 / len(questionDB[i]) if(score <= 110): countOfResult += 1 maxValues.append(score) idxes.append(i) if(score > max): max = score break #BreakFor if(x): break #BreakFor else: j += 1 if(countOfResult == 0): if(maxIdx != -1): idxes.append(maxIdx) elif(countOfResult > 3): idxes = bigThree(maxValues,idxes) return ((countOfResult > 0), idxes) # OTHER FUNCTION def otherFunc(string): #other algorithm for pattern matching max = 0 idx = -1 return (max, 0) def initDB(): #Add questions and answers to database global numOfQuestion numOfQuestion = 1 questionDB.append("Siapa nama Anda") answerDB.append("Aku Fluffball") quest = open("pertanyaan.txt","r") for line in quest: numOfQuestion = numOfQuestion + 1 questString = line questString = questString.replace("?","") questString = removeStopWords(questString.strip()) + " " questionDB.append(questString) ans = open("jawaban.txt","r") for line in ans: answerDB.append(line.strip()) #print(questionDB) #print(answerDB) quest.close() ans.close() #Add FAQs for tuple in FAQs: numOfQuestion = numOfQuestion + 1 que, ans = tuple questionDB.append(removeStopWords(que) + " ") answerDB.append(ans) def removeStopWords(string): filteredString = "" wordTokens = string.split() found = False for w in wordTokens: if (w not in stopwords): if(found): filteredString = filteredString + " " + w else: filteredString = w found = True return filteredString def findSynonym(string): #Mencari sinonim dari suatu string found = False idx = -1 for listOfWords in listSynonym: idx = idx + 1 for word in listOfWords: if(string == word): found = True break if(found): break if(found): # Jika ada sinonimnya, kembalikan list of Synonym ke-idx return listSynonym[idx] else: # Jika tidak ada sinonimnya, kembalikan list berisi string itu sendiri listOneWord = [] listOneWord.append(string) return listOneWord def talk(string): print("Fluffball : "+string) # Main program # def useKMP(string): found, listHasil = resultKMP(string) tampikanHasil(found,listHasil) def useBM(string): found, listHasil = resultBM(string) tampikanHasil(found,listHasil) def useRegex(string): found, listHasil = resultRegex(string) tampikanHasil(found,listHasil) def tampikanHasil(found, listHasil): if(found): if(len(listHasil) == 1): print(answerDB[listHasil[0]]) else: #len(listHasil) > 1 first = True otp = "" for i in listHasil: if(first): otp = questionDB[i].strip()+"?" first = False else: otp = otp +", "+questionDB[i].strip()+"?" print("Pilih pertanyaan ini : "+otp) else: otp = "Mungkin maksud Anda : " if(len(listHasil) == 0): #Kalo tidak ada isinya sama sekali print("Saya tidak mengerti maksud Anda") #print(otp + questionDB[0].strip()+"?) else: print(otp + questionDB[listHasil[0]]+"?") def DebugAll(): initDB() talk("Halo, ada yang bisa dibantu?") talk("Pilih metode pencarian") print("1. Knuth-Morris-Prat") print("2. Boyer-Moore") print("3. Regular expression") choice = int(input("Anda : ")) while(True): if(choice >= 1) and (choice <= 3): string = str(input("Anda : ")) if(string == "end"): break string = string.replace("?","") string = removeStopWords(string) if(choice == 1): useKMP(string) elif(choice == 2): useBM(string) elif(choice == 3): useRegex(string) else: talk("Invalid input!! Masukkan kembali pilihan Anda") choice = int(input("Anda : ")) def Execute(): initDB() chatLog = open("chatLog.txt","r") for line in chatLog: getQuestion = line getQuestion = getQuestion.strip() getQuestion = getQuestion.replace("?","") getQuestion = removeStopWords(getQuestion) if(sys.argv[1] == '1'): useKMP(getQuestion) elif(sys.argv[1] == '2'): useBM(getQuestion) elif(sys.argv[1] == '3'): useRegex(getQuestion) #DebugAll() #DebugKMP() #DebugBM() #DebugRegex Execute()
[ "45161697+hendpraz@users.noreply.github.com" ]
45161697+hendpraz@users.noreply.github.com
a7b174b85eba3c6f121e88eb9985de14f93428b9
14ac991bba2eb7d59a1d76db792b7689316f8060
/leetcode/00179.py
2097fd3046480dd7c91a1af857c955626b82b82d
[]
no_license
munagekar/cp
bde88fa565a7e2158ebe0f2611c4718a3d2970f1
c25d29f68943e3721233e177abe13068e5f40e4b
refs/heads/master
2021-07-04T05:00:02.511874
2021-05-30T14:30:05
2021-05-30T14:30:05
240,286,072
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
from itertools import zip_longest from functools import cmp_to_key def cmp(a, b): if a + b > b + a: return 1 else: return -1 class Solution: def largestNumber(self, nums: List[int]) -> str: nums = map(str, nums) nums = sorted(nums, key=cmp_to_key(cmp), reverse=True) nums = "".join(nums) return nums.lstrip("0") or "0"
[ "avm.abhishek@gmail.com" ]
avm.abhishek@gmail.com
c03e0187f206d06f07e5771f3ff8b322dcdba6cf
ce387fc31007f0616b6f2805bf998ae5f6288224
/qubole_assembly/configure_airflow.py
aa05c8e46596fa8911dbf9ea0464dd358c76d091
[ "Apache-2.0", "BSD-3-Clause", "MIT", "Python-2.0" ]
permissive
harishjami1382/test2
d3466604209377e899a239c4f29446ffef06684e
f778cc7290904a84bed06f65fa5dbb49a63639f0
refs/heads/master
2023-02-25T18:44:21.114158
2021-02-04T10:19:50
2021-02-04T10:19:50
335,915,900
0
0
null
null
null
null
UTF-8
Python
false
false
8,826
py
try: import ConfigParser except: import configparser as ConfigParser import traceback import sys import os from optparse import OptionParser import base64 import subprocess def handle_specific_config(overrides_map, options): # Handle sqlalchemy settings use_cluster_datastore = False core_settings = overrides_map.get('core', {}) logging_settings = overrides_map.get('logging', {}) if not 'remote_base_log_folder' in logging_settings or logging_settings['remote_base_log_folder'] is None or logging_settings['remote_base_log_folder'] == "": logging_settings['remote_base_log_folder'] = os.getenv('AIRFLOW_LOGS_LOCATION', "") if 'logging' not in overrides_map.keys(): overrides_map['logging'] = logging_settings cluster_id = os.getenv('CLUSTER_ID', "") qubole_base_url = os.getenv('QUBOLE_BASE_URL', "api.qubole.com") if not 'sql_alchemy_conn' in core_settings or core_settings['sql_alchemy_conn'] is None or core_settings['sql_alchemy_conn'] == "": core_settings['sql_alchemy_conn'] = "postgresql://root:" + cluster_id + "@localhost:5432/airflow" use_cluster_datastore = True # Handle webserver settings web_server_port = '8080' if not 'webserver' in overrides_map: overrides_map['webserver'] = {} # user controlled port will be bad idea, keeping it 8080 only overrides_map['webserver']['web_server_port'] = web_server_port if not 'base_url' in overrides_map['webserver']: # Ideally we should not accpet any overrides for base url, this is temporary as sometimes we have to manually # setup multi-node cluster using various one-node clusters. overrides_map['webserver']['base_url'] = qubole_base_url + "/airflow-rbacwebserver-" + cluster_id # Handle celery executor settings default_broker_url = 'amqp://guest:guest@localhost:5672/' use_cluster_broker_airflow = True use_celery_airflow = True if overrides_map.get('core', {}).get('executor', None) == 'CeleryExecutor': # Executor type will always be there because we will set it in recommended config to use celery broker if 'celery' in overrides_map and 'broken_url' in overrides_map['celery']: # Means user is hosting his own messaging broker use_cluster_broker_airflow = False else: # Implies user does not want to use celery executor use_cluster_broker_airflow = False use_celery_airflow = False if use_celery_airflow: if not 'celery' in overrides_map: overrides_map['celery'] = {} if use_cluster_broker_airflow: overrides_map['celery']['broker_url'] = default_broker_url # Default broker config on machine if 'result_backend' not in overrides_map['celery']: # Reason for using sql alchemy for result backend: QBOL-5589 sql_alchemy_conn = overrides_map['core']['sql_alchemy_conn'] overrides_map['celery']['result_backend'] = 'db+' + sql_alchemy_conn if 'celeryd_concurrency' in overrides_map['celery']: overrides_map['celery']['worker_concurrency'] = overrides_map['celery']['celeryd_concurrency'] del overrides_map['celery']['celeryd_concurrency'] overrides_map['webserver']['rbac'] = False return (use_cluster_broker_airflow, use_celery_airflow, use_cluster_datastore) def setup_scheduler_child_process_directory_and_cron(overrides_map): if not 'scheduler' in overrides_map: overrides_map['scheduler'] = {} if not 'child_process_log_directory' in overrides_map['scheduler']: overrides_map['scheduler']['child_process_log_directory'] = '{0}/scheduler_task_logs'.format(os.getenv('AIRFLOW_LOG_DIR', '/media/ephemeral0/logs/airflow')) if not 'child_process_log_rotation_days' in overrides_map['scheduler']: overrides_map['scheduler']['child_process_log_rotation_days'] = '2' def setup_logs_symlink(final_config): logs_folder = final_config['logging']['base_log_folder'] symlink_folder = "{0}/logs".format(final_config['core']['airflow_home']) if logs_folder != symlink_folder: symlink_command = ["ln", "-s", logs_folder, symlink_folder] process = subprocess.Popen(symlink_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) std, err = process.communicate() if err != '': print("An error occured while creating symlink: {0}".format(err)) def main(): optparser = OptionParser() optparser.add_option("--airflow-overrides", default="", help="Airflow config overrides") optparser.add_option("--master-public-dns", default=None, help="Master Public DNS of the cluster") optparser.add_option("--airflow-home", help="Airflow Home") optparser.add_option("--airflow-env-var-file", help="Airflow Environment File Location") (options, args) = optparser.parse_args() if options.airflow_home is None: optparser.error('--airflow-home is mandatory') if options.airflow_env_var_file is None: optparser.error('--airflow-env-var-file is mandatory') # Overall aim is to merge the overrides by user/recommended with the ones present as default in airflow config. # Read config from Airflow Config file present at AIRFLOW_HOME config = ConfigParser.RawConfigParser() airflow_config_file_path = os.path.join(options.airflow_home , 'airflow.cfg') config.read(airflow_config_file_path) config_sections = config.sections() # Parse the overrides in the form section1.key1=value1!section2.key2=value2.. # Store them in a map where key is section name and value is # a map with key value pairs of that section airflow_overrides = options.airflow_overrides overrides = airflow_overrides.split('!') overrides_map = {} for override in overrides: kv = override.split('.', 1) if len(kv) != 2: continue section = kv[0] prop_val = kv[1] kv = prop_val.split('#', 1) if len(kv) != 2: continue if not section in overrides_map: overrides_map[section] = {} overrides_map[section][kv[0]] = base64.b64decode(kv[1]).decode('utf-8') (use_cluster_broker_airflow, use_celery_airflow, use_cluster_datastore) = handle_specific_config(overrides_map, options) setup_scheduler_child_process_directory_and_cron(overrides_map) # Get all sections by combining sections in overrides and config file overrides_sections = list(overrides_map.keys()) sections = set(config_sections + overrides_sections) final_config = {} # Now it's time to merge configurations of both airflow config file and overrides for section in sections: config_items = {} if config.has_section(section): # config.items(section) is of the form [(key1, value1), (key2, value2)..] and then converted to dict. config_items = dict(config.items(section)) override_items = {} if section in overrides_map: override_items = overrides_map[section] # Merge the 2 maps # Priority overrides > default config final_section_config = dict(list(config_items.items()) + list(override_items.items())) final_config[section] = final_section_config # Finally we just reset the config object to have all sections with required options for section in final_config.keys(): if not config.has_section(section): config.add_section(section) for option in final_config[section].keys(): config.set(section, option, final_config[section][option]) # Now dump the config again in the airflow config file with open(airflow_config_file_path, 'w') as airflow_config_file: config.write(airflow_config_file) airflow_env_var_file_path = options.airflow_env_var_file setup_logs_symlink(final_config) newFileData = "" for line in open(airflow_env_var_file_path, 'r'): if "export USE_CELERY_AIRFLOW=" in line or "export USE_CLUSTER_BROKER_AIRFLOW=" in line or "export USE_CLUSTER_DATASTORE=" in line: line = "" newFileData += line with open(airflow_env_var_file_path, 'w') as airflow_env_var_file: airflow_env_var_file.write(newFileData) with open(airflow_env_var_file_path, 'a') as airflow_env_var_file: airflow_env_var_file.write("export USE_CELERY_AIRFLOW=" + str(use_celery_airflow) + "\n") airflow_env_var_file.write("export USE_CLUSTER_BROKER_AIRFLOW=" + str(use_cluster_broker_airflow) + "\n") airflow_env_var_file.write("export USE_CLUSTER_DATASTORE=" + str(use_cluster_datastore) + "\n") if __name__ == '__main__': try: sys.exit(main()) except Exception: traceback.print_exc(file=sys.stderr) sys.exit(1)
[ "jami.harish@accolite.com" ]
jami.harish@accolite.com
62a61d7f251b2dd796c2a0864e338c6272236b1a
87828431072e3c60a92dc274b078d7cf1e5705be
/back_python/account/migrations/0001_initial.py
34d3acacd2cf509d472797922ba4727ed9535d39
[]
no_license
cash2one/habit
90adfd80427a0c0d04104ea5cf8123cf025b2d8b
3782e498e1e40d6b638aaf2c7c1ac087c0739a36
refs/heads/master
2021-01-19T12:32:51.627847
2017-04-11T15:41:28
2017-04-11T15:41:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,302
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-01-25 08:49 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('activity', '0013_auto_20170125_1649'), ] operations = [ migrations.CreateModel( name='Account', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('tradeDate', models.DateField(auto_now=True, verbose_name='时间')), ('tradeType', models.CharField(choices=[('fee', '套餐服务费'), ('deposit', '押金'), ('milyInput', '套餐囤米'), ('milyInputByDeposit', '押金囤米'), ('milyOutput', '米粒打赏'), ('milyOutputByDonate', '米粒捐赠'), ('feedBack', '打卡奖励米粒'), ('feedBackReturnDeposit', '打卡返还押金'), ('aveDeposit', '平均分配懒人押金')], max_length=50, verbose_name='类型')), ('fee', models.IntegerField(default=0, verbose_name='套餐服务费')), ('deposit', models.IntegerField(default=0, verbose_name='囤米押金')), ('milyInput', models.IntegerField(default=0, verbose_name='套餐囤米')), ('milyInputByDeposit', models.IntegerField(default=0, verbose_name='押金囤米')), ('milyOutput', models.IntegerField(default=0, verbose_name='米粒打赏')), ('milyOutputByDonate', models.IntegerField(default=0, verbose_name='米粒捐赠')), ('feedBack', models.IntegerField(default=0, verbose_name='打卡奖励米粒')), ('feedBackReturnDeposit', models.IntegerField(default=0, verbose_name='打卡奖励押金')), ('aveDeposit', models.IntegerField(default=0, verbose_name='平均分配懒人押金')), ('createdTime', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updatedTime', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('activity', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='activity.Activity', verbose_name='活动')), ], ), ]
[ "jiangyong@qq.com" ]
jiangyong@qq.com
c1f3f5ba64a7e7a7306a3bb2c2820a4dbb6a892e
5a7b38ee398e4f63a26b2ec2f6fa1efbce025264
/api/src/dao/commentDao.py
64c4f0711be9c2461c689cf2af8510d641966f97
[]
no_license
AJarombek/saints-xctf-api
f1e361bfc762dcc197cbc78b2b41f7cff18919b5
c2812089ec0351fd72ef7b1581a48bc55d65fd0e
refs/heads/main
2023-02-09T11:50:04.698394
2023-01-29T18:52:33
2023-01-29T18:52:33
190,956,043
5
2
null
2023-01-22T23:04:10
2019-06-09T02:35:46
Python
UTF-8
Python
false
false
6,225
py
""" Comment data access from the SaintsXCTF MySQL database. Contains comments posted on exercise logs. Author: Andrew Jarombek Date: 7/3/2019 """ from datetime import datetime from sqlalchemy import desc from database import db from dao.basicDao import BasicDao from model.Comment import Comment class CommentDao: @staticmethod def get_comments() -> list: """ Retrieve all the comments in the database. :return: The result of the query. """ return ( Comment.query.filter(Comment.deleted.is_(False)) .order_by(Comment.time) .all() ) @staticmethod def get_comment_by_id(comment_id: int) -> Comment: """ Retrieve a single comment by its unique id :param comment_id: The unique identifier for a comment. :return: The result of the query. """ return ( Comment.query.filter_by(comment_id=comment_id) .filter(Comment.deleted.is_(False)) .first() ) @staticmethod def get_comments_by_log_id(log_id: int) -> list: """ Retrieve all the comments on a specific exercise log. :param log_id: Unique identifier for an exercise log. :return: The result of the query. """ return ( Comment.query.filter_by(log_id=log_id) .filter(Comment.deleted.is_(False)) .order_by(desc(Comment.time)) .all() ) @staticmethod def add_comment(new_comment: Comment) -> bool: """ Add a comment for an exercise log to the database. :param new_comment: Object representing a comment for an exercise log. :return: True if the comment is inserted into the database, False otherwise. """ # pylint: disable=no-member db.session.add(new_comment) return BasicDao.safe_commit() @staticmethod def update_comment(comment: Comment) -> bool: """ Update a comment in the database. Certain fields (log_id, username, first, last) can't be modified. :param comment: Object representing an updated comment. :return: True if the comment is updated in the database, False otherwise. """ # pylint: disable=no-member db.session.execute( """ UPDATE comments SET time=:time, content=:content, modified_date=:modified_date, modified_app=:modified_app WHERE comment_id=:comment_id AND deleted IS FALSE """, { "comment_id": comment.comment_id, "time": comment.time, "content": comment.content, "modified_date": comment.modified_date, "modified_app": comment.modified_app, }, ) return BasicDao.safe_commit() @staticmethod def delete_comment_by_id(comment_id: int) -> bool: """ Delete a comment from the database based on its id. :param comment_id: ID which uniquely identifies the comment. :return: True if the deletion was successful without error, False otherwise. """ # pylint: disable=no-member db.session.execute( "DELETE FROM comments WHERE comment_id=:comment_id AND deleted IS FALSE", {"comment_id": comment_id}, ) return BasicDao.safe_commit() @staticmethod def delete_comments_by_log_id(log_id: int) -> bool: """ Delete comments from the database based on the log they are bound 2. :param log_id: ID which uniquely identifies the log. :return: True if the deletions were successful without error, False otherwise. """ # pylint: disable=no-member db.session.execute( "DELETE FROM comments WHERE log_id=:log_id AND deleted IS FALSE", {"log_id": log_id}, ) return BasicDao.safe_commit() @staticmethod def soft_delete_comment(comment: Comment) -> bool: """ Soft Delete a comment from the database. :param comment: Object representing a comment to soft delete. :return: True if the soft deletion was successful without error, False otherwise. """ # pylint: disable=no-member db.session.execute( """ UPDATE comments SET deleted=:deleted, modified_date=:modified_date, modified_app=:modified_app, deleted_date=:deleted_date, deleted_app=:deleted_app WHERE comment_id=:comment_id AND deleted IS FALSE """, { "comment_id": comment.comment_id, "deleted": comment.deleted, "modified_date": comment.modified_date, "modified_app": comment.modified_app, "deleted_date": comment.deleted_date, "deleted_app": comment.deleted_app, }, ) return BasicDao.safe_commit() @staticmethod def soft_delete_comments_by_log_id(log_id: int) -> bool: """ Soft Delete comments associated with an exercise log from the database. :param log_id: Unique identifier for an exercise log. :return: True if the soft deletion was successful without error, False otherwise. """ # pylint: disable=no-member db.session.execute( """ UPDATE comments SET deleted=:deleted, modified_date=:modified_date, modified_app=:modified_app, deleted_date=:deleted_date, deleted_app=:deleted_app WHERE log_id=:log_id AND deleted IS FALSE """, { "log_id": log_id, "deleted": True, "modified_date": datetime.now(), "modified_app": "saints-xctf-api", "deleted_date": datetime.now(), "deleted_app": "saints-xctf-api", }, ) return BasicDao.safe_commit()
[ "ajarombek95@gmail.com" ]
ajarombek95@gmail.com
72e87ff5fac87b45a4fbe10d20bbd6dc95907e38
242ebcb7220c2e16c141a6bea4a09c7cb5e4287d
/accounts/forms.py
83f3c4a31f7b0a3a43e78a73a2980318f2d55c71
[]
no_license
olivx/estudos_crud
06ed8c269a4c36db3579daf6d6aef5e7d49dc5f9
24af031ed44a7c6cf567368556d368fe58ab1090
refs/heads/master
2021-01-11T09:28:49.355388
2017-03-03T15:17:25
2017-03-03T15:17:25
81,199,807
0
0
null
null
null
null
UTF-8
Python
false
false
3,126
py
from django import forms from django.contrib.auth import authenticate from accounts.models import User from django.utils.translation import ugettext_lazy as _ class RegisterForm(forms.ModelForm): password1 = forms.CharField(max_length=30, widget=forms.PasswordInput, required=True) password2 = forms.CharField(max_length=30, widget=forms.PasswordInput, required=True) def clean_password2(self): password1 = self.cleaned_data['password1'] password2 = self.cleaned_data['password2'] if password1 and password2: if password1 != password2: raise forms.ValidationError(_("The two password fields didn't match.")) return self.cleaned_data class Meta: model = User fields = ('username', 'email', 'password1', 'password2') def save(self, commit=True): user = super(RegisterForm, self).save(commit=False) user.email = self.cleaned_data['username'] user.email = self.cleaned_data['email'] user.set_password(self.cleaned_data['password1']) if commit: user.save() return user class AuthenticanUserForm(forms.Form): email = forms.EmailField(label='Email', max_length=30, required=True) password = forms.CharField(label='Password', max_length=30, required=True, widget=forms.PasswordInput) error_messages = { 'invalid_login': _( "Please enter a correct %(email)s and password. Note that both " "fields may be case-sensitive." ), 'inactive': _("This account is inactive."), 'email_confirmation': _( 'this email is not confirmed yet, please confirm the your eamil and try again' ), } def clean(self): email = self.cleaned_data.get('email') password = self.cleaned_data.get('password') if email and password: self.user = authenticate(email=email, password=password) if self.user is None: raise forms.ValidationError( self.error_messages['invalid_login'], code='invalid_login', params={'email': 'Email'}, ) return self.cleaned_data def confirm_login_allowed(self, user): """ Controls whether the given User may log in. This is a policy setting, independent of end-user authentication. This default behavior is to allow login by active users, and reject login by inactive users. If the given user cannot log in, this method should raise a ``forms.ValidationError``. If the given user may log in, this method should return None. """ if not user.is_active: raise forms.ValidationError( self.error_messages['inactive'], code='inactive', ) if not user.profile.email_confirmation: raise forms.ValidationError( self.error_messages['email_confirmation'], code='email_confirmation' ) class Meta: fields = ('email', 'password')
[ "oliveiravicente.net@gmail.com" ]
oliveiravicente.net@gmail.com
ef058a2f7e1c06430d246fe4dc5decaa6c3441d5
19e9939c91674b51c7574c7103d9abb12b3a56bb
/examples/BingAdsPythonConsoleExamples/BingAdsPythonConsoleExamples/v11/bulk_keywords_ads.py
940766c36b292a5ada4817e24525b47af81bf4af
[ "MIT" ]
permissive
dariusmb/BingAds-Python-SDK
0257225d304948aa41caff42d7dd7972e1bd7457
bd5814ed66cf5ff809bea8f3231460cc3724c942
refs/heads/master
2020-04-01T14:22:15.911884
2018-10-16T15:45:26
2018-10-16T15:45:26
153,291,404
0
0
null
2018-10-16T13:36:08
2018-10-16T13:36:07
null
UTF-8
Python
false
false
17,874
py
from auth_helper import * from bulk_service_manager_helper import * from output_helper import * # You must provide credentials in auth_helper.py. def main(authorization_data): errors=[] try: # Let's create a new budget and share it with a new campaign. upload_entities=[] bulk_budget=BulkBudget() bulk_budget.client_id='YourClientIdGoesHere' budget=set_elements_to_none(campaign_service.factory.create('Budget')) budget.Amount=50 budget.BudgetType='DailyBudgetStandard' budget.Id=BUDGET_ID_KEY budget.Name="My Shared Budget " + strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) bulk_budget.budget=budget upload_entities.append(bulk_budget) bulk_campaign=BulkCampaign() # The client_id may be used to associate records in the bulk upload file with records in the results file. The value of this field # is not used or stored by the server; it is simply copied from the uploaded record to the corresponding result record. # Note: This bulk file Client Id is not related to an application Client Id for OAuth. bulk_campaign.client_id='YourClientIdGoesHere' campaign=set_elements_to_none(campaign_service.factory.create('Campaign')) # When using the Campaign Management service, the Id cannot be set. In the context of a BulkCampaign, the Id is optional # and may be used as a negative reference key during bulk upload. For example the same negative reference key for the campaign Id # will be used when adding new ad groups to this new campaign, or when associating ad extensions with the campaign. campaign.Id=CAMPAIGN_ID_KEY campaign.Name="Summer Shoes " + strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) campaign.Description="Summer shoes line." # You must choose to set either the shared budget ID or daily amount. # You can set one or the other, but you may not set both. campaign.BudgetId=BUDGET_ID_KEY campaign.DailyBudget=None campaign.BudgetType=None campaign.TimeZone='PacificTimeUSCanadaTijuana' campaign.Status='Paused' # You can set your campaign bid strategy to Enhanced CPC (EnhancedCpcBiddingScheme) # and then, at any time, set an individual ad group or keyword bid strategy to # Manual CPC (ManualCpcBiddingScheme). # For campaigns you can use either of the EnhancedCpcBiddingScheme or ManualCpcBiddingScheme objects. # If you do not set this element, then ManualCpcBiddingScheme is used by default. campaign_bidding_scheme=set_elements_to_none(campaign_service.factory.create('EnhancedCpcBiddingScheme')) campaign.BiddingScheme=campaign_bidding_scheme # Used with FinalUrls shown in the expanded text ads that we will add below. campaign.TrackingUrlTemplate="http://tracker.example.com/?season={_season}&promocode={_promocode}&u={lpurl}" bulk_campaign.campaign=campaign bulk_ad_group=BulkAdGroup() bulk_ad_group.campaign_id=CAMPAIGN_ID_KEY ad_group=set_elements_to_none(campaign_service.factory.create('AdGroup')) ad_group.Id=AD_GROUP_ID_KEY ad_group.Name="Women's Red Shoes" ad_group.AdDistribution='Search' end_date=campaign_service.factory.create('Date') end_date.Day=31 end_date.Month=12 end_date.Year=strftime("%Y", gmtime()) ad_group.EndDate=end_date search_bid=campaign_service.factory.create('Bid') search_bid.Amount=0.09 ad_group.SearchBid=search_bid ad_group.Language='English' # For ad groups you can use either of the InheritFromParentBiddingScheme or ManualCpcBiddingScheme objects. # If you do not set this element, then InheritFromParentBiddingScheme is used by default. ad_group_bidding_scheme=set_elements_to_none(campaign_service.factory.create('ManualCpcBiddingScheme')) ad_group.BiddingScheme=ad_group_bidding_scheme # You could use a tracking template which would override the campaign level # tracking template. Tracking templates defined for lower level entities # override those set for higher level entities. # In this example we are using the campaign level tracking template. ad_group.TrackingUrlTemplate=None bulk_ad_group.ad_group=ad_group # In this example only the first 3 ads should succeed. # The Title of the fourth ad is empty and not valid, # and the fifth ad is a duplicate of the second ad bulk_expanded_text_ads=[] for index in range(5): bulk_expanded_text_ad=BulkExpandedTextAd() bulk_expanded_text_ad.ad_group_id=AD_GROUP_ID_KEY expanded_text_ad=set_elements_to_none(campaign_service.factory.create('ExpandedTextAd')) expanded_text_ad.TitlePart1='Contoso' expanded_text_ad.TitlePart2='Fast & Easy Setup' expanded_text_ad.Text='Huge Savings on red shoes.' expanded_text_ad.Path1='seattle' expanded_text_ad.Path2='shoe sale' expanded_text_ad.Type='ExpandedText' expanded_text_ad.Status=None expanded_text_ad.EditorialStatus=None # With FinalUrls you can separate the tracking template, custom parameters, and # landing page URLs. final_urls=campaign_service.factory.create('ns4:ArrayOfstring') final_urls.string.append('http://www.contoso.com/womenshoesale') expanded_text_ad.FinalUrls=final_urls # Final Mobile URLs can also be used if you want to direct the user to a different page # for mobile devices. final_mobile_urls=campaign_service.factory.create('ns4:ArrayOfstring') final_mobile_urls.string.append('http://mobile.contoso.com/womenshoesale') expanded_text_ad.FinalMobileUrls=final_mobile_urls # You could use a tracking template which would override the campaign level # tracking template. Tracking templates defined for lower level entities # override those set for higher level entities. # In this example we are using the campaign level tracking template. expanded_text_ad.TrackingUrlTemplate=None # Set custom parameters that are specific to this ad, # and can be used by the ad, ad group, campaign, or account level tracking template. # In this example we are using the campaign level tracking template. url_custom_parameters=campaign_service.factory.create('ns0:CustomParameters') parameters=campaign_service.factory.create('ns0:ArrayOfCustomParameter') custom_parameter1=campaign_service.factory.create('ns0:CustomParameter') custom_parameter1.Key='promoCode' custom_parameter1.Value='PROMO' + str(index) parameters.CustomParameter.append(custom_parameter1) custom_parameter2=campaign_service.factory.create('ns0:CustomParameter') custom_parameter2.Key='season' custom_parameter2.Value='summer' parameters.CustomParameter.append(custom_parameter2) url_custom_parameters.Parameters=parameters expanded_text_ad.UrlCustomParameters=url_custom_parameters bulk_expanded_text_ad.ad=expanded_text_ad bulk_expanded_text_ads.append(bulk_expanded_text_ad) bulk_expanded_text_ads[1].ad.Title="Quick & Easy Setup" bulk_expanded_text_ads[2].ad.Title="Fast & Simple Setup" bulk_expanded_text_ads[3].ad.Title='' bulk_expanded_text_ads[4].ad.Title="Quick & Easy Setup" # In this example only the second keyword should succeed. The Text of the first keyword exceeds the limit, # and the third keyword is a duplicate of the second keyword. bulk_keywords=[] for index in range(3): bulk_keyword=BulkKeyword() bulk_keyword.ad_group_id=AD_GROUP_ID_KEY keyword=set_elements_to_none(campaign_service.factory.create('Keyword')) keyword.Bid=set_elements_to_none(campaign_service.factory.create('Bid')) keyword.Bid.Amount=0.47 keyword.Param2='10% Off' keyword.MatchType='Broad' keyword.Text='Brand-A Shoes' # For keywords you can use either of the InheritFromParentBiddingScheme or ManualCpcBiddingScheme objects. # If you do not set this element, then InheritFromParentBiddingScheme is used by default. keyword_bidding_scheme=set_elements_to_none(campaign_service.factory.create('InheritFromParentBiddingScheme')) keyword.BiddingScheme=keyword_bidding_scheme bulk_keyword.keyword=keyword bulk_keywords.append(bulk_keyword) bulk_keywords[0].keyword.Text=( "Brand-A Shoes Brand-A Shoes Brand-A Shoes Brand-A Shoes Brand-A Shoes " "Brand-A Shoes Brand-A Shoes Brand-A Shoes Brand-A Shoes Brand-A Shoes " "Brand-A Shoes Brand-A Shoes Brand-A Shoes Brand-A Shoes Brand-A Shoes" ) # Write the entities created above, to temporary memory. # Dependent entities such as BulkKeyword must be written after any dependencies, # for example the BulkCampaign and BulkAdGroup. upload_entities.append(bulk_campaign) upload_entities.append(bulk_ad_group) for bulk_expanded_text_ad in bulk_expanded_text_ads: upload_entities.append(bulk_expanded_text_ad) for bulk_keyword in bulk_keywords: upload_entities.append(bulk_keyword) output_status_message("\nAdding campaign, budget, ad group, keywords, and ads . . .") download_entities=write_entities_and_upload_file(bulk_service_manager, upload_entities) budget_results=[] campaign_results=[] adgroup_results=[] keyword_results=[] for entity in download_entities: if isinstance(entity, BulkBudget): budget_results.append(entity) output_bulk_budgets([entity]) if isinstance(entity, BulkCampaign): campaign_results.append(entity) output_bulk_campaigns([entity]) if isinstance(entity, BulkAdGroup): adgroup_results.append(entity) output_bulk_ad_groups([entity]) if isinstance(entity, BulkExpandedTextAd): output_bulk_expanded_text_ads([entity]) if isinstance(entity, BulkKeyword): keyword_results.append(entity) output_bulk_keywords([entity]) # Here is a simple example that updates the keyword bid to use the ad group bid. update_bulk_keyword=BulkKeyword() update_bulk_keyword.ad_group_id=adgroup_results[0].ad_group.Id update_keyword=campaign_service.factory.create('Keyword') update_keyword.Id=next((keyword_result.keyword.Id for keyword_result in keyword_results if keyword_result.keyword.Id is not None and keyword_result.ad_group_id==update_bulk_keyword.ad_group_id), None) # You can set the Bid.Amount property to change the keyword level bid. update_keyword.Bid=campaign_service.factory.create('Bid') update_keyword.Bid.Amount=0.46 # The keyword bid will not be updated if the Bid property is not specified or if you create # an empty Bid. #update_keyword.Bid=campaign_service.factory.create('Bid') # The keyword level bid will be deleted ("delete_value" will be written in the bulk upload file), and # the keyword will effectively inherit the ad group level bid if you explicitly set the Bid property to None. #update_keyword.Bid=None # It is important to note that the above behavior differs from the Bid settings that # are used to update keywords with the Campaign Management servivce. # When using the Campaign Management service with the Bing Ads Python SDK, if the # Bid property is not specified or is set explicitly to None, your keyword bid will not be updated. # For examples of how to use the Campaign Management service for keyword updates, please see KeywordsAds.py. update_bulk_keyword.keyword=update_keyword upload_entities=[] upload_entities.append(update_bulk_keyword) output_status_message("\nUpdating the keyword bid to use the ad group bid . . .") download_entities=write_entities_and_upload_file(bulk_service_manager, upload_entities) for entity in download_entities: if isinstance(entity, BulkKeyword): output_bulk_keywords([entity]) # Here is a simple example that updates the campaign budget. download_parameters=DownloadParameters( download_entities=[ 'Budgets', 'Campaigns' ], result_file_directory=FILE_DIRECTORY, result_file_name=DOWNLOAD_FILE_NAME, overwrite_result_file=True, last_sync_time_in_utc=None ) upload_entities=[] get_budget_results=[] get_campaign_results=[] # Download all campaigns and shared budgets in the account. download_entities=download_file(bulk_service_manager, download_parameters) output_status_message("Downloaded all campaigns and shared budgets in the account.\n") for entity in download_entities: if isinstance(entity, BulkBudget): get_budget_results.append(entity) output_bulk_budgets([entity]) if isinstance(entity, BulkCampaign): get_campaign_results.append(entity) output_bulk_campaigns([entity]) # If the campaign has a shared budget you cannot update the Campaign budget amount, # and you must instead update the amount in the Budget record. If you try to update # the budget amount of a Campaign that has a shared budget, the service will return # the CampaignServiceCannotUpdateSharedBudget error code. for entity in get_budget_results: if entity.budget.Id > 0: # Increase budget by 20 % entity.budget.Amount *= Decimal(1.2) upload_entities.append(entity) for entity in get_campaign_results: if entity.campaign.BudgetId == None or entity.campaign.BudgetId <= 0: # Increase budget by 20 % entity.campaign.DailyBudget *= 1.2 upload_entities.append(entity) if len(upload_entities) > 0: output_status_message("Changed local campaign budget amounts. Starting upload.\n") download_entities=write_entities_and_upload_file(bulk_service_manager, upload_entities) for entity in download_entities: if isinstance(entity, BulkBudget): get_budget_results.append(entity) output_bulk_budgets([entity]) if isinstance(entity, BulkCampaign): get_campaign_results.append(entity) output_bulk_campaigns([entity]) else: output_status_message("No campaigns or shared budgets in account.\n") # Delete the campaign, ad group, keywords, and ads that were previously added. # You should remove this region if you want to view the added entities in the # Bing Ads web application or another tool. upload_entities=[] for budget_result in budget_results: budget_result.status='Deleted' upload_entities.append(budget_result) for campaign_result in campaign_results: campaign_result.campaign.Status='Deleted' upload_entities.append(campaign_result) output_status_message("\nDeleting campaign, budget, ad group, ads, and keywords . . .") download_entities=write_entities_and_upload_file(bulk_service_manager, upload_entities) for entity in download_entities: if isinstance(entity, BulkBudget): output_bulk_budgets([entity]) if isinstance(entity, BulkCampaign): output_bulk_campaigns([entity]) output_status_message("Program execution completed") except WebFault as ex: output_webfault_errors(ex) except Exception as ex: output_status_message(ex) # Main execution if __name__ == '__main__': print("Python loads the web service proxies at runtime, so you will observe " \ "a performance delay between program launch and main execution...\n") authorization_data=AuthorizationData( account_id=None, customer_id=None, developer_token=DEVELOPER_TOKEN, authentication=None, ) bulk_service_manager=BulkServiceManager( authorization_data=authorization_data, poll_interval_in_milliseconds=5000, environment=ENVIRONMENT, ) campaign_service=ServiceClient( service='CampaignManagementService', authorization_data=authorization_data, environment=ENVIRONMENT, version=11, ) # You should authenticate for Bing Ads production services with a Microsoft Account, # instead of providing the Bing Ads username and password set. authenticate(authorization_data) main(authorization_data)
[ "eur@microsoft.com" ]
eur@microsoft.com
d56aaa1b76881e1998052b9a341d91955fab83a2
1dd6726ebfef9736fea9d4b69c18333909197417
/New folder/project_test/manage.py
3a32ab96c4075d09f7fb2b70bdb53957ec7a5dd6
[]
no_license
Uday-Kiran/My-Scribbles
c7255371ef4c15172dc8acb511d13143533032f4
fc2383c5877b78dfa4751d4c114762f84504cc48
refs/heads/master
2022-01-19T02:36:08.964361
2019-07-21T16:40:35
2019-07-21T16:40:35
198,078,486
0
0
null
null
null
null
UTF-8
Python
false
false
653
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'project_test.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "noreply@github.com" ]
noreply@github.com
fd8b43d4911e377665daaa891b42fdc5fbbe6787
bff728cca48292af65e6c14ca942ba92f0161f0f
/wiki_search.py
9354460dac59f44ecdc1dba005eb13e21b9eff58
[]
no_license
enriched-uranium235/chatbot
1520a68d2084c4b4b61136ce9da167786a5878d8
e95f6dde49dc684b93b4f95ad8da085b95840dd3
refs/heads/master
2023-02-20T05:18:25.807488
2021-01-06T07:43:52
2021-01-06T07:43:52
327,227,824
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
import wikipedia def wikipediaSearch(search_text): response_string = "" wikipedia.set_lang("ja") search_response = wikipedia.search(search_text) if not search_response: response_string = "その単語は登録されていません。" return response_string try: wiki_page = wikipedia.page(search_response[0]) except Exception as e: response_string = "エラーが発生しました。\n{}\n{}".format(e.message, str(e)) return response_string wiki_content = wiki_page.content response_string += wiki_content[0:wiki_content.find("。")] + "。\n" response_string += "リンクはこちら:" + wiki_page.url return response_string if __name__ == "__main__": while True: user_input = input("検索したい単語を入力してください。:") if not user_input: break print(wikipediaSearch(user_input))
[ "hexanitrobenzene@gmail.com" ]
hexanitrobenzene@gmail.com
856043c72dfa18187c13e630e6c9e58fcc3c660b
a56a74b362b9263289aad96098bd0f7d798570a2
/venv/lib/python3.8/site-packages/matplotlib/_pylab_helpers.py
2407b573c4aabbe64132bc3a0ae71163132785bc
[ "MIT" ]
permissive
yoonkt200/ml-theory-python
5812d06841d30e1068f6592b5730a40e87801313
7643136230fd4f291b6e3dbf9fa562c3737901a2
refs/heads/master
2022-12-21T14:53:21.624453
2021-02-02T09:33:07
2021-02-02T09:33:07
132,319,537
13
14
MIT
2022-12-19T17:23:57
2018-05-06T08:17:45
Python
UTF-8
Python
false
false
3,445
py
""" Manage figures for pyplot interface. """ import atexit import gc class Gcf: """ Singleton to manage a set of integer-numbered figures. This class is never instantiated; it consists of two class attributes (a list and a dictionary), and a set of static methods that operate on those attributes, accessing them directly as class attributes. Attributes ---------- figs dictionary of the form {*num*: *manager*, ...} _activeQue list of *managers*, with active one at the end """ _activeQue = [] figs = {} @classmethod def get_fig_manager(cls, num): """ If figure manager *num* exists, make it the active figure and return the manager; otherwise return *None*. """ manager = cls.figs.get(num, None) if manager is not None: cls.set_active(manager) return manager @classmethod def destroy(cls, num): """ Try to remove all traces of figure *num*. In the interactive backends, this is bound to the window "destroy" and "delete" events. """ if not cls.has_fignum(num): return manager = cls.figs[num] manager.canvas.mpl_disconnect(manager._cidgcf) cls._activeQue.remove(manager) del cls.figs[num] manager.destroy() gc.collect(1) @classmethod def destroy_fig(cls, fig): "*fig* is a Figure instance" num = next((manager.num for manager in cls.figs.values() if manager.canvas.figure == fig), None) if num is not None: cls.destroy(num) @classmethod def destroy_all(cls): # this is need to ensure that gc is available in corner cases # where modules are being torn down after install with easy_install import gc # noqa for manager in list(cls.figs.values()): manager.canvas.mpl_disconnect(manager._cidgcf) manager.destroy() cls._activeQue = [] cls.figs.clear() gc.collect(1) @classmethod def has_fignum(cls, num): """ Return *True* if figure *num* exists. """ return num in cls.figs @classmethod def get_all_fig_managers(cls): """ Return a list of figure managers. """ return list(cls.figs.values()) @classmethod def get_num_fig_managers(cls): """ Return the number of figures being managed. """ return len(cls.figs) @classmethod def get_active(cls): """ Return the manager of the active figure, or *None*. """ if len(cls._activeQue) == 0: return None else: return cls._activeQue[-1] @classmethod def set_active(cls, manager): """ Make the figure corresponding to *manager* the active one. """ oldQue = cls._activeQue[:] cls._activeQue = [m for m in oldQue if m != manager] cls._activeQue.append(manager) cls.figs[manager.num] = manager @classmethod def draw_all(cls, force=False): """ Redraw all figures registered with the pyplot state machine. """ for f_mgr in cls.get_all_fig_managers(): if force or f_mgr.canvas.figure.stale: f_mgr.canvas.draw_idle() atexit.register(Gcf.destroy_all)
[ "kitae.yoon@deliveryhero.co.kr" ]
kitae.yoon@deliveryhero.co.kr
6af792a1f4600d4fa1047802376523a08b69a6c1
7f2b233462e38f7fd2094bd4e304ca1b7525ec24
/practice sessin.py
7cc2b376eca0f3676554c0f2627c86df150aab19
[]
no_license
vin531999/vin531999
919ec99b8dc21a3a8e19357967b72d16211dd733
647fb7d4e91b8d6a966a61c150831168c67677be
refs/heads/master
2021-04-12T18:35:29.594555
2020-03-24T04:31:55
2020-03-24T04:31:55
249,100,819
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
n = int(input("enter the numbers :")) c = [] d = 1 for i in range (n): i = int(input(" ")) c.append(i) d = d*i print(d)
[ "noreply@github.com" ]
noreply@github.com
57154970bf889cb5ae8637e4d25670f1909939ea
1213a0cc401365556d488913693cde54281ef350
/backup_fully_working_with_sensor/ai.py
5f272f3508088f2185990cc42d95d0cc93923477
[]
no_license
mkhetan/session10_endgame_exp
188adf0a8dae15f7603cc40fdc3b2dc9de1d0424
e6cd6066697c95825708f264f77a123622e10d5b
refs/heads/master
2022-07-15T22:04:31.604956
2020-05-12T05:19:33
2020-05-12T05:19:33
261,933,766
0
0
null
null
null
null
UTF-8
Python
false
false
8,067
py
# AI for Self Driving Car # Importing the libraries import numpy as np import random import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.autograd as autograd from torch.autograd import Variable # Creating the architecture of the Neural Network class Actor(nn.Module): def __init__(self, state_dim, action_dim, max_action): super(Actor, self).__init__() self.layer_1 = nn.Linear(state_dim, 400) self.layer_2 = nn.Linear(400, 300) self.layer_3 = nn.Linear(300, action_dim) self.max_action = max_action def forward(self, x): x = F.relu(self.layer_1(x)) x = F.relu(self.layer_2(x)) x = self.max_action * torch.tanh(self.layer_3(x)) return x class Critic(nn.Module): def __init__(self, state_dim, action_dim): super(Critic, self).__init__() # Defining the first Critic neural network self.layer_1 = nn.Linear(state_dim + action_dim, 400) self.layer_2 = nn.Linear(400, 300) self.layer_3 = nn.Linear(300, 1) # Defining the second Critic neural network self.layer_4 = nn.Linear(state_dim + action_dim, 400) self.layer_5 = nn.Linear(400, 300) self.layer_6 = nn.Linear(300, 1) def forward(self, x, u): xu = torch.cat([x, u], 1) # Forward-Propagation on the first Critic Neural Network x1 = F.relu(self.layer_1(xu)) x1 = F.relu(self.layer_2(x1)) x1 = self.layer_3(x1) # Forward-Propagation on the second Critic Neural Network x2 = F.relu(self.layer_4(xu)) x2 = F.relu(self.layer_5(x2)) x2 = self.layer_6(x2) return x1, x2 def Q1(self, x, u): xu = torch.cat([x, u], 1) x1 = F.relu(self.layer_1(xu)) x1 = F.relu(self.layer_2(x1)) x1 = self.layer_3(x1) return x1 # Implementing Experience Replay class ReplayBuffer(object): def __init__(self, max_size=1e6): self.storage = [] self.max_size = max_size self.ptr = 0 def add(self, transition): if len(self.storage) == self.max_size: self.storage[int(self.ptr)] = transition self.ptr = (self.ptr + 1) % self.max_size else: self.storage.append(transition) def sample(self, batch_size): ind = np.random.randint(0, len(self.storage), size=batch_size) batch_states, batch_next_states, batch_actions, batch_rewards, batch_dones = [], [], [], [], [] for i in ind: state, next_state, action, reward, done = self.storage[i] batch_states.append(np.array(state, copy=False)) batch_next_states.append(np.array(next_state, copy=False)) batch_actions.append(np.array(action, copy=False)) batch_rewards.append(np.array(reward, copy=False)) batch_dones.append(np.array(done, copy=False)) return np.array(batch_states), np.array(batch_next_states), np.array(batch_actions), np.array(batch_rewards).reshape(-1, 1), np.array(batch_dones).reshape(-1, 1) # Selecting the device (CPU or GPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class TD3(object): def __init__(self, state_dim, action_dim, max_action): self.actor = Actor(state_dim, action_dim, max_action).to(device) self.actor_target = Actor(state_dim, action_dim, max_action).to(device) self.actor_target.load_state_dict(self.actor.state_dict()) self.actor_optimizer = torch.optim.Adam(self.actor.parameters()) self.critic = Critic(state_dim, action_dim).to(device) self.critic_target = Critic(state_dim, action_dim).to(device) self.critic_target.load_state_dict(self.critic.state_dict()) self.critic_optimizer = torch.optim.Adam(self.critic.parameters()) self.max_action = max_action def select_action(self, state): state = torch.Tensor(state.reshape(1, -1)).to(device) return self.actor(state).cpu().data.numpy().flatten() def train(self, replay_buffer, iterations, batch_size=100, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2): for it in range(iterations): # Step 4: We sample a batch of transitions (s, s’, a, r) from the memory batch_states, batch_next_states, batch_actions, batch_rewards, batch_dones = replay_buffer.sample(batch_size) state = torch.Tensor(batch_states).to(device) next_state = torch.Tensor(batch_next_states).to(device) action = torch.Tensor(batch_actions).to(device) reward = torch.Tensor(batch_rewards).to(device) done = torch.Tensor(batch_dones).to(device) # Step 5: From the next state s’, the Actor target plays the next action a’ next_action = self.actor_target(next_state) # Step 6: We add Gaussian noise to this next action a’ and we clamp it in a range of values supported by the environment noise = torch.Tensor(batch_actions).data.normal_(0, policy_noise).to(device) noise = noise.clamp(-noise_clip, noise_clip) next_action = (next_action + noise).clamp(-self.max_action, self.max_action) # Step 7: The two Critic targets take each the couple (s’, a’) as input and return two Q-values Qt1(s’,a’) and Qt2(s’,a’) as outputs target_Q1, target_Q2 = self.critic_target(next_state, next_action) # Step 8: We keep the minimum of these two Q-values: min(Qt1, Qt2) target_Q = torch.min(target_Q1, target_Q2) # Step 9: We get the final target of the two Critic models, which is: Qt = r + γ * min(Qt1, Qt2), where γ is the discount factor target_Q = reward + ((1 - done) * discount * target_Q).detach() # Step 10: The two Critic models take each the couple (s, a) as input and return two Q-values Q1(s,a) and Q2(s,a) as outputs current_Q1, current_Q2 = self.critic(state, action) # Step 11: We compute the loss coming from the two Critic models: Critic Loss = MSE_Loss(Q1(s,a), Qt) + MSE_Loss(Q2(s,a), Qt) critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q) # Step 12: We backpropagate this Critic loss and update the parameters of the two Critic models with a SGD optimizer self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # Step 13: Once every two iterations, we update our Actor model by performing gradient ascent on the output of the first Critic model if it % policy_freq == 0: actor_loss = -self.critic.Q1(state, self.actor(state)).mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # Step 14: Still once every two iterations, we update the weights of the Actor target by polyak averaging for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) # Step 15: Still once every two iterations, we update the weights of the Critic target by polyak averaging for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) # Making a save method to save a trained model def save(self, filename, directory): torch.save(self.actor.state_dict(), '%s/%s_actor.pth' % (directory, filename)) torch.save(self.critic.state_dict(), '%s/%s_critic.pth' % (directory, filename)) # Making a load method to load a pre-trained model def load(self, filename, directory): self.actor.load_state_dict(torch.load('%s/%s_actor.pth' % (directory, filename))) self.critic.load_state_dict(torch.load('%s/%s_critic.pth' % (directory, filename)))
[ "mkhetan@extremenetworks.com" ]
mkhetan@extremenetworks.com
b301f0492fba0e2d359e1d51edb2d2c889cdd464
7836becef5fce2c55bef3ac08765f856f1ab2689
/lx_blog/api_v1/profile.py
e0d7fd6f9b83eef6a1333c73621f3eb50556aa1f
[]
no_license
2218997647/Blog_Test_LX
b049acd392c146fc054c918d32aa8976aca70b9e
d5e0c3e16e10a22e1f9547375256785a86f055b7
refs/heads/master
2020-04-05T21:48:19.407676
2018-11-12T15:37:42
2018-11-12T15:37:42
157,233,777
0
0
null
null
null
null
UTF-8
Python
false
false
1,803
py
# coding:utf-8 from . import api from lx_blog.utils.commons import login_required from flask import g, current_app, jsonify, request, session from lx_blog.utils.response_code import RET from lx_blog.models import User from lx_blog import db, constants @api.route("/users/name", methods=["PUT"]) @login_required def change_user_name(): """修改用户名""" # 使用了login_required装饰器后,可以从g对象中获取用户user_id user_id = g.user_id # 获取用户想要设置的用户名 req_data = request.get_json() if not req_data: return jsonify(errno=RET.PARAMERR, errmsg="参数不完整") name = req_data.get("name") # 用户想要设置的名字 if not name: return jsonify(errno=RET.PARAMERR, errmsg="名字不能为空") # 保存用户昵称name,并同时判断name是否重复(利用数据库的唯一索引) try: User.query.filter_by(id=user_id).update({"name": name}) db.session.commit() except Exception as e: current_app.logger.error(e) db.session.rollback() return jsonify(errno=RET.DBERR, errmsg="设置用户错误") # 修改session数据中的name字段 session["name"] = name return jsonify(errno=RET.OK, errmsg="OK", data={"name": name}) @api.route("/user", methods=["GET"]) @login_required def get_user_profile(): """获取个人信息""" user_id = g.user_id # 查询数据库获取个人信息 try: user = User.query.get(user_id) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg="获取用户信息失败") if user is None: return jsonify(errno=RET.NODATA, errmsg="无效操作") return jsonify(errno=RET.OK, errmsg="OK", data=user.to_dict())
[ "2218997647@qq.com" ]
2218997647@qq.com
1cd644fe4370089fe5cf86ae2fc2d3fa316e8e2e
e629d61db2f08f66cf46d934ab0f87fa1666de05
/backend/lively_heart_25130/urls.py
5c32c3d6b9e17dce8e7eb899ed0a90b4b5455ae7
[]
no_license
crowdbotics-apps/lively-heart-25130
ec80559da8d6b168df1ce75415c5d6b916c97ee1
ed33785297cbb8f794034de1bc3c7fb81bdbe048
refs/heads/master
2023-03-24T16:57:41.146127
2021-03-19T21:41:18
2021-03-19T21:41:18
349,561,856
0
0
null
null
null
null
UTF-8
Python
false
false
2,235
py
"""lively_heart_25130 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "Lively Heart" admin.site.site_title = "Lively Heart Admin Portal" admin.site.index_title = "Lively Heart Admin" # swagger api_info = openapi.Info( title="Lively Heart API", default_version="v1", description="API documentation for Lively Heart App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
8f9f79f922e726902af3535889af3665812574bd
63cf7b2d363d3d4a371f7214f20b5503b401b5ee
/ene-jun-2020/joe tareas y parciales/ordinario/ordinario_busqueda.py
263816de6626eea036c7531f294391a226f47535
[]
no_license
joeguerrero735/AlgoritmosSistemas
fdfb03b1072835c5b40e4c5f1e954d0f5c740d72
ed3132d7738ee31af40c99b2811488ea84c04d6a
refs/heads/master
2022-09-06T22:45:01.039420
2020-05-30T05:03:18
2020-05-30T05:03:18
263,782,689
0
0
null
2020-05-14T01:17:54
2020-05-14T01:17:53
null
UTF-8
Python
false
false
1,481
py
def binarySearch(arreglo, inicial, final, x): medio = (inicial + final)//2 if inicial > final: return -1 if arreglo[medio][0] == x : if x < arreglo[medio][0]: return binarySearch(arreglo, inicial, medio-1, x) else: return binarySearch(arreglo, medio+1, final, x) entrada_datos = input().split() # número de cosa que va a comprar tamaño=int(entrada_datos[0]) #artículo que busca palabra=entrada_datos[1] ## arreglo arreglo = [] for i in range(tamaño): b = input().split() arreglo.append(b) def quickSort(arr,start,end): pivot = start point = end while pivot != point: if len(arr[point]) < len(arr[pivot]) and point > pivot: # Si la regla no se cumple, cambio. arr[point], arr[pivot] = arr[pivot], arr[point] pivot, point = point, pivot elif len(arr[point]) > len(arr[pivot]) and point < pivot: # Si la regla no se cumple, cambio. arr[point], arr[pivot] = arr[pivot], arr[point] pivot, point = point, pivot if pivot > point: point += 1 else: point -= 1 # Izquierda. if pivot != start: quickSort(arr, start, pivot-1) # Derecha. if pivot != end: quickSort(arr, pivot+1, end) quickSort(arreglo,0,len(arreglo)-1) #print(arreglo) print(binarySearch(arreglo, 0, len(arreglo), palabra)+1)
[ "yoyom_wwe@hotmail.com" ]
yoyom_wwe@hotmail.com
6d36440509a5ce458028cddd6f11386e9c9f9b3e
37c189ce1dfe146df449d61add792de639d04321
/api/can_api_v2_definition.py
e4ceaddb9c7ebf78ed14e4f9807f171fc516f0fe
[ "MIT", "CC-BY-4.0" ]
permissive
yangyijane/covid-data-model
2f9d1db874e2b883f4c856989d1e0876ab293a77
3d7d8ec65fbabf1ce5e1749f328c96cdf6199905
refs/heads/main
2023-08-22T06:39:33.401142
2021-10-25T15:59:53
2021-10-25T15:59:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,290
py
from typing import List, Optional, Dict import enum import textwrap from libs.datasets.dataset_utils import AggregationLevel from libs import base_model from libs.datasets import timeseries import pydantic import datetime from covidactnow.datapublic.common_fields import GetByValueMixin CDC_TRANSMISSION_LEVEL_DESCRIPTION = textwrap.dedent( """ Community transmission level for region, calculated using the CDC definition. Possible values: - 0: Low - 1: Moderate - 2: Substantial - 3: High - 4: Unknown See [definitions of CDC community transmission levels]( https://covid.cdc.gov/covid-data-tracker/#cases_community) for more details. Note that the value may differ from what the CDC website reports given we have different data sources. We have also introduced an "Unknown" level for when both case data and test positivity data are missing for at least 15 days. The CDC does not have an "Unknown" level and instead will designate a location as "Low" when case and test positivity data are missing. """ ) class TestPositivityRatioMethod(GetByValueMixin, enum.Enum): """Method used to determine test positivity ratio.""" CMSTesting = "CMSTesting" CDCTesting = "CDCTesting" HHSTesting = "HHSTesting" VALORUM = "Valorum" COVID_TRACKING = "covid_tracking" OTHER = "other" class FieldSourceType(GetByValueMixin, enum.Enum): """The data source of a field (metric or actual). This enumeration lists the places from which CAN fetches data. The source is tracked on a per field and region timeseries basis.""" NYTimes = "NYTimes" CMSTesting = "CMSTesting" CDCTesting = "CDCTesting" HHSTesting = "HHSTesting" HHSHospital = "HHSHospital" VALORUM = "Valorum" COVID_TRACKING = "covid_tracking" USA_FACTS = "USAFacts" TestAndTrace = "TestAndTrace" CANScrapersStateProviders = "CANScrapersStateProviders" OTHER = "other" class TestPositivityRatioDetails(base_model.APIBaseModel): """Details about how the test positivity ratio was calculated.""" source: TestPositivityRatioMethod = pydantic.Field( ..., description="Source data for test positivity ratio." ) class DemographicDistributions(base_model.APIBaseModel): """Distributions of demographic data. Note that different regions may have different demographic distributions for the same field. For instance, health departments in different states may report different age ranges. The data provided matches the source distributions. """ age: Optional[Dict[str, int]] = pydantic.Field(None) race: Optional[Dict[str, int]] = pydantic.Field(None) ethnicity: Optional[Dict[str, int]] = pydantic.Field(None) sex: Optional[Dict[str, int]] = pydantic.Field(None) class HospitalResourceUtilization(base_model.APIBaseModel): capacity: Optional[int] = pydantic.Field(..., description="Total capacity for resource.") currentUsageTotal: Optional[int] = pydantic.Field( ..., description="Currently used capacity for resource by all patients (COVID + Non-COVID)" ) currentUsageCovid: Optional[int] = pydantic.Field( ..., description="Currently used capacity for resource by COVID " ) class Actuals(base_model.APIBaseModel): """Known actuals data.""" cases: Optional[int] = pydantic.Field( ..., description="Cumulative confirmed or suspected cases." ) deaths: Optional[int] = pydantic.Field( ..., description=( "Cumulative deaths that are suspected or confirmed to have been caused by COVID-19." ), ) positiveTests: Optional[int] = pydantic.Field( ..., description="Cumulative positive test results to date" ) negativeTests: Optional[int] = pydantic.Field( ..., description="Cumulative negative test results to date" ) contactTracers: Optional[int] = pydantic.Field(..., description="Number of Contact Tracers") hospitalBeds: Optional[HospitalResourceUtilization] = pydantic.Field( ..., description=""" Information about acute bed utilization details. Fields: * capacity - Current staffed acute bed capacity. * currentUsageTotal - Total number of acute beds currently in use * currentUsageCovid - Number of acute beds currently in use by COVID patients. """, ) icuBeds: Optional[HospitalResourceUtilization] = pydantic.Field( ..., description=""" Information about ICU bed utilization details. Fields: * capacity - Current staffed ICU bed capacity. * currentUsageTotal - Total number of ICU beds currently in use * currentUsageCovid - Number of ICU beds currently in use by COVID patients. """, ) newCases: Optional[int] = pydantic.Field( ..., description=""" New confirmed or suspected cases. New cases are a processed timeseries of cases - summing new cases may not equal the cumulative case count. Processing steps: 1. If a region does not report cases for a period of time but then begins reporting again, we will exclude the first day that reporting recommences. This first day likely includes multiple days worth of cases and can be misleading to the overall series. 2. We remove any days with negative new cases. 3. We apply an outlier detection filter to the timeseries, which removes any data points that seem improbable given recent numbers. Many times this is due to backfill of previously unreported cases. """, ) newDeaths: Optional[int] = pydantic.Field( ..., description=""" New confirmed or suspected COVID-19 deaths. New deaths is an estimate of deaths per day; summing new deaths may not equal the cumulative death count. Processing steps: 1. If a region does not report deaths for a period of time but then begins reporting again, we will exclude the first day that reporting recommences. This first day likely includes multiple days worth of deaths and can be misleading to the overall series. 2. We remove any days with negative new deaths. 3. We apply an outlier detection filter to the timeseries, which removes any data points that seem improbable given recent numbers. Many times this is due to backfill of previously unreported deaths. """, ) vaccinesDistributed: Optional[int] = pydantic.Field( None, description="Number of vaccine doses distributed." ) vaccinationsInitiated: Optional[int] = pydantic.Field( None, description=""" Number of vaccinations initiated. This value may vary by type of vaccine, but for Moderna and Pfizer this indicates number of people vaccinated with the first dose. """, ) vaccinationsCompleted: Optional[int] = pydantic.Field( None, description=""" Number of vaccinations completed. This value may vary by type of vaccine, but for Moderna and Pfizer this indicates number of people vaccinated with both the first and second dose. """, ) vaccinesAdministered: Optional[int] = pydantic.Field( None, description="Total number of vaccine doses administered." ) vaccinesAdministeredDemographics: Optional[DemographicDistributions] = pydantic.Field( None, description="Demographic distributions for administered vaccines." ) vaccinationsInitiatedDemographics: Optional[DemographicDistributions] = pydantic.Field( None, description="Demographic distributions for initiated vaccinations." ) # When adding a new "actual" field here remember to add a `FieldAnnotations` in `Annotations`. class ActualsTimeseriesRow(Actuals): """Actual data for a specific day.""" date: datetime.date = pydantic.Field(..., description="Date of timeseries data point") class AnomalyAnnotation(base_model.APIBaseModel): date: datetime.date = pydantic.Field(..., description="Date of anomaly") type: timeseries.TagType = pydantic.Field(..., description="Type of annotation") original_observation: float = pydantic.Field( ..., description="Original value on this date detected as anomalous." ) class FieldSource(base_model.APIBaseModel): type: Optional[FieldSourceType] = pydantic.Field( None, description="The type of data source from a CAN list of data source types" ) url: Optional[str] = pydantic.Field( None, description="URL of a webpage containing the data at the source" ) name: Optional[str] = pydantic.Field(None, description="A human readable name of the source") class FieldAnnotations(base_model.APIBaseModel): """Annotations associated with one field.""" sources: List[FieldSource] anomalies: List[AnomalyAnnotation] class Annotations(base_model.APIBaseModel): """Annotations for each field.""" # Keep this list of fields in sync with the fields in `Actuals` cases: Optional[FieldAnnotations] = pydantic.Field(None, description="Annotations for cases") deaths: Optional[FieldAnnotations] = pydantic.Field(None, description="Annotations for deaths") positiveTests: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for positiveTests" ) negativeTests: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for negativeTests" ) contactTracers: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for contactTracers" ) hospitalBeds: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for hospitalBeds" ) icuBeds: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for icuBeds" ) newCases: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for newCases" ) newDeaths: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for newDeaths" ) vaccinesDistributed: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for vaccinesDistributed" ) vaccinationsInitiated: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for vaccinationsInitiated" ) vaccinationsCompleted: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for vaccinationsCompleted" ) vaccinesAdministered: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for vaccinesAdministered" ) # Keep this list of fields in sync with the fields in `Metrics` testPositivityRatio: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for testPositivityRatio" ) caseDensity: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for caseDensity" ) contactTracerCapacityRatio: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for contactTracerCapacityRatio" ) infectionRate: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for infectionRate" ) infectionRateCI90: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for infectionRateCI90" ) icuCapacityRatio: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for icuCapacityRatio" ) vaccinationsInitiatedRatio: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for vaccinationsInitiatedRatio" ) vaccinationsCompletedRatio: Optional[FieldAnnotations] = pydantic.Field( None, description="Annotations for vaccinationsCompletedRatio" ) class Metrics(base_model.APIBaseModel): """Calculated metrics data based on known actuals.""" testPositivityRatio: Optional[float] = pydantic.Field( ..., description="Ratio of people who test positive calculated using a 7-day rolling average.", ) testPositivityRatioDetails: Optional[TestPositivityRatioDetails] = pydantic.Field(None) caseDensity: Optional[float] = pydantic.Field( ..., description="The number of cases per 100k population calculated using a 7-day rolling average.", ) contactTracerCapacityRatio: Optional[float] = pydantic.Field( ..., description=( "Ratio of currently hired tracers to estimated " "tracers needed based on 7-day daily case average." ), ) infectionRate: Optional[float] = pydantic.Field( ..., description="R_t, or the estimated number of infections arising from a typical case." ) infectionRateCI90: Optional[float] = pydantic.Field( ..., description="90th percentile confidence interval upper endpoint of the infection rate.", ) icuCapacityRatio: Optional[float] = pydantic.Field( ..., description="Ratio of staffed intensive care unit (ICU) beds that are currently in use.", ) vaccinationsInitiatedRatio: Optional[float] = pydantic.Field( None, description=("Ratio of population that has initiated vaccination.") ) vaccinationsCompletedRatio: Optional[float] = pydantic.Field( None, description=("Ratio of population that has completed vaccination.") ) @staticmethod def empty(): """Returns an empty Metrics object.""" return Metrics( testPositivityRatio=None, caseDensity=None, contactTracerCapacityRatio=None, infectionRate=None, infectionRateCI90=None, icuCapacityRatio=None, ) @enum.unique class RiskLevel(enum.Enum): """COVID Risk Level. ## Risk Level Definitions *Low* - On track to contain COVID *Medium* - Slow disease growth *High* - At risk of outbreak *Critical* - Active or imminent outbreak *Unknown* - Risk unknown *Extreme* - Severe outbreak """ LOW = 0 MEDIUM = 1 HIGH = 2 CRITICAL = 3 UNKNOWN = 4 EXTREME = 5 @enum.unique class CDCTransmissionLevel(enum.Enum): """CDC community transmission level.""" LOW = 0 MODERATE = 1 SUBSTANTIAL = 2 HIGH = 3 UNKNOWN = 4 class RiskLevels(base_model.APIBaseModel): """COVID risk levels for a region.""" overall: RiskLevel = pydantic.Field(..., description="Overall risk level for region.") testPositivityRatio: RiskLevel = pydantic.Field( ..., description="Test positivity ratio risk level." ) caseDensity: RiskLevel = pydantic.Field(..., description="Case density risk level.") contactTracerCapacityRatio: RiskLevel = pydantic.Field( ..., description="Contact tracer capacity ratio risk level." ) infectionRate: RiskLevel = pydantic.Field(..., description="Infection rate risk level.") icuCapacityRatio: RiskLevel = pydantic.Field(..., description="ICU capacity ratio risk level.") @classmethod def empty(cls) -> "RiskLevels": return RiskLevels( overall=RiskLevel.LOW, testPositivityRatio=RiskLevel.LOW, caseDensity=RiskLevel.LOW, contactTracerCapacityRatio=RiskLevel.LOW, infectionRate=RiskLevel.LOW, icuCapacityRatio=RiskLevel.LOW, ) # Additional class used for bulk timeseries where we are not including all risk levels # right now, only the overall risk level. class RiskLevelsRow(base_model.APIBaseModel): overall: RiskLevel = pydantic.Field(..., description="Overall risk level for region.") caseDensity: RiskLevel = pydantic.Field(..., description="Case density risk level for region.") class RiskLevelTimeseriesRow(RiskLevelsRow): """Timeseries data for risk levels. Currently only surfacing overall risk level for region.""" date: datetime.date = pydantic.Field(..., description="Date of timeseries data point") class MetricsTimeseriesRow(Metrics): """Metrics data for a specific day.""" date: datetime.date = pydantic.Field(..., description="Date of timeseries data point") class CdcTransmissionLevelTimeseriesRow(base_model.APIBaseModel): date: datetime.date = pydantic.Field(..., description="Date of timeseries data point") cdcTransmissionLevel: CDCTransmissionLevel = pydantic.Field( ..., description=CDC_TRANSMISSION_LEVEL_DESCRIPTION ) class RegionSummary(base_model.APIBaseModel): """Summary of actual and prediction data for a single region.""" fips: str = pydantic.Field( ..., description=( "FIPS Code. FIPS codes are either 2-digit state codes, " "5-digit county codes, 5-digit CBSA codes, or 1-digit '0' for the entire USA." ), ) country: str = pydantic.Field(..., description="2-letter ISO-3166 Country code.") state: Optional[str] = pydantic.Field( ..., description="2-letter ANSI state code. For CBSA regions, state is omitted." ) county: Optional[str] = pydantic.Field(..., description="County name") level: AggregationLevel = pydantic.Field(..., description="Level of region.") lat: Optional[float] = pydantic.Field( ..., description="Latitude of point within the state or county. Currently a placeholder." ) locationId: str = pydantic.Field( ..., description="Location ID as defined here: https://github.com/covidatlas/li/blob/master/docs/reports-v1.md#general-notes", ) long: Optional[float] = pydantic.Field( ..., description="Longitude of point within the state or county. Currently a placeholder." ) population: int = pydantic.Field( ..., description="Total Population in geographic region.", gt=0 ) metrics: Metrics = pydantic.Field(...) riskLevels: RiskLevels = pydantic.Field(..., description="Risk levels for region.") cdcTransmissionLevel: CDCTransmissionLevel = pydantic.Field( ..., description=CDC_TRANSMISSION_LEVEL_DESCRIPTION ) actuals: Actuals = pydantic.Field(...) annotations: Annotations = pydantic.Field(...) lastUpdatedDate: datetime.date = pydantic.Field(..., description="Date of latest data") url: Optional[str] = pydantic.Field( ..., description="URL linking to Covid Act Now location page." ) class RegionSummaryWithTimeseries(RegionSummary): """Summary data for a region with prediction timeseries data and actual timeseries data.""" metricsTimeseries: List[MetricsTimeseriesRow] = pydantic.Field(...) actualsTimeseries: List[ActualsTimeseriesRow] = pydantic.Field(...) riskLevelsTimeseries: List[RiskLevelTimeseriesRow] = pydantic.Field(...) cdcTransmissionLevelTimeseries: List[CdcTransmissionLevelTimeseriesRow] = pydantic.Field(...) @property def region_summary(self) -> RegionSummary: data = {} # Iterating through self does not force any conversion # https://pydantic-docs.helpmanual.io/usage/exporting_models/#dictmodel-and-iteration for field, value in self: if field not in RegionSummary.__fields__: continue data[field] = value return RegionSummary(**data) class AggregateRegionSummary(base_model.APIBaseModel): """Summary data for multiple regions.""" __root__: List[RegionSummary] = pydantic.Field(...) class AggregateRegionSummaryWithTimeseries(base_model.APIBaseModel): """Timeseries and summary data for multiple regions.""" __root__: List[RegionSummaryWithTimeseries] = pydantic.Field(...) class RegionTimeseriesRowWithHeader(base_model.APIBaseModel): """Prediction timeseries row with location information.""" date: datetime.date = pydantic.Field(..., description="Date of timeseries data point") country: str = pydantic.Field(..., description="2-letter ISO-3166 Country code.") state: Optional[str] = pydantic.Field(..., description="2-letter ANSI state code.") county: Optional[str] = pydantic.Field(..., description="County name") fips: str = pydantic.Field( ..., description=( "FIPS Code. FIPS codes are either 2-digit state codes, " "5-digit county codes, 5-digit CBSA codes, or 1-digit '0' for the entire USA." ), ) lat: Optional[float] = pydantic.Field( ..., description="Latitude of point within the state or county" ) long: Optional[float] = pydantic.Field( ..., description="Longitude of point within the state or county" ) locationId: str = pydantic.Field( ..., description="Location ID as defined here: https://github.com/covidatlas/li/blob/master/docs/reports-v1.md#general-notes", ) actuals: Optional[Actuals] = pydantic.Field(..., description="Actuals for given day") metrics: Optional[Metrics] = pydantic.Field(..., description="Metrics for given day") riskLevels: Optional[RiskLevelsRow] = pydantic.Field( ..., description="Risk Levels for given day" ) cdcTransmissionLevel: Optional[CDCTransmissionLevel] = pydantic.Field( ..., description=CDC_TRANSMISSION_LEVEL_DESCRIPTION ) class AggregateFlattenedTimeseries(base_model.APIBaseModel): """Flattened timeseries data for multiple regions.""" __root__: List[RegionTimeseriesRowWithHeader] = pydantic.Field(...)
[ "noreply@github.com" ]
noreply@github.com
ef679fa89caf7d38e7aa2766c74680ff885e8be4
ae9bb7babce2a0349ae932985cf418a03057c670
/ProgramAndDataStructure/list/__init__.py
50e5397d5291650f1e1f4a4e99a244b430ba0f89
[]
no_license
Veraun/HogwartsSDET17-1
d2592fcb4c9c63724c19bcf9edde349ebcd2c8af
6648dbfb640b065ff2c76cb6889a8f9e4f124b91
refs/heads/main
2023-07-02T05:20:32.161248
2021-08-06T03:55:13
2021-08-06T03:55:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
''' #!/usr/bin/python3 # -*- coding: utf-8 -*- @author: wangwei @project: HogwartsSDET17 @file: __init__.py.py @time: 2021/5/20 19:54 @Email: Warron.Wang '''
[ "wei1.wang@ximalaya.com" ]
wei1.wang@ximalaya.com
dcd252960a1b08665c15f551c29bd9f9aacd0218
1abd12b1de8c92b5d6fa251544892d7f55c45ab1
/MA-ConceptMining/inout/inputoutput.py
f0b680c5d5d92aadea071a5aaf8dc7cc3a01eedc
[ "MIT" ]
permissive
johannabi/MA-ConceptMining
fddd0511b71f664605e10ce33dad29055ba1239e
5c257c234ee86ef10f3b358f623f342aa829df54
refs/heads/master
2023-07-15T15:22:02.003888
2021-08-30T09:58:33
2021-08-30T09:58:33
246,010,367
1
0
null
null
null
null
UTF-8
Python
false
false
3,476
py
import sqlite3 as sql import re import csv def read_file_by_line(file): """ reads a text file line by line :param file: path to file :return: list of all lines """ word_list = list() with open(file, mode='r', encoding='utf-8') as f: for line in f: line = line.strip() word_list.append(line) return word_list def read_esco_csv(file, only_unigrams, synsets): """ reads a csv file containing esco skills :param file: path to file :param only_unigrams: True if you only want to collect unigram skills :param synsets: True if you want to group skills by synsets :return: list of skills or list of synsets """ if synsets: synset_list = list() else: skills = list() with open(file, newline='', encoding='utf-8') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='"') next(reader, None) # skip header for row in reader: pref_label = row[4] alt_labels = row[5] synset = set() if only_unigrams: if ' ' not in pref_label: synset.add(pref_label) else: synset.add(pref_label) if len(alt_labels) > 0: label_list = alt_labels.split('\n') for l in label_list: if only_unigrams: if ' ' not in l: synset.add(l) else: synset.add(l) if synsets: if len(synset) > 1: # process only synset with more than one member synset_list.append(synset) else: skills.extend(synset) if synsets: return synset_list else: return skills def read_ams_synsets(file, only_unigrams, synsets): """ :param file: :param only_unigrams: :param synsets: :return: """ conn = sql.connect(file) sql_select = """SELECT Synonyms, Orig_String FROM Categories""" c = conn.cursor() c.execute(sql_select) rows = c.fetchall() if synsets: synsets = set() for r in rows: syns = r[0] comp = r[1] if syns is None: continue # collect als synonyms that are single-word-expressions synset = set([s.lower() for s in syns.split(' | ') if ' ' not in s]) if only_unigrams: if ' ' not in comp: synset.add(comp.lower()) else: synset.add(comp.lower()) if len(synset) > 1: synsets.add(tuple(synset)) c.close() return synsets else: skills = list() for r in rows: comp = r[1] if only_unigrams: if ' ' not in comp: skills.append(comp.lower()) else: skills.append(comp.lower()) c.close() return skills def read_jobads_content(file): """ reads all jobads from given sqlite file :param file: path to file :return: list of all jobads """ conn = sql.connect(file) sql_select = """SELECT STELLENBESCHREIBUNG FROM jobs_textkernel""" c = conn.cursor() c.execute(sql_select) rows = c.fetchall() jobs = list() for r in rows: jobs.append(r[0]) return jobs
[ "jbinnewitt@gmail.com" ]
jbinnewitt@gmail.com
c3eaff4220b08fc56b7f529974b9922daf3908ab
765e0744b33ee9e9b85829d8af542141ed0d1210
/mproxy.py
c24eedd38d4254ff9ff84835e9aada4814eba6f5
[]
no_license
tylerwowen/mitm_proxy
0b5a0ebb13424c3993dce2c431b1ce54c5e8cd66
367d190b238c6f497ce4791abd3360e0c6447c1c
refs/heads/master
2023-04-07T23:33:38.094417
2023-03-28T22:35:47
2023-03-28T22:35:47
55,040,650
2
0
null
2023-03-28T22:35:48
2016-03-30T07:07:37
Python
UTF-8
Python
false
false
27
py
import src src.__init__()
[ "ouyang@cs.ucsb.edu" ]
ouyang@cs.ucsb.edu