hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
96b1acfddaea8acf23911566a94f1e0201a808e2
1,084
py
Python
models.py
VonStruddle/tacocat-app-treehouse
3ca8e21fabe9037d8271fed979857b1eac13a083
[ "MIT" ]
null
null
null
models.py
VonStruddle/tacocat-app-treehouse
3ca8e21fabe9037d8271fed979857b1eac13a083
[ "MIT" ]
null
null
null
models.py
VonStruddle/tacocat-app-treehouse
3ca8e21fabe9037d8271fed979857b1eac13a083
[ "MIT" ]
null
null
null
import datetime from flask_login import UserMixin from flask_bcrypt import generate_password_hash from peewee import * DB = SqliteDatabase('tacocat.db') class User(UserMixin, Model): email = CharField(unique=True) password = CharField(max_length=100) class Meta: database = DB @classmethod def create_user(cls, email, password): try: with DB.transaction(): cls.create( email=email, password=generate_password_hash(password) ) except IntegrityError: raise ValueError('User already exists') class Taco(Model): user = ForeignKeyField( rel_model=User, related_name='tacos' ) protein = CharField() cheese = BooleanField() shell = CharField() extras = TextField() created_at = DateTimeField(default=datetime.datetime.now) class Meta: database = DB order_by = ('-created_at',) def initializeDB(): DB.connect() DB.create_tables([User, Taco], safe=True) DB.close()
21.68
61
0.617159
cb5f021d6816325cff962dc371b5af51b459fc81
1,006
py
Python
src/mrnet/utils/graphs.py
KhanWhale/mrnet
fc6660b1b4175315b242b1eb69189e1fe8853cf6
[ "BSD-3-Clause-LBNL" ]
null
null
null
src/mrnet/utils/graphs.py
KhanWhale/mrnet
fc6660b1b4175315b242b1eb69189e1fe8853cf6
[ "BSD-3-Clause-LBNL" ]
null
null
null
src/mrnet/utils/graphs.py
KhanWhale/mrnet
fc6660b1b4175315b242b1eb69189e1fe8853cf6
[ "BSD-3-Clause-LBNL" ]
null
null
null
from typing import List, Tuple from pymatgen.analysis.graphs import MoleculeGraph def extract_bond_environment( mg: MoleculeGraph, bonds: List[Tuple[int, int]], order=1 ) -> set: """ Extract the local environment of a particular chemical bond in a MoleculeGraph :param bonds: :param order: :return: set of integers representing the relevant atom indices """ indices = set() if order < 0: return indices elif order == 0: for bond in bonds: indices.add(bond[0]) indices.add(bond[1]) return indices else: graph = mg.graph.to_undirected() for bond in bonds: sub_bonds = list() for neighbor in graph[bond[0]]: sub_bonds.append((bond[0], neighbor)) for neighbor in graph[bond[1]]: sub_bonds.append((bond[1], neighbor)) indices = indices.union(extract_bond_environment(mg, sub_bonds, order - 1)) return indices
27.944444
87
0.606362
2fe0699a44b7eddd414f73f3bcbab7ec23811dcd
3,759
py
Python
setup.py
timothydlister/iosfw
29759d8595610492db921d19eee1e79c4f114811
[ "MIT" ]
74
2018-07-17T01:45:32.000Z
2022-03-28T11:46:11.000Z
setup.py
timothydlister/iosfw
29759d8595610492db921d19eee1e79c4f114811
[ "MIT" ]
12
2019-06-28T20:57:14.000Z
2021-06-22T17:13:00.000Z
setup.py
timothydlister/iosfw
29759d8595610492db921d19eee1e79c4f114811
[ "MIT" ]
16
2019-08-14T21:05:34.000Z
2022-03-20T20:02:34.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Lovingly copied from https://github.com/kennethreitz/setup.py # Note: To use the 'upload' functionality of this file, you must: # $ pip install twine import io import os import sys from shutil import rmtree from setuptools import find_packages, setup, Command # Package meta-data. NAME = 'iosfw' DESCRIPTION = 'Automates upgrading firmware on Cisco IOS devices.' URL = 'https://github.com/austind/iosfw' EMAIL = 'austindcc@gmail.com' AUTHOR = 'Austin de Coup-Crank' REQUIRES_PYTHON = '>=3.6' VERSION = None # What packages are required for this module to be executed? REQUIRED = [ 'napalm', 'netmiko', 'hashlib', 'tqdm', 'yaml' ] # What packages are optional? EXTRAS = { # 'fancy feature': ['django'], } # The rest you shouldn't have to touch too much :) # ------------------------------------------------ # Except, perhaps the License and Trove Classifiers! # If you do change the License, remember to change the Trove Classifier for that! here = os.path.abspath(os.path.dirname(__file__)) # Import the README and use it as the long-description. # Note: this will only work if 'README.md' is present in your MANIFEST.in file! try: with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = '\n' + f.read() except FileNotFoundError: long_description = DESCRIPTION # Load the package's __version__.py module as a dictionary. about = {} if not VERSION: with open(os.path.join(here, NAME, '__version__.py')) as f: exec(f.read(), about) else: about['__version__'] = VERSION class UploadCommand(Command): """Support setup.py upload.""" description = 'Build and publish the package.' user_options = [] @staticmethod def status(s): """Prints things in bold.""" print('\033[1m{0}\033[0m'.format(s)) def initialize_options(self): pass def finalize_options(self): pass def run(self): try: self.status('Removing previous builds…') rmtree(os.path.join(here, 'dist')) except OSError: pass self.status('Building Source and Wheel (universal) distribution…') os.system('{0} setup.py sdist bdist_wheel --universal'.format(sys.executable)) self.status('Uploading the package to PyPI via Twine…') os.system('twine upload dist/*') self.status('Pushing git tags…') os.system('git tag v{0}'.format(about['__version__'])) os.system('git push --tags') sys.exit() # Where the magic happens: setup( name=NAME, version=about['__version__'], description=DESCRIPTION, long_description=long_description, long_description_content_type='text/markdown', author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, packages=find_packages(exclude=('tests',)), # If your package is a single module, use this instead of 'packages': # py_modules=['mypackage'], # entry_points={ # 'console_scripts': ['mycli=mymodule:cli'], # }, install_requires=REQUIRED, extras_require=EXTRAS, include_package_data=True, license='MIT', classifiers=[ # Trove classifiers # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy' ], # $ setup.py publish support. cmdclass={ 'upload': UploadCommand, }, )
28.263158
86
0.644586
4b4e529b7367b13746c0daa55008ec910826e248
93
py
Python
src/contactus/apps.py
Ameesha2001/Ekyam-scl-maxo
d9a8ec0e2d297d20fcf9139cfe50a7c814cdb2f5
[ "MIT" ]
10
2021-01-02T14:54:33.000Z
2022-02-09T07:11:05.000Z
yantragene/contactus/apps.py
brijeshgzp05/techfest-yantragene
98efdaefede9ea0e4fb7241e97272f0079673863
[ "MIT" ]
44
2020-05-13T20:15:26.000Z
2022-03-04T02:58:58.000Z
yantragene/contactus/apps.py
brijeshgzp05/techfest-yantragene
98efdaefede9ea0e4fb7241e97272f0079673863
[ "MIT" ]
8
2020-12-24T07:58:24.000Z
2022-01-04T15:22:30.000Z
from django.apps import AppConfig class ContactusConfig(AppConfig): name = 'contactus'
15.5
33
0.763441
73bf0bac862e49305c40c94a2032a3563af7cc72
1,095
py
Python
rssant_api/migrations/0012_auto_20191025_1526.py
zuzhi/rssant
06d985845f6af3be7097e6d718afba7eeb195ec8
[ "BSD-3-Clause" ]
1,176
2019-12-24T01:51:22.000Z
2022-03-29T06:00:25.000Z
rssant_api/migrations/0012_auto_20191025_1526.py
zuzhi/rssant
06d985845f6af3be7097e6d718afba7eeb195ec8
[ "BSD-3-Clause" ]
33
2020-03-06T03:29:46.000Z
2022-03-11T06:24:26.000Z
rssant_api/migrations/0012_auto_20191025_1526.py
zuzhi/rssant
06d985845f6af3be7097e6d718afba7eeb195ec8
[ "BSD-3-Clause" ]
110
2019-12-29T05:49:24.000Z
2022-03-28T06:44:21.000Z
# Generated by Django 2.2.6 on 2019-10-25 15:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rssant_api', '0011_auto_20190714_0550'), ] operations = [ migrations.AddField( model_name='feed', name='monthly_story_count_data', field=models.BinaryField(blank=True, help_text='monthly story count data', max_length=514, null=True), ), migrations.AlterField( model_name='feed', name='status', field=models.CharField(choices=[('pending', 'pending'), ('updating', 'updating'), ('ready', 'ready'), ('error', 'error'), ('discard', 'discard')], default='pending', help_text='状态', max_length=20), ), migrations.AlterField( model_name='feedcreation', name='status', field=models.CharField(choices=[('pending', 'pending'), ('updating', 'updating'), ('ready', 'ready'), ('error', 'error'), ('discard', 'discard')], default='pending', help_text='状态', max_length=20), ), ]
37.758621
209
0.593607
7f849a261c6daf72ba9d476f4742b67f76d98176
6,968
py
Python
hedwig/models/bert/__main__.py
arjunnlp/hedwig-anlp
b8f6c50d788509bc9e5670caeee3503257d716d0
[ "Apache-2.0" ]
3
2019-07-20T15:23:59.000Z
2021-04-26T02:57:59.000Z
hedwig/models/bert/__main__.py
arjunnlp/hedwig-anlp
b8f6c50d788509bc9e5670caeee3503257d716d0
[ "Apache-2.0" ]
null
null
null
hedwig/models/bert/__main__.py
arjunnlp/hedwig-anlp
b8f6c50d788509bc9e5670caeee3503257d716d0
[ "Apache-2.0" ]
null
null
null
import os import random import time import numpy as np import torch from common.evaluators.bert_evaluator import BertEvaluator from common.trainers.bert_trainer import BertTrainer from datasets.bert_processors.aapd_processor import AAPDProcessor from datasets.bert_processors.agnews_processor import AGNewsProcessor from datasets.bert_processors.imdb_processor import IMDBProcessor from datasets.bert_processors.reuters_processor import ReutersProcessor from datasets.bert_processors.sogou_processor import SogouProcessor from datasets.bert_processors.sst_processor import SST2Processor from datasets.bert_processors.yelp2014_processor import Yelp2014Processor from datasets.bert_processors.mbti_processor import MBTIProcessor from models.bert.args import get_args from models.bert.model import BertForSequenceClassification from utils.io import PYTORCH_PRETRAINED_BERT_CACHE from utils.optimization import BertAdam from utils.tokenization import BertTokenizer # String templates for logging results LOG_HEADER = 'Split Dev/Acc. Dev/Hamm. Dev/Jacc. Dev/Prec Dev/Rec Dev/micro-F1 Dev/F1 Dev/Loss' LOG_TEMPLATE = ' '.join('{:>5s},{:>6.4f},{:>8.4f},{:8.4f},{:8.4f},{:>8.4f},{:8.4f},{:8.4f},{:10.4f}'.split(',')) def evaluate_split(model, processor, args, split='dev'): evaluator = BertEvaluator(model, processor, args, split) start_time = time.time() accuracy, hamming, jaccard, precision, recall, microf1, f1, avg_loss = evaluator.get_scores(silent=True)[0] print("Inference time", time.time() - start_time) print('\n' + LOG_HEADER) print(LOG_TEMPLATE.format(split.upper(), accuracy, hamming, jaccard, precision, recall, f1, microf1, f1, avg_loss)) if __name__ == '__main__': # Set default configuration in args.py args = get_args() if args.local_rank == -1 or not args.cuda: device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') print('Device:', str(device).upper()) print('Number of GPUs:', n_gpu) print('Distributed training:', bool(args.local_rank != -1)) print('FP16:', args.fp16) # Set random seed for reproducibility random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) dataset_map = { 'SST-2': SST2Processor, 'Reuters': ReutersProcessor, 'IMDB': IMDBProcessor, 'AAPD': AAPDProcessor, 'AGNews': AGNewsProcessor, 'Yelp2014': Yelp2014Processor, 'Sogou': SogouProcessor, 'MBTI': MBTIProcessor, } if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) if args.dataset not in dataset_map: raise ValueError('Unrecognized dataset') args.batch_size = args.batch_size // args.gradient_accumulation_steps args.device = device args.n_gpu = n_gpu args.num_labels = dataset_map[args.dataset].NUM_CLASSES args.is_multilabel = dataset_map[args.dataset].IS_MULTILABEL if not args.trained_model: save_path = os.path.join(args.save_path, dataset_map[args.dataset].NAME) os.makedirs(save_path, exist_ok=True) processor = dataset_map[args.dataset]() args.is_lowercase = 'uncased' in args.model args.is_hierarchical = False tokenizer = BertTokenizer.from_pretrained(args.model, is_lowercase=args.is_lowercase) train_examples = None num_train_optimization_steps = None if not args.trained_model: train_examples = processor.get_train_examples(args.data_dir) num_train_optimization_steps = int( len(train_examples) / args.batch_size / args.gradient_accumulation_steps) * args.epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size() cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)) model = BertForSequenceClassification.from_pretrained(args.model, cache_dir=cache_dir, num_labels=args.num_labels) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError("Install NVIDIA Apex to use distributed and FP16 training.") model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError("Please install NVIDIA Apex for distributed and FP16 training") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.lr, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.lr, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) trainer = BertTrainer(model, optimizer, processor, args) if not args.trained_model: trainer.train() model = torch.load(trainer.snapshot_path) else: model = BertForSequenceClassification.from_pretrained(args.model, num_labels=args.num_labels) model_ = torch.load(args.trained_model, map_location=lambda storage, loc: storage) state={} for key in model_.state_dict().keys(): new_key = key.replace("module.", "") state[new_key] = model_.state_dict()[key] model.load_state_dict(state) model = model.to(device) evaluate_split(model, processor, args, split='dev') evaluate_split(model, processor, args, split='test')
41.47619
144
0.692308
4f71853f1bbf67546075ef75c55a0f9aea741497
1,004
py
Python
tests/test_util.py
ties/rpki-client-web
afce9bb2e8deeaab8cb6c4ff3fd26a1cde8563d9
[ "MIT" ]
1
2021-11-23T12:43:43.000Z
2021-11-23T12:43:43.000Z
tests/test_util.py
ties/rpki-client-web
afce9bb2e8deeaab8cb6c4ff3fd26a1cde8563d9
[ "MIT" ]
18
2021-04-08T19:21:04.000Z
2022-03-11T14:41:30.000Z
tests/test_util.py
ties/rpki-client-web
afce9bb2e8deeaab8cb6c4ff3fd26a1cde8563d9
[ "MIT" ]
1
2021-04-08T18:52:04.000Z
2021-04-08T18:52:04.000Z
import pytest from rpkiclientweb.util import parse_host, validate def test_parse_legacy_format(): res = parse_host( "rpki.cnnic.cn/rpki/A9162E3D0000/1587/h6wAjnaB0p2pptlBZ4bkOwowMM8.roa" ) assert res == "rpki.cnnic.cn" def test_rrdp_format(): res = parse_host( "rrdp/73885635ed28814800212d730ae80581fc5112c4b5804a08d55d6bda2afa1615/ca.rg.net/rpki/RGnet-OU/ovsCA/IOUcOeBGM_Tb4dwfvswY4bnNZYY.mft" ) assert res == "ca.rg.net" def test_rsync_format(): res = parse_host( "rsync/rpki.apnic.net/repository/838DB214166511E2B3BC286172FD1FF2/C5zKkN0Neoo3ZmsZIX_g2EA3t6I.mft:" ) assert res == "rpki.apnic.net" def test_validate_passes(): res = validate(True, "should not raise") assert res is None def test_validate_raises(): with pytest.raises(ValueError): validate(False, "should raise") def test_validate_raises_template(): with pytest.raises(ValueError): validate(False, "should raise {}", "and template")
25.1
141
0.72012
880c27987c3d8d6bc450c8d1c45ea48f67538bab
6,111
py
Python
rbtools/commands/patch.py
brettdh/rbtools
ddaa655aeac4a087580696f8e1155f90637d80be
[ "MIT" ]
null
null
null
rbtools/commands/patch.py
brettdh/rbtools
ddaa655aeac4a087580696f8e1155f90637d80be
[ "MIT" ]
null
null
null
rbtools/commands/patch.py
brettdh/rbtools
ddaa655aeac4a087580696f8e1155f90637d80be
[ "MIT" ]
null
null
null
import re from rbtools.api.errors import APIError from rbtools.commands import Command, CommandError, Option from rbtools.utils.filesystem import make_tempfile # MARKDOWN_ESCAPED_CHARS comes from markdown.Markdown.ESCAPED_CHARS. We don't # want to have a dependency on markdown for rbtools, so we just copy it into # here. MARKDOWN_ESCAPED_CHARS = ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '>', '#', '+', '-', '.', '!'] MARKDOWN_SPECIAL_CHARS = re.escape(r''.join(MARKDOWN_ESCAPED_CHARS)) UNESCAPE_CHARS_RE = re.compile(r'\\([%s])' % MARKDOWN_SPECIAL_CHARS) class Patch(Command): """Applies a specific patch from a RB server. The patch file indicated by the request id is downloaded from the server and then applied locally.""" name = "patch" author = "The Review Board Project" args = "<review-request-id>" option_list = [ Option("-c", "--commit", dest="commit", action="store_true", default=False, help="Commit using information fetched " "from the review request (Git only)."), Option("--diff-revision", dest="diff_revision", default=None, help="revision id of diff to be used as patch"), Option("--px", dest="px", default=None, help="numerical pX argument for patch"), Option("--print", dest="patch_stdout", action="store_true", default=False, help="print patch to stdout instead of applying"), Command.server_options, Command.repository_options, ] def get_patch(self, request_id, api_root, diff_revision=None): """Return the diff as a string, the used diff revision and its basedir. If a diff revision is not specified, then this will look at the most recent diff. """ try: diffs = api_root.get_diffs(review_request_id=request_id) except APIError, e: raise CommandError("Error getting diffs: %s" % e) # Use the latest diff if a diff revision was not given. # Since diff revisions start a 1, increment by one, and # never skip a number, the latest diff revisions number # should be equal to the number of diffs. if diff_revision is None: diff_revision = diffs.total_results try: diff = diffs.get_item(diff_revision) diff_body = diff.get_patch().data base_dir = getattr(diff, 'basedir', None) or '' except APIError: raise CommandError('The specified diff revision does not exist.') return diff_body, diff_revision, base_dir def apply_patch(self, repository_info, tool, request_id, diff_revision, diff_file_path, base_dir): """Apply patch patch_file and display results to user.""" print ("Patch is being applied from request %s with diff revision " " %s." % (request_id, diff_revision)) tool.apply_patch(diff_file_path, repository_info.base_path, base_dir, self.options.px) def _extract_commit_message(self, review_request): """Returns a commit message based on the review request. The commit message returned contains the Summary, Description, Bugs, and Testing Done fields from the review request, if available. """ info = [] summary = review_request.summary description = review_request.description testing_done = review_request.testing_done if not description.startswith(summary): info.append(summary) info.append(description) if testing_done: info.append('Testing Done:\n%s' % testing_done) if review_request.bugs_closed: info.append('Bugs closed: %s' % ', '.join(review_request.bugs_closed)) info.append('Reviewed at %s' % review_request.absolute_url) return '\n\n'.join(info) def main(self, request_id): """Run the command.""" repository_info, tool = self.initialize_scm_tool( client_name=self.options.repository_type) server_url = self.get_server_url(repository_info, tool) api_client, api_root = self.get_api(server_url) # Get the patch, the used patch ID and base dir for the diff diff_body, diff_revision, base_dir = self.get_patch( request_id, api_root, self.options.diff_revision) if self.options.patch_stdout: print diff_body else: try: if tool.has_pending_changes(): message = 'Working directory is not clean.' if not self.options.commit: print 'Warning: %s' % message else: raise CommandError(message) except NotImplementedError: pass tmp_patch_file = make_tempfile(diff_body) self.apply_patch(repository_info, tool, request_id, diff_revision, tmp_patch_file, base_dir) if self.options.commit: try: review_request = api_root.get_review_request( review_request_id=request_id, force_text_type='plain') except APIError, e: raise CommandError('Error getting review request %s: %s' % (request_id, e)) message = self._extract_commit_message(review_request) author = review_request.get_submitter() try: tool.create_commit(message, author) print('Changes committed to current branch.') except NotImplementedError: raise CommandError('--commit is not supported with %s' % tool.name)
37.956522
79
0.580429
6cadb21bc375444a3c12dea15d7cb9cf09c15767
702
py
Python
incomplete/search-engine/sizes.py
adlerliu/500lines
9100aaa8cf510439460ab8a1fad3311926a94d90
[ "CC-BY-3.0" ]
26,185
2015-01-01T04:59:51.000Z
2022-03-31T10:20:14.000Z
incomplete/search-engine/sizes.py
fsxchen/500lines
3f2cd407ebedaf0a3cfa6858c4cf94543067433d
[ "CC-BY-3.0" ]
160
2015-01-05T12:20:21.000Z
2021-10-03T07:25:43.000Z
incomplete/search-engine/sizes.py
fsxchen/500lines
3f2cd407ebedaf0a3cfa6858c4cf94543067433d
[ "CC-BY-3.0" ]
6,572
2015-01-01T01:31:00.000Z
2022-03-31T07:31:22.000Z
#!/usr/bin/python def xcumsum(xs): total = 0 for xx in xs: yield total total += xx def describe(sizes): print ' ' * 4 + ' '.join("%4d" % size for size in sizes) print ' ' * 4 + ' '.join("%4d" % tots for tots in xcumsum(sizes)) sizes = [] while True: line = raw_input("+ ") if line == '': sizes = [] else: sizes.append(int(line)) sizes.sort() describe(sizes) merge = [cumsum >= size for cumsum, size in zip(xcumsum(sizes), sizes)] if any(merge): max_merge = max(ii for ii in range(len(merge)) if merge[ii]) + 1 sizes[:max_merge] = [sum(sizes[:max_merge])] sizes.sort() describe(sizes)
22.645161
75
0.538462
2a6bf3bd9f1d921d9048cff8b4c962d6c797017e
337
py
Python
test_habitica.py
haclark30/habitica-cli
5a5c2a919760a95af38a875da08e330e0948f620
[ "MIT" ]
null
null
null
test_habitica.py
haclark30/habitica-cli
5a5c2a919760a95af38a875da08e330e0948f620
[ "MIT" ]
null
null
null
test_habitica.py
haclark30/habitica-cli
5a5c2a919760a95af38a875da08e330e0948f620
[ "MIT" ]
null
null
null
import unittest from habitica import HabiticaAPI import time class TestHabitica(unittest.TestCase): def setUp(self): self.hbt_api = HabiticaAPI() def test_get_content(self): content = self.hbt_api.get_content() time_diff = time.time() - content['dateRetrieved'] self.assertLess(time_diff, 86400)
28.083333
58
0.703264
75ce8216f60b0353564c104d8fa5defa30da03d3
53,928
py
Python
lib/sqlalchemy/orm/collections.py
brussee/sqlalchemy
5e3357c70e419c244156ac3885b2cf784b5b3fc0
[ "MIT" ]
null
null
null
lib/sqlalchemy/orm/collections.py
brussee/sqlalchemy
5e3357c70e419c244156ac3885b2cf784b5b3fc0
[ "MIT" ]
null
null
null
lib/sqlalchemy/orm/collections.py
brussee/sqlalchemy
5e3357c70e419c244156ac3885b2cf784b5b3fc0
[ "MIT" ]
null
null
null
# orm/collections.py # Copyright (C) 2005-2022 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """Support for collections of mapped entities. The collections package supplies the machinery used to inform the ORM of collection membership changes. An instrumentation via decoration approach is used, allowing arbitrary types (including built-ins) to be used as entity collections without requiring inheritance from a base class. Instrumentation decoration relays membership change events to the :class:`.CollectionAttributeImpl` that is currently managing the collection. The decorators observe function call arguments and return values, tracking entities entering or leaving the collection. Two decorator approaches are provided. One is a bundle of generic decorators that map function arguments and return values to events:: from sqlalchemy.orm.collections import collection class MyClass: # ... @collection.adds(1) def store(self, item): self.data.append(item) @collection.removes_return() def pop(self): return self.data.pop() The second approach is a bundle of targeted decorators that wrap appropriate append and remove notifiers around the mutation methods present in the standard Python ``list``, ``set`` and ``dict`` interfaces. These could be specified in terms of generic decorator recipes, but are instead hand-tooled for increased efficiency. The targeted decorators occasionally implement adapter-like behavior, such as mapping bulk-set methods (``extend``, ``update``, ``__setslice__``, etc.) into the series of atomic mutation events that the ORM requires. The targeted decorators are used internally for automatic instrumentation of entity collection classes. Every collection class goes through a transformation process roughly like so: 1. If the class is a built-in, substitute a trivial sub-class 2. Is this class already instrumented? 3. Add in generic decorators 4. Sniff out the collection interface through duck-typing 5. Add targeted decoration to any undecorated interface method This process modifies the class at runtime, decorating methods and adding some bookkeeping properties. This isn't possible (or desirable) for built-in classes like ``list``, so trivial sub-classes are substituted to hold decoration:: class InstrumentedList(list): pass Collection classes can be specified in ``relationship(collection_class=)`` as types or a function that returns an instance. Collection classes are inspected and instrumented during the mapper compilation phase. The collection_class callable will be executed once to produce a specimen instance, and the type of that specimen will be instrumented. Functions that return built-in types like ``lists`` will be adapted to produce instrumented instances. When extending a known type like ``list``, additional decorations are not generally not needed. Odds are, the extension method will delegate to a method that's already instrumented. For example:: class QueueIsh(list): def push(self, item): self.append(item) def shift(self): return self.pop(0) There's no need to decorate these methods. ``append`` and ``pop`` are already instrumented as part of the ``list`` interface. Decorating them would fire duplicate events, which should be avoided. The targeted decoration tries not to rely on other methods in the underlying collection class, but some are unavoidable. Many depend on 'read' methods being present to properly instrument a 'write', for example, ``__setitem__`` needs ``__getitem__``. "Bulk" methods like ``update`` and ``extend`` may also reimplemented in terms of atomic appends and removes, so the ``extend`` decoration will actually perform many ``append`` operations and not call the underlying method at all. Tight control over bulk operation and the firing of events is also possible by implementing the instrumentation internally in your methods. The basic instrumentation package works under the general assumption that collection mutation will not raise unusual exceptions. If you want to closely orchestrate append and remove events with exception management, internal instrumentation may be the answer. Within your method, ``collection_adapter(self)`` will retrieve an object that you can use for explicit control over triggering append and remove events. The owning object and :class:`.CollectionAttributeImpl` are also reachable through the adapter, allowing for some very sophisticated behavior. """ import operator import threading import weakref from sqlalchemy.util.compat import inspect_getfullargspec from . import base from .. import exc as sa_exc from .. import util from ..sql import coercions from ..sql import expression from ..sql import roles __all__ = [ "collection", "collection_adapter", "mapped_collection", "column_mapped_collection", "attribute_mapped_collection", ] __instrumentation_mutex = threading.Lock() class _PlainColumnGetter: """Plain column getter, stores collection of Column objects directly. Serializes to a :class:`._SerializableColumnGetterV2` which has more expensive __call__() performance and some rare caveats. """ def __init__(self, cols): self.cols = cols self.composite = len(cols) > 1 def __reduce__(self): return _SerializableColumnGetterV2._reduce_from_cols(self.cols) def _cols(self, mapper): return self.cols def __call__(self, value): state = base.instance_state(value) m = base._state_mapper(state) key = [ m._get_state_attr_by_column(state, state.dict, col) for col in self._cols(m) ] if self.composite: return tuple(key) else: return key[0] class _SerializableColumnGetter: """Column-based getter used in version 0.7.6 only. Remains here for pickle compatibility with 0.7.6. """ def __init__(self, colkeys): self.colkeys = colkeys self.composite = len(colkeys) > 1 def __reduce__(self): return _SerializableColumnGetter, (self.colkeys,) def __call__(self, value): state = base.instance_state(value) m = base._state_mapper(state) key = [ m._get_state_attr_by_column( state, state.dict, m.mapped_table.columns[k] ) for k in self.colkeys ] if self.composite: return tuple(key) else: return key[0] class _SerializableColumnGetterV2(_PlainColumnGetter): """Updated serializable getter which deals with multi-table mapped classes. Two extremely unusual cases are not supported. Mappings which have tables across multiple metadata objects, or which are mapped to non-Table selectables linked across inheriting mappers may fail to function here. """ def __init__(self, colkeys): self.colkeys = colkeys self.composite = len(colkeys) > 1 def __reduce__(self): return self.__class__, (self.colkeys,) @classmethod def _reduce_from_cols(cls, cols): def _table_key(c): if not isinstance(c.table, expression.TableClause): return None else: return c.table.key colkeys = [(c.key, _table_key(c)) for c in cols] return _SerializableColumnGetterV2, (colkeys,) def _cols(self, mapper): cols = [] metadata = getattr(mapper.local_table, "metadata", None) for (ckey, tkey) in self.colkeys: if tkey is None or metadata is None or tkey not in metadata: cols.append(mapper.local_table.c[ckey]) else: cols.append(metadata.tables[tkey].c[ckey]) return cols def column_mapped_collection(mapping_spec): """A dictionary-based collection type with column-based keying. Returns a :class:`.MappedCollection` factory with a keying function generated from mapping_spec, which may be a Column or a sequence of Columns. The key value must be immutable for the lifetime of the object. You can not, for example, map on foreign key values if those key values will change during the session, i.e. from None to a database-assigned integer after a session flush. """ cols = [ coercions.expect(roles.ColumnArgumentRole, q, argname="mapping_spec") for q in util.to_list(mapping_spec) ] keyfunc = _PlainColumnGetter(cols) return lambda: MappedCollection(keyfunc) class _SerializableAttrGetter: def __init__(self, name): self.name = name self.getter = operator.attrgetter(name) def __call__(self, target): return self.getter(target) def __reduce__(self): return _SerializableAttrGetter, (self.name,) def attribute_mapped_collection(attr_name): """A dictionary-based collection type with attribute-based keying. Returns a :class:`.MappedCollection` factory with a keying based on the 'attr_name' attribute of entities in the collection, where ``attr_name`` is the string name of the attribute. .. warning:: the key value must be assigned to its final value **before** it is accessed by the attribute mapped collection. Additionally, changes to the key attribute are **not tracked** automatically, which means the key in the dictionary is not automatically synchronized with the key value on the target object itself. See the section :ref:`key_collections_mutations` for an example. """ getter = _SerializableAttrGetter(attr_name) return lambda: MappedCollection(getter) def mapped_collection(keyfunc): """A dictionary-based collection type with arbitrary keying. Returns a :class:`.MappedCollection` factory with a keying function generated from keyfunc, a callable that takes an entity and returns a key value. The key value must be immutable for the lifetime of the object. You can not, for example, map on foreign key values if those key values will change during the session, i.e. from None to a database-assigned integer after a session flush. """ return lambda: MappedCollection(keyfunc) class collection: """Decorators for entity collection classes. The decorators fall into two groups: annotations and interception recipes. The annotating decorators (appender, remover, iterator, converter, internally_instrumented) indicate the method's purpose and take no arguments. They are not written with parens:: @collection.appender def append(self, append): ... The recipe decorators all require parens, even those that take no arguments:: @collection.adds('entity') def insert(self, position, entity): ... @collection.removes_return() def popitem(self): ... """ # Bundled as a class solely for ease of use: packaging, doc strings, # importability. @staticmethod def appender(fn): """Tag the method as the collection appender. The appender method is called with one positional argument: the value to append. The method will be automatically decorated with 'adds(1)' if not already decorated:: @collection.appender def add(self, append): ... # or, equivalently @collection.appender @collection.adds(1) def add(self, append): ... # for mapping type, an 'append' may kick out a previous value # that occupies that slot. consider d['a'] = 'foo'- any previous # value in d['a'] is discarded. @collection.appender @collection.replaces(1) def add(self, entity): key = some_key_func(entity) previous = None if key in self: previous = self[key] self[key] = entity return previous If the value to append is not allowed in the collection, you may raise an exception. Something to remember is that the appender will be called for each object mapped by a database query. If the database contains rows that violate your collection semantics, you will need to get creative to fix the problem, as access via the collection will not work. If the appender method is internally instrumented, you must also receive the keyword argument '_sa_initiator' and ensure its promulgation to collection events. """ fn._sa_instrument_role = "appender" return fn @staticmethod def remover(fn): """Tag the method as the collection remover. The remover method is called with one positional argument: the value to remove. The method will be automatically decorated with :meth:`removes_return` if not already decorated:: @collection.remover def zap(self, entity): ... # or, equivalently @collection.remover @collection.removes_return() def zap(self, ): ... If the value to remove is not present in the collection, you may raise an exception or return None to ignore the error. If the remove method is internally instrumented, you must also receive the keyword argument '_sa_initiator' and ensure its promulgation to collection events. """ fn._sa_instrument_role = "remover" return fn @staticmethod def iterator(fn): """Tag the method as the collection remover. The iterator method is called with no arguments. It is expected to return an iterator over all collection members:: @collection.iterator def __iter__(self): ... """ fn._sa_instrument_role = "iterator" return fn @staticmethod def internally_instrumented(fn): """Tag the method as instrumented. This tag will prevent any decoration from being applied to the method. Use this if you are orchestrating your own calls to :func:`.collection_adapter` in one of the basic SQLAlchemy interface methods, or to prevent an automatic ABC method decoration from wrapping your implementation:: # normally an 'extend' method on a list-like class would be # automatically intercepted and re-implemented in terms of # SQLAlchemy events and append(). your implementation will # never be called, unless: @collection.internally_instrumented def extend(self, items): ... """ fn._sa_instrumented = True return fn @staticmethod @util.deprecated( "1.3", "The :meth:`.collection.converter` handler is deprecated and will " "be removed in a future release. Please refer to the " ":class:`.AttributeEvents.bulk_replace` listener interface in " "conjunction with the :func:`.event.listen` function.", ) def converter(fn): """Tag the method as the collection converter. This optional method will be called when a collection is being replaced entirely, as in:: myobj.acollection = [newvalue1, newvalue2] The converter method will receive the object being assigned and should return an iterable of values suitable for use by the ``appender`` method. A converter must not assign values or mutate the collection, its sole job is to adapt the value the user provides into an iterable of values for the ORM's use. The default converter implementation will use duck-typing to do the conversion. A dict-like collection will be convert into an iterable of dictionary values, and other types will simply be iterated:: @collection.converter def convert(self, other): ... If the duck-typing of the object does not match the type of this collection, a TypeError is raised. Supply an implementation of this method if you want to expand the range of possible types that can be assigned in bulk or perform validation on the values about to be assigned. """ fn._sa_instrument_role = "converter" return fn @staticmethod def adds(arg): """Mark the method as adding an entity to the collection. Adds "add to collection" handling to the method. The decorator argument indicates which method argument holds the SQLAlchemy-relevant value. Arguments can be specified positionally (i.e. integer) or by name:: @collection.adds(1) def push(self, item): ... @collection.adds('entity') def do_stuff(self, thing, entity=None): ... """ def decorator(fn): fn._sa_instrument_before = ("fire_append_event", arg) return fn return decorator @staticmethod def replaces(arg): """Mark the method as replacing an entity in the collection. Adds "add to collection" and "remove from collection" handling to the method. The decorator argument indicates which method argument holds the SQLAlchemy-relevant value to be added, and return value, if any will be considered the value to remove. Arguments can be specified positionally (i.e. integer) or by name:: @collection.replaces(2) def __setitem__(self, index, item): ... """ def decorator(fn): fn._sa_instrument_before = ("fire_append_event", arg) fn._sa_instrument_after = "fire_remove_event" return fn return decorator @staticmethod def removes(arg): """Mark the method as removing an entity in the collection. Adds "remove from collection" handling to the method. The decorator argument indicates which method argument holds the SQLAlchemy-relevant value to be removed. Arguments can be specified positionally (i.e. integer) or by name:: @collection.removes(1) def zap(self, item): ... For methods where the value to remove is not known at call-time, use collection.removes_return. """ def decorator(fn): fn._sa_instrument_before = ("fire_remove_event", arg) return fn return decorator @staticmethod def removes_return(): """Mark the method as removing an entity in the collection. Adds "remove from collection" handling to the method. The return value of the method, if any, is considered the value to remove. The method arguments are not inspected:: @collection.removes_return() def pop(self): ... For methods where the value to remove is known at call-time, use collection.remove. """ def decorator(fn): fn._sa_instrument_after = "fire_remove_event" return fn return decorator collection_adapter = operator.attrgetter("_sa_adapter") """Fetch the :class:`.CollectionAdapter` for a collection.""" class CollectionAdapter: """Bridges between the ORM and arbitrary Python collections. Proxies base-level collection operations (append, remove, iterate) to the underlying Python collection, and emits add/remove events for entities entering or leaving the collection. The ORM uses :class:`.CollectionAdapter` exclusively for interaction with entity collections. """ __slots__ = ( "attr", "_key", "_data", "owner_state", "_converter", "invalidated", "empty", ) def __init__(self, attr, owner_state, data): self.attr = attr self._key = attr.key self._data = weakref.ref(data) self.owner_state = owner_state data._sa_adapter = self self._converter = data._sa_converter self.invalidated = False self.empty = False def _warn_invalidated(self): util.warn("This collection has been invalidated.") @property def data(self): "The entity collection being adapted." return self._data() @property def _referenced_by_owner(self): """return True if the owner state still refers to this collection. This will return False within a bulk replace operation, where this collection is the one being replaced. """ return self.owner_state.dict[self._key] is self._data() def bulk_appender(self): return self._data()._sa_appender def append_with_event(self, item, initiator=None): """Add an entity to the collection, firing mutation events.""" self._data()._sa_appender(item, _sa_initiator=initiator) def _set_empty(self, user_data): assert ( not self.empty ), "This collection adapter is already in the 'empty' state" self.empty = True self.owner_state._empty_collections[self._key] = user_data def _reset_empty(self): assert ( self.empty ), "This collection adapter is not in the 'empty' state" self.empty = False self.owner_state.dict[ self._key ] = self.owner_state._empty_collections.pop(self._key) def _refuse_empty(self): raise sa_exc.InvalidRequestError( "This is a special 'empty' collection which cannot accommodate " "internal mutation operations" ) def append_without_event(self, item): """Add or restore an entity to the collection, firing no events.""" if self.empty: self._refuse_empty() self._data()._sa_appender(item, _sa_initiator=False) def append_multiple_without_event(self, items): """Add or restore an entity to the collection, firing no events.""" if self.empty: self._refuse_empty() appender = self._data()._sa_appender for item in items: appender(item, _sa_initiator=False) def bulk_remover(self): return self._data()._sa_remover def remove_with_event(self, item, initiator=None): """Remove an entity from the collection, firing mutation events.""" self._data()._sa_remover(item, _sa_initiator=initiator) def remove_without_event(self, item): """Remove an entity from the collection, firing no events.""" if self.empty: self._refuse_empty() self._data()._sa_remover(item, _sa_initiator=False) def clear_with_event(self, initiator=None): """Empty the collection, firing a mutation event for each entity.""" if self.empty: self._refuse_empty() remover = self._data()._sa_remover for item in list(self): remover(item, _sa_initiator=initiator) def clear_without_event(self): """Empty the collection, firing no events.""" if self.empty: self._refuse_empty() remover = self._data()._sa_remover for item in list(self): remover(item, _sa_initiator=False) def __iter__(self): """Iterate over entities in the collection.""" return iter(self._data()._sa_iterator()) def __len__(self): """Count entities in the collection.""" return len(list(self._data()._sa_iterator())) def __bool__(self): return True __nonzero__ = __bool__ def fire_append_wo_mutation_event(self, item, initiator=None): """Notify that a entity is entering the collection but is already present. Initiator is a token owned by the InstrumentedAttribute that initiated the membership mutation, and should be left as None unless you are passing along an initiator value from a chained operation. .. versionadded:: 1.4.15 """ if initiator is not False: if self.invalidated: self._warn_invalidated() if self.empty: self._reset_empty() return self.attr.fire_append_wo_mutation_event( self.owner_state, self.owner_state.dict, item, initiator ) else: return item def fire_append_event(self, item, initiator=None): """Notify that a entity has entered the collection. Initiator is a token owned by the InstrumentedAttribute that initiated the membership mutation, and should be left as None unless you are passing along an initiator value from a chained operation. """ if initiator is not False: if self.invalidated: self._warn_invalidated() if self.empty: self._reset_empty() return self.attr.fire_append_event( self.owner_state, self.owner_state.dict, item, initiator ) else: return item def fire_remove_event(self, item, initiator=None): """Notify that a entity has been removed from the collection. Initiator is the InstrumentedAttribute that initiated the membership mutation, and should be left as None unless you are passing along an initiator value from a chained operation. """ if initiator is not False: if self.invalidated: self._warn_invalidated() if self.empty: self._reset_empty() self.attr.fire_remove_event( self.owner_state, self.owner_state.dict, item, initiator ) def fire_pre_remove_event(self, initiator=None): """Notify that an entity is about to be removed from the collection. Only called if the entity cannot be removed after calling fire_remove_event(). """ if self.invalidated: self._warn_invalidated() self.attr.fire_pre_remove_event( self.owner_state, self.owner_state.dict, initiator=initiator ) def __getstate__(self): return { "key": self._key, "owner_state": self.owner_state, "owner_cls": self.owner_state.class_, "data": self.data, "invalidated": self.invalidated, "empty": self.empty, } def __setstate__(self, d): self._key = d["key"] self.owner_state = d["owner_state"] self._data = weakref.ref(d["data"]) self._converter = d["data"]._sa_converter d["data"]._sa_adapter = self self.invalidated = d["invalidated"] self.attr = getattr(d["owner_cls"], self._key).impl self.empty = d.get("empty", False) def bulk_replace(values, existing_adapter, new_adapter, initiator=None): """Load a new collection, firing events based on prior like membership. Appends instances in ``values`` onto the ``new_adapter``. Events will be fired for any instance not present in the ``existing_adapter``. Any instances in ``existing_adapter`` not present in ``values`` will have remove events fired upon them. :param values: An iterable of collection member instances :param existing_adapter: A :class:`.CollectionAdapter` of instances to be replaced :param new_adapter: An empty :class:`.CollectionAdapter` to load with ``values`` """ assert isinstance(values, list) idset = util.IdentitySet existing_idset = idset(existing_adapter or ()) constants = existing_idset.intersection(values or ()) additions = idset(values or ()).difference(constants) removals = existing_idset.difference(constants) appender = new_adapter.bulk_appender() for member in values or (): if member in additions: appender(member, _sa_initiator=initiator) elif member in constants: appender(member, _sa_initiator=False) if existing_adapter: for member in removals: existing_adapter.fire_remove_event(member, initiator=initiator) def prepare_instrumentation(factory): """Prepare a callable for future use as a collection class factory. Given a collection class factory (either a type or no-arg callable), return another factory that will produce compatible instances when called. This function is responsible for converting collection_class=list into the run-time behavior of collection_class=InstrumentedList. """ # Convert a builtin to 'Instrumented*' if factory in __canned_instrumentation: factory = __canned_instrumentation[factory] # Create a specimen cls = type(factory()) # Did factory callable return a builtin? if cls in __canned_instrumentation: # Wrap it so that it returns our 'Instrumented*' factory = __converting_factory(cls, factory) cls = factory() # Instrument the class if needed. if __instrumentation_mutex.acquire(): try: if getattr(cls, "_sa_instrumented", None) != id(cls): _instrument_class(cls) finally: __instrumentation_mutex.release() return factory def __converting_factory(specimen_cls, original_factory): """Return a wrapper that converts a "canned" collection like set, dict, list into the Instrumented* version. """ instrumented_cls = __canned_instrumentation[specimen_cls] def wrapper(): collection = original_factory() return instrumented_cls(collection) # often flawed but better than nothing wrapper.__name__ = "%sWrapper" % original_factory.__name__ wrapper.__doc__ = original_factory.__doc__ return wrapper def _instrument_class(cls): """Modify methods in a class and install instrumentation.""" # In the normal call flow, a request for any of the 3 basic collection # types is transformed into one of our trivial subclasses # (e.g. InstrumentedList). Catch anything else that sneaks in here... if cls.__module__ == "__builtin__": raise sa_exc.ArgumentError( "Can not instrument a built-in type. Use a " "subclass, even a trivial one." ) roles, methods = _locate_roles_and_methods(cls) _setup_canned_roles(cls, roles, methods) _assert_required_roles(cls, roles, methods) _set_collection_attributes(cls, roles, methods) def _locate_roles_and_methods(cls): """search for _sa_instrument_role-decorated methods in method resolution order, assign to roles. """ roles = {} methods = {} for supercls in cls.__mro__: for name, method in vars(supercls).items(): if not callable(method): continue # note role declarations if hasattr(method, "_sa_instrument_role"): role = method._sa_instrument_role assert role in ( "appender", "remover", "iterator", "converter", ) roles.setdefault(role, name) # transfer instrumentation requests from decorated function # to the combined queue before, after = None, None if hasattr(method, "_sa_instrument_before"): op, argument = method._sa_instrument_before assert op in ("fire_append_event", "fire_remove_event") before = op, argument if hasattr(method, "_sa_instrument_after"): op = method._sa_instrument_after assert op in ("fire_append_event", "fire_remove_event") after = op if before: methods[name] = before + (after,) elif after: methods[name] = None, None, after return roles, methods def _setup_canned_roles(cls, roles, methods): """see if this class has "canned" roles based on a known collection type (dict, set, list). Apply those roles as needed to the "roles" dictionary, and also prepare "decorator" methods """ collection_type = util.duck_type_collection(cls) if collection_type in __interfaces: canned_roles, decorators = __interfaces[collection_type] for role, name in canned_roles.items(): roles.setdefault(role, name) # apply ABC auto-decoration to methods that need it for method, decorator in decorators.items(): fn = getattr(cls, method, None) if ( fn and method not in methods and not hasattr(fn, "_sa_instrumented") ): setattr(cls, method, decorator(fn)) def _assert_required_roles(cls, roles, methods): """ensure all roles are present, and apply implicit instrumentation if needed """ if "appender" not in roles or not hasattr(cls, roles["appender"]): raise sa_exc.ArgumentError( "Type %s must elect an appender method to be " "a collection class" % cls.__name__ ) elif roles["appender"] not in methods and not hasattr( getattr(cls, roles["appender"]), "_sa_instrumented" ): methods[roles["appender"]] = ("fire_append_event", 1, None) if "remover" not in roles or not hasattr(cls, roles["remover"]): raise sa_exc.ArgumentError( "Type %s must elect a remover method to be " "a collection class" % cls.__name__ ) elif roles["remover"] not in methods and not hasattr( getattr(cls, roles["remover"]), "_sa_instrumented" ): methods[roles["remover"]] = ("fire_remove_event", 1, None) if "iterator" not in roles or not hasattr(cls, roles["iterator"]): raise sa_exc.ArgumentError( "Type %s must elect an iterator method to be " "a collection class" % cls.__name__ ) def _set_collection_attributes(cls, roles, methods): """apply ad-hoc instrumentation from decorators, class-level defaults and implicit role declarations """ for method_name, (before, argument, after) in methods.items(): setattr( cls, method_name, _instrument_membership_mutator( getattr(cls, method_name), before, argument, after ), ) # intern the role map for role, method_name in roles.items(): setattr(cls, "_sa_%s" % role, getattr(cls, method_name)) cls._sa_adapter = None if not hasattr(cls, "_sa_converter"): cls._sa_converter = None cls._sa_instrumented = id(cls) def _instrument_membership_mutator(method, before, argument, after): """Route method args and/or return value through the collection adapter.""" # This isn't smart enough to handle @adds(1) for 'def fn(self, (a, b))' if before: fn_args = list( util.flatten_iterator(inspect_getfullargspec(method)[0]) ) if isinstance(argument, int): pos_arg = argument named_arg = len(fn_args) > argument and fn_args[argument] or None else: if argument in fn_args: pos_arg = fn_args.index(argument) else: pos_arg = None named_arg = argument del fn_args def wrapper(*args, **kw): if before: if pos_arg is None: if named_arg not in kw: raise sa_exc.ArgumentError( "Missing argument %s" % argument ) value = kw[named_arg] else: if len(args) > pos_arg: value = args[pos_arg] elif named_arg in kw: value = kw[named_arg] else: raise sa_exc.ArgumentError( "Missing argument %s" % argument ) initiator = kw.pop("_sa_initiator", None) if initiator is False: executor = None else: executor = args[0]._sa_adapter if before and executor: getattr(executor, before)(value, initiator) if not after or not executor: return method(*args, **kw) else: res = method(*args, **kw) if res is not None: getattr(executor, after)(res, initiator) return res wrapper._sa_instrumented = True if hasattr(method, "_sa_instrument_role"): wrapper._sa_instrument_role = method._sa_instrument_role wrapper.__name__ = method.__name__ wrapper.__doc__ = method.__doc__ return wrapper def __set_wo_mutation(collection, item, _sa_initiator=None): """Run set wo mutation events. The collection is not mutated. """ if _sa_initiator is not False: executor = collection._sa_adapter if executor: executor.fire_append_wo_mutation_event(item, _sa_initiator) def __set(collection, item, _sa_initiator=None): """Run set events. This event always occurs before the collection is actually mutated. """ if _sa_initiator is not False: executor = collection._sa_adapter if executor: item = executor.fire_append_event(item, _sa_initiator) return item def __del(collection, item, _sa_initiator=None): """Run del events. This event occurs before the collection is actually mutated, *except* in the case of a pop operation, in which case it occurs afterwards. For pop operations, the __before_pop hook is called before the operation occurs. """ if _sa_initiator is not False: executor = collection._sa_adapter if executor: executor.fire_remove_event(item, _sa_initiator) def __before_pop(collection, _sa_initiator=None): """An event which occurs on a before a pop() operation occurs.""" executor = collection._sa_adapter if executor: executor.fire_pre_remove_event(_sa_initiator) def _list_decorators(): """Tailored instrumentation wrappers for any list-like class.""" def _tidy(fn): fn._sa_instrumented = True fn.__doc__ = getattr(list, fn.__name__).__doc__ def append(fn): def append(self, item, _sa_initiator=None): item = __set(self, item, _sa_initiator) fn(self, item) _tidy(append) return append def remove(fn): def remove(self, value, _sa_initiator=None): __del(self, value, _sa_initiator) # testlib.pragma exempt:__eq__ fn(self, value) _tidy(remove) return remove def insert(fn): def insert(self, index, value): value = __set(self, value) fn(self, index, value) _tidy(insert) return insert def __setitem__(fn): def __setitem__(self, index, value): if not isinstance(index, slice): existing = self[index] if existing is not None: __del(self, existing) value = __set(self, value) fn(self, index, value) else: # slice assignment requires __delitem__, insert, __len__ step = index.step or 1 start = index.start or 0 if start < 0: start += len(self) if index.stop is not None: stop = index.stop else: stop = len(self) if stop < 0: stop += len(self) if step == 1: if value is self: return for i in range(start, stop, step): if len(self) > start: del self[start] for i, item in enumerate(value): self.insert(i + start, item) else: rng = list(range(start, stop, step)) if len(value) != len(rng): raise ValueError( "attempt to assign sequence of size %s to " "extended slice of size %s" % (len(value), len(rng)) ) for i, item in zip(rng, value): self.__setitem__(i, item) _tidy(__setitem__) return __setitem__ def __delitem__(fn): def __delitem__(self, index): if not isinstance(index, slice): item = self[index] __del(self, item) fn(self, index) else: # slice deletion requires __getslice__ and a slice-groking # __getitem__ for stepped deletion # note: not breaking this into atomic dels for item in self[index]: __del(self, item) fn(self, index) _tidy(__delitem__) return __delitem__ def extend(fn): def extend(self, iterable): for value in list(iterable): self.append(value) _tidy(extend) return extend def __iadd__(fn): def __iadd__(self, iterable): # list.__iadd__ takes any iterable and seems to let TypeError # raise as-is instead of returning NotImplemented for value in list(iterable): self.append(value) return self _tidy(__iadd__) return __iadd__ def pop(fn): def pop(self, index=-1): __before_pop(self) item = fn(self, index) __del(self, item) return item _tidy(pop) return pop def clear(fn): def clear(self, index=-1): for item in self: __del(self, item) fn(self) _tidy(clear) return clear # __imul__ : not wrapping this. all members of the collection are already # present, so no need to fire appends... wrapping it with an explicit # decorator is still possible, so events on *= can be had if they're # desired. hard to imagine a use case for __imul__, though. l = locals().copy() l.pop("_tidy") return l def _dict_decorators(): """Tailored instrumentation wrappers for any dict-like mapping class.""" def _tidy(fn): fn._sa_instrumented = True fn.__doc__ = getattr(dict, fn.__name__).__doc__ Unspecified = util.symbol("Unspecified") def __setitem__(fn): def __setitem__(self, key, value, _sa_initiator=None): if key in self: __del(self, self[key], _sa_initiator) value = __set(self, value, _sa_initiator) fn(self, key, value) _tidy(__setitem__) return __setitem__ def __delitem__(fn): def __delitem__(self, key, _sa_initiator=None): if key in self: __del(self, self[key], _sa_initiator) fn(self, key) _tidy(__delitem__) return __delitem__ def clear(fn): def clear(self): for key in self: __del(self, self[key]) fn(self) _tidy(clear) return clear def pop(fn): def pop(self, key, default=Unspecified): __before_pop(self) _to_del = key in self if default is Unspecified: item = fn(self, key) else: item = fn(self, key, default) if _to_del: __del(self, item) return item _tidy(pop) return pop def popitem(fn): def popitem(self): __before_pop(self) item = fn(self) __del(self, item[1]) return item _tidy(popitem) return popitem def setdefault(fn): def setdefault(self, key, default=None): if key not in self: self.__setitem__(key, default) return default else: value = self.__getitem__(key) if value is default: __set_wo_mutation(self, value, None) return value _tidy(setdefault) return setdefault def update(fn): def update(self, __other=Unspecified, **kw): if __other is not Unspecified: if hasattr(__other, "keys"): for key in list(__other): if key not in self or self[key] is not __other[key]: self[key] = __other[key] else: __set_wo_mutation(self, __other[key], None) else: for key, value in __other: if key not in self or self[key] is not value: self[key] = value else: __set_wo_mutation(self, value, None) for key in kw: if key not in self or self[key] is not kw[key]: self[key] = kw[key] else: __set_wo_mutation(self, kw[key], None) _tidy(update) return update l = locals().copy() l.pop("_tidy") l.pop("Unspecified") return l _set_binop_bases = (set, frozenset) def _set_binops_check_strict(self, obj): """Allow only set, frozenset and self.__class__-derived objects in binops.""" return isinstance(obj, _set_binop_bases + (self.__class__,)) def _set_binops_check_loose(self, obj): """Allow anything set-like to participate in set binops.""" return ( isinstance(obj, _set_binop_bases + (self.__class__,)) or util.duck_type_collection(obj) == set ) def _set_decorators(): """Tailored instrumentation wrappers for any set-like class.""" def _tidy(fn): fn._sa_instrumented = True fn.__doc__ = getattr(set, fn.__name__).__doc__ Unspecified = util.symbol("Unspecified") def add(fn): def add(self, value, _sa_initiator=None): if value not in self: value = __set(self, value, _sa_initiator) else: __set_wo_mutation(self, value, _sa_initiator) # testlib.pragma exempt:__hash__ fn(self, value) _tidy(add) return add def discard(fn): def discard(self, value, _sa_initiator=None): # testlib.pragma exempt:__hash__ if value in self: __del(self, value, _sa_initiator) # testlib.pragma exempt:__hash__ fn(self, value) _tidy(discard) return discard def remove(fn): def remove(self, value, _sa_initiator=None): # testlib.pragma exempt:__hash__ if value in self: __del(self, value, _sa_initiator) # testlib.pragma exempt:__hash__ fn(self, value) _tidy(remove) return remove def pop(fn): def pop(self): __before_pop(self) item = fn(self) # for set in particular, we have no way to access the item # that will be popped before pop is called. __del(self, item) return item _tidy(pop) return pop def clear(fn): def clear(self): for item in list(self): self.remove(item) _tidy(clear) return clear def update(fn): def update(self, value): for item in value: self.add(item) _tidy(update) return update def __ior__(fn): def __ior__(self, value): if not _set_binops_check_strict(self, value): return NotImplemented for item in value: self.add(item) return self _tidy(__ior__) return __ior__ def difference_update(fn): def difference_update(self, value): for item in value: self.discard(item) _tidy(difference_update) return difference_update def __isub__(fn): def __isub__(self, value): if not _set_binops_check_strict(self, value): return NotImplemented for item in value: self.discard(item) return self _tidy(__isub__) return __isub__ def intersection_update(fn): def intersection_update(self, other): want, have = self.intersection(other), set(self) remove, add = have - want, want - have for item in remove: self.remove(item) for item in add: self.add(item) _tidy(intersection_update) return intersection_update def __iand__(fn): def __iand__(self, other): if not _set_binops_check_strict(self, other): return NotImplemented want, have = self.intersection(other), set(self) remove, add = have - want, want - have for item in remove: self.remove(item) for item in add: self.add(item) return self _tidy(__iand__) return __iand__ def symmetric_difference_update(fn): def symmetric_difference_update(self, other): want, have = self.symmetric_difference(other), set(self) remove, add = have - want, want - have for item in remove: self.remove(item) for item in add: self.add(item) _tidy(symmetric_difference_update) return symmetric_difference_update def __ixor__(fn): def __ixor__(self, other): if not _set_binops_check_strict(self, other): return NotImplemented want, have = self.symmetric_difference(other), set(self) remove, add = have - want, want - have for item in remove: self.remove(item) for item in add: self.add(item) return self _tidy(__ixor__) return __ixor__ l = locals().copy() l.pop("_tidy") l.pop("Unspecified") return l class InstrumentedList(list): """An instrumented version of the built-in list.""" class InstrumentedSet(set): """An instrumented version of the built-in set.""" class InstrumentedDict(dict): """An instrumented version of the built-in dict.""" __canned_instrumentation = { list: InstrumentedList, set: InstrumentedSet, dict: InstrumentedDict, } __interfaces = { list: ( {"appender": "append", "remover": "remove", "iterator": "__iter__"}, _list_decorators(), ), set: ( {"appender": "add", "remover": "remove", "iterator": "__iter__"}, _set_decorators(), ), # decorators are required for dicts and object collections. dict: ({"iterator": "values"}, _dict_decorators()), } class MappedCollection(dict): """A basic dictionary-based collection class. Extends dict with the minimal bag semantics that collection classes require. ``set`` and ``remove`` are implemented in terms of a keying function: any callable that takes an object and returns an object for use as a dictionary key. """ def __init__(self, keyfunc): """Create a new collection with keying provided by keyfunc. keyfunc may be any callable that takes an object and returns an object for use as a dictionary key. The keyfunc will be called every time the ORM needs to add a member by value-only (such as when loading instances from the database) or remove a member. The usual cautions about dictionary keying apply- ``keyfunc(object)`` should return the same output for the life of the collection. Keying based on mutable properties can result in unreachable instances "lost" in the collection. """ self.keyfunc = keyfunc @collection.appender @collection.internally_instrumented def set(self, value, _sa_initiator=None): """Add an item by value, consulting the keyfunc for the key.""" key = self.keyfunc(value) self.__setitem__(key, value, _sa_initiator) @collection.remover @collection.internally_instrumented def remove(self, value, _sa_initiator=None): """Remove an item by value, consulting the keyfunc for the key.""" key = self.keyfunc(value) # Let self[key] raise if key is not in this collection # testlib.pragma exempt:__ne__ if self[key] != value: raise sa_exc.InvalidRequestError( "Can not remove '%s': collection holds '%s' for key '%s'. " "Possible cause: is the MappedCollection key function " "based on mutable properties or properties that only obtain " "values after flush?" % (value, self[key], key) ) self.__delitem__(key, _sa_initiator) # ensure instrumentation is associated with # these built-in classes; if a user-defined class # subclasses these and uses @internally_instrumented, # the superclass is otherwise not instrumented. # see [ticket:2406]. _instrument_class(MappedCollection) _instrument_class(InstrumentedList) _instrument_class(InstrumentedSet)
32.042781
78
0.621996
26e01f3706948ee9fdf0451e0ff891a7945fbade
1,536
py
Python
src/loader.py
mlennox/numeraiexplore
888468f0802358f9778295b8f1fdf5f5f760053c
[ "MIT" ]
1
2019-07-09T01:35:16.000Z
2019-07-09T01:35:16.000Z
src/loader.py
mlennox/numeraiexplore
888468f0802358f9778295b8f1fdf5f5f760053c
[ "MIT" ]
null
null
null
src/loader.py
mlennox/numeraiexplore
888468f0802358f9778295b8f1fdf5f5f760053c
[ "MIT" ]
null
null
null
import pandas as pd def load_training(): return pd.read_csv( './data/numerai_training_data.csv', header=0) def load_tournament(): return pd.read_csv( './data/numerai_tournament_data.csv', header=0) def pull_features(data_source, for_era=None, target_bernie_value=None): if for_era is not None: dataset = data_source[data_source['era'] == 'era' + str(for_era)] else: dataset = data_source if target_bernie_value is not None: dataset = dataset[dataset['target_bernie'] == target_bernie_value] # print(dataset.describe()) features = [feature for feature in list(dataset) if "feature" in feature] return dataset[features] def pull_lots(dataset): features = [feature for feature in list(dataset) if "feature" in feature] features.append('era') features.append('target_bernie') return dataset[features] def pull_features_and_era_label(data_source, for_era): # if for_era = 12 the data will pull onlu rows with 'era' column matching 'era12' # and the returned dataframe will have labels suffixed with era 'feature23_12' dataset = pull_features(data_source, for_era) features = [feature for feature in list(dataset) if "feature" in feature] features_suffixed = [f + '_' + for_era for f in features] # print('SUFFIXED', features_suffixed) updated_columns = dict(zip(features, features_suffixed)) print('UPDATED COLUMNS', updated_columns) dataset.rename(columns=updated_columns, inplace=True) return dataset
34.909091
85
0.713542
505be55c5e56be133e20a1c1780045f41296b2ae
1,650
py
Python
pychron/pipeline/plot/editors/spectrum_editor.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
31
2016-03-07T02:38:17.000Z
2022-02-14T18:23:43.000Z
pychron/pipeline/plot/editors/spectrum_editor.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
1,626
2015-01-07T04:52:35.000Z
2022-03-25T19:15:59.000Z
pychron/pipeline/plot/editors/spectrum_editor.py
UIllinoisHALPychron/pychron
f21b79f4592a9fb9dc9a4cb2e4e943a3885ededc
[ "Apache-2.0" ]
26
2015-05-23T00:10:06.000Z
2022-03-07T16:51:57.000Z
# =============================================================================== # Copyright 2013 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from traits.api import Instance # ============= standard library imports ======================== # ============= local library imports ========================== from pychron.options.options_manager import SpectrumOptionsManager from pychron.pipeline.plot.editors.interpreted_age_editor import InterpretedAgeEditor from pychron.pipeline.plot.models.spectrum_model import SpectrumModel class SpectrumEditor(InterpretedAgeEditor): plotter_options_manager = Instance(SpectrumOptionsManager, ()) basename = "spec" figure_model_klass = SpectrumModel def _set_preferred_age_kind(self, ias): for ia in ias: if ia.plateau_age: ia.preferred_age_kind = "Plateau" else: ia.preferred_age_kind = "Integrated" # ============= EOF =============================================
40.243902
85
0.597576
4395c486be6be5c4d811f96353eded08d823105a
120
py
Python
plugins/get_url/komand_get_url/util/constants.py
JaredAllen13/insightconnect-plugins
f68ce8c60ad20439284228dfcbcd9f8c1c0c7d31
[ "MIT" ]
null
null
null
plugins/get_url/komand_get_url/util/constants.py
JaredAllen13/insightconnect-plugins
f68ce8c60ad20439284228dfcbcd9f8c1c0c7d31
[ "MIT" ]
null
null
null
plugins/get_url/komand_get_url/util/constants.py
JaredAllen13/insightconnect-plugins
f68ce8c60ad20439284228dfcbcd9f8c1c0c7d31
[ "MIT" ]
null
null
null
DEFAULT_USER_AGENT = "Mozilla/5.0" DEFAULT_TIMEOUT = 60 DEFAULT_ENCODING = "utf-8" DEFAULT_CACHE_FOLDER = "/var/cache/"
24
36
0.766667
f243d9573d49de3564ec245c4a468dd324ac39bd
9,212
py
Python
experiments/cleverhans/tutorials/mnist_tutorial_jsma.py
QMLB-GPapersCapstoneRepos/capstone18-AdversarialTexPlayground2
8feb6e1ef1d293dcb8869faa8a84216cdc3dd5ce
[ "Apache-2.0" ]
null
null
null
experiments/cleverhans/tutorials/mnist_tutorial_jsma.py
QMLB-GPapersCapstoneRepos/capstone18-AdversarialTexPlayground2
8feb6e1ef1d293dcb8869faa8a84216cdc3dd5ce
[ "Apache-2.0" ]
1
2020-09-25T21:55:03.000Z
2020-09-25T21:55:03.000Z
experiments/cleverhans/tutorials/mnist_tutorial_jsma.py
Qdata4Capstone/capstone18-AdversarialTexPlayground2
8feb6e1ef1d293dcb8869faa8a84216cdc3dd5ce
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import keras import numpy as np from six.moves import xrange import tensorflow as tf from tensorflow.python.platform import app from tensorflow.python.platform import flags from cleverhans.attacks import SaliencyMapMethod from cleverhans.utils import other_classes, cnn_model from cleverhans.utils import pair_visual, grid_visual, AccuracyReport from cleverhans.utils_mnist import data_mnist from cleverhans.utils_tf import model_train, model_eval, model_argmax FLAGS = flags.FLAGS def mnist_tutorial_jsma(train_start=0, train_end=60000, test_start=0, test_end=10000, viz_enabled=True, nb_epochs=6, batch_size=128, nb_classes=10, source_samples=10, learning_rate=0.1): """ MNIST tutorial for the Jacobian-based saliency map approach (JSMA) :param train_start: index of first training set example :param train_end: index of last training set example :param test_start: index of first test set example :param test_end: index of last test set example :param viz_enabled: (boolean) activate plots of adversarial examples :param nb_epochs: number of epochs to train model :param batch_size: size of training batches :param nb_classes: number of output classes :param source_samples: number of test inputs to attack :param learning_rate: learning rate for training :return: an AccuracyReport object """ # Object used to keep track of (and return) key accuracies report = AccuracyReport() # MNIST-specific dimensions img_rows = 28 img_cols = 28 channels = 1 # Disable Keras learning phase since we will be serving through tensorflow keras.layers.core.K.set_learning_phase(0) # Set TF random seed to improve reproducibility tf.set_random_seed(1234) # Image dimensions ordering should follow the TensorFlow convention if keras.backend.image_dim_ordering() != 'tf': keras.backend.set_image_dim_ordering('tf') print("INFO: '~/.keras/keras.json' sets 'image_dim_ordering' " "to 'th', temporarily setting to 'tf'") # Create TF session and set as Keras backend session sess = tf.Session() keras.backend.set_session(sess) print("Created TensorFlow session and set Keras backend.") # Get MNIST test data X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end) # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(None, 28, 28, 1)) y = tf.placeholder(tf.float32, shape=(None, 10)) # Define TF model graph model = cnn_model() preds = model(x) print("Defined TensorFlow model graph.") ########################################################################### # Training the model using TensorFlow ########################################################################### # Train an MNIST model train_params = { 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate } model_train(sess, x, y, preds, X_train, Y_train, args=train_params) # Evaluate the accuracy of the MNIST model on legitimate test examples eval_params = {'batch_size': batch_size} accuracy = model_eval(sess, x, y, preds, X_test, Y_test, args=eval_params) assert X_test.shape[0] == test_end - test_start, X_test.shape print('Test accuracy on legitimate test examples: {0}'.format(accuracy)) report.clean_train_clean_eval = accuracy ########################################################################### # Craft adversarial examples using the Jacobian-based saliency map approach ########################################################################### print('Crafting ' + str(source_samples) + ' * ' + str(nb_classes-1) + ' adversarial examples') # Keep track of success (adversarial example classified in target) results = np.zeros((nb_classes, source_samples), dtype='i') # Rate of perturbed features for each test set example and target class perturbations = np.zeros((nb_classes, source_samples), dtype='f') # Initialize our array for grid visualization grid_shape = (nb_classes, nb_classes, img_rows, img_cols, channels) grid_viz_data = np.zeros(grid_shape, dtype='f') # Instantiate a SaliencyMapMethod attack object jsma = SaliencyMapMethod(model, back='tf', sess=sess) jsma_params = {'theta': 1., 'gamma': 0.1, 'nb_classes': nb_classes, 'clip_min': 0., 'clip_max': 1., 'targets': y, 'y_val': None} figure = None # Loop over the samples we want to perturb into adversarial examples for sample_ind in xrange(0, source_samples): print('--------------------------------------') print('Attacking input %i/%i' % (sample_ind + 1, source_samples)) sample = X_test[sample_ind:(sample_ind+1)] # We want to find an adversarial example for each possible target class # (i.e. all classes that differ from the label given in the dataset) current_class = int(np.argmax(Y_test[sample_ind])) target_classes = other_classes(nb_classes, current_class) # For the grid visualization, keep original images along the diagonal grid_viz_data[current_class, current_class, :, :, :] = np.reshape( sample, (img_rows, img_cols, channels)) # Loop over all target classes for target in target_classes: print('Generating adv. example for target class %i' % target) # This call runs the Jacobian-based saliency map approach one_hot_target = np.zeros((1, nb_classes), dtype=np.float32) one_hot_target[0, target] = 1 jsma_params['y_val'] = one_hot_target adv_x = jsma.generate_np(sample, **jsma_params) # Check if success was achieved res = int(model_argmax(sess, x, preds, adv_x) == target) # Computer number of modified features adv_x_reshape = adv_x.reshape(-1) test_in_reshape = X_test[sample_ind].reshape(-1) nb_changed = np.where(adv_x_reshape != test_in_reshape)[0].shape[0] percent_perturb = float(nb_changed) / adv_x.reshape(-1).shape[0] # Display the original and adversarial images side-by-side if viz_enabled: figure = pair_visual( np.reshape(sample, (img_rows, img_cols)), np.reshape(adv_x, (img_rows, img_cols)), figure) # Add our adversarial example to our grid data grid_viz_data[target, current_class, :, :, :] = np.reshape( adv_x, (img_rows, img_cols, channels)) # Update the arrays for later analysis results[target, sample_ind] = res perturbations[target, sample_ind] = percent_perturb print('--------------------------------------') # Compute the number of adversarial examples that were successfully found nb_targets_tried = ((nb_classes - 1) * source_samples) succ_rate = float(np.sum(results)) / nb_targets_tried print('Avg. rate of successful adv. examples {0:.4f}'.format(succ_rate)) report.clean_train_adv_eval = 1. - succ_rate # Compute the average distortion introduced by the algorithm percent_perturbed = np.mean(perturbations) print('Avg. rate of perturbed features {0:.4f}'.format(percent_perturbed)) # Compute the average distortion introduced for successful samples only percent_perturb_succ = np.mean(perturbations * (results == 1)) print('Avg. rate of perturbed features for successful ' 'adversarial examples {0:.4f}'.format(percent_perturb_succ)) # Close TF session sess.close() # Finally, block & display a grid of all the adversarial examples if viz_enabled: import matplotlib.pyplot as plt plt.close(figure) _ = grid_visual(grid_viz_data) return report def main(argv=None): mnist_tutorial_jsma(viz_enabled=FLAGS.viz_enabled, nb_epochs=FLAGS.nb_epochs, batch_size=FLAGS.batch_size, nb_classes=FLAGS.nb_classes, source_samples=FLAGS.source_samples, learning_rate=FLAGS.learning_rate) if __name__ == '__main__': flags.DEFINE_boolean('viz_enabled', True, 'Visualize adversarial ex.') flags.DEFINE_integer('nb_epochs', 6, 'Number of epochs to train model') flags.DEFINE_integer('batch_size', 128, 'Size of training batches') flags.DEFINE_integer('nb_classes', 10, 'Number of output classes') flags.DEFINE_integer('source_samples', 10, 'Nb of test inputs to attack') flags.DEFINE_float('learning_rate', 0.1, 'Learning rate for training') app.run()
42.256881
79
0.640252
3299c04c4ae554f3701d7b1ac46db7238a44ac28
4,021
py
Python
DarcyFrictionFactor.py
DrTol/pressure_loss_calculator-Python
44f2c2adce161ef663fd6774d1f1c188b4c7e5c3
[ "MIT" ]
2
2020-07-16T01:13:05.000Z
2021-03-17T06:45:48.000Z
DarcyFrictionFactor.py
DrTol/pressure_loss_calculator-Python
44f2c2adce161ef663fd6774d1f1c188b4c7e5c3
[ "MIT" ]
null
null
null
DarcyFrictionFactor.py
DrTol/pressure_loss_calculator-Python
44f2c2adce161ef663fd6774d1f1c188b4c7e5c3
[ "MIT" ]
3
2020-12-13T15:08:28.000Z
2022-01-11T10:48:55.000Z
## returns the Darcy-Weisbach friction factor for pressure loss calculations # prepared by Hakan İbrahim Tol, PhD on 02/07/2019 import math import warnings # via Clamond algorithm _ Copied,Modified,Pasted! def f_Clamond(R,K=0): # DWc = COLEBROOK(R,K) fast, accurate and robust computation of the # Darcy-Weisbach friction factor F according to the Colebrook equation: # - - # 1 | K 2.51 | # --------- = -2 * Log_10 | ----- + ------------- | # sqrt(DWc) | 3.7 R * sqrt(DWc) | # - - # INPUT: # R : Reynolds' number (should be >= 2300). # K : Equivalent sand roughness height divided by the hydraulic # diameter (default K=0). # # OUTPUT: # DWc : Darcy Weisbach Friction factor. # # FORMAT: # R, K and DWc are ONLY scalars in this Python Module # # ACCURACY: # Around machine precision forall R > 3 and forall 0 <= K, # i.e. forall values of physical interest. # # EXAMPLE: DWc = f_Clamond(7e5,0.01) # # Method: Quartic iterations. # Reference: http://arxiv.org/abs/0810.5564 # Read this reference to understand the method and to modify the code. # Author: D. Clamond, 2008-09-16. # Modified for Python by Hakan İbrahim Tol, PhD, 2019-07-02 # Check for errors. if R<2300: warnings.warn('The Colebrook equation is valid for Reynolds'' numbers >= 2300.') if K<0: warnings.warn('The relative sand roughness must be non-negative.') # Initialization. X1 = K * R * 0.123968186335417556 # X1 <- K * R * log(10) / 18.574. X2 = math.log(R) - 0.779397488455682028 # X2 <- log( R * log(10) / 5.02 # Initial guess. DWc = X2 - 0.2 # First iteration. E = ( math.log(X1+DWc) - 0.2 ) / ( 1 + X1 + DWc ) DWc = DWc - (1+X1+DWc+0.5*E) * E *(X1+DWc) / (1+X1+DWc+E*(1+E/3)) # Second iteration (remove the next two lines for moderate accuracy). E = ( math.log(X1+DWc) + DWc - X2 ) / ( 1 + X1 + DWc ) DWc = DWc - (1+X1+DWc+0.5*E) * E *(X1+DWc) / (1+X1+DWc+E*(1+E/3)) # Finalized solution. DWc = 1.151292546497022842 / DWc # DWc <- 0.5 * log(10) / DWc; DWc = DWc * DWc # DWc <- Friction factor. return DWc # via solving implicit Colebrook-White equation def f_ColebrookWhite(D,Re,aRou,fTol=0.001,MaxIter=2000): # INPUTS # D : Inner diameter of the pipe [mm] # Re : Reynolds Number [-] # aRou : Absolute roughness of pipe [mm] # fTol : Iteration termination tolerance # MaxIter : Maximum limit (iteration) # Initializing the Iteration error=10; # Iteration error IterNum=0; # Iteration steps number x0=f_SwameeJain(D,Re,aRou) # Initial estimate # Fasten your seat belts - Iteration starts while error>fTol and IterNum<MaxIter: x1 = (2*math.log10((aRou/D)/3.7+2.51/(Re*math.sqrt(x0))))**(-2) error=abs(x1-x0) IterNum=IterNum+1 x0=x1 return x1 # via solving explicit equation by Swamee PK & Jain AK def f_SwameeJain(D,Re,aRou): # INPUTS # D : Inner diameter of the pipe [mm] # Re : Reynolds Number [-] # aRou : Absolute roughness of pipe [mm] # Checking limitations if Re<5000 or Re>1e8: warnings.warn('Swamee&Jain algorithm is valid for a Reynold range as in 5000<Re<1e8') if aRou/D<1e-6 or aRou/D>0.05: warnings.warn('Swamee&Jain algorithm is valid for a relative roughness range as in 1e-6<eps/D<0.05') # Calculation f=0.25/(math.log10((aRou/D)/3.7+5.74/Re**0.9))**2 return f
35.901786
109
0.536931
f64e5eddbbf9dbb75c4cad1f1fbdbcbccc9cdfe8
1,477
py
Python
app/backend/visualization/helpers/get_and_process_image.py
admariner/social-media-profiler
2001167201fc9602fef3070ee9d31f005978bfe8
[ "MIT" ]
34
2020-12-14T15:48:26.000Z
2022-02-27T14:24:29.000Z
app/backend/visualization/helpers/get_and_process_image.py
pandrey2003/social-media-profiler
4160e318997d161d63b8233511a65669542da026
[ "MIT" ]
1
2021-12-15T02:37:32.000Z
2021-12-15T02:37:32.000Z
app/backend/visualization/helpers/get_and_process_image.py
admariner/social-media-profiler
2001167201fc9602fef3070ee9d31f005978bfe8
[ "MIT" ]
6
2021-02-11T16:29:04.000Z
2022-03-23T11:42:32.000Z
# -*- coding: utf-8 -*- """The module to obtain an image by the URL and process it.""" import io from urllib.request import urlopen from PIL import Image, ImageDraw import numpy as np def get_and_process_image(url: str) -> io.BytesIO: """ Get the image by the URL, then crop it into a circle using numpy and Pillow, \ and return cropped version of the image. Args: `url`: the URL to the image we need to get and process. Returns: `io.BytesIO`: the io.BytesIO object that contains processed image. """ img = io.BytesIO(urlopen(url).read()) pillow_img = Image.open(img).convert("RGB") pillow_img = pillow_img.resize(size=(400, 400)) np_image = np.array(pillow_img) height, width = pillow_img.size # Create same size alpha layer with circle alpha = Image.new("L", pillow_img.size, 0) draw = ImageDraw.Draw(alpha) draw.pieslice([0, 0, height, width], 0, 360, fill=255) # Convert alpha Image to numpy array np_alpha = np.array(alpha) # Add alpha layer to RGB np_image = np.dstack((np_image, np_alpha)) # Save with alpha cropped_image_in_bytes = io.BytesIO() cropped_image = Image.fromarray(np_image) cropped_image.save(cropped_image_in_bytes, "PNG") cropped_image_in_bytes.seek(0) cropped_image = cropped_image_in_bytes.read() # Return io.BytesIO image with all done manipulations data_bytes_io = io.BytesIO(cropped_image) return data_bytes_io
31.425532
82
0.689235
aff0228f47873aed5b62f0642ef7ba7139775e7b
4,644
py
Python
tests/manage/pv_services/test_pvc_delete_verify_size_is_returned_to_backendpool.py
vikasmulaje/ocs-ci
98ce950150e061ba872c62f2d55f9bd395241a6e
[ "MIT" ]
null
null
null
tests/manage/pv_services/test_pvc_delete_verify_size_is_returned_to_backendpool.py
vikasmulaje/ocs-ci
98ce950150e061ba872c62f2d55f9bd395241a6e
[ "MIT" ]
null
null
null
tests/manage/pv_services/test_pvc_delete_verify_size_is_returned_to_backendpool.py
vikasmulaje/ocs-ci
98ce950150e061ba872c62f2d55f9bd395241a6e
[ "MIT" ]
null
null
null
""" A test case to verify after deleting pvc whether size is returned to backend pool """ import logging import pytest from ocs_ci.ocs import constants, defaults from ocs_ci.ocs.exceptions import UnexpectedBehaviour from tests import helpers from ocs_ci.framework.testlib import tier1, ManageTest from ocs_ci.utility import templating from ocs_ci.utility.retry import retry from ocs_ci.ocs.resources import pod from ocs_ci.ocs import ocp from tests.fixtures import ( create_rbd_storageclass, create_ceph_block_pool, create_rbd_secret ) from ocs_ci.ocs.cluster import CephCluster logger = logging.getLogger(__name__) _templating = templating.Templating() PV = ocp.OCP( kind='PersistentVolume', namespace=defaults.ROOK_CLUSTER_NAMESPACE ) @retry(UnexpectedBehaviour, tries=5, delay=3, backoff=1) def verify_pv_not_exists(pvc_obj, cbp_name, rbd_image_id): """ Ensure that pv does not exists """ # Validate on ceph side logger.info(f"Verifying PV {pvc_obj.backed_pv} exists on backend") status = helpers.verify_volume_deleted_in_backend( interface=constants.CEPHBLOCKPOOL, image_uuid=rbd_image_id, pool_name=cbp_name ) if not status: raise UnexpectedBehaviour(f"PV {pvc_obj.backed_pv} exists on backend") logger.info( f"Expected: PV {pvc_obj.backed_pv} " f"doesn't exist on backend after deleting PVC" ) # Validate on oc side logger.info("Verifying whether PV is deleted") try: assert helpers.validate_pv_delete(pvc_obj.backed_pv) except AssertionError as ecf: assert "not found" in str(ecf), ( f"Unexpected: PV {pvc_obj.backed_pv} still exists" ) logger.info( f"Expected: PV should not be found " f"after deleting corresponding PVC" ) def create_pvc_and_verify_pvc_exists(sc_name, cbp_name): """ Create pvc, verify pvc is bound in state and pvc exists on ceph side """ pvc_obj = helpers.create_pvc(sc_name=sc_name, size='10Gi') helpers.wait_for_resource_state(pvc_obj, constants.STATUS_BOUND) pvc_obj.reload() # Validate pv is created on ceph logger.info(f"Verifying PV exists on backend") assert not helpers.verify_volume_deleted_in_backend( interface=constants.CEPHBLOCKPOOL, image_uuid=pvc_obj.image_uuid, pool_name=cbp_name ) return pvc_obj @pytest.mark.usefixtures( create_rbd_secret.__name__, create_ceph_block_pool.__name__, create_rbd_storageclass.__name__ ) @pytest.mark.polarion_id("OCS-372") class TestPVCDeleteAndVerifySizeIsReturnedToBackendPool(ManageTest): """ Testing after pvc deletion the size is returned to backendpool """ @tier1 def test_pvc_delete_and_verify_size_is_returned_to_backend_pool(self): """ Test case to verify after delete pvc size returned to backend pools """ failed_to_delete = [] ceph_obj1 = CephCluster() used_before_creating_pvc = ceph_obj1.check_ceph_pool_used_space(cbp_name=self.cbp_obj.name) logger.info(f"Used before creating PVC {used_before_creating_pvc}") pvc_obj = create_pvc_and_verify_pvc_exists( self.sc_obj.name, self.cbp_obj.name ) pod_obj = helpers.create_pod( interface_type=constants.CEPHBLOCKPOOL, pvc_name=pvc_obj.name ) helpers.wait_for_resource_state(pod_obj, constants.STATUS_RUNNING) pod_obj.reload() pod.run_io_and_verify_mount_point(pod_obj, bs='10M', count='300') used_after_creating_pvc = ceph_obj1.check_ceph_pool_used_space(cbp_name=self.cbp_obj.name) logger.info(f"Used after creating PVC {used_after_creating_pvc}") assert used_before_creating_pvc < used_after_creating_pvc rbd_image_id = pvc_obj.image_uuid for resource in pod_obj, pvc_obj: resource.delete() try: resource.ocp.wait_for_delete(resource) except TimeoutError: failed_to_delete.append(resource) if failed_to_delete: raise UnexpectedBehaviour( f"Failed to delete resources: {failed_to_delete}" ) verify_pv_not_exists(pvc_obj, self.cbp_obj.name, rbd_image_id) ceph_obj2 = CephCluster() used_after_deleting_pvc = ceph_obj2.check_ceph_pool_used_space(cbp_name=self.cbp_obj.name) logger.info(f"Used after deleting PVC {used_after_deleting_pvc}") assert used_after_deleting_pvc < used_after_creating_pvc assert (abs( used_after_deleting_pvc - used_before_creating_pvc) < 0.5 )
34.4
99
0.711886
49a8665aa056b55e2eaca11f08cd7bd3b2173199
1,822
py
Python
rusentrel/rusentrel_ds/ctx/cnn.py
nicolay-r/attitude-extraction-with-attention-and-ds
fb8e9d0d9488363738a88c4c447c7a8cb3e2ec1d
[ "MIT" ]
null
null
null
rusentrel/rusentrel_ds/ctx/cnn.py
nicolay-r/attitude-extraction-with-attention-and-ds
fb8e9d0d9488363738a88c4c447c7a8cb3e2ec1d
[ "MIT" ]
1
2020-12-16T18:21:11.000Z
2020-12-30T10:08:27.000Z
rusentrel/rusentrel_ds/ctx/cnn.py
nicolay-r/attitude-extraction-with-attention-and-ds
fb8e9d0d9488363738a88c4c447c7a8cb3e2ec1d
[ "MIT" ]
1
2021-03-29T20:58:26.000Z
2021-03-29T20:58:26.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import sys sys.path.append('../../../') from io_utils import RuSentRelBasedExperimentsIOUtils from arekit.common.evaluation.evaluators.two_class import TwoClassEvaluator from arekit.contrib.experiments.single.model import SingleInstanceTensorflowModel from arekit.contrib.experiments.nn_io.rusentrel_with_ruattitudes import RuSentRelWithRuAttitudesBasedExperimentIO from arekit.contrib.networks.context.configurations.cnn import CNNConfig from arekit.contrib.networks.context.architectures.cnn import VanillaCNN from rusentrel.ctx_names import ModelNames from arekit.contrib.experiments.engine import run_testing from arekit.contrib.experiments.callback import CustomCallback from rusentrel.rusentrel_ds.common import DS_NAME_PREFIX, \ ds_ctx_common_config_settings, \ ds_common_callback_modification_func from rusentrel.classic.ctx.cnn import ctx_cnn_custom_config def run_testing_cnn( name_prefix=DS_NAME_PREFIX, cv_count=1, common_callback_func=ds_common_callback_modification_func): run_testing(full_model_name=name_prefix + ModelNames().CNN, create_network=VanillaCNN, create_config=CNNConfig, create_nn_io=RuSentRelWithRuAttitudesBasedExperimentIO, create_model=SingleInstanceTensorflowModel, evaluator_class=TwoClassEvaluator, create_callback=CustomCallback, cv_count=cv_count, experiments_io=RuSentRelBasedExperimentsIOUtils(), common_config_modification_func=ds_ctx_common_config_settings, common_callback_modification_func=common_callback_func, custom_config_modification_func=ctx_cnn_custom_config) if __name__ == "__main__": run_testing_cnn()
40.488889
113
0.770033
d6e41c67f36a6e0a2afcd907bc30cf397bbaf10f
13,324
py
Python
reagent/reporting/training_reporter.py
alexnikulkov/ReAgent
e404c5772ea4118105c2eb136ca96ad5ca8e01db
[ "BSD-3-Clause" ]
null
null
null
reagent/reporting/training_reporter.py
alexnikulkov/ReAgent
e404c5772ea4118105c2eb136ca96ad5ca8e01db
[ "BSD-3-Clause" ]
null
null
null
reagent/reporting/training_reporter.py
alexnikulkov/ReAgent
e404c5772ea4118105c2eb136ca96ad5ca8e01db
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import logging import math from collections import deque from typing import Deque, List, NamedTuple, Optional import numpy as np import torch from reagent.tensorboardX import SummaryWriterContext logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) LOSS_REPORT_INTERVAL = 100 class BatchStats(NamedTuple): td_loss: Optional[torch.Tensor] = None reward_loss: Optional[torch.Tensor] = None imitator_loss: Optional[torch.Tensor] = None logged_actions: Optional[torch.Tensor] = None logged_propensities: Optional[torch.Tensor] = None logged_rewards: Optional[torch.Tensor] = None logged_values: Optional[torch.Tensor] = None model_propensities: Optional[torch.Tensor] = None model_rewards: Optional[torch.Tensor] = None model_values: Optional[torch.Tensor] = None model_values_on_logged_actions: Optional[torch.Tensor] = None model_action_idxs: Optional[torch.Tensor] = None def write_summary(self, actions: List[str]): if actions: for field, log_key in [ ("logged_actions", "actions/logged"), ("model_action_idxs", "actions/model"), ]: val = getattr(self, field) if val is None: continue for i, action in enumerate(actions): # pyre-fixme[16]: `SummaryWriterContext` has no attribute # `add_scalar`. SummaryWriterContext.add_scalar( "{}/{}".format(log_key, action), (val == i).sum().item() ) for field, log_key in [ ("td_loss", "td_loss"), ("imitator_loss", "imitator_loss"), ("reward_loss", "reward_loss"), ("logged_propensities", "propensities/logged"), ("logged_rewards", "reward/logged"), ("logged_values", "value/logged"), ("model_values_on_logged_actions", "value/model_logged_action"), ]: val = getattr(self, field) if val is None: continue assert len(val.shape) == 1 or ( len(val.shape) == 2 and val.shape[1] == 1 ), "Unexpected shape for {}: {}".format(field, val.shape) self._log_histogram_and_mean(log_key, val) for field, log_key in [ ("model_propensities", "propensities/model"), ("model_rewards", "reward/model"), ("model_values", "value/model"), ]: val = getattr(self, field) if val is None: continue if ( len(val.shape) == 1 or (len(val.shape) == 2 and val.shape[1] == 1) ) and not actions: self._log_histogram_and_mean(log_key, val) elif len(val.shape) == 2 and val.shape[1] == len(actions): for i, action in enumerate(actions): self._log_histogram_and_mean(f"{log_key}/{action}", val[:, i]) else: raise ValueError( "Unexpected shape for {}: {}; actions: {}".format( field, val.shape, actions ) ) def _log_histogram_and_mean(self, log_key, val): try: SummaryWriterContext.add_histogram(log_key, val) SummaryWriterContext.add_scalar(f"{log_key}/mean", val.mean()) except ValueError: logger.warning( f"Cannot create histogram for key: {log_key}; " "this is likely because you have NULL value in your input; " f"value: {val}" ) raise @staticmethod def add_custom_scalars(action_names: Optional[List[str]]): if not action_names: return SummaryWriterContext.add_custom_scalars_multilinechart( [ "propensities/model/{}/mean".format(action_name) for action_name in action_names ], category="propensities", title="model", ) SummaryWriterContext.add_custom_scalars_multilinechart( [ "propensities/logged/{}/mean".format(action_name) for action_name in action_names ], category="propensities", title="logged", ) SummaryWriterContext.add_custom_scalars_multilinechart( ["actions/logged/{}".format(action_name) for action_name in action_names], category="actions", title="logged", ) SummaryWriterContext.add_custom_scalars_multilinechart( ["actions/model/{}".format(action_name) for action_name in action_names], category="actions", title="model", ) def merge_tensor_namedtuple_list(l, cls): def merge_tensor(f): vals = [getattr(e, f) for e in l] not_none_vals = [v for v in vals if v is not None] assert len(not_none_vals) == 0 or len(not_none_vals) == len(vals) if not not_none_vals: return None return torch.cat(not_none_vals, dim=0) return cls(**{f: merge_tensor(f) for f in cls._fields}) class StatsByAction(object): def __init__(self, actions): self.stats = {action: [] for action in actions} def append(self, stats): for k in stats: assert k in self.stats for k in self.stats: v = stats.get(k, 0) if isinstance(v, torch.Tensor): v = v.item() self.stats[k].append(v) def items(self): return self.stats.items() def __len__(self): return len(self.stats) class NoOpTrainingReporter: def report(self, **kwargs): pass def flush(self): pass class TrainingReporter(object): RECENT_WINDOW_SIZE = 100 def __init__(self, action_names: Optional[List[str]] = None): assert action_names is None or len(action_names) > 0 self.action_names: List[str] = action_names or [] self.loss_report_interval = LOSS_REPORT_INTERVAL BatchStats.add_custom_scalars(action_names) self.clear() def clear(self): self.running_reward: Deque[float] = deque(maxlen=int(1e6)) self.td_loss: List[float] = [] self.reward_loss: List[float] = [] self.imitator_loss: List[float] = [] self.logged_action_q_value: List[float] = [] self.logged_action_counts = {action: 0 for action in self.action_names} self.model_values = StatsByAction(self.action_names) self.model_value_stds = StatsByAction(self.action_names) self.model_action_counts = StatsByAction(self.action_names) self.model_action_counts_cumulative = { action: 0 for action in self.action_names } self.model_action_distr = StatsByAction(self.action_names) self.incoming_stats: List[BatchStats] = [] @property def num_batches(self): return len(self.td_loss) def report(self, **kwargs): def _to_tensor(v): if v is None: return None if not isinstance(v, torch.Tensor): v = torch.tensor(v) if len(v.shape) == 0: v = v.reshape(1) return v.detach().cpu() kwargs = {k: _to_tensor(v) for k, v in kwargs.items()} batch_stats = BatchStats(**kwargs) self.incoming_stats.append(batch_stats) if len(self.incoming_stats) >= self.loss_report_interval: self.flush() @torch.no_grad() def flush(self): if not len(self.incoming_stats): logger.info("Nothing to report") return logger.info("Loss on {} batches".format(len(self.incoming_stats))) batch_stats = merge_tensor_namedtuple_list(self.incoming_stats, BatchStats) batch_stats.write_summary(self.action_names) print_details = "Loss:\n" td_loss_mean = float(batch_stats.td_loss.mean()) self.td_loss.append(td_loss_mean) print_details = print_details + "TD LOSS: {0:.3f}\n".format(td_loss_mean) if batch_stats.logged_rewards is not None: flattened_rewards = torch.flatten(batch_stats.logged_rewards).tolist() self.running_reward.extend(flattened_rewards) if batch_stats.reward_loss is not None: reward_loss_mean = float(batch_stats.reward_loss.mean()) self.reward_loss.append(reward_loss_mean) print_details = print_details + "REWARD LOSS: {0:.3f}\n".format( reward_loss_mean ) if batch_stats.imitator_loss is not None: imitator_loss_mean = float(batch_stats.imitator_loss.mean()) self.imitator_loss.append(imitator_loss_mean) print_details = print_details + "IMITATOR LOSS: {0:.3f}\n".format( imitator_loss_mean ) if batch_stats.model_values is not None and self.action_names: self.model_values.append( dict(zip(self.action_names, batch_stats.model_values.mean(dim=0))) ) self.model_value_stds.append( dict(zip(self.action_names, batch_stats.model_values.std(dim=0))) ) if batch_stats.model_values_on_logged_actions is not None: self.logged_action_q_value.append( batch_stats.model_values_on_logged_actions.mean().item() ) if ( batch_stats.logged_actions is not None and batch_stats.model_action_idxs is not None ): logged_action_counts = { action: (batch_stats.logged_actions == i).sum().item() for i, action in enumerate(self.action_names) } model_action_counts = { action: (batch_stats.model_action_idxs == i).sum().item() for i, action in enumerate(self.action_names) } print_details += "The distribution of logged actions : {}\n".format( logged_action_counts ) print_details += "The distribution of model actions : {}\n".format( model_action_counts ) for action, count in logged_action_counts.items(): self.logged_action_counts[action] += count self.model_action_counts.append(model_action_counts) for action, count in model_action_counts.items(): self.model_action_counts_cumulative[action] += count total = float(sum(model_action_counts.values())) self.model_action_distr.append( {action: count / total for action, count in model_action_counts.items()} ) print_details += "Batch Evaluator Finished" for print_detail in print_details.split("\n"): logger.info(print_detail) self.incoming_stats.clear() def get_td_loss_after_n(self, n): return self.td_loss[n:] def get_recent_td_loss(self): return TrainingReporter.calculate_recent_window_average( self.td_loss, TrainingReporter.RECENT_WINDOW_SIZE, num_entries=1 ) def get_recent_reward_loss(self): return TrainingReporter.calculate_recent_window_average( self.reward_loss, TrainingReporter.RECENT_WINDOW_SIZE, num_entries=1 ) def get_recent_imitator_loss(self): return TrainingReporter.calculate_recent_window_average( self.imitator_loss, TrainingReporter.RECENT_WINDOW_SIZE, num_entries=1 ) def get_logged_action_distribution(self): total_actions = 1.0 * sum(self.logged_action_counts.values()) return {k: (v / total_actions) for k, v in self.logged_action_counts.items()} def get_model_action_distribution(self): total_actions = 1.0 * sum(self.model_action_counts_cumulative.values()) return { k: (v / total_actions) for k, v in self.model_action_counts_cumulative.items() } def get_recent_rewards(self): return self.running_reward def log_to_tensorboard(self, epoch: int) -> None: def none_to_zero(x: Optional[float]) -> float: if x is None or math.isnan(x): return 0.0 return x for name, value in [ ("Training/td_loss", self.get_recent_td_loss()), ("Training/reward_loss", self.get_recent_reward_loss()), ("Training/imitator_loss", self.get_recent_imitator_loss()), ]: # pyre-fixme[16]: `SummaryWriterContext` has no attribute `add_scalar`. SummaryWriterContext.add_scalar(name, none_to_zero(value), epoch) @staticmethod def calculate_recent_window_average(arr, window_size, num_entries): if len(arr) > 0: begin = max(0, len(arr) - window_size) return np.mean(np.array(arr[begin:]), axis=0) else: logger.error("Not enough samples for evaluation.") if num_entries == 1: return float("nan") else: return [float("nan")] * num_entries
36.604396
88
0.599745
2dc97e5543c5f8cea310db78d2fd7123fe944862
6,343
py
Python
biothings/web/connections.py
newgene/biothings.api
e3278695ac15a55fe420aa49c464946f81ec019d
[ "Apache-2.0" ]
30
2017-07-23T14:50:29.000Z
2022-02-08T08:08:16.000Z
biothings/web/connections.py
kevinxin90/biothings.api
8ff3bbaecd72d04db4933ff944898ee7b7c0e04a
[ "Apache-2.0" ]
163
2017-10-24T18:45:40.000Z
2022-03-28T03:46:26.000Z
biothings/web/connections.py
newgene/biothings.api
e3278695ac15a55fe420aa49c464946f81ec019d
[ "Apache-2.0" ]
22
2017-06-12T18:30:15.000Z
2022-03-01T18:10:47.000Z
import hashlib import logging import os import pickle from functools import partial import boto3 import elasticsearch import elasticsearch_dsl import requests from biothings.utils.common import run_once from elasticsearch import AIOHttpConnection from elasticsearch import RequestsHttpConnection as _Conn from requests_aws4auth import AWS4Auth from tornado.ioloop import IOLoop logger = logging.getLogger(__name__) _should_log = run_once() def _log_pkg(): es_ver = elasticsearch.__version__ es_dsl_ver = elasticsearch_dsl.__version__ logger.info("Elasticsearch Package Version: %s", '.'.join(map(str, es_ver))) logger.info("Elasticsearch DSL Package Version: %s", '.'.join(map(str, es_dsl_ver))) def _log_db(client, uri): logger.info(client) def _log_es(client, hosts): _log_db(client, hosts) # only perform health check with the async client # so that it doesn't slow down program start time if isinstance(client, elasticsearch.AsyncElasticsearch): async def log_cluster(async_client): cluster = await async_client.info() # not specifying timeout in the function above because # there could be a number of es tasks scheduled before # this call and would take the cluster a while to respond if _should_log(): _log_pkg() cluster_name = cluster['cluster_name'] version = cluster['version']['number'] logger.info('%s: %s %s', hosts, cluster_name, version) IOLoop.current().add_callback(log_cluster, client) # ------------------------ # Low Level Functions # ------------------------ class _AsyncConn(AIOHttpConnection): def __init__(self, *args, **kwargs): self.aws_auth = None if isinstance(kwargs.get('http_auth'), AWS4Auth): self.aws_auth = kwargs['http_auth'] kwargs['http_auth'] = None super().__init__(*args, **kwargs) async def perform_request( self, method, url, params=None, body=None, timeout=None, ignore=(), headers=None ): req = requests.PreparedRequest() req.prepare(method, self.host + url, headers, None, body, params) self.aws_auth(req) # sign the request headers.update(req.headers) return await super().perform_request( method, url, params, body, timeout, ignore, headers ) # https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html AWS_META_URL = "http://169.254.169.254/latest/dynamic/instance-identity/document" def get_es_client(hosts=None, async_=False, **settings): """ Enhanced ES client initialization. Additionally support these parameters: async_: use AsyncElasticserach instead of Elasticsearch. aws: setup request signing and provide reasonable ES settings to access AWS OpenSearch, by default assuming it is on HTTPS. sniff: provide resonable default settings to enable client-side LB to an ES cluster. this param itself is not an ES param. """ if settings.pop('aws', False): # find region session = boto3.Session() region = session.region_name if not region: # not in ~/.aws/config region = os.environ.get("AWS_REGION") if not region: # not in environment variable try: # assume same-region service access res = requests.get(AWS_META_URL) region = res.json()["region"] except: # not running in VPC region = "us-west-2" # default # find credentials credentials = session.get_credentials() awsauth = AWS4Auth( refreshable_credentials=credentials, region=region, service='es' ) _cc = _AsyncConn if async_ else _Conn settings.update(http_auth=awsauth, connection_class=_cc) settings.setdefault('use_ssl', True) settings.setdefault('verify_certs', True) # not evaluated when 'aws' flag is set because # AWS OpenSearch is internally load-balanced # and does not support client-side sniffing. elif settings.pop('sniff', False): settings.setdefault('sniff_on_start', True) settings.setdefault('sniff_on_connection_fail', True) settings.setdefault('sniffer_timeout', 60) if async_: from elasticsearch import AsyncElasticsearch client = AsyncElasticsearch else: from elasticsearch import Elasticsearch client = Elasticsearch return client(hosts, **settings) def get_sql_client(uri, **settings): from sqlalchemy import create_engine return create_engine(uri, **settings).connect() def get_mongo_client(uri, **settings): from pymongo import MongoClient return MongoClient(uri, **settings).get_default_database() def _not_implemented_client(): raise NotImplementedError() # ------------------------ # High Level Utilities # ------------------------ class _ClientPool: def __init__(self, client_factory, async_factory, callback=None): self._client_factory = client_factory self._clients = {} self._async_client_factory = async_factory self._async_clients = {} self.callback = callback or _log_db @staticmethod def hash(config): _config = pickle.dumps(config) _hash = hashlib.md5(_config) return _hash.hexdigest() def _get_client(self, repo, factory, uri, settings): hash = self.hash((uri, settings)) if hash in repo: return repo[hash] repo[hash] = factory(uri, **settings) self.callback(repo[hash], uri) return repo[hash] def get_client(self, uri, **settings): return self._get_client( self._clients, self._client_factory, uri, settings ) def get_async_client(self, uri, **settings): return self._get_client( self._async_clients, self._async_client_factory, uri, settings ) es = _ClientPool(get_es_client, partial(get_es_client, async_=True), _log_es) sql = _ClientPool(get_sql_client, _not_implemented_client) mongo = _ClientPool(get_mongo_client, _not_implemented_client)
31.246305
86
0.650166
b874d68887aff283f08bcbe962daafa1810614e8
154
py
Python
Common/Measures/Portfolio/Timely/PortfolioAnnually.py
enriqueescobar-askida/Kinito.Finance
5308748b64829ac798a858161f9b4a9e5829db44
[ "MIT" ]
2
2020-03-04T11:18:38.000Z
2020-05-10T15:36:42.000Z
Common/Measures/Portfolio/Timely/PortfolioAnnually.py
enriqueescobar-askida/Kinito.Finance
5308748b64829ac798a858161f9b4a9e5829db44
[ "MIT" ]
6
2020-03-30T16:42:47.000Z
2021-12-13T20:37:21.000Z
Common/Measures/Portfolio/Timely/PortfolioAnnually.py
enriqueescobar-askida/Kinito.Finance
5308748b64829ac798a858161f9b4a9e5829db44
[ "MIT" ]
1
2020-04-14T11:26:16.000Z
2020-04-14T11:26:16.000Z
from Common.Measures.Portfolio.Timely.AbstractPortfolioTimely import AbstractPortfolioTimely class PortfolioAnnually(AbstractPortfolioTimely): pass
25.666667
92
0.87013
f68e9f54641d80b7467dc53d58a8ef02ecdc7921
12,946
py
Python
skl2onnx/operator_converters/sgd_classifier.py
xiaowuhu/sklearn-onnx
e85674a67a0a043e19c2ffe181e5d31eca8ce40b
[ "Apache-2.0" ]
null
null
null
skl2onnx/operator_converters/sgd_classifier.py
xiaowuhu/sklearn-onnx
e85674a67a0a043e19c2ffe181e5d31eca8ce40b
[ "Apache-2.0" ]
null
null
null
skl2onnx/operator_converters/sgd_classifier.py
xiaowuhu/sklearn-onnx
e85674a67a0a043e19c2ffe181e5d31eca8ce40b
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 import numpy as np from ..common._apply_operation import ( apply_add, apply_cast, apply_clip, apply_concat, apply_div, apply_exp, apply_identity, apply_mul, apply_reciprocal, apply_reshape, apply_sub) from ..common.data_types import ( BooleanTensorType, Int64TensorType, guess_numpy_type, guess_proto_type) from ..common._registration import register_converter from ..common._topology import Scope, Operator from ..common._container import ModelComponentContainer from ..common.utils_classifier import get_label_classes from ..proto import onnx_proto def _decision_function(scope, operator, container, model, proto_type): """Predict for linear model. score = X * coefficient + intercept """ coef_name = scope.get_unique_variable_name('coef') intercept_name = scope.get_unique_variable_name('intercept') matmul_result_name = scope.get_unique_variable_name( 'matmul_result') score_name = scope.get_unique_variable_name('score') coef = model.coef_.T container.add_initializer(coef_name, proto_type, coef.shape, coef.ravel()) container.add_initializer(intercept_name, proto_type, model.intercept_.shape, model.intercept_) input_name = operator.inputs[0].full_name if type(operator.inputs[0].type) in (BooleanTensorType, Int64TensorType): cast_input_name = scope.get_unique_variable_name('cast_input') apply_cast(scope, operator.input_full_names, cast_input_name, container, to=proto_type) input_name = cast_input_name container.add_node( 'MatMul', [input_name, coef_name], matmul_result_name, name=scope.get_unique_operator_name('MatMul')) apply_add(scope, [matmul_result_name, intercept_name], score_name, container, broadcast=0) return score_name def _handle_zeros(scope, container, scores, proba, reduced_proba, num_classes, proto_type): """Handle cases where reduced_proba values are zeros to avoid NaNs in class probability scores because of divide by 0 when we calculate proba / reduced_proba in _normalise_proba(). This is done by replacing reduced_proba values of 0s with num_classes and corresponding proba values with 1. """ num_classes_name = scope.get_unique_variable_name('num_classes') bool_reduced_proba_name = scope.get_unique_variable_name( 'bool_reduced_proba') bool_not_reduced_proba_name = scope.get_unique_variable_name( 'bool_not_reduced_proba') not_reduced_proba_name = scope.get_unique_variable_name( 'not_reduced_proba') proba_updated_name = scope.get_unique_variable_name('proba_updated') mask_name = scope.get_unique_variable_name('mask') reduced_proba_updated_name = scope.get_unique_variable_name( 'reduced_proba_updated') container.add_initializer(num_classes_name, proto_type, [], [num_classes]) apply_cast(scope, reduced_proba, bool_reduced_proba_name, container, to=onnx_proto.TensorProto.BOOL) container.add_node('Not', bool_reduced_proba_name, bool_not_reduced_proba_name, name=scope.get_unique_operator_name('Not')) apply_cast(scope, bool_not_reduced_proba_name, not_reduced_proba_name, container, to=proto_type) apply_add(scope, [proba, not_reduced_proba_name], proba_updated_name, container, broadcast=1) apply_mul(scope, [not_reduced_proba_name, num_classes_name], mask_name, container, broadcast=1) apply_add(scope, [reduced_proba, mask_name], reduced_proba_updated_name, container, broadcast=0) return proba_updated_name, reduced_proba_updated_name def _normalise_proba(scope, operator, container, scores, proba, num_classes, unity_name, proto_type): reduced_proba_name = scope.get_unique_variable_name('reduced_proba') sub_result_name = scope.get_unique_variable_name('sub_result') if num_classes == 2: apply_sub(scope, [unity_name, proba], sub_result_name, container, broadcast=1) apply_concat(scope, [sub_result_name, proba], operator.outputs[1].full_name, container, axis=1) else: if container.target_opset < 13: container.add_node( 'ReduceSum', proba, reduced_proba_name, axes=[1], name=scope.get_unique_operator_name('ReduceSum')) else: axis_name = scope.get_unique_variable_name('axis') container.add_initializer( axis_name, onnx_proto.TensorProto.INT64, [1], [1]) container.add_node( 'ReduceSum', [proba, axis_name], reduced_proba_name, name=scope.get_unique_operator_name('ReduceSum')) proba_updated, reduced_proba_updated = _handle_zeros( scope, container, scores, proba, reduced_proba_name, num_classes, proto_type) apply_div(scope, [proba_updated, reduced_proba_updated], operator.outputs[1].full_name, container, broadcast=1) return operator.outputs[1].full_name def _predict_proba_log(scope, operator, container, scores, num_classes, proto_type): """Probability estimation for SGDClassifier with loss=log and Logistic Regression. Positive class probabilities are computed as 1. / (1. + exp(-scores)) multiclass is handled by normalising that over all classes. """ if num_classes >= 3 or container.target_opset < 13: negated_scores_name = scope.get_unique_variable_name('negated_scores') negate_name = scope.get_unique_variable_name('negate') exp_result_name = scope.get_unique_variable_name('exp_result') unity_name = scope.get_unique_variable_name('unity') add_result_name = scope.get_unique_variable_name('add_result') proba_name = scope.get_unique_variable_name('proba') container.add_initializer(negate_name, proto_type, [], [-1]) container.add_initializer(unity_name, proto_type, [], [1]) apply_mul(scope, [scores, negate_name], negated_scores_name, container, broadcast=1) apply_exp(scope, negated_scores_name, exp_result_name, container) apply_add(scope, [exp_result_name, unity_name], add_result_name, container, broadcast=1) apply_reciprocal(scope, add_result_name, proba_name, container) return _normalise_proba(scope, operator, container, scores, proba_name, num_classes, unity_name, proto_type) # Sigmoid cannot be used for num_classes > 2 because # onnxruntime has a different implementation than numpy. # It introduces discrepancies when x < 1e16. # Below that threshold, Sigmoid must be replaced by Exp # because Sigmoid is not an increasing function. sigmo = scope.get_unique_variable_name('sigmoid') container.add_node('Sigmoid', [scores], [sigmo], name=scope.get_unique_operator_name('Sigmoid')) unity_name = scope.get_unique_variable_name('unity') container.add_initializer(unity_name, proto_type, [1], [1]) sigmo_0 = scope.get_unique_variable_name('sigmo_0') container.add_node('Sub', [unity_name, sigmo], [sigmo_0], name=scope.get_unique_operator_name('Sub')) apply_concat(scope, [sigmo_0, sigmo], [operator.outputs[1].full_name], container, axis=1) return operator.outputs[1].full_name def _predict_proba_modified_huber(scope, operator, container, scores, num_classes, proto_type): """Probability estimation for SGDClassifier with loss=modified_huber. Multiclass probability estimates are derived from binary estimates by normalisation. Binary probability estimates are given by (clip(scores, -1, 1) + 1) / 2. """ dtype = guess_numpy_type(operator.inputs[0].type) if dtype != np.float64: dtype = np.float32 unity_name = scope.get_unique_variable_name('unity') constant_name = scope.get_unique_variable_name('constant') add_result_name = scope.get_unique_variable_name('add_result') proba_name = scope.get_unique_variable_name('proba') clipped_scores_name = scope.get_unique_variable_name('clipped_scores') container.add_initializer(unity_name, proto_type, [], [1]) container.add_initializer(constant_name, proto_type, [], [2]) apply_clip(scope, scores, clipped_scores_name, container, max=np.array(1, dtype=dtype), min=np.array(-1, dtype=dtype)) apply_add(scope, [clipped_scores_name, unity_name], add_result_name, container, broadcast=1) apply_div(scope, [add_result_name, constant_name], proba_name, container, broadcast=1) return _normalise_proba(scope, operator, container, scores, proba_name, num_classes, unity_name, proto_type) def convert_sklearn_sgd_classifier(scope: Scope, operator: Operator, container: ModelComponentContainer): """Converter for SGDClassifier.""" sgd_op = operator.raw_operator classes = get_label_classes(scope, sgd_op) class_type = onnx_proto.TensorProto.STRING proto_type = guess_proto_type(operator.inputs[0].type) if proto_type != onnx_proto.TensorProto.DOUBLE: proto_type = onnx_proto.TensorProto.FLOAT if np.issubdtype(classes.dtype, np.floating): class_type = onnx_proto.TensorProto.INT32 classes = classes.astype(np.int32) elif np.issubdtype(classes.dtype, np.signedinteger): class_type = onnx_proto.TensorProto.INT32 else: classes = np.array([s.encode('utf-8') for s in classes]) classes_name = scope.get_unique_variable_name('classes') predicted_label_name = scope.get_unique_variable_name( 'predicted_label') final_label_name = scope.get_unique_variable_name('final_label') container.add_initializer(classes_name, class_type, classes.shape, classes) scores = _decision_function(scope, operator, container, sgd_op, proto_type) options = container.get_options(sgd_op, dict(raw_scores=False)) use_raw_scores = options['raw_scores'] if sgd_op.loss == 'log' and not use_raw_scores: proba = _predict_proba_log(scope, operator, container, scores, len(classes), proto_type) elif sgd_op.loss == 'modified_huber' and not use_raw_scores: proba = _predict_proba_modified_huber( scope, operator, container, scores, len(classes), proto_type) else: if len(classes) == 2: negate_name = scope.get_unique_variable_name('negate') negated_scores_name = scope.get_unique_variable_name( 'negated_scores') container.add_initializer( negate_name, proto_type, [], [-1]) apply_mul(scope, [scores, negate_name], negated_scores_name, container, broadcast=1) apply_concat(scope, [negated_scores_name, scores], operator.outputs[1].full_name, container, axis=1) else: apply_identity(scope, scores, operator.outputs[1].full_name, container) proba = operator.outputs[1].full_name container.add_node('ArgMax', proba, predicted_label_name, name=scope.get_unique_operator_name('ArgMax'), axis=1) container.add_node( 'ArrayFeatureExtractor', [classes_name, predicted_label_name], final_label_name, op_domain='ai.onnx.ml', name=scope.get_unique_operator_name('ArrayFeatureExtractor')) if class_type == onnx_proto.TensorProto.INT32: reshaped_final_label_name = scope.get_unique_variable_name( 'reshaped_final_label') apply_reshape(scope, final_label_name, reshaped_final_label_name, container, desired_shape=(-1,)) apply_cast(scope, reshaped_final_label_name, operator.outputs[0].full_name, container, to=onnx_proto.TensorProto.INT64) else: apply_reshape(scope, final_label_name, operator.outputs[0].full_name, container, desired_shape=(-1,)) register_converter('SklearnSGDClassifier', convert_sklearn_sgd_classifier, options={'zipmap': [True, False, 'columns'], 'nocl': [True, False], 'output_class_labels': [False, True], 'raw_scores': [True, False]})
45.584507
79
0.67434
35dc4c726607e7f3270797b75df0ffc69048fccd
7,612
py
Python
ryu/services/protocols/bgp/utils/validation.py
vinaykothiyal/ryu
32551989c649311854215df29860ccb272c105c0
[ "Apache-2.0" ]
9
2018-04-11T12:53:08.000Z
2021-12-14T01:41:22.000Z
ryu/services/protocols/bgp/utils/validation.py
vinaykothiyal/ryu
32551989c649311854215df29860ccb272c105c0
[ "Apache-2.0" ]
1
2019-05-20T13:23:28.000Z
2020-12-20T09:06:52.000Z
ryu/services/protocols/bgp/utils/validation.py
vinaykothiyal/ryu
32551989c649311854215df29860ccb272c105c0
[ "Apache-2.0" ]
2
2020-10-20T13:52:45.000Z
2021-06-26T02:21:58.000Z
# Copyright (C) 2014 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module provides utilities for validation. """ import numbers import re import socket import netaddr def is_valid_mac(mac): """Returns True if the given MAC address is valid. The given MAC address should be a colon hexadecimal notation string. Samples: - valid address: aa:bb:cc:dd:ee:ff, 11:22:33:44:55:66 - invalid address: aa:bb:cc:dd, 11-22-33-44-55-66, etc. """ return bool(re.match(r'^' + r'[\:\-]'.join([r'([0-9a-f]{2})'] * 6) + r'$', mac.lower())) def is_valid_ip_prefix(prefix, bits): """Returns True if *prefix* is a valid IPv4 or IPv6 address prefix. *prefix* should be a number between 0 to *bits* length. """ try: # Prefix should be a number prefix = int(prefix) except ValueError: return False # Prefix should be a number between 0 to *bits* return 0 <= prefix <= bits def is_valid_ipv4(ipv4): """Returns True if given is a valid ipv4 address. Given value should be a dot-decimal notation string. Samples: - valid address: 10.0.0.1, 192.168.0.1 - invalid address: 11.0.0, 192:168:0:1, etc. """ return netaddr.valid_ipv4(ipv4) def is_valid_ipv4_prefix(ipv4_prefix): """Returns True if *ipv4_prefix* is a valid prefix with mask. Samples: - valid prefix: 1.1.1.0/32, 244.244.244.1/10 - invalid prefix: 255.2.2.2/2, 2.2.2/22, etc. """ if not isinstance(ipv4_prefix, str): return False tokens = ipv4_prefix.split('/') if len(tokens) != 2: return False # Validate address/mask and return return is_valid_ipv4(tokens[0]) and is_valid_ip_prefix(tokens[1], 32) def is_valid_ipv6(ipv6): """Returns True if given `ipv6` is a valid IPv6 address """ return netaddr.valid_ipv6(ipv6) def is_valid_ipv6_prefix(ipv6_prefix): """Returns True if given `ipv6_prefix` is a valid IPv6 prefix.""" # Validate input type if not isinstance(ipv6_prefix, str): return False tokens = ipv6_prefix.split('/') if len(tokens) != 2: return False # Validate address/mask and return return is_valid_ipv6(tokens[0]) and is_valid_ip_prefix(tokens[1], 128) def is_valid_old_asn(asn): """Returns True if the given AS number is Two Octet.""" return isinstance(asn, numbers.Integral) and 0 <= asn <= 0xffff def is_valid_asn(asn): """Returns True if the given AS number is Two or Four Octet.""" return isinstance(asn, numbers.Integral) and 0 <= asn <= 0xffffffff def is_valid_vpnv4_prefix(prefix): """Returns True if given prefix is a string represent vpnv4 prefix. Vpnv4 prefix is made up of RD:Ipv4, where RD is represents route distinguisher and Ipv4 represents valid dot-decimal ipv4 notation string. """ if not isinstance(prefix, str): return False # Split the prefix into route distinguisher and IP tokens = prefix.split(':', 2) if len(tokens) != 3: return False # Validate route distinguisher if not is_valid_route_dist(':'.join([tokens[0], tokens[1]])): return False # Validate IPv4 prefix and return return is_valid_ipv4_prefix(tokens[2]) def is_valid_vpnv6_prefix(prefix): """Returns True if given prefix is a string represent vpnv6 prefix. Vpnv6 prefix is made up of RD:Ipv6, where RD is represents route distinguisher and Ipv6 represents valid colon hexadecimal notation string. """ if not isinstance(prefix, str): return False # Split the prefix into route distinguisher and IP tokens = prefix.split(':', 2) if len(tokens) != 3: return False # Validate route distinguisher if not is_valid_route_dist(':'.join([tokens[0], tokens[1]])): return False # Validate IPv6 prefix and return return is_valid_ipv6_prefix(tokens[2]) def is_valid_med(med): """Returns True if value of *med* is valid as per RFC. According to RFC MED is a four octet non-negative integer and value '((2 ** 32) - 1) = 0xffffffff' denotes an "infinity" metric. """ return isinstance(med, numbers.Integral) and 0 <= med <= 0xffffffff def is_valid_mpls_label(label): """Validates `label` according to MPLS label rules RFC says: This 20-bit field. A value of 0 represents the "IPv4 Explicit NULL Label". A value of 1 represents the "Router Alert Label". A value of 2 represents the "IPv6 Explicit NULL Label". A value of 3 represents the "Implicit NULL Label". Values 4-15 are reserved. """ if (not isinstance(label, numbers.Integral) or (4 <= label <= 15) or (label < 0 or label > 2 ** 20)): return False return True def is_valid_mpls_labels(labels): """Returns True if the given value is a list of valid MPLS labels. """ if not isinstance(labels, (list, tuple)): return False for label in labels: if not is_valid_mpls_label(label): return False return True def is_valid_route_dist(route_dist): """Validates *route_dist* as string representation of route distinguisher. Returns True if *route_dist* is as per our convention of RD, else False. Our convention is to represent RD as a string in format: *admin_sub_field:assigned_num_field* and *admin_sub_field* can be valid IPv4 string representation. Valid examples: '65000:222', '1.2.3.4:4432'. Invalid examples: '1.11.1: 333' """ # TODO(PH): Provide complete implementation. return is_valid_ext_comm_attr(route_dist) def is_valid_ext_comm_attr(attr): """Validates *attr* as string representation of RT or SOO. Returns True if *attr* is as per our convention of RT or SOO, else False. Our convention is to represent RT/SOO is a string with format: *global_admin_part:local_admin_path* """ if not isinstance(attr, str): return False tokens = attr.rsplit(':', 1) if len(tokens) != 2: return False try: if '.' in tokens[0]: if not is_valid_ipv4(tokens[0]): return False else: int(tokens[0]) int(tokens[1]) except (ValueError, socket.error): return False return True def is_valid_esi(esi): """Returns True if the given EVPN Ethernet SegmentEthernet ID is valid.""" if isinstance(esi, numbers.Integral): return 0 <= esi <= 0xffffffffffffffffff return isinstance(esi, dict) def is_valid_ethernet_tag_id(etag_id): """Returns True if the given EVPN Ethernet Tag ID is valid. Ethernet Tag ID should be a 32-bit field number. """ return isinstance(etag_id, numbers.Integral) and 0 <= etag_id <= 0xffffffff def is_valid_vni(vni): """Returns True if the given Virtual Network Identifier for VXLAN is valid. Virtual Network Identifier should be a 24-bit field number. """ return isinstance(vni, numbers.Integral) and 0 <= vni <= 0xffffff
28.942966
79
0.665659
ce626fbf862ccb7ba395a1da1f82cbe6c51aa978
7,080
py
Python
electrumx/lib/tx.py
Electrum-RVN-SIG/electrumx-ravencoin
6b888a9246257037c95cdaffcce3386181050398
[ "MIT" ]
11
2021-04-03T21:29:44.000Z
2022-03-28T09:37:34.000Z
electrumx/lib/tx.py
Electrum-RVN-SIG/electrumx-ravencoin
6b888a9246257037c95cdaffcce3386181050398
[ "MIT" ]
4
2021-05-14T13:10:01.000Z
2021-12-03T15:12:23.000Z
electrumx/lib/tx.py
Electrum-RVN-SIG/electrumx-ravencoin
6b888a9246257037c95cdaffcce3386181050398
[ "MIT" ]
4
2021-04-05T22:07:06.000Z
2021-09-23T08:04:48.000Z
# Copyright (c) 2016-2017, Neil Booth # Copyright (c) 2017, the ElectrumX authors # # All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # and warranty status of this software. '''Transaction-related classes and functions.''' from collections import namedtuple from electrumx.lib.hash import double_sha256, hash_to_hex_str from electrumx.lib.util import ( unpack_le_int32_from, unpack_le_int64_from, unpack_le_uint16_from, unpack_be_uint16_from, unpack_le_uint32_from, unpack_le_uint64_from, pack_le_int32, pack_varint, pack_le_uint32, pack_le_int64, pack_varbytes, ) ZERO = bytes(32) MINUS_1 = 4294967295 class Tx(namedtuple("Tx", "version inputs outputs locktime witness")): '''Class representing a transaction.''' def serialize(self): return b''.join(( pack_le_int32(self.version), pack_varint(len(self.inputs)), b''.join(tx_in.serialize() for tx_in in self.inputs), pack_varint(len(self.outputs)), b''.join(tx_out.serialize() for tx_out in self.outputs), pack_le_uint32(self.locktime) )) class TxInput(namedtuple("TxInput", "prev_hash prev_idx script sequence")): '''Class representing a transaction input.''' def __str__(self): script = self.script.hex() prev_hash = hash_to_hex_str(self.prev_hash) return ("Input({}, {:d}, script={}, sequence={:d})" .format(prev_hash, self.prev_idx, script, self.sequence)) def is_generation(self): '''Test if an input is generation/coinbase like''' return self.prev_idx == MINUS_1 and self.prev_hash == ZERO def serialize(self): return b''.join(( self.prev_hash, pack_le_uint32(self.prev_idx), pack_varbytes(self.script), pack_le_uint32(self.sequence), )) class TxOutput(namedtuple("TxOutput", "value pk_script")): def serialize(self): return b''.join(( pack_le_int64(self.value), pack_varbytes(self.pk_script), )) class Deserializer: '''Deserializes transactions. This code is highly optimised and very performance sensitive. ''' def __init__(self, buf, start=0): self.view = memoryview(buf) self.cursor = start def read_tx(self): '''Return a deserialized transaction.''' tx, self.cursor, hash = read_tx(self.view, self.cursor) return tx def read_tx_and_hash(self): '''Return a (deserialized TX, tx_hash) pair. The hash needs to be reversed for human display; for efficiency we process it in the natural serialized order. ''' start = self.cursor tx, end, hash = read_tx(self.view, self.cursor) self.cursor = end return tx, hash if hash else double_sha256(self.view[start:end]) def read_varint(self): value, self.cursor = read_varint(self.view, self.cursor) return value def read_varint(buf, cursor): n = buf[cursor] cursor += 1 if n < 253: return n, cursor if n == 253: return read_le_uint16(buf, cursor) if n == 254: return read_le_uint32(buf, cursor) return read_le_uint64(buf, cursor) def read_varbytes(buf, cursor): size, cursor = read_varint(buf, cursor) end = cursor + size return buf[cursor: end], end def read_le_uint16(buf, cursor): result, = unpack_le_uint16_from(buf, cursor) return result, cursor + 2 def read_le_uint32(buf, cursor): result, = unpack_le_uint32_from(buf, cursor) return result, cursor + 4 def read_le_uint64(buf, cursor): result, = unpack_le_uint64_from(buf, cursor) return result, cursor + 8 def read_le_int32(buf, cursor): result, = unpack_le_int32_from(buf, cursor) return result, cursor + 4 def read_le_int64(buf, cursor): result, = unpack_le_int64_from(buf, cursor) return result, cursor + 8 def read_input(buf, cursor): start = cursor cursor += 32 prev_hash = buf[start: cursor] prev_idx, cursor = read_le_uint32(buf, cursor) script, cursor = read_varbytes(buf, cursor) sequence, cursor = read_le_uint32(buf, cursor) return TxInput(prev_hash, prev_idx, script, sequence), cursor def read_output(buf, cursor): value, cursor = read_le_int64(buf, cursor) pk_script, cursor = read_varbytes(buf, cursor) return TxOutput(value, pk_script), cursor def read_witness(buf, cursor, input_len): ret = [] for _ in range(input_len): wit_for_in, cursor = read_varint(buf, cursor) app_val = [] for _ in range(wit_for_in): data, cursor = read_varbytes(buf, cursor) app_val.append(data.hex()) ret.append(app_val) return ret, cursor def read_many(buf, cursor, reader): count, cursor = read_varint(buf, cursor) items = [] append = items.append for _ in range(count): item, cursor = reader(buf, cursor) append(item) return items, cursor def read_tx(buf, cursor): '''Deserialize a transaction from a buffer. Return a (tx, cursor) pair. If the buffer does not hold the whole transaction, raises struct.error or IndexError. ''' start = cursor version, cursor = read_le_int32(buf, cursor) original = bytes(buf[start:cursor]) # Check if flag, if true, has witness info check_flag = buf[cursor:cursor+2].hex() == '0001' if check_flag: flag, cursor = read_le_uint16(buf, cursor) start = cursor inputs, cursor = read_many(buf, cursor, read_input) outputs, cursor = read_many(buf, cursor, read_output) original += bytes(buf[start:cursor]) witness = None if check_flag: witness, cursor = read_witness(buf, cursor, len(inputs)) start = cursor locktime, cursor = read_le_uint32(buf, cursor) original += bytes(buf[start:cursor]) return Tx(version, inputs, outputs, locktime, witness), cursor, double_sha256(original) if check_flag else None
29.873418
115
0.674718
770583139946b58e26a0db9a06fb877e5e353899
611
py
Python
wafer/sponsors/urls.py
drnlm/wafer
1d843190428c401df06fcdfb89d1f9d9af67229e
[ "ISC" ]
41
2015-03-16T17:47:00.000Z
2022-01-07T04:31:21.000Z
wafer/sponsors/urls.py
drnlm/wafer
1d843190428c401df06fcdfb89d1f9d9af67229e
[ "ISC" ]
338
2015-03-15T17:26:36.000Z
2021-12-02T04:34:53.000Z
wafer/sponsors/urls.py
drnlm/wafer
1d843190428c401df06fcdfb89d1f9d9af67229e
[ "ISC" ]
28
2015-07-27T14:11:13.000Z
2020-11-16T03:50:30.000Z
from django.conf.urls import url, include from rest_framework import routers from wafer.sponsors.views import ( ShowSponsors, SponsorView, ShowPackages, SponsorViewSet, PackageViewSet) router = routers.DefaultRouter() router.register(r'sponsors', SponsorViewSet) router.register(r'packages', PackageViewSet) urlpatterns = [ url(r'^$', ShowSponsors.as_view(), name='wafer_sponsors'), url(r'^(?P<pk>\d+)/$', SponsorView.as_view(), name='wafer_sponsor'), url(r'^packages/$', ShowPackages.as_view(), name='wafer_sponsorship_packages'), url(r'^api/', include(router.urls)), ]
30.55
76
0.713584
8be38663aba02eac0a7fd1c4a6883c9b7416aa50
9,190
py
Python
pettingzoo/magent/magent_env.py
QiyaoWei/PettingZoo
d27bdfe3507df48ff4e9ce04804d1dd1087a2dea
[ "Apache-2.0" ]
null
null
null
pettingzoo/magent/magent_env.py
QiyaoWei/PettingZoo
d27bdfe3507df48ff4e9ce04804d1dd1087a2dea
[ "Apache-2.0" ]
null
null
null
pettingzoo/magent/magent_env.py
QiyaoWei/PettingZoo
d27bdfe3507df48ff4e9ce04804d1dd1087a2dea
[ "Apache-2.0" ]
null
null
null
import math import warnings import magent import numpy as np from gym.spaces import Box, Discrete from gym.utils import seeding from pettingzoo import AECEnv from pettingzoo.magent.render import Renderer from pettingzoo.utils import agent_selector, wrappers from pettingzoo.utils.env import ParallelEnv def make_env(raw_env): def env_fn(**kwargs): env = raw_env(**kwargs) env = wrappers.AssertOutOfBoundsWrapper(env) env = wrappers.OrderEnforcingWrapper(env) return env return env_fn class magent_parallel_env(ParallelEnv): def __init__(self, env, active_handles, names, map_size, max_cycles, reward_range, minimap_mode, extra_features): self.map_size = map_size self.max_cycles = max_cycles self.minimap_mode = minimap_mode self.extra_features = extra_features self.env = env self.handles = active_handles self._all_handles = self.env.get_handles() env.reset() self.generate_map() self.team_sizes = team_sizes = [env.get_num(handle) for handle in self.handles] self.agents = [f"{names[j]}_{i}" for j in range(len(team_sizes)) for i in range(team_sizes[j])] self.possible_agents = self.agents[:] num_actions = [env.get_action_space(handle)[0] for handle in self.handles] action_spaces_list = [Discrete(num_actions[j]) for j in range(len(team_sizes)) for i in range(team_sizes[j])] # may change depending on environment config? Not sure. team_obs_shapes = self._calc_obs_shapes() state_shape = self._calc_state_shape() observation_space_list = [Box(low=0., high=2., shape=team_obs_shapes[j], dtype=np.float32) for j in range(len(team_sizes)) for i in range(team_sizes[j])] self.state_space = Box(low=0., high=2., shape=state_shape, dtype=np.float32) reward_low, reward_high = reward_range if extra_features: for space in observation_space_list: idx = space.shape[2] - 3 if minimap_mode else space.shape[2] - 1 space.low[:, :, idx] = reward_low space.high[:, :, idx] = reward_high idx_state = self.state_space.shape[2] - 1 if minimap_mode else self.state_space.shape[2] - 1 self.state_space.low[:, :, idx_state] = reward_low self.state_space.high[:, :, idx_state] = reward_high self.action_spaces = {agent: space for agent, space in zip(self.agents, action_spaces_list)} self.observation_spaces = {agent: space for agent, space in zip(self.agents, observation_space_list)} self._zero_obs = {agent: np.zeros_like(space.low) for agent, space in self.observation_spaces.items()} self.base_state = np.zeros(self.state_space.shape, dtype='float32') walls = self.env._get_walls_info() wall_x, wall_y = zip(*walls) self.base_state[wall_x, wall_y, 0] = 1 self._renderer = None self.frames = 0 def observation_space(self, agent): return self.observation_spaces[agent] def action_space(self, agent): return self.action_spaces[agent] def seed(self, seed=None): if seed is None: seed = seeding.create_seed(seed, max_bytes=4) self.env.set_seed(seed) def _calc_obs_shapes(self): view_spaces = [self.env.get_view_space(handle) for handle in self.handles] feature_spaces = [self.env.get_feature_space(handle) for handle in self.handles] assert all(len(tup) == 3 for tup in view_spaces) assert all(len(tup) == 1 for tup in feature_spaces) feat_size = [[fs[0]] for fs in feature_spaces] for feature_space in feat_size: if not self.extra_features: feature_space[0] = 2 if self.minimap_mode else 0 obs_spaces = [(view_space[:2] + (view_space[2] + feature_space[0],)) for view_space, feature_space in zip(view_spaces, feat_size)] return obs_spaces def _calc_state_shape(self): feature_spaces = [ self.env.get_feature_space(handle) for handle in self._all_handles ] self._minimap_features = 2 if self.minimap_mode else 0 # map channel and agent pair channel. Remove global agent position when minimap mode and extra features state_depth = ( (max(feature_spaces)[0] - self._minimap_features) * self.extra_features + 1 + len(self._all_handles) * 2 ) return (self.map_size, self.map_size, state_depth) def render(self, mode="human"): if self._renderer is None: self._renderer = Renderer(self.env, self.map_size, mode) assert mode == self._renderer.mode, "mode must be consistent across render calls" return self._renderer.render(mode) def close(self): if self._renderer is not None: self._renderer.close() self._renderer = None def reset(self): self.agents = self.possible_agents[:] self.env.reset() self.frames = 0 self.all_dones = {agent: False for agent in self.possible_agents} self.generate_map() return self._observe_all() def _observe_all(self): observes = [None] * self.max_num_agents for handle in self.handles: ids = self.env.get_agent_id(handle) view, features = self.env.get_observation(handle) if self.minimap_mode and not self.extra_features: features = features[:, -2:] if self.minimap_mode or self.extra_features: feat_reshape = np.expand_dims(np.expand_dims(features, 1), 1) feat_img = np.tile(feat_reshape, (1, view.shape[1], view.shape[2], 1)) fin_obs = np.concatenate([view, feat_img], axis=-1) else: fin_obs = np.copy(view) for id, obs in zip(ids, fin_obs): observes[id] = obs ret_agents = set(self.agents) return {agent: obs if obs is not None else self._zero_obs[agent] for agent, obs in zip(self.possible_agents, observes) if agent in ret_agents} def _all_rewards(self): rewards = np.zeros(self.max_num_agents) for handle in self.handles: ids = self.env.get_agent_id(handle) rewards[ids] = self.env.get_reward(handle) ret_agents = set(self.agents) return {agent: float(rew) for agent, rew in zip(self.possible_agents, rewards) if agent in ret_agents} def _all_dones(self, step_done=False): dones = np.ones(self.max_num_agents, dtype=bool) if not step_done: for handle in self.handles: ids = self.env.get_agent_id(handle) dones[ids] = ~self.env.get_alive(handle) ret_agents = set(self.agents) return {agent: bool(done) for agent, done in zip(self.possible_agents, dones) if agent in ret_agents} def state(self): ''' Returns an observation of the global environment ''' state = np.copy(self.base_state) for handle in self._all_handles: view, features = self.env.get_observation(handle) pos = self.env.get_pos(handle) pos_x, pos_y = zip(*pos) state[pos_x, pos_y, 1 + handle.value * 2] = 1 state[pos_x, pos_y, 2 + handle.value * 2] = view[:, view.shape[1] // 2, view.shape[2] // 2, 2] if self.extra_features: add_zeros = np.zeros( ( features.shape[0], state.shape[2] - (1 + len(self.team_sizes) * 2 + features.shape[1] - self._minimap_features), ) ) rewards = features[:, -1 - self._minimap_features] actions = features[:, :-1 - self._minimap_features] actions = np.concatenate((actions, add_zeros), axis=1) rewards = rewards.reshape(len(rewards), 1) state_features = np.hstack((actions, rewards)) state[pos_x, pos_y, 1 + len(self.team_sizes) * 2:] = state_features return state def step(self, all_actions): action_list = [0] * self.max_num_agents for i, agent in enumerate(self.possible_agents): if agent in all_actions: action_list[i] = all_actions[agent] all_actions = np.asarray(action_list, dtype=np.int32) start_point = 0 for i in range(len(self.handles)): size = self.team_sizes[i] self.env.set_action(self.handles[i], all_actions[start_point:(start_point + size)]) start_point += size self.frames += 1 done = self.env.step() or self.frames >= self.max_cycles all_infos = {agent: {} for agent in self.agents} all_dones = self._all_dones(done) all_rewards = self._all_rewards() all_observes = self._observe_all() self.all_dones = all_dones self.env.clear_dead() self.agents = [agent for agent in self.agents if not self.all_dones[agent]] return all_observes, all_rewards, all_dones, all_infos
42.35023
161
0.625898
fb679d1bcd1c26bf07b933c9ef665030f96dcef2
1,985
py
Python
supervisor/dbus/network/configuration.py
pnjongang/supervisor
2a006ae76de4b06e3e291b37aa2a4e14dc272445
[ "Apache-2.0" ]
597
2017-04-27T15:10:08.000Z
2019-12-18T16:02:57.000Z
supervisor/dbus/network/configuration.py
pnjongang/supervisor
2a006ae76de4b06e3e291b37aa2a4e14dc272445
[ "Apache-2.0" ]
1,056
2020-01-30T09:59:44.000Z
2022-03-31T10:15:32.000Z
supervisor/dbus/network/configuration.py
pnjongang/supervisor
2a006ae76de4b06e3e291b37aa2a4e14dc272445
[ "Apache-2.0" ]
295
2020-02-03T11:30:42.000Z
2022-03-31T18:53:14.000Z
"""NetworkConnection object4s for Network Manager.""" from ipaddress import IPv4Address, IPv4Interface, IPv6Address, IPv6Interface from typing import Optional, Union import attr @attr.s(slots=True) class IpConfiguration: """NetworkSettingsIPConfig object for Network Manager.""" gateway: Optional[Union[IPv6Address, IPv6Address]] = attr.ib() nameservers: list[Union[IPv6Address, IPv6Address]] = attr.ib() address: list[Union[IPv4Interface, IPv6Interface]] = attr.ib() @attr.s(slots=True) class DNSConfiguration: """DNS configuration Object.""" nameservers: list[Union[IPv4Address, IPv6Address]] = attr.ib() domains: list[str] = attr.ib() interface: str = attr.ib() priority: int = attr.ib() vpn: bool = attr.ib() @attr.s(slots=True) class ConnectionProperties: """Connection Properties object for Network Manager.""" id: Optional[str] = attr.ib() uuid: Optional[str] = attr.ib() type: Optional[str] = attr.ib() interface_name: Optional[str] = attr.ib() @attr.s(slots=True) class WirelessProperties: """Wireless Properties object for Network Manager.""" ssid: Optional[str] = attr.ib() assigned_mac: Optional[str] = attr.ib() mode: Optional[str] = attr.ib() powersave: Optional[int] = attr.ib() @attr.s(slots=True) class WirelessSecurityProperties: """Wireless Security Properties object for Network Manager.""" auth_alg: Optional[str] = attr.ib() key_mgmt: Optional[str] = attr.ib() psk: Optional[str] = attr.ib() @attr.s(slots=True) class EthernetProperties: """Ethernet properties object for Network Manager.""" assigned_mac: Optional[str] = attr.ib() @attr.s(slots=True) class VlanProperties: """Ethernet properties object for Network Manager.""" id: Optional[int] = attr.ib() parent: Optional[str] = attr.ib() @attr.s(slots=True) class IpProperties: """IP properties object for Network Manager.""" method: Optional[str] = attr.ib()
25.779221
76
0.690176
03736ec8e09e1e2d2110e8ca83063b568379f0cd
8,921
py
Python
core/jobs/jobs_manager_test.py
lheureuxe13/oppia
7110e3e5d5a53527c31d7b33e14d25e8d5b981f9
[ "Apache-2.0" ]
4
2021-09-16T16:46:53.000Z
2022-02-06T13:00:14.000Z
core/jobs/jobs_manager_test.py
lheureuxe13/oppia
7110e3e5d5a53527c31d7b33e14d25e8d5b981f9
[ "Apache-2.0" ]
80
2020-10-31T09:14:46.000Z
2021-01-12T23:38:15.000Z
core/jobs/jobs_manager_test.py
lheureuxe13/oppia
7110e3e5d5a53527c31d7b33e14d25e8d5b981f9
[ "Apache-2.0" ]
1
2020-10-02T13:28:26.000Z
2020-10-02T13:28:26.000Z
# coding: utf-8 # # Copyright 2021 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for jobs.jobs_manager.""" from __future__ import absolute_import from __future__ import unicode_literals import contextlib import datetime from unittest import mock from core import feconf from core.domain import beam_job_services from core.jobs import base_jobs from core.jobs import job_options from core.jobs import jobs_manager from core.jobs.types import job_run_result from core.storage.beam_job import gae_models as beam_job_models from core.tests import test_utils import apache_beam as beam from apache_beam import runners from google.cloud import dataflow class WorkingJob(base_jobs.JobBase): """Simple job that outputs string literals.""" def run(self) -> beam.PCollection[job_run_result.JobRunResult]: return ( self.pipeline | beam.Create([job_run_result.JobRunResult(stdout='o', stderr='e')]) ) class FailingJob(base_jobs.JobBase): """Simple job that always raises an exception.""" def run(self) -> beam.PCollection[job_run_result.JobRunResult]: raise Exception('uh-oh') class RunJobTests(test_utils.GenericTestBase): def test_working_sync_job(self) -> None: run = jobs_manager.run_job(WorkingJob, True, namespace=self.namespace) self.assertEqual(run.latest_job_state, 'DONE') run_model = beam_job_models.BeamJobRunModel.get(run.id) self.assertEqual(run, run_model) self.assertEqual( beam_job_services.get_beam_job_run_result(run.id).to_dict(), {'stdout': 'o', 'stderr': 'e'}) def test_failing_sync_job(self) -> None: run = jobs_manager.run_job(FailingJob, True, namespace=self.namespace) self.assertEqual(run.latest_job_state, 'FAILED') run_model = beam_job_models.BeamJobRunModel.get(run.id) self.assertEqual(run, run_model) self.assertIn( 'uh-oh', beam_job_services.get_beam_job_run_result(run.id).stderr) def test_async_job(self) -> None: mock_run_result = mock.Mock() mock_run_result.has_job = True mock_run_result.job_id.return_value = '123' mock_run_result.state = 'PENDING' pipeline = beam.Pipeline( runner=runners.DirectRunner(), options=job_options.JobOptions(namespace=self.namespace)) with self.swap_to_always_return(pipeline, 'run', value=mock_run_result): run = jobs_manager.run_job(WorkingJob, False, pipeline=pipeline) self.assertEqual(run.dataflow_job_id, '123') self.assertEqual(run.latest_job_state, 'PENDING') def test_async_job_that_does_not_start(self) -> None: mock_run_result = mock.Mock() mock_run_result.has_job = False mock_run_result.job_id.return_value = None mock_run_result.state = 'UNKNOWN' pipeline = beam.Pipeline( runner=runners.DirectRunner(), options=job_options.JobOptions(namespace=self.namespace)) with self.swap_to_always_return(pipeline, 'run', value=mock_run_result): run = jobs_manager.run_job(WorkingJob, False, pipeline=pipeline) self.assertIsNone(run.dataflow_job_id) self.assertEqual(run.latest_job_state, 'FAILED') result = beam_job_services.get_beam_job_run_result(run.id) self.assertIn('Failed to deploy WorkingJob', result.stderr) class RefreshStateOfBeamJobRunModelTests(test_utils.GenericTestBase): def setUp(self) -> None: super().setUp() self.run_model = beam_job_services.create_beam_job_run_model( 'WorkingJob', dataflow_job_id='123') self.dataflow_job = dataflow.Job( id='123', project_id=feconf.OPPIA_PROJECT_ID, location=feconf.GOOGLE_APP_ENGINE_REGION, current_state=dataflow.JobState.JOB_STATE_PENDING, current_state_time=datetime.datetime.utcnow()) self.dataflow_client_mock = mock.Mock() self.dataflow_client_mock.get_job.return_value = self.dataflow_job self.exit_stack = contextlib.ExitStack() self.exit_stack.enter_context(self.swap_to_always_return( dataflow, 'JobsV1Beta3Client', value=self.dataflow_client_mock)) def tearDown(self) -> None: try: self.exit_stack.close() finally: super().tearDown() def test_sync_job(self) -> None: self.run_model.dataflow_job_id = None jobs_manager.refresh_state_of_beam_job_run_model(self.run_model) self.assertEqual(self.run_model.latest_job_state, 'UNKNOWN') def test_job_with_outdated_status(self) -> None: self.run_model.latest_job_state = 'PENDING' self.dataflow_job.current_state = dataflow.JobState.JOB_STATE_RUNNING jobs_manager.refresh_state_of_beam_job_run_model(self.run_model) self.assertEqual(self.run_model.latest_job_state, 'RUNNING') def test_job_with_failed_status(self) -> None: self.run_model.latest_job_state = 'RUNNING' self.dataflow_job.current_state = dataflow.JobState.JOB_STATE_FAILED jobs_manager.refresh_state_of_beam_job_run_model(self.run_model) self.assertEqual(self.run_model.latest_job_state, 'FAILED') result = beam_job_services.get_beam_job_run_result(self.run_model.id) self.assertIn(self.dataflow_job.id, result.stderr) def test_job_with_cancelling_status_but_job_is_cancelled(self) -> None: self.run_model.latest_job_state = 'CANCELLING' self.dataflow_job.current_state = dataflow.JobState.JOB_STATE_CANCELLED jobs_manager.refresh_state_of_beam_job_run_model(self.run_model) self.assertEqual(self.run_model.latest_job_state, 'CANCELLED') def test_job_with_cancelling_status_but_job_is_running(self) -> None: self.run_model.latest_job_state = 'CANCELLING' self.dataflow_job.current_state = dataflow.JobState.JOB_STATE_RUNNING jobs_manager.refresh_state_of_beam_job_run_model(self.run_model) self.assertEqual(self.run_model.latest_job_state, 'CANCELLING') def test_failed_api_call_logs_the_exception(self) -> None: self.run_model.latest_job_state = 'PENDING' self.dataflow_client_mock.get_job.side_effect = Exception('uh-oh') with self.capture_logging() as logs: jobs_manager.refresh_state_of_beam_job_run_model(self.run_model) self.assertGreater(len(logs), 0) self.assertIn('uh-oh', logs[0]) self.assertEqual(self.run_model.latest_job_state, 'UNKNOWN') class CancelJobTests(test_utils.GenericTestBase): def setUp(self) -> None: super().setUp() self.run_model = beam_job_services.create_beam_job_run_model( 'WorkingJob', dataflow_job_id='123') self.dataflow_job = dataflow.Job( id='123', project_id=feconf.OPPIA_PROJECT_ID, location=feconf.GOOGLE_APP_ENGINE_REGION, current_state=dataflow.JobState.JOB_STATE_CANCELLING, current_state_time=datetime.datetime.utcnow()) self.dataflow_client_mock = mock.Mock() self.dataflow_client_mock.update_job.return_value = self.dataflow_job self.exit_stack = contextlib.ExitStack() self.exit_stack.enter_context(self.swap_to_always_return( dataflow, 'JobsV1Beta3Client', value=self.dataflow_client_mock)) def tearDown(self) -> None: try: self.exit_stack.close() finally: super().tearDown() def test_sync_job(self) -> None: self.run_model.dataflow_job_id = None with self.assertRaisesRegexp(ValueError, 'must not be None'): # type: ignore[no-untyped-call] jobs_manager.cancel_job(self.run_model) def test_job_with_cancelling_status(self) -> None: self.run_model.latest_job_state = 'RUNNING' jobs_manager.cancel_job(self.run_model) self.assertEqual(self.run_model.latest_job_state, 'CANCELLING') def test_failed_api_call_logs_the_exception(self) -> None: self.dataflow_client_mock.update_job.side_effect = Exception('uh-oh') with self.capture_logging() as logs: jobs_manager.cancel_job(self.run_model) self.assertGreater(len(logs), 0) self.assertIn('uh-oh', logs[0])
35.971774
101
0.709338
1bee2a7f19b88d204126f75fc3e577c6bbda66dc
2,214
py
Python
examples/twisted/wamp/rpc/slowsquare/backend.py
rapyuta-robotics/autobahn-python
c08e9e352d526a7fd0885bb94706366a432ada1a
[ "MIT" ]
1,670
2015-10-12T15:46:22.000Z
2022-03-30T22:12:53.000Z
examples/twisted/wamp/rpc/slowsquare/backend.py
rapyuta-robotics/autobahn-python
c08e9e352d526a7fd0885bb94706366a432ada1a
[ "MIT" ]
852
2015-10-16T22:11:03.000Z
2022-03-27T07:57:01.000Z
examples/twisted/wamp/rpc/slowsquare/backend.py
rapyuta-robotics/autobahn-python
c08e9e352d526a7fd0885bb94706366a432ada1a
[ "MIT" ]
790
2015-10-15T08:46:12.000Z
2022-03-30T12:22:13.000Z
############################################################################### # # The MIT License (MIT) # # Copyright (c) Crossbar.io Technologies GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ############################################################################### from os import environ from twisted.internet.defer import inlineCallbacks, \ returnValue from autobahn.twisted.wamp import ApplicationSession, ApplicationRunner from autobahn.twisted.util import sleep class Component(ApplicationSession): """ A math service application component. """ @inlineCallbacks def onJoin(self, details): print("session attached") def square(x): return x * x yield self.register(square, 'com.math.square') @inlineCallbacks def slowsquare(x, delay=1): yield sleep(delay) returnValue(x * x) yield self.register(slowsquare, 'com.math.slowsquare') print("procedures registered") if __name__ == '__main__': url = environ.get("AUTOBAHN_DEMO_ROUTER", "ws://127.0.0.1:8080/ws") realm = "crossbardemo" runner = ApplicationRunner(url, realm) runner.run(Component)
34.59375
79
0.671635
551edee1eabe80d45ff1e5017d5c2a6df62c5efa
1,321
py
Python
test/salt_master_files/tasks/custom_send_commands.py
dmulyalin/salt-nornir
2fbbe136f5a462e7981ce638a3dd15463de63d18
[ "MIT" ]
12
2020-08-24T10:44:59.000Z
2022-03-23T03:41:20.000Z
test/salt_master_files/tasks/custom_send_commands.py
dmulyalin/salt-nornir
2fbbe136f5a462e7981ce638a3dd15463de63d18
[ "MIT" ]
3
2021-02-15T20:55:20.000Z
2021-09-26T22:50:02.000Z
test/salt_master_files/tasks/custom_send_commands.py
dmulyalin/salt-nornir
2fbbe136f5a462e7981ce638a3dd15463de63d18
[ "MIT" ]
1
2021-05-23T15:47:10.000Z
2021-05-23T15:47:10.000Z
import time from nornir.core.task import Result, Task from nornir_netmiko.tasks import netmiko_send_command import logging log = logging.getLogger(__name__) # define connection name for RetryRunner to properly detect it using: # connection_name = task.task.__globals__.get("CONNECTION_NAME", None) CONNECTION_NAME = "netmiko" def task(task, commands, interval=0.01, **kwargs): """ Nornir Task function to send show commands to devices using ``nornir_netmiko.tasks.netmiko_send_command`` plugin :param kwargs: might contain ``netmiko_kwargs`` argument dictionary with parameters for ``nornir_netmiko.tasks.netmiko_send_command`` method :param commands: (list) commands to send to device :param interval: (int) interval between sending commands, default 0.01s :return result: Nornir result object with task execution results named after commands """ # run interval sanity check interval = interval if isinstance(interval, (int, float)) else 0.01 # run commands for command in commands: task.run( task=netmiko_send_command, command_string=command, name=command, **kwargs.get("netmiko_kwargs", {}) ) time.sleep(interval) return Result(host=task.host, skip_results=True)
33.025
75
0.704769
1414e9b3a932702cd8f0890ebe3e93aed1bba77b
2,588
py
Python
sis_provisioner/views/jobs.py
uw-it-aca/canvas-sis-provisioner
28f54ce101704a8feaaea1e514618aba5a330a25
[ "Apache-2.0" ]
null
null
null
sis_provisioner/views/jobs.py
uw-it-aca/canvas-sis-provisioner
28f54ce101704a8feaaea1e514618aba5a330a25
[ "Apache-2.0" ]
451
2016-10-25T22:08:19.000Z
2022-03-23T20:27:52.000Z
sis_provisioner/views/jobs.py
uw-it-aca/canvas-sis-provisioner
28f54ce101704a8feaaea1e514618aba5a330a25
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 from logging import getLogger from sis_provisioner.models import Job from sis_provisioner.views.admin import RESTDispatch, get_user from django.utils.timezone import utc from datetime import datetime import json logger = getLogger(__name__) class JobView(RESTDispatch): """ Retrieves a Job model. GET returns 200 with Job details. PUT returns 200. """ def get(self, request, *args, **kwargs): job_id = kwargs['job_id'] try: job = Job.objects.get(id=job_id) return self.json_response(job.json_data()) except Job.DoesNotExist: return self.error_response(404, "Job %s not found" % job_id) def put(self, request, *args, **kwargs): if not self.can_manage_jobs(request): return self.error_response(401, "Unauthorized") job_id = kwargs['job_id'] try: job = Job.objects.get(id=job_id) data = json.loads(request.body).get('job', {}) if 'is_active' in data: job.is_active = data['is_active'] job.changed_by = get_user(request) job.changed_date = datetime.utcnow().replace(tzinfo=utc) job.save() logger.info('%s %s Job "%s"' % ( job.changed_by, 'enabled' if job.is_active else 'disabled', job.name)) return self.json_response({'job': job.json_data()}) except Job.DoesNotExist: return self.error_response(404, "Job %s not found" % job_id) def delete(self, request, *args, **kwargs): if not self.can_manage_jobs(request): return self.error_response(401, "Unauthorized") job_id = kwargs['job_id'] try: job = Job.objects.get(id=job_id) job.delete() logger.info('%s deleted Job "%s"' % (job.changed_by, job.name)) return self.json_response({'job': job.json_data()}) except Job.DoesNotExist: return self.error_response(404, "Job %s not found" % job_id) class JobListView(RESTDispatch): """ Retrieves a list of Jobs. """ def get(self, request, *args, **kwargs): read_only = not self.can_manage_jobs(request) jobs = [] for job in Job.objects.all().order_by('title'): data = job.json_data() data['read_only'] = read_only jobs.append(data) return self.json_response({'jobs': jobs})
32.759494
75
0.59119
b1729ff14db41db6202ea932bf46a6208f0bff2f
8,429
py
Python
paper-launch-scripts/graph_results_utils.py
JBLanier/pipeline-psro
33bc41892fb80a03604b118d5256555fb65d1c32
[ "MIT" ]
26
2020-11-04T13:50:58.000Z
2022-03-11T08:09:00.000Z
paper-launch-scripts/graph_results_utils.py
JBLanier/distributed-rl-for-imperfect-info-games
e150e99e433cadae27aa3ae5f6c7134f7e5c6fda
[ "MIT" ]
null
null
null
paper-launch-scripts/graph_results_utils.py
JBLanier/distributed-rl-for-imperfect-info-games
e150e99e433cadae27aa3ae5f6c7134f7e5c6fda
[ "MIT" ]
13
2020-12-07T11:39:37.000Z
2021-11-04T15:59:17.000Z
import ray from ray.rllib.agents.trainer import with_common_config, with_base_config from ray.rllib.models.catalog import MODEL_DEFAULTS from ray.rllib.utils import try_import_tf import json import os import pandas as pd import multiprocessing from itertools import repeat from mprl.scripts.poker_parallel_algos.utils.policy_config_keys import POKER_ARCH1_MODEL_CONFIG_KEY from mprl.rl.envs.opnspl.measure_exploitability_eval_callback import measure_exploitability_nonlstm from mprl.utility_services.cloud_storage import maybe_download_object, connect_storage_client, BUCKET_NAME from mprl.rl.sac.sac_policy import SACDiscreteTFPolicy from mprl.rl.common.stratego_preprocessor import STRATEGO_PREPROCESSOR, StrategoDictFlatteningPreprocessor from mprl.rl.envs.opnspl.poker_multiagent_env import POKER_ENV, KUHN_POKER, LEDUC_POKER, PARTIALLY_OBSERVABLE, PokerMultiAgentEnv from mprl.rl.common.sac_stratego_model import SAC_STRATEGO_MODEL from mprl.scripts.poker_parallel_algos.utils.metanash import get_fp_metanash_for_payoff_table from mprl.utility_services.payoff_table import PayoffTable tf = try_import_tf() POLICY_CLASS = SACDiscreteTFPolicy POLICY_CLASS_NAME = SACDiscreteTFPolicy.__name__ MODEL_CONFIG_KEY = POKER_ARCH1_MODEL_CONFIG_KEY def get_stats_for_single_payoff_table(payoff_table_key, experiment_name, poker_game_version, model_config_key): POKER_ENV_CONFIG = { 'version': poker_game_version, } storage_client = connect_storage_client() # If you use ray for more than just this single example fn, you'll need to move ray.init to the top of your main() ray.init(address=os.getenv('RAY_HEAD_NODE'), ignore_reinit_error=True, local_mode=True) model_config_file_path, _ = maybe_download_object(storage_client=storage_client, bucket_name=BUCKET_NAME, object_name=model_config_key, force_download=False) with open(model_config_file_path, 'r') as config_file: model_config = json.load(fp=config_file) example_env = PokerMultiAgentEnv(env_config=POKER_ENV_CONFIG) obs_space = example_env.observation_space act_space = example_env.action_space preprocessor = StrategoDictFlatteningPreprocessor(obs_space=obs_space) graph = tf.Graph() sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0}), graph=graph) def fetch_logits(policy): return { "behaviour_logits": policy.model.last_output(), } _policy_cls = POLICY_CLASS.with_updates( extra_action_fetches_fn=fetch_logits ) with graph.as_default(): with sess.as_default(): policy = _policy_cls( obs_space=preprocessor.observation_space, action_space=act_space, config=with_common_config({ 'model': with_base_config(base_config=MODEL_DEFAULTS, extra_config=model_config), 'env': POKER_ENV, 'env_config': POKER_ENV_CONFIG, 'custom_preprocessor': STRATEGO_PREPROCESSOR})) def set_policy_weights(weights_key): weights_file_path, _ = maybe_download_object(storage_client=storage_client, bucket_name=BUCKET_NAME, object_name=weights_key, force_download=False) policy.load_model_weights(weights_file_path) payoff_table_local_path, _ = maybe_download_object(storage_client=storage_client, bucket_name=BUCKET_NAME, object_name=payoff_table_key, force_download=False) payoff_table = PayoffTable.from_dill_file(dill_file_path=payoff_table_local_path) stats_out = { 'payoff_table_key': [], 'experiment_name': [], 'num_policies': [], 'exploitability': [], 'total_steps': [], 'total_episodes': [], } exploitability_per_generation = [] total_steps_per_generation = [] total_episodes_per_generation = [] num_policies_per_generation = [] for i, n_policies in enumerate(range(1,payoff_table.size() + 1)): metanash_probs = get_fp_metanash_for_payoff_table(payoff_table=payoff_table, fp_iters=40000, accepted_opponent_policy_class_names=[POLICY_CLASS_NAME], accepted_opponent_model_config_keys=[POKER_ENV_CONFIG], add_payoff_matrix_noise_std_dev=0.000, mix_with_uniform_dist_coeff=None, only_first_n_policies=n_policies, p_or_lower_rounds_to_zero=0.0) policy_weights_keys = payoff_table.get_ordered_keys_in_payoff_matrix() policy_dict = {key: prob for key, prob in zip(policy_weights_keys, metanash_probs)} exploitability_this_gen = measure_exploitability_nonlstm(rllib_policy=policy, poker_game_version=poker_game_version, policy_mixture_dict=policy_dict, set_policy_weights_fn=set_policy_weights) print(f"{experiment_name}: {n_policies} policies, {exploitability_this_gen} exploitability") policy_added_this_gen = payoff_table.get_policy_for_index(i) latest_policy_tags = policy_added_this_gen.tags steps_prefix = "timesteps: " latest_policy_steps = int([tag for tag in latest_policy_tags if steps_prefix in tag][0][len(steps_prefix):]) episodes_prefix = "episodes: " latest_policy_episodes = int([tag for tag in latest_policy_tags if episodes_prefix in tag][0][len(episodes_prefix):]) if i > 0: total_steps_this_generation = latest_policy_steps + total_steps_per_generation[i-1] total_episodes_this_generation = latest_policy_episodes + total_episodes_per_generation[i-1] else: total_steps_this_generation = latest_policy_steps total_episodes_this_generation = latest_policy_episodes exploitability_per_generation.append(exploitability_this_gen) total_steps_per_generation.append(total_steps_this_generation) total_episodes_per_generation.append(total_episodes_this_generation) num_policies_per_generation.append(n_policies) num_new_entries = len(exploitability_per_generation) stats_out['payoff_table_key'] = stats_out['payoff_table_key'] + [payoff_table_key] * num_new_entries stats_out['experiment_name'] = stats_out['experiment_name'] + [experiment_name] * num_new_entries stats_out['num_policies'] = stats_out['num_policies'] + num_policies_per_generation stats_out['exploitability'] = stats_out['exploitability'] + exploitability_per_generation stats_out['total_steps'] = stats_out['total_steps'] + total_steps_per_generation stats_out['total_episodes'] = stats_out['total_episodes'] + total_episodes_per_generation return stats_out def get_exploitability_stats_over_time_for_payoff_tables_all_same_poker_version( payoff_table_keys, exp_names, poker_game_version, model_config_key): num_processes = max(multiprocessing.cpu_count()//2, 1) with multiprocessing.get_context("spawn").Pool(processes=num_processes) as pool: results = pool.starmap(func=get_stats_for_single_payoff_table, iterable=zip(payoff_table_keys, exp_names, repeat(poker_game_version), repeat(model_config_key))) pool.close() pool.join() combined_stats = {} for result in results: for key, val in result.items(): if key not in combined_stats: combined_stats[key] = val else: combined_stats[key] = [*combined_stats[key], *val] return pd.DataFrame(combined_stats).drop_duplicates()
48.442529
129
0.664492
9140914e9c17cdded39ee39d2ae9df4e327bb35c
3,167
py
Python
cachetclient/v1/metric_points.py
zipy124/cachet-client
b8962ab2e3c188752d5fdf3b532e9f143298b125
[ "MIT" ]
null
null
null
cachetclient/v1/metric_points.py
zipy124/cachet-client
b8962ab2e3c188752d5fdf3b532e9f143298b125
[ "MIT" ]
null
null
null
cachetclient/v1/metric_points.py
zipy124/cachet-client
b8962ab2e3c188752d5fdf3b532e9f143298b125
[ "MIT" ]
null
null
null
from datetime import datetime from typing import Generator from cachetclient.base import Manager, Resource from cachetclient import utils class MetricPoint(Resource): @property def id(self) -> int: """int: unique id of the metric point""" return self.get('id') @property def metric_id(self) -> int: """int: Get or set metic id for this metric point""" return self.get('metric_id') @metric_id.setter def metric_id(self, value: int): self._data['metric_id'] = value @property def value(self) -> float: """float: Value to plot on the metric graph""" return self.get('value') @value.setter def value(self, value: float): self._data['value'] = value @property def created_at(self) -> datetime: """datetime: When the metric point was created""" return utils.to_datetime(self.get('created_at')) @property def updated_at(self) -> datetime: """datetime: Last time the issue was updated""" return utils.to_datetime(self.get('updated_at')) @property def counter(self) -> int: """int: Show the actual calculated value""" return self.get('counter') @counter.setter def counter(self, value: float): self._data['counter'] = value @property def calculated_value(self) -> float: """float: The calculated value on metric graph""" return self.get('calculated_value') @calculated_value.setter def calculated_value(self, value: float): self._data['calculated_value'] = value class MetricPointsManager(Manager): resource_class = MetricPoint path = 'metrics/{}/points' def create(self, *, metric_id: int, value: float) -> MetricPoint: """ Create an metric point Keyword Args: metric_id (int): The metric to tag with the point value (fload): Metric point value for graph Returns: :py:data:`MetricPoint` instance """ return self._create( self.path.format(metric_id), { 'value': value } ) def count(self, metric_id) -> int: """ Count the number of metric points for a metric Args: metric_id (int): The metric Returns: int: Number of metric points for the metric """ return self._count(self.path.format(metric_id)) def list(self, metric_id: int, page: int = 1, per_page: int = 20) -> Generator[MetricPoint, None, None]: """ List updates for a metric Args: metric_id: The metric id to list updates Keyword Args: page (int): The first page to request per_page (int): Entries per page Return: Generator of :py:data:`MetricPoint` """ yield from self._list_paginated(self.path.format(metric_id), page=page, per_page=per_page) def delete(self, metric_id: int, point_id: int) -> None: """ Delete a metric point """ self._delete(self.path.format(metric_id), point_id)
27.301724
108
0.595832
0b0c7c0f52eb5ea8173f4271e90896b1a0dbf5ea
6,870
py
Python
tests/unit/test_version.py
chalbersma/salt
c29514d41c12a79f9b261613cd4c0b722cff3467
[ "Apache-2.0" ]
1
2020-01-31T14:43:07.000Z
2020-01-31T14:43:07.000Z
tests/unit/test_version.py
chalbersma/salt
c29514d41c12a79f9b261613cd4c0b722cff3467
[ "Apache-2.0" ]
null
null
null
tests/unit/test_version.py
chalbersma/salt
c29514d41c12a79f9b261613cd4c0b722cff3467
[ "Apache-2.0" ]
1
2021-09-30T07:00:01.000Z
2021-09-30T07:00:01.000Z
# -*- coding: utf-8 -*- ''' :codeauthor: Pedro Algarvio (pedro@algarvio.me) tests.unit.version_test ~~~~~~~~~~~~~~~~~~~~~~~ Test salt's regex git describe version parsing ''' # Import python libs from __future__ import absolute_import import re # Import Salt Testing libs from tests.support.unit import TestCase from tests.support.mock import MagicMock, patch # Import Salt libs from salt.version import SaltStackVersion, versions_report import salt.version class VersionTestCase(TestCase): def test_version_parsing(self): strip_initial_non_numbers_regex = re.compile(r'(?:[^\d]+)?(?P<vs>.*)') expect = ( ('v0.12.0-19-g767d4f9', (0, 12, 0, 0, '', 0, 19, 'g767d4f9'), None), ('v0.12.0-85-g2880105', (0, 12, 0, 0, '', 0, 85, 'g2880105'), None), ('debian/0.11.1+ds-1-3-ga0afcbd', (0, 11, 1, 0, '', 0, 3, 'ga0afcbd'), '0.11.1-3-ga0afcbd'), ('0.12.1', (0, 12, 1, 0, '', 0, 0, None), None), ('0.12.1', (0, 12, 1, 0, '', 0, 0, None), None), ('0.17.0rc1', (0, 17, 0, 0, 'rc', 1, 0, None), None), ('v0.17.0rc1-1-g52ebdfd', (0, 17, 0, 0, 'rc', 1, 1, 'g52ebdfd'), None), ('v2014.1.4.1', (2014, 1, 4, 1, '', 0, 0, None), None), ('v2014.1.4.1rc3-n/a-abcdefff', (2014, 1, 4, 1, 'rc', 3, -1, 'abcdefff'), None), ('v3.4.1.1', (3, 4, 1, 1, '', 0, 0, None), None), ('v3000', (3000, None, None, 0, '', 0, 0, None), '3000'), ('v3000rc1', (3000, None, None, 0, 'rc', 1, 0, None), '3000rc1'), ) for vstr, full_info, version in expect: saltstack_version = SaltStackVersion.parse(vstr) self.assertEqual( saltstack_version.full_info, full_info ) if version is None: version = strip_initial_non_numbers_regex.search(vstr).group('vs') self.assertEqual(saltstack_version.string, version) def test_version_comparison(self): examples = ( ('debian/0.11.1+ds-1-3-ga0afcbd', '0.11.1+ds-2'), ('v0.12.0-85-g2880105', 'v0.12.0-19-g767d4f9'), ('v0.17.0rc1-1-g52ebdfd', '0.17.0rc1'), ('v0.17.0', 'v0.17.0rc1'), ('Hydrogen', '0.17.0'), ('Helium', 'Hydrogen'), ('v2014.1.4.1-n/a-abcdefff', 'v2014.1.4.1rc3-n/a-abcdefff'), ('v2014.1.4.1-1-abcdefff', 'v2014.1.4.1-n/a-abcdefff'), ('v2016.12.0rc1', 'v2016.12.0b1'), ('v2016.12.0beta1', 'v2016.12.0alpha1'), ('v2016.12.0alpha1', 'v2016.12.0alpha0'), ('v3000.1', 'v3000'), ('v3000rc2', 'v3000rc1'), ('v3001', 'v3000'), ('v4023rc1', 'v4022rc1'), ('v3000', 'v3000rc1'), ('v3000', 'v2019.2.1'), ('v3000.1', 'v2019.2.1'), # we created v3000.0rc1 tag on repo # but we should not be using this # version scheme in the future # but still adding test for it ('v3000', 'v3000.0rc1'), ) for higher_version, lower_version in examples: self.assertTrue(SaltStackVersion.parse(higher_version) > lower_version) self.assertTrue(SaltStackVersion.parse(lower_version) < higher_version) assert SaltStackVersion.parse(lower_version) != higher_version def test_unparsable_version(self): with self.assertRaises(ValueError): SaltStackVersion.from_name('Drunk') with self.assertRaises(ValueError): SaltStackVersion.parse('Drunk') def test_sha(self): ''' test matching sha's ''' exp_ret = ( ('d6cd1e2bd19e03a81132a23b2025920577f84e37', True), ('2880105', True), ('v3000.0.1', False), ('v0.12.0-85-g2880105', False) ) for commit, exp in exp_ret: ret = SaltStackVersion.git_sha_regex.match(commit) if exp: assert ret else: assert not ret def test_version_report_lines(self): ''' Validate padding in versions report is correct ''' # Get a set of all version report name lenghts including padding line_lengths = set([ len(line.split(':')[0]) for line in list(versions_report())[4:] if line != ' ' and line != 'System Versions:' ]) # Check that they are all the same size (only one element in the set) assert len(line_lengths) == 1 def test_string_new_version(self): ''' Validate string property method using new versioning scheme ''' maj_ver = '3000' ver = SaltStackVersion(major=maj_ver) assert not ver.minor assert not ver.bugfix assert maj_ver == ver.string def test_string_new_version_minor(self): ''' Validate string property method using new versioning scheme alongside minor version ''' maj_ver = 3000 min_ver = 1 ver = SaltStackVersion(major=maj_ver, minor=min_ver) assert ver.minor == min_ver assert not ver.bugfix assert ver.string == '{0}.{1}'.format(maj_ver, min_ver) def test_string_old_version(self): ''' Validate string property method using old versioning scheme alongside minor version ''' maj_ver = '2019' min_ver = '2' ver = SaltStackVersion(major=maj_ver, minor=min_ver) assert ver.bugfix == 0 assert ver.string == '{0}.{1}.0'.format(maj_ver, min_ver) def test_discover_version(self): ''' Test call to __discover_version when using different versions ''' version = {('3000', None): {(b'v3000.0rc2-12-g44fe283a77\n', '3000rc2-12-g44fe283a77'), (b'v3000', '3000'), (b'1234567', '3000-n/a-1234567'), }, (2019, 2): {(b'v2019.2.0rc2-12-g44fe283a77\n', '2019.2.0rc2-12-g44fe283a77'), (b'v2019.2.0', '2019.2.0'), (b'afc9830198dj', '2019.2.0-n/a-afc9830198dj'), }, } for maj_min, test_v in version.items(): for tag_ver, exp in version[maj_min]: salt_ver = SaltStackVersion(major=maj_min[0], minor=maj_min[1], bugfix=None) attrs = {'communicate.return_value': (tag_ver, b''), 'returncode.return_value': 0} proc_ret = MagicMock(**attrs) proc_mock = patch('subprocess.Popen', return_value=proc_ret) patch_os = patch('os.path.exists', return_value=True) with proc_mock, patch_os: ret = getattr(salt.version, '__discover_version')(salt_ver) assert ret == exp
37.540984
92
0.542649
2d033305c49366be8fb3f73d6b469375f8089d8c
24,810
py
Python
tools/nntool/graph/types/others.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
null
null
null
tools/nntool/graph/types/others.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
null
null
null
tools/nntool/graph/types/others.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import logging import math import numpy as np from expressions.symbolic.basic import (Abs, Ceil, Cos, Exp, Log, Max, Min, Neg, Pow, Round, RSqrt, Sin, Sqrt) from graph.dim import Dim from utils.real_transpose import real_transpose from .base import (CanFuseToExpression, ComparableParameters, InsensitiveToQuantization, NNNodeRef, NoSizeChangeParameters, Parameters, SensitiveToOrder, SingleInputAndOutput, cls_op_name, expression_op, nargs, not_generated) LOG = logging.getLogger("nntool." + __name__) @cls_op_name('transpose') class TransposeParameters(Parameters, SingleInputAndOutput, InsensitiveToQuantization, ComparableParameters): def __init__(self, *args, transpose=None, block_search_up=False, block_search_down=False, **kwargs): super(TransposeParameters, self).__init__(*args, **kwargs) self._transpose = tuple(transpose) self.block_search_up = block_search_up self.block_search_down = block_search_down @property def transpose(self): return self._transpose @transpose.setter def transpose(self, val): self._transpose = val @property def graph_anon_label(self): return ['Transpose', f'{self.transpose}'] @property def graph_label(self): return [f'{self.CLS_OP_NAME}({self.name})', f'{self.transpose}'] def get_parameter_size(self): return 0 def permute(self, val): return [val[i] for i in self.transpose] def does_nothing(self): if not self.transpose: return True if not self.in_dims or not self.in_dims[0]: return False shape = self.in_dims[0].shape trans = self.transpose shape_idx = [idx if dim > 1 else None for idx, dim in enumerate(shape)] shape_trans = [shape_idx[idx] for idx in trans if shape_idx[idx] is not None] return shape_trans == sorted(shape_trans) @property def is_not_generated(self): return self.does_nothing() def is_same_operation_as(self, G, other): if not isinstance(other, TransposeParameters): return False if self.transpose is None: return other.transpose is None if other.transpose is None: return self.transpose is None return tuple(self.transpose) == tuple(other.transpose) @property def can_equalize(self): return False def real_shape(self): return real_transpose(self.in_dims[0].shape, self.transpose) @property def transpose_dimension(self): if self._transpose is None: return 1 return len(self.transpose) def get_output_size(self, in_dims): out_dim = in_dims[0].clone() if self.transpose: out_dim = out_dim.transpose(self.transpose) return [out_dim] def __str__(self): return "T {} {}".format( self.transpose and ','.join( [str(i) for i in self.transpose]) or "None", self.at_options ) @cls_op_name('copy') class CopyParameters(Parameters, InsensitiveToQuantization): def __init__(self, *args, **kwargs): super(CopyParameters, self).__init__(*args, **kwargs) def get_parameter_size(self): return 0 @property def can_equalize(self): return False def get_output_size(self, in_dims): return [in_dims[0].clone()] def __str__(self): return "" @cls_op_name('expand') class ExpandParameters(Parameters, InsensitiveToQuantization): def __init__(self, *args, shape=None, **kwargs): super(ExpandParameters, self).__init__(*args, **kwargs) self.shape = shape def get_parameter_size(self): return 0 @property def can_equalize(self): return False def get_output_size(self, in_dims): in_shape = list(in_dims[0].shape) exp_shape = list(self.shape) if len(in_shape) > len(exp_shape): exp_shape = in_shape[:( len(in_shape) - len(exp_shape)):] + exp_shape elif len(exp_shape) > len(in_shape): in_shape = exp_shape[:(len(exp_shape) - len(in_shape)):] + in_shape out_shape = [] for exp_dim, in_dim in zip(exp_shape, in_shape): if in_dim == 1: out_shape.append(exp_dim) elif exp_dim == 1: out_shape.append(in_dim) elif in_dim != exp_dim: raise ValueError( f'{self.name} invalid expand {in_dims[0]} {self.shape}') else: out_shape.append(in_dim) return [Dim.unnamed(out_shape)] def __str__(self): return f"{self.shape}" @cls_op_name('quantize') class QuantizeParameters(Parameters): def __init__(self, *args, from_qtype=None, to_qtype=None, inserted_by_quantizer=False, **kwargs): super(QuantizeParameters, self).__init__(*args, **kwargs) self.from_qtype = from_qtype self.to_qtype = to_qtype self.inserted_by_quantizer = inserted_by_quantizer def get_parameter_size(self): return 0 @property def can_equalize(self): return False def get_output_size(self, in_dims): return [in_dims[0].clone()] def __str__(self): return f"{self.from_qtype} --> {self.to_qtype}" @cls_op_name('reverse') class ReverseParameters(Parameters, InsensitiveToQuantization): def __init__(self, *args, axis=0, **kwargs): super(ReverseParameters, self).__init__(*args, **kwargs) self.axis = axis def get_parameter_size(self): return 0 @property def can_equalize(self): return False def get_output_size(self, in_dims): return [in_dims[0].clone()] def __str__(self): return "A {}".format(self.axis) @cls_op_name('concat') @nargs({'*'}) @not_generated class ConcatParameters(Parameters, SensitiveToOrder): def __init__(self, *args, axis=None, axis_hint=None, **kwargs): super(ConcatParameters, self).__init__(*args, **kwargs) self._axis = axis self._axis_hint = axis_hint @property def graph_label(self): return [self.name, f'Axis {self.axis}'] @property def graph_anon_label(self): return ['Concat', f'Axis {self.axis}'] @property def axis(self): return self._axis @axis.setter def axis(self, val): self._axis = val def get_parameter_size(self): return 0 @property def can_equalize(self): return False def get_output_size(self, in_dims): if in_dims[0].is_named and self._axis_hint: self._axis = in_dims[0].get_order_idx(self._axis_hint) out_dim = Dim.combine([in_dim for in_dim in in_dims], self.axis) return [out_dim] def __str__(self): return "A {} {}".format( self.axis, self.at_options ) @cls_op_name('split') @not_generated class SplitParameters(Parameters, SensitiveToOrder): def __init__(self, *args, act_slices=None, out_shapes=None, axis=None, **kwargs): super(SplitParameters, self).__init__(*args, **kwargs) self.act_slices = act_slices self.out_shapes = out_shapes self.axis = axis def __call__(self, *args, **kwargs): noderef = super(SplitParameters, self).__call__(*args, **kwargs) return tuple(NNNodeRef(self, i, noderef.ref[1]) for i in range(len(self.act_slices))) @property def graph_label(self): return [self.name, f'Axis {self.axis}'] @property def graph_anon_label(self): return ['Split', f'Axis {self.axis}'] def numpy_split(self, arr: np.ndarray): slice_specs = [tuple([slice(elem[0], elem[1], elem[2]) for elem in act_slice]) for act_slice in self.act_slices] return [arr[spec] for spec in slice_specs] @staticmethod def get_splits(in_shape, axis, splits=None, num_splits=None): assert splits or num_splits, "no split parameters provided" assert in_shape[axis] is not None, "split on undefined axis" in_idx = 0 act_slices = [] out_shapes = [] if splits: if in_shape[axis] is not None and any(split == -1 for split in splits): rest_sz = sum(split for split in splits if split > 0) splits = (split if split > 0 else in_shape[axis] - rest_sz for split in splits) for sz in splits: act_slices.append([(in_idx, in_idx + sz, 1) if idx == axis else (0, shape, 1) for idx, shape in enumerate(in_shape) if shape is not None]) out_shapes.append([sz if shape is not None and idx == axis else shape for idx, shape in enumerate(in_shape)]) in_idx += sz elif num_splits: assert in_shape[axis] % num_splits == 0, "dimension of split is not divisible by number of splits" sz = in_shape[axis] // num_splits while in_idx < in_shape[axis]: act_slices.append([(in_idx, in_idx + sz, 1) if idx == axis else (0, shape, 1) for idx, shape in enumerate(in_shape) if shape is not None]) out_shapes.append([sz if shape is not None and idx == axis else shape for idx, shape in enumerate(in_shape)]) in_idx += sz count_nones = sum(1 if dim is None else 0 for dim in in_shape[:axis:]) axis -= count_nones return act_slices, out_shapes, axis @property def num_splits(self): return len(self.act_slices) def transpose_params(self, order): self.act_slices = [ [act_slice[idx] for idx in order] for act_slice in self.act_slices ] self.out_shapes = [ [shape[idx] for idx in order] for shape in self.out_shapes ] def get_parameter_size(self): return 0 def get_output_size(self, in_dims): out_size = [Dim.unnamed(shape) for shape in self.out_shapes] return out_size @property def can_equalize(self): return False def __str__(self): return "A {} {}".format( self.axis, self.at_options ) @cls_op_name('gather') class GatherParameters(Parameters, SingleInputAndOutput, SensitiveToOrder, InsensitiveToQuantization): def __init__(self, *args, axis=None, indices=None, **kwargs): super(GatherParameters, self).__init__(*args, **kwargs) self.axis = axis self.indices = np.array(indices) def get_parameter_size(self): return 0 def get_output_size(self, in_dims): in_dim = in_dims[0] new_shape = in_dim.shape[:self.axis:] + \ list(self.indices.shape) + in_dim.shape[self.axis + 1:] return [Dim.unnamed(new_shape)] @property def rank(self): return len(self.in_dims[0].shape) + len(self.indices.shape) - 1 @property def can_equalize(self): return False def __str__(self): return "A %s I %s" % (self.axis, self.indices) @cls_op_name('strided_slice') class StridedSliceParameters(Parameters, SingleInputAndOutput, ComparableParameters, InsensitiveToQuantization): def __init__(self, *args, act_slice=None, out_shape=None, **kwargs): super(StridedSliceParameters, self).__init__(*args, **kwargs) self.act_slice = act_slice self.slice_shape = tuple(int(abs(math.ceil((sl[1] - sl[0])/sl[2]))) for sl in self.act_slice) self.out_shape = tuple(out_shape) @property def graph_label(self): return [self.name] + ["(%s,%s,%s)" % elem for elem in self.act_slice] @property def graph_anon_label(self): return ['Slice'] + ["(%s,%s,%s)" % elem for elem in self.act_slice] def numpy_slice(self, arr: np.ndarray): slice_spec = [slice(elem[0], elem[1], elem[2]) for elem in self.act_slice if len(elem) == 3] return arr[tuple(slice_spec)].reshape(self.out_shape) def only_slices_axis(self, axis): """check if there is a slice on only one axis""" in_shape = self.in_dims[0].shape return all(sl[0] == 0 and sl[1] == in_shape[idx] and sl[2] == 1 for idx, sl in enumerate(self.act_slice) if idx != axis) def is_unit_slice(self, axis): """check if the slice on one axis returns shape of 1""" slce = self.act_slice[axis] if slce[1] > slce[0]: return slce[1] - slce[0] == 1 and slce[2] == 1 else: return slce[0] - slce[1] == 2 and slce[2] == -1 def is_same_operation_as(self, G, other): if not isinstance(other, StridedSliceParameters): return False if tuple(self.out_shape) != tuple(other.out_shape): return False if len(self.act_slice) != len(other.act_slice): return False return all(tuple(elem) == tuple(oelem) for elem, oelem in zip(self.act_slice, other.act_slice)) def only_slices(self, axis): return all(dim == self.act_slice[idx][1] and self.act_slice[idx][0] == 0 and self.act_slice[idx][2] == 1 for idx, dim in enumerate(self.in_dims[0].shape) if axis != idx) @property def post_slice_shape(self): return [(sl[1] - sl[0])//sl[2] for sl in self.act_slice] @property def changes_shape(self): return len(self.post_slice_shape) > len(self.out_shape) def get_parameter_size(self): return 0 def get_output_size(self, in_dims): return [Dim.unnamed(self.out_shape)] @property def can_equalize(self): return False def __str__(self): return ",".join("(%s,%s,%s)" % elem for elem in self.act_slice) @cls_op_name('pad') class PadParameters(Parameters, SingleInputAndOutput): def __init__(self, name, padding=None, pad_vals=None, in_dims_hint=None, out_dims_hint=None): super(PadParameters, self).__init__(name, in_dims_hint=in_dims_hint, out_dims_hint=out_dims_hint) self.padding = padding self.pad_vals = pad_vals @property def graph_label(self): return [self.name, f'Pad {self.padding}'] @property def graph_anon_label(self): return ['Pad', f'{self.padding}'] def get_parameter_size(self): return 0 def get_output_size(self, in_dims): assert len(in_dims) == 1 out_dim = in_dims[0].clone() for idx, vals in enumerate(self.padding): out_dim[idx] += sum(vals) return [out_dim] @property def can_equalize(self): return True def __str__(self): return "PAD {}".format(self.padding) @nargs({2}) class BinaryOpParameters(CanFuseToExpression, Parameters): def __new__(cls, *args, op_type="maximum", **kwargs): if cls is BinaryOpParameters: for subcls in BinaryOpParameters.__subclasses__(): if op_type == subcls.CLS_OP_NAME: return super(BinaryOpParameters, cls).__new__(subcls) raise ValueError(f'binary op {op_type} not found') return super(BinaryOpParameters, cls).__new__(cls, **kwargs) def __init__(self, *args, op_type="maximum", **kwargs): super(BinaryOpParameters, self).__init__(*args, **kwargs) self._op_type = op_type @property def op_type(self): return self._op_type def get_output_size(self, in_dims): assert len(in_dims) == 2 out_dim = in_dims[0].clone() return [out_dim] def get_parameter_size(self): return 0 @property def can_equalize(self): return False def __str__(self): return "{} {}".format( self._op_type, self.at_options ) @cls_op_name('maximum') @expression_op(Max) class MaxOpParameters(BinaryOpParameters, InsensitiveToQuantization): pass @cls_op_name('minimum') @expression_op(Min) class MinOpParameters(BinaryOpParameters, InsensitiveToQuantization): pass @cls_op_name('pow') @expression_op(Pow) class PowOpParameters(BinaryOpParameters): pass class UnaryOpParameters(CanFuseToExpression, Parameters): def __new__(cls, *args, op_type="sqrt", **kwargs): if cls == UnaryOpParameters: for subcls in UnaryOpParameters.__subclasses__(): if op_type == subcls.CLS_OP_NAME: return super(UnaryOpParameters, cls).__new__(subcls) raise ValueError(f'unary op {op_type} not found') return super(UnaryOpParameters, cls).__new__(cls) def __init__(self, *args, op_type=None, **kwargs): super(UnaryOpParameters, self).__init__(*args, **kwargs) self._op_type = op_type @property def op_type(self): return self._op_type def get_output_size(self, in_dims): assert len(in_dims) == 1 out_dim = in_dims[0].clone() return [out_dim] def get_parameter_size(self): return 0 @property def can_equalize(self): return False def __str__(self): return "{} {}".format( self._op_type, self.at_options ) @cls_op_name('round') @expression_op(Round) class RoundOpParameters(UnaryOpParameters): pass @cls_op_name('ceil') @expression_op(Ceil) class CeilOpParameters(UnaryOpParameters): pass @cls_op_name('sqrt') @expression_op(Sqrt) class SqrtOpParameters(UnaryOpParameters): pass @cls_op_name('rsqrt') @expression_op(RSqrt) class RSqrtOpParameters(UnaryOpParameters): pass @cls_op_name('exp') @expression_op(Exp) class ExpOpParameters(UnaryOpParameters): pass @cls_op_name('log') @expression_op(Log) class LogOpParameters(UnaryOpParameters): pass @cls_op_name('sin') @expression_op(Sin) class SinOpParameters(UnaryOpParameters): pass @cls_op_name('cos') @expression_op(Cos) class CosOpParameters(UnaryOpParameters): pass @cls_op_name('abs') @expression_op(Abs) class AbsOpParameters(UnaryOpParameters, InsensitiveToQuantization): pass @cls_op_name('neg') @expression_op(Neg) class NegOpParameters(UnaryOpParameters, InsensitiveToQuantization): pass @cls_op_name('reshape') @not_generated class ReshapeParameters(Parameters, SingleInputAndOutput, InsensitiveToQuantization, ComparableParameters): def __init__(self, *args, old_shape=None, shape=None, **kwargs): super(ReshapeParameters, self).__init__( *args, **kwargs) if not isinstance(shape, Dim): shape = Dim.unnamed(shape) if old_shape is not None and not isinstance(old_shape, Dim): old_shape = Dim.unnamed(old_shape) assert shape.is_ordered and (old_shape is None or old_shape.is_ordered) self._shape = shape self._old_shape = old_shape @property def graph_label(self): return [self.name, f'{self.old_shape} to {self.shape}'] @property def graph_anon_label(self): return ['Reshape', f'{self.old_shape} to {self.shape}'] def does_nothing(self): return self.shape.layout_shape == self.old_shape.layout_shape def get_parameter_size(self): return 0 def exp_red_pattern(self): """ If the reshape is an expand or reduce dim i.e. adds or removes 1 size axes then return a pattern with True indicating an added axis, False a removed axis and None an unchanged axis""" if not self.does_nothing(): return None res = [] s1 = self._old_shape.shape.copy() s2 = self._shape.shape.copy() while s1 and s2: if not s1: top = s2.pop(0) assert top == 1 res.append(True) elif not s2: top = s1.pop(0) assert top == 1 res.append(False) else: if s1[0] == s2[0]: s1.pop(0) s2.pop(0) res.append(None) elif s1[0] == 1: s1.pop(0) res.append(False) elif s2[0] == 1: s2.pop(0) res.append(True) else: raise ValueError('shape issue in exp_red_pattern') return res def is_same_operation_as(self, G, other): if not isinstance(other, ReshapeParameters): return False if tuple(self.old_shape.shape) != tuple(other.old_shape.shape): return False if tuple(self.shape.shape) != tuple(other.shape.shape): return False return True def get_output_size(self, in_dims): assert len(in_dims) == 1 in_dim = in_dims[0] self.old_shape = in_dim if in_dim.size() != self.shape.size(): raise NotImplementedError("bad reshape %s: in dim %s does not match reshape %s" % (self.name, in_dim, self.shape)) out = self.shape.clone() return [out] @property def shape(self): return self._shape @shape.setter def shape(self, val): assert val.is_ordered self._shape = val @property def old_shape(self): return self._old_shape @old_shape.setter def old_shape(self, val): assert val.is_ordered self._old_shape = val @property def can_equalize(self): return False def __str__(self): return f"{self.old_shape}->{self.shape}" # pylint: disable=abstract-method @cls_op_name('noop') class NoOPParameters(NoSizeChangeParameters, SingleInputAndOutput, InsensitiveToQuantization): def __init__(self, name, desc=""): super(NoOPParameters, self).__init__(name) self._desc = desc def get_parameter_size(self): return 0 @property def can_equalize(self): return False def compute_load(self): return 0 def __str__(self): return "NOOP {}".format( self._desc ) class UnexecutableOpParameters(Parameters): pass @cls_op_name('UNSUPPORTED') class UnconvertedOpParameters(UnexecutableOpParameters): def __init__(self, name, indicated_op_name=None, expected_inputs=None, indicated_outputs=None, info=None, **kwargs): super(UnconvertedOpParameters, self).__init__(name, **kwargs) self.info = info self.expected_inputs = expected_inputs self.indicated_outputs = indicated_outputs self.indicated_op_name = indicated_op_name def get_output_size(self, in_dims): if self.indicated_outputs: return self.indicated_outputs if len(in_dims) == 1: return [in_dims[0]] return [Dim.unknown()] @property def can_equalize(self): return False def get_parameter_size(self): return 0 def __str__(self): return "UNSUPPORTED OP: %s" % self.indicated_op_name @cls_op_name('UNKNOWN') class UnknownOpParameters(UnexecutableOpParameters): def __init__(self, name, info): super(UnknownOpParameters, self).__init__(name) self.info = info def get_output_size(self, in_dims): if len(in_dims) == 1: return [in_dims[0]] return [Dim.unknown()] @property def can_equalize(self): return False def get_parameter_size(self): return 0 def __str__(self): return "Unknown"
29.291617
112
0.614349
2d97f1f1fcd58b5351ccdd24f3a5646c518cd8b1
2,513
py
Python
tests/components/sense/test_config_flow.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
1
2021-07-08T20:09:55.000Z
2021-07-08T20:09:55.000Z
tests/components/sense/test_config_flow.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
47
2021-02-21T23:43:07.000Z
2022-03-31T06:07:10.000Z
tests/components/sense/test_config_flow.py
OpenPeerPower/core
f673dfac9f2d0c48fa30af37b0a99df9dd6640ee
[ "Apache-2.0" ]
null
null
null
"""Test the Sense config flow.""" from unittest.mock import patch from sense_energy import SenseAPITimeoutException, SenseAuthenticationException from openpeerpower import config_entries, setup from openpeerpower.components.sense.const import DOMAIN async def test_form(opp): """Test we get the form.""" await setup.async_setup_component(opp, "persistent_notification", {}) result = await opp.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} with patch("sense_energy.ASyncSenseable.authenticate", return_value=True,), patch( "openpeerpower.components.sense.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await opp.config_entries.flow.async_configure( result["flow_id"], {"timeout": "6", "email": "test-email", "password": "test-password"}, ) await opp.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "test-email" assert result2["data"] == { "timeout": 6, "email": "test-email", "password": "test-password", } assert len(mock_setup_entry.mock_calls) == 1 async def test_form_invalid_auth(opp): """Test we handle invalid auth.""" result = await opp.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "sense_energy.ASyncSenseable.authenticate", side_effect=SenseAuthenticationException, ): result2 = await opp.config_entries.flow.async_configure( result["flow_id"], {"timeout": "6", "email": "test-email", "password": "test-password"}, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "invalid_auth"} async def test_form_cannot_connect(opp): """Test we handle cannot connect error.""" result = await opp.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "sense_energy.ASyncSenseable.authenticate", side_effect=SenseAPITimeoutException, ): result2 = await opp.config_entries.flow.async_configure( result["flow_id"], {"timeout": "6", "email": "test-email", "password": "test-password"}, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "cannot_connect"}
33.506667
86
0.653402
6eddcecb8718a60b01d1593b405ae518b2f770d9
696
py
Python
src/apim/apim_open_admin_ui.py
paul-mateos/azure-apim-deployment-utils
969fedfa5b5c910ffd3aa04ede265ab18c1844a3
[ "Apache-2.0" ]
14
2016-03-16T16:46:46.000Z
2022-03-26T02:28:26.000Z
src/apim/apim_open_admin_ui.py
paul-mateos/azure-apim-deployment-utils
969fedfa5b5c910ffd3aa04ede265ab18c1844a3
[ "Apache-2.0" ]
2
2016-04-10T08:28:26.000Z
2018-01-30T07:58:46.000Z
src/apim/apim_open_admin_ui.py
paul-mateos/azure-apim-deployment-utils
969fedfa5b5c910ffd3aa04ede265ab18c1844a3
[ "Apache-2.0" ]
8
2016-06-24T23:11:33.000Z
2021-08-13T13:36:45.000Z
import os import sys import webbrowser import token_factory def open_admin_ui(base_dir, instance): instances_json = os.path.join(base_dir, 'instances.json') tf = token_factory.create_token_factory_from_file(instances_json) sso_url = tf.get_admin_sso_link(instance) webbrowser.open(sso_url) if __name__ == "__main__": if len(sys.argv) < 2: print "Usage:" print " python apim_open_admin_ui.py <config dir> <instance>" print "" print " If <instance> is not supplied, 'apim' is assumed." sys.exit(1) instance = 'apim' if len(sys.argv) >= 3: instance = sys.argv[2] open_admin_ui(sys.argv[1], instance)
26.769231
70
0.656609
5058ad89feddfec41dba023d614f91fa1391a52f
516
py
Python
settings/check_python_version.py
JagritiG/data-middleware
e51cedf173e487d270f42c993e5e7f79f85bd263
[ "MIT" ]
null
null
null
settings/check_python_version.py
JagritiG/data-middleware
e51cedf173e487d270f42c993e5e7f79f85bd263
[ "MIT" ]
null
null
null
settings/check_python_version.py
JagritiG/data-middleware
e51cedf173e487d270f42c993e5e7f79f85bd263
[ "MIT" ]
null
null
null
# Python version compatibility check import sys try: if not sys.version_info.major == 3 and sys.version_info.minor >= 7: print("Python 3.7 or higher is required.") print("You are using Python {}.{}.".format(sys.version_info.major, sys.version_info.minor)) else: print("You are using Python {}.{}.".format(sys.version_info.major, sys.version_info.minor)) print("Required python version is already installed") except Exception as e: print(e) finally: sys.exit(1)
24.571429
99
0.672481
4e0dce19093ebaa8f6fc14f593cf85dffe811ad8
13
py
Python
i2i/__init__.py
thorwhalen/i2i
f967aaba28793029e3fe643c5e17ae9bc7a77732
[ "Apache-2.0" ]
1
2019-08-29T01:35:12.000Z
2019-08-29T01:35:12.000Z
i2i/__init__.py
thorwhalen/i2i
f967aaba28793029e3fe643c5e17ae9bc7a77732
[ "Apache-2.0" ]
null
null
null
i2i/__init__.py
thorwhalen/i2i
f967aaba28793029e3fe643c5e17ae9bc7a77732
[ "Apache-2.0" ]
null
null
null
name = "i2i"
6.5
12
0.538462
b471b135365e4e5bb48ae74b62641731e0768f68
355
py
Python
app/recipe/urls.py
ricardolira/recipe-app-api
749c39af92383ecfa208636fc2b09deaaefeeb2a
[ "MIT" ]
null
null
null
app/recipe/urls.py
ricardolira/recipe-app-api
749c39af92383ecfa208636fc2b09deaaefeeb2a
[ "MIT" ]
null
null
null
app/recipe/urls.py
ricardolira/recipe-app-api
749c39af92383ecfa208636fc2b09deaaefeeb2a
[ "MIT" ]
null
null
null
from django.urls import include, path from rest_framework.routers import DefaultRouter from . import views router = DefaultRouter() router.register('tags', views.TagViewSet) router.register('ingredients', views.IngredientViewSet) router.register('recipes', views.RecipeViewSet) app_name = 'recipe' urlpatterns = [ path('', include(router.urls)) ]
22.1875
55
0.771831
f3184081495a358988f9bc219ec1e786fbce9e0e
819
py
Python
Samples/BasicDrawing.py
zaml/ComputerVision
01afc8ee8c11c472a8251eabd3721d180223c2e8
[ "MIT" ]
null
null
null
Samples/BasicDrawing.py
zaml/ComputerVision
01afc8ee8c11c472a8251eabd3721d180223c2e8
[ "MIT" ]
null
null
null
Samples/BasicDrawing.py
zaml/ComputerVision
01afc8ee8c11c472a8251eabd3721d180223c2e8
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 30 11:25:22 2018 @author: juanzamora """ # -*- coding: utf-8 -*- import numpy as np import cv2 # Create a black image img = np.zeros((512,512,3), np.uint8) # Draw a diagonal blue line with thickness of 5 px cv2.line(img,(0,0),(511,511),(255,0,0),5) # Draw rectangle cv2.rectangle(img,(384,0),(510,128),(0,255,0),3) # Draw Circle cv2.circle(img,(447,63), 63, (0,0,255), -1) # Draw Ellipse cv2.ellipse(img,(256,256),(100,50),0,0,180,255,-1) # Draw Polygon pts = np.array([[10,5],[20,30],[70,20],[50,10]], np.int32) pts = pts.reshape((-1,1,2)) cv2.polylines(img,[pts],True,(0,255,255)) # Adding Text font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv2.LINE_AA) cv2.imshow("foo2",img) cv2.waitKey()
20.475
71
0.647131
ccaa4949470ab15aae865a1d20f7487a5cc0ee0c
6,623
py
Python
robotframework_pykafka/kafka_helper.py
invadergir/robotframework-pykafka
0d290d0883c468785ca38fb9aae62cc13c3a04ae
[ "Apache-2.0" ]
9
2018-08-30T00:08:51.000Z
2022-01-17T00:50:56.000Z
robotframework_pykafka/kafka_helper.py
invadergir/robotframework-pykafka
0d290d0883c468785ca38fb9aae62cc13c3a04ae
[ "Apache-2.0" ]
2
2018-10-10T20:54:26.000Z
2018-10-10T20:57:02.000Z
robotframework_pykafka/kafka_helper.py
invadergir/robotframework-pykafka
0d290d0883c468785ca38fb9aae62cc13c3a04ae
[ "Apache-2.0" ]
2
2020-02-18T00:09:40.000Z
2020-10-13T12:20:43.000Z
#!/bin/python3 import json import os import time from pykafka import KafkaClient from pykafka.common import OffsetType from utils import * ################################################## # Kafka helper class. class kafka_helper: ################################################## # Constructor. The broker hostname and version are set in this order if # specified: # 1. constructor parameters if they are non-None and non-empty # 2. environment variables KAFKA_HOST and KAFKA_BROKER_VERSION # 3. default values (localhost and 2.3) def __init__(self, kafkaBrokerHostname = None, kafkaBrokerVersion = None): # Determine the kafka host self._kafkaHost = "" if kafkaBrokerHostname: self._kafkaHost = kafkaBrokerHostname else: try: self._kafkaHost = os.environ['KAFKA_HOST'] except KeyError as e: # Default it to localhost if not specified self._kafkaHost = "localhost:9092" except Exception as e: raise e # Determine the kafka version to use. Default to 2.3.0 if not specified. self._kafkaBrokerVersion = "" if kafkaBrokerVersion: self._kafkaBrokerVersion = kafkaBrokerVersion else: try: self._kafkaBrokerVersion = os.environ['KAFKA_BROKER_VERSION'] except KeyError as e: # Default it if not specified self._kafkaBrokerVersion = "2.3.0" except Exception as e: raise e # Get a kafka client self._client = KafkaClient(hosts = self._kafkaHost, broker_version = self._kafkaBrokerVersion) self._producers = dict() ################################################## # Cache the producers; key is topicName def _getProducer(self, topicName): if (topicName in self._producers): return self._producers[topicName] else: topic = self._client.topics[topicName] prod = topic.get_sync_producer() self._producers[topicName] = prod return prod ################################################## # Cache the consumers, key is (topicName, consumerGroupName) _consumers = dict() # If the consumerGroupName is not specified, it defaults to the topicName. # Specify the consumerGroupName if you want to have more than one consumer of # the same topic. def _getConsumer(self, topicName, consumerGroupName = None, setOffsetToEarliest = False): assert(topicName) cgn = "" if consumerGroupName: cgn = consumerGroupName else: cgn = topicName top = topicName if ((top, cgn) in self._consumers): return self._consumers[(top, cgn)] else: topic = self._client.topics[top] offsetType = OffsetType.LATEST if setOffsetToEarliest: offsetType = OffsetType.EARLIEST c = topic.get_simple_consumer( consumer_group = cgn, auto_offset_reset = offsetType, auto_commit_enable = True, reset_offset_on_start = True, consumer_timeout_ms = 1000) self._consumers[(top, cgn)] = c return c ################################################## # Produce function # key may be None, I guess def produce(self, topicName, key, value): assert(topicName) assert(value) k = toStr(key) v = toStr(value) top = toStr(topicName) producer = self._getProducer(top) #convert input message values to byte return producer.produce(bytes(v, 'utf-8'), bytes(k, 'utf-8')) #, datetime.datetime.now()) ### TODO - for certain broker versions (less than 1.0?) you have to provide a time? ################################################## ## TODO - needed? #def cleanup(): # producer.stop() ################################################## # Set offset to latest. Deletes and recreates the cached consumer. def setConsumerOffsetToLatest(self, topicName, consumerGroupName = None): assert(topicName) top = toStr(topicName) cgn = toStr(consumerGroupName) log("Resetting offset to latest for topic "+top+" and consumer group "+str(cgn)) if (top, cgn) in self._consumers: del self._consumers[(top, cgn)] self._getConsumer(top, cgn, setOffsetToEarliest = False) ################################################## # Set offset to earliest. Deletes and recreates the cached consumer. def setConsumerOffsetToEarliest(self, topicName, consumerGroupName = None): assert(topicName) top = toStr(topicName) cgn = toStr(consumerGroupName) log("Resetting offset to earliest for topic "+top+" and consumer group "+str(cgn)) if (top, cgn) in self._consumers: del self._consumers[(top, cgn)] self._getConsumer(top, cgn, setOffsetToEarliest = True) ################################################## # Consume a message from a topic as a unicode string. # If the consumerGroupName is not specified, it defaults to the topicName. # Specify the consumerGroupName if you want to have more than one consumer of # the same topic. # Returns one message (key-value tuple), or None if no message available. def consumeString(self, topicName, consumerGroupName = None): assert(topicName) top = toStr(topicName) cgn = toStr(consumerGroupName) consumer = self._getConsumer(top, cgn) msg = consumer.consume() if None == msg: return None else: return (msg.partition_key, msg.value) # , msg.offset) ################################################## # Consume a message from a topic, converting it to JSON # For our purposes, "JSON" is defined as a dict that has been # deserialized from JSON. (Converted from json.loads("{}")) # Returns a key-value tuple where key is a unicode string and def consumeJson(self, topicName, consumerGroupName = None): cm = self.consumeString(topicName, consumerGroupName) if cm == None: return None else: # Modify the returned message, decode the byte msg and convert string value to a dict: newValue = json.loads((cm[1].decode("utf-8"))) tup = (cm[0].decode("utf-8"), newValue) return tup
37.418079
181
0.571493
b7be271943f714774b3dc511dc0475a332b9a089
16,825
py
Python
tests/test_sbuttons.py
eberver/hippy
9a6e5f503e9bf4a74ae4b3144dc53eca0e75651f
[ "MIT" ]
3
2020-09-17T04:30:54.000Z
2020-10-27T17:18:07.000Z
tests/test_sbuttons.py
eberver/hippy
9a6e5f503e9bf4a74ae4b3144dc53eca0e75651f
[ "MIT" ]
null
null
null
tests/test_sbuttons.py
eberver/hippy
9a6e5f503e9bf4a74ae4b3144dc53eca0e75651f
[ "MIT" ]
3
2020-09-16T18:57:19.000Z
2022-02-18T07:24:50.000Z
# Copyright 2016-2020 HP Development Company, L.P. # SPDX-License-Identifier: MIT # """ Pytests for the Hippy sbuttons. """ from __future__ import division, absolute_import, print_function import random import threading import pytest from hippy import SButtons from hippy import PySproutError import check_device_types import check_system_types device_name = 'sbuttons' notifications = [] condition = threading.Condition() # pylint: disable=redefined-outer-name @pytest.fixture def get_buttons(request, index): """ A pytest fixture to initialize and return the SButtons object with the given index. """ buttons = SButtons(index) try: buttons.open() except RuntimeError: pytest.skip("Could not open SButtons connection") def fin(): buttons.unsubscribe() buttons.close() request.addfinalizer(fin) return buttons def test_info(get_buttons): """ Tests the sbuttons' info method """ buttons = get_buttons info = buttons.info() check_device_types.check_DeviceInfo(info) vid_pid = (info['vendor_id'], info['product_id']) assert vid_pid == check_device_types.Devices.sbuttons.value serial = info['serial'] assert serial == "Not Available" def test_open_and_close(get_buttons): """ Tests the sbuttons' open, open_count, and close methods. """ buttons = get_buttons connected = buttons.is_device_connected() assert connected is True assert buttons.open_count() == 1 count = buttons.close() assert isinstance(count, int) assert count == 0 assert buttons.open_count() == 0 with pytest.raises(PySproutError) as execinfo: # Any call should fail buttons.led_on_off_rate() assert execinfo.value.message == 'Device is not open' count = buttons.open() assert isinstance(count, int) assert count == 1 assert buttons.open_count() == 1 # Any call should now work buttons.led_on_off_rate() def test_led_state(get_buttons): """ Tests the sbuttons' led_state method. """ buttons = get_buttons orig_states = {} # Store original values for led in SButtons.ButtonID: orig_states[led] = buttons.led_state(led) assert isinstance(orig_states[led]['color'], SButtons.LEDColor) assert isinstance(orig_states[led]['mode'], SButtons.LEDMode) assert isinstance(orig_states[led]['color'].value, str) assert isinstance(orig_states[led]['color'].value, str) # Test setting each LED to each mode and each color for led in SButtons.ButtonID: for mode in SButtons.LEDMode: for color in SButtons.LEDColor: state = {'color': color, 'mode': mode} set_state = buttons.led_state(led, state) assert set_state == state assert buttons.led_state(led) == state # Test setting by the string values rather than the enum for led in ['left', 'center', 'right']: for mode in ['breath', 'controlled_off', 'controlled_on', 'off', 'on', 'pulse']: for color in ['white_orange', 'orange', 'white']: state = {'color': color, 'mode': mode} set_state = buttons.led_state(led, state) assert set_state['color'].value == color assert set_state['mode'].value == mode get_state = buttons.led_state(led) assert get_state['color'].value == color assert get_state['mode'].value == mode # Test only passing in the mode or the color for led in SButtons.ButtonID: state = buttons.led_state(led) for mode in SButtons.LEDMode: set_state = buttons.led_state(led, {'mode': mode}) state['mode'] = mode assert set_state == state assert buttons.led_state(led) == state for color in SButtons.LEDColor: set_state = buttons.led_state(led, {'color': color}) state['color'] = color assert set_state == state assert buttons.led_state(led) == state # Verify invalid parameters throw the proper errors with pytest.raises(PySproutError) as execinfo: buttons.led_state('left', 'bad') assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_state('left', {'fake': SButtons.LEDColor.orange}) assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_state('left', {}) assert 'Invalid parameter' in execinfo.value.message with pytest.raises(ValueError): buttons.led_state(33) with pytest.raises(ValueError): buttons.led_state('moo') with pytest.raises(ValueError): buttons.led_state('right', {'mode': 'fake_value'}) with pytest.raises(ValueError): buttons.led_state('right', {'color': 'on'}) # Send a bad value to SoHal (bypassing the hippy enum check) and makes # sure SoHal throws an error... with pytest.raises(PySproutError) as execinfo: buttons._send_msg('led_state', 33) # pylint: disable=protected-access assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons._send_msg('led_state', 'moo') # pylint: disable=protected-access assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons._send_msg('led_state', ['left', {'fake': 'orange'}]) # pylint: disable=protected-access assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons._send_msg('led_state', ['left', {'mode': 'orange'}]) # pylint: disable=protected-access assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons._send_msg('led_state', ['left', {'mode': 2}]) # pylint: disable=protected-access assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons._send_msg('led_state', ['left', {'color': 12}]) # pylint: disable=protected-access assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons._send_msg('led_state', ['left', {'color': 'green'}]) # pylint: disable=protected-access assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons._send_msg('led_state', ['left', 10]) # pylint: disable=protected-access assert 'Invalid parameter' in execinfo.value.message # Reset original values for led in SButtons.ButtonID: buttons.led_state(led, {'color': orig_states[led]['color'], 'mode': orig_states[led]['mode']}) # Check that values were reset for led in SButtons.ButtonID: state = buttons.led_state(led) assert state['color'] == orig_states[led]['color'] assert state['mode'] == orig_states[led]['mode'] def test_led_pulse_rate(get_buttons): """ Tests the sbuttons' led_pulse_rate method. """ buttons = get_buttons # Store original value orig_rate = buttons.led_pulse_rate() assert isinstance(orig_rate, int) # Valid pulse_rate range is 1 to 20 for rate in range(1, 21): set_rate = buttons.led_pulse_rate(rate) assert set_rate == rate assert buttons.led_pulse_rate() == rate # Test out of range values with pytest.raises(PySproutError) as execinfo: buttons.led_pulse_rate(0) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_pulse_rate(21) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_pulse_rate(random.randint(22, 100)) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_pulse_rate(random.randint(-100, -1)) assert 'Parameter out of range' in execinfo.value.message # Test invalid parameters with pytest.raises(PySproutError) as execinfo: buttons.led_pulse_rate('moo') assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_pulse_rate({}) assert 'Invalid parameter' in execinfo.value.message # Reset value and confirm set_rate = buttons.led_pulse_rate(orig_rate) assert set_rate == orig_rate assert buttons.led_pulse_rate() == orig_rate def test_led_on_off_rate(get_buttons): """ Tests the sbuttons' led_on_off_rate method. """ buttons = get_buttons # Store original value orig_rate = buttons.led_on_off_rate() assert isinstance(orig_rate, int) # Valid pulse_rate range is 1 to 20 for rate in range(1, 21): set_rate = buttons.led_on_off_rate(rate) assert set_rate == rate assert buttons.led_on_off_rate() == rate # Test out of range values with pytest.raises(PySproutError) as execinfo: buttons.led_on_off_rate(0) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_on_off_rate(21) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_on_off_rate(random.randint(22, 100)) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_on_off_rate(random.randint(-100, -1)) assert 'Parameter out of range' in execinfo.value.message # Test invalid values with pytest.raises(PySproutError) as execinfo: buttons.led_on_off_rate('bad') assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.led_on_off_rate({}) assert 'Invalid parameter' in execinfo.value.message # Reset value and confirm set_rate = buttons.led_on_off_rate(orig_rate) assert set_rate == orig_rate assert buttons.led_on_off_rate() == orig_rate def test_hold_threshold(get_buttons): """ Tests the sbuttons' hold_threshold method. """ buttons = get_buttons # Store original value orig_count = buttons.hold_threshold() assert isinstance(orig_count, int) # Set new valid value new_hold_count = random.randint(10, 255) set_count = buttons.hold_threshold(new_hold_count) assert set_count == new_hold_count assert buttons.hold_threshold() == new_hold_count # Test the edge cases set_count = buttons.hold_threshold(10) assert set_count == 10 assert buttons.hold_threshold() == 10 set_count = buttons.hold_threshold(255) assert set_count == 255 assert buttons.hold_threshold() == 255 # Test out of range values with pytest.raises(PySproutError) as execinfo: buttons.hold_threshold(9) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.hold_threshold(256) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.hold_threshold(random.randint(-10, 8)) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.hold_threshold(random.randint(257, 500)) assert 'Parameter out of range' in execinfo.value.message # Test invalid values with pytest.raises(PySproutError) as execinfo: buttons.hold_threshold('bad') assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.hold_threshold({}) assert 'Invalid parameter' in execinfo.value.message # Reset the original value set_count = buttons.hold_threshold(orig_count) assert set_count == orig_count assert buttons.hold_threshold() == orig_count def test_factory_default(get_buttons): """ Tests the sbuttons' factory_default method. """ buttons = get_buttons buttons.factory_default() assert buttons.hold_threshold() == 121 assert buttons.led_on_off_rate() == 2 assert buttons.led_pulse_rate() == 4 for led in SButtons.ButtonID: state = buttons.led_state(led) assert state['color'] == SButtons.LEDColor.white_orange assert state['mode'] == SButtons.LEDMode.off def test_temperatures(get_buttons): """ Tests the sbuttons' temperatures method. """ buttons = get_buttons temperatures = buttons.temperatures() info = buttons.info() check_system_types.check_TemperatureInfoList(temperatures, [info]) def callback(method, params): """ This callback method is registered to receive notifications from SoHal as part of the notifications test. For each notification, hippy calls this method from a new thread. To ensure thread safety, this method acquires the condition lock and then appends the notification to the end of the notifications list. """ condition.acquire() notifications.append((method, params)) condition.notify() condition.release() def get_notification(): """ This is a helper method used by test_notifications. This method returns a notification off of the notifications list (and removes that notice from the list). If the list is empty, it waits for up to 2 seconds to receive a notification. """ condition.acquire() if not notifications: ret = condition.wait(2) if not ret: condition.release() raise TimeoutError("Timed out while waiting for notification") notice = notifications.pop(0) condition.release() return notice def test_notifications(get_buttons): """ This method tests the sbuttons.on_*** notifications received from SoHal. """ buttons = get_buttons val = buttons.subscribe(callback) assert isinstance(val, int) assert val == 1 name = buttons._object_name # Notifications are never sent as '@0' even if we sent the command with @0 if '@0' in name: name = 'sbuttons' # TODO(EB) We'll need a manual test for on_button_press, on_suspend, # on_resume, on_device_connected, and on_device_disconnected buttons.close() notification = get_notification() assert notification == ('{}.on_open_count'.format(name), 0) notification = get_notification() assert notification == ('{}.on_close'.format(name), None) buttons.open() notification = get_notification() assert notification == ('{}.on_open'.format(name), None) notification = get_notification() assert notification == ('{}.on_open_count'.format(name), 1) buttons.hold_threshold(50) notification = get_notification() assert notification == ('{}.on_hold_threshold'.format(name), 50) buttons.led_on_off_rate(15) notification = get_notification() assert notification == ('{}.on_led_on_off_rate'.format(name), 15) buttons.led_pulse_rate(12) notification = get_notification() assert notification == ('{}.on_led_pulse_rate'.format(name), 12) button = SButtons.ButtonID.center state = {'color': SButtons.LEDColor.orange, 'mode': SButtons.LEDMode.pulse} buttons.led_state(button, state) notification = get_notification() assert notification == ('{}.on_led_state'.format(name), [button, state]) buttons.factory_default() notification = get_notification() assert notification == ('{}.on_factory_default'.format(name), None) val = buttons.unsubscribe() assert isinstance(val, int) assert val == 0 # Now make sure we aren't getting notification callbacks anymore... buttons.hold_threshold(30) with pytest.raises(TimeoutError) as execinfo: notification = get_notification() assert 'Timed out while waiting for notification' in execinfo.value.args[0] # Verify hippy raises errors if we call subscribe with invalid parameters with pytest.raises(PySproutError) as execinfo: buttons.subscribe('string') assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.subscribe(buttons) assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.subscribe({}) assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: buttons.subscribe(3) assert 'Invalid parameter' in execinfo.value.message
35.646186
104
0.685944
d81d562f8581415bce053924c15537c5ea9784f3
3,853
py
Python
data/eos/Tomida+Hori_2016/hydrostatic2.py
applejwjcat/dispatch
4fad06ee952de181f6c51b91f179d6396bdfb333
[ "BSD-3-Clause" ]
null
null
null
data/eos/Tomida+Hori_2016/hydrostatic2.py
applejwjcat/dispatch
4fad06ee952de181f6c51b91f179d6396bdfb333
[ "BSD-3-Clause" ]
null
null
null
data/eos/Tomida+Hori_2016/hydrostatic2.py
applejwjcat/dispatch
4fad06ee952de181f6c51b91f179d6396bdfb333
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Jan 12 16:54:41 2018 @author: Aake """ from __future__ import print_function import numpy as np import matplotlib.pyplot as pl import EOS from scaling import scaling,cgs #%% Void object class void(): pass evol=void() #%% Soft gravity sc=scaling() m_planet=5.0 a_planet=1.0 def force(r,rsm): if r>rsm: f=cgs.grav*cgs.m_earth*m_planet/r**2 else: f=cgs.grav*cgs.m_earth*m_planet/rsm**2*(4.*(r/rsm)-3.*(r/rsm)**2) return f #%%a title='EOS = Tomida & Hori' #title='EOS = ideal gas gamma=1.4' pl.figure(1); pl.clf() a_planet=1.0 # orbital radius r_start=1.00 # start of integration, in units of R_Hill T_start=200 # disk temperature d_start=1e-10 # disk density dlnd=0.02 dlnd=0.05 dlnd=0.1 T=None fsm=0.0 r=1.0 #masses=(0.1,0.2,0.4,0.6,0.8,1.0) #masses=(0.4,1.0) masses=[1.] evol.mass=[0.0] evol.temp=[0.0] for m_planet in masses: r_p=cgs.r_earth*m_planet**(1./3.) r_n=r_p r_H=a_planet*cgs.au*(cgs.m_earth*m_planet/(3.*cgs.m_sun))**(1./3.) xlabel='r/r_H' for i in range(1,2): dd=[] TT=[] for T_start in (100.,200.,300.): rsm=fsm*r_H root='m={:3.1f}'.format(m_planet) if i==0: eos=EOS.eos_i(mu=2.35) file=open(root+"_i.atm","w") else: eos=EOS.eos_t() file=open(root+"_t.atm","w") file.write('Pressure Temperature\n') d1=d_start T1=T_start P1=eos.pressure(T1,d1) gamma1=eos.gamma(T1,d1) r1=r_start*r_H #r1=243*cgs.r_earth def vdrag(r,d): t_stop=3e7*1e-12/d return force(r,rsm)*t_stop/1e5 vd=[vdrag(r1,d1)] if T is not None: Tp=T rp=r d=[d1]; P=[P1]; T=[T1]; r=[r1/r_n]; gamma=[gamma1]; dm=[0.] n=0 tau=0.0 while (r1>r_p): r0=r1 d0=d1 P0=P1 T0=T1 gamma0=eos.gamma(T0,d0) g0=force(r0,rsm)*r0*d0/P0 d1=d0*np.exp(dlnd) for iter in range(5): gamma1=eos.gamma(T1,d1) gam=0.5*(gamma0+gamma1) dlnT=dlnd*(gam-1.0) T1=T0*np.exp(dlnT) P1=eos.pressure(T1,d1) f1=force(r1,rsm) g1=f1*r1*d1/P1 g=0.5*(g0+g1) dlnP=np.log(P1/P0) dlnr=-dlnP/g r1=r0*np.exp(dlnr) r.append(r1/r_n); d.append(d1); P.append(P1); T.append(T1); gamma.append(gamma1) dm.append(0.5*(d1+d0)*4.*np.pi*(0.5*(r0+r1))**2*(r0-r1)) n+=1 tau+=(r0-r1)*(d1+d0)/2.0 vd.append(vdrag(r1,d1)) #print(n,r1/cgs.r_earth,d1,P1,T1,gamma1,vd[-1]) print('{:4d} {:12.3e} {:15.5e} {:13.2e}'.format(n,r1/cgs.r_earth,T1,f1)) file.write('{:15.5e} {:15.5e}\n'.format(P1,T1)) file.close() dm[0]=dm[1] pl.loglog(P,T) pl.loglog(P[-1],T[-1],'o') pl.xlabel('P') pl.ylabel('T') pl.tight_layout() pl.draw() pl.pause(0.001) dd.append(T_start) TT.append(T1) #%% pl.figure(1) pl.clf() pl.title('T(P) for disk temperature = 100, 200, 300 K') pl.xlabel('P [cgs]') pl.savefig('T-P disk temperature dependence') #%% pl.figure(2) pl.clf() pl.plot(dd,TT,'-o') pl.xlabel('disk T') pl.ylabel('surface temperature') pl.ylim(2600,3600) pl.title('M = 1.0, Tomida & Hori EOS'); pl.savefig('bottom T dependence on disk temperature')
26.756944
96
0.481962
60345a2227c94fa4efef517f51201ec125421281
1,408
py
Python
saefportal/analyzer/migrations/0004_auto_20200828_1100.py
harry-consulting/SAEF1
055d6e492ba76f90e3248b9da2985fdfe0c6b430
[ "BSD-2-Clause" ]
4
2020-12-16T13:14:26.000Z
2022-03-26T08:54:12.000Z
saefportal/analyzer/migrations/0004_auto_20200828_1100.py
harry-consulting/SAEF1
055d6e492ba76f90e3248b9da2985fdfe0c6b430
[ "BSD-2-Clause" ]
1
2022-03-26T09:09:04.000Z
2022-03-26T09:09:04.000Z
saefportal/analyzer/migrations/0004_auto_20200828_1100.py
harry-consulting/SAEF
12ef43bbcc3178b8a988e21c1bef035881cf6e6d
[ "BSD-2-Clause" ]
1
2020-12-16T13:20:17.000Z
2020-12-16T13:20:17.000Z
# Generated by Django 3.0.3 on 2020-08-28 09:00 import analyzer.enums from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('analyzer', '0003_auto_20200827_1504'), ] operations = [ migrations.AlterField( model_name='analyzesession', name='analyzer_type', field=models.CharField(choices=[('ANALYZE DATASET', 'ANALYZE_DATASET'), ('ANALYZE JOB', 'ANALYZE_JOB'), ('ANALYZE APPLICATION', 'ANALYZE_APPLICATION'), ('ANALYZE DATASET HISTORY', 'ANALYZE_DATASET_HISTORY'), ('ANALYZE JOB HISTORY', 'ANALYZE_JOB_HISTORY'), ('ANALYZE APPLICATION HISTORY', 'ANALYZE_APPLICATION_HISTORY'), ('EXTERNAL', 'EXTERNAL')], default=analyzer.enums.AnalyzerTask['ANALYZE_DATASET'], max_length=32), ), migrations.AlterField( model_name='ratiocolumn', name='dataset_ratio', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='analyzer.ActualDatasetProfile'), ), migrations.AlterField( model_name='ratiocount', name='dataset_ratio', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='analyzer.ActualDatasetProfile'), ), migrations.DeleteModel( name='DatasetComparisonRatio', ), ]
41.411765
430
0.666903
c12e36d69300e63805eb5720971687a167117c2a
15,469
py
Python
holdit/__main__.py
caltechlibrary/holdit
474165764e3514303dfd118d1beb0b6570fb6e13
[ "BSD-3-Clause" ]
2
2019-01-31T21:47:13.000Z
2020-11-18T04:28:58.000Z
holdit/__main__.py
caltechlibrary/holdit
474165764e3514303dfd118d1beb0b6570fb6e13
[ "BSD-3-Clause" ]
4
2018-10-04T17:56:48.000Z
2019-01-10T03:20:13.000Z
holdit/__main__.py
caltechlibrary/holdit
474165764e3514303dfd118d1beb0b6570fb6e13
[ "BSD-3-Clause" ]
null
null
null
''' __main__: main command-line interface to Hold It! Hold It! generates a printable Word document containing recent hold requests and also update the relevant Google spreadsheet used for tracking requests. By default, Hold It! uses a GUI dialog to get the user's Caltech access login name and password. If the -G option is given (/G on Windows), it will not use a GUI dialog, and will instead use the operating system's keyring/keychain functionality to get a user name and password. If the information does not exist from a previous run of Hold It!, it will query the user interactively for the user name and password, and (unless the -K or /K argument is given) store them in the user's keyring/keychain so that it does not have to ask again in the future. It is also possible to supply the information directly on the command line using the -u and -p options (or /u and /p on Windows), but this is discouraged because it is insecure on multiuser computer systems. To reset the user name and password (e.g., if a mistake was made the last time and the wrong credentials were stored in the keyring/keychain system), use the -R (or /R on Windows) command-line argument to a command. This argument will make Hold It! query for the user name and password again even if an entry already exists in the keyring or keychain. By default, Hold It! looks for a .docx file named "template.docx" in the directory where Hold It! is located, and uses that as the template for record printing. If given the -t option followed by a file name (/t on Windows), it will look for the named file instead. If it is not given an explicit template file and it cannot find a file "template.docx", Hold It! will use a built-in default template file. By default, Hold It! will also open the Google spreadsheet used by the Circulation staff to track hold requests. This action is inhibited if given the -S option (/S on Windows). The Google spreadsheet is always updated in any case. Hold It! will write the output to a file named "holds_print_list.docx" in the user's Desktop directory, unless the -o option (/o on Windows) is given with an explicit file path to use instead. If given the -V option (/V on Windows), this program will print version information and exit without doing anything else. Authors ------- Michael Hucka <mhucka@caltech.edu> -- Caltech Library Copyright --------- Copyright (c) 2018 by the California Institute of Technology. This code is open-source software released under a 3-clause BSD license. Please see the file "LICENSE" for more information. ''' from docxtpl import DocxTemplate import os import os.path as path import plac import sys import time from threading import Thread import traceback import holdit from holdit.control import HoldItControlGUI, HoldItControlCLI from holdit.access import AccessHandlerGUI, AccessHandlerCLI from holdit.progress import ProgressIndicatorGUI, ProgressIndicatorCLI from holdit.messages import MessageHandlerGUI, MessageHandlerCLI from holdit.config import Config from holdit.records import records_diff, records_filter from holdit.tind import records_from_tind from holdit.google_sheet import records_from_google, update_google, open_google from holdit.generate import printable_doc from holdit.network import network_available from holdit.files import readable, writable, open_file, rename_existing, file_in_use from holdit.files import desktop_path, module_path, holdit_path, delete_existing from holdit.exceptions import * from holdit.debug import set_debug, log # The following is for fixing blurry fonts and controls in wxPython on Windows, # based on the solution by Nairen Zheng posted to Stack Overflow on # 2019-01-18: https://stackoverflow.com/a/54247018/743730. if sys.platform.startswith('win'): import ctypes try: ctypes.windll.shcore.SetProcessDpiAwareness(1) except: pass # Main program. # ...................................................................... @plac.annotations( pswd = ('Caltech access user password', 'option', 'p'), user = ('Caltech access user name', 'option', 'u'), output = ('write the output to the file "O"', 'option', 'o'), template = ('use file "F" as the TIND record print template', 'option', 't'), debug = ('turn on debugging (console only)', 'flag', 'D'), no_color = ('do not color-code terminal output (default: do)', 'flag', 'C'), no_gui = ('do not start the GUI interface (default: do)', 'flag', 'G'), no_keyring = ('do not use a keyring (default: do)', 'flag', 'K'), no_sheet = ('do not open the spreadsheet (default: open it)', 'flag', 'S'), reset = ('reset keyring-stored user name and password', 'flag', 'R'), version = ('print version info and exit', 'flag', 'V'), ) def main(user = 'U', pswd = 'P', output='O', template='F', no_color=False, no_gui=False, no_keyring=False, no_sheet=False, reset=False, debug=False, version=False): '''Generates a printable Word document containing recent hold requests and also update the relevant Google spreadsheet used for tracking requests. By default, Hold It! uses a GUI dialog to get the user's Caltech access login name and password. If the -G option is given (/G on Windows), it will not use a GUI dialog, and will instead use the operating system's keyring/keychain functionality to get a user name and password. If the information does not exist from a previous run of Hold It!, it will query the user interactively for the user name and password, and (unless the -K or /K argument is given) store them in the user's keyring/keychain so that it does not have to ask again in the future. It is also possible to supply the information directly on the command line using the -u and -p options (or /u and /p on Windows), but this is discouraged because it is insecure on multiuser computer systems. To reset the user name and password (e.g., if a mistake was made the last time and the wrong credentials were stored in the keyring/keychain system), use the -R (or /R on Windows) command-line argument to a command. This argument will make Hold It! query for the user name and password again even if an entry already exists in the keyring or keychain. By default, Hold It! looks for a .docx file named "template.docx" in the directory where Hold It! is located, and uses that as the template for record printing. If given the -t option followed by a file name (/t on Windows), it will look for the named file instead. If it is not given an explicit template file and it cannot find a file "template.docx", Hold It! will use a built-in default template file. By default, Hold It! will also open the Google spreadsheet used by the Circulation staff to track hold requests. This action is inhibited if given the -S option (/S on Windows). The Google spreadsheet is always updated in any case. Hold It! will write the output to a file named "holds_print_list.docx" in the user's Desktop directory, unless the -o option (/o on Windows) is given with an explicit file path to use instead. If given the -V option (/V on Windows), this program will print version information and exit without doing anything else. ''' # Our defaults are to do things like color the output, which means the # command line flags make more sense as negated values (e.g., "no-color"). # However, dealing with negated variables in our code is confusing, so: use_color = not no_color use_keyring = not no_keyring use_gui = not no_gui view_sheet = not no_sheet # We use default values that provide more intuitive help text printed by # plac. Rewrite the values to things we actually use. if user == 'U': user = None if pswd == 'P': pswd = None if template == 'F': template = None if output == 'O': output = None # Process the version argument first, because it causes an early exit. if version: print('{} version {}'.format(holdit.__title__, holdit.__version__)) print('Author: {}'.format(holdit.__author__)) print('URL: {}'.format(holdit.__url__)) print('License: {}'.format(holdit.__license__)) sys.exit() # Configure debug logging if it's turned on. if debug: set_debug(True) # Switch between different ways of getting information from/to the user. if use_gui: controller = HoldItControlGUI() accesser = AccessHandlerGUI(user, pswd) notifier = MessageHandlerGUI() tracer = ProgressIndicatorGUI() else: controller = HoldItControlCLI() accesser = AccessHandlerCLI(user, pswd, use_keyring, reset) notifier = MessageHandlerCLI(use_color) tracer = ProgressIndicatorCLI(use_color) # Start the worker thread. if __debug__: log('Starting main body thread') controller.start(MainBody(template, output, view_sheet, debug, controller, tracer, accesser, notifier)) class MainBody(Thread): '''Main body of Hold It! implemented as a Python thread.''' def __init__(self, template, output, view_sheet, debug, controller, tracer, accesser, notifier): '''Initializes main thread object but does not start the thread.''' Thread.__init__(self, name = "MainBody") self._template = template self._output = output self._view_sheet = view_sheet self._debug = debug self._controller = controller self._tracer = tracer self._accesser = accesser self._notifier = notifier if controller.is_gui: # Only make this a daemon thread when using the GUI; for CLI, it # must not be a daemon thread or else Hold It! exits immediately. self.daemon = True def run(self): # Set shortcut variables for better code readability below. template = self._template output = self._output view_sheet = self._view_sheet debug = self._debug controller = self._controller accesser = self._accesser notifier = self._notifier tracer = self._tracer # Preliminary sanity checks. Do this here because we need the notifier # object to be initialized based on whether we're using GUI or CLI. tracer.start('Performing initial checks') if not network_available(): notifier.fatal('No network connection.') # Let's do this thing. try: config = Config(path.join(module_path(), "holdit.ini")) # The default template is expected to be inside the Hold It module. # If the user supplies a template, we use it instead. tracer.update('Getting output template') template_file = config.get('holdit', 'template') template_file = path.abspath(path.join(module_path(), template_file)) if template: temp = path.abspath(template) if readable(temp): if __debug__: log('Using user-supplied template "{}"'.format(temp)) template_file = temp else: notifier.warn('File "{}" not readable -- using default.'.format(template)) else: # Check for "template.docx" in the Hold It installation dir. temp = path.abspath(path.join(holdit_path(), "template.docx")) if readable(temp): if __debug__: log('Using template found at "{}"'.format(temp)) template_file = temp # Sanity check against possible screwups in creating the Hold It! app. # Do them here so that we can fail early if we know we can't finish. if not readable(template_file): notifier.fatal('Template doc file "{}" not readable.'.format(template_file)) sys.exit() if not writable(desktop_path()): notifier.fatal('Output folder "{}" not writable.'.format(desktop_path())) sys.exit() # Get the data. spreadsheet_id = config.get('holdit', 'spreadsheet_id') tracer.update('Connecting to TIND') tind_records = records_from_tind(accesser, notifier, tracer) tracer.update('Connecting to Google') google_records = records_from_google(spreadsheet_id, accesser.user, notifier) missing_records = records_diff(google_records, tind_records) new_records = list(filter(records_filter('all'), missing_records)) if __debug__: log('diff + filter => {} records'.format(len(new_records))) if len(new_records) > 0: # Update the spreadsheet with new records. tracer.update('Updating Google spreadsheet') update_google(spreadsheet_id, new_records, accesser.user, notifier) # Write a printable report. tracer.update('Generating printable document') if not output: output = path.join(desktop_path(), "holds_print_list.docx") if path.exists(output): rename_existing(output) if file_in_use(output): details = '{} appears to be open in another program'.format(output) notifier.warn('Cannot write Word doc -- is it still open?', details) else: result = printable_doc(new_records, template_file) result.save(output) tracer.update('Opening Word document for printing') open_file(output) else: tracer.update('No new hold requests were found in TIND.') # Open the spreadsheet too, if requested. if isinstance(notifier, MessageHandlerGUI): if notifier.yes_no('Open the tracking spreadsheet?'): open_google(spreadsheet_id) elif view_sheet: open_google(spreadsheet_id) except (KeyboardInterrupt, UserCancelled) as err: tracer.stop('Quitting.') controller.stop() except ServiceFailure: tracer.stop('Stopping due to a problem connecting to services') controller.stop() except Exception as err: if debug: import pdb; pdb.set_trace() tracer.stop('Stopping due to error') notifier.fatal(holdit.__title__ + ' encountered an error', str(err) + '\n' + traceback.format_exc()) controller.stop() else: tracer.stop('Done') controller.stop() # On windows, we want the command-line args to use slash intead of hyphen. if sys.platform.startswith('win'): main.prefix_chars = '/' # Main entry point. # ...................................................................... # The following allows users to invoke this using "python3 -m holdit". if __name__ == '__main__': plac.call(main) # For Emacs users # ...................................................................... # Local Variables: # mode: python # python-indent-offset: 4 # End:
44.451149
94
0.654793
16dbf9b74077f3825358d3a49b9cb272806b8cd3
1,256
py
Python
build/catkin_generated/generate_cached_setup.py
Louis-AD-git/racecar_ws
3c5cb561d1aee11d80a7f3847e0334e93f345513
[ "MIT" ]
null
null
null
build/catkin_generated/generate_cached_setup.py
Louis-AD-git/racecar_ws
3c5cb561d1aee11d80a7f3847e0334e93f345513
[ "MIT" ]
null
null
null
build/catkin_generated/generate_cached_setup.py
Louis-AD-git/racecar_ws
3c5cb561d1aee11d80a7f3847e0334e93f345513
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import print_function import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in '/opt/ros/melodic'.split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/lzh/racecar_ws/devel/env.sh') output_filename = '/home/lzh/racecar_ws/build/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: # print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
40.516129
102
0.730096
79c0a6a7d5470ddd65878a50ceaf3c677e4f2d0d
1,835
py
Python
decorators_lab/solution/decorators.py
jeremyosborne/examples-python
5900b3a4f47d59de0a32d3257a8b90a44e80fdcd
[ "MIT" ]
null
null
null
decorators_lab/solution/decorators.py
jeremyosborne/examples-python
5900b3a4f47d59de0a32d3257a8b90a44e80fdcd
[ "MIT" ]
null
null
null
decorators_lab/solution/decorators.py
jeremyosborne/examples-python
5900b3a4f47d59de0a32d3257a8b90a44e80fdcd
[ "MIT" ]
null
null
null
''' >>> data = '{"username": "oscar", "password": "trashcan", "account": 1234, "amount": 12.03}' >>> deposit(data) 'OK' >>> data = '{"username": "oscar", "password": "trash", "account": 1234, "amount": 14.98}' >>> deposit(data) 'Invalid Password' >>> data = '{"username": "oscar", "password": "trashcan", "account": 1234, "amount": 4.12}' >>> withdraw(data) 'OK' >>> data = '{"username": "oscar", "password": "trashcan", "account": 1235, "amount": 2.54}' >>> withdraw(data) 'Invalid Account' >>> data = '{"username": "oscar", "password": "trashcan", "account": 1234}' >>> balance(data) '7.91' >>> data = '{"username": "oscar", "password": "trashcan"}' >>> balance(data) 'No Account Number Provided' Hint: that's json data ''' import json from decimal import * account = { "username": "oscar", "password": "trashcan", "account": 1234, "balance": Decimal("0.00"), } def data_parser(f): def parse(j): trans = json.loads(j) return f(trans) return parse def validate(f): def validate(trans): if not "account" in trans: return 'No Account Number Provided' elif trans["password"] != account["password"]: return 'Invalid Password' elif trans["account"] != account["account"]: return 'Invalid Account' else: return f(trans) return validate @data_parser @validate def deposit(transaction): global account account["balance"] += Decimal(str(transaction["amount"])) return 'OK' @data_parser @validate def withdraw(transaction): global total account["balance"] -= Decimal(str(transaction["amount"])) return 'OK' @data_parser @validate def balance(transaction): return str(account["balance"]) if __name__ == '__main__': import doctest doctest.testmod(verbose=True)
21.337209
92
0.608174
d053fb347f94455a77946d5626da7366884130e7
256
py
Python
Python3/scripts-python3/desafios/mundo01/desafio020.py
Joey-Resende/Estudando-Python
d38212dd6753b35d4f8d2aae79ec41f92cf16d58
[ "MIT" ]
null
null
null
Python3/scripts-python3/desafios/mundo01/desafio020.py
Joey-Resende/Estudando-Python
d38212dd6753b35d4f8d2aae79ec41f92cf16d58
[ "MIT" ]
null
null
null
Python3/scripts-python3/desafios/mundo01/desafio020.py
Joey-Resende/Estudando-Python
d38212dd6753b35d4f8d2aae79ec41f92cf16d58
[ "MIT" ]
null
null
null
from random import shuffle a1 = str(input('Primeiro aluno: ')) a2 = str(input('Segundo aluno: ')) a3 = str(input('Terceiro aluno: ')) a4 = str(input('Quarto aluno: ')) lista = [a1, a2, a3, a4] shuffle(lista) print(f'A ordem de apresentação será {lista}')
25.6
46
0.671875
c56f7f2bf7ffdef07b6c5dbfe8256ee6529636ad
2,199
py
Python
bot.py
polyzer/telegram-bot-football-players-prediction
6962daa38e4dbd898c26091abede97be52778108
[ "MIT" ]
null
null
null
bot.py
polyzer/telegram-bot-football-players-prediction
6962daa38e4dbd898c26091abede97be52778108
[ "MIT" ]
null
null
null
bot.py
polyzer/telegram-bot-football-players-prediction
6962daa38e4dbd898c26091abede97be52778108
[ "MIT" ]
null
null
null
import telebot import tensorflow as tf from tensorflow.keras.models import load_model import keras import cv2 import skimage.transform import re import json import decorator import os from flask import Flask, request api_key = "1045675720:AAGV3UhR4Ks4mkV-x1ZTfjF8et0Iudp3hbk" bot = telebot.TeleBot(api_key) server = Flask(__name__) @decorator.decorator def errLog(func, *args, **kwargs): result = None try: result = func(*args, **kwargs) except Exception as e: print(e.__repr__()) return result @bot.message_handler(commands=['start']) def start_message(message): bot.send_message(message.chat.id, 'Привет, ты написал мне /start А теперь пришли мне boxid футболиста, а я попробую угадать его label.') @errLog def processPhotoMessage(message): print('message.photo =', message.photo) fileID = message.photo[-1].file_id print('fileID =', fileID) file = bot.get_file(fileID) print('file.file_path =', file.file_path) downloaded_file = bot.download_file(file.file_path) # downloaded_file = cv2.fromarray(downloaded_file) # img = cv2.imdecode(downloaded_file, 1) with open("image.png", 'wb') as new_file: new_file.write(downloaded_file) img = cv2.imread("image.png") img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = skimage.transform.resize(img, (83, 45)) img = img.reshape(1, img.shape[0], img.shape[1], img.shape[2]) label = model.predict_classes(img)[0] bot.send_message(message.chat.id, str(label)) print(f"Label {label} was sended!") @bot.message_handler(content_types=['photo']) def photo(message): processPhotoMessage(message) @server.route('/' + api_key, methods=['POST']) def getMessage(): bot.process_new_updates([telebot.types.Update.de_json(request.stream.read().decode("utf-8"))]) return "!", 200 @server.route("/") def webhook(): bot.remove_webhook() bot.set_webhook(url='https://stormy-brook-78919.herokuapp.com/' + api_key) return "!", 200 if __name__ == '__main__': model = load_model("model_100.h5") print("it's started") server.debug = True server.run(host="0.0.0.0", port=int(os.environ.get('PORT', 5000))) #bot.polling()
30.123288
140
0.699409
cef34af9d3906846bff89729e02c0addd5a5210b
5,785
py
Python
praw/models/listing/mixins/base.py
NedJunk/praw
dd75d91e5574f1499cbef445dd68eb71445629df
[ "BSD-2-Clause" ]
null
null
null
praw/models/listing/mixins/base.py
NedJunk/praw
dd75d91e5574f1499cbef445dd68eb71445629df
[ "BSD-2-Clause" ]
null
null
null
praw/models/listing/mixins/base.py
NedJunk/praw
dd75d91e5574f1499cbef445dd68eb71445629df
[ "BSD-2-Clause" ]
null
null
null
"""Provide the BaseListingMixin class.""" from typing import Any, Dict, Iterator, Union from urllib.parse import urljoin from ....util import _deprecate_args from ...base import PRAWBase from ..generator import ListingGenerator class BaseListingMixin(PRAWBase): """Adds minimum set of methods that apply to all listing objects.""" VALID_TIME_FILTERS = {"all", "day", "hour", "month", "week", "year"} @staticmethod def _validate_time_filter(time_filter): """Validate ``time_filter``. :raises: :py:class:`ValueError` if ``time_filter`` is not valid. """ if time_filter not in BaseListingMixin.VALID_TIME_FILTERS: valid_time_filters = ", ".join(BaseListingMixin.VALID_TIME_FILTERS) raise ValueError(f"time_filter must be one of: {valid_time_filters}") def _prepare(self, *, arguments, sort): """Fix for :class:`.Redditor` methods that use a query param rather than subpath.""" if self.__dict__.get("_listing_use_sort"): self._safely_add_arguments(arguments=arguments, key="params", sort=sort) return self._path return urljoin(self._path, sort) @_deprecate_args("time_filter") def controversial( self, *, time_filter: str = "all", **generator_kwargs: Union[str, int, Dict[str, str]], ) -> Iterator[Any]: """Return a :class:`.ListingGenerator` for controversial items. :param time_filter: Can be one of: ``"all"``, ``"day"``, ``"hour"``, ``"month"``, ``"week"``, or ``"year"`` (default: ``"all"``). :raises: :py:class:`ValueError` if ``time_filter`` is invalid. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. This method can be used like: .. code-block:: python reddit.domain("imgur.com").controversial(time_filter="week") reddit.multireddit(redditor="samuraisam", name="programming").controversial( time_filter="day" ) reddit.redditor("spez").controversial(time_filter="month") reddit.redditor("spez").comments.controversial(time_filter="year") reddit.redditor("spez").submissions.controversial(time_filter="all") reddit.subreddit("all").controversial(time_filter="hour") """ self._validate_time_filter(time_filter) self._safely_add_arguments( arguments=generator_kwargs, key="params", t=time_filter ) url = self._prepare(arguments=generator_kwargs, sort="controversial") return ListingGenerator(self._reddit, url, **generator_kwargs) def hot(self, **generator_kwargs: Union[str, int, Dict[str, str]]) -> Iterator[Any]: """Return a :class:`.ListingGenerator` for hot items. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. This method can be used like: .. code-block:: python reddit.domain("imgur.com").hot() reddit.multireddit(redditor="samuraisam", name="programming").hot() reddit.redditor("spez").hot() reddit.redditor("spez").comments.hot() reddit.redditor("spez").submissions.hot() reddit.subreddit("all").hot() """ generator_kwargs.setdefault("params", {}) url = self._prepare(arguments=generator_kwargs, sort="hot") return ListingGenerator(self._reddit, url, **generator_kwargs) def new(self, **generator_kwargs: Union[str, int, Dict[str, str]]) -> Iterator[Any]: """Return a :class:`.ListingGenerator` for new items. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. This method can be used like: .. code-block:: python reddit.domain("imgur.com").new() reddit.multireddit(redditor="samuraisam", name="programming").new() reddit.redditor("spez").new() reddit.redditor("spez").comments.new() reddit.redditor("spez").submissions.new() reddit.subreddit("all").new() """ generator_kwargs.setdefault("params", {}) url = self._prepare(arguments=generator_kwargs, sort="new") return ListingGenerator(self._reddit, url, **generator_kwargs) @_deprecate_args("time_filter") def top( self, *, time_filter: str = "all", **generator_kwargs: Union[str, int, Dict[str, str]], ) -> Iterator[Any]: """Return a :class:`.ListingGenerator` for top items. :param time_filter: Can be one of: ``"all"``, ``"day"``, ``"hour"``, ``"month"``, ``"week"``, or ``"year"`` (default: ``"all"``). :raises: :py:class:`ValueError` if ``time_filter`` is invalid. Additional keyword arguments are passed in the initialization of :class:`.ListingGenerator`. This method can be used like: .. code-block:: python reddit.domain("imgur.com").top(time_filter="week") reddit.multireddit(redditor="samuraisam", name="programming").top(time_filter="day") reddit.redditor("spez").top(time_filter="month") reddit.redditor("spez").comments.top(time_filter="year") reddit.redditor("spez").submissions.top(time_filter="all") reddit.subreddit("all").top(time_filter="hour") """ self._validate_time_filter(time_filter) self._safely_add_arguments( arguments=generator_kwargs, key="params", t=time_filter ) url = self._prepare(arguments=generator_kwargs, sort="top") return ListingGenerator(self._reddit, url, **generator_kwargs)
38.566667
96
0.623336
339eff7b937ab870972ef1b0fa9b35f66a854025
819
py
Python
pyopenproject/business/services/command/root/find.py
webu/pyopenproject
40b2cb9fe0fa3f89bc0fe2a3be323422d9ecf966
[ "MIT" ]
5
2021-02-25T15:54:28.000Z
2021-04-22T15:43:36.000Z
pyopenproject/business/services/command/root/find.py
webu/pyopenproject
40b2cb9fe0fa3f89bc0fe2a3be323422d9ecf966
[ "MIT" ]
7
2021-03-15T16:26:23.000Z
2022-03-16T13:45:18.000Z
pyopenproject/business/services/command/root/find.py
webu/pyopenproject
40b2cb9fe0fa3f89bc0fe2a3be323422d9ecf966
[ "MIT" ]
6
2021-06-18T18:59:11.000Z
2022-03-27T04:58:52.000Z
from pyopenproject.api_connection.exceptions.request_exception import RequestError from pyopenproject.api_connection.requests.get_request import GetRequest from pyopenproject.business.exception.business_error import BusinessError from pyopenproject.business.services.command.root.root_command import RootCommand from pyopenproject.model.root import Root class Find(RootCommand): def __init__(self, connection): """Constructor for class Find, from RootCommand :param connection: The connection data """ super().__init__(connection) def execute(self): try: json_obj = GetRequest(self.connection, f"{self.CONTEXT}").execute() return Root(json_obj) except RequestError as re: raise BusinessError("Error finding root") from re
35.608696
82
0.737485
93202c2043a98b8b46f7238e1f83a70f2fa90207
9,910
py
Python
notebooks-text-format/matrix_factorization_recommender.py
arpitvaghela/probml-notebooks
32ecb309dd474b989fd1c6ce4ad6dab7a25bbead
[ "MIT" ]
166
2021-07-16T17:33:09.000Z
2022-03-30T03:35:34.000Z
notebooks-text-format/matrix_factorization_recommender.py
arpitvaghela/probml-notebooks
32ecb309dd474b989fd1c6ce4ad6dab7a25bbead
[ "MIT" ]
29
2021-07-21T16:31:51.000Z
2022-03-31T19:50:13.000Z
notebooks-text-format/matrix_factorization_recommender.py
arpitvaghela/probml-notebooks
32ecb309dd474b989fd1c6ce4ad6dab7a25bbead
[ "MIT" ]
48
2021-07-17T08:26:18.000Z
2022-03-31T03:36:18.000Z
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/Nirzu97/pyprobml/blob/matrix-factorization/notebooks/matrix_factorization_recommender.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] id="NTsyA3nxgIhT" # # Matrix Factorization for Movie Lens Recommendations # # This notebook is based on code from Nick Becker # # https://github.com/beckernick/matrix_factorization_recommenders/blob/master/matrix_factorization_recommender.ipynb # # # # # # # + [markdown] id="nf5GiG3YgIhd" # # Setting Up the Ratings Data # # We read the data directly from MovieLens website, since they don't allow redistribution. We want to include the metadata (movie titles, etc), not just the ratings matrix. # # + id="aH_UwaAsh1LP" import pandas as pd import numpy as np import os import matplotlib.pyplot as plt # + colab={"base_uri": "https://localhost:8080/"} id="0Pa5k76tYztd" outputId="15e6753a-4b12-4459-fcbe-87262c71c2b7" # !wget http://files.grouplens.org/datasets/movielens/ml-100k.zip # !ls # !unzip ml-100k folder = 'ml-100k' # + colab={"base_uri": "https://localhost:8080/"} id="THfvnkzah3nv" outputId="e7310704-fb63-49bd-cf4b-ab568d65532e" # !wget http://files.grouplens.org/datasets/movielens/ml-1m.zip # !unzip ml-1m # !ls folder = 'ml-1m' # + id="J_zij7tJgIhd" ratings_list = [ [int(x) for x in i.strip().split("::")] for i in open(os.path.join(folder,'ratings.dat'), 'r').readlines()] users_list = [i.strip().split("::") for i in open(os.path.join(folder, 'users.dat'), 'r').readlines()] movies_list = [i.strip().split("::") for i in open(os.path.join(folder, 'movies.dat'), 'r', encoding="latin-1").readlines()] # + id="R8JnjoDVgIhe" ratings_df = pd.DataFrame(ratings_list, columns = ['UserID', 'MovieID', 'Rating', 'Timestamp'], dtype = int) movies_df = pd.DataFrame(movies_list, columns = ['MovieID', 'Title', 'Genres']) movies_df['MovieID'] = movies_df['MovieID'].apply(pd.to_numeric) # + id="L06ZLb4CgIhf" colab={"base_uri": "https://localhost:8080/", "height": 196} outputId="21273c16-64a4-4ef7-ae6b-bc2544284b6c" movies_df.head() # + colab={"base_uri": "https://localhost:8080/"} id="Tv9rqPfoxvXo" outputId="70b15305-7226-4008-e4f8-13e0c06117e0" def get_movie_name(movies_df, movie_id_str): ndx = (movies_df['MovieID']==int(movie_id_str)) name = movies_df['Title'][ndx].to_numpy()[0] return name print(get_movie_name(movies_df, 1)) print(get_movie_name(movies_df, "527")) # + colab={"base_uri": "https://localhost:8080/"} id="mrqetJo14NEe" outputId="f7276962-607a-47c0-a6d2-4322a4dab187" def get_movie_genres(movies_df, movie_id_str): ndx = (movies_df['MovieID']==int(movie_id_str)) name = movies_df['Genres'][ndx].to_numpy()[0] return name print(get_movie_genres(movies_df, 1)) print(get_movie_genres(movies_df, "527")) # + id="a3fua44igIhg" colab={"base_uri": "https://localhost:8080/", "height": 196} outputId="ee59b580-a2fd-4917-d7fa-93c70b2d71af" ratings_df.head() # + [markdown] id="Qmf6YmHEgIhh" # These look good, but I want the format of my ratings matrix to be one row per user and one column per movie. I'll `pivot` `ratings_df` to get that and call the new variable `R`. # + id="Jmysfzc4gIhh" colab={"base_uri": "https://localhost:8080/", "height": 275} outputId="600d38df-73df-4fbb-db65-b2cfcd2d62f1" R_df = ratings_df.pivot(index = 'UserID', columns ='MovieID', values = 'Rating').fillna(0) R_df.head() # + [markdown] id="h_4z9YWTgIhh" # The last thing I need to do is de-mean the data (normalize by each users mean) and convert it from a dataframe to a numpy array. # + id="k3GGGqwAgIhi" colab={"base_uri": "https://localhost:8080/"} outputId="7d350a7c-0d61-432c-fdfc-2db708b046eb" R = R_df.to_numpy() user_ratings_mean = np.mean(R, axis = 1) R_demeaned = R - user_ratings_mean.reshape(-1, 1) print(R.shape) print(np.count_nonzero(R)) # + [markdown] id="ktEjpdh2gIhi" # # Singular Value Decomposition # # Scipy and Numpy both have functions to do the singular value decomposition. I'm going to use the Scipy function `svds` because it let's me choose how many latent factors I want to use to approximate the original ratings matrix (instead of having to truncate it after). # + id="DMFgd5IIgIhi" from scipy.sparse.linalg import svds U, sigma, Vt = svds(R_demeaned, k = 50) sigma = np.diag(sigma) # + id="arTEARPGgIhj" colab={"base_uri": "https://localhost:8080/"} outputId="6576c695-c993-4843-8dfd-2b429e3d66b4" latents = [10, 20, 50] errors = [] for latent_dim in latents: U, sigma, Vt = svds(R_demeaned, k = latent_dim) sigma = np.diag(sigma) Rpred = np.dot(np.dot(U, sigma), Vt) + user_ratings_mean.reshape(-1, 1) Rpred[Rpred < 0] = 0 Rpred[Rpred > 5] = 5 err = (np.sqrt(np.sum(np.power(R - Rpred, 2)))) errors.append(err) print(errors) # + [markdown] id="bhBscFmXgIhk" # # Making Predictions from the Decomposed Matrices # # I now have everything I need to make movie ratings predictions for every user. I can do it all at once by following the math and matrix multiply $U$, $\Sigma$, and $V^{T}$ back to get the rank $k=50$ approximation of $R$. # # I also need to add the user means back to get the actual star ratings prediction. # + id="gQyqTbUCgIhk" all_user_predicted_ratings = np.dot(np.dot(U, sigma), Vt) + user_ratings_mean.reshape(-1, 1) # + [markdown] id="1bZkdk_GgIhk" # # Making Movie Recommendations # Finally, it's time. With the predictions matrix for every user, I can build a function to recommend movies for any user. All I need to do is return the movies with the highest predicted rating that the specified user hasn't already rated. Though I didn't use actually use any explicit movie content features (such as genre or title), I'll merge in that information to get a more complete picture of the recommendations. # # I'll also return the list of movies the user has already rated, for the sake of comparison. # + id="NWmGciBegIhl" colab={"base_uri": "https://localhost:8080/", "height": 245} outputId="577f2bdc-214d-4b22-e62f-2ea9aecbd126" preds_df = pd.DataFrame(all_user_predicted_ratings, columns = R_df.columns) preds_df.head() # + id="ggAv-Y_GgIhl" def recommend_movies(preds_df, userID, movies_df, original_ratings_df, num_recommendations=5): # Get and sort the user's predictions user_row_number = userID - 1 # UserID starts at 1, not 0 sorted_user_predictions = preds_df.iloc[user_row_number].sort_values(ascending=False) # UserID starts at 1 # Get the user's data and merge in the movie information. user_data = original_ratings_df[original_ratings_df.UserID == (userID)] user_full = (user_data.merge(movies_df, how = 'left', left_on = 'MovieID', right_on = 'MovieID'). sort_values(['Rating'], ascending=False) ) print('User {0} has already rated {1} movies.'.format(userID, user_full.shape[0])) print('Recommending highest {0} predicted ratings movies not already rated.'.format(num_recommendations)) # Recommend the highest predicted rating movies that the user hasn't seen yet. recommendations = (movies_df[~movies_df['MovieID'].isin(user_full['MovieID'])]. merge(pd.DataFrame(sorted_user_predictions).reset_index(), how = 'left', left_on = 'MovieID', right_on = 'MovieID'). rename(columns = {user_row_number: 'Predictions'}). sort_values('Predictions', ascending = False). iloc[:num_recommendations, :-1] ) return user_full, recommendations # + id="T6wmnxuTgIhl" colab={"base_uri": "https://localhost:8080/"} outputId="2a4d693e-7497-4200-af26-9282fd9b7266" already_rated, predictions = recommend_movies(preds_df, 837, movies_df, ratings_df, 10) # + [markdown] id="XdIpIY9ZgIhm" # So, how'd I do? # + id="PfP2cSPMgIhm" colab={"base_uri": "https://localhost:8080/", "height": 345} outputId="e28e4c9e-6ac3-4e64-bab4-5de77931b6fc" already_rated.head(10) # + colab={"base_uri": "https://localhost:8080/", "height": 345} id="7uNLhyK3Z95t" outputId="a385ec2b-e18b-4bd3-cc0e-1336654bc3d1" df = already_rated[['MovieID', 'Title', 'Genres']].copy() df.head(10) # + id="eFx8wgwYgIhn" colab={"base_uri": "https://localhost:8080/", "height": 345} outputId="ed30c0d3-685e-4f39-cb48-73e0efba0108" predictions # + [markdown] id="u2ZnPxdzgIhn" # Pretty cool! These look like pretty good recommendations. It's also good to see that, though I didn't actually use the genre of the movie as a feature, the truncated matrix factorization features "picked up" on the underlying tastes and preferences of the user. I've recommended some film-noirs, crime, drama, and war movies - all of which were genres of some of this user's top rated movies. # + [markdown] id="fKyoDci9tu8K" # # Visualizing true and predicted ratings matrix # + colab={"base_uri": "https://localhost:8080/"} id="46qng2bFwYXf" outputId="3cb85f4a-9ef5-493c-bb8d-73d8f44e5658" Rpred = all_user_predicted_ratings Rpred[Rpred < 0] = 0 Rpred[Rpred > 5] = 5 print(np.linalg.norm(R - Rpred, ord='fro')) print(np.sqrt(np.sum(np.power(R - Rpred, 2)))) # + colab={"base_uri": "https://localhost:8080/", "height": 1000} id="pSk8UdyetzUk" outputId="421a5b15-c691-4464-db0f-155a902e67bc" import matplotlib.pyplot as plt nusers = 20 nitems = 20 plt.figure(figsize=(10,10)) plt.imshow(R[:nusers, :nitems], cmap='jet') plt.xlabel('item') plt.ylabel('user') plt.title('True ratings') plt.colorbar() plt.figure(figsize=(10,10)) plt.imshow(Rpred[:nusers, :nitems], cmap='jet') plt.xlabel('item') plt.ylabel('user') plt.title('Predcted ratings') plt.colorbar()
40.950413
421
0.711806
9190b033f4412087f4ac2dec131c53671df74e7b
26,551
py
Python
tests/components/script/test_init.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
5
2020-10-08T12:59:44.000Z
2021-12-28T06:46:25.000Z
tests/components/script/test_init.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
75
2020-08-05T07:22:42.000Z
2022-03-23T21:54:57.000Z
tests/components/script/test_init.py
winning1120xx/home-assistant
53d4c0ce2d374b5e97bbdc37742656c27adf8eea
[ "Apache-2.0" ]
11
2020-12-16T13:48:14.000Z
2022-02-01T00:28:05.000Z
"""The tests for the Script component.""" # pylint: disable=protected-access import asyncio import unittest from unittest.mock import Mock, patch import pytest from homeassistant.components import logbook, script from homeassistant.components.script import DOMAIN, EVENT_SCRIPT_STARTED from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_NAME, SERVICE_RELOAD, SERVICE_TOGGLE, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_OFF, ) from homeassistant.core import ( Context, CoreState, HomeAssistant, State, callback, split_entity_id, ) from homeassistant.exceptions import ServiceNotFound from homeassistant.helpers import template from homeassistant.helpers.event import async_track_state_change from homeassistant.helpers.service import async_get_all_descriptions from homeassistant.loader import bind_hass from homeassistant.setup import async_setup_component, setup_component import homeassistant.util.dt as dt_util from tests.common import async_mock_service, get_test_home_assistant, mock_restore_cache from tests.components.logbook.test_init import MockLazyEventPartialState ENTITY_ID = "script.test" @bind_hass def turn_on(hass, entity_id, variables=None, context=None): """Turn script on. This is a legacy helper method. Do not use it for new tests. """ _, object_id = split_entity_id(entity_id) hass.services.call(DOMAIN, object_id, variables, context=context) @bind_hass def turn_off(hass, entity_id): """Turn script on. This is a legacy helper method. Do not use it for new tests. """ hass.services.call(DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: entity_id}) @bind_hass def toggle(hass, entity_id): """Toggle the script. This is a legacy helper method. Do not use it for new tests. """ hass.services.call(DOMAIN, SERVICE_TOGGLE, {ATTR_ENTITY_ID: entity_id}) @bind_hass def reload(hass): """Reload script component. This is a legacy helper method. Do not use it for new tests. """ hass.services.call(DOMAIN, SERVICE_RELOAD) class TestScriptComponent(unittest.TestCase): """Test the Script component.""" # pylint: disable=invalid-name def setUp(self): """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() self.addCleanup(self.tear_down_cleanup) def tear_down_cleanup(self): """Stop down everything that was started.""" self.hass.stop() def test_passing_variables(self): """Test different ways of passing in variables.""" mock_restore_cache(self.hass, ()) calls = [] context = Context() @callback def record_call(service): """Add recorded event to set.""" calls.append(service) self.hass.services.register("test", "script", record_call) assert setup_component( self.hass, "script", { "script": { "test": { "sequence": { "service": "test.script", "data_template": {"hello": "{{ greeting }}"}, } } } }, ) turn_on(self.hass, ENTITY_ID, {"greeting": "world"}, context=context) self.hass.block_till_done() assert len(calls) == 1 assert calls[0].context is context assert calls[0].data["hello"] == "world" self.hass.services.call( "script", "test", {"greeting": "universe"}, context=context ) self.hass.block_till_done() assert len(calls) == 2 assert calls[1].context is context assert calls[1].data["hello"] == "universe" @pytest.mark.parametrize("toggle", [False, True]) async def test_turn_on_off_toggle(hass, toggle): """Verify turn_on, turn_off & toggle services.""" event = "test_event" event_mock = Mock() hass.bus.async_listen(event, event_mock) was_on = False @callback def state_listener(entity_id, old_state, new_state): nonlocal was_on was_on = True async_track_state_change(hass, ENTITY_ID, state_listener, to_state="on") if toggle: turn_off_step = {"service": "script.toggle", "entity_id": ENTITY_ID} else: turn_off_step = {"service": "script.turn_off", "entity_id": ENTITY_ID} assert await async_setup_component( hass, "script", { "script": { "test": { "sequence": [{"event": event}, turn_off_step, {"event": event}] } } }, ) assert not script.is_on(hass, ENTITY_ID) if toggle: await hass.services.async_call( DOMAIN, SERVICE_TOGGLE, {ATTR_ENTITY_ID: ENTITY_ID} ) else: await hass.services.async_call(DOMAIN, split_entity_id(ENTITY_ID)[1]) await hass.async_block_till_done() assert not script.is_on(hass, ENTITY_ID) assert was_on assert event_mock.call_count == 1 invalid_configs = [ {"test": {}}, {"test hello world": {"sequence": [{"event": "bla"}]}}, {"test": {"sequence": {"event": "test_event", "service": "homeassistant.turn_on"}}}, ] @pytest.mark.parametrize("value", invalid_configs) async def test_setup_with_invalid_configs(hass, value): """Test setup with invalid configs.""" assert await async_setup_component( hass, "script", {"script": value} ), f"Script loaded with wrong config {value}" assert len(hass.states.async_entity_ids("script")) == 0 @pytest.mark.parametrize("running", ["no", "same", "different"]) async def test_reload_service(hass, running): """Verify the reload service.""" event = "test_event" event_flag = asyncio.Event() @callback def event_handler(event): event_flag.set() hass.bus.async_listen_once(event, event_handler) hass.states.async_set("test.script", "off") assert await async_setup_component( hass, "script", { "script": { "test": { "sequence": [ {"event": event}, {"wait_template": "{{ is_state('test.script', 'on') }}"}, ] } } }, ) assert hass.states.get(ENTITY_ID) is not None assert hass.services.has_service(script.DOMAIN, "test") if running != "no": _, object_id = split_entity_id(ENTITY_ID) await hass.services.async_call(DOMAIN, object_id) await asyncio.wait_for(event_flag.wait(), 1) assert script.is_on(hass, ENTITY_ID) object_id = "test" if running == "same" else "test2" with patch( "homeassistant.config.load_yaml_config_file", return_value={"script": {object_id: {"sequence": [{"delay": {"seconds": 5}}]}}}, ): await hass.services.async_call(DOMAIN, SERVICE_RELOAD, blocking=True) await hass.async_block_till_done() if running != "same": assert hass.states.get(ENTITY_ID) is None assert not hass.services.has_service(script.DOMAIN, "test") assert hass.states.get("script.test2") is not None assert hass.services.has_service(script.DOMAIN, "test2") else: assert hass.states.get(ENTITY_ID) is not None assert hass.services.has_service(script.DOMAIN, "test") async def test_service_descriptions(hass): """Test that service descriptions are loaded and reloaded correctly.""" # Test 1: has "description" but no "fields" assert await async_setup_component( hass, "script", { "script": { "test": { "description": "test description", "sequence": [{"delay": {"seconds": 5}}], } } }, ) descriptions = await async_get_all_descriptions(hass) assert descriptions[DOMAIN]["test"]["name"] == "test" assert descriptions[DOMAIN]["test"]["description"] == "test description" assert not descriptions[DOMAIN]["test"]["fields"] # Test 2: has "fields" but no "description" with patch( "homeassistant.config.load_yaml_config_file", return_value={ "script": { "test": { "fields": { "test_param": { "description": "test_param description", "example": "test_param example", } }, "sequence": [{"delay": {"seconds": 5}}], } } }, ): await hass.services.async_call(DOMAIN, SERVICE_RELOAD, blocking=True) descriptions = await async_get_all_descriptions(hass) assert descriptions[script.DOMAIN]["test"]["description"] == "" assert ( descriptions[script.DOMAIN]["test"]["fields"]["test_param"]["description"] == "test_param description" ) assert ( descriptions[script.DOMAIN]["test"]["fields"]["test_param"]["example"] == "test_param example" ) # Test 3: has "alias" that will be used as "name" with patch( "homeassistant.config.load_yaml_config_file", return_value={ "script": { "test_name": { "alias": "ABC", "sequence": [{"delay": {"seconds": 5}}], } } }, ): await hass.services.async_call(DOMAIN, SERVICE_RELOAD, blocking=True) descriptions = await async_get_all_descriptions(hass) assert descriptions[DOMAIN]["test_name"]["name"] == "ABC" # Test 4: verify that names from YAML are taken into account as well assert descriptions[DOMAIN]["turn_on"]["name"] == "Turn on" async def test_shared_context(hass): """Test that the shared context is passed down the chain.""" event = "test_event" context = Context() event_mock = Mock() run_mock = Mock() hass.bus.async_listen(event, event_mock) hass.bus.async_listen(EVENT_SCRIPT_STARTED, run_mock) assert await async_setup_component( hass, "script", {"script": {"test": {"sequence": [{"event": event}]}}} ) await hass.services.async_call( DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: ENTITY_ID}, context=context ) await hass.async_block_till_done() assert event_mock.call_count == 1 assert run_mock.call_count == 1 args, kwargs = run_mock.call_args assert args[0].context == context # Ensure event data has all attributes set assert args[0].data.get(ATTR_NAME) == "test" assert args[0].data.get(ATTR_ENTITY_ID) == "script.test" # Ensure context carries through the event args, kwargs = event_mock.call_args assert args[0].context == context # Ensure the script state shares the same context state = hass.states.get("script.test") assert state is not None assert state.context == context async def test_logging_script_error(hass, caplog): """Test logging script error.""" assert await async_setup_component( hass, "script", {"script": {"hello": {"sequence": [{"service": "non.existing"}]}}}, ) with pytest.raises(ServiceNotFound) as err: await hass.services.async_call("script", "hello", blocking=True) assert err.value.domain == "non" assert err.value.service == "existing" assert "Error executing script" in caplog.text async def test_turning_no_scripts_off(hass): """Test it is possible to turn two scripts off.""" assert await async_setup_component(hass, "script", {}) # Testing it doesn't raise await hass.services.async_call( DOMAIN, SERVICE_TURN_OFF, {"entity_id": []}, blocking=True ) async def test_async_get_descriptions_script(hass): """Test async_set_service_schema for the script integration.""" script_config = { DOMAIN: { "test1": {"sequence": [{"service": "homeassistant.restart"}]}, "test2": { "description": "test2", "fields": { "param": { "description": "param_description", "example": "param_example", } }, "sequence": [{"service": "homeassistant.restart"}], }, } } await async_setup_component(hass, DOMAIN, script_config) descriptions = await hass.helpers.service.async_get_all_descriptions() assert descriptions[DOMAIN]["test1"]["description"] == "" assert not descriptions[DOMAIN]["test1"]["fields"] assert descriptions[DOMAIN]["test2"]["description"] == "test2" assert ( descriptions[DOMAIN]["test2"]["fields"]["param"]["description"] == "param_description" ) assert ( descriptions[DOMAIN]["test2"]["fields"]["param"]["example"] == "param_example" ) async def test_extraction_functions(hass): """Test extraction functions.""" assert await async_setup_component( hass, DOMAIN, { DOMAIN: { "test1": { "sequence": [ { "service": "test.script", "data": {"entity_id": "light.in_both"}, }, { "service": "test.script", "data": {"entity_id": "light.in_first"}, }, { "entity_id": "light.device_in_both", "domain": "light", "type": "turn_on", "device_id": "device-in-both", }, ] }, "test2": { "sequence": [ { "service": "test.script", "data": {"entity_id": "light.in_both"}, }, { "condition": "state", "entity_id": "sensor.condition", "state": "100", }, {"scene": "scene.hello"}, { "entity_id": "light.device_in_both", "domain": "light", "type": "turn_on", "device_id": "device-in-both", }, { "entity_id": "light.device_in_last", "domain": "light", "type": "turn_on", "device_id": "device-in-last", }, ], }, } }, ) assert set(script.scripts_with_entity(hass, "light.in_both")) == { "script.test1", "script.test2", } assert set(script.entities_in_script(hass, "script.test1")) == { "light.in_both", "light.in_first", } assert set(script.scripts_with_device(hass, "device-in-both")) == { "script.test1", "script.test2", } assert set(script.devices_in_script(hass, "script.test2")) == { "device-in-both", "device-in-last", } async def test_config_basic(hass): """Test passing info in config.""" assert await async_setup_component( hass, "script", { "script": { "test_script": { "alias": "Script Name", "icon": "mdi:party", "sequence": [], } } }, ) test_script = hass.states.get("script.test_script") assert test_script.name == "Script Name" assert test_script.attributes["icon"] == "mdi:party" async def test_config_multiple_domains(hass): """Test splitting configuration over multiple domains.""" assert await async_setup_component( hass, "script", { "script": { "first_script": { "alias": "Main domain", "sequence": [], } }, "script second": { "second_script": { "alias": "Secondary domain", "sequence": [], } }, }, ) test_script = hass.states.get("script.first_script") assert test_script assert test_script.name == "Main domain" test_script = hass.states.get("script.second_script") assert test_script assert test_script.name == "Secondary domain" async def test_logbook_humanify_script_started_event(hass): """Test humanifying script started event.""" hass.config.components.add("recorder") await async_setup_component(hass, DOMAIN, {}) await async_setup_component(hass, "logbook", {}) entity_attr_cache = logbook.EntityAttributeCache(hass) event1, event2 = list( logbook.humanify( hass, [ MockLazyEventPartialState( EVENT_SCRIPT_STARTED, {ATTR_ENTITY_ID: "script.hello", ATTR_NAME: "Hello Script"}, ), MockLazyEventPartialState( EVENT_SCRIPT_STARTED, {ATTR_ENTITY_ID: "script.bye", ATTR_NAME: "Bye Script"}, ), ], entity_attr_cache, {}, ) ) assert event1["name"] == "Hello Script" assert event1["domain"] == "script" assert event1["message"] == "started" assert event1["entity_id"] == "script.hello" assert event2["name"] == "Bye Script" assert event2["domain"] == "script" assert event2["message"] == "started" assert event2["entity_id"] == "script.bye" @pytest.mark.parametrize("concurrently", [False, True]) async def test_concurrent_script(hass, concurrently): """Test calling script concurrently or not.""" if concurrently: call_script_2 = { "service": "script.turn_on", "data": {"entity_id": "script.script2"}, } else: call_script_2 = {"service": "script.script2"} assert await async_setup_component( hass, "script", { "script": { "script1": { "mode": "parallel", "sequence": [ call_script_2, { "wait_template": "{{ is_state('input_boolean.test1', 'on') }}" }, {"service": "test.script", "data": {"value": "script1"}}, ], }, "script2": { "mode": "parallel", "sequence": [ {"service": "test.script", "data": {"value": "script2a"}}, { "wait_template": "{{ is_state('input_boolean.test2', 'on') }}" }, {"service": "test.script", "data": {"value": "script2b"}}, ], }, } }, ) service_called = asyncio.Event() service_values = [] async def async_service_handler(service): nonlocal service_values service_values.append(service.data.get("value")) service_called.set() hass.services.async_register("test", "script", async_service_handler) hass.states.async_set("input_boolean.test1", "off") hass.states.async_set("input_boolean.test2", "off") await hass.services.async_call("script", "script1") await asyncio.wait_for(service_called.wait(), 1) service_called.clear() assert service_values[-1] == "script2a" assert script.is_on(hass, "script.script1") assert script.is_on(hass, "script.script2") if not concurrently: hass.states.async_set("input_boolean.test2", "on") await asyncio.wait_for(service_called.wait(), 1) service_called.clear() assert service_values[-1] == "script2b" hass.states.async_set("input_boolean.test1", "on") await asyncio.wait_for(service_called.wait(), 1) service_called.clear() assert service_values[-1] == "script1" assert concurrently == script.is_on(hass, "script.script2") if concurrently: hass.states.async_set("input_boolean.test2", "on") await asyncio.wait_for(service_called.wait(), 1) service_called.clear() assert service_values[-1] == "script2b" await hass.async_block_till_done() assert not script.is_on(hass, "script.script1") assert not script.is_on(hass, "script.script2") async def test_script_variables(hass, caplog): """Test defining scripts.""" assert await async_setup_component( hass, "script", { "script": { "script1": { "variables": { "this_variable": "{{this.entity_id}}", "test_var": "from_config", "templated_config_var": "{{ var_from_service | default('config-default') }}", }, "sequence": [ { "service": "test.script", "data": { "value": "{{ test_var }}", "templated_config_var": "{{ templated_config_var }}", "this_template": "{{this.entity_id}}", "this_variable": "{{this_variable}}", }, }, ], }, "script2": { "variables": { "test_var": "from_config", }, "sequence": [ { "service": "test.script", "data": { "value": "{{ test_var }}", }, }, ], }, "script3": { "variables": { "test_var": "{{ break + 1 }}", }, "sequence": [ { "service": "test.script", "data": { "value": "{{ test_var }}", }, }, ], }, } }, ) mock_calls = async_mock_service(hass, "test", "script") await hass.services.async_call( "script", "script1", {"var_from_service": "hello"}, blocking=True ) assert len(mock_calls) == 1 assert mock_calls[0].data["value"] == "from_config" assert mock_calls[0].data["templated_config_var"] == "hello" # Verify this available to all templates assert mock_calls[0].data.get("this_template") == "script.script1" # Verify this available during trigger variables rendering assert mock_calls[0].data.get("this_variable") == "script.script1" await hass.services.async_call( "script", "script1", {"test_var": "from_service"}, blocking=True ) assert len(mock_calls) == 2 assert mock_calls[1].data["value"] == "from_service" assert mock_calls[1].data["templated_config_var"] == "config-default" # Call script with vars but no templates in it await hass.services.async_call( "script", "script2", {"test_var": "from_service"}, blocking=True ) assert len(mock_calls) == 3 assert mock_calls[2].data["value"] == "from_service" assert "Error rendering variables" not in caplog.text with pytest.raises(template.TemplateError): await hass.services.async_call("script", "script3", blocking=True) assert "Error rendering variables" in caplog.text assert len(mock_calls) == 3 await hass.services.async_call("script", "script3", {"break": 0}, blocking=True) assert len(mock_calls) == 4 assert mock_calls[3].data["value"] == 1 async def test_script_this_var_always(hass, caplog): """Test script always has reference to this, even with no variabls are configured.""" assert await async_setup_component( hass, "script", { "script": { "script1": { "sequence": [ { "service": "test.script", "data": { "this_template": "{{this.entity_id}}", }, }, ], }, }, }, ) mock_calls = async_mock_service(hass, "test", "script") await hass.services.async_call("script", "script1", blocking=True) assert len(mock_calls) == 1 # Verify this available to all templates assert mock_calls[0].data.get("this_template") == "script.script1" assert "Error rendering variables" not in caplog.text async def test_script_restore_last_triggered(hass: HomeAssistant) -> None: """Test if last triggered is restored on start.""" time = dt_util.utcnow() mock_restore_cache( hass, ( State("script.no_last_triggered", STATE_OFF), State("script.last_triggered", STATE_OFF, {"last_triggered": time}), ), ) hass.state = CoreState.starting assert await async_setup_component( hass, "script", { "script": { "no_last_triggered": { "sequence": [{"delay": {"seconds": 5}}], }, "last_triggered": { "sequence": [{"delay": {"seconds": 5}}], }, }, }, ) state = hass.states.get("script.no_last_triggered") assert state assert state.attributes["last_triggered"] is None state = hass.states.get("script.last_triggered") assert state assert state.attributes["last_triggered"] == time
31.421302
101
0.536891
7c6230a425fecb11e3b1437d2f4bc015b7fad842
1,841
py
Python
scripts/archive/standardize_interwiki.py
LeesahMasko/piwikibot
024af387ff48c21526ee206541178157d2653ddc
[ "MIT" ]
null
null
null
scripts/archive/standardize_interwiki.py
LeesahMasko/piwikibot
024af387ff48c21526ee206541178157d2653ddc
[ "MIT" ]
6
2021-02-27T03:35:42.000Z
2021-03-07T22:17:40.000Z
scripts/archive/standardize_interwiki.py
LeesahMasko/piwikibot
024af387ff48c21526ee206541178157d2653ddc
[ "MIT" ]
null
null
null
#!/usr/bin/python """ Loop over all pages in the home wiki, standardizing the interwiki links. Parameters: -start: - Set from what page you want to start """ # # (C) Pywikibot team, 2003-2020 # # Distributed under the terms of the MIT license. # import pywikibot from pywikibot import i18n, textlib def main(*args): """Process command line arguments and run the script.""" start = '!' # Load the default parameters and start for arg in pywikibot.handle_args(): if arg.startswith('-start'): if len(arg) == 6: start = pywikibot.input('From what page do you want to start?') else: start = arg[7:] site = pywikibot.Site() comm = i18n.twtranslate(site, 'standardize_interwiki-comment') for pl in site.allpages(start): plname = pl.title() pywikibot.output('\nLoading {0}...'.format(plname)) try: oldtext = pl.get() except pywikibot.IsRedirectPage: pywikibot.output('{0} is a redirect!'.format(plname)) continue old = pl.interwiki() new = {} for pl2 in old: new[pl2.site] = pywikibot.Page(pl2) newtext = textlib.replaceLanguageLinks(oldtext, new, site=site) if new: if oldtext != newtext: pywikibot.showDiff(oldtext, newtext) # Submit changes try: pl.put(newtext, comment=comm) except pywikibot.LockedPage: pywikibot.output('{0} is locked'.format(plname)) continue else: pywikibot.output('No changes needed.') continue else: pywikibot.output('No interwiki found.') continue if __name__ == '__main__': main()
28.765625
79
0.561108
b7f85567aaa55fab499d87ef2c98a85d683780ca
2,230
py
Python
Demo/sockets/mcast.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
1
2021-12-26T22:20:34.000Z
2021-12-26T22:20:34.000Z
Demo/sockets/mcast.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
null
null
null
Demo/sockets/mcast.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
2
2018-08-06T04:37:38.000Z
2022-02-27T18:07:12.000Z
#!/usr/bin/env python # # Send/receive UDP multicast packets. # Requires that your OS kernel supports IP multicast. # # Usage: # mcast -s (sender, IPv4) # mcast -s -6 (sender, IPv6) # mcast (receivers, IPv4) # mcast -6 (receivers, IPv6) MYPORT = 8123 MYGROUP_4 = '225.0.0.250' MYGROUP_6 = 'ff15:7079:7468:6f6e:6465:6d6f:6d63:6173' MYTTL = 1 # Increase to reach other networks import time import struct import socket import sys def main(): group = MYGROUP_6 if "-6" in sys.argv[1:] else MYGROUP_4 if "-s" in sys.argv[1:]: sender(group) else: receiver(group) def sender(group): addrinfo = socket.getaddrinfo(group, None)[0] s = socket.socket(addrinfo[0], socket.SOCK_DGRAM) # Set Time-to-live (optional) ttl_bin = struct.pack('@i', MYTTL) if addrinfo[0] == socket.AF_INET: # IPv4 s.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, ttl_bin) else: s.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_MULTICAST_HOPS, ttl_bin) while True: data = repr(time.time()).encode('utf-8') + b'\0' s.sendto(data, (addrinfo[4][0], MYPORT)) time.sleep(1) def receiver(group): # Look up multicast group address in name server and find out IP version addrinfo = socket.getaddrinfo(group, None)[0] # Create a socket s = socket.socket(addrinfo[0], socket.SOCK_DGRAM) # Allow multiple copies of this program on one machine # (not strictly needed) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Bind it to the port s.bind(('', MYPORT)) group_bin = socket.inet_pton(addrinfo[0], addrinfo[4][0]) # Join group if addrinfo[0] == socket.AF_INET: # IPv4 mreq = group_bin + struct.pack('=I', socket.INADDR_ANY) s.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) else: mreq = group_bin + struct.pack('@I', 0) s.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_JOIN_GROUP, mreq) # Loop, printing any data we receive while True: data, sender = s.recvfrom(1500) while data[-1:] == '\0': data = data[:-1] # Strip trailing \0's print(str(sender) + ' ' + repr(data)) if __name__ == '__main__': main()
27.530864
78
0.645291
17b3e687ac48a4380d8c09fd50b9472cf230cedd
443
py
Python
term-frequency/wordcounts.py
paulowe/python-data-programming
96fdb3f888a554ac66e69e1f6958f3e0ef5b1075
[ "MIT" ]
null
null
null
term-frequency/wordcounts.py
paulowe/python-data-programming
96fdb3f888a554ac66e69e1f6958f3e0ef5b1075
[ "MIT" ]
null
null
null
term-frequency/wordcounts.py
paulowe/python-data-programming
96fdb3f888a554ac66e69e1f6958f3e0ef5b1075
[ "MIT" ]
null
null
null
import numpy as np import nltk def wordcount_fn(file_uri): nparr_words = open(file_uri, 'r') text_as_str = nparr_words.read() #for small textfiles text_as_list = text_as_str.split() counts = nltk.FreqDist(text_as_list).items() for key, val in counts: print(str(val) + " " + str(key)) return print(f"TF (Frequency Distribution) for each word in your file: {wordcount_fn('./textfile.txt')}")
26.058824
98
0.656885
0d6b8ea6736798e60c4456c431a0b217fd3789ca
85
py
Python
.ipynb_checkpoints/1_read-checkpoint.py
fadamsyah/LearnOpenCV
bd872e12d32720f09469d119695c2f564d209378
[ "MIT" ]
null
null
null
.ipynb_checkpoints/1_read-checkpoint.py
fadamsyah/LearnOpenCV
bd872e12d32720f09469d119695c2f564d209378
[ "MIT" ]
null
null
null
.ipynb_checkpoints/1_read-checkpoint.py
fadamsyah/LearnOpenCV
bd872e12d32720f09469d119695c2f564d209378
[ "MIT" ]
null
null
null
import cv2 as cv img = cv.imread('Resources/Photos/cat1.jpg') cv.imshow('Cat', img)
17
44
0.705882
69319a024b67f42dbda4089c08d5e315d8dfcfe7
59,501
py
Python
test/functional/test_framework/mininode.py
adnetcoin/adnetcoin
bf95a2432f82d7d1f07842d1a4cba96736e96abd
[ "MIT" ]
null
null
null
test/functional/test_framework/mininode.py
adnetcoin/adnetcoin
bf95a2432f82d7d1f07842d1a4cba96736e96abd
[ "MIT" ]
null
null
null
test/functional/test_framework/mininode.py
adnetcoin/adnetcoin
bf95a2432f82d7d1f07842d1a4cba96736e96abd
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Adnetcoin P2P network half-a-node. This python code was modified from ArtForz' public domain half-a-node, as found in the mini-node branch of http://github.com/jgarzik/pynode. NodeConn: an object which manages p2p connectivity to a adnetcoin node NodeConnCB: a base class that describes the interface for receiving callbacks with network messages from a NodeConn CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in adnetcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization """ import asyncore from codecs import encode from collections import defaultdict import copy import hashlib from io import BytesIO import logging import random import socket import struct import sys import time from threading import RLock, Thread from test_framework.siphash import siphash256 from test_framework.util import hex_str_to_bytes, bytes_to_hex_str BIP0031_VERSION = 60000 MY_VERSION = 70014 # past bip-31 for ping/pong MY_SUBVERSION = b"/python-mininode-tester:0.0.3/" MY_RELAY = 1 # from version 70001 onwards, fRelay should be appended to version messages (BIP37) MAX_INV_SZ = 50000 MAX_BLOCK_BASE_SIZE = 1000000 COIN = 100000000 # 1 adnet in satoshis NODE_NETWORK = (1 << 0) NODE_GETUTXO = (1 << 1) NODE_BLOOM = (1 << 2) NODE_WITNESS = (1 << 3) NODE_UNSUPPORTED_SERVICE_BIT_5 = (1 << 5) NODE_UNSUPPORTED_SERVICE_BIT_7 = (1 << 7) ADNET_REGTEST_HARDFORK_HEIGHT = 3000 logger = logging.getLogger("TestFramework.mininode") # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def ripemd160(s): return hashlib.new('ripemd160', s).digest() def hash256(s): return sha256(sha256(s)) def ser_compact_size(l): r = b"" if l < 253: r = struct.pack("B", l) elif l < 0x10000: r = struct.pack("<BH", 253, l) elif l < 0x100000000: r = struct.pack("<BI", 254, l) else: r = struct.pack("<BQ", 255, l) return r def deser_compact_size(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] return nit def deser_string(f): nit = deser_compact_size(f) return f.read(nit) def ser_string(s): return ser_compact_size(len(s)) + s def deser_uint256(f): r = 0 for i in range(8): t = struct.unpack("<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = b"" for i in range(8): rs += struct.pack("<I", u & 0xFFFFFFFF) u >>= 32 return rs def uint256_from_str(s): r = 0 t = struct.unpack("<IIIIIIII", s[:32]) for i in range(8): r += t[i] << (i * 32) return r def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = deser_compact_size(f) r = [] for i in range(nit): t = c() t.deserialize(f) r.append(t) return r # ser_function_name: Allow for an alternate serialization function on the # entries in the vector (we use this for serializing the vector of transactions # for a witness block). def ser_vector(l, ser_function_name=None): r = ser_compact_size(len(l)) for i in l: if ser_function_name: r += getattr(i, ser_function_name)() else: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = ser_compact_size(len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = ser_compact_size(len(l)) for sv in l: r += ser_string(sv) return r def deser_int_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = struct.unpack("<i", f.read(4))[0] r.append(t) return r def ser_int_vector(l): r = ser_compact_size(len(l)) for i in l: r += struct.pack("<i", i) return r def deser_byte_vector(f): return deser_string(f) def ser_byte_vector(l): return ser_string(l) # Deserialize from a hex string representation (eg from RPC) def FromHex(obj, hex_string): obj.deserialize(BytesIO(hex_str_to_bytes(hex_string))) return obj # Convert a binary-serializable object to hex (eg for submission via RPC) def ToHex(obj): return bytes_to_hex_str(obj.serialize()) # Objects that map to adnetcoind objects, which can be serialized/deserialized class CAddress(object): def __init__(self): self.nServices = 1 self.pchReserved = b"\x00" * 10 + b"\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f): self.nServices = struct.unpack("<Q", f.read(8))[0] self.pchReserved = f.read(12) self.ip = socket.inet_ntoa(f.read(4)) self.port = struct.unpack(">H", f.read(2))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nServices) r += self.pchReserved r += socket.inet_aton(self.ip) r += struct.pack(">H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) MSG_WITNESS_FLAG = 1<<30 class CInv(object): typemap = { 0: "Error", 1: "TX", 2: "Block", 1|MSG_WITNESS_FLAG: "WitnessTx", 2|MSG_WITNESS_FLAG : "WitnessBlock", 4: "CompactBlock" } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = b"" r += struct.pack("<i", self.type) r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type=%s hash=%064x)" \ % (self.typemap[self.type], self.hash) class CBlockLocator(object): def __init__(self): self.nVersion = MY_VERSION self.vHave = [] def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vHave = deser_uint256_vector(f) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(nVersion=%i vHave=%s)" \ % (self.nVersion, repr(self.vHave)) class COutPoint(object): def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += ser_uint256(self.hash) r += struct.pack("<I", self.n) return r def __repr__(self): return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n) class CTxIn(object): def __init__(self, outpoint=None, scriptSig=b"", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) return r def __repr__(self): return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \ % (repr(self.prevout), bytes_to_hex_str(self.scriptSig), self.nSequence) class CTxOut(object): def __init__(self, nValue=0, scriptPubKey=b""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = struct.unpack("<q", f.read(8))[0] self.scriptPubKey = deser_string(f) def serialize(self): r = b"" r += struct.pack("<q", self.nValue) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \ % (self.nValue // COIN, self.nValue % COIN, bytes_to_hex_str(self.scriptPubKey)) class CScriptWitness(object): def __init__(self): # stack is a vector of strings self.stack = [] def __repr__(self): return "CScriptWitness(%s)" % \ (",".join([bytes_to_hex_str(x) for x in self.stack])) def is_null(self): if self.stack: return False return True class CTxInWitness(object): def __init__(self): self.scriptWitness = CScriptWitness() def deserialize(self, f): self.scriptWitness.stack = deser_string_vector(f) def serialize(self): return ser_string_vector(self.scriptWitness.stack) def __repr__(self): return repr(self.scriptWitness) def is_null(self): return self.scriptWitness.is_null() class CTxWitness(object): def __init__(self): self.vtxinwit = [] def deserialize(self, f): for i in range(len(self.vtxinwit)): self.vtxinwit[i].deserialize(f) def serialize(self): r = b"" # This is different than the usual vector serialization -- # we omit the length of the vector, which is required to be # the same length as the transaction's vin vector. for x in self.vtxinwit: r += x.serialize() return r def __repr__(self): return "CTxWitness(%s)" % \ (';'.join([repr(x) for x in self.vtxinwit])) def is_null(self): for x in self.vtxinwit: if not x.is_null(): return False return True class CTransaction(object): def __init__(self, tx=None): if tx is None: self.nVersion = 1 self.vin = [] self.vout = [] self.wit = CTxWitness() self.nLockTime = 0 self.sha256 = None self.hash = None else: self.nVersion = tx.nVersion self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.sha256 = tx.sha256 self.hash = tx.hash self.wit = copy.deepcopy(tx.wit) def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vin = deser_vector(f, CTxIn) flags = 0 if len(self.vin) == 0: flags = struct.unpack("<B", f.read(1))[0] # Not sure why flags can't be zero, but this # matches the implementation in adnetcoind if (flags != 0): self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) else: self.vout = deser_vector(f, CTxOut) if flags != 0: self.wit.vtxinwit = [CTxInWitness() for i in range(len(self.vin))] self.wit.deserialize(f) self.nLockTime = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize_without_witness(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_vector(self.vin) r += ser_vector(self.vout) r += struct.pack("<I", self.nLockTime) return r # Only serialize with witness when explicitly called for def serialize_with_witness(self): flags = 0 if not self.wit.is_null(): flags |= 1 r = b"" r += struct.pack("<i", self.nVersion) if flags: dummy = [] r += ser_vector(dummy) r += struct.pack("<B", flags) r += ser_vector(self.vin) r += ser_vector(self.vout) if flags & 1: if (len(self.wit.vtxinwit) != len(self.vin)): # vtxinwit must have the same length as vin self.wit.vtxinwit = self.wit.vtxinwit[:len(self.vin)] for i in range(len(self.wit.vtxinwit), len(self.vin)): self.wit.vtxinwit.append(CTxInWitness()) r += self.wit.serialize() r += struct.pack("<I", self.nLockTime) return r # Regular serialization is without witness -- must explicitly # call serialize_with_witness to include witness data. def serialize(self): return self.serialize_without_witness() # Recalculate the txid (transaction hash without witness) def rehash(self): self.sha256 = None self.calc_sha256() # We will only cache the serialization without witness in # self.sha256 and self.hash -- those are expected to be the txid. def calc_sha256(self, with_witness=False): if with_witness: # Don't cache the result, just return it return uint256_from_str(hash256(self.serialize_with_witness())) if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize_without_witness())) self.hash = encode(hash256(self.serialize())[::-1], 'hex_codec').decode('ascii') def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s wit=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), repr(self.wit), self.nLockTime) class CBlockHeader(object): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nHeight = header.nHeight self.nReserved = copy.copy(header.nReserved) self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.nSolution = header.nSolution self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nHeight = 0 self.nReserved = [0] * 7 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None self.nSolution = b"" def deserialize(self, f, legacy=True): if legacy: self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = struct.unpack("<I", f.read(4))[0] self.nHeight = 0 self.nReserved = [0] * 7 self.nSolution = b"" else: self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nHeight = struct.unpack("<I", f.read(4))[0] self.nReserved = [struct.unpack("<I", f.read(4))[0] for _ in range(7)] self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = deser_uint256(f) self.nSolution = deser_byte_vector(f) self.sha256 = None self.hash = None def serialize_header(self, legacy=True): r = b"" if legacy: r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce & 0xFFFFFFFF) return r else: r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nHeight) for i in range(7): r += struct.pack("<I", self.nReserved[i]) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += ser_uint256(self.nNonce) r += ser_byte_vector(self.nSolution) return r def serialize(self, legacy=True): return self.serialize_header(legacy=legacy) def calc_sha256(self): if self.sha256 is None: if self.nHeight < ADNET_REGTEST_HARDFORK_HEIGHT: r = self.serialize_header(legacy=True) else: r = self.serialize_header(legacy=False) self.sha256 = uint256_from_str(hash256(r)) self.hash = encode(hash256(r)[::-1], 'hex_codec').decode('ascii') def rehash(self): self.sha256 = None self.calc_sha256() return self.sha256 def __repr__(self): return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nHeight=%d nTime=%s nBits=%08x nNonce=%08x)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, self.nHeight, time.ctime(self.nTime), self.nBits, self.nNonce) class CBlock(CBlockHeader): def __init__(self, header=None): super(CBlock, self).__init__(header) self.vtx = [] def deserialize(self, f, legacy=True): super(CBlock, self).deserialize(f, legacy=legacy) self.vtx = deser_vector(f, CTransaction) def serialize(self, with_witness=False): r = b"" r += super(CBlock, self).serialize() if with_witness: r += ser_vector(self.vtx, "serialize_with_witness") else: r += ser_vector(self.vtx) return r # Calculate the merkle root given a vector of transaction hashes @classmethod def get_merkle_root(cls, hashes): while len(hashes) > 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def calc_witness_merkle_root(self): # For witness root purposes, the hash of the # coinbase, with witness, is defined to be 0...0 hashes = [ser_uint256(0)] for tx in self.vtx[1:]: # Calculate the hashes with witness data hashes.append(ser_uint256(tx.calc_sha256(True))) return self.get_merkle_root(hashes) def is_valid(self): # TODO(h4x3rotab): Not implemented for Equihash. self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): # TODO(h4x3rotab): Not implemented for Equihash. self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nHeight=%d nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, self.nHeight, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class CUnsignedAlert(object): def __init__(self): self.nVersion = 1 self.nRelayUntil = 0 self.nExpiration = 0 self.nID = 0 self.nCancel = 0 self.setCancel = [] self.nMinVer = 0 self.nMaxVer = 0 self.setSubVer = [] self.nPriority = 0 self.strComment = b"" self.strStatusBar = b"" self.strReserved = b"" def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.nRelayUntil = struct.unpack("<q", f.read(8))[0] self.nExpiration = struct.unpack("<q", f.read(8))[0] self.nID = struct.unpack("<i", f.read(4))[0] self.nCancel = struct.unpack("<i", f.read(4))[0] self.setCancel = deser_int_vector(f) self.nMinVer = struct.unpack("<i", f.read(4))[0] self.nMaxVer = struct.unpack("<i", f.read(4))[0] self.setSubVer = deser_string_vector(f) self.nPriority = struct.unpack("<i", f.read(4))[0] self.strComment = deser_string(f) self.strStatusBar = deser_string(f) self.strReserved = deser_string(f) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += struct.pack("<q", self.nRelayUntil) r += struct.pack("<q", self.nExpiration) r += struct.pack("<i", self.nID) r += struct.pack("<i", self.nCancel) r += ser_int_vector(self.setCancel) r += struct.pack("<i", self.nMinVer) r += struct.pack("<i", self.nMaxVer) r += ser_string_vector(self.setSubVer) r += struct.pack("<i", self.nPriority) r += ser_string(self.strComment) r += ser_string(self.strStatusBar) r += ser_string(self.strReserved) return r def __repr__(self): return "CUnsignedAlert(nVersion %d, nRelayUntil %d, nExpiration %d, nID %d, nCancel %d, nMinVer %d, nMaxVer %d, nPriority %d, strComment %s, strStatusBar %s, strReserved %s)" \ % (self.nVersion, self.nRelayUntil, self.nExpiration, self.nID, self.nCancel, self.nMinVer, self.nMaxVer, self.nPriority, self.strComment, self.strStatusBar, self.strReserved) class CAlert(object): def __init__(self): self.vchMsg = b"" self.vchSig = b"" def deserialize(self, f): self.vchMsg = deser_string(f) self.vchSig = deser_string(f) def serialize(self): r = b"" r += ser_string(self.vchMsg) r += ser_string(self.vchSig) return r def __repr__(self): return "CAlert(vchMsg.sz %d, vchSig.sz %d)" \ % (len(self.vchMsg), len(self.vchSig)) class PrefilledTransaction(object): def __init__(self, index=0, tx = None): self.index = index self.tx = tx def deserialize(self, f): self.index = deser_compact_size(f) self.tx = CTransaction() self.tx.deserialize(f) def serialize(self, with_witness=False): r = b"" r += ser_compact_size(self.index) if with_witness: r += self.tx.serialize_with_witness() else: r += self.tx.serialize_without_witness() return r def serialize_with_witness(self): return self.serialize(with_witness=True) def __repr__(self): return "PrefilledTransaction(index=%d, tx=%s)" % (self.index, repr(self.tx)) # This is what we send on the wire, in a cmpctblock message. class P2PHeaderAndShortIDs(object): def __init__(self): self.header = CBlockHeader() self.nonce = 0 self.shortids_length = 0 self.shortids = [] self.prefilled_txn_length = 0 self.prefilled_txn = [] def deserialize(self, f): self.header.deserialize(f) self.nonce = struct.unpack("<Q", f.read(8))[0] self.shortids_length = deser_compact_size(f) for i in range(self.shortids_length): # shortids are defined to be 6 bytes in the spec, so append # two zero bytes and read it in as an 8-byte number self.shortids.append(struct.unpack("<Q", f.read(6) + b'\x00\x00')[0]) self.prefilled_txn = deser_vector(f, PrefilledTransaction) self.prefilled_txn_length = len(self.prefilled_txn) # When using version 2 compact blocks, we must serialize with_witness. def serialize(self, with_witness=False): r = b"" r += self.header.serialize() r += struct.pack("<Q", self.nonce) r += ser_compact_size(self.shortids_length) for x in self.shortids: # We only want the first 6 bytes r += struct.pack("<Q", x)[0:6] if with_witness: r += ser_vector(self.prefilled_txn, "serialize_with_witness") else: r += ser_vector(self.prefilled_txn) return r def __repr__(self): return "P2PHeaderAndShortIDs(header=%s, nonce=%d, shortids_length=%d, shortids=%s, prefilled_txn_length=%d, prefilledtxn=%s" % (repr(self.header), self.nonce, self.shortids_length, repr(self.shortids), self.prefilled_txn_length, repr(self.prefilled_txn)) # P2P version of the above that will use witness serialization (for compact # block version 2) class P2PHeaderAndShortWitnessIDs(P2PHeaderAndShortIDs): def serialize(self): return super(P2PHeaderAndShortWitnessIDs, self).serialize(with_witness=True) # Calculate the BIP 152-compact blocks shortid for a given transaction hash def calculate_shortid(k0, k1, tx_hash): expected_shortid = siphash256(k0, k1, tx_hash) expected_shortid &= 0x0000ffffffffffff return expected_shortid # This version gets rid of the array lengths, and reinterprets the differential # encoding into indices that can be used for lookup. class HeaderAndShortIDs(object): def __init__(self, p2pheaders_and_shortids = None): self.header = CBlockHeader() self.nonce = 0 self.shortids = [] self.prefilled_txn = [] self.use_witness = False if p2pheaders_and_shortids != None: self.header = p2pheaders_and_shortids.header self.nonce = p2pheaders_and_shortids.nonce self.shortids = p2pheaders_and_shortids.shortids last_index = -1 for x in p2pheaders_and_shortids.prefilled_txn: self.prefilled_txn.append(PrefilledTransaction(x.index + last_index + 1, x.tx)) last_index = self.prefilled_txn[-1].index def to_p2p(self): if self.use_witness: ret = P2PHeaderAndShortWitnessIDs() else: ret = P2PHeaderAndShortIDs() ret.header = self.header ret.nonce = self.nonce ret.shortids_length = len(self.shortids) ret.shortids = self.shortids ret.prefilled_txn_length = len(self.prefilled_txn) ret.prefilled_txn = [] last_index = -1 for x in self.prefilled_txn: ret.prefilled_txn.append(PrefilledTransaction(x.index - last_index - 1, x.tx)) last_index = x.index return ret def get_siphash_keys(self): header_nonce = self.header.serialize() header_nonce += struct.pack("<Q", self.nonce) hash_header_nonce_as_str = sha256(header_nonce) key0 = struct.unpack("<Q", hash_header_nonce_as_str[0:8])[0] key1 = struct.unpack("<Q", hash_header_nonce_as_str[8:16])[0] return [ key0, key1 ] # Version 2 compact blocks use wtxid in shortids (rather than txid) def initialize_from_block(self, block, nonce=0, prefill_list = [0], use_witness = False): self.header = CBlockHeader(block) self.nonce = nonce self.prefilled_txn = [ PrefilledTransaction(i, block.vtx[i]) for i in prefill_list ] self.shortids = [] self.use_witness = use_witness [k0, k1] = self.get_siphash_keys() for i in range(len(block.vtx)): if i not in prefill_list: tx_hash = block.vtx[i].sha256 if use_witness: tx_hash = block.vtx[i].calc_sha256(with_witness=True) self.shortids.append(calculate_shortid(k0, k1, tx_hash)) def __repr__(self): return "HeaderAndShortIDs(header=%s, nonce=%d, shortids=%s, prefilledtxn=%s" % (repr(self.header), self.nonce, repr(self.shortids), repr(self.prefilled_txn)) class BlockTransactionsRequest(object): def __init__(self, blockhash=0, indexes = None): self.blockhash = blockhash self.indexes = indexes if indexes != None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) indexes_length = deser_compact_size(f) for i in range(indexes_length): self.indexes.append(deser_compact_size(f)) def serialize(self): r = b"" r += ser_uint256(self.blockhash) r += ser_compact_size(len(self.indexes)) for x in self.indexes: r += ser_compact_size(x) return r # helper to set the differentially encoded indexes from absolute ones def from_absolute(self, absolute_indexes): self.indexes = [] last_index = -1 for x in absolute_indexes: self.indexes.append(x-last_index-1) last_index = x def to_absolute(self): absolute_indexes = [] last_index = -1 for x in self.indexes: absolute_indexes.append(x+last_index+1) last_index = absolute_indexes[-1] return absolute_indexes def __repr__(self): return "BlockTransactionsRequest(hash=%064x indexes=%s)" % (self.blockhash, repr(self.indexes)) class BlockTransactions(object): def __init__(self, blockhash=0, transactions = None): self.blockhash = blockhash self.transactions = transactions if transactions != None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) self.transactions = deser_vector(f, CTransaction) def serialize(self, with_witness=False): r = b"" r += ser_uint256(self.blockhash) if with_witness: r += ser_vector(self.transactions, "serialize_with_witness") else: r += ser_vector(self.transactions) return r def __repr__(self): return "BlockTransactions(hash=%064x transactions=%s)" % (self.blockhash, repr(self.transactions)) # Objects that correspond to messages on the wire class msg_version(object): command = b"version" def __init__(self): self.nVersion = MY_VERSION self.nServices = 1 self.nTime = int(time.time()) self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = MY_SUBVERSION self.nStartingHeight = -1 self.nRelay = MY_RELAY def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] if self.nVersion == 10300: self.nVersion = 300 self.nServices = struct.unpack("<Q", f.read(8))[0] self.nTime = struct.unpack("<q", f.read(8))[0] self.addrTo = CAddress() self.addrTo.deserialize(f) if self.nVersion >= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("<Q", f.read(8))[0] self.strSubVer = deser_string(f) else: self.addrFrom = None self.nNonce = None self.strSubVer = None self.nStartingHeight = None if self.nVersion >= 209: self.nStartingHeight = struct.unpack("<i", f.read(4))[0] else: self.nStartingHeight = None if self.nVersion >= 70001: # Relay field is optional for version 70001 onwards try: self.nRelay = struct.unpack("<b", f.read(1))[0] except: self.nRelay = 0 else: self.nRelay = 0 def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += struct.pack("<Q", self.nServices) r += struct.pack("<q", self.nTime) r += self.addrTo.serialize() r += self.addrFrom.serialize() r += struct.pack("<Q", self.nNonce) r += ser_string(self.strSubVer) r += struct.pack("<i", self.nStartingHeight) r += struct.pack("<b", self.nRelay) return r def __repr__(self): return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i nRelay=%i)' \ % (self.nVersion, self.nServices, time.ctime(self.nTime), repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight, self.nRelay) class msg_verack(object): command = b"verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_verack()" class msg_addr(object): command = b"addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs=%s)" % (repr(self.addrs)) class msg_alert(object): command = b"alert" def __init__(self): self.alert = CAlert() def deserialize(self, f): self.alert = CAlert() self.alert.deserialize(f) def serialize(self): r = b"" r += self.alert.serialize() return r def __repr__(self): return "msg_alert(alert=%s)" % (repr(self.alert), ) class msg_inv(object): command = b"inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv=%s)" % (repr(self.inv)) class msg_getdata(object): command = b"getdata" def __init__(self, inv=None): self.inv = inv if inv != None else [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv=%s)" % (repr(self.inv)) class msg_getblocks(object): command = b"getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator=%s hashstop=%064x)" \ % (repr(self.locator), self.hashstop) class msg_tx(object): command = b"tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize_without_witness() def __repr__(self): return "msg_tx(tx=%s)" % (repr(self.tx)) class msg_witness_tx(msg_tx): def serialize(self): return self.tx.serialize_with_witness() class msg_block(object): command = b"block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize() def __repr__(self): return "msg_block(block=%s)" % (repr(self.block)) # for cases where a user needs tighter control over what is sent over the wire # note that the user must supply the name of the command, and the data class msg_generic(object): def __init__(self, command, data=None): self.command = command self.data = data def serialize(self): return self.data def __repr__(self): return "msg_generic()" class msg_witness_block(msg_block): def serialize(self): r = self.block.serialize(with_witness=True) return r class msg_getaddr(object): command = b"getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_getaddr()" class msg_ping_prebip31(object): command = b"ping" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_ping() (pre-bip31)" class msg_ping(object): command = b"ping" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_ping(nonce=%08x)" % self.nonce class msg_pong(object): command = b"pong" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_pong(nonce=%08x)" % self.nonce class msg_mempool(object): command = b"mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_mempool()" class msg_sendheaders(object): command = b"sendheaders" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_sendheaders()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders(object): command = b"getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator=%s, stop=%064x)" \ % (repr(self.locator), self.hashstop) # headers message has # <count> <vector of block headers> class msg_headers(object): command = b"headers" def __init__(self): self.headers = [] def deserialize(self, f): # comment in adnetcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(object): command = b"reject" REJECT_MALFORMED = 1 def __init__(self): self.message = b"" self.code = 0 self.reason = b"" self.data = 0 def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("<B", f.read(1))[0] self.reason = deser_string(f) if (self.code != self.REJECT_MALFORMED and (self.message == b"block" or self.message == b"tx")): self.data = deser_uint256(f) def serialize(self): r = ser_string(self.message) r += struct.pack("<B", self.code) r += ser_string(self.reason) if (self.code != self.REJECT_MALFORMED and (self.message == b"block" or self.message == b"tx")): r += ser_uint256(self.data) return r def __repr__(self): return "msg_reject: %s %d %s [%064x]" \ % (self.message, self.code, self.reason, self.data) # Helper function def wait_until(predicate, *, attempts=float('inf'), timeout=float('inf')): if attempts == float('inf') and timeout == float('inf'): timeout = 60 attempt = 0 elapsed = 0 while attempt < attempts and elapsed < timeout: with mininode_lock: if predicate(): return True attempt += 1 elapsed += 0.05 time.sleep(0.05) return False class msg_feefilter(object): command = b"feefilter" def __init__(self, feerate=0): self.feerate = feerate def deserialize(self, f): self.feerate = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.feerate) return r def __repr__(self): return "msg_feefilter(feerate=%08x)" % self.feerate class msg_sendcmpct(object): command = b"sendcmpct" def __init__(self): self.announce = False self.version = 1 def deserialize(self, f): self.announce = struct.unpack("<?", f.read(1))[0] self.version = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<?", self.announce) r += struct.pack("<Q", self.version) return r def __repr__(self): return "msg_sendcmpct(announce=%s, version=%lu)" % (self.announce, self.version) class msg_cmpctblock(object): command = b"cmpctblock" def __init__(self, header_and_shortids = None): self.header_and_shortids = header_and_shortids def deserialize(self, f): self.header_and_shortids = P2PHeaderAndShortIDs() self.header_and_shortids.deserialize(f) def serialize(self): r = b"" r += self.header_and_shortids.serialize() return r def __repr__(self): return "msg_cmpctblock(HeaderAndShortIDs=%s)" % repr(self.header_and_shortids) class msg_getblocktxn(object): command = b"getblocktxn" def __init__(self): self.block_txn_request = None def deserialize(self, f): self.block_txn_request = BlockTransactionsRequest() self.block_txn_request.deserialize(f) def serialize(self): r = b"" r += self.block_txn_request.serialize() return r def __repr__(self): return "msg_getblocktxn(block_txn_request=%s)" % (repr(self.block_txn_request)) class msg_blocktxn(object): command = b"blocktxn" def __init__(self): self.block_transactions = BlockTransactions() def deserialize(self, f): self.block_transactions.deserialize(f) def serialize(self): r = b"" r += self.block_transactions.serialize() return r def __repr__(self): return "msg_blocktxn(block_transactions=%s)" % (repr(self.block_transactions)) class msg_witness_blocktxn(msg_blocktxn): def serialize(self): r = b"" r += self.block_transactions.serialize(with_witness=True) return r class NodeConnCB(object): """Callback and helper functions for P2P connection to a adnetcoind node. Individual testcases should subclass this and override the on_* methods if they want to alter message handling behaviour. """ def __init__(self): # Track whether we have a P2P connection open to the node self.connected = False self.connection = None # Track number of messages of each type received and the most recent # message of each type self.message_count = defaultdict(int) self.last_message = {} # A count of the number of ping messages we've sent to the node self.ping_counter = 1 # deliver_sleep_time is helpful for debugging race conditions in p2p # tests; it causes message delivery to sleep for the specified time # before acquiring the global lock and delivering the next message. self.deliver_sleep_time = None # Remember the services our peer has advertised self.peer_services = None # Message receiving methods def deliver(self, conn, message): """Receive message and dispatch message to appropriate callback. We keep a count of how many of each message type has been received and the most recent message of each type. Optionally waits for deliver_sleep_time before dispatching message. """ deliver_sleep = self.get_deliver_sleep_time() if deliver_sleep is not None: time.sleep(deliver_sleep) with mininode_lock: try: command = message.command.decode('ascii') self.message_count[command] += 1 self.last_message[command] = message getattr(self, 'on_' + command)(conn, message) except: print("ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0])) def set_deliver_sleep_time(self, value): with mininode_lock: self.deliver_sleep_time = value def get_deliver_sleep_time(self): with mininode_lock: return self.deliver_sleep_time # Callback methods. Can be overridden by subclasses in individual test # cases to provide custom message handling behaviour. def on_open(self, conn): self.connected = True def on_close(self, conn): self.connected = False self.connection = None def on_addr(self, conn, message): pass def on_alert(self, conn, message): pass def on_block(self, conn, message): pass def on_blocktxn(self, conn, message): pass def on_cmpctblock(self, conn, message): pass def on_feefilter(self, conn, message): pass def on_getaddr(self, conn, message): pass def on_getblocks(self, conn, message): pass def on_getblocktxn(self, conn, message): pass def on_getdata(self, conn, message): pass def on_getheaders(self, conn, message): pass def on_headers(self, conn, message): pass def on_mempool(self, conn): pass def on_pong(self, conn, message): pass def on_reject(self, conn, message): pass def on_sendcmpct(self, conn, message): pass def on_sendheaders(self, conn, message): pass def on_tx(self, conn, message): pass def on_inv(self, conn, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): conn.send_message(want) def on_ping(self, conn, message): if conn.ver_send > BIP0031_VERSION: conn.send_message(msg_pong(message.nonce)) def on_verack(self, conn, message): conn.ver_recv = conn.ver_send self.verack_received = True def on_version(self, conn, message): if message.nVersion >= 209: conn.send_message(msg_verack()) conn.ver_send = min(MY_VERSION, message.nVersion) if message.nVersion < 209: conn.ver_recv = conn.ver_send conn.nServices = message.nServices # Connection helper methods def add_connection(self, conn): self.connection = conn def wait_for_disconnect(self, timeout=60): test_function = lambda: not self.connected assert wait_until(test_function, timeout=timeout) # Message receiving helper methods def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash assert wait_until(test_function, timeout=timeout) def wait_for_getdata(self, timeout=60): test_function = lambda: self.last_message.get("getdata") assert wait_until(test_function, timeout=timeout) def wait_for_getheaders(self, timeout=60): test_function = lambda: self.last_message.get("getheaders") assert wait_until(test_function, timeout=timeout) def wait_for_inv(self, expected_inv, timeout=60): """Waits for an INV message and checks that the first inv object in the message was as expected.""" if len(expected_inv) > 1: raise NotImplementedError("wait_for_inv() will only verify the first inv object") test_function = lambda: self.last_message.get("inv") and \ self.last_message["inv"].inv[0].type == expected_inv[0].type and \ self.last_message["inv"].inv[0].hash == expected_inv[0].hash assert wait_until(test_function, timeout=timeout) def wait_for_verack(self, timeout=60): test_function = lambda: self.message_count["verack"] assert wait_until(test_function, timeout=timeout) # Message sending helper functions def send_message(self, message): if self.connection: self.connection.send_message(message) else: logger.error("Cannot send message. No connection to node!") def send_and_ping(self, message): self.send_message(message) self.sync_with_ping() # Sync up with the node def sync_with_ping(self, timeout=60): self.send_message(msg_ping(nonce=self.ping_counter)) test_function = lambda: self.last_message.get("pong") and self.last_message["pong"].nonce == self.ping_counter assert wait_until(test_function, timeout=timeout) self.ping_counter += 1 return True # The actual NodeConn class # This class provides an interface for a p2p connection to a specified node class NodeConn(asyncore.dispatcher): messagemap = { b"version": msg_version, b"verack": msg_verack, b"addr": msg_addr, b"alert": msg_alert, b"inv": msg_inv, b"getdata": msg_getdata, b"getblocks": msg_getblocks, b"tx": msg_tx, b"block": msg_block, b"getaddr": msg_getaddr, b"ping": msg_ping, b"pong": msg_pong, b"headers": msg_headers, b"getheaders": msg_getheaders, b"reject": msg_reject, b"mempool": msg_mempool, b"feefilter": msg_feefilter, b"sendheaders": msg_sendheaders, b"sendcmpct": msg_sendcmpct, b"cmpctblock": msg_cmpctblock, b"getblocktxn": msg_getblocktxn, b"blocktxn": msg_blocktxn } MAGIC_BYTES = { "mainnet": b"\xf9\xbe\xb4\xd9", # mainnet "testnet3": b"\x0b\x11\x09\x07", # testnet3 "regtest": b"\xfa\xbf\xb5\xda", # regtest } def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=NODE_NETWORK, send_version=True): asyncore.dispatcher.__init__(self, map=mininode_socket_map) self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = b"" self.recvbuf = b"" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.network = net self.cb = callback self.disconnect = False self.nServices = 0 if send_version: # stuff version msg into sendbuf vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) logger.info('Connecting to Adnetcoin Node: %s:%d' % (self.dstaddr, self.dstport)) try: self.connect((dstaddr, dstport)) except: self.handle_close() self.rpc = rpc def handle_connect(self): if self.state != "connected": logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport)) self.state = "connected" self.cb.on_open(self) def handle_close(self): logger.debug("Closing connection to: %s:%d" % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = b"" self.sendbuf = b"" try: self.close() except: pass self.cb.on_close(self) def handle_read(self): try: t = self.recv(8192) if len(t) > 0: self.recvbuf += t self.got_data() except: pass def readable(self): return True def writable(self): with mininode_lock: pre_connection = self.state == "connecting" length = len(self.sendbuf) return (length > 0 or pre_connection) def handle_write(self): with mininode_lock: # asyncore does not expose socket connection, only the first read/write # event, thus we must check connection manually here to know when we # actually connect if self.state == "connecting": self.handle_connect() if not self.writable(): return try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): try: while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 4 + 12 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = None if len(self.recvbuf) < 4 + 12 + 4 + msglen: return msg = self.recvbuf[4+12+4:4+12+4+msglen] self.recvbuf = self.recvbuf[4+12+4+msglen:] else: if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = self.recvbuf[4+12+4:4+12+4+4] if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen: return msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("got bad checksum " + repr(self.recvbuf)) self.recvbuf = self.recvbuf[4+12+4+4+msglen:] if command in self.messagemap: f = BytesIO(msg) t = self.messagemap[command]() t.deserialize(f) self.got_message(t) else: logger.warning("Received unknown command from %s:%d: '%s' %s" % (self.dstaddr, self.dstport, command, repr(msg))) except Exception as e: logger.exception('got_data:', repr(e)) def send_message(self, message, pushbuf=False): if self.state != "connected" and not pushbuf: raise IOError('Not connected, no pushbuf') self._log_message("send", message) command = message.command data = message.serialize() tmsg = self.MAGIC_BYTES[self.network] tmsg += command tmsg += b"\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) if self.ver_send >= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if message.command == b"version": if message.nVersion <= BIP0031_VERSION: self.messagemap[b'ping'] = msg_ping_prebip31 if self.last_sent + 30 * 60 < time.time(): self.send_message(self.messagemap[b'ping']()) self._log_message("receive", message) self.cb.deliver(self, message) def _log_message(self, direction, msg): if direction == "send": log_message = "Send message to " elif direction == "receive": log_message = "Received message from " log_message += "%s:%d: %s" % (self.dstaddr, self.dstport, repr(msg)[:500]) if len(log_message) > 500: log_message += "... (msg truncated)" logger.debug(log_message) def disconnect_node(self): self.disconnect = True class NetworkThread(Thread): def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [ obj.handle_close() for obj in disconnected ] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) # An exception we can raise if we detect a potential disconnect # (p2p or rpc) before the test is complete class EarlyDisconnectError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
31.152356
262
0.596511
cc6ece647c295aea078fd5fa118c09d24ecbd5b4
554
py
Python
Desafio 82.py
MoomenEltelbany/PythonDesafios
aa2f44d3104cf3607f58dc42c2f8fc8023f128de
[ "MIT" ]
null
null
null
Desafio 82.py
MoomenEltelbany/PythonDesafios
aa2f44d3104cf3607f58dc42c2f8fc8023f128de
[ "MIT" ]
null
null
null
Desafio 82.py
MoomenEltelbany/PythonDesafios
aa2f44d3104cf3607f58dc42c2f8fc8023f128de
[ "MIT" ]
null
null
null
num = [] numpar = [] numimpar = [] while True: n = int(input('Digite um valor: ')) num.append(n) respos = str(input('Quer continuar: [S/N] ')).strip().upper()[0] while respos not in 'SN': respos = str(input('Opção inválida..Quer continuar: [S/N] ')).strip().upper()[0] if respos == 'N': break print(f'A lista completa é {num}') for c in num: if c % 2 == 0: numpar.append(c) else: numimpar.append(c) print(f'A lista de números pares é {numpar}') print(f'A lista de números ímpares é {numimpar}')
29.157895
88
0.583032
ecf7fce5f83a7672e652de32bdeabb4572aa601c
4,119
py
Python
vmtkScripts/vmtksurfacearrayoperation.py
michelebucelli/vmtk
738bd1d152e8836847ab4d75f7e8360bd574e724
[ "Apache-2.0" ]
217
2015-01-05T19:08:30.000Z
2022-03-31T12:14:59.000Z
vmtkScripts/vmtksurfacearrayoperation.py
mrp089/vmtk
64675f598e31bc6be3d4fba903fb59bf1394f492
[ "Apache-2.0" ]
226
2015-03-31T07:16:06.000Z
2022-03-01T14:59:30.000Z
vmtkScripts/vmtksurfacearrayoperation.py
mrp089/vmtk
64675f598e31bc6be3d4fba903fb59bf1394f492
[ "Apache-2.0" ]
132
2015-02-16T11:38:34.000Z
2022-03-18T04:38:45.000Z
#!/usr/bin/env python ## Program: VMTK ## Module: $RCSfile: vmtksurfacearrayoperation.py,v $ ## Language: Python ## Date: $Date: 2005/09/14 09:49:59 $ ## Version: $Revision: 1.7 $ ## Copyright (c) Luca Antiga, David Steinman. All rights reserved. ## See LICENSE file for details. ## This software is distributed WITHOUT ANY WARRANTY; without even ## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ## PURPOSE. See the above copyright notices for more information. from __future__ import absolute_import #NEEDS TO STAY AS TOP LEVEL MODULE FOR Py2-3 COMPATIBILITY import vtk from vmtk import vtkvmtk import sys from vmtk import pypes class vmtkSurfaceArrayOperation(pypes.pypeScript): def __init__(self): pypes.pypeScript.__init__(self) self.Surface = None self.Surface2 = None self.InputArrayName = None self.Input2ArrayName = None self.ResultArrayName = "Result" self.Constant = 0.0 self.Operation = 'add' self.SetScriptName('vmtksurfacearrayoperation') self.SetScriptDoc('perform an operation between arrays of two surfaces and store result in the first surface') self.SetInputMembers([ ['Surface','i','vtkPolyData',1,'','the input surface','vmtksurfacereader'], ['Surface2','i2','vtkPolyData',1,'','the second input surface','vmtksurfacereader'], ['Operation','operation','str',1,'["multiplybyc","addc","add","subtract","multiply","min","max"]','the operation to be performed on the array; multiplybyc and addc only require the first input Surface to be specified'], ['Constant','constant','float',1,'','the value of the constant for multiplybyc and addc'], ['InputArrayName','iarray','str',1,'','the name of the array on the first surface'], ['Input2ArrayName','i2array','str',1,'','the name of the array on the second surface; if unspecified, InputArrayName is used'], ['ResultArrayName','resultarray','str',1,'','the name of the array where the result of the operation is stored'] ]) self.SetOutputMembers([ ['Surface','o','vtkPolyData',1,'','the output surface','vmtksurfacewriter'] ]) def Execute(self): if self.Surface == None: self.PrintError('Error: No Surface.') if self.Surface2 == None and self.Operation not in ["multiplybyc", "addc"]: self.Surface2 = self.Surface array1 = self.Surface.GetPointData().GetArray(self.InputArrayName) array2 = None if self.Operation not in ["multiplybyc", "addc"]: if self.Input2ArrayName: array2 = self.Surface2.GetPointData().GetArray(self.Input2ArrayName) else: array2 = self.Surface2.GetPointData().GetArray(self.InputArrayName) resultArray = vtk.vtkDoubleArray() resultArray.DeepCopy(array1) resultArray.SetName(self.ResultArrayName) for i in range(array1.GetNumberOfTuples()): value1 = array1.GetTuple1(i) value2 = None if array2: value2 = array2.GetTuple1(i) resultValue = 0.0 if self.Operation == "multiplybyc": resultValue = value1 * self.Constant elif self.Operation == "addc": resultValue = value1 + self.Constant elif self.Operation == "add": resultValue = value1 + value2 elif self.Operation == "subtract": resultValue = value1 - value2 elif self.Operation == "multiply": resultValue = value1 * value2 elif self.Operation == "min": resultValue = min(value1, value2) elif self.Operation == "max": resultValue = max(value1, value2) resultArray.SetValue(i,resultValue) self.Surface.GetPointData().AddArray(resultArray) if __name__=='__main__': main = pypes.pypeMain() main.Arguments = sys.argv main.Execute()
38.858491
231
0.621267
38a2b0a0da4a63833529771e715eeb32452f1fdf
2,986
py
Python
file_date.py
scienceopen/filedate-histogram
5a075be229d39a8c623c0ae3eb0f553843282e68
[ "MIT" ]
null
null
null
file_date.py
scienceopen/filedate-histogram
5a075be229d39a8c623c0ae3eb0f553843282e68
[ "MIT" ]
1
2019-11-19T19:05:57.000Z
2019-12-10T10:02:54.000Z
file_date.py
scivision/filedate-histogram
5a075be229d39a8c623c0ae3eb0f553843282e68
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Plots histogram of dates of files in directory. Works for Hugo, Jekyll and Git. """ from pathlib import Path from datetime import datetime import yaml import re import shutil import typing import subprocess import logging try: import pandas from matplotlib.pyplot import show except ImportError: pandas = show = None GIT = shutil.which("git") use_git = GIT is not None def file_date(): from argparse import ArgumentParser p = ArgumentParser() p.add_argument("path", help="path to filename to analyze") p.add_argument("-e", "--ext", help="file extension to analyze", default=".md") p.add_argument("-v", "--verbose", help="print method used to get date", action="store_true") p = p.parse_args() if p.verbose: logging.basicConfig(level=logging.DEBUG) dates = filedates(p.path, p.ext) if pandas is None: return # http://stackoverflow.com/questions/27365467/python-pandas-plot-histogram-of-dates ds = pandas.Series(dates) bins = ds.groupby([ds.dt.year, ds.dt.month]).count() if show is None: return bins.plot(kind="bar") show() def filedates(path: Path, ext: str) -> typing.Iterator[datetime]: root = Path(path).expanduser() if not root.is_dir(): raise NotADirectoryError(root) use_header = True use_filename = True for file in root.glob(f"*{ext}"): if use_header: date = get_markdown_date(file) logging.debug(f"header {file} {date}") if date is not None: yield date continue if use_filename: try: logging.debug(f"filename {file}") yield datetime.strptime(file.name[:10], "%Y-%m-%d") continue except ValueError: pass if use_git: date = get_gitcommit_date(file) logging.debug(f"git {file} {date}") if date is not None: yield date continue logging.debug(f"stat {file}") yield datetime.utcfromtimestamp(file.stat().st_mtime) def get_markdown_date(path: Path) -> datetime: content = path.read_text(errors="ignore") pat = re.compile(r"^-{3}\s*\n([\S\s]+?)\n-{3}\s*\n([\S\s]+)") mat = pat.search(content) if mat: meta = yaml.load(mat.groups()[0], Loader=yaml.BaseLoader) if "date" in meta: return datetime.strptime(meta["date"][:10], "%Y-%m-%d") return None def get_gitcommit_date(path: Path) -> datetime: if not path.is_file(): return None cmd = [GIT, "-C", str(path.parent), "log", "-1", "--format=%cd", "--date=iso", path.name] datestr = subprocess.run(cmd, universal_newlines=True, stdout=subprocess.PIPE) try: date = datetime.strptime(datestr.stdout[:10], "%Y-%m-%d") except ValueError: date = None return date if __name__ == "__main__": file_date()
25.521368
96
0.602813
f4ad1a6fdb03860182a7170406b362ab5de2ec11
20,812
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2021_02_01/aio/operations/_web_application_firewall_policies_operations.py
praveenkuttappan/azure-sdk-for-python
4b79413667b7539750a6c7dde15737013a3d4bd5
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2021_02_01/aio/operations/_web_application_firewall_policies_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2021_02_01/aio/operations/_web_application_firewall_policies_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class WebApplicationFirewallPoliciesOperations: """WebApplicationFirewallPoliciesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2021_02_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.WebApplicationFirewallPolicyListResult"]: """Lists all of the protection policies within a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either WebApplicationFirewallPolicyListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2021_02_01.models.WebApplicationFirewallPolicyListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.WebApplicationFirewallPolicyListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-02-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('WebApplicationFirewallPolicyListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ApplicationGatewayWebApplicationFirewallPolicies'} # type: ignore def list_all( self, **kwargs: Any ) -> AsyncIterable["_models.WebApplicationFirewallPolicyListResult"]: """Gets all the WAF policies in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either WebApplicationFirewallPolicyListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2021_02_01.models.WebApplicationFirewallPolicyListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.WebApplicationFirewallPolicyListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-02-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('WebApplicationFirewallPolicyListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/ApplicationGatewayWebApplicationFirewallPolicies'} # type: ignore async def get( self, resource_group_name: str, policy_name: str, **kwargs: Any ) -> "_models.WebApplicationFirewallPolicy": """Retrieve protection policy with specified name within a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param policy_name: The name of the policy. :type policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: WebApplicationFirewallPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2021_02_01.models.WebApplicationFirewallPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.WebApplicationFirewallPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-02-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'policyName': self._serialize.url("policy_name", policy_name, 'str', max_length=128, min_length=0), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('WebApplicationFirewallPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ApplicationGatewayWebApplicationFirewallPolicies/{policyName}'} # type: ignore async def create_or_update( self, resource_group_name: str, policy_name: str, parameters: "_models.WebApplicationFirewallPolicy", **kwargs: Any ) -> "_models.WebApplicationFirewallPolicy": """Creates or update policy with specified rule set name within a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param policy_name: The name of the policy. :type policy_name: str :param parameters: Policy to be created. :type parameters: ~azure.mgmt.network.v2021_02_01.models.WebApplicationFirewallPolicy :keyword callable cls: A custom type or function that will be passed the direct response :return: WebApplicationFirewallPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2021_02_01.models.WebApplicationFirewallPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.WebApplicationFirewallPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-02-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'policyName': self._serialize.url("policy_name", policy_name, 'str', max_length=128, min_length=0), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'WebApplicationFirewallPolicy') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('WebApplicationFirewallPolicy', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('WebApplicationFirewallPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ApplicationGatewayWebApplicationFirewallPolicies/{policyName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, policy_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-02-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'policyName': self._serialize.url("policy_name", policy_name, 'str', max_length=128, min_length=0), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ApplicationGatewayWebApplicationFirewallPolicies/{policyName}'} # type: ignore async def begin_delete( self, resource_group_name: str, policy_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes Policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param policy_name: The name of the policy. :type policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, policy_name=policy_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'policyName': self._serialize.url("policy_name", policy_name, 'str', max_length=128, min_length=0), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ApplicationGatewayWebApplicationFirewallPolicies/{policyName}'} # type: ignore
49.908873
215
0.672785
e2102bd0266e822f4bbf2eba7d66e02c18793d60
554
py
Python
The Pythonic Temple/citizen.py
Shivam0808/TwilioQuestSolution
2a265d68f8ff3d8c34ef4661c94bb128baaf8d1f
[ "MIT" ]
null
null
null
The Pythonic Temple/citizen.py
Shivam0808/TwilioQuestSolution
2a265d68f8ff3d8c34ef4661c94bb128baaf8d1f
[ "MIT" ]
null
null
null
The Pythonic Temple/citizen.py
Shivam0808/TwilioQuestSolution
2a265d68f8ff3d8c34ef4661c94bb128baaf8d1f
[ "MIT" ]
null
null
null
from distutils.command.build_scripts import first_line_re class Citizen: "this class is to describe a citizen of the City of Python" def __init__(self, first_name, last_name): self.first_name = first_name #this is an instance variable self.last_name = last_name def full_name(self): #This is an instance method return self.first_name + " " + self.last_name #This took the 2 instance variables and put them together greeting = "For the glory of Python!"
25.181818
113
0.648014
989291f2dad3a8b7b952de77688317d17f49b8d0
11,631
py
Python
operations/mpi_rendering.py
vincentfung13/MINE
ef16cd83ae99c70f7970a583c533016c63587373
[ "MIT" ]
191
2021-07-30T06:11:28.000Z
2022-03-31T13:45:51.000Z
operations/mpi_rendering.py
FreemanG/MINE
ef16cd83ae99c70f7970a583c533016c63587373
[ "MIT" ]
20
2021-08-24T16:05:11.000Z
2022-03-28T11:58:47.000Z
operations/mpi_rendering.py
FreemanG/MINE
ef16cd83ae99c70f7970a583c533016c63587373
[ "MIT" ]
21
2021-07-30T06:49:52.000Z
2022-03-07T05:42:44.000Z
import torch from operations.homography_sampler import HomographySample from operations.rendering_utils import transform_G_xyz, sample_pdf, gather_pixel_by_pxpy def render(rgb_BS3HW, sigma_BS1HW, xyz_BS3HW, use_alpha=False, is_bg_depth_inf=False): if not use_alpha: imgs_syn, depth_syn, blend_weights, weights = plane_volume_rendering( rgb_BS3HW, sigma_BS1HW, xyz_BS3HW, is_bg_depth_inf ) else: imgs_syn, weights = alpha_composition(sigma_BS1HW, rgb_BS3HW) depth_syn, _ = alpha_composition(sigma_BS1HW, xyz_BS3HW[:, :, 2:]) # No rgb blending with alpha composition blend_weights = torch.zeros_like(rgb_BS3HW).cuda() return imgs_syn, depth_syn, blend_weights, weights def alpha_composition(alpha_BK1HW, value_BKCHW): """ composition equation from 'Single-View View Synthesis with Multiplane Images' K is the number of planes, k=0 means the nearest plane, k=K-1 means the farthest plane :param alpha_BK1HW: alpha at each of the K planes :param value_BKCHW: rgb/disparity at each of the K planes :return: """ B, K, _, H, W = alpha_BK1HW.size() alpha_comp_cumprod = torch.cumprod(1 - alpha_BK1HW, dim=1) # BxKx1xHxW preserve_ratio = torch.cat((torch.ones((B, 1, 1, H, W), dtype=alpha_BK1HW.dtype, device=alpha_BK1HW.device), alpha_comp_cumprod[:, 0:K-1, :, :, :]), dim=1) # BxKx1xHxW weights = alpha_BK1HW * preserve_ratio # BxKx1xHxW value_composed = torch.sum(value_BKCHW * weights, dim=1, keepdim=False) # Bx3xHxW return value_composed, weights def plane_volume_rendering(rgb_BS3HW, sigma_BS1HW, xyz_BS3HW, is_bg_depth_inf): B, S, _, H, W = sigma_BS1HW.size() xyz_diff_BS3HW = xyz_BS3HW[:, 1:, :, :, :] - xyz_BS3HW[:, 0:-1, :, :, :] # Bx(S-1)x3xHxW xyz_dist_BS1HW = torch.norm(xyz_diff_BS3HW, dim=2, keepdim=True) # Bx(S-1)x1xHxW xyz_dist_BS1HW = torch.cat((xyz_dist_BS1HW, torch.full((B, 1, 1, H, W), fill_value=1e3, dtype=xyz_BS3HW.dtype, device=xyz_BS3HW.device)), dim=1) # BxSx3xHxW transparency = torch.exp(-sigma_BS1HW * xyz_dist_BS1HW) # BxSx1xHxW alpha = 1 - transparency # BxSx1xHxW # add small eps to avoid zero transparency_acc # pytorch.cumprod is like: [a, b, c] -> [a, a*b, a*b*c], we need to modify it to [1, a, a*b] transparency_acc = torch.cumprod(transparency + 1e-6, dim=1) # BxSx1xHxW transparency_acc = torch.cat((torch.ones((B, 1, 1, H, W), dtype=transparency.dtype, device=transparency.device), transparency_acc[:, 0:-1, :, :, :]), dim=1) # BxSx1xHxW weights = transparency_acc * alpha # BxSx1xHxW rgb_out, depth_out = weighted_sum_mpi(rgb_BS3HW, xyz_BS3HW, weights, is_bg_depth_inf) return rgb_out, depth_out, transparency_acc, weights def weighted_sum_mpi(rgb_BS3HW, xyz_BS3HW, weights, is_bg_depth_inf): weights_sum = torch.sum(weights, dim=1, keepdim=False) # Bx1xHxW rgb_out = torch.sum(weights * rgb_BS3HW, dim=1, keepdim=False) # Bx3xHxW if is_bg_depth_inf: # for dtu dataset, set large depth if weight_sum is small depth_out = torch.sum(weights * xyz_BS3HW[:, :, 2:, :, :], dim=1, keepdim=False) \ + (1 - weights_sum) * 1000 else: depth_out = torch.sum(weights * xyz_BS3HW[:, :, 2:, :, :], dim=1, keepdim=False) \ / (weights_sum + 1e-5) # Bx1xHxW return rgb_out, depth_out def get_xyz_from_depth(meshgrid_homo, depth, K_inv): """ :param meshgrid_homo: 3xHxW :param depth: Bx1xHxW :param K_inv: Bx3x3 :return: """ H, W = meshgrid_homo.size(1), meshgrid_homo.size(2) B, _, H_d, W_d = depth.size() assert H==H_d, W==W_d # 3xHxW -> Bx3xHxW meshgrid_src_homo = meshgrid_homo.unsqueeze(0).repeat(B, 1, 1, 1) meshgrid_src_homo_B3N = meshgrid_src_homo.reshape(B, 3, -1) xyz_src = torch.matmul(K_inv, meshgrid_src_homo_B3N) # Bx3xHW xyz_src = xyz_src.reshape(B, 3, H, W) * depth # Bx3xHxW return xyz_src def disparity_consistency_src_to_tgt(meshgrid_homo, K_src_inv, disparity_src, G_tgt_src, K_tgt, disparity_tgt): """ :param xyz_src_B3N: Bx3xN :param G_tgt_src: Bx4x4 :param K_tgt: Bx3x3 :param disparity_tgt: Bx1xHxW :return: """ B, _, H, W = disparity_src.size() depth_src = torch.reciprocal(disparity_src) xyz_src_B3N = get_xyz_from_depth(meshgrid_homo, depth_src, K_src_inv).view(B, 3, H*W) xyz_tgt_B3N = transform_G_xyz(G_tgt_src, xyz_src_B3N, is_return_homo=False) K_xyz_tgt_B3N = torch.matmul(K_tgt, xyz_tgt_B3N) pxpy_tgt_B2N = K_xyz_tgt_B3N[:, 0:2, :] / K_xyz_tgt_B3N[:, 2:, :] # Bx2xN pxpy_tgt_mask = torch.logical_and( torch.logical_and(pxpy_tgt_B2N[:, 0:1, :] >= 0, pxpy_tgt_B2N[:, 0:1, :] <= W - 1), torch.logical_and(pxpy_tgt_B2N[:, 1:2, :] >= 0, pxpy_tgt_B2N[:, 1:2, :] <= H - 1) ) # B1N disparity_src = torch.reciprocal(xyz_tgt_B3N[:, 2:, :]) # Bx1xN disparity_tgt = gather_pixel_by_pxpy(disparity_tgt, pxpy_tgt_B2N) # Bx1xN depth_diff = torch.abs(disparity_src - disparity_tgt) return torch.mean(depth_diff[pxpy_tgt_mask]) def get_src_xyz_from_plane_disparity(meshgrid_src_homo, mpi_disparity_src, K_src_inv): """ :param meshgrid_src_homo: 3xHxW :param mpi_disparity_src: BxS :param K_src_inv: Bx3x3 :return: """ B, S = mpi_disparity_src.size() H, W = meshgrid_src_homo.size(1), meshgrid_src_homo.size(2) mpi_depth_src = torch.reciprocal(mpi_disparity_src) # BxS K_src_inv_Bs33 = K_src_inv.unsqueeze(1).repeat(1, S, 1, 1).reshape(B * S, 3, 3) # 3xHxW -> BxSx3xHxW meshgrid_src_homo = meshgrid_src_homo.unsqueeze(0).unsqueeze(1).repeat(B, S, 1, 1, 1) meshgrid_src_homo_Bs3N = meshgrid_src_homo.reshape(B * S, 3, -1) xyz_src = torch.matmul(K_src_inv_Bs33, meshgrid_src_homo_Bs3N) # BSx3xHW xyz_src = xyz_src.reshape(B, S, 3, H * W) * mpi_depth_src.unsqueeze(2).unsqueeze(3) # BxSx3xHW xyz_src_BS3HW = xyz_src.reshape(B, S, 3, H, W) return xyz_src_BS3HW def get_tgt_xyz_from_plane_disparity(xyz_src_BS3HW, G_tgt_src): """ :param xyz_src_BS3HW: BxSx3xHxW :param G_tgt_src: Bx4x4 :return: """ B, S, _, H, W = xyz_src_BS3HW.size() G_tgt_src_Bs33 = G_tgt_src.unsqueeze(1).repeat(1, S, 1, 1).reshape(B*S, 4, 4) xyz_tgt = transform_G_xyz(G_tgt_src_Bs33, xyz_src_BS3HW.reshape(B*S, 3, H*W)) # Bsx3xHW xyz_tgt_BS3HW = xyz_tgt.reshape(B, S, 3, H, W) # BxSx3xHxW return xyz_tgt_BS3HW def render_tgt_rgb_depth(H_sampler: HomographySample, mpi_rgb_src, mpi_sigma_src, mpi_disparity_src, xyz_tgt_BS3HW, G_tgt_src, K_src_inv, K_tgt, use_alpha=False, is_bg_depth_inf=False): """ :param H_sampler: :param mpi_rgb_src: BxSx3xHxW :param mpi_sigma_src: BxSx1xHxW :param mpi_disparity_src: BxS :param xyz_tgt_BS3HW: BxSx3xHxW :param G_tgt_src: Bx4x4 :param K_src_inv: Bx3x3 :param K_tgt: Bx3x3 :return: """ B, S, _, H, W = mpi_rgb_src.size() mpi_depth_src = torch.reciprocal(mpi_disparity_src) # BxS # note that here we concat the mpi_src with xyz_tgt, because H_sampler will sample them for tgt frame # mpi_src is the same in whatever frame, but xyz has to be in tgt frame mpi_xyz_src = torch.cat((mpi_rgb_src, mpi_sigma_src, xyz_tgt_BS3HW), dim=2) # BxSx(3+1+3)xHxW # homography warping of mpi_src into tgt frame G_tgt_src_Bs44 = G_tgt_src.unsqueeze(1).repeat(1, S, 1, 1).contiguous().reshape(B*S, 4, 4) # Bsx4x4 K_src_inv_Bs33 = K_src_inv.unsqueeze(1).repeat(1, S, 1, 1).contiguous().reshape(B*S, 3, 3) # Bsx3x3 K_tgt_Bs33 = K_tgt.unsqueeze(1).repeat(1, S, 1, 1).contiguous().reshape(B*S, 3, 3) # Bsx3x3 # BsxCxHxW, BsxHxW tgt_mpi_xyz_BsCHW, tgt_mask_BsHW = H_sampler.sample(mpi_xyz_src.view(B*S, 7, H, W), mpi_depth_src.view(B*S), G_tgt_src_Bs44, K_src_inv_Bs33, K_tgt_Bs33) # mpi composition tgt_mpi_xyz = tgt_mpi_xyz_BsCHW.view(B, S, 7, H, W) tgt_rgb_BS3HW = tgt_mpi_xyz[:, :, 0:3, :, :] tgt_sigma_BS1HW = tgt_mpi_xyz[:, :, 3:4, :, :] tgt_xyz_BS3HW = tgt_mpi_xyz[:, :, 4:, :, :] tgt_mask_BSHW = tgt_mask_BsHW.view(B, S, H, W) tgt_mask_BSHW = torch.where(tgt_mask_BSHW, torch.ones((B, S, H, W), dtype=torch.float32, device=mpi_rgb_src.device), torch.zeros((B, S, H, W), dtype=torch.float32, device=mpi_rgb_src.device)) # Bx3xHxW, Bx1xHxW, Bx1xHxW tgt_z_BS1HW = tgt_xyz_BS3HW[:, :, -1:] tgt_sigma_BS1HW = torch.where(tgt_z_BS1HW >= 0, tgt_sigma_BS1HW, torch.zeros_like(tgt_sigma_BS1HW, device=tgt_sigma_BS1HW.device)) tgt_rgb_syn, tgt_depth_syn, _, _ = render(tgt_rgb_BS3HW, tgt_sigma_BS1HW, tgt_xyz_BS3HW, use_alpha=use_alpha, is_bg_depth_inf=is_bg_depth_inf) tgt_mask = torch.sum(tgt_mask_BSHW, dim=1, keepdim=True) # Bx1xHxW return tgt_rgb_syn, tgt_depth_syn, tgt_mask def predict_mpi_coarse_to_fine(mpi_predictor, src_imgs, xyz_src_BS3HW_coarse, disparity_coarse_src, S_fine, is_bg_depth_inf): if S_fine > 0: with torch.no_grad(): # predict coarse mpi mpi_coarse_src_list = mpi_predictor(src_imgs, disparity_coarse_src) # BxS_coarsex4xHxW mpi_coarse_rgb_src = mpi_coarse_src_list[0][:, :, 0:3, :, :] # BxSx1xHxW mpi_coarse_sigma_src = mpi_coarse_src_list[0][:, :, 3:, :, :] # BxSx1xHxW _, _, _, weights = plane_volume_rendering( mpi_coarse_rgb_src, mpi_coarse_sigma_src, xyz_src_BS3HW_coarse, is_bg_depth_inf ) weights = weights.mean((2, 3, 4)).unsqueeze(1).unsqueeze(2) # sample fine disparity disparity_fine_src = sample_pdf(disparity_coarse_src.unsqueeze(1).unsqueeze(2), weights, S_fine) disparity_fine_src = disparity_fine_src.squeeze(2).squeeze(1) # assemble coarse and fine disparity disparity_all_src = torch.cat((disparity_coarse_src, disparity_fine_src), dim=1) # Bx(S_coarse + S_fine) disparity_all_src, _ = torch.sort(disparity_all_src, dim=1, descending=True) mpi_all_src_list = mpi_predictor(src_imgs, disparity_all_src) # BxS_coarsex4xHxW return mpi_all_src_list, disparity_all_src else: mpi_coarse_src_list = mpi_predictor(src_imgs, disparity_coarse_src) # BxS_coarsex4xHxW return mpi_coarse_src_list, disparity_coarse_src
42.761029
116
0.613361
2581bc68e76a073a60fa53f989150b3f2e571373
594
py
Python
1294E.py
julianferres/Codeforces
ac80292a4d53b8078fc1a85e91db353c489555d9
[ "MIT" ]
4
2020-01-31T15:49:25.000Z
2020-07-07T11:44:03.000Z
1294E.py
julianferres/CodeForces
14e8369e82a2403094183d6f7824201f681c9f65
[ "MIT" ]
null
null
null
1294E.py
julianferres/CodeForces
14e8369e82a2403094183d6f7824201f681c9f65
[ "MIT" ]
null
null
null
n, m = map(int, input().split()) def solve(actual, target): #print(actual, target) rots = {i: 0 for i in range(n)} for i, x in enumerate(actual): if x in target: rots[(i-target[x]) % n] -= 1 # print(rots) return min([n+i+rots[i] for i in range(n)]) a = [] for _ in range(n): b = [int(x) for x in input().split()] a.append(b) for i in range(n): for j in range(m): a[i][j] -= 1 ans = 0 for j in range(m): target = {m*i+j: i for i in range(n)} actual = [a[i][j] for i in range(n)] ans += solve(actual, target) print(ans)
22
47
0.52862
f2685aaeb014edcfaef67f4467c20c9e7c8303fe
6,111
bzl
Python
generated_api_shadow/bazel/repository_locations.bzl
Y0Username/envoy
9dd8ae3c69a9917d97a886ed03e1c010dcd9b098
[ "Apache-2.0" ]
1
2021-07-03T18:53:39.000Z
2021-07-03T18:53:39.000Z
generated_api_shadow/bazel/repository_locations.bzl
Y0Username/envoy
9dd8ae3c69a9917d97a886ed03e1c010dcd9b098
[ "Apache-2.0" ]
184
2021-04-19T09:34:37.000Z
2022-03-31T15:14:40.000Z
generated_api_shadow/bazel/repository_locations.bzl
Y0Username/envoy
9dd8ae3c69a9917d97a886ed03e1c010dcd9b098
[ "Apache-2.0" ]
null
null
null
# This should match the schema defined in external_deps.bzl. REPOSITORY_LOCATIONS_SPEC = dict( bazel_skylib = dict( project_name = "bazel-skylib", project_desc = "Common useful functions and rules for Bazel", project_url = "https://github.com/bazelbuild/bazel-skylib", version = "1.0.3", sha256 = "1c531376ac7e5a180e0237938a2536de0c54d93f5c278634818e0efc952dd56c", release_date = "2020-08-27", urls = ["https://github.com/bazelbuild/bazel-skylib/releases/download/{version}/bazel-skylib-{version}.tar.gz"], use_category = ["api"], ), com_envoyproxy_protoc_gen_validate = dict( project_name = "protoc-gen-validate (PGV)", project_desc = "protoc plugin to generate polyglot message validators", project_url = "https://github.com/envoyproxy/protoc-gen-validate", version = "0.6.1", sha256 = "c695fc5a2e5a1b52904cd8a58ce7a1c3a80f7f50719496fd606e551685c01101", release_date = "2021-04-26", strip_prefix = "protoc-gen-validate-{version}", urls = ["https://github.com/envoyproxy/protoc-gen-validate/archive/v{version}.tar.gz"], use_category = ["api"], implied_untracked_deps = [ "com_github_iancoleman_strcase", "com_github_lyft_protoc_gen_star", "com_github_spf13_afero", "org_golang_google_genproto", "org_golang_x_text", ], ), com_github_bazelbuild_buildtools = dict( project_name = "Bazel build tools", project_desc = "Developer tools for working with Google's bazel buildtool.", project_url = "https://github.com/bazelbuild/buildtools", version = "4.0.1", sha256 = "c28eef4d30ba1a195c6837acf6c75a4034981f5b4002dda3c5aa6e48ce023cf1", release_date = "2021-03-01", strip_prefix = "buildtools-{version}", urls = ["https://github.com/bazelbuild/buildtools/archive/{version}.tar.gz"], use_category = ["api"], ), com_github_cncf_udpa = dict( project_name = "xDS API", project_desc = "xDS API Working Group (xDS-WG)", project_url = "https://github.com/cncf/xds", # During the UDPA -> xDS migration, we aren't working with releases. version = "b88cc788a63e5b38ee334a2e702c67901355ae2c", sha256 = "3220df8564f217665b6e17776569c5f748178c2b9cbf83bb55a13ddc0a3738f0", release_date = "2021-03-23", strip_prefix = "xds-{version}", urls = ["https://github.com/cncf/xds/archive/{version}.tar.gz"], use_category = ["api"], ), com_github_openzipkin_zipkinapi = dict( project_name = "Zipkin API", project_desc = "Zipkin's language independent model and HTTP Api Definitions", project_url = "https://github.com/openzipkin/zipkin-api", version = "1.0.0", sha256 = "6c8ee2014cf0746ba452e5f2c01f038df60e85eb2d910b226f9aa27ddc0e44cf", release_date = "2020-11-22", strip_prefix = "zipkin-api-{version}", urls = ["https://github.com/openzipkin/zipkin-api/archive/{version}.tar.gz"], use_category = ["api"], ), com_google_googleapis = dict( # TODO(dio): Consider writing a Starlark macro for importing Google API proto. project_name = "Google APIs", project_desc = "Public interface definitions of Google APIs", project_url = "https://github.com/googleapis/googleapis", version = "82944da21578a53b74e547774cf62ed31a05b841", sha256 = "a45019af4d3290f02eaeb1ce10990166978c807cb33a9692141a076ba46d1405", release_date = "2019-12-02", strip_prefix = "googleapis-{version}", urls = ["https://github.com/googleapis/googleapis/archive/{version}.tar.gz"], use_category = ["api"], ), opencensus_proto = dict( project_name = "OpenCensus Proto", project_desc = "Language Independent Interface Types For OpenCensus", project_url = "https://github.com/census-instrumentation/opencensus-proto", version = "0.3.0", sha256 = "b7e13f0b4259e80c3070b583c2f39e53153085a6918718b1c710caf7037572b0", release_date = "2020-07-21", strip_prefix = "opencensus-proto-{version}/src", urls = ["https://github.com/census-instrumentation/opencensus-proto/archive/v{version}.tar.gz"], use_category = ["api"], ), prometheus_metrics_model = dict( project_name = "Prometheus client model", project_desc = "Data model artifacts for Prometheus", project_url = "https://github.com/prometheus/client_model", version = "0255a22d35ad5661ef7aa89c95fdf5dfd685283f", sha256 = "a83fd26a80c5f9b82d1231448141a148c1d7a0c8f581ddf49fdbd8c1545e5661", release_date = "2021-01-16", strip_prefix = "client_model-{version}", urls = ["https://github.com/prometheus/client_model/archive/{version}.tar.gz"], use_category = ["api"], ), rules_proto = dict( project_name = "Protobuf Rules for Bazel", project_desc = "Protocol buffer rules for Bazel", project_url = "https://github.com/bazelbuild/rules_proto", version = "f7a30f6f80006b591fa7c437fe5a951eb10bcbcf", sha256 = "9fc210a34f0f9e7cc31598d109b5d069ef44911a82f507d5a88716db171615a8", release_date = "2021-02-09", strip_prefix = "rules_proto-{version}", urls = ["https://github.com/bazelbuild/rules_proto/archive/{version}.tar.gz"], use_category = ["api"], ), opentelemetry_proto = dict( project_name = "OpenTelemetry Proto", project_desc = "Language Independent Interface Types For OpenTelemetry", project_url = "https://github.com/open-telemetry/opentelemetry-proto", version = "0.9.0", sha256 = "9ec38ab51eedbd7601979b0eda962cf37bc8a4dc35fcef604801e463f01dcc00", release_date = "2021-05-12", strip_prefix = "opentelemetry-proto-{version}", urls = ["https://github.com/open-telemetry/opentelemetry-proto/archive/v{version}.tar.gz"], use_category = ["api"], ), )
50.090164
120
0.664048
6675b8f956718dcf59ced1e287b7e8fc11b75806
2,437
py
Python
cogs/fun.py
uthree/GeneralBot
4204d4ba2b7df4c68bda3caa7cee368c37bdf2e7
[ "MIT" ]
null
null
null
cogs/fun.py
uthree/GeneralBot
4204d4ba2b7df4c68bda3caa7cee368c37bdf2e7
[ "MIT" ]
null
null
null
cogs/fun.py
uthree/GeneralBot
4204d4ba2b7df4c68bda3caa7cee368c37bdf2e7
[ "MIT" ]
1
2021-08-13T07:35:34.000Z
2021-08-13T07:35:34.000Z
from discord.ext import commands import discord as discord import random # Fun(ネタコマンド系) cog class Fun(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(aliases=["sintyoku"]) async def sinchoku(self,ctx): links = [ "https://cdn.discordapp.com/attachments/708828790796845189/787409537883439134/alicedoudesuka-300x168.jpg", "https://cdn.discordapp.com/attachments/787413181277798400/787413202958417920/images-6.jpeg", "https://cdn.discordapp.com/attachments/787413181277798400/787413219085647872/images-5.jpeg", "https://cdn.discordapp.com/attachments/787413181277798400/787413268872429568/images.jpeg", "https://cdn.discordapp.com/attachments/787413181277798400/787413301776089118/main.pngcompresstrue.png", "https://cdn.discordapp.com/attachments/787413181277798400/787413247686737930/images-3.jpeg" ] await ctx.send(random.choice(links)) @commands.command(aliases=["sintyoku_dame"]) async def sinchoku_dame(self,ctx): links = [ "https://ghippos.net/image/blog/20131008_1.jpg", "https://livedoor.blogimg.jp/tank_make/imgs/a/9/a996bd7c.jpg", "https://d2dcan0armyq93.cloudfront.net/photo/odai/400/8a1b02cea77695724af97b596cbc5acc_400.jpg" ] await ctx.send(random.choice(links)) @commands.command() async def krsw(self,ctx): images = [ "https://cdn.discordapp.com/attachments/859753134729199666/875924516616957982/KRSW.png", # 無能弁護士 "https://cdn.discordapp.com/attachments/859753134729199666/875927011154088016/HSGW.png", # 長谷川亮太 "https://cdn.discordapp.com/attachments/859753134729199666/875926898838999050/JEX.jpg" # ペルソナメガネ ] await ctx.send(random.choice(images)) @commands.command() async def pakason(self,ctx): pakasong_txt = open('./cogs/pakason.txt', 'r') pakasong_list = pakasong_txt.readlines() pakasong = [ pakasong_list[0], pakasong_list[1], pakasong_list[2], pakasong_list[3] ] await ctx.send(random.choice(pakasong)) pakasong_txt.close() def setup(bot): bot.add_cog(Fun(bot))
42.017241
122
0.625359
6150bdf9e94064fef835942e95b9e6e70d3ea7eb
7,645
py
Python
tools/mxnet/common/fit.py
feifeibear/dlbench
978b034e9c34e6aaa38782bb1e4a2cea0c01d0f9
[ "MIT" ]
181
2017-01-29T23:50:25.000Z
2022-01-15T13:43:17.000Z
tools/mxnet/common/fit.py
waltersharpWEI/dlbenchData
8f551ead44141aa1f678b1a32724d07ccbf4db5b
[ "MIT" ]
33
2017-01-30T00:50:24.000Z
2020-12-19T07:00:56.000Z
tools/mxnet/common/fit.py
waltersharpWEI/dlbenchData
8f551ead44141aa1f678b1a32724d07ccbf4db5b
[ "MIT" ]
54
2017-01-30T21:04:27.000Z
2020-07-09T03:26:56.000Z
import mxnet as mx import logging import os import time def _get_lr_scheduler(args, kv): if 'lr_factor' not in args or args.lr_factor >= 1: return (args.lr, None) epoch_size = args.num_examples / args.batch_size if 'dist' in args.kv_store: epoch_size /= kv.num_workers begin_epoch = args.load_epoch if args.load_epoch else 0 step_epochs = [int(l) for l in args.lr_step_epochs.split(',')] lr = args.lr for s in step_epochs: if begin_epoch >= s: lr *= args.lr_factor if lr != args.lr: logging.info('Adjust learning rate to %e for epoch %d' %(lr, begin_epoch)) steps = [epoch_size * (x-begin_epoch) for x in step_epochs if x-begin_epoch > 0] return (lr, mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=args.lr_factor)) def _load_model(args, rank=0): if 'load_epoch' not in args or args.load_epoch is None: return (None, None, None) assert args.model_prefix is not None model_prefix = args.model_prefix if rank > 0 and os.path.exists("%s-%d-symbol.json" % (model_prefix, rank)): model_prefix += "-%d" % (rank) sym, arg_params, aux_params = mx.model.load_checkpoint( model_prefix, args.load_epoch) logging.info('Loaded model %s_%04d.params', model_prefix, args.load_epoch) return (sym, arg_params, aux_params) def _save_model(args, rank=0): if args.model_prefix is None: return None dst_dir = os.path.dirname(args.model_prefix) if not os.path.isdir(dst_dir): os.mkdir(dst_dir) return mx.callback.do_checkpoint(args.model_prefix if rank == 0 else "%s-%d" % ( args.model_prefix, rank)) def add_fit_args(parser): """ parser : argparse.ArgumentParser return a parser added with args required by fit """ train = parser.add_argument_group('Training', 'model training') train.add_argument('--network', type=str, help='the neural network to use') train.add_argument('--num-layers', type=int, help='number of layers in the neural network, required by some networks such as resnet') train.add_argument('--gpus', type=str, help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu') train.add_argument('--kv-store', type=str, default='device', help='key-value store type') train.add_argument('--num-epochs', type=int, default=100, help='max num of epochs') train.add_argument('--lr', type=float, default=0.1, help='initial learning rate') train.add_argument('--lr-factor', type=float, default=None, help='the ratio to reduce lr on each step') train.add_argument('--lr-step-epochs', type=str, help='the epochs to reduce the lr, e.g. 30,60') train.add_argument('--optimizer', type=str, default='sgd', help='the optimizer type') train.add_argument('--mom', type=float, default=0.9, help='momentum for sgd') train.add_argument('--num-nodes', type=int, default=1, help='number of machines used for training') train.add_argument('--wd', type=float, default=0.00001, help='weight decay for sgd') train.add_argument('--batch-size', type=int, default=128, help='the batch size') train.add_argument('--disp-batches', type=int, default=20, help='show progress for every n batches') train.add_argument('--model-prefix', type=str, help='model prefix') parser.add_argument('--monitor', dest='monitor', type=int, default=0, help='log network parameters every N iters if larger than 0') train.add_argument('--load-epoch', type=int, help='load the model on an epoch using the model-load-prefix') train.add_argument('--top-k', type=int, default=0, help='report the top-k accuracy. 0 means no report.') train.add_argument('--test-io', type=int, default=0, help='1 means test reading speed without training') return train def fit(args, network, data_loader, init=None, **kwargs): """ train a model args : argparse returns network : the symbol definition of the nerual network data_loader : function that returns the train and val data iterators """ # kvstore kv = mx.kvstore.create(args.kv_store) # logging head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s' logging.basicConfig(level=logging.DEBUG, format=head) logging.info('start with arguments %s', args) # data iterators (train, val) = data_loader(args, kv) if args.test_io: tic = time.time() for i, batch in enumerate(train): for j in batch.data: j.wait_to_read() if (i+1) % args.disp_batches == 0: logging.info('Batch [%d]\tSpeed: %.2f samples/sec' % ( i, args.disp_batches*args.batch_size/(time.time()-tic))) tic = time.time() return # load model if 'arg_params' in kwargs and 'aux_params' in kwargs: arg_params = kwargs['arg_params'] aux_params = kwargs['aux_params'] else: sym, arg_params, aux_params = _load_model(args, kv.rank) if sym is not None: assert sym.tojson() == network.tojson() # save model checkpoint = _save_model(args, kv.rank) # devices for training devs = mx.cpu() if args.gpus is None or args.gpus is '' else [ mx.gpu(int(i)) for i in args.gpus.split(',')] # learning rate lr, lr_scheduler = _get_lr_scheduler(args, kv) # create model model = mx.mod.Module( context = devs, symbol = network ) lr_scheduler = lr_scheduler optimizer_params = { 'learning_rate': lr, 'momentum' : args.mom, 'wd' : args.wd, 'lr_scheduler': lr_scheduler} monitor = mx.mon.Monitor(args.monitor, pattern=".*") if args.monitor > 0 else None if init is None: initializer = mx.initializer.Normal(sigma=0.01) #initializer = mx.initializer.Xavier( rnd_type='gaussian', factor_type="in", magnitude=2) # initializer = mx.init.Xavier(factor_type="in", magnitude=2.34), else: initializer = init # evaluation metrices eval_metrics = ['accuracy', 'ce'] if args.top_k > 0: eval_metrics.append(mx.metric.create('top_k_accuracy', top_k=args.top_k)) # callbacks that run after each batch args.disp_batches = int((args.num_examples-args.batch_size)/args.batch_size) - 1 batch_end_callbacks = [mx.callback.Speedometer(args.batch_size, args.disp_batches)] if 'batch_end_callback' in kwargs: cbs = kwargs['batch_end_callback'] batch_end_callbacks += cbs if isinstance(cbs, list) else [cbs] # run model.fit(train, begin_epoch = args.load_epoch if args.load_epoch else 0, num_epoch = args.num_epochs, # eval_data = val, eval_metric = eval_metrics, kvstore = kv, optimizer = args.optimizer, optimizer_params = optimizer_params, initializer = initializer, arg_params = arg_params, aux_params = aux_params, batch_end_callback = batch_end_callbacks, epoch_end_callback = checkpoint, allow_missing = True, monitor = monitor)
40.664894
111
0.608764
11602b0a020af8b87b4cc9327c2c6bfcb1e1845e
2,079
py
Python
challenge/agoda_cancellation_estimator.py
ranitoukhy/IML.HUJI
156e67422311847d9f40efa36fb2020da3dd0087
[ "MIT" ]
null
null
null
challenge/agoda_cancellation_estimator.py
ranitoukhy/IML.HUJI
156e67422311847d9f40efa36fb2020da3dd0087
[ "MIT" ]
null
null
null
challenge/agoda_cancellation_estimator.py
ranitoukhy/IML.HUJI
156e67422311847d9f40efa36fb2020da3dd0087
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import NoReturn from IMLearn.base import BaseEstimator import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier class AgodaCancellationEstimator(BaseEstimator): """ An estimator for solving the Agoda Cancellation challenge """ def __init__(self) -> AgodaCancellationEstimator: """ Instantiate an estimator for solving the Agoda Cancellation challenge Parameters ---------- Attributes ---------- """ super().__init__() self.model = None def _fit(self, X: np.ndarray, y: np.ndarray) -> NoReturn: """ Fit an estimator for given samples Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to fit an estimator for y : ndarray of shape (n_samples, ) Responses of input data to fit to Notes ----- """ self.model = LogisticRegression().fit(X, y) #self.model = KNeighborsClassifier(5).fit(X,y) def _predict(self, X: np.ndarray) -> np.ndarray: """ Predict responses for given samples using fitted estimator Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to predict responses for Returns ------- responses : ndarray of shape (n_samples, ) Predicted responses of given samples """ return self.model.predict(X) def _loss(self, X: np.ndarray, y: np.ndarray) -> float: """ Evaluate performance under loss function Parameters ---------- X : ndarray of shape (n_samples, n_features) Test samples y : ndarray of shape (n_samples, ) True labels of test samples Returns ------- loss : float Performance under loss function """ return (self.predict(X) == y).sum() / len(X)
25.666667
77
0.577201
084df0b54fbbc8ce4f1d747c892a5203142abe75
2,721
py
Python
pymic/transform/flip.py
vincentme/PyMIC
5cbbca7d0a19232be647086d4686ceea523f45ee
[ "Apache-2.0" ]
null
null
null
pymic/transform/flip.py
vincentme/PyMIC
5cbbca7d0a19232be647086d4686ceea523f45ee
[ "Apache-2.0" ]
null
null
null
pymic/transform/flip.py
vincentme/PyMIC
5cbbca7d0a19232be647086d4686ceea523f45ee
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import print_function, division import torch import json import math import random import numpy as np from scipy import ndimage from pymic.transform.abstract_transform import AbstractTransform from pymic.util.image_process import * class RandomFlip(AbstractTransform): """ random flip the image (shape [C, D, H, W] or [C, H, W]) """ def __init__(self, params): """ flip_depth (bool) : random flip along depth axis or not, only used for 3D images flip_height (bool): random flip along height axis or not flip_width (bool) : random flip along width axis or not """ super(RandomFlip, self).__init__(params) self.flip_depth = params['RandomFlip_flip_depth'.lower()] self.flip_height = params['RandomFlip_flip_height'.lower()] self.flip_width = params['RandomFlip_flip_width'.lower()] self.inverse = params['RandomFlip_inverse'.lower()] def __call__(self, sample): image = sample['image'] input_shape = image.shape input_dim = len(input_shape) - 1 flip_axis = [] if(self.flip_width): if(random.random() > 0.5): flip_axis.append(-1) if(self.flip_height): if(random.random() > 0.5): flip_axis.append(-2) if(input_dim == 3 and self.flip_depth): if(random.random() > 0.5): flip_axis.append(-3) sample['RandomFlip_Param'] = json.dumps(flip_axis) if(len(flip_axis) > 0): # use .copy() to avoid negative strides of numpy array # current pytorch does not support negative strides image_t = np.flip(image, flip_axis).copy() sample['image'] = image_t if('label' in sample and self.task == 'segmentation'): sample['label'] = np.flip(sample['label'] , flip_axis).copy() if('pixel_weight' in sample and self.task == 'segmentation'): sample['pixel_weight'] = np.flip(sample['pixel_weight'] , flip_axis).copy() return sample def inverse_transform_for_prediction(self, sample): ''' flip sample['predict'] (5D or 4D) to the original direction. flip_axis is a list as saved in __call__().''' if(isinstance(sample['RandomFlip_Param'], list) or \ isinstance(sample['RandomFlip_Param'], tuple)): flip_axis = json.loads(sample['RandomFlip_Param'][0]) else: flip_axis = json.loads(sample['RandomFlip_Param']) if(len(flip_axis) > 0): sample['predict'] = np.flip(sample['predict'] , flip_axis).copy() return sample
41.227273
92
0.6086
ee31c8bd8d074717ba1b1d5fd094ad2d7ebfff16
9,532
py
Python
banana-split/banana-split.py
timwedde/banana-split
f129db7527b52206058727e8849d70f9a73f03ea
[ "MIT" ]
7
2020-03-31T15:25:54.000Z
2022-03-22T22:22:39.000Z
banana-split/banana-split.py
timwedde/banana-split
f129db7527b52206058727e8849d70f9a73f03ea
[ "MIT" ]
4
2018-10-25T17:50:29.000Z
2021-05-13T11:11:50.000Z
banana-split/banana-split.py
timwedde/banana-split
f129db7527b52206058727e8849d70f9a73f03ea
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 ### System ### import re import sys import time import shutil import argparse from glob import glob from tqdm import tqdm from os import mkdir, remove, listdir from os.path import join, dirname, exists from signal import signal, SIGINT, SIG_IGN from multiprocessing import cpu_count, Pool ### py-midicsv ### import py_midicsv ### Local ### from patterns import * from scanner import scan def check(args): if not exists(args.input_dir): print("Input directory does not exist!") sys.exit(1) if exists(args.output_dir): if listdir(args.output_dir): print("The output contains data. Do you want to overwrite it?") result = input("[y]es/[n]o: ").lower() if not result in ["y", "yes"]: print("Aborted") sys.exit(0) shutil.rmtree(args.output_dir) mkdir(args.output_dir) def __midi_to_csv(file_in, file_out): with open(file_out, "w") as f: csv_string = py_midicsv.midi_to_csv(file_in) f.write("\n".join(csv_string)) def __csv_to_midi(file_in, file_out): with open(file_in, "r") as f: midi_object = py_midicsv.csv_to_midi(f.readlines()) with open(file_out, "wb") as f: midi_writer = py_midicsv.FileWriter(f) midi_writer.write(midi_object) def midi_to_csv(data): args, file = data folder = join(args.output_dir, file["name"]) csv_file = join(folder, "{}_full.csv".format(file["name"])) mkdir(folder) try: __midi_to_csv(file["path"], csv_file) except: shutil.rmtree(folder) if args.verbose: return "Could not convert '{}'".format(file["name"]) def csv_to_midi(file): midi_file = join(dirname(file["path"]), "{}.mid".format(file["name"])) try: __csv_to_midi(file["path"], midi_file) except: if args.verbose: return "An error occurred while converting '{}' in folder {}".format(file["name"], dirname(file["path"])) def list_channels(file): channels = set() with open(file["path"], "r", encoding="latin-1") as f: for line in f: m = channel_pattern.match(line) if m: channels.add(m.group(1)) return channels def split_channel(file, data, channel): file_out = join(dirname(file["path"]), "channel_{}.csv".format(channel)) with open(file_out, "w") as f: for line in data: if comment_pattern.match(line): continue m = channel_pattern.match(line) if m: if m.group(1) == channel: f.write(line) else: if not lyric_pattern.match(line): # skip lyrics f.write(line) def split_channels(file, channels): file_in = file["path"] data = open(file_in, "r", encoding="latin-1").readlines() for channel in channels: split_channel(file, data, channel) def extract_channels(file): channels = list_channels(file) split_channels(file, channels) def transpose(file): data = [] with open(file["path"], "r", encoding="latin-1") as f: for line in f: m = note_pattern.match(line) if m: if m.group(2) != drum_channel: note = int(m.group(5)) + args.offset if note < 0: note = 0 data.append(re.sub(note_pattern, "\\1, \\2, \\3, \\4, {}, \\6".format(note), line)) else: data.append(line) else: data.append(line) with open(file["path"], "w", encoding="latin-1") as f: for line in data: f.write(line) def check_channel(file): file_in = file["path"] data = open(file_in, "r", encoding="latin-1").readlines() for line in data: if note_pattern.match(line): return remove(file_in) def list_tracks(file): tracks = set() with open(file["path"], "r", encoding="latin-1") as f: for line in f: m = track_pattern.match(line) if m: tracks.add(m.group(1)) return tracks def split_track(file, data, track): folder = join(dirname(file["path"]), file["name"]) file_out = join(folder, "track_{}.csv".format(track)) if not exists(folder): mkdir(folder) with open(file_out, "w") as f: for line in data: if comment_pattern.match(line): # skip comments continue m = track_pattern.match(line) if m: if m.group(1) == track: f.write(line) else: if not lyric_pattern.match(line): # skip lyrics f.write(line) def split_tracks(file, tracks): file_in = file["path"] channel_target = join(dirname(file["path"]), file["name"], "{}.csv".format(file["name"])) data = open(file_in, "r", encoding="latin-1").readlines() for track in tracks: split_track(file, data, track) shutil.move(file["path"], channel_target) def extract_tracks(file): tracks = list_tracks(file) split_tracks(file, tracks) def clean(file): data = open(file["path"], "r", encoding="latin-1").readlines() with open(file["path"], "w") as f: for line in data: if comment_pattern.match(line) or unknown_event_pattern.match(line) or sequencer_specific_pattern.match(line): continue f.write(line) # TODO: load the file to be processed into RAM once, instead of reading it from disk multiple times to improve performance # Remove dependency of development version of python-midi (python3 branch) # (pip install https://github.com/vishnubob/python-midi/archive/feature/python3.zip) def main(args): with tqdm(total=(6 if args.keep else 7), unit="step") as bar: tqdm.write("Converting input data...") files = scan(args.input_dir, "*.mid") files = [(args, file) for file in files] for e in tqdm(worker_pool.imap_unordered(midi_to_csv, files), total=len(files), unit="files"): if e: tqdm.write(e) bar.update(1) tqdm.write("Cleaning input data...") files = scan(args.output_dir, "**/*_full.csv") for e in tqdm(worker_pool.imap_unordered(clean, files), total=len(files), unit="files"): if e: tqdm.write(e) bar.update(1) tqdm.write("Splitting channels...") files = scan(args.output_dir, "**/*_full.csv") for e in tqdm(worker_pool.imap_unordered(extract_channels, files), total=len(files), unit="files"): if e: tqdm.write(e) bar.update(1) tqdm.write("Removing empty channels...") files = scan(args.output_dir, "**/channel_*.csv", True) for e in tqdm(worker_pool.imap_unordered(check_channel, files), total=len(files), unit="files"): if e: tqdm.write(e) bar.update(1) tqdm.write("Splitting tracks...") files = scan(args.output_dir, "**/channel_*.csv", True) for e in tqdm(worker_pool.imap_unordered(extract_tracks, files), total=len(files), unit="files"): if e: tqdm.write(e) bar.update(1) tqdm.write("Converting output data...") files = scan(args.output_dir, "**/channel_*.csv", True) files += scan(args.output_dir, "**/track_*.csv", True) for e in tqdm(worker_pool.imap_unordered(csv_to_midi, files), total=len(files), unit="files"): if e: tqdm.write(e) bar.update(1) if not args.keep: tqdm.write("Removing intermediary artifacts...") files = scan(args.output_dir, "**/*.csv", True) files = [f["path"] for f in files] for e in tqdm(worker_pool.imap_unordered(remove, files), total=len(files), unit="files"): if e: tqdm.write(e) bar.update(1) tqdm.write("Finished processing") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Split MIDI files into channels and tracks.") parser.add_argument("-i", "--input", type=str, dest="input_dir", required=True, metavar="dir", help="(required) The folder containing the input data") parser.add_argument("-o", "--output", type=str, dest="output_dir", required=True, metavar="dir", help="(required) The folder containing the output data") parser.add_argument("-t", "--threads", type=int, dest="num_threads", default=cpu_count(), metavar="N", help="The amount of threads to use (default: {})".format(cpu_count())) parser.add_argument("-k", "--keep", dest="keep", action="store_true", help="When given, will keep the intermediary product of each file (.csv)") parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="When given, will produce more verbose output for debugging purposes") args = parser.parse_args() original_sigint_handler = signal(SIGINT, SIG_IGN) worker_pool = Pool(args.num_threads) signal(SIGINT, original_sigint_handler) check(args) try: main(args) except KeyboardInterrupt: print("Received SIGINT, terminating...") worker_pool.terminate() else: worker_pool.close() worker_pool.join()
33.801418
122
0.587075
3e6652683f1ad0fa77f5e86134f041ec0ab7792a
2,217
py
Python
tests/qtoggleserver/core/expressions/conftest.py
DigitEgal/qtoggleserver
54b6ac53742af9529fd349d4fc207b0dc8a38d3b
[ "Apache-2.0" ]
12
2020-07-26T05:49:25.000Z
2022-01-08T21:50:44.000Z
tests/qtoggleserver/core/expressions/conftest.py
DigitEgal/qtoggleserver
54b6ac53742af9529fd349d4fc207b0dc8a38d3b
[ "Apache-2.0" ]
8
2020-04-30T18:40:18.000Z
2020-11-08T21:09:35.000Z
tests/qtoggleserver/core/expressions/conftest.py
DigitEgal/qtoggleserver
54b6ac53742af9529fd349d4fc207b0dc8a38d3b
[ "Apache-2.0" ]
2
2020-02-14T02:52:13.000Z
2021-04-21T05:13:07.000Z
import pytest from qtoggleserver.core.expressions import literalvalues @pytest.fixture(scope='session') def literal_false(): return literalvalues.LiteralValue(False, 'false') @pytest.fixture(scope='session') def literal_true(): return literalvalues.LiteralValue(True, 'true') @pytest.fixture(scope='session') def literal_zero(): return literalvalues.LiteralValue(0, '0') @pytest.fixture(scope='session') def literal_zero_point_five(): return literalvalues.LiteralValue(0.5, '0.5') @pytest.fixture(scope='session') def literal_one(): return literalvalues.LiteralValue(1, '1') @pytest.fixture(scope='session') def literal_two(): return literalvalues.LiteralValue(2, '2') @pytest.fixture(scope='session') def literal_three(): return literalvalues.LiteralValue(3, '3') @pytest.fixture(scope='session') def literal_pi(): return literalvalues.LiteralValue(3.14159, '3.14159') @pytest.fixture(scope='session') def literal_ten(): return literalvalues.LiteralValue(10, '10') @pytest.fixture(scope='session') def literal_ten_point_fifty_one(): return literalvalues.LiteralValue(10.51, '10.51') @pytest.fixture(scope='session') def literal_sixteen(): return literalvalues.LiteralValue(16, '16') @pytest.fixture(scope='session') def literal_one_hundred(): return literalvalues.LiteralValue(100, '100') @pytest.fixture(scope='session') def literal_two_hundreds(): return literalvalues.LiteralValue(200, '200') @pytest.fixture(scope='session') def literal_one_thousand(): return literalvalues.LiteralValue(1000, '1000') @pytest.fixture(scope='session') def literal_minus_one(): return literalvalues.LiteralValue(-1, '-1') @pytest.fixture(scope='session') def literal_minus_two(): return literalvalues.LiteralValue(-2, '-2') @pytest.fixture(scope='session') def literal_minus_pi(): return literalvalues.LiteralValue(-3.14159, '-3.14159') @pytest.fixture(scope='session') def literal_minus_ten_point_fifty_one(): return literalvalues.LiteralValue(-10.51, '-10.51') @pytest.fixture(scope='session') def literal_dummy_timestamp(dummy_timestamp): return literalvalues.LiteralValue(dummy_timestamp, str(dummy_timestamp))
22.17
76
0.747406
f22d5351fa47bbf8e0095e9da9abb445c0f45208
5,149
py
Python
slider-agent/src/main/python/agent/shell.py
turningme/incubator-retired-slider
1d4f519d763210f46e327338be72efa99e65cb5d
[ "Apache-2.0" ]
60
2015-01-05T10:51:11.000Z
2018-12-15T03:48:09.000Z
slider-agent/src/main/python/agent/shell.py
turningme/incubator-retired-slider
1d4f519d763210f46e327338be72efa99e65cb5d
[ "Apache-2.0" ]
null
null
null
slider-agent/src/main/python/agent/shell.py
turningme/incubator-retired-slider
1d4f519d763210f46e327338be72efa99e65cb5d
[ "Apache-2.0" ]
87
2015-01-14T05:14:15.000Z
2018-12-25T14:14:56.000Z
#!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import logging import os import signal import subprocess import threading import platform from process_utils import get_flat_process_tree, kill_pids, wait_for_entire_process_tree_death, \ get_processes_running, get_command_by_pid if platform.system() != "Windows": try: import pwd except ImportError: import winpwd as pwd global serverTracker serverTracker = {} logger = logging.getLogger() shellRunner = None threadLocal = threading.local() tempFiles = [] def noteTempFile(filename): tempFiles.append(filename) def getTempFiles(): return tempFiles class _dict_to_object: def __init__(self, entries): self.__dict__.update(entries) def __getitem__(self, item): return self.__dict__[item] # windows specific code def _kill_process_with_children_windows(parent_pid): shellRunner().run(["taskkill", "/T", "/PID", "{0}".format(parent_pid)]) class shellRunnerWindows: # Run any command def run(self, script, user=None): logger.warn("user argument ignored on windows") code = 0 if not isinstance(script, list): cmd = " " cmd = cmd.join(script) else: cmd = script p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False) out, err = p.communicate() code = p.wait() logger.debug("Exitcode for %s is %d" % (cmd, code)) return {'exitCode': code, 'output': out, 'error': err} def runPowershell(self, file=None, script_block=None, args=[]): logger.warn("user argument ignored on windows") code = 0 cmd = None if file: cmd = ['powershell', '-WindowStyle', 'Hidden', '-File', file] + args elif script_block: cmd = ['powershell', '-WindowStyle', 'Hidden', '-Command', script_block] + args p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False) out, err = p.communicate() code = p.wait() logger.debug("Exitcode for %s is %d" % (cmd, code)) return _dict_to_object({'exitCode': code, 'output': out, 'error': err}) #linux specific code def _kill_process_with_children_linux(parent_pid): """ Kills process tree starting from a given pid. :param parent_pid: head of tree :param graceful_kill_delays: map <command name, custom delay between SIGTERM and SIGKILL> :return: """ pids = get_flat_process_tree(parent_pid) logger.info("Process tree: %s" % ','.join(pids)) try: kill_pids(pids, signal.SIGTERM) except Exception, e: logger.warn("Failed to kill PID %d" % parent_pid) logger.warn("Reported error: " + repr(e)) wait_for_entire_process_tree_death(pids) try: running_processes = get_processes_running(pids) if running_processes: process_names = map(lambda x: get_command_by_pid(x), running_processes) logger.warn("These PIDs %s did not die after SIGTERM, sending SIGKILL. Exact commands to be killed:\n %s" % (", ".join(running_processes), "\n".join(process_names))) kill_pids(running_processes, signal.SIGKILL) except Exception, e: logger.error("Failed to send SIGKILL to PID %d. Process exited?" % parent_pid) logger.error("Reported error: " + repr(e)) def _changeUid(): try: os.setuid(threadLocal.uid) except Exception: logger.warn("can not switch user for running command.") class shellRunnerLinux: # Run any command def run(self, script, user=None): try: if user != None: user = pwd.getpwnam(user)[2] else: user = os.getuid() threadLocal.uid = user except Exception: logger.warn("can not switch user for RUN_COMMAND.") code = 0 cmd = " " cmd = cmd.join(script) p = subprocess.Popen(cmd, preexec_fn=_changeUid, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, close_fds=True) out, err = p.communicate() code = p.wait() logger.debug("Exitcode for %s is %d" % (cmd, code)) return {'exitCode': code, 'output': out, 'error': err} def kill_process_with_children(parent_pid): if platform.system() == "Windows": _kill_process_with_children_windows(parent_pid) else: _kill_process_with_children_linux(parent_pid) if platform.system() == "Windows": shellRunner = shellRunnerWindows else: shellRunner = shellRunnerLinux
31.981366
115
0.689066
ac26e6819735de755fc895f321077fd6d0bb6fdb
11,670
py
Python
tensorflow/python/keras/engine/base_preprocessing_layer_test.py
plopresti/tensorflow
8b0c84d30d957596cbb3bcac9245e114c3f0b65b
[ "Apache-2.0" ]
2
2019-06-28T17:43:04.000Z
2019-06-28T17:43:07.000Z
tensorflow/python/keras/engine/base_preprocessing_layer_test.py
plopresti/tensorflow
8b0c84d30d957596cbb3bcac9245e114c3f0b65b
[ "Apache-2.0" ]
8
2019-07-08T10:09:18.000Z
2019-09-26T20:55:43.000Z
tensorflow/python/keras/engine/base_preprocessing_layer_test.py
plopresti/tensorflow
8b0c84d30d957596cbb3bcac9245e114c3f0b65b
[ "Apache-2.0" ]
1
2021-02-27T07:40:01.000Z
2021-02-27T07:40:01.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras' base preprocessing layer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import numpy as np from tensorflow.python import keras from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras.engine import base_preprocessing_layer from tensorflow.python.keras.engine import base_preprocessing_layer_v1 from tensorflow.python.ops import init_ops from tensorflow.python.platform import test from tensorflow.python.util import compat # Define a test-only implementation of CombinerPreprocessingLayer to validate # its correctness directly. class AddingPreprocessingLayer( base_preprocessing_layer.CombinerPreprocessingLayer): _SUM_NAME = "sum" def __init__(self, **kwargs): super(AddingPreprocessingLayer, self).__init__( combiner=self.AddingCombiner(), **kwargs) def build(self, input_shape): super(AddingPreprocessingLayer, self).build(input_shape) self._sum = self._add_state_variable( name=self._SUM_NAME, shape=(1,), dtype=dtypes.float32, initializer=init_ops.zeros_initializer) def set_total(self, sum_value): """This is an example of how a subclass would implement a direct setter. These methods should generally just create a dict mapping the correct names to the relevant passed values, and call self._set_state_variables() with the dict of data. Args: sum_value: The total to set. """ self._set_state_variables({self._SUM_NAME: [sum_value]}) def call(self, inputs): return inputs + self._sum # Define a Combiner for this layer class. class AddingCombiner(base_preprocessing_layer.Combiner): def compute(self, batch_values, accumulator=None): """Compute a step in this computation, returning a new accumulator.""" new_accumulator = 0 if batch_values is None else np.sum(batch_values) if accumulator is None: return new_accumulator else: return self.merge([accumulator, new_accumulator]) def merge(self, accumulators): """Merge several accumulators to a single accumulator.""" # Combine accumulators and return the result. result = accumulators[0] for accumulator in accumulators[1:]: result = np.sum([np.sum(result), np.sum(accumulator)]) return result def extract(self, accumulator): """Convert an accumulator into a dict of output values.""" # We have to add an additional dimension here because the weight shape # is (1,) not None. return {AddingPreprocessingLayer._SUM_NAME: [accumulator]} def restore(self, output): """Create an accumulator based on 'output'.""" # There is no special internal state here, so we just return the relevant # internal value. We take the [0] value here because the weight itself # is of the shape (1,) and we want the scalar contained inside it. return output[AddingPreprocessingLayer._SUM_NAME][0] def serialize(self, accumulator): """Serialize an accumulator for a remote call.""" return compat.as_bytes(json.dumps(accumulator)) def deserialize(self, encoded_accumulator): """Deserialize an accumulator received from 'serialize()'.""" return json.loads(compat.as_text(encoded_accumulator)) class AddingPreprocessingLayerV1( AddingPreprocessingLayer, base_preprocessing_layer_v1.CombinerPreprocessingLayer): pass def get_layer(): if context.executing_eagerly(): return AddingPreprocessingLayer() else: return AddingPreprocessingLayerV1() @keras_parameterized.run_all_keras_modes class PreprocessingLayerTest(keras_parameterized.TestCase): def test_adapt_list_fails(self): """Test that non-Dataset/Numpy inputs cause a reasonable error.""" input_dataset = [1, 2, 3, 4, 5] layer = get_layer() with self.assertRaisesRegex(ValueError, ".*a Dataset or a Numpy.*"): layer.adapt(input_dataset) def test_adapt_infinite_dataset_fails(self): """Test that preproc layers fail if an infinite dataset is passed.""" input_dataset = dataset_ops.Dataset.from_tensor_slices( np.array([[1], [2], [3], [4], [5], [0]])).repeat() layer = get_layer() with self.assertRaisesRegex(ValueError, ".*infinite number of elements.*"): layer.adapt(input_dataset) def test_pre_build_injected_update_with_no_build_fails(self): """Test external update injection before build() is called fails.""" input_dataset = np.array([1, 2, 3, 4, 5]) layer = get_layer() combiner = layer._combiner updates = combiner.extract(combiner.compute(input_dataset)) with self.assertRaisesRegex(RuntimeError, ".*called after build.*"): layer._set_state_variables(updates) def test_setter_update(self): """Test the prototyped setter method.""" input_data = keras.Input(shape=(1,)) layer = get_layer() output = layer(input_data) model = keras.Model(input_data, output) layer.set_total(15) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) def test_pre_build_adapt_update_numpy(self): """Test that preproc layers can adapt() before build() is called.""" input_dataset = np.array([1, 2, 3, 4, 5]) layer = get_layer() layer.adapt(input_dataset) input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) def test_post_build_adapt_update_numpy(self): """Test that preproc layers can adapt() after build() is called.""" input_dataset = np.array([1, 2, 3, 4, 5]) input_data = keras.Input(shape=(1,)) layer = get_layer() output = layer(input_data) model = keras.Model(input_data, output) layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) def test_pre_build_injected_update(self): """Test external update injection before build() is called.""" input_dataset = np.array([1, 2, 3, 4, 5]) layer = get_layer() combiner = layer._combiner updates = combiner.extract(combiner.compute(input_dataset)) layer.build((1,)) layer._set_state_variables(updates) input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) def test_post_build_injected_update(self): """Test external update injection after build() is called.""" input_dataset = np.array([1, 2, 3, 4, 5]) input_data = keras.Input(shape=(1,)) layer = get_layer() output = layer(input_data) model = keras.Model(input_data, output) combiner = layer._combiner updates = combiner.extract(combiner.compute(input_dataset)) layer._set_state_variables(updates) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) def test_pre_build_adapt_update_dataset(self): """Test that preproc layers can adapt() before build() is called.""" input_dataset = dataset_ops.Dataset.from_tensor_slices( np.array([[1], [2], [3], [4], [5], [0]])) layer = get_layer() layer.adapt(input_dataset) input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) def test_post_build_adapt_update_dataset(self): """Test that preproc layers can adapt() after build() is called.""" input_dataset = dataset_ops.Dataset.from_tensor_slices( np.array([[1], [2], [3], [4], [5], [0]])) input_data = keras.Input(shape=(1,)) layer = get_layer() output = layer(input_data) model = keras.Model(input_data, output) layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) def test_further_tuning(self): """Test that models can be tuned with multiple calls to 'adapt'.""" input_dataset = np.array([1, 2, 3, 4, 5]) layer = get_layer() layer.adapt(input_dataset) input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) layer.adapt(np.array([1, 2]), reset_state=False) self.assertAllEqual([[19], [20], [21]], model.predict([1, 2, 3])) def test_further_tuning_post_injection(self): """Test that models can be tuned with multiple calls to 'adapt'.""" input_dataset = np.array([1, 2, 3, 4, 5]) layer = get_layer() input_data = keras.Input(shape=(1,)) output = layer(input_data) model = keras.Model(input_data, output) combiner = layer._combiner updates = combiner.extract(combiner.compute(input_dataset)) layer._set_state_variables(updates) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) layer.adapt(np.array([1, 2]), reset_state=False) self.assertAllEqual([[19], [20], [21]], model.predict([1, 2, 3])) def test_weight_based_state_transfer(self): """Test that preproc layers can transfer state via get/set weights..""" def get_model(): input_data = keras.Input(shape=(1,)) layer = get_layer() output = layer(input_data) return (keras.Model(input_data, output), layer) input_dataset = np.array([1, 2, 3, 4, 5]) model, layer = get_model() layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) # Create a new model and verify it has no state carryover. weights = model.get_weights() model_2, _ = get_model() self.assertAllEqual([[1], [2], [3]], model_2.predict([1, 2, 3])) # Transfer state from model to model_2 via get/set weights. model_2.set_weights(weights) self.assertAllEqual([[16], [17], [18]], model_2.predict([1, 2, 3])) def test_weight_based_state_transfer_with_further_tuning(self): """Test that transferred state can be used to further tune a model..""" def get_model(): input_data = keras.Input(shape=(1,)) layer = get_layer() output = layer(input_data) return (keras.Model(input_data, output), layer) input_dataset = np.array([1, 2, 3, 4, 5]) model, layer = get_model() layer.adapt(input_dataset) self.assertAllEqual([[16], [17], [18]], model.predict([1, 2, 3])) # Transfer state from model to model_2 via get/set weights. weights = model.get_weights() model_2, layer_2 = get_model() model_2.set_weights(weights) # Further adapt this layer based on the transferred weights. layer_2.adapt(np.array([1, 2]), reset_state=False) self.assertAllEqual([[19], [20], [21]], model_2.predict([1, 2, 3])) if __name__ == "__main__": test.main()
34.835821
80
0.688003
e63c94670b9bf8a67224ad0c655103e180099a4e
161
py
Python
pythoscope/__init__.py
jmikedupont2/pythoscope
58a1149f204897e8f789d93ee7e49b6db0bd346f
[ "MIT" ]
2
2020-04-06T11:02:46.000Z
2020-05-14T18:37:04.000Z
pythoscope/__init__.py
jmikedupont2/pythoscope
58a1149f204897e8f789d93ee7e49b6db0bd346f
[ "MIT" ]
null
null
null
pythoscope/__init__.py
jmikedupont2/pythoscope
58a1149f204897e8f789d93ee7e49b6db0bd346f
[ "MIT" ]
null
null
null
import sys #from importlib import reload #reload(sys) #sys.setdefaultencoding("utf-8") from .cmdline import main, __version__ from .snippet import start, stop
17.888889
38
0.782609
b953806efd9a2a4c0e0eeab7503bb41eb686ba64
1,841
py
Python
SignLanguageRecognitionLearning/landmarkDetection.py
JanBinkowski/SignLanguageRecognition
9c111a77301aafd3d480fffbe73e6b86d65eaead
[ "MIT" ]
4
2021-11-13T20:40:26.000Z
2021-12-30T18:25:51.000Z
SignLanguageRecognitionLearning/landmarkDetection.py
JanBinkowski/SignLanguageRecognition
9c111a77301aafd3d480fffbe73e6b86d65eaead
[ "MIT" ]
null
null
null
SignLanguageRecognitionLearning/landmarkDetection.py
JanBinkowski/SignLanguageRecognition
9c111a77301aafd3d480fffbe73e6b86d65eaead
[ "MIT" ]
null
null
null
import cv2 import numpy as np import mediapipe as mp import cv2.cv2 import time import os import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense DATA_PATH = os.path.join('../MP_DATA') DATA_PATH_VIDEO = os.path.join('../MP_VIDEOS') actions = np.array(open('C://Users//JanBinkowski//Desktop//SignLanguageRecognition//classes.txt', 'r').read().split('\n')) number_of_sequences = 100 every_sequence_length = 30 mpHolistic = mp.solutions.holistic mpDrawing = mp.solutions.drawing_utils def mediapipeDetection(image_param, model): image = cv2.cvtColor(image_param, cv2.COLOR_BGR2RGB) image.flags.writeable = False results = model.process(image) image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) return image, results def drawLandmarks(image, results): mpDrawing.draw_landmarks(image, results.left_hand_landmarks, mpHolistic.HAND_CONNECTIONS, mpDrawing.DrawingSpec(color=(81, 23, 11), thickness=2, circle_radius=4), mpDrawing.DrawingSpec(color=(81, 45, 122), thickness=2, circle_radius=2)) mpDrawing.draw_landmarks(image, results.right_hand_landmarks, mpHolistic.HAND_CONNECTIONS, mpDrawing.DrawingSpec(color=(122, 23, 77), thickness=2, circle_radius=4), mpDrawing.DrawingSpec(color=(122, 45, 249), thickness=2, circle_radius=2)) def extractKeypoints(results): lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21*3) rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21*3) return np.concatenate([lh, rh])
43.833333
153
0.718088
c193cf543ab0209bfa058ded5d760fba5602ed42
899
py
Python
shop/cart/modifiers/rebate_modifiers.py
ionata-archive/django-shop
9197d71c038bd9b236e405fe8031993c09cf1514
[ "BSD-3-Clause" ]
null
null
null
shop/cart/modifiers/rebate_modifiers.py
ionata-archive/django-shop
9197d71c038bd9b236e405fe8031993c09cf1514
[ "BSD-3-Clause" ]
null
null
null
shop/cart/modifiers/rebate_modifiers.py
ionata-archive/django-shop
9197d71c038bd9b236e405fe8031993c09cf1514
[ "BSD-3-Clause" ]
null
null
null
#-*- coding: utf-8 -*- from decimal import Decimal from shop.cart.cart_modifiers_base import BaseCartModifier class BulkRebateModifier(BaseCartModifier): def add_extra_cart_item_price_field(self, cart_item): """ Add a rebate to a line item depending on the quantity ordered: This serves as an example mass rebate modifier: if you buy more than 5 items of the same kind, you get 10% off the bunch >>> cart_item.extra_price_fields.update({'Rebate': Decimal('10.0')}) """ REBATE_PERCENTAGE = Decimal('10') NUMBER_OF_ITEMS_TO_TRIGGER_REBATE = 5 if cart_item.quantity >= NUMBER_OF_ITEMS_TO_TRIGGER_REBATE: rebate = (REBATE_PERCENTAGE/100) * cart_item.line_subtotal to_append = ('Rebate', -rebate) cart_item.extra_price_fields.append(to_append) return cart_item
40.863636
76
0.670745
1e38ba3cc300a35717372d1d3204931ba401e76f
14,100
py
Python
isi_sdk_8_1_1/isi_sdk_8_1_1/models/providers_krb5_krb5_item.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_1_1/isi_sdk_8_1_1/models/providers_krb5_krb5_item.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_1_1/isi_sdk_8_1_1/models/providers_krb5_krb5_item.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 6 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from isi_sdk_8_1_1.models.providers_krb5_id_params_keytab_entry import ProvidersKrb5IdParamsKeytabEntry # noqa: F401,E501 class ProvidersKrb5Krb5Item(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'groupnet': 'str', 'id': 'str', 'keytab_entries': 'list[ProvidersKrb5IdParamsKeytabEntry]', 'keytab_file': 'str', 'manual_keying': 'bool', 'name': 'str', 'realm': 'str', 'recommended_spns': 'list[str]', 'status': 'str', 'system': 'bool', 'user': 'str' } attribute_map = { 'groupnet': 'groupnet', 'id': 'id', 'keytab_entries': 'keytab_entries', 'keytab_file': 'keytab_file', 'manual_keying': 'manual_keying', 'name': 'name', 'realm': 'realm', 'recommended_spns': 'recommended_spns', 'status': 'status', 'system': 'system', 'user': 'user' } def __init__(self, groupnet=None, id=None, keytab_entries=None, keytab_file=None, manual_keying=None, name=None, realm=None, recommended_spns=None, status=None, system=None, user=None): # noqa: E501 """ProvidersKrb5Krb5Item - a model defined in Swagger""" # noqa: E501 self._groupnet = None self._id = None self._keytab_entries = None self._keytab_file = None self._manual_keying = None self._name = None self._realm = None self._recommended_spns = None self._status = None self._system = None self._user = None self.discriminator = None if groupnet is not None: self.groupnet = groupnet if id is not None: self.id = id if keytab_entries is not None: self.keytab_entries = keytab_entries if keytab_file is not None: self.keytab_file = keytab_file if manual_keying is not None: self.manual_keying = manual_keying if name is not None: self.name = name if realm is not None: self.realm = realm if recommended_spns is not None: self.recommended_spns = recommended_spns if status is not None: self.status = status if system is not None: self.system = system if user is not None: self.user = user @property def groupnet(self): """Gets the groupnet of this ProvidersKrb5Krb5Item. # noqa: E501 Groupnet identifier. # noqa: E501 :return: The groupnet of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: str """ return self._groupnet @groupnet.setter def groupnet(self, groupnet): """Sets the groupnet of this ProvidersKrb5Krb5Item. Groupnet identifier. # noqa: E501 :param groupnet: The groupnet of this ProvidersKrb5Krb5Item. # noqa: E501 :type: str """ if groupnet is not None and len(groupnet) > 255: raise ValueError("Invalid value for `groupnet`, length must be less than or equal to `255`") # noqa: E501 if groupnet is not None and len(groupnet) < 0: raise ValueError("Invalid value for `groupnet`, length must be greater than or equal to `0`") # noqa: E501 self._groupnet = groupnet @property def id(self): """Gets the id of this ProvidersKrb5Krb5Item. # noqa: E501 Specifies the Kerberos provider ID. # noqa: E501 :return: The id of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this ProvidersKrb5Krb5Item. Specifies the Kerberos provider ID. # noqa: E501 :param id: The id of this ProvidersKrb5Krb5Item. # noqa: E501 :type: str """ if id is not None and len(id) > 255: raise ValueError("Invalid value for `id`, length must be less than or equal to `255`") # noqa: E501 if id is not None and len(id) < 0: raise ValueError("Invalid value for `id`, length must be greater than or equal to `0`") # noqa: E501 self._id = id @property def keytab_entries(self): """Gets the keytab_entries of this ProvidersKrb5Krb5Item. # noqa: E501 Specifies the key information for the Kerberos SPNs. # noqa: E501 :return: The keytab_entries of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: list[ProvidersKrb5IdParamsKeytabEntry] """ return self._keytab_entries @keytab_entries.setter def keytab_entries(self, keytab_entries): """Sets the keytab_entries of this ProvidersKrb5Krb5Item. Specifies the key information for the Kerberos SPNs. # noqa: E501 :param keytab_entries: The keytab_entries of this ProvidersKrb5Krb5Item. # noqa: E501 :type: list[ProvidersKrb5IdParamsKeytabEntry] """ self._keytab_entries = keytab_entries @property def keytab_file(self): """Gets the keytab_file of this ProvidersKrb5Krb5Item. # noqa: E501 Specifies the path to a keytab file to import. # noqa: E501 :return: The keytab_file of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: str """ return self._keytab_file @keytab_file.setter def keytab_file(self, keytab_file): """Sets the keytab_file of this ProvidersKrb5Krb5Item. Specifies the path to a keytab file to import. # noqa: E501 :param keytab_file: The keytab_file of this ProvidersKrb5Krb5Item. # noqa: E501 :type: str """ if keytab_file is not None and len(keytab_file) > 4096: raise ValueError("Invalid value for `keytab_file`, length must be less than or equal to `4096`") # noqa: E501 if keytab_file is not None and len(keytab_file) < 0: raise ValueError("Invalid value for `keytab_file`, length must be greater than or equal to `0`") # noqa: E501 self._keytab_file = keytab_file @property def manual_keying(self): """Gets the manual_keying of this ProvidersKrb5Krb5Item. # noqa: E501 If true, keys are managed manually. If false, keys are managed through kadmin. # noqa: E501 :return: The manual_keying of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: bool """ return self._manual_keying @manual_keying.setter def manual_keying(self, manual_keying): """Sets the manual_keying of this ProvidersKrb5Krb5Item. If true, keys are managed manually. If false, keys are managed through kadmin. # noqa: E501 :param manual_keying: The manual_keying of this ProvidersKrb5Krb5Item. # noqa: E501 :type: bool """ self._manual_keying = manual_keying @property def name(self): """Gets the name of this ProvidersKrb5Krb5Item. # noqa: E501 Specifies the Kerberos provider name. # noqa: E501 :return: The name of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ProvidersKrb5Krb5Item. Specifies the Kerberos provider name. # noqa: E501 :param name: The name of this ProvidersKrb5Krb5Item. # noqa: E501 :type: str """ if name is not None and len(name) > 255: raise ValueError("Invalid value for `name`, length must be less than or equal to `255`") # noqa: E501 if name is not None and len(name) < 0: raise ValueError("Invalid value for `name`, length must be greater than or equal to `0`") # noqa: E501 self._name = name @property def realm(self): """Gets the realm of this ProvidersKrb5Krb5Item. # noqa: E501 Specifies the name of realm. # noqa: E501 :return: The realm of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: str """ return self._realm @realm.setter def realm(self, realm): """Sets the realm of this ProvidersKrb5Krb5Item. Specifies the name of realm. # noqa: E501 :param realm: The realm of this ProvidersKrb5Krb5Item. # noqa: E501 :type: str """ if realm is not None and len(realm) > 255: raise ValueError("Invalid value for `realm`, length must be less than or equal to `255`") # noqa: E501 if realm is not None and len(realm) < 0: raise ValueError("Invalid value for `realm`, length must be greater than or equal to `0`") # noqa: E501 self._realm = realm @property def recommended_spns(self): """Gets the recommended_spns of this ProvidersKrb5Krb5Item. # noqa: E501 Specifies the recommended SPNs. # noqa: E501 :return: The recommended_spns of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: list[str] """ return self._recommended_spns @recommended_spns.setter def recommended_spns(self, recommended_spns): """Sets the recommended_spns of this ProvidersKrb5Krb5Item. Specifies the recommended SPNs. # noqa: E501 :param recommended_spns: The recommended_spns of this ProvidersKrb5Krb5Item. # noqa: E501 :type: list[str] """ self._recommended_spns = recommended_spns @property def status(self): """Gets the status of this ProvidersKrb5Krb5Item. # noqa: E501 Specifies the status of the provider. # noqa: E501 :return: The status of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this ProvidersKrb5Krb5Item. Specifies the status of the provider. # noqa: E501 :param status: The status of this ProvidersKrb5Krb5Item. # noqa: E501 :type: str """ if status is not None and len(status) > 255: raise ValueError("Invalid value for `status`, length must be less than or equal to `255`") # noqa: E501 if status is not None and len(status) < 0: raise ValueError("Invalid value for `status`, length must be greater than or equal to `0`") # noqa: E501 self._status = status @property def system(self): """Gets the system of this ProvidersKrb5Krb5Item. # noqa: E501 If true, indicates that this provider instance was created by OneFS and cannot be removed # noqa: E501 :return: The system of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: bool """ return self._system @system.setter def system(self, system): """Sets the system of this ProvidersKrb5Krb5Item. If true, indicates that this provider instance was created by OneFS and cannot be removed # noqa: E501 :param system: The system of this ProvidersKrb5Krb5Item. # noqa: E501 :type: bool """ self._system = system @property def user(self): """Gets the user of this ProvidersKrb5Krb5Item. # noqa: E501 Specifies the name of the user that performs kadmin tasks. # noqa: E501 :return: The user of this ProvidersKrb5Krb5Item. # noqa: E501 :rtype: str """ return self._user @user.setter def user(self, user): """Sets the user of this ProvidersKrb5Krb5Item. Specifies the name of the user that performs kadmin tasks. # noqa: E501 :param user: The user of this ProvidersKrb5Krb5Item. # noqa: E501 :type: str """ if user is not None and len(user) > 255: raise ValueError("Invalid value for `user`, length must be less than or equal to `255`") # noqa: E501 if user is not None and len(user) < 0: raise ValueError("Invalid value for `user`, length must be greater than or equal to `0`") # noqa: E501 self._user = user def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ProvidersKrb5Krb5Item): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
33.176471
203
0.609645
27b222b6028081725f25826a990984fb5c12a0ad
1,398
py
Python
socket-server.py
edlane/python-debug-harness
45a98df0d9b2ba5164209c2a873f68f3bae96402
[ "Apache-2.0" ]
null
null
null
socket-server.py
edlane/python-debug-harness
45a98df0d9b2ba5164209c2a873f68f3bae96402
[ "Apache-2.0" ]
null
null
null
socket-server.py
edlane/python-debug-harness
45a98df0d9b2ba5164209c2a873f68f3bae96402
[ "Apache-2.0" ]
null
null
null
import sys import socket import threading import SocketServer class ThreadedTCPRequestHandler(SocketServer.BaseRequestHandler): def handle(self): data = self.request.recv(1024) cur_thread = threading.current_thread() response = "{}: {}".format(cur_thread.name, data) self.request.sendall(response) class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer): pass def client(ip, port, message): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((ip, port)) try: sock.sendall(message) response = sock.recv(1024) # print "Received: {}".format(response) finally: sock.close() if __name__ == "__main__": # Port 0 means to select an arbitrary unused port HOST, PORT = "localhost", 0 server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler) ip, port = server.server_address # Start a thread with the server -- that thread will then start one # more thread for each request server_thread = threading.Thread(target=server.serve_forever) # Exit the server thread when the main thread terminates server_thread.daemon = True server_thread.start() print "Server loop running in thread:", server_thread.name for x in xrange(0, int(sys.argv[1])): client(ip, port, "Hello World " + str(x)) server.shutdown()
30.391304
77
0.690987
f17e40ed6efff60d12f36143476fb6deb83f6f8c
1,103
py
Python
SimGeneral/Debugging/test/runSimDigiDumper_cfg.py
gputtley/cmssw
c1ef8454804e4ebea8b65f59c4a952a6c94fde3b
[ "Apache-2.0" ]
3
2018-08-24T19:10:26.000Z
2019-02-19T11:45:32.000Z
SimGeneral/Debugging/test/runSimDigiDumper_cfg.py
gputtley/cmssw
c1ef8454804e4ebea8b65f59c4a952a6c94fde3b
[ "Apache-2.0" ]
26
2018-10-30T12:47:58.000Z
2022-03-29T08:39:00.000Z
SimGeneral/Debugging/test/runSimDigiDumper_cfg.py
p2l1pfp/cmssw
9bda22bf33ecf18dd19a3af2b3a8cbdb1de556a9
[ "Apache-2.0" ]
5
2018-08-21T16:37:52.000Z
2020-01-09T13:33:17.000Z
import FWCore.ParameterSet.Config as cms process = cms.Process("SimDigiDump") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.load("SimGeneral.HepPDTESSource.pythiapdt_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('file:myfile.root') ) process.prod = cms.EDAnalyzer("SimDigiDumper", MuCSCStripSrc = cms.InputTag("simMuonCSCDigis","MuonCSCStripDigi"), MuDTSrc = cms.InputTag("simMuonDTDigis"), HCalDigi = cms.InputTag("simHcalDigis"), ZdcDigi = cms.InputTag("simHcalUnsuppressedDigis"), MuCSCWireSrc = cms.InputTag("simMuonCSCDigis","MuonCSCWireDigi"), ECalEESrc = cms.InputTag("simEcalDigis","eeDigis"), SiStripSrc = cms.InputTag("simSiStripDigis","ZeroSuppressed"), SiPxlSrc = cms.InputTag("simSiPixelDigis"), ECalEBSrc = cms.InputTag("simEcalDigis","ebDigis"), ECalESSrc = cms.InputTag("simEcalPreshowerDigis"), MuRPCSrc = cms.InputTag("simMuonRPCDigis") ) process.p1 = cms.Path(process.prod)
34.46875
79
0.726201
cb08ae274a5819afe9e7dd6d360926696844e503
5,042
py
Python
nlpsandbox/exceptions.py
Sage-Bionetworks/nlp-sandbox-client
e51720b35ca3413ccee71b9cdc223ce3578fe0fd
[ "Apache-2.0" ]
3
2021-06-15T16:36:10.000Z
2021-11-15T01:44:46.000Z
nlpsandbox/exceptions.py
nlpsandbox/nlpsandbox-client
8cba4f65ff2c06cbef7dc50f45b0aec9b8ee0476
[ "Apache-2.0" ]
165
2020-11-23T00:36:40.000Z
2022-03-24T00:53:59.000Z
nlpsandbox/exceptions.py
data2health/nlp-sandbox-evaluation
e51720b35ca3413ccee71b9cdc223ce3578fe0fd
[ "Apache-2.0" ]
3
2020-12-11T00:04:13.000Z
2022-01-03T16:59:10.000Z
""" NLP Sandbox API NLP Sandbox REST API # noqa: E501 The version of the OpenAPI document: 1.2.0 Contact: team@nlpsandbox.io Generated by: https://openapi-generator.tech """ class OpenApiException(Exception): """The base exception class for all OpenAPIExceptions""" class ApiTypeError(OpenApiException, TypeError): def __init__(self, msg, path_to_item=None, valid_classes=None, key_type=None): """ Raises an exception for TypeErrors Args: msg (str): the exception message Keyword Args: path_to_item (list): a list of keys an indices to get to the current_item None if unset valid_classes (tuple): the primitive classes that current item should be an instance of None if unset key_type (bool): False if our value is a value in a dict True if it is a key in a dict False if our item is an item in a list None if unset """ self.path_to_item = path_to_item self.valid_classes = valid_classes self.key_type = key_type full_msg = msg if path_to_item: full_msg = "{0} at {1}".format(msg, render_path(path_to_item)) super(ApiTypeError, self).__init__(full_msg) class ApiValueError(OpenApiException, ValueError): def __init__(self, msg, path_to_item=None): """ Args: msg (str): the exception message Keyword Args: path_to_item (list) the path to the exception in the received_data dict. None if unset """ self.path_to_item = path_to_item full_msg = msg if path_to_item: full_msg = "{0} at {1}".format(msg, render_path(path_to_item)) super(ApiValueError, self).__init__(full_msg) class ApiAttributeError(OpenApiException, AttributeError): def __init__(self, msg, path_to_item=None): """ Raised when an attribute reference or assignment fails. Args: msg (str): the exception message Keyword Args: path_to_item (None/list) the path to the exception in the received_data dict """ self.path_to_item = path_to_item full_msg = msg if path_to_item: full_msg = "{0} at {1}".format(msg, render_path(path_to_item)) super(ApiAttributeError, self).__init__(full_msg) class ApiKeyError(OpenApiException, KeyError): def __init__(self, msg, path_to_item=None): """ Args: msg (str): the exception message Keyword Args: path_to_item (None/list) the path to the exception in the received_data dict """ self.path_to_item = path_to_item full_msg = msg if path_to_item: full_msg = "{0} at {1}".format(msg, render_path(path_to_item)) super(ApiKeyError, self).__init__(full_msg) class ApiException(OpenApiException): def __init__(self, status=None, reason=None, http_resp=None): if http_resp: self.status = http_resp.status self.reason = http_resp.reason self.body = http_resp.data self.headers = http_resp.getheaders() else: self.status = status self.reason = reason self.body = None self.headers = None def __str__(self): """Custom error messages for exception""" error_message = "({0})\n"\ "Reason: {1}\n".format(self.status, self.reason) if self.headers: error_message += "HTTP response headers: {0}\n".format( self.headers) if self.body: error_message += "HTTP response body: {0}\n".format(self.body) return error_message class NotFoundException(ApiException): def __init__(self, status=None, reason=None, http_resp=None): super(NotFoundException, self).__init__(status, reason, http_resp) class UnauthorizedException(ApiException): def __init__(self, status=None, reason=None, http_resp=None): super(UnauthorizedException, self).__init__(status, reason, http_resp) class ForbiddenException(ApiException): def __init__(self, status=None, reason=None, http_resp=None): super(ForbiddenException, self).__init__(status, reason, http_resp) class ServiceException(ApiException): def __init__(self, status=None, reason=None, http_resp=None): super(ServiceException, self).__init__(status, reason, http_resp) def render_path(path_to_item): """Returns a string representation of a path""" result = "" for pth in path_to_item: if isinstance(pth, int): result += "[{0}]".format(pth) else: result += "['{0}']".format(pth) return result
31.31677
78
0.599564
8fb2af576f4d78fa3c8f6c22b27c2e6e6aba133a
5,921
py
Python
cart_venv/Lib/site-packages/tensorflow_estimator/_api/v2/estimator/__init__.py
juice1000/Synchronous-vs-Asynchronous-Learning-Tensorflow-
654be60f7986ac9bb7ce1d080ddee377c3389f93
[ "MIT" ]
2
2019-08-04T20:28:14.000Z
2019-10-27T23:26:42.000Z
cart_venv/Lib/site-packages/tensorflow_estimator/_api/v2/estimator/__init__.py
juice1000/Synchronous-vs-Asynchronous-Learning-Tensorflow-
654be60f7986ac9bb7ce1d080ddee377c3389f93
[ "MIT" ]
null
null
null
cart_venv/Lib/site-packages/tensorflow_estimator/_api/v2/estimator/__init__.py
juice1000/Synchronous-vs-Asynchronous-Learning-Tensorflow-
654be60f7986ac9bb7ce1d080ddee377c3389f93
[ "MIT" ]
1
2020-11-04T03:16:29.000Z
2020-11-04T03:16:29.000Z
# This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """Estimator: High level tools for working with models. """ from __future__ import print_function as _print_function import sys as _sys from tensorflow_estimator._api.v2.estimator import experimental from tensorflow_estimator._api.v2.estimator import export from tensorflow_estimator.python.estimator.canned.baseline import BaselineClassifierV2 as BaselineClassifier from tensorflow_estimator.python.estimator.canned.baseline import BaselineEstimatorV2 as BaselineEstimator from tensorflow_estimator.python.estimator.canned.baseline import BaselineRegressorV2 as BaselineRegressor from tensorflow_estimator.python.estimator.canned.baseline import ModeKeys from tensorflow_estimator.python.estimator.canned.boosted_trees import BoostedTreesClassifier from tensorflow_estimator.python.estimator.canned.boosted_trees import BoostedTreesEstimator from tensorflow_estimator.python.estimator.canned.boosted_trees import BoostedTreesRegressor from tensorflow_estimator.python.estimator.canned.dnn import DNNClassifierV2 as DNNClassifier from tensorflow_estimator.python.estimator.canned.dnn import DNNEstimatorV2 as DNNEstimator from tensorflow_estimator.python.estimator.canned.dnn import DNNRegressorV2 as DNNRegressor from tensorflow_estimator.python.estimator.canned.dnn_linear_combined import DNNLinearCombinedClassifierV2 as DNNLinearCombinedClassifier from tensorflow_estimator.python.estimator.canned.dnn_linear_combined import DNNLinearCombinedEstimatorV2 as DNNLinearCombinedEstimator from tensorflow_estimator.python.estimator.canned.dnn_linear_combined import DNNLinearCombinedRegressorV2 as DNNLinearCombinedRegressor from tensorflow_estimator.python.estimator.canned.linear import LinearClassifierV2 as LinearClassifier from tensorflow_estimator.python.estimator.canned.linear import LinearEstimatorV2 as LinearEstimator from tensorflow_estimator.python.estimator.canned.linear import LinearRegressorV2 as LinearRegressor from tensorflow_estimator.python.estimator.canned.parsing_utils import classifier_parse_example_spec_v2 as classifier_parse_example_spec from tensorflow_estimator.python.estimator.canned.parsing_utils import regressor_parse_example_spec_v2 as regressor_parse_example_spec from tensorflow_estimator.python.estimator.estimator import EstimatorV2 as Estimator from tensorflow_estimator.python.estimator.estimator import VocabInfo from tensorflow_estimator.python.estimator.estimator import WarmStartSettings from tensorflow_estimator.python.estimator.exporter import BestExporter from tensorflow_estimator.python.estimator.exporter import Exporter from tensorflow_estimator.python.estimator.exporter import FinalExporter from tensorflow_estimator.python.estimator.exporter import LatestExporter from tensorflow_estimator.python.estimator.extenders import add_metrics from tensorflow_estimator.python.estimator.head.base_head import Head from tensorflow_estimator.python.estimator.head.binary_class_head import BinaryClassHead from tensorflow_estimator.python.estimator.head.multi_class_head import MultiClassHead from tensorflow_estimator.python.estimator.head.multi_head import MultiHead from tensorflow_estimator.python.estimator.head.multi_label_head import MultiLabelHead from tensorflow_estimator.python.estimator.head.regression_head import LogisticRegressionHead from tensorflow_estimator.python.estimator.head.regression_head import PoissonRegressionHead from tensorflow_estimator.python.estimator.head.regression_head import RegressionHead from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import CheckpointSaverHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import CheckpointSaverListener from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import FeedFnHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import FinalOpsHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import GlobalStepWaiterHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import LoggingTensorHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import NanLossDuringTrainingError from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import NanTensorHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import ProfilerHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import SecondOrStepTimer from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import StepCounterHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import StopAtStepHook from tensorflow_estimator.python.estimator.hooks.basic_session_run_hooks import SummarySaverHook from tensorflow_estimator.python.estimator.hooks.session_run_hook import SessionRunArgs from tensorflow_estimator.python.estimator.hooks.session_run_hook import SessionRunContext from tensorflow_estimator.python.estimator.hooks.session_run_hook import SessionRunHook from tensorflow_estimator.python.estimator.hooks.session_run_hook import SessionRunValues from tensorflow_estimator.python.estimator.model_fn import EstimatorSpec from tensorflow_estimator.python.estimator.run_config import RunConfig from tensorflow_estimator.python.estimator.training import EvalSpec from tensorflow_estimator.python.estimator.training import TrainSpec from tensorflow_estimator.python.estimator.training import train_and_evaluate del _print_function from tensorflow.python.util import module_wrapper as _module_wrapper if not isinstance(_sys.modules[__name__], _module_wrapper.TFModuleWrapper): _sys.modules[__name__] = _module_wrapper.TFModuleWrapper( _sys.modules[__name__], "estimator", public_apis=None, deprecation=False, has_lite=False)
76.896104
137
0.898497
97b30df027910dc253773d37c64f3ab44defc5b4
484
py
Python
src/third_party/snappy.py
spencerjackson/mongo
51c46e71c9f310fc91168c0945ffa6cfc00d380b
[ "Apache-2.0" ]
null
null
null
src/third_party/snappy.py
spencerjackson/mongo
51c46e71c9f310fc91168c0945ffa6cfc00d380b
[ "Apache-2.0" ]
null
null
null
src/third_party/snappy.py
spencerjackson/mongo
51c46e71c9f310fc91168c0945ffa6cfc00d380b
[ "Apache-2.0" ]
null
null
null
def configure( env , fileLists , options ): myenv = env.Clone() if not options["windows"]: myenv.Append(CPPFLAGS=" -Wno-sign-compare -Wno-unused-function ") #snappy doesn't compile cleanly files = ["$BUILD_DIR/third_party/snappy/snappy.cc", "$BUILD_DIR/third_party/snappy/snappy-sinksource.cc"] fileLists["serverOnlyFiles"] += [ myenv.Object(f) for f in files ] def configureSystem( env , fileLists , options ): configure( env , fileLists , options )
34.571429
109
0.690083
dba01925051ab301755dd4a749b5f493af6ff92e
10,344
py
Python
src/settings.py
rdococ/lykos
fec1b361a6a539c997366a6536b2fcfbcfb1953a
[ "BSD-2-Clause" ]
null
null
null
src/settings.py
rdococ/lykos
fec1b361a6a539c997366a6536b2fcfbcfb1953a
[ "BSD-2-Clause" ]
null
null
null
src/settings.py
rdococ/lykos
fec1b361a6a539c997366a6536b2fcfbcfb1953a
[ "BSD-2-Clause" ]
null
null
null
import fnmatch import re import threading from collections import OrderedDict LANGUAGE = 'en' MINIMUM_WAIT = 60 EXTRA_WAIT = 30 EXTRA_WAIT_JOIN = 0 # Add this many seconds to the waiting time for each !join WAIT_AFTER_JOIN = 25 # Wait at least this many seconds after the last join # token bucket for the IRC client; 1 token = 1 message sent to IRC # Run the bot with --lagtest to receive settings recommendations for this IRC_TB_INIT = 23 # initial number of tokens IRC_TB_DELAY = 1.73 # wait time between adding tokens IRC_TB_BURST = 23 # maximum number of tokens that can be accumulated # !wait uses a token bucket WAIT_TB_INIT = 2 # initial number of tokens WAIT_TB_DELAY = 240 # wait time between adding tokens WAIT_TB_BURST = 3 # maximum number of tokens that can be accumulated STATS_RATE_LIMIT = 60 VOTES_RATE_LIMIT = 60 ADMINS_RATE_LIMIT = 300 GSTATS_RATE_LIMIT = 0 PSTATS_RATE_LIMIT = 0 RSTATS_RATE_LIMIT = 0 TIME_RATE_LIMIT = 10 START_RATE_LIMIT = 10 # (per-user) WAIT_RATE_LIMIT = 10 # (per-user) GOAT_RATE_LIMIT = 300 # (per-user) MIN_PLAYERS = 4 MAX_PLAYERS = 24 NIGHT_TIME_LIMIT = 120 NIGHT_TIME_WARN = 90 # should be less than NIGHT_TIME_LIMIT DAY_TIME_LIMIT = 720 DAY_TIME_WARN = 600 # should be less than DAY_TIME_LIMIT JOIN_TIME_LIMIT = 3600 # May only be set if the above are also set SHORT_DAY_PLAYERS = 6 # Number of players left to have a short day SHORT_DAY_LIMIT = 520 SHORT_DAY_WARN = 400 # If time lord dies, the timers get set to this instead (60s day, 30s night) TIME_LORD_DAY_LIMIT = 60 TIME_LORD_DAY_WARN = 45 TIME_LORD_NIGHT_LIMIT = 30 TIME_LORD_NIGHT_WARN = 0 KILL_IDLE_TIME = 300 WARN_IDLE_TIME = 180 PM_WARN_IDLE_TIME = 240 PART_GRACE_TIME = 30 QUIT_GRACE_TIME = 60 ACC_GRACE_TIME = 30 START_QUIT_DELAY = 10 # controls how many people it does in one /msg; only works for messages that are the same MAX_PRIVMSG_TARGETS = 4 # how many mode values can be specified at once; used only as fallback MODELIMIT = 3 QUIET_DEAD_PLAYERS = False DEVOICE_DURING_NIGHT = False ALWAYS_PM_ROLE = False QUIET_MODE = "q" # "q" or "b" QUIET_PREFIX = "" # "" or "~q:" ACCOUNT_PREFIX = "$a:" # "$a:" or "~a:" # The bot will automatically toggle those modes of people joining AUTO_TOGGLE_MODES = "" DEFAULT_EXPIRY = "30d" LEAVE_PENALTY = 1 LEAVE_EXPIRY = "30d" IDLE_PENALTY = 1 IDLE_EXPIRY = "30d" PART_PENALTY = 1 PART_EXPIRY = "30d" ACC_PENALTY = 1 ACC_EXPIRY = "30d" # Give penalties if idling night. # All other penalties take precedence over night penalties; only one penalty will be given per game. NIGHT_IDLE_PENALTY = 1 NIGHT_IDLE_EXPIRY = "14d" # If True, disallows adding stasis via !fstasis (requires warnings instead) RESTRICT_FSTASIS = True # The formatting of this sucks, sorry. This is used to automatically apply sanctions to warning levels # When a user crosses from below the min threshold to min or above points, the listed sanctions apply # Sanctions also apply while moving within the same threshold bracket (such as from min to max) # Valid sanctions are deny, stasis, scalestasis, and tempban # Scalestasis applies stasis equal to the formula ax^2 + bx + c, where x is the number of warning points # Tempban number can either be a duration (ending in d, h, or m) or a number meaning it expires when # warning points fall below that threshold. AUTO_SANCTION = ( #min max sanctions (6, 10, {"stasis": 1}), (11, 15, {"scalestasis": (0, 1, -8)}), (16, 16, {"tempban": 8}) ) # Send a message to deadchat or wolfchat when a user spectates them SPECTATE_NOTICE = True # Whether to include which user is doing the spectating in the message SPECTATE_NOTICE_USER = False # The following is a bitfield, and they can be mixed together # Defaults to none of these, can be changed on a per-game-mode basis RESTRICT_WOLFCHAT = 0x00 ### DO NOT CHANGE THESE! ### They are for easier code interpretation/modification RW_DISABLE_NIGHT = 0x01 # Disable during night (commands are still relayed) RW_DISABLE_DAY = 0x02 # Disable during day (commands are still relayed) RW_ONLY_KILL_CMD = 0x04 # Only relay kill commands when wolfchat is disabled RW_ONLY_SAME_CMD = 0x08 # Only relay commands to other people who have access to the same command RW_WOLVES_ONLY_CHAT = 0x10 # Non-wolves cannot participate in wolfchat (commands still relayed as applicable) RW_NO_INTERACTION = 0x20 # Do not relay commands to/from non-wolves regardless of other settings RW_REM_NON_WOLVES = 0x40 # Remove non-wolves from wolfchat entirely (can be killed, do not count towards wolf win condition, do not show in wolflist, etc.) RW_TRAITOR_NON_WOLF = 0x80 # Consider traitor as a non-wolf for the purposes of the above restrictions (if unset, traitor is treated the same as wolf cub) ENABLE_DEADCHAT = True # dead players can communicate with each other ABSTAIN_ENABLED = True # whether village can !abstain in order to not vote anyone during day LIMIT_ABSTAIN = True # if true, village will be limited to successfully !abstaining a vote only once SELF_LYNCH_ALLOWED = True HIDDEN_TRAITOR = True HIDDEN_AMNESIAC = False # amnesiac still shows as amnesiac if killed even after turning HIDDEN_CLONE = False GUARDIAN_ANGEL_CAN_GUARD_SELF = True START_WITH_DAY = False ROLE_REVEAL = "on" # on/off/team - what role information is shown on death STATS_TYPE = "default" # default/accurate/team/disabled - what role information is shown when doing !stats START_VOTES_SCALE = 0.3 START_VOTES_MAX = 4 # Debug mode settings, whether or not timers and stasis should apply during debug mode DISABLE_DEBUG_MODE_TIMERS = True DISABLE_DEBUG_MODE_TIME_LORD = False DISABLE_DEBUG_MODE_REAPER = True DISABLE_DEBUG_MODE_STASIS = True DEBUG_MODE_NOTHROW_MESSAGES = True # number of bullets a gunner role gets when the role is assigned or swapped in SHOTS_MULTIPLIER = { "gunner": 0.12, "sharpshooter": 0.06, "wolf gunner": 0.06 } # hit, miss, and headshot chances for each gunner role (explode = 1 - hit - miss) GUN_CHANCES = { "gunner": (15/20, 4/20, 4/20), # 75% hit, 20% miss, 5% explode, 20% headshot "sharpshooter": (1, 0, 1), # 100% hit, 0% miss, 0% explode, 100% headshot "wolf gunner": (14/20, 6/20, 12/20) # 70% hit, 30% miss, 0% explode, 60% headshot } # modifier applied to regular gun chances if the user is also drunk DRUNK_GUN_CHANCES = (-5/20, 4/20, -3/20) # -25% hit, +20% miss, +5% explode, -15% headshot DRUNK_SHOTS_MULTIPLIER = 3 GUNNER_KILLS_WOLF_AT_NIGHT_CHANCE = 1/4 # at night, the wolf can steal 1 bullet from the victim and become a wolf gunner # (will always be 1 bullet regardless of SHOTS_MULTIPLIER setting for wolf gunner above) WOLF_STEALS_GUN = True GUARDIAN_ANGEL_DIES_CHANCE = 0 BODYGUARD_DIES_CHANCE = 0 DETECTIVE_REVEALED_CHANCE = 2/5 FALLEN_ANGEL_KILLS_GUARDIAN_ANGEL_CHANCE = 1/2 AMNESIAC_NIGHTS = 3 # amnesiac gets to know their actual role on this night DOCTOR_IMMUNIZATION_MULTIPLIER = 0.135 # ceil(num_players * multiplier) = number of immunizations GAME_MODES = {} GAME_PHASES = ("night", "day") # all phases that constitute "in game", game modes can extend this with custom phases # IP address to bind to before connecting, or empty string to use OS default BINDHOST = "" # Disable CPRIVMSG/CNOTICE -- some ircds implicitly treat regular PRIVMSG and NOTICE as such, and support more # targets per message the normal way than with the explicit command DISABLE_CPRIVMSG = False SSL_VERIFY = True SSL_CERTFP = () # Tracking Mozilla's "intermediate" compatibility list -- https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28default.29 SSL_CIPHERS = ( # single string split over multiple lines - lack of commas intentional "ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-" "SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-" "SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:ECDHE-RSA-" "AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-CBC3-" "SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS" ) SSL_CERTFILE = None SSL_KEYFILE = None NICKSERV = "NickServ" NICKSERV_IDENTIFY_COMMAND = "IDENTIFY {account} {password}" NICKSERV_GHOST_COMMAND = "GHOST {nick}" NICKSERV_RELEASE_COMMAND = "RELEASE {nick}" NICKSERV_REGAIN_COMMAND = "REGAIN {nick}" CHANSERV = "ChanServ" CHANSERV_OP_COMMAND = "OP {channel}" GUEST_NICK_PATTERN = r"^Guest\d+$|^\d|away.+|.+away" LOG_CHANNEL = "" # Log !fwarns to this channel, if set LOG_PREFIX = "" # Message prefix for LOG_CHANNEL DEV_CHANNEL = "" DEV_PREFIX = "" # Data collection settings. lykos will send details about errors that happen to the lykos developers, # these settings control how much data is sent. Please see https://werewolf.chat/dc for more information. # These settings additionally impacts what data is written to the error log. TRACEBACK_VERBOSITY = 2 # 0 = no locals at all, 1 = innermost frame's locals, 2 = all locals USER_DATA_LEVEL = 0 # 0 = fully anonymize users, 1 = expose nick only, 2 = expose full hostmask, account, and channel membership CHANNEL_DATA_LEVEL = 0 # 0 = fully anonymize channels, 1 = expose channel name # How often to ping the server (in seconds) to detect unclean disconnection SERVER_PING_INTERVAL = 120 # The default role can be anything, but HIDDEN_ROLE must be either "villager" or "cultist"; # hidden roles are informed they are HIDDEN_ROLE (ergo that role should not have any abilities), # and win with that role's team. Seer sees all non-safe and non-cursed roles as HIDDEN_ROLE. DEFAULT_ROLE = "villager" HIDDEN_ROLE = "villager" # Roles listed here cannot be used in !fgame roles=blah. DISABLED_ROLES = frozenset() # Game modes that cannot be randomly picked or voted for DISABLED_GAMEMODES = frozenset() # Commands listed here cannot be used by anyone (even admins/owners) DISABLED_COMMANDS = frozenset() GIF_CHANCE = 1/50 ALL_FLAGS = frozenset("AaDdFgjmNpSsw") GRAVEYARD_LOCK = threading.RLock() WARNING_LOCK = threading.RLock() # vim: set sw=4 expandtab:
42.393443
157
0.763631
c3c8771817c94c8d52c3a981908a7fa7762951f9
274
py
Python
se34euca/runtest_view_page.py
eucalyptus/se34euca
af5da36754fccca84b7f260ba7605b8fdc30fa55
[ "BSD-2-Clause" ]
8
2015-01-08T21:06:08.000Z
2019-10-26T13:17:16.000Z
se34euca/runtest_view_page.py
eucalyptus/se34euca
af5da36754fccca84b7f260ba7605b8fdc30fa55
[ "BSD-2-Clause" ]
null
null
null
se34euca/runtest_view_page.py
eucalyptus/se34euca
af5da36754fccca84b7f260ba7605b8fdc30fa55
[ "BSD-2-Clause" ]
7
2016-08-31T07:02:21.000Z
2020-07-18T00:10:36.000Z
#!/usr/bin/python import se34euca from se34euca.testcase.testcase_view_page import testcase_view_page class ViewPage(se34euca.TestRunner): testcase = "check_login_and_logout" testclass = testcase_view_page if __name__ == "__main__": ViewPage().start_test()
19.571429
67
0.773723
8facf76fded2920425e3cd61578bb981c09fe709
1,794
py
Python
aerosandbox/visualization/plotly.py
raihaan123/AeroSandbox
1e7c78f04b066415f671237a4833ba98901bb9ec
[ "MIT" ]
322
2019-05-29T20:40:04.000Z
2022-03-29T12:46:45.000Z
aerosandbox/visualization/plotly.py
raihaan123/AeroSandbox
1e7c78f04b066415f671237a4833ba98901bb9ec
[ "MIT" ]
55
2019-07-14T09:52:59.000Z
2022-03-28T16:02:21.000Z
aerosandbox/visualization/plotly.py
raihaan123/AeroSandbox
1e7c78f04b066415f671237a4833ba98901bb9ec
[ "MIT" ]
68
2019-06-02T09:57:26.000Z
2022-03-28T15:03:47.000Z
import plotly.express as px import plotly.graph_objects as go import plotly.io as pio import aerosandbox.numpy as np # Set the rendering to happen in browser pio.renderers.default = "browser" def spy( matrix, show=True, ): """ Plots the sparsity pattern of a matrix. :param matrix: The matrix to plot the sparsity pattern of. [2D ndarray or CasADi array] :param show: Whether or not to show the sparsity plot. [boolean] :return: The figure to be plotted [go.Figure] """ try: matrix = matrix.toarray() except: pass abs_m = np.abs(matrix) sparsity_pattern = abs_m >= 1e-16 matrix[sparsity_pattern] = np.log10(abs_m[sparsity_pattern] + 1e-16) j_index_map, i_index_map = np.meshgrid(np.arange(matrix.shape[1]), np.arange(matrix.shape[0])) i_index = i_index_map[sparsity_pattern] j_index = j_index_map[sparsity_pattern] val = matrix[sparsity_pattern] val = np.ones_like(i_index) fig = go.Figure( data=go.Heatmap( y=i_index, x=j_index, z=val, # type='heatmap', colorscale='RdBu', showscale=False, ), ) fig.update_layout( plot_bgcolor="black", xaxis=dict(showgrid=False, zeroline=False), yaxis=dict(showgrid=False, zeroline=False, autorange="reversed", scaleanchor="x", scaleratio=1), width=800, height=800 * (matrix.shape[0] / matrix.shape[1]), ) if show: fig.show() return fig def plot_point_cloud( p # type: np.ndarray ): """ Plots an Nx3 point cloud with Plotly :param p: An Nx3 array of points to be plotted. :return: None """ p = np.array(p) px.scatter_3d(x=p[:, 0], y=p[:, 1], z=p[:, 2]).show()
27.6
104
0.61427
5a77156150e573812b9dcfb2554339685692d6f3
2,544
py
Python
app/app.py
paulrinckens/han_for_doc_classification
2131e383f8bb779ae33ca658de9f9f66391bea74
[ "MIT" ]
3
2020-05-01T10:59:40.000Z
2020-12-01T14:41:19.000Z
app/app.py
paulrinckens/han_for_doc_classification
2131e383f8bb779ae33ca658de9f9f66391bea74
[ "MIT" ]
3
2020-11-13T18:48:49.000Z
2022-02-10T01:55:04.000Z
app/app.py
paulrinckens/han_for_doc_classification
2131e383f8bb779ae33ca658de9f9f66391bea74
[ "MIT" ]
1
2020-06-04T08:00:23.000Z
2020-06-04T08:00:23.000Z
import base64 from io import BytesIO import matplotlib.colors import numpy as np from fastapi import FastAPI, Request from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from han.HAN import HAN app = FastAPI() app.mount("/app/static", StaticFiles(directory="app/static"), name="static") templates = Jinja2Templates(directory="app/templates") han = HAN() han.load_model(model_dir="./models", model_filename="han-10kGNAD.h5", tokenizer_filename="tokenizer.pickle") class_names = ['Etat', 'Inland', 'International', 'Kultur', 'Panorama', 'Sport', 'Web', 'Wirtschaft', 'Wissenschaft'] @app.get("/predict") async def predict(text: str): probs = han.predict([text])[0] return dict({class_names[i]: float(probs[i]) for i in range(len(probs))}) @app.get("/visualize") async def visualize(request: Request, text: str): probs, attentions = han.predict_and_visualize_attention(text) prediction = class_names[np.argmax(probs)] fig = Figure(figsize=(5, 2), tight_layout=True) ax = fig.add_subplot(1, 1, 1) y_pos = np.arange(len(class_names)) confidences = [probs[i] for i in range(len(class_names))] ax.barh(y_pos, confidences, align='center') ax.set_yticks(y_pos) ax.set_yticklabels(class_names) ax.invert_yaxis() # labels read top-to-bottom ax.set_xlabel('Confidence') output = BytesIO() FigureCanvas(fig).print_png(output) out = base64.b64encode(output.getvalue()).decode() # weigh word attentions by sqrt of sentence attention for sent in attentions: for word in sent[1]: word[0] *= np.sqrt(sent[0]) return templates.TemplateResponse("han_template.html", {"request": request, "prediction": prediction, "attentions": attentions, "red_background_hex": red_background_hex, "blue_background_hex": blue_background_hex, "plot_url": out}) def scale_color_h_hex(c_h, scale): return matplotlib.colors.to_hex( matplotlib.colors.hsv_to_rgb((c_h, scale, 1))) def red_background_hex(scale): return scale_color_h_hex(0, scale) def blue_background_hex(scale): return scale_color_h_hex(0.625, scale)
31.8
82
0.648585
25dc4c3d3dc1d7545e66b30fe1e7895ef3503121
9,803
py
Python
util/tracklist.py
MeKLiN2/TinyChatBot
606c792c2390ef40bfb9ed9277bbe638e1248342
[ "MIT" ]
18
2017-10-25T20:14:26.000Z
2022-01-16T05:56:31.000Z
util/tracklist.py
MeKLiN2/TinyChatBot
606c792c2390ef40bfb9ed9277bbe638e1248342
[ "MIT" ]
26
2017-10-25T17:58:44.000Z
2019-07-26T06:01:08.000Z
util/tracklist.py
MeKLiN2/TinyChatBot
606c792c2390ef40bfb9ed9277bbe638e1248342
[ "MIT" ]
23
2018-01-12T01:50:23.000Z
2022-03-22T02:32:56.000Z
import time class Track: """ A class representing a track. """ def __init__(self, nick=None, **kwargs): self.owner = nick self.rq_time = time.time() self.id = kwargs.get('video_id') self.type = kwargs.get('type') self.title = kwargs.get('video_title') self.time = float(kwargs.get('video_time', 0)) self.image = kwargs.get('image') self.start_time = 0 self.pause_time = 0 class PlayList: """ Class to do various playlist operation with. """ def __init__(self): self.track_list = [] self.track_index = 0 self.current_track = None self.is_paused = False @property def track(self): """ Returns the current track in the track list. :return: The current Track or None if no track is being timed. :rtype: Track | None """ return self.current_track @property def current_index(self): """ Return the current track list index. :return: The current index of the track list. :rtype: int """ return self.track_index @property def last_index(self): """ Return the last index of the track list. :return: The last index in the track list. :rtype: int """ if len(self.track_list) == 0: return 0 else: return len(self.track_list) - 1 @property def has_active_track(self): """ Check if the track list has a active track based on time and pause state. :return: True if active else False. :rtype: bool """ if self.is_paused: return True if self.elapsed == 0: return False if self.elapsed > 0: return True return False @property def elapsed(self): """ Returns the current track elapsed time. :return: The elapsed track time in seconds. :rtype: int | float """ if self.current_track is not None: if self.is_paused: return self.current_track.pause_time elapsed = time.time() - self.current_track.start_time if elapsed > self.current_track.time: return 0 return elapsed return 0 @property def remaining(self): """ Returns the current track remaining time. :return: The remaining time in seconds. :rtype: int | float """ if self.current_track is not None: time_left = self.current_track.time - self.elapsed return time_left return 0 @property def next_track(self): """ Returns the next track in the track list :return: The next Track in the track list or None if the track list is empty. :rtype: Track | None """ if len(self.track_list) > 0: if self.track_index <= len(self.track_list): # self.last_index: next_track = self.track_list[self.track_index] self.current_track = next_track self.current_track.start_time = time.time() self.track_index += 1 return next_track return None @property def is_last_track(self): """ Check if the track list is at the last index. :return: True if last track list index, else False. None if the track list is empty. :rtype: bool | None """ if len(self.track_list) > 0: if self.track_index >= len(self.track_list): return True return False return None @property def queue(self): """ Return the queue of the track list. :return: The track list length and the remaining tracks. :rtype: tuple """ if len(self.track_list) > 0: remaining = len(self.track_list) - self.track_index queue = (len(self.track_list), remaining) return queue def start(self, owner, track): """ Start a track to be timed. :param owner: The nick of the user who started the track. :type owner: str :param track: The track data. :type track: dict :return: The track as a Track. :rtype: Track """ if self.is_paused: self.is_paused = False self.current_track = Track(owner, **track) self.current_track.start_time = time.time() return self.current_track def play(self, offset): """ Play or search a track. :param offset: The time in seconds to start playing from. :type offset: int | float :return: The remaining track time in seconds. :rtype: int | float """ if self.is_paused: self.is_paused = False self.current_track.start_time = time.time() - offset return self.remaining def replay(self): # TODO: check if this is working correct. """ Replay(re-time) the current track. :return: The current track. :rtype: Track """ if self.is_paused: self.is_paused = False self.current_track.start_time = time.time() return self.current_track def pause(self, offset=0): """ Pause a track. :param offset: The time in seconds to pause the track at. :type offset: int | float """ self.is_paused = True if offset != 0: self.current_track.pause_time = offset else: self.current_track.pause_time = time.time() - self.current_track.start_time def stop(self): """ Stop a track. """ self.is_paused = False self.current_track.start_time = 0 self.current_track.pause_time = 0 def add(self, owner, track): """ Add a track to the track list. :param owner: The nick name of the user adding the track. :type owner: str :param track: The track data. :type track: dict :return: The track as Track. :rtype: Track """ if track is not None: _track = Track(owner, **track) self.track_list.append(_track) return _track def add_list(self, owner, tracks): """ Add a list of track data to the track list. :param owner: The nick name of the user adding the tracks. :type owner: str :param tracks: A list of track data. :type tracks: list """ if len(tracks) > 0: for track in tracks: self.add(owner, track) def clear(self): """ Clear the track list for all items. :return: True if cleared successfully, else False. :rtype: bool """ if len(self.track_list) > 0: self.track_list[:] = [] self.track_index = 0 return True return False def get_tracks(self, amount=5, from_index=True): """ Get a list of Track's from the track list. :param amount: The amount of Track's to get. :type amount: int :param from_index: Get Track's from the current track list index. :type from_index: bool :return: A list of Track's. :rtype: list """ start_index = 0 result = list() if len(self.track_list) > 0: if from_index: start_index = self.track_index ic = 0 for i in range(start_index, len(self.track_list)): if ic <= amount - 1: _track = (i, self.track_list[i]) result.append(_track) ic += 1 return result def next_track_info(self, jump=0): """ Get the next Track object in the track list. :param jump: Instead of getting the next track, use this to jump in the track list. :type jump: int :return: The index of the Track and the Track. :rtype: tuple | None """ if jump != 0: if self.track_index + jump < len(self.track_list): return self.track_index + jump, self.track_list[self.track_index + jump] elif self.track_index < len(self.track_list): return self.track_index, self.track_list[self.track_index] def delete(self, indexes, by_range=False): """ Delete track list items by index. :param indexes: A list of indexes to delete. :type indexes: list :param by_range: Delete a range of indexes. :type by_range: bool :return: A dictionary containing information about the delete operation. :rtype: dict | None """ tracks = list(self.track_list) deleted_indexes = [] for i in sorted(indexes, reverse=True): if self.track_index <= i < len(self.track_list): del self.track_list[i] deleted_indexes.append(str(i)) deleted_indexes.reverse() if len(deleted_indexes) > 0: _result = dict() if by_range: _result['from'] = deleted_indexes[0] _result['to'] = deleted_indexes[-1] elif len(deleted_indexes) is 1: _result['track_title'] = tracks[int(deleted_indexes[0])].title _result['deleted_indexes'] = deleted_indexes _result['deleted_indexes_len'] = len(deleted_indexes) return _result return None
30.538941
92
0.545955
7caf390e85f91d2dfcb09449a9d71db842eab585
8,887
py
Python
steveBot.py
PikaBlue107/steve-content-warning
1157824a96163987afb2750a045a1fde27e8a2cb
[ "MIT" ]
1
2021-02-15T17:46:34.000Z
2021-02-15T17:46:34.000Z
steveBot.py
PikaBlue107/steve-content-warning
1157824a96163987afb2750a045a1fde27e8a2cb
[ "MIT" ]
null
null
null
steveBot.py
PikaBlue107/steve-content-warning
1157824a96163987afb2750a045a1fde27e8a2cb
[ "MIT" ]
null
null
null
#Discord import discord from discord.ext import commands from discord import errors #Error handling from pickle import UnpicklingError from json import JSONDecodeError #My files from steveIO import SteveIO from history import History AUTH_LOC = "auth.json" PACKAGE_LOC = "package.json" GUILDS_LOC = "guilds.pickle" #Create IO Object for loading and saving data io = SteveIO(auth_loc=AUTH_LOC, package_loc=PACKAGE_LOC, guilds_loc=GUILDS_LOC) #Error codes SUCCESS = 0 AUTH_MISSING = 1 AUTH_CORRUPT = 2 PACKAGE_MISSING = 3 PACKAGE_CORRUPT = 4 GUILDS_CORRUPT = 5 BAD_LOGIN = 6 try: auth_string = io.loadAuth() except FileNotFoundError: print("auth.json not found at filepath '" + AUTH_LOC + "'. Exiting...") exit(AUTH_MISSING) except JSONDecodeError: print(AUTH_LOC + " is unreadable by JSON. Please fix manually or by retrieving a new auth.json file. Exiting...") exit(AUTH_CORRUPT) try: package = io.loadPackage() except FileNotFoundError: print("package.json not found at filepath '" + PACKAGE_LOC + "'. Exiting...") exit(PACKAGE_MISSING) except JSONDecodeError: print(PACKAGE_LOC + " is unreadable by JSON. Please fix manually or by retrieving a new package.json file. Exiting...") exit(PACKAGE_CORRUPT) try: guilds = io.loadGuilds() except UnpicklingError: print(GUILDS_LOC + " is unreadable by Python Pickle. Remove guilds.pickle from destination '" + GUILDS_LOC + "' and then restart to generate a blank file. Exiting...") exit(GUILDS_CORRUPT) #Declare variables BOT_NAME = package["name"] BOT_VERSION = package["version"] BOT_DESC = package["description"] BOT_MAIN = package["main"] BOT_AUTHOR = package["author"] BOT_DEPENDENCIES = package["dependencies"] BOT_ID = 605836370749030490 TESTING_ID = 607087546333265920 OWNER_ID = 138461123899949057 BOT_COMMAND_PREFIX='>' cur_ctx = None #Initialize bot = commands.Bot(command_prefix=BOT_COMMAND_PREFIX, description = BOT_DESC, owner_id = OWNER_ID) def start(): try: bot.run(auth_string) except errors.LoginFailure: print("Login unsuccessful. Please provide a new login token in auth.json. Exiting...") exit(BAD_LOGIN) #Utility functions def register_guild(guild_id): print(guild_id) print(type(guild_id)) guilds[int(guild_id)] = { "whitelist": {}, "blacklist": {}, "whitelist_enable": False, "filters": {}, "bot_channel": None } print(guilds) io.save(guilds) def update_guild(guild): guild["bot_channel"] = None async def pp(str): print(str) await cur_ctx.send(str) def make_history(ctx, safeword=None): return History(time=ctx.message.created_at, user=ctx.author.id, nick=ctx.author.display_name, safeword=safeword) #possibly never to be used def remove_guild(guild_id): data.pop(guild_id) io.save(guilds) def parse_channel(ctx, argument): channel = ctx.channel channel_id = channel.id if argument is None: return channel elif argument.startswith("<#"): channel_id = int(argument.strip('<').strip('#').strip('>')) for channel in ctx.guild.channels: if channel.id == channel_id: return channel else: for channel in ctx.guild.channels: if channel.name == argument: return channel #Channel not found. return None # def is_not_me(): #TODO get working # print("hello?") # def predicate(ctx): # print(ctx.message.author.id, BOT_ID) # return ctx.message.author.id != BOT_ID # print("hi") # return commands.check(predicate) #TODO override close #async def close(self, return=ret): #COMMANDS @bot.command() async def ping(ctx): await ctx.send('pong') @bot.command() async def takecaresteve(ctx): await ctx.send('you too') @bot.command() #TODO delete_after? async def seelist(ctx, confirm=None): global cur_ctx cur_ctx = ctx guild_id = ctx.guild.id if guild_id in guilds.keys(): #TODO are you sure? filters = guilds[guild_id]["filters"] await pp(filters) else: await pp("No data for server '" + ctx.guild.name + "'") @bot.command() #TODO delete_after? async def add(ctx, keyword): global cur_ctx cur_ctx = ctx guild_id = ctx.guild.id if guild_id not in guilds: register_guild(guild_id) guilds[guild_id]["filters"][keyword] = make_history(ctx) io.save(guilds) await pp("Added keyword {} to filter list".format(keyword)) @bot.command() #TODO delete_after? async def remove(ctx, keyword): global cur_ctx cur_ctx = ctx guild_id = ctx.guild.id if guild_id not in guilds: await pp("No data for server '" + ctx.guild.name + "'") try: guilds[guild_id]["filters"].pop(keyword) await pp("Successfully removed word from filter list.") except ValueError: await pp("Word not found in filter list.") async def change_list(ctx, white, argument=None): async def whitelist_on(): guilds[guild_id]["whitelist_enable"] = True await pp("Whitelist mode enabled, blacklist off.") async def blacklist_on(): guilds[guild_id]["whitelist_enable"] = False await pp("Blacklist mode enabled, whitelist off.") async def register_channel(): channel = parse_channel(ctx, argument) if channel is not None: guilds[guild_id][string][channel.id] = history await pp('#' + channel.name + " added to " + string + ".") else: await pp("Unable to process command. Type a #channel-name, channel-name, or a setting such as 'on', 'off', 'toggle', or 'print'") global cur_ctx cur_ctx = ctx guild_id = ctx.guild.id if guild_id not in guilds: register_guild(guild_id) channel_id = ctx.channel.id history = make_history(ctx) string = "whitelist" if white else "blacklist" #">whitelist". Targets the current channel if argument is None: await register_channel() if argument == "print": #User wants to print the list of whitelists/blacklists print_list = [] for channel_id in guilds[guild_id][string]: for channel in ctx.guild.channels: if channel.id == channel_id: print_list.append('#'+channel.name) break await pp(print_list) elif argument.lower() == "on": await whitelist_on() if white else await blacklist_on() elif argument.lower() == "off": await blacklist_on() if white else await whitelist_on() elif argument.lower() == "toggle": if guilds[guild_id]["whitelist_enable"]: await blacklist_on() else: await whitelist_on() #">whitelist testing, >whitelist #testing". Searches for the specified channel through the current guild. else: await register_channel() io.save(guilds) @bot.command() async def whitelist(ctx, argument=None): await change_list(ctx=ctx, white=True, argument=argument) @bot.command() async def blacklist(ctx, argument=None): await change_list(ctx=ctx, white=False, argument=argument) @bot.listen("on_message") async def filter_message(msg): #TODO turn into decorations channel = msg.channel guild_id = channel.guild.id if msg.author.bot: return if channel.guild.id not in guilds: return if msg.content.startswith(BOT_COMMAND_PREFIX): return print(guilds[guild_id]["whitelist_enable"]) print(list(guilds[guild_id]["whitelist"].keys())) print(list(guilds[guild_id]["blacklist"].keys())) if guilds[guild_id]["whitelist_enable"]: if channel.id not in list(guilds[guild_id]["whitelist"].keys()): return else: if channel.id in list(guilds[guild_id]["blacklist"].keys()): return #Nested fucntion, inserts spoiler tags ||content|| around finter words def generate_message(str, filterIndex): new = "" index = 0 for filter in filterIndex: new = new + str[index:filter[0]] + "||" + str[filter[0]:filter[1]] + "||" index = filter[1] new = new + str[index:] print(new) return new #Scan for filter words filterIndex = [] for filter in guilds[guild_id]["filters"]: index = msg.content.upper().find(filter.upper()) if index > -1: filterIndex.append((index, index + len(filter))) if len(filterIndex) > 0: #Filter words found, enact filter protocol #Sort filtered words from the beginning of the message to the end filterIndex.sort() #Generate a reply message using generate_message nested function reply = generate_message(msg.content, filterIndex) #Get the user's profile picture and nickname path_user = msg.author.avatar_url nickname = msg.author.display_name #Create an Embed object with the user's filtered post embed = discord.Embed( description=reply, color=0xecce8b ) embed.set_author(name=nickname, icon_url=path_user) #Send message back to channel await channel.send(embed=embed) print(reply) #Delete user's message await msg.delete() # @bot.command() # async def botchannel(ctx): # @bot.command() # async def botchannel(ctx, channel): @bot.command() async def shutdown(ctx): print("shutdown") with open("tmp.txt", "w") as tmp: tmp.write("false") io.save(guilds) await bot.logout() @bot.command() async def restart(ctx): with open("tmp.txt", "w") as tmp: tmp.write("true") io.save(guilds) await bot.logout() # @self.event # async def on_ready(): # for guild_id in list(guilds.keys()): start()
25.98538
168
0.723529
cd2ad2828933005aac9f03b488bb44c0b4207c23
189
py
Python
test_tfrecordfile.py
travers-rhodes/multi_object_datasets
60077353045365a1b614dc4a4400521bfba46a58
[ "Apache-2.0" ]
null
null
null
test_tfrecordfile.py
travers-rhodes/multi_object_datasets
60077353045365a1b614dc4a4400521bfba46a58
[ "Apache-2.0" ]
null
null
null
test_tfrecordfile.py
travers-rhodes/multi_object_datasets
60077353045365a1b614dc4a4400521bfba46a58
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf tf.compat.v1.enable_eager_execution() import dots as d dat = d.dataset("6_dots.tfrecords") i = 0 for el in dat: i+=1 if i > 3: break print(el)
14.538462
37
0.640212
4091393d902ac9ae64cc0f16f55114d8b93ec046
17,016
py
Python
option_b.py
wrosecrans/colormap
0b6a3b7e4caa5df72e7bad8ba196acfbbe5e5946
[ "CC0-1.0" ]
231
2015-06-03T01:28:13.000Z
2022-03-27T02:02:42.000Z
option_b.py
CatarinaL/colormap
bc549477db0c12b54a5928087552ad2cf274980f
[ "CC0-1.0" ]
10
2015-06-06T23:06:06.000Z
2019-10-25T20:10:48.000Z
option_b.py
CatarinaL/colormap
bc549477db0c12b54a5928087552ad2cf274980f
[ "CC0-1.0" ]
97
2015-06-04T00:46:34.000Z
2022-01-23T17:37:24.000Z
from matplotlib.colors import LinearSegmentedColormap from numpy import nan, inf # Used to reconstruct the colormap in viscm parameters = {'xp': [0.62912107182941668, 5.9459613496072166, 109.50795214009284, -21.828857638709152, -6.5743399496759416], 'yp': [-9.0711805555555429, -75.1519097222222, 50.040035674319967, 52.94104954493605, 24.552723501963708], 'min_JK': 1.1436170212765937, 'max_JK': 98.21808510638297} cm_data = [[ 1.46159096e-03, 4.66127766e-04, 1.38655200e-02], [ 2.26726368e-03, 1.26992553e-03, 1.85703520e-02], [ 3.29899092e-03, 2.24934863e-03, 2.42390508e-02], [ 4.54690615e-03, 3.39180156e-03, 3.09092475e-02], [ 6.00552565e-03, 4.69194561e-03, 3.85578980e-02], [ 7.67578856e-03, 6.13611626e-03, 4.68360336e-02], [ 9.56051094e-03, 7.71344131e-03, 5.51430756e-02], [ 1.16634769e-02, 9.41675403e-03, 6.34598080e-02], [ 1.39950388e-02, 1.12247138e-02, 7.18616890e-02], [ 1.65605595e-02, 1.31362262e-02, 8.02817951e-02], [ 1.93732295e-02, 1.51325789e-02, 8.87668094e-02], [ 2.24468865e-02, 1.71991484e-02, 9.73274383e-02], [ 2.57927373e-02, 1.93306298e-02, 1.05929835e-01], [ 2.94324251e-02, 2.15030771e-02, 1.14621328e-01], [ 3.33852235e-02, 2.37024271e-02, 1.23397286e-01], [ 3.76684211e-02, 2.59207864e-02, 1.32232108e-01], [ 4.22525554e-02, 2.81385015e-02, 1.41140519e-01], [ 4.69146287e-02, 3.03236129e-02, 1.50163867e-01], [ 5.16437624e-02, 3.24736172e-02, 1.59254277e-01], [ 5.64491009e-02, 3.45691867e-02, 1.68413539e-01], [ 6.13397200e-02, 3.65900213e-02, 1.77642172e-01], [ 6.63312620e-02, 3.85036268e-02, 1.86961588e-01], [ 7.14289181e-02, 4.02939095e-02, 1.96353558e-01], [ 7.66367560e-02, 4.19053329e-02, 2.05798788e-01], [ 8.19620773e-02, 4.33278666e-02, 2.15289113e-01], [ 8.74113897e-02, 4.45561662e-02, 2.24813479e-01], [ 9.29901526e-02, 4.55829503e-02, 2.34357604e-01], [ 9.87024972e-02, 4.64018731e-02, 2.43903700e-01], [ 1.04550936e-01, 4.70080541e-02, 2.53430300e-01], [ 1.10536084e-01, 4.73986708e-02, 2.62912235e-01], [ 1.16656423e-01, 4.75735920e-02, 2.72320803e-01], [ 1.22908126e-01, 4.75360183e-02, 2.81624170e-01], [ 1.29284984e-01, 4.72930838e-02, 2.90788012e-01], [ 1.35778450e-01, 4.68563678e-02, 2.99776404e-01], [ 1.42377819e-01, 4.62422566e-02, 3.08552910e-01], [ 1.49072957e-01, 4.54676444e-02, 3.17085139e-01], [ 1.55849711e-01, 4.45588056e-02, 3.25338414e-01], [ 1.62688939e-01, 4.35542881e-02, 3.33276678e-01], [ 1.69575148e-01, 4.24893149e-02, 3.40874188e-01], [ 1.76493202e-01, 4.14017089e-02, 3.48110606e-01], [ 1.83428775e-01, 4.03288858e-02, 3.54971391e-01], [ 1.90367453e-01, 3.93088888e-02, 3.61446945e-01], [ 1.97297425e-01, 3.84001825e-02, 3.67534629e-01], [ 2.04209298e-01, 3.76322609e-02, 3.73237557e-01], [ 2.11095463e-01, 3.70296488e-02, 3.78563264e-01], [ 2.17948648e-01, 3.66146049e-02, 3.83522415e-01], [ 2.24762908e-01, 3.64049901e-02, 3.88128944e-01], [ 2.31538148e-01, 3.64052511e-02, 3.92400150e-01], [ 2.38272961e-01, 3.66209949e-02, 3.96353388e-01], [ 2.44966911e-01, 3.70545017e-02, 4.00006615e-01], [ 2.51620354e-01, 3.77052832e-02, 4.03377897e-01], [ 2.58234265e-01, 3.85706153e-02, 4.06485031e-01], [ 2.64809649e-01, 3.96468666e-02, 4.09345373e-01], [ 2.71346664e-01, 4.09215821e-02, 4.11976086e-01], [ 2.77849829e-01, 4.23528741e-02, 4.14392106e-01], [ 2.84321318e-01, 4.39325787e-02, 4.16607861e-01], [ 2.90763373e-01, 4.56437598e-02, 4.18636756e-01], [ 2.97178251e-01, 4.74700293e-02, 4.20491164e-01], [ 3.03568182e-01, 4.93958927e-02, 4.22182449e-01], [ 3.09935342e-01, 5.14069729e-02, 4.23720999e-01], [ 3.16281835e-01, 5.34901321e-02, 4.25116277e-01], [ 3.22609671e-01, 5.56335178e-02, 4.26376869e-01], [ 3.28920763e-01, 5.78265505e-02, 4.27510546e-01], [ 3.35216916e-01, 6.00598734e-02, 4.28524320e-01], [ 3.41499828e-01, 6.23252772e-02, 4.29424503e-01], [ 3.47771086e-01, 6.46156100e-02, 4.30216765e-01], [ 3.54032169e-01, 6.69246832e-02, 4.30906186e-01], [ 3.60284449e-01, 6.92471753e-02, 4.31497309e-01], [ 3.66529195e-01, 7.15785403e-02, 4.31994185e-01], [ 3.72767575e-01, 7.39149211e-02, 4.32400419e-01], [ 3.79000659e-01, 7.62530701e-02, 4.32719214e-01], [ 3.85228383e-01, 7.85914864e-02, 4.32954973e-01], [ 3.91452659e-01, 8.09267058e-02, 4.33108763e-01], [ 3.97674379e-01, 8.32568129e-02, 4.33182647e-01], [ 4.03894278e-01, 8.55803445e-02, 4.33178526e-01], [ 4.10113015e-01, 8.78961593e-02, 4.33098056e-01], [ 4.16331169e-01, 9.02033992e-02, 4.32942678e-01], [ 4.22549249e-01, 9.25014543e-02, 4.32713635e-01], [ 4.28767696e-01, 9.47899342e-02, 4.32411996e-01], [ 4.34986885e-01, 9.70686417e-02, 4.32038673e-01], [ 4.41207124e-01, 9.93375510e-02, 4.31594438e-01], [ 4.47428382e-01, 1.01597079e-01, 4.31080497e-01], [ 4.53650614e-01, 1.03847716e-01, 4.30497898e-01], [ 4.59874623e-01, 1.06089165e-01, 4.29845789e-01], [ 4.66100494e-01, 1.08321923e-01, 4.29124507e-01], [ 4.72328255e-01, 1.10546584e-01, 4.28334320e-01], [ 4.78557889e-01, 1.12763831e-01, 4.27475431e-01], [ 4.84789325e-01, 1.14974430e-01, 4.26547991e-01], [ 4.91022448e-01, 1.17179219e-01, 4.25552106e-01], [ 4.97257069e-01, 1.19379132e-01, 4.24487908e-01], [ 5.03492698e-01, 1.21575414e-01, 4.23356110e-01], [ 5.09729541e-01, 1.23768654e-01, 4.22155676e-01], [ 5.15967304e-01, 1.25959947e-01, 4.20886594e-01], [ 5.22205646e-01, 1.28150439e-01, 4.19548848e-01], [ 5.28444192e-01, 1.30341324e-01, 4.18142411e-01], [ 5.34682523e-01, 1.32533845e-01, 4.16667258e-01], [ 5.40920186e-01, 1.34729286e-01, 4.15123366e-01], [ 5.47156706e-01, 1.36928959e-01, 4.13510662e-01], [ 5.53391649e-01, 1.39134147e-01, 4.11828882e-01], [ 5.59624442e-01, 1.41346265e-01, 4.10078028e-01], [ 5.65854477e-01, 1.43566769e-01, 4.08258132e-01], [ 5.72081108e-01, 1.45797150e-01, 4.06369246e-01], [ 5.78303656e-01, 1.48038934e-01, 4.04411444e-01], [ 5.84521407e-01, 1.50293679e-01, 4.02384829e-01], [ 5.90733615e-01, 1.52562977e-01, 4.00289528e-01], [ 5.96939751e-01, 1.54848232e-01, 3.98124897e-01], [ 6.03138930e-01, 1.57151161e-01, 3.95891308e-01], [ 6.09330184e-01, 1.59473549e-01, 3.93589349e-01], [ 6.15512627e-01, 1.61817111e-01, 3.91219295e-01], [ 6.21685340e-01, 1.64183582e-01, 3.88781456e-01], [ 6.27847374e-01, 1.66574724e-01, 3.86276180e-01], [ 6.33997746e-01, 1.68992314e-01, 3.83703854e-01], [ 6.40135447e-01, 1.71438150e-01, 3.81064906e-01], [ 6.46259648e-01, 1.73913876e-01, 3.78358969e-01], [ 6.52369348e-01, 1.76421271e-01, 3.75586209e-01], [ 6.58463166e-01, 1.78962399e-01, 3.72748214e-01], [ 6.64539964e-01, 1.81539111e-01, 3.69845599e-01], [ 6.70598572e-01, 1.84153268e-01, 3.66879025e-01], [ 6.76637795e-01, 1.86806728e-01, 3.63849195e-01], [ 6.82656407e-01, 1.89501352e-01, 3.60756856e-01], [ 6.88653158e-01, 1.92238994e-01, 3.57602797e-01], [ 6.94626769e-01, 1.95021500e-01, 3.54387853e-01], [ 7.00575937e-01, 1.97850703e-01, 3.51112900e-01], [ 7.06499709e-01, 2.00728196e-01, 3.47776863e-01], [ 7.12396345e-01, 2.03656029e-01, 3.44382594e-01], [ 7.18264447e-01, 2.06635993e-01, 3.40931208e-01], [ 7.24102613e-01, 2.09669834e-01, 3.37423766e-01], [ 7.29909422e-01, 2.12759270e-01, 3.33861367e-01], [ 7.35683432e-01, 2.15905976e-01, 3.30245147e-01], [ 7.41423185e-01, 2.19111589e-01, 3.26576275e-01], [ 7.47127207e-01, 2.22377697e-01, 3.22855952e-01], [ 7.52794009e-01, 2.25705837e-01, 3.19085410e-01], [ 7.58422090e-01, 2.29097492e-01, 3.15265910e-01], [ 7.64009940e-01, 2.32554083e-01, 3.11398734e-01], [ 7.69556038e-01, 2.36076967e-01, 3.07485188e-01], [ 7.75058888e-01, 2.39667435e-01, 3.03526312e-01], [ 7.80517023e-01, 2.43326720e-01, 2.99522665e-01], [ 7.85928794e-01, 2.47055968e-01, 2.95476756e-01], [ 7.91292674e-01, 2.50856232e-01, 2.91389943e-01], [ 7.96607144e-01, 2.54728485e-01, 2.87263585e-01], [ 8.01870689e-01, 2.58673610e-01, 2.83099033e-01], [ 8.07081807e-01, 2.62692401e-01, 2.78897629e-01], [ 8.12239008e-01, 2.66785558e-01, 2.74660698e-01], [ 8.17340818e-01, 2.70953688e-01, 2.70389545e-01], [ 8.22385784e-01, 2.75197300e-01, 2.66085445e-01], [ 8.27372474e-01, 2.79516805e-01, 2.61749643e-01], [ 8.32299481e-01, 2.83912516e-01, 2.57383341e-01], [ 8.37165425e-01, 2.88384647e-01, 2.52987700e-01], [ 8.41968959e-01, 2.92933312e-01, 2.48563825e-01], [ 8.46708768e-01, 2.97558528e-01, 2.44112767e-01], [ 8.51383572e-01, 3.02260213e-01, 2.39635512e-01], [ 8.55992130e-01, 3.07038188e-01, 2.35132978e-01], [ 8.60533241e-01, 3.11892183e-01, 2.30606009e-01], [ 8.65005747e-01, 3.16821833e-01, 2.26055368e-01], [ 8.69408534e-01, 3.21826685e-01, 2.21481734e-01], [ 8.73740530e-01, 3.26906201e-01, 2.16885699e-01], [ 8.78000715e-01, 3.32059760e-01, 2.12267762e-01], [ 8.82188112e-01, 3.37286663e-01, 2.07628326e-01], [ 8.86301795e-01, 3.42586137e-01, 2.02967696e-01], [ 8.90340885e-01, 3.47957340e-01, 1.98286080e-01], [ 8.94304553e-01, 3.53399363e-01, 1.93583583e-01], [ 8.98192017e-01, 3.58911240e-01, 1.88860212e-01], [ 9.02002544e-01, 3.64491949e-01, 1.84115876e-01], [ 9.05735448e-01, 3.70140419e-01, 1.79350388e-01], [ 9.09390090e-01, 3.75855533e-01, 1.74563472e-01], [ 9.12965874e-01, 3.81636138e-01, 1.69754764e-01], [ 9.16462251e-01, 3.87481044e-01, 1.64923826e-01], [ 9.19878710e-01, 3.93389034e-01, 1.60070152e-01], [ 9.23214783e-01, 3.99358867e-01, 1.55193185e-01], [ 9.26470039e-01, 4.05389282e-01, 1.50292329e-01], [ 9.29644083e-01, 4.11479007e-01, 1.45366973e-01], [ 9.32736555e-01, 4.17626756e-01, 1.40416519e-01], [ 9.35747126e-01, 4.23831237e-01, 1.35440416e-01], [ 9.38675494e-01, 4.30091162e-01, 1.30438175e-01], [ 9.41521384e-01, 4.36405243e-01, 1.25409440e-01], [ 9.44284543e-01, 4.42772199e-01, 1.20354038e-01], [ 9.46964741e-01, 4.49190757e-01, 1.15272059e-01], [ 9.49561766e-01, 4.55659658e-01, 1.10163947e-01], [ 9.52075421e-01, 4.62177656e-01, 1.05030614e-01], [ 9.54505523e-01, 4.68743522e-01, 9.98735931e-02], [ 9.56851903e-01, 4.75356048e-01, 9.46952268e-02], [ 9.59114397e-01, 4.82014044e-01, 8.94989073e-02], [ 9.61292850e-01, 4.88716345e-01, 8.42893891e-02], [ 9.63387110e-01, 4.95461806e-01, 7.90731907e-02], [ 9.65397031e-01, 5.02249309e-01, 7.38591143e-02], [ 9.67322465e-01, 5.09077761e-01, 6.86589199e-02], [ 9.69163264e-01, 5.15946092e-01, 6.34881971e-02], [ 9.70919277e-01, 5.22853259e-01, 5.83674890e-02], [ 9.72590351e-01, 5.29798246e-01, 5.33237243e-02], [ 9.74176327e-01, 5.36780059e-01, 4.83920090e-02], [ 9.75677038e-01, 5.43797733e-01, 4.36177922e-02], [ 9.77092313e-01, 5.50850323e-01, 3.90500131e-02], [ 9.78421971e-01, 5.57936911e-01, 3.49306227e-02], [ 9.79665824e-01, 5.65056600e-01, 3.14091591e-02], [ 9.80823673e-01, 5.72208516e-01, 2.85075931e-02], [ 9.81895311e-01, 5.79391803e-01, 2.62497353e-02], [ 9.82880522e-01, 5.86605627e-01, 2.46613416e-02], [ 9.83779081e-01, 5.93849168e-01, 2.37702263e-02], [ 9.84590755e-01, 6.01121626e-01, 2.36063833e-02], [ 9.85315301e-01, 6.08422211e-01, 2.42021174e-02], [ 9.85952471e-01, 6.15750147e-01, 2.55921853e-02], [ 9.86502013e-01, 6.23104667e-01, 2.78139496e-02], [ 9.86963670e-01, 6.30485011e-01, 3.09075459e-02], [ 9.87337182e-01, 6.37890424e-01, 3.49160639e-02], [ 9.87622296e-01, 6.45320152e-01, 3.98857472e-02], [ 9.87818759e-01, 6.52773439e-01, 4.55808037e-02], [ 9.87926330e-01, 6.60249526e-01, 5.17503867e-02], [ 9.87944783e-01, 6.67747641e-01, 5.83286889e-02], [ 9.87873910e-01, 6.75267000e-01, 6.52570167e-02], [ 9.87713535e-01, 6.82806802e-01, 7.24892330e-02], [ 9.87463516e-01, 6.90366218e-01, 7.99897176e-02], [ 9.87123759e-01, 6.97944391e-01, 8.77314215e-02], [ 9.86694229e-01, 7.05540424e-01, 9.56941797e-02], [ 9.86174970e-01, 7.13153375e-01, 1.03863324e-01], [ 9.85565739e-01, 7.20782460e-01, 1.12228756e-01], [ 9.84865203e-01, 7.28427497e-01, 1.20784651e-01], [ 9.84075129e-01, 7.36086521e-01, 1.29526579e-01], [ 9.83195992e-01, 7.43758326e-01, 1.38453063e-01], [ 9.82228463e-01, 7.51441596e-01, 1.47564573e-01], [ 9.81173457e-01, 7.59134892e-01, 1.56863224e-01], [ 9.80032178e-01, 7.66836624e-01, 1.66352544e-01], [ 9.78806183e-01, 7.74545028e-01, 1.76037298e-01], [ 9.77497453e-01, 7.82258138e-01, 1.85923357e-01], [ 9.76108474e-01, 7.89973753e-01, 1.96017589e-01], [ 9.74637842e-01, 7.97691563e-01, 2.06331925e-01], [ 9.73087939e-01, 8.05409333e-01, 2.16876839e-01], [ 9.71467822e-01, 8.13121725e-01, 2.27658046e-01], [ 9.69783146e-01, 8.20825143e-01, 2.38685942e-01], [ 9.68040817e-01, 8.28515491e-01, 2.49971582e-01], [ 9.66242589e-01, 8.36190976e-01, 2.61533898e-01], [ 9.64393924e-01, 8.43848069e-01, 2.73391112e-01], [ 9.62516656e-01, 8.51476340e-01, 2.85545675e-01], [ 9.60625545e-01, 8.59068716e-01, 2.98010219e-01], [ 9.58720088e-01, 8.66624355e-01, 3.10820466e-01], [ 9.56834075e-01, 8.74128569e-01, 3.23973947e-01], [ 9.54997177e-01, 8.81568926e-01, 3.37475479e-01], [ 9.53215092e-01, 8.88942277e-01, 3.51368713e-01], [ 9.51546225e-01, 8.96225909e-01, 3.65627005e-01], [ 9.50018481e-01, 9.03409063e-01, 3.80271225e-01], [ 9.48683391e-01, 9.10472964e-01, 3.95289169e-01], [ 9.47594362e-01, 9.17399053e-01, 4.10665194e-01], [ 9.46809163e-01, 9.24168246e-01, 4.26373236e-01], [ 9.46391536e-01, 9.30760752e-01, 4.42367495e-01], [ 9.46402951e-01, 9.37158971e-01, 4.58591507e-01], [ 9.46902568e-01, 9.43347775e-01, 4.74969778e-01], [ 9.47936825e-01, 9.49317522e-01, 4.91426053e-01], [ 9.49544830e-01, 9.55062900e-01, 5.07859649e-01], [ 9.51740304e-01, 9.60586693e-01, 5.24203026e-01], [ 9.54529281e-01, 9.65895868e-01, 5.40360752e-01], [ 9.57896053e-01, 9.71003330e-01, 5.56275090e-01], [ 9.61812020e-01, 9.75924241e-01, 5.71925382e-01], [ 9.66248822e-01, 9.80678193e-01, 5.87205773e-01], [ 9.71161622e-01, 9.85282161e-01, 6.02154330e-01], [ 9.76510983e-01, 9.89753437e-01, 6.16760413e-01], [ 9.82257307e-01, 9.94108844e-01, 6.31017009e-01], [ 9.88362068e-01, 9.98364143e-01, 6.44924005e-01]] test_cm = LinearSegmentedColormap.from_list(__file__, cm_data) if __name__ == "__main__": import matplotlib.pyplot as plt import numpy as np try: from viscm import viscm viscm(test_cm) except ImportError: print("viscm not found, falling back on simple display") plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto', cmap=test_cm) plt.show()
60.127208
124
0.57728
563500829c4d069d25d29e122217af76c93ab51d
174
py
Python
api/Note_test.py
gracejiang/note-sharing
3785ab4f3f6f805e8cd0f6556c2b0faf6ed6d8da
[ "MIT" ]
null
null
null
api/Note_test.py
gracejiang/note-sharing
3785ab4f3f6f805e8cd0f6556c2b0faf6ed6d8da
[ "MIT" ]
null
null
null
api/Note_test.py
gracejiang/note-sharing
3785ab4f3f6f805e8cd0f6556c2b0faf6ed6d8da
[ "MIT" ]
1
2021-03-02T12:34:11.000Z
2021-03-02T12:34:11.000Z
import json from Note import Note n = Note("Friction", "introduction to friction", "UC Berkeley", 0, True, False, False, "https://google.com", 'lec.pdf') print(n.toJSON())
24.857143
119
0.689655
668f9483105f239e5932fa588b65e6cc516b7c06
1,009
py
Python
bireme_tpcc_test/compare.py
lingfengzui/bireme
96aed5fe42ee2e0679d66e8a5518f48af19c9b42
[ "Apache-2.0" ]
133
2017-09-13T02:32:56.000Z
2022-03-11T02:38:33.000Z
bireme_tpcc_test/compare.py
mgbin088/bireme
9cfc128230e7a718394132d9a51ec7d1019d08be
[ "Apache-2.0" ]
84
2017-09-18T07:03:06.000Z
2021-03-26T06:35:14.000Z
bireme_tpcc_test/compare.py
mgbin088/bireme
9cfc128230e7a718394132d9a51ec7d1019d08be
[ "Apache-2.0" ]
55
2017-09-13T03:28:22.000Z
2021-04-21T08:13:19.000Z
import os import sys from sqlCheckSum import sqlCheckSum try: table = sys.argv[2] key = sys.argv[3:] if sys.argv[1] == "mysql": mysqlIP = os.environ['MYSQL_IP'] mysqlPort = 3306 mysqlUser = os.environ['MYSQL_USER'] mysqlPasswd = os.environ['MYSQL_PASSWD'] mysqlDB = os.environ['MYSQL_DB'] print "MD5 for table " + table + " in MySQL is " + sqlCheckSum("mysql", mysqlIP, mysqlPort, mysqlUser, mysqlPasswd, mysqlDB, table, *key) elif sys.argv[1] == "hashdata": pgIP = os.environ['PG_IP'] pgPort = 5432 pgUser = os.environ['PG_USER'] pgPasswd = os.environ['PG_PASSWD'] pgDB = os.environ['PG_DB'] print "MD5 for table " + table + " in Hashdata is " + sqlCheckSum("postgres", pgIP, pgPort, pgUser, pgPasswd, pgDB, table, *key) except Exception as e: if str(type(e)) == "<type 'exceptions.KeyError'>": print "Environment variable " + str(e) + " is not found." else: print e
32.548387
145
0.603568
94ccda15af46f159402fbd830a40f27b6522faaa
847
py
Python
web/tests/utils/test_predict_queue.py
salathegroup/crowdbreaks-streamer
3019b0f8d48bd6b4419bdaa02d0463ea6617b496
[ "MIT" ]
6
2019-03-25T17:44:42.000Z
2020-10-28T18:45:27.000Z
web/tests/utils/test_predict_queue.py
salathegroup/crowdbreaks-streamer
3019b0f8d48bd6b4419bdaa02d0463ea6617b496
[ "MIT" ]
null
null
null
web/tests/utils/test_predict_queue.py
salathegroup/crowdbreaks-streamer
3019b0f8d48bd6b4419bdaa02d0463ea6617b496
[ "MIT" ]
null
null
null
import pytest class TestPredictQueue: def test_push(self, predict_queue, tweet): d = {'id': str(tweet['id']), 'text': tweet['text']} predict_queue.push(d) assert len(predict_queue) == 1 def test_pop_all(self, predict_queue, tweet, retweet): d1 = {'id': str(tweet['id']), 'text': tweet['text']} d2 = {'id': str(retweet['id']), 'text': retweet['text']} predict_queue.multi_push([d1, d2]) assert len(predict_queue) == 2 resp = predict_queue.pop_all() assert len(resp) == 2 assert resp[0]['text'] == tweet['text'] assert resp[1]['text'] == retweet['text'] if __name__ == "__main__": # if running outside of docker, make sure redis is running on localhost import os; os.environ["REDIS_HOST"] = "localhost" pytest.main(['-s', '-m', 'focus'])
36.826087
75
0.59268
2b2993665fdfa4018243b61056eb2f4a0b88e524
2,660
py
Python
jointly/types.py
hpi-dhc/jointly
b56fca228b2705cf795ae453cd1d77c0567f099e
[ "MIT" ]
7
2020-10-14T11:57:35.000Z
2021-12-28T11:32:45.000Z
jointly/types.py
hpi-dhc/jointly
b56fca228b2705cf795ae453cd1d77c0567f099e
[ "MIT" ]
5
2021-08-18T09:04:16.000Z
2021-12-27T19:24:24.000Z
jointly/types.py
hpi-dhc/jointly
b56fca228b2705cf795ae453cd1d77c0567f099e
[ "MIT" ]
1
2021-05-06T07:57:38.000Z
2021-05-06T07:57:38.000Z
from typing import Dict, Union, List import pandas as pd SourceDict = Dict[str, Dict[str, Union[str, pd.DataFrame, float, pd.Timedelta, None]]] """ A dictionary of dictionaries. Each entry defines an input sensor, and points to a dictionary with the keys ``data`` and ``ref_column``. ``data`` is a pandas ``DataFrame`` with a ``DateTimeIndex``. ``ref_column`` specifies the column within ``data`` which should be used to extract synchronization points, e.g., shakes. """ SynchronizationPoint = Dict[str, pd.Timestamp] """ A dictionary describing a synchronization point, e.g., a shake. A synchronization point has a start and an end, and thus the properties ``start`` and ``end``. """ SynchronizationPair = Dict[str, SynchronizationPoint] """ A dictionary containing both the first and the second synchronization point of a signal. Two points are required to calculate the distance in between them. Properties are ``first`` and ``second``. """ SyncPairs = Dict[str, SynchronizationPair] """ A dictionary that contains SynchronizationPair instances for a number of sources. """ SyncPairTimeshift = Dict[str, pd.Timedelta] """Timeshift for a single sync pair, i.e., the shift required to synchronize one pair to the reference signal""" ResultTableSpec = Dict[str, Dict[str, List[str]]] """ Specification for saving the synchronized results in separated files, with each root key defining a target file. The second level defines the columns which should be saved from each source file into the given target file. This can be used to separate the input files into files containing only a single sensor type, e.g., to extract the PPG signal from two different sensors into a single file. Example: .. code:: python { 'ACC': { 'Faros': ['Accelerometer_X', 'Accelerometer_Y', 'Accelerometer_Z'], 'Empatica': ['acc_x', 'acc_y', 'acc_z'], 'Everion': ['accx_data', 'accy_data', 'accz_data'], }, 'PPG': { 'Empatica': ['bvp'], 'Everion': ['blood_pulse_wave', 'led2_data', 'led3_data'], }, 'EDA': { 'Empatica': ['eda'], 'Everion': ['gsr_electrode'], }, 'ECG': { 'Faros': ['ECG'], }, 'TEMP': { 'Empatica': ['temp'], 'Everion': ['temperature_object'], }, 'HR': { 'Empatica': ['hr'], 'Everion': ['heart_rate', 'heart_rate_quality'], }, 'IBI': { 'Faros': ['HRV'], 'Empatica': ['ibi'], 'Everion': ['inter_pulse_interval', 'inter_pulse_interval_deviation'], } } """
32.839506
121
0.631203
4070b2a5d9921417d2852365e13eb781b48b2cc7
237
py
Python
tests/django_app/conftest.py
achaidaris/django-ansible
d0f37ac05b2037e5d7077dc271e72bd02676ddd9
[ "MIT" ]
19
2016-10-14T12:31:15.000Z
2021-05-08T08:31:01.000Z
tests/django_app/conftest.py
achaidaris/django-ansible
d0f37ac05b2037e5d7077dc271e72bd02676ddd9
[ "MIT" ]
29
2016-11-15T15:38:59.000Z
2020-06-05T18:17:30.000Z
tests/django_app/conftest.py
achaidaris/django-ansible
d0f37ac05b2037e5d7077dc271e72bd02676ddd9
[ "MIT" ]
9
2016-10-14T13:04:21.000Z
2021-04-17T16:24:34.000Z
import pytest from django_app.web import factories as web_factories from pytest_factoryboy import register # enable database for all tests @pytest.fixture(autouse=True) def enable_db(db): pass register(web_factories.UserFactory)
18.230769
53
0.814346
03c97e3c4e7a9d3cabccb3c34f411e9164abf008
44
py
Python
tests/scruples/baselines/test_metrics.py
allenai/scruples
9a43459c507e57d89ab8442a4f3985cedecb8710
[ "Apache-2.0" ]
29
2020-05-09T10:55:45.000Z
2022-03-28T16:18:02.000Z
tests/scruples/baselines/test_metrics.py
allenai/scruples
9a43459c507e57d89ab8442a4f3985cedecb8710
[ "Apache-2.0" ]
null
null
null
tests/scruples/baselines/test_metrics.py
allenai/scruples
9a43459c507e57d89ab8442a4f3985cedecb8710
[ "Apache-2.0" ]
6
2020-10-05T12:24:28.000Z
2021-12-06T19:51:06.000Z
"""Tests for scruples.baselines.metrics."""
22
43
0.727273
6bf81b127adc730c9ac3cf992c4e1b9d99303467
1,892
py
Python
pypulseq_cest/simulate.py
KerstinHut/pypulseq-cest
a81fba9b66de0bb4b32f3df26c2c1d15967948ca
[ "MIT" ]
2
2021-05-08T21:25:52.000Z
2021-05-08T21:26:33.000Z
pypulseq_cest/simulate.py
KerstinHut/pypulseq-cest
a81fba9b66de0bb4b32f3df26c2c1d15967948ca
[ "MIT" ]
13
2021-02-14T08:40:17.000Z
2021-10-18T13:16:18.000Z
pypulseq_cest/simulate.py
KerstinHut/pypulseq-cest
a81fba9b66de0bb4b32f3df26c2c1d15967948ca
[ "MIT" ]
2
2021-02-27T20:27:18.000Z
2021-04-07T14:17:13.000Z
""" simulate.py """ from typing import Union from pathlib import Path from pySimPulseqSBB import SimPulseqSBB, SimulationParameters from pypulseq_cest.parser import parse_params, get_zspec from bmctool.set_params import load_params from bmctool.utils.eval import plot_z def simulate(config_file: Union[str, Path], seq_file: Union[str, Path], show_plot: bool = False, **kwargs) \ -> SimulationParameters: """ Function to run a pySimPulseqSBB based simulation for given seq and config files. :param config_file: Path of the config file (can be of type str or Path) :param seq_file: Path of the seq file (can be of type str or Path) :param show_plot: flag to switch plotting option on/off """ # load the parameters sp = load_params(config_file) # parse for C++ handling sim_params = parse_params(sp=sp, seq_file=seq_file) # run the simulation SimPulseqSBB(sim_params, str(seq_file)) # retrieve the calculated magnetization m_out = sim_params.GetFinalMagnetizationVectors() if show_plot: if 'offsets' in kwargs: offsets = kwargs.pop('offsets') _, mz = get_zspec(m_out=m_out, sp=sp, seq_file=seq_file) else: offsets, mz = get_zspec(m_out=m_out, sp=sp, seq_file=seq_file) plot_z(mz=mz, offsets=offsets, **kwargs) return sim_params def sim_example(): """ Function to run an example simulation. """ seq_file = Path(__file__).parent / 'example_library' / 'seq_example.seq' config_file = Path(__file__).parent / 'example_library' / 'config_example.yaml' simulate(config_file=config_file, seq_file=seq_file, show_plot=True, normalize=True, title='Example spectrum') if __name__ == '__main__': sim_example()
28.238806
85
0.657505