hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
7ed12725c01586b7ea78bc6761c9cf27421819fb
1,818
py
Python
apistar/commands/new.py
sirex/apistar
0ab0ac394983230bfacad2035d9436e88988cfc4
[ "BSD-3-Clause" ]
1
2017-12-27T09:05:23.000Z
2017-12-27T09:05:23.000Z
apistarlearn/commands/new.py
1067511899/tornado-learn
497cc8f7816f15e2eab834a758f192d50704fe05
[ "Apache-2.0" ]
null
null
null
apistarlearn/commands/new.py
1067511899/tornado-learn
497cc8f7816f15e2eab834a758f192d50704fe05
[ "Apache-2.0" ]
null
null
null
import os import shutil import apistar from apistar import exceptions from apistar.interfaces import Console APISTAR_PACKAGE_DIR = os.path.dirname(apistar.__file__) LAYOUTS_DIR = os.path.join(APISTAR_PACKAGE_DIR, 'layouts') LAYOUT_CHOICES = os.listdir(LAYOUTS_DIR) IGNORED_DIRECTORIES = ['__pycache__'] def new(console: Console, target_dir: str, framework: str='wsgi', force: bool=False) -> None: """ Create a new project in TARGET_DIR. Args: console: The console to write output about file creation. target_dir: The directory to use when creating the project. layout: Select the project layout to use. force: Overwrite any existing project files. """ if framework not in ('wsgi', 'asyncio'): message = "Invalid framework option. Use 'wsgi' or 'asyncio'." raise exceptions.CommandLineError(message) source_dir = os.path.join(LAYOUTS_DIR, framework) copy_paths = [] for dir_path, dirs, filenames in os.walk(source_dir): dirs[:] = [d for d in dirs if d not in IGNORED_DIRECTORIES] for filename in filenames: source_path = os.path.join(dir_path, filename) rel_path = os.path.relpath(source_path, source_dir) target_path = os.path.join(target_dir, rel_path) if os.path.exists(target_path) and not force: message = 'Project files already exist. Use `--force` to overwrite.' raise exceptions.CommandLineError(message) copy_paths.append((source_path, target_path)) for source_path, target_path in sorted(copy_paths): console.echo(target_path) parent = os.path.dirname(target_path) if parent: os.makedirs(parent, exist_ok=True) shutil.copy(source_path, target_path)
35.647059
84
0.674917
5d0a70259f1a6faf9564710ae7a1fa73c238836f
2,286
gyp
Python
3rdParty/V8/gypfiles/parser-shell.gyp
rajeev02101987/arangodb
817e6c04cb82777d266f3b444494140676da98e2
[ "Apache-2.0" ]
12,278
2015-01-29T17:11:33.000Z
2022-03-31T21:12:00.000Z
3rdParty/V8/gypfiles/parser-shell.gyp
rajeev02101987/arangodb
817e6c04cb82777d266f3b444494140676da98e2
[ "Apache-2.0" ]
9,469
2015-01-30T05:33:07.000Z
2022-03-31T16:17:21.000Z
3rdParty/V8/gypfiles/parser-shell.gyp
rajeev02101987/arangodb
817e6c04cb82777d266f3b444494140676da98e2
[ "Apache-2.0" ]
892
2015-01-29T16:26:19.000Z
2022-03-20T07:44:30.000Z
# Copyright 2013 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. { 'variables': { # 'V8_ROOT': '../', 'v8_code': 1, 'v8_enable_i18n_support%': 1, }, 'includes': ['toolchain.gypi', 'features.gypi'], 'targets': [ { 'target_name': 'parser-shell', 'type': 'executable', 'dependencies': [ 'v8.gyp:v8', 'v8.gyp:v8_libbase', 'v8.gyp:v8_libplatform', ], 'conditions': [ ['v8_enable_i18n_support==1', { 'dependencies': [ '<(icu_gyp_path):icui18n', '<(icu_gyp_path):icuuc', ], }], ], 'include_dirs+': [ '..', ], 'sources': [ '../tools/parser-shell.cc', '../tools/shell-utils.h', ], }, ], }
36.870968
72
0.663167
2c45a95d7d738221f0615ccd5e62e7e2cdd4c599
3,910
py
Python
modelserver/modelserver/guidance/guidance.py
terrykwon/captivate
c7e4714a0eaced62509153849ee89981a58e8e26
[ "MIT" ]
3
2022-01-21T05:44:40.000Z
2022-02-26T16:15:23.000Z
modelserver/modelserver/guidance/guidance.py
terrykwon/captivate
c7e4714a0eaced62509153849ee89981a58e8e26
[ "MIT" ]
null
null
null
modelserver/modelserver/guidance/guidance.py
terrykwon/captivate
c7e4714a0eaced62509153849ee89981a58e8e26
[ "MIT" ]
1
2022-03-14T14:40:56.000Z
2022-03-14T14:40:56.000Z
import pandas as pd import numpy as np from collections import defaultdict import time toy_num = 12 class Toy: def __init__(self, toy_name): self.toy_name = toy_name self.weight = 1/toy_num self.phrases = [] def add_phrase(self, phrase): self.phrases.append(phrase) def update_weight(self, target_dist, target_length, alpha): self.weight = self.weight * (1-alpha) + target_dist[self.toy_name] * alpha / target_length def is_phrase_spoken(self, word, display_phrases): for phrase in self.phrases: if (phrase.phrase in display_phrases) and (phrase.word == word): phrase.increase_spoken_count() return True return False def track_displayed_time(self, curr_time): need_ordered = False for phrase in self.phrases: if (phrase.is_displayed == True) and (phrase.track_displayed_time(curr_time)): need_ordered = True return need_ordered def set_display(self, displayed_phrases): for phrase in self.phrases: if phrase.phrase in displayed_phrases: if phrase.is_displayed == True: pass elif phrase.is_displayed == False: phrase.is_displayed = True phrase.on_displayed() else: print("is_displayed error") else: phrase.is_displayed = False class Phrase: def __init__(self, word, phrase, id, highlight, color): self.word = word self.phrase = phrase self.highlight = highlight self.id = id self.weight = 1 self.color= color self.start_displayed = 0 self.spoken_count = 0 self.is_displayed = False def increase_spoken_count(self): self.spoken_count += 1 self.weight -= 0.5 if self.spoken_count > 1: self.is_displayed = False self.spoken_count = 0 def on_displayed(self): self.start_displayed = int(round(time.time() * 1000)) def track_displayed_time(self, curr_time): if curr_time - self.start_displayed > 120000: self.weight -= 1 return True return False def print_all(self): print("-----------------------------") print("phrase : "+self.phrase) print("weight : "+str(self.weight)) print("start_displayed : "+ str(self.start_displayed)) print("spoken_count : "+str(self.spoken_count)) class Guidance : def __init__(self, file_path): self.toys = [] self.toy_list = [] self.read_guide_csv(file_path) def read_guide_csv(self, file_path): guidance_arr = np.array(pd.read_csv(file_path)) for guide in guidance_arr: toy_name = guide[0] if toy_name not in self.toy_list: self.toy_list.append(toy_name) new_toy = Toy(toy_name) self.toys.append(new_toy) word = guide[1] sentence = guide[2] highlight = guide[3] id = guide[4] color = guide[5] new_phrase = Phrase(word, sentence, id, highlight, color) for toy in self.toys: if toy.toy_name == toy_name: toy.add_phrase(new_phrase) def get_toys(self): return self.toys # def get_object_names(self): # return list(self.guide_dict.keys()) # def get_object_context(self): # object_list = self.get_object_names() # object_context = {obj : 1/len(object_list) for obj in object_list} # return object_context # def get_candidates(self): # return self.guide_dict
25.555556
98
0.561637
99446bbe83270a710cc30f7bfdb8bd5390f9e97d
13,793
py
Python
msticpy/common/pkg_config.py
2xyo/msticpy
17f6a25ea82d85632e0c52a60e20626e9621d3b0
[ "MIT" ]
1
2021-07-29T16:04:08.000Z
2021-07-29T16:04:08.000Z
msticpy/common/pkg_config.py
QPC-database/msticpy
54c6d74e0bb25528dd0347edb40c693dd7b1eac7
[ "MIT" ]
3
2021-05-15T02:16:39.000Z
2022-01-19T13:13:25.000Z
msticpy/common/pkg_config.py
QPC-database/msticpy
54c6d74e0bb25528dd0347edb40c693dd7b1eac7
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ Package configuration reader. Reads default configuration from package file `msticpyconfig.yaml`. Optionally reads custom configuration from file specified in environment variable `MSTICPYCONFIG`. If this is not defined the package will look for a file `msticpyconfig.yaml` in the current directory. Default settings are accessible as an attribute `default_settings`. Custom settings are accessible as an attribute `custom_settings`. Consolidated settings are accessible as an attribute `settings`. """ import os from pathlib import Path from typing import Any, Dict, Optional, Callable import pkg_resources import yaml from yaml.error import YAMLError from . import exceptions from .exceptions import MsticpyUserConfigError from .utility import is_valid_uuid from .._version import VERSION __version__ = VERSION __author__ = "Ian Hellen" _CONFIG_FILE: str = "msticpyconfig.yaml" _CONFIG_ENV_VAR: str = "MSTICPYCONFIG" _DP_KEY = "DataProviders" _AZ_SENTINEL = "AzureSentinel" _AZ_CLI = "AzureCLI" # pylint: disable=invalid-name default_settings: Dict[str, Any] = {} custom_settings: Dict[str, Any] = {} settings: Dict[str, Any] = {} def _get_current_config() -> Callable[[Any], Optional[str]]: """Closure for holding path of config file.""" _current_conf_file: Optional[str] = None def _current_config(file_path: Optional[str] = None) -> Optional[str]: nonlocal _current_conf_file # noqa if file_path is not None: _current_conf_file = file_path return _current_conf_file return _current_config _CURRENT_CONF_FILE = _get_current_config() def current_config_path() -> Optional[str]: """ Return the path of the current config file, if any. Returns ------- Optional[str] path of the current config file """ return _CURRENT_CONF_FILE(None) def refresh_config(): """Re-read the config settings.""" # pylint: disable=global-statement global default_settings, custom_settings, settings default_settings = _get_default_config() custom_settings = _get_custom_config() custom_settings = _create_data_providers(custom_settings) settings = _consolidate_configs(default_settings, custom_settings) def get_config(setting_path: str) -> Any: """ Return setting item for path. Parameters ---------- setting_path : str Path to setting item expressed as dot-separated string Returns ------- Any The item at the path location. """ path_elems = setting_path.split(".") cur_node = settings for elem in path_elems: cur_node = cur_node.get(elem, None) if cur_node is None: raise KeyError(f"{elem} value of {setting_path} is not a valid path") return cur_node def set_config(setting_path: str, value: Any): """ Set setting value for path. Parameters ---------- setting_path : str Path to setting item expressed as dot-separated string value : Any The value to set. """ path_elems = setting_path.split(".") cur_node = settings for elem in path_elems: if elem in cur_node: cur_node[elem] = value break cur_node = cur_node.get(elem, None) if cur_node is None: raise KeyError(f"{elem} value of {setting_path} is not a valid path") return cur_node def _read_config_file(config_file: str) -> Dict[str, Any]: """ Read a yaml config definition file. Parameters ---------- config_file : str Path to yaml config file Returns ------- Dict Configuration settings """ if Path(config_file).is_file(): with open(config_file) as f_handle: # use safe_load instead of load try: return yaml.safe_load(f_handle) except YAMLError as yml_err: raise MsticpyUserConfigError( f"Check that your {config_file} is valid YAML.", "The following error was encountered", str(yml_err), title="config file could not be read", ) from yml_err return {} def _consolidate_configs( def_config: Dict[str, Any], cust_config: Dict[str, Any] ) -> Dict[str, Any]: resultant_config = {} resultant_config.update(def_config) _override_config(resultant_config, cust_config) return resultant_config def _override_config(base_config: Dict[str, Any], new_config: Dict[str, Any]): for c_key, c_item in new_config.items(): if c_item is None: continue if isinstance(base_config.get(c_key), dict): _override_config(base_config[c_key], new_config[c_key]) else: base_config[c_key] = new_config[c_key] def _get_default_config(): """Return the package default config file.""" conf_file = None package = "msticpy" try: conf_file = pkg_resources.resource_filename(package, _CONFIG_FILE) except ModuleNotFoundError as mod_err: # if all else fails we try to find the package default config somewhere # in the package tree - we use the first one we find pkg_root = _get_pkg_path("msticpy") if not pkg_root: raise MsticpyUserConfigError( f"Unable to locate the package default {_CONFIG_FILE}", "msticpy package may be corrupted.", title=f"Package {_CONFIG_FILE} missing.", ) from mod_err conf_file = next(iter(pkg_root.glob("**/" + _CONFIG_FILE))) if conf_file: return _read_config_file(conf_file) return {} def _get_custom_config(): config_path = os.environ.get(_CONFIG_ENV_VAR, None) if config_path and Path(config_path).is_file(): _CURRENT_CONF_FILE(str(Path(config_path).resolve())) return _read_config_file(config_path) if Path(_CONFIG_FILE).is_file(): _CURRENT_CONF_FILE(str(Path(".").joinpath(_CONFIG_FILE).resolve())) return _read_config_file(_CONFIG_FILE) return {} def _get_pkg_path(pkg_name): current_path = Path(__file__) while current_path.name != pkg_name: if current_path == current_path.parent: return None current_path = current_path.parent return current_path def _create_data_providers(mp_config: Dict[str, Any]) -> Dict[str, Any]: if mp_config.get(_DP_KEY) is None: mp_config[_DP_KEY] = {} data_providers = mp_config[_DP_KEY] az_sent_config = mp_config.get(_AZ_SENTINEL) if az_sent_config and az_sent_config.get("Workspaces"): for section, prov_settings in mp_config[_AZ_SENTINEL]["Workspaces"].items(): sec_name = f"{_AZ_SENTINEL}_{section}" if sec_name in data_providers: continue data_providers[sec_name] = {"Args": prov_settings} az_cli_config = mp_config.get(_AZ_CLI) if az_cli_config and _AZ_CLI not in data_providers: data_providers[_AZ_CLI] = mp_config[_AZ_CLI] return mp_config # read initial config when first imported. refresh_config() def validate_config(mp_config: Dict[str, Any] = None, config_file: str = None): """ Validate msticpy config settings. Parameters ---------- mp_config : Dict[str, Any], optional The settings dictionary, by default it will check the currently loaded settings. config_file : str path to config file to check, by default None """ if config_file: mp_config = _read_config_file(config_file) if not (mp_config or config_file): mp_config = settings if not isinstance(mp_config, dict): raise TypeError("Unknown format for configuration settings.") mp_errors, mp_warn = _validate_azure_sentinel(mp_config=mp_config) auth_key_providers = [ "OTX", "VirusTotal", "XForce", "OpenPageRank", "GeoIPLite", "IPStack", ] for conf_section in ["TIProviders", "OtherProviders", _DP_KEY]: prov_errors, prov_warn = _check_provider_settings( mp_config=mp_config.get(conf_section, {}), section=conf_section, key_provs=auth_key_providers, ) if conf_section == _DP_KEY and mp_config.get(conf_section) is None: continue mp_errors.extend(prov_errors) mp_warn.extend(prov_warn) _print_validation_report(mp_errors, mp_warn) if mp_errors or mp_warn: return mp_errors, mp_warn return [], [] def _print_validation_report(mp_errors, mp_warn): if mp_errors: title = "\nThe following configuration errors were found:" print(title, "\n", "-" * len(title)) for err in mp_errors: print(err) else: print("No errors found.") if mp_warn: title = "\nThe following configuration warnings were found:" print(title, "\n", "-" * len(title)) for err in mp_warn: print(err) else: print("No warnings found.") def _validate_azure_sentinel(mp_config): mp_errors = [] mp_warnings = [] as_settings = mp_config.get(_AZ_SENTINEL, {}) if not as_settings: mp_errors.append("Missing or empty 'AzureSentinel' section") return mp_errors, mp_warnings ws_settings = as_settings.get("Workspaces", {}) if not ws_settings: mp_errors.append("Missing or empty 'Workspaces' key in 'AzureSentinel' section") return mp_errors, mp_warnings no_default = True for ws, ws_settings in ws_settings.items(): if ws == "Default": no_default = False ws_id = ws_settings.get("WorkspaceId") if not (ws_id and is_valid_uuid(ws_id)): mp_errors.append(f"Invalid GUID for WorkspaceId in {ws} section") ten_id = ws_settings.get("TenantId") if not (ten_id and is_valid_uuid(ten_id)): mp_errors.append(f"Invalid GUID for TenantId in {ws} section") mp_warnings = ["No default workspace set"] if no_default else [] return mp_errors, mp_warnings def _check_provider_settings(mp_config, section, key_provs): mp_errors = [] mp_warnings = [] if not mp_config: mp_warnings.append(f"'{section}' section has no settings.") return mp_errors, mp_warnings for p_name, p_setting in mp_config.items(): if not p_setting: mp_warnings.append(f"'{section}/{p_name}' sub-section has no settings.") continue if "Args" not in p_setting: continue sec_args = p_setting.get("Args") if not sec_args: mp_errors.append(f"'{section}/{p_name}/{sec_args}' key has no settings.") continue sec_path = f"{section}/{p_name}" if section else f"{p_name}" mp_errors.extend( _check_required_provider_settings(sec_args, sec_path, p_name, key_provs) ) mp_errors.extend( _check_env_vars(args_key=p_setting.get("Args"), section=sec_path) ) return mp_errors, mp_warnings def _check_required_provider_settings(sec_args, sec_path, p_name, key_provs): errs = [] if key_provs and p_name in key_provs: errs.append(_check_required_key(sec_args, "AuthKey", sec_path)) if p_name == "XForce": errs.append(_check_required_key(sec_args, "ApiID", sec_path)) if p_name == _AZ_SENTINEL: errs.append(_check_is_uuid(sec_args, "WorkspaceID", sec_path)) errs.append(_check_is_uuid(sec_args, "TenantID", sec_path)) if p_name.startswith("AzureSentinel_"): errs.append(_check_is_uuid(sec_args, "WorkspaceId", sec_path)) errs.append(_check_is_uuid(sec_args, "TenantId", sec_path)) if ( p_name == _AZ_CLI and "clientId" in sec_args and sec_args["clientId"] is not None ): # only warn if partially filled - since these are optional errs.append(_check_required_key(sec_args, "clientId", sec_path)) errs.append(_check_required_key(sec_args, "tenantId", sec_path)) errs.append(_check_required_key(sec_args, "clientSecret", sec_path)) return [err for err in errs if err] def _check_required_key(conf_section, key, sec_path): if key not in conf_section or not conf_section.get(key): return f"{sec_path}: Missing or invalid {key}." return None def _check_is_uuid(conf_section, key, sec_path): if ( key not in conf_section or not conf_section[key] or not is_valid_uuid(conf_section[key]) ): return f"{sec_path}: Missing or invalid {key}." return None def _check_env_vars(args_key, section): mp_errs = [] if not args_key: return mp_errs for val in args_key.values(): if not val: continue if "EnvironmentVar" in val: env_name = val.get("EnvironmentVar") if not env_name: mp_errs.append(f"{section}: No environment variable name specified.") elif env_name not in os.environ: mp_errs.append(f"{section}: Env variable {env_name} not set.") elif not os.environ[env_name]: mp_errs.append(f"{section}: Env variable {env_name} value is not set.") return mp_errs # Set get_config function in exceptions module # so that it can be called without having a circular import # pylint: disable=protected-access exceptions._get_config = get_config
32.00232
88
0.650837
2d61b74408c225599964e7b26da8dfe8eb04671d
29,566
py
Python
testing/test_assertrewrite.py
meawoppl/pytest
3676da594c76243cbb2271a59213d3b2ded2f729
[ "MIT" ]
null
null
null
testing/test_assertrewrite.py
meawoppl/pytest
3676da594c76243cbb2271a59213d3b2ded2f729
[ "MIT" ]
null
null
null
testing/test_assertrewrite.py
meawoppl/pytest
3676da594c76243cbb2271a59213d3b2ded2f729
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function import glob import os import py_compile import stat import sys import zipfile import py import pytest import _pytest._code from _pytest.assertion import util from _pytest.assertion.rewrite import rewrite_asserts, PYTEST_TAG, AssertionRewritingHook from _pytest.main import EXIT_NOTESTSCOLLECTED ast = pytest.importorskip("ast") if sys.platform.startswith("java"): # XXX should be xfail pytest.skip("assert rewrite does currently not work on jython") def setup_module(mod): mod._old_reprcompare = util._reprcompare _pytest._code._reprcompare = None def teardown_module(mod): util._reprcompare = mod._old_reprcompare del mod._old_reprcompare def rewrite(src): tree = ast.parse(src) rewrite_asserts(tree) return tree def getmsg(f, extra_ns=None, must_pass=False): """Rewrite the assertions in f, run it, and get the failure message.""" src = '\n'.join(_pytest._code.Code(f).source().lines) mod = rewrite(src) code = compile(mod, "<test>", "exec") ns = {} if extra_ns is not None: ns.update(extra_ns) py.builtin.exec_(code, ns) func = ns[f.__name__] try: func() except AssertionError: if must_pass: pytest.fail("shouldn't have raised") s = str(sys.exc_info()[1]) if not s.startswith("assert"): return "AssertionError: " + s return s else: if not must_pass: pytest.fail("function didn't raise at all") class TestAssertionRewrite(object): def test_place_initial_imports(self): s = """'Doc string'\nother = stuff""" m = rewrite(s) assert isinstance(m.body[0], ast.Expr) assert isinstance(m.body[0].value, ast.Str) for imp in m.body[1:3]: assert isinstance(imp, ast.Import) assert imp.lineno == 2 assert imp.col_offset == 0 assert isinstance(m.body[3], ast.Assign) s = """from __future__ import with_statement\nother_stuff""" m = rewrite(s) assert isinstance(m.body[0], ast.ImportFrom) for imp in m.body[1:3]: assert isinstance(imp, ast.Import) assert imp.lineno == 2 assert imp.col_offset == 0 assert isinstance(m.body[3], ast.Expr) s = """'doc string'\nfrom __future__ import with_statement\nother""" m = rewrite(s) assert isinstance(m.body[0], ast.Expr) assert isinstance(m.body[0].value, ast.Str) assert isinstance(m.body[1], ast.ImportFrom) for imp in m.body[2:4]: assert isinstance(imp, ast.Import) assert imp.lineno == 3 assert imp.col_offset == 0 assert isinstance(m.body[4], ast.Expr) s = """from . import relative\nother_stuff""" m = rewrite(s) for imp in m.body[0:2]: assert isinstance(imp, ast.Import) assert imp.lineno == 1 assert imp.col_offset == 0 assert isinstance(m.body[3], ast.Expr) def test_dont_rewrite(self): s = """'PYTEST_DONT_REWRITE'\nassert 14""" m = rewrite(s) assert len(m.body) == 2 assert isinstance(m.body[0].value, ast.Str) assert isinstance(m.body[1], ast.Assert) assert m.body[1].msg is None def test_name(self): def f(): assert False assert getmsg(f) == "assert False" def f(): f = False assert f assert getmsg(f) == "assert False" def f(): assert a_global # noqa assert getmsg(f, {"a_global": False}) == "assert False" def f(): assert sys == 42 assert getmsg(f, {"sys": sys}) == "assert sys == 42" def f(): assert cls == 42 # noqa class X(object): pass assert getmsg(f, {"cls": X}) == "assert cls == 42" def test_assert_already_has_message(self): def f(): assert False, "something bad!" assert getmsg(f) == "AssertionError: something bad!\nassert False" def test_assertion_message(self, testdir): testdir.makepyfile(""" def test_foo(): assert 1 == 2, "The failure message" """) result = testdir.runpytest() assert result.ret == 1 result.stdout.fnmatch_lines([ "*AssertionError*The failure message*", "*assert 1 == 2*", ]) def test_assertion_message_multiline(self, testdir): testdir.makepyfile(""" def test_foo(): assert 1 == 2, "A multiline\\nfailure message" """) result = testdir.runpytest() assert result.ret == 1 result.stdout.fnmatch_lines([ "*AssertionError*A multiline*", "*failure message*", "*assert 1 == 2*", ]) def test_assertion_message_tuple(self, testdir): testdir.makepyfile(""" def test_foo(): assert 1 == 2, (1, 2) """) result = testdir.runpytest() assert result.ret == 1 result.stdout.fnmatch_lines([ "*AssertionError*%s*" % repr((1, 2)), "*assert 1 == 2*", ]) def test_assertion_message_expr(self, testdir): testdir.makepyfile(""" def test_foo(): assert 1 == 2, 1 + 2 """) result = testdir.runpytest() assert result.ret == 1 result.stdout.fnmatch_lines([ "*AssertionError*3*", "*assert 1 == 2*", ]) def test_assertion_message_escape(self, testdir): testdir.makepyfile(""" def test_foo(): assert 1 == 2, 'To be escaped: %' """) result = testdir.runpytest() assert result.ret == 1 result.stdout.fnmatch_lines([ "*AssertionError: To be escaped: %", "*assert 1 == 2", ]) def test_boolop(self): def f(): f = g = False assert f and g assert getmsg(f) == "assert (False)" def f(): f = True g = False assert f and g assert getmsg(f) == "assert (True and False)" def f(): f = False g = True assert f and g assert getmsg(f) == "assert (False)" def f(): f = g = False assert f or g assert getmsg(f) == "assert (False or False)" def f(): f = g = False assert not f and not g getmsg(f, must_pass=True) def x(): return False def f(): assert x() and x() assert getmsg(f, {"x": x}) == """assert (False) + where False = x()""" def f(): assert False or x() assert getmsg(f, {"x": x}) == """assert (False or False) + where False = x()""" def f(): assert 1 in {} and 2 in {} assert getmsg(f) == "assert (1 in {})" def f(): x = 1 y = 2 assert x in {1: None} and y in {} assert getmsg(f) == "assert (1 in {1: None} and 2 in {})" def f(): f = True g = False assert f or g getmsg(f, must_pass=True) def f(): f = g = h = lambda: True assert f() and g() and h() getmsg(f, must_pass=True) def test_short_circuit_evaluation(self): def f(): assert True or explode # noqa getmsg(f, must_pass=True) def f(): x = 1 assert x == 1 or x == 2 getmsg(f, must_pass=True) def test_unary_op(self): def f(): x = True assert not x assert getmsg(f) == "assert not True" def f(): x = 0 assert ~x + 1 assert getmsg(f) == "assert (~0 + 1)" def f(): x = 3 assert -x + x assert getmsg(f) == "assert (-3 + 3)" def f(): x = 0 assert +x + x assert getmsg(f) == "assert (+0 + 0)" def test_binary_op(self): def f(): x = 1 y = -1 assert x + y assert getmsg(f) == "assert (1 + -1)" def f(): assert not 5 % 4 assert getmsg(f) == "assert not (5 % 4)" def test_boolop_percent(self): def f(): assert 3 % 2 and False assert getmsg(f) == "assert ((3 % 2) and False)" def f(): assert False or 4 % 2 assert getmsg(f) == "assert (False or (4 % 2))" @pytest.mark.skipif("sys.version_info < (3,5)") def test_at_operator_issue1290(self, testdir): testdir.makepyfile(""" class Matrix(object): def __init__(self, num): self.num = num def __matmul__(self, other): return self.num * other.num def test_multmat_operator(): assert Matrix(2) @ Matrix(3) == 6""") testdir.runpytest().assert_outcomes(passed=1) def test_call(self): def g(a=42, *args, **kwargs): return False ns = {"g": g} def f(): assert g() assert getmsg(f, ns) == """assert False + where False = g()""" def f(): assert g(1) assert getmsg(f, ns) == """assert False + where False = g(1)""" def f(): assert g(1, 2) assert getmsg(f, ns) == """assert False + where False = g(1, 2)""" def f(): assert g(1, g=42) assert getmsg(f, ns) == """assert False + where False = g(1, g=42)""" def f(): assert g(1, 3, g=23) assert getmsg(f, ns) == """assert False + where False = g(1, 3, g=23)""" def f(): seq = [1, 2, 3] assert g(*seq) assert getmsg(f, ns) == """assert False + where False = g(*[1, 2, 3])""" def f(): x = "a" assert g(**{x: 2}) assert getmsg(f, ns) == """assert False + where False = g(**{'a': 2})""" def test_attribute(self): class X(object): g = 3 ns = {"x": X} def f(): assert not x.g # noqa assert getmsg(f, ns) == """assert not 3 + where 3 = x.g""" def f(): x.a = False # noqa assert x.a # noqa assert getmsg(f, ns) == """assert False + where False = x.a""" def test_comparisons(self): def f(): a, b = range(2) assert b < a assert getmsg(f) == """assert 1 < 0""" def f(): a, b, c = range(3) assert a > b > c assert getmsg(f) == """assert 0 > 1""" def f(): a, b, c = range(3) assert a < b > c assert getmsg(f) == """assert 1 > 2""" def f(): a, b, c = range(3) assert a < b <= c getmsg(f, must_pass=True) def f(): a, b, c = range(3) assert a < b assert b < c getmsg(f, must_pass=True) def test_len(self): def f(): l = list(range(10)) assert len(l) == 11 assert getmsg(f).startswith("""assert 10 == 11 + where 10 = len([""") def test_custom_reprcompare(self, monkeypatch): def my_reprcompare(op, left, right): return "42" monkeypatch.setattr(util, "_reprcompare", my_reprcompare) def f(): assert 42 < 3 assert getmsg(f) == "assert 42" def my_reprcompare(op, left, right): return "%s %s %s" % (left, op, right) monkeypatch.setattr(util, "_reprcompare", my_reprcompare) def f(): assert 1 < 3 < 5 <= 4 < 7 assert getmsg(f) == "assert 5 <= 4" def test_assert_raising_nonzero_in_comparison(self): def f(): class A(object): def __nonzero__(self): raise ValueError(42) def __lt__(self, other): return A() def __repr__(self): return "<MY42 object>" def myany(x): return False assert myany(A() < 0) assert "<MY42 object> < 0" in getmsg(f) def test_formatchar(self): def f(): assert "%test" == "test" assert getmsg(f).startswith("assert '%test' == 'test'") def test_custom_repr(self): def f(): class Foo(object): a = 1 def __repr__(self): return "\n{ \n~ \n}" f = Foo() assert 0 == f.a assert r"where 1 = \n{ \n~ \n}.a" in util._format_lines([getmsg(f)])[0] class TestRewriteOnImport(object): def test_pycache_is_a_file(self, testdir): testdir.tmpdir.join("__pycache__").write("Hello") testdir.makepyfile(""" def test_rewritten(): assert "@py_builtins" in globals()""") assert testdir.runpytest().ret == 0 def test_pycache_is_readonly(self, testdir): cache = testdir.tmpdir.mkdir("__pycache__") old_mode = cache.stat().mode cache.chmod(old_mode ^ stat.S_IWRITE) testdir.makepyfile(""" def test_rewritten(): assert "@py_builtins" in globals()""") try: assert testdir.runpytest().ret == 0 finally: cache.chmod(old_mode) def test_zipfile(self, testdir): z = testdir.tmpdir.join("myzip.zip") z_fn = str(z) f = zipfile.ZipFile(z_fn, "w") try: f.writestr("test_gum/__init__.py", "") f.writestr("test_gum/test_lizard.py", "") finally: f.close() z.chmod(256) testdir.makepyfile(""" import sys sys.path.append(%r) import test_gum.test_lizard""" % (z_fn,)) assert testdir.runpytest().ret == EXIT_NOTESTSCOLLECTED def test_readonly(self, testdir): sub = testdir.mkdir("testing") sub.join("test_readonly.py").write( py.builtin._totext(""" def test_rewritten(): assert "@py_builtins" in globals() """).encode("utf-8"), "wb") old_mode = sub.stat().mode sub.chmod(320) try: assert testdir.runpytest().ret == 0 finally: sub.chmod(old_mode) def test_dont_write_bytecode(self, testdir, monkeypatch): testdir.makepyfile(""" import os def test_no_bytecode(): assert "__pycache__" in __cached__ assert not os.path.exists(__cached__) assert not os.path.exists(os.path.dirname(__cached__))""") monkeypatch.setenv("PYTHONDONTWRITEBYTECODE", "1") assert testdir.runpytest_subprocess().ret == 0 def test_orphaned_pyc_file(self, testdir): if sys.version_info < (3, 0) and hasattr(sys, 'pypy_version_info'): pytest.skip("pypy2 doesn't run orphaned pyc files") testdir.makepyfile(""" import orphan def test_it(): assert orphan.value == 17 """) testdir.makepyfile(orphan=""" value = 17 """) py_compile.compile("orphan.py") os.remove("orphan.py") # Python 3 puts the .pyc files in a __pycache__ directory, and will # not import from there without source. It will import a .pyc from # the source location though. if not os.path.exists("orphan.pyc"): pycs = glob.glob("__pycache__/orphan.*.pyc") assert len(pycs) == 1 os.rename(pycs[0], "orphan.pyc") assert testdir.runpytest().ret == 0 @pytest.mark.skipif('"__pypy__" in sys.modules') def test_pyc_vs_pyo(self, testdir, monkeypatch): testdir.makepyfile(""" import pytest def test_optimized(): "hello" assert test_optimized.__doc__ is None""" ) p = py.path.local.make_numbered_dir(prefix="runpytest-", keep=None, rootdir=testdir.tmpdir) tmp = "--basetemp=%s" % p monkeypatch.setenv("PYTHONOPTIMIZE", "2") monkeypatch.delenv("PYTHONDONTWRITEBYTECODE", raising=False) assert testdir.runpytest_subprocess(tmp).ret == 0 tagged = "test_pyc_vs_pyo." + PYTEST_TAG assert tagged + ".pyo" in os.listdir("__pycache__") monkeypatch.undo() monkeypatch.delenv("PYTHONDONTWRITEBYTECODE", raising=False) assert testdir.runpytest_subprocess(tmp).ret == 1 assert tagged + ".pyc" in os.listdir("__pycache__") def test_package(self, testdir): pkg = testdir.tmpdir.join("pkg") pkg.mkdir() pkg.join("__init__.py").ensure() pkg.join("test_blah.py").write(""" def test_rewritten(): assert "@py_builtins" in globals()""") assert testdir.runpytest().ret == 0 def test_translate_newlines(self, testdir): content = "def test_rewritten():\r\n assert '@py_builtins' in globals()" b = content.encode("utf-8") testdir.tmpdir.join("test_newlines.py").write(b, "wb") assert testdir.runpytest().ret == 0 @pytest.mark.skipif(sys.version_info < (3, 3), reason='packages without __init__.py not supported on python 2') def test_package_without__init__py(self, testdir): pkg = testdir.mkdir('a_package_without_init_py') pkg.join('module.py').ensure() testdir.makepyfile("import a_package_without_init_py.module") assert testdir.runpytest().ret == EXIT_NOTESTSCOLLECTED def test_rewrite_warning(self, pytestconfig, monkeypatch): hook = AssertionRewritingHook(pytestconfig) warnings = [] def mywarn(code, msg): warnings.append((code, msg)) monkeypatch.setattr(hook.config, 'warn', mywarn) hook.mark_rewrite('_pytest') assert '_pytest' in warnings[0][1] def test_rewrite_module_imported_from_conftest(self, testdir): testdir.makeconftest(''' import test_rewrite_module_imported ''') testdir.makepyfile(test_rewrite_module_imported=''' def test_rewritten(): assert "@py_builtins" in globals() ''') assert testdir.runpytest_subprocess().ret == 0 def test_remember_rewritten_modules(self, pytestconfig, testdir, monkeypatch): """ AssertionRewriteHook should remember rewritten modules so it doesn't give false positives (#2005). """ monkeypatch.syspath_prepend(testdir.tmpdir) testdir.makepyfile(test_remember_rewritten_modules='') warnings = [] hook = AssertionRewritingHook(pytestconfig) monkeypatch.setattr(hook.config, 'warn', lambda code, msg: warnings.append(msg)) hook.find_module('test_remember_rewritten_modules') hook.load_module('test_remember_rewritten_modules') hook.mark_rewrite('test_remember_rewritten_modules') hook.mark_rewrite('test_remember_rewritten_modules') assert warnings == [] def test_rewrite_warning_using_pytest_plugins(self, testdir): testdir.makepyfile(**{ 'conftest.py': "pytest_plugins = ['core', 'gui', 'sci']", 'core.py': "", 'gui.py': "pytest_plugins = ['core', 'sci']", 'sci.py': "pytest_plugins = ['core']", 'test_rewrite_warning_pytest_plugins.py': "def test(): pass", }) testdir.chdir() result = testdir.runpytest_subprocess() result.stdout.fnmatch_lines(['*= 1 passed in *=*']) assert 'pytest-warning summary' not in result.stdout.str() def test_rewrite_warning_using_pytest_plugins_env_var(self, testdir, monkeypatch): monkeypatch.setenv('PYTEST_PLUGINS', 'plugin') testdir.makepyfile(**{ 'plugin.py': "", 'test_rewrite_warning_using_pytest_plugins_env_var.py': """ import plugin pytest_plugins = ['plugin'] def test(): pass """, }) testdir.chdir() result = testdir.runpytest_subprocess() result.stdout.fnmatch_lines(['*= 1 passed in *=*']) assert 'pytest-warning summary' not in result.stdout.str() @pytest.mark.skipif(sys.version_info[0] > 2, reason='python 2 only') def test_rewrite_future_imports(self, testdir): """Test that rewritten modules don't inherit the __future__ flags from the assertrewrite module. assertion.rewrite imports __future__.division (and others), so ensure rewritten modules don't inherit those flags. The test below will fail if __future__.division is enabled """ testdir.makepyfile(''' def test(): x = 1 / 2 assert type(x) is int ''') result = testdir.runpytest() assert result.ret == 0 class TestAssertionRewriteHookDetails(object): def test_loader_is_package_false_for_module(self, testdir): testdir.makepyfile(test_fun=""" def test_loader(): assert not __loader__.is_package(__name__) """) result = testdir.runpytest() result.stdout.fnmatch_lines([ "* 1 passed*", ]) def test_loader_is_package_true_for_package(self, testdir): testdir.makepyfile(test_fun=""" def test_loader(): assert not __loader__.is_package(__name__) def test_fun(): assert __loader__.is_package('fun') def test_missing(): assert not __loader__.is_package('pytest_not_there') """) testdir.mkpydir('fun') result = testdir.runpytest() result.stdout.fnmatch_lines([ '* 3 passed*', ]) @pytest.mark.skipif("sys.version_info[0] >= 3") @pytest.mark.xfail("hasattr(sys, 'pypy_translation_info')") def test_assume_ascii(self, testdir): content = "u'\xe2\x99\xa5\x01\xfe'" testdir.tmpdir.join("test_encoding.py").write(content, "wb") res = testdir.runpytest() assert res.ret != 0 assert "SyntaxError: Non-ASCII character" in res.stdout.str() @pytest.mark.skipif("sys.version_info[0] >= 3") def test_detect_coding_cookie(self, testdir): testdir.makepyfile(test_cookie=""" # -*- coding: utf-8 -*- u"St\xc3\xa4d" def test_rewritten(): assert "@py_builtins" in globals()""") assert testdir.runpytest().ret == 0 @pytest.mark.skipif("sys.version_info[0] >= 3") def test_detect_coding_cookie_second_line(self, testdir): testdir.makepyfile(test_cookie=""" # -*- coding: utf-8 -*- u"St\xc3\xa4d" def test_rewritten(): assert "@py_builtins" in globals()""") assert testdir.runpytest().ret == 0 @pytest.mark.skipif("sys.version_info[0] >= 3") def test_detect_coding_cookie_crlf(self, testdir): testdir.makepyfile(test_cookie=""" # -*- coding: utf-8 -*- u"St\xc3\xa4d" def test_rewritten(): assert "@py_builtins" in globals()""") assert testdir.runpytest().ret == 0 def test_sys_meta_path_munged(self, testdir): testdir.makepyfile(""" def test_meta_path(): import sys; sys.meta_path = []""") assert testdir.runpytest().ret == 0 def test_write_pyc(self, testdir, tmpdir, monkeypatch): from _pytest.assertion.rewrite import _write_pyc from _pytest.assertion import AssertionState try: import __builtin__ as b except ImportError: import builtins as b config = testdir.parseconfig([]) state = AssertionState(config, "rewrite") source_path = tmpdir.ensure("source.py") pycpath = tmpdir.join("pyc").strpath assert _write_pyc(state, [1], source_path.stat(), pycpath) def open(*args): e = IOError() e.errno = 10 raise e monkeypatch.setattr(b, "open", open) assert not _write_pyc(state, [1], source_path.stat(), pycpath) def test_resources_provider_for_loader(self, testdir): """ Attempts to load resources from a package should succeed normally, even when the AssertionRewriteHook is used to load the modules. See #366 for details. """ pytest.importorskip("pkg_resources") testdir.mkpydir('testpkg') contents = { 'testpkg/test_pkg': """ import pkg_resources import pytest from _pytest.assertion.rewrite import AssertionRewritingHook def test_load_resource(): assert isinstance(__loader__, AssertionRewritingHook) res = pkg_resources.resource_string(__name__, 'resource.txt') res = res.decode('ascii') assert res == 'Load me please.' """, } testdir.makepyfile(**contents) testdir.maketxtfile(**{'testpkg/resource': "Load me please."}) result = testdir.runpytest_subprocess() result.assert_outcomes(passed=1) def test_read_pyc(self, tmpdir): """ Ensure that the `_read_pyc` can properly deal with corrupted pyc files. In those circumstances it should just give up instead of generating an exception that is propagated to the caller. """ import py_compile from _pytest.assertion.rewrite import _read_pyc source = tmpdir.join('source.py') pyc = source + 'c' source.write('def test(): pass') py_compile.compile(str(source), str(pyc)) contents = pyc.read(mode='rb') strip_bytes = 20 # header is around 8 bytes, strip a little more assert len(contents) > strip_bytes pyc.write(contents[:strip_bytes], mode='wb') assert _read_pyc(source, str(pyc)) is None # no error def test_reload_is_same(self, testdir): # A file that will be picked up during collecting. testdir.tmpdir.join("file.py").ensure() testdir.tmpdir.join("pytest.ini").write(py.std.textwrap.dedent(""" [pytest] python_files = *.py """)) testdir.makepyfile(test_fun=""" import sys try: from imp import reload except ImportError: pass def test_loader(): import file assert sys.modules["file"] is reload(file) """) result = testdir.runpytest('-s') result.stdout.fnmatch_lines([ "* 1 passed*", ]) def test_get_data_support(self, testdir): """Implement optional PEP302 api (#808). """ path = testdir.mkpydir("foo") path.join("test_foo.py").write(_pytest._code.Source(""" class Test(object): def test_foo(self): import pkgutil data = pkgutil.get_data('foo.test_foo', 'data.txt') assert data == b'Hey' """)) path.join('data.txt').write('Hey') result = testdir.runpytest() result.stdout.fnmatch_lines('*1 passed*') def test_issue731(testdir): testdir.makepyfile(""" class LongReprWithBraces(object): def __repr__(self): return 'LongReprWithBraces({' + ('a' * 80) + '}' + ('a' * 120) + ')' def some_method(self): return False def test_long_repr(): obj = LongReprWithBraces() assert obj.some_method() """) result = testdir.runpytest() assert 'unbalanced braces' not in result.stdout.str() class TestIssue925(object): def test_simple_case(self, testdir): testdir.makepyfile(""" def test_ternary_display(): assert (False == False) == False """) result = testdir.runpytest() result.stdout.fnmatch_lines('*E*assert (False == False) == False') def test_long_case(self, testdir): testdir.makepyfile(""" def test_ternary_display(): assert False == (False == True) == True """) result = testdir.runpytest() result.stdout.fnmatch_lines('*E*assert (False == True) == True') def test_many_brackets(self, testdir): testdir.makepyfile(""" def test_ternary_display(): assert True == ((False == True) == True) """) result = testdir.runpytest() result.stdout.fnmatch_lines('*E*assert True == ((False == True) == True)') class TestIssue2121(): def test_simple(self, testdir): testdir.tmpdir.join("tests/file.py").ensure().write(""" def test_simple_failure(): assert 1 + 1 == 3 """) testdir.tmpdir.join("pytest.ini").write(py.std.textwrap.dedent(""" [pytest] python_files = tests/**.py """)) result = testdir.runpytest() result.stdout.fnmatch_lines('*E*assert (1 + 1) == 3')
30.324103
89
0.545593
4fbf5bfc23a09f532417eafac673b20e948d4f5c
737
py
Python
models/transport.py
3lpsy/FactionAPI
e3659c4a1a1cbdefcf6c3a240ee6db1475e3b022
[ "BSD-3-Clause" ]
1
2019-06-07T16:21:51.000Z
2019-06-07T16:21:51.000Z
models/transport.py
3lpsy/FactionAPI
e3659c4a1a1cbdefcf6c3a240ee6db1475e3b022
[ "BSD-3-Clause" ]
null
null
null
models/transport.py
3lpsy/FactionAPI
e3659c4a1a1cbdefcf6c3a240ee6db1475e3b022
[ "BSD-3-Clause" ]
null
null
null
from backend.database import db class Transport(db.Model): __tablename__ = "Transport" Id = db.Column(db.Integer, primary_key=True) Name = db.Column(db.String) TransportType = db.Column(db.String) Guid = db.Column(db.String) Created = db.Column(db.DateTime) LastCheckin = db.Column(db.DateTime) Configuration = db.Column(db.String) ApiKeyId = db.Column(db.Integer, db.ForeignKey('ApiKey.Id'), nullable=False) Enabled = db.Column(db.Boolean) Visible = db.Column(db.Boolean) Agents = db.relationship('Agent', backref='Transport', lazy=True) Payloads = db.relationship('Payload', backref='Transport', lazy=True) def __repr__(self): return '<Transport: %s>' % str(self.Id)
33.5
80
0.683853
1382d43500ad690e826c3b76582069e724fa1424
187
py
Python
vmupdate/__init__.py
CorwinTanner/vmupdate
3cd231abb6d00b1fce6850b621b505d30ed14125
[ "MIT" ]
null
null
null
vmupdate/__init__.py
CorwinTanner/vmupdate
3cd231abb6d00b1fce6850b621b505d30ed14125
[ "MIT" ]
null
null
null
vmupdate/__init__.py
CorwinTanner/vmupdate
3cd231abb6d00b1fce6850b621b505d30ed14125
[ "MIT" ]
null
null
null
""" vmupdate is a command line utility used to keep your virtual machines up to date. """ from os import path __version__ = '0.3.0' BASE_DIR = path.dirname(path.dirname(__file__))
18.7
85
0.716578
410ade7d563f74f3bade775abf3569f93d6d7975
11,036
py
Python
localstack/services/awslambda/lambda_utils.py
roguesupport/localstack
087abb05fcb360297431ad8e5790c8014e0a80d7
[ "Apache-2.0" ]
1
2022-03-17T07:22:23.000Z
2022-03-17T07:22:23.000Z
localstack/services/awslambda/lambda_utils.py
roguesupport/localstack
087abb05fcb360297431ad8e5790c8014e0a80d7
[ "Apache-2.0" ]
null
null
null
localstack/services/awslambda/lambda_utils.py
roguesupport/localstack
087abb05fcb360297431ad8e5790c8014e0a80d7
[ "Apache-2.0" ]
null
null
null
import base64 import logging import os import re import time from collections import defaultdict from functools import lru_cache from io import BytesIO from typing import Any, Dict, List, Union from flask import Response from localstack import config from localstack.utils import bootstrap from localstack.utils.aws import aws_stack from localstack.utils.aws.aws_models import LambdaFunction from localstack.utils.aws.aws_responses import flask_error_response_json from localstack.utils.common import short_uid, to_str from localstack.utils.docker_utils import DOCKER_CLIENT LOG = logging.getLogger(__name__) # root path of Lambda API endpoints API_PATH_ROOT = "/2015-03-31" # Lambda runtime constants LAMBDA_RUNTIME_PYTHON36 = "python3.6" LAMBDA_RUNTIME_PYTHON37 = "python3.7" LAMBDA_RUNTIME_PYTHON38 = "python3.8" LAMBDA_RUNTIME_PYTHON39 = "python3.9" LAMBDA_RUNTIME_NODEJS = "nodejs" LAMBDA_RUNTIME_NODEJS10X = "nodejs10.x" LAMBDA_RUNTIME_NODEJS12X = "nodejs12.x" LAMBDA_RUNTIME_NODEJS14X = "nodejs14.x" LAMBDA_RUNTIME_JAVA8 = "java8" LAMBDA_RUNTIME_JAVA8_AL2 = "java8.al2" LAMBDA_RUNTIME_JAVA11 = "java11" LAMBDA_RUNTIME_DOTNETCORE2 = "dotnetcore2.0" LAMBDA_RUNTIME_DOTNETCORE21 = "dotnetcore2.1" LAMBDA_RUNTIME_DOTNETCORE31 = "dotnetcore3.1" LAMBDA_RUNTIME_GOLANG = "go1.x" LAMBDA_RUNTIME_RUBY = "ruby" LAMBDA_RUNTIME_RUBY25 = "ruby2.5" LAMBDA_RUNTIME_RUBY27 = "ruby2.7" LAMBDA_RUNTIME_PROVIDED = "provided" LAMBDA_RUNTIME_PROVIDED_AL2 = "provided.al2" # default handler and runtime LAMBDA_DEFAULT_HANDLER = "handler.handler" LAMBDA_DEFAULT_RUNTIME = LAMBDA_RUNTIME_PYTHON37 LAMBDA_DEFAULT_STARTING_POSITION = "LATEST" # List of Dotnet Lambda runtime names DOTNET_LAMBDA_RUNTIMES = [ LAMBDA_RUNTIME_DOTNETCORE2, LAMBDA_RUNTIME_DOTNETCORE21, LAMBDA_RUNTIME_DOTNETCORE31, ] # IP address of main Docker container (lazily initialized) DOCKER_MAIN_CONTAINER_IP = None LAMBDA_CONTAINER_NETWORK = None class ClientError(Exception): def __init__(self, msg, code=400): super(ClientError, self).__init__(msg) self.code = code self.msg = msg def get_response(self): if isinstance(self.msg, Response): return self.msg return error_response(self.msg, self.code) @lru_cache() def get_default_executor_mode() -> str: """ Returns the default docker executor mode, which is "docker" if the docker socket is available via the docker client, or "local" otherwise. :return: """ try: return "docker" if DOCKER_CLIENT.has_docker() else "local" except Exception: return "local" def get_executor_mode() -> str: """ Returns the currently active lambda executor mode. If config.LAMBDA_EXECUTOR is set, then it returns that, otherwise it falls back to get_default_executor_mode(). :return: the lambda executor mode (e.g., 'local', 'docker', or 'docker-reuse') """ return config.LAMBDA_EXECUTOR or get_default_executor_mode() def multi_value_dict_for_list(elements: Union[List, Dict]) -> Dict: temp_mv_dict = defaultdict(list) for key in elements: if isinstance(key, (list, tuple)): key, value = key else: value = elements[key] key = to_str(key) temp_mv_dict[key].append(value) return dict((k, tuple(v)) for k, v in temp_mv_dict.items()) def get_lambda_runtime(runtime_details: Union[LambdaFunction, str]) -> str: """Return the runtime string from the given LambdaFunction (or runtime string).""" if isinstance(runtime_details, LambdaFunction): runtime_details = runtime_details.runtime if not isinstance(runtime_details, str): LOG.info("Unable to determine Lambda runtime from parameter: %s", runtime_details) return runtime_details or "" def is_provided_runtime(runtime_details: Union[LambdaFunction, str]) -> bool: """Whether the given LambdaFunction uses a 'provided' runtime.""" runtime = get_lambda_runtime(runtime_details) or "" return runtime.startswith("provided") def get_handler_file_from_name(handler_name: str, runtime: str = None): runtime = runtime or LAMBDA_DEFAULT_RUNTIME if runtime.startswith(LAMBDA_RUNTIME_PROVIDED): return "bootstrap" delimiter = "." if runtime.startswith(LAMBDA_RUNTIME_NODEJS): file_ext = ".js" elif runtime.startswith(LAMBDA_RUNTIME_GOLANG): file_ext = "" elif runtime.startswith(tuple(DOTNET_LAMBDA_RUNTIMES)): file_ext = ".dll" delimiter = ":" elif runtime.startswith(LAMBDA_RUNTIME_RUBY): file_ext = ".rb" else: handler_name = handler_name.rpartition(delimiter)[0].replace(delimiter, os.path.sep) file_ext = ".py" return "%s%s" % (handler_name.split(delimiter)[0], file_ext) def is_java_lambda(lambda_details): runtime = getattr(lambda_details, "runtime", lambda_details) return runtime in [LAMBDA_RUNTIME_JAVA8, LAMBDA_RUNTIME_JAVA8_AL2, LAMBDA_RUNTIME_JAVA11] def is_nodejs_runtime(lambda_details): runtime = getattr(lambda_details, "runtime", lambda_details) or "" return runtime.startswith("nodejs") def is_python_runtime(lambda_details): runtime = getattr(lambda_details, "runtime", lambda_details) or "" return runtime.startswith("python") def store_lambda_logs( lambda_function: LambdaFunction, log_output: str, invocation_time=None, container_id=None ): # leave here to avoid import issues from CLI from localstack.utils.cloudwatch.cloudwatch_util import store_cloudwatch_logs log_group_name = "/aws/lambda/%s" % lambda_function.name() container_id = container_id or short_uid() invocation_time = invocation_time or int(time.time() * 1000) invocation_time_secs = int(invocation_time / 1000) time_str = time.strftime("%Y/%m/%d", time.gmtime(invocation_time_secs)) log_stream_name = "%s/[LATEST]%s" % (time_str, container_id) return store_cloudwatch_logs(log_group_name, log_stream_name, log_output, invocation_time) def get_main_endpoint_from_container(): global DOCKER_MAIN_CONTAINER_IP if not config.HOSTNAME_FROM_LAMBDA and DOCKER_MAIN_CONTAINER_IP is None: DOCKER_MAIN_CONTAINER_IP = False container_name = bootstrap.get_main_container_name() try: if config.is_in_docker: DOCKER_MAIN_CONTAINER_IP = DOCKER_CLIENT.get_container_ipv4_for_network( container_name_or_id=container_name, container_network=get_container_network_for_lambda(), ) else: # default gateway for the network should be the host # (only under Linux - otherwise fall back to DOCKER_HOST_FROM_CONTAINER below) if config.is_in_linux: DOCKER_MAIN_CONTAINER_IP = DOCKER_CLIENT.inspect_network( get_container_network_for_lambda() )["IPAM"]["Config"][0]["Gateway"] LOG.info("Determined main container target IP: %s", DOCKER_MAIN_CONTAINER_IP) except Exception as e: LOG.info( 'Unable to get IP address of main Docker container "%s": %s', container_name, e ) # return (1) predefined endpoint host, or (2) main container IP, or (3) Docker host (e.g., bridge IP) return ( config.HOSTNAME_FROM_LAMBDA or DOCKER_MAIN_CONTAINER_IP or config.DOCKER_HOST_FROM_CONTAINER ) def get_container_network_for_lambda(): global LAMBDA_CONTAINER_NETWORK if config.LAMBDA_DOCKER_NETWORK: return config.LAMBDA_DOCKER_NETWORK if LAMBDA_CONTAINER_NETWORK is None: try: if config.is_in_docker: networks = DOCKER_CLIENT.get_networks(bootstrap.get_main_container_name()) LAMBDA_CONTAINER_NETWORK = networks[0] else: LAMBDA_CONTAINER_NETWORK = ( "bridge" # use the default bridge network in case of host mode ) LOG.info("Determined lambda container network: %s", LAMBDA_CONTAINER_NETWORK) except Exception as e: container_name = bootstrap.get_main_container_name() LOG.info('Unable to get network name of main container "%s": %s', container_name, e) return LAMBDA_CONTAINER_NETWORK def rm_docker_container(container_name_or_id, check_existence=False, safe=False): # TODO: remove method / move to docker module if not container_name_or_id: return if check_existence and container_name_or_id not in DOCKER_CLIENT.get_running_container_names(): # TODO: check names as well as container IDs! return try: DOCKER_CLIENT.remove_container(container_name_or_id) except Exception: if not safe: raise def get_record_from_event(event: Dict, key: str) -> Any: """Retrieve a field with the given key from the list of Records within 'event'.""" try: return event["Records"][0][key] except KeyError: return None def get_zip_bytes(function_code): """Returns the ZIP file contents from a FunctionCode dict. :type function_code: dict :param function_code: https://docs.aws.amazon.com/lambda/latest/dg/API_FunctionCode.html :returns: bytes of the Zip file. """ function_code = function_code or {} if "S3Bucket" in function_code: s3_client = aws_stack.connect_to_service("s3") bytes_io = BytesIO() try: s3_client.download_fileobj(function_code["S3Bucket"], function_code["S3Key"], bytes_io) zip_file_content = bytes_io.getvalue() except Exception as e: raise ClientError("Unable to fetch Lambda archive from S3: %s" % e, 404) elif "ZipFile" in function_code: zip_file_content = function_code["ZipFile"] zip_file_content = base64.b64decode(zip_file_content) elif "ImageUri" in function_code: zip_file_content = None else: raise ClientError("No valid Lambda archive specified: %s" % list(function_code.keys())) return zip_file_content def event_source_arn_matches(mapped: str, searched: str) -> bool: if not mapped: return False if not searched or mapped == searched: return True # Some types of ARNs can end with a path separated by slashes, for # example the ARN of a DynamoDB stream is tableARN/stream/ID. It's # a little counterintuitive that a more specific mapped ARN can # match a less specific ARN on the event, but some integration tests # rely on it for things like subscribing to a stream and matching an # event labeled with the table ARN. if re.match(r"^%s$" % searched, mapped): return True if mapped.startswith(searched): suffix = mapped[len(searched) :] return suffix[0] == "/" return False def error_response(msg, code=500, error_type="InternalFailure"): if code != 404: LOG.debug(msg) return flask_error_response_json(msg, code=code, error_type=error_type)
36.909699
112
0.708499
975a1e8765eb2c2aff035c56438f5df6adc38b35
4,621
py
Python
lib/experiment.py
Racter42/gxabm
04b77f3abb9caa69e527f84c3d85fa8e3d931e27
[ "MIT" ]
1
2021-11-23T21:44:09.000Z
2021-11-23T21:44:09.000Z
lib/experiment.py
Racter42/gxabm
04b77f3abb9caa69e527f84c3d85fa8e3d931e27
[ "MIT" ]
18
2021-07-28T22:32:30.000Z
2021-12-09T19:43:36.000Z
lib/experiment.py
Racter42/gxabm
04b77f3abb9caa69e527f84c3d85fa8e3d931e27
[ "MIT" ]
2
2021-08-04T21:24:14.000Z
2021-11-23T17:57:40.000Z
import os import yaml import json import lib import helm from common import load_profiles, set_active_profile import benchmark INVOCATIONS_DIR = "invocations" METRICS_DIR = "metrics" def run(args: list): """ Runs a single benchmark defined by *args[0]* :param args: a list that contains a single element, the path to a benchmark configuration file. :return: True if the benchmarks completed sucessfully. False otherwise. """ if len(args) == 0: print("ERROR: No benchmarking configuration provided.") return False benchmark_path = args[0] if not os.path.exists(benchmark_path): print(f"ERROR: Benchmarking configuration not found {benchmark_path}") return False with open(benchmark_path, 'r') as f: config = yaml.safe_load(f) profiles = load_profiles() num_runs = config['runs'] for cloud in config['cloud']: if cloud not in profiles: print(f"WARNING: No profile found for {cloud}") continue if not set_active_profile(cloud): print(f"ERROR: Unable to set the profile for {cloud}") continue if lib.KUBECONFIG is None: print(f"ERROR: No kubeconfig set for {cloud}") continue print("------------------------") print(f"Benchmarking: {cloud}") for conf in config['job_configs']: job_conf_path = f"rules/{conf}.yml" if not helm.update([job_conf_path]): print(f"WARNING: job conf not found {conf}") continue for n in range(num_runs): history_name_prefix = f"{n} {cloud} {conf}" for workflow_conf in config['benchmark_confs']: benchmark.run([workflow_conf, history_name_prefix]) # for n in range(num_runs): # print("------------------------") # print(f"Benchmarking run #{n+1}") # for cloud in config['cloud']: # if cloud not in profiles: # print(f"WARNING: no profile for instance {cloud}") # continue # if not set_active_profile(cloud): # print(f"WARNING: unable to set {cloud} as the active profile") # if lib.KUBECONFIG is None: # print(f"WARNGING: no kubeconfig for instance {cloud}") # continue # for job_conf in config['job_configs']: # job_conf_path = f"rules/{job_conf}.yml" # if not helm.update([job_conf_path]): # print(f"WARNING: job conf not found {job_conf}") # continue # history_name_prefix = f"Run {n} {job_conf}" # for workflow_conf in config['workflow_conf']: # workflow.run([workflow_conf, history_name_prefix]) def test(args: list): print(lib.GALAXY_SERVER) if os.path.exists(args[0]): with open(args[0]) as f: data = yaml.safe_load(f) print(data) def parse_toolid(id:str) -> str: parts = id.split('/') return f"{parts[-2]},{parts[-1]}" def summarize(args: list): """ Parses all the files in the **METRICS_DIR** directory and prints metrics as CSV to stdout :param args: Ignored :return: None """ row = [''] * 15 print("Run,Cloud,Job Conf,Workflow,History,Server,Tool,Tool Version,State,Slots,Memory,Runtime (Sec),CPU,Memory Limit (Bytes),Memory Max usage (Bytes),Memory Soft Limit") for file in os.listdir(METRICS_DIR): input_path = os.path.join(METRICS_DIR, file) with open(input_path, 'r') as f: data = json.load(f) row[0] = data['run'] row[1] = data['cloud'] row[2] = data['job_conf'] row[3] = data['workflow_id'] row[4] = data['history_id'] row[5] = data['server'] if data['server'] is not None else 'https://iu1.usegvl.org/galaxy' row[6] = parse_toolid(data['metrics']['tool_id']) row[7] = data['metrics']['state'] add_metrics_to_row(data['metrics']['job_metrics'], row) print(','.join(row)) def add_metrics_to_row(metrics_list: list, row: list): accept_metrics = ['galaxy_slots', 'galaxy_memory_mb', 'runtime_seconds', 'cpuacct.usage','memory.limit_in_bytes', 'memory.max_usage_in_bytes','memory.soft_limit_in_bytes'] for job_metrics in metrics_list: if job_metrics['name'] in accept_metrics: index = accept_metrics.index(job_metrics['name']) row[index + 8] = job_metrics['raw_value'] # row.append(job_metrics['raw_value'])
35.007576
175
0.590565
4cbdf7a0ef242165701dd3369f8033de29ca014d
10,320
py
Python
src/transformers/commands/add_new_model.py
liminghao1630/transformers
207594be81b8e5a8589c8b11c3b236924555d806
[ "Apache-2.0" ]
31
2022-02-02T13:13:41.000Z
2022-03-29T08:37:20.000Z
src/transformers/commands/add_new_model.py
liminghao1630/transformers
207594be81b8e5a8589c8b11c3b236924555d806
[ "Apache-2.0" ]
2
2022-01-06T05:40:05.000Z
2022-01-06T15:12:29.000Z
src/transformers/commands/add_new_model.py
liminghao1630/transformers
207594be81b8e5a8589c8b11c3b236924555d806
[ "Apache-2.0" ]
3
2022-01-06T04:44:13.000Z
2022-02-18T23:35:21.000Z
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _has_cookiecutter = True except ImportError: _has_cookiecutter = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name def add_new_model_command_factory(args: Namespace): return AddNewModelCommand(args.testing, args.testing_file, path=args.path) class AddNewModelCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): add_new_model_parser = parser.add_parser("add-new-model") add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode.") add_new_model_parser.add_argument("--testing_file", type=str, help="Configuration file on which to run.") add_new_model_parser.add_argument( "--path", type=str, help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=add_new_model_command_factory) def __init__(self, testing: bool, testing_file: str, path=None, *args): self._testing = testing self._testing_file = testing_file self._path = path def run(self): if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory directories = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(directories) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) path_to_transformer_root = ( Path(__file__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) path_to_cookiecutter = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(path_to_cookiecutter)) else: with open(self._testing_file, "r") as configuration_file: testing_configuration = json.load(configuration_file) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path), no_input=True, extra_context=testing_configuration, ) directory = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json", "r") as configuration_file: configuration = json.load(configuration_file) lowercase_model_name = configuration["lowercase_modelname"] generate_tensorflow_pytorch_and_flax = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f"{directory}/configuration.json") output_pytorch = "PyTorch" in generate_tensorflow_pytorch_and_flax output_tensorflow = "TensorFlow" in generate_tensorflow_pytorch_and_flax output_flax = "Flax" in generate_tensorflow_pytorch_and_flax model_dir = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(model_dir, exist_ok=True) shutil.move( f"{directory}/__init__.py", f"{model_dir}/__init__.py", ) shutil.move( f"{directory}/configuration_{lowercase_model_name}.py", f"{model_dir}/configuration_{lowercase_model_name}.py", ) def remove_copy_lines(path): with open(path, "r") as f: lines = f.readlines() with open(path, "w") as f: for line in lines: if "# Copied from transformers." not in line: f.write(line) if output_pytorch: if not self._testing: remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py") shutil.move( f"{directory}/modeling_{lowercase_model_name}.py", f"{model_dir}/modeling_{lowercase_model_name}.py", ) shutil.move( f"{directory}/test_modeling_{lowercase_model_name}.py", f"{path_to_transformer_root}/tests/test_modeling_{lowercase_model_name}.py", ) else: os.remove(f"{directory}/modeling_{lowercase_model_name}.py") os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py") if output_tensorflow: if not self._testing: remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py") shutil.move( f"{directory}/modeling_tf_{lowercase_model_name}.py", f"{model_dir}/modeling_tf_{lowercase_model_name}.py", ) shutil.move( f"{directory}/test_modeling_tf_{lowercase_model_name}.py", f"{path_to_transformer_root}/tests/test_modeling_tf_{lowercase_model_name}.py", ) else: os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py") os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py") if output_flax: if not self._testing: remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py") shutil.move( f"{directory}/modeling_flax_{lowercase_model_name}.py", f"{model_dir}/modeling_flax_{lowercase_model_name}.py", ) shutil.move( f"{directory}/test_modeling_flax_{lowercase_model_name}.py", f"{path_to_transformer_root}/tests/test_modeling_flax_{lowercase_model_name}.py", ) else: os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py") os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py") shutil.move( f"{directory}/{lowercase_model_name}.mdx", f"{path_to_transformer_root}/docs/source/model_doc/{lowercase_model_name}.mdx", ) shutil.move( f"{directory}/tokenization_{lowercase_model_name}.py", f"{model_dir}/tokenization_{lowercase_model_name}.py", ) shutil.move( f"{directory}/tokenization_fast_{lowercase_model_name}.py", f"{model_dir}/tokenization_{lowercase_model_name}_fast.py", ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(original_file: str, line_to_copy_below: str, lines_to_copy: List[str]): # Create temp file fh, abs_path = mkstemp() line_found = False with fdopen(fh, "w") as new_file: with open(original_file) as old_file: for line in old_file: new_file.write(line) if line_to_copy_below in line: line_found = True for line_to_copy in lines_to_copy: new_file.write(line_to_copy) if not line_found: raise ValueError(f"Line {line_to_copy_below} was not found in file.") # Copy the file permissions from the old file to the new file copymode(original_file, abs_path) # Remove original file remove(original_file) # Move new file move(abs_path, original_file) def skip_units(line): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(path_to_datafile): with open(path_to_datafile) as datafile: lines_to_copy = [] skip_file = False skip_snippet = False for line in datafile: if "# To replace in: " in line and "##" not in line: file_to_replace_in = line.split('"')[1] skip_file = skip_units(line) elif "# Below: " in line and "##" not in line: line_to_copy_below = line.split('"')[1] skip_snippet = skip_units(line) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(file_to_replace_in, line_to_copy_below, lines_to_copy) lines_to_copy = [] elif "# Replace with" in line and "##" not in line: lines_to_copy = [] elif "##" not in line: lines_to_copy.append(line) remove(path_to_datafile) replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py") os.rmdir(directory)
41.445783
119
0.620252
f0ffded880c12a07812b9a6b2bf183c2595ceebe
814
py
Python
2020/8.py
quickthom/aoc
34703f57ae8dbbd56748401d999fcb96d0b47bfe
[ "MIT" ]
null
null
null
2020/8.py
quickthom/aoc
34703f57ae8dbbd56748401d999fcb96d0b47bfe
[ "MIT" ]
null
null
null
2020/8.py
quickthom/aoc
34703f57ae8dbbd56748401d999fcb96d0b47bfe
[ "MIT" ]
null
null
null
from handy import read lines = read(8) #lines = [ "nop +0", "acc +1", "jmp +4", "acc +3", "jmp -3", "acc -99", "acc +1", "jmp -4", "acc +6", ] def execute(lines): pgmc = 0 pgmc_hist = set() acc = 0 while pgmc < len(lines) and pgmc not in pgmc_hist: pgmc_hist.add(pgmc) cmd, arg = lines[pgmc].split() if cmd =='acc': acc += int(arg) pgmc += int(arg) if cmd=='jmp' else 1 if pgmc != len(lines): return False, acc return True, acc execute(lines) nops_and_jmps = [i for i, cmd in enumerate(lines) if cmd[:3] in ('nop','jmp')] for i in nops_and_jmps: new = lines.copy() repl=('nop','jmp') if 'nop' in new[i] else ('jmp','nop') new[i] = new[i].replace(*repl) clean, acc = execute(new) if clean: break print(acc)
26.258065
103
0.545455
c1b560d0957d12a948864ab5820fa8c7afb7dab6
3,043
py
Python
modules/image/object_detection/faster_rcnn_resnet50_fpn_venus/roi_extractor.py
chunzhang-hub/PaddleHub
c5cfd021f77fd59340fb26e223e09a592e6a345f
[ "Apache-2.0" ]
8,360
2019-01-18T10:46:45.000Z
2022-03-31T14:50:02.000Z
modules/image/object_detection/faster_rcnn_resnet50_fpn_venus/roi_extractor.py
dwuping/PaddleHub
9a3b23295947e22149cc85c17cb4cf23c03f9e06
[ "Apache-2.0" ]
1,158
2019-04-11T09:22:43.000Z
2022-03-31T12:12:09.000Z
modules/image/object_detection/faster_rcnn_resnet50_fpn_venus/roi_extractor.py
dwuping/PaddleHub
9a3b23295947e22149cc85c17cb4cf23c03f9e06
[ "Apache-2.0" ]
1,677
2019-04-09T15:07:40.000Z
2022-03-31T06:41:10.000Z
# coding=utf-8 import paddle.fluid as fluid __all__ = ['FPNRoIAlign'] class FPNRoIAlign(object): """ RoI align pooling for FPN feature maps Args: sampling_ratio (int): number of sampling points min_level (int): lowest level of FPN layer max_level (int): highest level of FPN layer canconical_level (int): the canconical FPN feature map level canonical_size (int): the canconical FPN feature map size box_resolution (int): box resolution mask_resolution (int): mask roi resolution """ def __init__(self, sampling_ratio=0, min_level=2, max_level=5, canconical_level=4, canonical_size=224, box_resolution=7, mask_resolution=14): super(FPNRoIAlign, self).__init__() self.sampling_ratio = sampling_ratio self.min_level = min_level self.max_level = max_level self.canconical_level = canconical_level self.canonical_size = canonical_size self.box_resolution = box_resolution self.mask_resolution = mask_resolution def __call__(self, head_inputs, rois, spatial_scale, is_mask=False): """ Adopt RoI align onto several level of feature maps to get RoI features. Distribute RoIs to different levels by area and get a list of RoI features by distributed RoIs and their corresponding feature maps. Returns: roi_feat(Variable): RoI features with shape of [M, C, R, R], where M is the number of RoIs and R is RoI resolution """ k_min = self.min_level k_max = self.max_level num_roi_lvls = k_max - k_min + 1 name_list = list(head_inputs.keys()) input_name_list = name_list[-num_roi_lvls:] spatial_scale = spatial_scale[-num_roi_lvls:] rois_dist, restore_index = fluid.layers.distribute_fpn_proposals(rois, k_min, k_max, self.canconical_level, self.canonical_size) # rois_dist is in ascend order roi_out_list = [] resolution = is_mask and self.mask_resolution or self.box_resolution for lvl in range(num_roi_lvls): name_index = num_roi_lvls - lvl - 1 rois_input = rois_dist[lvl] head_input = head_inputs[input_name_list[name_index]] sc = spatial_scale[name_index] roi_out = fluid.layers.roi_align( input=head_input, rois=rois_input, pooled_height=resolution, pooled_width=resolution, spatial_scale=sc, sampling_ratio=self.sampling_ratio) roi_out_list.append(roi_out) roi_feat_shuffle = fluid.layers.concat(roi_out_list) roi_feat_ = fluid.layers.gather(roi_feat_shuffle, restore_index) roi_feat = fluid.layers.lod_reset(roi_feat_, rois) return roi_feat
39.519481
115
0.618797
f707533305b80bf36cdd6ae41ab2b2aee1f24d73
216
py
Python
Domains/Python/04 - Sets/Introduction to Sets/solution.py
abhinavgunwant/hackerrank-solutions
e016366cb6a9fac562a754d2b230fef907080733
[ "MIT" ]
1
2019-06-09T00:04:56.000Z
2019-06-09T00:04:56.000Z
Domains/Python/04 - Sets/Introduction to Sets/solution.py
abhinavgunwant/hackerrank-solutions
e016366cb6a9fac562a754d2b230fef907080733
[ "MIT" ]
19
2019-06-09T14:45:52.000Z
2019-06-17T18:52:53.000Z
Domains/Python/04 - Sets/Introduction to Sets/solution.py
abhinavgunwant/hackerrank-solutions
e016366cb6a9fac562a754d2b230fef907080733
[ "MIT" ]
null
null
null
def average(array): array = list(set(array)) return sum(array)/len(array) if __name__ == '__main__': n = int(input()) arr = list(map(int, input().split())) result = average(arr) print(result)
24
41
0.606481
af736a64bd65956495f5ecc432d100c063f28b48
7,232
py
Python
eli5/base.py
abael/eli5
e2f2acfeac5f7a13f13b314e486069660287d7b0
[ "MIT" ]
null
null
null
eli5/base.py
abael/eli5
e2f2acfeac5f7a13f13b314e486069660287d7b0
[ "MIT" ]
null
null
null
eli5/base.py
abael/eli5
e2f2acfeac5f7a13f13b314e486069660287d7b0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from typing import Any, List, Tuple, Union from .base_utils import attrs from .formatters.features import FormattedFeatureName # @attrs decorator used in this file calls @attr.s(slots=True), # creating attr.ib entries based on the signature of __init__. @attrs class Explanation(object): """ An explanation for classifier or regressor, it can either explain weights or a single prediction. """ def __init__(self, estimator, # type: str description=None, # type: str error=None, # type: str method=None, # type: str is_regression=False, # type: bool targets=None, # type: List[TargetExplanation] feature_importances=None, # type: FeatureImportances decision_tree=None, # type: TreeInfo highlight_spaces=None, transition_features=None, # type: TransitionFeatureWeights ): self.estimator = estimator self.description = description self.error = error self.method = method self.is_regression = is_regression self.targets = targets self.feature_importances = feature_importances self.decision_tree = decision_tree self.highlight_spaces = highlight_spaces self.transition_features = transition_features def _repr_html_(self): """ HTML formatting for the notebook. """ from eli5.formatters import fields from eli5.formatters.html import format_as_html return format_as_html(self, force_weights=False, show=fields.WEIGHTS) @attrs class FeatureImportances(object): """ Feature importances with number of remaining non-zero features. """ def __init__(self, importances, remaining): self.importances = importances # type: List[FeatureWeight] self.remaining = remaining # type: int @attrs class TargetExplanation(object): """ Explanation for a single target or class. Feature weights are stored in the :feature_weights: attribute, and features highlighted in text in the :weighted_spans: attribute. """ def __init__(self, target, # type: str feature_weights, # type: FeatureWeights proba=None, # type: float score=None, # type: float weighted_spans=None, # type: WeightedSpans ): self.target = target self.feature_weights = feature_weights self.proba = proba self.score = score self.weighted_spans = weighted_spans # List is currently used for unhashed features Feature = Union[str, List, FormattedFeatureName] @attrs class FeatureWeights(object): """ Weights for top features, :pos: for positive and :neg: for negative, sorted by descending absolute value. Number of remaining positive and negative features are stored in :pos_remaining: and :neg_remaining: attributes. """ def __init__(self, pos, # type: List[FeatureWeight] neg, # type: List[FeatureWeight] pos_remaining=0, # type: int neg_remaining=0, # type: int ): self.pos = pos self.neg = neg self.pos_remaining = pos_remaining self.neg_remaining = neg_remaining @attrs class FeatureWeight(object): def __init__(self, feature, # type: Feature weight, # type: float std=None, # type: float value=None, # type: Any ): self.feature = feature self.weight = weight self.std = std self.value = value @attrs class WeightedSpans(object): """ Holds highlighted spans for parts of document - a DocWeightedSpans object for each vectorizer, and other features not highlighted anywhere. """ def __init__(self, docs_weighted_spans, # type: List[DocWeightedSpans] other=None, # type: FeatureWeights ): self.docs_weighted_spans = docs_weighted_spans self.other = other WeightedSpan = Tuple[ Feature, List[Tuple[int, int]], # list of spans (start, end) for this feature float, # feature weight ] @attrs class DocWeightedSpans(object): """ Features highlighted in text. :document: is a pre-processed document before applying the analyzer. :weighted_spans: holds a list of spans for features found in text (span indices correspond to :document:). :preserve_density: determines how features are colored when doing formatting - it is better set to True for char features and to False for word features. """ def __init__(self, document, # type: str spans, # type: List[WeightedSpan] preserve_density=None, # type: bool vec_name=None, # type: str ): self.document = document self.spans = spans self.preserve_density = preserve_density self.vec_name = vec_name @attrs class TransitionFeatureWeights(object): """ Weights matrix for transition features. """ def __init__(self, class_names, # type: List[str], coef, ): self.class_names = class_names self.coef = coef @attrs class TreeInfo(object): """ Information about the decision tree. :criterion: is the name of the function to measure the quality of a split, :tree: holds all nodes of the tree, and :graphviz: is the tree rendered in graphviz .dot format. """ def __init__(self, criterion, # type: str tree, # type: NodeInfo graphviz, # type: str is_classification, # type: bool ): self.criterion = criterion self.tree = tree self.graphviz = graphviz self.is_classification = is_classification @attrs class NodeInfo(object): """ A node in a binary tree. Pointers to left and right children are in :left: and :right: attributes. """ def __init__(self, id, # type: int is_leaf, # type: bool value, value_ratio, impurity, # type: float samples, # type: int sample_ratio, # type: float feature_name=None, # type: str feature_id=None, # type: int threshold=None, # type: float left=None, # type: NodeInfo right=None, # type: NodeInfo ): self.id = id self.is_leaf = is_leaf self.value = value self.value_ratio = value_ratio self.impurity = impurity self.samples = samples self.sample_ratio = sample_ratio self.feature_name = feature_name self.feature_id = feature_id self.threshold = threshold self.left = left self.right = right
33.637209
77
0.590846
b80524e0c415be27a9e1492fe64e475b3a0deea2
100
py
Python
python/pytest_example/eric_math.py
holycrap872/til
97f6b041dad03a2edffb804dc4db090b65b9154f
[ "MIT" ]
8
2015-10-07T02:47:58.000Z
2018-12-25T16:01:08.000Z
python/pytest_example/eric_math.py
holycrap872/til
97f6b041dad03a2edffb804dc4db090b65b9154f
[ "MIT" ]
null
null
null
python/pytest_example/eric_math.py
holycrap872/til
97f6b041dad03a2edffb804dc4db090b65b9154f
[ "MIT" ]
1
2016-08-25T17:45:40.000Z
2016-08-25T17:45:40.000Z
def double(x): return 2 * x def square(x): return x ** 2 def add(x, y): return x + y
10
17
0.52
c5badc5ce5b62e1dcbd29fe34295f4048d487c1d
9,573
py
Python
docs/conf.py
nparslow/taskbuster
6bdafde2d3d724bdaa720eec490fbaa42016b5f1
[ "MIT" ]
null
null
null
docs/conf.py
nparslow/taskbuster
6bdafde2d3d724bdaa720eec490fbaa42016b5f1
[ "MIT" ]
null
null
null
docs/conf.py
nparslow/taskbuster
6bdafde2d3d724bdaa720eec490fbaa42016b5f1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # TaskBuster documentation build configuration file, created by # sphinx-quickstart on Fri Apr 1 14:33:26 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os sys.path.insert(0, os.path.abspath('..')) # tell sphinx to look one folder up for the project files from django.conf import settings settings.configure() # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'TaskBuster' copyright = u'2016, Nick Parslow' author = u'Nick Parslow' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.1' # The full version, including alpha/beta/rc tags. release = u'0.1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. #html_title = u'TaskBuster v0.1.0' # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. #html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'TaskBusterdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'TaskBuster.tex', u'TaskBuster Documentation', u'Nick Parslow', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'taskbuster', u'TaskBuster Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'TaskBuster', u'TaskBuster Documentation', author, 'TaskBuster', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
32.672355
99
0.718897
3aa3a454fb206fa664b89212c7a8c4d060d54609
354
py
Python
feder/parcels/types.py
dzemeuksis/feder
32ef7793af6256d4ecada61505c7baf334b34419
[ "MIT" ]
16
2015-08-11T17:20:26.000Z
2022-02-11T20:15:41.000Z
feder/parcels/types.py
dzemeuksis/feder
32ef7793af6256d4ecada61505c7baf334b34419
[ "MIT" ]
534
2015-08-04T00:10:54.000Z
2022-03-17T10:44:47.000Z
feder/parcels/types.py
dzemeuksis/feder
32ef7793af6256d4ecada61505c7baf334b34419
[ "MIT" ]
10
2017-08-30T13:34:32.000Z
2022-02-18T13:00:35.000Z
from feder.parcels.models import IncomingParcelPost, OutgoingParcelPost from feder.records.registry import record_type_registry from feder.records.types import CommonRecordType record_type_registry.registry(IncomingParcelPost, CommonRecordType(IncomingParcelPost)) record_type_registry.registry(OutgoingParcelPost, CommonRecordType(OutgoingParcelPost))
50.571429
87
0.89548
83b4d86aa8a83e956120cdb4b5f6c8df14df9e74
3,187
py
Python
uuv_assistants/scripts/unpause_simulation.py
jpliquid/testActions2
6f314fa1430f654e5943e47ac278101b9c24f938
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
uuv_assistants/scripts/unpause_simulation.py
jpliquid/testActions2
6f314fa1430f654e5943e47ac278101b9c24f938
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
uuv_assistants/scripts/unpause_simulation.py
jpliquid/testActions2
6f314fa1430f654e5943e47ac278101b9c24f938
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2020 The Plankton Authors. # All rights reserved. # # This source code is derived from UUV Simulator # (https://github.com/uuvsimulator/uuv_simulator) # Copyright (c) 2016-2019 The UUV Simulator Authors # licensed under the Apache license, Version 2.0 # cf. 3rd-party-licenses.txt file in the root directory of this source tree. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import rclpy from std_srvs.srv import Empty import time import sys from plankton_utils.time import is_sim_time def main(): rclpy.init() sim_time_param = is_sim_time() node = rclpy.create_node('unpause_simulation', allow_undeclared_parameters=True, automatically_declare_parameters_from_overrides=True, parameter_overrides=[sim_time_param]) #Default sim_time to True # sim_time = rclpy.parameter.Parameter('use_sim_time', rclpy.Parameter.Type.BOOL, True) # node.set_parameters([sim_time]) # if not rclpy.ok(): # rospy.ROSException('ROS master is not running!') timeout = 0.0 if node.has_parameter('timeout'): timeout = node.get_parameter('timeout').get_parameter_value().double_value if timeout <= 0: raise RuntimeError('Unpause time must be a positive floating point value') print('Unpause simulation - Time = {} s'.format(timeout)) # start_time = time.time() # while time.time() - start_time < timeout: # time.sleep(0.1) if(timeout > 0): time.sleep(timeout) #start_time = time.time() try: # Handle for retrieving model properties unpause = node.create_client(Empty, '/gazebo/unpause_physics') unpause.wait_for_service(timeout_sec=100) if(not ready): raise rclpy.exceptions.InvalidServiceNameException('service is unavailable') except rclpy.exceptions.InvalidServiceNameException: print('/gazebo/unpause_physics service is unavailable') sys.exit() node.get_logger().info( 'The Gazebo "unpause_physics" service was available {} s after the timeout'.format(timeout))#time.time() - start_time)) req = Empty.Request() future = unpause.call_async(req) rclpy.spin_until_future_complete(self, future) if future.result() is not None: prop = future.result() if prop.succes: print('Simulation unpaused...') else node.get_logger().error('Failed to unpaused the simulation') #============================================================================== if __name__ == '__main__': main()
36.215909
127
0.670223
6e80aaa71221d455dfde800170aadd00d5f1f888
5,208
py
Python
docs/conf.py
tannewt/Adafruit_CircuitPython_IL91874
fd926ee5b8530a5a9b1666143b27103f2338e9c7
[ "MIT" ]
null
null
null
docs/conf.py
tannewt/Adafruit_CircuitPython_IL91874
fd926ee5b8530a5a9b1666143b27103f2338e9c7
[ "MIT" ]
null
null
null
docs/conf.py
tannewt/Adafruit_CircuitPython_IL91874
fd926ee5b8530a5a9b1666143b27103f2338e9c7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import sys sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.todo', ] # TODO: Please Read! # Uncomment the below if you use native CircuitPython modules such as # digitalio, micropython and busio. List the modules you use. Without it, the # autodoc module docs will fail to generate with a warning. autodoc_mock_imports = ["displayio"] intersphinx_mapping = {'python': ('https://docs.python.org/3.4', None),'CircuitPython': ('https://circuitpython.readthedocs.io/en/latest/', None)} # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Adafruit IL91874 Library' copyright = u'2019 Scott Shawcroft' author = u'Scott Shawcroft' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'1.0' # The full version, including alpha/beta/rc tags. release = u'1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '.env', 'CODE_OF_CONDUCT.md'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = "any" # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # If this is True, todo emits a warning for each TODO entries. The default is False. todo_emit_warnings = True napoleon_numpy_docstring = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally try: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path(), '.'] except: html_theme = 'default' html_theme_path = ['.'] else: html_theme_path = ['.'] # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = '_static/favicon.ico' # Output file base name for HTML help builder. htmlhelp_basename = 'AdafruitIl91874Librarydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'AdafruitIL91874Library.tex', u'AdafruitIL91874 Library Documentation', author, 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'AdafruitIL91874library', u'Adafruit IL91874 Library Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'AdafruitIL91874Library', u'Adafruit IL91874 Library Documentation', author, 'AdafruitIL91874Library', 'One line description of project.', 'Miscellaneous'), ]
32.347826
146
0.685676
d7e32523bc14e9d6fd4603dca78742f00d710693
14,098
py
Python
anuga/culvert_flows/tests/test_culvert_routines_box_10pct.py
samcom12/anuga_core
f4378114dbf02d666fe6423de45798add5c42806
[ "Python-2.0", "OLDAP-2.7" ]
136
2015-05-07T05:47:43.000Z
2022-02-16T03:07:40.000Z
anuga/culvert_flows/tests/test_culvert_routines_box_10pct.py
samcom12/anuga_core
f4378114dbf02d666fe6423de45798add5c42806
[ "Python-2.0", "OLDAP-2.7" ]
184
2015-05-03T09:27:54.000Z
2021-12-20T04:22:48.000Z
anuga/culvert_flows/tests/test_culvert_routines_box_10pct.py
samcom12/anuga_core
f4378114dbf02d666fe6423de45798add5c42806
[ "Python-2.0", "OLDAP-2.7" ]
70
2015-03-18T07:35:22.000Z
2021-11-01T07:07:29.000Z
#!/usr/bin/env python from __future__ import division from past.utils import old_div import unittest import os.path import sys from anuga.utilities.system_tools import get_pathname_from_package from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model import numpy as num class Test_culvert_routines_box_10pct(unittest.TestCase): """ This unit test sets up 6 tests for various culvert conditions for a Box Culvert on a 10% Slope """ def setUp(self): pass def tearDown(self): pass def test_boyd_1(self): """test_boyd_1 This tests the Boyd routine with data obtained from ??? by Petar Milevski """ # FIXME(Ole): This test fails (20 Feb 2009) g=9.81 inlet_depth=0.150 outlet_depth=0.15 inlet_velocity=1.00 outlet_velocity=0.5 culvert_length=10.0 culvert_width=3.6 culvert_height=1.20 culvert_type='box' manning=0.013 sum_loss=1.5 inlet_specific_energy=inlet_depth + old_div(0.5*inlet_velocity**2,g) culvert_slope=10.0 # % Downward z_in = 10.0 z_out = old_div(-culvert_length*culvert_slope,100) E_in = z_in+inlet_depth + old_div(0.5*inlet_velocity**2,g) E_out = z_out+outlet_depth + old_div(0.5*outlet_velocity**2,g) delta_total_energy = E_in-E_out inlet_specific_energy=inlet_depth + old_div(0.5*inlet_velocity**2,g) Q, v, d = boyd_generalised_culvert_model(inlet_depth, outlet_depth, inlet_velocity, outlet_velocity, inlet_specific_energy, delta_total_energy, g, culvert_length, culvert_width, culvert_height, culvert_type, manning, sum_loss) #print ('%s,%.2f,%.2f,%.2f' %('ANUGAcalcsTEST01 Q-v-d',Q,v,d)) #print('%s,%.2f,%.2f,%.2f' %('Spreadsheet_Boydcalcs', 0.5526, 1.146, 0.1339)) assert num.allclose(Q, 0.5526, rtol=1.0e-1) #inflow assert num.allclose(v, 1.146, rtol=1.0e-1) #outflow velocity assert num.allclose(d, 0.1339, rtol=1.0e-1) #depth at outlet used to calc v def test_boyd_2(self): """test_boyd_2 This tests the Boyd routine with data obtained from ??? by Petar Milevski """ # FIXME(Ole): This test fails (20 Feb 2009) g=9.81 culvert_slope=10 # Downward inlet_depth=0.500 outlet_depth=0.700 inlet_velocity=1.0 outlet_velocity=0.50 culvert_length=10.0 culvert_width=3.60 culvert_height=1.20 culvert_type='box' manning=0.013 sum_loss=1.5 inlet_specific_energy=inlet_depth + old_div(0.5*inlet_velocity**2,g) z_in = 0.0 z_out = old_div(-culvert_length*culvert_slope,100) E_in = z_in+inlet_depth + old_div(0.5*inlet_velocity**2,g) E_out = z_out+outlet_depth + old_div(0.5*outlet_velocity**2,g) delta_total_energy = E_in-E_out Q, v, d = boyd_generalised_culvert_model(inlet_depth, outlet_depth, inlet_velocity, outlet_velocity, inlet_specific_energy, delta_total_energy, g, culvert_length, culvert_width, culvert_height, culvert_type, manning, sum_loss) #print ('%s,%.2f,%.2f,%.2f' %('ANUGAcalcsTEST02 Q-v-d',Q,v,d)) #print ('%s,%.2f,%.2f,%.2f' %('Spreadsheet_Boydcalcs', 2.508, 1.897, 0.367)) assert num.allclose(Q, 2.508, rtol=1.0e-1) #inflow assert num.allclose(v, 1.897, rtol=1.0e-1) #outflow velocity assert num.allclose(d, 0.367, rtol=1.0e-1) #depth at outlet used to calc v def test_boyd_3(self): """test_boyd_3 This tests the Boyd routine with data obtained from ??? by Petar Milevski """ # FIXME(Ole): This test fails (20 Feb 2009) g=9.81 culvert_slope=10 # Downward inlet_depth=1.800 outlet_depth=0.80 inlet_velocity=1.0 outlet_velocity=0.5 culvert_length=10.0 culvert_width=3.60 culvert_height=1.20 culvert_type='box' manning=0.013 sum_loss=1.5 inlet_specific_energy=inlet_depth + old_div(0.5*inlet_velocity**2,g) z_in = 0.0 z_out = old_div(-culvert_length*culvert_slope,100) E_in = z_in+inlet_depth + old_div(0.5*inlet_velocity**2,g) E_out = z_out+outlet_depth + old_div(0.5*outlet_velocity**2,g) delta_total_energy = E_in-E_out Q, v, d = boyd_generalised_culvert_model(inlet_depth, outlet_depth, inlet_velocity, outlet_velocity, inlet_specific_energy, delta_total_energy, g, culvert_length, culvert_width, culvert_height, culvert_type, manning, sum_loss) #print ('%s,%.2f'%('SPEC_E = ',inlet_specific_energy)) #print ('%s,%.2f'%('Delta E = ',delta_total_energy)) #print ('%s,%.2f,%.2f,%.2f' %('ANUGAcalcsTEST03 Q-v-d',Q,v,d)) #print ('%s,%.2f,%.2f,%.2f' %('Spreadsheet_Boydcalcs', 13.554, 3.329, 1.131)) assert num.allclose(Q, 13.554, rtol=1.0e-2) #inflow assert num.allclose(v, 3.329, rtol=1.0e-2) #outflow velocity assert num.allclose(d, 1.131, rtol=1.0e-2) #depth at outlet used to calc v #NOTE FROM HERE DOWN THE UNITS TEST HAVE NOT BEEN AMENDED TO ALLOW VELOCITY COMPONENT TO BE USED. ONLY ABOVE 3 TESTS WORK. PM WILL FIX THE ONES BELOW WHEN THE ABOVE 3 ARE WORKING def test_boyd_4(self): """test_boyd_4 This tests the Boyd routine with data obtained from ??? by Petar Milevski """ # FIXME(Ole): This test fails (20 Feb 2009) g=9.81 culvert_slope=10 # Downward inlet_depth=1.00 outlet_depth=0.8 inlet_velocity=1.0 outlet_velocity=0.5 culvert_length=10.0 culvert_width=3.60 culvert_height=1.20 culvert_type='box' manning=0.013 sum_loss=1.5 inlet_specific_energy=inlet_depth + old_div(0.5*inlet_velocity**2,g) z_in = 10.0 z_out = 10.0-old_div(culvert_length*culvert_slope,100) E_in = z_in+inlet_depth + old_div(0.5*inlet_velocity**2,g) E_out = z_out+outlet_depth + old_div(0.5*outlet_velocity**2,g) delta_total_energy = E_in-E_out Q, v, d = boyd_generalised_culvert_model(inlet_depth, outlet_depth, inlet_velocity, outlet_velocity, inlet_specific_energy, delta_total_energy, g, culvert_length, culvert_width, culvert_height, culvert_type, manning, sum_loss) #print ('%s,%.2f'%('SPEC_E = ',inlet_specific_energy)) #print ('%s,%.2f'%('Delta E = ',delta_total_energy)) #print ('%s,%.2f,%.2f,%.2f' %('ANUGAcalcsTEST04 Q-v-d',Q,v,d)) #print ('%s,%.2f,%.2f,%.2f' %('Spreadsheet_Boydcalcs', 6.609, 2.621, 0.70)) assert num.allclose(Q, 6.609, rtol=1.0e-2) #inflow assert num.allclose(v, 2.621, rtol=1.0e-2) #outflow velocity assert num.allclose(d, 0.70, rtol=1.0e-2) #depth at outlet used to calc v def test_boyd_5(self): """test_boyd_5 This tests the Boyd routine with data obtained from ??? by Petar Milevski """ # FIXME(Ole): This test fails (20 Feb 2009) g=9.81 culvert_slope=10 # Downward inlet_depth=1.50 inlet_velocity= 1.0 outlet_depth=2.5 outlet_velocity=0.5 culvert_length=10.0 culvert_width=3.60 culvert_height=1.20 culvert_type='box' manning=0.013 sum_loss=1.5 inlet_specific_energy=inlet_depth + old_div(0.5*inlet_velocity**2,g) z_in = 10.0 z_out = 10.0-old_div(culvert_length*culvert_slope,100) E_in = z_in+inlet_depth + old_div(0.5*inlet_velocity**2,g) E_out = z_out+outlet_depth + old_div(0.5*outlet_velocity**2,g) delta_total_energy = E_in-E_out Q, v, d = boyd_generalised_culvert_model(inlet_depth, outlet_depth, inlet_velocity, outlet_velocity, inlet_specific_energy, delta_total_energy, g, culvert_length, culvert_width, culvert_height, culvert_type, manning, sum_loss) #print ('%s,%.3f'%('SPEC_E = ',inlet_specific_energy)) #print ('%s,%.3f'%('Delta E = ',delta_total_energy)) #print ('%s,%.3f,%.3f,%.3f' %('ANUGAcalcsTEST05 Q-v-d',Q,v,d)) #print ('%s,%.3f,%.3f,%.3f' %('Spreadsheet_Boydcalcs',2.961, 0.685, 1.20)) assert num.allclose(Q, 2.961, rtol=1.0e-2) #inflow assert num.allclose(v, 0.685, rtol=1.0e-2) #outflow velocity assert num.allclose(d, 1.20, rtol=1.0e-2) #depth at outlet used to calc v def test_boyd_6(self): """test_boyd_6 This tests the Boyd routine with data obtained from ??? by Petar Milevski """ # FIXME(Ole): This test fails (20 Feb 2009) g=9.81 culvert_slope=10 # Downward inlet_depth=1.50 inlet_velocity= 4.0 outlet_depth=0.80 outlet_velocity=4.0 culvert_length=10.0 culvert_width=3.60 culvert_height=1.20 culvert_type='box' manning=0.013 sum_loss=1.5 inlet_specific_energy=inlet_depth + old_div(0.5*inlet_velocity**2,g) z_in = 10.0 z_out = 10.0-old_div(culvert_length*culvert_slope,100) E_in = z_in+inlet_depth + old_div(0.5*inlet_velocity**2,g) E_out = z_out+outlet_depth + old_div(0.5*outlet_velocity**2,g) delta_total_energy = E_in-E_out Q, v, d = boyd_generalised_culvert_model(inlet_depth, outlet_depth, inlet_velocity, outlet_velocity, inlet_specific_energy, delta_total_energy, g, culvert_length, culvert_width, culvert_height, culvert_type, manning, sum_loss) #print ('%s,%.3f'%('SPEC_E = ',inlet_specific_energy)) #print ('%s,%.3f'%('Delta E = ',delta_total_energy)) #print ('%s,%.3f,%.3f,%.3f' %('ANUGAcalcsTEST06 Q-v-d',Q,v,d)) #print ('%s,%.3f,%.3f,%.3f' %('Spreadsheet_Boydcalcs',15.537, 3.597, 1.20)) assert num.allclose(Q, 15.537, rtol=1.0e-2) #inflow assert num.allclose(v, 3.597, rtol=1.0e-2) #outflow velocity assert num.allclose(d, 1.20, rtol=1.0e-2) #depth at outlet used to calc v # ========================================================================= # ========================================================================= if __name__ == "__main__": suite = unittest.makeSuite(Test_culvert_routines_box_10pct, 'test') runner = unittest.TextTestRunner() runner.run(suite)
40.863768
178
0.465101
d989e3e4bbaa3fde55e2e102f448f05f50afb953
1,184
py
Python
src/lpa/xrd/code.py
DunstanBecht/lpa-xrd
62c3820ce348da3b375f30fd4e9e5552760da42e
[ "CC0-1.0" ]
null
null
null
src/lpa/xrd/code.py
DunstanBecht/lpa-xrd
62c3820ce348da3b375f30fd4e9e5552760da42e
[ "CC0-1.0" ]
null
null
null
src/lpa/xrd/code.py
DunstanBecht/lpa-xrd
62c3820ce348da3b375f30fd4e9e5552760da42e
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 """ Module to manage the simulation program code. """ from . import * from . import __version__ import pkg_resources replace = ( ("!VERSION", __version__), ) @beartype def copy( cop: str, pst: str, ) -> None: """ Clone recursively a file or a directory. Input: cop (str): file or directory to copy pst (str): file of directory name to past """ if os.path.isdir(cop): os.mkdir(pst) for nod in os.listdir(cop): copy(os.path.join(cop, nod), os.path.join(pst, nod)) else: with open(cop, "r") as f: ctt = f.read() for tgt, txt in replace: ctt = ctt.replace(tgt, txt) with open(pst, "w") as f: f.write(ctt) @beartype def clone( clndir: str = clone_dir, ) -> None: """ Clone the simulation program files. Input: clndir (str): export path of the cloned program """ if os.path.isdir(clndir): raise ValueError(f"existing clone directory: {clndir}") pth = pkg_resources.resource_filename('lpa.xrd', 'xrd/') # path to code copy(pth, clndir) # copy program files
21.527273
75
0.581926
2308d9e31108bc5e1754d596641ca188f8db430e
2,470
py
Python
mpf/tests/test_ModesConfigValidation.py
haggispinball/mpf_fathom_fast
1035c3fb90bb279de84cc3ed4aa1e1df38d0d563
[ "MIT" ]
163
2015-01-25T02:19:50.000Z
2022-03-26T12:00:28.000Z
mpf/tests/test_ModesConfigValidation.py
haggispinball/mpf_fathom_fast
1035c3fb90bb279de84cc3ed4aa1e1df38d0d563
[ "MIT" ]
1,086
2015-03-23T19:53:17.000Z
2022-03-24T20:46:11.000Z
mpf/tests/test_ModesConfigValidation.py
haggispinball/mpf_fathom_fast
1035c3fb90bb279de84cc3ed4aa1e1df38d0d563
[ "MIT" ]
148
2015-01-28T02:31:39.000Z
2022-03-22T13:54:01.000Z
from mpf.tests.MpfTestCase import MpfTestCase from mpf._version import log_url class TestModesConfigValidation(MpfTestCase): def get_config_file(self): return self.config def get_machine_path(self): return 'tests/machine_files/mode_tests/' def setUp(self): self.save_and_prepare_sys_path() def tearDown(self): self.restore_sys_path() def test_loading_invalid_modes(self): self.config = 'test_loading_invalid_modes.yaml' with self.assertRaises(AssertionError) as context: super(TestModesConfigValidation, self).setUp() self.loop.close() self.assertEqual("No config found for mode 'invalid'. MPF expects the config at " "'modes/invalid/config/invalid.yaml' inside your machine folder.", str(context.exception)) def test_empty_modes_section(self): self.config = 'test_empty_modes_section.yaml' super(TestModesConfigValidation, self).setUp() super().tearDown() def test_broken_mode_config(self): self.config = 'test_broken_mode_config.yaml' with self.assertRaises(AssertionError) as context: super(TestModesConfigValidation, self).setUp() self.loop.close(ignore_running_tasks=True) self.maxDiff = None self.assertEqual('Config File Error in ConfigValidator: Your config contains a value for the setting ' '"mode:invalid_key", but this is not a valid setting name. Error Code: CFE-ConfigValidator-2 ' '({})'.format(log_url.format("CFE-ConfigValidator-2")), str(context.exception)) def test_missing_mode_section(self): self.config = 'test_missing_mode_section.yaml' super(TestModesConfigValidation, self).setUp() self.assertTrue("broken_mode2" in self.machine.modes) super().tearDown() def test_mode_without_config(self): self.config = 'test_mode_without_config.yaml' with self.assertRaises(AssertionError) as context: super(TestModesConfigValidation, self).setUp() self.loop.close(ignore_running_tasks=True) self.assertEqual("No config found for mode 'mode_without_config'. MPF expects the config at " "'modes/mode_without_config/config/mode_without_config.yaml' inside your machine folder.", str(context.exception))
37.424242
119
0.664777
b54ecd7614ff3d802547e62d28519477afef1e27
604
py
Python
wagtail/contrib/styleguide/wagtail_hooks.py
wlcrs/wagtail
8afbc6c3eccef9eb0f09ed56c54cd36779451882
[ "BSD-3-Clause" ]
3
2019-05-14T13:43:08.000Z
2021-11-09T11:27:18.000Z
wagtail/contrib/styleguide/wagtail_hooks.py
denza/wagtail
3939397850f2c73d3f960cea5cc9c2cfae2d005d
[ "BSD-3-Clause" ]
163
2019-06-14T20:45:06.000Z
2022-03-23T01:41:07.000Z
wagtail/contrib/styleguide/wagtail_hooks.py
denza/wagtail
3939397850f2c73d3f960cea5cc9c2cfae2d005d
[ "BSD-3-Clause" ]
1
2020-04-10T03:21:10.000Z
2020-04-10T03:21:10.000Z
from django.conf.urls import url from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from wagtail.admin.menu import MenuItem from wagtail.core import hooks from . import views @hooks.register('register_admin_urls') def register_admin_urls(): return [ url(r'^styleguide/$', views.index, name='wagtailstyleguide'), ] @hooks.register('register_settings_menu_item') def register_styleguide_menu_item(): return MenuItem( _('Styleguide'), reverse('wagtailstyleguide'), classnames='icon icon-image', order=1000 )
23.230769
69
0.720199
549be53da1b8abb6ec25c515fac8a6f669ffc07f
5,657
py
Python
Pornhub_img.py
Guwudao/PH-image-download
3ae880b22f65c62003f5d2fb8df334f2cc1c15b9
[ "MIT" ]
1
2020-08-12T06:18:40.000Z
2020-08-12T06:18:40.000Z
Pornhub_img.py
Guwudao/PH-image-download
3ae880b22f65c62003f5d2fb8df334f2cc1c15b9
[ "MIT" ]
null
null
null
Pornhub_img.py
Guwudao/PH-image-download
3ae880b22f65c62003f5d2fb8df334f2cc1c15b9
[ "MIT" ]
null
null
null
import requests import threading import os from bs4 import BeautifulSoup from concurrent.futures import ThreadPoolExecutor import urllib.parse headers = { "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36" } proxy = { "https": "127.0.0.1:1087", "http": "127.0.0.1:1087", } domain = "https://cn.pornhub.com" download_failed_list = [] def key_word_search(key_word): data = { "search": key_word } query_string = urllib.parse.urlencode(data) album_search_url = f"https://cn.pornhub.com/albums/female-straight-uncategorized?{query_string}" print(album_search_url) html = requests.get(album_search_url, headers=headers, timeout=180, proxies=proxy) soup = BeautifulSoup(html.text, "html.parser") # print(soup) li_list = soup.find_all("li", class_="photoAlbumListContainer") album_list = [li.a.get("href") for li in li_list] print(f"========================== 当前相册个数: {len(album_list)} ==========================") title_list = [title_tag.get_text() for title_tag in soup.find_all("div", class_="title-album")][4:-1] print(f"========================== 相册列表: {title_list} ==========================") count = int(input("需要下载的相册个数:")) if count <= len(album_list): albums = album_list[0:count] return pornhub_get_page_list(albums) else: print("输入个数有误") return [] # get page number # page_list = [page.get_text() for page in soup.find_all("li", class_="page_number")] # print(page_list) def pornhub_get_page_list(album_list): if isinstance(album_list, list): image_page_url = [] for album in album_list: main_url = domain + album image_page_url.extend(get_list(main_url)) print(image_page_url) return image_page_url elif isinstance(album_list, int): main_url = domain + f"/album/{album_list}" return get_list(main_url) def get_list(url): url_list = [] try: url_list.append(url) html = requests.get(url, headers=headers, timeout=180, proxies=proxy) soup = BeautifulSoup(html.text, "html.parser") div_pagination = soup.find_all("div", class_="pagination3") page_list = div_pagination[0].find_all("a", class_="greyButton") url_list.extend([domain + page.get("href") for page in page_list]) print(url_list) return url_list except Exception as e: print("get page list error: ", e) return [] def get_all_image_url(page_list): url_list = [] for page_url in page_list: try: html = requests.get(page_url, headers=headers, timeout=180, proxies=proxy) soup = BeautifulSoup(html.text, "html.parser") div_list = soup.find_all("div", attrs={"class": "js_lazy_bkg photoAlbumListBlock"}) url_list = url_list + [domain + div.a.get("href") for div in div_list] except Exception as e: print("get image url error: ", e) print(f"总张数:{len(url_list)}") # print(url_list) return url_list def image_download(info): url = info[0] index = info[1] html = requests.get(url, headers=headers, proxies=proxy) soup = BeautifulSoup(html.text, "html.parser") div_list = soup.find_all("div", class_="centerImage") section = soup.find_all("section", attrs={"id": "photoInfoSection"}) title = section[0].find("h1").get_text().replace(" ", "") # print(title) if not os.path.exists(title): os.mkdir(title) file_name = title + "_" + str(index) if len(div_list) > 0: img_url = div_list[0].img.get("src") try: with open(f"./{title}/{file_name}.jpg", "wb") as f: resp = requests.get(img_url, timeout=180, proxies=proxy) f.write(resp.content) print("%s" % (threading.current_thread().name), f"下载完成: {url}", index) except Exception as e: print("download error: ", e, url) download_failed_list.append(url) def video_analytics(): domain = "https://cv.phncdn.com/" url = "https://cn.pornhub.com/view_video.php?viewkey=ph5d24f5b77c6f6" resp = requests.get(url, headers=headers, proxies=proxy) print(resp.text) html_file = open("./mini.html", 'r', encoding='utf-8').read() soup = BeautifulSoup(html_file, "html.parser") videos = soup.find_all("source", attrs={"type": "video/mp4"}) # scripts = soup.find_all("script", attrs={"type": "text/javascript"}) print(videos) for video in videos: print(video.get("src")) print("-" * 50) if __name__ == '__main__': select = 0 page_list = [] while select != 1 and select != 2: select = int(input("请输入下载方式,1为搜索下载,2为相册编号下载:")) if select == 1: key_word = str(input("请输入关键字:")) page_list = key_word_search(key_word) elif select == 2: num = int(input("请输入相册编号:")) page_list = pornhub_get_page_list(num) if len(page_list) > 0: image_list = get_all_image_url(page_list) n = 0 with ThreadPoolExecutor(max_workers=30, thread_name_prefix="当前线程_") as pool: for image_url in image_list: n += 1 pool.map(image_download, [(image_url, n)]) print("========================== 下载完成 ==========================") else: print("abort by page list not complete") if len(download_failed_list) > 0: print(f"download failed list: {download_failed_list}") # video_analytics() # key_word_search("过期米线")
32.325714
140
0.608096
8d420f8257412591ce7ce69791f04bb9f8bea571
2,404
py
Python
streamlit/src/pages/user_activities.py
likweitan/final_year_project
a86059cad92efe4edd85364d21b4ee6a56234b30
[ "MIT" ]
null
null
null
streamlit/src/pages/user_activities.py
likweitan/final_year_project
a86059cad92efe4edd85364d21b4ee6a56234b30
[ "MIT" ]
null
null
null
streamlit/src/pages/user_activities.py
likweitan/final_year_project
a86059cad92efe4edd85364d21b4ee6a56234b30
[ "MIT" ]
1
2021-07-10T15:54:54.000Z
2021-07-10T15:54:54.000Z
from altair.vegalite.v4.schema.core import Scale import streamlit as st import altair as alt import plotly.express as px import pandas as pd import numpy as np def load(data): st.title('🎲 User Statistics') st.sidebar.header('User') user = st.sidebar.selectbox('Please select an user', ['Student A','Student B','Student C','Student D','Student E']) switcher = { 'Student A': "Kpq2q+eKw/O+6/jLs3XJosgmI7weEJxJZdnkKTbbF8I=", 'Student B': "0+VU/Zb0Q96uoByuRhl7r9bJuJO6CKWpsmNMEuijSzc=", 'Student C': "g8DnYvIqpolw10XlwWeIWv6NbDPByUbmgH8EshJqBns=", 'Student D': "kSyUTFlepsYUD723IPL/jEZ520xaKbscrBmNtBUFR1o=", 'Student E': "XMFbFA7C49+LRhUddhelfPpA6F5dbOoxeyL3eYbuTlY=" } user_id = switcher.get(user,"Invalid") st.write('**Student ID: **'+user_id) st.write('The following table shows the subjects that users have attempted') merge_df = merge_all(data[0], data[1], data[2]) course = merge_df[['ucid','problem_number','total_sec_taken','level']][merge_df['uuid']==user_id] grouped_course = course.groupby(by=['ucid']).agg({'problem_number':'max','total_sec_taken':'mean','level':'max'}).reset_index() col1, col2 = st.beta_columns([5,2]) with col1: st.line_chart(grouped_course,height=450) line_plot = alt.Chart(grouped_course).mark_bar().encode( x='ucid', y='level', color=alt.condition( alt.datum.level > 2, alt.value("green"), # The positive color alt.value("red") # The negative color ) ).properties(height=400) st.altair_chart(line_plot, use_container_width=True) with st.beta_expander("More"): st.table(grouped_course) st.write(grouped_course['level'].value_counts().reset_index()) fig = px.pie(grouped_course, values=grouped_course['level'].value_counts(), names=grouped_course['level'].value_counts().index, color_discrete_sequence=["red", "green", "blue", "goldenrod", "magenta"],title='Percentage') with col2: st.plotly_chart(fig, use_container_width=True) @st.cache(show_spinner=False) def merge_all(info_content_df: pd.DataFrame, info_userdata_df: pd.DataFrame, log_problem_df: pd.DataFrame): merge_df = log_problem_df.merge(info_userdata_df, how='left', on='uuid') merge_df = merge_df.merge(info_content_df, how='left', on='ucid') return merge_df
38.774194
224
0.682196
b7c0aae8db360935204dceaf5e93ac8511de6738
1,141
py
Python
Hopfield-Network/hopfield.py
Andrey-2310/DPSI
4444b66d9d77f891464b218e72befc7be1d21584
[ "MIT" ]
null
null
null
Hopfield-Network/hopfield.py
Andrey-2310/DPSI
4444b66d9d77f891464b218e72befc7be1d21584
[ "MIT" ]
null
null
null
Hopfield-Network/hopfield.py
Andrey-2310/DPSI
4444b66d9d77f891464b218e72befc7be1d21584
[ "MIT" ]
null
null
null
import numpy as np weights = np.zeros((100, 100)).astype(int) def write_weights_to_file(weights): with open('weights', 'w') as f: for item in weights: f.write("%s\n" % item) def teach_network(img_array): calculate_weights(img_array) delete_self_feedback() write_weights_to_file(weights) def calculate_weights(img_array): for img in img_array: for index, x in np.ndenumerate(weights): weights[index[0]][index[1]] += img[index[0]] * img[index[1]] def delete_self_feedback(): for diag_index in range(0, 100): weights[diag_index][diag_index] = 0 def check_match(image, img_list): return any(np.array_equal(image, img) for img in img_list) def reproduce(noise_image, img_list, iter): return noise_image if not iter or check_match(noise_image, img_list) \ else reproduce(reproduction(noise_image), img_list, iter - 1) def reproduction(img): new_img = [] for i in range(0, 100): coef = 0 for j in range(0, 100): coef += weights[i][j] * img[j] new_img.append(1 if coef >= 0 else -1) return new_img
24.804348
74
0.64943
1bd2a63a32c9389334e1d651c7c3f03b18b80519
5,742
py
Python
src/sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py
sensen1/sage
d6c5cd9be78cc448ee4c54bac93385b1244a234c
[ "BSL-1.0" ]
1
2021-03-15T21:45:56.000Z
2021-03-15T21:45:56.000Z
src/sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py
sensen1/sage
d6c5cd9be78cc448ee4c54bac93385b1244a234c
[ "BSL-1.0" ]
null
null
null
src/sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py
sensen1/sage
d6c5cd9be78cc448ee4c54bac93385b1244a234c
[ "BSL-1.0" ]
null
null
null
r""" Finite Dimensional Nilpotent Lie Algebras With Basis AUTHORS: - Eero Hakavuori (2018-08-16): initial version """ # **************************************************************************** # Copyright (C) 2018 Eero Hakavuori <eero.hakavuori@gmail.com> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from sage.categories.category_with_axiom import CategoryWithAxiom_over_base_ring from sage.categories.lie_algebras import LieAlgebras class FiniteDimensionalNilpotentLieAlgebrasWithBasis(CategoryWithAxiom_over_base_ring): r""" Category of finite dimensional nilpotent Lie algebras with basis. TESTS:: sage: C1 = LieAlgebras(QQ).FiniteDimensional().WithBasis().Nilpotent() sage: C2 = LieAlgebras(QQ).FiniteDimensional().Nilpotent().WithBasis() sage: C3 = LieAlgebras(QQ).Nilpotent().FiniteDimensional().WithBasis() sage: C4 = LieAlgebras(QQ).Nilpotent().WithBasis().FiniteDimensional() sage: C5 = LieAlgebras(QQ).WithBasis().Nilpotent().FiniteDimensional() sage: C6 = LieAlgebras(QQ).WithBasis().FiniteDimensional().Nilpotent() sage: C1 is C2 True sage: C2 is C3 True sage: C3 is C4 True sage: C4 is C5 True sage: C5 is C6 True sage: TestSuite(C1).run() """ _base_category_class_and_axiom = (LieAlgebras.FiniteDimensional.WithBasis, "Nilpotent") class ParentMethods: def _test_nilpotency(self, **options): r""" Tests that ``self`` is nilpotent and has the correct step. INPUT: - ``options`` -- any keyword arguments accepted by :meth:`_tester` EXAMPLES:: sage: L = LieAlgebra(QQ, {('X','Y'): {'Z': 1}}, nilpotent=True) sage: L._test_nilpotency() sage: L = LieAlgebra(QQ, {('X','Y'): {'Z': 1}}, ....: nilpotent=True, step = 3) sage: L._test_nilpotency() Traceback (most recent call last): ... AssertionError: claimed nilpotency step 3 does not match the actual nilpotency step 2 sage: L = LieAlgebra(QQ, {('X','Y'): {'X': 1}}, nilpotent=True) sage: L._test_nilpotency() Traceback (most recent call last): ... AssertionError: final term of lower central series is non-zero See the documentation for :class:`TestSuite` for more information. """ tester = self._tester(**options) lcs = self.lower_central_series(submodule=True) tester.assertEqual(lcs[-1].dimension(), 0, msg="final term of lower central series is non-zero") step = self.step() tester.assertEqual(len(lcs) - 1, step, msg="claimed nilpotency step %d does not match the " "actual nilpotency step %d" % (step, len(lcs) - 1)) def lie_group(self, name='G', **kwds): r""" Return the Lie group associated to ``self``. INPUT: - ``name`` -- string (default: ``'G'``); the name (symbol) given to the Lie group EXAMPLES: We define the Heisenberg group:: sage: L = lie_algebras.Heisenberg(QQ, 1) sage: G = L.lie_group('G'); G Lie group G of Heisenberg algebra of rank 1 over Rational Field We test multiplying elements of the group:: sage: p,q,z = L.basis() sage: g = G.exp(p); g exp(p1) sage: h = G.exp(q); h exp(q1) sage: g*h exp(p1 + q1 + 1/2*z) We extend an element of the Lie algebra to a left-invariant vector field:: sage: X = G.left_invariant_extension(2*p + 3*q, name='X'); X Vector field X on the Lie group G of Heisenberg algebra of rank 1 over Rational Field sage: X.at(G.one()).display() X = 2 d/dx_0 + 3 d/dx_1 sage: X.display() X = 2 d/dx_0 + 3 d/dx_1 + (3/2*x_0 - x_1) d/dx_2 .. SEEALSO:: :class:`~sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup` """ from sage.groups.lie_gps.nilpotent_lie_group import NilpotentLieGroup return NilpotentLieGroup(self, name, **kwds) def step(self): r""" Return the nilpotency step of ``self``. EXAMPLES:: sage: L = LieAlgebra(QQ, {('X','Y'): {'Z': 1}}, nilpotent=True) sage: L.step() 2 sage: sc = {('X','Y'): {'Z': 1}, ('X','Z'): {'W': 1}} sage: LieAlgebra(QQ, sc, nilpotent=True).step() 3 """ if not hasattr(self, '_step'): self._step = len(self.lower_central_series(submodule=True)) - 1 return self._step def is_nilpotent(self): r""" Return ``True`` since ``self`` is nilpotent. EXAMPLES:: sage: L = LieAlgebra(QQ, {('x','y'): {'z': 1}}, nilpotent=True) sage: L.is_nilpotent() True """ return True
35.226994
101
0.522814
f2306889ef2d76dd34d5cc51ae4bcb419b831118
1,132
py
Python
cmd/play.py
codymlewis/QuantumChess
13d582204e295cb7255e897336a8266592604923
[ "MIT" ]
null
null
null
cmd/play.py
codymlewis/QuantumChess
13d582204e295cb7255e897336a8266592604923
[ "MIT" ]
null
null
null
cmd/play.py
codymlewis/QuantumChess
13d582204e295cb7255e897336a8266592604923
[ "MIT" ]
null
null
null
# Author: Cody Lewis # Date: 12-APR-2018 # Description: The main game flow of the quantum chess game import re import board if __name__ == "__main__": b = board.Board() i = 0 col = 'B' pattern = '[Yy]e?s?' sp = False while(True): winVal = b.win() if(winVal == 'W'): print("White wins!") break elif(winVal == 'B'): print("Black wins!") break print(b.toString()) i += 1 if(col == 'W'): col = 'B' print("Blacks turn") else: col = 'W' print("Whites turn") while(True): superPos = str(input("Do you want to super-position (y/n)? ")) if(re.match(pattern, superPos)): print('Super-position mode on') sp = True start = str(input("Choose your starting piece: ")) end = str(input("Choose your end place: ")) if(b.play(start, end, col, sp)): sp = False break else: print("Your move was invalid, try again")
28.3
74
0.463781
3951f7178425b420daced0b8cd2047f2548324cd
797
py
Python
api/serializers.py
kzambrow/cs347
bcb711545a9f3dfcb298b8a20cf5106d13701cc1
[ "MIT" ]
null
null
null
api/serializers.py
kzambrow/cs347
bcb711545a9f3dfcb298b8a20cf5106d13701cc1
[ "MIT" ]
null
null
null
api/serializers.py
kzambrow/cs347
bcb711545a9f3dfcb298b8a20cf5106d13701cc1
[ "MIT" ]
null
null
null
from .models import DataFile, SmartHomeDevice from dashboard.models import CustomUser, UserProfile from rest_framework import serializers class UserProfileSerializer(serializers.ModelSerializer): class Meta: model = UserProfile exclude = ('user',) class UserSerializer(serializers.HyperlinkedModelSerializer): profile = UserProfileSerializer() class Meta: model = CustomUser fields = ('username', 'email', 'profile') class SmartHomeDeviceSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = SmartHomeDevice fields = '__all__' class DataFileSerializer(serializers.HyperlinkedModelSerializer): devices_captured = SmartHomeDeviceSerializer() class Meta: model = DataFile fields = '__all__'
31.88
72
0.736512
627eb85e584c592bbfccacae880ce07f9b0bd5ea
7,447
py
Python
deebot_t8/auth_client.py
nickw444/deebot-t8
dac3d9fbb0e9f2aec60ec2e489a823458e8f9c15
[ "MIT" ]
1
2022-02-26T18:56:16.000Z
2022-02-26T18:56:16.000Z
deebot_t8/auth_client.py
nickw444/deebot-t8
dac3d9fbb0e9f2aec60ec2e489a823458e8f9c15
[ "MIT" ]
8
2021-07-05T11:55:12.000Z
2021-07-05T11:56:45.000Z
deebot_t8/auth_client.py
nickw444/deebot-t8
dac3d9fbb0e9f2aec60ec2e489a823458e8f9c15
[ "MIT" ]
null
null
null
from __future__ import annotations import logging import threading import time from typing import Dict, Any, Callable import requests from .credentials import Credentials from .exceptions import InvalidCredentialsException, ApiErrorException from .md5 import md5_hex from .portal_client import PortalClient from .urls import USER_DO_PATH, REALM LOGGER = logging.getLogger(__name__) CLIENT_KEY = "1520391301804" CLIENT_SECRET = "6c319b2a5cd3e66e39159c2e28f2fce9" AUTH_CLIENT_KEY = "1520391491841" AUTH_CLIENT_SECRET = "77ef58ce3afbe337da74aa8c5ab963a9" class DeebotAuthClient: def __init__(self, portal_client: PortalClient, device_id: str, country: str): self._portal_client = portal_client self._device_id = device_id self._country = country self._meta = { "country": country, "lang": "EN", "deviceId": device_id, "appCode": "global_e", "appVersion": "1.6.3", "channel": "google_play", "deviceType": "1", } def _sign_params( self, params: Dict[Any, Any], client_key: str, client_secret: str, ): payload = ( client_key + "".join([k + "=" + str(params[k]) for k in sorted(params.keys())]) + client_secret ) return md5_hex(payload) def _get_login_url(self): tld = "cn" if self._country == "cn" else "com" login_path = "user/loginCheckMobile" if self._country == "cn" else "user/login" return ( "https://gl-{country}-api.ecovacs.{tld}/v1/private/{country}/" "{lang}/{deviceId}/{appCode}/{appVersion}/{channel}/" "{deviceType}/{login_path}" ).format(login_path=login_path, tld=tld, **self._meta) def _get_authcode_url(self): tld = "cn" if self._country == "cn" else "com" return ( f"https://gl-{self._country}-openapi.ecovacs.{tld}/" f"v1/global/auth/getAuthCode" ) def do_account_password_exchange( self, account_id: str, password_hash: str ) -> Credentials: params = { "requestId": md5_hex(str(time.time())), "account": account_id, "password": password_hash, "authTimespan": int(time.time() * 1000), "authTimeZone": "GMT-8", } # Sign params params_sig = self._sign_params( {**self._meta, **params}, CLIENT_KEY, CLIENT_SECRET ) params["authSign"] = params_sig params["authAppkey"] = CLIENT_KEY url = self._get_login_url() # Do request resp = requests.get(url, params) resp.raise_for_status() resp_json = resp.json() if resp_json["code"] == "0000": return Credentials( access_token=resp_json["data"]["accessToken"], user_id=resp_json["data"]["uid"], expires_at=None, ) elif resp_json["code"] in ("1005", "1010"): raise InvalidCredentialsException("Invalid email or password") else: raise Exception( "Unknown error: {} ({})".format( resp_json["msg"], resp_json["code"], ) ) def do_get_authcode(self, uid: str, access_token: str): params: Dict[str, str | int] = { "uid": uid, "accessToken": access_token, "bizType": "ECOVACS_IOT", "deviceId": self._device_id, "authTimespan": int(time.time() * 1000), } # Sign params params_sig = self._sign_params( { "openId": "global", **params, }, AUTH_CLIENT_KEY, AUTH_CLIENT_SECRET, ) params["authSign"] = params_sig params["authAppkey"] = AUTH_CLIENT_KEY # Do request resp = requests.get(self._get_authcode_url(), params=params) resp.raise_for_status() resp_json = resp.json() if resp_json["code"] == "0000": return resp_json["data"]["authCode"] elif resp_json["code"] == "1005": raise InvalidCredentialsException("Invalid email or password") else: raise ApiErrorException( "Unknown error: {} ({})".format( resp_json["msg"], resp_json["code"], ) ) def do_login_by_iot_token(self, user_id: str, auth_code: str): org = "ECOCN" if self._country == "cn" else "ECOWW" country = "Chinese" if self._country == "cn" else self._country.upper() resp = self._portal_client.do_post( USER_DO_PATH, { "todo": "loginByItToken", "edition": "ECOGLOBLE", "userId": user_id, "token": auth_code, "realm": REALM, "resource": self._device_id[0:8], "org": org, "last": "", "country": country, }, ) if resp["result"] == "ok": return Credentials( access_token=resp["token"], user_id=resp["userId"], # Tokens appear to have ~7 day expiry. # Set expiry to 2 days to eagerly refresh # TODO(NW): Decode the JWT header returned and pass along the # expiry in this field expires_at=int(time.time()) + 60 * 60 * 24 * 2, ) raise ApiErrorException("Unknown error: {}".format(resp)) def login(self, account_id: str, password_hash: str): exch_resp = self.do_account_password_exchange(account_id, password_hash) auth_code = self.do_get_authcode(exch_resp.user_id, exch_resp.access_token) return self.do_login_by_iot_token(exch_resp.user_id, auth_code) class Authenticator: def __init__( self, auth_client: DeebotAuthClient, country: str, device_id: str, account_id: str, password_hash: str, cached_credentials: Credentials = None, on_credentials_changed: Callable[[Credentials], None] = None, ): self._auth_client = auth_client self._country = country self._device_id = device_id self._account_id = account_id self._password_hash = password_hash self._lock = threading.Lock() self._credentials = cached_credentials self._on_credentials_changed = on_credentials_changed def authenticate(self, force=False): with self._lock: should_login = False if self._credentials is None or force: LOGGER.debug("No cached credentials, performing login") should_login = True elif self._credentials.expires_at < time.time(): LOGGER.debug("Credentials have expired, performing login") should_login = True if should_login: self._credentials = self._auth_client.login( self._account_id, self._password_hash ) if self._on_credentials_changed is not None: self._on_credentials_changed(self._credentials) return self._credentials def invalidate(self): pass
32.662281
87
0.559017
2667fc0f7b80baab6b1abc7b6e4e3a9a1bd7c6c0
1,481
py
Python
unishare/__init__.py
davidn1998/uni-share
1c174485180c62ea818b3413e9214a1bc0889c6f
[ "MIT" ]
null
null
null
unishare/__init__.py
davidn1998/uni-share
1c174485180c62ea818b3413e9214a1bc0889c6f
[ "MIT" ]
1
2020-10-27T22:30:46.000Z
2020-10-27T22:30:46.000Z
unishare/__init__.py
davidn1998/uni-share
1c174485180c62ea818b3413e9214a1bc0889c6f
[ "MIT" ]
null
null
null
from flask import Flask from unishare.database import db import os def create_app(testing=False): # Create the app app = Flask(__name__, instance_relative_config=True) # Load the default config file app.config.from_object('config') # Overide default configuration if testing == False: # Load the instance config when not testing (THIS WILL NOT WORK WITH HEROKU) # app.config.from_pyfile('config.py', silent=True) # FOR HEROKU - Load environment variables from os app.config.update( SECRET_KEY = os.environ.get('SECRET_KEY'), SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL'), SQLALCHEMY_TRACK_MODIFICATIONS = False, TESTING = False ) else: # Load the test config if passed in app.config.update( SECRET_KEY = 'test123', SQLALCHEMY_DATABASE_URI = 'postgresql://foo:bar@localhost:5432/testing', TESTING = True ) # Load Database db.init_app(app) with app.app_context(): db.create_all() # Import and register auth blueprint from unishare import auth app.register_blueprint(auth.bp) # Import and register blog blueprint from unishare import blog app.register_blueprint(blog.bp) app.add_url_rule('/', endpoint='index') # Import and register blog blueprint from unishare import user app.register_blueprint(user.bp) return app
29.62
84
0.653612
bf91cbd901e297b542c72a4fd93ae442b037e123
2,007
py
Python
ingestion/src/metadata/ingestion/api/stage.py
troyel/OpenMetadata
4577f12bfde471afd8655ce4ee949fcca3d7fd95
[ "Apache-2.0" ]
864
2021-08-13T23:48:45.000Z
2022-03-31T18:36:30.000Z
ingestion/src/metadata/ingestion/api/stage.py
troyel/OpenMetadata
4577f12bfde471afd8655ce4ee949fcca3d7fd95
[ "Apache-2.0" ]
2,701
2021-08-14T06:05:12.000Z
2022-03-31T23:48:32.000Z
ingestion/src/metadata/ingestion/api/stage.py
troyel/OpenMetadata
4577f12bfde471afd8655ce4ee949fcca3d7fd95
[ "Apache-2.0" ]
144
2021-08-16T20:44:08.000Z
2022-03-29T14:12:30.000Z
# Copyright 2021 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABCMeta, abstractmethod from dataclasses import dataclass, field from typing import Any, Dict, Generic, List from metadata.ingestion.api.closeable import Closeable from metadata.ingestion.api.common import Entity, WorkflowContext from metadata.ingestion.api.status import Status @dataclass class StageStatus(Status): records_produced = 0 warnings: Dict[str, List[str]] = field(default_factory=dict) failures: Dict[str, List[str]] = field(default_factory=dict) def records_status(self, record: Any) -> None: self.records_produced += 1 def warning_status(self, key: str, reason: str) -> None: if key not in self.warnings: self.warnings[key] = [] self.warnings[key].append(reason) def failure_status(self, key: str, reason: str) -> None: if key not in self.failures: self.failures[key] = [] self.failures[key].append(reason) @dataclass # type: ignore[misc] class Stage(Closeable, Generic[Entity], metaclass=ABCMeta): ctx: WorkflowContext @classmethod @abstractmethod def create( cls, config_dict: dict, metadata_config_dict: dict, ctx: WorkflowContext ) -> "Stage": pass @abstractmethod def stage_record(self, record: Entity): pass @abstractmethod def get_status(self) -> StageStatus: pass @abstractmethod def close(self) -> None: pass
31.359375
80
0.702541
1b471ce711071e5f70b2da2d3e7770ebc4b0b013
40,429
py
Python
tests/blockchain/test_blockchain_transactions.py
navroudsari/chia-blockchain
fceb39f783392a32f43b562de1e85e810e913005
[ "Apache-2.0" ]
11,902
2019-12-05T00:14:29.000Z
2022-03-31T23:25:37.000Z
tests/blockchain/test_blockchain_transactions.py
navroudsari/chia-blockchain
fceb39f783392a32f43b562de1e85e810e913005
[ "Apache-2.0" ]
5,246
2019-12-05T04:00:03.000Z
2022-03-31T21:33:30.000Z
tests/blockchain/test_blockchain_transactions.py
Devh4ox4d/silishitcoin
4372d06aa4a54220f2bde29c8081410503679a82
[ "Apache-2.0" ]
2,149
2019-12-05T11:12:53.000Z
2022-03-31T06:08:34.000Z
import asyncio import logging import pytest from clvm.casts import int_to_bytes from chia.consensus.blockchain import ReceiveBlockResult from chia.protocols import full_node_protocol from chia.types.announcement import Announcement from chia.types.condition_opcodes import ConditionOpcode from chia.types.condition_with_args import ConditionWithArgs from chia.types.spend_bundle import SpendBundle from chia.util.errors import ConsensusError, Err from chia.util.ints import uint64 from tests.wallet_tools import WalletTool from tests.core.full_node.test_full_node import connect_and_get_peer from tests.setup_nodes import bt, setup_two_nodes, test_constants from tests.util.generator_tools_testing import run_and_get_removals_and_additions BURN_PUZZLE_HASH = b"0" * 32 WALLET_A = WalletTool(test_constants) WALLET_A_PUZZLE_HASHES = [WALLET_A.get_new_puzzlehash() for _ in range(5)] log = logging.getLogger(__name__) @pytest.fixture(scope="session") def event_loop(): loop = asyncio.get_event_loop() yield loop class TestBlockchainTransactions: @pytest.fixture(scope="function") async def two_nodes(self): async for _ in setup_two_nodes(test_constants): yield _ @pytest.mark.asyncio async def test_basic_blockchain_tx(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes peer = await connect_and_get_peer(server_1, server_2) full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block), None) spend_block = blocks[2] spend_coin = None for coin in list(spend_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin = coin spend_bundle = wallet_a.generate_signed_transaction(1000, receiver_puzzlehash, spend_coin) assert spend_bundle is not None tx: full_node_protocol.RespondTransaction = full_node_protocol.RespondTransaction(spend_bundle) await full_node_api_1.respond_transaction(tx, peer) sb = full_node_1.mempool_manager.get_spendbundle(spend_bundle.name()) assert sb is spend_bundle last_block = blocks[-1] next_spendbundle, additions, removals = await full_node_1.mempool_manager.create_bundle_from_mempool( last_block.header_hash ) assert next_spendbundle is not None new_blocks = bt.get_consecutive_blocks( 1, block_list_input=blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=next_spendbundle, guarantee_transaction_block=True, ) next_block = new_blocks[-1] await full_node_1.respond_block(full_node_protocol.RespondBlock(next_block)) assert next_block.header_hash == full_node_1.blockchain.get_peak().header_hash added_coins = next_spendbundle.additions() # Two coins are added, main spend and change assert len(added_coins) == 2 for coin in added_coins: unspent = await full_node_1.coin_store.get_coin_record(coin.name()) assert unspent is not None assert not unspent.spent assert not unspent.coinbase @pytest.mark.asyncio async def test_validate_blockchain_with_double_spend(self, two_nodes): num_blocks = 5 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_3, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) spend_block = blocks[2] spend_coin = None for coin in list(spend_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin = coin spend_bundle = wallet_a.generate_signed_transaction(1000, receiver_puzzlehash, spend_coin) spend_bundle_double = wallet_a.generate_signed_transaction(1001, receiver_puzzlehash, spend_coin) block_spendbundle = SpendBundle.aggregate([spend_bundle, spend_bundle_double]) new_blocks = bt.get_consecutive_blocks( 1, block_list_input=blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block_spendbundle, guarantee_transaction_block=True, ) next_block = new_blocks[-1] res, err, _, _ = await full_node_1.blockchain.receive_block(next_block) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.DOUBLE_SPEND @pytest.mark.asyncio async def test_validate_blockchain_duplicate_output(self, two_nodes): num_blocks = 3 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) spend_block = blocks[2] spend_coin = None for coin in list(spend_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin = coin spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin, additional_outputs=[(receiver_puzzlehash, 1000)] ) new_blocks = bt.get_consecutive_blocks( 1, block_list_input=blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=spend_bundle, guarantee_transaction_block=True, ) next_block = new_blocks[-1] res, err, _, _ = await full_node_1.blockchain.receive_block(next_block) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.DUPLICATE_OUTPUT @pytest.mark.asyncio async def test_validate_blockchain_with_reorg_double_spend(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) spend_block = blocks[2] spend_coin = None for coin in list(spend_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin = coin spend_bundle = wallet_a.generate_signed_transaction(1000, receiver_puzzlehash, spend_coin) blocks_spend = bt.get_consecutive_blocks( 1, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, transaction_data=spend_bundle, ) # Move chain to height 10, with a spend at height 10 for block in blocks_spend: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Reorg at height 5, add up to and including height 12 new_blocks = bt.get_consecutive_blocks( 7, blocks[:6], farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, seed=b"another seed", ) for block in new_blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Spend the same coin in the new reorg chain at height 13 new_blocks = bt.get_consecutive_blocks( 1, new_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, transaction_data=spend_bundle, ) res, err, _, _ = await full_node_api_1.full_node.blockchain.receive_block(new_blocks[-1]) assert err is None assert res == ReceiveBlockResult.NEW_PEAK # But can't spend it twice new_blocks_double = bt.get_consecutive_blocks( 1, new_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, transaction_data=spend_bundle, ) res, err, _, _ = await full_node_api_1.full_node.blockchain.receive_block(new_blocks_double[-1]) assert err is Err.DOUBLE_SPEND assert res == ReceiveBlockResult.INVALID_BLOCK # Now test Reorg at block 5, same spend at block height 12 new_blocks_reorg = bt.get_consecutive_blocks( 1, new_blocks[:12], farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, transaction_data=spend_bundle, seed=b"spend at 12 is ok", ) for block in new_blocks_reorg: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Spend at height 13 is also OK (same height) new_blocks_reorg = bt.get_consecutive_blocks( 1, new_blocks[:13], farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, transaction_data=spend_bundle, seed=b"spend at 13 is ok", ) for block in new_blocks_reorg: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Spend at height 14 is not OK (already spend) new_blocks_reorg = bt.get_consecutive_blocks( 1, new_blocks[:14], farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, transaction_data=spend_bundle, seed=b"spend at 14 is double spend", ) with pytest.raises(ConsensusError): for block in new_blocks_reorg: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) @pytest.mark.asyncio async def test_validate_blockchain_spend_reorg_coin(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_1_puzzlehash = WALLET_A_PUZZLE_HASHES[1] receiver_2_puzzlehash = WALLET_A_PUZZLE_HASHES[2] receiver_3_puzzlehash = WALLET_A_PUZZLE_HASHES[3] blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) spend_block = blocks[2] spend_coin = None for coin in list(spend_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin = coin assert spend_coin spend_bundle = wallet_a.generate_signed_transaction(uint64(1000), receiver_1_puzzlehash, spend_coin) new_blocks = bt.get_consecutive_blocks( 1, blocks[:5], seed=b"spend_reorg_coin", farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=spend_bundle, guarantee_transaction_block=True, ) await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(new_blocks[-1])) coin_2 = None for coin in run_and_get_removals_and_additions( new_blocks[-1], test_constants.MAX_BLOCK_COST_CLVM, test_constants.COST_PER_BYTE )[1]: if coin.puzzle_hash == receiver_1_puzzlehash: coin_2 = coin break assert coin_2 is not None spend_bundle = wallet_a.generate_signed_transaction(uint64(1000), receiver_2_puzzlehash, coin_2) new_blocks = bt.get_consecutive_blocks( 1, new_blocks[:6], seed=b"spend_reorg_coin", farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=spend_bundle, guarantee_transaction_block=True, ) await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(new_blocks[-1])) coin_3 = None for coin in run_and_get_removals_and_additions( new_blocks[-1], test_constants.MAX_BLOCK_COST_CLVM, test_constants.COST_PER_BYTE )[1]: if coin.puzzle_hash == receiver_2_puzzlehash: coin_3 = coin break assert coin_3 is not None spend_bundle = wallet_a.generate_signed_transaction(uint64(1000), receiver_3_puzzlehash, coin_3) new_blocks = bt.get_consecutive_blocks( 1, new_blocks[:7], seed=b"spend_reorg_coin", farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=spend_bundle, guarantee_transaction_block=True, ) await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(new_blocks[-1])) @pytest.mark.asyncio async def test_validate_blockchain_spend_reorg_cb_coin(self, two_nodes): num_blocks = 15 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_1_puzzlehash = WALLET_A_PUZZLE_HASHES[1] blocks = bt.get_consecutive_blocks(num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Spends a coinbase created in reorg new_blocks = bt.get_consecutive_blocks( 5, blocks[:6], seed=b"reorg cb coin", farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, ) for block in new_blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) spend_block = new_blocks[-1] spend_coin = None for coin in list(spend_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin = coin spend_bundle = wallet_a.generate_signed_transaction(1000, receiver_1_puzzlehash, spend_coin) new_blocks = bt.get_consecutive_blocks( 1, new_blocks, seed=b"reorg cb coin", farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=spend_bundle, guarantee_transaction_block=True, ) await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(new_blocks[-1])) @pytest.mark.asyncio async def test_validate_blockchain_spend_reorg_since_genesis(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_1_puzzlehash = WALLET_A_PUZZLE_HASHES[1] blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) spend_block = blocks[-1] spend_coin = None for coin in list(spend_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin = coin spend_bundle = wallet_a.generate_signed_transaction(1000, receiver_1_puzzlehash, spend_coin) new_blocks = bt.get_consecutive_blocks( 1, blocks, seed=b"", farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=spend_bundle ) await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(new_blocks[-1])) # Spends a coin in a genesis reorg, that was already spent new_blocks = bt.get_consecutive_blocks( 12, [], seed=b"reorg since genesis", farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, ) for block in new_blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) new_blocks = bt.get_consecutive_blocks( 1, new_blocks, seed=b"reorg since genesis", farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=spend_bundle, ) await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(new_blocks[-1])) @pytest.mark.asyncio async def test_assert_my_coin_id(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH # Farm blocks blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Coinbase that gets spent spend_block = blocks[2] bad_block = blocks[3] spend_coin = None bad_spend_coin = None for coin in list(spend_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin = coin for coin in list(bad_block.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: bad_spend_coin = coin valid_cvp = ConditionWithArgs(ConditionOpcode.ASSERT_MY_COIN_ID, [spend_coin.name()]) valid_dic = {valid_cvp.opcode: [valid_cvp]} bad_cvp = ConditionWithArgs(ConditionOpcode.ASSERT_MY_COIN_ID, [bad_spend_coin.name()]) bad_dic = {bad_cvp.opcode: [bad_cvp]} bad_spend_bundle = wallet_a.generate_signed_transaction(1000, receiver_puzzlehash, spend_coin, bad_dic) valid_spend_bundle = wallet_a.generate_signed_transaction(1000, receiver_puzzlehash, spend_coin, valid_dic) assert bad_spend_bundle is not None assert valid_spend_bundle is not None # Invalid block bundle # Create another block that includes our transaction invalid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=bad_spend_bundle, guarantee_transaction_block=True, ) # Try to validate that block res, err, _, _ = await full_node_1.blockchain.receive_block(invalid_new_blocks[-1]) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.ASSERT_MY_COIN_ID_FAILED # Valid block bundle # Create another block that includes our transaction new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=valid_spend_bundle, guarantee_transaction_block=True, ) res, err, _, _ = await full_node_1.blockchain.receive_block(new_blocks[-1]) assert res == ReceiveBlockResult.NEW_PEAK assert err is None @pytest.mark.asyncio async def test_assert_coin_announcement_consumed(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH # Farm blocks blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Coinbase that gets spent block1 = blocks[2] block2 = blocks[3] spend_coin_block_1 = None spend_coin_block_2 = None for coin in list(block1.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_1 = coin for coin in list(block2.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_2 = coin # This condition requires block2 coinbase to be spent block1_cvp = ConditionWithArgs( ConditionOpcode.ASSERT_COIN_ANNOUNCEMENT, [Announcement(spend_coin_block_2.name(), b"test").name()], ) block1_dic = {block1_cvp.opcode: [block1_cvp]} block1_spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_1, block1_dic ) # This condition requires block1 coinbase to be spent block2_cvp = ConditionWithArgs( ConditionOpcode.CREATE_COIN_ANNOUNCEMENT, [b"test"], ) block2_dic = {block2_cvp.opcode: [block2_cvp]} block2_spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_2, block2_dic ) # Invalid block bundle assert block1_spend_bundle is not None # Create another block that includes our transaction invalid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, guarantee_transaction_block=True, ) # Try to validate that block res, err, _, _ = await full_node_1.blockchain.receive_block(invalid_new_blocks[-1]) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.ASSERT_ANNOUNCE_CONSUMED_FAILED # bundle_together contains both transactions bundle_together = SpendBundle.aggregate([block1_spend_bundle, block2_spend_bundle]) # Create another block that includes our transaction new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=bundle_together, guarantee_transaction_block=True, ) # Try to validate newly created block res, err, _, _ = await full_node_1.blockchain.receive_block(new_blocks[-1]) assert res == ReceiveBlockResult.NEW_PEAK assert err is None @pytest.mark.asyncio async def test_assert_puzzle_announcement_consumed(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH # Farm blocks blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Coinbase that gets spent block1 = blocks[2] block2 = blocks[3] spend_coin_block_1 = None spend_coin_block_2 = None for coin in list(block1.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_1 = coin for coin in list(block2.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_2 = coin # This condition requires block2 coinbase to be spent block1_cvp = ConditionWithArgs( ConditionOpcode.ASSERT_PUZZLE_ANNOUNCEMENT, [Announcement(spend_coin_block_2.puzzle_hash, b"test").name()], ) block1_dic = {block1_cvp.opcode: [block1_cvp]} block1_spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_1, block1_dic ) # This condition requires block1 coinbase to be spent block2_cvp = ConditionWithArgs( ConditionOpcode.CREATE_PUZZLE_ANNOUNCEMENT, [b"test"], ) block2_dic = {block2_cvp.opcode: [block2_cvp]} block2_spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_2, block2_dic ) # Invalid block bundle assert block1_spend_bundle is not None # Create another block that includes our transaction invalid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, guarantee_transaction_block=True, ) # Try to validate that block res, err, _, _ = await full_node_1.blockchain.receive_block(invalid_new_blocks[-1]) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.ASSERT_ANNOUNCE_CONSUMED_FAILED # bundle_together contains both transactions bundle_together = SpendBundle.aggregate([block1_spend_bundle, block2_spend_bundle]) # Create another block that includes our transaction new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=bundle_together, guarantee_transaction_block=True, ) # Try to validate newly created block res, err, _, _ = await full_node_1.blockchain.receive_block(new_blocks[-1]) assert res == ReceiveBlockResult.NEW_PEAK assert err is None @pytest.mark.asyncio async def test_assert_height_absolute(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH # Farm blocks blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Coinbase that gets spent block1 = blocks[2] spend_coin_block_1 = None for coin in list(block1.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_1 = coin # This condition requires block1 coinbase to be spent after index 10 block1_cvp = ConditionWithArgs(ConditionOpcode.ASSERT_HEIGHT_ABSOLUTE, [int_to_bytes(10)]) block1_dic = {block1_cvp.opcode: [block1_cvp]} block1_spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_1, block1_dic ) # program that will be sent too early assert block1_spend_bundle is not None invalid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, guarantee_transaction_block=True, ) # Try to validate that block at index 10 res, err, _, _ = await full_node_1.blockchain.receive_block(invalid_new_blocks[-1]) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.ASSERT_HEIGHT_ABSOLUTE_FAILED new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, ) res, _, _, _ = await full_node_1.blockchain.receive_block(new_blocks[-1]) assert res == ReceiveBlockResult.NEW_PEAK # At index 11, it can be spent new_blocks = bt.get_consecutive_blocks( 1, new_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, guarantee_transaction_block=True, ) res, err, _, _ = await full_node_1.blockchain.receive_block(new_blocks[-1]) assert err is None assert res == ReceiveBlockResult.NEW_PEAK @pytest.mark.asyncio async def test_assert_height_relative(self, two_nodes): num_blocks = 11 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH # Farm blocks blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Coinbase that gets spent block1 = blocks[2] spend_coin_block_1 = None for coin in list(block1.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_1 = coin # This condition requires block1 coinbase to be spent after index 11 # This condition requires block1 coinbase to be spent more than 10 block after it was farmed # block index has to be greater than (2 + 9 = 11) block1_cvp = ConditionWithArgs(ConditionOpcode.ASSERT_HEIGHT_RELATIVE, [int_to_bytes(9)]) block1_dic = {block1_cvp.opcode: [block1_cvp]} block1_spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_1, block1_dic ) # program that will be sent too early assert block1_spend_bundle is not None invalid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, guarantee_transaction_block=True, ) # Try to validate that block at index 11 res, err, _, _ = await full_node_1.blockchain.receive_block(invalid_new_blocks[-1]) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.ASSERT_HEIGHT_RELATIVE_FAILED new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True, ) res, _, _, _ = await full_node_1.blockchain.receive_block(new_blocks[-1]) assert res == ReceiveBlockResult.NEW_PEAK # At index 12, it can be spent new_blocks = bt.get_consecutive_blocks( 1, new_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, guarantee_transaction_block=True, ) res, err, _, _ = await full_node_1.blockchain.receive_block(new_blocks[-1]) assert err is None assert res == ReceiveBlockResult.NEW_PEAK @pytest.mark.asyncio async def test_assert_seconds_relative(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH # Farm blocks blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Coinbase that gets spent block1 = blocks[2] spend_coin_block_1 = None for coin in list(block1.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_1 = coin # This condition requires block1 coinbase to be spent 300 seconds after coin creation block1_cvp = ConditionWithArgs(ConditionOpcode.ASSERT_SECONDS_RELATIVE, [int_to_bytes(300)]) block1_dic = {block1_cvp.opcode: [block1_cvp]} block1_spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_1, block1_dic ) # program that will be sent to early assert block1_spend_bundle is not None invalid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, time_per_block=20, guarantee_transaction_block=True, ) # Try to validate that block before 300 sec res, err, _, _ = await full_node_1.blockchain.receive_block(invalid_new_blocks[-1]) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.ASSERT_SECONDS_RELATIVE_FAILED valid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, guarantee_transaction_block=True, time_per_block=301, ) res, err, _, _ = await full_node_1.blockchain.receive_block(valid_new_blocks[-1]) assert err is None assert res == ReceiveBlockResult.NEW_PEAK @pytest.mark.asyncio async def test_assert_seconds_absolute(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH # Farm blocks blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Coinbase that gets spent block1 = blocks[2] spend_coin_block_1 = None for coin in list(block1.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_1 = coin # This condition requires block1 coinbase to be spent after 30 seconds from now current_time_plus3 = uint64(blocks[-1].foliage_transaction_block.timestamp + 30) block1_cvp = ConditionWithArgs(ConditionOpcode.ASSERT_SECONDS_ABSOLUTE, [int_to_bytes(current_time_plus3)]) block1_dic = {block1_cvp.opcode: [block1_cvp]} block1_spend_bundle = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_1, block1_dic ) # program that will be sent to early assert block1_spend_bundle is not None invalid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, time_per_block=20, guarantee_transaction_block=True, ) # Try to validate that block before 30 sec res, err, _, _ = await full_node_1.blockchain.receive_block(invalid_new_blocks[-1]) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.ASSERT_SECONDS_ABSOLUTE_FAILED valid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle, guarantee_transaction_block=True, time_per_block=31, ) res, err, _, _ = await full_node_1.blockchain.receive_block(valid_new_blocks[-1]) assert err is None assert res == ReceiveBlockResult.NEW_PEAK @pytest.mark.asyncio async def test_assert_fee_condition(self, two_nodes): num_blocks = 10 wallet_a = WALLET_A coinbase_puzzlehash = WALLET_A_PUZZLE_HASHES[0] receiver_puzzlehash = BURN_PUZZLE_HASH # Farm blocks blocks = bt.get_consecutive_blocks( num_blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, guarantee_transaction_block=True ) full_node_api_1, full_node_api_2, server_1, server_2 = two_nodes full_node_1 = full_node_api_1.full_node for block in blocks: await full_node_api_1.full_node.respond_block(full_node_protocol.RespondBlock(block)) # Coinbase that gets spent block1 = blocks[2] spend_coin_block_1 = None for coin in list(block1.get_included_reward_coins()): if coin.puzzle_hash == coinbase_puzzlehash: spend_coin_block_1 = coin # This condition requires fee to be 10 mojo cvp_fee = ConditionWithArgs(ConditionOpcode.RESERVE_FEE, [int_to_bytes(10)]) # This spend bundle has 9 mojo as fee block1_dic_bad = {cvp_fee.opcode: [cvp_fee]} block1_dic_good = {cvp_fee.opcode: [cvp_fee]} block1_spend_bundle_bad = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_1, block1_dic_bad, fee=9 ) block1_spend_bundle_good = wallet_a.generate_signed_transaction( 1000, receiver_puzzlehash, spend_coin_block_1, block1_dic_good, fee=10 ) log.warning(block1_spend_bundle_good.additions()) log.warning(f"Spend bundle fees: {block1_spend_bundle_good.fees()}") invalid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle_bad, guarantee_transaction_block=True, ) res, err, _, _ = await full_node_1.blockchain.receive_block(invalid_new_blocks[-1]) assert res == ReceiveBlockResult.INVALID_BLOCK assert err == Err.RESERVE_FEE_CONDITION_FAILED valid_new_blocks = bt.get_consecutive_blocks( 1, blocks, farmer_reward_puzzle_hash=coinbase_puzzlehash, transaction_data=block1_spend_bundle_good, guarantee_transaction_block=True, ) res, err, _, _ = await full_node_1.blockchain.receive_block(valid_new_blocks[-1]) assert err is None assert res == ReceiveBlockResult.NEW_PEAK
39.753196
115
0.678919
a5fbf6931255b7bfc35abfbf7c9d082d5c1a047c
4,755
py
Python
imblearn/under_sampling/prototype_selection/tests/test_instance_hardness_threshold.py
seabay/UnbalancedDataset
b15b868019343052d4b57bf748d658367166c8b3
[ "MIT" ]
1
2018-07-11T06:47:11.000Z
2018-07-11T06:47:11.000Z
imblearn/under_sampling/prototype_selection/tests/test_instance_hardness_threshold.py
seabay/UnbalancedDataset
b15b868019343052d4b57bf748d658367166c8b3
[ "MIT" ]
null
null
null
imblearn/under_sampling/prototype_selection/tests/test_instance_hardness_threshold.py
seabay/UnbalancedDataset
b15b868019343052d4b57bf748d658367166c8b3
[ "MIT" ]
null
null
null
"""Test the module .""" # Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com> # Christos Aridas # License: MIT from __future__ import print_function import numpy as np from pytest import raises from sklearn.utils.testing import assert_array_equal from sklearn.ensemble import GradientBoostingClassifier from imblearn.under_sampling import InstanceHardnessThreshold RND_SEED = 0 X = np.array([[-0.3879569, 0.6894251], [-0.09322739, 1.28177189], [ -0.77740357, 0.74097941 ], [0.91542919, -0.65453327], [-0.03852113, 0.40910479], [ -0.43877303, 1.07366684 ], [-0.85795321, 0.82980738], [-0.18430329, 0.52328473], [ -0.30126957, -0.66268378 ], [-0.65571327, 0.42412021], [-0.28305528, 0.30284991], [0.20246714, -0.34727125], [1.06446472, -1.09279772], [0.30543283, -0.02589502], [-0.00717161, 0.00318087]]) Y = np.array([0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0]) ESTIMATOR = GradientBoostingClassifier(random_state=RND_SEED) def test_iht_init(): sampling_strategy = 'auto' iht = InstanceHardnessThreshold( ESTIMATOR, sampling_strategy=sampling_strategy, random_state=RND_SEED) assert iht.sampling_strategy == sampling_strategy assert iht.random_state == RND_SEED def test_iht_fit_sample(): iht = InstanceHardnessThreshold(ESTIMATOR, random_state=RND_SEED) X_resampled, y_resampled = iht.fit_sample(X, Y) X_gt = np.array([[-0.3879569, 0.6894251], [0.91542919, -0.65453327], [ -0.65571327, 0.42412021 ], [1.06446472, -1.09279772], [0.30543283, -0.02589502], [ -0.00717161, 0.00318087 ], [-0.09322739, 1.28177189], [-0.77740357, 0.74097941], [-0.43877303, 1.07366684], [-0.85795321, 0.82980738], [-0.18430329, 0.52328473], [-0.28305528, 0.30284991]]) y_gt = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_iht_fit_sample_with_indices(): iht = InstanceHardnessThreshold( ESTIMATOR, return_indices=True, random_state=RND_SEED) X_resampled, y_resampled, idx_under = iht.fit_sample(X, Y) X_gt = np.array([[-0.3879569, 0.6894251], [0.91542919, -0.65453327], [ -0.65571327, 0.42412021 ], [1.06446472, -1.09279772], [0.30543283, -0.02589502], [ -0.00717161, 0.00318087 ], [-0.09322739, 1.28177189], [-0.77740357, 0.74097941], [-0.43877303, 1.07366684], [-0.85795321, 0.82980738], [-0.18430329, 0.52328473], [-0.28305528, 0.30284991]]) y_gt = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) idx_gt = np.array([0, 3, 9, 12, 13, 14, 1, 2, 5, 6, 7, 10]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) assert_array_equal(idx_under, idx_gt) def test_iht_fit_sample_half(): sampling_strategy = {0: 6, 1: 8} iht = InstanceHardnessThreshold( ESTIMATOR, sampling_strategy=sampling_strategy, random_state=RND_SEED) X_resampled, y_resampled = iht.fit_sample(X, Y) X_gt = np.array([[-0.3879569, 0.6894251], [0.91542919, -0.65453327], [ -0.65571327, 0.42412021 ], [1.06446472, -1.09279772], [0.30543283, -0.02589502], [ -0.00717161, 0.00318087 ], [-0.09322739, 1.28177189], [-0.77740357, 0.74097941], [-0.03852113, 0.40910479], [-0.43877303, 1.07366684], [-0.85795321, 0.82980738], [-0.18430329, 0.52328473], [-0.30126957, -0.66268378], [-0.28305528, 0.30284991]]) y_gt = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_iht_fit_sample_class_obj(): est = GradientBoostingClassifier(random_state=RND_SEED) iht = InstanceHardnessThreshold(estimator=est, random_state=RND_SEED) X_resampled, y_resampled = iht.fit_sample(X, Y) X_gt = np.array([[-0.3879569, 0.6894251], [0.91542919, -0.65453327], [ -0.65571327, 0.42412021 ], [1.06446472, -1.09279772], [0.30543283, -0.02589502], [ -0.00717161, 0.00318087 ], [-0.09322739, 1.28177189], [-0.77740357, 0.74097941], [-0.43877303, 1.07366684], [-0.85795321, 0.82980738], [-0.18430329, 0.52328473], [-0.28305528, 0.30284991]]) y_gt = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_iht_fit_sample_wrong_class_obj(): from sklearn.cluster import KMeans est = KMeans() iht = InstanceHardnessThreshold(estimator=est, random_state=RND_SEED) with raises(ValueError, match="Invalid parameter `estimator`"): iht.fit_sample(X, Y)
40.991379
78
0.642061
64a694c83c308f4a1b9eb36edac4a3bce98e83b9
7,792
py
Python
DQM/BeamMonitor/test/Alca_BeamMonitor_file.py
SWuchterl/cmssw
769b4a7ef81796579af7d626da6039dfa0347b8e
[ "Apache-2.0" ]
1
2021-01-25T16:39:35.000Z
2021-01-25T16:39:35.000Z
DQM/BeamMonitor/test/Alca_BeamMonitor_file.py
SWuchterl/cmssw
769b4a7ef81796579af7d626da6039dfa0347b8e
[ "Apache-2.0" ]
28
2019-08-15T15:21:11.000Z
2021-12-29T14:13:18.000Z
DQM/BeamMonitor/test/Alca_BeamMonitor_file.py
SWuchterl/cmssw
769b4a7ef81796579af7d626da6039dfa0347b8e
[ "Apache-2.0" ]
1
2020-08-18T10:29:49.000Z
2020-08-18T10:29:49.000Z
import FWCore.ParameterSet.Config as cms process = cms.Process("DQM") process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( #"file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/07CBA04E-BEA0-AE4B-A9F1-3C6DF122B40E.root", #"file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0869AF69-CD0D-6F45-B1C7-FC1BF3AC7A01.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0874B9E6-DAA6-3148-8A8A-4A323D682591.root", # "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0E38963B-7E4A-9447-A56F-7E87903E2ED4.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0E497339-C393-ED4A-8FA6-E372183A841F.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0F68686E-FE48-7F42-AF13-6F9F058D7BB6.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0874B9E6-DAA6-3148-8A8A-4A323D682591.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0E38963B-7E4A-9447-A56F-7E87903E2ED4.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0E497339-C393-ED4A-8FA6-E372183A841F.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/0F68686E-FE48-7F42-AF13-6F9F058D7BB6.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/11F4A099-8675-D248-B648-B39C866557DD.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/120196ED-8F8F-A044-8037-3B7416D9B273.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/1386E376-340A-964E-ADFC-F30D662B4DD8.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/159017AF-F91B-FC48-88FC-0BEF7C3C36F1.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/15A187C2-B285-B54D-9BDF-DB34CCCA9480.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/1789D57E-0D78-A342-BCDD-F3DC1193AF77.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/17F827A5-F84D-6D40-AB10-A1B11EA74CAC.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/1985F374-DBC9-5F4F-A52D-93FBB031FA5F.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/19DE7ADA-C714-9141-946B-311861E05DCE.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/1C7884AD-B58B-F441-959A-3EFC70EBECB0.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/1D4C6C74-E523-E84B-916F-5E9509837053.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/213103A9-2731-F740-B718-189C9D94750F.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/23A6C766-D39F-5F44-B017-D0CD2B42C398.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/26005441-0069-B24E-B040-91F00D129557.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/28CF7DC0-A45E-0248-938F-764FC31853B1.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/29B394F7-6729-3E44-9846-EBB63B2C4B88.root", "file:/eos/cms/store/data/Run2018D/JetHT/RAW-RECO/JetHTJetPlusHOFilter-12Nov2019_UL2018_rsb-v1/120000/2B9B72F2-06F4-A043-9BDE-5B9C6C454705.root", ) # , duplicateCheckMode = cms.untracked.string('noDuplicateCheck') ) # initialize MessageLogger process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.categories = ["AlcaBeamMonitor"] process.MessageLogger.cerr = cms.untracked.PSet(placeholder = cms.untracked.bool(True)) process.MessageLogger.cout = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), default = cms.untracked.PSet( limit = cms.untracked.int32(0) ), AlcaBeamMonitor = cms.untracked.PSet( reportEvery = cms.untracked.int32(1), # every 1000th only limit = cms.untracked.int32(0) ) ) #process.MessageLogger.statistics.append('cout') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(2000) ) process.load("DQM.BeamMonitor.AlcaBeamMonitor_cff") process.load("CondCore.DBCommon.CondDBSetup_cfi") process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') from Configuration.AlCa.GlobalTag import GlobalTag as gtCustomise process.GlobalTag = gtCustomise(process.GlobalTag, 'auto:run2_data', '') # you may need to set manually the GT in the line below #process.GlobalTag.globaltag = '100X_upgrade2018_realistic_v10' # DQM Live Environment process.load("DQM.Integration.config.environment_cfi") process.dqmEnv.subSystemFolder = 'BeamMonitor' process.dqmSaver.tag = 'BeamMonitor' process.dqmEnvPixelLess = process.dqmEnv.clone() process.dqmEnvPixelLess.subSystemFolder = 'BeamMonitor_PixelLess' #import RecoVertex.BeamSpotProducer.BeamSpotOnline_cfi #process.offlineBeamSpotForDQM = RecoVertex.BeamSpotProducer.BeamSpotOnline_cfi.onlineBeamSpotProducer.clone() # # summary process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True), numberOfThreads = cms.untracked.uint32(4), numberOfStreams = cms.untracked.uint32 (4), numberOfConcurrentLuminosityBlocks = cms.untracked.uint32(2) ) process.pp = cms.Path(process.alcaBeamMonitor+process.dqmSaver) process.schedule = cms.Schedule(process.pp)
82.021053
214
0.643352
c98b0748dd34dcb22e512ab58b6937a1c1125c9f
11,037
py
Python
UserCode/trentc/AcousticAnalysisSlope.py
RunzZhang/SBCcode
e75b8e751cec5fb2c28950edef0c82f005caedcb
[ "MIT" ]
4
2018-08-27T18:02:34.000Z
2020-06-09T21:19:04.000Z
UserCode/trentc/AcousticAnalysisSlope.py
RunzZhang/SBCcode
e75b8e751cec5fb2c28950edef0c82f005caedcb
[ "MIT" ]
null
null
null
UserCode/trentc/AcousticAnalysisSlope.py
RunzZhang/SBCcode
e75b8e751cec5fb2c28950edef0c82f005caedcb
[ "MIT" ]
4
2019-06-20T21:36:26.000Z
2020-11-10T17:23:14.000Z
#Author: Trent Cwiok import pdb import numpy as np import math import SBCcode as sbc from matplotlib import pyplot as plt from scipy import signal as sig def main(event_dict, low_tau=5e-4, high_tau=5e-3, window_width_ms=10, offset_from_t0_ms=2, bin_edges=np.array((500, 10000), dtype=np.float64), show_figures_t0=False, show_figures_loudness=False): """ A top-level function that makes calls to the FindBubbleStart and FindLoudness helper functions. It then parses the output of those functions and returns a dictionary containing that information. Required inputs: event_dict -- an event dictionary generated by SBCcode.get_event() Keyword arguments: low_tau -- a Float, the time constant used by the low-pass filter applied to the acoustic trace in FindBubbleStart high_tau -- identical to low_tau, but used in the high-pass filter window_width_ms -- a Float, the length of each time window slice taken of the FFT, in milliseconds offset_from_t0_ms -- a Float, the number of milliseconds before the bubble t0 where the first time window will start bin_edges -- a 1-dimensional Ndarray, contains the values of the bin edges in Hz used to partition the FFT show_figures-- a Boolean, determines if figures showing the bubble_t0 and FFT plots will be displayed Output format: Returns a dictionary containing the following keys... bubble_t0 -- the time in milliseconds where the bubble appears in the acoustic trace bubble_loudness -- an Ndarray, contains the loudness calculated for each time window between each set of bin edges bin_edges -- an Ndarray, a copy of the bin edges passed to the function to help with indexing the bubble loudnesses time_windows -- an Ndarray, the actual times in milliseconds that were samples from the acoustic trace """ acoustic_analysis_dict = dict() #Calls FindBubbleStart and stores the returned value to its respective dictionary entry bubble_start = FindBubbleStart(event_dict, low_tau, high_tau, show_figures_t0) #pdb.set_trace() acoustic_analysis_dict['bubble_t0'] = bubble_start[1] #Calls FindLoudness and stores the returned values of the tuple to their respective dictionary entries bubble_loudness = FindLoudness(event_dict, bubble_start[0], window_width_ms, offset_from_t0_ms, bin_edges, show_figures_loudness) acoustic_analysis_dict['bubble_loudness'] = bubble_loudness[0] acoustic_analysis_dict['ap_time_windows'] = bubble_loudness[1] acoustic_analysis_dict['ap_frequency_bins'] = bubble_loudness[2] return acoustic_analysis_dict def FindBubbleStart(event_dict, low_tau, high_tau, show_figures_t0): """ A helper function to main which finds the time in the acoustic trace at which bubble formation begins. Required inputs: See main's keyword arguments -- all inputs are optional inputs of main Output format: Returns a tuple containing both the time of bubble formation and its corresponding index """ # Checks that the event dictionary was properly loaded and passed if not event_dict['fastDAQ']['loaded']: print "Failed to load fastDAQ dictionary, process terminated." return np.float64(np.NaN), np.float64(np.NaN) # Reads and stores information determined by the DAQ time_zero = int(event_dict['fastDAQ']['caldata']['pretrigger_samples'][0]) time_step = event_dict['fastDAQ']['caldata']['dt'][0] # Calculates the average and standard deviation of the trace before any bubble formation base_sampling = event_dict['fastDAQ']['Piezo1'][:100000] base_mean = np.mean(base_sampling, dtype = np.float64) base_stdev = np.std(base_sampling, dtype = np.float64) # Normalizes the acoustic trace to an average of zero event_dict['fastDAQ']['Piezo1'] -= base_mean # Uses scipy's low and high pass filters to create a bandwidth filter -- bandwidth is determined by low and high tau and are passed to the function filtered_low = sig.lfilter([1-math.exp(-time_step/low_tau)], [1, -math.exp(-time_step/low_tau)], event_dict['fastDAQ']['Piezo1'], axis = 0) filtered_both = sig.lfilter([math.exp(-time_step/high_tau),-math.exp(-time_step/high_tau)], [1, -math.exp(-time_step/high_tau)], filtered_low, axis = 0) # Calculates the average and standard deviation of the filtered trace before bubble formation filtered_sampling = filtered_both[:100000] filtered_mean = np.mean(filtered_sampling, dtype = np.float64) filtered_stdev = np.std(filtered_sampling, dtype = np.float64) # Normalizes mean to zero filtered_both -= filtered_mean # Scales both the filtered and unfiltered traces by their respective standard deviations -- Y-axis is now in units of sigma filtered_both = (filtered_both/filtered_stdev) event_dict['fastDAQ']['Piezo1'] = (event_dict['fastDAQ']['Piezo1']/base_stdev) # Declaration of loop variables bubble = False low_res_start = None spike = False index = 0 # This loop starts from the start of the trace and steps forward until it finds a region where the trace exceeeds a certain # absolute value standard deviation threshold. If the trace remains above this threshold for a certain duration, it records # the index where the trace first crossed the threshold as a bubble. while (not bubble) and (index < time_zero): value = abs(filtered_both[index]) # If the value is less than 2 sigma, there is no bubble if value < 2 and low_res_start != None: spike = False low_res_start = None # Else, a bubble start is labelled elif value >= 2 and low_res_start == None: low_res_start = index spike = True # If the bubble label persists, it is confirmed and the loop ends if spike and (abs(event_dict['fastDAQ']['time'][index]-event_dict['fastDAQ']['time'][low_res_start]) > .0001): bubble = True index += 1 # Declaration of loops variables index = low_res_start high_res_start = None found = False # This loop starts from where the previous loop labelled the bubble formation and searches for the start of the bubble with # finer resolution. It then steps BACKWARDS, searching for a point at which the trace has a standard deviation of essentially # zero, and if it remains within that range for a certain duration, it stores that value as the t0 of the bubble formation. while not found and (index > 0): x1 = index x2 = index - 100 y1 = filtered_both[x1] y2 = filtered_both[x2] slope = GetAbsSlope(y1, y2, x1, x2) if (slope < .5) and (filtered_both[x2] < 3): high_res_start = x2 found = True index -= 1 if not found: return np.float64(np.NaN), np.float64(np.NaN) # Optional function argument for plotting tools if show_figures_t0: plt.plot(event_dict['fastDAQ']['time'], event_dict['fastDAQ']['Piezo1'], 'b-',event_dict['fastDAQ']['time'], filtered_both, 'r-', event_dict['fastDAQ']['time'][int(high_res_start)], 0, 'r^', markersize = 10.0) plt.axis([-.2,.2,-100,100]) plt.show() return high_res_start, event_dict['fastDAQ']['time'][high_res_start] def FindLoudness(event_dict, bubble_t0_index, window_width_ms, offset_from_t0_ms, bin_edges, show_figures_loudness): """ """ # Checks that the event dictionary was properly loaded and passed if not event_dict['fastDAQ']['loaded']: print "Failed to load fastDAQ dictionary, process terminated." return np.float64(np.NaN), np.float64(np.NaN), np.float64(np.NaN) if np.isnan(bubble_t0_index): return np.float64(np.NaN), np.float64(np.NaN), np.float64(np.NaN) # Reads and stores information determined by the DAQ time_step = event_dict['fastDAQ']['caldata']['dt'][0] # Converts function inputs from milliseconds to seconds window_width_sec = window_width_ms*1e-3 offset_from_t0_sec = offset_from_t0_ms*1e-3 # Gets the indices of those times window_width_index = int(window_width_sec/time_step) offset_from_t0_index = int(offset_from_t0_sec/time_step) # Generates an n-by-2 Ndarray, where n is the number of time windows (NOT IMPLEMENTED): axis 0 is the start of each window, axis 1 the end times_array_sec = np.array([(event_dict['fastDAQ']['time'][bubble_t0_index-(2*offset_from_t0_index)-window_width_index], event_dict['fastDAQ']['time'][bubble_t0_index-(2*offset_from_t0_index)]), (event_dict['fastDAQ']['time'][bubble_t0_index-offset_from_t0_index], event_dict['fastDAQ']['time'][bubble_t0_index-offset_from_t0_index+window_width_index])], dtype=np.float64) # Converts all the times in the times_array to milliseconds times_array_ms = times_array_sec*1000 try: # Performs a Fast Fourier Transform on the bubble and non-bubble parts of the trace, then calculates the power fft_bubble_amp = np.fft.rfft(event_dict['fastDAQ']['Piezo1'] [bubble_t0_index-offset_from_t0_index:bubble_t0_index-offset_from_t0_index+window_width_index], axis=0) fft_bubble_power = (abs(fft_bubble_amp))**2 fft_sample_amp = np.fft.rfft(event_dict['fastDAQ']['Piezo1'] [bubble_t0_index-(2*offset_from_t0_index)-window_width_index:bubble_t0_index-(2*offset_from_t0_index)], axis=0) fft_sample_power = (abs(fft_sample_amp))**2 except IndexError: print "Index error encountered with the time windows. Process Terminated." return np.float64(np.NaN), np.float64(np.NaN), np.float64(np.NaN) # Finds the df of the Fourier Transform freq_step = 1/window_width_sec # Uses the df to generate the range of Hertz which the FFT spans freq_scale = np.linspace(0, freq_step*len(fft_bubble_power), num=len(fft_bubble_power)) # Creates an empty array to store the loudness of the bubble and non-bubble time windows loudness_array = np.zeros((2, len(bin_edges)-1), dtype=np.float64) # Finds the corresponding indices of the frequency bin edges and stores them in an array bin_edges_indices = np.zeros(len(bin_edges), dtype=np.float64) for ii in range(len(bin_edges)): masked = freq_scale < bin_edges[ii] index = np.nonzero(masked)[0] try: bin_edges_indices[ii] = index[-1] except IndexError: print "Index error encountered in finding bin edge indices. Process terminated." return np.float64(np.NaN), np.float64(np.NaN), np.float64(np.NaN) # Uses the bin edge indices to calculate the loudness of each frequency bin -- the loudness is the sum of all points times df squared for ii in range(len(bin_edges_indices)-1): bubble_loudness = np.sum((fft_bubble_power*(freq_step**2))[bin_edges_indices[ii]:bin_edges_indices[ii+1]], dtype=np.float64) sample_loudness = np.sum((fft_sample_power*(freq_step**2))[bin_edges_indices[ii]:bin_edges_indices[ii+1]], dtype=np.float64) loudness_array[0][ii] = sample_loudness loudness_array[1][ii] = bubble_loudness # Optional function argument for plotting tools if show_figures_loudness: plt.plot(freq_scale, fft_bubble_power*(freq_scale**2), 'b-', freq_scale, fft_sample_power*(freq_scale**2), 'r--') plt.loglog() plt.show() return loudness_array, times_array_ms, bin_edges def GetAbsSlope(x1, x2, y1, y2): return abs((y1-y2)/(x1-x2))
47.779221
212
0.747305
68ae3e772e663412dddd5ebbb13fceb4e1750e2a
8,719
py
Python
utilities/autoware_camera_lidar_calibrator/nodes/cameracalibrator.py
alanjclark/autoware.ai
ba97edbbffb6f22e78912bf96400a59ef6a13daf
[ "Apache-2.0" ]
2
2020-11-13T11:11:16.000Z
2022-03-09T20:24:54.000Z
utilities/autoware_camera_lidar_calibrator/nodes/cameracalibrator.py
alanjclark/autoware.ai
ba97edbbffb6f22e78912bf96400a59ef6a13daf
[ "Apache-2.0" ]
40
2019-06-24T16:56:15.000Z
2022-02-28T13:41:58.000Z
utilities/autoware_camera_lidar_calibrator/nodes/cameracalibrator.py
alanjclark/autoware.ai
ba97edbbffb6f22e78912bf96400a59ef6a13daf
[ "Apache-2.0" ]
8
2019-08-20T18:54:00.000Z
2022-02-09T13:54:41.000Z
#!/usr/bin/python3 # # Copyright 2015-2019 Autoware Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # v1.0 Jacob Lambert 2018-03-05 # # Software License Agreement (BSD License) # # Copyright (c) 2009, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the Willow Garage nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import cv2 import functools import message_filters import os import rospy from autoware_camera_calibration.camera_calibrator import OpenCVCalibrationNode from autoware_camera_calibration.calibrator import ChessboardInfo, Patterns from message_filters import ApproximateTimeSynchronizer def main(): from optparse import OptionParser, OptionGroup parser = OptionParser("%prog --size SIZE1 --square SQUARE1 [ --size SIZE2 --square SQUARE2 ]", description=None) parser.add_option("-c", "--camera_name", type="string", default='autoware_camera_calibration', help="name of the camera to appear in the calibration file") parser.add_option("-o", "--output", type="string", default="yaml", help="type of output - 'yaml' or 'tar'") parser.add_option("-d", "--detection", type="string", default="cv2", help="Chessboard detection algorithm, OpenCV2 or Matlab (python matlab engine) - 'cv2', 'matlab'") group = OptionGroup(parser, "Chessboard Options", "You must specify one or more chessboards as pairs of --size and --square options.") group.add_option("-p", "--pattern", type="string", default="chessboard", help="calibration pattern to detect - 'chessboard', 'circles', 'acircles'") group.add_option("-s", "--size", action="append", default=[], help="chessboard size as NxM, counting interior corners (e.g. a standard chessboard is 7x7)") group.add_option("-q", "--square", action="append", default=[], help="chessboard square size in meters") group.add_option("--min_samples", type="int", default=40, help="defines the minimum number of samples before allowing to calibrate regardless of the status") parser.add_option_group(group) group = OptionGroup(parser, "ROS Communication Options") group.add_option("--approximate", type="float", default=0.0, help="allow specified slop (in seconds) when pairing images from unsynchronized stereo cameras") group.add_option("--no-service-check", action="store_false", dest="service_check", default=True, help="disable check for set_camera_info services at startup") parser.add_option_group(group) group = OptionGroup(parser, "Calibration Optimizer Options") group.add_option("--fix-principal-point", action="store_true", default=False, help="fix the principal point at the image center") group.add_option("--fix-aspect-ratio", action="store_true", default=False, help="enforce focal lengths (fx, fy) are equal") group.add_option("--zero-tangent-dist", action="store_true", default=False, help="set tangential distortion coefficients (p1, p2) to zero") group.add_option("-k", "--k-coefficients", type="int", default=3, metavar="NUM_COEFFS", help="number of radial distortion coefficients to use (up to 6, default %default)") group.add_option("--disable_calib_cb_fast_check", action='store_true', default=False, help="uses the CALIB_CB_FAST_CHECK flag for findChessboardCorners") parser.add_option_group(group) options, args = parser.parse_args() if len(options.size) != len(options.square): parser.error("Number of size and square inputs must be the same!") if options.detection == "cv2": print('Using OpenCV 2 for chessboard corner detection') elif options.detection == "matlab": print('Using matlab for chessboard corner detection') else: print('Unrecognized detection method %s, defaulting to OpenCV 2' % options.detection) options.detection = "cv2" if options.output == "yaml": print('Saving as autoware yaml') elif options.output == "tar": print('Saving as tar') else: print('Unrecognized output method %s, defaulting to Autoware Yaml' % options.output) options.output = "yaml" if not options.square: options.square.append("0.108") options.size.append("8x6") boards = [] for (sz, sq) in zip(options.size, options.square): size = tuple([int(c) for c in sz.split('x')]) boards.append(ChessboardInfo(size[0], size[1], float(sq))) if options.approximate == 0.0: sync = message_filters.TimeSynchronizer else: sync = functools.partial(ApproximateTimeSynchronizer, slop=options.approximate) num_ks = options.k_coefficients calib_flags = 0 if options.fix_principal_point: calib_flags |= cv2.CALIB_FIX_PRINCIPAL_POINT if options.fix_aspect_ratio: calib_flags |= cv2.CALIB_FIX_ASPECT_RATIO if options.zero_tangent_dist: calib_flags |= cv2.CALIB_ZERO_TANGENT_DIST if (num_ks > 3): calib_flags |= cv2.CALIB_RATIONAL_MODEL if (num_ks < 6): calib_flags |= cv2.CALIB_FIX_K6 if (num_ks < 5): calib_flags |= cv2.CALIB_FIX_K5 if (num_ks < 4): calib_flags |= cv2.CALIB_FIX_K4 if (num_ks < 3): calib_flags |= cv2.CALIB_FIX_K3 if (num_ks < 2): calib_flags |= cv2.CALIB_FIX_K2 if (num_ks < 1): calib_flags |= cv2.CALIB_FIX_K1 pattern = Patterns.Chessboard if options.pattern == 'circles': pattern = Patterns.Circles elif options.pattern == 'acircles': pattern = Patterns.ACircles elif options.pattern != 'chessboard': print('Unrecognized pattern %s, defaulting to chessboard' % options.pattern) if options.disable_calib_cb_fast_check: checkerboard_flags = 0 else: checkerboard_flags = cv2.CALIB_CB_FAST_CHECK rospy.init_node('cameracalibrator') node = OpenCVCalibrationNode(boards, options.service_check, sync, calib_flags, pattern, options.camera_name, options.detection, options.output, min_good_enough=options.min_samples, checkerboard_flags=checkerboard_flags) rospy.spin() if __name__ == "__main__": try: main() except Exception as e: import traceback traceback.print_exc()
44.258883
143
0.667393
ac425cb78d9ca3ff1da3f63606e0d7fc2e31a43e
256
py
Python
source/test_filter.py
alex-turantsev/Misoi_kontr1
874a04b609eb7cfd5b7717ec4b7dd2321362855f
[ "MIT" ]
null
null
null
source/test_filter.py
alex-turantsev/Misoi_kontr1
874a04b609eb7cfd5b7717ec4b7dd2321362855f
[ "MIT" ]
null
null
null
source/test_filter.py
alex-turantsev/Misoi_kontr1
874a04b609eb7cfd5b7717ec4b7dd2321362855f
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: iso-8859-1 -*- from PIL import ImageTk, Image from operator_filter import operator_filter image_path = '/Users/alex/Projects/images.jpeg' img = Image.open(image_path) filt = operator_filter() filt.apply_filter(image=img)
21.333333
47
0.753906
374977122ed3012ed6fc11f5ad952107f8ffb561
5,119
py
Python
test/functional/wallet-accounts.py
farsider350/AUTX-Core
6d00d1e027a5a6dffb3b0815a155e4515ced007b
[ "MIT" ]
null
null
null
test/functional/wallet-accounts.py
farsider350/AUTX-Core
6d00d1e027a5a6dffb3b0815a155e4515ced007b
[ "MIT" ]
null
null
null
test/functional/wallet-accounts.py
farsider350/AUTX-Core
6d00d1e027a5a6dffb3b0815a155e4515ced007b
[ "MIT" ]
1
2021-01-03T02:35:54.000Z
2021-01-03T02:35:54.000Z
#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test account RPCs. RPCs tested are: - getaccountaddress - getaddressesbyaccount - listaddressgroupings - setaccount - sendfrom (with account arguments) - move (with account arguments) """ from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal class WalletAccountsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [["-paytxfee=0.0001"]] def run_test(self): node = self.nodes[0] # Check that there's no UTXO on any of the nodes assert_equal(len(node.listunspent()), 0) # Note each time we call generate, all generated coins go into # the same address, so we call twice to get two addresses w/500 each node.generate(1) node.generate(101) assert_equal(node.getbalance(), 1000) # there should be 2 address groups # each with 1 address with a balance of 500 autx address_groups = node.listaddressgroupings() assert_equal(len(address_groups), 2) # the addresses aren't linked now, but will be after we send to the # common address linked_addresses = set() for address_group in address_groups: assert_equal(len(address_group), 1) assert_equal(len(address_group[0]), 2) assert_equal(address_group[0][1], 500) linked_addresses.add(address_group[0][0]) # send 500 from each address to a third address not in this wallet # There's some fee that will come back to us when the miner reward # matures. common_address = "yd5KMREs3GLMe6mTJYr3YrH1juwNwrFCfB" txid = node.sendmany( fromaccount="", amounts={common_address: 1000}, minconf=1, addlocked=False, comment="", subtractfeefrom=[common_address], ) tx_details = node.gettransaction(txid) fee = -tx_details['details'][0]['fee'] # there should be 1 address group, with the previously # unlinked addresses now linked (they both have 0 balance) address_groups = node.listaddressgroupings() assert_equal(len(address_groups), 1) assert_equal(len(address_groups[0]), 2) assert_equal(set([a[0] for a in address_groups[0]]), linked_addresses) assert_equal([a[1] for a in address_groups[0]], [0, 0]) node.generate(1) # we want to reset so that the "" account has what's expected. # otherwise we're off by exactly the fee amount as that's mined # and matures in the next 100 blocks node.sendfrom("", common_address, fee) accounts = ["a", "b", "c", "d", "e"] amount_to_send = 1.0 account_addresses = dict() for account in accounts: address = node.getaccountaddress(account) account_addresses[account] = address node.getnewaddress(account) assert_equal(node.getaccount(address), account) assert(address in node.getaddressesbyaccount(account)) node.sendfrom("", address, amount_to_send) node.generate(1) for i in range(len(accounts)): from_account = accounts[i] to_account = accounts[(i+1) % len(accounts)] to_address = account_addresses[to_account] node.sendfrom(from_account, to_address, amount_to_send) node.generate(1) for account in accounts: address = node.getaccountaddress(account) assert(address != account_addresses[account]) assert_equal(node.getreceivedbyaccount(account), 2) node.move(account, "", node.getbalance(account)) node.generate(101) expected_account_balances = {"": 52000} for account in accounts: expected_account_balances[account] = 0 assert_equal(node.listaccounts(), expected_account_balances) assert_equal(node.getbalance(""), 52000) for account in accounts: address = node.getaccountaddress("") node.setaccount(address, account) assert(address in node.getaddressesbyaccount(account)) assert(address not in node.getaddressesbyaccount("")) for account in accounts: addresses = [] for x in range(10): addresses.append(node.getnewaddress()) multisig_address = node.addmultisigaddress(5, addresses, account) node.sendfrom("", multisig_address, 50) node.generate(101) for account in accounts: assert_equal(node.getbalance(account), 50) if __name__ == '__main__': WalletAccountsTest().main()
37.639706
78
0.622387
e398e9da1cb1fad29425dc4770d94d951187d450
7,287
py
Python
python/pyarrow/serialization.py
jbapple-cloudera/arrow
e4f27131cf0b70fc1d166fda0db25362e1b187d1
[ "Apache-2.0" ]
3
2018-11-19T13:38:21.000Z
2019-08-28T14:56:37.000Z
python/pyarrow/serialization.py
jbapple-cloudera/arrow
e4f27131cf0b70fc1d166fda0db25362e1b187d1
[ "Apache-2.0" ]
null
null
null
python/pyarrow/serialization.py
jbapple-cloudera/arrow
e4f27131cf0b70fc1d166fda0db25362e1b187d1
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections import OrderedDict, defaultdict import six import sys import numpy as np from pyarrow.compat import builtin_pickle from pyarrow.lib import (SerializationContext, _default_serialization_context, py_buffer) try: import cloudpickle except ImportError: cloudpickle = builtin_pickle # ---------------------------------------------------------------------- # Set up serialization for numpy with dtype object (primitive types are # handled efficiently with Arrow's Tensor facilities, see # python_to_arrow.cc) def _serialize_numpy_array_list(obj): if obj.dtype.str != '|O': # Make the array c_contiguous if necessary so that we can call change # the view. if not obj.flags.c_contiguous: obj = np.ascontiguousarray(obj) return obj.view('uint8'), obj.dtype.str else: return obj.tolist(), obj.dtype.str def _deserialize_numpy_array_list(data): if data[1] != '|O': assert data[0].dtype == np.uint8 return data[0].view(data[1]) else: return np.array(data[0], dtype=np.dtype(data[1])) def _pickle_to_buffer(x): pickled = builtin_pickle.dumps(x, protocol=builtin_pickle.HIGHEST_PROTOCOL) return py_buffer(pickled) def _load_pickle_from_buffer(data): as_memoryview = memoryview(data) if six.PY2: return builtin_pickle.loads(as_memoryview.tobytes()) else: return builtin_pickle.loads(as_memoryview) # ---------------------------------------------------------------------- # pandas-specific serialization matters def _register_custom_pandas_handlers(context): # ARROW-1784, faster path for pandas-only visibility try: import pandas as pd except ImportError: return import pyarrow.pandas_compat as pdcompat sparse_type_error_msg = ( '{0} serialization is not supported.\n' 'Note that {0} is planned to be deprecated ' 'in pandas future releases.\n' 'See https://github.com/pandas-dev/pandas/issues/19239 ' 'for more information.' ) def _serialize_pandas_dataframe(obj): if isinstance(obj, pd.SparseDataFrame): raise NotImplementedError( sparse_type_error_msg.format('SparseDataFrame') ) return pdcompat.dataframe_to_serialized_dict(obj) def _deserialize_pandas_dataframe(data): return pdcompat.serialized_dict_to_dataframe(data) def _serialize_pandas_series(obj): if isinstance(obj, pd.SparseSeries): raise NotImplementedError( sparse_type_error_msg.format('SparseSeries') ) return _serialize_pandas_dataframe(pd.DataFrame({obj.name: obj})) def _deserialize_pandas_series(data): deserialized = _deserialize_pandas_dataframe(data) return deserialized[deserialized.columns[0]] context.register_type( pd.Series, 'pd.Series', custom_serializer=_serialize_pandas_series, custom_deserializer=_deserialize_pandas_series) context.register_type( pd.Index, 'pd.Index', custom_serializer=_pickle_to_buffer, custom_deserializer=_load_pickle_from_buffer) context.register_type( pd.DataFrame, 'pd.DataFrame', custom_serializer=_serialize_pandas_dataframe, custom_deserializer=_deserialize_pandas_dataframe) def register_torch_serialization_handlers(serialization_context): # ---------------------------------------------------------------------- # Set up serialization for pytorch tensors try: import torch def _serialize_torch_tensor(obj): return obj.detach().numpy() def _deserialize_torch_tensor(data): return torch.from_numpy(data) for t in [torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor, torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.LongTensor, torch.Tensor]: serialization_context.register_type( t, "torch." + t.__name__, custom_serializer=_serialize_torch_tensor, custom_deserializer=_deserialize_torch_tensor) except ImportError: # no torch pass def register_default_serialization_handlers(serialization_context): # ---------------------------------------------------------------------- # Set up serialization for primitive datatypes # TODO(pcm): This is currently a workaround until arrow supports # arbitrary precision integers. This is only called on long integers, # see the associated case in the append method in python_to_arrow.cc serialization_context.register_type( int, "int", custom_serializer=lambda obj: str(obj), custom_deserializer=lambda data: int(data)) if (sys.version_info < (3, 0)): serialization_context.register_type( long, "long", # noqa: F821 custom_serializer=lambda obj: str(obj), custom_deserializer=lambda data: long(data)) # noqa: F821 def _serialize_ordered_dict(obj): return list(obj.keys()), list(obj.values()) def _deserialize_ordered_dict(data): return OrderedDict(zip(data[0], data[1])) serialization_context.register_type( OrderedDict, "OrderedDict", custom_serializer=_serialize_ordered_dict, custom_deserializer=_deserialize_ordered_dict) def _serialize_default_dict(obj): return list(obj.keys()), list(obj.values()), obj.default_factory def _deserialize_default_dict(data): return defaultdict(data[2], zip(data[0], data[1])) serialization_context.register_type( defaultdict, "defaultdict", custom_serializer=_serialize_default_dict, custom_deserializer=_deserialize_default_dict) serialization_context.register_type( type(lambda: 0), "function", pickle=True) serialization_context.register_type(type, "type", pickle=True) serialization_context.register_type( np.ndarray, 'np.array', custom_serializer=_serialize_numpy_array_list, custom_deserializer=_deserialize_numpy_array_list) _register_custom_pandas_handlers(serialization_context) def default_serialization_context(): context = SerializationContext() register_default_serialization_handlers(context) return context register_default_serialization_handlers(_default_serialization_context)
33.426606
79
0.678743
2833e7fa3fec7ba8cee5bc45c32b791d378f3bc4
11,508
py
Python
configurations/je_os_fixedaggr_relloc_filtered.py
ShuaiW/kaggle-heart
022997f27add953c74af2b371c67d9d86cbdccc3
[ "MIT" ]
182
2016-03-15T01:51:29.000Z
2021-04-21T09:49:05.000Z
configurations/je_os_fixedaggr_relloc_filtered.py
weidezhang/kaggle-heart
022997f27add953c74af2b371c67d9d86cbdccc3
[ "MIT" ]
1
2018-06-22T16:46:12.000Z
2018-06-22T21:08:09.000Z
configurations/je_os_fixedaggr_relloc_filtered.py
weidezhang/kaggle-heart
022997f27add953c74af2b371c67d9d86cbdccc3
[ "MIT" ]
61
2016-03-15T00:58:28.000Z
2020-03-06T22:00:41.000Z
"""Single slice vgg with normalised scale. """ import functools import lasagne as nn import numpy as np import theano import theano.tensor as T import data_loader import deep_learning_layers import image_transform import layers import preprocess import postprocess import objectives import theano_printer import updates import utils # Random params rng = np.random take_a_dump = False # dump a lot of data in a pkl-dump file. (for debugging) dump_network_loaded_data = False # dump the outputs from the dataloader (for debugging) # Memory usage scheme caching = None # Save and validation frequency validate_every = 200 validate_train_set = True save_every = 20 restart_from_save = False dump_network_loaded_data = False # Training (schedule) parameters # - batch sizes batch_size = 8 sunny_batch_size = 4 batches_per_chunk = 8 num_epochs_train = 400 # - learning rate and method base_lr = 0.0001 learning_rate_schedule = { 0: base_lr, 9*num_epochs_train/10: base_lr/10, 19*num_epochs_train/20: base_lr/100, } momentum = 0.9 build_updates = updates.build_adam_updates # Preprocessing stuff cleaning_processes = [ preprocess.set_upside_up,] cleaning_processes_post = [ functools.partial(preprocess.normalize_contrast_zmuv, z=2)] augmentation_params = { "rotation": (-180, 180), "shear": (0, 0), "translation": (-8, 8), "flip_vert": (0, 1), "roll_time": (0, 0), "flip_time": (0, 0), } use_hough_roi = True preprocess_train = functools.partial( # normscale_resize_and_augment has a bug preprocess.preprocess_normscale, normscale_resize_and_augment_function=functools.partial( image_transform.normscale_resize_and_augment_2, normalised_patch_size=(64,64))) preprocess_validation = functools.partial(preprocess_train, augment=False) preprocess_test = preprocess_train sunny_preprocess_train = preprocess.sunny_preprocess_with_augmentation sunny_preprocess_validation = preprocess.sunny_preprocess_validation sunny_preprocess_test = preprocess.sunny_preprocess_validation # Data generators create_train_gen = data_loader.generate_train_batch create_eval_valid_gen = functools.partial(data_loader.generate_validation_batch, set="validation") create_eval_train_gen = functools.partial(data_loader.generate_validation_batch, set="train") create_test_gen = functools.partial(data_loader.generate_test_batch, set=["validation", "test"]) def filter_samples(folders): # don't use patients who don't have more than 6 slices return [ folder for folder in folders if data_loader.compute_nr_slices(folder) > 6] # Input sizes image_size = 64 nr_slices = 22 data_sizes = { "sliced:data:sax": (batch_size, nr_slices, 30, image_size, image_size), "sliced:data:sax:locations": (batch_size, nr_slices), "sliced:data:sax:is_not_padded": (batch_size, nr_slices), "sliced:data:randomslices": (batch_size, nr_slices, 30, image_size, image_size), "sliced:data:singleslice:difference:middle": (batch_size, 29, image_size, image_size), "sliced:data:singleslice:difference": (batch_size, 29, image_size, image_size), "sliced:data:singleslice": (batch_size, 30, image_size, image_size), "sliced:data:ax": (batch_size, 30, 15, image_size, image_size), "sliced:data:shape": (batch_size, 2,), "sunny": (sunny_batch_size, 1, image_size, image_size) # TBC with the metadata } # Objective l2_weight = 0.000 l2_weight_out = 0.000 def build_objective(interface_layers): # l2 regu on certain layers l2_penalty = nn.regularization.regularize_layer_params_weighted( interface_layers["regularizable"], nn.regularization.l2) # build objective return objectives.KaggleObjective(interface_layers["outputs"], penalty=l2_penalty) # Testing postprocess = postprocess.postprocess test_time_augmentations = 100 # More augmentations since a we only use single slices tta_average_method = lambda x: np.cumsum(utils.norm_geometric_average(utils.cdf_to_pdf(x))) # nonlinearity putting a lower bound on it's output def lb_softplus(lb): return lambda x: nn.nonlinearities.softplus(x) + lb init = nn.init.Orthogonal() rnn_layer = functools.partial(nn.layers.RecurrentLayer, W_in_to_hid=init, W_hid_to_hid=init, b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify, hid_init=nn.init.Constant(0.), backwards=False, learn_init=True, gradient_steps=-1, grad_clipping=False, unroll_scan=False, precompute_input=False) # Architecture def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:sax"] input_size_mask = data_sizes["sliced:data:sax:is_not_padded"] input_size_locations = data_sizes["sliced:data:sax:locations"] l0 = nn.layers.InputLayer(input_size) lin_slice_mask = nn.layers.InputLayer(input_size_mask) lin_slice_locations = nn.layers.InputLayer(input_size_locations) # PREPROCESS SLICES SEPERATELY # Convolutional layers and some dense layers are defined in a submodel l0_slices = nn.layers.ReshapeLayer(l0, (-1, [2], [3], [4])) relative_slice_locations = layers.RelativeLocationLayer(lin_slice_locations) relative_slice_locations_slices = nn.layers.ReshapeLayer(relative_slice_locations, (-1, 1,)) # relloc_slices_repeated = nn.layers.ConcatLayer([relative_slice_locations_slices]*image_size, axis=2) # relloc_slices_repeated = nn.layers.ConcatLayer([relloc_slices_repeated]*image_size, axis=3) # relloc_slices = nn.layers.ReshapeLayer(relloc_slices_repeated, (-1, 1, image_size, image_size)) # l0_slices_enhanced = nn.layers.ConcatLayer([l0_slices, relloc_slices], axis=1) l1a = nn.layers.dnn.Conv2DDNNLayer(l0_slices, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1b = nn.layers.dnn.Conv2DDNNLayer(l1a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1b, pool_size=(2,2), stride=(2,2)) l2a = nn.layers.dnn.Conv2DDNNLayer(l1, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2b = nn.layers.dnn.Conv2DDNNLayer(l2a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2b, pool_size=(2,2), stride=(2,2)) l3a = nn.layers.dnn.Conv2DDNNLayer(l2, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3b = nn.layers.dnn.Conv2DDNNLayer(l3a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3c = nn.layers.dnn.Conv2DDNNLayer(l3b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3c, pool_size=(2,2), stride=(2,2)) l4a = nn.layers.dnn.Conv2DDNNLayer(l3, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4b = nn.layers.dnn.Conv2DDNNLayer(l4a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4c = nn.layers.dnn.Conv2DDNNLayer(l4b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4c, pool_size=(2,2), stride=(2,2)) l5a = nn.layers.dnn.Conv2DDNNLayer(l4, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5b = nn.layers.dnn.Conv2DDNNLayer(l5a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5c = nn.layers.dnn.Conv2DDNNLayer(l5b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5 = nn.layers.dnn.MaxPool2DDNNLayer(l5c, pool_size=(2,2), stride=(2,2)) l5_flat = nn.layers.FlattenLayer(l5, 2) l5_flat_enhanced = nn.layers.ConcatLayer([l5_flat, ], axis=1) # Systole Dense layers ldsys1 = nn.layers.DenseLayer(l5_flat_enhanced, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ldsys1drop = nn.layers.dropout(ldsys1, p=0.5) ldsys2 = nn.layers.DenseLayer(ldsys1drop, num_units=512, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ldsys2drop = nn.layers.dropout(ldsys2, p=0.5) l_sys_mu = nn.layers.DenseLayer(ldsys2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(20.0), nonlinearity=None) l_sys_sigma = nn.layers.DenseLayer(ldsys2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(3.), nonlinearity=lb_softplus(.1)) # Diastole Dense layers lddia1 = nn.layers.DenseLayer(l5_flat_enhanced, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) lddia1drop = nn.layers.dropout(lddia1, p=0.5) lddia2 = nn.layers.DenseLayer(lddia1drop, num_units=512, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) lddia2drop = nn.layers.dropout(lddia2, p=0.5) l_dia_mu = nn.layers.DenseLayer(lddia2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(20.0), nonlinearity=None) l_dia_sigma = nn.layers.DenseLayer(lddia2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(3.), nonlinearity=lb_softplus(.1)) # AGGREGATE SLICES PER PATIENT l_scaled_slice_locations = layers.TrainableScaleLayer(lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False) # Systole l_pat_sys_ss_mu = nn.layers.ReshapeLayer(l_sys_mu, (-1, nr_slices)) l_pat_sys_ss_sigma = nn.layers.ReshapeLayer(l_sys_sigma, (-1, nr_slices)) l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([l_pat_sys_ss_mu, l_pat_sys_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=1.) l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma) # Diastole l_pat_dia_ss_mu = nn.layers.ReshapeLayer(l_dia_mu, (-1, nr_slices)) l_pat_dia_ss_sigma = nn.layers.ReshapeLayer(l_dia_sigma, (-1, nr_slices)) l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([l_pat_dia_ss_mu, l_pat_dia_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=1.) l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma) return { "inputs":{ "sliced:data:sax": l0, "sliced:data:sax:is_not_padded": lin_slice_mask, "sliced:data:sax:locations": lin_slice_locations, }, "outputs": { "systole": l_systole, "diastole": l_diastole, }, "regularizable": { ldsys1: l2_weight, ldsys2: l2_weight, l_sys_mu: l2_weight_out, l_sys_sigma: l2_weight_out, lddia1: l2_weight, lddia2: l2_weight, l_dia_mu: l2_weight_out, l_dia_sigma: l2_weight_out, }, }
44.261538
181
0.734359
5e9b120f14eeeb06dbec8778bfa8628498b0c451
6,220
py
Python
tests/python/gpu/test_kvstore_gpu.py
noob0/incubator-mxnet
5a8b873343495c2d54a6c005d006b58be3978cb6
[ "Apache-2.0" ]
28
2018-02-02T05:00:16.000Z
2022-01-02T18:27:39.000Z
tests/python/gpu/test_kvstore_gpu.py
noob0/incubator-mxnet
5a8b873343495c2d54a6c005d006b58be3978cb6
[ "Apache-2.0" ]
27
2017-07-04T17:45:51.000Z
2019-09-12T06:56:27.000Z
tests/python/gpu/test_kvstore_gpu.py
noob0/incubator-mxnet
5a8b873343495c2d54a6c005d006b58be3978cb6
[ "Apache-2.0" ]
7
2015-11-20T18:09:30.000Z
2017-11-24T16:52:25.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: skip-file import sys import os import mxnet as mx import numpy as np import unittest from mxnet.test_utils import assert_almost_equal, default_context curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) sys.path.insert(0, os.path.join(curr_path, '../unittest')) from common import setup_module, with_seed, teardown shape = (4, 4) keys = [5, 7, 11] str_keys = ['b', 'c', 'd'] class EnvManager: def __init__(self, key, val): self._key = key self._next_val = val self._prev_val = None def __enter__(self): try: self._prev_val = os.environ[self._key] except KeyError: self._prev_val = '' os.environ[self._key] = self._next_val def __exit__(self, ptype, value, trace): os.environ[self._key] = self._prev_val def init_kv_with_str(stype='default', kv_type='local'): """init kv """ kv = mx.kv.create(kv_type) # single kv.init('a', mx.nd.zeros(shape, stype=stype)) # list kv.init(str_keys, [mx.nd.zeros(shape=shape, stype=stype)] * len(keys)) return kv # Test seed 89411477 (module seed 1829754103) resulted in a py3-gpu CI runner core dump. # Not reproducible, so this test is back on random seeds. @with_seed() def test_rsp_push_pull(): def check_rsp_push_pull(kv_type, sparse_pull, is_push_cpu=True): kv = init_kv_with_str('row_sparse', kv_type) kv.init('e', mx.nd.ones(shape).tostype('row_sparse')) push_ctxs = [mx.cpu(i) if is_push_cpu else mx.gpu(i) for i in range(2)] kv.push('e', [mx.nd.ones(shape, ctx=context).tostype('row_sparse') for context in push_ctxs]) def check_rsp_pull(kv, count, ctxs, sparse_pull, is_same_rowid=False, use_slice=False): num_rows = shape[0] row_ids = [] all_row_ids = np.arange(num_rows) vals = [mx.nd.sparse.zeros(shape=shape, ctx=ctxs[i], stype='row_sparse') for i in range(count)] if is_same_rowid: row_id = np.random.randint(num_rows, size=num_rows) row_ids = [mx.nd.array(row_id)] * count elif use_slice: total_row_ids = mx.nd.array(np.random.randint(num_rows, size=count*num_rows)) row_ids = [total_row_ids[i*num_rows : (i+1)*num_rows] for i in range(count)] else: for i in range(count): row_id = np.random.randint(num_rows, size=num_rows) row_ids.append(mx.nd.array(row_id)) row_ids_to_pull = row_ids[0] if (len(row_ids) == 1 or is_same_rowid) else row_ids vals_to_pull = vals[0] if len(vals) == 1 else vals kv.row_sparse_pull('e', out=vals_to_pull, row_ids=row_ids_to_pull) for val, row_id in zip(vals, row_ids): retained = val.asnumpy() excluded_row_ids = np.setdiff1d(all_row_ids, row_id.asnumpy()) for row in range(num_rows): expected_val = np.zeros_like(retained[row]) expected_val += 0 if row in excluded_row_ids else 2 assert_almost_equal(retained[row], expected_val) if sparse_pull is True: kv.pull('e', out=vals_to_pull, ignore_sparse=False) for val in vals: retained = val.asnumpy() expected_val = np.zeros_like(retained) expected_val[:] = 2 assert_almost_equal(retained, expected_val) check_rsp_pull(kv, 1, [mx.gpu(0)], sparse_pull) check_rsp_pull(kv, 1, [mx.cpu(0)], sparse_pull) check_rsp_pull(kv, 4, [mx.gpu(i//2) for i in range(4)], sparse_pull) check_rsp_pull(kv, 4, [mx.gpu(i//2) for i in range(4)], sparse_pull, is_same_rowid=True) check_rsp_pull(kv, 4, [mx.cpu(i) for i in range(4)], sparse_pull) check_rsp_pull(kv, 4, [mx.cpu(i) for i in range(4)], sparse_pull, is_same_rowid=True) check_rsp_pull(kv, 4, [mx.gpu(i//2) for i in range(4)], sparse_pull, use_slice=True) check_rsp_pull(kv, 4, [mx.cpu(i) for i in range(4)], sparse_pull, use_slice=True) envs = ["","1"] key = "MXNET_KVSTORE_USETREE" for val in envs: with EnvManager(key, val): if val is "1": sparse_pull = False else: sparse_pull = True check_rsp_push_pull('local', sparse_pull) check_rsp_push_pull('device', sparse_pull) check_rsp_push_pull('device', sparse_pull, is_push_cpu=False) def test_row_sparse_pull_single_device(): kvstore = mx.kv.create('device') copy = mx.nd.random_normal(shape=(4,4), ctx=mx.gpu(0)) grad = copy.tostype("row_sparse") key = 0 kvstore.init(key, grad) idx = grad.indices kvstore.push(key, grad) kvstore.row_sparse_pull(key, out=grad, row_ids=idx) assert_almost_equal(grad.asnumpy(), copy.asnumpy()) def test_rsp_push_pull_large_rowid(): num_rows = 793470 val = mx.nd.ones((num_rows, 1)).tostype('row_sparse').copyto(mx.gpu()) kv = mx.kv.create('device') kv.init('a', val) out = mx.nd.zeros((num_rows,1), stype='row_sparse').copyto(mx.gpu()) kv.push('a', val) kv.row_sparse_pull('a', out=out, row_ids=mx.nd.arange(0, num_rows, dtype='int64')) assert(out.indices.shape[0] == num_rows) if __name__ == '__main__': import nose nose.runmodule()
41.192053
107
0.637781
edc212c1cfa362ba4419a47aa787fb8635f04d45
10,165
py
Python
trainer.py
stefanosantaris/DMTKG
f5cba46b055e7c7aa3048ace0d24fce1a5300313
[ "Apache-2.0" ]
1
2020-11-13T19:07:28.000Z
2020-11-13T19:07:28.000Z
trainer.py
stefanosantaris/DMTKG
f5cba46b055e7c7aa3048ace0d24fce1a5300313
[ "Apache-2.0" ]
5
2020-07-27T10:41:47.000Z
2022-02-10T01:40:29.000Z
trainer.py
stefanosantaris/DMTKG
f5cba46b055e7c7aa3048ace0d24fce1a5300313
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf from utils.dataset.GraphLoader import GraphLoader from utils.utils import sparse_to_tuple import scipy.sparse as sps import numpy as np import random import time class Trainer(): def __init__(self, exp_params): super(Trainer, self).__init__() self.graph_loader = GraphLoader(exp_params['path'] + "/" + exp_params['extract_folder'] +"/") def prepare_test_adj(self, input_graph, ground_truth_adj): coords, values, shape = sparse_to_tuple(input_graph) ground_truth_adj = (ground_truth_adj[:input_graph.shape[0], :input_graph.shape[1]]).todense() for coord in coords: ground_truth_adj[coord[0], coord[1]] = 0. ground_truth_adj[coord[1], coord[0]] = 0. return sps.triu(sps.csr_matrix(ground_truth_adj, dtype=float)) def normalize(self, adj): adj_with_diag = adj + sps.identity(adj.shape[0], dtype=np.float32).tocsr() rowsum = np.array(adj_with_diag.sum(1)) degree_mat_inv_sqrt = sps.diags(np.power(rowsum, -0.5).flatten()) adj_normalized = adj_with_diag.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo().astype(np.float32) return adj_normalized def construct_dataset(self, graph, window_size, negative_sample): start_graph = max(0, graph - window_size + 1) max_id = 0 for i in range(start_graph, graph + 1): adj = self.graph_loader.read_adjacency(i, max_id) max_id = adj.shape[0] - 1 train_adj_sps = [] total_train_edges = np.zeros((max_id + 1, max_id + 1)) for i in range(start_graph, graph + 1): adj = self.graph_loader.read_adjacency(i, max_id) tmp_train_adj_dense = adj.todense() tmp_train_adj_dense = np.where(tmp_train_adj_dense > 0.2, tmp_train_adj_dense, 0) tmp_train_adj_sparse = sps.csr_matrix(tmp_train_adj_dense) coords, values, shape = sparse_to_tuple(tmp_train_adj_sparse) for coord in coords: total_train_edges[coord[0], coord[1]] = 1 train_adj_sps.append(tmp_train_adj_sparse) # Construct a full matrix with ones to generate negative sample tuples train_ns = np.ones_like(total_train_edges) - total_train_edges - sps.identity(total_train_edges.shape[0]) ns_coord, ns_values, ns_shape = sparse_to_tuple(train_ns) train_adj_norm = [] features = [] train_adj_labels = [] train_adj_inds = [] features_tuples = sparse_to_tuple(sps.identity(adj.shape[0], dtype=np.float32, format='coo')) for i, adj in enumerate(train_adj_sps): adj_norm_coord, adj_norm_values, adj_norm_shape = sparse_to_tuple(self.normalize(adj)) train_adj_norm.append(tf.SparseTensor(indices=adj_norm_coord, values=np.array(adj_norm_values, dtype='float32'), dense_shape=[adj_norm_shape[0], adj_norm_shape[1]])) features.append(tf.SparseTensor(indices=features_tuples[0], values=features_tuples[1], dense_shape=[features_tuples[2][0], features_tuples[2][1]])) tmp_train_adj_dense = adj.todense() train_coord, train_values, train_shape = sparse_to_tuple(adj) tmp_train_adj_ind = np.zeros_like(tmp_train_adj_dense) sequence = [i for i in range(len(ns_coord))] random_coords = set(random.sample(sequence, negative_sample * len(train_coord))) for coord in train_coord: tmp_train_adj_ind[coord[0], coord[1]] = 1 for coord in random_coords: tmp_train_adj_ind[ns_coord[coord][0], ns_coord[coord][1]] = 1 nnz_ind = np.nonzero(tmp_train_adj_ind) tmp_train_label_val = tmp_train_adj_dense[nnz_ind] train_adj_label_tensor = tf.convert_to_tensor(tmp_train_label_val, dtype=tf.float32) train_adj_labels.append(train_adj_label_tensor) ind_list = [] for i in range(len(nnz_ind[0])): ind_list.append([nnz_ind[0][i], nnz_ind[1][i]]) train_adj_inds.append(tf.convert_to_tensor(ind_list, dtype=tf.int32)) test_adj_dense = self.prepare_test_adj(sps.csr_matrix(total_train_edges), self.graph_loader.read_adjacency(graph + 1, max_id)).todense() test_adj_high = np.where(test_adj_dense > 0.2, test_adj_dense, 0) test_adj_ind = np.where(test_adj_high > 0., 1, 0) nnz_ind = np.nonzero(test_adj_ind) ind_list = [] for i in range(len(nnz_ind[0])): ind_list.append([nnz_ind[0][i], nnz_ind[1][i]]) test_adj = tf.convert_to_tensor(test_adj_high[nnz_ind], dtype=tf.float32) test_adj_ind = tf.convert_to_tensor(ind_list, dtype=tf.int32) return train_adj_norm, train_adj_labels, train_adj_inds, features, test_adj, test_adj_ind def count_parameters(self,model): return np.sum([np.prod(v.get_shape().as_list()) for v in model.trainable_variables]) def get_edge_embeddings(self, embeddings, indices): src_embeddings = tf.gather(embeddings, indices[:,0]) dst_embeddings = tf.gather(embeddings, indices[:,1]) return tf.multiply(src_embeddings, dst_embeddings) def evaluate_model(self, emb_size, train_embeddings, train_values, test_embeddings, test_values): evaluation_model = tf.keras.models.Sequential([ tf.keras.layers.Dense(emb_size, activation=tf.nn.relu), tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)]) evaluation_model.compile(loss=tf.keras.losses.MSE, optimizer='adam') evaluation_model.fit(train_embeddings, train_values, epochs=10, verbose=0, batch_size=512) test_res = evaluation_model(test_embeddings) m = tf.keras.metrics.RootMeanSquaredError() m.update_state(test_values, test_res) rmse_score = m.result().numpy() m = tf.keras.metrics.MeanAbsoluteError() m.update_state(test_values, test_res) mae_score = m.result().numpy() return mae_score, rmse_score def train_model(self, args): num_exp = args.num_exp start_graph = args.start_graph end_graph = args.end_graph dropout = args.dropout negative_sample = args.ns emb = args.emb window_size = args.window learning_rate = args.learning_rate results = {} print("Start training") for graph in range(start_graph, end_graph + 1): results[graph] = {'num_params': 0, 'mae': 0., 'rmse': 0.} mae = [] rmse = [] number_of_params = [] print("Construct Dataset") train_adj_norm, train_adj_label, train_adj_ind, features, test_adj, test_adj_ind = self.construct_dataset(graph, window_size, negative_sample) print("Start experimentation") for i in range(num_exp): print("Experiment {} for GRAPH {}".format(i, graph)) device = "/GPU:0" if args.cuda == 0: device = "/CPU:0" with tf.device(device): optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) model = DeepGraph(eigvecs=emb) for epoch in range(100): with tf.GradientTape() as tape: z, z_mean, z_std, reconstruction = model(features, train_adj_norm) total_loss = 0 previous_kls = [] for k in range(len(z)): reconstruct_val = tf.gather_nd(reconstruction[k], train_adj_ind[k]) m = tf.keras.metrics.RootMeanSquaredError() m.update_state(reconstruct_val, train_adj_label[k]) reconstruction_loss = m.result().numpy() # KL Divergence kl = (0.5 / train_adj_norm[k].shape[0]) * tf.reduce_mean( tf.reduce_sum(1 + 2 * z_std[k] - tf.square(z_mean[k]) - tf.square(tf.exp(z_std[k])), 1)) previous_kls.append(kl) final_kl = tf.reduce_mean(previous_kls[-len(train_adj_norm):]) total_loss += reconstruction_loss - final_kl grads = tape.gradient(total_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) number_of_params.append(self.count_parameters(model)) z, z_mean,z_std, reconstruction = model(features, train_adj_norm) train_edge_embeddings = tf.convert_to_tensor(self.get_edge_embeddings(z[-1], train_adj_ind[-1]), dtype=tf.float32) train_values = tf.reshape(train_adj_label[-1],[train_adj_label[-1].shape[1], 1]) test_edge_embeddings = tf.convert_to_tensor(self.get_edge_embeddings(z[-1], test_adj_ind), dtype=tf.float32) test_values = test_adj mae_score, rmse_score = self.evaluate_model(emb, train_edge_embeddings, train_values, test_edge_embeddings, test_values) mae.append(mae_score) rmse.append(rmse_score) tf.keras.backend.clear_session() del train_adj_norm, train_adj_label, train_adj_ind, features, test_adj, test_adj_ind results[graph]['num_params'] = np.mean(number_of_params) results[graph]['mae'] = np.mean(mae) results[graph]['rmse'] = np.mean(rmse) print( "Graph {} : N_PARAMS {} : MAE {} : RMSE {}".format( graph, results[graph]['num_params'], results[graph]['mae'], results[graph]['rmse'] )) return results
46.415525
154
0.605509
d0ed864e9bec6eb7da7982919bac786ce3b6ece9
781
py
Python
factory/dataset_factory.py
LZX-0201/L3-Net-
fdb8398e7ff87a0a148f82f320cab391c2c1ff8d
[ "MIT" ]
7
2021-11-19T13:16:25.000Z
2022-02-11T03:24:30.000Z
factory/dataset_factory.py
LZX-0201/L3-Net-
fdb8398e7ff87a0a148f82f320cab391c2c1ff8d
[ "MIT" ]
null
null
null
factory/dataset_factory.py
LZX-0201/L3-Net-
fdb8398e7ff87a0a148f82f320cab391c2c1ff8d
[ "MIT" ]
1
2022-01-02T08:32:13.000Z
2022-01-02T08:32:13.000Z
from dataset import * class DatasetFactory: singleton_dataset = None def __init__(self): pass @staticmethod def get_dataset(data_config): class_name = data_config['dataset_class'] all_classes = DatasetBase.__subclasses__() for cls in all_classes: if cls.__name__ == class_name: return cls(data_config['config_file']['expanded']) raise TypeError(f'no class named \'{class_name}\' found in dataset folder') @classmethod def get_singleton_dataset(cls, data_config=None): if data_config is None: return cls.singleton_dataset if cls.singleton_dataset is None: cls.singleton_dataset = cls.get_dataset(data_config) return cls.singleton_dataset
31.24
83
0.663252
99d34052319eb0b9f7d7a9f8b0e04c6e8623cae8
7,676
py
Python
src/demo/fast_abs_rl-master/decoding.py
nilax97/nlp_project
b366060728342fc177a24a2ba8db2d97e860b959
[ "MIT" ]
8
2020-04-04T06:15:43.000Z
2021-11-17T11:19:48.000Z
src/demo/fast_abs_rl-master/decoding.py
nilax97/nlp_project
b366060728342fc177a24a2ba8db2d97e860b959
[ "MIT" ]
3
2021-06-08T21:05:01.000Z
2022-03-12T00:19:12.000Z
src/demo/fast_abs_rl-master/decoding.py
nilax97/nlp_project
b366060728342fc177a24a2ba8db2d97e860b959
[ "MIT" ]
null
null
null
""" decoding utilities""" import json import re import os from os.path import join import pickle as pkl from itertools import starmap from cytoolz import curry import torch from utils import PAD, UNK, START, END from model.copy_summ import CopySumm from model.extract import ExtractSumm, PtrExtractSumm from model.rl import ActorCritic from data.batcher import conver2id, pad_batch_tensorize from data.data import CnnDmDataset try: DATASET_DIR = os.environ['DATA'] except KeyError: print('please use environment variable to specify data directories') class DecodeDataset(CnnDmDataset): """ get the article sentences only (for decoding use)""" def __init__(self, split): assert split in ['val', 'test'] super().__init__(split, DATASET_DIR) def __getitem__(self, i): js_data = super().__getitem__(i) art_sents = js_data['article'] return art_sents def make_html_safe(s): """Rouge use html, has to make output html safe""" return s.replace("<", "&lt;").replace(">", "&gt;") def load_best_ckpt(model_dir, reverse=False): """ reverse=False->loss, reverse=True->reward/score""" ckpts = os.listdir(join(model_dir, 'ckpt')) ckpt_matcher = re.compile('^ckpt-.*-[0-9]*') ckpts = sorted([c for c in ckpts if ckpt_matcher.match(c)], key=lambda c: float(c.split('-')[1]), reverse=reverse) print('loading checkpoint {}...'.format(ckpts[0])) ckpt = torch.load( join(model_dir, 'ckpt/{}'.format(ckpts[0])), map_location='cpu' )['state_dict'] return ckpt class Abstractor(object): def __init__(self, abs_dir, max_len=30, cuda=True): abs_meta = json.load(open(join(abs_dir, 'meta.json'))) assert abs_meta['net'] == 'base_abstractor' abs_args = abs_meta['net_args'] abs_ckpt = load_best_ckpt(abs_dir) word2id = pkl.load(open(join(abs_dir, 'vocab.pkl'), 'rb')) abstractor = CopySumm(**abs_args) abstractor.load_state_dict(abs_ckpt) self._device = torch.device('cuda' if cuda else 'cpu') self._net = abstractor.to(self._device) self._word2id = word2id self._id2word = {i: w for w, i in word2id.items()} self._max_len = max_len def _prepro(self, raw_article_sents): ext_word2id = dict(self._word2id) ext_id2word = dict(self._id2word) for raw_words in raw_article_sents: for w in raw_words: if not w in ext_word2id: ext_word2id[w] = len(ext_word2id) ext_id2word[len(ext_id2word)] = w articles = conver2id(UNK, self._word2id, raw_article_sents) art_lens = [len(art) for art in articles] article = pad_batch_tensorize(articles, PAD, cuda=False ).to(self._device) extend_arts = conver2id(UNK, ext_word2id, raw_article_sents) extend_art = pad_batch_tensorize(extend_arts, PAD, cuda=False ).to(self._device) extend_vsize = len(ext_word2id) dec_args = (article, art_lens, extend_art, extend_vsize, START, END, UNK, self._max_len) return dec_args, ext_id2word def __call__(self, raw_article_sents): self._net.eval() dec_args, id2word = self._prepro(raw_article_sents) decs, attns = self._net.batch_decode(*dec_args) def argmax(arr, keys): return arr[max(range(len(arr)), key=lambda i: keys[i].item())] dec_sents = [] for i, raw_words in enumerate(raw_article_sents): dec = [] for id_, attn in zip(decs, attns): if id_[i] == END: break elif id_[i] == UNK: dec.append(argmax(raw_words, attn[i])) else: dec.append(id2word[id_[i].item()]) dec_sents.append(dec) return dec_sents class BeamAbstractor(Abstractor): def __call__(self, raw_article_sents, beam_size=5, diverse=1.0): self._net.eval() dec_args, id2word = self._prepro(raw_article_sents) dec_args = (*dec_args, beam_size, diverse) all_beams = self._net.batched_beamsearch(*dec_args) all_beams = list(starmap(_process_beam(id2word), zip(all_beams, raw_article_sents))) return all_beams @curry def _process_beam(id2word, beam, art_sent): def process_hyp(hyp): seq = [] for i, attn in zip(hyp.sequence[1:], hyp.attns[:-1]): if i == UNK: copy_word = art_sent[max(range(len(art_sent)), key=lambda j: attn[j].item())] seq.append(copy_word) else: seq.append(id2word[i]) hyp.sequence = seq del hyp.hists del hyp.attns return hyp return list(map(process_hyp, beam)) class Extractor(object): def __init__(self, ext_dir, max_ext=5, cuda=True): ext_meta = json.load(open(join(ext_dir, 'meta.json'))) if ext_meta['net'] == 'ml_ff_extractor': ext_cls = ExtractSumm elif ext_meta['net'] == 'ml_rnn_extractor': ext_cls = PtrExtractSumm else: raise ValueError() ext_ckpt = load_best_ckpt(ext_dir) ext_args = ext_meta['net_args'] extractor = ext_cls(**ext_args) extractor.load_state_dict(ext_ckpt) word2id = pkl.load(open(join(ext_dir, 'vocab.pkl'), 'rb')) self._device = torch.device('cuda' if cuda else 'cpu') self._net = extractor.to(self._device) self._word2id = word2id self._id2word = {i: w for w, i in word2id.items()} self._max_ext = max_ext def __call__(self, raw_article_sents): self._net.eval() n_art = len(raw_article_sents) articles = conver2id(UNK, self._word2id, raw_article_sents) article = pad_batch_tensorize(articles, PAD, cuda=False ).to(self._device) indices = self._net.extract([article], k=min(n_art, self._max_ext)) return indices class ArticleBatcher(object): def __init__(self, word2id, cuda=True): self._device = torch.device('cuda' if cuda else 'cpu') self._word2id = word2id self._device = torch.device('cuda' if cuda else 'cpu') def __call__(self, raw_article_sents): articles = conver2id(UNK, self._word2id, raw_article_sents) article = pad_batch_tensorize(articles, PAD, cuda=False ).to(self._device) return article class RLExtractor(object): def __init__(self, ext_dir, cuda=True): ext_meta = json.load(open(join(ext_dir, 'meta.json'))) assert ext_meta['net'] == 'rnn-ext_abs_rl' ext_args = ext_meta['net_args']['extractor']['net_args'] word2id = pkl.load(open(join(ext_dir, 'agent_vocab.pkl'), 'rb')) extractor = PtrExtractSumm(**ext_args) agent = ActorCritic(extractor._sent_enc, extractor._art_enc, extractor._extractor, ArticleBatcher(word2id, cuda)) ext_ckpt = load_best_ckpt(ext_dir, reverse=True) agent.load_state_dict(ext_ckpt) self._device = torch.device('cuda' if cuda else 'cpu') self._net = agent.to(self._device) self._word2id = word2id self._id2word = {i: w for w, i in word2id.items()} def __call__(self, raw_article_sents): self._net.eval() indices = self._net(raw_article_sents) return indices
37.812808
75
0.607217
685d7709366660be79d98f26d27411b98b337119
1,642
py
Python
sdk/containerregistry/azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2019_05_01/models/virtual_network_rule_py3.py
pjquirk/azure-sdk-for-python
cbf02ec4f177b96eae1dbbba87c34c2c93880150
[ "MIT" ]
null
null
null
sdk/containerregistry/azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2019_05_01/models/virtual_network_rule_py3.py
pjquirk/azure-sdk-for-python
cbf02ec4f177b96eae1dbbba87c34c2c93880150
[ "MIT" ]
null
null
null
sdk/containerregistry/azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2019_05_01/models/virtual_network_rule_py3.py
pjquirk/azure-sdk-for-python
cbf02ec4f177b96eae1dbbba87c34c2c93880150
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualNetworkRule(Model): """Virtual network rule. All required parameters must be populated in order to send to Azure. :param action: The action of virtual network rule. Possible values include: 'Allow'. Default value: "Allow" . :type action: str or ~azure.mgmt.containerregistry.v2019_05_01.models.Action :param virtual_network_resource_id: Required. Resource ID of a subnet, for example: /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{vnetName}/subnets/{subnetName}. :type virtual_network_resource_id: str """ _validation = { 'virtual_network_resource_id': {'required': True}, } _attribute_map = { 'action': {'key': 'action', 'type': 'str'}, 'virtual_network_resource_id': {'key': 'id', 'type': 'str'}, } def __init__(self, *, virtual_network_resource_id: str, action="Allow", **kwargs) -> None: super(VirtualNetworkRule, self).__init__(**kwargs) self.action = action self.virtual_network_resource_id = virtual_network_resource_id
38.186047
148
0.646163
145ff7cd59bf75144b6b899ecb7383e46371273c
133
py
Python
GeneticSimPython/GeneticSimPython/Genetic/constants.py
Scimson/GeneticSim
7175e0ead69185bcf3221a91b5bac40b4cc42495
[ "Apache-2.0" ]
null
null
null
GeneticSimPython/GeneticSimPython/Genetic/constants.py
Scimson/GeneticSim
7175e0ead69185bcf3221a91b5bac40b4cc42495
[ "Apache-2.0" ]
null
null
null
GeneticSimPython/GeneticSimPython/Genetic/constants.py
Scimson/GeneticSim
7175e0ead69185bcf3221a91b5bac40b4cc42495
[ "Apache-2.0" ]
null
null
null
INITIAL_GENE_VALUE_LIMIT = 1 MUTATION_PROBABILITY = 0.3 MUTATION_SIZE = 0.2 GENERATION_SIZE = 8 VERBOSE = False DECIMAL_PRECISION = 3
22.166667
28
0.81203
c3a5468296dd87b66588816b6535751cd40807c6
23,881
py
Python
test/functional/test_runner.py
purplefox81/bitcoin-testnet-for-fun
c3fa891b93e02901ce6b4ee1b10e8a3cfa9c151e
[ "MIT" ]
20
2019-04-03T06:30:39.000Z
2019-11-07T08:57:50.000Z
test/functional/test_runner.py
purplefox81/bitcoin-testnet-for-fun
c3fa891b93e02901ce6b4ee1b10e8a3cfa9c151e
[ "MIT" ]
null
null
null
test/functional/test_runner.py
purplefox81/bitcoin-testnet-for-fun
c3fa891b93e02901ce6b4ee1b10e8a3cfa9c151e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Run regression test suite. This module calls down into individual test cases via subprocess. It will forward all unrecognized arguments onto the individual test scripts. Functional tests are disabled on Windows by default. Use --force to run them anyway. For a description of arguments recognized by test scripts, see `test/functional/test_framework/test_framework.py:BitcoinTestFramework.main`. """ import argparse from collections import deque import configparser import datetime import os import time import shutil import signal import sys import subprocess import tempfile import re import logging # Formatting. Default colors to empty strings. BOLD, BLUE, RED, GREY = ("", ""), ("", ""), ("", ""), ("", "") try: # Make sure python thinks it can write unicode to its stdout "\u2713".encode("utf_8").decode(sys.stdout.encoding) TICK = "✓ " CROSS = "✖ " CIRCLE = "○ " except UnicodeDecodeError: TICK = "P " CROSS = "x " CIRCLE = "o " if os.name == 'posix': # primitive formatting on supported # terminal via ANSI escape sequences: BOLD = ('\033[0m', '\033[1m') BLUE = ('\033[0m', '\033[0;34m') RED = ('\033[0m', '\033[0;31m') GREY = ('\033[0m', '\033[1;30m') TEST_EXIT_PASSED = 0 TEST_EXIT_SKIPPED = 77 # 20 minutes represented in seconds TRAVIS_TIMEOUT_DURATION = 20 * 60 BASE_SCRIPTS = [ # Scripts that are run by the travis build process. # Longest test should go first, to favor running tests in parallel 'wallet_hd.py', 'wallet_backup.py', # vv Tests less than 5m vv 'feature_block.py', 'rpc_fundrawtransaction.py', 'p2p_compactblocks.py', 'feature_segwit.py', # vv Tests less than 2m vv 'wallet_basic.py', 'wallet_labels.py', 'p2p_segwit.py', 'wallet_dump.py', 'wallet_listtransactions.py', # vv Tests less than 60s vv 'p2p_sendheaders.py', 'wallet_zapwallettxes.py', 'wallet_importmulti.py', 'mempool_limit.py', 'rpc_txoutproof.py', 'wallet_listreceivedby.py', 'wallet_abandonconflict.py', 'feature_csv_activation.py', 'rpc_rawtransaction.py', 'wallet_address_types.py', 'feature_reindex.py', # vv Tests less than 30s vv 'wallet_keypool_topup.py', 'interface_zmq.py', 'interface_bitcoin_cli.py', 'mempool_resurrect.py', 'wallet_txn_doublespend.py --mineblock', 'wallet_txn_clone.py', 'wallet_txn_clone.py --segwit', 'rpc_getchaintips.py', 'interface_rest.py', 'mempool_spend_coinbase.py', 'mempool_reorg.py', 'mempool_persist.py', 'wallet_multiwallet.py', 'wallet_multiwallet.py --usecli', 'interface_http.py', 'rpc_users.py', 'feature_proxy.py', 'rpc_signrawtransaction.py', 'p2p_disconnect_ban.py', 'rpc_decodescript.py', 'rpc_blockchain.py', 'rpc_deprecated.py', 'wallet_disable.py', 'rpc_net.py', 'wallet_keypool.py', 'p2p_mempool.py', 'mining_prioritisetransaction.py', 'p2p_invalid_block.py', 'p2p_invalid_tx.py', 'feature_versionbits_warning.py', 'rpc_preciousblock.py', 'wallet_importprunedfunds.py', 'rpc_zmq.py', 'rpc_signmessage.py', 'feature_nulldummy.py', 'mempool_accept.py', 'wallet_import_rescan.py', 'rpc_bind.py --ipv4', 'rpc_bind.py --ipv6', 'rpc_bind.py --nonloopback', 'mining_basic.py', 'wallet_bumpfee.py', 'rpc_named_arguments.py', 'wallet_listsinceblock.py', 'p2p_leak.py', 'wallet_encryption.py', 'feature_dersig.py', 'feature_cltv.py', 'rpc_uptime.py', 'wallet_resendwallettransactions.py', 'wallet_fallbackfee.py', 'feature_minchainwork.py', 'rpc_getblockstats.py', 'p2p_fingerprint.py', 'feature_uacomment.py', 'p2p_unrequested_blocks.py', 'feature_includeconf.py', 'feature_logging.py', 'p2p_node_network_limited.py', 'feature_blocksdir.py', 'feature_config_args.py', 'feature_help.py', # Don't append tests at the end to avoid merge conflicts # Put them in a random line within the section that fits their approximate run-time ] EXTENDED_SCRIPTS = [ # These tests are not run by the travis build process. # Longest test should go first, to favor running tests in parallel 'feature_pruning.py', # vv Tests less than 20m vv 'feature_fee_estimation.py', # vv Tests less than 5m vv 'feature_maxuploadtarget.py', 'mempool_packages.py', 'feature_dbcrash.py', # vv Tests less than 2m vv 'feature_bip68_sequence.py', 'mining_getblocktemplate_longpoll.py', 'p2p_timeouts.py', # vv Tests less than 60s vv 'p2p_feefilter.py', # vv Tests less than 30s vv 'feature_assumevalid.py', 'example_test.py', 'wallet_txn_doublespend.py', 'wallet_txn_clone.py --mineblock', 'feature_notifications.py', 'rpc_invalidateblock.py', 'feature_rbf.py', ] # Place EXTENDED_SCRIPTS first since it has the 3 longest running tests ALL_SCRIPTS = EXTENDED_SCRIPTS + BASE_SCRIPTS NON_SCRIPTS = [ # These are python files that live in the functional tests directory, but are not test scripts. "combine_logs.py", "create_cache.py", "test_runner.py", ] def main(): # Parse arguments and pass through unrecognised args parser = argparse.ArgumentParser(add_help=False, usage='%(prog)s [test_runner.py options] [script options] [scripts]', description=__doc__, epilog=''' Help text and arguments for individual test script:''', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--combinedlogslen', '-c', type=int, default=0, help='print a combined log (of length n lines) from all test nodes and test framework to the console on failure.') parser.add_argument('--coverage', action='store_true', help='generate a basic coverage report for the RPC interface') parser.add_argument('--exclude', '-x', help='specify a comma-separated-list of scripts to exclude.') parser.add_argument('--extended', action='store_true', help='run the extended test suite in addition to the basic tests') parser.add_argument('--force', '-f', action='store_true', help='run tests even on platforms where they are disabled by default (e.g. windows).') parser.add_argument('--help', '-h', '-?', action='store_true', help='print help text and exit') parser.add_argument('--jobs', '-j', type=int, default=4, help='how many test scripts to run in parallel. Default=4.') parser.add_argument('--keepcache', '-k', action='store_true', help='the default behavior is to flush the cache directory on startup. --keepcache retains the cache from the previous testrun.') parser.add_argument('--quiet', '-q', action='store_true', help='only print results summary and failure logs') parser.add_argument('--tmpdirprefix', '-t', default=tempfile.gettempdir(), help="Root directory for datadirs") parser.add_argument('--failfast', action='store_true', help='stop execution after the first test failure') args, unknown_args = parser.parse_known_args() # args to be passed on always start with two dashes; tests are the remaining unknown args tests = [arg for arg in unknown_args if arg[:2] != "--"] passon_args = [arg for arg in unknown_args if arg[:2] == "--"] # Read config generated by configure. config = configparser.ConfigParser() configfile = os.path.abspath(os.path.dirname(__file__)) + "/../config.ini" config.read_file(open(configfile, encoding="utf8")) passon_args.append("--configfile=%s" % configfile) # Set up logging logging_level = logging.INFO if args.quiet else logging.DEBUG logging.basicConfig(format='%(message)s', level=logging_level) # Create base test directory tmpdir = "%s/bitcoin_test_runner_%s" % (args.tmpdirprefix, datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) os.makedirs(tmpdir) logging.debug("Temporary test directory at %s" % tmpdir) enable_wallet = config["components"].getboolean("ENABLE_WALLET") enable_utils = config["components"].getboolean("ENABLE_UTILS") enable_bitcoind = config["components"].getboolean("ENABLE_BITCOIND") if config["environment"]["EXEEXT"] == ".exe" and not args.force: # https://github.com/bitcoin/bitcoin/commit/d52802551752140cf41f0d9a225a43e84404d3e9 # https://github.com/bitcoin/bitcoin/pull/5677#issuecomment-136646964 print("Tests currently disabled on Windows by default. Use --force option to enable") sys.exit(0) if not (enable_wallet and enable_utils and enable_bitcoind): print("No functional tests to run. Wallet, utils, and bitcoind must all be enabled") print("Rerun `configure` with -enable-wallet, -with-utils and -with-daemon and rerun make") sys.exit(0) # Build list of tests test_list = [] if tests: # Individual tests have been specified. Run specified tests that exist # in the ALL_SCRIPTS list. Accept the name with or without .py extension. tests = [re.sub("\.py$", "", test) + ".py" for test in tests] for test in tests: if test in ALL_SCRIPTS: test_list.append(test) else: print("{}WARNING!{} Test '{}' not found in full test list.".format(BOLD[1], BOLD[0], test)) elif args.extended: # Include extended tests test_list += ALL_SCRIPTS else: # Run base tests only test_list += BASE_SCRIPTS # Remove the test cases that the user has explicitly asked to exclude. if args.exclude: exclude_tests = [re.sub("\.py$", "", test) + ".py" for test in args.exclude.split(',')] for exclude_test in exclude_tests: if exclude_test in test_list: test_list.remove(exclude_test) else: print("{}WARNING!{} Test '{}' not found in current test list.".format(BOLD[1], BOLD[0], exclude_test)) if not test_list: print("No valid test scripts specified. Check that your test is in one " "of the test lists in test_runner.py, or run test_runner.py with no arguments to run all tests") sys.exit(0) if args.help: # Print help for test_runner.py, then print help of the first script (with args removed) and exit. parser.print_help() subprocess.check_call([sys.executable, os.path.join(config["environment"]["SRCDIR"], 'test', 'functional', test_list[0].split()[0]), '-h']) sys.exit(0) check_script_list(config["environment"]["SRCDIR"]) check_script_prefixes() if not args.keepcache: shutil.rmtree("%s/test/cache" % config["environment"]["BUILDDIR"], ignore_errors=True) run_tests( test_list, config["environment"]["SRCDIR"], config["environment"]["BUILDDIR"], tmpdir, jobs=args.jobs, enable_coverage=args.coverage, args=passon_args, combined_logs_len=args.combinedlogslen, failfast=args.failfast, ) def run_tests(test_list, src_dir, build_dir, tmpdir, jobs=1, enable_coverage=False, args=None, combined_logs_len=0, failfast=False): args = args or [] # Warn if bitcoind is already running (unix only) try: if subprocess.check_output(["pidof", "bitcoind"]) is not None: print("%sWARNING!%s There is already a bitcoind process running on this system. Tests may fail unexpectedly due to resource contention!" % (BOLD[1], BOLD[0])) except (OSError, subprocess.SubprocessError): pass # Warn if there is a cache directory cache_dir = "%s/test/cache" % build_dir if os.path.isdir(cache_dir): print("%sWARNING!%s There is a cache directory here: %s. If tests fail unexpectedly, try deleting the cache directory." % (BOLD[1], BOLD[0], cache_dir)) tests_dir = src_dir + '/test/functional/' flags = ['--cachedir={}'.format(cache_dir)] + args if enable_coverage: coverage = RPCCoverage() flags.append(coverage.flag) logging.debug("Initializing coverage directory at %s" % coverage.dir) else: coverage = None if len(test_list) > 1 and jobs > 1: # Populate cache try: subprocess.check_output([sys.executable, tests_dir + 'create_cache.py'] + flags + ["--tmpdir=%s/cache" % tmpdir]) except subprocess.CalledProcessError as e: sys.stdout.buffer.write(e.output) raise #Run Tests job_queue = TestHandler(jobs, tests_dir, tmpdir, test_list, flags) start_time = time.time() test_results = [] max_len_name = len(max(test_list, key=len)) for _ in range(len(test_list)): test_result, testdir, stdout, stderr = job_queue.get_next() test_results.append(test_result) if test_result.status == "Passed": logging.debug("\n%s%s%s passed, Duration: %s s" % (BOLD[1], test_result.name, BOLD[0], test_result.time)) elif test_result.status == "Skipped": logging.debug("\n%s%s%s skipped" % (BOLD[1], test_result.name, BOLD[0])) else: print("\n%s%s%s failed, Duration: %s s\n" % (BOLD[1], test_result.name, BOLD[0], test_result.time)) print(BOLD[1] + 'stdout:\n' + BOLD[0] + stdout + '\n') print(BOLD[1] + 'stderr:\n' + BOLD[0] + stderr + '\n') if combined_logs_len and os.path.isdir(testdir): # Print the final `combinedlogslen` lines of the combined logs print('{}Combine the logs and print the last {} lines ...{}'.format(BOLD[1], combined_logs_len, BOLD[0])) print('\n============') print('{}Combined log for {}:{}'.format(BOLD[1], testdir, BOLD[0])) print('============\n') combined_logs, _ = subprocess.Popen([sys.executable, os.path.join(tests_dir, 'combine_logs.py'), '-c', testdir], universal_newlines=True, stdout=subprocess.PIPE).communicate() print("\n".join(deque(combined_logs.splitlines(), combined_logs_len))) if failfast: logging.debug("Early exiting after test failure") break print_results(test_results, max_len_name, (int(time.time() - start_time))) if coverage: coverage.report_rpc_coverage() logging.debug("Cleaning up coverage data") coverage.cleanup() # Clear up the temp directory if all subdirectories are gone if not os.listdir(tmpdir): os.rmdir(tmpdir) all_passed = all(map(lambda test_result: test_result.was_successful, test_results)) # This will be a no-op unless failfast is True in which case there may be dangling # processes which need to be killed. job_queue.kill_and_join() sys.exit(not all_passed) def print_results(test_results, max_len_name, runtime): results = "\n" + BOLD[1] + "%s | %s | %s\n\n" % ("TEST".ljust(max_len_name), "STATUS ", "DURATION") + BOLD[0] test_results.sort(key=TestResult.sort_key) all_passed = True time_sum = 0 for test_result in test_results: all_passed = all_passed and test_result.was_successful time_sum += test_result.time test_result.padding = max_len_name results += str(test_result) status = TICK + "Passed" if all_passed else CROSS + "Failed" if not all_passed: results += RED[1] results += BOLD[1] + "\n%s | %s | %s s (accumulated) \n" % ("ALL".ljust(max_len_name), status.ljust(9), time_sum) + BOLD[0] if not all_passed: results += RED[0] results += "Runtime: %s s\n" % (runtime) print(results) class TestHandler: """ Trigger the test scripts passed in via the list. """ def __init__(self, num_tests_parallel, tests_dir, tmpdir, test_list=None, flags=None): assert(num_tests_parallel >= 1) self.num_jobs = num_tests_parallel self.tests_dir = tests_dir self.tmpdir = tmpdir self.test_list = test_list self.flags = flags self.num_running = 0 self.jobs = [] def get_next(self): while self.num_running < self.num_jobs and self.test_list: # Add tests self.num_running += 1 test = self.test_list.pop(0) portseed = len(self.test_list) portseed_arg = ["--portseed={}".format(portseed)] log_stdout = tempfile.SpooledTemporaryFile(max_size=2**16) log_stderr = tempfile.SpooledTemporaryFile(max_size=2**16) test_argv = test.split() testdir = "{}/{}_{}".format(self.tmpdir, re.sub(".py$", "", test_argv[0]), portseed) tmpdir_arg = ["--tmpdir={}".format(testdir)] self.jobs.append((test, time.time(), subprocess.Popen([sys.executable, self.tests_dir + test_argv[0]] + test_argv[1:] + self.flags + portseed_arg + tmpdir_arg, universal_newlines=True, stdout=log_stdout, stderr=log_stderr), testdir, log_stdout, log_stderr)) if not self.jobs: raise IndexError('pop from empty list') while True: # Return first proc that finishes time.sleep(.5) for job in self.jobs: (name, start_time, proc, testdir, log_out, log_err) = job if os.getenv('TRAVIS') == 'true' and int(time.time() - start_time) > TRAVIS_TIMEOUT_DURATION: # In travis, timeout individual tests (to stop tests hanging and not providing useful output). proc.send_signal(signal.SIGINT) if proc.poll() is not None: log_out.seek(0), log_err.seek(0) [stdout, stderr] = [log_file.read().decode('utf-8') for log_file in (log_out, log_err)] log_out.close(), log_err.close() if proc.returncode == TEST_EXIT_PASSED and stderr == "": status = "Passed" elif proc.returncode == TEST_EXIT_SKIPPED: status = "Skipped" else: status = "Failed" self.num_running -= 1 self.jobs.remove(job) return TestResult(name, status, int(time.time() - start_time)), testdir, stdout, stderr print('.', end='', flush=True) def kill_and_join(self): """Send SIGKILL to all jobs and block until all have ended.""" procs = [i[2] for i in self.jobs] for proc in procs: proc.kill() for proc in procs: proc.wait() class TestResult(): def __init__(self, name, status, time): self.name = name self.status = status self.time = time self.padding = 0 def sort_key(self): if self.status == "Passed": return 0, self.name.lower() elif self.status == "Failed": return 2, self.name.lower() elif self.status == "Skipped": return 1, self.name.lower() def __repr__(self): if self.status == "Passed": color = BLUE glyph = TICK elif self.status == "Failed": color = RED glyph = CROSS elif self.status == "Skipped": color = GREY glyph = CIRCLE return color[1] + "%s | %s%s | %s s\n" % (self.name.ljust(self.padding), glyph, self.status.ljust(7), self.time) + color[0] @property def was_successful(self): return self.status != "Failed" def check_script_prefixes(): """Check that test scripts start with one of the allowed name prefixes.""" good_prefixes_re = re.compile("(example|feature|interface|mempool|mining|p2p|rpc|wallet)_") bad_script_names = [script for script in ALL_SCRIPTS if good_prefixes_re.match(script) is None] if bad_script_names: print("%sERROR:%s %d tests not meeting naming conventions:" % (BOLD[1], BOLD[0], len(bad_script_names))) print(" %s" % ("\n ".join(sorted(bad_script_names)))) raise AssertionError("Some tests are not following naming convention!") def check_script_list(src_dir): """Check scripts directory. Check that there are no scripts in the functional tests directory which are not being run by pull-tester.py.""" script_dir = src_dir + '/test/functional/' python_files = set([test_file for test_file in os.listdir(script_dir) if test_file.endswith(".py")]) missed_tests = list(python_files - set(map(lambda x: x.split()[0], ALL_SCRIPTS + NON_SCRIPTS))) if len(missed_tests) != 0: print("%sWARNING!%s The following scripts are not being run: %s. Check the test lists in test_runner.py." % (BOLD[1], BOLD[0], str(missed_tests))) if os.getenv('TRAVIS') == 'true': # On travis this warning is an error to prevent merging incomplete commits into master sys.exit(1) class RPCCoverage(): """ Coverage reporting utilities for test_runner. Coverage calculation works by having each test script subprocess write coverage files into a particular directory. These files contain the RPC commands invoked during testing, as well as a complete listing of RPC commands per `bitcoin-cli help` (`rpc_interface.txt`). After all tests complete, the commands run are combined and diff'd against the complete list to calculate uncovered RPC commands. See also: test/functional/test_framework/coverage.py """ def __init__(self): self.dir = tempfile.mkdtemp(prefix="coverage") self.flag = '--coveragedir=%s' % self.dir def report_rpc_coverage(self): """ Print out RPC commands that were unexercised by tests. """ uncovered = self._get_uncovered_rpc_commands() if uncovered: print("Uncovered RPC commands:") print("".join((" - %s\n" % command) for command in sorted(uncovered))) else: print("All RPC commands covered.") def cleanup(self): return shutil.rmtree(self.dir) def _get_uncovered_rpc_commands(self): """ Return a set of currently untested RPC commands. """ # This is shared from `test/functional/test-framework/coverage.py` reference_filename = 'rpc_interface.txt' coverage_file_prefix = 'coverage.' coverage_ref_filename = os.path.join(self.dir, reference_filename) coverage_filenames = set() all_cmds = set() covered_cmds = set() if not os.path.isfile(coverage_ref_filename): raise RuntimeError("No coverage reference found") with open(coverage_ref_filename, 'r', encoding="utf8") as coverage_ref_file: all_cmds.update([line.strip() for line in coverage_ref_file.readlines()]) for root, dirs, files in os.walk(self.dir): for filename in files: if filename.startswith(coverage_file_prefix): coverage_filenames.add(os.path.join(root, filename)) for filename in coverage_filenames: with open(filename, 'r', encoding="utf8") as coverage_file: covered_cmds.update([line.strip() for line in coverage_file.readlines()]) return all_cmds - covered_cmds if __name__ == '__main__': main()
39.085106
195
0.634102
b79b99c01655b3acb52a59fe5a1e033a5054d447
615
py
Python
todo_app/forms.py
edarakchiev/todo_project
d546c959b999d2dff3a366087c05ff691e95bb6b
[ "MIT" ]
null
null
null
todo_app/forms.py
edarakchiev/todo_project
d546c959b999d2dff3a366087c05ff691e95bb6b
[ "MIT" ]
null
null
null
todo_app/forms.py
edarakchiev/todo_project
d546c959b999d2dff3a366087c05ff691e95bb6b
[ "MIT" ]
null
null
null
from django import forms class CreateTodoForm(forms.Form): text = forms.CharField( max_length=30, ) description = forms.CharField( widget=forms.Textarea( attrs={ 'rows': 3, 'cols': 40, } ), ) is_done = forms.BooleanField( required=False ) bots_catcher = forms.CharField( widget=forms.HiddenInput(), required=False ) def clean_bots_catcher(self): value = self.cleaned_data['bots_catcher'] if value: raise forms.ValidationError('You are a bot')
21.206897
56
0.547967
8814531d79cb690c3b678aa71b09d097f5dea4cf
1,575
py
Python
shops/fashionnova.py
ikp4success/shopasource
9a9ed5c58a8b37b6ff169b45f7fdfcb44809fd88
[ "Apache-2.0" ]
3
2019-12-04T07:08:55.000Z
2020-12-08T01:38:46.000Z
shops/fashionnova.py
ikp4success/shopasource
9a9ed5c58a8b37b6ff169b45f7fdfcb44809fd88
[ "Apache-2.0" ]
null
null
null
shops/fashionnova.py
ikp4success/shopasource
9a9ed5c58a8b37b6ff169b45f7fdfcb44809fd88
[ "Apache-2.0" ]
null
null
null
from shops.shop_base import ShopBase class Fashionnova(ShopBase): name = "FASHIONNOVA" def start_requests(self): # uuid_v = uuid.uuid4() uuid_v = "8fb37bd6-aef1-4d7c-be3f-88bafef01308" shop_url = self.shop_url.format(keyword=self._search_keyword, uuid=uuid_v) yield self.get_request(shop_url, self.get_best_link) def get_best_link(self, response): items = self.safe_grab(self.safe_json(response.text), ["items"]) for item in items: item_url = self.safe_grab(item, ["u"]) yield self.get_request( url=item_url, callback=self.parse_data, domain_url="https://www.fashionnova.com/", ) def parse_data(self, response): image_url = response.css("#large-thumb ::attr(src)").extract_first() title = self.extract_items( response.css("#product-info .title ::text").extract() ) description = "\n".join( list( set( response.css( ".description .group .group-body ul li::text" ).extract() ) ) ) price = response.css(".deal spanclass ::text").extract_first() yield self.generate_result_meta( shop_link=response.url, image_url=image_url, shop_name=self.name, price=price, title=title, searched_keyword=self._search_keyword, content_description=description, )
32.8125
82
0.556825
b7f22b13b32ec40d0e5f338babf26b31f20d2417
4,056
py
Python
kb++.py
happymonkey1/kbl
b254bde2d809829bde9cd1f906169bbddfcb28c5
[ "MIT" ]
1
2021-10-12T02:08:13.000Z
2021-10-12T02:08:13.000Z
kb++.py
happymonkey1/kbl
b254bde2d809829bde9cd1f906169bbddfcb28c5
[ "MIT" ]
null
null
null
kb++.py
happymonkey1/kbl
b254bde2d809829bde9cd1f906169bbddfcb28c5
[ "MIT" ]
null
null
null
import sys LANG_NAME = "kb++" COUNTER = 0 def iota(reset = False) -> int: global COUNTER if reset: COUNTER = 0 i = COUNTER COUNTER += 1 return i ''' Define Operations ''' OP_ASSIGN = iota(True) OP_ADD = iota() OP_PRINT = iota() COUNT_OPS = iota() ''' Define Types ''' TYPE_i32 = iota(True) COUNT_TYPES = iota() ''' Operation Implementations ''' def assign(): assert False, "assign not implemented" def add(): assert False, "add not implemented" def pprint(): assert False, "print not implemented" def unpack(packed) -> tuple: return (packed[0], packed[1:] if len(packed) > 1 else None) def find_col(line : str, start : int, predicate): while start < len(line) and predicate(line[start]): start += 1 return start def lex_line(line : str) -> tuple: # TODO(Sean) implement semi colon line endings? tokens: List[tuple[str, int]] = [] col: int = find_col(line, 0, lambda x: x.isspace()) while col < len(line): token_end = find_col(line, col, lambda x: not x.isspace()) token_str = line[col:token_end] tokens.append((token_str, col)) col = token_end col = find_col(line, col, lambda x: x.isspace()) return tokens def lex_file(file) -> list[tuple]: lines: List[List[tuple[str, int]]] = [] with open(file, 'r') as f: for row_index, line in enumerate(f.readlines()): line_tokens = lex_line(line) lines.append(line_tokens) return lines def token_to_op(token : tuple) -> int: assert COUNT_OPS == 3, "Not all operations are implmented in token_to_op." token_repr = token[0] if token_repr == "<-": return OP_ASSIGN elif token_repr == "+": return OP_ADD elif token_repr == "print": return OP_PRINT else: return -1 def parse_line(line_tokens : list[tuple[str, int]], row : int) -> list[tuple[int, int]]: # TODO(Sean) kb++ only supports one operation per line operations = [] i = 0 while i < len(line_tokens): token = line_tokens[i] if (op := token_to_op(token)) != -1: operations.append((op, row)) break i += 1 #stack += [token for index, token in enumerate(line_tokens) if index != i ] return operations def build_program(file) -> list[tuple[int, int]]: lines = lex_file(file) ops: list[tuple[int, int]] = [] for row, tokens in enumerate(lines): op_token: tuple[int, int] = parse_line(tokens, row) ops.append(op_token) return ops def interpret_program(program : list[tuple[int, int]]): # TODO: more types stack: dict[str, int] = {} for line in program: for op in line: assert COUNT_OPS == 3, "Exhaustive list of implemented ops in interpret_program" print(op) if op[0] == OP_ASSIGN: stack[var_name] = var_data elif op[0] == OP_ADD: add() elif op[0] == OP_PRINT: pprint() else: assert False, "Unreachable code in interpret_program" def compile_program(file): assert False, "compilation not implemented" def usage(file): print(f"[USAGE]: {file} [COMMAND] -[OPTIONAL ARGS] [FILE]") print(f" int interpret the {LANG_NAME} program") print(f" com compiles the {LANG_NAME} program to assembly") if __name__ == "__main__": argv = sys.argv assert len(argv) >= 1 compiler, *argv = argv if len(argv) < 2: usage(argv[0]) print("[ERROR]: no command specified") assert len(argv) == 2, f"{compiler} only supports [COMMAND] [FILE]" command, program_path = argv program = build_program(program_path) if command == "int": interpret_program(program) elif command == "com": compile_program(program) else: usage(compiler) print(f"[ERROR]: unknown command '{command}' specified")
27.972414
92
0.586292
a338a86c55af8de5a2ba8c4e62b5a4ea7fd7c2fd
3,934
py
Python
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/models/encoded_task_run_request.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/models/encoded_task_run_request.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/models/encoded_task_run_request.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .run_request import RunRequest class EncodedTaskRunRequest(RunRequest): """The parameters for a quick task run request. All required parameters must be populated in order to send to Azure. :param is_archive_enabled: The value that indicates whether archiving is enabled for the run or not. Default value: False . :type is_archive_enabled: bool :param type: Required. Constant filled by server. :type type: str :param encoded_task_content: Required. Base64 encoded value of the template/definition file content. :type encoded_task_content: str :param encoded_values_content: Base64 encoded value of the parameters/values file content. :type encoded_values_content: str :param values: The collection of overridable values that can be passed when running a task. :type values: list[~azure.mgmt.containerregistry.v2018_09_01.models.SetValue] :param timeout: Run timeout in seconds. Default value: 3600 . :type timeout: int :param platform: Required. The platform properties against which the run has to happen. :type platform: ~azure.mgmt.containerregistry.v2018_09_01.models.PlatformProperties :param agent_configuration: The machine configuration of the run agent. :type agent_configuration: ~azure.mgmt.containerregistry.v2018_09_01.models.AgentProperties :param source_location: The URL(absolute or relative) of the source context. It can be an URL to a tar or git repository. If it is relative URL, the relative path should be obtained from calling listBuildSourceUploadUrl API. :type source_location: str :param credentials: The properties that describes a set of credentials that will be used when this run is invoked. :type credentials: ~azure.mgmt.containerregistry.v2018_09_01.models.Credentials """ _validation = { 'type': {'required': True}, 'encoded_task_content': {'required': True}, 'timeout': {'maximum': 28800, 'minimum': 300}, 'platform': {'required': True}, } _attribute_map = { 'is_archive_enabled': {'key': 'isArchiveEnabled', 'type': 'bool'}, 'type': {'key': 'type', 'type': 'str'}, 'encoded_task_content': {'key': 'encodedTaskContent', 'type': 'str'}, 'encoded_values_content': {'key': 'encodedValuesContent', 'type': 'str'}, 'values': {'key': 'values', 'type': '[SetValue]'}, 'timeout': {'key': 'timeout', 'type': 'int'}, 'platform': {'key': 'platform', 'type': 'PlatformProperties'}, 'agent_configuration': {'key': 'agentConfiguration', 'type': 'AgentProperties'}, 'source_location': {'key': 'sourceLocation', 'type': 'str'}, 'credentials': {'key': 'credentials', 'type': 'Credentials'}, } def __init__(self, **kwargs): super(EncodedTaskRunRequest, self).__init__(**kwargs) self.encoded_task_content = kwargs.get('encoded_task_content', None) self.encoded_values_content = kwargs.get('encoded_values_content', None) self.values = kwargs.get('values', None) self.timeout = kwargs.get('timeout', 3600) self.platform = kwargs.get('platform', None) self.agent_configuration = kwargs.get('agent_configuration', None) self.source_location = kwargs.get('source_location', None) self.credentials = kwargs.get('credentials', None) self.type = 'EncodedTaskRunRequest'
45.744186
88
0.663447
0900224a01ccfb7e9e2455901e528d4e255d2ad3
21,511
py
Python
darts/models/forecasting/rnn_model.py
bruecks2/darts
4cf51f7cfffdc53049bdca6f9eb54eaf5810eaa5
[ "Apache-2.0" ]
null
null
null
darts/models/forecasting/rnn_model.py
bruecks2/darts
4cf51f7cfffdc53049bdca6f9eb54eaf5810eaa5
[ "Apache-2.0" ]
null
null
null
darts/models/forecasting/rnn_model.py
bruecks2/darts
4cf51f7cfffdc53049bdca6f9eb54eaf5810eaa5
[ "Apache-2.0" ]
1
2022-02-15T11:06:29.000Z
2022-02-15T11:06:29.000Z
""" Recurrent Neural Networks ------------------------- """ from typing import Optional, Sequence, Tuple, Union import torch import torch.nn as nn from darts.logging import get_logger, raise_if_not from darts.models.forecasting.pl_forecasting_module import PLDualCovariatesModule from darts.models.forecasting.torch_forecasting_model import DualCovariatesTorchModel from darts.timeseries import TimeSeries from darts.utils.data import DualCovariatesShiftedDataset, TrainingDataset logger = get_logger(__name__) # TODO add batch norm class _RNNModule(PLDualCovariatesModule): def __init__( self, name: str, input_size: int, hidden_dim: int, num_layers: int, target_size: int, nr_params: int, dropout: float = 0.0, **kwargs ): """PyTorch module implementing an RNN to be used in `RNNModel`. PyTorch module implementing a simple RNN with the specified `name` type. This module combines a PyTorch RNN module, together with one fully connected layer which maps the hidden state of the RNN at each step to the output value of the model at that time step. Parameters ---------- name The name of the specific PyTorch RNN module ("RNN", "GRU" or "LSTM"). input_size The dimensionality of the input time series. hidden_dim The number of features in the hidden state `h` of the RNN module. num_layers The number of recurrent layers. target_size The dimensionality of the output time series. nr_params The number of parameters of the likelihood (or 1 if no likelihood is used). dropout The fraction of neurons that are dropped in all-but-last RNN layers. **kwargs all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. Inputs ------ x of shape `(batch_size, input_length, input_size)` Tensor containing the features of the input sequence. The `input_length` is not fixed. Outputs ------- y of shape `(batch_size, output_chunk_length, target_size, nr_params)` Tensor containing the outputs of the RNN at every time step of the input sequence. During training the whole tensor is used as output, whereas during prediction we only use y[:, -1, :]. However, this module always returns the whole Tensor. """ # RNNModule doesn't really need input and output_chunk_length for PLModule super().__init__(**kwargs) # Defining parameters self.target_size = target_size self.nr_params = nr_params self.name = name # Defining the RNN module self.rnn = getattr(nn, name)( input_size, hidden_dim, num_layers, batch_first=True, dropout=dropout ) # The RNN module needs a linear layer V that transforms hidden states into outputs, individually self.V = nn.Linear(hidden_dim, target_size * nr_params) def forward(self, x_in: Tuple, h=None): x, _ = x_in # data is of size (batch_size, input_length, input_size) batch_size = x.shape[0] # out is of size (batch_size, input_length, hidden_dim) out, last_hidden_state = self.rnn(x) if h is None else self.rnn(x, h) # Here, we apply the V matrix to every hidden state to produce the outputs predictions = self.V(out) # predictions is of size (batch_size, input_length, target_size) predictions = predictions.view(batch_size, -1, self.target_size, self.nr_params) # returns outputs for all inputs, only the last one is needed for prediction time return predictions, last_hidden_state def _produce_train_output(self, input_batch: Tuple): ( past_target, historic_future_covariates, future_covariates, static_covariates, ) = input_batch # For the RNN we concatenate the past_target with the future_covariates # (they have the same length because we enforce a Shift dataset for RNNs) model_input = ( torch.cat([past_target, future_covariates], dim=2) if future_covariates is not None else past_target, static_covariates, ) return self(model_input)[0] def _produce_predict_output(self, x: Tuple, last_hidden_state=None): """overwrite parent classes `_produce_predict_output` method""" output, hidden = self(x, last_hidden_state) if self.likelihood: return self.likelihood.sample(output), hidden else: return output.squeeze(dim=-1), hidden def _get_batch_prediction( self, n: int, input_batch: Tuple, roll_size: int ) -> torch.Tensor: """ This model is recurrent, so we have to write a specific way to obtain the time series forecasts of length n. """ ( past_target, historic_future_covariates, future_covariates, static_covariates, ) = input_batch if historic_future_covariates is not None: # RNNs need as inputs (target[t] and covariates[t+1]) so here we shift the covariates all_covariates = torch.cat( [historic_future_covariates[:, 1:, :], future_covariates], dim=1 ) cov_past, cov_future = ( all_covariates[:, : past_target.shape[1], :], all_covariates[:, past_target.shape[1] :, :], ) input_series = torch.cat([past_target, cov_past], dim=2) else: input_series = past_target cov_future = None batch_prediction = [] out, last_hidden_state = self._produce_predict_output( (input_series, static_covariates) ) batch_prediction.append(out[:, -1:, :]) prediction_length = 1 while prediction_length < n: # create new input to model from last prediction and current covariates, if available new_input = ( torch.cat( [ out[:, -1:, :], cov_future[:, prediction_length - 1 : prediction_length, :], ], dim=2, ) if cov_future is not None else out[:, -1:, :] ) # feed new input to model, including the last hidden state from the previous iteration out, last_hidden_state = self._produce_predict_output( (new_input, static_covariates), last_hidden_state ) # append prediction to batch prediction array, increase counter batch_prediction.append(out[:, -1:, :]) prediction_length += 1 # bring predictions into desired format and drop unnecessary values batch_prediction = torch.cat(batch_prediction, dim=1) batch_prediction = batch_prediction[:, :n, :] return batch_prediction class RNNModel(DualCovariatesTorchModel): def __init__( self, input_chunk_length: int, model: Union[str, nn.Module] = "RNN", hidden_dim: int = 25, n_rnn_layers: int = 1, dropout: float = 0.0, training_length: int = 24, **kwargs ): """Recurrent Neural Network Model (RNNs). This class provides three variants of RNNs: * Vanilla RNN * LSTM * GRU RNNModel is fully recurrent in the sense that, at prediction time, an output is computed using these inputs: - previous target value, which will be set to the last known target value for the first prediction, and for all other predictions it will be set to the previous prediction (in an auto-regressive fashion), - the previous hidden state, - the covariates at time `t` for forecasting the target at time `t` (if the model was trained with covariates), This model supports future covariates; and it requires these covariates to extend far enough in the past and the future (it's a so-called "dual covariates" model as the future covariates have to be provided both in the past and the future). The model will complain if the provided `future_covariates` series doesn't have an appropriate time span. For a block version using an RNN model as an encoder only and supporting past covariates, checkout `BlockRNNModel`. Parameters ---------- input_chunk_length Number of past time steps that are fed to the forecasting module at prediction time. model Either a string specifying the RNN module type ("RNN", "LSTM" or "GRU"), or a PyTorch module with the same specifications as `darts.models.rnn_model._RNNModule`. hidden_dim Size for feature maps for each hidden RNN layer (:math:`h_n`). n_rnn_layers The number of recurrent layers. dropout Fraction of neurons afected by Dropout. training_length The length of both input (target and covariates) and output (target) time series used during training. Generally speaking, `training_length` should have a higher value than `input_chunk_length` because otherwise during training the RNN is never run for as many iterations as it will during training. For more information on this parameter, please see `darts.utils.data.ShiftedDataset` **kwargs Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and Darts' :class:`TorchForecastingModel`. loss_fn PyTorch loss function used for training. This parameter will be ignored for probabilistic models if the ``likelihood`` parameter is specified. Default: ``torch.nn.MSELoss()``. torch_metrics A torch metric or a ``MetricCollection`` used for evaluation. A full list of available metrics can be found at https://torchmetrics.readthedocs.io/en/latest/. Default: ``None``. likelihood One of Darts' :meth:`Likelihood <darts.utils.likelihood_models.Likelihood>` models to be used for probabilistic forecasts. Default: ``None``. optimizer_cls The PyTorch optimizer class to be used. Default: ``torch.optim.Adam``. optimizer_kwargs Optionally, some keyword arguments for the PyTorch optimizer (e.g., ``{'lr': 1e-3}`` for specifying a learning rate). Otherwise the default values of the selected ``optimizer_cls`` will be used. Default: ``None``. lr_scheduler_cls Optionally, the PyTorch learning rate scheduler class to be used. Specifying ``None`` corresponds to using a constant learning rate. Default: ``None``. lr_scheduler_kwargs Optionally, some keyword arguments for the PyTorch learning rate scheduler. Default: ``None``. batch_size Number of time series (input and output sequences) used in each training pass. Default: ``32``. n_epochs Number of epochs over which to train the model. Default: ``100``. model_name Name of the model. Used for creating checkpoints and saving tensorboard data. If not specified, defaults to the following string ``"YYYY-mm-dd_HH:MM:SS_torch_model_run_PID"``, where the initial part of the name is formatted with the local date and time, while PID is the processed ID (preventing models spawned at the same time by different processes to share the same model_name). E.g., ``"2021-06-14_09:53:32_torch_model_run_44607"``. work_dir Path of the working directory, where to save checkpoints and Tensorboard summaries. Default: current working directory. log_tensorboard If set, use Tensorboard to log the different parameters. The logs will be located in: ``"{work_dir}/darts_logs/{model_name}/logs/"``. Default: ``False``. nr_epochs_val_period Number of epochs to wait before evaluating the validation loss (if a validation ``TimeSeries`` is passed to the :func:`fit()` method). Default: ``1``. torch_device_str Optionally, a string indicating the torch device to use. By default, ``torch_device_str`` is ``None`` which will run on CPU. Set it to ``"cuda"`` to use all available GPUs or ``"cuda:i"`` to only use GPU ``i`` (``i`` must be an integer). For example "cuda:0" will use the first GPU only. .. deprecated:: v0.17.0 ``torch_device_str`` has been deprecated in v0.17.0 and will be removed in a future version. Instead, specify this with keys ``"accelerator", "gpus", "auto_select_gpus"`` in your ``pl_trainer_kwargs`` dict. Some examples for setting the devices inside the ``pl_trainer_kwargs`` dict: - ``{"accelerator": "cpu"}`` for CPU, - ``{"accelerator": "gpu", "gpus": [i]}`` to use only GPU ``i`` (``i`` must be an integer), - ``{"accelerator": "gpu", "gpus": -1, "auto_select_gpus": True}`` to use all available GPUS. For more info, see here: https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html#trainer-flags , and https://pytorch-lightning.readthedocs.io/en/stable/advanced/multi_gpu.html#select-gpu-devices force_reset If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will be discarded). Default: ``False``. save_checkpoints Whether or not to automatically save the untrained model and checkpoints from training. To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using :func:`save_model()` and loaded using :func:`load_model()`. Default: ``False``. add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that will be used as index encoders. Additionally, a transformer such as Darts' :class:`Scaler` can be added to transform the generated covariates. This happens all under one hood and only needs to be specified at model creation. Read :meth:`SequentialEncoder <darts.utils.data.encoders.SequentialEncoder>` to find out more about ``add_encoders``. Default: ``None``. An example showing some of ``add_encoders`` features: .. highlight:: python .. code-block:: python add_encoders={ 'cyclic': {'future': ['month']}, 'datetime_attribute': {'future': ['hour', 'dayofweek']}, 'position': {'past': ['absolute'], 'future': ['relative']}, 'custom': {'past': [lambda idx: (idx.year - 1950) / 50]}, 'transformer': Scaler() } .. random_state Control the randomness of the weights initialization. Check this `link <https://scikit-learn.org/stable/glossary.html#term-random_state>`_ for more details. Default: ``None``. pl_trainer_kwargs By default :class:`TorchForecastingModel` creates a PyTorch Lightning Trainer with several useful presets that performs the training, validation and prediction processes. These presets include automatic checkpointing, tensorboard logging, setting the torch device and more. With ``pl_trainer_kwargs`` you can add additional kwargs to instantiate the PyTorch Lightning trainer object. Check the `PL Trainer documentation <https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html>`_ for more information about the supported kwargs. Default: ``None``. With parameter ``"callbacks"`` you can add custom or PyTorch-Lightning built-in callbacks to Darts' :class:`TorchForecastingModel`. Below is an example for adding EarlyStopping to the training process. The model will stop training early if the validation loss `val_loss` does not improve beyond specifications. For more information on callbacks, visit: `PyTorch Lightning Callbacks <https://pytorch-lightning.readthedocs.io/en/stable/extensions/callbacks.html>`_ .. highlight:: python .. code-block:: python from pytorch_lightning.callbacks.early_stopping import EarlyStopping # stop training when validation loss does not decrease more than 0.05 (`min_delta`) over # a period of 5 epochs (`patience`) my_stopper = EarlyStopping( monitor="val_loss", patience=5, min_delta=0.05, mode='min', ) pl_trainer_kwargs={"callbacks": [my_stopper]} .. Note that you can also use a custom PyTorch Lightning Trainer for training and prediction with optional parameter ``trainer`` in :func:`fit()` and :func:`predict()`. show_warnings whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of your forecasting use case. Default: ``False``. """ # create copy of model parameters model_kwargs = {key: val for key, val in self.model_params.items()} model_kwargs["output_chunk_length"] = 1 super().__init__(**self._extract_torch_model_params(**model_kwargs)) # extract pytorch lightning module kwargs self.pl_module_params = self._extract_pl_module_params(**model_kwargs) # check we got right model type specified: if model not in ["RNN", "LSTM", "GRU"]: raise_if_not( isinstance(model, nn.Module), '{} is not a valid RNN model.\n Please specify "RNN", "LSTM", ' '"GRU", or give your own PyTorch nn.Module'.format( model.__class__.__name__ ), logger, ) self.rnn_type_or_module = model self.dropout = dropout self.hidden_dim = hidden_dim self.n_rnn_layers = n_rnn_layers self.training_length = training_length def _create_model(self, train_sample: Tuple[torch.Tensor]) -> torch.nn.Module: # samples are made of (past_target, historic_future_covariates, future_covariates, future_target) # historic_future_covariates and future_covariates have the same width input_dim = train_sample[0].shape[1] + ( train_sample[1].shape[1] if train_sample[1] is not None else 0 ) output_dim = train_sample[-1].shape[1] nr_params = 1 if self.likelihood is None else self.likelihood.num_parameters if self.rnn_type_or_module in ["RNN", "LSTM", "GRU"]: model = _RNNModule( name=self.rnn_type_or_module, input_size=input_dim, target_size=output_dim, nr_params=nr_params, hidden_dim=self.hidden_dim, dropout=self.dropout, num_layers=self.n_rnn_layers, **self.pl_module_params, ) else: model = self.rnn_type_or_module( name="custom_module", input_size=input_dim, target_size=output_dim, nr_params=nr_params, hidden_dim=self.hidden_dim, dropout=self.dropout, num_layers=self.n_rnn_layers, **self.pl_module_params, ) return model def _build_train_dataset( self, target: Sequence[TimeSeries], past_covariates: Optional[Sequence[TimeSeries]], future_covariates: Optional[Sequence[TimeSeries]], max_samples_per_ts: Optional[int], ) -> DualCovariatesShiftedDataset: return DualCovariatesShiftedDataset( target_series=target, covariates=future_covariates, length=self.training_length, shift=1, max_samples_per_ts=max_samples_per_ts, ) def _verify_train_dataset_type(self, train_dataset: TrainingDataset): raise_if_not( isinstance(train_dataset, DualCovariatesShiftedDataset), "RNNModel requires a training dataset of type DualCovariatesShiftedDataset.", ) raise_if_not( train_dataset.ds_past.shift == 1, "RNNModel requires a shifted training dataset with shift=1.", )
45.865672
119
0.625494
7f3916cecad2996a44ed47cf29d75d8c6125d9b6
2,353
py
Python
fylesdk/apis/reports.py
Shwetabhk/fyle-sdk-py
7a321820a90afeb6ac9617eb04b5ba939ddbc688
[ "MIT" ]
null
null
null
fylesdk/apis/reports.py
Shwetabhk/fyle-sdk-py
7a321820a90afeb6ac9617eb04b5ba939ddbc688
[ "MIT" ]
null
null
null
fylesdk/apis/reports.py
Shwetabhk/fyle-sdk-py
7a321820a90afeb6ac9617eb04b5ba939ddbc688
[ "MIT" ]
null
null
null
from .api_base import ApiBase class Reports(ApiBase): """Class for Reports APIs.""" GET_REPORTS = '/api/tpa/v1/reports' GET_REPORTS_COUNT = '/api/tpa/v1/reports/count' def get(self, updated_at=None, settled_at=None, reimbursed_at=None, approved_at=None, state=None, offset=None, limit=None, exported=None): """Get a list of Reports. Parameters: updated_at (str): Date string in yyyy-MM-ddTHH:mm:ss.SSSZ format along with operator in RHS colon pattern. (optional) offset (int): A cursor for use in pagination, offset is an object ID that defines your place in the list. (optional) limit (int): A limit on the number of objects to be returned, between 1 and 1000. (optional) exported (bool): If set to true, all Reports that are already submitted will alone be returned. (optional) settled_at(str): Date string in yyyy-MM-ddTHH:mm:ss.SSSZ format along with operator in RHS colon pattern. (optional) approved_at(str): Date string in yyyy-MM-ddTHH:mm:ss.SSSZ format along with operator in RHS colon pattern. (optional) reimbursed_at(str): Date string in yyyy-MM-ddTHH:mm:ss.SSSZ format along with operator in RHS colon pattern. (optional) state(str): A parameter to filter reports by the state that they're in. (optional) Returns: List with dicts in Reports schema. """ return self._get_request({ 'updated_at': updated_at, 'offset': offset, 'limit': limit, 'settled_at': settled_at, 'reimbursed_at': reimbursed_at, 'approved_at': approved_at, 'exported': exported }, Reports.GET_REPORTS) def count(self, updated_at=None, exported=None): """Get the count of Reports that match the parameters. Parameters: updated_at (str): Date string in yyyy-MM-ddTHH:mm:ss.SSSZ format along with operator in RHS colon pattern. (optional) exported (bool): If set to true, all Reports that are already submitted will alone be returned. (optional) Returns: Count of Reports. """ return self._get_request({ 'updated_at': updated_at, 'exported': exported }, Reports.GET_REPORTS_COUNT)
49.020833
142
0.640884
e7d51a27941888335ddd5a81789a7aebddbfbfe8
6,456
py
Python
glance/tests/functional/db/test_migrations.py
dchavoll/stx-glance
1ec64167057e3368f27a1a81aca294b771e79c5e
[ "Apache-2.0" ]
null
null
null
glance/tests/functional/db/test_migrations.py
dchavoll/stx-glance
1ec64167057e3368f27a1a81aca294b771e79c5e
[ "Apache-2.0" ]
5
2018-09-18T15:51:40.000Z
2019-01-08T16:38:44.000Z
glance/tests/functional/db/test_migrations.py
dchavoll/stx-glance
1ec64167057e3368f27a1a81aca294b771e79c5e
[ "Apache-2.0" ]
6
2018-09-06T14:50:23.000Z
2018-11-27T21:32:51.000Z
# Copyright 2016 Rackspace # Copyright 2016 Intel Corporation # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from alembic import command as alembic_command from alembic import script as alembic_script from oslo_db.sqlalchemy import test_base from oslo_db.sqlalchemy import test_migrations import sqlalchemy.types as types from glance.db import migration as db_migration from glance.db.sqlalchemy import alembic_migrations from glance.db.sqlalchemy.alembic_migrations import versions from glance.db.sqlalchemy import models from glance.db.sqlalchemy import models_metadef import glance.tests.utils as test_utils class AlembicMigrationsMixin(object): def _get_revisions(self, config, head=None): head = head or db_migration.LATEST_REVISION scripts_dir = alembic_script.ScriptDirectory.from_config(config) revisions = list(scripts_dir.walk_revisions(base='base', head=head)) revisions = list(reversed(revisions)) revisions = [rev.revision for rev in revisions] return revisions def _migrate_up(self, config, engine, revision, with_data=False): if with_data: data = None pre_upgrade = getattr(self, '_pre_upgrade_%s' % revision, None) if pre_upgrade: data = pre_upgrade(engine) alembic_command.upgrade(config, revision) if with_data: check = getattr(self, '_check_%s' % revision, None) if check: check(engine, data) def test_walk_versions(self): alembic_config = alembic_migrations.get_alembic_config(self.engine) for revision in self._get_revisions(alembic_config): self._migrate_up(alembic_config, self.engine, revision, with_data=True) class TestMysqlMigrations(test_base.MySQLOpportunisticTestCase, AlembicMigrationsMixin): def test_mysql_innodb_tables(self): test_utils.db_sync(engine=self.engine) total = self.engine.execute( "SELECT COUNT(*) " "FROM information_schema.TABLES " "WHERE TABLE_SCHEMA='%s'" % self.engine.url.database) self.assertGreater(total.scalar(), 0, "No tables found. Wrong schema?") noninnodb = self.engine.execute( "SELECT count(*) " "FROM information_schema.TABLES " "WHERE TABLE_SCHEMA='%s' " "AND ENGINE!='InnoDB' " "AND TABLE_NAME!='migrate_version'" % self.engine.url.database) count = noninnodb.scalar() self.assertEqual(0, count, "%d non InnoDB tables created" % count) class TestPostgresqlMigrations(test_base.PostgreSQLOpportunisticTestCase, AlembicMigrationsMixin): pass class TestSqliteMigrations(test_base.DbTestCase, AlembicMigrationsMixin): pass class TestMigrations(test_base.DbTestCase, test_utils.BaseTestCase): def test_no_downgrade(self): migrate_file = versions.__path__[0] for parent, dirnames, filenames in os.walk(migrate_file): for filename in filenames: if filename.split('.')[1] == 'py': model_name = filename.split('.')[0] model = __import__( 'glance.db.sqlalchemy.alembic_migrations.versions.' + model_name) obj = getattr(getattr(getattr(getattr(getattr( model, 'db'), 'sqlalchemy'), 'alembic_migrations'), 'versions'), model_name) func = getattr(obj, 'downgrade', None) self.assertIsNone(func) class ModelsMigrationSyncMixin(object): def get_metadata(self): for table in models_metadef.BASE_DICT.metadata.sorted_tables: models.BASE.metadata._add_table(table.name, table.schema, table) return models.BASE.metadata def get_engine(self): return self.engine def db_sync(self, engine): test_utils.db_sync(engine=engine) # TODO(akamyshikova): remove this method as soon as comparison with Variant # will be implemented in oslo.db or alembic def compare_type(self, ctxt, insp_col, meta_col, insp_type, meta_type): if isinstance(meta_type, types.Variant): meta_orig_type = meta_col.type insp_orig_type = insp_col.type meta_col.type = meta_type.impl insp_col.type = meta_type.impl try: return self.compare_type(ctxt, insp_col, meta_col, insp_type, meta_type.impl) finally: meta_col.type = meta_orig_type insp_col.type = insp_orig_type else: ret = super(ModelsMigrationSyncMixin, self).compare_type( ctxt, insp_col, meta_col, insp_type, meta_type) if ret is not None: return ret return ctxt.impl.compare_type(insp_col, meta_col) def include_object(self, object_, name, type_, reflected, compare_to): if name in ['migrate_version'] and type_ == 'table': return False return True class ModelsMigrationsSyncMysql(ModelsMigrationSyncMixin, test_migrations.ModelsMigrationsSync, test_base.MySQLOpportunisticTestCase): pass class ModelsMigrationsSyncPostgres(ModelsMigrationSyncMixin, test_migrations.ModelsMigrationsSync, test_base.PostgreSQLOpportunisticTestCase): pass class ModelsMigrationsSyncSqlite(ModelsMigrationSyncMixin, test_migrations.ModelsMigrationsSync, test_base.DbTestCase): pass
37.103448
79
0.636462
57fa9b4f2df1644ab17fea6014dbe1d2c39311fd
1,431
py
Python
note3/linear_regression.py
yeyupiaoling/LearnPaddle2
7c53fa82cd6449c6583de79622edc612ec73064d
[ "Apache-2.0" ]
163
2019-01-30T04:34:01.000Z
2021-12-10T12:19:03.000Z
note3/linear_regression.py
stonebb/LearnPaddle2
c3b6a9f5897e684b6de544cb12c959f7771a6c3c
[ "Apache-2.0" ]
3
2019-07-15T07:14:17.000Z
2022-03-24T01:14:06.000Z
note3/linear_regression.py
stonebb/LearnPaddle2
c3b6a9f5897e684b6de544cb12c959f7771a6c3c
[ "Apache-2.0" ]
83
2018-10-31T02:44:09.000Z
2022-03-25T13:40:54.000Z
import paddle.fluid as fluid import numpy as np # 定义一个简单的线性网络 x = fluid.layers.data(name='x', shape=[1], dtype='float32') hidden = fluid.layers.fc(input=x, size=100, act='relu') net = fluid.layers.fc(input=hidden, size=1, act=None) # 获取预测程序 infer_program = fluid.default_main_program().clone(for_test=True) # 定义损失函数 y = fluid.layers.data(name='y', shape=[1], dtype='float32') cost = fluid.layers.square_error_cost(input=net, label=y) avg_cost = fluid.layers.mean(cost) # 复制一个主程序,方便之后使用 test_program = fluid.default_main_program().clone(for_test=True) # 定义优化方法 optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01) opts = optimizer.minimize(avg_cost) # 创建一个使用CPU的执行器 place = fluid.CPUPlace() exe = fluid.Executor(place) # 进行参数初始化 exe.run(fluid.default_startup_program()) # 定义训练和测试数据 x_data = np.array([[1.0], [2.0], [3.0], [4.0], [5.0]]).astype('float32') y_data = np.array([[3.0], [5.0], [7.0], [9.0], [11.0]]).astype('float32') test_data = np.array([[6.0]]).astype('float32') # 开始训练100个pass for pass_id in range(100): train_cost = exe.run(program=fluid.default_main_program(), feed={'x': x_data, 'y': y_data}, fetch_list=[avg_cost]) print("Pass:%d, Cost:%0.5f" % (pass_id, train_cost[0])) # 开始预测 result = exe.run(program=infer_program, feed={'x': test_data}, fetch_list=[net]) print("当x为6.0时,y为:%0.5f:" % result[0][0][0])
30.446809
73
0.659679
16b94b4557973d763a04842cafb36ecd943b9e40
3,108
py
Python
TM1py/Services/ElementService.py
lotsaram/TM1py
71a2fd1e30211e497bb2644f0d11376abd2c29a7
[ "MIT" ]
null
null
null
TM1py/Services/ElementService.py
lotsaram/TM1py
71a2fd1e30211e497bb2644f0d11376abd2c29a7
[ "MIT" ]
null
null
null
TM1py/Services/ElementService.py
lotsaram/TM1py
71a2fd1e30211e497bb2644f0d11376abd2c29a7
[ "MIT" ]
1
2022-01-17T10:02:44.000Z
2022-01-17T10:02:44.000Z
# -*- coding: utf-8 -*- import json from TM1py.Objects.ElementAttribute import ElementAttribute from TM1py.Services.ObjectService import ObjectService class ElementService(ObjectService): """ Service to handle Object Updates for TM1 Dimension (resp. Hierarchy) Elements """ def __init__(self, rest): super().__init__(rest) def get_element_attributes(self, dimension_name, hierarchy_name): """ Get element attributes from hierarchy :param dimension_name: :param hierarchy_name: :return: """ request = '/api/v1/Dimensions(\'{}\')/Hierarchies(\'{}\')/ElementAttributes'.format(dimension_name, hierarchy_name) response = self._rest.GET(request, '') element_attributes = [ElementAttribute.from_dict(ea) for ea in json.loads(response)['value']] return element_attributes def get_elements_filtered_by_attribute(self, dimension_name, hierarchy_name, attribute_name, attribute_value): """ Get all elements from a hierarchy with given attribute value :param dimension_name: :param hierarchy_name: :param attribute_name: :param attribute_value: :return: List of element names """ attribute_name = attribute_name.replace(" ", "") if isinstance(attribute_value, str): request = "/api/v1/Dimensions('{}')/Hierarchies('{}')" \ "?$expand=Elements($filter = Attributes/{} eq '{}';$select=Name)" \ .format(dimension_name, hierarchy_name, attribute_name, attribute_value) else: request = "/api/v1/Dimensions('{}')/Hierarchies('{}')" \ "?$expand=Elements($filter = Attributes/{} eq {};$select=Name)" \ .format(dimension_name, hierarchy_name, attribute_name, attribute_value) response = self._rest.GET(request) response_as_dict = json.loads(response) return [elem['Name'] for elem in response_as_dict['Elements']] def create_element_attribute(self, dimension_name, hierarchy_name, element_attribute): """ like AttrInsert :param dimension_name: :param hierarchy_name: :param element_attribute: instance of TM1py.ElementAttribute :return: """ request = "/api/v1/Dimensions('{}')/Hierarchies('{}')/ElementAttributes" \ .format(dimension_name, hierarchy_name) return self._rest.POST(request, element_attribute.body) def delete_element_attribute(self, dimension_name, hierarchy_name, element_attribute): """ like AttrDelete :param dimension_name: :param hierarchy_name: :param element_attribute: instance of TM1py.ElementAttribute :return: """ request = "/api/v1/Dimensions('}}ElementAttributes_{}')/Hierarchies('}}ElementAttributes_{}')/Elements('{}')" \ .format(dimension_name, hierarchy_name, element_attribute) return self._rest.DELETE(request, '')
42
119
0.630952
c97babb55880854648f00e7f636146acdcc5cdd7
31,143
py
Python
gen/tools/jnc_plugin/generators/java_method.py
xotonic/netconfessor
cf825e6c94db6dff77db7c236a2c4412c6f533ce
[ "Apache-2.0" ]
2
2019-03-15T05:08:57.000Z
2020-09-08T08:13:07.000Z
gen/tools/jnc_plugin/generators/java_method.py
xotonic/netconfessor
cf825e6c94db6dff77db7c236a2c4412c6f533ce
[ "Apache-2.0" ]
null
null
null
gen/tools/jnc_plugin/generators/java_method.py
xotonic/netconfessor
cf825e6c94db6dff77db7c236a2c4412c6f533ce
[ "Apache-2.0" ]
null
null
null
import os import re from .. import util, context from ..java_value import JavaValue from ..method import JavaMethod from ..ordered_set import OrderedSet class MethodGenerator(object): """A generator for JavaMethod objects""" def __init__(self, stmt, ctx): """Sets the attributes of the method generator, depending on stmt""" self.stmt = stmt self.n = util.normalize(stmt.arg) self.n2 = util.camelize(stmt.arg) self.children = [util.normalize(s.arg) for s in util.search(stmt, context.yangelement_stmts | context.leaf_stmts)] self.ctx = ctx self.module_stmt = util.get_module(stmt) prefix = util.search_one(self.module_stmt, 'prefix') self.root = util.schema_class(util.normalize(prefix.arg)) self.pkg = util.get_package(stmt, ctx) self.basepkg = self.pkg.partition('.')[0] self.rootpkg = ctx.rootpkg.split(os.sep) if self.rootpkg[:1] == ['src']: self.rootpkg = self.rootpkg[1:] # src not part of package self.rootpkg.append(util.camelize(self.module_stmt.arg)) self.is_container = stmt.keyword in ('container', 'notification') self.is_list = stmt.keyword == 'list' self.is_typedef = stmt.keyword == 'typedef' self.is_leaf = stmt.keyword == 'leaf' self.is_anyxml = stmt.keyword == 'anyxml' self.is_leaflist = stmt.keyword == 'leaf-list' self.is_top_level = util.get_parent(self.stmt) == self.module_stmt self.is_augmented = self.module_stmt != util.get_module(stmt.parent) assert (self.is_container or self.is_list or self.is_typedef or self.is_leaf or self.is_leaflist or self.is_anyxml) self.gen = self if type(self) is MethodGenerator: if self.is_typedef: from typedef import TypedefMethodGenerator self.gen = TypedefMethodGenerator(stmt, ctx) elif self.is_container: from container import ContainerMethodGenerator self.gen = ContainerMethodGenerator(stmt, ctx) elif self.is_list: from list import ListMethodGenerator self.gen = ListMethodGenerator(stmt, ctx) elif self.is_leaflist: from leaf_list import LeafListMethodGenerator self.gen = LeafListMethodGenerator(stmt, ctx) elif self.is_leaf: from leaf import LeafMethodGenerator self.gen = LeafMethodGenerator(stmt, ctx) elif self.is_anyxml: from anyxml import AnyXmlMethodGenerator self.gen = AnyXmlMethodGenerator(stmt, ctx) def canonical_import(self, import_, child=False): """Returns a string representing a class that can be imported in Java. Does not handle Generics or Array types. """ if import_ == self.root: return '.'.join(self.rootpkg + [import_]) elif import_ in self.children: type_child = util.search_one(self.stmt, 'type') if type_child is not None and util.normalize(type_child.arg) == import_: try: typedef_pkg = util.get_package(type_child.i_typedef, self.ctx) except AttributeError: typedef_pkg = util.get_package(type_child, self.ctx) return '.'.join([typedef_pkg, import_]) return '.'.join([self.pkg, self.n2, import_]) elif child and import_ == self.n: return '.'.join([self.pkg, import_]) else: return util.get_import(import_) def fix_imports(self, method, child=False): res = set([]) imports = method.imports if self.ctx.opts.import_on_demand: imports = set([]) pkg = self.pkg if child: pkg = pkg.rpartition('.')[0] pkg_classes = context.class_hierarchy.get(pkg, []) for import_ in method.imports: if import_.rpartition('.')[2] in pkg_classes: if (child and not import_.rpartition('.')[1] and import_ != self.root): imports.add('.'.join([self.pkg, import_])) else: imports.add(import_) for dependency in imports: if dependency.startswith(('java.math', 'java.util', 'io.netconfessor', self.basepkg)): res.add(dependency) continue elif dependency.endswith('>'): for token in [_f for _f in re.findall(r'\w+', dependency) if _f]: res.add(self.canonical_import(token, child)) elif dependency.endswith(']'): assert dependency[:-2] and dependency[-2:] == '[]' res.add(self.canonical_import(dependency[:-2], child)) else: res.add(self.canonical_import(dependency, child)) method.imports = res return method def _root_namespace(self, stmt_arg): """Returns '([Root].NAMESPACE, "[stmt.arg]");'""" return ['(', self.root, '.NAMESPACE, "', stmt_arg, '");'] def _constructor_template(self): """Returns a constructor invoking parent constructor, without parameters and javadoc.""" constructor = JavaMethod(modifiers=['public'], name=self.n) constructor.set_return_type(None) if self.is_container or self.is_list or self.is_anyxml or self.is_leaf or self.is_leaflist: call = ['super'] call.extend(self._root_namespace(self.stmt.arg)) constructor.add_dependency(self.root) constructor.add_line(''.join(call)) if self.is_top_level or self.is_augmented: constructor.add_line('setDefaultPrefix();') setPrefix = ['setPrefix(', self.root, '.PREFIX);'] constructor.add_line(''.join(setPrefix)) elif self.is_typedef: constructor.add_line('super(value);') else: return None return self.fix_imports(constructor) def access_methods_comment(self): """Returns a JavaValue representing a code structuring Java comment""" res = [' /* Access methods for'] if hasattr(self.gen, 'is_optional') and self.gen.is_optional: res.append('optional') res.extend([self.stmt.keyword, 'child: "' + self.stmt.arg + '". */']) return JavaValue(exact=[' '.join(res)]) def empty_constructor(self): """Returns parameter-free constructor as a JavaMethod object""" assert not self.is_typedef, "Typedefs don't have empty constructors" constructor = self._constructor_template() javadoc = ['Constructor for an empty '] javadoc.append(self.n) javadoc.append(' object.') constructor.add_javadoc(''.join(javadoc)) return self.fix_imports(constructor) def constructors(self): """Returns a list of JavaMethods representing constructors to include in generated class of self.stmt """ assert self.gen is not self, 'Avoid infinite recursion' return self.gen.constructors() def cloners(self): if self.is_typedef: return [] # Typedefs, leafs and leaflists don't have clone methods cloners = [JavaMethod(), JavaMethod()] a = (' an exact ', ' a shallow ') b = ('', ' Children are not included.') c = ('', 'Shallow') keys = '' if self.is_list: getter_calls = [] for key_stmt in self.gen.key_stmts: getter_calls.append(''.join([util.camelize(key_stmt.arg), '.getValue().toString()'])) keys = ', '.join(getter_calls) for i, cloner in enumerate(cloners): cloner.add_javadoc('Clones this object, returning' + a[i] + 'copy.') cloner.add_javadoc('@return A clone of the object.' + b[i]) cloner.return_type = self.n cloner.set_name('clone' + c[i]) copy = ''.join(['new ', self.n, '(', keys, ')']) if self.is_list and self.gen.is_config: cloner.add_line(self.n + ' copy;') cloner.add_line('try {') cloner.add_line(' copy = ' + copy + ';') cloner.add_line('} catch (JNCException e) {') cloner.add_line(' copy = null;') cloner.add_line('}') copy = 'copy' cloner.add_line(''.join(['return (', self.n, ')clone', c[i], 'Content(', copy, ');'])) cloner = self.fix_imports(cloner) # Clone method without children cloner_wo_chields = JavaMethod() cloner_wo_chields.return_type = self.n cloner_wo_chields.set_name('cloneWithoutChildren') cloner_wo_chields.add_line(''.join(['return new ', self.n, '();'])) cloners.append(cloner_wo_chields) return cloners def key_names(self): """Returns a method that can be used to get the keys of a statement. The keys are returned by the generated method as a String array with the identifiers of the keys in the statement of this generator, which should be a list, container or notification, otherwise None is returned. If the statement does not have any keys, the generated method returns null. """ if not (self.is_list or self.is_container or self.is_anyxml): return None method = JavaMethod(modifiers=['public'], name='keyNames') method.set_return_type('String[]') method.add_javadoc('@return An array with the identifiers of any key children') if self.is_container or self.is_anyxml or not self.gen.is_config: method.add_line('return null;') else: method.add_line('return new String[] {') for key_stmt in self.gen.key_stmts: method.add_line('"'.join([' ' * 4, key_stmt.arg, ','])) method.add_line('};') return self.fix_imports(method) def children_names(self): """Returns a method that can be used to get the identifiers of the children of the statement of this generator, excluding any keys. """ if not (self.is_list or self.is_container or self.is_anyxml): return None if self.is_anyxml: method = JavaMethod(modifiers=['public'], name='childrenNames') method.set_return_type('String[]') method.add_line('return super.childrenNames();') else: method = JavaMethod(modifiers=['public'], name='childrenNames') method.set_return_type('String[]') method.add_javadoc('@return An array with the identifiers of any children, in order.') children = util.search(self.stmt, context.yangelement_stmts | context.leaf_stmts) method.add_line('return new String[] {') for child in children: method.add_line('"'.join([' ' * 4, child.arg, ','])) method.add_line('};') return self.fix_imports(method) def support_method(self, fields=None): if self.is_typedef: return None add_child = JavaMethod(modifiers=['public'], return_type='void', name='addChild', params=[('Element', 'child')]) add_child.add_javadoc('Support method for addChild.') add_child.add_javadoc('Adds a child to this object.') add_child.add_javadoc('') add_child.add_javadoc('@param child The child to add') add_child.add_line('super.addChild(child);') if fields is None: fields = OrderedSet() cond = '' for field in fields: # could do reversed(fields) to preserve order add_child.add_line(''.join([cond, 'if (child instanceof ', util.normalize(field), ') ', util.camelize(field), ' = (', util.normalize(field), ')child;'])) add_child.add_dependency(util.normalize(field)) cond = 'else ' return self.fix_imports(add_child) def setters(self): """Returns a list of JavaMethods representing setters to include in generated class of self.stmt """ assert self.gen is not self, 'Avoid infinite recursion' return self.gen.setters() def unsetter(self): """Returns an 'unset<Identifier>Value' JavaMethod for self.stmt""" assert self.gen is not self, 'Avoid infinite recursion' return None def checker(self): """Returns a 'check' JavaMethod for generated class for self.stmt""" assert self.gen is not self, 'Avoid infinite recursion' return self.gen.checker() if self.is_typedef else None def markers(self): """Generates methods that enqueues operations to be performed.""" assert self.gen is not self, 'Avoid infinite recursion' return None if self.is_typedef else self.gen.markers() def child_field(self): """Returns a string representing java code for a field""" assert self.gen is not self, 'Avoid infinite recursion' return self.gen.child_field() if self.is_container or self.is_anyxml or self.is_leaf else None def _parent_template(self, method_type): """Returns an access method for the statement of this method generator. method_type -- prefix of method name """ method = JavaMethod() if self.is_container or self.is_list or self.is_anyxml or self.is_anyxml: method.set_return_type(self.n) method.set_name(method_type + self.n) method.add_exception('JNCException') return self.fix_imports(method, child=True) def adders(self): """Returns a list of methods that adds an instance of the class to be generated from the statement of this method generator to its parent class. """ if self.is_leaflist: assert self.gen != self return self.gen.adders() elif not (self.is_container or self.is_list or self.is_anyxml or self.is_leaf): return None number_of_adders = 2 if self.is_list and self.gen.is_config: number_of_adders = 4 res = [self._parent_template('add') for _ in range(number_of_adders)] for i, method in enumerate(res): javadoc1 = ['Adds ', self.stmt.keyword, ' entry "', self.n2, '"'] javadoc2 = [] if i == 0: # Add existing object javadoc1.append(', using an existing object.') javadoc2.append(' '.join(['@param', self.n2, 'The object to add.'])) method.add_parameter(self.n, self.n2) elif self.is_list and i in {1, 2} and len(res) == 4: # Add child with String or JNC type keys javadoc1.append(', with specified keys.') if i == 2: javadoc2.append('The keys are specified as strings.') for key_stmt in self.gen.key_stmts: # print(key_stmt.arg) key_arg = util.camelize(key_stmt.arg) + 'Value' javadoc2.append(''.join(['@param ', key_arg, ' Key argument of child.'])) param_type, _ = util.get_types(key_stmt, self.ctx) if i == 2: param_type = 'String' method.add_parameter(param_type, key_arg) new_child = [self.n, ' ', self.n2, ' = new ', self.n, '('] keys = [util.camelize(s.arg) + 'Value' for s in self.gen.key_stmts] new_child.append(', '.join(keys)) new_child.append(');') method.add_line(''.join(new_child)) else: # Create new, for subtree filter usage javadoc1.append('.') javadoc2.append('This method is used for creating subtree filters.') method.add_line(' '.join([self.n, self.n2, '= new', self.n + '();'])) method.add_javadoc(''.join(javadoc1)) for javadoc in javadoc2: method.add_javadoc(javadoc) method.add_javadoc('@return The added child.') if self.is_container: method.add_line('this.' + self.n2 + ' = ' + self.n2 + ';') if self.is_list and i in {1, 2} and len(res) == 4: method.add_line('return ' + method.name + '(' + self.n2 + ');') elif self.is_leaf: method.set_return_type(self.n) method.add_line('this.' + self.n2 + ' = ' + self.n2 + ';') method.add_line('insertChild(' + self.n2 + ', childrenNames());') method.add_line('return ' + self.n2 + ';') else: method.add_line('insertChild(' + self.n2 + ', childrenNames());') method.add_line('return ' + self.n2 + ';') self.fix_imports(method, child=True) return res def getters(self): """Returns a list of JavaMethods representing getters to include in generated class of parent """ assert self.gen is not self, 'Avoid infinite recursion' return self.gen.getters() if self.is_list or self.is_leaf or self.is_anyxml else None def deleters(self): """Returns a list of JavaMethods representing deleters to include in generated class of parent """ assert self.gen is not self, 'Avoid infinite recursion' if not (self.is_list or self.is_container or self.is_leaflist or self.is_anyxml): return None else: return self.gen.deleters() def child_iterator(self): """Returns a java iterator method""" if not (self.is_leaflist or self.is_list): return None res = JavaMethod(name=(self.n2 + 'Iterator')) res.add_javadoc(''.join(['Iterator method for the ', self.stmt.keyword, ' "', self.stmt.arg, '".'])) res.add_javadoc(''.join(['@return An iterator for the ', self.stmt.keyword, '.'])) return_stmt = ['return new Element'] if self.is_leaflist: res.set_return_type('ElementLeafListValueIterator') return_stmt.append('LeafListValue') else: # List res.set_return_type(''.join(['ElementChildrenIterator', '<', self.n, '>'])) return_stmt.append('Children') return_stmt.extend(['Iterator(children, "', self.stmt.arg, '");']) res.add_line(''.join(return_stmt)) return self.fix_imports(res) def parent_access_methods(self): assert self.gen is not self, 'Avoid infinite recursion' if self.is_container or self.is_list or self.is_anyxml or self.is_leaf or self.is_leaflist: return self.gen.parent_access_methods() else: return None def leaf_value_access_methods(self): assert self.gen is not self, 'This method must be overriden' assert self.is_leaf or self.is_leaflist return self.gen.leaf_value_access_methods() def create_value_method(self, this_class_name, value_type): assert self.is_leaf or self.is_leaflist static_type_factory = JavaMethod(name='createValue') dependency = static_type_factory.add_dependency(value_type, this_class_name) param_name = 'stringRepresentation' static_type_factory.add_parameter('String', param_name, this_class_name) static_type_factory.add_exception('JNCException') static_type_factory.set_return_type(dependency, this_class_name) return_stmt = 'return ' if self.gen.type_str[0] == 'io.netconfessor.YangEmpty': static_type_factory.add_parameter('String', param_name) l = [return_stmt, 'new ', dependency, '();'] static_type_factory.add_line(''.join(l)) else: line = [return_stmt, 'new ', dependency, '(', param_name] if self.gen.type_str[0] == 'io.netconfessor.YangUnion': line.append(', new String[] {') static_type_factory.add_line(''.join(line)) for type_stmt in util.search(self.gen.base_type, 'type'): member_type, _ = util.get_types(type_stmt, self.gen.ctx) static_type_factory.add_line(' "' + member_type + '",') line = ['}'] elif self.gen.type_str[0] == 'io.netconfessor.YangEnumeration': line.append(', new String[] {') static_type_factory.add_line(''.join(line)) for enum in util.search(self.gen.base_type, 'enum'): static_type_factory.add_line(' ' + util.capitalize(enum.arg) + ',') line = ['}'] elif self.gen.type_str[0] == 'io.netconfessor.YangBits': line.append(',') static_type_factory.add_line(''.join(line)) mask = 0 smap = [' new String[] {'] imap = [' new int[] {'] position = 0 for bit in util.search(self.gen.base_type, 'bit'): smap.extend(['"', bit.arg, '", ']) pos_stmt = util.search_one(bit, 'position') if pos_stmt: position = int(pos_stmt.arg) imap.extend([str(position), ', ']) mask += 1 << position position += 1 smap.append('},') imap.append('}') static_type_factory.add_line(''.join([' new BigInteger("', str(mask), '"),'])) static_type_factory.add_line(''.join(smap)) static_type_factory.add_line(''.join(imap)) line = [] elif self.gen.type_str[0] == 'io.netconfessor.YangDecimal64': frac_digits = util.search_one(self.gen.base_type, 'fraction-digits') line.extend([', ', frac_digits.arg]) line.append(');') static_type_factory.add_line(''.join(line)) self.fix_imports(static_type_factory, child=True) return static_type_factory def value_method(self, this_class_name, value_type): assert self.is_leaf or self.is_leaflist setter = JavaMethod(name='value') setter.add_exception('JNCException') param_name = self.n2 + 'Value' setter.add_javadoc('Sets the value ' + self.stmt.keyword + ' "' + self.stmt.arg + '",') setter.add_line(''.join(['setValue(', param_name, ');'])) setter.add_parameter(value_type, param_name, this_class_name) setter.add_javadoc(' '.join(['@param', param_name, 'used during instantiation.'])) self.fix_imports(setter, child=True) return setter def get_value_method(self, this_class_name, value_type): assert self.is_leaf or self.is_leaflist getter = JavaMethod(name='value') getter.set_return_type(value_type, this_class_name) getter.add_line(' '.join(['return', '(' + getter.add_dependency(value_type, this_class_name) + ')', 'getValue();'])) self.fix_imports(getter, child=True) return getter def get_value_class_method(self, this_class_name, value_type): assert self.is_leaf or self.is_leaflist getter = JavaMethod(name='valueClass') getter.set_return_type_generic('Class', value_type, this_class_name) getter.add_line(' '.join(['return', getter.add_dependency(value_type, this_class_name) + '.class;'])) self.fix_imports(getter, child=True) return getter def default_value_method(self, this_class_name, value_type): assert self.is_leaf or self.is_leaflist default_getter = JavaMethod(name='defaultValue') default_getter.set_return_type(value_type, this_class_name) default_getter.add_exception('JNCException') # Leaves with a default value returns it instead of null if self.gen.default: new_value = ['new ', default_getter.return_type, '("', self.gen.default_value] if self.gen.type_str[0] == 'io.netconfessor.YangUnion': new_value.append('", new String[] { \n') for type_stmt in util.search(self.gen.base_type, 'type'): member_type, _ = util.get_types(type_stmt, self.gen.ctx) new_value.append(' ' * 16 + '"' + member_type + '",\n') new_value.append(' ' * 12 + '})') elif self.gen.type_str[0] == 'io.netconfessor.YangEnumeration': new_value.append('", new String[] {\n') for enum in util.search(self.gen.base_type, 'enum'): new_value.append(' ' * 16 + '"' + enum.arg + '",\n') new_value.append(' ' * 12 + '})') elif self.gen.type_str[0] == 'io.netconfessor.YangBits': new_value.append('",') default_getter.add_line(''.join(new_value)) mask = 0 smap = [' new String[] {'] imap = [' new int[] {'] position = 0 for bit in util.search(self.gen.base_type, 'bit'): smap.extend(['"', bit.arg, '", ']) pos_stmt = util.search_one(bit, 'position') if pos_stmt: position = int(pos_stmt.arg) imap.extend([str(position), ', ']) mask += 1 << position position += 1 smap.append('},') imap.append('}') line = [' ' * 8, 'new BigInteger("', str(mask), '"),'] default_getter.add_line(''.join(line)) default_getter.add_line(''.join(smap)) default_getter.add_line(''.join(imap)) new_value = [' )'] elif self.gen.type_str[0] == 'io.netconfessor.YangDecimal64': fraction_digits = util.search_one(self.gen.base_type, 'fraction-digits') new_value.extend(['", ', fraction_digits.arg, ')']) else: new_value.append('")') default_getter.add_line(''.join(['return ', ''.join(new_value), ';'])) else: default_getter.add_line('return null;') self.fix_imports(default_getter, child=True) return default_getter def is_key_method(self): assert self.is_leaf default_getter_predicate = JavaMethod(name='isKey') default_getter_predicate.set_return_type('boolean') default_getter_predicate.add_line('return ' + ('true' if self.gen.is_key else 'false') + ";") self.gen.fix_imports(default_getter_predicate, child=True) return default_getter_predicate def has_default_value_method(self): assert self.is_leaf or self.is_leaflist default_getter_predicate = JavaMethod(name='hasDefaultValue') default_getter_predicate.set_return_type('boolean') default_getter_predicate.add_line('return ' + ('true' if self.gen.default else 'false') + ";") self.gen.fix_imports(default_getter_predicate, child=True) return default_getter_predicate def instantiate_value_method(self, this_class_name, value_type): assert self.is_leaf or self.is_leaflist type_factory_method = JavaMethod(name='instantiateValue') param_name = 'stringRepresentation' type_factory_method.add_parameter('String', param_name, this_class_name) type_factory_method.add_exception('JNCException') setter_name = 'value' if self.gen.type_str[0] == 'io.netconfessor.YangEmpty': type_factory_method.add_parameter('String', param_name) l = [setter_name, '(new ', type_factory_method.add_dependency(value_type, this_class_name), '());'] type_factory_method.add_line(''.join(l)) else: line = [setter_name, '(new ', type_factory_method.add_dependency(value_type, this_class_name), '(', param_name] if self.gen.type_str[0] == 'io.netconfessor.YangUnion': line.append(', new String[] {') type_factory_method.add_line(''.join(line)) for type_stmt in util.search(self.gen.base_type, 'type'): member_type, _ = util.get_types(type_stmt, self.gen.ctx) type_factory_method.add_line(' "' + member_type + '",') line = ['}'] elif self.gen.type_str[0] == 'io.netconfessor.YangEnumeration': line.append(', new String[] {') type_factory_method.add_line(''.join(line)) for enum in util.search(self.gen.base_type, 'enum'): type_factory_method.add_line(' "' + enum.arg + '",') line = ['}'] elif self.gen.type_str[0] == 'io.netconfessor.YangBits': line.append(',') type_factory_method.add_line(''.join(line)) mask = 0 smap = [' new String[] {'] imap = [' new int[] {'] position = 0 for bit in util.search(self.gen.base_type, 'bit'): smap.extend(['"', bit.arg, '", ']) pos_stmt = util.search_one(bit, 'position') if pos_stmt: position = int(pos_stmt.arg) imap.extend([str(position), ', ']) mask += 1 << position position += 1 smap.append('},') imap.append('}') type_factory_method.add_line(''.join([' new BigInteger("', str(mask), '"),'])) type_factory_method.add_line(''.join(smap)) type_factory_method.add_line(''.join(imap)) line = [] elif self.gen.type_str[0] == 'io.netconfessor.YangDecimal64': frac_digits = util.search_one(self.gen.base_type, 'fraction-digits') line.extend([', ', frac_digits.arg]) line.append('));') type_factory_method.add_line(''.join(line)) self.fix_imports(type_factory_method, child=True) return type_factory_method def enums(self): return self.gen.enums() def enum_consts(self): return self.gen.enum_consts()
45.664223
114
0.568218
97b8de7b0b9b2435af45d70e232e8e137cbcbf47
1,289
py
Python
S202-mongo-crud/db/database.py
GuilhermeMarcondesPixel/labS202
671dd8ba88e25fdfc70eae517b305367ea8c0a50
[ "MIT" ]
null
null
null
S202-mongo-crud/db/database.py
GuilhermeMarcondesPixel/labS202
671dd8ba88e25fdfc70eae517b305367ea8c0a50
[ "MIT" ]
null
null
null
S202-mongo-crud/db/database.py
GuilhermeMarcondesPixel/labS202
671dd8ba88e25fdfc70eae517b305367ea8c0a50
[ "MIT" ]
null
null
null
import pymongo class Database: def __init__(self, database, collection, dataset=None): connectionString = "mongodb://localhost:27017/?readPreference=primary&appname=MongoDB%20Compass&directConnection=true&ssl=false" self.clusterConnection = pymongo.MongoClient( connectionString, # CASO OCORRA O ERRO [SSL_INVALID_CERTIFICATE] tlsAllowInvalidCertificates=True ) self.db = self.clusterConnection[database] self.collection = self.db[collection] if dataset: self.dataset = dataset def resetDatabase(self): self.db.drop_collection(self.collection) self.collection.insert_many(self.dataset) def create(self, nome, autor, ano, preco): return self.collection.insert_one({"nome": nome, "autor": autor, "ano": ano, "preco": preco}) def read(self): return self.collection.find({}) def update(self, nome, preco): return self.collection.update_one( {"nome": nome}, { "$set": {"nome": nome}, "$set": {"preco": preco}, "$currentDate": {"lastModified": True} } ) def delete(self, nome): return self.collection.delete_one({"nome": nome})
33.051282
136
0.605896
c0e69480886dfb96a16903c170a1062298287263
5,755
py
Python
server/app/outputs/dmxfixtures/gobo.py
BasementCat/audio-reactive-led-strip
acbfd3709ecf3f970c604045bb62da0b47661330
[ "MIT" ]
1
2020-05-14T06:27:34.000Z
2020-05-14T06:27:34.000Z
server/app/outputs/dmxfixtures/gobo.py
BasementCat/audio-reactive-led-strip
acbfd3709ecf3f970c604045bb62da0b47661330
[ "MIT" ]
null
null
null
server/app/outputs/dmxfixtures/gobo.py
BasementCat/audio-reactive-led-strip
acbfd3709ecf3f970c604045bb62da0b47661330
[ "MIT" ]
null
null
null
import random from app.effects import Effect from app.lib.misc import map_to_range from . import BasicDMX from .movinghead import MovingHeadMixin class GoboMixin: INVERT = ['speed', 'strobe'] CLEAR_EFFECTS_ON_NEW_STATE = ['pan', 'tilt', 'speed', 'dim'] RESET_ON_NEW_STATE = ['speed', 'dim'] def _get_dead_coasting_effects(self): color = self.map_color(None, 1, 0) gobo = self.map_gobo(None, 1, 0) return { 'color': Effect(color, color, 8), 'gobo': Effect(gobo, gobo, 8), } def _map_pan_tilt(self, function, trigger, value, threshold): if value < threshold: return cur_value = self.auto_state[function] distance = int(map_to_range(value, threshold) * (max(cur_value, 255 - cur_value))) choices = [ min(cur_value + distance, 255), max(cur_value - distance, 0), ] return random.choice(choices) def map_pan(self, trigger, value, threshold): return self._map_pan_tilt('pan', trigger, value, threshold) def map_tilt(self, trigger, value, threshold): return self._map_pan_tilt('tilt', trigger, value, threshold) def map_color(self, trigger, value, threshold): if value >= threshold: half_color = random.random() > 0.75 if half_color: return random.randint(57, 127) return random.randint(0, 56) def map_gobo(self, trigger, value, threshold): if value >= threshold: dither = random.random() > 0.75 if dither: return random.randint(64, 127) return random.randint(0, 63) def map_strobe(self, trigger, value, threshold): # should set a high threshold for this if value > threshold: # TODO: might need a different value for some lights if 'strobe' not in self.effects: self.effects['strobe'] = Effect(255, 255, 1, 0) class UKingGobo(GoboMixin, MovingHeadMixin, BasicDMX): FUNCTIONS = { 'pan': 1, 'pan_fine': 2, 'tilt': 3, 'tilt_fine': 4, 'color': 5, 'gobo': 6, 'strobe': 7, 'dim': 8, 'speed': 9, 'mode': 10, 'dim_mode': 11, } INITIALIZE = { 'pan': 0, 'pan_fine': 0, 'tilt': 0, 'tilt_fine': 0, 'color': 0, 'gobo': 0, 'strobe': 0, 'dim': 255, 'speed': 255, 'mode': 0, 'dim_mode': 0 } RATES = { 'pan': 0.75, 'tilt': 0.75, 'gobo': 0.25, 'color': 0.25, 'strobe': 10, 'dim': 0.125, } ENUMS = { 'color': { 'white': (0, 9), 'red': (10, 19), 'green': (20, 29), 'blue': (30, 39), 'yellow': (40, 49), 'orange': (50, 59), 'cyan': (60, 69), 'pink': (70, 79), 'pink_cyan': (80, 89), 'cyan_orange': (90, 99), 'orange_yellow': (100, 109), 'yellow_blue': (110, 119), 'blue_green': (120, 127), }, 'gobo': { 'none': (0, 7), 'broken_circle': (8, 15), 'burst': (16, 23), '3_spot_circle': (24, 31), 'square_spots': (32, 39), 'droplets': (40, 47), 'swirl': (48, 55), 'stripes': (56, 63), 'dither_none': (64, 71), 'dither_broken_circle': (72, 79), 'dither_burst': (80, 87), 'dither_3_spot_circle': (88, 95), 'dither_square_spots': (96, 103), 'dither_droplets': (104, 111), 'dither_swirl': (112, 119), 'dither_stripes': (120, 127), } } class UnnamedGobo(GoboMixin, MovingHeadMixin, BasicDMX): FUNCTIONS = { 'pan': 1, 'pan_fine': 2, 'tilt': 3, 'tilt_fine': 4, 'color': 5, 'gobo': 6, 'strobe': 7, 'dim': 8, 'speed': 9, 'mode': 10, 'dim_mode': 11, # Actually reset, but changing the name fucks with linking } INITIALIZE = { 'pan': 0, 'pan_fine': 0, 'tilt': 0, 'tilt_fine': 0, 'color': 0, 'gobo': 0, 'strobe': 0, 'dim': 255, 'speed': 255, 'mode': 0, 'dim_mode': 0, } RATES = { 'pan': 0.75, 'tilt': 0.75, 'gobo': 0.25, 'color': 0.25, 'strobe': 10, 'dim': 0.125, } ENUMS = { 'color': { 'white': (0, 9), 'yellow': (10, 19), 'orange': (20, 29), 'cyan': (30, 39), 'blue': (40, 49), 'green': (50, 59), 'pink': (60, 69), 'red': (70, 79), 'pink_red': (80, 89), 'green_pink': (90, 99), 'blue_green': (100, 109), 'cyan_blue': (110, 119), 'orange_cyan': (120, 129), 'yellow_orange': (130, 139), }, 'gobo': { 'none': (0, 7), 'broken_circle': (8, 15), 'burst': (16, 23), '3_spot_circle': (24, 31), 'square_spots': (32, 39), 'droplets': (40, 47), 'swirl': (48, 55), 'stripes': (56, 63), 'dither_none': (64, 71), 'dither_broken_circle': (72, 79), 'dither_burst': (80, 87), 'dither_3_spot_circle': (88, 95), 'dither_square_spots': (96, 103), 'dither_droplets': (104, 111), 'dither_swirl': (112, 119), 'dither_stripes': (120, 127), } }
27.274882
90
0.45404
1d30b7ed836531f3ae4ab21ecca843cff8f9edac
5,523
py
Python
configs/representation/archive/rnd_moco/rnd-moco_r18_rnd_video_2x8x1_50e_k400_rgb.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
configs/representation/archive/rnd_moco/rnd-moco_r18_rnd_video_2x8x1_50e_k400_rgb.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
configs/representation/archive/rnd_moco/rnd-moco_r18_rnd_video_2x8x1_50e_k400_rgb.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
# model settings temperature = 0.01 with_norm = True query_dim = 128 model = dict( type='RNDMoCoTracker', queue_dim=query_dim, img_queue_size=256 * 48, patch_queue_size=256 * 144, backbone=dict( type='ResNet', pretrained=None, depth=18, out_indices=(3, ), strides=(1, 2, 1, 1), norm_eval=False, zero_init_residual=True), cls_head=dict( type='UVCHead', loss_feat=None, loss_aff=dict( type='ConcentrateLoss', win_len=8, stride=8, temperature=temperature, with_norm=with_norm, loss_weight=1.), loss_bbox=dict(type='L1Loss', loss_weight=10.), in_channels=512, channels=128, temperature=temperature, with_norm=with_norm, init_std=0.01, track_type='center'), img_head=dict( type='MoCoHead', loss_feat=dict(type='MultiPairNCE', loss_weight=1.), in_channels=512, channels=query_dim, temperature=temperature, with_norm=with_norm), patch_head=dict( type='MoCoHead', loss_feat=dict(type='MultiPairNCE', loss_weight=1.), in_channels=512, channels=query_dim, temperature=temperature, with_norm=with_norm), ) # model training and testing settings train_cfg = dict( patch_size=96, diff_crop=False, skip_cycle=True, strong_aug=True, center_ratio=0., shuffle_bn=True) test_cfg = dict( precede_frames=7, topk=5, temperature=temperature, strides=(1, 2, 1, 1), out_indices=( 2, 3, ), neighbor_range=40, with_norm=with_norm, output_dir='eval_results') # dataset settings dataset_type = 'VideoDataset' dataset_type_val = 'DavisDataset' data_prefix = 'data/kinetics400/videos_train' ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt' data_prefix_val = 'data/davis/DAVIS/JPEGImages/480p' anno_prefix_val = 'data/davis/DAVIS/Annotations/480p' data_root_val = 'data/davis/DAVIS' ann_file_val = 'data/davis/DAVIS/ImageSets/davis2017_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='DecordInit'), dict(type='SampleFrames', clip_len=2, frame_interval=8, num_clips=1), dict(type='DuplicateFrames', times=2), dict(type='DecordDecode'), # dict(type='Resize', scale=(-1, 256)), # dict(type='RandomResizedCrop'), dict(type='Resize', scale=(256, 256), keep_ratio=False), dict(type='Flip', flip_ratio=0.5), dict(type='PhotoMetricDistortion', p=0.8), dict(type='RandomGrayScale', p=0.2), dict(type='RandomGaussianBlur', p=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict(type='SequentialSampleFrames', frame_interval=1), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 480), keep_ratio=True), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict( type='Collect', keys=['imgs', 'ref_seg_map'], meta_keys=('frame_dir', 'frame_inds', 'original_shape', 'seg_map')), dict(type='ToTensor', keys=['imgs', 'ref_seg_map']) ] data = dict( videos_per_gpu=48, workers_per_gpu=4, val_workers_per_gpu=1, train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_prefix, pipeline=train_pipeline), val=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True), test=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True)) # optimizer optimizer = dict(type='Adam', lr=1e-4) # optimizer = dict(type='SGD', lr=1e-1) optimizer_config = dict(grad_clip=None) # learning policy # lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False) lr_config = dict(policy='Fixed') # lr_config = dict( # policy='step', # warmup='linear', # warmup_iters=100, # warmup_ratio=0.001, # step=[1, 2]) total_epochs = 50 checkpoint_config = dict(interval=1) evaluation = dict( interval=1, metrics='davis', key_indicator='feat_1.J&F-Mean', rule='greater') log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), dict( type='WandbLoggerHook', init_kwargs=dict( project='mmaction2', name='{{fileBasenameNoExtension}}', resume=True, tags=['rnd-moco'], dir='wandb/{{fileBasenameNoExtension}}', config=dict( model=model, train_cfg=train_cfg, test_cfg=test_cfg, data=data))), ]) # runtime settings dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] find_unused_parameters = False
30.346154
78
0.626833
86fa28aef5eee3258dec4af4a85c12300ec31810
9,003
py
Python
src/mechaclient.py
diraven/pipsqueak3
5b6ea19dbc22944beaccf41e5f2589bf31fa8bb5
[ "BSD-3-Clause" ]
null
null
null
src/mechaclient.py
diraven/pipsqueak3
5b6ea19dbc22944beaccf41e5f2589bf31fa8bb5
[ "BSD-3-Clause" ]
null
null
null
src/mechaclient.py
diraven/pipsqueak3
5b6ea19dbc22944beaccf41e5f2589bf31fa8bb5
[ "BSD-3-Clause" ]
null
null
null
""" mechaclient.py - Pydle Client component for mechasqueak3 Copyright (c) 2018 The Fuel Rat Mischief, All rights reserved. Licensed under the BSD 3-Clause License. See LICENSE.md This module is built on top of the Pydle system. """ import functools from typing import Optional from loguru import logger from uuid import uuid4 from pydle import Client from .config.datamodel import ConfigRoot from .packages.board import RatBoard from .packages.commands import trigger from .packages.fuelrats_api.v3.interface import ApiV300WSS from .packages.permissions import require_permission, TECHRAT from .packages.context.context import Context from .packages.fact_manager.fact_manager import FactManager from .packages.galaxy import Galaxy from .packages.graceful_errors import graceful_errors from .packages.utils import sanitize from .features.message_history import MessageHistoryClient from typing import Dict from datetime import datetime, timezone import prometheus_client from prometheus_async.aio import time as aio_time ON_MESSAGE_TIME = prometheus_client.Histogram( name="on_message", namespace="client", documentation="time in on_message", unit="seconds" ) TRACKED_MESSAGES = prometheus_client.Gauge( namespace="client", name="tracked_messages", documentation="number of last messages tracked" ) IGNORED_MESSAGES = prometheus_client.Counter( name="ignored_messages", namespace="client", documentation="messages ignored by the client." ) ERRORS = prometheus_client.Counter( name="errors", namespace="client", documentation="errors detected during message handling" ) @require_permission(TECHRAT) async def _on_invite(ctx: Context): await ctx.bot.join(ctx.channel) class MechaClient(Client, MessageHistoryClient): """ MechaSqueak v3_tests """ __version__ = "3.0a" def __init__(self, *args, mecha_config: ConfigRoot, **kwargs): """ Custom mechasqueak constructor Unused arguments are passed through to pydle's constructor Args: *args (list): arguments **kwargs (list): keyword arguments """ self._api_handler: Optional[ApiV300WSS] = None self._fact_manager = None # Instantiate Global Fact Manager self._last_user_message: Dict[str, str] = {} # Holds last message from user, by irc nick self._rat_cache = None # TODO: replace with ratcache once it exists self._rat_board = None # Instantiate Rat Board self._config = mecha_config self._galaxy = None self._start_time = datetime.now(tz=timezone.utc) self._on_invite = require_permission(TECHRAT)(functools.partial(self._on_invite)) TRACKED_MESSAGES.set_function(lambda: len(self._last_user_message)) super().__init__(*args, **kwargs) async def on_connect(self): """ Called upon connection to the IRC server :return: """ logger.debug(f"Connecting to channels...") # join a channel for channel in self._config.irc.channels: logger.debug(f"Configured channel {channel}") await self.join(channel) logger.debug("joined channels.") # call the super await super().on_connect() # # def on_join(self, channel, user): # super().on_join(channel, user) async def on_invite(self, channel, by): logger.info(f"invited to channel {channel!r} by user {by!r}") # create context from message, tie the channel to the sender # (this ensures access-denys get sent to the right place) ctx = await Context.from_message(self, sender=by, channel=by, message=channel) logger.debug("invited to channel, context is {}", ctx) return await self._on_invite(ctx) async def _on_invite(self, ctx): await self.join(ctx.words[0]) @aio_time(ON_MESSAGE_TIME) async def on_message(self, channel, user, message: str): """ Triggered when a message is received :param channel: Channel the message arrived in :param user: user that triggered the message :param message: message body :return: """ await super().on_message(channel, user, message) logger.debug(f"{channel}: <{user}> {message}") if user == self._config.irc.nickname: # don't do this and the bot can get int o an infinite # self-stimulated positive feedback loop. logger.debug(f"Ignored {message} (anti-loop)") IGNORED_MESSAGES.inc() return None # await command execution # sanitize input string headed to command executor sanitized_message = sanitize(message) logger.debug(f"Sanitized {sanitized_message}, Original: {message}") try: self._last_user_message[user.casefold()] = sanitized_message # Store sanitized message ctx = await Context.from_message( self, channel=channel, sender=user, message=sanitized_message ) if not ctx.words: logger.trace("ignoring empty message") IGNORED_MESSAGES.inc() return await trigger(ctx) # Disable pylint's complaint here, as a broad catch is exactly what we want. except Exception as ex: # pylint: disable=broad-except ERRORS.inc() ex_uuid = uuid4() logger.exception(ex_uuid) error_message = graceful_errors.make_graceful(ex, ex_uuid) # and report it to the user await self.message(channel, error_message) # Vhost Handler async def on_raw_396(self, message): """ Handle an IRC 396 message. This message is sent upon successful application of a host mask via usermode +x. """ logger.info(f"{message.params[0]}@{message.params[1]} {message.params[2]}.") @property def rat_cache(self) -> object: """ Rat Cache """ return self._rat_cache @property def fact_manager(self) -> FactManager: """ Fact Manager This is initialized in a lazy way to increase overall startup speed. """ if not self._fact_manager: # Instantiate Global Fact Manager self._fact_manager = FactManager() return self._fact_manager @fact_manager.setter def fact_manager(self, manager: FactManager): """ Fact Manager Setter. """ if not isinstance(manager, FactManager): raise TypeError("fact_manager requires a FactManager.") logger.warning("Fact manager setter invoked!") self._fact_manager = manager @fact_manager.deleter def fact_manager(self): """ Fact Manager Deleter """ logger.warning("Fact Manager deleter invoked!") del self._fact_manager self._fact_manager = None @property def api_handler(self) -> ApiV300WSS: """ API Handler property """ if self._api_handler is None: self._api_handler = ApiV300WSS(config=self._config.api) self.board.api_handler = self._api_handler return self._api_handler @property def board(self) -> RatBoard: """ Rat Board property """ if self._rat_board is None: self._rat_board = RatBoard( api_handler=self._api_handler if self._api_handler else None ) # Create Rat Board Object return self._rat_board @board.setter def board(self, value): """ Rat Board Setter """ if not isinstance(value, RatBoard): raise TypeError("board property must be of type RatBoard.") logger.warning("Board Setter invoked!") self._rat_board = value @board.deleter def board(self): """ Rat Board Deleter """ logger.warning("Board Deleted!") del self._rat_board self._rat_board = None @property def galaxy(self) -> Galaxy: """ Galaxy property """ if not self._galaxy: self._galaxy = Galaxy() return self._galaxy @galaxy.setter def galaxy(self, value): """ Galaxy setter """ if not isinstance(value, Galaxy): raise TypeError("galaxy property must be of type Galaxy.") logger.warning("Galaxy Setter invoked!") self._galaxy = value @galaxy.deleter def galaxy(self): """ Galaxy deleter """ logger.warning("Galaxy deleted!") del self._galaxy self._galaxy = None @property def last_user_message(self) -> Dict[str, str]: return self._last_user_message @property def start_time(self) -> datetime: return self._start_time
29.910299
99
0.632789
1ee340ba9d8036fb68a02e137f776b96ac607bb1
14,586
py
Python
test/integration/test_auth.py
ubragg/endpoints-management-python
119c1f1d9a79217194beb0685a5fd11008695c19
[ "Apache-2.0" ]
null
null
null
test/integration/test_auth.py
ubragg/endpoints-management-python
119c1f1d9a79217194beb0685a5fd11008695c19
[ "Apache-2.0" ]
null
null
null
test/integration/test_auth.py
ubragg/endpoints-management-python
119c1f1d9a79217194beb0685a5fd11008695c19
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from future import standard_library standard_library.install_aliases() from builtins import object import copy import flask import mock import os import ssl import threading import time import unittest from Crypto import PublicKey from jwkest import ecc from jwkest import jwk from test import token_utils from endpoints_management import auth from endpoints_management.auth import suppliers from endpoints_management.auth import tokens class IntegrationTest(unittest.TestCase): _CURRENT_TIME = int(time.time()) _PORT = 8080 _ISSUER = u"https://localhost:%d" % _PORT _PROVIDER_ID = u"localhost" _INVALID_X509_PATH = u"invalid-x509" _JWKS_PATH = u"jwks" _SERVICE_NAME = u"service@name.com" _X509_PATH = u"x509" _JWT_CLAIMS = { u"aud": [u"https://aud1.local.host", u"https://aud2.local.host"], u"exp": _CURRENT_TIME + 60, u"email": u"user@local.host", u"iss": _ISSUER, u"sub": u"subject-id"} _ec_jwk = jwk.ECKey(use=u"sig").load_key(ecc.P256) _rsa_key = jwk.RSAKey(use=u"sig").load_key(PublicKey.RSA.generate(1024)) _ec_jwk.kid = u"ec-key-id" _rsa_key.kid = u"rsa-key-id" _mock_timer = mock.MagicMock() _jwks = jwk.KEYS() _jwks._keys.append(_ec_jwk) _jwks._keys.append(_rsa_key) _AUTH_TOKEN = token_utils.generate_auth_token(_JWT_CLAIMS, _jwks._keys, alg=u"RS256", kid=_rsa_key.kid) @classmethod def setUpClass(cls): dirname = os.path.dirname(os.path.realpath(__file__)) cls._cert_file = os.path.join(dirname, u"ssl.cert") cls._key_file = os.path.join(dirname, u"ssl.key") os.environ[u"REQUESTS_CA_BUNDLE"] = cls._cert_file rest_server = cls._RestServer() rest_server.start() def setUp(self): self._provider_ids = {} self._configs = {} self._authenticator = auth.create_authenticator(self._provider_ids, self._configs) self._auth_info = mock.MagicMock() self._auth_info.is_provider_allowed.return_value = True self._auth_info.get_allowed_audiences.return_value = [ u"https://aud1.local.host"] def test_verify_auth_token_with_jwks(self): url = get_url(IntegrationTest._JWKS_PATH) self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, url) user_info = self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) self._assert_user_info_equals(tokens.UserInfo(IntegrationTest._JWT_CLAIMS), user_info) def test_authenticate_auth_token_with_bad_signature(self): new_rsa_key = jwk.RSAKey(use=u"sig").load_key(PublicKey.RSA.generate(2048)) kid = IntegrationTest._rsa_key.kid new_rsa_key.kid = kid new_jwks = jwk.KEYS() new_jwks._keys.append(new_rsa_key) auth_token = token_utils.generate_auth_token(IntegrationTest._JWT_CLAIMS, new_jwks._keys, alg=u"RS256", kid=kid) url = get_url(IntegrationTest._JWKS_PATH) self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, url) message = u"Signature verification failed" with self.assertRaisesRegexp(suppliers.UnauthenticatedException, message): self._authenticator.authenticate(auth_token, self._auth_info, IntegrationTest._SERVICE_NAME) def test_verify_auth_token_with_x509(self): url = get_url(IntegrationTest._X509_PATH) self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, url) user_info = self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) self._assert_user_info_equals(tokens.UserInfo(IntegrationTest._JWT_CLAIMS), user_info) def test_verify_auth_token_with_invalid_x509(self): url = get_url(IntegrationTest._INVALID_X509_PATH) self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, url) message = u"Cannot load X.509 certificate" with self.assertRaisesRegexp(suppliers.UnauthenticatedException, message): self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) def test_openid_discovery(self): self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(True, None) user_info = self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) self._assert_user_info_equals(tokens.UserInfo(IntegrationTest._JWT_CLAIMS), user_info) def test_openid_discovery_failed(self): self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, None) message = (u"Cannot find the `jwks_uri` for issuer %s" % IntegrationTest._ISSUER) with self.assertRaisesRegexp(suppliers.UnauthenticatedException, message): self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) def test_authenticate_with_malformed_auth_code(self): with self.assertRaisesRegexp(suppliers.UnauthenticatedException, u"Cannot decode the auth token"): self._authenticator.authenticate(u"invalid-auth-code", self._auth_info, IntegrationTest._SERVICE_NAME) def test_authenticate_with_disallowed_issuer(self): url = get_url(IntegrationTest._JWKS_PATH) self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, url) message = u"Unknown issuer: " + self._ISSUER with self.assertRaisesRegexp(suppliers.UnauthenticatedException, message): self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) def test_authenticate_with_unknown_issuer(self): message = (u"Cannot find the `jwks_uri` for issuer %s: " u"either the issuer is unknown") % IntegrationTest._ISSUER with self.assertRaisesRegexp(suppliers.UnauthenticatedException, message): self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) def test_authenticate_with_invalid_audience(self): url = get_url(IntegrationTest._JWKS_PATH) self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, url) self._auth_info.get_allowed_audiences.return_value = [] with self.assertRaisesRegexp(suppliers.UnauthenticatedException, u"Audiences not allowed"): self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) @mock.patch(u"time.time", _mock_timer) def test_authenticate_with_expired_auth_token(self): url = get_url(IntegrationTest._JWKS_PATH) self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, url) IntegrationTest._mock_timer.return_value = 0 # Create an auth token that expires in 10 seconds. jwt_claims = copy.deepcopy(IntegrationTest._JWT_CLAIMS) jwt_claims[u"exp"] = time.time() + 10 auth_token = token_utils.generate_auth_token(jwt_claims, IntegrationTest._jwks._keys, alg=u"RS256", kid=IntegrationTest._rsa_key.kid) # Verify that the auth token can be authenticated successfully. self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) # Advance the timer by 20 seconds and make sure the token is expired. IntegrationTest._mock_timer.return_value += 20 message = u"The auth token has already expired" with self.assertRaisesRegexp(suppliers.UnauthenticatedException, message): self._authenticator.authenticate(auth_token, self._auth_info, IntegrationTest._SERVICE_NAME) def test_invalid_openid_discovery_url(self): issuer = u"https://invalid.issuer" self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[issuer] = suppliers.IssuerUriConfig(True, None) jwt_claims = copy.deepcopy(IntegrationTest._JWT_CLAIMS) jwt_claims[u"iss"] = issuer auth_token = token_utils.generate_auth_token(jwt_claims, IntegrationTest._jwks._keys, alg=u"RS256", kid=IntegrationTest._rsa_key.kid) message = u"Cannot discover the jwks uri" with self.assertRaisesRegexp(suppliers.UnauthenticatedException, message): self._authenticator.authenticate(auth_token, self._auth_info, IntegrationTest._SERVICE_NAME) def test_invalid_jwks_uri(self): url = u"https://invalid.jwks.uri" self._provider_ids[self._ISSUER] = self._PROVIDER_ID self._configs[IntegrationTest._ISSUER] = suppliers.IssuerUriConfig(False, url) message = u"Cannot retrieve valid verification keys from the `jwks_uri`" with self.assertRaisesRegexp(suppliers.UnauthenticatedException, message): self._authenticator.authenticate(IntegrationTest._AUTH_TOKEN, self._auth_info, IntegrationTest._SERVICE_NAME) def _assert_user_info_equals(self, expected, actual): self.assertEqual(expected.audiences, actual.audiences) self.assertEqual(expected.email, actual.email) self.assertEqual(expected.subject_id, actual.subject_id) self.assertEqual(expected.issuer, actual.issuer) class _RestServer(object): def __init__(self): app = flask.Flask(u"integration-test-server") @app.route(u"/" + IntegrationTest._JWKS_PATH) def get_json_web_key_set(): # pylint: disable=unused-variable return IntegrationTest._jwks.dump_jwks() @app.route(u"/" + IntegrationTest._X509_PATH) def get_x509_certificates(): # pylint: disable=unused-variable cert = IntegrationTest._rsa_key.key.publickey().exportKey(u"PEM") return flask.jsonify({IntegrationTest._rsa_key.kid: cert.decode('ascii')}) @app.route(u"/" + IntegrationTest._INVALID_X509_PATH) def get_invalid_x509_certificates(): # pylint: disable=unused-variable return flask.jsonify({IntegrationTest._rsa_key.kid: u"invalid cert"}) @app.route(u"/.well-known/openid-configuration") def get_openid_configuration(): # pylint: disable=unused-variable return flask.jsonify({u"jwks_uri": get_url(IntegrationTest._JWKS_PATH)}) self._application = app def start(self): def run_app(): ssl_context = (IntegrationTest._cert_file, IntegrationTest._key_file) self._application.run(port=IntegrationTest._PORT, ssl_context=ssl_context) thread = threading.Thread(target=run_app, args=()) thread.daemon = True thread.start() def get_url(path): return u"https://localhost:%d/%s" % (IntegrationTest._PORT, path)
48.782609
90
0.595503
0ea0591ca1cf44e1097cc1c75d2be384875f82e6
2,203
py
Python
database/migrations/0046_auto_20210128_1632.py
ORC-RIS/beiwe-backend
af2c43f79350bf0fc1ce8efafab1ac9c40008c40
[ "BSD-3-Clause" ]
1
2022-03-12T16:25:50.000Z
2022-03-12T16:25:50.000Z
database/migrations/0046_auto_20210128_1632.py
ORC-RIS/beiwe-backend
af2c43f79350bf0fc1ce8efafab1ac9c40008c40
[ "BSD-3-Clause" ]
null
null
null
database/migrations/0046_auto_20210128_1632.py
ORC-RIS/beiwe-backend
af2c43f79350bf0fc1ce8efafab1ac9c40008c40
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.2.14 on 2021-01-28 16:32 import datetime import django.core.validators from django.db import migrations, models # due to complex timezone bugs we are simply deleting all absolute schedules from the system # in this migration. There were no live deployments other than onnela lab's staging deployment # at time of writing. def purge_absolute_schedules(apps, schema_editor): AbsoluteSchedule = apps.get_model('database', 'AbsoluteSchedule') AbsoluteSchedule.objects.all().delete() class Migration(migrations.Migration): dependencies = [ ('database', '0045_auto_20210121_0301'), ] operations = [ migrations.RemoveField( model_name='participant', name='timezone', ), migrations.RemoveField( model_name='study', name='timezone', ), migrations.AddField( model_name='absoluteschedule', name='date', field=models.DateField(default=datetime.date(1900, 1, 1)), preserve_default=False, ), migrations.AddField( model_name='absoluteschedule', name='hour', field=models.PositiveIntegerField(default=0, validators=[django.core.validators.MaxValueValidator(23)]), preserve_default=False, ), migrations.AddField( model_name='absoluteschedule', name='minute', field=models.PositiveIntegerField(default=0, validators=[django.core.validators.MaxValueValidator(59)]), preserve_default=False, ), migrations.AddField( model_name='participant', name='timezone_name', field=models.CharField(default='America/New_York', max_length=256), ), migrations.AddField( model_name='study', name='timezone_name', field=models.CharField(default='America/New_York', max_length=256), ), migrations.RemoveField( model_name='absoluteschedule', name='scheduled_date', ), migrations.RunPython(purge_absolute_schedules, migrations.RunPython.noop), ]
33.378788
116
0.62778
e97cf2ac95834eeb6ee61bd6e0c7d0dbabb63916
1,271
py
Python
ffeatools/FFEA_initialise/Surface_tools/scale_netgen_surf.py
zzalscv2/FFEA
da8a09dadb1b3978a3d230dc79d9b163d7889242
[ "Apache-2.0" ]
null
null
null
ffeatools/FFEA_initialise/Surface_tools/scale_netgen_surf.py
zzalscv2/FFEA
da8a09dadb1b3978a3d230dc79d9b163d7889242
[ "Apache-2.0" ]
null
null
null
ffeatools/FFEA_initialise/Surface_tools/scale_netgen_surf.py
zzalscv2/FFEA
da8a09dadb1b3978a3d230dc79d9b163d7889242
[ "Apache-2.0" ]
1
2021-04-03T16:08:21.000Z
2021-04-03T16:08:21.000Z
# # This file is part of the FFEA simulation package # # Copyright (c) by the Theory and Development FFEA teams, # as they appear in the README.md file. # # FFEA is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # FFEA is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with FFEA. If not, see <http://www.gnu.org/licenses/>. # # To help us fund FFEA development, we humbly ask that you cite # the research papers on the package. # import sys import FFEA_surf if len(sys.argv) != 4: sys.exit("Usage: python scale_netgen_surf.py [INPUT .surf] [OUTPUT .surf] [scale]") # Get args insurffname = sys.argv[1] outsurffname = sys.argv[2] scale = float(sys.argv[3]) # Make and scale a surf surf = FFEA_surf.FFEA_surf(insurffname) surf.scale(scale) # Write to out_fname surf.write_to_netgen_surf(outsurffname)
30.261905
84
0.734854
e23e61d59187713e4edbf49c19e7236cc0bb6827
5,500
py
Python
test/functional/disconnect_ban.py
xraymemory/manna
b2f118bdce9b6a128ef171798ab3fac483517afa
[ "MIT" ]
null
null
null
test/functional/disconnect_ban.py
xraymemory/manna
b2f118bdce9b6a128ef171798ab3fac483517afa
[ "MIT" ]
null
null
null
test/functional/disconnect_ban.py
xraymemory/manna
b2f118bdce9b6a128ef171798ab3fac483517afa
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The manna Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test node disconnect and ban behavior""" import time from test_framework.mininode import wait_until from test_framework.test_framework import mannaTestFramework from test_framework.util import (assert_equal, assert_raises_jsonrpc, connect_nodes_bi) class DisconnectBanTest(mannaTestFramework): def __init__(self): super().__init__() self.num_nodes = 2 self.setup_clean_chain = False def run_test(self): self.log.info("Test setban and listbanned RPCs") self.log.info("setban: successfully ban single IP address") assert_equal(len(self.nodes[1].getpeerinfo()), 2) # node1 should have 2 connections to node0 at this point self.nodes[1].setban("127.0.0.1", "add") assert wait_until(lambda: len(self.nodes[1].getpeerinfo()) == 0, timeout=10) assert_equal(len(self.nodes[1].getpeerinfo()), 0) # all nodes must be disconnected at this point assert_equal(len(self.nodes[1].listbanned()), 1) self.log.info("clearbanned: successfully clear ban list") self.nodes[1].clearbanned() assert_equal(len(self.nodes[1].listbanned()), 0) self.nodes[1].setban("127.0.0.0/24", "add") self.log.info("setban: fail to ban an already banned subnet") assert_equal(len(self.nodes[1].listbanned()), 1) assert_raises_jsonrpc(-23, "IP/Subnet already banned", self.nodes[1].setban, "127.0.0.1", "add") self.log.info("setban: fail to ban an invalid subnet") assert_raises_jsonrpc(-30, "Error: Invalid IP/Subnet", self.nodes[1].setban, "127.0.0.1/42", "add") assert_equal(len(self.nodes[1].listbanned()), 1) # still only one banned ip because 127.0.0.1 is within the range of 127.0.0.0/24 self.log.info("setban remove: fail to unban a non-banned subnet") assert_raises_jsonrpc(-30, "Error: Unban failed", self.nodes[1].setban, "127.0.0.1", "remove") assert_equal(len(self.nodes[1].listbanned()), 1) self.log.info("setban remove: successfully unban subnet") self.nodes[1].setban("127.0.0.0/24", "remove") assert_equal(len(self.nodes[1].listbanned()), 0) self.nodes[1].clearbanned() assert_equal(len(self.nodes[1].listbanned()), 0) self.log.info("setban: test persistence across node restart") self.nodes[1].setban("127.0.0.0/32", "add") self.nodes[1].setban("127.0.0.0/24", "add") # Set the mocktime so we can control when bans expire old_time = int(time.time()) self.nodes[1].setmocktime(old_time) self.nodes[1].setban("192.168.0.1", "add", 1) # ban for 1 seconds self.nodes[1].setban("2001:4d48:ac57:400:cacf:e9ff:fe1d:9c63/19", "add", 1000) # ban for 1000 seconds listBeforeShutdown = self.nodes[1].listbanned() assert_equal("192.168.0.1/32", listBeforeShutdown[2]['address']) # Move time forward by 3 seconds so the third ban has expired self.nodes[1].setmocktime(old_time + 3) assert_equal(len(self.nodes[1].listbanned()), 3) self.stop_node(1) self.nodes[1] = self.start_node(1, self.options.tmpdir) listAfterShutdown = self.nodes[1].listbanned() assert_equal("127.0.0.0/24", listAfterShutdown[0]['address']) assert_equal("127.0.0.0/32", listAfterShutdown[1]['address']) assert_equal("/19" in listAfterShutdown[2]['address'], True) # Clear ban lists self.nodes[1].clearbanned() connect_nodes_bi(self.nodes, 0, 1) self.log.info("Test disconnectnode RPCs") self.log.info("disconnectnode: fail to disconnect when calling with address and nodeid") address1 = self.nodes[0].getpeerinfo()[0]['addr'] node1 = self.nodes[0].getpeerinfo()[0]['addr'] assert_raises_jsonrpc(-32602, "Only one of address and nodeid should be provided.", self.nodes[0].disconnectnode, address=address1, nodeid=node1) self.log.info("disconnectnode: fail to disconnect when calling with junk address") assert_raises_jsonrpc(-29, "Node not found in connected nodes", self.nodes[0].disconnectnode, address="221B Baker Street") self.log.info("disconnectnode: successfully disconnect node by address") address1 = self.nodes[0].getpeerinfo()[0]['addr'] self.nodes[0].disconnectnode(address=address1) assert wait_until(lambda: len(self.nodes[0].getpeerinfo()) == 1, timeout=10) assert not [node for node in self.nodes[0].getpeerinfo() if node['addr'] == address1] self.log.info("disconnectnode: successfully reconnect node") connect_nodes_bi(self.nodes, 0, 1) # reconnect the node assert_equal(len(self.nodes[0].getpeerinfo()), 2) assert [node for node in self.nodes[0].getpeerinfo() if node['addr'] == address1] self.log.info("disconnectnode: successfully disconnect node by node id") id1 = self.nodes[0].getpeerinfo()[0]['id'] self.nodes[0].disconnectnode(nodeid=id1) assert wait_until(lambda: len(self.nodes[0].getpeerinfo()) == 1, timeout=10) assert not [node for node in self.nodes[0].getpeerinfo() if node['id'] == id1] if __name__ == '__main__': DisconnectBanTest().main()
50.458716
153
0.659455
c2742cc2a0e91afa9e8ad2a374a6dc121aa1bd9c
12,322
py
Python
python/mojo_bindings/messaging.py
ttyangf/mojo
ca344f878ae23db0289644d78d58aa4b77108e08
[ "BSD-3-Clause" ]
1
2020-04-28T14:35:10.000Z
2020-04-28T14:35:10.000Z
mojo/public/python/mojo_bindings/messaging.py
TribeMedia/sky_engine
4a3894ed246327931b198a7d64652bd0b615b036
[ "BSD-3-Clause" ]
null
null
null
mojo/public/python/mojo_bindings/messaging.py
TribeMedia/sky_engine
4a3894ed246327931b198a7d64652bd0b615b036
[ "BSD-3-Clause" ]
1
2020-04-28T14:35:11.000Z
2020-04-28T14:35:11.000Z
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Utility classes to handle sending and receiving messages.""" import struct import sys import weakref import mojo_bindings.serialization as serialization # pylint: disable=E0611,F0401 import mojo_system as system # The flag values for a message header. NO_FLAG = 0 MESSAGE_EXPECTS_RESPONSE_FLAG = 1 << 0 MESSAGE_IS_RESPONSE_FLAG = 1 << 1 class MessagingException(Exception): def __init__(self, *args, **kwargs): Exception.__init__(self, *args, **kwargs) self.__traceback__ = sys.exc_info()[2] class MessageHeader(object): """The header of a mojo message.""" _SIMPLE_MESSAGE_VERSION = 0 _SIMPLE_MESSAGE_STRUCT = struct.Struct("<IIII") _REQUEST_ID_STRUCT = struct.Struct("<Q") _REQUEST_ID_OFFSET = _SIMPLE_MESSAGE_STRUCT.size _MESSAGE_WITH_REQUEST_ID_VERSION = 1 _MESSAGE_WITH_REQUEST_ID_SIZE = ( _SIMPLE_MESSAGE_STRUCT.size + _REQUEST_ID_STRUCT.size) def __init__(self, message_type, flags, request_id=0, data=None): self._message_type = message_type self._flags = flags self._request_id = request_id self._data = data @classmethod def Deserialize(cls, data): buf = buffer(data) if len(data) < cls._SIMPLE_MESSAGE_STRUCT.size: raise serialization.DeserializationException('Header is too short.') (size, version, message_type, flags) = ( cls._SIMPLE_MESSAGE_STRUCT.unpack_from(buf)) if (version < cls._SIMPLE_MESSAGE_VERSION): raise serialization.DeserializationException('Incorrect version.') request_id = 0 if _HasRequestId(flags): if version < cls._MESSAGE_WITH_REQUEST_ID_VERSION: raise serialization.DeserializationException('Incorrect version.') if (size < cls._MESSAGE_WITH_REQUEST_ID_SIZE or len(data) < cls._MESSAGE_WITH_REQUEST_ID_SIZE): raise serialization.DeserializationException('Header is too short.') (request_id, ) = cls._REQUEST_ID_STRUCT.unpack_from( buf, cls._REQUEST_ID_OFFSET) return MessageHeader(message_type, flags, request_id, data) @property def message_type(self): return self._message_type # pylint: disable=E0202 @property def request_id(self): assert self.has_request_id return self._request_id # pylint: disable=E0202 @request_id.setter def request_id(self, request_id): assert self.has_request_id self._request_id = request_id self._REQUEST_ID_STRUCT.pack_into(self._data, self._REQUEST_ID_OFFSET, request_id) @property def has_request_id(self): return _HasRequestId(self._flags) @property def expects_response(self): return self._HasFlag(MESSAGE_EXPECTS_RESPONSE_FLAG) @property def is_response(self): return self._HasFlag(MESSAGE_IS_RESPONSE_FLAG) @property def size(self): if self.has_request_id: return self._MESSAGE_WITH_REQUEST_ID_SIZE return self._SIMPLE_MESSAGE_STRUCT.size def Serialize(self): if not self._data: self._data = bytearray(self.size) version = self._SIMPLE_MESSAGE_VERSION size = self._SIMPLE_MESSAGE_STRUCT.size if self.has_request_id: version = self._MESSAGE_WITH_REQUEST_ID_VERSION size = self._MESSAGE_WITH_REQUEST_ID_SIZE self._SIMPLE_MESSAGE_STRUCT.pack_into(self._data, 0, size, version, self._message_type, self._flags) if self.has_request_id: self._REQUEST_ID_STRUCT.pack_into(self._data, self._REQUEST_ID_OFFSET, self._request_id) return self._data def _HasFlag(self, flag): return self._flags & flag != 0 class Message(object): """A message for a message pipe. This contains data and handles.""" def __init__(self, data=None, handles=None, header=None): self.data = data self.handles = handles self._header = header self._payload = None @property def header(self): if self._header is None: self._header = MessageHeader.Deserialize(self.data) return self._header @property def payload(self): if self._payload is None: self._payload = Message(self.data[self.header.size:], self.handles) return self._payload def SetRequestId(self, request_id): header = self.header header.request_id = request_id (data, _) = header.Serialize() self.data[:header.Size] = data[:header.Size] class MessageReceiver(object): """A class which implements this interface can receive Message objects.""" def Accept(self, message): """ Receive a Message. The MessageReceiver is allowed to mutate the message. Args: message: the received message. Returns: True if the message has been handled, False otherwise. """ raise NotImplementedError() class MessageReceiverWithResponder(MessageReceiver): """ A MessageReceiver that can also handle the response message generated from the given message. """ def AcceptWithResponder(self, message, responder): """ A variant on Accept that registers a MessageReceiver (known as the responder) to handle the response message generated from the given message. The responder's Accept method may be called as part of the call to AcceptWithResponder, or some time after its return. Args: message: the received message. responder: the responder that will receive the response. Returns: True if the message has been handled, False otherwise. """ raise NotImplementedError() class ConnectionErrorHandler(object): """ A ConnectionErrorHandler is notified of an error happening while using the bindings over message pipes. """ def OnError(self, result): raise NotImplementedError() class Connector(MessageReceiver): """ A Connector owns a message pipe and will send any received messages to the registered MessageReceiver. It also acts as a MessageReceiver and will send any message through the handle. The method Start must be called before the Connector will start listening to incoming messages. """ def __init__(self, handle): MessageReceiver.__init__(self) self._handle = handle self._cancellable = None self._incoming_message_receiver = None self._error_handler = None def __del__(self): if self._cancellable: self._cancellable() def SetIncomingMessageReceiver(self, message_receiver): """ Set the MessageReceiver that will receive message from the owned message pipe. """ self._incoming_message_receiver = message_receiver def SetErrorHandler(self, error_handler): """ Set the ConnectionErrorHandler that will be notified of errors on the owned message pipe. """ self._error_handler = error_handler def Start(self): assert not self._cancellable self._RegisterAsyncWaiterForRead() def Accept(self, message): result = self._handle.WriteMessage(message.data, message.handles) return result == system.RESULT_OK def Close(self): if self._cancellable: self._cancellable() self._cancellable = None self._handle.Close() def PassMessagePipe(self): if self._cancellable: self._cancellable() self._cancellable = None result = self._handle self._handle = system.Handle() return result def _OnAsyncWaiterResult(self, result): self._cancellable = None if result == system.RESULT_OK: self._ReadOutstandingMessages() else: self._OnError(result) def _OnError(self, result): assert not self._cancellable if self._error_handler: self._error_handler.OnError(result) self._handle.Close() def _RegisterAsyncWaiterForRead(self) : assert not self._cancellable self._cancellable = self._handle.AsyncWait( system.HANDLE_SIGNAL_READABLE, system.DEADLINE_INDEFINITE, _WeakCallback(self._OnAsyncWaiterResult)) def _ReadOutstandingMessages(self): result = None dispatched = True while dispatched: result, dispatched = _ReadAndDispatchMessage( self._handle, self._incoming_message_receiver) if result == system.RESULT_SHOULD_WAIT: self._RegisterAsyncWaiterForRead() return self._OnError(result) class Router(MessageReceiverWithResponder): """ A Router will handle mojo message and forward those to a Connector. It deals with parsing of headers and adding of request ids in order to be able to match a response to a request. """ def __init__(self, handle): MessageReceiverWithResponder.__init__(self) self._incoming_message_receiver = None self._next_request_id = 1 self._responders = {} self._connector = Connector(handle) self._connector.SetIncomingMessageReceiver( ForwardingMessageReceiver(_WeakCallback(self._HandleIncomingMessage))) def Start(self): self._connector.Start() def SetIncomingMessageReceiver(self, message_receiver): """ Set the MessageReceiver that will receive message from the owned message pipe. """ self._incoming_message_receiver = message_receiver def SetErrorHandler(self, error_handler): """ Set the ConnectionErrorHandler that will be notified of errors on the owned message pipe. """ self._connector.SetErrorHandler(error_handler) def Accept(self, message): # A message without responder is directly forwarded to the connector. return self._connector.Accept(message) def AcceptWithResponder(self, message, responder): # The message must have a header. header = message.header assert header.expects_response request_id = self._NextRequestId() header.request_id = request_id if not self._connector.Accept(message): return False self._responders[request_id] = responder return True def Close(self): self._connector.Close() def PassMessagePipe(self): return self._connector.PassMessagePipe() def _HandleIncomingMessage(self, message): header = message.header if header.expects_response: if self._incoming_message_receiver: return self._incoming_message_receiver.AcceptWithResponder( message, self) # If we receive a request expecting a response when the client is not # listening, then we have no choice but to tear down the pipe. self.Close() return False if header.is_response: request_id = header.request_id responder = self._responders.pop(request_id, None) if responder is None: return False return responder.Accept(message) if self._incoming_message_receiver: return self._incoming_message_receiver.Accept(message) # Ok to drop the message return False def _NextRequestId(self): request_id = self._next_request_id while request_id == 0 or request_id in self._responders: request_id = (request_id + 1) % (1 << 64) self._next_request_id = (request_id + 1) % (1 << 64) return request_id class ForwardingMessageReceiver(MessageReceiver): """A MessageReceiver that forward calls to |Accept| to a callable.""" def __init__(self, callback): MessageReceiver.__init__(self) self._callback = callback def Accept(self, message): return self._callback(message) def _WeakCallback(callback): func = callback.im_func self = callback.im_self if not self: return callback weak_self = weakref.ref(self) def Callback(*args, **kwargs): self = weak_self() if self: return func(self, *args, **kwargs) return Callback def _ReadAndDispatchMessage(handle, message_receiver): dispatched = False (result, _, sizes) = handle.ReadMessage() if result == system.RESULT_OK and message_receiver: dispatched = message_receiver.Accept(Message(bytearray(), [])) if result != system.RESULT_RESOURCE_EXHAUSTED: return (result, dispatched) (result, data, _) = handle.ReadMessage(bytearray(sizes[0]), sizes[1]) if result == system.RESULT_OK and message_receiver: dispatched = message_receiver.Accept(Message(data[0], data[1])) return (result, dispatched) def _HasRequestId(flags): return flags & (MESSAGE_EXPECTS_RESPONSE_FLAG|MESSAGE_IS_RESPONSE_FLAG) != 0
30.053659
80
0.718065
8dc48238e9aac2702fd911fafa3ecca3e2a8e037
8,195
py
Python
solum/tests/api/controllers/v1/test_component.py
devdattakulkarni/test-solum
4e9ddb82d217116aa2c30a6f2581080cbdfae325
[ "Apache-2.0" ]
null
null
null
solum/tests/api/controllers/v1/test_component.py
devdattakulkarni/test-solum
4e9ddb82d217116aa2c30a6f2581080cbdfae325
[ "Apache-2.0" ]
null
null
null
solum/tests/api/controllers/v1/test_component.py
devdattakulkarni/test-solum
4e9ddb82d217116aa2c30a6f2581080cbdfae325
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 - Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import mock from solum.api.controllers.v1 import component from solum.api.controllers.v1.datamodel import component as componentmodel from solum.common import exception from solum import objects from solum.tests import base from solum.tests import fakes @mock.patch('pecan.request', new_callable=fakes.FakePecanRequest) @mock.patch('pecan.response', new_callable=fakes.FakePecanResponse) @mock.patch('solum.api.handlers.component_handler.ComponentHandler') class TestComponentController(base.BaseTestCase): def setUp(self): super(TestComponentController, self).setUp() objects.load() def test_component_get(self, ComponentHandler, resp_mock, request_mock): hand_get = ComponentHandler.return_value.get fake_component = fakes.FakeComponent() hand_get.return_value = fake_component obj = component.ComponentController('test_id') resp = obj.get() self.assertIsNotNone(resp) self.assertEqual(fake_component.name, resp['result'].name) self.assertEqual(fake_component.description, resp['result'].description) hand_get.assert_called_with('test_id') self.assertEqual(200, resp_mock.status) def test_component_get_not_found(self, ComponentHandler, resp_mock, request_mock): hand_get = ComponentHandler.return_value.get hand_get.side_effect = exception.ResourceNotFound( name='component', component_id='test_id') cont = component.ComponentController('test_id') cont.get() hand_get.assert_called_with('test_id') self.assertEqual(404, resp_mock.status) def test_component_put_none(self, ComponentHandler, resp_mock, request_mock): request_mock.body = None request_mock.content_type = 'application/json' hand_put = ComponentHandler.return_value.put hand_put.return_value = fakes.FakeComponent() component.ComponentController('test_id').put() self.assertEqual(400, resp_mock.status) def test_component_put_not_found(self, ComponentHandler, resp_mock, request_mock): json_update = {'user_id': 'foo', 'name': 'appy'} request_mock.body = json.dumps(json_update) request_mock.content_type = 'application/json' hand_update = ComponentHandler.return_value.update hand_update.side_effect = exception.ResourceNotFound( name='component', component_id='test_id') component.ComponentController('test_id').put() hand_update.assert_called_with('test_id', json_update) self.assertEqual(404, resp_mock.status) def test_component_put_ok(self, ComponentHandler, resp_mock, request_mock): json_update = {'name': 'update_foo', 'description': 'update_desc_component', 'user_id': 'user_id_test', 'project_id': 'project_id_test'} request_mock.body = json.dumps(json_update) request_mock.content_type = 'application/json' hand_update = ComponentHandler.return_value.update hand_update.return_value = fakes.FakeComponent() component.ComponentController('test_id').put() hand_update.assert_called_with('test_id', json_update) self.assertEqual(200, resp_mock.status) def test_component_delete_not_found(self, ComponentHandler, resp_mock, request_mock): hand_delete = ComponentHandler.return_value.delete hand_delete.side_effect = exception.ResourceNotFound( name='component', component_id='test_id') obj = component.ComponentController('test_id') obj.delete() hand_delete.assert_called_with('test_id') self.assertEqual(404, resp_mock.status) def test_component_delete_ok(self, ComponentHandler, resp_mock, request_mock): hand_delete = ComponentHandler.return_value.delete hand_delete.return_value = None obj = component.ComponentController('test_id') obj.delete() hand_delete.assert_called_with('test_id') self.assertEqual(204, resp_mock.status) @mock.patch('pecan.request', new_callable=fakes.FakePecanRequest) @mock.patch('pecan.response', new_callable=fakes.FakePecanResponse) @mock.patch('solum.api.handlers.component_handler.ComponentHandler') class TestComponentsController(base.BaseTestCase): def setUp(self): super(TestComponentsController, self).setUp() objects.load() def test_components_get_all(self, handler_mock, resp_mock, request_mock): hand_get_all = handler_mock.return_value.get_all fake_component = fakes.FakeComponent() hand_get_all.return_value = [fake_component] obj = component.ComponentsController() resp = obj.get_all() hand_get_all.assert_called_with() self.assertIsNotNone(resp) self.assertEqual(fake_component.name, resp['result'][0].name) self.assertEqual(fake_component.description, resp['result'][0].description) self.assertEqual(200, resp_mock.status) def test_components_post(self, handler_mock, resp_mock, request_mock): json_create = {'name': 'foo', 'description': 'test_desc_component', 'user_id': 'user_id_test', 'project_id': 'project_id_test'} request_mock.body = json.dumps(json_create) request_mock.content_type = 'application/json' handler_create = handler_mock.return_value.create handler_create.return_value = fakes.FakeComponent() component.ComponentsController().post() handler_create.assert_called_with(json_create) self.assertEqual(201, resp_mock.status) handler_create.assert_called_once_with(json_create) def test_components_post_nodata(self, handler_mock, resp_mock, request_mock): request_mock.body = '' request_mock.content_type = 'application/json' handler_create = handler_mock.return_value.create handler_create.return_value = fakes.FakeComponent() ret_val = component.ComponentsController().post() self.assertEqual("Missing argument: \"data\"", str(ret_val['faultstring'])) self.assertEqual(400, resp_mock.status) class TestComponentAsDict(base.BaseTestCase): scenarios = [ ('none', dict(data=None)), ('one', dict(data={'name': 'foo'})), ('full', dict(data={'uri': 'http://example.com/v1/components/x1', 'name': 'Example-component', 'type': 'component', 'component_type': 'heat_stack', 'tags': ['small'], 'project_id': '1dae5a09ef2b4d8cbf3594b0eb4f6b94', 'user_id': '55f41cf46df74320b9486a35f5d28a11', 'description': 'A component'})) ] def test_as_dict(self): objects.load() if self.data is None: s = componentmodel.Component() self.data = {} else: s = componentmodel.Component(**self.data) if 'uri' in self.data: del self.data['uri'] if 'type' in self.data: del self.data['type'] self.assertEqual(self.data, s.as_dict(objects.registry.Component))
43.823529
79
0.656498
1db6a5a40a64d6fde1da962e1074aefaec9f11ba
3,385
py
Python
zksync_sdk/zksync_provider/transaction.py
zksync-sdk/zksync-python
740020b6c6b83548cf6cd2ec1b4af94316a74667
[ "MIT" ]
22
2021-03-05T07:01:05.000Z
2022-03-26T19:15:19.000Z
zksync_sdk/zksync_provider/transaction.py
zksync-sdk/zksync-python
740020b6c6b83548cf6cd2ec1b4af94316a74667
[ "MIT" ]
23
2021-03-01T06:09:26.000Z
2022-02-17T21:54:44.000Z
zksync_sdk/zksync_provider/transaction.py
zksync-sdk/zksync-python
740020b6c6b83548cf6cd2ec1b4af94316a74667
[ "MIT" ]
10
2021-03-08T13:43:49.000Z
2021-08-23T16:18:14.000Z
import asyncio from dataclasses import dataclass from enum import Enum, auto from typing import Optional class TransactionStatus(Enum): FAILED = auto() COMMITTED = auto() VERIFIED = auto() @dataclass class TransactionResult: status: TransactionStatus fail_reason: str class Transaction: @classmethod def build_transaction(cls, provider, transaction_id: str): transaction = cls(provider, transaction_id) return transaction def __init__(self, provider, transaction_hash: str): self.provider = provider self.transaction_hash = transaction_hash async def await_committed(self, attempts: Optional[int] = None, attempts_timeout: Optional[int] = None) \ -> TransactionResult: status = TransactionResult(TransactionStatus.FAILED, f"Transaction has not been executed with amount of attempts {attempts}" f"and timeout {attempts_timeout}") while True: if attempts is not None: if attempts <= 0: return status transaction_details = await self.provider.get_tx_receipt(self.transaction_hash) if attempts is not None: attempts -= 1 if "failReason" in transaction_details and transaction_details["failReason"] is not None: return TransactionResult(TransactionStatus.FAILED, transaction_details['failReason']) if "block" in transaction_details: block = transaction_details["block"] if block is not None and "committed" in block and block["committed"]: return TransactionResult(TransactionStatus.COMMITTED, "") if attempts_timeout is not None: await asyncio.sleep(attempts_timeout / 1000) async def await_verified(self, attempts: Optional[int] = None, attempts_timeout: Optional[int] = None): intermediate_status = TransactionResult( TransactionStatus.FAILED, f"Transaction has not been executed with amount of attempts {attempts}" f"and timeout {attempts_timeout}") while True: if attempts is not None: if attempts <= 0: return intermediate_status transaction_details = await self.provider.get_tx_receipt(self.transaction_hash) if attempts is not None: attempts -= 1 if "failReason" in transaction_details and transaction_details["failReason"] is not None: return TransactionResult(TransactionStatus.FAILED, transaction_details['failReason']) if "block" in transaction_details: block = transaction_details["block"] if block is not None and "committed" in block and block["committed"]: intermediate_status = TransactionResult(TransactionStatus.COMMITTED, "") if "block" in transaction_details: block = transaction_details["block"] if block is not None and \ "verified" in block and \ block["verified"]: return TransactionResult(TransactionStatus.VERIFIED, "") if attempts_timeout is not None: await asyncio.sleep(attempts_timeout / 1000)
41.280488
109
0.625702
154a28603b83ee5bcf04b9a808ee3e5536a8c835
750
py
Python
tellapart/aurproxy/config/__init__.py
thinker0/aurproxy
7387bb3ac7decd9d0034f9ca6b4dfea4384ce59d
[ "Apache-2.0" ]
73
2015-04-30T23:41:56.000Z
2021-04-16T07:11:47.000Z
tellapart/aurproxy/config/__init__.py
aurora-scheduler/aurproxy
73a1e7086cc4dd171456f50724246a9261febaf8
[ "Apache-2.0" ]
42
2015-05-21T00:02:42.000Z
2018-01-20T20:20:13.000Z
tellapart/aurproxy/config/__init__.py
amperity/aurproxy
985ab0d32211a5ff1e4f47ceb524b13287e90ffe
[ "Apache-2.0" ]
18
2015-05-01T12:48:20.000Z
2019-09-06T10:04:38.000Z
# Copyright 2015 TellApart, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .endpoint import ( ProxyEndpoint, ShareEndpoint, SourceEndpoint) from .route import ProxyRoute from .server import ProxyServer from .stream import ProxyStream
34.090909
74
0.770667
0710976281c1832a4634717044455bb8987c195c
11,420
py
Python
urban_env/envs/multilane_env.py
pinakigupta/BehaviorRL
ab67d155197c46f3e8551af9763e490b781e8eeb
[ "MIT" ]
6
2020-03-09T01:06:37.000Z
2020-09-16T04:51:24.000Z
urban_env/envs/multilane_env.py
pinakigupta/BehaviorRL
ab67d155197c46f3e8551af9763e490b781e8eeb
[ "MIT" ]
null
null
null
urban_env/envs/multilane_env.py
pinakigupta/BehaviorRL
ab67d155197c46f3e8551af9763e490b781e8eeb
[ "MIT" ]
null
null
null
###################################################################### # Deep Reinforcement Learning for Autonomous Driving # Created/Modified on: February 5, 2019 # Author: Pinaki Gupta ####################################################################### from __future__ import division, print_function, absolute_import import numpy as np from gym import logger from urban_env import utils from urban_env.envs.abstract import AbstractEnv from urban_env.road.road import Road, RoadNetwork from urban_env.vehicle.control import MDPVehicle from urban_env.envs.graphics import EnvViewer from handle_model_files import is_predict_only from urban_env.vehicle.dynamics import Vehicle, Obstacle class MultilaneEnv(AbstractEnv): """ A urban driving environment. The vehicle is driving on a straight urban with several lanes, and is rewarded for reaching a high velocity, staying on the rightmost lanes and avoiding collisions. """ RIGHT_LANE_REWARD = 0.1 """ The reward received when driving on the right-most lanes, linearly mapped to zero for other lanes.""" LANE_CHANGE_REWARD = -1 AGGRESSIVE_LANE_CHANGE_REWARD = -3 ROAD_LENGTH = 500 ROAD_SPEED = 35 DEFAULT_CONFIG = {**AbstractEnv.DEFAULT_CONFIG, **{ "observation": { "type": "Kinematics", "features": ['x', 'y', 'vx', 'vy', 'psi'], "relative_features": ['x'], "vehicles_count": 6 }, "other_vehicles_type": "urban_env.vehicle.control.IDMDPVehicle", "duration": 250, "_predict_only": is_predict_only(), "screen_width": 1600, "screen_height": 400, "DIFFICULTY_LEVELS": 2, "COLLISION_REWARD": -200, "INVALID_ACTION_REWARD": 0, "VELOCITY_REWARD": 5, "GOAL_REWARD": 2000, "OBS_STACK_SIZE": 1, "GOAL_LENGTH": 1000, "initial_spacing": 2, "centering_position": [0.3, 0.5], } } DIFFICULTY_LEVELS = { "EASY": { "lanes_count": 2, "vehicles_count": 5, "duration": 20 }, "MEDIUM": { "lanes_count": 3, "vehicles_count": 10, "duration": 30 }, "HARD": { "lanes_count": 4, "vehicles_count": 50, "duration": 40 }, } def __init__(self, config=DEFAULT_CONFIG): super(MultilaneEnv, self).__init__(config) self.config.update(self.DIFFICULTY_LEVELS["MEDIUM"]) if self.config["_predict_only"]: self.ROAD_LENGTH = 1000 self.steps = 0 self.ego_x0 = None EnvViewer.SCREEN_HEIGHT = self.config['screen_height'] EnvViewer.SCREEN_WIDTH = self.config['screen_width'] self.reset() def _on_route(self, veh=None): return True def _on_road(self, veh=None): if veh is None: veh = self.vehicle return (veh.position[0] < self.ROAD_LENGTH) and (veh.position[0] > 0) def _goal_achieved(self, veh=None): if veh is None: veh = self.vehicle return (veh.position[0] > 0.99 * self.ROAD_LENGTH) and \ self._on_route(veh) def reset(self): self.steps = 0 self._create_road() self._create_vehicles() return super(MultilaneEnv, self).reset() def step(self, action): self.steps += 1 self.previous_action = action obs, rew, done, info = super(MultilaneEnv, self).step(action) self.episode_travel = self.vehicle.position[0] - self.ego_x0 return (obs, rew, done, info) def _create_road(self): """ Create a road composed of straight adjacent lanes. """ self.road = Road(network=RoadNetwork.straight_road_network(lanes=self.config["lanes_count"], length=self.ROAD_LENGTH), np_random=self.np_random) def _create_vehicles(self): """ Create some new random vehicles of a given type, and add them on the road. """ self.vehicle = MDPVehicle.create_random(road=self.road, velocity=np.random.randint(low=15,high=35), spacing=self.config["initial_spacing"], config=self.config) self.vehicle.is_ego_vehicle = True self.road.vehicles.append(self.vehicle) self.ego_x0 = self.vehicle.position[0] vehicles_type = utils.class_from_path(self.config["other_vehicles_type"]) ahead_vehicles = self.config["vehicles_count"] // 2 behind_vehicles = self.config["vehicles_count"] - ahead_vehicles for _ in range(ahead_vehicles): self.road.vehicles.append(vehicles_type.create_random(road=self.road, ahead=True, config=self.config) ) for _ in range(behind_vehicles): self.road.vehicles.append(vehicles_type.create_random(road=self.road, ahead=False, config=self.config) ) for _ in range(10): self.road.vehicles.append(Obstacle.create_random(road=self.road, ahead=False, config=self.config ) ) # Add the virtual obstacles lane = self.road.network.lanes_list()[0] x0 = lane.length/2 position = lane.position(x0, -3.5) lane_index = self.road.network.get_closest_lane_index( position=position, heading=0 ) virtual_obstacle_left = Obstacle(self.road, position=position, heading=lane.heading_at(x0), velocity=0, target_velocity=0, lane_index=lane_index, target_lane_index=lane_index, enable_lane_change=False, config=self.config) virtual_obstacle_left.LENGTH = lane.length virtual_obstacle_left.virtual = True self.road.vehicles.append(virtual_obstacle_left) self.road.virtual_vehicles.append(virtual_obstacle_left) lane = self.road.network.lanes_list()[-1] x0 = lane.length/2 position = lane.position(x0, 3.5) virtual_obstacle_right = Obstacle(self.road, position=position, heading=lane.heading_at(x0), velocity=0, target_velocity=0, lane_index=lane_index, target_lane_index=lane_index, enable_lane_change=False, config=self.config) virtual_obstacle_right.LENGTH = lane.length virtual_obstacle_right.virtual = True self.road.vehicles.append(virtual_obstacle_right) self.road.virtual_vehicles.append(virtual_obstacle_right) def _reward(self, action): """ The reward is defined to foster driving at high speed, on the rightmost lanes, and to avoid collisions. :param action: the last action performed :return: the corresponding reward """ action_lookup = dict(map(reversed, AbstractEnv.ACTIONS.items())) action_reward = {action_lookup['LANE_LEFT']: self.LANE_CHANGE_REWARD, action_lookup['IDLE']: 0, action_lookup['LANE_RIGHT']: self.LANE_CHANGE_REWARD, action_lookup['FASTER']: 0, action_lookup['SLOWER']: 0, action_lookup['LANE_LEFT_AGGRESSIVE']: self.AGGRESSIVE_LANE_CHANGE_REWARD, action_lookup['LANE_RIGHT_AGGRESSIVE']: self.AGGRESSIVE_LANE_CHANGE_REWARD } neighbours = self.road.network.all_side_lanes(self.vehicle.lane_index) collision_reward = self.config["COLLISION_REWARD"] * self.vehicle.crashed velocity_reward = self.config["VELOCITY_REWARD"] * (self.vehicle.velocity_index -1) / (self.vehicle.SPEED_COUNT - 1) if (velocity_reward > 0): velocity_reward *= self._on_route() goal_reward = self.config["GOAL_REWARD"] if self.vehicle.crashed: reward = collision_reward + min(0.0, velocity_reward + action_reward[action]) elif self._goal_achieved(): reward = goal_reward + velocity_reward + action_reward[action] else: reward = velocity_reward + action_reward[action] return reward def _is_terminal(self): """ The episode is over if the ego vehicle crashed or the time is out. """ return self.vehicle.crashed or \ self._goal_achieved() or \ (not self._on_road()) or \ self.steps >= self.config["duration"] def _constraint(self, action): """ The constraint signal is the occurrence of collision """ return float(self.vehicle.crashed) def print_obs_space(self): print("obs space, step ", self.steps) #sys.stdout.flush() pp = pprint.PrettyPrinter(indent=4) numoffeatures = len(self.config["observation"]["features"]) numfofobs = len(self.obs) numofvehicles = numfofobs//numoffeatures close_vehicle_ids = [int(self.vehicle.Id())] modified_obs = self.obs for v in self.close_vehicles: close_vehicle_ids.append(int(v.Id())) close_vehicle_ids.extend([-1]*(numofvehicles-len(close_vehicle_ids))) Idx = 0 obs_Idx = 0 while True: temp = modified_obs del(modified_obs) modified_obs = np.insert(temp, obs_Idx, close_vehicle_ids[Idx]) del(temp) Idx += 1 obs_Idx += numoffeatures+1 if Idx >= len(close_vehicle_ids): break np.set_printoptions(precision=3, suppress=True) obs_format = pp.pformat(np.round(np.reshape(modified_obs, (numofvehicles, numoffeatures+1 )), 3)) obs_format = obs_format.rstrip("\n") print(obs_format)
40.640569
126
0.521804
4a1e321d24f9266ba328c1020e565d9f0c014761
5,446
py
Python
model.py
Adversarial-dropout-rnn/adversarial_dropout_lm
e08ff9aa51765fff6cfac4c2576e58bee3fcd173
[ "BSD-3-Clause" ]
null
null
null
model.py
Adversarial-dropout-rnn/adversarial_dropout_lm
e08ff9aa51765fff6cfac4c2576e58bee3fcd173
[ "BSD-3-Clause" ]
null
null
null
model.py
Adversarial-dropout-rnn/adversarial_dropout_lm
e08ff9aa51765fff6cfac4c2576e58bee3fcd173
[ "BSD-3-Clause" ]
null
null
null
import torch import torch.nn as nn from torch.autograd import Variable from embed_regularize import embedded_dropout_mask from locked_dropout import LockedDropoutMask from weight_drop import WeightDropMask from pytorch_LSTM import LSTM, LSTMCell, BNLSTMCell class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, dropouth=0.5, dropouti=0.5, dropoute=0.1, wdrop=0, tie_weights=False): super(RNNModel, self).__init__() self.lockdrop = LockedDropoutMask() self.idrop = nn.Dropout(dropouti) self.hdrop = nn.Dropout(dropouth) self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) assert rnn_type in ['LSTM', 'QRNN'], 'RNN type is not supported' if rnn_type == 'LSTM': #self.rnns = [torch.nn.LSTM(ninp if l == 0 else nhid, nhid if l != nlayers - 1 else ninp, 1, dropout=0) if l != nlayers-1 # else LSTM(LSTMCell, ninp if l == 0 else nhid, nhid if l != nlayers - 1 else ninp, num_layers=1, dropout=0) for l in range(nlayers)] self.rnns = [torch.nn.LSTM(ninp if l == 0 else nhid, nhid if l != nlayers - 1 else ninp, 1, dropout=0) for l in range(nlayers)] if wdrop: self.rnns = [WeightDropMask(self.rnns[l], ['weight_hh_l0'], dropout=wdrop) for l in range(nlayers)] elif rnn_type == 'QRNN': from torchqrnn import QRNNLayer self.rnns = [QRNNLayer(input_size=ninp if l == 0 else nhid, hidden_size=nhid if l != nlayers - 1 else ninp, save_prev_x=True, zoneout=0, window=2 if l == 0 else 1, output_gate=True) for l in range(nlayers)] for rnn in self.rnns: rnn.linear = WeightDropMask(rnn.linear, ['weight'], dropout=wdrop) print(self.rnns) self.rnns = torch.nn.ModuleList(self.rnns) self.decoder = nn.Linear(nhid, ntoken) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: #if nhid != ninp: # raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.init_weights() self.rnn_type = rnn_type self.ninp = ninp self.nhid = nhid self.nlayers = nlayers self.dropout = dropout self.dropouti = dropouti self.dropouth = dropouth self.dropoute = dropoute def reset(self): if self.rnn_type == 'QRNN': [r.reset() for r in self.rnns] def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.fill_(0) self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden, return_h=False, maske=None, maski=None, maskh=None, maskw=None, masko=None): emb = embedded_dropout_mask(self.encoder, input, maske, dropout=self.dropoute, training=self.training) emb = self.lockdrop(emb, maski, self.dropouti) raw_output = emb new_hidden = [] raw_outputs = [] outputs = [] if maskh is None: maskh = [None for l in range(0, self.nlayers - 1)] if maskw is None: maskw = [None for l in range(0, self.nlayers)] for l, rnn in enumerate(self.rnns): current_input = raw_output #print(l) #print(rnn) raw_output, new_h = rnn(maskw[l], raw_output, hidden[l]) new_hidden.append(new_h) raw_outputs.append(raw_output) if l != self.nlayers - 1: #self.hdrop(raw_output) raw_output = self.lockdrop(raw_output, maskh[l], self.dropouth) outputs.append(raw_output) hidden = new_hidden output = self.lockdrop(raw_output, masko, self.dropout) outputs.append(output) decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2))) result = decoded.view(output.size(0), output.size(1), decoded.size(1)) if return_h: return result, hidden, raw_outputs, outputs return result, hidden def zero_grads(self): """Sets gradients of all model parameters to zero.""" for p in self.parameters(): if p.grad is not None: p.grad.data.zero_() def init_hidden(self, bsz): weight = next(self.parameters()).data if self.rnn_type == 'LSTM': return [(Variable(weight.new(1, bsz, self.nhid if l != self.nlayers - 1 else self.ninp).zero_()), Variable(weight.new(1, bsz, self.nhid if l != self.nlayers - 1 else self.ninp).zero_())) for l in range(self.nlayers)] elif self.rnn_type == 'QRNN': return [Variable(weight.new(1, bsz, self.nhid if l != self.nlayers - 1 else self.ninp).zero_()) for l in range(self.nlayers)]
46.547009
219
0.598972
3763b249834ab0c5ca6a25a5045ffb48844645d4
30,579
py
Python
sympy/integrals/tests/test_transforms.py
smichr/sympy
eda86926d98ab6cb7ec73e3cb8ea78ac15bddea3
[ "BSD-3-Clause" ]
7
2015-01-14T06:55:33.000Z
2018-08-11T14:43:52.000Z
sympy/integrals/tests/test_transforms.py
smichr/sympy
eda86926d98ab6cb7ec73e3cb8ea78ac15bddea3
[ "BSD-3-Clause" ]
1
2018-02-19T04:56:04.000Z
2018-02-19T04:56:04.000Z
sympy/integrals/tests/test_transforms.py
smichr/sympy
eda86926d98ab6cb7ec73e3cb8ea78ac15bddea3
[ "BSD-3-Clause" ]
1
2016-04-24T14:39:22.000Z
2016-04-24T14:39:22.000Z
from sympy.integrals.transforms import (mellin_transform, inverse_mellin_transform, laplace_transform, inverse_laplace_transform, fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform, cosine_transform, inverse_cosine_transform, hankel_transform, inverse_hankel_transform, LaplaceTransform, FourierTransform, SineTransform, CosineTransform, InverseLaplaceTransform, InverseFourierTransform, InverseSineTransform, InverseCosineTransform, HankelTransform, InverseHankelTransform) from sympy import ( gamma, exp, oo, Heaviside, symbols, Symbol, re, factorial, pi, cos, S, And, sin, sqrt, I, log, tan, hyperexpand, meijerg, EulerGamma, erf, besselj, bessely, besseli, besselk, exp_polar, polar_lift, unpolarify, Function, expint, expand_mul) from sympy.utilities.pytest import XFAIL, slow, skip from sympy.abc import x, s, a, b, c, d nu, beta, rho = symbols('nu beta rho') def test_undefined_function(): from sympy import Function, MellinTransform f = Function('f') assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s) assert mellin_transform(f(x) + exp(-x), x, s) == \ (MellinTransform(f(x), x, s) + gamma(s), (0, oo), True) assert laplace_transform(2*f(x), x, s) == 2*LaplaceTransform(f(x), x, s) # TODO test derivative and other rules when implemented def test_free_symbols(): from sympy import Function f = Function('f') assert mellin_transform(f(x), x, s).free_symbols == set([s]) assert mellin_transform(f(x)*a, x, s).free_symbols == set([s, a]) def test_as_integral(): from sympy import Function, Integral f = Function('f') assert mellin_transform(f(x), x, s).rewrite('Integral') == \ Integral(x**(s - 1)*f(x), (x, 0, oo)) assert fourier_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo)) assert laplace_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-s*x), (x, 0, oo)) assert str(inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \ == "Integral(x**(-s)*f(s), (s, _c - oo*I, _c + oo*I))" assert str(inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \ "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))" assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \ Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo)) # NOTE this is stuck in risch because meijerint cannot handle it @slow @XFAIL def test_mellin_transform_fail(): skip("Risch takes forever.") from sympy import Max, Min MT = mellin_transform bpos = symbols('b', positive=True) bneg = symbols('b', negative=True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) # TODO does not work with bneg, argument wrong. Needs changes to matching. assert MT(expr.subs(b, -bpos), x, s) == \ ((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s) *gamma(1 - a - 2*s)/gamma(1 - s), (-re(a), -re(a)/2 + S(1)/2), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, -bpos), x, s) == \ ( 2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2* s)*gamma(a + s)/gamma(-s + 1), (-re(a), -re(a)/2), True) # Test exponent 1: assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \ (-bpos**(2*s + 1)*gamma(s)*gamma(-s - S(1)/2)/(2*sqrt(pi)), (-1, -S(1)/2), True) def test_mellin_transform(): from sympy import Max, Min, Ne MT = mellin_transform bpos = symbols('b', positive=True) # 8.4.2 assert MT(x**nu*Heaviside(x - 1), x, s) == \ (1/(-nu - s), (-oo, -re(nu)), True) assert MT(x**nu*Heaviside(1 - x), x, s) == \ (1/(nu + s), (-re(nu), oo), True) assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \ (gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(-beta) < 0) assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \ (gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), (-oo, -re(beta) + 1), re(-beta) < 0) assert MT((1 + x)**(-rho), x, s) == \ (gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True) # TODO also the conditions should be simplified assert MT(abs(1 - x)**(-rho), x, s) == ( cos(pi*(rho/2 - s))*gamma(s)*gamma(rho - s)/(cos(pi*rho/2)*gamma(rho)), (0, re(rho)), And(re(rho) - 1 < 0, re(rho) < 1)) mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x) + a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s) assert mt[1], mt[2] == ((0, -re(beta) + 1), True) assert MT((x**a - b**a)/(x - b), x, s)[0] == \ pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))) assert MT((x**a - bpos**a)/(x - bpos), x, s) == \ (pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))), (Max(-re(a), 0), Min(1 - re(a), 1)), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, bpos), x, s) == \ (-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1), (0, -re(a)/2), True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) assert MT(expr.subs(b, bpos), x, s) == \ (2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s) *gamma(1 - a - 2*s)/gamma(1 - a - s), (0, -re(a)/2 + S(1)/2), True) # 8.4.2 assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True) assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True) # 8.4.5 assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True) assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True) assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True) assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True) assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True) assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True) # TODO we cannot currently do these (needs summation of 3F2(-1)) # this also implies that they cannot be written as a single g-function # (although this is possible) mt = MT(log(x)/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)**2/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)/(x + 1)**2, x, s) assert mt[1:] == ((0, 2), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) # 8.4.14 assert MT(erf(sqrt(x)), x, s) == \ (-gamma(s + S(1)/2)/(sqrt(pi)*s), (-S(1)/2, 0), True) def test_mellin_transform_bessel(): from sympy import Max, Min, hyper, meijerg MT = mellin_transform # 8.4.19 assert MT(besselj(a, 2*sqrt(x)), x, s) == \ (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, S(3)/4), True) assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(S(1)/2 - 2*s)*gamma((a + 1)/2 + s) / (gamma(1 - s - a/2)*gamma(1 + a - 2*s)), (-(re(a) + 1)/2, S(1)/4), True) assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(a/2 + s)*gamma(-2*s + S(1)/2)/(gamma(-a/2 - s + S(1)/2)* gamma(a - 2*s + 1)), (-re(a)/2, S(1)/4), True) assert MT(besselj(a, sqrt(x))**2, x, s) == \ (gamma(a + s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), (-re(a), S(1)/2), True) assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \ (gamma(s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)), (0, S(1)/2), True) # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as # I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large) assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (gamma(1 - s)*gamma(a + s - S(1)/2) / (sqrt(pi)*gamma(S(3)/2 - s)*gamma(a - s + S(1)/2)), (S(1)/2 - re(a), S(1)/2), True) assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \ (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s) / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2) *gamma( 1 - s + (a + b)/2)), (-(re(a) + re(b))/2, S(1)/2), True) assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \ ((Max(re(a), -re(a)), S(1)/2), True) # Section 8.4.20 assert MT(bessely(a, 2*sqrt(x)), x, s) == \ (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi, (Max(-re(a)/2, re(a)/2), S(3)/4), True) assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*sin(pi*(a/2 - s))*gamma(S(1)/2 - 2*s) * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s) / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)), (Max(-(re(a) + 1)/2, (re(a) - 1)/2), S(1)/4), True) assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S(1)/2 - 2*s) / (sqrt(pi)*gamma(S(1)/2 - s - a/2)*gamma(S(1)/2 - s + a/2)), (Max(-re(a)/2, re(a)/2), S(1)/4), True) assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S(1)/2 - s) / (pi**S('3/2')*gamma(1 + a - s)), (Max(-re(a), 0), S(1)/2), True) assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S(1)/2), True) # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x)) # are a mess (no matter what way you look at it ...) assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \ ((Max(-re(a), 0, re(a)), S(1)/2), True) # Section 8.4.22 # TODO we can't do any of these (delicate cancellation) # Section 8.4.23 assert MT(besselk(a, 2*sqrt(x)), x, s) == \ (gamma( s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True) assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(a, 2*sqrt(2*sqrt(x))), x, s) == \ (4**(-s)*gamma(2*s)*gamma(a/2 + s)/gamma(a/2 - s + 1)/2, (Max(-re(a)/2, 0), oo), True) # TODO bessely(a, x)*besselk(a, x) is a mess assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ ( gamma(s)*gamma( a + s)*gamma(-s + S(1)/2)/(2*sqrt(pi)*gamma(a - s + 1)), (Max(-re(a), 0), S(1)/2), True) assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (4**s*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)*gamma(a/2 + b/2 + s)/ (2*gamma(-a/2 + b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, re(a)/2 - re(b)/2), S(1)/2), True) # TODO products of besselk are a mess # TODO this can be simplified considerably (although I have no idea how) mt = MT(exp(-x/2)*besselk(a, x/2), x, s) assert not mt[0].has(meijerg, hyper) assert mt[1:] == ((Max(-re(a), re(a)), oo), True) # TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done # TODO various strange products of special orders def test_expint(): from sympy import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei aneg = Symbol('a', negative=True) u = Symbol('u', polar=True) assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True) assert inverse_mellin_transform(gamma(s)/s, s, x, (0, oo)).rewrite(expint).expand() == E1(x) assert mellin_transform(expint(a, x), x, s) == \ (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True) # XXX IMT has hickups with complicated strips ... assert simplify(unpolarify( inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \ expint(aneg, x) assert mellin_transform(Si(x), x, s) == \ (-2**s*sqrt(pi)*gamma((s + 1)/2)/(2*s*gamma(-s/2 + 1) ), (-1, 0), True) assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2) /(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \ == Si(x) assert mellin_transform(Ci(sqrt(x)), x, s) == \ (-4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S(1)/2)), (0, 1), True) assert inverse_mellin_transform( -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S(1)/2)), s, u, (0, 1)).expand() == Ci(sqrt(u)) # TODO LT of Si, Shi, Chi is a mess ... assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True) assert laplace_transform(expint(a, x), x, s) == \ (lerchphi(s*polar_lift(-1), 1, a), 0, S(0) < re(a)) assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True) assert laplace_transform(expint(2, x), x, s) == \ ((s - log(s + 1))/s**2, 0, True) assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \ Heaviside(u)*Ci(u) assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \ Heaviside(x)*E1(x) assert inverse_laplace_transform((s - log(s + 1))/s**2, s, x).rewrite(expint).expand() == \ (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand() def test_inverse_mellin_transform(): from sympy import (sin, simplify, expand_func, powsimp, Max, Min, expand, powdenest, powsimp, exp_polar, combsimp, cos, cot) IMT = inverse_mellin_transform assert IMT(gamma(s), s, x, (0, oo)) == exp(-x) assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x) assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \ (x**2 + 1)*Heaviside(1 - x)/(4*x) # test passing "None" assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) # test expansion of sums assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x # test factorisation of polys r = symbols('r', real=True) assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo) ).subs(x, r).rewrite(sin).simplify() \ == sin(r)*Heaviside(1 - exp(-r)) # test multiplicative substitution _a, _b = symbols('a b', positive=True) assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a) assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b) def simp_pows(expr): return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp) # Now test the inverses of all direct transforms tested above # Section 8.4.2 assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1) assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \ == (1 - x)**(beta - 1)*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), s, x, (-oo, None))) \ == (x - 1)**(beta - 1)*Heaviside(x - 1) assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \ == (1/(x + 1))**rho assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c) *gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi, s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \ == (x**c - d**c)/(x - d) assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s) *gamma(-c/2 - s)/gamma(1 - c - s), s, x, (0, -re(c)/2))) == \ (1 + sqrt(x + 1))**c assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s) /gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \ b**(a - 1)*(sqrt(1 + x/b**2) + 1)**(a - 1)*(b**2*sqrt(1 + x/b**2) + b**2 + x)/(b**2 + x) assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s) / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \ b**c*(sqrt(1 + x/b**2) + 1)**c # Section 8.4.5 assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x) assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \ log(x)**3*Heaviside(x - 1) assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1) assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1) assert IMT(pi/(s*sin(2*pi*s)), s, x, (-S(1)/2, 0)) == log(sqrt(x) + 1) assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x) # TODO def mysimp(expr): from sympy import expand, logcombine, powsimp return expand( powsimp(logcombine(expr, force=True), force=True, deep=True), force=True).replace(exp_polar, exp) assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [ log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1), log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1)] # test passing cot assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [ log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1), -log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1), ] # 8.4.14 assert IMT(-gamma(s + S(1)/2)/(sqrt(pi)*s), s, x, (-S(1)/2, 0)) == \ erf(sqrt(x)) # 8.4.19 assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, S(3)/4))) \ == besselj(a, 2*sqrt(x)) assert simplify(IMT(2**a*gamma(S(1)/2 - 2*s)*gamma(s + (a + 1)/2) / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-(re(a) + 1)/2, S(1)/4))) == \ sin(sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S(1)/2 - 2*s) / (gamma(S(1)/2 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-re(a)/2, S(1)/4))) == \ cos(sqrt(x))*besselj(a, sqrt(x)) # TODO this comes out as an amazing mess, but simplifies nicely assert simplify(IMT(gamma(a + s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), s, x, (-re(a), S(1)/2))) == \ besselj(a, sqrt(x))**2 assert simplify(IMT(gamma(s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)), s, x, (0, S(1)/2))) == \ besselj(-a, sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), s, x, (-(re(a) + re(b))/2, S(1)/2))) == \ besselj(a, sqrt(x))*besselj(b, sqrt(x)) # Section 8.4.20 # TODO this can be further simplified! assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), s, x, (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S(1)/2))) == \ (-cos(pi*b)*besselj(b, sqrt(x)) + besselj(-b, sqrt(x))) * \ besselj(a, sqrt(x))/sin(pi*b)*(-1) # TODO more # for coverage assert IMT(pi/cos(pi*s), s, x, (0, S(1)/2)) == sqrt(x)/(x + 1) def test_laplace_transform(): from sympy import (fresnels, fresnelc, hyper) LT = laplace_transform a, b, c, = symbols('a b c', positive=True) t = symbols('t') w = Symbol("w") f = Function("f") # Test unevaluated form assert laplace_transform(f(t), t, w) == LaplaceTransform(f(t), t, w) assert inverse_laplace_transform( f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0) # test a bug spos = symbols('s', positive=True) assert LT(exp(t), t, spos)[:2] == (1/(spos - 1), True) # basic tests from wikipedia assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \ ((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True) assert LT(t**a, t, s) == (s**(-a - 1)*gamma(a + 1), 0, True) assert LT(Heaviside(t), t, s) == (1/s, 0, True) assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True) assert LT(1 - exp(-a*t), t, s) == (a/(s*(a + s)), 0, True) assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \ == exp(-b)/(s**2 - 1) assert LT(exp(t), t, s)[:2] == (1/(s - 1), 1) assert LT(exp(2*t), t, s)[:2] == (1/(s - 2), 2) assert LT(exp(a*t), t, s)[:2] == (1/(s - a), a) assert LT(log(t/a), t, s) == ((log(a) + log(s) + EulerGamma)/(-s), 0, True) assert LT(erf(t), t, s) == ((-erf(s/2) + 1)*exp(s**2/4)/s, 0, True) assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True) assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True) # TODO would be nice to have these come out better assert LT( exp(-a*t)*sin(b*t), t, s) == (1/b/(1 + (a + s)**2/b**2), -a, True) assert LT(exp(-a*t)*cos(b*t), t, s) == \ (1/(s + a)/(1 + b**2/(a + s)**2), -a, True) # TODO sinh, cosh have delicate cancellation assert LT(besselj(0, t), t, s) == (1/sqrt(1 + s**2), 0, True) assert LT(besselj(1, t), t, s) == (1 - 1/sqrt(1 + 1/s**2), 0, True) # TODO general order works, but is a *mess* # TODO besseli also works, but is an even greater mess # test a bug in conditions processing # TODO the auxiliary condition should be recognised/simplified assert LT(exp(t)*cos(t), t, s)[:-1] in [ ((s - 1)/(s**2 - 2*s + 2), -oo), ((s - 1)/((s - 1)**2 + 1), -oo), ] # Fresnel functions assert laplace_transform(fresnels(t), t, s) == \ ((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 - cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True) assert laplace_transform(fresnelc(t), t, s) == \ (sqrt(2)*(sqrt(2)*sin(s**2/(2*pi))*fresnelc(s/pi) - sqrt(2)*cos(s**2/(2*pi))*fresnels(s/pi) + cos(s**2/(2*pi) + pi/4))/(2*s), 0, True) def test_inverse_laplace_transform(): from sympy import (expand, sinh, cosh, besselj, besseli, exp_polar, unpolarify, simplify) ILT = inverse_laplace_transform a, b, c, = symbols('a b c', positive=True) t = symbols('t') def simp_hyp(expr): return expand(expand(expr).rewrite(sin)) # just test inverses of all of the above assert ILT(1/s, s, t) == Heaviside(t) assert ILT(1/s**2, s, t) == t*Heaviside(t) assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24 assert ILT(exp(-a*s)/s, s, t) == Heaviside(t - a) assert ILT(exp(-a*s)/(s + b), s, t) == exp(b*(a - t))*Heaviside(-a + t) assert ILT(a/(s**2 + a**2), s, t) == sin(a*t)*Heaviside(t) assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t) # TODO is there a way around simp_hyp? assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t) assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t) assert ILT(a/((s + b)**2 + a**2), s, t) == exp(-b*t)*sin(a*t)*Heaviside(t) assert ILT( (s + b)/((s + b)**2 + a**2), s, t) == exp(-b*t)*cos(a*t)*Heaviside(t) # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess # TODO should this simplify further? assert ILT(exp(-a*s)/s**b, s, t) == \ (t - a)**(b - 1)*Heaviside(t - a)/gamma(b) assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \ Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even # XXX ILT turns these branch factor into trig functions ... assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2), s, t).rewrite(exp)) == \ Heaviside(t)*besseli(b, a*t) assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2), s, t).rewrite(exp) == \ Heaviside(t)*besselj(b, a*t) assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t)) # TODO can we make erf(t) work? def test_fourier_transform(): from sympy import simplify, expand, expand_complex, factor, expand_trig FT = fourier_transform IFT = inverse_fourier_transform def simp(x): return simplify(expand_trig(expand_complex(expand(x)))) def sinc(x): return sin(pi*x)/(pi*x) k = symbols('k', real=True) f = Function("f") # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x) a = symbols('a', positive=True) b = symbols('b', positive=True) posk = symbols('posk', positive=True) # Test unevaluated form assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k) assert inverse_fourier_transform( f(k), k, x) == InverseFourierTransform(f(k), k, x) # basic examples from wikipedia assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a # TODO IFT is a *mess* assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a # TODO IFT assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k) # NOTE: the ift comes out in pieces assert IFT(1/(a + 2*pi*I*x), x, posk, noconds=False) == (exp(-a*posk), True) assert IFT(1/(a + 2*pi*I*x), x, -posk, noconds=False) == (0, True) assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True), noconds=False) == (0, True) # TODO IFT without factoring comes out as meijer g assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k)**2 assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \ 1/b/(1 + a**2*(1 + 2*pi*I*k/a)**2/b**2) assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a) assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2) assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2) # TODO IFT (comes out as meijer G) # TODO besselj(n, x), n an integer > 0 actually can be done... # TODO are there other common transforms (no distributions!)? def test_sine_transform(): from sympy import sinh, cosh, EulerGamma t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w) assert inverse_sine_transform( f(w), w, t) == InverseSineTransform(f(w), w, t) assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert sine_transform( (1/sqrt(t))**3, t, w) == sqrt(w)*gamma(S(1)/4)/(2*gamma(S(5)/4)) assert sine_transform(t**(-a), t, w) == 2**( -a + S(1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2) assert inverse_sine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S(1)/2), w, t) == t**(-a) assert sine_transform( exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)) assert inverse_sine_transform( sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == -sinh(a*t) + cosh(a*t) assert sine_transform( log(t)/t, t, w) == sqrt(2)*sqrt(pi)*(-log(w**2) - 2*EulerGamma)/4 assert sine_transform( t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**(S(3)/2)) assert inverse_sine_transform( sqrt(2)*w*exp(-w**2/(4*a))/(4*a**(S(3)/2)), w, t) == t*exp(-a*t**2) def test_cosine_transform(): from sympy import sinh, cosh, Si, Ci t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w) assert inverse_cosine_transform( f(w), w, t) == InverseCosineTransform(f(w), w, t) assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert cosine_transform(1/( a**2 + t**2), t, w) == -sqrt(2)*sqrt(pi)*(sinh(a*w) - cosh(a*w))/(2*a) assert cosine_transform(t**( -a), t, w) == 2**(-a + S(1)/2)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2) assert inverse_cosine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + S(1)/2)/gamma(a/2), w, t) == t**(-a) assert cosine_transform( exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)) assert inverse_cosine_transform( sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == -sinh(a*t) + cosh(a*t) assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt( t)), t, w) == -a*(sinh(a**2/(2*w)) - cosh(a**2/(2*w)))/(2*w**(S(3)/2)) assert cosine_transform(1/(a + t), t, w) == -sqrt( 2)*((2*Si(a*w) - pi)*sin(a*w) + 2*cos(a*w)*Ci(a*w))/(2*sqrt(pi)) assert inverse_cosine_transform(sqrt(2)*meijerg(((S(1)/2, 0), ()), ( (S(1)/2, 0, 0), (S(1)/2,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t) assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg( ((S(1)/2,), ()), ((0, 0), (S(1)/2,)), a**2*w**2/4)/(2*sqrt(pi)) assert inverse_cosine_transform(sqrt(2)*meijerg(((S(1)/2,), ()), ((0, 0), (S(1)/2,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1)) def test_hankel_transform(): from sympy import sinh, cosh, gamma, sqrt, exp r = Symbol("r") k = Symbol("k") nu = Symbol("nu") m = Symbol("m") a = symbols("a") assert hankel_transform(1/r, r, k, 0) == 1/k assert inverse_hankel_transform(1/k, k, r, 0) == 1/r assert hankel_transform( 1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2) assert inverse_hankel_transform( 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m) assert hankel_transform(1/r**m, r, k, nu) == 2**( -m + 1)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2) assert inverse_hankel_transform(2**(-m + 1)*k**( m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m) assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \ 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S( 3)/2)*gamma(nu + S(3)/2)/sqrt(pi) assert inverse_hankel_transform(2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S(3)/2)*gamma(nu + S(3)/2)/sqrt(pi), k, r, nu) == \ r**nu*(-sinh(a*r) + cosh(a*r))
43.008439
151
0.502731
9517e7cb1aa8210accd6ce0912b1a10e68082f09
5,973
py
Python
descarteslabs/scenes/tests/test_search.py
carderne/descarteslabs-python
757b480efb8d58474a3bf07f1dbd90652b46ed64
[ "Apache-2.0" ]
null
null
null
descarteslabs/scenes/tests/test_search.py
carderne/descarteslabs-python
757b480efb8d58474a3bf07f1dbd90652b46ed64
[ "Apache-2.0" ]
null
null
null
descarteslabs/scenes/tests/test_search.py
carderne/descarteslabs-python
757b480efb8d58474a3bf07f1dbd90652b46ed64
[ "Apache-2.0" ]
null
null
null
import unittest import datetime from descarteslabs.scenes import geocontext, search from shapely.geometry import shape import mock from .mock_data import _metadata_search, _metadata_get_bands_by_product class TestScenesSearch(unittest.TestCase): geom = { "coordinates": ( ( (-95.836498, 39.278486), (-92.068696, 39.278486), (-92.068696, 42.799988), (-95.836498, 42.799988), (-95.836498, 39.278486), ), ), "type": "Polygon", } @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.Metadata.get_bands_by_product", _metadata_get_bands_by_product, ) def test_search_geom(self): sc, ctx = search(self.geom, products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available assert isinstance(ctx, geocontext.AOI) assert ctx.__geo_interface__ == self.geom assert ctx.resolution == 15 assert ctx.crs == "EPSG:32615" for scene in sc: # allow for changes in publicly available data assert abs(len(scene.properties.bands) - 24) < 4 assert "derived:ndvi" in scene.properties.bands @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.Metadata.get_bands_by_product", _metadata_get_bands_by_product, ) def test_search_shapely(self): sc, ctx = search(shape(self.geom), products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) == 2 assert isinstance(ctx, geocontext.AOI) assert ctx.__geo_interface__ == self.geom assert ctx.resolution == 15 assert ctx.crs == "EPSG:32615" for scene in sc: # allow for changes in publicly available data assert abs(len(scene.properties.bands) - 24) < 4 assert "derived:ndvi" in scene.properties.bands @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.Metadata.get_bands_by_product", _metadata_get_bands_by_product, ) def test_search_AOI(self): aoi = geocontext.AOI(self.geom, resolution=5) sc, ctx = search(aoi, products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available assert ctx.resolution == 5 assert ctx.crs == "EPSG:32615" @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.Metadata.get_bands_by_product", _metadata_get_bands_by_product, ) def test_search_AOI_with_shape(self): aoi = geocontext.AOI(self.geom, shape=(100, 100)) sc, ctx = search(aoi, products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available assert ctx.resolution is None assert ctx.shape == aoi.shape assert ctx.crs == "EPSG:32615" @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.Metadata.get_bands_by_product", _metadata_get_bands_by_product, ) def test_search_dltile(self): tile = geocontext.DLTile( { "geometry": { "coordinates": [ [ [-94.50970627780103, 40.460817879515986], [-93.75494640538922, 40.468212507270195], [-93.76149667591069, 41.04471363474632], [-94.5228005945451, 41.03716803374444], [-94.50970627780103, 40.460817879515986], ] ], "type": "Polygon", }, "properties": { "cs_code": "EPSG:32615", "key": "64:0:1000.0:15:-2:70", "outputBounds": [372000.0, 4480000.0, 436000.0, 4544000.0], "pad": 0, "resolution": 1000.0, "ti": -2, "tilesize": 64, "tj": 70, "zone": 15, }, } ) sc, ctx = search(tile, products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available assert ctx == tile @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.Metadata.get_bands_by_product", _metadata_get_bands_by_product, ) def test_search_no_products(self): sc, ctx = search(self.geom, limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.Metadata.get_bands_by_product", _metadata_get_bands_by_product, ) def test_search_datetime(self): start_datetime = datetime.datetime(2016, 7, 6) end_datetime = datetime.datetime(2016, 7, 15) sc, ctx = search( self.geom, products="landsat:LC08:PRE:TOAR", start_datetime=start_datetime, end_datetime=end_datetime, limit=4, ) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available for scene in sc: assert scene.properties["date"] >= start_datetime assert scene.properties["date"] <= end_datetime
36.644172
85
0.584966
c84e1cde75281900b2c21b9af02a09b745f5213e
4,053
py
Python
tensorflow/python/data/util/traverse_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/python/data/util/traverse_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/python/data/util/traverse_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for utilities for traversing the dataset construction graph.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.util import traverse from tensorflow.python.framework import test_util from tensorflow.python.ops import gen_dataset_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class _TestDataset(dataset_ops.UnaryUnchangedStructureDataset): def __init__(self, input_dataset): self._input_dataset = input_dataset temp_variant_tensor = gen_dataset_ops.prefetch_dataset( input_dataset._variant_tensor, buffer_size=1, **self._flat_structure) variant_tensor = gen_dataset_ops.model_dataset( temp_variant_tensor, **self._flat_structure) super(_TestDataset, self).__init__(input_dataset, variant_tensor) class TraverseTest(test.TestCase): @test_util.run_deprecated_v1 def testOnlySource(self): ds = dataset_ops.Dataset.range(10) variant_tensor_ops = traverse.obtain_all_variant_tensor_ops(ds) self.assertAllEqual(["RangeDataset"], [x.name for x in variant_tensor_ops]) @test_util.run_deprecated_v1 def testSimplePipeline(self): ds = dataset_ops.Dataset.range(10).map(math_ops.square) variant_tensor_ops = traverse.obtain_all_variant_tensor_ops(ds) self.assertSetEqual( set(["MapDataset", "RangeDataset"]), set([x.name for x in variant_tensor_ops])) @test_util.run_deprecated_v1 def testConcat(self): ds1 = dataset_ops.Dataset.range(10) ds2 = dataset_ops.Dataset.range(10) ds = ds1.concatenate(ds2) variant_tensor_ops = traverse.obtain_all_variant_tensor_ops(ds) self.assertSetEqual( set(["ConcatenateDataset", "RangeDataset", "RangeDataset_1"]), set([x.name for x in variant_tensor_ops])) @test_util.run_deprecated_v1 def testZip(self): ds1 = dataset_ops.Dataset.range(10) ds2 = dataset_ops.Dataset.range(10) ds = dataset_ops.Dataset.zip((ds1, ds2)) variant_tensor_ops = traverse.obtain_all_variant_tensor_ops(ds) self.assertSetEqual( set(["ZipDataset", "RangeDataset", "RangeDataset_1"]), set([x.name for x in variant_tensor_ops])) @test_util.run_deprecated_v1 def testMultipleVariantTensors(self): ds = dataset_ops.Dataset.range(10) ds = _TestDataset(ds) variant_tensor_ops = traverse.obtain_all_variant_tensor_ops(ds) self.assertSetEqual( set(["RangeDataset", "ModelDataset", "PrefetchDataset"]), set([x.name for x in variant_tensor_ops])) @test_util.run_deprecated_v1 def testFlatMap(self): ds1 = dataset_ops.Dataset.range(10).repeat(10) def map_fn(ds): def _map(x): return ds.batch(x) return _map ds2 = dataset_ops.Dataset.range(20).prefetch(1) ds2 = ds2.flat_map(map_fn(ds1)) variant_tensor_ops = traverse.obtain_all_variant_tensor_ops(ds2) self.assertSetEqual( set([ "FlatMapDataset", "PrefetchDataset", "RepeatDataset", "RangeDataset", "RangeDataset_1" ]), set([x.name for x in variant_tensor_ops])) if __name__ == "__main__": test.main()
36.845455
81
0.705403
f3c2fbcd5ce1eee3395175c89c6e1eebaf2f0bf9
5,902
py
Python
se_leg_ra/views/ra.py
SUNET/se-leg-ra
ac30e700dda4fceb7a9205b4b2790478cf3ba5b4
[ "BSD-3-Clause" ]
null
null
null
se_leg_ra/views/ra.py
SUNET/se-leg-ra
ac30e700dda4fceb7a9205b4b2790478cf3ba5b4
[ "BSD-3-Clause" ]
null
null
null
se_leg_ra/views/ra.py
SUNET/se-leg-ra
ac30e700dda4fceb7a9205b4b2790478cf3ba5b4
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from flask import Blueprint, current_app, render_template, url_for, request, redirect from se_leg_ra.forms import DriversLicenseForm, IdCardForm, PassportForm, NationalIDCardForm from se_leg_ra.decorators import require_eppn from se_leg_ra.db import IdCardProofing, DriversLicenseProofing, PassportProofing, NationalIdCardProofing from se_leg_ra.utils import log_and_send_proofing __author__ = 'lundberg' se_leg_ra_views = Blueprint('se_leg_ra', __name__, url_prefix='', template_folder='templates') def get_view_context(form, user): view_context = { 'form': form, 'action_url': request.path, 'user': user, 'success_message': None, 'error_message': None } return view_context @se_leg_ra_views.route('/', methods=['GET']) @require_eppn def index(user): current_app.logger.debug('GET index') # Set up the default form view_context = get_view_context(DriversLicenseForm(), user) view_context['action_url'] = url_for('se_leg_ra.drivers_license') return render_template('drivers_license.jinja2', view_context=view_context) @se_leg_ra_views.route('/login', methods=['GET']) def login(): current_app.logger.debug('GET login') login_dict = current_app.config['LOGIN_ALTERNATIVES'] return render_template('login.jinja2', login_alternatives=login_dict) @se_leg_ra_views.route('/id-card', methods=['GET', 'POST']) @require_eppn def id_card(user): form = IdCardForm() view_context = get_view_context(form, user) if form.validate_on_submit(): current_app.logger.debug('id_card form validated') data = { 'qr_code': form.qr_code.data, 'nin': form.nin.data, 'card_number': form.card_number.data, 'expiry_date': form.expiry_date.data, 'ocular_validation': form.ocular_validation.data } current_app.logger.debug('Form data: {}'.format(data)) # Log the vetting attempt proofing_element = IdCardProofing(current_app.config['RA_APP_ID'], user['eppn'], data['nin'], data['card_number'], data['qr_code'], data['ocular_validation'], data['expiry_date'], '2018v1') view_context = log_and_send_proofing(proofing_element, identity=data['nin'], view_context=view_context) return render_template('id_card.jinja2', view_context=view_context) @se_leg_ra_views.route('/drivers-license', methods=['GET', 'POST']) @require_eppn def drivers_license(user): form = DriversLicenseForm() view_context = get_view_context(form, user) if form.validate_on_submit(): data = { 'qr_code': form.qr_code.data, 'nin': form.nin.data, 'reference_number': form.reference_number.data, 'expiry_date': form.expiry_date.data, 'ocular_validation': form.ocular_validation.data } current_app.logger.debug('Form data: {}'.format(data)) # Log the vetting attempt proofing_element = DriversLicenseProofing(current_app.config['RA_APP_ID'], user['eppn'], data['nin'], data['reference_number'], data['qr_code'], data['ocular_validation'], data['expiry_date'], '2018v1') view_context = log_and_send_proofing(proofing_element, identity=data['nin'], view_context=view_context) return render_template('drivers_license.jinja2', view_context=view_context) @se_leg_ra_views.route('/passport', methods=['GET', 'POST']) @require_eppn def passport(user): form = PassportForm() view_context = get_view_context(form, user) if form.validate_on_submit(): data = { 'qr_code': form.qr_code.data, 'nin': form.nin.data, 'expiry_date': form.expiry_date.data, 'passport_number': form.passport_number.data, 'ocular_validation': form.ocular_validation.data } current_app.logger.debug('Form data: {}'.format(data)) # Log the vetting attempt proofing_element = PassportProofing(current_app.config['RA_APP_ID'], user['eppn'], data['nin'], data['passport_number'], data['qr_code'], data['ocular_validation'], data['expiry_date'], '2018v1') view_context = log_and_send_proofing(proofing_element, identity=data['nin'], view_context=view_context) return render_template('passport.jinja2', view_context=view_context) @se_leg_ra_views.route('/national-id-card', methods=['GET', 'POST']) @require_eppn def national_id_card(user): form = NationalIDCardForm() view_context = get_view_context(form, user) if form.validate_on_submit(): data = { 'qr_code': form.qr_code.data, 'nin': form.nin.data, 'expiry_date': form.expiry_date.data, 'card_number': form.card_number.data, 'ocular_validation': form.ocular_validation.data } current_app.logger.debug('Form data: {}'.format(data)) # Log the vetting attempt proofing_element = NationalIdCardProofing(current_app.config['RA_APP_ID'], user['eppn'], data['nin'], data['card_number'], data['qr_code'], data['ocular_validation'], data['expiry_date'], '2018v1') view_context = log_and_send_proofing(proofing_element, identity=data['nin'], view_context=view_context) return render_template('national_id_card.jinja2', view_context=view_context) @se_leg_ra_views.route('/logout', methods=['GET']) @require_eppn def logout(user): current_app.logger.info('User {} logged out'.format(user['eppn'])) return redirect(current_app.config['LOGOUT_URL'])
40.986111
119
0.64978
a5f0070566eeb785dedc80951a37eb250b078c5c
664
py
Python
mlld_functions.py
mdastro/My_Package
80fb7ac90c93da4b41bf90197afa13e1f0b434c7
[ "MIT" ]
null
null
null
mlld_functions.py
mdastro/My_Package
80fb7ac90c93da4b41bf90197afa13e1f0b434c7
[ "MIT" ]
null
null
null
mlld_functions.py
mdastro/My_Package
80fb7ac90c93da4b41bf90197afa13e1f0b434c7
[ "MIT" ]
null
null
null
import numpy as np """ :param MLLD_functions: this class has several functions that are usually used by myself. """ class MLLD_functions: def standardization(self, variable): """ :param variable: the array with the variables you wish to standardize :return: standardized array """ var_average = np.average(variable) var_std = np.std(variable) new_variable = [] for i in range(variable.size): new_variable_i = (variable[i] - var_average)/var_std new_variable.append(new_variable_i) self.new_variable = np.array(new_variable) return self.new_variable
30.181818
88
0.64759
c2d65692448ede7e78f2d7c1060268ea6571e8a5
5,282
py
Python
lxmert/lxmert/src/lxrt/entry.py
Fostereee/Transformer-MM-Explainability
6dc4925b83a38e39069369da599b11d548128eb5
[ "MIT" ]
322
2021-03-29T20:42:57.000Z
2022-03-28T12:26:47.000Z
lxmert/lxmert/src/lxrt/entry.py
Fostereee/Transformer-MM-Explainability
6dc4925b83a38e39069369da599b11d548128eb5
[ "MIT" ]
14
2021-04-23T23:45:58.000Z
2022-03-15T02:46:01.000Z
lxmert/lxmert/src/lxrt/entry.py
Fostereee/Transformer-MM-Explainability
6dc4925b83a38e39069369da599b11d548128eb5
[ "MIT" ]
51
2021-04-05T15:44:52.000Z
2022-03-25T02:28:49.000Z
# coding=utf-8 # Copyright 2019 project LXRT. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import torch.nn as nn from ..lxrt.tokenization import BertTokenizer from ..lxrt.modeling import LXRTFeatureExtraction as VisualBertForLXRFeature, VISUAL_CONFIG class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids def convert_sents_to_features(sents, max_seq_length, tokenizer): """Loads a data file into a list of `InputBatch`s.""" features = [] for (i, sent) in enumerate(sents): tokens_a = tokenizer.tokenize(sent.strip()) # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] # Keep segment id which allows loading BERT-weights. tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids)) return features def set_visual_config(args): VISUAL_CONFIG.l_layers = args.llayers VISUAL_CONFIG.x_layers = args.xlayers VISUAL_CONFIG.r_layers = args.rlayers class LXRTEncoder(nn.Module): def __init__(self, args, max_seq_length, mode='x'): super().__init__() self.max_seq_length = max_seq_length set_visual_config(args) # Using the bert tokenizer self.tokenizer = BertTokenizer.from_pretrained( "bert-base-uncased", do_lower_case=True ) # Build LXRT Model self.model = VisualBertForLXRFeature.from_pretrained( "bert-base-uncased", mode=mode ) if args.from_scratch: print("initializing all the weights") self.model.apply(self.model.init_bert_weights) def multi_gpu(self): self.model = nn.DataParallel(self.model) @property def dim(self): return 768 def forward(self, sents, feats, visual_attention_mask=None): train_features = convert_sents_to_features( sents, self.max_seq_length, self.tokenizer) input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long).cuda() input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long).cuda() segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long).cuda() output = self.model(input_ids, segment_ids, input_mask, visual_feats=feats, visual_attention_mask=visual_attention_mask) return output def save(self, path): torch.save(self.model.state_dict(), os.path.join("%s_LXRT.pth" % path)) def load(self, path): # Load state_dict from snapshot file print("Load LXMERT pre-trained model from %s" % path) state_dict = torch.load("%s_LXRT.pth" % path) new_state_dict = {} for key, value in state_dict.items(): if key.startswith("module."): new_state_dict[key[len("module."):]] = value else: new_state_dict[key] = value state_dict = new_state_dict # Print out the differences of pre-trained and model weights. load_keys = set(state_dict.keys()) model_keys = set(self.model.state_dict().keys()) print() print("Weights in loaded but not in model:") for key in sorted(load_keys.difference(model_keys)): print(key) print() print("Weights in model but not in loaded:") for key in sorted(model_keys.difference(load_keys)): print(key) print() # Load weights to model self.model.load_state_dict(state_dict, strict=False)
33.643312
100
0.641045
6039f96200932bf5edb2f26b76b7b1427e3e1b2c
622
py
Python
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/payment_sips/__manifest__.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
1
2019-12-19T01:53:13.000Z
2019-12-19T01:53:13.000Z
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/payment_sips/__manifest__.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
null
null
null
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/payment_sips/__manifest__.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. # Copyright 2015 Eezee-It { 'name': 'Worldline SIPS', 'version': '1.0', 'author': 'Eezee-It', 'category': 'Accounting', 'description': """ Worldline SIPS Payment Acquirer for online payments Works with Worldline keys version 2.0, contains implementation of payments acquirer using Worldline SIPS.""", 'depends': ['payment'], 'data': [ 'views/payment_views.xml', 'views/payment_sips_templates.xml', 'data/payment_acquirer_data.xml', ], 'installable': True, }
25.916667
74
0.651125
5d3fcc181ce6af49a1e4650805a2e828daea1ee4
12,611
py
Python
tests/components/fritzbox/test_config_flow.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
1
2021-04-28T09:51:08.000Z
2021-04-28T09:51:08.000Z
tests/components/fritzbox/test_config_flow.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
60
2020-08-03T07:32:56.000Z
2022-03-31T06:02:07.000Z
tests/components/fritzbox/test_config_flow.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
4
2017-01-10T04:17:33.000Z
2021-09-02T16:37:24.000Z
"""Tests for AVM Fritz!Box config flow.""" from unittest import mock from unittest.mock import Mock, patch from pyfritzhome import LoginError import pytest from requests.exceptions import HTTPError from homeassistant.components.fritzbox.const import DOMAIN from homeassistant.components.ssdp import ( ATTR_SSDP_LOCATION, ATTR_UPNP_FRIENDLY_NAME, ATTR_UPNP_UDN, ) from homeassistant.config_entries import SOURCE_REAUTH, SOURCE_SSDP, SOURCE_USER from homeassistant.const import CONF_DEVICES, CONF_HOST, CONF_PASSWORD, CONF_USERNAME from homeassistant.data_entry_flow import ( RESULT_TYPE_ABORT, RESULT_TYPE_CREATE_ENTRY, RESULT_TYPE_FORM, ) from homeassistant.helpers.typing import HomeAssistantType from . import MOCK_CONFIG from tests.common import MockConfigEntry MOCK_USER_DATA = MOCK_CONFIG[DOMAIN][CONF_DEVICES][0] MOCK_SSDP_DATA = { ATTR_SSDP_LOCATION: "https://fake_host:12345/test", ATTR_UPNP_FRIENDLY_NAME: "fake_name", ATTR_UPNP_UDN: "uuid:only-a-test", } @pytest.fixture(name="fritz") def fritz_fixture() -> Mock: """Patch libraries.""" with patch("homeassistant.components.fritzbox.config_flow.Fritzhome") as fritz: yield fritz async def test_user(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by user.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "user" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input=MOCK_USER_DATA ) assert result["type"] == RESULT_TYPE_CREATE_ENTRY assert result["title"] == "fake_host" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_PASSWORD] == "fake_pass" assert result["data"][CONF_USERNAME] == "fake_user" assert not result["result"].unique_id async def test_user_auth_failed(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by user with authentication failure.""" fritz().login.side_effect = [LoginError("Boom"), mock.DEFAULT] result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "user" assert result["errors"]["base"] == "invalid_auth" async def test_user_not_successful(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by user but no connection found.""" fritz().login.side_effect = OSError("Boom") result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "no_devices_found" async def test_user_already_configured(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by user when already configured.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == RESULT_TYPE_CREATE_ENTRY assert not result["result"].unique_id result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "already_configured" async def test_reauth_success(hass: HomeAssistantType, fritz: Mock): """Test starting a reauthentication flow.""" mock_config = MockConfigEntry(domain=DOMAIN, data=MOCK_USER_DATA) mock_config.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_REAUTH, "entry_id": mock_config.entry_id}, data=mock_config.data, ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "reauth_confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_USERNAME: "other_fake_user", CONF_PASSWORD: "other_fake_password", }, ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "reauth_successful" assert mock_config.data[CONF_USERNAME] == "other_fake_user" assert mock_config.data[CONF_PASSWORD] == "other_fake_password" async def test_reauth_auth_failed(hass: HomeAssistantType, fritz: Mock): """Test starting a reauthentication flow with authentication failure.""" fritz().login.side_effect = LoginError("Boom") mock_config = MockConfigEntry(domain=DOMAIN, data=MOCK_USER_DATA) mock_config.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_REAUTH, "entry_id": mock_config.entry_id}, data=mock_config.data, ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "reauth_confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_USERNAME: "other_fake_user", CONF_PASSWORD: "other_fake_password", }, ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "reauth_confirm" assert result["errors"]["base"] == "invalid_auth" async def test_reauth_not_successful(hass: HomeAssistantType, fritz: Mock): """Test starting a reauthentication flow but no connection found.""" fritz().login.side_effect = OSError("Boom") mock_config = MockConfigEntry(domain=DOMAIN, data=MOCK_USER_DATA) mock_config.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_REAUTH, "entry_id": mock_config.entry_id}, data=mock_config.data, ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "reauth_confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={ CONF_USERNAME: "other_fake_user", CONF_PASSWORD: "other_fake_password", }, ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "no_devices_found" async def test_import(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by import.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "import"}, data=MOCK_USER_DATA ) assert result["type"] == RESULT_TYPE_CREATE_ENTRY assert result["title"] == "fake_host" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_PASSWORD] == "fake_pass" assert result["data"][CONF_USERNAME] == "fake_user" assert not result["result"].unique_id async def test_ssdp(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "fake_pass", CONF_USERNAME: "fake_user"}, ) assert result["type"] == RESULT_TYPE_CREATE_ENTRY assert result["title"] == "fake_name" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_PASSWORD] == "fake_pass" assert result["data"][CONF_USERNAME] == "fake_user" assert result["result"].unique_id == "only-a-test" async def test_ssdp_no_friendly_name(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery without friendly name.""" MOCK_NO_NAME = MOCK_SSDP_DATA.copy() del MOCK_NO_NAME[ATTR_UPNP_FRIENDLY_NAME] result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_NO_NAME ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "fake_pass", CONF_USERNAME: "fake_user"}, ) assert result["type"] == RESULT_TYPE_CREATE_ENTRY assert result["title"] == "fake_host" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_PASSWORD] == "fake_pass" assert result["data"][CONF_USERNAME] == "fake_user" assert result["result"].unique_id == "only-a-test" async def test_ssdp_auth_failed(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery with authentication failure.""" fritz().login.side_effect = LoginError("Boom") result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "confirm" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "whatever", CONF_USERNAME: "whatever"}, ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "confirm" assert result["errors"]["base"] == "invalid_auth" async def test_ssdp_not_successful(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery but no device found.""" fritz().login.side_effect = OSError("Boom") result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "whatever", CONF_USERNAME: "whatever"}, ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "no_devices_found" async def test_ssdp_not_supported(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery with unsupported device.""" fritz().get_device_elements.side_effect = HTTPError("Boom") result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "whatever", CONF_USERNAME: "whatever"}, ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "not_supported" async def test_ssdp_already_in_progress_unique_id(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery twice.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "already_in_progress" async def test_ssdp_already_in_progress_host(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery twice.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result["type"] == RESULT_TYPE_FORM assert result["step_id"] == "confirm" MOCK_NO_UNIQUE_ID = MOCK_SSDP_DATA.copy() del MOCK_NO_UNIQUE_ID[ATTR_UPNP_UDN] result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_NO_UNIQUE_ID ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "already_in_progress" async def test_ssdp_already_configured(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery when already configured.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=MOCK_USER_DATA ) assert result["type"] == RESULT_TYPE_CREATE_ENTRY assert not result["result"].unique_id result2 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data=MOCK_SSDP_DATA ) assert result2["type"] == RESULT_TYPE_ABORT assert result2["reason"] == "already_configured" assert result["result"].unique_id == "only-a-test"
37.20059
88
0.702403
ac538702fd5b3d2de4d9c2e05771300632288fcb
2,041
py
Python
Lib/json/tests/test_speedups.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
null
null
null
Lib/json/tests/test_speedups.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
null
null
null
Lib/json/tests/test_speedups.py
djaldave/laevad-python-2.7.18
df9aac191d554295db45d638e528880a9ab9a3ec
[ "bzip2-1.0.6" ]
null
null
null
from json.tests import CTest class BadBool: def __nonzero__(self): 1/0 class TestSpeedups(CTest): def test_scanstring(self): self.assertEqual(self.json.decoder.scanstring.__module__, "_json") self.assertIs(self.json.decoder.scanstring, self.json.decoder.c_scanstring) def test_encode_basestring_ascii(self): self.assertEqual(self.json.encoder.encode_basestring_ascii.__module__, "_json") self.assertIs(self.json.encoder.encode_basestring_ascii, self.json.encoder.c_encode_basestring_ascii) class TestDecode(CTest): def test_make_scanner(self): self.assertRaises(AttributeError, self.json.scanner.c_make_scanner, 1) def test_bad_bool_args(self): def test(value): self.json.decoder.JSONDecoder(strict=BadBool()).decode(value) self.assertRaises(ZeroDivisionError, test, '""') self.assertRaises(ZeroDivisionError, test, '{}') self.assertRaises(ZeroDivisionError, test, u'""') self.assertRaises(ZeroDivisionError, test, u'{}') class TestEncode(CTest): def test_make_encoder(self): self.assertRaises(TypeError, self.json.encoder.c_make_encoder, None, "\xCD\x7D\x3D\x4E\x12\x4C\xF9\x79\xD7\x52\xBA\x82\xF2\x27\x4A\x7D\xA0\xCA\x75", None) def test_bad_bool_args(self): def test(name): self.json.encoder.JSONEncoder(**{name: BadBool()}).encode({'a': 1}) self.assertRaises(ZeroDivisionError, test, 'skipkeys') self.assertRaises(ZeroDivisionError, test, 'ensure_ascii') self.assertRaises(ZeroDivisionError, test, 'check_circular') self.assertRaises(ZeroDivisionError, test, 'allow_nan') self.assertRaises(ZeroDivisionError, test, 'sort_keys') def test_bad_encoding(self): with self.assertRaises(UnicodeEncodeError): self.json.encoder.JSONEncoder(encoding=u'\udcff').encode({'key': 123})
39.25
92
0.660461
ad40eb4e07101e6a4f711f4277f8b504dbe88b80
7,036
py
Python
projector.py
nessessence/stylegan2-pytorch
8b17ffd1f05cbbc7966bebe3330914d5ebcac188
[ "MIT", "BSD-2-Clause", "Apache-2.0" ]
null
null
null
projector.py
nessessence/stylegan2-pytorch
8b17ffd1f05cbbc7966bebe3330914d5ebcac188
[ "MIT", "BSD-2-Clause", "Apache-2.0" ]
null
null
null
projector.py
nessessence/stylegan2-pytorch
8b17ffd1f05cbbc7966bebe3330914d5ebcac188
[ "MIT", "BSD-2-Clause", "Apache-2.0" ]
null
null
null
import argparse import math import os import torch from torch import optim from torch.nn import functional as F from torchvision import transforms from PIL import Image from tqdm import tqdm import lpips from model import Generator def noise_regularize(noises): loss = 0 for noise in noises: size = noise.shape[2] while True: loss = ( loss + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2) + (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2) ) if size <= 8: break noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2]) noise = noise.mean([3, 5]) size //= 2 return loss def noise_normalize_(noises): for noise in noises: mean = noise.mean() std = noise.std() noise.data.add_(-mean).div_(std) def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05): lr_ramp = min(1, (1 - t) / rampdown) lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi) lr_ramp = lr_ramp * min(1, t / rampup) return initial_lr * lr_ramp def latent_noise(latent, strength): noise = torch.randn_like(latent) * strength return latent + noise def make_image(tensor): return ( tensor.detach() .clamp_(min=-1, max=1) .add(1) .div_(2) .mul(255) .type(torch.uint8) .permute(0, 2, 3, 1) .to("cpu") .numpy() ) if __name__ == "__main__": device = "cuda" parser = argparse.ArgumentParser( description="Image projector to the generator latent spaces" ) parser.add_argument( "--ckpt", type=str, required=True, help="path to the model checkpoint" ) parser.add_argument( "--size", type=int, default=256, help="output image sizes of the generator" ) parser.add_argument( "--lr_rampup", type=float, default=0.05, help="duration of the learning rate warmup", ) parser.add_argument( "--lr_rampdown", type=float, default=0.25, help="duration of the learning rate decay", ) parser.add_argument("--lr", type=float, default=0.1, help="learning rate") parser.add_argument( "--noise", type=float, default=0.05, help="strength of the noise level" ) parser.add_argument( "--noise_ramp", type=float, default=0.75, help="duration of the noise level decay", ) parser.add_argument("--step", type=int, default=1000, help="optimize iterations") parser.add_argument( "--noise_regularize", type=float, default=1e5, help="weight of the noise regularization", ) parser.add_argument("--mse", type=float, default=0, help="weight of the mse loss") parser.add_argument( "--w_plus", action="store_true", help="allow to use distinct latent codes to each layers", ) parser.add_argument( "files", metavar="FILES", nargs="+", help="path to image files to be projected" ) args = parser.parse_args() n_mean_latent = 10000 resize = min(args.size, 256) transform = transforms.Compose( [ transforms.Resize(resize), transforms.CenterCrop(resize), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ] ) imgs = [] for imgfile in args.files: img = transform(Image.open(imgfile).convert("RGB")) imgs.append(img) imgs = torch.stack(imgs, 0).to(device) g_ema = Generator(args.size, 512, 8) g_ema.load_state_dict(torch.load(args.ckpt)["g_ema"], strict=False) g_ema.eval() g_ema = g_ema.to(device) with torch.no_grad(): noise_sample = torch.randn(n_mean_latent, 512, device=device) latent_out = g_ema.style(noise_sample) latent_mean = latent_out.mean(0) latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5 percept = lpips.PerceptualLoss( model="net-lin", net="vgg", use_gpu=device.startswith("cuda") ) noises_single = g_ema.make_noise() noises = [] for noise in noises_single: noises.append(noise.repeat(imgs.shape[0], 1, 1, 1).normal_()) latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(imgs.shape[0], 1) if args.w_plus: latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1) latent_in.requires_grad = True for noise in noises: noise.requires_grad = True optimizer = optim.Adam([latent_in] + noises, lr=args.lr) pbar = tqdm(range(args.step)) latent_path = [] for i in pbar: t = i / args.step lr = get_lr(t, args.lr) optimizer.param_groups[0]["lr"] = lr noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_ramp) ** 2 latent_n = latent_noise(latent_in, noise_strength.item()) img_gen, _ = g_ema([latent_n], input_is_latent=True, noise=noises) batch, channel, height, width = img_gen.shape if height > 256: factor = height // 256 img_gen = img_gen.reshape( batch, channel, height // factor, factor, width // factor, factor ) img_gen = img_gen.mean([3, 5]) p_loss = percept(img_gen, imgs).sum() n_loss = noise_regularize(noises) mse_loss = F.mse_loss(img_gen, imgs) loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss optimizer.zero_grad() loss.backward() optimizer.step() noise_normalize_(noises) if (i + 1) % 100 == 0: latent_path.append(latent_in.detach().clone()) pbar.set_description( ( f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};" f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}" ) ) img_gen, _ = g_ema([latent_path[-1]], input_is_latent=True, noise=noises) filename = os.path.splitext(os.path.basename(args.files[0]))[0] + ".pt" img_ar = make_image(img_gen) result_file = {} for i, input_name in enumerate(args.files): noise_single = [] for noise in noises: noise_single.append(noise[i : i + 1]) # latent: "w", img: "inversed image" result_file[input_name] = { "img": img_gen[i], "latent": latent_in[i], "noise": noise_single, } img_name = os.path.splitext(os.path.basename(input_name))[0] + "-project.png" pil_img = Image.fromarray(img_ar[i]) pil_img.save(img_name) torch.save(result_file, filename)
28.257028
91
0.561967
714e330087927c6cb2f5157f597385fcfd93148e
1,103
py
Python
rplugin/python3/denite/source/gtags_context.py
deramchmzz/denite-gtags
21cbdb90c39b6b6c4908167561394cc2fabafdb0
[ "MIT" ]
null
null
null
rplugin/python3/denite/source/gtags_context.py
deramchmzz/denite-gtags
21cbdb90c39b6b6c4908167561394cc2fabafdb0
[ "MIT" ]
null
null
null
rplugin/python3/denite/source/gtags_context.py
deramchmzz/denite-gtags
21cbdb90c39b6b6c4908167561394cc2fabafdb0
[ "MIT" ]
null
null
null
import os import sys sys.path.insert(1, os.path.dirname(__file__)) from denite_gtags import TagsBase # pylint: disable=locally-disabled, wrong-import-position from denite import util class Source(TagsBase): def __init__(self, vim): super().__init__(vim) self.name = 'gtags_context' self.kind = 'file' def get_search_flags(self): current_line = self.vim.current.window.cursor[0] file_name = self.vim.current.window.buffer.name return [[ '--from-here', '{}:{}'.format(current_line, file_name), '--result=ctags-mod' ]] def convert_to_candidates(self, tags): candidates = [] for tag in tags: path, line, text = self._parse_tag(tag) col = text.find(text) - 1 candidates.append({ 'word': '{0}:{1};{2}'.format(util.abspath(self.vim, path), line, text), 'action__path': path, 'action__line': line, 'action__text': text, 'action__col': col }) return candidates
29.810811
92
0.56845
02ffe31e6ae2431402cfdd5c5f854e29c6810455
449,937
py
Python
python3/lib/python3.6/site-packages/tensorflow/python/ops/gen_data_flow_ops.py
TruongThuyLiem/keras2tensorflow
726f2370160701081cb43fbd8b56154c10d7ad63
[ "MIT" ]
3
2020-10-12T15:47:01.000Z
2022-01-14T19:51:26.000Z
python3/lib/python3.6/site-packages/tensorflow/python/ops/gen_data_flow_ops.py
TruongThuyLiem/keras2tensorflow
726f2370160701081cb43fbd8b56154c10d7ad63
[ "MIT" ]
null
null
null
python3/lib/python3.6/site-packages/tensorflow/python/ops/gen_data_flow_ops.py
TruongThuyLiem/keras2tensorflow
726f2370160701081cb43fbd8b56154c10d7ad63
[ "MIT" ]
2
2020-08-03T13:02:06.000Z
2020-11-04T03:15:44.000Z
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. Original C++ source file: data_flow_ops.cc """ import collections as _collections import six as _six from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import errors as _errors from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export from tensorflow.python.util.tf_export import kwarg_only as _kwarg_only from tensorflow.tools.docs import doc_controls as _doc_controls def accumulator_apply_gradient(handle, local_step, gradient, name=None): r"""Applies a gradient to a given accumulator. Does not add if local_step is lesser than the accumulator's global_step. Args: handle: A `Tensor` of type mutable `string`. The handle to a accumulator. local_step: A `Tensor` of type `int64`. The local_step value at which the gradient was computed. gradient: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. A tensor of the gradient to be accumulated. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("accumulator_apply_gradient op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "AccumulatorApplyGradient", handle=handle, local_step=local_step, gradient=gradient, name=name) return _op _result = None return _result def AccumulatorApplyGradient(handle, local_step, gradient, name=None): return accumulator_apply_gradient(handle=handle, local_step=local_step, gradient=gradient, name=name) AccumulatorApplyGradient.__doc__ = accumulator_apply_gradient.__doc__ AccumulatorApplyGradient = _doc_controls.do_not_generate_docs(_kwarg_only(AccumulatorApplyGradient)) tf_export("raw_ops.AccumulatorApplyGradient")(AccumulatorApplyGradient) def accumulator_apply_gradient_eager_fallback(handle, local_step, gradient, name=None, ctx=None): raise RuntimeError("accumulator_apply_gradient op does not support eager execution. Arg 'handle' is a ref.") def accumulator_num_accumulated(handle, name=None): r"""Returns the number of gradients aggregated in the given accumulators. Args: handle: A `Tensor` of type mutable `string`. The handle to an accumulator. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("accumulator_num_accumulated op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "AccumulatorNumAccumulated", handle=handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "AccumulatorNumAccumulated", _inputs_flat, _attrs, _result, name) _result, = _result return _result def AccumulatorNumAccumulated(handle, name=None): return accumulator_num_accumulated(handle=handle, name=name) AccumulatorNumAccumulated.__doc__ = accumulator_num_accumulated.__doc__ AccumulatorNumAccumulated = _doc_controls.do_not_generate_docs(_kwarg_only(AccumulatorNumAccumulated)) tf_export("raw_ops.AccumulatorNumAccumulated")(AccumulatorNumAccumulated) def accumulator_num_accumulated_eager_fallback(handle, name=None, ctx=None): raise RuntimeError("accumulator_num_accumulated op does not support eager execution. Arg 'handle' is a ref.") def accumulator_set_global_step(handle, new_global_step, name=None): r"""Updates the accumulator with a new value for global_step. Logs warning if the accumulator's value is already higher than new_global_step. Args: handle: A `Tensor` of type mutable `string`. The handle to an accumulator. new_global_step: A `Tensor` of type `int64`. The new global_step value to set. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("accumulator_set_global_step op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "AccumulatorSetGlobalStep", handle=handle, new_global_step=new_global_step, name=name) return _op _result = None return _result def AccumulatorSetGlobalStep(handle, new_global_step, name=None): return accumulator_set_global_step(handle=handle, new_global_step=new_global_step, name=name) AccumulatorSetGlobalStep.__doc__ = accumulator_set_global_step.__doc__ AccumulatorSetGlobalStep = _doc_controls.do_not_generate_docs(_kwarg_only(AccumulatorSetGlobalStep)) tf_export("raw_ops.AccumulatorSetGlobalStep")(AccumulatorSetGlobalStep) def accumulator_set_global_step_eager_fallback(handle, new_global_step, name=None, ctx=None): raise RuntimeError("accumulator_set_global_step op does not support eager execution. Arg 'handle' is a ref.") def accumulator_take_gradient(handle, num_required, dtype, name=None): r"""Extracts the average gradient in the given ConditionalAccumulator. The op blocks until sufficient (i.e., more than num_required) gradients have been accumulated. If the accumulator has already aggregated more than num_required gradients, it returns the average of the accumulated gradients. Also automatically increments the recorded global_step in the accumulator by 1, and resets the aggregate to 0. Args: handle: A `Tensor` of type mutable `string`. The handle to an accumulator. num_required: A `Tensor` of type `int32`. Number of gradients required before we return an aggregate. dtype: A `tf.DType` from: `tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.int64, tf.qint8, tf.quint8, tf.qint32, tf.bfloat16, tf.uint16, tf.complex128, tf.half, tf.uint32, tf.uint64`. The data type of accumulated gradients. Needs to correspond to the type of the accumulator. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("accumulator_take_gradient op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") _, _, _op = _op_def_lib._apply_op_helper( "AccumulatorTakeGradient", handle=handle, num_required=num_required, dtype=dtype, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype")) _execute.record_gradient( "AccumulatorTakeGradient", _inputs_flat, _attrs, _result, name) _result, = _result return _result def AccumulatorTakeGradient(handle, num_required, dtype, name=None): return accumulator_take_gradient(handle=handle, num_required=num_required, dtype=dtype, name=name) AccumulatorTakeGradient.__doc__ = accumulator_take_gradient.__doc__ AccumulatorTakeGradient = _doc_controls.do_not_generate_docs(_kwarg_only(AccumulatorTakeGradient)) tf_export("raw_ops.AccumulatorTakeGradient")(AccumulatorTakeGradient) def accumulator_take_gradient_eager_fallback(handle, num_required, dtype, name=None, ctx=None): raise RuntimeError("accumulator_take_gradient op does not support eager execution. Arg 'handle' is a ref.") def barrier(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): r"""Defines a barrier that persists across different graph executions. A barrier represents a key-value map, where each key is a string, and each value is a tuple of tensors. At runtime, the barrier contains 'complete' and 'incomplete' elements. A complete element has defined tensors for all components of its value tuple, and may be accessed using BarrierTakeMany. An incomplete element has some undefined components in its value tuple, and may be updated using BarrierInsertMany. Args: component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a value. shapes: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[]`. The shape of each component in a value. Each shape must be 1 in the first dimension. The length of this attr must be the same as the length of component_types. capacity: An optional `int`. Defaults to `-1`. The capacity of the barrier. The default capacity is MAX_INT32, which is the largest capacity of the underlying queue. container: An optional `string`. Defaults to `""`. If non-empty, this barrier is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this barrier will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("barrier op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'barrier' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'barrier' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "Barrier", component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "Barrier", _inputs_flat, _attrs, _result, name) _result, = _result return _result def Barrier(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): return barrier(component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) Barrier.__doc__ = barrier.__doc__ Barrier = _doc_controls.do_not_generate_docs(_kwarg_only(Barrier)) tf_export("raw_ops.Barrier")(Barrier) def barrier_eager_fallback(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None, ctx=None): raise RuntimeError("barrier op does not support eager execution. Arg 'handle' is a ref.") def barrier_close(handle, cancel_pending_enqueues=False, name=None): r"""Closes the given barrier. This operation signals that no more new elements will be inserted in the given barrier. Subsequent InsertMany that try to introduce a new key will fail. Subsequent InsertMany operations that just add missing components to already existing elements will continue to succeed. Subsequent TakeMany operations will continue to succeed if sufficient completed elements remain in the barrier. Subsequent TakeMany operations that would block will fail immediately. Args: handle: A `Tensor` of type mutable `string`. The handle to a barrier. cancel_pending_enqueues: An optional `bool`. Defaults to `False`. If true, all pending enqueue requests that are blocked on the barrier's queue will be canceled. InsertMany will fail, even if no new key is introduced. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("barrier_close op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if cancel_pending_enqueues is None: cancel_pending_enqueues = False cancel_pending_enqueues = _execute.make_bool(cancel_pending_enqueues, "cancel_pending_enqueues") _, _, _op = _op_def_lib._apply_op_helper( "BarrierClose", handle=handle, cancel_pending_enqueues=cancel_pending_enqueues, name=name) return _op _result = None return _result def BarrierClose(handle, cancel_pending_enqueues=False, name=None): return barrier_close(handle=handle, cancel_pending_enqueues=cancel_pending_enqueues, name=name) BarrierClose.__doc__ = barrier_close.__doc__ BarrierClose = _doc_controls.do_not_generate_docs(_kwarg_only(BarrierClose)) tf_export("raw_ops.BarrierClose")(BarrierClose) def barrier_close_eager_fallback(handle, cancel_pending_enqueues=False, name=None, ctx=None): raise RuntimeError("barrier_close op does not support eager execution. Arg 'handle' is a ref.") def barrier_incomplete_size(handle, name=None): r"""Computes the number of incomplete elements in the given barrier. Args: handle: A `Tensor` of type mutable `string`. The handle to a barrier. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("barrier_incomplete_size op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "BarrierIncompleteSize", handle=handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "BarrierIncompleteSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def BarrierIncompleteSize(handle, name=None): return barrier_incomplete_size(handle=handle, name=name) BarrierIncompleteSize.__doc__ = barrier_incomplete_size.__doc__ BarrierIncompleteSize = _doc_controls.do_not_generate_docs(_kwarg_only(BarrierIncompleteSize)) tf_export("raw_ops.BarrierIncompleteSize")(BarrierIncompleteSize) def barrier_incomplete_size_eager_fallback(handle, name=None, ctx=None): raise RuntimeError("barrier_incomplete_size op does not support eager execution. Arg 'handle' is a ref.") def barrier_insert_many(handle, keys, values, component_index, name=None): r"""For each key, assigns the respective value to the specified component. If a key is not found in the barrier, this operation will create a new incomplete element. If a key is found in the barrier, and the element already has a value at component_index, this operation will fail with INVALID_ARGUMENT, and leave the barrier in an undefined state. Args: handle: A `Tensor` of type mutable `string`. The handle to a barrier. keys: A `Tensor` of type `string`. A one-dimensional tensor of keys, with length n. values: A `Tensor`. An any-dimensional tensor of values, which are associated with the respective keys. The 0th dimension must have length n. component_index: An `int`. The component of the barrier elements that is being assigned. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("barrier_insert_many op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. component_index = _execute.make_int(component_index, "component_index") _, _, _op = _op_def_lib._apply_op_helper( "BarrierInsertMany", handle=handle, keys=keys, values=values, component_index=component_index, name=name) return _op _result = None return _result def BarrierInsertMany(handle, keys, values, component_index, name=None): return barrier_insert_many(handle=handle, keys=keys, values=values, component_index=component_index, name=name) BarrierInsertMany.__doc__ = barrier_insert_many.__doc__ BarrierInsertMany = _doc_controls.do_not_generate_docs(_kwarg_only(BarrierInsertMany)) tf_export("raw_ops.BarrierInsertMany")(BarrierInsertMany) def barrier_insert_many_eager_fallback(handle, keys, values, component_index, name=None, ctx=None): raise RuntimeError("barrier_insert_many op does not support eager execution. Arg 'handle' is a ref.") def barrier_ready_size(handle, name=None): r"""Computes the number of complete elements in the given barrier. Args: handle: A `Tensor` of type mutable `string`. The handle to a barrier. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("barrier_ready_size op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "BarrierReadySize", handle=handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "BarrierReadySize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def BarrierReadySize(handle, name=None): return barrier_ready_size(handle=handle, name=name) BarrierReadySize.__doc__ = barrier_ready_size.__doc__ BarrierReadySize = _doc_controls.do_not_generate_docs(_kwarg_only(BarrierReadySize)) tf_export("raw_ops.BarrierReadySize")(BarrierReadySize) def barrier_ready_size_eager_fallback(handle, name=None, ctx=None): raise RuntimeError("barrier_ready_size op does not support eager execution. Arg 'handle' is a ref.") _barrier_take_many_outputs = ["indices", "keys", "values"] _BarrierTakeManyOutput = _collections.namedtuple( "BarrierTakeMany", _barrier_take_many_outputs) def barrier_take_many(handle, num_elements, component_types, allow_small_batch=False, wait_for_incomplete=False, timeout_ms=-1, name=None): r"""Takes the given number of completed elements from a barrier. This operation concatenates completed-element component tensors along the 0th dimension to make a single component tensor. Elements come out of the barrier when they are complete, and in the order in which they were placed into the barrier. The indices output provides information about the batch in which each element was originally inserted into the barrier. Args: handle: A `Tensor` of type mutable `string`. The handle to a barrier. num_elements: A `Tensor` of type `int32`. A single-element tensor containing the number of elements to take. component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a value. allow_small_batch: An optional `bool`. Defaults to `False`. Allow to return less than num_elements items if barrier is already closed. wait_for_incomplete: An optional `bool`. Defaults to `False`. timeout_ms: An optional `int`. Defaults to `-1`. If the queue is empty, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (indices, keys, values). indices: A `Tensor` of type `int64`. keys: A `Tensor` of type `string`. values: A list of `Tensor` objects of type `component_types`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("barrier_take_many op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'barrier_take_many' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if allow_small_batch is None: allow_small_batch = False allow_small_batch = _execute.make_bool(allow_small_batch, "allow_small_batch") if wait_for_incomplete is None: wait_for_incomplete = False wait_for_incomplete = _execute.make_bool(wait_for_incomplete, "wait_for_incomplete") if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "BarrierTakeMany", handle=handle, num_elements=num_elements, component_types=component_types, allow_small_batch=allow_small_batch, wait_for_incomplete=wait_for_incomplete, timeout_ms=timeout_ms, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "allow_small_batch", _op.get_attr("allow_small_batch"), "wait_for_incomplete", _op.get_attr("wait_for_incomplete"), "timeout_ms", _op.get_attr("timeout_ms")) _execute.record_gradient( "BarrierTakeMany", _inputs_flat, _attrs, _result, name) _result = _result[:2] + [_result[2:]] _result = _BarrierTakeManyOutput._make(_result) return _result def BarrierTakeMany(handle, num_elements, component_types, allow_small_batch=False, wait_for_incomplete=False, timeout_ms=-1, name=None): return barrier_take_many(handle=handle, num_elements=num_elements, component_types=component_types, allow_small_batch=allow_small_batch, wait_for_incomplete=wait_for_incomplete, timeout_ms=timeout_ms, name=name) BarrierTakeMany.__doc__ = barrier_take_many.__doc__ BarrierTakeMany = _doc_controls.do_not_generate_docs(_kwarg_only(BarrierTakeMany)) tf_export("raw_ops.BarrierTakeMany")(BarrierTakeMany) def barrier_take_many_eager_fallback(handle, num_elements, component_types, allow_small_batch=False, wait_for_incomplete=False, timeout_ms=-1, name=None, ctx=None): raise RuntimeError("barrier_take_many op does not support eager execution. Arg 'handle' is a ref.") def conditional_accumulator(dtype, shape, container="", shared_name="", reduction_type="MEAN", name=None): r"""A conditional accumulator for aggregating gradients. The accumulator accepts gradients marked with local_step greater or equal to the most recent global_step known to the accumulator. The average can be extracted from the accumulator, provided sufficient gradients have been accumulated. Extracting the average automatically resets the aggregate to 0, and increments the global_step recorded by the accumulator. Args: dtype: A `tf.DType` from: `tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.int64, tf.qint8, tf.quint8, tf.qint32, tf.bfloat16, tf.uint16, tf.complex128, tf.half, tf.uint32, tf.uint64`. The type of the value being accumulated. shape: A `tf.TensorShape` or list of `ints`. The shape of the values, can be [], in which case shape is unknown. container: An optional `string`. Defaults to `""`. If non-empty, this accumulator is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this accumulator will be shared under the given name across multiple sessions. reduction_type: An optional `string` from: `"MEAN", "SUM"`. Defaults to `"MEAN"`. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("conditional_accumulator op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") shape = _execute.make_shape(shape, "shape") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if reduction_type is None: reduction_type = "MEAN" reduction_type = _execute.make_str(reduction_type, "reduction_type") _, _, _op = _op_def_lib._apply_op_helper( "ConditionalAccumulator", dtype=dtype, shape=shape, container=container, shared_name=shared_name, reduction_type=reduction_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "shape", _op.get_attr("shape"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "reduction_type", _op.get_attr("reduction_type")) _execute.record_gradient( "ConditionalAccumulator", _inputs_flat, _attrs, _result, name) _result, = _result return _result def ConditionalAccumulator(dtype, shape, container="", shared_name="", reduction_type="MEAN", name=None): return conditional_accumulator(dtype=dtype, shape=shape, container=container, shared_name=shared_name, reduction_type=reduction_type, name=name) ConditionalAccumulator.__doc__ = conditional_accumulator.__doc__ ConditionalAccumulator = _doc_controls.do_not_generate_docs(_kwarg_only(ConditionalAccumulator)) tf_export("raw_ops.ConditionalAccumulator")(ConditionalAccumulator) def conditional_accumulator_eager_fallback(dtype, shape, container="", shared_name="", reduction_type="MEAN", name=None, ctx=None): raise RuntimeError("conditional_accumulator op does not support eager execution. Arg 'handle' is a ref.") def delete_session_tensor(handle, name=None): r"""Delete the tensor specified by its handle in the session. Args: handle: A `Tensor` of type `string`. The handle for a tensor stored in the session state. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "DeleteSessionTensor", name, _ctx._post_execution_callbacks, handle) return _result except _core._FallbackException: try: return delete_session_tensor_eager_fallback( handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "DeleteSessionTensor", handle=handle, name=name) return _op _result = None return _result def DeleteSessionTensor(handle, name=None): return delete_session_tensor(handle=handle, name=name) DeleteSessionTensor.__doc__ = delete_session_tensor.__doc__ DeleteSessionTensor = _doc_controls.do_not_generate_docs(_kwarg_only(DeleteSessionTensor)) tf_export("raw_ops.DeleteSessionTensor")(DeleteSessionTensor) def delete_session_tensor_eager_fallback(handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function delete_session_tensor """ _ctx = ctx if ctx else _context.context() handle = _ops.convert_to_tensor(handle, _dtypes.string) _inputs_flat = [handle] _attrs = None _result = _execute.execute(b"DeleteSessionTensor", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result @_dispatch.add_dispatch_list @tf_export('dynamic_partition') def dynamic_partition(data, partitions, num_partitions, name=None): r"""Partitions `data` into `num_partitions` tensors using indices from `partitions`. For each index tuple `js` of size `partitions.ndim`, the slice `data[js, ...]` becomes part of `outputs[partitions[js]]`. The slices with `partitions[js] = i` are placed in `outputs[i]` in lexicographic order of `js`, and the first dimension of `outputs[i]` is the number of entries in `partitions` equal to `i`. In detail, ```python outputs[i].shape = [sum(partitions == i)] + data.shape[partitions.ndim:] outputs[i] = pack([data[js, ...] for js if partitions[js] == i]) ``` `data.shape` must start with `partitions.shape`. For example: ```python # Scalar partitions. partitions = 1 num_partitions = 2 data = [10, 20] outputs[0] = [] # Empty with shape [0, 2] outputs[1] = [[10, 20]] # Vector partitions. partitions = [0, 0, 1, 1, 0] num_partitions = 2 data = [10, 20, 30, 40, 50] outputs[0] = [10, 20, 50] outputs[1] = [30, 40] ``` See `dynamic_stitch` for an example on how to merge partitions back. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/DynamicPartition.png" alt> </div> Args: data: A `Tensor`. partitions: A `Tensor` of type `int32`. Any shape. Indices in the range `[0, num_partitions)`. num_partitions: An `int` that is `>= 1`. The number of partitions to output. name: A name for the operation (optional). Returns: A list of `num_partitions` `Tensor` objects with the same type as `data`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "DynamicPartition", name, _ctx._post_execution_callbacks, data, partitions, "num_partitions", num_partitions) return _result except _core._FallbackException: try: return dynamic_partition_eager_fallback( data, partitions, num_partitions=num_partitions, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( dynamic_partition, data=data, partitions=partitions, num_partitions=num_partitions, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. num_partitions = _execute.make_int(num_partitions, "num_partitions") try: _, _, _op = _op_def_lib._apply_op_helper( "DynamicPartition", data=data, partitions=partitions, num_partitions=num_partitions, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( dynamic_partition, data=data, partitions=partitions, num_partitions=num_partitions, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("num_partitions", _op.get_attr("num_partitions"), "T", _op.get_attr("T")) _execute.record_gradient( "DynamicPartition", _inputs_flat, _attrs, _result, name) return _result def DynamicPartition(data, partitions, num_partitions, name=None): return dynamic_partition(data=data, partitions=partitions, num_partitions=num_partitions, name=name) DynamicPartition.__doc__ = dynamic_partition.__doc__ DynamicPartition = _doc_controls.do_not_generate_docs(_kwarg_only(DynamicPartition)) tf_export("raw_ops.DynamicPartition")(DynamicPartition) def dynamic_partition_eager_fallback(data, partitions, num_partitions, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function dynamic_partition """ _ctx = ctx if ctx else _context.context() num_partitions = _execute.make_int(num_partitions, "num_partitions") _attr_T, (data,) = _execute.args_to_matching_eager([data], _ctx) partitions = _ops.convert_to_tensor(partitions, _dtypes.int32) _inputs_flat = [data, partitions] _attrs = ("num_partitions", num_partitions, "T", _attr_T) _result = _execute.execute(b"DynamicPartition", num_partitions, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "DynamicPartition", _inputs_flat, _attrs, _result, name) return _result @_dispatch.add_dispatch_list @tf_export('dynamic_stitch') def dynamic_stitch(indices, data, name=None): r"""Interleave the values from the `data` tensors into a single tensor. Builds a merged tensor such that ```python merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...] ``` For example, if each `indices[m]` is scalar or vector, we have ```python # Scalar indices: merged[indices[m], ...] = data[m][...] # Vector indices: merged[indices[m][i], ...] = data[m][i, ...] ``` Each `data[i].shape` must start with the corresponding `indices[i].shape`, and the rest of `data[i].shape` must be constant w.r.t. `i`. That is, we must have `data[i].shape = indices[i].shape + constant`. In terms of this `constant`, the output shape is merged.shape = [max(indices)] + constant Values are merged in order, so if an index appears in both `indices[m][i]` and `indices[n][j]` for `(m,i) < (n,j)` the slice `data[n][j]` will appear in the merged result. If you do not need this guarantee, ParallelDynamicStitch might perform better on some devices. For example: ```python indices[0] = 6 indices[1] = [4, 1] indices[2] = [[5, 2], [0, 3]] data[0] = [61, 62] data[1] = [[41, 42], [11, 12]] data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]] merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42], [51, 52], [61, 62]] ``` This method can be used to merge partitions created by `dynamic_partition` as illustrated on the following example: ```python # Apply function (increments x_i) on elements for which a certain condition # apply (x_i != -1 in this example). x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4]) condition_mask=tf.not_equal(x,tf.constant(-1.)) partitioned_data = tf.dynamic_partition( x, tf.cast(condition_mask, tf.int32) , 2) partitioned_data[1] = partitioned_data[1] + 1.0 condition_indices = tf.dynamic_partition( tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2) x = tf.dynamic_stitch(condition_indices, partitioned_data) # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain # unchanged. ``` <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/DynamicStitch.png" alt> </div> Args: indices: A list of at least 1 `Tensor` objects with type `int32`. data: A list with the same length as `indices` of `Tensor` objects with the same type. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "DynamicStitch", name, _ctx._post_execution_callbacks, indices, data) return _result except _core._FallbackException: try: return dynamic_stitch_eager_fallback( indices, data, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( dynamic_stitch, indices=indices, data=data, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(indices, (list, tuple)): raise TypeError( "Expected list for 'indices' argument to " "'dynamic_stitch' Op, not %r." % indices) _attr_N = len(indices) if not isinstance(data, (list, tuple)): raise TypeError( "Expected list for 'data' argument to " "'dynamic_stitch' Op, not %r." % data) if len(data) != _attr_N: raise ValueError( "List argument 'data' to 'dynamic_stitch' Op with length %d " "must match length %d of argument 'indices'." % (len(data), _attr_N)) try: _, _, _op = _op_def_lib._apply_op_helper( "DynamicStitch", indices=indices, data=data, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( dynamic_stitch, indices=indices, data=data, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("N", _op.get_attr("N"), "T", _op.get_attr("T")) _execute.record_gradient( "DynamicStitch", _inputs_flat, _attrs, _result, name) _result, = _result return _result def DynamicStitch(indices, data, name=None): return dynamic_stitch(indices=indices, data=data, name=name) DynamicStitch.__doc__ = dynamic_stitch.__doc__ DynamicStitch = _doc_controls.do_not_generate_docs(_kwarg_only(DynamicStitch)) tf_export("raw_ops.DynamicStitch")(DynamicStitch) def dynamic_stitch_eager_fallback(indices, data, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function dynamic_stitch """ _ctx = ctx if ctx else _context.context() if not isinstance(indices, (list, tuple)): raise TypeError( "Expected list for 'indices' argument to " "'dynamic_stitch' Op, not %r." % indices) _attr_N = len(indices) if not isinstance(data, (list, tuple)): raise TypeError( "Expected list for 'data' argument to " "'dynamic_stitch' Op, not %r." % data) if len(data) != _attr_N: raise ValueError( "List argument 'data' to 'dynamic_stitch' Op with length %d " "must match length %d of argument 'indices'." % (len(data), _attr_N)) _attr_T, data = _execute.args_to_matching_eager(list(data), _ctx) indices = _ops.convert_n_to_tensor(indices, _dtypes.int32) _inputs_flat = list(indices) + list(data) _attrs = ("N", _attr_N, "T", _attr_T) _result = _execute.execute(b"DynamicStitch", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "DynamicStitch", _inputs_flat, _attrs, _result, name) _result, = _result return _result def fifo_queue(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): r"""A queue that produces elements in first-in first-out order. Args: component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a value. shapes: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[]`. The shape of each component in a value. The length of this attr must be either 0 or the same as the length of component_types. If the length of this attr is 0, the shapes of queue elements are not constrained, and only one element may be dequeued at a time. capacity: An optional `int`. Defaults to `-1`. The upper bound on the number of elements in this queue. Negative numbers mean no limit. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this queue will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("fifo_queue op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'fifo_queue' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'fifo_queue' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "FIFOQueue", component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "FIFOQueue", _inputs_flat, _attrs, _result, name) _result, = _result return _result def FIFOQueue(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): return fifo_queue(component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) FIFOQueue.__doc__ = fifo_queue.__doc__ FIFOQueue = _doc_controls.do_not_generate_docs(_kwarg_only(FIFOQueue)) tf_export("raw_ops.FIFOQueue")(FIFOQueue) def fifo_queue_eager_fallback(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None, ctx=None): raise RuntimeError("fifo_queue op does not support eager execution. Arg 'handle' is a ref.") def fifo_queue_v2(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): r"""A queue that produces elements in first-in first-out order. Args: component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a value. shapes: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[]`. The shape of each component in a value. The length of this attr must be either 0 or the same as the length of component_types. If the length of this attr is 0, the shapes of queue elements are not constrained, and only one element may be dequeued at a time. capacity: An optional `int`. Defaults to `-1`. The upper bound on the number of elements in this queue. Negative numbers mean no limit. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this queue will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "FIFOQueueV2", name, _ctx._post_execution_callbacks, "component_types", component_types, "shapes", shapes, "capacity", capacity, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return fifo_queue_v2_eager_fallback( component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'fifo_queue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'fifo_queue_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "FIFOQueueV2", component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "FIFOQueueV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def FIFOQueueV2(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): return fifo_queue_v2(component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) FIFOQueueV2.__doc__ = fifo_queue_v2.__doc__ FIFOQueueV2 = _doc_controls.do_not_generate_docs(_kwarg_only(FIFOQueueV2)) tf_export("raw_ops.FIFOQueueV2")(FIFOQueueV2) def fifo_queue_v2_eager_fallback(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function fifo_queue_v2 """ _ctx = ctx if ctx else _context.context() if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'fifo_queue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'fifo_queue_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("component_types", component_types, "shapes", shapes, "capacity", capacity, "container", container, "shared_name", shared_name) _result = _execute.execute(b"FIFOQueueV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "FIFOQueueV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def fake_queue(resource, name=None): r"""Deprecated. Do not use. Args: resource: A `Tensor` of type `resource`. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("fake_queue op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "FakeQueue", resource=resource, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "FakeQueue", _inputs_flat, _attrs, _result, name) _result, = _result return _result def FakeQueue(resource, name=None): return fake_queue(resource=resource, name=name) FakeQueue.__doc__ = fake_queue.__doc__ FakeQueue = _doc_controls.do_not_generate_docs(_kwarg_only(FakeQueue)) tf_export("raw_ops.FakeQueue")(FakeQueue) def fake_queue_eager_fallback(resource, name=None, ctx=None): raise RuntimeError("fake_queue op does not support eager execution. Arg 'handle' is a ref.") def get_session_handle(value, name=None): r"""Store the input tensor in the state of the current session. Args: value: A `Tensor`. The tensor to be stored. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "GetSessionHandle", name, _ctx._post_execution_callbacks, value) return _result except _core._FallbackException: try: return get_session_handle_eager_fallback( value, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "GetSessionHandle", value=value, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "GetSessionHandle", _inputs_flat, _attrs, _result, name) _result, = _result return _result def GetSessionHandle(value, name=None): return get_session_handle(value=value, name=name) GetSessionHandle.__doc__ = get_session_handle.__doc__ GetSessionHandle = _doc_controls.do_not_generate_docs(_kwarg_only(GetSessionHandle)) tf_export("raw_ops.GetSessionHandle")(GetSessionHandle) def get_session_handle_eager_fallback(value, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function get_session_handle """ _ctx = ctx if ctx else _context.context() _attr_T, (value,) = _execute.args_to_matching_eager([value], _ctx) _inputs_flat = [value] _attrs = ("T", _attr_T) _result = _execute.execute(b"GetSessionHandle", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "GetSessionHandle", _inputs_flat, _attrs, _result, name) _result, = _result return _result def get_session_handle_v2(value, name=None): r"""Store the input tensor in the state of the current session. Args: value: A `Tensor`. The tensor to be stored. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "GetSessionHandleV2", name, _ctx._post_execution_callbacks, value) return _result except _core._FallbackException: try: return get_session_handle_v2_eager_fallback( value, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "GetSessionHandleV2", value=value, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "GetSessionHandleV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def GetSessionHandleV2(value, name=None): return get_session_handle_v2(value=value, name=name) GetSessionHandleV2.__doc__ = get_session_handle_v2.__doc__ GetSessionHandleV2 = _doc_controls.do_not_generate_docs(_kwarg_only(GetSessionHandleV2)) tf_export("raw_ops.GetSessionHandleV2")(GetSessionHandleV2) def get_session_handle_v2_eager_fallback(value, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function get_session_handle_v2 """ _ctx = ctx if ctx else _context.context() _attr_T, (value,) = _execute.args_to_matching_eager([value], _ctx) _inputs_flat = [value] _attrs = ("T", _attr_T) _result = _execute.execute(b"GetSessionHandleV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "GetSessionHandleV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def get_session_tensor(handle, dtype, name=None): r"""Get the value of the tensor specified by its handle. Args: handle: A `Tensor` of type `string`. The handle for a tensor stored in the session state. dtype: A `tf.DType`. The type of the output value. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "GetSessionTensor", name, _ctx._post_execution_callbacks, handle, "dtype", dtype) return _result except _core._FallbackException: try: return get_session_tensor_eager_fallback( handle, dtype=dtype, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") _, _, _op = _op_def_lib._apply_op_helper( "GetSessionTensor", handle=handle, dtype=dtype, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype")) _execute.record_gradient( "GetSessionTensor", _inputs_flat, _attrs, _result, name) _result, = _result return _result def GetSessionTensor(handle, dtype, name=None): return get_session_tensor(handle=handle, dtype=dtype, name=name) GetSessionTensor.__doc__ = get_session_tensor.__doc__ GetSessionTensor = _doc_controls.do_not_generate_docs(_kwarg_only(GetSessionTensor)) tf_export("raw_ops.GetSessionTensor")(GetSessionTensor) def get_session_tensor_eager_fallback(handle, dtype, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function get_session_tensor """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") handle = _ops.convert_to_tensor(handle, _dtypes.string) _inputs_flat = [handle] _attrs = ("dtype", dtype) _result = _execute.execute(b"GetSessionTensor", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "GetSessionTensor", _inputs_flat, _attrs, _result, name) _result, = _result return _result def map_clear(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op removes all elements in the underlying container. Args: dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "MapClear", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return map_clear_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_clear' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "MapClear", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) return _op _result = None return _result def MapClear(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return map_clear(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) MapClear.__doc__ = map_clear.__doc__ MapClear = _doc_controls.do_not_generate_docs(_kwarg_only(MapClear)) tf_export("raw_ops.MapClear")(MapClear) def map_clear_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function map_clear """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_clear' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"MapClear", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def map_incomplete_size(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op returns the number of incomplete elements in the underlying container. Args: dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "MapIncompleteSize", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return map_incomplete_size_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_incomplete_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "MapIncompleteSize", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "MapIncompleteSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def MapIncompleteSize(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return map_incomplete_size(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) MapIncompleteSize.__doc__ = map_incomplete_size.__doc__ MapIncompleteSize = _doc_controls.do_not_generate_docs(_kwarg_only(MapIncompleteSize)) tf_export("raw_ops.MapIncompleteSize")(MapIncompleteSize) def map_incomplete_size_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function map_incomplete_size """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_incomplete_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"MapIncompleteSize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "MapIncompleteSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def map_peek(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op peeks at the values at the specified key. If the underlying container does not contain this key this op will block until it does. Args: key: A `Tensor` of type `int64`. indices: A `Tensor` of type `int32`. dtypes: A list of `tf.DTypes` that has length `>= 1`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "MapPeek", name, _ctx._post_execution_callbacks, key, indices, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return map_peek_eager_fallback( key, indices, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_peek' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "MapPeek", key=key, indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "MapPeek", _inputs_flat, _attrs, _result, name) return _result def MapPeek(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return map_peek(key=key, indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) MapPeek.__doc__ = map_peek.__doc__ MapPeek = _doc_controls.do_not_generate_docs(_kwarg_only(MapPeek)) tf_export("raw_ops.MapPeek")(MapPeek) def map_peek_eager_fallback(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function map_peek """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_peek' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") key = _ops.convert_to_tensor(key, _dtypes.int64) indices = _ops.convert_to_tensor(indices, _dtypes.int32) _inputs_flat = [key, indices] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"MapPeek", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "MapPeek", _inputs_flat, _attrs, _result, name) return _result def map_size(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op returns the number of elements in the underlying container. Args: dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "MapSize", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return map_size_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "MapSize", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "MapSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def MapSize(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return map_size(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) MapSize.__doc__ = map_size.__doc__ MapSize = _doc_controls.do_not_generate_docs(_kwarg_only(MapSize)) tf_export("raw_ops.MapSize")(MapSize) def map_size_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function map_size """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"MapSize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "MapSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def map_stage(key, indices, values, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Stage (key, values) in the underlying container which behaves like a hashtable. Args: key: A `Tensor` of type `int64`. int64 indices: A `Tensor` of type `int32`. values: A list of `Tensor` objects. a list of tensors dtypes A list of data types that inserted values should adhere to. dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. Maximum number of elements in the Staging Area. If > 0, inserts on the container will block when the capacity is reached. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. It is necessary to match this name to the matching Unstage Op. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "MapStage", name, _ctx._post_execution_callbacks, key, indices, values, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return map_stage_eager_fallback( key, indices, values, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_stage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "MapStage", key=key, indices=indices, values=values, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) return _op _result = None return _result def MapStage(key, indices, values, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return map_stage(key=key, indices=indices, values=values, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) MapStage.__doc__ = map_stage.__doc__ MapStage = _doc_controls.do_not_generate_docs(_kwarg_only(MapStage)) tf_export("raw_ops.MapStage")(MapStage) def map_stage_eager_fallback(key, indices, values, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function map_stage """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_stage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _attr_fake_dtypes, values = _execute.convert_to_mixed_eager_tensors(values, _ctx) key = _ops.convert_to_tensor(key, _dtypes.int64) indices = _ops.convert_to_tensor(indices, _dtypes.int32) _inputs_flat = [key, indices] + list(values) _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "fake_dtypes", _attr_fake_dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"MapStage", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def map_unstage(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op removes and returns the values associated with the key from the underlying container. If the underlying container does not contain this key, the op will block until it does. Args: key: A `Tensor` of type `int64`. indices: A `Tensor` of type `int32`. dtypes: A list of `tf.DTypes` that has length `>= 1`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "MapUnstage", name, _ctx._post_execution_callbacks, key, indices, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return map_unstage_eager_fallback( key, indices, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_unstage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "MapUnstage", key=key, indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "MapUnstage", _inputs_flat, _attrs, _result, name) return _result def MapUnstage(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return map_unstage(key=key, indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) MapUnstage.__doc__ = map_unstage.__doc__ MapUnstage = _doc_controls.do_not_generate_docs(_kwarg_only(MapUnstage)) tf_export("raw_ops.MapUnstage")(MapUnstage) def map_unstage_eager_fallback(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function map_unstage """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_unstage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") key = _ops.convert_to_tensor(key, _dtypes.int64) indices = _ops.convert_to_tensor(indices, _dtypes.int32) _inputs_flat = [key, indices] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"MapUnstage", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "MapUnstage", _inputs_flat, _attrs, _result, name) return _result _map_unstage_no_key_outputs = ["key", "values"] _MapUnstageNoKeyOutput = _collections.namedtuple( "MapUnstageNoKey", _map_unstage_no_key_outputs) def map_unstage_no_key(indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op removes and returns a random (key, value) from the underlying container. If the underlying container does not contain elements, the op will block until it does. Args: indices: A `Tensor` of type `int32`. dtypes: A list of `tf.DTypes` that has length `>= 1`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (key, values). key: A `Tensor` of type `int64`. values: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "MapUnstageNoKey", name, _ctx._post_execution_callbacks, indices, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _MapUnstageNoKeyOutput._make(_result) return _result except _core._FallbackException: try: return map_unstage_no_key_eager_fallback( indices, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_unstage_no_key' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "MapUnstageNoKey", indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "MapUnstageNoKey", _inputs_flat, _attrs, _result, name) _result = _result[:1] + [_result[1:]] _result = _MapUnstageNoKeyOutput._make(_result) return _result def MapUnstageNoKey(indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return map_unstage_no_key(indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) MapUnstageNoKey.__doc__ = map_unstage_no_key.__doc__ MapUnstageNoKey = _doc_controls.do_not_generate_docs(_kwarg_only(MapUnstageNoKey)) tf_export("raw_ops.MapUnstageNoKey")(MapUnstageNoKey) def map_unstage_no_key_eager_fallback(indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function map_unstage_no_key """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'map_unstage_no_key' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") indices = _ops.convert_to_tensor(indices, _dtypes.int32) _inputs_flat = [indices] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"MapUnstageNoKey", len(dtypes) + 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "MapUnstageNoKey", _inputs_flat, _attrs, _result, name) _result = _result[:1] + [_result[1:]] _result = _MapUnstageNoKeyOutput._make(_result) return _result def ordered_map_clear(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op removes all elements in the underlying container. Args: dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "OrderedMapClear", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return ordered_map_clear_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_clear' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "OrderedMapClear", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) return _op _result = None return _result def OrderedMapClear(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return ordered_map_clear(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) OrderedMapClear.__doc__ = ordered_map_clear.__doc__ OrderedMapClear = _doc_controls.do_not_generate_docs(_kwarg_only(OrderedMapClear)) tf_export("raw_ops.OrderedMapClear")(OrderedMapClear) def ordered_map_clear_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function ordered_map_clear """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_clear' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"OrderedMapClear", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def ordered_map_incomplete_size(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op returns the number of incomplete elements in the underlying container. Args: dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "OrderedMapIncompleteSize", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return ordered_map_incomplete_size_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_incomplete_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "OrderedMapIncompleteSize", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "OrderedMapIncompleteSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def OrderedMapIncompleteSize(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return ordered_map_incomplete_size(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) OrderedMapIncompleteSize.__doc__ = ordered_map_incomplete_size.__doc__ OrderedMapIncompleteSize = _doc_controls.do_not_generate_docs(_kwarg_only(OrderedMapIncompleteSize)) tf_export("raw_ops.OrderedMapIncompleteSize")(OrderedMapIncompleteSize) def ordered_map_incomplete_size_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function ordered_map_incomplete_size """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_incomplete_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"OrderedMapIncompleteSize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "OrderedMapIncompleteSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def ordered_map_peek(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op peeks at the values at the specified key. If the underlying container does not contain this key this op will block until it does. This Op is optimized for performance. Args: key: A `Tensor` of type `int64`. indices: A `Tensor` of type `int32`. dtypes: A list of `tf.DTypes` that has length `>= 1`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "OrderedMapPeek", name, _ctx._post_execution_callbacks, key, indices, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return ordered_map_peek_eager_fallback( key, indices, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_peek' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "OrderedMapPeek", key=key, indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "OrderedMapPeek", _inputs_flat, _attrs, _result, name) return _result def OrderedMapPeek(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return ordered_map_peek(key=key, indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) OrderedMapPeek.__doc__ = ordered_map_peek.__doc__ OrderedMapPeek = _doc_controls.do_not_generate_docs(_kwarg_only(OrderedMapPeek)) tf_export("raw_ops.OrderedMapPeek")(OrderedMapPeek) def ordered_map_peek_eager_fallback(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function ordered_map_peek """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_peek' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") key = _ops.convert_to_tensor(key, _dtypes.int64) indices = _ops.convert_to_tensor(indices, _dtypes.int32) _inputs_flat = [key, indices] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"OrderedMapPeek", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "OrderedMapPeek", _inputs_flat, _attrs, _result, name) return _result def ordered_map_size(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op returns the number of elements in the underlying container. Args: dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "OrderedMapSize", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return ordered_map_size_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "OrderedMapSize", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "OrderedMapSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def OrderedMapSize(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return ordered_map_size(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) OrderedMapSize.__doc__ = ordered_map_size.__doc__ OrderedMapSize = _doc_controls.do_not_generate_docs(_kwarg_only(OrderedMapSize)) tf_export("raw_ops.OrderedMapSize")(OrderedMapSize) def ordered_map_size_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function ordered_map_size """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"OrderedMapSize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "OrderedMapSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def ordered_map_stage(key, indices, values, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Stage (key, values) in the underlying container which behaves like a ordered associative container. Elements are ordered by key. Args: key: A `Tensor` of type `int64`. int64 indices: A `Tensor` of type `int32`. values: A list of `Tensor` objects. a list of tensors dtypes A list of data types that inserted values should adhere to. dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. Maximum number of elements in the Staging Area. If > 0, inserts on the container will block when the capacity is reached. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. It is necessary to match this name to the matching Unstage Op. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "OrderedMapStage", name, _ctx._post_execution_callbacks, key, indices, values, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return ordered_map_stage_eager_fallback( key, indices, values, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_stage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "OrderedMapStage", key=key, indices=indices, values=values, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) return _op _result = None return _result def OrderedMapStage(key, indices, values, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return ordered_map_stage(key=key, indices=indices, values=values, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) OrderedMapStage.__doc__ = ordered_map_stage.__doc__ OrderedMapStage = _doc_controls.do_not_generate_docs(_kwarg_only(OrderedMapStage)) tf_export("raw_ops.OrderedMapStage")(OrderedMapStage) def ordered_map_stage_eager_fallback(key, indices, values, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function ordered_map_stage """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_stage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _attr_fake_dtypes, values = _execute.convert_to_mixed_eager_tensors(values, _ctx) key = _ops.convert_to_tensor(key, _dtypes.int64) indices = _ops.convert_to_tensor(indices, _dtypes.int32) _inputs_flat = [key, indices] + list(values) _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "fake_dtypes", _attr_fake_dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"OrderedMapStage", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def ordered_map_unstage(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op removes and returns the values associated with the key from the underlying container. If the underlying container does not contain this key, the op will block until it does. Args: key: A `Tensor` of type `int64`. indices: A `Tensor` of type `int32`. dtypes: A list of `tf.DTypes` that has length `>= 1`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "OrderedMapUnstage", name, _ctx._post_execution_callbacks, key, indices, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return ordered_map_unstage_eager_fallback( key, indices, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_unstage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "OrderedMapUnstage", key=key, indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "OrderedMapUnstage", _inputs_flat, _attrs, _result, name) return _result def OrderedMapUnstage(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return ordered_map_unstage(key=key, indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) OrderedMapUnstage.__doc__ = ordered_map_unstage.__doc__ OrderedMapUnstage = _doc_controls.do_not_generate_docs(_kwarg_only(OrderedMapUnstage)) tf_export("raw_ops.OrderedMapUnstage")(OrderedMapUnstage) def ordered_map_unstage_eager_fallback(key, indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function ordered_map_unstage """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_unstage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") key = _ops.convert_to_tensor(key, _dtypes.int64) indices = _ops.convert_to_tensor(indices, _dtypes.int32) _inputs_flat = [key, indices] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"OrderedMapUnstage", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "OrderedMapUnstage", _inputs_flat, _attrs, _result, name) return _result _ordered_map_unstage_no_key_outputs = ["key", "values"] _OrderedMapUnstageNoKeyOutput = _collections.namedtuple( "OrderedMapUnstageNoKey", _ordered_map_unstage_no_key_outputs) def ordered_map_unstage_no_key(indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op removes and returns the (key, value) element with the smallest key from the underlying container. If the underlying container does not contain elements, the op will block until it does. Args: indices: A `Tensor` of type `int32`. dtypes: A list of `tf.DTypes` that has length `>= 1`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (key, values). key: A `Tensor` of type `int64`. values: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "OrderedMapUnstageNoKey", name, _ctx._post_execution_callbacks, indices, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _OrderedMapUnstageNoKeyOutput._make(_result) return _result except _core._FallbackException: try: return ordered_map_unstage_no_key_eager_fallback( indices, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_unstage_no_key' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "OrderedMapUnstageNoKey", indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "OrderedMapUnstageNoKey", _inputs_flat, _attrs, _result, name) _result = _result[:1] + [_result[1:]] _result = _OrderedMapUnstageNoKeyOutput._make(_result) return _result def OrderedMapUnstageNoKey(indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return ordered_map_unstage_no_key(indices=indices, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) OrderedMapUnstageNoKey.__doc__ = ordered_map_unstage_no_key.__doc__ OrderedMapUnstageNoKey = _doc_controls.do_not_generate_docs(_kwarg_only(OrderedMapUnstageNoKey)) tf_export("raw_ops.OrderedMapUnstageNoKey")(OrderedMapUnstageNoKey) def ordered_map_unstage_no_key_eager_fallback(indices, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function ordered_map_unstage_no_key """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'ordered_map_unstage_no_key' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") indices = _ops.convert_to_tensor(indices, _dtypes.int32) _inputs_flat = [indices] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"OrderedMapUnstageNoKey", len(dtypes) + 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "OrderedMapUnstageNoKey", _inputs_flat, _attrs, _result, name) _result = _result[:1] + [_result[1:]] _result = _OrderedMapUnstageNoKeyOutput._make(_result) return _result def padding_fifo_queue(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): r"""A queue that produces elements in first-in first-out order. Variable-size shapes are allowed by setting the corresponding shape dimensions to 0 in the shape attr. In this case DequeueMany will pad up to the maximum size of any given element in the minibatch. See below for details. Args: component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a value. shapes: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[]`. The shape of each component in a value. The length of this attr must be either 0 or the same as the length of component_types. Shapes of fixed rank but variable size are allowed by setting any shape dimension to -1. In this case, the inputs' shape may vary along the given dimension, and DequeueMany will pad the given dimension with zeros up to the maximum shape of all elements in the given batch. If the length of this attr is 0, different queue elements may have different ranks and shapes, but only one element may be dequeued at a time. capacity: An optional `int`. Defaults to `-1`. The upper bound on the number of elements in this queue. Negative numbers mean no limit. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this queue will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("padding_fifo_queue op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'padding_fifo_queue' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'padding_fifo_queue' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "PaddingFIFOQueue", component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "PaddingFIFOQueue", _inputs_flat, _attrs, _result, name) _result, = _result return _result def PaddingFIFOQueue(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): return padding_fifo_queue(component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) PaddingFIFOQueue.__doc__ = padding_fifo_queue.__doc__ PaddingFIFOQueue = _doc_controls.do_not_generate_docs(_kwarg_only(PaddingFIFOQueue)) tf_export("raw_ops.PaddingFIFOQueue")(PaddingFIFOQueue) def padding_fifo_queue_eager_fallback(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None, ctx=None): raise RuntimeError("padding_fifo_queue op does not support eager execution. Arg 'handle' is a ref.") def padding_fifo_queue_v2(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): r"""A queue that produces elements in first-in first-out order. Variable-size shapes are allowed by setting the corresponding shape dimensions to 0 in the shape attr. In this case DequeueMany will pad up to the maximum size of any given element in the minibatch. See below for details. Args: component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a value. shapes: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[]`. The shape of each component in a value. The length of this attr must be either 0 or the same as the length of component_types. Shapes of fixed rank but variable size are allowed by setting any shape dimension to -1. In this case, the inputs' shape may vary along the given dimension, and DequeueMany will pad the given dimension with zeros up to the maximum shape of all elements in the given batch. If the length of this attr is 0, different queue elements may have different ranks and shapes, but only one element may be dequeued at a time. capacity: An optional `int`. Defaults to `-1`. The upper bound on the number of elements in this queue. Negative numbers mean no limit. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this queue will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "PaddingFIFOQueueV2", name, _ctx._post_execution_callbacks, "component_types", component_types, "shapes", shapes, "capacity", capacity, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return padding_fifo_queue_v2_eager_fallback( component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'padding_fifo_queue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'padding_fifo_queue_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "PaddingFIFOQueueV2", component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "PaddingFIFOQueueV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def PaddingFIFOQueueV2(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None): return padding_fifo_queue_v2(component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name) PaddingFIFOQueueV2.__doc__ = padding_fifo_queue_v2.__doc__ PaddingFIFOQueueV2 = _doc_controls.do_not_generate_docs(_kwarg_only(PaddingFIFOQueueV2)) tf_export("raw_ops.PaddingFIFOQueueV2")(PaddingFIFOQueueV2) def padding_fifo_queue_v2_eager_fallback(component_types, shapes=[], capacity=-1, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function padding_fifo_queue_v2 """ _ctx = ctx if ctx else _context.context() if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'padding_fifo_queue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'padding_fifo_queue_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("component_types", component_types, "shapes", shapes, "capacity", capacity, "container", container, "shared_name", shared_name) _result = _execute.execute(b"PaddingFIFOQueueV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "PaddingFIFOQueueV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def parallel_dynamic_stitch(indices, data, name=None): r"""Interleave the values from the `data` tensors into a single tensor. Builds a merged tensor such that ```python merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...] ``` For example, if each `indices[m]` is scalar or vector, we have ```python # Scalar indices: merged[indices[m], ...] = data[m][...] # Vector indices: merged[indices[m][i], ...] = data[m][i, ...] ``` Each `data[i].shape` must start with the corresponding `indices[i].shape`, and the rest of `data[i].shape` must be constant w.r.t. `i`. That is, we must have `data[i].shape = indices[i].shape + constant`. In terms of this `constant`, the output shape is merged.shape = [max(indices)] + constant Values may be merged in parallel, so if an index appears in both `indices[m][i]` and `indices[n][j]`, the result may be invalid. This differs from the normal DynamicStitch operator that defines the behavior in that case. For example: ```python indices[0] = 6 indices[1] = [4, 1] indices[2] = [[5, 2], [0, 3]] data[0] = [61, 62] data[1] = [[41, 42], [11, 12]] data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]] merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42], [51, 52], [61, 62]] ``` This method can be used to merge partitions created by `dynamic_partition` as illustrated on the following example: ```python # Apply function (increments x_i) on elements for which a certain condition # apply (x_i != -1 in this example). x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4]) condition_mask=tf.not_equal(x,tf.constant(-1.)) partitioned_data = tf.dynamic_partition( x, tf.cast(condition_mask, tf.int32) , 2) partitioned_data[1] = partitioned_data[1] + 1.0 condition_indices = tf.dynamic_partition( tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2) x = tf.dynamic_stitch(condition_indices, partitioned_data) # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain # unchanged. ``` <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/DynamicStitch.png" alt> </div> Args: indices: A list of at least 1 `Tensor` objects with type `int32`. data: A list with the same length as `indices` of `Tensor` objects with the same type. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `data`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "ParallelDynamicStitch", name, _ctx._post_execution_callbacks, indices, data) return _result except _core._FallbackException: try: return parallel_dynamic_stitch_eager_fallback( indices, data, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(indices, (list, tuple)): raise TypeError( "Expected list for 'indices' argument to " "'parallel_dynamic_stitch' Op, not %r." % indices) _attr_N = len(indices) if not isinstance(data, (list, tuple)): raise TypeError( "Expected list for 'data' argument to " "'parallel_dynamic_stitch' Op, not %r." % data) if len(data) != _attr_N: raise ValueError( "List argument 'data' to 'parallel_dynamic_stitch' Op with length %d " "must match length %d of argument 'indices'." % (len(data), _attr_N)) _, _, _op = _op_def_lib._apply_op_helper( "ParallelDynamicStitch", indices=indices, data=data, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("N", _op.get_attr("N"), "T", _op.get_attr("T")) _execute.record_gradient( "ParallelDynamicStitch", _inputs_flat, _attrs, _result, name) _result, = _result return _result def ParallelDynamicStitch(indices, data, name=None): return parallel_dynamic_stitch(indices=indices, data=data, name=name) ParallelDynamicStitch.__doc__ = parallel_dynamic_stitch.__doc__ ParallelDynamicStitch = _doc_controls.do_not_generate_docs(_kwarg_only(ParallelDynamicStitch)) tf_export("raw_ops.ParallelDynamicStitch")(ParallelDynamicStitch) def parallel_dynamic_stitch_eager_fallback(indices, data, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function parallel_dynamic_stitch """ _ctx = ctx if ctx else _context.context() if not isinstance(indices, (list, tuple)): raise TypeError( "Expected list for 'indices' argument to " "'parallel_dynamic_stitch' Op, not %r." % indices) _attr_N = len(indices) if not isinstance(data, (list, tuple)): raise TypeError( "Expected list for 'data' argument to " "'parallel_dynamic_stitch' Op, not %r." % data) if len(data) != _attr_N: raise ValueError( "List argument 'data' to 'parallel_dynamic_stitch' Op with length %d " "must match length %d of argument 'indices'." % (len(data), _attr_N)) _attr_T, data = _execute.args_to_matching_eager(list(data), _ctx) indices = _ops.convert_n_to_tensor(indices, _dtypes.int32) _inputs_flat = list(indices) + list(data) _attrs = ("N", _attr_N, "T", _attr_T) _result = _execute.execute(b"ParallelDynamicStitch", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "ParallelDynamicStitch", _inputs_flat, _attrs, _result, name) _result, = _result return _result def priority_queue(shapes, component_types=[], capacity=-1, container="", shared_name="", name=None): r"""A queue that produces elements sorted by the first component value. Note that the PriorityQueue requires the first component of any element to be a scalar int64, in addition to the other elements declared by component_types. Therefore calls to Enqueue and EnqueueMany (resp. Dequeue and DequeueMany) on a PriorityQueue will all require (resp. output) one extra entry in their input (resp. output) lists. Args: shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`). The shape of each component in a value. The length of this attr must be either 0 or the same as the length of component_types. If the length of this attr is 0, the shapes of queue elements are not constrained, and only one element may be dequeued at a time. component_types: An optional list of `tf.DTypes`. Defaults to `[]`. The type of each component in a value. capacity: An optional `int`. Defaults to `-1`. The upper bound on the number of elements in this queue. Negative numbers mean no limit. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this queue will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("priority_queue op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'priority_queue' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if component_types is None: component_types = [] if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'priority_queue' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "PriorityQueue", shapes=shapes, component_types=component_types, capacity=capacity, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "PriorityQueue", _inputs_flat, _attrs, _result, name) _result, = _result return _result def PriorityQueue(shapes, component_types=[], capacity=-1, container="", shared_name="", name=None): return priority_queue(shapes=shapes, component_types=component_types, capacity=capacity, container=container, shared_name=shared_name, name=name) PriorityQueue.__doc__ = priority_queue.__doc__ PriorityQueue = _doc_controls.do_not_generate_docs(_kwarg_only(PriorityQueue)) tf_export("raw_ops.PriorityQueue")(PriorityQueue) def priority_queue_eager_fallback(shapes, component_types=[], capacity=-1, container="", shared_name="", name=None, ctx=None): raise RuntimeError("priority_queue op does not support eager execution. Arg 'handle' is a ref.") def priority_queue_v2(shapes, component_types=[], capacity=-1, container="", shared_name="", name=None): r"""A queue that produces elements sorted by the first component value. Note that the PriorityQueue requires the first component of any element to be a scalar int64, in addition to the other elements declared by component_types. Therefore calls to Enqueue and EnqueueMany (resp. Dequeue and DequeueMany) on a PriorityQueue will all require (resp. output) one extra entry in their input (resp. output) lists. Args: shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`). The shape of each component in a value. The length of this attr must be either 0 or the same as the length of component_types. If the length of this attr is 0, the shapes of queue elements are not constrained, and only one element may be dequeued at a time. component_types: An optional list of `tf.DTypes`. Defaults to `[]`. The type of each component in a value. capacity: An optional `int`. Defaults to `-1`. The upper bound on the number of elements in this queue. Negative numbers mean no limit. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this queue will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "PriorityQueueV2", name, _ctx._post_execution_callbacks, "component_types", component_types, "shapes", shapes, "capacity", capacity, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return priority_queue_v2_eager_fallback( component_types=component_types, shapes=shapes, capacity=capacity, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'priority_queue_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if component_types is None: component_types = [] if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'priority_queue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "PriorityQueueV2", shapes=shapes, component_types=component_types, capacity=capacity, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "PriorityQueueV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def PriorityQueueV2(shapes, component_types=[], capacity=-1, container="", shared_name="", name=None): return priority_queue_v2(shapes=shapes, component_types=component_types, capacity=capacity, container=container, shared_name=shared_name, name=name) PriorityQueueV2.__doc__ = priority_queue_v2.__doc__ PriorityQueueV2 = _doc_controls.do_not_generate_docs(_kwarg_only(PriorityQueueV2)) tf_export("raw_ops.PriorityQueueV2")(PriorityQueueV2) def priority_queue_v2_eager_fallback(shapes, component_types=[], capacity=-1, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function priority_queue_v2 """ _ctx = ctx if ctx else _context.context() if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'priority_queue_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if component_types is None: component_types = [] if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'priority_queue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("component_types", component_types, "shapes", shapes, "capacity", capacity, "container", container, "shared_name", shared_name) _result = _execute.execute(b"PriorityQueueV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "PriorityQueueV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def queue_close(handle, cancel_pending_enqueues=False, name=None): r"""Closes the given queue. This operation signals that no more elements will be enqueued in the given queue. Subsequent Enqueue(Many) operations will fail. Subsequent Dequeue(Many) operations will continue to succeed if sufficient elements remain in the queue. Subsequent Dequeue(Many) operations that would block will fail immediately. Args: handle: A `Tensor` of type mutable `string`. The handle to a queue. cancel_pending_enqueues: An optional `bool`. Defaults to `False`. If true, all pending enqueue requests that are blocked on the given queue will be canceled. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("queue_close op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if cancel_pending_enqueues is None: cancel_pending_enqueues = False cancel_pending_enqueues = _execute.make_bool(cancel_pending_enqueues, "cancel_pending_enqueues") _, _, _op = _op_def_lib._apply_op_helper( "QueueClose", handle=handle, cancel_pending_enqueues=cancel_pending_enqueues, name=name) return _op _result = None return _result def QueueClose(handle, cancel_pending_enqueues=False, name=None): return queue_close(handle=handle, cancel_pending_enqueues=cancel_pending_enqueues, name=name) QueueClose.__doc__ = queue_close.__doc__ QueueClose = _doc_controls.do_not_generate_docs(_kwarg_only(QueueClose)) tf_export("raw_ops.QueueClose")(QueueClose) def queue_close_eager_fallback(handle, cancel_pending_enqueues=False, name=None, ctx=None): raise RuntimeError("queue_close op does not support eager execution. Arg 'handle' is a ref.") def queue_close_v2(handle, cancel_pending_enqueues=False, name=None): r"""Closes the given queue. This operation signals that no more elements will be enqueued in the given queue. Subsequent Enqueue(Many) operations will fail. Subsequent Dequeue(Many) operations will continue to succeed if sufficient elements remain in the queue. Subsequent Dequeue(Many) operations that would block will fail immediately. Args: handle: A `Tensor` of type `resource`. The handle to a queue. cancel_pending_enqueues: An optional `bool`. Defaults to `False`. If true, all pending enqueue requests that are blocked on the given queue will be canceled. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "QueueCloseV2", name, _ctx._post_execution_callbacks, handle, "cancel_pending_enqueues", cancel_pending_enqueues) return _result except _core._FallbackException: try: return queue_close_v2_eager_fallback( handle, cancel_pending_enqueues=cancel_pending_enqueues, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if cancel_pending_enqueues is None: cancel_pending_enqueues = False cancel_pending_enqueues = _execute.make_bool(cancel_pending_enqueues, "cancel_pending_enqueues") _, _, _op = _op_def_lib._apply_op_helper( "QueueCloseV2", handle=handle, cancel_pending_enqueues=cancel_pending_enqueues, name=name) return _op _result = None return _result def QueueCloseV2(handle, cancel_pending_enqueues=False, name=None): return queue_close_v2(handle=handle, cancel_pending_enqueues=cancel_pending_enqueues, name=name) QueueCloseV2.__doc__ = queue_close_v2.__doc__ QueueCloseV2 = _doc_controls.do_not_generate_docs(_kwarg_only(QueueCloseV2)) tf_export("raw_ops.QueueCloseV2")(QueueCloseV2) def queue_close_v2_eager_fallback(handle, cancel_pending_enqueues=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function queue_close_v2 """ _ctx = ctx if ctx else _context.context() if cancel_pending_enqueues is None: cancel_pending_enqueues = False cancel_pending_enqueues = _execute.make_bool(cancel_pending_enqueues, "cancel_pending_enqueues") handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = ("cancel_pending_enqueues", cancel_pending_enqueues) _result = _execute.execute(b"QueueCloseV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def queue_dequeue(handle, component_types, timeout_ms=-1, name=None): r"""Dequeues a tuple of one or more tensors from the given queue. This operation has k outputs, where k is the number of components in the tuples stored in the given queue, and output i is the ith component of the dequeued tuple. N.B. If the queue is empty, this operation will block until an element has been dequeued (or 'timeout_ms' elapses, if specified). Args: handle: A `Tensor` of type mutable `string`. The handle to a queue. component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a tuple. timeout_ms: An optional `int`. Defaults to `-1`. If the queue is empty, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `component_types`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("queue_dequeue op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueDequeue", handle=handle, component_types=component_types, timeout_ms=timeout_ms, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "timeout_ms", _op.get_attr("timeout_ms")) _execute.record_gradient( "QueueDequeue", _inputs_flat, _attrs, _result, name) return _result def QueueDequeue(handle, component_types, timeout_ms=-1, name=None): return queue_dequeue(handle=handle, component_types=component_types, timeout_ms=timeout_ms, name=name) QueueDequeue.__doc__ = queue_dequeue.__doc__ QueueDequeue = _doc_controls.do_not_generate_docs(_kwarg_only(QueueDequeue)) tf_export("raw_ops.QueueDequeue")(QueueDequeue) def queue_dequeue_eager_fallback(handle, component_types, timeout_ms=-1, name=None, ctx=None): raise RuntimeError("queue_dequeue op does not support eager execution. Arg 'handle' is a ref.") def queue_dequeue_many(handle, n, component_types, timeout_ms=-1, name=None): r"""Dequeues `n` tuples of one or more tensors from the given queue. If the queue is closed and there are fewer than `n` elements, then an OutOfRange error is returned. This operation concatenates queue-element component tensors along the 0th dimension to make a single component tensor. All of the components in the dequeued tuple will have size `n` in the 0th dimension. This operation has `k` outputs, where `k` is the number of components in the tuples stored in the given queue, and output `i` is the ith component of the dequeued tuple. N.B. If the queue is empty, this operation will block until `n` elements have been dequeued (or 'timeout_ms' elapses, if specified). Args: handle: A `Tensor` of type mutable `string`. The handle to a queue. n: A `Tensor` of type `int32`. The number of tuples to dequeue. component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a tuple. timeout_ms: An optional `int`. Defaults to `-1`. If the queue has fewer than n elements, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `component_types`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("queue_dequeue_many op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue_many' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueDequeueMany", handle=handle, n=n, component_types=component_types, timeout_ms=timeout_ms, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "timeout_ms", _op.get_attr("timeout_ms")) _execute.record_gradient( "QueueDequeueMany", _inputs_flat, _attrs, _result, name) return _result def QueueDequeueMany(handle, n, component_types, timeout_ms=-1, name=None): return queue_dequeue_many(handle=handle, n=n, component_types=component_types, timeout_ms=timeout_ms, name=name) QueueDequeueMany.__doc__ = queue_dequeue_many.__doc__ QueueDequeueMany = _doc_controls.do_not_generate_docs(_kwarg_only(QueueDequeueMany)) tf_export("raw_ops.QueueDequeueMany")(QueueDequeueMany) def queue_dequeue_many_eager_fallback(handle, n, component_types, timeout_ms=-1, name=None, ctx=None): raise RuntimeError("queue_dequeue_many op does not support eager execution. Arg 'handle' is a ref.") def queue_dequeue_many_v2(handle, n, component_types, timeout_ms=-1, name=None): r"""Dequeues `n` tuples of one or more tensors from the given queue. If the queue is closed and there are fewer than `n` elements, then an OutOfRange error is returned. This operation concatenates queue-element component tensors along the 0th dimension to make a single component tensor. All of the components in the dequeued tuple will have size `n` in the 0th dimension. This operation has `k` outputs, where `k` is the number of components in the tuples stored in the given queue, and output `i` is the ith component of the dequeued tuple. N.B. If the queue is empty, this operation will block until `n` elements have been dequeued (or 'timeout_ms' elapses, if specified). Args: handle: A `Tensor` of type `resource`. The handle to a queue. n: A `Tensor` of type `int32`. The number of tuples to dequeue. component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a tuple. timeout_ms: An optional `int`. Defaults to `-1`. If the queue has fewer than n elements, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `component_types`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "QueueDequeueManyV2", name, _ctx._post_execution_callbacks, handle, n, "component_types", component_types, "timeout_ms", timeout_ms) return _result except _core._FallbackException: try: return queue_dequeue_many_v2_eager_fallback( handle, n, component_types=component_types, timeout_ms=timeout_ms, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue_many_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueDequeueManyV2", handle=handle, n=n, component_types=component_types, timeout_ms=timeout_ms, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "timeout_ms", _op.get_attr("timeout_ms")) _execute.record_gradient( "QueueDequeueManyV2", _inputs_flat, _attrs, _result, name) return _result def QueueDequeueManyV2(handle, n, component_types, timeout_ms=-1, name=None): return queue_dequeue_many_v2(handle=handle, n=n, component_types=component_types, timeout_ms=timeout_ms, name=name) QueueDequeueManyV2.__doc__ = queue_dequeue_many_v2.__doc__ QueueDequeueManyV2 = _doc_controls.do_not_generate_docs(_kwarg_only(QueueDequeueManyV2)) tf_export("raw_ops.QueueDequeueManyV2")(QueueDequeueManyV2) def queue_dequeue_many_v2_eager_fallback(handle, n, component_types, timeout_ms=-1, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function queue_dequeue_many_v2 """ _ctx = ctx if ctx else _context.context() if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue_many_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") handle = _ops.convert_to_tensor(handle, _dtypes.resource) n = _ops.convert_to_tensor(n, _dtypes.int32) _inputs_flat = [handle, n] _attrs = ("component_types", component_types, "timeout_ms", timeout_ms) _result = _execute.execute(b"QueueDequeueManyV2", len(component_types), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QueueDequeueManyV2", _inputs_flat, _attrs, _result, name) return _result def queue_dequeue_up_to(handle, n, component_types, timeout_ms=-1, name=None): r"""Dequeues `n` tuples of one or more tensors from the given queue. This operation is not supported by all queues. If a queue does not support DequeueUpTo, then an Unimplemented error is returned. If the queue is closed and there are more than 0 but less than `n` elements remaining, then instead of returning an OutOfRange error like QueueDequeueMany, less than `n` elements are returned immediately. If the queue is closed and there are 0 elements left in the queue, then an OutOfRange error is returned just like in QueueDequeueMany. Otherwise the behavior is identical to QueueDequeueMany: This operation concatenates queue-element component tensors along the 0th dimension to make a single component tensor. All of the components in the dequeued tuple will have size `n` in the 0th dimension. This operation has k outputs, where `k` is the number of components in the tuples stored in the given queue, and output `i` is the ith component of the dequeued tuple. Args: handle: A `Tensor` of type mutable `string`. The handle to a queue. n: A `Tensor` of type `int32`. The number of tuples to dequeue. component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a tuple. timeout_ms: An optional `int`. Defaults to `-1`. If the queue has fewer than n elements, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `component_types`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("queue_dequeue_up_to op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue_up_to' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueDequeueUpTo", handle=handle, n=n, component_types=component_types, timeout_ms=timeout_ms, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "timeout_ms", _op.get_attr("timeout_ms")) _execute.record_gradient( "QueueDequeueUpTo", _inputs_flat, _attrs, _result, name) return _result def QueueDequeueUpTo(handle, n, component_types, timeout_ms=-1, name=None): return queue_dequeue_up_to(handle=handle, n=n, component_types=component_types, timeout_ms=timeout_ms, name=name) QueueDequeueUpTo.__doc__ = queue_dequeue_up_to.__doc__ QueueDequeueUpTo = _doc_controls.do_not_generate_docs(_kwarg_only(QueueDequeueUpTo)) tf_export("raw_ops.QueueDequeueUpTo")(QueueDequeueUpTo) def queue_dequeue_up_to_eager_fallback(handle, n, component_types, timeout_ms=-1, name=None, ctx=None): raise RuntimeError("queue_dequeue_up_to op does not support eager execution. Arg 'handle' is a ref.") def queue_dequeue_up_to_v2(handle, n, component_types, timeout_ms=-1, name=None): r"""Dequeues `n` tuples of one or more tensors from the given queue. This operation is not supported by all queues. If a queue does not support DequeueUpTo, then an Unimplemented error is returned. If the queue is closed and there are more than 0 but less than `n` elements remaining, then instead of returning an OutOfRange error like QueueDequeueMany, less than `n` elements are returned immediately. If the queue is closed and there are 0 elements left in the queue, then an OutOfRange error is returned just like in QueueDequeueMany. Otherwise the behavior is identical to QueueDequeueMany: This operation concatenates queue-element component tensors along the 0th dimension to make a single component tensor. All of the components in the dequeued tuple will have size n in the 0th dimension. This operation has `k` outputs, where `k` is the number of components in the tuples stored in the given queue, and output `i` is the ith component of the dequeued tuple. Args: handle: A `Tensor` of type `resource`. The handle to a queue. n: A `Tensor` of type `int32`. The number of tuples to dequeue. component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a tuple. timeout_ms: An optional `int`. Defaults to `-1`. If the queue has fewer than n elements, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `component_types`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "QueueDequeueUpToV2", name, _ctx._post_execution_callbacks, handle, n, "component_types", component_types, "timeout_ms", timeout_ms) return _result except _core._FallbackException: try: return queue_dequeue_up_to_v2_eager_fallback( handle, n, component_types=component_types, timeout_ms=timeout_ms, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue_up_to_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueDequeueUpToV2", handle=handle, n=n, component_types=component_types, timeout_ms=timeout_ms, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "timeout_ms", _op.get_attr("timeout_ms")) _execute.record_gradient( "QueueDequeueUpToV2", _inputs_flat, _attrs, _result, name) return _result def QueueDequeueUpToV2(handle, n, component_types, timeout_ms=-1, name=None): return queue_dequeue_up_to_v2(handle=handle, n=n, component_types=component_types, timeout_ms=timeout_ms, name=name) QueueDequeueUpToV2.__doc__ = queue_dequeue_up_to_v2.__doc__ QueueDequeueUpToV2 = _doc_controls.do_not_generate_docs(_kwarg_only(QueueDequeueUpToV2)) tf_export("raw_ops.QueueDequeueUpToV2")(QueueDequeueUpToV2) def queue_dequeue_up_to_v2_eager_fallback(handle, n, component_types, timeout_ms=-1, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function queue_dequeue_up_to_v2 """ _ctx = ctx if ctx else _context.context() if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue_up_to_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") handle = _ops.convert_to_tensor(handle, _dtypes.resource) n = _ops.convert_to_tensor(n, _dtypes.int32) _inputs_flat = [handle, n] _attrs = ("component_types", component_types, "timeout_ms", timeout_ms) _result = _execute.execute(b"QueueDequeueUpToV2", len(component_types), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QueueDequeueUpToV2", _inputs_flat, _attrs, _result, name) return _result def queue_dequeue_v2(handle, component_types, timeout_ms=-1, name=None): r"""Dequeues a tuple of one or more tensors from the given queue. This operation has k outputs, where k is the number of components in the tuples stored in the given queue, and output i is the ith component of the dequeued tuple. N.B. If the queue is empty, this operation will block until an element has been dequeued (or 'timeout_ms' elapses, if specified). Args: handle: A `Tensor` of type `resource`. The handle to a queue. component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a tuple. timeout_ms: An optional `int`. Defaults to `-1`. If the queue is empty, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `component_types`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "QueueDequeueV2", name, _ctx._post_execution_callbacks, handle, "component_types", component_types, "timeout_ms", timeout_ms) return _result except _core._FallbackException: try: return queue_dequeue_v2_eager_fallback( handle, component_types=component_types, timeout_ms=timeout_ms, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueDequeueV2", handle=handle, component_types=component_types, timeout_ms=timeout_ms, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "timeout_ms", _op.get_attr("timeout_ms")) _execute.record_gradient( "QueueDequeueV2", _inputs_flat, _attrs, _result, name) return _result def QueueDequeueV2(handle, component_types, timeout_ms=-1, name=None): return queue_dequeue_v2(handle=handle, component_types=component_types, timeout_ms=timeout_ms, name=name) QueueDequeueV2.__doc__ = queue_dequeue_v2.__doc__ QueueDequeueV2 = _doc_controls.do_not_generate_docs(_kwarg_only(QueueDequeueV2)) tf_export("raw_ops.QueueDequeueV2")(QueueDequeueV2) def queue_dequeue_v2_eager_fallback(handle, component_types, timeout_ms=-1, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function queue_dequeue_v2 """ _ctx = ctx if ctx else _context.context() if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'queue_dequeue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = ("component_types", component_types, "timeout_ms", timeout_ms) _result = _execute.execute(b"QueueDequeueV2", len(component_types), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QueueDequeueV2", _inputs_flat, _attrs, _result, name) return _result def queue_enqueue(handle, components, timeout_ms=-1, name=None): r"""Enqueues a tuple of one or more tensors in the given queue. The components input has k elements, which correspond to the components of tuples stored in the given queue. N.B. If the queue is full, this operation will block until the given element has been enqueued (or 'timeout_ms' elapses, if specified). Args: handle: A `Tensor` of type mutable `string`. The handle to a queue. components: A list of `Tensor` objects. One or more tensors from which the enqueued tensors should be taken. timeout_ms: An optional `int`. Defaults to `-1`. If the queue is full, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("queue_enqueue op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueEnqueue", handle=handle, components=components, timeout_ms=timeout_ms, name=name) return _op _result = None return _result def QueueEnqueue(handle, components, timeout_ms=-1, name=None): return queue_enqueue(handle=handle, components=components, timeout_ms=timeout_ms, name=name) QueueEnqueue.__doc__ = queue_enqueue.__doc__ QueueEnqueue = _doc_controls.do_not_generate_docs(_kwarg_only(QueueEnqueue)) tf_export("raw_ops.QueueEnqueue")(QueueEnqueue) def queue_enqueue_eager_fallback(handle, components, timeout_ms=-1, name=None, ctx=None): raise RuntimeError("queue_enqueue op does not support eager execution. Arg 'handle' is a ref.") def queue_enqueue_many(handle, components, timeout_ms=-1, name=None): r"""Enqueues zero or more tuples of one or more tensors in the given queue. This operation slices each component tensor along the 0th dimension to make multiple queue elements. All of the tuple components must have the same size in the 0th dimension. The components input has k elements, which correspond to the components of tuples stored in the given queue. N.B. If the queue is full, this operation will block until the given elements have been enqueued (or 'timeout_ms' elapses, if specified). Args: handle: A `Tensor` of type mutable `string`. The handle to a queue. components: A list of `Tensor` objects. One or more tensors from which the enqueued tensors should be taken. timeout_ms: An optional `int`. Defaults to `-1`. If the queue is too full, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("queue_enqueue_many op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueEnqueueMany", handle=handle, components=components, timeout_ms=timeout_ms, name=name) return _op _result = None return _result def QueueEnqueueMany(handle, components, timeout_ms=-1, name=None): return queue_enqueue_many(handle=handle, components=components, timeout_ms=timeout_ms, name=name) QueueEnqueueMany.__doc__ = queue_enqueue_many.__doc__ QueueEnqueueMany = _doc_controls.do_not_generate_docs(_kwarg_only(QueueEnqueueMany)) tf_export("raw_ops.QueueEnqueueMany")(QueueEnqueueMany) def queue_enqueue_many_eager_fallback(handle, components, timeout_ms=-1, name=None, ctx=None): raise RuntimeError("queue_enqueue_many op does not support eager execution. Arg 'handle' is a ref.") def queue_enqueue_many_v2(handle, components, timeout_ms=-1, name=None): r"""Enqueues zero or more tuples of one or more tensors in the given queue. This operation slices each component tensor along the 0th dimension to make multiple queue elements. All of the tuple components must have the same size in the 0th dimension. The components input has k elements, which correspond to the components of tuples stored in the given queue. N.B. If the queue is full, this operation will block until the given elements have been enqueued (or 'timeout_ms' elapses, if specified). Args: handle: A `Tensor` of type `resource`. The handle to a queue. components: A list of `Tensor` objects. One or more tensors from which the enqueued tensors should be taken. timeout_ms: An optional `int`. Defaults to `-1`. If the queue is too full, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "QueueEnqueueManyV2", name, _ctx._post_execution_callbacks, handle, components, "timeout_ms", timeout_ms) return _result except _core._FallbackException: try: return queue_enqueue_many_v2_eager_fallback( handle, components, timeout_ms=timeout_ms, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueEnqueueManyV2", handle=handle, components=components, timeout_ms=timeout_ms, name=name) return _op _result = None return _result def QueueEnqueueManyV2(handle, components, timeout_ms=-1, name=None): return queue_enqueue_many_v2(handle=handle, components=components, timeout_ms=timeout_ms, name=name) QueueEnqueueManyV2.__doc__ = queue_enqueue_many_v2.__doc__ QueueEnqueueManyV2 = _doc_controls.do_not_generate_docs(_kwarg_only(QueueEnqueueManyV2)) tf_export("raw_ops.QueueEnqueueManyV2")(QueueEnqueueManyV2) def queue_enqueue_many_v2_eager_fallback(handle, components, timeout_ms=-1, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function queue_enqueue_many_v2 """ _ctx = ctx if ctx else _context.context() if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _attr_Tcomponents, components = _execute.convert_to_mixed_eager_tensors(components, _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] + list(components) _attrs = ("Tcomponents", _attr_Tcomponents, "timeout_ms", timeout_ms) _result = _execute.execute(b"QueueEnqueueManyV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def queue_enqueue_v2(handle, components, timeout_ms=-1, name=None): r"""Enqueues a tuple of one or more tensors in the given queue. The components input has k elements, which correspond to the components of tuples stored in the given queue. N.B. If the queue is full, this operation will block until the given element has been enqueued (or 'timeout_ms' elapses, if specified). Args: handle: A `Tensor` of type `resource`. The handle to a queue. components: A list of `Tensor` objects. One or more tensors from which the enqueued tensors should be taken. timeout_ms: An optional `int`. Defaults to `-1`. If the queue is full, this operation will block for up to timeout_ms milliseconds. Note: This option is not supported yet. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "QueueEnqueueV2", name, _ctx._post_execution_callbacks, handle, components, "timeout_ms", timeout_ms) return _result except _core._FallbackException: try: return queue_enqueue_v2_eager_fallback( handle, components, timeout_ms=timeout_ms, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _, _, _op = _op_def_lib._apply_op_helper( "QueueEnqueueV2", handle=handle, components=components, timeout_ms=timeout_ms, name=name) return _op _result = None return _result def QueueEnqueueV2(handle, components, timeout_ms=-1, name=None): return queue_enqueue_v2(handle=handle, components=components, timeout_ms=timeout_ms, name=name) QueueEnqueueV2.__doc__ = queue_enqueue_v2.__doc__ QueueEnqueueV2 = _doc_controls.do_not_generate_docs(_kwarg_only(QueueEnqueueV2)) tf_export("raw_ops.QueueEnqueueV2")(QueueEnqueueV2) def queue_enqueue_v2_eager_fallback(handle, components, timeout_ms=-1, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function queue_enqueue_v2 """ _ctx = ctx if ctx else _context.context() if timeout_ms is None: timeout_ms = -1 timeout_ms = _execute.make_int(timeout_ms, "timeout_ms") _attr_Tcomponents, components = _execute.convert_to_mixed_eager_tensors(components, _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] + list(components) _attrs = ("Tcomponents", _attr_Tcomponents, "timeout_ms", timeout_ms) _result = _execute.execute(b"QueueEnqueueV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def queue_is_closed(handle, name=None): r"""Returns true if queue is closed. This operation returns true if the queue is closed and false if the queue is open. Args: handle: A `Tensor` of type mutable `string`. The handle to a queue. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("queue_is_closed op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "QueueIsClosed", handle=handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "QueueIsClosed", _inputs_flat, _attrs, _result, name) _result, = _result return _result def QueueIsClosed(handle, name=None): return queue_is_closed(handle=handle, name=name) QueueIsClosed.__doc__ = queue_is_closed.__doc__ QueueIsClosed = _doc_controls.do_not_generate_docs(_kwarg_only(QueueIsClosed)) tf_export("raw_ops.QueueIsClosed")(QueueIsClosed) def queue_is_closed_eager_fallback(handle, name=None, ctx=None): raise RuntimeError("queue_is_closed op does not support eager execution. Arg 'handle' is a ref.") def queue_is_closed_v2(handle, name=None): r"""Returns true if queue is closed. This operation returns true if the queue is closed and false if the queue is open. Args: handle: A `Tensor` of type `resource`. The handle to a queue. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "QueueIsClosedV2", name, _ctx._post_execution_callbacks, handle) return _result except _core._FallbackException: try: return queue_is_closed_v2_eager_fallback( handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "QueueIsClosedV2", handle=handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "QueueIsClosedV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def QueueIsClosedV2(handle, name=None): return queue_is_closed_v2(handle=handle, name=name) QueueIsClosedV2.__doc__ = queue_is_closed_v2.__doc__ QueueIsClosedV2 = _doc_controls.do_not_generate_docs(_kwarg_only(QueueIsClosedV2)) tf_export("raw_ops.QueueIsClosedV2")(QueueIsClosedV2) def queue_is_closed_v2_eager_fallback(handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function queue_is_closed_v2 """ _ctx = ctx if ctx else _context.context() handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = None _result = _execute.execute(b"QueueIsClosedV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QueueIsClosedV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def queue_size(handle, name=None): r"""Computes the number of elements in the given queue. Args: handle: A `Tensor` of type mutable `string`. The handle to a queue. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("queue_size op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "QueueSize", handle=handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "QueueSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def QueueSize(handle, name=None): return queue_size(handle=handle, name=name) QueueSize.__doc__ = queue_size.__doc__ QueueSize = _doc_controls.do_not_generate_docs(_kwarg_only(QueueSize)) tf_export("raw_ops.QueueSize")(QueueSize) def queue_size_eager_fallback(handle, name=None, ctx=None): raise RuntimeError("queue_size op does not support eager execution. Arg 'handle' is a ref.") def queue_size_v2(handle, name=None): r"""Computes the number of elements in the given queue. Args: handle: A `Tensor` of type `resource`. The handle to a queue. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "QueueSizeV2", name, _ctx._post_execution_callbacks, handle) return _result except _core._FallbackException: try: return queue_size_v2_eager_fallback( handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "QueueSizeV2", handle=handle, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "QueueSizeV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def QueueSizeV2(handle, name=None): return queue_size_v2(handle=handle, name=name) QueueSizeV2.__doc__ = queue_size_v2.__doc__ QueueSizeV2 = _doc_controls.do_not_generate_docs(_kwarg_only(QueueSizeV2)) tf_export("raw_ops.QueueSizeV2")(QueueSizeV2) def queue_size_v2_eager_fallback(handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function queue_size_v2 """ _ctx = ctx if ctx else _context.context() handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = None _result = _execute.execute(b"QueueSizeV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "QueueSizeV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def random_shuffle_queue(component_types, shapes=[], capacity=-1, min_after_dequeue=0, seed=0, seed2=0, container="", shared_name="", name=None): r"""A queue that randomizes the order of elements. Args: component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a value. shapes: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[]`. The shape of each component in a value. The length of this attr must be either 0 or the same as the length of component_types. If the length of this attr is 0, the shapes of queue elements are not constrained, and only one element may be dequeued at a time. capacity: An optional `int`. Defaults to `-1`. The upper bound on the number of elements in this queue. Negative numbers mean no limit. min_after_dequeue: An optional `int`. Defaults to `0`. Dequeue will block unless there would be this many elements after the dequeue or the queue is closed. This ensures a minimum level of mixing of elements. seed: An optional `int`. Defaults to `0`. If either seed or seed2 is set to be non-zero, the random number generator is seeded by the given seed. Otherwise, a random seed is used. seed2: An optional `int`. Defaults to `0`. A second seed to avoid seed collision. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this queue will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("random_shuffle_queue op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'random_shuffle_queue' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'random_shuffle_queue' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if min_after_dequeue is None: min_after_dequeue = 0 min_after_dequeue = _execute.make_int(min_after_dequeue, "min_after_dequeue") if seed is None: seed = 0 seed = _execute.make_int(seed, "seed") if seed2 is None: seed2 = 0 seed2 = _execute.make_int(seed2, "seed2") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "RandomShuffleQueue", component_types=component_types, shapes=shapes, capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed, seed2=seed2, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "min_after_dequeue", _op.get_attr("min_after_dequeue"), "seed", _op.get_attr("seed"), "seed2", _op.get_attr("seed2"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "RandomShuffleQueue", _inputs_flat, _attrs, _result, name) _result, = _result return _result def RandomShuffleQueue(component_types, shapes=[], capacity=-1, min_after_dequeue=0, seed=0, seed2=0, container="", shared_name="", name=None): return random_shuffle_queue(component_types=component_types, shapes=shapes, capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed, seed2=seed2, container=container, shared_name=shared_name, name=name) RandomShuffleQueue.__doc__ = random_shuffle_queue.__doc__ RandomShuffleQueue = _doc_controls.do_not_generate_docs(_kwarg_only(RandomShuffleQueue)) tf_export("raw_ops.RandomShuffleQueue")(RandomShuffleQueue) def random_shuffle_queue_eager_fallback(component_types, shapes=[], capacity=-1, min_after_dequeue=0, seed=0, seed2=0, container="", shared_name="", name=None, ctx=None): raise RuntimeError("random_shuffle_queue op does not support eager execution. Arg 'handle' is a ref.") def random_shuffle_queue_v2(component_types, shapes=[], capacity=-1, min_after_dequeue=0, seed=0, seed2=0, container="", shared_name="", name=None): r"""A queue that randomizes the order of elements. Args: component_types: A list of `tf.DTypes` that has length `>= 1`. The type of each component in a value. shapes: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[]`. The shape of each component in a value. The length of this attr must be either 0 or the same as the length of component_types. If the length of this attr is 0, the shapes of queue elements are not constrained, and only one element may be dequeued at a time. capacity: An optional `int`. Defaults to `-1`. The upper bound on the number of elements in this queue. Negative numbers mean no limit. min_after_dequeue: An optional `int`. Defaults to `0`. Dequeue will block unless there would be this many elements after the dequeue or the queue is closed. This ensures a minimum level of mixing of elements. seed: An optional `int`. Defaults to `0`. If either seed or seed2 is set to be non-zero, the random number generator is seeded by the given seed. Otherwise, a random seed is used. seed2: An optional `int`. Defaults to `0`. A second seed to avoid seed collision. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this queue will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "RandomShuffleQueueV2", name, _ctx._post_execution_callbacks, "component_types", component_types, "shapes", shapes, "capacity", capacity, "min_after_dequeue", min_after_dequeue, "seed", seed, "seed2", seed2, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return random_shuffle_queue_v2_eager_fallback( component_types=component_types, shapes=shapes, capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed, seed2=seed2, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'random_shuffle_queue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'random_shuffle_queue_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if min_after_dequeue is None: min_after_dequeue = 0 min_after_dequeue = _execute.make_int(min_after_dequeue, "min_after_dequeue") if seed is None: seed = 0 seed = _execute.make_int(seed, "seed") if seed2 is None: seed2 = 0 seed2 = _execute.make_int(seed2, "seed2") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "RandomShuffleQueueV2", component_types=component_types, shapes=shapes, capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed, seed2=seed2, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("component_types", _op.get_attr("component_types"), "shapes", _op.get_attr("shapes"), "capacity", _op.get_attr("capacity"), "min_after_dequeue", _op.get_attr("min_after_dequeue"), "seed", _op.get_attr("seed"), "seed2", _op.get_attr("seed2"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "RandomShuffleQueueV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def RandomShuffleQueueV2(component_types, shapes=[], capacity=-1, min_after_dequeue=0, seed=0, seed2=0, container="", shared_name="", name=None): return random_shuffle_queue_v2(component_types=component_types, shapes=shapes, capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed, seed2=seed2, container=container, shared_name=shared_name, name=name) RandomShuffleQueueV2.__doc__ = random_shuffle_queue_v2.__doc__ RandomShuffleQueueV2 = _doc_controls.do_not_generate_docs(_kwarg_only(RandomShuffleQueueV2)) tf_export("raw_ops.RandomShuffleQueueV2")(RandomShuffleQueueV2) def random_shuffle_queue_v2_eager_fallback(component_types, shapes=[], capacity=-1, min_after_dequeue=0, seed=0, seed2=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function random_shuffle_queue_v2 """ _ctx = ctx if ctx else _context.context() if not isinstance(component_types, (list, tuple)): raise TypeError( "Expected list for 'component_types' argument to " "'random_shuffle_queue_v2' Op, not %r." % component_types) component_types = [_execute.make_type(_t, "component_types") for _t in component_types] if shapes is None: shapes = [] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'random_shuffle_queue_v2' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if capacity is None: capacity = -1 capacity = _execute.make_int(capacity, "capacity") if min_after_dequeue is None: min_after_dequeue = 0 min_after_dequeue = _execute.make_int(min_after_dequeue, "min_after_dequeue") if seed is None: seed = 0 seed = _execute.make_int(seed, "seed") if seed2 is None: seed2 = 0 seed2 = _execute.make_int(seed2, "seed2") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("component_types", component_types, "shapes", shapes, "capacity", capacity, "min_after_dequeue", min_after_dequeue, "seed", seed, "seed2", seed2, "container", container, "shared_name", shared_name) _result = _execute.execute(b"RandomShuffleQueueV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "RandomShuffleQueueV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def record_input(file_pattern, file_random_seed=301, file_shuffle_shift_ratio=0, file_buffer_size=10000, file_parallelism=16, batch_size=32, compression_type="", name=None): r"""Emits randomized records. Args: file_pattern: A `string`. Glob pattern for the data files. file_random_seed: An optional `int`. Defaults to `301`. Random seeds used to produce randomized records. file_shuffle_shift_ratio: An optional `float`. Defaults to `0`. Shifts the list of files after the list is randomly shuffled. file_buffer_size: An optional `int`. Defaults to `10000`. The randomization shuffling buffer. file_parallelism: An optional `int`. Defaults to `16`. How many sstables are opened and concurrently iterated over. batch_size: An optional `int`. Defaults to `32`. The batch size. compression_type: An optional `string`. Defaults to `""`. The type of compression for the file. Currently ZLIB and GZIP are supported. Defaults to none. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "RecordInput", name, _ctx._post_execution_callbacks, "file_pattern", file_pattern, "file_random_seed", file_random_seed, "file_shuffle_shift_ratio", file_shuffle_shift_ratio, "file_buffer_size", file_buffer_size, "file_parallelism", file_parallelism, "batch_size", batch_size, "compression_type", compression_type) return _result except _core._FallbackException: try: return record_input_eager_fallback( file_pattern=file_pattern, file_random_seed=file_random_seed, file_shuffle_shift_ratio=file_shuffle_shift_ratio, file_buffer_size=file_buffer_size, file_parallelism=file_parallelism, batch_size=batch_size, compression_type=compression_type, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. file_pattern = _execute.make_str(file_pattern, "file_pattern") if file_random_seed is None: file_random_seed = 301 file_random_seed = _execute.make_int(file_random_seed, "file_random_seed") if file_shuffle_shift_ratio is None: file_shuffle_shift_ratio = 0 file_shuffle_shift_ratio = _execute.make_float(file_shuffle_shift_ratio, "file_shuffle_shift_ratio") if file_buffer_size is None: file_buffer_size = 10000 file_buffer_size = _execute.make_int(file_buffer_size, "file_buffer_size") if file_parallelism is None: file_parallelism = 16 file_parallelism = _execute.make_int(file_parallelism, "file_parallelism") if batch_size is None: batch_size = 32 batch_size = _execute.make_int(batch_size, "batch_size") if compression_type is None: compression_type = "" compression_type = _execute.make_str(compression_type, "compression_type") _, _, _op = _op_def_lib._apply_op_helper( "RecordInput", file_pattern=file_pattern, file_random_seed=file_random_seed, file_shuffle_shift_ratio=file_shuffle_shift_ratio, file_buffer_size=file_buffer_size, file_parallelism=file_parallelism, batch_size=batch_size, compression_type=compression_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("file_pattern", _op.get_attr("file_pattern"), "file_random_seed", _op.get_attr("file_random_seed"), "file_shuffle_shift_ratio", _op.get_attr("file_shuffle_shift_ratio"), "file_buffer_size", _op.get_attr("file_buffer_size"), "file_parallelism", _op.get_attr("file_parallelism"), "batch_size", _op.get_attr("batch_size"), "compression_type", _op.get_attr("compression_type")) _execute.record_gradient( "RecordInput", _inputs_flat, _attrs, _result, name) _result, = _result return _result def RecordInput(file_pattern, file_random_seed=301, file_shuffle_shift_ratio=0, file_buffer_size=10000, file_parallelism=16, batch_size=32, compression_type="", name=None): return record_input(file_pattern=file_pattern, file_random_seed=file_random_seed, file_shuffle_shift_ratio=file_shuffle_shift_ratio, file_buffer_size=file_buffer_size, file_parallelism=file_parallelism, batch_size=batch_size, compression_type=compression_type, name=name) RecordInput.__doc__ = record_input.__doc__ RecordInput = _doc_controls.do_not_generate_docs(_kwarg_only(RecordInput)) tf_export("raw_ops.RecordInput")(RecordInput) def record_input_eager_fallback(file_pattern, file_random_seed=301, file_shuffle_shift_ratio=0, file_buffer_size=10000, file_parallelism=16, batch_size=32, compression_type="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function record_input """ _ctx = ctx if ctx else _context.context() file_pattern = _execute.make_str(file_pattern, "file_pattern") if file_random_seed is None: file_random_seed = 301 file_random_seed = _execute.make_int(file_random_seed, "file_random_seed") if file_shuffle_shift_ratio is None: file_shuffle_shift_ratio = 0 file_shuffle_shift_ratio = _execute.make_float(file_shuffle_shift_ratio, "file_shuffle_shift_ratio") if file_buffer_size is None: file_buffer_size = 10000 file_buffer_size = _execute.make_int(file_buffer_size, "file_buffer_size") if file_parallelism is None: file_parallelism = 16 file_parallelism = _execute.make_int(file_parallelism, "file_parallelism") if batch_size is None: batch_size = 32 batch_size = _execute.make_int(batch_size, "batch_size") if compression_type is None: compression_type = "" compression_type = _execute.make_str(compression_type, "compression_type") _inputs_flat = [] _attrs = ("file_pattern", file_pattern, "file_random_seed", file_random_seed, "file_shuffle_shift_ratio", file_shuffle_shift_ratio, "file_buffer_size", file_buffer_size, "file_parallelism", file_parallelism, "batch_size", batch_size, "compression_type", compression_type) _result = _execute.execute(b"RecordInput", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "RecordInput", _inputs_flat, _attrs, _result, name) _result, = _result return _result def sparse_accumulator_apply_gradient(handle, local_step, gradient_indices, gradient_values, gradient_shape, has_known_shape, name=None): r"""Applies a sparse gradient to a given accumulator. Does not add if local_step is smaller than the accumulator's global_step. Args: handle: A `Tensor` of type mutable `string`. The handle to a accumulator. local_step: A `Tensor` of type `int64`. The local_step value at which the sparse gradient was computed. gradient_indices: A `Tensor` of type `int64`. Indices of the sparse gradient to be accumulated. Must be a vector. gradient_values: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. Values are the non-zero slices of the gradient, and must have the same first dimension as indices, i.e., the nnz represented by indices and values must be consistent. gradient_shape: A `Tensor` of type `int64`. Shape of the sparse gradient to be accumulated. has_known_shape: A `bool`. Boolean indicating whether gradient_shape is unknown, in which case the input is ignored during validation. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("sparse_accumulator_apply_gradient op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. has_known_shape = _execute.make_bool(has_known_shape, "has_known_shape") _, _, _op = _op_def_lib._apply_op_helper( "SparseAccumulatorApplyGradient", handle=handle, local_step=local_step, gradient_indices=gradient_indices, gradient_values=gradient_values, gradient_shape=gradient_shape, has_known_shape=has_known_shape, name=name) return _op _result = None return _result def SparseAccumulatorApplyGradient(handle, local_step, gradient_indices, gradient_values, gradient_shape, has_known_shape, name=None): return sparse_accumulator_apply_gradient(handle=handle, local_step=local_step, gradient_indices=gradient_indices, gradient_values=gradient_values, gradient_shape=gradient_shape, has_known_shape=has_known_shape, name=name) SparseAccumulatorApplyGradient.__doc__ = sparse_accumulator_apply_gradient.__doc__ SparseAccumulatorApplyGradient = _doc_controls.do_not_generate_docs(_kwarg_only(SparseAccumulatorApplyGradient)) tf_export("raw_ops.SparseAccumulatorApplyGradient")(SparseAccumulatorApplyGradient) def sparse_accumulator_apply_gradient_eager_fallback(handle, local_step, gradient_indices, gradient_values, gradient_shape, has_known_shape, name=None, ctx=None): raise RuntimeError("sparse_accumulator_apply_gradient op does not support eager execution. Arg 'handle' is a ref.") _sparse_accumulator_take_gradient_outputs = ["indices", "values", "shape"] _SparseAccumulatorTakeGradientOutput = _collections.namedtuple( "SparseAccumulatorTakeGradient", _sparse_accumulator_take_gradient_outputs) def sparse_accumulator_take_gradient(handle, num_required, dtype, name=None): r"""Extracts the average sparse gradient in a SparseConditionalAccumulator. The op will blocks until sufficient (i.e., more than num_required) gradients have been accumulated. If the accumulator has already aggregated more than num_required gradients, it will return its average of the accumulated gradients. Also automatically increments the recorded global_step in the accumulator by 1, and resets the aggregate to 0. Args: handle: A `Tensor` of type mutable `string`. The handle to a SparseConditionalAccumulator. num_required: A `Tensor` of type `int32`. Number of gradients required before we return an aggregate. dtype: A `tf.DType` from: `tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.int64, tf.qint8, tf.quint8, tf.qint32, tf.bfloat16, tf.uint16, tf.complex128, tf.half, tf.uint32, tf.uint64`. The data type of accumulated gradients. Needs to correspond to the type of the accumulator. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (indices, values, shape). indices: A `Tensor` of type `int64`. values: A `Tensor` of type `dtype`. shape: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("sparse_accumulator_take_gradient op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") _, _, _op = _op_def_lib._apply_op_helper( "SparseAccumulatorTakeGradient", handle=handle, num_required=num_required, dtype=dtype, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype")) _execute.record_gradient( "SparseAccumulatorTakeGradient", _inputs_flat, _attrs, _result, name) _result = _SparseAccumulatorTakeGradientOutput._make(_result) return _result def SparseAccumulatorTakeGradient(handle, num_required, dtype, name=None): return sparse_accumulator_take_gradient(handle=handle, num_required=num_required, dtype=dtype, name=name) SparseAccumulatorTakeGradient.__doc__ = sparse_accumulator_take_gradient.__doc__ SparseAccumulatorTakeGradient = _doc_controls.do_not_generate_docs(_kwarg_only(SparseAccumulatorTakeGradient)) tf_export("raw_ops.SparseAccumulatorTakeGradient")(SparseAccumulatorTakeGradient) def sparse_accumulator_take_gradient_eager_fallback(handle, num_required, dtype, name=None, ctx=None): raise RuntimeError("sparse_accumulator_take_gradient op does not support eager execution. Arg 'handle' is a ref.") def sparse_conditional_accumulator(dtype, shape, container="", shared_name="", reduction_type="MEAN", name=None): r"""A conditional accumulator for aggregating sparse gradients. The accumulator accepts gradients marked with local_step greater or equal to the most recent global_step known to the accumulator. The average can be extracted from the accumulator, provided sufficient gradients have been accumulated. Extracting the average automatically resets the aggregate to 0, and increments the global_step recorded by the accumulator. Args: dtype: A `tf.DType` from: `tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.int64, tf.qint8, tf.quint8, tf.qint32, tf.bfloat16, tf.uint16, tf.complex128, tf.half, tf.uint32, tf.uint64`. The type of the value being accumulated. shape: A `tf.TensorShape` or list of `ints`. The shape of the values. container: An optional `string`. Defaults to `""`. If non-empty, this accumulator is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this accumulator will be shared under the given name across multiple sessions. reduction_type: An optional `string` from: `"MEAN", "SUM"`. Defaults to `"MEAN"`. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("sparse_conditional_accumulator op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") shape = _execute.make_shape(shape, "shape") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") if reduction_type is None: reduction_type = "MEAN" reduction_type = _execute.make_str(reduction_type, "reduction_type") _, _, _op = _op_def_lib._apply_op_helper( "SparseConditionalAccumulator", dtype=dtype, shape=shape, container=container, shared_name=shared_name, reduction_type=reduction_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "shape", _op.get_attr("shape"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "reduction_type", _op.get_attr("reduction_type")) _execute.record_gradient( "SparseConditionalAccumulator", _inputs_flat, _attrs, _result, name) _result, = _result return _result def SparseConditionalAccumulator(dtype, shape, container="", shared_name="", reduction_type="MEAN", name=None): return sparse_conditional_accumulator(dtype=dtype, shape=shape, container=container, shared_name=shared_name, reduction_type=reduction_type, name=name) SparseConditionalAccumulator.__doc__ = sparse_conditional_accumulator.__doc__ SparseConditionalAccumulator = _doc_controls.do_not_generate_docs(_kwarg_only(SparseConditionalAccumulator)) tf_export("raw_ops.SparseConditionalAccumulator")(SparseConditionalAccumulator) def sparse_conditional_accumulator_eager_fallback(dtype, shape, container="", shared_name="", reduction_type="MEAN", name=None, ctx=None): raise RuntimeError("sparse_conditional_accumulator op does not support eager execution. Arg 'handle' is a ref.") def _stack(elem_type, stack_name="", name=None): r"""Deprecated, use StackV2. Args: elem_type: A `tf.DType`. stack_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("stack op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. elem_type = _execute.make_type(elem_type, "elem_type") if stack_name is None: stack_name = "" stack_name = _execute.make_str(stack_name, "stack_name") _, _, _op = _op_def_lib._apply_op_helper( "Stack", elem_type=elem_type, stack_name=stack_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("elem_type", _op.get_attr("elem_type"), "stack_name", _op.get_attr("stack_name")) _execute.record_gradient( "Stack", _inputs_flat, _attrs, _result, name) _result, = _result return _result def Stack(elem_type, stack_name="", name=None): return _stack(elem_type=elem_type, stack_name=stack_name, name=name) Stack.__doc__ = _stack.__doc__ Stack = _doc_controls.do_not_generate_docs(_kwarg_only(Stack)) tf_export("raw_ops.Stack")(Stack) def _stack_eager_fallback(elem_type, stack_name="", name=None, ctx=None): raise RuntimeError("stack op does not support eager execution. Arg 'handle' is a ref.") def stack_close(handle, name=None): r"""Deprecated, use StackCloseV2. Args: handle: A `Tensor` of type mutable `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("stack_close op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "StackClose", handle=handle, name=name) return _op _result = None return _result def StackClose(handle, name=None): return stack_close(handle=handle, name=name) StackClose.__doc__ = stack_close.__doc__ StackClose = _doc_controls.do_not_generate_docs(_kwarg_only(StackClose)) tf_export("raw_ops.StackClose")(StackClose) def stack_close_eager_fallback(handle, name=None, ctx=None): raise RuntimeError("stack_close op does not support eager execution. Arg 'handle' is a ref.") def stack_close_v2(handle, name=None): r"""Delete the stack from its resource container. Args: handle: A `Tensor` of type `resource`. The handle to a stack. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StackCloseV2", name, _ctx._post_execution_callbacks, handle) return _result except _core._FallbackException: try: return stack_close_v2_eager_fallback( handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "StackCloseV2", handle=handle, name=name) return _op _result = None return _result def StackCloseV2(handle, name=None): return stack_close_v2(handle=handle, name=name) StackCloseV2.__doc__ = stack_close_v2.__doc__ StackCloseV2 = _doc_controls.do_not_generate_docs(_kwarg_only(StackCloseV2)) tf_export("raw_ops.StackCloseV2")(StackCloseV2) def stack_close_v2_eager_fallback(handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stack_close_v2 """ _ctx = ctx if ctx else _context.context() handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = None _result = _execute.execute(b"StackCloseV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def stack_pop(handle, elem_type, name=None): r"""Deprecated, use StackPopV2. Args: handle: A `Tensor` of type mutable `string`. elem_type: A `tf.DType`. name: A name for the operation (optional). Returns: A `Tensor` of type `elem_type`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("stack_pop op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. elem_type = _execute.make_type(elem_type, "elem_type") _, _, _op = _op_def_lib._apply_op_helper( "StackPop", handle=handle, elem_type=elem_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("elem_type", _op.get_attr("elem_type")) _execute.record_gradient( "StackPop", _inputs_flat, _attrs, _result, name) _result, = _result return _result def StackPop(handle, elem_type, name=None): return stack_pop(handle=handle, elem_type=elem_type, name=name) StackPop.__doc__ = stack_pop.__doc__ StackPop = _doc_controls.do_not_generate_docs(_kwarg_only(StackPop)) tf_export("raw_ops.StackPop")(StackPop) def stack_pop_eager_fallback(handle, elem_type, name=None, ctx=None): raise RuntimeError("stack_pop op does not support eager execution. Arg 'handle' is a ref.") def stack_pop_v2(handle, elem_type, name=None): r"""Pop the element at the top of the stack. Args: handle: A `Tensor` of type `resource`. The handle to a stack. elem_type: A `tf.DType`. The type of the elem that is popped. name: A name for the operation (optional). Returns: A `Tensor` of type `elem_type`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StackPopV2", name, _ctx._post_execution_callbacks, handle, "elem_type", elem_type) return _result except _core._FallbackException: try: return stack_pop_v2_eager_fallback( handle, elem_type=elem_type, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. elem_type = _execute.make_type(elem_type, "elem_type") _, _, _op = _op_def_lib._apply_op_helper( "StackPopV2", handle=handle, elem_type=elem_type, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("elem_type", _op.get_attr("elem_type")) _execute.record_gradient( "StackPopV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def StackPopV2(handle, elem_type, name=None): return stack_pop_v2(handle=handle, elem_type=elem_type, name=name) StackPopV2.__doc__ = stack_pop_v2.__doc__ StackPopV2 = _doc_controls.do_not_generate_docs(_kwarg_only(StackPopV2)) tf_export("raw_ops.StackPopV2")(StackPopV2) def stack_pop_v2_eager_fallback(handle, elem_type, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stack_pop_v2 """ _ctx = ctx if ctx else _context.context() elem_type = _execute.make_type(elem_type, "elem_type") handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = ("elem_type", elem_type) _result = _execute.execute(b"StackPopV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "StackPopV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def stack_push(handle, elem, swap_memory=False, name=None): r"""Deprecated, use StackPushV2. Args: handle: A `Tensor` of type mutable `string`. elem: A `Tensor`. swap_memory: An optional `bool`. Defaults to `False`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `elem`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("stack_push op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. if swap_memory is None: swap_memory = False swap_memory = _execute.make_bool(swap_memory, "swap_memory") _, _, _op = _op_def_lib._apply_op_helper( "StackPush", handle=handle, elem=elem, swap_memory=swap_memory, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "swap_memory", _op.get_attr("swap_memory")) _execute.record_gradient( "StackPush", _inputs_flat, _attrs, _result, name) _result, = _result return _result def StackPush(handle, elem, swap_memory=False, name=None): return stack_push(handle=handle, elem=elem, swap_memory=swap_memory, name=name) StackPush.__doc__ = stack_push.__doc__ StackPush = _doc_controls.do_not_generate_docs(_kwarg_only(StackPush)) tf_export("raw_ops.StackPush")(StackPush) def stack_push_eager_fallback(handle, elem, swap_memory=False, name=None, ctx=None): raise RuntimeError("stack_push op does not support eager execution. Arg 'handle' is a ref.") def stack_push_v2(handle, elem, swap_memory=False, name=None): r"""Push an element onto the stack. Args: handle: A `Tensor` of type `resource`. The handle to a stack. elem: A `Tensor`. The tensor to be pushed onto the stack. swap_memory: An optional `bool`. Defaults to `False`. Swap `elem` to CPU. Default to false. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `elem`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StackPushV2", name, _ctx._post_execution_callbacks, handle, elem, "swap_memory", swap_memory) return _result except _core._FallbackException: try: return stack_push_v2_eager_fallback( handle, elem, swap_memory=swap_memory, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if swap_memory is None: swap_memory = False swap_memory = _execute.make_bool(swap_memory, "swap_memory") _, _, _op = _op_def_lib._apply_op_helper( "StackPushV2", handle=handle, elem=elem, swap_memory=swap_memory, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "swap_memory", _op.get_attr("swap_memory")) _execute.record_gradient( "StackPushV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def StackPushV2(handle, elem, swap_memory=False, name=None): return stack_push_v2(handle=handle, elem=elem, swap_memory=swap_memory, name=name) StackPushV2.__doc__ = stack_push_v2.__doc__ StackPushV2 = _doc_controls.do_not_generate_docs(_kwarg_only(StackPushV2)) tf_export("raw_ops.StackPushV2")(StackPushV2) def stack_push_v2_eager_fallback(handle, elem, swap_memory=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stack_push_v2 """ _ctx = ctx if ctx else _context.context() if swap_memory is None: swap_memory = False swap_memory = _execute.make_bool(swap_memory, "swap_memory") _attr_T, (elem,) = _execute.args_to_matching_eager([elem], _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle, elem] _attrs = ("T", _attr_T, "swap_memory", swap_memory) _result = _execute.execute(b"StackPushV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "StackPushV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def stack_v2(max_size, elem_type, stack_name="", name=None): r"""A stack that produces elements in first-in last-out order. Args: max_size: A `Tensor` of type `int32`. The maximum size of the stack if non-negative. If negative, the stack size is unlimited. elem_type: A `tf.DType`. The type of the elements on the stack. stack_name: An optional `string`. Defaults to `""`. Overrides the name used for the temporary stack resource. Default value is the name of the 'Stack' op (which is guaranteed unique). name: A name for the operation (optional). Returns: A `Tensor` of type `resource`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StackV2", name, _ctx._post_execution_callbacks, max_size, "elem_type", elem_type, "stack_name", stack_name) return _result except _core._FallbackException: try: return stack_v2_eager_fallback( max_size, elem_type=elem_type, stack_name=stack_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. elem_type = _execute.make_type(elem_type, "elem_type") if stack_name is None: stack_name = "" stack_name = _execute.make_str(stack_name, "stack_name") _, _, _op = _op_def_lib._apply_op_helper( "StackV2", max_size=max_size, elem_type=elem_type, stack_name=stack_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("elem_type", _op.get_attr("elem_type"), "stack_name", _op.get_attr("stack_name")) _execute.record_gradient( "StackV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def StackV2(max_size, elem_type, stack_name="", name=None): return stack_v2(max_size=max_size, elem_type=elem_type, stack_name=stack_name, name=name) StackV2.__doc__ = stack_v2.__doc__ StackV2 = _doc_controls.do_not_generate_docs(_kwarg_only(StackV2)) tf_export("raw_ops.StackV2")(StackV2) def stack_v2_eager_fallback(max_size, elem_type, stack_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stack_v2 """ _ctx = ctx if ctx else _context.context() elem_type = _execute.make_type(elem_type, "elem_type") if stack_name is None: stack_name = "" stack_name = _execute.make_str(stack_name, "stack_name") max_size = _ops.convert_to_tensor(max_size, _dtypes.int32) _inputs_flat = [max_size] _attrs = ("elem_type", elem_type, "stack_name", stack_name) _result = _execute.execute(b"StackV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "StackV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def stage(values, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Stage values similar to a lightweight Enqueue. The basic functionality of this Op is similar to a queue with many fewer capabilities and options. This Op is optimized for performance. Args: values: A list of `Tensor` objects. a list of tensors dtypes A list of data types that inserted values should adhere to. capacity: An optional `int` that is `>= 0`. Defaults to `0`. Maximum number of elements in the Staging Area. If > 0, inserts on the container will block when the capacity is reached. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. The maximum number of bytes allowed for Tensors in the Staging Area. If > 0, inserts will block until sufficient space is available. container: An optional `string`. Defaults to `""`. If non-empty, this queue is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. It is necessary to match this name to the matching Unstage Op. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "Stage", name, _ctx._post_execution_callbacks, values, "capacity", capacity, "memory_limit", memory_limit, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return stage_eager_fallback( values, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "Stage", values=values, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) return _op _result = None return _result def Stage(values, capacity=0, memory_limit=0, container="", shared_name="", name=None): return stage(values=values, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) Stage.__doc__ = stage.__doc__ Stage = _doc_controls.do_not_generate_docs(_kwarg_only(Stage)) tf_export("raw_ops.Stage")(Stage) def stage_eager_fallback(values, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stage """ _ctx = ctx if ctx else _context.context() if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _attr_dtypes, values = _execute.convert_to_mixed_eager_tensors(values, _ctx) _inputs_flat = list(values) _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", _attr_dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"Stage", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def stage_clear(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op removes all elements in the underlying container. Args: dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StageClear", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return stage_clear_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'stage_clear' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "StageClear", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) return _op _result = None return _result def StageClear(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return stage_clear(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) StageClear.__doc__ = stage_clear.__doc__ StageClear = _doc_controls.do_not_generate_docs(_kwarg_only(StageClear)) tf_export("raw_ops.StageClear")(StageClear) def stage_clear_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stage_clear """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'stage_clear' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"StageClear", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def stage_peek(index, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op peeks at the values at the specified index. If the underlying container does not contain sufficient elements this op will block until it does. This Op is optimized for performance. Args: index: A `Tensor` of type `int32`. dtypes: A list of `tf.DTypes` that has length `>= 1`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StagePeek", name, _ctx._post_execution_callbacks, index, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return stage_peek_eager_fallback( index, capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'stage_peek' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "StagePeek", index=index, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "StagePeek", _inputs_flat, _attrs, _result, name) return _result def StagePeek(index, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return stage_peek(index=index, dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) StagePeek.__doc__ = stage_peek.__doc__ StagePeek = _doc_controls.do_not_generate_docs(_kwarg_only(StagePeek)) tf_export("raw_ops.StagePeek")(StagePeek) def stage_peek_eager_fallback(index, dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stage_peek """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'stage_peek' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") index = _ops.convert_to_tensor(index, _dtypes.int32) _inputs_flat = [index] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"StagePeek", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "StagePeek", _inputs_flat, _attrs, _result, name) return _result def stage_size(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op returns the number of elements in the underlying container. Args: dtypes: A list of `tf.DTypes`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "StageSize", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return stage_size_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'stage_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "StageSize", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "StageSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def StageSize(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return stage_size(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) StageSize.__doc__ = stage_size.__doc__ StageSize = _doc_controls.do_not_generate_docs(_kwarg_only(StageSize)) tf_export("raw_ops.StageSize")(StageSize) def stage_size_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function stage_size """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'stage_size' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"StageSize", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "StageSize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array(size, dtype, dynamic_size=False, clear_after_read=True, tensor_array_name="", element_shape=None, name=None): r"""TODO: add doc. Args: size: A `Tensor` of type `int32`. dtype: A `tf.DType`. dynamic_size: An optional `bool`. Defaults to `False`. clear_after_read: An optional `bool`. Defaults to `True`. tensor_array_name: An optional `string`. Defaults to `""`. element_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if dynamic_size is None: dynamic_size = False dynamic_size = _execute.make_bool(dynamic_size, "dynamic_size") if clear_after_read is None: clear_after_read = True clear_after_read = _execute.make_bool(clear_after_read, "clear_after_read") if tensor_array_name is None: tensor_array_name = "" tensor_array_name = _execute.make_str(tensor_array_name, "tensor_array_name") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") _, _, _op = _op_def_lib._apply_op_helper( "TensorArray", size=size, dtype=dtype, dynamic_size=dynamic_size, clear_after_read=clear_after_read, tensor_array_name=tensor_array_name, element_shape=element_shape, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "dynamic_size", _op.get_attr("dynamic_size"), "clear_after_read", _op.get_attr("clear_after_read"), "tensor_array_name", _op.get_attr("tensor_array_name"), "element_shape", _op.get_attr("element_shape")) _execute.record_gradient( "TensorArray", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArray(size, dtype, dynamic_size=False, clear_after_read=True, tensor_array_name="", element_shape=None, name=None): return tensor_array(size=size, dtype=dtype, dynamic_size=dynamic_size, clear_after_read=clear_after_read, tensor_array_name=tensor_array_name, element_shape=element_shape, name=name) TensorArray.__doc__ = tensor_array.__doc__ TensorArray = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArray)) tf_export("raw_ops.TensorArray")(TensorArray) def tensor_array_eager_fallback(size, dtype, dynamic_size=False, clear_after_read=True, tensor_array_name="", element_shape=None, name=None, ctx=None): raise RuntimeError("tensor_array op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_close(handle, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_close op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayClose", handle=handle, name=name) return _op _result = None return _result def TensorArrayClose(handle, name=None): return tensor_array_close(handle=handle, name=name) TensorArrayClose.__doc__ = tensor_array_close.__doc__ TensorArrayClose = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayClose)) tf_export("raw_ops.TensorArrayClose")(TensorArrayClose) def tensor_array_close_eager_fallback(handle, name=None, ctx=None): raise RuntimeError("tensor_array_close op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_close_v2(handle, name=None): r"""Deprecated. Use TensorArrayCloseV3 Args: handle: A `Tensor` of type `string`. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayCloseV2", name, _ctx._post_execution_callbacks, handle) return _result except _core._FallbackException: try: return tensor_array_close_v2_eager_fallback( handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayCloseV2", handle=handle, name=name) return _op _result = None return _result def TensorArrayCloseV2(handle, name=None): return tensor_array_close_v2(handle=handle, name=name) TensorArrayCloseV2.__doc__ = tensor_array_close_v2.__doc__ TensorArrayCloseV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayCloseV2)) tf_export("raw_ops.TensorArrayCloseV2")(TensorArrayCloseV2) def tensor_array_close_v2_eager_fallback(handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_close_v2 """ _ctx = ctx if ctx else _context.context() handle = _ops.convert_to_tensor(handle, _dtypes.string) _inputs_flat = [handle] _attrs = None _result = _execute.execute(b"TensorArrayCloseV2", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result def tensor_array_close_v3(handle, name=None): r"""Delete the TensorArray from its resource container. This enables the user to close and release the resource in the middle of a step/run. Args: handle: A `Tensor` of type `resource`. The handle to a TensorArray (output of TensorArray or TensorArrayGrad). name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayCloseV3", name, _ctx._post_execution_callbacks, handle) return _result except _core._FallbackException: try: return tensor_array_close_v3_eager_fallback( handle, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayCloseV3", handle=handle, name=name) return _op _result = None return _result def TensorArrayCloseV3(handle, name=None): return tensor_array_close_v3(handle=handle, name=name) TensorArrayCloseV3.__doc__ = tensor_array_close_v3.__doc__ TensorArrayCloseV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayCloseV3)) tf_export("raw_ops.TensorArrayCloseV3")(TensorArrayCloseV3) def tensor_array_close_v3_eager_fallback(handle, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_close_v3 """ _ctx = ctx if ctx else _context.context() handle = _ops.convert_to_tensor(handle, _dtypes.resource) _inputs_flat = [handle] _attrs = None _result = _execute.execute(b"TensorArrayCloseV3", 0, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _result = None return _result _tensor_array_concat_outputs = ["value", "lengths"] _TensorArrayConcatOutput = _collections.namedtuple( "TensorArrayConcat", _tensor_array_concat_outputs) def tensor_array_concat(handle, flow_in, dtype, element_shape_except0=None, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. flow_in: A `Tensor` of type `float32`. dtype: A `tf.DType`. element_shape_except0: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (value, lengths). value: A `Tensor` of type `dtype`. lengths: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_concat op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape_except0 is None: element_shape_except0 = None element_shape_except0 = _execute.make_shape(element_shape_except0, "element_shape_except0") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayConcat", handle=handle, flow_in=flow_in, dtype=dtype, element_shape_except0=element_shape_except0, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape_except0", _op.get_attr("element_shape_except0")) _execute.record_gradient( "TensorArrayConcat", _inputs_flat, _attrs, _result, name) _result = _TensorArrayConcatOutput._make(_result) return _result def TensorArrayConcat(handle, flow_in, dtype, element_shape_except0=None, name=None): return tensor_array_concat(handle=handle, flow_in=flow_in, dtype=dtype, element_shape_except0=element_shape_except0, name=name) TensorArrayConcat.__doc__ = tensor_array_concat.__doc__ TensorArrayConcat = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayConcat)) tf_export("raw_ops.TensorArrayConcat")(TensorArrayConcat) def tensor_array_concat_eager_fallback(handle, flow_in, dtype, element_shape_except0=None, name=None, ctx=None): raise RuntimeError("tensor_array_concat op does not support eager execution. Arg 'handle' is a ref.") _tensor_array_concat_v2_outputs = ["value", "lengths"] _TensorArrayConcatV2Output = _collections.namedtuple( "TensorArrayConcatV2", _tensor_array_concat_v2_outputs) def tensor_array_concat_v2(handle, flow_in, dtype, element_shape_except0=None, name=None): r"""Deprecated. Use TensorArrayConcatV3 Args: handle: A `Tensor` of type `string`. flow_in: A `Tensor` of type `float32`. dtype: A `tf.DType`. element_shape_except0: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (value, lengths). value: A `Tensor` of type `dtype`. lengths: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayConcatV2", name, _ctx._post_execution_callbacks, handle, flow_in, "dtype", dtype, "element_shape_except0", element_shape_except0) _result = _TensorArrayConcatV2Output._make(_result) return _result except _core._FallbackException: try: return tensor_array_concat_v2_eager_fallback( handle, flow_in, dtype=dtype, element_shape_except0=element_shape_except0, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape_except0 is None: element_shape_except0 = None element_shape_except0 = _execute.make_shape(element_shape_except0, "element_shape_except0") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayConcatV2", handle=handle, flow_in=flow_in, dtype=dtype, element_shape_except0=element_shape_except0, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape_except0", _op.get_attr("element_shape_except0")) _execute.record_gradient( "TensorArrayConcatV2", _inputs_flat, _attrs, _result, name) _result = _TensorArrayConcatV2Output._make(_result) return _result def TensorArrayConcatV2(handle, flow_in, dtype, element_shape_except0=None, name=None): return tensor_array_concat_v2(handle=handle, flow_in=flow_in, dtype=dtype, element_shape_except0=element_shape_except0, name=name) TensorArrayConcatV2.__doc__ = tensor_array_concat_v2.__doc__ TensorArrayConcatV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayConcatV2)) tf_export("raw_ops.TensorArrayConcatV2")(TensorArrayConcatV2) def tensor_array_concat_v2_eager_fallback(handle, flow_in, dtype, element_shape_except0=None, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_concat_v2 """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") if element_shape_except0 is None: element_shape_except0 = None element_shape_except0 = _execute.make_shape(element_shape_except0, "element_shape_except0") handle = _ops.convert_to_tensor(handle, _dtypes.string) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, flow_in] _attrs = ("dtype", dtype, "element_shape_except0", element_shape_except0) _result = _execute.execute(b"TensorArrayConcatV2", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayConcatV2", _inputs_flat, _attrs, _result, name) _result = _TensorArrayConcatV2Output._make(_result) return _result _tensor_array_concat_v3_outputs = ["value", "lengths"] _TensorArrayConcatV3Output = _collections.namedtuple( "TensorArrayConcatV3", _tensor_array_concat_v3_outputs) def tensor_array_concat_v3(handle, flow_in, dtype, element_shape_except0=None, name=None): r"""Concat the elements from the TensorArray into value `value`. Takes `T` elements of shapes ``` (n0 x d0 x d1 x ...), (n1 x d0 x d1 x ...), ..., (n(T-1) x d0 x d1 x ...) ``` and concatenates them into a Tensor of shape: ```(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)``` All elements must have the same shape (excepting the first dimension). Args: handle: A `Tensor` of type `resource`. The handle to a TensorArray. flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. dtype: A `tf.DType`. The type of the elem that is returned. element_shape_except0: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. The expected shape of an element, if known, excluding the first dimension. Used to validate the shapes of TensorArray elements. If this shape is not fully specified, concatenating zero-size TensorArrays is an error. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (value, lengths). value: A `Tensor` of type `dtype`. lengths: A `Tensor` of type `int64`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayConcatV3", name, _ctx._post_execution_callbacks, handle, flow_in, "dtype", dtype, "element_shape_except0", element_shape_except0) _result = _TensorArrayConcatV3Output._make(_result) return _result except _core._FallbackException: try: return tensor_array_concat_v3_eager_fallback( handle, flow_in, dtype=dtype, element_shape_except0=element_shape_except0, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape_except0 is None: element_shape_except0 = None element_shape_except0 = _execute.make_shape(element_shape_except0, "element_shape_except0") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayConcatV3", handle=handle, flow_in=flow_in, dtype=dtype, element_shape_except0=element_shape_except0, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape_except0", _op.get_attr("element_shape_except0")) _execute.record_gradient( "TensorArrayConcatV3", _inputs_flat, _attrs, _result, name) _result = _TensorArrayConcatV3Output._make(_result) return _result def TensorArrayConcatV3(handle, flow_in, dtype, element_shape_except0=None, name=None): return tensor_array_concat_v3(handle=handle, flow_in=flow_in, dtype=dtype, element_shape_except0=element_shape_except0, name=name) TensorArrayConcatV3.__doc__ = tensor_array_concat_v3.__doc__ TensorArrayConcatV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayConcatV3)) tf_export("raw_ops.TensorArrayConcatV3")(TensorArrayConcatV3) def tensor_array_concat_v3_eager_fallback(handle, flow_in, dtype, element_shape_except0=None, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_concat_v3 """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") if element_shape_except0 is None: element_shape_except0 = None element_shape_except0 = _execute.make_shape(element_shape_except0, "element_shape_except0") handle = _ops.convert_to_tensor(handle, _dtypes.resource) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, flow_in] _attrs = ("dtype", dtype, "element_shape_except0", element_shape_except0) _result = _execute.execute(b"TensorArrayConcatV3", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayConcatV3", _inputs_flat, _attrs, _result, name) _result = _TensorArrayConcatV3Output._make(_result) return _result def tensor_array_gather(handle, indices, flow_in, dtype, element_shape=None, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. indices: A `Tensor` of type `int32`. flow_in: A `Tensor` of type `float32`. dtype: A `tf.DType`. element_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_gather op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayGather", handle=handle, indices=indices, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape", _op.get_attr("element_shape")) _execute.record_gradient( "TensorArrayGather", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayGather(handle, indices, flow_in, dtype, element_shape=None, name=None): return tensor_array_gather(handle=handle, indices=indices, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) TensorArrayGather.__doc__ = tensor_array_gather.__doc__ TensorArrayGather = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayGather)) tf_export("raw_ops.TensorArrayGather")(TensorArrayGather) def tensor_array_gather_eager_fallback(handle, indices, flow_in, dtype, element_shape=None, name=None, ctx=None): raise RuntimeError("tensor_array_gather op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_gather_v2(handle, indices, flow_in, dtype, element_shape=None, name=None): r"""Deprecated. Use TensorArrayGatherV3 Args: handle: A `Tensor` of type `string`. indices: A `Tensor` of type `int32`. flow_in: A `Tensor` of type `float32`. dtype: A `tf.DType`. element_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayGatherV2", name, _ctx._post_execution_callbacks, handle, indices, flow_in, "dtype", dtype, "element_shape", element_shape) return _result except _core._FallbackException: try: return tensor_array_gather_v2_eager_fallback( handle, indices, flow_in, dtype=dtype, element_shape=element_shape, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayGatherV2", handle=handle, indices=indices, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape", _op.get_attr("element_shape")) _execute.record_gradient( "TensorArrayGatherV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayGatherV2(handle, indices, flow_in, dtype, element_shape=None, name=None): return tensor_array_gather_v2(handle=handle, indices=indices, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) TensorArrayGatherV2.__doc__ = tensor_array_gather_v2.__doc__ TensorArrayGatherV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayGatherV2)) tf_export("raw_ops.TensorArrayGatherV2")(TensorArrayGatherV2) def tensor_array_gather_v2_eager_fallback(handle, indices, flow_in, dtype, element_shape=None, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_gather_v2 """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") handle = _ops.convert_to_tensor(handle, _dtypes.string) indices = _ops.convert_to_tensor(indices, _dtypes.int32) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, indices, flow_in] _attrs = ("dtype", dtype, "element_shape", element_shape) _result = _execute.execute(b"TensorArrayGatherV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayGatherV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_gather_v3(handle, indices, flow_in, dtype, element_shape=None, name=None): r"""Gather specific elements from the TensorArray into output `value`. All elements selected by `indices` must have the same shape. Args: handle: A `Tensor` of type `resource`. The handle to a TensorArray. indices: A `Tensor` of type `int32`. The locations in the TensorArray from which to read tensor elements. flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. dtype: A `tf.DType`. The type of the elem that is returned. element_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. The expected shape of an element, if known. Used to validate the shapes of TensorArray elements. If this shape is not fully specified, gathering zero-size TensorArrays is an error. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayGatherV3", name, _ctx._post_execution_callbacks, handle, indices, flow_in, "dtype", dtype, "element_shape", element_shape) return _result except _core._FallbackException: try: return tensor_array_gather_v3_eager_fallback( handle, indices, flow_in, dtype=dtype, element_shape=element_shape, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayGatherV3", handle=handle, indices=indices, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape", _op.get_attr("element_shape")) _execute.record_gradient( "TensorArrayGatherV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayGatherV3(handle, indices, flow_in, dtype, element_shape=None, name=None): return tensor_array_gather_v3(handle=handle, indices=indices, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) TensorArrayGatherV3.__doc__ = tensor_array_gather_v3.__doc__ TensorArrayGatherV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayGatherV3)) tf_export("raw_ops.TensorArrayGatherV3")(TensorArrayGatherV3) def tensor_array_gather_v3_eager_fallback(handle, indices, flow_in, dtype, element_shape=None, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_gather_v3 """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") handle = _ops.convert_to_tensor(handle, _dtypes.resource) indices = _ops.convert_to_tensor(indices, _dtypes.int32) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, indices, flow_in] _attrs = ("dtype", dtype, "element_shape", element_shape) _result = _execute.execute(b"TensorArrayGatherV3", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayGatherV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_grad(handle, flow_in, source, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type `string`. flow_in: A `Tensor` of type `float32`. source: A `string`. name: A name for the operation (optional). Returns: A `Tensor` of type mutable `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_grad op does not support eager execution. Arg 'grad_handle' is a ref.") # Add nodes to the TensorFlow graph. source = _execute.make_str(source, "source") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayGrad", handle=handle, flow_in=flow_in, source=source, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("source", _op.get_attr("source")) _execute.record_gradient( "TensorArrayGrad", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayGrad(handle, flow_in, source, name=None): return tensor_array_grad(handle=handle, flow_in=flow_in, source=source, name=name) TensorArrayGrad.__doc__ = tensor_array_grad.__doc__ TensorArrayGrad = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayGrad)) tf_export("raw_ops.TensorArrayGrad")(TensorArrayGrad) def tensor_array_grad_eager_fallback(handle, flow_in, source, name=None, ctx=None): raise RuntimeError("tensor_array_grad op does not support eager execution. Arg 'grad_handle' is a ref.") def tensor_array_grad_v2(handle, flow_in, source, name=None): r"""Deprecated. Use TensorArrayGradV3 Args: handle: A `Tensor` of type `string`. flow_in: A `Tensor` of type `float32`. source: A `string`. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayGradV2", name, _ctx._post_execution_callbacks, handle, flow_in, "source", source) return _result except _core._FallbackException: try: return tensor_array_grad_v2_eager_fallback( handle, flow_in, source=source, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. source = _execute.make_str(source, "source") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayGradV2", handle=handle, flow_in=flow_in, source=source, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("source", _op.get_attr("source")) _execute.record_gradient( "TensorArrayGradV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayGradV2(handle, flow_in, source, name=None): return tensor_array_grad_v2(handle=handle, flow_in=flow_in, source=source, name=name) TensorArrayGradV2.__doc__ = tensor_array_grad_v2.__doc__ TensorArrayGradV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayGradV2)) tf_export("raw_ops.TensorArrayGradV2")(TensorArrayGradV2) def tensor_array_grad_v2_eager_fallback(handle, flow_in, source, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_grad_v2 """ _ctx = ctx if ctx else _context.context() source = _execute.make_str(source, "source") handle = _ops.convert_to_tensor(handle, _dtypes.string) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, flow_in] _attrs = ("source", source) _result = _execute.execute(b"TensorArrayGradV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayGradV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result _tensor_array_grad_v3_outputs = ["grad_handle", "flow_out"] _TensorArrayGradV3Output = _collections.namedtuple( "TensorArrayGradV3", _tensor_array_grad_v3_outputs) def tensor_array_grad_v3(handle, flow_in, source, name=None): r"""Creates a TensorArray for storing the gradients of values in the given handle. If the given TensorArray gradient already exists, returns a reference to it. Locks the size of the original TensorArray by disabling its dynamic size flag. **A note about the input flow_in:** The handle flow_in forces the execution of the gradient lookup to occur only after certain other operations have occurred. For example, when the forward TensorArray is dynamically sized, writes to this TensorArray may resize the object. The gradient TensorArray is statically sized based on the size of the forward TensorArray when this operation executes. Furthermore, the size of the forward TensorArray is frozen by this call. As a result, the flow is used to ensure that the call to generate the gradient TensorArray only happens after all writes are executed. In the case of dynamically sized TensorArrays, gradient computation should only be performed on read operations that have themselves been chained via flow to occur only after all writes have executed. That way the final size of the forward TensorArray is known when this operation is called. **A note about the source attribute:** TensorArray gradient calls use an accumulator TensorArray object. If multiple gradients are calculated and run in the same session, the multiple gradient nodes may accidentally flow through the same accumulator TensorArray. This double counts and generally breaks the TensorArray gradient flow. The solution is to identify which gradient call this particular TensorArray gradient is being called in. This is performed by identifying a unique string (e.g. "gradients", "gradients_1", ...) from the input gradient Tensor's name. This string is used as a suffix when creating the TensorArray gradient object here (the attribute `source`). The attribute `source` is added as a suffix to the forward TensorArray's name when performing the creation / lookup, so that each separate gradient calculation gets its own TensorArray accumulator. Args: handle: A `Tensor` of type `resource`. The handle to the forward TensorArray. flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. source: A `string`. The gradient source string, used to decide which gradient TensorArray to return. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (grad_handle, flow_out). grad_handle: A `Tensor` of type `resource`. flow_out: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayGradV3", name, _ctx._post_execution_callbacks, handle, flow_in, "source", source) _result = _TensorArrayGradV3Output._make(_result) return _result except _core._FallbackException: try: return tensor_array_grad_v3_eager_fallback( handle, flow_in, source=source, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. source = _execute.make_str(source, "source") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayGradV3", handle=handle, flow_in=flow_in, source=source, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("source", _op.get_attr("source")) _execute.record_gradient( "TensorArrayGradV3", _inputs_flat, _attrs, _result, name) _result = _TensorArrayGradV3Output._make(_result) return _result def TensorArrayGradV3(handle, flow_in, source, name=None): return tensor_array_grad_v3(handle=handle, flow_in=flow_in, source=source, name=name) TensorArrayGradV3.__doc__ = tensor_array_grad_v3.__doc__ TensorArrayGradV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayGradV3)) tf_export("raw_ops.TensorArrayGradV3")(TensorArrayGradV3) def tensor_array_grad_v3_eager_fallback(handle, flow_in, source, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_grad_v3 """ _ctx = ctx if ctx else _context.context() source = _execute.make_str(source, "source") handle = _ops.convert_to_tensor(handle, _dtypes.resource) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, flow_in] _attrs = ("source", source) _result = _execute.execute(b"TensorArrayGradV3", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayGradV3", _inputs_flat, _attrs, _result, name) _result = _TensorArrayGradV3Output._make(_result) return _result _tensor_array_grad_with_shape_outputs = ["grad_handle", "flow_out"] _TensorArrayGradWithShapeOutput = _collections.namedtuple( "TensorArrayGradWithShape", _tensor_array_grad_with_shape_outputs) def tensor_array_grad_with_shape(handle, flow_in, shape_to_prepend, source, name=None): r"""Creates a TensorArray for storing multiple gradients of values in the given handle. Similar to TensorArrayGradV3. However it creates an accumulator with an expanded shape compared to the input TensorArray whose gradient is being computed. This enables multiple gradients for the same TensorArray to be calculated using the same accumulator. Args: handle: A `Tensor` of type `resource`. The handle to the forward TensorArray. flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. shape_to_prepend: A `Tensor` of type `int32`. An int32 vector representing a shape. Elements in the gradient accumulator will have shape which is this shape_to_prepend value concatenated with shape of the elements in the TensorArray corresponding to the input handle. source: A `string`. The gradient source string, used to decide which gradient TensorArray to return. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (grad_handle, flow_out). grad_handle: A `Tensor` of type `resource`. flow_out: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayGradWithShape", name, _ctx._post_execution_callbacks, handle, flow_in, shape_to_prepend, "source", source) _result = _TensorArrayGradWithShapeOutput._make(_result) return _result except _core._FallbackException: try: return tensor_array_grad_with_shape_eager_fallback( handle, flow_in, shape_to_prepend, source=source, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. source = _execute.make_str(source, "source") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayGradWithShape", handle=handle, flow_in=flow_in, shape_to_prepend=shape_to_prepend, source=source, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("source", _op.get_attr("source")) _execute.record_gradient( "TensorArrayGradWithShape", _inputs_flat, _attrs, _result, name) _result = _TensorArrayGradWithShapeOutput._make(_result) return _result def TensorArrayGradWithShape(handle, flow_in, shape_to_prepend, source, name=None): return tensor_array_grad_with_shape(handle=handle, flow_in=flow_in, shape_to_prepend=shape_to_prepend, source=source, name=name) TensorArrayGradWithShape.__doc__ = tensor_array_grad_with_shape.__doc__ TensorArrayGradWithShape = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayGradWithShape)) tf_export("raw_ops.TensorArrayGradWithShape")(TensorArrayGradWithShape) def tensor_array_grad_with_shape_eager_fallback(handle, flow_in, shape_to_prepend, source, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_grad_with_shape """ _ctx = ctx if ctx else _context.context() source = _execute.make_str(source, "source") handle = _ops.convert_to_tensor(handle, _dtypes.resource) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) shape_to_prepend = _ops.convert_to_tensor(shape_to_prepend, _dtypes.int32) _inputs_flat = [handle, flow_in, shape_to_prepend] _attrs = ("source", source) _result = _execute.execute(b"TensorArrayGradWithShape", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayGradWithShape", _inputs_flat, _attrs, _result, name) _result = _TensorArrayGradWithShapeOutput._make(_result) return _result def tensor_array_pack(handle, flow_in, dtype, element_shape=None, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. flow_in: A `Tensor` of type `float32`. dtype: A `tf.DType`. element_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_pack op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayPack", handle=handle, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape", _op.get_attr("element_shape")) _execute.record_gradient( "TensorArrayPack", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayPack(handle, flow_in, dtype, element_shape=None, name=None): return tensor_array_pack(handle=handle, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) TensorArrayPack.__doc__ = tensor_array_pack.__doc__ TensorArrayPack = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayPack)) tf_export("raw_ops.TensorArrayPack")(TensorArrayPack) def tensor_array_pack_eager_fallback(handle, flow_in, dtype, element_shape=None, name=None, ctx=None): raise RuntimeError("tensor_array_pack op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_read(handle, index, flow_in, dtype, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. index: A `Tensor` of type `int32`. flow_in: A `Tensor` of type `float32`. dtype: A `tf.DType`. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_read op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayRead", handle=handle, index=index, flow_in=flow_in, dtype=dtype, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype")) _execute.record_gradient( "TensorArrayRead", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayRead(handle, index, flow_in, dtype, name=None): return tensor_array_read(handle=handle, index=index, flow_in=flow_in, dtype=dtype, name=name) TensorArrayRead.__doc__ = tensor_array_read.__doc__ TensorArrayRead = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayRead)) tf_export("raw_ops.TensorArrayRead")(TensorArrayRead) def tensor_array_read_eager_fallback(handle, index, flow_in, dtype, name=None, ctx=None): raise RuntimeError("tensor_array_read op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_read_v2(handle, index, flow_in, dtype, name=None): r"""Deprecated. Use TensorArrayReadV3 Args: handle: A `Tensor` of type `string`. index: A `Tensor` of type `int32`. flow_in: A `Tensor` of type `float32`. dtype: A `tf.DType`. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayReadV2", name, _ctx._post_execution_callbacks, handle, index, flow_in, "dtype", dtype) return _result except _core._FallbackException: try: return tensor_array_read_v2_eager_fallback( handle, index, flow_in, dtype=dtype, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayReadV2", handle=handle, index=index, flow_in=flow_in, dtype=dtype, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype")) _execute.record_gradient( "TensorArrayReadV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayReadV2(handle, index, flow_in, dtype, name=None): return tensor_array_read_v2(handle=handle, index=index, flow_in=flow_in, dtype=dtype, name=name) TensorArrayReadV2.__doc__ = tensor_array_read_v2.__doc__ TensorArrayReadV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayReadV2)) tf_export("raw_ops.TensorArrayReadV2")(TensorArrayReadV2) def tensor_array_read_v2_eager_fallback(handle, index, flow_in, dtype, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_read_v2 """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") handle = _ops.convert_to_tensor(handle, _dtypes.string) index = _ops.convert_to_tensor(index, _dtypes.int32) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, index, flow_in] _attrs = ("dtype", dtype) _result = _execute.execute(b"TensorArrayReadV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayReadV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_read_v3(handle, index, flow_in, dtype, name=None): r"""Read an element from the TensorArray into output `value`. Args: handle: A `Tensor` of type `resource`. The handle to a TensorArray. index: A `Tensor` of type `int32`. flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. dtype: A `tf.DType`. The type of the elem that is returned. name: A name for the operation (optional). Returns: A `Tensor` of type `dtype`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayReadV3", name, _ctx._post_execution_callbacks, handle, index, flow_in, "dtype", dtype) return _result except _core._FallbackException: try: return tensor_array_read_v3_eager_fallback( handle, index, flow_in, dtype=dtype, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayReadV3", handle=handle, index=index, flow_in=flow_in, dtype=dtype, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype")) _execute.record_gradient( "TensorArrayReadV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayReadV3(handle, index, flow_in, dtype, name=None): return tensor_array_read_v3(handle=handle, index=index, flow_in=flow_in, dtype=dtype, name=name) TensorArrayReadV3.__doc__ = tensor_array_read_v3.__doc__ TensorArrayReadV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayReadV3)) tf_export("raw_ops.TensorArrayReadV3")(TensorArrayReadV3) def tensor_array_read_v3_eager_fallback(handle, index, flow_in, dtype, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_read_v3 """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") handle = _ops.convert_to_tensor(handle, _dtypes.resource) index = _ops.convert_to_tensor(index, _dtypes.int32) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, index, flow_in] _attrs = ("dtype", dtype) _result = _execute.execute(b"TensorArrayReadV3", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayReadV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_scatter(handle, indices, value, flow_in, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. indices: A `Tensor` of type `int32`. value: A `Tensor`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_scatter op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayScatter", handle=handle, indices=indices, value=value, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArrayScatter", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayScatter(handle, indices, value, flow_in, name=None): return tensor_array_scatter(handle=handle, indices=indices, value=value, flow_in=flow_in, name=name) TensorArrayScatter.__doc__ = tensor_array_scatter.__doc__ TensorArrayScatter = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayScatter)) tf_export("raw_ops.TensorArrayScatter")(TensorArrayScatter) def tensor_array_scatter_eager_fallback(handle, indices, value, flow_in, name=None, ctx=None): raise RuntimeError("tensor_array_scatter op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_scatter_v2(handle, indices, value, flow_in, name=None): r"""Deprecated. Use TensorArrayScatterV3 Args: handle: A `Tensor` of type `string`. indices: A `Tensor` of type `int32`. value: A `Tensor`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayScatterV2", name, _ctx._post_execution_callbacks, handle, indices, value, flow_in) return _result except _core._FallbackException: try: return tensor_array_scatter_v2_eager_fallback( handle, indices, value, flow_in, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayScatterV2", handle=handle, indices=indices, value=value, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArrayScatterV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayScatterV2(handle, indices, value, flow_in, name=None): return tensor_array_scatter_v2(handle=handle, indices=indices, value=value, flow_in=flow_in, name=name) TensorArrayScatterV2.__doc__ = tensor_array_scatter_v2.__doc__ TensorArrayScatterV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayScatterV2)) tf_export("raw_ops.TensorArrayScatterV2")(TensorArrayScatterV2) def tensor_array_scatter_v2_eager_fallback(handle, indices, value, flow_in, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_scatter_v2 """ _ctx = ctx if ctx else _context.context() _attr_T, (value,) = _execute.args_to_matching_eager([value], _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.string) indices = _ops.convert_to_tensor(indices, _dtypes.int32) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, indices, value, flow_in] _attrs = ("T", _attr_T) _result = _execute.execute(b"TensorArrayScatterV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayScatterV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_scatter_v3(handle, indices, value, flow_in, name=None): r"""Scatter the data from the input value into specific TensorArray elements. `indices` must be a vector, its length must match the first dim of `value`. Args: handle: A `Tensor` of type `resource`. The handle to a TensorArray. indices: A `Tensor` of type `int32`. The locations at which to write the tensor elements. value: A `Tensor`. The concatenated tensor to write to the TensorArray. flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayScatterV3", name, _ctx._post_execution_callbacks, handle, indices, value, flow_in) return _result except _core._FallbackException: try: return tensor_array_scatter_v3_eager_fallback( handle, indices, value, flow_in, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayScatterV3", handle=handle, indices=indices, value=value, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArrayScatterV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayScatterV3(handle, indices, value, flow_in, name=None): return tensor_array_scatter_v3(handle=handle, indices=indices, value=value, flow_in=flow_in, name=name) TensorArrayScatterV3.__doc__ = tensor_array_scatter_v3.__doc__ TensorArrayScatterV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayScatterV3)) tf_export("raw_ops.TensorArrayScatterV3")(TensorArrayScatterV3) def tensor_array_scatter_v3_eager_fallback(handle, indices, value, flow_in, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_scatter_v3 """ _ctx = ctx if ctx else _context.context() _attr_T, (value,) = _execute.args_to_matching_eager([value], _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.resource) indices = _ops.convert_to_tensor(indices, _dtypes.int32) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, indices, value, flow_in] _attrs = ("T", _attr_T) _result = _execute.execute(b"TensorArrayScatterV3", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayScatterV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_size(handle, flow_in, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_size op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArraySize", handle=handle, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "TensorArraySize", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArraySize(handle, flow_in, name=None): return tensor_array_size(handle=handle, flow_in=flow_in, name=name) TensorArraySize.__doc__ = tensor_array_size.__doc__ TensorArraySize = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArraySize)) tf_export("raw_ops.TensorArraySize")(TensorArraySize) def tensor_array_size_eager_fallback(handle, flow_in, name=None, ctx=None): raise RuntimeError("tensor_array_size op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_size_v2(handle, flow_in, name=None): r"""Deprecated. Use TensorArraySizeV3 Args: handle: A `Tensor` of type `string`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArraySizeV2", name, _ctx._post_execution_callbacks, handle, flow_in) return _result except _core._FallbackException: try: return tensor_array_size_v2_eager_fallback( handle, flow_in, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArraySizeV2", handle=handle, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "TensorArraySizeV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArraySizeV2(handle, flow_in, name=None): return tensor_array_size_v2(handle=handle, flow_in=flow_in, name=name) TensorArraySizeV2.__doc__ = tensor_array_size_v2.__doc__ TensorArraySizeV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArraySizeV2)) tf_export("raw_ops.TensorArraySizeV2")(TensorArraySizeV2) def tensor_array_size_v2_eager_fallback(handle, flow_in, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_size_v2 """ _ctx = ctx if ctx else _context.context() handle = _ops.convert_to_tensor(handle, _dtypes.string) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, flow_in] _attrs = None _result = _execute.execute(b"TensorArraySizeV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArraySizeV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_size_v3(handle, flow_in, name=None): r"""Get the current size of the TensorArray. Args: handle: A `Tensor` of type `resource`. The handle to a TensorArray (output of TensorArray or TensorArrayGrad). flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArraySizeV3", name, _ctx._post_execution_callbacks, handle, flow_in) return _result except _core._FallbackException: try: return tensor_array_size_v3_eager_fallback( handle, flow_in, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArraySizeV3", handle=handle, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "TensorArraySizeV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArraySizeV3(handle, flow_in, name=None): return tensor_array_size_v3(handle=handle, flow_in=flow_in, name=name) TensorArraySizeV3.__doc__ = tensor_array_size_v3.__doc__ TensorArraySizeV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArraySizeV3)) tf_export("raw_ops.TensorArraySizeV3")(TensorArraySizeV3) def tensor_array_size_v3_eager_fallback(handle, flow_in, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_size_v3 """ _ctx = ctx if ctx else _context.context() handle = _ops.convert_to_tensor(handle, _dtypes.resource) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, flow_in] _attrs = None _result = _execute.execute(b"TensorArraySizeV3", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArraySizeV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_split(handle, value, lengths, flow_in, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. value: A `Tensor`. lengths: A `Tensor` of type `int64`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_split op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArraySplit", handle=handle, value=value, lengths=lengths, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArraySplit", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArraySplit(handle, value, lengths, flow_in, name=None): return tensor_array_split(handle=handle, value=value, lengths=lengths, flow_in=flow_in, name=name) TensorArraySplit.__doc__ = tensor_array_split.__doc__ TensorArraySplit = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArraySplit)) tf_export("raw_ops.TensorArraySplit")(TensorArraySplit) def tensor_array_split_eager_fallback(handle, value, lengths, flow_in, name=None, ctx=None): raise RuntimeError("tensor_array_split op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_split_v2(handle, value, lengths, flow_in, name=None): r"""Deprecated. Use TensorArraySplitV3 Args: handle: A `Tensor` of type `string`. value: A `Tensor`. lengths: A `Tensor` of type `int64`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArraySplitV2", name, _ctx._post_execution_callbacks, handle, value, lengths, flow_in) return _result except _core._FallbackException: try: return tensor_array_split_v2_eager_fallback( handle, value, lengths, flow_in, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArraySplitV2", handle=handle, value=value, lengths=lengths, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArraySplitV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArraySplitV2(handle, value, lengths, flow_in, name=None): return tensor_array_split_v2(handle=handle, value=value, lengths=lengths, flow_in=flow_in, name=name) TensorArraySplitV2.__doc__ = tensor_array_split_v2.__doc__ TensorArraySplitV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArraySplitV2)) tf_export("raw_ops.TensorArraySplitV2")(TensorArraySplitV2) def tensor_array_split_v2_eager_fallback(handle, value, lengths, flow_in, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_split_v2 """ _ctx = ctx if ctx else _context.context() _attr_T, (value,) = _execute.args_to_matching_eager([value], _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.string) lengths = _ops.convert_to_tensor(lengths, _dtypes.int64) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, value, lengths, flow_in] _attrs = ("T", _attr_T) _result = _execute.execute(b"TensorArraySplitV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArraySplitV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_split_v3(handle, value, lengths, flow_in, name=None): r"""Split the data from the input value into TensorArray elements. Assuming that `lengths` takes on values ```(n0, n1, ..., n(T-1))``` and that `value` has shape ```(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```, this splits values into a TensorArray with T tensors. TensorArray index t will be the subtensor of values with starting position ```(n0 + n1 + ... + n(t-1), 0, 0, ...)``` and having size ```nt x d0 x d1 x ...``` Args: handle: A `Tensor` of type `resource`. The handle to a TensorArray. value: A `Tensor`. The concatenated tensor to write to the TensorArray. lengths: A `Tensor` of type `int64`. The vector of lengths, how to split the rows of value into the TensorArray. flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArraySplitV3", name, _ctx._post_execution_callbacks, handle, value, lengths, flow_in) return _result except _core._FallbackException: try: return tensor_array_split_v3_eager_fallback( handle, value, lengths, flow_in, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArraySplitV3", handle=handle, value=value, lengths=lengths, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArraySplitV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArraySplitV3(handle, value, lengths, flow_in, name=None): return tensor_array_split_v3(handle=handle, value=value, lengths=lengths, flow_in=flow_in, name=name) TensorArraySplitV3.__doc__ = tensor_array_split_v3.__doc__ TensorArraySplitV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArraySplitV3)) tf_export("raw_ops.TensorArraySplitV3")(TensorArraySplitV3) def tensor_array_split_v3_eager_fallback(handle, value, lengths, flow_in, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_split_v3 """ _ctx = ctx if ctx else _context.context() _attr_T, (value,) = _execute.args_to_matching_eager([value], _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.resource) lengths = _ops.convert_to_tensor(lengths, _dtypes.int64) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, value, lengths, flow_in] _attrs = ("T", _attr_T) _result = _execute.execute(b"TensorArraySplitV3", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArraySplitV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_unpack(handle, value, flow_in, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. value: A `Tensor`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_unpack op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayUnpack", handle=handle, value=value, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArrayUnpack", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayUnpack(handle, value, flow_in, name=None): return tensor_array_unpack(handle=handle, value=value, flow_in=flow_in, name=name) TensorArrayUnpack.__doc__ = tensor_array_unpack.__doc__ TensorArrayUnpack = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayUnpack)) tf_export("raw_ops.TensorArrayUnpack")(TensorArrayUnpack) def tensor_array_unpack_eager_fallback(handle, value, flow_in, name=None, ctx=None): raise RuntimeError("tensor_array_unpack op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_v2(size, dtype, element_shape=None, dynamic_size=False, clear_after_read=True, tensor_array_name="", name=None): r"""Deprecated. Use TensorArrayV3 Args: size: A `Tensor` of type `int32`. dtype: A `tf.DType`. element_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. dynamic_size: An optional `bool`. Defaults to `False`. clear_after_read: An optional `bool`. Defaults to `True`. tensor_array_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayV2", name, _ctx._post_execution_callbacks, size, "dtype", dtype, "element_shape", element_shape, "dynamic_size", dynamic_size, "clear_after_read", clear_after_read, "tensor_array_name", tensor_array_name) return _result except _core._FallbackException: try: return tensor_array_v2_eager_fallback( size, dtype=dtype, element_shape=element_shape, dynamic_size=dynamic_size, clear_after_read=clear_after_read, tensor_array_name=tensor_array_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") if dynamic_size is None: dynamic_size = False dynamic_size = _execute.make_bool(dynamic_size, "dynamic_size") if clear_after_read is None: clear_after_read = True clear_after_read = _execute.make_bool(clear_after_read, "clear_after_read") if tensor_array_name is None: tensor_array_name = "" tensor_array_name = _execute.make_str(tensor_array_name, "tensor_array_name") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayV2", size=size, dtype=dtype, element_shape=element_shape, dynamic_size=dynamic_size, clear_after_read=clear_after_read, tensor_array_name=tensor_array_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape", _op.get_attr("element_shape"), "dynamic_size", _op.get_attr("dynamic_size"), "clear_after_read", _op.get_attr("clear_after_read"), "tensor_array_name", _op.get_attr("tensor_array_name")) _execute.record_gradient( "TensorArrayV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayV2(size, dtype, element_shape=None, dynamic_size=False, clear_after_read=True, tensor_array_name="", name=None): return tensor_array_v2(size=size, dtype=dtype, element_shape=element_shape, dynamic_size=dynamic_size, clear_after_read=clear_after_read, tensor_array_name=tensor_array_name, name=name) TensorArrayV2.__doc__ = tensor_array_v2.__doc__ TensorArrayV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayV2)) tf_export("raw_ops.TensorArrayV2")(TensorArrayV2) def tensor_array_v2_eager_fallback(size, dtype, element_shape=None, dynamic_size=False, clear_after_read=True, tensor_array_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_v2 """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") if dynamic_size is None: dynamic_size = False dynamic_size = _execute.make_bool(dynamic_size, "dynamic_size") if clear_after_read is None: clear_after_read = True clear_after_read = _execute.make_bool(clear_after_read, "clear_after_read") if tensor_array_name is None: tensor_array_name = "" tensor_array_name = _execute.make_str(tensor_array_name, "tensor_array_name") size = _ops.convert_to_tensor(size, _dtypes.int32) _inputs_flat = [size] _attrs = ("dtype", dtype, "element_shape", element_shape, "dynamic_size", dynamic_size, "clear_after_read", clear_after_read, "tensor_array_name", tensor_array_name) _result = _execute.execute(b"TensorArrayV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result _tensor_array_v3_outputs = ["handle", "flow"] _TensorArrayV3Output = _collections.namedtuple( "TensorArrayV3", _tensor_array_v3_outputs) def tensor_array_v3(size, dtype, element_shape=None, dynamic_size=False, clear_after_read=True, identical_element_shapes=False, tensor_array_name="", name=None): r"""An array of Tensors of given size. Write data via Write and read via Read or Pack. Args: size: A `Tensor` of type `int32`. The size of the array. dtype: A `tf.DType`. The type of the elements on the tensor_array. element_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`. The expected shape of an element, if known. Used to validate the shapes of TensorArray elements. If this shape is not fully specified, gathering zero-size TensorArrays is an error. dynamic_size: An optional `bool`. Defaults to `False`. A boolean that determines whether writes to the TensorArray are allowed to grow the size. By default, this is not allowed. clear_after_read: An optional `bool`. Defaults to `True`. If true (default), Tensors in the TensorArray are cleared after being read. This disables multiple read semantics but allows early release of memory. identical_element_shapes: An optional `bool`. Defaults to `False`. If true (default is false), then all elements in the TensorArray will be expected to have have identical shapes. This allows certain behaviors, like dynamically checking for consistent shapes on write, and being able to fill in properly shaped zero tensors on stack -- even if the element_shape attribute is not fully defined. tensor_array_name: An optional `string`. Defaults to `""`. Overrides the name used for the temporary tensor_array resource. Default value is the name of the 'TensorArray' op (which is guaranteed unique). name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (handle, flow). handle: A `Tensor` of type `resource`. flow: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayV3", name, _ctx._post_execution_callbacks, size, "dtype", dtype, "element_shape", element_shape, "dynamic_size", dynamic_size, "clear_after_read", clear_after_read, "identical_element_shapes", identical_element_shapes, "tensor_array_name", tensor_array_name) _result = _TensorArrayV3Output._make(_result) return _result except _core._FallbackException: try: return tensor_array_v3_eager_fallback( size, dtype=dtype, element_shape=element_shape, dynamic_size=dynamic_size, clear_after_read=clear_after_read, identical_element_shapes=identical_element_shapes, tensor_array_name=tensor_array_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") if dynamic_size is None: dynamic_size = False dynamic_size = _execute.make_bool(dynamic_size, "dynamic_size") if clear_after_read is None: clear_after_read = True clear_after_read = _execute.make_bool(clear_after_read, "clear_after_read") if identical_element_shapes is None: identical_element_shapes = False identical_element_shapes = _execute.make_bool(identical_element_shapes, "identical_element_shapes") if tensor_array_name is None: tensor_array_name = "" tensor_array_name = _execute.make_str(tensor_array_name, "tensor_array_name") _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayV3", size=size, dtype=dtype, element_shape=element_shape, dynamic_size=dynamic_size, clear_after_read=clear_after_read, identical_element_shapes=identical_element_shapes, tensor_array_name=tensor_array_name, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("dtype", _op.get_attr("dtype"), "element_shape", _op.get_attr("element_shape"), "dynamic_size", _op.get_attr("dynamic_size"), "clear_after_read", _op.get_attr("clear_after_read"), "identical_element_shapes", _op.get_attr("identical_element_shapes"), "tensor_array_name", _op.get_attr("tensor_array_name")) _execute.record_gradient( "TensorArrayV3", _inputs_flat, _attrs, _result, name) _result = _TensorArrayV3Output._make(_result) return _result def TensorArrayV3(size, dtype, element_shape=None, dynamic_size=False, clear_after_read=True, identical_element_shapes=False, tensor_array_name="", name=None): return tensor_array_v3(size=size, dtype=dtype, element_shape=element_shape, dynamic_size=dynamic_size, clear_after_read=clear_after_read, identical_element_shapes=identical_element_shapes, tensor_array_name=tensor_array_name, name=name) TensorArrayV3.__doc__ = tensor_array_v3.__doc__ TensorArrayV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayV3)) tf_export("raw_ops.TensorArrayV3")(TensorArrayV3) def tensor_array_v3_eager_fallback(size, dtype, element_shape=None, dynamic_size=False, clear_after_read=True, identical_element_shapes=False, tensor_array_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_v3 """ _ctx = ctx if ctx else _context.context() dtype = _execute.make_type(dtype, "dtype") if element_shape is None: element_shape = None element_shape = _execute.make_shape(element_shape, "element_shape") if dynamic_size is None: dynamic_size = False dynamic_size = _execute.make_bool(dynamic_size, "dynamic_size") if clear_after_read is None: clear_after_read = True clear_after_read = _execute.make_bool(clear_after_read, "clear_after_read") if identical_element_shapes is None: identical_element_shapes = False identical_element_shapes = _execute.make_bool(identical_element_shapes, "identical_element_shapes") if tensor_array_name is None: tensor_array_name = "" tensor_array_name = _execute.make_str(tensor_array_name, "tensor_array_name") size = _ops.convert_to_tensor(size, _dtypes.int32) _inputs_flat = [size] _attrs = ("dtype", dtype, "element_shape", element_shape, "dynamic_size", dynamic_size, "clear_after_read", clear_after_read, "identical_element_shapes", identical_element_shapes, "tensor_array_name", tensor_array_name) _result = _execute.execute(b"TensorArrayV3", 2, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayV3", _inputs_flat, _attrs, _result, name) _result = _TensorArrayV3Output._make(_result) return _result def tensor_array_write(handle, index, value, flow_in, name=None): r"""TODO: add doc. Args: handle: A `Tensor` of type mutable `string`. index: A `Tensor` of type `int32`. value: A `Tensor`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: raise RuntimeError("tensor_array_write op does not support eager execution. Arg 'handle' is a ref.") # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayWrite", handle=handle, index=index, value=value, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArrayWrite", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayWrite(handle, index, value, flow_in, name=None): return tensor_array_write(handle=handle, index=index, value=value, flow_in=flow_in, name=name) TensorArrayWrite.__doc__ = tensor_array_write.__doc__ TensorArrayWrite = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayWrite)) tf_export("raw_ops.TensorArrayWrite")(TensorArrayWrite) def tensor_array_write_eager_fallback(handle, index, value, flow_in, name=None, ctx=None): raise RuntimeError("tensor_array_write op does not support eager execution. Arg 'handle' is a ref.") def tensor_array_write_v2(handle, index, value, flow_in, name=None): r"""Deprecated. Use TensorArrayGradV3 Args: handle: A `Tensor` of type `string`. index: A `Tensor` of type `int32`. value: A `Tensor`. flow_in: A `Tensor` of type `float32`. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayWriteV2", name, _ctx._post_execution_callbacks, handle, index, value, flow_in) return _result except _core._FallbackException: try: return tensor_array_write_v2_eager_fallback( handle, index, value, flow_in, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayWriteV2", handle=handle, index=index, value=value, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArrayWriteV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayWriteV2(handle, index, value, flow_in, name=None): return tensor_array_write_v2(handle=handle, index=index, value=value, flow_in=flow_in, name=name) TensorArrayWriteV2.__doc__ = tensor_array_write_v2.__doc__ TensorArrayWriteV2 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayWriteV2)) tf_export("raw_ops.TensorArrayWriteV2")(TensorArrayWriteV2) def tensor_array_write_v2_eager_fallback(handle, index, value, flow_in, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_write_v2 """ _ctx = ctx if ctx else _context.context() _attr_T, (value,) = _execute.args_to_matching_eager([value], _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.string) index = _ops.convert_to_tensor(index, _dtypes.int32) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, index, value, flow_in] _attrs = ("T", _attr_T) _result = _execute.execute(b"TensorArrayWriteV2", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayWriteV2", _inputs_flat, _attrs, _result, name) _result, = _result return _result def tensor_array_write_v3(handle, index, value, flow_in, name=None): r"""Push an element onto the tensor_array. Args: handle: A `Tensor` of type `resource`. The handle to a TensorArray. index: A `Tensor` of type `int32`. The position to write to inside the TensorArray. value: A `Tensor`. The tensor to write to the TensorArray. flow_in: A `Tensor` of type `float32`. A float scalar that enforces proper chaining of operations. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "TensorArrayWriteV3", name, _ctx._post_execution_callbacks, handle, index, value, flow_in) return _result except _core._FallbackException: try: return tensor_array_write_v3_eager_fallback( handle, index, value, flow_in, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. _, _, _op = _op_def_lib._apply_op_helper( "TensorArrayWriteV3", handle=handle, index=index, value=value, flow_in=flow_in, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T")) _execute.record_gradient( "TensorArrayWriteV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def TensorArrayWriteV3(handle, index, value, flow_in, name=None): return tensor_array_write_v3(handle=handle, index=index, value=value, flow_in=flow_in, name=name) TensorArrayWriteV3.__doc__ = tensor_array_write_v3.__doc__ TensorArrayWriteV3 = _doc_controls.do_not_generate_docs(_kwarg_only(TensorArrayWriteV3)) tf_export("raw_ops.TensorArrayWriteV3")(TensorArrayWriteV3) def tensor_array_write_v3_eager_fallback(handle, index, value, flow_in, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function tensor_array_write_v3 """ _ctx = ctx if ctx else _context.context() _attr_T, (value,) = _execute.args_to_matching_eager([value], _ctx) handle = _ops.convert_to_tensor(handle, _dtypes.resource) index = _ops.convert_to_tensor(index, _dtypes.int32) flow_in = _ops.convert_to_tensor(flow_in, _dtypes.float32) _inputs_flat = [handle, index, value, flow_in] _attrs = ("T", _attr_T) _result = _execute.execute(b"TensorArrayWriteV3", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "TensorArrayWriteV3", _inputs_flat, _attrs, _result, name) _result, = _result return _result def unstage(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): r"""Op is similar to a lightweight Dequeue. The basic functionality is similar to dequeue with many fewer capabilities and options. This Op is optimized for performance. Args: dtypes: A list of `tf.DTypes` that has length `>= 1`. capacity: An optional `int` that is `>= 0`. Defaults to `0`. memory_limit: An optional `int` that is `>= 0`. Defaults to `0`. container: An optional `string`. Defaults to `""`. shared_name: An optional `string`. Defaults to `""`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() if _ctx is not None and _ctx._thread_local_data.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._thread_local_data.device_name, "Unstage", name, _ctx._post_execution_callbacks, "capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) return _result except _core._FallbackException: try: return unstage_eager_fallback( capacity=capacity, memory_limit=memory_limit, dtypes=dtypes, container=container, shared_name=shared_name, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'unstage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _, _, _op = _op_def_lib._apply_op_helper( "Unstage", dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) _result = _op.outputs[:] if not _result: return _op _inputs_flat = _op.inputs _attrs = ("capacity", _op.get_attr("capacity"), "memory_limit", _op.get_attr("memory_limit"), "dtypes", _op.get_attr("dtypes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name")) _execute.record_gradient( "Unstage", _inputs_flat, _attrs, _result, name) return _result def Unstage(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None): return unstage(dtypes=dtypes, capacity=capacity, memory_limit=memory_limit, container=container, shared_name=shared_name, name=name) Unstage.__doc__ = unstage.__doc__ Unstage = _doc_controls.do_not_generate_docs(_kwarg_only(Unstage)) tf_export("raw_ops.Unstage")(Unstage) def unstage_eager_fallback(dtypes, capacity=0, memory_limit=0, container="", shared_name="", name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function unstage """ _ctx = ctx if ctx else _context.context() if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'unstage' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if capacity is None: capacity = 0 capacity = _execute.make_int(capacity, "capacity") if memory_limit is None: memory_limit = 0 memory_limit = _execute.make_int(memory_limit, "memory_limit") if container is None: container = "" container = _execute.make_str(container, "container") if shared_name is None: shared_name = "" shared_name = _execute.make_str(shared_name, "shared_name") _inputs_flat = [] _attrs = ("capacity", capacity, "memory_limit", memory_limit, "dtypes", dtypes, "container", container, "shared_name", shared_name) _result = _execute.execute(b"Unstage", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Unstage", _inputs_flat, _attrs, _result, name) return _result def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "AccumulatorApplyGradient" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "local_step" # type: DT_INT64 # } # input_arg { # name: "gradient" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "AccumulatorNumAccumulated" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # output_arg { # name: "num_accumulated" # type: DT_INT32 # } # } # op { # name: "AccumulatorSetGlobalStep" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "new_global_step" # type: DT_INT64 # } # } # op { # name: "AccumulatorTakeGradient" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "num_required" # type: DT_INT32 # } # output_arg { # name: "average" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "Barrier" # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "shapes" # type: "list(shape)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "BarrierClose" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "cancel_pending_enqueues" # type: "bool" # default_value { # b: false # } # } # } # op { # name: "BarrierIncompleteSize" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # output_arg { # name: "size" # type: DT_INT32 # } # } # op { # name: "BarrierInsertMany" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "keys" # type: DT_STRING # } # input_arg { # name: "values" # type_attr: "T" # } # attr { # name: "T" # type: "type" # } # attr { # name: "component_index" # type: "int" # } # } # op { # name: "BarrierReadySize" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # output_arg { # name: "size" # type: DT_INT32 # } # } # op { # name: "BarrierTakeMany" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "num_elements" # type: DT_INT32 # } # output_arg { # name: "indices" # type: DT_INT64 # } # output_arg { # name: "keys" # type: DT_STRING # } # output_arg { # name: "values" # type_list_attr: "component_types" # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "allow_small_batch" # type: "bool" # default_value { # b: false # } # } # attr { # name: "wait_for_incomplete" # type: "bool" # default_value { # b: false # } # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # } # op { # name: "ConditionalAccumulator" # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "dtype" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "shape" # type: "shape" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # attr { # name: "reduction_type" # type: "string" # default_value { # s: "MEAN" # } # allowed_values { # list { # s: "MEAN" # s: "SUM" # } # } # } # is_stateful: true # } # op { # name: "DeleteSessionTensor" # input_arg { # name: "handle" # type: DT_STRING # } # is_stateful: true # } # op { # name: "DynamicPartition" # input_arg { # name: "data" # type_attr: "T" # } # input_arg { # name: "partitions" # type: DT_INT32 # } # output_arg { # name: "outputs" # type_attr: "T" # number_attr: "num_partitions" # } # attr { # name: "num_partitions" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "T" # type: "type" # } # } # op { # name: "DynamicStitch" # input_arg { # name: "indices" # type: DT_INT32 # number_attr: "N" # } # input_arg { # name: "data" # type_attr: "T" # number_attr: "N" # } # output_arg { # name: "merged" # type_attr: "T" # } # attr { # name: "N" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "T" # type: "type" # } # } # op { # name: "FIFOQueue" # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "shapes" # type: "list(shape)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "FIFOQueueV2" # output_arg { # name: "handle" # type: DT_RESOURCE # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "shapes" # type: "list(shape)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "FakeQueue" # input_arg { # name: "resource" # type: DT_RESOURCE # } # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # is_stateful: true # } # op { # name: "GetSessionHandle" # input_arg { # name: "value" # type_attr: "T" # } # output_arg { # name: "handle" # type: DT_STRING # } # attr { # name: "T" # type: "type" # } # is_stateful: true # } # op { # name: "GetSessionHandleV2" # input_arg { # name: "value" # type_attr: "T" # } # output_arg { # name: "handle" # type: DT_RESOURCE # } # attr { # name: "T" # type: "type" # } # is_stateful: true # } # op { # name: "GetSessionTensor" # input_arg { # name: "handle" # type: DT_STRING # } # output_arg { # name: "value" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # } # is_stateful: true # } # op { # name: "MapClear" # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "MapIncompleteSize" # output_arg { # name: "size" # type: DT_INT32 # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "MapPeek" # input_arg { # name: "key" # type: DT_INT64 # } # input_arg { # name: "indices" # type: DT_INT32 # } # output_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "MapSize" # output_arg { # name: "size" # type: DT_INT32 # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "MapStage" # input_arg { # name: "key" # type: DT_INT64 # } # input_arg { # name: "indices" # type: DT_INT32 # } # input_arg { # name: "values" # type_list_attr: "fake_dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "fake_dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "MapUnstage" # input_arg { # name: "key" # type: DT_INT64 # } # input_arg { # name: "indices" # type: DT_INT32 # } # output_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "MapUnstageNoKey" # input_arg { # name: "indices" # type: DT_INT32 # } # output_arg { # name: "key" # type: DT_INT64 # } # output_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "OrderedMapClear" # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "OrderedMapIncompleteSize" # output_arg { # name: "size" # type: DT_INT32 # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "OrderedMapPeek" # input_arg { # name: "key" # type: DT_INT64 # } # input_arg { # name: "indices" # type: DT_INT32 # } # output_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "OrderedMapSize" # output_arg { # name: "size" # type: DT_INT32 # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "OrderedMapStage" # input_arg { # name: "key" # type: DT_INT64 # } # input_arg { # name: "indices" # type: DT_INT32 # } # input_arg { # name: "values" # type_list_attr: "fake_dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "fake_dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "OrderedMapUnstage" # input_arg { # name: "key" # type: DT_INT64 # } # input_arg { # name: "indices" # type: DT_INT32 # } # output_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "OrderedMapUnstageNoKey" # input_arg { # name: "indices" # type: DT_INT32 # } # output_arg { # name: "key" # type: DT_INT64 # } # output_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "PaddingFIFOQueue" # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "shapes" # type: "list(shape)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "PaddingFIFOQueueV2" # output_arg { # name: "handle" # type: DT_RESOURCE # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "shapes" # type: "list(shape)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "ParallelDynamicStitch" # input_arg { # name: "indices" # type: DT_INT32 # number_attr: "N" # } # input_arg { # name: "data" # type_attr: "T" # number_attr: "N" # } # output_arg { # name: "merged" # type_attr: "T" # } # attr { # name: "N" # type: "int" # has_minimum: true # minimum: 1 # } # attr { # name: "T" # type: "type" # } # } # op { # name: "PriorityQueue" # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "component_types" # type: "list(type)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "shapes" # type: "list(shape)" # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "PriorityQueueV2" # output_arg { # name: "handle" # type: DT_RESOURCE # } # attr { # name: "component_types" # type: "list(type)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "shapes" # type: "list(shape)" # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "QueueClose" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "cancel_pending_enqueues" # type: "bool" # default_value { # b: false # } # } # } # op { # name: "QueueCloseV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # attr { # name: "cancel_pending_enqueues" # type: "bool" # default_value { # b: false # } # } # is_stateful: true # } # op { # name: "QueueDequeue" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # output_arg { # name: "components" # type_list_attr: "component_types" # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # } # op { # name: "QueueDequeueMany" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "n" # type: DT_INT32 # } # output_arg { # name: "components" # type_list_attr: "component_types" # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # } # op { # name: "QueueDequeueManyV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "n" # type: DT_INT32 # } # output_arg { # name: "components" # type_list_attr: "component_types" # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # is_stateful: true # } # op { # name: "QueueDequeueUpTo" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "n" # type: DT_INT32 # } # output_arg { # name: "components" # type_list_attr: "component_types" # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # } # op { # name: "QueueDequeueUpToV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "n" # type: DT_INT32 # } # output_arg { # name: "components" # type_list_attr: "component_types" # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # is_stateful: true # } # op { # name: "QueueDequeueV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # output_arg { # name: "components" # type_list_attr: "component_types" # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # is_stateful: true # } # op { # name: "QueueEnqueue" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "components" # type_list_attr: "Tcomponents" # } # attr { # name: "Tcomponents" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # } # op { # name: "QueueEnqueueMany" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "components" # type_list_attr: "Tcomponents" # } # attr { # name: "Tcomponents" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # } # op { # name: "QueueEnqueueManyV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "components" # type_list_attr: "Tcomponents" # } # attr { # name: "Tcomponents" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # is_stateful: true # } # op { # name: "QueueEnqueueV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "components" # type_list_attr: "Tcomponents" # } # attr { # name: "Tcomponents" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "timeout_ms" # type: "int" # default_value { # i: -1 # } # } # is_stateful: true # } # op { # name: "QueueIsClosed" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # output_arg { # name: "is_closed" # type: DT_BOOL # } # } # op { # name: "QueueIsClosedV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # output_arg { # name: "is_closed" # type: DT_BOOL # } # is_stateful: true # } # op { # name: "QueueSize" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # output_arg { # name: "size" # type: DT_INT32 # } # } # op { # name: "QueueSizeV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # output_arg { # name: "size" # type: DT_INT32 # } # is_stateful: true # } # op { # name: "RandomShuffleQueue" # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "shapes" # type: "list(shape)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "min_after_dequeue" # type: "int" # default_value { # i: 0 # } # } # attr { # name: "seed" # type: "int" # default_value { # i: 0 # } # } # attr { # name: "seed2" # type: "int" # default_value { # i: 0 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "RandomShuffleQueueV2" # output_arg { # name: "handle" # type: DT_RESOURCE # } # attr { # name: "component_types" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "shapes" # type: "list(shape)" # default_value { # list { # } # } # has_minimum: true # } # attr { # name: "capacity" # type: "int" # default_value { # i: -1 # } # } # attr { # name: "min_after_dequeue" # type: "int" # default_value { # i: 0 # } # } # attr { # name: "seed" # type: "int" # default_value { # i: 0 # } # } # attr { # name: "seed2" # type: "int" # default_value { # i: 0 # } # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "RecordInput" # output_arg { # name: "records" # type: DT_STRING # } # attr { # name: "file_pattern" # type: "string" # } # attr { # name: "file_random_seed" # type: "int" # default_value { # i: 301 # } # } # attr { # name: "file_shuffle_shift_ratio" # type: "float" # default_value { # f: 0 # } # } # attr { # name: "file_buffer_size" # type: "int" # default_value { # i: 10000 # } # } # attr { # name: "file_parallelism" # type: "int" # default_value { # i: 16 # } # } # attr { # name: "batch_size" # type: "int" # default_value { # i: 32 # } # } # attr { # name: "compression_type" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "SparseAccumulatorApplyGradient" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "local_step" # type: DT_INT64 # } # input_arg { # name: "gradient_indices" # type: DT_INT64 # } # input_arg { # name: "gradient_values" # type_attr: "dtype" # } # input_arg { # name: "gradient_shape" # type: DT_INT64 # } # attr { # name: "dtype" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "has_known_shape" # type: "bool" # } # } # op { # name: "SparseAccumulatorTakeGradient" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "num_required" # type: DT_INT32 # } # output_arg { # name: "indices" # type: DT_INT64 # } # output_arg { # name: "values" # type_attr: "dtype" # } # output_arg { # name: "shape" # type: DT_INT64 # } # attr { # name: "dtype" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # } # op { # name: "SparseConditionalAccumulator" # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "dtype" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT32 # type: DT_UINT8 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_INT64 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_BFLOAT16 # type: DT_UINT16 # type: DT_COMPLEX128 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # } # } # } # attr { # name: "shape" # type: "shape" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # attr { # name: "reduction_type" # type: "string" # default_value { # s: "MEAN" # } # allowed_values { # list { # s: "MEAN" # s: "SUM" # } # } # } # is_stateful: true # } # op { # name: "Stack" # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "elem_type" # type: "type" # } # attr { # name: "stack_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "StackClose" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # } # op { # name: "StackCloseV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # is_stateful: true # } # op { # name: "StackPop" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # output_arg { # name: "elem" # type_attr: "elem_type" # } # attr { # name: "elem_type" # type: "type" # } # } # op { # name: "StackPopV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # output_arg { # name: "elem" # type_attr: "elem_type" # } # attr { # name: "elem_type" # type: "type" # } # is_stateful: true # } # op { # name: "StackPush" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "elem" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # } # attr { # name: "swap_memory" # type: "bool" # default_value { # b: false # } # } # } # op { # name: "StackPushV2" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "elem" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # } # attr { # name: "swap_memory" # type: "bool" # default_value { # b: false # } # } # is_stateful: true # } # op { # name: "StackV2" # input_arg { # name: "max_size" # type: DT_INT32 # } # output_arg { # name: "handle" # type: DT_RESOURCE # } # attr { # name: "elem_type" # type: "type" # } # attr { # name: "stack_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "Stage" # input_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "StageClear" # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "StagePeek" # input_arg { # name: "index" # type: DT_INT32 # } # output_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "StageSize" # output_arg { # name: "size" # type: DT_INT32 # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "TensorArray" # input_arg { # name: "size" # type: DT_INT32 # } # output_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "dynamic_size" # type: "bool" # default_value { # b: false # } # } # attr { # name: "clear_after_read" # type: "bool" # default_value { # b: true # } # } # attr { # name: "tensor_array_name" # type: "string" # default_value { # s: "" # } # } # attr { # name: "element_shape" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # deprecation { # version: 16 # explanation: "Use TensorArrayV3" # } # is_stateful: true # } # op { # name: "TensorArrayClose" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # deprecation { # version: 16 # explanation: "Use TensorArrayCloseV3" # } # } # op { # name: "TensorArrayCloseV2" # input_arg { # name: "handle" # type: DT_STRING # } # deprecation { # version: 26 # explanation: "Use TensorArrayCloseV3" # } # } # op { # name: "TensorArrayCloseV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # is_stateful: true # } # op { # name: "TensorArrayConcat" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # output_arg { # name: "lengths" # type: DT_INT64 # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape_except0" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # deprecation { # version: 16 # explanation: "Use TensorArrayGradV3" # } # } # op { # name: "TensorArrayConcatV2" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # output_arg { # name: "lengths" # type: DT_INT64 # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape_except0" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # } # op { # name: "TensorArrayConcatV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # output_arg { # name: "lengths" # type: DT_INT64 # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape_except0" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # is_stateful: true # } # op { # name: "TensorArrayGather" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "indices" # type: DT_INT32 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # deprecation { # version: 16 # explanation: "Use TensorArrayGatherV3" # } # } # op { # name: "TensorArrayGatherV2" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "indices" # type: DT_INT32 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # deprecation { # version: 26 # explanation: "Use TensorArrayGatherV3" # } # } # op { # name: "TensorArrayGatherV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "indices" # type: DT_INT32 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # is_stateful: true # } # op { # name: "TensorArrayGrad" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "grad_handle" # type: DT_STRING # is_ref: true # } # attr { # name: "source" # type: "string" # } # deprecation { # version: 16 # explanation: "Use TensorArrayGradV3" # } # is_stateful: true # } # op { # name: "TensorArrayGradV2" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "grad_handle" # type: DT_STRING # } # attr { # name: "source" # type: "string" # } # deprecation { # version: 26 # explanation: "Use TensorArrayGradV3" # } # is_stateful: true # } # op { # name: "TensorArrayGradV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "grad_handle" # type: DT_RESOURCE # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "source" # type: "string" # } # is_stateful: true # } # op { # name: "TensorArrayGradWithShape" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # input_arg { # name: "shape_to_prepend" # type: DT_INT32 # } # output_arg { # name: "grad_handle" # type: DT_RESOURCE # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "source" # type: "string" # } # is_stateful: true # } # op { # name: "TensorArrayPack" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # deprecation { # version: 16 # explanation: "Use TensorArrayGatherV3 with RangeOp" # } # } # op { # name: "TensorArrayRead" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "index" # type: DT_INT32 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # } # deprecation { # version: 16 # explanation: "Use TensorArrayReadV3" # } # } # op { # name: "TensorArrayReadV2" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "index" # type: DT_INT32 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # } # deprecation { # version: 26 # explanation: "Use TensorArrayReadV3" # } # } # op { # name: "TensorArrayReadV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "index" # type: DT_INT32 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "value" # type_attr: "dtype" # } # attr { # name: "dtype" # type: "type" # } # is_stateful: true # } # op { # name: "TensorArrayScatter" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "indices" # type: DT_INT32 # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # deprecation { # version: 19 # explanation: "Use TensorArrayGradV3" # } # } # op { # name: "TensorArrayScatterV2" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "indices" # type: DT_INT32 # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # deprecation { # version: 26 # explanation: "Use TensorArrayScatterV3" # } # } # op { # name: "TensorArrayScatterV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "indices" # type: DT_INT32 # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # is_stateful: true # } # op { # name: "TensorArraySize" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "size" # type: DT_INT32 # } # deprecation { # version: 16 # explanation: "Use TensorArraySizeV3" # } # } # op { # name: "TensorArraySizeV2" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "size" # type: DT_INT32 # } # deprecation { # version: 26 # explanation: "Use TensorArraySizeV3" # } # } # op { # name: "TensorArraySizeV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "size" # type: DT_INT32 # } # is_stateful: true # } # op { # name: "TensorArraySplit" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "lengths" # type: DT_INT64 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # deprecation { # version: 16 # explanation: "Use TensorArraySplitV3" # } # } # op { # name: "TensorArraySplitV2" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "lengths" # type: DT_INT64 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # deprecation { # version: 26 # explanation: "Use TensorArraySplitV3" # } # } # op { # name: "TensorArraySplitV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "lengths" # type: DT_INT64 # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # is_stateful: true # } # op { # name: "TensorArrayUnpack" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # deprecation { # version: 20 # explanation: "Use TensorArrayScatterV3 with RangeOp" # } # } # op { # name: "TensorArrayV2" # input_arg { # name: "size" # type: DT_INT32 # } # output_arg { # name: "handle" # type: DT_STRING # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # attr { # name: "dynamic_size" # type: "bool" # default_value { # b: false # } # } # attr { # name: "clear_after_read" # type: "bool" # default_value { # b: true # } # } # attr { # name: "tensor_array_name" # type: "string" # default_value { # s: "" # } # } # deprecation { # version: 26 # explanation: "Use TensorArrayV3" # } # is_stateful: true # } # op { # name: "TensorArrayV3" # input_arg { # name: "size" # type: DT_INT32 # } # output_arg { # name: "handle" # type: DT_RESOURCE # } # output_arg { # name: "flow" # type: DT_FLOAT # } # attr { # name: "dtype" # type: "type" # } # attr { # name: "element_shape" # type: "shape" # default_value { # shape { # unknown_rank: true # } # } # } # attr { # name: "dynamic_size" # type: "bool" # default_value { # b: false # } # } # attr { # name: "clear_after_read" # type: "bool" # default_value { # b: true # } # } # attr { # name: "identical_element_shapes" # type: "bool" # default_value { # b: false # } # } # attr { # name: "tensor_array_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } # op { # name: "TensorArrayWrite" # input_arg { # name: "handle" # type: DT_STRING # is_ref: true # } # input_arg { # name: "index" # type: DT_INT32 # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # deprecation { # version: 16 # explanation: "Use TensorArrayWriteV3" # } # } # op { # name: "TensorArrayWriteV2" # input_arg { # name: "handle" # type: DT_STRING # } # input_arg { # name: "index" # type: DT_INT32 # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # deprecation { # version: 26 # explanation: "Use TensorArrayWriteV3" # } # } # op { # name: "TensorArrayWriteV3" # input_arg { # name: "handle" # type: DT_RESOURCE # } # input_arg { # name: "index" # type: DT_INT32 # } # input_arg { # name: "value" # type_attr: "T" # } # input_arg { # name: "flow_in" # type: DT_FLOAT # } # output_arg { # name: "flow_out" # type: DT_FLOAT # } # attr { # name: "T" # type: "type" # } # is_stateful: true # } # op { # name: "Unstage" # output_arg { # name: "values" # type_list_attr: "dtypes" # } # attr { # name: "capacity" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "memory_limit" # type: "int" # default_value { # i: 0 # } # has_minimum: true # } # attr { # name: "dtypes" # type: "list(type)" # has_minimum: true # minimum: 1 # } # attr { # name: "container" # type: "string" # default_value { # s: "" # } # } # attr { # name: "shared_name" # type: "string" # default_value { # s: "" # } # } # is_stateful: true # } _op_def_lib = _InitOpDefLibrary(b"\nr\n\030AccumulatorApplyGradient\022\r\n\006handle\030\007\200\001\001\022\016\n\nlocal_step\030\t\022\021\n\010gradient\"\005dtype\"$\n\005dtype\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\n?\n\031AccumulatorNumAccumulated\022\r\n\006handle\030\007\200\001\001\032\023\n\017num_accumulated\030\003\n>\n\030AccumulatorSetGlobalStep\022\r\n\006handle\030\007\200\001\001\022\023\n\017new_global_step\030\t\nr\n\027AccumulatorTakeGradient\022\r\n\006handle\030\007\200\001\001\022\020\n\014num_required\030\003\032\020\n\007average\"\005dtype\"$\n\005dtype\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\n\255\001\n\007Barrier\032\r\n\006handle\030\007\200\001\001\"!\n\017component_types\022\nlist(type)(\0010\001\"\033\n\006shapes\022\013list(shape)\032\002\n\000(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\nB\n\014BarrierClose\022\r\n\006handle\030\007\200\001\001\"#\n\027cancel_pending_enqueues\022\004bool\032\002(\000\n0\n\025BarrierIncompleteSize\022\r\n\006handle\030\007\200\001\001\032\010\n\004size\030\003\n\\\n\021BarrierInsertMany\022\r\n\006handle\030\007\200\001\001\022\010\n\004keys\030\007\022\013\n\006values\"\001T\"\t\n\001T\022\004type\"\026\n\017component_index\022\003int\n+\n\020BarrierReadySize\022\r\n\006handle\030\007\200\001\001\032\010\n\004size\030\003\n\347\001\n\017BarrierTakeMany\022\r\n\006handle\030\007\200\001\001\022\020\n\014num_elements\030\003\032\013\n\007indices\030\t\032\010\n\004keys\030\007\032\031\n\006values2\017component_types\"!\n\017component_types\022\nlist(type)(\0010\001\"\035\n\021allow_small_batch\022\004bool\032\002(\000\"\037\n\023wait_for_incomplete\022\004bool\032\002(\000\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\n\305\001\n\026ConditionalAccumulator\032\r\n\006handle\030\007\200\001\001\"$\n\005dtype\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\016\n\005shape\022\005shape\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\"/\n\016reduction_type\022\006string\032\006\022\004MEAN:\r\n\013\022\004MEAN\022\003SUM\210\001\001\n$\n\023DeleteSessionTensor\022\n\n\006handle\030\007\210\001\001\nq\n\020DynamicPartition\022\t\n\004data\"\001T\022\016\n\npartitions\030\003\032\034\n\007outputs\"\001T*\016num_partitions\"\031\n\016num_partitions\022\003int(\0010\001\"\t\n\001T\022\004type\nS\n\rDynamicStitch\022\016\n\007indices\030\003*\001N\022\014\n\004data\"\001T*\001N\032\013\n\006merged\"\001T\"\014\n\001N\022\003int(\0010\001\"\t\n\001T\022\004type\n\257\001\n\tFIFOQueue\032\r\n\006handle\030\007\200\001\001\"!\n\017component_types\022\nlist(type)(\0010\001\"\033\n\006shapes\022\013list(shape)\032\002\n\000(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\256\001\n\013FIFOQueueV2\032\n\n\006handle\030\024\"!\n\017component_types\022\nlist(type)(\0010\001\"\033\n\006shapes\022\013list(shape)\032\002\n\000(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n+\n\tFakeQueue\022\014\n\010resource\030\024\032\r\n\006handle\030\007\200\001\001\210\001\001\n8\n\020GetSessionHandle\022\n\n\005value\"\001T\032\n\n\006handle\030\007\"\t\n\001T\022\004type\210\001\001\n:\n\022GetSessionHandleV2\022\n\n\005value\"\001T\032\n\n\006handle\030\024\"\t\n\001T\022\004type\210\001\001\n@\n\020GetSessionTensor\022\n\n\006handle\030\007\032\016\n\005value\"\005dtype\"\r\n\005dtype\022\004type\210\001\001\n\211\001\n\010MapClear\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\234\001\n\021MapIncompleteSize\032\010\n\004size\030\003\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\264\001\n\007MapPeek\022\007\n\003key\030\t\022\013\n\007indices\030\003\032\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\222\001\n\007MapSize\032\010\n\004size\030\003\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\325\001\n\010MapStage\022\007\n\003key\030\t\022\013\n\007indices\030\003\022\025\n\006values2\013fake_dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\035\n\013fake_dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\267\001\n\nMapUnstage\022\007\n\003key\030\t\022\013\n\007indices\030\003\032\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\274\001\n\017MapUnstageNoKey\022\013\n\007indices\030\003\032\007\n\003key\030\t\032\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\220\001\n\017OrderedMapClear\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\243\001\n\030OrderedMapIncompleteSize\032\010\n\004size\030\003\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\273\001\n\016OrderedMapPeek\022\007\n\003key\030\t\022\013\n\007indices\030\003\032\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\231\001\n\016OrderedMapSize\032\010\n\004size\030\003\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\334\001\n\017OrderedMapStage\022\007\n\003key\030\t\022\013\n\007indices\030\003\022\025\n\006values2\013fake_dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\035\n\013fake_dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\276\001\n\021OrderedMapUnstage\022\007\n\003key\030\t\022\013\n\007indices\030\003\032\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\303\001\n\026OrderedMapUnstageNoKey\022\013\n\007indices\030\003\032\007\n\003key\030\t\032\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\266\001\n\020PaddingFIFOQueue\032\r\n\006handle\030\007\200\001\001\"!\n\017component_types\022\nlist(type)(\0010\001\"\033\n\006shapes\022\013list(shape)\032\002\n\000(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\265\001\n\022PaddingFIFOQueueV2\032\n\n\006handle\030\024\"!\n\017component_types\022\nlist(type)(\0010\001\"\033\n\006shapes\022\013list(shape)\032\002\n\000(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n[\n\025ParallelDynamicStitch\022\016\n\007indices\030\003*\001N\022\014\n\004data\"\001T*\001N\032\013\n\006merged\"\001T\"\014\n\001N\022\003int(\0010\001\"\t\n\001T\022\004type\n\261\001\n\rPriorityQueue\032\r\n\006handle\030\007\200\001\001\"#\n\017component_types\022\nlist(type)\032\002\n\000(\001\"\027\n\006shapes\022\013list(shape)(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\260\001\n\017PriorityQueueV2\032\n\n\006handle\030\024\"#\n\017component_types\022\nlist(type)\032\002\n\000(\001\"\027\n\006shapes\022\013list(shape)(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n@\n\nQueueClose\022\r\n\006handle\030\007\200\001\001\"#\n\027cancel_pending_enqueues\022\004bool\032\002(\000\nB\n\014QueueCloseV2\022\n\n\006handle\030\024\"#\n\027cancel_pending_enqueues\022\004bool\032\002(\000\210\001\001\n\177\n\014QueueDequeue\022\r\n\006handle\030\007\200\001\001\032\035\n\ncomponents2\017component_types\"!\n\017component_types\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\n\212\001\n\020QueueDequeueMany\022\r\n\006handle\030\007\200\001\001\022\005\n\001n\030\003\032\035\n\ncomponents2\017component_types\"!\n\017component_types\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\n\214\001\n\022QueueDequeueManyV2\022\n\n\006handle\030\024\022\005\n\001n\030\003\032\035\n\ncomponents2\017component_types\"!\n\017component_types\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\210\001\001\n\212\001\n\020QueueDequeueUpTo\022\r\n\006handle\030\007\200\001\001\022\005\n\001n\030\003\032\035\n\ncomponents2\017component_types\"!\n\017component_types\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\n\214\001\n\022QueueDequeueUpToV2\022\n\n\006handle\030\024\022\005\n\001n\030\003\032\035\n\ncomponents2\017component_types\"!\n\017component_types\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\210\001\001\n\201\001\n\016QueueDequeueV2\022\n\n\006handle\030\024\032\035\n\ncomponents2\017component_types\"!\n\017component_types\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\210\001\001\nw\n\014QueueEnqueue\022\r\n\006handle\030\007\200\001\001\022\031\n\ncomponents2\013Tcomponents\"\035\n\013Tcomponents\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\n{\n\020QueueEnqueueMany\022\r\n\006handle\030\007\200\001\001\022\031\n\ncomponents2\013Tcomponents\"\035\n\013Tcomponents\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\n}\n\022QueueEnqueueManyV2\022\n\n\006handle\030\024\022\031\n\ncomponents2\013Tcomponents\"\035\n\013Tcomponents\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\210\001\001\ny\n\016QueueEnqueueV2\022\n\n\006handle\030\024\022\031\n\ncomponents2\013Tcomponents\"\035\n\013Tcomponents\022\nlist(type)(\0010\001\"\036\n\ntimeout_ms\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\210\001\001\n-\n\rQueueIsClosed\022\r\n\006handle\030\007\200\001\001\032\r\n\tis_closed\030\n\n/\n\017QueueIsClosedV2\022\n\n\006handle\030\024\032\r\n\tis_closed\030\n\210\001\001\n$\n\tQueueSize\022\r\n\006handle\030\007\200\001\001\032\010\n\004size\030\003\n&\n\013QueueSizeV2\022\n\n\006handle\030\024\032\010\n\004size\030\003\210\001\001\n\371\001\n\022RandomShuffleQueue\032\r\n\006handle\030\007\200\001\001\"!\n\017component_types\022\nlist(type)(\0010\001\"\033\n\006shapes\022\013list(shape)\032\002\n\000(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\034\n\021min_after_dequeue\022\003int\032\002\030\000\"\017\n\004seed\022\003int\032\002\030\000\"\020\n\005seed2\022\003int\032\002\030\000\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\370\001\n\024RandomShuffleQueueV2\032\n\n\006handle\030\024\"!\n\017component_types\022\nlist(type)(\0010\001\"\033\n\006shapes\022\013list(shape)\032\002\n\000(\001\"\034\n\010capacity\022\003int\032\013\030\377\377\377\377\377\377\377\377\377\001\"\034\n\021min_after_dequeue\022\003int\032\002\030\000\"\017\n\004seed\022\003int\032\002\030\000\"\020\n\005seed2\022\003int\032\002\030\000\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\357\001\n\013RecordInput\032\013\n\007records\030\007\"\026\n\014file_pattern\022\006string\"\034\n\020file_random_seed\022\003int\032\003\030\255\002\"(\n\030file_shuffle_shift_ratio\022\005float\032\005%\000\000\000\000\"\034\n\020file_buffer_size\022\003int\032\003\030\220N\"\033\n\020file_parallelism\022\003int\032\002\030\020\"\025\n\nbatch_size\022\003int\032\002\030 \"\036\n\020compression_type\022\006string\032\002\022\000\210\001\001\n\302\001\n\036SparseAccumulatorApplyGradient\022\r\n\006handle\030\007\200\001\001\022\016\n\nlocal_step\030\t\022\024\n\020gradient_indices\030\t\022\030\n\017gradient_values\"\005dtype\022\022\n\016gradient_shape\030\t\"$\n\005dtype\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\027\n\017has_known_shape\022\004bool\n\217\001\n\035SparseAccumulatorTakeGradient\022\r\n\006handle\030\007\200\001\001\022\020\n\014num_required\030\003\032\013\n\007indices\030\t\032\017\n\006values\"\005dtype\032\t\n\005shape\030\t\"$\n\005dtype\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\n\313\001\n\034SparseConditionalAccumulator\032\r\n\006handle\030\007\200\001\001\"$\n\005dtype\022\004type:\025\n\0232\021\001\002\003\004\005\006\010\t\013\014\r\016\021\022\023\026\027\"\016\n\005shape\022\005shape\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\"/\n\016reduction_type\022\006string\032\006\022\004MEAN:\r\n\013\022\004MEAN\022\003SUM\210\001\001\nF\n\005Stack\032\r\n\006handle\030\007\200\001\001\"\021\n\telem_type\022\004type\"\030\n\nstack_name\022\006string\032\002\022\000\210\001\001\n\033\n\nStackClose\022\r\n\006handle\030\007\200\001\001\n\035\n\014StackCloseV2\022\n\n\006handle\030\024\210\001\001\n?\n\010StackPop\022\r\n\006handle\030\007\200\001\001\032\021\n\004elem\"\telem_type\"\021\n\telem_type\022\004type\nA\n\nStackPopV2\022\n\n\006handle\030\024\032\021\n\004elem\"\telem_type\"\021\n\telem_type\022\004type\210\001\001\nV\n\tStackPush\022\r\n\006handle\030\007\200\001\001\022\t\n\004elem\"\001T\032\013\n\006output\"\001T\"\t\n\001T\022\004type\"\027\n\013swap_memory\022\004bool\032\002(\000\nX\n\013StackPushV2\022\n\n\006handle\030\024\022\t\n\004elem\"\001T\032\013\n\006output\"\001T\"\t\n\001T\022\004type\"\027\n\013swap_memory\022\004bool\032\002(\000\210\001\001\nS\n\007StackV2\022\014\n\010max_size\030\003\032\n\n\006handle\030\024\"\021\n\telem_type\022\004type\"\030\n\nstack_name\022\006string\032\002\022\000\210\001\001\n\234\001\n\005Stage\022\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\213\001\n\nStageClear\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\253\001\n\tStagePeek\022\t\n\005index\030\003\032\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\224\001\n\tStageSize\032\010\n\004size\030\003\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\024\n\006dtypes\022\nlist(type)\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001\n\306\001\n\013TensorArray\022\010\n\004size\030\003\032\r\n\006handle\030\007\200\001\001\"\r\n\005dtype\022\004type\"\030\n\014dynamic_size\022\004bool\032\002(\000\"\034\n\020clear_after_read\022\004bool\032\002(\001\"\037\n\021tensor_array_name\022\006string\032\002\022\000\"\034\n\relement_shape\022\005shape\032\004:\002\030\001B\025\010\020\022\021Use TensorArrayV3\210\001\001\n=\n\020TensorArrayClose\022\r\n\006handle\030\007\200\001\001B\032\010\020\022\026Use TensorArrayCloseV3\n<\n\022TensorArrayCloseV2\022\n\n\006handle\030\007B\032\010\032\022\026Use TensorArrayCloseV3\n#\n\022TensorArrayCloseV3\022\n\n\006handle\030\024\210\001\001\n\234\001\n\021TensorArrayConcat\022\r\n\006handle\030\007\200\001\001\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\032\013\n\007lengths\030\t\"\r\n\005dtype\022\004type\"$\n\025element_shape_except0\022\005shape\032\004:\002\030\001B\031\010\020\022\025Use TensorArrayGradV3\n\200\001\n\023TensorArrayConcatV2\022\n\n\006handle\030\007\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\032\013\n\007lengths\030\t\"\r\n\005dtype\022\004type\"$\n\025element_shape_except0\022\005shape\032\004:\002\030\001\n\203\001\n\023TensorArrayConcatV3\022\n\n\006handle\030\024\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\032\013\n\007lengths\030\t\"\r\n\005dtype\022\004type\"$\n\025element_shape_except0\022\005shape\032\004:\002\030\001\210\001\001\n\226\001\n\021TensorArrayGather\022\r\n\006handle\030\007\200\001\001\022\013\n\007indices\030\003\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\"\r\n\005dtype\022\004type\"\034\n\relement_shape\022\005shape\032\004:\002\030\001B\033\010\020\022\027Use TensorArrayGatherV3\n\225\001\n\023TensorArrayGatherV2\022\n\n\006handle\030\007\022\013\n\007indices\030\003\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\"\r\n\005dtype\022\004type\"\034\n\relement_shape\022\005shape\032\004:\002\030\001B\033\010\032\022\027Use TensorArrayGatherV3\n{\n\023TensorArrayGatherV3\022\n\n\006handle\030\024\022\013\n\007indices\030\003\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\"\r\n\005dtype\022\004type\"\034\n\relement_shape\022\005shape\032\004:\002\030\001\210\001\001\nn\n\017TensorArrayGrad\022\n\n\006handle\030\007\022\013\n\007flow_in\030\001\032\022\n\013grad_handle\030\007\200\001\001\"\020\n\006source\022\006stringB\031\010\020\022\025Use TensorArrayGradV3\210\001\001\nm\n\021TensorArrayGradV2\022\n\n\006handle\030\007\022\013\n\007flow_in\030\001\032\017\n\013grad_handle\030\007\"\020\n\006source\022\006stringB\031\010\032\022\025Use TensorArrayGradV3\210\001\001\n`\n\021TensorArrayGradV3\022\n\n\006handle\030\024\022\013\n\007flow_in\030\001\032\017\n\013grad_handle\030\024\032\014\n\010flow_out\030\001\"\020\n\006source\022\006string\210\001\001\n}\n\030TensorArrayGradWithShape\022\n\n\006handle\030\024\022\013\n\007flow_in\030\001\022\024\n\020shape_to_prepend\030\003\032\017\n\013grad_handle\030\024\032\014\n\010flow_out\030\001\"\020\n\006source\022\006string\210\001\001\n\224\001\n\017TensorArrayPack\022\r\n\006handle\030\007\200\001\001\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\"\r\n\005dtype\022\004type\"\034\n\relement_shape\022\005shape\032\004:\002\030\001B(\010\020\022$Use TensorArrayGatherV3 with RangeOp\nr\n\017TensorArrayRead\022\r\n\006handle\030\007\200\001\001\022\t\n\005index\030\003\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\"\r\n\005dtype\022\004typeB\031\010\020\022\025Use TensorArrayReadV3\nq\n\021TensorArrayReadV2\022\n\n\006handle\030\007\022\t\n\005index\030\003\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\"\r\n\005dtype\022\004typeB\031\010\032\022\025Use TensorArrayReadV3\nY\n\021TensorArrayReadV3\022\n\n\006handle\030\024\022\t\n\005index\030\003\022\013\n\007flow_in\030\001\032\016\n\005value\"\005dtype\"\r\n\005dtype\022\004type\210\001\001\n}\n\022TensorArrayScatter\022\r\n\006handle\030\007\200\001\001\022\013\n\007indices\030\003\022\n\n\005value\"\001T\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004typeB\031\010\023\022\025Use TensorArrayGradV3\n\177\n\024TensorArrayScatterV2\022\n\n\006handle\030\007\022\013\n\007indices\030\003\022\n\n\005value\"\001T\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004typeB\034\010\032\022\030Use TensorArrayScatterV3\nd\n\024TensorArrayScatterV3\022\n\n\006handle\030\024\022\013\n\007indices\030\003\022\n\n\005value\"\001T\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004type\210\001\001\nR\n\017TensorArraySize\022\r\n\006handle\030\007\200\001\001\022\013\n\007flow_in\030\001\032\010\n\004size\030\003B\031\010\020\022\025Use TensorArraySizeV3\nQ\n\021TensorArraySizeV2\022\n\n\006handle\030\007\022\013\n\007flow_in\030\001\032\010\n\004size\030\003B\031\010\032\022\025Use TensorArraySizeV3\n9\n\021TensorArraySizeV3\022\n\n\006handle\030\024\022\013\n\007flow_in\030\001\032\010\n\004size\030\003\210\001\001\n|\n\020TensorArraySplit\022\r\n\006handle\030\007\200\001\001\022\n\n\005value\"\001T\022\013\n\007lengths\030\t\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004typeB\032\010\020\022\026Use TensorArraySplitV3\n{\n\022TensorArraySplitV2\022\n\n\006handle\030\007\022\n\n\005value\"\001T\022\013\n\007lengths\030\t\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004typeB\032\010\032\022\026Use TensorArraySplitV3\nb\n\022TensorArraySplitV3\022\n\n\006handle\030\024\022\n\n\005value\"\001T\022\013\n\007lengths\030\t\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004type\210\001\001\n\177\n\021TensorArrayUnpack\022\r\n\006handle\030\007\200\001\001\022\n\n\005value\"\001T\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004typeB)\010\024\022%Use TensorArrayScatterV3 with RangeOp\n\305\001\n\rTensorArrayV2\022\010\n\004size\030\003\032\n\n\006handle\030\007\"\r\n\005dtype\022\004type\"\034\n\relement_shape\022\005shape\032\004:\002\030\001\"\030\n\014dynamic_size\022\004bool\032\002(\000\"\034\n\020clear_after_read\022\004bool\032\002(\001\"\037\n\021tensor_array_name\022\006string\032\002\022\000B\025\010\032\022\021Use TensorArrayV3\210\001\001\n\336\001\n\rTensorArrayV3\022\010\n\004size\030\003\032\n\n\006handle\030\024\032\010\n\004flow\030\001\"\r\n\005dtype\022\004type\"\034\n\relement_shape\022\005shape\032\004:\002\030\001\"\030\n\014dynamic_size\022\004bool\032\002(\000\"\034\n\020clear_after_read\022\004bool\032\002(\001\"$\n\030identical_element_shapes\022\004bool\032\002(\000\"\037\n\021tensor_array_name\022\006string\032\002\022\000\210\001\001\nz\n\020TensorArrayWrite\022\r\n\006handle\030\007\200\001\001\022\t\n\005index\030\003\022\n\n\005value\"\001T\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004typeB\032\010\020\022\026Use TensorArrayWriteV3\ny\n\022TensorArrayWriteV2\022\n\n\006handle\030\007\022\t\n\005index\030\003\022\n\n\005value\"\001T\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004typeB\032\010\032\022\026Use TensorArrayWriteV3\n`\n\022TensorArrayWriteV3\022\n\n\006handle\030\024\022\t\n\005index\030\003\022\n\n\005value\"\001T\022\013\n\007flow_in\030\001\032\014\n\010flow_out\030\001\"\t\n\001T\022\004type\210\001\001\n\236\001\n\007Unstage\032\020\n\006values2\006dtypes\"\025\n\010capacity\022\003int\032\002\030\000(\001\"\031\n\014memory_limit\022\003int\032\002\030\000(\001\"\030\n\006dtypes\022\nlist(type)(\0010\001\"\027\n\tcontainer\022\006string\032\002\022\000\"\031\n\013shared_name\022\006string\032\002\022\000\210\001\001")
37.883051
26,160
0.687783
23561396a0461fc9edd5e1c1241adac191d652f5
5,287
py
Python
hrf/trf_g.py
thu-spmi/semi-EBM
393e3ea3566dd60c48872a5c573a335e8e802707
[ "Apache-2.0" ]
2
2021-09-18T14:21:24.000Z
2021-12-20T03:39:13.000Z
hrf/trf_g.py
thu-spmi/semi-EBM
393e3ea3566dd60c48872a5c573a335e8e802707
[ "Apache-2.0" ]
null
null
null
hrf/trf_g.py
thu-spmi/semi-EBM
393e3ea3566dd60c48872a5c573a335e8e802707
[ "Apache-2.0" ]
1
2021-09-12T07:02:23.000Z
2021-09-12T07:02:23.000Z
from base import * from lm import * from . import * from .trf import DefaultOps from trf.nce import noise class Config(trf.Config): def __init__(self, data): super().__init__(data) del self.__dict__['pi_0'] average_len = np.sum(np.arange(self.max_len+1) * self.pi_true) self.global_logz = average_len * (np.log(self.word_vocab_size) + np.log(self.tag_vocab_size)) def __str__(self): s = super().__str__() s = s.replace('hrf_', 'grf_') return s class TRF(trf.TRF): def __init__(self, config, data, logdir, device='/gpu:0', name='trf'): super().__init__(config, data, logdir, device, name) # self.norm_const = norm.NormOne(config) self.norm_const = norm.Norm2(config) self.norm_const.logz = 0 noise_config = noise.Config() noise_config.pack_size = config.sample_batch_size noise_config.min_len = config.min_len noise_config.max_len = config.max_len noise_config.beg_token = config.beg_tokens[0] noise_config.end_token = config.end_tokens[0] noise_config.vocab_size = config.word_vocab_size noise_config.pi_true = config.pi_true wod_data = data.create_data(level=0) self.noise_sampler = noise.NoiseSamplerNgram(noise_config, wod_data, 2, is_parallel=False) def normalize(self, logp, lengths, for_eval=True): logp_m = logp - self.norm_const.get_logz(lengths) return logp_m def initialize(self): super().initialize() # self.phi_tag.set_params() # self.phi_mix.set_params() # self.phi_word.set_params() def draw(self, n): assert n == self.config.sample_batch_size sample_list = [] while len(sample_list) < n: wlist, _ = self.noise_sampler.get(None) seq_list = [seq.Seq(x) for x in wlist] sample_list += seq_list with self.time_recoder.recode('write_sample'): f = self.write_files.get('sample') for s in sample_list: f.write(str(s)) return sample_list def get_sample_scaler(self, sample_list): n = len(sample_list) x_list = [s.x[0] for s in sample_list] logq = self.noise_sampler.noise_logps(x_list) logp0 = self.get_logpxs(x_list, is_norm=True) + self.norm_const.logz approx_logz = logsumexp(logp0 - logq - np.log(n)) log_scalar = logp0 - logq - np.log(n) - approx_logz # # update logz # self.norm_const.logz = self.norm_const.logz * 0.9 + approx_logz * 0.1 return np.exp(log_scalar) def update(self, data_list, sample_list): # compute the scalars data_scalar = np.ones(len(data_list)) / len(data_list) # sample_scalar = np.ones(len(sample_list)) / len(sample_list) sample_scalar = self.get_sample_scaler(sample_list) # update phi with self.time_recoder.recode('update_word'): self.phi_word.update(data_list, data_scalar, sample_list, sample_scalar, learning_rate=self.cur_lr_word) if not self.config.fix_crf_model: sample_x_list = [s.x[0] for s in sample_list] with self.time_recoder.recode('update_marginal'): sample_fp_logps_list = self.marginal_logps(sample_x_list) with self.time_recoder.recode('update_tag'): self.phi_tag.update(data_list, data_scalar, sample_list, sample_scalar, sample_fp_logps_list=sample_fp_logps_list, learning_rate=self.cur_lr_tag) with self.time_recoder.recode('update_mix'): self.phi_mix.update(data_list, data_scalar, sample_list, sample_scalar, sample_fp_logps_list=sample_fp_logps_list, learning_rate=self.cur_lr_mix) # update zeta with self.time_recoder.recode('update_logz'): self.norm_const.update(sample_list, sample_scalar, learning_rate=self.cur_lr_logz) # update simulater with self.time_recoder.recode('update_simulater'): self.mcmc.update(sample_list) # update dbg info self.sample_cur_pi.fill(0) for x in sample_list: self.sample_cur_pi[len(x)] += 1 self.sample_acc_count += self.sample_cur_pi self.sample_cur_pi /= self.sample_cur_pi.sum() return None def write_log_zeta(self, step, true_logz=None): # write zeta, logz, pi f = self.write_files.get('zeta') f.write('step={}\n'.format(step)) log.write_array(f, self.sample_cur_pi[self.config.min_len:], name='cur_pi') log.write_array(f, self.sample_acc_count[self.config.min_len:] / self.sample_acc_count.sum(), name='all_pi') log.write_array(f, self.config.pi_true[self.config.min_len:], name='pi_0 ') log.write_array(f, self.norm_const.get_logz(), name='logz ') if true_logz is not None: log.write_array(f, true_logz, name='truez ')
37.764286
117
0.607906
5ba06710b1351dee9c32b5747102f2543aa9cf87
76
py
Python
loggz/__init__.py
crist0phe/python-loggz
664c79e725161c9c7f6ab9792282256d1e2973af
[ "MIT" ]
null
null
null
loggz/__init__.py
crist0phe/python-loggz
664c79e725161c9c7f6ab9792282256d1e2973af
[ "MIT" ]
null
null
null
loggz/__init__.py
crist0phe/python-loggz
664c79e725161c9c7f6ab9792282256d1e2973af
[ "MIT" ]
null
null
null
import handlers GzipRotatingFileHandler = handlers.GzipRotatingFileHandler
19
58
0.894737
a2a3846a3cb0b4885f5f40658f7f244fa8362d14
1,609
py
Python
test/test_inline_response_200_13.py
scubawhere/scubawhere-api-python-client
9f8578e251492c7667f785df7b7c9d66e71f5c8e
[ "Apache-2.0" ]
null
null
null
test/test_inline_response_200_13.py
scubawhere/scubawhere-api-python-client
9f8578e251492c7667f785df7b7c9d66e71f5c8e
[ "Apache-2.0" ]
null
null
null
test/test_inline_response_200_13.py
scubawhere/scubawhere-api-python-client
9f8578e251492c7667f785df7b7c9d66e71f5c8e
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Scubawhere API Documentation This is the documentation for scubawhere's RMS API. This API is only to be used by authorized parties with valid auth tokens. [Learn about scubawhere](http://www.scubawhere.com) to become an authorized consumer of our API OpenAPI spec version: 1.0.0 Contact: bryan@scubawhere.com Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.inline_response_200_13 import InlineResponse20013 class TestInlineResponse20013(unittest.TestCase): """ InlineResponse20013 unit test stubs """ def setUp(self): pass def tearDown(self): pass def testInlineResponse20013(self): """ Test InlineResponse20013 """ model = swagger_client.models.inline_response_200_13.InlineResponse20013() if __name__ == '__main__': unittest.main()
29.796296
227
0.735861
a902a30a373ba7485ef94f78c666bfe52f4cfbb1
664
py
Python
main.py
MohammadEbrahimy/mlp
b915373095f50928982ec279a10db322dbe2741f
[ "MIT" ]
null
null
null
main.py
MohammadEbrahimy/mlp
b915373095f50928982ec279a10db322dbe2741f
[ "MIT" ]
null
null
null
main.py
MohammadEbrahimy/mlp
b915373095f50928982ec279a10db322dbe2741f
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import NeuralNetwork as NN # Importing tratin and test data train = pd.read_csv("dataset/nba_logreg.csv", header=None) test = pd.read_csv("dataset/test.csv", header=None) train = train.dropna() test = test.dropna() # Split the train and test data x_train = train.values[1:, 1:20].astype(np.float) y_train = train.values[1:, 20].astype(np.float) x_test = test.values[1:, 2:21].astype(np.float) y_test = test.values[1:, 21].astype(np.float) mlp = NN.MlpClassifier() mlp.add_layer(10) mlp.add_layer(15) mlp.add_layer(5) mlp.add_layer(2) mlp.add_layer(1) mlp.learn(x_train, y_train, 0.08, 500) mlp.predict(x_test, y_test)
22.896552
58
0.731928
162fe87431cde8337b5ca6386e6faa0f20d8479a
2,631
py
Python
config/settings/local.py
abrar78/deploy-cookie-cutter
226be50016a96eb2604f6e25d5ea7540e594186b
[ "MIT" ]
null
null
null
config/settings/local.py
abrar78/deploy-cookie-cutter
226be50016a96eb2604f6e25d5ea7540e594186b
[ "MIT" ]
null
null
null
config/settings/local.py
abrar78/deploy-cookie-cutter
226be50016a96eb2604f6e25d5ea7540e594186b
[ "MIT" ]
null
null
null
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="MZsQZJnSspOrbn0OcB8m3HZR4zHXSbXGA8u8KQwYWs40nTMH4DF2Ex8LuoH9kpFK", ) # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ['*'] # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "", } } # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = env("EMAIL_HOST", default="mailhog") # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # WhiteNoise # ------------------------------------------------------------------------------ # http://whitenoise.evans.io/en/latest/django.html#using-whitenoise-in-development INSTALLED_APPS = ["whitenoise.runserver_nostatic"] + INSTALLED_APPS # noqa F405 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites INSTALLED_APPS += ["debug_toolbar"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config DEBUG_TOOLBAR_CONFIG = { "DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"], "SHOW_TEMPLATE_CONTEXT": True, } # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ["127.0.0.1", "10.0.2.2"] if env("USE_DOCKER") == "yes": import socket hostname, _, ips = socket.gethostbyname_ex(socket.gethostname()) INTERNAL_IPS += [".".join(ip.split(".")[:-1] + ["1"]) for ip in ips] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ["django_extensions"] # noqa F405 # Your stuff... # ------------------------------------------------------------------------------
40.476923
97
0.581148
9b39dbd39b09969cd356c8b7faf1226694226b70
15,705
py
Python
test/test_subtitles.py
mrBliss/yt-dlp
aecd021656b672dbb617e5bae54a8986f9c4ebaf
[ "Unlicense" ]
80
2021-05-25T11:33:49.000Z
2022-03-29T20:36:53.000Z
test/test_subtitles.py
mrBliss/yt-dlp
aecd021656b672dbb617e5bae54a8986f9c4ebaf
[ "Unlicense" ]
22
2021-05-08T13:44:12.000Z
2022-03-30T01:27:23.000Z
test/test_subtitles.py
mrBliss/yt-dlp
aecd021656b672dbb617e5bae54a8986f9c4ebaf
[ "Unlicense" ]
22
2021-05-07T05:01:27.000Z
2022-03-26T19:10:54.000Z
#!/usr/bin/env python3 from __future__ import unicode_literals # Allow direct execution import os import sys import unittest sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from test.helper import FakeYDL, md5, is_download_test from yt_dlp.extractor import ( YoutubeIE, DailymotionIE, TEDIE, VimeoIE, WallaIE, CeskaTelevizeIE, LyndaIE, NPOIE, PBSIE, ComedyCentralIE, NRKTVIE, RaiPlayIE, VikiIE, ThePlatformIE, ThePlatformFeedIE, RTVEALaCartaIE, DemocracynowIE, ) @is_download_test class BaseTestSubtitles(unittest.TestCase): url = None IE = None def setUp(self): self.DL = FakeYDL() self.ie = self.IE() self.DL.add_info_extractor(self.ie) def getInfoDict(self): info_dict = self.DL.extract_info(self.url, download=False) return info_dict def getSubtitles(self): info_dict = self.getInfoDict() subtitles = info_dict['requested_subtitles'] if not subtitles: return subtitles for sub_info in subtitles.values(): if sub_info.get('data') is None: uf = self.DL.urlopen(sub_info['url']) sub_info['data'] = uf.read().decode('utf-8') return dict((l, sub_info['data']) for l, sub_info in subtitles.items()) @is_download_test class TestYoutubeSubtitles(BaseTestSubtitles): url = 'QRS8MkLhQmM' IE = YoutubeIE def test_youtube_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(len(subtitles.keys()), 13) self.assertEqual(md5(subtitles['en']), '688dd1ce0981683867e7fe6fde2a224b') self.assertEqual(md5(subtitles['it']), '31324d30b8430b309f7f5979a504a769') for lang in ['fr', 'de']: self.assertTrue(subtitles.get(lang) is not None, 'Subtitles for \'%s\' not extracted' % lang) def test_youtube_subtitles_ttml_format(self): self.DL.params['writesubtitles'] = True self.DL.params['subtitlesformat'] = 'ttml' subtitles = self.getSubtitles() self.assertEqual(md5(subtitles['en']), 'c97ddf1217390906fa9fbd34901f3da2') def test_youtube_subtitles_vtt_format(self): self.DL.params['writesubtitles'] = True self.DL.params['subtitlesformat'] = 'vtt' subtitles = self.getSubtitles() self.assertEqual(md5(subtitles['en']), 'ae1bd34126571a77aabd4d276b28044d') def test_youtube_automatic_captions(self): self.url = '8YoUxe5ncPo' self.DL.params['writeautomaticsub'] = True self.DL.params['subtitleslangs'] = ['it'] subtitles = self.getSubtitles() self.assertTrue(subtitles['it'] is not None) def test_youtube_no_automatic_captions(self): self.url = 'QRS8MkLhQmM' self.DL.params['writeautomaticsub'] = True subtitles = self.getSubtitles() self.assertTrue(not subtitles) def test_youtube_translated_subtitles(self): # This video has a subtitles track, which can be translated self.url = 'i0ZabxXmH4Y' self.DL.params['writeautomaticsub'] = True self.DL.params['subtitleslangs'] = ['it'] subtitles = self.getSubtitles() self.assertTrue(subtitles['it'] is not None) def test_youtube_nosubtitles(self): self.DL.expect_warning('video doesn\'t have subtitles') self.url = 'n5BB19UTcdA' self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertFalse(subtitles) @is_download_test class TestDailymotionSubtitles(BaseTestSubtitles): url = 'http://www.dailymotion.com/video/xczg00' IE = DailymotionIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertTrue(len(subtitles.keys()) >= 6) self.assertEqual(md5(subtitles['en']), '976553874490cba125086bbfea3ff76f') self.assertEqual(md5(subtitles['fr']), '594564ec7d588942e384e920e5341792') for lang in ['es', 'fr', 'de']: self.assertTrue(subtitles.get(lang) is not None, 'Subtitles for \'%s\' not extracted' % lang) def test_nosubtitles(self): self.DL.expect_warning('video doesn\'t have subtitles') self.url = 'http://www.dailymotion.com/video/x12u166_le-zapping-tele-star-du-08-aout-2013_tv' self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertFalse(subtitles) @is_download_test class TestTedSubtitles(BaseTestSubtitles): url = 'http://www.ted.com/talks/dan_dennett_on_our_consciousness.html' IE = TEDIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertTrue(len(subtitles.keys()) >= 28) self.assertEqual(md5(subtitles['en']), '4262c1665ff928a2dada178f62cb8d14') self.assertEqual(md5(subtitles['fr']), '66a63f7f42c97a50f8c0e90bc7797bb5') for lang in ['es', 'fr', 'de']: self.assertTrue(subtitles.get(lang) is not None, 'Subtitles for \'%s\' not extracted' % lang) @is_download_test class TestVimeoSubtitles(BaseTestSubtitles): url = 'http://vimeo.com/76979871' IE = VimeoIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['de', 'en', 'es', 'fr'])) self.assertEqual(md5(subtitles['en']), '8062383cf4dec168fc40a088aa6d5888') self.assertEqual(md5(subtitles['fr']), 'b6191146a6c5d3a452244d853fde6dc8') def test_nosubtitles(self): self.DL.expect_warning('video doesn\'t have subtitles') self.url = 'http://vimeo.com/56015672' self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertFalse(subtitles) @is_download_test class TestWallaSubtitles(BaseTestSubtitles): url = 'http://vod.walla.co.il/movie/2705958/the-yes-men' IE = WallaIE def test_allsubtitles(self): self.DL.expect_warning('Automatic Captions not supported by this server') self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['heb'])) self.assertEqual(md5(subtitles['heb']), 'e758c5d7cb982f6bef14f377ec7a3920') def test_nosubtitles(self): self.DL.expect_warning('video doesn\'t have subtitles') self.url = 'http://vod.walla.co.il/movie/2642630/one-direction-all-for-one' self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertFalse(subtitles) @is_download_test class TestCeskaTelevizeSubtitles(BaseTestSubtitles): url = 'http://www.ceskatelevize.cz/ivysilani/10600540290-u6-uzasny-svet-techniky' IE = CeskaTelevizeIE def test_allsubtitles(self): self.DL.expect_warning('Automatic Captions not supported by this server') self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['cs'])) self.assertTrue(len(subtitles['cs']) > 20000) def test_nosubtitles(self): self.DL.expect_warning('video doesn\'t have subtitles') self.url = 'http://www.ceskatelevize.cz/ivysilani/ivysilani/10441294653-hyde-park-civilizace/214411058091220' self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertFalse(subtitles) @is_download_test class TestLyndaSubtitles(BaseTestSubtitles): url = 'http://www.lynda.com/Bootstrap-tutorials/Using-exercise-files/110885/114408-4.html' IE = LyndaIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['en'])) self.assertEqual(md5(subtitles['en']), '09bbe67222259bed60deaa26997d73a7') @is_download_test class TestNPOSubtitles(BaseTestSubtitles): url = 'http://www.npo.nl/nos-journaal/28-08-2014/POW_00722860' IE = NPOIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['nl'])) self.assertEqual(md5(subtitles['nl']), 'fc6435027572b63fb4ab143abd5ad3f4') @is_download_test class TestMTVSubtitles(BaseTestSubtitles): url = 'http://www.cc.com/video-clips/p63lk0/adam-devine-s-house-party-chasing-white-swans' IE = ComedyCentralIE def getInfoDict(self): return super(TestMTVSubtitles, self).getInfoDict()['entries'][0] def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['en'])) self.assertEqual(md5(subtitles['en']), '78206b8d8a0cfa9da64dc026eea48961') @is_download_test class TestNRKSubtitles(BaseTestSubtitles): url = 'http://tv.nrk.no/serie/ikke-gjoer-dette-hjemme/DMPV73000411/sesong-2/episode-1' IE = NRKTVIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['no'])) self.assertEqual(md5(subtitles['no']), '544fa917d3197fcbee64634559221cc2') @is_download_test class TestRaiPlaySubtitles(BaseTestSubtitles): IE = RaiPlayIE def test_subtitles_key(self): self.url = 'http://www.raiplay.it/video/2014/04/Report-del-07042014-cb27157f-9dd0-4aee-b788-b1f67643a391.html' self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['it'])) self.assertEqual(md5(subtitles['it']), 'b1d90a98755126b61e667567a1f6680a') def test_subtitles_array_key(self): self.url = 'https://www.raiplay.it/video/2020/12/Report---04-01-2021-2e90f1de-8eee-4de4-ac0e-78d21db5b600.html' self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['it'])) self.assertEqual(md5(subtitles['it']), '4b3264186fbb103508abe5311cfcb9cd') @is_download_test class TestVikiSubtitles(BaseTestSubtitles): url = 'http://www.viki.com/videos/1060846v-punch-episode-18' IE = VikiIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['en'])) self.assertEqual(md5(subtitles['en']), '53cb083a5914b2d84ef1ab67b880d18a') @is_download_test class TestThePlatformSubtitles(BaseTestSubtitles): # from http://www.3playmedia.com/services-features/tools/integrations/theplatform/ # (see http://theplatform.com/about/partners/type/subtitles-closed-captioning/) url = 'theplatform:JFUjUE1_ehvq' IE = ThePlatformIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['en'])) self.assertEqual(md5(subtitles['en']), '97e7670cbae3c4d26ae8bcc7fdd78d4b') @is_download_test class TestThePlatformFeedSubtitles(BaseTestSubtitles): url = 'http://feed.theplatform.com/f/7wvmTC/msnbc_video-p-test?form=json&pretty=true&range=-40&byGuid=n_hardball_5biden_140207' IE = ThePlatformFeedIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['en'])) self.assertEqual(md5(subtitles['en']), '48649a22e82b2da21c9a67a395eedade') @is_download_test class TestRtveSubtitles(BaseTestSubtitles): url = 'http://www.rtve.es/alacarta/videos/los-misterios-de-laura/misterios-laura-capitulo-32-misterio-del-numero-17-2-parte/2428621/' IE = RTVEALaCartaIE def test_allsubtitles(self): print('Skipping, only available from Spain') return self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['es'])) self.assertEqual(md5(subtitles['es']), '69e70cae2d40574fb7316f31d6eb7fca') @is_download_test class TestDemocracynowSubtitles(BaseTestSubtitles): url = 'http://www.democracynow.org/shows/2015/7/3' IE = DemocracynowIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['en'])) self.assertEqual(md5(subtitles['en']), 'acaca989e24a9e45a6719c9b3d60815c') def test_subtitles_in_page(self): self.url = 'http://www.democracynow.org/2015/7/3/this_flag_comes_down_today_bree' self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['en'])) self.assertEqual(md5(subtitles['en']), 'acaca989e24a9e45a6719c9b3d60815c') @is_download_test class TestPBSSubtitles(BaseTestSubtitles): url = 'https://www.pbs.org/video/how-fantasy-reflects-our-world-picecq/' IE = PBSIE def test_allsubtitles(self): self.DL.params['writesubtitles'] = True self.DL.params['allsubtitles'] = True subtitles = self.getSubtitles() self.assertEqual(set(subtitles.keys()), set(['en'])) def test_subtitles_dfxp_format(self): self.DL.params['writesubtitles'] = True self.DL.params['subtitlesformat'] = 'dfxp' subtitles = self.getSubtitles() self.assertIn(md5(subtitles['en']), ['643b034254cdc3768ff1e750b6b5873b']) def test_subtitles_vtt_format(self): self.DL.params['writesubtitles'] = True self.DL.params['subtitlesformat'] = 'vtt' subtitles = self.getSubtitles() self.assertIn( md5(subtitles['en']), ['937a05711555b165d4c55a9667017045', 'f49ea998d6824d94959c8152a368ff73']) def test_subtitles_srt_format(self): self.DL.params['writesubtitles'] = True self.DL.params['subtitlesformat'] = 'srt' subtitles = self.getSubtitles() self.assertIn(md5(subtitles['en']), ['2082c21b43759d9bf172931b2f2ca371']) def test_subtitles_sami_format(self): self.DL.params['writesubtitles'] = True self.DL.params['subtitlesformat'] = 'sami' subtitles = self.getSubtitles() self.assertIn(md5(subtitles['en']), ['4256b16ac7da6a6780fafd04294e85cd']) if __name__ == '__main__': unittest.main()
37.843373
137
0.677619
aa59c205a6a3710c0e7778c0c85ca22b051a3f7e
2,708
py
Python
tests/pyvoronoi_performance.py
Voxel8/pyvoronoi
8ba7957141a3f39a90b48127bf971be76275faba
[ "BSL-1.0", "MIT" ]
15
2015-11-21T19:03:19.000Z
2021-11-30T06:55:23.000Z
tests/pyvoronoi_performance.py
Voxel8/pyvoronoi
8ba7957141a3f39a90b48127bf971be76275faba
[ "BSL-1.0", "MIT" ]
13
2016-01-31T17:01:39.000Z
2022-02-19T13:33:21.000Z
tests/pyvoronoi_performance.py
Voxel8/pyvoronoi
8ba7957141a3f39a90b48127bf971be76275faba
[ "BSL-1.0", "MIT" ]
9
2015-10-22T03:24:14.000Z
2022-01-09T17:11:03.000Z
""" This script is here to let user test the complexity of the problem that can be solved on their machine given their hardware constraints and their software configuration. Can be used to measure possible performance enhancements in the future as well. """ from __future__ import division import time, logging import pyvoronoi def build_and_solve_voronoi_problem(max_x, max_y): """ A function used to test the library performance. It created a set of point and segments and then solve the voronoi problem. It starts from a origin of a grid and then build vertical segments with a length of 1 unit until it reaches max_x and max_y. :param max_x: The maximum x value used for building segments. :param max_y: The maximum y_value used for building segments. :return: """ factor = 10 pyvoronoi.SILENT = True pv = pyvoronoi.Pyvoronoi(factor) count_points = 0 for x in xrange(max_x): for y in xrange(max_y): pv.AddPoint([x + 0.5, y + 0.5]) count_points += 1 count_segment = 0 for x in xrange(max_x): for y in xrange(max_y): pv.AddSegment([[x,y], [x, y + 1]]) count_segment += 1 time_before = time.time() pv.Construct() time_after = time.time() logging.info("Run pyvoronoi. Time (sec): {0}. Number of input points: {1} - segments: {2}".format( time_after - time_before, count_points, count_segment )) logging.info("Count output structures. Vertices: {0}, Edges: {1}, Cells: {2}".format( pv.CountVertices(), pv.CountEdges(), pv.CountCells(), )) logging.info('Start parsing edges - Evaluating performance for curve computation') time_before = time.time() count_curved_edges = 0 for i in xrange(pv.CountEdges()): e = pv.GetEdge(i) startVertex = pv.GetVertex(e.start) endVertex = pv.GetVertex(e.end) max_distance = pyvoronoi.Distance([startVertex.X, startVertex.Y], [endVertex.X, endVertex.Y]) / 10 if startVertex != -1 and endVertex != -1: if not e.is_linear: points = pv.DiscretizeCurvedEdge(i, max_distance, 1 / factor) count_curved_edges += 1 time_after = time.time() logging.info('Done parsing {0} curved edges. Done in {1} sec'.format(count_curved_edges, time_after - time_before)) del pv if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - Script: %(filename)s - Line: %(lineno)d - %(levelname)s - %(message)s', datefmt='%m-%d %H:%M:%S') build_and_solve_voronoi_problem(100, 1000)
36.106667
120
0.639217
3f2371e3c7204918c1aafb9022fa0214fd7e60c7
308
py
Python
napari/layers/image/experimental/__init__.py
harripj/napari
7a284b1efeb14b1f812f0d98c608f70f0dd66ad2
[ "BSD-3-Clause" ]
null
null
null
napari/layers/image/experimental/__init__.py
harripj/napari
7a284b1efeb14b1f812f0d98c608f70f0dd66ad2
[ "BSD-3-Clause" ]
null
null
null
napari/layers/image/experimental/__init__.py
harripj/napari
7a284b1efeb14b1f812f0d98c608f70f0dd66ad2
[ "BSD-3-Clause" ]
null
null
null
"""layers.image.experimental """ from .octree_intersection import OctreeIntersection from .octree_level import OctreeLevel from .octree_tile_builder import create_multi_scale_from_image from .octree_util import ImageConfig, OctreeChunk, TestImageSettings # from .octree_image import OctreeImage # circular
34.222222
68
0.850649
41f5f959188191e4c47d2c710867ed1694d41903
70,285
py
Python
src/transformers/models/bart/modeling_tf_bart.py
syskn/transformers
fafbd2574cb12b987099f69b3821814042d8f4ce
[ "Apache-2.0" ]
39
2021-04-30T06:06:30.000Z
2022-03-12T11:56:06.000Z
src/transformers/models/bart/modeling_tf_bart.py
syskn/transformers
fafbd2574cb12b987099f69b3821814042d8f4ce
[ "Apache-2.0" ]
4
2021-04-05T19:56:47.000Z
2022-01-18T17:12:28.000Z
src/transformers/models/bart/modeling_tf_bart.py
syskn/transformers
fafbd2574cb12b987099f69b3821814042d8f4ce
[ "Apache-2.0" ]
30
2021-04-30T07:11:22.000Z
2022-03-15T19:34:58.000Z
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Bart model. """ import random from typing import Dict, Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( DUMMY_INPUTS, TFCausalLanguageModelingLoss, TFPreTrainedModel, TFSharedEmbeddings, TFWrappedEmbeddings, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_bart import BartConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/bart-large" _CONFIG_FOR_DOC = "BartConfig" _TOKENIZER_FOR_DOC = "BartTokenizer" LARGE_NEGATIVE = -1e8 def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): shifted_input_ids = tf.roll(input_ids, 1, axis=-1) start_tokens = tf.fill((shape_list(shifted_input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, shifted_input_ids[:, 1:]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) if tf.executing_eagerly(): # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None, past_key_values_length: int = 0): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFBartLearnedPositionalEmbedding(TFSharedEmbeddings): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input_shape[:2] positions = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range") return super().call(positions + self.offset) class TFBartAttention(tf.keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None, attention_mask: Optional[tf.Tensor] = None, layer_head_mask: Optional[tf.Tensor] = None, training=False, ) -> Tuple[tf.Tensor, Optional[tf.Tensor]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {shape_list(attn_weights)}", ) if attention_mask is not None: # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}", ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = tf.nn.softmax(attn_weights, axis=-1) if layer_head_mask is not None: # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}", ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {shape_list(attn_output)}", ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value class TFBartEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: BartConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBartAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False): """ Args: hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (:obj:`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights class TFBartDecoderLayer(tf.keras.layers.Layer): def __init__(self, config: BartConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBartAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFBartAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states, attention_mask: Optional[tf.Tensor] = None, encoder_hidden_states: Optional[tf.Tensor] = None, encoder_attention_mask: Optional[tf.Tensor] = None, layer_head_mask: Optional[tf.Tensor] = None, cross_attn_layer_head_mask: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[tf.Tensor]] = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (:obj:`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (:obj:`tf.Tensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` encoder_attention_mask (:obj:`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (:obj:`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) class TFBartPretrainedModel(TFPreTrainedModel): config_class = BartConfig base_model_prefix = "model" @property def dummy_inputs(self): pad_token = 1 input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32) decoder_input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32) dummy_inputs = { "decoder_input_ids": decoder_input_ids, "attention_mask": tf.math.not_equal(input_ids, pad_token), "input_ids": input_ids, } return dummy_inputs @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) BART_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Args: config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.TFPreTrainedModel.from_pretrained` method to load the model weights. """ BART_GENERATION_EXAMPLE = r""" Summarization example:: >>> from transformers import BartTokenizer, TFBartForConditionalGeneration, BartConfig >>> model = TFBartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='tf') >>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]) Mask filling example:: >>> from transformers import BartTokenizer, TFBartForConditionalGeneration >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = TFBartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> input_ids = tokenizer([TXT], return_tensors='tf')['input_ids'] >>> logits = model(input_ids).logits >>> probs = tf.nn.softmax(logits[0]) >>> # probs[5] is associated with the mask token """ BART_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`tf.Tensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BartTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are decoder input IDs? <../glossary.html#decoder-input-ids>`__ Bart uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see :obj:`past_key_values`). For translation and summarization training, :obj:`decoder_input_ids` should be provided. If no :obj:`decoder_input_ids` is provided, the model will create this tensor by shifting the :obj:`input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (:obj:`tf.FloatTensor`, `optional`): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Set to :obj:`False` during training, :obj:`True` during generation output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFBartEncoder(tf.keras.layers.Layer): config_class = BartConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a :class:`TFBartEncoderLayer`. Args: config: BartConfig """ def __init__(self, config: BartConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = tf.keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): """ Args: input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.BartTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["inputs_embeds"] is None: inputs["inputs_embeds"] = self.embed_tokens(inputs["input_ids"]) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs["inputs_embeds"] + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout(hidden_states, training=inputs["training"]) # check attention mask and invert if inputs["attention_mask"] is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(inputs["attention_mask"]) else: attention_mask = None encoder_states = () if inputs["output_hidden_states"] else None all_attentions = () if inputs["output_attentions"] else None # check if head_mask has a correct number of layers specified if desired # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if inputs["head_mask"] is not None and tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(inputs["head_mask"])[0], len(self.layers), message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.", ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if inputs["output_hidden_states"]: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if inputs["training"] and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, inputs["head_mask"][idx] if inputs["head_mask"] is not None else None, ) if inputs["output_attentions"]: all_attentions += (attn,) if inputs["output_hidden_states"]: encoder_states = encoder_states + (hidden_states,) if not inputs["return_dict"]: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TFBartDecoder(tf.keras.layers.Layer): config_class = BartConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`TFBartDecoderLayer` Args: config: BartConfig embed_tokens: output embedding """ def __init__(self, config: BartConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.dropout = tf.keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" Args: input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.BartTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ encoder_hidden_states (:obj:`tf.Tensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = ( shape_list(inputs["past_key_values"][0][0])[2] if inputs["past_key_values"] is not None else 0 ) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) if inputs["inputs_embeds"] is None: inputs["inputs_embeds"] = self.embed_tokens(inputs["input_ids"]) * self.embed_scale hidden_states = inputs["inputs_embeds"] # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if inputs["attention_mask"] is not None: combined_attention_mask = combined_attention_mask + _expand_mask( inputs["attention_mask"], tgt_len=input_shape[-1] ) if inputs["encoder_hidden_states"] is not None and inputs["encoder_attention_mask"] is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] inputs["encoder_attention_mask"] = _expand_mask(inputs["encoder_attention_mask"], tgt_len=input_shape[-1]) hidden_states = self.layernorm_embedding(hidden_states + positions) hidden_states = self.dropout(hidden_states, training=inputs["training"]) # decoder layers all_hidden_states = () if inputs["output_hidden_states"] else None all_self_attns = () if inputs["output_attentions"] else None all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None present_key_values = () if inputs["use_cache"] else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. for attn_mask in ["head_mask", "cross_attn_head_mask"]: if inputs[attn_mask] is not None and tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(inputs[attn_mask])[0], len(self.layers), message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.", ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if inputs["output_hidden_states"]: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if inputs["training"] and (dropout_probability < self.layerdrop): continue past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=inputs["encoder_hidden_states"], encoder_attention_mask=inputs["encoder_attention_mask"], layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None, cross_attn_layer_head_mask=inputs["cross_attn_head_mask"][idx] if inputs["cross_attn_head_mask"] is not None else None, past_key_value=past_key_value, ) if inputs["use_cache"]: present_key_values += (present_key_value,) if inputs["output_attentions"]: all_self_attns += (layer_self_attn,) if inputs["encoder_hidden_states"] is not None: all_cross_attns += (layer_cross_attn,) if inputs["output_hidden_states"]: all_hidden_states += (hidden_states,) if inputs["output_attentions"]: all_self_attns = list(all_self_attns) if inputs["encoder_hidden_states"] is not None: all_cross_attns = list(all_cross_attns) if inputs["use_cache"]: present_key_values = (inputs["encoder_hidden_states"], present_key_values) if not inputs["return_dict"]: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) @keras_serializable class TFBartMainLayer(tf.keras.layers.Layer): config_class = BartConfig def __init__(self, config: BartConfig, load_weight_prefix=None, **kwargs): super().__init__(**kwargs) self.config = config self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, config.pad_token_id, name="model.shared") # set tf scope correctly if load_weight_prefix is None: load_weight_prefix = "model.shared" with tf.compat.v1.variable_scope(load_weight_prefix) as shared_abs_scope_name: pass # Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope. embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name) embed_tokens.vocab_size = self.shared.vocab_size embed_tokens.hidden_size = self.shared.hidden_size self.encoder = TFBartEncoder(config, embed_tokens, name="encoder") self.decoder = TFBartDecoder(config, embed_tokens, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared.weight = new_embeddings self.shared.vocab_size = self.shared.weight.shape[0] # retrieve correct absolute scope for embed token wrapper with tf.compat.v1.variable_scope("model.shared") as shared_abs_scope_name: pass # Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope. embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name) self.encoder.set_embed_tokens(embed_tokens) self.decoder.set_embed_tokens(embed_tokens) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["decoder_input_ids"] is None and inputs["decoder_inputs_embeds"] is None: inputs["use_cache"] = False inputs["output_hidden_states"] = ( inputs["output_hidden_states"] if inputs["output_hidden_states"] is not None else self.config.output_hidden_states ) if inputs["decoder_input_ids"] is None and inputs["input_ids"] is not None: inputs["decoder_input_ids"] = shift_tokens_right( inputs["input_ids"], self.config.pad_token_id, self.config.decoder_start_token_id ) if inputs["encoder_outputs"] is None: inputs["encoder_outputs"] = self.encoder( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], TFBaseModelOutput): inputs["encoder_outputs"] = TFBaseModelOutput( last_hidden_state=inputs["encoder_outputs"][0], hidden_states=inputs["encoder_outputs"][1] if len(inputs["encoder_outputs"]) > 1 else None, attentions=inputs["encoder_outputs"][2] if len(inputs["encoder_outputs"]) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], tuple): inputs["encoder_outputs"] = inputs["encoder_outputs"].to_tuple() decoder_outputs = self.decoder( inputs["decoder_input_ids"], attention_mask=inputs["decoder_attention_mask"], encoder_hidden_states=inputs["encoder_outputs"][0], encoder_attention_mask=inputs["attention_mask"], head_mask=inputs["decoder_head_mask"], cross_attn_head_mask=inputs["cross_attn_head_mask"], past_key_values=inputs["past_key_values"], inputs_embeds=inputs["decoder_inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) if not inputs["return_dict"]: return decoder_outputs + inputs["encoder_outputs"] return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state, encoder_hidden_states=inputs["encoder_outputs"].hidden_states, encoder_attentions=inputs["encoder_outputs"].attentions, ) @add_start_docstrings( "The bare BART Model outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING, ) class TFBartModel(TFBartPretrainedModel): _requires_load_weight_prefix = True def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.model( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], decoder_input_ids=inputs["decoder_input_ids"], decoder_attention_mask=inputs["decoder_attention_mask"], head_mask=inputs["head_mask"], decoder_head_mask=inputs["decoder_head_mask"], cross_attn_head_mask=inputs["cross_attn_head_mask"], encoder_outputs=inputs["encoder_outputs"], past_key_values=inputs["past_key_values"], inputs_embeds=inputs["inputs_embeds"], decoder_inputs_embeds=inputs["decoder_inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) @add_start_docstrings( "The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING, ) class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] _requires_load_weight_prefix = True def __init__(self, config, load_weight_prefix=None, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the the sake of consistency. self.final_logits_bias = self.add_weight( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.final_logits_bias} def set_bias(self, value): self.final_logits_bias = value["final_logits_bias"] @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BART_GENERATION_EXAMPLE) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. Returns: """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["labels"] is not None: inputs["labels"] = tf.where( inputs["labels"] == self.config.pad_token_id, tf.fill(shape_list(inputs["labels"]), -100), inputs["labels"], ) inputs["use_cache"] = False if inputs["decoder_input_ids"] is None: inputs["decoder_input_ids"] = shift_tokens_right( inputs["labels"], self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( inputs["input_ids"], attention_mask=inputs["attention_mask"], decoder_input_ids=inputs["decoder_input_ids"], encoder_outputs=inputs["encoder_outputs"], decoder_attention_mask=inputs["decoder_attention_mask"], head_mask=inputs["head_mask"], decoder_head_mask=inputs["decoder_head_mask"], cross_attn_head_mask=inputs["cross_attn_head_mask"], past_key_values=inputs["past_key_values"], inputs_embeds=inputs["inputs_embeds"], decoder_inputs_embeds=inputs["decoder_inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) lm_logits = self.model.shared(outputs[0], mode="linear") lm_logits = lm_logits + self.final_logits_bias masked_lm_loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], lm_logits) if not inputs["return_dict"]: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, decoder_input_ids, past, attention_mask, head_mask=None, use_cache=None, **kwargs, ) -> Dict: assert past is not None and len(past) in {1, 2}, f"past has to be an iterable of length 1,2 got {past}" if len(past) == 1: assert isinstance(past[0], tf.Tensor), f"`past[0]` has to be of type `tf.Tensor`, but is {type(past[0])}" encoder_outputs = TFBaseModelOutput(last_hidden_state=past[0]) past_key_values = None else: assert ( len(past) == 2 ), "`past` has to be of length 2 with the encoder_outputs at the first position and past_key_values at the second position." encoder_outputs, past_key_values = past if isinstance(encoder_outputs, tuple): assert isinstance( encoder_outputs[0], tf.Tensor ), f"`encoder_outputs[0]` has to be of type `tf.Tensor`, but is {type(encoder_outputs[0])}" encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs[0]) elif isinstance(encoder_outputs, tf.Tensor): encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs) assert ( past_key_values ), f"decoder cached states must be truthy. got {past_key_values} from the 2nd element of past" decoder_input_ids = decoder_input_ids[:, -1:] assert isinstance( encoder_outputs, TFBaseModelOutput ), f"encoder_outputs should be a TFBaseModelOutput, Instead got {type(encoder_outputs)}." return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } @staticmethod def _reorder_cache(past, beam_idx): if len(past) == 1: return past past_key_values = past[1] reordered_past = () for layer_past_key_values in past_key_values: reordered_past += ( tuple(tf.gather(layer_past_key_value, beam_idx) for layer_past_key_value in layer_past_key_values[:2]) + layer_past_key_values[2:], ) return (past[0], reordered_past)
46.639018
236
0.657992
ed931e1769f353296b9c3df61f997c5d42fc8db4
7,422
py
Python
deepdoctection/extern/tp/tpfrcnn/modeling/model_box.py
deepdoctection/deepdoctection
7e0d7396e5ef8bf8109904e09c5d4ee56cb5a036
[ "Apache-2.0" ]
39
2021-12-14T11:05:25.000Z
2022-03-31T18:50:58.000Z
deepdoctection/extern/tp/tpfrcnn/modeling/model_box.py
deepdoctection/deepdoctection
7e0d7396e5ef8bf8109904e09c5d4ee56cb5a036
[ "Apache-2.0" ]
17
2022-01-04T14:32:26.000Z
2022-03-29T14:01:36.000Z
deepdoctection/extern/tp/tpfrcnn/modeling/model_box.py
deepdoctection/deepdoctection
7e0d7396e5ef8bf8109904e09c5d4ee56cb5a036
[ "Apache-2.0" ]
4
2022-01-11T16:40:17.000Z
2022-03-30T02:09:55.000Z
# -*- coding: utf-8 -*- # File: model_box.py # Copyright (c) Tensorpack Contributors # Licensed under the Apache License, Version 2.0 (the "License") """ This file is modified from https://github.com/tensorpack/tensorpack/blob/master/examples/FasterRCNN/modeling/model_box.py """ from collections import namedtuple import numpy as np # pylint: disable=import-error import tensorflow as tf from tensorpack.tfutils.scope_utils import under_name_scope # pylint: enable=import-error @under_name_scope() def clip_boxes(boxes, window, name=None): """ clip boxes :param boxes: nx4, xyxy :param window: [h, w] :param name: (str) :return: """ boxes = tf.maximum(boxes, 0.0) mat = tf.tile(tf.reverse(window, [0]), [2]) # (4,) boxes = tf.minimum(boxes, tf.cast(mat, tf.float32), name=name) return boxes @under_name_scope() def decode_bbox_target(box_predictions, anchors, preproc_max_size): """ Decode bbox target :param box_predictions: (..., 4), logits :param anchors: (..., 4), float box. Must have the same shape :param preproc_max_size: int :return: (..., 4), float32. With the same shape. """ orig_shape = tf.shape(anchors) box_pred_txtytwth = tf.reshape(box_predictions, (-1, 2, 2)) box_pred_txty, box_pred_twth = tf.split(box_pred_txtytwth, 2, axis=1) # pylint: disable =E1124, E1120 # each is (...)x1x2 anchors_x1y1x2y2 = tf.reshape(anchors, (-1, 2, 2)) anchors_x1y1, anchors_x2y2 = tf.split(anchors_x1y1x2y2, 2, axis=1) # pylint: disable =E1124, E1120 waha = anchors_x2y2 - anchors_x1y1 xaya = (anchors_x2y2 + anchors_x1y1) * 0.5 clip = np.log(preproc_max_size / 16.0) wbhb = tf.exp(tf.minimum(box_pred_twth, clip)) * waha xbyb = box_pred_txty * waha + xaya x1y1 = xbyb - wbhb * 0.5 x2y2 = xbyb + wbhb * 0.5 # (...)x1x2 out = tf.concat([x1y1, x2y2], axis=-2) # pylint: disable =E1123, E1120 return tf.reshape(out, orig_shape) @under_name_scope() def encode_bbox_target(boxes, anchors): """ Encode bbox target :param boxes: (..., 4), float32 :param anchors: (..., 4), float32 :return: (..., 4), float32 with the same shape. """ anchors_x1y1x2y2 = tf.reshape(anchors, (-1, 2, 2)) anchors_x1y1, anchors_x2y2 = tf.split(anchors_x1y1x2y2, 2, axis=1) # pylint: disable =E1124, E1120 waha = anchors_x2y2 - anchors_x1y1 xaya = (anchors_x2y2 + anchors_x1y1) * 0.5 boxes_x1y1x2y2 = tf.reshape(boxes, (-1, 2, 2)) boxes_x1y1, boxes_x2y2 = tf.split(boxes_x1y1x2y2, 2, axis=1) # pylint: disable =E1124, E1120 wbhb = boxes_x2y2 - boxes_x1y1 xbyb = (boxes_x2y2 + boxes_x1y1) * 0.5 # Note that here not all boxes are valid. Some may be zero txty = (xbyb - xaya) / waha twth = tf.math.log(wbhb / waha) # may contain -inf for invalid boxes encoded = tf.concat([txty, twth], axis=1) # (-1x2x2) # pylint: disable =E1123, E1120 return tf.reshape(encoded, tf.shape(boxes)) @under_name_scope() def crop_and_resize(image, boxes, box_ind, crop_size, pad_border=True): """ Crop and resize :param image: NCHW :param boxes: nx4, x1y1x2y2 :param box_ind: (n,) :param crop_size: (int) :param pad_border: bool :return: n,C,size,size """ assert isinstance(crop_size, int), crop_size boxes = tf.stop_gradient(boxes) # TF's crop_and_resize produces zeros on border if pad_border: # this can be quite slow image = tf.pad(image, [[0, 0], [0, 0], [1, 1], [1, 1]], mode="SYMMETRIC") # pylint: disable =E1123, E1120 boxes += 1 @under_name_scope() def transform_fpcoor_for_tf(boxes, image_shape, crop_shape): """ The way tf.image.crop_and_resize works (with normalized box): Initial point (the value of output[0]): x0_box * (W_img - 1) Spacing: w_box * (W_img - 1) / (W_crop - 1) Use the above grid to bi linear sample. However, what we want is (with fpcoor box): Spacing: w_box / W_crop Initial point: x0_box + spacing/2 - 0.5 (-0.5 because bi linear sample (in my definition) assumes floating point coordinate (0.0, 0.0) is the same as pixel value (0, 0)) This function transform fpcoor boxes to a format to be used by tf.image.crop_and_resize :param boxes: nx4, x1y1x2y2 :param image_shape: shape :param crop_shape: crop shape :return: y1x1y2x2 """ x_0, y_0, x_1, y_1 = tf.split(boxes, 4, axis=1) # pylint: disable =E1124, E1120 spacing_w = (x_1 - x_0) / tf.cast(crop_shape[1], tf.float32) spacing_h = (y_1 - y_0) / tf.cast(crop_shape[0], tf.float32) imshape = [tf.cast(image_shape[0] - 1, tf.float32), tf.cast(image_shape[1] - 1, tf.float32)] nx0 = (x_0 + spacing_w / 2 - 0.5) / imshape[1] ny0 = (y_0 + spacing_h / 2 - 0.5) / imshape[0] n_w = spacing_w * tf.cast(crop_shape[1] - 1, tf.float32) / imshape[1] n_h = spacing_h * tf.cast(crop_shape[0] - 1, tf.float32) / imshape[0] return tf.concat([ny0, nx0, ny0 + n_h, nx0 + n_w], axis=1) # pylint: disable =E1123, E1120 image_shape = tf.shape(image)[2:] boxes = transform_fpcoor_for_tf(boxes, image_shape, [crop_size, crop_size]) image = tf.transpose(image, [0, 2, 3, 1]) # nhwc ret = tf.image.crop_and_resize(image, boxes, tf.cast(box_ind, tf.int32), crop_size=[crop_size, crop_size]) ret = tf.transpose(ret, [0, 3, 1, 2]) # ncss return ret @under_name_scope() def roi_align(feature_map, boxes, resolution): """ Roi align :param feature_map: 1xCxHxW :param boxes: Nx4 float box :param resolution: output spatial resolution :return: Roi aligned tf.Tensor """ # sample 4 locations per roi bin ret = crop_and_resize(feature_map, boxes, tf.zeros(tf.shape(boxes)[0], dtype=tf.int32), resolution * 2) try: avg_pool = tf.nn.avg_pool2d except AttributeError: avg_pool = tf.nn.avg_pool ret = avg_pool(ret, [1, 1, 2, 2], [1, 1, 2, 2], padding="SAME", data_format="NCHW") return ret class RPNAnchors(namedtuple("_RPNAnchors", ["boxes", "gt_labels", "gt_boxes"])): """ boxes (FS x FS x NA x 4): The anchor boxes. gt_labels (FS x FS x NA): gt_boxes (FS x FS x NA x 4): Ground-truth boxes corresponding to each anchor. """ def encoded_gt_boxes(self): """ encoded ground truth boxes """ return encode_bbox_target(self.gt_boxes, self.boxes) def decode_logits(self, logits, preproc_max_size): """ Decode logits :param logits: logits :param preproc_max_size: preprocess to max size """ return decode_bbox_target(logits, self.boxes, preproc_max_size) @under_name_scope() def narrow_to(self, featuremap): """ Slice anchors to the spatial size of this feature map. """ shape2d = tf.shape(featuremap)[2:] # h,w slice3d = tf.concat([shape2d, [-1]], axis=0) # pylint: disable =E1123, E1120 slice4d = tf.concat([shape2d, [-1, -1]], axis=0) # pylint: disable =E1123, E1120 boxes = tf.slice(self.boxes, [0, 0, 0, 0], slice4d) gt_labels = tf.slice(self.gt_labels, [0, 0, 0], slice3d) gt_boxes = tf.slice(self.gt_boxes, [0, 0, 0, 0], slice4d) return RPNAnchors(boxes, gt_labels, gt_boxes)
34.202765
114
0.634196
3075459d16a2d367e78f332f074290c2a1933d29
512
py
Python
domain/src/gateway/client_gateway.py
python-jacksonsr45/web_services
6e37d4f00e9e59a35f06f05ce955ba53242ed9ee
[ "MIT" ]
null
null
null
domain/src/gateway/client_gateway.py
python-jacksonsr45/web_services
6e37d4f00e9e59a35f06f05ce955ba53242ed9ee
[ "MIT" ]
null
null
null
domain/src/gateway/client_gateway.py
python-jacksonsr45/web_services
6e37d4f00e9e59a35f06f05ce955ba53242ed9ee
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from ..request import ClientRequest class ClientInterface(ABC): @classmethod @abstractmethod def insert_client(cls, request: ClientRequest): raise Exception("Method not implemented") @classmethod @abstractmethod def update_client(cls, request: ClientRequest): raise Exception("Method not implemented") @classmethod @abstractmethod def find_client_by_id(cls, client_id): raise Exception("Method not implemented")
25.6
51
0.722656
100eac1fe5bf134fe922de1cda775ffac6c33a74
123
py
Python
test/test_quaero.py
Cynnexis/Quaero
39c78fd560e72eaf9af1bb8b98d9dcd250b8a5f1
[ "MIT" ]
null
null
null
test/test_quaero.py
Cynnexis/Quaero
39c78fd560e72eaf9af1bb8b98d9dcd250b8a5f1
[ "MIT" ]
null
null
null
test/test_quaero.py
Cynnexis/Quaero
39c78fd560e72eaf9af1bb8b98d9dcd250b8a5f1
[ "MIT" ]
null
null
null
from unittest import TestCase from qr import Quaero class TestQuaero(TestCase): def test_search(self): self.fail()
12.3
29
0.756098
0cbf1677d082a7664d7a7c63f0f95cfcf2cbc2ba
1,438
py
Python
infra/base-images/base-msan-builder/wrapper_utils.py
rbehjati/oss-fuzz
a31e58fb5c9984915fdc79610660b326df20b937
[ "Apache-2.0" ]
17
2019-05-20T18:29:33.000Z
2021-10-10T08:20:01.000Z
infra/base-images/base-msan-builder/wrapper_utils.py
rbehjati/oss-fuzz
a31e58fb5c9984915fdc79610660b326df20b937
[ "Apache-2.0" ]
10
2020-08-06T11:48:16.000Z
2021-06-28T10:17:12.000Z
infra/base-images/base-msan-builder/wrapper_utils.py
rbehjati/oss-fuzz
a31e58fb5c9984915fdc79610660b326df20b937
[ "Apache-2.0" ]
2
2019-09-27T17:18:27.000Z
2019-09-27T17:18:54.000Z
#!/usr/bin/env python # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ from __future__ import print_function import contextlib import os import subprocess def DpkgHostArchitecture(): """Return the host architecture.""" return subprocess.check_output( ['dpkg-architecture', '-qDEB_HOST_GNU_TYPE']).strip() def InstallWrapper(bin_dir, name, contents, extra_names=None): """Install a custom wrapper script into |bin_dir|.""" path = os.path.join(bin_dir, name) with open(path, 'w') as f: f.write(contents) os.chmod(path, 0755) if extra_names: CreateSymlinks(path, bin_dir, extra_names) def CreateSymlinks(original_path, bin_dir, extra_names): """Create symlinks.""" for extra_name in extra_names: extra_path = os.path.join(bin_dir, extra_name) os.symlink(original_path, extra_path)
29.958333
80
0.700278
e3e6aa71f774b5f066cc8e9504bcb538b38db9d9
142
py
Python
7_adapter&facade/adapter/mallard_duck.py
hypersport/Head-First-Design-Patterns-Python
0c8b831ae89ebbbef8b203b96508deb7e3063590
[ "MIT" ]
null
null
null
7_adapter&facade/adapter/mallard_duck.py
hypersport/Head-First-Design-Patterns-Python
0c8b831ae89ebbbef8b203b96508deb7e3063590
[ "MIT" ]
null
null
null
7_adapter&facade/adapter/mallard_duck.py
hypersport/Head-First-Design-Patterns-Python
0c8b831ae89ebbbef8b203b96508deb7e3063590
[ "MIT" ]
null
null
null
from duck import Duck class MallardDuck(Duck): def quack(self): print('Quack') def fly(self): print('I am flying')
14.2
28
0.591549
52c138fc758d0138a994169299d8535139d165b7
760
py
Python
acmicpc/python/14418.py
hyeongyun0916/Algorithm
75f77b2500bb08f24706a8be26497aeeebd2da4f
[ "MIT" ]
1
2018-12-21T01:33:05.000Z
2018-12-21T01:33:05.000Z
acmicpc/python/14418.py
hyeongyun0916/Algorithm
75f77b2500bb08f24706a8be26497aeeebd2da4f
[ "MIT" ]
null
null
null
acmicpc/python/14418.py
hyeongyun0916/Algorithm
75f77b2500bb08f24706a8be26497aeeebd2da4f
[ "MIT" ]
null
null
null
first = list(map(int,input().split())) second = list(map(int,input().split())) third = list(map(int,input().split())) first.sort(reverse=True) second.sort(reverse=True) third.sort(reverse=True) sortedArr = [first, second, third] # print(sortedArr) sortedArr.sort(reverse=True) # print(sortedArr) a,b,c,d,e,f = sortedArr[0][0], sortedArr[0][1], sortedArr[1][0], sortedArr[1][1], sortedArr[2][0], sortedArr[2][1] # print(a,b,c,d,e,f) flag = False if a-b==c: if a-b==f: if a==d+e: flag = True if a-b==e: if a==d+f: flag = True elif a-b==d: if a-b==f: if a==c+e: flag = True if a-b==e: if a==c+f: flag = True elif a == c == e == b+d+f: flag = True if flag: print("YES") else: print("NO")
12.881356
114
0.569737
9b37c07fbaeb590e3047c867d019d5c7c6ef93b5
1,552
py
Python
dojo/unittests/tools/test_safety_parser.py
axelpavageau/django-DefectDojo
00b425742b783ada0f432241c2812ac1257feb73
[ "BSD-3-Clause" ]
1,772
2018-01-22T23:32:15.000Z
2022-03-31T14:49:33.000Z
dojo/unittests/tools/test_safety_parser.py
axelpavageau/django-DefectDojo
00b425742b783ada0f432241c2812ac1257feb73
[ "BSD-3-Clause" ]
3,461
2018-01-20T19:12:28.000Z
2022-03-31T17:14:39.000Z
dojo/unittests/tools/test_safety_parser.py
axelpavageau/django-DefectDojo
00b425742b783ada0f432241c2812ac1257feb73
[ "BSD-3-Clause" ]
1,173
2018-01-23T07:10:23.000Z
2022-03-31T14:40:43.000Z
from django.test import TestCase from dojo.models import Test from dojo.tools.safety.parser import SafetyParser class TestSafetyParser(TestCase): def test_example_report(self): testfile = open("dojo/unittests/scans/safety/example_report.json") parser = SafetyParser() findings = parser.get_findings(testfile, Test()) self.assertEqual(3, len(findings)) def test_no_cve(self): testfile = open("dojo/unittests/scans/safety/no_cve.json") parser = SafetyParser() findings = parser.get_findings(testfile, Test()) self.assertEqual(1, len(findings)) def test_empty_report(self): testfile = open("dojo/unittests/scans/safety/empty.json") parser = SafetyParser() findings = parser.get_findings(testfile, Test()) self.assertEqual(0, len(findings)) def test_multiple_cves(self): testfile = open("dojo/unittests/scans/safety/multiple_cves.json") parser = SafetyParser() findings = parser.get_findings(testfile, Test()) self.assertEqual(1, len(findings)) def test_multiple2(self): testfile = open("dojo/unittests/scans/safety/many_vulns.json") parser = SafetyParser() findings = parser.get_findings(testfile, Test()) self.assertEqual(5, len(findings)) for finding in findings: if "39608" == finding.unique_id_from_tool: self.assertEqual("httplib2", finding.component_name) self.assertEqual("0.18.1", finding.component_version)
37.853659
74
0.670747