blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
e9a1e970d4704ef0445f93aed0cd5162806488f7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03273/s702731643.py
a626a36c61e3c295dfc6c90d75e2a4adb265c98f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
745
py
from collections import defaultdict import itertools import copy def readInt(): return int(input()) def readInts(): return list(map(int, input().split())) def readChar(): return input() def readChars(): return input().split() def p(arr,b="\n",e="\n"): print(b,end="") for i in arr: for j in i: print(j,end="") print() print(e,end="") h,w = readInts() a = [list(input()) for i in range(h)] for i in range(h-1,-1,-1): boo = 1 for j in range(w-1,-1,-1): if a[i][j]=="#": boo = 0 if boo==1: del a[i] for i in range(len(a[0])-1,-1,-1): boo = 1 for j in range(len(a)-1,-1,-1): if a[j][i]=="#": boo = 0 if boo==1: for j in range(len(a)-1,-1,-1): del a[j][i] p(a,b="",e="")
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
57f3fd827be2d763a94518ae48d40d7b18419a79
6a275ce8642562f93c659b58f5c47bc5cf84f85c
/luffy_django/x.py
ca687f2cd7b3383d3e77b26de20b5d659e1fde9f
[]
no_license
LXianB/school_city
ec2d5080ae13bc3e0279fe9f0cee55a60269efa1
7c06deb063d3ed1c20c6b26275f51111e280bb79
refs/heads/master
2020-07-28T19:38:50.257633
2019-09-19T09:28:28
2019-09-19T09:28:28
209,513,987
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
import json v = { 1:'db', 2:'sb', } s = json.dumps(v) print(json.loads(s))
[ "1135487517A392C3588D2B7E9075EE33@i-search.com.cn" ]
1135487517A392C3588D2B7E9075EE33@i-search.com.cn
6e94570e6231536349f4848a253e2446a7657101
e1e4bf7539269bf5f34b9ea02b2841f287e047e0
/test/test_graph.py
daeb7856a893c70921723f3d5964754dc0e57945
[]
no_license
melifluos/twitter_age_detection
2b39d0477eef193e71dbd07b81a553ca7010d4cd
280165c597849e59089b461f2f51c3604f16bb94
refs/heads/master
2020-04-11T05:57:16.942127
2017-05-18T09:44:54
2017-05-18T09:44:54
68,198,226
1
2
null
null
null
null
UTF-8
Python
false
false
2,291
py
__author__ = 'benchamberlain' from ..graph import Graph from scipy.sparse import csr_matrix import numpy as np data = csr_matrix(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 1, 0, 1], [1, 1, 1, 0]])) data1 = csr_matrix(np.array([[0, 1], [1, 0]])) edges = np.array([[1, 3, 0], [0, 2, 3], [1, 3, 0], [0, 1, 2]]) degs = np.array([2, 3, 2, 3]) walks = np.array([[0, 2, 3], [1, 3, 1]]) def test_number_of_vertices(): g = Graph(data) assert g.n_vertices == 4 def test_input_degree(): g = Graph(data) assert np.array_equal(degs, g.deg) def test_input_edge_shape(): g = Graph(data) truth = (4, 3) assert truth == g.edges.shape def test_input_edges(): g = Graph(data) g.build_edge_array() assert np.array_equal(edges, g.edges) def test_initialise_walk_array(): g = Graph(data) num_walks = 10 walk_length = 20 walks = g.initialise_walk_array(num_walks=num_walks, walk_length=walk_length) assert walks.shape == (40, 20) assert np.array_equal(walks[:, 0], np.array([0, 1, 2, 3] * 10)) def test_sample_next_vertices(): """ In the test graph the vertex with index 2 is only connected to vertices 1 and 3 :return: """ g = Graph(data) current_vertices = np.array([2, 2, 2, 2]) for idx in range(10): next_vertex_indices = g.sample_next_vertices(current_vertices, degs) for elem in next_vertex_indices: assert (elem == 0) | (elem == 1) assert next_vertex_indices.shape == current_vertices.shape def test_walks_to_list_of_strings(): walks_str = walks.astype(str) walk_list = walks_str.tolist() for walk in walk_list: assert len(walk) == 3 for elem in walk: assert type(elem) == str def test_oscillating_random_walk_1walk(): g = Graph(data1) g.build_edge_array() walks = g.generate_walks(1, 10) walk1 = [0, 1] * 5 walk2 = [1, 0] * 5 truth = np.array([walk1, walk2]) print walks assert np.array_equal(walks, truth) def test_oscillating_random_walk_2walks(): g = Graph(data1) g.build_edge_array() walks = g.generate_walks(2, 10) walk1 = [0, 1] * 5 walk2 = [1, 0] * 5 truth = np.array([walk1, walk2, walk1, walk2]) print walks assert np.array_equal(walks, truth)
[ "ben@starcount.com" ]
ben@starcount.com
fe2e973dabfdf530953f5bf46341be8fd3a0d225
f0d028b3bdd676c68bef1b4653e9219b42fcd13f
/soko/tracom/models.py
a208ce41a4032c2e1e8d0478a02882f7f36cb47c
[ "BSD-3-Clause" ]
permissive
PYTHON-Techy-Work/soko
ed432638fc23760f26ee87f38d6fb09264eb584e
0cebe6e4a71ca12be7674e7a6fa579ff53a6773b
refs/heads/master
2021-10-26T00:53:50.231735
2019-04-09T08:48:24
2019-04-09T08:48:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,033
py
# -*- coding: utf-8 -*- """Tracom models.""" import datetime as dt from soko.database import Column, Model, SurrogatePK, db, reference_col, relationship class Tracom(SurrogatePK, Model): __tablename__ = 'transporters' user_id = reference_col('users', nullable=True) user = relationship('User', backref='transporters') vehicle_id = reference_col('vehicles', nullable=False) vehicle = relationship('Vehicle', backref='transporters') photo = Column(db.String(80), nullable=False) licence = Column(db.String(80), unique=True, nullable=False) location = Column(db.String(30), nullable=True) created_at = Column(db.DateTime, nullable=False, default=dt.datetime.utcnow) def __init__(self, user, vehicle, photo, licence, location): self.user = user self.vehicle = vehicle self.photo = photo self.licence = licence self.location = location def __repr__(self): return '<Transporter %r>' % self.user + self.vehicle + self.licence + self.location
[ "james.njuguna@tracom.co.ke" ]
james.njuguna@tracom.co.ke
78a12d8bff14792b00e4507e76858d1a178bc660
c60ef27fe285c73fad4076122bb3d6f2fe05f111
/fragscapy/modifications/ipv4_frag.py
02fb8dd3eaf1d8ea14cfed0938fc1dfb0fb6c079
[ "MIT" ]
permissive
daeon/Fragscapy
be88d8b3c6fc309515ecf5f06939f43ddf8022a5
3ee7f5c73fc6c7eb64858e197c0b8d2b313734e0
refs/heads/master
2023-08-31T09:27:31.931466
2021-05-27T20:01:11
2021-05-27T20:01:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,743
py
"""Fragments the IPv4 packets at the L3-layer.""" import scapy.layers.inet import scapy.packet from fragscapy.modifications.mod import Mod from fragscapy.packetlist import PacketList class Ipv4Frag(Mod): """Fragments the IPv4 packets at the L3-layer. Fragment each IPv4 packet. the fragmentation size must be specified. It represents the maximum size of each packet (including headers). It uses the scapy's fragmentation function. Args: *args: The arguments of the mods. Attributes: fragsize: The fragmentation size (maximum length of a fragment). Raises: ValueError: Unrecognized or incorrect number of parameters. Examples: >>> Ipv4Frag(32).fragsize 32 """ name = "Ipv4Frag" doc = ("Fragments the IPv4 packets at the L3-layer\n" "ipv4_frag <size>") _nb_args = 1 def parse_args(self, *args): """See base class.""" try: self.fragsize = int(args[0]) except ValueError: raise ValueError("Parameter 1 unrecognized. " "Got {}".format(args[0])) def apply(self, pkt_list): """Fragment each IPv6 packet. See `Mod.apply` for more details.""" new_pl = PacketList() for pkt in pkt_list: if pkt.pkt.haslayer('IP'): fragments = scapy.layers.inet.fragment(pkt.pkt, self.fragsize) index = len(new_pl) - 1 for fragment in fragments: new_pl.add_packet(fragment) new_pl.edit_delay(index, pkt.delay) else: # Not IPv4 so no fragmentation new_pl.add_packet(fragment, pkt.delay) return new_pl
[ "frederic.guihery@amossys.fr" ]
frederic.guihery@amossys.fr
d090e08a3de3c1ee882e0a3704be94198a57b77b
70134d55728500641c6edc422bb34159c0816fb4
/fi/migrations/0002_blog.py
4ebecd9c47fff0dcc69bebaed2d594afd74790f5
[]
no_license
leenamkyoung/forfor
9f3df218b67f16eb68f0c928ec5566e9f94bc183
bbc725941bb5543871f27cf4783b6f986d83c6a9
refs/heads/master
2022-12-11T19:31:23.561523
2019-10-19T11:44:44
2019-10-19T11:44:44
205,156,784
0
0
null
2022-11-22T04:13:04
2019-08-29T12:16:33
HTML
UTF-8
Python
false
false
626
py
# Generated by Django 2.2.3 on 2019-08-16 05:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('fi', '0001_initial'), ] operations = [ migrations.CreateModel( name='Blog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='date published')), ('body', models.TextField()), ], ), ]
[ "729497@likelion.org" ]
729497@likelion.org
6810448a2a2f895bb4d8c9a6ddda997f4967d5d2
99b8b8f06f2248a8ef940c0b5ba90d05f0362ba0
/src/python/strelka/scanners/scan_pe.py
626e9df031e01b48ea3c146b00d52c99f1d0d331
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
thezedwards/strelka
b5d794198791f04a9473ae4b7b2f8a75b7ccac9b
9791ec50354459b4c80df6e95887e0d6bd58729a
refs/heads/master
2020-05-24T12:34:15.926932
2019-05-16T20:51:40
2019-05-16T20:51:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,150
py
import binascii from datetime import datetime import hashlib import struct import pefile from strelka import strelka IMAGE_MAGIC_LOOKUP = { 0x10b: '32_BIT', 0x20b: '64_BIT', 0x107: 'ROM_IMAGE', } class ScanPe(strelka.Scanner): """Collects metadata from PE files.""" def scan(self, data, file, options, expire_at): self.event['total'] = {'sections': 0} try: pe = pefile.PE(data=data) pe_dict = pe.dump_dict() self.event['total']['sections'] = pe.FILE_HEADER.NumberOfSections self.event['warnings'] = pe.get_warnings() self.event['timestamp'] = datetime.utcfromtimestamp(pe.FILE_HEADER.TimeDateStamp).isoformat() machine = pe.FILE_HEADER.Machine self.event['machine'] = { 'id': machine, 'type': pefile.MACHINE_TYPE.get(machine), } # Reference: http://msdn.microsoft.com/en-us/library/windows/desktop/ms680339%28v=vs.85%29.aspx self.event['image_magic'] = IMAGE_MAGIC_LOOKUP.get(pe.OPTIONAL_HEADER.Magic, 'Unknown') subsystem = pe.OPTIONAL_HEADER.Subsystem self.event['subsystem'] = pefile.SUBSYSTEM_TYPE.get(subsystem) self.event['stack_reserve_size'] = pe.OPTIONAL_HEADER.SizeOfStackReserve self.event['stack_commit_size'] = pe.OPTIONAL_HEADER.SizeOfStackCommit self.event['heap_reserve_size'] = pe.OPTIONAL_HEADER.SizeOfHeapReserve self.event['heap_commit_size'] = pe.OPTIONAL_HEADER.SizeOfHeapCommit self.event['image_base'] = pe.OPTIONAL_HEADER.ImageBase self.event['entry_point'] = pe.OPTIONAL_HEADER.AddressOfEntryPoint self.event['image_characteristics'] = pe_dict.get('Flags') self.event['dll_characteristics'] = pe_dict.get('DllCharacteristics') try: self.event['imphash'] = pe.get_imphash() except AttributeError: self.flags.append('no_imphash') self.event.setdefault('export_functions', []) export_symbols = pe_dict.get('Exported symbols', []) for symbols in export_symbols: name = symbols.get('Name') if name is not None and isinstance(name, bytes) and name not in self.event['export_functions']: self.event['export_functions'].append(name) import_cache = {} self.event.setdefault('imports', []) import_symbols = pe_dict.get('Imported symbols', []) for symbol in import_symbols: for import_ in symbol: dll = import_.get('DLL') if dll is not None: if dll not in self.event['imports']: self.event['imports'].append(dll) import_cache.setdefault(dll, []) ordinal = import_.get('Ordinal') if ordinal is not None: ordinal = pefile.ordlookup.ordLookup(dll.lower(), ordinal, make_name=True) import_cache[dll].append(ordinal) name = import_.get('Name') if name is not None: import_cache[dll].append(name) self.event.setdefault('import_functions', []) for (import_, functions) in import_cache.items(): import_entry = {'import': import_, 'functions': functions} if import_entry not in self.event['import_functions']: self.event['import_functions'].append(import_entry) self.event.setdefault('resources', []) try: for resource in pe.DIRECTORY_ENTRY_RESOURCE.entries: res_type = pefile.RESOURCE_TYPE.get(resource.id, 'Unknown') for entry in resource.directory.entries: for e_entry in entry.directory.entries: sublang = pefile.get_sublang_name_for_lang( e_entry.data.lang, e_entry.data.sublang, ) offset = e_entry.data.struct.OffsetToData size = e_entry.data.struct.Size r_data = pe.get_data(offset, size) language = pefile.LANG.get(e_entry.data.lang, 'Unknown') data = { 'type': res_type, 'id': e_entry.id, 'name': e_entry.data.struct.name, 'offset': offset, 'size': size, 'sha256': hashlib.sha256(r_data).hexdigest(), 'sha1': hashlib.sha1(r_data).hexdigest(), 'md5': hashlib.md5(r_data).hexdigest(), 'language': language, 'sub_language': sublang, } if data not in self.event['resources']: self.event['resources'].append(data) except AttributeError: self.flags.append('no_resources') if hasattr(pe, 'DIRECTORY_ENTRY_DEBUG'): debug = dict() for e in pe.DIRECTORY_ENTRY_DEBUG: rawData = pe.get_data(e.struct.AddressOfRawData, e.struct.SizeOfData) if rawData.find(b'RSDS') != -1 and len(rawData) > 24: pdb = rawData[rawData.find(b'RSDS'):] debug['guid'] = b'%s-%s-%s-%s' % ( binascii.hexlify(pdb[4:8]), binascii.hexlify(pdb[8:10]), binascii.hexlify(pdb[10:12]), binascii.hexlify(pdb[12:20]), ) debug['age'] = struct.unpack('<L', pdb[20:24])[0] debug['pdb'] = pdb[24:].rstrip(b'\x00') self.event['rsds'] = debug elif rawData.find(b'NB10') != -1 and len(rawData) > 16: pdb = rawData[rawData.find(b'NB10') + 8:] debug['created'] = struct.unpack('<L', pdb[0:4])[0] debug['age'] = struct.unpack('<L', pdb[4:8])[0] debug['pdb'] = pdb[8:].rstrip(b'\x00') self.event['nb10'] = debug self.event.setdefault('sections', []) sections = pe_dict.get('PE Sections', []) for section in sections: section_entry = { 'name': section.get('Name', {}).get('Value', '').replace('\\x00', ''), 'flags': section.get('Flags', []), 'structure': section.get('Structure', ''), } if section_entry not in self.event['sections']: self.event['sections'].append(section_entry) security = pe.OPTIONAL_HEADER.DATA_DIRECTORY[pefile.DIRECTORY_ENTRY['IMAGE_DIRECTORY_ENTRY_SECURITY']] digital_signature_virtual_address = security.VirtualAddress if security.Size > 0: extract_data = pe.write()[digital_signature_virtual_address + 8:] if len(extract_data) > 0: self.flags.append('signed') extract_file = strelka.File( name='digital_signature', source=self.name, ) for c in strelka.chunk_string(extract_data): self.upload_to_cache( extract_file.pointer, c, expire_at, ) self.files.append(extract_file) else: self.flags.append('empty_signature') if hasattr(pe, 'FileInfo'): self.event.setdefault('version_info', []) for structure in pe.FileInfo: for fileinfo in structure: if fileinfo.Key.decode() == 'StringFileInfo': for block in fileinfo.StringTable: for name, value in block.entries.items(): fixedinfo = { 'name': name.decode(), 'value': value.decode(), } if fixedinfo not in self.event['version_info']: self.event['version_info'].append(fixedinfo) else: self.flags.append('no_version_info') except IndexError: self.flags.append('index_error') except pefile.PEFormatError: self.flags.append('pe_format_error')
[ "liburdi.joshua@gmail.com" ]
liburdi.joshua@gmail.com
249d4b83823c45d4de6a19805f21df7c0519a7d1
61c7984360e25ee54b02340ef81735529df520ba
/OnShift-PythonBootcamp-Session5/steps/fizzbuzz_steps.py
364a3f1c5271bc8ef3af29a92b074f5a9ba8ca6e
[]
no_license
samsawan/onshift_python_bootcamp
6711c8d84c9622ed9fd7a0afe9c68d567c45465f
b7ade8a8a0b571364eacabedb3bd7519130313d4
refs/heads/master
2021-01-25T09:43:34.370572
2018-03-06T15:12:10
2018-03-06T15:12:10
123,310,863
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
from behave import * use_step_matcher("re") @given("I have a number (?P<input_num>.+)") def step_impl(context, input_num): """ :type context: behave.runner.Context :type input_num: str """ raise NotImplementedError @when("I call Fizzbuzz") def step_impl(context): """ :type context: behave.runner.Context """ raise NotImplementedError @then("I should get back (?P<output_exp>.+)") def step_impl(context, output_exp): """ :type context: behave.runner.Context :type output_exp: str """ raise NotImplementedError
[ "ssawan@onshift.com" ]
ssawan@onshift.com
e8ba2a98ff92412f2246fd72b4c6ec99a9424125
4c0a2efb54a87e8419c530e49173484660021c16
/src/demo_hic_et_nunc/types/hen_minter/storage.py
f5033f16e1f986ad59cd0840b788ee2872f06481
[ "MIT" ]
permissive
jellybazil/dipdup-py
7cc6641b7a25379034be401626d91d17d2493f43
950b086effbfce78080461ecc2f959ba7a8ba998
refs/heads/master
2023-08-12T06:50:01.445161
2021-10-16T20:52:29
2021-10-16T20:52:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
# generated by datamodel-codegen: # filename: storage.json from __future__ import annotations from typing import Dict from pydantic import BaseModel, Extra class Royalties(BaseModel): class Config: extra = Extra.forbid issuer: str royalties: str class Swaps(BaseModel): class Config: extra = Extra.forbid issuer: str objkt_amount: str objkt_id: str xtz_per_objkt: str class HenMinterStorage(BaseModel): class Config: extra = Extra.forbid curate: str genesis: str hdao: str locked: bool manager: str metadata: Dict[str, str] objkt: str objkt_id: str royalties: Dict[str, Royalties] size: str swap_id: str swaps: Dict[str, Swaps]
[ "noreply@github.com" ]
noreply@github.com
c82bef90561c2f2fe7c38bf3d5bde226a9fd1930
33f448e2d3315f758675c852e5853a16813a211b
/melon/crawler/forms.py
34a1d217bbc00cff1c396a272af7ed993f140571
[]
no_license
CuCTeMeH/image_scrapper
f400c4b67934fa17dc48eeaf2355f91bd379b540
567e301840d648a4ca912dfa1eb3228cc973838e
refs/heads/master
2020-06-08T14:25:15.572146
2013-08-15T20:25:36
2013-08-15T20:25:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
from django import forms from crawler.models import site_url, site_image from django.http import HttpResponse class UrlForm(forms.Form): url = forms.URLField()
[ "kutinchev87@gmail.com" ]
kutinchev87@gmail.com
a341ad35c0cc89c48ba55282eb9191fa23f561e4
af2b4fbb514468846b2d96f5010292d9b973b819
/tests/test_cli.py
2f1eeee3b88c87c7ac853abcc6124c52ef2a6a1d
[ "MIT" ]
permissive
rdimaio/parsa
350f4f2b8bb07d11ce2f3edf359b758208c8f79e
9ce45235efb702cea0aa4254ed2f2c91d56d34a8
refs/heads/master
2021-07-25T17:46:29.169755
2020-04-13T11:38:44
2020-04-13T11:38:44
146,991,563
1
0
MIT
2018-10-11T21:11:34
2018-09-01T11:08:47
Python
UTF-8
Python
false
false
1,690
py
"""Tests for utils/cli.py. Tests: parse_arguments: empty_args no_output_arg_passed output_arg_passed _set_arguments: tested implicitly in the parse_arguments test """ import unittest import os import sys try: from unittest import mock except ImportError: import mock sys.path.append(os.path.abspath('..')) from parsa.utils import cli class CLITest(unittest.TestCase): def test_parse_arguments_empty_args(self): """When sys.argvs is empty, the function should exit with SystemExit: 2.""" testargs = [''] with mock.patch.object(sys, 'argv', testargs): # https://stackoverflow.com/a/13491726 with self.assertRaises(SystemExit) as sys_e: cli.parse_arguments() self.assertEqual(sys_e.exception.code, 2) def test_parse_arguments_no_output_arg_passed(self): """Only the input argument is passed.""" cli_input_arg = 'foo' testargs = ['', cli_input_arg] with mock.patch.object(sys, 'argv', testargs): args = vars(cli.parse_arguments()) self.assertEqual(args['input'], cli_input_arg) def test_parse_arguments_output_arg_passed(self): """Both the input and output arguments are passed.""" cli_input_arg = 'foo' cli_output_arg = 'bar' testargs = ['', '-o', cli_output_arg, cli_input_arg] with mock.patch.object(sys, 'argv', testargs): args = vars(cli.parse_arguments()) self.assertEqual(args['input'], cli_input_arg) self.assertEqual(args['output'], cli_output_arg)
[ "riccardodimaio11@gmail.com" ]
riccardodimaio11@gmail.com
9902c8bd932c3cc78c49ecf1c4375db30bcea633
692c7bc11ca9718f58860fa0016571f63d928d55
/src/generators/SemanticFusion/parsing.py
fcceeb73f53938b0e8cc0d4756cd7d66532d8d50
[ "MIT" ]
permissive
bingoko/yinyang
9548a8ed949c1519502acfcb734629f4d300c56b
ba709fa78f0f30954923f03eb2e15aa5b1311717
refs/heads/master
2023-01-08T22:50:05.746526
2020-11-15T03:13:46
2020-11-15T03:13:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,120
py
import random from src.generators.SemanticFusion.Symbol import Symbol, Symbols, MetamorphicTuple def get_script_from_file(file): with open(file,"r") as reader: script = reader.read() return script def clean_bv(string): string = string.replace("BV{","(_ BitVec ") string = string.replace("}",")") return string def unsupported_file(fname): with open(fname) as fp: for i in range(0,4): line = fp.readline() if "Constructed by Trevor Hansen to test edge case parsing" in line: return True def get_num_variables(fname): with open(fname) as fp: data = fp.readlines() count = "".join(data).count("declare-fun") return count def string2file(fn, string): with open(fn, "w") as f: f.write(string) def warning_or_error(stdout, stderr): stdstream = stdout + " " + stderr if "model is not available" in stdstream or "Cannot get model" in stdstream: return False return "LEAKED" in stdstream or \ "Leaked" in stdstream or \ "Segmentation fault" in stdstream or \ "segmentation fault" in stdstream or \ "segfault" in stdstream or \ "ASSERTION VIOLATION" in stdstream or \ "(error" in stdstream or \ "Assertion failure" in stdstream or \ "Fatal failure" in stdstream or \ "Internal error detected" in stdstream or \ "an invalid model was generated" in stdstream or \ "Failed to verify" in stdstream or \ "failed to verify" in stdstream or \ "ERROR: AddressSanitizer:" in stdstream def get_commands(script): commands = [] bracket_counter = -1 bracket_content = "" in_quote = False for c in script: if c == '"': in_quote = not in_quote if not in_quote: if c == '(': if bracket_counter > 0: bracket_counter += 1 elif bracket_counter == -1: bracket_counter = 1 else: print("invalid formula") exit(1) elif c == ")": bracket_counter -= 1 if bracket_counter == 0: commands.append(bracket_content+")") bracket_content = "" bracket_counter = -1 if bracket_counter != -1: bracket_content += c return commands def decompose(script): commands = get_commands(script) logic = [c for c in commands if c.startswith("(set-logic")] if len(logic) > 0: logic = logic[0] else: logic = [] decl_consts = [c for c in commands if c.startswith("(declare-const")] decl_funcs = [c for c in commands if c.startswith("(declare-fun")] def_funcs = [c for c in commands if c.startswith("(define-fun")] def_sorts= [c for c in commands if c.startswith("(declare-sort")] asserts = [c for c in commands if c.startswith("(assert")] return "".join(logic), list(def_sorts), list(decl_consts),\ list(decl_funcs), list(def_funcs), list(asserts) def get_symbol(declaration): #get symbol prefix = declaration.split(" ")[0] symbol = "" index = declaration.find(prefix)+len(prefix) while declaration[index] == " " or declaration[index] == "\n": index += 1 if declaration[index] == "|": bracket_counter = 1 while bracket_counter != 0: index += 1 if declaration[index] == "|": bracket_counter -= 1 elif bracket_counter != 0: symbol = symbol + declaration[index] symbol = "|%s|" %symbol else: while declaration[index] != " " and declaration[index] != "\n": symbol = symbol + declaration[index] index += 1 index = declaration.find(symbol)+len(symbol) s_type = "" while declaration[index] == " ": index += 1 if declaration[index] == "(": bracket_counter = 1 while bracket_counter != 0: index += 1 if declaration[index] == "(": bracket_counter += 1 elif declaration[index] == ")": bracket_counter -= 1 if declaration[index] == ")": index += 1 while declaration[index] == " ": index += 1 if declaration[index] == "(": bracket_counter = 1 while bracket_counter != 0: index += 1 if declaration[index] == "(": bracket_counter += 1 elif declaration[index] == ")": bracket_counter -= 1 s_type = s_type + declaration[index] s_type = "(%s" %s_type else: while declaration[index] != " " and declaration[index] != "\n" and declaration[index] != ")": s_type = s_type + declaration[index] index += 1 # #get type # index = -2 # s_type = "" # while declaration[index] == " ": # index -= 1 # if declaration[index] == ")": # bracket_counter = 1 # while bracket_counter != 0: # index -= 1 # if declaration[index] == ")": bracket_counter += 1 # elif declaration[index] == "(": bracket_counter -= 1 # if bracket_counter != 0: # s_type = declaration[index] + s_type # s_type = "(%s)" %s_type # else: # while declaration[index] != " ": # s_type = declaration[index] + s_type # index -= 1 # print(s_type) return Symbol(symbol, s_type) def fun_has_arguments(line): if ("(declare-fun" in line or "(define-fun" in line) and not "()" in line: return True return False def get_symbols(string, only_zero_valued_funcs=False): commands = get_commands(string) symbols = [] declarations = [c for c in commands if c.startswith("(declare-const") or\ c.startswith("(declare-fun")\ or c.startswith("(define-fun")] for declaration in declarations: if fun_has_arguments(declaration): continue symbols.append(get_symbol(declaration)) return Symbols(symbols) def get_declared_symbols(string, only_zero_valued_funcs=False): commands = get_commands(string) symbols = [] declarations = [c for c in commands if c.startswith("(declare-const") or\ c.startswith("(declare-fun")\ or c.startswith("(define-fun")] for declaration in declarations: symbols.append(get_symbol(declaration)) return Symbols(symbols) def disjunction(script1, script2): """ Disjunction of two SMT scripts Assumption: script1 and script2 have no shared variables """ _,decl_sorts1, decl_consts1, decl_funcs1, def_funcs1, asserts1 = decompose(script1) _,decl_sorts2, decl_consts2, decl_funcs2, def_funcs2, asserts2 = decompose(script2) sorts = list(set(decl_sorts1).union(set(decl_sorts2))) disjunction = "".join(sorts) + "".join(decl_consts1) + "".join(decl_consts2)\ + "".join(decl_funcs1) + "".join(decl_funcs2) + "".join(def_funcs1) + "".join(def_funcs2) conjunction1 = " (and" random.shuffle(asserts1) for assertion in asserts1: assertion = assertion.strip("(assert") assertion = assertion[:assertion.rfind(")")] conjunction1 += assertion conjunction1 += ")" conjunction2 = " (and" random.shuffle(asserts2) for assertion in asserts2: assertion = assertion.strip("(assert") assertion = assertion[:assertion.rfind(")")] conjunction2 += assertion conjunction2 += ")" disjunction += "(assert (or %s %s))" %(conjunction1,conjunction2) return disjunction def random_map(symbols1, symbols2): metamophic_tuples = [] symbols2_type_list = [] for symbol2 in symbols2.symbols: if symbol2.type not in symbols2_type_list: symbols2_type_list.append(symbol2.type) for symbol1 in symbols1.symbols: if symbol1.type not in symbols2_type_list: continue symbol2 = random.choice(symbols2.symbols) while symbol1.type != symbol2.type: symbol2 = random.choice(symbols2.symbols) metamophic_tuples.append(MetamorphicTuple(symbol1, symbol2)) return metamophic_tuples def ranking_map(symbol1, symbol2, script1, script2): metamophic_tuples = [] sorted_symbols1 = [] sorted_symbols2 = [] for symbol in symbol1.symbols: symbol.set_occurrences(script1) sorted_symbols1.append(symbol) for symbol in symbol2.symbols: symbol.set_occurrences(script2) sorted_symbols2.append(symbol) sorted_symbols1.sort(key=get_occurrences) sorted_symbols2.sort(key=get_occurrences) for symbol1 in sorted_symbols1: for symbol2 in sorted_symbols2: if symbol1.type == symbol2.type: sorted_symbols2.remove(symbol2) metamophic_tuples.append(MetamorphicTuple(symbol1, symbol2)) break return metamophic_tuples def get_occurrences(symbol): return symbol.occurrences def replace_variable(line, source, target, prob=100): if "((%s " % source in line: return line # source is a quantifier l = [] for token in line.split(" "): if token == source or token.startswith(source+")") or token.endswith("("+source): weighted_random = [True] * prob + [False] * (100 - prob) if random.choice(weighted_random): l.append(token.replace(source, target)) else: l.append(token) else: l.append(token) return " ".join(l) def shift_script(script, prefix): symbols = get_declared_symbols(script) var_map = symbols.get_shiftmap(prefix) script_text = script.split('\n') new_script_text = "" for line in script_text: new_line = line for var in var_map: new_line = replace_variable(new_line, var, var_map[var]) if not new_line.startswith(";"): new_script_text = new_script_text + " " + new_line return new_script_text
[ "noreply@github.com" ]
noreply@github.com
a40210a0d39a519003150aaa7cb19f9db7fddaac
f65c805853692cdbd283aef7c7b4617dc31c5f22
/users/migrations/0001_initial.py
86ae316edc72588df34c44d74bbd55914600185c
[]
no_license
Akshara21/webapp_django
0d4b202d213669daa70d84413729efb7f728743c
3f299730325cc8a1b19301e02c13089a1e090455
refs/heads/master
2022-11-28T10:22:09.793661
2020-08-09T17:44:41
2020-08-09T17:44:41
286,065,223
0
0
null
null
null
null
UTF-8
Python
false
false
777
py
# Generated by Django 3.0.8 on 2020-07-30 16:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(default='default.jpg', upload_to='profile_pics')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "64507018+Akshara21@users.noreply.github.com" ]
64507018+Akshara21@users.noreply.github.com
11c66006ed6d3c4e596b603f51d2fe4f6fefa7eb
de7b894f683cce849992b0df0f92bc06795665f1
/Bicycles/models.py
335bccc4a3e0a8f8e8be68fa47aa25dc063c1879
[]
no_license
ursaminor27169/RentCarBcle
d709cd3277663b043e0fa5d04c8a4927e82b11b0
5265b558567fb49a800bfe47881cf046911fcc21
refs/heads/master
2023-06-17T00:10:18.926196
2021-07-11T03:28:34
2021-07-11T03:28:34
384,797,663
0
0
null
null
null
null
UTF-8
Python
false
false
2,912
py
from django.db import models class Marks(models.Model): id = models.AutoField(primary_key=True) mark = models.CharField(max_length=20, db_index=True, verbose_name='Марка') model = models.CharField(max_length=20, db_index=True, verbose_name='Модель') def __str__(self): return self.mark + ' ' + self.model class Meta: verbose_name_plural = 'Марки и модели' verbose_name = 'Марка и модель' ordering = ['mark'] class Type(models.Model): id = models.AutoField(primary_key=True) name = models.CharField(max_length=20, db_index=True, verbose_name='Типы') def __str__(self): return self.name class Meta: verbose_name_plural = 'Типы' verbose_name = 'Тип' ordering = ['name'] class Frame(models.Model): id = models.AutoField(primary_key=True) name = models.CharField(max_length=20, db_index=True, verbose_name='Рамы') abb = models.CharField(max_length=20, db_index=True, verbose_name='Аббривиатура') def __str__(self): return self.name class Meta: verbose_name_plural = 'Рамы' verbose_name = 'Рама' ordering = ['name'] class Wheels(models.Model): id = models.AutoField(primary_key=True) mark = models.CharField(max_length=20, db_index=True, verbose_name='Марка') model = models.CharField(max_length=20, db_index=True, verbose_name='Модель') diameter = models.FloatField(null=True, blank=True, verbose_name='Диаметр') def __str__(self): return self.mark + ' ' + self.model + ' ' + str(self.diameter) class Meta: verbose_name_plural = 'Колёса' verbose_name = 'Колёса' ordering = ['mark'] class Bsles(models.Model): id = models.AutoField(primary_key=True) stamp = models.ForeignKey('Marks', null=True, on_delete=models.PROTECT, verbose_name='Марка - Модель') type = models.ForeignKey('Type', null=True, on_delete=models.PROTECT, verbose_name='Тип') frame = models.ForeignKey('Frame', null=True, on_delete=models.PROTECT, verbose_name='Рама') wheels = models.ForeignKey('Wheels', null=True, on_delete=models.PROTECT, verbose_name='Колеса') description = models.TextField(null=True, blank=True, verbose_name='Описание') weight = models.FloatField(null=True, blank=True, verbose_name='Вес') price = models.FloatField(null=True, blank=True, verbose_name='Цена') reservation = models.BooleanField(null=False, blank=True, verbose_name='Резерв') image = models.ImageField(upload_to='images/', null=True) class Meta: verbose_name_plural = 'Велосипеды' verbose_name = 'Велосипед' ordering = ['stamp']
[ "katya-polyakova-2429@mail.ru" ]
katya-polyakova-2429@mail.ru
558d7cf4a36cfe878990521818b11026bcc8b7b2
bba60e8fdde48cdcd07b0fef80e85f931b9377af
/labs/week5/perspective_lab.py
8dd0c967dd763a09d6bcf4c90c1ea411892f1af2
[]
no_license
atomminder/Coursera_Brown_Coding_the_matrix
dc233e2ecfc7025a15f7c5b72c2c2b3501e13249
5e5e26cff4db4b39e63acf003c00350c1d83a5d7
refs/heads/master
2016-09-06T02:59:04.266312
2013-08-26T04:52:42
2013-08-26T04:52:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,462
py
from image_mat_util import * from mat import Mat from matutil import * from vec import Vec from solver import solve ## Task 1 def move2board(v): ''' Input: - v: a vector with domain {'y1','y2','y3'}, the coordinate representation of a point q. Output: - A {'y1','y2','y3'}-vector z, the coordinate representation in whiteboard coordinates of the point p such that the line through the origin and q intersects the whiteboard plane at p. ''' result_vec = Vec({'y1','y2','y3'}, {}) result_vec['y1'] = v['y1'] / v['y3']; result_vec['y2'] = v['y2'] / v['y3']; result_vec['y3'] = 1; return result_vec ## Task 2 def make_equations(x1, x2, w1, w2): ''' Input: - x1 & x2: photo coordinates of a point on the board - y1 & y2: whiteboard coordinates of a point on the board Output: - List [u,v] where u*h = 0 and v*h = 0 ''' domain = {(a, b) for a in {'y1', 'y2', 'y3'} for b in {'x1', 'x2', 'x3'}} u = Vec(domain, {}) u[('y3','x1')] = w1 * x1 u[('y3','x2')] = w1 * x2 u[('y3','x3')] = w1 u[('y1','x1')] = -x1 u[('y1','x2')] = -x2 u[('y1','x3')] = -1 v = Vec(domain, {}) v[('y3','x1')] = w2 * x1 v[('y3','x2')] = w2 * x2 v[('y3','x3')] = w2 v[('y2','x1')] = -x1 v[('y2','x2')] = -x2 v[('y2','x3')] = -1 return [u, v] ## Task 3 # calculate u1,v1 = make_equations(329,597,0,1) u2,v2 = make_equations(358,36,0,0) u3,v3 = make_equations(592,157,1,0) u4,v4 = make_equations(580,483,1,1) domain = {(a, b) for a in {'y1', 'y2', 'y3'} for b in {'x1', 'x2', 'x3'}} last_vec = Vec(domain, {}) last_vec[('y1','x1')] = 1 vector_list = [u1,v1,u2,v2,u3,v3,u4,v4,last_vec] L = rowdict2mat(vector_list) #print(L) b = Vec({0,1,2,3,4,5,6,7,8},{8:1}) #print(b) h = solve(L,b) #residual = b - L*h #if residual * residual < 10e-14: # print(True) #else: # print(False) #print(h) #H = Mat(({'y1', 'y3', 'y2'}, {'x2', 'x3', 'x1'}),{}) #H[('y1','x1')] = 1 #H[('y1','x2')] = 0.0517 #H[('y1','x3')] = -360 #H[('y2','x1')] = -0.382 #H[('y2','x2')] = 0.738 #H[('y2','x3')] = 110 #H[('y3','x1')] = -0.722 #H[('y3','x2')] = -0.0117 #H[('y3','x3')] = 669 #H = Mat(({'y1', 'y3', 'y2'}, {'x2', 'x3', 'x1'}), # {('y1','x1'):1,('y1','x2'):0.0517,('y1','x3'):-360, # ('y2','x1'):-0.382,('y2','x2'):0.738,('y2','x3'):110, # ('y3','x1'):-0.722,('y3','x2'):-0.0117,('y3','x3'):669}) H = Mat(({'y1', 'y3', 'y2'}, {'x2', 'x3', 'x1'}), h.f) ## Task 4 def mat_move2board(Y): ''' Input: - Y: Mat instance, each column of which is a 'y1', 'y2', 'y3' vector giving the whiteboard coordinates of a point q. Output: - Mat instance, each column of which is the corresponding point in the whiteboard plane (the point of intersection with the whiteboard plane of the line through the origin and q). ''' for i in Y.D[1]: Y['y1',i] = Y['y1',i] / Y['y3',i] Y['y2',i] = Y['y2',i] / Y['y3',i] Y['y3',i] = 1 return Y # test #(X_pts, colors) = file2mat('board.png', ('x1','x2','x3')) #Y_pts = H * X_pts #print(Y_pts.D[0]) # print(leY_pts.D[1]) #Y_in = Mat(({'y1', 'y2', 'y3'}, {0,1,2,3}), #{('y1',0):2, ('y2',0):4, ('y3',0):8, #('y1',1):10, ('y2',1):5, ('y3',1):5, #('y1',2):4, ('y2',2):25, ('y3',2):2, #('y1',3):5, ('y2',3):10, ('y3',3):4}) #print(Y_in) #print(mat_move2board(Y_in)) #print(Y)
[ "ice.sagittarius@gmail.com" ]
ice.sagittarius@gmail.com
98f76ec619a2e488aa99de17c4447d474c1cb2e1
3f6c16ea158a8fb4318b8f069156f1c8d5cff576
/.PyCharm2019.1/system/python_stubs/-1046095393/atexit.py
3b4fb40c097ce9444aa1ae283f0da5efbfc50ffd
[]
no_license
sarthak-patidar/dotfiles
08494170d2c0fedc0bbe719cc7c60263ce6fd095
b62cd46f3491fd3f50c704f0255730af682d1f80
refs/heads/master
2020-06-28T23:42:17.236273
2019-10-01T13:56:27
2019-10-01T13:56:27
200,369,900
0
0
null
2019-08-03T12:56:33
2019-08-03T11:53:29
Shell
UTF-8
Python
false
false
4,738
py
# encoding: utf-8 # module atexit # from (built-in) # by generator 1.147 """ allow programmer to define multiple exit functions to be executedupon normal program termination. Two public functions, register and unregister, are defined. """ # no imports # functions def register(func, *args, **kwargs): # real signature unknown; restored from __doc__ """ register(func, *args, **kwargs) -> func Register a function to be executed upon normal program termination func - function to be called at exit args - optional arguments to pass to func kwargs - optional keyword arguments to pass to func func is returned to facilitate usage as a decorator. """ pass def unregister(func): # real signature unknown; restored from __doc__ """ unregister(func) -> None Unregister an exit function which was previously registered using atexit.register func - function to be unregistered """ pass def _clear(): # real signature unknown; restored from __doc__ """ _clear() -> None Clear the list of previously registered exit functions. """ pass def _ncallbacks(): # real signature unknown; restored from __doc__ """ _ncallbacks() -> int Return the number of registered exit functions. """ return 0 def _run_exitfuncs(): # real signature unknown; restored from __doc__ """ _run_exitfuncs() -> None Run all registered exit functions. """ pass # classes class __loader__(object): """ Meta path import for built-in modules. All methods are either class or static methods to avoid the need to instantiate the class. """ @classmethod def create_module(cls, *args, **kwargs): # real signature unknown """ Create a built-in module """ pass @classmethod def exec_module(cls, *args, **kwargs): # real signature unknown """ Exec a built-in module """ pass @classmethod def find_module(cls, *args, **kwargs): # real signature unknown """ Find the built-in module. If 'path' is ever specified then the search is considered a failure. This method is deprecated. Use find_spec() instead. """ pass @classmethod def find_spec(cls, *args, **kwargs): # real signature unknown pass @classmethod def get_code(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have code objects. """ pass @classmethod def get_source(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have source code. """ pass @classmethod def is_package(cls, *args, **kwargs): # real signature unknown """ Return False as built-in modules are never packages. """ pass @classmethod def load_module(cls, *args, **kwargs): # real signature unknown """ Load the specified module into sys.modules and return it. This method is deprecated. Use loader.exec_module instead. """ pass def module_repr(module): # reliably restored by inspect """ Return repr for the module. The method is deprecated. The import machinery does the job itself. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __dict__ = None # (!) real value is "mappingproxy({'__module__': '_frozen_importlib', '__doc__': 'Meta path import for built-in modules.\\n\\n All methods are either class or static methods to avoid the need to\\n instantiate the class.\\n\\n ', 'module_repr': <staticmethod object at 0x7f1f2a7150f0>, 'find_spec': <classmethod object at 0x7f1f2a715128>, 'find_module': <classmethod object at 0x7f1f2a715160>, 'create_module': <classmethod object at 0x7f1f2a715198>, 'exec_module': <classmethod object at 0x7f1f2a7151d0>, 'get_code': <classmethod object at 0x7f1f2a715240>, 'get_source': <classmethod object at 0x7f1f2a7152b0>, 'is_package': <classmethod object at 0x7f1f2a715320>, 'load_module': <classmethod object at 0x7f1f2a715358>, '__dict__': <attribute '__dict__' of 'BuiltinImporter' objects>, '__weakref__': <attribute '__weakref__' of 'BuiltinImporter' objects>})" # variables with complex values __spec__ = None # (!) real value is "ModuleSpec(name='atexit', loader=<class '_frozen_importlib.BuiltinImporter'>, origin='built-in')"
[ "sarthakpatidar15@gmail.com" ]
sarthakpatidar15@gmail.com
78ea76695ffd009815497005787fb0cf035548fd
c2e1a41198ea5e7c18864848564ae68610969dd6
/upload/migrations/0015_fscjob_uniquefolder.py
33bff5e70f43264fa5061c2a13f87bacdab0a7db
[ "MIT" ]
permissive
carl9384/fscupload
cda0794ba56557d0cdeb0df1a573d1c09e9678a3
b0dd73014294f1a6bb01ed946489b52141cadb76
refs/heads/master
2021-06-25T14:17:21.348312
2019-02-11T02:02:39
2019-02-11T02:02:39
98,359,279
0
1
MIT
2019-02-10T17:38:51
2017-07-25T23:46:58
Python
UTF-8
Python
false
false
486
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-07-26 20:52 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('upload', '0014_auto_20170725_2336'), ] operations = [ migrations.AddField( model_name='fscjob', name='uniquefolder', field=models.CharField(default='69d88c23e083deaf1bb8', max_length=20), ), ]
[ "cnegro@nysbc.org" ]
cnegro@nysbc.org
43523188442bee7be5573d5bf87f3806b4f092da
2d57b2c9849ba79889dfda2ba7a219c594f78331
/pyalgos/algorithms/sorting/heap.py
3839037a8e820383945d12e32b6a82db76eeedd7
[]
no_license
olibrook/data-structures-algos-python
a96fcc49ca212aaa6dda256469dc18f22abcde9d
be9f058c9b8876a2c61a55d47a86b4e4f2cb8077
refs/heads/master
2021-07-13T08:30:57.794216
2020-06-01T00:45:06
2020-06-01T00:45:06
138,454,453
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
import pyalgos.data_structures.heap as h def sort(arr): heap = h.MinHeap() for x in arr: heap.add(x) return list(heap)
[ "olibrook@gmail.com" ]
olibrook@gmail.com
04b9b53630dcc36bb3cdb1b9f364d0194d7e120c
1eb9f084434b7e8f5af5f262f36ad57abfa888e5
/lib/ros_comm-1.12.0/utilities/message_filters/src/message_filters/__init__.py
9cc21c48c886fca665feec34887a30117e564e26
[ "BSD-3-Clause" ]
permissive
MangoMangoDevelopment/neptune
2c30d641829cf473e74c5bd8b6fa6c7258d0e0a4
185f501fb227f0ec3700e29adcd7be0bac85f49e
refs/heads/master
2020-05-29T18:08:08.728630
2017-04-13T15:10:42
2017-04-13T15:10:42
51,020,825
10
5
null
2017-10-25T16:01:32
2016-02-03T18:27:49
Python
UTF-8
Python
false
false
8,509
py
# Copyright (c) 2009, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Message Filter Objects ====================== """ import itertools import threading import rospy class SimpleFilter(object): def __init__(self): self.callbacks = {} def registerCallback(self, cb, *args): """ Register a callback function `cb` to be called when this filter has output. The filter calls the function ``cb`` with a filter-dependent list of arguments, followed by the call-supplied arguments ``args``. """ conn = len(self.callbacks) self.callbacks[conn] = (cb, args) return conn def signalMessage(self, *msg): for (cb, args) in self.callbacks.values(): cb(*(msg + args)) class Subscriber(SimpleFilter): """ ROS subscription filter. Identical arguments as :class:`rospy.Subscriber`. This class acts as a highest-level filter, simply passing messages from a ROS subscription through to the filters which have connected to it. """ def __init__(self, *args, **kwargs): SimpleFilter.__init__(self) self.topic = args[0] kwargs['callback'] = self.callback self.sub = rospy.Subscriber(*args, **kwargs) def callback(self, msg): self.signalMessage(msg) def getTopic(self): return self.topic def __getattr__(self, key): """Serve same API as rospy.Subscriber""" return self.sub.__getattribute__(key) class Cache(SimpleFilter): """ Stores a time history of messages. Given a stream of messages, the most recent ``cache_size`` messages are cached in a ring buffer, from which time intervals of the cache can then be retrieved by the client. """ def __init__(self, f, cache_size = 1): SimpleFilter.__init__(self) self.connectInput(f) self.cache_size = cache_size # Array to store messages self.cache_msgs = [] # Array to store msgs times, auxiliary structure to facilitate # sorted insertion self.cache_times = [] def connectInput(self, f): self.incoming_connection = f.registerCallback(self.add) def add(self, msg): # Cannot use message filters with non-stamped messages if not hasattr(msg, 'header') or not hasattr(msg.header, 'stamp'): rospy.logwarn("Cannot use message filters with non-stamped messages") return # Insert sorted stamp = msg.header.stamp self.cache_times.append(stamp) self.cache_msgs.append(msg) # Implement a ring buffer, discard older if oversized if (len(self.cache_msgs) > self.cache_size): del self.cache_msgs[0] del self.cache_times[0] # Signal new input self.signalMessage(msg) def getInterval(self, from_stamp, to_stamp): """Query the current cache content between from_stamp to to_stamp.""" assert from_stamp <= to_stamp return [m for m in self.cache_msgs if m.header.stamp >= from_stamp and m.header.stamp <= to_stamp] def getElemAfterTime(self, stamp): """Return the oldest element after or equal the passed time stamp.""" newer = [m for m in self.cache_msgs if m.header.stamp >= stamp] if not newer: return None return newer[0] def getElemBeforeTime(self, stamp): """Return the newest element before or equal the passed time stamp.""" older = [m for m in self.cache_msgs if m.header.stamp <= stamp] if not older: return None return older[-1] def getLastestTime(self): """Return the newest recorded timestamp.""" if not self.cache_times: return None return self.cache_times[-1] def getOldestTime(self): """Return the oldest recorded timestamp.""" if not self.cache_times: return None return self.cache_times[0] class TimeSynchronizer(SimpleFilter): """ Synchronizes messages by their timestamps. :class:`TimeSynchronizer` synchronizes incoming message filters by the timestamps contained in their messages' headers. TimeSynchronizer listens on multiple input message filters ``fs``, and invokes the callback when it has a collection of messages with matching timestamps. The signature of the callback function is:: def callback(msg1, ... msgN): where N is the number of input message filters, and each message is the output of the corresponding filter in ``fs``. The required ``queue size`` parameter specifies how many sets of messages it should store from each input filter (by timestamp) while waiting for messages to arrive and complete their "set". """ def __init__(self, fs, queue_size): SimpleFilter.__init__(self) self.connectInput(fs) self.queue_size = queue_size self.lock = threading.Lock() def connectInput(self, fs): self.queues = [{} for f in fs] self.input_connections = [f.registerCallback(self.add, q) for (f, q) in zip(fs, self.queues)] def add(self, msg, my_queue): self.lock.acquire() my_queue[msg.header.stamp] = msg while len(my_queue) > self.queue_size: del my_queue[min(my_queue)] # common is the set of timestamps that occur in all queues common = reduce(set.intersection, [set(q) for q in self.queues]) for t in sorted(common): # msgs is list of msgs (one from each queue) with stamp t msgs = [q[t] for q in self.queues] self.signalMessage(*msgs) for q in self.queues: del q[t] self.lock.release() class ApproximateTimeSynchronizer(TimeSynchronizer): """ Approximately synchronizes messages by their timestamps. :class:`ApproximateTimeSynchronizer` synchronizes incoming message filters by the timestamps contained in their messages' headers. The API is the same as TimeSynchronizer except for an extra `slop` parameter in the constructor that defines the delay (in seconds) with which messages can be synchronized """ def __init__(self, fs, queue_size, slop): TimeSynchronizer.__init__(self, fs, queue_size) self.slop = rospy.Duration.from_sec(slop) def add(self, msg, my_queue): self.lock.acquire() my_queue[msg.header.stamp] = msg while len(my_queue) > self.queue_size: del my_queue[min(my_queue)] for vv in itertools.product(*[list(q.keys()) for q in self.queues]): qt = list(zip(self.queues, vv)) if ( ((max(vv) - min(vv)) < self.slop) and (len([1 for q,t in qt if t not in q]) == 0) ): msgs = [q[t] for q,t in qt] self.signalMessage(*msgs) for q,t in qt: del q[t] self.lock.release()
[ "a.wareham@gmail.com" ]
a.wareham@gmail.com
c6d8420a5dbe972ad01f97e4030bb4c992a72670
3b1c209057f5a692846396590b963d7cf7302e5a
/source/inputters/field.py
62a013e16d3e5f39d84a4abcb1677033a14ac8ca
[]
no_license
Cli212/Knowledge_Driven_Dialogue
53be06728acb9301dc3b0df43680865720e7d906
e9817b59fce30585ae2715a4d8748b8814b337a3
refs/heads/master
2020-09-24T13:09:45.081795
2020-02-04T11:28:03
2020-02-04T11:28:03
225,765,447
1
0
null
null
null
null
UTF-8
Python
false
false
6,456
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- import re import nltk import torch from tqdm import tqdm from collections import Counter from bert_serving.client import BertClient PAD="[PAD]" UNK="[UNK]" BOS="[BOS]" EOS="[EOS]" NUM="[NUM]" def tokenize(s): """ tokenize """ s = re.sub('\d+', NUM, s).lower() # tokens = nltk.RegexpTokenizer(r'\w+|<sil>|[^\w\s]+').tokenize(s) tokens = s.split(' ') return tokens class Field(object): def __init__(self, sequential=False, dtype=None): self.sequential = sequential self.dtype = dtype if dtype is not None else int def str2num(self, string): raise NotImplementedError def num2str(self, number): raise NotImplementedError def numericalize(self, strings): if isinstance(strings, str): return self.str2num(strings) else: return [self.numericalize(s) for s in strings] def denumericalize(self, numbers): if isinstance(numbers, torch.Tensor): with torch.cuda.device_of(numbers): numbers = numbers.tolist() if self.sequential: if not isinstance(numbers[0], list): return self.num2str(numbers) else: return [self.denumericalize(x) for x in numbers] else: if not isinstance(numbers, list): return self.num2str(numbers) else: return [self.denumericalize(x) for x in numbers] class NumberField(Field): def __init__(self, sequential=False, dtype=None): super(NumberField, self).__init__(sequential=sequential, dtype=dtype) def str2num(self, string): if self.sequential: return [self.dtype(s) for s in string.split(" ")] else: return self.dtype(string) def num2str(self, number): if self.sequential: return " ".join([str(x) for x in number]) else: return str(number) class TextField(Field): def __init__(self, tokenize_fn=None, pad_token=PAD, unk_token=UNK, bos_token=BOS, eos_token=EOS, special_tokens=None, embed_file=None): super(TextField, self).__init__(sequential=True, dtype=int) self.tokenize_fn = tokenize_fn if tokenize_fn is not None else str.split self.pad_token = pad_token self.unk_token = unk_token self.bos_token = bos_token self.eos_token = eos_token self.embed_file = embed_file specials = [self.pad_token, self.unk_token, self.bos_token, self.eos_token] self.specials = [x for x in specials if x is not None] if special_tokens is not None: for token in special_tokens: if token not in self.specials: self.specials.append(token) self.itos = [] self.stoi = {} self.vocab_size = 0 self.embeddings = None def build_vocab(self, texts, min_freq=0, max_size=None): def flatten(xs): flat_xs = [] for x in xs: if isinstance(x, str): flat_xs.append(x) elif isinstance(x[0], str): flat_xs += x else: flat_xs += flatten(x) return flat_xs # flatten texts texts = flatten(texts) counter = Counter() for string in tqdm(texts): tokens = self.tokenize_fn(string) counter.update(tokens) # frequencies of special tokens are not counted when building vocabulary # in frequency order for tok in self.specials: del counter[tok] self.itos = list(self.specials) if max_size is not None: max_size = max_size + len(self.itos) # sort by frequency, then alphabetically words_and_frequencies = sorted(counter.items(), key=lambda tup: tup[0]) words_and_frequencies.sort(key=lambda tup: tup[1], reverse=True) cover = 0 for word, freq in words_and_frequencies: if word=='' or word=='\u3000': print(f'跳过{word}') continue if freq < min_freq or len(self.itos) == max_size: break self.itos.append(word) cover += freq cover = cover / sum(freq for _, freq in words_and_frequencies) print( "Built vocabulary of size {} (coverage: {:.3f})".format(len(self.itos), cover)) self.stoi = {tok: i for i, tok in enumerate(self.itos)} self.vocab_size = len(self.itos) #if self.embed_file is not None: self.embeddings = self.build_word_embeddings(self.embed_file) def build_word_embeddings(self, embed_file): bc = BertClient(ip='34.84.105.174') try: embeds=bc.encode(self.itos).tolist() print('buillding embedding succeed') except: raise('building embedding fail') return embeds def dump_vocab(self): vocab = {"itos": self.itos, "embeddings": self.embeddings} return vocab def load_vocab(self, vocab): self.itos = vocab["itos"] self.stoi = {tok: i for i, tok in enumerate(self.itos)} self.vocab_size = len(self.itos) self.embeddings = vocab["embeddings"] def str2num(self, string): tokens = [] unk_idx = self.stoi[self.unk_token] if self.bos_token: tokens.append(self.bos_token) tokens += self.tokenize_fn(string) if self.eos_token: tokens.append(self.eos_token) indices = [self.stoi.get(tok, unk_idx) for tok in tokens] return indices def num2str(self, number): tokens = [self.itos[x] for x in number] if tokens[0] == self.bos_token: tokens = tokens[1:] text = [] for w in tokens: if w != self.eos_token: text.append(w) else: break text = [w for w in text if w not in (self.pad_token, )] text = " ".join(text) return text
[ "hehaoyuh212@gmail.com" ]
hehaoyuh212@gmail.com
526bfabd8d4add6feced315ac34c366676ccfe3d
69864d3134f224fb00c46327f7cd4f34c8749f3f
/bongo/apps/frontend/tests/view_tests.py
1fbb400ab0d3d6551e735cfffb3308c990d2cd84
[ "MIT" ]
permissive
BowdoinOrient/bongo
4298e2f1a353be94640ceb2b24da1178abaf92ec
3a78dd8a8f9d853661ba9f0b7df900ec497940a1
refs/heads/develop
2021-01-17T17:07:18.582716
2015-10-25T15:33:47
2015-10-25T15:33:47
18,506,776
3
1
null
2015-10-25T15:33:48
2014-04-07T04:57:02
Python
UTF-8
Python
false
false
3,185
py
from django.test import TestCase from bongo.apps.bongo.tests import factories class ArticleViewTestCase(TestCase): def test_by_slug(self): """Test that you can route to an article by using its slug""" post = factories.PostFactory.create() response = self.client.get("/article/{}/".format(post.slug)) self.assertEqual(response.status_code, 200) def test_by_id(self): """Test that you can route to an article by using its ID""" post = factories.PostFactory.create() response = self.client.get("/article/{}/".format(post.id)) self.assertEqual(response.status_code, 301) self.assertEqual(response.url, "http://testserver/article/{}/".format(post.slug)) class HomeViewTestCase(TestCase): pass class AuthorViewTestCase(TestCase): def test_creator_view_context(self): creator = factories.CreatorFactory.create() posts = [factories.PostFactory.create() for x in range(5)] for post in posts: article = post.text.first() article.creators.add(creator) article.save() post.save(auto_dates=False) res = self.client.get('/author/{}/'.format(creator.pk)) self.assertEqual(creator, res.context['creator']) self.assertEqual(set(posts), set(res.context['posts'])) def test_series_view_route(self): creator = factories.CreatorFactory.create() self.assertEqual(self.client.get('/author/{}/'.format(creator.pk)).status_code, 200) self.assertEqual(self.client.get('/author/'.format(creator.pk)).status_code, 404) self.assertEqual(self.client.get('/author/0/').status_code, 404) class SeriesViewTestCase(TestCase): def test_series_view_context(self): series = factories.SeriesFactory.create() posts = [factories.PostFactory.create() for x in range(5)] for post in posts: post.series.add(series) post.save(auto_dates=False) res = self.client.get('/series/{}/'.format(series.pk)) self.assertEqual(series, res.context['series']) self.assertEqual(set(posts), set(res.context['posts'])) def test_series_view_route(self): series = factories.SeriesFactory.create() self.assertEqual(self.client.get('/series/{}/'.format(series.pk)).status_code, 200) self.assertEqual(self.client.get('/series/'.format(series.pk)).status_code, 404) self.assertEqual(self.client.get('/series/0/').status_code, 404) class StaticViewsTestCase(TestCase): def test_about_view(self): res = self.client.get('/about/') self.assertEqual(res.status_code, 200) def test_ethics_view(self): res = self.client.get('/ethics/') self.assertEqual(res.status_code, 200) def test_subscribe_view(self): res = self.client.get('/subscribe/') self.assertEqual(res.status_code, 200) def test_advertise_view(self): res = self.client.get('/advertise/') self.assertEqual(res.status_code, 200) def test_contact_view(self): res = self.client.get('/contact/') self.assertEqual(res.status_code, 200)
[ "bjacobel@localytics.com" ]
bjacobel@localytics.com
d59946de3156710a87637070b2375189e9f23961
499a24afc6fbd985353224cb09cb91b7b89a1c86
/apps/base/urls.py
4df70a5837f154fcbcfa983f52fa4bb1a6081089
[ "MIT" ]
permissive
KenichiTanino/django_upload_with_mosaic-image
68ed2d7d79cb5ead03ab8454f3bd98f0e688cde6
793fbb92e00e34ff091f7a5293bc610de36aa3eb
refs/heads/main
2023-04-02T02:40:42.890557
2021-04-14T14:15:51
2021-04-14T14:15:51
356,816,981
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
"""urlconf for the base application""" from django.conf.urls import url from .views import home from .views import upload_file urlpatterns = [ url(r'^$', home, name='home'), url(r'upload_form$', upload_file, name='upload_form'), ]
[ "tanino@a2.mbn.or.jp" ]
tanino@a2.mbn.or.jp
315730b88d08ce329c85893b22e65920bcdac068
878671ee6e501972fbba9cbc22651735ca2fa2e6
/main.py
53d529ca6ae6ac45c021cdb30874cabd345527ed
[]
no_license
aklowell/build-a-blog
014b80fd268e3e74b9a57e8a1bd333e82579fc3e
b416b1abdbf8680f0a278a61a5fc0e99d92aaf6f
refs/heads/master
2021-07-10T10:04:39.999099
2017-10-09T03:55:56
2017-10-09T03:55:56
105,560,380
0
0
null
null
null
null
UTF-8
Python
false
false
1,803
py
from flask import Flask, request, redirect, render_template from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config['DEBUG'] = True app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://build-a-blog:build-a-blog@localhost:8889/build-a-blog' app.config['SQLALCHEMY_ECHO'] = True db = SQLAlchemy(app) class Blog(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(255)) body = db.Column(db.String(255)) def __init__(self, title='', body=''): self.title = title self.body = body @app.route('/blog', methods=['POST','GET']) def index(): if request.args: blog_id=request.args.get("id") blog=Blog.query.get(blog_id) return render_template('blogentry.html',blog=blog) else: blogs=Blog.query.order_by(Blog.id.desc()).all() return render_template('blogs.html', blogs=blogs) @app.route('/newpost',methods=["POST", "GET"]) def add_blog(): if request.method=="GET": return render_template('newpost.html') title_error='' body_error='' if request.method=="POST": blog_title=request.form['title'] blog_body=request.form['body'] if len(blog_body) < 1: body_error="Please enter a blog entry." if len(blog_title) < 1: title_error ="Please enter a blog title." if not title_error and not body_error: new_blog=Blog(blog_title,blog_body) db.session.add(new_blog) db.session.commit() query_param_url = "/blog?id=" + str(new_blog.id) return redirect(query_param_url) else: return render_template('newpost.html', title_error=title_error, body_error=body_error,blog_title=blog_title,blog_body=blog_body) if __name__ == '__main__': app.run()
[ "anneklowell@outlook.com" ]
anneklowell@outlook.com
13173c0c90b40858d24a8dd1a49957abc36658df
db6cbfe3fc997417fe390e6fbf6c7fb073223653
/Lab3-4/UI.py
e620ebda1387634d49ca67224ca8d756d8a5f6a0
[]
no_license
ecaterinacatargiu/AI
cad44bb6c7345fc4e0675770eecca2fac7741a34
d7384f00b3f571fd01dec92e5737687b071104ab
refs/heads/main
2023-03-12T19:28:47.942802
2021-02-19T18:13:45
2021-02-19T18:13:45
340,451,541
0
0
null
null
null
null
UTF-8
Python
false
false
1,759
py
# -*- coding: utf-8 -*- """ Created on Sat Mar 28 18:44:05 2020 @author: Cati """ from Controller import Controller from Population import Population from hc import * class UI: def __init__(self, ea:Population, controller: Controller): self.ea = ea self.controller = controller def printMenu(self): print() print("Choose one: ") print("1. EA") print("2. Hill Climbing") print("3. PSO") def getEa(self): return self.ea.iteration() def getHc(self): return self.hc.runHillClimbing(ea, ea.getPopSize()) def getPso(self): return self.controller.runPSO() def start(self): self.printMenu() command = int(input("Enter your command: ")) while command !=0: if command == 1: self.getEA() else: if command == 2: self.getHC() else: if command == 3: self.getPso() else: if command == 0: return else: print("No command") self.printMenu() command = int(input("Enter your command: ")) def main(): size=int(input("Enter the size of the individual: ")) popSize=int(input("Enter the size of the population: ")) pM=int(input("Enter the probability of mutation: ")) pC=int(input("Enter the probability of crossover: ")) pop = Population(size,popSize, pM, pC) ui = UI(pop) ui.start() main()
[ "georgianaecaterina.catargiu@microfocus.com" ]
georgianaecaterina.catargiu@microfocus.com
77dd5abb723497730fd82ff12025e54f2471e189
6a3805c0e3a1f1a17dafde998b07dff724fa3432
/fixedwing/migrations/0004_fixedwingpost_user_name.py
4bb82ea7b542959155849a5839cc370334e570f7
[ "MIT" ]
permissive
shivam675/avation
de85bd7bceb88f4567f2d549c914b6bee978d216
9f39a9fbeb2ad7d27d88816b0085cdd814b9ae35
refs/heads/main
2023-04-14T14:54:20.213381
2021-05-02T10:35:05
2021-05-02T10:35:05
358,865,969
1
1
null
null
null
null
UTF-8
Python
false
false
634
py
# Generated by Django 3.2 on 2021-04-21 07:34 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('fixedwing', '0003_remove_fixedwingpost_user_name'), ] operations = [ migrations.AddField( model_name='fixedwingpost', name='user_name', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
[ "samarkale.15@gmail.com" ]
samarkale.15@gmail.com
b684e9ee901a0010e93ec30efff577b9d58c68ef
d3ae9c6377109a4edea819c3d574e6ac529c98ba
/read_csv_pandas.py
25cdfa66408f6a0fb0f59558db628c2803ad4c55
[]
no_license
vmburbinamx/textParsing
9d8696f798217f7124501ac1756019a95166d79f
46d6f872de79879cd6129c2ace2684409f02851c
refs/heads/master
2023-01-02T20:50:45.745922
2020-10-26T02:40:29
2020-10-26T02:40:29
307,169,054
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
import pandas as pd import os #Set path to 'data' folder' path_to_data_in_current_directory = os.getcwd() + '\\data\\' #Set full path name fullFileName = path_to_data_in_current_directory+'titanic_sub_just_numbers.csv' #read file data = pd.read_csv(fullFileName)
[ "victormanueluj@gmail.com" ]
victormanueluj@gmail.com
686464eb605c12cdfb8384943d02fe21966f09f3
525c2454c1e865b1377f372653666988f900660e
/day01/login.py
b252de86985189b235db3547568146e5c5cc8792
[]
no_license
ysyi212/Study
52ede4e7a6d6bbc993136d91fa7bbd7754d9030a
69f49a681a672542f01a726acb596598f72823fd
refs/heads/master
2020-12-14T17:13:44.737534
2020-01-28T08:31:28
2020-01-28T08:31:28
234,821,114
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
#!/root/ysy/python/bin/python3 name = input('input your name: ') print('welcome',name)
[ "ysyi212@aliyun.com" ]
ysyi212@aliyun.com
586d74151ef062c249063e4d5c269c511d557769
052a9999ddf26f98b19e5d9564eb4ded55c36009
/src/model_generators/logistic_regression.py
5bd50b12d6aadd1a76811974413312d9f7681ecb
[ "MIT" ]
permissive
Rosster/MLFinalProject
6f0ae1ad8b93ecdf464796166c54e4417902ccbc
521a739d4c5371db08179a54e22c76a9827136bb
refs/heads/master
2020-04-26T09:54:33.734474
2019-03-23T01:39:04
2019-03-23T01:39:04
173,471,948
0
1
null
null
null
null
UTF-8
Python
false
false
2,189
py
import numpy as np from sklearn.linear_model import LogisticRegressionCV from sklearn import metrics ''' Logistic Regression is a Machine Learning classification algorithm that is used to predict the probability of a categorical dependent variable. In logistic regression, the dependent variable is a binary variable that contains data coded as 1 (yes, success, etc.) or 0 (no, failure, etc.). In other words, the logistic regression model predicts P(Y=1) as a function of X. Notes: Binary logistic regression requires the dependent variable to be binary. Only the meaningful variables should be included. Logistic regression requires quite large sample sizes. ''' RESPONSE_VARIABLE = 'sentiment' def construct(train_df, opts={}, remove_features=None): feature_cols = [col for col in train_df.columns if RESPONSE_VARIABLE not in col] if remove_features: feature_cols = [col for col in feature_cols if col not in remove_features] X = train_df[feature_cols] y = train_df[RESPONSE_VARIABLE] model = LogisticRegressionCV( fit_intercept=True, # Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. cv=10, solver='lbfgs', #For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle multinomial loss n_jobs=-1, random_state=27 ) model.fit(X, y) print('coeff, intercept -->', model.coef_, model.intercept_) in_sample_accuracy = model.score(X, y) print('in-sample accuracy --> ', in_sample_accuracy) return model def get_predictions(model, test_df, remove_features=None): feature_cols = [col for col in test_df.columns if RESPONSE_VARIABLE not in col] if remove_features: feature_cols = [col for col in feature_cols if col not in remove_features] X = test_df[feature_cols] y_pred = model.predict(X) return y_pred def mean_accuracy(model, test_df, remove_features=None): feature_cols = [col for col in test_df.columns if RESPONSE_VARIABLE not in col] if remove_features: feature_cols = [col for col in feature_cols if col not in remove_features] X = test_df[feature_cols] y = test_df[RESPONSE_VARIABLE] return model.score(X, y)
[ "rohan.jyoti@variantyx.com" ]
rohan.jyoti@variantyx.com
85ade40b3fd736b98b5d56953fdfbddf0b7fe7e1
fdf26c1191bbe22a310124e5e7d8d7ec752f3050
/Backup/20150107093039/OmniSharp/commands/code_actions.py
aff9bfd644a66f9faefa43a5006f75db1fbe2af2
[]
no_license
ahmetabdi/sublime-text-3
56a814706ba1b9a3a635e4f9f0f6c537476b82b9
13fa68c8cacca335bbc2ac02a537ea06a0386b5a
refs/heads/master
2020-12-24T19:17:27.114354
2016-03-10T12:06:20
2016-03-10T12:06:20
15,140,480
1
2
null
null
null
null
UTF-8
Python
false
false
3,639
py
import sublime import sublime_plugin from ..lib import omnisharp from ..lib import helpers class OmniSharpCodeActions(sublime_plugin.TextCommand): data = None selectionStartColumn = 0 selectionStartLine = 0 selectionEndColumn = 0 selectionEndLine = 0 def run(self, edit): if self.data is None: selection = self.view.sel() params = {} if len(selection) > 0: print('length is : ' + str(len(selection))) location = selection[0] cursor = self.view.rowcol(location.begin()) self.selectionStartLine = cursor[0] + 1 self.selectionStartColumn = cursor[1] + 1 othercursor = self.view.rowcol(location.end()) self.selectionEndLine = othercursor[0] + 1 self.selectionEndColumn = othercursor[1] + 1 params['selectionStartColumn'] = self.selectionStartColumn params['selectionStartLine'] = self.selectionStartLine params['selectionEndColumn'] = self.selectionEndColumn params['selectionEndLine'] = self.selectionEndLine omnisharp.get_response( self.view, '/getcodeactions', self._handle_codeactions, params) else: self._show_code_actions_view(edit) def _handle_codeactions(self, data): print(data) if data is None: return self.data = data self.view.run_command('omni_sharp_code_actions') def _show_code_actions_view(self, edit): print('codeactions is :') print(self.data) self.quickitems = []; if "CodeActions" in self.data and self.data["CodeActions"] != None: for i in self.data["CodeActions"]: print(i) self.quickitems.append(i.strip()) if len(self.quickitems) > 0: self.view.window().show_quick_panel(self.quickitems, self.on_done) else: self.data = None self.selectionEndLine = 0 self.selectionEndColumn = 0 self.selectionStartLine = 0 self.selectionStartColumn = 0 def is_enabled(self): return helpers.is_csharp(self.view) def on_done(self, index): if index == -1: self.data = None self.selectionEndLine = 0 self.selectionEndColumn = 0 self.selectionStartLine = 0 self.selectionStartColumn = 0 return print("run index: " + str(index)) params = {} params['codeAction'] = index params['selectionStartColumn'] = self.selectionStartColumn params['selectionStartLine'] = self.selectionStartLine params['selectionEndColumn'] = self.selectionEndColumn params['selectionEndLine'] = self.selectionEndLine omnisharp.get_response(self.view, '/runcodeaction', self._handle_runcodeaction, params) self.data = None self.selectionEndLine = 0 self.selectionEndColumn = 0 self.selectionStartLine = 0 self.selectionStartColumn = 0 def _handle_runcodeaction(self, data): print('runcodeaction is:') print(data) if data is None: return self.view.run_command("omni_sharp_run_code_action",{"args":{'text':data['Text']}}) class OmniSharpRunCodeAction(sublime_plugin.TextCommand): def run(self, edit, args): region = sublime.Region(0, self.view.size()) self.view.replace(edit, region, args['text']) self.view.sel().clear()
[ "ahmetabdi@gmail.com" ]
ahmetabdi@gmail.com
0f06f71767bd30c22c6e18ec01e9a0c89ee695ce
3dfaf9d28b59c23ee3432c26dbf499589645a0b7
/timed_io.py
7326af92a0c9a56229bd514e916cbf0b46495fc0
[]
no_license
wielgusm/timed_new
c9b82575c2cc77a83fd94b1ee7a085748f8b726f
d0017af0985bad0fd5cb98f675382f05824650d8
refs/heads/master
2020-03-29T01:46:21.353351
2018-11-05T17:14:15
2018-11-05T17:14:15
149,405,524
0
0
null
null
null
null
UTF-8
Python
false
false
28,272
py
import sys, os, itertools import numpy as np import pandas as pd import matplotlib.pyplot as plt #import qmetric from timed_new import qmetric from astropy.time import Time import datetime as datetime try: import ehtim as eh except ModuleNotFoundError: sys.path.append('/Volumes/DATAPEN/Shared/EHT/EHTIM/eht-imaging_polrep/eht-imaging/') import ehtim as eh nam2lett = {'ALMA':'A','AA':'A','A':'A', 'APEX':'X','AP':'X','X':'X', 'LMT':'L','LM':'L','L':'L', 'PICOVEL':'P','PICO':'P','PV':'P','P':'P','IRAM30':'P', 'SMTO':'Z','SMT':'Z','AZ':'Z','Z':'Z', 'SPT':'Y','SP':'Y','Y':'Y', 'JCMT':'J','JC':'J','J':'J', 'SMAP':'S','SMA':'S','SM':'S','S':'S', 'SMAR':'R','R':'R','SR':'R', 'B':'B','C':'C','D':'D'} pol_dic={'LL':'ll','ll':'ll','L':'ll', 'RR':'rr','rr':'rr','R':'rr', 'RL':'rl','rl':'rl', 'LR':'lr','lr':'lr'} def load_uvfits(path_to_data,tcoh=-1,single_letter=True,polrep='circ',polar=None): if polar=='LL':polar='L' if polar=='RR':polar='R' try: obs = eh.obsdata.load_uvfits(path_to_data,polrep=polrep,force_singlepol=polar) except TypeError: obs = eh.obsdata.load_uvfits(path_to_data,force_singlepol=polar) #if full_polar: obs.df = make_df_full_cp(obs) #else: obs.df = eh.statistics.dataframes.make_df(obs) obs.df = eh.statistics.dataframes.make_df(obs) if (type(tcoh)!=str): if (tcoh > 0): obs = obs.avg_coherent(inttime=tcoh) else: if tcoh=='scan': try: foo = len(obs.scan) except: print('Adding scans automatically') obs.add_scans() obs = obs.avg_coherent(inttime=1,scan_avg=True) tobs=tobsdata(obs,single_letter=single_letter) return tobs #def load_csv(path_to_data, product, columns=None): class tobsdata: def __init__(self,obs,single_letter=True): try: self.df=obs.df except AttributeError: obs.df = eh.statistics.dataframes.make_df(obs) if single_letter: if np.mean([len(x) for x in np.asarray(obs.df['baseline'])]) > 2.5: obs.df['baseline'] = [nam2lett[x.split('-')[0]]+nam2lett[x.split('-')[1]] for x in list(obs.df['baseline'])] self.source = obs.source self.df=obs.df self.ra=obs.ra self.dec=obs.dec self.data=obs.data self.mjd=obs.mjd try: self.polrep=obs.polrep except AttributeError: pass try: self.scans=obs.scans except: pass def get_tseries(self,ident,product='',polar='none'): return tseries(self,ident,product=product,polar=polar) class fake_tobs: def __init__(self,**kwargs): for key in kwargs: setattr(self, key, kwargs[key]) try: foo = self.source except AttributeError: self.source='source' try: foo = self.ra except AttributeError: self.ra=0 try: foo = self.dec except AttributeError: self.dec=0 class tseries: def __init__(self,tobs,ident,product='',polar='none',csv_path='',csv_columns=None,csv_product=None,**kwargs): if product=='csv': tobs = fake_tobs(**kwargs) foo = pd.read_csv(csv_path,names=csv_columns) if product=='': if len(ident)==2: product='amp' elif len(ident)==3: product='cphase' elif len(ident)==4: product='lcamp' self.product=product if product=='csv': self.type=csv_product else: self.type=product self.ident = ident self.polarization = polar self.source = tobs.source self.ra=tobs.ra self.dec=tobs.dec if product=='amp': foo = tobs.df[(tobs.df.baseline==ident) | (tobs.df.baseline==ident[1]+ident[0])] if polar != 'none': polamp=pol_dic[polar]+'amp' polsigma=pol_dic[polar]+'sigma' else: polamp='amp'; polsigma='sigma' foo=foo[foo[polamp]==foo[polamp]].copy() self.mjd = np.asarray(foo.mjd) self.time = np.asarray(foo.time) self.amp = np.asarray(foo[polamp]) self.sigma = np.asarray(foo[polsigma]) self.data = foo elif product=='cphase': foo = get_cphase(tobs,ident,polar=polar) foo=foo[foo.cphase==foo.cphase].copy() self.mjd = np.asarray(foo.mjd) self.time = np.asarray(foo.time) self.cphase = np.asarray(foo.cphase) self.sigmaCP = np.asarray(foo.sigmaCP) self.data = foo elif product=='lcamp': foo = get_lcamp(tobs,ident,polar=polar) #if polar!='none': foo = foo.dropna(subset=[polamp]) foo=foo[foo.lcamp==foo.lcamp].copy() self.mjd = np.asarray(foo.mjd) self.time = np.asarray(foo.time) self.lcamp = np.asarray(foo.lcamp) self.sigmaLCA = np.asarray(foo.sigmaLCA) self.data = foo elif product=='lcfrac': foo = get_lcfrac(tobs,ident) #if polar!='none': foo = foo.dropna(subset=[polamp]) foo=foo[foo.lcfrac==foo.lcfrac].copy() self.mjd = np.asarray(foo.mjd) self.time = np.asarray(foo.time) self.lcfrac = np.asarray(foo.lcfrac) self.sigmaLCF = np.asarray(foo.sigmaLCF) self.data = foo elif product=='cfrac': foo = get_cfrac(tobs,ident) #if polar!='none': foo = foo.dropna(subset=[polamp]) foo=foo[foo.cfrac==foo.cfrac].copy() self.mjd = np.asarray(foo.mjd) self.time = np.asarray(foo.time) self.cfrac = np.asarray(foo.cfrac) self.sigmaCF = np.asarray(foo.sigmaCF) self.data = foo elif product=='csv': for col in csv_columns: setattr(self, col, foo[col]) self.data = foo try: goo=self.time except AttributeError: self.time=self.mjd def plot(self,line=False,figsize='',errorscale=1.,add_title=''): if figsize=='': plt.figure(figsize=(10,5)) else: plt.figure(figsize=figsize) if line: fmt='o-' else: fmt='o' plt.title(self.ident+' '+self.type+' '+add_title) if self.type=='cphase': plt.errorbar(self.time,self.cphase,errorscale*self.sigmaCP,fmt=fmt,capsize=5) plt.ylabel('cphase [deg]') elif self.type=='amp': plt.errorbar(self.time,self.amp,errorscale*self.sigma,fmt=fmt,capsize=5) plt.ylabel('amp') elif self.type=='lcamp': plt.errorbar(self.time,self.lcamp,errorscale*self.sigmaLCA,fmt=fmt,capsize=5) plt.ylabel('log camp') elif self.type=='lcfrac': plt.errorbar(self.time,self.lcfrac,errorscale*self.sigmaLCF,fmt=fmt,capsize=5) plt.ylabel('log cfracpol') elif self.type=='cfrac': plt.errorbar(self.time,self.cfrac,errorscale*self.sigmaCF,fmt=fmt,capsize=5) plt.ylabel('cfracpol') plt.grid() plt.xlabel('time [h]') plt.show() def plot_compare(self,tser,line=False,figsize='',errorscale=1.,add_title=''): if figsize=='': plt.figure(figsize=(10,5)) else: plt.figure(figsize=figsize) if line: fmt='o-' else: fmt='o' plt.title(self.ident+' '+self.type+' '+add_title) if self.type=='cphase': plt.errorbar(self.time,self.cphase,errorscale*self.sigmaCP,fmt=fmt,capsize=5,label=self.ident) plt.errorbar(tser.time,tser.cphase,errorscale*tser.sigmaCP,fmt=fmt,capsize=5,label=tser.ident) plt.ylabel('cphase [deg]') elif self.type=='amp': plt.errorbar(self.time,self.amp,errorscale*self.sigma,fmt=fmt,capsize=5,label=self.ident) plt.errorbar(tser.time,tser.amp,errorscale*tser.sigma,fmt=fmt,capsize=5,label=tser.ident) plt.ylabel('amp') elif self.type=='lcamp': plt.errorbar(self.time,self.lcamp,errorscale*self.sigmaLCA,fmt=fmt,capsize=5,label=self.ident) plt.errorbar(tser.time,tser.lcamp,errorscale*tser.sigmaLCA,fmt=fmt,capsize=5,label=tser.ident) plt.ylabel('log camp') elif self.type=='lcfrac': plt.errorbar(self.time,self.lcfrac,errorscale*self.sigmaLCF,fmt=fmt,capsize=5,label=self.ident) plt.errorbar(tser.time,tser.lcfrac,errorscale*tser.sigmaLCF,fmt=fmt,capsize=5,label=tser.ident) plt.ylabel('log cfracpol') elif self.type=='cfrac': plt.errorbar(self.time,self.cfrac,errorscale*self.sigmaCF,fmt=fmt,capsize=5,label=self.ident) plt.errorbar(tser.time,tser.cfrac,errorscale*tser.sigmaCF,fmt=fmt,capsize=5,label=tser.ident) plt.ylabel('cfracpol') plt.grid() plt.xlabel('time [h]') plt.legend() plt.show() def plot_compare_list(self,tserL,line=False,figsize='',errorscale=1.,add_title='',labelsL=None,err_cut=1e5,xrange=None,yrange=None): if figsize=='': plt.figure(figsize=(10,5)) else: plt.figure(figsize=figsize) if line: fmt='o-' else: fmt='o' if labelsL==None: labelsL0 = [tser.ident for tser in tserL] labelsL=[self.ident]+labelsL0 plt.title(self.ident+' '+self.type+' '+add_title) if self.type=='cphase': plt.errorbar(self.time[self.sigmaCP<err_cut],self.cphase[self.sigmaCP<err_cut],errorscale*self.sigmaCP[self.sigmaCP<err_cut],fmt=fmt,capsize=5,label=labelsL[0]) for cou,tser in enumerate(tserL): plt.errorbar(tser.time[tser.sigmaCP<err_cut],tser.cphase[tser.sigmaCP<err_cut],errorscale*tser.sigmaCP[tser.sigmaCP<err_cut],fmt=fmt,capsize=5,label=labelsL[cou+1]) plt.ylabel('cphase [deg]') elif self.type=='amp': plt.errorbar(self.time[self.sigma<err_cut],self.amp[self.sigma<err_cut],errorscale*self.sigma[self.sigma<err_cut],fmt=fmt,capsize=5,label=labelsL[0]) for cou,tser in enumerate(tserL): plt.errorbar(tser.time[tser.sigma<err_cut],tser.lcamp[tser.sigma<err_cut],errorscale*tser.sigma[tser.sigma<err_cut],fmt=fmt,capsize=5,label=labelsL[cou+1]) plt.ylabel('amp') elif self.type=='lcamp': plt.errorbar(self.time[self.sigmaLCA<err_cut],self.lcamp[self.sigmaLCA<err_cut],errorscale*self.sigmaLCA[self.sigmaLCA<err_cut],fmt=fmt,capsize=5,label=labelsL[0]) for cou,tser in enumerate(tserL): plt.errorbar(tser.time[tser.sigmaLCA<err_cut],tser.lcamp[tser.sigmaLCA<err_cut],errorscale*tser.sigmaLCA[tser.sigmaLCA<err_cut],fmt=fmt,capsize=5,label=labelsL[cou+1]) plt.ylabel('log camp') elif self.type=='lcfrac': plt.errorbar(self.time[self.sigmaLCF<err_cut],self.lcfrac[self.sigmaLCF<err_cut],errorscale*self.sigmaLCF[self.sigmaLCF<err_cut],fmt=fmt,capsize=5,label=labelsL[0]) for cou,tser in enumerate(tserL): plt.errorbar(tser.time[tser.sigmaLCF<err_cut],tser.lcfrac[tser.sigmaLCF<err_cut],errorscale*tser.sigmaLCF[tser.sigmaLCF<err_cut],fmt=fmt,capsize=5,label=labelsL[cou+1]) plt.ylabel('log cfracpol') elif self.type=='cfrac': plt.errorbar(self.time[self.sigmaCF<err_cut],self.cfrac[self.sigmaCF<err_cut],errorscale*self.sigmaCF[self.sigmaCF<err_cut],fmt=fmt,capsize=5,label=labelsL[0]) for cou,tser in enumerate(tserL): plt.errorbar(tser.time[tser.sigmaCF<err_cut],tser.cfrac[tser.sigmaCF<err_cut],errorscale*tser.sigmaCF[tser.sigmaCF<err_cut],fmt=fmt,capsize=5,label=labelsL[cou+1]) plt.ylabel('cfracpol') plt.grid() plt.xlabel('time [h]') if yrange!=None: plt.ylim(yrange) if xrange!=None: plt.xlim(xrange) plt.legend() plt.show() def hist(self,figsize='',perc=2.,show_normal=True): if figsize=='': plt.figure(figsize=(10,5)) else: plt.figure(figsize=figsize) if self.type=='cphase': x=self.cphase err=self.sigmaCP rel_cl = self.cphase/self.sigmaCP plt.xlabel('(closure phase) / (estimated error)') elif self.type=='lcamp': x=self.lcamp err=self.sigmaLCA rel_cl = self.lcamp/self.sigmaLCA plt.xlabel('(log closure amp) / (estimated error)') elif self.type=='amp': x=(self.amp-np.mean(self.amp)) err=self.sigma rel_cl = (self.amp-np.mean(self.amp))/self.sigma plt.xlabel('(amp - mean amp) / (estimated error)') binL = np.percentile(rel_cl,perc) binR = np.percentile(rel_cl,100.-perc) binDist = np.abs(binR-binL) binR = binR + 0.1*binDist binL = binL - 0.1*binDist bins = np.linspace(binL,binR,int(1.2*np.sqrt(len(rel_cl)))) plt.hist(rel_cl,bins=bins,normed=True) if show_normal: plt.axvline(0,color='k',linestyle='--') xg = np.linspace(binL, binR,128) plt.plot(xg,1/np.sqrt(2.*np.pi)*np.exp(-xg**2/2.),'k--') plt.title(self.ident) plt.grid() plt.show() print('MAD0: ', 1.4826*np.median(np.abs(rel_cl))) print('MEDIAN ABSOLUTE: ',np.median(np.abs(x))) print('MEDIAN NORMALIZED: ', np.median(rel_cl)) print('MEDIAN ABSOLUTE:',np.median(x)) print('MEDIAN THERMAL ERROR: ', np.median(err)) print('VARIATION: ',np.std(x) ) def qmetric(self): if self.type=='amp': x = self.amp err_x = self.sigma if self.type=='cphase': x = self.cphase err_x = self.sigmaCP if self.type=='lcamp': x = self.lcamp err_x = self.sigmaLCA q,dq = qmetric.qmetric(self.time,x,err_x,product=self.type) return q,dq def save_csv(self,name_out,columns='default',sep=',',header=False): if columns=='default': if self.type=='amp': columns=['mjd','amp','sigma'] elif self.type=='cphase': columns=['mjd','cphase','sigmaCP'] elif self.type=='lcamp': columns=['mjd','lcamp','sigmaLCA'] elif self.type=='lcfrac': columns=['mjd','lcfrac','sigmaLCF'] elif self.type=='cfrac': columns=['mjd','cfrac','sigmaCF'] self.data[columns].to_csv(name_out,index=False,header=header,sep=sep) def get_cphase(tobs,triangle,polar='none'): if polar != 'none': polvis=pol_dic[polar]+'vis' polsnr=pol_dic[polar]+'snr' else: polvis='vis'; polsnr='snr' # tobs.df=tobs.df[tobs.df.polarization==polar].copy() baseL=list(tobs.df.baseline.unique()) #determine order stations b=[triangle[0]+triangle[1],triangle[1]+triangle[2],triangle[2]+triangle[0]] sign=[0,0,0] baseT=b for cou in range(3): if (b[cou] in baseL)&(b[cou][::-1] not in baseL): sign[cou]=1 elif (b[cou] not in baseL)&(b[cou][::-1] in baseL): sign[cou]=-1 baseT[cou]= b[cou][::-1] #print(tobs.df.columns) #print(baseT) foo=tobs.df[list(map(lambda x: x in baseT, tobs.df.baseline))] #print('mjd',foo.columns) foo=foo.groupby('mjd').filter(lambda x: len(x)==3) fooB0=foo[foo.baseline==baseT[0]].sort_values('mjd').copy() fooB1=foo[foo.baseline==baseT[1]].sort_values('mjd').copy() fooB2=foo[foo.baseline==baseT[2]].sort_values('mjd').copy() foo_out=fooB0[['time','datetime','mjd']].copy() foo_out['u1'] = np.asarray(fooB0['u']) foo_out['v1'] = np.asarray(fooB0['v']) foo_out['vis1'] = np.asarray(fooB0[polvis]) if sign[0]==-1: foo_out['vis1'] = np.asarray(foo_out['vis1']).conj() foo_out['snr1'] = np.asarray(fooB0[polsnr]) foo_out['u2'] = np.asarray(fooB1['u']) foo_out['v2'] = np.asarray(fooB1['v']) foo_out['vis2'] = np.asarray(fooB1[polvis]) if sign[1]==-1: foo_out['vis2'] = np.asarray(foo_out['vis2']).conj() foo_out['snr2'] = np.asarray(fooB1[polsnr]) foo_out['u3'] = np.asarray(fooB2['u']) foo_out['v3'] = np.asarray(fooB2['v']) foo_out['vis3'] = np.asarray(fooB2[polvis]) if sign[2]==-1: foo_out['vis3'] = np.asarray(foo_out['vis3']).conj() foo_out['snr3'] = np.asarray(fooB2[polsnr]) foo_out['cphase'] = (180./np.pi)*np.angle( foo_out['vis1']* foo_out['vis2']*foo_out['vis3']) foo_out['sigmaCP'] = (180./np.pi)*np.sqrt(1./foo_out['snr1']**2 + 1./foo_out['snr2']**2 + 1./foo_out['snr3']**2) return foo_out def get_lcamp(tobs,quadrangle,polar='none'): if polar != 'none': polvis=pol_dic[polar]+'vis' polsnr=pol_dic[polar]+'snr' else: polvis='vis'; polsnr='snr' baseL=list(tobs.df.baseline.unique()) b=[quadrangle[0]+quadrangle[1],quadrangle[2]+quadrangle[3],quadrangle[0]+quadrangle[2],quadrangle[1]+quadrangle[3]] baseQ=b for cou in range(4): if (b[cou] not in baseL)&(b[cou][::-1] in baseL): baseQ[cou]= b[cou][::-1] foo=tobs.df[list(map(lambda x: (x in baseQ), tobs.df.baseline))] foo=foo.groupby('mjd').filter(lambda x: len(x)==4) fooB0=foo[foo.baseline==baseQ[0]].sort_values('mjd').copy() fooB1=foo[foo.baseline==baseQ[1]].sort_values('mjd').copy() fooB2=foo[foo.baseline==baseQ[2]].sort_values('mjd').copy() fooB3=foo[foo.baseline==baseQ[3]].sort_values('mjd').copy() foo_out=fooB0[['time','datetime','mjd']].copy() foo_out['u1'] = np.asarray(fooB0['u']) foo_out['v1'] = np.asarray(fooB0['v']) foo_out['vis1'] = np.asarray(fooB0[polvis]) foo_out['snr1'] = np.asarray(fooB0[polsnr]) foo_out['u2'] = np.asarray(fooB1['u']) foo_out['v2'] = np.asarray(fooB1['v']) foo_out['vis2'] = np.asarray(fooB1[polvis]) foo_out['snr2'] = np.asarray(fooB1[polsnr]) foo_out['u3'] = np.asarray(fooB2['u']) foo_out['v3'] = np.asarray(fooB2['v']) foo_out['vis3'] = np.asarray(fooB2[polvis]) foo_out['snr3'] = np.asarray(fooB2[polsnr]) foo_out['u4'] = np.asarray(fooB3['u']) foo_out['v4'] = np.asarray(fooB3['v']) foo_out['vis4'] = np.asarray(fooB3[polvis]) foo_out['snr4'] = np.asarray(fooB3[polsnr]) foo_out['lcamp'] = np.log(np.abs(foo_out['vis1'])) + np.log(np.abs(foo_out['vis2'])) - np.log(np.abs(foo_out['vis3'])) - np.log(np.abs(foo_out['vis4'])) foo_out['sigmaLCA'] = np.sqrt(1./foo_out['snr1']**2 + 1./foo_out['snr2']**2 + 1./foo_out['snr3']**2 + 1./foo_out['snr4']**2) return foo_out def get_lcfrac(tobs,baseline): baseL=list(tobs.df.baseline.unique()) #print(baseL) if baseline not in baseL: if baseline[1]+baseline[0] in baseL: print('Using transposed baseline') baseline=baseline[1]+baseline[0] else: print('No such baseline') foo = tobs.df[tobs.df.baseline==baseline] if tobs.polrep=='circ': foo.dropna(axis=0, subset=['rrvis','rlvis','llvis','lrvis','rrsigma','llsigma','lrsigma','rlsigma','rrsnr','llsnr','lrsnr','rlsnr'], inplace=True) foo_out=foo[['time','datetime','mjd']].copy() foo_out['u'] = np.asarray(foo['u']) foo_out['v'] = np.asarray(foo['v']) debias=True if debias==True: foo['rlvis'] = foo['rlvis']*np.sqrt(np.abs(foo['rlvis'])**2 - np.abs(foo['rlsigma'])**2)/np.abs(foo['rlvis']) foo['lrvis'] = foo['lrvis']*np.sqrt(np.abs(foo['lrvis'])**2 - np.abs(foo['lrsigma'])**2)/np.abs(foo['lrvis']) foo['rrvis'] = foo['rrvis']*np.sqrt(np.abs(foo['rrvis'])**2 - np.abs(foo['rrsigma'])**2)/np.abs(foo['rrvis']) foo['llvis'] = foo['llvis']*np.sqrt(np.abs(foo['llvis'])**2 - np.abs(foo['llsigma'])**2)/np.abs(foo['llvis']) foo_out['lcfrac'] = np.log(np.abs(foo['rlvis'])) + np.log(np.abs(foo['lrvis'])) - np.log(np.abs(foo['rrvis'])) - np.log(np.abs(foo['llvis'])) foo_out['sigmaLCF'] = np.sqrt(1./foo['llsnr']**2 + 1./foo['rrsnr']**2 + 1./foo['lrsnr']**2 + 1./foo['rlsnr']**2) return foo_out def get_cfrac(tobs,baseline): baseL=list(tobs.df.baseline.unique()) if baseline not in baseL: if baseline[1]+baseline[0] in baseL: print('Using transposed baseline') baseline=baseline[1]+baseline[0] else: print('No such baseline') foo = tobs.df[tobs.df.baseline==baseline] if tobs.polrep=='circ': foo.dropna(axis=0, subset=['rrvis','rlvis','llvis','lrvis','rrsigma','llsigma','lrsigma','rlsigma','rrsnr','llsnr','lrsnr','rlsnr'], inplace=True) foo_out=foo[['time','datetime','mjd']].copy() foo_out['u'] = np.asarray(foo['u']) foo_out['v'] = np.asarray(foo['v']) debias=True if debias==True: foo['rlvis'] = foo['rlvis']*np.sqrt(np.abs(foo['rlvis'])**2 - np.abs(foo['rlsigma'])**2)/np.abs(foo['rlvis']) foo['lrvis'] = foo['lrvis']*np.sqrt(np.abs(foo['lrvis'])**2 - np.abs(foo['lrsigma'])**2)/np.abs(foo['lrvis']) foo['rrvis'] = foo['rrvis']*np.sqrt(np.abs(foo['rrvis'])**2 - np.abs(foo['rrsigma'])**2)/np.abs(foo['rrvis']) foo['llvis'] = foo['llvis']*np.sqrt(np.abs(foo['llvis'])**2 - np.abs(foo['llsigma'])**2)/np.abs(foo['llvis']) foo_out['cfrac'] = np.sqrt((np.abs(foo['rlvis']))*(np.abs(foo['lrvis']))/(np.abs(foo['rrvis']))/(np.abs(foo['llvis']))) foo_out['sigmaCF'] = 0.5*(foo_out['cfrac'])*np.sqrt(1./foo['llsnr']**2 + 1./foo['rrsnr']**2 + 1./foo['lrsnr']**2 + 1./foo['rlsnr']**2) return foo_out def make_df_full_cp(obs,round_s=0.1): """converts visibilities from obs.data to DataFrame format Args: obs: ObsData object round_s: accuracy of datetime object in seconds polarization: just label for polarization save_polar: what to do about different polarizations, if Returns: df: observation visibility data in DataFrame format """ sour=obs.source df = pd.DataFrame(data=obs.data) df['fmjd'] = df['time']/24. df['mjd'] = obs.mjd + df['fmjd'] telescopes = list(zip(df['t1'],df['t2'])) telescopes = [(x[0],x[1]) for x in telescopes] df['baseline'] = [x[0]+'-'+x[1] for x in telescopes] df['amp'] = list(map(np.abs,df['vis'])) df['phase'] = list(map(lambda x: (180./np.pi)*np.angle(x),df['vis'])) df['datetime'] = Time(df['mjd'], format='mjd').datetime df['datetime'] =list(map(lambda x: round_time(x,round_s=round_s),df['datetime'])) df['jd'] = Time(df['mjd'], format='mjd').jd #df['snr'] = df['amp']/df['sigma'] quantities=['llamp','rramp','rlamp','lramp','llsigma','rrsigma','rlsigma','lrsigma','rrphase','llphase','rlphase','lrphase'] for quantity in quantities: df[quantity] = [x[0] for x in obs.unpack(quantity)] df['source'] = sour df['baselength'] = np.sqrt(np.asarray(df.u)**2+np.asarray(df.v)**2) basic_columns = list(set(df.columns)-set(quantities)) dfrr=df[basic_columns+['rramp','rrphase','rrsigma']].copy() dfrr['amp']=dfrr['rramp'] dfrr['phase']=dfrr['rrphase'] dfrr['sigma']=dfrr['rrsigma'] dfrr=dfrr[basic_columns] dfrr['polarization']='RR' dfll=df[basic_columns+['llamp','llphase','llsigma']].copy() dfll['amp']=dfll['llamp'] dfll['phase']=dfll['llphase'] dfll['sigma']=dfll['llsigma'] dfll=dfll[basic_columns] dfll['polarization']='LL' dflr=df[basic_columns+['lramp','lrphase','lrsigma']].copy() dflr['amp']=dflr['lramp'] dflr['phase']=dflr['lrphase'] dflr['sigma']=dflr['lrsigma'] dflr=dflr[basic_columns] dflr['polarization']='LR' dfrl=df[basic_columns+['rlamp','rlphase','rlsigma']].copy() dfrl['amp']=dfrl['rlamp'] dfrl['phase']=dfrl['rlphase'] dfrl['sigma']=dfrl['rlsigma'] dfrl=dfrl[basic_columns] dfrl['polarization']='RL' df = pd.concat() return df def round_time(t,round_s=0.1): """rounding time to given accuracy Args: t: time round_s: delta time to round to in seconds Returns: round_t: rounded time """ t0 = datetime.datetime(t.year,1,1) foo = t - t0 foo_s = foo.days*24*3600 + foo.seconds + foo.microseconds*(1e-6) foo_s = np.round(foo_s/round_s)*round_s days = np.floor(foo_s/24/3600) seconds = np.floor(foo_s - 24*3600*days) microseconds = int(1e6*(foo_s - days*3600*24 - seconds)) round_t = t0+datetime.timedelta(days,seconds,microseconds) return round_t def save_all_products(pathf,path_out,special_name,get_what=['AMP','CP','LCA','CF'],get_pol=['LL','RR'],min_elem=100.,cadence=-1,polrep='circ',columns='default'): if get_pol==None: get_pol=[None] for pol in get_pol: tobs = load_uvfits(pathf,tcoh=cadence,polar=pol,polrep=polrep) if pol==None: pol='' stations = list(set(''.join(tobs.df.baseline))) stations = [x for x in stations if x!='R'] #print(stations) #print(tobs.baseline.unique()) if 'AMP' in get_what: print('Saving visibility amplitudes time series...') if not os.path.exists(path_out+'AMP'): os.makedirs(path_out+'AMP') #baseL=sorted([x[0]+x[1] for x in itertools.combinations(stations,2)]) baseL = tobs.df.baseline.unique() for base in baseL: tser = tseries(tobs,base,product='amp') if len(tser.mjd)>min_elem: tser.save_csv(path_out+'AMP/'+special_name+'_'+tser.source+'_'+base+'_'+pol+'.csv',columns=columns) if 'CP' in get_what: print('Saving closure phase time series...') if not os.path.exists(path_out+'CP'): os.makedirs(path_out+'CP') triangleL=sorted([x[0]+x[1]+x[2] for x in itertools.combinations(stations,3)]) for tri in triangleL: tser = tseries(tobs,tri,product='cphase') if len(tser.mjd)>min_elem: tser.save_csv(path_out+'CP/'+special_name+'_'+tser.source+'_'+tri+'_'+pol+'.csv',columns=columns) if 'LCA' in get_what: print('Saving log closure amplitude time series...') if not os.path.exists(path_out+'LCA'): os.makedirs(path_out+'LCA') quadrangleL1=sorted([x[0]+x[1]+x[2]+x[3] for x in itertools.combinations(stations,4)]) quadrangleL2=sorted([x[0]+x[3]+x[1]+x[2] for x in itertools.combinations(stations,4)]) quadrangleL=quadrangleL1+quadrangleL2 for quad in quadrangleL: tser = tseries(tobs,quad,product='lcamp') if len(tser.mjd)>min_elem: tser.save_csv(path_out+'LCA/'+special_name+'_'+tser.source+'_'+quad+'_'+pol+'.csv',columns=columns) if 'LCF' in get_what: print('Saving log closure fracpol time series...') if not os.path.exists(path_out+'LCF'): os.makedirs(path_out+'LCF') baseL = tobs.df.baseline.unique() baseL = [base for base in baseL if 'R' not in base] for base in baseL: tser = tseries(tobs,base,product='lcfrac') if len(tser.mjd)>min_elem: tser.save_csv(path_out+'LCF/'+special_name+'_'+tser.source+'_'+base+'.csv',columns=columns) if 'CF' in get_what: print('Saving closure fracpol time series...') if not os.path.exists(path_out+'CF'): os.makedirs(path_out+'CF') baseL = tobs.df.baseline.unique() baseL = [base for base in baseL if 'R' not in base] #print(baseL) for base in baseL: #print('base ', base) tser = tseries(tobs,base,product='cfrac') #print(base,np.shape(tser.data)) if len(tser.mjd)>min_elem: tser.save_csv(path_out+'CF/'+special_name+'_'+tser.source+'_'+base+'.csv',columns=columns)
[ "maciek.wielgus@gmail.com" ]
maciek.wielgus@gmail.com
17a0b25b7520802c0316a50b66f74a804df1a76e
caaf56727714f8c03be38710bc7d0434c3ec5b11
/tests/components/abode/test_light.py
6506746783c2c8bc154c57ee3317833d02c7ff28
[ "Apache-2.0" ]
permissive
tchellomello/home-assistant
c8db86880619d7467901fd145f27e0f2f1a79acc
ed4ab403deaed9e8c95e0db728477fcb012bf4fa
refs/heads/dev
2023-01-27T23:48:17.550374
2020-09-18T01:18:55
2020-09-18T01:18:55
62,690,461
8
1
Apache-2.0
2023-01-13T06:02:03
2016-07-06T04:13:49
Python
UTF-8
Python
false
false
4,040
py
"""Tests for the Abode light device.""" from homeassistant.components.abode import ATTR_DEVICE_ID from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_RGB_COLOR, DOMAIN as LIGHT_DOMAIN, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_FRIENDLY_NAME, ATTR_SUPPORTED_FEATURES, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_ON, ) from .common import setup_platform from tests.async_mock import patch DEVICE_ID = "light.living_room_lamp" async def test_entity_registry(hass): """Tests that the devices are registered in the entity registry.""" await setup_platform(hass, LIGHT_DOMAIN) entity_registry = await hass.helpers.entity_registry.async_get_registry() entry = entity_registry.async_get(DEVICE_ID) assert entry.unique_id == "741385f4388b2637df4c6b398fe50581" async def test_attributes(hass): """Test the light attributes are correct.""" await setup_platform(hass, LIGHT_DOMAIN) state = hass.states.get(DEVICE_ID) assert state.state == STATE_ON assert state.attributes.get(ATTR_BRIGHTNESS) == 204 assert state.attributes.get(ATTR_RGB_COLOR) == (0, 63, 255) assert state.attributes.get(ATTR_COLOR_TEMP) == 280 assert state.attributes.get(ATTR_DEVICE_ID) == "ZB:db5b1a" assert not state.attributes.get("battery_low") assert not state.attributes.get("no_response") assert state.attributes.get("device_type") == "RGB Dimmer" assert state.attributes.get(ATTR_FRIENDLY_NAME) == "Living Room Lamp" assert state.attributes.get(ATTR_SUPPORTED_FEATURES) == 19 async def test_switch_off(hass): """Test the light can be turned off.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.switch_off") as mock_switch_off: assert await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: DEVICE_ID}, blocking=True ) await hass.async_block_till_done() mock_switch_off.assert_called_once() async def test_switch_on(hass): """Test the light can be turned on.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.switch_on") as mock_switch_on: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID}, blocking=True ) await hass.async_block_till_done() mock_switch_on.assert_called_once() async def test_set_brightness(hass): """Test the brightness can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_level") as mock_set_level: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "brightness": 100}, blocking=True, ) await hass.async_block_till_done() # Brightness is converted in abode.light.AbodeLight.turn_on mock_set_level.assert_called_once_with(39) async def test_set_color(hass): """Test the color can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_color") as mock_set_color: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "hs_color": [240, 100]}, blocking=True, ) await hass.async_block_till_done() mock_set_color.assert_called_once_with((240.0, 100.0)) async def test_set_color_temp(hass): """Test the color temp can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_color_temp") as mock_set_color_temp: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "color_temp": 309}, blocking=True, ) await hass.async_block_till_done() # Color temp is converted in abode.light.AbodeLight.turn_on mock_set_color_temp.assert_called_once_with(3236)
[ "noreply@github.com" ]
noreply@github.com
5efc101cdbf8e412920f0ccebaf0c2a572e6f7ba
af6e7f0927517375cb4af833f4c52e301bad0af5
/corpus_processor/topic_aware/filter_qa_corpus_by_topic_list.py
90d3fa8fa6d532a86b504d45378701a28a47ca24
[]
no_license
wolfhu/DialogPretraining
470334fd815e1299981b827fdc933d237a489efd
eeeada92146d652d81ca6e961d1298924ac8435d
refs/heads/main
2023-06-25T15:22:54.728187
2021-07-21T01:40:23
2021-07-21T01:40:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,834
py
# encoding: utf-8 import sys from util.trie import Trie tag_file_path = '/home/t-yuniu/xiaoice/yuniu/dataset/processed/domain/sport/keywords' # Tag 黑名单 tag_black_dict = {} # tag_black_dict.setdefault('游戏', True) tag_trie = Trie() def detect_tag(sentence): """ Judge if sentence contain as least a tag. :param sentence: query or answer :return: boolean, True if contain, False otherwise. """ length = len(sentence) detected_tags = [] for idx in range(length): node = tag_trie.lookup idx_tmp = idx while True: if idx_tmp >= length: break if sentence[idx_tmp] in node: node = node[sentence[idx_tmp]] idx_tmp += 1 if Trie.END in node: detected_tags.append(sentence[idx:idx_tmp]) else: break return detected_tags if __name__ == '__main__': # build trie from tag file with open(tag_file_path) as douban_tag_file: for line in douban_tag_file.readlines(): tag = line.strip() if len(tag) == 1 or tag in tag_black_dict: continue tag_trie.insert(tag) # filter corpus contain tags while True: line = sys.stdin.readline().strip() if line: try: line = line.replace('#', '') query, answer = line.split('\t')[:2] # detected_tags = detect_tag(query) detected_tags = [] detected_tags.extend(detect_tag(answer)) if len(detected_tags) > 0: print('\t'.join([' '.join(set(detected_tags)), query, answer])) except ValueError: sys.stdout.write('Illegal line.\n') else: break
[ "yuwu1@microsoft.com" ]
yuwu1@microsoft.com
46b7f3b5630906b2591578476fbf9b5df898667a
628a0adb428411fac1e74abfbcfa150a47084916
/Finale_Code/Approaches/Feature_Based/bm25_parameter_tuning.py
0c15667d1e62cb22e5e522382e9e8f2f9b382b95
[]
no_license
KaiBaeuerle/Information_Retrieval
a9abe8d55af3a107225a466ddc204a2a8f28acec
494ea3d38960c7f79cf7b1fa5eeeadacad52f442
refs/heads/main
2023-05-29T00:48:11.324584
2021-06-13T19:02:52
2021-06-13T19:02:52
351,711,747
0
1
null
null
null
null
UTF-8
Python
false
false
6,171
py
import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegressionCV, LogisticRegression from sklearn import metrics import sys import pickle from sklearn.experimental import enable_halving_search_cv from sklearn.model_selection import HalvingGridSearchCV sys.path.append('/media/Moritz/080FFDFF509A959E/BWsync_share/Master_BW/Information_Retrieval_Project/code') from preprocess import preprocess # own preprocessing function path = "/media/Moritz/Seagate Backup Plus Drive/University/Information_Retrieval_Project/data/" # to concatenate positive and negative examples ("split up" the data set) # read positive and then negative entries train_pos = pd.read_csv(path + "triples.train.small.tsv", sep = "\t", nrows = 200000, header = None, skiprows = 1, usecols = [0,1]) train_neg = pd.read_csv(path + "triples.train.small.tsv", sep = "\t", nrows = 200000, header = None, skiprows = 1, usecols = [0,2]) def load_obj(name): with open(path + name + '.pkl', 'rb') as f: return pickle.load(f) idf = load_obj("idf") #%% Data manipulation train_pos.columns = ["query", "passage"] train_neg.columns = ["query", "passage"] train_pos["relevant"] = 1 # target label train_neg["relevant"] = 0 train = train_pos.append(train_neg) #%% Feature computation ### define functions to extract features given a query and passage def bm25(idf, query, passage, avg_len_passages, k = 1.5, b = 0.75): # what is a common value for k? query_bow = preprocess(query) passage_bow = preprocess(passage) common_words = list(set(query_bow) & set(passage_bow)) bm25 = 0 for word in common_words: bm25 += (idf[word] * (k + 1) * np.count_nonzero(passage_bow == word) / (np.count_nonzero(passage_bow == word) + k * ((1 - b) + b * passage_bow.size/avg_len_passages))) return bm25 ### add bm25 of query, passage pair as a feature to the dataset: X = train.copy() avg_len_passages = 35.4 # See file "estimate_avg_passage_len.py" #X["bm25"] = X[["query", "passage"]].apply(lambda x: bm25(idf, x[0], x[1], avg_len_passages),axis=1) #%% # define y range_b = np.arange(0.5,1,0.1) range_k = np.arange(1,2,0.1) #performance_grid = pd.DataFrame(np.zeros((len(range_b),len(range_k)))) #performance_grid = performance_grid.reindex(np.round(list(range_b), 3)) #performance_grid.columns = np.round(list(range_k),3) y = X["relevant"] """ # approach: Since we know that b = 0.75 is a common choice, # we choose an optimal k keeping b fixed at 0.75 and then optimize b for this k. auc_b_075 = [] b = 0.75 for k in range_k: #compute X based on b and k x = X[["query", "passage"]].apply(lambda x: bm25(idf, x[0], x[1], avg_len_passages, k = k, b = b), axis=1) model = LogisticRegressionCV(cv = 5).fit(x.values.reshape(-1,1), y) pred = model.predict_proba(x.values.reshape(-1,1)).transpose()[1] auc = metrics.roc_auc_score(y,pred) auc_b_075.append(auc) print("for k = {} and b = {} auc is {}".format(k,b, auc)) k_opt = list(range_k)[np.argmax(auc_b_075)] auc_k_opt = [] for b in range_b: x = X[["query", "passage"]].apply(lambda x: bm25(idf, x[0], x[1], avg_len_passages, k = k_opt, b = b), axis=1) model = LogisticRegressionCV(cv = 5).fit(x.values.reshape(-1,1), y) pred = model.predict_proba(x.values.reshape(-1,1)).transpose()[1] auc = metrics.roc_auc_score(y,pred) auc_k_opt.append(auc) print("for k = {} and b = {} auc is {}".format(k_opt, b, auc)) b_opt = list(range_b)[np.argmax(auc_k_opt)] print("Highest auc of {} achieved with b = {} and k = {}".format(max(auc_k_opt), b_opt, k_opt)) # compare to k_opt with b = 0.75 x = X[["query", "passage"]].apply(lambda x: bm25(idf, x[0], x[1], avg_len_passages, k = k_opt, b = 0.75), axis=1) model = LogisticRegressionCV(cv = 5).fit(x.values.reshape(-1,1), y) pred = model.predict_proba(x.values.reshape(-1,1)).transpose()[1] auc = metrics.roc_auc_score(y,pred) print("for k = {} and b = {} auc is {}".format(k_opt, 0.75, auc)) # Observation: auc is not stringly effected by the choices of k and b. Highest auc is achieved for # k = 1, b = 0.8, so these hyperparameters will be used in the feature computation. """ #%% Successive halving hyperparameter tuning: range_b = np.arange(0.5,1,0.05) # allows for a finer grid range_k = np.arange(1,2,0.05) logistic = LogisticRegression() a = len(range_b) * len(range_k) c = 0 while a > 1: a = a/2 c+=1 # means: c iterations needed. mat = np.full((len(range_b), len(range_k)), np.inf) mat_bool = np.full((len(range_b), len(range_k)), True) n = 500 for i in range(8): sample = np.random.randint(400000, size=n) for j in range(len(range_b)): for l in range(len(range_k)): if mat_bool[j,l]: x = X.iloc[sample][["query", "passage"]].apply(lambda x: bm25(idf, x[0], x[1], avg_len_passages, k = range_k[l], b = range_b[j]), axis=1) logistic.fit(x.values.reshape(-1,1), X.iloc[sample]["relevant"]) pred = logistic.predict_proba(x.values.reshape(-1,1)).transpose()[1] auc = metrics.roc_auc_score(X.iloc[sample]["relevant"],pred) mat[j,l] = auc print(i) best = [] for j in range(len(range_b)): for l in range(len(range_k)): if mat_bool[j][l]: best.append(mat[j][l]) median = np.median(best) for j in range(len(range_b)): for l in range(len(range_k)): if mat[j][l] < median: mat_bool[j][l] = False n = n + 1000 if i > 4: # simple way to increase resources for the best configurations n = n + 4000 j, l = np.where(mat_bool == True) range_b[j] # 0.8 range_k[l] # 1 ## results of previous parameter tuning confirmed!
[ "noreply@github.com" ]
noreply@github.com
38488e71218e96a97bd3c3bb00261ae97ea6eb8c
633701ef4d039d2cd0d4409bd8ad765b748f1b96
/ZuheGesdatos/src/datostunnel/__init__.py
60b4839076fb39f7710dc8e5171c086c49d23aa5
[]
no_license
wahello/gesdatos
4c991536f3265bf937ad117ed0c9c9b913182db5
b7fa1939056baa01b48d310d981a5fb1493d6698
refs/heads/master
2020-03-11T12:25:37.275071
2015-12-14T04:25:35
2015-12-14T04:25:35
null
0
0
null
null
null
null
ISO-8859-10
Python
false
false
2,203
py
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "Daniel Romero" __date__ = "$3/12/2015 10:24:29 AM$" import base64 ##----------------------------------------------------------- class paramtunnel(): """ Clase realizada para generar por mediod e codificacion los parametros que el aplicativo necesita para generar un tunnel al servidor del grupo deinvestigacion.""" def __init__(self): """ Metodo que inicia los parametros.""" txtfile = "strkenc" #ponemos el archivo a encriptar txt_text = base64.decodestring(open(txtfile,"rb").read()) #indicamos que habra el txtfile (archivo.txt) y codifique la cadena a base64 y el resultado lo ponga entre comillas """ #print txt_text.split("\r\n") #imprime en la pantalla txt_text que contiene el resultado codificado a base64 self.dirserver = str(txt_text.split("\r\n")[0]) self.porttunnel = str(txt_text.split("\r\n")[1]) self.pasuser = str(txt_text.split("\r\n")[2]) self.user= str(txt_text.split("\r\n")[3]) self.localip = str(txt_text.split("\r\n")[4]) self.databaseserverport= "5432" def getidirserver(self): """consultor que retorna la direccion IP del servidor""" return self.dirserver def getporttunnel(self): """consultor que retorna la el puerto para el tunnel del servidor""" return self.porttunnel def getuser(self): """consultor que retorna el usuario para rar tunnel""" return self.user def getpasuser(self): """consultor que retorna la contraseņa del usuario del servidor""" return self.pasuser def getlocalip(self): """consultor que retorna la dirrecion del servidor de base de datos""" return self.localip def getdatabaseserverport(self): """consultor que retorna el puerto del servidor de base de datos""" return self.databaseserverport tunnel = paramtunnel()
[ "User@DANIELRPARRA77" ]
User@DANIELRPARRA77
cee380e5080ef322e11d53fe0e88028403f92664
8176d7939cb6058f818196196168eeb4a9206766
/crudApp/admin.py
874c5a3309b3aebdb9efe0a824cb688b9095760d
[]
no_license
cs-fullstack-2019-spring/django-crud2-cw-tdude0175
d8f0d2d587b8e4fc2c00890ee0be02cadef5e87f
fa0428c3e09c93022318003f226e0168b47ab5a5
refs/heads/master
2020-04-26T00:11:55.314615
2019-03-02T00:00:41
2019-03-02T00:00:41
173,169,790
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
from django.contrib import admin from .models import ContactModel # Register your models here. admin.site.register(ContactModel)
[ "tdude0175@gmail.com" ]
tdude0175@gmail.com
6f5e3b1bf3eda3e6b1a3ce9914c9e63edc2037a9
d5ea8c4b49ee0b9f6261313efd6fc948d01bd92c
/optimization_specialist_demo.py
5999bb755ac06700a9dca790192efc8364f3a2ea
[]
no_license
sannedonker/Evolutionary_computing
a57ec6e56c287bf2e84992ae3fe1a0f3ea08f526
63ebf18cf52a5cff3f4bc25c72601efa8423bf1a
refs/heads/master
2020-07-27T08:42:32.162266
2019-10-24T20:36:58
2019-10-24T20:36:58
209,033,665
0
0
null
null
null
null
UTF-8
Python
false
false
7,597
py
############################################################################### # EvoMan FrameWork - V1.0 2016 # # DEMO : Neuroevolution - Genetic Algorithm neural network. # # Author: Karine Miras # # karine.smiras@gmail.com # ############################################################################### # imports framework import sys sys.path.insert(0, 'evoman') from environment import Environment from demo_controller import player_controller # imports other libs import time import numpy as np from math import fabs,sqrt import glob, os experiment_name = 'individual_demo' if not os.path.exists(experiment_name): os.makedirs(experiment_name) # initializes simulation in individual evolution mode, for single static enemy. env = Environment(experiment_name=experiment_name, enemies=[2], playermode="ai", player_controller=player_controller(), enemymode="static", level=2, speed="fastest") # default environment fitness is assumed for experiment env.state_to_log() # checks environment state #### Optimization for controller solution (best genotype-weights for phenotype-network): Ganetic Algorihm ### ini = time.time() # sets time marker # genetic algorithm params run_mode = 'train' # train or test n_hidden = 10 n_vars = (env.get_num_sensors()+1)*n_hidden + (n_hidden+1)*5 # multilayer with 10 hidden neurons dom_u = 1 dom_l = -1 npop = 10 gens = 5 mutation = 0.2 last_best = 0 # runs simulation def simulation(env,x): f,p,e,t = env.play(pcont=x) return f # normalizes def norm(x, pfit_pop): if ( max(pfit_pop) - min(pfit_pop) ) > 0: x_norm = ( x - min(pfit_pop) )/( max(pfit_pop) - min(pfit_pop) ) else: x_norm = 0 if x_norm <= 0: x_norm = 0.0000000001 return x_norm # evaluation def evaluate(x): return np.array(list(map(lambda y: simulation(env,y), x))) # tournament def tournament(pop): c1 = np.random.randint(0,pop.shape[0], 1) c2 = np.random.randint(0,pop.shape[0], 1) if fit_pop[c1] > fit_pop[c2]: return pop[c1][0] else: return pop[c2][0] # limits def limits(x): if x>dom_u: return dom_u elif x<dom_l: return dom_l else: return x # crossover def crossover(pop): total_offspring = np.zeros((0,n_vars)) for p in range(0,pop.shape[0], 2): p1 = tournament(pop) p2 = tournament(pop) n_offspring = np.random.randint(1,3+1, 1)[0] offspring = np.zeros( (n_offspring, n_vars) ) for f in range(0,n_offspring): cross_prop = np.random.uniform(0,1) offspring[f] = p1*cross_prop+p2*(1-cross_prop) # mutation for i in range(0,len(offspring[f])): if np.random.uniform(0 ,1)<=mutation: offspring[f][i] = offspring[f][i]+np.random.normal(0, 1) offspring[f] = np.array(list(map(lambda y: limits(y), offspring[f]))) total_offspring = np.vstack((total_offspring, offspring[f])) return total_offspring # kills the worst genomes, and replace with new best/random solutions def doomsday(pop,fit_pop): worst = int(npop/4) # a quarter of the population order = np.argsort(fit_pop) orderasc = order[0:worst] for o in orderasc: for j in range(0,n_vars): pro = np.random.uniform(0,1) if np.random.uniform(0,1) <= pro: pop[o][j] = np.random.uniform(dom_l, dom_u) # random dna, uniform dist. else: pop[o][j] = pop[order[-1:]][0][j] # dna from best fit_pop[o]=evaluate([pop[o]]) return pop,fit_pop # loads file with the best solution for testing if run_mode =='test': bsol = np.loadtxt(experiment_name+'/best.txt') print( '\n RUNNING SAVED BEST SOLUTION \n') env.update_parameter('speed','normal') evaluate([bsol]) sys.exit(0) # initializes population loading old solutions or generating new ones if not os.path.exists(experiment_name+'/evoman_solstate'): print( '\nNEW EVOLUTION\n') pop = np.random.uniform(dom_l, dom_u, (npop, n_vars)) fit_pop = evaluate(pop) best = np.argmax(fit_pop) mean = np.mean(fit_pop) std = np.std(fit_pop) ini_g = 0 solutions = [pop, fit_pop] env.update_solutions(solutions) else: print( '\nCONTINUING EVOLUTION\n') env.load_state() pop = env.solutions[0] fit_pop = env.solutions[1] best = np.argmax(fit_pop) mean = np.mean(fit_pop) std = np.std(fit_pop) # finds last generation number file_aux = open(experiment_name+'/gen.txt','r') ini_g = int(file_aux.readline()) file_aux.close() # saves results for first pop file_aux = open(experiment_name+'/results.txt','a') file_aux.write('\n\ngen best mean std') print( '\n GENERATION '+str(ini_g)+' '+str(round(fit_pop[best],6))+' '+str(round(mean,6))+' '+str(round(std,6))) file_aux.write('\n'+str(ini_g)+' '+str(round(fit_pop[best],6))+' '+str(round(mean,6))+' '+str(round(std,6)) ) file_aux.close() # evolution last_sol = fit_pop[best] notimproved = 0 for i in range(ini_g+1, gens): offspring = crossover(pop) # crossover fit_offspring = evaluate(offspring) # evaluation pop = np.vstack((pop,offspring)) fit_pop = np.append(fit_pop,fit_offspring) best = np.argmax(fit_pop) #best solution in generation fit_pop[best] = float(evaluate(np.array([pop[best] ]))[0]) # repeats best eval, for stability issues best_sol = fit_pop[best] # selection fit_pop_cp = fit_pop fit_pop_norm = np.array(list(map(lambda y: norm(y,fit_pop_cp), fit_pop))) # avoiding negative probabilities, as fitness is ranges from negative numbers probs = (fit_pop_norm)/(fit_pop_norm).sum() chosen = np.random.choice(pop.shape[0], npop , p=probs, replace=False) chosen = np.append(chosen[1:],best) pop = pop[chosen] fit_pop = fit_pop[chosen] # searching new areas if best_sol <= last_sol: notimproved += 1 else: last_sol = best_sol notimproved = 0 if notimproved >= 15: file_aux = open(experiment_name+'/results.txt','a') file_aux.write('\ndoomsday') file_aux.close() pop, fit_pop = doomsday(pop,fit_pop) notimproved = 0 best = np.argmax(fit_pop) std = np.std(fit_pop) mean = np.mean(fit_pop) # saves results file_aux = open(experiment_name+'/results.txt','a') print( '\n GENERATION '+str(i)+' '+str(round(fit_pop[best],6))+' '+str(round(mean,6))+' '+str(round(std,6))) file_aux.write('\n'+str(i)+' '+str(round(fit_pop[best],6))+' '+str(round(mean,6))+' '+str(round(std,6)) ) file_aux.close() # saves generation number file_aux = open(experiment_name+'/gen.txt','w') file_aux.write(str(i)) file_aux.close() # saves file with the best solution np.savetxt(experiment_name+'/best.txt',pop[best]) # saves simulation state solutions = [pop, fit_pop] env.update_solutions(solutions) env.save_state() fim = time.time() # prints total execution time for experiment print( '\nExecution time: '+str(round((fim-ini)/60))+' minutes \n') file = open(experiment_name+'/neuroended', 'w') # saves control (simulation has ended) file for bash loop file file.close() env.state_to_log() # checks environment state
[ "s.a.m.donker@hotmail.com" ]
s.a.m.donker@hotmail.com
ee31424e1fa619b23210e9169fac7dda9b51a252
b46e30188f8e132b012cc07af947aed5f07f9e97
/find_cosine_simi.py
9fd40ec226cd72ac79198a3b0f6e4f36e15d1cb1
[]
no_license
mahmudulhasancsedu5/sent2vect
84b8ab1b6640d88fbe698019eee4f5a12ed39322
fe36bea17f6b888b5b8796021c135b8d9bf4041e
refs/heads/master
2021-01-11T02:53:00.328335
2016-10-22T04:39:18
2016-10-22T04:39:18
70,888,705
1
0
null
null
null
null
UTF-8
Python
false
false
1,755
py
""" -------reade vectore file and find cosine similarity------- """ file=open('news1.txt.vec','r') outputFile=open('news1_sentence_cosine_value.txt','w') #lines_list=file_id.readlines() #print lines_list line_list=file.readlines() line_1=line_list[0].split(' ') row_count=int(line_1[0]) colum_count=int(line_1[1]) data_arr=[] mat=[] i=0 """ delete the first 2 length row , clm array and create only a vectore array """ for line in line_list: if i!=0: data_arr=line.replace('\n','').split(' ') mat.append(data_arr) i+=1 """ 1. remove sent_x string from front 2. replace string value by int(str_value) value """ for i in range(0,row_count): line=mat[i] line.remove('sent_'+str(i)) line=[float(x) for x in line] mat[i]=line #print len(mat[1]) from scipy import spatial #-------test #cosine_val=1-spatial.distance.cosine(mat[1],mat[2]) #print cosine_val """ #test for x in mat: print len(x) """ """ 1. calculate pair wise cosine(s1,s2) value """ sent_cosine_val_array=[] i=0 for u in mat: j=0 sent_u_val=0.0 for v in mat: #print i,j cosine_val=1-spatial.distance.cosine(u,v) sent_u_val+=cosine_val #cosine_val=float(cosine_val) #print "cosine(u,v) = "+str(cosine_val)+"\n" j+=1 print "sent_"+str(i)+" total cosine value = "+str(sent_u_val) out_str=str("sent_"+str(i)+" "+str(sent_u_val)) sent_cosine_val_array.append(sent_u_val/len(mat)) outputFile.write(out_str+'\n') i+=1 print "len-----> "+str(len(sent_cosine_val_array)) file.close() outputFile.close() """ for line in line_list: file1.write(str(line)+""+str(i)) print str(line)+"------"+str(i) i=i+1 """
[ "hasancsedu5@gmail.com" ]
hasancsedu5@gmail.com
c2eab84e232f590469f2bb0cea19a803ec121d0f
2fabc9255adbe1cc055eb4b2402f8526f389f257
/model/modules.py
86464633b715d37b344f74882941fce2b5d70ab8
[ "MIT" ]
permissive
asr2021/WaveGrad2
657323be12d16667fc0a3b7f2a168101e6e913cb
ba7715d760999093dd99283f48971c5115210b51
refs/heads/main
2023-06-02T18:48:56.830462
2021-06-23T07:22:10
2021-06-23T08:10:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,959
py
import os import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from .blocks import ( ZoneOutBiLSTM, LinearNorm, ConvBlock, ) from text.symbols import symbols device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class TextEncoder(nn.Module): """ Text Encoder """ def __init__(self, config): super(TextEncoder, self).__init__() n_src_vocab = len(symbols) + 1 d_word_vec = config["transformer"]["encoder_hidden"] n_layers = config["transformer"]["encoder_layer"] d_model = config["transformer"]["encoder_hidden"] kernel_size = config["transformer"]["encoder_kernel_size"] dropout = config["transformer"]["encoder_dropout"] zoneout = config["transformer"]["encoder_zoneout"] self.d_model = d_model self.src_word_emb = nn.Embedding( n_src_vocab, d_word_vec, padding_idx=0 ) self.conv_stack = nn.ModuleList( [ ConvBlock( d_model, d_model, kernel_size=kernel_size, dropout=dropout ) for _ in range(n_layers) ] ) self.lstm = ZoneOutBiLSTM( d_model, zoneout_rate=zoneout ) def forward(self, src_seq, mask=None): enc_output = self.src_word_emb(src_seq) for conv in self.conv_stack: enc_output = conv(enc_output, mask=mask) enc_output = self.lstm(enc_output) if mask is not None: enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0.) return enc_output class VarianceAdaptor(nn.Module): """ Variance Adaptor """ def __init__(self, preprocess_config, model_config): super(VarianceAdaptor, self).__init__() self.duration_predictor = DurationPredictor(model_config) self.gaussian_upsampling = GaussianUpsampling(model_config) def forward( self, x, src_mask, duration_target=None, d_control=1.0, ): log_duration_prediction = self.duration_predictor(x, src_mask) if duration_target is not None: x, attn = self.gaussian_upsampling(x, duration_target, src_mask) duration_rounded = duration_target else: duration_rounded = torch.clamp( (torch.round(torch.exp(log_duration_prediction) - 1) * d_control), min=0, ) x, attn = self.gaussian_upsampling(x, duration_rounded, src_mask) return ( x, log_duration_prediction, duration_rounded, attn, ) class GaussianUpsampling(nn.Module): """ Gaussian Upsampling """ def __init__(self, model_config): super(GaussianUpsampling, self).__init__() # self.range_param_predictor = RangeParameterPredictor(model_config) def forward(self, encoder_outputs, duration, mask): device = encoder_outputs.device # range_param = self.range_param_predictor(encoder_outputs, duration, mask) t = torch.sum(duration, dim=-1, keepdim=True) #[B, 1] e = torch.cumsum(duration, dim=-1).float() #[B, L] c = e - 0.5 * duration #[B, L] t = torch.arange(1, torch.max(t).item()+1, device=device) # (1, ..., T) t = t.unsqueeze(0).unsqueeze(1) #[1, 1, T] c = c.unsqueeze(2) # print(range_param, 0.1*(range_param ** 2)) # w_1 = torch.exp(-0.1*(range_param.unsqueeze(-1) ** -2) * (t - c) ** 2) # [B, L, T] # w_2 = torch.sum(torch.exp(-0.1*(range_param.unsqueeze(-1) ** -2) * (t - c) ** 2), dim=1, keepdim=True) # [B, 1, T] w_1 = torch.exp(-0.1 * (t - c) ** 2) # [B, L, T] w_2 = torch.sum(torch.exp(-0.1 * (t - c) ** 2), dim=1, keepdim=True) # [B, 1, T] w_2[w_2==0.] = 1. # w_1 = self.normpdf(t, c, range_param.unsqueeze(-1)) # [B, L, T] # w_1 = torch.distributions.normal.Normal(c, 0.1).log_prob(t) # [B, L, T] # w_2 = torch.sum(w_1, dim=1, keepdim=True) # [B, 1, T] # w_2[w_2==0.] = 1. w = w_1 / w_2 out = torch.matmul(w.transpose(1, 2), encoder_outputs) return out, w class DurationPredictor(nn.Module): """ Duration Parameter Predictor """ def __init__(self, model_config): super(DurationPredictor, self).__init__() encoder_hidden = model_config["transformer"]["encoder_hidden"] variance_hidden = model_config["variance_predictor"]["variance_hidden"] self.duration_lstm = nn.LSTM( encoder_hidden, int(variance_hidden / 2), 2, batch_first=True, bidirectional=True ) self.duration_proj = nn.Sequential( LinearNorm(variance_hidden, 1), nn.ReLU(), ) def forward(self, encoder_output, mask): duration_prediction, _ = self.duration_lstm(encoder_output) duration_prediction = self.duration_proj(duration_prediction) duration_prediction = duration_prediction.squeeze(-1) # [B, L] if mask is not None: duration_prediction = duration_prediction.masked_fill(mask, 0.0) return duration_prediction # class RangeParameterPredictor(nn.Module): # """ Range Parameter Predictor """ # def __init__(self, model_config): # super(RangeParameterPredictor, self).__init__() # encoder_hidden = model_config["transformer"]["encoder_hidden"] # variance_hidden = model_config["variance_predictor"]["variance_hidden"] # self.range_param_lstm = nn.LSTM( # encoder_hidden + 1, # int(variance_hidden / 2), 2, # batch_first=True, bidirectional=True # ) # self.range_param_proj = nn.Sequential( # LinearNorm(variance_hidden, 1), # nn.Softplus(), # ) # def forward(self, encoder_output, duration, mask): # range_param_input = torch.cat([encoder_output, duration.unsqueeze(-1)], dim=-1) # range_param_prediction, _ = self.range_param_lstm(range_param_input) # range_param_prediction = self.range_param_proj(range_param_prediction) # range_param_prediction = range_param_prediction.squeeze(-1) # [B, L] # if mask is not None: # range_param_prediction = range_param_prediction.masked_fill(mask, 0.0) # return range_param_prediction class SamplingWindow(nn.Module): """ Sampling Window """ def __init__(self, model_config, train_config): super(SamplingWindow, self).__init__() self.upsampling_rate = model_config["wavegrad"]["upsampling_rate"] self.segment_length_up = train_config["window"]["segment_length"] self.segment_length = train_config["window"]["segment_length"] // self.upsampling_rate def pad_seq(self, seq, segment_length): if len(seq.shape) > 2: return torch.nn.functional.pad( seq.transpose(-2, -1), (0, segment_length - seq.shape[1]), 'constant' ).data.transpose(-2, -1) return torch.nn.functional.pad( seq, (0, segment_length - seq.shape[1]), 'constant' ).data def get_hidden_segment(self, hiddens, seq_starts): batch = list() for i, (hidden, seq_start) in enumerate(zip(hiddens, seq_starts)): batch.append(hidden[seq_start:seq_start+self.segment_length]) return torch.stack(batch) def forward(self, encoder_output, audio, seq_starts=None, full_len=False): if full_len: return encoder_output, audio if encoder_output.shape[1] > self.segment_length: encoder_segment = self.get_hidden_segment(encoder_output, seq_starts) encoder_segment = self.pad_seq(encoder_output, self.segment_length) audio_segment = self.pad_seq(audio, self.segment_length_up) return encoder_segment, audio_segment
[ "keonlee9420@gmail.com" ]
keonlee9420@gmail.com
50d07982618790ca5eb53375fa7512fb22df7f49
289689eada7efe5f18a71b2026f1e8a7ffa5ec7b
/2015/DigitalHealthPlan/HealthEquity/connect2.py
f2e86683325c170bcfecfdf9e313c185ed1b726e
[]
no_license
bayindri/Work
f23ebcac1160acb0bed5a3c94901bc70a7114217
8e1c922db71fa28eede4fb39cd6a7212e95eb24a
refs/heads/master
2021-01-01T20:04:57.665056
2020-06-26T17:02:10
2020-06-26T17:02:10
98,761,761
0
0
null
null
null
null
UTF-8
Python
false
false
5,541
py
from pysimplesoap.client import SoapClient #import logging #logging.basicConfig(level=logging.DEBUG) #client = SoapClient(wsdl="https://www.HealthEquity.com/Partner/MemberBalanceWebService.asmx?WSDL",soap_ns = 'mem', action ='') # worked! client = SoapClient( wsdl="https://www.HealthEquity.com/Partner/MemberBalanceWebService.asmx?wsdl", #soap_ns = 'mem', action ='MemberBalanceWebService/GetMemberBalance', ns = 'mem') print("Target Namespace", client.namespace) import pprint #pprint.pprint(client.services) for service in client.services.values(): for port in service['ports'].values(): #print("PORT") #print(port) #print print(port['location']) # fix location (lhttps://www.HealthEquity.com:4000/Partner/MemberBalanceWebService.asmx is erroneous in the WSDL) port['location'] = "https://www.HealthEquity.com/Partner/MemberBalanceWebService.asmx" #print("AFTER PORT") #print(port['location']) #print for op in port['operations'].values(): print("****************************") print(port) print(port['location']) print(op) print('Name:', op['name']) print('Docs:', op['documentation'].strip()) print('Parts:', op['parts']) print('Parts:input_header:', op['parts']['input_header']) print('Parts:input_header:message:-', op['parts']['input_header']['message']) print('Parts:input_header:part:', op['parts']['input_header']['part']) print('Parts:input_body:', op['parts']['input_body']) print('Parts:output_header:', op['parts']['output_header']) print('Parts:output_body:', op['parts']['output_body']) print('SOAPAction:', op['action']) print('Input:', op['input']['GetMemberBalance']) # args type declaration print('SessionId:', op['input']['GetMemberBalance']['SessionId']) # args type declaration print('MemberId:', op['input']['GetMemberBalance']['MemberId']) # args type declaration print('AccountTypeFlags:', op['input']['GetMemberBalance']['AccountTypeFlags']) # args type declaration print('BalanceTypeFlags:', op['input']['GetMemberBalance']['BalanceTypeFlags']) # args type declaration print('Output:', op['output']) # returns type declaration print ("***************************") # fix location (localhost:9050 is erroneous in the WSDL) #client.services['IWebServiceService']['ports']['IWebServicePort']['location'] = "https://186.153.145.2:9050/trazamed.WebService" #print(client.services.ports) #client.services['MemberBalanceWebService']['ports']['MemberBalanceWebServicePort']['location'] = "https://www.HealthEquity.com/Partner/MemberBalanceWebService.asmx" for service in client.services.values(): for port in service['ports'].values(): #print(port) print(port['location']) #client = SoapClient(location="https://www.HealthEquity.com/Partner/MemberBalanceWebService.asmx", action="MemberBalanceWebService", namespace="", ns="mem") client['mem:MemberBalanceServiceAuthHeader'] = {'mem:Username': 'BCBSMA_websvc', 'mem:Password': 'MhGn031105K'} #client['MemberBalanceServiceAuthHeader'] = {'Username': 'BCBSMA_websvc', 'Password': 'MhGn031105K'} #print(client.GetMemberBalance(SessionId='9999',MemberId='981522383',AccountTypeFlags=4,BalanceTypeFlags=4)) #pprint.pprint(client.GetMemberBalance(SessionId='9999',MemberId='981522383',AccountTypeFlags=4,BalanceTypeFlags=4)) #pprint.pprint(client.GetMemberBalance(MemberId='981522383',AccountTypeFlags=4,BalanceTypeFlags=4)) #pprint.pprint(client.GetMemberBalance(MemberId='981522383')) #client.xml_request() print(client.as_xml()) pprint.pprint(client.GetMemberBalance()) pprint.pprint(client.GetMemberBalance.header()) pprint.pprint(client.GetMemberBalance('','981522383',4,4)) pprint.pprint(client.services) #pprint.pprint(client.GetMemberBalance(SessionId='9999',MemberId='981522383',AccountTypeFlags=4,BalanceTypeFlags=4)) print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") #response = client.GetMemberBalance(SessionId='9999',MemberId='981522383',AccountTypeFlags='4',BalanceTypeFlags='4') '''from pysimplesoap.client import SoapClient from pysimplesoap.simplexml import SimpleXMLElement from lxml import objectify client = SoapClient( location = "https://www.HealthEquity.com/Partner/MemberBalanceWebService.asmx", #action = 'MemberBalanceWebService/GetMemberBalance', # SOAPAction #ns = 'mem' ) params = SimpleXMLElement(""" <?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mem="MemberBalanceWebService"> <soapenv:Header> <mem:MemberBalanceServiceAuthHeader> <!--Optional:--> <mem:Username>BCBSMA_websvc</mem:Username> <!--Optional:--> <mem:Password>MhGn031105K</mem:Password> </mem:MemberBalanceServiceAuthHeader> </soapenv:Header> <soapenv:Body> <mem:GetMemberBalance> <!--Optional:--> <mem:SessionId>?</mem:SessionId> <!--Optional:--> <mem:MemberId>981522383</mem:MemberId> <mem:AccountTypeFlags>4</mem:AccountTypeFlags> <mem:BalanceTypeFlags>4</mem:BalanceTypeFlags> </mem:GetMemberBalance> </soapenv:Body> </soapenv:Envelope>""") # manually make request msg response = client.call('mem:GetMemberBalance',params) result = response.GetMemberBalanceResult print(result) # manully convert returned type'''
[ "ayindri.banerjee@bcbsma.com" ]
ayindri.banerjee@bcbsma.com
8443c14c2499a5e15fc3179e5faf3e4f3d754aa7
76b15070c6cde9366a6133a6ecdf556715131497
/custom_components/salus/const.py
3072020f217f46de282a3b9a524d5a3878ab511b
[ "MIT" ]
permissive
MatthewAger/homeassistant_salus
f38c11f40f338597fb04771bd3986da13331e03e
b74f316e3254faadbf4ae919f8d5b9e8fa9349ba
refs/heads/master
2023-06-24T00:26:46.325866
2021-04-24T09:53:35
2021-04-24T09:53:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
64
py
"""Constants of the Salus iT600 component.""" DOMAIN = "salus"
[ "julius.vitkauskas@trafi.com" ]
julius.vitkauskas@trafi.com
08de5456e8af14a088ef40511b9b3774b8805421
a7807e4a49a06b748cff273fe8c0dc79b5e64ca8
/orby/Scripts/django-admin.py
e15c2e9f1d2447bd8344d9aa8ae6a8f207aaf426
[]
no_license
orhunakar01/labotestalep
0cb864522821f9d4f168996db15a38fc166d57b3
6c6958d49e65d30d5f80c09ee1618c8cc7dd8100
refs/heads/master
2023-03-23T00:32:49.474106
2021-03-16T18:46:08
2021-03-16T18:46:08
348,455,136
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
#!c:\users\orhun\desktop\djangologin\orby\scripts\python.exe # When the django-admin.py deprecation ends, remove this script. import warnings from django.core import management try: from django.utils.deprecation import RemovedInDjango40Warning except ImportError: raise ImportError( 'django-admin.py was deprecated in Django 3.1 and removed in Django ' '4.0. Please manually remove this script from your virtual environment ' 'and use django-admin instead.' ) if __name__ == "__main__": warnings.warn( 'django-admin.py is deprecated in favor of django-admin.', RemovedInDjango40Warning, ) management.execute_from_command_line()
[ "orhunakar@yandex.com" ]
orhunakar@yandex.com
65fb7d1f09f5025ac382844a2d9ef74135ec3e29
d1367994cea3d3b08e48b66597a63fdb49c68dac
/photo/models.py
c583d7af321ee87ec39fe73677878c5c76e1d160
[]
no_license
alasheep/pystagram
8b44216604192a7db33323df350d0c994ab90f75
45d44af7f9cc5b9dab73ec570a568bc854dfa52b
refs/heads/master
2016-08-12T07:01:41.724847
2016-01-01T23:52:36
2016-01-01T23:52:36
48,722,903
0
0
null
null
null
null
UTF-8
Python
false
false
625
py
#from __future__ import unicode_literals # coding: utf-8 from django.db import models # Create your models here. class Photo(models.Model): #id = '개별 사진을 구분하는 색인값' image_file = models.ImageField(upload_to='%Y/%m/%d') filtered_image_file = models.ImageField(upload_to='static_files/uploaded/%Y/%m/%d') description = models.TextField(max_length=500, blank=True) created_at = models.DateTimeField(auto_now_add=True) def delete(self, *args, **kwargs): self.image_file.delete() self.filtered_image_file.delete() super(Photo, self).delete(*args, **kwargs)
[ "alasheep@hanmail.net" ]
alasheep@hanmail.net
2bb9e8941509720018e382a768800bf12e758dab
46fb758e130547f8283df0d40ecfd89dd4b323c6
/hooks/clang_tidy.py
3b35ed0f7f975cd44f972a57d760cdb4fffb1faf
[ "Apache-2.0" ]
permissive
zackw/pre-commit-lint-c
c3db0041f9b8b673f012efc7dde4875eabc4b691
8e4e813fd8c8149d62d92b006b25cf53eadf38e1
refs/heads/master
2023-06-27T04:51:18.553095
2021-08-01T00:45:39
2021-08-01T01:01:12
391,479,933
1
0
null
null
null
null
UTF-8
Python
false
false
1,731
py
#!/usr/bin/env python3 """Wrapper script for clang-tidy.""" ############################################################################# import re import sys from hooks.utils import ClangAnalyzerCmd class ClangTidyCmd(ClangAnalyzerCmd): """Class for the clang-tidy command.""" command = "clang-tidy" lookbehind = "LLVM version " def __init__(self, args): super().__init__(self.command, self.lookbehind, args) self.parse_args(args) self.edit_in_place = "-fix" in self.args or "--fix-errors" in self.args self.parse_ddash_args() def run(self): """Run clang-tidy""" for filename in self.files: self.run_command(filename) sys.stdout.buffer.write(self.stdout) # The number of warnings depends on errors in system files self.stderr = re.sub(b"\d+ warnings and ", b"", self.stderr) # Don't output stderr if it's complaining about problems in system files no_sysfile_warning = b"non-user code" not in self.stderr # On good clang-tidy checks, it will spew warnings to stderr if len(self.stdout) > 0 and no_sysfile_warning: sys.stderr.buffer.write(self.stderr) else: self.stderr = b"" has_errors = ( b"error generated." in self.stderr or b"errors generated." in self.stderr ) if has_errors: # Change return code if errors are generated self.returncode = 1 if self.returncode != 0: sys.exit(self.returncode) def main(argv=None): cmd = ClangTidyCmd(argv) cmd.run() if __name__ == "__main__": main()
[ "rj@swit.sh" ]
rj@swit.sh
4dad72ebc7956f2e83c677733d880dec2b2fd50f
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_10938.py
978f85ef643f608646c73eface82e3ca6748bc7b
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
# Installing psycopg2 on Mountain Lion (brew + pip) defaults write com.apple.versioner.python Prefer-32-Bit -bool no
[ "ubuntu@ip-172-31-7-228.us-west-2.compute.internal" ]
ubuntu@ip-172-31-7-228.us-west-2.compute.internal
648f3b696550c88369e2a3b934622074751216dc
accfbf16b85a532db73e2b30540d4f1a1f5f088f
/vscode-python3/workspace/init.py
4806d926160f00b68c31c996ad5ebe01ee612c66
[]
no_license
BhawickJain/docker-setups
4e3cbf8e48ec7be15b264e94676fa2b8a84033ce
48f417048fca27bab5ad982bf157f98dad0d92c0
refs/heads/main
2023-07-15T00:15:26.202658
2021-08-16T19:32:42
2021-08-16T19:32:42
396,942,136
0
0
null
null
null
null
UTF-8
Python
false
false
71
py
print("hello", "Bhawick") print("you are bug!") print("debug! AWAYAY!")
[ "bhawick@outlook.com" ]
bhawick@outlook.com
2b53d40a285c9d031d96a39ef176c489d8ebce4f
a073d77d10fc502593caad1d7784e18595c07649
/DataTraining.py
0e2dd1fc3fdf5a7c0b270608ab4bba331ab4ca9a
[]
no_license
ChrisRRadford/Cyanobacteria-Image-Classifier
6eb92edcb7ce97a647bde7368448aad56a6beb0a
223d045080cc2f1df2b0b3ed7b4cbe6e2b9ca46b
refs/heads/master
2021-01-03T15:05:46.020024
2020-02-12T22:23:27
2020-02-12T22:23:27
240,122,948
2
0
null
null
null
null
UTF-8
Python
false
false
2,541
py
#python3 DataTraining.py --image "/Volumes/EXTERNAL/ClassifierImageSets/Origional_2.png" --fileName "Training" import cv2 import argparse import numpy as np import pandas as pd import wx ap = argparse.ArgumentParser() ap.add_argument("-1", "--Image", required=True, help="Image to be trained on") ap.add_argument("-2", "--SaveName", required=True, help="Name of file to be saved") args = vars(ap.parse_args()) image = cv2.imread(args["Image"]) fileName = (args["SaveName"]) currClass = -1 MasterList = np.empty((0,6), dtype = int) count = 0 MasterClassCount = [0,0,0] # onclick function def click_and_crop(event, x,y,flags,param): global currClass, image, MasterList, MasterClassCount if event == cv2.EVENT_LBUTTONDBLCLK : if currClass not in range (1,4): print("Current Class not spceified Within Range (1,2,3)") else: refPt = [y,x] px = image[y,x] tempList = np.array([[refPt[1],refPt[0],px[0],px[1],px[2],currClass]]) MasterList = np.append(MasterList,tempList,axis=0) if currClass == 1: cv2.rectangle(image,(x-5,y-5),(x+5,y+5),(0,255,0),-1) MasterClassCount[0] +=1 elif currClass == 2: cv2.rectangle(image,(x-5,y-5),(x+5,y+5),(0,0,255),-1) MasterClassCount[1] +=1 else: cv2.rectangle(image,(x-5,y-5),(x+5,y+5),(122,122,122),-1) MasterClassCount[2] +=1 print("Class count", MasterClassCount ,"To be added:", tempList, end="\r") def main(): app = wx.App(True) width, height = wx.GetDisplaySize() del(app) global currClass,image, MasterList cv2.namedWindow('img',cv2.WINDOW_NORMAL) cv2.resizeWindow('img', (int(width*0.9),int(height*0.9))) cv2.moveWindow("img", 20,20); cv2.setMouseCallback("img",click_and_crop) while(True): cv2.imshow("img",image) key = cv2.waitKey(1) & 0xFF # if the '1' key is pressed. Is Algae if key == ord("1"): print("Now selecting on Class 1 (Algae)") currClass = 1 # if the '2' key is pressed. Isn't Algae if key == ord("2"): print("Now selecting on Class 2 (Non-Algae)") currClass = 2 # if the '3' key is pressed. Is background if key == ord("3"): print("Now selecting on Class 3 (Background)") currClass = 3 # if the 's' key is pressed. Save MasterList if key == ord("s"): print("Saving...") #SAVE HERE dataFrame = pd.DataFrame(data=MasterList, columns=["xCord","yCord","bBand","gBand","rBand","class"]) path = fileName + ".csv" dataFrame.to_csv(path,index=False) print("Saved") # if the 'q' key is pressed. Quit if key == ord("q"): print("Exiting") break main()
[ "cradford@bell.net" ]
cradford@bell.net
058ad0c1afc34a157275f486480d9005b80911f4
51d94a83baff0adce5e2cafde488add67c23fe30
/ipython/bin/jupyter-qtconsole
327eb3bdaf3603c29ba9f2586a0d2bcb6d5c7bfe
[]
no_license
odulzaides/virtualenvs
2add8aef6488c7903a7c24abef626da22aa192ad
95a8a5fc08899f33a3ab478195916774db36d062
refs/heads/master
2020-05-30T07:13:12.803174
2016-10-06T20:34:13
2016-10-06T20:34:13
70,190,719
0
0
null
null
null
null
UTF-8
Python
false
false
262
#!/Users/Tuti/Documents/Virtualenv/ipython/bin/python2.7 # -*- coding: utf-8 -*- import re import sys from qtconsole.qtconsoleapp import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "dulzaides.oscar@gmail.com" ]
dulzaides.oscar@gmail.com
869867848ac4fa8e57b44049e3616774b3f462a3
49327a8ea95879bd6cf1350bb50bfb3aaeb3337d
/rsc/snippets/recursion_for-loop.py
dbba0eb3a2b4c13fd16032dada22c9622a55ba8a
[]
no_license
paast/LC-challenge
553676a5549617d221dfd943ba3bd7356f5e0bd8
28aed23f2243a10e24e9c059ebf109ae8679ad08
refs/heads/master
2020-04-07T15:04:56.660706
2019-01-24T22:59:35
2019-01-24T22:59:35
158,469,338
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
my_list = [1, 2, 3, 4, 5] for item in my_list: print(item, end=' ') # will print "1 2 3 4 5"
[ "banana-man@snposaw.com" ]
banana-man@snposaw.com
66aefdce6c1839e0f4b8dfbe62df72f1d60af25d
b15d2787a1eeb56dfa700480364337216d2b1eb9
/accelbyte_py_sdk/api/match2/operations/backfill/accept_backfill.py
e35c0aa725d1ba4f04c748c7ad397734654b2930
[ "MIT" ]
permissive
AccelByte/accelbyte-python-sdk
dedf3b8a592beef5fcf86b4245678ee3277f953d
539c617c7e6938892fa49f95585b2a45c97a59e0
refs/heads/main
2023-08-24T14:38:04.370340
2023-08-22T01:08:03
2023-08-22T01:08:03
410,735,805
2
1
MIT
2022-08-02T03:54:11
2021-09-27T04:00:10
Python
UTF-8
Python
false
false
8,605
py
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template file: ags_py_codegen # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import # AccelByte Gaming Services Match Service V2 (2.8.4) from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from .....core import Operation from .....core import HeaderStr from .....core import HttpResponse from ...models import ApiBackFillAcceptRequest from ...models import ModelsGameSession from ...models import ResponseError class AcceptBackfill(Operation): """Accept a backfill proposal (AcceptBackfill) Required Permission: NAMESPACE:{namespace}:MATCHMAKING:BACKFILL [UPDATE] Required Scope: social Accept backfill proposal Required Permission(s): - NAMESPACE:{namespace}:MATCHMAKING:BACKFILL [UPDATE] Required Scope(s): - social Properties: url: /match2/v1/namespaces/{namespace}/backfill/{backfillID}/proposal/accept method: PUT tags: ["Backfill", "public"] consumes: ["application/json"] produces: ["application/json"] securities: [BEARER_AUTH] body: (body) REQUIRED ApiBackFillAcceptRequest in body backfill_id: (backfillID) REQUIRED str in path namespace: (namespace) REQUIRED str in path Responses: 200: OK - ModelsGameSession (OK) 400: Bad Request - ResponseError (Bad Request) 401: Unauthorized - ResponseError (Unauthorized) 403: Forbidden - ResponseError (Forbidden) 404: Not Found - ResponseError (Not Found) 500: Internal Server Error - ResponseError (Internal Server Error) """ # region fields _url: str = ( "/match2/v1/namespaces/{namespace}/backfill/{backfillID}/proposal/accept" ) _method: str = "PUT" _consumes: List[str] = ["application/json"] _produces: List[str] = ["application/json"] _securities: List[List[str]] = [["BEARER_AUTH"]] _location_query: str = None body: ApiBackFillAcceptRequest # REQUIRED in [body] backfill_id: str # REQUIRED in [path] namespace: str # REQUIRED in [path] # endregion fields # region properties @property def url(self) -> str: return self._url @property def method(self) -> str: return self._method @property def consumes(self) -> List[str]: return self._consumes @property def produces(self) -> List[str]: return self._produces @property def securities(self) -> List[List[str]]: return self._securities @property def location_query(self) -> str: return self._location_query # endregion properties # region get methods # endregion get methods # region get_x_params methods def get_all_params(self) -> dict: return { "body": self.get_body_params(), "path": self.get_path_params(), } def get_body_params(self) -> Any: if not hasattr(self, "body") or self.body is None: return None return self.body.to_dict() def get_path_params(self) -> dict: result = {} if hasattr(self, "backfill_id"): result["backfillID"] = self.backfill_id if hasattr(self, "namespace"): result["namespace"] = self.namespace return result # endregion get_x_params methods # region is/has methods # endregion is/has methods # region with_x methods def with_body(self, value: ApiBackFillAcceptRequest) -> AcceptBackfill: self.body = value return self def with_backfill_id(self, value: str) -> AcceptBackfill: self.backfill_id = value return self def with_namespace(self, value: str) -> AcceptBackfill: self.namespace = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result: dict = {} if hasattr(self, "body") and self.body: result["body"] = self.body.to_dict(include_empty=include_empty) elif include_empty: result["body"] = ApiBackFillAcceptRequest() if hasattr(self, "backfill_id") and self.backfill_id: result["backfillID"] = str(self.backfill_id) elif include_empty: result["backfillID"] = "" if hasattr(self, "namespace") and self.namespace: result["namespace"] = str(self.namespace) elif include_empty: result["namespace"] = "" return result # endregion to methods # region response methods # noinspection PyMethodMayBeStatic def parse_response( self, code: int, content_type: str, content: Any ) -> Tuple[ Union[None, ModelsGameSession], Union[None, HttpResponse, ResponseError] ]: """Parse the given response. 200: OK - ModelsGameSession (OK) 400: Bad Request - ResponseError (Bad Request) 401: Unauthorized - ResponseError (Unauthorized) 403: Forbidden - ResponseError (Forbidden) 404: Not Found - ResponseError (Not Found) 500: Internal Server Error - ResponseError (Internal Server Error) ---: HttpResponse (Undocumented Response) ---: HttpResponse (Unexpected Content-Type Error) ---: HttpResponse (Unhandled Error) """ pre_processed_response, error = self.pre_process_response( code=code, content_type=content_type, content=content ) if error is not None: return None, None if error.is_no_content() else error code, content_type, content = pre_processed_response if code == 200: return ModelsGameSession.create_from_dict(content), None if code == 400: return None, ResponseError.create_from_dict(content) if code == 401: return None, ResponseError.create_from_dict(content) if code == 403: return None, ResponseError.create_from_dict(content) if code == 404: return None, ResponseError.create_from_dict(content) if code == 500: return None, ResponseError.create_from_dict(content) return self.handle_undocumented_response( code=code, content_type=content_type, content=content ) # endregion response methods # region static methods @classmethod def create( cls, body: ApiBackFillAcceptRequest, backfill_id: str, namespace: str, **kwargs ) -> AcceptBackfill: instance = cls() instance.body = body instance.backfill_id = backfill_id instance.namespace = namespace return instance @classmethod def create_from_dict( cls, dict_: dict, include_empty: bool = False ) -> AcceptBackfill: instance = cls() if "body" in dict_ and dict_["body"] is not None: instance.body = ApiBackFillAcceptRequest.create_from_dict( dict_["body"], include_empty=include_empty ) elif include_empty: instance.body = ApiBackFillAcceptRequest() if "backfillID" in dict_ and dict_["backfillID"] is not None: instance.backfill_id = str(dict_["backfillID"]) elif include_empty: instance.backfill_id = "" if "namespace" in dict_ and dict_["namespace"] is not None: instance.namespace = str(dict_["namespace"]) elif include_empty: instance.namespace = "" return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "body": "body", "backfillID": "backfill_id", "namespace": "namespace", } @staticmethod def get_required_map() -> Dict[str, bool]: return { "body": True, "backfillID": True, "namespace": True, } # endregion static methods
[ "elmernocon@gmail.com" ]
elmernocon@gmail.com
c44e87e1ece4e52e9eeed64c2ed07b4a9e9918b5
f8e52e6f6dfb55f30272af4336255ff6fe978c44
/tools/mcc.py
d4a5be082822d9696147872e5134903f7608da9a
[]
no_license
egdman/kaggle
1c167c3075dbb161ed0d517b8256a70ba08ff7d1
a2ce7baddaff742efd9f2fabbda55e7d2eed9e52
refs/heads/master
2021-01-11T11:19:51.768729
2016-11-03T17:30:31
2016-11-03T17:30:31
72,687,475
0
0
null
null
null
null
UTF-8
Python
false
false
1,634
py
from numba import jit import numpy as np from matplotlib import pyplot as plt # @jit def mcc(tp, tn, fp, fn): sup = tp * tn - fp * fn inf = (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn) if inf==0: return 0 else: return sup / np.sqrt(inf) # @jit def eval_mcc(y_true, y_prob, show=False): idx = np.argsort(y_prob) y_true_sort = y_true[idx] n = y_true.shape[0] nump = 1.0 * np.sum(y_true) # number of positive numn = n - nump # number of negative tp = nump tn = 0.0 fp = numn fn = 0.0 best_mcc = 0.0 best_id = -1 prev_proba = -1 best_proba = -1 mccs = np.zeros(n) for i in range(n): # all items with idx < i are predicted negative while others are predicted positive # only evaluate mcc when probability changes proba = y_prob[idx[i]] if proba != prev_proba: prev_proba = proba new_mcc = mcc(tp, tn, fp, fn) if new_mcc >= best_mcc: best_mcc = new_mcc best_id = i best_proba = proba mccs[i] = new_mcc if y_true_sort[i] == 1: tp -= 1.0 fn += 1.0 else: fp -= 1.0 tn += 1.0 if show: y_pred = (y_prob >= best_proba).astype(int) score = matthews_corrcoef(y_true, y_pred) print(score, best_mcc) plt.plot(mccs) return best_proba, best_mcc, y_pred else: return best_mcc def mcc_eval(y_prob, dtrain): y_true = dtrain.get_label() best_mcc = eval_mcc(y_true, y_prob) return 'MCC', best_mcc
[ "egdman90@gmail.com" ]
egdman90@gmail.com
d2086cfc57ff171d6201a1bd3fbc011282d61392
65e82f0f584711084f2cf2cee6f343c6693ca552
/LeetCode_exercises/ex0050_pow.py
7296795a0db57b1be33e5f2378bbb40174bf865e
[]
no_license
msjithin/LeetCode_exercises
3fd7e9e3dbc75270c2cb497931cdbdc9135d113d
f1b466a5f2ffc9ff00a0d9895bda145eb3c7db54
refs/heads/master
2023-02-16T00:15:41.676725
2021-01-05T18:53:07
2021-01-05T18:53:07
305,853,604
0
0
null
null
null
null
UTF-8
Python
false
false
1,478
py
""" Implement pow(x, n), which calculates x raised to the power n (i.e. xn). """ class Solution: def myPow( x: float, n: int) -> float: print(' Calcuating {} ^ {}'.format(x, n) ) if x==0: return 0 if n==0: return 1 if abs(x) == 1.0: return 1 if n%2==0 else x num = x npow = abs(n) f_out=1 counter=0 while npow>0: if f_out==0: break tmp , tmpf_out=1, num while tmp+tmp < npow : counter+=1 if tmp==0 or tmpf_out==1 : break tmp+=tmp tmpf_out*=tmpf_out counter+=1 npow-=tmp f_out *= tmpf_out print(' outer loop counter = ', counter , 'f_out=', f_out,'') if n < 0: return 1/f_out return f_out class Solution2: def myPow( x: float, n: int) -> float: print('calculate {} ^{}'.format(x,n)) if n<0: x = 1/x n = -n if abs(x)==1: return 1 if n%2==0 else x res = 1 current_product = x while n>0: if current_product==0 or current_product==1: res=current_product break if n%2: res *= current_product current_product *= current_product n=n//2 return res
[ "ms@wisc.edu" ]
ms@wisc.edu
819d2477a179823c7162021849a499b3398f8026
824da02c8fb0929a91155031430939e0f565390e
/migrations/versions/6cf36da6705f_.py
299ea394a3c738b3b6ac6015aaa85d2ddef4333a
[ "Apache-2.0" ]
permissive
alexmeigz/Nutriflix_Flask_Backend
58247070ad525861b7fc66001424b2d18305a626
95c9981b9342b0509d5c58ea6e9f2a8b400d1444
refs/heads/master
2023-01-30T01:10:09.642554
2020-12-14T20:04:41
2020-12-14T20:04:41
301,246,429
0
0
Apache-2.0
2020-12-14T20:04:42
2020-10-04T23:16:13
Python
UTF-8
Python
false
false
657
py
"""empty message Revision ID: 6cf36da6705f Revises: 6561c4454534 Create Date: 2020-11-15 02:32:23.520188 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '6cf36da6705f' down_revision = '6561c4454534' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('product', sa.Column('image_url', sa.Text(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('product', 'image_url') # ### end Alembic commands ###
[ "alexmei@ucsb.edu" ]
alexmei@ucsb.edu
94e3d38dd3a5674a0272aeb4ea010d9f7a9abfd2
7dcdd5de0640f07b01b1707c134ec0bd168f641d
/fedora_college/modules/content/views.py
b1019c221326d657588aa1b01f790aaa7115edba
[ "BSD-3-Clause" ]
permissive
MSheezan/fedora-college
8e3e741f6ddac481c2bb7bbcde1e70e2b4b56774
07dbce3652c6c1796fb0f7b208a706c9e9d90dc1
refs/heads/master
2021-01-15T22:38:16.831830
2014-06-26T07:04:33
2014-06-26T07:04:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,439
py
# -*- coding: utf-8 -*- import re #import time from unicodedata import normalize from flask import Blueprint, render_template from flask import redirect, url_for, g from sqlalchemy import desc from fedora_college.core.database import db from fedora_college.modules.content.forms import * # noqa from fedora_college.core.models import * # noqa from flask_fas_openid import fas_login_required bundle = Blueprint('content', __name__, template_folder='templates') from fedora_college.modules.content.media import * # noqa _punct_re = re.compile(r'[\t !"#$%&\'()*\-/<=>?@\[\\\]^_`{|},.]+') def slugify(text, delim=u'-'): """Generates an slightly worse ASCII-only slug.""" #stri = (time.strftime("%d/%m/%Y")) #text = stri + "-" + text result = [] for word in _punct_re.split(text.lower()): word = normalize('NFKD', word).encode('ascii', 'ignore') if word: result.append(word) return unicode(delim.join(result)) def attach_tags(tags, content): rem = TagsMap.query.filter_by(content_id=content.content_id).all() for r in rem: db.session.delete(r) db.session.commit() for tag in tags: tag_db = Tags.query.filter_by(tag_text=tag).first() if tag_db is None: tag_db = Tags(tag) db.session.add(tag_db) db.session.commit() Map = TagsMap(tag_db.tag_id, content.content_id) db.session.add(Map) db.session.commit() @bundle.route('/content/add/', methods=['GET', 'POST']) @bundle.route('/content/add', methods=['GET', 'POST']) @bundle.route('/content/edit/<posturl>/', methods=['GET', 'POST']) @bundle.route('/content/edit/<posturl>', methods=['GET', 'POST']) @fas_login_required def addcontent(posturl=None): form = CreateContent() form_action = url_for('content.addcontent') media = Media.query.order_by(desc(Media.timestamp)).limit(10).all() if posturl is not None: content = Content.query.filter_by(slug=posturl).first_or_404() form = CreateContent(obj=content) if form.validate_on_submit(): form.populate_obj(content) tags = str(form.tags.data).split(',') attach_tags(tags, content) content.rehtml() db.session.commit() return redirect(url_for('content.addcontent', posturl=posturl, updated="Successfully updated") ) else: if form.validate_on_submit(): url_name = slugify(form.title.data) query = Content(form.title.data, url_name, form.description.data, form.active.data, form.tags.data, g.fas_user['username'], form.type_content.data ) tags = str(form.tags.data).split(',') try: db.session.add(query) db.session.commit() attach_tags(tags, query) return redirect(url_for('content.addcontent', posturl=url_name, updated="Successfully updated", media=media) ) # Duplicate entry except Exception as e: db.session.rollback() print e pass return render_template('content/edit_content.html', form=form, form_action=form_action, title="Create Content", media=media) @bundle.route('/blog', methods=['GET', 'POST']) @bundle.route('/blog/', methods=['GET', 'POST']) @bundle.route('/blog/<slug>/', methods=['GET', 'POST']) @bundle.route('/blog/<slug>', methods=['GET', 'POST']) def blog(slug=None): if slug is not None: try: posts = Content.query. \ filter_by(slug=slug).all() except: posts = "No such posts in database." else: try: posts = Content.query. \ filter_by(type_content="blog").all() except: posts = "Databse is empty" return render_template('blog/index.html', title='Blog', content=posts)
[ "hammadhaleem@gmail.com" ]
hammadhaleem@gmail.com
a60e660a37291658a05b42e59b648eddeb9f74c9
b8515727e6c30e2b606ef11e8f35073b787aa852
/todolist_app/tests.py
0ba75cc60bf05ef12f5f5f9aa841eb3e6dd38c11
[]
no_license
aramis-eb/todolist
ac1d689d036d83f0be7f266c4f7e8250dfdeac4c
c6839a388573b460b274bf9376d12c153e961571
refs/heads/master
2021-09-24T14:52:21.294270
2021-03-30T13:03:54
2021-03-30T13:03:54
254,407,078
0
0
null
null
null
null
UTF-8
Python
false
false
3,523
py
from django.test import TestCase, Client from django.contrib.auth.models import User from .models import Priority, Todo class TestTodoList(TestCase): def test_todo_list_login(self): client = Client() user = User.objects.create(username='aramis') user.set_password('agustin20') user.save() response = client.post('/login', { 'username': 'aramis', 'password': 'agustin20' }) self.assertEqual(response.status_code, 302) self.assertRedirects(response, '/') def test_todo_list_invalid_login(self): client = Client() user = User.objects.create(username='aramis') user.set_password('agustin20') user.save() response = client.post( '/login', { 'username': 'aramis', 'password': 'passwordinvalid' }, follow=True, ) self.assertEquals(response.status_code, 200) def test_todo_list_incorrect_login(self): c = Client() result = c.login( username='aramis', password='invalidPassword' ) self.assertFalse(result) def test_todo_list_user_logged(self): c = Client() user = User.objects.create(username='testuser') user.set_password('12345') user.save() c.login(username='testuser', password='12345') response = c.get('') self.assertEqual(response.status_code, 200) class TestTodoCreate(TestCase): def setUp(self): self.priority = Priority.objects.create(name='Low', order=1) self.client = Client() self.user = User.objects.create(username='aramis') self.user.set_password('agustin20') self.user.save() def test_create_todo_status_code(self): self.client.force_login(self.user) response = self.client.post('/new/', { 'tittle': 'Taskk 1', 'description': 'Task 2', 'done': False, 'priority': self.priority.id }) self.assertEquals(response.status_code, 302) def test_create_todo(self): # Otra forma de hacer login self.client.force_login(self.user) # self.client.login( # username='aramis', # password='agustin20' # ) response = self.client.post('/new/', { 'tittle': 'Taskk 1', 'description': 'Task 2', 'done': False, 'priority': self.priority.id }, follow=True) id = response.context['object'].id self.assertRedirects(response, '/view/'+str(id)) self.assertEquals(response.status_code, 200) def test_failed_create_todo(self): self.client.force_login(self.user) response = self.client.post('/new/', { 'tittle': 'Taskk 1', 'description': '', 'done': False, 'priority': self.priority.id }) self.assertEquals(response.status_code, 200) class TestTodoDelete(TestCase): def test_delete_todo(self): pass class TestTodoView(TestCase): def setUp(self): todo = Todo.objects.create( tittle='task1', description='Descripcion de tarea 1', assigned_user=self.user, done=False, created='2020-04-10', updated='2020-04-10', created_by=self.user, updated_by=self.user, priority=self.priority, )
[ "aramis@eventbrite.com" ]
aramis@eventbrite.com
166670300dc3fb39d4e1883bb546d056fe08ce1f
dd09f3ad02785935043b56ea3ef85ed603f4065d
/Sorting_Function/Selection_Sorting.py
6f03147ffab2db72cf7d3f242eb1efd76270e240
[]
no_license
RishavMishraRM/Data_Structure
ed70f5a04c2fa8153433e830ef54deb7b9c8bf21
0d31d16b48989359d5fef79b00aac1b9ca112a22
refs/heads/main
2023-06-27T02:40:18.031146
2021-07-25T19:01:51
2021-07-25T19:01:51
330,320,897
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
def selection_sort(A): n = len(A) for i in range(n-1): position = i for j in range(i+1, n): if A[j] < A[position]: position = j temp = A[i] A[i] = A[position] A[position] = temp A = [3, 5, 8, 9, 6, 2] print('Original Array:',A) selection_sort(A) print('Sorted Array:',A)
[ "noreply@github.com" ]
noreply@github.com
a35795d31dc08e0b14b7e0fe34da7cd1f10a97c9
5c435eb62297101d80904957f857f1ceaa217071
/3-distribution_training/py/args.py
bc8e1eb5322ac2d38c1589c880aac8194588f8ee
[]
no_license
chatflip/tutorial_pytorch_japanese
d1972cb342d4da6918a3c35120de7e45b1bed74e
374251cfe1359cd5e305d3d33c1fdf3f03ad13dc
refs/heads/master
2022-01-26T18:42:21.313784
2020-06-13T09:54:35
2020-06-13T09:54:35
165,519,038
10
1
null
null
null
null
UTF-8
Python
false
false
3,543
py
import argparse def opt(): parser = argparse.ArgumentParser(description='PyTorch AnimeFace') parser.add_argument('--path2db', type=str, default='data', help='path to database') # Train Validate settings parser.add_argument('--batch-size', type=int, default=256, help='mini-batch size in train') parser.add_argument('--val-batch-size', type=int, default=512, help='mini-batch size in validate') parser.add_argument('--epochs', type=int, default=10, help='number of total epochs to run') parser.add_argument('--num_classes', type=int, default=176, help='num of classes') # network parameters parser.add_argument('--lr', type=float, default=0.01, help='initial learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=1e-04, help='weight_decay') # etc parser.add_argument('--evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--resume', type=str, default='weight/AnimeFace_resnet18_best.pth', help='load weight') parser.add_argument('--img_size', type=int, default=256, help='image size') parser.add_argument('--crop_size', type=int, default=224, help='crop size') parser.add_argument('--workers', type=int, default=16, help='number of data loading workers') parser.add_argument('--seed', type=int, default=1, help='seed for initializing training. ') parser.add_argument('--print-freq', type=int, default=10, help='print frequency (default: 10)') # Mixed precision training parameters parser.add_argument('--apex', action='store_true', help='Use apex for mixed precision training') parser.add_argument('--apex-opt-level', default='O1', type=str, help='For apex mixed precision training' 'O0 for FP32 training, O1 for mixed precision training.' 'For further detail, see https://github.com/NVIDIA/apex/tree/master/examples/imagenet' ) # distribution settings parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='env://', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') args = parser.parse_args() return args
[ "oo.chat.flip@gmail.com" ]
oo.chat.flip@gmail.com
2fb93afe829de7491a458ced6b6568ea178817ff
488e0934b8cd97e202ae05368c855a57b299bfd1
/Django/advanced/change_admin/change_admin/settings.py
52ac0975d8daac947ffc100a34d19c9282aa57ff
[]
no_license
didemertens/udemy_webdev
4d96a5e7abeec1848ecedb97f0c440cd50eb27ac
306215571be8e4dcb939e79b18ff6b302b75c952
refs/heads/master
2020-04-25T00:24:45.654136
2019-04-13T16:00:47
2019-04-13T16:00:47
172,377,429
0
0
null
null
null
null
UTF-8
Python
false
false
3,184
py
""" Django settings for change_admin project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR,'templates') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(w#6#!6oi75z@e2d&((yalznx95yk7exe5fbbx#f1l#0uc=(3w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app_videos' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'change_admin.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'change_admin.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
[ "d.g.j.mertens@gmail.com" ]
d.g.j.mertens@gmail.com
ee4ca603bda625183659e699f11fd7d710b1f6e2
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/W_w_Mgt_to_C/pyramid_tight_crop_size256_pad60_jit15/pyr_2s/bce_s001_tv_s0p1_L4/step10_a.py
eb5df86c53b26c8ee94837558fc32d4559cdad0a
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
11,105
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_2side_L4 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_wc_flow use_loss_obj = [G_mae_s001_loss_info_builder.set_loss_target("UNet_Cx").copy(), G_mae_s001_loss_info_builder.set_loss_target("UNet_Cy").copy()] ### x, y 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ch032_1side_1__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_0.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
[ "s89334roy@yahoo.com.tw" ]
s89334roy@yahoo.com.tw
f011ab83e71888ec2f09ea886e39c022a750a85a
82441f872cc36e5833e1378157c5c413141d736b
/hosts.py
889dc7b144d2642724fb07f27d59f30d6bff207b
[]
no_license
tikalk/ft-deploy
9baa035dc76d9a70d902dfe9e0240bbca77c3cfd
143af780510ddd463591d00a44e9b755423d82b8
refs/heads/master
2020-12-27T09:34:51.224056
2015-12-13T22:47:29
2015-12-13T22:47:29
47,748,374
0
0
null
null
null
null
UTF-8
Python
false
false
1,061
py
#!/usr/bin/env python import json import subprocess import sys BASE_PARAMS = { 'ansible_python_interpreter': '/usr/bin/python2.7', } out = subprocess.check_output(['docker-machine', 'ls']) dockers = {} machines = out.splitlines()[1:] for machine_info in machines: try: machine_info = machine_info.replace('*', '').split() machine_name = machine_info[0] machine_driver = machine_info[2] if not machine_info[3].startswith('tcp://'): continue machine_ip = machine_info[3].replace('tcp://', '').split(':')[:1][0] except: continue dockers[machine_name] = { 'ansible_ssh_private_key_file': '~/.docker/machine/machines/%s/id_rsa' % machine_name, 'ansible_ssh_user': 'docker', 'ansible_ssh_host': machine_ip, } dockers[machine_name].update(BASE_PARAMS) inventory = { 'localhost': {'ansible_connection': 'local', }, 'dockers': dockers.keys(), } inventory['localhost'].update(BASE_PARAMS) inventory.update(dockers) json.dump(inventory, sys.stdout)
[ "hagzag@hagzag.com" ]
hagzag@hagzag.com
f20a2e2ee965a0bd4785f21b4b185b1d3d82bb37
fc7d552c915759ab20d9780acac3a1b460f3eb8f
/CourserSite/wsgi.py
0b770fece5d5de0dc20753d87446e6d974fcdce7
[]
no_license
adwojak/courser
de3337fd79ce28c91749edb73a8508d769b780f5
ea94f156c776bbdf721401f989500ad71236c138
refs/heads/master
2020-04-01T07:59:33.222971
2018-11-14T15:01:24
2018-11-14T15:01:24
153,012,945
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for CourserSite project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'CourserSite.settings') application = get_wsgi_application()
[ "dwojaka207@gmail.com" ]
dwojaka207@gmail.com
9f3bc36cda5789eecda861f4e2fef3c900573070
b6f5be56f502b113a03af54abf4b9790bfdd7545
/gesteNemo.py
68e936f943890ce6414635db964d2b0e29150cab
[]
no_license
PonteIneptique/geste-nemo
dc049e414ad23137ff54577b3157d1eb7c44fbac
c73069028f810f1b7d80420d72ab79602f477a2e
refs/heads/master
2020-03-20T13:02:07.260577
2018-06-14T17:13:35
2018-06-14T17:13:35
137,446,875
0
0
null
2018-06-15T06:07:08
2018-06-15T05:58:41
HTML
UTF-8
Python
false
false
3,378
py
# Import Flask and Nemo # This script can take a first argument giving a configuration from examples.py from flask import Flask from flask_nemo import Nemo from flask_caching import Cache from flask_nemo.chunker import level_grouper from capitains_nautilus.cts.resolver import NautilusCTSResolver from MyCapytain.resources.prototypes.cts.inventory import CtsTextInventoryCollection as TextInventoryCollection, CtsTextInventoryMetadata as PrototypeTextInventory from MyCapytain.resolvers.utils import CollectionDispatcher from capitains_nautilus.cts.resolver import NautilusCTSResolver from capitains_nautilus.flask_ext import FlaskNautilus import logging # We import enough resources from MyCapytain to retrieve data from MyCapytain.resolvers.cts.api import HttpCtsResolver from MyCapytain.retrievers.cts5 import HttpCtsRetriever # We create a Flask app app = Flask( __name__ ) tic = TextInventoryCollection() fro = PrototypeTextInventory("urn:geste", parent=tic) #Rien à voir avec les identifiants cts, c'est un identifiant de projet fro.set_label("Corpus de chansons de geste", "fro") dispatcher = CollectionDispatcher(tic) @dispatcher.inventory("urn:geste") def dispatchGeste(collection, path=None, **kwargs): if collection.id.startswith("urn:cts:froLit"): #et cette fois, c'est bien du cts et on file le début des chemins de citation. return True return False cache = Cache() NautilusDummy = NautilusCTSResolver( [ "." ], dispatcher=dispatcher ) NautilusDummy.logger.setLevel(logging.ERROR) def scheme_grouper(text, getreffs): level = len(text.citation) groupby = 5 types = [citation.name for citation in text.citation] if 'word' in types: types = types[:types.index("word")] if str(text.id) == "urn:cts:latinLit:stoa0040.stoa062.opp-lat1": level, groupby = 1, 2 elif types == ["vers", "mot"]: level, groupby = 1, 100 elif types == ["book", "poem", "line"]: level, groupby = 2, 1 elif types == ["book", "line"]: level, groupby = 2, 30 elif types == ["book", "chapter"]: level, groupby = 2, 1 elif types == ["book"]: level, groupby = 1, 1 elif types == ["line"]: level, groupby = 1, 30 elif types == ["chapter", "section"]: level, groupby = 2, 2 elif types == ["chapter", "mishnah"]: level, groupby = 2, 1 elif types == ["chapter", "verse"]: level, groupby = 2, 1 elif "line" in types: groupby = 30 return level_grouper(text, getreffs, level, groupby) nautilus = FlaskNautilus( app=app, prefix="/api", name="nautilus", resolver=NautilusDummy ) nemo = Nemo( app=app, base_url="/geste", resolver=NautilusDummy, chunker={"default": scheme_grouper}, plugins=None, cache=cache, transform={ "default": "./geste.xslt" }, css=[ # USE Own CSS "./styles/geste.css" ], js=[ # use own js file to load a script to go from normalized edition to diplomatic one. "./styles/geste.js" ], templates={ "main": "./templates" }, statics=["./images/logo-enc2.png","./fonts/Junicode-Regular.ttf","./fonts/Junicode-Regular.woff"] #, #additional_static=[ # "img/logo-enc2.jpg" #] ) cache.init_app(app) if __name__ == "__main__": app.run()
[ "jbcamps@hotmail.com" ]
jbcamps@hotmail.com
ed0549a98330baa914a7eb5ee44017339d97b6fd
a96548da21c01e63f23f49a6dd88514d6fd8b8ca
/kNN for chapter2.py
8ce4ea0f50b0c651a523c17b93b4c605931c40df
[]
no_license
PureWaterLove/MachineLearningInAction
3e8724db8a6f121a1e2eedd04e7ff1115f6343db
39d833e08f1e5bbbced9683d37a03f9f15b9d161
refs/heads/master
2020-04-20T16:27:45.293354
2019-04-12T00:48:38
2019-04-12T00:48:38
168,959,399
0
0
null
null
null
null
UTF-8
Python
false
false
6,688
py
#coding=utf-8 from numpy import * # 科学计算包numpy from os import listdir import operator #运算符模块 import matplotlib import matplotlib.pyplot as plt #from imp import reload #测试数据 def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group,labels #分类函数 def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] #距离计算 开始 diffMat = tile(inX,(dataSetSize,1)) - dataSet sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis = 1) distances = sqDistances ** 0.5 #距离计算 结束 sortedDistIndicies = distances.argsort() classCount = {} #选择距离最小的k个点 开始 for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #选择距离最小的k个点 结束 sortedClassCount = sorted(classCount.items(),key = operator.itemgetter(1), reverse = True) #排序 return sortedClassCount[0][0] #文本记录解析程序 def file2matrix(filename): #打开文件并获取文件有多少行 开始 fr = open(filename) arrayOLines = fr.readlines() numberOfLines = len(arrayOLines) #打开文件并获取文件有多少行 结束 #创建返回的NumPy矩阵 returnMat = zeros((numberOfLines,3)) classLabelVector = [] index = 0 #解析文件数据到列表 开始 for line in arrayOLines: line = line.strip() #截取掉回车字符 listFromLine = line.split('\t') #用 \t 将上一步得到的整行数据分割成一个元素列表 returnMat[index,:] = listFromLine[0:3] #选取前3个元素,并存储到特征矩阵中 classLabelVector.append(int(listFromLine[-1])) #索引值-1表示列表中的最后一列元素 index += 1 #解析文件数据到列表 结束 return returnMat,classLabelVector #归一化特征值 def autoNorm(dataSet): minVals = dataSet.min(0) #从列中选取最小值 maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - tile(minVals,(m,1)) #tile()函数将变量内容复制成输人矩阵同样大小的矩阵 normDataSet = normDataSet/tile(ranges,(m,1)) return normDataSet,ranges,minVals #测试代码 def datingClassTest(): hoRatio = 0.02 datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') normMat,ranges,minVals = autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m * hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) #print "the classifier came back with: %d, the real answer is : %d" % (classifierResult,datingLabels[i]) print('the classifier came back with: {}, the real answer is : {}'.format(classifierResult,datingLabels[i])) if(classifierResult != datingLabels[i]): errorCount += 1.0 #print "the total error rate is : %f" %(errorCount/float(numTestVecs)) print('the total error rate is : {}'.format(errorCount/float(numTestVecs))) #约会网站预测函数 def classifyPerson(): resultList = ['not at all','in small doses','in large doses'] percentTats = float(input('percentage of time spent playing video games?')) ffMiles = float(input('frequent flier miles earned per years?')) iceCream = float(input('liters of ice cream consumed per year')) datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') normMat,ranges,minVals = autoNorm(datingDataMat) inArr = array([ffMiles,percentTats,iceCream]) classifierResult = classify0((inArr - minVals)/ranges,normMat,datingLabels,3) print('You will probably like this person : {}'.format(resultList[classifierResult - 1])) #将二进制图像转化为向量 def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32 * i + j] = int(lineStr[j]) return returnVect #手写识别系统测试代码 def handwritingClassTest(): hwLabels = [] trainingFileList = listdir('digits/trainingDigits') #获取目录内容 m = len(trainingFileList) #目录中文件个数 trainingMat = zeros((m,1024)) #每行数据存储一个图像 for i in range(m): #从文件名解析分类数据 开始 fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumberStr = int(fileStr.split('_')[0]) #从文件名解析分类数据 结束 hwLabels.append(classNumberStr) trainingMat[i,:] = img2vector('digits/trainingDigits/%s' %fileNameStr) testFileList = listdir('digits/testDigits') errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split(',')[0] classNumberStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('digits/testDigits/%s' %fileNameStr) classifierResult = classify0(vectorUnderTest,trainingMat,hwLabels,3) print('the classifier came back with : {}, the real answer is : {}'.format(classifierResult,classNumberStr)) if(classifierResult != classNumberStr): errorCount += 1.0 print('\nthe total number of errors is : {}'.format(errorCount)) print('\nthe total error rate is : {}'.format(errorCount/float(mTest))) """以下代码均为调试函数所用代码,需要时取出即可 #group,labels = createDataSet() #print(classify0([0,0],group,labels,3)) #reload(kNN) #加载数据集 #datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #print(datingDataMat) #print(datingLabels[0:20]) #数据集图像化 #fig = plt.figure() #ax = fig.add_subplot(111) #ax.scatter(datingDataMat[:,1],datingDataMat[:,2]) #无标记散点图 #ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels)) #有标记散点图 #plt.show() normMat10,ranges,minVals = autoNorm(datingDataMat) print("normMat = ") print(normMat) print("ranges = ") print(ranges) print("minVals = ") print(minVals) #datingClassTest() #classifyPerson() testVector = img2vector('digits/testDigits/0_1.txt') print(testVector[0,0:31]) print(testVector[0,32:63]) """ handwritingClassTest()
[ "noreply@github.com" ]
noreply@github.com
9707a59e2633a3a8f14afee94806f2e665985bcb
939328b01c66aa635e62fb0679e2e17a69e140d9
/lrec18/experiments/significance_tests.py
282fec45aa4d92b3afc6cb69b032874d7d2f42e7
[ "MIT" ]
permissive
weiweitoo/EmoMap
a951995064f99f686f27f41f93f79fc97a0b5240
86e326bca58b89539b058a0a69a0f8f9e6726c4e
refs/heads/master
2020-11-28T08:33:05.791696
2020-01-01T09:05:08
2020-01-01T09:05:08
229,756,998
0
0
MIT
2019-12-23T13:21:43
2019-12-23T13:21:42
null
UTF-8
Python
false
false
6,552
py
import pandas as pd import scipy.stats as st import numpy as np import prepare_data def ttest(xbar, mu, N, s, tails=1): ''' One sample t-test from summary statistics. ''' t = (mu-xbar)*np.sqrt(float(N))/s if tails==1: if t>=0: p=1-st.t.cdf(x=t, df=N) else: p=1-st.t.cdf(x=-t, df=N) else: raise NotImplementedError return t,p def ztest(sample_mean, pop_mean, N, pop_sd, tails=1): ''' z-test ''' standard_error=float(pop_sd)/np.sqrt(float(N)) z=(float(sample_mean)-float(pop_mean))/standard_error if tails==1: if z>=0: p=1-st.norm.cdf(x=z) else: p=1-st.norm.cdf(x=-z) else: raise NotImplementedError return z,p def correlation_test(sample_corr, pop_corr, N, tails=1): ''' Tests if empirical sample correlation is significantly higher than an given population correlation. Performs Fisher's r to z transformation and than computes z test. ''' z_r=.5*np.log((1+sample_corr)/(1-sample_corr)) z_rho=.5*np.log((1+pop_corr)/(1-pop_corr)) standard_error=1./(np.sqrt(float(N-3))) z=(z_r-z_rho)/standard_error if tails==1: if z>=0: p=1-st.norm.cdf(x=z) else: p=1-st.norm.cdf(x=-z) else: raise NotImplementedError return z,p def size_of_gold_data(outpath): languages=['English', 'Spanish', 'German', 'Polish'] data = { 'English':prepare_data.get_english(), 'Spanish':prepare_data.get_spanish(), 'Polish':prepare_data.get_polish(), 'German':prepare_data.get_german() } table=pd.DataFrame(columns=['N'], index=languages) for lang in languages: print(data[lang].shape[0]) table['N'][lang]=data[lang].shape[0] table.to_csv(outpath, sep='\t') format_string= ':02.5f' def FORMATTER(x): return '{:02.5f}'.format(x) def significance_tests_for_experiment_1(path_inter_study_reliability, path_prediction_mean, path_prediction_std, outpath_t_table, outpath_p_table): ''' One-tailed one sample t-test in 10-fold cross validation setup. Tests if mean over correlation values is higher than lowest inter-study reliability (degrees of freedom: 9). Adapted from Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895–1923. ''' inter_study_reliability=pd.read_csv(path_inter_study_reliability, index_col=0, sep='\t') human_floor=inter_study_reliability.min(axis=0) results_mean=pd.read_csv(path_prediction_mean, sep='\t', index_col=0) results_std=pd.read_csv(path_prediction_std, sep='\t', index_col=0) languages=['English', 'Spanish', 'German', 'Polish'] dimensions=['Valence', 'Arousal', 'Dominance'] t_table=pd.DataFrame(columns=dimensions, index=languages) p_table=pd.DataFrame(columns=dimensions, index=languages) for lang in languages: for dim in dimensions: pred=results_mean[dim][lang] human=human_floor[dim] if pred>human: t,p=ttest(xbar=pred, mu=human, N=9, s=results_std[dim][lang]) t_table[dim][lang]=t p_table[dim][lang]=p t_table=t_table.round(4) p_table=p_table.round(4) print(t_table.to_string(float_format=FORMATTER)) print(p_table.to_string(float_format=FORMATTER)) t_table.to_csv(outpath_t_table, sep='\t',float_format=FORMATTER) p_table.to_csv(outpath_p_table, sep='\t', float_format=FORMATTER) def significance_tests_for_experiment_2(path_inter_study_reliability, path_gold_data_size, path_prediction, outpath_z_table, outpath_p_table): ''' Computes significance tests whether the experimental results from experiment 2 are higher than the human ceiling. Uses one-tailed z-tests with fisher r to z transformation. ''' # Setting everything up languages=['English', 'Spanish', 'German', 'Polish'] dimensions=['Valence', 'Arousal', 'Dominance'] langcodes={'en':'English', 'es':'Spanish', 'pl':'Polish', 'de':'German'} inter_study_reliability=pd.read_csv(path_inter_study_reliability, index_col=0, sep='\t') gold_data_size=pd.read_csv(path_gold_data_size, sep='\t', index_col=0) human_floor=inter_study_reliability.min(axis=0) experimental_results=pd.read_csv(path_prediction, sep='\t', index_col=0) z_table=pd.DataFrame(columns=dimensions, index=experimental_results.index) p_table=pd.DataFrame(columns=dimensions, index=experimental_results.index) # Perform tests for case in list(experimental_results.index): parts=case.split('2') source_language=langcodes[parts[0]] target_language=langcodes[parts[1]] for dim in dimensions: pred=experimental_results[dim][case] human=human_floor[dim] n=gold_data_size['N'][target_language] # print(source_language, target_language, n, dim, pred, human) if pred > human: z,p=correlation_test(sample_corr=pred, pop_corr=human, N=n) z_table[dim][case]=z p_table[dim][case]=p # Output z_table=z_table.round(4) p_table=p_table.round(4) print(z_table.to_string(float_format=FORMATTER)) z_table.to_csv(outpath_z_table, sep='\t', float_format=FORMATTER) print(p_table.to_string(float_format=FORMATTER)) p_table.to_csv(outpath_p_table, sep='\t', float_format=FORMATTER) def significance_tests_for_experiment_3(path_inter_study_reliability, path_gold_data_size, path_prediction, outpath_z_table, outpath_p_table): # Setting everything up dimensions=['Valence', 'Arousal', 'Dominance'] inter_study_reliability=pd.read_csv(path_inter_study_reliability, index_col=0, sep='\t') gold_data_size=pd.read_csv(path_gold_data_size, sep='\t', index_col=0) human_floor=inter_study_reliability.min(axis=0) experimental_results=pd.read_csv(path_prediction, sep='\t', index_col=0) z_table=pd.DataFrame(columns=dimensions, index=experimental_results.index) p_table=pd.DataFrame(columns=dimensions, index=experimental_results.index) # Performing tests for lang in list(experimental_results.index): for dim in dimensions: pred=experimental_results[dim][lang] human=human_floor[dim] n=gold_data_size['N'][lang] if pred>human: z,p=correlation_test(sample_corr=pred, pop_corr=human, N=n) z_table[dim][lang]=z p_table[dim][lang]=p # Output z_table=z_table.round(4) p_table=p_table.round(4) print(z_table.to_string(float_format=FORMATTER)) z_table.to_csv(outpath_z_table, sep='\t', float_format=FORMATTER) print(p_table.to_string(float_format=FORMATTER)) p_table.to_csv(outpath_p_table, sep='\t', float_format=FORMATTER)
[ "sven-buechel@gmx.de" ]
sven-buechel@gmx.de
84df639b00d52689ce79b4e4ecbc6317750c2a9d
5f71223206cd63d4ddac6578c80b223924a8d558
/pyladies/PyLadies/bin/python-config
1013e19bdd5af186474fcefd5aa2b45b68f760ad
[ "Zlib" ]
permissive
ankita0000/pyladies
bb08eb1337297525f1b94e110165d8967b53ce77
ca15fad0736b06c4940c129d66d7cea9d51f461d
refs/heads/master
2021-01-17T20:28:16.157085
2016-11-14T08:44:29
2016-11-14T08:44:29
66,218,590
0
0
null
2016-08-21T20:12:24
2016-08-21T20:12:24
null
UTF-8
Python
false
false
2,353
#!/home/yo/pyladies/pyladies/PyLadies/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
[ "mukherjeeankita60@gmail.com" ]
mukherjeeankita60@gmail.com
b89525a6a71b8cc792f2e810cdd2533d6a458e5a
efb5aa8a065d8087690e0302838c66db1e69b8c9
/payments/payments/urls.py
b725c1d1cfb6d46b9458ae5ffc55dc886638f592
[]
no_license
Harivj18/Payment-gateway-integration
721ccfe46c7f91f21e60732d0853df80622b7702
47502f64ef497dbc4ad9a25797135c36fee615d6
refs/heads/main
2023-08-17T15:34:52.639766
2021-09-17T11:52:46
2021-09-17T11:52:46
407,517,861
0
0
null
null
null
null
UTF-8
Python
false
false
791
py
"""payments URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path('',include('app.urls')) ]
[ "86662698+Harivj18@users.noreply.github.com" ]
86662698+Harivj18@users.noreply.github.com
e04ad62d77e4ef0fac9e099d6f69b7b3bbd9942b
c2ee0110335b7810e8257a67e1260499824b7755
/Car.py
ecbb6c6b0df16a6241f60e71015b54c86b3571e5
[]
no_license
notkevin1/T2V
f0b8c54b9504372f6475935429d61bb0e80f5404
51a57d8dbd290f6f363c55f8d9fb2a2be07c4b11
refs/heads/master
2022-12-01T01:46:00.763940
2020-08-04T22:00:05
2020-08-04T22:00:05
285,109,597
0
0
null
null
null
null
UTF-8
Python
false
false
610
py
import bluetooth class Car: def __init__(self, btAddress, RFIDid): self.btAddress = btAddress self.RFIDid = RFIDid self.btSocket = bluetooth.BluetoothSocket(bluetooth.RFCOMM) def connect(self): try: self.btSocket.connect((self.btAddress, 1)) except Exception as e: print(e) def send(self, command): try: self.btSocket.send('$' + command + '#') except Exception as e: print(e) def getBTAddress(self): return self.btAddress def getRFIDid(self): return self.RFIDid
[ "noreply@github.com" ]
noreply@github.com
4db616cd5fc1beee21a747beae32fd9ffbb06fb1
a282dcc225273e5d4482f8468077007ece25830e
/Engine/src/Core/KeyCodes/KeyCode.py
0ca6785f8ad775443f1dc594a975c75131cf36be
[]
no_license
WolfenGames/unnamed_project_python
8b0d82159613b55651a2397b8906ab21d4ed2864
18630fa017706ad53c46448a840cd3441d663dac
refs/heads/main
2023-03-14T12:02:26.572690
2021-03-10T10:05:01
2021-03-10T10:05:01
327,002,960
1
0
null
2021-03-10T10:05:02
2021-01-05T13:12:12
Python
UTF-8
Python
false
false
2,198
py
from enum import Enum class KeyCode(Enum): Space = 32, Apostrophe = 39, Comma = 44, Minus = 45, Period = 46, Slash = 47, D0 = 48, # /* 0 */ D1 = 49, # /* 1 */ D2 = 50, # /* 2 */ D3 = 51, # /* 3 */ D4 = 52, # /* 4 */ D5 = 53, # /* 5 */ D6 = 54, # /* 6 */ D7 = 55, # /* 7 */ D8 = 56, # /* 8 */ D9 = 57, # /* 9 */ Semicolon = 59, # /* ; */ Equal = 61, # /* = */ A = 65, B = 66, C = 67, D = 68, E = 69, F = 70, G = 71, H = 72, I = 73, J = 74, K = 75, L = 76, M = 77, N = 78, O = 79, P = 80, Q = 81, R = 82, S = 83, T = 84, U = 85, V = 86, W = 87, X = 88, Y = 89, Z = 90, LeftBracket = 91, # /* [ */ Backslash = 92, # /* \ */ RightBracket = 93, # /* ] */ GraveAccent = 96, # /* ` */ World1 = 161, # /* non-US #1 */ World2 = 162, # /* non-US #2 */ # /* Function keys */ Escape = 256, Enter = 257, Tab = 258, Backspace = 259, Insert = 260, Delete = 261, Right = 262, Left = 263, Down = 264, Up = 265, PageUp = 266, PageDown = 267, Home = 268, End = 269, CapsLock = 280, ScrollLock = 281, NumLock = 282, PrintScreen = 283, Pause = 284, F1 = 290, F2 = 291, F3 = 292, F4 = 293, F5 = 294, F6 = 295, F7 = 296, F8 = 297, F9 = 298, F10 = 299, F11 = 300, F12 = 301, F13 = 302, F14 = 303, F15 = 304, F16 = 305, F17 = 306, F18 = 307, F19 = 308, F20 = 309, F21 = 310, F22 = 311, F23 = 312, F24 = 313, F25 = 314, # /* Keypad */ KP0 = 320, KP1 = 321, KP2 = 322, KP3 = 323, KP4 = 324, KP5 = 325, KP6 = 326, KP7 = 327, KP8 = 328, KP9 = 329, KPDecimal = 330, KPDivide = 331, KPMultiply = 332, KPSubtract = 333, KPAdd = 334, KPEnter = 335, KPEqual = 336, LeftShift = 340, LeftControl = 341, LeftAlt = 342, LeftSuper = 343, RightShift = 344, RightControl = 345, RightAlt = 346, RightSuper = 347, Menu = 348
[ "julian.w16@gmail.com" ]
julian.w16@gmail.com
c3192ecfb8c725f98b311d74c51bb7580f217753
0764ea1804860e5e373ced6c972342c3be32161b
/package1/enrich.py
7b2a3052eaff10a29a3942d8b9116e6f4a11c4a7
[]
no_license
sacses/Ironhack-Module-1-Project---Pipeline-Project
5fe7d049edc74ef168c913c2a093b77236631e5f
a34ca92cbe2cafc2aa596445ccee27cf4a1f2912
refs/heads/master
2022-12-11T20:45:10.839028
2020-02-28T13:52:49
2020-02-28T13:52:49
226,491,438
0
0
null
2022-07-06T20:27:11
2019-12-07T10:13:10
Jupyter Notebook
UTF-8
Python
false
false
3,014
py
import json import requests import pandas as pd def lowercase_feature(df, col): return df[col].str.lower() def export_csv(path, df, deli): return df.to_csv(path, sep=deli, index=False) def extract_float(df, col, regex): return df[col].str.extract(regex).astype('float64') def enrich(df_cleaned): url = 'https://en.wikipedia.org/wiki/List_of_countries_by_research_and_development_spending' rnd_spending = pd.read_html(url)[0] export_csv(f'data/raw/enrich_input.csv', rnd_spending, ';') print('Enrich input is found in raw folder') rnd_spending.columns = rnd_spending.iloc[1] rnd_spending.drop(rnd_spending.index[0:2], inplace=True) rnd_spending.rename(columns={'Country/Region': 'country', 'Expenditures on R&D (billions of US$, PPP),': 'r&dExpense_billions', '% of GDP PPP': '%GDP', 'Expenditures on R&D per capita (US$ PPP),': 'r&dExpensePerCapita'}, inplace=True) rnd_spending['%GDP'] = extract_float(rnd_spending, '%GDP', r"(\d+.?\d*)") rnd_spending[['r&dExpense_billions', 'r&dExpensePerCapita']] = rnd_spending[ ['r&dExpense_billions', 'r&dExpensePerCapita']].astype('float64') rnd_spending['country'] = lowercase_feature(rnd_spending, 'country') merged_df = pd.merge(df_cleaned, rnd_spending[['country', 'r&dExpense_billions', '%GDP', 'r&dExpensePerCapita']], on='country', how='left') merged_df[['r&dExpense_billions', '%GDP', 'r&dExpensePerCapita']] = merged_df[ ['r&dExpense_billions', '%GDP', 'r&dExpensePerCapita']].fillna(0) table_analysis = merged_df.groupby('country').agg(billionaires=('id', 'count'), age=('age', 'mean'), gender=('gender', 'mean'), mean_billionaire_pos=('position', 'mean'), median_billionaire_pos=('position', 'median'), total_billionaire_worth=('worth', 'sum'), mean_billionaire_worth=('worth', 'mean'), median_billionaire_worth=('worth', 'median'), rd_expense_billions=('r&dExpense_billions', 'max'), rd_expense_capita=('r&dExpensePerCapita', 'max'), percent_GDP=('%GDP', 'max')).sort_values(by='billionaires', ascending=False)[ 1:].reset_index() export_csv(f'data/processed/enriched_df.csv', table_analysis, ';') print('Enriched DataFrame can be found in processed folder') return table_analysis
[ "fcodpaula.tamarit@gmail.com" ]
fcodpaula.tamarit@gmail.com
1c633bb83ec340755424794ca77ec8a5cecdcbf1
c253e3c94b66e85d52b1c274e649a8431db0d7d5
/IT-Lab/assignment-6/codes/1.py
ab5c61b8787c25c90e6d39eaf115480cc804383b
[]
no_license
Abhinal/college-assignments
bfecc9d8dd05b7da5348def9990f42ff28329328
a93aeee086eb681f946cc343869610e4588af307
refs/heads/master
2023-08-16T12:04:35.543135
2021-10-22T16:27:33
2021-10-22T16:31:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
lst = [] i = 0 while i < 5: player = input() lst.append(player) i += 1 print(lst)
[ "ayushdubey70@gmail.com" ]
ayushdubey70@gmail.com
91cf6e1cd22192ef76a60d109e11794b8da0cc6f
419855e4815dce0170e4a791716aee769847b5c7
/social_network/social_network/settings.py
a7edcc7ebc778b2c59d932a6a40b8ef07bc45709
[]
no_license
JanaStepanchak/social-network
e244d335378445aa20850850f38374678cafe7df
4488fbeb8530cdd033adc4e284546ab081f67b44
refs/heads/master
2021-09-01T10:01:58.983269
2017-10-03T21:52:50
2017-10-03T21:52:50
114,982,206
0
0
null
2017-12-26T10:17:29
2017-12-21T08:32:45
Python
UTF-8
Python
false
false
3,276
py
""" Django settings for social_network project. Generated by 'django-admin startproject' using Django 1.11.5. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'm#$)88c)t=zyhf+v8zdecbjf6jyqbc1@f7dj-bd600w71a^bw*' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'social_network_app', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'social_network.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'social_network/templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'social_network.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'social_network_app/static/') ]
[ "dmytro.revak@gmail.com" ]
dmytro.revak@gmail.com
82d8e508bea9d27e596ec5fd5f94d4d16fc0ca40
085406a6754c33957ca694878db9bbe37f84b970
/网络编程/08-ssh_socket_client.py
b91da548705606b59b6c0eb6b8d70cdbb3050767
[]
no_license
dewlytg/Python-example
82157958da198ce42014e678dfe507c72ed67ef0
1e179e4037eccd9fefabefd252b060564a2eafce
refs/heads/master
2021-01-01T18:36:08.868861
2019-01-18T10:39:08
2019-01-18T10:39:08
98,375,528
3
0
null
null
null
null
UTF-8
Python
false
false
1,041
py
#!/usr/bin/env python """ socket client for ssh """ import socket client = socket.socket() client.connect(("localhost",9999)) while True: #支持客户端循环发送数据到服务端 cmd = input(">>:").strip() if len(cmd) == 0:continue client.send(cmd.encode()) #python3中必须把字符串转换为bytes类型,这里可以理解字符串类型是utf-8 cmd_res_size = client.recv(1024) print("命令结果大小:",cmd_res_size) client.send("please input somthing in order to packet splicing".encode()) #把代码放到Linux执行会发生粘包错误,这个可以避免错误发生 received_size = 0 received_data = b'' while received_size != int(cmd_res_size.decode()): #cmd_res_size是bytes类型的数据,需要使用decode转换为字符串 data = client.recv(1024) received_size += len(data) received_data += data else: print("cmd res receive done...",received_size) print(received_data.decode()) client.close()
[ "gang.tang@cutt.com" ]
gang.tang@cutt.com
35735a0f868b7b08da72f3eb034598d7ec4f2e66
76c7687d8ea81b8595b08dbdaf50c38e7757e69f
/app/views.py
3d0deacf75ac2cdb502d8852d8017d61201c2046
[]
no_license
alexkorentsvit/Parser_and_Flask
94285948ba68ceaa2fa00a82ad63e02b276515e2
6d41b78db7028602b8162a838d2f283b9caae808
refs/heads/master
2022-10-21T14:49:20.164036
2017-11-13T23:44:18
2017-11-13T23:44:18
110,615,640
0
1
null
2022-10-07T21:45:12
2017-11-13T23:43:38
Python
UTF-8
Python
false
false
888
py
from flask import render_template, redirect, session, request from app import app import psycopg2 @app.route('/', methods = ['GET']) @app.route('/Table_LE', methods = ['GET']) def Table(): data = [] try: conn = psycopg2.connect("dbname='uo_db2' user='alex_korentsvit' host='localhost' password='qwerty'") except: print ("I am unable to connect to the database") else: print('successfully connected to the database') cur = conn.cursor() cur.execute("SELECT id, EDRPOU_code, Name, State FROM UO_TABLE") counter = 0 for record in cur: data.append(record) counter += 1 if counter == 500: break return render_template('Table_LE.html', title = 'Table', data = data)
[ "alex.dota@gmail.com" ]
alex.dota@gmail.com
94469e411f69931b1aa7dec9d60e62e9d87a7eff
3e917645a0e1375189c8ee8c1e93ed15348111ef
/projects/usxp/archive/parrallel/parallel_nibble_v2.py
792bbb8be009b4feb157af5c7e2bf1c7bf54ad07
[]
no_license
mbougie/gibbs
d4544e688ce2b63530535e1f5102328aece30e0d
39d5dc0866fc0dd149d0cf1f22bfd20911a9d29e
refs/heads/master
2021-01-12T06:59:27.214123
2020-01-07T15:48:12
2020-01-07T15:48:12
83,906,717
1
0
null
null
null
null
UTF-8
Python
false
false
6,710
py
import arcpy from arcpy import env from arcpy.sa import * import multiprocessing import os import glob import sys import time import logging from multiprocessing import Process, Queue, Pool, cpu_count, current_process, Manager import general as gen # arcpy.env.overwriteOutput = True arcpy.env.scratchWorkspace = "in_memory" case=['Bougie','Gibbs'] #import extension arcpy.CheckOutExtension("Spatial") #establish root path for this the main project (i.e. usxp) rootpath = 'C:/Users/Bougie/Desktop/Gibbs/data/usxp/' # rootpath = 'D:/projects/ksu/v2/' ### establish gdb path #### def defineGDBpath(arg_list): gdb_path = '{}{}/{}/{}.gdb/'.format(rootpath,arg_list[0],arg_list[1],arg_list[2]) # print 'gdb path: ', gdb_path return gdb_path ####### define raster and mask #################### class ProcessingObject(object): def __init__(self, series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq): self.series = series self.res = str(res) self.mmu =str(mmu) self.years = years self.name = name self.subname = subname self.parent_seq = parent_seq self.mask_seq = mask_seq self.outraster_seq = outraster_seq self.datarange = str(self.years[0])+'to'+str(self.years[1]) print 'self.datarange:', self.datarange self.dir_tiles = 'C:/Users/Bougie/Desktop/Gibbs/tiles/' # s9_ytc30_2008to2016_mmu5_nbl_bfc if self.name == 'mtr': self.traj = self.series+'_traj_cdl'+self.res+'_b_'+self.datarange+'_rfnd' self.gdb_parent = defineGDBpath(gdb_parent) self.raster_parent = self.traj+self.parent_seq self.path_parent = self.gdb_parent + self.raster_parent print 'self.path_parent', self.path_parent self.gdb_child = defineGDBpath(gdb_child) self.raster_mask = self.raster_parent + self.mask_seq self.path_mask = self.gdb_child + self.raster_mask self.raster_nbl = self.raster_parent + self.outraster_seq self.path_nbl = self.gdb_child + self.raster_nbl print 'self.path_nbl', self.path_nbl self.out_fishnet = defineGDBpath(['ancillary','vector', 'shapefiles']) + 'fishnet_mtr' print self.out_fishnet self.pixel_type = "16_BIT_UNSIGNED" else: self.gdb_parent = defineGDBpath(['s14', 'post', self.name]) self.yxc_foundation = self.series+'_'+self.name+self.res+'_'+self.datarange+'_mmu'+self.mmu print 'self.yxc_foundation', self.yxc_foundation self.path_parent = self.gdb_parent + self.yxc_foundation print 'self.path_parent', self.path_parent self.raster_mask = self.yxc_foundation + '_msk' self.path_mask = self.gdb_parent + self.raster_mask print 'self.path_mask', self.path_mask self.out_fishnet = defineGDBpath(['ancillary','vector', 'shapefiles']) + 'fishnet_ytc' self.pixel_type = "16_BIT_UNSIGNED" self.raster_nbl = self.yxc_foundation + '_nbl' print 'self.raster_nbl:', self.raster_nbl self.path_nbl = self.gdb_parent + self.raster_nbl print 'self.path_nbl', self.path_nbl # def existsDataset(self): # dataset = self.gdb_parent + self.raster_parent + '_nbl' # if arcpy.Exists(dataset): # print 'dataset already exists' # return # else: # print 'dataset: ', dataset # return self.raster_parent + '_nbl' def create_fishnet(): #delete previous fishnet feature class arcpy.Delete_management(nibble.out_fishnet) #acquire parameters for creatfisnet function XMin = nibble.path_parent.extent.XMin YMin = nibble.path_parent.extent.YMin XMax = nibble.path_parent.extent.XMax YMax = nibble.path_parent.extent.YMax origCord = "{} {}".format(XMin, YMin) YAxisCord = "{} {}".format(XMin, YMax) cornerCord = "{} {}".format(XMax, YMax) cellSizeW = "0" cellSizeH = "0" numRows = 7 numCols = 7 geotype = "POLYGON" arcpy.env.outputCoordinateSystem = nibble.path_parent.spatialReference print nibble.path_parent.spatialReference.name #call CreateFishnet_management function arcpy.CreateFishnet_management(nibble.out_fishnet, origCord, YAxisCord, cellSizeW, cellSizeH, numRows, numCols, cornerCord, "NO_LABELS", "", geotype) def execute_task(args): in_extentDict, nibble = args fc_count = in_extentDict[0] # print fc_count procExt = in_extentDict[1] # print procExt XMin = procExt[0] YMin = procExt[1] XMax = procExt[2] YMax = procExt[3] #set environments #The brilliant thing here is that using the extents with the full dataset!!!!!! DONT EVEN NEED TO CLIP THE FULL RASTER TO THE FISHNET BECASUE arcpy.env.snapRaster = nibble.path_parent arcpy.env.cellsize = nibble.path_parent arcpy.env.extent = arcpy.Extent(XMin, YMin, XMax, YMax) ### Execute Nibble ##################### ras_out = arcpy.sa.Nibble(nibble.path_parent, nibble.path_mask, "DATA_ONLY") #clear out the extent for next time arcpy.ClearEnvironment("extent") # print fc_count outname = "tile_" + str(fc_count) +'.tif' #create Directory outpath = os.path.join("C:/Users/Bougie/Desktop/Gibbs/", r"tiles", outname) ras_out.save(outpath) def mosiacRasters(nibble): tilelist = glob.glob(nibble.dir_tiles+'*.tif') print tilelist ######mosiac tiles together into a new raster arcpy.MosaicToNewRaster_management(tilelist, nibble.gdb_parent, nibble.raster_nbl, Raster(nibble.path_parent).spatialReference, nibble.pixel_type, nibble.res, "1", "LAST","FIRST") ##Overwrite the existing attribute table file arcpy.BuildRasterAttributeTable_management(nibble.path_nbl, "Overwrite") ## Overwrite pyramids gen.buildPyramids(nibble.path_nbl) def run(series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq): #instantiate the class inside run() function nibble = ProcessingObject(series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq) print nibble.res # need to create a unique fishnet for each dataset #create_fishnet() #remove a files in tiles directory tiles = glob.glob(nibble.dir_tiles+"*") for tile in tiles: os.remove(tile) #get extents of individual features and add it to a dictionary extDict = {} count = 1 for row in arcpy.da.SearchCursor(nibble.out_fishnet, ["SHAPE@"]): extent_curr = row[0].extent ls = [] ls.append(extent_curr.XMin) ls.append(extent_curr.YMin) ls.append(extent_curr.XMax) ls.append(extent_curr.YMax) extDict[count] = ls count+=1 # print 'extDict', extDict # print'extDict.items()', extDict.items() ######create a process and pass dictionary of extent to execute task pool = Pool(processes=cpu_count()) # pool = Pool(processes=1) pool.map(execute_task, [(ed, nibble) for ed in extDict.items()]) pool.close() pool.join mosiacRasters(nibble)
[ "mbougie@wisc.edu" ]
mbougie@wisc.edu
480887a024ca94ee43f737c8c35a5981cb2c8cb4
79f8dde6225a1836ec15cb2c1488be9df368cc9a
/pipeline-code/main.py
f6d859e8d62f2e94f9650b03fae14018dea02aae
[]
no_license
sigamani/technical-test
7c2590459493ce00baec1bddb83d4a2c5304447e
427bead82b46b4ccb3c702f7911e76a73e765133
refs/heads/main
2023-08-29T14:13:58.173156
2021-10-17T14:27:20
2021-10-17T14:27:20
417,606,509
0
0
null
null
null
null
UTF-8
Python
false
false
4,333
py
from argparse import ArgumentParser import pandas as pd from datetime import date from modules.response_processing import load_data, clean_data, add_weights, save_to_output from modules.clustering import kmodes_clustering, process, rules_segmentation from modules.salient_questions import SalientQuestions def preprocess_data(df: pd.DataFrame) -> pd.DataFrame: # Clean data response_data = clean_data.main(df=df) # Add weights response_data = add_weights.main(data=response_data, gender_col="DEM_WW_GENDER_RB_L_v3_14072020", age_col="DEM_WW_AGE_DM_L_v1_14072020", region_col="REGION") # Save data save_to_output.processed_responses(data=response_data, file_name=f'processed_responses_{date_str}.csv') return response_data def segmentation(df: pd.DataFrame, segmentation_type='kmodes', **kwargs) -> pd.DataFrame: """If segmentation_type = 'rules' additional argument required, *segmentation_cols: str type, column to segment on e.g. 'DEM_WW_GENDER_RB_L_v3_14072020' """ segmented_data = pd.DataFrame() # Automatic segmentation if segmentation_type == 'kmodes': # Run analysis clustering_data, removed_cols = process.clean_up(df) cluster_sizes, clustered_df = kmodes_clustering.set_up_and_cluster(clustering_data, cluster_vars = 'all', override_n_clusters = None) segmented_data = kmodes_clustering.return_full_clustered_df(clustered_df, df, removed_cols) # Rules-based segmentation elif segmentation_type == 'rules': segmented_data = rules_segmentation.segmentation(df, segmentation_cols = kwargs['segmentation_cols']) # Save data save_to_output.processed_responses(data = segmented_data, file_name = f'clustered_responses_{date_str}.csv') return segmented_data def make_report(df: pd.DataFrame) -> pd.DataFrame: print("Instantiate class..") # Create instance salient_feats = SalientQuestions(df) print("Class has been instantiated") # Calc discover & deliver stats: seg_col= 'cluster' for auto clustering or 'question_code' for rules based salient_feats.create_summary_stats_df(seg_col = 'cluster') print("Summary stats have been calculated.") # Save data save_to_output.processed_responses(data = salient_feats.summary_stats, file_name = f'cluster_summary_stats_{date_str}.csv') return salient_feats.summary_stats if __name__ == "__main__": parser = ArgumentParser(description="Run the sentiment model") # todo: update appropriately parser.add_argument('mode', choices=['process', 'segment', 'report'], default='process', help='Choose the mode: process, segment, or report.') parser.add_argument('-s', '--segmentation_type', choices = ['kmodes', 'rules'], default = 'kmodes', help = "Choose the type of segmentation you'd like to run: kmodes or rules.") parser.add_argument('-c', '--segmentation_cols', nargs='+') # Takes 1 or more column names (str) args = parser.parse_args() today = date.today() date_str = today.strftime("%b-%d-%Y").replace('-', '_') print(f"\nToday's date is '{date_str}'\n") if args.mode == 'process': data = load_data.response_data(id_column='ID') preprocess_data(df=data) if args.mode == 'segment': data = pd.read_csv(f"data/processed_data/response_data/processed_responses_{date_str}.csv") print("\nData upload successful.\n") # e.g. python main.py segment 'rules' -c 'Go City:AIDA_WW_ABA_IMS_07062021' 'DEM_WW_GENDER_RB_L_v3_14072020' segmented_df = segmentation(data, args.segmentation_type, segmentation_cols = args.segmentation_cols) print("Segmentation complete. \n") if args.mode == 'report': data = pd.read_csv(f'data/processed_data/response_data/clustered_responses_{date_str}.csv') try: summary_stats = make_report(data) print("Reporting complete. \n", summary_stats.head()) except: print('Data not found. You must run the clustering step first.')
[ "noreply@github.com" ]
noreply@github.com
fb121a9a3c4898a93a4dd644bb433b8bec45bae3
2ca1720c6fde441a3692fa77fd9d60e8fc9e3a31
/programs/file_owners.py
34c528d98b0364200a31e6931c7d52ae25579164
[]
no_license
navinas33/python_programs
e024c6293a6ff355e98789481e3c23d80b921fb8
18da3c27c08f6a2be52498fe26574e353d0109b2
refs/heads/main
2023-08-24T18:15:10.299426
2021-10-28T13:36:57
2021-10-28T13:36:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
# Implement a group_by_owners function that: # # Accepts a dictionary containing the file owner name for each file name. # Returns a dictionary containing a list of file names for each owner name, in any order. # For example, for dictionary {'Input.txt': 'Randy', 'Code.py': 'Stan', 'Output.txt': 'Randy'} the group_by_owners function should return {'Randy': ['Input.txt', 'Output.txt'], 'Stan': ['Code.py']}. def group_by_owners(files): return_dict = {} for key, value in files.items(): if value not in return_dict: return_dict[value] = [] return_dict[value].append(key) return return_dict if __name__ == "__main__": files = { 'Input.txt': 'Randy', 'Code.py': 'Stan', 'Output.txt': 'Randy' } print(group_by_owners(files))
[ "navinkumar.a_s@nokia.com" ]
navinkumar.a_s@nokia.com
59bd26a436c815a1a7ffcd5776a932ae68d492c4
3df1d0d5946b0b8673d509cfb9b6dd99110450fe
/src/util/icons.py
a3d65166465b23ece394e699b39146a6d9558d66
[]
no_license
veveykocute/game_launcher
3374d8069504ed6dcbe844ccb8d725a62699bca4
862e8300af8108ea58d06fa59c2e82086cb8f0fb
refs/heads/master
2021-01-18T08:16:34.661709
2015-08-18T22:19:39
2015-08-18T22:19:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,867
py
"""Routines for finding a game's icon""" from __future__ import (absolute_import, division, print_function, with_statement, unicode_literals) __author__ = "Stephan Sokolow (deitarion/SSokolow)" __license__ = "MIT" import os, re from .common import multiglob_compile # Files which should be heuristically considered to identify a program's icon ICON_EXTS = ( '.png', '.xpm', '.svg', '.svgz', '.svg.gz', '.jpg', '.jpe', '.jpeg', '.bmp', '.ico', ) NON_ICON_NAMES = ( '*background*', 'bg*', 'character*', 'sheet*', 'tile*', ) NON_ICON_NAMES_RE = multiglob_compile(NON_ICON_NAMES, re_flags=re.I) def pick_icon(icons, parent_path): """Choose the best icon from a set of detected image files. @todo: Maybe redesign this on a score-based system? @todo: Support multiple sizes @todo: Return a fallback list so a failed load can fall back. @todo: Write a unit test suite as I did for the name guesser. """ if not icons: return None # Ignore non-icon resources result = [] for img in icons: if not NON_ICON_NAMES_RE.match(img): result.append(img) icons = result or icons # Prefer images with icon in the name as icons. result = [] for icon in icons: if 'icon' in icon.lower(): result.append(icon) icons = result or icons # Prefer images named icon.* result = [] for icon in icons: significant = os.path.splitext(icon)[0].lower() if significant == 'icon': result.append(icon) icons = result or icons # TODO: Prefer square images so we don't wind up using Time Swap's Ouya # icon by mistake. # TODO: Prefer SVG > PNG > XPM > BMP > JPEG # (But try to find a way to prefer timeswapIcon.png over icon.svg # without resorting to rendering the SVG and picking the one # that's colour rather than sepia-toned grayscale) # TODO: Once I've got a regression suite in place, try capturing the # NEO Scavenger icon by matching for img/*logo.* # TODO: Need to understand patterns like *_(32|128).png so SuperTuxKart # reliably gets the bigger icon when it needs to be upscaled. # TODO: I'll need to extract icons from .exe files in Mono-based games # like Atom Zombie Smasher which don't offer them separately. # (Also, it should be possible to get additional cues as to a game's # name by looking for binaries with the same spelling but different # capitalization when the folder name is all lowercase) # TODO: If nothing else matches, look inside things like # EndlessNuclearKittens.jar to find (16|32|64|128).png # TODO: Make this smarter return os.path.join(parent_path, icons[0]) # vim: set sw=4 sts=4 expandtab :
[ "http://www.ssokolow.com/ContactMe" ]
http://www.ssokolow.com/ContactMe
b5d06007d6975e93010d7ebcf55a08c25e4aa76e
9759218bd38f6fb810d5f4efb0d1c55ca0bfeb2b
/fibonacci.py
e44da1b255f3eec4762a99ebf01a2fbf0a5a17d6
[]
no_license
JoergReinhardt/python_kinematic
692f2d39de2306847589490eb3a57a9ad985254f
c3613f816b85aea52dc6a3a4368d2d9c39189918
refs/heads/master
2021-01-02T08:40:21.962340
2014-05-07T10:51:18
2014-05-07T10:51:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
318
py
def recursive(n): result = [] if n == 0: return 0 if n == 1: return 1 else: result.append((recursive(n-1)+recursive(n-2))) return result def iterative(n): result = [] a, b = 0, 1 while b < n: result.append(b) a, b = b, a+b return result
[ "j.p.reinhardt@gmail.com" ]
j.p.reinhardt@gmail.com
bd838272251fd61d15841e420f6f1941229fee32
51b439c93e96f1e11be20a5e4cb178f43e13e5cf
/String/lengthOfLastWord.py
5208069ef4bd2c453c9fae1d00abd0fe35a290e1
[]
no_license
mail-vishalgarg/pythonPracticeOnly
20a2aa87d064d737c028a31fb84692e30d07b0fa
8df4016b97b210cdf2ab1266773bc7731b8bcc7b
refs/heads/master
2020-03-17T12:09:45.425438
2019-03-22T04:33:09
2019-03-22T04:33:09
133,576,745
0
0
null
null
null
null
UTF-8
Python
false
false
362
py
class LengthOfLastWord(object): def lenghtOfLastWord(self, s): lastIndexOfSpace = s.rfind(' ') length_of_last_word = s[lastIndexOfSpace + 1:] print 'Length of the last word:',len(length_of_last_word) if __name__ == '__main__': input_str = 'test only please ignore' obj = LengthOfLastWord() obj.lenghtOfLastWord(input_str)
[ "mail.vishalgarg@gmail.com" ]
mail.vishalgarg@gmail.com
3a7c5b5f1b703bbb7f47d522088f4a5176a19024
67a4db2b8fe501298196375db5bb12960a7b1d58
/contrib/seeds/generate-seeds.py
2aad6cae958664fbb60ee61d35714c3a342207bf
[ "MIT" ]
permissive
umoguny/supercoll
cc9b4cbc5d358473e8978c1315cadad399b28c30
83b8f68ad308de6659e21219e823e6b2b4632882
refs/heads/master
2020-03-28T21:14:12.639871
2018-09-17T14:10:30
2018-09-17T14:10:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,383
py
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Script to generate list of seed nodes for chainparams.cpp. This script expects two text files in the directory that is passed as an argument: nodes_main.txt nodes_test.txt These files must consist of lines in the format <ip> <ip>:<port> [<ipv6>] [<ipv6>]:<port> <onion>.onion 0xDDBBCCAA (IPv4 little-endian old pnSeeds format) The output will be two data structures with the peers in binary format: static SeedSpec6 pnSeed6_main[]={ ... } static SeedSpec6 pnSeed6_test[]={ ... } These should be pasted into `src/chainparamsseeds.h`. ''' from __future__ import print_function, division from base64 import b32decode from binascii import a2b_hex import sys, os import re # ipv4 in ipv6 prefix pchIPv4 = bytearray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff]) # tor-specific ipv6 prefix pchOnionCat = bytearray([0xFD,0x87,0xD8,0x7E,0xEB,0x43]) def name_to_ipv6(addr): if len(addr)>6 and addr.endswith('.onion'): vchAddr = b32decode(addr[0:-6], True) if len(vchAddr) != 16-len(pchOnionCat): raise ValueError('Invalid onion %s' % s) return pchOnionCat + vchAddr elif '.' in addr: # IPv4 return pchIPv4 + bytearray((int(x) for x in addr.split('.'))) elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i,comp in enumerate(addr): if comp == '': if i == 0 or i == (len(addr)-1): # skip empty component at beginning or end continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) return bytearray(sub[0] + ([0] * nullbytes) + sub[1]) elif addr.startswith('0x'): # IPv4-in-little-endian return pchIPv4 + bytearray(reversed(a2b_hex(addr[2:]))) else: raise ValueError('Could not parse address %s' % addr) def parse_spec(s, defaultport): match = re.match('\[([0-9a-fA-F:]+)\](?::([0-9]+))?$', s) if match: # ipv6 host = match.group(1) port = match.group(2) elif s.count(':') > 1: # ipv6, no port host = s port = '' else: (host,_,port) = s.partition(':') if not port: port = defaultport else: port = int(port) host = name_to_ipv6(host) return (host,port) def process_nodes(g, f, structname, defaultport): g.write('static SeedSpec6 %s[] = {\n' % structname) first = True for line in f: comment = line.find('#') if comment != -1: line = line[0:comment] line = line.strip() if not line: continue if not first: g.write(',\n') first = False (host,port) = parse_spec(line, defaultport) hoststr = ','.join(('0x%02x' % b) for b in host) g.write(' {{%s}, %i}' % (hoststr, port)) g.write('\n};\n') def main(): if len(sys.argv)<2: print(('Usage: %s <path_to_nodes_txt>' % sys.argv[0]), file=sys.stderr) exit(1) g = sys.stdout indir = sys.argv[1] g.write('#ifndef DESIRE_CHAINPARAMSSEEDS_H\n') g.write('#define DESIRE_CHAINPARAMSSEEDS_H\n') g.write('/**\n') g.write(' * List of fixed seed nodes for the collectiblecoin network\n') g.write(' * AUTOGENERATED by contrib/seeds/generate-seeds.py\n') g.write(' *\n') g.write(' * Each line contains a 16-byte IPv6 address and a port.\n') g.write(' * IPv4 as well as onion addresses are wrapped inside a IPv6 address accordingly.\n') g.write(' */\n') with open(os.path.join(indir,'nodes_main.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_main', 9919) g.write('\n') with open(os.path.join(indir,'nodes_test.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_test', 19919) g.write('#endif // DESIRE_CHAINPARAMSSEEDS_H\n') if __name__ == '__main__': main()
[ "fastpow@github.com" ]
fastpow@github.com
912c36ec729b749cdf5a01caf4cd29055cf3f717
e376062bb68bdd16e285d87103b5ad9b8fea69b7
/balance_weighted_scales.py
6a17d9fdb09e65676b3a5d4ff5358d6460bf149a
[]
no_license
AwotG/QAEngineerAssessment
8146e6091db06aa3d2655d68f6e5cc8d9cdd1ec5
f35408d24aef88a10308b90f479910546164add1
refs/heads/master
2023-07-14T09:23:20.581587
2021-08-18T15:05:25
2021-08-18T15:05:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,030
py
import sys import re import logging from itertools import combinations from pathlib import Path ######################################################################################################################## # Basic Logging (nothing fancy) ######################################################################################################################## logging.basicConfig(level=logging.DEBUG, format="%(asctime)s: %(levelname)s: %(message)s") ######################################################################################################################## # Constants ######################################################################################################################## SCALE = "scale" WEIGHT = "weight" SCRIPT_PATH = Path(__file__).parent ######################################################################################################################## # Gather Input Validation ######################################################################################################################## def parse_user_input_txt(user_input="user_input.txt"): user_input_txt_path = SCRIPT_PATH / user_input try: file = open(user_input_txt_path, "r") except FileNotFoundError: logging.error(f"\nCan't find the file': '{user_input}'\nFull Path: '{user_input_txt_path}'\nExiting.") sys.exit(FileNotFoundError) except IOError: logging.error(f"\nDoesn't look like you can open the file: '{user_input}'\nFull Path: '{user_input_txt_path}'\nExiting.") sys.exit(IOError) else: line = file.readline() scale, weights = re.findall(r'"(.*?)"', line) file.close() return scale, weights def validate_and_parse_values(list_of_strings, type): """Scale must have only 2 elements, Weights must have at least 1 element """ length = len(list_of_strings) if type.lower() == "scale" and length != 2: logging.error(f"\nScale values have too many elements\nExpected 2 but got {length}\n{list_of_strings}") sys.exit(ValueError) elif type.lower() == "weight" and length < 1: logging.error(f"\nWeight values have too many elements\nExpected 1 but got {length}\n{list_of_strings}") sys.exit(ValueError) result_list = strings_to_ints(list_of_strings, type) return result_list def input_txt_to_values(raw_value, type): if type.lower() == SCALE: raw_scale_values = list(raw_value.strip("[]").split(",")) result_values = validate_and_parse_values(raw_scale_values, SCALE) elif type.lower() == WEIGHT: raw_weight_values = list(raw_value.strip("[]").split(",")) result_values = validate_and_parse_values(raw_weight_values, WEIGHT) else: return False return result_values def strings_to_ints(list_of_strings, type): """Values must be non-negative integers, scale elements must be 2, weight elements must be at least 1""" result = [] for value in list_of_strings: try: to_int = int(value) if to_int < 0: raise ValueError except ValueError: logging.error( f"Unable to convert {type} value {value} to non-negative integer.\nFull {type} values were {list_of_strings}") sys.exit(ValueError) else: result.append(int(value)) return sorted(result) ######################################################################################################################## # Balancing scale algorithm ######################################################################################################################## def check_values(scale_list, weight_list): left_scale = scale_list[0] right_scale = scale_list[1] if len(weight_list) == 1: return check_with_single_weight(left_scale, right_scale, weight_list) elif len(weight_list) > 1: return check_with_two_weights(left_scale, right_scale, weight_list) def check_with_single_weight(left_scale, right_scale, weight_list): scale_diff = abs(right_scale-left_scale) if scale_diff == weight_list[0]: return f"{weight_list[0]}" else: return "No possible solution. Please try again." def check_with_two_weights(left_scale, right_scale, weight_list): for pair in combinations(weight_list, 2): if pair[0] + left_scale == pair[1] + right_scale \ or pair[0] + right_scale == pair[1] + left_scale\ or pair[0] + pair[1] + left_scale == right_scale \ or pair[0] + pair[1] + right_scale == left_scale: l, i = min(pair), max(pair) return ','.join([str(l), str(i)]) return "No possible solution. Please try again." if __name__ == '__main__': raw_scale, raw_weights = parse_user_input_txt() processed_scale = input_txt_to_values(raw_scale, SCALE) processed_weight = input_txt_to_values(raw_weights, WEIGHT) output = check_values(processed_scale, processed_weight) print(output)
[ "awotg@Awots-MacBook-Pro.local" ]
awotg@Awots-MacBook-Pro.local
cd3c7e62cee0966f54c2fdde7eececa025b438f7
ca22e34e15e4bef166adbb3376d89c4f841c9acf
/w7/A3.py
37f12aabaa4a5db589f560c1a3581b3276b8ceaa
[]
no_license
alekseik1/coursera_statistical_mechanics
599ee7252b7779123aa2e237a632aa894f00e470
6f001d41236230dfe15eef3e99d8185e6741031f
refs/heads/master
2022-11-25T22:10:57.903326
2020-07-29T18:25:39
2020-07-29T18:25:39
198,106,837
0
0
null
null
null
null
UTF-8
Python
false
false
1,769
py
import math, random, pylab def levy_harmonic_path(k): x = [random.gauss(0.0, 1.0 / math.sqrt(2.0 * math.tanh(k * beta / 2.0)))] if k == 2: Ups1 = 2.0 / math.tanh(beta) Ups2 = 2.0 * x[0] / math.sinh(beta) x.append(random.gauss(Ups2 / Ups1, 1.0 / math.sqrt(Ups1))) return x[:] def rho_harm_1d(x, xp, beta): Upsilon_1 = (x + xp) ** 2 / 4.0 * math.tanh(beta / 2.0) Upsilon_2 = (x - xp) ** 2 / 4.0 / math.tanh(beta / 2.0) return math.exp(- Upsilon_1 - Upsilon_2) beta = 0.1 nsteps = 1000000 low_1, low_2 = levy_harmonic_path(2) x = {low_1: low_1, low_2: low_2} data = [] for step in xrange(nsteps): # move 1 a = random.choice(x.keys()) if a == x[a]: dummy = x.pop(a) a_new = levy_harmonic_path(1)[0] x[a_new] = a_new else: a_new, b_new = levy_harmonic_path(2) x = {a_new: b_new, b_new: a_new} # move 2 (low1, high1), (low2, high2) = x.items() weight_old = rho_harm_1d(low1, high1, beta) * rho_harm_1d(low2, high2, beta) weight_new = rho_harm_1d(low1, high2, beta) * rho_harm_1d(low2, high1, beta) if random.uniform(0.0, 1.0) < weight_new / weight_old: x = {low1: high2, low2: high1} data.append(abs(x.keys()[1] - x.keys()[0])) pylab.hist(data, normed=True, label='Distance distribution', bins=100) # Analytical def prob_r_distinguishable(r, beta): sigma = math.sqrt(2.0) / math.sqrt(2.0 * math.tanh(beta / 2.0)) prob = (math.sqrt(2.0 / math.pi) / sigma) * math.exp(- r ** 2 / 2.0 / sigma ** 2) return prob x_data = [i/10. for i in range(0, 1000)] pylab.plot(x_data, [prob_r_distinguishable(x, beta) for x in x_data], label='analytical') pylab.xlim(0, 25) pylab.legend() pylab.savefig('A3.png') pylab.show() pylab.close()
[ "1alekseik1@gmail.com" ]
1alekseik1@gmail.com
2304d18e6fa69e2a6cf6dec70f35a20bf6c01843
e23de36d3d78a6517644f91e562dce8d6d5455ca
/pedidos/views.py
981c048321177c95642d415a8b8432093c5b2f6d
[]
no_license
lyralemos/danubio-DEPRECATED
8f0dab10cb142c25c68b00aa1f6b52daf707af37
d31b3616eba7b3919aec429597cbdf892f21e0bc
refs/heads/master
2021-05-28T06:20:25.296195
2013-08-24T20:33:48
2013-08-24T20:33:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,840
py
from django.utils import simplejson from django.http import HttpResponse, HttpResponseRedirect from django.core.urlresolvers import reverse, reverse_lazy from django.views.generic import TemplateView, ListView, CreateView, UpdateView, DetailView from django.db.models import Q from extra_views import CreateWithInlinesView, UpdateWithInlinesView, InlineFormSet from models import Cliente,Endereco,Produto,Pedido,PedidoProduto from forms import PedidoForm, PedidoProdutoForm, ProdutoForm class IndexView(TemplateView): template_name = "pedidos/index.html" def get_context_data(self, **kwargs): context = super(IndexView, self).get_context_data(**kwargs) context['cliente_list'] = Cliente.objects.all()[:5] context['produto_list'] = Produto.objects.all()[:5] context['pedido_list'] = Pedido.objects.all()[:5] return context class SearchListView(ListView): def get_queryset(self): search = self.request.GET.get('search',None) if search: return self.model.objects.filter(nome__contains=search) return self.model.objects.all() class SearchPedidosView(ListView): def get_queryset(self): termo = self.request.GET.get('q',None) status = self.request.GET.get('status',None) order = self.request.GET.get('order',None) search = self.model.objects.all() if termo: search = search.filter(Q(cliente__nome__contains=termo) | Q(pk__contains=termo)) if status: pass if order: search = search.order_by(order) return search class EnderecoInline(InlineFormSet): model = Endereco class CreateClienteView(CreateWithInlinesView): model = Cliente inlines = [EnderecoInline] class UpdateClienteView(UpdateWithInlinesView): model = Cliente inlines = [EnderecoInline] class PedidoProdutoInline(InlineFormSet): model = PedidoProduto form_class = PedidoProdutoForm extra = 10 class CreatePedidoView(CreateWithInlinesView): model = Pedido form_class = PedidoForm inlines = [PedidoProdutoInline] def get_success_url(self): print self return reverse_lazy('imprimir_pedido_view',args=[self.object.id]) class UpdatePedidoView(UpdateWithInlinesView): model = Pedido form_class = PedidoForm inlines = [PedidoProdutoInline] def get_success_url(self): return reverse_lazy('imprimir_pedido_view',args=[self.kwargs['pk']]) class CreateProdutoView(CreateView): model = Produto form_class = ProdutoForm success_url=reverse_lazy('produtos_view') template_name='pedidos/form.html' class UpdateProdutoView(UpdateView): model = Produto form_class = ProdutoForm success_url=reverse_lazy('produtos_view') template_name='pedidos/form.html' class ComprovanteView(DetailView): template_name='pedidos/comprovante.html' def get_context_data(self,*args, **kwargs): context = super(ComprovanteView, self).get_context_data(*args,**kwargs) context['itens_pedido'] = PedidoProduto.objects.filter(pedido__pk=self.kwargs['pk']) context['total'] = len(context['itens_pedido']) context['repeat'] = range(2) return context def get_price(request,pk): produto = Produto.objects.get(pk=pk) results = simplejson.dumps( { 'pk': produto.pk, 'price': float(produto.preco) } ) return HttpResponse(results, mimetype='application/javascript') def get_endereco(request,pk): enderecos = Endereco.objects.filter(cliente__pk=pk) results = simplejson.dumps([ { 'pk' : endereco.pk, 'nome' : endereco.__unicode__() } for endereco in enderecos ]) return HttpResponse(results, mimetype='application/javascript') def modificar_status(request,pk): pedido = Pedido.objects.get(pk=pk) acao = request.GET.get('acao') if acao == '5': pedido.valor_pago = pedido.total() elif acao == '2': pedido.entregue = True pedido.save() return HttpResponseRedirect(reverse('pedidos_view')) def imprimir(request,pk): return HttpResponse()
[ "lyralemos@gmail.com" ]
lyralemos@gmail.com
5c2482df35a2b3e2793446e744596a4eff53075d
920ab19b73a7cba21d340a49d9d24e2d1eeabf3d
/idpsreact/bin/automat-visualize
518eafa6739f15f864b7d8624057a1b909d8f1e5
[ "MIT" ]
permissive
DTrafford/IDPS
5fa2b73f2c47cbf50b90a1a786c10f7d69c995b4
1eaccfc218adcb7231e64271731c765f8362b891
refs/heads/master
2022-12-16T16:28:34.801962
2020-03-30T18:08:09
2020-03-30T18:08:09
234,163,829
0
0
MIT
2020-09-10T06:26:02
2020-01-15T20:10:09
Python
UTF-8
Python
false
false
281
#!/Users/sangit/Downloads/django-react-boilerplate-master/idpsreact/bin/python3 # -*- coding: utf-8 -*- import re import sys from automat._visualize import tool if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(tool())
[ "d.trafford@outlook.com" ]
d.trafford@outlook.com
bb5f53a8add13647f897bea1a962df952eea6bda
77a0721bbc98d0ba7ce6a7a319c744948a0726ac
/app/common.py
8d929450c237188ab5eaeda37ba736f783fcfe3e
[]
no_license
1111mp/flask_init
e37b192f6e38394599405ea8af203d02f4200f02
f64851783b5e53921ea7b7632f1a00c389b948e2
refs/heads/master
2023-05-10T09:31:49.174888
2023-05-02T03:37:49
2023-05-02T03:37:49
231,494,751
1
1
null
2023-05-02T03:37:50
2020-01-03T02:15:23
Python
UTF-8
Python
false
false
2,697
py
# -*- coding:utf-8 -*- from datetime import date, datetime, time import json import uuid from sqlalchemy.ext.declarative import DeclarativeMeta from redis import WatchError from .extensions import xtredis from config import USERAUTHKEY # https://dormousehole.readthedocs.io/en/latest/patterns/apierrors.html class InvalidUsage(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['code'] = self.status_code rv['message'] = self.message return rv class ComplexEncoder(json.JSONEncoder): """jsonu序列化时对datetime和date做特殊处理""" def default(self, obj): if isinstance(obj, datetime): return obj.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(obj, date): return obj.strftime('%Y-%m-%d') elif isinstance(obj, time): return obj.isoformat() if isinstance(obj, bytes): return str(obj, encoding='utf-8') elif isinstance(obj.__class__, DeclarativeMeta): return self.default({i.name: getattr(obj, i.name) for i in obj.__table__.columns}) elif isinstance(obj, dict): for k in obj: try: if isinstance(obj[k], (datetime, date, DeclarativeMeta)): obj[k] = self.default(obj[k]) else: obj[k] = obj[k] except TypeError: obj[k] = None return obj else: return json.JSONEncoder.default(self, obj) def successReturn(data, msg=''): return { 'code': 200, 'data': data, 'msg': msg } def cacheToken(userId, token, maxAge=60 * 60 * 1000): key = str(uuid.uuid4()) auth = USERAUTHKEY + str(userId) with xtredis.pipeline() as pipe: while True: try: pipe.watch(auth) pipe.multi() pipe.delete(auth).hset(auth, key, token).expire(auth, maxAge) pipe.execute() break except WatchError: continue return key def getToken(userId, key): auth = USERAUTHKEY + str(userId) return xtredis.hget(auth, key) def extendToken(userId, maxAge=60 * 60 * 1000): auth = USERAUTHKEY + str(userId) xtredis.expire(auth, maxAge) def delToken(userId, key): auth = USERAUTHKEY + str(userId) xtredis.hdel(auth, key)
[ "shzhangyifan@corp.netease.com" ]
shzhangyifan@corp.netease.com
4b86928803dc97bc1868161fb7ca4f15f0afe51a
3def2a4168b879dc6f53330d0a72fb0fc5b6fce0
/matrix_approach/a25.py
d2d110fbbd7bcd65d1ee38b64650c9841f675c11
[]
no_license
piyushSTK/learningAI
d67896d8991ec8160928bc6d7488dfa1844f4229
916d5c6e7d220e61364a53006532baeedb66a8ad
refs/heads/master
2020-05-15T16:00:25.272659
2019-04-20T11:27:54
2019-04-20T11:27:54
182,382,389
0
0
null
null
null
null
UTF-8
Python
false
false
1,776
py
import numpy as np import matplotlib.pyplot as plt len=10 def mid(B,C): D=(B+C)/2 return D def normal(AB): return np.matmul(omat,np.matmul(AB,dvec)) def line_intersect(AD,CF): n1=normal(AD) n2=normal(CF) N=np.vstack((n1,n2)) p=np.zeros(2) p[0]=np.matmul(n1,AD[:,0]) p[1]=np.matmul(n2,CF[:,0]) return np.matmul(np.linalg.inv(N),p) l=np.linspace(0,1,10) ad=np.zeros((2,10)) be=np.zeros((2,10)) cf=np.zeros((2,10)) ab=np.zeros((2,10)) bc=np.zeros((2,10)) ca=np.zeros((2,10)) A=np.array([-2,-2]) B=np.array([1,3]) C=np.array([4,-1]) D=mid(B,C) E=mid(A,C) F=mid(A,B) AD=np.vstack((A,D)).T CF=np.vstack((C,F)).T BE=np.vstack((B,E)).T for i in range(len): temp=A+(D-A)*l[i] ad[:,i]=temp.T temp=B+(E-B)*l[i] cf[:,i]=temp.T temp=C+(F-C)*l[i] be[:,i]=temp.T temp=A+(B-A)*l[i] ab[:,i]=temp.T temp=B+(C-B)*l[i] bc[:,i]=temp.T temp=C+(A-C)*l[i] ca[:,i]=temp.T dvec=np.array([-1,1]) omat=np.array([[0,1],[-1,0]]) P=line_intersect(AD,CF) Q=line_intersect(AD,BE) R=line_intersect(BE,CF) print(AD) print(BE) print(CF) print(P) print(Q) print(R) plt.plot(A[0],A[1],'o') plt.text(A[0]*1.1,A[1]*1.1,'A') plt.plot(B[0],B[1],'o') plt.text(B[0]*1.1,B[1]*1.1,'B') plt.plot(C[0],C[1],'o') plt.text(C[0]*1.1,C[1]*1.1,'C') plt.plot(D[0],D[1],'o') plt.text(D[0]*1.1,D[1]*1.1,'D') plt.plot(E[0],E[1],'o') plt.text(E[0]*1.1,E[1]*1.1,'E') plt.plot(F[0],F[1],'o') plt.text(F[0]*1.1,F[1]*1.1,'F') plt.plot(P[0],P[1],'o') plt.text(P[0]*1.1,P[1]*1.1,'G') plt.plot(ad[0,:],ad[1,:],label='$AD$') plt.plot(be[0,:],be[1,:],label='$BE$') plt.plot(cf[0,:],cf[1,:],label='$CF$') plt.plot(ab[0,:],ab[1,:],label='$AB$') plt.plot(bc[0,:],bc[1,:],label='$BC$') plt.plot(ca[0,:],ca[1,:],label='$CA$') plt.xlabel('$x$') plt.xlabel('$y$') plt.legend(loc='best') plt.grid() plt.show() plt.show()
[ "piyushkumaruttam@gmail.com" ]
piyushkumaruttam@gmail.com
15efb02d15bd410d19b8018e6c307a75b9f04eb4
5fdcb39eaa9d1f44e2ba0130bc0d6ece3f5ff354
/code/cheshire3/record.py
728ddee847b4f75341864dad4eff2244263dd3c4
[]
no_license
Cheshire-Grampa/cheshire3
0a653d6372497290d938e098b6acf8366348133f
616ab36cd8442cd5f4712a9fccf65ca7ae9f692c
refs/heads/master
2020-12-25T07:26:16.366754
2012-06-06T09:52:53
2012-06-06T10:32:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,269
py
from cheshire3.baseObjects import Record from cheshire3.exceptions import C3Exception from cheshire3.utils import flattenTexts, elementType from cheshire3.marc_utils import MARC, MARC8_to_Unicode import unicodedata import types, utils, os, re, sys from cStringIO import StringIO from xml.sax.saxutils import escape from xml.sax import ContentHandler # 1 <name> <attrHash> parent predicate end # Element # 4 <as 1> # Namespaced Element # 2 <name> <startLine> # End Element # 5 <as 2> # End Namespaced # 3 <text> # Characters # 9 <element hash> # pickled hash of locations # Split to separate object to allow for DOM->SAX direct conversion # by throwing events from DOM tree to handler. class SaxContentHandler(ContentHandler): currentText = [] currentPath = [] pathLines = [] currentLine = -1 recordWordCount = 0 elementHash = {} namespaces = [] hashAttributesNames = {} hashAttributes = [] stripWS = 0 saveElementIndexes = 1 def __init__(self): self.saveElementIndexes = 1 self.hashAttributesNames = {} self.hashAttributes = [] self.stripWS = 0 self.reinit() def reinit(self): self.currentText = [] self.currentPath = [] self.pathLines = [] self.currentLine = -1 self.recordWordCount = 0 self.elementHash = {} self.elementIndexes = [] self.namespaces = [] def startPrefixMapping(self, pfx, uri): self.currentLine += 1 if (pfx == None): pfx = '' self.currentText.append("6 %r, %r" % (pfx, uri)) # We want to fwd elems to NS elem handlers with default NS? def startElement(self, name, attrs): self.currentLine += 1 self.pathLines.append(self.currentLine) try: parent = self.pathLines[-2] except IndexError: parent = -1 attrHash = {} if (attrs): for k in attrs.keys(): attrHash[k] = escape(attrs[k]) try: npred = self.elementIndexes[-1][name] + 1 self.elementIndexes[-1][name] += 1 except IndexError: # Empty npred = 1 self.elementIndexes = [{name: npred}] except KeyError: # First occurence of Element npred = 1 self.elementIndexes[-1][name] = 1 except: raise self.elementIndexes.append({}) self.currentText.append("1 %s %s %d %d" % (name, repr(attrHash), parent, npred)) saveAttrs = [] try: hashAttrList = self.hashAttributesNames[name] for a in hashAttrList: try: saveAttrs.append("%s[@%s='%s']" % (name, a, attrHash[a])) except: pass except: pass try: starAttrList = self.hashAttributesNames['*'] for a in starAttrList: try: saveAttrs.append("*[@%s='%s']" % (a, attrHash[a])) except: pass except: pass if saveAttrs: self.hashAttributes.append((self.currentLine, saveAttrs)) def endElement(self, name): self.currentLine += 1 start = self.pathLines.pop() self.currentText.append("2 %s %d" % (name, start)) self.currentText[start] = "%s %d" % (self.currentText[start], self.currentLine) self.elementIndexes.pop() try: self.elementHash[name].append([start, self.currentLine]) except: self.elementHash[name] = [[start, self.currentLine]] if self.hashAttributes and self.hashAttributes[-1][0] == start: attrs = self.hashAttributes.pop()[1] for sa in attrs: try: self.elementHash[sa].append([start, self.currentLine]) except: self.elementHash[sa] = [[start, self.currentLine]] def startElementNS(self, name, qname, attrs): self.currentLine += 1 self.pathLines.append(self.currentLine) try: parent = self.pathLines[-2] except: parent = -1 attrHash = {} # Convert from weird sax thing if (attrs): for k in attrs.keys(): attrHash[k] = attrs[k] simpleName = name[1] try: npred = self.elementIndexes[-1][simpleName] + 1 self.elementIndexes[-1][simpleName] += 1 except IndexError: # Empty npred = 1 self.elementIndexes = [{simpleName: npred}] except KeyError: # First occurence of Element npred = 1 self.elementIndexes[-1][simpleName] = 1 self.elementIndexes.append({}) self.currentText.append("4 %r, %r, %r, %r %d %d" % (name[0], simpleName, qname, attrHash, parent, npred)) saveAttrs = [] try: hashAttrList = self.hashAttributesNames[simpleName] for a in hashAttrList: try: saveAttrs.append("%s[@%s='%s']" % (simpleName, a, attrHash[a])) except: pass except: pass try: starAttrList = self.hashAttributesNames['*'] for a in starAttrList: try: saveAttrs.append("*[@%s='%s']" % (a, attrHash[a])) except: pass except: pass if saveAttrs: self.hashAttributes.append((self.currentLine, saveAttrs)) def endElementNS(self, name, qname): self.currentLine += 1 start = self.pathLines.pop() self.currentText.append("5 %r, %r, %r %d" % (name[0], name[1], qname, start)) self.currentText[start] ="%s %d" % (self.currentText[start], self.currentLine) self.elementIndexes.pop() try: self.elementHash[name[1]].append([start, self.currentLine]) except: self.elementHash[name[1]] = [[start, self.currentLine]] if self.hashAttributes and self.hashAttributes[-1][0] == start: attrs = self.hashAttributes.pop()[1] for sa in attrs: try: self.elementHash[sa].append([start, self.currentLine]) except: self.elementHash[sa] = [[start, self.currentLine]] def characters(self, text, start=0, length=-1): # if text.isspace(): # text = " " prev = self.currentText[-1] if self.stripWS and text.isspace(): return self.currentLine += 1 if (len(text) != 1 and len(prev) != 3 and prev[0] == "3" and not prev[-1] in [' ', '-']): # Adjacent lines of text, ensure spaces text = ' ' + text self.currentText.append("3 %s" % (text)) self.recordWordCount += len(text.split()) def ignorableWhitespace(self, ws): # ... ignore! :D pass def processingInstruction(self, target, data): pass def skippedEntity(self, name): pass class SaxToDomHandler: nodeStack = [] document = None currText = "" def initState(self): self.nodeStack = [] self.document=None self.top = None def startElement(self, name, attribs={}): if (not self.document): self.document = implementation.createDocument(None, name, None) elem = self.document.childNodes[0] else: elem = self.document.createElementNS(None,name) for a in attribs: elem.setAttributeNS(None,a,attribs[a]) if (self.nodeStack): self.nodeStack[-1].appendChild(elem) else: self.document.appendChild(elem) self.nodeStack.append(elem) def endElement(self, foo): self.nodeStack.pop() def characters(self, text, zero=0, length=0): if (self.nodeStack): if (text.isspace()): text = " " # Is this escape necessary? text = escape(text) d = self.document.createTextNode(text) self.nodeStack[-1].appendChild(d) def startElementNS(self, name, qname, attribs): if (not self.document): self.document = implementation.createDocument(name[0], name[1], None) elem = self.document.childNodes[0] else: elem = self.document.createElementNS(name[0],name[1]) for a in attribs: elem.setAttributeNS(a[0],a[1],attribs[a]) if (self.nodeStack): self.nodeStack[-1].appendChild(elem) else: self.document.appendChild(elem) self.nodeStack.append(elem) def endElementNS(self, name,qname): self.nodeStack.pop() def startPrefixMapping(self, pref, uri): pass def getRootNode(self): return self.document s2dhandler = SaxToDomHandler() class SaxToXmlHandler: xml = [] currNs = 0 newNamespaces = {} def initState(self): self.xml = [] self.namespaces = {} self.currNs = 0 self.newNamespaces = {} def startPrefixMapping(self, pref, uri): self.namespaces[uri] = pref self.newNamespaces[pref] = uri def startElement(self, name, attribs={}): attrs = [] for a in attribs: attrs.append('%s="%s"' % (a, attribs[a])) attribtxt = ' '.join(attrs) if (attribtxt): attribtxt = " " + attribtxt self.xml.append("<%s%s>" % (name, attribtxt)) def endElement(self, name): self.xml.append("</%s>" % (name)) def _getPrefix(self, ns): if (not ns): return "" pref = self.namespaces.get(ns, None) if (pref == None): self.currNs += 1 pref = "ns%d" % (self.currNs) self.namespaces[ns] = pref self.newNamespaces[pref] = ns return pref def startElementNS(self, n, qn=None, attrs={}): pref = self._getPrefix(n[0]) if (pref): name = "%s:%s" % (pref, n[1]) else: name = n[1] attrlist = [] for ns,aname in attrs: p2 = self._getPrefix(ns) if (p2): nsaname = "%s:%s" % (p2, aname) else: nsaname = aname attrlist.append('%s="%s"' % (nsaname, attrs[(ns,aname)])) for x in self.newNamespaces.iteritems(): if (x[0]): attrlist.append('xmlns:%s="%s"' % (x[0], x[1])) else: attrlist.append('xmlns="%s"' % (x[1])) self.newNamespaces = {} attribtxt = ' '.join(attrlist) if (attribtxt): attribtxt = " " + attribtxt self.xml.append("<%s%s>" % (name,attribtxt)) def endElementNS(self, n, qn=None): pref = self._getPrefix(n[0]) if (pref): name = "%s:%s" % (pref, n[1]) else: name = n[1] self.xml.append("</%s>" % (name)) def characters(self, text, zero=0, length=0): text = escape(text) self.xml.append(text) def get_xmlString(self): return ''.join(self.xml) s2xhandler = SaxToXmlHandler() class NumericPredicateException(C3Exception): pass class DomRecord(Record): context = None size = 0 def __init__(self, data, xml="", docId=None, wordCount=0, byteCount=0): self.dom = data self.xml = xml self.id = docId self.parent = ('','',-1) self.context = None self.metadata = {} if wordCount: self.wordCount = wordCount else: try: # Sometimes this blows up self.wordCount = len(flattenTexts(data).split()) except: self.wordCount = 0 self.byteCount = byteCount def _walk(self, node): pass def get_sax(self, session): if (not self.sax): self.handler = SaxContentHandler() for c in self.dom.childNodes: self._walkTop(c) self.sax = self.handler.currentText self.sax.append("9 %r" % self.handler.elementHash) self.handler = None return self.sax def get_dom(self, session): return self.dom def fetch_vector(self, session, index, summary=False): return index.indexStore.fetch_vector(session, index, self, summary) def fetch_proxVector(self, session, index, elem=-1): return index.indexStore.fetch_proxVector(session, index, self, elem) class MinidomRecord(DomRecord): useNamespace = 1 def get_xml(self, session): if (self.xml): return self.xml else: self.xml = self.dom.toxml() return self.xml def _walkTop(self, node): # top level node if node.nodeType == utils.elementType: self.namespaces = node.namespaceURI != None self._walk(node) def _walk(self, node): if (node.nodeType == utils.elementType): name = node.localName ns = node.namespaceURI attrHash = {} for ai in range(node.attributes.length): attr = node.attributes.item(ai) if self.namespaces: if attr.namespaceURI == 'http://www.w3.org/2000/xmlns/': self.handler.startPrefixMapping(attr.localName, attr.value) else: attrHash[(attr.namespaceURI, attr.localName)] = attr.value else: attrHash[attr.localName] = attr.value if self.namespaces: self.handler.startElementNS((node.namespaceURI, node.localName), None, attrHash) else: self.handler.startElement(node.localName, attrHash) for c in node.childNodes: self._walk(c) if self.namespaces: self.handler.endElementNS((node.namespaceURI, node.localName), None) else: self.handler.endElement(node.localName) elif node.nodeType == utils.textType: self.handler.characters(node.data) def process_xpath(self, session, xpath, maps={}): raise NotImplementedError try: from lxml import etree, sax class LxmlRecord(DomRecord): def process_xpath(self, session, xpath, maps={}): global prefixRe if (isinstance(xpath, list)): xpath = repr(xpath[0]) if xpath[0] != "/" and xpath[-1] != ')': xpath = "//" + xpath if maps: retval = self.dom.xpath(xpath, namespaces=maps) else: retval = self.dom.xpath(xpath) if isinstance(retval, list): return retval else: return [retval] def get_xml(self, session): return etree.tostring(self.dom) def get_sax(self, session): if (not self.sax): handler = SaxContentHandler() sax.saxify(self.dom, handler) self.sax = handler.currentText self.sax.append("9 %r" % handler.elementHash) return self.sax def get_dom(self, session): try: return self.dom.getroot() except AttributeError: return self.dom except: class LxmlRecord(DomRecord): pass try: from xpath import ParsedRelativeLocationPath, ParsedAbsoluteLocationPath, \ ParsedStep, ParsedNodeTest, ParsedExpr, Compile, \ ParsedAbbreviatedAbsoluteLocationPath, ParsedAbbreviatedRelativeLocationPath, \ ParsedNodeTest except: # This means we can't do xpaths on SaxRecords... # making them a bit pointless, but not fatal as we likely don't need them pass def traversePath(node): if (isinstance(node, ParsedRelativeLocationPath.ParsedRelativeLocationPath)): left = traversePath(node._left) right = traversePath(node._right) if (left == []): # self::node() return [right] elif (type(left[0]) in types.StringTypes): return [left, right] else: left.append(right) return left elif (isinstance(node, ParsedAbsoluteLocationPath.ParsedAbsoluteLocationPath)): left = ['/'] if (node._child): right = traversePath(node._child) else: return left if (type(right[0]) == types.StringType): return [left, right] else: left.extend(right) return left elif (isinstance(node, ParsedAbbreviatedRelativeLocationPath.ParsedAbbreviatedRelativeLocationPath)): left = traversePath(node._left) right = traversePath(node._right) right[0] = 'descendant' if (left == []): # self::node() return [right] elif (type(left[0]) in types.StringTypes): return [left, right] else: left.append(right) return left elif (isinstance(node, ParsedStep.ParsedStep)): # TODO: Check that axis is something we can parse a = node._axis._axis if (a == 'self'): return [] n = node._nodeTest local = ParsedNodeTest.NodeNameTest nameattr = "_nodeName" if (isinstance(n, local)): n = getattr(n, nameattr) elif (isinstance(n, ParsedNodeTest.TextNodeTest)): n = "__text()" elif (isinstance(n, ParsedNodeTest.QualifiedNameTest)): n = n._prefix + ":" + n._localName elif (isinstance(n, ParsedNodeTest.PrincipalTypeTest)): n = "*" else: raise(NotImplementedError) preds = node._predicates pp = [] if (preds): for pred in preds: pp.append(traversePath(pred)) return [a, n, pp] elif (isinstance(node, ParsedExpr.ParsedEqualityExpr) or isinstance(node, ParsedExpr.ParsedRelationalExpr)): # @id="fish" op = node._op # Override check for common: [position()=int] if (op == '=' and isinstance(node._left, ParsedExpr.FunctionCall) and node._left._name == 'position' and isinstance(node._right, ParsedExpr.ParsedNLiteralExpr)): return node._right._literal left = traversePath(node._left) if (type(left) == types.ListType and left[0] == "attribute"): left = left[1] right = traversePath(node._right) if not op in ('=', '!='): op = ['<', '<=', '>', '>='][op] return [left, op, right] elif (isinstance(node, ParsedExpr.ParsedNLiteralExpr) or isinstance(node, ParsedExpr.ParsedLiteralExpr)): # 7 or "fish" return node._literal elif (isinstance(node, ParsedExpr.FunctionCall)): if (node._name == 'last'): # Override for last using Pythonic expr return -1 elif node._name == 'name': return ['FUNCTION', '__name()'] elif node._name == 'starts-with': # only for foo[starts-with(@bar, 'baz')] return ['FUNCTION', 'starts-with', traversePath(node._arg0)[1], node._arg1._literal] elif node._name == 'regexp': return ['FUNCTION', 'regexp', traversePath(node._arg0)[1], re.compile(node._arg1._literal)] elif node._name == 'count': return ['FUNCTION', 'count', traversePath(node._arg0)] else: raise(NotImplementedError) elif (isinstance(node, ParsedExpr.ParsedAndExpr)): return [traversePath(node._left), 'and', traversePath(node._right)] elif (isinstance(node, ParsedExpr.ParsedOrExpr)): return [traversePath(node._left), 'or', traversePath(node._right)] else: # We'll need to do full XPath vs DOM raise(NotImplementedError) def parseOldXPath(p): xpObj = Compile(p) t = traversePath(xpObj) if (t[0] <> '/' and type(t[0]) in types.StringTypes): t= [t] return [xpObj, t] class SaxRecord(Record): def __init__(self, data, xml="", docId=None, wordCount=0, byteCount=0): self.sax = data self.id = docId self.xml = xml self.history = [] self.rights = [] self.elementHash = {} self.wordCount = wordCount self.byteCount = byteCount self.parent = ('','',-1) self.attrRe = re.compile("u['\"](.+?)['\"]: u['\"](.*?)['\"](, |})") #self.attrRe = re.compile("u(?P<quote>['\"])(.+?)(?P=quote): u(?P<quoteb>['\"])(.*?)(?P=quoteb)(, |})") self.recordStore = "" def process_xpath(self, session, xpath, maps={}): if (not isinstance(xpath, list)): # Raw XPath xpath = parseOldXPath(xpath) xp = xpath[1] try: flatten = 0 if xp[0][0] == "FUNCTION" and xp[0][1] == 'count': # process xpath and return number of matches if isinstance(xp[0][2][0], str) and xp[0][2][0] != '/': data = self.process_xpath(session, [None, [xp[0][2]]], maps) else: data = self.process_xpath(session, [None, xp[0][2]], maps) return len(data) if (xp[-1][0] == 'child' and xp[-1][1] == "__text()"): flatten = 1 xp = xp[:-1] if (xp[-1][0] == 'attribute'): return self._handleAttribute(xp, maps) elif (xp[-1][0] == "/"): # Return top level element for x in xrange(len(self.sax)): if self.sax[x][0] in ['1', '4']: return self.sax[x:] elif(xp[-1][0] in ['child', 'descendant']): data = [] # Extracting element elemName = xp[-1][1] nselem = elemName.split(":") if (len(nselem) == 2): # Namespaced. nsUri = maps[nselem[0]] elemName = nselem[1] else: nsUri = "" attr = xp[-1][2] elemLines = [] if elemName == '*' and attr: for p in attr: if p[0] == 'FUNCTION' and p[2] == '__name()': names = self.elementHash.keys() if p[1] == 'starts-with' and p[2] == '__name()': for x in names: if x.find(p[3]) == 0: elemLines.extend(self.elementHash[x]) elif p[1] == 'regexp' and p[2] == '__name()': for x in names: if p[3].search(x): elemLines.extend(self.elementHash[x]) elif (not elemName in self.elementHash): return [] if (len(attr) == 1 and type(attr[0]) == types.ListType and attr[0][1] == "="): n = u"%s[@%s='%s']" % (elemName, attr[0][0], attr[0][2]) elemLines = self.elementHash.get(n, []) if elemLines == []: try: elemLines = self.elementHash[elemName] except: # might really be empty pass for e in elemLines: if (not nsUri or self.sax[e[0]][4:4+len(nsUri)] == nsUri): match = self._checkSaxXPathLine(xp, e[0]) if (match): # Return event chunk l = self.sax[e[0]] end = int(l[l.rfind(' ')+1:]) data.append(self.sax[e[0]:end+1]) else: # Unsupported final axis raise(NotImplementedError) if flatten and data: # Flatten to text nodes ndata = [] for match in data: txt = [] for ev in match: if ev[0] == '3': txt.append(ev[2:]) ndata.append(''.join(txt)) return ndata else: return data except NotImplementedError: # Convert to DOM (slow) and reapply (slower still) dom = self.get_dom(session) xp = xpTuple[0] try: return utils.evaluateXPath(xp, dom) except: self.log_critical("Buggy Xpath: %r" % xp) return [] # Otherwise just fall over as we've hit a real bug def _handleAttribute(self, xp, maps={}): attrName = xp[-1][1] nselem = attrName.split(":") if (len(nselem) == 2): # Namespaced attribute nsUri = maps[nselem[0]] attrName = nselem[1] else: nsUri = None data = [] if (len(xp) == 1): # Extracting all occs of attribute anywhere!? # Check predicates... (only support one numeric predicate) if (len(xp[0][2]) == 1 and type(xp[0][2][0]) == types.FloatType): nth = int(xp[0][2][0]) elif (len(xp[0][2])): # Non index or multiple predicates?? raise(NotImplementedError) else: nth = 0 currn = 0 for l in self.sax: if (l[0] == "1"): (name, attrs) = self._convert_elem(l) if (attrName in attrs): currn += 1 content = attrs[attrName] if (currn == nth): data.append(content) break elif (not nth): data.append(content) else: elemName = xp[-2][1] flatten = 0 if (elemName == "*"): # Let DOM code handle this monstrosity :P raise(NotImplementedError) nselem = elemName.split(":") if (len(nselem) == 2): # Namespaced. elemNsUri = maps[nselem[0]] elemName = nselem[1] else: elemNsUri = "" if (elemName in self.elementHash): elemLines = self.elementHash[elemName] for e in elemLines: if (not elemNsUri or self.sax[e[0]][4:4+len(elemNsUri)] == elemNsUri): line = self.sax[e[0]] (name, attrs) = self._convert_elem(line) if (attrName == '*'): # All attributes' values match = self._checkSaxXPathLine(xp[:-1], e[0]) if (match): for k in attrs.keys(): data.append(attrs[k]) else: if (not attrName in attrs): attrName = (nsUri, attrName) if (not attrName in attrs and not nsUri): # step through and take first content = None for key in attrs: if key[1] == attrName[1]: content = attrs[key] else: content = attrs.get(attrName, None) if (content): # Now check rest of path match = self._checkSaxXPathLine(xp[:-1], e[0]) if (match): data.append(content) return data def _checkSaxXPathLine(self, xp, line): # Check that event at line in record matches xpath up tree # Pass by reference, need a copy to pop! Looks like a hack... xpath = xp[:] climb = False while (xpath): posn = len(xpath) node = xpath.pop() if (line == -1): if node != "/" and node != ['/']: return 0 else: elem = self.sax[line] (name, attrs) = self._convert_elem(elem) match = self._checkSaxXPathNode(node, name, attrs, line, posn) if not match: if not climb: return 0 else: # Previous was a descendant, keep looking while not match: start = elem.rfind("}") + 2 end = elem.find(" ", start) line = int(elem[start:end]) if line != -1: elem = self.sax[line] (name, attrs) = self._convert_elem(elem) match = self._checkSaxXPathNode(node, name, attrs, line, posn) else: return 0 if xpath: start = elem.rfind("}") + 2 end = elem.find(" ", start) line = int(elem[start:end]) climb = (node and node[0] == "descendant") return 1 def _checkSaxXPathNode(self, step, name, attrs, line, posn): # name already checked, strip if step in ['/', ['/']] and name: return 0 if (step[1] != name and step[1] != '*' and step[1][step[1].find(":")+1:] != name): return 0 elif (not step[0] in ['child', 'descendant']): # Unsupported axis raise(NotImplementedError) elif (step[2]): # Check predicates predPosn = 0 for pred in (step[2]): predPosn += 1 m = self._checkSaxXPathPredicate(pred, name, attrs, line, posn, predPosn) if (not m): return 0 return 1 def _checkSaxXPathPredicate(self, pred, name, attrs, line, posn, predPosn): if (type(pred) != types.ListType): # Numeric Predicate. (eg /foo/bar[1]) if (predPosn != 1): # Can't do numeric predicate on already predicated nodeset # eg: text[@type='main'][2] raise(NotImplementedError) if (posn == 1): # First position in relative path. # Check against position in elementHash if (name in self.elementHash): all = self.elementHash[name] p = int(pred) if (len(all) < p): return 0 return all[int(pred)-1][0] == line return 0 else: # Not first position, so it applies to parent elem # Which we record during parsing elem = self.sax[line] end = elem.rfind("}") + 2 start = elem.find(' ', end) + 1 end = elem.find(' ', start) npred = float(elem[start:end]) return npred == pred elif (pred[1] in ['=', '!=', '<', '>', '<=', '>=']): # Single attribute return self._checkSaxXPathAttr(pred, attrs) elif (pred[1] in ['and', 'or']): # Attribute combinations left = self._checkSaxXPathPredicate(pred[0], name, attrs, line, posn, predPosn) right = self._checkSaxXPathPredicate(pred[2], name, attrs, line, posn, predPosn) if (pred[1] == 'and' and left and right): return 1 elif (pred[1] == 'or' and (left or right)): return 1 return 0 elif (pred[0] == 'attribute'): # Attribute exists test return pred[1] in attrs elif (pred[0] == 'FUNCTION'): if pred[2] == "__name()": return True if pred[1] == 'starts-with': if pred[2] in attrs: val = attrs[pred[2]] return not val.find(pred[3]) else: return False elif pred[1] == 'regexp': if pred[2] in attrs: return pred[3].search(attrs[pred[2]]) != None else: return False raise NotImplementedError else: # No idea!! raise(NotImplementedError) return 1 def _checkSaxXPathAttr(self, pred, attrs): # Namespacey if (not pred[0] in attrs): if ((None, pred[0]) in attrs): pred[0] = (None, pred[0]) else: return 0 rel = pred[1] # -Much- faster than eval if (type(pred[2]) == types.FloatType): attrValue = float(attrs[pred[0]]) else: attrValue = attrs[pred[0]] comp = cmp(attrValue, pred[2]) if rel == "=": return comp == 0 elif rel == ">": return comp == 1 elif rel == "<": return comp == -1 elif rel == "<=": return comp in (-1, 0) elif rel == ">=": return comp in (1, 0) elif rel == "!=": return comp in (1, -1) else: raise(NotImplementedError) def _convert_elem(self, line): # Currently: 1 name {attrs} parent npred end if (line[0] == '1'): start = line.find("{") name = line[2:start-1] if line[start+1] == '}': attrs = {} else: attrList = self.attrRe.findall(line) attrs = {} for m in attrList: attrs[unicode(m[0])] = unicode(m[1]) return [name, attrs] elif (line[0] == '4'): end = line.rfind("}") stuff = eval(line[2:end+1]) return [stuff[1], stuff[3]] else: raise ValueError("Called convert on non element.") def saxify(self, session, handler=None, sax=[]): if handler == None: handler = self if not sax: sax = self.get_sax(session) for l in sax: line = l # line = l.strip() if line[0] == "1": # String manipulation method (name, attrs) = self._convert_elem(line) handler.startElement(name, attrs) elif line[0] == "3": handler.characters(line[2:], 0, len(line)-2) elif line[0] == "2": end = line.rfind(' ') handler.endElement(line[2:end]) elif line[0] == "9": pass elif line[0] == '4': # 4 ns,name,qname, {} idx = line.rfind(' ') idx = line[:idx].rfind(' ') idx = line[:idx].rfind(' ') line = line[:idx] (ns, name, qname, attrs) = eval(line[2:]) handler.startElementNS((ns,name), qname, attrs) elif line[0] == '5': # 5 ns,name,qname parent pred end idx = line.rfind(' ') line = line[:idx] (ns, name, qname) = eval(line[2:]) handler.endElementNS((ns,name),qname) elif line[0] == '6': # 6 pref, uri pref, uri = eval(line[2:]) handler.startPrefixMapping(pref, uri) else: # Unknown type raise ValueError(line) def get_dom(self, session): if (self.dom): return self.dom else: # Turn SAX into DOM and cache s2dhandler.initState() self.saxify(session, s2dhandler); self.dom = s2dhandler.getRootNode() return self.dom def get_xml(self, session, events=[]): if (not events and self.xml): return self.xml else: # Turn SAX into XML and cache if not events: process = self.sax else: process = events s2xhandler.initState() self.saxify(session, s2xhandler, process) if not events: self.xml = s2xhandler.get_xmlString() return self.xml else: return s2xhandler.get_xmlString() def get_sax(self, session): return self.sax def fetch_vector(self, session, index, summary=False): return index.indexStore.fetch_vector(session, index, self, summary) class MarcRecord(Record): """For dealing with Library MARC Records.""" def __init__(self, data, xml="", docId=0, wordCount=0, byteCount=0): txt = doc.get_raw(session) self.marc = MARC(txt) self.id = docId # Estimate number of words... display = str(self.marc) if wordCount: self.wordCount=wordCount else: self.wordCount = len(display.split()) - ( len(display.split('\n')) * 2) if byteCount: self.byteCount = byteCount else: self.byteCount = len(display) self.decoder = MARC8_to_Unicode() self.asciiRe = re.compile('([\x0e-\x1f]|[\x7b-\xff])') def process_xpath(self, session, xpath, maps={}): if (not isinstance(xpath, list)): # Raw XPath # c = utils.verifyXPaths([xpath]) if (not c or not c[0][1]): return [] else: xpath = c[0] xp = xpath[1] # format: fldNNN/a try: fld = int(xp[0][1][3:]) except ValueError: # not a NNN not an int return [] if fld in self.marc.fields: data = self.marc.fields[fld] else: return [] if len(xp) > 1: subfield = xp[1][1] else: subfield = "" vals = [] if fld in [0,1]: vals = data else: for d in data: if not subfield: vals.append(' '.join([x[1] for x in d[2]])) elif subfield == 'ind1': vals.append(d[0]) elif subfield == 'ind2': vals.append(d[1]) elif fld == 8: if not subfield: vals.append(d) elif subfield == 'lang': vals.append(d[35:38]) elif subfield == 'date': vals.append(d[:6]) elif subfield == 'pubStatus': vals.append(d[6]) elif subfield == 'date1': vals.append(d[7:11]) elif subfield == 'date2': vals.append(d[11:15]) elif subfield == 'pubPlace': vals.append(d[15:18]) else: for x in d[2]: try: if x[0] == subfield: vals.append(x[1]) except: # broken pass nvals = [] for v in vals: try: nvals.append(v.decode('utf-8')) except: try: convtd = self.decoder.translate(v) nvals.append(unicodedata.normalize('NFC', convtd)) except: # strip out any totally @^%(ed characters v = self.asciiRe.sub('?', v) nvals.append(v) return nvals def get_dom(self, session): raise(NotImplementedError) def get_sax(self, session): raise(NotImplementedError) def get_xml(self, session): return self.marc.toMARCXML() def fetch_vector(self, session, index, summary=False): return index.indexStore.fetch_vector(session, index, self, summary)
[ "info@cheshire3.org" ]
info@cheshire3.org
b567461b2f900459393c25e3cd85fd539ba112be
6a921cd74624ff046c67354d4cb23460f65b6ad2
/data_postp/scores.py
59475e323c6a2eeef90783f58b4a9e4b15ffc39c
[ "MIT" ]
permissive
furushchev/DeepEpisodicMemory
8531db7f80bf3dbfb9ece083c6fd6b0e5161e960
0088f3393de549127cd0739298081637a38fb58a
refs/heads/master
2020-03-21T06:44:55.813040
2018-05-30T18:40:14
2018-05-30T18:40:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,076
py
import numpy as np import pandas as pd import sklearn from data_postp import similarity_computations from tensorflow.python.platform import flags FLAGS = flags.FLAGS def compute_mean_average_precision(df_base, df_query, n_closest_matches=5): """ This function computes the mean average precision (MAP) for a set of queries specified by df_query. The average precision scores for each query are hereby computed based on the provided base instances specified in df_base. For each query, the nearest neighbor instances within the base are determined and used to compute the precision. :param df_base: the dataframe to be queried, must contain a 'hidden_repr' column that constitutes the hidden_representation vector :param df_query: the dataframe from which to query, must contain a 'hidden_repr' column :param n_closest_matches: number of closest matches to the query that goes into the precision score :return: a scalar value representing the MAP """ assert not df_base.empty and not df_query.empty df = get_query_matching_table(df_base=df_base, df_query=df_query, n_closest_matches=n_closest_matches) df_pred_classes = df.filter(like="pred_class") n_relevant_documents = len(df_pred_classes.columns) matches = df_pred_classes.isin(df.true_class).as_matrix() P = np.zeros(shape=matches.shape) for k in range(1, n_relevant_documents): P[:, k] = np.mean(matches[:, :k], axis=1) return np.mean(np.multiply(P, matches)) def get_query_matching_table(df_base, df_query, class_column='category', n_closest_matches=5, df_true_label="true_class", df_pred_label="pred_class_", df_query_label="category", df_query_id="id"): """ Yields a pandas dataframe in which each row contains the n_closest_matches as a result from querying the df for every single hidden representation in the df dataframe. In addition, every row contains the true label and the query id. :param df_base: the df to be queried :param df_query: the df from which to query :return: pandas dataframe with columns ("id", "true_label", "pred_class_i" for i=1,...,n_closest_matches) and number of rows equal to df_query rows """ assert df_base is not None and df_query is not None assert 'hidden_repr' in df_base.columns and class_column in df_base.columns assert 'hidden_repr' in df_query.columns and df_query_label in df_query.columns and df_query_id in df_query.columns columns = [[df_query_id + "{}".format(i), df_pred_label+"{}".format(i)] for i in range(1, n_closest_matches + 1)] columns = [e for entry in columns for e in entry] # flatten list in list columns[:0] = [df_query_id, df_true_label] query_matching_df = pd.DataFrame(columns=columns) query_matching_df.set_index(df_query_id, df_true_label) for hidden_repr, label, id in zip(df_query['hidden_repr'], df_query[df_query_label], df_query[df_query_id]): closest_vectors = similarity_computations.find_closest_vectors(df_base, hidden_repr=hidden_repr, class_column=class_column, n_closest_matches=n_closest_matches) matching_results = [[tpl[2], tpl[1]] for tpl in closest_vectors] matching_results = sum(matching_results, []) # flatten matching_results[:0] = [id, label] row_data = dict(zip(columns, matching_results)) query_matching_df = query_matching_df.append(row_data, ignore_index=True) return query_matching_df def main(): valid_file="/common/homes/students/ferreira/Documents/metadata_and_hidden_rep_df_08-09-17_17-00-24_valid.pickle" df = pd.read_pickle(valid_file) # create own train/test split msk = np.random.rand(len(df)) < 0.8 test_df = df[~msk] print("number of test samples: ", np.shape(test_df)[0]) train_df = df[msk] print("number of train samples: ", np.shape(train_df)[0]) #df, df_val = similarity_computations.transform_vectors_with_inter_class_pca(train_df, test_df, class_column='category', n_components=50) compute_mean_average_precision(train_df[:100], test_df[:100]) if __name__ == "__main__": main()
[ "f4bio.ferreira@gmail.com" ]
f4bio.ferreira@gmail.com
bf052740a6a34a83103709163327ad7948d74ae6
d9072f607b96701eb50cde1c184e29c83a27f597
/code/python/playground.py
bb1df391f8dc5604f024d7708ef0ccfa26e9d6ae
[]
no_license
glaukon-ariston/2007-TIP-HistogramSegmentation
f35111a87447241a8c67b77aac83485d80270f31
b8d250bbe80ee17fe33d56c6092bfc1049f45234
refs/heads/master
2022-12-28T17:50:11.269621
2020-10-09T08:42:23
2020-10-09T08:42:23
295,377,236
0
0
null
2020-09-14T10:08:29
2020-09-14T10:08:28
null
UTF-8
Python
false
false
5,001
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Author: Glaukon Ariston # Date: 26.09.2020 # Abstract: # Debugging harness for histogramSegmentation.fine_to_coarse_histogram_segmentation(H, e=0) # # (findpeaks in Python get different results than in MatLab) # print('idx = [%s];' % (' '.join(['%d' % (v+1,) for v in idxs]),)) # idx = [1 48 49 50 67 68 69 71 72 73 74 76 77 79 81 82 83 84 85 92 93 100 102 103 110 112 113 114 116 119 120 127 128 130 136 137 138 145 147 148 150 155 169 170 171 173 176 178 186 188 189 196 197 199 200 202 203 206 207 209 211 212 221 222 234 235 237 239 241 243 244 245 256]; # # print('val[%d] = [%s]' % (len(maxEntropies), ' '.join(['%f' % (v,) for v in maxEntropies]))) # val[70] = [-7.044258 -5.163717 469.061042 -5.331204 -2.602968 -1.984528 -2.600699 -2.296912 -2.674793 -1.536530 -2.815287 -2.116291 -2.991723 -2.703314 -1.531241 -0.981140 -3.991059 7.867301 -4.869646 69.468887 -2.245196 -4.134025 41.480205 -4.046769 -2.674656 -2.402819 -2.774352 0.178781 -4.328724 47.723254 -4.186474 -3.127704 19.860393 -3.645382 -3.957270 17.571696 -1.331898 -2.549457 -3.221580 12.974305 453.162900 -4.956052 -2.065192 -0.415594 -1.134470 -4.444906 107.802875 -3.603364 -3.993935 20.479040 -2.063956 -2.681444 -2.386676 -1.899041 -2.988679 -0.823756 -3.226691 -0.842533 -0.517108 -3.725309 223.395585 -5.520483 170.863611 -4.879836 0.966133 -3.032572 -2.957388 -2.141432 -2.179776 -4.337235]; # val[70] = [-7.044258 -5.163717 469.061042 -5.331204 -2.602968 -1.984528 -2.600699 -2.296912 -2.674793 -1.536530 -2.815287 -2.116291 -2.991723 -2.703314 -1.531241 -0.981140 -3.991059 7.867301 -4.869646 69.468887 -2.245196 -4.134025 41.480205 -4.046769 -2.674656 -2.402819 -2.774352 0.178781 -4.328724 47.723254 -4.186474 -3.127704 19.860393 -3.645382 -3.957270 17.571696 -1.331898 -2.549457 -3.221580 12.974305 453.162900 -4.956052 -2.065192 -0.415594 -1.134470 -4.444906 107.802875 -3.603364 -3.993935 20.479040 -2.063956 -2.681444 -2.386676 -1.899041 -2.988679 -0.823756 -3.226691 -0.842533 -0.517108 -3.725309 223.395585 -5.520483 170.863611 -4.879836 0.966133 -3.032572 -2.957388 -2.141432 -2.179776 -4.337235]; # val[68] = [-7.044258 -5.331204 -2.602968 -1.984528 -2.600699 -2.296912 -2.674793 -1.536530 -2.815287 -2.116291 -2.991723 -2.703314 -1.531241 -0.981140 -3.991059 7.867301 -4.869646 69.468887 -2.245196 -4.134025 41.480205 -4.046769 -2.674656 -2.402819 -2.774352 0.178781 -4.328724 47.723254 -4.186474 -3.127704 19.860393 -3.645382 -3.957270 17.571696 -1.331898 -2.549457 -3.221580 12.974305 453.162900 -4.956052 -2.065192 -0.415594 -1.134470 -4.444906 107.802875 -3.603364 -3.993935 20.479040 -2.063956 -2.681444 -2.386676 -1.899041 -2.988679 -0.823756 -3.226691 -0.842533 -0.517108 -3.725309 223.395585 -5.520483 170.863611 -4.879836 0.966133 -3.032572 -2.957388 -2.141432 -2.179776 -4.337235]; # # GNU Octave # logId = fopen('val_matlab.m', 'w'); # fprintf(logId, "val[%d] = [%s]\n", length(val), sprintf("%f ", val)) # fprintf(logId, 'j %d inc %d val(j) %f\n', j, inc, val(j)) # val[68] = [-7.044258 -5.331204 -2.602968 -1.984528 -2.600699 -2.296912 -2.674793 -1.536530 -2.815 287 -2.116291 -2.991723 -2.703314 -1.531241 -0.981140 -3.991059 7.867301 -4.869646 69.468887 -2.2 45196 -4.134025 41.480205 -4.046769 -2.674656 -2.402819 -2.774352 0.178781 -4.328724 47.723254 -4 .186474 -3.127704 19.860393 -3.645382 -3.957270 17.571696 -1.331898 -2.549457 -3.221580 12.974305 453.162900 -4.956052 -2.065192 -0.415594 -1.134470 -4.444906 107.802875 -3.603364 -3.993935 20.4 79040 -2.063956 -2.681444 -2.386676 -1.899041 -2.988679 -0.823756 -3.226691 -0.842533 -0.517108 - 3.725309 223.395585 -5.520483 170.863611 -4.879836 0.966133 -3.032572 -2.957388 -2.141432 -2.1797 76 -4.337235 ] import imageio from PIL import Image import numpy as np import matplotlib.pyplot as plt from skimage import filters from scipy import signal import histogramSegmentation import math import os.path import os import glob def playgroundHistogramSegmentation(imagePath): img = np.array(Image.open(imagePath).convert('L')) #histogram, bins = np.histogram(img.ravel(), 256, [0,256]) histogram = np.bincount(img.ravel(), minlength=256) plt.plot(histogram) H = histogram N = histogram.size #idxs_max, _ = signal.find_peaks(H) #idxs_min, _ = signal.find_peaks(-H) #idxs = np.sort(np.concatenate([np.array([0]), idxs_min, idxs_max, np.array([N-1])])) #for i in range(idxs_max.size): # plt.axvline(x=idxs_max[i], color='cyan') #for i in range(idxs_min.size): # plt.axvline(x=idxs_min[i], color='magenta') indices = histogramSegmentation.fine_to_coarse_histogram_segmentation(H, e=0) for i in range(indices.size): plt.axvline(x=indices[i], color='cyan') #_ = plt.hist(img.ravel(), 256, [0,256]) #plt.imshow(img, cmap='gray', interpolation='none') plt.title("Histogram") plt.show() def main(): playgroundHistogramSegmentation('../../images/lena.png') if __name__ == "__main__": main()
[ "glaukon.ariston@gmail.com" ]
glaukon.ariston@gmail.com
95e69f614829e398941039bb5e7c6b54d7912473
6a7e9e0e9c08132166f566bd88ae1c46ff8f9c0a
/azure-mgmt-resource/azure/mgmt/resource/policy/v2018_03_01/operations/policy_definitions_operations.py
35d46e882383af32ab876701a41bdc8be7b23c00
[ "MIT" ]
permissive
ashirey-msft/azure-sdk-for-python
d92381d11c48f194ec9f989f5f803db614fb73f2
e04778e13306dad2e8fb044970215bad6296afb6
refs/heads/master
2020-03-23T06:05:39.283442
2018-09-15T00:18:26
2018-09-15T00:18:26
141,188,192
0
1
MIT
2018-07-16T20:02:52
2018-07-16T20:02:52
null
UTF-8
Python
false
false
31,610
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class PolicyDefinitionsOperations(object): """PolicyDefinitionsOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: The API version to use for the operation. Constant value: "2018-03-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-03-01" self.config = config def create_or_update( self, policy_definition_name, parameters, custom_headers=None, raw=False, **operation_config): """Creates or updates a policy definition in a subscription. This operation creates or updates a policy definition in the given subscription with the given name. :param policy_definition_name: The name of the policy definition to create. :type policy_definition_name: str :param parameters: The policy definition properties. :type parameters: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'PolicyDefinition') # Construct and send request request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, stream=False, **operation_config) if response.status_code not in [201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 201: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def delete( self, policy_definition_name, custom_headers=None, raw=False, **operation_config): """Deletes a policy definition in a subscription. This operation deletes the policy definition in the given subscription with the given name. :param policy_definition_name: The name of the policy definition to delete. :type policy_definition_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: None or ClientRawResponse if raw=true :rtype: None or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response delete.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def get( self, policy_definition_name, custom_headers=None, raw=False, **operation_config): """Retrieves a policy definition in a subscription. This operation retrieves the policy definition in the given subscription with the given name. :param policy_definition_name: The name of the policy definition to get. :type policy_definition_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def get_built_in( self, policy_definition_name, custom_headers=None, raw=False, **operation_config): """Retrieves a built-in policy definition. This operation retrieves the built-in policy definition with the given name. :param policy_definition_name: The name of the built-in policy definition to get. :type policy_definition_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get_built_in.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get_built_in.metadata = {'url': '/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def create_or_update_at_management_group( self, policy_definition_name, parameters, management_group_id, custom_headers=None, raw=False, **operation_config): """Creates or updates a policy definition in a management group. This operation creates or updates a policy definition in the given management group with the given name. :param policy_definition_name: The name of the policy definition to create. :type policy_definition_name: str :param parameters: The policy definition properties. :type parameters: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition :param management_group_id: The ID of the management group. :type management_group_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.create_or_update_at_management_group.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'managementGroupId': self._serialize.url("management_group_id", management_group_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'PolicyDefinition') # Construct and send request request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, stream=False, **operation_config) if response.status_code not in [201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 201: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized create_or_update_at_management_group.metadata = {'url': '/providers/Microsoft.Management/managementgroups/{managementGroupId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def delete_at_management_group( self, policy_definition_name, management_group_id, custom_headers=None, raw=False, **operation_config): """Deletes a policy definition in a management group. This operation deletes the policy definition in the given management group with the given name. :param policy_definition_name: The name of the policy definition to delete. :type policy_definition_name: str :param management_group_id: The ID of the management group. :type management_group_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: None or ClientRawResponse if raw=true :rtype: None or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.delete_at_management_group.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'managementGroupId': self._serialize.url("management_group_id", management_group_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response delete_at_management_group.metadata = {'url': '/providers/Microsoft.Management/managementgroups/{managementGroupId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def get_at_management_group( self, policy_definition_name, management_group_id, custom_headers=None, raw=False, **operation_config): """Retrieve a policy definition in a management group. This operation retrieves the policy definition in the given management group with the given name. :param policy_definition_name: The name of the policy definition to get. :type policy_definition_name: str :param management_group_id: The ID of the management group. :type management_group_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get_at_management_group.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'managementGroupId': self._serialize.url("management_group_id", management_group_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get_at_management_group.metadata = {'url': '/providers/Microsoft.Management/managementgroups/{managementGroupId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def list( self, custom_headers=None, raw=False, **operation_config): """Retrieves policy definitions in a subscription. This operation retrieves a list of all the policy definitions in a given subscription. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of PolicyDefinition :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinitionPaged[~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send( request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/policyDefinitions'} def list_built_in( self, custom_headers=None, raw=False, **operation_config): """Retrieve built-in policy definitions. This operation retrieves a list of all the built-in policy definitions. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of PolicyDefinition :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinitionPaged[~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list_built_in.metadata['url'] # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send( request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list_built_in.metadata = {'url': '/providers/Microsoft.Authorization/policyDefinitions'} def list_by_management_group( self, management_group_id, custom_headers=None, raw=False, **operation_config): """Retrieve policy definitions in a management group. This operation retrieves a list of all the policy definitions in a given management group. :param management_group_id: The ID of the management group. :type management_group_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of PolicyDefinition :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinitionPaged[~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list_by_management_group.metadata['url'] path_format_arguments = { 'managementGroupId': self._serialize.url("management_group_id", management_group_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send( request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list_by_management_group.metadata = {'url': '/providers/Microsoft.Management/managementgroups/{managementGroupId}/providers/Microsoft.Authorization/policyDefinitions'}
[ "lmazuel@microsoft.com" ]
lmazuel@microsoft.com
2d2c073ecfbd8d904b117c938ab4d01722607f6f
ab57af4f4302160c78147b60ff635876a58bf99d
/pds2/urls.py
9c9a80da505918ca8a6badfb6e87bc2bf3d2032e
[]
no_license
jrthorne/djbraintree
a523c04fbdb137735c1a68f793f6ffdc2b8a512c
ce28592f7927fa9bd06c7f115d672bd544505caf
refs/heads/master
2020-06-22T21:21:35.878756
2019-07-23T09:52:18
2019-07-23T09:52:18
198,402,434
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
from django.contrib import admin from django.urls import path from django.conf.urls import include, url from django.views.generic import TemplateView urlpatterns = [ path('admin/', admin.site.urls), url(r'^$', TemplateView.as_view(template_name='index.html')), url(r'^shop/', include('shop.urls'), name='shop'), ]
[ "jthorne@magiclamp.com.au" ]
jthorne@magiclamp.com.au
6684ca9dd67bacb41767bd65a1c0c1f2dd8193ce
e07f6ac5559d09eb6f5393650af135c7474f5003
/recent_news.py
e27c23ffb42fa9cdf553ea3b1d714c6870d9ef68
[]
no_license
Money-fin/backend
21e188f3f59ccaa216d1ea4bb7b78f670831cb6f
909961dc33df84ba3663e622bfdf6ab98f915f5f
refs/heads/master
2022-12-04T08:32:10.094335
2020-08-29T09:57:28
2020-08-29T09:57:28
291,008,543
0
0
null
null
null
null
UTF-8
Python
false
false
1,527
py
import requests import sys sys.path.append("/home/jylee/backend") import urllib import os from bs4 import BeautifulSoup import numpy as np import pandas as pd from helper import KafkaHelper def new_crawl(link, kafka=False): url = link item_info = requests.get(url).text soup = BeautifulSoup(item_info, 'html.parser') title = soup.select('div.content03 header.title-article01 h1')[0].get_text() time = soup.select('div.content03 header.title-article01 p')[0].get_text()[4:] img_url = f"https:{soup.select('div.img-con span img')[0]['src']}" raw_content = soup.select('div.story-news.article') # print(raw_content) content_p = [item.select("p") for item in raw_content] content_text = [item.get_text().strip() for item in content_p[0]] content = "\n".join(content_text[1:]) data_dict = { "title": title, "content": content, "link": link } if kafka: KafkaHelper.pub_ninput(data_dict) else: data_dict["time"] = time data_dict["img_url"] = img_url return data_dict def recent_new_check(): past_list = "" while True: url = f'https://www.yna.co.kr/news?site=navi_latest_depth01' item_info = requests.get(url).text soup = BeautifulSoup(item_info, 'html.parser') new_a_tag = soup.select('div.list-type038 ul')[0].select("li")[0].select("div div a.tit-wrap") current_link = f"https:{new_a_tag[0]['href']}" if past_list == current_link: continue else: new_crawl(current_link, True) past_list = current_link recent_new_check()
[ "hyanghope@naver.com" ]
hyanghope@naver.com
e8611029177ec93e595d82b86b795cbc307b7108
d4ab63e2ff846ff509ab3b8a191381bdf8197325
/project/test_main.py
8544ed907817ff34f90b366519a3db4337d52c5e
[]
no_license
ibrobabs/task
c2c95d8c83340a38be0ff8a1d7d3da55de33a097
82adc4fa54ab9c3606b2770325454916c7f75693
refs/heads/master
2021-01-18T17:45:31.392805
2017-04-01T05:22:24
2017-04-01T05:22:24
86,812,161
0
0
null
null
null
null
UTF-8
Python
false
false
1,298
py
import os import unittest from project import app, db from project.config import basedir from project.models import User TEST_DB = 'test.db' class MainTests(unittest.TestCase): #Setup and Teardown def setUp(self): app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False # app.config['DEBUG'] = False app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + \ os.path.join(basedir, TEST_DB) self.app = app.test_client() db.create_all() def tearDown(self): db.session.remove() db.drop_all() # helper methods def login(self, name, password): return self.app.post('/', data=dict( name=name, password=password), follow_redirects=True) # tests def test_404_error(self): response = self.app.get('/this-route-does-not-exist/') self.assertEquals(response.status_code, 404) self.assertIn(b"Sorry. There's nothing here.", response.data) def test_500_error(self): bad_user = User( name='Jeremy', email='jeremy@realpython.com', password='django' ) db.session.add(bad_user) db.session.commit() self.assertRaises(ValueError, self.login, 'Jeremy', 'django') try: response = self.login('Jeremy', 'django') self.assertEquals(response.status_code, 500) except ValueError: pass if __name__ == '__main__': unittest.main()
[ "babskolawole@gmail.com" ]
babskolawole@gmail.com
bcf019e36ce418fffe064dbcf90f877fb35e974b
32ce6ae3fd849ec5442cc7fbcb420a25f1f7627d
/impl/CellObjectss.py
aeaba7ea93d500eccfec91a127b99f0ea85774bd
[]
no_license
karaposu/Labyrinth-Game
c73817b74c20ece2c56eaeb97591dd61791660bb
1e1572c7b506eceefda47914413ea772c8e763a3
refs/heads/main
2023-06-04T20:37:29.293096
2021-06-28T04:51:49
2021-06-28T04:51:49
380,907,451
0
0
null
null
null
null
UTF-8
Python
false
false
860
py
from services.Cell import cell class PassiveGameObj(cell): def __init__(self, id, coordinates, designator): self.id = id self.coordinates = coordinates self.designator = designator def CoordinateUpdate(self, c): self.coordinates[0] = c[0] self.coordinates[1] = c[1] class MovingGameObj(cell): def __init__(self, id, coordinates, designator): self.id = id self.life = 2 self.coordinates = coordinates self.designator = designator self.previous_coordinates = coordinates.copy() def CoordinateUpdate(self, c): # print("inside p/CoordinateUpdate") self.coordinates[0] = c[0] self.coordinates[1] = c[1] def move(self, m): pass def CoordinateCalculate(self, move): pass
[ "noreply@github.com" ]
noreply@github.com
97450e3407268358d4f64aefe3120b8487b3401e
425db5a849281d333e68c26a26678e7c8ce11b66
/maths/fast_pow_and_matrix_multi.py
987f29bb269b191cf1b8759d9bc80770e1b3e800
[ "MIT" ]
permissive
lih627/python-algorithm-templates
e8092b327a02506086414df41bbfb2af5d6b06dc
a61fd583e33a769b44ab758990625d3381793768
refs/heads/master
2021-07-23T17:10:43.814639
2021-01-21T17:14:55
2021-01-21T17:14:55
238,456,498
29
8
null
null
null
null
UTF-8
Python
false
false
2,500
py
import random def fpowx(x, n): """ quick pow: x ** n """ res = 1 while n: if n & 1: res = res * x # compute x^2 x^4 x^8 x *= x n >>= 1 return res def fmulti(m, n, mod=10 ** 9 + 7): """ 并没有提速的效果 只是对于其他语言 如c 防止溢出 对 python 没有任何帮助 """ res = 0 while n: if n & 1: res += m m = (m + m) % mod res %= mod n >>= 1 return res def matrix_multiply(matrix_a, matrix_b): # 模 MOD 乘法/加法 MOD = 10 ** 9 + 7 n_row = len(matrix_a) n_col = len(matrix_b[0]) n_tmp = len(matrix_a[0]) matrix_c = [[0 for _ in range(n_col)] for _ in range(n_row)] for i in range(n_row): for j in range(n_col): for k in range(n_tmp): matrix_c[i][j] += matrix_a[i][k] * matrix_b[k][j] % MOD matrix_c[i][j] %= MOD return matrix_c def get_unit_matrix(n): # matrix I unit_matrix = [[0 for _ in range(n)] for _ in range(n)] for _ in range(n): unit_matrix[_][_] = 1 return unit_matrix def quick_matrix_pow(matrix_a, n): # A ^ n l = len(matrix_a) res = get_unit_matrix(l) while n: if n & 1: res = matrix_multiply(res, matrix_a) a = matrix_multiply(a, a) n >>= 1 return res def test_fmulti(): m = random.randint(10 ** 9, 10 ** 15) n = random.randint(10 ** 9, 10 ** 15) res = fmulti(m, n) return res def multi(m, n, mod=10 ** 9 + 7): return m * n % mod def test_multi(): m = random.randint(10 ** 9, 10 ** 15) n = random.randint(10 ** 9, 10 ** 15) res = multi(m, n) return res if __name__ == '__main__': print('fast pow: 2 ** 11: {}'.format(fpowx(2, 11))) print(fmulti(987654, 987654321)) print(987654 * 987654321 % (10 ** 9 + 7)) # test the speed of fast(?)-multi import timeit T_fmulti = timeit.Timer('test_fmulti()', 'from __main__ import test_fmulti') print('f_multi: {:.6f}s'.format(T_fmulti.timeit(number=1000))) T_multi = timeit.Timer('test_multi()', 'from __main__ import test_multi') print('s_multi: {:.6f}s'.format(T_multi.timeit(number=1000))) # test matrix multiply a = [[1, 2, 3], [4, 5, 6]] b = [[1, 2], [3, 4], [5, 6]] c = matrix_multiply(a, b) print("a = {}\nb = {}\nc = {}".format(a, b, c))
[ "lih627@outlook.com" ]
lih627@outlook.com
b72ed4fab9d517cf24f9b0a77dbf51f8da8c46a9
f8965d7b16e3cf70370b3bd181ef855a2ab89768
/ebook/Chapter08/format_invoice.py
406defa9a09b82cef2a7b0a8fa3f64401411bdf3
[ "Apache-2.0" ]
permissive
tuannguyendang/montypython
59cae6fc6069cf5356670132470cdd52bad00d67
c0b8ff7a8130e811ba16bfab8d5e013eac37f432
refs/heads/main
2023-05-12T02:24:50.693432
2021-05-31T02:14:16
2021-05-31T02:14:16
325,188,168
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
# This won't render right subtotal = 12.32 tax = subtotal * 0.07 total = subtotal + tax print(f"Sub: ${subtotal} Tax: ${tax} Total: ${total}") print(f"Sub: ${subtotal:0.2f} Tax: ${tax:0.2f} Total: ${total:0.2f}") orders = [("burger", 2, 5), ("fries", 3.5, 1), ("cola", 1.75, 3)] print("PRODUCT QUANTITY PRICE SUBTOTAL") for product, price, quantity in orders: subtotal = price * quantity print( f"{product:10s}{quantity: ^9d} " f"${price: <8.2f}${subtotal: >7.2f}" ) print("PRODUCT QUANTITY PRICE SUBTOTAL") for p, pr, q in orders: subt = pr * q print( f"{p:20s}{q:^10d}" f"${pr:<9.3f}${subt: > 9.3f}" )
[ "tuan193@gmail.com" ]
tuan193@gmail.com
37e7b65b2eb87e028e91d5e800045af24ea8b6c0
b0a217700c563c4f057f2aebbde8faba4b1b26d2
/software/glasgow/arch/jtag.py
7c4fe835ca1a2bd2417ce6ed37892e998c03caf9
[ "0BSD", "Apache-2.0" ]
permissive
kbeckmann/Glasgow
5d183865da4fb499099d4c17e878a76192b691e7
cd31e293cb99ee10a3e4a03ff26f6f124e512c64
refs/heads/master
2021-09-15T15:59:38.211633
2018-11-15T22:36:04
2018-11-22T21:13:59
157,077,707
3
0
NOASSERTION
2018-11-11T12:33:49
2018-11-11T12:33:48
null
UTF-8
Python
false
false
250
py
# Ref: IEEE 1149.1 from bitarray import bitarray from ..support.bits import * __all__ = [ # DR "DR_IDCODE", ] DR_IDCODE = Bitfield("DR_IDCODE", 4, [ ("present", 1), ("mfg_id", 11), ("part_id", 16), ("version", 4), ])
[ "whitequark@whitequark.org" ]
whitequark@whitequark.org
5ee331590a0342ddcead80522daf670bc75601fb
f27413138fa72a18308d2732112319e6de408876
/CacheDecorator.py
d092877b0eacc298416cf2f0111f6b2bb8b65ec7
[]
no_license
noamalka228/PythonExercise
18cb90fb0b021c41429bd6575ed0e3bd4bbca049
0f306a019b9629123c6095918a9ad389931307db
refs/heads/main
2023-04-15T18:22:56.956642
2021-04-29T12:07:51
2021-04-29T12:07:51
362,802,792
0
0
null
null
null
null
UTF-8
Python
false
false
1,113
py
class CacheDecorator(dict): # constructor def __init__(self, func_name): self.func_name = func_name # if the function is already cached, return the cached value def __call__(self, *args): return self[args] # if the result is not cached, return the function call and cache the result for future calls def __missing__(self, key): result = self[key] = self.func_name(*key) return result # calling the class of the CacheDecorator @CacheDecorator # this function gets a number as parameter and recursively sums all numbers from 1 to num def sum_all(num): if type(num) is int: if num == 0 or num == 1: return 1 return num + sum_all(num - 1) def main(): print("Sum: ", sum_all(5)) # the call caches all sums from 1-5 print("Cached sums: ", sum_all) # therefore, calling the func without parameter prints sum(5) print("Sum: ", sum_all(10)) # the call caches all sums from 5-10 print("Cached sums: ", sum_all) # therefore, calling the func without parameter prints sum(10) if __name__ == "__main__": main()
[ "noreply@github.com" ]
noreply@github.com
d309ba906885b2264436cea4fe7c0b1cb6487058
9edaf93c833ba90ae9a903aa3c44c407a7e55198
/travelport/models/special_equipment_1.py
d0b34a9eefba484eaeb14ea03e11c478e502ee89
[]
no_license
tefra/xsdata-samples
c50aab4828b8c7c4448dbdab9c67d1ebc519e292
ef027fe02e6a075d8ed676c86a80e9647d944571
refs/heads/main
2023-08-14T10:31:12.152696
2023-07-25T18:01:22
2023-07-25T18:01:22
222,543,692
6
1
null
2023-06-25T07:21:04
2019-11-18T21:00:37
Python
UTF-8
Python
false
false
1,577
py
from __future__ import annotations from dataclasses import dataclass, field from travelport.models.type_element_status_1 import TypeElementStatus1 __NAMESPACE__ = "http://www.travelport.com/schema/common_v52_0" @dataclass class SpecialEquipment1: """ Parameters ---------- key type_value Special equipment associated with a specific vehicle el_stat This attribute is used to show the action results of an element. Possible values are "A" (when elements have been added to the UR) and "M" (when existing elements have been modified). Response only. key_override If a duplicate key is found where we are adding elements in some cases like URAdd, then instead of erroring out set this attribute to true. """ class Meta: name = "SpecialEquipment" namespace = "http://www.travelport.com/schema/common_v52_0" key: None | str = field( default=None, metadata={ "name": "Key", "type": "Attribute", } ) type_value: None | str = field( default=None, metadata={ "name": "Type", "type": "Attribute", "required": True, } ) el_stat: None | TypeElementStatus1 = field( default=None, metadata={ "name": "ElStat", "type": "Attribute", } ) key_override: None | bool = field( default=None, metadata={ "name": "KeyOverride", "type": "Attribute", } )
[ "chris@komposta.net" ]
chris@komposta.net
22f32bf0fd55088a1f7d6a101468f6c446d7e723
244e9b0fab8f641e21566987b8577f48012a08f7
/fibonacci.py
22d1dae859177a0ab61fa0cfb249c2b2de0e92ef
[]
no_license
iopkelvin/Leetcode-problems
55253a7e845c11ded792f8f3ea1ad1c0c37f1956
6fe8dde4b9d76fc8b797de2c71f7e0041d725267
refs/heads/main
2023-03-05T01:14:24.395087
2021-02-08T18:24:09
2021-02-08T18:24:09
335,342,086
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
import sys def fib(n): # Recursive # if n == 0: # return 0 # if n == 1: # return 1 # while n >= 0: # return fib(n - 1) + fib(n - 2) a, b = 0, 1 for _ in range(n): a, b = b, a + b return a if __name__ == '__main__': print(fib(int(sys.argv[1])))
[ "36288868+iopkelvin@users.noreply.github.com" ]
36288868+iopkelvin@users.noreply.github.com
d0e4e18eaed6527f644f4b7cd84bcb12327c970d
1ae45340a0c8d64a481b1fb96d835fcd537539bd
/test/unit/controllers/job_list_api_test.py
2f405dc01d04f4614d82c1733a55da864307a63f
[ "MIT" ]
permissive
hazmat345/brew-view
6bc7fcad16bf73505f46e2426aabbff4e4e75c65
effd67819f7e995595471e0dc1c4e03a63942b96
refs/heads/master
2020-04-14T18:02:09.907639
2018-10-09T19:15:37
2018-10-09T19:15:37
164,003,765
0
0
MIT
2019-01-03T17:35:35
2019-01-03T17:35:35
null
UTF-8
Python
false
false
3,218
py
# -*- coding: utf-8 -*- import copy import json from datetime import datetime from mock import patch from bg_utils.models import Job, DateTrigger, RequestTemplate from . import TestHandlerBase class JobListAPITest(TestHandlerBase): def setUp(self): self.ts_epoch = 1451606400000 self.ts_dt = datetime(2016, 1, 1) self.job_dict = { 'name': 'job_name', 'trigger_type': 'date', 'trigger': { 'run_date': self.ts_epoch, 'timezone': 'utc', }, 'request_template': { 'system': 'system', 'system_version': '1.0.0', 'instance_name': 'default', 'command': 'speak', 'parameters': {'message': 'hey!'}, 'comment': 'hi!', 'metadata': {'request': 'stuff'}, }, 'misfire_grace_time': 3, 'coalesce': True, 'next_run_time': self.ts_epoch, 'success_count': 0, 'error_count': 0, 'status': 'RUNNING', } db_dict = copy.deepcopy(self.job_dict) db_dict['request_template'] = RequestTemplate(**db_dict['request_template']) db_dict['trigger']['run_date'] = self.ts_dt db_dict['trigger'] = DateTrigger(**db_dict['trigger']) db_dict['next_run_time'] = self.ts_dt self.job = Job(**db_dict) super(JobListAPITest, self).setUp() def tearDown(self): Job.objects.delete() def test_get(self): self.job.save() self.job_dict['id'] = str(self.job.id) response = self.fetch('/api/v1/jobs') self.assertEqual(200, response.code) self.assertEqual(json.loads(response.body.decode('utf-8')), [self.job_dict]) def test_get_with_filter_param(self): self.job.save() self.job_dict['id'] = str(self.job.id) response = self.fetch('/api/v1/jobs?name=DOES_NOT_EXIST') self.assertEqual(200, response.code) self.assertEqual(json.loads(response.body.decode('utf-8')), []) response = self.fetch('/api/v1/jobs?name=job_name') self.assertEqual(200, response.code) self.assertEqual( json.loads(response.body.decode('utf-8')), [self.job_dict] ) @patch('brew_view.request_scheduler') def test_post(self, scheduler_mock): body = json.dumps(self.job_dict) self.job_dict['id'] = None response = self.fetch('/api/v1/jobs', method='POST', body=body) self.assertEqual(response.code, 201) data_without_id = json.loads(response.body.decode('utf-8')) data_without_id['id'] = None self.assertEqual( data_without_id, self.job_dict ) self.assertEqual(scheduler_mock.add_job.call_count, 1) @patch('brew_view.request_scheduler') def test_post_error_delete(self, scheduler_mock): body = json.dumps(self.job_dict) self.job_dict['id'] = None scheduler_mock.add_job.side_effect = ValueError response = self.fetch('/api/v1/jobs', method='POST', body=body) self.assertGreaterEqual(response.code, 500)
[ "loganasherjones@gmail.com" ]
loganasherjones@gmail.com