blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
aa98278bf982510809e97f209972b9d3ffecdc03
4b191334ac835f99236d51ab6a7857f968250df2
/utils/add_ipv6.py
bb66dc7c153fcc6c478e5b53b9b056124f043392
[]
no_license
soutzis/Janus-IPv6
bfdd1e89260a9d5faf9796e9da836d96fbfc607b
a1079a1f3283bc193597b40f90e998a149ae2781
refs/heads/master
2021-07-12T17:55:05.936232
2020-06-24T14:30:53
2020-06-24T14:30:53
168,965,023
2
1
null
null
null
null
UTF-8
Python
false
false
1,493
py
#!/usr/bin/python3.6 from subprocess import call import argparse ''' For simplicity, this file is also copied in "usr/local/bin", so that it can be run from any directory by simply calling: add_ipv6 <hostname> <ipv6>. The file in "usr/local/bin" is renamed to 'add_ipv6' (no ".py" file extension) ''' add_ipv6_cmd = "ifconfig h{hostname}-eth0 inet6 add 2000::{ip}/64" add_ipv6_dist_global = "ifconfig h{hostname}-eth0 inet6 add 200{ip}::{ip}/64" add_ipv6_custom_cmd = "ifconfig h{hostname}-eth0 inet6 add {ip}/64" parser = argparse.ArgumentParser(description="Add an IPv6 GUA, to the eth0 interface") parser.add_argument("hostname", help="Add the number of the host. e.g: if host is 'h4', enter: 4", type=int) mutex = parser.add_mutually_exclusive_group() # mutex.add_argument("-d","--distinct", # help="add a different IPv6 GUA for this node", # action=store_true) mutex.add_argument("-c", "--custom", help="Add a custom IPv6 GUA.", type=str) args = parser.parse_args() # if args.distinct: # command = add_ipv6_dist_global.format(hostname=args.hostname, # ip=args.hostname) if args.custom: command = add_ipv6_custom_cmd.format(hostname=args.hostname, ip=args.custom) else: command = add_ipv6_cmd.format(hostname=args.hostname, ip=args.hostname) print("Executing command: "+command) call(command.split(" ")) print("IPv6 address added successfully.")
[ "noreply@github.com" ]
noreply@github.com
562d159153258105237dee275a61136e7c194853
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.3/django/contrib/localflavor/generic/forms.py
b8a111a6b5f57fa81698f292b86258925d561b4a
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
109
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.3/django/contrib/localflavor/generic/forms.py
[ "ron.y.kagan@gmail.com" ]
ron.y.kagan@gmail.com
f2e46158afebdf251132475b4a4284e808cdffbb
7205218c520b405f01d5fa1ae5728c9f3071f04d
/Exercises - Module III/EX108 - Formatando moeda().py
49c953dc8e09077c0b5a0a9b8b4069bbd79bf6f3
[]
no_license
talesritz/Learning-Python---Guanabara-classes
164b22ca27158b41e851152257750ac5fcd0cecc
273a06037e3b283a4e78a3f105c0828ae70bfab0
refs/heads/master
2020-05-19T23:43:12.007950
2019-05-06T21:44:44
2019-05-06T21:44:44
185,273,748
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
# Adapte o código do desafio 107, criando uma função adicional chamada moeda() que consiga mostrar os valores como um valor monetário formatado. from uteis import formata, moedab, validacao #Versão necessária para o ex108 formata.cabecalho('EX108 - Formatando Moeda()') tmp = validacao.leiaInt('Digite o preço: ') print(f'A metade de {moedab.moeda(tmp)} é {moedab.moeda(moedab.metade(tmp))}') print(f'O dobro de {moedab.moeda(tmp)} é {moedab.moeda(moedab.dobro(tmp))}') print(f'Aumentando 10%, temos {moedab.moeda(moedab.aumentar(tmp))}') print(f'Diminuindo 15%, temos {moedab.moeda(moedab.diminuir(tmp))}')
[ "noreply@github.com" ]
noreply@github.com
d3238509ecaea8d3e0a51a8943890b4578e5a8da
e3d447a81c5462d2d14201f2bc6b82cdcbbca51a
/chapter10/c10_6_addition.py
af50d5e3378247cb7a726c51df05b727370cecc4
[]
no_license
barcern/python-crash-course
f6026f13f75ecddc7806711d65bc53cb88e24496
8b55775c9f0ed49444becb35b8d529620537fa54
refs/heads/master
2023-04-19T17:28:44.342022
2021-02-07T23:51:06
2021-02-07T23:51:06
257,201,280
2
3
null
2021-05-12T17:35:56
2020-04-20T07:14:28
Python
UTF-8
Python
false
false
2,214
py
# -*- coding: utf-8 -*- """ Created on Sun Jul 26 12:27:25 2020 @author: barbora One common problem when prompting for numerical input occurs when people provide text instead of numbers. When you try to convert the input to an int, you'll get a ValueError. Write a program that prompts for two numbers. Add them together and print the result. Catch the ValueError if either input value is not a number, and print a friendly error message. Test your program by entering two numbers and then by entering some text instead of a number. """ # Option 1 - while loop # Create a while loop to allow for users to input the two values flag = True while flag: message1 = "Please input the first value to add. To quit, type 'q': " message2 = "Please input the second value to add. To quit, type 'q': " value1 = input(message1) # Exit conditions if (value1 == 'q'): print("Ending program") break value2 = input(message2) if (value2 == 'q'): print("Ending program") break # Convert to integer and check for a ValueError try: int1 = int(value1) int2 = int(value2) except ValueError: print("Please input two integer values") else: result = int1 + int2 print(f"Final result: {result}") # Option 2 - while loop and function # Create a function to add two values def addition(value1, value2): """Function to add two integer values, with a ValueError check.""" try: int1 = int(value1) int2 = int(value2) except ValueError: return("Please input two integer values") else: result = int1 + int2 return(f"Final result: {result}") print(addition(2,3)) # While loop to obtain user input flag = True while flag: message1 = "Please input the first value to add. To quit, type 'q': " message2 = "Please input the second value to add. To quit, type 'q': " value1 = input(message1) # Exit conditions if (value1 == 'q'): print("Ending program") break value2 = input(message2) if (value2 == 'q'): print("Ending program") break # Call function print(addition(value1, value2))
[ "bcernakova01@gmail.com" ]
bcernakova01@gmail.com
62eaf9858c418fef633ac4d4dff91466518cb03b
c47e4c82a68563dbb5828dae8e9b1a3598297b7c
/NajaParser.py
8f71d0beb5236a2d8f756c33fae40069a7b2d5b8
[]
no_license
MarceloCFSF/Naja
b0f28afc1a1feae7339d916a2b11189e6be0290a
edc38d5bd02afe840ea2ad006491e0d950191818
refs/heads/master
2023-07-11T15:06:06.850798
2021-08-14T05:17:09
2021-08-14T05:17:09
395,882,114
0
0
null
null
null
null
UTF-8
Python
false
false
38,637
py
# Generated from Naja.g4 by ANTLR 4.9 # encoding: utf-8 from antlr4 import * from io import StringIO import sys if sys.version_info[1] > 5: from typing import TextIO else: from typing.io import TextIO def serializedATN(): with StringIO() as buf: buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\3\31") buf.write("\u008d\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") buf.write("\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r\4\16") buf.write("\t\16\4\17\t\17\4\20\t\20\4\21\t\21\3\2\3\2\3\2\3\2\3") buf.write("\3\3\3\3\3\3\3\7\3+\n\3\f\3\16\3.\13\3\3\4\3\4\3\5\6\5") buf.write("\63\n\5\r\5\16\5\64\3\6\3\6\3\6\3\6\3\6\3\6\3\6\5\6>\n") buf.write("\6\3\7\3\7\3\7\3\7\3\7\3\b\3\b\3\b\3\b\3\b\3\t\3\t\3\n") buf.write("\3\n\3\n\3\n\3\13\3\13\3\13\3\13\6\13T\n\13\r\13\16\13") buf.write("U\3\13\3\13\5\13Z\n\13\3\f\3\f\3\f\6\f_\n\f\r\f\16\f`") buf.write("\3\f\3\f\3\r\3\r\3\r\3\r\6\ri\n\r\r\r\16\rj\3\r\3\r\3") buf.write("\16\3\16\3\16\6\16r\n\16\r\16\16\16s\3\16\3\16\3\16\3") buf.write("\16\3\17\3\17\3\17\3\17\3\17\3\17\3\20\3\20\3\20\3\20") buf.write("\7\20\u0084\n\20\f\20\16\20\u0087\13\20\5\20\u0089\n\20") buf.write("\3\21\3\21\3\21\2\2\22\2\4\6\b\n\f\16\20\22\24\26\30\32") buf.write("\34\36 \2\5\3\2\5\6\3\2\26\27\4\2\26\26\30\30\2\u008b") buf.write("\2\"\3\2\2\2\4&\3\2\2\2\6/\3\2\2\2\b\62\3\2\2\2\n=\3\2") buf.write("\2\2\f?\3\2\2\2\16D\3\2\2\2\20I\3\2\2\2\22K\3\2\2\2\24") buf.write("O\3\2\2\2\26[\3\2\2\2\30d\3\2\2\2\32n\3\2\2\2\34y\3\2") buf.write("\2\2\36\u0088\3\2\2\2 \u008a\3\2\2\2\"#\7\3\2\2#$\5\b") buf.write("\5\2$%\7\4\2\2%\3\3\2\2\2&\'\5\6\4\2\',\7\26\2\2()\7\22") buf.write("\2\2)+\7\26\2\2*(\3\2\2\2+.\3\2\2\2,*\3\2\2\2,-\3\2\2") buf.write("\2-\5\3\2\2\2.,\3\2\2\2/\60\t\2\2\2\60\7\3\2\2\2\61\63") buf.write("\5\n\6\2\62\61\3\2\2\2\63\64\3\2\2\2\64\62\3\2\2\2\64") buf.write("\65\3\2\2\2\65\t\3\2\2\2\66>\5\f\7\2\67>\5\4\3\28>\5\16") buf.write("\b\29>\5\22\n\2:>\5\24\13\2;>\5\30\r\2<>\5\32\16\2=\66") buf.write("\3\2\2\2=\67\3\2\2\2=8\3\2\2\2=9\3\2\2\2=:\3\2\2\2=;\3") buf.write("\2\2\2=<\3\2\2\2>\13\3\2\2\2?@\7\7\2\2@A\7\r\2\2AB\7\26") buf.write("\2\2BC\7\16\2\2C\r\3\2\2\2DE\7\b\2\2EF\7\r\2\2FG\5\20") buf.write("\t\2GH\7\16\2\2H\17\3\2\2\2IJ\t\3\2\2J\21\3\2\2\2KL\7") buf.write("\26\2\2LM\7\21\2\2MN\5\36\20\2N\23\3\2\2\2OP\7\t\2\2P") buf.write("Q\5\34\17\2QS\7\23\2\2RT\5\n\6\2SR\3\2\2\2TU\3\2\2\2U") buf.write("S\3\2\2\2UV\3\2\2\2VW\3\2\2\2WY\7\24\2\2XZ\5\26\f\2YX") buf.write("\3\2\2\2YZ\3\2\2\2Z\25\3\2\2\2[\\\7\n\2\2\\^\7\23\2\2") buf.write("]_\5\n\6\2^]\3\2\2\2_`\3\2\2\2`^\3\2\2\2`a\3\2\2\2ab\3") buf.write("\2\2\2bc\7\24\2\2c\27\3\2\2\2de\7\13\2\2ef\5\34\17\2f") buf.write("h\7\23\2\2gi\5\n\6\2hg\3\2\2\2ij\3\2\2\2jh\3\2\2\2jk\3") buf.write("\2\2\2kl\3\2\2\2lm\7\24\2\2m\31\3\2\2\2no\7\f\2\2oq\7") buf.write("\23\2\2pr\5\n\6\2qp\3\2\2\2rs\3\2\2\2sq\3\2\2\2st\3\2") buf.write("\2\2tu\3\2\2\2uv\7\24\2\2vw\7\13\2\2wx\5\34\17\2x\33\3") buf.write("\2\2\2yz\7\r\2\2z{\t\4\2\2{|\7\25\2\2|}\t\4\2\2}~\7\16") buf.write("\2\2~\35\3\2\2\2\177\u0089\7\27\2\2\u0080\u0085\5 \21") buf.write("\2\u0081\u0082\7\20\2\2\u0082\u0084\5 \21\2\u0083\u0081") buf.write("\3\2\2\2\u0084\u0087\3\2\2\2\u0085\u0083\3\2\2\2\u0085") buf.write("\u0086\3\2\2\2\u0086\u0089\3\2\2\2\u0087\u0085\3\2\2\2") buf.write("\u0088\177\3\2\2\2\u0088\u0080\3\2\2\2\u0089\37\3\2\2") buf.write("\2\u008a\u008b\t\4\2\2\u008b!\3\2\2\2\f,\64=UY`js\u0085") buf.write("\u0088") return buf.getvalue() class NajaParser ( Parser ): grammarFileName = "Naja.g4" atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] sharedContextCache = PredictionContextCache() literalNames = [ "<INVALID>", "'head'", "'tail'", "'numero'", "'texto'", "'leia'", "'escreva'", "'se'", "'senao'", "'enquanto'", "'execute'", "'('", "')'", "';'", "<INVALID>", "':'", "','", "'{'", "'}'" ] symbolicNames = [ "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "AP", "FP", "SC", "OP", "ATTR", "VIR", "ACH", "FCH", "OPREL", "ID", "TEXTO", "NUMBER", "WS" ] RULE_prog = 0 RULE_declaravar = 1 RULE_tipo = 2 RULE_bloco = 3 RULE_cmd = 4 RULE_cmdleitura = 5 RULE_cmdescrita = 6 RULE_escrita = 7 RULE_cmdattrib = 8 RULE_cmdselecao = 9 RULE_cmdelse = 10 RULE_cmdenquanto = 11 RULE_cmdexecute = 12 RULE_cmdcondicao = 13 RULE_expr = 14 RULE_termo = 15 ruleNames = [ "prog", "declaravar", "tipo", "bloco", "cmd", "cmdleitura", "cmdescrita", "escrita", "cmdattrib", "cmdselecao", "cmdelse", "cmdenquanto", "cmdexecute", "cmdcondicao", "expr", "termo" ] EOF = Token.EOF T__0=1 T__1=2 T__2=3 T__3=4 T__4=5 T__5=6 T__6=7 T__7=8 T__8=9 T__9=10 AP=11 FP=12 SC=13 OP=14 ATTR=15 VIR=16 ACH=17 FCH=18 OPREL=19 ID=20 TEXTO=21 NUMBER=22 WS=23 def __init__(self, input:TokenStream, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.9") self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache) self._predicates = None class ProgContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def bloco(self): return self.getTypedRuleContext(NajaParser.BlocoContext,0) def getRuleIndex(self): return NajaParser.RULE_prog def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterProg" ): listener.enterProg(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitProg" ): listener.exitProg(self) def prog(self): localctx = NajaParser.ProgContext(self, self._ctx, self.state) self.enterRule(localctx, 0, self.RULE_prog) try: self.enterOuterAlt(localctx, 1) self.state = 32 self.match(NajaParser.T__0) self.state = 33 self.bloco() self.state = 34 self.match(NajaParser.T__1) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class DeclaravarContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def tipo(self): return self.getTypedRuleContext(NajaParser.TipoContext,0) def ID(self, i:int=None): if i is None: return self.getTokens(NajaParser.ID) else: return self.getToken(NajaParser.ID, i) def VIR(self, i:int=None): if i is None: return self.getTokens(NajaParser.VIR) else: return self.getToken(NajaParser.VIR, i) def getRuleIndex(self): return NajaParser.RULE_declaravar def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterDeclaravar" ): listener.enterDeclaravar(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitDeclaravar" ): listener.exitDeclaravar(self) def declaravar(self): localctx = NajaParser.DeclaravarContext(self, self._ctx, self.state) self.enterRule(localctx, 2, self.RULE_declaravar) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 36 self.tipo() self.state = 37 self.match(NajaParser.ID) self.state = 42 self._errHandler.sync(self) _la = self._input.LA(1) while _la==NajaParser.VIR: self.state = 38 self.match(NajaParser.VIR) self.state = 39 self.match(NajaParser.ID) self.state = 44 self._errHandler.sync(self) _la = self._input.LA(1) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class TipoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return NajaParser.RULE_tipo def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterTipo" ): listener.enterTipo(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitTipo" ): listener.exitTipo(self) def tipo(self): localctx = NajaParser.TipoContext(self, self._ctx, self.state) self.enterRule(localctx, 4, self.RULE_tipo) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 45 _la = self._input.LA(1) if not(_la==NajaParser.T__2 or _la==NajaParser.T__3): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class BlocoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def getRuleIndex(self): return NajaParser.RULE_bloco def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterBloco" ): listener.enterBloco(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitBloco" ): listener.exitBloco(self) def bloco(self): localctx = NajaParser.BlocoContext(self, self._ctx, self.state) self.enterRule(localctx, 6, self.RULE_bloco) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 48 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 47 self.cmd() self.state = 50 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def cmdleitura(self): return self.getTypedRuleContext(NajaParser.CmdleituraContext,0) def declaravar(self): return self.getTypedRuleContext(NajaParser.DeclaravarContext,0) def cmdescrita(self): return self.getTypedRuleContext(NajaParser.CmdescritaContext,0) def cmdattrib(self): return self.getTypedRuleContext(NajaParser.CmdattribContext,0) def cmdselecao(self): return self.getTypedRuleContext(NajaParser.CmdselecaoContext,0) def cmdenquanto(self): return self.getTypedRuleContext(NajaParser.CmdenquantoContext,0) def cmdexecute(self): return self.getTypedRuleContext(NajaParser.CmdexecuteContext,0) def getRuleIndex(self): return NajaParser.RULE_cmd def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmd" ): listener.enterCmd(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmd" ): listener.exitCmd(self) def cmd(self): localctx = NajaParser.CmdContext(self, self._ctx, self.state) self.enterRule(localctx, 8, self.RULE_cmd) try: self.state = 59 self._errHandler.sync(self) token = self._input.LA(1) if token in [NajaParser.T__4]: self.enterOuterAlt(localctx, 1) self.state = 52 self.cmdleitura() pass elif token in [NajaParser.T__2, NajaParser.T__3]: self.enterOuterAlt(localctx, 2) self.state = 53 self.declaravar() pass elif token in [NajaParser.T__5]: self.enterOuterAlt(localctx, 3) self.state = 54 self.cmdescrita() pass elif token in [NajaParser.ID]: self.enterOuterAlt(localctx, 4) self.state = 55 self.cmdattrib() pass elif token in [NajaParser.T__6]: self.enterOuterAlt(localctx, 5) self.state = 56 self.cmdselecao() pass elif token in [NajaParser.T__8]: self.enterOuterAlt(localctx, 6) self.state = 57 self.cmdenquanto() pass elif token in [NajaParser.T__9]: self.enterOuterAlt(localctx, 7) self.state = 58 self.cmdexecute() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdleituraContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def AP(self): return self.getToken(NajaParser.AP, 0) def ID(self): return self.getToken(NajaParser.ID, 0) def FP(self): return self.getToken(NajaParser.FP, 0) def getRuleIndex(self): return NajaParser.RULE_cmdleitura def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdleitura" ): listener.enterCmdleitura(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdleitura" ): listener.exitCmdleitura(self) def cmdleitura(self): localctx = NajaParser.CmdleituraContext(self, self._ctx, self.state) self.enterRule(localctx, 10, self.RULE_cmdleitura) try: self.enterOuterAlt(localctx, 1) self.state = 61 self.match(NajaParser.T__4) self.state = 62 self.match(NajaParser.AP) self.state = 63 self.match(NajaParser.ID) self.state = 64 self.match(NajaParser.FP) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdescritaContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def AP(self): return self.getToken(NajaParser.AP, 0) def escrita(self): return self.getTypedRuleContext(NajaParser.EscritaContext,0) def FP(self): return self.getToken(NajaParser.FP, 0) def getRuleIndex(self): return NajaParser.RULE_cmdescrita def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdescrita" ): listener.enterCmdescrita(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdescrita" ): listener.exitCmdescrita(self) def cmdescrita(self): localctx = NajaParser.CmdescritaContext(self, self._ctx, self.state) self.enterRule(localctx, 12, self.RULE_cmdescrita) try: self.enterOuterAlt(localctx, 1) self.state = 66 self.match(NajaParser.T__5) self.state = 67 self.match(NajaParser.AP) self.state = 68 self.escrita() self.state = 69 self.match(NajaParser.FP) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class EscritaContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(NajaParser.ID, 0) def TEXTO(self): return self.getToken(NajaParser.TEXTO, 0) def getRuleIndex(self): return NajaParser.RULE_escrita def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterEscrita" ): listener.enterEscrita(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitEscrita" ): listener.exitEscrita(self) def escrita(self): localctx = NajaParser.EscritaContext(self, self._ctx, self.state) self.enterRule(localctx, 14, self.RULE_escrita) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 71 _la = self._input.LA(1) if not(_la==NajaParser.ID or _la==NajaParser.TEXTO): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdattribContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(NajaParser.ID, 0) def ATTR(self): return self.getToken(NajaParser.ATTR, 0) def expr(self): return self.getTypedRuleContext(NajaParser.ExprContext,0) def getRuleIndex(self): return NajaParser.RULE_cmdattrib def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdattrib" ): listener.enterCmdattrib(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdattrib" ): listener.exitCmdattrib(self) def cmdattrib(self): localctx = NajaParser.CmdattribContext(self, self._ctx, self.state) self.enterRule(localctx, 16, self.RULE_cmdattrib) try: self.enterOuterAlt(localctx, 1) self.state = 73 self.match(NajaParser.ID) self.state = 74 self.match(NajaParser.ATTR) self.state = 75 self.expr() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdselecaoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def cmdcondicao(self): return self.getTypedRuleContext(NajaParser.CmdcondicaoContext,0) def ACH(self): return self.getToken(NajaParser.ACH, 0) def FCH(self): return self.getToken(NajaParser.FCH, 0) def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def cmdelse(self): return self.getTypedRuleContext(NajaParser.CmdelseContext,0) def getRuleIndex(self): return NajaParser.RULE_cmdselecao def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdselecao" ): listener.enterCmdselecao(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdselecao" ): listener.exitCmdselecao(self) def cmdselecao(self): localctx = NajaParser.CmdselecaoContext(self, self._ctx, self.state) self.enterRule(localctx, 18, self.RULE_cmdselecao) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 77 self.match(NajaParser.T__6) self.state = 78 self.cmdcondicao() self.state = 79 self.match(NajaParser.ACH) self.state = 81 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 80 self.cmd() self.state = 83 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break self.state = 85 self.match(NajaParser.FCH) self.state = 87 self._errHandler.sync(self) _la = self._input.LA(1) if _la==NajaParser.T__7: self.state = 86 self.cmdelse() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdelseContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ACH(self): return self.getToken(NajaParser.ACH, 0) def FCH(self): return self.getToken(NajaParser.FCH, 0) def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def getRuleIndex(self): return NajaParser.RULE_cmdelse def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdelse" ): listener.enterCmdelse(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdelse" ): listener.exitCmdelse(self) def cmdelse(self): localctx = NajaParser.CmdelseContext(self, self._ctx, self.state) self.enterRule(localctx, 20, self.RULE_cmdelse) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 89 self.match(NajaParser.T__7) self.state = 90 self.match(NajaParser.ACH) self.state = 92 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 91 self.cmd() self.state = 94 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break self.state = 96 self.match(NajaParser.FCH) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdenquantoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def cmdcondicao(self): return self.getTypedRuleContext(NajaParser.CmdcondicaoContext,0) def ACH(self): return self.getToken(NajaParser.ACH, 0) def FCH(self): return self.getToken(NajaParser.FCH, 0) def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def getRuleIndex(self): return NajaParser.RULE_cmdenquanto def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdenquanto" ): listener.enterCmdenquanto(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdenquanto" ): listener.exitCmdenquanto(self) def cmdenquanto(self): localctx = NajaParser.CmdenquantoContext(self, self._ctx, self.state) self.enterRule(localctx, 22, self.RULE_cmdenquanto) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 98 self.match(NajaParser.T__8) self.state = 99 self.cmdcondicao() self.state = 100 self.match(NajaParser.ACH) self.state = 102 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 101 self.cmd() self.state = 104 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break self.state = 106 self.match(NajaParser.FCH) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdexecuteContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ACH(self): return self.getToken(NajaParser.ACH, 0) def FCH(self): return self.getToken(NajaParser.FCH, 0) def cmdcondicao(self): return self.getTypedRuleContext(NajaParser.CmdcondicaoContext,0) def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def getRuleIndex(self): return NajaParser.RULE_cmdexecute def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdexecute" ): listener.enterCmdexecute(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdexecute" ): listener.exitCmdexecute(self) def cmdexecute(self): localctx = NajaParser.CmdexecuteContext(self, self._ctx, self.state) self.enterRule(localctx, 24, self.RULE_cmdexecute) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 108 self.match(NajaParser.T__9) self.state = 109 self.match(NajaParser.ACH) self.state = 111 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 110 self.cmd() self.state = 113 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break self.state = 115 self.match(NajaParser.FCH) self.state = 116 self.match(NajaParser.T__8) self.state = 117 self.cmdcondicao() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdcondicaoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def AP(self): return self.getToken(NajaParser.AP, 0) def OPREL(self): return self.getToken(NajaParser.OPREL, 0) def FP(self): return self.getToken(NajaParser.FP, 0) def ID(self, i:int=None): if i is None: return self.getTokens(NajaParser.ID) else: return self.getToken(NajaParser.ID, i) def NUMBER(self, i:int=None): if i is None: return self.getTokens(NajaParser.NUMBER) else: return self.getToken(NajaParser.NUMBER, i) def getRuleIndex(self): return NajaParser.RULE_cmdcondicao def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdcondicao" ): listener.enterCmdcondicao(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdcondicao" ): listener.exitCmdcondicao(self) def cmdcondicao(self): localctx = NajaParser.CmdcondicaoContext(self, self._ctx, self.state) self.enterRule(localctx, 26, self.RULE_cmdcondicao) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 119 self.match(NajaParser.AP) self.state = 120 _la = self._input.LA(1) if not(_la==NajaParser.ID or _la==NajaParser.NUMBER): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 121 self.match(NajaParser.OPREL) self.state = 122 _la = self._input.LA(1) if not(_la==NajaParser.ID or _la==NajaParser.NUMBER): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 123 self.match(NajaParser.FP) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ExprContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def TEXTO(self): return self.getToken(NajaParser.TEXTO, 0) def termo(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.TermoContext) else: return self.getTypedRuleContext(NajaParser.TermoContext,i) def OP(self, i:int=None): if i is None: return self.getTokens(NajaParser.OP) else: return self.getToken(NajaParser.OP, i) def getRuleIndex(self): return NajaParser.RULE_expr def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterExpr" ): listener.enterExpr(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitExpr" ): listener.exitExpr(self) def expr(self): localctx = NajaParser.ExprContext(self, self._ctx, self.state) self.enterRule(localctx, 28, self.RULE_expr) self._la = 0 # Token type try: self.state = 134 self._errHandler.sync(self) token = self._input.LA(1) if token in [NajaParser.TEXTO]: self.enterOuterAlt(localctx, 1) self.state = 125 self.match(NajaParser.TEXTO) pass elif token in [NajaParser.ID, NajaParser.NUMBER]: self.enterOuterAlt(localctx, 2) self.state = 126 self.termo() self.state = 131 self._errHandler.sync(self) _la = self._input.LA(1) while _la==NajaParser.OP: self.state = 127 self.match(NajaParser.OP) self.state = 128 self.termo() self.state = 133 self._errHandler.sync(self) _la = self._input.LA(1) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class TermoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(NajaParser.ID, 0) def NUMBER(self): return self.getToken(NajaParser.NUMBER, 0) def getRuleIndex(self): return NajaParser.RULE_termo def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterTermo" ): listener.enterTermo(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitTermo" ): listener.exitTermo(self) def termo(self): localctx = NajaParser.TermoContext(self, self._ctx, self.state) self.enterRule(localctx, 30, self.RULE_termo) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 136 _la = self._input.LA(1) if not(_la==NajaParser.ID or _la==NajaParser.NUMBER): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx
[ "marcelo.cfsf@gmail.com" ]
marcelo.cfsf@gmail.com
2cd97cb8b0b9c6e273657a730b6c9cceac772bfc
694760b87cbf4b72eb2cfc554fe3818f666c81a0
/source code/hello-world.py
327a22d8d96d42ef4d2e35959436a7d662703bee
[]
no_license
vipermax/dummy-project
a5aac2860849abf46efdbcddd9a35c361aeb9481
dd0047fac7ad53e428b1ff7b208d319d79efa853
refs/heads/master
2021-01-10T01:30:36.137587
2016-03-01T08:58:58
2016-03-01T08:58:58
52,859,628
0
0
null
2016-03-01T08:57:32
2016-03-01T08:09:18
Python
UTF-8
Python
false
false
280
py
print "Hello World!" print "Hello Again and again" print "I like typing this." print "This is a lot of fun." print 'Yay! Printing.' print "I'd much rather you 'not'." print 'I "said" do not touch this.' Print "Hey, here is something new!" print "some udpdate from master branch"
[ "vipermax@gmail.com" ]
vipermax@gmail.com
acea4cdf9cddd739a1daddc42cb820e70fe0e59c
3a18085d011b2dfc2c15ca6eb10838c604ef8a2c
/transform_web_traffic.py
60b01996ed53bf8eaf3b2b944629e994c5dd01a9
[]
no_license
ericness/when_i_work_code_challenge
049f986df9cc9c1de29f502f006e138e119bac70
7e67505ebc451138327effd51ec967f200ee9d0a
refs/heads/master
2021-07-24T06:42:34.133140
2017-11-02T20:25:05
2017-11-02T20:25:05
109,053,886
0
0
null
null
null
null
UTF-8
Python
false
false
5,285
py
import argparse import io import re import pandas as pd import boto3 import botocore # parse command args to set run configuration parser = argparse.ArgumentParser(description=('Transform raw web traffic data ' 'into a pivoted table of aggregated time per ' 'path by user.')) parser.add_argument('bucket', type=str, help='Name of S3 bucket that contains web traffic data') parser.add_argument('--prefix', type=str, help='Prefix to filter S3 keys by') parser.add_argument('--output', type=str, help='Name of output CSV file') args = parser.parse_args() # set configuration variables from command line args S3_BUCKET_NAME = args.bucket if args.prefix: S3_PREFIX = args.prefix else: S3_PREFIX = '' if args.output: OUTPUT_CSV_NAME = args.output else: OUTPUT_CSV_NAME = 'web_traffic.csv' def clean_web_traffic_data(web_traffic_df, s3_object_name): """Return a dataframe with any corrupt data removed and data types corrected. web_traffic_df - dataframe with fields path, user_id and length s3_object_name - name of source file to use in status messages """ frame_size = len(web_traffic_df.index) # check that format of path is valid. remove any invalid rows. web_traffic_df = web_traffic_df[web_traffic_df['path'].str. match('^(/[\w-]*)+\s*$') == True] filter_count = frame_size - len(web_traffic_df.index) if filter_count != 0: print(f'{filter_count} rows filtered out of {s3_object_name} because ' f'of invalid path formats.') frame_size = len(web_traffic_df.index) # check that all length values are integers if web_traffic_df['length'].dtype != 'int64': web_traffic_df = web_traffic_df[web_traffic_df['length'].astype('str'). str.isdigit() == True] filter_count = frame_size - len(web_traffic_df.index) if filter_count != 0: print(f'{filter_count} rows filtered out of {s3_object_name} ' f'because field length is non-integer.') web_traffic_df['length'] = web_traffic_df['length'].astype(int) return web_traffic_df # use the UNSIGNED signature version for anonymous access s3 = boto3.resource('s3', config=botocore.client. Config(signature_version=botocore.UNSIGNED)) # set up objects to iterate through list of S3 objects s3_bucket = s3.Bucket(S3_BUCKET_NAME) if S3_PREFIX != '': s3_bucket_objects = s3_bucket.objects.filter(Prefix=S3_PREFIX) else: s3_bucket_objects = s3_bucket.objects.all() # list of dataframes created from the CSV files web_traffic_list = [] print(f'Getting list of CSV files to process.') # iterate through CSV files and parse them into dataframes try: for s3_obj in s3_bucket_objects: # only process CSV files if re.match('.*\.csv$', s3_obj.key): obj = s3.Object(s3_obj.bucket_name, s3_obj.key) web_traffic_subset = pd.read_csv(io.BytesIO(obj.get()['Body']. read()), encoding='utf8') print(f'Processing file {s3_obj.key}.') # check structure and contents of dataframe if set(['user_id', 'path', 'length']).issubset(web_traffic_subset. columns): web_traffic_subset = clean_web_traffic_data(web_traffic_subset, s3_obj.key) web_traffic_list.append(web_traffic_subset[['user_id', 'path', 'length']]) else: print(f'Data in file {s3_obj.key} was skipped because it does ' f'not contain fields user_id, path and length.') except botocore.exceptions.ClientError as e: print(e.response['Error']['Message']) exit() # make sure that at least one file was processed if len(web_traffic_list) == 0: print(f'There are no CSV files with the proper structure to process.') exit() print(f'All files have been ingested. Beginning data transformation.') # combine the dataframes from all the files into one large dataframe web_traffic = pd.concat(web_traffic_list, ignore_index=True) # aggregate the length of time that each user spent on each path web_traffic_user_path = web_traffic.groupby(['user_id','path'])['length'].sum() # pivot the table so that the path names are in columns web_traffic_user = web_traffic_user_path.reset_index() web_traffic_user = web_traffic_user.pivot(index='user_id', columns='path', values='length') # fill in any missing data with zeros web_traffic_user = web_traffic_user.fillna(0) # dtype converts to float when pivoting because of the presence of NaNs. # convert the data type back to int. web_traffic_user = web_traffic_user.astype(dtype='int') print(f'Writing transformed data to file {OUTPUT_CSV_NAME}.') # output data to specified location web_traffic_user.to_csv(OUTPUT_CSV_NAME) print(f'Done!')
[ "ericness@UdemySparkCourse.fpcodpc5vfjurkxi5gs5htsn0d.gx.internal.cloudapp.net" ]
ericness@UdemySparkCourse.fpcodpc5vfjurkxi5gs5htsn0d.gx.internal.cloudapp.net
59429ee5ee8ca7e0edd5fe634b9e3e46f97d9c73
9bf9ba2ff40e63e87efc67d0d90416b3e839ca3f
/TwoPlayerTicTacToe2.py
1976094f651cf9f5f5bca70443c4c2911928cc3e
[]
no_license
Muhammad-Ahmed-Mansoor/Python-tic-tac-toe
243353dda52cad2256633cd979fe989c8fdc5f13
79d3619aea057bafab015498de3ae85418cf7889
refs/heads/master
2022-11-13T21:57:52.504479
2020-07-07T15:48:47
2020-07-07T15:48:47
277,858,848
0
0
null
null
null
null
UTF-8
Python
false
false
2,952
py
import os; def boardPrint(): #displays the board global board print('\n') #two blank lines for clarity's sake for i in [7,8,9,4,5,6,1,2,3]:#to match keyboard numpad if i % 3 !=0:#to avoid '|' at the end of a row print(board[i],'|',end=' ') else: #to insert new line at end of row print (board[i]) if i !=3: print('---------')#no '--------' after last row continue print('\n') #two blank lines for clarity's sake return #note that variable move is use twice, each time locally, never globally def boardManager(move): #makes changes to the board according to given move global board,currentPlayer board[move]=currentPlayer return def moveInput(): global currentPlayer move='whatever' #initializing move before while loop while move not in board : move=input(currentPlayer+' moves:') continue move=int(move)#move is not made int at input time to account for mismatched string inputs return move def judge():#returns the state of the match global board,moveCount #checking for a win in the rows for a in range(1,10,3): #a takes values 1,4,7 if board[a]==board[a+1]==board[a+2]:#checks an entire row for equality return 'win' continue #checking for a win in the columns for b in range(1,4): if board[b]==board[b+3]==board[b+6]:#checks an entire column for equality return 'win' continue #checking for a win in diagonals if board[1]==board[5]==board[9] or board[3]==board[5]==board[7]: return 'win' #check for draw if moveCount==9: return 'draw' #if no win or draw, match continues return 'continue' #main program starts here while True:#so game plays until user closes board=[str(i) for i in range(10)]#board[0] to be ignored for simplicity & readibilty. board[1:9] to represent #the 9 squares of a tic tac toe board. moveCount=0 #starting the game loop: while judge()=='continue': if moveCount %2==0: currentPlayer='X' #as X goes first so gets even numbered moves else : currentPlayer='O' boardPrint() boardManager(moveInput()) os.system("cls") moveCount+=1 continue boardPrint() if judge()=='win': print(currentPlayer+' wins.') elif judge()=='draw': print ('Match Drawn') print() restart=input('Press enter to restart or type exit to exit.') if restart=='exit': break; os.system("cls") continue
[ "noreply@github.com" ]
noreply@github.com
88850f9c8b1aef4142ac6d51fb5ce192a8482057
be1e8444482e40df5d02d57964f61cfbd9249f13
/Django-0.90/django/core/db/backends/postgresql.py
b1b2d9cb52d964e5d1fd6012266dabed23eedd4c
[ "BSD-3-Clause", "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
tungvx/deploy
9946d4350f5fbc5da25d45505b75384fd40e6088
9e1917c6c645b4ce0efe115b0da76027d4bc634c
refs/heads/master
2021-01-02T09:08:45.691746
2011-11-12T19:44:48
2011-11-12T19:44:48
2,763,145
1
0
null
null
null
null
UTF-8
Python
false
false
7,276
py
""" PostgreSQL database backend for Django. Requires psycopg 1: http://initd.org/projects/psycopg1 """ from django.core.db import base, typecasts import psycopg as Database DatabaseError = Database.DatabaseError class DatabaseWrapper: def __init__(self): self.connection = None self.queries = [] def cursor(self): from django.conf.settings import DATABASE_USER, DATABASE_NAME, DATABASE_HOST, DATABASE_PORT, DATABASE_PASSWORD, DEBUG, TIME_ZONE if self.connection is None: if DATABASE_NAME == '': from django.core.exceptions import ImproperlyConfigured raise ImproperlyConfigured, "You need to specify DATABASE_NAME in your Django settings file." conn_string = "dbname=%s" % DATABASE_NAME if DATABASE_USER: conn_string = "user=%s %s" % (DATABASE_USER, conn_string) if DATABASE_PASSWORD: conn_string += " password='%s'" % DATABASE_PASSWORD if DATABASE_HOST: conn_string += " host=%s" % DATABASE_HOST if DATABASE_PORT: conn_string += " port=%s" % DATABASE_PORT self.connection = Database.connect(conn_string) self.connection.set_isolation_level(1) # make transactions transparent to all cursors cursor = self.connection.cursor() cursor.execute("SET TIME ZONE %s", [TIME_ZONE]) if DEBUG: return base.CursorDebugWrapper(cursor, self) return cursor def commit(self): return self.connection.commit() def rollback(self): if self.connection: return self.connection.rollback() def close(self): if self.connection is not None: self.connection.close() self.connection = None def quote_name(self, name): if name.startswith('"') and name.endswith('"'): return name # Quoting once is enough. return '"%s"' % name def dictfetchone(cursor): "Returns a row from the cursor as a dict" return cursor.dictfetchone() def dictfetchmany(cursor, number): "Returns a certain number of rows from a cursor as a dict" return cursor.dictfetchmany(number) def dictfetchall(cursor): "Returns all rows from a cursor as a dict" return cursor.dictfetchall() def get_last_insert_id(cursor, table_name, pk_name): cursor.execute("SELECT CURRVAL('%s_%s_seq')" % (table_name, pk_name)) return cursor.fetchone()[0] def get_date_extract_sql(lookup_type, table_name): # lookup_type is 'year', 'month', 'day' # http://www.postgresql.org/docs/8.0/static/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT return "EXTRACT('%s' FROM %s)" % (lookup_type, table_name) def get_date_trunc_sql(lookup_type, field_name): # lookup_type is 'year', 'month', 'day' # http://www.postgresql.org/docs/8.0/static/functions-datetime.html#FUNCTIONS-DATETIME-TRUNC return "DATE_TRUNC('%s', %s)" % (lookup_type, field_name) def get_limit_offset_sql(limit, offset=None): sql = "LIMIT %s" % limit if offset and offset != 0: sql += " OFFSET %s" % offset return sql def get_random_function_sql(): return "RANDOM()" def get_table_list(cursor): "Returns a list of table names in the current database." cursor.execute(""" SELECT c.relname FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE c.relkind IN ('r', 'v', '') AND n.nspname NOT IN ('pg_catalog', 'pg_toast') AND pg_catalog.pg_table_is_visible(c.oid)""") return [row[0] for row in cursor.fetchall()] def get_relations(cursor, table_name): """ Returns a dictionary of {field_index: (field_index_other_table, other_table)} representing all relationships to the given table. Indexes are 0-based. """ cursor.execute(""" SELECT con.conkey, con.confkey, c2.relname FROM pg_constraint con, pg_class c1, pg_class c2 WHERE c1.oid = con.conrelid AND c2.oid = con.confrelid AND c1.relname = %s AND con.contype = 'f'""", [table_name]) relations = {} for row in cursor.fetchall(): try: # row[0] and row[1] are like "{2}", so strip the curly braces. relations[int(row[0][1:-1]) - 1] = (int(row[1][1:-1]) - 1, row[2]) except ValueError: continue return relations # Register these custom typecasts, because Django expects dates/times to be # in Python's native (standard-library) datetime/time format, whereas psycopg # use mx.DateTime by default. try: Database.register_type(Database.new_type((1082,), "DATE", typecasts.typecast_date)) except AttributeError: raise Exception, "You appear to be using psycopg version 2, which isn't supported yet, because it's still in beta. Use psycopg version 1 instead: http://initd.org/projects/psycopg1" Database.register_type(Database.new_type((1083,1266), "TIME", typecasts.typecast_time)) Database.register_type(Database.new_type((1114,1184), "TIMESTAMP", typecasts.typecast_timestamp)) Database.register_type(Database.new_type((16,), "BOOLEAN", typecasts.typecast_boolean)) OPERATOR_MAPPING = { 'exact': '=', 'iexact': 'ILIKE', 'contains': 'LIKE', 'icontains': 'ILIKE', 'ne': '!=', 'gt': '>', 'gte': '>=', 'lt': '<', 'lte': '<=', 'startswith': 'LIKE', 'endswith': 'LIKE', 'istartswith': 'ILIKE', 'iendswith': 'ILIKE', } # This dictionary maps Field objects to their associated PostgreSQL column # types, as strings. Column-type strings can contain format strings; they'll # be interpolated against the values of Field.__dict__ before being output. # If a column type is set to None, it won't be included in the output. DATA_TYPES = { 'AutoField': 'serial', 'BooleanField': 'boolean', 'CharField': 'varchar(%(maxlength)s)', 'CommaSeparatedIntegerField': 'varchar(%(maxlength)s)', 'DateField': 'date', 'DateTimeField': 'timestamp with time zone', 'EmailField': 'varchar(75)', 'FileField': 'varchar(100)', 'FilePathField': 'varchar(100)', 'FloatField': 'numeric(%(max_digits)s, %(decimal_places)s)', 'ImageField': 'varchar(100)', 'IntegerField': 'integer', 'IPAddressField': 'inet', 'ManyToManyField': None, 'NullBooleanField': 'boolean', 'OneToOneField': 'integer', 'PhoneNumberField': 'varchar(20)', 'PositiveIntegerField': 'integer CHECK (%(column)s >= 0)', 'PositiveSmallIntegerField': 'smallint CHECK (%(column)s >= 0)', 'SlugField': 'varchar(50)', 'SmallIntegerField': 'smallint', 'TextField': 'text', 'TimeField': 'time', 'URLField': 'varchar(200)', 'USStateField': 'varchar(2)', } # Maps type codes to Django Field types. DATA_TYPES_REVERSE = { 16: 'BooleanField', 21: 'SmallIntegerField', 23: 'IntegerField', 25: 'TextField', 869: 'IPAddressField', 1043: 'CharField', 1082: 'DateField', 1083: 'TimeField', 1114: 'DateTimeField', 1184: 'DateTimeField', 1266: 'TimeField', 1700: 'FloatField', }
[ "toilatung90@gmail.com" ]
toilatung90@gmail.com
bcd00e175fe8619264aa97bc0a61bbf04c8d0fc0
61a887eaf972bda8839728292147bf923103e8a1
/representations/explicit.py
4cf27c5cfa3ff12a6320ead1c90aa30c691999e8
[]
no_license
soltustik/RHG
45f05fb215f0e2fbcd1b51b8a44b78ae09454b5b
c94de165285cf06f3d101c316173175328874848
refs/heads/master
2023-01-01T02:17:36.041309
2020-10-07T10:00:24
2020-10-07T10:00:24
300,230,313
1
0
null
null
null
null
UTF-8
Python
false
false
3,063
py
import heapq from scipy.sparse import dok_matrix, csr_matrix from scipy.stats import logistic import numpy as np from representations.matrix_serializer import load_vocabulary, load_matrix class Explicit: """ Base class for explicit representations. Assumes that the serialized input is e^PMI. """ def __init__(self, path, normalize=True): self.wi, self.iw = load_vocabulary(path + '.words.vocab') self.ci, self.ic = load_vocabulary(path + '.contexts.vocab') self.m = load_matrix(path) self.m.data = np.log(self.m.data) self.normal = normalize if normalize: self.normalize() def normalize(self): m2 = self.m.copy() m2.data **= 2 norm = np.reciprocal(np.sqrt(np.array(m2.sum(axis=1))[:, 0])) normalizer = dok_matrix((len(norm), len(norm))) normalizer.setdiag(norm) self.m = normalizer.tocsr().dot(self.m) def represent(self, w): if w in self.wi: return self.m[self.wi[w], :] else: return csr_matrix((1, len(self.ic))) def similarity_first_order(self, w, c): return self.m[self.wi[w], self.ci[c]] def similarity(self, w1, w2): """ Assumes the vectors have been normalized. """ return self.represent(w1).dot(self.represent(w2).T)[0, 0] def closest_contexts(self, w, n=10): """ Assumes the vectors have been normalized. """ scores = self.represent(w) return heapq.nlargest(n, zip(scores.data, [self.ic[i] for i in scores.indices])) def closest(self, w, n=10): """ Assumes the vectors have been normalized. """ scores = self.m.dot(self.represent(w).T).T.tocsr() return heapq.nlargest(n, zip(scores.data, [self.iw[i] for i in scores.indices])) class PositiveExplicit(Explicit): """ Positive PMI (PPMI) with negative sampling (neg). Negative samples shift the PMI matrix before truncation. """ def __init__(self, path, normalize=True, neg=1): Explicit.__init__(self, path, normalize) self.m.data -= np.log(neg) self.m.data[self.m.data < 0] = 0 self.m.eliminate_zeros() if normalize: self.normalize() class BPMI(Explicit): """ Binarized PMI """ def __init__(self, path, normalize=True, neg=1): Explicit.__init__(self, path, normalize) self.m.data -= np.log(neg) self.m.data[self.m.data < 0] = 0 self.m.data[self.m.data > 0] = 1 self.m.eliminate_zeros() if normalize: self.normalize() class Squashed(Explicit): """ Squashed SPMI """ def __init__(self, path, normalize=True, neg=1): Explicit.__init__(self, path, normalize) self.m.data -= np.log(neg) self.m.data = logistic.cdf(self.m.data) self.m.eliminate_zeros() if normalize: self.normalize()
[ "noreply@github.com" ]
noreply@github.com
02185c94d3eb3432880096e3dc2c60d9712cb52f
b78849c6afe4e2a13e464ee21c3e31758d5d17de
/imagedownloader Web_scraping with gui.py
8065b39c29080438704e3582843739cb9ff955a5
[]
no_license
kevalmahajan/Python-Projects
7c9184d91f1506f87ceb9157d88214b3547f5c17
91379c4c159ee30019c6e46164374994855d30b1
refs/heads/master
2023-02-14T15:46:52.142843
2020-12-23T05:53:12
2020-12-23T05:53:12
280,148,602
0
0
null
null
null
null
UTF-8
Python
false
false
11,122
py
import os import requests # to sent GET requests from bs4 import BeautifulSoup # to parse HTML from tkinter import * import tkinter as tk import traceback from tkinter import messagebox as m_box yahoo_img = \ 'https://in.images.search.yahoo.com/search/images;_ylt=AwrwJSJD2Q1fTlkATCK8HAx.;_ylc=X1MDMjExNDcyMzAwNARfcgMyBGZyAwRncHJpZAN6VDFjeUl0WlFfLnRqMGU1YlNTTGVBBG5fc3VnZwMxMARvcmlnaW4DaW4uaW1hZ2VzLnNlYXJjaC55YWhvby5jb20EcG9zAzAEcHFzdHIDBHBxc3RybAMEcXN0cmwDNARxdWVyeQNkb2dzBHRfc3RtcAMxNTk0NzQzMTEw?fr2=sb-top-in.images.search&' user_agent = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', 'Accept-Encoding': 'none', 'Accept-Language': 'en-US,en;q=0.8', 'Connection': 'keep-alive', } save_folder = 'images' #--------------------------------------------------------------------------------- def download_n(): root1 = Tk() z = Canvas(root1, width=400,height=250) root1.title("Download n Images") Label(root1, text="What are you looking for?", fg = "Black", font = "Verdana 10").place(x=90,y=20) e1=Entry(root1) e1.place(x=90,y=50) Label(root1, text="How many images do you want? ", fg = "Black", font = "Verdana 10").place(x=90,y=90) e2=Entry(root1) e2.place(x=90,y=120) button4 = tk.Button(root1, text='Download', width=17, bg="#D3D3D3",fg='black', command=lambda:download_images(e1,e2)) button4.place(x=90,y=160) button5 = tk.Button(root1, text='Back', width=10, bg="#D3D3D3",fg='black', command=lambda:[root1.destroy(),main()]).place(x=225,y=160) z.pack() def download_images(e1,e2): try: root1 = Tk() root1.title("Done") data=e1.get() n_images=e2.get() if data=='' or n_images=='': root1.withdraw() m_box.showerror('Error','Please fill both entries ') else: data=str(data) n_images=int(n_images) # print(data,n_images) z = Canvas(root1, width=260,height=110) print('Start searching...') # get url query string searchurl = yahoo_img + 'p=' + data #print(searchurl) # request url, without user_agent the permission gets denied response = requests.get(searchurl, headers=user_agent) html = response.text soup = BeautifulSoup(html, 'html.parser') results = soup.find_all('img',class_= 'process',limit=n_images) # extract the link from the img tag imagelinks= [] for re in results: url1=re.attrs.get('data-src') imagelinks.append(url1) print(f'found {len(imagelinks)} images') Label(root1, text=f'found {len(imagelinks)} images', fg = "Black", font = "Verdana 10").place(x=70,y=20) print('Start downloading...') # Label(root1, text="Start downloading...", fg = "Black", # font = "Verdana 10").pack() for i, imagelink in enumerate(imagelinks): # open image link and save as file response = requests.get(imagelink) imagename = save_folder + '/' + data + str(i+1) + '.jpg' with open(imagename, 'wb') as file: file.write(response.content) print('Done') Label(root1, text="DOWNLOADING COMPLETE", fg = "Black", font = "Verdana 10").place(x=40,y=40) button5 = tk.Button(root1, text='OK', width=10, bg="#D3D3D3",fg='black', command=root1.destroy).place(x=90,y=70) z.pack() except ValueError: root1.withdraw() m_box.showwarning('Error','Enter a Valid Number') # print("enter valid number") # root2 = Tk() # z = Canvas(root2, width=260,height=110) # Label(root2, text="Enter a valid Number", fg = "Black", # font = "Verdana 10").place(x=60,y=30) # button5 = tk.Button(root2, text='OK', width=10, # bg="#D3D3D3",fg='black', # command=root2.destroy).place(x=90,y=70) # # z.pack() #------------------------------------------------------------------------------------ def url_n(): root1 = Tk() root1.title("Download Image using url") z = Canvas(root1, width=400,height=250) Label(root1, text="Enter Url : ", fg = "Black", font = "Verdana 10").place(x=90,y=20) e1=Entry(root1,width=35) e1.place(x=90,y=50) Label(root1, text="Name of the image to be saved :", fg = "Black", font = "Verdana 10").place(x=90,y=90) e2=Entry(root1) e2.place(x=90,y=120) button4 = tk.Button(root1, text='Download', width=17, bg="#D3D3D3",fg='black', command=lambda:url_images(e1,e2)).place(x=90,y=160) button5 = tk.Button(root1, text='Back', width=10, bg="#D3D3D3",fg='black', command=lambda:[root1.destroy(),main()]).place(x=225,y=160) z.pack() def url_images(e1,e2): try: root1 = Tk() root1.title("Done") z = Canvas(root1, width=260,height=110) imagelink=e1.get() data=e2.get() if imagelink=='' or data=='': root1.withdraw() m_box.showerror('Error','Please fill both entries ') else: response = requests.get(imagelink) imagename = save_folder + '/' + data + '.jpg' with open(imagename, 'wb') as file: file.write(response.content) print('Done') Label(root1, text="IMAGE DOWNLOADED", fg = "Black", font = "Verdana 10").place(x=60,y=30) button5 = tk.Button(root1, text='OK', width=10, bg="#D3D3D3",fg='black', command=root1.destroy).place(x=90,y=70) z.pack() except : root1.withdraw() m_box.showwarning('Invalid Url','Enter a Valid URL') #------------------------------------------------------------------------------------------ def insta_n(): root1 = Tk() root1.title("Download Instagram Image ") z = Canvas(root1, width=400,height=250) Label(root1, text="Enter Instagram Image link : ", fg = "Black", font = "Verdana 10").place(x=90,y=20) e1=Entry(root1,width=35) e1.place(x=90,y=50) Label(root1, text="Name of the image to be saved :", fg = "Black", font = "Verdana 10").place(x=90,y=90) e2=Entry(root1) e2.place(x=90,y=120) button4 = tk.Button(root1, text='Download', width=17, bg="#D3D3D3",fg='black', command=lambda:insta_images(e1,e2)).place(x=90,y=160) button5 = tk.Button(root1, text='Back', width=10, bg="#D3D3D3",fg='black', command=lambda:[root1.destroy(),main()]).place(x=225,y=160) z.pack() def insta_images(e1,e2): try: root1 = Tk() root1.title("Done") z = Canvas(root1, width=260,height=110) url=e1.get() data=e2.get() if data=='' or n_images=='': root1.withdraw() m_box.showerror('Error','Please fill both entries ') else: usr_agent = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', 'Accept-Encoding': 'none', 'Accept-Language': 'en-US,en;q=0.8', 'Connection': 'keep-alive', } response = requests.get(url, headers=usr_agent) html = response.text #soup = BeautifulSoup(html, 'html.parser') soup = BeautifulSoup(html,'html.parser') metaTag = soup.find_all('meta', {'property':'og:image'}) imagelink = metaTag[0]['content'] response = requests.get(imagelink) imagename = save_folder + '/' + data + '.jpg' with open(imagename, 'wb') as file: file.write(response.content) print('Done') Label(root1, text="IMAGE DOWNLOADED", fg = "Black", font = "Verdana 10").place(x=60,y=30) button5 = tk.Button(root1, text='OK', width=10, bg="#D3D3D3",fg='black', command=root1.destroy).place(x=90,y=70) z.pack() except : root1.withdraw() m_box.showwarning('Invalid Instagram Link','Enter a Valid URL') # print("Invalid Image Url") # root2 = Tk() # z = Canvas(root2, width=260,height=110) # Label(root2, text="Invalid Image Url", fg = "Black", # font = "Verdana 10").place(x=60,y=30) # button5 = tk.Button(root2, text='OK', width=10, # bg="#D3D3D3",fg='black', # command=root2.destroy).place(x=90,y=70) # # z.pack() def main(): if not os.path.exists(save_folder): os.mkdir(save_folder) root = Tk() root.title("Image Downloader") w = Canvas(root, width=400,height=250) Label(root, text="Image Downloader", fg = "Black", font = "Verdana 14",pady=10,padx=10,bg = "LightGrey").place(x=100,y=20) button1 = tk.Button(root, text='Download n required images', width=35, command=lambda: [download_n(),root.destroy()]).place(x=75,y=100) button2 = tk.Button(root, text='Download via url', width=35, command=lambda: [url_n(),root.destroy()]).place(x=75,y=140) button3 = tk.Button(root, text='Download instagram images', width=35, command=lambda: [insta_n(),root.destroy()]).place(x=75,y=180) w.pack() mainloop() if __name__ == '__main__': main()
[ "noreply@github.com" ]
noreply@github.com
d107a85fb3ea25bf12a822113f007101ca0d82e5
be82971799d625de703ad2c58d49d8bbb5b06fab
/TI-DSS-Python-ClientExample.py
bf9598bc77a30357a6e2880f0f13c8aa7ac66f07
[ "Unlicense" ]
permissive
PML-Trey/TI-DSS-Python
2f4c9fe9c01979c2d11b371b907d180a0aa3c422
1862ff434d2eb0d9ad04f3df03ffe5109218a300
refs/heads/main
2023-03-07T12:07:27.787467
2021-02-23T13:37:45
2021-02-23T13:37:45
341,315,758
0
0
null
null
null
null
UTF-8
Python
false
false
1,073
py
import Pyro4 dss = Pyro4.Proxy("PYRONAME:dss") # use name server object lookup uri shortcut # Setup target configuration # Populated with a path/file of a target configuraiton made using CCS dss.setConfig("./targetConfig.ccxml") # Connect to debugger and configure this debug session # Populate with the name of the connection and the target cpu # For instance "Texas Instruments XDS110 USB Debug Probe_0/C28xx_CPU1" # This returns the session name that is used in all subsequent calls # that interact with the target device sessionName = dss.startDebugSession("Connection Name") print('Connected to debugger') # Connect to the target CPU using the debugger dss.connectTarget(sessionName) print('Connected to targets') # Program the target device # Change application.out to be the path to your executable # This can take a while depending on the device print('Programming target') dss.loadProgram(sessionName, "./application.out") print("Done programming") # End the debug session and stop the debug server dss.endDebugSession(sessionName) dss.stopDebugServer()
[ "trey@polymorphiclabs.com" ]
trey@polymorphiclabs.com
2b63fb46758a1f007ae3ed5ce851d0c3a99bb6e0
f5788e1e1d8522c0d4ae3b4668faa5537680cb07
/mutual_sale_discount_total/__openerp__.py
55acff682f3f211f074ab7660a836cc839f366de
[]
no_license
mutualSecurity/mutual-erp-residential
8549e179af6df1ffceadf42369d69d4dd44f07ac
88debefc662dd1510a1d52a877ede4673c319532
refs/heads/master
2021-11-11T13:33:37.878051
2021-11-02T10:14:49
2021-11-02T10:14:49
71,433,705
1
2
null
null
null
null
UTF-8
Python
false
false
1,007
py
{ 'name': 'Sale Discount on Total Amount', 'version': '1.0', 'category': 'sale', 'sequence': 6, 'summary': "Discount on total in Sale and invoice with Discount limit and approval", 'author': 'Cybrosys Techno Solutions', 'company': 'Cybrosys Techno Solutions', 'website': 'http://www.cybrosys.com', 'description': """ Sale Discount for Total Amount ======================= Module to manage discount on total amount in Sale. as an specific amount or percentage """, 'depends': ['sale','mutual_sales', 'base', 'stock','mutual_inventory','mutual_reports','mutual_followups','mutual_project','mutual_mass_editing'], 'data': [ 'views/sale_view.xml', 'views/account_invoice_view.xml', 'views/invoice_report.xml', 'views/sale_order_report.xml', 'views/sale_discount_approval_view.xml', 'views/sale_discount_approval_workflow.xml' ], 'demo': [ ], 'installable': True, 'auto_install': False, }
[ "pk_bscs@yahoo.com" ]
pk_bscs@yahoo.com
e47f21b19c216ae807692a673b8184880a5aa25d
51761bbf3e42543687664291dd3a7d3ae9a90fd2
/utils.py
68c6c6eba79327b7c718fd4655159cd4dda8850b
[]
no_license
MarcelaBarella/luizalabs_challenge
03612291e8f89875c1572eb301235bc5b6f7948d
12b977b6836222bcd7a8d8464a7b840425d2afe2
refs/heads/master
2020-03-20T11:43:29.243943
2019-11-22T14:59:50
2019-11-22T14:59:50
137,410,494
1
0
null
null
null
null
UTF-8
Python
false
false
166
py
from datetime import datetime def str_to_datetime(date): if type(date) != str: return date return datetime.strptime(date, '%d/%m/%Y %H:%M')
[ "marcela.barella@hotmail.com" ]
marcela.barella@hotmail.com
b59262788ee519c9e2a4555e7cb75382fba2da3d
ca920a476e43b68d6d041fb5af098cecf2dbbbd0
/py-list-vulnerabilities/smartcheck.py
6c73fdeb20c2d2f5c4cbf17a130a430a41b7c19e
[ "Apache-2.0" ]
permissive
felipecosta09/smartcheck-samples
8b74a8773bfb21e82b03eccd9f9090bdd6bdfca3
bdaade3b2c057abbdc1d437132ba043b14a00d14
refs/heads/master
2021-01-02T18:59:15.320466
2019-07-24T12:58:09
2019-07-24T13:09:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,520
py
# # Copyright 2019 Trend Micro and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import requests from docker_image import reference class _SlightlyImprovedSession(requests.Session): """ A _SlightlyImprovedSession keeps track of the base URL and any kwargs that should be passed to requests. When you make a `get` or `post` request, the URL you provide will be `urljoin`'d with the base URL, so relative URLs will work pretty well. Technically, this is totally broken, because relative URLs should be evaluated relative to the resource that provided the URL, but for our purposes this works perfectly and really simplifies life, so we're going to ignore the pedants. """ def __init__(self, base, **kwargs): super(_SlightlyImprovedSession, self).__init__() self.base = base self.kwargs = kwargs def post(self, url, **kwargs): for k in self.kwargs: if k not in kwargs: kwargs[k] = self.kwargs[k] return super(_SlightlyImprovedSession, self).post( requests.compat.urljoin(self.base, url), **kwargs ) def get(self, url, **kwargs): for k in self.kwargs: if k not in kwargs: kwargs[k] = self.kwargs[k] return super(_SlightlyImprovedSession, self).get( requests.compat.urljoin(self.base, url), **kwargs ) def delete(self, url, **kwargs): for k in self.kwargs: if k not in kwargs: kwargs[k] = self.kwargs[k] return super(_SlightlyImprovedSession, self).delete( requests.compat.urljoin(self.base, url), **kwargs ) class Smartcheck(_SlightlyImprovedSession): """ A Smartcheck object provides some convenience methods for performing actions using the Deep Security Smart Check API. """ def __init__(self, base, user, password, verify=True, trace=False, **kwargs): """Authenticate with the service and return a session.""" if not base.startswith('http'): base = 'https://' + base if not verify: import urllib3 urllib3.disable_warnings() # Turn on trace logging if requested if trace: import logging try: import http.client as http_client except ImportError: import httplib as http_client http_client.HTTPConnection.debuglevel = 1 logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) requests_log = logging.getLogger('requests.packages.urllib3') requests_log.setLevel(logging.DEBUG) requests_log.propagate = True super(Smartcheck, self).__init__(base, verify=verify, **kwargs) self.headers.update({'X-Api-Version': '2018-05-01'}) self.credentials = { 'user': { 'userID': user, 'password': password } } def __enter__(self): """ Context manager method that's called when someone creates a with Smartcheck(...) as session: block. We'll start the session when the block is entered. """ # Create the session with the credentials that were provided in # the constructor. response = self.post('/api/sessions', json=self.credentials) if not response.ok: raise CreateSessionException(response) # Parse the created session session = response.json() # Save the session href (needed for later refreshes (TODO) # or to terminate the session when we're done). self.session_href = session['href'] # Put the session token into the `Authorization` header so all # requests in this session get authenticated and authorized. self.headers.update({ 'Authorization': f'Bearer {session["token"]}' }) return self def __exit__(self, exception_type, exception_value, exception_traceback): """ Context manager method that's called when someone exits a with Smartcheck(...) as session: block. We'll use this trigger to terminate the session. """ # Send `DELETE {href}` to terminate the session self.delete(self.session_href) # Don't eat any exception that might be coming... return False def _list(self, url, exception_kind, key, **kwargs): """ Generic "list anything in Deep Security Smart Check" method. Is a generator that will yield the individual items being listed and retrieve additional pages of data as needed until there are no more. The way listing resources works in the Deep Security Smart Check API is as follows: 1. Perform `GET /api/things` to get the first page of things. 2. The response will have the structure `{ things: [...] }` and if there is more data there will be a header `Link: <...>;rel="next"` that will take you to the next page. If there is no more data, the `Link rel=next` header won't be there. This method is the generic implementation that all of the `list*` methods will call. """ # Get the first page of results response = self.get(url, **kwargs) while True: # If the request failed, bail out -- we've got a specific exception type # for each kind of thing we list, so raise the appropriate exception if not response.ok: raise exception_kind(response) # All of the `list*` responses have the same structure: # { [key]: [items], next: "cursor?" } # Use the key to extract the items and yield them one at a time. for item in response.json()[key]: yield item # We use the link in the `Link: rel='next'` header as it's easier # than building a URL based on the cursor in the body. If there is # no header then there's no more data. if not 'next' in response.links: break # Extract the URL from the `Link: rel='next'` header. url = response.links['next']['url'] # Get the next page of results, we'll see you again at the top of the loop response = self.get(url) def list_scans(self, image_ref=None, limit=None, **kwargs): """List scans that match an image reference.""" # If the caller provided any parameters (like `limit`), then extract them here # as we've got more to add... params = kwargs.get('params', {}) # Delete `params` from `kwargs` as we'll be passing them in explicitly if 'params' in kwargs: del(kwargs['params']) if image_ref is not None: # Parse the image reference into its component parts image_ref = reference.Reference.parse(image_ref) # The "hostname" part still needs to get split into the registry and repository registry, repository = image_ref.split_hostname() # Add query parameters to search on the image reference bits params.update({ 'registry': registry, 'repository': repository, 'tag': image_ref['tag'], 'digest': image_ref['digest'], 'exact': True, }) if limit is not None: params['limit'] = limit # Yield the resulting scans for scan in self._list('/api/scans', ListScansException, 'scans', params=params, **kwargs): yield scan def create_scan(self, image_ref, image_pull_auth=None, insecure_skip_registry_tls_verify=False): """Start a scan.""" # Parse the image reference into its component parts parsed_ref = reference.Reference.parse(image_ref) # The "hostname" part still needs to get split into the registry and repository registry, repository = parsed_ref.split_hostname() # Parse the provided image_pull_auth into an object if it's a string (assuming JSON). # It will get serialized back into JSON in the request momentarily. if isinstance(image_pull_auth, str): image_pull_auth = json.loads(image_pull_auth) # Send the request response = self.post('/api/scans', json={ 'name': image_ref, 'source': { 'type': 'docker', 'registry': registry, 'repository': repository, 'tag': parsed_ref['tag'], 'digest': parsed_ref['digest'], 'credentials': image_pull_auth, 'insecureSkipVerify': insecure_skip_registry_tls_verify, } }) if not response.ok: raise CreateScanException(response) # Return the parsed scan object return response.json() def list_malware(self, scan): """List the malware found during a scan.""" # Scan results have malware identified per-layer to help folks identify where # in their process they need to resolve the issue. This means we need to go # through the layers in order to find any malware findings. for layer in scan['details']['results']: if 'malware' in layer: for package in self._list(layer['malware'], ListMalwareException, 'malware'): yield package def list_content_findings(self, scan): """List the content findings found during a scan.""" # Scan results have content findings identified per-layer to help folks identify where # in their process they need to resolve the issue. This means we need to go # through the layers in order to find any content findings. for layer in scan['details']['results']: if 'contents' in layer: for finding in self._list(layer['contents'], ListContentFindingsException, 'contents'): yield finding # Scan results have vulnerabilities identified per-layer (mostly) to help folks identify where # in their process they need to resolve the issue. This means we need to go # through the layers in order to find any vulnerability findings. def list_vulnerable_packages(self, scan): """List the vulnerable packages found during a scan.""" for layer in scan['details']['results']: if 'vulnerabilities' in layer: for package in self._list(layer['vulnerabilities'], ListVulnerabilitiesException, 'vulnerabilities'): yield package # Scan results have checklist findings identified per-checklist and per-profile within # each checklist. This means we need to go through each checklist and profile to find # all the results. def list_checklist_findings(self, scan): """List the checklist findings found during a scan.""" if 'checklists' in scan['details']: for checklist in self._list(scan['details']['checklists'], ListChecklistsException, 'checklists'): # Save details about the checklist so we can report it with the result # without creating a new object for each result. This will help if the # consumer wants to re-create the tree. checklist_info = { 'id': checklist['id'], 'href': checklist['href'], 'title': checklist.get('title', None), 'version': checklist.get('version', None), } for profile in checklist['profiles']: # Save details about the profile so we can report it with the result # without creating a new object for each result. This will help if the # consumer wants to re-create the tree. profile_info = { 'id': profile['id'], 'title': profile.get('title', None), } for rule in self._list(profile['rules'], ListChecklistProfileRuleResultsException, 'rules'): result = rule['result'] # "pass" and "not-applicable" aren't really findings... we may want a separate # method to get all checklist results if result == 'pass' or result == 'not-applicable': continue yield { 'checklist': checklist_info, 'profile': profile_info, 'result': rule } class CreateException(Exception): def __init__(self, kind, response): super(CreateException, self).__init__( f'could not create {kind}: {response}' ) self.response = response class ListException(Exception): def __init__(self, kind, response): super(ListException, self).__init__( f'*** WARNING: could not retrieve {kind}: {response}' ) class CreateSessionException(CreateException): def __init__(self, response): super(CreateSessionException, self).__init__('session', response) class CreateScanException(CreateException): def __init__(self, response): super(CreateScanException, self).__init__('scan', response) class ListScansException(ListException): def __init__(self, response): super(ListScansException, self).__init__('scans', response) class ListMalwareException(ListException): def __init__(self, response): super(ListMalwareException, self).__init__( 'malware', response ) class ListVulnerabilitiesException(ListException): def __init__(self, response): super(ListVulnerabilitiesException, self).__init__( 'vulnerabilities', response ) class ListContentFindingsException(ListException): def __init__(self, response): super(ListContentFindingsException, self).__init__( 'content findings', response ) class ListChecklistsException(ListException): def __init__(self, response): super(ListChecklistsException, self).__init__( 'checklists', response ) class ListChecklistProfileRuleResultsException(ListException): def __init__(self, response): super(ListChecklistProfileRuleResultsException, self).__init__( 'checklist profile rule results', response )
[ "Geoff_Baskwill@trendmicro.com" ]
Geoff_Baskwill@trendmicro.com
be45bcb1e674793f5bb4889a3cdcada07a013a45
5b71e2952f34dd3bb20148874d952fee06d31857
/app/mf/crud/migrations/0100_auto_20210206_1820.py
41f0df779972b165576ab9f2962e9261c1ec7a13
[]
no_license
isela1998/facebook
a937917cddb9ef043dd6014efc44d59d034102b1
a0f2f146eb602b45c951995a5cb44409426250c5
refs/heads/master
2023-07-18T02:14:50.293774
2021-08-28T03:26:06
2021-08-28T03:26:06
400,613,743
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
# Generated by Django 3.1.1 on 2021-02-06 22:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('crud', '0099_debts_rate'), ] operations = [ migrations.AlterField( model_name='debts', name='rate', field=models.DecimalField(decimal_places=2, default=0.0, max_digits=30, verbose_name='Tasa(Bs.)'), ), ]
[ "infantefernandezisela@gmail.com" ]
infantefernandezisela@gmail.com
ea81a3f2769fe2186891c4edce86d5f3c483d4e5
940622a48cc8711a39dd7f36122bae1e25ee2fcc
/QuestionTime/QuestionTime/urls.py
a68ebcf6bfba297eff05f5c23e941b75964ca7f5
[]
no_license
merveealpay/django-vue-question-app
144d1f9b49cd1f0cbd91820c2c11cc42ff95a09d
f12c88bdbfcac685b7098145370e13be935c8d8f
refs/heads/main
2023-02-05T12:58:28.651036
2020-12-27T18:05:35
2020-12-27T18:05:35
319,586,207
2
0
null
null
null
null
UTF-8
Python
false
false
1,738
py
"""QuestionTime URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path, re_path from django_registration.backends.one_step.views import RegistrationView #look at django-registration documentation!!! from core.views import IndexTemplateView from users.forms import CustomUserForm urlpatterns = [ path('admin/', admin.site.urls), path("accounts/register/", RegistrationView.as_view( form_class=CustomUserForm, success_url="/", ), name="django_registration_register"), path("accounts/", include("django_registration.backends.one_step.urls")), path("accounts/", include("django.contrib.auth.urls")), path("api/", include("users.api.urls")), path("api/", include("questions.api.urls")), path("api-auth/", include("rest_framework.urls")), path("api/rest-auth/", include("rest_auth.urls")), path("api/rest-auth/registration/", include("rest_auth.registration.urls")), re_path(r"^.*$", IndexTemplateView.as_view(), name="entry-point") ]
[ "merveealpay@gmail.com" ]
merveealpay@gmail.com
2e54441258e9589bbbcf8cfd910724f80e61d746
966d68245763f12d950efbc39928cbb14655b9d1
/backend/textManipulation/summarization.py
05f35fdc3ae8da0ba8c1c697fe038840a8d6ad96
[]
no_license
wcooper90/ivyhacks2020
ebd1352465eb364d802f7673af06ffa407758f1f
684d964a5a352cd78faf11df91c3b1bc08355ee8
refs/heads/main
2022-12-25T00:14:34.213824
2020-10-04T17:57:53
2020-10-04T17:57:53
301,185,526
0
0
null
null
null
null
UTF-8
Python
false
false
2,453
py
from __future__ import absolute_import from __future__ import division, print_function, unicode_literals from sumy.parsers.html import HtmlParser from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer from sumy.summarizers.lsa import LsaSummarizer as Summarizer from sumy.nlp.stemmers import Stemmer from sumy.utils import get_stop_words from sumy.summarizers.luhn import LuhnSummarizer from sumy.summarizers.edmundson import EdmundsonSummarizer from sumy.summarizers.text_rank import TextRankSummarizer from sumy.summarizers.lex_rank import LexRankSummarizer import nltk nltk.download('punkt') from UserInputs import UserInputs from inputs.article_scraper import url_text_conversion, collect_text # default summarization for text def summarize_text(text, num_sentences): LANGUAGE = "english" # parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE)) parser = PlaintextParser.from_string(text, Tokenizer(LANGUAGE)) stemmer = Stemmer(LANGUAGE) # use text rank as default summarizer = TextRankSummarizer(stemmer) summarizer.stop_words = get_stop_words(LANGUAGE) result = '' counter = 0 for sentence in summarizer(parser.document, num_sentences): counter += 1 # if counter > num_sentences / 2: # break # print(sentence) result += ' ' + str(sentence) title = 'to be implemented' return result, title # adjust to summarize speech better def summarize_speech_transcription(text, num_sentences): body = text model = Summarizer() result = model(body, num_sentences=num_sentences) result = ''.join(result) title = 'to be implemented' return result, title # summarization for an article def summarize_article_text(url, num_sentences): LANGUAGE = "english" parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE)) # or for plain text files # parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE)) # parser = PlaintextParser.from_string("Check this out.", Tokenizer(LANGUAGE)) stemmer = Stemmer(LANGUAGE) summarizer = Summarizer(stemmer) summarizer.stop_words = get_stop_words(LANGUAGE) result = '' for sentence in summarizer(parser.document, num_sentences): result += str(sentence) title = 'to be implemented' return result, title
[ "wcooperhockey@gmail.com" ]
wcooperhockey@gmail.com
fb535040a409105773f5e30f68bd636c8b3931a2
307d6435a8da159eede9c233dc14bce29d8af11f
/src/fewer_than_15_siblings.py
0450dcc4a5c0f7321f333cc894452d9854905de2
[]
no_license
Ahsan45/SSW-CS555
7d82d0f039bfb31cbb775718debfde02615a8ce1
fc4808884a99d48ff29f122d67c197061102c57c
refs/heads/master
2021-01-25T06:30:25.675681
2017-08-03T00:56:58
2017-08-03T00:56:58
93,584,540
1
0
null
null
null
null
UTF-8
Python
false
false
282
py
#Erik Lim #SSW 555 Agile Methods for Software Development '''Module for checking if mthere are fewer than 15 siblings in a family''' from utils import date_first def fewer_than_15_siblings(fam): if 'CHIL' in fam: return len(fam['CHIL']) < 15 return True
[ "noreply@github.com" ]
noreply@github.com
a13fe0f96eed0b4b55663eed124b9bba9ead6cec
51ea0825d013e4205a74e288a95cec86b379e6ef
/augmentations.py
01b80e72b84a38d252970a0cf0355501a1d6c22c
[]
no_license
lucaslu1987/faceboxes
79d6e1f4d34087825cf81d76a4401e0bc40e77e1
7d3a459ad7e98c791ce9ad7b9058329f0663f4e4
refs/heads/master
2020-03-29T22:06:24.612806
2018-08-24T01:25:31
2018-08-24T01:25:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,384
py
import torch from torchvision import transforms import cv2 import numpy as np import types from numpy import random class Compose(object): """Composes several augmentations together. Args: transforms (List[Transform]): list of transforms to compose. Example: >>> augmentations.Compose([ >>> transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> ]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img, boxes=None, labels=None): for t in self.transforms: img, boxes, labels = t(img, boxes, labels) return img, boxes, labels class ConvertFromInts(object): def __call__(self, image, boxes=None, labels=None): return image.astype(np.float32), boxes, labels class RandomSaturation(object): def __init__(self, lower=0.5, upper=1.5): self.lower = lower self.upper = upper assert self.upper >= self.lower, "contrast upper must be >= lower." assert self.lower >= 0, "contrast lower must be non-negative." def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 1] *= random.uniform(self.lower, self.upper) return image, boxes, labels class RandomHue(object): def __init__(self, delta=18.0): assert delta >= 0.0 and delta <= 360.0 self.delta = delta def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 0] += random.uniform(-self.delta, self.delta) image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0 image[:, :, 0][image[:, :, 0] < 0.0] += 360.0 return image, boxes, labels class RandomLightingNoise(object): def __init__(self): self.perms = ((0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)) def __call__(self, image, boxes=None, labels=None): if random.randint(2): swap = self.perms[random.randint(len(self.perms))] shuffle = SwapChannels(swap) # shuffle channels image = shuffle(image) return image, boxes, labels class ConvertColor(object): def __init__(self, current='BGR', transform='HSV'): self.transform = transform self.current = current def __call__(self, image, boxes=None, labels=None): if self.current == 'BGR' and self.transform == 'HSV': image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) elif self.current == 'HSV' and self.transform == 'BGR': image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) else: raise NotImplementedError return image, boxes, labels class RandomContrast(object): def __init__(self, lower=0.5, upper=1.5): self.lower = lower self.upper = upper assert self.upper >= self.lower, "contrast upper must be >= lower." assert self.lower >= 0, "contrast lower must be non-negative." # expects float image def __call__(self, image, boxes=None, labels=None): if random.randint(2): alpha = random.uniform(self.lower, self.upper) image *= alpha return image, boxes, labels class RandomBrightness(object): def __init__(self, delta=32): assert delta >= 0.0 assert delta <= 255.0 self.delta = delta def __call__(self, image, boxes=None, labels=None): if random.randint(2): delta = random.uniform(-self.delta, self.delta) image += delta return image, boxes, labels class SwapChannels(object): """Transforms a tensorized image by swapping the channels in the order specified in the swap tuple. Args: swaps (int triple): final order of channels eg: (2, 1, 0) """ def __init__(self, swaps): self.swaps = swaps def __call__(self, image): """ Args: image (Tensor): image tensor to be transformed Return: a tensor with channels swapped according to swap """ # if torch.is_tensor(image): # image = image.data.cpu().numpy() # else: # image = np.array(image) image = image[:, :, self.swaps] return image class PhotometricDistort(object): def __init__(self): self.pd = [ RandomContrast(), ConvertColor(transform='HSV'), RandomSaturation(), RandomHue(), ConvertColor(current='HSV', transform='BGR'), RandomContrast() ] self.rand_brightness = RandomBrightness() self.rand_light_noise = RandomLightingNoise() def __call__(self, image, boxes, labels): im = image.copy() im, boxes, labels = self.rand_brightness(im, boxes, labels) if random.randint(2): distort = Compose(self.pd[:-1]) else: distort = Compose(self.pd[1:]) im, boxes, labels = distort(im, boxes, labels) return self.rand_light_noise(im, boxes, labels) class SSDAugmentation(object): def __init__(self): self.augment = Compose([ ConvertFromInts(), PhotometricDistort(), ]) def __call__(self, img, boxes, labels): return self.augment(img, boxes, labels)
[ "609632889@qq.com" ]
609632889@qq.com
2a6df882b37651ba09c0543b3c1661bad7bf365e
fe9f4a9c75ec60cd4245b15164e27161567b43ff
/week3/2-Resolve-with-Functions/prime_digit.py
8506bc8d70591dc4442261e9465aecd2d51d7144
[]
no_license
manuelavelinova/Programming0
5dc8273edc5c4302de37d48226e1ee7b9a062959
56132232ea4321f517af3dd6f0139ee35f00ef15
refs/heads/master
2016-09-05T13:40:11.416849
2015-03-22T10:02:11
2015-03-22T10:02:11
31,215,081
0
0
null
null
null
null
UTF-8
Python
false
false
680
py
def is_prime(n): start = 2 isPrime = True while start < n: if n % start == 0: isPrime = False if n == 1: isPrime = False start += 1 if isPrime: return True else: return False def to_digits(n): digits = [] while n != 0: digit = n % 10 digits += [digit] n = n // 10 return digits n = input("Enter n: ") n = int(n) result = to_digits(n) primeDigit = False for res in result: if is_prime(res): primeDigit = True break if primeDigit: print("There are prime digits") else: print("There are no prime digits")
[ "manuelavelinova@gmail.com" ]
manuelavelinova@gmail.com
f22af6b6113dc3091f9553766e30977fce309d38
db5264994305e8c926f89cb456f33bd3a4d64f76
/Sklep zielarski/account/urls.py
8f5e4dae0dd33bbbd640d540c02340a153233e68
[]
no_license
marcinpelszyk/Django
7842e20d5e8b213c4cd42c421c1db9ab7d5f01d5
aff2b9bd20e978a22a4a98994bf8424892d3c82f
refs/heads/main
2023-05-01T19:20:37.267010
2021-05-18T17:51:53
2021-05-18T17:51:53
356,532,628
0
0
null
null
null
null
UTF-8
Python
false
false
3,026
py
from django.contrib.auth import views as auth_views from django.urls import path from django.views.generic import TemplateView from . import views from .forms import PwdResetConfirmForm, PwdResetForm, UserLoginForm app_name = 'account' urlpatterns = [ path('login/', auth_views.LoginView.as_view(template_name='account/login.html', form_class=UserLoginForm), name='login'), path('logout/', auth_views.LogoutView.as_view(next_page='/account/login/'), name='logout'), path('register/', views.account_register, name='register'), path('activate/<slug:uidb64>/<slug:token>)/', views.account_activate, name='activate'), # Reset password path('password_reset/', auth_views.PasswordResetView.as_view(template_name="account/password_reset/password_reset_form.html", success_url='password_reset_email_confirm', email_template_name='account/password_reset/password_reset_email.html', form_class=PwdResetForm), name='pwdreset'), path('password_reset_confirm/<uidb64>/<token>', auth_views.PasswordResetConfirmView.as_view(template_name='account/password_reset/password_reset_confirm.html', success_url='password_reset_complete/', form_class=PwdResetConfirmForm), name="password_reset_confirm"), path('password_reset/password_reset_email_confirm/', TemplateView.as_view(template_name="account/password_reset/reset_status.html"), name='password_reset_done'), path('password_reset_confirm/MTU/password_reset_complete/', TemplateView.as_view(template_name="account/password_reset/reset_status.html"), name='password_reset_complete'), # User dashboard path('dashboard/', views.dashboard, name='dashboard'), path('profile/edit/', views.edit_details, name='edit_details'), path('profile/delete_user/', views.delete_user, name='delete_user'), path('profile/delete_confirm/', TemplateView.as_view(template_name="account/dashboard/delete_confirm.html"), name='delete_confirmation'), # Addresses path('addresses/', views.view_address, name='addresses'), path("add_address/", views.add_address, name="add_address"), path("addresses/edit/<slug:id>/", views.edit_address, name="edit_address"), path("addresses/delete/<slug:id>/", views.delete_address, name="delete_address"), path("addresses/set_default/<slug:id>/", views.set_default, name="set_default"), path("user_orders/", views.user_orders, name="user_orders"), #Favorite list path('favoritelist/', views.favoritelist, name='favoritelist'), path('favoritelist/add_to_favoritelist/<int:id>', views.add_to_favoritelist, name='user_favorite'), ]
[ "marcin.pelszyk90@gmail.com" ]
marcin.pelszyk90@gmail.com
c1a174860f449f624c4ea77b9f9327c3ae268a44
3f90cf7ddbc7afb9c7b8cf26ffee7f26f75d995d
/setup.py
e1037f1deeb0d503439c3bbc94f48aca0a855761
[ "MIT" ]
permissive
Znigneering/CSCI-3154
0c0f9383dc9f0a42c6f653c3fb450410a4b1a642
bc318efc73d2a80025b98f5b3e4f7e4819e952e4
refs/heads/master
2022-12-24T17:49:17.711622
2018-11-27T18:18:28
2018-11-27T18:18:28
158,028,171
0
0
MIT
2022-12-10T08:41:36
2018-11-17T21:54:45
C
UTF-8
Python
false
false
345
py
from setuptools import setup setup( name='PyTPG', version='0.8', packages=['tpg'], license='MIT', description='Python implementation of Tangled Program Graphs.', long_description=open('README.md').read(), author='Ryan Amaral', author_email='ryan_amaral@live.com', url='https://github.com/Ryan-Amaral/PyTPG')
[ "zh676054@dal.ca" ]
zh676054@dal.ca
a55f59281307acfcc9afc41d05c3550c1e1f0745
f77e219f6ab6794c8c52bcb06a936da02b381398
/libs/rl_salk/agents/sarsa_learner.py
25cd9e3adbd157433c7fa1fd7d9d318a67fa587f
[ "MIT" ]
permissive
rl-salk/rl-salk
96a5608e66134f8d5d305d30769d15f0ea372aad
2e63020fc76c81f863052ccce749353644e2fc9e
refs/heads/master
2020-06-24T05:21:02.937984
2019-08-08T02:14:59
2019-08-08T02:14:59
198,861,132
3
1
null
null
null
null
UTF-8
Python
false
false
255
py
from rl_salk.agents.td_learner import TDLearner class SarsaLearner(TDLearner): def learn(self, prev_state, action, state, reward, done): super().learn(prev_state, action, state, reward, done, target_policy='behavior')
[ "daniel.jaffe.butler@gmail.com" ]
daniel.jaffe.butler@gmail.com
3a872299b9b73a04afddd47ddc4dda9480c8f34e
f9c12c1c04b51ec62d7d671c02eb471a0afaccda
/tugas1/server3.py
ae2f0a360bf436a78f36b210dbfe282764f61578
[]
no_license
bastianf19/progjar-b-its-2020
dc92dbeb980f2c2391232626e4a65941978530c2
95405279b8de26c5d89cc39f0b360c7c0a78fb2a
refs/heads/master
2020-12-27T23:03:50.153132
2020-04-24T09:53:08
2020-04-24T09:53:08
238,096,160
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
import sys import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = ('localhost', 31002) print(sys.stderr, 'starting up on %s port %s' % server_address) sock.bind(server_address) sock.listen(1) while True: print(sys.stderr, 'waiting for a connection') connection, client_address = sock.accept() print(sys.stderr, 'connection from', client_address) while True: data = connection.recv(64).decode() print(sys.stderr, 'received "%s"' % data) if data: print(sys.stderr, 'sending data back to the client') connection.sendall(data.encode()) else: print(sys.stderr, 'no more data from', client_address) break connection.close()
[ "bastian.farandy@gmail.com" ]
bastian.farandy@gmail.com
c3a204b93156cbcd8e27787d9c7665ae8196a3c3
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/Sourcem8/pirates/instance/DistributedTeleportMgr.py
b9c0736e2218759b8f8a6859c8f75acb8541aa1b
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
31,217
py
from pandac.PandaModules import * from direct.task import Task from direct.distributed import DistributedObject from pirates.piratesbase import PiratesGlobals from pirates.world import ZoneLOD from direct.showbase.PythonUtil import report from otp.otpbase import OTPLocalizer from pirates.piratesbase import PLocalizer from pirates.piratesgui import PDialog from otp.otpgui import OTPDialog from pirates.quest import QuestDB, QuestLadderDB ''' Congratulations, Disney! You've managed to write this very gay code. DistributedTeleportMgr is the gayest thing ever existed. Do not try to understand this shit, I've already done it for you. By the way it gave me cancer and aids. ''' class DistributedTeleportMgr(DistributedObject.DistributedObject): notify = directNotify.newCategory('DistributedTeleportMgr') def __init__(self, cr): DistributedObject.DistributedObject.__init__(self, cr) self.instanceType = None self.fromInstanceType = None self.lastLocalTeleportLoc = None self.teleportQueryId = None self.inInstanceType = PiratesGlobals.INSTANCE_MAIN self.instanceName = 'mainWorld' self.doneCallback = None self.startedCallback = None self.oldWorld = None self.requestData = None self.localTeleportId = None self.localTeleportingObj = None self.localTeleportCallback = None self.localTeleportDestPos = None self.popupDialog = None self.doEffect = False self.stowawayEffect = False self.miniLog = None self.teleportQueue = [] self.teleportQueueProcess = None def generate(self): DistributedObject.DistributedObject.generate(self) base.cr.teleportMgr = self self.localTeleportingObj = localAvatar self.__pendingGoNow = [True] localAvatar.readyToTeleport(self) self.accept('localAvTeleportFinishedRequest', self.localAvTeleportFinishedRequest) def requestLocalTeleport(self, locationName = None): self.requestData = ((), { 'locationName': locationName }) localAvatar.confirmTeleport(self.localTeleportConfirmation, feedback = True) def localTeleportConfirmation(self, confirmed): if confirmed: requestData = self.requestData self.localTeleport(*requestData[0], **requestData[1]) locationUid = requestData['locationUid'] base.cr.loadingScreen.showTarget(locationUid) base.cr.loadingScreen.showHint(locationUid) self.requestData = None def localTeleportEffect(self, teleportPosHpr, parent=None, smooth=False, goNow=False): if localAvatar.testTeleportFlag(PiratesGlobals.TFInWater) or goNow: self.localTeleportPos(teleportPosHpr, parent, smooth) else: localAvatar.b_setGameState('TeleportOut') taskMgr.doMethodLater(5, self.localTeleportPos, self.uniqueName('localTeleportPos'), extraArgs = [ teleportPosHpr, parent, smooth]) def localTeleportPos(self, teleportPosHpr, parent = None, smooth = False): localAvatar.b_setGameState('TeleportOut', [ None, False]) currParent = localAvatar.getParentObj() if isinstance(currParent, ZoneLOD.ZoneLOD): localAvatar.leaveZoneLOD(currParent) if parent == None: parent = self.cr.activeWorld.worldGrid messenger.send('islandPlayerBarrier', [ 0]) teleportZone = parent.getZoneFromXYZ(teleportPosHpr[:3]) localAvatar.reparentTo(parent) localAvatar.setPosHpr(*teleportPosHpr) localAvatar.spawnWiggle() localAvatar.b_setLocation(parent.getDoId(), teleportZone) parent.addObjectToGrid(localAvatar) parent.setPlayerBarrier(1) currParent = localAvatar.getParentObj() if isinstance(currParent, ZoneLOD.ZoneLOD): localAvatar.enterZoneLOD(currParent) parent.processVisibility(None) if base.cr._completeEventCount.num > 0: self.acceptOnce(base.cr.getAllInterestsCompleteEvent(), localAvatar.b_setGameState, extraArgs = [ 'TeleportIn']) else: localAvatar.b_setGameState('TeleportIn') def localTeleport(self, locationName=None, goNow=False, locationUid=None): if locationName and locationUid: locationName = None for currIsle in base.cr.doId2do.values(): if not (hasattr(currIsle, 'getName') and hasattr(currIsle, 'getUniqueId')): continue if currIsle.getName() == locationName: break elif currIsle.getUniqueId() == locationUid: break else: self.notify.error('not found: (%s, %s)' % (locationName, locationUid)) currInteractive = base.cr.interactionMgr.getCurrentInteractive() if currInteractive: currInteractive.requestExit() questStateSpawnIdx = QuestLadderDB.getPreferredAreaSpawnNode(currIsle.getUniqueId(), localAvatar) teleportPos = base.cr.activeWorld.getPlayerSpawnPt(currIsle.getDoId(), index = questStateSpawnIdx) if teleportPos == None: teleportPos = (0, 0, 0, 0, 0, 0) self.localTeleportEffect(teleportPos, currIsle, goNow=goNow) self.lastLocalTeleportLoc = currIsle.getDoId() def requestTeleportToFishingShip(self): print 'requestTeleportToFishingShip' self.cr.teleportMgr.sendUpdate('requestTeleportToFishingShip') def teleportToFishingShipResponse(self, shipId): print 'teleportToFishingShipResponse' print 'shipId=', shipId self.cr.teleportMgr.localTeleportToId(shipId, localAvatar, showLoadingScreen = False) def localTeleportToId(self, locationId, teleportingObj = None, destPos = None, callback = None, objectLocation = None, showLoadingScreen = True): if showLoadingScreen: self.cr.loadingScreen.show(waitForLocation = True) if locationId in base.cr.doId2do and base.cr.doId2do[locationId].dclass.getName() == 'DistributedOceanGrid': logBlock(1, 'localTeleportToId(%s,%s,%s,%s,%s,%s) to ocean grid\n\n' % (locationId, teleportingObj, destPos, callback, objectLocation, showLoadingScreen) + str(StackTrace())) self.localTeleportId = locationId self.localTeleportingObj = teleportingObj self.localTeleportCallback = callback self.localTeleportDestPos = destPos destObj = self.cr.doId2do.get(locationId) if destObj: self._localTeleportToIdInterestComplete() self.notify.debug('destination object %s found, teleporting to there now' % locationId) elif objectLocation: self._localTeleportToIdResponse(objectLocation[0], objectLocation[1]) self.notify.debug('destination object %s not found, but location %s given' % (locationId, objectLocation)) else: self.sendUpdate('requestTargetsLocation', [ int(locationId)]) self.notify.debug('destination object %s not found, querying AI for its location' % locationId) def _localTeleportToIdResponse(self, objectId, parentId, zoneId): self.localTeleportId = objectId if parentId != 0 and zoneId != 0: if self.cr.doId2do.get(parentId): localAvatar.setInterest(parentId, zoneId, [ 'localTeleportToId'], 'localTeleportToIdInterestAddComplete') self.acceptOnce('localTeleportToIdInterestAddComplete', self._localTeleportToIdInterestComplete) self.notify.debug('parent %s of destination object found, setting up interest' % parentId) else: self.notify.warning('parent %s of destination object not found, teleport failure' % parentId) else: self.failTeleport(parentId, zoneId) def failTeleport(self, parentId = None, zoneId = None, message = PLocalizer.TeleportToPlayerFailMessage): self.sendUpdate('requestClearPreventDamage') fallbackAreaId = localAvatar.getReturnLocation() if fallbackAreaId != '': areaDoId = base.cr.uidMgr.getDoId(fallbackAreaId) self.clearAmInTeleport() if areaDoId: destPos = base.cr.activeWorld.getPlayerSpawnPt(areaDoId) if destPos and self.localTeleportingObj: self.localTeleportToId(areaDoId, self.localTeleportingObj, destPos) else: self.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, 'mainWorld', doEffect = False) else: self.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, 'mainWorld', doEffect = False) self._DistributedTeleportMgr__createDialog(message) else: self.notify.warning(" teleport to object (%s %s) AND 'return location' %s failed" % (parentId, zoneId, fallbackAreaId)) def _DistributedTeleportMgr__cleanupDialog(self, value = None): if self.popupDialog: self.popupDialog.destroy() del self.popupDialog self.popupDialog = None def _DistributedTeleportMgr__createDialog(self, message): if message: popupDialogText = message if self.popupDialog: self._DistributedTeleportMgr__cleanupDialog() self.popupDialog = PDialog.PDialog(text = popupDialogText, style = OTPDialog.Acknowledge, command = self._DistributedTeleportMgr__cleanupDialog) def _localTeleportToIdInterestComplete(self): teleportToObj = self.cr.doId2do.get(self.localTeleportId) if not teleportToObj: self.sendUpdate('requestTargetsLocation', [ self.localTeleportId]) return None curParent = localAvatar.getParentObj() parentIsZoneLOD = isinstance(curParent, ZoneLOD.ZoneLOD) if parentIsZoneLOD: localAvatar.leaveZoneLOD(curParent) try: isAShip = teleportToObj._isShip() except AttributeError: isAShip = False if isAShip: if not teleportToObj.isSailable(): self.failTeleport(0, 0, PLocalizer.TeleportToGoneShipFailMessage) return None elif teleportToObj.gameFSM.getCurrentOrNextState() in ('InBoardingPosition', 'OtherShipBoarded'): self.failTeleport(0, 0, PLocalizer.TeleportToBoardingShipFailMessage) return None teleportToObj.setZoneLevel(3) teleportToObj.registerMainBuiltFunction(localAvatar.placeOnShip, [ teleportToObj]) teleportToObj.registerBuildCompleteFunction(teleportToObj.enableOnDeckInteractions) teleportToObj.registerBuildCompleteFunction(self._localTeleportToIdDone) base.setLocationCode('Ship') else: self.__pendingGoNow.append(False) goNow = self.__pendingGoNow.pop(0) self.localTeleport(locationUid=teleportToObj.getUniqueId(), goNow=goNow) def _localTeleportToIdDone(self): self.cr.loadingScreen.scheduleHide(base.cr.getAllInterestsCompleteEvent()) curParent = localAvatar.getParentObj() if isinstance(curParent, ZoneLOD.ZoneLOD): localAvatar.enterZoneLOD(curParent) if self.localTeleportCallback: self.localTeleportCallback() self.localTeleportId = None self.localTeleportingObj = None self.localTeleportCallback = None self.localTeleportDestPos = None localAvatar.guiMgr.socialPanel.updateAll() def disable(self): DistributedObject.DistributedObject.disable(self) messenger.send('destroyCrewMatchInvite') taskMgr.removeTasksMatching('teleportRemoveInterest') taskMgr.removeTasksMatching('teleportAddInterest') taskMgr.removeTasksMatching(self.uniqueName('localTeleportPos')) taskMgr.removeTasksMatching(self.uniqueName('fadeDone')) self.requestData = None self.ignoreAll() if base.cr.teleportMgr == self: base.cr.teleportMgr = None requestData = self.requestData self.requestData = None if self.teleportQueueProcess: taskMgr.remove(self.teleportQueueProcess) def requestTeleport(self, instanceType, instanceName, shardId = 0, locationUid = '', instanceDoId = 0, doneCallback = None, startedCallback = None, gameType = -1, friendDoId = 0, friendAreaDoId = 0, doEffect = True): self.requestData = ((instanceType, instanceName), { 'shardId': shardId, 'locationUid': locationUid, 'instanceDoId': instanceDoId, 'doneCallback': doneCallback, 'startedCallback': startedCallback, 'gameType': gameType, 'friendDoId': friendDoId, 'friendAreaDoId': friendAreaDoId, 'doEffect': doEffect }) localAvatar.confirmTeleport(self.teleportConfirmation, feedback = True) def teleportConfirmation(self, confirmed): if confirmed: requestData = self.requestData self.initiateTeleport(*requestData[0], **requestData[0]) locationUid = requestData[1]['locationUid'] base.cr.loadingScreen.showTarget(locationUid) base.cr.loadingScreen.showHint(locationUid) self.requestData = None def requestTeleportToAvatar(self, shardId, instanceDoId, avatarId, avatarParentId): self.requestTeleport(PiratesGlobals.INSTANCE_MAIN, '', shardId, '', instanceDoId, friendDoId = avatarId, friendAreaDoId = avatarParentId) def teleportToObjectResp(self, shardId, instanceId, objId, parentId): self.requestTeleport(PiratesGlobals.INSTANCE_MAIN, '', shardId, '', instanceId, friendDoId = objId, friendAreaDoId = parentId) def requestTeleportToShip(self, shardId, instanceDoId, shipId): self.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, '', shardId, '', instanceDoId, friendDoId = 0, friendAreaDoId = shipId) def requestTeleportToIsland(self, islandUid): def teleportConfirmation(confirmed, islandUid = islandUid): self.islandTeleportConfirmation(confirmed, islandUid) localAvatar.setTeleportFlag(PiratesGlobals.TFNoIslandToken, localAvatar.confirmIslandTokenTeleport, [ islandUid]) localAvatar.setTeleportFlag(PiratesGlobals.TFSameArea, localAvatar.confirmNotSameAreaTeleport, [ islandUid]) localAvatar.confirmTeleport(teleportConfirmation, feedback = True) localAvatar.clearTeleportFlag(PiratesGlobals.TFNoIslandToken) localAvatar.clearTeleportFlag(PiratesGlobals.TFSameArea) def islandTeleportConfirmation(self, confirmed, islandUid): if confirmed: islandDoId = self.cr.uidMgr.getDoId(islandUid) island = self.cr.getDo(islandDoId) if island and island.getParentObj() is self.cr.activeWorld: self.localTeleport(locationName = island.getName()) else: self.sendUpdate('requestTeleportToIsland', [ islandUid]) base.cr.loadingScreen.showTarget(islandUid) base.cr.loadingScreen.showHint(islandUid) def teleportToIslandResponse(self, instanceDoId, islandDoId): if instanceDoId and islandDoId: self.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, '', self.cr.distributedDistrict.doId, '', instanceDoId, friendAreaDoId = islandDoId) def stowawayTeleportResponse(self, instanceDoId, islandDoId): if instanceDoId and islandDoId: self.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, '', self.cr.distributedDistrict.doId, '', instanceDoId, friendAreaDoId = islandDoId, doEffect = False, stowawayEffect = True) base.cr.loadingScreen.showTarget(base.cr.doId2do[islandDoId].getUniqueId()) def queryAvatarForTeleport(self, avId): self.setTeleportQueryId(avId) def teleportConfirmation(confirmed, avId = avId): if confirmed: handle = self.cr.identifyAvatar(avId) if handle: shardId = self.cr.distributedDistrict.doId if not localAvatar.getBandId(): pass (bandMgr, bandId) = (0, 0) guildId = localAvatar.getGuildId() handle.sendTeleportQuery(avId, bandMgr, bandId, guildId, shardId) localAvatar.confirmTeleport(teleportConfirmation, feedback = True) def handleAvatarTeleportQuery(self, requesterId, requesterBandMgrId, requesterBandId, requesterGuildId, requesterShardId): handle = self.cr.identifyAvatar(requesterId) if not handle: return None if self.cr.identifyFriend(requesterId): if requesterId in localAvatar.ignoreList or self.cr.avatarFriendsManager.checkIgnored(requesterId): handle.sendTeleportResponse(PiratesGlobals.encodeTeleportFlag(PiratesGlobals.TFIgnore), 0, 0, 0, sendToId = requesterId) return None avName = handle.getName() def confirmed(canTeleportTo, avId, failedFlag, avName = avName): if canTeleportTo: if self.cr.getActiveWorld() and self.cr.distributedDistrict and localAvatar.getParentObj(): handle.sendTeleportResponse(PiratesGlobals.TAAvailable, self.cr.distributedDistrict.doId, self.cr.getActiveWorld().doId, localAvatar.getParentObj().doId, sendToId = requesterId) else: handle.sendTeleportResponse(PiratesGlobals.encodeTeleportFlag(PiratesGlobals.TFUnavailable), 0, 0, 0, sendToId = requesterId) elif localAvatar.failedTeleportMessageOk(requesterId): localAvatar.setSystemMessage(requesterId, OTPLocalizer.WhisperFailedVisit % avName) handle.sendTeleportResponse(PiratesGlobals.encodeTeleportFlag(failedFlag), 0, 0, 0, sendToId = requesterId) localAvatar.confirmTeleportTo(confirmed, requesterId, avName, requesterBandMgrId, requesterBandId, requesterGuildId) def handleAvatarTeleportResponse(self, avId, available, shardId, instanceDoId, areaDoId): if not avId == self.teleportQueryId: self.clearTeleportQueryId() return None self.clearTeleportQueryId() handle = self.cr.identifyAvatar(avId) if handle: avName = handle.getName() else: return None if available == PiratesGlobals.TAAvailable: def teleportConfirmation(confirmed, shardId = shardId, instanceDoID = instanceDoId, avId = avId, avatarParentId = areaDoId): if confirmed: self.requestTeleportToAvatar(shardId, instanceDoId, avatarId = avId, avatarParentId = areaDoId) localAvatar.setTeleportFlag(PiratesGlobals.TFSameArea, localAvatar.confirmNotSameAreaTeleportToPlayer, [ areaDoId]) localAvatar.confirmTeleport(teleportConfirmation, feedback = True) localAvatar.clearTeleportFlag(PiratesGlobals.TFSameArea) else: flag = PiratesGlobals.decodeTeleportFlag(available) if flag == PiratesGlobals.TAIgnore: pass 1 if flag in PiratesGlobals.TFNoTeleportToReasons: localAvatar.guiMgr.createWarning(PiratesGlobals.TFNoTeleportToReasons[flag] % avName, duration = 10) def initiateTeleport(self, instanceType, instanceName, shardId = 0, locationUid = '', instanceDoId = 0, doneCallback = None, startedCallback = None, gameType = -1, friendDoId = 0, friendAreaDoId = 0, doEffect = True, queue = False, stowawayEffect = False): currInteractive = base.cr.interactionMgr.getCurrentInteractive() if currInteractive: currInteractive.requestExit() if self.cr.activeWorld: fromInstanceType = self.cr.activeWorld.getType() else: fromInstanceType = PiratesGlobals.INSTANCE_NONE if instanceType not in [ PiratesGlobals.INSTANCE_MAIN, PiratesGlobals.INSTANCE_WELCOME] and fromInstanceType not in [ PiratesGlobals.INSTANCE_MAIN, PiratesGlobals.INSTANCE_GENERIC, PiratesGlobals.INSTANCE_NONE]: if not base.config.GetBool('can-break-teleport-rules', 0): import pdb as pdb pdb.set_trace() return None if self.amInTeleport(): if queue: self.queueInitiateTeleport(instanceType, instanceName, shardId, locationUid, instanceDoId, doneCallback, startedCallback, gameType, friendDoId, friendAreaDoId, doEffect, stowawayEffect) return None return None self.setAmInTeleport() if instanceType == PiratesGlobals.INSTANCE_MAIN and not locationUid: locationUid = localAvatar.returnLocation localAvatar.teleportFriendDoId = friendDoId self.doEffect = doEffect self.stowawayEffect = stowawayEffect self.sendUpdate('initiateTeleport', [ instanceType, fromInstanceType, shardId, locationUid, instanceDoId, instanceName, gameType, friendDoId, friendAreaDoId]) self.doneCallback = doneCallback self.startedCallback = startedCallback self.teleportInit(instanceType, fromInstanceType, instanceName) def queueInitiateTeleport(self, instanceType, instanceName, shardId = 0, locationUid = '', instanceDoId = 0, doneCallback = None, startedCallback = None, gameType = -1, friendDoId = 0, friendAreaDoId = 0, doEffect = True, stowawayEffect = False): teleInfo = [ instanceType, instanceName, shardId, locationUid, instanceDoId, doneCallback, startedCallback, gameType, friendDoId, friendAreaDoId, doEffect, stowawayEffect] self.teleportQueue.append(teleInfo) def processTeleportQueue(task = None): if self.amInTeleport(): return Task.again if not self.teleportQueue: return Task.done teleportInfo = self.teleportQueue.pop(0) self.initiateTeleport(*teleportInfo) if self.teleportQueue: return Task.again return Task.done self.teleportQueueProcess = taskMgr.doMethodLater(1, processTeleportQueue, 'processTeleportQueue') def amInTeleport(self): return localAvatar.testTeleportFlag(PiratesGlobals.TFInTeleport) def setAmInTeleport(self): localAvatar.b_setTeleportFlag(PiratesGlobals.TFInTeleport) localAvatar.b_clearTeleportFlag(PiratesGlobals.TFLookoutJoined) def clearAmInTeleport(self): localAvatar.clearTeleportFlag(PiratesGlobals.TFInInitTeleport) localAvatar.b_clearTeleportFlag(PiratesGlobals.TFInTeleport) def setTeleportQueryId(self, avId): self.teleportQueryId = avId def clearTeleportQueryId(self): self.teleportQueryId = 0 def initiateTeleportAI(self, instanceType, instanceName): self.teleportInit(instanceType, instanceName) def teleportInit(self, instanceType, fromInstanceType, instanceName, gameType = None): self.clearTeleportQueryId() self.oldWorld = base.cr.activeWorld self.instanceType = instanceType self.fromInstanceType = fromInstanceType self.instanceName = instanceName self.gameType = gameType self.miniLog = MiniLog('TeleportLog') MiniLogSentry(self.miniLog, 'teleportInit', instanceType, fromInstanceType, instanceName, gameType) def teleportHasBegun(self, instanceType, fromInstanceType, instanceName, gameType): if not self.miniLog: self.miniLog = MiniLog('TeleportLog') s = MiniLogSentry(self.miniLog, 'teleportHasBegun', instanceType, fromInstanceType, instanceName, gameType) if self.startedCallback: self.startedCallback() self.startedCallback = None if self.oldWorld == None or self.oldWorld.isEmpty(): self.teleportInit(instanceType, fromInstanceType, instanceName, gameType) def getRemoveInterestEventName(self): return self.uniqueName('teleportRemoveInterest') def getAddInterestEventName(self): return self.uniqueName('teleportAddInterest') def forceTeleportStart(self, instanceName, tzDoId, thDoId, worldGridDoId, tzParent, tzZone): s = MiniLogSentry(self.miniLog, 'forceTeleportStart', instanceName, tzDoId, thDoId, worldGridDoId, tzParent, tzZone) self.setAmInTeleport() localAvatar.guiMgr.request('Cutscene') if not base.transitions.fadeOutActive(): base.transitions.fadeOut() if self.fromInstanceType == PiratesGlobals.INSTANCE_MAIN: self.inInstanceType = PiratesGlobals.INSTANCE_MAIN else: self.inInstanceType = self.instanceType if self.fromInstanceType == PiratesGlobals.INSTANCE_PVP: localAvatar.clearTeleportFlag(PiratesGlobals.TFInPVP) elif self.fromInstanceType == PiratesGlobals.INSTANCE_TUTORIAL: localAvatar.clearTeleportFlag(PiratesGlobals.TFInTutorial) def fadeDone(): base.cr.loadingScreen.show() s = MiniLogSentry(self.miniLog, 'fadeDone') curParent = localAvatar.getParentObj() parentIsZoneLOD = isinstance(curParent, ZoneLOD.ZoneLOD) if parentIsZoneLOD: localAvatar.leaveZoneLOD(curParent) curParent.turnOff() if self.cr.doId2do.get(tzParent) == None: self.failTeleport(None, None, PLocalizer.TeleportGenericFailMessage) else: self.teleportAddInterestTZ(instanceName, tzDoId, thDoId, worldGridDoId, tzParent, tzZone) localAvatar.guiMgr.request('Interactive') taskMgr.removeTasksMatching(self.uniqueName('fadeDone')) taskMgr.doMethodLater(1, fadeDone, self.uniqueName('fadeDone'), extraArgs = []) def teleportAddInterestTZ(self, instanceName, tzDoId, thDoId, worldGridDoId, tzParent, tzZone): s = MiniLogSentry(self.miniLog, 'teleportAddInterestTZ', instanceName, tzDoId, thDoId, worldGridDoId, tzParent, tzZone) addEvent = self.getAddInterestEventName() self.accept(addEvent, self.teleportAddInterestCompleteTZ, extraArgs = [ tzDoId, thDoId, worldGridDoId]) localAvatar.setInterest(tzParent, tzZone, [ 'TZInterest'], addEvent) self.instanceName = instanceName def teleportAddInterestCompleteTZ(self, tzDoId, thDoId, worldGridDoId): s = MiniLogSentry(self.miniLog, 'teleportAddInterestCompleteTZ', tzDoId, thDoId, worldGridDoId) base.cr.relatedObjectMgr.requestObjects([ tzDoId], eachCallback = lambda param1, param2 = thDoId: self.teleportZoneExists(param1, param2)) def teleportZoneExists(self, teleportZone, thDoId): s = MiniLogSentry(self.miniLog, 'teleportZoneExists', teleportZone, thDoId) base.cr.relatedObjectMgr.requestObjects([ thDoId], eachCallback = lambda param1, param2 = teleportZone: self.teleportHandlerExists(param1, param2)) def teleportHandlerExists(self, teleportHandler, teleportZone): s = MiniLogSentry(self.miniLog, 'teleportHandlerExists', teleportHandler, teleportZone) teleportHandler.instanceName = self.instanceName teleportHandler.instanceType = self.instanceType teleportHandler.doneCallback = self.doneCallback self.doneCallback = None teleportHandler.oldWorld = self.oldWorld self.oldWorld = None teleportHandler.miniLog = self.miniLog self.miniLog = None teleportHandler.startTeleport() def localAvTeleportFinishedRequest(self, task = None): if not self.amInTeleport(): messenger.send('localAvTeleportFinished') def createSpawnInterests(self, parents, callback, destGrid, teleportingObj): s = MiniLogSentry(self.miniLog, 'createSpawnInterests', parents, callback.__name__, destGrid, teleportingObj) parentsLen = len(parents) if self.miniLog: self.miniLog.appendLine('parents - %s' % (parents,)) self.miniLog.appendLine('destGrid - %s' % (destGrid,)) if parentsLen == 0: logBlock(2, self.miniLog) callback(destGrid, teleportingObj) else: parentObj = base.cr.doId2do.get(parents[0]) if parentObj: callback(parentObj, teleportingObj) elif parentsLen > 2 and parents[2] in base.cr.doId2do: base.cr.relatedObjectMgr.requestObjects([ parents[0]], eachCallback = lambda param1 = None, param2 = teleportingObj: callback(param1, param2)) localAvatar.setInterest(parents[2], parents[1], [ 'instanceInterest']) elif parentsLen > 2: parentParentId = parents[2] parentParentZone = parents[1] else: parentParentId = '<None Given>' parentParentZone = '<None Given>' parentId = parents[0] self.notify.warning(('createSpawnInterests: parent %s of parent %s in zone %s ' + 'does not exist locally, aborting teleport') % (parentParentId, parentId, parentParentZone)) self.failTeleport(None, None, PLocalizer.TeleportGenericFailMessage) def initiateCrossShardDeploy(self, shardId = 0, islandUid = '', shipId = 0, doneCallback = None, startedCallback = None, doEffect = True): if not islandUid or not shipId: return None currInteractive = base.cr.interactionMgr.getCurrentInteractive() if currInteractive: currInteractive.requestExit() if self.cr.activeWorld: fromInstanceType = self.cr.activeWorld.getType() else: fromInstanceType = PiratesGlobals.INSTANCE_NONE if self.amInTeleport(): return None self.setAmInTeleport() self.doEffect = doEffect self.sendUpdate('requestCrossShardDeploy', [ shardId, islandUid, shipId]) self.doneCallback = doneCallback self.startedCallback = startedCallback self.teleportInit(PiratesGlobals.INSTANCE_MAIN, fromInstanceType, 'Main World') def notifyFriendVisit(self, avId): av = base.cr.identifyAvatar(avId) if av: avName = av.getName() else: avName = PLocalizer.Someone localAvatar.setSystemMessage(avId, OTPLocalizer.WhisperComingToVisit % avName) localAvatar.guiMgr.messageStack.addTextMessage(OTPLocalizer.WhisperComingToVisit % avName, icon = ('friends', None))
[ "brandoncarden12345@gmail.com" ]
brandoncarden12345@gmail.com
8eda4c8d2fd5781128748cfa3f14c23c06229fc3
10e19b5cfd59208c1b754fea38c34cc1fb14fdbe
/desktop/core/ext-py/Babel-0.9.6/babel/messages/tests/data/project/ignored/this_wont_normally_be_here.py
f26ddee1f7972ffe1050d7bb17ab8f960c38096a
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
sarvex/hue
780d28d032edd810d04e83f588617d1630ec2bef
6e75f0c4da2f3231e19c57bdedd57fb5a935670d
refs/heads/master
2023-08-15T21:39:16.171556
2023-05-01T08:37:43
2023-05-01T08:37:43
32,574,366
0
0
Apache-2.0
2023-09-14T16:55:28
2015-03-20T09:18:18
Python
UTF-8
Python
false
false
295
py
# -*- coding: utf-8 -*- # This file won't normally be in this directory. # It IS only for tests from gettext import ngettext def foo(): # Note: This will have the TRANSLATOR: tag but shouldn't # be included on the extracted stuff print ngettext('FooBar', 'FooBars', 1)
[ "bcwalrus@cloudera.com" ]
bcwalrus@cloudera.com
540a36640e92a49cebfdc1d2114b07b6d1012de4
90909fe5a9f9fdf65bd5b1e7374f5eee0afad325
/python-data-science-toolbox-part-2/generator-objects-1.py
37ae50931b731cffcfbe0e6f9149a0110aec0ef7
[]
no_license
fejesgergorichard/DataCamp
c4a75ecb2f97347c87b55357ac915fd3c1cd7a7f
5307016e4b7da9569e08d5923a9f6e1283da6c65
refs/heads/master
2022-09-05T12:37:37.082755
2020-05-18T17:22:44
2020-05-18T17:22:44
250,319,954
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
# A generator object is similar to a list comprehension, but it is defined by ( ) , not by [ ] # This object, unlike the list comprehensions, does not create the list. It produces a generator # The generator can be called as an iterable, and generates the required values on the fly, thus saving memory # Create generator object: result result = (num for num in range(31)) # Print the first 5 values print(next(result)) print(next(result)) print(next(result)) print(next(result)) print(next(result)) # Print the rest of the values for value in result: print(value)
[ "fejesgergorichard@gmail.com" ]
fejesgergorichard@gmail.com
a29c354c212eb6398363a27ee49432b9ad922189
2d93f948ba86742bb493403cf038e76444e58842
/corona/__main__.py
d6e3d059734327c55aed8eef2b771f3978d857c3
[]
no_license
antista/sir
debe6f31d0050e77ea6c3836c548d25cba2291fa
2b9d7c5e6c70d5486e55e209352400bc85b589d8
refs/heads/master
2022-12-28T01:40:02.843425
2020-10-10T11:41:42
2020-10-10T11:41:42
292,320,034
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
from matplotlib import pylab from corona.corona import main if __name__ == '__main__': main() pylab.show()
[ "anti2100@yandex.ru" ]
anti2100@yandex.ru
fb1e1b39572b14702c97b0a9db81638e716cea2e
4be8f1143abc8e585cc5c751984b9d861a9254dc
/map/migrations/0005_auto_20180212_2334.py
14a88da48d451e0ddb22e63348d9aae08ffee250
[]
no_license
jacksty/West-Marches-Website
b6ec14625a7c534e83008d47a22082a50050ec07
f00223dace7f1eb2c3013265856a5c62decf7be1
refs/heads/master
2021-04-27T10:44:56.511037
2018-02-26T06:38:04
2018-02-26T06:38:04
122,544,998
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
# Generated by Django 2.0.2 on 2018-02-13 04:34 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('map', '0004_edge_map'), ] operations = [ migrations.RenameField( model_name='edge', old_name='node_from', new_name='source', ), migrations.RenameField( model_name='edge', old_name='node_to', new_name='target', ), ]
[ "jacksty@gmx.com" ]
jacksty@gmx.com
677854622ff234e79b8d645e1b88e6e7804ead61
4f1299f5af48ac43735dad9a26e091ed26a606ad
/Prac.py
c8072a990624301f4f25d2eebc8056071cc56de0
[ "MIT" ]
permissive
BikashThapa/PythonPrograms
e163b7c62aced8c77ba4c6ee664a2bcf0c3f025a
f2e81771d6767fd96fea4622ef9fc8fe8d436b22
refs/heads/master
2020-07-25T01:23:55.746970
2019-12-24T08:30:58
2019-12-24T08:30:58
208,111,617
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
class Person: def __init__(self, name): self.name = name def talk(self): print(f'Hi, this is {self.name} here') person1 = Person("Biaksh Thapa") person1.talk() Bob = Person("Bob") Bob.talk()
[ "bthapa489@gmail.com" ]
bthapa489@gmail.com
18e101f183f35166e395cf8563e66d8b90b148fa
4dd8416c2a6cf08dd3fa3d197d895f2852106097
/语法基础/01.Python基础/12-if条件满足或者不满足的时候执行多句代码.py
ff6369886f6d8f6702c0a7020bde5b55db5990cc
[]
no_license
lanboys/HelloPython
19a74ad416ddadf7ed487023527e08ad9fcecb87
d411ee29781a9cf00470d05d1be61da8f2081080
refs/heads/master
2020-04-07T19:40:17.381564
2018-11-23T10:43:00
2018-11-23T10:43:00
158,657,533
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
age = 10 if age > 18: # 如果条件满足,那么下面的4行代码一定执行 print("----0-----") print("----1-----") print("----1-----") print("----1-----") else: # 如果第3行的代码,条件不满足,那么就执行接下来的4行代码 print("----1-----") print("----1-----") print("----1-----") print("----1-----") # 下面的这行代码,与上面的if没有任何的关系,即第3行的条件是否满足 与这里执行没有任何的影响 print("----9-----")
[ "lan_bing2013@163.com" ]
lan_bing2013@163.com
1621790e8faa136dc64077fdd7cd47ca87f200ae
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/85/usersdata/228/54502/submittedfiles/funcoes1.py
881c334b3cea4bdaa4890004b8352ae9eab83fdf
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,624
py
# -*- coding: utf-8 -*- n=int(input('digite o número de elementos:')) lista1=[] lista2=[] lista3=[] for i in range(0,n,1): elemento1=int(input('digite o elemento:')) lista1.append(elemento1) elemento2=int(input('digite o elemento:')) lista2.append(elemento2) elemento3=int(input('digite o elemento:')) lista3.append(elemento3) def crescente(a): for i in range(0,len(a),1): if a[i]<a[i+1]: return True else: return False def decrescente(a): for i in range(0,len(a),1): if a[i]>a[i+1]: return True else: return False def elementosiguais(a): for i in range(0,len(a),1): if a[i]==a[i+1]: return True else: return False if crescent(lista1): print('S') if crescent(lista1)==False: print('N') if decrescente(lista1): print('S') if decrescente(lista1)==False: print('N') if elementosiguais(lista1): print('S') if elementosiguais(lista1)==False: print('N') if crescent(lista2): print('S') if crescent(lista2)==False: print('N') if decrescente(lista2): print('S') if decrescente(lista2)==False: print('N') if elementosiguais(lista2): print('S') if elementosiguais(lista2)==False: print('N') if crescent(lista3): print('S') if crescent(lista3)==False: print('N') if decrescente(lista3): print('S') if decrescente(lista3)==False: print('N') if elementosiguais(lista3): print('S') if elementosiguais(lista3)==False: print('N')
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
b2aedb04d591a0a051b067311682d48c5f4de51b
ccce8382859124182ab87832e6aab5bc78141503
/app/__init__.py
817b64ae76b60d3395952719ff1446b285448028
[]
no_license
774525000/train
52a24b7f3d0420b82e7c5406f4611d725ad7a2bd
ded9cd8a276dc63facc171e405aa34bf0ca672e6
refs/heads/master
2022-04-11T12:54:05.764310
2020-02-27T01:27:23
2020-02-27T01:27:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
306
py
# -*- coding:utf-8 -*- from app.train.train import Train from time import sleep def run(home_url, email, password, chaojiying_name, chaojiying_pass, chaojiying_app_id, pic_type): Train.default(home_url, email, password, chaojiying_name, chaojiying_pass, chaojiying_app_id, pic_type) sleep(100)
[ "199441201qQ" ]
199441201qQ
2317b9612a821152993d2c8d3d77909c6a5d504f
69266a7696f5f8be7c78fd29ef68a7619e41d28d
/Tools/ComputeTool.py
9353c424e8d6deac1c49914c31c6768d29dd1ec4
[]
no_license
microelly2/PyFlowWWW
52deb54deb2db668cd21e9ce251894baaa663823
0b3d0009494327b2ec34af9fbca2a5fee1fef4a4
refs/heads/master
2022-04-14T02:35:08.999370
2020-04-11T19:48:54
2020-04-11T19:48:54
254,876,907
0
0
null
null
null
null
UTF-8
Python
false
false
3,464
py
## Copyright 2015-2019 Ilgar Lunin, Pedro Cabrera, microelly ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## http://www.apache.org/licenses/LICENSE-2.0 ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. from nine import str from PyFlow.UI.Tool.Tool import ShelfTool from PyFlow.Core.Common import Direction import FreeCADGui from Qt import QtGui from Qt.QtWidgets import QFileDialog from nodeeditor.say import * import sys if sys.version_info[0] !=2: from importlib import reload import os RESOURCES_DIR = os.path.dirname(os.path.realpath(__file__)) + "/res/" class ComputeTool(ShelfTool): """docstring for PreviewTool.""" def __init__(self): super( ComputeTool, self).__init__() @staticmethod def toolTip(): return "call compute method for selected nodes" @staticmethod def getIcon(): return QtGui.QIcon(RESOURCES_DIR + "compute.png") @staticmethod def name(): return str("ComputeTool") def do(self): nodes=FreeCAD.PF.graphManager.get().getAllNodes() nodes2 = sorted(nodes, key=lambda node: node.x) say("selected Nodes ...") for n in nodes2: if n.getWrapper().isSelected(): say(n,n.x) n.compute() class DeleteTool(ShelfTool): """docstring for PreviewTool.""" def __init__(self): super( DeleteTool, self).__init__() @staticmethod def toolTip(): return "Delete the selected nodes" @staticmethod def getIcon(): return QtGui.QIcon(RESOURCES_DIR + "delete.png") @staticmethod def name(): return str("DeleteTool") def do(self): nodes=FreeCAD.PF.graphManager.get().getAllNodes() nodes2 = sorted(nodes, key=lambda node: node.x) say("selected Nodes ...") for n in nodes2: if n.getWrapper().isSelected(): say(n,n.x) n.kill() class ToyTool(ShelfTool): """docstring for PreviewTool.""" def __init__(self): super( ToyTool, self).__init__() @staticmethod def toolTip(): return "Toy for Developer" @staticmethod def getIcon(): return QtGui.QIcon(RESOURCES_DIR + "toy.png") @staticmethod def name(): return str("ToyTool") def do(self): import nodeeditor.dev reload (nodeeditor.dev) nodeeditor.dev.run_shelfToy(self) class FreeCADTool(ShelfTool): """docstring for PreviewTool.""" def __init__(self): super( FreeCADTool, self).__init__() @staticmethod def toolTip(): return "FreeCAD mainWindow" @staticmethod def getIcon(): return QtGui.QIcon(RESOURCES_DIR + "freecad.png") @staticmethod def name(): return str("FreeCADTool") def do(self): mw=FreeCADGui.getMainWindow() mw.hide() mw.show() def toollist(): return [ ComputeTool, DeleteTool, FreeCADTool, ToyTool, ]
[ "thomas@freecadbuch.de" ]
thomas@freecadbuch.de
fbe6fad964090c227647ca05aee2f02fe8a3aafb
cdd8f8ed846820ffa107de24d45b5a55cd3c5bd0
/boot_device.py
ec1c782e9e183d1a324f82ecfac9d27109542ede
[ "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-other-permissive" ]
permissive
rockokw/vesper
d8db2c69e3f69c4b7feb0553021c91b52dc20c00
caaae6c06fb3df6745b9485f40e3cc799c795a75
refs/heads/master
2022-12-29T21:44:54.008370
2020-10-18T20:34:15
2020-10-18T20:36:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
869
py
#!/usr/bin/env python import argparse import copy import logging.config import config as cfg from device import Device if __name__ == '__main__': # Command-line arguments parser = argparse.ArgumentParser(description='Device boot script') parser.add_argument('name', type=str, help='device name') parser.add_argument('-l', '--loglevel', default='WARNING', help='log level (DEBUG|INFO|WARNING|ERROR|CRITICAL)') args = parser.parse_args() # Logging setup mylogcfg = copy.deepcopy(cfg.LOGCFG) mylogcfg['handlers']['default']['level'] = args.loglevel.upper() mylogcfg['handlers']['file']['filename'] = '/dev/null' logging.config.dictConfig(mylogcfg) log = logging.getLogger('boot_device') name = args.name device = Device(name) log.info('booting device %s...', name) device.start()
[ "kwamelaw@usc.edu" ]
kwamelaw@usc.edu
e136760c66ba06b8f27043bc427a323157a0c0a0
a0e4e123e5eb5f91eb5edd7d6d6bac268ca43c22
/holistic.py
0c4512029023a4b59d23865638c1ddf4746531f3
[]
no_license
borodedamie/pose-python
eb50b322d1a327a88b3c851b7c1f650eb1a4d67f
728135c4de033aeec5d2fcf4c3fc98e1dc4de56f
refs/heads/main
2023-08-21T13:06:51.120094
2021-10-05T06:06:00
2021-10-05T06:06:00
412,929,437
0
0
null
null
null
null
UTF-8
Python
false
false
1,336
py
import cv2 import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_holistic = mp.solutions.holistic cap = cv2.VideoCapture(0) with mp_holistic.Holistic( min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: while cap.isOpened(): success, image = cap.read() if not success: print("Ignoring empty camera frame.") # If loading a video, use 'break' instead of 'continue'. continue image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB) image.flags.writeable = False results = holistic.process(image) # Draw landmark annotation on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) mp_drawing.draw_landmarks( image, results.face_landmarks, mp_holistic.FACEMESH_CONTOURS, landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles .get_default_face_mesh_contours_style()) mp_drawing.draw_landmarks( image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS, landmark_drawing_spec=mp_drawing_styles .get_default_pose_landmarks_style()) cv2.imshow('MediaPipe Holistic', image) if cv2.waitKey(5) & 0xFF == 27: break cap.release()
[ "opeoluborode@yahoo.com" ]
opeoluborode@yahoo.com
6ef9ff461f84c97d055693cb74ea084ecc008185
7173b2d4b647263449174a1c1acd326ee0d85467
/certbot-dns-ovh/docs/conf.py
57194666ec5ed0e6633a0bb7e95e43796aefd3f9
[ "MIT", "Apache-2.0" ]
permissive
robstradling/certbot
0ee92d2f362d69342900a6be5e19175666bbab58
d0f1a3e205902f15b9608ef514cc1f0685da25ea
refs/heads/master
2020-06-01T04:44:20.728356
2019-06-05T21:51:17
2019-06-05T21:51:17
190,642,181
4
0
NOASSERTION
2019-06-06T20:02:01
2019-06-06T20:02:01
null
UTF-8
Python
false
false
5,779
py
# -*- coding: utf-8 -*- # # certbot-dns-ovh documentation build configuration file, created by # sphinx-quickstart on Fri Jan 12 10:14:31 2018. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.viewcode'] autodoc_member_order = 'bysource' autodoc_default_flags = ['show-inheritance', 'private-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'certbot-dns-ovh' copyright = u'2018, Certbot Project' author = u'Certbot Project' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0' # The full version, including alpha/beta/rc tags. release = u'0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'en' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] default_role = 'py:obj' # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # http://docs.readthedocs.org/en/latest/theme.html#how-do-i-use-this-locally-and-on-read-the-docs # on_rtd is whether we are on readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # otherwise, readthedocs.org uses their theme by default, so no need to specify it # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'certbot-dns-ovhdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'certbot-dns-ovh.tex', u'certbot-dns-ovh Documentation', u'Certbot Project', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'certbot-dns-ovh', u'certbot-dns-ovh Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'certbot-dns-ovh', u'certbot-dns-ovh Documentation', author, 'certbot-dns-ovh', 'One line description of project.', 'Miscellaneous'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'python': ('https://docs.python.org/', None), 'acme': ('https://acme-python.readthedocs.org/en/latest/', None), 'certbot': ('https://certbot.eff.org/docs/', None), }
[ "bmw@users.noreply.github.com" ]
bmw@users.noreply.github.com
36ff8d5e5b50b26b9b5c7383e666b8d5b76ec9ec
90bd88fbc3676551432d4e4f1ad64260e1d62573
/Data_processing/feature_extraction.py
8bb08b7e2599bb30089fa5f215fbb527ea21caca
[]
no_license
LeanneNortje/MultimodalSpeech-to-ImageMatching
648d009dbbb7a2f6c127e31a15193ab989a58998
a0ce92dc95d5052fbcd53a9a41cd3b6020345f9d
refs/heads/master
2023-04-28T10:11:45.132063
2021-04-26T13:36:32
2021-04-26T13:36:32
216,018,780
2
0
null
null
null
null
UTF-8
Python
false
false
3,895
py
#!/usr/bin/env python #_________________________________________________________________________________________________ # # Author: Leanne Nortje # Year: 2020 # Email: nortjeleanne@gmail.com #_________________________________________________________________________________________________ # # This sets up the feature extraction of a spesific dataset and all the information required and # associated with this dataset. # from datetime import datetime from os import path import argparse import glob import numpy as np import os from os import path from scipy.io import wavfile import matplotlib.pyplot as plt import logging import tensorflow as tf import subprocess import sys from tqdm import tqdm sys.path.append("..") from paths import data_path data_path = path.join("..", data_path) import speech_library #_____________________________________________________________________________________________________________________________________ # # Argument function # #_____________________________________________________________________________________________________________________________________ def arguments(): parser = argparse.ArgumentParser() parser.add_argument( "--dataset", type=str, choices=["buckeye", "TIDigits"], default="buckeye" ) parser.add_argument( "--feat_type", type=str, choices=["fbank", "mfcc"], default="fbank" ) return parser.parse_args() #_____________________________________________________________________________________________________________________________________ # # Main # #_____________________________________________________________________________________________________________________________________ def dataset_library(args): dataset_lib = {} if args.dataset == "buckeye": dataset_lib["feats_type"] = args.feat_type dataset_lib["dataset"] = args.dataset dataset_lib["out_dir"] = args.dataset dataset_lib["wavs"] = path.join(data_path, args.dataset, "*", "*.wav") dataset_lib["vads"] = path.join(data_path, dataset_lib["dataset"], "english.wrd") dataset_lib["training_speakers_path"] = path.join(data_path, dataset_lib["dataset"], "devpart1_speakers.list") dataset_lib["validation_speakers_path"] = path.join(data_path, dataset_lib["dataset"], "devpart2_speakers.list") dataset_lib["testing_speakers_path"] = path.join(data_path, dataset_lib["dataset"], "zs_speakers.list") dataset_lib["labels_to_exclude"] = ["SIL", "SPN"] dataset_lib["include_labels"] = True dataset_lib["labels_given"] = True dataset_lib["extract_words_or_not"] = True elif args.dataset == "TIDigits": dataset_lib["feats_type"] = args.feat_type dataset_lib["dataset"] = args.dataset dataset_lib["out_dir"] = args.dataset dataset_lib["wavs"] = path.join(data_path, args.dataset, "tidigits_wavs", "*", "*", "*","*.wav") dataset_lib["vads"] = path.join(data_path, dataset_lib["dataset"], "tidigits_fa", "words.wrd") dataset_lib["training_speakers_path"] = path.join(data_path, dataset_lib["dataset"], "tidigits_fa", "train_speakers.list") dataset_lib["validation_speakers_path"] = path.join(data_path, dataset_lib["dataset"], "tidigits_fa", "val_speakers.list") dataset_lib["testing_speakers_path"] = path.join(data_path, dataset_lib["dataset"], "tidigits_fa", "test_speakers.list") dataset_lib["labels_to_exclude"] = [] dataset_lib["include_labels"] = True dataset_lib["labels_given"] = True dataset_lib["extract_words_or_not"] = True return dataset_lib def main(): args = arguments() lib = dataset_library(args) feats = speech_library.extract_features(lib) speech_library.extract_segments(feats, lib) if __name__ == "__main__": main()
[ "nortjeleanne@gmail.com" ]
nortjeleanne@gmail.com
3073d91c6b25644a57b79bd4617df05083ecfa66
9d1b52e3fa86f0873d9f03b79054273a43896e15
/source code for BOSSdataset/main.py
ce3a8ec23e1d5a1ecd7a39728b0a36178b820592
[]
no_license
zhenglisec/DeepKeyStego
5f4b18e3b190f56aa3faa7833a114290fb09e263
d40a4661414f21b69f2e2023fda094db668df242
refs/heads/master
2021-06-17T08:46:04.034153
2021-03-19T15:05:55
2021-03-19T15:05:55
182,971,396
4
1
null
null
null
null
UTF-8
Python
false
false
8,304
py
from __future__ import print_function import argparse import os import random import warnings import matplotlib.pyplot as plt import numpy as np import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from model_boss import SSIM from model_boss.encoder import Encoder from model_boss.decoder import syDecoder, asyDecoder from model_boss.discriminator import Discriminator from model_boss.pkgenerator import pkgenerator GPU = '0,1,2,3,4,5,6,7' os.environ['CUDA_VISIBLE_DEVICES'] = GPU parser = argparse.ArgumentParser( description='Pytorch Implement with ImageNet') parser.add_argument('--type', default='symmeric', help='symmeric or asymmeric') parser.add_argument('--dataroot', default='/data/lizheng/DATASET/BOSSbase_1.01_20/') #'/data/lizheng/DATASET/BOSSbase_1.01/' parser.add_argument('--train', type=bool, default=True) parser.add_argument('--num_epochs', type=int, default=100) parser.add_argument('--batchsize', type=int, default=32) parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--beta', '--list', nargs='+', default=[0.5, 0.5, 0.03, 0.1]) parser.add_argument('--seed', default=22, type=int, help='seed for initializing training. ') parser.add_argument('--secret_len', type=int, default=512*256) parser.add_argument('--key_len', type=int, default=1024) args = parser.parse_args() if torch.cuda.is_available(): cudnn.benchmark = True if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) cudnn.deterministic = True warnings.warn('You have cho5sen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') print('==> Preparing data..') transform_train = transforms.Compose([ #transforms.Resize((128, 128)), transforms.ToTensor(), ]) transform_test = transforms.Compose([ # transforms.Resize((128, 128)), transforms.ToTensor(),]) trainset = torchvision.datasets.ImageFolder( root=args.dataroot+'train', transform=transform_train) trainloader = torch.utils.data.DataLoader( trainset, batch_size=args.batchsize, shuffle=True, num_workers=2, drop_last=True) testset = torchvision.datasets.ImageFolder( root=args.dataroot+'test', transform=transform_test) testloader = torch.utils.data.DataLoader( testset, batch_size=args.batchsize, shuffle=False, num_workers=2, drop_last=True) # Adversarial ground truths valid = torch.cuda.FloatTensor(args.batchsize, 1).fill_(1.0) fake = torch.cuda.FloatTensor(args.batchsize, 1).fill_(0.0) best_real_acc, best_wm_acc, best_wm_input_acc = 0, 0, 0 start_epoch = 0 # start from epoch 0 or last checkpoint epoch train_loss, test_loss = [[], []], [[], []] train_acc, test_acc = [[], []], [[], []] # Model print('==> Building model..') if args.type == 'symmeric': Decoder = syDecoder(sec_len = args.secret_len, output_function=nn.Sigmoid) elif args.type == 'asymmeric': Decoder = asyDecoder(sec_len = args.secret_len, output_function=nn.Sigmoid) Pkgenerator = pkgenerator() Encoder = Encoder(sec_len = args.secret_len) Discriminator = Discriminator() Encoder = nn.DataParallel(Encoder.cuda()) Decoder = nn.DataParallel(Decoder.cuda()) Discriminator = nn.DataParallel(Discriminator.cuda()) if args.type == 'asymmeric': Pkgenerator = nn.DataParallel(Pkgenerator.cuda()) # loss function criterionE_mse = nn.MSELoss().cuda() criterionE_ssim = SSIM().cuda() criterionD = nn.L1Loss().cuda() optimizerE = optim.Adam(Encoder.parameters(), lr=args.lr, betas=(0.5, 0.999)) optimizerD = optim.Adam(Decoder.parameters(), lr=args.lr, betas=(0.5, 0.999)) criterionDis = nn.BCEWithLogitsLoss().cuda() optimizerDis = optim.Adam(Discriminator.parameters(), lr=args.lr, betas=(0.5, 0.999)) if args.type == 'asymmeric': optimizerPkGen = optim.Adam(Pkgenerator.parameters(), lr=args.lr, betas=(0.5, 0.999)) print(Encoder) print(Decoder) print(Discriminator) def train(epoch): print('\nEpoch: %d' % epoch) Encoder.train() Decoder.train() Discriminator.train() if args.type == 'asymmeric': Pkgenerator.train() for batch_idx, (input, _) in enumerate(trainloader): input = input.cuda()[:, 0:1, :, :] messages = torch.from_numpy(np.random.randint(2, size=(args.batchsize, args.secret_len))).float().cuda() skey = torch.from_numpy(np.random.randint(2, size=(args.batchsize, args.key_len))).float().cuda() # secrect key if args.type == 'asymmeric': pkey = Pkgenerator(skey) #############optimize Discriminator############## optimizerDis.zero_grad() if args.type == 'symmeric': stego = Encoder(input, messages, skey) elif args.type == 'asymmeric': stego = Encoder(input, messages, pkey) stego_dis_output = Discriminator(stego.detach()) real_dis_output = Discriminator(input) loss_D_stego = criterionDis(stego_dis_output, fake) loss_D_real = criterionDis(real_dis_output, valid) loss_D = loss_D_stego + loss_D_real loss_D.backward() optimizerDis.step() ################optimize Encoder Decoder or Pkgenerator############# optimizerE.zero_grad() optimizerD.zero_grad() if args.type == 'symmeric': decoded_messages = Decoder(stego, skey) elif args.type == 'asymmeric': optimizerPkGen.zero_grad() decoded_messages = Decoder(stego, pkey, skey) stego_dis_output = Discriminator(stego) loss_mse = criterionE_mse(input, stego) loss_ssim = criterionE_ssim(input, stego) loss_adv = criterionDis(stego_dis_output, valid) loss_message = criterionD(decoded_messages, messages) loss_H = args.beta[0] * loss_mse + args.beta[1] * \ (1 - loss_ssim) + args.beta[2] * loss_adv + args.beta[3] * loss_message loss_H.backward() optimizerE.step() optimizerD.step() if args.type == 'asymmeric': optimizerPkGen.step() decoded_rounded = torch.round(decoded_messages.detach()) bitwise_avg_correct = torch.sum(torch.eq(messages, decoded_rounded))/args.batchsize print('[%d/%d][%d/%d] Loss D: %.4f () Loss_H: %.4f (mse: %.4f ssim: %.4f adv: %.4f) bitcorrect: %.4f' % ( epoch, args.num_epochs, batch_idx, len(trainloader), loss_D.item(), loss_H.item(), loss_mse.item( ), loss_ssim.item(), loss_adv.item(), bitwise_avg_correct)) def test(epoch): Encoder.eval() Decoder.eval() if args.type == 'asymmeric': Pkgenerator.eval() with torch.no_grad(): for batch_idx, (input, _) in enumerate(testloader): input = input.cuda()[:, 0:1, :, :] messages = torch.from_numpy(np.random.randint(2, size=(args.batchsize, args.secret_len))).float().cuda() skey = torch.from_numpy(np.random.randint(2, size=(args.batchsize, args.key_len))).float().cuda() if args.type == 'symmeric': stego = Encoder(input, messages, skey) decoded_messages = Decoder(stego, skey) save_img = 'results/symmeric.pgm' if args.type == 'asymmeric': pkey = Pkgenerator(skey) stego = Encoder(input, messages, pkey) decoded_messages = Decoder(stego, pkey, skey) save_img = 'results/asymmeric.pgm' decoded_rounded = torch.round(decoded_messages.detach())#.cpu().numpy().round().clip(0, 1) bitwise_avg_correct = torch.sum(torch.eq(messages, decoded_rounded))/args.batchsize concat_img = torch.cat([input[0:10], stego[0:10]], dim=0) torchvision.utils.save_image(concat_img, save_img, nrow=10, padding=0) print('BitCorrect: %.4f' % (bitwise_avg_correct)) for epoch in range(args.num_epochs): test(epoch) train(epoch)
[ "zhenglisec@gmail.com" ]
zhenglisec@gmail.com
fc11fbea3f492caf574da8adef94d0978313dd7f
33116209c77798529db2cfe5ea21dfcac13c5e38
/update_version.py
a82034ad6f96c32f395cd11a4ab4374180bd1335
[]
no_license
RolfMaster/basicSynth
5ba7c8de684cecefe3fa4e361aeec4940709b40b
40153a11b6b9ead769389c989eb3be39c15d3fa2
refs/heads/master
2020-04-18T10:15:55.308826
2019-01-23T00:08:51
2019-01-23T00:08:51
167,462,140
0
0
null
null
null
null
UTF-8
Python
false
false
4,405
py
#!/usr/bin/python # this script will update the versions in plist and installer files to match that in resource.h import plistlib, os, datetime, fileinput, glob, sys, string scriptpath = os.path.dirname(os.path.realpath(__file__)) def replacestrs(filename, s, r): files = glob.glob(filename) for line in fileinput.input(files,inplace=1): string.find(line, s) line = line.replace(s, r) sys.stdout.write(line) def main(): MajorStr = "" MinorStr = "" BugfixStr = "" for line in fileinput.input(scriptpath + "/resource.h",inplace=0): if "#define PLUG_VER " in line: FullVersion = int(string.lstrip(line, "#define PLUG_VER "), 16) major = FullVersion & 0xFFFF0000 MajorStr = str(major >> 16) minor = FullVersion & 0x0000FF00 MinorStr = str(minor >> 8) BugfixStr = str(FullVersion & 0x000000FF) FullVersionStr = MajorStr + "." + MinorStr + "." + BugfixStr today = datetime.date.today() CFBundleGetInfoString = FullVersionStr + ", Copyright BasicSynthPlugin, " + str(today.year) CFBundleVersion = FullVersionStr print "update_version.py - setting version to " + FullVersionStr print "Updating plist version info..." plistpath = scriptpath + "/resources/Synthesis-VST2-Info.plist" vst2 = plistlib.readPlist(plistpath) vst2['CFBundleGetInfoString'] = CFBundleGetInfoString vst2['CFBundleVersion'] = CFBundleVersion vst2['CFBundleShortVersionString'] = CFBundleVersion plistlib.writePlist(vst2, plistpath) replacestrs(plistpath, "//Apple//", "//Apple Computer//"); plistpath = scriptpath + "/resources/Synthesis-AU-Info.plist" au = plistlib.readPlist(plistpath) au['CFBundleGetInfoString'] = CFBundleGetInfoString au['CFBundleVersion'] = CFBundleVersion au['CFBundleShortVersionString'] = CFBundleVersion plistlib.writePlist(au, plistpath) replacestrs(plistpath, "//Apple//", "//Apple Computer//"); plistpath = scriptpath + "/resources/Synthesis-VST3-Info.plist" vst3 = plistlib.readPlist(plistpath) vst3['CFBundleGetInfoString'] = CFBundleGetInfoString vst3['CFBundleVersion'] = CFBundleVersion vst3['CFBundleShortVersionString'] = CFBundleVersion plistlib.writePlist(vst3, plistpath) replacestrs(plistpath, "//Apple//", "//Apple Computer//"); plistpath = scriptpath + "/resources/Synthesis-OSXAPP-Info.plist" app = plistlib.readPlist(plistpath) app['CFBundleGetInfoString'] = CFBundleGetInfoString app['CFBundleVersion'] = CFBundleVersion app['CFBundleShortVersionString'] = CFBundleVersion plistlib.writePlist(app, plistpath) replacestrs(plistpath, "//Apple//", "//Apple Computer//"); plistpath = scriptpath + "/resources/Synthesis-RTAS-Info.plist" rtas = plistlib.readPlist(plistpath) rtas['CFBundleGetInfoString'] = CFBundleGetInfoString rtas['CFBundleVersion'] = CFBundleVersion rtas['CFBundleShortVersionString'] = CFBundleVersion plistlib.writePlist(rtas, plistpath) replacestrs(plistpath, "//Apple//", "//Apple Computer//"); plistpath = scriptpath + "/resources/Synthesis-AAX-Info.plist" aax = plistlib.readPlist(plistpath) aax['CFBundleGetInfoString'] = CFBundleGetInfoString aax['CFBundleVersion'] = CFBundleVersion aax['CFBundleShortVersionString'] = CFBundleVersion plistlib.writePlist(aax, plistpath) replacestrs(plistpath, "//Apple//", "//Apple Computer//"); # plistpath = scriptpath + "/resources/Synthesis-IOSAPP-Info.plist" # iosapp = plistlib.readPlist(plistpath) # iosapp['CFBundleGetInfoString'] = CFBundleGetInfoString # iosapp['CFBundleVersion'] = CFBundleVersion # iosapp['CFBundleShortVersionString'] = CFBundleVersion # plistlib.writePlist(iosapp, plistpath) # replacestrs(plistpath, "//Apple//", "//Apple Computer//"); print "Updating Mac Installer version info..." plistpath = scriptpath + "/installer/Synthesis.pkgproj" installer = plistlib.readPlist(plistpath) for x in range(0,6): installer['PACKAGES'][x]['PACKAGE_SETTINGS']['VERSION'] = FullVersionStr plistlib.writePlist(installer, plistpath) replacestrs(plistpath, "//Apple//", "//Apple Computer//"); print "Updating Windows Installer version info..." for line in fileinput.input(scriptpath + "/installer/Synthesis.iss",inplace=1): if "AppVersion" in line: line="AppVersion=" + FullVersionStr + "\n" sys.stdout.write(line) if __name__ == '__main__': main()
[ "prvo.slovo.a@gmail.com" ]
prvo.slovo.a@gmail.com
bceaab930c75e6fc131b1c92e95c21d9403e01e5
28e554c3677c3192de4ae8bfeebdec47ab4e6bb9
/Autoencoders/autoencoders.py
4f76b720856b9491751fb462ef281b739a3fe46c
[]
no_license
shrinidhi99/Computer-Vision
4d94f5ed54b9af78737a73aee5f7b577b6b6e470
75147678b56c2d977e06677eab58c67da95e6db7
refs/heads/main
2023-04-25T12:06:28.012599
2021-05-05T07:49:52
2021-05-05T07:49:52
334,365,085
0
0
null
null
null
null
UTF-8
Python
false
false
3,176
py
import random import tensorflow as tf from tensorflow import keras import cv2 import numpy as np import matplotlib.pyplot as plt # loads the popular "mnist" training dataset (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # scales the data. pixel values range from 0 to 255, so this makes it range 0 to 1 x_train = x_train/255.0 # scales the data. pixel values range from 0 to 255, so this makes it range 0 to 1 x_test = x_test/255.0 encoder_input = keras.Input(shape=(28, 28), name='img') x = keras.layers.Flatten()(encoder_input) encoder_output = keras.layers.Dense(64, activation="relu")(x) encoder = keras.Model(encoder_input, encoder_output, name='encoder') decoder_input = keras.layers.Dense(64, activation="relu")(encoder_output) x = keras.layers.Dense(784, activation="relu")(decoder_input) decoder_output = keras.layers.Reshape((28, 28))(x) opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6) autoencoder = keras.Model(encoder_input, decoder_output, name='autoencoder') autoencoder.summary() autoencoder.compile(opt, loss='mse') epochs = 3 for epoch in range(epochs): history = autoencoder.fit( x_train, x_train, epochs=1, batch_size=32, validation_split=0.10 ) # autoencoder.save(f"models/AE-{epoch+1}.model") for d in x_test[:30]: # just show 5 examples, feel free to show all or however many you want! ae_out = autoencoder.predict([d.reshape(-1, 28, 28)]) img = ae_out[0] cv2.imshow("decoded", img) cv2.imshow("original", np.array(d)) cv2.waitKey(1000) # wait 1000ms, 1 second, and then show the next. def add_noise(img, random_chance=5): noisy = [] for row in img: new_row = [] for pix in row: if random.choice(range(100)) <= random_chance: new_val = random.uniform(0, 1) new_row.append(new_val) else: new_row.append(pix) noisy.append(new_row) return np.array(noisy) def remove_values(img, random_chance=5): noisy = [] for row in img: new_row = [] for pix in row: if random.choice(range(100)) <= random_chance: new_val = 0 # changing this to be 0 new_row.append(new_val) else: new_row.append(pix) noisy.append(new_row) return np.array(noisy) # slightly higher chance so we see more impact some_hidden = remove_values(x_train[0], random_chance=15) plt.imshow(some_hidden, cmap="gray") plt.show() ae_out = autoencoder.predict([some_hidden.reshape(-1, 28, 28)]) # predict is done on a vector, and returns a vector, even if its just 1 element, so we still need to grab the 0th img = ae_out[0] plt.imshow(ae_out[0], cmap="gray") plt.show() # slightly higher chance so we see more impact some_hidden = remove_values(x_train[0], random_chance=35) plt.imshow(some_hidden, cmap="gray") plt.show() ae_out = autoencoder.predict([some_hidden.reshape(-1, 28, 28)]) # predict is done on a vector, and returns a vector, even if its just 1 element, so we still need to grab the 0th img = ae_out[0] plt.imshow(ae_out[0], cmap="gray") plt.show()
[ "shrinidhi99.varna@gmail.com" ]
shrinidhi99.varna@gmail.com
c61ff42baf9127aaa9763d25b963025cd51cae7c
af3a6d84270f21fad514f62cbcd3a1e353a3e7b8
/utils.py
6cb7e4191064a09eb74188dc550b5af0a9452e09
[]
no_license
shrish23/Telegram-newsBot
8690e45a6105032fb1a7b3a3992e7d61c79b556d
6f87f19dfbe792efe1b5a11e4be67746566685e6
refs/heads/master
2023-08-24T08:18:10.362281
2021-10-21T10:21:38
2021-10-21T10:21:38
419,597,964
0
0
null
null
null
null
UTF-8
Python
false
false
1,294
py
import os os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "Client.json" import dialogflow_v2 as dialogflow dialogflow_session_client = dialogflow.SessionsClient() PROJECT_ID = "newsbot-tuqv" from gnewsclient import gnewsclient client = gnewsclient.NewsClient() def detect_intent_from_text(text, session_id, language_code='en'): session = dialogflow_session_client.session_path(PROJECT_ID, session_id) text_input = dialogflow.types.TextInput(text=text, language_code=language_code) query_input = dialogflow.types.QueryInput(text=text_input) response = dialogflow_session_client.detect_intent(session=session,query_input=query_input) return response.query_result def get_reply(query, chat_id): response = detect_intent_from_text(query, chat_id) if response.intent.display_name == 'get_news': return "get_news", dict(response.parameters) else: return "small_talk", response.fulfillment_text def fetch_news(parameters): client.language = parameters.get('language') client.location = parameters.get('geo-country') client.topic = parameters.get('topic') return client.get_news()[:5] topics_keyboard = [ ['Top Stories', 'World','Nation'], ['Business','Technology','Entertainment'], ['Sports','Science','Health'] ]
[ "shrishsharma@outlook.com" ]
shrishsharma@outlook.com
188cde0f74544b63ad4efac44b60ccebb54020fa
cabe9566267e24ee9ca827ccf47e75bfc1cd5021
/features/migrations/0002_features_status.py
07aa745905af3aef8a5e2b45fb0c0d8678873f50
[]
no_license
Code-Institute-Submissions/ecommerce-project
0a73d98feeb7f667fa541f4f5181a818ffb347a7
1c35f760b4f82fc513a1c3f27005b03922c60020
refs/heads/master
2020-05-18T09:40:33.804158
2019-04-30T21:09:42
2019-04-30T21:09:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-04-17 13:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('features', '0001_initial'), ] operations = [ migrations.AddField( model_name='features', name='status', field=models.CharField(default='Todo', max_length=254), ), ]
[ "noelle.browne@yahoo.ie" ]
noelle.browne@yahoo.ie
695e2a94c90888c0a054c8a98f9c352950ce7682
187a4c23f446e1d82efe2fba2f935c32087a1922
/usbdeath.py
5725f4f32be649254379d0f0007dd1f0225ff0fc
[]
no_license
semeion/usbdeath
f38730a23473525633a925360d2c1cf6716ca374
8b449a8866e15114562162c40f0cac11feea16c0
refs/heads/master
2021-01-22T00:28:46.744110
2014-06-02T19:16:00
2014-06-02T19:16:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
779
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Coded by Sam (info@sam3.se) import subprocess, time from os import system usb_whitelist =[] p = subprocess.Popen('lsusb', stdout=subprocess.PIPE) while True: line = p.stdout.readline() if line != '': usb_whitelist.append(line.strip('\n')) else: break while True: live_usbs = [] p = subprocess.Popen('lsusb', stdout=subprocess.PIPE) intruder = True while True: line = p.stdout.readline() if line != '': live_usbs.append(line.strip('\n')) else: break for usb in live_usbs: if not usb in usb_whitelist: system('echo 1 > /proc/sys/kernel/sysrq && echo o > /proc/sysrq-trigger') time.sleep(1)
[ "info@sam3.se" ]
info@sam3.se
3ea0bb442577424dd93a06877b4cb480971dc827
d7f4e330f5d803c8cd495729fd86da61b89565f3
/torch/_meta_registrations.py
0511b5188fbea63e9c0427f06428dc9859aa3885
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
awf/pytorch
55ff84549c17579a1f62910ef2ac7b1dcd6fa897
0dceaf07cd1236859953b6f85a61dc4411d10f87
refs/heads/master
2023-02-08T13:19:22.073279
2023-01-29T10:36:40
2023-01-29T10:36:43
239,372,903
0
0
NOASSERTION
2020-02-09T20:55:23
2020-02-09T20:55:22
null
UTF-8
Python
false
false
82,649
py
import math from typing import List, Optional, Union import torch import torch._prims_common as utils from torch import Tensor from torch._decomp import _add_op_to_registry, global_decomposition_table, meta_table from torch._ops import OpOverload from torch._prims import _elementwise_meta, ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND from torch._prims_common import ( check, corresponding_complex_dtype, corresponding_real_dtype, elementwise_dtypes, ELEMENTWISE_TYPE_PROMOTION_KIND, FloatLike, IntLike, make_contiguous_strides_for, ) from torch._prims_common.wrappers import out_wrapper from torch._refs import _broadcast_shapes from torch._subclasses.fake_tensor import check_no_bool_index_tensors from torch.utils._pytree import tree_map aten = torch.ops.aten _meta_lib_dont_use_me_use_register_meta = torch.library.Library("aten", "IMPL", "Meta") def register_meta(op): def wrapper(fn): def register(op): _add_op_to_registry(meta_table, op, fn) tree_map(register, op) return fn return wrapper def toRealValueType(dtype): from_complex = { torch.complex32: torch.half, torch.cfloat: torch.float, torch.cdouble: torch.double, } return from_complex.get(dtype, dtype) @register_meta([aten._fft_c2c.default, aten._fft_c2c.out]) @out_wrapper() def meta_fft_c2c(self, dim, normalization, forward): assert self.dtype.is_complex return self.new_empty(self.size()) @register_meta([aten._fft_r2c.default, aten._fft_r2c.out]) @out_wrapper() def meta_fft_r2c(self, dim, normalization, onesided): assert self.dtype.is_floating_point output_sizes = list(self.size()) if onesided: last_dim = dim[-1] last_dim_halfsize = (output_sizes[last_dim] // 2) + 1 output_sizes[last_dim] = last_dim_halfsize return self.new_empty( output_sizes, dtype=utils.corresponding_complex_dtype(self.dtype) ) @register_meta(aten.randperm.generator_out) def meta_randperm(n, *, generator=None, out): assert out.ndim == 1 and out.size(0) == n return out @register_meta(aten.randint.default) def meta_randint( high, size, *, dtype=torch.long, layout=None, device=None, pin_memory=None ): return torch.empty( size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory ) @register_meta(aten.randint.low) def meta_randint_low( low, high, size, *, dtype=torch.long, layout=None, device=None, pin_memory=None ): return torch.empty( size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory ) @register_meta(aten.rand.default) def meta_rand_default(size, *, dtype=None, layout=None, device=None, pin_memory=None): return torch.empty( size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory ) @register_meta([aten._fft_c2r.default, aten._fft_c2r.out]) @out_wrapper() def meta_fft_c2r(self, dim, normalization, lastdim): assert self.dtype.is_complex output_sizes = list(self.size()) output_sizes[dim[-1]] = lastdim return self.new_empty(output_sizes, dtype=toRealValueType(self.dtype)) @register_meta(aten.copy_.default) def meta_copy_(self, src, non_blocking=False): return self def inferUnsqueezeGeometry(tensor, dim): result_sizes = list(tensor.size()) result_strides = list(tensor.stride()) new_stride = 1 if dim >= tensor.dim() else result_sizes[dim] * result_strides[dim] result_sizes.insert(dim, 1) result_strides.insert(dim, new_stride) return result_sizes, result_strides @register_meta(aten.unsqueeze_.default) def meta_unsqueeze_(self, dim): dim = maybe_wrap_dim(dim, self.dim() + 1) g_sizes, g_strides = inferUnsqueezeGeometry(self, dim) self.as_strided_(g_sizes, g_strides) return self # Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py @register_meta(aten.index_select.default) def meta_index_select(self, dim, index): result_size = list(self.size()) if self.dim() > 0: result_size[dim] = index.numel() return self.new_empty(result_size) @register_meta(aten.index_select.out) def meta_index_select_out(self, dim, index, out): torch._resize_output_(out, self.size(), self.device) return out.copy_(torch.index_select(self, dim, index)) @register_meta([aten.max.default, aten.max.unary_out]) @out_wrapper() def meta_max(self): return self.new_empty(()) @register_meta(aten.max.dim) def meta_max_dim(self, dim, keepdim=False): dim = utils.reduction_dims(self.shape, (dim,)) output_shape = _compute_reduction_shape(self, dim, keepdim) return ( self.new_empty(output_shape), self.new_empty(output_shape, dtype=torch.long), ) @register_meta([aten.min.default]) def meta_min(self): return self.new_empty(()) @register_meta(aten.angle.default) def meta_angle(self): if self.is_complex(): result_dtype = corresponding_real_dtype(self.dtype) else: _, result_dtype = elementwise_dtypes( self, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT ) return torch.empty_like(self, dtype=result_dtype) @register_meta(aten.angle.out) def meta_angle_out(self, out): torch._resize_output_(out, self.size(), self.device) return out.copy_(torch.angle(self)) # From aten/src/ATen/native/LinearAlgebraUtils.h def squareCheckInputs(self: Tensor, f_name: str): assert ( self.dim() >= 2 ), f"{f_name}: The input tensor must have at least 2 dimensions." assert self.size(-1) == self.size( -2 ), f"{f_name}: A must be batches of square matrices, but they are {self.size(-2)} by {self.size(-1)} matrices" # From aten/src/ATen/native/LinearAlgebraUtils.h def checkFloatingOrComplex( t: Tensor, f_name: str, allow_low_precision_dtypes: bool = True ): dtype = t.dtype check( t.is_floating_point() or t.is_complex(), lambda: f"{f_name}, : Expected a floating point or complex tensor as input. Got , {dtype}", ) if allow_low_precision_dtypes: check( dtype in (torch.float, torch.double, torch.cfloat, torch.cdouble), lambda: f"{f_name} : Low precision dtypes not supported. Got {dtype}", ) # From aten/src/ATen/native/LinearAlgebraUtils.h def checkIsMatrix(A: Tensor, f_name: str, arg_name: str = "A"): check( A.dim() >= 2, lambda: f"{f_name}: The input tensor {arg_name} must have at least 2 dimensions.", ) def checkUplo(uplo: str): uplo_uppercase = uplo.upper() assert ( len(uplo) == 1 and uplo_uppercase == "U" or uplo_uppercase == "L" ), f"Expected UPLO argument to be 'L' or 'U', but got {uplo}" # @register_meta(aten.linalg_eigh.default) def meta_linalg_eigh(self, uplo="L"): squareCheckInputs(self, "linalg_eigh") checkUplo(uplo) real_dtype = toRealValueType(self.dtype) assert self.dim() >= 2 values = self.new_empty(self.shape, dtype=real_dtype) values.transpose_(-2, -1) vectors = self.new_empty(self.shape[:-1]) return (values, vectors) # From aten/src/ATen/native/BatchLinearAlgebra.cpp @register_meta(aten.linalg_cholesky_ex.default) def linalg_cholesky_ex(A: Tensor, upper: bool = False, check_errors: bool = False): squareCheckInputs(A, "linalg.cholesky") checkFloatingOrComplex(A, "linalg.cholesky") A_shape = A.shape ndim = len(A_shape) # L L_strides = make_contiguous_strides_for(A_shape, False) L = A.new_empty(A_shape) L.as_strided_(A_shape, L_strides) # infos infos = A.new_empty(A_shape[0 : ndim - 2], dtype=torch.int32) return L, infos # From aten/src/ATen/native/BatchLinearAlgebra.cpp @register_meta(aten.linalg_inv_ex.default) def linalg_inv_ex_meta(A: Tensor, check_errors: bool = False): squareCheckInputs(A, "linalg.inv_ex") checkFloatingOrComplex(A, "linalg.inv_ex", allow_low_precision_dtypes=False) L = A.new_empty(A.shape) L.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False)) infos = A.new_empty(A.shape[:-2], dtype=torch.int32) return L, infos # From aten/src/ATen/native/BatchLinearAlgebra.cpp # NOTE: matching defaults in aten/src/ATen/native/native_functions.yaml @register_meta(aten._linalg_svd.default) def _linalg_svd_meta( A: Tensor, full_matrices: bool = False, compute_uv: bool = True, driver: str = None ): checkIsMatrix(A, "linalg.svd") checkFloatingOrComplex(A, "linalg.svd") batch_dims = list(A.shape[:-2]) m = A.shape[-2] n = A.shape[-1] k = min(m, n) if compute_uv: U_shape = batch_dims + [m, m if full_matrices else k] U = A.new_empty(U_shape) U.as_strided_(U_shape, make_contiguous_strides_for(U_shape, row_major=False)) V_shape = batch_dims + [n if full_matrices else k, n] V = A.new_empty(V_shape) # TODO: need to distinguish cuSOLVER case? (see original code) V.as_strided_(V_shape, make_contiguous_strides_for(V_shape, row_major=False)) else: # doesn't matter U = A.new_empty([0]) V = A.new_empty([0]) # S is always real, even when A is complex. S = A.new_empty(batch_dims + [k], dtype=toRealValueType(A.dtype)) return U, S, V # From aten/src/ATen/native/LinearAlgebra.cpp @register_meta(aten._linalg_det.default) def _linalg_det_meta(A): squareCheckInputs(A, "linalg.det") checkFloatingOrComplex(A, "linalg.det") det = A.new_empty(A.shape[:-2]) LU = A.new_empty(A.shape) LU.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False)) pivots = A.new_empty(A.shape[:-1], dtype=torch.int32) return det, LU, pivots # From aten/src/ATen/native/ReflectionPad.cpp @register_meta( [aten.reflection_pad2d_backward.default, aten.replication_pad2d_backward.default] ) def meta_pad2d_backward(grad_output, self, padding): dim_w = 2 dim_h = 1 dim_plane = 0 nbatch = 1 self_shape = self.shape if self.dim() == 4: nbatch = self_shape[0] dim_w += 1 dim_h += 1 dim_plane += 1 pad_l = padding[0] pad_r = padding[1] pad_t = padding[2] pad_b = padding[3] nplane = self_shape[dim_plane] input_h = self_shape[dim_h] input_w = self_shape[dim_w] output_h = input_h + pad_t + pad_b output_w = input_w + pad_l + pad_r check( output_w == grad_output.shape[dim_w], lambda: f"gradOutput width unexpected. Expected: {output_w}, Got: {grad_output.shape[dim_w]}", ) check( output_h == grad_output.shape[dim_h], lambda: f"gradOutput height unexpected. Expected: {output_h}, Got: {grad_output.shape[dim_h]}", ) return self.new_empty(self.shape) @register_meta(aten.reflection_pad2d.default) def meta_pad2d(self, padding): valid_dims = self.size(1) != 0 and self.size(2) != 0 check( (self.ndim == 3 and valid_dims) or (self.ndim == 4 and valid_dims and self.size(3) != 0), lambda: f"3D or 4D (batch mode) tensor expected for input, but got: {self}", ) if self.ndim == 4: nbatch, nplane, input_h, input_w = self.shape else: nbatch = 1 nplane, input_h, input_w = self.shape pad_l, pad_r, pad_t, pad_b = padding output_h = input_h + pad_t + pad_b output_w = input_w + pad_l + pad_r if self.ndim == 3: return self.new_empty((nplane, output_h, output_w)) else: return self.new_empty((nbatch, nplane, output_h, output_w)) @register_meta([aten.bernoulli.default, aten.bernoulli.out]) @out_wrapper() def meta_bernoulli(self, *, generator=None): # https://github.com/pytorch/pytorch/issues/88612 return torch.empty_like(self).contiguous() @register_meta(aten.bernoulli_.float) def meta_bernoulli_(self, p=0.5, generator=None): return self @register_meta(aten.bernoulli.p) def meta_bernoulli_p(self, p=0.5, generator=None): # https://github.com/pytorch/pytorch/issues/88612 return torch.empty_like(self).contiguous() @register_meta(aten._fused_moving_avg_obs_fq_helper.default) def meta__fused_moving_avg_obs_fq_helper( self, observer_on, fake_quant_on, running_min, running_max, scale, zero_point, averaging_const, quant_min, quant_max, ch_axis, per_row_fake_quant=False, symmetric_quant=False, ): check( ch_axis < self.dim(), lambda: "Error in fused_moving_avg_obs_fake_quant_cpu: ch_axis must be < self.dim()", ) mask = torch.empty_like(self, dtype=torch.bool) return (torch.empty_like(self), mask) def dot_check(self, other): check( self.dim() == 1 and other.dim() == 1, lambda: f"1D tensors expected, but got {self.dim()}D and {other.dim()}D tensors", ) @register_meta(aten.dot.default) def meta_dot(self, tensor): dot_check(self, tensor) return self.new_empty(()) @register_meta([aten.mm.default]) def meta_mm(a, b): check(a.dim() == 2, lambda: "a must be 2D") check(b.dim() == 2, lambda: "b must be 2D") N, M1 = a.shape M2, P = b.shape check(M1 == M2, lambda: "a and b must have same reduction dim") return a.new_empty(N, P) def _compute_reduction_shape(self, dims, keepdim): if keepdim: return tuple(self.shape[i] if i not in dims else 1 for i in range(self.ndim)) return utils.compute_reduction_output_shape(self.shape, dims) # FakeTensors (meta tensors with a device) will report device as meta # when running meta kernels. Here, access the "fake device" of FakeTensor if it # exists so meta kernels which have diverge per device will be more # accurate when run with FakeTensors def device_hint(tensor) -> "str": if isinstance(tensor, torch._subclasses.FakeTensor): return tensor.fake_device.type else: return "cuda" # default to cuda def calc_conv_nd_return_shape( input_tensor: torch.Tensor, weight: torch.Tensor, stride: Union[List[int], int], padding: Union[List[int], int], dilation: Union[List[int], int], is_transposed: bool, groups: int, output_padding: Optional[Union[List[int], int]] = None, ): def _formula(ln: int, p: int, d: int, k: int, s: int) -> int: """ Formula to apply to calculate the length of some dimension of the output See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html Args: ln: length of the dimension p: padding in that dim d: dilation in that dim k: kernel size in that dim s: stride in that dim Returns: The output length """ return (ln + 2 * p - d * (k - 1) - 1) // s + 1 def _formula_transposed(ln: int, p: int, d: int, k: int, s: int, op: int) -> int: """ Formula to apply to calculate the length of some dimension of the output if transposed convolution is used. See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html Args: ln: length of the dimension p: padding in that dim d: dilation in that dim k: kernel size in that dim s: stride in that dim op: output padding in that dim Returns: The output length """ return (ln - 1) * s - 2 * p + d * (k - 1) + op + 1 kernel_size = weight.shape[2:] dims = input_tensor.shape[2:] if is_transposed: out_channels = groups * weight.shape[1] else: out_channels = weight.shape[0] if weight.shape[1] * groups != input_tensor.shape[1]: raise RuntimeError("Invalid channel dimensions") ret_shape = [input_tensor.shape[0], out_channels] if isinstance(stride, IntLike): stride = [stride] * len(dims) elif len(stride) == 1: stride = [stride[0]] * len(dims) if isinstance(padding, IntLike): padding = [padding] * len(dims) elif len(padding) == 1: padding = [padding[0]] * len(dims) if isinstance(dilation, IntLike): dilation = [dilation] * len(dims) elif len(dilation) == 1: dilation = [dilation[0]] * len(dims) output_padding_list: Optional[List[int]] = None if output_padding: if isinstance(output_padding, IntLike): output_padding_list = [output_padding] * len(dims) elif len(output_padding) == 1: output_padding_list = [output_padding[0]] * len(dims) else: output_padding_list = output_padding for i in range(len(dims)): # If output_padding is present, we are dealing with a transposed convolution if output_padding_list: ret_shape.append( _formula_transposed( dims[i], padding[i], dilation[i], kernel_size[i], stride[i], output_padding_list[i], ) ) else: ret_shape.append( _formula(dims[i], padding[i], dilation[i], kernel_size[i], stride[i]) ) return ret_shape def is_channels_last(ten): return torch._prims_common.suggest_memory_format(ten) == torch.channels_last @register_meta(aten.convolution.default) def meta_conv( input_tensor: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, stride: List[int], padding: List[int], dilation: List[int], is_transposed: bool, output_padding: List[int], groups: int, ): def pick_memory_format(): if device_hint(input_tensor) == "cuda": if is_channels_last(input_tensor) or is_channels_last(weight): return torch.channels_last else: if is_channels_last(input_tensor): return torch.channels_last if input_tensor.is_contiguous(memory_format=torch.contiguous_format): return torch.contiguous_format elif input_tensor.is_contiguous(memory_format=torch.preserve_format): return torch.preserve_format shape_out = calc_conv_nd_return_shape( input_tensor, weight, stride, padding, dilation, is_transposed, groups, output_padding if is_transposed else None, ) out = input_tensor.new_empty(shape_out) out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload] return out if torch._C.has_mkldnn: _meta_lib_dont_use_me_use_register_meta_for_mkldnn = torch.library.Library( "mkldnn", "IMPL", "Meta" ) def pick_mkldnn_conv_memory_format(input_tensor, weight): if weight.is_mkldnn: return torch.channels_last if is_channels_last(input_tensor) or is_channels_last(weight): return torch.channels_last if input_tensor.is_contiguous(memory_format=torch.contiguous_format): return torch.contiguous_format elif input_tensor.is_contiguous(memory_format=torch.preserve_format): return torch.preserve_format @register_meta(torch.ops.mkldnn._convolution_pointwise.default) def meta_mkldnn_convolution_default( input_tensor, weight, bias, padding, stride, dilation, groups, attr, scalars, algorithm, ): shape_out = calc_conv_nd_return_shape( input_tensor, weight, stride, padding, dilation, False, groups, [] ) out = input_tensor.new_empty(shape_out) out_memory_format = torch.channels_last out = out.to(memory_format=out_memory_format) # type: ignore[call-overload] return out @register_meta(torch.ops.mkldnn._convolution_pointwise.binary) def meta_mkldnn_convolution_binary( input_tensor, other, weight, bias, padding, stride, dilation, groups, binary_attr, alpha, unary_attr, unary_scalars, unary_algorithm, ): out = input_tensor.new_empty(other.size()) out = out.to(memory_format=torch.channels_last) # type: ignore[call-overload] return out @register_meta(torch.ops.mkldnn._convolution_pointwise_.binary) def meta_mkldnn_convolution_binary_inplace( input_tensor, other, weight, bias, padding, stride, dilation, groups, binary_attr, alpha, unary_attr, unary_scalars, unary_algorithm, ): return other @register_meta(torch.ops.mkldnn._linear_pointwise.default) def meta_linear_pointwise_default( input_tensor, weight, bias, attr, scalars, algorithm ): return input_tensor.new_empty((*input_tensor.shape[:-1], weight.shape[0])) @register_meta(torch.ops.mkldnn._linear_pointwise.binary) def meta_linear_pointwise_binary(input_tensor, other, weight, bias, attr): out = input_tensor.new_empty(other.size()) return out if torch._C.has_mkl: _meta_lib_dont_use_me_use_register_meta_for_mkl = torch.library.Library( "mkl", "IMPL", "Meta" ) @register_meta(torch.ops.mkl._mkl_linear) def meta_mkl_linear( input_tensor, packed_weight, orig_weight, bias, batch_size, ): return input_tensor.new_empty( (*input_tensor.shape[:-1], orig_weight.shape[0]) ) # from check_dim_size() in aten/src/ATen/TensorUtils.cpp. def check_dim_size(tensor, dim, dim_size, size): check( tensor.dim() == dim and tensor.shape[dim_size] == size, lambda: f"Expected a tensor of dimension {dim} and tensor.size[{dim_size}] == {size}, " + f"but got : dimension {tensor.dim()} and tensor.size[{dim_size}] = {tensor.shape[dim_size]}", ) @register_meta(aten.avg_pool2d.default) def meta_avg_pool2d( input, kernel_size, stride=(), padding=(0,), ceil_mode=False, count_include_pad=True, divisor_override=None, ): def unpack(name, val): check( len(val) in [1, 2], lambda: f"avg_pool2d: {name} must either be a single int, or a tuple of two ints", ) H = val[0] W = H if len(val) == 1 else val[1] return H, W kH, kW = unpack("kernel_size", kernel_size) check( len(stride) in [0, 1, 2], lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints", ) if len(stride) == 0: dH, dW = kH, kW elif len(stride) == 1: dH, dW = stride[0], stride[0] else: dH, dW = unpack("stride", stride) padH, padW = unpack("padding", padding) check( divisor_override is None or divisor_override != 0, lambda: "divisor must be not zero", ) nbatch = input.size(-4) if input.dim() == 4 else 1 nInputPlane = input.size(-3) inputHeight = input.size(-2) inputWidth = input.size(-1) outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) memory_format = utils.suggest_memory_format(input) pool2d_shape_check( input, kH, kW, dH, dW, padH, padW, 1, 1, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format, ) if input.dim() == 3: size = [nInputPlane, outputHeight, outputWidth] else: size = [nbatch, nInputPlane, outputHeight, outputWidth] return torch.empty( size, dtype=input.dtype, device=input.device, memory_format=memory_format ) # from avg_pool2d_backward_shape_check() in aten/src/ATen/native/Pool.h. def avg_pool2d_backward_shape_check( input, gradOutput, nbatch, kH, kW, dH, dW, padH, padW, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, mem_format, ): pool2d_shape_check( input, kH, kW, dH, dW, padH, padW, 1, 1, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, mem_format, ) ndim = input.dim() nOutputPlane = nInputPlane check_dim_size(gradOutput, ndim, ndim - 3, nOutputPlane) check_dim_size(gradOutput, ndim, ndim - 2, outputHeight) check_dim_size(gradOutput, ndim, ndim - 1, outputWidth) # Don't override the C++ registration. @register_meta(aten.avg_pool2d_backward.default) def meta_avg_pool2d_backward( gradOutput_, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override, ): # From aten/src/ATen/native/AveragePool2d.cpp structured kernel meta func. check( len(kernel_size) == 1 or len(kernel_size) == 2, lambda: "avg_pool2d: kernel_size must either be a single int, or a tuple of two ints", ) kH = kernel_size[0] kW = kH if len(kernel_size) == 1 else kernel_size[1] check( len(stride) == 0 or len(stride) == 1 or len(stride) == 2, lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints", ) dH = kH if len(stride) == 0 else stride[0] dW = kW if len(stride) == 0 else dH if len(stride) == 1 else stride[1] check( len(padding) == 1 or len(padding) == 2, lambda: "avg_pool2d: padding must either be a single int, or a tuple of two ints", ) padH = padding[0] padW = padH if len(padding) == 1 else padding[1] check( divisor_override is None or divisor_override != 0, lambda: "divisor must be not zero", ) input_size = input.shape nbatch = input_size[-4] if input.dim() == 4 else 1 nInputPlane = input_size[-3] inputHeight = input_size[-2] inputWidth = input_size[-1] outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) mem_format = utils.suggest_memory_format(input) avg_pool2d_backward_shape_check( input, gradOutput_, nbatch, kH, kW, dH, dW, padH, padW, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, mem_format, ) return torch.empty( input_size, dtype=input.dtype, device=input.device, memory_format=mem_format ) @register_meta(aten._adaptive_avg_pool2d.default) def meta_adaptive_avg_pool2d(self, output_size): check( self.ndim == 3 or self.ndim == 4, lambda: f"Expected 3D or 4D tensor, but got {self.shape}", ) output_shape = self.shape[:-2] + tuple(output_size) memory_format = utils.suggest_memory_format(self) # need to set memory_format to preserve the memory format of the input # channel last input should have channel last output return torch.empty( output_shape, dtype=self.dtype, device=self.device, memory_format=memory_format ) @register_meta(aten._adaptive_avg_pool3d.default) def meta_adaptive_avg_pool3d(self, output_size): check( self.ndim == 4 or self.ndim == 5, lambda: f"Expected 4D or 5D tensor, but got {self.shape}", ) return self.new_empty(self.shape[:-3] + tuple(output_size)) @register_meta(aten._adaptive_avg_pool2d_backward.default) def meta__adaptive_avg_pool2d_backward(grad_out, self): ndim = grad_out.ndim for i in range(1, ndim): check( grad_out.size(i) > 0, lambda: f"adaptive_avg_pool2d_backward(): Expected grad_output to have non-zero \ size for non-batch dimensions, {grad_out.shape} with dimension {i} being empty", ) check( ndim == 3 or ndim == 4, lambda: f"adaptive_avg_pool2d_backward(): Expected 3D or 4D tensor, but got {self.shape}", ) check( self.dtype == grad_out.dtype, lambda: f"expected dtype {self.dtype} for `grad_output` but got dtype {grad_out.dtype}", ) return self.new_empty(self.shape) @register_meta(aten.repeat_interleave.Tensor) def meta_repeat_interleave_Tensor(repeats, output_size=None): if output_size is None: raise RuntimeError("cannot repeat_interleave a meta tensor without output_size") return repeats.new_empty(output_size) @register_meta([aten.complex.default, aten.complex.out]) @out_wrapper() def meta_complex(real, imag): assert real.dtype.is_floating_point assert imag.dtype.is_floating_point out_shape = _broadcast_shapes(real.shape, imag.shape) return real.new_empty(out_shape, dtype=corresponding_complex_dtype(real.dtype)) @register_meta(aten.vdot.default) def vdot(self, other): if not self.is_complex: return torch.dot(self, other) if self.is_conj(): if other.is_conj(): return torch.vdot(other.conj(), self.conj()) else: return torch.dot(self.conj(), other) elif other.is_conj(): return torch.dot(self, other.conj()).conj() dot_check(self, other) return self.new_empty(()) # Leaving this function around because a python implementation # of indexing shape inference is useful, # but not registering it to the dispatcher because we already # get shape inference through structured kernels @register_meta(aten.index.Tensor) def meta_index_Tensor(self, indices): check_no_bool_index_tensors(aten.index.Tensor, self, indices) check(indices, lambda: "at least one index must be provided") # aten::index is the internal advanced indexing implementation # checkIndexTensorTypes and expandTensors result: List[Optional[Tensor]] = [] for i, index in enumerate(indices): if index is not None: check( index.dtype in [torch.long, torch.int, torch.int8, torch.bool], lambda: "tensors used as indices must be long, int, byte or bool tensors", ) if index.dtype in [torch.int8, torch.bool]: nonzero = index.nonzero() k = len(result) check( k + index.ndim <= self.ndim, lambda: f"too many indices for tensor of dimension {self.ndim}", IndexError, ) for j in range(index.ndim): check( index.shape[j] == self.shape[k + j], lambda: f"The shape of the mask {index.shape} at index {i} " f"does not match the shape of the indexed tensor {self.shape} at index {k + j}", IndexError, ) result.append(nonzero.select(1, j)) else: result.append(index) else: result.append(index) indices = result check( len(indices) <= self.ndim, lambda: f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})", ) # expand_outplace import torch._refs as refs # avoid import cycle in mypy indices = list(refs._maybe_broadcast(*indices)) # add missing null tensors while len(indices) < self.ndim: indices.append(None) # hasContiguousSubspace # true if all non-null tensors are adjacent # See: # https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing # https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency state = 0 has_contiguous_subspace = False for index in indices: if state == 0: if index is not None: state = 1 elif state == 1: if index is None: state = 2 else: if index is not None: break else: has_contiguous_subspace = True # transposeToFront # This is the logic that causes the newly inserted dimensions to show up # at the beginning of the tensor, if they're not contiguous if not has_contiguous_subspace: dims = [] transposed_indices = [] for i, index in enumerate(indices): if index is not None: dims.append(i) transposed_indices.append(index) for i, index in enumerate(indices): if index is None: dims.append(i) transposed_indices.append(index) self = self.permute(dims) indices = transposed_indices # AdvancedIndex::AdvancedIndex # Now we can assume the indices have contiguous subspace # This is simplified from AdvancedIndex which goes to more effort # to put the input and indices in a form so that TensorIterator can # take them. If we write a ref for this, probably that logic should # get implemented before_shape: List[int] = [] after_shape: List[int] = [] replacement_shape: List[int] = [] for dim, index in enumerate(indices): if index is None: if replacement_shape: after_shape.append(self.shape[dim]) else: before_shape.append(self.shape[dim]) else: replacement_shape = list(index.shape) return self.new_empty(before_shape + replacement_shape + after_shape) @register_meta([aten.convolution_backward.default]) def meta_convolution_backward( grad_output_, input_, weight_, bias_sizes_opt, stride, padding, dilation, transposed, output_padding, groups, output_mask, ): # High level logic taken from slow_conv3d_backward_cpu which should # be representative of all convolution_backward impls backend_grad_input = None backend_grad_weight = None backend_grad_bias = None if output_mask[0]: backend_grad_input = grad_output_.new_empty(input_.size()) if output_mask[1]: backend_grad_weight = grad_output_.new_empty(weight_.size()) if output_mask[2]: backend_grad_bias = grad_output_.new_empty(bias_sizes_opt) return (backend_grad_input, backend_grad_weight, backend_grad_bias) @register_meta([aten.addbmm.default, aten.addbmm.out]) @out_wrapper() def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1): dim1 = batch1.size(1) dim2 = batch2.size(2) self = self.expand((dim1, dim2)) check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") check( batch1.size(0) == batch2.size(0), lambda: f"batch1 and batch2 must have same number of batches, got {batch1.size(0)} and {batch2.size(0)}", ) check( batch1.size(2) == batch2.size(1), lambda: ( f"Incompatible matrix sizes for bmm ({batch1.size(1)}x{batch1.size(2)} " f"and {batch2.size(1)}x{batch2.size(2)})" ), ) check( self.size(0) == dim1 and self.size(1) == dim2, lambda: "self tensor does not match matmul output shape", ) return self.new_empty(self.size()) @register_meta(aten._cdist_forward.default) def meta_cdist_forward(x1, x2, p, compute_mode): check( x1.dim() >= 2, lambda: f"cdist only supports at least 2D tensors, X1 got: {x1.dim()}D", ) check( x2.dim() >= 2, lambda: f"cdist only supports at least 2D tensors, X2 got: {x2.dim()}D", ) check( x1.size(-1) == x2.size(-1), lambda: f"X1 and X2 must have the same number of columns. X1: {x1.size(-1)} X2: {x2.size(-1)}", ) check( utils.is_float_dtype(x1.dtype), lambda: "cdist only supports floating-point dtypes, X1 got: {x1.dtype}", ) check( utils.is_float_dtype(x2.dtype), lambda: "cdist only supports floating-point dtypes, X2 got: {x2.dtype}", ) check(p >= 0, lambda: "cdist only supports non-negative p values") check( compute_mode in (None, 1, 2), lambda: f"possible modes: None, 1, 2, but was: {compute_mode}", ) r1 = x1.size(-2) r2 = x2.size(-2) batch_tensor1 = x1.shape[:-2] batch_tensor2 = x2.shape[:-2] output_shape = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2)) output_shape.extend([r1, r2]) return x1.new_empty(output_shape) @register_meta(aten._embedding_bag.default) def meta_embedding_bag( weight, indices, offsets, scale_grad_by_freq=False, mode=0, sparse=False, per_sample_weights=None, include_last_offset=False, padding_idx=-1, ): check( indices.dtype in (torch.long, torch.int), lambda: f"expected indices to be long or int, got {indices.dtype}", ) check( offsets.dtype in (torch.long, torch.int), lambda: f"expected offsets to be long or int, got {offsets.dtype}", ) check( utils.is_float_dtype(weight.dtype), lambda: f"expected weight to be floating point type, got {weight.dtype}", ) num_bags = offsets.size(0) if include_last_offset: check( num_bags >= 1, lambda: "include_last_offset: numBags should be at least 1" ) num_bags -= 1 output = weight.new_empty(num_bags, weight.size(1)) MODE_SUM, MODE_MEAN, MODE_MAX = range(3) if per_sample_weights is not None: check( mode == MODE_SUM, lambda: "embedding_bag: per_sample_weights only supported with mode='sum'", ) check( per_sample_weights.dtype == weight.dtype, lambda: f"expected weight ({weight.dtype}) and per_sample_weights ({per_sample_weights.dtype}) to have same dtype", ) check( per_sample_weights.ndim == 1, lambda: f"expected per_sample_weights to be 1D tensor, got {per_sample_weights.ndim}D", ) check( per_sample_weights.numel() == indices.numel(), lambda: ( f"expected per_sample_weights.numel() ({per_sample_weights.numel()} " f"to be the same as indices.numel() ({indices.numel()})" ), ) def is_fast_path_index_select_scale(src, scale, output, padding_idx): return ( is_fast_path_index_select(src, output, padding_idx) and scale.stride(0) == 1 ) def is_fast_path_index_select(src, output, padding_idx): return ( (src.dtype == torch.float or src.dtype == torch.half) and src.stride(1) == 1 and output.stride(1) == 1 and padding_idx < 0 ) def is_fast_path(src, scale, output, padding_idx): if scale is not None: return is_fast_path_index_select_scale(src, scale, output, padding_idx) else: return is_fast_path_index_select(src, output, padding_idx) if device_hint(offsets) != "cpu": offset2bag = indices.new_empty(indices.size(0)) bag_size = indices.new_empty(offsets.size()) if mode == MODE_MAX: max_indices = indices.new_empty(num_bags, weight.size(1)) else: max_indices = indices.new_empty(0) else: fast_path_sum = is_fast_path(weight, per_sample_weights, output, padding_idx) if mode == MODE_MEAN or mode == MODE_MAX or not fast_path_sum: offset2bag = offsets.new_empty(indices.size(0)) else: offset2bag = offsets.new_empty(0) bag_size = offsets.new_empty(num_bags) # This part of the logic comes from make_max_indices_out in EmbeddingBag.cpp numBags = offsets.shape[0] if mode == MODE_MAX: if include_last_offset: check( numBags >= 1, lambda: "include_last_offset: numBags should be at least 1", ) numBags -= 1 max_indices = offsets.new_empty(numBags, weight.shape[1]) else: max_indices = offsets.new_empty(bag_size.size()) return output, offset2bag, bag_size, max_indices @register_meta(aten._embedding_bag_forward_only.default) def meta_embedding_bag_forward_only(weight, indices, offsets, *args): output, offset2bag, bag_size, max_indices = meta_embedding_bag( weight, indices, offsets, *args ) if device_hint(offsets) == "cpu": bag_size = offsets.new_empty(offsets.size()) return output, offset2bag, bag_size, max_indices def _get_reduction_dtype(input, dtype, promote_int_to_long=True): # if specified, dtype takes precedence if dtype: return dtype if input.dtype.is_floating_point or input.dtype.is_complex: return input.dtype elif promote_int_to_long: return torch.long return input.dtype @register_meta([aten.nansum.default, aten.nansum.out]) @out_wrapper() def meta_nansum(input, dims=None, keepdim=False, *, dtype=None): output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True) dims = utils.reduction_dims(input.shape, dims) output_shape = _compute_reduction_shape(input, dims, keepdim) return input.new_empty(output_shape, dtype=output_dtype) @register_meta(aten.nanmedian.default) def meta_nanmedian(input): output_shape = utils.compute_reduction_output_shape( input.shape, tuple(range(input.dim())) ) return input.new_empty(output_shape) @register_meta([aten.nanmedian.dim, aten.nanmedian.dim_values]) @out_wrapper("values", "indices") def meta_nanmedian_dim(input, dim=-1, keepdim=False): dim = utils.reduction_dims(input.shape, (dim,)) output_shape = _compute_reduction_shape(input, dim, keepdim) return ( input.new_empty(output_shape), input.new_empty(output_shape, dtype=torch.long), ) @register_meta(aten.logical_not_.default) def meta_logical_not_(self): return self @register_meta(aten.repeat.default) def meta_repeat(self, repeats): check( len(repeats) >= self.dim(), lambda: "Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor", ) # Add new leading dimensions to the tensor if the # number of target dimensions is larger than the # number of source dimensions. num_new_dimensions = len(repeats) - self.dim() padded_size = (1,) * num_new_dimensions + tuple(self.shape) target_size = [padded_size[i] * repeats[i] for i in range(len(repeats))] return self.new_empty(target_size) @register_meta(aten.zero_.default) def meta_zero_(self): return self @register_meta( [ aten.mul_.Scalar, aten.div_.Scalar, aten.mul_.Tensor, aten.div_.Tensor, aten.logical_and_.default, aten.logical_or_.default, aten.logical_xor_.default, ], ) def meta_binop_inplace(self, other): return self @register_meta( [ aten.add_.Scalar, aten.sub_.Scalar, aten.add_.Tensor, aten.sub_.Tensor, ], ) def meta_binop_inplace_alpha(self, other, alpha=1): return self @register_meta([aten.round.default, aten.round.decimals]) def meta_round(self, **kwargs): return _elementwise_meta( self, type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT ) @register_meta(aten.zero.default) def meta_zero(self): return self.new_empty(self.shape) @register_meta([aten.fill_.Tensor, aten.fill_.Scalar]) def meta_fill_(self, val): return self @register_meta([aten.fill.Tensor, aten.fill.Scalar]) def meta_fill(self, val): return torch.empty_like(self) @register_meta(aten.relu_.default) def meta_relu_(self): return self @register_meta(aten.index_put.default) def meta_index_put(self, indices, values, accumulate=False): return torch.empty_like(self) @register_meta(aten.masked_fill_.Scalar) def meta_masked_fill_(self, mask, value): return self @register_meta(aten.index_put_.default) def meta_index_put_(self, indices, values, accumulate=False): return self @register_meta(aten.alias.default) def meta_alias(self): return self.view(self.shape) def common_meta_baddbmm_bmm(batch1, batch2, is_bmm, self_baddbmm=None): check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") batch1_sizes = batch1.size() batch2_sizes = batch2.size() bs = batch1_sizes[0] contraction_size = batch1_sizes[2] res_rows = batch1_sizes[1] res_cols = batch2_sizes[2] output_size = (bs, res_rows, res_cols) check( batch2_sizes[0] == bs and batch2_sizes[1] == contraction_size, lambda: f"Expected size for first two dimensions of batch2 tensor to be: [{bs}" f", {contraction_size}] but got: [{batch2_sizes[0]}, {batch2_sizes[1]}].", ) # TODO: handle out output = batch2.new_empty(output_size) if not is_bmm and self_baddbmm is not None: check(self_baddbmm.dim() == 3, lambda: "self must be a 3D tensor") check( self_baddbmm.size() == output_size, lambda: "Expected an input tensor shape with shape {output_size} but got shape: {self.size()}", ) return output @register_meta(aten.bmm.default) def meta_bmm(self, mat2): return common_meta_baddbmm_bmm(self, mat2, True) def div_rtn(x, y): q = x // y r = x % y # WARNING: explicit bool conversion here is necessary; # would be fixed by SymBool if r != 0 and (bool(r < 0) != bool(y < 0)): q -= 1 return q def pooling_output_shape_pad_lr( inputSize, kernelSize, pad_l, pad_r, stride, dilation, ceil_mode ): outputSize = ( div_rtn( inputSize + pad_l + pad_r - dilation * (kernelSize - 1) - 1 + (stride - 1 if ceil_mode else 0), stride, ) + 1 ) if ceil_mode: if (outputSize - 1) * stride >= inputSize + pad_l: outputSize -= 1 return outputSize def pooling_output_shape(inputSize, kernelSize, pad, stride, dilation, ceil_mode): check(stride != 0, lambda: "stride should not be zero") check(pad >= 0, lambda: f"pad must be non-negative, but got pad: {pad}") check( pad <= kernelSize // 2, lambda: f"pad should be at most half of kernel size, but got pad={pad} and kernel_size={kernelSize}", ) return pooling_output_shape_pad_lr( inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode ) def pool2d_shape_check( input, kH, kW, dH, dW, padH, padW, dilationH, dilationW, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format, ): ndim = input.dim() nOutputPlane = nInputPlane check( kW > 0 and kH > 0, lambda: "kernel size should be greater than zero, but got kH: {kH}, kW: {kW}", ) check( dW > 0 and dH > 0, lambda: "stride should be greater than zero, but got dH: {dH}, dW: {dW}", ) check( dilationH > 0 and dilationW > 0, lambda: "dilation should be greater than zero, but got dilationH: {dilationH}, dilationW: {dilationW}", ) valid_dims = input.size(1) != 0 and input.size(2) != 0 if memory_format == torch.channels_last: check( ndim == 4 and valid_dims and input.size(3) != 0, lambda: "Expected 4D (batch mode) tensor expected for input with channels_last layout" " with optional 0 dim batch size for input, but got: {input.size()}", ) else: check( (ndim == 3 and input.size(0) != 0 and valid_dims) or (ndim == 4 and valid_dims and input.size(3) != 0), lambda: f"Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got: {input.size()}", ) check( kW // 2 >= padW and kH // 2 >= padH, lambda: "pad should be smaller than or equal to half of kernel size, but got " f"padW = {padW}, padH = {padH}, kW = {kW}, kH = {kH}", ) check( outputWidth >= 1 and outputHeight >= 1, lambda: f"Given input size: ({nInputPlane}x{inputHeight}x{inputWidth}). " f"Calculated output size: ({nOutputPlane}x{outputHeight}x{outputWidth}). " "Output size is too small", ) def max_pool2d_checks_and_compute_shape( input, kernel_size, stride, padding, dilation, ceil_mode ): # Reference: aten/src/ATen/native/DilatedMaxPool2d.cpp def unpack(name, val): check( len(val) in [1, 2], lambda: f"max_pool2d: {name} must either be a single int, or a tuple of two ints", ) H = val[0] W = H if len(val) == 1 else val[1] return H, W kH, kW = unpack("kernel_size", kernel_size) check( len(stride) in [0, 1, 2], lambda: "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints", ) if len(stride) == 0: dH, dW = kH, kW else: dH, dW = unpack("stride", stride) padH, padW = unpack("padding", padding) dilationH, dilationW = unpack("dilation", dilation) nInputPlane = input.size(-3) inputHeight = input.size(-2) inputWidth = input.size(-1) memory_format = utils.suggest_memory_format(input) if memory_format == torch.channels_last: check( input.dim() == 4, lambda: "non-empty 4D (batch mode) tensor expected for input with channels_last layout", ) elif memory_format == torch.contiguous_format: check( input.dim() in [3, 4], lambda: "non-empty 3D or 4D (batch mode) tensor expected for input", ) else: check( False, lambda: "Unsupport memory format. Supports only ChannelsLast, Contiguous", ) outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, dilationH, ceil_mode) outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, dilationW, ceil_mode) pool2d_shape_check( input, kH, kW, dH, dW, padH, padW, dilationH, dilationW, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format, ) return nInputPlane, outputHeight, outputWidth @register_meta(aten.max_pool2d_with_indices_backward.default) def meta_max_pool2d_with_indices_backward( grad_output, self, kernel_size, stride, padding, dilation, ceil_mode, indices ): nInputPlane, outputHeight, outputWidth = max_pool2d_checks_and_compute_shape( self, kernel_size, stride, padding, dilation, ceil_mode ) check( self.dtype == grad_output.dtype, lambda: "expected dtype {self.dtype} for `gradOutput` but got dtype {grad_output.dtype}", ) nOutputPlane = nInputPlane ndim = self.ndim def _check_dim_size(t): check_dim_size(t, ndim, ndim - 3, nOutputPlane) check_dim_size(t, ndim, ndim - 2, outputHeight) check_dim_size(t, ndim, ndim - 1, outputWidth) _check_dim_size(grad_output) _check_dim_size(indices) memory_format = utils.suggest_memory_format(self) return torch.empty( self.shape, dtype=self.dtype, device=self.device, memory_format=memory_format ) @register_meta(aten.max_pool2d_with_indices.default) def meta_max_pool2d_with_indices( input, kernel_size, stride=(), padding=(0,), dilation=(1,), ceil_mode=False ): nInputPlane, outputHeight, outputWidth = max_pool2d_checks_and_compute_shape( input, kernel_size, stride, padding, dilation, ceil_mode ) nbatch = input.size(-4) if input.dim() == 4 else 1 memory_format = utils.suggest_memory_format(input) if input.dim() == 3: size = [nInputPlane, outputHeight, outputWidth] else: size = [nbatch, nInputPlane, outputHeight, outputWidth] return ( torch.empty( size, dtype=input.dtype, device=input.device, memory_format=memory_format ), torch.empty( size, dtype=torch.int64, device=input.device, memory_format=memory_format ), ) @register_meta(aten.grid_sampler_2d_backward.default) def grid_sampler_2d_backward_meta( grad_output, input, grid, interpolation_mode, padding_mode, align_corners, output_mask, ): input_requires_grad = output_mask[0] if input_requires_grad: grad_input = torch.zeros_like(input, memory_format=torch.contiguous_format) else: grad_input = None grad_grid = torch.empty_like(grid, memory_format=torch.contiguous_format) return (grad_input, grad_grid) @register_meta([aten.full.default]) def full(size, fill_value, *args, **kwargs): return torch.empty(size, *args, **kwargs) @register_meta( [ aten.randint_like.default, aten.randint_like.low_dtype, aten.randn_like.default, aten.rand_like.default, aten.full_like.default, aten.ones_like.default, ] ) def meta_like(self, *args, **kwargs): return aten.empty_like.default(self, **kwargs) # zeros_like is special cased to work for sparse @register_meta(aten.zeros_like.default) def zeros_like( self, dtype=None, layout=None, device=None, pin_memory=None, memory_format=None ): if layout == torch.sparse_coo: check( memory_format is None, lambda: "memory format option is only supported by strided tensors", ) res = torch.empty( 0, dtype=self.dtype if dtype is None else dtype, layout=layout, device=self.device if device is None else device, pin_memory=pin_memory, ) if self.is_sparse: res.sparse_resize_and_clear_( self.size(), self.sparse_dim(), self.dense_dim() ) else: res.sparse_resize_and_clear_(self.size(), self.dim(), 0) res._coalesced_(True) return res return aten.empty_like.default( self, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory, memory_format=memory_format, ) # hacky: Please remove after math.ceil works with arange @register_meta(aten.arange.default) def arange(end, **kwargs): if isinstance(end, FloatLike): end = math.ceil(end) # type: ignore[arg-type] def is_integral(x): return isinstance(x, IntLike) or isinstance(x, bool) set_to_integral_dtype = kwargs.get("dtype", None) is None and is_integral(end) if set_to_integral_dtype: kwargs["dtype"] = torch.int64 return aten.empty([end], **kwargs) @register_meta(aten.arange.start) def arange_start(start, end, **kwargs): return aten.arange(end - start, **kwargs) @register_meta(aten.select.int) def meta_select(self, dim, index): ndim = self.dim() check( ndim != 0, lambda: "select() cannot be applied to a 0-dim tensor.", IndexError ) dim = dim if dim >= 0 else dim + ndim size = self.size(dim) check( not (-index > size or index >= size), lambda: f"select(): index {index} out of range for tensor of size " f"{self.size()} at dimension {dim}", IndexError, ) index = index if index >= 0 else index + size new_size = list(self.size()) new_stride = list(self.stride()) new_storage_offset = self.storage_offset() + index * new_stride[dim] del new_size[dim] del new_stride[dim] return self.as_strided(new_size, new_stride, new_storage_offset) @register_meta(aten.select_scatter.default) def meta_select_scatter(self, src, dim, index): return utils.clone_preserve_strides(self) @register_meta(aten.slice_scatter.default) def meta_slice_scatter(self, src, dim=0, start=None, end=None, step=1): return utils.clone_preserve_strides(self) # TODO: Deduplicate this with canonicalize_dim def maybe_wrap_dim(dim: int, dim_post_expr: int, wrap_scalar: bool = True): if dim_post_expr <= 0: assert wrap_scalar dim_post_expr = 1 min = -dim_post_expr max = dim_post_expr - 1 assert not (dim < min or dim > max), f"dim {dim} out of bounds ({min}, {max})" if dim < 0: dim += dim_post_expr return dim def ensure_nonempty_size(t, dim): return 1 if t.dim() == 0 else t.shape[dim] # From aten/src/ATen/native/ScatterGatherChecks.h def gather_shape_check(self, dim, index): self_dims = max(self.dim(), 1) index_dims = max(index.dim(), 1) check( self_dims == index_dims, lambda: "Index tensor must have the same number of dimensions as input tensor", ) for i in range(self_dims): if i != dim: check( ensure_nonempty_size(index, i) <= ensure_nonempty_size(self, i), lambda: f"Size does not match at dimension {i} expected index {index.shape}" + f" to be smaller than self {self.shape} apart from dimension {dim}", ) @register_meta(aten.gather.default) def meta_gather(self, dim, index, sparse_grad=False): wrapped_dim = maybe_wrap_dim(dim, self.dim()) is_index_empty = index.numel() == 0 if not is_index_empty: check( index.dtype == torch.long, lambda: f"gather(): Expected dtype int64 for index, but got {index.dtype}", ) gather_shape_check(self, wrapped_dim, index) return self.new_empty(index.shape) # From aten/src/ATen/native/TensorAdvancedIndexing.cpp def get_operator_enum(reduce_, use_new_options=False): if use_new_options: if reduce_ == "sum": return "REDUCE_ADD" elif reduce_ == "prod": return "REDUCE_MULTIPLY" elif reduce_ == "mean": return "REDUCE_MEAN" elif reduce_ == "amax": return "REDUCE_MAXIMUM" elif reduce_ == "amin": return "REDUCE_MINIMUM" check( False, lambda: "reduce argument must be either sum, prod, mean, amax or amin.", ) return else: if reduce_ == "add": return "REDUCE_ADD" elif reduce_ == "multiply": return "REDUCE_MULTIPLY" check(False, lambda: "reduce argument must be either add or multiply.") return # From aten/src/ATen/native/ScatterGatherChecks.h def scatter_gather_dtype_check(method_name, self, index, src_opt=None): if index.numel() != 0: check( index.dtype == torch.long, lambda: f"{method_name}(): Expected dtype int64 for index", ) if src_opt is not None: check( self.dtype == src_opt.dtype, lambda: f"{method_name}(): Expected self.dtype to be equal to src.dtype", ) def ensure_nonempty_dim(dim): return max(dim, 1) # From aten/src/ATen/native/ScatterGatherChecks.h def scatter_shape_check(self, dim, index, src_opt=None): if index.numel() == 0: return check( ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()), lambda: "Index tensor must have the same number of dimensions as self tensor", ) is_wrong_shape = False self_dims = ensure_nonempty_dim(self.dim()) # Check: index.size(d) <= self.size(d) for all d != dim for d in range(self_dims): index_d_size = ensure_nonempty_size(index, d) if d == dim: continue if index_d_size > ensure_nonempty_size(self, d): is_wrong_shape = True break # Check: index.size(d) <= src.size(d) for all d if src is Tensor if not is_wrong_shape and src_opt is not None: for d in range(self_dims): index_d_size = ensure_nonempty_size(index, d) if index_d_size > ensure_nonempty_size(src_opt, d): is_wrong_shape = True break if src_opt is not None: check( ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()), lambda: "Index tensor must have the same number of dimensions as self tensor", ) check( not is_wrong_shape, lambda: f"Expected index {index.shape} to be smaller than self {self.shape}" + f" apart from dimension {dim} and to be smaller than src {src_opt.shape}", ) else: check( not is_wrong_shape, lambda: f"Expected index {index.shape} to be smaller than self {self.shape}" + f" apart from dimension {dim}", ) # From aten/src/ATen/native/TensorAdvancedIndexing.cpp def scatter_meta_impl(self, dim, index, src=None, reduce_=None, use_new_options=False): wrapped_dim = maybe_wrap_dim(dim, self.dim()) scatter_gather_dtype_check("scatter", self, index, src) scatter_shape_check(self, wrapped_dim, index, src) if reduce_ is not None: # Check if we have a valid reduce operator. get_operator_enum(reduce_, use_new_options) @register_meta(aten.scatter_add.default) def meta_scatter_add(self, dim, index, src): scatter_meta_impl(self, dim, index, src, "add") return self.new_empty(self.shape) @register_meta(aten.scatter_add_) def meta_scatter_add_(self, dim, index, src): scatter_meta_impl(self, dim, index, src, "add") return self @register_meta( [ aten.scatter.src, aten.scatter.value, aten.scatter.reduce, aten.scatter.value_reduce, ] ) @out_wrapper() def meta_scatter(self, dim, index, src_or_value, reduce=None): src = src_or_value if isinstance(src_or_value, torch.Tensor) else None scatter_meta_impl(self, dim, index, src, reduce) return self.new_empty(self.shape) @register_meta( [ aten.scatter_.src, aten.scatter_.value, aten.scatter_.reduce, aten.scatter_.value_reduce, ] ) def meta_scatter_(self, dim, index, src_or_value, reduce=None): src = src_or_value if isinstance(src_or_value, torch.Tensor) else None scatter_meta_impl(self, dim, index, src, reduce) return self @register_meta( [ aten._scaled_dot_product_flash_attention, ] ) def meta__scaled_dot_product_flash( query: Tensor, key: Tensor, value: Tensor, dropout_p: float = 0.0, is_causal: bool = False, ): batch_size = query.size(0) num_heads = query.size(1) max_seqlen_batch_q = query.size(2) head_dim = query.size(3) max_seqlen_batch_k = key.size(2) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) Nnz_q = batch_size * max_seqlen_batch_q output = torch.empty( (Nnz_q, num_heads, head_dim), dtype=query.dtype, device=query.device ) ouput = output.view(batch_size, max_seqlen_batch_q, num_heads, head_dim).transpose( 1, 2 ) max_seqlen_q = math.ceil(max_seqlen_batch_q / 16) * 16 logsumexp = torch.empty( (batch_size, num_heads, max_seqlen_q), dtype=torch.float, device=query.device, ) is_sm80 = torch.cuda.is_available() and torch.cuda.get_device_capability() >= (8, 0) is_sm75 = torch.cuda.is_available() and torch.cuda.get_device_capability() >= (7, 5) head_size_rounded = 64 if head_dim <= 64 else 128 blocksize_c = ( 128 if (head_size_rounded == 128 and (dropout_p != 0.0 or not is_sm80)) or (is_sm75 and head_size_rounded == 64 and dropout_p != 0.0) else 256 ) max_seqlen_k = math.ceil(max_seqlen_batch_k / blocksize_c) * blocksize_c if max_seqlen_k <= 128: max_seqlen_k = 128 elif max_seqlen_k <= 256: max_seqlen_k = 256 return ouput, logsumexp @register_meta( [ aten._scaled_dot_product_efficient_attention, ] ) def meta__scaled_dot_product_efficient( query: Tensor, key: Tensor, value: Tensor, compute_log_sumexp: bool, is_causal: bool = False, ): query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) B = query.size(0) M = query.size(1) N = key.size(1) num_heads = query.size(-2) K = query.size(-1) Kv = value.size(-1) res = torch.empty(B, M, num_heads, Kv, dtype=query.dtype, device=query.device) logsumexp_dim = math.ceil(M / 32) * 32 if compute_log_sumexp else 0 logsum_exp = torch.empty( (B, num_heads, logsumexp_dim), dtype=torch.float, device=query.device, ) res = res.transpose(1, 2) return res, logsum_exp @register_meta( [ aten._scaled_dot_product_efficient_attention_backward, ] ) def meta__scaled_dot_product_efficient_backward( grad_out: Tensor, query: Tensor, key: Tensor, value: Tensor, out: Tensor, logsumexp: Tensor, is_causal: bool = False, chunk_grad_outputs=False, ): grad_out = grad_out.transpose(1, 2) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) B = query.size(0) M = query.size(1) N = key.size(1) nH = query.size(2) K = query.size(3) grad_kv_needs_init = is_causal and N > M if chunk_grad_outputs: chunk = torch.empty((B, M, 3, nH, K), dtype=query.dtype, device=query.device) grad_q = chunk.select(2, 0) grad_k = chunk.select(2, 1) grad_v = chunk.select(2, 2) else: grad_q = torch.empty(query.shape, dtype=query.dtype, device=query.device) grad_k = ( torch.zeros(key.shape, dtype=key.dtype, device=key.device) if grad_kv_needs_init else torch.empty(key.shape, dtype=key.dtype, device=key.device) ) grad_v = ( torch.zeros(value.shape, dtype=value.dtype, device=value.device) if grad_kv_needs_init else torch.empty(value.shape, dtype=value.dtype, device=value.device) ) return grad_q.transpose(1, 2), grad_k.transpose(1, 2), grad_v.transpose(1, 2) @register_meta([aten.scatter_reduce.two, aten.scatter_reduce.two_out]) @out_wrapper() def meta_scatter_reduce_two(self, dim, index, src, reduce, include_self=True): scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True) return self.new_empty(self.shape) @register_meta(aten.scatter_reduce_.two) def meta_scatter_reduce__two(self, dim, index, src, reduce, include_self=True): scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True) return self def multiply_integers(vs): r = 1 for v in vs: r *= v return r def upsample_common_check(input_size, output_size, num_spatial_dims): check( len(output_size) == num_spatial_dims, lambda: f"It is expected output_size equals to {num_spatial_dims}, but got size {len(output_size)}", ) expected_input_dims = num_spatial_dims + 2 # N, C, ... check( len(input_size) == expected_input_dims, lambda: f"It is expected input_size equals to {expected_input_dims}, but got size {len(input_size)}", ) check( all([s > 0 for s in input_size[2:]]) and all([s > 0 for s in output_size]), lambda: f"Input and output sizes should be greater than 0, but got " f"input size {input_size} and output size {output_size}", ) nbatch, channels = input_size[:2] return (nbatch, channels, *output_size) @register_meta(aten.upsample_nearest1d.default) def upsample_nearest1d(input, output_size, scales=None): check( input.numel() != 0 or multiply_integers(input.size()[1:]), lambda: "Non-empty 3D data tensor expected but got a tensor with sizes {input.size()}", ) full_output_size = upsample_common_check( input.size(), output_size, num_spatial_dims=1 ) return input.new_empty(full_output_size).to( memory_format=utils.suggest_memory_format(input) ) @register_meta(aten.upsample_nearest2d.default) def upsample_nearest2d(input, output_size, scales_h=None, scales_w=None): check( input.numel() != 0 or multiply_integers(input.size()[1:]), lambda: "Non-empty 4D data tensor expected but got a tensor with sizes {input.size()}", ) full_output_size = upsample_common_check( input.size(), output_size, num_spatial_dims=2 ) output = input.new_empty(full_output_size) # convert output to correct memory format, if necessary memory_format = utils.suggest_memory_format(input) # following "heuristic: only use channels_last path when it's faster than the contiguous path" _, n_channels, _, _ = input.shape if input.device.type == "cuda" and n_channels < 4: memory_format = torch.contiguous_format output = output.contiguous(memory_format=memory_format) return output @register_meta(aten.upsample_nearest3d.default) def upsample_nearest3d(input, output_size, scales_d=None, scales_h=None, scales_w=None): check( input.numel() != 0 or multiply_integers(input.size()[1:]), lambda: "Non-empty 5D data tensor expected but got a tensor with sizes {input.size()}", ) full_output_size = upsample_common_check( input.size(), output_size, num_spatial_dims=3 ) return input.new_empty(full_output_size).to( memory_format=utils.suggest_memory_format(input) ) @register_meta([aten.sort.default, aten.sort.stable]) def meta_sort(self, stable=None, dim=-1, descending=False): return torch.empty_like(self), torch.empty_like(self, dtype=torch.int64) def rnn_cell_checkSizes( input_gates, hidden_gates, input_bias, hidden_bias, factor, prev_hidden ): check(input_gates.ndim == 2, lambda: f"{input_gates.ndim} != 2") check( input_gates.shape == hidden_gates.shape, lambda: f"{input_gates.shape} != {hidden_gates.shape}", ) gates_size = input_gates.size(1) if input_bias is not None: check(input_bias.ndim == 1, lambda: f"{input_bias.ndim} != 1") check( input_bias.numel() == gates_size, lambda: f"{input_bias.numel()} != {gates_size}", ) check( input_bias.shape == hidden_bias.shape, lambda: f"{input_bias.shape} != {hidden_bias.shape}", ) check(prev_hidden.ndim == 2, lambda: f"{prev_hidden.ndim} != 2") expected_prev_hidden_numel = input_gates.size(0) * gates_size // factor check( prev_hidden.numel() == expected_prev_hidden_numel, lambda: f"{prev_hidden.numel()} != {input_gates.size(0)} * {gates_size} // {factor} (aka {expected_prev_hidden_numel})", ) check( all( x.device == input_gates.device for x in [hidden_gates, input_bias, hidden_bias, prev_hidden] ), lambda: "expected all inputs to be same device", ) @register_meta(aten._thnn_fused_lstm_cell.default) def _thnn_fused_lstm_cell_meta( input_gates, hidden_gates, cx, input_bias=None, hidden_bias=None ): rnn_cell_checkSizes(input_gates, hidden_gates, input_bias, hidden_bias, 4, cx) workspace = torch.empty_like(input_gates, memory_format=torch.contiguous_format) hy = torch.empty_like(cx, memory_format=torch.contiguous_format) cy = torch.empty_like(cx, memory_format=torch.contiguous_format) return (hy, cy, workspace) @register_meta(aten._cudnn_rnn.default) def _cudnn_rnn( input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, ): is_input_packed = len(batch_sizes) != 0 if is_input_packed: seq_length = len(batch_sizes) mini_batch = batch_sizes[0] batch_sizes_sum = input.shape[0] else: seq_length = input.shape[1] if batch_first else input.shape[0] mini_batch = input.shape[0] if batch_first else input.shape[1] batch_sizes_sum = -1 num_directions = 2 if bidirectional else 1 out_size = proj_size if proj_size != 0 else hidden_size if is_input_packed: out_shape = [batch_sizes_sum, out_size * num_directions] else: out_shape = ( [mini_batch, seq_length, out_size * num_directions] if batch_first else [seq_length, mini_batch, out_size * num_directions] ) output = input.new_empty(out_shape) cell_shape = [num_layers * num_directions, mini_batch, hidden_size] if cx is None: cy = torch.empty(0, device=input.device) else: cy = cx.new_empty(cell_shape) hy = hx.new_empty([num_layers * num_directions, mini_batch, out_size]) # TODO: Query cudnnGetRNNTrainingReserveSize (expose to python) reserve_shape = 0 if train else 0 reserve = input.new_empty(reserve_shape, dtype=torch.uint8) return output, hy, cy, reserve, weight_buf @register_meta(aten.mkldnn_rnn_layer.default) def mkldnn_rnn_layer( input, w0, w1, w2, w3, hx_, cx_, reverse, batch_sizes, mode, hidden_size, num_layers, has_biases, bidirectional, batch_first, train, ): seq_length = input.shape[1] if batch_first else input.shape[0] mini_batch = input.shape[0] if batch_first else input.shape[1] output_chanels = hidden_size out_shape = ( [mini_batch, seq_length, output_chanels] if batch_first else [seq_length, mini_batch, output_chanels] ) output = input.new_empty(out_shape) if hx_ is None: hy = torch.empty(0, device=input.device) else: hy = hx_.new_empty(hx_.shape) if cx_ is None: cy = torch.empty(0, device=input.device) else: cy = cx_.new_empty(cx_.shape) workspace = torch.empty(0, device=input.device, dtype=torch.uint8) return output, hy, cy, workspace def zero_numel_check_dims(self, dim, fn_name): if self.ndim == 0: check( dim == 0 or dim == -1, lambda: f"{fn_name}: Expected reduction dim -1 or 0 for scalar but got {dim}", IndexError, ) else: check( self.size(dim) != 0, lambda: f"{fn_name}: Expected reduction dim {dim} to have non-zero size.", IndexError, ) # From aten/src/ATen/native/ReduceOps.cpp def check_argmax_argmin(name, self, dim): if dim is not None: dim = maybe_wrap_dim(dim, self.dim()) zero_numel_check_dims(self, dim, name) else: check( self.numel() != 0, lambda: f"{name}: Expected reduction dim to be specified for input.numel() == 0.", ) @register_meta([aten.argmax.default, aten.argmin.default]) def argmax_argmin_meta(self, dim=None, keepdim=False): check_argmax_argmin("argmax", self, dim) dims = utils.reduction_dims(self.shape, (dim,) if dim is not None else None) shape = _compute_reduction_shape(self, dims, keepdim) return self.new_empty(shape, dtype=torch.int64) @register_meta(aten.scalar_tensor.default) def scalar_tensor(s, dtype=None, layout=None, device=None, pin_memory=None): return torch.empty( (), dtype=dtype, layout=layout, device=device, pin_memory=pin_memory ) @register_meta(aten.topk.default) def topk_meta(self, k, dim=-1, largest=True, sorted=True): # From aten/src/ATen/native/Sorting.cpp dim = maybe_wrap_dim(dim, self.dim(), wrap_scalar=True) check( k >= 0 and k <= (self.size(dim) if self.dim() > 0 else 1), lambda: "selected index k out of range", ) sliceSize = 1 if self.dim() == 0 else self.size(dim) check(k >= 0 and k <= sliceSize, lambda: "k not in range for dimension") topKSize = list(self.shape) if len(topKSize) > 0: topKSize[dim] = k return self.new_empty(topKSize), self.new_empty(topKSize, dtype=torch.int64) legacy_contiguous_memory_format = torch.contiguous_format # From aten/src/ATen/native/cuda/RNN.cu def checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace): defined_grad = grad_hy if grad_hy is not None else grad_cy check(defined_grad.dim() == 2, lambda: "") exp_size = defined_grad.size() if grad_hy is not None: check(grad_hy.size() == exp_size, lambda: "") if grad_cy is not None: check(grad_cy.size() == exp_size, lambda: "") check(cx.size() == exp_size, lambda: "") check(cy.size() == exp_size, lambda: "") check(workspace.dim() == 2, lambda: "") check(workspace.numel() == exp_size[0] * exp_size[1] * 4, lambda: "") # From aten/src/ATen/native/cuda/RNN.cu @register_meta(aten._thnn_fused_lstm_cell_backward_impl.default) def _thnn_fused_lstm_cell_backward_impl(grad_hy, grad_cy, cx, cy, workspace, has_bias): if grad_hy is None and grad_cy is None: return None, None, None checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace) grad_gates = torch.empty_like( workspace, memory_format=legacy_contiguous_memory_format ) grad_cx = torch.empty_like(cx, memory_format=legacy_contiguous_memory_format) grad_bias = grad_gates.sum(0, keepdim=False) if has_bias else None return grad_gates, grad_cx, grad_bias @register_meta(aten.pixel_shuffle.default) def meta_pixel_shuffle(self, upscale_factor): assert ( len(self.shape) > 2 and self.shape[-3] % (upscale_factor * upscale_factor) == 0 ), f"Invalid input shape for pixel_shuffle: {self.shape} with upscale_factor = {upscale_factor}" def is_channels_last(ten): return torch._prims_common.suggest_memory_format(ten) == torch.channels_last def pick_memory_format(): if is_channels_last(self): if device_hint(self) == "cuda": return torch.contiguous_format else: return torch.channels_last elif self.is_contiguous(memory_format=torch.contiguous_format): return torch.contiguous_format elif self.is_contiguous(memory_format=torch.preserve_format): return torch.preserve_format C = self.shape[-3] // (upscale_factor * upscale_factor) Hr = self.shape[-2] * upscale_factor Wr = self.shape[-1] * upscale_factor out_shape = (*self.shape[:-3], C, Hr, Wr) out = self.new_empty(out_shape) out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload] return out @register_meta(aten.mkldnn_rnn_layer_backward.default) def mkldnn_rnn_layer_backward( input, weight0, weight1, weight2, weight3, hx_, cx_tmp, output, hy_, cy_, grad_output_r_opt, grad_hy_r_opt, grad_cy_r_opt, reverse, mode, hidden_size, num_layers, has_biases, train, bidirectional, batch_sizes, batch_first, workspace, ): diff_x = input.new_empty(input.shape) diff_hx = hx_.new_empty(hx_.shape) diff_cx = cx_tmp.new_empty(cx_tmp.shape) diff_w1 = weight0.new_empty(weight0.shape) diff_w2 = weight1.new_empty(weight1.shape) diff_b = weight2.new_empty(weight2.shape) return diff_x, diff_w1, diff_w2, diff_b, diff_b, diff_hx, diff_cx # We must also trigger meta registrations from PrimTorch ref # decompositions import torch._refs import torch._refs.nn.functional import torch._refs.special def activate_meta(): activate_meta_table = {} # For a given op, we pick the most specific decomp function from # global_decomp_table in the precedence order of meta > post_autograd > pre_autograd for type in ["meta", "post_autograd", "pre_autograd"]: registry = global_decomposition_table[type] for opo in registry: if opo not in activate_meta_table: activate_meta_table[opo] = registry[opo] for op_overload, fn in activate_meta_table.items(): assert isinstance(op_overload, OpOverload) op_overload.py_impl(torch._C.DispatchKey.Meta)(fn) if torch._C._dispatch_has_kernel_for_dispatch_key( op_overload.name(), "CompositeImplicitAutograd" ): # Internally, we shouldn't be registering meta kernels for any operators that # have CompositeImplicitAutograd kernels. # Instead, we should be letting those decompositions run, and writing meta kernels # only for the base operators. if op_overload in global_decomposition_table["meta"]: raise RuntimeError( f"{op_overload} is a CompositeImplicitAutograd op, we shouldn't " "register meta function for it. Instead, we should let the decomposition run and write " "meta kernels for the base operators." ) pass elif op_overload.is_view: # Attempting to register a python meta kernel for a view operator. # We shouldn't do this, because the output will report as not having aliased storages. # All view ops have meta kernels in C++ today, so we should use those instead. pass elif op_overload.name() in { "aten::empty_strided", # causing infinite recursion, test_meta.py "aten::clone", # causing infinite recursion "aten::_to_copy", # causing infinite recursion, test_serialization.py -k test_tensor_subclass_getstate_overwrite # noqa: B950 "aten::copy_", # Exception not raised, test_torch.py -k test_storage_meta_errors_cpu_int64 # noqa: B950 "aten::constant_pad_nd", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_amp_istft_cuda_float32 # noqa: B950 "aten::rot90", # requires_grad mismatch! test_ops.py -k test_fake_crossref_backward_amp_rot90_cuda_float32 # noqa: B950 "aten::as_strided_scatter", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_no_amp_as_strided_scatter_cuda_float32 # noqa: B950 }: pass else: if "mkldnn::" in op_overload.name(): _meta_lib_dont_use_me_use_register_meta_for_mkldnn.impl(op_overload, fn) elif "mkl::" in op_overload.name(): _meta_lib_dont_use_me_use_register_meta_for_mkl.impl(op_overload, fn) else: _meta_lib_dont_use_me_use_register_meta.impl(op_overload, fn) activate_meta()
[ "pytorchmergebot@users.noreply.github.com" ]
pytorchmergebot@users.noreply.github.com
604c1e106f08e0be7286bba0d9ef1a3bc66b63e5
708a6c274432fee2d25c7e86581f3655cd4be0de
/src/updater/app/lib/packages/vehicle_eco_balance/geo.py
64ab2e71d7d114cb5d7db70d98dfc40097f995db
[ "MIT" ]
permissive
sampittko/tuke-beautofuel
f65fa2865c1402421224e3ff9182e3ab5e6cd3c9
0e7b2528af5f3a96c0abf6dc963d2a5b29779401
refs/heads/main
2023-04-11T00:18:19.498448
2021-04-23T13:16:10
2021-04-23T13:16:10
316,191,448
2
0
null
null
null
null
UTF-8
Python
false
false
7,753
py
import numpy as np import requests as req from requests.exceptions import HTTPError import time from geopy import distance import osmnx as ox def calc_gradient_angle(point1, point2): """ Calculate the gradient angle between two points on the earth's surface Parameters ---------- point1: tuple (latitude, longitude, altitude) first coordinate point2: tuple (latitude, longitude, altitude) second coordinate Returns ------- gradient_angle: float gradient angle in radians between -pi/2 and pi/2 """ coord1, alt1 = point1[:-1], point1[-1] coord2, alt2 = point2[:-1], point2[-1] dist = calc_distance(coord1, coord2) if dist != 0: return np.arctan((alt2 - alt1) / dist) else: return 0.0 def calc_distance(coord1, coord2, distance_type="geodetic", ellipsoid="WGS-84"): """ Calculate distance between two points on the earth's surface using geopy Great-circle distance is calculated using Vincenty's formula. Default ellipsoid of the geodetic distance is WGS-84. Parameters ---------- coord1: tuple (latitude, longitude) first coordinate coord2: tuple (latitude, longitude) second coordinate distance_type: str 'geodetic' or 'great-circle' (default 'geodetic') ellipsoid: str ellipsoid for geodetic distance (default 'WGS-84') Returns ------- distance: float distance in meters """ if distance_type == "geodetic": return distance.geodesic(coord1, coord2, ellipsoid=ellipsoid).km * 1000 elif distance_type == "great-circle": return distance.great_circle(coord1, coord2).km * 1000 else: print("distance_type " + distance_type + " is unknown!") class ElevationAPI: """ ElevationAPI Example APIs: - Open Topo Data (https://www.opentopodata.org/) - API: https://api.opentopodata.org/v1/ - Open - Example: https://api.opentopodata.org/v1/eudem25m?locations=39.7391536,-104.9847034 - Limits - Max 100 locations per request. - Max 1 call per second. - Max 1000 calls per day. - Google Elevation API (https://developers.google.com/maps/documentation/elevation/overview) - API: https://maps.googleapis.com/maps/api/elevation/ - Commercial, API key needed - Example: https://maps.googleapis.com/maps/api/elevation/json?locations=39.7391536,-104.9847034&key=YOUR_API_KEY Parameters ---------- base_url: str API base url (default 'https://api.opentopodata.org/v1/') dataset: str eudem25m, aster30m, srtm30m, ... (default 'eudem25m', check https://www.opentopodata.org/ for details) api_key: str (default None) API key for the service Attributes ---------- base_url: str API base url location_limit: int number of allowed locations per request params: dictionary parameters for the get request (e.g. locations, key) """ def __init__(self, base_url='https://api.opentopodata.org/v1/', dataset='eudem25m', api_key=None): self.base_url = base_url if self.base_url != 'https://api.opentopodata.org/v1/': self.location_limit = None else: self.location_limit = 100 self.base_url = self.base_url + dataset self.params = {'key': api_key} def get_elevation(self, coordinates): """ Get elevation for the given coordinates from an elevation API Parameters ---------- coordinates: list of tuples (latitude, longitude) coordinates in EPSG:4326 (WGS-84) Returns ------- elevation: numpy array elevation for each coordinate """ elevation = np.zeros(len(coordinates)) if self.location_limit is None: print('Download elevation for all {} coordinates'.format(len(coordinates))) elevation[0, len(coordinates)] = self._make_request(coordinates) return elevation # Split request into multiple requests if location limit is provided for i in range(int(len(coordinates) / self.location_limit) + 1): start = i * self.location_limit end = (i + 1) * self.location_limit print('Download elevation for coordinates {start} to {end}'.format(start=start + 1, end=end)) elevation[start:end] = self._make_request(coordinates[start:end]) time.sleep(1) # for OpenTopoData the limit is max 1 call per second return elevation def _make_request(self, coordinates): locations_str = self._coordinates2param(coordinates) self.params.update({'locations': locations_str}) elevation_list = [] try: response = req.get(self.base_url, params=self.params) response.raise_for_status() except HTTPError as http_err: print('An http error occurred during the request: {}'.format(http_err)) except Exception as err: print('An error occurred during the request: {}'.format(err)) else: results = response.json()['results'] elevation_list = [result['elevation'] for result in results] return elevation_list def _coordinates2param(self, coordinates): """ Transform coordinates to string in order to set the locations request parameter """ return ''.join([str(coordinate[0]) + ',' + str(coordinate[1]) + '|' for coordinate in coordinates]) def get_cr_from_osm(coordinates): """ Get rolling coefficient (cr) from osm surface attribute 1) Determine nearest osm edge for each coordinate 2) Determine surface attribute for each osm edge 3) Get rolling coefficient (cr) for the corresponding surface type from literature Hint: function will take some time when coordinates have a large spatial extent. Parameters ---------- coordinates: list of tuples (latitude, longitude) coordinates Returns ------- [cr, surface]: list of numpy arrays first array are rolling coefficient (cr) values and second array are surface attributes """ # TODO: Improve performance # TODO: Check scientific literature for rolling coefficient values lats = [coordinate[0] for coordinate in coordinates] lngs = [coordinate[1] for coordinate in coordinates] min_y = np.min(lats) max_y = np.max(lats) min_x = np.min(lngs) max_x = np.max(lngs) ox.settings.useful_tags_way = ["surface"] print('Get graph from bounding box: min_y={}, max_y={}, min_x={}, max_x={}'.format(min_y, max_y, min_x, max_x)) graph = ox.graph_from_bbox(max_y, min_y, max_x, min_x, network_type='drive') surface = [] cr = [] i = 0 print('Find nearest osm edge and set rolling coefficient according to the surface type of the edge.') for lat, lng in coordinates: x = ox.get_nearest_edge(graph, (lat, lng)) p = [x[0], x[1]] a = ox.utils_graph.get_route_edge_attributes(graph, p) dic = a[0] if "surface" in dic: surface.append(dic["surface"]) else: surface.append(None) # Get the rolling resistance coefficient # Sources # https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html # The Automotive Chassis book if surface[i] == "asphalt": cr.append(0.02) elif surface[i] == "cobblestone": cr.append(0.015) elif surface[i] == "paving_stones": cr.append(0.033) else: cr.append(0.02) i = i + 1 return [np.array(cr), np.array(surface)]
[ "sampittko@gmail.com" ]
sampittko@gmail.com
e72f4db6ed6a6653152baab96d0fa3235cbf675b
9c13bffaf12c83b049375cf24e12183fcab3a2aa
/venv/lib/python3.6/site-packages/pip/_vendor/requests/sessions.py
a8e60f360279eb602a4e07bb27447e0a0d22f3b3
[]
no_license
brielino/SDCCTestAnsible
b702d48c934c8bde9638ceba3b27fabf9dd40071
857f66860de2ad889455789b60a162506d3125a1
refs/heads/master
2022-12-09T13:15:29.030558
2020-09-12T14:51:31
2020-09-12T14:51:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,310
py
# -*- coding: utf-8 -*- """ requests.session ~~~~~~~~~~~~~~~~ This module provides a Session object to manage and persist settings across requests (cookies, auth, proxies). """ import os import sys import time from datetime import timedelta from collections import OrderedDict from .auth import _basic_auth_str from .compat import cookielib, is_py3, urljoin, urlparse, Mapping from .cookies import ( cookiejar_from_dict, extract_cookies_to_jar, RequestsCookieJar, merge_cookies) from .models import Request, PreparedRequest, DEFAULT_REDIRECT_LIMIT from .hooks import default_hooks, dispatch_hook from ._internal_utils import to_native_string from .utils import to_key_val_list, default_headers, DEFAULT_PORTS from .exceptions import ( TooManyRedirects, InvalidSchema, ChunkedEncodingError, ContentDecodingError) from .structures import CaseInsensitiveDict from .adapters import HTTPAdapter from .utils import ( requote_uri, get_environ_proxies, get_netrc_auth, should_bypass_proxies, get_auth_from_url, rewind_body ) from .status_codes import codes # formerly defined here, reexposed here for backward compatibility from .models import REDIRECT_STATI # Preferred clock, based on which one is more accurate on a given system. if sys.platform == 'win32': try: # Python 3.4+ preferred_clock = time.perf_counter except AttributeError: # Earlier than Python 3. preferred_clock = time.clock else: preferred_clock = time.time def merge_setting(request_setting, session_setting, dict_class=OrderedDict): """Determines appropriate setting for a given request, taking into account the explicit setting on that request, and the setting in the session. If a setting is a dictionary, they will be merged together using `dict_class` """ if session_setting is None: return request_setting if request_setting is None: return session_setting # Bypass if not a dictionary (e.g. verify) if not ( isinstance(session_setting, Mapping) and isinstance(request_setting, Mapping) ): return request_setting merged_setting = dict_class(to_key_val_list(session_setting)) merged_setting.update(to_key_val_list(request_setting)) # Remove keys that are set to None. Extract keys first to avoid altering # the dictionary during iteration. none_keys = [k for (k, v) in merged_setting.items() if v is None] for key in none_keys: del merged_setting[key] return merged_setting def merge_hooks(request_hooks, session_hooks, dict_class=OrderedDict): """Properly merges both requests and session hooks. This is necessary because when request_hooks == {'response': []}, the merge breaks Session hooks entirely. """ if session_hooks is None or session_hooks.get('response') == []: return request_hooks if request_hooks is None or request_hooks.get('response') == []: return session_hooks return merge_setting(request_hooks, session_hooks, dict_class) class SessionRedirectMixin(object): def get_redirect_target(self, resp): """Receives a Response. Returns a redirect URI or ``None``""" # Due to the nature of how requests processes redirects this method will # be called at least once upon the original response and at least twice # on each subsequent redirect response (if any). # If a custom mixin is used to handle this logic, it may be advantageous # to cache the redirect location onto the response object as a private # attribute. if resp.is_redirect: location = resp.headers['location'] # Currently the underlying http module on py3 decode headers # in latin1, but empirical evidence suggests that latin1 is very # rarely used with non-ASCII characters in HTTP headers. # It is more likely to get UTF8 header rather than latin1. # This causes incorrect handling of UTF8 encoded location headers. # To solve this, we re-encode the location in latin1. if is_py3: location = location.encode('latin1') return to_native_string(location, 'utf8') return None def should_strip_auth(self, old_url, new_url): """Decide whether Authorization header should be removed when redirecting""" old_parsed = urlparse(old_url) new_parsed = urlparse(new_url) if old_parsed.hostname != new_parsed.hostname: return True # Special case: allow http -> https redirect when using the standard # ports. This isn't specified by RFC 7235, but is kept to avoid # breaking backwards compatibility with older versions of requests # that allowed any redirects on the same host. if (old_parsed.scheme == 'http' and old_parsed.port in (80, None) and new_parsed.scheme == 'https' and new_parsed.port in (443, None)): return False # Handle default port usage corresponding to scheme. changed_port = old_parsed.port != new_parsed.port changed_scheme = old_parsed.scheme != new_parsed.scheme default_port = (DEFAULT_PORTS.get(old_parsed.scheme, None), None) if (not changed_scheme and old_parsed.port in default_port and new_parsed.port in default_port): return False # Standard case: root URI must match return changed_port or changed_scheme def resolve_redirects(self, resp, req, stream=False, timeout=None, verify=True, cert=None, proxies=None, yield_requests=False, **adapter_kwargs): """Receives a Response. Returns a generator of Responses or Requests.""" hist = [] # keep track of history url = self.get_redirect_target(resp) previous_fragment = urlparse(req.url).fragment while url: prepared_request = req.copy() # Update history and keep track of redirects. # resp.history must ignore the original request in this loop hist.append(resp) resp.history = hist[1:] try: resp.content # Consume socket so it can be released except (ChunkedEncodingError, ContentDecodingError, RuntimeError): resp.raw.read(decode_content=False) if len(resp.history) >= self.max_redirects: raise TooManyRedirects('Exceeded {} redirects.'.format(self.max_redirects), response=resp) # Release the connection back into the pool. resp.close() # Handle redirection without scheme (see: RFC 1808 Section 4) if url.startswith('//'): parsed_rurl = urlparse(resp.url) url = ':'.join([to_native_string(parsed_rurl.scheme), url]) # Normalize url case and attach previous fragment if needed (RFC 7231 7.1.2) parsed = urlparse(url) if parsed.fragment == '' and previous_fragment: parsed = parsed._replace(fragment=previous_fragment) elif parsed.fragment: previous_fragment = parsed.fragment url = parsed.geturl() # Facilitate relative 'location' headers, as allowed by RFC 7231. # (e.g. '/path/to/resource' instead of 'http://domain.tld/path/to/resource') # Compliant with RFC3986, we percent encode the url. if not parsed.netloc: url = urljoin(resp.url, requote_uri(url)) else: url = requote_uri(url) prepared_request.url = to_native_string(url) self.rebuild_method(prepared_request, resp) # https://github.com/psf/requests/issues/1084 if resp.status_code not in (codes.temporary_redirect, codes.permanent_redirect): # https://github.com/psf/requests/issues/3490 purged_headers = ('Content-Length', 'Content-Type', 'Transfer-Encoding') for header in purged_headers: prepared_request.headers.pop(header, None) prepared_request.body = None headers = prepared_request.headers headers.pop('Cookie', None) # Extract any cookies sent on the response to the cookiejar # in the new request. Because we've mutated our copied prepared # request, use the old one that we haven't yet touched. extract_cookies_to_jar(prepared_request._cookies, req, resp.raw) merge_cookies(prepared_request._cookies, self.cookies) prepared_request.prepare_cookies(prepared_request._cookies) # Rebuild auth and proxy information. proxies = self.rebuild_proxies(prepared_request, proxies) self.rebuild_auth(prepared_request, resp) # A failed tell() sets `_body_position` to `object()`. This non-None # value ensures `rewindable` will be True, allowing us to raise an # UnrewindableBodyError, instead of hanging the connection. rewindable = ( prepared_request._body_position is not None and ('Content-Length' in headers or 'Transfer-Encoding' in headers) ) # Attempt to rewind consumed file-like object. if rewindable: rewind_body(prepared_request) # Override the original request. req = prepared_request if yield_requests: yield req else: resp = self.send( req, stream=stream, timeout=timeout, verify=verify, cert=cert, proxies=proxies, allow_redirects=False, **adapter_kwargs ) extract_cookies_to_jar(self.cookies, prepared_request, resp.raw) # extract redirect url, if any, for the next loop url = self.get_redirect_target(resp) yield resp def rebuild_auth(self, prepared_request, response): """When being redirected we may want to strip authentication from the request to avoid leaking credentials. This method intelligently removes and reapplies authentication where possible to avoid credential loss. """ headers = prepared_request.headers url = prepared_request.url if 'Authorization' in headers and self.should_strip_auth(response.request.url, url): # If we get redirected to a new host, we should strip out any # authentication headers. del headers['Authorization'] # .netrc might have more auth for us on our new host. new_auth = get_netrc_auth(url) if self.trust_env else None if new_auth is not None: prepared_request.prepare_auth(new_auth) def rebuild_proxies(self, prepared_request, proxies): """This method re-evaluates the proxy configuration by considering the environment variables. If we are redirected to a URL covered by NO_PROXY, we strip the proxy configuration. Otherwise, we set missing proxy keys for this URL (in case they were stripped by a previous redirect). This method also replaces the Proxy-Authorization header where necessary. :rtype: dict """ proxies = proxies if proxies is not None else {} headers = prepared_request.headers url = prepared_request.url scheme = urlparse(url).scheme new_proxies = proxies.copy() no_proxy = proxies.get('no_proxy') bypass_proxy = should_bypass_proxies(url, no_proxy=no_proxy) if self.trust_env and not bypass_proxy: environ_proxies = get_environ_proxies(url, no_proxy=no_proxy) proxy = environ_proxies.get(scheme, environ_proxies.get('all')) if proxy: new_proxies.setdefault(scheme, proxy) if 'Proxy-Authorization' in headers: del headers['Proxy-Authorization'] try: username, password = get_auth_from_url(new_proxies[scheme]) except KeyError: username, password = None, None if username and password: headers['Proxy-Authorization'] = _basic_auth_str(username, password) return new_proxies def rebuild_method(self, prepared_request, response): """When being redirected we may want to change the method of the request based on certain specs or browser behavior. """ method = prepared_request.method # https://tools.ietf.org/html/rfc7231#section-6.4.4 if response.status_code == codes.see_other and method != 'HEAD': method = 'GET' # Do what the browsers do, despite standards... # First, turn 302s into GETs. if response.status_code == codes.found and method != 'HEAD': method = 'GET' # Second, if a POST is responded to with a 301, turn it into a GET. # This bizarre behaviour is explained in Issue 1704. if response.status_code == codes.moved and method == 'POST': method = 'GET' prepared_request.method = method class Session(SessionRedirectMixin): """A Requests session. Provides cookie persistence, connection-pooling, and configuration. Basic Usage:: >>> import requests >>> s = requests.Session() >>> s.get('https://httpbin.org/get') <Response [200]> Or as a context manager:: >>> with requests.Session() as s: ... s.get('https://httpbin.org/get') <Response [200]> """ __attrs__ = [ 'headers', 'cookies', 'auth', 'proxies', 'hooks', 'params', 'verify', 'cert', 'adapters', 'stream', 'trust_env', 'max_redirects', ] def __init__(self): #: A case-insensitive dictionary of headers to be sent on each #: :class:`Request <Request>` sent from this #: :class:`Session <Session>`. self.headers = default_headers() #: Default Authentication tuple or object to attach to #: :class:`Request <Request>`. self.auth = None #: Dictionary mapping protocol or protocol and host to the URL of the proxy #: (e.g. {'http': 'foo.bar:3128', 'http://host.name': 'foo.bar:4012'}) to #: be used on each :class:`Request <Request>`. self.proxies = {} #: Event-handling hooks. self.hooks = default_hooks() #: Dictionary of querystring data to attach to each #: :class:`Request <Request>`. The dictionary values may be lists for #: representing multivalued query parameters. self.params = {} #: Stream response content default. self.stream = False #: SSL Verification default. self.verify = True #: SSL client certificate default, if String, path to ssl client #: cert file (.pem). If Tuple, ('cert', 'key') pair. self.cert = None #: Maximum number of redirects allowed. If the request exceeds this #: limit, a :class:`TooManyRedirects` exception is raised. #: This defaults to requests.models.DEFAULT_REDIRECT_LIMIT, which is #: 30. self.max_redirects = DEFAULT_REDIRECT_LIMIT #: Trust environment settings for proxy configuration, default #: authentication and similar. self.trust_env = True #: A CookieJar containing all currently outstanding cookies set on this #: session. By default it is a #: :class:`RequestsCookieJar <requests.cookies.RequestsCookieJar>`, but #: may be any other ``cookielib.CookieJar`` compatible object. self.cookies = cookiejar_from_dict({}) # Default connection adapters. self.adapters = OrderedDict() self.mount('https://', HTTPAdapter()) self.mount('http://', HTTPAdapter()) def __enter__(self): return self def __exit__(self, *args): self.close() def prepare_request(self, request): """Constructs a :class:`PreparedRequest <PreparedRequest>` for transmission and returns it. The :class:`PreparedRequest` has settings merged from the :class:`Request <Request>` instance and those of the :class:`Session`. :param request: :class:`Request` instance to prepare with this session's settings. :rtype: requests.PreparedRequest """ cookies = request.cookies or {} # Bootstrap CookieJar. if not isinstance(cookies, cookielib.CookieJar): cookies = cookiejar_from_dict(cookies) # Merge with session cookies merged_cookies = merge_cookies( merge_cookies(RequestsCookieJar(), self.cookies), cookies) # Set environment's basic authentication if not explicitly set. auth = request.auth if self.trust_env and not auth and not self.auth: auth = get_netrc_auth(request.url) p = PreparedRequest() p.prepare( method=request.method.upper(), url=request.url, files=request.files, data=request.data, json=request.json, headers=merge_setting(request.headers, self.headers, dict_class=CaseInsensitiveDict), params=merge_setting(request.params, self.params), auth=merge_setting(auth, self.auth), cookies=merged_cookies, hooks=merge_hooks(request.hooks, self.hooks), ) return p def request(self, method, url, params=None, data=None, headers=None, cookies=None, files=None, auth=None, timeout=None, allow_redirects=True, proxies=None, hooks=None, stream=None, verify=None, cert=None, json=None): """Constructs a :class:`Request <Request>`, prepares it and sends it. Returns :class:`Response <Response>` object. :param method: method for the new :class:`Request` object. :param url: URL for the new :class:`Request` object. :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`. :param data: (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the :class:`Request`. :param json: (optional) json to send in the body of the :class:`Request`. :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`. :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`. :param files: (optional) Dictionary of ``'filename': file-like-objects`` for multipart encoding upload. :param auth: (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth. :param timeout: (optional) How long to wait for the src to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple :param allow_redirects: (optional) Set to True by default. :type allow_redirects: bool :param proxies: (optional) Dictionary mapping protocol or protocol and hostname to the URL of the proxy. :param stream: (optional) whether to immediately download the response content. Defaults to ``False``. :param verify: (optional) Either a boolean, in which case it controls whether we verify the src's TLS certificate, or a string, in which case it must be a path to a CA bundle to use. Defaults to ``True``. :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair. :rtype: requests.Response """ # Create the Request. req = Request( method=method.upper(), url=url, headers=headers, files=files, data=data or {}, json=json, params=params or {}, auth=auth, cookies=cookies, hooks=hooks, ) prep = self.prepare_request(req) proxies = proxies or {} settings = self.merge_environment_settings( prep.url, proxies, stream, verify, cert ) # Send the request. send_kwargs = { 'timeout': timeout, 'allow_redirects': allow_redirects, } send_kwargs.update(settings) resp = self.send(prep, **send_kwargs) return resp def get(self, url, **kwargs): r"""Sends a GET request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ kwargs.setdefault('allow_redirects', True) return self.request('GET', url, **kwargs) def options(self, url, **kwargs): r"""Sends a OPTIONS request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ kwargs.setdefault('allow_redirects', True) return self.request('OPTIONS', url, **kwargs) def head(self, url, **kwargs): r"""Sends a HEAD request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ kwargs.setdefault('allow_redirects', False) return self.request('HEAD', url, **kwargs) def post(self, url, data=None, json=None, **kwargs): r"""Sends a POST request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param data: (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the :class:`Request`. :param json: (optional) json to send in the body of the :class:`Request`. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ return self.request('POST', url, data=data, json=json, **kwargs) def put(self, url, data=None, **kwargs): r"""Sends a PUT request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param data: (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the :class:`Request`. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ return self.request('PUT', url, data=data, **kwargs) def patch(self, url, data=None, **kwargs): r"""Sends a PATCH request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param data: (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the :class:`Request`. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ return self.request('PATCH', url, data=data, **kwargs) def delete(self, url, **kwargs): r"""Sends a DELETE request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ return self.request('DELETE', url, **kwargs) def send(self, request, **kwargs): """Send a given PreparedRequest. :rtype: requests.Response """ # Set defaults that the hooks can utilize to ensure they always have # the correct parameters to reproduce the previous request. kwargs.setdefault('stream', self.stream) kwargs.setdefault('verify', self.verify) kwargs.setdefault('cert', self.cert) kwargs.setdefault('proxies', self.proxies) # It's possible that users might accidentally send a Request object. # Guard against that specific failure case. if isinstance(request, Request): raise ValueError('You can only send PreparedRequests.') # Set up variables needed for resolve_redirects and dispatching of hooks allow_redirects = kwargs.pop('allow_redirects', True) stream = kwargs.get('stream') hooks = request.hooks # Get the appropriate adapter to use adapter = self.get_adapter(url=request.url) # Start time (approximately) of the request start = preferred_clock() # Send the request r = adapter.send(request, **kwargs) # Total elapsed time of the request (approximately) elapsed = preferred_clock() - start r.elapsed = timedelta(seconds=elapsed) # Response manipulation hooks r = dispatch_hook('response', hooks, r, **kwargs) # Persist cookies if r.history: # If the hooks create history then we want those cookies too for resp in r.history: extract_cookies_to_jar(self.cookies, resp.request, resp.raw) extract_cookies_to_jar(self.cookies, request, r.raw) # Resolve redirects if allowed. if allow_redirects: # Redirect resolving generator. gen = self.resolve_redirects(r, request, **kwargs) history = [resp for resp in gen] else: history = [] # Shuffle things around if there's history. if history: # Insert the first (original) request at the start history.insert(0, r) # Get the last request made r = history.pop() r.history = history # If redirects aren't being followed, store the response on the Request for Response.next(). if not allow_redirects: try: r._next = next(self.resolve_redirects(r, request, yield_requests=True, **kwargs)) except StopIteration: pass if not stream: r.content return r def merge_environment_settings(self, url, proxies, stream, verify, cert): """ Check the environment and merge it with some settings. :rtype: dict """ # Gather clues from the surrounding environment. if self.trust_env: # Set environment's proxies. no_proxy = proxies.get('no_proxy') if proxies is not None else None env_proxies = get_environ_proxies(url, no_proxy=no_proxy) for (k, v) in env_proxies.items(): proxies.setdefault(k, v) # Look for requests environment configuration and be compatible # with cURL. if verify is True or verify is None: verify = (os.environ.get('REQUESTS_CA_BUNDLE') or os.environ.get('CURL_CA_BUNDLE')) # Merge all the kwargs. proxies = merge_setting(proxies, self.proxies) stream = merge_setting(stream, self.stream) verify = merge_setting(verify, self.verify) cert = merge_setting(cert, self.cert) return {'verify': verify, 'proxies': proxies, 'stream': stream, 'cert': cert} def get_adapter(self, url): """ Returns the appropriate connection adapter for the given URL. :rtype: requests.adapters.BaseAdapter """ for (prefix, adapter) in self.adapters.items(): if url.lower().startswith(prefix.lower()): return adapter # Nothing matches :-/ raise InvalidSchema("No connection adapters were found for {!r}".format(url)) def close(self): """Closes all adapters and as such the session""" for v in self.adapters.values(): v.close() def mount(self, prefix, adapter): """Registers a connection adapter to a prefix. Adapters are sorted in descending order by prefix length. """ self.adapters[prefix] = adapter keys_to_move = [k for k in self.adapters if len(k) < len(prefix)] for key in keys_to_move: self.adapters[key] = self.adapters.pop(key) def __getstate__(self): state = {attr: getattr(self, attr, None) for attr in self.__attrs__} return state def __setstate__(self, state): for attr, value in state.items(): setattr(self, attr, value) def session(): """ Returns a :class:`Session` for context-management. .. deprecated:: 1.0.0 This method has been deprecated since version 1.0.0 and is only kept for backwards compatibility. New code should use :class:`~requests.sessions.Session` to create a session. This may be removed at a future date. :rtype: Session """ return Session()
[ "melissaripaolo@gmail.com" ]
melissaripaolo@gmail.com
4573c307c91eba94f7133e73ffb4e29b05316bfc
0bd6e56b5046391b5be4b466b8ce5b44626818f5
/mac_changer.py
8c55a63e8d4bd61b36e5da67151b61392b86a493
[]
no_license
Ronlin1/python-hacking-scripts
af14f60610019474c07d76fd15f90d7c812a0165
291ccc7283e6c47f1f3a3385d729b7c08c1c24ed
refs/heads/master
2023-03-27T17:45:09.065699
2021-04-03T05:27:13
2021-04-03T05:27:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,702
py
#!/user/bin/env python import subprocess import optparse import re def get_arguments(): parser = optparse.OptionParser() parser.add_option("-i", "--interface", dest="interface", help="Interface to change its Mac address") parser.add_option("-m", "--mac", dest="new_mac", help="New MAC address") (options, arguments) = parser.parse_args() if not options.interface: parser.error("[-] Please specify an interface, use --help for more info.") elif not options.new_mac: parser.error("[-] Please specify a new mac, use --help for more info.") return options def get_current_mac(interface): ifconfig_result = subprocess.check_output(["ifconfig", interface]) mac_address_search_result = re.search(r"\w\w:\w\w:\w\w:\w\w:\w\w:\w\w", str(ifconfig_result)) if mac_address_search_result: return mac_address_search_result.group(0) else: print("[-] Could not read MAC address") def change_mac(interface, new_mac): print("[+] Changing Mac address for " + interface + " to " + new_mac) subprocess.call(["ifconfig", interface, "down"]) subprocess.call(["ifconfig", interface, "hw", "ether", new_mac]) subprocess.call(["ifconfig", interface, "up"]) options = get_arguments() current_mac = get_current_mac(options.interface) print("Current Mac = " + str(current_mac)) change_mac(options.interface, options.new_mac) current_mac = get_current_mac(options.interface) if current_mac == options.new_mac: print("[+] MAC address was successfully changed to " + current_mac) else: print("[-] MAC address did not get changed") "testing"
[ "tonyjcha3713@gmail.com" ]
tonyjcha3713@gmail.com
e3f5bdca5d9a2bf0d000ba393a7b25ae175ccf9a
63f8b7a3c3b5ab4c67f3ec6c60c3c327245afe66
/experiments/scripts/compare_throughput.py
3e3109181a11913d7287b510eae2e8bd42115c33
[]
no_license
DanielTakeshi/dqn
719da28568963f1b2ba041652e32a3d2a62ec191
6f9dc0d8aedb1319fd5333295e6561027c68bab2
refs/heads/main
2021-01-13T01:48:38.235101
2020-11-11T01:35:45
2020-11-11T01:35:45
311,830,436
3
0
null
null
null
null
UTF-8
Python
false
false
18,967
py
"""This combines a bunch of learning curves for all the games. For bar charts, see `combine_student_results.py`. """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns from matplotlib import offsetbox from matplotlib.ticker import FuncFormatter import argparse, csv, math, os, pickle, sys, inspect, json from os.path import join import numpy as np import pandas as pd from dqn import common_config as cfg from collections import defaultdict import utils as U plt.style.use('seaborn-darkgrid') sns.set_style("darkgrid") np.set_printoptions(linewidth=180, edgeitems=10) # ------------------------------------------------------------------------------ # matplotlib stuff # ------------------------------------------------------------------------------ titlesize = 53 xsize = 42 ysize = 42 ticksize = 42 legendsize = 48 scolors = ['gold', 'red', 'blue', 'purple', 'silver', 'orange'] tcolor = 'black' error_region_alpha = 0.25 bwidth = 0.3 slw = 7 # ------------------------------------------------------------------------------ CONST = 1e6 LEN_REWARDS = 596 # this should be the length ... def scale_steps(x): x = np.array(x) / CONST return x def get_info(exp_path, w=100): """Gather information, in a similar manner as scripts/quick_student.py. """ title = U.get_title(exp_path) summary_train = U.load_summary_data(exp_path, train=True) s_steps, s_info = U.load_info_data(exp_path) s_reward = s_info['true_avg_rew'].values # Ah this is going to be a bit annoying but w/e, b/c one of Pong failed. if '_pong_snapshot_2019-08-22-21-57_s64329' in exp_path: print(' At the problematic: _pong_snapshot_2019-08-22-21-57_s64329') print(' That one exited early due to Pong-specific stuff.') s_steps = np.array([(x*10000+50000) for x in range(LEN_REWARDS)]) tmp = np.ones((LEN_REWARDS,)) * s_reward[-1] for i in range(len(s_reward)): tmp[i] = s_reward[i] s_reward = tmp s_steps = scale_steps(s_steps) assert len(s_steps) == len(s_reward) # Get the teacher info. Load teacher model, load path, then plot data. Be # careful we are allowed to do this 'substitution' to get the expert data. with open(join(exp_path,'params.txt'), 'r') as f: params = json.load(f) teacher_models = params['teacher']['models'] assert len(teacher_models) == 1, \ "assume len(teacher_models) = 1, {}".format(len(teacher_models)) s_last = os.path.basename(os.path.normpath(exp_path)) t_last = os.path.basename(os.path.normpath(teacher_models[0])) teacher_path = exp_path.replace(s_last, t_last) teacher_path = teacher_path.replace('students/', 'teachers/') teacher_title = U.get_title(teacher_path) # CANNOT DO THIS FOR EARLIER RUNS, dating back to before the summer, I think. #t_steps, t_info = U.load_info_data(teacher_path) # AH, we did not record 'true_avg_rew' in the teacher ... ugh. So for this # just read the root file and parse like I do here. That gives us the same # values that I use for the 'true_avg_rew' key. t_steps = [] t_reward = [] teacher_root_file = join(teacher_path, 'root.log') with open(teacher_root_file, 'r') as f: for line in f: if 'completed' in line and '**********' in line and 'steps' in line: linesp = line.split() assert linesp[0] == '**********', linesp assert linesp[2] == 'steps', linesp steps = int(linesp[1]) t_steps.append(steps) if 'Last 100 results: avg' in line: linesp = line.split() assert linesp[0] == 'Last', linesp assert linesp[1] == '100', linesp assert linesp[2] == 'results:', linesp assert linesp[3] == 'avg', linesp assert ',' in linesp[4], linesp rew = float(linesp[4].strip(',')) t_reward.append(rew) t_steps = scale_steps(t_steps) assert len(t_steps) == len(t_reward) # More annoying stuff ... if len(s_steps) > LEN_REWARDS: print('for {}, len(s_steps) = {} so chopping to {}'.format( exp_path, len(s_steps), LEN_REWARDS)) s_steps = s_steps[:LEN_REWARDS] s_reward = s_reward[:LEN_REWARDS] if len(t_steps) > LEN_REWARDS: print('for {}, len(t_steps) = {} so chopping to {}'.format( exp_path, len(t_steps), LEN_REWARDS)) t_steps = t_steps[:LEN_REWARDS] t_reward = t_reward[:LEN_REWARDS] assert len(s_steps) == LEN_REWARDS, len(s_steps) assert len(s_reward) == LEN_REWARDS, len(s_reward) assert len(t_steps) == LEN_REWARDS, len(t_steps) assert len(t_reward) == LEN_REWARDS, len(t_reward) t_lambda = params['teacher']['supervise_loss']['lambda'] t_condense = params['teacher']['condense_freq'] t_overlap_m = params['teacher']['overlap']['match_method'] if t_overlap_m == 'train_net': t_overlap_p = params['teacher']['overlap']['overlap_target'] elif t_overlap_m == 'fixed_steps': t_overlap_p = str(params['teacher']['num_snapshot_ahead']).zfill(2) assert t_condense == 5, t_condense else: raise ValueError(t_overlap_m) # For now if 'beamrider' in s_last.lower() or 'pong' in s_last.lower() or \ 'robotank' in s_last.lower(): assert t_lambda == 0.01, '{}, {}'.format(t_lambda, s_last) else: assert t_lambda == 0.1, '{}, {}'.format(t_lambda, s_last) result = { 'game_name': U.get_game_name(s_last), 'overlap_param': t_overlap_p, 'match_method': t_overlap_m, 'supervise_lambda': t_lambda, 'student_rew': s_reward, # student reward every 10k steps (starts @ 50k) 'teacher_rew': t_reward, # teacher reward every 10k steps (starts @ 50k) 'student_steps': s_steps, # should be same among all trials but save anyway 'teacher_steps': t_steps, # should be same among all trials but save anyway 'mb_start': params['teacher']['blend']['start'], 'mb_end': params['teacher']['blend']['end'], 'train_freq': params['train']['train_freq_per_step'], } return result def _get_array(list_of_items): nb = len(list_of_items) lengths = [len(x) for x in list_of_items] if len(lengths) > 1 and np.std(lengths) > 0: print('Error with lengths: {}'.format(lengths)) sys.exit() return np.array(list_of_items) def _info_for_plots(stats, t_stats, target_num_trials=2): """Go through and collect data for one experimental condition. Calling this method several times means we should be able to compare many different settings. Unlike earlier, game_info (and t_stats) needs to have the x coordinates, since we're doing full learning curves. Returns a list that has all the game stats we want. It should be a list with ONE ITEM PER GAME, so a length 9 list here! """ all_game_stats = [] game_idx = 0 print('\n\n\t\tNEW GAME: {}'.format(U.GAMES[game_idx])) game_info = {} # For each game, collect stats, put in `all_game_stats`. for key in sorted(stats.keys()): game = U.GAMES[game_idx] if game.lower() not in key: game_idx += 1 game = U.GAMES[game_idx] print('\n\n\t\tNEW GAME: {}'.format(game)) # Add the previously accumulated states to the game_stats. all_game_stats.append(game_info) game_info = {} num_trials = len(stats[key]) print('\n{} len(stats[key]): {}'.format(key, num_trials)) s_rews = _get_array([x['student_rew'] for x in stats[key]]) t_rews = _get_array([x['teacher_rew'] for x in stats[key]]) print('student/teacher rewards: {} {}'.format(s_rews.shape, t_rews.shape)) #print('std(student): {}'.format(np.std(s_rews, axis=0))) #print('std(teacher): {}'.format(np.std(t_rews, axis=0))) assert np.max( np.abs(np.std(t_rews,axis=0)) ) < 0.001, \ 'We are using the same teacher, right? The StDev should be zero.' assert num_trials == s_rews.shape[0] == t_rews.shape[0], num_trials # Let's not do this in case we want to plot standard deviation #s_rews = np.mean(s_rews, axis=0) # Eh this could easily be a global list since all the games use the # same number of steps (thus far) but this may give us flexibility later. s_steps = np.mean(_get_array([x['student_steps'] for x in stats[key]]), axis=0) t_steps = np.mean(_get_array([x['teacher_steps'] for x in stats[key]]), axis=0) # Add teacher stats, should match for all in this loop so we just do once. t_rews = np.mean(t_rews, axis=0) if len(t_stats[game]) == 0: t_stats[game].append( (t_steps,t_rews) ) # Only want student samples for statistics that we will actually be using. info = key.split('__') if info[1] == 'fixed_steps': #assert num_trials == args.num_trials, num_trials if num_trials != target_num_trials: print('WARNING! we have {} trials, but should have {}'.format( num_trials, target_num_trials)) num_ahead = info[2] game_info[num_ahead] = (s_steps,s_rews) elif info[1] == 'train_net': continue else: raise ValueError(info) # Add last game. all_game_stats.append(game_info) print('\n\nDone printing, len all games: {}'.format(len(all_game_stats))) assert len(all_game_stats) == len(U.GAMES) == len(U.G_INDS_FAT) return all_game_stats def report_combined_stats(stats_3, stats_4, args, w=100): """Report combined stats, ideally for a plot. :param stats: dict, with key --> list, where the list has one item per random seed. This helps us combine results more easily. """ # Increase factor to `nrows` to make plot 'taller'. nrows = 2 ncols = 5 fig, ax = plt.subplots(nrows, ncols, squeeze=False, sharex=False, figsize=(11*ncols,8*nrows)) #gridspec_kw={'height_ratios': [5,5,5,1]}) INDICES = U.G_INDS_FAT # Teacher data for plots later. t_stats_3 = defaultdict(list) t_stats_4 = defaultdict(list) # Do what I did earlier, except for BOTH of the stats here. Yeah !! print('\n*************************************************') print('COLLECTING DATA FROM FIRST EXPERIMENTAL CONDITION') print('*************************************************\n') all_game_stats_3 = _info_for_plots(stats=stats_3, t_stats=t_stats_3) print('\n*************************************************') print('COLLECTING DATA FROM FIRST EXPERIMENTAL CONDITION') print('*************************************************\n') all_game_stats_4 = _info_for_plots(stats=stats_4, t_stats=t_stats_4) # -------------------------------------------------------------------------- # Plot experiment condition 3 and 4 on the same plot. The shape of `s_y` # here, i.e., the reward, is (num_trials, num_recorded) so we could do that # as standard deviation, but might be noisy ... also these ALREADY include # an implicit smoothing over the past 100 episodes. # -------------------------------------------------------------------------- def _plot(r, c, key, s_stats_3, s_stats_4, color, label, force_color=False, std_curves=False): # Case 1, try to plot everything together w/same color codes: if False: s_x, s_y = s_stats_3[key] s_y = np.mean(s_y, axis=0) ax[r,c].plot(s_x, s_y, ls='--', lw=slw, color=color, label=label+', 4:1') s_x, s_y = s_stats_4[key] s_y = np.mean(s_y, axis=0) ax[r,c].plot(s_x, s_y, lw=slw, color=color, label=label+', 2:1') # Case 2, try to use standard deviations? if True: if force_color: cc = 'gold' else: cc = 'blue' s_x, s_y = s_stats_3[key] s_y = np.mean(s_y, axis=0) ax[r,c].plot(s_x, s_y, lw=slw, color=cc, label=label+', 4:1') if std_curves: ax[r,c].fill_between(s_x, s_y+np.std(s_y, axis=0), s_y-np.std(s_y, axis=0), color=cc, alpha=error_region_alpha) if force_color: cc = 'orange' else: cc = 'red' s_x, s_y = s_stats_4[key] s_y = np.mean(s_y, axis=0) ax[r,c].plot(s_x, s_y, lw=slw, color=cc, label=label+', 2:1') if std_curves: ax[r,c].fill_between(s_x, s_y+np.std(s_y, axis=0), s_y-np.std(s_y, axis=0), color=cc, alpha=error_region_alpha) # -------------------------------------------------------------------------- # Now go through this again, same logic, except plot. Alphabetical order # from top row, w/one for legend to apply to subplots. # -------------------------------------------------------------------------- for game, (r,c) in zip(U.GAMES, INDICES): ax[r,c].set_title('{}'.format(game), fontsize=titlesize) idx = U.GAMES.index(game) # Keys: ['-1', '-2', '00', '02', '05', '10'] where -1 and -2 are BA and RA. print('\nKeys for s_stats_3, and then s_stats_4:') s_stats_3 = all_game_stats_3[idx] print(game, ': ', sorted(s_stats_3.keys())) s_stats_4 = all_game_stats_4[idx] print(game, ': ', sorted(s_stats_4.keys())) # Just take first one b/c teacher stats should be the same. Actually # wait maybe we don't need the teacher here? Think about it ... t_x, t_y = t_stats_3[game][0] if True: ax[r,c].plot(t_x, t_y, lw=10, ls='--', color=tcolor, label='DDQN Teacher') _t_x, _t_y = t_stats_4[game][0] assert np.allclose(t_x, _t_x), '{} {}'.format(t_x, _t_x) assert np.allclose(t_y, _t_y), '{} {}'.format(t_y, _t_y) # -------------------------------------------------------------------------- # NOTE: adjust based on how many of the student 'keys' I want to post. # Toggle which ones we want on/off. SAME COLOR CODE AS PRIOR FIGURE, if # we are using all select functions. But we prob. don't need best # ahead. Honestly it seems best just to let ONE be used at a time. # -------------------------------------------------------------------------- if True: key = '-1' _plot(r, c, key, s_stats_3, s_stats_4, scolors[0], label='S, Best Ahead', force_color=True) if False: key = '-2' _plot(r, c, key, s_stats_3, s_stats_4, scolors[1], label='S, Rand Ahead') if False: key = '00' _plot(r, c, key, s_stats_3, s_stats_4, scolors[2], label='S, 0 Ahead') if False: key = '02' _plot(r, c, key, s_stats_3, s_stats_4, scolors[3], label='S, 2 Ahead') if False: key = '05' _plot(r, c, key, s_stats_3, s_stats_4, scolors[4], label='S, 5 Ahead') if True: key = '10' _plot(r, c, key, s_stats_3, s_stats_4, scolors[5], label='S, 10 Ahead') # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- # Bells and whistles for r in range(nrows): for c in range(ncols): #leg = ax[r,c].legend(loc="best", ncol=2, prop={'size':legendsize}) #for legobj in leg.legendHandles: # legobj.set_linewidth(5.0) ax[r,c].tick_params(axis='x', labelsize=ticksize) ax[r,c].tick_params(axis='y', labelsize=ticksize) # I think it's better to share axes in the x direction to be # consistent with steps, but doing so removes the axis ticks. This # reverts it so we get the ticks on all the axis. #ax[r,c].xaxis.set_tick_params(which='both', labelbottom=True) # Put this on r=0, c=0, then hide it, just to get legend to appear. ax[0,0].set_visible(False) handles, labels = ax[1,1].get_legend_handles_labels() # Location (0,0) is bottom left. Doing (0,1) is upper left but the text # isn't visible (because `loc` is the lower left part of the legend). fig.legend(handles, labels, loc=(0.005,0.500), prop={'size':legendsize}) # Finally, save!! Can't do `.[...].png` since overleaf complains. plt.tight_layout() figname = 'fig_throughput_student.png'.format() plt.savefig(figname) print("Just saved: {}".format(figname)) if __name__ == "__main__": # -------------------------------------------------------------------------- # NOW WE ASSUME WE'RE COMPARING EXP's 3 AND 4. # -------------------------------------------------------------------------- EXP_PATH = cfg.SNAPS_STUDENT pp = argparse.ArgumentParser() args = pp.parse_args() args.num_trials_exp_3 = 2 args.num_trials_exp_4 = 2 # Iterate through all the *student* models. dirs = sorted( [join(EXP_PATH,x) for x in os.listdir(EXP_PATH) \ if U._criteria_for_experiments_throughput(x,args)] ) print("Currently plotting with these models, one trained agent per file:") stats_3 = defaultdict(list) stats_4 = defaultdict(list) for dd in dirs: last_part = os.path.basename(os.path.normpath(dd)) if last_part in U.STUFF_TO_SKIP: print(" skipping {} due to STUFF_TO_SKIP".format(last_part)) continue print("\nAnalyzing: {}".format(dd)) info = get_info(dd) key = '{}__{}__{}'.format(info['game_name'], info['match_method'], info['overlap_param']) mb = info['mb_start'] tf = info['train_freq'] mm = info['match_method'] # We only want experiments 3 and 4. if mb == 0.50 and tf == 4 and mm != 'train_net': stats_3[key].append(info) elif mb == 0.50 and tf == 2 and mm != 'train_net': stats_4[key].append(info) else: print(' skipping {}, mm,tf,mm: {}, {}, {}'.format(key, mb,tf,mm)) continue print('\nNow going to report on all these stats.') print(' len stats 3, 4 dicts: {} and {}'.format(len(stats_3), len(stats_4))) print('') report_combined_stats(stats_3, stats_4, args)
[ "takeshidanny@gmail.com" ]
takeshidanny@gmail.com
389cfec1280691576be87dab17cbace3b76cb636
06bf95f2d0310f2a740affdc9d36b3303ecb4645
/WebMallProj/WebMall/apps.py
39848b31b8cc3a26d2d91bbce9311d10a42491e8
[]
no_license
vinee-sha/WebMall
3dcf9d1e8c1c91c62f15c0bd534f009995063c3e
e4dd622782a26d1afc0ff12ccda0972401b9a4ba
refs/heads/master
2022-12-25T16:47:04.462969
2020-10-04T13:36:33
2020-10-04T13:36:33
301,137,258
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
from django.apps import AppConfig class WebmallConfig(AppConfig): name = 'WebMall'
[ "vineeshanamana321@gmail.com" ]
vineeshanamana321@gmail.com
1fc6096204e32445ea9a2db3b0692477f27c3235
99cff3a11eac3d1d5c0d16ee80e5b9c0efc2951d
/HttpTrigger/__init__.py
4ed8c0e66e13e66f103bc26630f69aa458fbf95d
[]
no_license
kevin808/functionapp-python-schemaregistry-demo
af5b6de05fad1b60ef533bd0edfcfdd5100e73e9
b39a9bf42cee400f3be091cebdc6c14cd80c6bb5
refs/heads/master
2023-03-30T01:54:48.541836
2021-04-06T13:02:42
2021-04-06T13:02:42
354,515,352
0
0
null
null
null
null
UTF-8
Python
false
false
2,553
py
import logging import azure.functions as func import os from azure.identity import ClientSecretCredential from azure.schemaregistry import SchemaRegistryClient from azure.schemaregistry.serializer.avroserializer import SchemaRegistryAvroSerializer TENANT_ID='YOUR TENANT_ID' CLIENT_ID='YOUR CLIENT_ID' CLIENT_SECRET='YOUR CLIENT_SECRET' SCHEMA_REGISTRY_ENDPOINT='YOUR_STANDARD_EVENTHUB.servicebus.windows.net' SCHEMA_GROUP='default' SCHEMA_STRING = """ {"namespace": "example.avro", "type": "record", "name": "User", "fields": [ {"name": "name", "type": "string"}, {"name": "favorite_number", "type": ["int", "null"]}, {"name": "favorite_color", "type": ["string", "null"]} ] }""" token_credential = ClientSecretCredential( tenant_id=TENANT_ID, client_id=CLIENT_ID, client_secret=CLIENT_SECRET ) # For Managed Identity # token_credential = DefaultAzureCredential() def serialize(serializer): dict_data_ben = {"name": u"Ben", "favorite_number": 7, "favorite_color": u"red"} dict_data_alice = {"name": u"Alice", "favorite_number": 15, "favorite_color": u"green"} # Schema would be automatically registered into Schema Registry and cached locally. payload_ben = serializer.serialize(dict_data_ben, SCHEMA_STRING) # The second call won't trigger a service call. payload_alice = serializer.serialize(dict_data_alice, SCHEMA_STRING) print('Encoded bytes are: ', payload_ben) print('Encoded bytes are: ', payload_alice) return [payload_ben, payload_alice] def deserialize(serializer, bytes_payload): # serializer.deserialize would extract the schema id from the payload, # retrieve schema from Schema Registry and cache the schema locally. # If the schema id is the local cache, the call won't trigger a service call. dict_data = serializer.deserialize(bytes_payload) print('Deserialized data is: ', dict_data) return dict_data def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') schema_registry = SchemaRegistryClient(endpoint=SCHEMA_REGISTRY_ENDPOINT, credential=token_credential) serializer = SchemaRegistryAvroSerializer(schema_registry, SCHEMA_GROUP) bytes_data_ben, bytes_data_alice = serialize(serializer) dict_data_ben = deserialize(serializer, bytes_data_ben) dict_data_alice = deserialize(serializer, bytes_data_alice) serializer.close() return func.HttpResponse( "Schema Registry Executed.", status_code=200 )
[ "kevin80828@gmail.com" ]
kevin80828@gmail.com
bef2865099cfa242c3bdb6201a9e938682c2a4d7
7d39b91d61fcae881a4ac412974edb6028941d80
/test/espnet2/bin/test_enh_inference.py
6ec708df0a27c4d50ddfc008b7a71c595e0b3108
[ "Apache-2.0" ]
permissive
pzelasko/espnet
4106826c5887bf7e203102b36a0129297ecfb5fe
629ac3b89b23e08cafbaab3dac1467daaf7d39fb
refs/heads/master
2021-08-30T17:10:15.178217
2021-08-25T20:50:53
2021-08-25T20:50:53
173,996,615
1
2
Apache-2.0
2020-12-05T05:30:26
2019-03-05T18:09:12
Shell
UTF-8
Python
false
false
1,198
py
from argparse import ArgumentParser from pathlib import Path import pytest import torch from espnet2.bin.enh_inference import get_parser from espnet2.bin.enh_inference import main from espnet2.bin.enh_inference import SeparateSpeech from espnet2.tasks.enh import EnhancementTask def test_get_parser(): assert isinstance(get_parser(), ArgumentParser) def test_main(): with pytest.raises(SystemExit): main() @pytest.fixture() def config_file(tmp_path: Path): # Write default configuration file EnhancementTask.main( cmd=[ "--dry_run", "true", "--output_dir", str(tmp_path), ] ) return tmp_path / "config.yaml" @pytest.mark.execution_timeout(5) @pytest.mark.parametrize("batch_size", [1, 2]) @pytest.mark.parametrize( "input_size, segment_size, hop_size", [(16000, None, None), (35000, 2.4, 0.8)] ) def test_SeparateSpeech(config_file, batch_size, input_size, segment_size, hop_size): separate_speech = SeparateSpeech( enh_train_config=config_file, segment_size=segment_size, hop_size=hop_size ) wav = torch.rand(batch_size, input_size) separate_speech(wav, fs=8000)
[ "C0me_On@163.com" ]
C0me_On@163.com
70917ef3ba2fae2c622f7b341e85affcd1aa530a
19d8c15700cbb2d0b8108c379edbc50bfcb1c149
/Source code/laptop.py
aa6adaadf30faa8e250fe0bfebe582a4ffbd0e33
[]
no_license
trandaitai327/laptop-store-manage
41543be450ca68a973e754c0b2bfead741d88e44
dee8519d4c4602f7132b5fcbd4a2e03e9193223d
refs/heads/master
2023-09-03T21:43:59.694305
2021-11-05T03:14:07
2021-11-05T03:14:07
424,813,427
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
class Laptop: def __init__(self,ten,hang,gia,soluong): self.name = ten self.brand = hang self.price = gia self.quantum = soluong def xuatgia(self): return self.price new= Laptop("G3","Dell",25000,3)
[ "trandaitai327@gmail.com" ]
trandaitai327@gmail.com
ce57dd3bfd78b96f46a44a4c20d89d7a8798c623
5b07f9a868de71ce61aea540f4e437d277611cd0
/AC04/produtoconsumidor.py
1ac330c2b8dc5762fd0df30a3fbc3bc48fb63a9c
[]
no_license
DevAltOfCtrl/Arquitetura_e_Projeto_de_Sistemas
2d738b328ad51a8a92113a6cd77704dbabe8f2f7
c034ba33fd56601af68b2963a2f22e32f1fa146d
refs/heads/main
2023-09-06T02:48:09.106918
2021-10-23T03:00:22
2021-10-23T03:00:22
406,593,062
0
0
null
null
null
null
UTF-8
Python
false
false
1,540
py
from threading import Thread, Condition import time import random prateleiraMercado = [] controladorFila = Condition() class Produto(Thread): def run(self): produtos = ["carne", "ovo", "arroz", "feijão", "macarrão", "banana", "maça", "miojo", "abacaxi", "laranja", "cerveja", "vinho", "cachaça", "creme de leite", "leite condensado", "frango", "café", "óleo", "açucar", "leite", "sal", "detergente", "chocolate", "batata", "cenoura", "quiabo", "acerola", "agua", "suco", "refrigerante", "xuxu", "pepino"] global prateleiraMercado while True: produto = random.choice(produtos) controladorFila.acquire() prateleiraMercado.append(produto) print("Funcionário: Repositor incluiu", produto, "na prateleira.") controladorFila.notify() controladorFila.release() time.sleep(random.random()) class Consumidor(Thread): def run(self): global prateleiraMercado while True: controladorFila.acquire() if not prateleiraMercado: print("Prateleira sem produtos, cliente aguardando repositor.") controladorFila.wait() produto = prateleiraMercado.pop(0) print("Consumidor: Cliente pegou", produto, "da prateleira.") controladorFila.release() time.sleep(random.random())
[ "noreply@github.com" ]
noreply@github.com
9568a5759861050bec15f02ba00c8e901ff92fc8
70f854c9a34be625b882bde0e5c5269522842ccf
/week 2/sumposled.py
2bd590a34df68a174f615b039d21e36b26771d83
[]
no_license
MariaMedvede/coursera
6d3d897c05045e250d3b5e6e9b25a1d2de3a0df9
7ccc53845535bc9e341d3c42d9475e832b4cc7f4
refs/heads/master
2020-09-15T07:03:31.479505
2019-12-01T19:29:08
2019-12-01T19:29:08
223,374,208
0
2
null
2019-12-01T19:29:10
2019-11-22T09:55:15
Python
UTF-8
Python
false
false
109
py
now = int(input()) seqSum = 0 while now != 0: seqSum = seqSum + now now = int(input()) print(seqSum)
[ "manya1999m09@yandex.ru" ]
manya1999m09@yandex.ru
fc99fb37d4a38af2dd88b91d6d660527ae7b23fb
e29922802cd85e6745ec3215d71ffba9ba4a1db8
/a_prep_data/a4_mate_plots_eunis.py
c53e37719fb89975e557ea673be59ea9080f695d
[]
no_license
haro-nl/DOREN_WEnR
26855f49261a0b3ea93ab743b377e4f5dfb10583
dadf8b0bf56912d22eb5fe4a499d3ef3ad79e127
refs/heads/master
2020-04-16T18:41:39.259162
2019-01-15T11:20:09
2019-01-15T11:20:09
165,831,681
0
0
null
null
null
null
UTF-8
Python
false
false
2,830
py
# -*- coding: utf-8 -* #!/usr/bin/python3.5.3 '''Script to 1. read EUNIS type indicator species 2. generate look up dictionaries to get Dg, CoSp & DmSp species for each EUNIS types 3. read species list for all EVA vegetation plots and add sp list to each plot in a new column 4. define completeness score for a veg plot based on similarity between actual sp list and DgSp, CoSp & DmSp lists 5. calculate scores for all plots Hans Roelofsen, 22 November 2018, Wageningen Environmental Research ''' import os import datetime import pickle from helper import do if __name__ == "__main__": print("starting at {0}".format(datetime.datetime.now().strftime("%Y%m%d_%H%M"))) eva_head = do.get_eva_emep_data() # EVA header data with EMEP already joined eva_plot_comp = do.get_eva_plot_species(eva_head['PlotObservationID'].tolist()) # Species composition of all EVA plots eunis_type_composition_lists = do.generate_types_species_lists() # Dictionary of CoSp, DgSp & DmSp species for all EUNIS types # Add species list as column to the EVA plot table eva_head['sp_list'] = eva_head.apply(lambda row: do.get_plot_species(eva_plot_comp, row['PlotObservationID']), axis=1) print("Done 01 at {0}".format(datetime.datetime.now().strftime("%Y%m%d_%H%M"))) # Calculate DmSp score based on actual species list and DmSp species list for the applicable EUNIS type eva_head['dmsp'] = eva_head.apply(lambda row: do.completeness(plot_species_list=row['sp_list'], reference_species_list=eunis_type_composition_lists[row['EUNIScode']]['DmSp']), axis=1) print("Done 02 at {0}".format(datetime.datetime.now().strftime("%Y%m%d_%H%M"))) # idem for DgSp eva_head['dgsp'] = eva_head.apply(lambda row: do.completeness(plot_species_list=row['sp_list'], reference_species_list=eunis_type_composition_lists[row['EUNIScode']]['DgSp']), axis=1) print("Done 03 at {0}".format(datetime.datetime.now().strftime("%Y%m%d_%H%M"))) # idem for CoSp eva_head['cosp'] = eva_head.apply(lambda row: do.completeness(plot_species_list=row['sp_list'], reference_species_list=eunis_type_composition_lists[row['EUNIScode']]['CoSp']), axis=1) print("Done 04 at {0}".format(datetime.datetime.now().strftime("%Y%m%d_%H%M"))) # write to pickle file for safe keeping pickle_name = "eva_emep_score" + datetime.datetime.now().strftime("%Y%m%d_%H%M") + '.pkl' with open(os.path.join(r'd:\temppickle', pickle_name), 'wb') as handle: pickle.dump(eva_head, handle, protocol=pickle.HIGHEST_PROTOCOL) print("Done all at {0}".format(datetime.datetime.now().strftime("%Y%m%d_%H%M")))
[ "hans.roelofsen@wur.nl" ]
hans.roelofsen@wur.nl
3ac5c2036716fd233c20c1b5d0ed1d8bf60ea49a
49ae5bd9089a2b096fabc970156803b21b1be9d7
/env/Lib/site-packages/django_extensions/management/commands/sync_s3.py
7efb71ae0fe0937e29582c1f031e37010ee7bd81
[]
no_license
scortes1989/sfotipy
ea7cfd4abe52dfb9b5094397a9f7a80e6d78713d
d3ed677f8bee0452f1ac14dfc718ca5091cf95eb
refs/heads/master
2022-11-06T21:06:47.534330
2015-05-15T20:26:48
2015-05-15T20:26:48
33,416,364
0
1
null
2022-10-24T08:55:08
2015-04-04T18:55:33
Python
UTF-8
Python
false
false
15,704
py
""" Sync Media to S3 ================ Django command that scans all files in your settings.MEDIA_ROOT and settings.STATIC_ROOT folders and uploads them to S3 with the same directory structure. This command can optionally do the following but it is off by default: * gzip compress any CSS and Javascript files it finds and adds the appropriate 'Content-Encoding' header. * set a far future 'Expires' header for optimal caching. * upload only media or static files. * use any other provider compatible with Amazon S3. * set other than 'public-read' ACL. Note: This script requires the Python boto library and valid Amazon Web Services API keys. Required settings.py variables: AWS_ACCESS_KEY_ID = '' AWS_SECRET_ACCESS_KEY = '' AWS_BUCKET_NAME = '' When you call this command with the `--renamegzip` param, it will add the '.gz' extension to the file name. But Safari just doesn't recognize '.gz' files and your site won't work on it! To fix this problem, you can set any other extension (like .jgz) in the `SYNC_S3_RENAME_GZIP_EXT` variable. Command options are: -p PREFIX, --prefix=PREFIX The prefix to prepend to the path on S3. --gzip Enables gzipping CSS and Javascript files. --expires Enables setting a far future expires header. --force Skip the file mtime check to force upload of all files. --filter-list Override default directory and file exclusion filters. (enter as comma separated line) --renamegzip Enables renaming of gzipped files by appending '.gz'. to the original file name. This way your original assets will not be replaced by the gzipped ones. You can change the extension setting the `SYNC_S3_RENAME_GZIP_EXT` var in your settings.py file. --invalidate Invalidates the objects in CloudFront after uploading stuff to s3. --media-only Only MEDIA_ROOT files will be uploaded to S3. --static-only Only STATIC_ROOT files will be uploaded to S3. --s3host Override default s3 host. --acl Override default ACL settings ('public-read' if settings.AWS_DEFAULT_ACL is not defined). TODO: * Use fnmatch (or regex) to allow more complex FILTER_LIST rules. """ import datetime import email import gzip import mimetypes import os import time from optparse import make_option from django.conf import settings from django.core.management.base import BaseCommand, CommandError from django_extensions.compat import StringIO from django_extensions.management.utils import signalcommand # Make sure boto is available try: import boto import boto.exception HAS_BOTO = True except ImportError: HAS_BOTO = False class Command(BaseCommand): # Extra variables to avoid passing these around AWS_ACCESS_KEY_ID = '' AWS_SECRET_ACCESS_KEY = '' AWS_BUCKET_NAME = '' AWS_CLOUDFRONT_DISTRIBUTION = '' SYNC_S3_RENAME_GZIP_EXT = '' DIRECTORIES = '' FILTER_LIST = ['.DS_Store', '.svn', '.hg', '.git', 'Thumbs.db'] GZIP_CONTENT_TYPES = ( 'text/css', 'application/javascript', 'application/x-javascript', 'text/javascript' ) uploaded_files = [] upload_count = 0 skip_count = 0 option_list = BaseCommand.option_list + ( make_option('-p', '--prefix', dest='prefix', default=getattr(settings, 'SYNC_S3_PREFIX', ''), help="The prefix to prepend to the path on S3."), make_option('-d', '--dir', dest='dir', help="Custom static root directory to use"), make_option('--s3host', dest='s3host', default=getattr(settings, 'AWS_S3_HOST', ''), help="The s3 host (enables connecting to other providers/regions)"), make_option('--acl', dest='acl', default=getattr(settings, 'AWS_DEFAULT_ACL', 'public-read'), help="Enables to override default acl (public-read)."), make_option('--gzip', action='store_true', dest='gzip', default=False, help="Enables gzipping CSS and Javascript files."), make_option('--renamegzip', action='store_true', dest='renamegzip', default=False, help="Enables renaming of gzipped assets to have '.gz' appended to the filename."), make_option('--expires', action='store_true', dest='expires', default=False, help="Enables setting a far future expires header."), make_option('--force', action='store_true', dest='force', default=False, help="Skip the file mtime check to force upload of all files."), make_option('--filter-list', dest='filter_list', action='store', default='', help="Override default directory and file exclusion filters. (enter as comma seperated line)"), make_option('--invalidate', dest='invalidate', default=False, action='store_true', help='Invalidates the associated objects in CloudFront'), make_option('--media-only', dest='media_only', default='', action='store_true', help="Only MEDIA_ROOT files will be uploaded to S3"), make_option('--static-only', dest='static_only', default='', action='store_true', help="Only STATIC_ROOT files will be uploaded to S3"), ) help = 'Syncs the complete MEDIA_ROOT structure and files to S3 into the given bucket name.' args = 'bucket_name' can_import_settings = True @signalcommand def handle(self, *args, **options): if not HAS_BOTO: raise ImportError("The boto Python library is not installed.") # Check for AWS keys in settings if not hasattr(settings, 'AWS_ACCESS_KEY_ID') or not hasattr(settings, 'AWS_SECRET_ACCESS_KEY'): raise CommandError('Missing AWS keys from settings file. Please supply both AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.') else: self.AWS_ACCESS_KEY_ID = settings.AWS_ACCESS_KEY_ID self.AWS_SECRET_ACCESS_KEY = settings.AWS_SECRET_ACCESS_KEY if not hasattr(settings, 'AWS_BUCKET_NAME'): raise CommandError('Missing bucket name from settings file. Please add the AWS_BUCKET_NAME to your settings file.') else: if not settings.AWS_BUCKET_NAME: raise CommandError('AWS_BUCKET_NAME cannot be empty.') self.AWS_BUCKET_NAME = settings.AWS_BUCKET_NAME if not hasattr(settings, 'MEDIA_ROOT'): raise CommandError('MEDIA_ROOT must be set in your settings.') else: if not settings.MEDIA_ROOT: raise CommandError('MEDIA_ROOT must be set in your settings.') self.AWS_CLOUDFRONT_DISTRIBUTION = getattr(settings, 'AWS_CLOUDFRONT_DISTRIBUTION', '') self.SYNC_S3_RENAME_GZIP_EXT = \ getattr(settings, 'SYNC_S3_RENAME_GZIP_EXT', '.gz') self.verbosity = int(options.get('verbosity')) self.prefix = options.get('prefix') self.do_gzip = options.get('gzip') self.rename_gzip = options.get('renamegzip') self.do_expires = options.get('expires') self.do_force = options.get('force') self.invalidate = options.get('invalidate') self.DIRECTORIES = options.get('dir') self.s3host = options.get('s3host') self.default_acl = options.get('acl') self.FILTER_LIST = getattr(settings, 'FILTER_LIST', self.FILTER_LIST) filter_list = options.get('filter_list') if filter_list: # command line option overrides default filter_list and # settings.filter_list self.FILTER_LIST = filter_list.split(',') self.media_only = options.get('media_only') self.static_only = options.get('static_only') # Get directories if self.media_only and self.static_only: raise CommandError("Can't use --media-only and --static-only together. Better not use anything...") elif self.media_only: self.DIRECTORIES = [settings.MEDIA_ROOT] elif self.static_only: self.DIRECTORIES = [settings.STATIC_ROOT] elif self.DIRECTORIES: self.DIRECTORIES = [self.DIRECTORIES] else: self.DIRECTORIES = [settings.MEDIA_ROOT, settings.STATIC_ROOT] # Now call the syncing method to walk the MEDIA_ROOT directory and # upload all files found. self.sync_s3() # Sending the invalidation request to CloudFront if the user # requested this action if self.invalidate: self.invalidate_objects_cf() print("") print("%d files uploaded." % self.upload_count) print("%d files skipped." % self.skip_count) def open_cf(self): """ Returns an open connection to CloudFront """ return boto.connect_cloudfront( self.AWS_ACCESS_KEY_ID, self.AWS_SECRET_ACCESS_KEY) def invalidate_objects_cf(self): """ Split the invalidation request in groups of 1000 objects """ if not self.AWS_CLOUDFRONT_DISTRIBUTION: raise CommandError( 'An object invalidation was requested but the variable ' 'AWS_CLOUDFRONT_DISTRIBUTION is not present in your settings.') # We can't send more than 1000 objects in the same invalidation # request. chunk = 1000 # Connecting to CloudFront conn = self.open_cf() # Splitting the object list objs = self.uploaded_files chunks = [objs[i:i + chunk] for i in range(0, len(objs), chunk)] # Invalidation requests for paths in chunks: conn.create_invalidation_request( self.AWS_CLOUDFRONT_DISTRIBUTION, paths) def sync_s3(self): """ Walks the media/static directories and syncs files to S3 """ bucket, key = self.open_s3() for directory in self.DIRECTORIES: os.path.walk(directory, self.upload_s3, (bucket, key, self.AWS_BUCKET_NAME, directory)) def compress_string(self, s): """Gzip a given string.""" zbuf = StringIO() zfile = gzip.GzipFile(mode='wb', compresslevel=6, fileobj=zbuf) zfile.write(s) zfile.close() return zbuf.getvalue() def get_s3connection_kwargs(self): """Returns connection kwargs as a dict""" kwargs = {} if self.s3host: kwargs['host'] = self.s3host return kwargs def open_s3(self): """ Opens connection to S3 returning bucket and key """ conn = boto.connect_s3( self.AWS_ACCESS_KEY_ID, self.AWS_SECRET_ACCESS_KEY, **self.get_s3connection_kwargs()) try: bucket = conn.get_bucket(self.AWS_BUCKET_NAME) except boto.exception.S3ResponseError: bucket = conn.create_bucket(self.AWS_BUCKET_NAME) return bucket, boto.s3.key.Key(bucket) def upload_s3(self, arg, dirname, names): """ This is the callback to os.path.walk and where much of the work happens """ bucket, key, bucket_name, root_dir = arg # Skip directories we don't want to sync if os.path.basename(dirname) in self.FILTER_LIST: # prevent walk from processing subfiles/subdirs below the ignored one del names[:] return # Later we assume the MEDIA_ROOT ends with a trailing slash if not root_dir.endswith(os.path.sep): root_dir = root_dir + os.path.sep for file in names: headers = {} if file in self.FILTER_LIST: continue # Skip files we don't want to sync filename = os.path.join(dirname, file) if os.path.isdir(filename): continue # Don't try to upload directories file_key = filename[len(root_dir):] if self.prefix: file_key = '%s/%s' % (self.prefix, file_key) # Check if file on S3 is older than local file, if so, upload if not self.do_force: s3_key = bucket.get_key(file_key) if s3_key: s3_datetime = datetime.datetime(*time.strptime( s3_key.last_modified, '%a, %d %b %Y %H:%M:%S %Z')[0:6]) local_datetime = datetime.datetime.utcfromtimestamp( os.stat(filename).st_mtime) if local_datetime < s3_datetime: self.skip_count += 1 if self.verbosity > 1: print("File %s hasn't been modified since last being uploaded" % file_key) continue # File is newer, let's process and upload if self.verbosity > 0: print("Uploading %s..." % file_key) content_type = mimetypes.guess_type(filename)[0] if content_type: headers['Content-Type'] = content_type else: headers['Content-Type'] = 'application/octet-stream' file_obj = open(filename, 'rb') file_size = os.fstat(file_obj.fileno()).st_size filedata = file_obj.read() if self.do_gzip: # Gzipping only if file is large enough (>1K is recommended) # and only if file is a common text type (not a binary file) if file_size > 1024 and content_type in self.GZIP_CONTENT_TYPES: filedata = self.compress_string(filedata) if self.rename_gzip: # If rename_gzip is True, then rename the file # by appending an extension (like '.gz)' to # original filename. file_key = '%s.%s' % ( file_key, self.SYNC_S3_RENAME_GZIP_EXT) headers['Content-Encoding'] = 'gzip' if self.verbosity > 1: print("\tgzipped: %dk to %dk" % (file_size / 1024, len(filedata) / 1024)) if self.do_expires: # HTTP/1.0 headers['Expires'] = '%s GMT' % (email.Utils.formatdate(time.mktime((datetime.datetime.now() + datetime.timedelta(days=365 * 2)).timetuple()))) # HTTP/1.1 headers['Cache-Control'] = 'max-age %d' % (3600 * 24 * 365 * 2) if self.verbosity > 1: print("\texpires: %s" % headers['Expires']) print("\tcache-control: %s" % headers['Cache-Control']) try: key.name = file_key key.set_contents_from_string(filedata, headers, replace=True, policy=self.default_acl) except boto.exception.S3CreateError as e: print("Failed: %s" % e) except Exception as e: print(e) raise else: self.upload_count += 1 self.uploaded_files.append(file_key) file_obj.close()
[ "SCD@SCD-PC.inpact.net" ]
SCD@SCD-PC.inpact.net
d1ca5c3c0478ab8a9e58042e82b7a9186a494789
fd93fbb2162423b66636c8576548b4ad7f0564d3
/Data_Structures/SkipList.py
d067f998de54422ab1108059a642ad543da37125
[]
no_license
AlpacaMax/Algorithm_Miscellaneous
a595436386eb68353bf98f4ced09bf2ba06874c5
e0a731ce0642cd602bcb8e8b7542d4b3806d9916
refs/heads/master
2020-11-27T21:26:38.454722
2020-10-22T19:20:58
2020-10-22T19:20:58
229,607,388
1
0
null
null
null
null
UTF-8
Python
false
false
5,169
py
import random class SkipList: class Item: def __init__(self, key, value=None): self.key = key self.value = value def __repr__(self): return "({}, {})".format(self.key, self.value) class Node: def __init__(self, item=None, prev=None, next=None, above=None, below=None): self.item = item self.next = next self.prev = prev self.above = above self.below = below def disconnect(self): self.__init__(self) def __init__(self): self.header = SkipList.Node() self.trailer = SkipList.Node() self.header.next = self.trailer self.trailer.prev = self.header self.g_header = SkipList.Node() self.g_trailer = SkipList.Node() self.g_header.next = self.g_trailer self.g_trailer.prev = self.g_header self.header.below = self.g_header self.g_header.above = self.header self.trailer.below = self.g_trailer self.g_trailer.above = self.trailer self.size = 0 self.height = 1 def __len__(self): return self.size def is_empty(self): return self.size == 0 def find(self, key): cursor = self.header while (cursor.below is not None): cursor = cursor.below while (cursor.next.item is not None and key >= cursor.next.item.key): cursor = cursor.next return cursor def insert(self, key, value=None): node = self.find(key) if (node.item is not None and node.item.key == key): node.item.value = value else: cursor = self.add_after(node, key, value) self.size += 1 index = 1 while (self.flip()): index += 1 if (index > self.height): self.add_level_below(self.header, self.trailer) cursor = self.add_above(cursor, key) def add_level_below(self, header, trailer): above_header = header above_trailer = trailer below_header = header.below below_trailer = trailer.below new_header = SkipList.Node(above=above_header, below=below_header) new_trailer = SkipList.Node(above=above_trailer, below=below_trailer) new_header.next = new_trailer new_trailer.prev = new_header above_header.below = new_header below_header.above = new_header above_trailer.below = new_trailer below_trailer.above = new_trailer self.height += 1 def __getitem__(self, key): node = self.find(key) if (node.item is None or node.item.key != key): raise KeyError(str(key) + " does not exist!") return node.item.value def __setitem__(self, key, value): node = self.find(key) if (node.item is not None and node.item.key == key): node.item.value = value else: self.insert(key, value) def __delitem__(self, key): node = self.find(key) if (node.item is None or node.item.key != key): raise KeyError(str(key) + " does not exist!") cursor = node while (cursor is not None): node_to_delete = cursor cursor = cursor.above self.delete_node(node_to_delete) self.size -= 1 def __iter__(self): cursor = self.g_header.next while (cursor is not self.g_trailer): yield cursor.item.key cursor = cursor.next def add_after(self, node, key, value=None): prev_node = node next_node = node.next new_item = SkipList.Item(key, value) new_node = SkipList.Node(item=new_item, next=next_node, prev=prev_node) prev_node.next = new_node next_node.prev = new_node return new_node def add_above(self, node, key, value=None): cursor = node.prev while (cursor.above is None): cursor = cursor.prev cursor = cursor.above below_node = node above_node = self.add_after(cursor, key, value) below_node.above = above_node above_node.below = below_node return above_node def delete_node(self, node): prev_node = node.prev next_node = node.next prev_node.next = next_node next_node.prev = prev_node item = node.item node.disconnect() return item def flip(self): return random.random() > 0.5 def display(self): header = self.header while (header.below is not None): header = header.below cursor = header while (header is not None): while (cursor is not None): print(cursor.item, end='-') cursor = cursor.above print() header = header.next cursor = header if __name__ == "__main__": sl = SkipList() for i in range(10): sl[i] = i for i in sl: print(i)
[ "gabrielyang233@outlook.com" ]
gabrielyang233@outlook.com
c8a495c25d68757e7f04885e00d173531073ac78
efde64a427ec0e7a03c6227ea36e63c386924545
/test.py
295e11d4a904dc38869e71a681bae9ef5e109100
[]
no_license
ZhihaoDU/du2020dan
5bfcc8ead7c9ac1f1e45e3cfb68f45c253e81403
4ec8d37a46c6d40e6d2f07ec1d299ac2e802ed69
refs/heads/master
2021-01-15T07:04:33.043159
2020-02-25T04:43:55
2020-02-25T04:43:55
242,909,472
7
0
null
null
null
null
UTF-8
Python
false
false
10,432
py
import os # os.environ['CUDA_VISIBLE_DEVICES'] = '2' import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from kaldi_helper import KaldiFeatHolder from speech_utils import read_path_list, print_with_time, calc_rescale_c from scipy.io import wavfile from kaldi_fbank_extractor import log_fbank, get_fft_mel_mat import scipy.io as sio from multiprocessing import Pool import librosa from models import get_model from enhancement_targets import get_target import json import argparse def post_process(src, target): print_with_time("Doing post process...") os.system("cp %s/spk2utt %s/" % (src, target)) os.system("cp %s/text %s/" % (src, target)) os.system("cp %s/utt2spk %s/" % (src, target)) os.system("cp %s/wav.scp %s/" % (src, target)) os.system("cp %s/spk2gender %s/" % (src, target)) def calc_func(noisy_dir_path): with torch.no_grad(): debug_model = args.debug_model _method = method model_opts = json.load(open(os.path.join("configs/%s.json" % args.model_config), 'r')) gen_model = model_opts['gen_model_name'] calc_target = get_target(args.target_type) device = torch.device("cuda") print_with_time("Loading model...") Generator, _ = get_model(gen_model, None) model = Generator(model_opts['gen_model_opts']).to(device) checkpoint = torch.load("Checkpoints/%s/checkpoint_%09d.pth" % (_method, args.global_step)) model.load_state_dict(checkpoint["generator"]) # model.load_state_dict(checkpoint["enhancer"]) model.eval() melbank = get_fft_mel_mat(512, 16000, 40) _method = "_".join([_method, str(args.global_step)]) if debug_model: os.system('mkdir -p debug/%s' % _method) print_with_time("Start to enhance wav file in %s with method %s\n" % (noisy_dir_path, _method)) udir_path = "%s_%s" % (noisy_dir_path, _method) if not os.path.exists(udir_path): os.mkdir(udir_path) wav_scp = read_path_list(os.path.join(noisy_dir_path, "wav.scp")) if not debug_model: ark_file = open(os.path.join(udir_path, "feats.ark"), 'wb') scp_file = open(os.path.join(udir_path, "feats.scp"), 'w') key_len = wav_scp[0].find(' ') kaldi_holder = KaldiFeatHolder(key_len, 3000, 40) offset = key_len + 1 enhanced_number = 0 for it, (one_wav) in enumerate(wav_scp): wav_id, wav_path = one_wav.split(' ') sr, noisy_speech = wavfile.read(wav_path) if len(noisy_speech.shape) > 1: noisy_speech = np.mean(noisy_speech, 1) early50_path = wav_path.replace('.wav', '_early50.wav') sr, early50 = wavfile.read(early50_path) if len(early50.shape) > 1: early50 = np.mean(early50, 1) # as the training dataset, use "power_norm" to normalize the waveform to match the input of model. # c = np.sqrt(np.mean(np.square(noisy_speech))) c = calc_rescale_c(noisy_speech, args.rescale_method) noisy_speech = noisy_speech / c early50 = early50 / c noisy_fbank, noisy_mag = log_fbank(noisy_speech, False, True, True, None) early50_fbank, early50_mag = log_fbank(early50, False, True, True, None) noise_fbank, noise_mag = log_fbank(noisy_speech - early50, False, True, True, None) if args.feature_domain == "mel": feat = torch.Tensor(noisy_fbank.T).unsqueeze(0).to(device) label = torch.Tensor(early50_fbank.T).unsqueeze(0).to(device) noise = torch.Tensor(noise_fbank.T).unsqueeze(0).to(device) else: feat = torch.Tensor(np.square(noisy_mag).T).unsqueeze(0).to(device) label = torch.Tensor(np.square(early50_mag).T).unsqueeze(0).to(device) noise = torch.Tensor(np.square(noise_mag).T).unsqueeze(0).to(device) if args.target_type.lower() == "mapping_mag": predict = model.forward(feat.sqrt()) else: predict = model.forward(torch.log(feat + opts['eps'])) results = calc_target(feat, label, noise, predict, opts) enhanced = results["enhanced"] predict = results["predict"] target = results["target"] if args.feature_domain == "mel": enhanced_pow = 0 enhanced_fbank = enhanced[0, :, :].cpu().numpy() else: enhanced_pow = enhanced[0, :, :].cpu().numpy() enhanced_fbank = np.matmul(enhanced_pow, melbank.T) log_enhanced_fbank = np.log(enhanced_fbank * (c ** 2.) + opts['eps']) if debug_model: sio.savemat("debug/%s/%s_%s" % (_method, wav_id, wav_path.split('/')[-5]), {'noisy_mag': noisy_mag, 'noisy_fbank': noisy_fbank, 'enhanced_mag': np.sqrt(enhanced_pow).T, 'enhanced_fbank': enhanced_fbank.T, 'early50_mag': early50_mag, 'early50_fbank': early50_fbank, 'predict': predict[0, :, :].cpu().numpy().T, 'target': target[0, :, :].cpu().numpy().T, 'log_enhanced_fbank': log_enhanced_fbank.T, 'log_early50_fbank': np.log(early50_fbank * (c ** 2.) + opts['eps']), 'c': c }) if it >= 0: return else: kaldi_holder.set_key(wav_id) kaldi_holder.set_value(log_enhanced_fbank) kaldi_holder.write_to(ark_file) scp_file.write("%s %s/feats.ark:%d\n" % (wav_id, udir_path, offset)) offset += kaldi_holder.get_real_len() enhanced_number += 1 if enhanced_number % 40 == 0: print_with_time( "Enhanced %5d(%6.2f%%) utterance" % (enhanced_number, 100. * enhanced_number / len(wav_scp))) print_with_time("Enhanced %d utterance" % enhanced_number) ark_file.close() scp_file.close() post_process(noisy_dir_path, udir_path) print_with_time("Done %s." % _method) if __name__ == '__main__': opts = {} opts['win_len'] = 400 opts['sr'] = 16000 opts['device'] = torch.device('cuda:0') opts['mel_channels'] = 40 opts['win_type'] = 'hamming' opts['eps'] = 1e-12 opts['clip_low'] = 0. opts['clip_high'] = 1. opts['log_power_offset'] = 10. opts['compress_label'] = False opts['log_label_min'] = -27.63 opts['log_label_max'] = 14.41 parser = argparse.ArgumentParser() parser.add_argument('--script_note', type=str, default=None) parser.add_argument('--feature_domain', type=str, default="mel") parser.add_argument('--adversarial_loss', type=str, default=None) parser.add_argument('--model_config', type=str, default='BiFreqMelCRN_DCGAN') parser.add_argument('--target_type', type=str, default="mapping_log_pow") parser.add_argument('--clean_type', type=str, default="early50") parser.add_argument('--name_note', type=str, default=None) parser.add_argument('--d_iter', type=int, default=0) parser.add_argument('--rescale_method', type=str, default="power_norm", choices=["None", "value_norm", "power_norm", "st_power_norm", "max_norm"]) parser.add_argument('--dist_alpha', type=float, default=0) parser.add_argument('--data_augment', type=str, default="naive", choices=["None", "naive"]) parser.add_argument('--global_step', type=int, default=0) parser.add_argument('--debug_model', type=bool, default=False) parser.add_argument('--l1_alpha', type=float, default=0.) parser.add_argument('--l2_alpha', type=float, default=0.) parser.add_argument('--glc_alpha', type=float, default=0., help="Lipschitz continuous penalty for generator") parser.add_argument('--feat_alpha', type=float, default=0.) args = parser.parse_args() if args.script_note is not None: model_name_list = [args.script_note, args.feature_domain] else: model_name_list = [args.feature_domain] # model_name_list.append("mse") if args.adversarial_loss is not None: model_name_list.append(args.adversarial_loss) model_name_list.extend([args.model_config, args.target_type, args.clean_type]) if args.d_iter > 0: model_name_list.append("D%d" % args.d_iter) if args.name_note is not None: model_name_list.append(args.name_note) if args.rescale_method != "None": model_name_list.append(args.rescale_method) if args.l1_alpha > 0: model_name_list.append("L1_%.6f" % args.l1_alpha) if args.l2_alpha > 0: model_name_list.append("L2_%.6f" % args.l2_alpha) if args.glc_alpha > 0: model_name_list.append("GLC_%.6f" % args.glc_alpha) if args.dist_alpha > 0: model_name_list.append("DIST_%.6f" % args.dist_alpha) if args.feat_alpha > 0: model_name_list.append("FEAT_%.6f" % args.feat_alpha) if args.data_augment != "None": model_name_list.append(args.data_augment) method = "_".join(model_name_list) print("|----------------------------------------------------------------------------|") print("|", method.center(74), "|") print("|----------------------------------------------------------------------------|") print(args) print(opts) input("Press any key to continue.") noisy_dir_list = [ "/data/duzhihao/kaldi/egs/chime2/s5/data-fbank/train_si84_noisy", "/data/duzhihao/kaldi/egs/chime2/s5/data-fbank/dev_dt_05_noisy", "/data/duzhihao/kaldi/egs/chime2/s5/data-fbank/test_eval92_5k_noisy", ] if args.debug_model: noisy_dir_list = [ "/data/duzhihao/kaldi/egs/chime2/s5/data-fbank/train_si84_noisy" ] pool = Pool(len(noisy_dir_list)) pool.map(calc_func, noisy_dir_list) pool.close()
[ "duzhihao.china@gmail.com" ]
duzhihao.china@gmail.com
977efed259353b51d96b6ea3d218a036d809fef3
d456bae1077867108bc7cc3fcc34f18b0ef75a30
/linkedin/linkedin_top25byname_parser.py
b516009ad5cfacb9570a25261c707f0dd13eb0e8
[]
no_license
vlivashkin/parsers
efb1cfc3f3bd909b2a8ffc92afbbb1c1154c9279
a0334df863b4cf94cb567f3b5bbd00aab07f4444
refs/heads/master
2021-05-30T18:09:50.482475
2016-03-11T19:17:04
2016-03-11T19:17:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,975
py
import requests from bs4 import BeautifulSoup from requests.exceptions import ChunkedEncodingError class LinkedinNoAuthTop25ByNameParser: headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.0) Gecko/20100101 Firefox/40.1'} top25_url = 'https://www.linkedin.com/pub/dir/{}/{}/' def get_people_by_name(self, first_name, last_name): url = self.top25_url.format(first_name, last_name) try: response = requests.get(url, headers=self.headers) except ChunkedEncodingError: print("Incomplete read(") return [] if response.history: # if there are only one person with this name linkedin redirects you to his page person = { 'name': first_name + " " + last_name, 'url': response.url, } return [person] else: page = response.text soup = BeautifulSoup(page, "html.parser") people = [] for profile in soup.find_all('div', 'profile-card'): content = profile.find("div", "content") img_url = profile.find("a", "profile-img").img['src'] person = { 'name': content.h3.a.text, 'url': content.h3.a['href'], # 'headline': content.find('p', "headline").text, # "location": content.find("dl", "basic").findAll("dd")[0].text, # 'industry': content.find("dl", "basic").findAll("dd")[1].text, 'img_url': img_url if "ghost" not in img_url else "ghost" } people.append(person) return people def main(): parser = LinkedinNoAuthTop25ByNameParser() people = parser.get_people_by_name("Vladimir", "Ivashkin") # people = parser.get_people_by_name("Taras", "Pustovoy") for person in people: print(person) if __name__ == "__main__": main()
[ "illusionww@gmail.com" ]
illusionww@gmail.com
1b32af6d4a9df22d779af09836fddb308d08536b
a331345b1269d863107ebaf525fb9e06443722c6
/drf-intro/simple_crud/measurements/admin.py
987929793feb8430a7621da7c283948f38f97a89
[]
no_license
Pfliger/dj-homeworks
19de12f8b2146751b24c89e59bdd307c571ff71d
c9f5d5070a467d4f7b35d416b8f91ad290008ab6
refs/heads/master
2023-03-09T01:09:49.251297
2021-03-05T16:24:22
2021-03-05T16:24:22
335,931,936
0
0
null
null
null
null
UTF-8
Python
false
false
241
py
from django.contrib import admin from measurements.models import Project, Measurement @admin.register(Project) class ProjectAdmin(admin.ModelAdmin): pass @admin.register(Measurement) class MeasurementAdmin(admin.ModelAdmin): pass
[ "pfliger@list.ru" ]
pfliger@list.ru
d5672859a1c11baa0302a06e15050c61a8db266f
70ac291bcf11d8452c6b1ade5fbadd0003d9e613
/machine_learning_机器学习/准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F值(F-Measure)等评估指标的计算.py
8c51fb9bad3621e3c8e70198ca29c52253849f25
[]
no_license
SnowWhiteZ/hello-world
10cc1faf508340f835fffbf3c587101e3e0e78a5
e43793b413016eb2f52b40990a8f1b493d29c983
refs/heads/master
2022-03-12T22:10:42.163091
2019-12-02T09:58:15
2019-12-02T09:58:15
225,376,506
1
0
null
null
null
null
UTF-8
Python
false
false
4,456
py
#!/usr/bin/python3 # coding: utf-8 import numpy as np from sklearn.metrics import f1_score, accuracy_score, fbeta_score, precision_score, recall_score from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score, f1_score, roc_auc_score # 真实标签 y_true = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] # 模型预测结果 y_test = [0.8453712241207609, 0.8365137845084419, 0.8396024690959464, 0.8690716625950063, 0.801398983655787, 0.8353417405844167, 0.8887589815396711, 0.8274617726584338, 0.8901324702288052, 0.8515827665762914, 0.8008748432690203, 0.9129143613344268, 0.8213637332093631, 0.7926672650384551, 0.8715962551942291, 0.865989576549353, 0.8487118383625984, 0.893722366823937, 0.8683798090835637, 0.8258107838161615, 0.9067962552630583, 0.8896577622207299, 0.8287242449131549, 0.862162050742874, 0.9145984088092137, 0.8195240228832353, 0.8627208683955114, 0.8667420865435141, 0.833175478131922, 0.8338735760735464, 0.8609573544733866, 0.8270040835455006, 0.8438342928159803, 0.9162216060491829, 0.8681943043237748, 0.825237777063406, 0.9309199493779501, 0.847918698600505, 0.885842165942269, 0.845606331185933, 0.8867428557974891, 0.8569372316111383, 0.8374900840504085, 0.8495098728280119, 0.8475137546498668, 0.8509974354378016, 0.8545542968912262, 0.8369359268265817, 0.8881628216627452, 0.8553054247582024, 0.8715475068300871, 0.8608489638331329, 0.7871896522021451, 0.7986180814516614, 0.8679817198115483, 0.8555312604259576, 0.8737131993516944, 0.8570307159808236, 0.86943760267903, 0.8155454038368009, 0.8284627670247386, 0.7440460226630737, 0.8383901711678877, 0.9176876584197461, 0.8867356968591616, 0.8800298236584221, 0.8534696245512979, 0.9166524864925935, 0.8205450625187547, 0.8235830983361883, 0.8610359125511253, 0.8534495672661243, 0.8343550724006359, 0.826657313239454, 0.8327557274202153, 0.8263809690050867, 0.8449533999089178, 0.7403854533869694, 0.8862881836134406, 0.80930312554624, 0.8390349727384677, 0.7812820207595776, 0.8405256568966404, 0.7208619973606759, 0.8237972236612818, 0.8652031422452744, 0.7788070757633151, 0.8795942431527423, 0.8603826742129177, 0.83330392945359, 0.8487413534443429, 0.8085704307615089, 0.8862416492592033, 0.8154708608934949, 0.8949611666064037, 0.8189329260750865, 0.8328395987596068, 0.9158502403398057, 0.8066900361300818, 0.9277331317048729] thre = 0.874 # 随机定义一个阈值 tp = 0 # 正真 tn = 0 # 真负 fp = 0 # 假正 fn = 0 # 假负 for t4, t5 in zip(y_true, y_test): if t4 == 1 and t5 >= thre: tp += 1 elif t4 == 1: fn += 1 elif t4 == 0 and t5 < thre: tn += 1 else: fp += 1 data = { "真正": tp, "真负": tn, "假正": fp, "假负": fn } print("混淆矩阵数据:", data) p = tp / (tp + fp ) # 精确率,预测为正的样本中有多少是真正的正样本 r = tp / (tp + fn ) # 召回率,样本中的正例有多少被预测正确了 acc = (tp + tn) / (tp + tn + fp + fn) # 准确率,被分对的样本数除以所有的样本数 f1 = 2 * p * r / (p + r ) beta = 2 # (1 + β × β) × P × R # Fβ = ────────────────────── # (β × β) × P + R f2 = (1+beta*beta) * p * r / (beta*beta*p+r) data2 = { "准确率": acc, "精确率": p, "召回率": r, "f1值": f1, "f2值": f2, } print('通过精确率,召回率计算的结果:', data2) # auc auc = roc_auc_score(y_true, y_test) # 精确率 p = precision_score(y_true, np.array(y_test)>thre) # 召回率 r = recall_score(y_true, np.array(y_test) > thre) # acc acc = accuracy_score(y_true, np.array(y_test) > thre) f1 = f1_score(y_true, np.array(y_test) > thre) f2 = fbeta_score(y_true, np.array(y_test) > thre, beta=2) data3 = { "准确率": acc, "ROC曲线下面积": auc, "f1值": f1, "f2值": f2, "精确率": p, "召回率": r, } print('通过sklearn计算的结果:', data3) y_true = [0, 1, 2, 2, 2] y_test = [0, 0, 2, 2, 1] target_names = ['class 0', 'class 1', 'class 2'] print(classification_report(y_true, y_test, target_names=target_names)) def main(): pass if __name__ == '__main__': main()
[ "gswyhq@126.com" ]
gswyhq@126.com
4c1785f655e01342cbdda1667b1a388889254f6b
2daa3894e6d6929fd04145100d8a3be5eedbe21c
/tests/artificial/transf_pow3/trend_poly/cycle_7/ar_12/test_artificial_32_pow3_poly_7_12_100.py
7f5a2931b6b59c48d8a1216fadd94ec7826eabbc
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Henri-Lo/pyaf
a1f73a0cc807873bd7b79648fe51de9cfd6c126a
08c968425d85dcace974d90db7f07c845a0fe914
refs/heads/master
2021-07-01T12:27:31.600232
2017-09-21T11:19:04
2017-09-21T11:19:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
305
py
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art dataset = tsds.generate_random_TS(N = 32 , FREQ = 'D', seed = 0, trendtype = "poly", cycle_length = 7, transform = "pow3", sigma = 0.0, exog_count = 100, ar_order = 12); art.process_dataset(dataset);
[ "antoine.carme@laposte.net" ]
antoine.carme@laposte.net
942f5be0fdd8ad8c418f4b959e1310af74cb20ff
3c76dd3d7eda65236ff47da97c04d7b1b6eb7c15
/recursion/questions/pow.py
fa7c82cd42821e8d05266f7451e8c4c63bed16e0
[ "MIT" ]
permissive
devclassio/200-interview-algorithm-questions
b672629c93ca99fcf626cb34254f0ef1b5e2731d
ab6a41f3399d8ae58acf0aebb285ca6de744433c
refs/heads/main
2023-02-21T01:39:03.060131
2021-01-25T16:11:24
2021-01-25T16:11:24
330,233,973
9
0
null
null
null
null
UTF-8
Python
false
false
1,191
py
''' Can't cache here! arr is too big! need to use this math trick :) ''' class OmerSolution: ''' Great example! to make this work with memoize i think arr must be of len n/2 ''' def myPow(self, x, n): self.cache = [None] * (abs(n) + 1) self.cache[0] = 1 def helper(x, n): if self.cache[n]: return self.cache[n] if self.cache[n-1]: return x * self.cache[n-1] self.cache[n-1] = helper(x, n - 1) return x * self.cache[n - 1] return helper(x, n) if n > 0 else 1 / helper(x, -n) class Solution: def myPow(self, x, n): def helper(x, n): if n == 0: return 1 # compute if (n - 1) % 2 == 0: oneBefore = helper(x * x, int(n / 2)) else: oneBefore = x * helper(x * x, int((n - 1) / 2)) # solution return x * oneBefore if n < 0: x = 1 / x n = -n squared = x * x exp = n / 2 if n % 2 == 0 else (n - 1) / 2 return helper(squared, exp) if n % 2 == 0 else x * helper(squared, exp)
[ "arieg419@gmail.com" ]
arieg419@gmail.com
cb03a855464cc9c2f80b4f406ed8aaac4d1c0f3f
e5acfe14534911fb42ab7715331abda164a3a93b
/devel/lib/python2.7/dist-packages/adhoc_communication/msg/_ExpCluster.py
a1eb356df41d275f3ee571397b570d141b72bb3b
[]
no_license
mgr4dv/surf_inspec
964095590c58967d6183ac16e755192922bf8af4
ada5332edaebe622fa403dd8f5233b01b8b16559
refs/heads/master
2021-07-04T17:29:06.141297
2017-09-27T23:40:28
2017-09-27T23:40:28
103,476,523
2
0
null
null
null
null
UTF-8
Python
false
false
6,101
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from adhoc_communication/ExpCluster.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import adhoc_communication.msg class ExpCluster(genpy.Message): _md5sum = "378b1f01ebed06706a22e7cc27608df5" _type = "adhoc_communication/ExpCluster" _has_header = False #flag to mark the presence of a Header object _full_text = """ExpClusterElement[] ids_contained float64 bid ================================================================================ MSG: adhoc_communication/ExpClusterElement int64 id string detected_by_robot_str """ __slots__ = ['ids_contained','bid'] _slot_types = ['adhoc_communication/ExpClusterElement[]','float64'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: ids_contained,bid :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(ExpCluster, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.ids_contained is None: self.ids_contained = [] if self.bid is None: self.bid = 0. else: self.ids_contained = [] self.bid = 0. def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: length = len(self.ids_contained) buff.write(_struct_I.pack(length)) for val1 in self.ids_contained: buff.write(_struct_q.pack(val1.id)) _x = val1.detected_by_robot_str length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_struct_d.pack(self.bid)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.ids_contained is None: self.ids_contained = None end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.ids_contained = [] for i in range(0, length): val1 = adhoc_communication.msg.ExpClusterElement() start = end end += 8 (val1.id,) = _struct_q.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.detected_by_robot_str = str[start:end].decode('utf-8') else: val1.detected_by_robot_str = str[start:end] self.ids_contained.append(val1) start = end end += 8 (self.bid,) = _struct_d.unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: length = len(self.ids_contained) buff.write(_struct_I.pack(length)) for val1 in self.ids_contained: buff.write(_struct_q.pack(val1.id)) _x = val1.detected_by_robot_str length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_struct_d.pack(self.bid)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.ids_contained is None: self.ids_contained = None end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.ids_contained = [] for i in range(0, length): val1 = adhoc_communication.msg.ExpClusterElement() start = end end += 8 (val1.id,) = _struct_q.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.detected_by_robot_str = str[start:end].decode('utf-8') else: val1.detected_by_robot_str = str[start:end] self.ids_contained.append(val1) start = end end += 8 (self.bid,) = _struct_d.unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_q = struct.Struct("<q") _struct_d = struct.Struct("<d")
[ "builder@kududyn.com" ]
builder@kududyn.com
9eab7ac63befed2d25ff7d06879122dcee603533
bf1711af678a07b2030166d98b77f1320f16b940
/scripts/diagnostics/gradlogpconvadv.py
2987d2f89a2c7b9e2b7c7ba81ac2e6c924ada93e
[ "MIT" ]
permissive
SFPD/rlreloaded
81e2ee489389145092cd425f305f9f50a7fd1ec9
650c64ec22ad45996c8c577d85b1a4f20aa1c692
refs/heads/master
2021-01-01T17:47:55.592481
2015-06-16T16:33:06
2015-06-16T16:37:19
37,540,592
0
0
null
null
null
null
UTF-8
Python
false
false
6,398
py
#!/usr/bin/env python import matplotlib.pyplot as plt import theano #pylint: disable=F0401 import copy import numpy as np from control4.misc.console_utils import Message from control4.algs.save_load_utils import load_agent_and_mdp,get_mdp,construct_agent from control4.algs.advantage_est import demean_timeserieses from control4.misc.randomness import random_indices from control4.config import floatX #pylint: disable=W0611 from control4.core.rollout import rollout from control4.maths import symbolic import theano.tensor as TT # ipython --pylab -i gradlogpconvadv.py -- --num_trajs=1000 --max_steps=200 --horizon=50 --agent_module=control4.agents.nn_reactive_agent --mdp_name=mjc:3swimmer def pairwise_correlate(x_sm, y_tn,mode='valid'): """ Use FFT to compute correlation between pairs of channels of x and y """ S,M = x_sm.shape T,N = y_tn.shape U = S+T-1 # if mode==valid we can use less padding px_um = np.concatenate([x_sm,np.zeros((U-S,M))]) py_un = np.concatenate([y_tn,np.zeros((U-T,N))]) qpx_um = np.fft.fft(px_um,axis=0) #pylint: disable=E1103,E1101 qpy_un = np.fft.fft(py_un,axis=0) #pylint: disable=E1103,E1101 qconv_umn = qpx_um[:,:,None] * np.conj(qpy_un[:,None,:]) conv_umn = np.fft.ifft(qconv_umn,axis=0).real #pylint: disable=E1103,E1101 if mode == "valid": assert T<S return conv_umn[:S-T+1] else: raise NotImplementedError def test_pairwise_correlate(): x = np.random.randn(10,3) y = np.random.randn(8,2) corr0 = pairwise_correlate(x,y,'valid') corr1 = np.empty((x.shape[0] - y.shape[0] + 1, x.shape[1],y.shape[1])) for (i,xcol) in enumerate(x.T): for (j,ycol) in enumerate(y.T): corr1[:,i,j] = np.correlate(xcol,ycol,mode='valid') assert np.allclose(corr0,corr1,atol=1e-7) def make_gradlogps(mdp,agent): o = TT.matrix("o",mdp.output_dtype("o")) b = TT.matrix("b",agent.output_dtype("b")) newa = agent.ponder({"o":o})["a"] logp_n = agent.cpd().logliks(newa, b) def onegrad(i): logp1 = theano.clone(logp_n, replace = {b:b[i:i+1],o:o[i:i+1]})[0] return symbolic.flatten(TT.grad(logp1, agent.policy_vars())) gradlogps,_ = theano.map(onegrad, TT.arange(logp_n.shape[0])) f = theano.function([o,b],gradlogps) return f def main(): # test_pairwise_correlate() import argparse parser = argparse.ArgumentParser() parser.add_argument("--hdf") parser.add_argument("--agent_module") parser.add_argument("--mdp_name") parser.add_argument("--horizon",type=int,default=20) parser.add_argument("--num_trajs",type=int,default=100) parser.add_argument("--max_steps",type=int,default=500) parser.add_argument("--load_idx",type=int,default=-1) parser.add_argument("--plot_mode",choices=["off","save","interactive"],default="off") parser.add_argument("--plot_save_prefix") parser.add_argument("--gamma",type=float,default=0.99) parser.add_argument("--outfile") # ValueParams.add_to_parser(parser) np.random.seed(0) args = parser.parse_args() assert bool(args.hdf) != (bool(args.agent_module) and bool(args.mdp_name)) if args.hdf: agent, mdp, _hdf = load_agent_and_mdp(args.hdf,args.load_idx) elif args.agent_module: mdp = get_mdp(args.mdp_name) agent = construct_agent({"agent_module":args.agent_module},mdp) fs_gradlogps = make_gradlogps(mdp,agent) n_params = agent.policy.size() horizon=args.horizon from collections import namedtuple Path = namedtuple("Path",['o','c','b']) save_arrs = ["o","b","c"] with Message("Doing rollouts"): paths = [] for i_path in xrange(args.num_trajs): if i_path % 20 == 0: print "%i/%i done"%(i_path,args.num_trajs) init,traj = rollout(mdp, agent, args.max_steps,save_arrs=save_arrs) o = np.concatenate([init["o"]]+traj["o"][:-1]) c = np.concatenate(traj["c"]) b = np.concatenate(traj["b"]) paths.append(Path(o,c,b)) # vf = LinearVF(use_m=False, use_o=True, legendre_degree = 2, use_product_features=False) # vf.make_funcs() # with Message("Fitting value function"): # fit_linear_vf_single_path(vf, paths, args) li_c_t = [path.c.sum(axis=1) for path in paths] li_dmc_t = copy.deepcopy(li_c_t) demean_timeserieses(li_dmc_t) # li_delta_t = [] # for (path,c_t) in zip(paths,li_c_t): # v_t = vf.fs_vfunc(path.prevm_tg,path.o_tf) # li_delta_t.append( c_t + args.gamma*v_t[1:] - v_t[:-1] ) li_serieses = zip(li_dmc_t) series_names=["demeaned costs"] n_series = len(series_names) li_corr = [np.zeros((horizon,n_params)) for _ in xrange(n_series)] corr_tkz = np.zeros((horizon,n_series,n_params)) sqcorr_tkz = np.zeros((horizon,n_series,n_params)) count = 0 for (i_path,path,serieses) in zip(xrange(len(paths)),paths,li_serieses): if i_path % 20 == 0: print "%i/%i done"%(i_path,len(paths)) sig_tk = np.array(serieses).T grad_tz = fs_gradlogps(path.o,path.b) newcorr_tzk = pairwise_correlate( sig_tk, grad_tz[:-horizon+1], mode='valid') corr_tkz += newcorr_tzk sqcorr_tkz += newcorr_tzk**2 # for (li_series_t,corr_tz) in zip(li_li_series,li_corr): # for z in xrange(n_params): # corr_tkz[:,z] += scipy.signal.correlate(li_series_t[i_path], grad_tz[:-horizon+1,z],mode='valid') # count += (grad_tz.shape[0]-horizon) count += 1 corr_tkz /= count sqcorr_tkz /= count stderr_tkz = np.sqrt( (sqcorr_tkz - corr_tkz**2)/len(paths) ) # NOTE stderr is not totally legit plot_stderr = True zs = random_indices(n_params,30) # plot_stderr = False # zs = np.arange(n_params) for (i_series,_corr_tz) in enumerate(li_corr): plt.figure(i_series+1) plt.clf() plt.title(series_names[i_series]) for z in zs: line, = plt.plot(corr_tkz[:,i_series,z]) if plot_stderr: plt.fill_between(np.arange(horizon), corr_tkz[:,i_series,z] - stderr_tkz[:,i_series,z],corr_tkz[:,i_series,z] + stderr_tkz[:,i_series,z],alpha=.1,color=line.get_color()) if args.outfile: plt.savefig(args.outfile) if __name__ == "__main__": main()
[ "" ]
90dac013e7b8d3564d99078b2df9f789bb89833d
d6c86a4302debcf730516ac5bba8ad32d44faf82
/Final Project/sportclubs/teammanager/urls.py
5dbdda6101ef6e59f1e409323ee318db97b25b11
[]
no_license
patrickmcgreevy/SportClubManager
7cd51c1af20d6092a210640d038b3d8075962166
8f067aef7b2319c329bbf6db29836fc352635263
refs/heads/master
2020-04-16T17:49:13.846890
2019-04-27T00:14:43
2019-04-27T00:14:43
165,790,239
1
0
null
2019-04-27T00:14:43
2019-01-15T05:22:22
Python
UTF-8
Python
false
false
480
py
from django.urls import path, reverse from . import views urlpatterns = [ path('', views.AllClubs.as_view(), name='clubshome'), path('myclubs/', views.UserClubs.as_view(), name='userclubs'), path('<int:pk>/', views.ClubDetails.as_view(), name='clubdetails'), path('<int:pk>/officer_details/', views.ClubOfficerDetails.as_view(), name='clubofficerdetails'), path('<int:pk>/change_members/', views.ClubMemberChange.as_view(), name='changemembers'), ]
[ "noreply@github.com" ]
noreply@github.com
a79901d7cd6230cf60535dc9cffd9a91da0145c5
82e0c57e5b133d27e2380c9f809c2b338b3bc52c
/test/aqua/operators/test_op_construction.py
e5419631592af242da1fd109f730d14fcc7fdf60
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ryzbaka/qiskit-aqua
62b3e50d60f080ed8aa1b9a484fcd508bc1139b3
c1375ff5a1e7cf06d6691519f3ca4feb32e1a747
refs/heads/master
2022-07-19T03:55:58.393568
2020-05-20T14:41:12
2020-05-20T14:41:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,065
py
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test Operator construction, including OpPrimitives and singletons. """ import unittest from test.aqua import QiskitAquaTestCase import itertools import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info.operators import Operator, Pauli from qiskit.circuit.library import CZGate from qiskit.aqua.operators import X, Y, Z, I, CX, T, H, PrimitiveOp, SummedOp, PauliOp, Minus # pylint: disable=invalid-name class TestOpConstruction(QiskitAquaTestCase): """Operator Construction tests.""" def test_pauli_primitives(self): """ from to file test """ newop = X ^ Y ^ Z ^ I self.assertEqual(newop.primitive, Pauli(label='XYZI')) kpower_op = (Y ^ 5) ^ (I ^ 3) self.assertEqual(kpower_op.primitive, Pauli(label='YYYYYIII')) kpower_op2 = (Y ^ I) ^ 4 self.assertEqual(kpower_op2.primitive, Pauli(label='YIYIYIYI')) # Check immutability self.assertEqual(X.primitive, Pauli(label='X')) self.assertEqual(Y.primitive, Pauli(label='Y')) self.assertEqual(Z.primitive, Pauli(label='Z')) self.assertEqual(I.primitive, Pauli(label='I')) def test_composed_eval(self): """ Test eval of ComposedOp """ self.assertAlmostEqual(Minus.eval('1'), -.5 ** .5) def test_evals(self): """ evals test """ # pylint: disable=no-member # TODO: Think about eval names self.assertEqual(Z.eval('0').eval('0'), 1) self.assertEqual(Z.eval('1').eval('0'), 0) self.assertEqual(Z.eval('0').eval('1'), 0) self.assertEqual(Z.eval('1').eval('1'), -1) self.assertEqual(X.eval('0').eval('0'), 0) self.assertEqual(X.eval('1').eval('0'), 1) self.assertEqual(X.eval('0').eval('1'), 1) self.assertEqual(X.eval('1').eval('1'), 0) self.assertEqual(Y.eval('0').eval('0'), 0) self.assertEqual(Y.eval('1').eval('0'), -1j) self.assertEqual(Y.eval('0').eval('1'), 1j) self.assertEqual(Y.eval('1').eval('1'), 0) # Check that Pauli logic eval returns same as matrix logic self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('0').eval('0'), 1) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('1').eval('0'), 0) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('0').eval('1'), 0) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('1').eval('1'), -1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('0').eval('0'), 0) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('1').eval('0'), 1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('0').eval('1'), 1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('1').eval('1'), 0) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('0').eval('0'), 0) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('1').eval('0'), -1j) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('0').eval('1'), 1j) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('1').eval('1'), 0) pauli_op = Z ^ I ^ X ^ Y mat_op = PrimitiveOp(pauli_op.to_matrix()) full_basis = list(map(''.join, itertools.product('01', repeat=pauli_op.num_qubits))) for bstr1, bstr2 in itertools.product(full_basis, full_basis): # print('{} {} {} {}'.format(bstr1, bstr2, pauli_op.eval(bstr1, bstr2), # mat_op.eval(bstr1, bstr2))) np.testing.assert_array_almost_equal(pauli_op.eval(bstr1).eval(bstr2), mat_op.eval(bstr1).eval(bstr2)) gnarly_op = SummedOp([(H ^ I ^ Y).compose(X ^ X ^ Z).tensor(Z), PrimitiveOp(Operator.from_label('+r0I')), 3 * (X ^ CX ^ T)], coeff=3 + .2j) gnarly_mat_op = PrimitiveOp(gnarly_op.to_matrix()) full_basis = list(map(''.join, itertools.product('01', repeat=gnarly_op.num_qubits))) for bstr1, bstr2 in itertools.product(full_basis, full_basis): np.testing.assert_array_almost_equal(gnarly_op.eval(bstr1).eval(bstr2), gnarly_mat_op.eval(bstr1).eval(bstr2)) def test_circuit_construction(self): """ circuit construction test """ hadq2 = H ^ I cz = hadq2.compose(CX).compose(hadq2) qc = QuantumCircuit(2) qc.append(cz.primitive, qargs=range(2)) ref_cz_mat = PrimitiveOp(CZGate()).to_matrix() np.testing.assert_array_almost_equal(cz.to_matrix(), ref_cz_mat) def test_io_consistency(self): """ consistency test """ new_op = X ^ Y ^ I label = 'XYI' # label = new_op.primitive.to_label() self.assertEqual(str(new_op.primitive), label) np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), Operator.from_label(label).data) self.assertEqual(new_op.primitive, Pauli(label=label)) x_mat = X.primitive.to_matrix() y_mat = Y.primitive.to_matrix() i_mat = np.eye(2, 2) np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), np.kron(np.kron(x_mat, y_mat), i_mat)) hi = np.kron(H.to_matrix(), I.to_matrix()) hi2 = Operator.from_label('HI').data hi3 = (H ^ I).to_matrix() np.testing.assert_array_almost_equal(hi, hi2) np.testing.assert_array_almost_equal(hi2, hi3) xy = np.kron(X.to_matrix(), Y.to_matrix()) xy2 = Operator.from_label('XY').data xy3 = (X ^ Y).to_matrix() np.testing.assert_array_almost_equal(xy, xy2) np.testing.assert_array_almost_equal(xy2, xy3) # Check if numpy array instantiation is the same as from Operator matrix_op = Operator.from_label('+r') np.testing.assert_array_almost_equal(PrimitiveOp(matrix_op).to_matrix(), PrimitiveOp(matrix_op.data).to_matrix()) # Ditto list of lists np.testing.assert_array_almost_equal(PrimitiveOp(matrix_op.data.tolist()).to_matrix(), PrimitiveOp(matrix_op.data).to_matrix()) # TODO make sure this works once we resolve endianness mayhem # qc = QuantumCircuit(3) # qc.x(2) # qc.y(1) # from qiskit import BasicAer, QuantumCircuit, execute # unitary = execute(qc, BasicAer.get_backend('unitary_simulator')).result().get_unitary() # np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), unitary) def test_to_matrix(self): """to matrix text """ np.testing.assert_array_equal(X.to_matrix(), Operator.from_label('X').data) np.testing.assert_array_equal(Y.to_matrix(), Operator.from_label('Y').data) np.testing.assert_array_equal(Z.to_matrix(), Operator.from_label('Z').data) op1 = Y + H np.testing.assert_array_almost_equal(op1.to_matrix(), Y.to_matrix() + H.to_matrix()) op2 = op1 * .5 np.testing.assert_array_almost_equal(op2.to_matrix(), op1.to_matrix() * .5) op3 = (4 - .6j) * op2 np.testing.assert_array_almost_equal(op3.to_matrix(), op2.to_matrix() * (4 - .6j)) op4 = op3.tensor(X) np.testing.assert_array_almost_equal(op4.to_matrix(), np.kron(op3.to_matrix(), X.to_matrix())) op5 = op4.compose(H ^ I) np.testing.assert_array_almost_equal(op5.to_matrix(), np.dot(op4.to_matrix(), (H ^ I).to_matrix())) op6 = op5 + PrimitiveOp(Operator.from_label('+r').data) np.testing.assert_array_almost_equal( op6.to_matrix(), op5.to_matrix() + Operator.from_label('+r').data) def test_adjoint(self): """ adjoint test """ gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) np.testing.assert_array_almost_equal(np.conj(np.transpose(gnarly_op.to_matrix())), gnarly_op.adjoint().to_matrix()) def test_primitive_strings(self): """ get primitives test """ self.assertEqual(X.primitive_strings(), {'Pauli'}) gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) self.assertEqual(gnarly_op.primitive_strings(), {'QuantumCircuit', 'Matrix'}) def test_to_pauli_op(self): """ Test to_pauli_op method """ gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) mat_op = gnarly_op.to_matrix_op() pauli_op = gnarly_op.to_pauli_op() self.assertIsInstance(pauli_op, SummedOp) for p in pauli_op: self.assertIsInstance(p, PauliOp) np.testing.assert_array_almost_equal(mat_op.to_matrix(), pauli_op.to_matrix()) def test_circuit_permute(self): r""" Test the CircuitOp's .permute method """ perm = range(7)[::-1] c_op = (((CX ^ 3) ^ X) @ (H ^ 7) @ (X ^ Y ^ Z ^ I ^ X ^ X ^ X) @ (Y ^ (CX ^ 3)) @ (X ^ Y ^ Z ^ I ^ X ^ X ^ X)) c_op_perm = c_op.permute(perm) self.assertNotEqual(c_op, c_op_perm) c_op_id = c_op_perm.permute(perm) self.assertEqual(c_op, c_op_id) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
noreply@github.com
9dc8e842d1c50ed74d1c5b4728ef47282db16f7c
cf43421567c1634abe1df885c6e185a180659708
/Extract/common.py
cd7e1ac1c4a6b11a70a4290fe71d6d2217580e77
[]
no_license
fabio-gz/ETL_newspaper
4c5239892098840a730ecf3b58452054a50e914b
7458701eab76821a1fd65f0821356b1e7924bc97
refs/heads/master
2023-01-11T05:01:39.773346
2020-11-16T22:10:57
2020-11-16T22:10:57
292,719,167
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
# cargar yaml import yaml #global var __config = None def config(): global __config if not __config: with open('config.yml', mode='r') as f: __config = yaml.safe_load(f) return __config
[ "fabiogomez.silva@gmail.com" ]
fabiogomez.silva@gmail.com
3cbc9bfba6c7cc7ac49325cfc8ffaf1622d354b1
bdaed512916fcf96e5dc915538fe8598aeb2d3cf
/mcex/history/nphistory.py
f042a176b3e0f6b83b0c8e8c2c2c693ec6657ff1
[]
no_license
jsalvatier/mcex
9657cc2e8083f4e4dd013baaaceba08f9a48754e
040f49bfd6eb467ef4d50d15de25033b1ba52c55
refs/heads/master
2021-06-18T19:02:07.055877
2017-01-22T01:10:01
2017-01-22T01:10:01
1,455,409
9
3
null
2012-06-21T18:07:36
2011-03-08T17:02:42
Python
UTF-8
Python
false
false
954
py
''' Created on Mar 15, 2011 @author: jsalvatier ''' import numpy as np class NpHistory(object): """ encapsulates the recording of a process chain """ def __init__(self, max_draws): self.max_draws = max_draws self.samples = {} self.nsamples = 0 def record(self, point): """ records the position of a chain at a certain point in time """ if self.nsamples < self.max_draws: for var, value in point.iteritems(): try : s = self.samples[var] except: s = np.empty((self.max_draws,) + value.shape) self.samples[var] = s s[self.nsamples,...] = value self.nsamples += 1 else : raise ValueError('out of space!') def __getitem__(self, key): return self.samples[key][0:self.nsamples,...]
[ "jsalvatier@gmail.com" ]
jsalvatier@gmail.com
159ae11c00f6321cb99a0ef0d0efc843e5b9f5ce
8d034478e79e5653bc3d43656925d480c2f4d5ea
/image_detection.py
0e0c0978699965c5bada9201c6c1a64edf4a5297
[]
no_license
stavik476/last_project_stav
515e907d871f59dfda12797411a7eee32d25550d
1f61204a9bc7d6cb03807b89db6085ea085320c4
refs/heads/main
2023-04-26T02:30:28.914181
2021-05-25T14:23:05
2021-05-25T14:23:05
370,720,223
0
0
null
null
null
null
UTF-8
Python
false
false
4,777
py
# Import packages import os import cv2 import numpy as np import tensorflow.compat.v1 as tf import sys # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") # Import utilites from the_utils import label_map_util from the_utils import visualization_utils as vis_util #Change the test image name IMAGE_NAME = 'red_lights.jpg' # Number of classes the object detector can identify NUM_CLASSES = 7 # Name of the directory containing the object detection module we're using MODEL_NAME = 'inference_graph' # Grab path to current working directory CWD_PATH = os.getcwd() # Path to frozen detection graph .pb file, which contains the model that is used # for object detection. PATH_TO_CKPT = "models/frozen_inference_graph.pb" # Path to label map file PATH_TO_LABELS = "models\label_map.pbtxt" # Path to image PATH_TO_IMAGE = os.path.join("D:\models\Research\object_detection",'Testing\images',IMAGE_NAME) # Load the label map. # Label maps map indices to category names, so that when our convolution # network predicts `5`, we know that this corresponds to `king`. # Here we use internal utility functions, but anything that returns a # dictionary mapping integers to appropriate string labels would be fine label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Load the Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph) # Define input and output tensors (i.e. data) for the object detection classifier # Input tensor is the image image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Output tensors are the detection boxes, scores, and classes # Each box represents a part of the image where a particular object was detected detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represents level of confidence for each of the objects. # The score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') # Number of objects detected num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Load image using OpenCV and # expand image dimensions to have shape: [1, None, None, 3] # i.e. a single-column array, where each item in the column has the pixel RGB value image = cv2.imread(PATH_TO_IMAGE) image_expanded = np.expand_dims(image, axis=0) # Perform the actual detection by running the model with the image as input (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_expanded}) # Draw the results of the detection (aka 'visulaize the results') coordinates = vis_util.coordinates_find( image, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8, min_score_thresh=0.8) print(coordinates) name = "Traffic light" squares = [] for cord in coordinates: rows = [] if "1" == cord[4][0].split(":")[0]: for i in range(4): print(cord[i]%0.25) if (cord[i] % 0.25) < 0.03 and (0 != int(cord[i] / 0.25) and (i != 0) and (i != 1)): rows.append(int(cord[i]/0.25)) else: rows.append((int(cord[i]/0.25) + 1)) #squares.append((5 - rows[0]) * 4 - rows[1] + 1) #squares.append((5 - rows[0]) * 4 - rows[3] + 1) #squares.append((5 - rows[2]) * 4 - rows[1] + 1) #squares.append((5 - rows[2]) * 4 - rows[3] + 1) for j in range(rows[2] - rows[0] + 1): for t in range(rows[3] - rows[1] + 1): squares.append((5 - rows[0] - j) * 4 - rows[1] - t + 1) print(rows) print(squares) vis_util.visualize_boxes_and_labels_on_image_array( image, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8, min_score_thresh=0.6) # All the results have been drawn on image. Now display the image. cv2.imshow('Object detector', image) # Press any key to close the image cv2.waitKey(0) # Clean up cv2.destroyAllWindows()
[ "71749280+stavik476@users.noreply.github.com" ]
71749280+stavik476@users.noreply.github.com
c52d673bdcbfae703d470556fea4604762501224
91f2e23782b05aa1fb273f3170c50dc4185e8dc1
/clif/pybind11/staging/virtual_funcs_basics_test.py
6238c3144d5233fd2ad32b961ceef33c93be6b74
[ "Apache-2.0" ]
permissive
anukaal/clif
152fd58e575b90d626a300875aac71cdf69ec6a3
8ff675bf93599f4d4a4865376b441d8d0551fd54
refs/heads/main
2023-08-03T19:47:00.538660
2021-09-14T05:50:43
2021-09-30T01:00:14
406,238,691
0
0
Apache-2.0
2021-09-14T05:39:04
2021-09-14T05:39:03
null
UTF-8
Python
false
false
3,058
py
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for clif.pybind11.staging.virtual_funcs_basics. This file is a copy of clif/testing/python/virtual_funcs_basics_test.py. """ import unittest from clif.pybind11.staging import virtual_funcs_basics class B(virtual_funcs_basics.B): def __init__(self): virtual_funcs_basics.B.__init__(self) self.c = -1 def set_c(self, v): self.c = v class K(virtual_funcs_basics.K): def inc(self, n): self.i += n class L(virtual_funcs_basics.Q): def __init__(self, max_len): virtual_funcs_basics.Q.__init__(self) self._q = [] self._max = max_len def data(self): return list(self._q) def PossiblyPush(self, data): if len(self._q) < self._max: self._q.append(data) return True return False class AbstractClassNonDefConstImpl( virtual_funcs_basics.AbstractClassNonDefConst): def DoSomething(self): return self.a * self.b class ClassNonDefConstImpl(virtual_funcs_basics.ClassNonDefConst): def __init__(self, a, b): super().__init__(a, b) self.c = [1, 2, 3] # Must have a non-trivial container to enable gc. # Remove self.invalidated after gaining (limited) access to invalidated ptr. self.invalidated = False def DoSomething(self): return -1 if self.invalidated else self.a * self.b class VirtualFuncsTest(unittest.TestCase): def testInitConcreteClassWithVirtualMethods(self): b = virtual_funcs_basics.B() b.set_c(2) self.assertEqual(b.c, 2) c = virtual_funcs_basics.ClassNonDefConst(1, 2) self.assertEqual(c.DoSomething(), 3) def testBasicCall(self): b = B() b.set_c(2) self.assertEqual(b.c, 2) virtual_funcs_basics.Bset(b, 4) self.assertEqual(b.c, 4) def testVirtual(self): self.assertEqual(virtual_funcs_basics.seq(K(), 2, 6), [0, 2, 4, 6]) abc_non_def_impl = AbstractClassNonDefConstImpl(4, 5) self.assertEqual(abc_non_def_impl.DoSomething(), 20) self.assertEqual(virtual_funcs_basics.DoSomething1(abc_non_def_impl), 20) non_def_impl = ClassNonDefConstImpl(4, 5) self.assertEqual(non_def_impl.DoSomething(), 20) self.assertEqual(virtual_funcs_basics.DoSomething2(non_def_impl), 20) def testVirtual2(self): q = L(3) self.assertEqual(virtual_funcs_basics.add_seq(q, 2, 6), 3) self.assertEqual(q.data(), [0, 2, 4]) def testVirtualProperty(self): c = virtual_funcs_basics.D() c.pos_c = -1 self.assertEqual(c.pos_c, 1) if __name__ == '__main__': unittest.main()
[ "rwgk@google.com" ]
rwgk@google.com
ce369289555ace6e16616cbac4ee84b00b8d594e
9939d9357257f10074b3d0055d70d5f278e7032f
/entity.py
b3e4eaaab491ccabdaa68dce765d27934f403a48
[]
no_license
bravequinoaa/FlappyBirdPy
8068042b97f2b9829bf5fb4364b84f70b05b9f65
6e04c07bb6566846386b2cad5e226a072092a36b
refs/heads/main
2023-02-03T23:03:38.021231
2020-12-16T04:27:44
2020-12-16T04:27:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
319
py
import pygame from abc import ABC, abstractmethod, ABCMeta class Entity(ABC): __metaclass__ = ABCMeta @abstractmethod def __init__(self, surface, clock, width, height, color): self.X = None self.Y = None self.gravity = None @abstractmethod def update(self): pass
[ "wvano97@gmail.com" ]
wvano97@gmail.com
8946b98e89bdddce94a2715d79b0fbbcb3e9740e
e7e6e19e293c67e412355811fd9e447b3f26443d
/libs/functions/__init__.py
a5f7f6b9dfa0d84d541d00f6f4ae843dd43084ac
[ "MIT" ]
permissive
nga-27/SecuritiesAnalysisTools
6c2f57929346e01433e7d6e1176747de2dbce50a
7c4ce3d9d6ffb62aaf86c7d46bd7f15f4c68cbb0
refs/heads/master
2023-08-09T03:54:33.587670
2023-07-19T23:11:27
2023-07-19T23:11:27
180,685,810
5
2
MIT
2023-07-19T23:11:28
2019-04-11T00:44:25
Python
UTF-8
Python
false
false
123
py
""" functions to be used a single operations (or eventual API functions) """ from .functions import only_functions_handler
[ "namell91@gmail.com" ]
namell91@gmail.com
5acdd79baad3e3b1e64e2899d6958a752a4e1fbd
ec2490a6628ea5240ee16d7ee0ab35c4bdf3f954
/gaurabda/GCEarthData.py
6312b600eae9579137e7dd37368ff3a49ed3cacb
[ "MIT" ]
permissive
tuksik/gaurabda-calendar-ekadasi
26e0f13112949ec9a8895bc1b0bccbc587544ae5
36f00a497bc30c041619baa1e9551e3a16021e4e
refs/heads/master
2022-12-30T09:32:51.683966
2020-10-16T14:35:03
2020-10-16T14:35:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,436
py
import math import gaurabda.GCMath as GCMath import gaurabda.GCAyanamsha as GCAyanamsha import gaurabda.GCTimeZone as GCTimeZone import gaurabda.GCStrings as GCStrings import gaurabda.GCCoords as GCCoords import gaurabda.GCUT as GCUT def calc_epsilon_phi(date): arg_mul = [ [ 0, 0, 0, 0, 1], [-2, 0, 0, 2, 2], [ 0, 0, 0, 2, 2], [ 0, 0, 0, 0, 2], [ 0, 1, 0, 0, 0], [ 0, 0, 1, 0, 0], [-2, 1, 0, 2, 2], [ 0, 0, 0, 2, 1], [ 0, 0, 1, 2, 2], [-2,-1, 0, 2, 2], [-2, 0, 1, 0, 0], [-2, 0, 0, 2, 1], [ 0, 0,-1, 2, 2], [ 2, 0, 0, 0, 0], [ 0, 0, 1, 0, 1], [ 2, 0,-1, 2, 2], [ 0, 0,-1, 0, 1], [ 0, 0, 1, 2, 1], [-2, 0, 2, 0, 0], [ 0, 0,-2, 2, 1], [ 2, 0, 0, 2, 2], [ 0, 0, 2, 2, 2], [ 0, 0, 2, 0, 0], [-2, 0, 1, 2, 2], [ 0, 0, 0, 2, 0], [-2, 0, 0, 2, 0], [ 0, 0,-1, 2, 1], [ 0, 2, 0, 0, 0], [ 2, 0,-1, 0, 1], [-2, 2, 0, 2, 2], [ 0, 1, 0, 0, 1] ] arg_phi = [ [-171996,-1742], [ -13187, -16], [ -2274, -2], [ 2062, 2], [ 1426, -34], [ 712, 1], [ -517, 12], [ -386, -4], [ -301, 0], [ 217, -5], [ -158, 0], [ 129, 1], [ 123, 0], [ 63, 0], [ 63, 1], [ -59, 0], [ -58, -1], [ -51, 0], [ 48, 0], [ 46, 0], [ -38, 0], [ -31, 0], [ 29, 0], [ 29, 0], [ 26, 0], [ -22, 0], [ 21, 0], [ 17, -1], [ 16, 0], [ -16, 1], [ -15, 0] ] arg_eps = [ [ 92025, 89], [ 5736, -31], [ 977, -5], [ -895, 5], [ 54, -1], [ -7, 0], [ 224, -6], [ 200, 0], [ 129, -1], [ -95, 3], [ 0, 0], [ -70, 0], [ -53, 0], [ 0, 0], [ -33, 0], [ 26, 0], [ 32, 0], [ 27, 0], [ 0, 0], [ -24, 0], [ 16, 0], [ 13, 0], [ 0, 0], [ -12, 0], [ 0, 0], [ 0, 0], [ -10, 0], [ 0, 0], [ -8, 0], [ 7, 0], [ 9, 0] ] t = ( date -2451545.0)/36525 delta_phi = 0.0 # longitude of rising knot omega =GCMath.putIn360(125.04452+(-1934.136261+(0.0020708+1.0/450000*t)*t)*t) if True: l = 280.4665+36000.7698*t ls = 218.3165+481267.8813*t delta_epsilon = 9.20 * GCMath.cosDeg(omega)+ 0.57* GCMath.cosDeg(2*l)+ 0.10* GCMath.cosDeg(2*ls) - 0.09*GCMath.cosDeg(2*omega) delta_phi =(-17.20* GCMath.sinDeg(omega)- 1.32*GCMath.sinDeg(2*l)-0.23*GCMath.sinDeg(2*ls) + 0.21*GCMath.sinDeg(2*omega))/3600 else: # mean elongation of moon to sun d = GCMath.putIn360(297.85036+(445267.111480+(-0.0019142+t/189474)*t)*t) # mean anomaly of the sun m =GCMath.putIn360(357.52772+(35999.050340+(-0.0001603-t/300000)*t)*t) # mean anomaly of the moon ms =GCMath.putIn360(134.96298+(477198.867398+(0.0086972+t/56250)*t)*t) # argument of the latitude of the moon f = GCMath.putIn360(93.27191+(483202.017538+(-0.0036825+t/327270)*t)*t) delta_phi = 0 delta_epsilon = 0 for i in range(31): s= arg_mul[i][0]*d + arg_mul[i][1]*m + arg_mul[i][2]*ms + arg_mul[i][3]*f + arg_mul[i][4]*omega delta_phi = delta_phi+(arg_phi[i][0]+arg_phi[i][1]*t*0.1)*GCMath.sinDeg(s) delta_epsilon = delta_epsilon+(arg_eps[i][0] + arg_eps[i][1]*t*0.1) * GCMath.cosDeg(s) delta_phi=delta_phi*0.0001/3600 delta_epsilon=delta_epsilon*0.0001/3600 # angle of ecliptic epsilon_0=84381.448+(-46.8150+(-0.00059+0.001813*t)*t)*t epsilon=(epsilon_0+delta_epsilon)/3600 return delta_phi, epsilon def eclipticalToEquatorialCoords(ecc,date): eqc = GCCoords.GCEquatorialCoords() epsilon = 0.0 delta_phi = 0.0 alpha = delta = 0.0 delta_phi,epsilon = calc_epsilon_phi(date) ecc.longitude = GCMath.putIn360(ecc.longitude + delta_phi) eqc.rightAscension = GCMath.arcTan2Deg( GCMath.sinDeg(ecc.longitude) * GCMath.cosDeg(epsilon) - GCMath.tanDeg(ecc.latitude) * GCMath.sinDeg(epsilon), GCMath.cosDeg(ecc.longitude)); eqc.declination = GCMath.arcSinDeg( GCMath.sinDeg(ecc.latitude) * GCMath.cosDeg(epsilon) + GCMath.cosDeg(ecc.latitude) * GCMath.sinDeg(epsilon) * GCMath.sinDeg(ecc.longitude)); return eqc,ecc def equatorialToHorizontalCoords(eqc, obs, date): hc = GCCoords.GCHorizontalCoords() h = GCMath.putIn360(star_time(date) - eqc.rightAscension + obs.longitude_deg) hc.azimut = GCMath.rad2deg( math.atan2(GCMath.sinDeg(h), GCMath.cosDeg(h) * GCMath.sinDeg(obs.latitude_deg) - GCMath.tanDeg(eqc.declination) * GCMath.cosDeg(obs.latitude_deg) )) hc.elevation = GCMath.rad2deg( math.asin(GCMath.sinDeg(obs.latitude_deg) * GCMath.sinDeg(eqc.declination) + GCMath.cosDeg(obs.latitude_deg) * GCMath.cosDeg(eqc.declination) * GCMath.cosDeg(h))); return hc def GetTextLatitude(d): c0 = 'S' if d < 0.0 else 'N' d = math.fabs(d) a0 = int(math.floor(d)) a1 = int(math.floor((d - a0)*60 + 0.5)) return "{}{}{:02d}".format(a0, c0, a1) def GetTextLongitude(d): c0 = 'W' if d < 0.0 else 'E' d = math.fabs(d) a0 = int(math.floor(d)) a1 = int(math.floor((d - a0)*60 + 0.5)) return "{}{}{:02d}".format(a0, c0, a1) def star_time(date): jd = date t =(jd-2451545.0)/36525.0 delta_phi, epsilon = calc_epsilon_phi(date) return GCMath.putIn360(280.46061837+360.98564736629*(jd-2451545.0)+ t*t*(0.000387933-t/38710000)+ delta_phi*GCMath.cosDeg(epsilon) ) class EARTHDATA: def __init__(self): # observated event # 0 - center of the sun # 1 - civil twilight # 2 - nautical twilight # 3 - astronomical twilight self.obs = 0 self.longitude_deg = 0.0 self.latitude_deg = 0.0 self.tzone = 0.0 self.dst = 0 def __str__(self): return '{}: {} {}: {} {}: {}'.format( GCStrings.getString(10), GetTextLatitude(latitude_deg), GCStrings.getString(11), GetTextLongitude(longitude_deg), GCStrings.getString(12), GCTimeZone.GetTimeZoneOffsetText(tzone)) def GetHorizontDegrees(self,jday): return GCMath.putIn360(star_time(jday) - self.longitude_deg - GCAyanamsha.GetAyanamsa(jday) + 155) def GetNextAscendentStart(self, startDate): phi = 30.0 l1 = l2 = 0.0 jday = startDate.GetJulianComplete() xj = 0.0 d = GCGregorianDate(date=startDate) xd = GCGregorianDate() scan_step = 0.05 prev_tit = 0 new_tit = -1 l1 = self.GetHorizontDegrees(jday) prev_tit = int(math.floor(l1/phi)) counter = 0 while counter < 20: xj = jday xd.Set(d) jday += scan_step d.shour += scan_step if d.shour > 1.0: d.shour -= 1.0 d.NextDay() l2 = self.GetHorizontDegrees(jday) new_tit = int(math.floor(l2/phi)) if prev_tit != new_tit: jday = xj d.Set(xd) scan_step *= 0.5 counter+=1 continue else: l1 = l2 nextDate = GCGregorianDate.GCGregorianDate(date=d) return new_tit, nextDate def unittests(): GCUT.info('earth data') GCUT.val(GetTextLatitude(12.5),'12N30','text latitude') GCUT.val(GetTextLongitude(-15.25),'15W15','text longitude') GCUT.val(star_time(2451545.0),280.45704234942144,'start time') dp,ep = calc_epsilon_phi(2451545.0) GCUT.val(dp,-0.0038975991170544155,'delta phi') GCUT.val(ep,23.437690731210242,'epsilon')
[ "root@gopal.home.sk" ]
root@gopal.home.sk
5f8bdbabaf7e01920dfee62d7b029a3ca4a594e5
87376c79491df2ff693cd6046689251e409d6052
/cwProject/dog_account/migrations/0001_initial.py
9f2981d9293cac972cfe539a50e3189bdc7e15e5
[ "Apache-2.0" ]
permissive
cs-fullstack-2019-spring/django-models-cw-gkg901
1874b63ad859a56cc1363856696a136d47f34df2
32b8b7135223077c75d6bcd151652cd41d7e0397
refs/heads/master
2020-04-24T04:41:50.535817
2019-02-22T02:58:33
2019-02-22T02:58:33
171,713,563
0
0
null
null
null
null
UTF-8
Python
false
false
1,173
py
# Generated by Django 2.0.6 on 2019-02-20 17:23 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Account', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=30)), ('realName', models.CharField(max_length=50)), ('accountNumber', models.IntegerField(max_length=16)), ('balance', models.DecimalField(decimal_places=2, max_digits=99999999999)), ], ), migrations.CreateModel( name='Dog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('breed', models.CharField(max_length=50)), ('color', models.CharField(max_length=50)), ('gender', models.CharField(max_length=6)), ], ), ]
[ "gerren.gregory@gmail.com" ]
gerren.gregory@gmail.com
a02ca8156ec3b6dbe8f89c8ae875458caa693365
4683d3bfe1b6ba70a566249149f55671c7bb3826
/game/3mouse/mousedir.py
aae7cdaa7e430a6e6d2c090a1e43cc79772a6f0d
[]
no_license
crazyj7/python
01105fe5b8ec23b53164a3f7f8a12690abc0bf6a
2d0a55c8371aa138bcebb1f65b53109599d39009
refs/heads/master
2020-05-02T18:36:00.992398
2020-02-07T13:07:13
2020-02-07T13:07:13
178,133,678
5
0
null
null
null
null
UTF-8
Python
false
false
3,427
py
''' mouse position angle. move ''' import pygame from pygame import Surface import os, sys import math bExit = False RED=(255,0,0) GREEN=(0,255,0) BLUE=(0,0,255) BLACK=(0,0,0) pygame.init() pad = pygame.display.set_mode( (640,480)) pygame.display.set_caption('test') user = Surface((100,100)) # 시작 이미지. x축으로 0도 기울기. pygame.draw.polygon(user, RED, [(0,0), (100,50), (0,100)], 3) pygame.draw.line(user, GREEN, (100,50), (0, 50), 2) pygame.draw.rect(user, BLUE, pygame.Rect(0, 0, 100, 100), 2) user.set_colorkey(BLACK) pos = user.get_rect() # 시작 위치 pos.centerx = 100 pos.centery = 100 # print('pos (rect)= ', pos, ' current angle=0') def rot_center2(image, angle): ''' 사각 영역은 변함없고, 내부의 이미지만 회전 시키고, 밖으로 나간 부분은 잘린다. 중심유지. :param image: :param angle: :return: ''' orig_rect = image.get_rect() # 이미지 회전 rot_image = pygame.transform.rotate(image, angle) rot_rect = orig_rect.copy() # 원본 이미지 크기의 중심을 회전된 이미지 영역의 중심에 위치 rot_rect.center = rot_image.get_rect().center # 원본 이미지 크기만큼 자름. rot_image = rot_image.subsurface(rot_rect).copy() return rot_image def rot_center(image, rect, angle): ''' 영역의 중심점에서 회전시키고, 새로운(더 커진) 영역 크기도 반환. 잘림 없음. 중심유지. :param image: :param rect: :param angle: :return: ''' # 각도 만큼 회전. rot_image = pygame.transform.rotate(image, angle) # 중심점을 맞춘다. 새로운 영역 보정. 영역 크기가 커질수 있음. 짤림 없음. rot_rect = rot_image.get_rect(center=rect.center) return rot_image, rot_rect clock = pygame.time.Clock() speed = 10 while not bExit: for event in pygame.event.get(): if event.type == pygame.QUIT: bExit=True elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: bExit=True elif event.type == pygame.MOUSEBUTTONDOWN: pass elif event.type == pygame.MOUSEBUTTONUP: pass key = pygame.key.get_pressed() if key[pygame.K_a]: pos.centerx -= speed if key[pygame.K_d]: pos.centerx += speed if key[pygame.K_w]: pos.centery -= speed if key[pygame.K_s]: pos.centery += speed pad.fill(BLACK) mousepos = pygame.mouse.get_pos() # print('mousepos=', mousepos) angle = math.atan2(pos.centery - mousepos[1], mousepos[0] - pos.centerx) print('angle=', angle) # 각도는 라디안 0~pi, -pi, 0 # user는 x축 방향 0도 기준으로 있음. user를 angle만큼 CCW로 회전. # degree로 변환 필요. # img = pygame.transform.rotate(user, angle*180/math.pi) img, rect = rot_center(user, user.get_rect(), angle*180/math.pi) # img = rot_center2(user, angle*180/math.pi) # pad.blit(img, (pos.x, pos.y) ) rect.centerx += pos.x rect.centery += pos.y pad.blit(img, (rect.x, rect.y)) mousedown = pygame.mouse.get_pressed() # 마우스 다운 상태면 선을 그림. if mousedown[0]: pygame.draw.line(pad, BLUE, mousepos, rect.center) # pad.blit(user, (pos.x, pos.y) ) pygame.display.flip() # pygame.display.upate() clock.tick(60) pygame.quit()
[ "psychic@secuve.com" ]
psychic@secuve.com
bfe44943e89a9537af13bd731fb422a50eb87f7f
488fb4ea9b50759c61d115fea2f830dbe1a92fb4
/flask_app/simple.py
fc09e1aef193d07567780b2eea211e3db2ae8005
[]
no_license
jacobcui/python301
ea42e8664c8dd1ce1d7f5f05c592372a050a27bf
0f2961bdf061bf6d8b6390f19deeef1b73af96b4
refs/heads/master
2020-04-19T22:13:59.503027
2019-02-08T00:17:18
2019-02-08T00:17:18
168,463,713
1
0
null
null
null
null
UTF-8
Python
false
false
368
py
"""A simple example explaining GET, POST. Reference: http://flask_app.pocoo.org/docs/1.0/quickstart/#a-minimal-application """ from flask import Blueprint, render_template, request bp = Blueprint('simple', __name__) @bp.route('/simple', methods=['GET', 'POST']) def simple_handler(): if request.method == 'GET': return render_template('simple.html')
[ "jacobcui123@gmail.com" ]
jacobcui123@gmail.com
8ef7a014215cf45c13afb9ae120e112806e9cc33
0a8a3d486c170019a09fadeafc36cffb459f55db
/miscImu/testIMU.py
682b2e9007fdba02a94d619d77cd53b9402a9718
[ "MIT" ]
permissive
Armon16/IMU
e240f6d30451695d94a71e5f0d2454cf0ccc7d85
ee4d114c7f5074a5f45bd658bf5d7f310d452f2f
refs/heads/master
2020-04-29T01:21:05.744558
2019-04-12T06:17:29
2019-04-12T06:17:29
153,354,839
0
0
null
null
null
null
UTF-8
Python
false
false
2,560
py
import logging import sys import time from deepstream import get, post from Adafruit_BNO055 import BNO055 try: obj = {} post(obj, 'imu') except: print("Not connected to deepstream") magneticDeviation = 11 bno = BNO055.BNO055(busnum=2) confMode = True while True: try: if not bno.begin(): print('The sensor is not connected') time.sleep(1) #raise RuntimeError('Failed to initialize BNO055! Is the sensor connected?') else: break except: print('waiting for sensor...') def magToTrue(h): global magneticDeviation if (h - magneticDeviation < 0): return (h + 360 - magneticDeviation) else: return h - magneticDeviation bno.set_mode(0x00) print("Entering Config Mode") fileIn = open('calibrationData.txt','r') data = fileIn.read().splitlines() for i in range(len(data)): data[i] = int(data[i]) bno.set_calibration(data) fileIn.close() # Print system status and self test result. status, self_test, error = bno.get_system_status() print('System status: {0}'.format(status)) print('Self test result (0x0F is normal): 0x{0:02X}'.format(self_test)) # Print out an error if system status is in error mode. if status == 0x01: print('System error: {0}'.format(error)) print('See datasheet section 4.3.59 for the meaning.') # Print BNO055 software revision and other diagnostic data. sw, bl, accel, mag, gyro = bno.get_revision() print('Software version: {0}'.format(sw)) print('Bootloader version: {0}'.format(bl)) print('Accelerometer ID: 0x{0:02X}'.format(accel)) print('Magnetometer ID: 0x{0:02X}'.format(mag)) print('Gyroscope ID: 0x{0:02X}\n'.format(gyro)) print('Reading BNO055 data, press Ctrl-C to quit...') try: while True: heading, roll, pitch = bno.read_euler() sys, gyro, accel, mag = bno.get_calibration_status() heading = magToTrue(heading) if (sys == 3 and gyro == 3 and accel == 3 and mag == 3 and confMode): bno.set_mode(0x0C) print("Entering Nine Degrees of Freedom Fusion Mode") confMode = False print('Heading={0:0.2F} Roll={1:0.2F} Pitch={2:0.2F}\tSys_cal={3} Gyro_cal={4} Accel_cal={5} Mag_cal={6}'.format( heading, roll, pitch, sys, gyro, accel, mag)) try: response = post({ "heading":heading, "roll":roll, "pitch":pitch, "sys":sys, "gyro":gyro, "accel":accel, "mag":mag }, 'imu') except: print("Cannot Post to Deepstream") response = None time.sleep(.03) except: print("Error in try catch")
[ "armon16@csu.fullerton.edu" ]
armon16@csu.fullerton.edu
665fa4ba03e6c225b3c0e1b947ee5d50644e1b6b
4b660991e5c9c93c83dccccdd3ea91531201e8a3
/DSA/stack/balanced_parentheses.py
b4f1220d5f0ec9e0f22a0eb60703bc0198df83f8
[ "MIT" ]
permissive
RohanMiraje/DSAwithPython
2a1515fa5f9e5cc76b08a3e6f0ce34e451fb6f4b
ea4884afcac9d6cc2817a93e918c829dd10cef5d
refs/heads/master
2022-09-24T08:57:04.695470
2021-10-21T01:06:06
2021-10-21T01:06:06
238,381,770
2
0
null
null
null
null
UTF-8
Python
false
false
1,280
py
def check_balanced_parentheses(string): stack = list() matches = [("(", ")"), ("{", "}"), ("[", "]")] if len(string) % 2: """ base condition to early check assuming string has only parentheses """ return False for char in string: if char in ['(', '{', '[']: stack.append(char) elif char in [')', '}', ']']: if len(stack) == 0: return False last_opening = stack.pop() if (last_opening, char) not in matches: return False # prev = stack.pop() # if char == ')': # if prev != "(": # return False # elif char == "}": # if prev != "{": # return False # elif char == "]": # if prev != "[": # return False """ other approach for checking matches like matches = [("(",")"),("{","}"),("[","]")] last_opening = stack.pop() if (last_opening, curr_char )not in matches: return False """ return len(stack) == 0 if __name__ == '__main__': exp = "([{}])" print(check_balanced_parentheses(exp))
[ "rohanmiraje19@gmail.com" ]
rohanmiraje19@gmail.com
c6216e017e386c6fcba6a03eb401c29dae4b42b7
abfa70e1da5b4ba8e465cdc046fa36e81386744a
/base_ml/10.1.Iris_DecisionTree.py
68bd1cb46b1c29c5cf1e31ca7b17b59b9c34a20c
[]
no_license
superman666ai/crazy_project
f850819ff2287e345b67500111733bafa5629d1f
99dcba0fe246ecaf3f556f747d44731a04231921
refs/heads/master
2020-05-15T09:32:56.523875
2019-05-16T00:57:23
2019-05-16T00:57:23
182,179,544
0
0
null
null
null
null
UTF-8
Python
false
false
4,473
py
#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import tree from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline def iris_type(s): it = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2} return it[s] # 花萼长度、花萼宽度,花瓣长度,花瓣宽度 # iris_feature = 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' if __name__ == "__main__": mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False path = '../data/8.iris.data' # 数据文件路径 data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type},encoding="utf-8") x, y = np.split(data, (4,), axis=1) # 为了可视化,仅使用前两列特征 x = x[:, :2] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=1) #ss = StandardScaler() #ss = ss.fit(x_train) # 决策树参数估计 # min_samples_split = 10:如果该结点包含的样本数目大于10,则(有可能)对其分支 # min_samples_leaf = 10:若将某结点分支后,得到的每个子结点样本数目都大于10,则完成分支;否则,不进行分支 model = Pipeline([ ('ss', StandardScaler()), ('DTC', DecisionTreeClassifier(criterion='entropy', max_depth=3))]) # clf = DecisionTreeClassifier(criterion='entropy', max_depth=3) model = model.fit(x_train, y_train) y_test_hat = model.predict(x_test) # 测试数据 print(model.score) # 保存 # dot -Tpng -o 1.png 1.dot f = open('.\\iris_tree.dot', 'w') tree.export_graphviz(model.get_params('DTC')['DTC'], out_file=f) # 画图 N, M = 100, 100 # 横纵各采样多少个值 x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围 x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围 t1 = np.linspace(x1_min, x1_max, N) t2 = np.linspace(x2_min, x2_max, M) x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点 x_show = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # # 无意义,只是为了凑另外两个维度 # # 打开该注释前,确保注释掉x = x[:, :2] # x3 = np.ones(x1.size) * np.average(x[:, 2]) # x4 = np.ones(x1.size) * np.average(x[:, 3]) # x_test = np.stack((x1.flat, x2.flat, x3, x4), axis=1) # 测试点 cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) y_show_hat = model.predict(x_show) # 预测值 y_show_hat = y_show_hat.reshape(x1.shape) # 使之与输入的形状相同 plt.figure(facecolor='w') plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light) # 预测值的显示 plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test.ravel(), edgecolors='k', s=100, cmap=cm_dark, marker='o') # 测试数据 plt.scatter(x[:, 0], x[:, 1], c=y.ravel(), edgecolors='k', s=40, cmap=cm_dark) # 全部数据 plt.xlabel(iris_feature[0], fontsize=15) plt.ylabel(iris_feature[1], fontsize=15) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.grid(True) plt.title(u'鸢尾花数据的决策树分类', fontsize=17) plt.show() # 训练集上的预测结果 y_test = y_test.reshape(-1) # print y_test_hat # print y_test result = (y_test_hat == y_test) # True则预测正确,False则预测错误 acc = np.mean(result) # print '准确度: %.2f%%' % (100 * acc) # 过拟合:错误率 depth = np.arange(1, 15) err_list = [] for d in depth: clf = DecisionTreeClassifier(criterion='entropy', max_depth=d) clf = clf.fit(x_train, y_train) y_test_hat = clf.predict(x_test) # 测试数据 result = (y_test_hat == y_test) # True则预测正确,False则预测错误 err = 1 - np.mean(result) err_list.append(err) # print d, ' 准确度: %.2f%%' % (100 * err) plt.figure(facecolor='w') plt.plot(depth, err_list, 'ro-', lw=2) plt.xlabel(u'决策树深度', fontsize=15) plt.ylabel(u'错误率', fontsize=15) plt.title(u'决策树深度与过拟合', fontsize=17) plt.grid(True) plt.show()
[ "keepingoner@163.com" ]
keepingoner@163.com
c1cf80839a68e4e308b1e1494623900cb368e997
a483ec5f451f4d6a4455626d3b5e7493f2c44052
/sophomore/基于神经网络的人体行为姿态识别/SRTP-201909069-项目成果/3DCNN-Behavior Recognition/model_detail.py
01973fa68d8799c8feb8ab796528dfc78cb54d7a
[]
no_license
wjialei/DuringColloge
8e62587da265e2cf512c6a90990cf41c3beccf40
d899cfb9954e1f8e10dd806d0e0428dfae18ad9b
refs/heads/master
2020-12-13T05:47:05.759575
2020-01-18T05:40:41
2020-01-18T05:40:41
234,324,600
0
0
null
null
null
null
UTF-8
Python
false
false
1,007
py
import h5py #打开文件 f1 = h5py.File('.\\data\\checkpoint\\inception.001-2.03.hdf5','r') f2 = h5py.File('.\\data\\checkpoint\\inception.002-1.77.hdf5','r') f3 = h5py.File('.\\data\\checkpoint\\inception.005-1.64.hdf5','r') f4 = h5py.File('.\\data\\checkpoint\\inception.015-1.58.hdf5','r') f5 = h5py.File('.\\data\\checkpoint\\inception.016-1.55.hdf5','r') f6 = h5py.File('.\\data\\checkpoint\\inception.022-1.39.hdf5','r') f7 = h5py.File('.\\data\\checkpoint\\inception.029-1.39.hdf5','r') with h5py.File('.\\data\\checkpoint\\inception.001-2.03.hdf5','r') as f: def prtname(name): print(name) f.visit(prtname) subgroup = f['subgroup'] subsub = subgroup['subsub'] data1 = subgroup['data1'] data2 = subsub['data2'] # print(dset) print("data1 name:",data1.name,"data2 name",data2.name) print("data1 shape:",data1.shape,"data2 shape:",data2.shape) print("data1 dtype:",data1.dtype,"data2 dtype:",data2.dtype) print("data1:",data1[:],"data2:",data2[:])
[ "Jialei_w@163.com" ]
Jialei_w@163.com
ed80bc16dfb22d80024c3f7ec27c4aa5882763ad
9a8746628978eb368da0c4aea7da9ad0818b0c75
/StreamLitLibrary.py
1f14d7959d1c59d1779fd1855080ec70de2cf10a
[]
no_license
jayreds73/Heroku-Deployment
67999469165f4f9bee91252aef34a54de518b51b
bfa893a19004c1418e8a0ac72d1e522b03ae790f
refs/heads/master
2022-12-15T03:17:28.359818
2020-09-09T20:10:53
2020-09-09T20:10:53
294,200,010
0
0
null
null
null
null
UTF-8
Python
false
false
1,725
py
#from flask import Flask,request import pandas as pd import pickle as pkl import streamlit as st # Run this - "streamlit run filename" in command prompt # load the model at the start of the app pickle_in = open('model.pkl','rb') model_iris = pkl.load(pickle_in) def get_description(int_code): if (int_code==0): desc = 'Setosa' elif (int_code == 1): desc = 'Versicolour' else: desc = 'Virginica' return desc def Welcome(): return "Hello world, Jayanth" def iris_predict(sl,sw,pl,pw): prediction = model_iris.predict([[sl,sw,pl,pw]]) return "The prediction is: " + get_description(int(prediction[0])) def main(): #Gives Title st.title("Iris Data Set Prediction") # Creates look and feel -- see more for html html_temp = """ <div style="background-color:tomato;padding:10px"> <h2 style="color:white;text-align:center;">Streamlit Rendered App for IRIS prediction </h2> </div> """ # Executes HTML st.markdown(html_temp, unsafe_allow_html=True) sl = float(st.text_input('Sepal Length','1.25')) sw = float(st.text_input('Sepal Width','2.25')) pl = float(st.text_input('Petal Length','3.25')) pw = float(st.text_input('Petal Width','4.8')) prediction = "" # create button if st.button("Predict"): prediction = iris_predict(sl,sw,pl,pw) st.success(prediction) # prediction_t = "" # if st.button("Test"): # prediction_t = 'Pass' # st.success(prediction_t) # if st.button("About"): # st.text("Lets LEarn") # st.text("Built with Streamlit") if(__name__=='__main__'): main()
[ "noreply@github.com" ]
noreply@github.com
4b6ede8c383df1a8a4b9930c4be790de6c73ee5f
e8811aaa2f4344de1f835b4e72b26f9dc5eb9f47
/http1/predict.py
387a14987524c7b3f34297d2b3c2f10ab83bf5f8
[]
no_license
anandanthony/anandpyfunc
93bae5ce03b8638e2b11a2fcb540592578e1ba84
6f7d497676492c1ced88a84aae8aad60a7907f9f
refs/heads/master
2022-11-23T07:56:30.060122
2020-08-03T21:23:27
2020-08-03T21:23:27
284,809,547
0
0
null
null
null
null
UTF-8
Python
false
false
3,585
py
# General libs from datetime import datetime import logging import os # Image processing libs import tensorflow as tf import tensorflow_addons as tfa import cv2 from PIL import Image # Additional libs import numpy as np from urllib.request import urlopen import requests from io import BytesIO from numpy import genfromtxt from scipy.spatial import distance scriptpath = os.path.abspath(__file__) dir = os.path.dirname(scriptpath) image = os.path.join(dir, 'file.jpeg') model_weights = os.path.join(dir, 'keras.h5') dataset = os.path.join(dir, 'dataset.tsv') classes = os.path.join(dir, 'classes.txt') database = genfromtxt(dataset, delimiter='\t') classes_list = genfromtxt(classes, delimiter='\n',dtype=None) size = 480 def exctract_roi(image): # Exctract object from an image gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5,5), 0) canny = cv2.Canny(blurred, 0,100, 3) kernel = np.ones((5,5),np.uint8) dilate = cv2.dilate(canny, kernel, iterations=1) cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if len(cnts) == 2 else cnts[1] image_number = 0 for c in cnts: x,y,w,h = cv2.boundingRect(c) ROI = image[y:y+h, x:x+w] return ROI def url_to_image(url): # Download image from URL and open in opencv #image = urlopen(url) #image = np.asarray(bytearray(image.read()), dtype="uint8") #image = cv2.imdecode(image, cv2.IMREAD_COLOR) response = requests.get(url) image = Image.open(BytesIO(response.content)) image = np.array(image) return image def image_preprocessing(image_url): image = url_to_image(image_url) image = exctract_roi(image) image = np.array(image) tensor = tf.convert_to_tensor(image) tensor = tf.image.convert_image_dtype(tensor, tf.float32) tensor = tf.image.resize(tensor, (size,size)) return tf.expand_dims(tensor,0) def result_post_processing(result): distances = [] for i in database: dist = distance.euclidean(i,result) distances.append(dist) id = np.take(classes_list,np.argmin(distances)) return id.decode("utf-8") def predict_image_from_url(image_url): model = tf.keras.Sequential([ tf.keras.layers.Conv2D(filters=64, kernel_size=7, strides=2, padding='valid', activation='relu', input_shape=(480,480,3)), tf.keras.layers.MaxPooling2D(pool_size=2), tf.keras.layers.Dropout(0.3), tf.keras.layers.Conv2D(filters=192, kernel_size=3, strides=1, padding='valid', activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=2), tf.keras.layers.Conv2D(filters=192, kernel_size=3, strides=1, padding='valid', activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=2), #tf.keras.layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='valid', activation='relu'), tf.keras.layers.Conv2D(filters=256, kernel_size=3, strides=1, padding='valid', activation='relu'), #tf.keras.layers.Conv2D(filters=256, kernel_size=3, strides=1, padding='valid', activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=2), tf.keras.layers.Dropout(0.3), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation=None), tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1)) ]) model.load_weights(model_weights) model.compile(loss=tfa.losses.TripletSemiHardLoss(margin = 4.0)) result = model.predict(image_preprocessing(image_url)) mongoid = result_post_processing(result) return mongoid
[ "anfranci@microsoft.com" ]
anfranci@microsoft.com
c7fe334fcb246d191e7db56465b77abd86f98947
83412c7effe6a47e423fb55541d768d1bb308de0
/HW1/code/src/titanic.py
90f303852d55635b43e5ce3301f6e9b3daf995ab
[]
no_license
atibhav21/CSM146
7be041ae972ebd3a78c01e2a98075f66f875e9f4
ab806ec5fe23a7b36e503b304445b0efe83f12d5
refs/heads/master
2021-09-09T05:52:27.155543
2018-03-14T02:52:46
2018-03-14T02:52:46
117,149,527
0
0
null
null
null
null
UTF-8
Python
false
false
16,174
py
""" Author : Yi-Chieh Wu, Sriram Sankararaman Description : Titanic """ # Use only the provided packages! import math import csv from util import * from collections import Counter from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.cross_validation import cross_val_score from sklearn.cross_validation import train_test_split from sklearn import metrics import operator ###################################################################### # classes ###################################################################### class Classifier(object) : """ Classifier interface. """ def fit(self, X, y): raise NotImplementedError() def predict(self, X): raise NotImplementedError() class MajorityVoteClassifier(Classifier) : def __init__(self) : """ A classifier that always predicts the majority class. Attributes -------------------- prediction_ -- majority class """ self.prediction_ = None def fit(self, X, y) : """ Build a majority vote classifier from the training set (X, y). Parameters -------------------- X -- numpy array of shape (n,d), samples y -- numpy array of shape (n,), target classes Returns -------------------- self -- an instance of self """ majority_val = Counter(y).most_common(1)[0][0] self.prediction_ = majority_val return self def predict(self, X) : """ Predict class values. Parameters -------------------- X -- numpy array of shape (n,d), samples Returns -------------------- y -- numpy array of shape (n,), predicted classes """ if self.prediction_ is None : raise Exception("Classifier not initialized. Perform a fit first.") n,d = X.shape y = [self.prediction_] * n return y class RandomClassifier(Classifier) : def __init__(self) : """ A classifier that predicts according to the distribution of the classes. Attributes -------------------- probabilities_ -- class distribution dict (key = class, val = probability of class) """ self.probabilities_ = None def fit(self, X, y) : """ Build a random classifier from the training set (X, y). Parameters -------------------- X -- numpy array of shape (n,d), samples y -- numpy array of shape (n,), target classes Returns -------------------- self -- an instance of self """ ### ========== TODO : START ========== ### # part b: set self.probabilities_ according to the training set classes = np.unique(y); self.probabilities_ = {}; total_number = y.shape[0] for i in classes: self.probabilities_[int(i)] = len(np.where(y == i)[0])/float(total_number) ### ========== TODO : END ========== ### return self def predict(self, X, seed=1234) : """ Predict class values. Parameters -------------------- X -- numpy array of shape (n,d), samples seed -- integer, random seed Returns -------------------- y -- numpy array of shape (n,), predicted classes """ if self.probabilities_ is None : raise Exception("Classifier not initialized. Perform a fit first.") np.random.seed(seed) ### ========== TODO : START ========== ### # part b: predict the class for each test example # hint: use np.random.choice (be careful of the parameters) #print(self.probabilities_) n = X.shape[0] y = np.random.choice(2, n, p=[self.probabilities_[0], self.probabilities_[1]]) ### ========== TODO : END ========== ### return y ###################################################################### # functions ###################################################################### def plot_histograms(X, y, Xnames, yname) : n,d = X.shape # n = number of examples, d = number of features fig = plt.figure(figsize=(20,15)) nrow = 3; ncol = 3 for i in range(d) : fig.add_subplot (3,3,i) data, bins, align, labels = plot_histogram(X[:,i], y, Xname=Xnames[i], yname=yname, show = False) n, bins, patches = plt.hist(data, bins=bins, align=align, alpha=0.5, label=labels) plt.xlabel(Xnames[i]) plt.ylabel('Frequency') plt.legend() #plt.legend(loc='upper left') plt.savefig ('histograms.pdf') def plot_histogram(X, y, Xname, yname, show = True) : """ Plots histogram of values in X grouped by y. Parameters -------------------- X -- numpy array of shape (n,d), feature values y -- numpy array of shape (n,), target classes Xname -- string, name of feature yname -- string, name of target """ # set up data for plotting targets = sorted(set(y)) data = []; labels = [] for target in targets : features = [X[i] for i in range(len(y)) if y[i] == target] data.append(features) labels.append('%s = %s' % (yname, target)) # set up histogram bins features = set(X) nfeatures = len(features) test_range = list(range(int(math.floor(min(features))), int(math.ceil(max(features)))+1)) if nfeatures < 10 and sorted(features) == test_range: bins = test_range + [test_range[-1] + 1] # add last bin align = 'left' else : bins = 10 align = 'mid' # plot if show == True: plt.figure() n, bins, patches = plt.hist(data, bins=bins, align=align, alpha=0.5, label=labels) plt.xlabel(Xname) plt.ylabel('Frequency') plt.legend() #plt.legend(loc='upper left') #plt.show() return data, bins, align, labels def error(clf, X, y, ntrials=100, test_size=0.2) : """ Computes the classifier error over a random split of the data, averaged over ntrials runs. Parameters -------------------- clf -- classifier X -- numpy array of shape (n,d), features values y -- numpy array of shape (n,), target classes ntrials -- integer, number of trials Returns -------------------- train_error -- float, training error test_error -- float, test error """ ### ========== TODO : START ========== ### # compute cross-validation error over ntrials # hint: use train_test_split (be careful of the parameters) train_error = 0 test_error = 0 for i in range(1, ntrials+1): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, train_size=0.8, random_state=i) clf.fit(X_train, y_train) y_pred = clf.predict(X_train) # compute the training error train_error += 1 - metrics.accuracy_score(y_train, y_pred, normalize=True) y_pred = clf.predict(X_test) # compute the test error test_error += 1 - metrics.accuracy_score(y_test, y_pred, normalize=True) train_error = float(train_error) / ntrials test_error = float(test_error) / ntrials # average the errors out ### ========== TODO : END ========== ### return train_error, test_error def write_predictions(y_pred, filename, yname=None) : """Write out predictions to csv file.""" out = open(filename, 'wb') f = csv.writer(out) if yname : f.writerow([yname]) f.writerows(list(zip(y_pred))) out.close() ###################################################################### # main ###################################################################### def main(): # load Titanic dataset titanic = load_data("titanic_train.csv", header=1, predict_col=0) X = titanic.X; Xnames = titanic.Xnames y = titanic.y; yname = titanic.yname n,d = X.shape # n = number of examples, d = number of features #======================================== # part a: plot histograms of each feature print('Plotting...') for i in range(d) : plot_histogram(X[:,i], y, Xname=Xnames[i], yname=yname) plt.close('all') #======================================== # train Majority Vote classifier on data print('Classifying using Majority Vote...') clf = MajorityVoteClassifier() # create MajorityVote classifier, which includes all model parameters clf.fit(X, y) # fit training data using the classifier y_pred = clf.predict(X) # take the classifier and run it on the training data train_error = 1 - metrics.accuracy_score(y, y_pred, normalize=True) print('\t-- training error: %.3f' % train_error) majority_vote_error = train_error ### ========== TODO : START ========== ### # part b: evaluate training error of Random classifier print('Classifying using Random...') rand_clf = RandomClassifier() rand_clf.fit(X, y) y_pred = rand_clf.predict(X) train_error = 1 - metrics.accuracy_score(y, y_pred, normalize=True) print('\t-- training error: %.3f' % train_error) random_clf_error = train_error; ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part c: evaluate training error of Decision Tree classifier # use criterion of "entropy" for Information gain print('Classifying using Decision Tree...') decision_tree_clf = DecisionTreeClassifier(criterion="entropy") decision_tree_clf.fit(X, y) y_pred = decision_tree_clf.predict(X) train_error = 1 - metrics.accuracy_score(y, y_pred, normalize=True) print('\t-- training error: %.3f' % train_error) ### ========== TODO : END ========== ### # note: uncomment out the following lines to output the Decision Tree graph """ # save the classifier -- requires GraphViz and pydot import StringIO, pydot from sklearn import tree dot_data = StringIO.StringIO() tree.export_graphviz(clf, out_file=dot_data, feature_names=Xnames) graph = pydot.graph_from_dot_data(dot_data.getvalue()) graph.write_pdf("dtree.pdf") """ ### ========== TODO : START ========== ### # part d: evaluate training error of k-Nearest Neighbors classifier # use k = 3, 5, 7 for n_neighbors print('Classifying using k-Nearest Neighbors...') for k in (3, 5, 7): k_Nearest_clf = KNeighborsClassifier(n_neighbors=k) k_Nearest_clf.fit(X, y) y_pred = k_Nearest_clf.predict(X) train_error = 1 - metrics.accuracy_score(y, y_pred, normalize=True) print('\t-- training error (k = %d): %.3f' % (k, train_error)) # Redeclare it for part e k_Nearest_clf = KNeighborsClassifier(n_neighbors=5) ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part e: use cross-validation to compute average training and test error of classifiers print('Investigating various classifiers...') for classifier in (clf, rand_clf, decision_tree_clf, k_Nearest_clf): train_error, test_error = error(classifier, X, y) print('\t--Train Error:%.3f Test Error%.3f Classifier: %s' % (train_error, test_error, classifier.__class__.__name__ )) ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part f: use 10-fold cross-validation to find the best value of k for k-Nearest Neighbors classifier print('Finding the best k for KNeighbors classifier...') x_points = [] y_points = [] for k in range(1, 50, 2): x_points.append(k) k_Nearest_clf = KNeighborsClassifier(n_neighbors=k) k_y = 1 - cross_val_score(k_Nearest_clf, X, y, scoring='accuracy', cv=10) y_points.append(sum(k_y) / len(k_y)) plt.plot(x_points, y_points) plt.xlabel('Number of neighbors') plt.ylabel('Average Error') plt.show() ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part g: investigate decision tree classifier with various depths print('Investigating depths...') x_points = [] y_test_points = [] y_train_points = [] for k in range(1, 21): decision_tree_clf = DecisionTreeClassifier(criterion='entropy', max_depth=k) train_error, test_error = error(decision_tree_clf, X, y) x_points.append(k) y_test_points.append(test_error) y_train_points.append(train_error) plt.plot(x_points, y_train_points, label='Training Error') plt.plot(x_points, y_test_points, label='Test Error') plt.plot(x_points, [majority_vote_error] * len(x_points), label='Majority Vote Classifier error') plt.plot(x_points, [random_clf_error] * len(x_points), label='Random Classifier error') plt.legend(loc='upper right') plt.xlabel('Depth') plt.ylabel('Average Error') plt.ylim(ymax=0.7) plt.show() #plt.close('all') ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part h: investigate Decision Tree and k-Nearest Neighbors classifier with various training set sizes print('Investigating training set sizes...') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, train_size=0.9, random_state=42) fraction_percentages = [x / 10.0 for x in range(1, 11)] fraction_indices = [int(i * X_train.shape[0]) for i in fraction_percentages] k_Nearest_clf = KNeighborsClassifier(n_neighbors=7) decision_tree_clf = DecisionTreeClassifier(criterion='entropy', max_depth=6) x_points = fraction_percentages[:] y_points_decision_train = [] y_points_knn_train = [] y_points_decision_test =[] y_points_knn_test = [] for end_index in fraction_indices: X_train_set = X_train[:end_index+1] y_train_set = y_train[:end_index+1] k_Nearest_clf.fit(X_train_set, y_train_set) decision_tree_clf.fit(X_train_set, y_train_set) y_pred_knn_train = k_Nearest_clf.predict(X_train_set) y_pred_decision_train = decision_tree_clf.predict(X_train_set) y_pred_knn_test = k_Nearest_clf.predict(X_test) y_pred_decision_test = decision_tree_clf.predict(X_test) train_error_knn = 1 - metrics.accuracy_score(y_train_set, y_pred_knn_train, normalize=True) test_error_knn = 1 - metrics.accuracy_score(y_test, y_pred_knn_test, normalize=True) train_error_decision = 1 - metrics.accuracy_score(y_train_set, y_pred_decision_train, normalize=True) test_error_decision = 1 - metrics.accuracy_score(y_test, y_pred_decision_test, normalize=True) y_points_decision_train.append(train_error_decision) y_points_decision_test.append(test_error_decision) y_points_knn_train.append(train_error_knn) y_points_knn_test.append(test_error_knn) plt.plot(x_points, y_points_decision_train, label="Decision Tree Training Error") plt.plot(x_points, y_points_decision_test, label="Decision Tree Test Error") plt.plot(x_points, y_points_knn_train, label="KNearest Training Error") plt.plot(x_points, y_points_knn_test, label="KNearest Test Error") plt.plot(x_points, [majority_vote_error] * len(x_points), label='Majority Vote Classifier error') plt.plot(x_points, [random_clf_error] * len(x_points), label='Random Classifier error') plt.ylim(ymax=0.8) plt.legend(loc='upper right') plt.xlabel('Fraction of Training Data') plt.ylabel('Error') plt.show() ### ========== TODO : END ========== ### print('Done') if __name__ == "__main__": main()
[ "atibhav.mittal6@gmail.com" ]
atibhav.mittal6@gmail.com
30dd3f1c4df8cb5dbb131dfd4d1780d86003bd26
c1d4f80fbf94fc1cb075d04284cc726f354cc586
/diffOfSquares.py
de5cfad77b93706c58f2823a072b50e608d6464d
[ "MIT" ]
permissive
azizamukhamedova/Python-Thunder
2af6ec8d9be07d03d51a53430449c41ec6f21a0d
820b943c4884dad4a247c7480b86c057a1508509
refs/heads/master
2022-12-24T10:05:06.879056
2020-10-01T10:04:30
2020-10-01T10:04:30
300,230,819
2
0
MIT
2020-10-01T09:59:00
2020-10-01T09:58:59
null
UTF-8
Python
false
false
204
py
''' Probem Task : This program returns the difference in areas of two squares. Problem Link: https://edabit.com/challenge/NNhkGocuPMcryW7GP ''' def square_areas_difference(r): return (2*r)**2-(r**2)*2
[ "noreply@github.com" ]
noreply@github.com
d3980370454d25fd98274030292d5c8ed674a8f7
4116790ee11de30eade92cabd5cddcb0978eb2c9
/employeerest/company/company/views.py
bce69d005ffe90441d1cc9375a9ca66db31e094a
[]
no_license
Joel-hanson/djangomytutorial
4e8aadbccea831bb8f7e4cf0de3d35e4bfeaadc0
93d2925ae1a8d5f5dcec03e0c85b3ff0e492d125
refs/heads/master
2021-08-30T10:48:42.207229
2017-12-17T14:43:34
2017-12-17T14:43:34
108,539,027
1
0
null
null
null
null
UTF-8
Python
false
false
267
py
from django.views.generic import TemplateView class TestPage(TemplateView): template_name = 'firstapp/test.html' class ThanksPage(TemplateView): template_name = 'firstapp/thanks.html' class HomePage(TemplateView): template_name = 'firstapp/index.html'
[ "joelhanson025@gmail.com" ]
joelhanson025@gmail.com
b75e556ea1b40b23295bd4f418cd7787509b3aab
a1af08e61db95281579497b2a3f05535c60b0c84
/Algorithms and data stractures in python/lesson2/les_2_task_4.py
64d41bb9219825990ead01dc96a40b2c5a4aa986
[]
no_license
kargamant/education
4c6d4bd419094eb175a73bb3888b8638b7d42af4
21e346a3eedf342efaae3636f24385b97713c06d
refs/heads/master
2020-07-03T10:50:32.152899
2020-06-19T10:33:36
2020-06-19T10:33:36
201,883,903
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
#4. Найти сумму n элементов следующего ряда чисел: 1, -0.5, 0.25, -0.125,… #Количество элементов (n) вводится с клавиатуры. n = int(input('Введите количество элементов>>>')) b1 = 1 q = -0.5 s = 0 for i in range(n): s += b1 * pow(q, i) print(f'Сумма {n} элементов: {s}')
[ "noreply@github.com" ]
noreply@github.com
14349834269be1eb71541b0b9ba7c9447bd65661
6f9a5717fed38b0a79c399f7e5da55c6a461de6d
/Baekjoon/TreeDiameter.py
403cdb3ebca8db3488b4692be26727c85cc6920a
[]
no_license
Alfred-Walker/pythonps
d4d3b0f7fe93c138d02651e05ca5165825676a5e
81ef8c712c36aa83d1c53aa50886eb845378d035
refs/heads/master
2022-04-16T21:34:39.316565
2020-04-10T07:50:46
2020-04-10T07:50:46
254,570,527
1
1
null
null
null
null
UTF-8
Python
false
false
2,267
py
# 트리의 지름이란, 트리에서 임의의 두 점 사이의 거리 중 가장 긴 것을 말한다. # 트리의 지름을 구하는 프로그램을 작성하시오. # # 입력 # 트리가 입력으로 주어진다. # 먼저 첫 번째 줄에서는 트리의 정점의 개수 V가 주어지고 (2≤V≤100,000) # 둘째 줄부터 V개의 줄에 걸쳐 간선의 정보가 다음과 같이 주어진다. # (정점 번호는 1부터 V까지 매겨져 있다고 생각한다) # # 먼저 정점 번호가 주어지고, 이어서 연결된 간선의 정보를 의미하는 정수가 두 개씩 주어지는데, # 하나는 정점번호, 다른 하나는 그 정점까지의 거리이다. # 예를 들어 네 번째 줄의 경우 정점 3은 정점 1과 거리가 2인 간선으로 연결되어 있고, # 정점 4와는 거리가 3인 간선으로 연결되어 있는 것을 보여준다. # 각 줄의 마지막에는 -1이 입력으로 주어진다. 주어지는 거리는 모두 10,000 이하의 자연수이다. # # 출력 # 첫째 줄에 트리의 지름을 출력한다. import sys sys.setrecursionlimit(10**6) V = int(sys.stdin.readline().rstrip()) connected = [[]for _ in range(V + 1)] visited = [False for _ in range(V + 1)] # 입력 처리 for i in range(1, V + 1): edges = list(map(int, sys.stdin.readline().rstrip().split())) for j in range(1, len(edges)-1, 2): connected[edges[0]].append((edges[j], edges[j + 1])) # 오입력 주의: connected[i].append((edges[j], edges[j + 1])) # v로부터 연결된 정점 중 방문하지 않은 곳들에 대하여 재귀. # dist로 누적 거리를 체크 def dfs(v, dist): ret = (v, dist) visited[v] = True for v_d in connected[v]: if visited[v_d[0]]: continue next_search = dfs(v_d[0], dist + v_d[1]) if ret[1] < next_search[1]: ret = next_search return ret # 첫번째 dfs: 임의의 점(1)로부터 가장 먼 곳과 거리 구함 first_dfs = dfs(1, 0) far_v = first_dfs[0] # 다시 dfs 하기 위해 visited 초기화 visited = [False for _ in range(V + 1)] # 두번째 dfs: 앞서 구한 1로부터 먼 곳에서 다시 가장 먼 곳을 찾음 second_dfs = dfs(far_v, 0) far_v = second_dfs[1] print(far_v)
[ "studio.alfred.walker@gmail.com" ]
studio.alfred.walker@gmail.com
921140b83f3882c30e59c2c40f58e83ac495e3d1
6d8817b7a81c1f65c10ada235edde0f2f37f2f01
/test/123.py
f08af05041c3702e27f66562116cd8474a131365
[]
no_license
angel681166/LawTech
63ca49aa90a53ee3b70bcf3e4ae761dd53e8d19b
539ef05ed6a32f3c2b551301b51608ec8b340fc3
refs/heads/main
2023-01-08T08:38:58.220828
2020-11-08T17:24:49
2020-11-08T17:24:49
304,250,683
0
0
null
null
null
null
UTF-8
Python
false
false
15
py
hello law tech
[ "noreply@github.com" ]
noreply@github.com
58e85669af64469dd275db9980940709213e68dc
2b0bbe4977893f5368eab4eb540c451863bf3e24
/tools/get_rates.py
859067050df1ba382330b78a4b3c31dbd3c0b1d1
[ "MIT" ]
permissive
hildogjr/KiCost
a1f0b91ec1c8ba6b8a86f2108a38742c26ff112f
197a61d90a24ab21049824ad1e5638ac9c4420ac
refs/heads/master
2023-06-25T16:51:23.137235
2023-06-22T16:24:05
2023-06-22T16:24:05
38,410,608
143
20
MIT
2023-04-10T13:38:40
2015-07-02T04:09:13
Python
UTF-8
Python
false
false
846
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Copyright (c) 2021 Salvador E. Tropea # Copyright (c) 2021 Instituto Nacional de Tecnología Industrial # License: Apache 2.0 # Project: KiCost """ Tool to generate the default exchange rates. Should be used before each release. """ import sys import os sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from kicost.currency_converter.download_rates import download_rates # noqa: E402 date, rates = download_rates() assert date print('#!/usr/bin/python3') print('# -*- coding: utf-8 -*-') print("default_date = '{}'".format(date)) first = True for cur, rate in rates.items(): cont = "'"+cur+"': "+str(rate)+"," if first: first = False print("default_rates = {"+cont) else: print(' '+cont) print(" }")
[ "salvador@inti.gob.ar" ]
salvador@inti.gob.ar
b0af44c71bc504fdf4b8d8d7454978a75e49f783
532989f8d1efeed25c954e801802ecaa2038ce52
/movies_genre_model.py
e69f92c1675cac0c640013a8ce0741cd722a74b1
[]
no_license
NaHut/Project3
465016ab8204abd47e419b229f20b0977e3c323e
586fe26c98117b6b3cc183a3a22e51663c3300cc
refs/heads/master
2020-03-23T10:13:57.741738
2018-07-19T01:57:45
2018-07-19T01:57:45
141,432,593
0
0
null
null
null
null
UTF-8
Python
false
false
3,314
py
import os import time import keras from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential from keras.models import Model, Input, Sequential from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Activation, Average, Dropout from keras.utils import to_categorical from keras.losses import categorical_crossentropy from keras.callbacks import ModelCheckpoint, TensorBoard from keras.optimizers import Adam from keras.datasets import cifar10 def build(ratio, epochs,batch_size, x_train=None, y_train=None, x_validation=None, y_validation=None): print(' x_train shape: ', x_train.shape) print(' y_train shape: ', y_train.shape) print(x_train.shape[0], 'train samples') print(x_validation.shape[0], 'validation samples') print(' x_valditaion shape: ', x_validation.shape) print(' y_validation shape: ', y_validation.shape) #build model num_classes = len(y_train[0]) model = Sequential([ Conv2D(24, (5, 5), padding='same', input_shape=x_train.shape[1:], activation='relu'), Conv2D(24, (5, 5), activation='relu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.25), Conv2D(48, (5, 5), padding='same', activation='relu'), Conv2D(48, (5, 5), activation='relu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.25), Flatten(), Dense(256, activation='relu'), Dropout(0.5), Dense(num_classes, activation='sigmoid') ]) model2 = Sequential([ Conv2D(24, (3, 3), input_shape=x_train.shape[1:], activation='relu', padding='same'), Conv2D(24, (3, 3), activation='relu', padding='same'), Conv2D(24, (3, 3), activation='relu', padding='same'), MaxPooling2D(pool_size=(3, 3), strides=2), Conv2D(48, (3, 3), activation='relu', padding='same'), Conv2D(48, (3, 3), activation='relu', padding='same'), Conv2D(48, (3, 3), activation='relu', padding='same'), MaxPooling2D(pool_size=(3, 3), strides=2), Conv2D(48, (3, 3), activation='relu', padding='same'), Conv2D(48, (3, 3), activation='relu'), Conv2D(48, (3, 3)), Flatten(), Dense(128, activation='relu'), Dropout(0.5), Dense(num_classes, activation='sigmoid') ]) # lr = 1e-4 -> 0.024 opt = keras.optimizers.rmsprop(lr=1e-4, decay=1e-6) model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) print(model.summary()) # create save_dir save_dir = os.path.join(os.getcwd(), 'saved_models') if not os.path.isdir(save_dir): os.makedirs(save_dir) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_validation, y_validation)) model_file_name = 'genres' + '_tmp.h5' model_path = os.path.join(save_dir, model_file_name) keras.callbacks.ModelCheckpoint(model_path, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1) model.save(model_path)
[ "whow1111@naver.com" ]
whow1111@naver.com
8f1edffb45c18305e72ee6fa487d900f2792d2a0
850493f3c5c9bf3805a04547e5fe6131f9b2f906
/teashop_server/app_models/user_type_model.py
f92d2c67a6fafe6f95723a87d5641e3f9d5ced12
[]
no_license
blazej700/ibd
558f6952d41966fe0e40d74356bcc9f2483add2c
9e7a5d84f05b3be0a0cbdc247867e179962db02a
refs/heads/main
2023-02-01T01:19:10.364462
2020-12-12T09:46:04
2020-12-12T09:46:04
311,062,158
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
from app import db from flask_restful_swagger_3 import Schema class UserTypeModel(db.Model): __tablename__ = 'user_type' id = db.Column(db.Integer, primary_key=True) user_type_name = db.Column(db.String(20)) def serialize(self): return { 'id': self.id, 'user_type_name' : self.user_type_name, }
[ "blazej700@gmail.com" ]
blazej700@gmail.com
46efb78a2acbcd58008ea1bc5f50998401a4a474
557c9d016edc56c72dac6a0b3093d195b10b1a6c
/examples/ex33_common.py
cd535acf255a5de421d64d16d452c5e8f5303ca4
[ "BSD-3-Clause" ]
permissive
mfem/PyMFEM
dae79fb8aa9ca983780c789b2b6e70e894644573
37084af6798ea8bb8f03b2648863befabee829bb
refs/heads/master
2023-08-31T07:04:28.522945
2023-07-18T02:21:57
2023-07-18T02:21:57
83,574,932
154
54
BSD-3-Clause
2023-08-15T01:40:47
2017-03-01T16:16:48
SWIG
UTF-8
Python
false
false
8,356
py
''' Ex33_common.py This is a translation of MFEM ex33.hpp. LAPACK call, mfem.Vector, mfem.DenseMatrix are replaced using numpy (Implementation of the AAA algorithm) Here, we implement the triple-A algorithm [1] for the rational approximation of complex-valued functions, p(z)/q(z) ≈ f(z). In this file, we always assume f(z) = z^{-α}. The triple-A algorithm provides a robust, accurate approximation in rational barycentric form. This representation must be transformed into a partial fraction representation in order to be used to solve a spectral FPDE. More specifically, we first expand the numerator in terms of the zeros of the rational approximation, p(z) ∝ Π_i (z - z_i), and expand the denominator in terms of the poles of the rational approximation, q(z) ∝ Π_i (z - p_i). We then use these zeros and poles to derive the partial fraction expansion f(z) ≈ p(z)/q(z) = Σ_i c_i / (z - p_i). [1] Nakatsukasa, Y., Sète, O., & Trefethen, L. N. (2018). The AAA algorithm for rational approximation. SIAM Journal on Scientific Computing, 40(3), A1494-A1522. ''' import numpy as np import scipy from scipy.linalg import eig import mfem if mfem.mfem_mode == 'parallel': import mfem.par as mfem from mfem.par import intArray, doubleArray else: import mfem.ser as mfem from mfem.ser import intArray, doubleArray from sys import float_info eps = float_info.min def RationalApproximation_AAA(val, pt, tol, max_order): ''' RationalApproximation_AAA: compute the rational approximation (RA) of data val at the set of points pt in: val Vector of data values pt Vector of sample points tol Relative tolerance max_order Maximum number of terms (order) of the RA out: z Support points of the RA in rational barycentric form f Data values at support points at z w Weights of the RA in rational barycentric form See pg. A1501 of Nakatsukasa et al. [1]. ''' # number of sample points size = len(val) # .Size() assert len(pt) == size, "size mismatch" # Initializations J = list(range(size)) c_i = [] # mean of the value vector mean_val = np.mean(val) R = np.array([mean_val]*size) z = [] f = [] w = [] for k in range(max_order): # select next support point idx = 0 tmp_max = 0 idx = np.argmax(np.abs(val-R)) # Append support points and data values z.append(pt[idx]) f.append(val[idx]) # Update index vector J.remove(idx) # next column in Cauchy matrix C_tmp = [(1.0/(pp-pt[idx]) if pp != pt[idx] else np.inf) for pp in pt] c_i = np.hstack((c_i, C_tmp)) h_C = len(C_tmp) w_C = k+1 # note: tranpose is necessary due to the difference of column-major # and raw-major of matrix C = c_i.reshape(w_C, h_C).transpose() Ctemp = C.copy() Ctemp = Ctemp*(np.atleast_2d(1/val)).transpose() # InvLeftScaling Ctemp = Ctemp*f # RgithScaling A = C - Ctemp A = A*(np.atleast_2d(val)).transpose() # LeftScaling h_Am = len(J) w_Am = A.shape[1] Am = np.zeros((h_Am, w_Am)) for i in range(h_Am): ii = J[i] for j in range(w_Am): Am[i, j] = A[ii, j] u, s, vh = np.linalg.svd(Am) w = vh[k, :] N = C.dot(w*np.array(f)) D = C.dot(w) R = val.copy() for i, ii in enumerate(J): R[ii] = N[ii]/D[ii] verr = val - R if np.max(verr) <= tol*max(val): break return z, f, w def ComputePolesAndZeros(z, f, w): ''' ComputePolesAndZeros: compute the poles and zeros of the rational function f(z) = C p(z)/q(z) from its ration barycentric form. in: z Support points in rational barycentric form f Data values at support points @a z w Weights in rational barycentric form out: poles Array of poles (roots of p(z)) zeros Array of zeros (roots of q(z)) scale Scaling constant in f(z) = C p(z)/q(z) See pg. A1501 of Nakatsukasa et al. [1]. ''' # Initialization poles = [] zeros = [] # Compute the poles m = len(w) B = np.zeros((m+1, m+1)) E = np.zeros((m+1, m+1)) for i in range(m+1): if i == 0: continue B[i, i] = 1. E[0, i] = w[i-1] E[i, 0] = 1. E[i, i] = z[i-1] # real part of eigen value evalues = eig(E, B, left=False, right=False).real new_poles = evalues[np.isfinite(evalues)] poles.extend(new_poles) B = np.zeros((m+1, m+1)) E = np.zeros((m+1, m+1)) for i in range(m+1): if i == 0: continue B[i, i] = 1. E[0, i] = w[i-1] * f[i-1] E[i, 0] = 1. E[i, i] = z[i-1] # real part of eigen value evalues = eig(E, B, left=False, right=False).real new_zeros = evalues[np.isfinite(evalues)] zeros.extend(new_zeros) scale = np.dot(w, f)/np.sum(w) return poles, zeros, scale def PartialFractionExpansion(scale, poles, zeros): ''' PartialFractionExpansion: compute the partial fraction expansion of the rational function f(z) = Σ_i c_i / (z - p_i) from its poles and zeros @a zeros [in]. in: poles Array of poles (same as p_i above) zeros Array of zeros scale Scaling constant out: coeffs Coefficients c_i ''' # Note: C p(z)/q(z) = Σ_i c_i / (z - p_i) results in an system of equations # where the N unknowns are the coefficients c_i. After multiplying the # system with q(z), the coefficients c_i can be computed analytically by # choosing N values for z. Choosing z_j = = p_j diagonalizes the system and # one can obtain an analytic form for the c_i coefficients. The result is # implemented in the code block below. psize = len(poles) zsize = len(zeros) coeffs = [scale] * psize for i in range(psize): tmp_numer = 1.0 for j in range(zsize): tmp_numer *= poles[i]-zeros[j] tmp_denom = 1.0 for k in range(psize): if k != i: tmp_denom *= poles[i]-poles[k] coeffs[i] *= tmp_numer / tmp_denom return coeffs def ComputePartialFractionApproximation(alpha, lmax=1000., tol=1e-10, npoints=1000, max_order=100): ''' ComputePartialFractionApproximation: compute a rational approximation (RA) in partial fraction form, e.g., f(z) ≈ Σ_i c_i / (z - p_i), from sampled values of the function f(z) = z^{-a}, 0 < a < 1. in: alpha Exponent a in f(z) = z^-a lmax,npoints f(z) is uniformly sampled @a npoints times in the interval [ 0, @a lmax ] tol Relative tolerance max_order Maximum number of terms (order) of the RA out: coeffs Coefficients c_i poles Poles p_i ''' assert alpha < 1., "alpha must be less than 1" assert alpha > 0., "alpha must be greater than 0" assert npoints > 2, "npoints must be greater than 2" assert lmax > 0, "lmin must be greater than 0" assert tol > 0, "tol must be greater than 0" dx = lmax / (npoints-1) x = np.arange(npoints)*dx val = x**(1-alpha) # Apply triple-A algorithm to f(x) = x^{1-a} z, f, w = RationalApproximation_AAA(val, # mfem.Vector(val), x, # mfem.Vector(x), tol, max_order) # Compute poles and zeros for RA of f(x) = x^{1-a} poles, zeros, scale = ComputePolesAndZeros(z, f, w) # Remove the zero at x=0, thus, delivering a RA for f(x) = x^{-a} zeros.remove(0.0) # Compute partial fraction approximation of f(x) = x^{-a} coeffs = PartialFractionExpansion(scale, poles, zeros) return poles, coeffs
[ "shiraiwa@princeton.edu" ]
shiraiwa@princeton.edu
966693712e3410280164b684654420510e60bfac
07cc188b2e10f204cd0191aa3c28ca058b863973
/film_crawler/film_crawler/film_crawler/graph_constructor.py
0be10c6e74fbbf8cce417100cccac2e37d73d3fa
[]
no_license
WriteAfterReed/web_scraper_wiki_film_proj
b80bfc18a14832c2bf01100e9eee56375c9f6ac6
1a55e570b54700ef55bb6d73cf76d47456952f3e
refs/heads/master
2022-12-28T17:21:46.354362
2020-10-06T03:18:06
2020-10-06T03:18:06
301,601,514
0
0
null
null
null
null
UTF-8
Python
false
false
7,098
py
import json class Actor: def __init__(self, name="", year=1900, films=[], income=0): self.status = "actor" self.name = name self.year = year self.films = films self.income = income def __str__(self): return self.name def get_name(self): return self.name def set_name(self, name): self.name = name def get_year(self): return self.year def set_year(self, year): self.year = year def get_age(self): return 2019 - self.year def get_films(self): return self.films def add_film(self, film): self.films.append(film) def get_income(self): return self.income def add_income(self, income): self.income += income def get_status(self): return self.status class Film: def __init__(self, name="", year=1900, cast=[], income=0): self.status = "film" self.name = name self.year = year self.cast = cast self.income = income def __str__(self): return self.name def get_status(self): return self.status def get_name(self): return self.name def set_name(self, name): self.name = name def get_year(self): return self.year def set_year(self, year): self.year = year def get_cast(self): return self.cast def add_cast(self, actor): self.cast.append(actor) def get_income(self): return self.income def set_income(self, income): self.income = income class Graph: def __init__(self): self.datum = {} def new_vert(self, node, entry=[]): self.datum[node] = entry def update_vert(self, node, entry): obj = self.datum[node] if entry not in obj: obj.append(entry) self.datum[node] = obj def get_verts(self): return self.datum.keys() def get_edges(self): return self.datum.values() def write_to_file(self): with open('result.json', 'w') as fp: json.dump(self.datum, fp) def read_from_json(self, path): dataset = None with open(path, 'r') as json_file: temp = json.load(json_file) self.datum = temp[0] count = 0 print(type(self.datum)) print(self.datum.keys()) for each in self.datum: if count > 100: break print("") print(each) count += 1 def query_one(target, mapper): obj = mapper[target] gross = obj.get_income() print("Exec query 1...") print("For film: " + target + " the gross was: " + str(gross)) print("Fin query 1 \n") def query_two(target, mapper): obj = mapper[target] projects = obj.get_films() print("Exec query 2...") print("For Actor: " + target + " they have worked on: " + str(projects)) print("Fin query 2 \n") def query_three(target, mapper): obj = mapper[target] team = obj.get_cast() print("Exec query 3...") print("For film: " + target + " the cast was: " + str(team)) print("Fin query 3 \n") def query_four(actor_map): payload = [] for name in actor_map.keys(): obj = actor_map[name] worth = obj.get_income() payload.append((name, worth)) sorted_by_second = sorted(payload, key=lambda tup: tup[1]) sorted_by_second.reverse() print("Exec query 4...") print("The top grossing actors are: ") for i in range(0, 5): entry = sorted_by_second[i] print(str(entry[0]) + " is worth " + str(entry[1])) print("Fin query 4 \n") def query_five(actor_map): payload = [] for name in actor_map.keys(): obj = actor_map[name] age = obj.get_age() payload.append((name, age)) sorted_by_second = sorted(payload, key=lambda tup: tup[1]) sorted_by_second.reverse() print("Exec query 5...") print("The top oldest actors are: ") for i in range(0, 5): entry = sorted_by_second[i] print(str(entry[0]) + " is age " + str(entry[1])) print("Fin query 5 \n") def query_six(film_map, target_year): payload = [] print("Exec query 6...") print("For the year " + str(target_year) + " films are...") for movie in film_map.keys(): obj = film_map[movie] film_year = obj.get_year() if film_year == target_year: print("Flim: " + movie) print("Fin query 6 \n") def query_seven(actor_map, target_year): payload = [] print("Exec query 7...") print("For the year " + str(target_year) + " actors born are...") for person in actor_map.keys(): obj = actor_map[person] birth_year = obj.get_year() if birth_year == target_year: print("Actor: " + person) print("Fin query 7 \n") actor_list = [] actor_dict = {} film_list = [] film_dict = {} graph = Graph() graph.read_from_json("data.json") def test_first_week(): # dataset = None # with open('../out.json') as json_file: # dataset = json.load(json_file) graph.read_from_json("data.json") # # for each in dataset: # # This parses current Json for Actors # if each['page_type'] == 'actor': # year = each['actor_year'] # name = each['name'] # films = [] # income = 0 # if (2019 - year) > 100: # continue # if name not in actor_list: # actor_list.append(name) # new_actor = Actor(name, year, films, income) # actor_dict[name] = new_actor # # for each in dataset: # # # This parses current Json for films # if each['page_type'] == "film": # year = each['film_year'] # film_name = each['name'] # cast = each['film_cast'] # income = each['film_value'] # if film_name not in film_list: # film_list.append(film_name) # new_film = Film(film_name, year, cast, income) # for person in cast: # if person in actor_dict.keys(): # income = income // 2 # actor_obj = actor_dict[person] # actor_obj.add_income(income) # actor_obj.add_film(film_name) # # film_dict[film_name] = new_film # # for each in actor_list: # entry = actor_dict[each] # film_edges = entry.get_films() # graph.new_vert(each, film_edges) # # for each in film_list: # entry = film_dict[each] # actor_edges = entry.get_cast() # graph.new_vert(each, actor_edges) # # query_one("Drive (2011 film)", film_dict) # query_two("Michael Caine", actor_dict) # query_three("Drive (2011 film)", film_dict) # query_four(actor_dict) # query_five(actor_dict) # query_six(film_dict, 2012) # query_seven(actor_dict, 1964) # # graph.write_to_file()
[ "mloviska15@gmail.com" ]
mloviska15@gmail.com
c4e3d2c0198df15fcb9635b190ff937c0a238289
5c35be01a7f659bb080544c5e62faa22307f01da
/pr412-my-charity-change-backend-python/migrations/versions/28f74cb10e35_add_send_tax_reciept_flasg_to_customer.py
383f316a63eb39b17dddf20b2043b814522640bd
[]
no_license
dragonmaster-alpha/Charity-App
3b3932c0a05cc21b9d36bd2952673028cc56a11a
b66e2bc74fc15ca2a9c70f5261d05f5b9d17b451
refs/heads/master
2023-08-24T02:21:15.406784
2021-10-29T06:18:20
2021-10-29T06:18:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
701
py
"""Add send_tax_reciept flasg to customer Revision ID: 28f74cb10e35 Revises: f3bdf790db9b Create Date: 2020-08-10 14:53:05.732193 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '28f74cb10e35' down_revision = 'f3bdf790db9b' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('Customer', sa.Column('send_tax_reciept', sa.Boolean(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('Customer', 'send_tax_reciept') # ### end Alembic commands ###
[ "78602151+dragonmaster-alpha@users.noreply.github.com" ]
78602151+dragonmaster-alpha@users.noreply.github.com
eca0f1c99ec492e8b3c6a27b02d6557f8aa3ae1b
84c2fa4aed9094b5ec3cc612d28980afe5d42d34
/leetcode/day11_24.py
a6e997a5b64e66b53c1eb8fab9ec554c45fcd371
[]
no_license
cyg2695249540/generatewework
186831a1b5c788e9b99e90d1a08bf6a8638131ce
cd01b0fc4a69cc2f2ed4c109afdf8771bee3bffd
refs/heads/master
2023-01-20T17:13:13.186034
2020-12-01T12:05:01
2020-12-01T12:05:01
310,201,995
0
0
null
null
null
null
UTF-8
Python
false
false
925
py
# !/usr/bin/env Python3 # -*- coding: utf-8 -*- # @FILE : day11_24.py # @Author : Pluto. # @Time : 2020/11/24 16:06 """ exp:66. 加一 给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。 最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外,这个整数不会以零开头。 示例1: 输入:digits = [1,2,3] 输出:[1,2,4] 解释:输入数组表示数字 123。 示例2: 输入:digits = [4,3,2,1] 输出:[4,3,2,2] 解释:输入数组表示数字 4321。 示例 3: 输入:digits = [0] 输出:[1] 提示: 1 <= digits.length <= 100 0 <= digits[i] <= 9 """ def plusOne(): s="".join(str(x) for x in digits) ss=str(int(s)+1) r=[int(x) for x in ss] return [0]*(len(digits)-len(r))+r if __name__ == '__main__': digits = [0, 0, 0] print(plusOne())
[ "2695249540@qq.com" ]
2695249540@qq.com
5605956e0c0bed78aa6a229a16b89113b010781d
6a5c92bf039d768ab2e455e4d0652c2bd847a5ca
/backend/backend/settings.py
53e3b1db47ed90d2cc34db359f977b74796f5081
[]
no_license
sahil143/feedback-form
a2bf39162f165b7ca7b11f0a793a3dd21f8c5a98
933ab90fee267b0ca88cee9d3363529e5e67992a
refs/heads/master
2023-05-07T16:48:15.743272
2021-05-31T06:56:57
2021-05-31T06:56:57
372,308,186
0
1
null
null
null
null
UTF-8
Python
false
false
3,455
py
""" Django settings for backend project. Generated by 'django-admin startproject' using Django 3.2.3. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-3n4io1wg%c@6qpda_z*gfzxbc=_w)92h$zj5t(nq4_r@!)d*hn' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'corsheaders', 'rest_framework', 'feedback_form' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', ] ROOT_URLCONF = 'backend.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'backend.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' CORS_ORIGIN_WHITELIST = [ 'http://localhost:3000' ]
[ "sahilbudhwar143@gmail.com" ]
sahilbudhwar143@gmail.com
4b06fc12b6a9688a025351ad8cbe58b26b21f7c5
754b824173f3e5b1cef69890deaea71c2ad0b84d
/Linear Regression.py
3d28b9e8ff31b546708213c7417bde49d549cbcf
[]
no_license
yanivmm/python
5a8e5c8a59c27a280a92cc7b8617e73b9d1c9a6e
e27f4d0716525e9c4ee6c8541cdb048670f5db22
refs/heads/master
2023-02-03T11:49:35.837406
2020-12-24T10:53:10
2020-12-24T10:53:10
257,415,163
0
0
null
null
null
null
UTF-8
Python
false
false
2,241
py
#import import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import seaborn as sns # read file path = r'C:\Users\97250\Desktop\studied\R ,python\ניתוח מידע\Ecommerce Customers.csv' cust = pd.read_csv(path) # explore data # A try to search the most affecting column on the Yearly Amount Spent and other sns.jointplot(x='Time on Website',y='Yearly Amount Spent',data=cust) sns.jointplot(x='Time on App',y='Yearly Amount Spent',data=cust) sns.lmplot(x='Length of Membership',y='Yearly Amount Spent',data = cust) #pairplot sns.pairplot(cust) ### Training and Testing Data from sklearn.model_selection import train_test_split X=cust[['Avg. Session Length', 'Time on App','Time on Website', 'Length of Membership']] y=cust['Yearly Amount Spent'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101) # model from sklearn.linear_model import LinearRegression lm =LinearRegression().fit(X_train,y_train) lm.coef_ prediction = lm.predict(X_test) # visual plot of the differences between y_test and prediction sns.scatterplot(x = y_test,y = prediction, hue =(abs(prediction-y_test))) # numerical evaluation MAE = np.mean(abs(prediction-y_test)) MSE = np.mean((prediction-y_test)**2) RMSE= np.sqrt(np.mean((prediction-y_test)**2)) print('\n') print('MAE: '+str(MAE),'MSE: '+str(MSE),'RMSE: '+str(RMSE),sep = '\n') # plot of the residuals of the y_test and prediction residuals = (y_test-prediction) plt.figure(figsize=(12,8)) sns.distplot(residuals,bins = 60,color='red') # it's a normal distribution therefore it's a fine model.! #creating a dataframe of the coefficients and its values coefficient = lm.coef_ col = ['Avg. Session Length', 'Time on App','Time on Website', 'Length of Membership'] coefficient_data = pd.DataFrame(coefficient,col,columns = ['coefficient']) coefficient_data = coefficient_data.sort_values('coefficient',ascending=False) # visual affect coefficient_data.plot(kind ='bar',figsize=(12,8),color='gold',fontsize = 18) plt.title('\n Coefficients and its values\n',fontsize=34) # only two most affecting coefficients print('\n') for i in range(2): print(coefficient_data.index[i])
[ "noreply@github.com" ]
noreply@github.com