hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
39fb4c6ca9ae28efcb16046a1e30c905f41cb094
2,895
py
Python
debug_toolbar/toolbar/loader.py
philz/django-debug-toolbar
aa07a663cb7b94cf626540112d35f991e5195deb
[ "BSD-3-Clause" ]
4
2015-12-16T22:21:14.000Z
2016-05-09T14:18:20.000Z
debug_toolbar/toolbar/loader.py
boykun/django-debug-toolbar
08b6a97d759e9808962cafd5a5ef3bab3642ccdb
[ "BSD-3-Clause" ]
null
null
null
debug_toolbar/toolbar/loader.py
boykun/django-debug-toolbar
08b6a97d759e9808962cafd5a5ef3bab3642ccdb
[ "BSD-3-Clause" ]
null
null
null
""" The main DebugToolbar class that loads and renders the Toolbar. """ from django.template.loader import render_to_string class DebugToolbar(object): def __init__(self, request): self.request = request self.panels = [] self.config = { 'INTERCEPT_REDIRECTS': True, } # Override this tuple by copying to settings.py as `DEBUG_TOOLBAR_PANELS` self.default_panels = ( 'debug_toolbar.panels.version.VersionDebugPanel', 'debug_toolbar.panels.timer.TimerDebugPanel', 'debug_toolbar.panels.settings_vars.SettingsVarsDebugPanel', 'debug_toolbar.panels.headers.HeaderDebugPanel', 'debug_toolbar.panels.request_vars.RequestVarsDebugPanel', 'debug_toolbar.panels.sql.SQLDebugPanel', 'debug_toolbar.panels.template.TemplateDebugPanel', #'debug_toolbar.panels.cache.CacheDebugPanel', 'debug_toolbar.panels.logger.LoggingPanel', ) self.load_panels() def load_panels(self): """ Populate debug panels """ from django.conf import settings from django.core import exceptions # Check if settings has a DEBUG_TOOLBAR_PANELS, otherwise use default if hasattr(settings, 'DEBUG_TOOLBAR_PANELS'): self.default_panels = settings.DEBUG_TOOLBAR_PANELS # Check if settings has a DEBUG_TOOLBAR_CONFIG and updated config if hasattr(settings, 'DEBUG_TOOLBAR_CONFIG'): self.config.update(settings.DEBUG_TOOLBAR_CONFIG) for panel_path in self.default_panels: try: dot = panel_path.rindex('.') except ValueError: raise exceptions.ImproperlyConfigured, '%s isn\'t a debug panel module' % panel_path panel_module, panel_classname = panel_path[:dot], panel_path[dot+1:] try: mod = __import__(panel_module, {}, {}, ['']) except ImportError, e: raise exceptions.ImproperlyConfigured, 'Error importing debug panel %s: "%s"' % (panel_module, e) try: panel_class = getattr(mod, panel_classname) except AttributeError: raise exceptions.ImproperlyConfigured, 'Toolbar Panel module "%s" does not define a "%s" class' % (panel_module, panel_classname) try: panel_instance = panel_class() except: print panel_class raise # Bubble up problem loading panel self.panels.append(panel_instance) def render_toolbar(self): """ Renders the overall Toolbar with panels inside. """ return render_to_string('debug_toolbar/base.html', { 'panels': self.panels, 'BASE_URL': self.request.META.get('SCRIPT_NAME', ''), })
39.657534
145
0.620725
f14e31dc8302ae83fefc9a4de3bb7e919eb10e8f
1,457
py
Python
src/beginningMetal/11_AmbientLighting/Final/pyMetal/mScene.py
pome-ta/pystaMetalStudy
530248ad8621ec951fcbaf450ebd26ac2752e540
[ "MIT" ]
1
2021-08-05T04:31:02.000Z
2021-08-05T04:31:02.000Z
src/beginningMetal/11_AmbientLighting/Final/pyMetal/mScene.py
pome-ta/pystaMetalStudy
530248ad8621ec951fcbaf450ebd26ac2752e540
[ "MIT" ]
2
2021-08-14T03:33:12.000Z
2021-11-11T06:25:01.000Z
src/beginningMetal/11_AmbientLighting/Final/pyMetal/mScene.py
pome-ta/pystaMetalStudy
530248ad8621ec951fcbaf450ebd26ac2752e540
[ "MIT" ]
null
null
null
import ctypes from .camera import Camera from .mNode import Node from .pyTypes import SceneConstants, Light class Scene(Node): def __init__(self, device, size): super().__init__() self.device = device self.size = size self.camera = Camera() self.sceneConstants = SceneConstants() self.light = Light() self.deltaTime = None # todo: self.size = bounds(x, y, width, height) self.camera.aspect = self.size[2] / self.size[3] self.camera.position.z = -6.0 self.add_childNode_(self.camera) def update_deltaTime_(self, deltaTime): pass def render_commandEncoder_deltaTime_(self, commandEncoder, deltaTime): self.update_deltaTime_(deltaTime) self.sceneConstants.projectionMatrix = self.camera.projectionMatrix() commandEncoder.setFragmentBytes_length_atIndex_( ctypes.byref(self.light), ctypes.sizeof(Light), 3) # print(ctypes.byref(self.light)) # print(ctypes.sizeof(Light)) commandEncoder.setVertexBytes_length_atIndex_( ctypes.byref(self.sceneConstants), ctypes.sizeof(SceneConstants), 2) # print(ctypes.byref(self.sceneConstants)) # print(ctypes.sizeof(SceneConstants)) for child in self.children: child.render_commandEncoder_parentModelViewMatrix_( commandEncoder, self.camera.viewMatrix()) def sceneSizeWillChange_size_(self, size): width, height = size self.camera.aspect = width / height
29.734694
73
0.706932
fcbce2436f0dc65683bb8ac87d5c24907e05698c
509
py
Python
algorithm/680-valid-palindrome-2/solution2.py
tonylixu/devops
c820eb396569e1dc8dad7bd682e37498dde081ba
[ "Apache-2.0" ]
null
null
null
algorithm/680-valid-palindrome-2/solution2.py
tonylixu/devops
c820eb396569e1dc8dad7bd682e37498dde081ba
[ "Apache-2.0" ]
null
null
null
algorithm/680-valid-palindrome-2/solution2.py
tonylixu/devops
c820eb396569e1dc8dad7bd682e37498dde081ba
[ "Apache-2.0" ]
null
null
null
def valid_palindrome(s): """ :type s: str :rtype: bool """ lo, hi = 0, len(s) - 1 while lo < hi: if s[lo] != s[hi]: s1 = s[:lo] + s[lo+1:] s2 = s[:hi] + s[hi+1:] return is_palindrome(s1) or is_palindrome(s2) lo += 1 hi -= 1 return True def is_palindrome(s): if s == s[::-1]: return True else: return False if __name__ == '__main__': s = 'cbbcc' print valid_palindrome(s)
20.36
57
0.449902
2fa68c92f903edacace4942da6b878ab3e1e79db
790
py
Python
apps/users/views/login.py
deniskrumko/deniskrumko
613c0c3eac953d2e8482a2e66fce7d3570770b2c
[ "MIT" ]
2
2019-07-09T01:42:04.000Z
2020-04-09T16:44:59.000Z
apps/users/views/login.py
deniskrumko/deniskrumko
613c0c3eac953d2e8482a2e66fce7d3570770b2c
[ "MIT" ]
5
2019-12-30T22:16:38.000Z
2020-09-11T18:13:14.000Z
apps/users/views/login.py
deniskrumko/deniskrumko
613c0c3eac953d2e8482a2e66fce7d3570770b2c
[ "MIT" ]
1
2019-07-09T01:42:07.000Z
2019-07-09T01:42:07.000Z
from django.contrib.auth import authenticate, login from core.views import BaseView class LoginView(BaseView): """View for users to log in.""" menu = 'user' template_name = 'users/login.html' title = 'DK - Главная' description = 'DK - Войти' def post(self, request): """Get username and password to authenticate user.""" username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request, username=username, password=password) if user is not None: login(request, user) next_redirect = self.request.GET.get('next') return self.redirect(next_redirect or 'main:index', use_reverse=not next_redirect) return self.redirect('users:login')
29.259259
94
0.650633
5f450bd03290524368ff21baba792f8c2e5425a8
3,226
py
Python
prepare-commit-msg.py
apiechowicz/git-hooks
a3b26fe8d8395293d932f3d5df80fcf3a06e0caa
[ "Apache-2.0" ]
1
2018-08-11T19:31:25.000Z
2018-08-11T19:31:25.000Z
prepare-commit-msg.py
apiechowicz/git-hooks
a3b26fe8d8395293d932f3d5df80fcf3a06e0caa
[ "Apache-2.0" ]
2
2018-08-11T15:50:34.000Z
2018-08-11T22:34:17.000Z
prepare-commit-msg.py
apiechowicz/git-hooks
a3b26fe8d8395293d932f3d5df80fcf3a06e0caa
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import sys from re import fullmatch from subprocess import check_output SKIP_REBASE_COMMITS = True SKIP_MERGE_COMMITS = True BRANCH_NAME_PATTERN = '^(?:feature|bugfix)-(\d+)$' COMMIT_MESSAGE_TAG_TEMPLATE = '[{}]' COMMIT_MESSAGE_SEPARATOR = ' ' BRANCH_TAG_PREFIX = '#' # 'normal' working branches SPECIAL_BRANCH_TAG = 'HF' # special branches like master, develop, release branches etc. MERGE_COMMIT_PATTERN = "^Merge (?:remote-tracking )?branch '[\w-]+' into [\w-]+$" CAPITALIZE = True REMOVE_TRAILING_DOT = True def main() -> None: commit_message_file = sys.argv[1] branch_name = get_branch_name() if SKIP_REBASE_COMMITS and branch_name_indicates_rebase(branch_name): return commit_message = read_commit_message(commit_message_file) if SKIP_MERGE_COMMITS and is_merge_commit(commit_message): return commit_tag = create_commit_tag(branch_name) new_commit_message = update_commit_message_if_needed(commit_message, commit_tag) if new_commit_message != commit_message: change_commit_message(commit_message_file, new_commit_message) def get_branch_name() -> str: return check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"], encoding='utf-8').strip() def branch_name_indicates_rebase(branch_name: str) -> bool: return branch_name == 'HEAD' def read_commit_message(message_file: str) -> str: with open(message_file, 'r') as file: return file.read().strip() def is_merge_commit(commit_message: str) -> bool: return fullmatch(MERGE_COMMIT_PATTERN, commit_message) is not None def create_commit_tag(branch_name: str) -> str: match = fullmatch(BRANCH_NAME_PATTERN, branch_name) if match: return COMMIT_MESSAGE_TAG_TEMPLATE.format(BRANCH_TAG_PREFIX + match.group(1)) return COMMIT_MESSAGE_TAG_TEMPLATE.format(SPECIAL_BRANCH_TAG) def update_commit_message_if_needed(commit_message: str, branch_tag: str) -> str: if CAPITALIZE: commit_message = commit_message.capitalize() if REMOVE_TRAILING_DOT: commit_message = remove_trailing_dot_if_needed(commit_message) if not is_branch_tag_present(commit_message, branch_tag): commit_message = add_branch_tag(commit_message, branch_tag) return commit_message def remove_trailing_dot_if_needed(commit_message: str) -> str: if commit_message.endswith('.'): return commit_message[:-1] return commit_message def is_branch_tag_present(commit_message: str, branch_tag: str) -> bool: return commit_message.startswith(branch_tag) def add_branch_tag(commit_message: str, branch_tag: str) -> str: return branch_tag + COMMIT_MESSAGE_SEPARATOR + commit_message def change_commit_message(commit_message_file_path: str, new_commit_message: str) -> None: truncate_file(commit_message_file_path) save_message(commit_message_file_path, new_commit_message) def truncate_file(file_path: str) -> None: with open(file_path, 'w') as file_path: file_path.truncate() def save_message(commit_message_file_path: str, new_commit_message: str) -> None: with open(commit_message_file_path, 'w') as file: file.write(new_commit_message) if __name__ == '__main__': main()
33.257732
95
0.753255
8f3c0583c77e173d527da73f2468f70259490756
8,174
py
Python
low_level_simulation/src/rosbridge_suite/rosbridge_library/test/capabilities/test_service_capabilities.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
60
2021-09-07T12:42:48.000Z
2022-03-12T09:30:36.000Z
low_level_simulation/src/rosbridge_suite/rosbridge_library/test/capabilities/test_service_capabilities.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
222
2021-10-29T22:00:27.000Z
2022-03-29T20:56:34.000Z
low_level_simulation/src/rosbridge_suite/rosbridge_library/test/capabilities/test_service_capabilities.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
1
2021-08-13T08:30:25.000Z
2021-08-13T08:30:25.000Z
#!/usr/bin/env python import rospy import rostest import unittest from json import loads, dumps from rosbridge_library.capabilities.advertise_service import AdvertiseService from rosbridge_library.capabilities.unadvertise_service import UnadvertiseService from rosbridge_library.capabilities.call_service import CallService from rosbridge_library.capabilities.service_response import ServiceResponse from rosbridge_library.protocol import Protocol from rosbridge_library.protocol import InvalidArgumentException, MissingArgumentException class TestServiceCapabilities(unittest.TestCase): def setUp(self): self.proto = Protocol(self._testMethodName) # change the log function so we can verify errors are logged self.proto.log = self.mock_log # change the send callback so we can access the rosbridge messages # being sent self.proto.send = self.local_send_cb self.advertise = AdvertiseService(self.proto) self.unadvertise = UnadvertiseService(self.proto) self.response = ServiceResponse(self.proto) self.received_message = None self.log_entries = [] def local_send_cb(self, msg): self.received_message = msg def mock_log(self, loglevel, message, _=None): self.log_entries.append((loglevel, message)) def test_advertise_missing_arguments(self): advertise_msg = loads(dumps({"op": "advertise_service"})) self.assertRaises(MissingArgumentException, self.advertise.advertise_service, advertise_msg) def test_advertise_invalid_arguments(self): advertise_msg = loads(dumps({"op": "advertise_service", "type": 42, "service": None})) self.assertRaises(InvalidArgumentException, self.advertise.advertise_service, advertise_msg) def test_response_missing_arguments(self): response_msg = loads(dumps({"op": "service_response"})) self.assertRaises(MissingArgumentException, self.response.service_response, response_msg) # this message has the optional fields, with correct types, but not the # required ones response_msg = loads(dumps({"op": "service_response", "id": "dummy_service", "values": "none"})) self.assertRaises(MissingArgumentException, self.response.service_response, response_msg) def test_response_invalid_arguments(self): response_msg = loads(dumps({"op": "service_response", "service": 5, "result": "error"})) self.assertRaises(InvalidArgumentException, self.response.service_response, response_msg) def test_advertise_service(self): service_path = "/set_bool_1" advertise_msg = loads(dumps({"op": "advertise_service", "type": "std_srvs/SetBool", "service": service_path})) self.advertise.advertise_service(advertise_msg) # This throws an exception if the timeout is exceeded (i.e. the service # is not properly advertised) rospy.wait_for_service(service_path, 1.0) def test_call_advertised_service(self): service_path = "/set_bool_2" advertise_msg = loads(dumps({"op": "advertise_service", "type": "std_srvs/SetBool", "service": service_path})) self.advertise.advertise_service(advertise_msg) # Call the service via rosbridge because rospy.ServiceProxy.call() is # blocking call_service = CallService(self.proto) call_service.call_service(loads(dumps({"op": "call_service", "id": "foo", "service": service_path, "args": [True]}))) loop_iterations = 0 while self.received_message is None: rospy.sleep(rospy.Duration(0.5)) loop_iterations += 1 if loop_iterations > 3: self.fail("did not receive service call rosbridge message " "after waiting 2 seconds") self.assertFalse(self.received_message is None) self.assertTrue("op" in self.received_message) self.assertTrue(self.received_message["op"] == "call_service") self.assertTrue("id" in self.received_message) # Now send the response response_msg = loads(dumps({"op": "service_response", "service": service_path, "id": self.received_message["id"], "values": {"success": True, "message": ""}, "result": True})) self.received_message = None self.response.service_response(response_msg) loop_iterations = 0 while self.received_message is None: rospy.sleep(rospy.Duration(0.5)) loop_iterations += 1 if loop_iterations > 3: self.fail("did not receive service response rosbridge message " "after waiting 2 seconds") self.assertFalse(self.received_message is None) # Rosbridge should forward the response message to the "client" # (i.e. our custom send function, see setUp()) self.assertEqual(self.received_message["op"], "service_response") self.assertTrue(self.received_message["result"]) def test_unadvertise_with_live_request(self): service_path = "/set_bool_3" advertise_msg = loads(dumps({"op": "advertise_service", "type": "std_srvs/SetBool", "service": service_path})) self.advertise.advertise_service(advertise_msg) # Call the service via rosbridge because rospy.ServiceProxy.call() is # blocking call_service = CallService(self.proto) call_service.call_service(loads(dumps({"op": "call_service", "id": "foo", "service": service_path, "args": [True]}))) loop_iterations = 0 while self.received_message is None: rospy.sleep(rospy.Duration(0.5)) loop_iterations += 1 if loop_iterations > 3: self.fail("did not receive service call rosbridge message " "after waiting 2 seconds") self.assertFalse(self.received_message is None) self.assertTrue("op" in self.received_message) self.assertTrue(self.received_message["op"] == "call_service") self.assertTrue("id" in self.received_message) # Now send the response response_msg = loads(dumps({"op": "unadvertise_service", "service": service_path})) self.received_message = None self.unadvertise.unadvertise_service(response_msg) loop_iterations = 0 while self.received_message is None: rospy.sleep(rospy.Duration(0.5)) loop_iterations += 1 if loop_iterations > 3: self.fail("did not receive service response rosbridge message " "after waiting 2 seconds") self.assertFalse(self.received_message is None) # Rosbridge should abort the existing service call with an error # (i.e. "result" should be False) self.assertEqual(self.received_message["op"], "service_response") self.assertFalse(self.received_message["result"]) PKG = 'rosbridge_library' NAME = 'test_service_capabilities' if __name__ == '__main__': rospy.init_node(NAME) rostest.rosrun(PKG, NAME, TestServiceCapabilities)
44.183784
89
0.592855
de38a74ed2236dd2176f62471c6213bdeb0251e5
389
py
Python
src/ontask_lti/utils.py
japesone/ontask_b
17af441f9893c521d2e14011e7790ba4077e3318
[ "MIT" ]
18
2015-02-04T06:56:02.000Z
2021-01-14T08:48:05.000Z
ims_lti_py/utils.py
mitodl/ims_lti_py
d96a6201cf3b63b9e1b33780ef5e29bc65242ceb
[ "MIT" ]
8
2020-06-05T17:03:01.000Z
2022-03-11T23:12:32.000Z
perspectivesx_project/ims_lti_py/utils.py
UQ-UQx/PerspectivesX
94b13aa7d4966b8a34116bd9526d8809a25e0baf
[ "MIT" ]
27
2015-04-16T12:05:42.000Z
2020-12-24T00:32:53.000Z
from uuid import uuid1 def generate_identifier(): return uuid1().__str__() class InvalidLTIConfigError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class InvalidLTIRequestError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
22.882353
40
0.678663
b5cee94316ceebe7929ee6d019d967b00171c86e
21,298
py
Python
examples/get_answer_byrules.py
Borororo/interpretable_ropes
c083cc388998a1cfb6720a92ecb943b0edcee204
[ "Apache-2.0" ]
3
2020-10-03T04:07:19.000Z
2020-11-29T13:48:18.000Z
examples/get_answer_byrules.py
Borororo/Interpretable-Modular-KR-for-MRC
cc921b0e04947663fcc60f0552ca8d8907ca6a1b
[ "Apache-2.0" ]
null
null
null
examples/get_answer_byrules.py
Borororo/Interpretable-Modular-KR-for-MRC
cc921b0e04947663fcc60f0552ca8d8907ca6a1b
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- import json from transformers.data.metrics.squad_metrics import ( compute_f1 ) import os import random def read_predicted_file(predict_file,pred): Object_question_words ={"which",'in which','whose','who','what','for which','on which'} comparative_words =[ 'more', 'less', 'higher', 'lower', 'increase', 'decrease', 'high', 'low', 'harder', 'easier', 'increasing', 'decreasing', 'up', 'down', 'larger', 'smaller','better','worse','faster','slower','weaker','stronger','closer','farther','louder','quieter','correctly','incorrectly','not','yes','no','not' ] positive_words = ['more', 'higher', 'increase', 'high', 'harder', 'increasing', 'up', 'larger', 'better', 'faster', 'stronger', 'closer', 'louder', 'correctly'] negative_words = ['less', 'lower', 'decrease', 'low', 'easier', 'decreasing', 'down', 'smaller', 'worse', 'slower', 'weaker', 'farther', 'quieter', 'incorrectly','fewer','not','avoid'] all_object_scores = [] record={} pred_f1 =[] filtered = [1912355095, 580926078, 2893035919, 3005625773, 4037359159, 1090395805, 1111432861, 1772822810, 1779114266, 3003444033, 1687481522, 373839753, 3209385804, 3128907286, 1746228971, 4088330372, 4227418477, 4047850835, 302402461, 603409309, 2849858743, 2050057087, 336287454, 1787516699, 184586157, 2999947384, 1202686909, 1223723965, 2335934912, 2677049981, 1182285725, 430326667, 4183507762, 1091390005, 1076054581, 3847534556, 4074158044, 955038082, 1423883267, 1626887498, 184177891, 1586058524, 156980418, 1607423284, 1608996147, 3071497657, 3865282641, 1588430868, 3876948090, 3344467660, 3346695902, 3600844723, 3227879116, 3484256179, 2934519278, 3876075109, 2041918832, 1115960569, 1108882681, 2013214064, 3895408229, 2975020526, 3885579536, 356328641, 985605428, 809437101, 494407430, 3999682891, 1562329124, 1505378340, 2022868633, 2022147737, 1729594789, 1730315685, 1082622173, 1205043665, 1081901277, 1204322769] filtered_id = [str(i) for i in filtered] with open(predict_file, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["background"] situation_text = paragraph['situation'] for qa in paragraph['qas']: qas_id = qa['id'] question_text =qa['question'] answer_text = qa['answers'][0]['text'] predicts = qa['predicts'] if any(i==answer_text for i in comparative_words): continue if qas_id in filtered_id: continue if any(question_text.lower().startswith(i) for i in Object_question_words): if max(compute_f1(answer_text, predicts['object1']), compute_f1(answer_text, predicts['object2'])) == 0.0: continue predicts_answer = make_choice_pos(predicts) for word in positive_words: if word in question_text.lower(): predicts_answer = make_choice_pos(predicts) break for word in negative_words: if word in question_text.lower(): if word not in predicts['TP in back'].lower(): predicts_answer = make_choice_neg(predicts) # print(qas_id,predicts_answer) break f1 = compute_f1(remove_punc(answer_text),remove_punc(predicts_answer)) pred_f1.append(compute_f1(remove_punc(answer_text), remove_punc(pred[qas_id]))) record[qas_id] = [f1,answer_text,predicts_answer] all_object_scores.append(f1) else: continue return all_object_scores,record,pred_f1 def read_predicted_file_comparative(predict_file,pred): question_word = ['would','will'] comparative_words = [ 'more', 'less', 'higher', 'lower', 'increase', 'decrease', 'harder', 'easier', 'increasing', 'decreasing', 'larger', 'smaller', 'better', 'worse', 'faster', 'slower', 'weaker', 'stronger', 'closer', 'farther', 'louder', 'quieter', 'correctly', 'incorrectly', 'not', 'yes', 'no', 'not' ] pairs = { 'more':'less', 'higher': 'lower', 'increase':'decrease', 'harder':'easier', 'increasing':'decreasing', 'larger':'smaller', 'better':'worse', 'faster':'slower', 'stronger':'weaker', 'closer':'farther', 'louder':'quieter', 'correctly': 'incorrectly', } filtered = [1912355095, 580926078, 2893035919, 3005625773, 4037359159, 1090395805, 1111432861, 1772822810, 1779114266, 3003444033, 1687481522, 373839753, 3209385804, 3128907286, 1746228971, 4088330372, 4227418477, 4047850835, 302402461, 603409309, 2849858743, 2050057087, 336287454, 1787516699, 184586157, 2999947384, 1202686909, 1223723965, 2335934912, 2677049981, 1182285725, 430326667, 4183507762, 1091390005, 1076054581, 3847534556, 4074158044, 955038082, 1423883267, 1626887498, 184177891, 1586058524, 156980418, 1607423284, 1608996147, 3071497657, 3865282641, 1588430868, 3876948090, 3344467660, 3346695902, 3600844723, 3227879116, 3484256179, 2934519278, 3876075109, 2041918832, 1115960569, 1108882681, 2013214064, 3895408229, 2975020526, 3885579536, 356328641, 985605428, 809437101, 494407430, 3999682891, 1562329124, 1505378340, 2022868633, 2022147737, 1729594789, 1730315685, 1082622173, 1205043665, 1081901277, 1204322769] filtered_id = [str(i) for i in filtered] cnt ={} prediction ={} f1 =[] pred_f1=[] debug={} with open(predict_file, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["background"] situation_text = paragraph['situation'] for qa in paragraph['qas']: candidate=[] qas_id = qa['id'] question_text = qa['question'] answer_text = qa['answers'][0]['text'] predicts = qa['predicts'] if not any(i == answer_text for i in comparative_words): continue if qas_id in filtered_id: continue # if any(question_text.lower().startswith(i) for i in question_word): # continue for key, val in pairs.items(): if key in question_text.lower() and val in question_text.lower(): candidate= [key,val] break if candidate!=[]: o1_ind = question_text.lower().find(remove_punc(predicts["object1"].lower())) o2_ind = question_text.lower().find(remove_punc(predicts["object2"].lower())) than_ind = question_text.lower().find("than") indx = [o1_ind,o2_ind,than_ind] if (o1_ind== -1 and o2_ind ==-1 ) or o1_ind==o2_ind: # print(qas_id,question_text) continue elif o1_ind!= -1 and o2_ind ==-1: if than_ind != -1: if o1_ind<than_ind: o2_ind =1000 elif o1_ind == -1 and o2_ind != -1: if than_ind != -1: if o2_ind < than_ind: o1_ind = 1000 if o1_ind < o2_ind: if int(predicts['TP_relevance']) ==0: prediction[qas_id] = [compute_f1(answer_text,candidate[0]),candidate[0],candidate,indx] f1.append(compute_f1(answer_text,candidate[0])) else: prediction[qas_id] = [compute_f1(answer_text,candidate[1]),candidate[1],candidate,indx] f1.append(compute_f1(answer_text, candidate[1])) else: if int(predicts['TP_relevance']) ==0: prediction[qas_id] = [compute_f1(answer_text,candidate[1]),candidate[1],candidate,indx] f1.append(compute_f1(answer_text, candidate[1])) else: prediction[qas_id] = [compute_f1(answer_text,candidate[0]),candidate[0],candidate,indx] f1.append(compute_f1(answer_text, candidate[0])) pred_f1.append(compute_f1(answer_text, pred[qas_id])) cnt[qas_id] = [question_text,candidate] return pred_f1,f1,prediction def make_choice_pos(predicts): if int(predicts['TP_relevance']) ==0: return predicts["object1"] else: return predicts["object2"] def make_choice_neg(predicts): if int(predicts['TP_relevance']) ==1: return predicts["object1"] else: return predicts["object2"] def remove_punc(text): ends =['.',',',"'s"] if text.endswith('.') or text.endswith(','): text = text[:-1] elif text.endswith("'s"): text = text[:-2] return text def shuffle_and_make_CV(label_path,train_path,dev_path,out_path,fold =5,thresh=2500): t1 = [] t2 = [] t3 = [] t4 = [] t5 = [] with open(label_path, "r", encoding="utf-8")as reader: input_data = json.load(reader) ignored_id=[] cnt = 0 for entry in input_data["data"]: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["background"] situation_text = paragraph['situation'] for qa in paragraph['qas']: qas_id = qa['id'] ignored_id.append(qas_id) all_examples_except_label={} label_data =[] with open(train_path, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["background"] is_label = False for qa in paragraph['qas']: qas_id = qa['id'] if qas_id in ignored_id: is_label = True else: cnt +=1 if not is_label: try: all_examples_except_label[paragraph_text].append(paragraph) except: all_examples_except_label[paragraph_text]=[paragraph] else: label_data.append(paragraph) with open(dev_path, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: is_label = False for qa in paragraph['qas']: qas_id = qa['id'] if qas_id in ignored_id: is_label = True else: cnt += 1 if not is_label: try: all_examples_except_label[paragraph_text].append(paragraph) except: all_examples_except_label[paragraph_text]=[paragraph] l = list(all_examples_except_label.items()) random.shuffle(l) all_examples_except_label = dict(l) current=[] no_q = [] current_len=0 splitted= [] total = 0 for val in all_examples_except_label.values(): for sit in val: current.append(sit) current_len +=len(sit['qas']) total+=len(sit['qas']) if current_len>=thresh and len(splitted)<fold-1: splitted.append(current) no_q.append(current_len) current_len =0 current = [] if len(splitted) == fold - 1: current.append(sit) current_len+=len(sit['qas']) no_q.append(current_len) splitted.append(current) print(total,cnt,no_q) next = input("ok?") if next !="y": pass else: for ind,split in enumerate(splitted): out_path_split =os.path.join(out_path,'split_'+str(ind)+'.json') writer = open(out_path_split,'w+',encoding='utf-8') out = { "version": "1.0", "data": [ { "title": "ropes", "paragraphs": split, }] } writer.write(json.dumps(out,indent=4)) writer.close() setting1 = label_data+splitted[0]+splitted[1]+splitted[2] setting2 = label_data+splitted[0]+splitted[1]+splitted[4] setting3 = label_data+splitted[0]+splitted[3]+splitted[4] setting4 = label_data+splitted[2]+splitted[3]+splitted[4] setting5 = label_data+splitted[1]+splitted[2]+splitted[3] settings = { '123':setting1, '125':setting2, '145':setting3, '345':setting4, '234':setting5 } for key,val in settings.items(): out_path_split = os.path.join(out_path, 'combine_' + str(key) + '.json') writer = open(out_path_split,'w+',encoding='utf-8') out = { "version": "1.0", "data": [ { "title": "ropes", "paragraphs": val, }] } writer.write(json.dumps(out,indent=4)) writer.close() return thresh,all_examples_except_label,label_data def assign_new_value_for_shuffled(shuffled_path,train_path,dev_path,out_path): all_examples = {} with open(train_path, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: for qa in paragraph['qas']: qas_id = qa['id'] all_examples[qas_id] = qa with open(dev_path, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: for qa in paragraph['qas']: qas_id = qa['id'] all_examples[qas_id] = qa settings = ['123','125','145', '345', '234'] for idx,combine in enumerate(settings): out_path_split = os.path.join(out_path, 'split_' + str(idx) + '.json') writer = open(out_path_split, 'w+', encoding='utf-8') with open(os.path.join(shuffled_path,'split_' + str(idx) + '.json'), "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: for qa in paragraph['qas']: qas_id = qa['id'] qa["synthetic_text"] = all_examples[qas_id]["synthetic_text"] qa["predicts"] = all_examples[qas_id]["predicts"] writer.write(json.dumps(input_data,indent=4)) writer.close() combine_path = os.path.join(out_path, 'combine_' + str(combine) + '.json') writer = open(combine_path, 'w+', encoding='utf-8') with open(os.path.join(shuffled_path,'combine_' + str(combine) + '.json'), "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: for qa in paragraph['qas']: qas_id = qa['id'] qa["synthetic_text"] = all_examples[qas_id]["synthetic_text"] qa["predicts"] = all_examples[qas_id]["predicts"] writer.write(json.dumps(input_data,indent=4)) writer.close() return None def read_predicted_file_nn(predict_file,pred): Object_question_words ={"which",'in which','whose','who','what','for which','on which'} comparative_words =[ 'more', 'less', 'higher', 'lower', 'increase', 'decrease', 'high', 'low', 'harder', 'easier', 'increasing', 'decreasing', 'up', 'down', 'larger', 'smaller','better','worse','faster','slower','weaker','stronger','closer','farther','louder','quieter','correctly','incorrectly','not','yes','no','not' ] positive_words = ['more', 'higher', 'increase', 'high', 'harder', 'increasing', 'up', 'larger', 'better', 'faster', 'stronger', 'closer', 'louder', 'correctly'] negative_words = ['less', 'lower', 'decrease', 'low', 'easier', 'decreasing', 'down', 'smaller', 'worse', 'slower', 'weaker', 'farther', 'quieter', 'incorrectly','fewer','not','avoid'] all_object_scores = [] record={} pred_f1 =[] with open(predict_file, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["background"] situation_text = paragraph['situation'] for qa in paragraph['qas']: qas_id = qa['id'] question_text =qa['question'] answer_text = qa['answers'][0]['text'] predicts = qa['predicts'] if any(i==answer_text for i in comparative_words): continue if any(question_text.lower().startswith(i) for i in Object_question_words): # if max(compute_f1(answer_text, predicts['object1']), # compute_f1(answer_text, predicts['object2'])) == 0.0: # continue predicts_answer = pred[qas_id] # f1 = compute_f1(remove_punc(answer_text),remove_punc(predicts_answer)) pred_f1.append(compute_f1(remove_punc(answer_text), remove_punc(pred[qas_id]))) # record[qas_id] = [f1,answer_text,predicts_answer] # all_object_scores.append(f1) else: continue return all_object_scores,record,pred_f1 def read_predicted_file_comparative_nn(predict_file,pred): question_word = ['would','will'] comparative_words = [ 'more', 'less', 'higher', 'lower', 'increase', 'decrease', 'harder', 'easier', 'increasing', 'decreasing', 'larger', 'smaller', 'better', 'worse', 'faster', 'slower', 'weaker', 'stronger', 'closer', 'farther', 'louder', 'quieter', 'correctly', 'incorrectly', 'not', 'yes', 'no', 'not' ] pairs = { 'more':'less', 'higher': 'lower', 'increase':'decrease', 'harder':'easier', 'increasing':'decreasing', 'larger':'smaller', 'better':'worse', 'faster':'slower', 'stronger':'weaker', 'closer':'farther', 'louder':'quieter', 'correctly': 'incorrectly', } cnt ={} prediction ={} f1 =[] pred_f1=[] debug={} with open(predict_file, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["background"] situation_text = paragraph['situation'] for qa in paragraph['qas']: candidate=[] qas_id = qa['id'] question_text = qa['question'] answer_text = qa['answers'][0]['text'] predicts = qa['predicts'] if not any(i == answer_text for i in comparative_words): continue # if any(question_text.lower().startswith(i) for i in question_word): # continue for key, val in pairs.items(): if key in question_text.lower() and val in question_text.lower(): candidate= [key,val] break if candidate!=[]: pred_f1.append(compute_f1(answer_text, pred[qas_id])) return pred_f1 def get_id(data1,data2): all_examples = [] ids =[] with open(data1, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: for qa in paragraph['qas']: qas_id = qa['id'] all_examples.append(qas_id) with open(data2, "r", encoding="utf-8")as reader: input_data = json.load(reader) for entry in input_data["data"]: for paragraph in entry["paragraphs"]: for qa in paragraph['qas']: qas_id = qa['id'] if qas_id not in all_examples: ids.append(qas_id) return ids
44.932489
197
0.550897
b331e701b53e8e64522bbf7aa02063c808ff8680
10,151
py
Python
openapi_python_client/parser/properties/model_property.py
gmerz/matterapi-generator
4ba29c7d308c43365b286e41220e3252fa250526
[ "MIT" ]
null
null
null
openapi_python_client/parser/properties/model_property.py
gmerz/matterapi-generator
4ba29c7d308c43365b286e41220e3252fa250526
[ "MIT" ]
null
null
null
openapi_python_client/parser/properties/model_property.py
gmerz/matterapi-generator
4ba29c7d308c43365b286e41220e3252fa250526
[ "MIT" ]
null
null
null
from itertools import chain from typing import ClassVar, Dict, List, NamedTuple, Optional, Set, Tuple, Union import attr from ... import schema as oai from ... import utils from ..errors import PropertyError from ..reference import Reference from .property import Property from .file_property import FileProperty from .schemas import Schemas @attr.s(auto_attribs=True, frozen=True) class ModelProperty(Property): """A property which refers to another Schema""" reference: Reference required_properties: List[Property] optional_properties: List[Property] file_property_names: Set[str] description: str relative_imports: Set[str] additional_properties: Union[bool, Property] = False _json_type_string: ClassVar[str] = "Dict[str, Any]" template: ClassVar[str] = "model_property.py.jinja" json_is_dict: ClassVar[bool] = True parent_name: str = "" child_model: bool = False model_type: str = "object" array_items_property: Optional[Property] = None def get_type_string(self, no_optional: bool = False) -> str: """Get a string representation of type that should be used when declaring this property""" type_string = self.reference.class_name if no_optional: return type_string if self.nullable: # type_string = f"Union[{type_string}, None]" type_string = f"Optional[{type_string}]" if not self.required: type_string = f"Optional[{type_string}]" # type_string = f"Optional[{type_string}]" return type_string def get_base_type_string(self, json: bool = False) -> str: return self.reference.class_name def get_imports(self, *, prefix: str) -> Set[str]: """ Get a set of import strings that should be included when this property is used somewhere Args: prefix: A prefix to put before any relative (local) module names. This should be the number of . to get back to the root of the generated client. """ imports = super().get_imports(prefix=prefix) imports.update( { # f"from {prefix}models.{self.reference.module_name} import {self.reference.class_name}", f"from {prefix}models import {self.reference.class_name}", "from typing import Dict", "from typing import cast", } ) return imports def _merge_properties(first: Property, second: Property) -> Union[Property, PropertyError]: if first.__class__ != second.__class__: return PropertyError(header="Cannot merge properties", detail="Properties are two different types") nullable = first.nullable and second.nullable required = first.required or second.required first = attr.evolve(first, nullable=nullable, required=required) second = attr.evolve(second, nullable=nullable, required=required) if first != second: return PropertyError(header="Cannot merge properties", detail="Properties has conflicting values") return first class _PropertyData(NamedTuple): optional_props: List[Property] required_props: List[Property] relative_imports: Set[str] schemas: Schemas def _process_properties(*, data: oai.Schema, schemas: Schemas, class_name: str) -> Union[_PropertyData, PropertyError]: from . import property_from_data properties: Dict[str, Property] = {} relative_imports: Set[str] = set() required_set = set(data.required or []) def _check_existing(prop: Property) -> Union[Property, PropertyError]: nonlocal properties existing = properties.get(prop.name) prop_or_error = _merge_properties(existing, prop) if existing else prop if isinstance(prop_or_error, PropertyError): prop_or_error.header = f"Found conflicting properties named {prop.name} when creating {class_name}" return prop_or_error properties[prop_or_error.name] = prop_or_error return prop_or_error unprocessed_props = data.properties or {} for sub_prop in data.allOf or []: if isinstance(sub_prop, oai.Reference): source_name = Reference.from_ref(sub_prop.ref).class_name sub_model = schemas.models.get(source_name) if sub_model is None: return PropertyError(f"Reference {sub_prop.ref} not found") for prop in chain(sub_model.required_properties, sub_model.optional_properties): prop_or_error = _check_existing(prop) if isinstance(prop_or_error, PropertyError): return prop_or_error else: unprocessed_props.update(sub_prop.properties or {}) required_set.update(sub_prop.required or []) for key, value in unprocessed_props.items(): prop_required = key in required_set prop_or_error, schemas = property_from_data( name=key, required=prop_required, data=value, schemas=schemas, parent_name=class_name, child_property=True ) if isinstance(prop_or_error, Property): prop_or_error = _check_existing(prop_or_error) if isinstance(prop_or_error, PropertyError): return prop_or_error properties[prop_or_error.name] = prop_or_error required_properties = [] optional_properties = [] for prop in properties.values(): if prop.required and not prop.nullable: required_properties.append(prop) else: optional_properties.append(prop) relative_imports.update(prop.get_imports(prefix=".")) return _PropertyData( optional_props=optional_properties, required_props=required_properties, relative_imports=relative_imports, schemas=schemas, ) def _get_additional_properties( *, schema_additional: Union[None, bool, oai.Reference, oai.Schema], schemas: Schemas, class_name: str ) -> Tuple[Union[bool, Property, PropertyError], Schemas]: from . import property_from_data if schema_additional is None: return False, schemas if isinstance(schema_additional, bool): return schema_additional, schemas if isinstance(schema_additional, oai.Schema) and not any(schema_additional.dict().values()): # An empty schema return True, schemas additional_properties, schemas = property_from_data( name="AdditionalProperty", required=True, # in the sense that if present in the dict will not be None data=schema_additional, schemas=schemas, parent_name=class_name, child_property=True, ) return additional_properties, schemas def build_model_property( *, data: oai.Schema, name: str, schemas: Schemas, required: bool, parent_name: Optional[str], child_property: Optional[bool] = False, ) -> Tuple[Union[ModelProperty, PropertyError], Schemas]: """ A single ModelProperty from its OAI data Args: data: Data of a single Schema name: Name by which the schema is referenced, such as a model name. Used to infer the type name if a `title` property is not available. schemas: Existing Schemas which have already been processed (to check name conflicts) required: Whether or not this property is required by the parent (affects typing) parent_name: The name of the property that this property is inside of (affects class naming) """ from . import build_list_property class_name = data.title or name if parent_name: if child_property: # class_name = f"{utils.pascal_case(parent_name)}_{utils.pascal_case(class_name)}" class_name = f"{utils.pascal_case(class_name)}" else: class_name = f"{utils.pascal_case(parent_name)}{utils.pascal_case(class_name)}" ref = Reference.from_ref(class_name) property_data = _process_properties(data=data, schemas=schemas, class_name=class_name) if isinstance(property_data, PropertyError): return property_data, schemas schemas = property_data.schemas additional_properties, schemas = _get_additional_properties( schema_additional=data.additionalProperties, schemas=schemas, class_name=class_name ) if isinstance(additional_properties, Property): property_data.relative_imports.update(additional_properties.get_imports(prefix=".")) elif isinstance(additional_properties, PropertyError): return additional_properties, schemas array_prop = None if data.type == "array": array_prop, schemas = build_list_property( data=data, name=name, required=required, schemas=schemas, parent_name=parent_name ) file_properties = [] for prop in property_data.required_props: if isinstance(prop, FileProperty): file_properties.append(prop.python_name) for prop in property_data.optional_props: if isinstance(prop, FileProperty): file_properties.append(prop.python_name) prop = ModelProperty( reference=ref, required_properties=property_data.required_props, optional_properties=property_data.optional_props, relative_imports=property_data.relative_imports, description=data.description or "", default=None, nullable=data.nullable, required=required, name=name, additional_properties=additional_properties, parent_name=parent_name, child_model=child_property, example=data.example, model_type=data.type if data.type else "object", array_items_property=array_prop, file_property_names=set(file_properties) ) if child_property: return prop, schemas if prop.reference.class_name in schemas.models: error = PropertyError( data=data, detail=f'Attempted to generate duplicate models with name "{prop.reference.class_name}"' ) return error, schemas schemas = attr.evolve(schemas, models={**schemas.models, prop.reference.class_name: prop}) return prop, schemas
38.018727
119
0.685548
81b07a350dd22f44077546c48112cccdec1ba031
5,112
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/operations/_service_association_links_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/operations/_service_association_links_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/operations/_service_association_links_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ServiceAssociationLinksOperations(object): """ServiceAssociationLinksOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str virtual_network_name, # type: str subnet_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ServiceAssociationLinksListResult" """Gets a list of service association links for a subnet. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param subnet_name: The name of the subnet. :type subnet_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ServiceAssociationLinksListResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.ServiceAssociationLinksListResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceAssociationLinksListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'subnetName': self._serialize.url("subnet_name", subnet_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceAssociationLinksListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/subnets/{subnetName}/ServiceAssociationLinks'} # type: ignore
46.899083
223
0.689358
c4e537a2ade2b7c81f73633ee1e9a0a03ed8536d
3,142
py
Python
testframework/test.py
SINTEF-9012/config-testing
a8e7b45d1bd3354231d971e868e167d6af187b90
[ "MIT" ]
null
null
null
testframework/test.py
SINTEF-9012/config-testing
a8e7b45d1bd3354231d971e868e167d6af187b90
[ "MIT" ]
null
null
null
testframework/test.py
SINTEF-9012/config-testing
a8e7b45d1bd3354231d971e868e167d6af187b90
[ "MIT" ]
null
null
null
#!/usr/bin/python # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # See the NOTICE file distributed with this work for additional # information regarding copyright ownership. # import os import sys import pwd import ConfigParser import subprocess import StringIO import shutil CONFIG_NAME = 'config.ini' CONFIG_GENERAL_SEC = 'general' CONFIG_TESTING_SCRIPT = 'run_config_testing.py' GENERAL_ROOT_TEST_FOLDER = 'root_test_folder' GENERAL_TEST_WORKING_FOLDER = 'test_working_folder' GENERAL_GLOBAL_REPORT_DIR = 'global_report_dir' GENERAL_SYSTEM_UNDER_TEST = 'system_under_test' GENERAL_SUT_CONFIG_TESTING_FOLDER = 'sut_config_testing_folder' SCRIP_ABSOLUTE_PATH = os.path.dirname(os.path.realpath(__file__)) def print_std(stdout, stderr): for line in StringIO.StringIO(stdout).readlines(): print "[STDOUT] " + line.rstrip() for line in StringIO.StringIO(stderr).readlines(): print "[STDERR] " + line.rstrip() def folder_path(parent, child): parent = parent.strip() child = child.strip() return os.path.join(parent, child) def execute_framework(): root_test_folder = SCRIP_ABSOLUTE_PATH config = ConfigParser.RawConfigParser() config.read(os.path.join(root_test_folder, CONFIG_NAME)) test_working_folder = config.get(CONFIG_GENERAL_SEC, GENERAL_TEST_WORKING_FOLDER) global_report_dir = config.get(CONFIG_GENERAL_SEC, GENERAL_GLOBAL_REPORT_DIR) system_under_test = config.get(CONFIG_GENERAL_SEC, GENERAL_SYSTEM_UNDER_TEST) config_testing_folder = config.get(CONFIG_GENERAL_SEC, GENERAL_SUT_CONFIG_TESTING_FOLDER) full_test_working_folder = folder_path(root_test_folder, test_working_folder) full_global_report_dir = folder_path(root_test_folder, global_report_dir) full_system_under_test_dir = folder_path(root_test_folder, system_under_test) full_config_testing_dir = folder_path(full_system_under_test_dir, config_testing_folder) #clean working directory and clean directories if os.path.isdir(full_test_working_folder): shutil.rmtree(full_test_working_folder) os.makedirs(full_test_working_folder) if os.path.isdir(full_global_report_dir): shutil.rmtree(full_global_report_dir) os.makedirs(full_global_report_dir) full_config_testing_script = os.path.join(full_config_testing_dir, CONFIG_TESTING_SCRIPT) command = [full_config_testing_script, full_test_working_folder, full_global_report_dir, full_system_under_test_dir, full_config_testing_dir] print "Staring: " + " ".join(command) proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() print_std(stdout, stderr) if __name__ == "__main__": execute_framework() print "Done!"
36.114943
142
0.81254
5f66dbab0261512f2292b523db965e01eb4b2071
7,293
py
Python
mmdet/apis/test.py
zjzhou521/mmdet_2backbone
abf6993e3842c96e4d3dfcb172c2eddfac16e1b4
[ "Apache-2.0" ]
null
null
null
mmdet/apis/test.py
zjzhou521/mmdet_2backbone
abf6993e3842c96e4d3dfcb172c2eddfac16e1b4
[ "Apache-2.0" ]
null
null
null
mmdet/apis/test.py
zjzhou521/mmdet_2backbone
abf6993e3842c96e4d3dfcb172c2eddfac16e1b4
[ "Apache-2.0" ]
1
2021-06-18T18:14:38.000Z
2021-06-18T18:14:38.000Z
import os.path as osp import pickle import shutil import tempfile import time import mmcv import torch import torch.distributed as dist from mmcv.image import tensor2imgs from mmcv.runner import get_dist_info from mmdet.core import encode_mask_results def single_gpu_test(model, data_loader_vis, data_loader_ir, show=False, out_dir=None, show_score_thr=0.3): model.eval() results = [] # print("in test: num = ",len(dataset_vis)) # print("[test]dataset_vis = ",dataset_vis) # for i, data_batch_vis in enumerate(data_loader_vis): # 2 imgs/batch # print("i=",i,end=' ') # print("data_batch_vis = ",data_batch_vis) dataset_vis = data_loader_vis.dataset dataset_ir = data_loader_ir.dataset prog_bar = mmcv.ProgressBar(len(dataset_vis)) for i, data_vis in enumerate(data_loader_vis): for j, data_ir in enumerate(data_loader_ir): if(j!=i): continue else: break with torch.no_grad(): result = model(return_loss=False, rescale=True, inputs=[data_vis, data_ir]) # import numpy as np # tmp = np.array(result) # print("tmp.shape = ",tmp.shape) # print("result[0] = ",result[0]) batch_size = len(result) if show or out_dir: if batch_size == 1 and isinstance(data['img'][0], torch.Tensor): img_tensor = data['img'][0] else: img_tensor = data['img'][0].data[0] img_metas = data['img_metas'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for i, (img, img_meta) in enumerate(zip(imgs, img_metas)): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] ori_h, ori_w = img_meta['ori_shape'][:-1] img_show = mmcv.imresize(img_show, (ori_w, ori_h)) if out_dir: out_file = osp.join(out_dir, img_meta['ori_filename']) else: out_file = None model.module.show_result(img_show, result[i], show=show, out_file=out_file, score_thr=show_score_thr) # encode mask results if isinstance(result[0], tuple): result = [(bbox_results, encode_mask_results(mask_results)) for bbox_results, mask_results in result] results.extend(result) for _ in range(batch_size): prog_bar.update() # break return results def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): """Test model with multiple gpus. This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to 'tmpdir' and collects them by the rank 0 worker. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. gpu_collect (bool): Option to use either gpu or cpu to collect results. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) time.sleep(2) # This line can prevent deadlock problem in some cases. for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) # encode mask results if isinstance(result[0], tuple): result = [(bbox_results, encode_mask_results(mask_results)) for bbox_results, mask_results in result] results.extend(result) if rank == 0: batch_size = len(result) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks if gpu_collect: results = collect_results_gpu(results, len(dataset)) else: results = collect_results_cpu(results, len(dataset), tmpdir) return results def collect_results_cpu(result_part, size, tmpdir=None): rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: mmcv.mkdir_or_exist('.dist_test') tmpdir = tempfile.mkdtemp(dir='.dist_test') tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl')) dist.barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, f'part_{i}.pkl') part_list.append(mmcv.load(part_file)) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def collect_results_gpu(result_part, size): rank, world_size = get_dist_info() # dump result part to tensor with pickle part_tensor = torch.tensor( bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') # gather all result part tensor shape shape_tensor = torch.tensor(part_tensor.shape, device='cuda') shape_list = [shape_tensor.clone() for _ in range(world_size)] dist.all_gather(shape_list, shape_tensor) # padding result part tensor to max length shape_max = torch.tensor(shape_list).max() part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') part_send[:shape_tensor[0]] = part_tensor part_recv_list = [ part_tensor.new_zeros(shape_max) for _ in range(world_size) ] # gather all result part dist.all_gather(part_recv_list, part_send) if rank == 0: part_list = [] for recv, shape in zip(part_recv_list, shape_list): part_list.append( pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] return ordered_results
35.75
117
0.615796
b25f090205ccd5b3b20d97236ab7fe65c976cd42
976
py
Python
python/mysql/demo_mysqldb.py
kskumgk63/trace-examples
1de45b351aa03367c745933b4923f07d436aea3e
[ "BSD-3-Clause" ]
75
2017-03-20T12:17:14.000Z
2022-03-24T02:55:53.000Z
python/mysql/demo_mysqldb.py
kskumgk63/trace-examples
1de45b351aa03367c745933b4923f07d436aea3e
[ "BSD-3-Clause" ]
25
2017-05-10T18:21:20.000Z
2022-01-28T18:36:52.000Z
python/mysql/demo_mysqldb.py
kskumgk63/trace-examples
1de45b351aa03367c745933b4923f07d436aea3e
[ "BSD-3-Clause" ]
54
2017-05-10T18:13:52.000Z
2022-01-11T21:04:42.000Z
import logging.config from ddtrace import Pin, patch import MySQLdb logging.config.dictConfig({ 'version': 1, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, }, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose', }, }, 'loggers': { 'ddtrace': { 'handlers': ['console'], 'level': 'DEBUG', 'propagate': True, }, } }) # If not patched yet, you can patch mysql specifically patch(mysql=True) # This will report a span with the default settings conn = MySQLdb.connect(user="test", password="test", host="localhost", port=3306, database="test") cursor = conn.cursor() cursor.execute("SHOW TABLES") # Use a pin to specify metadata related to this connection Pin.override(conn, service='mysql-users')
25.684211
98
0.577869
c3c4c86963dc305768bd3e6cd227c1cc7f1e986d
5,433
py
Python
samples/python/mnist/mnist_training.py
dennyac/onnxruntime
d5175795d2b7f2db18b0390f394a49238f814668
[ "MIT" ]
5
2021-02-20T04:53:48.000Z
2021-03-09T19:29:27.000Z
samples/python/mnist/mnist_training.py
dennyac/onnxruntime
d5175795d2b7f2db18b0390f394a49238f814668
[ "MIT" ]
5
2021-03-01T21:35:50.000Z
2022-03-09T05:38:38.000Z
samples/python/mnist/mnist_training.py
dennyac/onnxruntime
d5175795d2b7f2db18b0390f394a49238f814668
[ "MIT" ]
2
2021-01-29T09:36:51.000Z
2021-02-01T13:42:40.000Z
# This code is from https://github.com/pytorch/examples/blob/master/mnist/main.py # with modification to do training using onnxruntime as backend on cuda device. import argparse import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms import onnxruntime from onnxruntime.experimental import ORTTrainer, ORTTrainerOptions, optim # Pytorch model class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, input1): out = self.fc1(input1) out = self.relu(out) out = self.fc2(out) return out # ONNX Runtime training def mnist_model_description(): return {'inputs': [('input1', ['batch', 784]), ('label', ['batch'])], 'outputs': [('loss', [], True), ('probability', ['batch', 10])]} def my_loss(x, target): return F.nll_loss(F.log_softmax(x, dim=1), target) # Helpers def train_with_trainer(log_interval, trainer, device, train_loader, epoch): for batch_idx, (data, target) in enumerate(train_loader): # Fetch data data, target = data.to(device), target.to(device) data = data.reshape(data.shape[0], -1) # Train step loss, _ = trainer.train_step(data, target) # Stats if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss)) def test_with_trainer(trainer, device, test_loader): test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: # Fetch data data, target = data.to(device), target.to(device) data = data.reshape(data.shape[0], -1) # Eval step # Using fetches around without eval_step to not pass 'target' as input trainer._train_step_info.fetches = ['probability'] output = F.log_softmax(trainer.eval_step(data), dim=1) trainer._train_step_info.fetches = [] # Stats test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') # Basic setup args = parser.parse_args() if not args.no_cuda and torch.cuda.is_available(): device = "cuda" else: device = "cpu" torch.manual_seed(args.seed) onnxruntime.set_seed(args.seed) # Data loader train_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.test_batch_size, shuffle=True) # Modeling model = NeuralNet(784, 500, 10) model_desc = mnist_model_description() optim_config = optim.SGDConfig(lr=args.lr) opts = ORTTrainerOptions({'device': {'id': device}}) trainer = ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=opts) # Train loop for epoch in range(1, args.epochs + 1): train_with_trainer(args.log_interval, trainer, device, train_loader, epoch) test_with_trainer(trainer, device, test_loader) if __name__ == '__main__': main()
37.993007
87
0.600405
8a139fb21352f9b04ad41cec50fba0a027c1ffa4
4,405
py
Python
contrib/devtools/logprint-scanner.py
robinadaptor/chronon
630b3945824c1b1cd2ea67ca80835a9f669b9124
[ "MIT" ]
null
null
null
contrib/devtools/logprint-scanner.py
robinadaptor/chronon
630b3945824c1b1cd2ea67ca80835a9f669b9124
[ "MIT" ]
null
null
null
contrib/devtools/logprint-scanner.py
robinadaptor/chronon
630b3945824c1b1cd2ea67ca80835a9f669b9124
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017-2018 PIVX developers # Copyright (c) 2018-2019 Chronon developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import os, sys from subprocess import check_output def countRelevantCommas(line): openParensPosStack = [] openParensPos = 0 charCounter = 0 numRelevantCommas = 0 firstOpenParensIndex = line.find("(") for char in line: if char == '(': openParensPosStack.append(charCounter) if char == ')': openParensPosStack.pop() if char == "," and openParensPosStack[-1] == firstOpenParensIndex: numRelevantCommas += 1 charCounter += 1 return numRelevantCommas if __name__ == "__main__": out = check_output("git rev-parse --show-toplevel", shell=True, universal_newlines=True) srcDir = out.rstrip() + "/src/" filelist = [os.path.join(dp, f) for dp, dn, filenames in os.walk(srcDir) for f in filenames if os.path.splitext(f)[1] == '.cpp' or os.path.splitext(f)[1] == '.h' ] incorrectInstanceCounter = 0 for file in filelist: f = open(file,"r", encoding="utf-8") data = f.read() rows = data.split("\n") count = 0 full_data = [] lineCounter = 1 tempLine = "" tempCount = 0 for row in rows: # Collapse multiple lines into one tempLine += row # Line contains LogPrint or LogPrintf if tempLine.find("LogPrint") != -1: if tempLine.count("(") == tempLine.count(")"): havePercents = tempLine.count('%') > 0 if havePercents: # This line of code has a format specifier that requires checking number of associated arguments # Determine the number of arguments provided, see if that matches the number of format specifiers # Count the number of commas after the format specifier string. Check to see if it matches the number of format specifiers. # Assumes quotes are not escaped in the specifier string and there are no percent signs when specifying the debug level. # First, determine the position of the comma after the format specifier section, named commaAfterEndSpecifierStringIndex firstSpecifierIndex = tempLine.find('%') startSpecifierStringIndex = tempLine.rfind('"',firstSpecifierIndex) endSpecifierStringIndex = tempLine.find('"',firstSpecifierIndex) commaAfterEndSpecifierStringIndex = tempLine.find(',',endSpecifierStringIndex) # Count the number of commas after the specifier string line = "(" + tempLine[commaAfterEndSpecifierStringIndex:-1] numCommas = countRelevantCommas(line) # Determine number of extra percents after specifier string numExtraPercents = tempLine.count('%', commaAfterEndSpecifierStringIndex) # Subtract extra from total count. This is the number of expected specifiers # ignore %% numPercents = tempLine.count('%') - numExtraPercents - 2*tempLine.count('%%') if numPercents != numCommas: print("Incorrect number of arguments for LogPrint(f) statement found.") print(str(file) + ":" + str(lineCounter - tempCount)) print("Line = " + tempLine) print("numRelevantCommas = " + str(numCommas) + ", numRelevantPercents = " + str(numPercents)) print("") incorrectInstanceCounter += 1 # Done with this multiline, clear tempLine tempLine = "" tempCount = 0 else: tempCount += 1 else: # No LogPrint, clear tempLine tempLine = "" tempCount = 0 lineCounter += 1 print("# of incorrect instances: " + str(incorrectInstanceCounter)) sys.exit(incorrectInstanceCounter)
41.556604
167
0.569807
e322e9d55d8881d340b35329d3a0deaddc21dcdb
7,670
py
Python
test/functional/test_framework/test_node.py
smthcoin/smthcoin
3d212b3052297120ff3eee5e20fc3bab9eeddfd6
[ "MIT" ]
null
null
null
test/functional/test_framework/test_node.py
smthcoin/smthcoin
3d212b3052297120ff3eee5e20fc3bab9eeddfd6
[ "MIT" ]
null
null
null
test/functional/test_framework/test_node.py
smthcoin/smthcoin
3d212b3052297120ff3eee5e20fc3bab9eeddfd6
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Class for smthcoind node under test""" import decimal import errno import http.client import json import logging import os import subprocess import time from .util import ( assert_equal, get_rpc_proxy, rpc_url, wait_until, ) from .authproxy import JSONRPCException BITCOIND_PROC_WAIT_TIMEOUT = 60 class TestNode(): """A class for representing a smthcoind node under test. This class contains: - state about the node (whether it's running, etc) - a Python subprocess.Popen object representing the running process - an RPC connection to the node To make things easier for the test writer, a bit of magic is happening under the covers. Any unrecognised messages will be dispatched to the RPC connection.""" def __init__(self, i, dirname, extra_args, rpchost, timewait, binary, stderr, mocktime, coverage_dir): self.index = i self.datadir = os.path.join(dirname, "node" + str(i)) self.rpchost = rpchost if timewait: self.rpc_timeout = timewait else: # Wait for up to 60 seconds for the RPC server to respond self.rpc_timeout = 60 if binary is None: self.binary = os.getenv("LITECOIND", "smthcoind") else: self.binary = binary self.stderr = stderr self.coverage_dir = coverage_dir # Most callers will just need to add extra args to the standard list below. For those callers that need more flexibity, they can just set the args property directly. self.extra_args = extra_args self.args = [self.binary, "-datadir=" + self.datadir, "-server", "-keypool=1", "-discover=0", "-rest", "-logtimemicros", "-debug", "-debugexclude=libevent", "-debugexclude=leveldb", "-mocktime=" + str(mocktime), "-uacomment=testnode%d" % i] self.cli = TestNodeCLI(os.getenv("LITECOINCLI", "smthcoin-cli"), self.datadir) self.running = False self.process = None self.rpc_connected = False self.rpc = None self.url = None self.log = logging.getLogger('TestFramework.node%d' % i) def __getattr__(self, *args, **kwargs): """Dispatches any unrecognised messages to the RPC connection.""" assert self.rpc_connected and self.rpc is not None, "Error: no RPC connection" return self.rpc.__getattr__(*args, **kwargs) def start(self, extra_args=None, stderr=None): """Start the node.""" if extra_args is None: extra_args = self.extra_args if stderr is None: stderr = self.stderr self.process = subprocess.Popen(self.args + extra_args, stderr=stderr) self.running = True self.log.debug("smthcoind started, waiting for RPC to come up") def wait_for_rpc_connection(self): """Sets up an RPC connection to the smthcoind process. Returns False if unable to connect.""" # Poll at a rate of four times per second poll_per_s = 4 for _ in range(poll_per_s * self.rpc_timeout): assert self.process.poll() is None, "smthcoind exited with status %i during initialization" % self.process.returncode try: self.rpc = get_rpc_proxy(rpc_url(self.datadir, self.index, self.rpchost), self.index, timeout=self.rpc_timeout, coveragedir=self.coverage_dir) self.rpc.getblockcount() # If the call to getblockcount() succeeds then the RPC connection is up self.rpc_connected = True self.url = self.rpc.url self.log.debug("RPC successfully started") return except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase if e.error['code'] != -28: # RPC in warmup? raise # unknown JSON RPC exception except ValueError as e: # cookie file not found and no rpcuser or rpcassword. bitcoind still starting if "No RPC credentials" not in str(e): raise time.sleep(1.0 / poll_per_s) raise AssertionError("Unable to connect to smthcoind") def get_wallet_rpc(self, wallet_name): assert self.rpc_connected assert self.rpc wallet_path = "wallet/%s" % wallet_name return self.rpc / wallet_path def stop_node(self): """Stop the node.""" if not self.running: return self.log.debug("Stopping node") try: self.stop() except http.client.CannotSendRequest: self.log.exception("Unable to stop node.") def is_node_stopped(self): """Checks whether the node has stopped. Returns True if the node has stopped. False otherwise. This method is responsible for freeing resources (self.process).""" if not self.running: return True return_code = self.process.poll() if return_code is None: return False # process has stopped. Assert that it didn't return an error code. assert_equal(return_code, 0) self.running = False self.process = None self.rpc_connected = False self.rpc = None self.log.debug("Node stopped") return True def wait_until_stopped(self, timeout=BITCOIND_PROC_WAIT_TIMEOUT): wait_until(self.is_node_stopped, timeout=timeout) def node_encrypt_wallet(self, passphrase): """"Encrypts the wallet. This causes smthcoind to shutdown, so this method takes care of cleaning up resources.""" self.encryptwallet(passphrase) self.wait_until_stopped() class TestNodeCLI(): """Interface to smthcoin-cli for an individual node""" def __init__(self, binary, datadir): self.args = [] self.binary = binary self.datadir = datadir self.input = None def __call__(self, *args, input=None): # TestNodeCLI is callable with smthcoin-cli command-line args self.args = [str(arg) for arg in args] self.input = input return self def __getattr__(self, command): def dispatcher(*args, **kwargs): return self.send_cli(command, *args, **kwargs) return dispatcher def send_cli(self, command, *args, **kwargs): """Run smthcoin-cli command. Deserializes returned string as python object.""" pos_args = [str(arg) for arg in args] named_args = [str(key) + "=" + str(value) for (key, value) in kwargs.items()] assert not (pos_args and named_args), "Cannot use positional arguments and named arguments in the same smthcoin-cli call" p_args = [self.binary, "-datadir=" + self.datadir] + self.args if named_args: p_args += ["-named"] p_args += [command] + pos_args + named_args process = subprocess.Popen(p_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) cli_stdout, cli_stderr = process.communicate(input=self.input) returncode = process.poll() if returncode: # Ignore cli_stdout, raise with cli_stderr raise subprocess.CalledProcessError(returncode, self.binary, output=cli_stderr) return json.loads(cli_stdout, parse_float=decimal.Decimal)
40.157068
248
0.640287
4cf307c3e707da871bbde14379a7a6d3c02d1a93
3,474
py
Python
openpyxl/worksheet/tests/test_page.py
VariantXYZ/openpyxl-variant
873cc3dda43578c098843ebe930325c879d20baf
[ "MIT" ]
null
null
null
openpyxl/worksheet/tests/test_page.py
VariantXYZ/openpyxl-variant
873cc3dda43578c098843ebe930325c879d20baf
[ "MIT" ]
null
null
null
openpyxl/worksheet/tests/test_page.py
VariantXYZ/openpyxl-variant
873cc3dda43578c098843ebe930325c879d20baf
[ "MIT" ]
null
null
null
# Copyright (c) 2010-2020 openpyxl import pytest from openpyxl.xml.functions import tostring from openpyxl.tests.helper import compare_xml @pytest.fixture def PageMargins(): from .. page import PageMargins return PageMargins class TestPageMargins: def test_ctor(self, PageMargins): pm = PageMargins() assert dict(pm) == {'bottom': '1', 'footer': '0.5', 'header': '0.5', 'left': '0.75', 'right': '0.75', 'top': '1'} def test_write(self, PageMargins): page_margins = PageMargins() page_margins.left = 2.0 page_margins.right = 2.0 page_margins.top = 2.0 page_margins.bottom = 2.0 page_margins.header = 1.5 page_margins.footer = 1.5 xml = tostring(page_margins.to_tree()) expected = """ <pageMargins xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships" left="2" right="2" top="2" bottom="2" header="1.5" footer="1.5"/> """ diff = compare_xml(xml, expected) assert diff is None, diff @pytest.fixture def PrintPageSetup(): from .. page import PrintPageSetup return PrintPageSetup @pytest.fixture def DummyWorksheet(): from openpyxl import Workbook wb = Workbook() return wb.active class TestPageSetup: def test_ctor(self, PrintPageSetup): p = PrintPageSetup() assert dict(p) == {} p.scale = 1 assert p.scale == 1 p.paperHeight = "24.73mm" assert p.paperHeight == "24.73mm" assert p.cellComments == None p.orientation = "default" assert p.orientation == "default" p.id = 'a12' assert dict(p) == {'scale':'1', 'paperHeight': '24.73mm', 'orientation': 'default', 'id':'a12'} def test_fitToPage(self, DummyWorksheet): ws = DummyWorksheet p = ws.page_setup assert p.fitToPage is None p.fitToPage = 1 assert p.fitToPage == True def test_autoPageBreaks(self, DummyWorksheet): ws = DummyWorksheet p = ws.page_setup assert p.autoPageBreaks is None p.autoPageBreaks = 1 assert p.autoPageBreaks == True def test_write(self, PrintPageSetup): page_setup = PrintPageSetup() page_setup.orientation = "landscape" page_setup.paperSize = 3 page_setup.fitToHeight = False page_setup.fitToWidth = True xml = tostring(page_setup.to_tree()) expected = """ <pageSetup orientation="landscape" paperSize="3" fitToHeight="0" fitToWidth="1"/> """ diff = compare_xml(xml, expected) assert diff is None, diff @pytest.fixture def PrintOptions(): from .. page import PrintOptions return PrintOptions class TestPrintOptions: def test_ctor(self, PrintOptions): p = PrintOptions() assert dict(p) == {} p.horizontalCentered = True p.verticalCentered = True assert dict(p) == {'verticalCentered': '1', 'horizontalCentered': '1'} def test_write(self, PrintOptions): print_options = PrintOptions() print_options.horizontalCentered = True print_options.verticalCentered = True xml = tostring(print_options.to_tree()) expected = """ <printOptions horizontalCentered="1" verticalCentered="1"/> """ diff = compare_xml(xml, expected) assert diff is None, diff
28.243902
164
0.613126
f0a8b00b799d2be6a09dd1567b39c88872c31f9b
655
py
Python
test/测试文件2.py
colinsusie/excelexporter
747cfe4794b62b03e9ac35d2f6cd9f6e3cfef117
[ "MIT" ]
15
2020-08-04T03:50:47.000Z
2022-03-19T14:33:19.000Z
test/测试文件2.py
colinsusie/excelexporter
747cfe4794b62b03e9ac35d2f6cd9f6e3cfef117
[ "MIT" ]
2
2021-02-24T08:02:14.000Z
2021-04-22T11:25:55.000Z
test/测试文件2.py
colinsusie/excelexporter
747cfe4794b62b03e9ac35d2f6cd9f6e3cfef117
[ "MIT" ]
5
2020-08-15T02:16:19.000Z
2021-03-18T09:30:01.000Z
# -*- coding: utf-8 -*- from excel_exporter import * define = [ # 第一列:Excel列名 第二列:导出字段名 第三列:字段类型 ['编号', 'no', Int()], ['职业', 'job', Int()], ['等级', 'level', Int()], ] config = { "source": "测试文件2.xlsx", "sheet": "Sheet1", "target": [ ["./test2.js", "js", ET_OPT], ["./test2.lua", "lua", ET_OPT], ["./test2.json", "json"], ["./test2.py", "py"], ], "key": "no", } def custom_key(key_value, row_dict): return "{}_{}".format(row_dict["job"], row_dict["level"]) # def custom_row(key_value, row_dict): # if not (1 <= row_dict["job"] <= 3): # raise TypeError("职业字段只能1,2,3") # return row_dict # def verify_table(table): # print("OK")
19.848485
58
0.558779
f9f78d6537bf19e77353c50dacc8367c4a373f62
7,261
py
Python
homeassistant/components/cover/device_trigger.py
ronytomen/core
2e9acf09b61d93a1b6b5dc5148822b85d65c5d79
[ "Apache-2.0" ]
null
null
null
homeassistant/components/cover/device_trigger.py
ronytomen/core
2e9acf09b61d93a1b6b5dc5148822b85d65c5d79
[ "Apache-2.0" ]
null
null
null
homeassistant/components/cover/device_trigger.py
ronytomen/core
2e9acf09b61d93a1b6b5dc5148822b85d65c5d79
[ "Apache-2.0" ]
null
null
null
"""Provides device automations for Cover.""" from __future__ import annotations import voluptuous as vol from homeassistant.components.automation import AutomationActionType from homeassistant.components.device_automation import TRIGGER_BASE_SCHEMA from homeassistant.components.homeassistant.triggers import ( numeric_state as numeric_state_trigger, state as state_trigger, ) from homeassistant.const import ( ATTR_SUPPORTED_FEATURES, CONF_ABOVE, CONF_BELOW, CONF_DEVICE_ID, CONF_DOMAIN, CONF_ENTITY_ID, CONF_FOR, CONF_PLATFORM, CONF_TYPE, CONF_VALUE_TEMPLATE, STATE_CLOSED, STATE_CLOSING, STATE_OPEN, STATE_OPENING, ) from homeassistant.core import CALLBACK_TYPE, HomeAssistant from homeassistant.helpers import config_validation as cv, entity_registry from homeassistant.helpers.typing import ConfigType from . import ( DOMAIN, SUPPORT_CLOSE, SUPPORT_OPEN, SUPPORT_SET_POSITION, SUPPORT_SET_TILT_POSITION, ) POSITION_TRIGGER_TYPES = {"position", "tilt_position"} STATE_TRIGGER_TYPES = {"opened", "closed", "opening", "closing"} POSITION_TRIGGER_SCHEMA = vol.All( TRIGGER_BASE_SCHEMA.extend( { vol.Required(CONF_ENTITY_ID): cv.entity_id, vol.Required(CONF_TYPE): vol.In(POSITION_TRIGGER_TYPES), vol.Optional(CONF_ABOVE): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ), vol.Optional(CONF_BELOW): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ), } ), cv.has_at_least_one_key(CONF_BELOW, CONF_ABOVE), ) STATE_TRIGGER_SCHEMA = TRIGGER_BASE_SCHEMA.extend( { vol.Required(CONF_ENTITY_ID): cv.entity_id, vol.Required(CONF_TYPE): vol.In(STATE_TRIGGER_TYPES), vol.Optional(CONF_FOR): cv.positive_time_period_dict, } ) TRIGGER_SCHEMA = vol.Any(POSITION_TRIGGER_SCHEMA, STATE_TRIGGER_SCHEMA) async def async_get_triggers(hass: HomeAssistant, device_id: str) -> list[dict]: """List device triggers for Cover devices.""" registry = await entity_registry.async_get_registry(hass) triggers = [] # Get all the integrations entities for this device for entry in entity_registry.async_entries_for_device(registry, device_id): if entry.domain != DOMAIN: continue state = hass.states.get(entry.entity_id) if not state or ATTR_SUPPORTED_FEATURES not in state.attributes: continue supported_features = state.attributes[ATTR_SUPPORTED_FEATURES] supports_open_close = supported_features & (SUPPORT_OPEN | SUPPORT_CLOSE) # Add triggers for each entity that belongs to this integration if supports_open_close: triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "opened", } ) triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "closed", } ) triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "opening", } ) triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "closing", } ) if supported_features & SUPPORT_SET_POSITION: triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "position", } ) if supported_features & SUPPORT_SET_TILT_POSITION: triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, CONF_TYPE: "tilt_position", } ) return triggers async def async_get_trigger_capabilities(hass: HomeAssistant, config: dict) -> dict: """List trigger capabilities.""" if config[CONF_TYPE] not in POSITION_TRIGGER_TYPES: return { "extra_fields": vol.Schema( {vol.Optional(CONF_FOR): cv.positive_time_period_dict} ) } return { "extra_fields": vol.Schema( { vol.Optional(CONF_ABOVE, default=0): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ), vol.Optional(CONF_BELOW, default=100): vol.All( vol.Coerce(int), vol.Range(min=0, max=100) ), } ) } async def async_attach_trigger( hass: HomeAssistant, config: ConfigType, action: AutomationActionType, automation_info: dict, ) -> CALLBACK_TYPE: """Attach a trigger.""" if config[CONF_TYPE] in STATE_TRIGGER_TYPES: if config[CONF_TYPE] == "opened": to_state = STATE_OPEN elif config[CONF_TYPE] == "closed": to_state = STATE_CLOSED elif config[CONF_TYPE] == "opening": to_state = STATE_OPENING elif config[CONF_TYPE] == "closing": to_state = STATE_CLOSING state_config = { CONF_PLATFORM: "state", CONF_ENTITY_ID: config[CONF_ENTITY_ID], state_trigger.CONF_TO: to_state, } if CONF_FOR in config: state_config[CONF_FOR] = config[CONF_FOR] state_config = state_trigger.TRIGGER_SCHEMA(state_config) return await state_trigger.async_attach_trigger( hass, state_config, action, automation_info, platform_type="device" ) if config[CONF_TYPE] == "position": position = "current_position" if config[CONF_TYPE] == "tilt_position": position = "current_tilt_position" min_pos = config.get(CONF_ABOVE, -1) max_pos = config.get(CONF_BELOW, 101) value_template = f"{{{{ state.attributes.{position} }}}}" numeric_state_config = { CONF_PLATFORM: "numeric_state", CONF_ENTITY_ID: config[CONF_ENTITY_ID], CONF_BELOW: max_pos, CONF_ABOVE: min_pos, CONF_VALUE_TEMPLATE: value_template, } numeric_state_config = numeric_state_trigger.TRIGGER_SCHEMA(numeric_state_config) return await numeric_state_trigger.async_attach_trigger( hass, numeric_state_config, action, automation_info, platform_type="device" )
33.004545
85
0.597025
3a54919ac0eb3e1d2137464091cfe2693eeb595e
11,886
py
Python
tests/scripts/thread-cert/test_srp_name_conflicts.py
yogeshsurapaneni/openthread
14fc9eb3a813331ffb56ba7b6025fc940ae15769
[ "BSD-3-Clause" ]
2
2019-07-12T13:19:40.000Z
2019-07-15T13:39:04.000Z
tests/scripts/thread-cert/test_srp_name_conflicts.py
yogeshsurapaneni/openthread
14fc9eb3a813331ffb56ba7b6025fc940ae15769
[ "BSD-3-Clause" ]
9
2020-03-05T03:02:18.000Z
2020-09-28T05:23:48.000Z
tests/scripts/thread-cert/test_srp_name_conflicts.py
yogeshsurapaneni/openthread
14fc9eb3a813331ffb56ba7b6025fc940ae15769
[ "BSD-3-Clause" ]
1
2021-01-21T13:50:22.000Z
2021-01-21T13:50:22.000Z
#!/usr/bin/env python3 # # Copyright (c) 2021, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import ipaddress import unittest import command import thread_cert # Test description: # This test verifies if the SRP server can handle name conflicts correctly. # # Topology: # LEADER (SRP server) # / \ # / \ # / \ # ROUTER1 ROUTER2 # SERVER = 1 CLIENT1 = 2 CLIENT2 = 3 class SrpNameConflicts(thread_cert.TestCase): USE_MESSAGE_FACTORY = False SUPPORT_NCP = False TOPOLOGY = { SERVER: { 'name': 'SRP_SERVER', 'masterkey': '00112233445566778899aabbccddeeff', 'mode': 'rdn', 'panid': 0xface }, CLIENT1: { 'name': 'SRP_CLIENT1', 'masterkey': '00112233445566778899aabbccddeeff', 'mode': 'rdn', 'panid': 0xface, 'router_selection_jitter': 1 }, CLIENT2: { 'name': 'SRP_CLIENT2', 'masterkey': '00112233445566778899aabbccddeeff', 'mode': 'rdn', 'panid': 0xface, 'router_selection_jitter': 1 }, } def test(self): server = self.nodes[SERVER] client_1 = self.nodes[CLIENT1] client_2 = self.nodes[CLIENT2] # # 0. Start the server & client devices. # server.srp_server_set_enabled(True) server.start() self.simulator.go(5) self.assertEqual(server.get_state(), 'leader') self.simulator.go(5) client_1.srp_server_set_enabled(False) client_1.start() self.simulator.go(5) self.assertEqual(client_1.get_state(), 'router') client_2.srp_server_set_enabled(False) client_2.start() self.simulator.go(5) self.assertEqual(client_2.get_state(), 'router') # # 1. Register a single service and verify that it works. # client_1.srp_client_set_host_name('my-host-1') client_1.srp_client_set_host_address('2001::1') client_1.srp_client_start(server.get_addrs()[0], client_1.get_srp_server_port()) client_1.srp_client_add_service('my-service-1', '_ipps._tcp', 12345) self.simulator.go(2) # Verify that the client possesses correct service resources. client_1_service = client_1.srp_client_get_services()[0] self.assertEqual(client_1_service['instance'], 'my-service-1') self.assertEqual(client_1_service['name'], '_ipps._tcp') self.assertEqual(int(client_1_service['port']), 12345) self.assertEqual(int(client_1_service['priority']), 0) self.assertEqual(int(client_1_service['weight']), 0) # Verify that the client receives a SUCCESS response for the server. self.assertEqual(client_1_service['state'], 'Registered') # Verify that the server accepts the SRP registration and stored # the same service resources. server_service = server.srp_server_get_services()[0] self.assertEqual(server_service['deleted'], 'false') self.assertEqual(server_service['instance'], client_1_service['instance']) self.assertEqual(server_service['name'], client_1_service['name']) self.assertEqual(int(server_service['port']), int(client_1_service['port'])) self.assertEqual(int(server_service['priority']), int(client_1_service['priority'])) self.assertEqual(int(server_service['weight']), int(client_1_service['weight'])) self.assertEqual(server_service['host'], 'my-host-1') server_host = server.srp_server_get_hosts()[0] self.assertEqual(server_host['deleted'], 'false') self.assertEqual(server_host['fullname'], server_service['host_fullname']) self.assertEqual(len(server_host['addresses']), 1) self.assertEqual(ipaddress.ip_address(server_host['addresses'][0]), ipaddress.ip_address('2001::1')) # # 2. Register with the same host name from the second client and it should fail. # client_2.srp_client_set_host_name('my-host-1') client_2.srp_client_set_host_address('2001::2') client_2.srp_client_start(server.get_addrs()[0], client_2.get_srp_server_port()) client_2.srp_client_add_service('my-service-2', '_ipps._tcp', 12345) self.simulator.go(2) # It is expected that the registration will be rejected. client_2_service = client_2.srp_client_get_services()[0] self.assertEqual(client_2_service['state'], 'Adding') self.assertEqual(client_2.srp_client_get_host_state(), 'ToAdd') self.assertEqual(len(server.srp_server_get_services()), 1) self.assertEqual(len(server.srp_server_get_hosts()), 1) client_2.srp_client_clear_host() client_2.srp_client_stop() # # 3. Register with the same service name from the second client and it should fail. # client_2.srp_client_set_host_name('my-host-2') client_2.srp_client_set_host_address('2001::2') client_2.srp_client_start(server.get_addrs()[0], client_2.get_srp_server_port()) client_2.srp_client_add_service('my-service-1', '_ipps._tcp', 12345) self.simulator.go(2) # It is expected that the registration will be rejected. client_2_service = client_2.srp_client_get_services()[0] self.assertEqual(client_2_service['state'], 'Adding') self.assertEqual(client_2.srp_client_get_host_state(), 'ToAdd') self.assertEqual(len(server.srp_server_get_services()), 1) self.assertEqual(len(server.srp_server_get_hosts()), 1) client_2.srp_client_clear_host() client_2.srp_client_stop() # # 4. Register with different host & service instance name, it should succeed. # client_2.srp_client_set_host_name('my-host-2') client_2.srp_client_set_host_address('2001::2') client_2.srp_client_start(server.get_addrs()[0], client_2.get_srp_server_port()) client_2.srp_client_add_service('my-service-2', '_ipps._tcp', 12345) self.simulator.go(2) # It is expected that the registration will be accepted. client_2_service = client_2.srp_client_get_services()[0] self.assertEqual(client_2_service['state'], 'Registered') self.assertEqual(client_2.srp_client_get_host_state(), 'Registered') self.assertEqual(len(server.srp_server_get_services()), 2) self.assertEqual(len(server.srp_server_get_hosts()), 2) self.assertEqual(server.srp_server_get_host('my-host-2')['deleted'], 'false') self.assertEqual(server.srp_server_get_service('my-service-2', '_ipps._tcp')['deleted'], 'false') # Remove the host and all services registered on the SRP server. client_2.srp_client_remove_host(remove_key=True) self.simulator.go(2) client_2.srp_client_clear_host() client_2.srp_client_stop() # # 5. Register with the same service instance name before its KEY LEASE expires, # it is expected to fail. # # Remove the service instance from SRP server but retains its name. client_1.srp_client_remove_service('my-service-1', '_ipps._tcp') self.simulator.go(2) client_2.srp_client_set_host_name('my-host-2') client_2.srp_client_set_host_address('2001::2') client_2.srp_client_start(server.get_addrs()[0], client_2.get_srp_server_port()) client_2.srp_client_add_service('my-service-1', '_ipps._tcp', 12345) self.simulator.go(2) # It is expected that the registration will be rejected. client_2_service = client_2.srp_client_get_services()[0] self.assertEqual(client_2_service['state'], 'Adding') self.assertEqual(client_2.srp_client_get_host_state(), 'ToAdd') # The service 'my-service-1' is removed but its name is retained. # This is why we can see the service record on the SRP server. self.assertEqual(len(server.srp_server_get_services()), 1) self.assertEqual(len(server.srp_server_get_hosts()), 1) self.assertEqual(server.srp_server_get_host('my-host-1')['deleted'], 'false') self.assertEqual(server.srp_server_get_service('my-service-1', '_ipps._tcp')['deleted'], 'true') client_2.srp_client_clear_host() client_2.srp_client_stop() # # 6. The service instance name can be re-used by another client when # the service has been permanently removed (the KEY resource is # removed) from the host. # # Client 1 adds back the service, it should success. client_1.srp_client_add_service('my-service-1', '_ipps._tcp', 12345) self.simulator.go(2) self.assertEqual(len(server.srp_server_get_services()), 1) self.assertEqual(len(server.srp_server_get_hosts()), 1) self.assertEqual(server.srp_server_get_host('my-host-1')['deleted'], 'false') self.assertEqual(server.srp_server_get_service('my-service-1', '_ipps._tcp')['deleted'], 'false') # Permanently removes the service instance. client_1.srp_client_remove_host(remove_key=True) self.simulator.go(2) self.assertEqual(len(server.srp_server_get_services()), 0) self.assertEqual(len(server.srp_server_get_hosts()), 0) # Client 2 registers the same host & service instance name with Client 1. client_2.srp_client_stop() client_2.srp_client_clear_host() client_2.srp_client_set_host_name('my-host-1') client_2.srp_client_set_host_address('2001::2') client_2.srp_client_start(server.get_addrs()[0], client_2.get_srp_server_port()) client_2.srp_client_add_service('my-service-1', '_ipps._tcp', 12345) self.simulator.go(2) # It is expected that client 2 will success because those names has been # released by client 1. self.assertEqual(len(server.srp_server_get_services()), 1) self.assertEqual(len(server.srp_server_get_hosts()), 1) self.assertEqual(server.srp_server_get_host('my-host-1')['deleted'], 'false') self.assertEqual(server.srp_server_get_service('my-service-1', '_ipps._tcp')['deleted'], 'false') if __name__ == '__main__': unittest.main()
42.45
108
0.676426
9a3b64e364bfe2acc776d3761f10f9ed04ff1561
1,209
py
Python
src/gamesbyexample/numeralsystems.py
spp2/PythonStdioGames
7edc6a07ef816a44579800e773f30217541971fa
[ "MIT" ]
null
null
null
src/gamesbyexample/numeralsystems.py
spp2/PythonStdioGames
7edc6a07ef816a44579800e773f30217541971fa
[ "MIT" ]
null
null
null
src/gamesbyexample/numeralsystems.py
spp2/PythonStdioGames
7edc6a07ef816a44579800e773f30217541971fa
[ "MIT" ]
null
null
null
"""Numeral System Counters, by Al Sweigart al@inventwithpython.com Shows equivalent numbers in decimal, hexadecimal, and binary. This and other games are available at https://nostarch.com/XX Tags: tiny, math""" __version__ = 0 print('''Numeral System Counters, by Al Sweigart al@inventwithpython.com This program shows you equivalent numbers in decimal (base 10), hexadecimal (base 16), and binary (base 2) numeral systems. (Ctrl-C to quit.) ''') while True: response = input('Enter the starting number (e.g. 0) > ') if response == '': response = '0' # Start at 0 by default. break if response.isdecimal(): break print('Please enter a number.') start = int(response) while True: response = input('Enter how many numbers to display (e.g. 1000) > ') if response == '': response = '1000' # Display 1000 numbers by default. break if response.isdecimal(): break print('Please enter a number.') amount = int(response) for number in range(start, start + amount): # Main program loop. hexNumber = hex(number)[2:].upper() binNumber = bin(number)[2:] print('DEC:', number, ' HEX:', hexNumber, ' BIN:', binNumber)
30.225
72
0.659222
ac4aa2cd5ea6e55db5b751566f5ae13feb28a20c
10,847
py
Python
python-package/lets_plot/geo_data/core.py
OLarionova-HORIS/lets-plot
89e30a574fe2de3da17186acdbe1cf427d66d87f
[ "MIT" ]
null
null
null
python-package/lets_plot/geo_data/core.py
OLarionova-HORIS/lets-plot
89e30a574fe2de3da17186acdbe1cf427d66d87f
[ "MIT" ]
null
null
null
python-package/lets_plot/geo_data/core.py
OLarionova-HORIS/lets-plot
89e30a574fe2de3da17186acdbe1cf427d66d87f
[ "MIT" ]
null
null
null
from typing import Any, Union, List, Optional import numpy as np from pandas import Series from .gis.geocoding_service import GeocodingService from .gis.geometry import GeoPoint from .gis.request import RequestBuilder, RequestKind from .gis.response import Response, SuccessResponse from .regions import Regions, _raise_exception, _to_level_kind, _to_scope from .regions_builder import RegionsBuilder from .type_assertion import assert_list_type __all__ = [ 'distance', 'regions_builder', 'regions', 'regions_country', 'regions_state', 'regions_county', 'regions_city', 'regions_xy', ] UNITS_DICT = { 'mi': 3959, 'km': 6371 } GEOFUNC_TYPES = { 'centroids': 'centroids', 'boundaries': 'boundaries', 'limits': 'limits', 'region': 'regions' } def _to_coords(lon: Optional[Union[float, Series, List[float]]], lat: Optional[Union[float, Series, List[float]]]) -> List[GeoPoint]: if type(lon) != type(lat): raise ValueError('lon and lat have different types') if isinstance(lon, float): return [GeoPoint(lon, lat)] if isinstance(lon, Series): lon = lon.tolist() lat = lat.tolist() if isinstance(lon, list): assert_list_type(lon, float) assert_list_type(lat, float) return [GeoPoint(lo, la) for lo, la in zip(lon, lat)] def regions_xy(lon, lat, level, within=None): request = RequestBuilder() \ .set_request_kind(RequestKind.reverse) \ .set_reverse_coordinates(_to_coords(lon, lat)) \ .set_level(_to_level_kind(level)) \ .set_reverse_scope(_to_scope(within)) \ .build() response: Response = GeocodingService().do_request(request) if not isinstance(response, SuccessResponse): _raise_exception(response) return Regions(response.level, response.features, False) def regions_builder(level=None, request=None, within=None, highlights=False) -> RegionsBuilder: """ Create a RegionBuilder class by level and request. Allows to refine ambiguous request with where method. build() method creates Regions object or shows details for ambiguous result. regions_builder(level, request, within) Parameters ---------- level : ['country' | 'state' | 'county' | 'city' | None] The level of administrative division. Default is a 'state'. request : [array | string | None] Data can be filtered by full names at any level (only exact matching). For 'state' level: -'US-48' returns continental part of United States (48 states) in a compact form. within : [array | string | Regions | None] Data can be filtered by within name. If within is array then request and within will be merged positionally (size should be equal). If within is Regions then request will be searched in any of these regions. 'US-48' includes continental part of United States (48 states). Returns ------- RegionsBuilder object : Note ----- regions_builder() allows to refine ambiguous request with where() method. Call build() method to create Regions object Examples --------- .. jupyter-execute:: >>> from lets_plot.geo_data import * >>> r = regions_builder(level='city', request=['moscow', 'york']).where('york', regions_state('New York')).build() >>> r """ return RegionsBuilder(level, request, within, highlights) def regions(level=None, request=None, within=None) -> Regions: """ Create a Regions class by level and request. regions(level, request, within) Parameters ---------- level : ['country' | 'state' | 'county' | 'city' | None] The level of administrative division. None is for autodetection, falls back to a 'state' in case of ambiguity. request : [array | string | None] Data can be filtered by full names at any level (only exact matching). None with explicit level returns all corresponding regions, like all countries i.e. regions(level='country'). For 'state' level: -'US-48' returns continental part of United States (48 states) in a compact form. within : [array | string | Regions| None] Data can be filtered by within name. If within is array then request and within will be merged positionally (size should be equal). If within is Regions then request will be searched in any of these regions. 'US-48' includes continental part of United States (48 states). Returns ------- Regions object : Note ----- regions() is used to get name and object id by level and request. If the given names are not found exception will be thrown. Examples --------- .. jupyter-execute:: >>> from lets_plot.geo_data import * >>> r = regions(level='country', request=['Germany', 'USA']) >>> r """ return RegionsBuilder(level=level, request=request, scope=within).build() def regions_country(request=None): """ Create a Regions class for country level by request. regions_country(request) Parameters ---------- request : [array | string | None] Data can be filtered by full names at any level (only exact matching). Returns ------- Regions object : Note ----- regions_country() is used to get name and object id by request. If the given names are not found exception will be thrown. See also regions(). Examples --------- .. jupyter-execute:: >>> from lets_plot.geo_data import * >>> r_country = regions_country(request=['Germany', 'USA']) >>> r_country """ return regions('country', request, None) def regions_state(request=None, within=None): """ Create a Regions class for state level by request. regions_state(request, within) Parameters ---------- request : [array | string | None] Data can be filtered by full names at any level (only exact matching). For 'state' level: -'US-48' returns continental part of United States (48 states) in a compact form. within : [array | string | Regions| None] Data can be filtered by within name. If within is array then filter and within will be merged positionally (size should be equal). If within is Regions then request will be searched in any of these regions. 'US-48' includes continental part of United States (48 states). Returns ------- Regions object : Note ----- regions_state() is used to get name and object id by request. If the given names are not found exception will be thrown. See also regions(). Examples --------- .. jupyter-execute:: >>> from lets_plot.geo_data import * >>> r_state = regions_state(request=['Texas', 'Iowa'], within='USA') >>> r_state """ return regions('state', request, within) def regions_county(request=None, within=None): """ Create a Regions class for county level by request. regions_county(request, within) Parameters ---------- request : [array | string | None] Data can be filtered by full names at any level (only exact matching). within : [array | string | Regions| None] Data can be filtered by within name. If within is array then request and within will be merged positionally (size should be equal). If within is Regions then request will be searched in any of these regions. 'US-48' includes continental part of United States (48 states). Returns ------- Regions object : Note ----- regions_county() is used to get name and object id by request. If the given names are not found exception will be thrown. See also regions(). Examples --------- .. jupyter-execute:: >>> from lets_plot.geo_data import * >>> r_county = regions_county(request=['Calhoun County', 'Howard County'], within='Texas') >>> r_county """ return regions('county', request, within) def regions_city(request=None, within=None): """ Create a Regions class for city level by request. regions_city(request, within) Parameters ---------- request : [array | string | None] Data can be filtered by full names at any level (only exact matching). within : [array | string | Regions| None] Data can be filtered by within name. If within is array then request and within will be merged positionally (size should be equal). If within is Regions then request will be searched in any of these regions. 'US-48' includes continental part of United States (48 states). Returns ------- Regions object : Note ----- regions_city() is used to get name and object id by request. If the given names are not found exception will be thrown. See also regions(). Examples --------- .. jupyter-execute:: >>> from lets_plot.geo_data import * >>> r_city = regions_city(request=['New York', 'Los Angeles']) >>> r_city """ return regions('city', request, within) def distance(lon0, lat0, lon1, lat1, units='km'): """ Calculate the distance between two points. Returns result in kilometers or miles. distance(lon0, lat0, lon1, lat1, units) Parameters ---------- lon0: number Longitude coordinate of the first point. lat0: number Latitude coordinate of the first point. lon1: number Longitude coordinate of the second point. lat1: number Latitude coordinate of the second point. units: [string | None] The units in which the result will be obtained. There are shorthands for values: 'mi'(miles), 'km'(kilometers). Default is kilometers. Returns ------- object : float Note ----- distance() calculates the distance between two points. Examples --------- .. jupyter-execute:: >>> from lets_plot.geo_data import * >>> dist = distance(-99.25061, 31.25044, -105.50083, 39.00027) >>> dist """ return _calc_distance(lon0, lat0, lon1, lat1, units) def _calc_distance(lon0, lat0, lon1, lat1, u): r = _prepare_units(u) lon0, lat0, lon1, lat1 = map(np.radians, [lon0, lat0, lon1, lat1]) dlon = lon1 - lon0 dlat = lat1 - lat0 a = np.sin(dlat / 2.0) ** 2 + np.cos(lat0) * np.cos(lat1) * np.sin(dlon / 2.0) ** 2 c = 2 * np.arcsin(np.sqrt(a)) return c * r def _prepare_units(units: Any) -> float: try: return UNITS_DICT[units] except KeyError: raise ValueError('Wrong units: {}. The units can take the following values: ' 'mi (miles), km (kilometers).'.format(units))
30.298883
133
0.637688
d0c5a912c387d5a7f17e50aaf78cd978dac19c71
6,529
py
Python
proxy/core/acceptor/executors.py
Flared/proxy.py
7199459c69a717bb55f932230ae9a39707430149
[ "BSD-3-Clause" ]
null
null
null
proxy/core/acceptor/executors.py
Flared/proxy.py
7199459c69a717bb55f932230ae9a39707430149
[ "BSD-3-Clause" ]
null
null
null
proxy/core/acceptor/executors.py
Flared/proxy.py
7199459c69a717bb55f932230ae9a39707430149
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ proxy.py ~~~~~~~~ ⚡⚡⚡ Fast, Lightweight, Pluggable, TLS interception capable proxy server focused on Network monitoring, controls & Application development, testing, debugging. :copyright: (c) 2013-present by Abhinav Singh and contributors. :license: BSD, see LICENSE for more details. """ import socket import logging import argparse import threading import multiprocessing from multiprocessing import connection from multiprocessing.reduction import send_handle from typing import Any, Optional, List, Tuple from .work import Work from .remote import RemoteExecutor from ..connection import TcpClientConnection from ..event import EventQueue, eventNames from ...common.flag import flags from ...common.constants import DEFAULT_NUM_WORKERS, DEFAULT_THREADLESS logger = logging.getLogger(__name__) flags.add_argument( '--threadless', action='store_true', default=DEFAULT_THREADLESS, help='Default: ' + ('True' if DEFAULT_THREADLESS else 'False') + '. ' + 'Enabled by default on Python 3.8+ (mac, linux). ' + 'When disabled a new thread is spawned ' 'to handle each client connection.', ) flags.add_argument( '--threaded', action='store_true', default=not DEFAULT_THREADLESS, help='Default: ' + ('True' if not DEFAULT_THREADLESS else 'False') + '. ' + 'Disabled by default on Python < 3.8 and windows. ' + 'When enabled a new thread is spawned ' 'to handle each client connection.', ) flags.add_argument( '--num-workers', type=int, default=DEFAULT_NUM_WORKERS, help='Defaults to number of CPU cores.', ) class ThreadlessPool: """Manages lifecycle of threadless pool and delegates work to them using a round-robin strategy. Example usage:: with ThreadlessPool(flags=...) as pool: while True: time.sleep(1) If necessary, start multiple threadless pool with different work classes. """ def __init__( self, flags: argparse.Namespace, event_queue: Optional[EventQueue] = None, ) -> None: self.flags = flags self.event_queue = event_queue # Threadless worker communication states self.work_queues: List[connection.Connection] = [] self.work_pids: List[int] = [] self.work_locks: List[multiprocessing.synchronize.Lock] = [] # List of threadless workers self._workers: List[RemoteExecutor] = [] self._processes: List[multiprocessing.Process] = [] def __enter__(self) -> 'ThreadlessPool': self.setup() return self def __exit__(self, *args: Any) -> None: self.shutdown() @staticmethod def delegate( worker_pid: int, work_queue: connection.Connection, work_lock: multiprocessing.synchronize.Lock, conn: socket.socket, addr: Optional[Tuple[str, int]], unix_socket_path: Optional[str] = None, ) -> None: """Utility method to delegate a work to threadless executor pool.""" with work_lock: # Accepted client address is empty string for # unix socket domain, avoid sending empty string # for optimization. if not unix_socket_path: work_queue.send(addr) send_handle( work_queue, conn.fileno(), worker_pid, ) conn.close() @staticmethod def start_threaded_work( flags: argparse.Namespace, conn: socket.socket, addr: Optional[Tuple[str, int]], event_queue: Optional[EventQueue] = None, publisher_id: Optional[str] = None, ) -> Tuple[Work[TcpClientConnection], threading.Thread]: """Utility method to start a work in a new thread.""" work = flags.work_klass( TcpClientConnection(conn, addr), flags=flags, event_queue=event_queue, upstream_conn_pool=None, ) # TODO: Keep reference to threads and join during shutdown. # This will ensure connections are not abruptly closed on shutdown # for threaded execution mode. thread = threading.Thread(target=work.run) thread.daemon = True thread.start() work.publish_event( event_name=eventNames.WORK_STARTED, event_payload={'fileno': conn.fileno(), 'addr': addr}, publisher_id=publisher_id or 'thread#{0}'.format( thread.ident, ), ) return (work, thread) def setup(self) -> None: """Setup threadless processes.""" if self.flags.threadless: for index in range(self.flags.num_workers): self._start_worker(index) logger.info( 'Started {0} threadless workers'.format( self.flags.num_workers, ), ) def shutdown(self) -> None: """Shutdown threadless processes.""" if self.flags.threadless: self._shutdown_workers() logger.info( 'Stopped {0} threadless workers'.format( self.flags.num_workers, ), ) def _start_worker(self, index: int) -> None: """Starts a threadless worker.""" self.work_locks.append(multiprocessing.Lock()) pipe = multiprocessing.Pipe() self.work_queues.append(pipe[0]) w = RemoteExecutor( iid=index, work_queue=pipe[1], flags=self.flags, event_queue=self.event_queue, ) self._workers.append(w) p = multiprocessing.Process(target=w.run) # p.daemon = True self._processes.append(p) p.start() assert p.pid self.work_pids.append(p.pid) logger.debug('Started threadless#%d process#%d', index, p.pid) def _shutdown_workers(self) -> None: """Pop a running threadless worker and clean it up.""" for index in range(self.flags.num_workers): self._workers[index].running.set() for _ in range(self.flags.num_workers): pid = self.work_pids[-1] self._processes.pop().join() self._workers.pop() self.work_pids.pop() self.work_queues.pop().close() logger.debug('Stopped threadless process#%d', pid) self.work_locks = []
32.004902
86
0.603768
f47690ae6bb55388533a42963e580b535d0479e2
6,268
py
Python
src/pyrin/template/handlers/package.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
src/pyrin/template/handlers/package.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
src/pyrin/template/handlers/package.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ template handlers package module. """ import os import pyrin.utils.path as path_utils import pyrin.application.services as application_services from pyrin.core.structs import DTO from pyrin.template.decorators import template_handler from pyrin.template.enumerations import TemplateCLIHandlersEnum from pyrin.template.handlers.base import TemplateHandlerWithInterfaceInputBase from pyrin.template.handlers.exceptions import InvalidPackagePathError, \ InvalidPackageClassNameError class PackageTemplateHandlerBase(TemplateHandlerWithInterfaceInputBase): """ package template handler base class. """ def __init__(self, name, source): """ initializes an instance of PackageTemplateHandlerBase. :param str name: name of the handler. each handler must have a unique name. :param str source: source directory of template files. """ self._package_path = None self._package_full_path = None self._package_name = None self._package_full_name = None self._package_title = None self._package_alias = None self._package_class_name = None self._application_path = application_services.get_application_main_package_path() self._working_directory = application_services.get_working_directory() super().__init__(name, source) def _show_interface(self, package_path=None, package_class_name=None): """ shows cli prompt to get inputs from user. :param str package_path: the new package path. it must be a relative path inside application main package path. :param str package_class_name: the new package class name. :raises InvalidPackagePathError: invalid package path error. :raises InvalidPackageClassNameError: invalid package class name error. """ if package_path is None: package_path = input('Please input the new package relative path: ') if package_class_name is None: package_class_name = input('Please input the new package class name: ') self._set_attributes(package_path, package_class_name) def _validate_inputs(self, package_path, package_class_name): """ validates the inputs to be used by this handler. :param str package_path: the new package path. it must be a relative path inside application main package path. :param str package_class_name: the new package class name. :raises InvalidPackagePathError: invalid package path error. :raises InvalidPackageClassNameError: invalid package class name error. """ if package_path in (None, '') or package_path.isspace() or \ os.path.isabs(package_path): raise InvalidPackagePathError('New package path is invalid.') if package_class_name in (None, '') or package_class_name.isspace(): raise InvalidPackageClassNameError('New package class name is invalid.') def _set_attributes(self, package_path, package_class_name): """ sets the required attributes based on given inputs. :param str package_path: the new package path. it must be a relative path inside application main package path. :param str package_class_name: the new package class name. :raises InvalidPackagePathError: invalid package path error. :raises InvalidPackageClassNameError: invalid package class name error. """ self._validate_inputs(package_path, package_class_name) self._package_path = package_path.rstrip(os.path.sep).rstrip( os.path.altsep).replace(' ', '').lower() self._package_full_path = os.path.abspath(os.path.join( self._application_path, self._package_path)) self._package_title = ' '.join(self._package_path.split(os.path.sep)).lower().strip() self._package_alias = '_'.join(self._package_path.split(os.path.sep)).lower().strip() self._package_name = '.'.join(self._package_path.split(os.path.sep)).lower().strip() self._package_full_name = path_utils.get_package_name(self._package_full_path, self._working_directory) self._package_class_name = package_class_name.replace(' ', '') self._target = self._package_full_path def _get_file_patterns(self): """ gets the file patterns that should be included in replacement operation. :rtype: list[str] """ return ['.py'] def _get_data(self): """ gets the data required in template generation to replace in files. :rtype: dict """ return DTO(PACKAGE_NAME=self._package_name, PACKAGE_TITLE=self._package_title, PACKAGE_ALIAS=self._package_alias, PACKAGE_CLASS_NAME=self._package_class_name, PACKAGE_FULL_NAME=self._package_full_name) @template_handler() class PackageTemplateHandler(PackageTemplateHandlerBase): """ package template handler class. this template handler will be used to create new application packages. """ def __init__(self): """ initializes an instance of PackageTemplateHandler. """ pyrin_path = application_services.get_pyrin_main_package_path() source = os.path.abspath(os.path.join(pyrin_path, 'template', 'files', 'package')) super().__init__(TemplateCLIHandlersEnum.PACKAGE, source) @template_handler() class EmptyPackageTemplateHandler(PackageTemplateHandlerBase): """ empty package template handler class. this template handler will be used to create new empty application packages. """ def __init__(self): """ initializes an instance of EmptyPackageTemplateHandler. """ pyrin_path = application_services.get_pyrin_main_package_path() source = os.path.abspath(os.path.join(pyrin_path, 'template', 'files', 'empty_package')) super().__init__(TemplateCLIHandlersEnum.EMPTY_PACKAGE, source)
36.231214
96
0.674697
890a3cf095a862b0a2fe68526ab9d6e37f489ca2
321,689
py
Python
Uncertainty/data/case-ln/case_ln_142.py
thanever/SOC
9f30d1a9c7610a68de9c178a1170bdf1c8ca11d4
[ "MIT" ]
null
null
null
Uncertainty/data/case-ln/case_ln_142.py
thanever/SOC
9f30d1a9c7610a68de9c178a1170bdf1c8ca11d4
[ "MIT" ]
null
null
null
Uncertainty/data/case-ln/case_ln_142.py
thanever/SOC
9f30d1a9c7610a68de9c178a1170bdf1c8ca11d4
[ "MIT" ]
null
null
null
from numpy import array def case_ln_142(): ppc = {"version": '2'} ppc["baseMVA"] = 100.0 ppc["bus"] = array([ [1.0, 1.0, 53.7196, 14.3252, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [3.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [5.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [6.0, 1.0, 10.7439, 3.9394, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [7.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [8.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [9.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 11.0, 1.0, 1.1, 0.95, 0.6, 10 ], [10.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 11.0, 1.0, 1.1, 0.95, 0.6, 10 ], [11.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [12.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [13.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [14.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [15.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [16.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [17.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [18.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [19.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [20.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [21.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [22.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [23.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [24.0, 2.0, 3.5813, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 6.3, 1.0, 1.1, 0.95, 0.6, 10 ], [25.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [26.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [27.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [28.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [29.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [30.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [31.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [32.0, 2.0, 2.5069, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [33.0, 2.0, 2.1488, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [34.0, 2.0, 2.1488, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [35.0, 2.0, 5.0138, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 24.0, 1.0, 1.1, 0.95, 0.6, 10 ], [36.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [37.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [38.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [39.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [40.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [41.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [42.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [43.0, 1.0, 60.739, 2.2777, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [44.0, 1.0, 71.6262, 4.4838, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [45.0, 1.0, 71.6262, 4.4838, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [46.0, 1.0, 71.6262, 4.4838, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [47.0, 1.0, 71.6262, 4.4838, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [48.0, 1.0, 35.8131, 4.6629, 1e-06, -1e-06, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [49.0, 1.0, 74.4912, 4.6629, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [50.0, 1.0, 14.8982, 4.6629, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [51.0, 1.0, 42.9757, 14.3252, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [52.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [53.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [54.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [55.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [56.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [57.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [58.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [59.0, 1.0, 71.6262, 4.4838, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [107.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [108.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [109.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [110.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [111.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [112.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [113.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [114.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [115.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [116.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [117.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [118.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [119.0, 1.0, 85.9514, 42.9757, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [120.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [121.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [122.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [123.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [307.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [310.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [315.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [316.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [482.0, 1.0, 0.0, 0.0, 0.0, -0.99173882, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [483.0, 1.0, 0.0, 0.0, 0.0, -0.99173882, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [484.0, 1.0, 0.0, 0.0, 0.0, -0.99173882, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [499.0, 1.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [500.0, 1.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [508.0, 1.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [539.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [540.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [541.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [542.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 2.0, 1.0, 0.0, 500.0, 2.0, 1.1, 0.95, 0.6, 10 ], [552.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [553.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [556.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [557.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1418.0, 1.0, 100.2766, 28.6505, 5e-07, -5e-07, 2.0, 1.0, 0.0, 220.0, 2.0, 1.1, 0.95, 0.6, 10 ], [1454.0, 1.0, 49.422, 13.609, 5e-07, -5e-07, 2.0, 1.0, 0.0, 220.0, 2.0, 1.1, 0.95, 0.6, 10 ], [1473.0, 1.0, 116.7506, 21.4878, 5e-07, -5e-07, 2.0, 1.0, 0.0, 220.0, 2.0, 1.1, 0.95, 0.6, 10 ], [1545.0, 1.0, 46.557, 10.7439, 5e-07, -5e-07, 2.0, 1.0, 0.0, 220.0, 2.0, 1.1, 0.95, 0.6, 10 ], [1555.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1556.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1557.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1558.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1559.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1560.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1561.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1562.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1563.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1564.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1565.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1566.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1567.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1568.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1569.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1570.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1571.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1572.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1573.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1574.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1575.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1576.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1577.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1578.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1579.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1580.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1581.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1582.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1583.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1584.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1585.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1586.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1587.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1588.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1589.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1590.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1591.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1592.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1593.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1594.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1595.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1596.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1597.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1598.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1599.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1600.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1601.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1602.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1603.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1604.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1605.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1606.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1607.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1608.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1609.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1610.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1611.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1612.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1613.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1614.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1615.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1616.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1617.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1618.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1619.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1620.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1621.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1622.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1623.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1624.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1625.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1626.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1627.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1628.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1629.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1630.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1631.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1632.0, 2.0, 5.0138, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1633.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1634.0, 2.0, 5.0138, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1635.0, 1.0, 214.8785, 25.6493, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1641.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1642.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1643.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1644.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1645.0, 2.0, 3.5813, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 6.3, 1.0, 1.1, 0.95, 0.6, 10 ], [1646.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1647.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1648.0, 2.0, 5.0138, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 24.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1649.0, 2.0, 2.5069, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1650.0, 2.0, 5.0138, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 24.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1651.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.7, 1.0, 1.1, 0.95, 0.6, 10 ], [1652.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1653.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.7, 1.0, 1.1, 0.95, 0.6, 10 ], [1654.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.7, 1.0, 1.1, 0.95, 0.6, 10 ], [1655.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1656.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1657.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1658.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1659.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1660.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1661.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1662.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1663.0, 3.0, 42.9757, 7.8789, 0.0, 0.0, 1.0, 1.0, 0.0, 27.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1664.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.7, 1.0, 1.1, 0.95, 0.6, 10 ], [1665.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 24.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1666.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 24.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1667.0, 2.0, 31.5871, 9.0249, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1668.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1669.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1670.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1671.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1672.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1673.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1674.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.7, 1.0, 1.1, 0.95, 0.6, 10 ], [1675.0, 2.0, 11.2811, 3.7604, 0.0, 0.0, 1.0, 1.0, 0.0, 18.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1676.0, 2.0, 11.2811, 3.7604, 0.0, 0.0, 1.0, 1.0, 0.0, 18.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1677.0, 2.0, 11.2811, 4.1042, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1678.0, 2.0, 11.2811, 4.1042, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1679.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1680.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1681.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1682.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1683.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1684.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1685.0, 2.0, 6.7687, 3.0083, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1686.0, 2.0, 11.2811, 4.1042, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1687.0, 2.0, 11.2811, 4.1042, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1688.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1689.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1690.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 35.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1691.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1692.0, 2.0, 42.9757, 7.8789, 0.0, 0.0, 1.0, 1.0, 0.0, 27.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1693.0, 2.0, 12.8927, 4.3405, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1694.0, 2.0, 12.8927, 4.3405, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1695.0, 2.0, 12.8927, 4.3405, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1696.0, 2.0, 12.8927, 4.3405, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1697.0, 2.0, 21.4878, 6.4463, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1698.0, 2.0, 21.4878, 6.4463, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1699.0, 2.0, 21.4878, 6.4463, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1700.0, 2.0, 7.1626, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1701.0, 2.0, 7.1626, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1702.0, 2.0, 12.8927, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1703.0, 2.0, 12.8927, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1704.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1705.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1706.0, 2.0, 12.8927, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 16.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1707.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1708.0, 2.0, 5.7301, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1709.0, 2.0, 5.7301, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1710.0, 2.0, 7.1626, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 18.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1711.0, 2.0, 12.8927, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1712.0, 2.0, 12.8927, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1713.0, 2.0, 10.7439, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1714.0, 2.0, 10.7439, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1715.0, 2.0, 10.7439, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1716.0, 2.0, 10.7439, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1717.0, 2.0, 34.3806, 6.4607, 0.0, 0.0, 1.0, 1.0, 0.0, 24.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1718.0, 2.0, 34.3806, 6.4607, 0.0, 0.0, 1.0, 1.0, 0.0, 24.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1719.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1720.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1721.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1722.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1723.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1724.0, 2.0, 7.1626, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 18.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1725.0, 2.0, 7.1626, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 18.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1726.0, 2.0, 7.1626, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1727.0, 2.0, 7.1626, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1728.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1729.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1730.0, 2.0, 8.5951, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1731.0, 2.0, 8.5951, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1732.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1733.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1734.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1735.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1736.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1737.0, 2.0, 8.5951, 2.6072, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1738.0, 2.0, 8.5951, 2.5785, 0.0, 0.0, 1.0, 1.0, 0.0, 15.75, 1.0, 1.1, 0.95, 0.6, 10 ], [1739.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1740.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1741.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1742.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1743.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1744.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 22.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1745.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 22.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1746.0, 2.0, 78.7888, 25.0692, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1747.0, 2.0, 7.1626, 2.1488, 0.0, 0.0, 1.0, 1.0, 0.0, 13.8, 1.0, 1.1, 0.95, 0.6, 10 ], [1748.0, 2.0, 30.083, 7.8144, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1749.0, 2.0, 30.083, 7.8144, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1750.0, 2.0, 30.083, 7.8144, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1751.0, 2.0, 30.083, 7.8144, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1752.0, 2.0, 15.0415, 3.9036, 0.0, 0.0, 1.0, 1.0, 0.0, 20.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1754.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1755.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1756.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1757.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1758.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1759.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1760.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1761.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1762.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1763.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1764.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1765.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1766.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1767.0, 1.0, 71.6262, 4.6772, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1768.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1769.0, 1.0, 71.6262, 4.4838, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1770.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1771.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1772.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1773.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1774.0, 1.0, 39.3944, 5.1428, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1775.0, 1.0, 71.6262, 4.4838, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1776.0, 1.0, 35.8131, 4.6772, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1777.0, 1.0, 60.8822, 14.3252, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1778.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1779.0, 1.0, 35.8131, 4.6772, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1780.0, 1.0, 107.4392, 15.944, 1e-06, -1e-06, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1781.0, 1.0, 39.3944, 5.1428, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1782.0, 1.0, 37.2456, 4.8634, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1783.0, 1.0, 37.2456, 4.8634, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1784.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1785.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1786.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1787.0, 1.0, 39.3944, 15.7578, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1788.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1789.0, 1.0, 0.0, 0.0, 0.0, -0.99173882, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1790.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1791.0, 1.0, 239.0451, 72.5644, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1792.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1793.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1794.0, 1.0, 28.6505, 7.1626, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1795.0, 1.0, 28.2279, 3.9967, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1796.0, 1.0, 71.6262, 24.3672, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1797.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1798.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1799.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1800.0, 1.0, 74.4912, 25.3413, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1801.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1802.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1803.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1804.0, 1.0, 52.3874, 31.4367, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1805.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1806.0, 1.0, 19.3606, -7.2916, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1807.0, 1.0, 71.6262, 14.3252, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1808.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1809.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1810.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1811.0, 1.0, 0.0, 0.0, 0.0, -2.40000384, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1812.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1813.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1814.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1815.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1816.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1817.0, 1.0, 7.091, 1.2176, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1818.0, 1.0, 58.9913, 8.9604, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1819.0, 1.0, 3.524, 0.881, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1820.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1821.0, 1.0, 41.2065, 9.2398, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1822.0, 1.0, 71.6262, 4.4838, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1823.0, 1.0, 35.8131, 24.3672, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1824.0, 1.0, 38.893, 6.7329, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1825.0, 1.0, 6.8045, 1.2176, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1826.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1827.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1828.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1829.0, 1.0, 171.9601, 35.8489, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1830.0, 1.0, 20.0553, 1.4325, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1831.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1832.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1833.0, 1.0, 78.7888, 25.7854, 1e-06, -1e-06, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1834.0, 1.0, 0.0, 0.0, 0.0, -1.4999925, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1835.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1836.0, 1.0, 34.1155, 9.7483, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1837.0, 1.0, 50.1884, -1.5185, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1838.0, 1.0, 5.3934, 1.2893, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1839.0, 1.0, 16.3308, 6.0882, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1840.0, 1.0, 44.3939, 9.0894, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1841.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1842.0, 1.0, 55.1521, 9.6122, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1843.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1844.0, 1.0, 21.4878, 24.3672, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1845.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1846.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1847.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1848.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1849.0, 1.0, 0.0, 0.0, 0.0, 5.74999045, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1850.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1851.0, 1.0, 0.0, 0.0, 0.0, -1.20000048, 1.0, 1.0, 0.0, 63.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1852.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1853.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1854.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1855.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1856.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1857.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1858.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1859.0, 1.0, 40.8269, 13.609, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1860.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1861.0, 1.0, 71.3611, 14.5974, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1862.0, 1.0, 0.0, 0.0, 0.0, 0.64800415, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1863.0, 1.0, 0.0, 0.0, 0.0, -3.8340098, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1864.0, 1.0, 0.0, 0.0, 0.0, -1.97550375, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1865.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1866.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1867.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1868.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1869.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1870.0, 1.0, 6.1598, 0.881, 0.0, 0.0, 2.0, 1.0, 0.0, 220.0, 2.0, 1.1, 0.95, 0.6, 10 ], [1871.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1872.0, 1.0, 0.0, 0.0, 0.0, -1.1999976, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1873.0, 1.0, 0.0, 0.0, 0.0, -1.1999976, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1874.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1875.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1876.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1877.0, 1.0, 0.0, 0.0, 0.0, -1.7999964, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1878.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1879.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1880.0, 1.0, 0.0, 0.0, 0.0, 0.599988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1881.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1882.0, 1.0, 0.0, 0.0, 0.0, -1.20000048, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1883.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1884.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1885.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1886.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1887.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1888.0, 1.0, 8.4949, 1.2678, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1889.0, 1.0, 0.0, 0.0, 0.0, -0.6000024, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1890.0, 1.0, 0.0, 0.0, 0.0, -1.1999976, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1891.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1892.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1893.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1894.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1895.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1896.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1897.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1898.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1899.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1900.0, 1.0, 61.663, 4.2259, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1901.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1902.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1903.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1904.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1905.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1906.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1907.0, 1.0, 62.3148, 15.5429, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1908.0, 1.0, 26.5017, 5.8733, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1909.0, 1.0, 40.612, 16.2448, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1910.0, 1.0, 50.1383, 17.5484, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1911.0, 1.0, 81.2241, 16.2448, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1912.0, 1.0, 38.2484, 9.956, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1913.0, 1.0, 89.6258, -2.5857, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1914.0, 1.0, 18.501, 5.9879, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1915.0, 1.0, 24.2669, 7.8001, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1916.0, 1.0, 39.3944, 17.8707, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1917.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1918.0, 1.0, 148.9824, 36.5007, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1919.0, 1.0, 47.2016, -30.1546, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1920.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1921.0, 1.0, 53.9846, 0.0, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1922.0, 1.0, 49.6799, 18.7016, 5e-07, -5e-07, 2.0, 1.0, 0.0, 220.0, 2.0, 1.1, 0.95, 0.6, 10 ], [1923.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1924.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1925.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1926.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1927.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1928.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1929.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1930.0, 1.0, 0.0, 0.0, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1931.0, 1.0, 78.7888, 4.9279, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1932.0, 1.0, 41.8368, 15.1274, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1933.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1934.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1935.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1936.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1937.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1938.0, 1.0, 23.7799, 6.9477, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1939.0, 1.0, 119.3363, 18.5512, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1940.0, 1.0, 63.9622, 6.7329, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1941.0, 1.0, 74.9353, 18.1787, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1942.0, 1.0, 173.3353, 54.3643, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1943.0, 1.0, 42.9829, 7.3775, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1944.0, 1.0, 106.8949, 8.3444, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1945.0, 1.0, 40.612, 16.2448, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1946.0, 1.0, 112.2382, 17.4768, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1947.0, 1.0, 106.2932, 17.4052, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1948.0, 1.0, 136.6627, 45.5542, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1949.0, 1.0, 53.2899, -0.6446, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1950.0, 1.0, 116.2493, 31.6588, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1951.0, 1.0, 95.6496, 23.3143, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1952.0, 1.0, 4.9136, 0.8953, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1953.0, 1.0, 27.662, 8.545, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1954.0, 1.0, 95.2628, 13.609, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1955.0, 1.0, 71.6262, 4.6772, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1956.0, 1.0, 16.0443, 5.2287, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1957.0, 1.0, 0.0, 0.0, 0.0, -2.3999952, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1958.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1959.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1960.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1961.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1962.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1963.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 63.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1964.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 63.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1965.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1966.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1967.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1968.0, 1.0, 124.5149, 7.5924, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1969.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1970.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1971.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1972.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1973.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1974.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1975.0, 1.0, 0.0, 0.0, 0.0, -1.08843537, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1976.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1977.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1978.0, 1.0, 156.8756, 18.2503, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1979.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1980.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1981.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1982.0, 1.0, 13.3941, 4.799, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1983.0, 1.0, 34.3089, 15.1131, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1984.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1985.0, 1.0, 208.8619, 84.3183, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1986.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1987.0, 1.0, 0.0, 0.0, 0.0, -1.23967967, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1988.0, 1.0, 139.5994, 26.4301, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1989.0, 1.0, 53.0034, 18.6228, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1990.0, 1.0, 85.9586, 31.7519, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1991.0, 1.0, 112.7467, 44.2005, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1992.0, 1.0, 89.5327, 10.8872, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1993.0, 1.0, 39.466, 18.4795, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1994.0, 1.0, 83.731, 14.2536, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1995.0, 1.0, 76.9265, 24.5678, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1996.0, 1.0, 0.0, 0.0, 0.0, -2.999994, 1.0, 1.0, 0.0, 63.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1997.0, 1.0, 0.0, 0.0, 0.0, -1.7999964, 1.0, 1.0, 0.0, 63.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1998.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [1999.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2000.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2001.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2002.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2003.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2004.0, 1.0, 77.2846, 18.3363, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2005.0, 1.0, 27.0747, 4.5841, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2006.0, 1.0, 123.9133, 36.601, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2007.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2008.0, 1.0, 89.3178, 10.9516, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2009.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2010.0, 1.0, 0.0, 0.0, 0.0, 13.8608871, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2011.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 63.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2012.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 63.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2013.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2014.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2015.0, 1.0, 98.7725, 3.3521, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2016.0, 1.0, 57.5803, 10.2784, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2017.0, 1.0, 0.0, 0.0, 0.0, 0.599988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2018.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2019.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2020.0, 1.0, 33.3277, 10.3213, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2021.0, 1.0, 78.4736, 12.2123, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2022.0, 1.0, 0.0, 0.0, 0.0, 1.29600829, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2023.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2024.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2025.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2026.0, 1.0, 68.9044, 7.0194, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2027.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2028.0, 1.0, 128.4257, 21.5595, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2029.0, 1.0, 57.3009, 18.3363, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2030.0, 1.0, 80.2213, 2.1488, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2031.0, 1.0, 0.0, 0.0, 0.0, -0.9000009, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2032.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2033.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2034.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2035.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2036.0, 1.0, 83.8742, 16.6173, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2037.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2038.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2039.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2040.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2041.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2042.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2043.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 63.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2044.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2045.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2046.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2047.0, 1.0, 93.0424, -12.8855, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2048.0, 1.0, 10.6508, 2.4568, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2049.0, 1.0, 0.0, 0.0, 0.0, -0.5999988, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2050.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2051.0, 1.0, 93.114, 14.3252, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2052.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2053.0, 1.0, 226.6968, 44.4082, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2054.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2055.0, 1.0, 0.0, 0.0, 0.0, -1.1999976, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2056.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2057.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2058.0, 1.0, 70.5661, 8.7241, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2059.0, 1.0, 59.0271, 11.453, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2060.0, 1.0, 174.6174, 60.7032, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2061.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2062.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2063.0, 1.0, 79.3618, 15.3996, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2064.0, 1.0, 39.9459, 8.1152, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2065.0, 1.0, 76.4251, 21.273, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2066.0, 1.0, 118.8994, 18.6228, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2067.0, 1.0, 111.6652, 21.6311, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2068.0, 1.0, 78.0725, 8.8816, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2069.0, 1.0, 142.2925, 26.5518, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2070.0, 1.0, 192.0297, 44.1217, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2071.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2072.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2073.0, 1.0, 97.3614, 42.5316, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2074.0, 1.0, 68.5462, 22.2757, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2075.0, 1.0, 133.9409, 34.0224, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2076.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2077.0, 1.0, 0.0, 0.0, 0.0, 0.900009, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2078.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 66.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2079.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2080.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2081.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2082.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2083.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2084.0, 1.0, 74.6345, 19.1242, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2085.0, 1.0, 39.8241, 14.9699, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2086.0, 1.0, 60.5957, 12.6778, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2087.0, 1.0, 101.9957, 31.3723, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2088.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2089.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2090.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2091.0, 1.0, 92.9708, -10.7153, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2092.0, 1.0, 99.7036, 32.8764, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2093.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2094.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2095.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2096.0, 1.0, 8.1224, 2.951, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2097.0, 1.0, 73.6317, 29.1519, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2098.0, 1.0, 70.122, 24.4245, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2099.0, 1.0, 73.1948, 15.9153, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2100.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2101.0, 1.0, 135.6743, 38.7641, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2102.0, 1.0, 162.3693, 56.9141, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2103.0, 1.0, 117.7892, 11.8971, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2104.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2105.0, 1.0, 236.2016, 75.9237, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2106.0, 1.0, 55.2739, 2.1273, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2107.0, 1.0, 57.3511, 19.9121, 1e-06, -1e-06, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2108.0, 1.0, 273.7552, 48.9207, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2109.0, 1.0, 216.311, 30.083, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2110.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2111.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2112.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2113.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2114.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2115.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2116.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 10.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2117.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2118.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2119.0, 1.0, 23.7083, 0.0, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2120.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2121.0, 1.0, 275.7607, 63.031, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2122.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2123.0, 1.0, 88.5586, 27.0246, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2124.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2125.0, 1.0, 175.6202, 55.2309, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2126.0, 1.0, 218.03, 34.0224, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2127.0, 1.0, 114.4586, 31.0858, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2128.0, 1.0, 128.3469, 12.8139, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2129.0, 1.0, 11.6393, 4.6199, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2130.0, 1.0, 98.1278, 23.6366, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2131.0, 1.0, 0.5515, 1.7548, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2132.0, 1.0, 86.2665, 24.8614, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2133.0, 1.0, 154.426, 4.7273, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2134.0, 1.0, 64.4635, 16.474, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2135.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2136.0, 1.0, 0.0, 0.0, 0.0, -1.23967967, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2137.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2138.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2139.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2140.0, 1.0, 0.0, 0.0, 0.0, -1.36054422, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2141.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2142.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2143.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2144.0, 1.0, 0.0, 0.0, 0.0, -1.500015, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2145.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2146.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2147.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2148.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2149.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2150.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2151.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2152.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2153.0, 1.0, 98.4931, 31.8736, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2154.0, 1.0, 76.8549, 8.81, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2155.0, 1.0, 148.3378, 29.9397, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2156.0, 1.0, 49.5653, 11.4602, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2157.0, 1.0, 28.2207, 16.1875, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2158.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2159.0, 1.0, 37.3172, 8.3086, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2160.0, 1.0, 55.94, 16.1159, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2161.0, 1.0, 188.8066, 29.5816, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2162.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2163.0, 1.0, 132.8952, 16.166, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2164.0, 1.0, 85.8081, 7.3775, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2165.0, 1.0, 31.5155, 2.9367, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2166.0, 1.0, 126.7067, 31.0858, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2167.0, 1.0, 62.1715, 12.8927, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2168.0, 1.0, 75.981, 19.8118, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2169.0, 1.0, 145.5587, 11.1737, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2170.0, 1.0, 147.5499, 24.3529, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2171.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2172.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2173.0, 1.0, 114.2724, 27.4901, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2174.0, 1.0, 230.9944, 59.0916, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2175.0, 1.0, 156.5032, 58.3753, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2176.0, 1.0, 176.2004, 3.6529, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2177.0, 1.0, 148.7675, 24.138, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2178.0, 1.0, 182.2169, 53.1466, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2179.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2180.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2181.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2182.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2183.0, 1.0, 55.1951, 12.2194, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2184.0, 1.0, 91.6958, 14.225, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2185.0, 1.0, 92.1112, 35.4549, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2186.0, 1.0, 128.9271, 23.7799, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2187.0, 1.0, 157.5776, 35.455, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2188.0, 1.0, 156.5748, 37.9619, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2189.0, 1.0, 69.9071, 7.8072, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2190.0, 1.0, 102.2105, 7.2342, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2191.0, 1.0, 106.2932, 30.3695, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2192.0, 1.0, 128.569, -2.3852, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2193.0, 1.0, 174.0516, 20.7716, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2194.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2195.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2196.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2197.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2198.0, 1.0, 200.0089, 48.6413, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2199.0, 1.0, 42.8324, 11.6965, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2200.0, 1.0, 90.6572, 21.452, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2201.0, 1.0, 187.2738, 29.5744, 1e-07, -9.9e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2202.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2203.0, 1.0, 41.5432, 11.4602, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2204.0, 1.0, 189.8093, 66.6123, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2205.0, 1.0, 27.2179, 5.7301, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2206.0, 1.0, 112.7396, 42.8325, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2207.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2208.0, 1.0, 41.0418, 13.1076, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2209.0, 1.0, 119.9738, 47.4165, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2210.0, 1.0, 45.6975, 21.5595, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2211.0, 1.0, 51.356, 8.5235, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2212.0, 1.0, 55.2954, 16.0443, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2213.0, 1.0, 22.992, 6.2315, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2214.0, 1.0, 153.1367, 50.6397, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2215.0, 1.0, 82.0836, 23.0636, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2216.0, 1.0, 58.2321, 16.7605, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2217.0, 1.0, 230.6362, 75.5656, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2218.0, 1.0, 59.4497, 25.0692, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2219.0, 1.0, 35.8131, 4.6772, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2220.0, 1.0, 96.6237, 20.3418, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2221.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2222.0, 1.0, 105.7775, 15.5715, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2223.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2224.0, 1.0, 99.9185, 14.8266, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2225.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2226.0, 1.0, 130.3596, 59.4497, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2227.0, 1.0, 150.4149, 60.166, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2228.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2229.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2230.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 500.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2231.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2232.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2233.0, 1.0, 74.1331, 6.9477, 5e-07, -5e-07, 1.0, 1.0, 0.0, 220.0, 1.0, 1.1, 0.95, 0.6, 10 ], [2234.0, 1.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 0.0, 220.0, 2.0, 1.1, 0.95, 0.6, 10 ] ]) ppc["gen"] = array([ [1634.0, 40.0, 44.7, 68.2, 0.0, 1.07, 100.0, 1.0, 110.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 129.41, 22.0, 33.0, 33.0, 44.0 ], [1632.0, 60.0, 43.6, 68.2, 0.0, 1.07, 100.0, 0.0, 110.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 129.41, 22.0, 33.0, 33.0, 44.0 ], [1629.0, 90.0, 40.8, 77.46, 0.0, 1.07, 100.0, 1.0, 125.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 147.06, 25.0, 37.5, 37.5, 50.0 ], [1685.0, 154.8, 75.3, 80.0, 0.0, 1.07, 100.0, 1.0, 157.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 177.177, 31.4, 47.1, 47.1, 62.8 ], [1706.0, 282.3, 96.3, 185.9, 0.0, 1.07, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.0, 60.0, 90.0, 90.0, 120.0 ], [1747.0, 79.0, 23.2, 41.5, 0.0, 1.0, 100.0, 0.0, 75.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 88.8888, 15.0, 22.5, 22.5, 30.0 ], [1746.0, 77.8, 18.4, 41.5, 0.0, 1.0, 100.0, 0.0, 75.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 88.8888, 15.0, 22.5, 22.5, 30.0 ], [31.0, 100.0, 12.6, 62.0, 0.0, 1.0, 100.0, 1.0, 100.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 117.65, 20.0, 30.0, 30.0, 40.0 ], [30.0, 100.0, 12.6, 62.0, 0.0, 1.0, 100.0, 0.0, 100.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 117.65, 20.0, 30.0, 30.0, 40.0 ], [23.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 9.978, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [4.0, 7.1, 1.8, 62.0, 0.0, 1.0, 100.0, 0.0, 9.9803, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1666.0, 193.0, 107.7, 185.9, 0.0, 1.0, 100.0, 1.0, 367.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.7, 70.0, 105.0, 105.0, 140.0 ], [1665.0, 264.8, 115.6, 185.9, 0.0, 1.0, 100.0, 1.0, 367.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.7, 70.0, 105.0, 105.0, 140.0 ], [1745.0, 234.1, 26.6, 216.9, 0.0, 1.0, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1744.0, 231.6, 46.9, 216.9, 0.0, 1.02, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1743.0, 258.5, 46.6, 216.9, 0.0, 1.0, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1742.0, 263.3, 101.2, 216.9, 0.0, 1.02, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1664.0, 350.0, 34.0, 216.9, 0.0, 1.015, 100.0, 0.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [26.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 18.5034, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [28.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 17.9407, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [19.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 13.2625, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1741.0, 283.9, 41.3, 216.9, 0.0, 1.0, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1740.0, 262.8, 32.8, 216.9, 0.0, 1.03, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1670.0, 219.8, 92.0, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1669.0, 299.8, 103.9, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1687.0, 297.4, 102.2, 185.9, 0.0, 1.01, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1686.0, 297.7, 86.4, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1729.0, 266.4, 133.3, 216.9, 0.0, 1.0, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1728.0, 225.0, 140.2, 216.9, 0.0, 1.0, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1696.0, 209.0, 112.0, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1695.0, 209.0, 89.0, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1690.0, 133.1, 0.0, 88.0, 0.0, 1.0, 100.0, 1.0, 26.7239, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1659.0, 22.2, -0.9, 62.0, 0.0, 1.0, 100.0, 1.0, 12.3483, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1738.0, 134.2, 51.3, 50.0, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1737.0, 155.4, 40.6, 50.0, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1707.0, 264.3, 28.2, 216.9, 0.0, 1.0, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1752.0, 254.3, 31.4, 216.9, 0.0, 1.0, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [13.0, 90.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 1.3183, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1703.0, 93.2, 0.0, 123.9, 0.0, 1.0, 100.0, 1.0, 150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 176.0, 30.0, 45.0, 45.0, 60.0 ], [1702.0, 144.4, 17.6, 123.9, 0.0, 1.0, 100.0, 0.0, 150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 176.0, 30.0, 45.0, 45.0, 60.0 ], [1704.0, 107.3, 0.0, 123.9, 0.0, 1.0, 100.0, 1.0, 150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 176.0, 30.0, 45.0, 45.0, 60.0 ], [1705.0, 107.7, 9.9, 123.9, 0.0, 1.0, 100.0, 1.0, 150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 176.0, 30.0, 45.0, 45.0, 60.0 ], [34.0, 30.0, 20.0, 35.0, 0.0, 1.003, 100.0, 1.0, 50.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 40.0, 6.0, 9.0, 9.0, 12.0 ], [33.0, 30.0, 20.0, 35.0, 0.0, 1.0, 100.0, 1.0, 50.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 40.0, 6.0, 9.0, 9.0, 12.0 ], [1678.0, 257.9, 99.5, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1677.0, 128.6, 88.6, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1655.0, 49.5, 0.0, 4.95, -0.0, 1.0, 100.0, 0.0, 1.1867, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 110.0, 19.8, 29.7, 29.7, 39.6 ], [27.0, 48.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 7.0768, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1657.0, 90.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 2.7426, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1650.0, 1068.2, 202.5, 600.0, 0.0, 1.0, 100.0, 1.0, 1150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 1278.0, 223.6, 335.4, 335.4, 447.2 ], [1648.0, 1000.0, 300.0, 600.0, 0.0, 1.0, 100.0, 1.0, 1150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 1277.778, 230.0, 345.0, 345.0, 460.0 ], [35.0, 1118.0, 300.0, 600.0, 0.0, 1.0, 100.0, 0.0, 1150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 1278.0, 223.6, 335.4, 335.4, 447.2 ], [1682.0, 246.6, 95.4, 185.9, 0.0, 1.0, 100.0, 1.0, 330.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 388.0, 66.0, 99.0, 99.0, 132.0 ], [1681.0, 275.9, 100.9, 185.9, 0.0, 1.0, 100.0, 1.0, 330.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 388.0, 66.0, 99.0, 99.0, 132.0 ], [2116.0, 58.3, 2.4, 44.9, 0.0, 1.0, 100.0, 0.0, 72.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 85.294, 14.5, 21.75, 21.75, 29.0 ], [2114.0, 67.9, 2.3, 44.9, 0.0, 1.0, 100.0, 0.0, 72.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 85.294, 14.5, 21.75, 21.75, 29.0 ], [2113.0, 67.0, 4.7, 44.9, 0.0, 1.0, 100.0, 0.0, 72.5, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 85.294, 14.5, 21.75, 21.75, 29.0 ], [2112.0, 32.2, 5.0, 5.0, 0.0, 1.0, 100.0, 0.0, 36.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 41.14, 7.2, 10.8, 10.8, 14.4 ], [2110.0, 32.6, 5.4, 5.0, 0.0, 1.0, 100.0, 0.0, 36.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 41.14, 7.2, 10.8, 10.8, 14.4 ], [1736.0, 30.2, 5.9, 20.0, 0.0, 1.0, 100.0, 0.0, 42.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 49.412, 8.4, 12.6, 12.6, 16.8 ], [1735.0, 30.8, 6.3, 20.0, 0.0, 1.0, 100.0, 0.0, 42.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 49.412, 8.4, 12.6, 12.6, 16.8 ], [1734.0, 200.0, 88.0, 123.9, 0.0, 1.0, 100.0, 0.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1733.0, 200.0, 123.9, 123.9, 0.0, 1.03, 100.0, 0.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1732.0, 130.3, 19.7, 123.9, 0.0, 1.0, 100.0, 0.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1694.0, 212.5, 27.6, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1693.0, 215.3, 38.5, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [25.0, 48.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 2.1467, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1701.0, 472.5, 159.0, 290.6, 0.0, 1.03, 100.0, 1.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1700.0, 563.6, 210.1, 290.6, 0.0, 1.03, 100.0, 0.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1652.0, 50.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 1.3940000000000001,0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1645.0, 50.0, 20.0, 60.0, 0.0, 1.03, 100.0, 1.0, 50.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 58.0, 10.0, 15.0, 15.0, 20.0 ], [24.0, 50.0, 20.0, 60.0, 0.0, 1.03, 100.0, 0.0, 50.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 58.0, 10.0, 15.0, 15.0, 20.0 ], [1656.0, 49.5, 0.0, 4.95, -0.0, 1.0, 100.0, 1.0, 4.3276, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 110.0, 19.8, 29.7, 29.7, 39.6 ], [14.0, 49.5, 0.0, 4.95, -0.0, 1.0, 100.0, 0.0, 2.3369999999999997,0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 110.0, 19.8, 29.7, 29.7, 39.6 ], [1679.0, 140.0, 9.6, 62.0, 0.0, 1.0, 100.0, 1.0, 10.8998, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [116.0, 99.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 1.882, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [18.0, 99.0, 20.0, 62.0, 0.0, 1.0, 100.0, 0.0, 5.6466, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [17.0, 99.0, 20.0, 62.0, 0.0, 1.0, 100.0, 0.0, 4.3464, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [16.0, 99.0, 20.0, 62.0, 0.0, 1.0, 100.0, 0.0, 1.4959, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [15.0, 99.0, 20.0, 62.0, 0.0, 1.0, 100.0, 0.0, 1.3183, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1612.0, 80.6, 23.4, 62.0, 0.0, 1.0, 100.0, 1.0, 100.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 117.65, 20.0, 30.0, 30.0, 40.0 ], [1609.0, 85.9, 28.5, 62.0, 0.0, 1.0, 100.0, 1.0, 100.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 117.65, 20.0, 30.0, 30.0, 40.0 ], [1691.0, 100.8, 44.0, 123.9, 0.0, 1.0, 100.0, 1.0, 150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 176.471, 30.0, 45.0, 45.0, 60.0 ], [1662.0, 106.9, 43.8, 123.9, 0.0, 1.0, 100.0, 0.0, 150.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 176.471, 30.0, 45.0, 45.0, 60.0 ], [1731.0, 119.9, 64.6, 123.9, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1730.0, 121.8, 59.9, 123.9, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1649.0, 200.0, 180.0, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [32.0, 200.0, 34.0, 216.9, 0.0, 1.015, 100.0, 1.0, 350.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 411.76, 70.0, 105.0, 105.0, 140.0 ], [1651.0, 300.0, 166.0, 166.0, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 342.86, 60.0, 90.0, 90.0, 120.0 ], [1653.0, 300.0, 166.0, 166.0, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 342.86, 60.0, 90.0, 90.0, 120.0 ], [1654.0, 300.0, 166.0, 166.0, 0.0, 1.0, 100.0, 0.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 342.86, 60.0, 90.0, 90.0, 120.0 ], [1674.0, 300.0, 166.0, 166.0, 0.0, 1.0, 100.0, 0.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 342.86, 60.0, 90.0, 90.0, 120.0 ], [20.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 4.6309, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1668.0, 600.0, 283.0, 290.6, 0.0, 1.0, 100.0, 1.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1727.0, 200.0, 54.0, 130.1, 0.0, 0.98, 100.0, 0.0, 210.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 247.06, 42.0, 63.0, 63.0, 84.0 ], [1726.0, 120.7, 61.9, 123.9, 0.0, 0.98, 100.0, 0.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1697.0, 450.0, 154.0, 290.6, 0.0, 1.0, 100.0, 1.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1643.0, 345.0, 100.0, 62.0, 0.0, 1.0, 100.0, 0.0, 100.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1725.0, 142.8, 36.0, 123.9, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1724.0, 138.7, 67.0, 123.9, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1710.0, 128.8, 69.5, 123.9, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.294, 40.0, 60.0, 60.0, 80.0 ], [1672.0, 184.5, 123.5, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1671.0, 181.3, 127.5, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1723.0, 34.9, 3.9, 20.0, 0.0, 1.0, 100.0, 0.0, 50.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 58.0, 10.0, 15.0, 15.0, 20.0 ], [1722.0, 90.0, 1.0, 50.0, 0.0, 1.01, 100.0, 1.0, 90.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 100.0, 18.0, 27.0, 27.0, 36.0 ], [1721.0, 90.0, 1.0, 50.0, 0.0, 1.0, 100.0, 0.0, 90.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 100.0, 18.0, 27.0, 27.0, 36.0 ], [1720.0, 90.0, 1.0, 50.0, 0.0, 1.0, 100.0, 0.0, 90.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 100.0, 18.0, 27.0, 27.0, 36.0 ], [1719.0, 90.0, 1.0, 50.0, 0.0, 1.0, 100.0, 0.0, 90.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 100.0, 18.0, 27.0, 27.0, 36.0 ], [1646.0, 125.0, 40.0, 80.0, 0.0, 1.03, 100.0, 1.0, 125.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 177.177, 31.4, 47.1, 47.1, 62.8 ], [1647.0, 125.0, 40.0, 80.0, 0.0, 1.03, 100.0, 1.0, 125.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 177.177, 31.4, 47.1, 47.1, 62.8 ], [1676.0, 159.5, 85.5, 123.9, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1675.0, 159.5, 79.9, 123.9, 0.0, 1.0, 100.0, 1.0, 200.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 235.29, 40.0, 60.0, 60.0, 80.0 ], [1718.0, 610.2, 90.7, 387.5, 0.0, 1.0, 100.0, 1.0, 800.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 888.89, 160.0, 240.0, 240.0, 320.0 ], [1717.0, 574.5, 167.0, 387.5, 0.0, 1.0, 100.0, 1.0, 800.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 888.89, 160.0, 240.0, 240.0, 320.0 ], [1692.0, 1004.3, 224.5, 484.0, 0.0, 1.0, 100.0, 1.0, 1000.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 1120.0, 201.6, 302.4, 302.4, 403.2 ], [1663.0, 814.4, 190.8, 484.0, 0.0, 1.0, 100.0, 1.0, 1000.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 1120.0, 201.6, 302.4, 302.4, 403.2 ], [1709.0, 105.1, 50.2, 77.46, 0.0, 1.03, 100.0, 1.0, 135.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 147.06, 27.0, 40.5, 40.5, 54.0 ], [1708.0, 101.3, 47.1, 77.46, 0.0, 1.03, 100.0, 1.0, 135.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 147.06, 27.0, 40.5, 40.5, 54.0 ], [5.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 1.0, 9.7189, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [29.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 11.6859, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [2042.0, 39.5, 8.5, 20.0, 0.0, 1.0, 100.0, 0.0, 45.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 52.94, 9.0, 13.5, 13.5, 18.0 ], [2040.0, 38.7, 4.5, 20.0, 0.0, 1.0, 100.0, 0.0, 45.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 52.94, 9.0, 13.5, 13.5, 18.0 ], [2039.0, 39.0, 4.8, 20.0, 0.0, 1.0, 100.0, 0.0, 45.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 52.94, 9.0, 13.5, 13.5, 18.0 ], [2037.0, 40.1, 6.6, 20.0, 0.0, 1.0, 100.0, 0.0, 45.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 52.94, 9.0, 13.5, 13.5, 18.0 ], [1599.0, 50.0, 27.0, 20.0, 0.0, 1.0, 100.0, 0.0, 45.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 60.0, 10.0, 15.0, 15.0, 20.0 ], [1597.0, 50.0, 27.0, 20.0, 0.0, 1.0, 100.0, 0.0, 45.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 60.0, 10.0, 15.0, 15.0, 20.0 ], [1661.0, 99.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 9.987, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1699.0, 597.1, 168.2, 290.6, 0.0, 1.0, 100.0, 1.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1698.0, 551.0, 167.2, 290.6, 0.0, 1.0, 100.0, 0.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1714.0, 213.5, 57.0, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1713.0, 235.0, 71.0, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1716.0, 222.7, 53.2, 185.9, 0.0, 1.0, 100.0, 0.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1715.0, 202.3, 59.3, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1680.0, 20.6, 6.6, 4.95, -0.0, 1.0, 100.0, 1.0, 10.270999999999999,0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 49.5, 9.9, 14.85, 14.85, 19.8 ], [1658.0, 99.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 18.9532, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [21.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 11.5618, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1667.0, 594.9, 157.8, 290.6, 0.0, 1.03, 100.0, 1.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1673.0, 600.0, 137.0, 290.6, 0.0, 1.03, 100.0, 1.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1712.0, 256.7, 92.1, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1711.0, 256.7, 75.7, 185.9, 0.0, 1.0, 100.0, 1.0, 300.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 352.94, 60.0, 90.0, 90.0, 120.0 ], [1749.0, 564.0, 103.0, 290.6, 0.0, 1.0, 100.0, 1.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1748.0, 543.0, 116.0, 290.6, 0.0, 1.0, 100.0, 0.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1684.0, 235.0, 80.0, 185.9, 0.0, 1.0, 100.0, 1.0, 330.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 388.0, 66.0, 99.0, 99.0, 132.0 ], [1683.0, 234.4, 74.8, 185.9, 0.0, 1.0, 100.0, 1.0, 330.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 388.0, 66.0, 99.0, 99.0, 132.0 ], [22.0, 49.5, 19.0, 62.0, 0.0, 1.0, 100.0, 1.0, 11.5618, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1660.0, 99.0, 19.0, 62.0, 0.0, 1.0, 100.0, 0.0, 20.4252, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1689.0, 114.9, -7.7, 62.0, 0.0, 1.0, 100.0, 1.0, 6.5922, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [117.0, 99.0, 15.0, 62.0, 0.0, 1.0, 100.0, 0.0, 20.7189, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [110.0, 99.0, 15.0, 62.0, 0.0, 1.0, 100.0, 0.0, 13.0313, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [108.0, 99.0, 15.0, 62.0, 0.0, 1.0, 100.0, 0.0, 9.151, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1688.0, 91.2, -3.3, 62.0, 0.0, 1.0, 100.0, 1.0, 4.3841, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [118.0, 99.0, 15.0, 62.0, 0.0, 1.0, 100.0, 0.0, 2.2621, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [111.0, 50.0, 10.0, 62.0, 0.0, 1.0, 100.0, 0.0, 0.0276, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [107.0, 50.0, 10.0, 62.0, 0.0, 1.0, 100.0, 0.0, 0.2203, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0.95, 117.65, 19.8, 29.7, 29.7, 39.6 ], [1751.0, 497.9, 119.0, 290.6, 0.0, 1.0, 100.0, 0.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ], [1750.0, 506.0, 142.0, 290.6, 0.0, 1.0, 100.0, 1.0, 600.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.95, 666.67, 120.0, 180.0, 180.0, 240.0 ] ]) ppc["branch"] = array([ [1418.0, 2021.0, 0.000709, 0.03936, 0.0061, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [541.0, 2024.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [540.0, 2024.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1545.0, 1418.0, 0.00764, 0.040964, 0.06498, 70.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1545.0, 1418.0, 0.007179, 0.042257, 0.064288, 70.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1545.0, 2021.0, 0.0124, 0.0812, 0.1232, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [542.0, 1960.0, 0.001528, 0.02064, 2.0724, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [539.0, 1960.0, 0.00172, 0.02296, 2.21372, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2234.0, 2233.0, 0.0, 0.187, 0.281, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1870.0, 1871.0, 0.0055, 0.2, 0.3, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1821.0, 1804.0, 0.0017, 0.0122, 0.03806, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1821.0, 1804.0, 0.0017, 0.0122, 0.03806, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1821.0, 1913.0, 0.002785, 0.020342, 0.06345, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1821.0, 1913.0, 0.002804, 0.020317, 0.063616, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2194.0, 2193.0, 0.0007, 0.0031, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2194.0, 2193.0, 0.0007, 0.0031, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1869.0, 2170.0, 0.0, 0.0001, 0.0002, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 2231.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1962.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1988.0, 0.00046, 0.003737, 0.012788, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1988.0, 0.000424, 0.003818, 0.01291, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1993.0, 0.001928, 0.011229, 0.034974, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1993.0, 0.001775, 0.011229, 0.034426, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1824.0, 0.00242, 0.01694, 0.049586, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1824.0, 5e-06, 3.5e-05, 2.4e-05, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1839.0, 0.000545, 0.004212, 0.013316, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2232.0, 1839.0, 0.000541, 0.004268, 0.013416, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1966.0, 1965.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1966.0, 1961.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1966.0, 2034.0, 0.000436, 0.005137, 0.500594, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1763.0, 2099.0, 0.004241, 0.030126, 0.085066, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2192.0, 1782.0, 0.002004, 0.011367, 0.016964, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2192.0, 1840.0, 0.001859, 0.011245, 0.03521, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2192.0, 1840.0, 0.001995, 0.011437, 0.033768, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1794.0, 2208.0, 0.002049, 0.019073, 0.054854, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1794.0, 2026.0, 0.004879, 0.030837, 0.09544, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1796.0, 2220.0, 0.001408, 0.006842, 0.024408, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1796.0, 2220.0, 0.001394, 0.006874, 0.024286, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 1999.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 1998.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 2153.0, 0.008206, 0.048173, 0.133258, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 2153.0, 0.007348, 0.042683, 0.114282, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 2152.0, 0.007455, 0.049655, 0.13954, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 1776.0, 0.007141, 0.033921, 0.09508, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 2065.0, 0.0017, 0.0076, 0.0198, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 2065.0, 0.0018, 0.00704, 0.0182, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 2004.0, 0.0041, 0.0196, 0.0546, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 1989.0, 0.005358, 0.0248, 0.0503, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 1989.0, 0.004066, 0.021045, 0.057736, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2000.0, 2036.0, 0.0139, 0.0491, 0.1352, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2000.0, 1931.0, 0.001403, 0.007678, 0.020786, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2003.0, 2002.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2003.0, 2001.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2003.0, 115.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2003.0, 1970.0, 0.000812, 0.015612, 1.68775, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2003.0, 1972.0, 0.000816, 0.015984, 1.68775, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2003.0, 1789.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2003.0, 483.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [115.0, 109.0, 0.001236, 0.013293, 1.480528, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2191.0, 1837.0, 0.001635, 0.012705, 0.037662, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2191.0, 1818.0, 0.01022, 0.042629, 0.06611, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2226.0, 2210.0, 0.001173, 0.005248, 0.008748, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2226.0, 2190.0, 0.00036, 0.0073, 0.0134, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2189.0, 2188.0, 0.0023, 0.0078, 0.0138, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2189.0, 1907.0, 0.002424, 0.014193, 0.040774, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2189.0, 2187.0, 0.007996, 0.039339, 0.110062, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2186.0, 2217.0, 0.0055, 0.0238, 0.0364, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2186.0, 1956.0, 0.002, 0.01, 0.016, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2186.0, 2185.0, 0.0028, 0.0141, 0.0216, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2219.0, 2218.0, 0.002676, 0.015582, 0.050366, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2219.0, 2218.0, 0.002791, 0.015447, 0.050366, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 1796.0, 0.001819, 0.009567, 0.03228, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 1796.0, 0.00179, 0.009574, 0.03228, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 2219.0, 0.001167, 0.006646, 0.023698, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 2219.0, 0.001154, 0.006607, 0.023536, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 2215.0, 0.0029, 0.0172, 0.0498, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 2215.0, 0.003, 0.0174, 0.0496, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 1947.0, 0.00434, 0.02042, 0.09428, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2221.0, 2216.0, 0.0005, 0.00293, 0.008814, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 2216.0, 0.0005, 0.00293, 0.008814, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 1938.0, 0.001983, 0.0125, 0.038, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 2217.0, 0.0026, 0.0159, 0.045, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 2217.0, 0.0025, 0.0156, 0.04604, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 1956.0, 0.001996, 0.015004, 0.049722, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 1956.0, 0.001942, 0.015223, 0.048658, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 2214.0, 0.00705, 0.0366, 0.0638, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1970.0, 122.0, 0.004241, 0.030126, 0.085066, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1970.0, 2032.0, 0.001038, 0.010782, 0.99978, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1972.0, 112.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1972.0, 1970.0, 1e-05, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1972.0, 1971.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1972.0, 2034.0, 0.000863, 0.008857, 0.583716, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [122.0, 121.0, 0.000863, 0.008857, 0.583716, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1898.0, 1970.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1898.0, 122.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1898.0, 120.0, 0.001351, 0.015445, 1.51142, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1896.0, 1972.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1896.0, 1897.0, 0.001355, 0.017948, 1.76, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2184.0, 2169.0, 0.002551, 0.012, 0.032826, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2184.0, 2169.0, 0.002288, 0.012288, 0.051244, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2203.0, 2134.0, 0.0149, 0.0858, 0.1412, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2203.0, 1949.0, 0.0105, 0.05925, 0.0525, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2203.0, 2208.0, 0.00447, 0.02537, 0.03784, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2183.0, 2222.0, 0.001446, 0.009469, 0.030074, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2212.0, 1473.0, 0.0218, 0.0638, 0.066, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2212.0, 1831.0, 0.004731, 0.023671, 0.047954, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2212.0, 2097.0, 0.003778, 0.017949, 0.05031, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2212.0, 2182.0, 0.0035, 0.0205, 0.0556, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2212.0, 2182.0, 0.007552, 0.0302, 0.046742, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2212.0, 1909.0, 0.004017, 0.028224, 0.081516, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2181.0, 57.0, 1e-06, 1e-06, 2e-06, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2181.0, 2209.0, 0.0143, 0.075, 0.1148, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2181.0, 2180.0, 0.0006, 0.0032, 0.005, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2181.0, 2179.0, 0.0052, 0.0259, 0.038, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1770.0, 1912.0, 0.0004, 0.003044, 0.009322, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 1912.0, 0.0004, 0.003044, 0.009322, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 2155.0, 0.000856, 0.006515, 0.019094, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 2155.0, 0.000856, 0.006515, 0.019094, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 2224.0, 0.00164, 0.012482, 0.036582, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 2224.0, 0.00164, 0.012482, 0.036582, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 2030.0, 0.001344, 0.010229, 0.02998, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 2030.0, 0.001344, 0.010229, 0.02998, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 1940.0, 0.001313, 0.009985, 0.029266, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 1940.0, 0.001313, 0.009985, 0.029266, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1772.0, 1771.0, 0.000697, 0.008904, 0.966246, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1772.0, 1771.0, 0.000697, 0.008904, 0.966246, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1944.0, 42.0, 0.003347, 0.019091, 0.05291, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1944.0, 1888.0, 0.00452, 0.021267, 0.06035, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1944.0, 1888.0, 0.0033, 0.021, 0.061034, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [40.0, 2157.0, 0.002254, 0.015419, 0.044362, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1988.0, 1985.0, 0.0004, 0.0018, 0.0044, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1988.0, 1985.0, 0.0004, 0.0018, 0.0044, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1988.0, 2193.0, 0.0003, 0.0017, 0.004, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1988.0, 2193.0, 0.0003, 0.0025, 0.005, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1988.0, 2090.0, 0.0019, 0.0086, 0.0214, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1988.0, 2087.0, 0.0008, 0.0055, 0.0142, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1924.0, 2226.0, 0.002291, 0.017079, 0.050654, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1924.0, 2226.0, 0.00258, 0.018126, 0.05235, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1924.0, 1856.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1924.0, 2227.0, 0.004044, 0.029321, 0.090328, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1924.0, 2227.0, 0.003984, 0.029357, 0.09127, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1924.0, 2074.0, 0.001113, 0.006391, 0.02179, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1924.0, 2074.0, 0.001088, 0.006441, 0.021698, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1813.0, 1928.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1812.0, 1924.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1928.0, 1970.0, 0.0012, 0.015315, 1.662034, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1928.0, 1972.0, 0.0012, 0.015315, 1.662034, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1928.0, 1855.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1928.0, 1790.0, 0.0005, 0.009109, 0.977482, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1928.0, 1790.0, 0.000499, 0.009108, 0.977482, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1928.0, 2034.0, 0.000494, 0.009033, 0.96659, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1928.0, 2024.0, 0.000363, 0.006412, 0.672766, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1912.0, 2155.0, 0.000721, 0.003805, 0.023416, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2177.0, 2175.0, 0.0018, 0.0107, 0.0208, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2177.0, 2175.0, 0.0013, 0.0109, 0.0364, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2177.0, 2174.0, 0.003659, 0.01587, 0.045896, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2177.0, 2176.0, 0.001, 0.004, 0.0076, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2177.0, 2176.0, 0.0009, 0.0039, 0.00888, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2173.0, 2171.0, 0.0049, 0.0203, 0.0352, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2173.0, 2172.0, 0.0014, 0.0089, 0.0272, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1810.0, 1939.0, 0.000764, 0.005558, 0.06534, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1810.0, 2202.0, 0.001198, 0.009194, 0.095348, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2171.0, 2168.0, 0.002645, 0.016233, 0.122918, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2171.0, 1829.0, 0.000831, 0.007075, 0.049208, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2171.0, 2169.0, 0.0006, 0.0048, 0.0144, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2171.0, 2169.0, 0.0007, 0.005, 0.0146, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2171.0, 1941.0, 0.0005, 0.003, 0.0076, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1809.0, 2218.0, 0.000453, 0.005, 0.0074, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1809.0, 2218.0, 0.000453, 0.005, 0.0074, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [53.0, 1909.0, 0.003648, 0.013602, 0.02284, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [55.0, 1909.0, 0.003648, 0.013602, 0.02284, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [36.0, 1831.0, 0.001722, 0.010968, 0.017098, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2167.0, 1982.0, 0.0036, 0.0317, 0.0886, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2167.0, 1983.0, 0.00206, 0.01115, 0.01946, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2162.0, 1908.0, 0.000426, 0.002537, 0.00866, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2162.0, 1908.0, 0.00045, 0.002581, 0.008058, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2162.0, 2161.0, 0.001, 0.006138, 0.017238, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2162.0, 2161.0, 0.001, 0.00539, 0.01767, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 1794.0, 0.004382, 0.027697, 0.085722, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 1794.0, 0.003049, 0.028391, 0.081652, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 1887.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 2166.0, 0.003412, 0.01859, 0.035532, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 2209.0, 0.005598, 0.030473, 0.051208, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 2209.0, 0.005475, 0.032322, 0.077422, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 1908.0, 0.005469, 0.034514, 0.10096, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 1908.0, 0.005539, 0.034934, 0.100658, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 2164.0, 0.00228, 0.015838, 0.046554, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 2208.0, 0.005808, 0.044554, 0.131736, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 2026.0, 0.014736, 0.08342, 0.159408, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1927.0, 1928.0, 0.001024, 0.01164, 1.045364, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1927.0, 1928.0, 0.00083, 0.011237, 1.038556, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1927.0, 1886.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1927.0, 1814.0, 0.00049, 0.005109, 0.49856, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2166.0, 2164.0, 0.0019, 0.0094, 0.0118, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2166.0, 2165.0, 0.0011, 0.006921, 0.0214, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2166.0, 2165.0, 0.001254, 0.006957, 0.020732, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2166.0, 1783.0, 0.018061, 0.104849, 0.16225, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2166.0, 2163.0, 0.02, 0.128, 0.184, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1841.0, 1925.0, 0.002005, 0.015458, 0.048382, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1841.0, 1925.0, 0.001952, 0.015406, 0.048262, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2160.0, 1842.0, 0.009545, 0.050416, 0.0775, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2160.0, 1910.0, 0.001505, 0.00955, 0.029252, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2159.0, 2156.0, 0.0024, 0.0141, 0.0394, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2159.0, 2156.0, 0.002467, 0.012564, 0.036174, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2159.0, 2158.0, 0.0036, 0.0224, 0.0614, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2159.0, 2157.0, 0.0066, 0.0357, 0.056, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2159.0, 2157.0, 0.0066, 0.0357, 0.066724, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1906.0, 2156.0, 0.001131, 0.010327, 0.03263, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1906.0, 2156.0, 0.00134, 0.010137, 0.032934, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2155.0, 2232.0, 0.002, 0.011176, 0.022224, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2155.0, 2232.0, 0.002, 0.011176, 0.022224, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2155.0, 2154.0, 0.000957, 0.004942, 0.015, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2155.0, 1940.0, 0.0013, 0.0068, 0.06552, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [45.0, 1995.0, 0.007107, 0.034738, 0.060772, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [45.0, 1995.0, 0.004876, 0.023832, 0.041692, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [45.0, 2185.0, 0.002149, 0.010502, 0.018372, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [45.0, 2185.0, 0.00157, 0.007675, 0.013426, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2188.0, 2228.0, 0.0032, 0.0124, 0.033, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2188.0, 2228.0, 0.003, 0.0143, 0.0408, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2153.0, 2152.0, 0.0053, 0.0319, 0.0654, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1987.0, 2003.0, 0.00057, 0.005567, 0.51967, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2151.0, 2150.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2151.0, 2149.0, 0.0003, 0.0024, 0.0064, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2151.0, 2149.0, 0.0003, 0.0024, 0.0064, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2148.0, 2147.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2148.0, 2146.0, 0.0003, 0.0024, 0.0062, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2145.0, 2143.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2145.0, 2142.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2145.0, 2141.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2145.0, 2144.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2142.0, 1987.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2142.0, 2139.0, 0.0016, 0.0178, 1.672, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2142.0, 2140.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2141.0, 2138.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2137.0, 2142.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2137.0, 2141.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2137.0, 2135.0, 0.0015, 0.0181, 1.6626, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2137.0, 2136.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1807.0, 2106.0, 0.001225, 0.00965, 0.029664, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2156.0, 51.0, 0.00113, 0.008562, 0.02454, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2156.0, 51.0, 0.001024, 0.007755, 0.022224, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2156.0, 2130.0, 0.008293, 0.046318, 0.129332, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2175.0, 2207.0, 0.001095, 0.007076, 0.019756, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2175.0, 2207.0, 0.001116, 0.007079, 0.019756, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2175.0, 1784.0, 0.000787, 0.004344, 0.014244, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2175.0, 1784.0, 0.000787, 0.004344, 0.014244, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1947.0, 2220.0, 0.000603, 0.003376, 0.009118, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1947.0, 2220.0, 0.000475, 0.00314, 0.009422, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2209.0, 2134.0, 0.0137, 0.0773, 0.1374, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2209.0, 2208.0, 0.00517, 0.0294, 0.04392, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1791.0, 0.000869, 0.007208, 0.024548, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1791.0, 0.000738, 0.007235, 0.024668, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1990.0, 0.001151, 0.007729, 0.026286, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1990.0, 0.000871, 0.007813, 0.026216, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 48.0, 0.005823, 0.027349, 0.07467, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 48.0, 0.005823, 0.027349, 0.07467, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1842.0, 0.001531, 0.010085, 0.030386, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1842.0, 0.001531, 0.010085, 0.030386, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 2228.0, 0.007567, 0.040931, 0.114362, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2094.0, 2228.0, 0.006829, 0.035599, 0.10737, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2094.0, 2228.0, 0.010092, 0.044787, 0.083766, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1.0, 0.006166, 0.027296, 0.045504, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1937.0, 1792.0, 0.0, 1e-06, 0.0, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1937.0, 2133.0, 0.00124, 0.008152, 0.014254, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1937.0, 2014.0, 0.002055, 0.016456, 0.05077, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1937.0, 2014.0, 0.002055, 0.016456, 0.05077, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1937.0, 1774.0, 0.005207, 0.03944, 0.113034, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1792.0, 2123.0, 0.00124, 0.01052, 0.018254, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1792.0, 2014.0, 0.002055, 0.016456, 0.05077, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1792.0, 1774.0, 0.005207, 0.03944, 0.113034, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1901.0, 1913.0, 0.0037, 0.0294, 0.085666, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1802.0, 1913.0, 0.002304, 0.015628, 0.04459, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2152.0, 2132.0, 0.002, 0.0066, 0.0096, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2152.0, 2131.0, 0.002, 0.0084, 0.0176, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2152.0, 2131.0, 0.0027, 0.009, 0.0144, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1820.0, 1821.0, 0.003241, 0.020126, 0.057066, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [59.0, 1804.0, 0.0, 0.0001, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [58.0, 1804.0, 0.0, 0.0001, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2227.0, 2226.0, 0.0006, 0.00225, 0.007, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2227.0, 2226.0, 0.0006, 0.00225, 0.007, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2227.0, 1955.0, 0.000528, 0.005104, 0.00836, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2227.0, 1955.0, 0.000528, 0.005104, 0.00836, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2216.0, 2214.0, 0.0072, 0.0325, 0.047, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1854.0, 2128.0, 0.00069, 0.004434, 0.014444, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1854.0, 2198.0, 0.002688, 0.016159, 0.048504, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1854.0, 2172.0, 0.000758, 0.004368, 0.015356, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1854.0, 2172.0, 0.000706, 0.004367, 0.015052, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2200.0, 1943.0, 0.0003, 0.0029, 0.00475, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2010.0, 557.0, 1e-06, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2010.0, 556.0, 1e-06, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2010.0, 553.0, 1e-06, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2010.0, 552.0, 1e-06, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2010.0, 2009.0, 0.0, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2130.0, 51.0, 0.006325, 0.047909, 0.137306, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2130.0, 2156.0, 0.006231, 0.047431, 0.139012, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2130.0, 2129.0, 0.008403, 0.052574, 0.08514, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2130.0, 2129.0, 0.008106, 0.03814, 0.0886, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2128.0, 1840.0, 0.001822, 0.010859, 0.032462, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2211.0, 2210.0, 0.0043, 0.0204, 0.0302, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [46.0, 1925.0, 0.007438, 0.056343, 0.161476, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [46.0, 2166.0, 0.005702, 0.043196, 0.123798, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [46.0, 1783.0, 0.005678, 0.043008, 0.12326, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2210.0, 1910.0, 0.004774, 0.033037, 0.094882, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2127.0, 2225.0, 0.0016, 0.0087, 0.0092, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2127.0, 1824.0, 0.002094, 0.01628, 0.048262, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1837.0, 43.0, 0.002851, 0.021598, 0.0619, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1837.0, 43.0, 0.002851, 0.021598, 0.0619, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1837.0, 3.0, 0.007298, 0.023277, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1826.0, 1827.0, 0.002963, 0.017781, 0.051432, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2168.0, 2172.0, 0.001353, 0.007979, 0.09775, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2126.0, 2177.0, 0.001083, 0.006426, 0.017174, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2125.0, 2133.0, 0.001, 0.0066, 0.01932, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2125.0, 2133.0, 0.0011, 0.0066, 0.0216, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2125.0, 2124.0, 0.001048, 0.007655, 0.021428, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2125.0, 2124.0, 0.001064, 0.007566, 0.02158, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1806.0, 1968.0, 0.004027, 0.025987, 0.06444, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1806.0, 1968.0, 0.006024, 0.031897, 0.07314, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [41.0, 1777.0, 0.002361, 0.01109, 0.030276, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [41.0, 1777.0, 0.002361, 0.01109, 0.030276, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [41.0, 2036.0, 0.001453, 0.011009, 0.031552, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [41.0, 2036.0, 0.001453, 0.011009, 0.031552, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [41.0, 1817.0, 0.002715, 0.020567, 0.058944, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [41.0, 1817.0, 0.002715, 0.020567, 0.058944, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [54.0, 2064.0, 0.003648, 0.013602, 0.02284, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1800.0, 1944.0, 0.00362, 0.02356, 0.070238, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1800.0, 1944.0, 0.00362, 0.02356, 0.070238, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1917.0, 1978.0, 0.001756, 0.012722, 0.039038, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1917.0, 1978.0, 0.001756, 0.012768, 0.039174, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2193.0, 2232.0, 0.00036, 0.00247, 0.008304, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2193.0, 2232.0, 0.00036, 0.002473, 0.008404, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1793.0, 1831.0, 0.004018, 0.02119, 0.031322, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1952.0, 1951.0, 0.00445, 0.02678, 0.0424, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1834.0, 1973.0, 0.001166, 0.01489, 1.616022, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1834.0, 1897.0, 0.000188, 0.003424, 0.356704, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1834.0, 1897.0, 0.000184, 0.003403, 0.358824, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1834.0, 1897.0, 0.000222, 0.003421, 0.351524, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1858.0, 1859.0, 0.0011, 0.0097, 0.030288, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1858.0, 1859.0, 0.0011, 0.0097, 0.030288, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2174.0, 2126.0, 0.0016, 0.0111, 0.0326, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2174.0, 2126.0, 0.002435, 0.013008, 0.039056, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2174.0, 2121.0, 0.0012, 0.0051, 0.017, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2174.0, 2182.0, 0.01269, 0.070386, 0.213056, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2174.0, 2120.0, 0.0205, 0.0676, 0.291, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2174.0, 44.0, 0.005062, 0.023775, 0.064912, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2015.0, 2196.0, 0.0006, 0.0031, 0.0436, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1861.0, 2196.0, 0.0006, 0.0031, 0.0436, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2118.0, 1780.0, 0.014222, 0.06951, 0.121602, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2118.0, 1780.0, 0.014222, 0.06951, 0.121602, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2116.0, 2115.0, 0.0, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2114.0, 2115.0, 0.0, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2113.0, 2115.0, 0.0, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2119.0, 1924.0, 0.024837, 0.137353, 0.21539, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2119.0, 2118.0, 0.0018, 0.0039, 0.0067, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2119.0, 1780.0, 0.013636, 0.077335, 0.11541, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2119.0, 1780.0, 0.013636, 0.077335, 0.11541, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2119.0, 2117.0, 0.00714, 0.021, 0.0326, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2119.0, 1992.0, 0.015847, 0.094112, 0.149088, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2119.0, 1992.0, 0.0163, 0.097, 0.1432, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1977.0, 1927.0, 0.000918, 0.012759, 1.2575, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1977.0, 1927.0, 0.000926, 0.012736, 1.256638, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1977.0, 1883.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1977.0, 1976.0, 0.001129, 0.015209, 1.424948, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1977.0, 1902.0, 0.000146, 0.001874, 0.18991, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1977.0, 1903.0, 0.000172, 0.001884, 0.195408, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1780.0, 1992.0, 0.004254, 0.024125, 0.036002, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1780.0, 1992.0, 0.004254, 0.024125, 0.036002, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1975.0, 1977.0, 0.001129, 0.015209, 0.142494, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1975.0, 1974.0, 0.0, 0.0001, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2112.0, 2111.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2110.0, 2111.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2109.0, 1844.0, 0.002676, 0.015397, 0.031688, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2109.0, 2207.0, 0.0017, 0.0107, 0.0284, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2109.0, 2207.0, 0.0006, 0.0105, 0.0286, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2109.0, 1769.0, 0.003999, 0.030444, 0.089226, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2109.0, 1769.0, 0.003999, 0.030444, 0.089226, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2109.0, 2005.0, 0.0016, 0.0048, 0.1224, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2109.0, 2204.0, 0.001983, 0.011962, 0.03345, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2109.0, 2108.0, 0.0017, 0.0091, 0.0272, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2109.0, 2108.0, 0.002178, 0.011857, 0.128572, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2107.0, 1948.0, 0.01167, 0.052547, 0.12149, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2107.0, 1953.0, 0.0086, 0.0528, 0.15631, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2106.0, 1948.0, 0.004412, 0.025837, 0.072956, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2106.0, 1921.0, 0.0041, 0.0339, 0.104598, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2106.0, 2105.0, 0.005559, 0.034409, 0.034118, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2106.0, 2105.0, 0.006452, 0.030781, 0.04556, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 1939.0, 0.001728, 0.014502, 0.11525, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 1939.0, 0.001774, 0.014573, 0.113328, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2202.0, 2200.0, 0.000613, 0.004558, 0.02771, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 2200.0, 0.000609, 0.004555, 0.027656, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 1943.0, 0.000486, 0.004698, 0.007696, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 1943.0, 0.000486, 0.004698, 0.007696, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 1874.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 2223.0, 0.00323, 0.013, 0.04, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 2223.0, 0.00323, 0.013, 0.04, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 2199.0, 0.00423, 0.0233, 0.06904, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 2199.0, 0.002383, 0.018144, 0.053178, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 2201.0, 0.000809, 0.006324, 0.084454, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 2201.0, 0.0008, 0.0063, 0.01612, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1976.0, 1875.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1976.0, 1974.0, 1e-05, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1976.0, 1897.0, 0.001027, 0.013427, 1.31672, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1976.0, 1897.0, 0.001027, 0.013427, 1.31672, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1976.0, 1926.0, 0.00054, 0.007314, 0.736074, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1974.0, 1973.0, 0.001798, 0.017107, 0.320912, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1984.0, 2153.0, 0.0013, 0.0098, 0.0296, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1984.0, 2153.0, 0.0013, 0.0098, 0.0298, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2104.0, 2119.0, 0.0099, 0.035083, 0.048204, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2012.0, 2011.0, 0.043836, 0.178923, 0.032564, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2102.0, 1930.0, 0.00553, 0.029104, 0.081816, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2102.0, 1930.0, 0.003466, 0.018151, 0.05141, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2102.0, 2101.0, 0.0019, 0.012, 0.0332, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2102.0, 2100.0, 0.0098, 0.0256, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2146.0, 2149.0, 0.0, 1e-06, 2e-06, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2146.0, 2075.0, 0.004, 0.0362, 0.0958, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2146.0, 2098.0, 0.0042, 0.0213, 0.0612, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2146.0, 2098.0, 0.00376, 0.021467, 0.060712, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2146.0, 1931.0, 0.005604, 0.031448, 0.087188, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2149.0, 2099.0, 0.0023, 0.0112, 0.03, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2149.0, 2099.0, 0.0026, 0.013, 0.03, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2149.0, 1915.0, 0.001405, 0.006673, 0.0208, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2149.0, 1915.0, 0.001368, 0.00666, 0.020638, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2103.0, 1806.0, 0.009481, 0.05461, 0.09703, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2103.0, 1942.0, 0.00216, 0.01062, 0.0171, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2103.0, 1942.0, 0.00216, 0.01062, 0.0171, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2103.0, 1915.0, 0.002927, 0.011569, 0.03306, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2103.0, 1915.0, 0.002199, 0.011585, 0.0324, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1936.0, 2069.0, 0.001533, 0.01167, 0.03418, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1936.0, 2069.0, 0.001405, 0.01136, 0.03412, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1938.0, 2217.0, 0.000413, 0.002459, 0.0076, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [52.0, 2098.0, 0.003648, 0.013602, 0.02284, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1948.0, 1838.0, 0.004812, 0.029932, 0.088632, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1948.0, 1838.0, 0.004831, 0.030014, 0.0893, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1948.0, 2105.0, 0.004686, 0.03165, 0.96246, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1948.0, 2105.0, 0.004761, 0.03174, 0.945046, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2097.0, 2182.0, 0.0012, 0.0056, 0.0108, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1959.0, 1876.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2164.0, 2179.0, 0.0053, 0.0326, 0.0446, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2134.0, 2096.0, 0.0064, 0.061, 0.0914, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1949.0, 1795.0, 0.001026, 0.009918, 0.016246, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1949.0, 1795.0, 0.001026, 0.009918, 0.016246, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1949.0, 2211.0, 0.00437, 0.0184, 0.0161, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1788.0, 2098.0, 0.008655, 0.03852, 0.0579, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2187.0, 1991.0, 0.00095, 0.00498, 0.008738, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2187.0, 1842.0, 0.001028, 0.005377, 0.008848, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2187.0, 1842.0, 0.001367, 0.007231, 0.011618, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2187.0, 1774.0, 0.000967, 0.008013, 0.027288, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2187.0, 1774.0, 0.000967, 0.008013, 0.027288, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1778.0, 1948.0, 0.001734, 0.013202, 0.038696, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1778.0, 1948.0, 0.001734, 0.013202, 0.038696, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1778.0, 2105.0, 0.00244, 0.018575, 0.05444, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1778.0, 2105.0, 0.00244, 0.018575, 0.05444, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2093.0, 2092.0, 0.0021, 0.009, 0.0162, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2093.0, 2092.0, 0.0021, 0.0092, 0.0164, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2122.0, 2091.0, 0.0018, 0.0107, 0.0316, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2122.0, 1.0, 0.0025, 0.01318, 0.01978, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2090.0, 2089.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2090.0, 2088.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2090.0, 1993.0, 0.001073, 0.006678, 0.020362, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2090.0, 1993.0, 0.001068, 0.006721, 0.020362, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2090.0, 2087.0, 0.0007, 0.004, 0.0106, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2090.0, 2087.0, 0.0007, 0.004, 0.0106, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2090.0, 2086.0, 0.0014, 0.0061, 0.0178, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2090.0, 2086.0, 0.0015, 0.0062, 0.0178, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 2092.0, 0.000577, 0.004153, 0.012844, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 2092.0, 0.000577, 0.004153, 0.013046, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 2084.0, 0.0085, 0.0302, 0.0566, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2088.0, 2084.0, 0.0085, 0.0393, 0.0566, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2088.0, 2085.0, 0.0019, 0.0104, 0.0164, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 2085.0, 0.0016, 0.008, 0.022, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 1779.0, 0.001312, 0.009985, 0.029266, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 1779.0, 0.001312, 0.009985, 0.029266, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 1859.0, 0.002117, 0.014224, 0.044428, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 1859.0, 0.014442, 0.014442, 0.04484, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2083.0, 2082.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2083.0, 2135.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2083.0, 2139.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2083.0, 1771.0, 0.000327, 0.00455, 0.448486, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2135.0, 1966.0, 0.000205, 0.002384, 0.23393, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2135.0, 1966.0, 0.000168, 0.00234, 0.237148, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2135.0, 2081.0, 0.0006, 0.0071, 0.697466, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2080.0, 2135.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2080.0, 2139.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2080.0, 2079.0, 0.0007, 0.0071, 0.6752, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1767.0, 1795.0, 0.0007, 0.003549, 0.011358, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1767.0, 1795.0, 0.0007, 0.003549, 0.011358, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [114.0, 109.0, 0.001236, 0.013293, 1.480528, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [114.0, 1786.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [113.0, 112.0, 0.001641, 0.01764, 1.964682, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [113.0, 1786.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1785.0, 2205.0, 0.001323, 0.013531, 0.041808, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1785.0, 2205.0, 0.001323, 0.013531, 0.041808, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1785.0, 2084.0, 9.8e-05, 0.001366, 0.134654, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1785.0, 2084.0, 9.8e-05, 0.001366, 0.134654, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1785.0, 119.0, 0.003842, 0.035772, 0.102888, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1785.0, 119.0, 0.003842, 0.035772, 0.102888, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1929.0, 1932.0, 0.00352, 0.01739, 0.027392, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2099.0, 2075.0, 0.0075, 0.0333, 0.0862, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2099.0, 1932.0, 0.000571, 0.003917, 0.011298, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2099.0, 1932.0, 0.000625, 0.004002, 0.011024, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2198.0, 2192.0, 0.005799, 0.044143, 0.129376, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2198.0, 2192.0, 0.005799, 0.044143, 0.129376, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2198.0, 2197.0, 0.000333, 0.001914, 0.010434, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2198.0, 2197.0, 0.000335, 0.001915, 0.010716, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2198.0, 2195.0, 0.000709, 0.004256, 0.014632, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2198.0, 2196.0, 0.001161, 0.006866, 0.02572, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1934.0, 1933.0, 0.006777, 0.036325, 0.099522, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1766.0, 2098.0, 0.004241, 0.030126, 0.085066, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1968.0, 1948.0, 0.007335, 0.040468, 0.132678, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1968.0, 1948.0, 0.007335, 0.040468, 0.132678, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2123.0, 1986.0, 0.0014, 0.008, 0.012, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2123.0, 2133.0, 0.0024, 0.0152, 0.0254, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2123.0, 2133.0, 0.0028, 0.0165, 0.0256, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2123.0, 2122.0, 0.0014, 0.008, 0.0134, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2123.0, 2122.0, 0.0007, 0.0052, 0.0224, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2123.0, 2021.0, 0.012484, 0.069281, 0.11486, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2132.0, 2131.0, 0.0015, 0.0066, 0.012, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2178.0, 2191.0, 0.006813, 0.043, 0.06108, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2178.0, 1818.0, 0.001267, 0.006536, 0.0117, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2178.0, 1818.0, 0.001185, 0.006504, 0.010946, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [12.0, 1679.0, 0.0, 1e-05, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [12.0, 116.0, 0.0, 1e-05, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [11.0, 18.0, 0.0, 1e-05, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [11.0, 17.0, 0.0, 1e-05, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [11.0, 16.0, 0.0, 1e-05, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [11.0, 15.0, 0.0, 1e-05, 0.0, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1857.0, 51.0, 0.002531, 0.019174, 0.05495, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1857.0, 2156.0, 0.003173, 0.027163, 0.078504, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1982.0, 1911.0, 0.004746, 0.035379, 0.105292, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1918.0, 1917.0, 0.00248, 0.01851, 0.055088, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1918.0, 1917.0, 0.002438, 0.01845, 0.055446, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1918.0, 2202.0, 0.001864, 0.014205, 0.044768, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1918.0, 2202.0, 0.001869, 0.014081, 0.044908, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1914.0, 2107.0, 0.0036, 0.019, 0.051544, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1914.0, 2058.0, 0.0061, 0.0313, 0.0847, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1914.0, 1953.0, 0.0113, 0.0675, 0.199492, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [49.0, 2171.0, 0.001603, 0.012145, 0.034808, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [49.0, 2169.0, 0.001099, 0.008326, 0.023862, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2218.0, 2185.0, 0.001653, 0.010407, 0.0294, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1849.0, 1966.0, 0.000152, 0.001935, 0.20991, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1849.0, 1966.0, 0.000124, 0.001938, 0.209752, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1849.0, 1848.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1849.0, 1847.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1849.0, 1846.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1849.0, 1845.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2074.0, 2233.0, 0.0045, 0.0226, 0.0614, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 2198.0, 0.003409, 0.020465, 0.11888, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 1829.0, 0.000246, 0.001611, 0.03219, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 1829.0, 0.000222, 0.001538, 0.032516, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 1867.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 1865.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 1840.0, 0.002366, 0.01494, 0.043588, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 2073.0, 0.001, 0.0068, 0.0192, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 2073.0, 0.001, 0.0072, 0.0196, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 2169.0, 0.0016, 0.008, 0.0176, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2172.0, 2169.0, 0.002, 0.0121, 0.0176, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1973.0, 1868.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1973.0, 1866.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1973.0, 1897.0, 0.0014, 0.0163, 1.604962, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1973.0, 1926.0, 0.000371, 0.004039, 0.2452, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 2221.0, 0.002538, 0.018658, 0.057658, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 1947.0, 0.000244, 0.001883, 0.006854, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 1947.0, 0.000319, 0.001779, 0.007006, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 1947.0, 0.000316, 0.001744, 0.006838, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 2216.0, 0.0032, 0.01325, 0.0247, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 2220.0, 0.000283, 0.001786, 0.007918, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 2220.0, 0.000276, 0.001786, 0.00784, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 1823.0, 0.006105, 0.032408, 0.092494, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 1823.0, 0.006105, 0.032408, 0.092494, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 2214.0, 0.00572, 0.02325, 0.0247, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1799.0, 1970.0, 0.000271, 0.002947, 0.303246, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1799.0, 1798.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1799.0, 1897.0, 0.000631, 0.009242, 0.194064, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1799.0, 1969.0, 9.4e-05, 0.000882, 0.09577, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1798.0, 1972.0, 0.00026, 0.00296, 0.303556, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1798.0, 1897.0, 0.000581, 0.009148, 0.197, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1798.0, 1969.0, 9.5e-05, 0.000894, 0.096712, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1776.0, 2066.0, 0.000748, 0.003551, 0.009954, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1776.0, 2066.0, 0.000748, 0.003551, 0.009954, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2013.0, 1806.0, 0.004027, 0.025987, 0.06444, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2013.0, 1819.0, 0.000878, 0.008242, 0.022352, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2013.0, 1819.0, 0.001401, 0.008357, 0.023872, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2069.0, 1930.0, 0.003186, 0.016051, 0.046862, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2069.0, 1930.0, 0.003638, 0.018825, 0.052778, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2069.0, 1942.0, 0.001495, 0.008215, 0.023988, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2069.0, 1932.0, 0.003694, 0.020963, 0.05775, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2095.0, 1991.0, 0.0038, 0.0265, 0.0452, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2095.0, 1774.0, 0.002207, 0.016799, 0.049234, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2095.0, 1774.0, 0.002207, 0.016799, 0.049234, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2206.0, 1954.0, 0.000436, 0.003126, 0.010554, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2206.0, 1954.0, 0.00048, 0.003156, 0.010722, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2206.0, 2205.0, 0.0035, 0.0208, 0.0568, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2154.0, 2232.0, 0.001636, 0.007686, 0.020984, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2154.0, 2232.0, 0.001636, 0.007686, 0.020984, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2154.0, 1824.0, 0.001747, 0.011028, 0.02, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2068.0, 2174.0, 0.0053, 0.0356, 0.1608, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1995.0, 2127.0, 0.002277, 0.013038, 0.02106, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1995.0, 2185.0, 0.009767, 0.035062, 0.048936, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1995.0, 2185.0, 0.005959, 0.032066, 0.049696, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1819.0, 2062.0, 0.003176, 0.015785, 0.043182, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1819.0, 1953.0, 0.004039, 0.022981, 0.066948, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1775.0, 1817.0, 0.00056, 0.004262, 0.012492, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1775.0, 1817.0, 0.00056, 0.004262, 0.012492, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2067.0, 2004.0, 0.0011, 0.0053, 0.0164, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2067.0, 2066.0, 0.0035, 0.01357, 0.0193, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2205.0, 2130.0, 0.005, 0.0289, 0.081, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2205.0, 2130.0, 0.003152, 0.02578, 0.0731, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2177.0, 0.002603, 0.021498, 0.07278, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2177.0, 0.002582, 0.021425, 0.0731, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 1919.0, 0.001405, 0.011326, 0.219716, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 1919.0, 0.00139, 0.011124, 0.22341, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2156.0, 0.005768, 0.043001, 0.127542, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2156.0, 0.005768, 0.043001, 0.127542, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2175.0, 0.002549, 0.017938, 0.059848, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2175.0, 0.002488, 0.01794, 0.059848, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2126.0, 0.002403, 0.02124, 0.071276, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2126.0, 0.002353, 0.021196, 0.072128, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 1833.0, 0.003269, 0.018545, 0.027674, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 1833.0, 0.003269, 0.018545, 0.027674, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1920.0, 1833.0, 0.003269, 0.018545, 0.027674, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 1832.0, 0.000607, 0.004514, 0.015152, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 2.0, 0.000607, 0.004504, 0.015044, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1960.0, 1790.0, 0.000544, 0.007352, 0.76844, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1960.0, 1790.0, 0.000544, 0.007352, 0.76844, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1960.0, 1786.0, 0.000733, 0.009358, 1.015624, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1960.0, 1786.0, 0.000733, 0.009358, 1.015624, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1960.0, 123.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1960.0, 2079.0, 0.000508, 0.0044, 0.4396, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1960.0, 2081.0, 0.000464, 0.00536, 0.5338, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [123.0, 1959.0, 0.000968, 0.01148, 1.1461, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1978.0, 2183.0, 0.0019, 0.0102, 0.0276, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1978.0, 1888.0, 0.0035, 0.0221, 0.064074, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1978.0, 1888.0, 0.0036, 0.0222, 0.064304, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2121.0, 2071.0, 0.0028, 0.0171, 0.0458, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [37.0, 2149.0, 0.001399, 0.00713, 0.021124, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1791.0, 2187.0, 0.000547, 0.004293, 0.012496, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1791.0, 2187.0, 0.000564, 0.003571, 0.010164, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2087.0, 2203.0, 0.01588, 0.0793, 0.1166, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1840.0, 1782.0, 0.002004, 0.011367, 0.016964, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1888.0, 42.0, 0.001897, 0.010818, 0.029982, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2065.0, 2064.0, 0.0047, 0.0232, 0.0596, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2065.0, 1825.0, 0.010653, 0.057707, 0.104974, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2182.0, 1831.0, 0.006864, 0.041913, 0.08442, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2182.0, 2097.0, 0.001925, 0.009143, 0.02563, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2182.0, 2120.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2182.0, 44.0, 0.007721, 0.036266, 0.099012, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2120.0, 1454.0, 0.0152, 0.069, 0.1232, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2120.0, 2068.0, 0.0076, 0.0355, 0.1318, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2120.0, 2124.0, 0.0107, 0.0548, 0.1562, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2120.0, 2063.0, 0.0078, 0.0253, 0.08, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1958.0, 2230.0, 0.000968, 0.01148, 1.2124, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1765.0, 2212.0, 0.004241, 0.030126, 0.085066, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1765.0, 1909.0, 0.009008, 0.044028, 0.077024, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 2102.0, 0.0019, 0.0088, 0.0194, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 2102.0, 0.0016, 0.0072, 0.021, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 2102.0, 0.001246, 0.007242, 0.0218, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 1942.0, 0.0066, 0.03245, 0.0523, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 2061.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 2058.0, 0.0101, 0.0509, 0.141, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 2060.0, 0.0013, 0.0092, 0.025, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 2060.0, 0.00201, 0.01179, 0.0338, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 2059.0, 0.0034, 0.01617, 0.044, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 1953.0, 0.0025, 0.014, 0.036, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 1953.0, 0.0025, 0.014, 0.036, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2057.0, 2003.0, 0.001561, 0.014418, 1.393376, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2057.0, 2141.0, 0.000512, 0.008616, 0.84623, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2057.0, 2010.0, 0.000932, 0.01154, 1.07545, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2057.0, 2009.0, 0.001, 0.0116, 1.0912, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2057.0, 2140.0, 0.0007, 0.008796, 0.873706, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2057.0, 2056.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2207.0, 2206.0, 0.00062, 0.00339, 0.00774, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2207.0, 2206.0, 0.00054, 0.00357, 0.00774, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2207.0, 2205.0, 0.003, 0.0161, 0.0416, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2207.0, 2054.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2207.0, 2052.0, 1e-05, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2207.0, 2018.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2207.0, 1784.0, 0.00052, 0.00287, 0.00941, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2207.0, 1784.0, 0.00052, 0.00287, 0.00941, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2207.0, 2053.0, 0.0015, 0.0078, 0.022, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2052.0, 2051.0, 0.0013, 0.0078, 0.0226, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2079.0, 315.0, 0.0, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2079.0, 2050.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2079.0, 2019.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2079.0, 2081.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2079.0, 2230.0, 0.000544, 0.007352, 0.76844, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2081.0, 307.0, 0.0, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2081.0, 2230.0, 0.00054, 0.00738, 0.766086, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2124.0, 2187.0, 0.00126, 0.007397, 0.019756, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2124.0, 1916.0, 0.000818, 0.0061, 0.001808, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2124.0, 1916.0, 0.000818, 0.0061, 0.001808, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2124.0, 6.0, 0.000717, 0.002597, 0.003648, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2124.0, 2121.0, 0.002019, 0.0095, 0.046, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2124.0, 2014.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2124.0, 2006.0, 0.0087, 0.0339, 0.2008, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2124.0, 1774.0, 0.001156, 0.006379, 0.020912, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2124.0, 1774.0, 0.001156, 0.006379, 0.020912, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2014.0, 2174.0, 0.0026, 0.0129, 0.0374, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2014.0, 2174.0, 0.0023, 0.0129, 0.0374, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2014.0, 2121.0, 0.002312, 0.016324, 0.04676, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2014.0, 2063.0, 0.0081, 0.0314, 0.0662, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2230.0, 1773.0, 0.000279, 0.003874, 0.381812, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2230.0, 1773.0, 0.000279, 0.003874, 0.381812, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2230.0, 2229.0, 0.000612, 0.007548, 0.76969, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2230.0, 2229.0, 0.000684, 0.007548, 0.761836, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2230.0, 2024.0, 0.000436, 0.006384, 0.62015, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2230.0, 2024.0, 0.00044, 0.00638, 0.6202, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2230.0, 2024.0, 0.00044, 0.00638, 0.6202, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2071.0, 2070.0, 0.0004, 0.0025, 0.0666, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2071.0, 2070.0, 0.0003, 0.0013, 0.0666, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2071.0, 2108.0, 0.0025, 0.0133, 0.0396, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1769.0, 1844.0, 0.003178, 0.024071, 0.068986, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1769.0, 1844.0, 0.003178, 0.024071, 0.068986, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1773.0, 2024.0, 0.000296, 0.004117, 0.40581, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1773.0, 2024.0, 0.000296, 0.004117, 0.40581, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1843.0, 1954.0, 0.000196, 0.001444, 0.005702, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1843.0, 1954.0, 0.00017, 0.001475, 0.00593, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1990.0, 1781.0, 0.002351, 0.017893, 0.052442, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1990.0, 1781.0, 0.002515, 0.019148, 0.05612, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1990.0, 1791.0, 0.001184, 0.005796, 0.016876, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1990.0, 1791.0, 0.000773, 0.005178, 0.014792, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1990.0, 2091.0, 0.002873, 0.014873, 0.026988, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1990.0, 2091.0, 0.001843, 0.012695, 0.028906, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2092.0, 1949.0, 0.000576, 0.005568, 0.00912, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2075.0, 1776.0, 0.003123, 0.014847, 0.041616, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2075.0, 1776.0, 0.003123, 0.014847, 0.041616, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2075.0, 2066.0, 0.003, 0.0162, 0.0458, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2075.0, 2066.0, 0.003, 0.0162, 0.0458, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1909.0, 1831.0, 0.000425, 0.002347, 0.007694, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1909.0, 1831.0, 0.000425, 0.002347, 0.007694, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2004.0, 2000.0, 0.0043, 0.0189, 0.0516, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [50.0, 1894.0, 0.007438, 0.037376, 0.062508, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [50.0, 1894.0, 0.007438, 0.037376, 0.062508, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2180.0, 2166.0, 0.011111, 0.065754, 0.098978, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2180.0, 2134.0, 0.0056, 0.0304, 0.0504, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2131.0, 2000.0, 0.0109, 0.0472, 0.1306, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2131.0, 2064.0, 0.00604, 0.037441, 0.111652, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2131.0, 2064.0, 0.006511, 0.037267, 0.111562, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2131.0, 2065.0, 0.015, 0.0413, 0.0936, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2048.0, 2047.0, 0.0049, 0.021, 0.034, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2048.0, 2214.0, 0.0132, 0.0474, 0.074, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1913.0, 2153.0, 0.0017, 0.0122, 0.03806, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1913.0, 2153.0, 0.0017, 0.0123, 0.038104, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1913.0, 2132.0, 0.0015, 0.0104, 0.03276, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1913.0, 2132.0, 0.0014, 0.0105, 0.03257, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1850.0, 2204.0, 0.0007, 0.003549, 0.011358, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1850.0, 2204.0, 0.00068, 0.003595, 0.011282, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1935.0, 1934.0, 0.00093, 0.005165, 0.014484, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2046.0, 2010.0, 0.00011, 0.0016, 0.157, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2046.0, 2010.0, 0.000112, 0.001608, 0.1727, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2046.0, 2045.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2045.0, 2010.0, 0.00011, 0.0016, 0.157, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2044.0, 2045.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2058.0, 1933.0, 0.001967, 0.011025, 0.032296, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2058.0, 1934.0, 0.00524, 0.028022, 0.078426, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2084.0, 1779.0, 0.003284, 0.025003, 0.07328, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2084.0, 1779.0, 0.003284, 0.025003, 0.07328, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2195.0, 2196.0, 0.0006, 0.0034, 0.016282, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1764.0, 1831.0, 4.9e-05, 0.000287, 0.001824, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [56.0, 2153.0, 0.003648, 0.013602, 0.02284, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2042.0, 2041.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2040.0, 2041.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2039.0, 2038.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2037.0, 2038.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2006.0, 1769.0, 0.005199, 0.039577, 0.115992, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2028.0, 1907.0, 0.001632, 0.014674, 0.046224, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2028.0, 1955.0, 1e-06, 1e-05, 0.0, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2028.0, 2228.0, 0.0022, 0.016793, 0.049218, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1805.0, 2064.0, 0.004105, 0.025004, 0.073654, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1989.0, 2075.0, 0.002775, 0.01195, 0.031086, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1989.0, 2075.0, 0.002042, 0.009724, 0.0056, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2036.0, 1777.0, 0.001686, 0.01625, 0.028548, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2036.0, 1776.0, 0.002319, 0.017657, 0.05175, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2036.0, 1776.0, 0.002319, 0.017657, 0.05175, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2158.0, 2159.0, 0.003785, 0.035893, 0.102126, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2158.0, 1832.0, 0.003733, 0.026363, 0.08693, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2158.0, 2.0, 0.003679, 0.026454, 0.08693, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2063.0, 2068.0, 0.0013, 0.0076, 0.1, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2085.0, 1949.0, 0.001026, 0.009918, 0.016246, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2060.0, 2101.0, 0.001194, 0.006769, 0.02107, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2060.0, 2101.0, 0.00123, 0.00755, 0.0216, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1828.0, 1827.0, 0.002291, 0.013129, 0.037544, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1951.0, 0.000967, 0.005386, 0.015858, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1951.0, 0.00083, 0.005543, 0.015894, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1800.0, 0.0032, 0.0256, 0.050238, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1800.0, 0.0032, 0.0256, 0.050238, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1952.0, 0.0053, 0.0287, 0.043366, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1888.0, 0.0046, 0.0265, 0.07574, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1888.0, 0.0049, 0.0281, 0.076512, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1893.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1891.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 2047.0, 0.003, 0.0182, 0.052822, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 2047.0, 0.003, 0.0183, 0.052868, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1827.0, 0.000858, 0.005166, 0.015054, 10.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1894.0, 1827.0, 0.000914, 0.005525, 0.01506, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1897.0, 1895.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1897.0, 1892.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [120.0, 1897.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2047.0, 1917.0, 0.006735, 0.04502, 0.1218, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2047.0, 1978.0, 0.005, 0.0273, 0.0742, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2047.0, 2048.0, 0.011661, 0.047648, 0.068356, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2047.0, 2163.0, 0.0157, 0.0776, 0.1892, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1762.0, 1921.0, 0.004241, 0.030126, 0.085066, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 1912.0, 0.0035, 0.0199, 0.055758, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 2167.0, 0.0014, 0.0093, 0.02272, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 2167.0, 0.0026, 0.0129, 0.0206, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 2224.0, 0.0008, 0.00608, 0.018, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 2224.0, 0.0007, 0.0061, 0.01778, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 1982.0, 0.004371, 0.036771, 0.102082, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 1911.0, 0.000587, 0.005466, 0.015722, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 1911.0, 0.001272, 0.011845, 0.034066, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 1995.0, 0.0032, 0.0166, 0.0476, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 2035.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 1980.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2225.0, 1983.0, 0.005, 0.0147, 0.0374, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2034.0, 1966.0, 0.000356, 0.005065, 0.51967, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2034.0, 2003.0, 0.00121, 0.01355, 1.2482, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2034.0, 1772.0, 0.000317, 0.00405, 0.439468, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2034.0, 1772.0, 0.000309, 0.004298, 0.42362, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2034.0, 2033.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2034.0, 1981.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2034.0, 2032.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2034.0, 1771.0, 0.000759, 0.010812, 1.0325, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [121.0, 2034.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1801.0, 2131.0, 0.0037, 0.0294, 0.085666, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2220.0, 2170.0, 0.000467, 0.004897, 0.015144, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2220.0, 2170.0, 0.000467, 0.0049, 0.015136, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2030.0, 1940.0, 0.000667, 0.003612, 0.055194, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2204.0, 1844.0, 0.001053, 0.007978, 0.022864, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2204.0, 1844.0, 0.001053, 0.007978, 0.022864, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2204.0, 2206.0, 0.0023, 0.0127, 0.033, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2233.0, 1992.0, 0.0055, 0.0269, 0.044, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2233.0, 1871.0, 0.0055, 0.0269, 0.044, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2233.0, 2190.0, 0.0017, 0.0128, 0.0398, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2233.0, 2228.0, 0.001919, 0.010339, 0.029802, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2233.0, 2228.0, 0.003985, 0.013988, 0.035304, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2223.0, 2169.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2223.0, 2222.0, 0.003, 0.0199, 0.0546, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2223.0, 2222.0, 0.002477, 0.015386, 0.086506, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1946.0, 2124.0, 0.002181, 0.012442, 0.034482, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1946.0, 1769.0, 0.004399, 0.033488, 0.098148, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2213.0, 2212.0, 0.00872, 0.0415, 0.0603, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1823.0, 1822.0, 0.001557, 0.008831, 0.013178, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1823.0, 1822.0, 0.001557, 0.008831, 0.013178, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1992.0, 47.0, 0.008124, 0.030296, 0.05087, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1992.0, 1871.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [38.0, 1921.0, 0.005421, 0.030248, 0.044896, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1832.0, 2.0, 0.0, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2199.0, 2163.0, 0.012972, 0.060245, 0.0882, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2029.0, 1825.0, 0.002794, 0.015736, 0.030542, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2029.0, 1825.0, 0.002779, 0.016037, 0.030802, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2029.0, 2004.0, 0.0061, 0.0282, 0.0736, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2029.0, 119.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2161.0, 2165.0, 0.002758, 0.017246, 0.05042, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2161.0, 2165.0, 0.00281, 0.017192, 0.050784, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2190.0, 1955.0, 0.0015, 0.005, 0.008, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2059.0, 1933.0, 0.007141, 0.03759, 0.110426, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2059.0, 2060.0, 0.001137, 0.007726, 0.021632, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2066.0, 1777.0, 0.008535, 0.047552, 0.135966, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2066.0, 2036.0, 0.0277, 0.0546, 0.1086, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2066.0, 1817.0, 0.001193, 0.008897, 0.028558, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2066.0, 1817.0, 0.001271, 0.008926, 0.028726, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2214.0, 1822.0, 0.001297, 0.008265, 0.028008, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2214.0, 2048.0, 0.004664, 0.019059, 0.027342, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2228.0, 2188.0, 0.0032, 0.0124, 0.033, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 47.0, 0.002432, 0.009068, 0.015226, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 1907.0, 0.000749, 0.006419, 0.019036, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 1907.0, 0.000404, 0.006082, 0.019234, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 48.0, 0.002281, 0.010715, 0.029254, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 48.0, 0.002281, 0.010715, 0.029254, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 2028.0, 0.003431, 0.018104, 0.05278, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 2028.0, 0.002438, 0.018489, 0.053282, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 2025.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2024.0, 1790.0, 0.000393, 0.006763, 0.725106, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2024.0, 2139.0, 0.0012, 0.0095, 0.8706, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2024.0, 2034.0, 0.0009, 0.0131, 1.2058, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2024.0, 2023.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2024.0, 1771.0, 0.00041, 0.005233, 0.567852, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2024.0, 1771.0, 0.000362, 0.005035, 0.496268, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1816.0, 2003.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1816.0, 1899.0, 0.00067, 0.01333, 1.33542, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1815.0, 2003.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1815.0, 1899.0, 0.00067, 0.01333, 1.33542, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1923.0, 1807.0, 0.004043, 0.031502, 0.092992, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1837.0, 0.00419, 0.032116, 0.097538, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1837.0, 0.003923, 0.032344, 0.097258, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 2106.0, 0.005601, 0.039221, 0.120638, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1923.0, 2106.0, 0.00442, 0.04115, 0.118408, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1921.0, 0.008033, 0.074789, 0.215092, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1968.0, 8.3e-05, 0.001479, 0.004712, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1968.0, 6.2e-05, 0.001495, 0.004682, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 2178.0, 0.001489, 0.009279, 0.019006, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 2178.0, 0.0019, 0.008904, 0.019006, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1818.0, 0.000639, 0.003844, 0.011098, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1818.0, 0.000629, 0.00385, 0.011346, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1899.0, 2136.0, 0.000834, 0.010243, 0.944442, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1899.0, 2144.0, 0.000915, 0.009985, 0.950792, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1899.0, 500.0, 0.00067, 0.01333, 1.33542, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1899.0, 499.0, 0.00067, 0.01333, 1.33542, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1836.0, 1968.0, 0.001023, 0.007793, 0.02284, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1836.0, 1968.0, 0.001023, 0.007793, 0.02284, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1835.0, 1899.0, 3.5e-05, 0.000554, 0.01563, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 2160.0, 0.000808, 0.00615, 0.018024, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 2160.0, 0.000808, 0.00615, 0.018024, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 1795.0, 0.002839, 0.021615, 0.06335, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 1795.0, 0.002839, 0.021615, 0.06335, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 2210.0, 0.001992, 0.015161, 0.044434, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 2210.0, 0.002895, 0.022041, 0.0646, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 1844.0, 0.002519, 0.019179, 0.056212, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1768.0, 1994.0, 0.002367, 0.013057, 0.042808, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 1994.0, 0.001992, 0.015161, 0.044434, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 1910.0, 0.001432, 0.010899, 0.031942, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 1910.0, 0.001432, 0.010899, 0.031942, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2196.0, 2008.0, 0.002104, 0.008588, 0.01563, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2196.0, 2016.0, 0.002104, 0.008588, 0.01563, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2196.0, 1852.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1926.0, 1853.0, 1e-06, 1e-06, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1830.0, 2159.0, 0.005669, 0.029498, 0.084286, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1830.0, 1831.0, 0.005312, 0.030531, 0.088372, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1830.0, 1831.0, 0.005391, 0.030252, 0.088402, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1830.0, 2097.0, 0.003948, 0.020204, 0.05813, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1983.0, 1950.0, 0.0012, 0.0116, 0.019, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2086.0, 2030.0, 0.00086, 0.004229, 0.012674, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2185.0, 2217.0, 0.0024, 0.0101, 0.0152, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2027.0, 1947.0, 0.000579, 0.003409, 0.008058, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2027.0, 1947.0, 0.000579, 0.00341, 0.00806, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2027.0, 1822.0, 0.003665, 0.023351, 0.069198, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1860.0, 1956.0, 0.000192, 0.001612, 0.007754, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1860.0, 1956.0, 0.00019, 0.001612, 0.008058, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [39.0, 2146.0, 0.005056, 0.02051, 0.02918, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1994.0, 2160.0, 0.003787, 0.015066, 0.02744, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1994.0, 1844.0, 0.006343, 0.034897, 0.072984, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1994.0, 2088.0, 0.003409, 0.018265, 0.06, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1994.0, 2088.0, 0.00339, 0.018097, 0.06, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1774.0, 2125.0, 0.000519, 0.002865, 0.009394, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1774.0, 2125.0, 0.000519, 0.002865, 0.009394, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2053.0, 2051.0, 1e-05, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1900.0, 2196.0, 0.00048, 0.0046, 0.0076, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2091.0, 1781.0, 0.000508, 0.003865, 0.011328, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2091.0, 1787.0, 0.000211, 0.000705, 0.03415, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2091.0, 1.0, 0.0, 1e-06, 2e-06, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1.0, 1781.0, 0.00044, 0.003349, 0.009814, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1.0, 1787.0, 0.000216, 0.000738, 0.035304, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1803.0, 2153.0, 0.004651, 0.032568, 0.093178, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1905.0, 2129.0, 0.004099, 0.034324, 0.09695, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1904.0, 2129.0, 0.004105, 0.025004, 0.073654, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2108.0, 2124.0, 0.004633, 0.02824, 0.08162, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2108.0, 1769.0, 0.003559, 0.027095, 0.07941, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2108.0, 1769.0, 0.003559, 0.027095, 0.07941, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2108.0, 1945.0, 0.00096, 0.00928, 0.0152, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1941.0, 1829.0, 0.001096, 0.005395, 0.043434, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2021.0, 2020.0, 0.00781, 0.0352, 0.0262, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2021.0, 2091.0, 0.014, 0.0727, 0.110892, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2163.0, 1783.0, 0.004747, 0.036136, 0.10591, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2163.0, 2026.0, 0.0123, 0.0679, 0.104, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1902.0, 1903.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1859.0, 2204.0, 0.0049, 0.0288, 0.08016, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [2222.0, 1917.0, 0.002438, 0.01471, 0.04222, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1950.0, 2215.0, 0.00095, 0.005619, 0.018094, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1950.0, 2215.0, 0.001591, 0.007644, 0.012924, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1950.0, 2218.0, 0.003325, 0.02037, 0.03325, 100.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [316.0, 315.0, 0.001572, 0.02166, 3.44616, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [310.0, 307.0, 0.001592, 0.021628, 3.43046, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1922.0, 1921.0, 0.0055, 0.0332, 0.048824, 100.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [482.0, 1789.0, 0.001904, 0.030428, 2.94106, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [484.0, 483.0, 0.001926, 0.030303, 2.93952, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [508.0, 1899.0, 0.001544, 0.016148, 1.54645, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [508.0, 1899.0, 0.00134, 0.014248, 1.32665, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [508.0, 482.0, 0.0, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [508.0, 484.0, 0.0, 0.0001, 0.0, 400.0, 0.0,0.0,0.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [500.0, 508.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [499.0, 508.0, 0.0, 1e-05, 0.0, 400.0, 0.0,0.0,0.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1685.0, 1869.0, 0.00131, 0.072778, 0.0027, 180.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1706.0, 1985.0, 0.0003, 0.019557, 0.0, 360.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1642.0, 1763.0, 0.002379, 0.1292, 0.0029, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1747.0, 2181.0, 0.0047, 0.1573, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1746.0, 2181.0, 0.0047, 0.156, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [31.0, 57.0, 0.0047, 0.1573, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [30.0, 57.0, 0.0047, 0.1573, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [23.0, 40.0, 0.002828, 0.1393, 0.0011, 100.0, 0.0,0.0,0.940909, 0.0,1.0,-30.0, 30.0, 0.1 ], [4.0, 3.0, 0.002083, 0.116667, 0.00156, 120.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1666.0, 1810.0, 0.000508, 0.037, 0.004284, 420.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1665.0, 1810.0, 0.000507, 0.036952, 0.003864, 420.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1745.0, 2171.0, 0.000585, 0.034067, 0.006103, 436.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1744.0, 2171.0, 0.000585, 0.034067, 0.061027, 436.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1743.0, 2171.0, 0.000526, 0.030275, 0.00981, 418.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1742.0, 2171.0, 0.000526, 0.030275, 0.00981, 418.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1664.0, 1809.0, 0.0012, 0.074111, 0.0018, 180.0, 0.0,0.0,1.097727, 0.0,0.0,-30.0, 30.0, 0.1 ], [26.0, 53.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [28.0, 55.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [19.0, 36.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1741.0, 2162.0, 0.0006, 0.0345, 0.0, 418.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1740.0, 2162.0, 0.0006, 0.0343, 0.0, 418.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1670.0, 1841.0, 0.000544, 0.037838, 0.0148, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1669.0, 1841.0, 0.000544, 0.037838, 0.0148, 370.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1687.0, 1906.0, 0.000791, 0.048433, 0.0033, 370.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1686.0, 1906.0, 0.000791, 0.048433, 0.0033, 370.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1729.0, 1986.0, 0.000659, 0.043486, 0.00189, 430.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1728.0, 2122.0, 0.000659, 0.043486, 0.00189, 430.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1696.0, 1937.0, 0.000802, 0.048833, 0.0051, 370.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1695.0, 1792.0, 0.000802, 0.048833, 0.0051, 370.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1690.0, 1901.0, 0.002669, 0.136, 0.0009, 100.0, 0.0,0.0,1.00625, 0.0,1.0,-30.0, 30.0, 0.1 ], [1659.0, 1802.0, 0.002379, 0.1292, 0.0029, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1739.0, 2152.0, 0.0041, 0.0942, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1738.0, 2152.0, 0.001394, 0.0686, 0.005, 240.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1737.0, 2152.0, 0.002018, 0.0757, 0.00184, 240.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1707.0, 2152.0, 0.000659, 0.066286, 0.00819, 430.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1752.0, 2152.0, 0.000659, 0.041543, 0.00945, 430.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [13.0, 1820.0, 0.003265, 0.139, 0.00076, 120.0, 0.0,0.0,0.940909, 0.0,1.0,-30.0, 30.0, 0.1 ], [1703.0, 1984.0, 0.001884, 0.093333, 4.5e-05, 180.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1702.0, 1984.0, 0.001871, 0.093333, 4.5e-05, 180.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1704.0, 1984.0, 0.001876, 0.093333, 4.5e-05, 180.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1705.0, 1984.0, 0.001867, 0.093333, 4.5e-05, 180.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [34.0, 59.0, 0.0064, 0.1807, 0.0, 75.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [33.0, 58.0, 0.0064, 0.1807, 0.0, 75.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1678.0, 1854.0, 0.000769, 0.050067, 0.00276, 370.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1677.0, 1854.0, 0.000762, 0.0499, 0.00276, 370.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1655.0, 1826.0, 0.000959, 0.192917, 0.00084, 120.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [27.0, 54.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.0, 0.0,0.0,-30.0, 30.0, 0.1 ], [1657.0, 1793.0, 0.00298, 0.1364, 0.0013, 120.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1650.0, 1834.0, 7e-06, 0.00569, 0.01386, 1260.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1648.0, 1834.0, 7e-06, 0.00569, 0.01386, 1260.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [35.0, 1834.0, 7e-06, 0.00569, 0.01386, 1260.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1682.0, 1858.0, 0.000527, 0.04415, 0.0034, 400.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1681.0, 1858.0, 0.000527, 0.04415, 0.0034, 400.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [2115.0, 2118.0, 0.0029, 0.0762, 0.0, 300.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2111.0, 2117.0, 0.0045, 0.1801, 0.0, 90.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2104.0, 2012.0, 0.005505, 0.199524, 0.001512, 63.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1736.0, 2104.0, 0.006292, 0.268, 0.00075, 50.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1735.0, 2104.0, 0.006204, 0.268, 0.00075, 50.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1734.0, 2149.0, 0.002101, 0.056458, 0.014304, 240.0, 0.0,0.0,1.1, 0.0,0.0,-30.0, 30.0, 0.1 ], [1733.0, 2149.0, 0.001332, 0.059167, 0.008592, 240.0, 0.0,0.0,1.1, 0.0,0.0,-30.0, 30.0, 0.1 ], [1732.0, 2149.0, 0.001465, 0.057917, 0.009744, 240.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1694.0, 1936.0, 0.000531, 0.036378, 0.00407, 370.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1693.0, 1936.0, 0.000531, 0.036378, 0.00407, 370.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [25.0, 52.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1701.0, 1959.0, 0.000326, 0.0237, 0.0072, 720.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1700.0, 1959.0, 0.000326, 0.0237, 0.0072, 720.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1652.0, 1788.0, 0.003869, 0.14, 0.002, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1645.0, 1767.0, 0.0115, 0.2541, 0.0, 400.0, 0.0,0.0,1.025, 0.0,1.0,-30.0, 30.0, 0.1 ], [24.0, 1767.0, 0.0115, 0.2541, 0.0, 400.0, 0.0,0.0,1.025, 0.0,1.0,-30.0, 30.0, 0.1 ], [1656.0, 1929.0, 0.002209, 0.100333, 2.4e-05, 120.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [14.0, 1929.0, 0.002431, 0.116667, 6e-05, 120.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1644.0, 1766.0, 0.002379, 0.1292, 0.0029, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [12.0, 1857.0, 0.000929, 0.054167, 0.00648, 240.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [11.0, 1857.0, 0.000948, 0.054167, 0.00648, 240.0, 0.0,0.0,1.09773, 0.0,1.0,-30.0, 30.0, 0.1 ], [11.0, 1857.0, 0.003124, 0.133, 0.0022, 100.0, 0.0,0.0,1.04546, 0.0,0.0,-30.0, 30.0, 0.1 ], [1691.0, 2013.0, 0.004251, 0.1313, 0.0015, 180.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1662.0, 2013.0, 0.001786, 0.099067, 0.003675, 180.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1731.0, 2095.0, 0.001658, 0.068, 0.0046, 240.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1730.0, 2095.0, 0.001598, 0.0681, 0.004, 240.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1649.0, 1775.0, 0.000575, 0.044846, 0.003081, 390.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [32.0, 1775.0, 0.000575, 0.044846, 0.003081, 390.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1651.0, 1814.0, 0.0006, 0.0441, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1653.0, 1814.0, 0.0006, 0.0441, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1654.0, 1814.0, 0.0006, 0.0441, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1674.0, 1814.0, 0.0006, 0.0441, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [20.0, 37.0, 0.002851, 0.13, 0.00066, 100.0, 0.0,0.0,1.05852, 0.0,1.0,-30.0, 30.0, 0.1 ], [1668.0, 2182.0, 0.0029, 0.0694, 0.0107, 720.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1727.0, 2120.0, 0.000367, 0.023333, 0.0321, 260.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1726.0, 2120.0, 0.000367, 0.023333, 0.0321, 260.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1697.0, 1958.0, 0.000117, 0.023367, 0.01176, 720.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1643.0, 1765.0, 0.002379, 0.1292, 0.0029, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1725.0, 2071.0, 0.0013, 0.0643, 0.0, 240.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1724.0, 2071.0, 0.0013, 0.0643, 0.0, 240.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1710.0, 2071.0, 0.0013, 0.0643, 0.0, 240.0, 0.0,0.0,1.06818, 0.0,1.0,-30.0, 30.0, 0.1 ], [1672.0, 1843.0, 0.000575, 0.044846, 0.003081, 390.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1671.0, 1843.0, 0.000575, 0.044846, 0.003081, 390.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1723.0, 2011.0, 0.005759, 0.207937, 0.001512, 32.0, 0.0,0.0,1.0375, 0.0,1.0,-30.0, 30.0, 0.1 ], [1722.0, 2180.0, 0.004, 0.119, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1721.0, 2180.0, 0.004, 0.119, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1720.0, 2180.0, 0.004, 0.119, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1719.0, 2180.0, 0.0054, 0.116, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1676.0, 1850.0, 0.000178, 0.053846, 0.0, 260.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1675.0, 1850.0, 0.000178, 0.053846, 0.0, 260.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1718.0, 2045.0, 0.000218, 0.01863, 0.0, 120.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1717.0, 2046.0, 0.000218, 0.01827, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1692.0, 2045.0, 0.000175, 0.015526, 0.013338, 400.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1663.0, 2045.0, 0.000175, 0.015526, 0.013338, 400.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1709.0, 2195.0, 0.001558, 0.08475, 0.00336, 160.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1708.0, 2195.0, 0.001879, 0.088667, 0.00435, 160.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [5.0, 1764.0, 0.002083, 0.116667, 0.00156, 120.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [29.0, 56.0, 0.002914, 0.127, 0.0012, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [2038.0, 2096.0, 0.0022, 0.114, 0.0, 120.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1661.0, 1805.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1699.0, 2229.0, 0.000375, 0.022667, 0.00294, 720.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1698.0, 2229.0, 0.001028, 0.046333, 0.0054, 720.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1714.0, 2158.0, 0.0008, 0.0461, 0.0, 370.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1713.0, 2158.0, 0.0008, 0.0463, 0.0, 370.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1716.0, 2229.0, 0.0008, 0.0451, 0.0, 370.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1715.0, 2229.0, 0.0007, 0.0411, 0.0, 370.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1680.0, 1828.0, 0.002439, 0.111755, 0.000752, 120.0, 0.0,0.0,0.988943, 0.0,1.0,-30.0, 30.0, 0.1 ], [1641.0, 1762.0, 0.003175, 0.1308, 0.00239, 100.0, 0.0,0.0,1.05852, 0.0,1.0,-30.0, 30.0, 0.1 ], [1658.0, 1801.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [21.0, 38.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1667.0, 1836.0, 0.000318, 0.02355, 0.00108, 720.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1673.0, 1835.0, 0.000328, 0.023833, 0.00168, 720.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1712.0, 2027.0, 0.0006, 0.0348, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1711.0, 2027.0, 0.0006, 0.0348, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1749.0, 1969.0, 0.000223, 0.0195, 0.004392, 720.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1748.0, 1969.0, 0.000228, 0.019319, 0.004248, 720.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1684.0, 1860.0, 0.000526, 0.037775, 0.0028, 400.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1683.0, 1860.0, 0.000528, 0.0378, 0.00236, 400.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [22.0, 39.0, 0.000706, 0.0772, 0.00092, 100.0, 0.0,0.0,1.05852, 0.0,1.0,-30.0, 30.0, 0.1 ], [1660.0, 1803.0, 0.003032, 0.14, 0.0013, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1689.0, 1905.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [117.0, 1905.0, 0.002828, 0.141, 1e-05, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [110.0, 1905.0, 0.002841, 0.141, 1e-05, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [108.0, 1905.0, 0.002828, 0.141, 1e-05, 100.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1688.0, 1904.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.075, 0.0,1.0,-30.0, 30.0, 0.1 ], [118.0, 1904.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.075, 0.0,1.0,-30.0, 30.0, 0.1 ], [111.0, 1904.0, 0.00297, 0.137, 0.0027, 100.0, 0.0,0.0,1.075, 0.0,1.0,-30.0, 30.0, 0.1 ], [107.0, 1904.0, 0.00297, 0.137, 0.0027, 50.0, 0.0,0.0,1.075, 0.0,1.0,-30.0, 30.0, 0.1 ], [1751.0, 1902.0, 0.000223, 0.0195, 0.004176, 720.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [1750.0, 1902.0, 0.000219, 0.019278, 0.00432, 720.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [2194.0, 1633.0, 0.002, 0.0983, 0.0, 150.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1635.0, 1633.0, 0.0014, 0.0563, 0.0, 150.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1634.0, 1633.0, 0.0009, -0.003, 0.0, 75.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2194.0, 1631.0, 0.002, 0.0997, 0.0, 150.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1635.0, 1631.0, 0.0014, 0.0567, 0.0, 150.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1632.0, 1631.0, 0.0008, -0.0033, 0.0, 75.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2194.0, 1628.0, 0.001271, 0.096333, 0.00115, 150.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1630.0, 1628.0, 0.001185, 0.057, 0.00115, 150.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1629.0, 1628.0, 0.001033, -0.005, 0.00115, 75.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1965.0, 1587.0, 6.7e-05, 0.018139, 0.00103533, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2231.0, 1587.0, 5.6e-05, -0.00171, 0.00103533, 1002.0, 0.0,0.0,1.09773, 0.0,1.0,-30.0, 30.0, 0.1 ], [1964.0, 1587.0, 0.000397, 0.03773, 0.00103533, 270.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1961.0, 1586.0, 6.4e-05, 0.01821, 0.00103533, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1962.0, 1586.0, 5.9e-05, -0.00176, 0.00103533, 1002.0, 0.0,0.0,1.09773, 0.0,1.0,-30.0, 30.0, 0.1 ], [1963.0, 1586.0, 0.000397, 0.037788, 0.00103533, 270.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2002.0, 1627.0, 8.6e-05, 0.01918, 0.0, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1999.0, 1627.0, 8.8e-05, -0.00199, 0.0, 750.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1997.0, 1627.0, 0.000652, 0.04874, 0.0, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2001.0, 1626.0, 8.6e-05, 0.01918, 0.0, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1998.0, 1626.0, 8.8e-05, -0.00199, 0.0, 750.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1996.0, 1626.0, 0.000652, 0.04874, 0.0, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1970.0, 1592.0, 6.6e-05, 0.018757, 0.00120233, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 1592.0, 5.9e-05, -0.00301, 0.00120233, 1002.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1864.0, 1592.0, 0.000397, 0.038328, 0.00120233, 330.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1972.0, 1591.0, 6.6e-05, 0.018757, 0.00126933, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2221.0, 1591.0, 5.9e-05, -0.00301, 0.00126933, 1002.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1863.0, 1591.0, 0.000397, 0.038328, 0.00126933, 330.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1772.0, 1556.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 1556.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,0.0,-30.0, 30.0, 0.1 ], [1759.0, 1556.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,0.0,-30.0, 30.0, 0.1 ], [1772.0, 1555.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,0.0,-30.0, 30.0, 0.1 ], [1770.0, 1555.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,0.0,-30.0, 30.0, 0.1 ], [1758.0, 1555.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,0.0,-30.0, 30.0, 0.1 ], [1855.0, 1584.0, 8.3e-05, 0.021439, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1856.0, 1584.0, 6.5e-05, -0.00326, 0.0, 400.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1957.0, 1584.0, 0.000454, 0.038229, 0.0, 400.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1813.0, 1570.0, 7.8e-05, 0.018807, 0.001336, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1812.0, 1570.0, 5.7e-05, -0.00212, 0.001336, 1002.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1811.0, 1570.0, 0.000428, 0.033328, 0.001336, 300.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1886.0, 1573.0, 6.3e-05, 0.018623, 0.00153633, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1887.0, 1573.0, 6.3e-05, -0.00257, 0.00153633, 1002.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1884.0, 1573.0, 0.000381, 0.035269, 0.00153633, 300.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1927.0, 1578.0, 5.8e-05, 0.017275, 0.002004, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1925.0, 1578.0, 6.9e-05, -0.00173, 0.002004, 1002.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1885.0, 1578.0, 0.000349, 0.039152, 0.002004, 300.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [2143.0, 1624.0, 0.000125, 0.02587, 0.0, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2150.0, 1624.0, 9.2e-05, -0.00513, 0.0, 750.0, 0.0,0.0,1.07273, 0.0,1.0,-30.0, 30.0, 0.1 ], [1625.0, 1624.0, 0.000505, 0.04532, 0.0, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2138.0, 1622.0, 0.000228, 0.02372, 0.0, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2147.0, 1622.0, 0.000123, -0.00264, 0.0, 750.0, 0.0,0.0,1.06818, 0.0,1.0,-30.0, 30.0, 0.1 ], [1623.0, 1622.0, 0.000586, 0.02816, 0.0, 240.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1790.0, 1564.0, 9.6e-05, 0.0209, 0.002, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1564.0, 7.9e-05, -0.00277, 0.002, 750.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1565.0, 1564.0, 0.000524, 0.052407, 0.002, 240.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1790.0, 1563.0, 9.6e-05, 0.0209, 0.002, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2094.0, 1563.0, 7.9e-05, -0.00277, 0.002, 750.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1565.0, 1563.0, 0.000524, 0.052407, 0.002, 240.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [2152.0, 1619.0, 0.00085, 0.01, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1621.0, 1619.0, 0.0048, 0.1195, 0.0, 400.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1620.0, 1619.0, 0.0027, 0.1195, 0.0, 400.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1875.0, 1590.0, 8e-05, 0.01881, 0.0, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1874.0, 1590.0, 0.00277, -0.00232, 0.0, 1002.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1873.0, 1590.0, 0.0004, 0.037, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1974.0, 1572.0, 8e-06, 0.018685, 0.00153333, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2202.0, 1572.0, -1e-05, -0.0033, 0.00153333, 10000.0, 0.0,0.0,1.01932, 0.0,1.0,-30.0, 30.0, 0.1 ], [1872.0, 1572.0, 0.000442, 0.039535, 0.00153333, 300.0, 0.0,0.0,0.978409, 0.0,1.0,-30.0, 30.0, 0.1 ], [2082.0, 1618.0, 0.000117, 0.02364, 0.00205, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2089.0, 1618.0, 4.2e-05, -0.00236, 0.00205, 750.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [2078.0, 1618.0, 0.000345, 0.031, 0.00205, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2083.0, 1617.0, 6.6e-05, 0.022113, 0.001075, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 1617.0, 9e-05, -0.00185, 0.001075, 750.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [2077.0, 1617.0, 0.000509, 0.047513, 0.001075, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2080.0, 1616.0, 0.000115, 0.022847, 0.00225, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2088.0, 1616.0, 0.000118, -0.00186, 0.00225, 750.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [2076.0, 1616.0, 0.000507, 0.03022, 0.00225, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1786.0, 1562.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1785.0, 1562.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1755.0, 1562.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1786.0, 1561.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1785.0, 1561.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1754.0, 1561.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1868.0, 1615.0, 0.000105, 0.01782, 0.003375, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1867.0, 1615.0, 5.8e-05, -0.00247, 0.003375, 750.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [2072.0, 1615.0, 0.000494, 0.030927, 0.003375, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1866.0, 1614.0, 7.9e-05, 0.019153, 0.00145, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1865.0, 1614.0, 6.4e-05, -0.00314, 0.00145, 750.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [2007.0, 1614.0, 0.000335, 0.030553, 0.00145, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1799.0, 1568.0, 7.8e-05, 0.018079, 0.001336, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 1568.0, 4.9e-05, -0.00241, 0.001336, 1002.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1569.0, 1568.0, 0.000403, 0.038458, 0.001336, 300.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1798.0, 1566.0, 7.4e-05, 0.018598, 0.001837, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1797.0, 1566.0, 5.3e-05, -0.00316, 0.001837, 1002.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1567.0, 1566.0, 0.000378, 0.039316, 0.001837, 300.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2013.0, 1611.0, 0.001709, 0.13125, 0.000972, 120.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1613.0, 1611.0, 0.001024, 0.070417, 0.000972, 120.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1612.0, 1611.0, 0.001075, -0.00625, 0.000972, 120.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2013.0, 1608.0, 0.0021, 0.1588, 0.000972, 120.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1610.0, 1608.0, 0.0012, 0.0852, 0.000972, 120.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1609.0, 1608.0, 0.0013, 0.0063, 0.000972, 120.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1960.0, 1585.0, 7.3e-05, 0.018815, 0.00096667, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 1585.0, 6e-05, -0.00139, 0.00096667, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1881.0, 1585.0, 0.000405, 0.037565, 0.00096667, 300.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [123.0, 1583.0, 7.4e-05, 0.018955, 0.00096667, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1920.0, 1583.0, 6.1e-05, -0.00145, 0.00096667, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1808.0, 1583.0, 0.000406, 0.037395, 0.00096667, 300.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [2056.0, 1607.0, 8.6e-05, 0.012, 0.0, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2061.0, 1607.0, 8.4e-05, 0.0052, 0.0, 750.0, 0.0,0.0,1.07045, 0.0,1.0,-30.0, 30.0, 0.1 ], [2055.0, 1607.0, 0.00064, 0.0098, 0.0, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2057.0, 1588.0, 8.2e-05, 0.01899, 0.0, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2062.0, 1588.0, 9.5e-05, 0.00187, 0.0, 750.0, 0.0,0.0,1.07045, 0.0,1.0,-30.0, 30.0, 0.1 ], [1967.0, 1588.0, 0.000595, 0.04896, 0.0, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2050.0, 1606.0, 0.000124, 0.026467, 0.003, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2054.0, 1606.0, 8.8e-05, -0.00659, 0.003, 750.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [2049.0, 1606.0, 0.000433, 0.03668, 0.003, 240.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [2019.0, 1605.0, 6.9e-05, 0.01806, 0.000725, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2018.0, 1605.0, 8.7e-05, -0.00197, 0.000725, 750.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [2017.0, 1605.0, 0.000344, 0.03106, 0.000725, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2081.0, 1576.0, 5.9e-05, 0.017137, 0.0009, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2052.0, 1576.0, 7.4e-05, -0.0013, 0.0009, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1880.0, 1576.0, 0.000392, 0.036947, 0.0009, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [2230.0, 1604.0, 8.3e-05, 0.019047, 0.001425, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2124.0, 1604.0, 6.1e-05, -0.00317, 0.001425, 750.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1878.0, 1604.0, 0.000339, 0.031247, 0.001425, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2230.0, 1582.0, 6e-05, 0.017225, 0.00096667, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2014.0, 1582.0, 7.3e-05, -0.00129, 0.00096667, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1877.0, 1582.0, 0.000392, 0.036925, 0.00096667, 330.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1773.0, 1558.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1769.0, 1558.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1761.0, 1558.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1773.0, 1557.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1769.0, 1557.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1760.0, 1557.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1787.0, 8.0, 0.000881, 0.085611, 0.000444, 180.0, 0.0,0.0,1.0625, 0.0,1.0,-30.0, 30.0, 0.1 ], [1646.0, 8.0, 0.000767, -0.00617, 0.000444, 180.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [10.0, 8.0, 9.1e-05, 0.051056, 0.000444, 90.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1787.0, 7.0, 0.000881, 0.085611, 0.000444, 180.0, 0.0,0.0,1.0625, 0.0,1.0,-30.0, 30.0, 0.1 ], [1647.0, 7.0, 0.000767, -0.00617, 0.000444, 180.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [9.0, 7.0, 9.1e-05, 0.051056, 0.000444, 90.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2046.0, 1603.0, 0.0, 0.04475, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1935.0, 1603.0, 0.0, -0.00462, 0.0, 400.0, 0.0,0.0,1.0725, 0.0,1.0,-30.0, 30.0, 0.1 ], [2043.0, 1603.0, 0.0, 0.07026, 0.0, 400.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2096.0, 1601.0, 0.0018, 0.1243, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1602.0, 1601.0, 0.0015, 0.0698, 0.0, 400.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2041.0, 1601.0, 0.0014, -0.0077, 0.0, 400.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2179.0, 1598.0, 0.0063, 0.2671, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1600.0, 1598.0, 0.0058, 0.1401, 0.0, 400.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1599.0, 1598.0, 0.003, -0.0097, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2179.0, 1596.0, 0.0063, 0.2652, 0.0, 400.0, 0.0,0.0,1.1, 0.0,1.0,-30.0, 30.0, 0.1 ], [1600.0, 1596.0, 0.0059, 0.1419, 0.0, 400.0, 0.0,0.0,1.04545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1597.0, 1596.0, 0.0028, -0.0079, 0.0, 400.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1895.0, 1575.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1893.0, 1575.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1890.0, 1575.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1892.0, 1574.0, 9.1e-05, 0.02099, 0.0, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1891.0, 1574.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1889.0, 1574.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [2033.0, 1595.0, 8.5e-05, 0.01857, 0.00183333, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2035.0, 1595.0, 4.7e-05, -0.00287, 0.00183333, 1000.0, 0.0,0.0,1.09773, 0.0,1.0,-30.0, 30.0, 0.1 ], [2031.0, 1595.0, 0.000426, 0.03594, 0.00183333, 300.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1981.0, 1593.0, 7.3e-05, 0.0163, 0.001, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1980.0, 1593.0, 5.4e-05, -0.001, 0.001, 1000.0, 0.0,0.0,1.09773, 0.0,1.0,-30.0, 30.0, 0.1 ], [1979.0, 1593.0, 0.000377, 0.03705, 0.001, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [2023.0, 1594.0, 0.000116, 0.018433, 0.002075, 750.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2025.0, 1594.0, 7.4e-05, -0.00326, 0.002075, 750.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [2022.0, 1594.0, 0.000476, 0.032887, 0.002075, 240.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [2024.0, 1589.0, 6.4e-05, 0.016337, 0.00120233, 1002.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2228.0, 1589.0, 6.3e-05, -0.0024, 0.00120233, 1002.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1862.0, 1589.0, 0.000244, 0.030978, 0.00120233, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1899.0, 1581.0, 8.5e-05, 0.018221, 0.001275, 750.0, 0.0,0.0,1.072, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1581.0, 8.5e-05, -0.00243, 0.001275, 750.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1879.0, 1581.0, -9e-05, 0.041486, 0.001275, 240.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1899.0, 1579.0, 8.4e-05, 0.018087, 0.00135, 750.0, 0.0,0.0,1.072, 0.0,1.0,-30.0, 30.0, 0.1 ], [1923.0, 1579.0, 8.4e-05, -0.00222, 0.00135, 750.0, 0.0,0.0,1.07159, 0.0,1.0,-30.0, 30.0, 0.1 ], [1580.0, 1579.0, -8e-05, 0.04158, 0.00135, 240.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1771.0, 1560.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 1560.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1757.0, 1560.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1771.0, 1559.0, 9.1e-05, 0.02099, 0.0, 10000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1768.0, 1559.0, 6.7e-05, -0.00349, 0.0, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1756.0, 1559.0, 0.00037, 0.03445, 0.0, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ], [1853.0, 1571.0, 6.1e-05, 0.01713, 0.00126667, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [1852.0, 1571.0, 7.3e-05, -0.00142, 0.00126667, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1851.0, 1571.0, 0.000408, 0.0376, 0.00126667, 330.0, 0.0,0.0,1.0, 0.0,1.0,-30.0, 30.0, 0.1 ], [1926.0, 1577.0, 5e-05, 0.01767, 0.00133333, 1000.0, 0.0,0.0,1.05, 0.0,1.0,-30.0, 30.0, 0.1 ], [2196.0, 1577.0, 7e-05, -0.00193, 0.00133333, 1000.0, 0.0,0.0,1.04546, 0.0,1.0,-30.0, 30.0, 0.1 ], [1882.0, 1577.0, 0.000396, 0.03757, 0.00133333, 330.0, 0.0,0.0,0.954545, 0.0,1.0,-30.0, 30.0, 0.1 ] ]) ppc["gencost"] = array([ [2.0, 0.0, 0.0, 3.0, 0.0, 44.0, 0.0, 66.0, 33.0, 52.8, 26.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 44.0, 0.0, 66.0, 33.0, 52.8, 26.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 50.0, 0.0, 75.0, 37.5, 60.0, 30.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 62.8, 0.0, 94.2, 47.1, 75.36, 37.68 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 30.0, 0.0, 45.0, 22.5, 36.0, 18.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 30.0, 0.0, 45.0, 22.5, 36.0, 18.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 40.0, 0.0, 60.0, 30.0, 48.0, 24.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 40.0, 0.0, 60.0, 30.0, 48.0, 24.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 140.0, 0.0, 210.0, 105.0, 168.0, 84.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 400.0, 0.0, 600.0, 300.0, 480.0, 240.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 400.0, 0.0, 600.0, 300.0, 480.0, 240.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 64.0, 0.0, 96.0, 48.0, 76.8, 38.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 64.0, 0.0, 96.0, 48.0, 76.8, 38.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 64.0, 0.0, 96.0, 48.0, 76.8, 38.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 29.0, 0.0, 43.5, 21.75, 34.8, 17.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 29.0, 0.0, 43.5, 21.75, 34.8, 17.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 29.0, 0.0, 43.5, 21.75, 34.8, 17.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 14.4, 0.0, 21.6, 10.8, 17.28, 8.64 ], [2.0, 0.0, 0.0, 3.0, 0.0, 14.4, 0.0, 21.6, 10.8, 17.28, 8.64 ], [2.0, 0.0, 0.0, 3.0, 0.0, 16.8, 0.0, 25.2, 12.6, 20.16, 10.08 ], [2.0, 0.0, 0.0, 3.0, 0.0, 16.8, 0.0, 25.2, 12.6, 20.16, 10.08 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 48.0, 0.0, 72.0, 36.0, 57.6, 28.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 48.0, 0.0, 72.0, 36.0, 57.6, 28.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 40.0, 0.0, 60.0, 30.0, 48.0, 24.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 40.0, 0.0, 60.0, 30.0, 48.0, 24.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 60.0, 0.0, 90.0, 45.0, 72.0, 36.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 60.0, 0.0, 90.0, 45.0, 72.0, 36.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 84.0, 0.0, 126.0, 63.0, 100.8, 50.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 39.6, 0.0, 59.4, 29.7, 47.52, 23.76 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 80.0, 0.0, 120.0, 60.0, 96.0, 48.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 20.0, 0.0, 30.0, 15.0, 24.0, 12.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 36.0, 0.0, 54.0, 27.0, 43.2, 21.6 ], [2.0, 0.0, 0.0, 3.0, 0.0, 36.0, 0.0, 54.0, 27.0, 43.2, 21.6 ], [2.0, 0.0, 0.0, 3.0, 0.0, 36.0, 0.0, 54.0, 27.0, 43.2, 21.6 ], [2.0, 0.0, 0.0, 3.0, 0.0, 36.0, 0.0, 54.0, 27.0, 43.2, 21.6 ], [2.0, 0.0, 0.0, 3.0, 0.0, 62.8, 0.0, 94.2, 47.1, 75.36, 37.68 ], [2.0, 0.0, 0.0, 3.0, 0.0, 62.8, 0.0, 94.2, 47.1, 75.36, 37.68 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 320.0, 0.0, 480.0, 240.0, 384.0, 192.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 320.0, 0.0, 480.0, 240.0, 384.0, 192.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 403.2, 0.0, 604.8, 302.4, 483.84, 241.92 ], [2.0, 0.0, 0.0, 3.0, 0.0, 403.2, 0.0, 604.8, 302.4, 483.84, 241.92 ], [2.0, 0.0, 0.0, 3.0, 0.0, 54.0, 0.0, 81.0, 40.5, 64.8, 32.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 54.0, 0.0, 81.0, 40.5, 64.8, 32.4 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 18.0, 0.0, 27.0, 13.5, 21.6, 10.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 18.0, 0.0, 27.0, 13.5, 21.6, 10.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 18.0, 0.0, 27.0, 13.5, 21.6, 10.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 18.0, 0.0, 27.0, 13.5, 21.6, 10.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 20.0, 0.0, 30.0, 15.0, 24.0, 12.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 20.0, 0.0, 30.0, 15.0, 24.0, 12.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 120.0, 0.0, 180.0, 90.0, 144.0, 72.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 208.0, 0.0, 312.0, 156.0, 249.6, 124.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 12.0, 6.0, 9.6, 4.8 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ], [2.0, 0.0, 0.0, 3.0, 0.0, 240.0, 0.0, 360.0, 180.0, 288.0, 144.0 ] ]) return ppc
134.260851
201
0.340705
e4a657793f9f05a77c5e81587237f08dc7c7295f
1,406
py
Python
code/tools/chgdef.py
jgresula/jagpdf
6c36958b109e6522e6b57d04144dd83c024778eb
[ "MIT" ]
54
2015-02-16T14:25:16.000Z
2022-03-16T07:54:25.000Z
code/tools/chgdef.py
jgresula/jagpdf
6c36958b109e6522e6b57d04144dd83c024778eb
[ "MIT" ]
null
null
null
code/tools/chgdef.py
jgresula/jagpdf
6c36958b109e6522e6b57d04144dd83c024778eb
[ "MIT" ]
30
2015-03-05T08:52:25.000Z
2022-02-17T13:49:15.000Z
#!/usr/bin/env python # Copyright (c) 2005-2009 Jaroslav Gresula # # Distributed under the MIT license (See accompanying file # LICENSE.txt or copy at http://jagpdf.org/LICENSE.txt) # import re class Bunch: def __init__(self, **kwds): self.__dict__.update(kwds) def _rex( text ): return re.compile( text, re.MULTILINE | re.DOTALL ) # -- cpp head -------------------- c_head_txt="""// $(Copyright) // $(License) // // \x24Id\x24 """ c_head_rex="""^// \$\(Copyright\) // \$\(License\) // \n]*\$$ """ c_head_repl='(?:^//.*?\n)+|^/\*.*?\*/\n+' # -- cpp tail -------------------- c_tail_txt="/** EOF @file */\n" c_tail_rex="^/\*\* EOF @file \*/\n+\Z" c_tail_repl="" # -- python head -------------------- py_head_txt="""#!/usr/bin/env python # # $(Copyright) # $(License) # # \x24Id\x24 """ py_head_rex="""#!/usr/bin/env python # # \$\(Copyright\) # \$\(License\) # \n]*\$$ """ py_head_repl='(?:^#.*?\n)+' cfg = {} cfg['*.cpp'] = Bunch( head_t=c_head_txt, head_r=_rex(c_head_rex),\ tail_t=c_tail_txt, tail_r = _rex(c_tail_rex),\ head_repl_r=_rex(c_head_repl), tail_repl_r=_rex(c_tail_repl) ) cfg['*.h']=cfg['*.cpp'] cfg['*.py'] = Bunch( head_t=py_head_txt, head_r=_rex(py_head_rex),\ tail_t=None, tail_r = None,\ head_repl_r=_rex(py_head_repl), tail_repl_r=None )
14.494845
84
0.536984
f0c268bbb2e7118901b53b23d5d2938d10a2dbd8
106
py
Python
esp8266/MicroPython ESP8266/Default files/boot.py
DocVaughan/CRAWLAB-Code-Snippets
90c946bef0fbe37401f822d58ce5a6b3c5349616
[ "BSD-3-Clause" ]
12
2015-03-03T18:32:03.000Z
2021-03-13T18:50:37.000Z
esp8266/MicroPython ESP8266/Default files/boot.py
DocVaughan/CRAWLAB-Code-Snippets
90c946bef0fbe37401f822d58ce5a6b3c5349616
[ "BSD-3-Clause" ]
null
null
null
esp8266/MicroPython ESP8266/Default files/boot.py
DocVaughan/CRAWLAB-Code-Snippets
90c946bef0fbe37401f822d58ce5a6b3c5349616
[ "BSD-3-Clause" ]
7
2017-01-20T20:31:54.000Z
2021-12-28T16:52:48.000Z
# This file is executed on every boot (including wake-boot from deepsleep) import webrepl webrepl.start()
26.5
74
0.792453
94c06786dc42937e7f59dd295823ee08c90d1756
289
py
Python
Section 5/5.2/code.py
PacktPublishing/-Data-Wrangling-with-Python-3.x
0273db00752a05e347e149d68decb45ed4778d2c
[ "MIT" ]
16
2019-02-07T09:17:11.000Z
2022-01-30T12:38:47.000Z
Section 5/5.2/code.py
PacktPublishing/-Data-Wrangling-with-Python-3.x
0273db00752a05e347e149d68decb45ed4778d2c
[ "MIT" ]
1
2019-07-06T15:36:28.000Z
2019-07-06T15:36:28.000Z
Section 5/5.2/code.py
PacktPublishing/-Data-Wrangling-with-Python-3.x
0273db00752a05e347e149d68decb45ed4778d2c
[ "MIT" ]
15
2019-02-12T09:46:03.000Z
2022-01-04T16:54:28.000Z
import pandas as pd dataset = pd.read_csv('employees.csv') dataset.dropna(axis = 0, inplace = True) from sklearn import preprocessing le = preprocessing.LabelEncoder() le.fit(dataset['Gender']) gender_encoded = le.transform(dataset['Gender']) dataset['Gender_encoded'] = gender_encoded
24.083333
48
0.768166
51ad27efa118b1e7ab8939a8d37af56debee4587
894
py
Python
styles.py
imphatic/source-crawler
9c7f2d95e3f232367d9b6243dc2c9897a9d09442
[ "MIT" ]
null
null
null
styles.py
imphatic/source-crawler
9c7f2d95e3f232367d9b6243dc2c9897a9d09442
[ "MIT" ]
null
null
null
styles.py
imphatic/source-crawler
9c7f2d95e3f232367d9b6243dc2c9897a9d09442
[ "MIT" ]
null
null
null
class Styles: # Colors colors = { 'background': 'black', 'foreground': 'white' } # object styles object_styles = { 'label': { 'bg': colors['background'], 'fg': colors['foreground'], 'font': 'none 12 bold', 'text': 'Add Label Text' }, 'entry': { 'width': 30, 'bg': colors['background'], 'fg': colors['foreground'] }, 'text': { 'height': 20, 'width': 60, 'bg': colors['background'], 'fg': colors['foreground'] } } def __new__(cls, style_name, other_styles=None): cls.style_name = style_name default_styles = cls.object_styles[style_name].copy() if other_styles: default_styles.update(other_styles) return default_styles
21.804878
61
0.474273
d37bfd935849cc1a730ce5de39bc9e380ac2b2bb
7,612
py
Python
Helper.py
RodiiHernandezz/ZendaJS
7091716d35c70442897ac47841352865018661fb
[ "MIT" ]
null
null
null
Helper.py
RodiiHernandezz/ZendaJS
7091716d35c70442897ac47841352865018661fb
[ "MIT" ]
null
null
null
Helper.py
RodiiHernandezz/ZendaJS
7091716d35c70442897ac47841352865018661fb
[ "MIT" ]
null
null
null
# *** # * Copyright (C) Rodolfo Herrera Hernandez. All rights reserved. # * Licensed under the MIT license. See LICENSE file in the project root # * for full license information. # * # * =+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ # * # * For related information - https://github.com/codewithrodi/ZendaJS/ # * # * =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- # ****/ from os import system from time import sleep import sys, platform # Just tested in Linux Mint kSupportedOperativeSystems = ['Darwin', 'Linux'] kOperativeSystem = platform.system() kRequiredPackages = { 'Build': { 'Linux': [ 'sudo apt-get install make', 'sudo apt-get install python3.8-dev', 'sudo apt-get install g++', 'sudo apt-get install python3' 'sudo apt-get install gtk+-3.0', 'sudo apt-get install webkit2gtk-4.0' ], 'Darwin': [ 'brew install make', 'brew install gcc', 'brew install python' ] }, 'Dependencies': { 'Linux': [ 'sudo apt-get install python3-pip', 'pip install python3-tk' 'pip install python3.7-tk' ], 'Darwin': [ 'brew install python-tk' ] } } def FinishScript() -> None: print('\n\n * Remember drink water <3\n\n') def ClearScreen() -> None: if kOperativeSystem == 'Windows': system('cls') else: system('clear') def ContinueOrExit() -> None: ContinueOrExit = input('\n * Do you want continue[Y/n] > ') if ContinueOrExit.lower() != 'y': FinishScript() def InstallPackages(PackageList = 'Dependencies') -> None: kPackageList = kRequiredPackages[PackageList][kOperativeSystem] for kCommand in kPackageList: print(f' * Installing <{kCommand}>\n') system(kCommand) ClearScreen() def SupportedOperativeSystemOrExit() -> None: if not kOperativeSystem in kSupportedOperativeSystems: print(f' * Error, not supported OS<{kOperativeSystem}>.') FinishScript() else: print(f'\n > Compatible <{kOperativeSystem}>') def InstallationSuccess() -> None: print('''\ * Installation completed - Remember to follow the instructions you have in - the Github repository, because you have to - execute a series of commands so that you can - install Zenda correctly on your system - along with its required packages. * If you have mistakes... - Mail => contact@codewithrodi.com - Website => https://codewithrodi.com/ - Repository => https://github.com/codewithrodi/ZendaJS/ - If you are installing Zenda remember to correctly follow the - instructions indicated in the Github repository. > Remember drink water :3.''') def DisplayPackagesToInstall(PackageList = 'Dependencies') -> None: print('\n * Packages\n') for kPackage in kRequiredPackages[PackageList][kOperativeSystem]: print(f' -> {kPackage}') print('\n > Installing packages in the next 7 seconds...') sleep(7) ClearScreen() try: kScriptCallArguments = sys.argv ClearScreen() if '--runtime.dependencies' in kScriptCallArguments: print('''\ * ZendaJS -> Install - Welcome to the installation of Zenda in your machine, next the - necessary packages will be installed so that Zenda works - correctly in your computer. * Attention - There are processes that you must execute yourself from the - console, we cannot do everything from the programming - language, in the same way if you do not carry out these - steps, they are in the README.md of Github so that you - can execute them and finish the installation of Zenda. * Now what? - Then you must decide if you want to install Zenda on - your computer or not, for this you must enter (y) or (Y) - in case you do not want to install and want to finish the - installer use (n) or (N) or any other character.''') ContinueOrExit() ClearScreen() print('''\ * Perfect - Then the program will check the operating - system, if it is compatible you can - continue with the installation.\n''') SupportedOperativeSystemOrExit() DisplayPackagesToInstall('Dependencies') InstallPackages('Dependencies') InstallationSuccess() elif '--build.dependencies' in kScriptCallArguments: print('''\ * Zenda -> Installer packages required to build the software. > Warning: This is a beta version not fully tested. -> What will happen next? - Next, the necessary packages will be installed to - compile Zenda, depending on your operating - system, different packages will be installed, not all - operating systems are supported, therefore a check - will be made before so that if it is not - compatible the execution of the program will end. -> Why compile? - It is likely that if you want to alter the source - code of Zenda, you will need to compile, but you - will also need to compile in case you are on a - system whose kernel is different from Linux, ZendaJS - comes with a ready executable, which you can integrate - into your operating system from Easy way using the - commands that you find in Github, but it is likely - that you will get errors if you are on MacOS, to - solve these errors you need to compile the program.''') ContinueOrExit() ClearScreen() print('''\ * Perfect - Then the program will check the operating - system, if it is compatible you can - continue with the installation.\n''') SupportedOperativeSystemOrExit() DisplayPackagesToInstall('Build') InstallPackages('Build') InstallationSuccess() else: print('''\ * Error running Helper script - To use the helper you need to specify a command which will execute - a series of actions for you, for example if you want to install - the dependencies that Zenda needs to be able to execute all its - functionalities without problems you should write the following - in your command line "python3 Helper.py --runtime.deps", as you - as you will see the command you are indicating is" --runtime.deps" - which is captured in the script taking the arguments with which - you have called the Helper, through that you decide what - to do and what not to do. * Commands => --runtime.dependencies - It installs the necessary dependencies to run a Zenda script - without problems, it may or may not be necessary but it is - recommended that it be installed to avoid future problems at runtime. => --build.dependencies - Install all the necessary dependencies to be able to build the source - code of Zenda and thus build a new executable, this can be useful - if you want to implement new functionalities to the technology, either - to contribute or for personal profit, you can also make use of this - command if You have problems when executing the executable and you - have to create a new one according to your operating system, this - could happen in MacOS and derivatives.''') except Exception as Error: print(f'''\ * An error occurred when the Helper was running :(. > {Error}''') except KeyboardInterrupt: ClearScreen(), FinishScript()
31.716667
102
0.638334
24b95b815f5908825ef2e07f686e17a674822dfb
912
py
Python
flask-new/main.py
JanakiRaman-2002/owaspLegacyPage
a940a353745317ac2887b65e7b7c397672161f9f
[ "Apache-2.0" ]
null
null
null
flask-new/main.py
JanakiRaman-2002/owaspLegacyPage
a940a353745317ac2887b65e7b7c397672161f9f
[ "Apache-2.0" ]
null
null
null
flask-new/main.py
JanakiRaman-2002/owaspLegacyPage
a940a353745317ac2887b65e7b7c397672161f9f
[ "Apache-2.0" ]
null
null
null
from flask import Flask,redirect,url_for,render_template import json app = Flask(__name__) @app.route("/") def home(): return render_template("parallax.html", context=len(data_dict)) data_JSON = """ [ { "name": "Bonda", "post":"secure", "link":"www.google.com" }, { "name": "Bunda", "post":"secure", "link":"www.google.com" }, { "name": "ponda", "post":"secure", "link":"www.google.com" }, { "name": "konda", "post":"secure", "link":"www.google.com" }, { "name": "Banda", "post":"secure", "link":"www.google.com" }, { "name": "londa", "post":"secure", "link":"www.google.com" } ] """ # Convert JSON string to dictionary data_dict = json.loads(data_JSON) print(data_dict[1]['name']) if __name__ == "__main__": app.run()
16
68
0.505482
c18f0810be88cb55b0b7a3218bbd98acda2fb189
12,655
py
Python
tests/testcases/test_data_collection.py
jaelgu/towhee
34c79cf50831dc271ae0ab02f319f9e355c2d0bf
[ "Apache-2.0" ]
null
null
null
tests/testcases/test_data_collection.py
jaelgu/towhee
34c79cf50831dc271ae0ab02f319f9e355c2d0bf
[ "Apache-2.0" ]
null
null
null
tests/testcases/test_data_collection.py
jaelgu/towhee
34c79cf50831dc271ae0ab02f319f9e355c2d0bf
[ "Apache-2.0" ]
null
null
null
# coding : UTF-8 import sys sys.path.append("../../tests") import towhee import time import threading import numpy as np import random import operator from towhee import pipeline from common import common_func as cf from towhee.functional import DataCollection class TestDataCollectionAPIsInvalid: """ Test case of invalid data collection interface """ def test_data_collection_API_no_parameter(self, API_name): """ target: test data collection APIs for invalid scenario method: call APIs with no parameters expected: raise exception """ API = eval("DataCollection.%s" % API_name) try: dc = API() except Exception as e: assert "missing" in str(e) return True def test_data_collection_API_not_supported_type(self, API_name): """ target: test data collection APIs for invalid scenario method: call APIs with not supported data types expected: raise exception """ if API_name in ["filter", "batch", "rolling", "pmap", "map", "mmap"]: return True not_support_datas = ["string", {1, "s", 2, 3}] API = eval("DataCollection.%s" % API_name) for not_support_data in not_support_datas: try: dc = API(not_support_data) except Exception as e: assert "no attribute" in str(e) return True class TestDataCollectionAPIsValid: """ Test case of invalid data collection interface """ def test_data_collection_map_lambda(self): """ target: test filter() API for DataCollection method: create a data collection and map data with lambda expected: return map successfully """ size = 5 dc = DataCollection.range(size) dc = dc.map(lambda x: x+1) result = dc.to_list() assert len(result) == size return True def test_data_collection_map_inter(self): """ target: test map() API for DataCollection method: create an iter data collection and map it expected: return map successfully """ size = 5 data = iter(range(size)) dc = towhee.dc(data) dc = dc.map(str) result = dc.to_list() assert len(result) == size return True def test_data_collection_map_empty(self): """ target: test map() API for DataCollection method: create an empty data collection and map it expected: return map successfully """ data = [] dc =towhee.dc(data) dc = dc.map(str) result = dc.to_list() assert result == data return True def test_data_collection_map_large_size(self): """ target: test map() API for DataCollection method: create a large size data collection and map it expected: return map successfully """ data = 10000000 dc = DataCollection.range(data) dc = dc.map(str) result = dc.to_list() assert len(result) == data return True def test_data_collection_filter_lambda(self): """ target: test filter() API for DataCollection method: create a data collection and filter data with lambda expected: return filter successfully """ size = 5 dc = DataCollection.range(size) dc = dc.filter(lambda x: x+1) result = dc.to_list() assert len(result) == size return True def test_data_collection_filter_inter(self): """ target: test filter() API for DataCollection method: create an iter data collection and filter it expected: return filter successfully """ size = 5 data = iter(range(size)) dc = towhee.dc(data) dc = dc.filter(str) result = dc.to_list() assert len(result) == size return True def test_data_collection_filter_empty(self): """ target: test filter() API for DataCollection method: create an empty data collection and filter it expected: return filter successfully """ data = [] dc = towhee.dc(data) dc = dc.filter(str) result = dc.to_list() assert result == data return True def test_data_collection_filter_large_size(self): """ target: test filter() API for DataCollection method: create a large size data collection and filter it expected: return filter successfully """ data = 10000000 dc = DataCollection.range(data) dc = dc.filter(str) result = dc.to_list() assert len(result) == data return True def test_data_collection_zip_lambda(self): """ target: test zip() API for DataCollection method: create a data collection and zip with lambda expected: return zip successfully """ size = 5 dc1 = DataCollection.range(size) dc2 = dc1.map(lambda x: x+1) dc3 = dc1.zip(dc2) result = dc3.to_list() assert len(result) == size return True def test_data_collection_zip_inter(self): """ target: test zip() API for DataCollection method: create an iter data collection and zip it expected: return zip successfully """ size = 7 data = iter(range(size)) dc1 = towhee.dc(data) dc2 = dc1.map(str) dc3 = dc1.zip(dc2) result = dc3.to_list() assert len(result) == int(size/2) return True def test_data_collection_zip_empty(self): """ target: test zip() API for DataCollection method: create an empty data collection and zip it expected: return zip successfully """ data = [] dc1 = towhee.dc(data) size = 1 dc2 = DataCollection.range(size) dc3 = dc1.zip(dc2) result = dc3.to_list() assert result == data return True def test_data_collection_zip_large_size(self): """ target: test zip() API for DataCollection method: create a large size data collection and zip it expected: return zip successfully """ data = 10000000 dc1 = DataCollection.range(data) dc2 = dc1.filter(str) dc3 = dc1.zip(dc2) result = dc3.to_list() assert len(result) == data return True def test_data_collection_batch_data(self): """ target: test batch() API for DataCollection method: create a data collection and batch it expected: return batch successfully """ data = 10 dc = DataCollection.range(data) size = 3 result = [list(batch) for batch in dc.batch(size, drop_tail=True)] assert len(result) == int(data/size) return True def test_data_collection_batch_inter(self): """ target: test batch() API for DataCollection method: create an iter data collection and batch it expected: return batch successfully """ data_size = 6 data = iter(range(data_size)) dc = towhee.dc(data) size = 3 result = [list(batch) for batch in dc.batch(size, drop_tail=True)] assert len(result) == int(data_size/size) return True def test_data_collection_batch_large_size(self): """ target: test batch() API for DataCollection method: create a large size data collection and batch with large size expected: return batch successfully """ data = 10000000 dc = DataCollection.range(data) size = 1000000 result = [list(batch) for batch in dc.batch(size, drop_tail=True)] assert len(result) == int(data/size) return True def test_data_collection_batch_size_empty(self): """ target: test batch() API for DataCollection method: create a data collection and batch size is empty expected: return batch successfully """ data = 5 dc = DataCollection.range(data) size = [] result = [list(batch) for batch in dc.batch(size)] assert len(result) == 1 return True def test_data_collection_rolling_drop_head(self): """ target: test rolling() API for DataCollection method: create a data collection and rolling it with drop_head is False expected: return rolling successfully """ data = 5 dc = DataCollection.range(data) size = 3 result = [list(batch) for batch in dc.rolling(size, drop_head=False)] assert len(result) == data return True def test_data_collection_rolling_drop_tail(self): """ target: test rolling() API for DataCollection method: create a data collection and rolling it with drop_tail is False expected: return rolling successfully """ data = 10 dc = DataCollection.range(data) size = 3 result = [list(batch) for batch in dc.rolling(size, drop_tail=False)] assert len(result) == data return True def test_data_collection_rolling_large_size(self): """ target: test rolling() API for DataCollection method: create a large size data collection and rolling it with large size expected: return rolling successfully """ data = 100000 dc = DataCollection.range(data) size = 1000 result = [list(batch) for batch in dc.rolling(size, drop_tail=False)] assert len(result) == data return True def test_data_collection_rolling_size_empty(self): """ target: test rolling() API for DataCollection method: create a data collection and rolling size is empty expected: return rolling successfully """ data = 10 dc = DataCollection.range(data) size = [] result = [list(batch) for batch in dc.rolling(size)] assert len(result) == 0 return True def test_data_collection_rolling_inter(self): """ target: test rolling() API for DataCollection method: create an iter data collection and rolling it expected: return rolling successfully """ data_size = 6 data = iter(range(data_size)) dc = towhee.dc(data) size = 3 result = [list(batch) for batch in dc.rolling(size, drop_tail=False)] assert len(result) == data_size return True def test_data_collection_flatten(self): """ target: test flatten() API for DataCollection method: create a data collection and flatten it expected: return flatten successfully """ data = 10 dc = DataCollection.range(data) size = 3 res = dc.batch(size) result = res.flatten().to_list() assert len(result) == data return True def test_data_collection_flatten_large_size(self): """ target: test flatten() API for DataCollection method: create a data collection and flatten it with large size expected: return flatten successfully """ data = 10000000 dc = DataCollection.range(data) size = 1000000 res = dc.batch(size) result = res.flatten().to_list() assert len(result) == data return True def test_data_collection_flatten_size_empty(self): """ target: test flatten() API for DataCollection method: create a data collection and flatten it with empty size expected: return flatten successfully """ data = 10 dc = DataCollection.range(data) size = [] res = dc.batch(size) result = res.flatten().to_list() assert len(result) == data return True def test_data_collection_flatten_inter(self): """ target: test flatten() API for DataCollection method: create an iter data collection and flatten it expected: return flatten successfully """ data_size = 6 data = iter(range(data_size)) dc = towhee.dc(data) size = 3 res = dc.batch(size) result = res.flatten().to_list() assert len(result) == data_size return True
30.347722
82
0.59115
d1b1f6b684725808d36921aa5d4204fd683ee894
276
py
Python
tests/test_repr.py
eikevons/pandas-paddles
98e519ce847d015b76bc3401d534b8b752dd583d
[ "MIT" ]
4
2022-02-24T09:35:37.000Z
2022-03-19T19:50:47.000Z
tests/test_repr.py
eikevons/pandas-paddles
98e519ce847d015b76bc3401d534b8b752dd583d
[ "MIT" ]
null
null
null
tests/test_repr.py
eikevons/pandas-paddles
98e519ce847d015b76bc3401d534b8b752dd583d
[ "MIT" ]
null
null
null
from pandas_paddles.df_accessor import AccessorBase from pandas_paddles import DF, S def test_DF_repr(): r = repr(DF["key"].attrib.method(arg=1)) assert isinstance(r, str) def test_S_repr(): r = repr(S["key"].attrib.method(arg=1)) assert isinstance(r, str)
23
51
0.702899
8617fa92671d4e047cd7cd2f3cdce81bef6571bb
153
py
Python
welltrajconvert/__init__.py
bpamos/welltrajconvert
86ee684fdb1968218ac17e4b260df80c6c88f475
[ "MIT" ]
7
2020-09-24T09:33:53.000Z
2022-01-04T14:47:22.000Z
welltrajconvert/__init__.py
bpamos/directional-survey-converter
86ee684fdb1968218ac17e4b260df80c6c88f475
[ "MIT" ]
4
2020-06-19T13:54:11.000Z
2020-08-13T18:11:38.000Z
welltrajconvert/__init__.py
bpamos/directional-survey-converter
86ee684fdb1968218ac17e4b260df80c6c88f475
[ "MIT" ]
3
2020-12-07T19:53:08.000Z
2022-03-15T08:49:29.000Z
from .wellbore_trajectory import * from .deviation_survey import * from .data_source import * from .data_object import * from .calculable_object import *
30.6
34
0.810458
f97bb1bb64ff1b5082ffe4a81a1d7e07ceeae7f7
6,824
py
Python
bayenv2_SNPSFILE_breaker/bayenv2_SNPSFILE_breaker.py
tyrmi/PGU
bd04b62599e13124426f0830fe53e4324aca8439
[ "BSD-3-Clause" ]
3
2017-07-17T07:45:37.000Z
2019-04-12T21:03:20.000Z
bayenv2_SNPSFILE_breaker/bayenv2_SNPSFILE_breaker.py
tyrmi/PGU
bd04b62599e13124426f0830fe53e4324aca8439
[ "BSD-3-Clause" ]
null
null
null
bayenv2_SNPSFILE_breaker/bayenv2_SNPSFILE_breaker.py
tyrmi/PGU
bd04b62599e13124426f0830fe53e4324aca8439
[ "BSD-3-Clause" ]
null
null
null
''' Copyright © 2017 Jaakko Tyrmi. All Rights Reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import optparse import os import shutil import sys VERSION = '17.01.30' NAME = 'bayenv2_SNPSFILE_breaker' descr = """ This program breaks a bayenv2 SNPSFILE into separate SNPFILEs containing single SNPs for parallelization purposes. This operation could be achieved with unix split command but using this script (optionally) renames the output SNPSFILEs based on vcf file from which the variants originated. Vcf to SNPSFILE conversion can be done with PGDSpider. There is one caveat in using the vcf input: No sites should be omitted in the vcf to SNPSFILE conversion and PGD spider omits monomorphic sites. VCF file should therefore be filtered before conversion so sites will be omitted in the conversion. Output files will have file extension ".SNPFILE". Bayenv2 requires that all input files should be in the same directory with bayenv2 executable, so bayenv2 executable, ENVIRONFILE file and MATRIXFILE will be copied to each SNPFILE output directory to allow parallelized run. The files will be renamed to MATRIXFILE.txt and ENVIRONFILE.txt for easy parallelization with PipelineMaster1000. Refer to bayenv2 manual on how to generate ENVIRONFILE and MATRIXFILE. """ print '\nRunning {0} v.{1}'.format(NAME, VERSION) parser = optparse.OptionParser(description=descr) parser.add_option('-i', '--input_file', help='path to a SNPSFILE') parser.add_option('-o', '--output_dir', help='output directory') parser.add_option('-v', '--vcf_file', help='original vcf file of which ' 'SNPSFILE was made of (optional)') parser.add_option('-b', '--bayenv2_executable', help='path to bayenv2 executable file') parser.add_option('-e', '--environfile', help='path to environfile') parser.add_option('-m', '--matrixfile', help='path to matrixfile') args = parser.parse_args()[0] def bayenv2_SNPSFILE_breaker(in_file_path, out_dir_path, vcf_file_path, bayenv2_executable, environfile, matrixfile): print 'Using parameters:' print 'SNPSFILE', in_file_path print 'Output directory', out_dir_path print 'Bayenv2 executable', bayenv2_executable print 'Vcf file', vcf_file_path print 'ENVIRONFILE', environfile print 'MATRIXFILE', matrixfile if vcf_file_path is not None: print 'Reading vcf file...' in_handle = open(vcf_file_path) i = 0 vcf_positions = [] for line in in_handle: i += 1 line = line.strip() if not line: continue if line.startswith('#'): continue line = line.split('\t') if len(line) < 9: print 'ERROR! Vcf file format should contain at least 9 columns!' print 'Line {0} had {1} columns!'.format(i, len(line)) sys.exit(0) vcf_positions.append('{0}_{1}'.format(line[0], line[1])) in_handle.close() print 'Done. Found {0} sites.'.format(len(vcf_positions)) print '\nBreaking SNPSFILE into parts...' in_handle = open(in_file_path) i = 0 variants = [] for line in in_handle: if not line.strip(): continue i += 1 variants.append(line) if i%2 == 0: if vcf_file_path is not None: current_out_dir_path = os.path.join(out_dir_path, 'bayenv2_input_{0}.SNPFILEDIR'.format(vcf_positions[(i/2)-1])) try: os.mkdir(current_out_dir_path) except OSError: # Directory exists already pass output_path = os.path.join(current_out_dir_path, 'bayenv2_input_{0}.SNPFILE'.format(vcf_positions[(i/2)-1])) try: out_handle = open(output_path, 'w') except IndexError: print 'ERROR! The vcf file has fewer variants ({0}) than the input SNPFILE ({1})!'.format(len(vcf_positions), i/2) sys.exit(0) else: current_out_dir_path = os.path.join(out_dir_path, 'bayenv2_input_{0}.SNPFILEDIR'.format(vcf_positions[(i / 2) - 1])) try: os.mkdir(current_out_dir_path) except OSError: # Directory exists already pass output_path = os.path.join(current_out_dir_path, 'bayenv2_input_{0}.SNPSFILE'.format(str([i/2]).rjust(10, '0'))) out_handle = open(output_path) out_handle.write(''.join(variants)) out_handle.close() shutil.copy(bayenv2_executable, current_out_dir_path) shutil.copy(environfile, os.path.join(current_out_dir_path, 'ENVIRONFILE.txt')) shutil.copy(matrixfile, os.path.join(current_out_dir_path, 'MATRIXFILE.txt')) variants = [] if vcf_file_path is not None: if i/2 > len(vcf_positions): print 'ERROR! The vcf file has more variants ({0}) than the input SNPSFILE ({1})!'.format(len(vcf_positions), i/2) print 'The names of output files are wrong!' sys.exit(0) print 'Done. Created {0} output SNPFILEs!'.format(i/2) print '\nProgram run successful!' bayenv2_SNPSFILE_breaker(args.input_file, args.output_dir, args.vcf_file, args.bayenv2_executable, args.environfile, args.matrixfile)
47.388889
135
0.66823
5fd3e4174012eb2974141f4e43139ea55efa8649
1,408
py
Python
common/common.py
trinity-project/trinity-eth
a4e4fff1d1dbc0b422d7acc21ed95a308cf51967
[ "MIT" ]
15
2018-05-11T06:09:47.000Z
2020-07-30T05:59:41.000Z
common/common.py
trinity-project/trinity-eth
a4e4fff1d1dbc0b422d7acc21ed95a308cf51967
[ "MIT" ]
null
null
null
common/common.py
trinity-project/trinity-eth
a4e4fff1d1dbc0b422d7acc21ed95a308cf51967
[ "MIT" ]
6
2018-08-06T19:00:35.000Z
2020-12-03T02:13:45.000Z
# --*-- coding : utf-8 --*-- """Author: Trinity Core Team MIT License Copyright (c) 2018 Trinity Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" import re from common.log import LOG def uri_parser(uri): uri_list = re.split(r'[@:]', uri) # to check the length if 3 == len(uri_list): return uri_list[0].strip(), uri_list[1].strip(), uri_list[2].strip() raise ValueError('Invalid uri<{}>'.format(uri))
38.054054
78
0.756392
bc91fc537d93333b2ea98f567cd7b9a48d1a2a2a
2,243
py
Python
aoi-demo-labeling/coco_train_test_split.py
goheesheng/AOI_FHG
e1ae4a11030aa8f9820d55c1c1fe16ca8a4fb3f3
[ "MIT" ]
null
null
null
aoi-demo-labeling/coco_train_test_split.py
goheesheng/AOI_FHG
e1ae4a11030aa8f9820d55c1c1fe16ca8a4fb3f3
[ "MIT" ]
null
null
null
aoi-demo-labeling/coco_train_test_split.py
goheesheng/AOI_FHG
e1ae4a11030aa8f9820d55c1c1fe16ca8a4fb3f3
[ "MIT" ]
null
null
null
from pathlib import Path import argparse import json import copy import random import math def main(): parser = argparse.ArgumentParser() parser.add_argument("--input_path", default="./data/combined_instances_coco.json", help="Path to a COCO annotations which shall be split.") parser.add_argument("--test_frac", default=0.33, type=float, help="Fraction of data which will be used for the test set") args = parser.parse_args() input_path = Path(args.input_path) test_frac = args.test_frac with open(input_path, 'r') as f: input_data = json.load(f) # chip ids are determined by the relative image paths compared to root img_chip_ids = [ str(Path(img["file_name"]).parent) for img in input_data["images"]] img_chip_ids = list(set(img_chip_ids)) # split chip ids in train/test random.shuffle(img_chip_ids) n_test = math.ceil(test_frac * len(img_chip_ids)) test_ids = img_chip_ids[:n_test] train_ids = img_chip_ids[n_test:] train_data = select_data_by_subfolder_name(input_data, train_ids) test_data = select_data_by_subfolder_name(input_data, test_ids) update_annotation_ids(train_data["annotations"]) update_annotation_ids(test_data["annotations"]) output_train_path = input_path.parent / "train_instances_coco.json" output_test_path = input_path.parent / "test_instances_coco.json" with open(output_train_path, 'w') as out: json.dump(train_data, out, indent=4, sort_keys=True) with open(output_test_path, 'w') as out: json.dump(test_data, out, indent=4, sort_keys=True) print("Done") def select_data_by_subfolder_name(data, ids): selected_data = data.copy() selected_data["images"] = [img for img in data["images"] if str(Path(img["file_name"]).parent) in ids] selected_img_ids = [img["id"] for img in selected_data["images"]] selected_data["annotations"] = [ ann for ann in data["annotations"] if ann["image_id"] in selected_img_ids] return selected_data def update_annotation_ids(anns): for i, ann in enumerate(anns): ann["id"] = i+1 if __name__ == "__main__": main()
30.310811
86
0.682568
fa6e5e23d9fce6ea05bd8e28032644b9746eae03
1,528
py
Python
examples/desaminases/get_variants_in_UTR.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
10
2015-04-28T14:15:04.000Z
2021-03-15T00:07:38.000Z
examples/desaminases/get_variants_in_UTR.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
null
null
null
examples/desaminases/get_variants_in_UTR.py
mahajrod/MAVR
4db74dff7376a2ffe4426db720b241de9198f329
[ "MIT" ]
6
2017-03-16T22:38:41.000Z
2021-08-11T00:22:52.000Z
#!/usr/bin/env python __author__ = 'mahajrod' import os from Parsers.VCF import CollectionVCF def variants_in_UTR(collection, feature_type="5'_UTR"): UTR_record_list = [] for variant in collection: if feature_type in variant.info_dict["Ftype"]: UTR_record_list.append(variant) return CollectionVCF(from_file=False, record_list=UTR_record_list, metadata=collection.metadata, header=collection.header) if __name__ == "__main__": workdir = "/media/mahajrod/d9e6e5ee-1bf7-4dba-934e-3f898d9611c8/Data/LAN2xx/combined_vcf/clusters/all/pre_UTR_strandness/" sample_set_names_list = ["PmCDA1_3d", #"HAP", "PmCDA1_sub1_3d", "PmCDA1_6d", #"HAP_sub1", "PmCDA1_sub1_6d", #"A1_3d", #"A1_6d", #"A3G_3d", #"AID_3d", #"AID_6d" ] os.chdir(workdir) feature_type_list = ["5'_UTR", "CDS", "3'_UTR"] for sample_set in sample_set_names_list: vcf_file = "%s_good.vcf" % sample_set variants = CollectionVCF(from_file=True, vcf_file=vcf_file) for feature_type in feature_type_list: pre_UTR_variants = variants_in_UTR(variants, feature_type=feature_type) pre_UTR_variants.write("%s_%s_variants.vcf" % (sample_set, feature_type))
38.2
126
0.567408
707d64360b9293f9df614c459b8833113b474d6f
699
py
Python
pyasdf/tags/unit/tests/test_unit.py
embray/pyasdf
3e0a314ec01a88bedfb2ce8def83319362adc5a2
[ "BSD-3-Clause" ]
null
null
null
pyasdf/tags/unit/tests/test_unit.py
embray/pyasdf
3e0a314ec01a88bedfb2ce8def83319362adc5a2
[ "BSD-3-Clause" ]
null
null
null
pyasdf/tags/unit/tests/test_unit.py
embray/pyasdf
3e0a314ec01a88bedfb2ce8def83319362adc5a2
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals, print_function from astropy import units as u from .... import asdf from ....tests import helpers # TODO: Implement defunit def test_invalid_unit(): yaml = """ unit: !unit/unit foo """ buff = helpers.yaml_to_asdf(yaml) ff = asdf.AsdfFile.read(buff) assert isinstance(ff.tree['unit'], u.UnrecognizedUnit) def test_unit(): yaml = """ unit: !unit/unit "2.1798721 10-18kg m2 s-2" """ buff = helpers.yaml_to_asdf(yaml) ff = asdf.AsdfFile.read(buff) assert ff.tree['unit'].is_equivalent(u.Ry)
19.416667
82
0.67382
7da4cbc6cae4c8430e2008c7459825a1ff245a6a
16,222
py
Python
stage2/server/UCSServer.py
vallard/KUBaM
abdc60830a810243d198a09e8897366d518dcf33
[ "Apache-2.0" ]
null
null
null
stage2/server/UCSServer.py
vallard/KUBaM
abdc60830a810243d198a09e8897366d518dcf33
[ "Apache-2.0" ]
null
null
null
stage2/server/UCSServer.py
vallard/KUBaM
abdc60830a810243d198a09e8897366d518dcf33
[ "Apache-2.0" ]
null
null
null
from ucsmsdk.ucsexception import UcsException import re, sys # given an array and a string of numbers, make sure they are all in the array: # def check_values(array, csv): indexes = csv.split(',') for i in indexes: try: i = int(i) - 1 except: print "bad value: " + i return False if i < 0 or i > len(array) - 1: return False return True # get the available servers to put in the pool. def select_kube_servers(handle): from ucsmsdk.mometa.compute.ComputeRackUnit import ComputeRackUnit from ucsmsdk.mometa.fabric.FabricComputeSlotEp import FabricComputeSlotEp print "Listing Available UCS Servers" filter_string = '(presence, "equipped")' # get blades blades = handle.query_classid("fabricComputeSlotEp", filter_string) # get all connected rack mount servers. servers = handle.query_classid("computeRackUnit") m = blades + servers while True: for i, s in enumerate(m): if type(s) is FabricComputeSlotEp: print "[%d]: Blade %s/%s type %s" % (i+1, s.chassis_id, s.rn, s.model) if type(s) is ComputeRackUnit: print "[%d]: Rack %s type %s" % (i+1, s.rn, s.model) vals = raw_input("(E.g.: 2,4,8): ") if check_values(m, vals) == True: k8servers = [m[int(x)-1] for x in vals.split(',')] print "Install Kubernetes on the following servers:" for s in k8servers: if type(s) is FabricComputeSlotEp: print "\tBlade %s/%s type %s" % (s.chassis_id, s.rn, s.model) if type(s) is ComputeRackUnit: print "\tServer %s type %s" % (s.rn, s.model) yn = raw_input("Is this correct? [N/y]: ") if yn == "y" or yn == "Y": return k8servers def createKubeBootPolicy(handle): print "Creating Kube Boot Policy" from ucsmsdk.mometa.lsboot.LsbootPolicy import LsbootPolicy from ucsmsdk.mometa.lsboot.LsbootVirtualMedia import LsbootVirtualMedia from ucsmsdk.mometa.lsboot.LsbootStorage import LsbootStorage from ucsmsdk.mometa.lsboot.LsbootLocalStorage import LsbootLocalStorage from ucsmsdk.mometa.lsboot.LsbootDefaultLocalImage import LsbootDefaultLocalImage mo = LsbootPolicy(parent_mo_or_dn="org-root", name="kube", descr="Kuberenetes", reboot_on_update="yes", policy_owner="local", enforce_vnic_name="yes", boot_mode="legacy") mo_1 = LsbootVirtualMedia(parent_mo_or_dn=mo, access="read-only-remote-cimc", lun_id="0", order="2") mo_2 = LsbootStorage(parent_mo_or_dn=mo, order="1") mo_2_1 = LsbootLocalStorage(parent_mo_or_dn=mo_2, ) mo_2_1_1 = LsbootDefaultLocalImage(parent_mo_or_dn=mo_2_1, order="1") handle.add_mo(mo, modify_present=True) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def deleteKubeBootPolicy(handle): mo = handle.query_dn("org-root/boot-policy-kube") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def createKubeLocalDiskPolicy(handle): print "Creating Kube Local Disk Policy" from ucsmsdk.mometa.storage.StorageLocalDiskConfigPolicy import StorageLocalDiskConfigPolicy mo = StorageLocalDiskConfigPolicy(parent_mo_or_dn="org-root", protect_config="no", name="kube", descr="Kubernetes", flex_flash_raid_reporting_state="disable", flex_flash_state="disable", policy_owner="local", mode="raid-mirrored") handle.add_mo(mo) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def deleteKubeLocalDiskPolicy(handle): print "Deleting Kube Local Disk Policy" mo = handle.query_dn("org-root/local-disk-config-kube") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def createKubeUUIDPools(handle): print "Creating Kube UUID Pools" from ucsmsdk.mometa.uuidpool.UuidpoolPool import UuidpoolPool from ucsmsdk.mometa.uuidpool.UuidpoolBlock import UuidpoolBlock mo = UuidpoolPool(parent_mo_or_dn="org-root", policy_owner="local", prefix="derived", descr="Kubernetes Pool", assignment_order="default", name="kube") mo_1 = UuidpoolBlock(parent_mo_or_dn=mo, to="C888-888888888100", r_from="C888-888888888001") handle.add_mo(mo) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def deleteKubeUUIDPools(handle): print "Deleting Kube UUID Pool" mo = handle.query_dn("org-root/uuid-pool-kube") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def createKubeServerPool(handle): print "Creating Kubernetes Compute Pool" from ucsmsdk.mometa.compute.ComputePool import ComputePool mo = ComputePool(parent_mo_or_dn="org-root", policy_owner="local", name="Kubernetes", descr="") handle.add_mo(mo) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def addServersToKubePool(handle, servers): print "Adding servers to Kubernetes Pool" from ucsmsdk.mometa.compute.ComputePool import ComputePool from ucsmsdk.mometa.compute.ComputePooledSlot import ComputePooledSlot from ucsmsdk.mometa.compute.ComputePooledRackUnit import ComputePooledRackUnit from ucsmsdk.mometa.compute.ComputeRackUnit import ComputeRackUnit from ucsmsdk.mometa.fabric.FabricComputeSlotEp import FabricComputeSlotEp mo = ComputePool(parent_mo_or_dn="org-root", policy_owner="local", name="Kubernetes", descr="") for s in servers: if type(s) is FabricComputeSlotEp: ComputePooledSlot(parent_mo_or_dn=mo, slot_id=re.sub("slot-","", s.slot_id), chassis_id=str(s.chassis_id)) if type(s) is ComputeRackUnit: ComputePooledRackUnit(parent_mo_or_dn=mo, id=re.sub("rack-unit-","", s.rn)) handle.add_mo(mo, True) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def deleteKubeServerPool(handle): print "Deleting Kubernetes Compute Pool" mo = handle.query_dn("org-root/compute-pool-Kubernetes") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def createServiceProfileTemplate(handle): print "Creating Kubernetes Service Profile Template" from ucsmsdk.mometa.ls.LsServer import LsServer from ucsmsdk.mometa.vnic.VnicConnDef import VnicConnDef from ucsmsdk.mometa.ls.LsRequirement import LsRequirement from ucsmsdk.mometa.lstorage.LstorageProfileBinding import LstorageProfileBinding mo = LsServer(parent_mo_or_dn="org-root", policy_owner="local", name="Kubernetes", descr="Kubernetes Service Profile", type="updating-template", # Boot using Kubernetes Boot policy: local Disk, then Remote DVD boot_policy_name="kube", # Default Maintenance Policy maint_policy_name="default", # scrub policy scrub_policy_name="kube", # UUID Pool ident_pool_name="kube", # disks we use. #local_disk_policy_name="kube", #storage_profile_name="kube", # virtual media policy vmedia_policy_name="kube" ) # create vNIC Connection Policy VnicConnDef(parent_mo_or_dn=mo, lan_conn_policy_name="kube") # create server pool and add to template. LsRequirement(parent_mo_or_dn=mo, name="Kubernetes") # add storage profile. mo_1 = LstorageProfileBinding(parent_mo_or_dn=mo, storage_profile_name="kube") handle.add_mo(mo, True) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" except Exception: print Exception def deleteServiceProfileTemplate(handle): print "Deleting Kubernetes Service Profile Template" print "Deleting Kubernetes Compute Pool" mo = handle.query_dn("org-root/ls-Kubernetes") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def createServers(handle, servers): print "Creating Kubernetes Service Profiles" from ucsmsdk.ucsmethodfactory import ls_instantiate_n_named_template from ucsmsdk.ucsbasetype import DnSet, Dn for i, s in enumerate(servers): dn_set = DnSet() dn = Dn() sp_name = "kube0%d" % (i+1) dn.attr_set("value",sp_name) dn_set.child_add(dn) elem = ls_instantiate_n_named_template(cookie=handle.cookie, dn="org-root/ls-Kubernetes", in_error_on_existing="true", in_name_set=dn_set, in_target_org="org-root", in_hierarchical="false") try: mo_list = handle.process_xml_elem(elem) except UcsException as err: if err.error_code == "105": print "\t" + sp_name + " already exists." else: print err def deleteServers(handle): print "Deleting Kubernetes Nodes" filter_string = '(dn, "ls-kube[0-9]+", type="re")' kube = handle.query_classid("lsServer", filter_string) for k in kube: print "Deleting " + k.name handle.remove_mo(k) try: handle.commit() except AttributeError: print "\talready deleted" except UcsException as err: print "\t"+ k.name + ": " + err.error_descr def createKubeVirtualMedia(handle): print "Adding Virtual Media Policy" from urlparse import urlparse import os.path yn = False url = "" while yn == False: print "What is the URL for the Boot ISO image?" url = raw_input("(E.g.: http://192.168.2.2/kubam/centos7.2-boot.iso) : ") print "You entered: " + url yn = raw_input("Is this correct? [y/N]: ") if yn != "y": yn = False o = urlparse(url) paths = os.path.split(o.path) scheme = o.scheme # http, https if scheme == "": scheme = "http" filename = paths[-1] address = o.hostname path = "/".join(paths[:-1]) name = ".".join(paths[-1].split(".")[:-1]) from ucsmsdk.mometa.cimcvmedia.CimcvmediaMountConfigPolicy import CimcvmediaMountConfigPolicy from ucsmsdk.mometa.cimcvmedia.CimcvmediaConfigMountEntry import CimcvmediaConfigMountEntry mo = CimcvmediaMountConfigPolicy(name="kube", retry_on_mount_fail="yes", parent_mo_or_dn="org-root", policy_owner="local", descr="Kubernetes Boot Media") mo_1 = CimcvmediaConfigMountEntry(parent_mo_or_dn=mo, mapping_name=name, device_type="cdd", mount_protocol=scheme, remote_ip_address=address, image_name_variable="none", image_file_name=filename, image_path=path) mo_2 = CimcvmediaConfigMountEntry(parent_mo_or_dn=mo, mapping_name="kickstartImage", device_type="hdd", mount_protocol=scheme, remote_ip_address=address, image_name_variable="service-profile-name", image_path=path) handle.add_mo(mo, modify_present=True) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def deleteVirtualMedia(handle): print "Deleting Kubernetes Virtual Media Policy" mo = handle.query_dn("org-root/mnt-cfg-policy-kube") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def createScrubPolicy(handle): from ucsmsdk.mometa.compute.ComputeScrubPolicy import ComputeScrubPolicy mo = ComputeScrubPolicy(flex_flash_scrub="no", parent_mo_or_dn="org-root", name="kube", disk_scrub="yes", bios_settings_scrub="no", descr="Destroy data when SP is unassociated") handle.add_mo(mo, modify_present=True) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def deleteScrubPolicy(handle): print "Deleting Kubernetes Scrub Policy" mo = handle.query_dn("org-root/scrub-kube") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def deleteDiskGroupConfig(handle): print "Deleting Disk Group config" mo = handle.query_dn("org-root/disk-group-config-Kube_Boot") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def deleteStorageProfile(handle): print "Deleting Storage Profile" mo = handle.query_dn("org-root/profile-kube") try: handle.remove_mo(mo) handle.commit() except AttributeError: print "\talready deleted" def createDiskGroupConfig(handle): print "Adding Disk Group Config" from ucsmsdk.mometa.lstorage.LstorageDiskGroupConfigPolicy import LstorageDiskGroupConfigPolicy from ucsmsdk.mometa.lstorage.LstorageDiskGroupQualifier import LstorageDiskGroupQualifier from ucsmsdk.mometa.lstorage.LstorageVirtualDriveDef import LstorageVirtualDriveDef mo = LstorageDiskGroupConfigPolicy(parent_mo_or_dn="org-root", policy_owner="local", name="kube_boot", descr="Kubernetes Boot Disk", raid_level="mirror") mo_1 = LstorageDiskGroupQualifier(parent_mo_or_dn=mo, use_remaining_disks="no", num_ded_hot_spares="unspecified", drive_type="unspecified", num_drives="2", min_drive_size="unspecified", num_glob_hot_spares="unspecified") mo_2 = LstorageVirtualDriveDef(parent_mo_or_dn=mo, read_policy="platform-default", drive_cache="platform-default", strip_size="platform-default", io_policy="platform-default", write_cache_policy="platform-default", access_policy="platform-default") handle.add_mo(mo, modify_present=True) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def createStorageProfile(handle): from ucsmsdk.mometa.lstorage.LstorageProfile import LstorageProfile from ucsmsdk.mometa.lstorage.LstorageDasScsiLun import LstorageDasScsiLun mo = LstorageProfile(parent_mo_or_dn="org-root", policy_owner="local", name="kube", descr="Kubernetes Storage Profile") mo_1 = LstorageDasScsiLun(parent_mo_or_dn=mo, local_disk_policy_name="kube_boot", auto_deploy="auto-deploy", expand_to_avail="yes", lun_map_type="non-shared", size="1", fractional_size="0", admin_state="online", deferred_naming="no", order="not-applicable", name="KubeLUN") handle.add_mo(mo, modify_present=True) try: handle.commit() except UcsException as err: if err.error_code == "103": print "\talready exists" def createKubeServers(handle, org): createKubeBootPolicy(handle) #createKubeLocalDiskPolicy(handle) createDiskGroupConfig(handle) createStorageProfile(handle) createScrubPolicy(handle) createKubeUUIDPools(handle) createKubeServerPool(handle) createKubeVirtualMedia(handle) servers = select_kube_servers(handle) addServersToKubePool(handle, servers) createServiceProfileTemplate(handle) createServers(handle, servers) def deleteKubeServers(handle, org): deleteServers(handle) deleteServiceProfileTemplate(handle) deleteKubeServerPool(handle) deleteVirtualMedia(handle) deleteScrubPolicy(handle) deleteKubeBootPolicy(handle) deleteStorageProfile(handle) deleteDiskGroupConfig(handle) #deleteKubeLocalDiskPolicy(handle) deleteKubeUUIDPools(handle)
36.129176
234
0.669461
b26ed21e0d84dc6ef3708b85d67b17ab3fd8b40b
42,684
py
Python
tests/unittests/test_cgr.py
felix-walter/pydtnsim
89376021fecf1f114c76cde773d7a92ab9fcf464
[ "MIT" ]
8
2018-12-11T17:39:44.000Z
2021-05-07T10:24:03.000Z
tests/unittests/test_cgr.py
Elianelin/pydtnsim
916b0ebfa2b65b7a80af293dd4c39f862eadeae3
[ "MIT" ]
13
2019-01-14T14:08:15.000Z
2021-06-12T17:03:43.000Z
tests/unittests/test_cgr.py
Elianelin/pydtnsim
916b0ebfa2b65b7a80af293dd4c39f862eadeae3
[ "MIT" ]
4
2019-03-20T15:12:40.000Z
2022-02-22T06:16:24.000Z
import math import pytest from pydtnsim.routing import cgr_anchor from pydtnsim.routing import cgr_basic from pydtnsim.routing import scgr from pydtnsim.backend import QSim from pydtnsim.routing.cgr_basic import Route, Neighbor from pydtnsim import Contact, ContactPlan, ContactGraph, Packet from pydtnsim import ContactIdentifier from pydtnsim.monitors import MonitorNotifier testdata = [(cgr_basic), (cgr_anchor)] testdata_routing = [(cgr_basic), (cgr_anchor), (scgr)] class DummySimulator(): def __init__(self): self.env = QSim() self.notifier = MonitorNotifier(self.env) @pytest.mark.parametrize("mod", testdata) def test_load_route_list(mod): """Test function that tests the route-finding capabilities of the load_route_list function and tests the correctness. """ # First, create an contact plan that is then converted to the contact graph # representation and later processed by load_route_list # The following topology is tested in this test case: # +---+ # | 4 | # [20;30]+--+---+--+[70:80] # | | # +-+-+ +-+-+ # | 2 | | 3 | # +-+-+ +-+-+ # | | # [10;20]+--+---+--+[40:50] # | 1 | # +---+ contact_plan = ContactPlan(1000, 0) contact_plan.add_contact('node1', 'node2', 10, 20) contact_plan.add_contact('node1', 'node3', 40, 50) contact_plan.add_contact('node2', 'node4', 20, 30) contact_plan.add_contact('node3', 'node4', 70, 80) # Generate contact graph representation contact_graph = ContactGraph(contact_plan) # Now generate a route list for possible routes from node1 to node4 route_list_node14 = mod.load_route_list(contact_graph, 'node1', 'node4', 0) # Make sure that two routes were found assert len(route_list_node14) == 2 # Assert characteristics of the found routes route1 = route_list_node14[0] assert route1.transmission_plan == ([('node1', 'node2', 10, 20, 1000, 0), ('node2', 'node4', 20, 30, 1000, 0)]) assert route1.edt == 20 assert route1.capacity == 10000 assert route1.to_time == 20 route2 = route_list_node14[1] assert route2.transmission_plan == ([('node1', 'node3', 40, 50, 1000, 0), ('node3', 'node4', 70, 80, 1000, 0)]) assert route2.edt == 70 assert route2.capacity == 10000 assert route2.to_time == 50 @pytest.mark.parametrize("mod", testdata) def test_load_route_list_unavailable_route(mod): """Test function that tests that no route is found. """ # First, create an contact plan that is then converted to the contact graph # representation and later processed by load_route_list # The following topology is tested in this test case: # +---+ +---+ +---+ +---+ # | 1 +---------+ 2 +---------+ 3 +---------+ 4 | # +---+ 35:40 +---+ 20:40 +---+ 20:25 +---+ contact_plan = ContactPlan(1000, 0) contact_plan.add_contact('node1', 'node2', 35, 40) contact_plan.add_contact('node2', 'node3', 20, 40) contact_plan.add_contact('node3', 'node4', 20, 25) # Generate contact graph representation contact_graph = ContactGraph(contact_plan) # Now generate a route list for possible routes from node1 to node4 route_list_node14 = mod.load_route_list(contact_graph, 'node1', 'node4', 0) # Make sure that two routes were found assert len(route_list_node14) == 0 @pytest.mark.parametrize("mod", testdata) def test_load_route_list_no_route(mod): """Test function that tests the route-finding capabilities of the load_route_list function and tests that no route is found if contacts on route do not add up. """ # First, create an contact plan that is then converted to the contact graph # representation and later processed by load_route_list # The following topology is tested in this test case: # +---+ # | 5 | # [20;30]+--+---+--+[70:80] # | | # +-+-+ +-+-+ # | 3 | | 4 | # +-+-+ +-+-+ # | | # [10;20]+--+---+--+[40:50] # | 2 | # +-+-+ # | # |[50:60] # | # +-+-+ # | 1 | # +---+ contact_plan = ContactPlan(1000, 0) # Add contacts contact_plan.add_contact('node1', 'node2', 50, 60) contact_plan.add_contact('node2', 'node3', 10, 20) contact_plan.add_contact('node2', 'node4', 40, 50) contact_plan.add_contact('node3', 'node5', 20, 30) contact_plan.add_contact('node4', 'node5', 70, 80) # Generate contact graph representation contact_graph = ContactGraph(contact_plan) # Now generate a route list for possible routes from node1 to node4 route_list_node15 = mod.load_route_list(contact_graph, 'node1', 'node5', 0) # Make sure that two routes were found assert len(route_list_node15) == 0 @pytest.mark.parametrize("mod", testdata) def test_load_route_list_anchoring_first_contact(mod): """Test function that tests the route-finding capabilities, in particular the correct behaviour when the anchoring mechanism is involved and the limiting contact is the first contact of the route. """ # First, create an contact plan that is then converted to the contact graph # representation and later processed by load_route_list # The following topology is tested in this test case: # +---+ # | 5 | # [0:100]+--+---+--+[0:100] # | | # +-+-+ +-+-+ # | 3 | | 4 | # +-+-+ +-+-+ # | | # [0:100]+--+---+--+[0:100] # | 2 | # +-+-+ # | # |[30:70] # | # +-+-+ # | 1 | # +---+ contact_plan = ContactPlan(1000, 0) # Add contacts contact_plan.add_contact('node1', 'node2', 30, 70) contact_plan.add_contact('node2', 'node3', 0, 100) contact_plan.add_contact('node2', 'node4', 0, 100) contact_plan.add_contact('node3', 'node5', 0, 100) contact_plan.add_contact('node4', 'node5', 0, 100) # Generate contact graph representation contact_graph = ContactGraph(contact_plan) # Now generate a route list for possible routes from node1 to node4 route_list_node15 = mod.load_route_list(contact_graph, 'node1', 'node5', 0) # Make sure that only route is found (as both possible routes run through # the identical first limiting contact and thus only one route suffices) assert len(route_list_node15) == 1 # Check that the route is correct route = route_list_node15[0] assert route[0] == [('node1', 'node2', 30, 70, 1000, 0), ('node2', 'node3', 0, 100, 1000, 0), ('node3', 'node5', 0, 100, 1000, 0)] \ or route[0] == [('node1', 'node2', 30, 70, 1000, 0), ('node2', 'node4', 0, 100, 1000, 0), ('node4', 'node5', 0, 100, 1000, 0)] assert route.edt == 30 assert route.capacity == 40000 assert route.to_time == 70 @pytest.mark.parametrize("mod", testdata) def test_load_route_list_anchoring_intermediate_contact(mod): """Test function that tests the route-finding capabilities, in particular the correct behaviour when the anchoring mechanism is involved and the limiting contact is the first contact of the route. """ # First, create an contact plan that is then converted to the contact graph # representation and later processed by load_route_list # The following topology is tested in this test case: # +---+ # | 8 | # [0:100]+--+---+--+[30:90] # | | # +-+-+ +-+-+ # | 6 | | 7 | # +-+-+ +-+-+ # | | # [0:100]+--+---+--+[30:90] # | 5 | # +-+-+ # | # |[30:70] # | # +-+-+ # | 4 | # [30:90]+--+---+--+[0:100] # | | # +-+-+ +-+-+ # | 2 | | 3 | # +-+-+ +-+-+ # | | # [30:90]+--+---+--+[0:100] # | 1 | # +---+ contact_plan = ContactPlan(1000, 0) # Add contacts contact_plan.add_contact('node1', 'node2', 30, 90) contact_plan.add_contact('node1', 'node3', 0, 100) contact_plan.add_contact('node2', 'node4', 30, 90) contact_plan.add_contact('node3', 'node4', 0, 100) contact_plan.add_contact('node4', 'node5', 30, 70) contact_plan.add_contact('node5', 'node6', 0, 100) contact_plan.add_contact('node5', 'node7', 30, 90) contact_plan.add_contact('node6', 'node8', 0, 100) contact_plan.add_contact('node7', 'node8', 30, 90) # Generate contact graph representation contact_graph = ContactGraph(contact_plan) # Now generate a route list for possible routes from node1 to node4 route_list_node18 = mod.load_route_list(contact_graph, 'node1', 'node8', 0) # Make sure that only route is found (as both possible routes run through # the identical intermediate limiting contact and thus only one route is # returned) assert len(route_list_node18) == 1 # Check that the route is correct route = route_list_node18[0] assert route.edt == 30 assert route.capacity == 40000 assert route.to_time == 70 def generate_test_graph(remove_edge26=False): """Helper function to generate a contact graph for many testcases.""" # The following topology is tested in this test case: # +---+ # | 8 | # [0:100]+--+---+--+[30:90] # | | # +-+-+ +-+-+ # | 6 | | 7 | # +-+-+ +-+-+ # | | # | | # [10:40]| |[40:80] # | | # | | # +-+-+ +-+-+ # | 2 | | 3 | # +-+-+ +-+-+ # | | # [30:90]+--+---+--+[0:100] # | 1 | # +---+ contact_plan = ContactPlan(1000, 0) # Create list of all nodes contact_plan.add_contact('node1', 'node2', 30, 90) contact_plan.add_contact('node1', 'node3', 0, 100) contact_plan.add_contact('node3', 'node7', 40, 80) contact_plan.add_contact('node6', 'node8', 0, 100) contact_plan.add_contact('node7', 'node8', 30, 90) # Only add edge between node2 and node6 if required if not remove_edge26: contact_plan.add_contact('node2', 'node6', 10, 40) # Generate contact graph representation contact_graph = ContactGraph(contact_plan) return contact_graph @pytest.mark.parametrize("mod", testdata) def test_proximate_nodes_base(mod): """Test function that tests the identify_proximate_node_list.""" # First, create an contact plan that is then converted to the contact graph # representation and later processed by identify_proximate_node_list # Create contact graph of test topology contact_graph = generate_test_graph() # Route bundle from node1 to node 8 with size 1 and no deadline bundle = Packet('node1', 'node8', 1, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 30, 90, 1000, 0)] = Contact( 30, 90, 1000, 'node1', 'node2') contact_list[('node1', 'node3', 0, 100, 1000, 0)] = Contact( 0, 100, 1000, 'node1', 'node3') contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] = Contact( 0, math.inf, 1000, 'node1', 'node1') # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 30, 90, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node3', 0, 100, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] \ .register_simulator(dummy) # Now generate a proximate node list proximate_nodes = mod.identify_proximate_node_list( 'node1', bundle, contact_graph, route_list, [], 0, contact_list) # Make sure that two routes are found assert len(proximate_nodes) == 2 # Check individual EDT and hops node1 = proximate_nodes[0] assert node1.route.edt == 30 assert node1.route.hops == 3 node2 = proximate_nodes[1] assert node2.route.edt == 40 assert node2.route.hops == 3 @pytest.mark.parametrize("mod", testdata) def test_proximate_nodes_past_route(mod): """Test function that verifys that identify_proximate_node_list() ignores routes thats' feasibility ended in the past. """ # Create contact graph of test topology contact_graph = generate_test_graph() # Route bundle from node1 to node 8 with size 1 and no deadline bundle = Packet('node1', 'node8', 1, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 30, 90, 1000, 0)] = Contact( 30, 90, 1000, 'node1', 'node2') contact_list[('node1', 'node3', 0, 100, 1000, 0)] = Contact( 0, 100, 1000, 'node1', 'node3') contact_list[('node1', 'node1', 0, math.inf, math.inf, 0)] = Contact( 0, math.inf, 1000, 'node1', 'node1') # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 30, 90, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node3', 0, 100, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, math.inf, 0)] \ .register_simulator(dummy) # Now generate a proximate node list with current time set to 50 proximate_nodes = mod.identify_proximate_node_list( 'node1', bundle, contact_graph, route_list, [], 50, contact_list) # Make sure that only one route is found, (1->2->6->8) has already expired # at t=50 assert len(proximate_nodes) == 1 # Assert that the correct proximate node (and route) is returned assert proximate_nodes[0].route.transmission_plan == ([('node1', 'node3', 0, 100, 1000, 0), ('node3', 'node7', 40, 80, 1000, 0), ('node7', 'node8', 30, 90, 1000, 0)]) assert proximate_nodes[0].contact == (('node1', 'node3', 0, 100, 1000, 0)) @pytest.mark.parametrize("mod", testdata) def test_proximate_nodes_edt_after_deadline(mod): # Create contact graph of test topology contact_graph = generate_test_graph() # Route bundle from node1 to node 8 with size 1 and deadline set to 35 bundle = Packet('node1', 'node8', 1, 35) # Route bundle from node1 to node 8 with size 1 and deadline set to 30 bundle2 = Packet('node1', 'node8', 1, 30) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 30, 90, 1000, 0)] = Contact( 30, 90, 1000, 'node1', 'node2') contact_list[('node1', 'node3', 0, 100, 1000, 0)] = Contact( 0, 100, 1000, 'node1', 'node3') contact_list[('node1', 'node1', 0, math.inf, math.inf, 0)] = Contact( 0, math.inf, 1000, 'node1', 'node1') # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 30, 90, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node3', 0, 100, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, math.inf, 0)] \ .register_simulator(dummy) # Now generate a proximate node list with current time set to 0 proximate_nodes = mod.identify_proximate_node_list( 'node1', bundle, contact_graph, route_list, [], 0, contact_list) # Make sure that only one route is found, (1->3->7->8) will not reach the # target within the deadline assert len(proximate_nodes) == 1 # Assert that the correct proximate node (and route) is returned assert proximate_nodes[0].route.transmission_plan == ([('node1', 'node2', 30, 90, 1000, 0), ('node2', 'node6', 10, 40, 1000, 0), ('node6', 'node8', 0, 100, 1000, 0)]) assert proximate_nodes[0].contact == (('node1', 'node2', 30, 90, 1000, 0)) # Now generate a proximate node list with current time set to 0 proximate_nodes2 = mod.identify_proximate_node_list( 'node1', bundle2, contact_graph, route_list, [], 0, contact_list) # Make sure that only one route is found, (1->3->7->8) will not reach the # target within the deadline assert not proximate_nodes2 @pytest.mark.parametrize("mod", testdata) def test_proximate_nodes_route_capacity(mod): # Create contact graph of test topology contact_graph = generate_test_graph() # Create bundle from node1 to node 8 with size 40 and deadline set to # infinity bundle = Packet('node1', 'node8', 40000, math.inf) # Create bundle from node1 to node 8 with size 41 and deadline set to # infinity bundle2 = Packet('node1', 'node8', 41000, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 30, 90, 1000, 0)] = Contact( 30, 90, 1000, 'node1', 'node2') contact_list[('node1', 'node3', 0, 100, 1000, 0)] = Contact( 0, 100, 1000, 'node1', 'node3') contact_list[('node1', 'node1', 0, math.inf, math.inf, 0)] = Contact( 0, math.inf, 1000, 'node1', 'node1') # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 30, 90, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node3', 0, 100, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, math.inf, 0)] \ .register_simulator(dummy) # Now generate a proximate node list for 'bundle' proximate_nodes = mod.identify_proximate_node_list( 'node1', bundle, contact_graph, route_list, [], 0, contact_list) # Make sure that routes are found as the bundle is not exceeding the # capacities of the routes' contacts assert len(proximate_nodes) == 1 # Now generate a proximate node list for 'bundle2' proximate_nodes = mod.identify_proximate_node_list( 'node1', bundle2, contact_graph, route_list, [], 0, contact_list) # Make sure that routes are not found as the bundle's size is larger than # the capacities of all available routes assert len(proximate_nodes) == 0 # Enqueue that packet to trigger the capacity recalculation contact_list[('node1', 'node2', 30, 90, 1000, 0)].cap_rem = 10000 # Enqueue that packet to trigger the capacity recalculation contact_list[('node1', 'node3', 0, 100, 1000, 0)].cap_rem = 40000 # Now generate a proximate node list for 'bundle' proximate_nodes = cgr_basic.identify_proximate_node_list( 'node1', bundle, contact_graph, route_list, [], 0, contact_list) # Make sure that one route is found as the bundle is still fitting into # the queue of the 1->3 contact assert len(proximate_nodes) == 1 assert proximate_nodes[0].route.transmission_plan == ([('node1', 'node3', 0, 100, 1000, 0), ('node3', 'node7', 40, 80, 1000, 0), ('node7', 'node8', 30, 90, 1000, 0)]) assert proximate_nodes[0].contact == ('node1', 'node3', 0, 100, 1000, 0) # Now generate a proximate node list for 'bundle2' proximate_nodes = cgr_basic.identify_proximate_node_list( 'node1', bundle2, contact_graph, route_list, [], 0, contact_list) # Make sure that routes are not found as the bundle's size is larger than # the remaining capacities of all feasible contacts to neighbors assert not proximate_nodes @pytest.mark.parametrize("mod", testdata) def test_proximate_nodes_excluded_nodes(mod): # Create contact graph of test topology contact_graph = generate_test_graph() # Route bundle from node1 to node 8 with size 1 and deadline set to # infinity bundle = Packet('node1', 'node8', 1, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 30, 90, 1000, 0)] = Contact( 30, 90, 1000, 'node1', 'node2') contact_list[('node1', 'node3', 0, 100, 1000, 0)] = Contact( 0, 100, 1000, 'node1', 'node3') contact_list[('node1', 'node1', 0, math.inf, math.inf, 0)] = Contact( 0, math.inf, 1000, 'node1', 'node1') # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 30, 90, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node3', 0, 100, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, math.inf, 0)] \ .register_simulator(dummy) # Now generate a proximate node list with ('node1', 'node2', 30, 90) being # in the excluded node list proximate_nodes = mod.identify_proximate_node_list( 'node1', bundle, contact_graph, route_list, ['node2'], 0, contact_list) # Make sure that only one route is found, (1->3->7->8) will not reach the # target within the deadline assert len(proximate_nodes) == 1 assert proximate_nodes[0].route.transmission_plan == ([('node1', 'node3', 0, 100, 1000, 0), ('node3', 'node7', 40, 80, 1000, 0), ('node7', 'node8', 30, 90, 1000, 0)]) assert proximate_nodes[0].contact == ('node1', 'node3', 0, 100, 1000, 0) def create_route(old_route): plan = list() for contact in old_route[0]: plan.append( ContactIdentifier( from_node=contact[0], to_node=contact[1], from_time=contact[2], to_time=contact[3], datarate=contact[4], delay=contact[5])) new_route = Route( transmission_plan=plan, edt=old_route[1][0], capacity=old_route[1][1], to_time=old_route[1][2], hops=len(old_route[0]), next_hop=plan[0]) return new_route @pytest.mark.parametrize("mod", testdata) def test_proximate_nodes_optimize_proximate_node(mod): # Create contact graph of test topology contact_graph = generate_test_graph() # Route bundle from node1 to node 8 with size 1 and deadline set to # infinity bundle = Packet('node1', 'node8', 1, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create some fake routes that can later be used for optimizing the # proximate node values route_list['node8'] = [] # First, add route with worse EDT (50) route_list['node8'].append( create_route(([('node1', 'node3', 0, 100, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node4', 'node5', 30, 70, 10, 0)], (50, 40, 70)))) # Then add route with better EDT (30) route_list['node8'].append( create_route(([('node1', 'node3', 0, 100, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node4', 'node5', 30, 70, 10, 0)], (30, 40, 70)))) # First, add route with 5 hops route_list['node8'].append( create_route(([('node1', 'node2', 30, 90, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node4', 'node5', 30, 70, 10, 0)], (30, 40, 70)))) # Then add route with only 4 hops route_list['node8'].append( create_route(([('node1', 'node2', 30, 90, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node4', 'node5', 30, 70, 10, 0)], (30, 40, 70)))) # Create contact list object contact_list = dict() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 30, 90, 10, 0)] = Contact( 30, 90, 10, 'node1', 'node2') contact_list[('node1', 'node3', 0, 100, 10, 0)] = Contact( 0, 100, 10, 'node1', 'node3') contact_list[('node1', 'node1', 0, math.inf, 10, 0)] = Contact( 0, math.inf, 10, 'node1', 'node1') # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 30, 90, 10, 0)].register_simulator(dummy) contact_list[('node1', 'node3', 0, 100, 10, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, 10, 0)].register_simulator(dummy) # Now generate a proximate node list with ('node1', 'node2', 30, 90) being # in the excluded node list proximate_nodes = mod.identify_proximate_node_list( 'node1', bundle, contact_graph, route_list, [], 0, contact_list) # Make sure that two feasible proximate nodes are found assert len(proximate_nodes) == 2 # Assert that the proximate nodes are returned with the correct, optimized # characteristics assert proximate_nodes[0].contact == ('node1', 'node3', 0, 100, 10, 0) assert proximate_nodes[0].route.edt == 30 assert proximate_nodes[0].route.hops == 3 assert proximate_nodes[0].route.transmission_plan == ([('node1', 'node3', 0, 100, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node4', 'node5', 30, 70, 10, 0)]) assert proximate_nodes[1].contact == ('node1', 'node2', 30, 90, 10, 0) assert proximate_nodes[1].route.edt == 30 assert proximate_nodes[1].route.hops == 4 assert proximate_nodes[1].route.transmission_plan == ([ ('node1', 'node2', 30, 90, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node3', 'node4', 0, 100, 10, 0), ('node4', 'node5', 30, 70, 10, 0) ]) # Test function that tests the cgr function @pytest.mark.parametrize("mod", testdata_routing) def test_cgr_base(mod): # First, create an contact plan that is then converted to the contact # graph representation and later processed by cgr() # Create contact graph of test topology contact_graph = generate_test_graph() # Route bundle from node1 to node 8 with size 1 and no deadline bundle = Packet('node1', 'node8', 1, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create limbo list limbo = list() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 30, 90, 1000, 0)] = Contact( 30, 90, 1000, 'node1', 'node2', debug=True) contact_list[('node1', 'node3', 0, 100, 1000, 0)] = Contact( 0, 100, 1000, 'node1', 'node3', debug=True) contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] = Contact( 0, math.inf, 1000, 'node1', 'node1', debug=True) # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 30, 90, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node3', 0, 100, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] \ .register_simulator(dummy) # Now run cgr for the bundle (with current time set to 0) mod.cgr(bundle, 'node1', contact_graph, route_list, contact_list, 0, limbo) # Make sure that the bundle is enqueue for the correct contact assert len(contact_list[('node1', 'node2', 30, 90, 1000, 0)] \ .packet_queue) == 1 assert len(contact_list[('node1', 'node3', 0, 100, 1000, 0)] \ .packet_queue) == 0 assert len(contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] \ .packet_queue) == 0 assert contact_list[('node1', 'node2', 30, 90, 1000, 0)] \ .packet_queue[0] == bundle # Test function that tests the cgr function @pytest.mark.parametrize("mod", testdata_routing) def test_cgr_base_no_route(mod): # First, create an contact plan that is then converted to the contact # graph representation and later processed by cgr() # The following topology is tested in this test case: # +---+ +---+ +---+ +---+ # | 1 +---------+ 2 +---------+ 3 +---------+ 4 | # +---+ 35:40 +---+ 20:40 +---+ 20:25 +---+ contact_plan = ContactPlan(1000, 0) contact_plan.add_contact('node1', 'node2', 35, 40) contact_plan.add_contact('node2', 'node3', 20, 40) contact_plan.add_contact('node3', 'node4', 20, 25) # Generate contact graph representation contact_graph = ContactGraph(contact_plan) # Route bundle from node1 to node 8 with size 1 and no deadline bundle = Packet('node1', 'node4', 1, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create limbo list limbo = list() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 35, 40, 1000, 0)] = Contact( 35, 40, 1000, 'node1', 'node2', debug=True) contact_list[('node2', 'node3', 20, 40, 1000, 0)] = Contact( 20, 40, 1000, 'node2', 'node3', debug=True) contact_list[('node3', 'node4', 20, 25, 1000, 0)] = Contact( 20, 25, 1000, 'node3', 'node4', debug=True) contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] = Contact( 0, math.inf, 1000, 'node1', 'node1', debug=True) # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 35, 40, 1000, 0)].register_simulator(dummy) contact_list[('node2', 'node3', 20, 40, 1000, 0)].register_simulator(dummy) contact_list[('node3', 'node4', 20, 25, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] \ .register_simulator(dummy) # Now run cgr for the bundle (with current time set to 0) mod.cgr(bundle, 'node1', contact_graph, route_list, contact_list, 0, limbo) # Make sure that the bundle is enqueue for the correct contact assert len(limbo) == 1 assert len(contact_list[('node1', 'node2', 35, 40, 1000, 0)] \ .packet_queue) == 0 assert len(contact_list[('node2', 'node3', 20, 40, 1000, 0)] \ .packet_queue) == 0 assert len(contact_list[('node3', 'node4', 20, 25, 1000, 0)] \ .packet_queue) == 0 assert len(contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] \ .packet_queue) == 0 def generate_neighbors(old_neigbors): new_neighbors = list() for neighbor in old_neigbors: tp = list() for hops in neighbor[3]: tp.append( ContactIdentifier( from_node=hops[0], to_node=hops[1], from_time=hops[2], to_time=hops[3], datarate=hops[4], delay=hops[5])) route = Route( transmission_plan=tp, edt=neighbor[1], capacity=1000, to_time=10000, hops=neighbor[2], next_hop=ContactIdentifier(*neighbor[0])) new_neighbor = Neighbor( contact=route.next_hop, node_id=route.next_hop.to_node, route=route) new_neighbors.append(new_neighbor) return new_neighbors @pytest.mark.parametrize("mod", testdata) def test_cgr_optimization(mod): # Route bundle from node1 to node 8 with size 1 and no deadline bundle = Packet('node1', 'node8', 1, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create limbo list limbo = list() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 10, 100, 1000, 0)] = Contact( 10, 100, 1000, 'node1', 'node2', debug=True) contact_list[('node1', 'node3', 10, 100, 1000, 0)] = Contact( 20, 100, 1000, 'node1', 'node3', debug=True) # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 10, 100, 1000, 0)] \ .register_simulator(dummy) contact_list[('node1', 'node3', 10, 100, 1000, 0)] \ .register_simulator(dummy) # Create a fake proximate node list to isolate the cgr() function's # behaviour and test it proximate_nodes = [(('node1', 'node2', 10, 100, 1000, 0), 10, 2, [('node1', 'node2', 10, 100, 1000, 0)]), (('node1', 'node3', 10, 100, 1000, 0), 20, 2, [('node1', 'node3', 10, 100, 1000, 0)])] proximate_nodes = generate_neighbors(proximate_nodes) # Now run cgr for the bundle (with current time set to 0) mod.cgr( bundle, 'node1', None, route_list, contact_list, 0, limbo, proximate_nodes=proximate_nodes) # Reset bundle so it can be routed from the same node again without # throwing an exception bundle.current_node = 'inserted' # Make sure that the bundle is enqueued in the queue with the best edt assert len(contact_list[('node1', 'node2', 10, 100, 1000, 0)] \ .packet_queue) == 1 assert not contact_list[('node1', 'node3', 10, 100, 1000, 0)] \ .packet_queue assert contact_list[('node1', 'node2', 10, 100, 1000, 0)] \ .packet_queue[0] == bundle # Alter proximate node list so that edt is equal and hops is the relevant # value proximate_nodes = [(('node1', 'node2', 10, 100, 1000, 0), 20, 3, [('node1', 'node2', 10, 100, 1000, 0)]), (('node1', 'node3', 10, 100, 1000, 0), 20, 2, [('node1', 'node3', 10, 100, 1000, 0)])] proximate_nodes = generate_neighbors(proximate_nodes) # Now run cgr for the bundle (with current time set to 0) mod.cgr( bundle, 'node1', None, route_list, contact_list, 0, limbo, proximate_nodes=proximate_nodes) # Reset bundle so it can be routed from the same node again without # throwing an exception bundle.current_node = 'inserted' # Make sure that the bundle is enqueued in the queue with the best edt assert len(contact_list[('node1', 'node2', 10, 100, 1000, 0)].packet_queue) == 1 assert len(contact_list[('node1', 'node3', 10, 100, 1000, 0)].packet_queue) == 1 assert contact_list[('node1', 'node3', 10, 100, 1000, 0)] \ .packet_queue[0] == bundle # Alter proximate node list so that edt and hops are equal and hash is the # deciding value proximate_nodes = [(('node1', 'node2', 10, 100, 1000, 0), 20, 4, [('node1', 'node2', 10, 100, 1000, 0)]), (('node1', 'node3', 10, 100, 1000, 0), 20, 4, [('node1', 'node3', 10, 100, 1000, 0)])] proximate_nodes = generate_neighbors(proximate_nodes) # Now run cgr for the bundle (with current time set to 0) mod.cgr( bundle, 'node1', None, route_list, contact_list, 0, limbo, proximate_nodes=proximate_nodes) # Reset bundle so it can be routed from the same node again without # throwing an exception bundle.current_node = 'inserted' if hash('node2') > hash('node3'): node_a = ('node1', 'node2', 10, 100, 1000, 0) node_b = ('node1', 'node3', 10, 100, 1000, 0) else: node_b = ('node1', 'node2', 10, 100, 1000, 0) node_a = ('node1', 'node3', 10, 100, 1000, 0) # Make sure that the bundle is enqueued in the queue with the best edt if len(contact_list[node_a].packet_queue) == 1: assert len(contact_list[node_b].packet_queue) == 2 assert contact_list[node_b].packet_queue[1] == bundle elif len(contact_list[node_a].packet_queue) == 2: assert len(contact_list[node_b].packet_queue) == 1 assert contact_list[node_a].packet_queue[1] == bundle # Testcase function that verifies the insertion of bundles that are not # routable at the moment of routing into the limbo list @pytest.mark.parametrize("mod", testdata) def test_cgr_limbo(mod): # Route bundle from node1 to node 8 with size 1 and no deadline bundle = Packet('node1', 'node8', 1, math.inf) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create limbo list limbo = list() # Create Simulation Environment (dummy, will not be run) env = QSim() # Create a fake proximate node list to isolate the cgr() function's # behaviour and test it, no entries this time to force in insertion into # limbo proximate_nodes = [] # Now run cgr for the bundle (with current time set to 0) mod.cgr( bundle, 'node1', None, route_list, contact_list, 0, limbo, proximate_nodes=proximate_nodes) # Make sure that the bundle is enqueued in the queue with the best edt assert len(limbo) == 1 assert limbo[0] == bundle # Test function that verifies the "flooding" mechanism for critical # bundles in the cgr() function @pytest.mark.parametrize("mod", testdata_routing) def test_cgr_critical_bundle(mod): # First, create an contact plan that is then converted to the contact graph # representation and later processed by identify_proximate_node_list # Create contact graph of test topology contact_graph = generate_test_graph() # Route bundle from node1 to node 8 with size 1 and no deadline, but with # being critical bundle = Packet('node1', 'node8', 1000, math.inf, False, True) # Create empty route_list dictionary so route list for destination will be # regenerated route_list = dict() # Create contact list object contact_list = dict() # Create limbo list limbo = list() # Create Simulation Environment (dummy, will not be run) env = QSim() contact_list[('node1', 'node2', 30, 90, 1000, 0)] = Contact( 30, 90, 1000, 'node1', 'node2', debug=True) contact_list[('node1', 'node3', 0, 100, 1000, 0)] = Contact( 0, 100, 1000, 'node1', 'node3', debug=True) contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] = Contact( 0, math.inf, 1000, 'node1', 'node1', debug=True) # Add dummy simulator to the contacts dummy = DummySimulator() contact_list[('node1', 'node2', 30, 90, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node3', 0, 100, 1000, 0)].register_simulator(dummy) contact_list[('node1', 'node1', 0, math.inf, 1000, 0)] \ .register_simulator(dummy) mod.cgr(bundle, 'node1', contact_graph, route_list, contact_list, 0, limbo) # Make sure that the bundle is enqueued in all feasible contacts to # neighbors assert len(contact_list[('node1', 'node2', 30, 90, 1000, 0)].packet_queue) == 1 assert len(contact_list[('node1', 'node3', 0, 100, 1000, 0)].packet_queue) == 1 contact_graph2 = generate_test_graph(True) # Route bundle from node1 to node 8 with size 1 and no deadline, but with # being critical bundle2 = Packet('node1', 'node8', 1, math.inf, False, True) # Reset route list route_list = dict() mod.cgr(bundle2, 'node1', contact_graph2, route_list, contact_list, 0, limbo) # Make sure that only neighbors are considered that can reach the # destination (based on the contact graph knowledge) assert len(contact_list[('node1', 'node2', 30, 90, 1000, 0)].packet_queue) == 1 assert len(contact_list[('node1', 'node3', 0, 100, 1000, 0)].packet_queue) == 2
36.796552
79
0.582724
a2dcba16d7f84d103ddf78a33a64cea8d4d6f1de
2,494
py
Python
Demo/crawler_heart/heart/heart.py
zuosc/PythonCode
3592f5780fc9e335fa880a1f7e9aac0e9d33439e
[ "MIT" ]
1
2017-09-24T19:06:55.000Z
2017-09-24T19:06:55.000Z
Demo/crawler_heart/heart/heart.py
zuosc/PythonCode
3592f5780fc9e335fa880a1f7e9aac0e9d33439e
[ "MIT" ]
null
null
null
Demo/crawler_heart/heart/heart.py
zuosc/PythonCode
3592f5780fc9e335fa880a1f7e9aac0e9d33439e
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- import codecs import csv import re import jieba.analyse import matplotlib.pyplot as plt import requests from scipy.misc import imread from wordcloud import WordCloud __author__ = 'liuzhijun' cookies = { "ALF": "1489741225", "SCF": "AlE23pvO55c-tjcvq_9U-BwEK7OzuLdN6XnI-Bg1vQPlNcm7Atblq34rFR1PIei5Sp-jX1oikqxt7eLYtw_ZJ4c.", "SUBP": "0033WrSXqPxfM725Ws9jqgMF55529P9D9W5eUgwfgjhvYJraoCA.ZDn.5JpX5KMhUgL.Foe71K2NeozpSh-2dJLoIEBLxKBLBonL1h5LxKqL1-BL1h5LxKML1K.LB.-LxK.L1hML12et", "SUB": "_2A251rjzFDeRxGeVO4lMW8izNzzmIHXVXUUSNrDV6PUNbktBeLRnMkW1ZGDRFqMInP5uvmMQRhehPb0ySLA..", "SUHB": "0BLYeDP6-UgtFq", "_T_WM": "954dbf366abd053f9c7793df6c4fba79", "SSOLoginState": "1487555733", } def fetch_weibo(): api = "http://m.weibo.cn/index/my?format=cards&page=%s" for i in range(1, 102): response = requests.get(url=api % i, cookies=cookies) data = response.json()[0] groups = data.get("card_group") or [] for group in groups: text = group.get("mblog").get("text") text = text.encode("utf-8") def cleanring(content): """ 去掉无用字符 """ pattern = "<a .*?/a>|<i .*?/i>|转发微博|//:|Repost|,|?|。|、|分享图片" content = re.sub(pattern, "", content) return content text = cleanring(text).strip() if text: yield text def write_csv(texts): with codecs.open('./weibo.csv', 'w') as f: writer = csv.DictWriter(f, fieldnames=["text"]) writer.writeheader() for text in texts: writer.writerow({"text": text}) def read_csv(): with codecs.open('./weibo.csv', 'r') as f: reader = csv.DictReader(f) for row in reader: yield row['text'] def word_segment(texts): jieba.analyse.set_stop_words("./stopwords.txt") for text in texts: tags = jieba.analyse.extract_tags(text, topK=20) yield " ".join(tags) def generate_img(texts): data = " ".join(text for text in texts) mask_img = imread('./heart-mask.jpg', flatten=True) wordcloud = WordCloud( font_path='msyh.ttc', background_color='white', mask=mask_img ).generate(data) plt.imshow(wordcloud) plt.axis('off') plt.savefig('./heart.jpg', dpi=600) if __name__ == '__main__': texts = fetch_weibo() write_csv(texts) generate_img(word_segment(read_csv()))
28.340909
155
0.61668
5cb8d5a6f969726c0cc6a48d2eaf84d835dbc89e
94,122
py
Python
src/sage/manifolds/differentiable/affine_connection.py
tashakim/sage
467fbc70a08b552b3de33d9065204ee9cbfb02c7
[ "BSL-1.0" ]
4
2020-07-17T04:49:44.000Z
2020-07-29T06:33:51.000Z
src/sage/manifolds/differentiable/affine_connection.py
Ivo-Maffei/sage
467fbc70a08b552b3de33d9065204ee9cbfb02c7
[ "BSL-1.0" ]
null
null
null
src/sage/manifolds/differentiable/affine_connection.py
Ivo-Maffei/sage
467fbc70a08b552b3de33d9065204ee9cbfb02c7
[ "BSL-1.0" ]
null
null
null
r""" Affine Connections The class :class:`AffineConnection` implements affine connections on smooth manifolds. AUTHORS: - Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version - Marco Mancini (2015) : parallelization of some computations - Florentin Jaffredo (2018) : series expansion with respect to a given parameter REFERENCES: - [Lee1997]_ - [KN1963]_ - [ONe1983]_ """ # ***************************************************************************** # Copyright (C) 2015 Eric Gourgoulhon <eric.gourgoulhon@obspm.fr> # Copyright (C) 2015 Michal Bejger <bejger@camk.edu.pl> # Copyright (C) 2015 Marco Mancini <marco.mancini@obspm.fr> # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # https://www.gnu.org/licenses/ # ***************************************************************************** from sage.rings.integer import Integer from sage.structure.sage_object import SageObject from sage.manifolds.differentiable.manifold import DifferentiableManifold from sage.parallel.decorate import parallel from sage.parallel.parallelism import Parallelism class AffineConnection(SageObject): r""" Affine connection on a smooth manifold. Let `M` be a differentiable manifold of class `C^\infty` (smooth manifold) over a non-discrete topological field `K` (in most applications `K=\RR` or `K=\CC`), let `C^\infty(M)` be the algebra of smooth functions `M\rightarrow K` (cf. :class:`~sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra`) and let `\mathfrak{X}(M)` be the `C^\infty(M)`-module of vector fields on `M` (cf. :class:`~sage.manifolds.differentiable.vectorfield_module.VectorFieldModule`). An *affine connection* on `M` is an operator .. MATH:: \begin{array}{cccc} \nabla: & \mathfrak{X}(M)\times \mathfrak{X}(M) & \longrightarrow & \mathfrak{X}(M) \\ & (u,v) & \longmapsto & \nabla_u v \end{array} that - is `K`-bilinear, i.e. is bilinear when considering `\mathfrak{X}(M)` as a vector space over `K` - is `C^\infty(M)`-linear w.r.t. the first argument: `\forall f\in C^\infty(M),\ \nabla_{fu} v = f\nabla_u v` - obeys Leibniz rule w.r.t. the second argument: `\forall f\in C^\infty(M),\ \nabla_u (f v) = \mathrm{d}f(u)\, v + f \nabla_u v` The affine connection `\nabla` gives birth to the *covariant derivative operator* acting on tensor fields, denoted by the same symbol: .. MATH:: \begin{array}{cccc} \nabla: & T^{(k,l)}(M) & \longrightarrow & T^{(k,l+1)}(M)\\ & t & \longmapsto & \nabla t \end{array} where `T^{(k,l)}(M)` stands for the `C^\infty(M)`-module of tensor fields of type `(k,l)` on `M` (cf. :class:`~sage.manifolds.differentiable.tensorfield_module.TensorFieldModule`), with the convention `T^{(0,0)}(M):=C^\infty(M)`. For a vector field `v`, the covariant derivative `\nabla v` is a type-(1,1) tensor field such that .. MATH:: \forall u \in\mathfrak{X}(M), \ \nabla_u v = \nabla v(., u) More generally for any tensor field `t\in T^{(k,l)}(M)`, we have .. MATH:: \forall u \in\mathfrak{X}(M), \ \nabla_u t = \nabla t(\ldots, u) .. NOTE:: The above convention means that, in terms of index notation, the "derivation index" in `\nabla t` is the *last* one: .. MATH:: \nabla_c t^{a_1\ldots a_k}_{\quad\quad b_1\ldots b_l} = (\nabla t)^{a_1\ldots a_k}_{\quad\quad b_1\ldots b_l c} INPUT: - ``domain`` -- the manifold on which the connection is defined (must be an instance of class :class:`~sage.manifolds.differentiable.manifold.DifferentiableManifold`) - ``name`` -- name given to the affine connection - ``latex_name`` -- (default: ``None``) LaTeX symbol to denote the affine connection; if ``None``, it is set to ``name``. EXAMPLES: Affine connection on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') ; nab Affine connection nabla on the 3-dimensional differentiable manifold M A just-created connection has no connection coefficients:: sage: nab._coefficients {} The connection coefficients relative to the manifold's default frame [here `(\partial/\partial x, \partial/\partial y, \partial/\partial z)`], are created by providing the relevant indices inside square brackets:: sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} = yz sage: nab._coefficients {Coordinate frame (M, (d/dx,d/dy,d/dz)): 3-indices components w.r.t. Coordinate frame (M, (d/dx,d/dy,d/dz))} If not the default one, the vector frame w.r.t. which the connection coefficients are defined can be specified as the first argument inside the square brackets; hence the above definition is equivalent to:: sage: nab[c_xyz.frame(), 1,1,2], nab[c_xyz.frame(),3,2,3] = x^2, y*z sage: nab._coefficients {Coordinate frame (M, (d/dx,d/dy,d/dz)): 3-indices components w.r.t. Coordinate frame (M, (d/dx,d/dy,d/dz))} Unset components are initialized to zero:: sage: nab[:] # list of coefficients relative to the manifold's default vector frame [[[0, x^2, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, y*z], [0, 0, 0]]] The treatment of connection coefficients in a given vector frame is similar to that of tensor components; see therefore the class :class:`~sage.manifolds.differentiable.tensorfield.TensorField` for the documentation. In particular, the square brackets return the connection coefficients as instances of :class:`~sage.manifolds.chart_func.ChartFunction`, while the double square brackets return a scalar field:: sage: nab[1,1,2] x^2 sage: nab[1,1,2].display() (x, y, z) |--> x^2 sage: type(nab[1,1,2]) <class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'> sage: nab[[1,1,2]] Scalar field on the 3-dimensional differentiable manifold M sage: nab[[1,1,2]].display() M --> R (x, y, z) |--> x^2 sage: nab[[1,1,2]].coord_function() is nab[1,1,2] True Action on a scalar field:: sage: f = M.scalar_field(x^2 - y^2, name='f') sage: Df = nab(f) ; Df 1-form df on the 3-dimensional differentiable manifold M sage: Df[:] [2*x, -2*y, 0] The action of an affine connection on a scalar field must coincide with the differential:: sage: Df == f.differential() True A generic affine connection has some torsion:: sage: DDf = nab(Df) ; DDf Tensor field nabla(df) of type (0,2) on the 3-dimensional differentiable manifold M sage: DDf.antisymmetrize()[:] # nabla does not commute on scalar fields: [ 0 -x^3 0] [ x^3 0 0] [ 0 0 0] Let us check the standard formula .. MATH:: \nabla_j \nabla_i \, f - \nabla_i \nabla_j \, f = T^k_{\ \, ij} \nabla_k \, f , where the `T^k_{\ \, ij}`'s are the components of the connection's torsion tensor:: sage: 2*DDf.antisymmetrize() == nab.torsion().contract(0,Df) True The connection acting on a vector field:: sage: v = M.vector_field(y*z, x*z, x*y, name='v') sage: Dv = nab(v) ; Dv Tensor field nabla(v) of type (1,1) on the 3-dimensional differentiable manifold M sage: Dv[:] [ 0 (x^2*y + 1)*z y] [ z 0 x] [ y x x*y*z^2] Another example: connection on a non-parallelizable 2-dimensional manifold:: sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name='W', ....: restrictions1= x>0, restrictions2= u+v>0) sage: inv = transf.inverse() sage: W = U.intersection(V) sage: eU = c_xy.frame() ; eV = c_uv.frame() sage: c_xyW = c_xy.restrict(W) ; c_uvW = c_uv.restrict(W) sage: eUW = c_xyW.frame() ; eVW = c_uvW.frame() sage: nab = M.affine_connection('nabla', r'\nabla') The connection is first defined on the open subset U by means of its coefficients w.r.t. the frame eU (the manifold's default frame):: sage: nab[0,0,0], nab[1,0,1] = x, x*y The coefficients w.r.t the frame eV are deduced by continuation of the coefficients w.r.t. the frame eVW on the open subset `W=U\cap V`:: sage: for i in M.irange(): ....: for j in M.irange(): ....: for k in M.irange(): ....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr() At this stage, the connection is fully defined on all the manifold:: sage: nab.coef(eU)[:] [[[x, 0], [0, 0]], [[0, x*y], [0, 0]]] sage: nab.coef(eV)[:] [[[1/16*u^2 - 1/16*v^2 + 1/8*u + 1/8*v, -1/16*u^2 + 1/16*v^2 + 1/8*u + 1/8*v], [1/16*u^2 - 1/16*v^2 + 1/8*u + 1/8*v, -1/16*u^2 + 1/16*v^2 + 1/8*u + 1/8*v]], [[-1/16*u^2 + 1/16*v^2 + 1/8*u + 1/8*v, 1/16*u^2 - 1/16*v^2 + 1/8*u + 1/8*v], [-1/16*u^2 + 1/16*v^2 + 1/8*u + 1/8*v, 1/16*u^2 - 1/16*v^2 + 1/8*u + 1/8*v]]] We may let it act on a vector field defined globally on `M`:: sage: a = M.vector_field({eU: [-y,x]}, name='a') sage: a.add_comp_by_continuation(eV, W, c_uv) sage: a.display(eU) a = -y d/dx + x d/dy sage: a.display(eV) a = v d/du - u d/dv sage: da = nab(a) ; da Tensor field nabla(a) of type (1,1) on the 2-dimensional differentiable manifold M sage: da.display(eU) nabla(a) = -x*y d/dx*dx - d/dx*dy + d/dy*dx - x*y^2 d/dy*dy sage: da.display(eV) nabla(a) = (-1/16*u^3 + 1/16*u^2*v + 1/16*(u + 2)*v^2 - 1/16*v^3 - 1/8*u^2) d/du*du + (1/16*u^3 - 1/16*u^2*v - 1/16*(u - 2)*v^2 + 1/16*v^3 - 1/8*u^2 + 1) d/du*dv + (1/16*u^3 - 1/16*u^2*v - 1/16*(u - 2)*v^2 + 1/16*v^3 - 1/8*u^2 - 1) d/dv*du + (-1/16*u^3 + 1/16*u^2*v + 1/16*(u + 2)*v^2 - 1/16*v^3 - 1/8*u^2) d/dv*dv A few tests:: sage: nab(a.restrict(V)) == da.restrict(V) True sage: nab.restrict(V)(a) == da.restrict(V) True sage: nab.restrict(V)(a.restrict(U)) == da.restrict(W) True sage: nab.restrict(U)(a.restrict(V)) == da.restrict(W) True Same examples with SymPy as the engine for symbolic calculus:: sage: M.set_calculus_method('sympy') sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[0,0,0], nab[1,0,1] = x, x*y sage: for i in M.irange(): ....: for j in M.irange(): ....: for k in M.irange(): ....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr() At this stage, the connection is fully defined on all the manifold:: sage: nab.coef(eU)[:] [[[x, 0], [0, 0]], [[0, x*y], [0, 0]]] sage: nab.coef(eV)[:] [[[u**2/16 + u/8 - v**2/16 + v/8, -u**2/16 + u/8 + v**2/16 + v/8], [u**2/16 + u/8 - v**2/16 + v/8, -u**2/16 + u/8 + v**2/16 + v/8]], [[-u**2/16 + u/8 + v**2/16 + v/8, u**2/16 + u/8 - v**2/16 + v/8], [-u**2/16 + u/8 + v**2/16 + v/8, u**2/16 + u/8 - v**2/16 + v/8]]] We may let it act on a vector field defined globally on `M`:: sage: a = M.vector_field({eU: [-y,x]}, name='a') sage: a.add_comp_by_continuation(eV, W, c_uv) sage: a.display(eU) a = -y d/dx + x d/dy sage: a.display(eV) a = v d/du - u d/dv sage: da = nab(a) ; da Tensor field nabla(a) of type (1,1) on the 2-dimensional differentiable manifold M sage: da.display(eU) nabla(a) = -x*y d/dx*dx - d/dx*dy + d/dy*dx - x*y**2 d/dy*dy sage: da.display(eV) nabla(a) = (-u**3/16 + u**2*v/16 - u**2/8 + u*v**2/16 - v**3/16 + v**2/8) d/du*du + (u**3/16 - u**2*v/16 - u**2/8 - u*v**2/16 + v**3/16 + v**2/8 + 1) d/du*dv + (u**3/16 - u**2*v/16 - u**2/8 - u*v**2/16 + v**3/16 + v**2/8 - 1) d/dv*du + (-u**3/16 + u**2*v/16 - u**2/8 + u*v**2/16 - v**3/16 + v**2/8) d/dv*dv """ def __init__(self, domain, name, latex_name=None): r""" Construct an affine connection. TESTS:: sage: M = Manifold(3, 'M') sage: from sage.manifolds.differentiable.affine_connection import \ AffineConnection sage: nab = AffineConnection(M, 'nabla', latex_name=r'\nabla') sage: nab Affine connection nabla on the 3-dimensional differentiable manifold M sage: X.<x,y,z> = M.chart() sage: nab[0,1,0] = x*y*z sage: TestSuite(nab).run() """ if not isinstance(domain, DifferentiableManifold): raise TypeError("the first argument must be a differentiable " + "manifold") self._domain = domain self._name = name if latex_name is None: self._latex_name = self._name else: self._latex_name = latex_name self._coefficients = {} # dict. of connection coefficients, with the # vector frames as keys # Initialization of derived quantities: AffineConnection._init_derived(self) def _repr_(self): r""" String representation of the object. TESTS:: sage: M = Manifold(5, 'M') sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab._repr_() 'Affine connection nabla on the 5-dimensional differentiable manifold M' sage: repr(nab) # indirect doctest 'Affine connection nabla on the 5-dimensional differentiable manifold M' """ description = "Affine connection" if self._name is not None: description += " " + self._name description += " on the {}".format(self._domain) return description def _latex_(self): r""" LaTeX representation of the object. TESTS:: sage: M = Manifold(5, 'M') sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab._latex_() '\\nabla' sage: latex(nab) # indirect doctest \nabla sage: nab = M.affine_connection('D') sage: nab._latex_() 'D' sage: latex(nab) # indirect doctest D """ return self._latex_name def _init_derived(self): r""" Initialize the derived quantities. TESTS:: sage: M = Manifold(4, 'M') sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab._init_derived() """ self._restrictions = {} # dict. of restrictions of ``self`` on some # subdomains, with the subdomains as keys self._torsion = None self._riemann = None self._ricci = None self._connection_forms = {} # dict. of dict. of connection 1-forms # (key: vector frame) self._torsion_forms = {} # dict. of dict. of torsion 1-forms # (key: vector frame) self._curvature_forms = {} # dict. of dict. of curvature 2-forms # (key: vector frame) self._hash = -1 def _del_derived(self): r""" Delete the derived quantities. TESTS:: sage: M = Manifold(4, 'M') sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab._del_derived() """ self._restrictions.clear() self._torsion = None self._riemann = None self._ricci = None self._connection_forms.clear() self._torsion_forms.clear() self._curvature_forms.clear() def __eq__(self, other): r""" Comparison (equality) operator. INPUT: - ``other`` -- an affine connection OUTPUT: - ``True`` if ``self`` is equal to ``other`` and ``False`` otherwise TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab[0,1,0], nab[0,1,1] = 1+x, x*y sage: nab.display() Gam^x_yx = x + 1 Gam^x_yy = x*y sage: nab1 = M.affine_connection('nabla', latex_name=r'\nabla') sage: (nab1 == nab) or (nab == nab1) False sage: nab1[0,1,0], nab1[0,1,1] = 2, 3-y sage: (nab1 == nab) or (nab == nab1) False sage: nab1[0,1,0], nab1[0,1,1] = 1+x, x*y sage: (nab1 == nab) and (nab == nab1) True sage: nab2 = M.affine_connection('nabla', latex_name=r'\nabla') sage: a = M.automorphism_field() sage: a[:] = [[0,1], [1,0]] sage: e = X.frame().new_frame(a, 'e') sage: nab2.set_coef(e)[1,0,1] = 1+x sage: nab2.set_coef(e)[1,0,0] = x*y sage: (nab2 == nab) and (nab == nab2) True sage: f = M.vector_frame('f') sage: nab2.set_coef(f)[1,0,1] = x-y sage: (nab2 == nab) or (nab == nab2) False """ if other is self: return True if not isinstance(other, AffineConnection): return False if other._domain != self._domain: return False if self._coefficients == {}: return False for frame, coef in self._coefficients.items(): try: if other.coef(frame) != coef: return False except ValueError: return False return True def __ne__(self, other): r""" Inequality operator. INPUT: - ``other`` -- an affine connection OUTPUT: - ``True`` if ``self`` is different from ``other`` and ``False`` otherwise TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab[0,1,0], nab[0,1,1] = 1+x, x*y sage: nab1 = M.affine_connection('nabla', latex_name=r'\nabla') sage: (nab1 != nab) and (nab != nab1) True sage: nab1[0,1,0], nab1[0,1,1] = 2, 3-y sage: (nab1 != nab) and (nab != nab1) True sage: nab1[0,1,0], nab1[0,1,1] = 1+x, x*y sage: (nab1 != nab) or (nab != nab1) False """ return not (self == other) def domain(self): r""" Return the manifold subset on which the affine connection is defined. OUTPUT: - instance of class :class:`~sage.manifolds.differentiable.manifold.DifferentiableManifold` representing the manifold on which ``self`` is defined. EXAMPLES:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab.domain() 3-dimensional differentiable manifold M sage: U = M.open_subset('U', coord_def={c_xyz: x>0}) sage: nabU = U.affine_connection('D') sage: nabU.domain() Open subset U of the 3-dimensional differentiable manifold M """ return self._domain def _new_coef(self, frame): r""" Create the connection coefficients w.r.t. the given frame. This method, to be called by :meth:`coef`, must be redefined by derived classes to adapt the output to the relevant subclass of :class:`~sage.tensor.modules.comp.Components`. TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab._new_coef(X.frame()) 3-indices components w.r.t. Coordinate frame (M, (d/dx,d/dy)) """ from sage.tensor.modules.comp import Components from sage.manifolds.differentiable.scalarfield import DiffScalarField return Components(frame._domain.scalar_field_algebra(), frame, 3, start_index=self._domain._sindex, output_formatter=DiffScalarField.coord_function) def coef(self, frame=None): r""" Return the connection coefficients relative to the given frame. `n` being the manifold's dimension, the connection coefficients relative to the vector frame `(e_i)` are the `n^3` scalar fields `\Gamma^k_{\ \, ij}` defined by .. MATH:: \nabla_{e_j} e_i = \Gamma^k_{\ \, ij} e_k If the connection coefficients are not known already, they are computed from the above formula. INPUT: - ``frame`` -- (default: ``None``) vector frame relative to which the connection coefficients are required; if none is provided, the domain's default frame is assumed OUTPUT: - connection coefficients relative to the frame ``frame``, as an instance of the class :class:`~sage.tensor.modules.comp.Components` with 3 indices ordered as `(k,i,j)` EXAMPLES: Connection coefficient of an affine connection on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} = yz sage: nab.coef() 3-indices components w.r.t. Coordinate frame (M, (d/dx,d/dy,d/dz)) sage: type(nab.coef()) <class 'sage.tensor.modules.comp.Components'> sage: M.default_frame() Coordinate frame (M, (d/dx,d/dy,d/dz)) sage: nab.coef() is nab.coef(c_xyz.frame()) True sage: nab.coef()[:] # full list of coefficients: [[[0, x^2, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, y*z], [0, 0, 0]]] """ if frame is None: frame = self._domain.default_frame() if frame not in self._coefficients: # the coefficients must be computed # # Check whether frame is a subframe of a frame in which the # coefficients are already known: for oframe in self._coefficients: if frame in oframe._subframes: self._coefficients[frame] = self._new_coef(frame) comp_store = self._coefficients[frame]._comp ocomp_store = self._coefficients[oframe]._comp for ind, value in ocomp_store.items(): comp_store[ind] = value.restrict(frame._domain) break else: # If not, the coefficients must be computed from scratch: manif = self._domain ev = frame # the vector frame ef = ev.coframe() # the dual frame gam = self._new_coef(ev) for i in manif.irange(): nab_evi = self(ev[i]) for k in manif.irange(): for j in manif.irange(): gam[[k,i,j]] = nab_evi(ef[k],ev[j]) self._coefficients[frame] = gam return self._coefficients[frame] def set_coef(self, frame=None): r""" Return the connection coefficients in a given frame for assignment. See method :meth:`coef` for details about the definition of the connection coefficients. The connection coefficients with respect to other frames are deleted, in order to avoid any inconsistency. To keep them, use the method :meth:`add_coef` instead. INPUT: - ``frame`` -- (default: ``None``) vector frame in which the connection coefficients are defined; if ``None``, the default frame of the connection's domain is assumed. OUTPUT: - connection coefficients in the given frame, as an instance of the class :class:`~sage.tensor.modules.comp.Components`; if such connection coefficients did not exist previously, they are created. See method :meth:`coef` for the storage convention of the connection coefficients. EXAMPLES: Setting the coefficients of an affine connection w.r.t. some coordinate frame:: sage: M = Manifold(2, 'M', start_index=1) sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: eX = X.frame(); eX Coordinate frame (M, (d/dx,d/dy)) sage: nab.set_coef(eX) 3-indices components w.r.t. Coordinate frame (M, (d/dx,d/dy)) sage: nab.set_coef(eX)[1,2,1] = x*y sage: nab.display(eX) Gam^x_yx = x*y Since ``eX`` is the manifold's default vector frame, its mention may be omitted:: sage: nab.set_coef()[1,2,1] = x*y sage: nab.set_coef() 3-indices components w.r.t. Coordinate frame (M, (d/dx,d/dy)) sage: nab.set_coef()[1,2,1] = x*y sage: nab.display() Gam^x_yx = x*y To set the coefficients in the default frame, one can even bypass the method ``set_coef()`` and call directly the operator ``[]`` on the connection object:: sage: nab[1,2,1] = x*y sage: nab.display() Gam^x_yx = x*y Setting the connection coefficients w.r.t. to another vector frame:: sage: e = M.vector_frame('e') sage: nab.set_coef(e) 3-indices components w.r.t. Vector frame (M, (e_1,e_2)) sage: nab.set_coef(e)[2,1,1] = x+y sage: nab.set_coef(e)[2,1,2] = x-y sage: nab.display(e) Gam^2_11 = x + y Gam^2_12 = x - y The coefficients w.r.t. the frame ``eX`` have been deleted:: sage: nab.display(eX) Traceback (most recent call last): ... ValueError: no common frame found for the computation To keep them, use the method :meth:`add_coef` instead. """ if frame is None: frame = self._domain._def_frame if frame not in self._coefficients: if frame not in self._domain._frames: raise ValueError("the {} is not".format(frame) + " a frame on the {}".format(self._domain)) self._coefficients[frame] = self._new_coef(frame) self._del_derived() # deletes the derived quantities self.del_other_coef(frame) return self._coefficients[frame] def add_coef(self, frame=None): r""" Return the connection coefficients in a given frame for assignment, keeping the coefficients in other frames. See method :meth:`coef` for details about the definition of the connection coefficients. To delete the connection coefficients in other frames, use the method :meth:`set_coef` instead. INPUT: - ``frame`` -- (default: ``None``) vector frame in which the connection coefficients are defined; if ``None``, the default frame of the connection's domain is assumed. .. WARNING:: If the connection has already coefficients in other frames, it is the user's responsibility to make sure that the coefficients to be added are consistent with them. OUTPUT: - connection coefficients in the given frame, as an instance of the class :class:`~sage.tensor.modules.comp.Components`; if such connection coefficients did not exist previously, they are created. See method :meth:`coef` for the storage convention of the connection coefficients. EXAMPLES: Setting the coefficients of an affine connection w.r.t. some coordinate frame:: sage: M = Manifold(2, 'M', start_index=1) sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: eX = X.frame(); eX Coordinate frame (M, (d/dx,d/dy)) sage: nab.add_coef(eX) 3-indices components w.r.t. Coordinate frame (M, (d/dx,d/dy)) sage: nab.add_coef(eX)[1,2,1] = x*y sage: nab.display(eX) Gam^x_yx = x*y Since ``eX`` is the manifold's default vector frame, its mention may be omitted:: sage: nab.add_coef()[1,2,1] = x*y sage: nab.add_coef() 3-indices components w.r.t. Coordinate frame (M, (d/dx,d/dy)) sage: nab.add_coef()[1,2,1] = x*y sage: nab.display() Gam^x_yx = x*y Adding connection coefficients w.r.t. to another vector frame:: sage: e = M.vector_frame('e') sage: nab.add_coef(e) 3-indices components w.r.t. Vector frame (M, (e_1,e_2)) sage: nab.add_coef(e)[2,1,1] = x+y sage: nab.add_coef(e)[2,1,2] = x-y sage: nab.display(e) Gam^2_11 = x + y Gam^2_12 = x - y The coefficients w.r.t. the frame ``eX`` have been kept:: sage: nab.display(eX) Gam^x_yx = x*y To delete them, use the method :meth:`set_coef` instead. """ if frame is None: frame = self._domain._def_frame if frame not in self._coefficients: if frame not in self._domain._frames: raise ValueError("the {} is not".format(frame) + " a frame on the {}".format(self._domain)) self._coefficients[frame] = self._new_coef(frame) self._del_derived() # deletes the derived quantities return self._coefficients[frame] def del_other_coef(self, frame=None): r""" Delete all the coefficients but those corresponding to ``frame``. INPUT: - ``frame`` -- (default: ``None``) vector frame, the connection coefficients w.r.t. which are to be kept; if ``None``, the default frame of the connection's domain is assumed. EXAMPLES: We first create two sets of connection coefficients:: sage: M = Manifold(2, 'M', start_index=1) sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: eX = X.frame() sage: nab.set_coef(eX)[1,2,1] = x*y sage: e = M.vector_frame('e') sage: nab.add_coef(e)[2,1,1] = x+y sage: nab.display(eX) Gam^x_yx = x*y sage: nab.display(e) Gam^2_11 = x + y Let us delete the connection coefficients w.r.t. all frames except for frame ``eX``:: sage: nab.del_other_coef(eX) sage: nab.display(eX) Gam^x_yx = x*y The connection coefficients w.r.t. frame ``e`` have indeed been deleted:: sage: nab.display(e) Traceback (most recent call last): ... ValueError: no common frame found for the computation """ if frame is None: frame = self._domain._def_frame if frame not in self._coefficients: raise ValueError("the coefficients w.r.t. {}".format(frame) + " have not been defined") to_be_deleted = [] for other_frame in self._coefficients: if other_frame != frame: to_be_deleted.append(other_frame) for other_frame in to_be_deleted: del self._coefficients[other_frame] def __getitem__(self, args): r""" Return the connection coefficient w.r.t. some frame corresponding to the given indices. INPUT: - ``args`` -- list of indices defining the coefficient; if ``[:]`` is provided, all the coefficients are returned. The frame can be passed as the first item of ``args``; if not, the default frame of the connection's domain is assumed OUTPUT: - the connection coefficient corresponding to the specified frame and indices, as an instance of :class:`~sage.manifolds.chart_func.ChartFunction` (or the list of all connection coefficients if ``args==[:]`` or ``args=[frame,:]``). TESTS:: sage: M = Manifold(2, 'M', start_index=1) sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab.set_coef(X.frame())[1,2,1] = x*y sage: nab.__getitem__((1,2,1)) x*y sage: nab[1,2,1] # equivalent to above x*y sage: type(nab.__getitem__((1,2,1))) <class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'> sage: nab.__getitem__((X.frame(),1,2,1)) x*y sage: nab[X.frame(),1,2,1] # equivalent to above x*y Returning the full set of coefficients:: sage: nab.__getitem__(slice(None)) [[[0, 0], [x*y, 0]], [[0, 0], [0, 0]]] sage: nab[:] # equivalent to above [[[0, 0], [x*y, 0]], [[0, 0], [0, 0]]] sage: nab.__getitem__((X.frame(), slice(None))) [[[0, 0], [x*y, 0]], [[0, 0], [0, 0]]] sage: nab[X.frame(), :] # equivalent to above [[[0, 0], [x*y, 0]], [[0, 0], [0, 0]]] Returning a scalar field:: sage: nab.__getitem__(([1,2,1])) Scalar field on the 2-dimensional differentiable manifold M sage: nab[[1,2,1]] # equivalent to above Scalar field on the 2-dimensional differentiable manifold M sage: nab.__getitem__(([X.frame(),1,2,1])).coord_function() is nab[1,2,1] True """ if isinstance(args, list): # case of [[...]] syntax if isinstance(args[0], (int, Integer, slice)): frame = self._domain._def_frame else: frame = args[0] args = args[1:] else: if isinstance(args, (int, Integer, slice)): frame = self._domain._def_frame elif not isinstance(args[0], (int, Integer, slice)): frame = args[0] args = args[1:] if len(args) == 1: args = args[0] # to accommodate for [e,:] syntax else: frame = self._domain._def_frame return self.coef(frame)[args] def __setitem__(self, args, value): r""" Set the connection coefficient w.r.t. some frame corresponding to the given indices. INPUT: - ``args`` -- list of indices defining the coefficient; if ``[:]`` is provided, all the coefficients are set. The frame can be passed as the first item of ``args``; if not, the default frame of the connection's domain is assumed - ``value`` -- the value to be set or a list of values if ``args = [:]`` TESTS:: sage: M = Manifold(2, 'M', start_index=1) sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab.__setitem__((1,2,1), x*y) sage: nab[:] [[[0, 0], [x*y, 0]], [[0, 0], [0, 0]]] sage: nab[1,2,1] = x*y # equivalent to __setitem__ above sage: nab[:] [[[0, 0], [x*y, 0]], [[0, 0], [0, 0]]] sage: nab.__setitem__((X.frame(),1,2,1), -x^2) sage: nab[1,2,1] -x^2 sage: nab[X.frame(), 1,2,1] = -x^2 # equivalent to __setitem__ above sage: nab[1,2,1] -x^2 Setting all the coefficients at once:: sage: nab.__setitem__(slice(None), ....: [[[-x^2, 0], [x*y, 0]], [[0, 1+y], [0, 0]]]) sage: nab[:] [[[-x^2, 0], [x*y, 0]], [[0, y + 1], [0, 0]]] sage: nab[:] = [[[-x^2, 0], [x*y, 0]], [[0, 1+y], [0, 0]]] # equivalent to above sage: nab[:] [[[-x^2, 0], [x*y, 0]], [[0, y + 1], [0, 0]]] Providing a scalar field as value:: sage: f = M.scalar_field({X: x*y}) sage: nab.__setitem__((1,2,1), f) sage: nab[1,2,1] x*y """ if isinstance(args, list): # case of [[...]] syntax if isinstance(args[0], (int, Integer, slice)): frame = self._domain._def_frame else: frame = args[0] args = args[1:] else: if isinstance(args, (int, Integer, slice)): frame = self._domain._def_frame elif not isinstance(args[0], (int, Integer, slice)): frame = args[0] args = args[1:] if len(args) == 1: args = args[0] # to accommodate for [e,:] syntax else: frame = self._domain._def_frame self.set_coef(frame)[args] = value def display(self, frame=None, chart=None, symbol=None, latex_symbol=None, index_labels=None, index_latex_labels=None, coordinate_labels=True, only_nonzero=True, only_nonredundant=False): r""" Display all the connection coefficients w.r.t. to a given frame, one per line. The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode). INPUT: - ``frame`` -- (default: ``None``) vector frame relative to which the connection coefficients are defined; if ``None``, the default frame of the connection's domain is used - ``chart`` -- (default: ``None``) chart specifying the coordinate expression of the connection coefficients; if ``None``, the default chart of the domain of ``frame`` is used - ``symbol`` -- (default: ``None``) string specifying the symbol of the connection coefficients; if ``None``, 'Gam' is used - ``latex_symbol`` -- (default: ``None``) string specifying the LaTeX symbol for the components; if ``None``, '\\Gamma' is used - ``index_labels`` -- (default: ``None``) list of strings representing the labels of each index; if ``None``, integer labels are used, except if ``frame`` is a coordinate frame and ``coordinate_symbols`` is set to ``True``, in which case the coordinate symbols are used - ``index_latex_labels`` -- (default: ``None``) list of strings representing the LaTeX labels of each index; if ``None``, integer labels are used, except if ``frame`` is a coordinate frame and ``coordinate_symbols`` is set to ``True``, in which case the coordinate LaTeX symbols are used - ``coordinate_labels`` -- (default: ``True``) boolean; if ``True``, coordinate symbols are used by default (instead of integers) as index labels whenever ``frame`` is a coordinate frame - ``only_nonzero`` -- (default: ``True``) boolean; if ``True``, only nonzero connection coefficients are displayed - ``only_nonredundant`` -- (default: ``False``) boolean; if ``True``, only nonredundant connection coefficients are displayed in case of symmetries EXAMPLES: Coefficients of a connection on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[1,1,2], nab[3,2,3] = x^2, y*z By default, only the nonzero connection coefficients are displayed:: sage: nab.display() Gam^x_xy = x^2 Gam^z_yz = y*z sage: latex(nab.display()) \begin{array}{lcl} \Gamma_{ \phantom{\, x} \, x \, y }^{ \, x \phantom{\, x} \phantom{\, y} } & = & x^{2} \\ \Gamma_{ \phantom{\, z} \, y \, z }^{ \, z \phantom{\, y} \phantom{\, z} } & = & y z \end{array} By default, the displayed connection coefficients are those w.r.t. to the default frame of the connection's domain, so the above is equivalent to:: sage: nab.display(frame=M.default_frame()) Gam^x_xy = x^2 Gam^z_yz = y*z Since the default frame is a coordinate frame, coordinate symbols are used to label the indices, but one may ask for integers instead:: sage: M.default_frame() is c_xyz.frame() True sage: nab.display(coordinate_labels=False) Gam^1_12 = x^2 Gam^3_23 = y*z The index labels can also be customized:: sage: nab.display(index_labels=['(1)', '(2)', '(3)']) Gam^(1)_(1),(2) = x^2 Gam^(3)_(2),(3) = y*z The symbol 'Gam' can be changed:: sage: nab.display(symbol='C', latex_symbol='C') C^x_xy = x^2 C^z_yz = y*z sage: latex(nab.display(symbol='C', latex_symbol='C')) \begin{array}{lcl} C_{ \phantom{\, x} \, x \, y }^{ \, x \phantom{\, x} \phantom{\, y} } & = & x^{2} \\ C_{ \phantom{\, z} \, y \, z }^{ \, z \phantom{\, y} \phantom{\, z} } & = & y z \end{array} Display of Christoffel symbols, skipping the redundancy associated with the symmetry of the last two indices:: sage: M = Manifold(3, 'R^3', start_index=1) sage: c_spher.<r,th,ph> = M.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') sage: g = M.metric('g') sage: g[1,1], g[2,2], g[3,3] = 1, r^2 , (r*sin(th))^2 sage: g.display() g = dr*dr + r^2 dth*dth + r^2*sin(th)^2 dph*dph sage: g.connection().display(only_nonredundant=True) Gam^r_th,th = -r Gam^r_ph,ph = -r*sin(th)^2 Gam^th_r,th = 1/r Gam^th_ph,ph = -cos(th)*sin(th) Gam^ph_r,ph = 1/r Gam^ph_th,ph = cos(th)/sin(th) By default, the parameter ``only_nonredundant`` is set to ``False``:: sage: g.connection().display() Gam^r_th,th = -r Gam^r_ph,ph = -r*sin(th)^2 Gam^th_r,th = 1/r Gam^th_th,r = 1/r Gam^th_ph,ph = -cos(th)*sin(th) Gam^ph_r,ph = 1/r Gam^ph_th,ph = cos(th)/sin(th) Gam^ph_ph,r = 1/r Gam^ph_ph,th = cos(th)/sin(th) """ from sage.misc.latex import latex from sage.manifolds.differentiable.vectorframe import CoordFrame if frame is None: frame = self._domain.default_frame() if chart is None: chart = frame.domain().default_chart() if symbol is None: symbol = 'Gam' if latex_symbol is None: latex_symbol = r'\Gamma' if index_labels is None and isinstance(frame, CoordFrame) and \ coordinate_labels: ch = frame.chart() index_labels = [str(z) for z in ch[:]] index_latex_labels = [latex(z) for z in ch[:]] return self.coef(frame=frame).display(symbol, latex_symbol=latex_symbol, index_positions='udd', index_labels=index_labels, index_latex_labels=index_latex_labels, format_spec=chart, only_nonzero=only_nonzero, only_nonredundant=only_nonredundant) def restrict(self, subdomain): r""" Return the restriction of the connection to some subdomain. If such restriction has not been defined yet, it is constructed here. INPUT: - ``subdomain`` -- open subset `U` of the connection's domain (must be an instance of :class:`~sage.manifolds.differentiable.manifold.DifferentiableManifold`) OUTPUT: - instance of :class:`AffineConnection` representing the restriction. EXAMPLES: Restriction of a connection on a 2-dimensional manifold:: sage: M = Manifold(2, 'M', start_index=1) sage: c_xy.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[1,1,2], nab[2,1,1] = x^2, x+y sage: nab[:] [[[0, x^2], [0, 0]], [[x + y, 0], [0, 0]]] sage: U = M.open_subset('U', coord_def={c_xy: x>0}) sage: nabU = nab.restrict(U) ; nabU Affine connection nabla on the Open subset U of the 2-dimensional differentiable manifold M sage: nabU.domain() Open subset U of the 2-dimensional differentiable manifold M sage: nabU[:] [[[0, x^2], [0, 0]], [[x + y, 0], [0, 0]]] The result is cached:: sage: nab.restrict(U) is nabU True until the connection is modified:: sage: nab[1,2,2] = -y sage: nab.restrict(U) is nabU False sage: nab.restrict(U)[:] [[[0, x^2], [0, -y]], [[x + y, 0], [0, 0]]] """ if subdomain == self._domain: return self if subdomain not in self._restrictions: if not subdomain.is_subset(self._domain): raise ValueError("The provided domains is not a subset of " + "the connection's domain.") resu = AffineConnection(subdomain, name=self._name, latex_name=self._latex_name) for frame in self._coefficients: for sframe in subdomain._top_frames: if sframe in frame._subframes: comp_store = self._coefficients[frame]._comp scoef = resu._new_coef(sframe) scomp_store = scoef._comp # the coefficients of the restriction are evaluated # index by index: for ind, value in comp_store.items(): scomp_store[ind] = value.restrict(sframe._domain) resu._coefficients[sframe] = scoef if self._torsion is not None: resu._torsion = self._torsion.restrict(subdomain) if self._riemann is not None: resu._riemann = self._riemann.restrict(subdomain) if self._ricci is not None: resu._ricci = self._ricci.restrict(subdomain) self._restrictions[subdomain] = resu return self._restrictions[subdomain] def _common_frame(self, other): r""" Find a common vector frame for the coefficients of ``self`` and the components of ``other``. In case of multiple common frames, the default frame of ``self``'s domain is privileged. INPUT: - ``other`` -- a tensor field on parallelizable domain, as an instance of :class:`~sage.manifolds.differentiable.tensorfield_paral.TensorFieldParal` OUTPUT: - common frame; if no common frame is found, None is returned. TESTS:: sage: M = Manifold(2, 'M', start_index=1) sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab[1,2,1] = x*y sage: v = M.vector_field() sage: v[:] = [-y, x] sage: nab._common_frame(v) Coordinate frame (M, (d/dx,d/dy)) sage: e = M.vector_frame('e') sage: u = M.vector_field() sage: u[e,:] = [-3, 2] sage: nab._common_frame(u) # no common frame is found """ # The domain of search is restricted to other._domain: dom = other._domain # 1/ Does each object have components on the domain's default frame ? def_frame = dom._def_frame if def_frame in self._coefficients and def_frame in other._components: return def_frame # 2/ Search for a common frame among the existing components, i.e. # without performing any component transformation. # ------------------------------------------------------------- for frame in self._coefficients: if frame in other._components: return frame # 3/ Search for a common frame among the subframes of self's frames: # -------------------------------------------------------------- for frame in self._coefficients: for oframe in other._components: if oframe in frame._subframes: self.coef(oframe) # update the coefficients of self in oframe return oframe # # 4/ Search for a common frame via one component transformation # ---------------------------------------------------------- # If this point is reached, it is necessary to perform at least # one component transformation to get a common frame for frame in self._coefficients: for oframe in other._components: if (oframe, frame) in dom._frame_changes: other.comp(frame, from_basis=oframe) return frame # 5/ Search for a common frame via one component transformation to # a subframe of self's frames: # ------------------------------------------------------------- for frame in self._coefficients: for oframe in other._components: for sframe in frame._subframes: if (oframe, sframe) in dom._frame_changes: self.coef(sframe) other.comp(sframe, from_basis=oframe) return sframe # # If this point is reached, no common frame could be found, even at # the price of a component transformation: return None def __call__(self, tensor): r""" Action of the connection on a tensor field. INPUT: - ``tensor`` -- a tensor field `T`, of type `(k,\ell)` OUTPUT: - tensor field `\nabla T`. TESTS:: sage: M = Manifold(2, 'M', start_index=1) sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab[1,2,1] = x*y sage: v = M.vector_field() sage: v[:] = [-y, x] sage: nab.__call__(v) Tensor field of type (1,1) on the 2-dimensional differentiable manifold M See documentation of :class:`~sage.manifolds.differentiable.affine_connection.AffineConnection` for more examples. """ from sage.manifolds.differentiable.tensorfield_paral import \ TensorFieldParal from sage.tensor.modules.format_utilities import format_unop_latex dom_resu = self._domain.intersection(tensor._domain) tensor_r = tensor.restrict(dom_resu) if tensor_r._tensor_type == (0,0): # scalar field case return tensor_r.differential() if isinstance(tensor_r, TensorFieldParal): return self._derive_paral(tensor_r) resu_rst = [] for dom, rst in tensor_r._restrictions.items(): # the computation is performed only if dom is not a subdomain # of another restriction: for odom in tensor_r._restrictions: if dom in odom._subsets and dom is not odom: break else: # dom is a not a subdomain and the computation is performed: resu_rst.append(self.__call__(rst)) tensor_type_resu = (tensor_r._tensor_type[0], tensor_r._tensor_type[1]+1) if tensor_r._name is None: name_resu = None else: name_resu = self._name + '(' + tensor_r._name + ')' if tensor_r._latex_name is None: latex_name_resu = None else: latex_name_resu = format_unop_latex(self._latex_name + ' ', tensor_r._latex_name) vmodule = dom_resu.vector_field_module() resu = vmodule.tensor(tensor_type_resu, name=name_resu, latex_name=latex_name_resu, sym=resu_rst[0]._sym, antisym=resu_rst[0]._antisym) for rst in resu_rst: resu._restrictions[rst._domain] = rst return resu def _derive_paral(self, tensor): r""" Action of the connection on a tensor field on a parallelizable domain. INPUT: - ``tensor`` -- a tensor field `T`, of type `(k,\ell)` OUTPUT: - tensor field `\nabla T`. TESTS:: sage: M = Manifold(2, 'M', start_index=1) sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: nab[1,2,1] = x*y sage: v = M.vector_field() sage: v[:] = [-y, x] sage: nab._derive_paral(v) Tensor field of type (1,1) on the 2-dimensional differentiable manifold M """ from sage.manifolds.differentiable.scalarfield import DiffScalarField from sage.tensor.modules.comp import Components, CompWithSym from sage.tensor.modules.format_utilities import format_unop_latex manif = self._domain tdom = tensor._domain frame = self._common_frame(tensor) if frame is None: raise ValueError("no common frame found for the computation") # Component computation in the common frame: tc = tensor._components[frame] gam = self._coefficients[frame] if not tensor._sym and not tensor._antisym: resc = Components(tdom.scalar_field_algebra(), frame, tensor._tensor_rank+1, start_index=self._domain._sindex, output_formatter=DiffScalarField.coord_function) else: resc = CompWithSym(tdom.scalar_field_algebra(), frame, tensor._tensor_rank+1, start_index=self._domain._sindex, output_formatter=DiffScalarField.coord_function, sym=tensor._sym, antisym=tensor._antisym) n_con = tensor._tensor_type[0] n_cov = tensor._tensor_type[1] if Parallelism().get('tensor') != 1: # parallel computation # !!!!! Seems to work only when a frame is chosen !!!!!! nproc = Parallelism().get('tensor') lol = lambda lst, sz: [lst[i:i+sz] for i in range(0, len(lst), sz)] ind_list = list(resc.non_redundant_index_generator()) ind_step = max(1,int(len(ind_list)/nproc/2)) local_list = lol(ind_list,ind_step) # definition of the list of input parameters listParalInput = [] for ind_part in local_list: listParalInput.append((ind_part,tc,gam,frame,n_con, tensor._tensor_rank,manif)) # definition of the parallel function @parallel(p_iter='multiprocessing',ncpus=nproc) def make_CovDerivative(ind_part,tc,gam,frame,n_con,rank,manif): partial = [] for ind in ind_part: p = ind[-1] # derivation index ind0 = ind[:-1] rsum = frame[p](tc[[ind0]]) # loop on contravariant indices: for k in range(n_con): for i in manif.irange(): indk = list(ind0) indk[k] = i rsum += gam[[ind0[k], i, p]] * tc[[indk]] # loop on covariant indices: for k in range(n_con, rank): for i in manif.irange(): indk = list(ind0) indk[k] = i rsum -= gam[[i, ind0[k], p]] * tc[[indk]] partial.append([ind,rsum]) return partial # Computation and Assignation of values for ii,val in make_CovDerivative(listParalInput): for jj in val: resc[[jj[0]]] = jj[1] else: # sequential for ind in resc.non_redundant_index_generator(): p = ind[-1] # derivation index ind0 = ind[:-1] rsum = frame[p](tc[[ind0]]) # loop on contravariant indices: for k in range(n_con): for i in manif.irange(): indk = list(ind0) indk[k] = i rsum += gam[[ind0[k], i, p]] * tc[[indk]] # loop on covariant indices: for k in range(n_con, tensor._tensor_rank): for i in manif.irange(): indk = list(ind0) indk[k] = i rsum -= gam[[i, ind0[k], p]] * tc[[indk]] resc[[ind]] = rsum # Resulting tensor field if tensor._name is None: name_resu = None else: name_resu = self._name + '(' + tensor._name + ')' if tensor._latex_name is None: latex_name_resu = None else: latex_name_resu = format_unop_latex(self._latex_name + ' ', tensor._latex_name) return tdom.vector_field_module().tensor_from_comp((n_con, n_cov+1), resc, name=name_resu, latex_name=latex_name_resu) def torsion(self): r""" Return the connection's torsion tensor. The torsion tensor is the tensor field `T` of type (1,2) defined by .. MATH:: T(\omega, u, v) = \left\langle \omega, \nabla_u v - \nabla_v u - [u, v] \right\rangle for any 1-form `\omega` and any vector fields `u` and `v`. OUTPUT: - the torsion tensor `T`, as an instance of :class:`~sage.manifolds.differentiable.tensorfield.TensorField` EXAMPLES: Torsion of an affine connection on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} = yz sage: t = nab.torsion() ; t Tensor field of type (1,2) on the 3-dimensional differentiable manifold M sage: t.symmetries() no symmetry; antisymmetry: (1, 2) sage: t[:] [[[0, -x^2, 0], [x^2, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, -y*z], [0, y*z, 0]]] The torsion expresses the lack of commutativity of two successive derivatives of a scalar field:: sage: f = M.scalar_field(x*z^2 + y^2 - z^2, name='f') sage: DDf = nab(nab(f)) ; DDf Tensor field nabla(df) of type (0,2) on the 3-dimensional differentiable manifold M sage: DDf.antisymmetrize()[:] # two successive derivatives do not commute: [ 0 -1/2*x^2*z^2 0] [ 1/2*x^2*z^2 0 -(x - 1)*y*z^2] [ 0 (x - 1)*y*z^2 0] sage: 2*DDf.antisymmetrize() == nab.torsion().contract(0,nab(f)) True The above identity is the standard formula .. MATH:: \nabla_j \nabla_i \, f - \nabla_i \nabla_j \, f = T^k_{\ \, ij} \nabla_k \, f , where the `T^k_{\ \, ij}`'s are the components of the torsion tensor. The result is cached:: sage: nab.torsion() is t True as long as the connection remains unchanged:: sage: nab[2,1,3] = 1+x # changing the connection sage: nab.torsion() is t # a new computation of the torsion has been made False sage: (nab.torsion() - t).display() (-x - 1) d/dy*dx*dz + (x + 1) d/dy*dz*dx Another example: torsion of some connection on a non-parallelizable 2-dimensional manifold:: sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name='W', ....: restrictions1= x>0, restrictions2= u+v>0) sage: inv = transf.inverse() sage: W = U.intersection(V) sage: eU = c_xy.frame() ; eV = c_uv.frame() sage: c_xyW = c_xy.restrict(W) ; c_uvW = c_uv.restrict(W) sage: eUW = c_xyW.frame() ; eVW = c_uvW.frame() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[0,0,0], nab[0,1,0], nab[1,0,1] = x, x-y, x*y sage: for i in M.irange(): ....: for j in M.irange(): ....: for k in M.irange(): ....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr() sage: t = nab.torsion() ; t Tensor field of type (1,2) on the 2-dimensional differentiable manifold M sage: t.parent() Module T^(1,2)(M) of type-(1,2) tensors fields on the 2-dimensional differentiable manifold M sage: t[eU,:] [[[0, x - y], [-x + y, 0]], [[0, -x*y], [x*y, 0]]] sage: t[eV,:] [[[0, 1/8*u^2 - 1/8*v^2 - 1/2*v], [-1/8*u^2 + 1/8*v^2 + 1/2*v, 0]], [[0, -1/8*u^2 + 1/8*v^2 - 1/2*v], [1/8*u^2 - 1/8*v^2 + 1/2*v, 0]]] Check of the torsion formula:: sage: f = M.scalar_field({c_xy: (x+y)^2, c_uv: u^2}, name='f') sage: DDf = nab(nab(f)) ; DDf Tensor field nabla(df) of type (0,2) on the 2-dimensional differentiable manifold M sage: DDf.antisymmetrize().display(eU) (-x^2*y - (x + 1)*y^2 + x^2) dx/\dy sage: DDf.antisymmetrize().display(eV) (1/8*u^3 - 1/8*u*v^2 - 1/2*u*v) du/\dv sage: 2*DDf.antisymmetrize() == nab(f).contract(nab.torsion()) True """ if self._torsion is None: manif = self._domain resu = self._domain.tensor_field(1, 2, antisym=(1,2)) for frame, gam in self._coefficients.items(): sc = frame.structure_coeff() res = resu.add_comp(frame) for k in manif.irange(): for i in manif.irange(): for j in manif.irange(start=i+1): res[[k,i,j]] = gam[[k,j,i]] - gam[[k,i,j]] - \ sc[[k,i,j]] self._torsion = resu return self._torsion def riemann(self): r""" Return the connection's Riemann curvature tensor. The *Riemann curvature tensor* is the tensor field `R` of type (1,3) defined by .. MATH:: R(\omega, w, u, v) = \left\langle \omega, \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u, v]} w \right\rangle for any 1-form `\omega` and any vector fields `u`, `v` and `w`. OUTPUT: - the Riemann curvature tensor `R`, as an instance of :class:`~sage.manifolds.differentiable.tensorfield.TensorField` EXAMPLES: Curvature of an affine connection on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') ; nab Affine connection nabla on the 3-dimensional differentiable manifold M sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} = yz sage: r = nab.riemann() ; r Tensor field of type (1,3) on the 3-dimensional differentiable manifold M sage: r.parent() Free module T^(1,3)(M) of type-(1,3) tensors fields on the 3-dimensional differentiable manifold M By construction, the Riemann tensor is antisymmetric with respect to its last two arguments (denoted `u` and `v` in the definition above), which are at positions 2 and 3 (the first argument being at position 0):: sage: r.symmetries() no symmetry; antisymmetry: (2, 3) The components:: sage: r[:] [[[[0, 2*x, 0], [-2*x, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, z], [0, -z, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]] The result is cached (until the connection is modified via :meth:`set_coef` or :meth:`add_coef`):: sage: nab.riemann() is r True Another example: Riemann curvature tensor of some connection on a non-parallelizable 2-dimensional manifold:: sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), intersection_name='W', ....: restrictions1= x>0, restrictions2= u+v>0) sage: inv = transf.inverse() sage: W = U.intersection(V) sage: eU = c_xy.frame() ; eV = c_uv.frame() sage: c_xyW = c_xy.restrict(W) ; c_uvW = c_uv.restrict(W) sage: eUW = c_xyW.frame() ; eVW = c_uvW.frame() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[0,0,0], nab[0,1,0], nab[1,0,1] = x, x-y, x*y sage: for i in M.irange(): ....: for j in M.irange(): ....: for k in M.irange(): ....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr() sage: r = nab.riemann() ; r Tensor field of type (1,3) on the 2-dimensional differentiable manifold M sage: r.parent() Module T^(1,3)(M) of type-(1,3) tensors fields on the 2-dimensional differentiable manifold M sage: r.display(eU) (x^2*y - x*y^2) d/dx*dx*dx*dy + (-x^2*y + x*y^2) d/dx*dx*dy*dx + d/dx*dy*dx*dy - d/dx*dy*dy*dx - (x^2 - 1)*y d/dy*dx*dx*dy + (x^2 - 1)*y d/dy*dx*dy*dx + (-x^2*y + x*y^2) d/dy*dy*dx*dy + (x^2*y - x*y^2) d/dy*dy*dy*dx sage: r.display(eV) (1/32*u^3 - 1/32*u*v^2 - 1/32*v^3 + 1/32*(u^2 + 4)*v - 1/8*u - 1/4) d/du*du*du*dv + (-1/32*u^3 + 1/32*u*v^2 + 1/32*v^3 - 1/32*(u^2 + 4)*v + 1/8*u + 1/4) d/du*du*dv*du + (1/32*u^3 - 1/32*u*v^2 + 3/32*v^3 - 1/32*(3*u^2 - 4)*v - 1/8*u + 1/4) d/du*dv*du*dv + (-1/32*u^3 + 1/32*u*v^2 - 3/32*v^3 + 1/32*(3*u^2 - 4)*v + 1/8*u - 1/4) d/du*dv*dv*du + (-1/32*u^3 + 1/32*u*v^2 + 5/32*v^3 - 1/32*(5*u^2 + 4)*v + 1/8*u - 1/4) d/dv*du*du*dv + (1/32*u^3 - 1/32*u*v^2 - 5/32*v^3 + 1/32*(5*u^2 + 4)*v - 1/8*u + 1/4) d/dv*du*dv*du + (-1/32*u^3 + 1/32*u*v^2 + 1/32*v^3 - 1/32*(u^2 + 4)*v + 1/8*u + 1/4) d/dv*dv*du*dv + (1/32*u^3 - 1/32*u*v^2 - 1/32*v^3 + 1/32*(u^2 + 4)*v - 1/8*u - 1/4) d/dv*dv*dv*du The same computation parallelized on 2 cores:: sage: Parallelism().set(nproc=2) sage: r_backup = r sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[0,0,0], nab[0,1,0], nab[1,0,1] = x, x-y, x*y sage: for i in M.irange(): ....: for j in M.irange(): ....: for k in M.irange(): ....: nab.add_coef(eV)[i,j,k] = nab.coef(eVW)[i,j,k,c_uvW].expr() sage: r = nab.riemann() ; r Tensor field of type (1,3) on the 2-dimensional differentiable manifold M sage: r.parent() Module T^(1,3)(M) of type-(1,3) tensors fields on the 2-dimensional differentiable manifold M sage: r == r_backup True sage: Parallelism().set(nproc=1) # switch off parallelization """ if self._riemann is None: manif = self._domain resu = self._domain.tensor_field(1, 3, antisym=(2,3)) for frame, gam in self._coefficients.items(): # The computation is performed only on the top frames: for oframe in self._coefficients: if frame in oframe._subframes and frame is not oframe: break else: # frame in not a subframe and the computation is performed: sc = frame.structure_coeff() gam_gam = gam.contract(1, gam, 0) gam_sc = gam.contract(2, sc, 0) res = resu.add_comp(frame) if Parallelism().get('tensor') != 1: # parallel computation nproc = Parallelism().get('tensor') lol = lambda lst, sz: [lst[i:i+sz] for i in range(0, len(lst), sz)] ind_list = [] for i in manif.irange(): for j in manif.irange(): ind_list.append((i,j)) ind_step = max(1,int(len(ind_list)/nproc/2)) local_list = lol(ind_list,ind_step) # definition of the list of input parameters listParalInput = [] for ind_part in local_list: listParalInput.append((frame,gam,gam_gam,gam_sc, manif.irange,ind_part)) # definition of the parallel function @parallel(p_iter='multiprocessing',ncpus=nproc) def make_Reim(frame,gam,gam_gam,gam_sc,indices, local_list_ij): partial = [] for i,j in local_list_ij: for k in indices(): for l in indices(start=k+1): partial.append([i,j,k,l, frame[k](gam[[i,j,l]]) - \ frame[l](gam[[i,j,k]]) + \ gam_gam[[i,k,j,l]] - \ gam_gam[[i,l,j,k]] - \ gam_sc[[i,j,k,l]]] ) return partial # Computation and assignation of values for ii,val in make_Reim(listParalInput): for jj in val: res[jj[0],jj[1],jj[2],jj[3]] = jj[4] else: # sequential for i in manif.irange(): for j in manif.irange(): for k in manif.irange(): # antisymmetry of the Riemann tensor taken # into account by l>k: for l in manif.irange(start=k+1): res[i,j,k,l] = frame[k](gam[[i,j,l]]) - \ frame[l](gam[[i,j,k]]) + \ gam_gam[[i,k,j,l]] - \ gam_gam[[i,l,j,k]] - \ gam_sc[[i,j,k,l]] self._riemann = resu return self._riemann def ricci(self): r""" Return the connection's Ricci tensor. The *Ricci tensor* is the tensor field `Ric` of type (0,2) defined from the Riemann curvature tensor `R` by .. MATH:: Ric(u, v) = R(e^i, u, e_i, v) for any vector fields `u` and `v`, `(e_i)` being any vector frame and `(e^i)` the dual coframe. OUTPUT: - the Ricci tensor `Ric`, as an instance of :class:`~sage.manifolds.differentiable.tensorfield.TensorField` EXAMPLES: Ricci tensor of an affine connection on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') ; nab Affine connection nabla on the 3-dimensional differentiable manifold M sage: nab[1,1,2], nab[3,2,3] = x^2, y*z # Gamma^1_{12} = x^2, Gamma^3_{23} = yz sage: r = nab.ricci() ; r Tensor field of type (0,2) on the 3-dimensional differentiable manifold M sage: r[:] [ 0 2*x 0] [ 0 -z 0] [ 0 0 0] The result is cached (until the connection is modified via :meth:`set_coef` or :meth:`add_coef`):: sage: nab.ricci() is r True """ if self._ricci is None: self._ricci = self.riemann().trace(0,2) return self._ricci def connection_form(self, i, j, frame=None): r""" Return the connection 1-form corresponding to the given index and vector frame. The *connection 1-forms* with respect to the frame `(e_i)` are the `n^2` 1-forms `\omega^i_{\ \, j}` defined by .. MATH:: \nabla_v e_j = \langle \omega^i_{\ \, j}, v \rangle \, e_i for any vector `v`. The components of `\omega^i_{\ \, j}` in the coframe `(e^i)` dual to `(e_i)` are nothing but the connection coefficients `\Gamma^i_{\ \, jk}` relative to the frame `(e_i)`: .. MATH:: \omega^i_{\ \, j} = \Gamma^i_{\ \, jk} e^k INPUT: - ``i``, ``j`` -- indices identifying the 1-form `\omega^i_{\ \, j}` - ``frame`` -- (default: ``None``) vector frame relative to which the connection 1-forms are defined; if ``None``, the default frame of the connection's domain is assumed. OUTPUT: - the 1-form `\omega^i_{\ \, j}`, as an instance of :class:`~sage.manifolds.differentiable.diff_form.DiffForm` EXAMPLES: Connection 1-forms on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[1,1,1], nab[1,1,2], nab[1,1,3] = x*y*z, x^2, -y*z sage: nab[1,2,3], nab[1,3,1], nab[1,3,2] = -x^3, y^2*z, y^2-x^2 sage: nab[2,1,1], nab[2,1,2], nab[2,2,1] = z^2, x*y*z^2, -x^2 sage: nab[2,3,1], nab[2,3,3], nab[3,1,2] = x^2+y^2+z^2, y^2-z^2, x*y+z^2 sage: nab[3,2,1], nab[3,2,2], nab[3,3,3] = x*y+z, z^3 -y^2, x*z^2 - z*y^2 sage: nab.connection_form(1,1) # connection 1-form (i,j)=(1,1) w.r.t. M's default frame 1-form nabla connection 1-form (1,1) on the 3-dimensional differentiable manifold M sage: nab.connection_form(1,1)[:] [x*y*z, x^2, -y*z] The result is cached (until the connection is modified via :meth:`set_coef` or :meth:`add_coef`):: sage: nab.connection_form(1,1) is nab.connection_form(1,1) True Connection 1-forms w.r.t. a non-holonomic frame:: sage: ch_basis = M.automorphism_field() sage: ch_basis[1,1], ch_basis[2,2], ch_basis[3,3] = y, z, x sage: e = M.default_frame().new_frame(ch_basis, 'e') sage: e[1][:], e[2][:], e[3][:] ([y, 0, 0], [0, z, 0], [0, 0, x]) sage: nab.connection_form(1,1,e) 1-form nabla connection 1-form (1,1) on the 3-dimensional differentiable manifold M sage: nab.connection_form(1,1,e).comp(e)[:] [x*y^2*z, (x^2*y + 1)*z/y, -x*y*z] Check of the formula `\omega^i_{\ \, j} = \Gamma^i_{\ \, jk} e^k`: First on the manifold's default frame (d/dx, d/dy, d:dz):: sage: dx = M.default_frame().coframe() ; dx Coordinate coframe (M, (dx,dy,dz)) sage: check = [] sage: for i in M.irange(): ....: for j in M.irange(): ....: check.append( nab.connection_form(i,j) == \ ....: sum( nab[[i,j,k]]*dx[k] for k in M.irange() ) ) sage: check [True, True, True, True, True, True, True, True, True] Then on the frame e:: sage: ef = e.coframe() ; ef Coframe (M, (e^1,e^2,e^3)) sage: check = [] sage: for i in M.irange(): ....: for j in M.irange(): ....: s = nab.connection_form(i,j,e).comp(c_xyz.frame(), from_basis=e) ....: check.append( nab.connection_form(i,j,e) == sum( nab.coef(e)[[i,j,k]]*ef[k] for k in M.irange() ) ) sage: check [True, True, True, True, True, True, True, True, True] Check of the formula `\nabla_v e_j = \langle \omega^i_{\ \, j}, v \rangle e_i`:: sage: v = M.vector_field() sage: v[:] = (x*y, z^2-3*x, z+2*y) sage: b = M.default_frame() sage: for j in M.irange(): # check on M's default frame ....: nab(b[j]).contract(v) == \ ....: sum( nab.connection_form(i,j)(v)*b[i] for i in M.irange()) True True True sage: for j in M.irange(): # check on frame e ....: nab(e[j]).contract(v) == \ ....: sum( nab.connection_form(i,j,e)(v)*e[i] for i in M.irange()) True True True """ if frame is None: frame = self._domain._def_frame if frame not in self._connection_forms: forms = {} frame_dom = frame.domain() coef_frame = self.coef(frame) for i1 in self._domain.irange(): for j1 in self._domain.irange(): name = self._name + " connection 1-form (" + str(i1) + \ "," + str(j1) + ")" latex_name = r"\omega^" + str(i1) + r"_{\ \, " + \ str(j1) + "}" omega = frame_dom.one_form(name=name, latex_name=latex_name) comega = omega.set_comp(frame) for k in self._domain.irange(): comega[k] = coef_frame[[i1,j1,k]] forms[(i1,j1)] = omega self._connection_forms[frame] = forms return self._connection_forms[frame][(i,j)] def torsion_form(self, i, frame=None): r""" Return the torsion 2-form corresponding to the given index and vector frame. The *torsion 2-forms* with respect to the frame `(e_i)` are the `n` 2-forms `\theta^i` defined by .. MATH:: \theta^i(u,v) = T(e^i, u, v) where `T` is the connection's torsion tensor (cf. :meth:`torsion`), `(e^i)` is the coframe dual to `(e_i)` and `(u,v)` is a generic pair of vectors. INPUT: - ``i`` -- index identifying the 2-form `\theta^i` - ``frame`` -- (default: ``None``) vector frame relative to which the torsion 2-forms are defined; if ``None``, the default frame of the connection's domain is assumed. OUTPUT: - the 2-form `\theta^i`, as an instance of :class:`~sage.manifolds.differentiable.diff_form.DiffForm` EXAMPLES: Torsion 2-forms on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[1,1,1], nab[1,1,2], nab[1,1,3] = x*y*z, x^2, -y*z sage: nab[1,2,3], nab[1,3,1], nab[1,3,2] = -x^3, y^2*z, y^2-x^2 sage: nab[2,1,1], nab[2,1,2], nab[2,2,1] = z^2, x*y*z^2, -x^2 sage: nab[2,3,1], nab[2,3,3], nab[3,1,2] = x^2+y^2+z^2, y^2-z^2, x*y+z^2 sage: nab[3,2,1], nab[3,2,2], nab[3,3,3] = x*y+z, z^3 -y^2, x*z^2 - z*y^2 sage: nab.torsion_form(1) 2-form torsion (1) of connection nabla w.r.t. Coordinate frame (M, (d/dx,d/dy,d/dz)) on the 3-dimensional differentiable manifold M sage: nab.torsion_form(1)[:] [ 0 -x^2 (y^2 + y)*z] [ x^2 0 x^3 - x^2 + y^2] [ -(y^2 + y)*z -x^3 + x^2 - y^2 0] Torsion 2-forms w.r.t. a non-holonomic frame:: sage: ch_basis = M.automorphism_field() sage: ch_basis[1,1], ch_basis[2,2], ch_basis[3,3] = y, z, x sage: e = M.default_frame().new_frame(ch_basis, 'e') sage: e[1][:], e[2][:], e[3][:] ([y, 0, 0], [0, z, 0], [0, 0, x]) sage: ef = e.coframe() sage: ef[1][:], ef[2][:], ef[3][:] ([1/y, 0, 0], [0, 1/z, 0], [0, 0, 1/x]) sage: nab.torsion_form(1, e) 2-form torsion (1) of connection nabla w.r.t. Vector frame (M, (e_1,e_2,e_3)) on the 3-dimensional differentiable manifold M sage: nab.torsion_form(1, e).comp(e)[:] [ 0 -x^2*z (x*y^2 + x*y)*z] [ x^2*z 0 (x^4 - x^3 + x*y^2)*z/y] [ -(x*y^2 + x*y)*z -(x^4 - x^3 + x*y^2)*z/y 0] Cartan's first structure equation is .. MATH:: \theta^i = \mathrm{d} e^i + \omega^i_{\ \, j} \wedge e^j where the `\omega^i_{\ \, j}`'s are the connection 1-forms (cf. :meth:`connection_form`). Let us check it on the frame e:: sage: for i in M.irange(): # long time ....: nab.torsion_form(i, e) == ef[i].exterior_derivative() + \ ....: sum(nab.connection_form(i,j,e).wedge(ef[j]) for j in M.irange()) True True True """ if frame is None: frame = self._domain._def_frame if frame not in self._torsion_forms: forms = {} frame_dom = frame.domain() torsion_comp = self.torsion().comp(frame) for i1 in self._domain.irange(): name = "torsion ({}) of connection ".format(i1) + \ self._name + " w.r.t. {}".format(frame) latex_name = r"\theta^" + str(i1) theta = frame_dom.diff_form(2, name=name, latex_name=latex_name) ctheta = theta.set_comp(frame) for k in self._domain.irange(): for l in self._domain.irange(start=k+1): ctheta[k,l] = torsion_comp[[i1,k,l]] forms[i1] = theta self._torsion_forms[frame] = forms return self._torsion_forms[frame][i] def curvature_form(self, i, j, frame=None): r""" Return the curvature 2-form corresponding to the given index and vector frame. The *curvature 2-forms* with respect to the frame `(e_i)` are the `n^2` 2-forms `\Omega^i_{\ \, j}` defined by .. MATH:: \Omega^i_{\ \, j}(u,v) = R(e^i, e_j, u, v) where `R` is the connection's Riemann curvature tensor (cf. :meth:`riemann`), `(e^i)` is the coframe dual to `(e_i)` and `(u,v)` is a generic pair of vectors. INPUT: - ``i``, ``j`` -- indices identifying the 2-form `\Omega^i_{\ \, j}` - ``frame`` -- (default: ``None``) vector frame relative to which the curvature 2-forms are defined; if ``None``, the default frame of the connection's domain is assumed. OUTPUT: - the 2-form `\Omega^i_{\ \, j}`, as an instance of :class:`~sage.manifolds.differentiable.diff_form.DiffForm` EXAMPLES: Curvature 2-forms on a 3-dimensional manifold:: sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: nab = M.affine_connection('nabla', r'\nabla') sage: nab[1,1,1], nab[1,1,2], nab[1,1,3] = x*y*z, x^2, -y*z sage: nab[1,2,3], nab[1,3,1], nab[1,3,2] = -x^3, y^2*z, y^2-x^2 sage: nab[2,1,1], nab[2,1,2], nab[2,2,1] = z^2, x*y*z^2, -x^2 sage: nab[2,3,1], nab[2,3,3], nab[3,1,2] = x^2+y^2+z^2, y^2-z^2, x*y+z^2 sage: nab[3,2,1], nab[3,2,2], nab[3,3,3] = x*y+z, z^3 -y^2, x*z^2 - z*y^2 sage: nab.curvature_form(1,1) # long time 2-form curvature (1,1) of connection nabla w.r.t. Coordinate frame (M, (d/dx,d/dy,d/dz)) on the 3-dimensional differentiable manifold M sage: nab.curvature_form(1,1).display() # long time (if above is skipped) curvature (1,1) of connection nabla w.r.t. Coordinate frame (M, (d/dx,d/dy,d/dz)) = (y^2*z^3 + (x*y^3 - x)*z + 2*x) dx/\dy + (x^3*z^2 - x*y) dx/\dz + (x^4*y*z^2 - z) dy/\dz Curvature 2-forms w.r.t. a non-holonomic frame:: sage: ch_basis = M.automorphism_field() sage: ch_basis[1,1], ch_basis[2,2], ch_basis[3,3] = y, z, x sage: e = M.default_frame().new_frame(ch_basis, 'e') sage: e[1].display(), e[2].display(), e[3].display() (e_1 = y d/dx, e_2 = z d/dy, e_3 = x d/dz) sage: ef = e.coframe() sage: ef[1].display(), ef[2].display(), ef[3].display() (e^1 = 1/y dx, e^2 = 1/z dy, e^3 = 1/x dz) sage: nab.curvature_form(1,1,e) # long time 2-form curvature (1,1) of connection nabla w.r.t. Vector frame (M, (e_1,e_2,e_3)) on the 3-dimensional differentiable manifold M sage: nab.curvature_form(1,1,e).display(e) # long time (if above is skipped) curvature (1,1) of connection nabla w.r.t. Vector frame (M, (e_1,e_2,e_3)) = (y^3*z^4 + 2*x*y*z + (x*y^4 - x*y)*z^2) e^1/\e^2 + (x^4*y*z^2 - x^2*y^2) e^1/\e^3 + (x^5*y*z^3 - x*z^2) e^2/\e^3 Cartan's second structure equation is .. MATH:: \Omega^i_{\ \, j} = \mathrm{d} \omega^i_{\ \, j} + \omega^i_{\ \, k} \wedge \omega^k_{\ \, j} where the `\omega^i_{\ \, j}`'s are the connection 1-forms (cf. :meth:`connection_form`). Let us check it on the frame e:: sage: omega = nab.connection_form sage: check = [] sage: for i in M.irange(): # long time ....: for j in M.irange(): ....: check.append( nab.curvature_form(i,j,e) == \ ....: omega(i,j,e).exterior_derivative() + \ ....: sum( omega(i,k,e).wedge(omega(k,j,e)) for k in M.irange()) ) sage: check # long time [True, True, True, True, True, True, True, True, True] """ if frame is None: frame = self._domain._def_frame if frame not in self._curvature_forms: forms = {} frame_dom = frame.domain() riemann_comp = self.riemann().comp(frame) for i1 in self._domain.irange(): for j1 in self._domain.irange(): name = "curvature ({},{}) of connection ".format(i1,j1) + \ self._name + " w.r.t. {}".format(frame) latex_name = r"\Omega^" + str(i1) + r"_{\ \, " + \ str(j1) + "}" omega = frame_dom.diff_form(2, name=name, latex_name=latex_name) comega = omega.set_comp(frame) for k in self._domain.irange(): for l in self._domain.irange(start=k+1): comega[k,l] = riemann_comp[[i1,j1,k,l]] forms[(i1,j1)] = omega self._curvature_forms[frame] = forms return self._curvature_forms[frame][(i,j)] def set_calc_order(self, symbol, order, truncate=False): r""" Trigger a series expansion with respect to a small parameter in computations involving ``self``. This property is propagated by usual operations. The internal representation must be ``SR`` for this to take effect. INPUT: - ``symbol`` -- symbolic variable (the "small parameter" `\epsilon`) with respect to which the connection coefficients are expanded in power series - ``order`` -- integer; the order `n` of the expansion, defined as the degree of the polynomial representing the truncated power series in ``symbol`` - ``truncate`` -- (default: ``False``) determines whether the connection coefficients are replaced by their expansions to the given order EXAMPLES:: sage: M = Manifold(4, 'M', structure='Lorentzian') sage: C.<t,x,y,z> = M.chart() sage: e = var('e') sage: g = M.metric() sage: h = M.tensor_field(0, 2, sym=(0,1)) sage: g[0, 0], g[1, 1], g[2, 2], g[3, 3] = -1, 1, 1, 1 sage: h[0, 1] = x sage: g.set(g + e*h) sage: g[:] [ -1 e*x 0 0] [e*x 1 0 0] [ 0 0 1 0] [ 0 0 0 1] sage: nab = g.connection() sage: nab[0, 1, 1] -e/(e^2*x^2 + 1) sage: nab.set_calc_order(e, 1, truncate=True) sage: nab[0, 1, 1] -e """ for coef in self._coefficients.values(): for ind in coef.non_redundant_index_generator(): coef[ind]._expansion_symbol = symbol coef[ind]._order = order if truncate: coef[ind].simplify() self._del_derived() def __hash__(self): r""" Hash function. TESTS:: sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: nab = M.affine_connection('nabla', latex_name=r'\nabla') sage: hash(nab) == nab.__hash__() True Let us check that ``nab`` can be used as a dictionary key:: sage: {nab: 1}[nab] 1 """ if self._hash == -1: self._hash = hash(repr(self)) return self._hash
40.223077
125
0.507777
7266f15f4164e7d6acf5c6103440ac0e1f41341f
1,167
py
Python
setup.py
claymation/django-toggles
a3687701b7494550eb36f14f85b46472c29591df
[ "MIT" ]
3
2016-07-16T09:57:20.000Z
2021-04-03T17:39:49.000Z
setup.py
claymation/django-toggles
a3687701b7494550eb36f14f85b46472c29591df
[ "MIT" ]
1
2016-10-22T18:31:06.000Z
2016-10-22T18:31:06.000Z
setup.py
claymation/django-toggles
a3687701b7494550eb36f14f85b46472c29591df
[ "MIT" ]
null
null
null
import os from setuptools import setup README = open(os.path.join(os.path.dirname(__file__), 'README.md')).read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django-toggles', version='0.1', packages=['toggles'], include_package_data=True, license='MIT License', description='', long_description=README, url='https://github.com/claymation/django-toggles', author='Clay McClure', author_email='clay@daemons.net', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
31.540541
78
0.620394
c33788391d4396f6d763f3c1d0d3dfa12802c660
11,755
py
Python
tests/snappi/pfc/test_pfc_pause_lossy_with_snappi.py
lolyu/sonic-mgmt
ed888fd1ce26e7f44fd7f70af00c43ace4882668
[ "Apache-2.0" ]
132
2016-10-19T12:34:44.000Z
2022-03-16T09:00:39.000Z
tests/snappi/pfc/test_pfc_pause_lossy_with_snappi.py
lolyu/sonic-mgmt
ed888fd1ce26e7f44fd7f70af00c43ace4882668
[ "Apache-2.0" ]
3,152
2016-09-21T23:05:58.000Z
2022-03-31T23:29:08.000Z
tests/snappi/pfc/test_pfc_pause_lossy_with_snappi.py
lolyu/sonic-mgmt
ed888fd1ce26e7f44fd7f70af00c43ace4882668
[ "Apache-2.0" ]
563
2016-09-20T01:00:15.000Z
2022-03-31T22:43:54.000Z
import logging import pytest from files.helper import run_pfc_test from tests.common.helpers.assertions import pytest_assert, pytest_require from tests.common.fixtures.conn_graph_facts import conn_graph_facts,\ fanout_graph_facts from tests.common.snappi.snappi_fixtures import snappi_api_serv_ip, snappi_api_serv_port,\ snappi_api, snappi_testbed_config from tests.common.snappi.qos_fixtures import prio_dscp_map, all_prio_list, lossless_prio_list,\ lossy_prio_list from tests.common.reboot import reboot from tests.common.utilities import wait_until logger = logging.getLogger(__name__) pytestmark = [ pytest.mark.topology('snappi') ] def test_pfc_pause_single_lossy_prio(snappi_api, snappi_testbed_config, conn_graph_facts, fanout_graph_facts, duthosts, rand_one_dut_hostname, rand_one_dut_portname_oper_up, enum_dut_lossy_prio, all_prio_list, prio_dscp_map): """ Test if PFC will impact a single lossy priority Args: snappi_api (pytest fixture): SNAPPI session snappi_testbed_config (pytest fixture): testbed configuration information conn_graph_facts (pytest fixture): connection graph fanout_graph_facts (pytest fixture): fanout graph duthosts (pytest fixture): list of DUTs rand_one_dut_hostname (str): hostname of DUT rand_one_dut_portname_oper_up (str): port to test, e.g., 's6100-1|Ethernet0' enum_dut_lossy_prio (str): name of lossy priority to test, e.g., 's6100-1|2' all_prio_list (pytest fixture): list of all the priorities prio_dscp_map (pytest fixture): priority vs. DSCP map (key = priority). Returns: N/A """ dut_hostname, dut_port = rand_one_dut_portname_oper_up.split('|') dut_hostname2, lossy_prio = enum_dut_lossy_prio.split('|') pytest_require(rand_one_dut_hostname == dut_hostname == dut_hostname2, "Priority and port are not mapped to the expected DUT") testbed_config, port_config_list = snappi_testbed_config duthost = duthosts[rand_one_dut_hostname] lossy_prio = int(lossy_prio) pause_prio_list = [lossy_prio] test_prio_list = [lossy_prio] bg_prio_list = [p for p in all_prio_list] bg_prio_list.remove(lossy_prio) run_pfc_test(api=snappi_api, testbed_config=testbed_config, port_config_list=port_config_list, conn_data=conn_graph_facts, fanout_data=fanout_graph_facts, duthost=duthost, dut_port=dut_port, global_pause=False, pause_prio_list=pause_prio_list, test_prio_list=test_prio_list, bg_prio_list=bg_prio_list, prio_dscp_map=prio_dscp_map, test_traffic_pause=False) def test_pfc_pause_multi_lossy_prio(snappi_api, snappi_testbed_config, conn_graph_facts, fanout_graph_facts, duthosts, rand_one_dut_hostname, rand_one_dut_portname_oper_up, lossless_prio_list, lossy_prio_list, prio_dscp_map): """ Test if PFC will impact multiple lossy priorities Args: snappi_api (pytest fixture): SNAPPI session snappi_testbed_config (pytest fixture): testbed configuration information conn_graph_facts (pytest fixture): connection graph fanout_graph_facts (pytest fixture): fanout graph duthosts (pytest fixture): list of DUTs rand_one_dut_hostname (str): hostname of DUT rand_one_dut_portname_oper_up (str): port to test, e.g., 's6100-1|Ethernet0' lossless_prio_list (pytest fixture): list of all the lossless priorities lossy_prio_list (pytest fixture): list of all the lossy priorities prio_dscp_map (pytest fixture): priority vs. DSCP map (key = priority). Returns: N/A """ dut_hostname, dut_port = rand_one_dut_portname_oper_up.split('|') pytest_require(rand_one_dut_hostname == dut_hostname, "Port is not mapped to the expected DUT") testbed_config, port_config_list = snappi_testbed_config duthost = duthosts[rand_one_dut_hostname] pause_prio_list = lossy_prio_list test_prio_list = lossy_prio_list bg_prio_list = lossless_prio_list run_pfc_test(api=snappi_api, testbed_config=testbed_config, port_config_list=port_config_list, conn_data=conn_graph_facts, fanout_data=fanout_graph_facts, duthost=duthost, dut_port=dut_port, global_pause=False, pause_prio_list=pause_prio_list, test_prio_list=test_prio_list, bg_prio_list=bg_prio_list, prio_dscp_map=prio_dscp_map, test_traffic_pause=False) @pytest.mark.disable_loganalyzer @pytest.mark.parametrize('reboot_type', ['warm', 'cold', 'fast']) def test_pfc_pause_single_lossy_prio_reboot(snappi_api, snappi_testbed_config, conn_graph_facts, fanout_graph_facts, localhost, duthosts, rand_one_dut_hostname, rand_one_dut_portname_oper_up, rand_lossy_prio, all_prio_list, prio_dscp_map, reboot_type): """ Test if PFC will impact a single lossy priority after various kinds of reboots Args: snappi_api (pytest fixture): SNAPPI session snappi_testbed_config (pytest fixture): testbed configuration information conn_graph_facts (pytest fixture): connection graph fanout_graph_facts (pytest fixture): fanout graph localhost (pytest fixture): localhost handle duthosts (pytest fixture): list of DUTs rand_one_dut_hostname (str): hostname of DUT rand_one_dut_portname_oper_up (str): port to test, e.g., 's6100-1|Ethernet0' rand_lossy_prio (str): lossy priority to test, e.g., 's6100-1|2' all_prio_list (pytest fixture): list of all the priorities prio_dscp_map (pytest fixture): priority vs. DSCP map (key = priority). reboot_type (str): reboot type to be issued on the DUT Returns: N/A """ dut_hostname, dut_port = rand_one_dut_portname_oper_up.split('|') dut_hostname2, lossy_prio = rand_lossy_prio.split('|') pytest_require(rand_one_dut_hostname == dut_hostname == dut_hostname2, "Priority and port are not mapped to the expected DUT") testbed_config, port_config_list = snappi_testbed_config duthost = duthosts[rand_one_dut_hostname] lossy_prio = int(lossy_prio) pause_prio_list = [lossy_prio] test_prio_list = [lossy_prio] bg_prio_list = [p for p in all_prio_list] bg_prio_list.remove(lossy_prio) logger.info("Issuing a {} reboot on the dut {}".format(reboot_type, duthost.hostname)) reboot(duthost, localhost, reboot_type=reboot_type) logger.info("Wait until the system is stable") pytest_assert(wait_until(300, 20, 0, duthost.critical_services_fully_started), "Not all critical services are fully started") run_pfc_test(api=snappi_api, testbed_config=testbed_config, port_config_list=port_config_list, conn_data=conn_graph_facts, fanout_data=fanout_graph_facts, duthost=duthost, dut_port=dut_port, global_pause=False, pause_prio_list=pause_prio_list, test_prio_list=test_prio_list, bg_prio_list=bg_prio_list, prio_dscp_map=prio_dscp_map, test_traffic_pause=False) @pytest.mark.disable_loganalyzer @pytest.mark.parametrize('reboot_type', ['warm', 'cold', 'fast']) def test_pfc_pause_multi_lossy_prio_reboot(snappi_api, snappi_testbed_config, conn_graph_facts, fanout_graph_facts, localhost, duthosts, rand_one_dut_hostname, rand_one_dut_portname_oper_up, lossless_prio_list, lossy_prio_list, prio_dscp_map, reboot_type): """ Test if PFC will impact multiple lossy priorities after various kinds of reboots Args: snappi_api (pytest fixture): SNAPPI session snappi_testbed_config (pytest fixture): testbed configuration information conn_graph_facts (pytest fixture): connection graph fanout_graph_facts (pytest fixture): fanout graph localhost (pytest fixture): localhost handle duthosts (pytest fixture): list of DUTs rand_one_dut_hostname (str): hostname of DUT rand_one_dut_portname_oper_up (str): port to test, e.g., 's6100-1|Ethernet0' lossless_prio_list (pytest fixture): list of all the lossless priorities lossy_prio_list (pytest fixture): list of all the lossy priorities prio_dscp_map (pytest fixture): priority vs. DSCP map (key = priority). reboot_type (str): reboot type to be issued on the DUT Returns: N/A """ dut_hostname, dut_port = rand_one_dut_portname_oper_up.split('|') pytest_require(rand_one_dut_hostname == dut_hostname, "Port is not mapped to the expected DUT") testbed_config, port_config_list = snappi_testbed_config duthost = duthosts[rand_one_dut_hostname] pause_prio_list = lossy_prio_list test_prio_list = lossy_prio_list bg_prio_list = lossless_prio_list logger.info("Issuing a {} reboot on the dut {}".format(reboot_type, duthost.hostname)) reboot(duthost, localhost, reboot_type=reboot_type) logger.info("Wait until the system is stable") pytest_assert(wait_until(300, 20, 0, duthost.critical_services_fully_started), "Not all critical services are fully started") run_pfc_test(api=snappi_api, testbed_config=testbed_config, port_config_list=port_config_list, conn_data=conn_graph_facts, fanout_data=fanout_graph_facts, duthost=duthost, dut_port=dut_port, global_pause=False, pause_prio_list=pause_prio_list, test_prio_list=test_prio_list, bg_prio_list=bg_prio_list, prio_dscp_map=prio_dscp_map, test_traffic_pause=False)
44.695817
95
0.604339
b8475ca711d95c2b7e81fe8713fd54938b5f1ddc
1,708
py
Python
main3.py
mitliagkas/pyliakmon
28a22be63646faf39f0f96a779a4579f69bfb41a
[ "MIT" ]
3
2016-05-27T13:46:53.000Z
2017-04-16T22:43:42.000Z
main3.py
mitliagkas/pyliakmon
28a22be63646faf39f0f96a779a4579f69bfb41a
[ "MIT" ]
null
null
null
main3.py
mitliagkas/pyliakmon
28a22be63646faf39f0f96a779a4579f69bfb41a
[ "MIT" ]
null
null
null
import numpy as np from numpy import linalg as la import time import subprocess from streaming import * import MovieLens from multiprocessing import Process from multiprocessing import Array def runBOI(k,id,arr,allT,nWorkers,doneWithBlock,cond): boi=ParallelBlockOrthogonal( id=id, arr=arr, allT=allT, doneWithBlock=doneWithBlock, cond=cond, k=k, stream=MovieLens.UserStream(file='/var/datasets/ml-10M100K/ratingsTab'+str(nWorkers)+str(id)+'.dat') ) for x in boi: continue print boi.getEstimate().T[:,0:3] print np.dot(boi.getEstimate().T,np.loadtxt('mlpc.txt')) return boi.getEstimate() if __name__ == "__main__": t0 = time.time() p=65133 k=1 nWorkers=2 if False: pl = Pool(nWorkers) #results=pl.map(runBOI, [{'id':x,'k':k,'acc':acc,'allT':allT} for x in xrange(1,nWorkers+1)]) #results=pl.map(runBOI, [{'id':x,'k':k} for x in xrange(1,nWorkers+1)]) else: arr = Array('d', p*k) allT = Array('I', nWorkers,lock=False) doneWithBlock = Array('I', nWorkers,lock=False) cond = Condition() processes=[] for id in xrange(1,nWorkers+1): arg={'id':id,'k':k,'arr':arr,'allT':allT,'nWorkers':nWorkers,'doneWithBlock':doneWithBlock,'cond':cond} processes += [Process(target=runBOI, kwargs=arg)] processes[-1].start() # Join them for id in xrange(1,nWorkers+1): processes[id-1].join() t1 = time.time() total = t1-t0 print "Total time: ", total #print np.dot(results[0].T,results[1])
26.276923
115
0.581967
437323aa270e187117807fda8a43a9c258fa41a2
3,723
py
Python
enas_lm/src/data_utils.py
MODU-FTNC/google-research
7c4f9b6e375eaacf50d8280b26f7e42a06b568aa
[ "Apache-2.0" ]
1
2020-08-14T08:11:30.000Z
2020-08-14T08:11:30.000Z
enas_lm/src/data_utils.py
robot-ai-machinelearning/google-research
88481d10a87947ffb9305dc7665682e008b27391
[ "Apache-2.0" ]
5
2021-08-25T16:15:36.000Z
2022-02-10T04:34:04.000Z
enas_lm/src/data_utils.py
robot-ai-machinelearning/google-research
88481d10a87947ffb9305dc7665682e008b27391
[ "Apache-2.0" ]
1
2020-03-05T09:24:01.000Z
2020-03-05T09:24:01.000Z
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Load picked Penn Treebank data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf def input_producer(raw_data, batch_size, num_steps, shuffle=False, randomize=False, random_len=False): """Produces graph-based input for Penn Treebank. Args: raw_data: np tensor of size [num_words]. batch_size: self-explained. num_steps: number of BPTT steps. shuffle: whether to shuffle sentences. randomize: use random segments instead of the continuous corpus. random_len: random sequence len. Returns: If `random_len` is set, return op that represents whether we have reached the end of a sequence. Otherwise, return number of batches in an epoch. """ num_batches_per_epoch = ((np.size(raw_data) // batch_size) - 1) // num_steps raw_data = tf.convert_to_tensor(raw_data, name='raw_data', dtype=tf.int32) data_len = tf.size(raw_data) batch_len = data_len // batch_size data = tf.reshape(raw_data[0 : batch_size * batch_len], [batch_size, batch_len]) epoch_size = (batch_len - 1) // num_steps with tf.device('/cpu:0'): epoch_size = tf.identity(epoch_size, name='epoch_size') if random_len: start_idx = tf.Variable(0, name='start_idx', dtype=tf.int32, trainable=False) base_bptt = tf.cond( tf.random_uniform(shape=(), minval=0., maxval=1.) < 0.95, lambda: tf.cast(num_steps, dtype=tf.float32), lambda: tf.cast(num_steps, dtype=tf.float32) / 2.) seq_len = tf.random.truncated_normal(shape=(), mean=base_bptt, stddev=5., dtype=tf.float32) seq_len = tf.cast(seq_len, dtype=tf.int32) seq_len = tf.minimum(seq_len, num_steps + 20) # seq_len <= bptt + 40 seq_len = tf.minimum(seq_len, batch_len - start_idx - 1) end_idx = start_idx + seq_len x = data[:, start_idx : end_idx] y = data[:, start_idx+1 : end_idx+1] with tf.control_dependencies([x, y]): with tf.control_dependencies([tf.assign(start_idx, end_idx)]): should_reset = tf.greater_equal(end_idx, batch_len - 3) reset_start_idx = tf.assign(start_idx, 0) return (x, y, num_batches_per_epoch, reset_start_idx, should_reset, base_bptt) if randomize: i = tf.random_uniform([1], minval=0, maxval=batch_len - num_steps, dtype=tf.int32) x = tf.strided_slice(data, [0, i], [batch_size, i + num_steps]) y = tf.strided_slice(data, [0, i + 1], [batch_size, i + num_steps + 1]) else: i = tf.train.range_input_producer(epoch_size, shuffle=shuffle).dequeue() x = tf.strided_slice( data, [0, i * num_steps], [batch_size, (i + 1) * num_steps]) y = tf.strided_slice( data, [0, i * num_steps + 1], [batch_size, (i + 1) * num_steps + 1]) x.set_shape([batch_size, num_steps]) y.set_shape([batch_size, num_steps]) return x, y, num_batches_per_epoch
38.381443
79
0.663443
9027f8d6b962c9250816fda62320e7ec218cad64
1,864
py
Python
src/job-exporter/test/test_ps.py
wyatuestc/pai
65b44e1ab37cab0790af392a016cc9fb1d2318fe
[ "MIT" ]
1,417
2019-05-07T00:51:36.000Z
2022-03-31T10:15:31.000Z
src/job-exporter/test/test_ps.py
wyatuestc/pai
65b44e1ab37cab0790af392a016cc9fb1d2318fe
[ "MIT" ]
2,447
2019-05-07T01:36:32.000Z
2022-03-30T08:47:43.000Z
src/job-exporter/test/test_ps.py
wyatuestc/pai
65b44e1ab37cab0790af392a016cc9fb1d2318fe
[ "MIT" ]
329
2019-05-07T02:28:06.000Z
2022-03-29T06:12:49.000Z
# Copyright (c) Microsoft Corporation # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and # to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os import sys import unittest import base sys.path.append(os.path.abspath("../src/")) import ps class TestPS(base.TestBase): """ Test ps.py """ def test_parse_ps_result(self): sample_path = "data/ps_sample.txt" with open(sample_path, "r") as f: ps_result = f.read() parse_result = ps.parse_result(ps_result) self.assertEqual(4, len(parse_result)) self.assertEqual("D", parse_result[0].state) self.assertEqual("4", parse_result[0].pid) self.assertEqual(2 * 1024, parse_result[0].rss) self.assertEqual("/var/drivers/nvidia/current/bin/nvidia-smi -q -x", parse_result[0].cmd) if __name__ == '__main__': unittest.main()
39.659574
128
0.723712
d959e2f2ce96964d83ca0b160a0eb0d0096cc6a9
2,258
py
Python
src/c3nav/editor/views/base.py
bate/c3nav
9a86dd3eaeb3a10af3c5fa869575ed1e9300465a
[ "Apache-2.0" ]
null
null
null
src/c3nav/editor/views/base.py
bate/c3nav
9a86dd3eaeb3a10af3c5fa869575ed1e9300465a
[ "Apache-2.0" ]
null
null
null
src/c3nav/editor/views/base.py
bate/c3nav
9a86dd3eaeb3a10af3c5fa869575ed1e9300465a
[ "Apache-2.0" ]
null
null
null
from functools import wraps from django.core.exceptions import PermissionDenied from django.http import HttpResponseNotModified, HttpResponseRedirect from django.shortcuts import render from django.utils.cache import patch_vary_headers from django.utils.translation import get_language from c3nav.editor.models import ChangeSet from c3nav.mapdata.models.access import AccessPermission from c3nav.mapdata.utils.user import can_access_editor def sidebar_view(func=None, select_related=None): if func is None: def wrapped(inner_func): return sidebar_view(inner_func, select_related) return wrapped @wraps(func) def with_ajax_check(request, *args, **kwargs): if not can_access_editor(request): raise PermissionDenied request.changeset = ChangeSet.get_for_request(request, select_related) ajax = request.is_ajax() or 'ajax' in request.GET if not ajax: request.META.pop('HTTP_IF_NONE_MATCH', None) response = func(request, *args, **kwargs) if ajax: if isinstance(response, HttpResponseRedirect): return render(request, 'editor/redirect.html', {'target': response['location']}) if not isinstance(response, HttpResponseNotModified): response.write(render(request, 'editor/fragment_nav.html', {}).content) response['Cache-Control'] = 'no-cache' patch_vary_headers(response, ('X-Requested-With', )) return response if isinstance(response, HttpResponseRedirect): return response response = render(request, 'editor/map.html', {'content': response.content.decode()}) response['Cache-Control'] = 'no-cache' patch_vary_headers(response, ('X-Requested-With', )) return response return with_ajax_check def etag_func(request, *args, **kwargs): try: changeset = request.changeset except AttributeError: changeset = ChangeSet.get_for_request(request) request.changeset = changeset return (get_language() + ':' + changeset.raw_cache_key_by_changes + ':' + AccessPermission.cache_key_for_request(request, with_update=False) + ':' + str(request.user.pk or 0))
37.633333
113
0.689105
d70257e7afe34ac2d45d06fc0d243ce5899e4add
7,053
py
Python
08_Convolutional_Neural_Networks/06_Deepdream/06_deepdream.py
varunjha089/tensorflow_cookbook
c1fa5051c860ecb6de875db975465ced06f43ba6
[ "MIT" ]
93
2018-05-27T08:07:02.000Z
2022-02-28T11:18:08.000Z
08_Convolutional_Neural_Networks/06_Deepdream/06_deepdream.py
varunjha089/tensorflow_cookbook
c1fa5051c860ecb6de875db975465ced06f43ba6
[ "MIT" ]
2
2018-03-07T14:31:22.000Z
2018-03-07T15:04:17.000Z
08_Convolutional_Neural_Networks/06_Deepdream/06_deepdream.py
varunjha089/tensorflow_cookbook
c1fa5051c860ecb6de875db975465ced06f43ba6
[ "MIT" ]
75
2018-06-22T08:02:03.000Z
2022-03-10T14:38:44.000Z
# Using TensorFlow for Deep Dream #--------------------------------------- # From: Alexander Mordvintsev # --https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream # # Make sure to download the deep dream model here: # https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip # # Run: # me@computer:~$ wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip # me@computer:~$ unzip inception5h.zip # # More comments added inline. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import matplotlib.pyplot as plt import numpy as np import PIL.Image import tensorflow as tf from io import BytesIO from tensorflow.python.framework import ops ops.reset_default_graph() # Start a graph session graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) os.chdir('/home/nick/Documents/tensorflow/inception-v1-model/') # Model location model_fn = 'tensorflow_inception_graph.pb' # Load graph parameters with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # Create placeholder for input t_input = tf.placeholder(np.float32, name='input') # Imagenet average bias to subtract off images imagenet_mean = 117.0 t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0) tf.import_graph_def(graph_def, {'input':t_preprocessed}) # Create a list of layers that we can refer to later layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name] # Count how many outputs for each layer feature_nums = [int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for name in layers] # Print count of layers and outputs (features nodes) print('Number of layers', len(layers)) print('Total number of feature channels:', sum(feature_nums)) # Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity # to have non-zero gradients for features with negative initial activations. layer = 'mixed4d_3x3_bottleneck_pre_relu' channel = 30 # picking some feature channel to visualize # start with a gray image with a little noise img_noise = np.random.uniform(size=(224,224,3)) + 100.0 def showarray(a, fmt='jpeg'): # First make sure everything is between 0 and 255 a = np.uint8(np.clip(a, 0, 1)*255) # Pick an in-memory format for image display f = BytesIO() # Create the in memory image PIL.Image.fromarray(a).save(f, fmt) # Show image plt.imshow(a) def T(layer): '''Helper for getting layer output tensor''' return graph.get_tensor_by_name("import/%s:0"%layer) # The following function returns a function wrapper that will create the placeholder # inputs of a specified dtype def tffunc(*argtypes): '''Helper that transforms TF-graph generating function into a regular one. See "resize" function below. ''' placeholders = list(map(tf.placeholder, argtypes)) def wrap(f): out = f(*placeholders) def wrapper(*args, **kw): return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) return wrapper return wrap # Helper function that uses TF to resize an image def resize(img, size): img = tf.expand_dims(img, 0) # Change 'img' size by linear interpolation return tf.image.resize_bilinear(img, size)[0,:,:,:] def calc_grad_tiled(img, t_grad, tile_size=512): '''Compute the value of tensor t_grad over the image in a tiled way. Random shifts are applied to the image to blur tile boundaries over multiple iterations.''' # Pick a subregion square size sz = tile_size # Get the image height and width h, w = img.shape[:2] # Get a random shift amount in the x and y direction sx, sy = np.random.randint(sz, size=2) # Randomly shift the image (roll image) in the x and y directions img_shift = np.roll(np.roll(img, sx, 1), sy, 0) # Initialize the while image gradient as zeros grad = np.zeros_like(img) # Now we loop through all the sub-tiles in the image for y in range(0, max(h-sz//2, sz),sz): for x in range(0, max(w-sz//2, sz),sz): # Select the sub image tile sub = img_shift[y:y+sz,x:x+sz] # Calculate the gradient for the tile g = sess.run(t_grad, {t_input:sub}) # Apply the gradient of the tile to the whole image gradient grad[y:y+sz,x:x+sz] = g # Return the gradient, undoing the roll operation return np.roll(np.roll(grad, -sx, 1), -sy, 0) def render_deepdream(t_obj, img0=img_noise, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): # defining the optimization objective, the objective is the mean of the feature t_score = tf.reduce_mean(t_obj) # Our gradients will be defined as changing the t_input to get closer to # the values of t_score. Here, t_score is the mean of the feature we select, # and t_input will be the image octave (starting with the last) t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation! # Store the image img = img0 # Initialize the octave list octaves = [] # Since we stored the image, we need to only calculate n-1 octaves for i in range(octave_n-1): # Extract the image shape hw = img.shape[:2] # Resize the image, scale by the octave_scale (resize by linear interpolation) lo = resize(img, np.int32(np.float32(hw)/octave_scale)) # Residual is hi. Where residual = image - (Resize lo to be hw-shape) hi = img-resize(lo, hw) # Save the lo image for re-iterating img = lo # Save the extracted hi-image octaves.append(hi) # generate details octave by octave for octave in range(octave_n): if octave>0: # Start with the last octave hi = octaves[-octave] # img = resize(img, hi.shape[:2])+hi for i in range(iter_n): # Calculate gradient of the image. g = calc_grad_tiled(img, t_grad) # Ideally, we would just add the gradient, g, but # we want do a forward step size of it ('step'), # and divide it by the avg. norm of the gradient, so # we are adding a gradient of a certain size each step. # Also, to make sure we aren't dividing by zero, we add 1e-7. img += g*(step / (np.abs(g).mean()+1e-7)) print('.',end = ' ') showarray(img/255.0) # Run Deep Dream if __name__=="__main__": # Create resize function that has a wrapper that creates specified placeholder types resize = tffunc(np.float32, np.int32)(resize) # Open image img0 = PIL.Image.open('book_cover.jpg') img0 = np.float32(img0) # Show Original Image showarray(img0/255.0) # Create deep dream render_deepdream(T(layer)[:,:,:,channel], img0, iter_n=15) sess.close()
36.734375
101
0.673614
1d88410a53e7578d1bb80903d8e4c8ec886ff785
2,238
py
Python
preprocessing/mnist-binary-preprocess.py
johnwikman/miking-ml
3301f0b92efa5d10f7e50b66ecf7e7ddfb960650
[ "MIT" ]
null
null
null
preprocessing/mnist-binary-preprocess.py
johnwikman/miking-ml
3301f0b92efa5d10f7e50b66ecf7e7ddfb960650
[ "MIT" ]
null
null
null
preprocessing/mnist-binary-preprocess.py
johnwikman/miking-ml
3301f0b92efa5d10f7e50b66ecf7e7ddfb960650
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # MNIST dataset decoding (http://yann.lecun.com/exdb/mnist/), binary # representation to ASCII representation, takes roughly ~4x the space of the # binary file import struct import sys def uint32_from_be(bs): assert len(bs) == 4 return struct.unpack(">I", bs)[0] if len(sys.argv) != 4: print(f"usage: {sys.argv[0]} <binary data file> <binary label file> <target ASCII file>") bin_datafile = sys.argv[1] bin_labelfile = sys.argv[2] outfile = sys.argv[3] datapoints = [] print(f"reading images from {bin_datafile}...") with open(bin_datafile, "rb") as f: bs = f.read() magic_number = uint32_from_be(bs[0:4]) assert magic_number == 2051, f"Invalid magic number {magic_number}, expected 2051" n_images = uint32_from_be(bs[4:8]) rows = uint32_from_be(bs[8:12]) cols = uint32_from_be(bs[12:16]) assert rows == 28, f"Expected number of rows to be 28, got {rows}" assert cols == 28, f"Expected number of cols to be 28, got {cols}" expected_bytes = 16 + (rows * cols * n_images) assert expected_bytes == len(bs), f"Expected number of bytes to be {expected_bytes}, got {len(bs)}" for i in range(n_images): start = 16 + (i * rows * cols) end = 16 + ((i + 1) * rows * cols) datapoints.append((None, bs[start:end])) print(f"reading labels from {bin_labelfile}...") with open(bin_labelfile, "rb") as f: bs = f.read() magic_number = uint32_from_be(bs[0:4]) assert magic_number == 2049, f"Invalid magic number {magic_number}, expected 2049" n_labels = uint32_from_be(bs[4:8]) assert n_labels == len(datapoints), f"Expected number of labels to be {len(datapoints)}, got {n_labels}" expected_bytes = 8 + n_labels assert expected_bytes == len(bs), f"Expected number of bytes to be {expected_bytes}, got {len(bs)}" for i in range(n_labels): _, data = datapoints[i] datapoints[i] = (int(bs[8+i]), data) print(f"writing to {outfile}...") # Outfile format is the bytes written in decimal, with LF separating datapoints with open(outfile, "w+") as f: for (cls, data) in datapoints: f.write(f"{cls}") for d in data: f.write(f" {d}") f.write("\n") print("done.")
35.52381
108
0.652368
e80955ce86346623572b7125fd787576aefbf7fd
9,557
py
Python
pydantic/dataclasses.py
raushanraja/pydantic-classy
97b6d9307b065579c34e724115699212999eaace
[ "MIT" ]
null
null
null
pydantic/dataclasses.py
raushanraja/pydantic-classy
97b6d9307b065579c34e724115699212999eaace
[ "MIT" ]
67
2021-08-16T04:16:03.000Z
2022-03-28T04:08:51.000Z
pydantic/dataclasses.py
raushanraja/pydantic-classy
97b6d9307b065579c34e724115699212999eaace
[ "MIT" ]
null
null
null
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Type, TypeVar, Union, overload from .class_validators import gather_all_validators from .error_wrappers import ValidationError from .errors import DataclassTypeError from .fields import Field, FieldInfo, Required, Undefined from .main import create_model, validate_model from .typing import resolve_annotations from .utils import ClassAttribute if TYPE_CHECKING: from .main import BaseConfig, BaseModel # noqa: F401 from .typing import CallableGenerator, NoArgAnyCallable DataclassT = TypeVar('DataclassT', bound='Dataclass') class Dataclass: __pydantic_model__: Type[BaseModel] __initialised__: bool __post_init_original__: Optional[Callable[..., None]] __processed__: Optional[ClassAttribute] __has_field_info_default__: bool # whether or not a `pydantic.Field` is used as default value def __init__(self, *args: Any, **kwargs: Any) -> None: pass @classmethod def __get_validators__(cls: Type['Dataclass']) -> 'CallableGenerator': pass @classmethod def __validate__(cls: Type['DataclassT'], v: Any) -> 'DataclassT': pass def __call__(self: 'DataclassT', *args: Any, **kwargs: Any) -> 'DataclassT': pass def _validate_dataclass(cls: Type['DataclassT'], v: Any) -> 'DataclassT': if isinstance(v, cls): return v elif isinstance(v, (list, tuple)): return cls(*v) elif isinstance(v, dict): return cls(**v) # In nested dataclasses, v can be of type `dataclasses.dataclass`. # But to validate fields `cls` will be in fact a `pydantic.dataclasses.dataclass`, # which inherits directly from the class of `v`. elif is_builtin_dataclass(v) and cls.__bases__[0] is type(v): import dataclassy as dataclasses return cls(**dataclasses.asdict(v)) else: raise DataclassTypeError(class_name=cls.__name__) def _get_validators(cls: Type['Dataclass']) -> 'CallableGenerator': yield cls.__validate__ def setattr_validate_assignment(self: 'Dataclass', name: str, value: Any) -> None: if self.__initialised__: d = dict(self.__dict__) d.pop(name, None) known_field = self.__pydantic_model__.__fields__.get(name, None) if known_field: value, error_ = known_field.validate(value, d, loc=name, cls=self.__class__) if error_: raise ValidationError([error_], self.__class__) object.__setattr__(self, name, value) def is_builtin_dataclass(_cls: Type[Any]) -> bool: """ `dataclasses.is_dataclass` is True if one of the class parents is a `dataclass`. This is why we also add a class attribute `__processed__` to only consider 'direct' built-in dataclasses """ import dataclassy as dataclasses return not hasattr(_cls, '__processed__') and dataclasses.is_dataclass(_cls) def _generate_pydantic_post_init( post_init_original: Optional[Callable[..., None]], post_init_post_parse: Optional[Callable[..., None]] ) -> Callable[..., None]: def _pydantic_post_init(self: 'Dataclass', *initvars: Any) -> None: if post_init_original is not None: post_init_original(self, *initvars) if getattr(self, '__has_field_info_default__', False): # We need to remove `FieldInfo` values since they are not valid as input # It's ok to do that because they are obviously the default values! input_data = {k: v for k, v in self.__dict__.items() if not isinstance(v, FieldInfo)} else: input_data = self.__dict__ d, _, validation_error = validate_model(self.__pydantic_model__, input_data, cls=self.__class__) if validation_error: raise validation_error object.__setattr__(self, '__dict__', d) object.__setattr__(self, '__initialised__', True) if post_init_post_parse is not None: post_init_post_parse(self, *initvars) return _pydantic_post_init def _process_class( _cls: Type[Any], init: bool, repr: bool, eq: bool, order: bool, unsafe_hash: bool, frozen: bool, config: Optional[Type[Any]], ) -> Type['Dataclass']: import dataclassy as dataclasses post_init_original = getattr(_cls, '__post_init__', None) if post_init_original and post_init_original.__name__ == '_pydantic_post_init': post_init_original = None if not post_init_original: post_init_original = getattr(_cls, '__post_init_original__', None) post_init_post_parse = getattr(_cls, '__post_init_post_parse__', None) _pydantic_post_init = _generate_pydantic_post_init(post_init_original, post_init_post_parse) # If the class is already a dataclass, __post_init__ will not be called automatically # so no validation will be added. # We hence create dynamically a new dataclass: # ``` # @dataclasses.dataclass # class NewClass(_cls): # __post_init__ = _pydantic_post_init # ``` # with the exact same fields as the base dataclass # and register it on module level to address pickle problem: # https://github.com/samuelcolvin/pydantic/issues/2111 if is_builtin_dataclass(_cls): uniq_class_name = f'_Pydantic_{_cls.__name__}_{id(_cls)}' _cls = type( # for pretty output new class will have the name as original _cls.__name__, (_cls,), { '__annotations__': resolve_annotations(_cls.__annotations__, _cls.__module__), '__post_init__': _pydantic_post_init, # attrs for pickle to find this class '__module__': __name__, '__qualname__': uniq_class_name, }, ) globals()[uniq_class_name] = _cls else: _cls.__post_init__ = _pydantic_post_init cls: Type['Dataclass'] = dataclasses.dataclass( # type: ignore _cls, init=init, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen ) cls.__processed__ = ClassAttribute('__processed__', True) field_definitions: Dict[str, Any] = {} for field in dataclasses.fields(cls): default: Any = Undefined default_factory: Optional['NoArgAnyCallable'] = None field_info: FieldInfo if field.default is not dataclasses.MISSING: default = field.default # mypy issue 7020 and 708 elif field.default_factory is not dataclasses.MISSING: # type: ignore default_factory = field.default_factory # type: ignore else: default = Required if isinstance(default, FieldInfo): field_info = default cls.__has_field_info_default__ = True else: field_info = Field(default=default, default_factory=default_factory, **field.metadata) field_definitions[field.name] = (field.type, field_info) validators = gather_all_validators(cls) cls.__pydantic_model__ = create_model( cls.__name__, __config__=config, __module__=_cls.__module__, __validators__=validators, **field_definitions ) cls.__initialised__ = False cls.__validate__ = classmethod(_validate_dataclass) # type: ignore[assignment] cls.__get_validators__ = classmethod(_get_validators) # type: ignore[assignment] if post_init_original: cls.__post_init_original__ = post_init_original if cls.__pydantic_model__.__config__.validate_assignment and not frozen: cls.__setattr__ = setattr_validate_assignment # type: ignore[assignment] return cls @overload def dataclass( *, init: bool = True, repr: bool = True, eq: bool = True, order: bool = False, unsafe_hash: bool = False, frozen: bool = False, config: Type[Any] = None, ) -> Callable[[Type[Any]], Type['Dataclass']]: ... @overload def dataclass( _cls: Type[Any], *, init: bool = True, repr: bool = True, eq: bool = True, order: bool = False, unsafe_hash: bool = False, frozen: bool = False, config: Type[Any] = None, ) -> Type['Dataclass']: ... def dataclass( _cls: Optional[Type[Any]] = None, *, init: bool = True, repr: bool = True, eq: bool = True, order: bool = False, unsafe_hash: bool = False, frozen: bool = False, config: Type[Any] = None, ) -> Union[Callable[[Type[Any]], Type['Dataclass']], Type['Dataclass']]: """ Like the python standard lib dataclasses but with type validation. Arguments are the same as for standard dataclasses, except for validate_assignment which has the same meaning as Config.validate_assignment. """ def wrap(cls: Type[Any]) -> Type['Dataclass']: return _process_class(cls, init, repr, eq, order, unsafe_hash, frozen, config) if _cls is None: return wrap return wrap(_cls) def make_dataclass_validator(_cls: Type[Any], config: Type['BaseConfig']) -> 'CallableGenerator': """ Create a pydantic.dataclass from a builtin dataclass to add type validation and yield the validators It retrieves the parameters of the dataclass and forwards them to the newly created dataclass """ dataclass_params = _cls.__dataclass_params__ stdlib_dataclass_parameters = {param: getattr(dataclass_params, param) for param in dataclass_params.__slots__} cls = dataclass(_cls, config=config, **stdlib_dataclass_parameters) yield from _get_validators(cls)
35.660448
115
0.673956
4ad9a21cf624f06989aaadaf2ef61a0bbd911449
2,864
py
Python
welcome_wizard/datasources.py
nautobot/nautobot-plugin-welcome-wizard
de4dfc8e7fbbc6ee526235c93e5ef1eec7989bc8
[ "Apache-2.0" ]
5
2021-08-11T19:50:51.000Z
2022-01-25T18:36:41.000Z
welcome_wizard/datasources.py
nautobot/nautobot-plugin-welcome-wizard
de4dfc8e7fbbc6ee526235c93e5ef1eec7989bc8
[ "Apache-2.0" ]
3
2021-08-30T18:47:50.000Z
2021-12-31T22:47:14.000Z
welcome_wizard/datasources.py
nautobot/nautobot-plugin-welcome-wizard
de4dfc8e7fbbc6ee526235c93e5ef1eec7989bc8
[ "Apache-2.0" ]
4
2021-08-02T22:19:44.000Z
2021-12-05T21:01:52.000Z
"""Datasources for Welcome Wizard.""" import os from pathlib import Path import yaml from django.utils.text import slugify from nautobot.extras.choices import LogLevelChoices from nautobot.extras.registry import DatasourceContent from welcome_wizard.models.importer import ManufacturerImport, DeviceTypeImport def refresh_git_import_wizard(repository_record, job_result, delete=False): """Callback for GitRepository updates - refresh Device Types managed by it.""" if "welcome_wizard.import_wizard" not in repository_record.provided_contents or delete: # TODO Handle delete. return manufacturers = set() device_types = {} # We have decided that a Git repository can provide YAML files in a # /animals/ directory at the repository root. device_type_path = os.path.join(repository_record.filesystem_path, "device-types") for filename in Path(device_type_path).rglob("*.yaml"): with open(filename, encoding="utf8") as file: data = yaml.safe_load(file) manufacturers.add(data["manufacturer"]) device_types[filename.name] = data for manufacturer in manufacturers: # Create or update an ManufacturerImport record based on the provided data manufacturer_record, _ = ManufacturerImport.objects.update_or_create( name=manufacturer, slug=slugify(manufacturer) ) # Record the outcome in the JobResult record job_result.log( "Successfully created/updated manufacturer", obj=manufacturer_record, level_choice=LogLevelChoices.LOG_SUCCESS, grouping="welcome_wizard", ) for device_type, device_data in device_types.items(): device_type_record, _ = DeviceTypeImport.objects.update_or_create( filename=device_type, name=device_data["model"], manufacturer=ManufacturerImport.objects.filter(name=device_data["manufacturer"])[0], device_type_data=device_data, ) job_result.log( "Successfully created/updated device_type", obj=device_type_record, level_choice=LogLevelChoices.LOG_SUCCESS, grouping="welcome_wizard", ) # Register that Animal records can be loaded from a Git repository, # and register the callback function used to do so datasource_contents = [ ( "extras.gitrepository", # datasource class we are registering for DatasourceContent( name="Import Wizard", # human-readable name to display in the UI content_identifier="welcome_wizard.import_wizard", # internal slug to identify the data type icon="mdi-wizard-hat", # Material Design Icons icon to use in UI callback=refresh_git_import_wizard, # callback function on GitRepository refresh ), ) ]
37.684211
105
0.695182
ea92b53c614933fec68b872a94f34b6f62411d1b
13,047
py
Python
flask_restful/fields.py
whitekid/flask-restful
9242a0cc3a3272af97502c7c85f1627a4edb7351
[ "BSD-3-Clause" ]
1
2017-12-30T20:43:28.000Z
2017-12-30T20:43:28.000Z
flask_restful/fields.py
whitekid/flask-restful
9242a0cc3a3272af97502c7c85f1627a4edb7351
[ "BSD-3-Clause" ]
null
null
null
flask_restful/fields.py
whitekid/flask-restful
9242a0cc3a3272af97502c7c85f1627a4edb7351
[ "BSD-3-Clause" ]
1
2021-02-12T14:18:02.000Z
2021-02-12T14:18:02.000Z
from datetime import datetime from calendar import timegm import pytz from decimal import Decimal as MyDecimal, ROUND_HALF_EVEN from email.utils import formatdate import six try: from urlparse import urlparse, urlunparse except ImportError: # python3 from urllib.parse import urlparse, urlunparse from flask_restful import inputs, marshal from flask import url_for, request __all__ = ["String", "FormattedString", "Url", "DateTime", "Float", "Integer", "Arbitrary", "Nested", "List", "Raw", "Boolean", "Fixed", "Price"] class MarshallingException(Exception): """ This is an encapsulating Exception in case of marshalling error. """ def __init__(self, underlying_exception): # just put the contextual representation of the error to hint on what # went wrong without exposing internals super(MarshallingException, self).__init__(six.text_type(underlying_exception)) def is_indexable_but_not_string(obj): return not hasattr(obj, "strip") and hasattr(obj, "__iter__") def get_value(key, obj, default=None): """Helper for pulling a keyed value off various types of objects""" if type(key) == int: return _get_value_for_key(key, obj, default) elif callable(key): return key(obj) else: return _get_value_for_keys(key.split('.'), obj, default) def _get_value_for_keys(keys, obj, default): if len(keys) == 1: return _get_value_for_key(keys[0], obj, default) else: return _get_value_for_keys( keys[1:], _get_value_for_key(keys[0], obj, default), default) def _get_value_for_key(key, obj, default): if is_indexable_but_not_string(obj): try: return obj[key] except (IndexError, TypeError, KeyError): pass return getattr(obj, key, default) def to_marshallable_type(obj): """Helper for converting an object to a dictionary only if it is not dictionary already or an indexable object nor a simple type""" if obj is None: return None # make it idempotent for None if hasattr(obj, '__getitem__'): return obj # it is indexable it is ok if hasattr(obj, '__marshallable__'): return obj.__marshallable__() return dict(obj.__dict__) class Raw(object): """Raw provides a base field class from which others should extend. It applies no formatting by default, and should only be used in cases where data does not need to be formatted before being serialized. Fields should throw a :class:`MarshallingException` in case of parsing problem. :param default: The default value for the field, if no value is specified. :param attribute: If the public facing value differs from the internal value, use this to retrieve a different attribute from the response than the publicly named value. """ def __init__(self, default=None, attribute=None): self.attribute = attribute self.default = default def format(self, value): """Formats a field's value. No-op by default - field classes that modify how the value of existing object keys should be presented should override this and apply the appropriate formatting. :param value: The value to format :exception MarshallingException: In case of formatting problem Ex:: class TitleCase(Raw): def format(self, value): return unicode(value).title() """ return value def output(self, key, obj): """Pulls the value for the given key from the object, applies the field's formatting and returns the result. If the key is not found in the object, returns the default value. Field classes that create values which do not require the existence of the key in the object should override this and return the desired value. :exception MarshallingException: In case of formatting problem """ value = get_value(key if self.attribute is None else self.attribute, obj) if value is None: return self.default return self.format(value) class Nested(Raw): """Allows you to nest one set of fields inside another. See :ref:`nested-field` for more information :param dict nested: The dictionary to nest :param bool allow_null: Whether to return None instead of a dictionary with null keys, if a nested dictionary has all-null keys :param kwargs: If ``default`` keyword argument is present, a nested dictionary will be marshaled as its value if nested dictionary is all-null keys (e.g. lets you return an empty JSON object instead of null) """ def __init__(self, nested, allow_null=False, **kwargs): self.nested = nested self.allow_null = allow_null super(Nested, self).__init__(**kwargs) def output(self, key, obj): value = get_value(key if self.attribute is None else self.attribute, obj) if value is None: if self.allow_null: return None elif self.default is not None: return self.default return marshal(value, self.nested) class List(Raw): """ Field for marshalling lists of other fields. See :ref:`list-field` for more information. :param cls_or_instance: The field type the list will contain. """ def __init__(self, cls_or_instance, **kwargs): super(List, self).__init__(**kwargs) error_msg = ("The type of the list elements must be a subclass of " "flask_restful.fields.Raw") if isinstance(cls_or_instance, type): if not issubclass(cls_or_instance, Raw): raise MarshallingException(error_msg) self.container = cls_or_instance() else: if not isinstance(cls_or_instance, Raw): raise MarshallingException(error_msg) self.container = cls_or_instance def format(self, value): # Convert all instances in typed list to container type if isinstance(value, set): value = list(value) return [ self.container.output(idx, val if (isinstance(val, dict) or (self.container.attribute and hasattr(val, self.container.attribute))) and not isinstance(self.container, Nested) and not type(self.container) is Raw else value) for idx, val in enumerate(value) ] def output(self, key, data): value = get_value(key if self.attribute is None else self.attribute, data) # we cannot really test for external dict behavior if is_indexable_but_not_string(value) and not isinstance(value, dict): return self.format(value) if value is None: return self.default return [marshal(value, self.container.nested)] class String(Raw): """ Marshal a value as a string. Uses ``six.text_type`` so values will be converted to :class:`unicode` in python2 and :class:`str` in python3. """ def format(self, value): try: return six.text_type(value) except ValueError as ve: raise MarshallingException(ve) class Integer(Raw): """ Field for outputting an integer value. :param int default: The default value for the field, if no value is specified. """ def __init__(self, default=0, **kwargs): super(Integer, self).__init__(default=default, **kwargs) def format(self, value): try: if value is None: return self.default return int(value) except ValueError as ve: raise MarshallingException(ve) class Boolean(Raw): """ Field for outputting a boolean value. Empty collections such as ``""``, ``{}``, ``[]``, etc. will be converted to ``False``. """ def format(self, value): return bool(value) class FormattedString(Raw): """ FormattedString is used to interpolate other values from the response into this field. The syntax for the source string is the same as the string :meth:`~str.format` method from the python stdlib. Ex:: fields = { 'name': fields.String, 'greeting': fields.FormattedString("Hello {name}") } data = { 'name': 'Doug', } marshal(data, fields) """ def __init__(self, src_str): """ :param string src_str: the string to format with the other values from the response. """ super(FormattedString, self).__init__() self.src_str = six.text_type(src_str) def output(self, key, obj): try: data = to_marshallable_type(obj) return self.src_str.format(**data) except (TypeError, IndexError) as error: raise MarshallingException(error) class Url(Raw): """ A string representation of a Url :param endpoint: Endpoint name. If endpoint is ``None``, ``request.endpoint`` is used instead :type endpoint: str :param absolute: If ``True``, ensures that the generated urls will have the hostname included :type absolute: bool :param scheme: URL scheme specifier (e.g. ``http``, ``https``) :type scheme: str """ def __init__(self, endpoint=None, absolute=False, scheme=None): super(Url, self).__init__() self.endpoint = endpoint self.absolute = absolute self.scheme = scheme def output(self, key, obj): try: data = to_marshallable_type(obj) endpoint = self.endpoint if self.endpoint is not None else request.endpoint o = urlparse(url_for(endpoint, _external=self.absolute, **data)) if self.absolute: scheme = self.scheme if self.scheme is not None else o.scheme return urlunparse((scheme, o.netloc, o.path, "", "", "")) return urlunparse(("", "", o.path, "", "", "")) except TypeError as te: raise MarshallingException(te) class Float(Raw): """ A double as IEEE-754 double precision. ex : 3.141592653589793 3.1415926535897933e-06 3.141592653589793e+24 nan inf -inf """ def format(self, value): try: return float(value) except ValueError as ve: raise MarshallingException(ve) class Arbitrary(Raw): """ A floating point number with an arbitrary precision ex: 634271127864378216478362784632784678324.23432 """ def format(self, value): return six.text_type(MyDecimal(value)) class DateTime(Raw): """ Return a formatted datetime string in UTC. Supported formats are RFC 822 and ISO 8601. See :func:`email.utils.formatdate` for more info on the RFC 822 format. See :meth:`datetime.datetime.isoformat` for more info on the ISO 8601 format. :param dt_format: ``'rfc822'`` or ``'iso8601'`` :type dt_format: str """ def __init__(self, dt_format='rfc822', **kwargs): super(DateTime, self).__init__(**kwargs) self.dt_format = dt_format def format(self, value): try: if self.dt_format == 'rfc822': return _rfc822(value) elif self.dt_format == 'iso8601': return _iso8601(value) else: raise MarshallingException( 'Unsupported date format %s' % self.dt_format ) except AttributeError as ae: raise MarshallingException(ae) ZERO = MyDecimal() class Fixed(Raw): """ A decimal number with a fixed precision. """ def __init__(self, decimals=5, **kwargs): super(Fixed, self).__init__(**kwargs) self.precision = MyDecimal('0.' + '0' * (decimals - 1) + '1') def format(self, value): dvalue = MyDecimal(value) if not dvalue.is_normal() and dvalue != ZERO: raise MarshallingException('Invalid Fixed precision number.') return six.text_type(dvalue.quantize(self.precision, rounding=ROUND_HALF_EVEN)) """Alias for :class:`~fields.Fixed`""" Price = Fixed def _rfc822(dt): """Turn a datetime object into a formatted date. Example:: fields._rfc822(datetime(2011, 1, 1)) => "Sat, 01 Jan 2011 00:00:00 -0000" :param dt: The datetime to transform :type dt: datetime :return: A RFC 822 formatted date string """ return formatdate(timegm(dt.utctimetuple())) def _iso8601(dt): """Turn a datetime object into an ISO8601 formatted date. Example:: fields._iso8601(datetime(2012, 1, 1, 0, 0)) => "2012-01-01T00:00:00" :param dt: The datetime to transform :type dt: datetime :return: A ISO 8601 formatted date string """ return dt.isoformat()
31.212919
87
0.628114
4589b2f7117ad463b68bce78f3c20068feefdcad
24,636
py
Python
lib/galaxy/jobs/deferred/data_transfer.py
vimalkumarvelayudhan/galaxy
ea89dd8f149778b6c2f0f3f4a34c8b21f7033af7
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/jobs/deferred/data_transfer.py
vimalkumarvelayudhan/galaxy
ea89dd8f149778b6c2f0f3f4a34c8b21f7033af7
[ "CC-BY-3.0" ]
1
2015-02-21T18:48:19.000Z
2015-02-27T15:50:32.000Z
lib/galaxy/jobs/deferred/data_transfer.py
vimalkumarvelayudhan/galaxy
ea89dd8f149778b6c2f0f3f4a34c8b21f7033af7
[ "CC-BY-3.0" ]
3
2015-02-22T13:34:16.000Z
2020-10-01T01:28:04.000Z
""" Module for managing data transfer jobs. """ import logging, urllib2, re, shutil from galaxy import eggs from sqlalchemy import and_ from galaxy.util.odict import odict from galaxy.workflow.modules import module_factory from galaxy.jobs.actions.post import ActionBox from galaxy.jobs.deferred import FakeTrans from galaxy.tools.parameters import visit_input_values from galaxy.tools.parameters.basic import DataToolParameter from galaxy.datatypes import sniff log = logging.getLogger( __name__ ) __all__ = [ 'DataTransfer' ] class DataTransfer( object ): check_interval = 15 dataset_name_re = re.compile( '(dataset\d+)_(name)' ) dataset_datatype_re = re.compile( '(dataset\d+)_(datatype)' ) def __init__( self, app ): self.app = app self.sa_session = app.model.context.current def create_job( self, trans, **kwd ): raise Exception( "Unimplemented Method" ) def check_job( self, job ): raise Exception( "Unimplemented Method" ) def run_job( self, job ): if job.params[ 'type' ] == 'init_transfer': # TODO: don't create new downloads on restart. if job.params[ 'protocol' ] in [ 'http', 'https' ]: results = [] for result in job.params[ 'results' ].values(): result[ 'transfer_job' ] = self.app.transfer_manager.new( protocol=job.params[ 'protocol' ], name=result[ 'name' ], datatype=result[ 'datatype' ], url=result[ 'url' ] ) results.append( result ) elif job.params[ 'protocol' ] == 'scp': results = [] result = {} sample_datasets_dict = job.params[ 'sample_datasets_dict' ] # sample_datasets_dict looks something like the following. The outer dictionary keys are SampleDataset ids. # {'7': {'status': 'Not started', 'name': '3.bed', 'file_path': '/tmp/library/3.bed', 'sample_id': 7, # 'external_service_id': 2, 'error_msg': '', 'size': '8.0K'}} for sample_dataset_id, sample_dataset_info_dict in sample_datasets_dict.items(): result = {} result[ 'transfer_job' ] = self.app.transfer_manager.new( protocol=job.params[ 'protocol' ], host=job.params[ 'host' ], user_name=job.params[ 'user_name' ], password=job.params[ 'password' ], sample_dataset_id=sample_dataset_id, status=sample_dataset_info_dict[ 'status' ], name=sample_dataset_info_dict[ 'name' ], file_path=sample_dataset_info_dict[ 'file_path' ], sample_id=sample_dataset_info_dict[ 'sample_id' ], external_service_id=sample_dataset_info_dict[ 'external_service_id' ], error_msg=sample_dataset_info_dict[ 'error_msg' ], size=sample_dataset_info_dict[ 'size' ] ) results.append( result ) self.app.transfer_manager.run( [ r[ 'transfer_job' ] for r in results ] ) for result in results: transfer_job = result.pop( 'transfer_job' ) self.create_job( None, transfer_job_id=transfer_job.id, result=transfer_job.params, sample_id=job.params[ 'sample_id' ] ) # Update the state of the relevant SampleDataset new_status = self.app.model.SampleDataset.transfer_status.IN_QUEUE self._update_sample_dataset_status( protocol=job.params[ 'protocol' ], sample_id=job.params[ 'sample_id' ], result_dict=transfer_job.params, new_status=new_status, error_msg='' ) job.state = self.app.model.DeferredJob.states.OK self.sa_session.add( job ) self.sa_session.flush() # TODO: Error handling: failure executing, or errors returned from the manager if job.params[ 'type' ] == 'finish_transfer': protocol = job.params[ 'protocol' ] # Update the state of the relevant SampleDataset new_status = self.app.model.SampleDataset.transfer_status.ADD_TO_LIBRARY if protocol in [ 'http', 'https' ]: result_dict = job.params[ 'result' ] library_dataset_name = result_dict[ 'name' ] extension = result_dict[ 'datatype' ] elif protocol in [ 'scp' ]: # In this case, job.params will be a dictionary that contains a key named 'result'. The value # of the result key is a dictionary that looks something like: # {'sample_dataset_id': '8', 'status': 'Not started', 'protocol': 'scp', 'name': '3.bed', # 'file_path': '/data/library/3.bed', 'host': '127.0.0.1', 'sample_id': 8, 'external_service_id': 2, # 'local_path': '/tmp/kjl2Ss4', 'password': 'galaxy', 'user_name': 'gvk', 'error_msg': '', 'size': '8.0K'} try: tj = self.sa_session.query( self.app.model.TransferJob ).get( int( job.params['transfer_job_id'] ) ) result_dict = tj.params result_dict['local_path'] = tj.path except Exception, e: log.error( "Updated transfer result unavailable, using old result. Error was: %s" % str( e ) ) result_dict = job.params[ 'result' ] library_dataset_name = result_dict[ 'name' ] # Determine the data format (see the relevant TODO item in the manual_data_transfer plugin).. extension = sniff.guess_ext( result_dict[ 'local_path' ], sniff_order=self.app.datatypes_registry.sniff_order ) self._update_sample_dataset_status( protocol=job.params[ 'protocol' ], sample_id=int( job.params[ 'sample_id' ] ), result_dict=result_dict, new_status=new_status, error_msg='' ) sample = self.sa_session.query( self.app.model.Sample ).get( int( job.params[ 'sample_id' ] ) ) ld = self.app.model.LibraryDataset( folder=sample.folder, name=library_dataset_name ) self.sa_session.add( ld ) self.sa_session.flush() self.app.security_agent.copy_library_permissions( FakeTrans( self.app ), sample.folder, ld ) ldda = self.app.model.LibraryDatasetDatasetAssociation( name = library_dataset_name, extension = extension, dbkey = '?', library_dataset = ld, create_dataset = True, sa_session = self.sa_session ) ldda.message = 'Transferred by the Data Transfer Plugin' self.sa_session.add( ldda ) self.sa_session.flush() ldda.state = ldda.states.QUEUED # flushed in the set property ld.library_dataset_dataset_association_id = ldda.id self.sa_session.add( ld ) self.sa_session.flush() try: # Move the dataset from its temporary location shutil.move( job.transfer_job.path, ldda.file_name ) ldda.init_meta() for name, spec in ldda.metadata.spec.items(): if name not in [ 'name', 'info', 'dbkey', 'base_name' ]: if spec.get( 'default' ): setattr( ldda.metadata, name, spec.unwrap( spec.get( 'default' ) ) ) self.app.datatypes_registry.set_external_metadata_tool.tool_action.execute( self.app.datatypes_registry.set_external_metadata_tool, FakeTrans( self.app, history=sample.history, user=sample.request.user ), incoming = { 'input1':ldda } ) ldda.state = ldda.states.OK # TODO: not sure if this flush is necessary self.sa_session.add( ldda ) self.sa_session.flush() except Exception, e: log.exception( 'Failure preparing library dataset for finished transfer job (id: %s) via deferred job (id: %s):' % \ ( str( job.transfer_job.id ), str( job.id ) ) ) ldda.state = ldda.states.ERROR if sample.workflow: log.debug( "\n\nLogging sample mappings as: %s" % sample.workflow[ 'mappings' ] ) log.debug( "job.params: %s" % job.params ) # We have a workflow. Update all mappings to ldda's, and when the final one is done # execute_workflow with either the provided history, or a new one. sub_done = True rep_done = False for k, v in sample.workflow[ 'mappings' ].iteritems(): if not 'hda' in v and v[ 'ds_tag' ].startswith( 'hi|' ): sample.workflow[ 'mappings' ][ k ][ 'hda' ] = self.app.security.decode_id( v[ 'ds_tag' ][3:] ) for key, value in sample.workflow[ 'mappings' ].iteritems(): if 'url' in value and value[ 'url' ] == job.params[ 'result' ][ 'url' ]: # DBTODO Make sure all ds| mappings get the URL of the dataset, for linking to later. # If this dataset maps to what we just finished, update the ldda id in the sample. sample.workflow[ 'mappings' ][ key ][ 'ldda' ] = ldda.id rep_done = True # DBTODO replace the hi| mappings with the hda here. Just rip off the first three chars. elif not 'ldda' in value and not 'hda' in value: # We're not done if some mappings still don't have ldda or hda mappings. sub_done = False if sub_done and rep_done: if not sample.history: new_history = self.app.model.History( name="New History From %s" % sample.name, user=sample.request.user ) self.sa_session.add( new_history ) sample.history = new_history self.sa_session.flush() self._execute_workflow( sample ) # Check the workflow for substitution done-ness self.sa_session.add( sample ) self.sa_session.flush() elif sample.history: # We don't have a workflow, but a history was provided. # No processing, go ahead and chunk everything in the history. if ldda.dataset.state in [ 'new', 'upload', 'queued', 'running', 'empty', 'discarded' ]: log.error("Cannot import dataset '%s' to user history since its state is '%s'. " % ( ldda.name, ldda.dataset.state )) elif ldda.dataset.state in [ 'ok', 'error' ]: ldda.to_history_dataset_association( target_history=sample.history, add_to_history=True ) # Finished job.state = self.app.model.DeferredJob.states.OK self.sa_session.add( job ) self.sa_session.flush() # Update the state of the relevant SampleDataset new_status = self.app.model.SampleDataset.transfer_status.COMPLETE self._update_sample_dataset_status( protocol=job.params[ 'protocol' ], sample_id=int( job.params[ 'sample_id' ] ), result_dict=job.params[ 'result' ], new_status=new_status, error_msg='' ) if sample.datasets and not sample.untransferred_dataset_files: # Update the state of the sample to the sample's request type's final state. new_state = sample.request.type.final_sample_state self._update_sample_state( sample.id, new_state ) # Update the state of the request, if possible self._update_request_state( sample.request.id ) def _missing_params( self, params, required_params ): missing_params = filter( lambda x: x not in params, required_params ) if missing_params: log.error( 'Job parameters missing required keys: %s' % ', '.join( missing_params ) ) return True return False def _update_sample_dataset_status( self, protocol, sample_id, result_dict, new_status, error_msg=None ): # result_dict looks something like: # {'url': '127.0.0.1/data/filtered_subreads.fa', 'name': 'Filtered reads'} # Check if the new status is a valid transfer status valid_statuses = [ v[1] for v in self.app.model.SampleDataset.transfer_status.items() ] # TODO: error checking on valid new_status value if protocol in [ 'http', 'https' ]: sample_dataset = self.sa_session.query( self.app.model.SampleDataset ) \ .filter( and_( self.app.model.SampleDataset.table.c.sample_id == sample_id, self.app.model.SampleDataset.table.c.name == result_dict[ 'name' ], self.app.model.SampleDataset.table.c.file_path == result_dict[ 'url' ] ) ) \ .first() elif protocol in [ 'scp' ]: sample_dataset = self.sa_session.query( self.app.model.SampleDataset ).get( int( result_dict[ 'sample_dataset_id' ] ) ) sample_dataset.status = new_status sample_dataset.error_msg = error_msg self.sa_session.add( sample_dataset ) self.sa_session.flush() def _update_sample_state( self, sample_id, new_state, comment=None ): sample = self.sa_session.query( self.app.model.Sample ).get( sample_id ) if comment is None: comment = 'Sample state set to %s' % str( new_state ) event = self.app.model.SampleEvent( sample, new_state, comment ) self.sa_session.add( event ) self.sa_session.flush() def _update_request_state( self, request_id ): request = self.sa_session.query( self.app.model.Request ).get( request_id ) # Make sure all the samples of the current request have the same state common_state = request.samples_have_common_state if not common_state: # If the current request state is complete and one of its samples moved from # the final sample state, then move the request state to In-progress if request.is_complete: message = "At least 1 sample state moved from the final sample state, so now the request's state is (%s)" % request.states.SUBMITTED event = self.app.model.RequestEvent( request, request.states.SUBMITTED, message ) self.sa_session.add( event ) self.sa_session.flush() else: final_state = False request_type_state = request.type.final_sample_state if common_state.id == request_type_state.id: # Since all the samples are in the final state, change the request state to 'Complete' comment = "All samples of this sequencing request are in the final sample state (%s). " % request_type_state.name state = request.states.COMPLETE final_state = True else: comment = "All samples of this sequencing request are in the (%s) sample state. " % common_state.name state = request.states.SUBMITTED event = self.app.model.RequestEvent( request, state, comment ) self.sa_session.add( event ) self.sa_session.flush() # TODO: handle email notification if it is configured to be sent when the samples are in this state. def _execute_workflow( self, sample): for key, value in sample.workflow['mappings'].iteritems(): if 'hda' not in value and 'ldda' in value: # If HDA is already here, it's an external input, we're not copying anything. ldda = self.sa_session.query( self.app.model.LibraryDatasetDatasetAssociation ).get( value['ldda'] ) if ldda.dataset.state in [ 'new', 'upload', 'queued', 'running', 'empty', 'discarded' ]: log.error("Cannot import dataset '%s' to user history since its state is '%s'. " % ( ldda.name, ldda.dataset.state )) elif ldda.dataset.state in [ 'ok', 'error' ]: hda = ldda.to_history_dataset_association( target_history=sample.history, add_to_history=True ) sample.workflow['mappings'][key]['hda'] = hda.id self.sa_session.add( sample ) self.sa_session.flush() workflow_dict = sample.workflow import copy new_wf_dict = copy.deepcopy(workflow_dict) for key in workflow_dict['mappings']: if not isinstance(key, int): new_wf_dict['mappings'][int(key)] = workflow_dict['mappings'][key] workflow_dict = new_wf_dict fk_trans = FakeTrans(self.app, history = sample.history, user=sample.request.user) workflow = self.sa_session.query(self.app.model.Workflow).get(workflow_dict['id']) if not workflow: log.error("Workflow mapping failure.") return if len( workflow.steps ) == 0: log.error( "Workflow cannot be run because it does not have any steps" ) return if workflow.has_cycles: log.error( "Workflow cannot be run because it contains cycles" ) return if workflow.has_errors: log.error( "Workflow cannot be run because of validation errors in some steps" ) return # Build the state for each step errors = {} has_upgrade_messages = False has_errors = False # Build a fake dictionary prior to execution. # Prepare each step for step in workflow.steps: step.upgrade_messages = {} # Contruct modules if step.type == 'tool' or step.type is None: # Restore the tool state for the step step.module = module_factory.from_workflow_step( fk_trans, step ) # Fix any missing parameters step.upgrade_messages = step.module.check_and_update_state() if step.upgrade_messages: has_upgrade_messages = True # Any connected input needs to have value DummyDataset (these # are not persisted so we need to do it every time) step.module.add_dummy_datasets( connections=step.input_connections ) # Store state with the step step.state = step.module.state # Error dict if step.tool_errors: has_errors = True errors[step.id] = step.tool_errors else: ## Non-tool specific stuff? step.module = module_factory.from_workflow_step( fk_trans, step ) step.state = step.module.get_runtime_state() # Connections by input name step.input_connections_by_name = dict( ( conn.input_name, conn ) for conn in step.input_connections ) for step in workflow.steps: step.upgrade_messages = {} # Connections by input name step.input_connections_by_name = \ dict( ( conn.input_name, conn ) for conn in step.input_connections ) # Extract just the arguments for this step by prefix step_errors = None if step.type == 'tool' or step.type is None: module = module_factory.from_workflow_step( fk_trans, step ) # Fix any missing parameters step.upgrade_messages = module.check_and_update_state() if step.upgrade_messages: has_upgrade_messages = True # Any connected input needs to have value DummyDataset (these # are not persisted so we need to do it every time) module.add_dummy_datasets( connections=step.input_connections ) # Get the tool tool = module.tool # Get the state step.state = state = module.state # Get old errors old_errors = state.inputs.pop( "__errors__", {} ) if step_errors: errors[step.id] = state.inputs["__errors__"] = step_errors # Run each step, connecting outputs to inputs workflow_invocation = self.app.model.WorkflowInvocation() workflow_invocation.workflow = workflow outputs = odict() for i, step in enumerate( workflow.steps ): job = None if step.type == 'tool' or step.type is None: tool = self.app.toolbox.get_tool( step.tool_id ) def callback( input, value, prefixed_name, prefixed_label ): if isinstance( input, DataToolParameter ): if prefixed_name in step.input_connections_by_name: conn = step.input_connections_by_name[ prefixed_name ] return outputs[ conn.output_step.id ][ conn.output_name ] visit_input_values( tool.inputs, step.state.inputs, callback ) job, out_data = tool.execute( fk_trans, step.state.inputs, history=sample.history) outputs[ step.id ] = out_data for pja in step.post_job_actions: if pja.action_type in ActionBox.immediate_actions: ActionBox.execute(self.app, self.sa_session, pja, job, replacement_dict=None) else: job.add_post_job_action(pja) else: job, out_data = step.module.execute( fk_trans, step.state) outputs[ step.id ] = out_data if step.id in workflow_dict['mappings']: data = self.sa_session.query( self.app.model.HistoryDatasetAssociation ).get( workflow_dict['mappings'][str(step.id)]['hda'] ) outputs[ step.id ]['output'] = data workflow_invocation_step = self.app.model.WorkflowInvocationStep() workflow_invocation_step.workflow_invocation = workflow_invocation workflow_invocation_step.workflow_step = step workflow_invocation_step.job = job self.sa_session.add( workflow_invocation ) self.sa_session.flush()
63.98961
148
0.538927
c8d3e3d57b11cbd9ae6bb144336728e433ae1d28
3,451
py
Python
docs/conf.py
zzehring/operator
7ef5543f8d0ef767c4531c2ae002e04bad1e3af3
[ "Apache-2.0" ]
null
null
null
docs/conf.py
zzehring/operator
7ef5543f8d0ef767c4531c2ae002e04bad1e3af3
[ "Apache-2.0" ]
null
null
null
docs/conf.py
zzehring/operator
7ef5543f8d0ef767c4531c2ae002e04bad1e3af3
[ "Apache-2.0" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # For a full list of options see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- from pathlib import Path import sys sys.path.insert(0, str(Path(__file__).parent.parent)) # -- Project information ----------------------------------------------------- project = 'The Operator Framework' copyright = '2019-2020, Canonical Ltd.' author = 'Canonical Ltd' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.todo', 'sphinx.ext.viewcode', 'sphinx.ext.intersphinx', ] # The document name of the “master” document, that is, the document # that contains the root toctree directive. master_doc = 'index' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for sphinx.ext.todo --------------------------------------------- # If this is True, todo and todolist produce output, else they # produce nothing. The default is False. todo_include_todos = False # -- Options for sphinx.ext.autodoc ------------------------------------------ # This value controls how to represents typehints. The setting takes the # following values: # 'signature' – Show typehints as its signature (default) # 'description' – Show typehints as content of function or method # 'none' – Do not show typehints autodoc_typehints = 'description' # This value selects what content will be inserted into the main body of an # autoclass directive. The possible values are: # 'class' - Only the class’ docstring is inserted. This is the # default. You can still document __init__ as a separate method # using automethod or the members option to autoclass. # 'both' - Both the class’ and the __init__ method’s docstring are # concatenated and inserted. # 'init' - Only the __init__ method’s docstring is inserted. autoclass_content = 'both' autodoc_default_options = { 'members': None, # None here means "yes" 'undoc-members': None, 'show-inheritance': None, } # -- Options for sphinx.ext.intersphinx -------------------------------------- # This config value contains the locations and names of other projects # that should be linked to in this documentation. intersphinx_mapping = {'python': ('https://docs.python.org/3', None)}
35.214286
78
0.651695
fb592d81f10e84fb7065375be72bdd9e70e52a5d
370
py
Python
fdk_client/application/models/LogisticValidator.py
kavish-d/fdk-client-python
a1023eb530473322cb52e095fc4ceb226c1e6037
[ "MIT" ]
null
null
null
fdk_client/application/models/LogisticValidator.py
kavish-d/fdk-client-python
a1023eb530473322cb52e095fc4ceb226c1e6037
[ "MIT" ]
null
null
null
fdk_client/application/models/LogisticValidator.py
kavish-d/fdk-client-python
a1023eb530473322cb52e095fc4ceb226c1e6037
[ "MIT" ]
null
null
null
"""Class Validators.""" from marshmallow import fields, Schema from marshmallow.validate import OneOf from ..enums import * from ..models.BaseSchema import BaseSchema class LogisticValidator: class getTatProduct(BaseSchema): pass class getPincodeCity(BaseSchema): pincode = fields.Str(required=False)
20.555556
44
0.662162
6a761f995daa221e34f8d88f1d50b178fa2ca4e1
961
py
Python
cogs/inactive/nsfw.py
MiningMark48/Tidal-Bot
8db6ecb220fd35930ffe1df5653af7a1ca03c8e9
[ "MIT" ]
6
2020-08-09T15:43:07.000Z
2022-03-11T15:12:21.000Z
cogs/inactive/nsfw.py
MiningMark48/Tidal-Bot
8db6ecb220fd35930ffe1df5653af7a1ca03c8e9
[ "MIT" ]
6
2020-10-29T02:32:40.000Z
2022-01-13T03:12:45.000Z
cogs/inactive/nsfw.py
MiningMark48/Tidal-Bot
8db6ecb220fd35930ffe1df5653af7a1ca03c8e9
[ "MIT" ]
1
2021-06-09T08:06:31.000Z
2021-06-09T08:06:31.000Z
import random import aiohttp from discord.ext import commands from util.decorators import delete_original class NSFW(commands.Cog): def __init__(self, bot): self.bot = bot self.trivia_messages = [] self.new_trivia = [] @commands.command(aliases=['porn'], hidden=True) @commands.is_nsfw() @delete_original() async def nsfw(self, ctx, *, query: str): """Get a random NSFW Gif via search query""" base_url = f'https://api.redgifs.com/v1/gfycats/search?search_text={query}&count=100' async with aiohttp.ClientSession() as session: async with session.get(base_url) as r: data = await r.json() if data['found'] > 0: gifs = data['gfycats'] rand_gif = random.choice(gifs) gif_link = rand_gif['gifUrl'] await ctx.send(gif_link) def setup(bot): bot.add_cog(NSFW(bot))
29.121212
93
0.58897
86cbb6a657f789abbe3777094f650379d9f44c61
11,164
py
Python
python/ee/tests/data_test.py
sadsad0557/sadsad0557
67371ceca73196dfd2ecd03bf7d3f8b2c3368c34
[ "Apache-2.0" ]
1
2020-11-03T21:11:55.000Z
2020-11-03T21:11:55.000Z
python/ee/tests/data_test.py
sadsad0557/sadsad0557
67371ceca73196dfd2ecd03bf7d3f8b2c3368c34
[ "Apache-2.0" ]
null
null
null
python/ee/tests/data_test.py
sadsad0557/sadsad0557
67371ceca73196dfd2ecd03bf7d3f8b2c3368c34
[ "Apache-2.0" ]
3
2017-08-25T05:12:46.000Z
2019-06-28T07:17:03.000Z
#!/usr/bin/env python """Test for the ee.data module.""" import httplib2 import mock import unittest import ee from ee import apitestcase import ee.image as image class DataTest(unittest.TestCase): def testListOperations(self): mock_http = mock.MagicMock(httplib2.Http) # Return in three groups. mock_http.request.side_effect = [ (httplib2.Response({ 'status': 200 }), b'{"operations": [{"name": "name1"}], "nextPageToken": "t1"}'), (httplib2.Response({ 'status': 200 }), b'{"operations": [{"name": "name2"}], "nextPageToken": "t2"}'), (httplib2.Response({ 'status': 200 }), b'{"operations": [{"name": "name3"}]}'), ] with apitestcase.UsingCloudApi(mock_http=mock_http): self.assertEqual([{ 'name': 'name1' }, { 'name': 'name2' }, { 'name': 'name3' }], ee.data.listOperations()) def testListOperationsEmptyList(self): # Empty lists don't appear at all in the result. mock_http = mock.MagicMock(httplib2.Http) mock_http.request.return_value = (httplib2.Response({'status': 200}), b'{}') with apitestcase.UsingCloudApi(mock_http=mock_http): self.assertEqual([], ee.data.listOperations()) def testSetAssetProperties(self): mock_http = mock.MagicMock(httplib2.Http) with apitestcase.UsingCloudApi(mock_http=mock_http), mock.patch.object( ee.data, 'updateAsset', autospec=True) as mock_update_asset: ee.data.setAssetProperties( 'foo', {'mYPropErTy': 'Value', 'system:time_start': 1}) asset_id = mock_update_asset.call_args[0][0] self.assertEqual(asset_id, 'foo') asset = mock_update_asset.call_args[0][1] self.assertEqual( asset['properties'], {'mYPropErTy': 'Value', 'system:time_start': 1}) update_mask = mock_update_asset.call_args[0][2] self.assertSetEqual( set(update_mask), set([ 'properties.\"mYPropErTy\"', 'properties.\"system:time_start\"' ])) def testListAssets(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = {'assets': [{'path': 'id1', 'type': 'type1'}]} cloud_api_resource.projects().assets().listAssets( ).execute.return_value = mock_result cloud_api_resource.projects().assets().listAssets_next.return_value = None actual_result = ee.data.listAssets({'p': 'q'}) cloud_api_resource.projects().assets().listAssets().\ execute.assert_called_once() self.assertEqual(mock_result, actual_result) def testListImages(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = {'images': [{'path': 'id1', 'type': 'type1'}]} cloud_api_resource.projects().assets().listImages( ).execute.return_value = mock_result cloud_api_resource.projects().assets().listImages_next.return_value = None actual_result = ee.data.listImages({'p': 'q'}) cloud_api_resource.projects().assets().listImages( ).execute.assert_called_once() self.assertEqual(mock_result, actual_result) def testListBuckets(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = {'assets': [{'name': 'id1', 'type': 'FOLDER'}]} cloud_api_resource.projects().listAssets( ).execute.return_value = mock_result actual_result = ee.data.listBuckets() cloud_api_resource.projects().listAssets( ).execute.assert_called_once() self.assertEqual(mock_result, actual_result) def testSimpleGetListViaCloudApi(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = {'assets': [{'name': 'id1', 'type': 'IMAGE_COLLECTION'}]} cloud_api_resource.projects().assets().listAssets( ).execute.return_value = mock_result actual_result = ee.data.getList({'id': 'glam', 'num': 3}) expected_params = { 'parent': 'projects/earthengine-public/assets/glam', 'pageSize': 3 } expected_result = [{'id': 'id1', 'type': 'ImageCollection'}] cloud_api_resource.projects().assets().listAssets.assert_called_with( **expected_params) self.assertEqual(expected_result, actual_result) def testGetListAssetRootViaCloudApi(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = {'assets': [{'name': 'id1', 'type': 'IMAGE_COLLECTION'}]} cloud_api_resource.projects().listAssets( ).execute.return_value = mock_result actual_result = ee.data.getList( {'id': 'projects/my-project/assets/', 'num': 3}) expected_params = { 'parent': 'projects/my-project', 'pageSize': 3 } expected_result = [{'id': 'id1', 'type': 'ImageCollection'}] cloud_api_resource.projects().listAssets.assert_called_with( **expected_params) self.assertEqual(expected_result, actual_result) def testGetListAssetRootViaCloudApiNoSlash(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = {'assets': [{'name': 'id1', 'type': 'IMAGE_COLLECTION'}]} cloud_api_resource.projects().listAssets( ).execute.return_value = mock_result actual_result = ee.data.getList( {'id': 'projects/my-project/assets', 'num': 3}) expected_params = { 'parent': 'projects/my-project', 'pageSize': 3 } expected_result = [{'id': 'id1', 'type': 'ImageCollection'}] cloud_api_resource.projects().listAssets.assert_called_with( **expected_params) self.assertEqual(expected_result, actual_result) def testComplexGetListViaCloudApi(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = { 'images': [{ 'name': 'id1', 'size_bytes': 1234 }] } cloud_api_resource.projects().assets().listImages( ).execute.return_value = mock_result actual_result = ee.data.getList({ 'id': 'glam', 'num': 3, 'starttime': 3612345, 'filter': 'foo' }) expected_params = { 'parent': 'projects/earthengine-public/assets/glam', 'pageSize': 3, 'startTime': '1970-01-01T01:00:12.345000Z', 'view': 'BASIC', 'filter': 'foo' } expected_result = [{'id': 'id1', 'type': 'Image'}] cloud_api_resource.projects().assets().listImages.assert_called_with( **expected_params) self.assertEqual(expected_result, actual_result) # The Cloud API context manager does not mock getAlgorithms, so it's done # separately here. @mock.patch.object( ee.data, 'getAlgorithms', return_value=apitestcase.GetAlgorithms(), autospec=True) def testGetDownloadId(self, _): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = {'name': 'projects/earthengine-legacy/thumbnails/DOCID'} cloud_api_resource.projects().thumbnails().create( ).execute.return_value = mock_result actual_result = ee.data.getDownloadId({ 'image': image.Image('my-image'), 'name': 'dummy' }) cloud_api_resource.projects().thumbnails().create( ).execute.assert_called_once() self.assertEqual( { 'docid': 'projects/earthengine-legacy/thumbnails/DOCID', 'token': '' }, actual_result) def testGetDownloadId_withBandList(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): mock_result = {'name': 'projects/earthengine-legacy/thumbnails/DOCID'} cloud_api_resource.projects().thumbnails().create( ).execute.return_value = mock_result actual_result = ee.data.getDownloadId({ 'image': image.Image('my-image'), 'name': 'dummy', 'bands': ['B1', 'B2', 'B3'] }) cloud_api_resource.projects().thumbnails().create( ).execute.assert_called_once() self.assertEqual( { 'docid': 'projects/earthengine-legacy/thumbnails/DOCID', 'token': '' }, actual_result) def testGetDownloadId_withImageID(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): with self.assertRaisesRegex(ee.ee_exception.EEException, '^Image ID string is not supported.'): ee.data.getDownloadId({'id': 'my-image', 'name': 'dummy'}) def testGetDownloadId_withSerializedImage(self): cloud_api_resource = mock.MagicMock() with apitestcase.UsingCloudApi(cloud_api_resource=cloud_api_resource): with self.assertRaisesRegex(ee.ee_exception.EEException, '^Image as JSON string not supported.'): ee.data.getDownloadId({ 'image': image.Image('my-image').serialize(), 'name': 'dummy' }) def testCloudProfilingEnabled(self): seen = [] def ProfileHook(profile_id): seen.append(profile_id) with ee.data.profiling(ProfileHook): with apitestcase.UsingCloudApi(), DoCloudProfileStubHttp(self, True): ee.data.listImages({'parent': 'projects/earthengine-public/assets/q'}) self.assertEqual(['someProfileId'], seen) def testCloudProfilingDisabled(self): with apitestcase.UsingCloudApi(), DoCloudProfileStubHttp(self, False): ee.data.listImages({'parent': 'projects/earthengine-public/assets/q'}) def testCloudErrorTranslation(self): mock_http = mock.MagicMock(httplib2.Http) mock_http.request.return_value = (httplib2.Response({'status': 400}), b'{"error": {"message": "errorly"} }') with apitestcase.UsingCloudApi(mock_http=mock_http): with self.assertRaisesRegex(ee.ee_exception.EEException, '^errorly$'): ee.data.listImages({'parent': 'projects/earthengine-public/assets/q'}) def DoCloudProfileStubHttp(test, expect_profiling): def Request(unused_self, unused_url, method, body, headers): _ = method, body # Unused kwargs. test.assertEqual(expect_profiling, ee.data._PROFILE_REQUEST_HEADER in headers) response_dict = { 'status': 200, 'content-type': 'application/json' } if expect_profiling: response_dict[ ee.data._PROFILE_RESPONSE_HEADER_LOWERCASE] = 'someProfileId' response = httplib2.Response(response_dict) return response, '{"data": "dummy_data"}' return mock.patch('httplib2.Http.request', new=Request) if __name__ == '__main__': unittest.main()
39.17193
80
0.653529
2aad5038b21020dc5b08d173aadbf01890845b98
672
py
Python
djangocms_salesforce_forms/migrations/0006_auto_20171212_1453.py
divio/aldryn-salesforce-forms
9ab2b3fd7934e6b88a95377b8f3a9b3daa98d2d0
[ "BSD-3-Clause" ]
null
null
null
djangocms_salesforce_forms/migrations/0006_auto_20171212_1453.py
divio/aldryn-salesforce-forms
9ab2b3fd7934e6b88a95377b8f3a9b3daa98d2d0
[ "BSD-3-Clause" ]
2
2019-04-10T14:59:00.000Z
2019-05-14T06:24:36.000Z
djangocms_salesforce_forms/migrations/0006_auto_20171212_1453.py
divio/aldryn-salesforce-forms
9ab2b3fd7934e6b88a95377b8f3a9b3daa98d2d0
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-12 16:53 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('djangocms_salesforce_forms', '0005_auto_20171211_1306'), ] operations = [ migrations.AlterField( model_name='formplugin', name='redirect_type', field=models.CharField(choices=[('redirect_to_page', 'CMS Page'), ('redirect_to_url', 'Absolute URL')], help_text='Where to redirect the user when the form has been successfully sent?', max_length=20, verbose_name='Redirect to'), ), ]
32
241
0.671131
53563ef82efe2d58e3b84c570182212d20a221f5
2,071
py
Python
browbeat/config.py
zulcss/browbeat
1aedcebcdabec0d92c0c0002a6ef458858629e88
[ "Apache-2.0" ]
19
2019-07-12T08:46:58.000Z
2022-03-11T19:25:28.000Z
browbeat/config.py
zulcss/browbeat
1aedcebcdabec0d92c0c0002a6ef458858629e88
[ "Apache-2.0" ]
1
2022-03-30T07:05:53.000Z
2022-03-30T07:05:53.000Z
browbeat/config.py
zulcss/browbeat
1aedcebcdabec0d92c0c0002a6ef458858629e88
[ "Apache-2.0" ]
31
2019-06-10T20:08:44.000Z
2022-02-23T15:43:32.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import yaml from pykwalify import core as pykwalify_core from pykwalify import errors as pykwalify_errors from browbeat.path import conf_schema_path _logger = logging.getLogger("browbeat.config") def load_browbeat_config(path): """Loads and validates an entire Browbeat config per the expected schema. :param path: The path to the Browbeat Config file """ with open(path, "r") as config_file: browbeat_config = yaml.safe_load(config_file) _logger.debug("Browbeat config {} yaml loaded".format(path)) # Validate base config for Browbeat format _validate_yaml("browbeat", browbeat_config) _logger.info("Config {} validated".format(path)) # Validate per-workloads for workload in browbeat_config["workloads"]: _validate_yaml(workload["type"], workload) _logger.debug("Workload {} validated as {}".format(workload["name"], workload["type"])) return browbeat_config def _validate_yaml(schema, config): """Raises exception if config is invalid. :param schema: The schema to validate with (browbeat, rally...) :param config: Loaded yaml to validate """ check = pykwalify_core.Core( source_data=config, schema_files=["{}/{}.yml".format(conf_schema_path, schema)]) try: check.validate(raise_exception=True) except pykwalify_errors.SchemaError as e: _logger.error("Schema validation failed") raise Exception("File does not conform to {} schema: {}".format(schema, e))
36.333333
95
0.720908
3d13d348e7f5c54132dff2b8d93965d01a483c39
1,715
py
Python
catalog/bindings/csw/transaction_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
catalog/bindings/csw/transaction_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
catalog/bindings/csw/transaction_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass, field from typing import List, Optional from bindings.csw.delete_type import DeleteType from bindings.csw.insert_type import InsertType from bindings.csw.request_base_type import RequestBaseType from bindings.csw.update_type import UpdateType __NAMESPACE__ = "http://www.opengis.net/cat/csw/2.0.2" @dataclass class TransactionType(RequestBaseType): """Users may insert, update, or delete catalogue entries. If the verboseResponse attribute has the value "true", then one or more csw:InsertResult elements must be included in the response. """ insert: List[InsertType] = field( default_factory=list, metadata={ "name": "Insert", "type": "Element", "namespace": "http://www.opengis.net/cat/csw/2.0.2", "sequential": True, }, ) update: List[UpdateType] = field( default_factory=list, metadata={ "name": "Update", "type": "Element", "namespace": "http://www.opengis.net/cat/csw/2.0.2", "sequential": True, }, ) delete: List[DeleteType] = field( default_factory=list, metadata={ "name": "Delete", "type": "Element", "namespace": "http://www.opengis.net/cat/csw/2.0.2", "sequential": True, }, ) verbose_response: bool = field( default=False, metadata={ "name": "verboseResponse", "type": "Attribute", }, ) request_id: Optional[str] = field( default=None, metadata={ "name": "requestId", "type": "Attribute", }, )
28.583333
70
0.577259
17bde9483d36e9462555a0d4ce738027dddfa8da
1,040
py
Python
facebook/main.py
Joish/data_mining
244c41fa9427e7a8f9c3b66ebe9b70106e7486d2
[ "MIT" ]
null
null
null
facebook/main.py
Joish/data_mining
244c41fa9427e7a8f9c3b66ebe9b70106e7486d2
[ "MIT" ]
null
null
null
facebook/main.py
Joish/data_mining
244c41fa9427e7a8f9c3b66ebe9b70106e7486d2
[ "MIT" ]
null
null
null
import os from .stream import Listener class FacebookStream(): def __init__(self, ACCESS_TOKEN): self.ACCESS_TOKEN = ACCESS_TOKEN self.run() def get_filter_list(self): cwd = os.path.dirname(os.path.realpath(__file__)) file_path = os.path.join(cwd, "filter_list.txt") f = open(file_path, "r") filter_list = f.read().split("\n") filter_list = [_.replace(" ", '') for _ in filter_list if _] return filter_list def run(self): print("STARTING FACEBOOK STREAM") while(True): posts = requests.get(url) posts_json = posts.json() for x1 in posts_json['data']: postlst.append(x1.get('created_time')) next_page = "" try: next_page = posts_json['paging']['next'] url = next_page except: break if not next_page: break # print "Count: %s, Next Page: %s" % ( len(postlst), url)
27.368421
70
0.531731
d79d61dc388c498327ea1c2fad22914727dacace
324
py
Python
bin/experiments/tornado_hello.py
coreyabshire/marv
b2c791eb1b2b5be0f275e3b50d8df362df2e644e
[ "MIT" ]
null
null
null
bin/experiments/tornado_hello.py
coreyabshire/marv
b2c791eb1b2b5be0f275e3b50d8df362df2e644e
[ "MIT" ]
2
2017-10-18T22:48:16.000Z
2017-10-18T23:30:12.000Z
bin/experiments/tornado_hello.py
coreyabshire/marv
b2c791eb1b2b5be0f275e3b50d8df362df2e644e
[ "MIT" ]
null
null
null
import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, world") if __name__ == "__main__": application = tornado.web.Application([ (r"/", MainHandler), ]) application.listen(8888) tornado.ioloop.IOLoop.current().start()
23.142857
46
0.67284
198dae373ecd1aa6c1e5d403abee0eb805848ec0
3,647
py
Python
frontend/tests/api/files_ext/test_controllers.py
vaginessa/irma
02285080b67b25ef983a99a765044683bd43296c
[ "Apache-2.0" ]
null
null
null
frontend/tests/api/files_ext/test_controllers.py
vaginessa/irma
02285080b67b25ef983a99a765044683bd43296c
[ "Apache-2.0" ]
null
null
null
frontend/tests/api/files_ext/test_controllers.py
vaginessa/irma
02285080b67b25ef983a99a765044683bd43296c
[ "Apache-2.0" ]
null
null
null
import io from unittest import TestCase from mock import MagicMock, patch import api.files_ext.controllers as api_files_ext from api.files_ext.models import FileExt from api.files_ext.schemas import FileExtSchema class TestFilesExtRoutes(TestCase): def assertIsFileExt(self, data): self.assertTrue(type(data) == dict) self.assertCountEqual(data.keys(), FileExtSchema().fields) def assertIsFileExtList(self, data): self.assertTrue(type(data) == list) for file_ext in data: self.assertIsFileExt(file_ext) def setUp(self): self.db = MagicMock() self.session = self.db.session self.old_db = api_files_ext.db api_files_ext.db = self.db def tearDown(self): api_files_ext.db = self.old_db del self.db @patch("api.files_ext.controllers.FileExt") def test_get_ok(self, m_FileExt): api_version = 1 resultid = "whatever" m_file = MagicMock() m_fw = FileExt(m_file, "filename") m_FileExt.load_from_ext_id.return_value = m_fw result = api_files_ext.get(api_version, resultid) m_FileExt.load_from_ext_id.assert_called_once_with(resultid, self.session) self.assertIsFileExt(result) @patch("api.files_ext.controllers.FileExt") def test_get_formatted_false(self, m_FileExt): resultid = "whatever" api_version = 1 m_file_ext = MagicMock() m_file_ext.submitter = "webui" m_FileExt.load_from_ext_id.return_value = m_file_ext ret = api_files_ext.get(api_version, resultid, formatted="no") m_FileExt.load_from_ext_id.assert_called_once_with(resultid, self.session) self.assertIsFileExt(ret) @patch("api.files_ext.controllers.FileExt") def test_get_error(self, m_FileExt): api_version = 1 resultid = "whatever" exception = ValueError() m_FileExt.load_from_ext_id.side_effect = exception with self.assertRaises(ValueError): api_files_ext.get(api_version, resultid) @patch("api.files_ext.controllers.File") def test_create_ok(self, m_File): m_file = MagicMock() m_request = MagicMock() data = b"DATA" filename = "filename" m_file.filename = filename m_file.file = io.BytesIO(data) m_request._params = {'files': m_file, 'json': '{"submitter": "cli"}'} m_file_obj = MagicMock() m_File.get_or_create.return_value = m_file_obj api_files_ext.create(m_request) @patch("api.files_ext.controllers.FileExt") def test_add_files_no_file(self, m_FileExt): m_request = MagicMock() m_request._params['files'] = None expected = "The \"files\" parameter is invalid. Empty list" with self.assertRaises(api_files_ext.HTTPInvalidParam) as context: api_files_ext.create(m_request) self.assertEqual(context.exception.description, expected) m_FileExt.assert_not_called() @patch("api.files.controllers.FileExt") def test_add_files_more_than_one_files(self, m_FileExt): m_request = MagicMock() m_request._params = {'files': ['file1', 'file2']} expected = "The \"files\" parameter is invalid. " \ "Only one file at a time" with self.assertRaises(api_files_ext.HTTPInvalidParam) as context: api_files_ext.create(m_request) self.assertEqual(context.exception.description, expected) m_FileExt.assert_not_called()
37.214286
77
0.650946
822d21c05671db6f27e571d687d59d2297d466f9
1,496
py
Python
workspace/Python/CsvToExcel.py
PinkMemory-sudo/languages
3687240564919ecd864561b16b588b0b5f562acd
[ "MIT" ]
null
null
null
workspace/Python/CsvToExcel.py
PinkMemory-sudo/languages
3687240564919ecd864561b16b588b0b5f562acd
[ "MIT" ]
null
null
null
workspace/Python/CsvToExcel.py
PinkMemory-sudo/languages
3687240564919ecd864561b16b588b0b5f562acd
[ "MIT" ]
null
null
null
# -*- coding:utf-8 –*- ''' 程序用来将csv批量转换为excel文件。指定源路径和目标路径。 在main函数中指定源文件路径source,目标文件路径ob. 这个程序假设csv文件放在:"C:\\Users\\Administrator\\Desktop\\ceshi\\csv文件" 输出excel文件到:"C:\\Users\\Administrator\\Desktop\\ceshi\\xlsx文件" ''' # 导入pandas import pandas as pd import os # 建立单个文件的excel转换成csv函数,file 是excel文件名,to_file 是csv文件名。 sep=';'以分号分隔的csv文件;error_bad_lines=False 忽略错误行数据 def csv_to_xlsx(file, to_file): data_csv = pd.read_csv(file) # 读取以分号为分隔符的csv文件 sep作用为指定分隔符,默认在Windows系统系分隔符为逗号 data_csv.to_excel(to_file, sheet_name='data',index=False) # 读取一个目录里面的所有文件: def read_path(path): dirs = os.listdir(path) return dirs # 主函数 def main(): # 源文件路径 source = "/Users/chenguanlin/Documents/out" # 目标文件路径 ob = "/Users/chenguanlin/Documents/2775" # 将源文件路径里面的文件转换成列表file_list file_list = [source + '/' + i for i in read_path(source)] a = 0 # 列表索引csv文件名称放进j_list列表中,索引0即为第一个csv文件名称 j_list = read_path(source) # 文件夹中所有的csv文件名称提取出来按顺序放进j_list列表中 print("---->", read_path(source)) # read_path(source) 本身就是列表 print("read_path(source)类型:", type(read_path(source))) # 建立循环对于每个文件调用excel_to_csv() for it in file_list: j = j_list[a] # 按照索引逐条将csv文件名称赋值给变量j # 给目标文件新建一些名字列表 j_mid = str(j).replace(".csv", "") # 将csv文件名中的.csv后缀去掉 print("====", j_mid) j_xlsx = ob + '/' + j_mid + ".xlsx" csv_to_xlsx(it, j_xlsx) print("######", it) a = a + 1 if __name__ == '__main__': main()
27.2
103
0.665775
c99df78c772471486293e6d514e2c516388bc6c9
503
py
Python
setup.py
homgwu/eprogress
26528661f08a25e3192b8a62e1113a6fa6e7bb06
[ "Apache-2.0" ]
43
2017-07-25T03:38:16.000Z
2022-03-21T06:45:49.000Z
setup.py
threshi/eprogress
26528661f08a25e3192b8a62e1113a6fa6e7bb06
[ "Apache-2.0" ]
3
2018-03-27T05:51:44.000Z
2020-06-03T11:35:52.000Z
setup.py
threshi/eprogress
26528661f08a25e3192b8a62e1113a6fa6e7bb06
[ "Apache-2.0" ]
21
2017-08-07T06:35:39.000Z
2021-08-30T03:12:17.000Z
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import eprogress setup( name="eprogress", version=eprogress.__version__, packages=find_packages(), author="HomgWu", author_email="homgwu@gmail.com", description="A simple and easy to use module for Python3 to print multi and single line progress bar in terminal", license='Apache-2.0', keywords=('multi line progress', 'progress bar', 'progress'), url="https://github.com/homgwu/eprogress.git", )
29.588235
118
0.701789
af9ac38fc0862af444df35b78636123039063808
5,081
py
Python
generator/generate.py
civicdatacoop/civicdatacoop
7244676c2d77f69e86445d973b979e8f92ba444f
[ "MIT" ]
null
null
null
generator/generate.py
civicdatacoop/civicdatacoop
7244676c2d77f69e86445d973b979e8f92ba444f
[ "MIT" ]
null
null
null
generator/generate.py
civicdatacoop/civicdatacoop
7244676c2d77f69e86445d973b979e8f92ba444f
[ "MIT" ]
null
null
null
import datetime import shutil from pathlib import Path from jinja2 import Environment, FileSystemLoader from dataclasses import dataclass # Path to TEMPLATES folder (relative to where you run the script) PATH_TO_TEMPLATES = Path('../generator/TEMPLATES/') # Path to RESOURCES folder (relative to where you run the script) PATH_TO_RESOURCES = Path('../generator/RESOURCES/') # Path to output folder (relative to where you run the script) PATH_TO_OUTPUT = Path('../docs/') # Root URL URL_ROOT = "https://civicdatacooperative.com/" # Link to homepage link_to_homepage = "/" # TODO: always '/' in production # File suffix html_file_suffix = ".html" @dataclass() class Page(object): title: str keywords: str description: str content_file: str url: str language: str last_mod: datetime.datetime name: str def keys(self): """Get keys that allows conversion of this class to dictionary. Returns: List[str]: List of the keys to be passed to template. """ return ['title', 'keywords', 'description', 'url', 'content_file', 'language', 'name'] def __getitem__(self, key): """Allows conversion of this class to dictionary. """ return getattr(self, key) def generate_site(self): with open(PATH_TO_TEMPLATES.joinpath('page.html')) as tem_han: template = Environment( loader=FileSystemLoader(PATH_TO_TEMPLATES) ).from_string(tem_han.read()) html_str = template.render( **dict(self), link_to_homepage=link_to_homepage ) return html_str @property def absolute_url(self): if self.url != 'index': return URL_ROOT + self.url + html_file_suffix return URL_ROOT @property def last_modified(self): if self.last_mod is None: return None return self.last_mod.strftime('%Y-%m-%d') # Common meta tags comm_keywords: str = "CIPHA, civic, data, synthetic, CPRD" comm_description: str = "The Civic Data Cooperative is a part of the Faculty of Health and Life Sciences at the University of Liverpool working on projects that operate with data about citizens." # noqa: E501 # Pages definition pages = [ Page(title="Liverpool City Region Civic Data Cooperative", keywords=comm_keywords, # noqa: E501 description=comm_description, # noqa: E501 url="index", content_file='page_home.html', language="en", last_mod=datetime.datetime(2022, 1, 1), name="Home" ), Page(title="LCR Civic Data Cooperative: About us", keywords=comm_keywords, # noqa: E501 description=comm_description, # noqa: E501 url="about", content_file='page_about.html', language="en", last_mod=datetime.datetime(2022, 1, 1), name="About Us" ), Page(title="LCR Civic Data Cooperative: Mission", keywords=comm_keywords, # noqa: E501 description=comm_description, # noqa: E501 url="mission", content_file='page_mission.html', language="en", last_mod=datetime.datetime(2022, 1, 1), name="Mission" ), Page(title="LCR Civic Data Cooperative: Contact", keywords=comm_keywords, # noqa: E501 description=comm_description, # noqa: E501 url="contact", content_file='page_contact.html', language="en", last_mod=datetime.datetime(2022, 1, 1), name="Contact" ), Page(title="LCR Civic Data Cooperative: License", keywords=comm_keywords, # noqa: E501 description=comm_description, # noqa: E501 url="license", content_file='page_license.html', language="en", last_mod=datetime.datetime(2022, 1, 1), name="License" ), ] # Remove all existing resources if PATH_TO_OUTPUT.exists(): shutil.rmtree(PATH_TO_OUTPUT) # Create new dir PATH_TO_OUTPUT.mkdir() for page in pages: content = page.generate_site() with PATH_TO_OUTPUT.joinpath(page.url + html_file_suffix).open('w') as fp: fp.write(content) # Copy resources shutil.copytree(PATH_TO_RESOURCES, PATH_TO_OUTPUT, dirs_exist_ok=True) # Generate site map (XML): with open(PATH_TO_TEMPLATES.joinpath('site_map.xml')) as tem_han: template = Environment( loader=FileSystemLoader(PATH_TO_TEMPLATES) ).from_string(tem_han.read()) html_str = template.render( sites=pages ) with PATH_TO_OUTPUT.joinpath('sitemap.xml').open('w') as f_xml: f_xml.write(html_str) # Generate robots.txt file robots_txt_content = f"""User-agent: * Allow: / Sitemap: {URL_ROOT}sitemap.xml""" with PATH_TO_OUTPUT.joinpath('robots.txt').open('w') as robots_txt_h: robots_txt_h.write(robots_txt_content)
32.363057
210
0.624483
bed6f0cbdf7b9ff29eb00444a3ed1e4d907ef440
659
py
Python
nabu/neuralnetworks/models/ed_decoders/ed_decoder_factory.py
imatge-upc/speech-2018-janna
f87d942a7225d7b38e0a650d27da8276a1954c47
[ "MIT" ]
3
2019-02-15T03:28:42.000Z
2019-06-29T14:39:58.000Z
nabu/neuralnetworks/models/ed_decoders/ed_decoder_factory.py
imatge-upc/speech-2018-janna
f87d942a7225d7b38e0a650d27da8276a1954c47
[ "MIT" ]
null
null
null
nabu/neuralnetworks/models/ed_decoders/ed_decoder_factory.py
imatge-upc/speech-2018-janna
f87d942a7225d7b38e0a650d27da8276a1954c47
[ "MIT" ]
1
2019-04-19T06:58:47.000Z
2019-04-19T06:58:47.000Z
'''@file ed_decoder_factory contains the ed decoder factory''' from . import speller, dnn_decoder, hotstart_decoder, dynamic_routing def factory(decoder): '''gets an ed decoder class Args: decoder: the decoder type Returns: An EDDecoder class''' if decoder == 'speller': return speller.Speller elif decoder == 'dnn_decoder': return dnn_decoder.DNNDecoder elif decoder == 'hotstart_decoder': return hotstart_decoder.HotstartDecoder elif decoder == 'dynamic_routing': return dynamic_routing.DynamicRouting else: raise Exception('undefined decoder type: %s' % decoder)
26.36
69
0.681335
75329e6dc0c9b5d7836a69d9d72c3752371198ee
2,775
py
Python
setup.py
dcarr622/gmusicapi
c84beb6ade27b721b742abadeaa07ad3d68436be
[ "BSD-3-Clause" ]
null
null
null
setup.py
dcarr622/gmusicapi
c84beb6ade27b721b742abadeaa07ad3d68436be
[ "BSD-3-Clause" ]
null
null
null
setup.py
dcarr622/gmusicapi
c84beb6ade27b721b742abadeaa07ad3d68436be
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import re from setuptools import setup, find_packages import sys # Only 2.6-2.7 are supported. if not ((2, 6, 0) <= sys.version_info[:3] < (2, 8)): sys.stderr.write('gmusicapi does not officially support this Python version.\n') # try to continue anyway dynamic_requires = [] if sys.version_info[:2] == (2, 6): dynamic_requires += [ 'unittest2 == 0.5.1', # parity with 2.7 'simplejson >= 3.0.6', # ensure_ascii ] # This hack is from http://stackoverflow.com/a/7071358/1231454; # the version is kept in a seperate file and gets parsed - this # way, setup.py doesn't have to import the package. VERSIONFILE = 'gmusicapi/_version.py' version_line = open(VERSIONFILE).read() version_re = r"^__version__ = ['\"]([^'\"]*)['\"]" match = re.search(version_re, version_line, re.M) if match: version = match.group(1) else: raise RuntimeError("Could not find version in '%s'" % VERSIONFILE) setup( name='gmusicapi', version=version, author='Simon Weber', author_email='simon@simonmweber.com', url='http://pypi.python.org/pypi/gmusicapi/', packages=find_packages(), scripts=[], license=open('LICENSE').read(), description='An unofficial api for Google Play Music.', long_description=(open('README.rst').read() + '\n\n' + open('HISTORY.rst').read()), install_requires=[ 'validictory >= 0.8.0, != 0.9.2', # error messages 'decorator >= 3.3.1', # > 3.0 likely work, but not on pypi 'mutagen >= 1.18', # EasyID3 module renaming 'protobuf >= 2.4.1', # 2.3.0 uses ez_setup? 'requests >= 1.1.0, != 1.2.0, != 2.2.1', # session.close 'python-dateutil >= 1.3, != 2.0', # 2.0 is python3-only 'proboscis >= 1.2.5.1', # runs_after 'oauth2client >= 1.1', # TokenRevokeError 'mock >= 0.7.0', # MagicMock 'appdirs >= 1.1.0', # user_log_dir 'gpsoauth == 0.0.3', # mac -> android_id ] + dynamic_requires, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Multimedia :: Sound/Audio', 'Topic :: Software Development :: Libraries :: Python Modules', ], include_package_data=True, zip_safe=False, )
36.513158
86
0.561802
6151e1cd60f060a634af51fca1698f8c048c79b6
12,829
py
Python
sling/nlp/parser/trainer/trace.py
SasCezar/sling
809e21a9986d2522d5014b5836ba222498c099a2
[ "Apache-2.0" ]
null
null
null
sling/nlp/parser/trainer/trace.py
SasCezar/sling
809e21a9986d2522d5014b5836ba222498c099a2
[ "Apache-2.0" ]
null
null
null
sling/nlp/parser/trainer/trace.py
SasCezar/sling
809e21a9986d2522d5014b5836ba222498c099a2
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Stores the full trace of running the SLING parser on a document. # A trace is a list of steps, and a step is a cascade of one or more actions. # A trace is saved as a slot in the document frame. # # This file can also be used to compare two recordios with traces: # # python sling/nlp/parser/trainer/trace.py \ # --base=<base recordio file with tracing information> \ # --expt=<expt recordio file with tracing information> \ # --commons=<path to commons> # [--diff=/path/where/sample/diff/will/be/stored.txt] # # This will compare base and expt document pairs, and verify equality in the # following order: lstm features, ff features, predicted & final actions. # At the first disparity, it will throw a ValueError with a diagnostic message # and print the two documents in text format to the file specified by '--diff'. # Tracing information. class Trace: # Represents a (predicted, final) parser action pair. class Action: def __init__(self, predicted, final, score=None): self.predicted = predicted self.final = final self.score = score # Returns the actions as frames. def as_frames(self, store): predicted = self.predicted.as_frame(store, slot_prefix='/trace/') predicted['/trace/_str'] = str(self.predicted) if self.score is not None: predicted['/trace/score'] = score final = predicted if not self.final is self.predicted: final = self.final.as_frame(store, slot_prefix='/trace/') final['/trace/_str'] = str(self.final) return (predicted, final) # Represents a cascade of actions for one decoder step. class Step: def __init__(self, state, ff_features): self.current = state.current self.ff_features = ff_features self.actions = [] # Adds a (predicted, final) action pair to the step. def add_action(self, predicted, final, score=None): self.actions.append(Trace.Action(predicted, final, score)) def __init__(self, spec, state, lstm_features): self.spec = spec self.lstm_features = lstm_features self.document = state.document self.begin = state.begin self.end = state.end # List of steps. self.steps = [] # Adds a fresh decoder step with 'ff_features' as decoder features. def start_step(self, state, ff_features): self.steps.append(Trace.Step(state, ff_features)) # Adds an action to the latest decoder step. def action(self, predicted, final, score=None): assert len(self.steps) > 0 self.steps[-1].add_action(predicted, final, score) # Writes encoder features to 'trace'. def write_lstm_features(self, trace): assert len(self.lstm_features) == len(self.spec.lstm_features) store = self.document.store tokens = self.document.tokens frames = [] for i in xrange(len(tokens)): frames.append(store.frame(\ {"/trace/index": i, "/trace/token": tokens[i].word})) for f, vals in zip(self.spec.lstm_features, self.lstm_features): assert len(vals.indices) == len(tokens) for token, values in enumerate(vals.indices): if type(values) is int: values = [values] assert type(values) is list frames[token]["/trace/" + f.name] = values frames_array = store.array(len(frames)) for i, frame in enumerate(frames): frames_array[i] = frame trace["/trace/lstm_features"] = frames_array # Writes step tracing information to 'trace'. def write_steps(self, trace): store = self.document.store steps = store.array(len(self.steps)) trace["/trace/steps"] = steps for i, step in enumerate(self.steps): word = "<EOS>" if step.current < len(self.document.tokens): word = self.document.tokens[step.current].word # Decoder features. ff_features = [] for f, indices in step.ff_features: # Convert 'None' link feature values to -1. indices = [-1 if index is None else index for index in indices] ff_features.append(\ store.frame({"/trace/feature": f.name, "/trace/values": indices})) # Actions in the step. actions = store.array(len(step.actions)) for idx, action in enumerate(step.actions): (predicted, final) = action.as_frames(store) actions[idx] = store.frame(\ {"/trace/predicted": predicted, "/trace/final": final}) frame = store.frame({ "/trace/index": i, "/trace/current": step.current, "/trace/current_word": word, "/trace/ff_features" : ff_features, "/trace/actions" : actions }) steps[i] = frame # Writes the trace to the underlying document. def write(self): trace = self.document.store.frame({"begin": self.begin, "end": self.end}) self.write_lstm_features(trace) self.write_steps(trace) self.document.frame["trace"] = trace if __name__ == "__main__": # Compares traces of two aligned recordio files. import os import sling import sling.flags as flags # Utility to check assertions and throw an error if the assertion is # violated. class Checker: # Initializes the checker with the document index, the base and expt # documents, and the filename where the first discrepancy is stored. def __init__(self, index, base_doc, expt_doc, diff_file=None): self.index = index self.base_doc = base_doc self.expt_doc = expt_doc self.diff_file = diff_file # Sanity check: the two documents should have the same tokens. if len(base_doc.tokens) != len(expt_doc.tokens): self.error('Differing number of tokens at document %d' % index) for i in xrange(len(base_doc.tokens)): self.check_eq(base_doc.tokens[i].word, expt_doc.tokens[i].word, \ 'token %d word' % i) self.check_eq(base_doc.tokens[i].brk, expt_doc.tokens[i].brk, \ "token %d brk" % i) # Throws an error with 'message', and writes the document pair to the # pre-specified file. def error(self, message): if self.diff_file is not None: with open(self.diff_file, 'w') as f: f.write("Document Index:" + str(self.index) + "\n") f.write("Base document\n") f.write(self.base_doc.frame.data(pretty=True)) f.write('\n\n') f.write("Expt document\n") f.write(self.expt_doc.frame.data(pretty=True)) f.write('\n\n') f.write(message) print "One pair of differing docs written to", self.diff_file raise ValueError(message) # Checks that lhs == rhs. def check_eq(self, lhs, rhs, message): if lhs != rhs: # Augment the message with the document index and the two values. message = ("Document %d " % self.index) + message + ": %s vs %s" self.error(message % (str(lhs), str(rhs))) # Checks that the two frames are equal (modulo slot re-ordering), and # ignoring roles in 'ignored_slots', which should be a list of names # of roles that should be ignored. def frame_eq(self, lhs, rhs, message, ignored_slots=None): if ignored_slots is None: ignored_slots = [] lhs_set = set() for key, value in lhs: if key.id not in ignored_slots: lhs_set.add((key.id, value)) rhs_set = set() for key, value in rhs: if key.id not in ignored_slots: rhs_set.add((key.id, value)) diff = lhs_set.symmetric_difference(rhs_set) if len(diff) > 0: # Augment the message and report error. message = ("Document %d " % self.index) + message message += ", %s vs %s" % (lhs.data(), rhs.data()) message += ", symmetric difference = " + str(diff) self.error(message) # Compares two recordios for equality of tracing, stopping at the first error. def compare(arg): base_reader = sling.RecordReader(arg.base) expt_reader = sling.RecordReader(arg.expt) commons = sling.Store() commons.load(arg.commons) schema = sling.DocumentSchema(commons) commons.freeze() store = sling.Store(commons) index = -1 for (_, base_val), (_, expt_val) in zip(base_reader, expt_reader): index += 1 base_doc = sling.Document(frame=store.parse(base_val), schema=schema) expt_doc = sling.Document(frame=store.parse(expt_val), schema=schema) # Basic checks. base = base_doc.frame["trace"] expt = expt_doc.frame["trace"] if base is None and expt_doc is not None: checker.error('No trace in base document at index %d' % index) elif base is not None and expt_doc is None: checker.error('No trace in expt document at index %d' % index) if base is None: continue # Traces should be over the same token range. checker = Checker(index, base_doc, expt_doc, arg.diff) checker.check_eq(base["begin"], expt["begin"], "Trace Begin") checker.check_eq(base["end"], expt["end"], "Trace End") # Check LSTM features. base_lstm = base["/trace/lstm_features"] expt_lstm = expt["/trace/lstm_features"] checker.check_eq(len(base_lstm), len(expt_lstm), "LSTM Features Length") for i in xrange(len(base_lstm)): checker.frame_eq(base_lstm[i], expt_lstm[i], \ "LSTM features for token %d (%s)" % (i, base_doc.tokens[i].word)) # Check steps. base_steps = base["/trace/steps"] expt_steps = expt["/trace/steps"] min_steps = min(len(base_steps), len(expt_steps)) for i in xrange(min_steps): message = "Step %d's current token index" % i checker.check_eq(base_steps[i]["/trace/current"], \ expt_steps[i]["/trace/current"], message) # Check FF features for the step. base_ff = base_steps[i]["/trace/ff_features"] expt_ff = expt_steps[i]["/trace/ff_features"] checker.check_eq(len(base_ff), len(expt_ff), \ "# of FF features for step %d" % i) base_dict = {f["/trace/feature"] : f["/trace/values"] for f in base_ff} expt_dict = {f["/trace/feature"] : f["/trace/values"] for f in expt_ff} for k, v in base_dict.iteritems(): checker.check_eq(k in expt_dict, True, \ "Step %d: FF feature %s not in expt" % (i, k)) checker.check_eq(v, expt_dict[k], \ "Step %d: FF feature %s has a different value in expt" % (i, k)) for k, v in expt_dict.iteritems(): checker.check_eq(k in base_dict, True, \ "Step %d: FF feature %s not in base" % (i, k)) # Check action(s) in the step. base_actions = base_steps[i]["/trace/actions"] expt_actions = expt_steps[i]["/trace/actions"] for idx in xrange(min(len(base_actions), len(expt_actions))): checker.frame_eq(base_actions[idx]["/trace/predicted"], \ expt_actions[idx]["/trace/predicted"], "Step %d, predicted action %d" % (i, idx), ["/trace/_str"]) checker.frame_eq(base_actions[idx]["/trace/final"], \ expt_actions[idx]["/trace/final"], "Step %d, final action %d" % (i, idx), ["/trace/_str"]) # There should be the same number of actions in the step. checker.check_eq(len(base_actions), len(expt_actions), \ "Step %d: # of actions" % i) # There should be the same number of steps. checker.check_eq(len(base_steps), len(expt_steps), "# of Steps") base_reader.close() expt_reader.close() flags.define('--base', help='Base recordio', default="", type=str, metavar='FILE') flags.define('--expt', help='Expt recordio', default="", type=str, metavar='FILE') flags.define('--commons', help='Commons', default="", type=str, metavar='FILE') flags.define('--diff', help='File where sample diff (if any) will be written', default="/tmp/diff.txt", type=str, metavar='FILE') flags.parse() assert os.path.exists(flags.arg.base) assert os.path.exists(flags.arg.expt) assert os.path.exists(flags.arg.commons) compare(flags.arg)
37.732353
80
0.631304
7b3fc7b9b7b233717444e50b864512ecee1a85a6
1,370
py
Python
OpenWeatherMap.py
BrianDunneKK/GettingStarted-Python
9fc666ae73401921a73aa99c02a4d6691daed97a
[ "MIT" ]
null
null
null
OpenWeatherMap.py
BrianDunneKK/GettingStarted-Python
9fc666ae73401921a73aa99c02a4d6691daed97a
[ "MIT" ]
null
null
null
OpenWeatherMap.py
BrianDunneKK/GettingStarted-Python
9fc666ae73401921a73aa99c02a4d6691daed97a
[ "MIT" ]
null
null
null
import pyowm from datetime import datetime, timedelta loc = 'Kilkenny,Ireland' owm = pyowm.OWM('f8c5ed2d5acaf51d22e984cb02a99d7a') observation = owm.weather_at_place(loc) w = observation.get_weather() wi = w.get_wind() # {'speed': 4.6, 'deg': 330} hm = w.get_humidity() # 87 tm = w.get_temperature('celsius') # {'temp_max': 10.5, 'temp': 9.7, 'temp_min': 9.0} print(w) print(wi) print(hm) print(tm) f3 = owm.three_hours_forecast(loc) # fd = owm.daily_forecast(loc) # Your API subscription level does not allow to perform this operation # fh = owm.weather_history_at_place(loc) # Your API subscription level does not allow to perform this operation print("\nForecast:") for fcast in f3._forecast._weathers: ref_time = fcast.get_reference_time(timeformat='iso') temp = fcast.get_temperature(unit='celsius')["temp"] details = fcast.get_detailed_status() desc = " {} {:4.1f}°C {}".format(ref_time, temp, details) print(desc) # COUNTRY = 'UK' # forecast = owm.daily_forecast('london,uk') # forecast_date = datetime.now() + timedelta(days = 1, hours = 3) # weather = forecast.get_weather_at(forecast_date) # description = weather.get_detailed_status() # clouds = weather.get_clouds() # temperature = weather.get_temperature() # wind = weather.get_wind() # rain = weather.get_rain() # print(forecast)
33.414634
114
0.69562
b3c051371228a07a73436dd29f8ee666e25f67d9
10,353
py
Python
gamestonk_terminal/cryptocurrency/onchain/bitquery_view.py
b17z/GamestonkTerminal
135eedb8d995fd10baff6283de525e8a4d124cae
[ "MIT" ]
1
2022-02-18T04:02:52.000Z
2022-02-18T04:02:52.000Z
gamestonk_terminal/cryptocurrency/onchain/bitquery_view.py
b17z/GamestonkTerminal
135eedb8d995fd10baff6283de525e8a4d124cae
[ "MIT" ]
null
null
null
gamestonk_terminal/cryptocurrency/onchain/bitquery_view.py
b17z/GamestonkTerminal
135eedb8d995fd10baff6283de525e8a4d124cae
[ "MIT" ]
null
null
null
"""The BitQuery view""" __docformat__ = "numpy" import logging import os from gamestonk_terminal.cryptocurrency.dataframe_helpers import ( prettify_column_names, lambda_very_long_number_formatter, ) from gamestonk_terminal.cryptocurrency.onchain import bitquery_model from gamestonk_terminal.decorators import log_start_end from gamestonk_terminal.helper_funcs import export_data, print_rich_table from gamestonk_terminal.rich_config import console logger = logging.getLogger(__name__) @log_start_end(log=logger) def display_dex_trades( trade_amount_currency: str = "USD", kind: str = "dex", top: int = 20, days: int = 90, sortby: str = "tradeAmount", descend: bool = False, export: str = "", ) -> None: """Trades on Decentralized Exchanges aggregated by DEX or Month [Source: https://graphql.bitquery.io/] Parameters ---------- kind: str Aggregate trades by dex or time trade_amount_currency: str Currency of displayed trade amount. Default: USD top: int Number of records to display sortby: str Key by which to sort data descend: bool Flag to sort data descending days: int Last n days to query data. Maximum 365 (bigger numbers can cause timeouts on server side) export : str Export dataframe data to csv,json,xlsx file """ if kind == "time": df = bitquery_model.get_dex_trades_monthly(trade_amount_currency, days) if not df.empty: df = df.sort_values(by="date", ascending=descend) else: df = bitquery_model.get_dex_trades_by_exchange(trade_amount_currency, days) if not df.empty: df = df.sort_values(by=sortby, ascending=descend) if not df.empty: df_data = df.copy() df[["tradeAmount", "trades"]] = df[["tradeAmount", "trades"]].applymap( lambda x: lambda_very_long_number_formatter(x) ) df.columns = prettify_column_names(df.columns) print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="Trades on Decentralized Exchanges", ) console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)), "lt", df_data, ) @log_start_end(log=logger) def display_daily_volume_for_given_pair( token: str = "WBTC", vs: str = "USDT", top: int = 20, sortby: str = "date", descend: bool = False, export: str = "", ) -> None: """Display daily volume for given pair [Source: https://graphql.bitquery.io/] Parameters ---------- token: str ERC20 token symbol or address vs: str Quote currency. top: int Number of records to display sortby: str Key by which to sort data descend: bool Flag to sort data descending export : str Export dataframe data to csv,json,xlsx file Returns ------- pd.DataFrame Token volume on different decentralized exchanges """ df = bitquery_model.get_daily_dex_volume_for_given_pair( token=token, vs=vs, limit=top, ) if df.empty: return df = df.sort_values(by=sortby, ascending=descend) df_data = df.copy() df[["tradeAmount", "trades"]] = df[["tradeAmount", "trades"]].applymap( lambda x: lambda_very_long_number_formatter(x) ) df.columns = prettify_column_names(df.columns) print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="Daily Volume for Pair", ) console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)), "dvcp", df_data, ) @log_start_end(log=logger) def display_dex_volume_for_token( token: str = "WBTC", trade_amount_currency: str = "USD", top: int = 10, sortby: str = "tradeAmount", descend: bool = False, export: str = "", ) -> None: """Display token volume on different Decentralized Exchanges. [Source: https://graphql.bitquery.io/] Parameters ---------- token: str ERC20 token symbol or address trade_amount_currency: str Currency of displayed trade amount. Default: USD top: int Number of records to display sortby: str Key by which to sort data descend: bool Flag to sort data descending export : str Export dataframe data to csv,json,xlsx file Returns ------- pd.DataFrame Token volume on different decentralized exchanges """ df = bitquery_model.get_token_volume_on_dexes( token=token, trade_amount_currency=trade_amount_currency ) if not df.empty: df = df.sort_values(by=sortby, ascending=descend) df_data = df.copy() df[["tradeAmount", "trades"]] = df[["tradeAmount", "trades"]].applymap( lambda x: lambda_very_long_number_formatter(x) ) df.columns = prettify_column_names(df.columns) print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="Token Volume on Exchanges", ) console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)), "tv", df_data, ) @log_start_end(log=logger) def display_ethereum_unique_senders( interval: str = "days", limit: int = 10, sortby: str = "date", descend: bool = False, export: str = "", ) -> None: """Display number of unique ethereum addresses which made a transaction in given time interval [Source: https://graphql.bitquery.io/] Parameters ---------- interval: str Time interval in which ethereum address made transaction. month, week or day limit: int Number of records to display. It's calculated base on provided interval. If interval is month then calculation is made in the way: limit * 30 = time period, in case if interval is set to week, then time period is calculated as limit * 7. For better user experience maximum time period in days is equal to 90. sortby: str Key by which to sort data descend: bool Flag to sort data descending export : str Export dataframe data to csv,json,xlsx file Returns ------- pd.DataFrame Number of unique ethereum addresses which made a transaction in given time interval """ df = bitquery_model.get_ethereum_unique_senders(interval, limit) if not df.empty: df = df.sort_values(by=sortby, ascending=descend) df[["uniqueSenders", "transactions", "maximumGasPrice"]] = df[ ["uniqueSenders", "transactions", "maximumGasPrice"] ].applymap(lambda x: lambda_very_long_number_formatter(x)) df_data = df.copy() df.columns = prettify_column_names(df.columns) print_rich_table( df, headers=list(df.columns), show_index=False, title="Unique Ethereum Addresses", ) console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)), "ueat", df_data, ) @log_start_end(log=logger) def display_most_traded_pairs( exchange="Uniswap", days: int = 10, top: int = 10, sortby: str = "tradeAmount", descend: bool = False, export: str = "", ) -> None: """Display most traded crypto pairs on given decentralized exchange in chosen time period. [Source: https://graphql.bitquery.io/] Parameters ---------- exchange: Decentralized exchange name days: Number of days taken into calculation account. sortby: str Key by which to sort data descend: bool Flag to sort data descending export : str Export dataframe data to csv,json,xlsx file Returns ------- pd.DataFrame Most traded crypto pairs on given decentralized exchange in chosen time period. """ df = bitquery_model.get_most_traded_pairs(exchange=exchange, limit=days) if not df.empty: df = df.sort_values(by=sortby, ascending=descend) df_data = df.copy() df[["tradeAmount", "trades"]] = df[["tradeAmount", "trades"]].applymap( lambda x: lambda_very_long_number_formatter(x) ) df.columns = prettify_column_names(df.columns) print_rich_table( df.head(top), headers=list(df.columns), show_index=False, title="Most Traded Crypto Pairs", ) console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)), "ttcp", df_data, ) @log_start_end(log=logger) def display_spread_for_crypto_pair( token="ETH", vs="USDC", days: int = 10, sortby: str = "date", descend: bool = False, export: str = "", ) -> None: """Display an average bid and ask prices, average spread for given crypto pair for chosen time period. [Source: https://graphql.bitquery.io/] Parameters ---------- days: int Last n days to query data token: str ERC20 token symbol vs: str Quoted currency. sortby: str Key by which to sort data descend: bool Flag to sort data descending export : str Export dataframe data to csv,json,xlsx file Returns ------- pd.DataFrame Average bid and ask prices, spread for given crypto pair for chosen time period """ df = bitquery_model.get_spread_for_crypto_pair(token=token, vs=vs, limit=days) if not df.empty: df = df.sort_values(by=sortby, ascending=descend) df.columns = prettify_column_names(df.columns) print_rich_table( df, headers=list(df.columns), show_index=False, title="Average Spread for Given Crypto", ) console.print("") export_data( export, os.path.dirname(os.path.abspath(__file__)), "baas", df, )
27.461538
106
0.61132
96f16834fcc2ff5066f3916911f749b04f93a7f9
45,979
py
Python
tensorflow/python/data/experimental/ops/data_service_ops.py
dongxiao92/tensorflow
72ac61dbed0ea43dce96431b2b72aa0a7bc83a93
[ "Apache-2.0" ]
2
2021-03-02T12:53:15.000Z
2021-10-20T21:28:21.000Z
tensorflow/python/data/experimental/ops/data_service_ops.py
dongxiao92/tensorflow
72ac61dbed0ea43dce96431b2b72aa0a7bc83a93
[ "Apache-2.0" ]
null
null
null
tensorflow/python/data/experimental/ops/data_service_ops.py
dongxiao92/tensorflow
72ac61dbed0ea43dce96431b2b72aa0a7bc83a93
[ "Apache-2.0" ]
2
2021-11-02T15:46:38.000Z
2022-03-08T11:39:35.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python API for executing a tf.data.Dataset using a tf.data service.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import six from tensorflow.python import tf2 from tensorflow.python.compat import compat from tensorflow.python.data.experimental.ops import compression_ops from tensorflow.python.data.experimental.ops.distribute_options import AutoShardPolicy from tensorflow.python.data.experimental.ops.distribute_options import ExternalStatePolicy from tensorflow.python.data.experimental.service import _pywrap_server_lib from tensorflow.python.data.experimental.service import _pywrap_utils from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import tensor_util from tensorflow.python.ops import gen_experimental_dataset_ops from tensorflow.python.ops import string_ops from tensorflow.python.util import lazy_loader from tensorflow.python.util.tf_export import tf_export COMPRESSION_AUTO = "AUTO" COMPRESSION_NONE = None # TODO(b/176933539): Use the regular import. nested_structure_coder = lazy_loader.LazyLoader( "nested_structure_coder", globals(), "tensorflow.python.saved_model.nested_structure_coder") class ProcessingMode(object): """tf.data service processing modes.""" PARALLEL_EPOCHS = "parallel_epochs" DISTRIBUTED_EPOCH = "distributed_epoch" @staticmethod def validate(mode): """Raises a ValueError if the given object is not a valid processing mode.""" valid_modes = [ ProcessingMode.PARALLEL_EPOCHS, ProcessingMode.DISTRIBUTED_EPOCH ] if mode not in valid_modes: raise ValueError( "{0} is not a valid processing mode. Valid modes: {1}".format( mode, valid_modes)) def _check_job_name(job_name): if job_name is None: return if not isinstance(job_name, six.string_types): raise ValueError( "job_name must be a string, but job_name was of type " "{0}. job_name={1}".format(type(job_name), job_name)) if not job_name: raise ValueError("job_name must not be empty") class _DataServiceDatasetV2(dataset_ops.DatasetSource): """A `Dataset` that reads elements from the tf.data service.""" def __init__(self, dataset_id, processing_mode, address, element_spec, protocol, data_transfer_protocol, job_name=None, consumer_index=None, num_consumers=None, max_outstanding_requests=None, task_refresh_interval_hint_ms=None, target_workers="AUTO"): """Constructs a _DataServiceDatasetV2. Args: dataset_id: The dataset id for the dataset to read from. processing_mode: A string specifying the policy for how data should be processed by tf.data workers. Can be either "parallel_epochs" to have each tf.data worker process a copy of the dataset, or "distributed_epoch" to split a single iteration of the dataset across all the workers. address: The tf.data service address, e.g. "localhost:5000". element_spec: The dataset element spec for the dataset to read from. protocol: The protocol to use for communicating with the tf.data service, e.g. "grpc". data_transfer_protocol: (Optional.) The protocol to use for transferring data with the tf.data service. By default, data is transferred using gRPC. job_name: (Optional.) The name of the job. If provided, it must be a non-empty string or Tensor. This argument makes it possible for multiple datasets to share the same job. The default behavior is that the dataset creates anonymous, exclusively owned jobs. consumer_index: (Optional.) The index of the consumer in the range from `0` to `num_consumers`. Must be specified alongside `num_consumers`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. num_consumers: (Optional.) The number of consumers which will consume from the job. Must be specified alongside `consumer_index`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. When `num_consumers` is specified, the dataset must have infinite cardinality to prevent a producer from running out of data early and causing consumers to go out of sync. max_outstanding_requests: (Optional.) A limit on how many elements may be requested at the same time. You can use this option to control the amount of memory used, since `distribute` won't use more than `element_size` * `max_outstanding_requests` of memory. task_refresh_interval_hint_ms: (Optional.) A hint for how often to query the dispatcher for task changes. target_workers: (Optional.) Which workers to read from. If `"AUTO"`, tf.data runtime decides which workers to read from. If `"ANY"`, reads from any tf.data service workers. If `"LOCAL"`, only reads from local in-processs tf.data service workers. `"AUTO"` works well for most cases, while users can specify other targets. For example, `"LOCAL"` helps avoid RPCs and data copy if every TF worker colocates with a tf.data service worker. Defaults to `"AUTO"`. """ if consumer_index is None != num_consumers is None: raise ValueError( "Must either set both consumer_index and num_consumers, or neither. ", "consumer_index: ", consumer_index, ", num_consumers: ", num_consumers) if num_consumers is not None and job_name is None: raise ValueError("job_name must be set when setting num_consumers") if job_name is None: job_name = "" if max_outstanding_requests is None: max_outstanding_requests = dataset_ops.AUTOTUNE if task_refresh_interval_hint_ms is None: task_refresh_interval_hint_ms = dataset_ops.AUTOTUNE self._dataset_id = ops.convert_to_tensor( dataset_id, dtype=dtypes.int64, name="dataset_id") self._processing_mode = ops.convert_to_tensor( processing_mode, dtype=dtypes.string, name="processing_mode") self._address = ops.convert_to_tensor( address, dtype=dtypes.string, name="address") self._protocol = ops.convert_to_tensor( protocol, dtype=dtypes.string, name="protocol") self._job_name = ops.convert_to_tensor( job_name, dtype=dtypes.string, name="job_name") self._consumer_index = ops.convert_to_tensor( -1 if consumer_index is None else consumer_index, dtype=dtypes.int64, name="consumer_index") self._num_consumers = ops.convert_to_tensor( -1 if num_consumers is None else num_consumers, dtype=dtypes.int64, name="num_consumers") self._max_outstanding_requests = ops.convert_to_tensor( max_outstanding_requests, dtype=dtypes.int64, name="max_outstanding_requests") self._element_spec = element_spec self._target_workers = target_workers compat_kwargs = {} if data_transfer_protocol is not None: compat_kwargs["data_transfer_protocol"] = data_transfer_protocol if compat.forward_compatible(2021, 7, 12) or target_workers != "AUTO": compat_kwargs["target_workers"] = target_workers variant_tensor = gen_experimental_dataset_ops.data_service_dataset_v2( dataset_id=self._dataset_id, processing_mode=self._processing_mode, address=self._address, protocol=self._protocol, job_name=self._job_name, consumer_index=self._consumer_index, num_consumers=self._num_consumers, max_outstanding_requests=self._max_outstanding_requests, task_refresh_interval_hint_ms=task_refresh_interval_hint_ms, iteration_counter=gen_experimental_dataset_ops.dummy_iteration_counter( ), **compat_kwargs, **self._flat_structure) super(_DataServiceDatasetV2, self).__init__(variant_tensor) @property def element_spec(self): return self._element_spec class _DataServiceDatasetV1(dataset_ops.DatasetV1Adapter): """A `Dataset` that executes its input through the tf.data service.""" @functools.wraps(_DataServiceDatasetV2.__init__) def __init__(self, dataset_id, processing_mode, address, element_spec, protocol, data_transfer_protocol, job_name, consumer_index, num_consumers, max_outstanding_requests, task_refresh_interval_hint_ms, target_workers): self._wrapped = _DataServiceDatasetV2( dataset_id=dataset_id, processing_mode=processing_mode, address=address, element_spec=element_spec, protocol=protocol, data_transfer_protocol=data_transfer_protocol, job_name=job_name, consumer_index=consumer_index, num_consumers=num_consumers, max_outstanding_requests=max_outstanding_requests, task_refresh_interval_hint_ms=task_refresh_interval_hint_ms, target_workers=target_workers) super(_DataServiceDatasetV1, self).__init__(self._wrapped) if tf2.enabled(): _DataServiceDataset = _DataServiceDatasetV2 else: _DataServiceDataset = _DataServiceDatasetV1 def _parse_service(service): """Converts a tf.data service string into a (protocol, address) tuple. Args: service: A string in the format "protocol://address" or just "address". If the string is only an address, the default protocol will be used. Returns: The (protocol, address) tuple """ if not isinstance(service, six.string_types): raise ValueError( "service must be a string, but service was of type {0}. service={1}" .format(type(service), service)) if not service: raise ValueError("service must not be empty") parts = service.split("://") if len(parts) == 2: protocol, address = parts elif len(parts) == 1: address = parts[0] protocol = _pywrap_utils.TF_DATA_DefaultProtocol() else: raise ValueError("malformed service string has multiple '://': %s" % service) # TODO(aaudibert): Considering validating reachability of address here. return (protocol, address) def _distribute(processing_mode, service, job_name=None, consumer_index=None, num_consumers=None, max_outstanding_requests=None, task_refresh_interval_hint_ms=None, data_transfer_protocol=None, compression="AUTO", target_workers="AUTO"): """A transformation that moves dataset processing to the tf.data service. This transformation is similar to `distribute`, but supports additional parameters which we do not yet want to add to the public Python API. Args: processing_mode: A string specifying the policy for how data should be processed by tf.data workers. Can be either "parallel_epochs" to have each tf.data worker process a copy of the dataset, or "distributed_epoch" to split a single iteration of the dataset across all the workers. service: A string or a tuple indicating how to connect to the tf.data service. If it's a string, it should be in the format `[<protocol>://]<address>`, where `<address>` identifies the dispatcher address and `<protocol>` can optionally be used to override the default protocol to use. If it's a tuple, it should be (protocol, address). job_name: (Optional.) The name of the job. If provided, it must be a non-empty string. This argument makes it possible for multiple datasets to share the same job. The default behavior is that the dataset creates anonymous, exclusively owned jobs. consumer_index: (Optional.) The index of the consumer in the range from `0` to `num_consumers`. Must be specified alongside `num_consumers`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. num_consumers: (Optional.) The number of consumers which will consume from the job. Must be specified alongside `consumer_index`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. When `num_consumers` is specified, the dataset must have infinite cardinality to prevent a producer from running out of data early and causing consumers to go out of sync. max_outstanding_requests: (Optional.) A limit on how many elements may be requested at the same time. You can use this option to control the amount of memory used, since `distribute` won't use more than `element_size` * `max_outstanding_requests` of memory. task_refresh_interval_hint_ms: (Optional.) A hint for how often to query the dispatcher for task changes. data_transfer_protocol: (Optional.) The protocol to use for transferring data with the tf.data service. By default, data is transferred using gRPC. compression: How to compress the dataset's elements before transferring them over the network. "AUTO" leaves the decision of how to compress up to the tf.data service runtime. `None` indicates not to compress. target_workers: (Optional.) Which workers to read from. If `"AUTO"`, tf.data runtime decides which workers to read from. If `"ANY"`, reads from any tf.data service workers. If `"LOCAL"`, only reads from local in-processs tf.data service workers. `"AUTO"` works well for most cases, while users can specify other targets. For example, `"LOCAL"` helps avoid RPCs and data copy if every TF worker colocates with a tf.data service worker. Defaults to `"AUTO"`. Returns: Dataset: A `Dataset` of the elements produced by the data service. """ ProcessingMode.validate(processing_mode) valid_compressions = [COMPRESSION_AUTO, COMPRESSION_NONE] if compression not in valid_compressions: raise ValueError( "Invalid compression argument: {}. Must be one of {}".format( compression, valid_compressions)) if compression == COMPRESSION_AUTO and data_transfer_protocol is not None: compression = COMPRESSION_NONE def _apply_fn(dataset): # pylint: disable=missing-docstring dataset_id = _register_dataset(service, dataset, compression=compression) return _from_dataset_id( processing_mode, service, dataset_id, dataset.element_spec, job_name=job_name, consumer_index=consumer_index, num_consumers=num_consumers, max_outstanding_requests=max_outstanding_requests, task_refresh_interval_hint_ms=task_refresh_interval_hint_ms, data_transfer_protocol=data_transfer_protocol, compression=compression, target_workers=target_workers) return _apply_fn @tf_export("data.experimental.service.distribute") def distribute(processing_mode, service, job_name=None, consumer_index=None, num_consumers=None, max_outstanding_requests=None, data_transfer_protocol=None, compression="AUTO", target_workers="AUTO"): """A transformation that moves dataset processing to the tf.data service. When you iterate over a dataset containing the `distribute` transformation, the tf.data service creates a "job" which produces data for the dataset iteration. The tf.data service uses a cluster of workers to prepare data for training your model. The `processing_mode` argument to `tf.data.experimental.service.distribute` describes how to leverage multiple workers to process the input dataset. Currently, there are two processing modes to choose from: "distributed_epoch" and "parallel_epochs". "distributed_epoch" means that the dataset will be split across all tf.data service workers. The dispatcher produces "splits" for the dataset and sends them to workers for further processing. For example, if a dataset begins with a list of filenames, the dispatcher will iterate through the filenames and send the filenames to tf.data workers, which will perform the rest of the dataset transformations on those files. "distributed_epoch" is useful when your model needs to see each element of the dataset exactly once, or if it needs to see the data in a generally-sequential order. "distributed_epoch" only works for datasets with splittable sources, such as `Dataset.from_tensor_slices`, `Dataset.list_files`, or `Dataset.range`. "parallel_epochs" means that the entire input dataset will be processed independently by each of the tf.data service workers. For this reason, it is important to shuffle data (e.g. filenames) non-deterministically, so that each worker will process the elements of the dataset in a different order. "parallel_epochs" can be used to distribute datasets that aren't splittable. With two workers, "parallel_epochs" will produce every element of the dataset twice: >>> dispatcher = tf.data.experimental.service.DispatchServer() >>> dispatcher_address = dispatcher.target.split("://")[1] >>> # Start two workers >>> workers = [ ... tf.data.experimental.service.WorkerServer( ... tf.data.experimental.service.WorkerConfig( ... dispatcher_address=dispatcher_address)) for _ in range(2) ... ] >>> dataset = tf.data.Dataset.range(10) >>> dataset = dataset.apply(tf.data.experimental.service.distribute( ... processing_mode="parallel_epochs", service=dispatcher.target)) >>> print(sorted(list(dataset.as_numpy_iterator()))) [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9] "distributed_epoch", on the other hand, will still produce each element once: >>> dispatcher = tf.data.experimental.service.DispatchServer() >>> dispatcher_address = dispatcher.target.split("://")[1] >>> workers = [ ... tf.data.experimental.service.WorkerServer( ... tf.data.experimental.service.WorkerConfig( ... dispatcher_address=dispatcher_address)) for _ in range(2) ... ] >>> dataset = tf.data.Dataset.range(10) >>> dataset = dataset.apply(tf.data.experimental.service.distribute( ... processing_mode="distributed_epoch", service=dispatcher.target)) >>> print(sorted(list(dataset.as_numpy_iterator()))) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] When using `apply(tf.data.experimental.service.distribute(...))`, the dataset before the `apply` transformation executes within the tf.data service, while the operations after `apply` happen within the local process. >>> dispatcher = tf.data.experimental.service.DispatchServer() >>> dispatcher_address = dispatcher.target.split("://")[1] >>> workers = [ ... tf.data.experimental.service.WorkerServer( ... tf.data.experimental.service.WorkerConfig( ... dispatcher_address=dispatcher_address)) for _ in range(2) ... ] >>> dataset = tf.data.Dataset.range(5) >>> dataset = dataset.map(lambda x: x*x) >>> dataset = dataset.apply( ... tf.data.experimental.service.distribute("parallel_epochs", ... dispatcher.target)) >>> dataset = dataset.map(lambda x: x+1) >>> print(sorted(list(dataset.as_numpy_iterator()))) [1, 1, 2, 2, 5, 5, 10, 10, 17, 17] In the above example, the dataset operations (before applying the `distribute` function on the elements) will be executed on the tf.data workers, and the elements are provided over RPC. The remaining transformations (after the call to `distribute`) will be executed locally. The dispatcher and the workers will bind to usused free ports (which are chosen at random), in order to communicate with each other. However, to bind them to specific ports, the `port` parameter can be passed. The `job_name` argument allows jobs to be shared across multiple datasets. Instead of each dataset creating its own job, all datasets with the same `job_name` will consume from the same job. A new job will be created for each iteration of the dataset (with each repetition of `Dataset.repeat` counting as a new iteration). Suppose the `DispatchServer` is serving on `localhost:5000` and two training workers (in either a single client or multi-client setup) iterate over the below dataset, and there is a single tf.data worker: ``` range5_dataset = tf.data.Dataset.range(5) dataset = range5_dataset.apply(tf.data.experimental.service.distribute( "parallel_epochs", "localhost:5000", job_name="my_job_name")) for iteration in range(3): print(list(dataset)) ``` The elements of each job will be split between the two processes, with elements being consumed by the processes on a first-come first-served basis. One possible result is that process 1 prints ``` [0, 2, 4] [0, 1, 3] [1] ``` and process 2 prints ``` [1, 3] [2, 4] [0, 2, 3, 4] ``` Job names must not be re-used across different training jobs within the lifetime of the tf.data service. In general, the tf.data service is expected to live for the duration of a single training job. To use the tf.data service with multiple training jobs, make sure to use different job names to avoid conflicts. For example, suppose a training job calls `distribute` with `job_name="job"` and reads until end of input. If another independent job connects to the same tf.data service and tries to read from `job_name="job"`, it will immediately receive end of input, without getting any data. **Round Robin data consumption** By default, when multiple consumers read from the same job, they receive data on a first-come first-served basis. In some use cases, it works better to use a strict round-robin order. For example, the tf.data service can be used to coordinate example sizes across a cluster during sychronous training, so that during each step all replicas train on similar-sized elements. To achieve this, define a dataset which generates rounds of `num_consumers` consecutive similar-sized batches, then enable round-robin reads by setting `consumer_index` and `num_consumers`. Consumers read data by cycling through all workers, reading one element from each. First, each consumer will read an element from the first worker, then each consumer will read an element from the second worker, and so on. NOTE: To keep consumers in sync, round robin data consumption requires that the dataset have infinite cardinality. You can get this by adding `.repeat()` at the end of the dataset definition. **Keras and Distribution Strategies** The dataset produced by the `distribute` transformation can be passed to Keras' `Model.fit` or Distribution Strategy's `tf.distribute.Strategy.experimental_distribute_dataset` like any other `tf.data.Dataset`. We recommend setting a `job_name` on the call to `distribute` so that if there are multiple workers, they read data from the same job. Note that the autosharding normally performed by `experimental_distribute_dataset` will be disabled when setting a `job_name`, since sharing the job already results in splitting data across the workers. When using a shared job, data will be dynamically balanced across workers, so that they reach end of input about the same time. This results in better worker utilization than with autosharding, where each worker processes an independent set of files, and some workers may run out of data earlier than others. Args: processing_mode: A string specifying the policy for how data should be processed by tf.data workers. Can be either "parallel_epochs" to have each tf.data worker process a copy of the dataset, or "distributed_epoch" to split a single iteration of the dataset across all the workers. service: A string or a tuple indicating how to connect to the tf.data service. If it's a string, it should be in the format `[<protocol>://]<address>`, where `<address>` identifies the dispatcher address and `<protocol>` can optionally be used to override the default protocol to use. If it's a tuple, it should be (protocol, address). job_name: (Optional.) The name of the job. If provided, it must be a non-empty string. This argument makes it possible for multiple datasets to share the same job. The default behavior is that the dataset creates anonymous, exclusively owned jobs. consumer_index: (Optional.) The index of the consumer in the range from `0` to `num_consumers`. Must be specified alongside `num_consumers`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. num_consumers: (Optional.) The number of consumers which will consume from the job. Must be specified alongside `consumer_index`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. When `num_consumers` is specified, the dataset must have infinite cardinality to prevent a producer from running out of data early and causing consumers to go out of sync. max_outstanding_requests: (Optional.) A limit on how many elements may be requested at the same time. You can use this option to control the amount of memory used, since `distribute` won't use more than `element_size` * `max_outstanding_requests` of memory. data_transfer_protocol: (Optional.) The protocol to use for transferring data with the tf.data service. By default, data is transferred using gRPC. compression: How to compress the dataset's elements before transferring them over the network. "AUTO" leaves the decision of how to compress up to the tf.data service runtime. `None` indicates not to compress. target_workers: (Optional.) Which workers to read from. If `"AUTO"`, tf.data runtime decides which workers to read from. If `"ANY"`, reads from any tf.data service workers. If `"LOCAL"`, only reads from local in-processs tf.data service workers. `"AUTO"` works well for most cases, while users can specify other targets. For example, `"LOCAL"` helps avoid RPCs and data copy if every TF worker colocates with a tf.data service worker. Defaults to `"AUTO"`. Returns: Dataset: A `Dataset` of the elements produced by the data service. """ _check_job_name(job_name) return _distribute( processing_mode=processing_mode, service=service, job_name=job_name, consumer_index=consumer_index, num_consumers=num_consumers, max_outstanding_requests=max_outstanding_requests, data_transfer_protocol=data_transfer_protocol, compression=compression, target_workers=target_workers) def _register_dataset(service, dataset, compression): """Registers a dataset with the tf.data service. This transformation is similar to `register_dataset`, but supports additional parameters which we do not yet want to add to the public Python API. Args: service: A string or a tuple indicating how to connect to the tf.data service. If it's a string, it should be in the format `[<protocol>://]<address>`, where `<address>` identifies the dispatcher address and `<protocol>` can optionally be used to override the default protocol to use. If it's a tuple, it should be (protocol, address). dataset: A `tf.data.Dataset` to register with the tf.data service. compression: How to compress the dataset's elements before transferring them over the network. "AUTO" leaves the decision of how to compress up to the tf.data service runtime. `None` indicates not to compress. Returns: A scalar int64 tensor of the registered dataset's id. """ valid_compressions = [COMPRESSION_AUTO, COMPRESSION_NONE] if compression not in valid_compressions: raise ValueError( "Invalid compression argument: {}. Must be one of {}".format( compression, valid_compressions)) if isinstance(service, tuple): protocol, address = service else: protocol, address = _parse_service(service) external_state_policy = dataset.options().experimental_external_state_policy if external_state_policy is None: external_state_policy = ExternalStatePolicy.WARN encoded_spec = "" if context.executing_eagerly(): coder = nested_structure_coder.StructureCoder() encoded_spec = coder.encode_structure( dataset.element_spec).SerializeToString() if compression == COMPRESSION_AUTO: dataset = dataset.map( lambda *x: compression_ops.compress(x), num_parallel_calls=dataset_ops.AUTOTUNE) dataset = dataset.prefetch(dataset_ops.AUTOTUNE) dataset = dataset._apply_debug_options() # pylint: disable=protected-access dataset_id = gen_experimental_dataset_ops.register_dataset( dataset._variant_tensor, # pylint: disable=protected-access address=address, protocol=protocol, external_state_policy=external_state_policy.value, element_spec=encoded_spec) return dataset_id @tf_export("data.experimental.service.register_dataset") def register_dataset(service, dataset): """Registers a dataset with the tf.data service. `register_dataset` registers a dataset with the tf.data service so that datasets can be created later with `tf.data.experimental.service.from_dataset_id`. This is useful when the dataset is registered by one process, then used in another process. When the same process is both registering and reading from the dataset, it is simpler to use `tf.data.experimental.service.distribute` instead. If the dataset is already registered with the tf.data service, `register_dataset` returns the already-registered dataset's id. >>> dispatcher = tf.data.experimental.service.DispatchServer() >>> dispatcher_address = dispatcher.target.split("://")[1] >>> worker = tf.data.experimental.service.WorkerServer( ... tf.data.experimental.service.WorkerConfig( ... dispatcher_address=dispatcher_address)) >>> dataset = tf.data.Dataset.range(10) >>> dataset_id = tf.data.experimental.service.register_dataset( ... dispatcher.target, dataset) >>> dataset = tf.data.experimental.service.from_dataset_id( ... processing_mode="parallel_epochs", ... service=dispatcher.target, ... dataset_id=dataset_id, ... element_spec=dataset.element_spec) >>> print(list(dataset.as_numpy_iterator())) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] Args: service: A string or a tuple indicating how to connect to the tf.data service. If it's a string, it should be in the format `[<protocol>://]<address>`, where `<address>` identifies the dispatcher address and `<protocol>` can optionally be used to override the default protocol to use. If it's a tuple, it should be (protocol, address). dataset: A `tf.data.Dataset` to register with the tf.data service. Returns: A scalar int64 tensor of the registered dataset's id. """ return _register_dataset(service, dataset, compression="AUTO") def _from_dataset_id(processing_mode, service, dataset_id, element_spec, job_name=None, consumer_index=None, num_consumers=None, max_outstanding_requests=None, task_refresh_interval_hint_ms=None, data_transfer_protocol=None, compression="AUTO", target_workers="AUTO"): """Creates a dataset which reads data from the tf.data service. This transformation is similar to `from_dataset_id`, but supports additional parameters which we do not yet want to add to the public Python API. Args: processing_mode: A string specifying the policy for how data should be processed by tf.data workers. Can be either "parallel_epochs" to have each tf.data worker process a copy of the dataset, or "distributed_epoch" to split a single iteration of the dataset across all the workers. service: A string or a tuple indicating how to connect to the tf.data service. If it's a string, it should be in the format `[<protocol>://]<address>`, where `<address>` identifies the dispatcher address and `<protocol>` can optionally be used to override the default protocol to use. If it's a tuple, it should be (protocol, address). dataset_id: The id of the dataset to read from. This id is returned by `register_dataset` when the dataset is registered with the tf.data service. element_spec: A nested structure of `tf.TypeSpec`s representing the type of elements produced by the dataset. This argument is only required inside a tf.function. Use `tf.data.Dataset.element_spec` to get the element spec for a given dataset. job_name: (Optional.) The name of the job. If provided, it must be a non-empty string or tensor. This argument makes it possible for multiple datasets to share the same job. The default behavior is that the dataset creates anonymous, exclusively owned jobs. consumer_index: (Optional.) The index of the consumer in the range from `0` to `num_consumers`. Must be specified alongside `num_consumers`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. num_consumers: (Optional.) The number of consumers which will consume from the job. Must be specified alongside `consumer_index`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. When `num_consumers` is specified, the dataset must have infinite cardinality to prevent a producer from running out of data early and causing consumers to go out of sync. max_outstanding_requests: (Optional.) A limit on how many elements may be requested at the same time. You can use this option to control the amount of memory used, since `distribute` won't use more than `element_size` * `max_outstanding_requests` of memory. task_refresh_interval_hint_ms: (Optional.) A hint for how often to query the dispatcher for task changes. data_transfer_protocol: (Optional.) The protocol to use for transferring data with the tf.data service. By default, data is transferred using gRPC. compression: An indication of how the dataset's elements were compressed, so that `from_dataset_id` can uncompress them if necessary. target_workers: (Optional.) Which workers to read from. If `"AUTO"`, tf.data runtime decides which workers to read from. If `"ANY"`, reads from any tf.data service workers. If `"LOCAL"`, only reads from local in-processs tf.data service workers. `"AUTO"` works well for most cases, while users can specify other targets. For example, `"LOCAL"` helps avoid RPCs and data copy if every TF worker colocates with a tf.data service worker. Defaults to `"AUTO"`. Returns: A `tf.data.Dataset` which reads from the tf.data service. """ ProcessingMode.validate(processing_mode) valid_compressions = [COMPRESSION_AUTO, COMPRESSION_NONE] if isinstance(service, tuple): protocol, address = service else: protocol, address = _parse_service(service) if compression not in valid_compressions: raise ValueError( "Invalid compression argument: {}. Must be one of {}".format( compression, valid_compressions)) if job_name is not None: if not isinstance(job_name, six.string_types) and not isinstance( job_name, ops.Tensor): raise ValueError( "job_name must be a string or Tensor, but job_name was of type " "{0}. job_name={1}".format(type(job_name), job_name)) if element_spec is None: if not context.executing_eagerly(): raise ValueError("In graph mode element_spec must be provided manually.") dataset_id_val = tensor_util.constant_value(dataset_id) try: encoded_spec = _pywrap_server_lib.TF_DATA_GetElementSpec( dataset_id_val, address, protocol) except NotImplementedError as err: raise ValueError("The tf.data service is running an earlier version of " "TensorFlow that requires specifying `element_spec` as " "an argument to `from_dataset_id`. Please either supply " "an element spec or update the tf.data service to the " "latest version.") from err except RuntimeError as err: raise ValueError("Failed to fetch element spec for dataset id " + str(dataset_id_val) + " from tf.data service. If the " "dataset was registered in graph mode or inside a " "tf.function, the `element_spec` must be specified as " "an argument to `from_dataset_id`.") from err struct_pb = nested_structure_coder.struct_pb2.StructuredValue() struct_pb.ParseFromString(encoded_spec) coder = nested_structure_coder.StructureCoder() element_spec = coder.decode_proto(struct_pb) # If we compress, the data service side dataset will produce scalar variants. data_service_element_spec = ( tensor_spec.TensorSpec(shape=(), dtype=dtypes.variant) if compression == COMPRESSION_AUTO else element_spec) dataset = _DataServiceDataset( dataset_id=dataset_id, processing_mode=processing_mode, address=address, element_spec=data_service_element_spec, protocol=protocol, data_transfer_protocol=data_transfer_protocol, job_name=job_name, consumer_index=consumer_index, num_consumers=num_consumers, max_outstanding_requests=max_outstanding_requests, task_refresh_interval_hint_ms=task_refresh_interval_hint_ms, target_workers=target_workers) if compression == COMPRESSION_AUTO: dataset = dataset.map( lambda x: compression_ops.uncompress(x, output_spec=element_spec), num_parallel_calls=dataset_ops.AUTOTUNE) # Disable autosharding for shared jobs. if job_name is not None: options = dataset_ops.Options() options.experimental_distribute.auto_shard_policy = AutoShardPolicy.OFF dataset = dataset.with_options(options) return dataset @tf_export("data.experimental.service.from_dataset_id") def from_dataset_id(processing_mode, service, dataset_id, element_spec=None, job_name=None, consumer_index=None, num_consumers=None, max_outstanding_requests=None, data_transfer_protocol=None, target_workers="AUTO"): """Creates a dataset which reads data from the tf.data service. This is useful when the dataset is registered by one process, then used in another process. When the same process is both registering and reading from the dataset, it is simpler to use `tf.data.experimental.service.distribute` instead. Before using `from_dataset_id`, the dataset must have been registered with the tf.data service using `tf.data.experimental.service.register_dataset`. `register_dataset` returns a dataset id for the registered dataset. That is the `dataset_id` which should be passed to `from_dataset_id`. The `element_spec` argument indicates the `tf.TypeSpec`s for the elements produced by the dataset. Currently `element_spec` must be explicitly specified, and match the dataset registered under `dataset_id`. `element_spec` defaults to `None` so that in the future we can support automatically discovering the `element_spec` by querying the tf.data service. `tf.data.experimental.service.distribute` is a convenience method which combines `register_dataset` and `from_dataset_id` into a dataset transformation. See the documentation for `tf.data.experimental.service.distribute` for more detail about how `from_dataset_id` works. >>> dispatcher = tf.data.experimental.service.DispatchServer() >>> dispatcher_address = dispatcher.target.split("://")[1] >>> worker = tf.data.experimental.service.WorkerServer( ... tf.data.experimental.service.WorkerConfig( ... dispatcher_address=dispatcher_address)) >>> dataset = tf.data.Dataset.range(10) >>> dataset_id = tf.data.experimental.service.register_dataset( ... dispatcher.target, dataset) >>> dataset = tf.data.experimental.service.from_dataset_id( ... processing_mode="parallel_epochs", ... service=dispatcher.target, ... dataset_id=dataset_id, ... element_spec=dataset.element_spec) >>> print(list(dataset.as_numpy_iterator())) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] Args: processing_mode: A string specifying the policy for how data should be processed by tf.data workers. Can be either "parallel_epochs" to have each tf.data worker process a copy of the dataset, or "distributed_epoch" to split a single iteration of the dataset across all the workers. service: A string or a tuple indicating how to connect to the tf.data service. If it's a string, it should be in the format `[<protocol>://]<address>`, where `<address>` identifies the dispatcher address and `<protocol>` can optionally be used to override the default protocol to use. If it's a tuple, it should be (protocol, address). dataset_id: The id of the dataset to read from. This id is returned by `register_dataset` when the dataset is registered with the tf.data service. element_spec: A nested structure of `tf.TypeSpec`s representing the type of elements produced by the dataset. This argument is only required inside a tf.function. Use `tf.data.Dataset.element_spec` to get the element spec for a given dataset. job_name: (Optional.) The name of the job. If provided, it must be a non-empty string. This argument makes it possible for multiple datasets to share the same job. The default behavior is that the dataset creates anonymous, exclusively owned jobs. consumer_index: (Optional.) The index of the consumer in the range from `0` to `num_consumers`. Must be specified alongside `num_consumers`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. num_consumers: (Optional.) The number of consumers which will consume from the job. Must be specified alongside `consumer_index`. When specified, consumers will read from the job in a strict round-robin order, instead of the default first-come-first-served order. When `num_consumers` is specified, the dataset must have infinite cardinality to prevent a producer from running out of data early and causing consumers to go out of sync. max_outstanding_requests: (Optional.) A limit on how many elements may be requested at the same time. You can use this option to control the amount of memory used, since `distribute` won't use more than `element_size` * `max_outstanding_requests` of memory. data_transfer_protocol: (Optional.) The protocol to use for transferring data with the tf.data service. By default, data is transferred using gRPC. target_workers: (Optional.) Which workers to read from. If `"AUTO"`, tf.data runtime decides which workers to read from. If `"ANY"`, reads from any tf.data service workers. If `"LOCAL"`, only reads from local in-processs tf.data service workers. `"AUTO"` works well for most cases, while users can specify other targets. For example, `"LOCAL"` helps avoid RPCs and data copy if every TF worker colocates with a tf.data service worker. Defaults to `"AUTO"`. Returns: A `tf.data.Dataset` which reads from the tf.data service. """ _check_job_name(job_name) if job_name is not None: job_name = string_ops.string_join( ["dataset_id=", string_ops.as_string(dataset_id), job_name], "/") return _from_dataset_id( processing_mode=processing_mode, service=service, dataset_id=dataset_id, element_spec=element_spec, job_name=job_name, consumer_index=consumer_index, num_consumers=num_consumers, max_outstanding_requests=max_outstanding_requests, data_transfer_protocol=data_transfer_protocol, target_workers=target_workers)
47.894792
90
0.717197
2a1aa82c4adbb0cbf1994953ce9a237ea564fa19
1,879
py
Python
discoseg/model/vocab.py
faithannong/DPLP-faith
7768a9e84d6fa3a0cffa50c4abd818076d45fc40
[ "MIT" ]
113
2015-09-22T16:02:46.000Z
2022-02-21T14:57:57.000Z
discoseg/model/vocab.py
faithannong/DPLP-faith
7768a9e84d6fa3a0cffa50c4abd818076d45fc40
[ "MIT" ]
8
2015-02-24T22:40:59.000Z
2020-10-05T03:34:33.000Z
discoseg/model/vocab.py
faithannong/DPLP-faith
7768a9e84d6fa3a0cffa50c4abd818076d45fc40
[ "MIT" ]
44
2015-03-06T06:47:26.000Z
2022-03-13T17:33:08.000Z
## vocab.py ## Author: Yangfeng Ji ## Date: 05-02-2015 ## Time-stamp: <yangfeng 05/03/2015 03:45:40> """ Build vocab 1, read each document for creating the feature list 2, collecting all features with their frequency 3, creating vocab with feature selection """ from collections import defaultdict from feature import FeatureGenerator from cPickle import dump import gzip class VocabGenerator(object): def __init__(self, thresh=20, topn=100): """ Initialization """ self.vocab = {} self.features = defaultdict(float) self.thresh = thresh self.topn = topn self.fg = FeatureGenerator() def build(self, doc): """ Extract features for a given doc :type doc: Doc instance :param doc: """ featdict = self.fg.extract(doc) for (idx, featlist) in featdict.iteritems(): for feat in featlist: self.features[feat] += 1.0 def select(self): """ Select top-n features according to frequency """ pass def filter(self): """ Filter out low-frequency features with thresh """ index = 0 for (feat, freq) in self.features.iteritems(): if freq >= self.thresh: self.vocab[feat] = index index += 1 def getvocab(self): """ Return vocab """ if len(self.vocab) == 0: raise ValueError("Empty vocab") return self.vocab def savevocab(self, fvocab): """ Dump vocab into a pickle file """ if not fvocab.endswith('pickle.gz'): fvocab += 'pickle.gz' fout = gzip.open(fvocab, 'w') if len(self.vocab) == 0: raise ValueError("Empty vocab") dump(self.vocab, fout) print "Save vocab into file: {}".format(fvocab)
26.097222
57
0.56892
d9a479f29ebcf582943bb14b7b5b7340acdda6de
4,186
py
Python
game/yaml/serializer.py
Sage-of-Mirrors/CosmoRen
6f74b5c3b5eda2de5756a38d39d9f5f4ab922116
[ "MIT" ]
null
null
null
game/yaml/serializer.py
Sage-of-Mirrors/CosmoRen
6f74b5c3b5eda2de5756a38d39d9f5f4ab922116
[ "MIT" ]
null
null
null
game/yaml/serializer.py
Sage-of-Mirrors/CosmoRen
6f74b5c3b5eda2de5756a38d39d9f5f4ab922116
[ "MIT" ]
null
null
null
__all__ = ['Serializer', 'SerializerError'] from yaml.error import YAMLError from yaml.events import * from yaml.nodes import * class SerializerError(YAMLError): pass class Serializer(object): ANCHOR_TEMPLATE = u'id%03d' def __init__(self, encoding=None, explicit_start=None, explicit_end=None, version=None, tags=None): self.use_encoding = encoding self.use_explicit_start = explicit_start self.use_explicit_end = explicit_end self.use_version = version self.use_tags = tags self.serialized_nodes = {} self.anchors = {} self.last_anchor_id = 0 self.closed = None def open(self): if self.closed is None: self.emit(StreamStartEvent(encoding=self.use_encoding)) self.closed = False elif self.closed: raise SerializerError("serializer is closed") else: raise SerializerError("serializer is already opened") def close(self): if self.closed is None: raise SerializerError("serializer is not opened") elif not self.closed: self.emit(StreamEndEvent()) self.closed = True #def __del__(self): # self.close() def serialize(self, node): if self.closed is None: raise SerializerError("serializer is not opened") elif self.closed: raise SerializerError("serializer is closed") self.emit(DocumentStartEvent(explicit=self.use_explicit_start, version=self.use_version, tags=self.use_tags)) self.anchor_node(node) self.serialize_node(node, None, None) self.emit(DocumentEndEvent(explicit=self.use_explicit_end)) self.serialized_nodes = {} self.anchors = {} self.last_anchor_id = 0 def anchor_node(self, node): if node in self.anchors: if self.anchors[node] is None: self.anchors[node] = self.generate_anchor(node) else: self.anchors[node] = None if isinstance(node, SequenceNode): for item in node.value: self.anchor_node(item) elif isinstance(node, MappingNode): for key, value in node.value: self.anchor_node(key) self.anchor_node(value) def generate_anchor(self, node): self.last_anchor_id += 1 return self.ANCHOR_TEMPLATE % self.last_anchor_id def serialize_node(self, node, parent, index): alias = self.anchors[node] if node in self.serialized_nodes: self.emit(AliasEvent(alias)) else: self.serialized_nodes[node] = True self.descend_resolver(parent, index) if isinstance(node, ScalarNode): detected_tag = self.resolve(ScalarNode, node.value, (True, False)) default_tag = self.resolve(ScalarNode, node.value, (False, True)) implicit = (node.tag == detected_tag), (node.tag == default_tag) self.emit(ScalarEvent(alias, node.tag, implicit, node.value, style=node.style)) elif isinstance(node, SequenceNode): implicit = (node.tag == self.resolve(SequenceNode, node.value, True)) self.emit(SequenceStartEvent(alias, node.tag, implicit, flow_style=node.flow_style)) index = 0 for item in node.value: self.serialize_node(item, node, index) index += 1 self.emit(SequenceEndEvent()) elif isinstance(node, MappingNode): implicit = (node.tag == self.resolve(MappingNode, node.value, True)) self.emit(MappingStartEvent(alias, node.tag, implicit, flow_style=node.flow_style)) for key, value in node.value: self.serialize_node(key, node, None) self.serialize_node(value, node, key) self.emit(MappingEndEvent()) self.ascend_resolver()
37.375
82
0.583373
572a9f63da146ba25cad0d8e6f08f777a3155f65
8,142
py
Python
model.py
MG2033/Action-Conditional-Video-Prediction
02b7fb123729c95f1ebff2c26e2236f7d7913c17
[ "Apache-2.0" ]
2
2020-08-28T06:34:05.000Z
2020-10-01T11:41:33.000Z
model.py
MG2033/Action-Conditional-Video-Prediction
02b7fb123729c95f1ebff2c26e2236f7d7913c17
[ "Apache-2.0" ]
null
null
null
model.py
MG2033/Action-Conditional-Video-Prediction
02b7fb123729c95f1ebff2c26e2236f7d7913c17
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf from layers import conv2d, conv2d_transpose, pad, flatten, dense, action_transform, get_deconv_filter class ACVP: """ACVP is implemented here!""" def __init__(self, args, prediction_steps, reuse=False): self.args = args self.X = None self.y = None self.network_template = None self.logits = None self.is_training = None self.loss = None self.train_op = None self.summaries_merged = None self.batch_size = self.args.batch_size if self.args.train_or_test == "train" else 1 self.reuse = reuse # Learning rate changes according to the phase of training # with momentum of 0.9, (squared) gradient momentum of 0.95, and min squared gradient of 0.01 self.RMSProp_params = (0.9, 0.95, 0.01) # Max prediction step objective self.prediction_steps = prediction_steps self.__build() def __init_input(self): with tf.variable_scope('input'): self.X = tf.placeholder(tf.float32, [self.batch_size, self.args.img_height, self.args.img_width, self.args.num_stack * self.args.num_channels]) self.y = tf.placeholder(tf.float32, [self.batch_size, self.prediction_steps, self.args.img_height, self.args.img_width, self.args.num_channels]) self.learning_rate = tf.placeholder(tf.float32) self.actions = tf.placeholder(tf.float32, [self.batch_size, self.prediction_steps, self.args.num_actions]) self.is_training = tf.placeholder(tf.bool) def __init_template(self, x, actions): with tf.variable_scope('template'): conv1 = conv2d('conv1', x, num_filters=64, kernel_size=(8, 8), padding='SAME', stride=(2, 2), activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, l2_strength=self.args.l2_strength, bias=self.args.bias, is_training=self.is_training) conv2 = conv2d('conv2', conv1, num_filters=128, kernel_size=(6, 6), padding='SAME', stride=(2, 2), activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, l2_strength=self.args.l2_strength, bias=self.args.bias, is_training=self.is_training) conv3 = conv2d('conv3', conv2, num_filters=128, kernel_size=(6, 6), padding='SAME', stride=(2, 2), activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, l2_strength=self.args.l2_strength, bias=self.args.bias, is_training=self.is_training) conv4 = conv2d('conv4', conv3, num_filters=128, kernel_size=(4, 4), padding='SAME', stride=(2, 2), activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, l2_strength=self.args.l2_strength, bias=self.args.bias, is_training=self.is_training) flattened = flatten(conv4) dense1 = dense('dense1', flattened, output_dim=2048, activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, l2_strength=self.args.l2_strength, bias=self.args.bias, is_training=self.is_training) h, w = conv4.get_shape()[1].value, conv4.get_shape()[2].value features_with_actions = action_transform(dense1, actions, factors=2048, output_dim=h * w * 128, final_activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, l2_strength=self.args.l2_strength, bias=self.args.bias, is_training=self.is_training) f_a_reshaped = tf.reshape(features_with_actions, [-1, h, w, 128], 'f_a_reshaped') h2, w2 = conv3.get_shape()[1].value, conv3.get_shape()[2].value deconv1 = conv2d_transpose('deconv1', f_a_reshaped, output_shape=[self.batch_size, h2, w2, 128], kernel_size=(4, 4), padding='SAME', stride=(2, 2), l2_strength=self.args.l2_strength, bias=self.args.bias, activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, is_training=self.is_training) h3, w3 = conv2.get_shape()[1].value, conv2.get_shape()[2].value deconv2 = conv2d_transpose('deconv2', deconv1, output_shape=[self.batch_size, h3, w3, 128], kernel_size=(6, 6), padding='SAME', stride=(2, 2), l2_strength=self.args.l2_strength, bias=self.args.bias, activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, is_training=self.is_training) h4, w4 = conv1.get_shape()[1].value, conv1.get_shape()[2].value deconv3 = conv2d_transpose('deconv3', deconv2, output_shape=[self.batch_size, h4, w4, 128], kernel_size=(6, 6), padding='SAME', stride=(2, 2), l2_strength=self.args.l2_strength, bias=self.args.bias, activation=tf.nn.relu, batchnorm_enabled=self.args.batchnorm_enabled, is_training=self.is_training) deconv4 = conv2d_transpose('deconv4', deconv3, output_shape=[self.batch_size, self.args.img_height, self.args.img_width, self.args.num_channels], kernel_size=(8, 8), padding='SAME', stride=(2, 2), l2_strength=self.args.l2_strength, bias=self.args.bias, activation=None, batchnorm_enabled=self.args.batchnorm_enabled, is_training=self.is_training) return deconv4 def __init_network(self): with tf.variable_scope('full_network', reuse=self.reuse): self.network_template = tf.make_template('network_template', self.__init_template) all_obs = [None for _ in range(self.prediction_steps)] current_input = self.X for i in range(-1, self.prediction_steps - 1): if i == -1: all_obs[i + 1] = self.network_template(current_input, self.actions[:, i + 1, :]) else: current_input = tf.concat([all_obs[i], current_input[:, :, :, :-3]], axis=-1) all_obs[i + 1] = self.network_template(current_input, self.actions[:, i + 1, :]) self.obs_stacked = tf.stack(all_obs[:self.prediction_steps], axis=1) self.loss = tf.reduce_mean((1 / self.prediction_steps) * tf.nn.l2_loss(self.obs_stacked - self.y)) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): optimizer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate, momentum=self.RMSProp_params[0], decay=0.95) params = tf.trainable_variables() grads = tf.gradients(self.loss, params) # Minimum squared gradient is 0.01 grads = [tf.sign(grads[i]) * tf.sqrt(tf.maximum(tf.square(grads[i]), 0.01)) for i in range(len(grads))] grads = list(zip(grads, params)) self.train_op = optimizer.apply_gradients(grads) def __build(self): self.__init_input() self.__init_network()
58.157143
119
0.550602
24d2351d67055fc56179a539351e248df0aa6128
9,055
py
Python
examples/pytorch/seal/sampler.py
ketyi/dgl
a1b859c29b63a673c148d13231a49504740e0e01
[ "Apache-2.0" ]
9,516
2018-12-08T22:11:31.000Z
2022-03-31T13:04:33.000Z
examples/pytorch/seal/sampler.py
ketyi/dgl
a1b859c29b63a673c148d13231a49504740e0e01
[ "Apache-2.0" ]
2,494
2018-12-08T22:43:00.000Z
2022-03-31T21:16:27.000Z
examples/pytorch/seal/sampler.py
ketyi/dgl
a1b859c29b63a673c148d13231a49504740e0e01
[ "Apache-2.0" ]
2,529
2018-12-08T22:56:14.000Z
2022-03-31T13:07:41.000Z
import os.path as osp from tqdm import tqdm from copy import deepcopy import torch import dgl from torch.utils.data import DataLoader, Dataset from dgl import DGLGraph, NID from dgl.dataloading.negative_sampler import Uniform from dgl import add_self_loop from utils import drnl_node_labeling class GraphDataSet(Dataset): """ GraphDataset for torch DataLoader """ def __init__(self, graph_list, tensor): self.graph_list = graph_list self.tensor = tensor def __len__(self): return len(self.graph_list) def __getitem__(self, index): return (self.graph_list[index], self.tensor[index]) class PosNegEdgesGenerator(object): """ Generate positive and negative samples Attributes: g(dgl.DGLGraph): graph split_edge(dict): split edge neg_samples(int): num of negative samples per positive sample subsample_ratio(float): ratio of subsample shuffle(bool): if shuffle generated graph list """ def __init__(self, g, split_edge, neg_samples=1, subsample_ratio=0.1, shuffle=True): self.neg_sampler = Uniform(neg_samples) self.subsample_ratio = subsample_ratio self.split_edge = split_edge self.g = g self.shuffle = shuffle def __call__(self, split_type): if split_type == 'train': subsample_ratio = self.subsample_ratio else: subsample_ratio = 1 pos_edges = self.split_edge[split_type]['edge'] if split_type == 'train': # Adding self loop in train avoids sampling the source node itself. g = add_self_loop(self.g) eids = g.edge_ids(pos_edges[:, 0], pos_edges[:, 1]) neg_edges = torch.stack(self.neg_sampler(g, eids), dim=1) else: neg_edges = self.split_edge[split_type]['edge_neg'] pos_edges = self.subsample(pos_edges, subsample_ratio).long() neg_edges = self.subsample(neg_edges, subsample_ratio).long() edges = torch.cat([pos_edges, neg_edges]) labels = torch.cat([torch.ones(pos_edges.size(0), 1), torch.zeros(neg_edges.size(0), 1)]) if self.shuffle: perm = torch.randperm(edges.size(0)) edges = edges[perm] labels = labels[perm] return edges, labels def subsample(self, edges, subsample_ratio): """ Subsample generated edges. Args: edges(Tensor): edges to subsample subsample_ratio(float): ratio of subsample Returns: edges(Tensor): edges """ num_edges = edges.size(0) perm = torch.randperm(num_edges) perm = perm[:int(subsample_ratio * num_edges)] edges = edges[perm] return edges class EdgeDataSet(Dataset): """ Assistant Dataset for speeding up the SEALSampler """ def __init__(self, edges, labels, transform): self.edges = edges self.transform = transform self.labels = labels def __len__(self): return len(self.edges) def __getitem__(self, index): subgraph = self.transform(self.edges[index]) return (subgraph, self.labels[index]) class SEALSampler(object): """ Sampler for SEAL in paper(no-block version) The strategy is to sample all the k-hop neighbors around the two target nodes. Attributes: graph(DGLGraph): The graph hop(int): num of hop num_workers(int): num of workers """ def __init__(self, graph, hop=1, num_workers=32, print_fn=print): self.graph = graph self.hop = hop self.print_fn = print_fn self.num_workers = num_workers def sample_subgraph(self, target_nodes): """ Args: target_nodes(Tensor): Tensor of two target nodes Returns: subgraph(DGLGraph): subgraph """ sample_nodes = [target_nodes] frontiers = target_nodes for i in range(self.hop): frontiers = self.graph.out_edges(frontiers)[1] frontiers = torch.unique(frontiers) sample_nodes.append(frontiers) sample_nodes = torch.cat(sample_nodes) sample_nodes = torch.unique(sample_nodes) subgraph = dgl.node_subgraph(self.graph, sample_nodes) # Each node should have unique node id in the new subgraph u_id = int(torch.nonzero(subgraph.ndata[NID] == int(target_nodes[0]), as_tuple=False)) v_id = int(torch.nonzero(subgraph.ndata[NID] == int(target_nodes[1]), as_tuple=False)) # remove link between target nodes in positive subgraphs. if subgraph.has_edges_between(u_id, v_id): link_id = subgraph.edge_ids(u_id, v_id, return_uv=True)[2] subgraph.remove_edges(link_id) if subgraph.has_edges_between(v_id, u_id): link_id = subgraph.edge_ids(v_id, u_id, return_uv=True)[2] subgraph.remove_edges(link_id) z = drnl_node_labeling(subgraph, u_id, v_id) subgraph.ndata['z'] = z return subgraph def _collate(self, batch): batch_graphs, batch_labels = map(list, zip(*batch)) batch_graphs = dgl.batch(batch_graphs) batch_labels = torch.stack(batch_labels) return batch_graphs, batch_labels def __call__(self, edges, labels): subgraph_list = [] labels_list = [] edge_dataset = EdgeDataSet(edges, labels, transform=self.sample_subgraph) self.print_fn('Using {} workers in sampling job.'.format(self.num_workers)) sampler = DataLoader(edge_dataset, batch_size=32, num_workers=self.num_workers, shuffle=False, collate_fn=self._collate) for subgraph, label in tqdm(sampler, ncols=100): label_copy = deepcopy(label) subgraph = dgl.unbatch(subgraph) del label subgraph_list += subgraph labels_list.append(label_copy) return subgraph_list, torch.cat(labels_list) class SEALData(object): """ 1. Generate positive and negative samples 2. Subgraph sampling Attributes: g(dgl.DGLGraph): graph split_edge(dict): split edge hop(int): num of hop neg_samples(int): num of negative samples per positive sample subsample_ratio(float): ratio of subsample use_coalesce(bool): True for coalesce graph. Graph with multi-edge need to coalesce """ def __init__(self, g, split_edge, hop=1, neg_samples=1, subsample_ratio=1, prefix=None, save_dir=None, num_workers=32, shuffle=True, use_coalesce=True, print_fn=print): self.g = g self.hop = hop self.subsample_ratio = subsample_ratio self.prefix = prefix self.save_dir = save_dir self.print_fn = print_fn self.generator = PosNegEdgesGenerator(g=self.g, split_edge=split_edge, neg_samples=neg_samples, subsample_ratio=subsample_ratio, shuffle=shuffle) if use_coalesce: for k, v in g.edata.items(): g.edata[k] = v.float() # dgl.to_simple() requires data is float self.g = dgl.to_simple(g, copy_ndata=True, copy_edata=True, aggregator='sum') self.ndata = {k: v for k, v in self.g.ndata.items()} self.edata = {k: v for k, v in self.g.edata.items()} self.g.ndata.clear() self.g.edata.clear() self.print_fn("Save ndata and edata in class.") self.print_fn("Clear ndata and edata in graph.") self.sampler = SEALSampler(graph=self.g, hop=hop, num_workers=num_workers, print_fn=print_fn) def __call__(self, split_type): if split_type == 'train': subsample_ratio = self.subsample_ratio else: subsample_ratio = 1 path = osp.join(self.save_dir or '', '{}_{}_{}-hop_{}-subsample.bin'.format(self.prefix, split_type, self.hop, subsample_ratio)) if osp.exists(path): self.print_fn("Load existing processed {} files".format(split_type)) graph_list, data = dgl.load_graphs(path) dataset = GraphDataSet(graph_list, data['labels']) else: self.print_fn("Processed {} files not exist.".format(split_type)) edges, labels = self.generator(split_type) self.print_fn("Generate {} edges totally.".format(edges.size(0))) graph_list, labels = self.sampler(edges, labels) dataset = GraphDataSet(graph_list, labels) dgl.save_graphs(path, graph_list, {'labels': labels}) self.print_fn("Save preprocessed subgraph to {}".format(path)) return dataset
34.826923
111
0.608393
e4714ac7e9213e5f0d9aa3942a914a7bb81965ee
1,288
py
Python
aliyun-python-sdk-sas/aliyunsdksas/request/v20181203/DescribeExposedStatisticsRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-sas/aliyunsdksas/request/v20181203/DescribeExposedStatisticsRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-sas/aliyunsdksas/request/v20181203/DescribeExposedStatisticsRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdksas.endpoint import endpoint_data class DescribeExposedStatisticsRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Sas', '2018-12-03', 'DescribeExposedStatistics','sas') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional())
40.25
84
0.773292
5a88d2e913264d15e3bb3e26112c9dfd3c09d833
8,138
py
Python
lib/js.py
walchko/rambler
dbd4357b7aaab582280155e6b722868896b1b8dd
[ "MIT" ]
null
null
null
lib/js.py
walchko/rambler
dbd4357b7aaab582280155e6b722868896b1b8dd
[ "MIT" ]
null
null
null
lib/js.py
walchko/rambler
dbd4357b7aaab582280155e6b722868896b1b8dd
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # by Kevin J. Walchko 26 Aug 2014 # # PS4 has 6 axes, 14 buttons, 1 hat # This program doesn't grab all buttons, just the most useful :) # Warning: this code needs to be updated to support the new py2/py3 library. This # may crash under py3 and hasn't been tested with the currentl pygecko library. # https://github.com/chrippa/ds4drv from __future__ import division from __future__ import print_function from math import sqrt try: # brew install sdl2 # pip install PySDL2 import sdl2 except: print('You must install SLD2 library') print('pip install PySDL2') exit() class Sensors(object): x = 0 y = 0 z = 0 def __init__(self, x, y, z): self.x = x / 32768 self.y = y / 32768 self.z = z / 32768 def __getitem__(self, i): if 0 > i > 2: raise Exception('Sensors out of range') if i == 0: return self.x elif i == 1: return self.y else: return self.z class Trigger(object): x = 0 y = 0 def __init__(self, x, y): """ triggers go from -32k to +32k I changed them to go to: 0 to 2.0 """ self.x = x / 32768 + 1.0 self.y = y / 32768 + 1.0 def __getitem__(self, i): if 0 > i > 1: raise Exception('Axis out of range') if i == 0: return self.x else: return self.y class Axis(object): x = 0 y = 0 def __init__(self, x, y): """ x and y are independent and range from -1 to 1 Changed orientation frame to: ^ X | +-----> Y """ self.x = -y / 32768 self.y = x / 32768 # self.x, self.y = self.normalize(-y, x) def __getitem__(self, i): if 0 > i > 1: raise Exception('Axis out of range') if i == 0: return self.x else: return self.y def normalize(self, x, y): norm = x**2 + y**2 if norm > 0: inorm = 1/sqrt(norm) x *= inorm y *= inorm return (x, y) else: return (0, 0) joystick_format = """ ==================================================== Sticks: Left: {:>5.2f} {:>5.2f} Right: {:>5.2f} {:>5.2f} L1: {} R1: {} L2: {:>4.2f} R2: {:>4.2f} L3: {} R3: {} Buttons: Hat: {} Square: {} Triangle: {} Circle: {} X: {} Press [Share] to exit """ class PS4(object): leftStick = None rightStick = None accels = None gyros = None buttons = None share = None options = None stick = None def __init__(self, ls, rs, triggers, hat, shoulder, stick, btns, options, share): self.leftStick = ls self.rightStick = rs self.buttons = btns # self.accels = accels # self.gyros = gyros self.hat = hat self.triggers = triggers self.shoulder = shoulder self.stick = stick self.share = share self.options = options def __str__(self): s = joystick_format.format( self.leftStick.x, self.leftStick.y, self.rightStick.x, self.rightStick.y, self.shoulder[0], self.shoulder[1], self.triggers.x, self.triggers.y, self.stick[0], self.stick[1], # self.accels.x, self.accels.y, self.accels.z, # self.gyros.x, self.gyros.y, self.gyros.z, self.hat, self.buttons[0], self.buttons[1], self.buttons[2], self.buttons[3] ) return s class Joystick(object): """ Joystick class setup to handle a Playstation PS4 Controller. If no joystick is found, the self.valid is False. If it is not valid, the any returned dictionaries will contain all 0 values. Buttons Square = joystick button 0 X = joystick button 1 Circle = joystick button 2 Triangle= joystick button 3 L1 = joystick button 4 R1 = joystick button 5 L2 = joystick button 6 R2 = joystick button 7 Share = joystick button 8 Options = joystick button 9 L3 = joystick button 10 R3 = joystick button 11 PS = joystick button 12 PadPress= joystick button 13 Axes: LeftStickX = 0 LeftStickY = 1 RightStickX = 2 RightStickY = 5 L2 = 3 (-1.0f to 1.0f range, unpressed is -1.0f) R2 = 4 (-1.0f to 1.0f range, unpressed is -1.0f) WARNING: doesn't work as a process ... something SDL is doing """ def __init__(self): # init SDL2 and grab joystick sdl2.SDL_Init(sdl2.SDL_INIT_JOYSTICK) self.js = sdl2.SDL_JoystickOpen(0) # grab info for display a = sdl2.SDL_JoystickNumAxes(self.js) b = sdl2.SDL_JoystickNumButtons(self.js) h = sdl2.SDL_JoystickNumHats(self.js) if a == -1: print('*** No Joystick found ***') self.valid = False else: print('==========================================') print(' PS4 Joystick ') print(' axes:', a) print(' buttons:', b) print(' hats:', h) print('==========================================') self.valid = True # exit(0) def __del__(self): # clean-up sdl2.SDL_JoystickClose(self.js) print('Bye ...') def get(self): if not self.valid: return None js = self.js sdl2.SDL_JoystickUpdate() share = sdl2.SDL_JoystickGetButton(js, 8) if share: exit(0) ls = Axis( sdl2.SDL_JoystickGetAxis(js, 0), sdl2.SDL_JoystickGetAxis(js, 1) ) rs = Axis( sdl2.SDL_JoystickGetAxis(js, 2), sdl2.SDL_JoystickGetAxis(js, 5) ) triggers = Trigger( sdl2.SDL_JoystickGetAxis(js, 3), sdl2.SDL_JoystickGetAxis(js, 4) ) shoulder = [ sdl2.SDL_JoystickGetButton(js, 4), sdl2.SDL_JoystickGetButton(js, 5) ] stick = [ sdl2.SDL_JoystickGetButton(js, 10), sdl2.SDL_JoystickGetButton(js, 11) ] # I seem to have lost sensors # a = Sensors( # sdl2.SDL_JoystickGetAxis(js, 6), # sdl2.SDL_JoystickGetAxis(js, 7), # sdl2.SDL_JoystickGetAxis(js, 8) # ) # # g = Sensors( # sdl2.SDL_JoystickGetAxis(js, 9), # sdl2.SDL_JoystickGetAxis(js, 10), # sdl2.SDL_JoystickGetAxis(js, 11) # ) b = [ sdl2.SDL_JoystickGetButton(js, 0), # square sdl2.SDL_JoystickGetButton(js, 3), # triangle sdl2.SDL_JoystickGetButton(js, 2), # circle sdl2.SDL_JoystickGetButton(js, 1) # x ] hat = sdl2.SDL_JoystickGetHat(js, 0) share = sdl2.SDL_JoystickGetButton(js, 8) options = sdl2.SDL_JoystickGetButton(js, 9) ps4 = PS4(ls, rs, triggers, hat, shoulder, stick, b, options, share) # left axis # x = sdl2.SDL_JoystickGetAxis(js, 0) / 32768 # y = sdl2.SDL_JoystickGetAxis(js, 1) / 32768 # ps4['leftStick'] = [x, y] # # # right axis # x = sdl2.SDL_JoystickGetAxis(js, 2) / 32768 # y = sdl2.SDL_JoystickGetAxis(js, 5) / 32768 # ps4['rightStick'] = [x, y] # # other axes # ps4.axes.L2 = sdl2.SDL_JoystickGetAxis(js, 3) / 32768 # ps4.axes.R2 = sdl2.SDL_JoystickGetAxis(js, 4) / 32768 # # # accels # x = sdl2.SDL_JoystickGetAxis(js, 6) / 32768 # y = sdl2.SDL_JoystickGetAxis(js, 7) / 32768 # z = sdl2.SDL_JoystickGetAxis(js, 8) / 32768 # ps4.axes.accels = [x, y, z] # # # gyros # x = sdl2.SDL_JoystickGetAxis(js, 9) / 32768 # y = sdl2.SDL_JoystickGetAxis(js, 10) / 32768 # z = sdl2.SDL_JoystickGetAxis(js, 11) / 32768 # ps4.axes.gyros = [x, y, z] # # # get buttons # ps4.buttons.s = sdl2.SDL_JoystickGetButton(js, 0) # ps4.buttons.x = sdl2.SDL_JoystickGetButton(js, 1) # ps4.buttons.o = sdl2.SDL_JoystickGetButton(js, 2) # ps4.buttons.t = sdl2.SDL_JoystickGetButton(js, 3) # ps4.buttons.L1 = sdl2.SDL_JoystickGetButton(js, 4) # ps4.buttons.R1 = sdl2.SDL_JoystickGetButton(js, 5) # ps4.buttons.L2 = sdl2.SDL_JoystickGetButton(js, 6) # ps4.buttons.R2 = sdl2.SDL_JoystickGetButton(js, 7) # ps4.buttons.share = sdl2.SDL_JoystickGetButton(js, 8) # ps4.buttons.options = sdl2.SDL_JoystickGetButton(js, 9) # ps4.buttons.L3 = sdl2.SDL_JoystickGetButton(js, 10) # ps4.buttons.R3 = sdl2.SDL_JoystickGetButton(js, 11) # ps4.buttons.ps = sdl2.SDL_JoystickGetButton(js, 12) # ps4.buttons.pad = sdl2.SDL_JoystickGetButton(js, 13) # # # get hat # # [up right down left] = [1 2 4 8] # ps4.buttons.hat = sdl2.SDL_JoystickGetHat(js, 0) # print('b 12', sdl2.SDL_JoystickGetButton(js, 12)) # print('b 13', sdl2.SDL_JoystickGetButton(js, 13)) return ps4 def main(): import time js = Joystick() while True: try: ps4 = js.get() print(ps4) time.sleep(0.1) except KeyboardInterrupt: print('js exiting ...') return if __name__ == "__main__": main()
23.119318
82
0.624846
edb0d233c62a5d3da7ffdc1195008f602cea7e7b
1,827
py
Python
examples/series_getitem/series_getitem_scalar_multiple_result.py
samir-nasibli/sdc
b9144c8799d6454dec3e5c550e305963b24c1570
[ "BSD-2-Clause" ]
null
null
null
examples/series_getitem/series_getitem_scalar_multiple_result.py
samir-nasibli/sdc
b9144c8799d6454dec3e5c550e305963b24c1570
[ "BSD-2-Clause" ]
null
null
null
examples/series_getitem/series_getitem_scalar_multiple_result.py
samir-nasibli/sdc
b9144c8799d6454dec3e5c550e305963b24c1570
[ "BSD-2-Clause" ]
null
null
null
# ***************************************************************************** # Copyright (c) 2019, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import pandas as pd from numba import njit @njit def series_getitem_scalar_many_idx(): series = pd.Series([5, 4, 3, 2, 1], index=[0, 2, 0, 6, 0]) return series[0] # Expected Series # 0 5 # 0 3 # 0 1 # dtype: int64 print(series_getitem_scalar_many_idx())
41.522727
79
0.684729
d588e9b5a61fed8a452f7c1ec1bf58c32d5843fe
65,466
py
Python
google/cloud/bigquery/job/query.py
quentin-sommer/python-bigquery
1312093855b1b6bd81c5f6e9e358151cfbd366b8
[ "Apache-2.0" ]
null
null
null
google/cloud/bigquery/job/query.py
quentin-sommer/python-bigquery
1312093855b1b6bd81c5f6e9e358151cfbd366b8
[ "Apache-2.0" ]
null
null
null
google/cloud/bigquery/job/query.py
quentin-sommer/python-bigquery
1312093855b1b6bd81c5f6e9e358151cfbd366b8
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classes for query jobs.""" import concurrent.futures import copy import re import typing from typing import Any, Dict, Optional, Union from google.api_core import exceptions from google.api_core.future import polling as polling_future import requests from google.cloud.bigquery.dataset import Dataset from google.cloud.bigquery.dataset import DatasetListItem from google.cloud.bigquery.dataset import DatasetReference from google.cloud.bigquery.encryption_configuration import EncryptionConfiguration from google.cloud.bigquery.enums import KeyResultStatementKind from google.cloud.bigquery.external_config import ExternalConfig from google.cloud.bigquery import _helpers from google.cloud.bigquery.query import _query_param_from_api_repr from google.cloud.bigquery.query import ArrayQueryParameter from google.cloud.bigquery.query import ScalarQueryParameter from google.cloud.bigquery.query import StructQueryParameter from google.cloud.bigquery.query import UDFResource from google.cloud.bigquery.retry import DEFAULT_RETRY from google.cloud.bigquery.routine import RoutineReference from google.cloud.bigquery.table import _EmptyRowIterator from google.cloud.bigquery.table import RangePartitioning from google.cloud.bigquery.table import _table_arg_to_table_ref from google.cloud.bigquery.table import TableReference from google.cloud.bigquery.table import TimePartitioning from google.cloud.bigquery._tqdm_helpers import wait_for_query from google.cloud.bigquery.job.base import _AsyncJob from google.cloud.bigquery.job.base import _JobConfig from google.cloud.bigquery.job.base import _JobReference if typing.TYPE_CHECKING: # pragma: NO COVER # Assumption: type checks are only used by library developers and CI environments # that have all optional dependencies installed, thus no conditional imports. import pandas import pyarrow from google.api_core import retry as retries from google.cloud import bigquery_storage from google.cloud.bigquery.table import RowIterator _CONTAINS_ORDER_BY = re.compile(r"ORDER\s+BY", re.IGNORECASE) _TIMEOUT_BUFFER_SECS = 0.1 def _contains_order_by(query): """Do we need to preserve the order of the query results? This function has known false positives, such as with ordered window functions: .. code-block:: sql SELECT SUM(x) OVER ( window_name PARTITION BY... ORDER BY... window_frame_clause) FROM ... This false positive failure case means the behavior will be correct, but downloading results with the BigQuery Storage API may be slower than it otherwise would. This is preferable to the false negative case, where results are expected to be in order but are not (due to parallel reads). """ return query and _CONTAINS_ORDER_BY.search(query) def _from_api_repr_query_parameters(resource): return [_query_param_from_api_repr(mapping) for mapping in resource] def _to_api_repr_query_parameters(value): return [query_parameter.to_api_repr() for query_parameter in value] def _from_api_repr_udf_resources(resource): udf_resources = [] for udf_mapping in resource: for udf_type, udf_value in udf_mapping.items(): udf_resources.append(UDFResource(udf_type, udf_value)) return udf_resources def _to_api_repr_udf_resources(value): return [{udf_resource.udf_type: udf_resource.value} for udf_resource in value] def _from_api_repr_table_defs(resource): return {k: ExternalConfig.from_api_repr(v) for k, v in resource.items()} def _to_api_repr_table_defs(value): return {k: ExternalConfig.to_api_repr(v) for k, v in value.items()} class DmlStats(typing.NamedTuple): """Detailed statistics for DML statements. https://cloud.google.com/bigquery/docs/reference/rest/v2/DmlStats """ inserted_row_count: int = 0 """Number of inserted rows. Populated by DML INSERT and MERGE statements.""" deleted_row_count: int = 0 """Number of deleted rows. populated by DML DELETE, MERGE and TRUNCATE statements. """ updated_row_count: int = 0 """Number of updated rows. Populated by DML UPDATE and MERGE statements.""" @classmethod def from_api_repr(cls, stats: Dict[str, str]) -> "DmlStats": # NOTE: The field order here must match the order of fields set at the # class level. api_fields = ("insertedRowCount", "deletedRowCount", "updatedRowCount") args = ( int(stats.get(api_field, default_val)) for api_field, default_val in zip(api_fields, cls.__new__.__defaults__) ) return cls(*args) class ScriptOptions: """Options controlling the execution of scripts. https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#ScriptOptions """ def __init__( self, statement_timeout_ms: Optional[int] = None, statement_byte_budget: Optional[int] = None, key_result_statement: Optional[KeyResultStatementKind] = None, ): self._properties = {} self.statement_timeout_ms = statement_timeout_ms self.statement_byte_budget = statement_byte_budget self.key_result_statement = key_result_statement @classmethod def from_api_repr(cls, resource: Dict[str, Any]) -> "ScriptOptions": """Factory: construct instance from the JSON repr. Args: resource(Dict[str: Any]): ScriptOptions representation returned from API. Returns: google.cloud.bigquery.ScriptOptions: ScriptOptions sample parsed from ``resource``. """ entry = cls() entry._properties = copy.deepcopy(resource) return entry def to_api_repr(self) -> Dict[str, Any]: """Construct the API resource representation.""" return copy.deepcopy(self._properties) @property def statement_timeout_ms(self) -> Union[int, None]: """Timeout period for each statement in a script.""" return _helpers._int_or_none(self._properties.get("statementTimeoutMs")) @statement_timeout_ms.setter def statement_timeout_ms(self, value: Union[int, None]): if value is not None: value = str(value) self._properties["statementTimeoutMs"] = value @property def statement_byte_budget(self) -> Union[int, None]: """Limit on the number of bytes billed per statement. Exceeding this budget results in an error. """ return _helpers._int_or_none(self._properties.get("statementByteBudget")) @statement_byte_budget.setter def statement_byte_budget(self, value: Union[int, None]): if value is not None: value = str(value) self._properties["statementByteBudget"] = value @property def key_result_statement(self) -> Union[KeyResultStatementKind, None]: """Determines which statement in the script represents the "key result". This is used to populate the schema and query results of the script job. Default is ``KeyResultStatementKind.LAST``. """ return self._properties.get("keyResultStatement") @key_result_statement.setter def key_result_statement(self, value: Union[KeyResultStatementKind, None]): self._properties["keyResultStatement"] = value class QueryJobConfig(_JobConfig): """Configuration options for query jobs. All properties in this class are optional. Values which are :data:`None` -> server defaults. Set properties on the constructed configuration by using the property name as the name of a keyword argument. """ def __init__(self, **kwargs): super(QueryJobConfig, self).__init__("query", **kwargs) @property def destination_encryption_configuration(self): """google.cloud.bigquery.encryption_configuration.EncryptionConfiguration: Custom encryption configuration for the destination table. Custom encryption configuration (e.g., Cloud KMS keys) or :data:`None` if using default encryption. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.destination_encryption_configuration """ prop = self._get_sub_prop("destinationEncryptionConfiguration") if prop is not None: prop = EncryptionConfiguration.from_api_repr(prop) return prop @destination_encryption_configuration.setter def destination_encryption_configuration(self, value): api_repr = value if value is not None: api_repr = value.to_api_repr() self._set_sub_prop("destinationEncryptionConfiguration", api_repr) @property def allow_large_results(self): """bool: Allow large query results tables (legacy SQL, only) See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.allow_large_results """ return self._get_sub_prop("allowLargeResults") @allow_large_results.setter def allow_large_results(self, value): self._set_sub_prop("allowLargeResults", value) @property def create_disposition(self): """google.cloud.bigquery.job.CreateDisposition: Specifies behavior for creating tables. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.create_disposition """ return self._get_sub_prop("createDisposition") @create_disposition.setter def create_disposition(self, value): self._set_sub_prop("createDisposition", value) @property def default_dataset(self): """google.cloud.bigquery.dataset.DatasetReference: the default dataset to use for unqualified table names in the query or :data:`None` if not set. The ``default_dataset`` setter accepts: - a :class:`~google.cloud.bigquery.dataset.Dataset`, or - a :class:`~google.cloud.bigquery.dataset.DatasetReference`, or - a :class:`str` of the fully-qualified dataset ID in standard SQL format. The value must included a project ID and dataset ID separated by ``.``. For example: ``your-project.your_dataset``. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.default_dataset """ prop = self._get_sub_prop("defaultDataset") if prop is not None: prop = DatasetReference.from_api_repr(prop) return prop @default_dataset.setter def default_dataset(self, value): if value is None: self._set_sub_prop("defaultDataset", None) return if isinstance(value, str): value = DatasetReference.from_string(value) if isinstance(value, (Dataset, DatasetListItem)): value = value.reference resource = value.to_api_repr() self._set_sub_prop("defaultDataset", resource) @property def destination(self): """google.cloud.bigquery.table.TableReference: table where results are written or :data:`None` if not set. The ``destination`` setter accepts: - a :class:`~google.cloud.bigquery.table.Table`, or - a :class:`~google.cloud.bigquery.table.TableReference`, or - a :class:`str` of the fully-qualified table ID in standard SQL format. The value must included a project ID, dataset ID, and table ID, each separated by ``.``. For example: ``your-project.your_dataset.your_table``. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.destination_table """ prop = self._get_sub_prop("destinationTable") if prop is not None: prop = TableReference.from_api_repr(prop) return prop @destination.setter def destination(self, value): if value is None: self._set_sub_prop("destinationTable", None) return value = _table_arg_to_table_ref(value) resource = value.to_api_repr() self._set_sub_prop("destinationTable", resource) @property def dry_run(self): """bool: :data:`True` if this query should be a dry run to estimate costs. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfiguration.FIELDS.dry_run """ return self._properties.get("dryRun") @dry_run.setter def dry_run(self, value): self._properties["dryRun"] = value @property def flatten_results(self): """bool: Flatten nested/repeated fields in results. (Legacy SQL only) See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.flatten_results """ return self._get_sub_prop("flattenResults") @flatten_results.setter def flatten_results(self, value): self._set_sub_prop("flattenResults", value) @property def maximum_billing_tier(self): """int: Deprecated. Changes the billing tier to allow high-compute queries. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.maximum_billing_tier """ return self._get_sub_prop("maximumBillingTier") @maximum_billing_tier.setter def maximum_billing_tier(self, value): self._set_sub_prop("maximumBillingTier", value) @property def maximum_bytes_billed(self): """int: Maximum bytes to be billed for this job or :data:`None` if not set. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.maximum_bytes_billed """ return _helpers._int_or_none(self._get_sub_prop("maximumBytesBilled")) @maximum_bytes_billed.setter def maximum_bytes_billed(self, value): self._set_sub_prop("maximumBytesBilled", str(value)) @property def priority(self): """google.cloud.bigquery.job.QueryPriority: Priority of the query. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.priority """ return self._get_sub_prop("priority") @priority.setter def priority(self, value): self._set_sub_prop("priority", value) @property def query_parameters(self): """List[Union[google.cloud.bigquery.query.ArrayQueryParameter, \ google.cloud.bigquery.query.ScalarQueryParameter, \ google.cloud.bigquery.query.StructQueryParameter]]: list of parameters for parameterized query (empty by default) See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.query_parameters """ prop = self._get_sub_prop("queryParameters", default=[]) return _from_api_repr_query_parameters(prop) @query_parameters.setter def query_parameters(self, values): self._set_sub_prop("queryParameters", _to_api_repr_query_parameters(values)) @property def range_partitioning(self): """Optional[google.cloud.bigquery.table.RangePartitioning]: Configures range-based partitioning for destination table. .. note:: **Beta**. The integer range partitioning feature is in a pre-release state and might change or have limited support. Only specify at most one of :attr:`~google.cloud.bigquery.job.LoadJobConfig.time_partitioning` or :attr:`~google.cloud.bigquery.job.LoadJobConfig.range_partitioning`. Raises: ValueError: If the value is not :class:`~google.cloud.bigquery.table.RangePartitioning` or :data:`None`. """ resource = self._get_sub_prop("rangePartitioning") if resource is not None: return RangePartitioning(_properties=resource) @range_partitioning.setter def range_partitioning(self, value): resource = value if isinstance(value, RangePartitioning): resource = value._properties elif value is not None: raise ValueError( "Expected value to be RangePartitioning or None, got {}.".format(value) ) self._set_sub_prop("rangePartitioning", resource) @property def udf_resources(self): """List[google.cloud.bigquery.query.UDFResource]: user defined function resources (empty by default) See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.user_defined_function_resources """ prop = self._get_sub_prop("userDefinedFunctionResources", default=[]) return _from_api_repr_udf_resources(prop) @udf_resources.setter def udf_resources(self, values): self._set_sub_prop( "userDefinedFunctionResources", _to_api_repr_udf_resources(values) ) @property def use_legacy_sql(self): """bool: Use legacy SQL syntax. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.use_legacy_sql """ return self._get_sub_prop("useLegacySql") @use_legacy_sql.setter def use_legacy_sql(self, value): self._set_sub_prop("useLegacySql", value) @property def use_query_cache(self): """bool: Look for the query result in the cache. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.use_query_cache """ return self._get_sub_prop("useQueryCache") @use_query_cache.setter def use_query_cache(self, value): self._set_sub_prop("useQueryCache", value) @property def write_disposition(self): """google.cloud.bigquery.job.WriteDisposition: Action that occurs if the destination table already exists. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.write_disposition """ return self._get_sub_prop("writeDisposition") @write_disposition.setter def write_disposition(self, value): self._set_sub_prop("writeDisposition", value) @property def table_definitions(self): """Dict[str, google.cloud.bigquery.external_config.ExternalConfig]: Definitions for external tables or :data:`None` if not set. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.external_table_definitions """ prop = self._get_sub_prop("tableDefinitions") if prop is not None: prop = _from_api_repr_table_defs(prop) return prop @table_definitions.setter def table_definitions(self, values): self._set_sub_prop("tableDefinitions", _to_api_repr_table_defs(values)) @property def time_partitioning(self): """Optional[google.cloud.bigquery.table.TimePartitioning]: Specifies time-based partitioning for the destination table. Only specify at most one of :attr:`~google.cloud.bigquery.job.LoadJobConfig.time_partitioning` or :attr:`~google.cloud.bigquery.job.LoadJobConfig.range_partitioning`. Raises: ValueError: If the value is not :class:`~google.cloud.bigquery.table.TimePartitioning` or :data:`None`. """ prop = self._get_sub_prop("timePartitioning") if prop is not None: prop = TimePartitioning.from_api_repr(prop) return prop @time_partitioning.setter def time_partitioning(self, value): api_repr = value if value is not None: api_repr = value.to_api_repr() self._set_sub_prop("timePartitioning", api_repr) @property def clustering_fields(self): """Optional[List[str]]: Fields defining clustering for the table (Defaults to :data:`None`). Clustering fields are immutable after table creation. .. note:: BigQuery supports clustering for both partitioned and non-partitioned tables. """ prop = self._get_sub_prop("clustering") if prop is not None: return list(prop.get("fields", ())) @clustering_fields.setter def clustering_fields(self, value): """Optional[List[str]]: Fields defining clustering for the table (Defaults to :data:`None`). """ if value is not None: self._set_sub_prop("clustering", {"fields": value}) else: self._del_sub_prop("clustering") @property def schema_update_options(self): """List[google.cloud.bigquery.job.SchemaUpdateOption]: Specifies updates to the destination table schema to allow as a side effect of the query job. """ return self._get_sub_prop("schemaUpdateOptions") @schema_update_options.setter def schema_update_options(self, values): self._set_sub_prop("schemaUpdateOptions", values) @property def script_options(self) -> ScriptOptions: """Connection properties which can modify the query behavior. https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#scriptoptions """ prop = self._get_sub_prop("scriptOptions") if prop is not None: prop = ScriptOptions.from_api_repr(prop) return prop @script_options.setter def script_options(self, value: Union[ScriptOptions, None]): if value is not None: value = value.to_api_repr() self._set_sub_prop("scriptOptions", value) def to_api_repr(self) -> dict: """Build an API representation of the query job config. Returns: Dict: A dictionary in the format used by the BigQuery API. """ resource = copy.deepcopy(self._properties) # Query parameters have an addition property associated with them # to indicate if the query is using named or positional parameters. query_parameters = resource["query"].get("queryParameters") if query_parameters: if query_parameters[0].get("name") is None: resource["query"]["parameterMode"] = "POSITIONAL" else: resource["query"]["parameterMode"] = "NAMED" return resource class QueryJob(_AsyncJob): """Asynchronous job: query tables. Args: job_id (str): the job's ID, within the project belonging to ``client``. query (str): SQL query string. client (google.cloud.bigquery.client.Client): A client which holds credentials and project configuration for the dataset (which requires a project). job_config (Optional[google.cloud.bigquery.job.QueryJobConfig]): Extra configuration options for the query job. """ _JOB_TYPE = "query" _UDF_KEY = "userDefinedFunctionResources" def __init__(self, job_id, query, client, job_config=None): super(QueryJob, self).__init__(job_id, client) if job_config is None: job_config = QueryJobConfig() if job_config.use_legacy_sql is None: job_config.use_legacy_sql = False self._properties["configuration"] = job_config._properties self._configuration = job_config if query: _helpers._set_sub_prop( self._properties, ["configuration", "query", "query"], query ) self._query_results = None self._done_timeout = None self._transport_timeout = None @property def allow_large_results(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.allow_large_results`. """ return self._configuration.allow_large_results @property def create_disposition(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.create_disposition`. """ return self._configuration.create_disposition @property def default_dataset(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.default_dataset`. """ return self._configuration.default_dataset @property def destination(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.destination`. """ return self._configuration.destination @property def destination_encryption_configuration(self): """google.cloud.bigquery.encryption_configuration.EncryptionConfiguration: Custom encryption configuration for the destination table. Custom encryption configuration (e.g., Cloud KMS keys) or :data:`None` if using default encryption. See :attr:`google.cloud.bigquery.job.QueryJobConfig.destination_encryption_configuration`. """ return self._configuration.destination_encryption_configuration @property def dry_run(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.dry_run`. """ return self._configuration.dry_run @property def flatten_results(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.flatten_results`. """ return self._configuration.flatten_results @property def priority(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.priority`. """ return self._configuration.priority @property def query(self): """str: The query text used in this query job. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobConfigurationQuery.FIELDS.query """ return _helpers._get_sub_prop( self._properties, ["configuration", "query", "query"] ) @property def query_parameters(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.query_parameters`. """ return self._configuration.query_parameters @property def udf_resources(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.udf_resources`. """ return self._configuration.udf_resources @property def use_legacy_sql(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.use_legacy_sql`. """ return self._configuration.use_legacy_sql @property def use_query_cache(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.use_query_cache`. """ return self._configuration.use_query_cache @property def write_disposition(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.write_disposition`. """ return self._configuration.write_disposition @property def maximum_billing_tier(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.maximum_billing_tier`. """ return self._configuration.maximum_billing_tier @property def maximum_bytes_billed(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.maximum_bytes_billed`. """ return self._configuration.maximum_bytes_billed @property def range_partitioning(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.range_partitioning`. """ return self._configuration.range_partitioning @property def table_definitions(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.table_definitions`. """ return self._configuration.table_definitions @property def time_partitioning(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.time_partitioning`. """ return self._configuration.time_partitioning @property def clustering_fields(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.clustering_fields`. """ return self._configuration.clustering_fields @property def schema_update_options(self): """See :attr:`google.cloud.bigquery.job.QueryJobConfig.schema_update_options`. """ return self._configuration.schema_update_options def to_api_repr(self): """Generate a resource for :meth:`_begin`.""" # Use to_api_repr to allow for some configuration properties to be set # automatically. configuration = self._configuration.to_api_repr() return { "jobReference": self._properties["jobReference"], "configuration": configuration, } @classmethod def from_api_repr(cls, resource: dict, client) -> "QueryJob": """Factory: construct a job given its API representation Args: resource (Dict): dataset job representation returned from the API client (google.cloud.bigquery.client.Client): Client which holds credentials and project configuration for the dataset. Returns: google.cloud.bigquery.job.QueryJob: Job parsed from ``resource``. """ cls._check_resource_config(resource) job_ref = _JobReference._from_api_repr(resource["jobReference"]) job = cls(job_ref, None, client=client) job._set_properties(resource) return job @property def query_plan(self): """Return query plan from job statistics, if present. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.query_plan Returns: List[google.cloud.bigquery.job.QueryPlanEntry]: mappings describing the query plan, or an empty list if the query has not yet completed. """ plan_entries = self._job_statistics().get("queryPlan", ()) return [QueryPlanEntry.from_api_repr(entry) for entry in plan_entries] @property def timeline(self): """List(TimelineEntry): Return the query execution timeline from job statistics. """ raw = self._job_statistics().get("timeline", ()) return [TimelineEntry.from_api_repr(entry) for entry in raw] @property def total_bytes_processed(self): """Return total bytes processed from job statistics, if present. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.total_bytes_processed Returns: Optional[int]: Total bytes processed by the job, or None if job is not yet complete. """ result = self._job_statistics().get("totalBytesProcessed") if result is not None: result = int(result) return result @property def total_bytes_billed(self): """Return total bytes billed from job statistics, if present. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.total_bytes_billed Returns: Optional[int]: Total bytes processed by the job, or None if job is not yet complete. """ result = self._job_statistics().get("totalBytesBilled") if result is not None: result = int(result) return result @property def billing_tier(self): """Return billing tier from job statistics, if present. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.billing_tier Returns: Optional[int]: Billing tier used by the job, or None if job is not yet complete. """ return self._job_statistics().get("billingTier") @property def cache_hit(self): """Return whether or not query results were served from cache. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.cache_hit Returns: Optional[bool]: whether the query results were returned from cache, or None if job is not yet complete. """ return self._job_statistics().get("cacheHit") @property def ddl_operation_performed(self): """Optional[str]: Return the DDL operation performed. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.ddl_operation_performed """ return self._job_statistics().get("ddlOperationPerformed") @property def ddl_target_routine(self): """Optional[google.cloud.bigquery.routine.RoutineReference]: Return the DDL target routine, present for CREATE/DROP FUNCTION/PROCEDURE queries. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.ddl_target_routine """ prop = self._job_statistics().get("ddlTargetRoutine") if prop is not None: prop = RoutineReference.from_api_repr(prop) return prop @property def ddl_target_table(self): """Optional[google.cloud.bigquery.table.TableReference]: Return the DDL target table, present for CREATE/DROP TABLE/VIEW queries. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.ddl_target_table """ prop = self._job_statistics().get("ddlTargetTable") if prop is not None: prop = TableReference.from_api_repr(prop) return prop @property def num_dml_affected_rows(self): """Return the number of DML rows affected by the job. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.num_dml_affected_rows Returns: Optional[int]: number of DML rows affected by the job, or None if job is not yet complete. """ result = self._job_statistics().get("numDmlAffectedRows") if result is not None: result = int(result) return result @property def slot_millis(self): """Union[int, None]: Slot-milliseconds used by this query job.""" return _helpers._int_or_none(self._job_statistics().get("totalSlotMs")) @property def statement_type(self): """Return statement type from job statistics, if present. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.statement_type Returns: Optional[str]: type of statement used by the job, or None if job is not yet complete. """ return self._job_statistics().get("statementType") @property def referenced_tables(self): """Return referenced tables from job statistics, if present. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.referenced_tables Returns: List[Dict]: mappings describing the query plan, or an empty list if the query has not yet completed. """ tables = [] datasets_by_project_name = {} for table in self._job_statistics().get("referencedTables", ()): t_project = table["projectId"] ds_id = table["datasetId"] t_dataset = datasets_by_project_name.get((t_project, ds_id)) if t_dataset is None: t_dataset = DatasetReference(t_project, ds_id) datasets_by_project_name[(t_project, ds_id)] = t_dataset t_name = table["tableId"] tables.append(t_dataset.table(t_name)) return tables @property def undeclared_query_parameters(self): """Return undeclared query parameters from job statistics, if present. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.undeclared_query_parameters Returns: List[Union[ \ google.cloud.bigquery.query.ArrayQueryParameter, \ google.cloud.bigquery.query.ScalarQueryParameter, \ google.cloud.bigquery.query.StructQueryParameter \ ]]: Undeclared parameters, or an empty list if the query has not yet completed. """ parameters = [] undeclared = self._job_statistics().get("undeclaredQueryParameters", ()) for parameter in undeclared: p_type = parameter["parameterType"] if "arrayType" in p_type: klass = ArrayQueryParameter elif "structTypes" in p_type: klass = StructQueryParameter else: klass = ScalarQueryParameter parameters.append(klass.from_api_repr(parameter)) return parameters @property def estimated_bytes_processed(self): """Return the estimated number of bytes processed by the query. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#JobStatistics2.FIELDS.estimated_bytes_processed Returns: Optional[int]: number of DML rows affected by the job, or None if job is not yet complete. """ result = self._job_statistics().get("estimatedBytesProcessed") if result is not None: result = int(result) return result @property def dml_stats(self) -> Optional[DmlStats]: stats = self._job_statistics().get("dmlStats") if stats is None: return None else: return DmlStats.from_api_repr(stats) def _blocking_poll(self, timeout=None, **kwargs): self._done_timeout = timeout self._transport_timeout = timeout super(QueryJob, self)._blocking_poll(timeout=timeout, **kwargs) @staticmethod def _format_for_exception(query, job_id): """Format a query for the output in exception message. Args: query (str): The SQL query to format. job_id (str): The ID of the job that ran the query. Returns: str: A formatted query text. """ template = "\n\n(job ID: {job_id})\n\n{header}\n\n{ruler}\n{body}\n{ruler}" lines = query.splitlines() max_line_len = max(len(line) for line in lines) header = "-----Query Job SQL Follows-----" header = "{:^{total_width}}".format(header, total_width=max_line_len + 5) # Print out a "ruler" above and below the SQL so we can judge columns. # Left pad for the line numbers (4 digits plus ":"). ruler = " |" + " . |" * (max_line_len // 10) # Put line numbers next to the SQL. body = "\n".join( "{:4}:{}".format(n, line) for n, line in enumerate(lines, start=1) ) return template.format(job_id=job_id, header=header, ruler=ruler, body=body) def _begin(self, client=None, retry=DEFAULT_RETRY, timeout=None): """API call: begin the job via a POST request See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/insert Args: client (Optional[google.cloud.bigquery.client.Client]): The client to use. If not passed, falls back to the ``client`` associated with the job object or``NoneType``. retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. Raises: ValueError: If the job has already begun. """ try: super(QueryJob, self)._begin(client=client, retry=retry, timeout=timeout) except exceptions.GoogleAPICallError as exc: exc.message += self._format_for_exception(self.query, self.job_id) exc.query_job = self raise def _reload_query_results( self, retry: "retries.Retry" = DEFAULT_RETRY, timeout: float = None ): """Refresh the cached query results. Args: retry (Optional[google.api_core.retry.Retry]): How to retry the call that retrieves query results. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. """ if self._query_results and self._query_results.complete: return # Since the API to getQueryResults can hang up to the timeout value # (default of 10 seconds), set the timeout parameter to ensure that # the timeout from the futures API is respected. See: # https://github.com/GoogleCloudPlatform/google-cloud-python/issues/4135 timeout_ms = None if self._done_timeout is not None: # Subtract a buffer for context switching, network latency, etc. api_timeout = self._done_timeout - _TIMEOUT_BUFFER_SECS api_timeout = max(min(api_timeout, 10), 0) self._done_timeout -= api_timeout self._done_timeout = max(0, self._done_timeout) timeout_ms = int(api_timeout * 1000) # If an explicit timeout is not given, fall back to the transport timeout # stored in _blocking_poll() in the process of polling for job completion. transport_timeout = timeout if timeout is not None else self._transport_timeout self._query_results = self._client._get_query_results( self.job_id, retry, project=self.project, timeout_ms=timeout_ms, location=self.location, timeout=transport_timeout, ) def _done_or_raise(self, retry=DEFAULT_RETRY, timeout=None): """Check if the query has finished running and raise if it's not. If the query has finished, also reload the job itself. """ # If an explicit timeout is not given, fall back to the transport timeout # stored in _blocking_poll() in the process of polling for job completion. transport_timeout = timeout if timeout is not None else self._transport_timeout try: self._reload_query_results(retry=retry, timeout=transport_timeout) except exceptions.GoogleAPIError as exc: # Reloading also updates error details on self, thus no need for an # explicit self.set_exception() call if reloading succeeds. try: self.reload(retry=retry, timeout=transport_timeout) except exceptions.GoogleAPIError: # Use the query results reload exception, as it generally contains # much more useful error information. self.set_exception(exc) finally: return # Only reload the job once we know the query is complete. # This will ensure that fields such as the destination table are # correctly populated. if not self._query_results.complete: raise polling_future._OperationNotComplete() else: try: self.reload(retry=retry, timeout=transport_timeout) except exceptions.GoogleAPIError as exc: self.set_exception(exc) def result( self, page_size: int = None, max_results: int = None, retry: "retries.Retry" = DEFAULT_RETRY, timeout: float = None, start_index: int = None, ) -> Union["RowIterator", _EmptyRowIterator]: """Start the job and wait for it to complete and get the result. Args: page_size (Optional[int]): The maximum number of rows in each page of results from this request. Non-positive values are ignored. max_results (Optional[int]): The maximum total number of rows from this request. retry (Optional[google.api_core.retry.Retry]): How to retry the call that retrieves rows. If the job state is ``DONE``, retrying is aborted early even if the results are not available, as this will not change anymore. timeout (Optional[float]): The number of seconds to wait for the underlying HTTP transport before using ``retry``. If multiple requests are made under the hood, ``timeout`` applies to each individual request. start_index (Optional[int]): The zero-based index of the starting row to read. Returns: google.cloud.bigquery.table.RowIterator: Iterator of row data :class:`~google.cloud.bigquery.table.Row`-s. During each page, the iterator will have the ``total_rows`` attribute set, which counts the total number of rows **in the result set** (this is distinct from the total number of rows in the current page: ``iterator.page.num_items``). If the query is a special query that produces no results, e.g. a DDL query, an ``_EmptyRowIterator`` instance is returned. Raises: google.cloud.exceptions.GoogleAPICallError: If the job failed. concurrent.futures.TimeoutError: If the job did not complete in the given timeout. """ try: super(QueryJob, self).result(retry=retry, timeout=timeout) # Since the job could already be "done" (e.g. got a finished job # via client.get_job), the superclass call to done() might not # set the self._query_results cache. self._reload_query_results(retry=retry, timeout=timeout) except exceptions.GoogleAPICallError as exc: exc.message += self._format_for_exception(self.query, self.job_id) exc.query_job = self raise except requests.exceptions.Timeout as exc: raise concurrent.futures.TimeoutError from exc # If the query job is complete but there are no query results, this was # special job, such as a DDL query. Return an empty result set to # indicate success and avoid calling tabledata.list on a table which # can't be read (such as a view table). if self._query_results.total_rows is None: return _EmptyRowIterator() rows = self._client._list_rows_from_query_results( self.job_id, self.location, self.project, self._query_results.schema, total_rows=self._query_results.total_rows, destination=self.destination, page_size=page_size, max_results=max_results, start_index=start_index, retry=retry, timeout=timeout, ) rows._preserve_order = _contains_order_by(self.query) return rows # If changing the signature of this method, make sure to apply the same # changes to table.RowIterator.to_arrow(), except for the max_results parameter # that should only exist here in the QueryJob method. def to_arrow( self, progress_bar_type: str = None, bqstorage_client: "bigquery_storage.BigQueryReadClient" = None, create_bqstorage_client: bool = True, max_results: Optional[int] = None, ) -> "pyarrow.Table": """[Beta] Create a class:`pyarrow.Table` by loading all pages of a table or query. Args: progress_bar_type (Optional[str]): If set, use the `tqdm <https://tqdm.github.io/>`_ library to display a progress bar while the data downloads. Install the ``tqdm`` package to use this feature. Possible values of ``progress_bar_type`` include: ``None`` No progress bar. ``'tqdm'`` Use the :func:`tqdm.tqdm` function to print a progress bar to :data:`sys.stderr`. ``'tqdm_notebook'`` Use the :func:`tqdm.tqdm_notebook` function to display a progress bar as a Jupyter notebook widget. ``'tqdm_gui'`` Use the :func:`tqdm.tqdm_gui` function to display a progress bar as a graphical dialog box. bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]): A BigQuery Storage API client. If supplied, use the faster BigQuery Storage API to fetch rows from BigQuery. This API is a billable API. This method requires the ``pyarrow`` and ``google-cloud-bigquery-storage`` libraries. Reading from a specific partition or snapshot is not currently supported by this method. create_bqstorage_client (Optional[bool]): If ``True`` (default), create a BigQuery Storage API client using the default API settings. The BigQuery Storage API is a faster way to fetch rows from BigQuery. See the ``bqstorage_client`` parameter for more information. This argument does nothing if ``bqstorage_client`` is supplied. ..versionadded:: 1.24.0 max_results (Optional[int]): Maximum number of rows to include in the result. No limit by default. ..versionadded:: 2.21.0 Returns: pyarrow.Table A :class:`pyarrow.Table` populated with row data and column headers from the query results. The column headers are derived from the destination table's schema. Raises: ValueError: If the :mod:`pyarrow` library cannot be imported. ..versionadded:: 1.17.0 """ query_result = wait_for_query(self, progress_bar_type, max_results=max_results) return query_result.to_arrow( progress_bar_type=progress_bar_type, bqstorage_client=bqstorage_client, create_bqstorage_client=create_bqstorage_client, ) # If changing the signature of this method, make sure to apply the same # changes to table.RowIterator.to_dataframe(), except for the max_results parameter # that should only exist here in the QueryJob method. def to_dataframe( self, bqstorage_client: "bigquery_storage.BigQueryReadClient" = None, dtypes: Dict[str, Any] = None, progress_bar_type: str = None, create_bqstorage_client: bool = True, date_as_object: bool = True, max_results: Optional[int] = None, ) -> "pandas.DataFrame": """Return a pandas DataFrame from a QueryJob Args: bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]): A BigQuery Storage API client. If supplied, use the faster BigQuery Storage API to fetch rows from BigQuery. This API is a billable API. This method requires the ``fastavro`` and ``google-cloud-bigquery-storage`` libraries. Reading from a specific partition or snapshot is not currently supported by this method. dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]): A dictionary of column names pandas ``dtype``s. The provided ``dtype`` is used when constructing the series for the column specified. Otherwise, the default pandas behavior is used. progress_bar_type (Optional[str]): If set, use the `tqdm <https://tqdm.github.io/>`_ library to display a progress bar while the data downloads. Install the ``tqdm`` package to use this feature. See :func:`~google.cloud.bigquery.table.RowIterator.to_dataframe` for details. ..versionadded:: 1.11.0 create_bqstorage_client (Optional[bool]): If ``True`` (default), create a BigQuery Storage API client using the default API settings. The BigQuery Storage API is a faster way to fetch rows from BigQuery. See the ``bqstorage_client`` parameter for more information. This argument does nothing if ``bqstorage_client`` is supplied. ..versionadded:: 1.24.0 date_as_object (Optional[bool]): If ``True`` (default), cast dates to objects. If ``False``, convert to datetime64[ns] dtype. ..versionadded:: 1.26.0 max_results (Optional[int]): Maximum number of rows to include in the result. No limit by default. ..versionadded:: 2.21.0 Returns: A :class:`~pandas.DataFrame` populated with row data and column headers from the query results. The column headers are derived from the destination table's schema. Raises: ValueError: If the `pandas` library cannot be imported. """ query_result = wait_for_query(self, progress_bar_type, max_results=max_results) return query_result.to_dataframe( bqstorage_client=bqstorage_client, dtypes=dtypes, progress_bar_type=progress_bar_type, create_bqstorage_client=create_bqstorage_client, date_as_object=date_as_object, ) def __iter__(self): return iter(self.result()) class QueryPlanEntryStep(object): """Map a single step in a query plan entry. Args: kind (str): step type. substeps (List): names of substeps. """ def __init__(self, kind, substeps): self.kind = kind self.substeps = list(substeps) @classmethod def from_api_repr(cls, resource: dict) -> "QueryPlanEntryStep": """Factory: construct instance from the JSON repr. Args: resource (Dict): JSON representation of the entry. Returns: google.cloud.bigquery.job.QueryPlanEntryStep: New instance built from the resource. """ return cls(kind=resource.get("kind"), substeps=resource.get("substeps", ())) def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return self.kind == other.kind and self.substeps == other.substeps class QueryPlanEntry(object): """QueryPlanEntry represents a single stage of a query execution plan. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#ExplainQueryStage for the underlying API representation within query statistics. """ def __init__(self): self._properties = {} @classmethod def from_api_repr(cls, resource: dict) -> "QueryPlanEntry": """Factory: construct instance from the JSON repr. Args: resource(Dict[str: object]): ExplainQueryStage representation returned from API. Returns: google.cloud.bigquery.job.QueryPlanEntry: Query plan entry parsed from ``resource``. """ entry = cls() entry._properties = resource return entry @property def name(self): """Optional[str]: Human-readable name of the stage.""" return self._properties.get("name") @property def entry_id(self): """Optional[str]: Unique ID for the stage within the plan.""" return self._properties.get("id") @property def start(self): """Optional[Datetime]: Datetime when the stage started.""" if self._properties.get("startMs") is None: return None return _helpers._datetime_from_microseconds( int(self._properties.get("startMs")) * 1000.0 ) @property def end(self): """Optional[Datetime]: Datetime when the stage ended.""" if self._properties.get("endMs") is None: return None return _helpers._datetime_from_microseconds( int(self._properties.get("endMs")) * 1000.0 ) @property def input_stages(self): """List(int): Entry IDs for stages that were inputs for this stage.""" if self._properties.get("inputStages") is None: return [] return [ _helpers._int_or_none(entry) for entry in self._properties.get("inputStages") ] @property def parallel_inputs(self): """Optional[int]: Number of parallel input segments within the stage. """ return _helpers._int_or_none(self._properties.get("parallelInputs")) @property def completed_parallel_inputs(self): """Optional[int]: Number of parallel input segments completed.""" return _helpers._int_or_none(self._properties.get("completedParallelInputs")) @property def wait_ms_avg(self): """Optional[int]: Milliseconds the average worker spent waiting to be scheduled. """ return _helpers._int_or_none(self._properties.get("waitMsAvg")) @property def wait_ms_max(self): """Optional[int]: Milliseconds the slowest worker spent waiting to be scheduled. """ return _helpers._int_or_none(self._properties.get("waitMsMax")) @property def wait_ratio_avg(self): """Optional[float]: Ratio of time the average worker spent waiting to be scheduled, relative to the longest time spent by any worker in any stage of the overall plan. """ return self._properties.get("waitRatioAvg") @property def wait_ratio_max(self): """Optional[float]: Ratio of time the slowest worker spent waiting to be scheduled, relative to the longest time spent by any worker in any stage of the overall plan. """ return self._properties.get("waitRatioMax") @property def read_ms_avg(self): """Optional[int]: Milliseconds the average worker spent reading input. """ return _helpers._int_or_none(self._properties.get("readMsAvg")) @property def read_ms_max(self): """Optional[int]: Milliseconds the slowest worker spent reading input. """ return _helpers._int_or_none(self._properties.get("readMsMax")) @property def read_ratio_avg(self): """Optional[float]: Ratio of time the average worker spent reading input, relative to the longest time spent by any worker in any stage of the overall plan. """ return self._properties.get("readRatioAvg") @property def read_ratio_max(self): """Optional[float]: Ratio of time the slowest worker spent reading to be scheduled, relative to the longest time spent by any worker in any stage of the overall plan. """ return self._properties.get("readRatioMax") @property def compute_ms_avg(self): """Optional[int]: Milliseconds the average worker spent on CPU-bound processing. """ return _helpers._int_or_none(self._properties.get("computeMsAvg")) @property def compute_ms_max(self): """Optional[int]: Milliseconds the slowest worker spent on CPU-bound processing. """ return _helpers._int_or_none(self._properties.get("computeMsMax")) @property def compute_ratio_avg(self): """Optional[float]: Ratio of time the average worker spent on CPU-bound processing, relative to the longest time spent by any worker in any stage of the overall plan. """ return self._properties.get("computeRatioAvg") @property def compute_ratio_max(self): """Optional[float]: Ratio of time the slowest worker spent on CPU-bound processing, relative to the longest time spent by any worker in any stage of the overall plan. """ return self._properties.get("computeRatioMax") @property def write_ms_avg(self): """Optional[int]: Milliseconds the average worker spent writing output data. """ return _helpers._int_or_none(self._properties.get("writeMsAvg")) @property def write_ms_max(self): """Optional[int]: Milliseconds the slowest worker spent writing output data. """ return _helpers._int_or_none(self._properties.get("writeMsMax")) @property def write_ratio_avg(self): """Optional[float]: Ratio of time the average worker spent writing output data, relative to the longest time spent by any worker in any stage of the overall plan. """ return self._properties.get("writeRatioAvg") @property def write_ratio_max(self): """Optional[float]: Ratio of time the slowest worker spent writing output data, relative to the longest time spent by any worker in any stage of the overall plan. """ return self._properties.get("writeRatioMax") @property def records_read(self): """Optional[int]: Number of records read by this stage.""" return _helpers._int_or_none(self._properties.get("recordsRead")) @property def records_written(self): """Optional[int]: Number of records written by this stage.""" return _helpers._int_or_none(self._properties.get("recordsWritten")) @property def status(self): """Optional[str]: status of this stage.""" return self._properties.get("status") @property def shuffle_output_bytes(self): """Optional[int]: Number of bytes written by this stage to intermediate shuffle. """ return _helpers._int_or_none(self._properties.get("shuffleOutputBytes")) @property def shuffle_output_bytes_spilled(self): """Optional[int]: Number of bytes written by this stage to intermediate shuffle and spilled to disk. """ return _helpers._int_or_none(self._properties.get("shuffleOutputBytesSpilled")) @property def steps(self): """List(QueryPlanEntryStep): List of step operations performed by each worker in the stage. """ return [ QueryPlanEntryStep.from_api_repr(step) for step in self._properties.get("steps", []) ] class TimelineEntry(object): """TimelineEntry represents progress of a query job at a particular point in time. See https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#querytimelinesample for the underlying API representation within query statistics. """ def __init__(self): self._properties = {} @classmethod def from_api_repr(cls, resource): """Factory: construct instance from the JSON repr. Args: resource(Dict[str: object]): QueryTimelineSample representation returned from API. Returns: google.cloud.bigquery.TimelineEntry: Timeline sample parsed from ``resource``. """ entry = cls() entry._properties = resource return entry @property def elapsed_ms(self): """Optional[int]: Milliseconds elapsed since start of query execution.""" return _helpers._int_or_none(self._properties.get("elapsedMs")) @property def active_units(self): """Optional[int]: Current number of input units being processed by workers, reported as largest value since the last sample.""" return _helpers._int_or_none(self._properties.get("activeUnits")) @property def pending_units(self): """Optional[int]: Current number of input units remaining for query stages active at this sample time.""" return _helpers._int_or_none(self._properties.get("pendingUnits")) @property def completed_units(self): """Optional[int]: Current number of input units completed by this query.""" return _helpers._int_or_none(self._properties.get("completedUnits")) @property def slot_millis(self): """Optional[int]: Cumulative slot-milliseconds consumed by this query.""" return _helpers._int_or_none(self._properties.get("totalSlotMs"))
35.911135
134
0.645831
709c33b3cc28e41f2b28d27ba50d95eb4f24ecc8
835
py
Python
app/views/callback.py
Md-Kais/spotify-playing-readme
3e78b3bc7ab9e90160eaae8b09884a125a387fd8
[ "Apache-2.0" ]
1
2021-08-13T04:31:06.000Z
2021-08-13T04:31:06.000Z
app/views/callback.py
Md-Kais/spotify-playing-readme
3e78b3bc7ab9e90160eaae8b09884a125a387fd8
[ "Apache-2.0" ]
null
null
null
app/views/callback.py
Md-Kais/spotify-playing-readme
3e78b3bc7ab9e90160eaae8b09884a125a387fd8
[ "Apache-2.0" ]
null
null
null
from flask import Blueprint, Response, request, render_template from app import database from app.config import BASE_URL, GITHUB_URL from app.utils import generate_token, get_user_info callback = Blueprint("/callback", __name__, template_folder="templates") @callback.route("/callback") def callback_(): code = request.args.get("code") if not code: return Response("No code found!") try: token = generate_token(code) access_token = token["access_token"] user_id = get_user_info(access_token)["id"] except KeyError: return Response("Invalid Auth workflow! Please login correctly.") database.child("users").child(user_id).set(token) return render_template( "callback.html", id=user_id, base_url=BASE_URL, github_url=GITHUB_URL )
26.09375
73
0.688623
b73bbb6d771590b792104a0096a4db69711cbd14
736
py
Python
ehr_functions/models/types/nn.py
fdabek1/EHR-Functions
e6bd0b6fa213930358c4a19be31c459ac7430ca9
[ "MIT" ]
null
null
null
ehr_functions/models/types/nn.py
fdabek1/EHR-Functions
e6bd0b6fa213930358c4a19be31c459ac7430ca9
[ "MIT" ]
null
null
null
ehr_functions/models/types/nn.py
fdabek1/EHR-Functions
e6bd0b6fa213930358c4a19be31c459ac7430ca9
[ "MIT" ]
null
null
null
# from livelossplot.keras import PlotLossesCallback from ehr_functions.models.types._base import Model import numpy as np class NeuralNetwork(Model): def __init__(self, model, epochs=10, batch_size=32, round_output=False, **kwargs): super().__init__(**kwargs) self.model = model self.epochs = epochs self.batch_size = batch_size self.round_output = round_output def train(self, x, y): self.model.fit(x, y, epochs=self.epochs, batch_size=self.batch_size, validation_split=0.2) # callbacks=[PlotLossesCallback()]) def predict(self, x): output = self.model.predict(x) if self.round_output: output = np.round(output) return output
30.666667
98
0.66712
e5f67f8f1babb8dcaa0899a7af4fb2f546e42b6e
3,088
py
Python
gen_potential_employees.py
ab-go/enron_graph
35ead456e27736bbb4fae20fe179ebe788dcbdc9
[ "MIT" ]
null
null
null
gen_potential_employees.py
ab-go/enron_graph
35ead456e27736bbb4fae20fe179ebe788dcbdc9
[ "MIT" ]
null
null
null
gen_potential_employees.py
ab-go/enron_graph
35ead456e27736bbb4fae20fe179ebe788dcbdc9
[ "MIT" ]
null
null
null
import os import sys import csv from names_dataset import NameDataset import re import argparse def generate_potential_employees(f_path): """ open the email_employee.csv and parse it to create more employees """ f_name = os.path.join(f_path, 'email_employee.csv') nd = NameDataset() p = re.compile('([a-z]*)\.([a-z]\.)?([a-z]*)@enron.com') out_f_name = os.path.join(f_path, 'potential_email_employees.csv') num_rows_written = 0 with open(out_f_name, 'w', newline='') as out_f: field_names = ['address', 'firstName', 'lastName'] writer = csv.DictWriter(out_f, fieldnames = field_names) writer.writeheader() with open(f_name, 'r') as f: reader = csv.DictReader(f, quotechar='"') for row in reader: eid = row['eid'] email_id = row['address'] try: v = int(eid) except: v = 0 if v != 0: print("found eid: {} for email_id: {}, continuing".format(v, email_id)) continue ## match this email id m = p.match(email_id) if m is None: continue ## get the groups from this regex g = m.groups() ## get the first and last names fn = g[0] ln = g[-1] if not fn or not ln: print("invalid name: firstName: {}, lastName: {}".format(fn, ln)) continue d = {'address': email_id} ## search for the first name in the db fn_in_nd = nd.search_first_name(fn) if not fn_in_nd and nd.search_first_name(ln): ## swap the two d['firstName'] = ln d['lastName'] = fn else: ## continue as default d['firstName'] = fn d['lastName'] = ln ## write this to the output file as a row writer.writerow(d) num_rows_written += 1 print("wrote {} rows of data to the file: {}".format(num_rows_written, out_f_name)) if __name__ == '__main__': desc = """Generate potential employees based on email signatures. A lot of email addresses in the db don't have corresponding Employee ids. However, their email addresses (@enron.com) suggest that they might be employees. In addition, their email addresses follow the pattern <firstName>.<lastName>@enron.com. For these email addresses, nodes labelled PotentialEmployee are generated in the table so that the search experience is richer. The names_dataset module is used to check the order of first names and last names in their email addresses. When it seems more likely that their address was <secondName>.<firstName>, these names are swapped around. """ parser = argparse.ArgumentParser(description=desc) parser.add_argument('--path', dest='path', type=str, help='path to email_employees.csv file', default='.') args = parser.parse_args() generate_potential_employees(args.path)
33.565217
110
0.590674
d78db1a6d84b50bb668ab7ac0dd317f5035153c3
1,137
py
Python
test/modules/http2/test_501_proxy_serverheader.py
ICLXLxqj0g/chenrichard10y
df2619419646f6f8b2514680445955782a2a3c0a
[ "Apache-2.0" ]
2,529
2015-01-02T11:52:53.000Z
2022-03-30T19:54:27.000Z
test/modules/http2/test_501_proxy_serverheader.py
ICLXLxqj0g/chenrichard10y
df2619419646f6f8b2514680445955782a2a3c0a
[ "Apache-2.0" ]
133
2015-04-21T05:50:45.000Z
2022-03-30T14:23:40.000Z
test/modules/http2/test_501_proxy_serverheader.py
ICLXLxqj0g/chenrichard10y
df2619419646f6f8b2514680445955782a2a3c0a
[ "Apache-2.0" ]
1,113
2015-01-01T14:47:02.000Z
2022-03-29T16:47:18.000Z
import pytest from .env import H2Conf class TestProxyServerHeader: @pytest.fixture(autouse=True, scope='class') def _class_scope(self, env): conf = H2Conf(env, extras={ f'cgi.{env.http_tld}': [ "Header unset Server", "Header always set Server cgi", ] }) conf.add_vhost_cgi(proxy_self=True, h2proxy_self=False) conf.install() assert env.apache_restart() == 0 def setup_method(self, method): print("setup_method: %s" % method.__name__) def teardown_method(self, method): print("teardown_method: %s" % method.__name__) def test_h2_501_01(self, env): url = env.mkurl("https", "cgi", "/proxy/hello.py") r = env.curl_get(url, 5) assert r.response["status"] == 200 assert "HTTP/1.1" == r.response["json"]["protocol"] assert "" == r.response["json"]["https"] assert "" == r.response["json"]["ssl_protocol"] assert "" == r.response["json"]["h2"] assert "" == r.response["json"]["h2push"] assert "cgi" == r.response["header"]["server"]
31.583333
63
0.57168
e8d3b893668e7b789a00e6cab0f8b80a42bc0e68
1,232
py
Python
sympy/strategies/traverse.py
msgoff/sympy
1e7daef7514902f5e89718fa957b7b36c6669a10
[ "BSD-3-Clause" ]
null
null
null
sympy/strategies/traverse.py
msgoff/sympy
1e7daef7514902f5e89718fa957b7b36c6669a10
[ "BSD-3-Clause" ]
null
null
null
sympy/strategies/traverse.py
msgoff/sympy
1e7daef7514902f5e89718fa957b7b36c6669a10
[ "BSD-3-Clause" ]
null
null
null
"""Strategies to Traverse a Tree.""" from __future__ import print_function, division from sympy.strategies.util import basic_fns from sympy.strategies.core import chain, do_one def top_down(rule, fns=basic_fns): """Apply a rule down a tree running it on the top nodes first.""" return chain(rule, lambda expr: sall(top_down(rule, fns), fns)(expr)) def bottom_up(rule, fns=basic_fns): """Apply a rule down a tree running it on the bottom nodes first.""" return chain(lambda expr: sall(bottom_up(rule, fns), fns)(expr), rule) def top_down_once(rule, fns=basic_fns): """Apply a rule down a tree - stop on success.""" return do_one(rule, lambda expr: sall(top_down(rule, fns), fns)(expr)) def bottom_up_once(rule, fns=basic_fns): """Apply a rule up a tree - stop on success.""" return do_one(lambda expr: sall(bottom_up(rule, fns), fns)(expr), rule) def sall(rule, fns=basic_fns): """Strategic all - apply rule to args.""" op, new, children, leaf = map(fns.get, ("op", "new", "children", "leaf")) def all_rl(expr): if leaf(expr): return expr else: args = map(rule, children(expr)) return new(op(expr), *args) return all_rl
30.8
77
0.660714
e24536f42ec572ab9573485d6f8da0568be0ecb6
9,682
py
Python
distributed/cifar10-100/multi_device_multi_process_classification.py
JonathanLehner/nnabla-examples
2971b987484945e12fb171594181908789485a0f
[ "Apache-2.0" ]
null
null
null
distributed/cifar10-100/multi_device_multi_process_classification.py
JonathanLehner/nnabla-examples
2971b987484945e12fb171594181908789485a0f
[ "Apache-2.0" ]
null
null
null
distributed/cifar10-100/multi_device_multi_process_classification.py
JonathanLehner/nnabla-examples
2971b987484945e12fb171594181908789485a0f
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import glob import re import time from args import get_args from cifar10_data import data_iterator_cifar10 from cifar100_data import data_iterator_cifar100 from nnabla.utils.data_iterator import data_iterator import nnabla as nn import nnabla.communicators as C from nnabla.ext_utils import get_extension_context import nnabla.functions as F import nnabla.parametric_functions as PF import nnabla.solvers as S import numpy as np import functools from models import (resnet23_prediction, categorical_error, loss_function) from checkpoint import save_checkpoint, load_checkpoint def backward_and_all_reduce(loss, comm, with_all_reduce_callback=False): params = [x.grad for x in nn.get_parameters().values()] if with_all_reduce_callback: # All-reduce gradients every 2MiB parameters during backward computation loss.backward(clear_buffer=True, communicator_callbacks=comm.all_reduce_callback(params, 1024 * 1024 * 2)) else: loss.backward(clear_buffer=True) comm.all_reduce(params, division=False, inplace=False) def train(): """ Naive Multi-Device Training NOTE: the communicator exposes low-level interfaces * Parse command line arguments. * Instantiate a communicator and set parameter variables. * Specify contexts for computation. * Initialize DataIterator. * Construct a computation graph for training and one for validation. * Initialize solver and set parameter variables to that. * Create monitor instances for saving and displaying training stats. * Training loop * Computate error rate for validation data (periodically) * Get a next minibatch. * Execute forwardprop * Set parameter gradients zero * Execute backprop. * AllReduce for gradients * Solver updates parameters by using gradients computed by backprop and all reduce. * Compute training error """ # Parse args args = get_args() n_train_samples = 50000 n_valid_samples = 10000 bs_valid = args.batch_size # Create Communicator and Context extension_module = "cudnn" ctx = get_extension_context(extension_module, type_config=args.type_config) comm = C.MultiProcessDataParalellCommunicator(ctx) comm.init() n_devices = comm.size mpi_rank = comm.rank mpi_local_rank = comm.local_rank device_id = mpi_local_rank ctx.device_id = str(device_id) nn.set_default_context(ctx) # Model rng = np.random.RandomState(313) comm_syncbn = comm if args.sync_bn else None if args.net == "cifar10_resnet23": prediction = functools.partial( resnet23_prediction, rng=rng, ncls=10, nmaps=32, act=F.relu, comm=comm_syncbn) data_iterator = data_iterator_cifar10 if args.net == "cifar100_resnet23": prediction = functools.partial( resnet23_prediction, rng=rng, ncls=100, nmaps=384, act=F.elu, comm=comm_syncbn) data_iterator = data_iterator_cifar100 # Create training graphs image_train = nn.Variable((args.batch_size, 3, 32, 32)) label_train = nn.Variable((args.batch_size, 1)) pred_train = prediction(image_train, test=False) pred_train.persistent = True loss_train = (loss_function(pred_train, label_train) / n_devices).apply(persistent=True) error_train = F.mean(F.top_n_error( pred_train, label_train, axis=1)).apply(persistent=True) loss_error_train = F.sink(loss_train, error_train) input_image_train = {"image": image_train, "label": label_train} # Create validation graph image_valid = nn.Variable((bs_valid, 3, 32, 32)) label_valid = nn.Variable((args.batch_size, 1)) pred_valid = prediction(image_valid, test=True) error_valid = F.mean(F.top_n_error(pred_valid, label_valid, axis=1)) input_image_valid = {"image": image_valid, "label": label_valid} # Solvers solver = S.Adam() solver.set_parameters(nn.get_parameters()) base_lr = args.learning_rate warmup_iter = int(1. * n_train_samples / args.batch_size / n_devices) * args.warmup_epoch warmup_slope = base_lr * (n_devices - 1) / warmup_iter solver.set_learning_rate(base_lr) # load checkpoint if file exist. start_point = 0 if args.use_latest_checkpoint: files = glob.glob(f'{args.model_save_path}/checkpoint_*.json') if len(files) != 0: index = max( [int(n) for n in [re.sub(r'.*checkpoint_(\d+).json', '\\1', f) for f in files]]) # load weights and solver state info from specified checkpoint file. start_point = load_checkpoint( f'{args.model_save_path}/checkpoint_{index}.json', solver) # Create monitor from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed monitor = Monitor(args.monitor_path) monitor_loss = MonitorSeries("Training loss", monitor, interval=10) monitor_err = MonitorSeries("Training error", monitor, interval=10) monitor_time = MonitorTimeElapsed("Training time", monitor, interval=10) monitor_verr = MonitorSeries("Validation error", monitor, interval=1) monitor_vtime = MonitorTimeElapsed("Validation time", monitor, interval=1) # Data Iterator # If the data does not exist, it will try to download it from the server # and prepare it. When executing multiple processes on the same host, it is # necessary to execute initial data preparation by the representative # process (local_rank is 0) on the host. # Prepare data only when local_rank is 0 if mpi_rank == 0: rng = np.random.RandomState(device_id) _, tdata = data_iterator(args.batch_size, True, rng) vsource, vdata = data_iterator(args.batch_size, False) # Wait for data to be prepared without watchdog comm.barrier() # Prepare data when local_rank is not 0 if mpi_rank != 0: rng = np.random.RandomState(device_id) _, tdata = data_iterator(args.batch_size, True, rng) vsource, vdata = data_iterator(args.batch_size, False) # loss_error_train.forward() # Training-loop ve = nn.Variable() model_save_interval = 0 for i in range(start_point, int(args.max_iter / n_devices)): # Validation if i % int(n_train_samples / args.batch_size / n_devices) == 0: ve_local = 0. k = 0 idx = np.random.permutation(n_valid_samples) val_images = vsource.images[idx] val_labels = vsource.labels[idx] for j in range(int(n_valid_samples / n_devices * mpi_rank), int(n_valid_samples / n_devices * (mpi_rank + 1)), bs_valid): image = val_images[j:j + bs_valid] label = val_labels[j:j + bs_valid] if len(image) != bs_valid: # note that smaller batch is ignored continue input_image_valid["image"].d = image input_image_valid["label"].d = label error_valid.forward(clear_buffer=True) ve_local += error_valid.d.copy() k += 1 ve_local /= k ve.d = ve_local comm.all_reduce(ve.data, division=True, inplace=True) # Save model if mpi_rank == 0: monitor_verr.add(i * n_devices, ve.d.copy()) monitor_vtime.add(i * n_devices) if model_save_interval <= 0: nn.save_parameters(os.path.join( args.model_save_path, 'params_%06d.h5' % i)) save_checkpoint(args.model_save_path, i, solver) model_save_interval += int( args.model_save_interval / n_devices) model_save_interval -= 1 # Forward/Zerograd image, label = tdata.next() input_image_train["image"].d = image input_image_train["label"].d = label loss_error_train.forward(clear_no_need_grad=True) solver.zero_grad() # Backward/AllReduce backward_and_all_reduce( loss_error_train, comm, with_all_reduce_callback=args.with_all_reduce_callback) # Solvers update solver.update() # Linear Warmup if i <= warmup_iter: lr = base_lr + warmup_slope * i solver.set_learning_rate(lr) if mpi_rank == 0: # loss and error locally, and elapsed time monitor_loss.add(i * n_devices, loss_train.d.copy()) monitor_err.add(i * n_devices, error_train.d.copy()) monitor_time.add(i * n_devices) # exit(0) if mpi_rank == 0: nn.save_parameters(os.path.join( args.model_save_path, 'params_%06d.h5' % (args.max_iter / n_devices))) comm.barrier() if __name__ == '__main__': """ Call this script with `mpirun` or `mpiexec` $ mpirun -n 4 python multi_device_multi_process.py --context "cudnn" -bs 64 """ train()
38.268775
96
0.664532
a39d23037248b808541df07f89166fbe78dd4d0f
790
py
Python
src/util/decorate_all.py
pgecsenyi/fst
1d4f579fb3cccd022fe1ab0e61aa00693e7234c1
[ "MIT" ]
1
2019-12-04T20:35:34.000Z
2019-12-04T20:35:34.000Z
src/util/decorate_all.py
pgecsenyi/router-fs
1d4f579fb3cccd022fe1ab0e61aa00693e7234c1
[ "MIT" ]
null
null
null
src/util/decorate_all.py
pgecsenyi/router-fs
1d4f579fb3cccd022fe1ab0e61aa00693e7234c1
[ "MIT" ]
null
null
null
from types import FunctionType def decorate_all(decorator): class DecorateAll(type): def __new__(cls, name, bases, dct): for attr, value in dct.items(): if do_decorate(attr, value): dct[attr] = decorator(value) return super(DecorateAll, cls).__new__(cls, name, bases, dct) def __setattr__(cls, attr, value): if do_decorate(attr, value): value = decorator(value) super(DecorateAll, cls).__setattr__(attr, value) return DecorateAll def do_decorate(attr, value): return ( '__' not in attr and isinstance(value, FunctionType) and getattr(value, 'decorate', True)) def dont_decorate(func): func.decorate = False return func
23.939394
73
0.601266
7d5b0a3f77f58e673c6e7a5c6d5912711653bd8c
4,335
py
Python
sdk/python/pulumi_azure_nextgen/databoxedge/v20200501preview/get_bandwidth_schedule.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/databoxedge/v20200501preview/get_bandwidth_schedule.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/databoxedge/v20200501preview/get_bandwidth_schedule.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'GetBandwidthScheduleResult', 'AwaitableGetBandwidthScheduleResult', 'get_bandwidth_schedule', ] @pulumi.output_type class GetBandwidthScheduleResult: """ The bandwidth schedule details. """ def __init__(__self__, days=None, name=None, rate_in_mbps=None, start=None, stop=None, type=None): if days and not isinstance(days, list): raise TypeError("Expected argument 'days' to be a list") pulumi.set(__self__, "days", days) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if rate_in_mbps and not isinstance(rate_in_mbps, int): raise TypeError("Expected argument 'rate_in_mbps' to be a int") pulumi.set(__self__, "rate_in_mbps", rate_in_mbps) if start and not isinstance(start, str): raise TypeError("Expected argument 'start' to be a str") pulumi.set(__self__, "start", start) if stop and not isinstance(stop, str): raise TypeError("Expected argument 'stop' to be a str") pulumi.set(__self__, "stop", stop) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def days(self) -> Sequence[str]: """ The days of the week when this schedule is applicable. """ return pulumi.get(self, "days") @property @pulumi.getter def name(self) -> str: """ The object name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="rateInMbps") def rate_in_mbps(self) -> int: """ The bandwidth rate in Mbps. """ return pulumi.get(self, "rate_in_mbps") @property @pulumi.getter def start(self) -> str: """ The start time of the schedule in UTC. """ return pulumi.get(self, "start") @property @pulumi.getter def stop(self) -> str: """ The stop time of the schedule in UTC. """ return pulumi.get(self, "stop") @property @pulumi.getter def type(self) -> str: """ The hierarchical type of the object. """ return pulumi.get(self, "type") class AwaitableGetBandwidthScheduleResult(GetBandwidthScheduleResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetBandwidthScheduleResult( days=self.days, name=self.name, rate_in_mbps=self.rate_in_mbps, start=self.start, stop=self.stop, type=self.type) def get_bandwidth_schedule(device_name: Optional[str] = None, name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetBandwidthScheduleResult: """ Use this data source to access information about an existing resource. :param str device_name: The device name. :param str name: The bandwidth schedule name. :param str resource_group_name: The resource group name. """ __args__ = dict() __args__['deviceName'] = device_name __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:databoxedge/v20200501preview:getBandwidthSchedule', __args__, opts=opts, typ=GetBandwidthScheduleResult).value return AwaitableGetBandwidthScheduleResult( days=__ret__.days, name=__ret__.name, rate_in_mbps=__ret__.rate_in_mbps, start=__ret__.start, stop=__ret__.stop, type=__ret__.type)
32.593985
161
0.626759
ecad6c8921aa07d60c8d34e3b3f75a91bb4cf221
2,650
py
Python
posthog/models/filters/mixins/stickiness.py
alx-a/posthog
a76959bb2a7640ca8cf367a4d3a0e4ca67f65a5e
[ "MIT" ]
null
null
null
posthog/models/filters/mixins/stickiness.py
alx-a/posthog
a76959bb2a7640ca8cf367a4d3a0e4ca67f65a5e
[ "MIT" ]
null
null
null
posthog/models/filters/mixins/stickiness.py
alx-a/posthog
a76959bb2a7640ca8cf367a4d3a0e4ca67f65a5e
[ "MIT" ]
null
null
null
from datetime import datetime from typing import Callable, Optional, Union from rest_framework.exceptions import ValidationError from posthog.constants import DATE_FROM, DATE_TO, STICKINESS_DAYS from posthog.models.filters.mixins.common import BaseParamMixin, DateMixin, IntervalMixin from posthog.models.filters.mixins.utils import cached_property, include_dict from posthog.models.team import Team from posthog.utils import relative_date_parse class SelectedIntervalMixin(BaseParamMixin): @cached_property def selected_interval(self) -> int: return int(self._data.get(STICKINESS_DAYS, "0")) or int(self._data.get("selected_interval", "0")) @include_dict def selected_interval_to_dict(self): return {"selected_interval": self.selected_interval} if self.selected_interval else {} class StickinessDateMixin(DateMixin): get_earliest_timestamp: Callable team: Team @cached_property def _date_from(self) -> Optional[Union[str, datetime]]: if not self.team or not self.get_earliest_timestamp: raise AttributeError("StickinessDateMixin requires team and get_earliest_timestamp to be provided") _date_from = self._data.get(DATE_FROM, None) if _date_from == "all": return self.get_earliest_timestamp(team_id=self.team.pk) elif _date_from: return _date_from else: return relative_date_parse("-7d") @cached_property def _date_to(self) -> Optional[Union[str, datetime]]: return self._data.get(DATE_TO) class TotalIntervalsDerivedMixin(IntervalMixin, StickinessDateMixin): """ Properties ----------- - total_intervals - date_from (inherited) - date_to (inherited) - interval (inherited) """ @cached_property def total_intervals(self) -> int: _num_intervals = 0 _total_seconds = (self.date_to - self.date_from).total_seconds() if self.interval == "minute": _num_intervals = int(divmod(_total_seconds, 60)[0]) elif self.interval == "hour": _num_intervals = int(divmod(_total_seconds, 3600)[0]) elif self.interval == "day": _num_intervals = int(divmod(_total_seconds, 86400)[0]) elif self.interval == "week": _num_intervals = (self.date_to - self.date_from).days // 7 elif self.interval == "month": _num_intervals = (self.date_to.year - self.date_from.year) + (self.date_to.month - self.date_from.month) else: raise ValidationError(f"{self.interval} not supported") _num_intervals += 2 return _num_intervals
36.30137
116
0.690566
201c4e761c104ba2860fd932d4670576d8fd6ba2
409
py
Python
venv/Scripts/pip-script.py
Shubhraaaj/Blogging
b57d3bceed2c9ac661f0a3eafc8c2b948a5ee3ce
[ "Apache-2.0" ]
null
null
null
venv/Scripts/pip-script.py
Shubhraaaj/Blogging
b57d3bceed2c9ac661f0a3eafc8c2b948a5ee3ce
[ "Apache-2.0" ]
null
null
null
venv/Scripts/pip-script.py
Shubhraaaj/Blogging
b57d3bceed2c9ac661f0a3eafc8c2b948a5ee3ce
[ "Apache-2.0" ]
null
null
null
#!C:\Users\shubh\PycharmProjects\Python_1\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.3','console_scripts','pip' __requires__ = 'pip==9.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.3', 'console_scripts', 'pip')() )
31.461538
69
0.667482
926ab9082f5cea5eb161c160242dbca8da3eaa72
442
py
Python
src/deprecated_src_files/cropper.py
IW276/IW276WS21-P20
06680a879b34166dc9104004686b195803b3bb56
[ "MIT" ]
null
null
null
src/deprecated_src_files/cropper.py
IW276/IW276WS21-P20
06680a879b34166dc9104004686b195803b3bb56
[ "MIT" ]
null
null
null
src/deprecated_src_files/cropper.py
IW276/IW276WS21-P20
06680a879b34166dc9104004686b195803b3bb56
[ "MIT" ]
null
null
null
from cv2 import imread, IMREAD_COLOR def create_crops(image_path, crop_coordinates): resulting_crops = [] image = imread(image_path, IMREAD_COLOR) for row in crop_coordinates.itertuples(): top = row[3] left = row[4] height = row[5] width = row[6] resulting_crops.append( image[left:left + width, top:top + height].copy() ) return resulting_crops
26
47
0.597285
8182bb40615f6d27e1dc8e9bbc613289874c1d39
1,230
py
Python
bin/combine_pdf.py
aerorahul/dotfiles
4b0031d303b7db778229c6e88a8926e1886133e0
[ "MIT" ]
null
null
null
bin/combine_pdf.py
aerorahul/dotfiles
4b0031d303b7db778229c6e88a8926e1886133e0
[ "MIT" ]
null
null
null
bin/combine_pdf.py
aerorahul/dotfiles
4b0031d303b7db778229c6e88a8926e1886133e0
[ "MIT" ]
null
null
null
#!/usr/bin/env python ############################################################### # combine_pdf.py - script used to combine multiple pdf's into one ############################################################### import os import sys import subprocess from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter parser = ArgumentParser(description='Combine multiple pdf files into one', formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('-i', '--input', help='input files', nargs='+', required=True) parser.add_argument('-o', '--output', help='output file', type=str, default='test.pdf', required=False) args = parser.parse_args() input_files = ' '.join(args.input) output_file = args.output if os.path.exists(output_file): print('%s exists ...' % output_file) input = input('overwrite %s? yes or no: ' % output_file) if (input.lower() not in ['y', 'yes']): sys.exit(0) cmd = f'gs -dBATCH -dNOPAUSE -q -sDEVICE=pdfwrite -sOutputFile={output_file} {input_files}' try: subprocess.check_call(cmd, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: print(e.output) sys.exit(0)
33.243243
91
0.614634
fd4cd54f45ed30c86f86d9c3b07c14e881463d5b
42,000
py
Python
discord/webhook.py
niborus/discord.py
23aaa75802e46ea13f49375c6abdc48e7b8c40dc
[ "MIT" ]
1
2021-05-01T13:52:04.000Z
2021-05-01T13:52:04.000Z
discord/webhook.py
niborus/discord.py
23aaa75802e46ea13f49375c6abdc48e7b8c40dc
[ "MIT" ]
null
null
null
discord/webhook.py
niborus/discord.py
23aaa75802e46ea13f49375c6abdc48e7b8c40dc
[ "MIT" ]
1
2021-09-13T12:23:38.000Z
2021-09-13T12:23:38.000Z
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import asyncio import json import time import re from urllib.parse import quote as _uriquote import aiohttp from . import utils from .errors import InvalidArgument, HTTPException, Forbidden, NotFound, DiscordServerError from .message import Message from .enums import try_enum, WebhookType from .user import BaseUser, User from .asset import Asset from .mixins import Hashable __all__ = ( 'WebhookAdapter', 'AsyncWebhookAdapter', 'RequestsWebhookAdapter', 'Webhook', 'WebhookMessage', 'PartialWebhookChannel', 'PartialWebhookGuild' ) log = logging.getLogger(__name__) class PartialWebhookChannel(Hashable): """Represents a partial channel for webhooks. These are typically given for channel follower webhooks. .. versionadded:: 2.0 Attributes ----------- id: :class:`int` The partial channel's ID. name: :class:`str` The partial channel's name. """ __slots__ = ('id', 'name') def __init__(self, *, data): self.id = int(data['id']) self.name = data['name'] def __repr__(self): return f'<PartialWebhookChannel name={self.name!r} id={self.id}>' class PartialWebhookGuild(Hashable): """Represents a partial guild for webhooks. These are typically given for channel follower webhooks. .. versionadded:: 2.0 Attributes ----------- id: :class:`int` The partial guild's ID. name: :class:`str` The partial guild's name. icon: :class:`str` The partial guild's icon """ __slots__ = ('id', 'name', 'icon', '_state') def __init__(self, *, data, state): self._state = state self.id = int(data['id']) self.name = data['name'] self.icon = data['icon'] def __repr__(self): return f'<PartialWebhookGuild name={self.name!r} id={self.id}>' @property def icon_url(self): """:class:`Asset`: Returns the guild's icon asset.""" return self.icon_url_as() def is_icon_animated(self): """:class:`bool`: Returns True if the guild has an animated icon.""" return bool(self.icon and self.icon.startswith('a_')) def icon_url_as(self, *, format=None, static_format='webp', size=1024): """Returns an :class:`Asset` for the guild's icon. The format must be one of 'webp', 'jpeg', 'jpg', 'png' or 'gif', and 'gif' is only valid for animated avatars. The size must be a power of 2 between 16 and 4096. Parameters ----------- format: Optional[:class:`str`] The format to attempt to convert the icon to. If the format is ``None``, then it is automatically detected into either 'gif' or static_format depending on the icon being animated or not. static_format: Optional[:class:`str`] Format to attempt to convert only non-animated icons to. size: :class:`int` The size of the image to display. Raises ------ InvalidArgument Bad image format passed to ``format`` or invalid ``size``. Returns -------- :class:`Asset` The resulting CDN asset. """ return Asset._from_guild_icon(self._state, self, format=format, static_format=static_format, size=size) class WebhookAdapter: """Base class for all webhook adapters. Attributes ------------ webhook: :class:`Webhook` The webhook that owns this adapter. """ BASE = 'https://discord.com/api/v8' def _prepare(self, webhook): self._webhook_id = webhook.id self._webhook_token = webhook.token self._request_url = f'{self.BASE}/webhooks/{webhook.id}/{webhook.token}' self.webhook = webhook def is_async(self): return False def request(self, verb, url, payload=None, multipart=None): """Actually does the request. Subclasses must implement this. Parameters ----------- verb: :class:`str` The HTTP verb to use for the request. url: :class:`str` The URL to send the request to. This will have the query parameters already added to it, if any. multipart: Optional[:class:`dict`] A dict containing multipart form data to send with the request. If a filename is being uploaded, then it will be under a ``file`` key which will have a 3-element :class:`tuple` denoting ``(filename, file, content_type)``. payload: Optional[:class:`dict`] The JSON to send with the request, if any. """ raise NotImplementedError() def delete_webhook(self, *, reason=None): return self.request('DELETE', self._request_url, reason=reason) def edit_webhook(self, *, reason=None, **payload): return self.request('PATCH', self._request_url, payload=payload, reason=reason) def edit_webhook_message(self, message_id, payload): return self.request('PATCH', f'{self._request_url}/messages/{message_id}', payload=payload) def delete_webhook_message(self, message_id): return self.request('DELETE', f'{self._request_url}/messages/{message_id}') def handle_execution_response(self, data, *, wait): """Transforms the webhook execution response into something more meaningful. This is mainly used to convert the data into a :class:`Message` if necessary. Subclasses must implement this. Parameters ------------ data The data that was returned from the request. wait: :class:`bool` Whether the webhook execution was asked to wait or not. """ raise NotImplementedError() async def _wrap_coroutine_and_cleanup(self, coro, cleanup): try: return await coro finally: cleanup() def execute_webhook(self, *, payload, wait=False, file=None, files=None): cleanup = None if file is not None: multipart = { 'file': (file.filename, file.fp, 'application/octet-stream'), 'payload_json': utils.to_json(payload) } data = None cleanup = file.close files_to_pass = [file] elif files is not None: multipart = { 'payload_json': utils.to_json(payload) } for i, file in enumerate(files): multipart['file%i' % i] = (file.filename, file.fp, 'application/octet-stream') data = None def _anon(): for f in files: f.close() cleanup = _anon files_to_pass = files else: data = payload multipart = None files_to_pass = None url = f'{self._request_url}?wait={int(wait)}' maybe_coro = None try: maybe_coro = self.request('POST', url, multipart=multipart, payload=data, files=files_to_pass) finally: if maybe_coro is not None and cleanup is not None: if not asyncio.iscoroutine(maybe_coro): cleanup() else: maybe_coro = self._wrap_coroutine_and_cleanup(maybe_coro, cleanup) # if request raises up there then this should never be `None` return self.handle_execution_response(maybe_coro, wait=wait) class AsyncWebhookAdapter(WebhookAdapter): """A webhook adapter suited for use with aiohttp. .. note:: You are responsible for cleaning up the client session. Parameters ----------- session: :class:`aiohttp.ClientSession` The session to use to send requests. """ def __init__(self, session): self.session = session self.loop = asyncio.get_event_loop() def is_async(self): return True async def request(self, verb, url, payload=None, multipart=None, *, files=None, reason=None): headers = {} data = None files = files or [] if payload: headers['Content-Type'] = 'application/json' data = utils.to_json(payload) if reason: headers['X-Audit-Log-Reason'] = _uriquote(reason, safe='/ ') base_url = url.replace(self._request_url, '/') or '/' _id = self._webhook_id for tries in range(5): for file in files: file.reset(seek=tries) if multipart: data = aiohttp.FormData() for key, value in multipart.items(): if key.startswith('file'): data.add_field(key, value[1], filename=value[0], content_type=value[2]) else: data.add_field(key, value) async with self.session.request(verb, url, headers=headers, data=data) as r: log.debug('Webhook ID %s with %s %s has returned status code %s', _id, verb, base_url, r.status) # Coerce empty strings to return None for hygiene purposes response = (await r.text(encoding='utf-8')) or None if r.headers['Content-Type'] == 'application/json': response = json.loads(response) # check if we have rate limit header information remaining = r.headers.get('X-Ratelimit-Remaining') if remaining == '0' and r.status != 429: delta = utils._parse_ratelimit_header(r) log.debug('Webhook ID %s has been pre-emptively rate limited, waiting %.2f seconds', _id, delta) await asyncio.sleep(delta) if 300 > r.status >= 200: return response # we are being rate limited if r.status == 429: if not r.headers.get('Via'): # Banned by Cloudflare more than likely. raise HTTPException(r, data) retry_after = response['retry_after'] / 1000.0 log.warning('Webhook ID %s is rate limited. Retrying in %.2f seconds', _id, retry_after) await asyncio.sleep(retry_after) continue if r.status in (500, 502): await asyncio.sleep(1 + tries * 2) continue if r.status == 403: raise Forbidden(r, response) elif r.status == 404: raise NotFound(r, response) else: raise HTTPException(r, response) # no more retries if r.status >= 500: raise DiscordServerError(r, response) raise HTTPException(r, response) async def handle_execution_response(self, response, *, wait): data = await response if not wait: return data # transform into Message object # Make sure to coerce the state to the partial one to allow message edits/delete state = _PartialWebhookState(self, self.webhook, parent=self.webhook._state) return WebhookMessage(data=data, state=state, channel=self.webhook.channel) class RequestsWebhookAdapter(WebhookAdapter): """A webhook adapter suited for use with ``requests``. Only versions of :doc:`req:index` higher than 2.13.0 are supported. Parameters ----------- session: Optional[`requests.Session <http://docs.python-requests.org/en/latest/api/#requests.Session>`_] The requests session to use for sending requests. If not given then each request will create a new session. Note if a session is given, the webhook adapter **will not** clean it up for you. You must close the session yourself. sleep: :class:`bool` Whether to sleep the thread when encountering a 429 or pre-emptive rate limit or a 5xx status code. Defaults to ``True``. If set to ``False`` then this will raise an :exc:`HTTPException` instead. """ def __init__(self, session=None, *, sleep=True): import requests self.session = session or requests self.sleep = sleep def request(self, verb, url, payload=None, multipart=None, *, files=None, reason=None): headers = {} data = None files = files or [] if payload: headers['Content-Type'] = 'application/json' data = utils.to_json(payload) if reason: headers['X-Audit-Log-Reason'] = _uriquote(reason, safe='/ ') if multipart is not None: data = {'payload_json': multipart.pop('payload_json')} base_url = url.replace(self._request_url, '/') or '/' _id = self._webhook_id for tries in range(5): for file in files: file.reset(seek=tries) r = self.session.request(verb, url, headers=headers, data=data, files=multipart) r.encoding = 'utf-8' # Coerce empty responses to return None for hygiene purposes response = r.text or None # compatibility with aiohttp r.status = r.status_code log.debug('Webhook ID %s with %s %s has returned status code %s', _id, verb, base_url, r.status) if r.headers['Content-Type'] == 'application/json': response = json.loads(response) # check if we have rate limit header information remaining = r.headers.get('X-Ratelimit-Remaining') if remaining == '0' and r.status != 429 and self.sleep: delta = utils._parse_ratelimit_header(r) log.debug('Webhook ID %s has been pre-emptively rate limited, waiting %.2f seconds', _id, delta) time.sleep(delta) if 300 > r.status >= 200: return response # we are being rate limited if r.status == 429: if self.sleep: if not r.headers.get('Via'): # Banned by Cloudflare more than likely. raise HTTPException(r, data) retry_after = response['retry_after'] / 1000.0 log.warning('Webhook ID %s is rate limited. Retrying in %.2f seconds', _id, retry_after) time.sleep(retry_after) continue else: raise HTTPException(r, response) if self.sleep and r.status in (500, 502): time.sleep(1 + tries * 2) continue if r.status == 403: raise Forbidden(r, response) elif r.status == 404: raise NotFound(r, response) else: raise HTTPException(r, response) # no more retries if r.status >= 500: raise DiscordServerError(r, response) raise HTTPException(r, response) def handle_execution_response(self, response, *, wait): if not wait: return response # transform into Message object # Make sure to coerce the state to the partial one to allow message edits/delete state = _PartialWebhookState(self, self.webhook, parent=self.webhook._state) return WebhookMessage(data=response, state=state, channel=self.webhook.channel) class _FriendlyHttpAttributeErrorHelper: __slots__ = () def __getattr__(self, attr): raise AttributeError('PartialWebhookState does not support http methods.') class _PartialWebhookState: __slots__ = ('loop', 'parent', '_webhook') def __init__(self, adapter, webhook, parent): self._webhook = webhook if isinstance(parent, self.__class__): self.parent = None else: self.parent = parent # Fetch the loop from the adapter if it's there try: self.loop = adapter.loop except AttributeError: self.loop = None def _get_guild(self, guild_id): return None def store_user(self, data): return BaseUser(state=self, data=data) @property def http(self): if self.parent is not None: return self.parent.http # Some data classes assign state.http and that should be kosher # however, using it should result in a late-binding error. return _FriendlyHttpAttributeErrorHelper() def __getattr__(self, attr): if self.parent is not None: return getattr(self.parent, attr) raise AttributeError(f'PartialWebhookState does not support {attr!r}.') class WebhookMessage(Message): """Represents a message sent from your webhook. This allows you to edit or delete a message sent by your webhook. This inherits from :class:`discord.Message` with changes to :meth:`edit` and :meth:`delete` to work. .. versionadded:: 1.6 """ def edit(self, **fields): """|maybecoro| Edits the message. The content must be able to be transformed into a string via ``str(content)``. .. versionadded:: 1.6 Parameters ------------ content: Optional[:class:`str`] The content to edit the message with or ``None`` to clear it. embeds: List[:class:`Embed`] A list of embeds to edit the message with. embed: Optional[:class:`Embed`] The embed to edit the message with. ``None`` suppresses the embeds. This should not be mixed with the ``embeds`` parameter. allowed_mentions: :class:`AllowedMentions` Controls the mentions being processed in this message. See :meth:`.abc.Messageable.send` for more information. Raises ------- HTTPException Editing the message failed. Forbidden Edited a message that is not yours. InvalidArgument You specified both ``embed`` and ``embeds`` or the length of ``embeds`` was invalid or there was no token associated with this webhook. """ return self._state._webhook.edit_message(self.id, **fields) def _delete_delay_sync(self, delay): time.sleep(delay) return self._state._webhook.delete_message(self.id) async def _delete_delay_async(self, delay): async def inner_call(): await asyncio.sleep(delay) try: await self._state._webhook.delete_message(self.id) except HTTPException: pass asyncio.create_task(inner_call()) return await asyncio.sleep(0) def delete(self, *, delay=None): """|coro| Deletes the message. Parameters ----------- delay: Optional[:class:`float`] If provided, the number of seconds to wait before deleting the message. If this is a coroutine, the waiting is done in the background and deletion failures are ignored. If this is not a coroutine then the delay blocks the thread. Raises ------ Forbidden You do not have proper permissions to delete the message. NotFound The message was deleted already. HTTPException Deleting the message failed. """ if delay is not None: if self._state.parent._adapter.is_async(): return self._delete_delay_async(delay) else: return self._delete_delay_sync(delay) return self._state._webhook.delete_message(self.id) class Webhook(Hashable): """Represents a Discord webhook. Webhooks are a form to send messages to channels in Discord without a bot user or authentication. There are two main ways to use Webhooks. The first is through the ones received by the library such as :meth:`.Guild.webhooks` and :meth:`.TextChannel.webhooks`. The ones received by the library will automatically have an adapter bound using the library's HTTP session. Those webhooks will have :meth:`~.Webhook.send`, :meth:`~.Webhook.delete` and :meth:`~.Webhook.edit` as coroutines. The second form involves creating a webhook object manually without having it bound to a websocket connection using the :meth:`~.Webhook.from_url` or :meth:`~.Webhook.partial` classmethods. This form allows finer grained control over how requests are done, allowing you to mix async and sync code using either :doc:`aiohttp <aio:index>` or :doc:`req:index`. For example, creating a webhook from a URL and using :doc:`aiohttp <aio:index>`: .. code-block:: python3 from discord import Webhook, AsyncWebhookAdapter import aiohttp async def foo(): async with aiohttp.ClientSession() as session: webhook = Webhook.from_url('url-here', adapter=AsyncWebhookAdapter(session)) await webhook.send('Hello World', username='Foo') Or creating a webhook from an ID and token and using :doc:`req:index`: .. code-block:: python3 import requests from discord import Webhook, RequestsWebhookAdapter webhook = Webhook.partial(123456, 'abcdefg', adapter=RequestsWebhookAdapter()) webhook.send('Hello World', username='Foo') .. container:: operations .. describe:: x == y Checks if two webhooks are equal. .. describe:: x != y Checks if two webhooks are not equal. .. describe:: hash(x) Returns the webhooks's hash. .. versionchanged:: 1.4 Webhooks are now comparable and hashable. Attributes ------------ id: :class:`int` The webhook's ID type: :class:`WebhookType` The type of the webhook. .. versionadded:: 1.3 token: Optional[:class:`str`] The authentication token of the webhook. If this is ``None`` then the webhook cannot be used to make requests. guild_id: Optional[:class:`int`] The guild ID this webhook is for. channel_id: Optional[:class:`int`] The channel ID this webhook is for. user: Optional[:class:`abc.User`] The user this webhook was created by. If the webhook was received without authentication then this will be ``None``. name: Optional[:class:`str`] The default name of the webhook. avatar: Optional[:class:`str`] The default avatar of the webhook. source_guild: Optional[:class:`PartialWebhookGuild`] The guild of the channel that this webhook is following. Only given if :attr:`type` is :attr:`WebhookType.channel_follower`. .. versionadded:: 2.0 source_channel: Optional[:class:`PartialWebhookChannel`] The channel that this webhook is following. Only given if :attr:`type` is :attr:`WebhookType.channel_follower`. .. versionadded:: 2.0 """ __slots__ = ('id', 'type', 'guild_id', 'channel_id', 'user', 'name', 'avatar', 'token', '_state', '_adapter', 'source_channel', 'source_guild') def __init__(self, data, *, adapter, state=None): self.id = int(data['id']) self.type = try_enum(WebhookType, int(data['type'])) self.channel_id = utils._get_as_snowflake(data, 'channel_id') self.guild_id = utils._get_as_snowflake(data, 'guild_id') self.name = data.get('name') self.avatar = data.get('avatar') self.token = data.get('token') self._state = state or _PartialWebhookState(adapter, self, parent=state) self._adapter = adapter self._adapter._prepare(self) user = data.get('user') if user is None: self.user = None elif state is None: self.user = BaseUser(state=None, data=user) else: self.user = User(state=state, data=user) source_channel = data.get('source_channel') if source_channel: source_channel = PartialWebhookChannel(data=source_channel) self.source_channel = source_channel source_guild = data.get('source_guild') if source_guild: source_guild = PartialWebhookGuild(data=source_guild, state=state) self.source_guild = source_guild def __repr__(self): return f'<Webhook id={self.id!r}>' @property def url(self): """:class:`str` : Returns the webhook's url.""" return f'https://discord.com/api/webhooks/{self.id}/{self.token}' @classmethod def partial(cls, id, token, *, adapter): """Creates a partial :class:`Webhook`. Parameters ----------- id: :class:`int` The ID of the webhook. token: :class:`str` The authentication token of the webhook. adapter: :class:`WebhookAdapter` The webhook adapter to use when sending requests. This is typically :class:`AsyncWebhookAdapter` for :doc:`aiohttp <aio:index>` or :class:`RequestsWebhookAdapter` for :doc:`req:index`. Returns -------- :class:`Webhook` A partial :class:`Webhook`. A partial webhook is just a webhook object with an ID and a token. """ if not isinstance(adapter, WebhookAdapter): raise TypeError('adapter must be a subclass of WebhookAdapter') data = { 'id': id, 'type': 1, 'token': token } return cls(data, adapter=adapter) @classmethod def from_url(cls, url, *, adapter): """Creates a partial :class:`Webhook` from a webhook URL. Parameters ------------ url: :class:`str` The URL of the webhook. adapter: :class:`WebhookAdapter` The webhook adapter to use when sending requests. This is typically :class:`AsyncWebhookAdapter` for :doc:`aiohttp <aio:index>` or :class:`RequestsWebhookAdapter` for :doc:`req:index`. Raises ------- InvalidArgument The URL is invalid. Returns -------- :class:`Webhook` A partial :class:`Webhook`. A partial webhook is just a webhook object with an ID and a token. """ m = re.search(r'discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,20})/(?P<token>[A-Za-z0-9\.\-\_]{60,68})', url) if m is None: raise InvalidArgument('Invalid webhook URL given.') data = m.groupdict() data['type'] = 1 return cls(data, adapter=adapter) @classmethod def _as_follower(cls, data, *, channel, user): name = f"{channel.guild} #{channel}" feed = { 'id': data['webhook_id'], 'type': 2, 'name': name, 'channel_id': channel.id, 'guild_id': channel.guild.id, 'user': { 'username': user.name, 'discriminator': user.discriminator, 'id': user.id, 'avatar': user.avatar } } session = channel._state.http._HTTPClient__session return cls(feed, adapter=AsyncWebhookAdapter(session=session)) @classmethod def from_state(cls, data, state): session = state.http._HTTPClient__session return cls(data, adapter=AsyncWebhookAdapter(session=session), state=state) @property def guild(self): """Optional[:class:`Guild`]: The guild this webhook belongs to. If this is a partial webhook, then this will always return ``None``. """ return self._state._get_guild(self.guild_id) @property def channel(self): """Optional[:class:`TextChannel`]: The text channel this webhook belongs to. If this is a partial webhook, then this will always return ``None``. """ guild = self.guild return guild and guild.get_channel(self.channel_id) @property def created_at(self): """:class:`datetime.datetime`: Returns the webhook's creation time in UTC.""" return utils.snowflake_time(self.id) @property def avatar_url(self): """:class:`Asset`: Returns an :class:`Asset` for the avatar the webhook has. If the webhook does not have a traditional avatar, an asset for the default avatar is returned instead. This is equivalent to calling :meth:`avatar_url_as` with the default parameters. """ return self.avatar_url_as() def avatar_url_as(self, *, format=None, size=1024): """Returns an :class:`Asset` for the avatar the webhook has. If the webhook does not have a traditional avatar, an asset for the default avatar is returned instead. The format must be one of 'jpeg', 'jpg', or 'png'. The size must be a power of 2 between 16 and 1024. Parameters ----------- format: Optional[:class:`str`] The format to attempt to convert the avatar to. If the format is ``None``, then it is equivalent to png. size: :class:`int` The size of the image to display. Raises ------ InvalidArgument Bad image format passed to ``format`` or invalid ``size``. Returns -------- :class:`Asset` The resulting CDN asset. """ if self.avatar is None: # Default is always blurple apparently return Asset(self._state, '/embed/avatars/0.png') if not utils.valid_icon_size(size): raise InvalidArgument("size must be a power of 2 between 16 and 1024") format = format or 'png' if format not in ('png', 'jpg', 'jpeg'): raise InvalidArgument("format must be one of 'png', 'jpg', or 'jpeg'.") url = f'/avatars/{self.id}/{self.avatar}.{format}?size={size}' return Asset(self._state, url) def delete(self, *, reason=None): """|maybecoro| Deletes this Webhook. If the webhook is constructed with a :class:`RequestsWebhookAdapter` then this is not a coroutine. Parameters ------------ reason: Optional[:class:`str`] The reason for deleting this webhook. Shows up on the audit log. .. versionadded:: 1.4 Raises ------- HTTPException Deleting the webhook failed. NotFound This webhook does not exist. Forbidden You do not have permissions to delete this webhook. InvalidArgument This webhook does not have a token associated with it. """ if self.token is None: raise InvalidArgument('This webhook does not have a token associated with it') return self._adapter.delete_webhook(reason=reason) def edit(self, *, reason=None, **kwargs): """|maybecoro| Edits this Webhook. If the webhook is constructed with a :class:`RequestsWebhookAdapter` then this is not a coroutine. Parameters ------------ name: Optional[:class:`str`] The webhook's new default name. avatar: Optional[:class:`bytes`] A :term:`py:bytes-like object` representing the webhook's new default avatar. reason: Optional[:class:`str`] The reason for editing this webhook. Shows up on the audit log. .. versionadded:: 1.4 Raises ------- HTTPException Editing the webhook failed. NotFound This webhook does not exist. InvalidArgument This webhook does not have a token associated with it. """ if self.token is None: raise InvalidArgument('This webhook does not have a token associated with it') payload = {} try: name = kwargs['name'] except KeyError: pass else: if name is not None: payload['name'] = str(name) else: payload['name'] = None try: avatar = kwargs['avatar'] except KeyError: pass else: if avatar is not None: payload['avatar'] = utils._bytes_to_base64_data(avatar) else: payload['avatar'] = None return self._adapter.edit_webhook(reason=reason, **payload) def send(self, content=None, *, wait=False, username=None, avatar_url=None, tts=False, file=None, files=None, embed=None, embeds=None, allowed_mentions=None): """|maybecoro| Sends a message using the webhook. If the webhook is constructed with a :class:`RequestsWebhookAdapter` then this is not a coroutine. The content must be a type that can convert to a string through ``str(content)``. To upload a single file, the ``file`` parameter should be used with a single :class:`File` object. If the ``embed`` parameter is provided, it must be of type :class:`Embed` and it must be a rich embed type. You cannot mix the ``embed`` parameter with the ``embeds`` parameter, which must be a :class:`list` of :class:`Embed` objects to send. Parameters ------------ content: :class:`str` The content of the message to send. wait: :class:`bool` Whether the server should wait before sending a response. This essentially means that the return type of this function changes from ``None`` to a :class:`WebhookMessage` if set to ``True``. username: :class:`str` The username to send with this message. If no username is provided then the default username for the webhook is used. avatar_url: Union[:class:`str`, :class:`Asset`] The avatar URL to send with this message. If no avatar URL is provided then the default avatar for the webhook is used. tts: :class:`bool` Indicates if the message should be sent using text-to-speech. file: :class:`File` The file to upload. This cannot be mixed with ``files`` parameter. files: List[:class:`File`] A list of files to send with the content. This cannot be mixed with the ``file`` parameter. embed: :class:`Embed` The rich embed for the content to send. This cannot be mixed with ``embeds`` parameter. embeds: List[:class:`Embed`] A list of embeds to send with the content. Maximum of 10. This cannot be mixed with the ``embed`` parameter. allowed_mentions: :class:`AllowedMentions` Controls the mentions being processed in this message. .. versionadded:: 1.4 Raises -------- HTTPException Sending the message failed. NotFound This webhook was not found. Forbidden The authorization token for the webhook is incorrect. InvalidArgument You specified both ``embed`` and ``embeds`` or the length of ``embeds`` was invalid or there was no token associated with this webhook. Returns --------- Optional[:class:`WebhookMessage`] The message that was sent. """ payload = {} if self.token is None: raise InvalidArgument('This webhook does not have a token associated with it') if files is not None and file is not None: raise InvalidArgument('Cannot mix file and files keyword arguments.') if embeds is not None and embed is not None: raise InvalidArgument('Cannot mix embed and embeds keyword arguments.') if embeds is not None: if len(embeds) > 10: raise InvalidArgument('embeds has a maximum of 10 elements.') payload['embeds'] = [e.to_dict() for e in embeds] if embed is not None: payload['embeds'] = [embed.to_dict()] if content is not None: payload['content'] = str(content) payload['tts'] = tts if avatar_url: payload['avatar_url'] = str(avatar_url) if username: payload['username'] = username previous_mentions = getattr(self._state, 'allowed_mentions', None) if allowed_mentions: if previous_mentions is not None: payload['allowed_mentions'] = previous_mentions.merge(allowed_mentions).to_dict() else: payload['allowed_mentions'] = allowed_mentions.to_dict() elif previous_mentions is not None: payload['allowed_mentions'] = previous_mentions.to_dict() return self._adapter.execute_webhook(wait=wait, file=file, files=files, payload=payload) def execute(self, *args, **kwargs): """An alias for :meth:`~.Webhook.send`.""" return self.send(*args, **kwargs) def edit_message(self, message_id, **fields): """|maybecoro| Edits a message owned by this webhook. This is a lower level interface to :meth:`WebhookMessage.edit` in case you only have an ID. .. versionadded:: 1.6 Parameters ------------ message_id: :class:`int` The message ID to edit. content: Optional[:class:`str`] The content to edit the message with or ``None`` to clear it. embeds: List[:class:`Embed`] A list of embeds to edit the message with. embed: Optional[:class:`Embed`] The embed to edit the message with. ``None`` suppresses the embeds. This should not be mixed with the ``embeds`` parameter. allowed_mentions: :class:`AllowedMentions` Controls the mentions being processed in this message. See :meth:`.abc.Messageable.send` for more information. Raises ------- HTTPException Editing the message failed. Forbidden Edited a message that is not yours. InvalidArgument You specified both ``embed`` and ``embeds`` or the length of ``embeds`` was invalid or there was no token associated with this webhook. """ payload = {} if self.token is None: raise InvalidArgument('This webhook does not have a token associated with it') try: content = fields['content'] except KeyError: pass else: if content is not None: content = str(content) payload['content'] = content # Check if the embeds interface is being used try: embeds = fields['embeds'] except KeyError: # Nope pass else: if embeds is None or len(embeds) > 10: raise InvalidArgument('embeds has a maximum of 10 elements') payload['embeds'] = [e.to_dict() for e in embeds] try: embed = fields['embed'] except KeyError: pass else: if 'embeds' in payload: raise InvalidArgument('Cannot mix embed and embeds keyword arguments') if embed is None: payload['embeds'] = [] else: payload['embeds'] = [embed.to_dict()] allowed_mentions = fields.pop('allowed_mentions', None) previous_mentions = getattr(self._state, 'allowed_mentions', None) if allowed_mentions: if previous_mentions is not None: payload['allowed_mentions'] = previous_mentions.merge(allowed_mentions).to_dict() else: payload['allowed_mentions'] = allowed_mentions.to_dict() elif previous_mentions is not None: payload['allowed_mentions'] = previous_mentions.to_dict() return self._adapter.edit_webhook_message(message_id, payload=payload) def delete_message(self, message_id): """|maybecoro| Deletes a message owned by this webhook. This is a lower level interface to :meth:`WebhookMessage.delete` in case you only have an ID. .. versionadded:: 1.6 Parameters ------------ message_id: :class:`int` The message ID to delete. Raises ------- HTTPException Deleting the message failed. Forbidden Deleted a message that is not yours. """ return self._adapter.delete_webhook_message(message_id)
34.511093
120
0.593071
ffcff8ad8e0b39d7965dd2c25331a3dfad136954
648
py
Python
Coursera/Week.2/Task.46.py
v1nnyb0y/Coursera.BasePython
bbfb3184dc27a4cdb16b087123890991afbc5506
[ "MIT" ]
null
null
null
Coursera/Week.2/Task.46.py
v1nnyb0y/Coursera.BasePython
bbfb3184dc27a4cdb16b087123890991afbc5506
[ "MIT" ]
null
null
null
Coursera/Week.2/Task.46.py
v1nnyb0y/Coursera.BasePython
bbfb3184dc27a4cdb16b087123890991afbc5506
[ "MIT" ]
null
null
null
''' Максимальное число подряд идущих равных ''' a = int(input()) b = int(input()) max = 1 n = 1 while 0 == 0: if b == 0 or a == 0: break while a > b: if b == 0: break n += 1 if n > max: max = n a = b b = int(input()) else: a = b b = int(input()) n = 1 while a < b: n += 1 if n > max: max = n a = b b = int(input()) else: a = b b = int(input()) n = 1 while a == b: n = 1 a = b b = int(input()) print(max)
17.052632
39
0.324074
5e82f4a790c103c9550fb48e550e7c2f038dca1f
2,645
py
Python
networkmonitor/src/cleanTime.py
luther38/NetworkMonitor
bd5e9336342e7af71c19ca484f8d386b6b79ad69
[ "MIT" ]
null
null
null
networkmonitor/src/cleanTime.py
luther38/NetworkMonitor
bd5e9336342e7af71c19ca484f8d386b6b79ad69
[ "MIT" ]
null
null
null
networkmonitor/src/cleanTime.py
luther38/NetworkMonitor
bd5e9336342e7af71c19ca484f8d386b6b79ad69
[ "MIT" ]
null
null
null
import datetime class CleanTime(): """ This class cleans and checks the refresh timer. If the value is higher then expected it will be cleaned up. Methods: """ def __init__(self): self.nextDay:bool = True self.hour:int = 0 self.minute: int = 0 self.second: int = 0 pass def CleanTime(self): pass def GetNextNodeRefreshTime(self, sleepTimer:int, lastRefresh:datetime): """ Returns the second value before nodes are checked again :param sleepTimer = Contains the sleep timer value from config :param lastRefresh = Contains the datetime value of the last refresh """ # Convert lastRefresh into long seconds based off sleepTimer value a:float = sleepTimer / 60 s:str = str(a) arr = s.split('.') if arr.__len__() == 3: self.__CleanSecondValue(lastRefresh.second + int(arr[3])) self.__CleanMinuteValue(lastRefresh.minute + int(arr[1])) self.__CleanHourValue(lastRefresh.hour + int(arr[0])) elif arr.__len__() == 2: self.__CleanMinuteValue(lastRefresh.second + int(arr[1])) self.__CleanMinuteValue(lastRefresh.minute + int(arr[0])) self.__CleanHourValue(lastRefresh.hour) elif arr.__len__() == 1: self.__CleanMinuteValue(lastRefresh.second + int(arr[1])) lastRefresh.minute lastRefresh.hour return self.__GetMessage() def __CleanSecondValue(self, second:int): if second >= 60: i = second - 60 self.second = 0 self.minute += i else: self.second = second def __CleanMinuteValue(self, minute:int): if minute >= 60: i = minute - 60 self.minute = 0 self.hour += i else: self.minute = minute def __CleanHourValue(self, hour:int): if hour >= 24: i = hour - 24 self.hour = 0 else: self.hour = hour def __GetMessage(self): s:str = "" m:str = "" h:str = "" if self.second <= 9: i = str(self.second) s = f"0{i}" else: s = self.second if self.minute <= 9: i = str(self.minute) m = f"0{i}" else: m = self.minute if self.hour <= 9: i = str(self.hour) h = f"0{i}" else: h = self.hour return f"{h}:{m}:{s}"
26.989796
77
0.514178
2b785663df7a7f14cb6a2cef320e7e9ad4bde272
3,041
py
Python
samples/modules/tensorflow/magic_wand/train/train_test.py
lviala-zaack/zephyr
bf3c6e7ba415dd85f1b68eb69ea2779b234c686f
[ "Apache-2.0" ]
6,224
2016-06-24T20:04:19.000Z
2022-03-31T20:33:45.000Z
samples/modules/tensorflow/magic_wand/train/train_test.py
Conexiotechnologies/zephyr
fde24ac1f25d09eb9722ce4edc6e2d3f844b5bce
[ "Apache-2.0" ]
32,027
2017-03-24T00:02:32.000Z
2022-03-31T23:45:53.000Z
samples/modules/tensorflow/magic_wand/train/train_test.py
Conexiotechnologies/zephyr
fde24ac1f25d09eb9722ce4edc6e2d3f844b5bce
[ "Apache-2.0" ]
4,374
2016-08-11T07:28:47.000Z
2022-03-31T14:44:59.000Z
# Lint as: python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for train.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import numpy as np import tensorflow as tf from train import build_cnn from train import build_lstm from train import load_data from train import reshape_function class TestTrain(unittest.TestCase): def setUp(self): # pylint: disable=g-missing-super-call self.seq_length = 128 self.train_len, self.train_data, self.valid_len, self.valid_data, \ self.test_len, self.test_data = \ load_data("./data/train", "./data/valid", "./data/test", self.seq_length) def test_load_data(self): self.assertIsInstance(self.train_data, tf.data.Dataset) self.assertIsInstance(self.valid_data, tf.data.Dataset) self.assertIsInstance(self.test_data, tf.data.Dataset) def test_build_net(self): cnn, cnn_path = build_cnn(self.seq_length) lstm, lstm_path = build_lstm(self.seq_length) cnn_data = np.random.rand(60, 128, 3, 1) lstm_data = np.random.rand(60, 128, 3) cnn_prob = cnn(tf.constant(cnn_data, dtype="float32")).numpy() lstm_prob = lstm(tf.constant(lstm_data, dtype="float32")).numpy() self.assertIsInstance(cnn, tf.keras.Sequential) self.assertIsInstance(lstm, tf.keras.Sequential) self.assertEqual(cnn_path, "./netmodels/CNN") self.assertEqual(lstm_path, "./netmodels/LSTM") self.assertEqual(cnn_prob.shape, (60, 4)) self.assertEqual(lstm_prob.shape, (60, 4)) def test_reshape_function(self): for data, label in self.train_data: original_data_shape = data.numpy().shape original_label_shape = label.numpy().shape break self.train_data = self.train_data.map(reshape_function) for data, label in self.train_data: reshaped_data_shape = data.numpy().shape reshaped_label_shape = label.numpy().shape break self.assertEqual( reshaped_data_shape, (int(original_data_shape[0] * original_data_shape[1] / 3), 3, 1)) self.assertEqual(reshaped_label_shape, original_label_shape) if __name__ == "__main__": unittest.main()
38.493671
81
0.664255
a9380bd9fde05212416699847c1942e9dca3009b
10,001
py
Python
google/appengine/tools/gen_protorpc.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
google/appengine/tools/gen_protorpc.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
google/appengine/tools/gen_protorpc.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2011 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Command line tool for generating ProtoRPC definitions from descriptors.""" from future import standard_library standard_library.install_aliases() from builtins import str import errno import logging import optparse import os import sys from protorpc import descriptor from protorpc import generate_python from protorpc import protobuf from protorpc import registry from protorpc import transport from protorpc import util import six EXCLUDED_PACKAGES = frozenset(['protorpc.registry', 'protorpc.messages', 'protorpc.descriptor', 'protorpc.message_types', ]) commands = {} def usage(): """Print usage help and exit with an error code.""" parser.print_help() sys.exit(2) def fatal_error(message): """Print fatal error messages exit with an error code. Args: message: Message to print to stderr before exit. """ sys.stderr.write(message) sys.exit(1) def open_input_file(filename): """Open file for reading. Args: filename: Name of input file to open or None to open stdin. Returns: Opened file if string provided, stdin if filename is None. """ # TODO(rafek): Detect missing or invalid files, generating user friendly # error messages. if filename is None: return sys.stdin else: try: return open(filename, 'rb') except IOError as err: fatal_error(str(err)) @util.positional(1) def generate_file_descriptor(dest_dir, file_descriptor, force_overwrite): """Generate a single file descriptor to destination directory. Will generate a single Python file from a file descriptor under dest_dir. The sub-directory where the file is generated is determined by the package name of descriptor. Descriptors without package names will not be generated. Descriptors that are part of the ProtoRPC distribution will not be generated. Args: dest_dir: Directory under which to generate files. file_descriptor: FileDescriptor instance to generate source code from. force_overwrite: If True, existing files will be overwritten. """ package = file_descriptor.package if not package: # TODO(rafek): Option to cause an error on this condition. logging.warn('Will not generate descriptor without package name') return if package in EXCLUDED_PACKAGES: logging.warn('Will not generate main ProtoRPC class %s' % package) return package_path = package.split('.') directory = package_path[:-1] package_file_name = package_path[-1] directory_name = os.path.join(dest_dir, *directory) output_file_name = os.path.join(directory_name, '%s.py' % (package_file_name,)) try: os.makedirs(directory_name) except OSError as err: if err.errno != errno.EEXIST: raise if not force_overwrite and os.path.exists(output_file_name): logging.warn('Not overwriting %s with package %s', output_file_name, package) return output_file = open(output_file_name, 'w') logging.info('Writing package %s to %s', file_descriptor.package, output_file_name) generate_python.format_python_file(file_descriptor, output_file) @util.positional(1) def command(name, required=(), optional=()): """Decorator used for declaring commands used on command line. Each command of this tool can have any number of sequential required parameters and optional parameters. The required and optional parameters will be displayed in the command usage. Arguments passed in to the command are checked to ensure they have at least the required parameters and not too many parameters beyond the optional ones. When there are not enough or too few parameters the usage message is generated and the program exits with an error code. Functions decorated thus are added to commands by their name. Resulting decorated functions will have required and optional attributes assigned to them so that appear in the usage message. Args: name: Name of command that will follow the program name on the command line. required: List of required parameter names as displayed in the usage message. optional: List of optional parameter names as displayed in the usage message. """ def check_params_decorator(function): def check_params_wrapper(options, *args): if not (len(required) <= len(args) <= len(required) + len(optional)): sys.stderr.write("Incorrect usage for command '%s'\n\n" % name) usage() function(options, *args) check_params_wrapper.required = required check_params_wrapper.optional = optional commands[name] = check_params_wrapper return check_params_wrapper return check_params_decorator @command('file', optional=['input-filename', 'output-filename']) def file_command(options, input_filename=None, output_filename=None): """Generate a single descriptor file to Python. Args: options: Parsed command line options. input_filename: File to read protobuf FileDescriptor from. If None will read from stdin. output_filename: File to write Python source code to. If None will generate to stdout. """ with open_input_file(input_filename) as input_file: descriptor_content = input_file.read() if output_filename: output_file = open(output_filename, 'w') else: output_file = sys.stdout file_descriptor = protobuf.decode_message(descriptor.FileDescriptor, descriptor_content) generate_python.format_python_file(file_descriptor, output_file) @command('fileset', optional=['filename']) def fileset_command(options, input_filename=None): """Generate source directory structure from FileSet. Args: options: Parsed command line options. input_filename: File to read protobuf FileSet from. If None will read from stdin. """ with open_input_file(input_filename) as input_file: descriptor_content = input_file.read() dest_dir = os.path.expanduser(options.dest_dir) if not os.path.isdir(dest_dir) and os.path.exists(dest_dir): fatal_error("Destination '%s' is not a directory" % dest_dir) file_set = protobuf.decode_message(descriptor.FileSet, descriptor_content) for file_descriptor in file_set.files: generate_file_descriptor(dest_dir, file_descriptor=file_descriptor, force_overwrite=options.force) @command('registry', required=['host'], optional=['service-name', 'registry-path']) def registry_command(options, host, service_name=None, registry_path='/protorpc'): """Generate source directory structure from remote registry service. Args: options: Parsed command line options. host: Web service host where registry service is located. May include port. service_name: Name of specific service to read. Will generate only Python files that service is dependent on. If None, will generate source code for all services known by the registry. registry_path: Path to find registry if not the default 'protorpc'. """ dest_dir = os.path.expanduser(options.dest_dir) url = 'http://%s%s' % (host, registry_path) reg = registry.RegistryService.Stub(transport.HttpTransport(url)) if service_name is None: service_names = [service.name for service in reg.services().services] else: service_names = [service_name] file_set = reg.get_file_set(names=service_names).file_set for file_descriptor in file_set.files: generate_file_descriptor(dest_dir, file_descriptor=file_descriptor, force_overwrite=options.force) def make_opt_parser(): """Create options parser with automatically generated command help. Will iterate over all functions in commands and generate an appropriate usage message for them with all their required and optional parameters. """ command_descriptions = [] for name in sorted(six.iterkeys(commands)): command = commands[name] params = ' '.join(['<%s>' % param for param in command.required] + ['[<%s>]' % param for param in command.optional]) command_descriptions.append('%%prog [options] %s %s' % (name, params)) command_usage = 'usage: %s\n' % '\n '.join(command_descriptions) parser = optparse.OptionParser(usage=command_usage) parser.add_option('-d', '--dest_dir', dest='dest_dir', default=os.getcwd(), help='Write generated files to DIR', metavar='DIR') parser.add_option('-f', '--force', action='store_true', dest='force', default=False, help='Force overwrite of existing files') return parser parser = make_opt_parser() def main(): # TODO(rafek): Customize verbosity. logging.basicConfig(level=logging.INFO) options, positional = parser.parse_args() if not positional: usage() command_name = positional[0] command = commands.get(command_name) if not command: sys.stderr.write("Unknown command '%s'\n\n" % command_name) usage() parameters = positional[1:] command(options, *parameters) if __name__ == '__main__': main()
32.683007
80
0.69913
df1c08ad4f1e03bb72c5c8af0872403b8e289ffc
5,702
py
Python
configs/NoC/system_setup.py
Maiux92/gem5-NVM-multiple-memory-spaces
0996bfd34638a7f3f05382cc1e7a813a177eed7f
[ "MIT" ]
3
2021-04-24T16:08:00.000Z
2022-03-22T22:07:40.000Z
configs/NoC/system_setup.py
Maiux92/gem5-NVM-multiple-memory-spaces
0996bfd34638a7f3f05382cc1e7a813a177eed7f
[ "MIT" ]
null
null
null
configs/NoC/system_setup.py
Maiux92/gem5-NVM-multiple-memory-spaces
0996bfd34638a7f3f05382cc1e7a813a177eed7f
[ "MIT" ]
1
2021-03-25T16:55:08.000Z
2021-03-25T16:55:08.000Z
#!/usr/bin/python3 import optparse import m5 from m5.defines import buildEnv from m5.objects import * from m5.util import addToPath, fatal addToPath('../../gem5-20.1/configs/') #addToPath('../../') import json import os # from network import Network from common import Options from noc_network import NoCSystem from noc_config import noc_config #-------------------------------------------# # Add Script arguments # #-------------------------------------------# parser = optparse.OptionParser() # Options.addCommonOptions(parser) # Options.addSEOptions(parser) #Ruby.define_options(parser) #Network.define_options(parser) parser.add_option("--noc-config", type="string", default="noc_config.json", help="""select noc configuration files (default: noc_config.json).""") parser.add_option("--router-latency", action="store", type="int", default=1, help="""number of pipeline stages in the garnet router. Has to be >= 1. Can be over-ridden on a per router basis in the topology file.""") parser.add_option("--link-latency", action="store", type="int", default=1, help="""latency of each link the simple/garnet networks. Has to be >= 1. Can be over-ridden on a per link basis in the topology file.""") parser.add_option("--link-width-bits", action="store", type="int", default=128, help="width in bits for all links inside garnet.") parser.add_option("--vcs-per-vnet", action="store", type="int", default=4, help="""number of virtual channels per virtual network inside garnet network.""") parser.add_option("--garnet-deadlock-threshold", action="store", type="int", default=50000, help="network-level deadlock threshold.") parser.add_option("--nvm_type", action="store", type="string", default='STTRAM', help="Supported: SRAM, FRAM, MRAM, RRAM, STTRAM") parser.add_option("--input-start-address", action="store", type="int", default=0x60000000, help="Input memory start address") parser.add_option("--input-addr-size", action="store", type="string", default='512MB', help="Input memory address range") #parser.add_option("--output-memtype", action="store", # type="string", default='STTRAM', # help="Supported: SRAM, FRAM, MRAM, RRAM, STTRAM") parser.add_option("--output-start-address", action="store", type="int", default=0x90000000, help="Output memory start address") parser.add_option("--output-addr-size", action="store", type="string", default='512MB', help="Output memory address range") (options, args) = parser.parse_args() file_path = os.path.dirname(os.path.abspath(__file__)) + \ "/" + \ options.noc_config print("NVM: {}".format(options.nvm_type)) """ with open(file_path, "r") as f: #print(f.read()) options.map = json.loads(f.read()) options.mesh_rows = len(options.map) """ options.map = noc_config options.mesh_rows = len(options.map) #-------------------------------------------# #-------------------------------------------# # Create system # #-------------------------------------------# system = System(mem_mode = 'timing') #-------------------------------------------# #-------------------------------------------# # SET system voltages # #-------------------------------------------# # Create a top-level voltage domain system.voltage_domain = VoltageDomain() # Create a source clock for the system and set the clock period system.clk_domain = SrcClockDomain(clock = '1GHz', voltage_domain = system.voltage_domain) # Create a CPU voltage domain system.cpu_voltage_domain = VoltageDomain() # Create a separate clock domain for the CPUs system.cpu_clk_domain = SrcClockDomain(clock = '1GHz', voltage_domain = system.cpu_voltage_domain) #-------------------------------------------# #-------------------------------------------# # Create NoCSystem # #-------------------------------------------# system.noc_network = NoCSystem() system.noc_network.setup(system, options) #-------------------------------------------# #-------------------------------------------# # Init CPUs process # #-------------------------------------------# # Multi-thread single file support process = Process() process.cmd = ['../benchmarks/a.out'] for (i, cpu) in enumerate(system.cpu): # Re-enable for single-process multiple cpu + multiple parallel execution of same program #process = Process(pid = (100 + i)) ##process.cmd = ['../benchmarks/{}.out'.format(i)] #process.cmd = ['../benchmarks/a.out'] cpu.workload = process cpu.createThreads() #-------------------------------------------# root = Root(full_system = False, system = system) #Simulation.run(options, root, system, FutureClass) #-------------------------------------------# # Create system instance and launch # # simulation # #-------------------------------------------# m5.instantiate() print("Beginning simulation!") exit_event = m5.simulate() #-------------------------------------------# print('Exiting @ tick {} because {}' .format(m5.curTick(), exit_event.getCause()))
34.557576
93
0.520344