blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
6795b7e92f3819173d554c15491b3ea9ad12a4e6
035f1df119ce80ee57bd39baabaf2f163f4117ad
/intergenic_regions_extractor.py
b65e668742d4c1a24dca580ed838b6b8b5b5e8a8
[]
no_license
Ethuer/Scripts
58659cc7852e8eb0c5d07ba19a0675db04f1aa4f
57ff92d09f08d7f2303cf41fadbfc4b3e4157a9f
refs/heads/master
2020-05-17T01:12:48.677178
2016-10-06T16:21:02
2016-10-06T16:21:02
18,836,486
0
0
null
null
null
null
UTF-8
Python
false
false
4,308
py
import csv from Bio import SeqIO import re as re from Bio.Blast.Applications import NcbiblastxCommandline import sys,argparse import os.path ##################################################################################### # this script will extract inergenic regions from two multifasta files, # # one containing orfs one containing orfs and intergenic regions # # a cutoff or 1000bp upstream and downstream is recommended, and removed as well # # the remaining fragments will be blasted against the orf database, # # to see if they do not match # # output is for teaching purpouse in CPAT # # # ###############(c) Ernst Thuer 2014 ################################################# # arguments for commandline input and help #################################################### parser = argparse.ArgumentParser(description='This script takes two files in fasta format, one containint orfs only another orfs +intergenic, it returns intergenic regions') parser.add_argument('-orfs', dest='orfs', required = True, help='Input a fasta file containing the orfs only', metavar = 'FILE', #type=lambda x: is_valid_file(parser,x) ) parser.add_argument('-inter', dest='intergen', required = True, help='input a fasta file containing the orfs and intergenic regions', metavar = 'FILE', #type=lambda x: is_valid_file(parser,x) ) parser.add_argument('-out', dest='output', required = False, default='output.fasta', help='Output a fasta file containing the intergenic regions beyond the threshold', metavar = 'FILE', #type=argparse.FileType('w') ) parser.add_argument('-overhead', dest='overhead', required = False, default='1000', help='overhead of upstream and downstream bp beyond open reading frame will be cut off. Default 1000', metavar = 'integer', #type=argparse.FileType('w') ) args = parser.parse_args() ##################################################### def match_string(large,small,ident): """ REGEX via python re. looking for bp upstream downstream""" count_string = 0 collectstring = {} overhead = int(args.overhead) string = ('\w{1,%i}%s\w{1,%i}') % (overhead, small, overhead) reg = re.compile(string) large = str(large) reg_string = reg.sub('',large) return reg_string def compare(infile,compare): """ compares two files according to their row[0] field""" counter = 0 collect_seq={} for row,seq in infile.items(): for rown,seqn in compare.items(): if row == rown: lenght=(len(seqn.seq)-len(seq.seq)) if lenght > 2000: string = match_string(seqn.seq,seq.seq,row) if len(string) < len(seqn.seq): collect_seq[row] = string counter +=1 print '%i transcripts found' %(counter) return collect_seq with open('%s' %(args.orfs) ,'r') as handle_orf, open('%s' % (args.intergen),'r') as handle_inter, open('%s'% (args.output) ,'w') as out_raw : orf = SeqIO.to_dict(SeqIO.parse(handle_orf,'fasta')) inter = SeqIO.to_dict(SeqIO.parse(handle_inter,'fasta')) out = csv.writer(out_raw,delimiter='\n') print ' Processing files ...' collection = compare(orf,inter) print '%i of which possess acceptable overhead' %(len(collection)) count = 0 for key in collection: if len(collection[key]) > 100: out.writerow(['> %s intergenic region after 1000bp overhead' %(key),collection[key]]) count += len(collection[key]) print 'average length = %i' %(count/len(collection))
[ "thuer.ernst@gmail.com" ]
thuer.ernst@gmail.com
f6a183c0cc5dfdfe2dc8c9f6c14190c2e3110004
149c286465f1cb01ac0583c1d4a717de9fa15671
/L5/aggregate.py
a9ce4d4eaf46e3e7ffc4cf2c442f38fc82cbb18e
[]
no_license
leejaeka/Data-Wrangling-Udacity
ff9d980d98c01aa3ac5895bc8cf5f7bf3fe9172b
6ef17b949b794aec268707f01eb2d072dc0e75b3
refs/heads/main
2023-02-06T03:04:07.237039
2020-12-27T05:00:33
2020-12-27T05:00:33
312,496,131
0
0
null
null
null
null
UTF-8
Python
false
false
2,261
py
#!/usr/bin/env python """ Write an aggregation query to answer this question: Of the users in the "Brasilia" timezone who have tweeted 100 times or more, who has the largest number of followers? The following hints will help you solve this problem: - Time zone is found in the "time_zone" field of the user object in each tweet. - The number of tweets for each user is found in the "statuses_count" field. To access these fields you will need to use dot notation (from Lesson 4) - Your aggregation query should return something like the following: {u'ok': 1.0, u'result': [{u'_id': ObjectId('52fd2490bac3fa1975477702'), u'followers': 2597, u'screen_name': u'marbles', u'tweets': 12334}]} Note that you will need to create the fields 'followers', 'screen_name' and 'tweets'. Please modify only the 'make_pipeline' function so that it creates and returns an aggregation pipeline that can be passed to the MongoDB aggregate function. As in our examples in this lesson, the aggregation pipeline should be a list of one or more dictionary objects. Please review the lesson examples if you are unsure of the syntax. Your code will be run against a MongoDB instance that we have provided. If you want to run this code locally on your machine, you have to install MongoDB, download and insert the dataset. For instructions related to MongoDB setup and datasets please see Course Materials. Please note that the dataset you are using here is a smaller version of the twitter dataset used in examples in this lesson. If you attempt some of the same queries that we looked at in the lesson examples, your results will be different. """ def get_db(db_name): from pymongo import MongoClient client = MongoClient('localhost:27017') db = client[db_name] return db def make_pipeline(): # complete the aggregation pipeline pipeline = [ ] return pipeline def aggregate(db, pipeline): return [doc for doc in db.tweets.aggregate(pipeline)] if __name__ == '__main__': db = get_db('twitter') pipeline = make_pipeline() result = aggregate(db, pipeline) import pprint pprint.pprint(result) assert len(result) == 1 assert result[0]["followers"] == 17209
[ "jaekang.lee@mail.utoronto.ca" ]
jaekang.lee@mail.utoronto.ca
97d64b5f37844028007a1cfea36d95e2507f501c
e212d9b85df5962c8ebf9e737b825fa3fe89f3d6
/WaveRNN/utility/text/__init__.py
0b9d8cc2401057deb5c8f63699658b5395afb09c
[ "MIT" ]
permissive
sankar-mukherjee/Expressive-Speech-Synthesis-Research
9c3ea564509324dbfe033a328edd45aa7bffeffa
d85a067a131c04944f5bbe7fa7ab8c26e7d83800
refs/heads/master
2023-01-28T05:01:17.371683
2020-12-16T11:43:15
2020-12-16T11:43:15
294,351,192
0
0
null
null
null
null
UTF-8
Python
false
false
2,187
py
""" from https://github.com/keithito/tacotron """ import re from utility.text import cleaners from utility.text.symbols import symbols # Mappings from symbol to numeric ID and vice versa: _symbol_to_id = {s: i for i, s in enumerate(symbols)} _id_to_symbol = {i: s for i, s in enumerate(symbols)} # Regular expression matching text enclosed in curly braces: _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)') def text_to_sequence(text, cleaner_names): '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. The text can optionally have ARPAbet sequences enclosed in curly braces embedded in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street." Args: text: string to convert to a sequence cleaner_names: names of the cleaner functions to run the text through Returns: List of integers corresponding to the symbols in the text ''' sequence = [] # Check for curly braces and treat their contents as ARPAbet: while len(text): m = _curly_re.match(text) if not m: sequence += _symbols_to_sequence(_clean_text(text, cleaner_names)) break sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names)) sequence += _arpabet_to_sequence(m.group(2)) text = m.group(3) return sequence def sequence_to_text(sequence): '''Converts a sequence of IDs back to a string''' result = '' for symbol_id in sequence: if symbol_id in _id_to_symbol: s = _id_to_symbol[symbol_id] # Enclose ARPAbet back in curly braces: if len(s) > 1 and s[0] == '@': s = '{%s}' % s[1:] result += s return result.replace('}{', ' ') def _clean_text(text, cleaner_names): for name in cleaner_names: cleaner = getattr(cleaners, name) if not cleaner: raise Exception('Unknown cleaner: %s' % name) text = cleaner(text) return text def _symbols_to_sequence(symbols): return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)] def _arpabet_to_sequence(text): return _symbols_to_sequence(['@' + s for s in text.split()]) def _should_keep_symbol(s): return s in _symbol_to_id and s is not '_' and s is not '~'
[ "sankar1535@gmail.com" ]
sankar1535@gmail.com
a23cc982e760acbf55a579b0d8829327af32289b
e9a33230671bd7e099c11943ec056f84b6a9e24b
/jaal_call.py
b2ae8e2a72ebbbaeda09cb9d5df50b979976757a
[ "MIT" ]
permissive
Olshansk/jaal
52c49dcaaa1d4be21d1474c7739f4e5af9eb971a
2b1e4696ca0d3d8f074827e5ae2943817eaa88e7
refs/heads/main
2023-05-31T13:45:57.443046
2021-05-23T09:42:57
2021-05-23T09:42:57
340,232,097
1
0
MIT
2021-02-19T02:04:16
2021-02-19T02:04:16
null
UTF-8
Python
false
false
526
py
# import from jaal import Jaal from jaal.datasets import load_got # load the data edge_df, node_df = load_got() # define vis options vis_opts = {'height': '600px', # change height 'interaction':{'hover': True}, # turn on-off the hover 'physics':{'stabilization':{'iterations': 100}}} # define the convergence iteration of network # init Jaal and run server (with opts) Jaal(edge_df, node_df).plot(vis_opts=vis_opts) # init Jaal and run server (with default options) # Jaal(edge_df, node_df).plot()
[ "mohitmayank1@gmail.com" ]
mohitmayank1@gmail.com
e7d7eb5fdbca34075d62575cd4055b8f3df101c3
211e4920cc57e300a0c1f85e9d08f79c41d6fd6c
/ICP/ICP1/SOURCE/print number of letters and strings.py
7b5eb3153eb5cff4165efefb6deca0eb92e4c7ad
[]
no_license
srividyavn/Python-DL
34d2497c8a5b395b4426e9e90989e57f3854d297
85f4c64e28e0003ef17a1f8ecb49a90b11bafddd
refs/heads/master
2020-04-18T16:04:23.407642
2019-05-18T03:47:53
2019-05-18T03:47:53
167,626,124
1
0
null
null
null
null
UTF-8
Python
false
false
186
py
s = input("Input a string") d = l = 0 for c in s: if c.isdigit(): d = d+1 elif c.isalpha(): l = l+1 else: pass print("Letters", l) print("Digits", d)
[ "vnsrividya1994@gmail.com" ]
vnsrividya1994@gmail.com
1693c758f2c5cf600463f7be6a97c24efec33c8a
79a5a03461ff0c8905ced690b5c900bc2c031525
/visualize.py
d6dc0e7cca9ea31634538410556fa76e3549c34b
[]
no_license
himanshucodz55/Social_Distancing_Ai_COVID19
f5ba1146acf8ead00b944e558aad46313a549076
ff138b7f3d6d109722a19fbad1b87d68e0da3a5d
refs/heads/master
2022-12-10T22:58:39.752672
2020-09-02T17:43:57
2020-09-02T17:43:57
292,346,633
0
0
null
null
null
null
UTF-8
Python
false
false
23,401
py
""" Mask R-CNN Display and Visualization Functions. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import random import itertools import colorsys import numpy as np from skimage.measure import find_contours import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.lines as lines from matplotlib.patches import Polygon import IPython.display import utils import cv2 ############################################################ # Visualization ############################################################ def display_images(images, titles=None, cols=4, cmap=None, norm=None, interpolation=None): """Display the given set of images, optionally with titles. images: list or array of image tensors in HWC format. titles: optional. A list of titles to display with each image. cols: number of images per row cmap: Optional. Color map to use. For example, "Blues". norm: Optional. A Normalize instance to map values to colors. interpolation: Optional. Image interporlation to use for display. """ titles = titles if titles is not None else [""] * len(images) rows = len(images) // cols + 1 plt.figure(figsize=(14, 14 * rows // cols)) i = 1 for image, title in zip(images, titles): plt.subplot(rows, cols, i) plt.title(title, fontsize=9) plt.axis('off') # plt.imshow(image.astype(np.uint8), cmap=cmap, # norm=norm, interpolation=interpolation) i += 1 plt.show() random.seed(0) N=90 brightness = 1.0 hsv = [(i / N, 1, brightness) for i in range(N)] random.shuffle(hsv) def random_colors(N, bright=True): """ Generate random colors. To get visually distinct colors, generate them in HSV space then convert to RGB. """ all_colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) return all_colors def class_color(id,prob): _hsv = list(hsv[id]) # _hsv[2]=random.uniform(0.8, 1) _hsv[2]=prob color = colorsys.hsv_to_rgb(*_hsv) return color def apply_mask(image, mask, color, alpha=0.5): """Apply the given mask to the image. """ for c in range(3): image[:, :, c] = np.where(mask == 1, image[:, :, c] * (1 - alpha) + alpha * color[c] * 255, image[:, :, c]) return image def display_instances(image, boxes, masks, class_ids, class_names,scores=None, title="",figsize=(16, 16), ax=None,risky=None,index=None): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box figsize: (optional) the size of the image. """ if index is not None: # Number of instances N = boxes.shape[0] # if not N: # print("\n*** No instances to display *** \n") # else: # assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] if not ax: _, ax = plt.subplots(1, figsize=figsize) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) ax.axis('off') ax.set_title(title) l=0 masked_image = image.astype(np.uint32).copy() for i in index: # color = colors[i] # print("##################################",i,color) color=(0.26666666666666683, 1.0, 0.25) color1=(0.0,0.0,1.0) # Bounding box if not np.any(boxes[l]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[l] l+=1 # p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, # alpha=0.7, linestyle="dashed", # edgecolor=None, facecolor='none') # ax.add_patch(p) # ax.circle() # ax.Circle( ((x1+x2)/2,y2), 5, (0, 0, 255), -1) # center= plt.Circle(((x1+x2)/2,y2),5,color="blue") # ax.add_patch(center) if class_ids[i]==1: # Label class_id = class_ids[i] score = scores[i] if scores is not None else None label = class_names[class_id] x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:.3f}".format(label, score) if score else label ax.text(x1, y1 + 8, caption,color='w', size=11, backgroundcolor="none") # Mask if (risky is not None) and (i in risky): # ii=risky[i] # print("risky_ids: ",i) mask = masks[:, :, i] masked_image = apply_mask(masked_image, mask, color1) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color1) ax.add_patch(p) else: mask = masks[:, :, i] masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) # ax.imshow(masked_image.astype(np.uint8)) return masked_image.astype(np.uint8) def draw_instances(image, boxes, masks, class_ids, class_names, scores=None, title="", figsize=(16, 16), ax=None): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box figsize: (optional) the size of the image. """ # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # if not ax: # _, ax = plt.subplots(1, figsize=figsize) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] masked_image = image.copy() for i in range(N): class_id = class_ids[i] score = scores[i] if scores is not None else None # color = colors[i] color = class_color(class_id,score*score*score*score) # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] # p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, # alpha=0.7, linestyle="dashed", # edgecolor=color, facecolor='none') cv2.rectangle(masked_image, (x1, y1),(x2, y2), [int(x*255) for x in (color)],4) # Label label = class_names[class_id] x = random.randint(x1, (x1 + x2) // 2) caption = "%s %d%%"%(label, int(score*100)) if score else label # ax.text(x1, y1 + 8, caption, # color='w', size=11, backgroundcolor="none") yyy=y1 -16 if yyy <0: yyy=0 cv2.putText(masked_image, caption, (x1, yyy), cv2.FONT_HERSHEY_SIMPLEX, 1.5, [int(x*255) for x in (color)],4) # Mask mask = masks[:, :, i] masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) # ax.add_patch(p) pts = np.array(verts.tolist(), np.int32) pts = pts.reshape((-1,1,2)) cv2.polylines(masked_image,[pts],True,[int(x*255) for x in (color)],4) return masked_image.astype(np.uint8) def draw_rois(image, rois, refined_rois, mask, class_ids, class_names, limit=10): """ anchors: [n, (y1, x1, y2, x2)] list of anchors in image coordinates. proposals: [n, 4] the same anchors but refined to fit objects better. """ masked_image = image.copy() # Pick random anchors in case there are too many. ids = np.arange(rois.shape[0], dtype=np.int32) ids = np.random.choice( ids, limit, replace=False) if ids.shape[0] > limit else ids fig, ax = plt.subplots(1, figsize=(12, 12)) if rois.shape[0] > limit: plt.title("Showing {} random ROIs out of {}".format( len(ids), rois.shape[0])) else: plt.title("{} ROIs".format(len(ids))) # Show area outside image boundaries. ax.set_ylim(image.shape[0] + 20, -20) ax.set_xlim(-50, image.shape[1] + 20) ax.axis('off') for i, id in enumerate(ids): color = np.random.rand(3) class_id = class_ids[id] # ROI y1, x1, y2, x2 = rois[id] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, edgecolor=color if class_id else "gray", facecolor='none', linestyle="dashed") ax.add_patch(p) # Refined ROI if class_id: ry1, rx1, ry2, rx2 = refined_rois[id] p = patches.Rectangle((rx1, ry1), rx2 - rx1, ry2 - ry1, linewidth=2, edgecolor=color, facecolor='none') ax.add_patch(p) # Connect the top-left corners of the anchor and proposal for easy visualization ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color)) # Label label = class_names[class_id] ax.text(rx1, ry1 + 8, "{}".format(label), color='w', size=11, backgroundcolor="none") # Mask m = utils.unmold_mask(mask[id], rois[id] [:4].astype(np.int32), image.shape) masked_image = apply_mask(masked_image, m, color) # ax.imshow(masked_image) # Print stats print("Positive ROIs: ", class_ids[class_ids > 0].shape[0]) print("Negative ROIs: ", class_ids[class_ids == 0].shape[0]) print("Positive Ratio: {:.2f}".format( class_ids[class_ids > 0].shape[0] / class_ids.shape[0])) # TODO: Replace with matplotlib equivalent? def draw_box(image, box, color): """Draw 3-pixel width bounding boxes on the given image array. color: list of 3 int values for RGB. """ y1, x1, y2, x2 = box image[y1:y1 + 2, x1:x2] = color image[y2:y2 + 2, x1:x2] = color image[y1:y2, x1:x1 + 2] = color image[y1:y2, x2:x2 + 2] = color return image def display_detections(image, gt_boxes, boxes, masks, class_ids, class_names, scores=None): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box """ assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] fig, ax = plt.subplots(1, figsize=(20,20)) N = boxes.shape[0] # number of instances colors = random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height+10, -10) ax.set_xlim(-10, width+10) ax.axis('off') masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label class_id = class_ids[i] score = scores[i] if scores is not None else None label = class_names[class_id] x = random.randint(x1, (x1+x2)//2) ax.text(x1, y1+8, "{} {:.3f}".format(label, score) if score else label, color='w', size=11, backgroundcolor="none") # Mask mask = masks[:,:,i] masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad the mask to ensure proper polygons for mask that touch image edges. padded_mask = np.zeros((mask.shape[0]+2, mask.shape[1]+2), dtype=np.uint8) padded_mask[1:-1,1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) return plt.imshow(masked_image.astype(np.uint8)) def display_top_masks(image, mask, class_ids, class_names, limit=4): """Display the given image and the top few class masks.""" to_display = [] titles = [] to_display.append(image) titles.append("H x W={}x{}".format(image.shape[0], image.shape[1])) # Pick top prominent classes in this image unique_class_ids = np.unique(class_ids) mask_area = [np.sum(mask[:, :, np.where(class_ids == i)[0]]) for i in unique_class_ids] top_ids = [v[0] for v in sorted(zip(unique_class_ids, mask_area), key=lambda r: r[1], reverse=True) if v[1] > 0] # Generate images and titles for i in range(limit): class_id = top_ids[i] if i < len(top_ids) else -1 # Pull masks of instances belonging to the same class. m = mask[:, :, np.where(class_ids == class_id)[0]] m = np.sum(m * np.arange(1, m.shape[-1]+1), -1) to_display.append(m) titles.append(class_names[class_id] if class_id != -1 else "-") display_images(to_display, titles=titles, cols=limit+1, cmap="Blues_r") def plot_precision_recall(AP, precisions, recalls): """Draw the precision-recall curve. AP: Average precision at IoU >= 0.5 precisions: list of precision values recalls: list of recall values """ # Plot the Precision-Recall curve _, ax = plt.subplots(1) ax.set_title("Precision-Recall Curve. AP@50 = {:.3f}".format(AP)) ax.set_ylim(0, 1.1) ax.set_xlim(0, 1.1) _ = ax.plot(recalls, precisions) def plot_overlaps(gt_class_ids, pred_class_ids, pred_scores, overlaps, class_names, threshold=0.5): """Draw a grid showing how ground truth objects are classified. gt_class_ids: [N] int. Ground truth class IDs pred_class_id: [N] int. Predicted class IDs pred_scores: [N] float. The probability scores of predicted classes overlaps: [pred_boxes, gt_boxes] IoU overlaps of predictins and GT boxes. class_names: list of all class names in the dataset threshold: Float. The prediction probability required to predict a class """ gt_class_ids = gt_class_ids[gt_class_ids != 0] pred_class_ids = pred_class_ids[pred_class_ids != 0] plt.figure(figsize=(12, 10)) plt.imshow(overlaps, interpolation='nearest', cmap=plt.cm.Blues) plt.yticks(np.arange(len(pred_class_ids)), ["{} ({:.2f})".format(class_names[int(id)], pred_scores[i]) for i, id in enumerate(pred_class_ids)]) plt.xticks(np.arange(len(gt_class_ids)), [class_names[int(id)] for id in gt_class_ids], rotation=90) thresh = overlaps.max() / 2. for i, j in itertools.product(range(overlaps.shape[0]), range(overlaps.shape[1])): text = "" if overlaps[i, j] > threshold: text = "match" if gt_class_ids[j] == pred_class_ids[i] else "wrong" color = ("white" if overlaps[i, j] > thresh else "black" if overlaps[i, j] > 0 else "grey") plt.text(j, i, "{:.3f}\n{}".format(overlaps[i, j], text), horizontalalignment="center", verticalalignment="center", fontsize=9, color=color) plt.tight_layout() plt.xlabel("Ground Truth") plt.ylabel("Predictions") def draw_boxes(image, boxes=None, refined_boxes=None, masks=None, captions=None, visibilities=None, title="", ax=None): """Draw bounding boxes and segmentation masks with differnt customizations. boxes: [N, (y1, x1, y2, x2, class_id)] in image coordinates. refined_boxes: Like boxes, but draw with solid lines to show that they're the result of refining 'boxes'. masks: [N, height, width] captions: List of N titles to display on each box visibilities: (optional) List of values of 0, 1, or 2. Determine how prominant each bounding box should be. title: An optional title to show over the image ax: (optional) Matplotlib axis to draw on. """ # Number of boxes assert boxes is not None or refined_boxes is not None N = boxes.shape[0] if boxes is not None else refined_boxes.shape[0] # Matplotlib Axis if not ax: _, ax = plt.subplots(1, figsize=(12, 12)) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. margin = image.shape[0] // 10 ax.set_ylim(image.shape[0] + margin, -margin) ax.set_xlim(-margin, image.shape[1] + margin) ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): # Box visibility visibility = visibilities[i] if visibilities is not None else 1 if visibility == 0: color = "gray" style = "dotted" alpha = 0.5 elif visibility == 1: color = colors[i] style = "dotted" alpha = 1 elif visibility == 2: color = colors[i] style = "solid" alpha = 1 # Boxes if boxes is not None: if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=alpha, linestyle=style, edgecolor=color, facecolor='none') ax.add_patch(p) # Refined boxes if refined_boxes is not None and visibility > 0: ry1, rx1, ry2, rx2 = refined_boxes[i].astype(np.int32) p = patches.Rectangle((rx1, ry1), rx2-rx1, ry2-ry1, linewidth=2, edgecolor=color, facecolor='none') ax.add_patch(p) # Connect the top-left corners of the anchor and proposal if boxes is not None: ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color)) # Captions if captions is not None: caption = captions[i] # If there are refined boxes, display captions on them if refined_boxes is not None: y1, x1, y2, x2 = ry1, rx1, ry2, rx2 x = random.randint(x1, (x1 + x2) // 2) ax.text(x1, y1, caption, size=11, verticalalignment='top', color='w', backgroundcolor="none", bbox={'facecolor': color, 'alpha': 0.5, 'pad': 2, 'edgecolor': 'none'}) # Masks if masks is not None: mask = masks[:, :, i] masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) # ax.imshow(masked_image.astype(np.uint8)) def display_table(table): """Display values in a table format. table: an iterable of rows, and each row is an iterable of values. """ html = "" for row in table: row_html = "" for col in row: row_html += "<td>{:40}</td>".format(str(col)) html += "<tr>" + row_html + "</tr>" html = "<table>" + html + "</table>" IPython.display.display(IPython.display.HTML(html)) def display_weight_stats(model): """Scans all the weights in the model and returns a list of tuples that contain stats about each weight. """ layers = model.get_trainable_layers() table = [["WEIGHT NAME", "SHAPE", "MIN", "MAX", "STD"]] for l in layers: weight_values = l.get_weights() # list of Numpy arrays weight_tensors = l.weights # list of TF tensors for i, w in enumerate(weight_values): weight_name = weight_tensors[i].name # Detect problematic layers. Exclude biases of conv layers. alert = "" if w.min() == w.max() and not (l.__class__.__name__ == "Conv2D" and i == 1): alert += "<span style='color:red'>*** dead?</span>" if np.abs(w.min()) > 1000 or np.abs(w.max()) > 1000: alert += "<span style='color:red'>*** Overflow?</span>" # Add row table.append([ weight_name + alert, str(w.shape), "{:+9.4f}".format(w.min()), "{:+10.4f}".format(w.max()), "{:+9.4f}".format(w.std()), ]) display_table(table)
[ "noreply@github.com" ]
noreply@github.com
26a487162edb894b5eb3cb1710694ac467522456
6c4722bd98c9fde85862774b6de78c93be5f3513
/gen_unprocessed_RAW_for_ExDark.py
c2139db6cfe7d9a41136415bd63b9578f504212b
[]
no_license
wakananai/unprocessing
f34ec72a877784f861a3c86e65972388d9c83140
8296df535e27ab9ef615b1735e7136181e1c18bf
refs/heads/master
2021-01-01T08:47:33.719273
2020-07-02T20:22:38
2020-07-02T20:22:38
239,204,531
0
0
null
null
null
null
UTF-8
Python
false
false
1,723
py
from unprocess import unprocess import glob import cv2 import tensorflow as tf import glob from tqdm import tqdm import os import numpy as np import pickle import argparse IMG_DIR= f'/tmp3/r07922076/ExDark_data' OUT_DIR= f'/tmp3/r07922076/unprocessed_ExDark_data' obj_class_dir = next(os.walk( os.path.join(IMG_DIR)))[1] # obj_class_dir.remove('__MACOSX') for obj_class in obj_class_dir: if not os.path.exists(os.path.join(OUT_DIR, obj_class)): os.makedirs(os.path.join(OUT_DIR, obj_class)) config = tf.ConfigProto() config.gpu_options.allow_growth = True input_image = tf.placeholder(tf.float32, shape=[None, None, 3]) un_raw, meta = unprocess(input_image) sess = tf.Session(config=config) with sess.as_default(): for imgpath in tqdm(sorted(glob.glob(os.path.join(IMG_DIR, '*', '*')))): img = cv2.imread(imgpath) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # check if img contain odd height / width h, w, _ = img.shape if img.shape[0] % 2 == 1: h = img.shape[0] + 1 if img.shape[1] % 2 == 1: w = img.shape[1] + 1 plane = np.zeros((h,w,3)) plane[:img.shape[0],:img.shape[1],:] = img[:,:,:] plane = plane.astype(np.float32) / 255.0 un, metadata = sess.run([un_raw, meta], feed_dict={input_image: plane}) file_name, file_ext = os.path.splitext(imgpath) obj_class = imgpath.split('/')[-2] path_raw = os.path.join(OUT_DIR, obj_class, os.path.basename(imgpath).replace(file_ext,'.pkl')) with open(path_raw, 'wb') as pf: content = dict() content['raw'] = un content['metadata'] = metadata pickle.dump(content, pf)
[ "wakananai@gmail.com" ]
wakananai@gmail.com
26184749943556b8182e4acc6b275c7e7dc14266
1cbc22287df1134337fe3f440f8e73a08ee41fb6
/projectapp/models.py
9336fb48ee0dbea5534aebaf2f77686082619739
[ "MIT" ]
permissive
FranciscoStanley/pythonXlsx
cb0cc5c3df66ba959c854a5902982b2c3704db8c
f8ed52bd3c1a6b07edf8d046d0ace3e7287f83ef
refs/heads/master
2023-08-27T13:34:10.757988
2021-11-08T21:36:50
2021-11-08T21:36:50
424,464,942
0
0
null
null
null
null
UTF-8
Python
false
false
882
py
from django.db import models # Create your models here. SEXO_CHOICES = ( ('M', 'masculino'), ('F', 'feminino'), ) class Person(models.Model): nome = models.CharField(max_length=50) sobrenome = models.CharField(max_length=50, null=True, blank=True) sexo = models.CharField(max_length=2, choices=SEXO_CHOICES) altura = models.FloatField(null=True, blank=True, default=None) peso = models.FloatField(null=True, blank=True, default=None) nascimento = models.DateTimeField(verbose_name="Data de Nascimento", null=True) bairro = models.CharField(max_length=30) cidade = models.CharField(max_length=20) estado = models.CharField(max_length=20) numero = models.DecimalField(max_digits=8, decimal_places=0) def __str__(self): return self.nome def get_nascimento(self): return self.nascimento.strftime('%d/%m/%Y')
[ "franciscothestanley@gmail.com" ]
franciscothestanley@gmail.com
3cc7c17ee582aaba4ab4d5771286ac2e1ae8b9e8
1b45d1162bd60a356844fc4dced068da2e6cc438
/Arrays/Merge.py
8ee66ae39f1687b433e476fa1b9e3be1d2e31015
[ "MIT" ]
permissive
AnkitAvi11/Data-Structures-And-Algorithms
de9584e439861254cdce265af789c8b484c01c69
703f78819a41d4dd88caf71156a4a515651edc1b
refs/heads/master
2023-02-19T21:53:39.405934
2021-01-24T17:27:21
2021-01-24T17:27:21
297,752,655
6
3
MIT
2021-01-24T17:27:22
2020-09-22T19:33:55
Python
UTF-8
Python
false
false
669
py
""" QUESTION STATEMENT : MERGE TWO SORTED ARRAYS WITHOUT USING ANY EXTRA SPACE example : arr1 = {1,3,5,7,9} size = n arr2 = {2,4,6,8,10} size = m arr1 after merging = {1,2,3,4,5,6,7,8,9,10} """ def mergeArrays(arr : list, arr2 : list) : i = 0;j = 0; while i < len(arr) : # O(n) if arr[i] > arr2[j] : arr[i], arr2[j] = arr2[j], arr[i] # swapping the elements arr2.sort() # O(mlog2m) i+=1 # total complexity = (n*m)log2m for el in arr2 : arr.append(el) if __name__ == '__main__' : arr = [1,3,5,7,9] arr2 = [2,4,6,8,10] mergeArrays(arr, arr2) print(arr)
[ "kumar.ankit383@gmail.com" ]
kumar.ankit383@gmail.com
6c78fccd11b2ca769683b6527aa888e158fea647
d9e26e516ab3863b6e7d00c4e3cdecf1af7028eb
/src/oaklib/io/streaming_nl_writer.py
ecde169932c3e55baa59bfdfd1aef1e274f6109a
[ "Apache-2.0" ]
permissive
INCATools/ontology-access-kit
2f08a64b7308e8307d1aaac2a81764e7d98b5928
8d2a124f7af66fe2e796f9e0ece55585438796a5
refs/heads/main
2023-08-30T14:28:57.201198
2023-08-29T17:40:19
2023-08-29T17:40:19
475,072,415
67
15
Apache-2.0
2023-09-07T01:06:04
2022-03-28T15:50:45
Jupyter Notebook
UTF-8
Python
false
false
1,152
py
from dataclasses import dataclass from linkml_runtime.utils.yamlutils import YAMLRoot from oaklib.datamodels import obograph from oaklib.io.streaming_writer import StreamingWriter from oaklib.utilities.nlp.natual_language_generation import NaturalLanguageGenerator @dataclass class StreamingNaturalLanguageWriter(StreamingWriter): """ A writer that streams basic line by line reporting info """ natural_language_generator: NaturalLanguageGenerator = None def emit_curie(self, curie, label=None, **kwargs): self._ensure_init() self.file.write(self.natural_language_generator.render_entity(curie)) self.file.write("\n") def emit_obj(self, obj: YAMLRoot): self._ensure_init() if isinstance(obj, obograph.LogicalDefinitionAxiom): self.file.write(self.natural_language_generator.render_logical_definition(obj)) self.file.write("\n") else: raise NotImplementedError def _ensure_init(self): if self.natural_language_generator is None: self.natural_language_generator = NaturalLanguageGenerator(self.ontology_interface)
[ "noreply@github.com" ]
noreply@github.com
d49bd6a43b3f609a7edeca36319384afb91d1e8b
9c91412897e8c38698b707fd68241f5f90dad8ca
/faculty/models.py
d964ebe95cf256b3df082b290e8d312c16bccd8f
[]
no_license
zhaoz2017/cpa2019
ae78d6beb3f26c8d681fb7bfb1665dad34b30dc3
795325edc435201f2b4d2c823500dee9f55d9b96
refs/heads/master
2020-04-02T15:37:09.146904
2019-04-11T21:13:33
2019-04-11T21:13:33
153,498,030
0
0
null
null
null
null
UTF-8
Python
false
false
940
py
from django.db import models from django.contrib.auth.models import User from django.db.models import Q # Create your models here. class Solution(models.Model): title = models.CharField(max_length=255) pub_date = models.DateTimeField() body_q = models.TextField() body_a = models.TextField() votes_total = models.IntegerField(default=1) publisher = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.title # def summary(self): # return self.body[:100] def pub_date_pretty(self): return self.pub_date.strftime('%b %e %Y') class Professor(models.Model): first = models.CharField(max_length=50) last = models.CharField(max_length=50) email = models.EmailField(max_length=50) website = models.CharField(max_length=50) def __str__(self): #__unicode__(self): return "{} {} {} {}".format(self.first, self.last, self.email, self.website)
[ "zhaoz2017@my.fit.edu" ]
zhaoz2017@my.fit.edu
f49b8c133be1b81786886982ff14bce39ed0ed34
03cbffb6c8f80070704a9c3290ad053f10535a16
/project_utils/utilities.py
7f8ec7b67694f43e051399ce12909ce5e8947978
[]
no_license
TanviSahay/Rl-for-NLP-project
dabc4be62dd6f8f3812ff7ac40075871d78b2839
496f654b0497e67b5d3c1f6d77b9457266248252
refs/heads/master
2021-08-31T07:49:19.754461
2017-12-20T17:27:53
2017-12-20T17:27:53
114,515,736
1
0
null
null
null
null
UTF-8
Python
false
false
3,981
py
import numpy as np import os import matplotlib.pyplot as plt import warnings import pickle from collections import defaultdict from nltk import pos_tag, word_tokenize warnings.simplefilter("ignore") def dd(): return defaultdict(int) def get_actions(): with open('./Data/vocab.pkl','rb') as f: actions = pickle.load(f) actions = {k:i for i,k in enumerate(actions)} return actions def getReward(reward_func): if reward_func == 1: #print('Reward will be: word-word co-occurrence') return word_cooc_reward() if reward_func == 2: #print('Reward will be: pos-pos co-occurrence') return pos_cooc_reward() if reward_func == 3: #print('Reward will be: product of word-word and pos-pos cooccurrence') return word_pos_reward('prod') if reward_func == 4: #print('reward will be: average of word-word and pos-pos cooccurrence') return word_pos_reward('avg') def word_cooc_reward(): with open('./Data/word_cooccurrence.pkl','rb') as f: return pickle.load(f) def pos_cooc_reward(): with open('./Data/pos_cooccurrence.pkl','rb') as f: return pickle.load(f) def word_pos_reward(combine): if os.path.exists('./Data/word_pos_%s'%combine): with open('./Data/word_pos_%s'%combine,'rb') as f: rewards = pickle.load(f) else: with open('./Data/pos_cooccurrence.pkl','rb') as f: pos_cooc = pickle.load(f) with open('./Data/word_cooccurrence.pkl','rb') as f: word_cooc = pickle.load(f) rewards = defaultdict(dd) for key, val in word_cooc.items(): for word, score in val.items(): bigram = [key, word] tagged_bigram = pos_tag(bigram) if combine == 'prod': rewards[key][word] = pos_cooc[tagged_bigram[0][1]][tagged_bigram[1][1]] * score if combine == 'avg': rewards[key][word] = (pos_cooc[tagged_bigram[0][1]][tagged_bigram[1][1]] + score) / 2 with open('./Data/word_pos_%s.pickle'%combine, 'wb') as f: pickle.dump(rewards, f) return rewards #def scale(val, old_min, old_max, new_min, new_max): # new_val = (val - old_min)/(old_max - old_min) # return new_val #def count(number, base, shape): # c = np.zeros(shape=shape) # i = c.shape[0] - 1 # while number >= base: # remainder = number % base # c[i] = remainder # i -= 1 # number = number / base # if number != 0 and number < base: # c[i] = number # return c def plot(data, method, trials, NEPS,eps,alp,g): mean = np.mean(data, axis=1) #print mean.shape variance = np.mean(np.square(data.T-mean).T, axis=1) #print variance std = np.sqrt(variance) #print std x = list(np.arange(0,NEPS,1)) y = list(mean) print 'Length of x: {} length of y: {}'.format(len(x), len(y)) err = list(std) plt.axis((0,NEPS,0,15)) plt.errorbar(x, y, yerr=err, fmt='-ro') #plt.plot(y) plt.xlabel('Episode') plt.ylabel('Expected return of reward') plt.title('%s for %d trials, epsilon: %.4f, alpha: %.2f, gamma: %.2f' % (method, trials, float(eps), float(alp), float(g))) plt.savefig('Expected_Return_%s_%d_unclipped.jpg' % (method, trials)) plt.show() return mean[-1] def log(method, trials, eps, gamma, alpha, maxima=None, time=0): if os.path.exists('log'): with open('log','r') as f: data = f.readlines() data.append('method: {0}, trials: {1}, epsilon: {2}, gamma: {3}, alpha: {4}, maximum value: {5}, time taken: {6}\n'.format(method, trials, eps, gamma, alpha, maxima, time)) else: data = 'method: {0}, trials: {1}, epsilon: {2}, gamma: {3}, alpha: {4}, maximum value: {5}, time taken: {6}\n'.format(method, trials, eps, gamma, alpha, maxima, time) with open('log','w') as f: for line in data: f.write(line)
[ "tsahay@umass.edu" ]
tsahay@umass.edu
fc02fda54534594dd3a8358ecf562fc2cbd36a7e
0a1716384ac3425b0f457e210e43c0a499bd66d2
/process_files/_old/fix_processed_names.py
27e83d345283a04bd753cafb4edbf2a7f9b3850a
[]
no_license
ilbarlow/process-rig-data
d54d0489ad42ef92e422915d01ac43feeb62bed3
89fc296628eb7f9260b099ee3cb2f25680905686
refs/heads/master
2020-03-18T21:50:05.775230
2018-03-28T20:13:41
2018-03-28T20:13:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,596
py
# -*- coding: utf-8 -*- """ Created on Thu Oct 27 16:15:39 2016 @author: worm_rig """ import os import shutil import glob import numpy as np import pandas as pd import warnings from functools import partial if __name__ == '__main__': output_root = '/Volumes/behavgenom_archive$/Avelino/Worm_Rig_Tests/short_movies_new/' #'/Volumes/behavgenom_archive$/Avelino/PeterAskjaer/' exp_name = 'Double_pick_090217'#'Mutant_worm_screening_Y32H12A.7(ok3452)_220217' tsv_file = os.path.join(output_root, 'ExtraFiles', exp_name + '_renamed.tsv') tab = pd.read_table(tsv_file, names=['old', 'new']) for _, row in tab.iterrows(): parts = row['old'].split(os.sep) delP = [int(x[2:]) for x in parts if x.startswith('PC')][0] old_base_name = os.path.splitext(os.path.basename(row['old']))[0] old_ch = [int(x[2:]) for x in old_base_name.split('_') if x.startswith('Ch')][0] base_name = os.path.splitext(os.path.basename(row['new']))[0] real_ch = 'Ch{}'.format(2*(delP-1)+old_ch) fparts = base_name.split('_') ff = [x.strip() if not x.startswith('Ch') else real_ch for x in fparts ] new_base_name = '_'.join(ff) search_str = os.path.join(output_root,'**', exp_name, base_name + '*') fnames = glob.glob(search_str) for bad_name in fnames: good_name = bad_name.replace(base_name, new_base_name) print(bad_name, good_name) #shutil.move(bad_name, good_name)
[ "ajaver@MRC-8791.local" ]
ajaver@MRC-8791.local
d172365081306da15a884cc5c29f601bd27ef325
1de6d55bf8c4d9333c9b21f9f8ee154c2aef3c7f
/phi/migrations/0033_auto_20180920_1225.py
8a10fe86ddf75f16db687871795e94e5d0be753b
[]
no_license
FloCare/hha-backendtest
ad675c5da2fa23ec5d8ea58223bef28c4142483a
0918b932dcc5c44fae9799c05c17519abc54f7a7
refs/heads/master
2022-12-10T02:20:56.200101
2019-05-06T11:14:09
2019-05-06T11:14:09
184,367,994
0
0
null
2022-12-08T02:31:35
2019-05-01T04:19:43
Python
UTF-8
Python
false
false
572
py
# Generated by Django 2.0.6 on 2018-09-20 12:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user_auth', '0013_auto_20180817_1008'), ('phi', '0032_physician_organization'), ] operations = [ migrations.AlterField( model_name='physician', name='npi', field=models.CharField(max_length=10), ), migrations.AlterUniqueTogether( name='physician', unique_together={('organization', 'npi')}, ), ]
[ "nikhil@flocare.health" ]
nikhil@flocare.health
4178241c956b41e6c04cec3ba18389b1a237ab68
17beb9d3062db25c430acd0435953305431cbbf1
/binding.gyp
eaa8a16873c7dfa83bf3fe7dc0429b99d62a8463
[]
no_license
hansmalherbe/node-opencv2
fb114157b9e60d474e17471ad737461eca4f5d62
d41d327fc9fd6104f1c24ec2a0fa5d835cbcb89f
refs/heads/master
2016-09-06T11:58:59.641102
2012-10-22T22:49:22
2012-10-22T22:49:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,801
gyp
{ 'variables' : { 'opencv_dir': 'c:/opencv242/build/', 'boost_dir': 'c:/boost_1_49_0', 'conf': '$(ConfigurationName)', }, 'conditions': [ ['OS=="win"', { 'conditions': [ ['target_arch=="x64"', { 'variables': { 'opencv_libs': '<(opencv_dir)x64/vc10/', 'opencv_tbb': '<(opencv_dir)common/tbb/intel64/vc10/', }, },{ 'variables': { 'opencv_libs': '<(opencv_dir)x86/vc10/', 'opencv_tbb': '<(opencv_dir)common/tbb/ia32/vc10/', }, }], ], }], ], 'targets': [ { 'target_name': 'opencv2', 'sources': [ './src/opencv2.cc', './src/help.cc', './src/mat.cc', './src/object_proxy.cc', ], 'msbuild_props': [ 'node.vsprops' ], 'include_dirs': [ './src', '<(opencv_dir)include', '<(boost_dir)' ], 'link_settings': { 'libraries': [ '<(opencv_libs)lib/opencv_calib3d242.lib', '<(opencv_libs)lib/opencv_contrib242.lib', '<(opencv_libs)lib/opencv_core242.lib', '<(opencv_libs)lib/opencv_features2d242.lib', '<(opencv_libs)lib/opencv_flann242.lib', '<(opencv_libs)lib/opencv_gpu242.lib', '<(opencv_libs)lib/opencv_haartraining_engine.lib', '<(opencv_libs)lib/opencv_highgui242.lib', '<(opencv_libs)lib/opencv_imgproc242.lib', '<(opencv_libs)lib/opencv_legacy242.lib', '<(opencv_libs)lib/opencv_ml242.lib', '<(opencv_libs)lib/opencv_nonfree242.lib', '<(opencv_libs)lib/opencv_objdetect242.lib', '<(opencv_libs)lib/opencv_photo242.lib', '<(opencv_libs)lib/opencv_stitching242.lib', '<(opencv_libs)lib/opencv_ts242.lib', '<(opencv_libs)lib/opencv_video242.lib', '<(opencv_libs)lib/opencv_videostab242.lib', ], 'conditions': [ ['OS=="win"', { 'libraries/': [ ['exclude', '\\.a$'], ], }], ], }, 'conditions': [ ['OS=="win"', { 'msvs_guid': 'FC93254D-884A-4FE7-B74F-2301D842BB78', #'msvs_disabled_warnings': [4351, 4355, 4800], 'copies': [ { 'destination': './build/$(ConfigurationName)/', 'files': [ '<(opencv_tbb)tbb.dll', '<(opencv_tbb)tbb_preview.dll', '<(opencv_tbb)tbbmalloc.dll', '<(opencv_tbb)tbbmalloc_proxy.dll', '<(opencv_libs)bin/opencv_calib3d242.dll', '<(opencv_libs)bin/opencv_contrib242.dll', '<(opencv_libs)bin/opencv_core242.dll', '<(opencv_libs)bin/opencv_features2d242.dll', '<(opencv_libs)bin/opencv_flann242.dll', '<(opencv_libs)bin/opencv_gpu242.dll', '<(opencv_libs)bin/opencv_highgui242.dll', '<(opencv_libs)bin/opencv_imgproc242.dll', '<(opencv_libs)bin/opencv_legacy242.dll', '<(opencv_libs)bin/opencv_ml242.dll', '<(opencv_libs)bin/opencv_nonfree242.dll', '<(opencv_libs)bin/opencv_objdetect242.dll', '<(opencv_libs)bin/opencv_photo242.dll', '<(opencv_libs)bin/opencv_stitching242.dll', '<(opencv_libs)bin/opencv_ts242.dll', '<(opencv_libs)bin/opencv_video242.dll', '<(opencv_libs)bin/opencv_videostab242.dll', ], 'conditions': [ ['target_arch=="x64"', { 'files': [ '<(opencv_libs)bin/opencv_ffmpeg242_64.dll', ], }, { 'files': [ '<(opencv_libs)bin/opencv_ffmpeg242.dll', ], }] ], }, ], 'configurations': { 'Debug': { 'msvs_settings': { 'VCLinkerTool': { 'AdditionalDependencies': [ 'vfw32.lib', 'comctl32.lib', '<(opencv_libs)staticlib/zlib.lib', '<(opencv_libs)staticlib/libtiff.lib', '<(opencv_libs)staticlib/libpng.lib', '<(opencv_libs)staticlib/libjpeg.lib', '<(opencv_libs)staticlib/libjasper.lib' ], }, }, }, 'Release': { 'msvs_settings': { 'VCCLCompilerTool': { 'ExceptionHandling': '2', # /EHsc }, 'VCLinkerTool': { 'AdditionalDependencies': [ 'vfw32.lib', 'comctl32.lib', '<(opencv_libs)staticlib/zlib.lib', '<(opencv_libs)staticlib/libtiff.lib', '<(opencv_libs)staticlib/libpng.lib', '<(opencv_libs)staticlib/libjpeg.lib', '<(opencv_libs)staticlib/libjasper.lib' ], # LinkIncremental values: # 0 == default # 1 == /INCREMENTAL:NO # 2 == /INCREMENTAL #'LinkIncremental': '1', }, }, }, }, 'defines': [ 'WINDOWS_SUPPRESS_WARNINGS', ], 'include_dirs': [], }] ] } ] }
[ "hans.malherbe@gmail.com" ]
hans.malherbe@gmail.com
37448d7967ed493b56ddd9b94af1582157f26f15
3d016301728a4428ec466653587f0f80c4f7eb11
/plugin/lighthouse/metadata.py
ea0afcf3dc444279943f34cbf0dc8925b321eb9b
[ "MIT" ]
permissive
MosheWagner/lighthouse
bcb16e24612645cdcf441011b430d6b8408b0687
ca1454b2680b31d882339ff56efd34b546ba908d
refs/heads/master
2020-04-26T23:50:43.001011
2019-03-05T09:32:30
2019-03-05T09:32:30
173,915,816
2
0
MIT
2019-03-05T09:26:59
2019-03-05T09:26:55
Python
UTF-8
Python
false
false
35,794
py
import time import Queue import bisect import logging import weakref import threading import collections from lighthouse.util.misc import * from lighthouse.util.disassembler import disassembler logger = logging.getLogger("Lighthouse.Metadata") #------------------------------------------------------------------------------ # Metadata #------------------------------------------------------------------------------ # # To aid in performance, Lighthouse lifts and indexes an in-memory limited # representation of the disassembler's open database. This is commonly # referred to as 'metadata' throughout this codebase. # # Once built, the lifted metadata cache stands completely independent of # the disassembler. This effectively eliminates the need for Lighthouse to # communicate with the underlying disassembler / API (which is slow) when # mapping coverage, or doing coverage composition logic. # # With this model, we have been able to move the heavy director based # coverage composition logic to python-only threads without disrupting the # user, or IDA. (added in v0.4.0) # # However, there are two main caveats of this model - # # 1. The cached 'metadata' representation may not always be true to state # of the database. For example, if the user defines/undefines functions, # the metadata cache will not be aware of such changes. # # Lighthouse will try to update the director's metadata cache when # applicable, but there are instances when it will be in the best # interest of the user to manually trigger a refresh of the metadata. # # 2. Building the metadata comes with an upfront cost, but this cost has # been reduced as much as possible. For example, generating metadata for # a database with ~17k functions, ~95k nodes (basic blocks), and ~563k # instructions takes only ~6 seconds. # # This will be negligible for small-medium sized databases, but may still # be jarring for larger databases. # # Ultimately, this model provides us a more responsive user experience at # the expense of the occasional inaccuracies that can be corrected by # reasonably low cost refresh. # #------------------------------------------------------------------------------ # Database Metadata #------------------------------------------------------------------------------ class DatabaseMetadata(object): """ Database level metadata cache. """ def __init__(self): # name & imagebase of the executable this metadata is based on self.filename = "" self.imagebase = -1 # database metadata cache status self.cached = False # the cache of key database structures self.nodes = {} self.functions = {} self.instructions = [] # internal members to help index & navigate the cached metadata self._stale_lookup = False self._name2func = {} self._last_node = [] # HACK: blank iterable for now self._node_addresses = [] self._function_addresses = [] # placeholder attribute for disassembler event hooks self._rename_hooks = None # metadata callbacks (see director for more info) self._function_renamed_callbacks = [] # asynchronous metadata collection thread self._refresh_worker = None self._stop_threads = False def terminate(self): """ Cleanup & terminate the metadata object. """ self.abort_refresh(join=True) if self._rename_hooks: self._rename_hooks.unhook() #-------------------------------------------------------------------------- # Providers #-------------------------------------------------------------------------- def get_instructions_slice(self, start_address, end_address): """ Get the instructions addresses that fall within a given range. """ index_start = bisect.bisect_left(self.instructions, start_address) index_end = bisect.bisect_left(self.instructions, end_address) return self.instructions[index_start:index_end] def get_node(self, address): """ Get the node (basic block) metadata for a given address. """ assert not self._stale_lookup, "Stale metadata is unsafe to use..." # fast path, effectively a LRU cache of 1 ;P if address in self._last_node: return self._last_node # # use the lookup lists to do a 'fuzzy' lookup of the given address, # locating the index of the closest known node address (rounding down) # index = bisect.bisect_right(self._node_addresses, address) - 1 node_metadata = self.nodes.get(self._node_addresses[index], None) # # if the given address does not fall within the selected node (or the # node simply does not exist), then we have no match/metadata to return # if not (node_metadata and address in node_metadata): return None # # if the selected node metadata contains the given target address, it # is a positive hit and we should cache this node (in last_node) for # faster consecutive lookups # self._last_node = node_metadata # return the located node_metadata return node_metadata def get_function(self, address): """ Get the function metadata for a given address. """ node_metadata = self.get_node(address) if not node_metadata: return None return node_metadata.function def get_function_by_name(self, function_name): """ Get the function metadata for a given function name. """ try: return self.functions[self._name2func[function_name]] except (IndexError, KeyError): return None def get_function_by_index(self, index): """ Get the function metadata for a given function index. """ try: return self.functions[self._function_addresses[index]] except (IndexError, KeyError): return None def get_function_index(self, address): """ Get the function index for a given address. """ return self._function_addresses.index(address) def get_closest_function(self, address): """ Get the function metadata for the function closest to the give address. """ # sanity check if not self._function_addresses: return None # get the closest insertion point of the given address index = bisect.bisect_left(self._function_addresses, address) # the given address is a min, return the first known function if index == 0: return self.functions[self._function_addresses[0]] # given address is a max, return the last known function if index == len(self._function_addresses): return self.functions[self._function_addresses[-1]] # select the two candidate addresses before = self._function_addresses[index - 1] after = self._function_addresses[index] # return the function closest to the given address if after - address < address - before: return self.functions[after] else: return self.functions[before] def flatten_blocks(self, basic_blocks): """ Flatten a list of basic blocks (address, size) to instruction addresses. This function provides a way to convert a list of (address, size) basic block entries into a list of individual instruction (or byte) addresses based on the current metadata. """ output = [] for address, size in basic_blocks: instructions = self.get_instructions_slice(address, address+size) output.extend(instructions) return output def is_big(self): """ Return a bool indicating whether we think the database is 'big'. """ return len(self.functions) > 50000 #-------------------------------------------------------------------------- # Refresh #-------------------------------------------------------------------------- def refresh(self, function_addresses=None, progress_callback=None): """ Request an asynchronous refresh of the database metadata. TODO/FUTURE: we should make a synchronous refresh available """ assert self._refresh_worker == None, 'Refresh already running' result_queue = Queue.Queue() # # reset the async abort/stop flag that can be used used to cancel the # ongoing refresh task # self._stop_threads = False # # kick off an asynchronous metadata collection task # self._refresh_worker = threading.Thread( target=self._async_refresh, args=(result_queue, function_addresses, progress_callback,) ) self._refresh_worker.start() # # immediately return a queue to the caller which it can use to listen # on and wait for a refresh completion message # return result_queue def abort_refresh(self, join=False): """ Abort an asynchronous refresh. To guarantee an asynchronous refresh has been canceled, the caller can optionally wait for the result_queue from refresh() to return 'None'. Alternatively, the `join` parameter can be set to `True`, making this function block until the refresh is canceled. """ # # the refresh worker (if it exists) can be ripped away at any time. # take a local reference to avoid a double fetch problems # worker = self._refresh_worker # # if there is no worker present or running (cleaning up?) there is # nothing for us to abort. Simply reset the abort flag (just in case) # and return immediately # if not (worker and worker.is_alive()): self._stop_threads = False self._refresh_worker = None return # signal the worker thread to stop self._stop_threads = True # if requested, don't return until the worker thread has stopped... if join: worker.join() def _refresh_instructions(self): """ Refresh the list of database instructions (from function metadata). """ instructions = [] for function_metadata in self.functions.itervalues(): instructions.extend(function_metadata.instructions) instructions = list(set(instructions)) instructions.sort() # commit the updated instruction list self.instructions = instructions def _refresh_lookup(self): """ Refresh the internal fast lookup address lists. Fast lookup lists are simply sorted address lists of function metadata, node metadata, or possibly other forms of metadata (in the future). We create sorted lists of metadata object addresses so that we can use them for fast, fuzzy address lookup (eg, bisect). c.f: - get_node(ea) - get_function(ea) """ self._last_node = [] self._name2func = { f.name: f.address for f in self.functions.itervalues() } self._node_addresses = sorted(self.nodes.keys()) self._function_addresses = sorted(self.functions.keys()) self._stale_lookup = False #-------------------------------------------------------------------------- # Metadata Collection #-------------------------------------------------------------------------- @not_mainthread def _async_refresh(self, result_queue, function_addresses, progress_callback): """ The main routine for the asynchronous metadata refresh worker. TODO/FUTURE: this should be cleaned up / refactored """ # pause our rename listening hooks (more performant collection) if self._rename_hooks: self._rename_hooks.unhook() # # if the caller provided no function addresses to target for refresh, # we will perform a complete metadata refresh of all database defined # functions. let's retrieve that list from the disassembler now... # if not function_addresses: function_addresses = disassembler.execute_read( disassembler.get_function_addresses )() # refresh database properties that we wish to cache self._async_refresh_properties() # refresh the core database metadata asynchronously completed = self._async_collect_metadata( function_addresses, progress_callback ) # regenerate the instruction list from collected metadata self._refresh_instructions() # refresh the internal function/node fast lookup lists self._refresh_lookup() # # NOTE: # # creating the hooks inline like this is less than ideal, but they # they have been moved here (from the metadata constructor) to # accomodate shortcomings of the Binary Ninja API. # # TODO/FUTURE/V35: # # it would be nice to move these back to the constructor once the # Binary Ninja API allows us to detect BV / sessions as they are # created, and able to load plugins on such events. # #---------------------------------------------------------------------- # create the disassembler hooks to listen for rename events if not self._rename_hooks: self._rename_hooks = disassembler.create_rename_hooks() self._rename_hooks.renamed = self._name_changed self._rename_hooks.metadata = weakref.proxy(self) #---------------------------------------------------------------------- # reinstall the rename listener hooks now that the refresh is done self._rename_hooks.hook() # send the refresh result (good/bad) incase anyone is still listening if completed: self.cached = True result_queue.put(True) else: result_queue.put(False) # clean up our thread's reference as it is basically done/dead self._refresh_worker = None # thread exit... return @disassembler.execute_read def _async_refresh_properties(self): """ Refresh a selection of interesting database properties. """ self.filename = disassembler.get_root_filename() self.imagebase = disassembler.get_imagebase() @not_mainthread def _async_collect_metadata(self, function_addresses, progress_callback): """ Collect metadata from the underlying database (interruptable). """ CHUNK_SIZE = 150 completed = 0 start = time.time() #---------------------------------------------------------------------- for addresses_chunk in chunks(function_addresses, CHUNK_SIZE): # # collect function metadata from the open database in groups of # CHUNK_SIZE. collect_function_metadata() takes a list of function # addresses and collects their metadata in a thread-safe manner # fresh_metadata = collect_function_metadata(addresses_chunk) # update our database metadata cache with the new function metadata self._update_functions(fresh_metadata) # report incremental progress to an optional progress_callback if progress_callback: completed += len(addresses_chunk) progress_callback(completed, len(function_addresses)) # if the refresh was canceled, stop collecting metadata and bail if self._stop_threads: return False # sleep some so we don't choke the mainthread time.sleep(.0015) #---------------------------------------------------------------------- end = time.time() logger.debug("Metadata collection took %s seconds" % (end - start)) # refresh completed normally / was not interrupted return True def _update_functions(self, fresh_metadata): """ Update stored function metadata with the given fresh metadata. Returns a map of {address: function metadata} that has been updated. """ blank_function = FunctionMetadata(-1) # # the first step is to loop through the 'fresh' function metadata that # has been given to us, and identify what is truly new or different # from any existing metadata we hold. # for function_address, new_metadata in fresh_metadata.iteritems(): # extract the 'old' metadata from the database metadata cache old_metadata = self.functions.get(function_address, blank_function) # # if the fresh metadata for this function is identical to the # existing metadata we have collected for it, there's nothing # else for us to do -- just ignore it. # if old_metadata == new_metadata: continue # delete nodes that explicitly no longer exist old = old_metadata.nodes.viewkeys() - new_metadata.nodes.viewkeys() for node_address in old: del self.nodes[node_address] # # the newly collected metadata for a given function is empty, this # indicates that the function has been deleted. we go ahead and # remove its old function metadata from the db metadata entirely # if new_metadata.empty: del self.functions[function_address] continue # add or overwrite the new/updated basic blocks self.nodes.update(new_metadata.nodes) # save the new/updated function self.functions[function_address] = new_metadata # # since the node / function metadata cache has probably changed, we # will need to refresh the internal fast lookup lists. this flag is # only really used for debugging, and will probably be removed # in the TODO/FUTURE collection refactor (v0.9?) # self._stale_lookup = True #-------------------------------------------------------------------------- # Signal Handlers #-------------------------------------------------------------------------- @mainthread def _name_changed(self, address, new_name, local_name=None): """ Handler for rename event in IDA. TODO/FUTURE: refactor this to not be so IDA-specific """ # we should never care about local renames (eg, loc_40804b), ignore if local_name or new_name.startswith("loc_"): return 0 # get the function that this address falls within function = self.get_function(address) # if the address does not fall within a function (might happen?), ignore if not function: return 0 # # ensure the renamed address matches the function start before # renaming the function in our metadata cache. # # I am not sure when this would not be the case (globals? maybe) # but I'd rather not find out. # if address != function.address: return # if the name isn't actually changing (misfire?) nothing to do if new_name == function.name: return logger.debug("Name changing @ 0x%X" % address) logger.debug(" Old name: %s" % function.name) logger.debug(" New name: %s" % new_name) # rename the function, and notify metadata listeners #function.name = new_name function.refresh_name() self._notify_function_renamed() # necessary for IDP/IDB_Hooks return 0 #-------------------------------------------------------------------------- # Callbacks #-------------------------------------------------------------------------- def function_renamed(self, callback): """ Subscribe a callback for function rename events. """ register_callback(self._function_renamed_callbacks, callback) def _notify_function_renamed(self): """ Notify listeners of a function rename event. """ notify_callback(self._function_renamed_callbacks) #------------------------------------------------------------------------------ # Function Metadata #------------------------------------------------------------------------------ class FunctionMetadata(object): """ Function level metadata cache. """ def __init__(self, address): # function metadata self.address = address self.name = None # node metadata self.nodes = {} self.edges = collections.defaultdict(list) # fixed/baked/computed metrics self.size = 0 self.node_count = 0 self.edge_count = 0 self.instruction_count = 0 self.cyclomatic_complexity = 0 # collect metdata from the underlying database if address != -1: self._build_metadata() #-------------------------------------------------------------------------- # Properties #-------------------------------------------------------------------------- @property def instructions(self): """ Return the instruction addresses in this function. """ return set([ea for node in self.nodes.itervalues() for ea in node.instructions]) @property def empty(self): """ Return a bool indicating whether the object is populated. """ return len(self.nodes) == 0 #-------------------------------------------------------------------------- # Public #-------------------------------------------------------------------------- @disassembler.execute_read def refresh_name(self): """ Refresh the function name against the open database. """ self.name = disassembler.get_function_name_at(self.address) #-------------------------------------------------------------------------- # Metadata Population #-------------------------------------------------------------------------- def _build_metadata(self): """ Collect function metadata from the underlying database. """ self.name = disassembler.get_function_name_at(self.address) self._refresh_nodes() self._finalize() def _refresh_nodes(self): """ This will be replaced with a disassembler-specific function at runtime. NOTE: Read the 'MONKEY PATCHING' section at the end of this file. """ raise RuntimeError("This function should have been monkey patched...") def _ida_refresh_nodes(self): """ Refresh function node metadata against an open IDA database. """ function_metadata = self function_metadata.nodes = {} # get function & flowchart object from IDA database function = idaapi.get_func(self.address) flowchart = idaapi.qflow_chart_t("", function, idaapi.BADADDR, idaapi.BADADDR, 0) # # now we will walk the flowchart for this function, collecting # information on each of its nodes (basic blocks) and populating # the function & node metadata objects. # for node_id in xrange(flowchart.size()): node = flowchart[node_id] # NOTE/COMPAT if disassembler.USING_IDA7API: node_start = node.start_ea node_end = node.end_ea else: node_start = node.startEA node_end = node.endEA # # the node current node appears to have a size of zero. This means # that another flowchart / function owns this node so we can just # ignore it... # if node_start == node_end: continue # create a new metadata object for this node node_metadata = NodeMetadata(node_start, node_end, node_id) # # establish a relationship between this node (basic block) and # this function metadata (its parent) # node_metadata.function = function_metadata function_metadata.nodes[node_start] = node_metadata # compute all of the edges between nodes in the current function for node_metadata in function_metadata.nodes.itervalues(): edge_src = node_metadata.instructions[-1] for edge_dst in idautils.CodeRefsFrom(edge_src, True): if edge_dst in function_metadata.nodes: function_metadata.edges[edge_src].append(edge_dst) def _binja_refresh_nodes(self): """ Refresh function node metadata against an open Binary Ninja database. """ function_metadata = self function_metadata.nodes = {} # get the function from the Binja database function = disassembler.bv.get_function_at(self.address) # # now we will walk the flowchart for this function, collecting # information on each of its nodes (basic blocks) and populating # the function & node metadata objects. # for node in function.basic_blocks: # create a new metadata object for this node node_metadata = NodeMetadata(node.start, node.end, node.index) # # establish a relationship between this node (basic block) and # this function metadata (its parent) # node_metadata.function = function_metadata function_metadata.nodes[node.start] = node_metadata # # enumerate the edges produced by this node (basic block) with a # destination that falls within this function. # edge_src = node_metadata.instructions[-1] for edge in node.outgoing_edges: function_metadata.edges[edge_src].append(edge.target.start) def _compute_complexity(self): """ Walk the function CFG to determine approximate cyclomatic complexity. The purpose of this function is mostly to account for IDA's inclusion of additional floating nodes in function flowcharts. These blocks tend to be for exception handlers, but can manifest in various other cases. By walking the function CFG, we can identify these 'disembodied' blocks that have no incoming edge and ignore them in our cyclomatic complexity calculation. Not doing so will radically throw off the cyclomatic complexity score. """ confirmed_nodes = set() confirmed_edges = {} # # to_walk contains a list of node addresses. we draw from this list # one at a time, walking across all of the outgoing edges from the # current node (node_address) to walk the function graph # to_walk = set([self.address]) while to_walk: # this is the address of the node we will 'walk' from node_address = to_walk.pop() confirmed_nodes.add(node_address) # now we loop through all edges that originate from this block current_src = self.nodes[node_address].instructions[-1] for current_dest in self.edges[current_src]: # ignore nodes we have already visited if current_dest in confirmed_nodes: continue # # it appears that this node has not been visited yet, so we # will want to walk its edges sometime soon to continue the # graph exploration # to_walk.add(current_dest) # update the map of confirmed (walked) edges confirmed_edges[current_src] = self.edges.pop(current_src) # compute the final cyclomatic complexity for the function num_edges = sum(len(x) for x in confirmed_edges.itervalues()) num_nodes = len(confirmed_nodes) return num_edges - num_nodes + 2 def _finalize(self): """ Finalize function metadata for use. """ self.size = sum(node.size for node in self.nodes.itervalues()) self.node_count = len(self.nodes) self.edge_count = len(self.edges) self.instruction_count = sum(node.instruction_count for node in self.nodes.itervalues()) self.cyclomatic_complexity = self._compute_complexity() #-------------------------------------------------------------------------- # Operator Overloads #-------------------------------------------------------------------------- def __eq__(self, other): """ Compute function metadata equality (==) """ result = True result &= self.name == other.name result &= self.size == other.size result &= self.address == other.address result &= self.node_count == other.node_count result &= self.instruction_count == other.instruction_count result &= self.nodes.viewkeys() == other.nodes.viewkeys() return result #------------------------------------------------------------------------------ # Node Metadata #------------------------------------------------------------------------------ class NodeMetadata(object): """ Node (basic block) level metadata cache. """ def __init__(self, start_ea, end_ea, node_id=None): # node metadata self.size = end_ea - start_ea self.address = start_ea self.instruction_count = 0 # flowchart node_id self.id = node_id # parent function_metadata self.function = None # instruction addresses self.instructions = [] #---------------------------------------------------------------------- # collect metadata from the underlying database self._build_metadata() #-------------------------------------------------------------------------- # Metadata Population #-------------------------------------------------------------------------- def _build_metadata(self): """ This will be replaced with a disassembler-specific function at runtime. NOTE: Read the 'MONKEY PATCHING' section at the end of this file. """ raise RuntimeError("This function should have been monkey patched...") def _ida_build_metadata(self): """ Collect node metadata from the underlying database. """ current_address = self.address node_end = self.address + self.size # # loop through the node's entire address range and count its # instructions. Note that we are assuming that every defined # 'head' (in IDA) is an instruction # while current_address < node_end: instruction_size = idaapi.get_item_end(current_address) - current_address self.instructions.append(current_address) current_address += instruction_size # save the number of instructions in this block self.instruction_count = len(self.instructions) def _binja_build_metadata(self): """ Collect node metadata from the underlying database. """ bv = disassembler.bv current_address = self.address node_end = self.address + self.size # # Note that we 'iterate over' the instructions using their byte length # because it is far more performant than Binary Ninja's instruction # generators which also produce instruction text, tokens etc... # while current_address < node_end: self.instructions.append(current_address) current_address += bv.get_instruction_length(current_address) # save the number of instructions in this block self.instruction_count = len(self.instructions) #-------------------------------------------------------------------------- # Operator Overloads #-------------------------------------------------------------------------- def __str__(self): """ Printable NodeMetadata. """ output = "" output += "Node 0x%08X Info:\n" % self.address output += " Address: 0x%08X\n" % self.address output += " Size: %u\n" % self.size output += " Instruction Count: %u\n" % self.instruction_count output += " Id: %u\n" % self.id output += " Function: %s\n" % self.function output += " Instructions: %s" % self.instructions return output def __contains__(self, address): """ Overload python's 'in' keyword for this object. This allows us to use `in` to check if an address falls within a node. """ if self.address <= address < self.address + self.size: return True return False def __eq__(self, other): """ Compute node equality (==) """ result = True result &= self.size == other.size result &= self.address == other.address result &= self.instruction_count == other.instruction_count result &= self.function == other.function result &= self.id == other.id return result #------------------------------------------------------------------------------ # Async Metadata Helpers #------------------------------------------------------------------------------ @disassembler.execute_read def collect_function_metadata(function_addresses): """ Collect function metadata for a list of addresses. """ return { ea: FunctionMetadata(ea) for ea in function_addresses } @disassembler.execute_ui def metadata_progress(completed, total): """ Handler for metadata collection callback, updates progress dialog. """ disassembler.replace_wait_box( "Collected metadata for %u/%u Functions" % (completed, total) ) #------------------------------------------------------------------------------ # MONKEY PATCHING #------------------------------------------------------------------------------ # # We use 'monkey patching' to modify the Metadata class definitions at # runtime. Specifically, we use it to swap in metadata collection routines # that have been carefully tailored for a given disassembler. # # The reason for this is that the metadata collection code is very # disassembler-specific, and that it needs to be as performant as possible. # Shimming metadata collection code to be disassembler agnostic is going # to be messy and slow. # if disassembler.NAME == "IDA": import idaapi import idautils FunctionMetadata._refresh_nodes = FunctionMetadata._ida_refresh_nodes NodeMetadata._build_metadata = NodeMetadata._ida_build_metadata elif disassembler.NAME == "BINJA": import binaryninja FunctionMetadata._refresh_nodes = FunctionMetadata._binja_refresh_nodes NodeMetadata._build_metadata = NodeMetadata._binja_build_metadata else: raise NotImplementedError("DISASSEMBLER-SPECIFIC SHIM MISSING")
[ "markus.gaasedelen@gmail.com" ]
markus.gaasedelen@gmail.com
aa27042ddeb0ddff82f1c8f4312778d7feb8da3e
cee65c4806593554662330368c799c14ec943454
/src/sqlvm-preview/azext_sqlvm_preview/vendored_sdks/sqlvirtualmachine/models/wsfc_domain_profile_py3.py
0d7864768ad80fab17f0ea7f8ca57ea27cec3b41
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
azclibot/azure-cli-extensions
d5d1a4ecdfc87fd79f5ad042fb85cdbf881897d2
c230646258d4b56efb7d44eb7a0230f2943da6f6
refs/heads/master
2023-08-28T03:55:02.311902
2019-04-04T16:05:45
2019-04-04T16:05:45
179,548,695
1
1
MIT
2021-07-28T15:26:17
2019-04-04T17:54:39
Python
UTF-8
Python
false
false
3,274
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class WsfcDomainProfile(Model): """Active Directory account details to operate Windows Server Failover Cluster. :param domain_fqdn: Fully qualified name of the domain. :type domain_fqdn: str :param ou_path: Organizational Unit path in which the nodes and cluster will be present. :type ou_path: str :param cluster_bootstrap_account: Account name used for creating cluster (at minimum needs permissions to 'Create Computer Objects' in domain). :type cluster_bootstrap_account: str :param cluster_operator_account: Account name used for operating cluster i.e. will be part of administrators group on all the participating virtual machines in the cluster. :type cluster_operator_account: str :param sql_service_account: Account name under which SQL service will run on all participating SQL virtual machines in the cluster. :type sql_service_account: str :param file_share_witness_path: Optional path for fileshare witness. :type file_share_witness_path: str :param storage_account_url: Fully qualified ARM resource id of the witness storage account. :type storage_account_url: str :param storage_account_primary_key: Primary key of the witness storage account. :type storage_account_primary_key: str """ _attribute_map = { 'domain_fqdn': {'key': 'domainFqdn', 'type': 'str'}, 'ou_path': {'key': 'ouPath', 'type': 'str'}, 'cluster_bootstrap_account': {'key': 'clusterBootstrapAccount', 'type': 'str'}, 'cluster_operator_account': {'key': 'clusterOperatorAccount', 'type': 'str'}, 'sql_service_account': {'key': 'sqlServiceAccount', 'type': 'str'}, 'file_share_witness_path': {'key': 'fileShareWitnessPath', 'type': 'str'}, 'storage_account_url': {'key': 'storageAccountUrl', 'type': 'str'}, 'storage_account_primary_key': {'key': 'storageAccountPrimaryKey', 'type': 'str'}, } def __init__(self, *, domain_fqdn: str=None, ou_path: str=None, cluster_bootstrap_account: str=None, cluster_operator_account: str=None, sql_service_account: str=None, file_share_witness_path: str=None, storage_account_url: str=None, storage_account_primary_key: str=None, **kwargs) -> None: super(WsfcDomainProfile, self).__init__(**kwargs) self.domain_fqdn = domain_fqdn self.ou_path = ou_path self.cluster_bootstrap_account = cluster_bootstrap_account self.cluster_operator_account = cluster_operator_account self.sql_service_account = sql_service_account self.file_share_witness_path = file_share_witness_path self.storage_account_url = storage_account_url self.storage_account_primary_key = storage_account_primary_key
[ "wx44@cornell.edu" ]
wx44@cornell.edu
2e6d141383246bc550a0defb798fa6e4f453a724
cd80a83d22d8431b17b31fe6453a0bfdc20a74be
/stepik_tours/settings.py
48294db7fc020b7b4b984b8f8e741a0a1b0be641
[]
no_license
HumanAlone/stepik_tours_week_2
6d59fbfd78864310830afe98c842a4c8df586614
67eea17cf9d6d1389e9aee65dd353e9c41b7ce0b
refs/heads/master
2023-02-28T16:13:17.071554
2021-02-07T18:35:50
2021-02-07T18:35:50
336,630,409
0
0
null
null
null
null
UTF-8
Python
false
false
3,215
py
""" Django settings for stepik_tours project. Generated by 'django-admin startproject' using Django 3.1.5. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'u79-$0^365(t&nqv6z*@he*(v3n7o__$xkd*68mt!9vp7fmqzv' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['*'] STATIC_ROOT = 'static' # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'tours', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'stepik_tours.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'tours/templates'] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'tours.context_processors.departure_processor', ], }, }, ] WSGI_APPLICATION = 'stepik_tours.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
[ "humanalone@ya.ru" ]
humanalone@ya.ru
b7de8d0353885bd2bdaef731db820add225c22a8
940eb3328eae2538d56712dbffd65dfdd63bfb5d
/HW3/mysite/db/urls.py
ebc7ea281599826db6589fa398b76fb591dc5618
[]
no_license
HyeongRae/cloud_computing
a54da89b4767bf7dcf17df394d0359750ab03d33
8fcf6c4daaadc9be9b61abf56d22e73f08f7e453
refs/heads/master
2020-08-28T22:08:01.715887
2019-10-27T10:03:04
2019-10-27T10:03:04
217,835,396
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path from . import views urlpatterns = [ path('', views.index, name='db_index'), ]
[ "noreply@github.com" ]
noreply@github.com
cb0cf218daf778a82dc0638a59378ce65eb1e44d
df160fecd74e06fe1d7fd276c6f84a8f39dff79c
/Bhakti/math variable.py
3b88f510309cade6983a5f92cd5a682f0fd74400
[]
no_license
vatsalmehta-3009/MLZS-CLASS-11-PRACTICALS
78dfdcbe289d95618db6d1bc5aab6a24cd4cbde2
f9056b110b9c1e4666ae3f4ff0427664dc3d81bb
refs/heads/main
2023-08-14T09:26:51.196305
2021-10-18T09:00:41
2021-10-18T09:00:41
397,482,578
0
1
null
null
null
null
UTF-8
Python
false
false
31
py
import math print (math.pi)
[ "vatsalmehta3009@gmail.com" ]
vatsalmehta3009@gmail.com
a0cdca9df71fac33fa3fe7b6fe3ce26b877ab1dd
eee8425c9e4e2173d323dc1113909f4427d5a547
/ue4docker/test.py
8da5ab88dfde7ae8c81da429e7065311506ed0c3
[ "MIT" ]
permissive
MorganRuffell/ue4-docker
9b98adc81b82ebb0780056961d17e5ec9bc7f646
664359a6c5240ebc3b3d15f5c1ecc4d456fd6cd1
refs/heads/master
2023-07-10T17:37:54.580478
2021-08-19T21:06:27
2021-08-19T21:06:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,845
py
from .infrastructure import DockerUtils, GlobalConfiguration, Logger from container_utils import ContainerUtils, ImageUtils import docker, os, platform, sys def test(): # Create our logger to generate coloured output on stderr logger = Logger(prefix='[{} test] '.format(sys.argv[0])) # Create our Docker API client client = docker.from_env() # Check that an image tag has been specified if len(sys.argv) > 1 and sys.argv[1].strip('-') not in ['h', 'help']: # Verify that the specified container image exists tag = sys.argv[1] image = GlobalConfiguration.resolveTag('ue4-full:{}'.format(tag) if ':' not in tag else tag) if DockerUtils.exists(image) == False: logger.error('Error: the specified container image "{}" does not exist.'.format(image)) sys.exit(1) # Use process isolation mode when testing Windows containers, since running Hyper-V containers don't currently support manipulating the filesystem platform = ImageUtils.image_platform(client, image) isolation = 'process' if platform == 'windows' else None # Start a container to run our tests in, automatically stopping and removing the container when we finish logger.action('Starting a container using the "{}" image...'.format(image), False) container = ContainerUtils.start_for_exec(client, image, isolation=isolation) with ContainerUtils.automatically_stop(container): # Create the workspace directory in the container workspaceDir = ContainerUtils.workspace_dir(container) ContainerUtils.exec(container, ContainerUtils.shell_prefix(container) + ['mkdir ' + workspaceDir]) # Copy our test scripts into the container testDir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tests') ContainerUtils.copy_from_host(container, testDir, workspaceDir) # Create a harness to invoke individual tests containerPath = ContainerUtils.path(container) pythonCommand = 'python' if ContainerUtils.container_platform(container) == 'windows' else 'python3' def runTest(script): logger.action('Running test "{}"...'.format(script), False) try: ContainerUtils.exec(container, [pythonCommand, containerPath.join(workspaceDir, script)], workdir=workspaceDir) logger.action('Passed test "{}"'.format(script), False) except RuntimeError as e: logger.error('Error: test "{}" failed!'.format(script)) raise e from None # Run each of our tests in turn runTest('build-and-package.py') runTest('consume-external-deps.py') # If we've reached this point then all of the tests passed logger.action('All tests passed.', False) else: # Print usage syntax print('Usage: {} test TAG'.format(sys.argv[0])) print('Runs tests to verify the correctness of built container images\n') print('TAG should specify the tag of the ue4-full image to test.')
[ "adam@adamrehn.com" ]
adam@adamrehn.com
c477af6c57995ecddcbfdc254fe373d15f3999c8
321b4ed83b6874eeb512027eaa0b17b0daf3c289
/252/252.meeting-rooms.234346443.Runtime-Error.leetcode.py
92868ca8e540837d3283eb90122ea37aa2b82d4d
[]
no_license
huangyingw/submissions
7a610613bdb03f1223cdec5f6ccc4391149ca618
bfac1238ecef8b03e54842b852f6fec111abedfa
refs/heads/master
2023-07-25T09:56:46.814504
2023-07-16T07:38:36
2023-07-16T07:38:36
143,352,065
0
1
null
null
null
null
UTF-8
Python
false
false
316
py
class Solution: def canAttendMeetings(self, intervals): overlap = [] for interval in sorted(intervals, key=lambda x: x.start): if overlap and overlap[-1].end > interval.start: return False else: overlap.append(interval) return True
[ "huangyingw@gmail.com" ]
huangyingw@gmail.com
da01348ac037e5b41128bf85f4b96215b1ecc938
b457cefb2a577df52234e45e0d1a891f6ac48771
/Camera/cam.py
46892b319216e4e3b487b71e153bf6914363f187
[]
no_license
zhangxingshuo/py-robot
257210364ff510b20b71bdb840cc6e4589c5a797
f9b8046f8b7538674cf9446f9b2e895af244ec72
refs/heads/master
2021-01-17T12:53:50.524193
2016-08-04T17:07:11
2016-08-04T17:07:11
59,252,294
0
0
null
2016-05-25T23:12:02
2016-05-20T00:24:14
Python
UTF-8
Python
false
false
996
py
''' Video Camera ============ Simple video capture program. Usage: ------ cam.py [<video source>] Press 's' to save an image. Press ESC to exit. ''' import cv2 import numpy as np from datetime import datetime class Cam(object): def __init__(self, src): self.cam = cv2.VideoCapture(src) ret, self.frame = self.cam.read() cv2.namedWindow('Camera') def save(self): filename = 'cam_img/frame_' + str(datetime.now()).replace('/','-')[:19] + '.jpg' cv2.imwrite(filename, self.frame) def run(self): while True: ret, self.frame = self.cam.read() cv2.imshow('Camera', self.frame) k = 0xFF & cv2.waitKey(5) if k == 27: break if k == ord('s'): self.save() cv2.destroyAllWindows() if __name__ == '__main__': import sys try: src = sys.argv[1] except: src = 0 print(__doc__) Cam(src).run()
[ "axzhang@hmc.edu" ]
axzhang@hmc.edu
fe9a70d83e1e83d976db34782dcfc28fb9c952e2
688dfc8f23ebda4b6418e9b6e77727313601fcb2
/src/world/Landwalker.py
170deb8f314719343f33e209a7a724db20bb9923
[]
no_license
loonaticx/ToonTrouble
f590d112b7b2db0800f4dab0c89cbf7f9ff2ff8b
28c85842d3d09ab5ad83d06e836577f84ed95010
refs/heads/master
2020-07-09T22:37:19.695125
2019-12-08T21:01:58
2019-12-08T21:01:58
204,098,218
0
0
null
null
null
null
UTF-8
Python
false
false
8,028
py
from panda3d.core import * from panda3d.core import CollisionTraverser from panda3d.core import PandaNode, NodePath from direct.controls.GravityWalker import GravityWalker from direct.gui.DirectButton import DirectButton from direct.gui.DirectScrolledList import DirectScrolledList from direct.task import Task from src.actor import ActorDict, ActorManager, LandwalkerAvatarControls from src.gamebase import LandwalkerGlobals from src.scenefx import EffectsManager #borrowed the xray mod from /samples/culling/portal_culling.py # https://www.panda3d.org/manual/?title=Common_Image_Filters #possibly make a slider for bloom #YO WHAT IF I MAKE A BENCHMARK PROGRAM objectList = list() actor = ActorManager #filters = CommonFilters(base.win, base.cam) graphicShaders = EffectsManager class Landwalker(): def __init__(self): self.onScreenDebug = onScreenDebug pass def loadGame(self): # Setting up key maps and the instruction set into the scene... LandwalkerGlobals.setKeys() LandwalkerGlobals.setInstructions() # Loads our world. scene = self.loadWorld() # Makes our local avatar. localAvatar = actor.makeActor() base.localAvatar = localAvatar base.localAvatar.reparentTo(render) # Load our buttons. self.LoadButtons() # Load our shaders. #fog = loadFog() #print(fogStats(fog)) EffectsManager.loadShaders() #FogDensity = EffectsManager.loadFog(1) # Floater Object (For camera) floater = NodePath(PandaNode("floater")) floater.reparentTo(localAvatar) floater.setY(-10) floater.setZ(8.5) floater.setHpr(0, -10, 0) # Set Camera camera.reparentTo(floater) wallBitmask = BitMask32(1) floorBitmask = BitMask32(2) base.cTrav = CollisionTraverser() # Walk controls walkControls = GravityWalker(legacyLifter=True) walkControls.setWallBitMask(wallBitmask) walkControls.setFloorBitMask(floorBitmask) walkControls.setWalkSpeed(16.0, 24.0, 8.0, 80.0) walkControls.initializeCollisions(base.cTrav, localAvatar, floorOffset=0.025, reach=4.0) walkControls.setAirborneHeightFunc(LandwalkerAvatarControls.getAirborneHeight()) walkControls.enableAvatarControls() # controlManager.add(walkControls, 'walk') localAvatar.physControls = walkControls localAvatar.physControls.placeOnFloor() # Some debug stuff, should be moved later once I can toggle stuff from different files./ self.onScreenDebug.enabled = True base.setFrameRateMeter(True) base.taskMgr.add(LandwalkerAvatarControls.move, "moveTask") base.taskMgr.add(self.updateOnScreenDebug, 'UpdateOSD') # Loading our world. def loadWorld(self): # Loading our Scene background = loader.loadModel('phase_4/models/neighborhoods/toontown_central.bam') background.reparentTo(render) background.show() objectList.append(background) print("Loading world") return background def removeWorld(scene): scene.removeNode() # This shouldn't exist in the future for this class. def loadFog(self): fog = Fog('distanceFog') fog.setColor(0, 0, 0) fog.setExpDensity(.07) render.setFog(fog) fog.setOverallHidden(False) return fog def fogStats(fog): return [fog, fog.getExpDensity(), LandwalkerGlobals.fogEnabled] # Loading our actor. def getActor(self): actorStartPos = self.scene.find("**/start_point").getPos() actorBody = ActorDict.playerBody actorBody.reparentTo(render) actorBody.loop('neutral') actorBody.setPos(actorStartPos + (0, 0, 1.5)) actorBody.setScale(0.3) actorBody.setH(-180) def ActorHead(): actorHead = loader.loadModel("custom/def_m.bam") actorHead.reparentTo(actorBody.find('**/to_head')) actorHead.setScale(0.20) actorHead.setZ(0) actorHead.setH(-180) ActorHead() return actorBody # Loading onscreen buttons. def LoadButtons(self): Button_Up = loader.loadModel('phase_3/models/gui/quit_button.bam').find('**/QuitBtn_UP') Button_Down = loader.loadModel('phase_3/models/gui/quit_button.bam').find('**/QuitBtn_DN') Button_Rlvr = loader.loadModel('phase_3/models/gui/quit_button.bam').find('**/QuitBtn_RLVR') # https://pastebin.com/agdb8260 Arrow_Up = loader.loadModel('phase_3/models/gui/nameshop_gui.bam').find('**/triangleButtonUp') Arrow_Down = loader.loadModel('phase_3/models/gui/nameshop_gui.bam').find('**/triangleButtonDwn') Arrow_Rlvr = loader.loadModel('phase_3/models/gui/nameshop_gui.bam').find('**/triangleButtonRllvr') Buttons = [Button_Up, Button_Down, Button_Rlvr] numItemsVisible = 4 itemHeight = 0.11 myScrolledList = DirectScrolledList( decButton_pos=(0.35, 0, 0.54), decButton_text_scale=0.04, decButton_relief=None, decButton_image=(Arrow_Up, Arrow_Down, Arrow_Rlvr), incButton_pos=(0.35, 0, -0.01), incButton_hpr=(0, 0, 180), incButton_text_scale=0.04, incButton_relief=None, incButton_image=(Arrow_Up, Arrow_Down, Arrow_Rlvr), pos=(0.74, 0, 0.4), numItemsVisible=numItemsVisible, forceHeight=itemHeight, itemFrame_pos=(0.35, 0, 0.43)) modelArray = ['phase_4/models/neighborhoods/toontown_central.bam', 'phase_13/models/parties/partyGrounds.bam', 'models/world.egg.pz', 'custom/ship/ship.egg'] nameArray = ['Toontown Central', 'Party Grounds', 'Default World', 'Ship Test'] for index, name in enumerate(nameArray): l = DirectButton(text=name, image=(Buttons), extraArgs=[modelArray[index]], command=self.spawnObject, text_scale=0.045, text_pos=(0, -0.007, 0), relief=None) myScrolledList.addItem(l) # Used to spawn objects within the scene. def spawnObject(self, modelName): # If spawned object already exists, we're gonna need to remove it while len(objectList) >= 1: for world in objectList: world.removeNode() objectList.pop(0) self.spawnObject = loader.loadModel(modelName) self.spawnObject.reparentTo(render) self.spawnObject.setPos(base.localAvatar.getPos()) objectList.append(self.spawnObject) print("Model Name: " + repr(modelName)) print("Spawned Object: " + repr(self.spawnObject)) def toggle_osd(self): self.OSD = not self.OSD if self.OSD: self.onScreenDebug.enabled = True else: self.onScreenDebug.enabled = False def updateOnScreenDebug(self, task): if(onScreenDebug.enabled): onScreenDebug.add('Avatar Position', base.localAvatar.getPos()) onScreenDebug.add('Avatar Angle', base.localAvatar.getHpr()) onScreenDebug.add('Camera Position', base.camera.getPos()) onScreenDebug.add('Camera Angle', base.camera.getHpr()) return Task.cont def unloadShaders(self): if self.shadersLoaded: self.drawnScene.hide() self.shadersLoaded = False def loadCartoonShaders(self): if not self.shadersLoaded: separation = 0.0015 cutoff = 0.35 inkGen = loader.loadShader("shaders/inkGen.sha") self.drawnScene.setShader(inkGen) self.drawnScene.setShaderInput("separation", LVecBase4(separation, 0, separation, 0)) self.drawnScene.setShaderInput("cutoff", LVecBase4(cutoff)) self.drawnScene.show() shadersLoaded = True
[ "l.oony@aol.com" ]
l.oony@aol.com
c6480612638cc68e0ac42c454540f75929f0c857
9c6ce4688ef9e0493ea054f185d7039e5df4638c
/clients/commands.py
5e6ed87461b6058c669f2a2f229de7954dbe4b25
[]
no_license
k3itaro-k/CRUD
eb52c9f112b8d32a48f41b474691e486ad80ba58
328fa88b19fb2fe2105e0c9cd83f742501ae1f12
refs/heads/master
2023-06-03T22:26:14.506795
2021-06-19T07:00:22
2021-06-19T07:00:22
378,344,054
0
0
null
null
null
null
UTF-8
Python
false
false
2,834
py
import click from clients.services import ClientService from clients.models import Client @click.group() def clients(): """Manages the clients lifecycles""" pass @clients.command() @click.option('-n','--name', type=str, prompt=True, help= 'The client name') @click.option('-c','--company', type=str, prompt=True, help= 'The client company') @click.option('-e','--email', type=str, prompt=True, help= 'The client email') @click.option('-p','--position', type=str, prompt=True, help= 'The client position') @click.pass_context def create(ctx, name, company, email, position): """Create a new client""" client = Client(name, company, email, position) client_service = ClientService(ctx.obj['clients_table']) client_service.create_client(client) click.echo('*'*25+' Client created. '+'*'*25) @clients.command() @click.pass_context def list(ctx): """list all clients""" client_service = ClientService(ctx.obj['clients_table']) clients = client_service.list_clients() click.echo('ID | NAME | COMPANY | EMAIL | POSITION') click.echo('*'*100) for client in clients: click.echo(f' {client["uid"]} | {client["name"]} | {client["company"]} | {client["email"]} | {client["position"]}') @clients.command() @click.argument('client_uid', type=str) @click.pass_context def update(ctx, client_uid): """update a client""" client_service = ClientService(ctx.obj['clients_table']) client_list = client_service.list_clients() client = [client for client in client_list if client['uid']==client_uid] if client: client = _update_client_flow(Client(**client[0])) client_service.update_client(client) click.echo('*'*25+' Client updated. '+'*'*25) else: click.echo('*'*25+' Client not found. '+'*'*25) def _update_client_flow(client): click.echo('Leave empty if you dont want to modify the value.') client.name = click.prompt('New name: ', type=str, default=client.name) client.company = click.prompt('New company: ', type=str, default=client.company) client.email = click.prompt('New email: ', type=str, default=client.email) client.position = click.prompt('New position: ', type=str, default=client.position) return client @clients.command() @click.argument('client_uid', type=str) @click.pass_context def delete(ctx, client_uid): """delete a client""" client_service = ClientService(ctx.obj['clients_table']) client = [client for client in client_service.list_clients() if client['uid'] == client_uid] if client: client_service.delete_client(client_uid) click.echo('*'*25+' Client deleted. '+'*'*25) else: click.echo('*'*25+' Client not found. '+'*'*25) all = clients
[ "alejandrocc42@gmail.com" ]
alejandrocc42@gmail.com
dfcc4650b279dcc7d9caebfb982384bc6a05433f
3e34dec0f8b6a6e508a3ff107369ca791ebe470b
/암호해독.py
39deac551275a516cfc6e30776ec7090a665a7ce
[]
no_license
Se-eun84/algorithm
7f8fac60e1ac8045bf7c9bc4d77ff0a93a7b4f2d
298841cf5460872310bc88c08ab9a53a557bdcda
refs/heads/main
2023-08-29T16:00:01.109559
2021-10-25T12:02:00
2021-10-25T12:02:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
#1001010 J #1000101 E #1001010 J #1010101 U #strip 오른쪽, 왼쪽 공백 제거 #replace() 중간 내용 교체 #ord() : 문자 -> 숫자 #chr() : 숫자 -> 문자 text = ['+ -- + - + -', '+ --- + - +', '+ -- + - + -', '+ - + - + - +'] l=[] for i in text: print(chr(int(i.strip().replace(' ','').replace('+',"1").replace('-','0'),2))) l.append(chr(int(i.strip().replace(' ','').replace('+',"1").replace('-','0'),2))) ''.join(l)
[ "noreply@github.com" ]
noreply@github.com
2f0c8bb0781336a52fc86b6bd0b3292a1399d324
923e7fdffc52ad7d2bcb820b80312d4af7797810
/lab4-6/DeleteBillsOfApartamentsInRange.py
462aa02cdd94b8bbb7ced4af048f05136fc38d4a
[]
no_license
boldijar/python-labs
727fc1d22446cca2cf2e1c19f8297c2522bafb02
00742b1f3c2742114bd106cb5925ce3cf3b77f2b
refs/heads/master
2021-05-30T16:28:31.815240
2016-01-27T03:20:49
2016-01-27T03:20:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,957
py
import wx from apartament_controller import ApartamentController from validator import IntValidator class DeleteBillsOfApartamentsInRange(wx.Panel): def __init__(self,parent,apartamentController,position,size): super(DeleteBillsOfApartamentsInRange,self).__init__(parent,pos=position,size=size) self.apartamentController = apartamentController wx.StaticText(self, label="Apartament first number", style=wx.ALIGN_CENTRE,pos=(10,10)) self.leftNumber=wx.TextCtrl(self,pos=(10,30),size=(50,20)) wx.StaticText(self, label="Apartament second number", style=wx.ALIGN_CENTRE,pos=(10,50)) self.rightNumber=wx.TextCtrl(self,pos=(10,70),size=(50,20)) self.addButton = wx.Button(self, label='Delete apartaments bills in range', pos=(20, 100)) self.addButton.Bind(wx.EVT_BUTTON, self.OnEditBill) def OnEditBill(self,e): if IntValidator.valid(self.leftNumber.GetValue(),0,99) == False: dlg = wx.MessageDialog(None, "Invalid input!", "Info", wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() return if IntValidator.valid(self.rightNumber.GetValue(),0,99) == False: dlg = wx.MessageDialog(None, "Invalid input!", "Info", wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() return leftNumberInt = int(self.leftNumber.GetValue()) rightNumberInt = int(self.rightNumber.GetValue()) if leftNumberInt>rightNumberInt: dlg = wx.MessageDialog(None, "Invalid input!", "Info", wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() return self.apartamentController.deleteAllBillsFromApartamentsInRange(leftNumberInt,rightNumberInt) dlg = wx.MessageDialog(None, "Success", "Info", wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy()
[ "paul.bv96@yahoo.com" ]
paul.bv96@yahoo.com
32f958a88900efe7f6f34f6ab338193b5f18d780
7c568ca8675ee507d231dc3ddc2c26db8af81d3f
/app/dashboard/migrations/0002_auto_20191016_2341.py
acd59e0dff357ba9c8e01033f9b9af9e411aab7a
[ "MIT" ]
permissive
pnsn/squacapi
ccfb458c7230fc5b0a0be7921eb6db611d8c646a
40d9608295daefc5e1cd83afd84ecb5b0518cc3d
refs/heads/main
2023-04-30T22:10:51.651835
2023-04-28T17:01:06
2023-04-28T17:01:06
176,352,115
7
0
MIT
2023-04-28T17:01:07
2019-03-18T19:03:32
Python
UTF-8
Python
false
false
1,306
py
# Generated by Django 2.2.6 on 2019-10-16 23:41 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('dashboard', '0001_initial'), ] operations = [ migrations.AlterField( model_name='widgettype', name='type', field=models.CharField(max_length=255, unique=True), ), migrations.CreateModel( name='StatType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('description', models.CharField(blank=True, default='', max_length=255)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('type', models.CharField(max_length=255, unique=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), ]
[ "jontconnolly@gmail.com" ]
jontconnolly@gmail.com
b3adc8b5d026d0d4dfb7a157e42a73a83f86f053
f1d18ce5bbeb91dfa4bceb7aa5a571b2064f1901
/reversenum.py
0222ba1633886fce3acb4beab6c0b43035888c0d
[]
no_license
gopalakrishnanngk/gopal
66f3bcfd6dab6b2f888749286dec82e04f9131b4
057998e43ad4072edf45ff62040c0bdf12d48e5b
refs/heads/master
2021-09-25T01:54:45.692713
2018-10-16T17:27:00
2018-10-16T17:27:00
114,449,011
0
2
null
null
null
null
UTF-8
Python
false
false
45
py
number=raw_input() a=number[::-1] print(a)
[ "noreply@github.com" ]
noreply@github.com
36ea9f0067d11c5dabf132183f895f4f5efea7a3
0f3464caf596c9dace873df8cde3b5528b99cf72
/mhc_parser/msa_utils.py
bc434fb4e42575bce13e6bca51a47e6b757d6f0b
[]
no_license
carlomazzaferro/mhc_parser
6c87118a2ba510832bd0043db9252e65dd37aaf5
04a62bf6db1c6b9936d5dc176c2410f39671978b
refs/heads/master
2021-01-11T14:16:27.894813
2017-03-31T18:58:52
2017-03-31T18:58:52
81,285,853
0
0
null
null
null
null
UTF-8
Python
false
false
10,826
py
import numpy as np import pandas from mhc_parser import pep_utils from skbio import TabularMSA, Protein import webbrowser from urllib import request from subprocess import Popen, PIPE import os class Alignment(object): def __init__(self, fasta_file, ref_protein_id): """ Maniputlation of alignment data. Works in conjunction with scikit-bio's TabulatMSA and Protein modules. :param msa_file: multiple sequence alignment file in fasta format (Clutal Omega recommended) :param ref_protein_file: Fasta file of reference protein """ self.fasta = fasta_file self.project_dir = os.path.dirname(self.fasta) self.msa_file = self._create_and_viz_alignment() self.msa = self.read_msa_file() self.reference_protein_id = ref_protein_id self.reference_protein_string = self._get_ref_prot_from_id() self.positional_conservation = self._get_positional_conservation() def read_msa_file(self): msa = TabularMSA.read(self.msa_file, constructor=Protein) msa.reassign_index(minter='id') return msa def create_score_df_from_scikit_bio(self, nmers): """ Function to generate a pandas dataframe containing information about how conserved each peptide in the reference protein is. Conservation scores are calculated for each nmer passed. is within a :param nmers: list of nmers of interest :return: dataframe with columns 'Score', 'Peptide', 'n-mer', that is the conservation score for each peptide identified """ list_of_dfs = [] for nmer in nmers: scores = [] peptides = [] for j in range(0, len(self.reference_protein_string) - nmer): scores.append(np.mean(self.positional_conservation[j:j + nmer])) #Mean score for peptide peptides.append(self.reference_protein_string[j:j + nmer]) df = pandas.DataFrame([scores, peptides], index=['Score', 'Peptide']) df = df.T df['n-mer'] = nmer list_of_dfs.append(df) return pandas.concat(list_of_dfs) def visualize_alignemnt(self): url_ = 'file:{}'.format(request.pathname2url(os.path.abspath(self.project_dir + '/alignment/' + 'MSA_easy_viewing.html'))) webbrowser.open(url_) def _get_positional_conservation(self): """ Apply metric to compute conservation for all alignment positions :return: conservation at each position, nan's replaced by zeros. """ positional_conservation = self.msa.conservation(metric='inverse_shannon_uncertainty', degenerate_mode='nan', gap_mode='include') return np.nan_to_num(positional_conservation) def _get_ref_prot_from_id(self): """ Returns ref protein string from fasta """ prot_id, prot_seqs = pep_utils.create_separate_lists(self.msa_file) prot_id = [prot.strip('>') for prot in prot_id] as_tuple = list(zip(prot_id, prot_seqs)) ref_seq = None for tpl in as_tuple: if tpl[0] == self.reference_protein_id: ref_seq = tpl[1] if not ref_seq: raise ValueError('Protein ID provided not found in fasta file') else: return ref_seq def _create_and_viz_alignment(self): out_dir = os.path.dirname(self.fasta) if not os.path.isdir(out_dir + '/alignment'): os.mkdir(out_dir + '/alignment') out_align = out_dir + '/alignment' + '/MSA.fasta' if os.path.isfile(out_align): raise FileExistsError('Alignemnt already exists. Delete it or select other project location') self._create_fasta_and_html(out_align) return out_align def _create_fasta_and_html(self, out_align): print('clustalo', '-i', self.fasta, '--residuenumber', '-o', out_align, '--outfmt=fasta') process = Popen(['clustalo', '-i', self.fasta, '--residuenumber', '-o', out_align, '--outfmt=fasta'], stdout=PIPE, stderr=PIPE) stdout, stderr = process.communicate() if not stderr: print('MSA in fasta created to %s' % out_align) self._create_html(out_align) else: print(stderr) @staticmethod def _create_html(out_dir): html_dir = os.path.dirname(out_dir) + '/MSA_easy_viewing.html' process = Popen(" ".join(['perl /Applications/BINF_Tools/mview-master/bin/mview', '-in', 'fasta', '-ruler', 'on', '-html', 'head', '-coloring', 'any', out_dir, '>', html_dir]), shell=True) stdout, stderr = process.communicate() if not stderr: print('MSA in html created to %s' % html_dir) else: print(stderr) class AddData (object): def __init__(self, msa_file_input, msa_file_output, scores_df, positional_conservation, all_alleles=True, list_alleles=None, pos_cons_treshold=None): """ :param msa_file_input: :param msa_file_output: :param scores_df: :param positional_conservation: :param all_alleles: :param list_alleles: :param pos_cons_treshold: """ if pos_cons_treshold is None: self.pos_cons_treshold = 0.1 else: self.pos_cons_treshold = pos_cons_treshold self.msa_file_input = msa_file_input self.msa_file_output = msa_file_output self.scores_df = scores_df self.all_alleles = all_alleles self.list_alleles = list_alleles self.positional_conservation = positional_conservation self.alleles = self._check_return_alleles(self.scores_df, self.all_alleles, self.list_alleles) self.nmers = self._get_nmers_from_affinity_df(self.scores_df) self.high_aa_low_cons_df = self._high_aff_low_cons_to_df(self.return_high_affinity_and_not_conserved()) def _create_html(self): html_dir = os.path.dirname(self.msa_file_output) + '/MSA_easy_viewing.html' process = Popen(" ".join(['mview', '-in', 'fasta', '-ruler', 'on', '-html', 'head', '-coloring', 'any', self.msa_file_output, '>', html_dir]), shell=True) stdout, stderr = process.communicate() if not stderr: print('MSA in html created to %s' % html_dir) else: print(stderr) return html_dir def visualize_alignemnt(self): html_dir = self._create_html() url_ = 'file:{}'.format(request.pathname2url(html_dir)) webbrowser.open(url_) def open_files(self): with open(self.msa_file_input) as inf, open(self.msa_file_output, 'w') as out: self.write_conservation_scores(inf, out) self.write_affinity_scores(out) def write_conservation_scores(self, inf, out): for line in inf: line = line.replace('X', '-') out.write(line) out.write('>CONSERVATION_INFO\n') for i in self.positional_conservation: if i > self.pos_cons_treshold: out.write('O') else: out.write('-') def write_affinity_scores(self, out): for nmer in self.nmers: for allele in self.alleles: to_print = self._slice_df(nmer, allele, self.scores_df) peps = self._get_peptides(to_print) for idx in range(0, len(peps)): if idx > 3250: continue if '--' in peps[idx]: continue if not self._get_affinity_per_peptide(peps[idx], to_print): continue else: self._write_out(nmer, allele, idx, out, peps) def high_affinity_low_cons_df(self): selected_df = self.scores_df.loc[(self.scores_df['Affinity Level'] == 'High') & (self.scores_df['Score'] < self.pos_cons_treshold)] selected_df = selected_df.loc[(selected_df['Pos'] < 3250) & (selected_df['Peptide'].str.contains('--') == False)] return selected_df def return_high_affinity_and_not_conserved(self): high_aff_not_cons = [] for nmer in self.nmers: for allele in self.alleles: to_print = self._slice_df(nmer, allele, self.scores_df) peps = self._get_peptides(to_print) for idx in range(0, len(peps)): mean_cons = self._get_mean_pos_cons_per_pep(nmer, idx) if self._get_affinity_per_peptide(peps[idx], to_print): if mean_cons < self.pos_cons_treshold: print (mean_cons) high_aff_not_cons.append([idx, peps[idx]]) return high_aff_not_cons @staticmethod def _high_aff_low_cons_to_df(list_of_lists): return pandas.DataFrame(list_of_lists, columns=['Peptide Position', 'Peptide']) def _get_mean_pos_cons_per_pep(self, nmer, index): initial_aminoa_acid = index*nmer endind_amino_acid = (index+1)*nmer return np.mean(self.positional_conservation[initial_aminoa_acid:endind_amino_acid]) @staticmethod def _write_out(nmer, allele, idx, out, peps): out.write('\n>High_Affinity_Loc|n-mer=%i|allele=%s\n' % (nmer, allele)) out.write('-' * idx) out.write(peps[idx]) out.write('-' * (len(peps) - idx - 1)) @staticmethod def _get_affinity_per_peptide(pep, df): aff_per_pep = df.loc[df['Peptide'] == pep] if len(aff_per_pep) > 1: return False if list(aff_per_pep['Affinity Level'].values)[0] == 'High': return True else: return False @staticmethod def _slice_df(nmer, allele, df): to_print = df.loc[(df['n-mer'] == nmer) & (df['Allele'] == allele)] to_print['Peptide'] = to_print['Peptide'].str.replace('X', '-') return to_print @staticmethod def _get_peptides(df): return list(df['Peptide'].values) @staticmethod def _check_return_alleles(scores_df, all_alleles, list_alleles): if all_alleles: alls = list(scores_df.Allele.unique()) else: alls = list_alleles if (all_alleles is False) & (list_alleles is None): raise ValueError('No allele provided') return alls @staticmethod def _get_nmers_from_affinity_df(scores_df): return list(scores_df['n-mer'].unique()) """ class PyhloTree(object): def __init__(self): self.msa_file """
[ "carlo.mazzaferro@gmail.com" ]
carlo.mazzaferro@gmail.com
4ba5f1f05c063992f8dda481db06849e4d26d27d
350d89a0e1f7b8f4a0f90d11e9be12a639996d0d
/react/compiler.py
ae80a548eeca0a093c0a2ce941cf6a894fcf847b
[]
no_license
rizkivmaster/joernalia
709220118c6c3726146021505a801d8a01d15b80
758e17bb88463f1d2c8750ff5eb7bdd59c7e7eef
refs/heads/master
2021-01-10T05:14:38.902812
2016-01-27T12:53:23
2016-01-27T12:53:23
50,297,300
0
0
null
null
null
null
UTF-8
Python
false
false
300
py
def compile(filenames, target): alljsx='' for filename in filenames: lines=open(filename, 'r').readlines() for line in lines: alljsx+=line from react import jsx transformer = jsx.JSXTransformer() js = transformer.transform_string(alljsx) open(target, 'w').write(js) print('all written')
[ "rrangkuti@traveloka.com" ]
rrangkuti@traveloka.com
a4ab47fc05aa9c7990c605ef9911fd6a95175d23
f1869b0709ed8ad27625c1dc299a79595929e72e
/portal/app/common/enum_field_handler.py
ab710c4c57f00e3740e7a7843ae4c7cf02435a4b
[]
no_license
powernet-project/powernet
57b26b4734297d868f635ab0929ef9c845beb2aa
75700848dbd05f141f481b40cdbc2d4b629b98c5
refs/heads/master
2022-06-26T08:03:56.967304
2021-04-13T06:31:06
2021-04-13T06:31:06
74,173,526
2
1
null
2022-06-21T21:31:02
2016-11-18T23:07:46
HTML
UTF-8
Python
false
false
1,209
py
from enumfields.fields import EnumFieldMixin from rest_framework.fields import ChoiceField from django.utils.translation import ugettext_lazy as _ class EnumField(ChoiceField): default_error_messages = { 'invalid': _("No matching enum type.") } def __init__(self, **kwargs): self.enum_type = kwargs.pop("enum_type") kwargs.pop("choices", None) super(EnumField, self).__init__(self.enum_type.choices(), **kwargs) def to_internal_value(self, data): for choice in self.enum_type: if choice.name == data or choice.value == data: return choice self.fail('invalid') def to_representation(self, value): if not value: return None return value.name class EnumFieldSerializerMixin(object): def build_standard_field(self, field_name, model_field): field_class, field_kwargs = super(EnumFieldSerializerMixin, self).build_standard_field(field_name, model_field) if field_class == ChoiceField and isinstance(model_field, EnumFieldMixin): field_class = EnumField field_kwargs['enum_type'] = model_field.enum return field_class, field_kwargs
[ "jonathan@rhumbix.com" ]
jonathan@rhumbix.com
fac5e4f2113c176254285486cf83496ad8294af2
587f90dd34f72dbf8c616edcd42a2ee69a945ad5
/solution.py
6d158a0182174041f17d2c8582bde3f02165414c
[]
no_license
UtkarshMishra04/python_challenge
7d60d0ac68af9f626d71bfe6826113aad31cc011
eaf04caa8c8011b6cdbe6396318ce25b41263489
refs/heads/master
2023-03-20T04:52:41.992318
2021-03-16T08:54:42
2021-03-16T08:54:42
348,275,969
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
from game_class import Game if __name__ == '__main__': env = Game() env.start_game()
[ "utkarsh75477@gmail.com" ]
utkarsh75477@gmail.com
3bb4b250c9e481e8342d3d85a655fadd62014d8a
82c7adb0bfaa667c50ac7b336bb815863b378fa9
/finace/items.py
60984524386545327a13568ee270fe67c087fc4d
[ "Apache-2.0" ]
permissive
pythonyhd/finace
c8a7dca65dfe33cabcb90630d8791d3a5b942bc9
614d98ad92e1bbaa6cf7dc1d6dfaba4f24431688
refs/heads/master
2022-11-30T17:53:40.947747
2020-08-14T03:47:26
2020-08-14T03:47:26
287,253,978
1
0
null
null
null
null
UTF-8
Python
false
false
262
py
# Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class FinaceItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
[ "18353626676@163.com" ]
18353626676@163.com
af3394311c1d32ffcc9e695c0984fe28f230ec2f
e999f2229d8e5831fe0dd732134a54d358872cfb
/scripts/classicalAB.py
6df0529a63ee2d7d992ed8917992766f55d744fc
[]
no_license
Blvisse/ABtesting
b177673563557397d197444d6ddbc370b7d4c585
ef0f98f54273eefa40ca190178eb860770cc3c15
refs/heads/main
2023-06-24T07:55:59.788502
2021-07-25T12:46:35
2021-07-25T12:46:35
387,365,291
0
0
null
2021-07-25T12:46:35
2021-07-19T06:43:47
Jupyter Notebook
UTF-8
Python
false
false
2,441
py
import pandas as pd import numpy as np import matplotlib.pyplot as plt import scipy.stats as ss import logging logging.basicConfig(filename='../applogs/classical.log', filemode='w', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',level=logging.DEBUG) class classicalAB: def __init__(self,data): self.data=data def convertData(self): #creating distinctive groups for exposed and control groups exposed=self.data[self.data['experiment']=='exposed'] control=self.data[self.data['experiment']=='control'] print("The number of users in each experiment is as follows \n") logging.debug("Calulating distribution of data") print("The number of exposed users {} \n".format(len(exposed))) print("The number of control users {} \n".format(len(control))) #calculating positive engagments positiveEngagmentExposed=exposed[exposed['yes']==1] positiveEngagmentControl=control[control['yes']==1] logging.debug("Calculating positive interactions") print("Those with a positive interaction with the ad \n ") print("From the exposed group {} \n".format(len(positiveEngagmentExposed))) print("From the control group {} \n".format(len(positiveEngagmentControl))) noPositiveExposed=len(positiveEngagmentExposed) noPositiveControl=len(positiveEngagmentControl) logging.debug("Calculating conversion rate") probPosExposed,probPosControl=noPositiveExposed/len(exposed),noPositiveControl/len(control) print("The conversion rate is \n") print("Exposed {} \n".format(probPosExposed)) print("Control {} \n ".format(probPosControl)) print("The lift from the experiment is {} ".format(probPosExposed-probPosControl)) summary=self.data.pivot_table(values='yes',index='experiment',aggfunc=np.sum) return exposed,control,noPositiveExposed,noPositiveControl,probPosExposed,probPosControl,summary def compareSamples(self): probExposed,probControl=self.convertData() exposed=self.data[self.data['experiment']=='exposed'] control=self.data[self.data['experiment']=='control'] probControl* len(exposed) positiveEngagmentExposed=exposed[exposed['yes']==1] positiveEngagmentControl=control[control['yes']==1] ss.binomial()
[ "blaisepke@gmail.com" ]
blaisepke@gmail.com
148ea8e659b1f395932dd56bb4319bd9d6022474
9ec58308459dc95405d1a32fcf8fae7f687a207b
/test/test_k_bank.py
71dc290f6f4630d2eaa7649866a90201a40f7e18
[ "MIT" ]
permissive
ivanlyon/exercises
067aed812486dbd7a3d7de6e47a692c8b9383163
0792976ae2acb85187b26a52812f9ebdd119b5e8
refs/heads/master
2021-05-24T04:17:29.012329
2021-05-11T17:26:50
2021-05-11T17:26:50
65,584,450
0
0
null
null
null
null
UTF-8
Python
false
false
1,597
py
import io import unittest from unittest.mock import patch from kattis import k_bank ############################################################################### class SampleInput(unittest.TestCase): '''Problem statement sample inputs and outputs''' def test_sample_input_1(self): '''Run and assert problem statement sample 1 input and output.''' inputs = [] inputs.append('4 4') inputs.append('1000 1') inputs.append('2000 2') inputs.append('500 2') inputs.append('1200 0') inputs = '\n'.join(inputs) + '\n' outputs = '4200\n' with patch('sys.stdin', io.StringIO(inputs)) as stdin,\ patch('sys.stdout', new_callable=io.StringIO) as stdout: k_bank.main() self.assertEqual(stdout.getvalue(), outputs) self.assertEqual(stdin.read(), '') def test_sample_input_2(self): '''Run and assert problem statement sample 2 input and output.''' inputs = [] inputs.append('3 4') inputs.append('1000 0') inputs.append('2000 1') inputs.append('500 1') inputs = '\n'.join(inputs) + '\n' outputs = '3000\n' with patch('sys.stdin', io.StringIO(inputs)) as stdin,\ patch('sys.stdout', new_callable=io.StringIO) as stdout: k_bank.main() self.assertEqual(stdout.getvalue(), outputs) self.assertEqual(stdin.read(), '') ############################################################################### if __name__ == '__main__': unittest.main()
[ "roblyon00@gmail.com" ]
roblyon00@gmail.com
c2f07a0caa76746377059d4cbb4ef5b3cd643a2c
71c58e0449aabb550ed69b72d368e90017575631
/grades.py
7bedd765d1a88b720821faa861626eeeb5b4fc84
[ "Apache-2.0" ]
permissive
ChangedNameTo/MPDiscordBot
7e6534d2d1b6260faa955c3733abdd3ec4553d50
7d2de57c1b25166bfdf08a9d362fba680a4f76f1
refs/heads/master
2022-12-30T18:04:19.751534
2020-10-23T14:26:55
2020-10-23T14:26:55
298,614,171
1
0
null
null
null
null
UTF-8
Python
false
false
2,111
py
from discord.ext import commands french = ['2-3', '3-4', '4', '4+', '5a', '5b', '6a', '6a+', '6b', '6b+', '6c', '6c+', '7a', '7a+', '7b', '7b+', '7c', '7c+', '8a', '8a+', '8b', '8b+', '8c', '8c+', '9a', '9a+', '9b', '9b+', '9c'] uk = ['HVD', 'MS', 'S', 'VS', 'HVS', 'E1 5a/HVS 5b', 'E1 5b', 'E2 5c', 'E3 5c/6a', 'E3 6a', 'E4 6a', 'E4 6b/E5 6a', 'E5 6b', 'E5 6c/E6 6b', 'E6 6b', 'E6 6b/6c', 'E6 6c/E7 6c', 'E7 7a', 'E7 7a/E8 6c', 'E8 6c', 'E8 7a/E9 7a', 'E9 7b/E10 7a', 'E10 7a', 'E10 7b', 'E10 7c/E11 7a', 'E11 7b', 'fuck off mate', 'get out u fuckin nonce', 'oi you got a loicense for that grade?'] yds = ['5.2-3', '5.4-5', '5.6', '5.7', '5.8', '5.9', '5.10a', '5.10b', '5.10c', '5.10d', '5.11a', '5.11b', '5.11c/d', '5.12a', '5.12b', '5.12c', '5.12d', '5.13a', '5.13b', '5.13c', '5.13d', '5.14a', '5.14b', '5.14c', '5.14d', '5.15a', '5.15b', '5.15c', '5.15d'] hueco = ['VB', 'VB', 'VB', 'VB', 'VB', 'V0-', 'V0', 'V0+', 'V1', 'V2', 'V3', '', 'V4', '', 'V5', '', 'V6', 'V7', 'V8', '', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17'] font = ['3', '3', '3', '3', '3', '4-', '4', '4+', '5', '5+', '6A', '6A+', '6B', '6B+', '6C', '6C+', '7A', '7A+', '7B', '7B+', '7C', '7C+', '8A', '8A+', '8B', '8B+', '8C', '8C+', '9A'] def convert_grade(source, destination, grade): source_scale = get_scales(source) dest_scale = get_scales(destination) if grade in source_scale: original = source_scale.index(grade) return dest_scale[original] else: raise ValueException('Not a valid scale') def get_scales(system): return { 'french':french, 'sport':french, 'french sport':french, 'fr':french, 'france':french, 'eu':french, 'euro':french, 'francia':french, 'uk':uk, 'british':uk, 'british tech':uk, 'brit tech':uk, 'british trad':uk, 'gb':uk, 'uk tech':uk, 'yds':yds, 'yosemite':yds, 'us':yds, 'hueco':hueco, 'v':hueco, 'vermin':hueco, 'font':font, 'fontainebleau':font }[system]
[ "ChangedNameTo@users.noreply.github.com" ]
ChangedNameTo@users.noreply.github.com
ddcf8c6e14ca3be28eb4cda3f448ff4a21d6cd8d
1e436ee39f4a063d13fc5c3c07eca80dcd830b70
/build/lib/app.py
8b51808d32c28ab713120ad8710d065476532dd8
[]
no_license
Mineria/Jaccard-similarity
5f8c72a833b01f9a39aaa184f1cbd83a91c95860
f3ede7794d388e59ed48aaa7eb5905b2f8117685
refs/heads/master
2021-01-10T16:25:43.242005
2016-03-15T13:10:29
2016-03-15T13:10:29
53,945,351
0
0
null
null
null
null
UTF-8
Python
false
false
3,706
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json import math from random import randint import api as api config = json.load(open('config.json')) # Loading configuration from file rows = config['clients'] # Number of clientes columns = config['products'] # Number of products max categories = config['categories'] # list with all the possible values for a product categories_num = len(categories) max_products_result = 10 def main(): total_clients = rows total_products = columns clients = api.init_clients(rows, categories_num, columns) products = api.init_products(total_products, categories) matrix = api.init_random_matrix(total_clients, total_products, clients, categories_num) products_related = api.get_related_products(matrix, rows, columns) print matrix[0] for index_user in range(0, 20): print "Recommendations for user %d" % index_user total_displayed_products = 0 api.define_profile(clients[index_user]) # print informatio nabout the user recommendations = api.get_user_recommendations(index_user, products_related, matrix, rows, columns) for r in recommendations: if total_displayed_products >= max_products_result: break product_name = r[0] product_distance = r[1] accuracy = product_distance * 100 if accuracy < 60: pass # don't recommend products with less than 50% of accuracy else: print "Product_id(" + str(product_name) + ") - Accuracy: " + str(int(product_distance * 100)) + "% | " + str(products[product_name]) total_displayed_products += 1 #get_user_preferred_category() # returns a list of the categories the user prefer (based on the probabilities for each category) if total_displayed_products == 0: print "¡Hola!. De momento no tienes productos recomendados" print "¿Qué te parece si le echas un vistazo a nuestra tienda?" print "Cuanto más compres, más productos únicos vas a encontrar ;)" print "-----------" # # for user_index in range(0, total_clients): # print "---\n\nRecommendations for user %d are: " % user_index # print api.define_profile(clients[0]) # print "\n" # user_recommendations = api.get_user_recommendations(user_index, products_related, matrix, rows, columns) # print user_recommendations # total_products_displayed = 0 # # for r in user_recommendations: # if total_products_displayed >= max_products_result: # break # product_name = r[0] # product_distance = r[1] # accuracy = product_distance * 100 # #print product_name # if (accuracy < 50): # pass # don't recommend products with less than 50% of accuracy # else: # total_products_displayed += 1 # print "Product: " + str(product_name) + ". Accuracy " + str(product_distance * 100) + "%" # print "Type of product " + str(products[product_name]) # # #get_user_preferred_category() # returns a list of the categories the user prefer (based on the probabilities for each category) # # if total_products_displayed == 0: # print "¡Hola!. De momento no tienes productos recomendados" # print "¿Qué te parece si le echas un vistazo a nuestra tienda?" # print "Cuanto más compres, más productos únicos vas a encontrar ;)" # # # # # from mynewmodule import hola #hola.hola() main()
[ "me@jgferreiro.com" ]
me@jgferreiro.com
9088845ee4cd9fc4f784727bc6f020bc4213b6a6
786de89be635eb21295070a6a3452f3a7fe6712c
/Detector/tags/V00-00-05/SConscript
d6fb3976c08526bf2e9adb925905a3b3a1b85635
[]
no_license
connectthefuture/psdmrepo
85267cfe8d54564f99e17035efe931077c8f7a37
f32870a987a7493e7bf0f0a5c1712a5a030ef199
refs/heads/master
2021-01-13T03:26:35.494026
2015-09-03T22:22:11
2015-09-03T22:22:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,454
#-------------------------------------------------------------------------- # File and Version Information: # $Id$ # # Description: # SConscript file for package Detector #------------------------------------------------------------------------ # Do not delete following line, it must be present in # SConscript file for any SIT project Import('*') # # For the standard SIT packages which build libraries, applications, # and Python modules it is usually sufficient to call # standardSConscript() function which defines rules for all # above targets. Many standard packages do not need any special options, # but those which need can modify standardSConscript() behavior using # a number of arguments, here is a complete list: # # LIBS - list of additional libraries needed by this package # LIBPATH - list of directories for additional libraries # BINS - dictionary of executables and their corresponding source files # TESTS - dictionary of test applications and their corresponding source files # SCRIPTS - list of scripts in app/ directory # UTESTS - names of the unit tests to run, if not given then all tests are unit tests # PYEXTMOD - name of the Python extension module, package name used by default # CCFLAGS - additional flags passed to C/C++ compilers # NEED_QT - set to True to enable Qt support # # #standardSConscript() standardSConscript(PYEXTMOD="detector_ext") #, DOCGEN="doxy-all psana-modules-doxy")
[ "dubrovin@SLAC.STANFORD.EDU@b967ad99-d558-0410-b138-e0f6c56caec7" ]
dubrovin@SLAC.STANFORD.EDU@b967ad99-d558-0410-b138-e0f6c56caec7
5a60e0394e9f9480b97481c167aa7af809b7d4c2
281d50a81837793ec9d563ed1fa9caf9af354d16
/Zbirka2 - zadatak28, strana3 - prirodan broj k - pecurke.py
dbdb10a2d551188acd3c076d9b47c9874c53b971
[]
no_license
AdnanRedzic/Uvod-u-programiranje
d095e6f1393ad3d27525cf8f957f45bad3c97dfc
1c6c259409f7622a7ee857cb5e333cbb43067e59
refs/heads/main
2023-08-23T09:49:20.811929
2021-10-26T06:28:02
2021-10-26T06:28:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
""" Za prirodan broj k, štampati frazu „Na izletu smo ubrali k pecuraka“, gdje završetak rijeci „pecurka“ prilagodite broju k. Npr. 101 pecurku, 1204 pecurke, 506 pecuraka """ broj_pecuraka = int(input('Unesite broj pecuraka:')) def mijenjanje_rijeci_pecurka_u_odnosu_na_unijeti_broj(broj_pecuraka): if broj_pecuraka%10 == 1: print('Na izletu smo ubrali', broj_pecuraka,'pecurku') elif broj_pecuraka%10 > 1 and broj_pecuraka%10 < 5: print('Na izletu smo ubrali', broj_pecuraka,'pecurke') else: print('Na izletu smo ubrali', broj_pecuraka,'pecuraka') print(mijenjanje_rijeci_pecurka_u_odnosu_na_unijeti_broj(broj_pecuraka))
[ "noreply@github.com" ]
noreply@github.com
218c8af1d22be553515a68a82499c5e24d1fc27f
f690b0a68e51e29a87840a4db01842fdf410b30d
/dependency_parser.py
9c06d22765dfdbf767728f16f52b4cb8c0f9c5fe
[]
no_license
nyutal/nlp02_dependency_parser
396f8884aec8a03a20d5968176e17b715bdd71d5
bf9333b8ba91ce2e8a23ee1504697844514682f3
refs/heads/master
2021-01-11T16:45:22.052408
2017-01-29T22:10:16
2017-01-30T09:15:18
79,666,286
0
0
null
null
null
null
UTF-8
Python
false
false
4,869
py
import os import time from basic_features.feature import * from basic_features.unigrams import * from basic_features.bigrams import * from basic_features.complex import * import perceptron as pr from conf import Conf from dataParser import * def train(fv: FeatureVec, trainer: pr.Perceptron, train_corpus: Corpus, out_file): out_file.write('start training at ' + time.asctime()) weights = trainer.train(train_corpus, fv, Conf.train_niter) out_file.write('finish training at ' + time.asctime()) return weights def comp(dp: DataParser, fv: FeatureVec, trainer: pr.Perceptron): comp_corpus = dp.parse(Conf.comp_file_name, Conf.comp_max_samples, True) weights = np.asarray(list(map(float, [line.strip() for line in open(Conf.weights_src_comp)]))) trainer.predict(comp_corpus, fv, weights) comp_out_file = open(Conf.comp_output_file_name, 'w') for s in comp_corpus.get_sentences(): for k in s.words[1:]: comp_out_file.write(str(k.counter) + '\t' + str(k.token) + '\t' + '_' + '\t' + str( k.pos) + '\t' + '_' + '\t' + '_' + '\t' + str( k.head) + '\t' + '_' + '\t' + '_' + '\t' + '_' + '\n') # tabs[0], tabs[1], tabs[3], tabs[6] comp_out_file.write('\n') comp_out_file.close() def test_from_train(dp: DataParser, fv: FeatureVec, trainer: pr.Perceptron, weights, out_file): if Conf.test_file_name is None: return test_corpus = dp.parse(Conf.test_file_name, Conf.test_max_samples) out_file.write('start testing weights from train at ' + time.asctime()) accuracy = trainer.test(test_corpus, fv, weights) out_file.write(', finish testing at ' + time.asctime() + ', ') out_file.write('accuracy=' + str(accuracy) + "\n") def test_from_path(dp: DataParser, fv: FeatureVec, trainer: pr.Perceptron, out_file): if Conf.test_file_name is None: return test_corpus = dp.parse(Conf.test_file_name, Conf.test_max_samples) if os.path.isdir(Conf.weights_src): files = os.listdir(Conf.weights_src) wlist = [] iter = 1 print('start multiple iteration tests:' + Conf.test_name + ' at ' + time.asctime()) while True: curr = [ f for f in files if 'weights_' + str(iter) + '_' in f] if len(curr) == 0: break src = curr[0] weights = np.asarray(list(map(float, [line.strip() for line in open(Conf.weights_src + src)]))) out_file.write('start testing weights from ' + src + ' at ' + time.asctime()) accuracy = trainer.test(test_corpus, fv, weights) out_file.write(', finish testing at ' + time.asctime() + ', ') out_file.write('accuracy=' + str(accuracy) + "\n") wlist.append(str(iter) + ', ' + str(accuracy)) print('test iteration ' + str(iter) + ', accuracy=' + str(accuracy) + ' time: ' + time.asctime()) iter += 1 print(wlist) out_acc_file = open(Conf.weights_src + Conf.test_name + '_accuracy_data.txt', 'w') for l in wlist: out_acc_file.write(l) out_acc_file.close() # weights = np.asarray(list(map(float, [line.strip() for line in open(Conf.weights_src)]))) # out_file.write('start testing weights from ' + Conf.weights_src+ ' at ' + time.asctime()) # accuracy = trainer.test(test_corpus, fv, weights) # out_file.write(', finish testing at ' + time.asctime() + ', ') # out_file.write('accuracy=' + str(accuracy) + "\n") else: weights = np.asarray(list(map(float, [line.strip() for line in open(Conf.weights_src)]))) out_file.write('start testing weights from ' + Conf.weights_src + ' at ' + time.asctime()) accuracy = trainer.test(test_corpus, fv, weights) out_file.write(', finish testing at ' + time.asctime() + ', ') out_file.write('accuracy=' + str(accuracy) + "\n") def main(): out_file = open(Conf.output_file_name, 'w') dp = DataParser() train_corpus = dp.parse(Conf.train_file_name, Conf.train_max_samples) fv = FeatureVec() add_unigrams(fv) add_bigrams(fv) if Conf.is_complex: add_complex(fv) fv.generate_features(train_corpus) out_file.write(Conf.get_conf_str() + "\n") out_file.write(str(fv.get_feature_gen_count()) + "\n") trainer = pr.Perceptron() if Conf.is_competition: comp(dp, fv, trainer) elif Conf.weights_src is None: weights = train(fv, trainer, train_corpus, out_file) out_weight_file = open(Conf.output_weight_file_name, 'w') for i in weights: out_weight_file.write("%s\n" % i) out_weight_file.close() test_from_train(dp, fv, trainer, weights, out_file) else: test_from_path(dp, fv, trainer, out_file) out_file.close() if __name__ == '__main__': main()
[ "nyutal@yahoo-inc.com" ]
nyutal@yahoo-inc.com
f15d181e2a3f37e31f85d1871156a11d42b83881
5cb77252081eec8c700eb294f4d674c88b23bf49
/gitlab-backup.py
4ae4ea108d136e153d27945e92f1f400161e11a2
[]
no_license
joyceqiao/gitlab-backup
15fb3f05b2cc2093521f474d7d94b74ebfb7cef9
43798e1703002df19dda003165dd842aaed14632
refs/heads/master
2021-01-17T21:15:48.756706
2016-04-08T11:10:54
2016-04-08T11:10:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,004
py
# -*- coding: utf-8 -*- import os import logging import gitlab from settings import GIT_SETTINGS from settings import MAIL_SETTINGS from settings import LOG_SETTINGS from settings import MAIL_NOTIFY_ENABLE from custome_logging import BufferingSMTPHandler from custome_logging import ConsoleHandler def get_gitlab_instance(): gitlab_url = GIT_SETTINGS.get('gitlab_url') private_token = GIT_SETTINGS.get('private_token') gitlab_server = gitlab.Gitlab(gitlab_url, private_token=private_token) gitlab_server.auth() return gitlab_server def record_log_with_level(logger, output): if output.strip().startswith("fatal") or output.strip().startswith("error"): logger.error(output.strip()) else: logger.info(output.strip()) def backup_git_repo(logger): # backup git repo by paging page = 1 while True: backup_git_by_page(page, logger) page += 1 def backup_git_by_page(page, logger): git = get_gitlab_instance() projects = git.projects.all(page=page, per_page=100) git_data_path = GIT_SETTINGS.get('git_data_path') if 0 == len(projects): logger.info("All projects backup completed !") exit(0) else: logger.info("There are %s projects on page %s." % (len(projects), page)) try: for project in projects: git_repo_path = os.path.join(git_data_path, project.path_with_namespace + ".git") logger.debug("begin to backup git repo %s !" % project.path_with_namespace) # if the project has been cloned,then exec git fetch command,else exec git clone command. if os.path.exists(git_repo_path): os.chdir(git_repo_path) for output in os.popen("git fetch 2>&1"): record_log_with_level(logger, output) else: for output in os.popen("git clone --mirror %s %s 2>&1" % (project.http_url_to_repo, git_repo_path)): record_log_with_level(logger, output) except: logger.exception('Got exception on logger handler:') raise logger.info("The projects of page %s backup completed !" % page) def main(): # get log level from settings log_level = LOG_SETTINGS.get('level') # setup logger and handler logger = logging.getLogger(__name__) logger.setLevel(log_level) logger.addHandler(ConsoleHandler()) if MAIL_NOTIFY_ENABLE: mailhost = MAIL_SETTINGS.get('mailhost') mail_username = MAIL_SETTINGS.get('username') mail_password = MAIL_SETTINGS.get('password') fromaddr = MAIL_SETTINGS.get('fromaddr') toaddrs = MAIL_SETTINGS.get('toaddrs') subject = MAIL_SETTINGS.get('subject') logger.addHandler(BufferingSMTPHandler(mailhost, fromaddr, toaddrs, subject, mail_username, mail_password, 10000)) # backup git repo backup_git_repo(logger) if __name__ == "__main__": main()
[ "977675308@qq.com" ]
977675308@qq.com
ba8c4775490031f4b1abd9541e76e7d99773e96c
44845df9198ae8c80fabecb6ed3ae6a44e43f38c
/modo/admin.py
4aa582f42f92bbc0b441d3019c6b6fb02550a96f
[]
no_license
CarlosSanz81/cima
570da404bddd0a813a025163a9e94676b9d0b4a9
3ad9b37af4a2d8a5789915208afffec7b6af3c0e
refs/heads/master
2021-01-23T08:00:04.964713
2017-03-28T14:33:09
2017-03-28T14:33:09
72,184,187
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
from django.contrib import admin from .models import Modo @admin.register(Modo) class AdminModo(admin.ModelAdmin): list_display = ('nombre',)
[ "carlossanzgarcia81@gmail.com" ]
carlossanzgarcia81@gmail.com
9fd2adff33eb37163fba31027204557321194233
6320fef2ea7376c2b35f97f1a5af004e90f09098
/1-2주차 실습(복습)/venv/Lib/site-packages/pygments/formatters/irc.py
49f8b3d13114e627e86ef8bdd693496bd155fd7f
[]
no_license
Dplo1514/ploaistudy
7aa08d7f71653748a9e32dcc09ee8f6cec0aaed9
e35e42b1e5f0c90cc1e2a59993a1ef73d8872d0c
refs/heads/master
2023-09-03T00:45:55.601651
2021-10-24T12:19:38
2021-10-24T12:19:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,026
py
""" pygments.formatters.irc ~~~~~~~~~~~~~~~~~~~~~~~ Formatter for IRC output :copyright: Copyright 2006-2021 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import sys from pygments.formatter import Formatter from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic, Token, Whitespace from pygments.util import get_choice_opt __all__ = ['IRCFormatter'] #: Map token types to a tuple of color values for light and dark #: backgrounds. IRC_COLORS = { Token: ('', ''), Whitespace: ('gray', 'brightblack'), Comment: ('gray', 'brightblack'), Comment.Preproc: ('cyan', 'brightcyan'), Keyword: ('blue', 'brightblue'), Keyword.Type: ('cyan', 'brightcyan'), Operator.Word: ('magenta', 'brightcyan'), Name.Builtin: ('cyan', 'brightcyan'), Name.Function: ('green', 'brightgreen'), Name.Namespace: ('_cyan_', '_brightcyan_'), Name.Class: ('_green_', '_brightgreen_'), Name.Exception: ('cyan', 'brightcyan'), Name.Decorator: ('brightblack', 'gray'), Name.Variable: ('red', 'brightred'), Name.Constant: ('red', 'brightred'), Name.Attribute: ('cyan', 'brightcyan'), Name.Tag: ('brightblue', 'brightblue'), String: ('yellow', 'yellow'), Number: ('blue', 'brightblue'), Generic.Deleted: ('brightred', 'brightred'), Generic.Inserted: ('green', 'brightgreen'), Generic.Heading: ('**', '**'), Generic.Subheading: ('*magenta*', '*brightmagenta*'), Generic.Error: ('brightred', 'brightred'), Error: ('_brightred_', '_brightred_'), } IRC_COLOR_MAP = { 'white': 0, 'black': 1, 'blue': 2, 'brightgreen': 3, 'brightred': 4, 'yellow': 5, 'magenta': 6, 'orange': 7, 'green': 7, #compat w/ ansi 'brightyellow': 8, 'lightgreen': 9, 'brightcyan': 9, # compat w/ ansi 'cyan': 10, 'lightblue': 11, 'red': 11, # compat w/ ansi 'brightblue': 12, 'brightmagenta': 13, 'brightblack': 14, 'gray': 15, } def ircformat(color, text): if len(color) < 1: return text add = sub = '' if '_' in color: # italic add += '\x1D' sub = '\x1D' + sub color = color.strip('_') if '*' in color: # bold add += '\x02' sub = '\x02' + sub color = color.strip('*') # underline (\x1F) not supported # backgrounds (\x03FF,BB) not supported if len(color) > 0: # actual color - may have issues with ircformat("red", "blah")+"10" type stuff add += '\x03' + str(IRC_COLOR_MAP[color]).zfill(2) sub = '\x03' + sub return add + text + sub return '<'+add+'>'+text+'</'+sub+'>' class IRCFormatter(Formatter): r""" Format tokens with IRC color sequences The `get_style_defs()` method doesn't do anything special since there is no support for common styles. Options accepted: `bg` Set to ``"light"`` or ``"dark"`` depending on the terminal's background (default: ``"light"``). `colorscheme` A dictionary mapping token types to (lightbg, darkbg) color names or ``None`` (default: ``None`` = use builtin colorscheme). `linenos` Set to ``True`` to have line numbers in the output as well (default: ``False`` = no line numbers). """ name = 'IRC' aliases = ['irc', 'IRC'] filenames = [] def __init__(self, **options): Formatter.__init__(self, **options) self.darkbg = get_choice_opt(options, 'bg', ['light', 'dark'], 'light') == 'dark' self.colorscheme = options.get('colorscheme', None) or IRC_COLORS self.linenos = options.get('linenos', False) self._lineno = 0 def _write_lineno(self, outfile): self._lineno += 1 outfile.write("\n%04d: " % self._lineno) def _format_unencoded_with_lineno(self, tokensource, outfile): self._write_lineno(outfile) for ttype, value in tokensource: if value.endswith("\n"): self._write_lineno(outfile) value = value[:-1] color = self.colorscheme.get(ttype) while color is None: ttype = ttype[:-1] color = self.colorscheme.get(ttype) if color: color = color[self.darkbg] spl = value.split('\n') for line in spl[:-1]: self._write_lineno(outfile) if line: outfile.write(ircformat(color, line[:-1])) if spl[-1]: outfile.write(ircformat(color, spl[-1])) else: outfile.write(value) outfile.write("\n") def format_unencoded(self, tokensource, outfile): if self.linenos: self._format_unencoded_with_lineno(tokensource, outfile) return for ttype, value in tokensource: color = self.colorscheme.get(ttype) while color is None: ttype = ttype[:-1] color = self.colorscheme.get(ttype) if color: color = color[self.darkbg] spl = value.split('\n') for line in spl[:-1]: if line: outfile.write(ircformat(color, line)) outfile.write('\n') if spl[-1]: outfile.write(ircformat(color, spl[-1])) else: outfile.write(value)
[ "dladlsgur3334@gmail.com" ]
dladlsgur3334@gmail.com
b531600002bc42640cd2caa1c95dd69689267dae
e153f0d5b97c9b5706856e47187968ded1ec3b0a
/client_code/old_code/PublishTest.py
047e3995f50675ffa1762380f56dc3f1564696cf
[]
no_license
msynth/artist_app
e1ea7b7401b31c2d574b7153aebb0da20d350972
06edf4d44e518067e5a7b9d656f214b797722e63
refs/heads/master
2021-01-01T20:06:42.116314
2017-08-11T15:36:25
2017-08-11T15:36:25
98,764,193
4
0
null
null
null
null
UTF-8
Python
false
false
1,613
py
# PubNub imports from pubnub.callbacks import SubscribeCallback from pubnub.enums import PNStatusCategory from pubnub.pnconfiguration import PNConfiguration from pubnub.pubnub import PubNub # MIDI and Music-related imports import mido # Time imports for capturing roundtrip delay # Verbose printing if DEBUG is true DEBUG = False # Define Channel name channel_name = 'sensor_data' # Standard PubNub object configuration under V4 API pnconfig = PNConfiguration() pnconfig.publish_key = 'pub-c-ff1da703-9b2a-41df-bdd4-96e21bbfb0b8' pnconfig.subscribe_key = 'sub-c-d1024ca8-74bb-11e7-8153-0619f8945a4f' pubnub = PubNub(pnconfig) # New V4 Python API requires a callback def publish_callback(result, status): print(result) pass # Do nothing # Handle PNPublishResult and PNStatus print("Entering main loop. Press Control-C to exit.") with mido.open_input('Midi Fighter Twister') as inport: print ("Succesfully connected to MIDI FIGHTER TWISTER") for message in inport: # Only consider note_on and note_off messages, filter out control change messaeges if message.type == "control_change": # Data to be transmitted. Parse "message" list into constituent parts data = { 'type': message.type, 'channel': message.channel, 'control': message.control, 'value': message.value } if DEBUG: print ("Sending data: ", data) # Publish to PubNub channel pubnub.publish().channel(channel_name).message(data).async(publish_callback)
[ "hanoi@lamtharn-hantrakul.sfb.lyft-corp.net" ]
hanoi@lamtharn-hantrakul.sfb.lyft-corp.net
5b80a2ef686bef03895fc623fe22bb41d632eb86
f2ca96d4e9319f1df17f7b6853fe6f832fd25b23
/main.py
c06f48af229311f883e5c010bcd9dc02d168db48
[]
no_license
chinarahul04/heroku_practi
0b2da0b5b662023fdc012f6339c39f32a3052e33
4107d1cd11234ad5cd6c7212653ecdcb4a53e50b
refs/heads/main
2023-06-05T22:19:11.520882
2021-06-25T05:25:11
2021-06-25T05:25:11
380,130,058
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
from flask import Flask app=flask(__name__) @app.route('/', method=['GET','POST']) def index(): return "hy this rahul web" if __name__=="__main__": app.run()
[ "bandaruchinarahul04@gmail.com" ]
bandaruchinarahul04@gmail.com
195a19e8ab62566d58ec241180b4cbe050d87f27
f8dd9d621cfd3703df9f206cf8bd4b815ca91f6f
/.ycm_extra_conf.py
7f3cd021725cc9750d4cac52a214e8b405dfd291
[ "Apache-2.0" ]
permissive
ezchi/virtio
f0937dc7bd39ad57032566f49bcb6e5c4caf7539
dd975d96dfdaf176a54ceafc239501a96dbed571
refs/heads/master
2020-03-20T03:28:41.961704
2018-01-23T22:10:28
2018-01-23T22:10:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,401
py
# This file is NOT licensed under the GPLv3, which is the license for the rest # of YouCompleteMe. # # Here's the license text for this file: # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # For more information, please refer to <http://unlicense.org/> import os import ycm_core # These are the compilation flags that will be used in case there's no # compilation database set (by default, one is not set). # CHANGE THIS LIST OF FLAGS. YES, THIS IS THE DROID YOU HAVE BEEN LOOKING FOR. flags = [ '-Weverything', '-Werror', '-Wno-padded', '-Wno-c++98-compat', '-Wno-c++98-compat-pedantic', '-Wno-global-constructors', '-Wno-exit-time-destructors', '-Wno-covered-switch-default', '-fexceptions', '-std=c++11', '-xc++', '-Iinclude', '-Ilogic/include', '-isystem/usr/local/systemc/2.3.1/include', '-isystem/usr/local/share/verilator/include', ] # Set this to the absolute path to the folder (NOT the file!) containing the # compile_commands.json file to use that instead of 'flags'. See here for # more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html # # You can get CMake to generate this file for you by adding: # set( CMAKE_EXPORT_COMPILE_COMMANDS 1 ) # to your CMakeLists.txt file. # # Most projects will NOT need to set this to anything; you can just change the # 'flags' list of compilation flags. Notice that YCM itself uses that approach. compilation_database_folder = '' if os.path.exists( compilation_database_folder ): database = ycm_core.CompilationDatabase( compilation_database_folder ) else: database = None SOURCE_EXTENSIONS = [ '.cpp', '.cxx', '.cc', '.c', '.m', '.mm' ] def DirectoryOfThisScript(): return os.path.dirname( os.path.abspath( __file__ ) ) def MakeRelativePathsInFlagsAbsolute( flags, working_directory ): if not working_directory: return list( flags ) new_flags = [] make_next_absolute = False path_flags = [ '-isystem', '-I', '-iquote', '--sysroot=' ] for flag in flags: new_flag = flag if make_next_absolute: make_next_absolute = False if not flag.startswith( '/' ): new_flag = os.path.join( working_directory, flag ) for path_flag in path_flags: if flag == path_flag: make_next_absolute = True break if flag.startswith( path_flag ): path = flag[ len( path_flag ): ] new_flag = path_flag + os.path.join( working_directory, path ) break if new_flag: new_flags.append( new_flag ) return new_flags def IsHeaderFile( filename ): extension = os.path.splitext( filename )[ 1 ] return extension in [ '.h', '.hxx', '.hpp', '.hh' ] def GetCompilationInfoForFile( filename ): # The compilation_commands.json file generated by CMake does not have entries # for header files. So we do our best by asking the db for flags for a # corresponding source file, if any. If one exists, the flags for that file # should be good enough. if IsHeaderFile( filename ): basename = os.path.splitext( filename )[ 0 ] for extension in SOURCE_EXTENSIONS: replacement_file = basename + extension if os.path.exists( replacement_file ): compilation_info = database.GetCompilationInfoForFile( replacement_file ) if compilation_info.compiler_flags_: return compilation_info return None return database.GetCompilationInfoForFile( filename ) def FlagsForFile( filename, **kwargs ): if database: # Bear in mind that compilation_info.compiler_flags_ does NOT return a # python list, but a "list-like" StringVec object compilation_info = GetCompilationInfoForFile( filename ) if not compilation_info: return None final_flags = MakeRelativePathsInFlagsAbsolute( compilation_info.compiler_flags_, compilation_info.compiler_working_dir_ ) # NOTE: This is just for YouCompleteMe; it's highly likely that your project # does NOT need to remove the stdlib flag. DO NOT USE THIS IN YOUR # ycm_extra_conf IF YOU'RE NOT 100% SURE YOU NEED IT. try: final_flags.remove( '-stdlib=libc++' ) except ValueError: pass else: relative_to = DirectoryOfThisScript() final_flags = MakeRelativePathsInFlagsAbsolute( flags, relative_to ) return { 'flags': final_flags }
[ "tymoteusz.blazejczyk.pl@gmail.com" ]
tymoteusz.blazejczyk.pl@gmail.com
5da193ab8f0e2efa5b0645b1029e0314fd56b029
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_011/ch92_2019_10_02_17_54_14_425785.py
043154a806fa8650cc4d1a71882bef7df3c5440f
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
292
py
def simplifica_dict(dicionario): lista = [] for chave in dicionario: if chave not in lista: lista.append(chave) for valor in dicionario[chave]: if dicionario[chave] not in lista: lista.append(dicionario[chave]) return lista
[ "you@example.com" ]
you@example.com
dcdfd17496925a85400ab2e195a3c8e50d5401e6
d7f486eebaa164bf3274c843e1932c7eef596e5e
/importer/facebook.py
352a80e06ffca4048160d7b028cf173373aa9667
[ "MIT" ]
permissive
Galaxyvintage/journal-1
aafe107645a6dde038b0010496c041ac635e966d
f666a3b38f0eeb2cc1f5576e0668f174bf1cbd8d
refs/heads/master
2020-03-20T09:15:09.269993
2018-07-05T16:31:17
2018-07-05T16:31:17
137,332,462
0
0
null
2018-06-14T08:54:38
2018-06-14T08:54:37
null
UTF-8
Python
false
false
7,091
py
import events from database import db import json import datetime import os def load_to_json(filename): json_data = open(filename).read() return json.loads(json_data) def read_app_posts(directory): data = load_to_json(directory + "apps/posts_from_apps.json") for post in data["app_posts"]: attachment_data = post["attachments"][0]["data"][0]["external_context"] time = datetime.datetime.fromtimestamp(post["timestamp"]) message = attachment_data["name"] title = post["title"] app_name = "unknown app" if "via" in title: app_name = title[title.index("via") + 4 : -1] kvps = {"message": message, "title": title, "app": app_name} if attachment_data.has_key("url"): kvps["url"] = attachment_data["url"] events.add("Facebook post via " + app_name + ": " + message, time, ["facebook", "post", "app"], kvps) def read_app_installs(directory): data = load_to_json(directory + "apps/installed_apps.json") for item in data["installed_apps"]: events.add("Added Facebook app " + item["name"] + ".", datetime.datetime.fromtimestamp(item["time_added"]), ["facebook", "app"], {"app": item["name"]}) def read_comments(directory): data = load_to_json(directory + "comments/comments.json") for comment in data["comments"]: time = datetime.datetime.fromtimestamp(comment["timestamp"]) message = comment["data"][0]["comment"]["comment"] events.add("Facebook: " + comment["title"], time, ["facebook", "comment"], {"message": message}) def read_events(directory): data = load_to_json(directory + "events/event_responses.json") for event in data["event_responses"]["events_joined"]: time = datetime.datetime.fromtimestamp(event["start_timestamp"]) name = event["name"] events.add("Participated in Facebook event: " + name, time, ["facebook", "event"], {"name": name}) data = load_to_json(directory + "events/your_events.json") for event in data["your_events"]: time = datetime.datetime.fromtimestamp(event["start_timestamp"]) name = event["name"] location = event["place"]["name"] events.add("Hosted Facebook event: " + name, time, ["facebook", "event"], {"name": name, "location": location, "message": event["description"]}) def read_friends(directory): data = load_to_json(directory + "friends/friends_added.json") for friend in data["friends"]: time = datetime.datetime.fromtimestamp(friend["timestamp"]) name = friend["name"] events.add("Added Facebook friend " + name + ".", time, ["facebook", "friend"], {"name": name}) def create_conversation_event(title, message_count, time, participants, history, first): kvps = {"participants": participants, "message": history} if first: events.add( "Started a Facebook conversation with " + title + " (" + str(message_count) + " message" + ( "s" if message_count > 1 else "") + ").", time, ["facebook", "message"], kvps) else: events.add( "Exchanged " + str(message_count) + " Facebook message" + ( "s" if message_count > 1 else "") + " with " + title + ".", time, ["facebook", "message"], kvps) def read_messages(directory): message_directory = directory + "messages/" for conversation in [os.path.join(message_directory, name) for name in os.listdir(message_directory) if os.path.isdir(os.path.join(message_directory, name)) and name != "stickers_used"]: data = load_to_json(conversation + "/message.json") if not data.has_key("title"): continue title = data["title"] participants = [title] if data.has_key("participants"): participants = data["participants"] messages = data["messages"] session_start_time = None last_message_time = None history = "" message_count = 0 session_count = 0 for message in reversed(messages): if message.has_key("content"): message_time = datetime.datetime.fromtimestamp(message["timestamp"]) if session_start_time is None: session_start_time = message_time elif (message_time - last_message_time).total_seconds() > 4 * 60 * 60: create_conversation_event(title, message_count, session_start_time, ", ".join(participants), history, session_count == 0) session_start_time = message_time message_count = 0 session_count += 1 history = "" last_message_time = message_time message_count += 1 history += message["sender_name"] + ": " + message["content"] + "\n" if message.has_key("photos") and not message["sender_name"] in participants: events.add("Sent " + (str(len(message["photos"])) + " images" if len(message["photos"]) > 1 else "an image") + " to " + title + ".", datetime.datetime.fromtimestamp(message["timestamp"]), ["facebook", "message", "image"], kvps={"participants": ", ".join(participants)}, images=[directory + photo["uri"] for photo in message["photos"]]) if message.has_key("photos") and message["sender_name"] in participants: events.add("Received " + (str(len(message["photos"])) + " images" if len( message["photos"]) > 1 else "an image") + " from " + message["sender_name"] + ".", datetime.datetime.fromtimestamp(message["timestamp"]), ["facebook", "message", "image"], kvps={"participants": ", ".join(participants)}, images=[directory + photo["uri"] for photo in message["photos"]]) create_conversation_event(title, message_count, session_start_time, ", ".join(participants), history, session_count == 0) def read_photos(directory): photo_directory = directory + "photos/album/" for album_file in [os.path.join(photo_directory, name) for name in os.listdir(photo_directory)]: data = load_to_json(album_file) album_name = data["name"] for photo in data["photos"]: file = directory + photo["uri"] metadata = photo["media_metadata"]["photo_metadata"] time = datetime.datetime.fromtimestamp(metadata["taken_timestamp"]) if metadata.has_key("taken_timestamp") else datetime.datetime.fromtimestamp(metadata["modified_timestamp"]) tags = ["facebook", "photo"] kvps = {} if metadata.has_key("camera_make") and metadata.has_key("camera_model"): camera = metadata["camera_make"] + " " + metadata["camera_model"] tags.append(camera) kvps["camera"] = camera events.add("Added photo to Facebook album " + album_name + ".", time, tags, kvps, hash=file, latitude=(metadata["latitude"] if metadata.has_key("latitude") else None), longitude=(metadata["longitude"] if metadata.has_key("longitude") else None), images=[file]) def import_facebook_data(directory = "data/facebook/"): with db.atomic(): print "Reading Facebook app posts..." read_app_posts(directory) read_app_installs(directory) print "Reading Facebook comments..." read_comments(directory) print "Reading Facebook events..." read_events(directory) print "Reading Facebook friends..." read_friends(directory) print "Reading Facebook messages..." read_messages(directory) print "Reading Facebook photos..." read_photos(directory) if __name__ == "__main__": import_facebook_data()
[ "mail@marian42.de" ]
mail@marian42.de
d905ee37aa6ecea6a752fbc54249897a44a54d0e
66e6360325b781ed0791868765f1fd8a6303726f
/TB2009/WorkDirectory/5223 All Charges/ExportCharge.py
0256e8dcc77eb233c47742a482097e9b389b68a6
[]
no_license
alintulu/FHead2011PhysicsProject
c969639b212d569198d8fce2f424ce866dcfa881
2568633d349810574354ad61b0abab24a40e510e
refs/heads/master
2022-04-28T14:19:30.534282
2020-04-23T17:17:32
2020-04-23T17:17:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,613
py
import FWCore.ParameterSet.Config as cms process = cms.Process("PrintCharges") process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(50000)) process.source = cms.Source("HcalTBSource", fileNames = cms.untracked.vstring('file:/tmp/chenyi/HTB_.root'), streams = cms.untracked.vstring('HCAL_Trigger','HCAL_SlowData','HCAL_QADCTDC','HCAL_DCC021','Chunk699') ) process.hcal_db_producer = cms.ESProducer("HcalDbProducer", dump = cms.untracked.vstring(''), file = cms.untracked.string('') ) process.es_hardcode = cms.ESSource("HcalHardcodeCalibrations", toGet = cms.untracked.vstring('GainWidths','PedestalWidths','QIEData','ChannelQuality','ZSThresholds','RespCorrs') ) process.es_ascii = cms.ESSource("HcalTextCalibrations", input = cms.VPSet( cms.PSet( object = cms.string('ElectronicsMap'), file = cms.FileInPath('emap_TB2009_A.txt') ), cms.PSet( object = cms.string('Pedestals'), file = cms.FileInPath('pedestals_TB2009_.txt') ), cms.PSet( object = cms.string('Gains'), file = cms.FileInPath('gains_TB2009_LMIP_newpedestal.txt') ) ) ) process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = 1000 process.tbUnpacker = cms.EDFilter("HcalTBObjectUnpacker", IncludeUnmatchedHits = cms.untracked.bool(False), HcalTDCFED = cms.untracked.int32(8), HcalQADCFED = cms.untracked.int32(8), HcalSlowDataFED = cms.untracked.int32(3), HcalTriggerFED = cms.untracked.int32(1), HcalVLSBFED = cms.untracked.int32(699), ConfigurationFile = cms.untracked.string('configQADCTDC_TB2009.txt') ) process.hcalDigis = cms.EDFilter("HcalRawToDigi", UnpackZDC = cms.untracked.bool(True), FilterDataQuality = cms.bool(True), ExceptionEmptyData = cms.untracked.bool(True), InputLabel = cms.InputTag("source"), ComplainEmptyData = cms.untracked.bool(False), UnpackCalib = cms.untracked.bool(False), firstSample = cms.int32(0), lastSample = cms.int32(9), FEDs = cms.untracked.vint32(21), HcalFirstFED = cms.untracked.int32(21) ) process.load("RecoLocalCalo.HcalRecProducers.HcalSimpleReconstructor_hbhe_cfi") process.hbhereco.firstSample = 5 process.hbhereco.samplesToAdd = 4 process.options = cms.untracked.PSet( Rethrow = cms.untracked.vstring('ProductNotFound', 'TooManyProducts', 'TooFewProducts') ) process.triggerfilter = cms.EDFilter("TriggerFilter", allowBeamTrigger = cms.untracked.bool(True), allowOutOfSpillPedestalTrigger = cms.untracked.bool(False), allowOthers = cms.untracked.bool(False) ) process.oneparticle = cms.EDFilter("SingleTowerParticleFilter", particleNumber = cms.untracked.int32(1) ) process.muonveto = cms.EDFilter("MuonVetoFilter") process.export = cms.EDAnalyzer("ExportChargeAnalyzer", normalModule = cms.untracked.string('hbhereco') ) process.vlsbinfo = cms.EDProducer("VLSBInformationProducer", minSample = cms.untracked.uint32(0), maxSample = cms.untracked.uint32(31), baselineSamples = cms.untracked.uint32(2), useMotherBoard0 = cms.untracked.bool(True), useMotherBoard1 = cms.untracked.bool(True), useMotherBoard2 = cms.untracked.bool(False), useMotherBoard3 = cms.untracked.bool(True), usePedestalMean = cms.untracked.bool(False), mip = cms.untracked.string('MIP_EarlyRejection_Median.txt'), adcMap = cms.untracked.string('FinalAdcMapping_All.txt'), beamEnergy = cms.untracked.double() ) process.vlsbreco = cms.EDProducer("HcalTBVLSBReconstructor", minSample = cms.untracked.uint32(0), maxSample = cms.untracked.uint32(31), mipFileName = cms.untracked.string("MIP_EarlyRejection_Median.txt"), adcMapFileName = cms.untracked.string("FinalAdcMapping_All.txt") ) process.energydistribution = cms.EDAnalyzer("FillRHEnergyDistributionAnalyzer", vlsbModule = cms.untracked.string("vlsbreco"), normalModule = cms.untracked.string("hbhereco"), output = cms.untracked.string("EnergyDistribution_ABC_.root") ) process.timecut = cms.EDFilter("HighestSampleTimeFilter", minimum = cms.untracked.double(7.5), threshold = cms.untracked.double(100) ) process.hitcut = cms.EDFilter("HitXFilter", maximum = cms.untracked.double(-5) ) process.mincut = cms.EDFilter("RHTotalEnergyCut", minimum = cms.untracked.double(), vlsbModule = cms.untracked.string("vlsbreco"), normalModule = cms.untracked.string("hbhereco") ) process.maxcut = cms.EDFilter("RHTotalEnergyCut", minimum = cms.untracked.double(), vlsbModule = cms.untracked.string("vlsbreco"), normalModule = cms.untracked.string("hbhereco") ) process.merge = cms.EDProducer("CombineCollectionProducer", vlsbModule = cms.untracked.string("vlsbreco"), normalModule = cms.untracked.string("hbhereco") # interCalibration = cms.untracked.string("InterCalibration_Secondary.txt") ) process.export = cms.EDAnalyzer("CExportChargeAnalyzer", moduleName = cms.untracked.string('merge'), simplified = cms.untracked.bool(True), exportVlsb = cms.untracked.bool(True) ) process.runinfo = cms.EDProducer("RunInformationProducer", beamEnergy = cms.untracked.double() ) process.p = cms.Path( process.tbUnpacker * process.vlsbinfo * process.runinfo * process.vlsbreco * process.hcalDigis * process.hbhereco * process.triggerfilter * process.oneparticle * process.muonveto * process.timecut * process.hitcut * process.mincut * ~process.maxcut * process.merge * process.export )
[ "yichen@positron01.hep.caltech.edu" ]
yichen@positron01.hep.caltech.edu
808f3c9b4270aa88ba057ffff60dbf1a55d19ad3
c3f6c2f9a2e35ede54f48979770c8b42fd390089
/submodules/python-stats/cross_correlation_algs.py
6fe7d4712a50bef4b3796fe47e0518cddae4e868
[]
no_license
VideoMem/CRT_filter
4469fa34dc19e1fa096bdef609629759cc8ed11a
ebe81f50bc2402f1a17cac405a8e8c6984483d07
refs/heads/master
2023-01-01T22:14:06.734071
2020-10-27T18:52:54
2020-10-27T18:52:54
247,828,511
2
0
null
null
null
null
UTF-8
Python
false
false
9,321
py
from scipy.io import wavfile as wav from scipy.signal import butter, filtfilt, resample import pandas as pd import numpy as np #matplotlib inline import matplotlib.pyplot as plt #import seaborn as sns import scipy.stats as stats def log3_2( data ): return np.log(data) / np.log ( 1.5 ) def log_compress ( data ): data_max = np.max(np.abs(data)) data_norm = data / (data_max * 1.2) return log3_2( ( data_norm + 2 ) / 2) def loop_compress( data, level ): loop = data for i in range(level): loop = log_compress( loop ) return loop def downsample(data, srate, newrate): newshape = round(data.size * newrate / srate) if srate != newrate: return resample(data, newshape) else: return data def rms(data): audiodata = data.astype(np.float64) rms = np.sqrt(audiodata**2) return rms.reshape(data.shape) def mono_mix(data): audiodata = data.astype(np.float64) return audiodata.sum(axis=1) / 0xFFFF def butter_bandpass(lowcut, highcut, fs, order=5): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype='band') return b, a def butter_bandpass_filter(data, lowcut, highcut, fs, order=5): b, a = butter_bandpass(lowcut, highcut, fs, order=order) y = filtfilt(b, a, data) return y def load_wave( filename ): rate, samples = wav.read( filename ) print(f"Sample Rate: {rate}") channels = samples.shape[1] print(f"Number of channels = {channels}") length = samples.shape[0] / rate print(f"length = {length}s") if channels > 1: mono = mono_mix(samples) else: mono = samples return rate, mono def hash_rms( data ): rmsv = rms(data) rmslp = butter_bandpass_filter( rmsv, lowcut=lowest, highcut=mid_lo, fs=rate, order=2) return log_compress(rmslp) def pandas_pearson_r( df ): overall_pearson_r = df.corr().iloc[0,1] print(f"Pandas computed Pearson r: {overall_pearson_r}") return overall_pearson_r def pearson( df ): overall_pearson_r = pandas_pearson_r(df) r, p = stats.pearsonr( df.dropna()['original'], df.dropna()['transform'] ) print(f"Scipy computed Pearson r: {r} and p-value: {p}") f,ax=plt.subplots(figsize=(14,3)) df.rolling(window=30,center=True).median().plot(ax=ax) ax.set(xlabel='Sample',ylabel='Correlation',title=f"Overall Pearson r = {np.round(overall_pearson_r,2)}") #plt.show() def threshold_sync( data, level ): i = 0 for sample in data: if np.abs( sample ) > level: return i i+=1 def crosscorr(datax, datay, lag=0, wrap=False): """ Lag-N cross correlation. Shifted data filled with NaNs Parameters ---------- lag : int, default 0 datax, datay : pandas.Series objects of equal length Returns ---------- crosscorr : float """ if wrap: shiftedy = datay.shift(lag) shiftedy.iloc[:lag] = datay.iloc[-lag:].values return datax.corr(shiftedy) else: return datax.corr(datay.shift(lag)) def slice_part( data, start, end, margin ): if start > margin: if data.size - end > margin: return data[start - margin: end + margin ] else: return data[start - margin: end ] else: if data.size - end > margin: return data[start: end + margin ] else: return data[start: end ] def crosscorr_offset( d1, d2, downrate, seconds ): rs = [ crosscorr( d1 , d2, lag ) for lag in range( -int(seconds*downrate), int(seconds*downrate+1) ) ] return rs, np.ceil( len(rs) / 2 ) - np.argmax(rs) def crosscorr_plot( rs, offset ): f , ax = plt.subplots( figsize=( 14, 3 ) ) ax.plot(rs) ax.axvline(np.ceil(len(rs)/2),color='k',linestyle='--',label='Center') ax.axvline(np.argmax(rs),color='r',linestyle='--',label='Peak synchrony') ax.set(title=f'Offset = {offset} frames\nS1 leads <> S2 leads',ylim=[.1,.31],xlim=[0,301], xlabel='Offset',ylabel='Pearson r') ax.set_xticks([0, 50, 100, 151, 201, 251, 301]) ax.set_xticklabels([-150, -100, -50, 0, 50, 100, 150]); plt.legend() def to_dataframe( d0, d1, org_ini, org_end, cpy_ini, cpy_end, rate, downrate ): original = downsample( slice_part( d0, org_ini, org_end, 1024 ), rate, downrate) transform = downsample( slice_part( d1, cpy_ini, cpy_end, 1024 ), rate, downrate) p_original = original[:transform.size] df = pd.DataFrame({ 'original':p_original, 'transform':transform }) return df def pearson_slicer( df, start, step ): pearson_r = 1 while np.abs(pearson_r) > 0.05: slice = df[ start: start + step ] pearson_r = pandas_pearson_r( slice ) start += step return int( start - step ), pearson_r def pearson_filter( df ): bits = int(np.log(df.size) / np.log( 2 )) print( f'bits {bits}') newstart = 0 for i in range(1, bits): step = int( df.size / 2**i ) if newstart - step > 0: start = newstart - step else: start = newstart print( f'start {start}, step {step}' ) newstart, pearson_r = pearson_slicer( df, start, step ) if np.abs(pearson_r) < 0.05: break return int( newstart ) def gain_range( original, transform, start, end, divisor ): error_f = [] for gain in range( start, end ): error_f.append( np.mean( rms( original - transform * gain / divisor ) ) ) return error_f def gain_min( error, start, end ): min_error = np.min( error ) id = 0 for gain in range( start, end ): if error[id] == min_error: return gain id+=1 return None def autogain( original, transform ): error_f = gain_range( original, transform, 2, 18, 10 ) tens = gain_min( error_f, 2, 18 ) print( f'10: min error at gain:{ tens }') error_f = gain_range( original, transform, (tens - 1) * 10, (tens + 1) * 10, 100 ) hundreds = gain_min( error_f, (tens - 1) * 10, (tens + 1) * 10 ) print( f'100: min error at gain:{ hundreds }') error_f = gain_range( original, transform, (hundreds - 1) * 10, (hundreds + 1) * 10, 1000 ) thousands = gain_min( error_f, (hundreds - 1) * 10, (hundreds + 1) * 10 ) print( f'1000: min error at gain:{ thousands }') return thousands / 1000 rate, mono = load_wave( 'sample00.wav' ) none, copy = load_wave( 'correlated.wav' ) lowest= 5 mid_lo = 80 mid_hi = 3000 highest = rate /2 -1 lowband = butter_bandpass_filter( mono, lowcut=lowest, highcut=mid_lo, fs=rate, order=2) lowbcpy = butter_bandpass_filter( copy, lowcut=lowest, highcut=mid_lo, fs=rate, order=2) #midband = butter_bandpass_filter( mono, lowcut=mid_lo, highcut=mid_hi, fs=rate, order=3) #higband = butter_bandpass_filter( mono, lowcut=mid_hi, highcut=highest, fs=rate, order=2) rmslog = hash_rms( lowband ) rmscpy = hash_rms( lowbcpy ) reversed_rmslog = rmslog[::-1] reversed_rmscpy = rmslog[::-1] wav.write( "rmslo.wav", rate, rmslog ) wav.write( "rmscp.wav", rate, rmscpy ) #thresold sync focus th_org_ini = threshold_sync( rmslog, 0.01 ) th_cpy_ini = threshold_sync( rmscpy, 0.01 ) th_org_end = rmslog.size - threshold_sync( reversed_rmslog, 0.01 ) th_cpy_end = rmscpy.size - threshold_sync( reversed_rmscpy, 0.01 ) if th_org_end - th_org_ini < th_cpy_end - th_cpy_ini: copy_len = th_org_end - th_org_ini th_cpy_end = th_cpy_ini + copy_len print( f'original ini: {th_org_ini} ~ {th_org_end} end' ) print( f'transform ini: {th_cpy_ini} ~ {th_cpy_end} end' ) downrate = round( mid_lo * 2.2 ) df = to_dataframe( rmslog, rmscpy, th_org_ini, th_org_end, th_cpy_ini, th_cpy_end, rate, downrate ) pearson( df ) seconds = 1 rs, offset = crosscorr_offset( df['original'], df['transform'], downrate, seconds ) crosscorr_plot( rs, offset ) print( f'offset: {offset}' ) ##offset error of threshold sync done # sync correction th_org_ini -= int( offset * rate / downrate ) dmx = to_dataframe( rmslog, rmscpy, th_org_ini, th_org_end, th_cpy_ini, th_cpy_end, rate, downrate ) pearson( dmx ) drs, doffset = crosscorr_offset( dmx['original'], dmx['transform'], downrate, seconds ) crosscorr_plot( drs, doffset ) print( f'offset after: {doffset}' ) newending = pearson_filter( dmx ) print( f'original ending: {dmx.size}, new ending: {newending}' ) total_len = int(newending * rate / downrate) - th_cpy_ini th_cpy_end = th_cpy_ini + total_len th_org_end = th_org_ini + total_len newsynced = copy[th_cpy_ini: th_cpy_end ] orgsynced = mono[th_org_ini: th_org_end ] dfs = to_dataframe( orgsynced, newsynced, 0, seconds * rate, 0, seconds * rate, rate, rate ) rss, hi_offset = crosscorr_offset( dfs['original'], dfs['transform'], rate, seconds / 2 ) #crosscorr_plot( rs, hi_offset ) print( f'hi offset: {hi_offset}' ) th_org_ini -= int( hi_offset ) -1 th_org_end -= int( hi_offset ) -1 orgsynced = mono[th_org_ini: th_org_end ] c_gain = autogain( orgsynced[:rate*seconds], newsynced[:rate*seconds] ) print( f'min error at gain: {c_gain }') print( f'len {total_len} newsync: {newsynced.size} orgsync: {orgsynced.size}' ) synced = np.transpose ( np.asarray ( (orgsynced, newsynced * c_gain) ) ) print( f'synced shape: {synced.shape}' ) wav.write( "resynced.wav", rate, synced ) error = orgsynced - newsynced * c_gain wav.write( "error.wav", rate, error ) #plt.show()
[ "sebastian.wilwerth@gmail.com" ]
sebastian.wilwerth@gmail.com
10402105f08426d7754983b383bf147cf2c0611e
8c415b773604c2ac17e18c7ba116d720d9403fef
/vision/vision-iface.gypi
12db2b67726e0e919d30da307fdcc395e2cc7ce7
[]
no_license
kiik/libtuum
2df4668ac01b4c37cadac3ca391b1359967eb0f0
844566b8715dba99c3d75c702491c8b1834573a3
refs/heads/master
2020-05-23T08:08:57.048312
2016-12-01T12:42:32
2016-12-01T12:42:32
69,343,079
0
0
null
null
null
null
UTF-8
Python
false
false
39
gypi
{ 'include_dirs': [ 'inc' ], }
[ "kiik.meelik@gmail.com" ]
kiik.meelik@gmail.com
339f9df0dd568b0dac0574b4653c263cc9d9af76
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/come_old_problem_to_point/ask_thing/see_day/seem_problem/time/find_few_week_over_point.py
b79ee7a454f58433209a2c9c27edba7f4f38079b
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
#! /usr/bin/env python def government(str_arg): use_public_day(str_arg) print('small_man_and_long_world') def use_public_day(str_arg): print(str_arg) if __name__ == '__main__': government('ask_day_from_year')
[ "jingkaitang@gmail.com" ]
jingkaitang@gmail.com
cfd998ce54da9c295abf2acbdda401a867013882
bef5d82150ea8db3297e92fdd6e276d82645e2fe
/code/code1a.py
d2451c659f1b086872e6af93cd704cf1c5ebf748
[]
no_license
dcruzp/proyectoProb
20892eb76dc1e06c36e4f99e0498c8f53fd57028
8ef7e71de064ea35c605a63a4d1af0d2e86e3ef0
refs/heads/master
2022-12-27T19:38:10.030621
2020-10-17T10:46:28
2020-10-17T10:46:28
304,534,795
0
0
null
null
null
null
UTF-8
Python
false
false
739
py
import numpy as np import random as rdm def exponencial (l): U = rdm.random() return -1 / l * np.log(U) def gammasimulation (l , n ): # lambda , numero de llamadas total = 0 for i in range (n): total += exponencial(l) return total def media (l,n,s): #lambda , numero de llamadas , cant de simulaciones promedio = 0 ; for i in range (s): promedio += gammasimulation(l,n) return promedio / s s = 1000 # numero de simulaciones table = [[1/2 , 30 , s ], [1/4 , 20 , s ], [1/6 , 10 , s ], [1/8 , 36 , s ],] for x in table : print ( '(landa= ' + str(x[0]) + ' , numero de llamadas ' + str(x[1]) + ' media -> ' + str(media(x[0],x[1],x[2])) )
[ "danieldelacruzprieto@gmail.com" ]
danieldelacruzprieto@gmail.com
2725dddf88956fdbeb3e30bc7d9b47f2079f6b71
1b622808bd714e3c770c811bfa6aed0b36693928
/18.py
33d89ee4745bf39087f28df537e20e5094b298ac
[]
no_license
dinob0t/project_euler
a4d9a28b2994b64ea6ad064b05553f13ad38fc6d
b0fed278ae2bfc1bfe44043f2b02482ebc210a56
refs/heads/master
2020-09-12T14:07:16.137051
2014-09-01T16:16:49
2014-09-01T16:16:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
def read_file_return_list(name): list = [] with open(name,'r') as f: for line in f: line = line.split('\n') list.append(line[0]) if 'str' in line: break return list def triangle_to_dict(triangle): tri_dict = {} row_count = 0 for i in triangle: tri_dict.update({row_count: i.split(' ')}) row_count = row_count + 1 return tri_dict def find_max_path_sum(tri_dict): end = max(tri_dict.keys()) + 1 for row in range(end-2, -1, -1): for index in range(len(tri_dict[row])): (tri_dict[row])[index] = int((tri_dict[row])[index]) + max(int((tri_dict[row+1])[index+1]),int((tri_dict[row+1])[index])) return tri_dict[0] if __name__ == "__main__": triangle = read_file_return_list('18_input.dat') tri_dict = triangle_to_dict(triangle) print find_max_path_sum(tri_dict)
[ "dean.hillan@gmail.com" ]
dean.hillan@gmail.com
5dd9d036390973bb4274c0546b4809ac2988db87
18b4252fc653583528d3171ab04281801341836b
/projects/simparc/mbase/IP.py
06e27221e01b0c433434de2b48c291d2dddcb57d
[ "Apache-2.0" ]
permissive
sumannam/DEVS-Python
dd45a7e6b17fd904a20691effa78711d2aa05ca4
919ddc77f15cf61af7b2351a681b6de703d11c08
refs/heads/master
2023-08-31T23:21:16.410193
2023-08-19T11:37:30
2023-08-19T11:37:30
216,816,867
1
1
Apache-2.0
2023-08-19T11:37:31
2019-10-22T13:10:14
Python
UTF-8
Python
false
false
2,184
py
from src.ATOMIC_MODELS import * class IP(ATOMIC_MODELS): def __init__(self): ATOMIC_MODELS.__init__(self) self.setName(self.__class__.__name__) self.addInPorts("in") self.addInPorts("urgent") self.addOutPorts("out") self.addOutPorts("message") self.state["sigma"]=math.inf self.state["phase"]="passive" self.addState("job-id", "") self.addState("temp", "") self.addState("processing_time", 10) self.addState("time_remaining", 0) self.addState("interrupthandling_time", 0.1) def externalTransitionFunc(self, e, x): if x.port == "in": if self.state["phase"] == "passive": self.state["job-id"] = x.value self.state["time_remaining"] = self.state["processing_time"] self.holdIn("busy", self.state["processing_time"]) elif self.state["phase"] == "busy": self.state["time_remaining"] = self.state["time_remaining"] - e self.state["temp"] = x.value self.holdIn("interrupted", self.state["interrupthandling_time"]) elif self.state["phase"] == "interrupted": self.Continue(e) elif x.port == "urgent": if self.state["phase"] == "passive": self.state["job-id"] = x.value self.state["time_remaining"] = self.state["processing_time"] self.holdIn("busy", self.state["processing_time"]) else: self.Continue(e) def internalTransitionFunc(self): if self.state["phase"] == "busy": self.passviate() elif self.state["phase"] == "interrupted": self.holdIn("busy", self.state["time_remaining"]) else: self.passviate() def outputFunc(self): content = CONTENT() if self.state["phase"] == "busy": content.setContent("out", self.state["job-id"]) elif self.state["phase"] == "interrupted": id = "interrupted by " + self.state["temp"] content.setContent("message", id) return content
[ "sumannam@gmail.com" ]
sumannam@gmail.com
6083b94a569ab6fb475e6053152cd4ad9492c856
44437fe0d8394d8ece0c0fe1b2b1e3b4f1fd0e04
/teste.py
3caa030da550198abd4f4d8c86e2b6c43032522c
[ "MIT" ]
permissive
daherk2/telikong
d4893ad3b907e54bb69e55e48dbba0b245604ecd
fd4ae90df6e6d32c5205c5dc5c17fa9eccc7fe7b
refs/heads/master
2021-01-20T13:12:19.899970
2017-06-12T20:36:17
2017-06-12T20:36:17
90,463,299
1
0
null
null
null
null
UTF-8
Python
false
false
254
py
import telikong_cli as tcli ###################### Exemplo ######################## try: a = 3/0 print a except Exception as e: try: print tcli.chck_stackoverflow(e) except Exception as e: print tcli.chck_stackoverflow(e)
[ "fabio.rosindo.daher.de.barros@gmail.com" ]
fabio.rosindo.daher.de.barros@gmail.com
d2c4eb944aeb7b5201cd68a2fb149375fbaeff34
1bcdefe3798ab2d04be323b5834f0df987c5a1ad
/assignment_1_5.py
8c394ec090d76ac457817e3f20bd3ad6ecf023b5
[]
no_license
kristjanleifur4/kristjan
7229894a9d781c408db5289e6aca403d7784e9f0
167220fc00e7aba72fcbea7c0cf14d6ed3ed34ad
refs/heads/master
2020-07-20T00:11:02.504445
2019-09-17T13:23:22
2019-09-17T13:23:22
206,537,008
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
x_str = input("Input x: ") x_int = int(x_str) first_three = int(x_int / 1000) last_two = (x_int % 100) middle_two = (x_int % 10000) middle_two = (middle_two // 100) print("original input:", x_str) print("first_three:", first_three) print("last_two:", last_two) print("middle_two:", middle_two)
[ "kristjanls18@ru.is" ]
kristjanls18@ru.is
fcb878a2819bc83a0ed79bdb5b844916fa3fbdbe
794e14945c0521b4eab03e8b9a3f93b8fa14e021
/src/compas_rhino/utilities/constructors.py
e71275fa0d0e525a4bf92e58e2154310209ae1c9
[ "MIT" ]
permissive
KEERTHANAUDAY/compas
5e8ada865bc87ee48ba77b3f6fd03661a9b9c17d
4d1101cf302f95a4472a01a1265cc64eaec6aa4a
refs/heads/master
2021-07-11T16:26:19.452926
2020-09-10T14:27:11
2020-09-10T14:27:11
294,453,684
0
0
MIT
2020-09-10T15:47:31
2020-09-10T15:47:30
null
UTF-8
Python
false
false
2,494
py
from __future__ import print_function from __future__ import absolute_import from __future__ import division from compas.utilities import geometric_key import Rhino import scriptcontext as sc __all__ = ['volmesh_from_polysurfaces'] def volmesh_from_polysurfaces(cls, guids): """Construct a volumetric mesh from given polysurfaces. Essentially, this function does the following: * find each of the polysurfaces and check if they have a boundary representation (b-rep) * convert to b-rep and extract the edge loops * make a face of each loop by referring to vertices using their geometric keys * add a cell per brep * and add the faces of a brep to the cell * create a volmesh from the found vertices and cells Parameters ---------- cls : :class:`compas.datastructures.VolMesh` The class of volmesh. guids : sequence of str or System.Guid The *globally unique identifiers* of the polysurfaces. Returns ------- :class:`compas.datastructures.Volmesh` The volumetric mesh object. """ gkey_xyz = {} cells = [] for guid in guids: cell = [] obj = sc.doc.Objects.Find(guid) if not obj.Geometry.HasBrepForm: continue brep = Rhino.Geometry.Brep.TryConvertBrep(obj.Geometry) for loop in brep.Loops: curve = loop.To3dCurve() segments = curve.Explode() face = [] sp = segments[0].PointAtStart ep = segments[0].PointAtEnd sp_gkey = geometric_key(sp) ep_gkey = geometric_key(ep) gkey_xyz[sp_gkey] = sp gkey_xyz[ep_gkey] = ep face.append(sp_gkey) face.append(ep_gkey) for segment in segments[1:-1]: ep = segment.PointAtEnd ep_gkey = geometric_key(ep) face.append(ep_gkey) gkey_xyz[ep_gkey] = ep cell.append(face) cells.append(cell) gkey_index = dict((gkey, index) for index, gkey in enumerate(gkey_xyz)) vertices = [list(xyz) for gkey, xyz in gkey_xyz.items()] cells = [[[gkey_index[gkey] for gkey in face] for face in cell] for cell in cells] return cls.from_vertices_and_cells(vertices, cells) # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": pass
[ "vanmelet@ethz.ch" ]
vanmelet@ethz.ch
98eb8e7dc1fb21ee50b9002c5f691820120ba470
19aa291198622834cc0fc04610d419189a098f24
/stock/jupyterAlgo/AlgoTest/showPrice_Vol.py
3326dfefc8dfe1e14589419be6d85e88bb4a0837
[]
no_license
johnsonhongyi/pyQuant
3127cc30a7fa07a9ca58a1a067c8ee1d289c29a3
a1873ff29383c4f3a1cfb7206c2cb72ab0da8b3b
refs/heads/master
2023-01-23T15:58:59.332695
2023-01-18T13:05:13
2023-01-18T13:05:13
47,158,933
6
4
null
null
null
null
UTF-8
Python
false
false
4,780
py
import sys,logging stdout=sys.stdout sys.path.append('../../') import JSONData.tdx_data_Day as tdd import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.finance import candlestick from matplotlib.finance import volume_overlay3 from matplotlib.dates import num2date from matplotlib.dates import date2num import matplotlib.mlab as mlab import datetime stock_code = '000002' start = None end= None dl=60 df = tdd.get_tdx_append_now_df_api(code=stock_code, start=start, end=end, dl=dl).sort_index(ascending=True) # print df.close.T fig = plt.figure() # ax = fig.add_subplot(211, sharex=None, sharey=None) ax = fig.add_subplot(211) ax.plot(df.close) ax.set_xticklabels(df.index) plt.xticks(rotation=30, horizontalalignment='center') # plt.subplots_adjust(left=0.05, bottom=0.08, right=0.95, top=0.95, wspace=0.15, hspace=0.25) pad = 0.25 yl = ax.get_ylim() ax.set_ylim(yl[0]-(yl[1]-yl[0])*pad,yl[1]) # ax2 = ax.twinx() ax2 = fig.add_subplot(211,sharex=ax) # ax2.set_position(matplotlib.transforms.Bbox([[0.125,0.1],[0.9,0.32]])) # ax2.bar([x for x in range(len(df.index))],df.vol) volume = np.asarray(df.vol) pos = df['open']-df['close']<0 neg = df['open']-df['close']>=0 idx = df.reset_index().index ax2.bar(idx[pos],volume[pos],color='red',width=1,align='center') ax2.bar(idx[neg],volume[neg],color='green',width=1,align='center') # plt.subplots_adjust(left=0.05, bottom=0.08, right=0.95, top=0.95, wspace=0.15, hspace=0.25) # ax2 = ax.twinx() # width = 0.4 # df.vol.plot(kind='bar', color='red', ax=ax, width=width, position=1, sharex=False, sharey=False) # df.vol.plot(kind='bar', color='red', ax=ax, width=width, position=1) # df.close.plot(kind='bar', color='blue', ax=ax2, width=width, position=0, sharex=False, sharey=False) ax_2 = fig.add_subplot(212, sharex=ax, sharey=None) ax_22 = ax_2.twinx() ax_2.plot([1, 3, 5, 7, 9]) ax_22.plot([1.0/x for x in [1, 3, 5, 7, 9]]) ax_2.set_xlabel("AX2 X Lablel") ax_2.set_ylabel("AX2 Y Lablel") ax_22.set_ylabel("AX2_Twin Y Lablel") # ax_2 = fig.add_subplot(223, sharex=None, sharey=None) # ax_22 = ax_2.twinx() # ax_2.plot([100, 300, 500, 700, 900]) # ax_22.plot([x*x for x in [100, 300, 500, 700, 900]]) # ax_2.set_xlabel("AX3 X Lablel") # ax_2.set_ylabel("AX3 Y Lablel") # ax_22.set_ylabel("AX3_Twin Y Lablel") # ax_2 = fig.add_subplot(224, sharex=None, sharey=None) # ax_22 = ax_2.twinx() # ax_2.set_xlabel("AX4 X Lablel") # ax_2.set_ylabel("AX4 Y Lablel") # ax_22.set_ylabel("AX4_Twin Y Lablel") # ax.set_xlabel("Alphabets") # ax.set_ylabel('Amount') # ax2.set_ylabel('Price') plt.subplots_adjust(wspace=0.8, hspace=0.8) # plt.savefig("t1.png", dpi=300) plt.show() ''' show price and vol datafile = 'data.csv' r = mlab.csv2rec(datafile, delimiter=';') # the dates in my example file-set are very sparse (and annoying) change the dates to be sequential for i in range(len(r)-1): r['date'][i+1] = r['date'][i] + datetime.timedelta(days=1) stock_code = '000002' start = None end= None dl=60 df = tdd.get_tdx_append_now_df_api(code=stock_code, start=start, end=end, dl=dl).sort_index(ascending=True) # r = r.reset_index() date = df.index.to_datetime().to_pydatetime() import pdb;pdb.set_trace(); candlesticks = zip(date2num(date),df['open'],df['high'],df['low'],df['close'],df['vol']) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.set_ylabel('Quote ($)', size=20) candlestick(ax, candlesticks,width=1,colorup='g', colordown='r') # shift y-limits of the candlestick plot so that there is space at the bottom for the volume bar chart pad = 0.25 yl = ax.get_ylim() ax.set_ylim(yl[0]-(yl[1]-yl[0])*pad,yl[1]) # create the second axis for the volume bar-plot ax2 = ax.twinx() # set the position of ax2 so that it is short (y2=0.32) but otherwise the same size as ax ax2.set_position(matplotlib.transforms.Bbox([[0.125,0.1],[0.9,0.32]])) # get data from candlesticks for a bar plot dates = [x[0] for x in candlesticks] dates = np.asarray(dates) volume = [x[5] for x in candlesticks] volume = np.asarray(volume) # make bar plots and color differently depending on up/down for the day pos = df['open']-df['close']<0 neg = df['open']-df['close']>0 ax2.bar(dates[pos],volume[pos],color='green',width=1,align='center') ax2.bar(dates[neg],volume[neg],color='red',width=1,align='center') #scale the x-axis tight ax2.set_xlim(min(dates),max(dates)) # the y-ticks for the bar were too dense, keep only every third one yticks = ax2.get_yticks() ax2.set_yticks(yticks[::3]) ax2.yaxis.set_label_position("right") ax2.set_ylabel('Volume', size=20) # format the x-ticks with a human-readable date. xt = ax.get_xticks() new_xticks = [datetime.date.isoformat(num2date(d)) for d in xt] ax.set_xticklabels(new_xticks,rotation=45, horizontalalignment='right') # plt.ion() plt.show() '''
[ "5208115@qq.com" ]
5208115@qq.com
b5b5bcafe86af53a80ef5011154eda8a1f569e97
eb229f1109dd58108b8c9fde432933c713e88ede
/touchstone/utilities/__init__.py
331d91870f900269c0e5fb2474698194ebd49a8c
[ "MIT" ]
permissive
LechuzaAI/touchstone
21c07c0f81e1b7152562758c7585532ab3e255ad
6893b199f14f34986b475c79b4a41934fcf8e7a5
refs/heads/main
2023-01-11T03:37:56.350552
2020-11-13T18:49:32
2020-11-13T18:49:32
302,409,251
0
0
null
null
null
null
UTF-8
Python
false
false
68
py
from touchstone.utilities.gae import generalized_advantage_estimate
[ "drmiguelalonsojr@gmail.com" ]
drmiguelalonsojr@gmail.com
91892ec892c4c5f1f18e75e2985112b83be033ca
c02a742d17ee15b72e010bcd8f3b6f86ed8ebfbf
/setup.py
224a90a601a3ad600300359b62349b8bcff280e8
[]
no_license
jky88/weixinsougou
439296aacd8b5ef4e2e4566ba7eeceef0ee4d92a
0427cd3f5aa04be356cda5d87146d88ca907e952
refs/heads/master
2020-04-09T04:09:58.817032
2017-11-13T14:12:49
2017-11-13T14:12:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
256
py
# Automatically created by: shub deploy from setuptools import setup, find_packages setup( name = 'project', version = '1.0', packages = find_packages(), entry_points = {'scrapy': ['settings = weixinsougou.settings']}, )
[ "windows.lxy" ]
windows.lxy
40bdf31a657ea2bf2f78e3add7ecf6e3c4c36e96
5285d87989438f8635dd41bea94b298a384bc2f1
/airline0/list.py
742a5d8dd3b2d4549746375d42ada276ab9fcaa2
[]
no_license
saedyousef/flask-apps
a65d17a3d9b3ed07f87ce536df6f27b364a231fc
ba7c50dd43dcf190cefe7208e2b61b49a8ea26aa
refs/heads/master
2022-04-14T03:14:59.729383
2020-04-27T23:59:53
2020-04-27T23:59:53
259,441,497
11
1
null
null
null
null
UTF-8
Python
false
false
469
py
import os from flask import Flask, render_template, request from models import * app = Flask(__name__) app.config["SQLALCHEMY_DATABASE_URI"] = os.getenv("DATABASE_URL") app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False db.init_app(app) def main(): flights = Flight.query.all() for flight in flights: print(f"{flight.origin} to {flight.destination} lasting {flight.duration}") if __name__ == "__main__": with app.app_context(): main()
[ "saed.alzaben@gmail.com" ]
saed.alzaben@gmail.com
8afca40a8cd8620496c43177263ba9b063b969f0
6a81e51745fc9598d24fb51e8a3d817c707435d7
/EDU 3.0 TUTORIAIS 1 2020/Edu 3.0_TAC-master/educacao_3_0/wsgi.py
a330243d7f653c076392fa4b526fc446e4c172fd
[]
no_license
bmedeirosneto/TacProgWeb
fbd7ecb9191ef2703580edc9300d15ee71d37058
1daeda3b97bb901bd4f69d649c1d735c3509d9de
refs/heads/master
2021-12-03T21:19:58.212572
2021-08-25T12:35:36
2021-08-25T12:35:36
226,856,253
0
13
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for educacao_3_0 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'educacao_3_0.settings') application = get_wsgi_application()
[ "medeiros@filosofiacienciaarte.org" ]
medeiros@filosofiacienciaarte.org
a30686b6eabb2cac56f288acadb5c196580ebf70
e6947a8ecc14ddb3c078321958856f888953f4fa
/my_project.py
d96f10703e7f2af3f045b4ee516f87f077c77cb7
[]
no_license
raja073/SimpleMovieDB
a5dd4b924f1ecb8d04a61c9884e25e6a51af5c3c
4d28dba684ea0ebf6ad4b78af4c2bdd13b072406
refs/heads/master
2021-09-05T13:59:35.372062
2018-01-28T14:06:57
2018-01-28T14:06:57
118,252,070
0
0
null
null
null
null
UTF-8
Python
false
false
3,032
py
from flask import Flask, render_template, request, redirect, url_for app = Flask(__name__) ### Instance of the Flask with name of the running application as an argument ################################################################################################# # Adding database to Flask application from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from database_setup import Base, Movie, Actor engine = create_engine('sqlite:///movieactors.db') Base.metadata.bind = engine DBSession = sessionmaker(bind = engine) session = DBSession() ################################################################################################# @app.route('/') @app.route('/movies') def movieList(): movies = session.query(Movie).all() return render_template('full_movie_list.html', movies = movies) @app.route('/movie/<int:movie_id>/') def movieActors(movie_id): movie = session.query(Movie).filter_by(id = movie_id).one() actors = session.query(Actor).filter_by(movie_id = movie.id) return render_template('menu.html', movie = movie, actors = actors) @app.route('/movie/new/', methods=['GET','POST']) def newMovie(): if request.method == 'POST': newMov = Movie(name=request.form['name']) session.add(newMov) session.commit() return redirect(url_for('movieList')) else: return render_template('new_movie.html') # Task 1: Create route for newActor function here @app.route('/movie/<int:movie_id>/new/', methods=['GET','POST']) def newActor(movie_id): if request.method == 'POST': newAct = Actor(name=request.form['name'], gender=request.form['gender'], \ age=request.form['age'], biography=request.form['bio'], movie_id=movie_id) session.add(newAct) session.commit() return redirect(url_for('movieActors', movie_id=movie_id)) else: return render_template('new_actor.html', movie_id=movie_id) # Task 2: Create route for editActor function here @app.route('/movie/<int:movie_id>/<int:actor_id>/edit/', methods=['GET','POST']) def editActor(movie_id, actor_id): editedActor = session.query(Actor).filter_by(id=actor_id).one() if request.method == 'POST': if request.form['name']: editedActor.name = request.form['name'] session.add(editedActor) session.commit() return redirect(url_for('movieActors', movie_id=movie_id)) else: return render_template('edit_actors.html', movie_id=movie_id, actor_id=actor_id, i=editedActor) # Task 3: Create route for deleteActor function here @app.route('/movie/<int:movie_id>/<int:actor_id>/delete/', methods=['GET','POST']) def deleteActor(movie_id, actor_id): actorToDelete = session.query(Actor).filter_by(id=actor_id).one() if request.method == 'POST': session.delete(actorToDelete) session.commit() return redirect(url_for('movieActors', movie_id=movie_id)) else: return render_template('delete_actor.html', i=actorToDelete) if __name__ == '__main__': app.debug = True app.run(host = '0.0.0.0', port = 5000)
[ "vagrant@vagrant.vm" ]
vagrant@vagrant.vm
092c2800ed58c6b45479c1f65d4df860935259da
6c7b36f69ad7a55e2ad3262f8a1082e9f1dd0d58
/src/opal/core/log.py
bc966c8dbd1566523d835f54bbaf2b8fae4b1ec0
[]
no_license
kiendc/opal
d338805f5d38fc67441813cd7507757291db2790
99a16ff4f6da396d9a02f5f4cfe0a24c1fb7051d
refs/heads/master
2020-05-20T06:28:53.314038
2012-10-24T14:18:35
2012-10-24T14:18:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,516
py
import re import logging class HandlerDescription: def __init__(self, handler): self.file_name = handler.baseFilename self.level = handler.level def generate_handler(self): handler = logging.FileHandler(filename=self.file_name) handler.set_level(self.level) return handler class OPALLogger: ''' We specialize logging facility of Python by this class to support the ability of pickling an logger with handlers that are the streamming objects ''' def __init__(self, name=None, handlers=[]): self.name = name self.initialize() # Initialize an empty list of descriptions # of the user-required handlers self.handler_descriptions = [] # Get the description of the user-required handlers # and add it to logger for hdlr in handlers: self.handler_descriptions.append(HandlerDescription(hdlr)) self.logger.addHandler(hdlr) return def initialize(self): self.logger = logging.getLogger(self.name) self.logger.setLevel(logging.DEBUG) # Set level to highest level so # that actual level depends on the # handler level # A default handler is created for logging to file with INFO level handler = logging.FileHandler(filename='/var/tmp/opal.log') handler.setFormatter(logging.Formatter('%(asctime)s - ' + '%(name)s: ' + '%(message)s')) handler.setLevel(logging.INFO) self.logger.addHandler(handler) return def __getstate__(self): # To serialize a OPALLogger object, we save only # the name and the descriptions of the user-required handlers dict = {} dict['handler_descriptions'] = self.handler_descriptions dict['name'] = self.name return dict def __setstate__(self, dict): # The expected dict is two-element dictionary. # The first element of dict has key is 'handler_descriptions' # and has value is a list of description of handlers. The # second one is the name of logger. self.name = dict['name'] # Initialize the logger with the specified name self.initialize() # Create the handler descriptions for unpickled object # and create handlers for the logger self.handler_descriptions = dict['handler_descriptions'] for desc in self.handler_descriptions: handler = desc.generate_handler() self.logger.addHandler(handler) return def log(self, message, level=logging.INFO): self.logger.log(level, message + '\n') return class Debugger: def __init__(self, fileName='/var/tmp/opal-debug.log'): self.logger = logging.getLogger('DEBUG') self.logger.setLevel(logging.DEBUG) handler = logging.FileHandler(filename=fileName) handler.setLevel(logging.DEBUG) handler.setFormatter(logging.Formatter('%(asctime)s - ' + '%(name)s: ' + '%(message)s')) self.logger.addHandler(handler) return def log(self, message, level=logging.DEBUG): self.logger.log(level, message) return debugger = Debugger()
[ "kiendc@Cong-Kien-Dangs-Mac-mini.local" ]
kiendc@Cong-Kien-Dangs-Mac-mini.local
874faf954ae174bedcfe8ce4f42f219ac04bd355
14449108de18a8e956830cd7d5107bb38de41c5d
/workshopvenues/venues/migrations/0009_auto__del_field_venue_address.py
45329577f0f1c85666401d3a4ba848f7477f2436
[ "BSD-3-Clause" ]
permissive
andreagrandi/workshopvenues
736e53ccb6ff0b15503e92a5246b945f615d2ff8
21978de36f443296788727d709f7f42676b24484
refs/heads/master
2021-05-16T03:00:23.879925
2014-03-18T15:10:00
2014-03-18T15:10:00
8,843,235
1
3
null
2015-10-26T11:11:20
2013-03-17T23:19:33
Python
UTF-8
Python
false
false
3,698
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting field 'Venue.address' db.delete_column(u'venues_venue', 'address_id') def backwards(self, orm): # User chose to not deal with backwards NULL issues for 'Venue.address' raise RuntimeError("Cannot reverse this migration. 'Venue.address' and its values cannot be restored.") # The following code is provided here to aid in writing a correct migration # Adding field 'Venue.address' db.add_column(u'venues_venue', 'address', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['venues.Address']), keep_default=False) models = { u'venues.address': { 'Meta': {'object_name': 'Address'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['venues.Country']", 'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'postcode': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'street': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'town': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, u'venues.country': { 'Meta': {'object_name': 'Country'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, u'venues.facility': { 'Meta': {'object_name': 'Facility'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, u'venues.image': { 'Meta': {'object_name': 'Image'}, 'filename': ('django.db.models.fields.CharField', [], {'max_length': '255'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'venue': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['venues.Venue']"}) }, u'venues.venue': { 'Meta': {'object_name': 'Venue'}, 'capacity': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'contact': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'contact_email': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'contact_twitter': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'cost': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'facilities': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['venues.Facility']", 'symmetrical': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'phone': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'style': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'twitter': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'website': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}) } } complete_apps = ['venues']
[ "a.grandi@gmail.com" ]
a.grandi@gmail.com
ff9d5d5e5194ae62f6f8a2888b5e8c36abe265af
8cb6d50076c527b4c81d21b992fc93f77263adc5
/orden/models.py
f0b736f5697c7219518a2d729725177f23df2fa5
[]
no_license
alrvivas/CrevenApp
6b9fefc4661a32cdf00ebb4a3eb869bf778f67e7
190291cfc798cbc52ba4cdbfa258ef0b983f7249
refs/heads/master
2020-06-04T20:24:03.685451
2015-02-12T17:36:01
2015-02-12T17:36:01
30,713,138
0
0
null
null
null
null
UTF-8
Python
false
false
9,473
py
from django.db import models from distutils.version import LooseVersion from django.contrib.auth.models import User from cliente.models import Cliente from producto.models import Product from orden.managers import OrderManager from util.fields import CurrencyField from jsonfield.fields import JSONField from django.db.models.aggregates import Sum from django.core.urlresolvers import reverse import django # Create your models here. class Order(models.Model): objects = OrderManager() """ A model representing an Order. An order is the "in process" counterpart of the shopping cart, which holds stuff like the shipping and billing addresses (copied from the User profile) when the Order is first created), list of items, and holds stuff like the status, shipping costs, taxes, etc... """ PROCESSING = 10 # New order, addresses and shipping/payment methods chosen (user is in the shipping backend) CONFIRMING = 20 # The order is pending confirmation (user is on the confirm view) CONFIRMED = 30 # The order was confirmed (user is in the payment backend) COMPLETED = 40 # Payment backend successfully completed SHIPPED = 50 # The order was shipped to client CANCELED = 60 # The order was canceled CANCELLED = CANCELED # DEPRECATED SPELLING PAYMENT = 30 # DEPRECATED! STATUS_CODES = ( (PROCESSING, ('Procesando')), (CONFIRMING, ('Confirmando')), (CONFIRMED, ('Confirmada')), (COMPLETED, ('Completada')), (SHIPPED, ('Enviada')), (CANCELED, ('Cancelada')), ) # If the user is null, the order was created with a session user = models.ForeignKey(User, blank=True, null=True, verbose_name=('User')) cliente = models.ForeignKey(Cliente,null=True, blank=True) status = models.IntegerField(choices=STATUS_CODES, default=PROCESSING,verbose_name=('Status')) order_subtotal = CurrencyField(verbose_name=('Orden subtotal')) order_total = CurrencyField(verbose_name=('Orden Total')) order_totalpeso = models.DecimalField(max_digits=10,decimal_places=3,null=True) shipping_address_text = models.TextField(('Direccion de Envio'), blank=True, null=True) billing_address_text = models.TextField(('Direccion de Facturacion'), blank=True, null=True) created = models.DateTimeField(auto_now_add=True,verbose_name=('Creado')) modified = models.DateTimeField(auto_now=True, verbose_name=('Updated')) cart_pk = models.PositiveIntegerField(('Cart primary key'), blank=True, null=True) class Meta(object): verbose_name = ('Orden') verbose_name_plural = ('Ordenes') def __unicode__(self): return ('Orden ID: %(id)s') % {'id': self.pk} def get_absolute_url(self): return reverse('order_detail', kwargs={'pk': self.pk}) def is_paid(self): """Has this order been integrally paid for?""" return self.amount_paid >= self.order_total is_payed = is_paid #Backward compatability, deprecated spelling def is_completed(self): return self.status == self.COMPLETED def get_status_name(self): return dict(self.STATUS_CODES)[self.status] @property def amount_paid(self): """ The amount paid is the sum of related orderpayments """ from .models import OrderPayment sum_ = OrderPayment.objects.filter(order=self).aggregate(sum=Sum('amount')) result = sum_.get('sum') if result is None: result = Decimal(0) return result amount_payed = amount_paid #Backward compatability, deprecated spelling @property def shipping_costs(self): from .models import ExtraOrderPriceField sum_ = Decimal('0.00') cost_list = ExtraOrderPriceField.objects.filter(order=self).filter( is_shipping=True) for cost in cost_list: sum_ += cost.value return sum_ @property def short_name(self): """ A short name for the order, to be displayed on the payment processor's website. Should be human-readable, as much as possible """ return "%s-%s" % (self.pk, self.order_total) def set_billing_address(self, billing_address): """ Process billing_address trying to get as_text method from address and copying. You can override this method to process address more granulary e.g. you can copy address instance and save FK to it in your order class. """ if hasattr(billing_address, 'as_text') and callable(billing_address.as_text): self.billing_address_text = billing_address.as_text() self.save() def set_shipping_address(self, shipping_address): """ Process shipping_address trying to get as_text method from address and copying. You can override this method to process address more granulary e.g. you can copy address instance and save FK to it in your order class. """ if hasattr(shipping_address, 'as_text') and callable(shipping_address.as_text): self.shipping_address_text = shipping_address.as_text() self.save() # We need some magic to support django < 1.3 that has no support # models.on_delete option f_kwargs = {} if LooseVersion(django.get_version()) >= LooseVersion('1.3'): f_kwargs['on_delete'] = models.SET_NULL class OrderItem(models.Model): """ A line Item for an order. """ order = models.ForeignKey(Order, related_name='items', verbose_name=('Orden')) product_reference = models.CharField(max_length=255, verbose_name=('Product reference')) product_name = models.CharField(max_length=255, null=True, blank=True, verbose_name=('Product name')) product = models.ForeignKey(Product, verbose_name=('Producto'), null=True, blank=True, **f_kwargs) unit_price = CurrencyField(verbose_name=('Unit price')) quantity = models.IntegerField(verbose_name=('Cantidad')) line_subtotal = CurrencyField(verbose_name=('Line subtotal')) line_total = CurrencyField(verbose_name=('Line total')) line_subtotalpeso = models.DecimalField(max_digits = 30,decimal_places = 3,null=True) line_totalpeso = models.DecimalField(max_digits = 30,decimal_places = 3,null=True) class Meta(object): verbose_name = ('Orden item') verbose_name_plural = ('Orden items') def save(self, *args, **kwargs): if not self.product_name and self.product: self.product_name = self.product.get_name() super(OrderItem, self).save(*args, **kwargs) def clear_products(sender, instance, using, **kwargs): for oi in OrderItem.objects.filter(product=instance): oi.product = None oi.save() if LooseVersion(django.get_version()) < LooseVersion('1.3'): pre_delete.connect(clear_products, sender=Product) class OrderExtraInfo(models.Model): order = models.ForeignKey(Order, related_name="extra_info",verbose_name=('Order')) text = models.TextField(verbose_name=('Extra info'), blank=True) class Meta(object): verbose_name = ('Orden informacion extra') verbose_name_plural = ('Orden informacion extra') class ExtraOrderPriceField(models.Model): """ This will make Cart-provided extra price fields persistent since we want to "snapshot" their statuses at the time when the order was made """ order = models.ForeignKey(Order, verbose_name=('Order')) label = models.CharField(max_length=255, verbose_name=('Label')) value = CurrencyField(verbose_name=('Amount')) data = JSONField(null=True, blank=True, verbose_name=('Serialized extra data')) # Does this represent shipping costs? is_shipping = models.BooleanField(default=False, editable=False, verbose_name=('Is shipping')) class Meta(object): verbose_name = ('Extra order price field') verbose_name_plural = ('Extra order price fields') class ExtraOrderItemPriceField(models.Model): """ This will make Cart-provided extra price fields persistent since we want to "snapshot" their statuses at the time when the order was made """ order_item = models.ForeignKey(OrderItem, verbose_name=('Order item')) label = models.CharField(max_length=255, verbose_name=('Label')) value = CurrencyField(verbose_name=('Amount')) data = JSONField(null=True, blank=True, verbose_name=('Serialized extra data')) class Meta(object): verbose_name = ('Extra order item price field') verbose_name_plural = ('Extra order item price fields') class OrderPayment(models.Model): """ A class to hold basic payment information. Backends should define their own more complex payment types should they need to store more informtion """ order = models.ForeignKey(Order, verbose_name=('Order')) # How much was paid with this particular transfer amount = CurrencyField(verbose_name=('Amount')) transaction_id = models.CharField(max_length=255, verbose_name=('Transaction ID'), help_text=("The transaction processor's reference")) payment_method = models.CharField(max_length=255, verbose_name=('Payment method'), help_text=("The payment backend used to process the purchase")) class Meta(object): verbose_name = ('Order payment') verbose_name_plural = ('Order payments')
[ "alr.vivas@gmail.com" ]
alr.vivas@gmail.com
c5a314056e8cf06ac9db444cce8d020213784d5d
217a76bf468ec80547f5d59ff2a560c794ad7800
/instibuddydjango/scrapdata/apps.py
6c320b2307eebb2b56b3c9411423a92eae1af745
[]
no_license
SahilKumar2203/instibuddy
c92ce135bb5820fdc30bc93d602f71af229eaef4
ea3a38d7ceb44959451191eaed96b8f45f1317d3
refs/heads/master
2021-05-16T22:25:12.265459
2020-07-08T16:40:11
2020-07-08T16:40:11
250,494,547
0
0
null
2020-03-27T09:38:38
2020-03-27T09:38:38
null
UTF-8
Python
false
false
93
py
from django.apps import AppConfig class ScrapdataConfig(AppConfig): name = 'scrapdata'
[ "rishabharya32@gmail.com" ]
rishabharya32@gmail.com
38ca5c408a737d5d08a18256429c005182c0e566
f01d6884bb99ddf0c8d9c76d39d9480be78a5581
/tests/test_parser_cli.py
0e962925e028677134a685e03d0c70055ea0e254
[ "MIT" ]
permissive
manageacloud/manageacloud-cli
906e0617d01c6561e1e51d99d12e1f854825afa3
e782bb4f207b84a10d4d96fa421227d6fe53d3dc
refs/heads/master
2022-05-28T17:03:45.169824
2022-04-07T00:44:50
2022-04-07T00:44:50
36,004,075
6
4
null
2015-10-27T08:08:32
2015-05-21T09:34:48
Python
UTF-8
Python
false
false
3,114
py
import unittest import mock from argparse import ArgumentTypeError from tests.mock_data import * import maccli.parser_cli class ParserCliTestCase(unittest.TestCase): def test_validate_environment(self): self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_environment, "invalid") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_environment, "invalid = spaces") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_environment, "BENCH_CREATION=") self.assertEqual(maccli.parser_cli.validate_environment("UNO=dos"), {'UNO':'dos'}) self.assertEqual(maccli.parser_cli.validate_environment("uno=dos"), {'uno':'dos'}) self.assertEqual(maccli.parser_cli.validate_environment("A_VALUE=dos2"), {'A_VALUE':'dos2'}) self.assertEqual(maccli.parser_cli.validate_environment("a_value=dos2"), {'a_value':'dos2'}) self.assertEqual(maccli.parser_cli.validate_environment("a_value=dos2=3"), {'a_value':'dos2=3'}) self.assertEqual(maccli.parser_cli.validate_environment("""a_value=UNO DOS TRES"""), {'a_value':'''UNO DOS TRES'''}) self.assertEqual(maccli.parser_cli.validate_environment("BENCH_CREATION=-i -s 70"), {'BENCH_CREATION':'-i -s 70'}) def test_validate_hd(self): self.assertEqual(maccli.parser_cli.validate_hd("/dev/sda1:100"), {'/dev/sda1':'100'}) self.assertEqual(maccli.parser_cli.validate_hd("/dev/sda1:50"), {'/dev/sda1':'50'}) self.assertEqual(maccli.parser_cli.validate_hd("attachment:50:ssd"), {'attachment':'50:ssd'}) self.assertEqual(maccli.parser_cli.validate_hd("/dev/ok:100"), {'/dev/ok':'100'}) self.assertEqual(maccli.parser_cli.validate_hd("/dev/sda1:100:ok"), {'/dev/sda1':'100:ok'}) self.assertEqual(maccli.parser_cli.validate_hd("/dev/sda1:100:ok:1000"), {'/dev/sda1':'100:ok:1000'}) #self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_hd, "/dev/not/ok:100") #self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_hd, "/not/ok:100") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_hd, "/dev/ok:wtf") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_hd, "/dev/ok") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_hd, "100") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_hd, "/dev/sda1:100:not-ok") def test_validate_port(self): self.assertEqual(maccli.parser_cli.validate_port("22"), [22]) self.assertEqual(maccli.parser_cli.validate_port("22,8080"), [22,8080]) self.assertEqual(maccli.parser_cli.validate_port("1,22,8080,65535"), [1,22,8080,65535]) self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_port, "0,22,8080,65535") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_port, "22,8080,65536") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_port, "22,sssss8080") self.assertRaises(ArgumentTypeError, maccli.parser_cli.validate_port, "sssss8080")
[ "ruben@manageacloud.com" ]
ruben@manageacloud.com
4d312a1a57d49be61935deedc393a5994769225e
90a756a8a0e470761dfad47e67293e5f880882cd
/hex.py
600bb477fbc89e37b7b4ab35ac9f93b1decf8bd8
[]
no_license
Gaspi/panda3d-draft
d62d3b2624adfeaccc0cbb6a6e70d552a36b261e
665cc2ca6da6b9366ce1952bf4ec2d3eb426d904
refs/heads/master
2022-12-04T03:21:15.196026
2020-08-22T15:59:24
2020-08-22T15:59:24
287,313,359
0
0
null
null
null
null
UTF-8
Python
false
false
6,462
py
import math, random class Point: __slots__ = ['x', 'y'] def __init__(self,x,y): self.x=x self.y=y def __repr__(self): return "Point(%d,%d)" % (self.x, self.y) def __str__(self): return "(%d,%d)" % (self.x, self.y) def __hash__(self): return hash( (self.x,self.y) ) def __eq__(self,other): return (self.x,self.y) == (other.x,other.y) def isVertex(self): return self.y % 3 == 0 and (self.x + self.y // 3) % 2 == 0 def isCenter(self): return self.y % 3 != 0 and (self.x + self.y // 3) % 2 + self.y % 3 == 2 def getTriangles(self): ic = self.x jc = self.y // 3 return [ Triangle(ic ,jc ), Triangle(ic-1,jc ), Triangle(ic-1,jc-1), Triangle(ic ,jc-1), Triangle(ic+1,jc-1), Triangle(ic+1,jc ) ] def getAdjacents(self): return [ Point(self.x+2,self.y ), Point(self.x+1,self.y+3), Point(self.x-1,self.y+3), Point(self.x-2,self.y ), Point(self.x-1,self.y-3), Point(self.x+1,self.y-3) ] def getEdges(self): return [ Edge(self,p) for p in self.getAdjacents() ] def d2(self,pt): return (self.x-pt.x)*(self.x-pt.x)+(self.y-pt.y)*(self.y-pt.y) def d(self,pt): return math.sqrt(self.d2(pt)) def d1(self,pt): return abs(self.x-pt.x) + abs(self.y-pt.y) def getVertices(self): return [ self ] class Edge: __slots__ = ['a', 'b'] def __init__(self,a,b): self.a=a self.b=b def __repr__(self): return "Edge(%d,%d)" % (self.a, self.b) def __str__(self): return "(%d -> %d)" % (self.a, self.b) def __hash__(self): return hash( (self.a,self.b) ) def __eq__(self,other): return (self.a,self.b) == (other.a,other.b) def getVertices(self): return [a,b] # Triangle (0,0) is facing down with center (0,2) # - vertices are (-1,3) , (1,3) , (0,0) # - adjacent triangles are (1,0) , (-1,0) , (0,1) class Triangle: __slots__ = ['i', 'j'] def __init__(self,i,j): self.i=i self.j=j def __repr__(self): return "Triangle(%d,%d)" % (self.i, self.j) def __str__(self): return self.__repr__() def __hash__(self): return hash( (self.i,self.j) ) def __eq__(self,other): return (self.i,self.j) == (other.i,other.j) def isDown(self): return (self.i ^ self.j) % 2 == 0 def isUp(self): return not self.isDown() def getCenter(self): return Point(self.i, 3*self.j + (2 if self.isDown() else 1)) def getVertices(self): i = self.i j3 = 3*self.j if self.isDown(): return [ Point(i+1,j3+3 ), Point(i-1,j3+3), Point(i,j3) ] else: return [ Point(i-1,j3 ), Point(i+1,j3), Point(i,j3+3) ] def getBase(self): j3 = 3*self.j + (0 if self.isDown() else 3) return (Point(self.i+1,j3), Point(self.i-1,j3)) def getEdges(self): v = self.getVertices() return [ Edge(v[i],v[(i+1)%3]) for i in range(3) ] def getHex(self): return Hex( (self.i+1)//3 , (self.j+1)//2 ) def getAdjacents(self): return [ Triangle(self.i+1,self.j), Triangle(self.i-1,self.j), Triangle(self.i ,self.j + (1 if self.isDown() else -1) ) ] # Hex (0,0) has center (0,0) # Its triangles are # - N ( 0, 0) # - NW (-1, 0) # - SW (-1,-1) # - S ( 0,-1) # - SE ( 1,-1) # - NE ( 1, 0) # Hex (0,1) is directly north of (0,0): # - center is (0,6) # Hex (1,0) is north east of (0,0) and south-east of (0,1): # - center is (3,3) class Hex: __slots__ = ['i', 'j'] def __init__(self,i,j): self.i=i self.j=j def __repr__(self): return "Hex(%d,%d)" % (self.i, self.j) def __str__(self): return self.__repr__() def __hash__(self): return hash( (self.i,self.j) ) def __eq__(self,other): return (self.i,self.j) == (other.i,other.j) # NE: i + n, j + (n + (i%2) )//2 # SE: i + n, j - (n - (i%2) + 1)//2 # N : i , j + n def path_NE_N(self,h): n = h.i - self.i m = self.j + (n+(self.i%2))//2 - h.j return (n,m) def path_SE_N(self,h): n = h.i - self.i m = self.j - (n+(self.i%2)+1)//2 - h.j return (n,m) def path_NE_SE(self,h): m = h.j - self.j + (self.i-1)//2 - (h.i-1)//2 n = h.i - self.i + m return (n,m) def dist(self,h): dnen = self.path_NE_N(h) dsen = self.path_SE_N(h) dnese= self.path_NE_SE(h) return min( abs(dnen[0])+abs(dnen[1]), abs(dsen[0])+abs(dsen[1]), abs(dnese[0])+abs(dnese[1]) ) def _center(self): return (3*self.i, 6*self.j + 3*(self.i%2)) def getCenter(self): return Point(*self._center()) def getVertices(self): xc,yc=self._center() return [ Point(xc+dx,yc+dy) for (dx,dy) in [ (2,0), (1,3), (-1,3), (-2,0),(-1,-3), (1,-3)] ] def getEdges(self): v = self.getVertices() return [ Edge(v[i],v[(i+1)%6]) for i in range(6) ] def getTriangles(self): ic = 3*self.i jc = 2*self.j + (self.i % 2) return [ Triangle(ic ,jc ), Triangle(ic-1,jc ), Triangle(ic-1,jc-1), Triangle(ic ,jc-1), Triangle(ic+1,jc-1), Triangle(ic+1,jc ) ] def getN(self): return Hex(self.i,self.j+1) def getS(self): return Hex(self.i,self.j-1) def getNE(self): return Hex(self.i+1,self.j+(self.i%2)) def getNW(self): return Hex(self.i-1,self.j+(self.i%2)) def getSE(self): return Hex(self.i+1,self.j-1+(self.i%2)) def getSW(self): return Hex(self.i-1,self.j-1+(self.i%2)) def getAdjacents(self): return [ self.getN(), self.getNW(), self.getSW(), self.getS(), self.getSE(), self.getNE() ] def hexGrid(i0,irange,j0,jrange): return [ Hex(i,j) for i in range(i0,irange) for j in range(j0,jrange) ] def hexCircle(center,radius): return [ h for h in hexGrid(center.i-radius,2*radius+1,center.j-radius,2*radius+1) if center.dist(h) <= radius ]
[ "gaspard.ferey@inria.fr" ]
gaspard.ferey@inria.fr
74367f4ca6450969099765912f745207351a2c9c
e44c21d65e13a976e16ccabe4eccd952adfdddac
/08/b.py
2803d919358ac113b72303320432e3b0c3b4cdfa
[]
no_license
kscharlund/aoc_2020
f5295226543fe1afd5b0eb79f21cfafe65cfbf58
7500b7761de618c513c781b00ccb6c72fc597f2e
refs/heads/master
2023-02-08T00:08:56.752126
2020-12-26T08:45:05
2020-12-26T08:45:05
319,719,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,413
py
import sys from pprint import pprint def parse_op(line): op, arg = line.strip().split() return op, int(arg.replace('+', '')) next_pc = { 'acc': lambda pc, arg: pc + 1, 'nop': lambda pc, arg: pc + 1, 'jmp': lambda pc, arg: pc + arg, } alt_next_pc = { 'acc': lambda pc, arg: pc + 1, 'jmp': lambda pc, arg: pc + 1, 'nop': lambda pc, arg: pc + arg, } def find_terminals(parents, child): if child not in parents: return {child} terminals = set() for parent in parents[child]: terminals |= find_terminals(parents, parent) return terminals def main(): input_operations = [parse_op(line) for line in sys.stdin.readlines()] for altered_index in range(len(input_operations)): if input_operations[altered_index][0] == 'acc': continue operations = input_operations[:] old_op, old_arg = input_operations[altered_index] operations[altered_index] = ('jmp' if old_op == 'nop' else 'nop', old_arg) next_pcs = [next_pc[op[0]](pc, op[1]) for pc, op in enumerate(operations)] parents = {} for parent, child in enumerate(next_pcs): parents.setdefault(child, []).append(parent) terminals = find_terminals(parents, len(operations)) if 0 in terminals: print(altered_index, old_op, old_arg) break if __name__ == '__main__': main()
[ "kalle@scharlund.se" ]
kalle@scharlund.se
fec5dfca15a354781094c991dd2f486c90f6b869
f6f247c836c708969568506e70103e87dc20c584
/урок 1/stroki.py
b6f58c6da7d63c9e638850606b3e38d821eb9991
[]
no_license
exel14/first_gitproject
4ad589023c7287e589ac19675a6589e0e0bfb09d
aca5687b092a5176516d0e839ce4cd3e13d41770
refs/heads/master
2022-12-31T13:35:00.612393
2020-10-01T12:13:26
2020-10-01T12:13:26
294,680,880
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
text = "fjdisjfisdfj Vasya fsijfoisd" imya = 'Vasya' if imya in text: print('Yes') else: print('No')
[ "showmetheway220@gmail.com" ]
showmetheway220@gmail.com
bb2e2e6db053a76895cf456bd9e0322b88fad9c1
68ac5bf4a7e4ad7478b7e1ac45b8540a14826402
/ergo/publishconf.py
e8df03c1c829ce52ba4ce5de454581c95c0a9ea0
[]
no_license
doobeh/ergo
3833d8c5663c6a9d3aaac9904dff430eee00110b
ee075146d4cbb4eed2297d60436ea000af34812a
refs/heads/master
2020-05-30T10:41:47.420500
2015-10-09T15:17:59
2015-10-09T15:17:59
27,210,247
0
0
null
null
null
null
UTF-8
Python
false
false
553
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # from __future__ import unicode_literals # This file is only used if you use `make publish` or # explicitly specify it as your config file. import os import sys sys.path.append(os.curdir) this_directory = os.path.dir from pelicanconf import * SITEURL = 'http://ergo.io' RELATIVE_URLS = False FEED_ALL_ATOM = 'feeds/all.atom.xml' CATEGORY_FEED_ATOM = 'feeds/%s.atom.xml' DELETE_OUTPUT_DIRECTORY = True # Following items are often useful when publishing #DISQUS_SITENAME = "" #GOOGLE_ANALYTICS = ""
[ "anthony@thefort.org" ]
anthony@thefort.org
d5f34735f201edeb1130c4cb2a9efc396cbf184e
1ec8734beba25739979cbd4a9414a95273cce6aa
/10.9/移除元素.py
f3a3c26997d12fbc85a770412e56ce40c9f3a40b
[]
no_license
MATATAxD/untitled1
4431e4bc504e74d9a96f54fd6065ce46d5d9de40
18463f88ce60036959aabedabf721e9d938bacfb
refs/heads/master
2023-01-01T23:16:30.140947
2020-10-23T04:32:38
2020-10-23T04:32:38
306,529,260
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
from typing import List def removeElement(nums:List[int],val:int)->int: fast = 0 slow = 0 while fast < len(nums): if nums[fast]== val: fast +=1 else: nums[slow] = nums [fast] slow +=1 fast +=1 return slow a = [1,2,3,4,5,6] print(removeElement(a,1))
[ "502513072@qq.com" ]
502513072@qq.com
6fcc525132976c116ea70511282befacca492375
573a516233447c8384f26ed56ae4e356e3995153
/ques6.py
c06b87f3ab0dae128a898dd372ba780d807a5d97
[]
no_license
BhagyashreeKarale/if-else
437b0867247f827c44f469a90efeecbf9444803d
1224fca2bdda389b22897f17b22f21320260e75f
refs/heads/main
2023-07-19T15:03:03.351825
2021-09-11T19:16:07
2021-09-11T19:16:07
397,150,813
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
# Question 6 # Draw a flowchart for this question and write the program. # Take two numbers as input from the user in variables varx and vary. # Check whether varx is divisible by vary. # If yes, print Divisible else print Not Divisible. varx=int(input("Enter dividend:\n")) vary=int(input("Enter divisor:\n")) if varx % vary == 0: print(varx,"is completely divisible by",vary) else: print(varx,"isn't completely divisible by",vary)
[ "noreply@github.com" ]
noreply@github.com
2e56f5cdcb6487d4631e61f2dd8ee8baa69b504c
0fb3b73f8e6bb9e931afe4dcfd5cdf4ba888d664
/Web-UI/scrapyproject/migrations/0010_auto_20170406_1835.py
28afbaa4d39615071f49bc6050e0d270de3e4686
[ "MIT" ]
permissive
mrpal39/ev_code
6c56b1a4412503604260b3346a04ef53a2ba8bf2
ffa0cf482fa8604b2121957b7b1d68ba63b89522
refs/heads/master
2023-03-24T03:43:56.778039
2021-03-08T17:48:39
2021-03-08T17:48:39
345,743,264
1
0
null
null
null
null
UTF-8
Python
false
false
432
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('scrapyproject', '0009_auto_20170215_0657'), ] operations = [ migrations.RemoveField( model_name='mongopass', name='user', ), migrations.DeleteModel( name='MongoPass', ), ]
[ "rp9545416@gmail.com" ]
rp9545416@gmail.com
716b77deb7f8f935eada888a20f2b54d08a47dd3
9ae6ce54bf9a2a86201961fdbd5e7b0ec913ff56
/google/ads/googleads/v9/services/services/hotel_group_view_service/client.py
b9c83f2d85aa2f2fdc21c12add578c9da910ff31
[ "Apache-2.0" ]
permissive
GerhardusM/google-ads-python
73b275a06e5401e6b951a6cd99af98c247e34aa3
676ac5fcb5bec0d9b5897f4c950049dac5647555
refs/heads/master
2022-07-06T19:05:50.932553
2022-06-17T20:41:17
2022-06-17T20:41:17
207,535,443
0
0
Apache-2.0
2019-09-10T10:58:55
2019-09-10T10:58:55
null
UTF-8
Python
false
false
18,873
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore try: OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault] except AttributeError: # pragma: NO COVER OptionalRetry = Union[retries.Retry, object] # type: ignore from google.ads.googleads.v9.resources.types import hotel_group_view from google.ads.googleads.v9.services.types import hotel_group_view_service from .transports.base import HotelGroupViewServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc import HotelGroupViewServiceGrpcTransport class HotelGroupViewServiceClientMeta(type): """Metaclass for the HotelGroupViewService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[HotelGroupViewServiceTransport]] _transport_registry["grpc"] = HotelGroupViewServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[HotelGroupViewServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class HotelGroupViewServiceClient(metaclass=HotelGroupViewServiceClientMeta): """Service to manage Hotel Group Views.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: HotelGroupViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: HotelGroupViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> HotelGroupViewServiceTransport: """Return the transport used by the client instance. Returns: HotelGroupViewServiceTransport: The transport used by the client instance. """ return self._transport def __enter__(self): return self def __exit__(self, type, value, traceback): """Releases underlying transport's resources. .. warning:: ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients! """ self.transport.close() @staticmethod def hotel_group_view_path( customer_id: str, ad_group_id: str, criterion_id: str, ) -> str: """Return a fully-qualified hotel_group_view string.""" return "customers/{customer_id}/hotelGroupViews/{ad_group_id}~{criterion_id}".format( customer_id=customer_id, ad_group_id=ad_group_id, criterion_id=criterion_id, ) @staticmethod def parse_hotel_group_view_path(path: str) -> Dict[str, str]: """Parse a hotel_group_view path into its component segments.""" m = re.match( r"^customers/(?P<customer_id>.+?)/hotelGroupViews/(?P<ad_group_id>.+?)~(?P<criterion_id>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Union[str, HotelGroupViewServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the hotel group view service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.HotelGroupViewServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. if os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") not in ( "true", "false", ): raise ValueError( "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`" ) use_client_cert = ( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") == "true" ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, HotelGroupViewServiceTransport): # transport is a HotelGroupViewServiceTransport instance. if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = HotelGroupViewServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def get_hotel_group_view( self, request: Union[ hotel_group_view_service.GetHotelGroupViewRequest, dict ] = None, *, resource_name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> hotel_group_view.HotelGroupView: r"""Returns the requested Hotel Group View in full detail. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__ `RequestError <>`__ Args: request (Union[google.ads.googleads.v9.services.types.GetHotelGroupViewRequest, dict]): The request object. Request message for [HotelGroupViewService.GetHotelGroupView][google.ads.googleads.v9.services.HotelGroupViewService.GetHotelGroupView]. resource_name (:class:`str`): Required. Resource name of the Hotel Group View to fetch. This corresponds to the ``resource_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v9.resources.types.HotelGroupView: A hotel group view. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([resource_name]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a hotel_group_view_service.GetHotelGroupViewRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, hotel_group_view_service.GetHotelGroupViewRequest ): request = hotel_group_view_service.GetHotelGroupViewRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if resource_name is not None: request.resource_name = resource_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.get_hotel_group_view ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("resource_name", request.resource_name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ("HotelGroupViewServiceClient",)
[ "noreply@github.com" ]
noreply@github.com
0c1ccf1b2f6432152b0ac72f070dae2a20ff3d35
6e4dcc4ebbbf337d33981e1b72eb61232f796c66
/create_sql.py
1e802cb316795e49ff52e629d7566e0c3b0eef91
[]
no_license
kelechiP/AgencyNet
ba9fe69292e4e19b920b4673ab4de84901ec16a3
4f9923b03129e9f3dd381a89fe9b7ffb413760c6
refs/heads/master
2021-03-31T11:41:53.930709
2020-05-24T00:18:35
2020-05-24T00:18:35
248,104,430
0
1
null
2020-05-24T00:18:36
2020-03-18T00:46:24
Python
UTF-8
Python
false
false
1,814
py
import json import requests def get_search(): g = input("Enter the name of Author: ") print("Searching for the Author name ", g, " in the API Call") return g def get_request(): # Replace this with file access response = requests.get( "https://api.crossref.org/works?filter=has-full-text:true&mailto=GroovyBib@example.org") items = response.json()["message"]["items"] return items # Pretty Printing JSON string back' def jprint(obj): text = json.dumps(obj, sort_keys=True, indent=4) print(text) def author_search(items, g): author_store = [] found_author = False # For each element of list for item in items: # item (not itemS) is a dict # Check if authors exist if "author" in item.keys(): for author in item["author"]: for key in author: search_item = author[key] # if type(search_item) is not list and g.lower() in author[key].lower(): if type(search_item) is list: continue elif g.lower() in str(author[key]).lower(): found_author = True print("Author found and") print("Author Exists in given line--->>>", key, ":", author[key]) author_store.append((key, author[key], item)) if not found_author: print('Author name is NOT found in given API call') return False else: return author_store def author_save(author_store) return True def main(): g = get_search() items = get_request() author_search(items, g) # Calling the main function which runs everything if __name__ == "__main__": main()
[ "noreply@github.com" ]
noreply@github.com
aa4b45c03c37c440887f601fdd49a108f1479990
83c2cfd249e2e3c6fce223c9279e7d99e1596eda
/tf_gan.py
1631a07f29bd815bd6c822c169bd0e59f810ae1c
[ "Apache-2.0" ]
permissive
hackthecrisis21/nist_differential_privacy_synthetic_data_challenge
ec5eff7102d65b3fc3406039eed80f587ef40062
09e93201e36e20f25bebd82cd68cd4c837789297
refs/heads/master
2022-02-16T19:31:44.739948
2019-05-30T00:55:32
2019-05-30T01:19:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,866
py
""" Author: Moustafa Alzantot (malzantot@ucla.edu) All rights reserved. """ import sys import pdb import math import numpy as np import data_utils import pandas as pd import json import matplotlib.pyplot as plt from sklearn.preprocessing import OneHotEncoder import tensorflow as tf from tensorflow.core.framework import summary_pb2 import time from tensorflow.distributions import Bernoulli, Categorical from differential_privacy.dp_sgd.dp_optimizer import dp_optimizer from differential_privacy.dp_sgd.dp_optimizer import sanitizer from differential_privacy.dp_sgd.dp_optimizer import utils from differential_privacy.privacy_accountant.tf import accountant flags = tf.app.flags flags.DEFINE_string('input_file', 'input.csv', 'Input file') flags.DEFINE_string('output_file', 'output.csv', 'output file') flags.DEFINE_string('meta_file', 'metadata.json', 'metadata file') flags.DEFINE_float('epsilon', 8.0, 'Target eps') flags.DEFINE_float('delta', None, 'maximum delta') # Training parameters flags.DEFINE_integer('batch_size', 64, 'Batch size') flags.DEFINE_float('lr', 1e-3, 'learning rate') flags.DEFINE_integer('num_epochs', 20, 'Number of training epochs') flags.DEFINE_integer( 'save_every', 1, 'Save training logs every how many epochs') flags.DEFINE_float('weight_clip', 0.01, 'weight clipping value') # Model parameters flags.DEFINE_integer('z_size', 64, 'Size of input size') flags.DEFINE_integer('hidden_dim', 1024, 'Size of hidden layer') # Privacy parameters flags.DEFINE_bool('with_privacy', False, 'Turn on/off differential privacy') flags.DEFINE_float('gradient_l2norm_bound', 1.0, 'l2 norm clipping') # Sampling and model restore flags.DEFINE_integer('sampling_size', 100000, 'Number of examples to sample') flags.DEFINE_string('checkpoint', None, 'Checkpoint to restore') flags.DEFINE_bool('sample', False, 'Perform sampling') flags.DEFINE_bool('dummy', False, 'If True, then test our model using dummy data ') ######################################################################### # Utility functions for building the WGAN model ######################################################################### def lrelu(x, alpha=0.01): """ leaky relu activation function """ return tf.nn.leaky_relu(x, alpha) def fully_connected(input_node, output_dim, activation=tf.nn.relu, scope='None'): """ returns both the projection and output activation """ with tf.variable_scope(scope or 'FC'): w = tf.get_variable('w', shape=[input_node.get_shape()[1], output_dim], initializer=tf.truncated_normal_initializer(stddev=0.1)) b = tf.get_variable('b', shape=[output_dim], initializer=tf.constant_initializer()) tf.summary.histogram('w', w) tf.summary.histogram('b', b) z = tf.matmul(input_node, w) + b h = activation(z) return z, h def critic_f(input_node, hidden_dim): """ Defines the critic model architecture """ z1, h1 = fully_connected(input_node, hidden_dim, lrelu, scope='fc1') # z2, h2 = fully_connected(h1, hidden_dim, lrelu, scope='fc2') z3, _ = fully_connected(h1, 1, tf.identity, scope='fc3') return z3 def generator(input_node, hidden_dim, output_dim): """ Defines the generator model architecture """ z1, h1 = fully_connected(input_node, hidden_dim, lrelu, scope='fc1') # z2, h2 = fully_connected(h1, hidden_dim, lrelu, scope='fc2') z3, _ = fully_connected(h1, output_dim, tf.identity, scope='fc3') return z3 def nist_data_format(output, metadata, columns_list, col_maps): """ Output layer format for generator data """ with tf.name_scope('nist_format'): output_list = [] cur_idx = 0 for k in columns_list: v = col_maps[k] if isinstance(v, dict): if len(v) == 2: output_list.append(tf.nn.sigmoid( output[:, cur_idx:cur_idx+1])) cur_idx += 1 else: output_list.append( tf.nn.softmax(output[:, cur_idx: cur_idx+len(v)])) cur_idx += len(v) elif v == 'int': output_list.append(output[:, cur_idx:cur_idx+1]) cur_idx += 1 elif v == 'int_v': output_list.append(tf.nn.sigmoid(output[:, cur_idx:cur_idx+1])) output_list.append(output[:, cur_idx+1:cur_idx+2]) cur_idx += 2 elif v == 'void': pass else: raise Exception('ivnalid mapping for col {}'.format(k)) return tf.concat(output_list, axis=1) def nist_sampling_format(output, metadata, columns_list, col_maps): """ Output layer format for generator data plus performing random sampling from the output softmax and bernoulli distributions. """ with tf.name_scope('nist_sampling_format'): output_list = [] cur_idx = 0 for k in columns_list: v = col_maps[k] if isinstance(v, dict): if len(v) == 2: output_list.append( tf.cast( tf.expand_dims( Bernoulli(logits=output[:, cur_idx]).sample(), axis=1), tf.float32) ) cur_idx += 1 else: output_list.append( tf.cast(tf.expand_dims( Categorical(logits=output[:, cur_idx: cur_idx+len(v)]).sample(), axis=1), tf.float32)) cur_idx += len(v) elif v == 'int': output_list.append( tf.nn.relu(output[:, cur_idx:cur_idx+1])) cur_idx += 1 elif v == 'int_v': output_list.append(tf.nn.sigmoid(output[:, cur_idx:cur_idx+1])) output_list.append(tf.nn.relu(output[:, cur_idx+1:cur_idx+2])) cur_idx += 2 elif v == 'void': pass return tf.concat(output_list, axis=1) def sample_dataset(sess, sampling_output, output_fname, columns_list, sampling_size): """ Performs sampling to output synthetic data from the generative model. Saves the result to output_fname file. """ sampling_result = [] num_samples = 0 while num_samples < sampling_size: batch_samples = sess.run(sampling_output) num_samples += batch_samples.shape[0] sampling_result.append(batch_samples) sampling_result = np.concatenate(sampling_result, axis=0) print(sampling_result.shape) final_df = data_utils.postprocess_data( sampling_result, metadata, col_maps, columns_list, greedy=False) print(final_df.shape) final_df = pd.DataFrame( data=final_df, columns=original_df.columns, index=None) final_df.to_csv(output_fname, index=False) if __name__ == '__main__': FLAGS = flags.FLAGS # Reading input data original_df, input_data, metadata, col_maps, columns_list = data_utils.preprocess_nist_data( FLAGS.input_file, FLAGS.meta_file, subsample=False) input_data = input_data.values # .astype(np.float32) data_dim = input_data.shape[1] format_fun = nist_data_format num_examples = input_data.shape[0] print('** Reading input ** ') print('-- Read {} rows, {} columns ----'.format(num_examples, data_dim)) batch_size = FLAGS.batch_size print('Batch size = ', batch_size) num_batches = math.ceil(num_examples / batch_size) T = FLAGS.num_epochs * num_batches q = float(FLAGS.batch_size) / num_examples max_eps = FLAGS.epsilon if FLAGS.delta is None: max_delta = 1.0 / (num_examples**2) else: max_delta = FLAGS.delta print('Privacy budget = ({}, {})'.format(max_eps, max_delta)) # Decide which accountanint_v to use use_moments_accountant = max_eps > 0.7 if use_moments_accountant: if max_eps > 5.0: sigma = 1.0 else: sigma = 3.0 eps_per_step = None # unused for moments accountant delta_per_step = None # unused for moments accountant print('Using moments accountant (\sigma = {})'.format(sigma)) else: sigma = None # unused for amortized accountant # bound of eps_per_step from lemma 2.3 in https://arxiv.org/pdf/1405.7085v2.pdf eps_per_step = max_eps / (q * math.sqrt(2 * T * math.log(1/max_delta))) delta_per_step = max_delta / (T * q) print('Using amortized accountant (\eps, \delta)-per step = ({},{})'.format( eps_per_step, delta_per_step)) with tf.name_scope('inputs'): x_holder = tf.placeholder(tf.float32, [None, data_dim], 'x') z_holder = tf.random_normal(shape=[FLAGS.batch_size, FLAGS.z_size], dtype=tf.float32, name='z') sampling_noise = tf.random_normal([FLAGS.batch_size, FLAGS.z_size], dtype=tf.float32, name='sample_z') eps_holder = tf.placeholder(tf.float32, [], 'eps') delta_holder = tf.placeholder(tf.float32, [], 'delta') print("Data Dimention: ", data_dim) print("X Holder: ", x_holder) print("Z Holder: ", z_holder) with tf.variable_scope('generator') as scope: gen_output = generator(z_holder, FLAGS.hidden_dim, data_dim) print(gen_output) gen_output = format_fun(gen_output, metadata, columns_list, col_maps) print(gen_output) scope.reuse_variables() sampling_output = generator(sampling_noise, FLAGS.hidden_dim, data_dim) sampling_output = nist_sampling_format( sampling_output, metadata, columns_list, col_maps) print(sampling_output) with tf.variable_scope('critic') as scope: critic_real = critic_f(x_holder, FLAGS.hidden_dim) scope.reuse_variables() critic_fake = critic_f(gen_output, FLAGS.hidden_dim) with tf.name_scope('train'): global_step = tf.Variable( 0, dtype=tf.int32, trainable=False, name='global_step') loss_critic_real = - tf.reduce_mean(critic_real) loss_critic_fake = tf.reduce_mean(critic_fake) loss_critic = loss_critic_real + loss_critic_fake critic_vars = [x for x in tf.trainable_variables() if x.name.startswith('critic')] if FLAGS.with_privacy: # assert FLAGS.sigma > 0, 'Sigma has to be positive when with_privacy=True' with tf.name_scope('privacy_accountant'): if use_moments_accountant: # Moments accountant introduced in (https://arxiv.org/abs/1607.00133) # we use same implementation of # https://github.com/tensorflow/models/blob/master/research/differential_privacy/privacy_accountant/tf/accountant.py priv_accountant = accountant.GaussianMomentsAccountant( num_examples) else: # AmortizedAccountant which tracks the privacy spending in the amortized way. # It uses privacy amplication via sampling to compute the privacyspending for each # batch and strong composition (specialized for Gaussian noise) for # accumulate the privacy spending (http://arxiv.org/pdf/1405.7085v2.pdf) # we use the implementation of # https://github.com/tensorflow/models/blob/master/research/differential_privacy/privacy_accountant/tf/accountant.py priv_accountant = accountant.AmortizedAccountant( num_examples) # per-example Gradient l_2 norm bound. example_gradient_l2norm_bound = FLAGS.gradient_l2norm_bound / FLAGS.batch_size # Gaussian sanitizer, will enforce differential privacy by clipping the gradient-per-example. # Add gaussian noise, and sum the noisy gradients at each weight update step. # It will also notify the privacy accountant to update the privacy spending. gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer( priv_accountant, [example_gradient_l2norm_bound, True]) critic_step = dp_optimizer.DPGradientDescentOptimizer( FLAGS.lr, # (eps, delta) unused parameters for the moments accountant which we are using [eps_holder, delta_holder], gaussian_sanitizer, sigma=sigma, batches_per_lot=1, var_list=critic_vars).minimize((loss_critic_real, loss_critic_fake), global_step=global_step, var_list=critic_vars) else: # This is used when we train without privacy. critic_step = tf.train.RMSPropOptimizer(FLAGS.lr).minimize( loss_critic, var_list=critic_vars) # Weight clipping to ensure the critic function is K-Lipschitz as required # for WGAN training. clip_c = [tf.assign(var, tf.clip_by_value( var, -FLAGS.weight_clip, FLAGS.weight_clip)) for var in critic_vars] with tf.control_dependencies([critic_step]): critic_step = tf.tuple(clip_c) # Traing step of generator generator_vars = [x for x in tf.trainable_variables() if x.name.startswith('generator')] loss_generator = -tf.reduce_mean(critic_fake) generator_step = tf.train.RMSPropOptimizer(FLAGS.lr).minimize( loss_generator, var_list=generator_vars) weight_summaries = tf.summary.merge_all() tb_c_op = tf.summary.scalar('critic_loss', loss_critic) tb_g_op = tf.summary.scalar('generator_loss', loss_generator) final_eps = 0.0 final_delta = 0.0 critic_iters = 10 with tf.Session() as sess: summary_writer = tf.summary.FileWriter('./logs', sess.graph) summary_writer.flush() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() if FLAGS.checkpoint: # Load the model saver.restore(sess, FLAGS.checkpoint) if FLAGS.sample: sample_dataset(sess, sampling_output, FLAGS.output_file, columns_list, FLAGS.sampling_size) assert FLAGS.checkpoint is not None, "You must provide a checkpoint." sys.exit(0) abort_early = False # Flag that will be changed to True if we exceed the privacy budget for e in range(FLAGS.num_epochs): if abort_early: break # One epoch is one full pass over the whole training data start_time = time.time() # Randomly shuffle the data at the beginning of each epoch rand_idxs = np.arange(num_examples) np.random.shuffle(rand_idxs) idx = 0 abort_early = False while idx < num_batches and not abort_early: if idx % 10 == 0: sys.stdout.write('\r{}/{}'.format(idx, num_batches)) sys.stdout.flush() critic_i = 0 while critic_i < critic_iters and idx < num_batches and not abort_early: # Train the critic. batch_idxs = rand_idxs[idx*batch_size: (idx+1)*batch_size] batch_xs = input_data[batch_idxs, :] feed_dict = {x_holder: batch_xs, eps_holder: eps_per_step, delta_holder: delta_per_step } _, tb_c = sess.run( [critic_step, tb_c_op], feed_dict=feed_dict) critic_i += 1 idx += 1 if FLAGS.with_privacy: if use_moments_accountant: spent_eps_deltas = priv_accountant.get_privacy_spent( sess, target_deltas=[max_delta])[0] else: spent_eps_deltas = priv_accountant.get_privacy_spent( sess, target_eps=None)[0] # Check whether we exceed the privacy budget if (spent_eps_deltas.spent_delta > max_delta or spent_eps_deltas.spent_eps > max_eps): abort_early = True print( "\n*** Discriminator training exceeded privacy budget, aborting the training of generator ****") else: final_eps = spent_eps_deltas.spent_eps final_delta = spent_eps_deltas.spent_delta else: # Training without privacy spent_eps_deltas = accountant.EpsDelta(np.inf, 1) # Train the generator if not abort_early: # Check for abort_early because we stop updating the generator # once we exceeded privacy budget. privacy_summary = summary_pb2.Summary(value=[ summary_pb2.Summary.Value(tag='eps', simple_value=final_eps)]) summary_writer.add_summary(privacy_summary, e) _, tb_g = sess.run([generator_step, tb_g_op]) if e % FLAGS.save_every == 0 or (e == FLAGS.num_epochs-1): summary_writer.add_summary(tb_g, e) end_time = time.time() if (e % FLAGS.save_every == 0) or (e == FLAGS.num_epochs-1) or abort_early: summary_writer.add_summary(tb_c, e) weight_summary_out = sess.run( weight_summaries, feed_dict=feed_dict) summary_writer.add_summary(weight_summary_out, e) print('\nEpoch {} took {} seconds. Privacy = ({}, {}).'.format( e, (end_time-start_time), spent_eps_deltas.spent_eps, spent_eps_deltas.spent_delta)) summary_writer.flush() if FLAGS.with_privacy: print('\nTotal (\eps, \delta) privacy loss spent in training = ({}, {})'.format( final_eps, final_delta)) summary_writer.close() # Sample synthetic data from the model after training is done. sample_dataset(sess, sampling_output, FLAGS.output_file, columns_list, FLAGS.sampling_size)
[ "malzantot@ucla.edu" ]
malzantot@ucla.edu
e8af1aab3d551f098082a72a6eb666b0423f557d
21514017d4208e9a20e9e625b146e5c0b51bce68
/app/blog/migrations/0001_initial.py
2f3d3a3830c412aa62800dd9a885a1ca583f3aae
[ "MIT" ]
permissive
Thewest123/blog-app-api
d419152557dd10c1d37df7281bf0b09be875aeab
c4654318100ec65995df1c6775390c32dda15307
refs/heads/main
2023-07-01T13:25:28.294979
2021-08-06T10:06:26
2021-08-06T10:06:26
392,237,230
1
0
null
null
null
null
UTF-8
Python
false
false
1,985
py
# Generated by Django 3.2.6 on 2021-08-03 10:39 import blog.models from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=80)), ('slug', models.SlugField()), ], ), migrations.CreateModel( name='Tag', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=80)), ('slug', models.SlugField()), ], ), migrations.CreateModel( name='BlogPost', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=80)), ('slug', models.SlugField()), ('content', models.TextField()), ('image', models.ImageField(null=True, upload_to=blog.models.blog_image_file_path)), ('is_for_logged_users_only', models.BooleanField(default=False, help_text='When selected, only logged-in users can view this post or see it in posts list')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('category', models.ForeignKey(default=1, on_delete=django.db.models.deletion.SET_DEFAULT, to='blog.category')), ('tags', models.ManyToManyField(to='blog.Tag')), ], ), ]
[ "info@jancerny.dev" ]
info@jancerny.dev
d3813671c7b96dd94e66342390d4574c412700a3
ef32b87973a8dc08ba46bf03c5601548675de649
/pytglib/api/functions/search_user_by_phone_number.py
218f9710f017f0467ab39dc7429e7841c3300db5
[ "MIT" ]
permissive
iTeam-co/pytglib
1a7580f0e0c9e317fbb0de1d3259c8c4cb90e721
d3b52d7c74ee5d82f4c3e15e4aa8c9caa007b4b5
refs/heads/master
2022-07-26T09:17:08.622398
2022-07-14T11:24:22
2022-07-14T11:24:22
178,060,880
10
9
null
null
null
null
UTF-8
Python
false
false
751
py
from ..utils import Object class SearchUserByPhoneNumber(Object): """ Searches a user by their phone number. Returns a 404 error if the user can't be found Attributes: ID (:obj:`str`): ``SearchUserByPhoneNumber`` Args: phone_number (:obj:`str`): Phone number to search for Returns: User Raises: :class:`telegram.Error` """ ID = "searchUserByPhoneNumber" def __init__(self, phone_number, extra=None, **kwargs): self.extra = extra self.phone_number = phone_number # str @staticmethod def read(q: dict, *args) -> "SearchUserByPhoneNumber": phone_number = q.get('phone_number') return SearchUserByPhoneNumber(phone_number)
[ "arshshia@gmail.com" ]
arshshia@gmail.com
1c23cd9bec50756f3a2bea2745a173ac45cdc882
c278b06f77cac0a2942fa2ca0636f2dc72b52505
/4.blog_project/mydjangoproject/blog/migrations/0004_auto_20190320_0504.py
f8a4d492ef89b65190cfc991db5c4e1a9cab6c16
[]
no_license
hooong/Django_study
2d27bc7d5b2ad53fa4c9e1bcd808437af98cbe09
b760ace8f562d538ad18d552388e48ed52cc78d1
refs/heads/master
2022-12-02T15:51:24.510596
2019-11-02T07:38:37
2019-11-02T07:38:37
165,012,883
5
1
null
2022-11-22T03:26:18
2019-01-10T07:35:07
Python
UTF-8
Python
false
false
318
py
# Generated by Django 2.1.5 on 2019-03-20 05:04 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blog', '0003_blog_blog_hit'), ] operations = [ migrations.AlterModelOptions( name='comment', options={}, ), ]
[ "tjrwns0529@gmail.com" ]
tjrwns0529@gmail.com
3ddc20aebdc144d9693019af06524d5ea4513712
78a28bd6b95041bfe67d8aa6a3a3c111911afaab
/18.Web Scraping with Python Scrapy - RM/03_Advanced_Techniques/news_scraper/news_scraper/settings.py
dec217105fcd124cbb665b4076642b6d93bf5eb9
[ "MIT" ]
permissive
jailukanna/Python-Projects-Dojo
8200a60ab925bf796bd39cb1977e6f0e0a575c23
98c7234b84f0afea99a091c7198342d66bbdff5b
refs/heads/master
2023-03-15T06:54:38.141189
2021-03-11T08:17:02
2021-03-11T08:17:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,212
py
# Scrapy settings for news_scraper project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'news_scraper' SPIDER_MODULES = ['news_scraper.spiders'] NEWSPIDER_MODULE = 'news_scraper.spiders' CLOSESPIDER_PAGECOUNT = 10 FEED_URI = 'news_articles.json' FEED_FORMAT = 'json' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'news_scraper (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: # DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', # } # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html # SPIDER_MIDDLEWARES = { # 'news_scraper.middlewares.NewsScraperSpiderMiddleware': 543, # } # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # DOWNLOADER_MIDDLEWARES = { # 'news_scraper.middlewares.NewsScraperDownloaderMiddleware': 543, # } # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html # EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, # } # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html # ITEM_PIPELINES = { # 'news_scraper.pipelines.NewsScraperPipeline': 300, # } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "ptyadana@users.noreply.github.com" ]
ptyadana@users.noreply.github.com
d9dcdca62c24190cf42aa047155d88fcee2cd81a
775264659445173665b153cfdc450071845939e8
/repos/models.py
257c46155a938a911e083ce14728e8c09b3e7d40
[]
no_license
ovokpus/flask-app
e19abba21413956408be8f11e99eda936de199b5
a89202ac95a9ecc37fbf1297aa0dee1b070f2dbd
refs/heads/main
2023-06-04T07:15:19.206402
2021-07-01T15:25:34
2021-07-01T15:25:34
382,059,647
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
class GitHubRepo: def __init__(self, name, language, num_stars): self.name = name self.language = language self.num_stars = num_stars def __str__(self): return f"-> {self.name} is a {self.language} repo with {self.num_stars} stars." def __repr__(self): return f"GitHubRepo({self.name}, {self.language}, {self.num_stars})"
[ "ovo@live.ca" ]
ovo@live.ca
81d70837b62ed7c9dbad2ad8927c5d723e1d4953
63e2bed7329c79bf67279f9071194c9cba88a82c
/SevOneApi/python-client/test/test_performance_metrics_settings.py
5471c91fa1f10ac623252fd1733b391f5e288962
[]
no_license
jsthomason/LearningPython
12422b969dbef89578ed326852dd65f65ab77496
2f71223250b6a198f2736bcb1b8681c51aa12c03
refs/heads/master
2021-01-21T01:05:46.208994
2019-06-27T13:40:37
2019-06-27T13:40:37
63,447,703
0
0
null
null
null
null
UTF-8
Python
false
false
1,001
py
# coding: utf-8 """ SevOne API Documentation Supported endpoints by the new RESTful API # noqa: E501 OpenAPI spec version: 2.1.18, Hash: db562e6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.performance_metrics_settings import PerformanceMetricsSettings # noqa: E501 from swagger_client.rest import ApiException class TestPerformanceMetricsSettings(unittest.TestCase): """PerformanceMetricsSettings unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPerformanceMetricsSettings(self): """Test PerformanceMetricsSettings""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.performance_metrics_settings.PerformanceMetricsSettings() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "johnsthomason@gmail.com" ]
johnsthomason@gmail.com
fda8ec9ce60357ce957ed4b4aab4f9a27ee7f128
5e213c666164548b338a519f59d8d2cb733ef289
/Tests/con_vaccini_test/epiMOX_new_model/epi/parameters_const.py
af1f3d17204a6c355a1f9977c78733303bd36781
[]
no_license
giovanniziarelli/epiMOX_SUIHTER
73fb0fd556f9c7c07d4c8d7d348cc9e206d1849b
aeaf25674ebc33ef824512fd67de471c7522868a
refs/heads/main
2023-09-04T18:11:34.193844
2021-11-16T14:55:53
2021-11-16T14:55:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,736
py
# Definition of the parameters of the models # At the moment parameters depend on space and time import numpy as np from scipy.special import erfc import scipy.interpolate as si from lmfit import Model import functools import datetime import pandas as pd # Mask function def maskParams(params,m_mask): m_mask = np.invert(m_mask) return(np.ma.compressed( np.ma.masked_array( params, mask=m_mask) )) def expgaussian(x, amplitude=1, center=0, sigma=1.0, gamma=1.0): """ an alternative exponentially modified Gaussian.""" dx = center-x return amplitude* np.exp(gamma*dx) * erfc( dx/(np.sqrt(2)*sigma)) def EMGextrapol(x,y): model = Model(expgaussian) params = model.make_params(sigma=10, gamma=0.01, amplitude=y.max(), center=y.argmax()) result = model.fit(y, params, x=x, nan_policy='propagate') return result # Utility for reading a section def readSection(content,section,values): counter = 0 data = np.zeros(values) sec_content = [] found = False if values == 0: return() # extract from section for line in content: if line.startswith(section) or found: found = True sec_content.append(line) else: pass for line in sec_content: if line.startswith(section): pass elif line.startswith(b'#'): pass elif not line: pass else: tokens = line.split() for v in tokens: data[counter] = float(v) counter = counter + 1 if counter == values: return data return def readTimes(content,section,values): counter = 0 data = [] sec_content = [] found = False if values == 0: return() # extract from section for line in content: if line.startswith(section) or found: found = True sec_content.append(line) else: pass for line in sec_content: if line.startswith(section): pass elif line.startswith(b'#'): pass elif not line: pass else: data.append(datetime.date.fromisoformat(line.decode("utf-8").replace('\n','').replace('\n',''))) counter = counter + 1 if counter == values: return data return # Params class class Params(): def __init__(self,dataStart): self.nParams = 0 self.nSites = 0 self.nPhases = 0 self.estimated = False self.times = np.zeros(0) self.dataStart = dataStart self.dataEnd = 0 self.degree = 0 self.extrapolator = [] self.scenario = np.zeros((0,2)) self.constant = np.zeros(0) self.constantSites = np.zeros(0) self.params = np.zeros((0, 0)) self.params_time = np.zeros((0,0)) self.mask = np.zeros((0, 0)) self.lower_bounds = np.zeros((0, 0)) self.upper_bounds = np.zeros((0, 0)) def omegaI_vaccines(self,t): return 1 def gammaT_vaccines(self,t): return 1 def gammaH_vaccines(self,t): return 1 def get(self): return(self.params) def getMask(self): return( np.array(self.mask, dtype=bool) ) def getConstant(self): return( np.array(self.constant, dtype=bool) ) def getConstantSites(self): return( np.array(self.constantSites, dtype=bool) ) def getLowerBounds(self): return(self.lower_bounds) def getUpperBounds(self): return(self.upper_bounds) def save(self,paramFileName): if paramFileName.lower().endswith(('.csv', '.txt')): self.__saveCsv__(paramFileName) elif paramFileName.lower().endswith('.npy'): self.__saveNpy__(paramFileName) return() def load(self,paramFileName): if paramFileName.lower().endswith(('.csv', '.txt')): self.__loadCsv__(paramFileName) elif paramFileName.lower().endswith('.npy'): self.__loadNpy__(paramFileName) return() def define_params_time(self, Tf): self.params_time = np.zeros((Tf+1,self.nParams,self.nSites)).squeeze() def compute_param_over_time(self,Tf): times = np.arange(0,Tf+1,).astype(int) for i,t in enumerate(times): self.params_time[i,self.getMask()[0]] = self.atTime(t)[self.getMask()[0]] #self.params_time[i] = self.atTime(t) def addPhase(self,ndays): self.nPhases += 1 self.times = np.append(self.times,ndays) self.params = np.append(self.params,[self.params[-1]],axis=0) self.mask = np.append(self.mask,[self.mask[-1]],axis=0) self.lower_bounds = np.append(self.lower_bounds,[self.lower_bounds[-1]],axis=0) self.upper_bounds = np.append(self.upper_bounds,[self.upper_bounds[-1]],axis=0) def getPhase(self,p,t): if self.constant[p]: phase = 0 else: phase = self.nPhases-1 for i, interval in enumerate(self.times): if ( t <= interval ): phase = i break return (phase) def atTime(self,t): params_time = np.zeros((self.nParams,self.nSites)).squeeze() transient = 3 if self.nSites==1: if self.dataEnd>0 and t>self.dataEnd: m = 1 if len(self.scenario) > 0: d,s = self.scenario.transpose() i = np.searchsorted(d,t,side='right')-1 if i>=0: if len(d)==1: for q in range(self.nParams): if i==0 and q==0 and (t-d[0])<=4: transient = 4 params_time[0] = self.params[-1, 0] * (1 - (t - d[0]) / transient) + \ self.params[-1, 0] * s[0] * (t - d[0]) / transient #elif q==3: # params_time[q] = np.maximum(self.scenario_extrapolator[q](t)*self.omegaI_vaccines(t), 0) elif q==9: params_time[q] = np.maximum(self.scenario_extrapolator[q](t)*self.gammaT_vaccines(t), 0) elif q==10: params_time[q] = np.maximum(self.scenario_extrapolator[q](t)*self.gammaH_vaccines(t), 0) else: params_time[q] = np.maximum(self.scenario_extrapolator[q](t), 0) return params_time else: t = d[0] - 1 m = s[i] #if len(d)==1: # for q in range(self.nParams): # params_time[q] = np.maximum(self.scenario_extrapolator[q](t), 0) # return params_time params_time = np.array(self.params[-1]) if type(self.degree)==int: for q in range(self.nParams): if q==0: params_time[q] = np.maximum(self.extrapolator[q](t) * m,0) elif q==3: params_time[q] = np.maximum(self.extrapolator[q](t)*self.omegaI_vaccines(t), 0) elif q==9: params_time[q] = np.maximum(self.extrapolator[q](t)*self.gammaT_vaccines(t), 0) elif q==10: params_time[q] = np.maximum(self.extrapolator[q](t)*self.gammaH_vaccines(t), 0) else: params_time[q] = np.maximum(self.extrapolator[q](t),0) else: params_time[0] = self.extrapolator(x=t) * m params_time[3] *= self.omegaI_vaccines(t) params_time[9] *= self.gammaT_vaccines(t) params_time[10] *= self.gammaH_vaccines(t) else: for p in range(self.nParams): phase = self.getPhase(p,t) phasetime = self.times[phase - 1] if (t > phasetime + transient) or (phase == 0) or (abs(t-self.dataEnd)<6): params_time[p] = self.params[phase,p] else: params_time[p] = self.params[ phase-1 , p ]*(1-(t-phasetime)/transient)+self.params[ phase , p ]*(t-phasetime)/transient if p==9: params_time[p] *= self.gammaT_vaccines(t) elif p==10: params_time[p] *= self.gammaH_vaccines(t) else: if self.dataEnd>0 and t>self.dataEnd: for p in range(self.nSites): m = 1 if len(self.scenario) > 0: d,s = self.scenario[p].transpose() i = np.searchsorted(d,t,side='right')-1 if i>=0: if len(d) == 1: for q in range(self.nParams): params_time[q,p] = np.maximum(self.scenario_extrapolator[p][q](t), 0) return params_time else: t = d[0] - 1 m = s[i] params_time[:,p] = np.array(self.params[-1,:,p]) if type(self.degree)==int: for q in range(self.nParams): if q==0: params_time[q,p] = np.maximum(self.extrapolator[p][q](t) * m,0) else: params_time[q,p] = np.maximum(self.extrapolator[p][q](t),0) else: params_time[0,p] = self.extrapolator[p](x=t) * m else: for p in range(self.nParams): if self.constantSites[p]: phase = self.getPhase(p, t) phasetime = self.times[phase - 1] if (t > phasetime + transient) or phase == 0 or (abs(t-self.dataEnd)<6): params_time[p,:] = self.params[phase, p, 0] else: params_time[p,:] = self.params[phase - 1, p, 0] * (1 - (t - phasetime) / transient) + self.params[phase, p, 0] * (t - phasetime) / transient else: for s in range(self.nSites): phase = self.getPhase(p, t) phasetime = self.times[phase - 1] if (t > phasetime + transient) or phase == 0 or (abs(t-self.dataEnd)<6): params_time[p,s] = self.params[phase, p, s] else: params_time[p,s] = self.params[phase - 1, p, s] * (1 - (t - phasetime) / transient) + self.params[phase, p, s] * (t - phasetime) / transient return params_time def atPhase(self,i): return(self.params[ i , ...]) def atSite(self,i): # works only if more than 1 site if self.nSites > 1: return(self.params[ ... , i ]) return () def forecast(self, DPC_time, Tf, deg, scenarios=None): if DPC_time>=Tf: return () self.degree = deg self.dataEnd = DPC_time tmp_times = np.concatenate(([0],self.times,[self.dataEnd])) if self.nSites == 1: if type(self.degree)==int: x = tmp_times[-(deg+1):] self.extrapolator = [] for q in range(self.nParams): y = self.get()[-(deg+1):,q] self.extrapolator.append(np.poly1d(np.polyfit(x,y,self.degree))) elif self.degree == 'exp': x = tmp_times[1:] y = self.get()[:,0] EMG = EMGextrapol(x,y) self.extrapolator = functools.partial(EMG.eval,**EMG.best_values) else: self.extrapolator = [] if type(self.degree)==int: for p in range(self.nSites): tmp_extrapolator = [] x = tmp_times[-(deg+1):] for q in range(self.nParams): y = self.get()[-(deg+1):,q,p] tmp_extrapolator.append(np.poly1d(np.polyfit(x,y,self.degree))) self.extrapolator.append(tmp_extrapolator) elif self.degree == 'exp': x = tmp_times[1:] for p in range(self.nSites): y = self.get()[:,0,p] EMG = EMGextrapol(x,y) self.extrapolator.append(functools.partial(EMG.eval,**EMG.best_values)) if scenarios is not None: self.scenario = scenarios if self.nSites != 1: if len(scenarios.shape) == 2: self.scenario = np.tile(self.scenario,(self.nSites,1,1)) return () def extrapolate_scenario(self): if self.nSites == 1: if self.scenario.shape[0] != 1: return() d,s = self.scenario.transpose() tmp_times = np.concatenate(([0],self.times,[self.dataEnd],d)) if type(self.degree)==int: x = tmp_times[-(self.degree+1):] #x = tmp_times[-1:] self.scenario_extrapolator = [] for q in range(self.nParams): if q==0: y = np.concatenate((self.get()[:,q],self.extrapolator[q](d-1)*s)) else: y = np.concatenate((self.get()[:,q],self.extrapolator[q](d))) self.scenario_extrapolator.append(np.poly1d(np.polyfit(x,y[-(self.degree+1):],self.degree))) #self.scenario_extrapolator.append(np.poly1d(np.polyfit(x,y[-1:],0))) else: if self.scenario.shape[1] != 1: return() self.scenario_extrapolator = [] for p in range(self.nSites): d,s = self.scenario[p].transpose() tmp_times = np.concatenate(([0],self.times,[self.dataEnd],d)) if type(self.degree)==int: x = tmp_times[-(self.degree+1):] tmp_scenario_extrapolator = [] for q in range(self.nParams): if q==0: y = np.concatenate((self.get()[:,q,p],self.extrapolator[p][q](d-1)*s)) else: y = np.concatenate((self.get()[:,q,p],self.extrapolator[p][q](d))) tmp_scenario_extrapolator.append(np.poly1d(np.polyfit(x,y[-(self.degree+1):],self.degree))) self.scenario_extrapolator.append(tmp_scenario_extrapolator) return () # def vaccines_effect_omega(self): # age_data = pd.read_csv('https://raw.githubusercontent.com/giovanniardenghi/dpc-covid-data/main/SUIHTER/stato_clinico.csv') # vaccines = pd.read_csv('https://raw.githubusercontent.com/italia/covid19-opendata-vaccini/master/dati/somministrazioni-vaccini-latest.csv') # age_groups = {'0-9': '0-19', # '10-19': '0-19', # '20-29': '20-39', # '30-39': '20-39', # '40-49': '40-59', # '50-59': '40-59', # '60-69': '60-79', # '70-79': '60-79', # '80-89': '80-89', # '>90': '90+'} # vaccines['data_somministrazione'] = pd.to_datetime(vaccines.data_somministrazione) # vaccines[ # vaccines = vaccines.groupby(['data_somministrazione',age_groups],level=[0,1]).sum() # print(vaccines) # age_data['Data'] = pd.to_datetime(age_data.Data) # age_data = age_data[age_data['Data']>=pd.to_datetime(self.dataStart)] # age_data = age_data[age_data['Data']<=pd.to_datetime(self.dataStart)+pd.Timedelta(self.dataEnd,'days')] # ages_dfs = [x[['Data','Isolated','Hospitalized']].set_index('Data') for ages,x in age_data.groupby('Età')] # f_I = [si.interp1d(range(len(x)),x.Isolated.rolling(window=7,min_periods=1,center=True).mean(),fill_value="extrapolate") for x in ages_dfs] # f_H = [si.interp1d(range(len(x)),x.Hospitalized.rolling(window=7,min_periods=1,center=True).mean(),fill_value="extrapolate") for x in ages_dfs] # ages_dfs = [x.reset_index(drop=True) for x in ages_dfs] # medie = pd.DataFrame(columns=['Isolated','Hospitalized']) # for i,x in enumerate(ages_dfs): # medie = medie.append(x[int(self.times[-1])+1:].mean(),ignore_index=True) # def omegaI_reduction(t): # multiplier=0 # for i,x in enumerate(ages_dfs): # multiplier += np.clip(f_H[i](t),0,1)**2/np.clip(f_I[i](t-5),0,1) # return multiplier/np.sum(medie.Hospitalized.values**2/medie.Isolated.values) # self.omegaI_vaccines = omegaI_reduction def vaccines_effect_omega(self): age_data = pd.read_csv('https://raw.githubusercontent.com/giovanniardenghi/dpc-covid-data/main/SUIHTER/stato_clinico.csv') age_data['Data'] = pd.to_datetime(age_data.Data) age_data = age_data[age_data['Data']>=pd.to_datetime(self.dataStart)] age_data = age_data[age_data['Data']<=pd.to_datetime(self.dataStart)+pd.Timedelta(self.dataEnd,'days')] ages_dfs = [x[['Data','Isolated','Hospitalized']].set_index('Data') for ages,x in age_data.groupby('Età')] f_I = [si.interp1d(range(len(x)),x.Isolated.rolling(window=7,min_periods=1,center=True).mean(),fill_value="extrapolate") for x in ages_dfs] f_H = [si.interp1d(range(len(x)),x.Hospitalized.rolling(window=7,min_periods=1,center=True).mean(),fill_value="extrapolate") for x in ages_dfs] ages_dfs = [x.reset_index(drop=True) for x in ages_dfs] medie = pd.DataFrame(columns=['Isolated','Hospitalized']) for i,x in enumerate(ages_dfs): medie = medie.append(x[int(self.times[-1])+1:].mean(),ignore_index=True) def omegaI_reduction(t): multiplier=0 for i,x in enumerate(ages_dfs): multiplier += np.clip(f_H[i](t),0,1)**2/np.clip(f_I[i](t-5),0,1) return multiplier/np.sum(medie.Hospitalized.values**2/medie.Isolated.values) self.omegaI_vaccines = omegaI_reduction def vaccines_effect_gammaT(self): age_data = pd.read_csv('https://raw.githubusercontent.com/giovanniardenghi/dpc-covid-data/main/SUIHTER/stato_clinico.csv') age_data['Data'] = pd.to_datetime(age_data.Data) age_data = age_data[age_data['Data']>=pd.to_datetime(self.dataStart)] age_data = age_data[age_data['Data']<=pd.to_datetime(self.dataStart)+pd.Timedelta(self.dataEnd,'days')] ages_dfs = [x[['Data','Threatened','Extinct','Daily_extinct']].set_index('Data') for ages,x in age_data.groupby('Età')] f_T = [si.interp1d(range(len(x)),x.Threatened.rolling(window=7,min_periods=1,center=True).mean(),kind='nearest',fill_value="extrapolate") for x in ages_dfs] f_dE = [si.interp1d(range(len(x)),x.Daily_extinct.rolling(window=14,min_periods=1,center=True).mean(),kind='nearest',fill_value="extrapolate") for x in ages_dfs] f_E = [si.interp1d(range(len(x)),x.Extinct.rolling(window=7,min_periods=1,center=True).mean(),kind='nearest',fill_value="extrapolate") for x in ages_dfs] ages_dfs = [x.reset_index(drop=True) for x in ages_dfs] medie = pd.DataFrame(columns=['Threatened','Extinct','Daily_etinct']) for i,x in enumerate(ages_dfs): medie = medie.append(x[:int(self.times[6])].mean(),ignore_index=True) global gammaT_reduction def gammaT_reduction(t): multiplier=0 for i,x in enumerate(ages_dfs): #multiplier += np.clip(f_E[i](t),0,1)*np.clip(f_dE[i](t),0,1)/np.clip(f_T[i](t-5),1e-5,1) multiplier += np.clip(f_dE[i](t),0,1)*medie.iloc[i].Daily_extinct/medie.iloc[i].Threatened return np.max(multiplier/np.sum(medie.Extinct.values*medie.Daily_extinct.values/medie.Threatened),0) self.gammaT_vaccines = gammaT_reduction def vaccines_effect_gammaH(self): age_data = pd.read_csv('https://raw.githubusercontent.com/giovanniardenghi/dpc-covid-data/main/SUIHTER/stato_clinico.csv') age_data['Data'] = pd.to_datetime(age_data.Data) age_data = age_data[age_data['Data']>=pd.to_datetime(self.dataStart)] age_data = age_data[age_data['Data']<=pd.to_datetime(self.dataStart)+pd.Timedelta(self.dataEnd,'days')] ages_dfs = [x[['Data','Hospitalized','Extinct','Daily_extinct']].set_index('Data') for ages,x in age_data.groupby('Età')] f_H = [si.interp1d(range(len(x)),x.Hospitalized.rolling(window=7,min_periods=1,center=True).mean(),kind='nearest',fill_value="extrapolate") for x in ages_dfs] f_dE = [si.interp1d(range(len(x)),x.Daily_extinct.rolling(window=14,min_periods=1,center=True).mean(),kind='nearest',fill_value="extrapolate") for x in ages_dfs] f_E = [si.interp1d(range(len(x)),x.Extinct.rolling(window=7,min_periods=1,center=True).mean(),kind='nearest',fill_value="extrapolate") for x in ages_dfs] ages_dfs = [x.reset_index(drop=True) for x in ages_dfs] medie = pd.DataFrame(columns=['Hospitalized','Extinct','Daily_extinct']) for i,x in enumerate(ages_dfs): medie = medie.append(x[:int(self.times[6])].mean(),ignore_index=True) global gammaH_reduction def gammaH_reduction(t): multiplier=0 for i,x in enumerate(ages_dfs): #multiplier += np.clip(f_E[i](t),0,1)*np.clip(f_dE[i](t),0,1)/np.clip(f_T[i](t-5),1e-5,1) multiplier += np.clip(f_dE[i](t),0,1)*medie.iloc[i].Daily_extinct/medie.iloc[i].Hospitalized return np.max(multiplier/np.sum(medie.Extinct.values*medie.Daily_extinct.values/medie.Hospitalized),0) self.gammaH_vaccines = gammaH_reduction def __saveCsv__(self,paramFileName): with open(paramFileName, "w") as f: print(f"[nParams]", file=f) print(self.nParams, file=f) print(f"[nSites]", file=f) print(self.nSites, file=f) print(f"[nPhases]", file=f) print(self.nPhases, file=f) print(f"[times]", file=f) if len(self.times) != 0: tmp = '\n'.join(map(lambda x: (self.dataStart + datetime.timedelta(days=int(x))).isoformat(), self.times)) print(tmp, file=f) print(f"[constant]", file=f) if len(self.constant) != 0: tmp = ' '.join(('%f' % x).rstrip('0').rstrip('.') \ for x in self.constant) print(tmp, file=f) if len(self.constantSites) != 0: print(f"[constantSites]", file=f) tmp = ' '.join(('%f' % x).rstrip('0').rstrip('.') \ for x in self.constantSites) print(tmp, file=f) print(f"[Estimated]", file=f) print(int(self.estimated),file=f) print("", file=f) print(f"[params]", file=f) if len(self.params) != 0: if self.nSites==1: tmp = '\n'.join(' '.join(np.format_float_positional(x,precision=8,pad_right=8).rstrip('0').rstrip('.') \ for x in y) for y in self.params) else: tmp = '\n\n'.join('\n'.join(' '.join(np.format_float_positional(x,precision=8,pad_right=8).rstrip('0').rstrip('.') \ for x in y) for y in z) for z in np.moveaxis(self.params,-1,0)) print(tmp, file=f) print("", file=f) print(f"[mask]", file=f) if len(self.mask) != 0: if self.nSites == 1: tmp = '\n'.join(' '.join(('%f' % x).rstrip('0').rstrip('.') \ for x in y) for y in self.mask) else: tmp = '\n\n'.join('\n'.join(' '.join(('%f' % x).rstrip('0').rstrip('.') \ for x in y) for y in z) for z in np.moveaxis(self.mask,-1,0)) print(tmp, file=f) print("", file=f) print(f"[l_bounds]", file=f) if len(self.lower_bounds) != 0: if self.nSites == 1: tmp = '\n'.join(' '.join(('%f' % x).rstrip('0').rstrip('.') \ for x in y) for y in self.lower_bounds) else: tmp = '\n\n'.join('\n'.join(' '.join(('%f' % x).rstrip('0').rstrip('.') \ for x in y) for y in z) for z in np.moveaxis(self.lower_bounds,-1,0)) print(tmp, file=f) print("", file=f) print(f"[u_bounds]", file=f) if len(self.upper_bounds) != 0: if self.nSites == 1: tmp = '\n'.join(' '.join(('%f' % x).rstrip('0').rstrip('.') \ for x in y) for y in self.upper_bounds) else: tmp = '\n\n'.join('\n'.join(' '.join(('%f' % x).rstrip('0').rstrip('.') \ for x in y) for y in z) for z in np.moveaxis(self.upper_bounds,-1,0)) print(tmp, file=f) def __saveNpy__(self,paramFileName): with open(paramFileName, 'wb') as f: np.savez(f, nParams = self.nParams, \ nSites = self.nSites, \ nPhases = self.nPhases, \ estimated = self.estimated,\ times = self.times, \ constant = self.constant, \ params = self.params, \ mask = self.mask, \ lower_bounds = self.lower_bounds, \ upper_bounds = self.upper_bounds ) def __loadCsv__(self,paramFileName): with open(paramFileName, 'rb') as f: content = f.readlines() self.nParams = int(readSection(content,b'[nParams]',1)) try: self.nSites = int(readSection(content,b'[nSites]',1)) except: self.nSites = 1 self.nPhases = int(readSection(content,b'[nPhases]',1)) tmp = readTimes(content, b'[times]', self.nPhases - 1) self.times = np.reshape([int((x-self.dataStart).days) for x in tmp],self.nPhases - 1) try: self.constant = np.reshape( \ readSection(content, b'[constant]', self.nParams), \ self.nParams) except: self.constant = np.zeros(self.nParams) if self.nSites > 1: try: self.constantSites = np.reshape( \ readSection(content, b'[constantSites]', self.nParams), \ self.nParams) except: self.constantSites = np.zeros(self.nParams) try: self.estimated = bool(readSection(content,b'[Estimated]',1)) except: self.estimated = False nParams = self.nParams * self.nPhases if not self.estimated else self.nParams * self.nPhases * self.nSites self.params = readSection(content, b'[params]', nParams) if not self.estimated: self.params = np.tile(self.params, (self.nSites,1)) self.params = np.reshape(self.params, (self.nSites, self.nPhases, self.nParams)) self.params=np.moveaxis(self.params,0,-1).squeeze() self.mask = readSection(content, b'[mask]', nParams) if not self.estimated: self.mask = np.tile(self.mask, (self.nSites,1)) self.mask = np.reshape(self.mask, (self.nSites, self.nPhases, self.nParams)) self.mask=np.moveaxis(self.mask,0,-1).squeeze() self.lower_bounds = readSection(content, b'[l_bounds]', nParams) if not self.estimated: self.lower_bounds = np.tile(self.lower_bounds, (self.nSites,1)) self.lower_bounds = np.reshape(self.lower_bounds, (self.nSites,self.nPhases, self.nParams)) self.lower_bounds = np.moveaxis(self.lower_bounds,0,-1).squeeze() self.upper_bounds = readSection(content, b'[u_bounds]', nParams) if not self.estimated: self.upper_bounds = np.tile(self.upper_bounds, (self.nSites,1)) self.upper_bounds = np.reshape(self.upper_bounds, (self.nSites, self.nPhases, self.nParams)) self.upper_bounds = np.moveaxis(self.upper_bounds,0,-1).squeeze() def __loadNpy__(self,paramFileName): with open(paramFileName, 'rb') as f: data = np.load(f) self.nParams = data['nParams'] try: self.nSites = data['nSites'] except: self.nSites = 1 self.nPhases = data['nPhases'] self.times = data['times'] try: self.constant = data['constant'] except: self.constant= np.zeros(self.nPhases) try: self.estimated = data['estimated'] except: self.estimated = False self.params = data['params'] self.mask = data['mask'] self.lower_bounds = data['lower_bounds'] self.upper_bounds = data['upper_bounds']
[ "giovanni.ardenghi@polimi.it" ]
giovanni.ardenghi@polimi.it
c45e8e0400ff9d0a80d3861ee9d4f16481928447
845e3c428e18232777f17b701212dcbb1b72acc1
/lib/fast_rcnn/test_upper_body.py
a0d72a59ea4af92083ed2328b831359d2c136799
[ "BSD-2-Clause", "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
chuanxinlan/ohem-1
dd10b2f5ff15e81ab9e42e936bb44d98e01c6795
b7552ceb8ed1e9768e0d522258caa64b79834b54
refs/heads/master
2021-09-16T18:31:25.651432
2018-06-23T10:09:24
2018-06-23T10:09:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,043
py
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Test a Fast R-CNN network on an imdb (image database).""" from fast_rcnn.config import cfg, get_output_dir from fast_rcnn.bbox_transform import clip_boxes, bbox_transform_inv import argparse from utils.timer import Timer import numpy as np import cv2 import caffe from fast_rcnn.nms_wrapper import nms import cPickle from utils.blob import im_list_to_blob import os from utils.cython_bbox import bbox_vote def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_shape = im_orig.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) processed_ims = [] im_scale_factors = [] for target_size in cfg.TEST.SCALES: im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than MAX_SIZE if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE: im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max) # Make width and height be multiples of a specified number im_scale_x = np.floor(im.shape[1] * im_scale / cfg.TEST.SCALE_MULTIPLE_OF) * cfg.TEST.SCALE_MULTIPLE_OF / im.shape[1] im_scale_y = np.floor(im.shape[0] * im_scale / cfg.TEST.SCALE_MULTIPLE_OF) * cfg.TEST.SCALE_MULTIPLE_OF / im.shape[0] im = cv2.resize(im_orig, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=cv2.INTER_LINEAR) im_scale_factors.append(np.array([im_scale_x, im_scale_y, im_scale_x, im_scale_y])) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, np.array(im_scale_factors) def _get_rois_blob(im_rois, im_scale_factors): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid """ rois, levels = _project_im_rois(im_rois, im_scale_factors) rois_blob = np.hstack((levels, rois)) return rois_blob.astype(np.float32, copy=False) def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (list): image pyramid levels used by each projected RoI """ im_rois = im_rois.astype(np.float, copy=False) if len(scales) > 1: widths = im_rois[:, 2] - im_rois[:, 0] + 1 heights = im_rois[:, 3] - im_rois[:, 1] + 1 areas = widths * heights scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2) diff_areas = np.abs(scaled_areas - 224 * 224) levels = diff_areas.argmin(axis=1)[:, np.newaxis] else: levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) rois = im_rois * scales[levels] return rois, levels def _get_blobs(im, rois): """Convert an image and RoIs within that image into network inputs.""" blobs = {'data' : None, 'rois' : None} blobs['data'], im_scale_factors = _get_image_blob(im) if not cfg.TEST.HAS_RPN: blobs['rois'] = _get_rois_blob(rois, im_scale_factors) return blobs, im_scale_factors def im_detect(net, im, _t, boxes=None): """Detect object classes in an image given object proposals. Arguments: net (caffe.Net): Fast R-CNN network to use im (ndarray): color image to test (in BGR order) boxes (ndarray): R x 4 array of object proposals or None (for RPN) Returns: scores (ndarray): R x K array of object class scores (K includes background as object category 0) boxes (ndarray): R x (4*K) array of predicted bounding boxes """ _t['im_preproc'].tic() blobs, im_scales = _get_blobs(im, boxes) # When mapping from image ROIs to feature map ROIs, there's some aliasing # (some distinct image ROIs get mapped to the same feature ROI). # Here, we identify duplicate feature ROIs, so we only compute features # on the unique subset. if cfg.TEST.HAS_RPN: im_blob = blobs['data'] blobs['im_info'] = np.array( [np.hstack((im_blob.shape[2], im_blob.shape[3], im_scales[0]))], dtype=np.float32) # reshape network inputs net.blobs['data'].reshape(*(blobs['data'].shape)) if cfg.TEST.HAS_RPN: net.blobs['im_info'].reshape(*(blobs['im_info'].shape)) else: net.blobs['rois'].reshape(*(blobs['rois'].shape)) # do forward net.blobs['data'].data[...] = blobs['data'] #forward_kwargs = {'data': blobs['data'].astype(np.float32, copy=False)} if cfg.TEST.HAS_RPN: net.blobs['im_info'].data[...] = blobs['im_info'] #forward_kwargs['im_info'] = blobs['im_info'].astype(np.float32, copy=False) else: net.blobs['rois'].data[...] = blobs['rois'] #forward_kwargs['rois'] = blobs['rois'].astype(np.float32, copy=False) _t['im_preproc'].toc() _t['im_net'].tic() blobs_out = net.forward() _t['im_net'].toc() #blobs_out = net.forward(**forward_kwargs) _t['im_postproc'].tic() if cfg.TEST.HAS_RPN: assert len(im_scales) == 1, "Only single-image batch implemented" rois = net.blobs['rois'].data.copy() # unscale back to raw image space boxes = rois[:, 1:5] / im_scales[0] if cfg.TEST.SVM: # use the raw scores before softmax under the assumption they # were trained as linear SVMs scores = net.blobs['cls_score'].data else: # use softmax estimated probabilities scores = blobs_out['cls_prob'] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = blobs_out['bbox_pred'] pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = clip_boxes(pred_boxes, im.shape) #---------------_cg_ added upper body -------------------- scores_upper_body = blobs_out['cls_prob_upper_body'] rois_upper_body = rois.copy() rois_upper_body[:, 4] = \ (rois_upper_body[:, 2] + rois_upper_body[:, 4]) / 2 boxes_upper_body = rois_upper_body[:, 1:5] / im_scales[0] upper_body_deltas = blobs_out['upper_body_pred'] pred_upper_body = bbox_transform_inv(boxes_upper_body, \ upper_body_deltas) pred_upper_body = clip_boxes(pred_upper_body, im.shape) #---------------end _cg_ added upper body -------------------- _t['im_postproc'].toc() return scores, pred_boxes, scores_upper_body, pred_upper_body def vis_detections(im, class_name, dets, thresh=0.3): """Visual debugging of detections.""" import matplotlib.pyplot as plt im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: plt.cla() plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.title('{} {:.3f}'.format(class_name, score)) plt.show() def apply_nms(all_boxes, thresh): """Apply non-maximum suppression to all predicted boxes output by the test_net method. """ num_classes = len(all_boxes) num_images = len(all_boxes[0]) nms_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(num_classes)] for cls_ind in xrange(num_classes): for im_ind in xrange(num_images): dets = all_boxes[cls_ind][im_ind] if dets == []: continue # CPU NMS is much faster than GPU NMS when the number of boxes # is relative small (e.g., < 10k) # TODO(rbg): autotune NMS dispatch keep = nms(dets, thresh, force_cpu=True) if len(keep) == 0: continue nms_boxes[cls_ind][im_ind] = dets[keep, :].copy() return nms_boxes def test_net(net, imdb, max_per_image=100, thresh=0.05, vis=False): """Test a Fast R-CNN network on an image database.""" num_images = len(imdb.image_index) # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes + 1)] output_dir = get_output_dir(imdb, net) # timers _t = {'im_preproc': Timer(), 'im_net' : Timer(), 'im_postproc': Timer(), 'misc' : Timer()} if not cfg.TEST.HAS_RPN: roidb = imdb.roidb for i in xrange(num_images): # filter out any ground truth boxes if cfg.TEST.HAS_RPN: box_proposals = None else: # The roidb may contain ground-truth rois (for example, if the roidb # comes from the training or val split). We only want to evaluate # detection on the *non*-ground-truth rois. We select those the rois # that have the gt_classes field set to 0, which means there's no # ground truth. box_proposals = roidb[i]['boxes'][roidb[i]['gt_classes'] == 0] im = cv2.imread(imdb.image_path_at(i)) scores, boxes, scores_upper_body, boxes_upper_body = \ im_detect(net, im, _t, box_proposals) _t['misc'].tic() # skip j = 0, because it's the background class for j in xrange(1, imdb.num_classes): inds = np.where(scores[:, j] > thresh)[0] cls_scores = scores[inds, j] cls_boxes = boxes[inds, j*4:(j+1)*4] cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \ .astype(np.float32, copy=False) keep = nms(cls_dets, cfg.TEST.NMS) dets_NMSed = cls_dets[keep, :] ''' if cfg.TEST.BBOX_VOTE: cls_dets = bbox_vote(dets_NMSed, cls_dets) else: cls_dets = dets_NMSed ''' cls_dets = dets_NMSed #--------------- _cg_ added upper body -------------------- inds = np.where(scores_upper_body[:, j] > thresh)[0] cls_scores_upper_body = scores_upper_body[inds, j] cls_boxes_upper_body = boxes_upper_body[inds, j*4:(j+1)*4] cls_dets_upper_body = np.hstack((cls_boxes_upper_body, cls_scores_upper_body[:, np.newaxis])) \ .astype(np.float32, copy=False) keep = nms(cls_dets_upper_body, cfg.TEST.NMS) dets_NMSed = cls_dets_upper_body[keep, :] cls_dets_upper_body = dets_NMSed #--------------- end _cg_ added upper body -------------------- if vis: vis_detections(im, imdb.classes[j], cls_dets) all_boxes[j][i] = cls_dets all_boxes[j + 1][i] = cls_dets_upper_body ''' # Limit to max_per_image detections *over all classes* if max_per_image > 0: image_scores = np.hstack([all_boxes[j][i][:, -1] for j in xrange(1, imdb.num_classes)]) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] for j in xrange(1, imdb.num_classes): keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0] all_boxes[j][i] = all_boxes[j][i][keep, :] ''' _t['misc'].toc() print 'im_detect: {:d}/{:d} net {:.3f}s preproc {:.3f}s postproc {:.3f}s misc {:.3f}s' \ .format(i + 1, num_images, _t['im_net'].average_time, _t['im_preproc'].average_time, _t['im_postproc'].average_time, _t['misc'].average_time) det_file = os.path.join(output_dir, 'detections.pkl') with open(det_file, 'wb') as f: cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL) # print 'Evaluating detections' # imdb.evaluate_detections(all_boxes, output_dir)
[ "cg@example.com" ]
cg@example.com
1e318f5508cf947742b1b1bc218b4f29dba2cbbb
611129837d052598d1d310149dda24b252616d0c
/enroll/models.py
16bae801bf969caf48d6cf4622470cc8f340abc1
[]
no_license
Monalipython/Student
b1e169b1ff9550dbde494e0f30f3d79d8cabe6fa
94a470ad1c28acfbe13ed833725c8e5f3d98d077
refs/heads/master
2023-08-17T13:08:13.039098
2021-09-19T08:04:41
2021-09-19T08:04:41
408,050,497
0
0
null
null
null
null
UTF-8
Python
false
false
524
py
from django.db import models # Create your models here. class Profile(models.Model): name = models.CharField(max_length=100) email = models.EmailField(max_length=100) password = models.CharField(max_length=100) class Book(models.Model): title = models.CharField(max_length=100) author = models.CharField(max_length=100) pdf = models.FileField(upload_to='books/pdfs/') cover = models.ImageField(upload_to='books/covers/', null=True, blank=True) def __str__(self): return self.title
[ "monali.nimkar7@gmail.com" ]
monali.nimkar7@gmail.com
e8ca07a932c0963eadc432912f1b306cfd4bce63
efb3f14e40cd89135aa2ee53c504da96844f74d1
/productsapi/views.py
8b7e5a4421bff7afe844605cb4f1fbb5c1f47876
[]
no_license
ganesh7856/Assignment
da8424cdd01892f74a01adfeb2709e460e468d96
1fd7ce36223dd72d6e218c8b7b4ac89f2e9411da
refs/heads/master
2023-01-13T00:37:42.484196
2020-11-21T20:06:12
2020-11-21T20:06:12
314,884,448
0
0
null
null
null
null
UTF-8
Python
false
false
1,963
py
from django.shortcuts import render # Create your views here. from rest_framework import viewsets from rest_framework.views import APIView from django.views.generic import ListView from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from productsapi.serializer import ProductSerializer, CategorySerializer from products.models import Product, Category class CategoryViewSet(viewsets.ModelViewSet): queryset = Category.objects.all() serializer_class = CategorySerializer search_fields=('name',) ordering_fields = ('name',) authentication_classes = [TokenAuthentication, ] permission_classes = [IsAuthenticated, ] class ProductViewSet(viewsets.ModelViewSet): queryset = Product.objects.all() serializer_class = ProductSerializer lookup_field = "slug" search_fields = ('name','slug','price') ordering_fields = ('name','slug','price') authentication_classes = [TokenAuthentication, ] permission_classes = [IsAuthenticated, ] # class ProductsDetailView(APIView): # queryset = Product.objects.all() # serializer_class = ProductSerializer # # def get(self, request, *args, **kwargs): # object = self.get_object() # object.count = int(object.count) + 1 # object.save() # return super(ProductsDetailView, self).get(self, request, *args, **kwargs) class CategoryDetailView(viewsets.ModelViewSet): queryset = Category.objects.order_by('name') serializer_class = CategorySerializer authentication_classes = [TokenAuthentication, ] permission_classes = [IsAuthenticated, ] def list(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) for obj in queryset: obj.view_count = int(obj.view_count) + 1 obj.save(update_fields=("view_count", )) return super().list(request, *args, **kwargs)
[ "ganesh.a.jadhav7856" ]
ganesh.a.jadhav7856
8675e6a6dfc3b446db0711fdad5cf5ba6734b1b7
3e2616d26d909634a8dd05877281368872d01ade
/Backup/BigbrotherClass.py
89b8613de19b418d662d98e551a27f2a61d35555
[]
no_license
ENSAKIC/BigBrother
a627f6ab2253d8f87c7fb9cb8de83cdd6ae6f3ad
b8c9d889a5b27ce0517b23e329a0f6e91a83f836
refs/heads/master
2021-01-19T08:20:32.059715
2013-04-28T21:30:38
2013-04-28T21:30:38
9,736,449
1
0
null
null
null
null
UTF-8
Python
false
false
654
py
"""Subclass of BBMain, which is generated by wxFormBuilder.""" import wx import Bigbrother import tesseract import locale # Implementing BBMain class BigbrotherClass( Bigbrother.BBMain ): def __init__( self, parent ): Bigbrother.BBMain.__init__( self, parent ) locale.setlocale(locale.LC_ALL, 'C') # Init the Tesseract API api = tesseract.TessBaseAPI() api.Init(".","fra",tesseract.OEM_DEFAULT) api.SetVariable("tessedit_char_whitelist", "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ") api.SetPageSegMode(tesseract.PSM_AUTO) # Handlers for BBMain events. def EventFileChanged( self, event ): # TODO: Implement EventFileChanged pass
[ "darkvador@DeathStar.(none)" ]
darkvador@DeathStar.(none)
9febec6bd7f0a74d7a44f2976d85b2d2cc702447
baaef08af947854bbdcb6d7f92292fbb786d9014
/bridge_skeleton/models/core/product_template.py
e2f24767c7eaf05748e21cacff0cc55c8640cdfa
[]
no_license
hafzalabbas/crm_demo
b0b5e2df79eddb4455c84d893ea24fb1836955bf
d14012a6dff1abd51aebe33a4c08ac8713ae05e9
refs/heads/master
2022-11-30T22:11:05.224969
2020-05-27T16:39:58
2020-05-27T16:39:58
254,611,819
0
0
null
null
null
null
UTF-8
Python
false
false
5,345
py
# -*- coding: utf-8 -*- ########################################################################## # # Copyright (c) 2015-Present Webkul Software Pvt. Ltd. (<https://webkul.com/>) # See LICENSE file for full copyright and licensing details. # License URL : <https://store.webkul.com/license.html/> # ########################################################################## import binascii import requests from odoo import fields, api, models from ..core.res_partner import _unescape import logging _logger = logging.getLogger(__name__) class ProductTemplate(models.Model): _inherit = "product.template" config_sku = fields.Char(string='SKU') connector_mapping_ids = fields.One2many( string='Ecomm Channel Mappings', comodel_name='connector.template.mapping', inverse_name='name', copy=False ) connector_categ_ids = fields.One2many( string='Connector Extra Category', comodel_name='connector.extra.category', inverse_name='product_tmpl_id', copy=False ) @api.model def create(self, vals): _logger.info("****create*******ProductTemplate**************** : %r", vals.keys()) ctx = dict(self._context or {}) _logger.info("*****create*****ctx******ProductTemplate*********** : %r", ctx.keys()) ecomm_cannels = dict(self.env['connector.snippet']._get_ecomm_extensions()).keys() instance_id = ctx.get('instance_id') if any(key in ctx for key in ecomm_cannels): ecomm_id = vals.pop('ecomm_id', 0) vals = self.update_vals(vals, instance_id, True) response = super(ProductTemplate, self).create(vals) if any(key in ctx for key in ecomm_cannels) and 'configurable' in ctx: channel = "".join(list(set(ctx.keys())&set(ecomm_cannels))) or 'Ecommerce' + str(instance_id) self.env['connector.snippet'].create_odoo_connector_mapping('connector.template.mapping', ecomm_id, response.id, instance_id, is_variants=True, created_by=channel) return response def write(self, vals): _logger.info("****write*******ProductTemplate**************** : %r", vals.keys()) ctx = dict(self._context or {}) _logger.info("*****write*****ctx******ProductTemplate*********** : %r", ctx.keys()) instance_id = ctx.get('instance_id') ecomm_cannels = dict(self.env['connector.snippet']._get_ecomm_extensions()).keys() if any(key in ctx for key in ecomm_cannels): vals.pop('ecomm_id', 0) vals = self.update_vals(vals, instance_id) for tempObj in self: for tempMapObj in tempObj.connector_mapping_ids: tempMapObj.need_sync = 'No' if instance_id and tempMapObj.instance_id.id == instance_id else 'Yes' return super(ProductTemplate, self).write(vals) def _create_variant_ids(self): ctx = dict(self._context or {}) ecomm_cannels = dict(self.env['connector.snippet']._get_ecomm_extensions()).keys() _logger.info("****self*******_create_variant_ids**************** : %r", [self, ctx, ecomm_cannels]) if any(key in ctx for key in ecomm_cannels): _logger.info("--------ecomm_cannels----------- : %r", ecomm_cannels) return True else: _logger.info("****Else******************** : %r", [self, ctx, ecomm_cannels]) return super(ProductTemplate, self)._create_variant_ids() def update_vals(self, vals, instance_id, create=False): if vals.get('default_code'): vals['config_sku'] = _unescape(vals.pop('default_code', '')) if 'name' in vals: vals['name'] = _unescape(vals['name']) if 'description' in vals: vals['description'] = _unescape(vals['description']) if 'description_sale' in vals: vals['description_sale'] = _unescape(vals['description_sale']) category_ids = vals.pop('category_ids', None) if category_ids: categ_ids = list(set(category_ids)) default_categ_obj = self.env["connector.instance"].browse(instance_id).category if default_categ_obj and create: vals['categ_id'] = default_categ_obj.id if create: extra_categ_objs = self.env['connector.extra.category'].create({ 'instance_id':instance_id, 'categ_ids': [(6, 0, categ_ids)] }) vals['connector_categ_ids'] = [(6, 0, [extra_categ_objs.id])] else: extra_categ_objs = self.connector_categ_ids.filtered(lambda obj: obj.instance_id.id == instance_id) if extra_categ_objs: extra_categ_objs.write({'categ_ids': [(6, 0, categ_ids)]}) else: extra_categ_objs = self.env['connector.extra.category'].create({ 'instance_id':instance_id, 'categ_ids': [(6, 0, categ_ids)] }) vals['connector_categ_ids'] = [(6, 0, [extra_categ_objs.id])] image_url = vals.pop('image_url', False) if image_url: vals['image_1920'] = binascii.b2a_base64(requests.get(image_url, verify=False).content) vals.pop('attribute_list', None) vals.pop('magento_stock_id', None) return vals
[ "noreply@github.com" ]
noreply@github.com
a7438ca02484cd42c1d46f32f2b6415efa83040e
cadb25b610777d1a91404c7dcfe3d29ca1ddd542
/apps/localidades/migrations/0010_alter_localidade_nomelocalidade.py
cb9f7aeb7196267ac6b6462739e16d51937b8d84
[]
no_license
luanaAlm/sistema_ebd
851b8d98979e33187ec68b301910fe0c309a1ce2
ec6a97ddf413e5b10ddff20a781e37ddce77794d
refs/heads/main
2023-08-28T01:10:27.381064
2021-10-18T23:11:25
2021-10-18T23:11:25
415,992,258
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
# Generated by Django 3.2.7 on 2021-10-06 18:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('localidades', '0009_alter_localidade_nomelocalidade'), ] operations = [ migrations.AlterField( model_name='localidade', name='nomeLocalidade', field=models.CharField(max_length=100, verbose_name='Igreja'), ), ]
[ "luanarodrigues3211@gmail.com" ]
luanarodrigues3211@gmail.com
13279672b8c47331a37e9052b40787fc939702ac
5b85703aa0dd5a6944d99370a5dde2b6844517ec
/03.Python/15.ZerosandOnes.py
4d5e2053608bce9ef159ceccd2e274087611e083
[]
no_license
alda07/hackerrank
255329196e6a4b9d598c3f51790caf4a99a755bc
a09091f859e87462c95ee856cbbd0ad9b5992159
refs/heads/master
2021-10-24T07:38:34.795632
2019-03-23T17:29:32
2019-03-23T17:29:32
90,329,292
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
# zeros # import numpy # print (numpy.zeros((1, 2))) # print (numpy.zeros((1, 2), dtype = numpy.int)) # ones # import numpy # print (numpy.ones((1, 2))) # print (numpy.ones((1, 2), dtype = numpy.int)) import numpy list_i = list(map(int,input().split())) print(numpy.zeros(list_i, dtype = numpy.int)) print(numpy.ones(list_i, dtype = numpy.int))
[ "hanh.vo.programmer@gmail.com" ]
hanh.vo.programmer@gmail.com
3b68926d2b085942c1fa005f821aa58397bc197f
0d38d4b4f9f179724f2fbf685e8381a2bac0912f
/tests/test_response.py
abb87f59787116c3bb92ae48078c90fc6983b060
[]
permissive
grantmcconnaughey/django-reports
20d047df704b2dc2adc9e486220549d8f0412ac6
34fbd723fc5907e6f87c95cba8f11724e03d89ab
refs/heads/master
2023-01-09T22:46:42.065299
2016-01-18T04:14:49
2016-01-18T04:14:49
49,586,842
2
0
BSD-3-Clause
2022-12-26T20:00:25
2016-01-13T16:38:37
Python
UTF-8
Python
false
false
1,214
py
from django.test import TestCase from djreports import Report from djreports.response import CSVReportResponse class CSVReportResponseTests(TestCase): def test_response_has_200_status_code(self): report = Report([['Hello', 'World'], ['Hello', 'World']]) response = CSVReportResponse(report) self.assertEqual(response.status_code, 200) def test_response_has_csv_content_type(self): report = Report([['Hello', 'World'], ['Hello', 'World']]) response = CSVReportResponse(report) self.assertEqual(response._headers['content-type'], ('Content-Type', 'text/csv')) def test_response_uses_default_file_name(self): report = Report([['Hello', 'World'], ['Hello', 'World']]) response = CSVReportResponse(report) self.assertEqual(response._headers['content-disposition'], ('Content-Disposition', 'attachment; filename="report.csv"')) def test_response_has_csv_file_content(self): report = Report([['Col1', 'Col2'], ['Cell1', 'Cell2']]) response = CSVReportResponse(report) self.assertEqual(response.content.decode(), 'Col1,Col2\r\nCell1,Cell2\r\n')
[ "grantmcconnaughey@gmail.com" ]
grantmcconnaughey@gmail.com
3ad1f03b5b5f2d7eca5e84e51e13b8539c377bfa
aae908c86413f51c717c031f82d502828f9fd0fd
/regular_expression_part1.py
65ac85fdd0e3eed8c3b33f5d31cb5cf7d8447c34
[]
no_license
ramyashree581/Python_Code
2e27c4761ec8d06894575c62f1b6fddf868d332e
50e72c7acdaf97b4d71b80d51a1d4012dcdf3a94
refs/heads/master
2020-03-23T20:00:50.878361
2019-01-16T06:02:03
2019-01-16T06:02:03
142,015,706
0
0
null
null
null
null
UTF-8
Python
false
false
2,026
py
import re pattern = r'Ramya' sequence = 'Ramya' if re.match(pattern,sequence): print "Match" else: print "Not a match " r = re.match(pattern,sequence) print r.group() #################################### print re.search(r'R....', 'Ramya').group() #. macthes one occurence print re.search(r'Ra\wy\w', 'RaMya').group() # it mahces a single charachter (Upper case/ Lowercase or '_') print re.search(r'C\Wke', 'C@ke').group() # it matches special charachters print re.search(r'Eat\scake', 'Eat cake').group() #whitepace new line print re.search(r'Cook\Se', 'Cookie').group() #matches single char print re.search(r'Eat\tcake', 'Eat cake').group() #matches a tab print re.search(r'c\d\dkie', 'c00kie').group() #search digit print re.search(r'^Eat', 'Eat cake').group() #start print re.search(r'cake$', 'Eat cake').group() #end print re.search(r'Number: [^5]', 'Number: 3').group() #match any charchter except 5 #######################greedy vs non greedy################## heading = r'<h1>TITLE</h1>' print re.match(r'<.*>', heading).group() #Prints everything, is greedy print re.match(r'<.*?>', heading).group() #? makes it non greedy and prints only first few chatachters possible wil be matcehed email_address = "Please contact us at: xyz@datacamp.com" NEW_email_address = re.sub(r'[\w\.-]+@[\w\.-]+', r'ramyashree581@gmail.com', email_address) print NEW_email_address pattern = re.compile(r"cookie") sequence = "Cake and cookie" print pattern.search(sequence).group() ######################************************* import re import requests the_idiot_url = 'https://www.gutenberg.org/files/2638/2638-0.txt' def get_book(url): raw = requests.get(url).text start = re.search(r"\*\*\* START OF THIS PROJECT GUTENBERG EBOOK .* \*\*\*",raw ).end() stop = re.search(r"II", raw).start() text = raw[start:stop] return text def preprocess(sentence): return re.sub('[^A-Za-z0-9.]+' , ' ', sentence).lower() book = get_book(the_idiot_url) processed_book = preprocess(book) print(processed_book)
[ "ramyashree581@gmail.com" ]
ramyashree581@gmail.com
42d2ccd0a08c1520cae02783637eee771aedda4f
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_196/ch31_2020_03_14_15_42_06_957078.py
7229a92343174b1d0b472e5e5af883e664d7d8d9
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
def eh_primo(a): if a == 2: return True x=1 elif (a%2 == 0) or (a%x == 0): x+=2 return False elif (a==0) or (a==1): return False else: return True
[ "you@example.com" ]
you@example.com
dd7c42bf3677ff4d5c0535593c8a3d205b5bbb4f
9404a8593ff2d82133897c9e187523d301df7888
/0x09-Unittests_and_integration_tests/client.py
09fe617f4bf9b728195056ec7874888a22e52d18
[]
no_license
emna7/holbertonschool-web_back_end
ac2bc16e47f464530c4dee23497488c77377977e
744e6cb3bb67b2caa30f967708243b5474046961
refs/heads/main
2023-03-06T17:56:10.699982
2021-02-12T21:24:04
2021-02-12T21:24:04
305,394,170
1
0
null
null
null
null
UTF-8
Python
false
false
1,473
py
#!/usr/bin/env python3 """A github org client """ from typing import ( List, Dict, ) from utils import ( get_json, access_nested_map, memoize, ) class GithubOrgClient: """A Githib org client """ ORG_URL = "https://api.github.com/orgs/{org}" def __init__(self, org_name: str) -> None: """Init method of GithubOrgClient""" self._org_name = org_name @memoize def org(self) -> Dict: """Memoize org""" return get_json(self.ORG_URL.format(org=self._org_name)) @property def _public_repos_url(self) -> str: """Public repos URL""" return self.org["repos_url"] @memoize def repos_payload(self) -> Dict: """Memoize repos payload""" return get_json(self._public_repos_url) def public_repos(self, license: str = None) -> List[str]: """Public repos""" json_payload = self.repos_payload public_repos = [ repo["name"] for repo in json_payload if license is None or self.has_license(repo, license) ] return public_repos @staticmethod def has_license(repo: Dict[str, Dict], license_key: str) -> bool: """Static: has_license""" assert license_key is not None, "license_key cannot be None" try: has_license = access_nested_map(repo, ("license", "key")) == license_key except KeyError: return False return has_license
[ "bhmemna7@gmail.com" ]
bhmemna7@gmail.com
f136e4143c095943a038c5d18d26267dcce3717d
7950b777b68ff97d7ade05c0cc23d5b2b847c447
/mysimulation.py
d9f762c354163fad2befd89ea7881a1f0c1c1322
[]
no_license
zhandongdong/PyPlan
08ffa79c7779f13f32a391dc0f8b633203f7770f
61240ce41899d112ebabaac8f628fd873f62e322
refs/heads/master
2021-05-28T22:32:54.581675
2015-08-25T23:06:30
2015-08-25T23:06:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,685
py
from agents import * from simulators import * # -------------------------------------------------------- # SET THESE VARIABLES BEFORE RUNNING A CUSTOM SIMULATION. # -------------------------------------------------------- game_name = "-TEMP-NAME-" output_file_name = "TEMPFILE.txt" players_count = 2 simulation_count = 5 simulation_horizon = 20 # -------------------------------------------------------- # THESE VARIABLES SHOULD NOT BE MODIFIED HERE. # -------------------------------------------------------- agents_list = [] simulator_obj = None # -------------------------------------------------------- # USE THIS FUNCTION TO CREATE YOUR OWN SIMULATION. # THIS FUNCTION SHOULD RETURN AN ARRAY WITH TWO VALUES. # VALUE 0 - THE SIMULATOR OBJECT # VALUE 1 - THE AGENTS LIST # EXAMPLE : return [simulator_obj, agents_list] # -------------------------------------------------------- def create_simulation(): # EXAMPLE CODE TO RUN A CONNECT4 GAME BETWEEN A RANDOM AND UCT AGENT (WITH SIMCOUNT = 100) simulator_obj = connect4simulator.Connect4SimulatorClass(num_players = players_count) agent_random = randomagent.RandomAgentClass(simulator=simulator_obj) agent_uct = uctagent.UCTAgentClass(simulator=simulator_obj, rollout_policy=agent_random, tree_policy="UCB", num_simulations=100, uct_constant=0.8, horizon=100, time_limit=-1) #TIME LIMIT SHOULD BE -1 IF ONLY SIM COUNT IS TO BE CONSIDERED. agents_list.append(agent_random) agents_list.append(agent_uct) return [simulator_obj, agents_list]
[ "shankarj@outlook.com" ]
shankarj@outlook.com
62b9400ae29452a90e4bfe5f3f5a343dd988242d
cf25738acc2a44d7a77c20ef44b9bbcb5508b1ca
/second/migrations/0003_auto_20210719_1244.py
21f61f980e74da0f1bf8abd1202c3e622247acd3
[]
no_license
liyaaugustine/djangoproject
8e1377dc46ebb907fa0db28b55a398c6178985e8
257ae04eb6a1797d500bf8dc11608ccf4f010f3e
refs/heads/master
2023-08-16T11:19:16.946606
2021-10-07T16:54:14
2021-10-07T16:54:14
373,740,585
0
0
null
null
null
null
UTF-8
Python
false
false
844
py
# Generated by Django 3.2.3 on 2021-07-19 07:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('second', '0002_userdetails'), ] operations = [ migrations.AddField( model_name='userdetails', name='parentname', field=models.CharField(default='default', max_length=30), preserve_default=False, ), migrations.AddField( model_name='userdetails', name='phone', field=models.BigIntegerField(default=15), preserve_default=False, ), migrations.AddField( model_name='userdetails', name='place', field=models.CharField(default='default', max_length=30), preserve_default=False, ), ]
[ "liyaaugustinek@gmail.com" ]
liyaaugustinek@gmail.com