hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
58004c27d165d6df826a554942ad5fe8b353a09a
990
py
Python
methods_configuration/function_configuration.py
ekkrym/CovidTrendModel
26f49b0e3bf18ef2de5f9ec15f85e8148618c135
[ "MIT" ]
null
null
null
methods_configuration/function_configuration.py
ekkrym/CovidTrendModel
26f49b0e3bf18ef2de5f9ec15f85e8148618c135
[ "MIT" ]
null
null
null
methods_configuration/function_configuration.py
ekkrym/CovidTrendModel
26f49b0e3bf18ef2de5f9ec15f85e8148618c135
[ "MIT" ]
null
null
null
from autoregression import fit_forecasting_loglog, fit_forecasting_ar7_daily, fit_forecast_7ahead, fit_ar_7, fit_ar_log from misc_methods import fit_spline_linear_extrapolation from smoothing import simple_mirroring from poly import poly_fit from linearfit import linear_model_fit_predict from poisson import poisson_fit from benchmark import benchmark from misc_methods import mean_const, linear METHODS = {"poly_fit": poly_fit, "benchmark": benchmark, "poisson_fit": poisson_fit, "fit_forecasting_loglog": fit_forecasting_loglog, "fit_forecasting_ar7_daily": fit_forecasting_ar7_daily, "fit_spline_linear_extrapolation": fit_spline_linear_extrapolation, "fit_forecast_7ahead": fit_forecast_7ahead, "fit_ar_7": fit_ar_7, "fit_ar_log": fit_ar_log, "mean_const": mean_const, "linear": linear, "linear_model_fit_predict": linear_model_fit_predict}
45
120
0.735354
0bd216ea8924fb714f7118a26bfc04a4eb6e1a27
1,678
py
Python
pygenomeworks/test/test_overlap_generator.py
pb-cdunn/GenomeWorks
84f22f7e72c0fe8e5554d7ddfebf22c93ffb4610
[ "Apache-2.0" ]
160
2019-07-02T03:35:10.000Z
2020-05-05T09:08:26.000Z
pygenomeworks/test/test_overlap_generator.py
pb-cdunn/GenomeWorks
84f22f7e72c0fe8e5554d7ddfebf22c93ffb4610
[ "Apache-2.0" ]
253
2019-07-02T13:08:28.000Z
2020-05-07T18:47:08.000Z
pygenomeworks/test/test_overlap_generator.py
pb-cdunn/GenomeWorks
84f22f7e72c0fe8e5554d7ddfebf22c93ffb4610
[ "Apache-2.0" ]
54
2019-07-02T14:33:48.000Z
2020-05-01T16:04:21.000Z
# # Copyright 2019-2020 NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from genomeworks.simulators import readsim test_reads = [ ((("read_0", "AACGTCA", 100, 900), ("read_1", "AACGTCA", 100, 900)), 1), ((("read_0", "AACGTCA", 100, 900), ("read_1", "AACGTCA", 1000, 9000)), 0), ((("read_1", "AACGTCA", 100, 900), ("read_0", "AACGTCA", 100, 900)), 1), ((("read_1", "AACGTCA", 100, 900), ("read_0", "AACGTCA", 100, 900)), 1), ((("read_1", "AACGTCA", 100, 900), ("read_2", "AACGTCA", 100, 900), ("read_3", "AACGTCA", 100, 900)), 3), ] @pytest.mark.cpu @pytest.mark.parametrize("reads, expected_overlaps", test_reads) def test_generates_overlaps(reads, expected_overlaps): """ Test that the number of overlaps detected is correct""" overlaps = readsim.generate_overlaps(reads, gzip_compressed=False) assert(len(overlaps) == expected_overlaps)
22.078947
74
0.581049
71cf70b25797c12f682b465a6d35b9c8b1dec4ee
1,530
py
Python
banco de dados/comparação.py
RutyRibeiro/bancoDeDados
51d7789cd635b07417b2be56433d83837c32b66d
[ "MIT" ]
null
null
null
banco de dados/comparação.py
RutyRibeiro/bancoDeDados
51d7789cd635b07417b2be56433d83837c32b66d
[ "MIT" ]
null
null
null
banco de dados/comparação.py
RutyRibeiro/bancoDeDados
51d7789cd635b07417b2be56433d83837c32b66d
[ "MIT" ]
null
null
null
import mysql.connector import csv lista = [] with open('escolas.csv', encoding='utf-8', newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=';', quotechar='|') for row in spamreader: dicionario={} dicionario["grupo"]="A1_GRPECON = '{}'".format(row[0].strip()) dicionario["email"]=row[1].strip() lista.append(dicionario) print(lista) config = { 'host': '', 'user': '', 'password': '', 'database': '' } def select(): try: conn = mysql.connector.connect(**config) print("Acesso ao banco de dados: Conexão Estabelecida ") except mysql.connector.Error as err: print(err) else: cursor = conn.cursor() try: for i, row in enumerate(lista): buscaDados = """SELECT USR_VINCULO, USR_EMAIL FROM EasyBI.usuarios usr WHERE USR_CODCLI = 3284 AND USR_EMAIL= '%s'""" email=row['email'] cursor.execute(buscaDados % (email)) resul = cursor.fetchall() if (resul): if (row['grupo']!=resul[0][0]): print (f'\033[33m olhe : {resul[0][1]}\033[m') else: print(f'{email} não existe!') except Exception as e: print(e) finally: cursor.close() conn.commit() conn.close() print("Fechamento do banco de dados: Com sucesso") select()
27.818182
133
0.508497
f3cff0c5990440235e8f6ce4e9fcdb51e657cc2b
1,253
py
Python
Advanced/pianoTilesBot/PianoTilesBot.py
Sanjulata19/Hacktoberfest_2021-1
720855c9e7e3d1ca04d409cc7defb29381e4a16a
[ "Apache-2.0" ]
1
2021-10-31T14:33:09.000Z
2021-10-31T14:33:09.000Z
Advanced/pianoTilesBot/PianoTilesBot.py
Sanjulata19/Hacktoberfest_2021-1
720855c9e7e3d1ca04d409cc7defb29381e4a16a
[ "Apache-2.0" ]
4
2021-10-31T14:16:14.000Z
2021-10-31T16:56:12.000Z
Advanced/pianoTilesBot/PianoTilesBot.py
Sanjulata19/Hacktoberfest_2021-1
720855c9e7e3d1ca04d409cc7defb29381e4a16a
[ "Apache-2.0" ]
19
2021-10-30T06:23:49.000Z
2021-10-31T14:51:04.000Z
# install all dependency with pip install -r requirements.txt import mss import pyautogui as gui import time # globals x1, x2, x3, x4 = 874, 977, 1078, 1151 y = 360 # constant for mss function start_y = 500 y2 = y # increse as the game speed increases x_cords = [0, x2-x1, x3-x1, x4-x1] score = 0 def screenShot(): # Screen Capture with mss.mss() as sct: gameBox = {"top": y, "left": x1, "width": x4-x1+1, "height": 2} img = sct.grab(gameBox) return img # Starting the game time.sleep(5) gui.click(x1, start_y) gui.click(x2, start_y) gui.click(x3, start_y) gui.click(x4, start_y) while True: # Game loop img = screenShot() # decrease or increase y2 values based of your processor speed if score == 900: y2 += 20 if score == 1000: y2 += 30 if score == 1250: y2 += 50 if score >= 1400 and score%100==0: y2 += 20 for x in x_cords: if img.pixel(x, 0)[0] < 50: # increase to 70 if misses blue tiles gui.click(x+x1, y2+10) score += 1 # Fail safe, terminates if mouse goes out of gameBox mousePos = gui.position()[0] if x1 > mousePos or x4 < mousePos: print('Fuck! not again!') exit(0)
25.571429
73
0.593775
c12ce8a6f195238c1f4e1b04a353480b2c433230
110
py
Python
second.py
ilsung98/coding-exam
55bc41cd3be3c07c39a26aa5ab229377936394dc
[ "MIT" ]
null
null
null
second.py
ilsung98/coding-exam
55bc41cd3be3c07c39a26aa5ab229377936394dc
[ "MIT" ]
null
null
null
second.py
ilsung98/coding-exam
55bc41cd3be3c07c39a26aa5ab229377936394dc
[ "MIT" ]
null
null
null
num_list = list(map(int, input().split())) high=max(num_list) low=min(num_list) print(low,sum(num_list),high)
22
42
0.727273
333a67cbeb4fba8c24f2efb9b0145f4b2bf88118
6,327
py
Python
src/pytestqt/plugin.py
cafhach/pytest-qt
435efd2222c3454eaf05c2853d5efd01a83f84a1
[ "MIT" ]
252
2015-03-15T23:18:27.000Z
2022-03-29T01:41:41.000Z
src/pytestqt/plugin.py
cafhach/pytest-qt
435efd2222c3454eaf05c2853d5efd01a83f84a1
[ "MIT" ]
318
2015-03-25T04:05:01.000Z
2022-03-11T23:01:06.000Z
src/pytestqt/plugin.py
cafhach/pytest-qt
435efd2222c3454eaf05c2853d5efd01a83f84a1
[ "MIT" ]
84
2015-03-17T20:10:50.000Z
2022-03-04T15:25:25.000Z
import pytest from pytestqt.exceptions import ( _is_exception_capture_enabled, _QtExceptionCaptureManager, ) from pytestqt.logging import QtLoggingPlugin, _QtMessageCapture from pytestqt.qt_compat import qt_api from pytestqt.qtbot import QtBot, _close_widgets @pytest.fixture(scope="session") def qapp_args(): """ Fixture that provides QApplication arguments to use. You can override this fixture to pass different arguments to ``QApplication``: .. code-block:: python @pytest.fixture(scope="session") def qapp_args(): return ["--arg"] """ return [] @pytest.fixture(scope="session") def qapp(qapp_args, pytestconfig): """ Fixture that instantiates the QApplication instance that will be used by the tests. You can use the ``qapp`` fixture in tests which require a ``QApplication`` to run, but where you don't need full ``qtbot`` functionality. """ app = qt_api.QtWidgets.QApplication.instance() if app is None: global _qapp_instance _qapp_instance = qt_api.QtWidgets.QApplication(qapp_args) name = pytestconfig.getini("qt_qapp_name") _qapp_instance.setApplicationName(name) return _qapp_instance else: return app # pragma: no cover # holds a global QApplication instance created in the qapp fixture; keeping # this reference alive avoids it being garbage collected too early _qapp_instance = None @pytest.fixture def qtbot(qapp, request): """ Fixture used to create a QtBot instance for using during testing. Make sure to call addWidget for each top-level widget you create to ensure that they are properly closed after the test ends. """ result = QtBot(request) return result @pytest.fixture def qtlog(request): """Fixture that can access messages captured during testing""" if hasattr(request._pyfuncitem, "qt_log_capture"): return request._pyfuncitem.qt_log_capture else: return _QtMessageCapture([]) # pragma: no cover @pytest.fixture def qtmodeltester(request): """ Fixture used to create a ModelTester instance to test models. """ from pytestqt.modeltest import ModelTester tester = ModelTester(request.config) yield tester tester._cleanup() def pytest_addoption(parser): parser.addini( "qt_api", 'Qt api version to use: "pyside6" , "pyside2", "pyqt6", "pyqt5"' ) parser.addini("qt_no_exception_capture", "disable automatic exception capture") parser.addini( "qt_default_raising", "Default value for the raising parameter of qtbot.waitSignal/waitCallback", ) parser.addini( "qt_qapp_name", "The Qt application name to use", default="pytest-qt-qapp" ) default_log_fail = QtLoggingPlugin.LOG_FAIL_OPTIONS[0] parser.addini( "qt_log_level_fail", 'log level in which tests can fail: {} (default: "{}")'.format( QtLoggingPlugin.LOG_FAIL_OPTIONS, default_log_fail ), default=default_log_fail, ) parser.addini( "qt_log_ignore", "list of regexes for messages that should not cause a tests " "to fails", type="linelist", ) group = parser.getgroup("qt", "qt testing") group.addoption( "--no-qt-log", dest="qt_log", action="store_false", default=True, help="disable pytest-qt logging capture", ) group.addoption( "--qt-log-format", dest="qt_log_format", default=None, help="defines how qt log messages are displayed.", ) @pytest.mark.hookwrapper @pytest.mark.tryfirst def pytest_runtest_setup(item): """ Hook called after before test setup starts, to start capturing exceptions as early as possible. """ capture_enabled = _is_exception_capture_enabled(item) if capture_enabled: item.qt_exception_capture_manager = _QtExceptionCaptureManager() item.qt_exception_capture_manager.start() yield _process_events() if capture_enabled: item.qt_exception_capture_manager.fail_if_exceptions_occurred("SETUP") @pytest.mark.hookwrapper @pytest.mark.tryfirst def pytest_runtest_call(item): yield _process_events() capture_enabled = _is_exception_capture_enabled(item) if capture_enabled: item.qt_exception_capture_manager.fail_if_exceptions_occurred("CALL") @pytest.mark.hookwrapper @pytest.mark.trylast def pytest_runtest_teardown(item): """ Hook called after each test tear down, to process any pending events and avoiding leaking events to the next test. Also, if exceptions have been captured during fixtures teardown, fail the test. """ _process_events() _close_widgets(item) _process_events() yield _process_events() capture_enabled = _is_exception_capture_enabled(item) if capture_enabled: item.qt_exception_capture_manager.fail_if_exceptions_occurred("TEARDOWN") item.qt_exception_capture_manager.finish() def _process_events(): """Calls app.processEvents() while taking care of capturing exceptions or not based on the given item's configuration. """ app = qt_api.QtWidgets.QApplication.instance() if app is not None: app.processEvents() def pytest_configure(config): config.addinivalue_line( "markers", "qt_no_exception_capture: Disables pytest-qt's automatic exception " "capture for just one test item.", ) config.addinivalue_line( "markers", "qt_log_level_fail: overrides qt_log_level_fail ini option." ) config.addinivalue_line( "markers", "qt_log_ignore: overrides qt_log_ignore ini option." ) config.addinivalue_line("markers", "no_qt_log: Turn off Qt logging capture.") if config.getoption("qt_log") and config.getoption("capture") != "no": config.pluginmanager.register(QtLoggingPlugin(config), "_qt_logging") qt_api.set_qt_api(config.getini("qt_api")) def pytest_report_header(): from pytestqt.qt_compat import qt_api v = qt_api.get_versions() fields = [ f"{v.qt_api} {v.qt_api_version}", "Qt runtime %s" % v.runtime, "Qt compiled %s" % v.compiled, ] version_line = " -- ".join(fields) return [version_line]
29.156682
83
0.691165
75227c5b9f54492db7e68b5ce6b021752e9e4a5a
611
py
Python
docs/src/db_mongodb.py
nullhack/fastapi-users
e850871e7935c460e9c169385dd7d42b45e0320c
[ "MIT" ]
null
null
null
docs/src/db_mongodb.py
nullhack/fastapi-users
e850871e7935c460e9c169385dd7d42b45e0320c
[ "MIT" ]
null
null
null
docs/src/db_mongodb.py
nullhack/fastapi-users
e850871e7935c460e9c169385dd7d42b45e0320c
[ "MIT" ]
null
null
null
import motor.motor_asyncio from fastapi import FastAPI from fastapi_users import models from fastapi_users.db import MongoDBUserDatabase class User(models.BaseUser): pass class UserCreate(User, models.BaseUserCreate): pass class UserUpdate(User, models.BaseUserUpdate): pass class UserDB(User, models.BaseUserDB): pass DATABASE_URL = "mongodb://localhost:27017" client = motor.motor_asyncio.AsyncIOMotorClient( DATABASE_URL, uuidRepresentation="standard" ) db = client["database_name"] collection = db["users"] app = FastAPI() user_db = MongoDBUserDatabase(UserDB, collection)
17.457143
49
0.772504
40d065fff07276c673745dfa8851569744730062
824
py
Python
openpnm/algorithms/__init__.py
xu-kai-xu/OpenPNM
61d5fc4729a0a29291cf6c53c07c4246e7a13714
[ "MIT" ]
2
2019-08-24T09:17:40.000Z
2020-07-05T07:21:21.000Z
openpnm/algorithms/__init__.py
xu-kai-xu/OpenPNM
61d5fc4729a0a29291cf6c53c07c4246e7a13714
[ "MIT" ]
null
null
null
openpnm/algorithms/__init__.py
xu-kai-xu/OpenPNM
61d5fc4729a0a29291cf6c53c07c4246e7a13714
[ "MIT" ]
null
null
null
r""" Collection of pre-defined algorithms ==================================== The ``algorithms`` module contains classes for conducting transport simulations on pore networks. """ from ._mixins import * from ._generic_algorithm import * from ._generic_transport import * from ._reactive_transport import * from ._transient_reactive_transport import * from ._stokes_flow import * from ._fickian_diffusion import * from ._transient_fickian_diffusion import * from ._advection_diffusion import * from ._transient_advection_diffusion import * from ._fourier_conduction import * from ._ohmic_conduction import * from ._ordinary_percolation import * from ._invasion_percolation import * from ._mixed_ip import * from ._mixed_ip_coop import * from ._ionic_conduction import * from ._transient_ionic_conduction import *
22.888889
67
0.774272
9dcee743dd6f265714bbbdd6e4422b0d3fcb8730
4,545
bzl
Python
internal/pkg_web/pkg_web.bzl
ankitects/rules_nodejs
9a50cb694e39fba8874f991675ae7ca585108df5
[ "Apache-2.0" ]
null
null
null
internal/pkg_web/pkg_web.bzl
ankitects/rules_nodejs
9a50cb694e39fba8874f991675ae7ca585108df5
[ "Apache-2.0" ]
6
2021-09-02T20:32:14.000Z
2022-03-02T10:59:15.000Z
internal/pkg_web/pkg_web.bzl
ankitects/rules_nodejs
9a50cb694e39fba8874f991675ae7ca585108df5
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the pkg_web rule. """ load("//:providers.bzl", "NODE_CONTEXT_ATTRS", "NodeContextInfo") _DOC = """Assembles a web application from source files.""" _ATTRS = dict(NODE_CONTEXT_ATTRS, **{ "additional_root_paths": attr.string_list( doc = """Path prefixes to strip off all srcs, in addition to the current package. Longest wins.""", ), "srcs": attr.label_list( allow_files = True, doc = """Files which should be copied into the package""", ), "substitutions": attr.string_dict( doc = """Key-value pairs which are replaced in all the files while building the package. You can use values from the workspace status command using curly braces, for example `{"0.0.0-PLACEHOLDER": "{STABLE_GIT_VERSION}"}`. See the section on stamping in the README.""", ), "_assembler": attr.label( default = "@build_bazel_rules_nodejs//internal/pkg_web:assembler", executable = True, cfg = "host", ), }) def move_files(output_name, substitutions, version_file, info_file, stamp, files, action_factory, var, assembler, root_paths): """Moves files into an output directory Args: output_name: The name of the output directory substitutions: key/value pairs to replace version_file: bazel-out/volatile-status.txt info_file: bazel-out/stable-status.txt stamp: whether the build is performed with --stamp files: The files to move action_factory: Bazel's actions module from ctx.actions - see https://docs.bazel.build/versions/master/skylark/lib/actions.html var: environment variables assembler: The assembler executable root_paths: Path prefixes to strip off all srcs. Longest wins. Returns: The output directory tree-artifact """ www_dir = action_factory.declare_directory(output_name) args = action_factory.args() inputs = files[:] args.add(www_dir.path) if stamp: args.add(version_file.path) inputs.append(version_file) args.add(info_file.path) inputs.append(info_file) else: args.add_all(["", ""]) args.add(substitutions) args.add_all(root_paths) args.add("--assets") args.add_all([f.path for f in files]) args.use_param_file("%s", use_always = True) action_factory.run( inputs = inputs, outputs = [www_dir], executable = assembler, arguments = [args], execution_requirements = {"local": "1"}, env = {"COMPILATION_MODE": var["COMPILATION_MODE"]}, ) return depset([www_dir]) def additional_root_paths(ctx): return ctx.attr.additional_root_paths + [ # also add additional_root_paths variants from genfiles dir and bin dir "/".join([ctx.genfiles_dir.path, p]) for p in ctx.attr.additional_root_paths ] + [ "/".join([ctx.bin_dir.path, p]) for p in ctx.attr.additional_root_paths ] + [ # package path is the root, including in bin/gen ctx.label.package, "/".join([ctx.bin_dir.path, ctx.label.package]), "/".join([ctx.genfiles_dir.path, ctx.label.package]), # bazel-bin/gen dirs to absolute paths ctx.genfiles_dir.path, ctx.bin_dir.path, # package re-rooted subdirectory "/".join([p for p in [ctx.bin_dir.path, ctx.label.package, "_" + ctx.label.name, ctx.label.package] if p]), ] def _impl(ctx): root_paths = additional_root_paths(ctx) package_layout = move_files( ctx.label.name, ctx.attr.substitutions, ctx.version_file, ctx.info_file, ctx.attr.node_context_data[NodeContextInfo].stamp, ctx.files.srcs, ctx.actions, ctx.var, ctx.executable._assembler, root_paths, ) return [ DefaultInfo(files = package_layout), ] pkg_web = rule( implementation = _impl, attrs = _ATTRS, doc = _DOC, )
33.91791
133
0.663146
2c6d18cc4467f8a5079b79db81775e64851d230b
199
py
Python
ifitwala_ed/stock/doctype/price_list_country/price_list_country.py
mohsinalimat/ifitwala_ed
8927695ed9dee36e56571c442ebbe6e6431c7d46
[ "MIT" ]
13
2020-09-02T10:27:57.000Z
2022-03-11T15:28:46.000Z
ifitwala_ed/stock/doctype/price_list_country/price_list_country.py
mohsinalimat/ifitwala_ed
8927695ed9dee36e56571c442ebbe6e6431c7d46
[ "MIT" ]
43
2020-09-02T07:00:42.000Z
2021-07-05T13:22:58.000Z
ifitwala_ed/stock/doctype/price_list_country/price_list_country.py
mohsinalimat/ifitwala_ed
8927695ed9dee36e56571c442ebbe6e6431c7d46
[ "MIT" ]
6
2020-10-19T01:02:18.000Z
2022-03-11T15:28:47.000Z
# Copyright (c) 2021, ifitwala and contributors # For license information, please see license.txt # import frappe from frappe.model.document import Document class PriceListCountry(Document): pass
22.111111
49
0.798995
21f937569de3b71d27acdafc0c848194a9caaca7
403
py
Python
usage/middleware.py
jef79m/django-usage
b793609dd1bb58e85ecf4e70b712b7aa852ba666
[ "BSD-3-Clause" ]
null
null
null
usage/middleware.py
jef79m/django-usage
b793609dd1bb58e85ecf4e70b712b7aa852ba666
[ "BSD-3-Clause" ]
null
null
null
usage/middleware.py
jef79m/django-usage
b793609dd1bb58e85ecf4e70b712b7aa852ba666
[ "BSD-3-Clause" ]
null
null
null
from .models import PageHit from django.contrib.auth import get_user class UsageMiddleware(object): def process_request(self, request): if request.user.is_authenticated(): PageHit.objects.create( user=get_user(request), requested_page=request.path_info, user_agent=request.META['HTTP_USER_AGENT']) else: pass
28.785714
59
0.632754
c7615f64d597953206ec47837640a1d4a62f35eb
1,691
py
Python
ceilometer/agent/discovery/tenant.py
Missxiaoguo/stx-ceilometer
a226b47216e76ec209818b900253d3c1f1ffc3aa
[ "Apache-2.0" ]
null
null
null
ceilometer/agent/discovery/tenant.py
Missxiaoguo/stx-ceilometer
a226b47216e76ec209818b900253d3c1f1ffc3aa
[ "Apache-2.0" ]
1
2018-08-16T15:18:09.000Z
2018-08-16T20:51:45.000Z
ceilometer/agent/discovery/tenant.py
Missxiaoguo/stx-ceilometer
a226b47216e76ec209818b900253d3c1f1ffc3aa
[ "Apache-2.0" ]
3
2018-08-15T14:35:23.000Z
2019-01-11T15:57:02.000Z
# Copyright 2014 Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log from ceilometer.agent import plugin_base as plugin LOG = log.getLogger(__name__) class TenantDiscovery(plugin.DiscoveryBase): """Discovery that supplies keystone tenants. This discovery should be used when the pollster's work can't be divided into smaller pieces than per-tenants. Example of this is the Swift pollster, which polls account details and does so per-project. """ def discover(self, manager, param=None): domains = manager.keystone.domains.list() LOG.debug('Found %s keystone domains', len(domains)) if domains: tenants = [] for domain in domains: domain_tenants = manager.keystone.projects.list(domain) LOG.debug("Found %s tenants in domain %s", len(domain_tenants), domain.name) tenants = tenants + domain_tenants else: tenants = manager.keystone.projects.list() LOG.debug("No domains - found %s tenants in default domain", len(tenants)) return tenants or []
37.577778
79
0.674749
5c709e6229d8d873549e5d12febdc6ae7665de36
628
py
Python
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GLES2/EXT/texture_mirror_clamp_to_edge.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GLES2/EXT/texture_mirror_clamp_to_edge.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GLES2/EXT/texture_mirror_clamp_to_edge.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GLES2 import _types as _cs # End users want this... from OpenGL.raw.GLES2._types import * from OpenGL.raw.GLES2 import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GLES2_EXT_texture_mirror_clamp_to_edge' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GLES2,'GLES2_EXT_texture_mirror_clamp_to_edge',error_checker=_errors._error_checker) GL_MIRROR_CLAMP_TO_EDGE_EXT=_C('GL_MIRROR_CLAMP_TO_EDGE_EXT',0x8743)
39.25
136
0.800955
06fb7423513e4f1479bde925b2dc6fc149745581
2,824
py
Python
parlai/mturk/tasks/image_chat/igc_evals/task_configs/task_config_responses.py
ricsinaruto/ParlAI
733b627ae456d6b11a2fc4624088a781bc6c1d03
[ "MIT" ]
258
2020-04-10T07:01:06.000Z
2022-03-26T11:49:30.000Z
parlai/mturk/tasks/image_chat/igc_evals/task_configs/task_config_responses.py
ricsinaruto/ParlAI
733b627ae456d6b11a2fc4624088a781bc6c1d03
[ "MIT" ]
33
2020-04-10T04:28:51.000Z
2022-03-31T02:52:02.000Z
parlai/mturk/tasks/image_chat/igc_evals/task_configs/task_config_responses.py
ricsinaruto/ParlAI
733b627ae456d6b11a2fc4624088a781bc6c1d03
[ "MIT" ]
43
2020-04-14T10:43:33.000Z
2022-03-13T02:27:54.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. task_config = {} """A short and descriptive title about the kind of task the HIT contains. On the Amazon Mechanical Turk web site, the HIT title appears in search results, and everywhere the HIT is mentioned. """ task_config['hit_title'] = 'Rate Quality of Responses to Questions in Context of Image' """A description includes detailed information about the kind of task the HIT contains. On the Amazon Mechanical Turk web site, the HIT description appears in the expanded view of search results, and in the HIT and assignment screens. """ task_config['hit_description'] = 'You will rate the quality of responses to ' 'questions in the context of a discussion about an image.' """One or more words or phrases that describe the HIT, separated by commas. On MTurk website, these words are used in searches to find HITs. """ task_config['hit_keywords'] = 'image,rate' """A detailed task description that will be shown on the HIT task preview page and on the left side of the chat page. Supports HTML formatting. """ task_config['task_description'] = \ ''' <h2><b>Description</b></h2> In this task, you will be shown 4 images. For each image, there will be a contextual statement, a question regarding the image and in response to the statement, and a selection of various responses to the question. The goal of this task is to rate the quality of these responses. <br> <br> <h4><b>STEP 1</b></h4> You will be shown an image, some textual context, a questions in response to the textual context, and a set of candidate responses to the question. <br> <br> E.g., you may be shown an image of a tree; some textual context, i.e. "An amazing tree for climbing."; a question, "Do you think you could really climb that tree?"; and, a set of candidate responses: <br> 1. "Are you kidding? I could climb that tree in my sleep." <br> 2. "Is it time for dinner yet?" <br> <h4><b>STEP 2</b></h4> You will rate each candidate response on a scale from 1 to 3, where 3 is the <b>highest</b> quality and 1 is the <b>lowest</b> quality. <br> <br> E.g. in the example above, you might give the first question a "3" rating and the second question a "1" rating. <br> <br> <h4><b>REWARD/BONUS</b></h4> To complete this task, <b><span style="color:blue">you must rate the questions on ALL 4 images.</span></b> If you complete the task, you will receive $0.40. <br> <br> <br> <h4><b>CLOSE WINDOW/TIMEOUT/RETURN HIT</b></h4> Once the task has started, close window/timeout or return HIT will result in <b><span style="color:blue">HIT EXPIRED</span></b> to you and NO reward paid. <br> <br> <br> If you are ready, please click "Accept HIT" to start this task. '''
37.157895
88
0.734773
47ae2f1b73ae062e4dd7d024d1a9e91742574254
14,196
py
Python
mlg1categories/views.py
willianz7/mlg1noticias
b8793dd00835c477363d22f1be3b0ab939e9833e
[ "CNRI-Python-GPL-Compatible", "BSD-3-Clause" ]
null
null
null
mlg1categories/views.py
willianz7/mlg1noticias
b8793dd00835c477363d22f1be3b0ab939e9833e
[ "CNRI-Python-GPL-Compatible", "BSD-3-Clause" ]
null
null
null
mlg1categories/views.py
willianz7/mlg1noticias
b8793dd00835c477363d22f1be3b0ab939e9833e
[ "CNRI-Python-GPL-Compatible", "BSD-3-Clause" ]
null
null
null
from django.shortcuts import render import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer import io from PIL import Image #cd django-dev #source my_env/bin/activate #alias python=python3 #python manage.py runserver localhost:8000 #abra o firefox e digite localhost:8000/MachineLearning class ControllerML(): #tratar com scikitlearning corpus = [] labels = [] X = []#Recebe o corpus Y = []#recebe labels def __init__(self): self.Brasil = [] self.Mundo = [] self.Economia = [] self.CienciaSaude = [] self.Politica = [] self.Blog = [] self.Cultura = [] def adicionarNoticiaBrasil(self,n): self.Brasil.append(n) def adicionarNoticiaMundo(self,n) : self.Mundo.append(n) def adicionarNoticiaEconomia(self,n): self.Economia.append(n) def adicionarNoticiaCienciaSaude(self,n): self.CienciaSaude.append(n) def adicionarNoticiaPolitica(self,n) : self.Politica.append(n) def adicionarNoticiaBlog(self,n): self.Blog.append(n) def adicionarNoticiaCultura(self,n): self.Cultura.append(n) def criarCorpus(self): #for noticia in self.Brasil: # self.corpus.append(noticia) #self.labels.append('Brasil') #for noticia in self.Mundo: # self.corpus.append(noticia) #self.labels.append('Mundo') #for noticia in self.Economia: #self.corpus.append(noticia) #self.labels.append('Economia') for noticia in self.CienciaSaude: self.corpus.append(noticia) self.labels.append('Ciência e Saúde') for noticia in self.Politica: self.corpus.append(noticia) self.labels.append('Politica') #for noticia in self.Blog: # self.corpus.append(noticia) #self.labels.append('Blog') #for noticia in self.Cultura: # self.corpus.append(noticia) #self.labels.append('Cultura') self.X = self.corpus self.Y = self.labels return self.corpus def evalueteModel(self, Y_test, Y_pred_rv): from sklearn.metrics import confusion_matrix import seaborn as sns sns.set(font_scale=0.8) cm = confusion_matrix(Y_test, Y_pred_rv) sns.heatmap(cm, xticklabels=['predicted_CienciaSaude', 'predicted_Politica'], yticklabels=['actual_CienciaSaude', 'actual_Politica'],annot=True, fmt='d', annot_kws={'fontsize':20}, cmap="YlGnBu"); true_neg, false_pos = cm[0] false_neg, true_pos = cm[1] accuracy = round((true_pos + true_neg) / (true_pos + true_neg + false_pos + false_neg),3) precision = round((true_pos) / (true_pos + false_pos),3) recall = round((true_pos) / (true_pos + false_neg),3) f1 = round(2 * (precision * recall) / (precision + recall),3) #image_file =plt.savefig('heatmap.png', format= 'png') plt.show() #image_file = plt.savefig('fig.png', dpi=None, facecolor='w', edgecolor='w', orientation='portrait', papertype=None, format='png',transparent=True, bboxinches=None, padinches=0., frameon=None) s = '' s = s + 'Accuracy: {}'.format(accuracy) s = s + 'Precision: {}'.format(precision) s = s + 'Recall: {}'.format(recall) s = s + 'F1 Score: {}'.format(f1) return(s) def NaiveBayesEvaluete(self, X_train_rv, X_test_rv, Y_train, Y_test, st): from sklearn.naive_bayes import MultinomialNB nb = MultinomialNB() # Train the model nb.fit(X_train_rv, Y_train) # Take the model that was trained on the X_train_cv data and apply it to the X_test_cv #data Y_pred_rv = nb.predict(X_test_rv) plt.suptitle("Evaluete Model: " + st, color='m') #print(Y_pred_cv_nb) return self.evalueteModel(Y_test, Y_pred_rv) def logistRegressionEvaluete(self, X_train_rv, X_test_rv,Y_train, Y_test, st): from sklearn.linear_model import LogisticRegression lr = LogisticRegression() # Train the model lr.fit(X_train_rv, Y_train) # Take the model that was trained on the X_train_cv data and apply it to the X_test_cv #data Y_pred_rv = lr.predict(X_test_rv) #Input: plt.suptitle("Evaluete Model: " + st, color='m') #print(Y_pred_rv) return self.evalueteModel(Y_test, Y_pred_rv) #rv = representacao vetorial SVM Kernel=Linear def SvmLinearSVCEvaluete(self, X_train_rv, X_test_rv,Y_train, Y_test, st): from sklearn.svm import LinearSVC sl = LinearSVC() sl.fit(X_train_rv, Y_train) Y_pred_rv = sl.predict(X_test_rv) plt.suptitle("Evaluete Model: " + st, color='m') #print(Y_pred_rv) return self.evalueteModel(Y_test, Y_pred_rv) def extrairTemaTopico(self,topico, v): tema = '' for indexword in topico: tema = tema + v.get_feature_names()[indexword] + ' ' return tema def rotular(self, vDescriptions, posNoticia): from sklearn.decomposition import PCA import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import NMF tfidf = TfidfVectorizer(max_features= 1000, max_df = 0.5, smooth_idf=True) X = tfidf.fit_transform(vDescriptions) nmf = NMF(n_components=10, random_state=42) nmf.fit_transform(X[posNoticia]) #topicos = extrairTopicos(nmf) #data.shape #print(data[0]) #print('\nDocumento', i) sorted_0 = nmf.components_[0].argsort() #primeiro tópico #sorted_1 = pca.components_[1].argsort() #segundo tópico #sorted_2 = pca.components_[2].argsort() #terceiro tópico sortedflip_0 = np.flip(sorted_0)[0:5] #sortedflip_1 = np.flip(sorted_1)[0:5] #sortedflip_2 = np.flip(sorted_2)[0:5] #print('Tópico 1:') return self.extrairTemaTopico(sortedflip_0, tfidf) # print('Tópico 2:') #extrairTemaTopico(sortedflip_1, cv) #print('Tópico 3:') #extrairTemaTopico(sortedflip_2, cv) def treinarMachineLearning(self): from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from itertools import combinations from sklearn.metrics.pairwise import cosine_similarity # split the data into a training and test set X_train, X_test, Y_train, Y_test = train_test_split(self.X, self.Y, test_size=0.3, random_state=42) # test size = 30% of observations, which means training size = 70% of observations # random state = 42, so we all get the same random train / test split #cv = CountVectorizer(stop_words=‘english’) from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() X_train_cv = cv.fit_transform(X_train) # fit_transform learns the vocab and one-hot encodes X_test_cv = cv.transform(X_test) # transform uses the same vocab and one-hot encodes #Tfidf from sklearn.feature_extraction.text import TfidfVectorizer tf = TfidfVectorizer() X_train_tf = tf.fit_transform(X_train) # fit_transform learns the vocab and one-hot encodes X_test_tf = tf.transform(X_test) # transform uses the same vocab and one-hot encodes # Use a logistic regression model CV rl_cv = self.logistRegressionEvaluete(X_train_cv, X_test_cv,Y_train, Y_test, 'Logistic regression model CV') # Use a logistic regression model tfidf rl_tf = self.logistRegressionEvaluete(X_train_tf, X_test_tf,Y_train, Y_test, 'Logistic regression model tfidf') # Use a Naive Bayes model CV nb_cv = self.NaiveBayesEvaluete(X_train_cv, X_test_cv,Y_train, Y_test, 'Naive Bayes model CV') # Use a Naive Bayes model tfidf nb_tf = self.NaiveBayesEvaluete(X_train_tf, X_test_tf,Y_train, Y_test, 'Naive Bayes model tfidf') # Use a SVM Linear SVC LINEAR model CV svm_cv = self.SvmLinearSVCEvaluete(X_train_cv, X_test_cv,Y_train, Y_test, 'SVM Linear SVC LINEAR model CV') # Use a SVM Linear SVC LINEAR model tfidf svm_tf = self.SvmLinearSVCEvaluete(X_train_tf, X_test_tf,Y_train, Y_test, 'SVM Linear SVC LINEAR model tfidf') return (rl_cv,rl_tf, nb_cv,nb_tf, svm_cv, svm_tf) from django.http import HttpResponse import re import string import nltk from nltk.tokenize import word_tokenize from nltk.stem.lancaster import LancasterStemmer from nltk.tag import pos_tag #!pip install nltk nltk.download('rslp') nltk.download('stopwords') from nltk.corpus import stopwords nltk.download('punkt') nltk.download('averaged_perceptron_tagger') from nltk.tokenize.treebank import TreebankWordDetokenizer import json from pyUFbr.baseuf import ufbr #Categoria: Brasil, Mundo, Economia, Ciência e Saúde, Política, Blog, Cultura, estados_do_brasil = ['Acre','Alagoas','Amapá','Amazonas','Bahia','Ceará','Distrito Federal','Espirito Santo','Goiás','Maranhão','Mato Grosso do Sul','Mato Grosso','Minas Gerais','Pará','Paraíba','Paraná','Pernambuco','Piauí','Rio de Janeiro','Rio Grande do Norte','Rio Grande do Sul','Rondônia','Roraima','Santa Catarina','São Paulo','Sergipe','Tocantins']; cidades_sp = ufbr.list_cidades('SP') Noticias = [] vDescriptions = [] def preparaTexto(text): if text == None : text = '' #puxar tudo abrir o link clean_text = re.sub('\w*\d\w*',' ',text) #elimina palavras com numeros clean_text = re.sub('[%s]' % re.escape(string.punctuation),' ', clean_text.lower()) #elimina pontuacao e torna o texto minusculo tokens = word_tokenize(clean_text)#tokeniza tokens_without_sw = [word for word in tokens if not word in stopwords.words('portuguese')] text_without_sw = TreebankWordDetokenizer().detokenize(tokens_without_sw) #retira stop words return(text_without_sw) def aprendizagem_ns(ml,Noticias, vDescriptions): i = 0 html = '' for noticia in Noticias: html = html + '<a href="'+ noticia[0] +'">' + noticia[1] + '</a>' + '(' + noticia[2].strip() + ')'+ '(' + ml.rotular(vDescriptions, i) + ')' +' <br>' i+=1 return html def carrega(noticias, ml):#, flag): html = '' pol = 0 cien = 0 for noticia in noticias: if (noticia['link'] != None): if noticia['categoria'] == None : noticia['categoria'] = 'Não Categorizada' if noticia['title'] == None : noticia['title'] = 'Sem titulo' texto = preparaTexto(noticia['description']) if noticia['categoria'].strip().upper().find('MUNDO') != -1 : ml.adicionarNoticiaMundo(texto) if noticia['categoria'].strip() in estados_do_brasil or noticia['categoria'].strip().upper() in cidades_sp : noticia['categoria'] = 'Brasil' ml.adicionarNoticiaBrasil(texto) if noticia['categoria'].strip().find('Blog') != -1 : noticia['categoria'] = 'Blog' ml.adicionarNoticiaBlog(texto) if noticia['categoria'].strip().upper().find('CORONAVÍRUS') != -1 or noticia['categoria'].strip().upper().find('VÍRUS') != -1 or noticia['categoria'].strip().upper().find('VACINA') != -1: noticia['categoria'] = 'Ciência e Saúde' ml.adicionarNoticiaCienciaSaude(texto) cien += 1 Noticias.append([noticia['link'],noticia['title'],noticia['categoria'],texto]) vDescriptions.append(texto) if noticia['categoria'].strip().upper().find('CONCURSO') != -1 or noticia['categoria'].strip().upper().find('EMPREGO') != -1 or noticia['categoria'].strip().upper().find('IMPOSTO') != -1 or noticia['categoria'].strip().upper().find('NEGÓCIO') != -1 or noticia['categoria'].strip().upper().find('FINANCEIRA') != -1 : noticia['categoria'] = 'Economia' ml.adicionarNoticiaEconomia(texto) if noticia['categoria'].strip().find('Pop & Arte') != -1 or noticia['categoria'].strip().upper().find('MÚSICA') != -1 or noticia['categoria'].strip().upper().find('CINEMA') != -1 or noticia['categoria'].strip().upper().find('LIVES') != -1 or noticia['categoria'].strip().find('Agora é Assim?') != -1 or noticia['categoria'].strip().upper().find('CARNAVAL') != -1 : noticia['categoria'] = 'Cultura' ml.adicionarNoticiaCultura(texto) if noticia['categoria'].strip().find('Política') != -1 : ml.adicionarNoticiaPolitica(texto) pol += 1 #if flag == 'NS': Noticias.append([noticia['link'],noticia['title'],noticia['categoria'],texto]) vDescriptions.append(texto) #if flag == 'S': html = html + '<a href="'+ noticia['link'] +'">' + noticia['title'] + '</a>' + '(' + noticia['categoria'].strip() + ')' +' <br>' #if flag == 'NS': html = aprendizagem_ns(ml,Noticias, vDescriptions) html = html + 'Noticias de Politica: ' + str(pol) + ' Noticias de Ciência e Saúde: ' + str(cien) + '\n<br>' return html def carregaS(request,noticias): ml = ControllerML() html = carrega(noticias, ml)#, 'S') #noticias string do arquivo json ml.criarCorpus() rl_cv,rl_tf, nb_cv,nb_tf, svm_cv, svm_tf = ml.treinarMachineLearning() dados1 = 'Regressão Log CV: '+rl_cv dados2 = 'Regressão Log tfidf: '+rl_tf dados3 = 'Naive Bayes com CV: '+nb_cv dados4 = 'Naive Bayes com tfidf: '+nb_tf dados5 = 'smv K=LINEAR com CV: '+svm_cv dados6 = 'smv K=LINEAR com tfidf: '+svm_tf html = html + dados1 + '<br>' + dados2 + '<br>' + dados3 + '<br>' + dados4 + '<br>' + dados5 + '<br>' + dados6 + '<br>' return html def carregaNS(request,noticias): ml = ControllerML() html = carrega(noticias, ml)#, 'NS') #noticias string do arquivo json return html # Create your views here. def index(request): with open('noticias.json', 'r') as json_file: noticias = json.load(json_file) #html = '<a href="'+carregaNS(request,noticias) + '">' + 'Carregar Não Supervisionado' + '</a> <br>\n' #html = html + '<a href="'+ carregaS(request,noticias) + '">' + 'Carregar Supervisionado' + '</a> <br>' #Brasil, Mundo, Economia, CienciaSaude,Politica, Blog, Cultura ml = ControllerML() html = carrega(noticias, ml) #noticias string do arquivo json ml.criarCorpus() rl_cv,rl_tf, nb_cv,nb_tf, svm_cv, svm_tf = ml.treinarMachineLearning() #fig1 = rl_cv[0] dados1 = 'Regressão Log CV: '+rl_cv dados2 = 'Regressão Log tfidf: '+rl_tf dados3 = 'Naive Bayes com CV: '+nb_cv dados4 = 'Naive Bayes com tfidf: '+nb_tf dados5 = 'smv K=LINEAR com CV: '+svm_cv dados6 = 'smv K=LINEAR com tfidf: '+svm_tf html = html + dados1 + '<br>' + dados2 + '<br>' + dados3 + '<br>' + dados4 + '<br>' + dados5 + '<br>' + dados6 + '<br>' return HttpResponse(html)
42.25
373
0.67998
4421abba8aec220a65f57b01107e36b13ad018f2
2,532
py
Python
common/utils/requests.py
shapeshift-legacy/watchtower
c9cd5150f8549145f7de9b1ea820d548959350fe
[ "MIT" ]
null
null
null
common/utils/requests.py
shapeshift-legacy/watchtower
c9cd5150f8549145f7de9b1ea820d548959350fe
[ "MIT" ]
null
null
null
common/utils/requests.py
shapeshift-legacy/watchtower
c9cd5150f8549145f7de9b1ea820d548959350fe
[ "MIT" ]
null
null
null
import logging import urllib3 import certifi import json logger = logging.getLogger('watchtower.common.utils.requests') class HTTPError(Exception): """An error status was returned from the http request""" pass class RequestsUtil: def get_multiple(self, urls): responses = [] for url in urls: try: response = http.get(url, retries=2) responses.append(response) except: pass return responses def get_multiple_from_dictionary(self, dict): for key in dict: dict[key]['response'] = http.get(dict[key]['url'], retries=2) return dict class Http: def __init__(self): self.http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) def get(self, url, params={}, headers={}, retries=urllib3.Retry(3)): return self._request('GET', url, params=params, headers=headers, retries=retries) def post(self, url, params={}, headers={}, body=None, retries=urllib3.Retry(3)): return self._request('POST', url, params=params, headers=headers, body=body, retries=retries) def _request(self, method, url, params={}, headers={}, body=None, retries=urllib3.Retry(3)): payload = body if payload and not isinstance(payload, str): payload = json.dumps(payload) response = self.http.request(method, url, fields=params, body=payload, retries=retries, headers=headers) content_type = response.headers.get('Content-Type') # Check for http error if response.status < 200 or response.status >= 400: r_data = response.data.decode('utf-8').rstrip() http_error_msg = '' if 400 <= response.status < 500: logger.warn(u'%d Client Error: %s for url: %s' % (response.status, r_data, url)) http_error_msg = u'%d Client Error: %s' % (response.status, r_data) elif 500 <= response.status < 600: logger.error(u'%d Server Error: %s for url: %s' % (response.status, r_data, url)) http_error_msg = u'%d Server Error: %s' % (response.status, r_data) if http_error_msg: raise HTTPError(http_error_msg) # Decode json response if isinstance(content_type, str) and content_type.startswith('application/json'): response.json_data = json.loads(response.data.decode('utf-8')) return response requests_util = RequestsUtil() http = Http()
36.171429
112
0.621643
41414affbe31372bebb2d733d02827b3ea84635c
2,091
py
Python
elkserver/docker/redelk-base/redelkinstalldata/scripts/modules/msteams/module.py
MikeKMiller/RedELK
669794e81cbbccee40dfa8371c1312d5ed8fd211
[ "BSD-3-Clause" ]
1,863
2018-10-05T04:29:59.000Z
2022-03-31T23:55:51.000Z
elkserver/docker/redelk-base/redelkinstalldata/scripts/modules/msteams/module.py
MikeKMiller/RedELK
669794e81cbbccee40dfa8371c1312d5ed8fd211
[ "BSD-3-Clause" ]
164
2018-10-17T18:12:26.000Z
2022-03-24T08:30:02.000Z
elkserver/docker/redelk-base/redelkinstalldata/scripts/modules/msteams/module.py
MikeKMiller/RedELK
669794e81cbbccee40dfa8371c1312d5ed8fd211
[ "BSD-3-Clause" ]
332
2018-10-05T15:30:33.000Z
2022-03-30T13:21:37.000Z
#!/usr/bin/python3 """ Part of RedELK This connector sends RedELK alerts via Microsoft Teams Authors: - Lorenzo Bernardi (@fastlorenzo) """ import logging import pymsteams import config from modules.helpers import get_value, pprint info = { 'version': 0.1, 'name': 'msteams connector', 'description': 'This connector sends RedELK alerts via Microsoft Teams', 'type': 'redelk_connector', 'submodule': 'msteams' } class Module(): # pylint: disable=too-few-public-methods """ msteams connector module """ def __init__(self): self.logger = logging.getLogger(info['submodule']) def send_alarm(self, alarm): """ Send the alarm notification """ tmsg = pymsteams.connectorcard(config.notifications['msteams']['webhook_url']) description = alarm['info']['description'] if len(alarm['groupby']) > 0: description += f'\n *Please note that the items below have been grouped by: {pprint(alarm["groupby"])}*' tmsg.text(description) tmsg.color('red') try: for hit in alarm['hits']['hits']: tcs = pymsteams.cardsection() tcs.disableMarkdown() i = 0 title = hit['_id'] while i < len(alarm['groupby']): val = get_value(f'_source.{alarm["groupby"][i]}', hit) if i == 0: title = val else: title = f'{title} / {val}' i += 1 tcs.activityTitle(f'Alarm on item: {title}') # tcs.activitySubtitle(alarm['info']['description']) for field in alarm['fields']: val = get_value(f'_source.{field}', hit) tcs.addFact(field, pprint(val)) tmsg.addSection(tcs) # pylint: disable=broad-except except Exception as error: self.logger.exception(error) tmsg.title(f'Alarm from {alarm["info"]["name"]} [{alarm["hits"]["total"]} hits]') tmsg.send()
33.190476
116
0.550454
c2b0468041d4fb0c9b739f521048cc076793d186
1,559
py
Python
UnleashClient/periodic_tasks/send_metrics.py
hellohaptik/unleash-client-python
8bd06318bcab0fc2ff0cd450d5a9416c228ccdc1
[ "MIT" ]
null
null
null
UnleashClient/periodic_tasks/send_metrics.py
hellohaptik/unleash-client-python
8bd06318bcab0fc2ff0cd450d5a9416c228ccdc1
[ "MIT" ]
10
2021-04-28T09:47:51.000Z
2022-02-17T07:32:10.000Z
UnleashClient/periodic_tasks/send_metrics.py
hellohaptik/unleash-client-python
8bd06318bcab0fc2ff0cd450d5a9416c228ccdc1
[ "MIT" ]
1
2022-02-15T19:21:29.000Z
2022-02-15T19:21:29.000Z
import redis import pickle from collections import ChainMap from datetime import datetime, timezone from UnleashClient.api import send_metrics from UnleashClient.constants import METRIC_LAST_SENT_TIME def aggregate_and_send_metrics(url: str, app_name: str, instance_id: str, custom_headers: dict, custom_options: dict, features: dict, ondisk_cache: redis.Redis ) -> None: feature_stats_list = [] for feature_name in features.keys(): feature_stats = { features[feature_name].name: { "yes": features[feature_name].yes_count, "no": features[feature_name].no_count } } features[feature_name].reset_stats() feature_stats_list.append(feature_stats) metric_last_seen_time = pickle.loads( ondisk_cache.get( METRIC_LAST_SENT_TIME ) ) metrics_request = { "appName": app_name, "instanceId": instance_id, "bucket": { "start": metric_last_seen_time.isoformat(), "stop": datetime.now(timezone.utc).isoformat(), "toggles": dict(ChainMap(*feature_stats_list)) } } send_metrics(url, metrics_request, custom_headers, custom_options) ondisk_cache.set( METRIC_LAST_SENT_TIME, pickle.dumps(datetime.now(timezone.utc)) )
30.568627
70
0.56703
630901d09cc699aa8fe7e1647d81331dd6f0f673
322
py
Python
test/test_onnx.py
fangyu1006/Lightweight-Face-Detector-With-Landmarks
e15e7f009d21e0b7098d75154bc0176c3cf44f71
[ "MIT" ]
12
2020-07-01T09:12:11.000Z
2021-06-13T18:31:05.000Z
test/test_onnx.py
fangyu1006/Lightweight-Face-Detector-With-Landmarks
e15e7f009d21e0b7098d75154bc0176c3cf44f71
[ "MIT" ]
null
null
null
test/test_onnx.py
fangyu1006/Lightweight-Face-Detector-With-Landmarks
e15e7f009d21e0b7098d75154bc0176c3cf44f71
[ "MIT" ]
2
2020-09-08T07:22:25.000Z
2021-01-28T02:32:19.000Z
import onnxruntime as nxrun import numpy as np ximg = np.random.rand(1,3,240,320).astype(np.float32) sess = nxrun.InferenceSession("./converted_models/mobilenet/mobilenet_sim.onnx") input_name = sess.get_inputs()[0].name output_name = sess.get_outputs()[0].name result = sess.run(None, {input_name: ximg}) print(result)
29.272727
80
0.767081
776d99a65ec0c6ee5b270dc369c217ad8fab0640
1,731
py
Python
test/test_board.py
kirbysebastian/TicTacToe
192c4e98127eedcf42844a24cd5577e773b6eab8
[ "MIT" ]
1
2021-01-31T08:00:22.000Z
2021-01-31T08:00:22.000Z
test/test_board.py
kirbysebastian/TicTacToe
192c4e98127eedcf42844a24cd5577e773b6eab8
[ "MIT" ]
null
null
null
test/test_board.py
kirbysebastian/TicTacToe
192c4e98127eedcf42844a24cd5577e773b6eab8
[ "MIT" ]
null
null
null
import pytest from tic_tac_toe.board import Board def test_board_place_with_integer_pos(): board = Board() out = board.place('*', 4) assert out == False def test_board_place_with_invalid_pos(): board = Board() out = board.place('*', '0') assert out == False def test_board_place(): board = Board() out = board.place('*', '5') assert out == True def test_board_is_full(): board = Board() board.place('*', '1') board.place('*', '2') board.place('*', '3') board.place('*', '4') board.place('*', '5') board.place('*', '6') board.place('*', '7') board.place('*', '8') board.place('*', '9') assert board.is_full() == True def test_board_is_not_full(): board = Board() board.place('*', '1') board.place('*', '2') board.place('*', '3') board.place('*', '4') board.place('*', '5') board.place('*', '6') board.place('*', '7') board.place('*', '8') assert board.is_full() == False def test_board_place_correct_position(): first_board = Board() second_board = Board() first_board.place('*', '5') second_board.place('*', '5') assert str(first_board) == str(second_board) def test_board_place_incorrect_position(): first_board = Board() second_board = Board() first_board.place('*', '3') second_board.place('*', '2') assert str(first_board) != str(second_board) def test_board_is_space_available(): board = Board() assert board.is_full() == False for num in range(1, 10): assert board.is_space_available(str(num)) == True board.place('*', str(num)) assert board.is_space_available(str(num)) == False assert board.is_full() == True
25.835821
58
0.590988
a53a6d8b85b3ce981d9dafeaacaf343245c82551
336
py
Python
common_settings.py
avinassh/Reddit-GoodReads-Bot
45d40920fa84d21f1b5f5893e9c8985c2495dfed
[ "MIT" ]
35
2015-07-17T17:07:58.000Z
2021-07-29T23:10:42.000Z
common_settings.py
avinassh/Reddit-GoodReads-Bot
45d40920fa84d21f1b5f5893e9c8985c2495dfed
[ "MIT" ]
3
2016-01-03T05:21:42.000Z
2017-12-06T10:07:24.000Z
common_settings.py
avinassh/Reddit-GoodReads-Bot
45d40920fa84d21f1b5f5893e9c8985c2495dfed
[ "MIT" ]
8
2015-07-28T20:06:49.000Z
2017-12-06T10:00:14.000Z
# Common, non secret settings # Used in both for Docker and non-Docker deployments # Check `settings_sample.py` or `docker_settings.py` supported_subreddits = 'india+indianbooks+52in52+indianreaders' user_agent = ('Goodreads, v0.1. Gives info of the book whenever goodreads' 'link to a book is posted. (by /u/avinassh)')
42
74
0.738095
0530b9058c8c780742ff39b99f743d03a3a86075
22,465
py
Python
instruments.py
rocketsaurus/pyemi
24d733b5a2ff475964a31ff87c7b112e9c9831ad
[ "MIT" ]
null
null
null
instruments.py
rocketsaurus/pyemi
24d733b5a2ff475964a31ff87c7b112e9c9831ad
[ "MIT" ]
null
null
null
instruments.py
rocketsaurus/pyemi
24d733b5a2ff475964a31ff87c7b112e9c9831ad
[ "MIT" ]
null
null
null
import logging from pathlib import Path import time import glob import numpy as np import pandas as pd from ruamel.yaml import YAML import visa class BaseInstrument: driver_folder = Path(__file__).parent.absolute() / Path('drivers') def __init__(self, resource=None, driver=None, log_level=logging.CRITICAL, **kwargs): if kwargs: for key, value in kwargs.items(): self.interface = key.upper() self.id = value self.resource_string = f'{self.interface}::{self.id}::INSTR' else: self.resource_string = resource.upper() FORMAT = '[%(levelname)s]%(asctime)s - %(message)s' logging.basicConfig(level=log_level, format=FORMAT) logging.info(f'Resource string: {self.resource_string}') self.rm = visa.ResourceManager() self.resource = self.rm.open_resource(self.resource_string) if driver: self.load_driver(driver) def load_driver(self, driver_file): yaml=YAML(typ='safe') doc = self.driver_folder / Path(driver_file) if doc.exists(): logging.info(f'Driver file: {doc}') self.commands = yaml.load(doc) if 'write_termination' in self.commands: self.resource.write_termination = self.commands['write_termination'] if 'query_delay' in self.commands: self.resource.query_delay = float(self.commands['query_delay']) else: logging.warning(f'Driver file does not exist: {doc}') def list_available_drivers(self): drivers = glob.glob(str(self.driver_folder / Path('*.yaml'))) return [Path(f).name for f in drivers] def __str__(self): '''Returns instrument ID''' idn = self.resource.query('*IDN?') idn = idn.split(',') if len(idn) >= 2: return idn[0] + ' ' + idn[1] else: return idn def __repr__(self): '''Returns instrument ID''' return self.resource.query('*IDN?') def reset(self): '''Resets instrument''' self.resource.write('*RST') def opc(self): '''Returns 1 when command is completed, 0 otherwise''' return int(self.resource.query('*OPC?')) class SpectrumAnalyzer(BaseInstrument): def __init__(self, **kwargs): return super().__init__(**kwargs) def ese(self, val): '''Event status enable sets the bits of the event status registers''' self.resource.write(f'*ESE {val}') def esr(self): '''Queries the contents of the event status register''' self.resource.query('*ESR?') @property def rbw(self): command = self.commands['rbw']['get'] return int(self.resource.query(command)) @rbw.setter def rbw(self, val): command = self.commands['rbw']['set'] % val self.resource.write(command) @property def vbw(self): command = self.commands['vbw']['get'] return int(self.resource.query(command)) @vbw.setter def vbw(self, val): command = self.commands['vbw']['set'] % val self.resource.write(command) @property def amplitude_units(self): command = self.commands['amplitude']['units']['get'] units = self.resource.query(command) units = units.lower().strip('\n').replace('b', 'B').replace('v', 'V') return units @amplitude_units.setter def amplitude_units(self, val): command = self.commands['amplitude']['units']['set'] % val self.resource.write(command) @property def start_frequency(self): command = self.commands['frequency']['start']['get'] return int(self.resource.query(command)) @start_frequency.setter def start_frequency(self, val): command = self.commands['frequency']['start']['set'] % val self.resource.write(command) @property def stop_frequency(self): command = self.commands['frequency']['stop']['get'] return int(self.resource.query(command)) @stop_frequency.setter def stop_frequency(self, val): command = self.commands['frequency']['stop']['set'] % val self.resource.write(command) @property def center_frequency(self): command = self.commands['frequency']['center']['get'] return self.resource.query(command) @center_frequency.setter def center_frequency(self, val): command = self.commands['frequency']['center']['set'] % val self.resource.write(command) @property def span_frequency(self): command = self.commands['frequency']['span']['get'] return self.resource.query(command) @span_frequency.setter def span_frequency(self, val): command = self.commands['frequency']['span']['set'] % val self.resource.write(command) @property def sweep_mode(self): command = self.commands['sweep']['mode']['get'] return self.resource.query(command) @sweep_mode.setter def sweep_mode(self, val): if val.lower() == 'continuous' or val.lower() == 'on' or val == 1: command = self.commands['sweep']['mode']['continuous']['set'] else: command = self.commands['sweep']['mode']['single']['set'] return self.resource.write(command) @property def sweep_points(self): command = self.commands['sweep']['points']['get'] return self.resource.query(command) @sweep_points.setter def sweep_points(self, val): command = self.commands['sweep']['points']['set'] % val return self.resource.query(command) @property def mode(self): return self._mode @mode.setter def mode(self, val): command = self.commands['mode'] if 'spectrum' in val.lower() or 'san' in val.lower() or 'analyzer' in val.lower(): command = command % 'SAN' self._mode = 'SAN' elif 'receiver' in val.lower() or 'emi' in val.lower(): command = command % 'REC' self._mode = 'REC' self.resource.write(command) @property def rf_input(self): return self._rf_input @rf_input.setter def rf_input(self, val): command = self.commands['input'] % val self._rf_input = val self.resource.write(command) @property def format(self): command = self.commands['format']['get'] return self.resource.query() @format.setter def format(self, val): if type(val) is tuple: command = self.commands['format']['binary'] % val elif 'asc' in val.lower(): command = self.commands['format']['ascii'] self.resource.write(command) @property def display(self): return self._display @display.setter def display(self, val): command = self.commands['display'] command.format(val) self.resource.write(command) def Trace(self, t): return self._Trace(t, self) class _Trace: def __init__(self, t, sa): self.sa = sa self._trace = t @property def mode(self): command = self.sa.commands['trace']['mode']['get'] % self._trace return self.sa.resource.query(command) @mode.setter def mode(self, val): command = self.sa.commands['trace']['mode']['set'] % (self._trace, val) self.sa.resource.write(command) @property def detector(self): command = self.sa.commands['trace']['detector']['get'] % self._trace return self.sa.resource.query(command) @detector.setter def detector(self, val): command = self.sa.commands['trace']['detector']['set'] % (self._trace, val) self.sa.resource.write(command) def dataframe(self, delay=None): ''' Returns pandas dataframe of Frequency (Hz), Amplitude ()''' command = self.sa.commands['trace']['values'] % self._trace pd.options.display.float_format = '{:.2f}'.format if self.sa.interface.upper() == 'TCPIP': self.sa.format = ('REAL', 32) data = self.sa.resource.query_binary_values(command, delay=delay, data_points=self.sa.sweep_points) elif self.sa.interface.upper() == 'GPIB': if delay: time.sleep(delay) self.sa.format = 'ASCII' data = self.sa.resource.query(command) data = data.replace('\n', '001') data = data.replace('001001', '001') data = data.split(',') frequency = np.linspace(self.sa.start_frequency, self.sa.stop_frequency, len(data)) units = self.sa.amplitude_units df = pd.DataFrame(data={'Frequency (Hz)': frequency, f'Amplitude ({units})': data}) df[f'Amplitude ({units})'] = df[f'Amplitude ({units})'].astype(float) return df def Marker(self, m): return self._Marker(m, self) class _Marker: def __init__(self, m, sa): self.sa = sa self._marker = m self.state = 'ON' @property def state(self): return self._state @state.setter def state(self, val): command = self.sa.commands['marker']['state'] % (self._marker, val) self._state = val self.sa.resource.write(command) @property def frequency(self): command = self.sa.commands['marker']['frequency']['get'] % self._marker return self.sa.resource.query(command) @frequency.setter def frequency(self, val): command = self.sa.commands['marker']['frequency']['set'] f, v = val command = command % (self._marker, f, v) self.sa.resource.write(command) @property def amplitude(self): command = self.sa.commands['marker']['amplitude'] % self._marker return float(self.sa.resource.query(command)) def goto_max(self): '''Moves marker to maximum value''' command = self.sa.commands['marker']['max'] % self._marker self.sa.resource.write(command) def goto_min(self): '''Moves marker to minimum value''' command = self.sa.commands['marker']['min'] % self._marker self.sa.resource.write(command) def center(self): '''Centers the frequency span around the marker''' command = self.sa.commands['marker']['center'] % self._marker self.sa.resource.write(command) class SignalGenerator(BaseInstrument): def __init__(self, **kwargs): return super().__init__(**kwargs) @property def discrete_frequency(self): command = self.commands['frequency']['discrete']['get'] return self.resource.query(command) @discrete_frequency.setter def discrete_frequency(self, val): command = self.commands['frequency']['discrete']['set'] % val self.resource.write(command) @property def output(self): command = self.commands['output']['get'] return self.resource.query(command) @output.setter def output(self, val): command = self.commands['output']['set'] % val self.resource.write(command) @property def level(self): command = self.commands['level']['get'] return self.resource.query(command) @level.setter def level(self, val): command = self.commands['level']['set'] % val self.resource.write(command) @property def unit(self): command = self.commands['unit']['get'] return self.resource.query(command) @unit.setter def unit(self, val): command = self.commands['unit']['set'] % val self.resource.write(command) class ControllerBase(BaseInstrument): def __init__(self, **kwargs): return super().__init__(**kwargs) @property def position(self): command = self.commands['position']['get'] return self.resource.query(command) @position.setter def position(self, val): command = self.commands['position']['set'] % val return self.resource.write(command) @property def acceleration(self): command = self.commands['acceleration']['get'] return self.resource.query(command) @acceleration.setter def acceleration(self, val): command = self.commands['acceleration']['set'] % val return self.resource.write(command) @property def speed(self): command = self.commands['speed']['get'] return self.resource.query(command) @speed.setter def speed(self, val): command = self.commands['speed']['set'] % val return self.resource.write(command) @property def cycle(self): command = self.commands['cycle']['get'] return self.resource.query(command) @cycle.setter def cycle(self, val): command = self.commands['cycle']['set'] % val return self.resource.write(command) @property def error(self): command = self.commands['error']['get'] return self.resource.query(command) def start_scan(self): '''Starts scanning from upper and lower limits based on # of cycles''' command = self.commands['scan']['set'] self.resource.write(command) def scan_progress(self): '''Returns scan progress''' command = self.commands['scan']['get'] self.resource.query(command) class Tower(ControllerBase): def __init__(self, **kwargs): return super().__init__(**kwargs) @property def direction(self): command = self.commands['direction']['get'] return self.resource.query(command) @direction.setter def direction(self, val): if val == -1 or 'd' in val.lower(): command = self.commands['direction']['set']['down'] elif val == 1 or 'u' in val.lower(): command = self.commands['direction']['set']['up'] elif val == 0 or 's' in val.lower(): command = self.commands['direction']['set']['stop'] else: logging.critical('Invalid direction, choose 1, 0, -1 or up, stop, down') return self.resource.write(command) @property def polarity(self): command = self.commands['polarity']['get'] return self.resource.query(command) @polarity.setter def polarity(self, val): if 'v' in val.lower(): command = self.commands['polarity']['set'] % 'V' elif 'h' in val.lower(): command = self.commands['polarity']['set'] % 'H' else: logging.critical('Invalid polarity, choose V or H') return self.resource.write(command) class Turntable(ControllerBase): def __init__(self, **kwargs): return super().__init__(**kwargs) @property def direction(self): command = self.commands['direction']['get'] return self.resource.query(command) @direction.setter def direction(self, val): if val == -1 or 'cc' in val.lower(): command = self.commands['direction']['set']['counterclockwise'] elif val == 1 or 'cw' in val.lower(): command = self.commands['direction']['set']['clockwise'] elif val == 0 or 's' in val.lower(): command = self.commands['direction']['set']['stop'] else: logging.critical('Invalid direction, choose 1, 0, -1 or cw, stop, cc') return self.resource.write(command) class DualController(BaseInstrument): '''For devices with a single interface that control both antenna mast and turntable''' def __init__(self, **kwargs): super().__init__(**kwargs) self.device = 'tower' def reset(self): command = self.commands['reset'] % self._device self.resource.write(command) def opc(self): command = self.commands['opc'] % self._device opc = self.resource.query(command) opc = opc.strip('OK') opc = opc.strip('\n') return int(opc) @property def device(self): return self.readable_device @device.setter def device(self, val): if 'tower' in val.lower() or 'mast' in val.lower() or 'ant' in val.lower(): self.readable_device = 'tower' self._device = self.commands['device']['tower'] elif 'table' in val.lower(): self.readable_device = 'turntable' self._device = self.commands['device']['turntable'] else: logging.critical('Invalid device, choose tower or turntable') raise ValueError @property def position(self): command = self.commands['position']['get'] % self._device return self.resource.query(command) @position.setter def position(self, val): command = self.commands['position']['set'] % (self._device, val) return self.resource.write(command) @property def acceleration(self): command = self.commands['acceleration']['get'] % self._device return self.resource.query(command) @acceleration.setter def acceleration(self, val): command = self.commands['acceleration']['set'] % (self._device, val) return self.resource.write(command) @property def speed(self): command = self.commands['speed']['get'] % self._device return self.resource.query(command) @speed.setter def speed(self, val): command = self.commands['speed']['set'] % (self._device, val) return self.resource.write(command) @property def cycle(self): command = self.commands['cycle']['get'] % self._device return self.resource.query(command) @cycle.setter def cycle(self, val): command = self.commands['cycle']['set'] % (self._device, val) return self.resource.write(command) @property def error(self): command = self.commands['error']['get'] % self._device return self.resource.query(command) def start_scan(self): '''Starts scanning from upper and lower limits based on # of cycles''' command = self.commands['scan']['set'] % self._device self.resource.write(command) def scan_progress(self): '''Returns scan progress''' command = self.commands['scan']['get'] % self._device self.resource.query(command) @property def direction(self): command = self.commands['direction']['get'] return self.resource.query(command) @direction.setter def direction(self, val): if self.readable_device == 'tower': if val == -1 or 'd' in val.lower(): command = self.commands['direction']['set']['down'] elif val == 1 or 'u' in val.lower(): command = self.commands['direction']['set']['up'] elif val == 0 or 's' in val.lower(): command = self.commands['direction']['set']['stop'] else: logging.critical('Invalid direction, choose 1, 0, -1 or up, stop, down') raise ValueError elif self.readable_device == 'turntable': if val == -1 or 'cc' in val.lower(): command = self.commands['direction']['set']['counterclockwise'] elif val == 1 or 'cw' in val.lower(): command = self.commands['direction']['set']['clockwise'] elif val == 0 or 's' in val.lower(): command = self.commands['direction']['set']['stop'] else: logging.critical('Invalid direction, choose 1, 0, -1 or cw, stop, cc') raise ValueError self.resource.write(command) @property def polarity(self): command = self.commands['polarity']['get'] % self.commands['device']['tower'] return self.resource.query(command) @polarity.setter def polarity(self, val): if 'v' in val.lower(): command = self.commands['polarity']['set'] % 'V' elif 'h' in val.lower(): command = self.commands['polarity']['set'] % 'H' else: logging.critical('Invalid polarity, choose V or H') return self.resource.write(command) if __name__ == "__main__": ''' sa = SpectrumAnalyzer(gpib=20, driver='esw.yaml') print(sa) # Tower/Turntable example controller = DualController(gpib=7, driver='emcenter.yaml', log_level=logging.DEBUG) # Read device current position, default on object creation is tower print(controller.position) # Change device to turntable and set to 200 controller.device = 'turntable' controller.position = 200 # Should return 200 or the angle of the turntable during its current rotation to 200 print(controller.position) # Close connection controller.resource.close() # Signal generator example sg = SignalGenerator(tcpip='10.0.0.11', driver='smw200a.yaml', log_level=logging.INFO) # Reset instrument sg.reset() # Set fixed frequency sg.discrete_frequency = (200, 'MHz') print(sg.discrete_frequency) # Turn rf output on sg.output = 1 print(sg.output) # Set output signal level sg.level = -20 print(sg.level) # Set output units dBm, dBuV etc. sg.unit = 'dbuv' print(sg.unit) # Close connection sg.resource.close() # Spectrum analyzer example sa = SpectrumAnalyzer(tcpip='10.0.0.10', driver='esw.yaml', log_level=logging.INFO) # Reset instrument sa.reset() # Set to spectrum analyzer mode sa.mode = 'SAN' # Set start frequency to 1MHz sa.start_frequency = (1, 'MHz') start = sa.start_frequency # Create trace object tied to trace 1 and read its contents as a pandas dataframe t1 = sa.Trace(1) print(t1.dataframe()) # Create a marker object tied to marker 1 m1 = sa.Marker(1) # Move the marker to the peak value m1.goto_max() # Read out marker frequency and amplitude amp = m1.amplitude x = m1.frequency print(amp, x) # Close connection sa.resource.close() '''
31.865248
115
0.590608
c04354b8e88e69033d83d96abfc37f58e5bbf4c8
7,453
py
Python
adbutils/extra/minicap/__init__.py
hakaboom/adb-utils
deb6d62fc636be2969a641df613c1348ea889d6c
[ "Apache-2.0" ]
24
2021-07-27T05:23:57.000Z
2022-03-31T17:54:43.000Z
adbutils/extra/minicap/__init__.py
yundouguai/adb-utils
1932f57cd45b14412b4894264f9aa237a09b3f32
[ "Apache-2.0" ]
13
2021-08-11T09:50:14.000Z
2021-12-20T11:37:50.000Z
adbutils/extra/minicap/__init__.py
yundouguai/adb-utils
1932f57cd45b14412b4894264f9aa237a09b3f32
[ "Apache-2.0" ]
12
2021-08-17T07:35:46.000Z
2022-02-07T02:36:11.000Z
# -*- coding: utf-8 -*- import time import threading from loguru import logger from adbutils.constant import (ANDROID_TMP_PATH, MNC_REMOTE_PATH, MNC_SO_REMOTE_PATH, MNC_CMD, MNC_CAP_LOCAL_PATH, MNC_LOCAL_NAME, MNC_LOCAL_PATH, MNC_SO_LOCAL_PATH) from adbutils.extra.minicap.exceptions import MinicapStartError, MinicapServerConnectError from adbutils import ADBDevice from adbutils._utils import NonBlockingStreamReader, reg_cleanup, SafeSocket from adbutils._wraps import threadsafe_generator from typing import Tuple import struct import subprocess class Minicap(object): RECVTIMEOUT = None def __init__(self, device: ADBDevice, rotation_watcher=None): """ 初始化minicap Args: device: 设备类 rotation_watcher: 方向监控函数 """ self.device = device self.MNC_LOCAL_NAME = MNC_LOCAL_NAME.format(device_id=self.device.device_id) # minicap在设备上的转发名 self.MNC_PORT = None # minicap在电脑上使用的端口 self.quirk_flag = 0 self.server_flag = False # 判断minicap服务是否启动 self.proc = None self.nbsp = None self._update_rotation_event = threading.Event() if rotation_watcher: rotation_watcher.reg_callback(lambda x: self.update_rotation(x * 90)) self._install_minicap() def __str__(self): return f"<minicap ({self.server_flag and 'Start' or 'Close'})> port:{self.MNC_PORT}" \ f"\tlocal_name:{self.MNC_LOCAL_NAME}" def start_server(self) -> None: """ 开启minicap服务 Raises: MinicapStartError: minicap server start error Returns: None """ self._set_minicap_forward() param = self._get_params() proc = self.device.start_shell([MNC_CMD, f"-n '{self.MNC_LOCAL_NAME}'", '-P', "%dx%d@%dx%d/%d 2>&1" % param]) nbsp = NonBlockingStreamReader(proc.stdout) while True: line = nbsp.readline(timeout=5) if line is None: raise MinicapStartError("minicap server setup timeout") if b'have different types' in line: raise MinicapStartError("minicap server setup error") if b"Server start" in line: logger.info('minicap server setup') break if proc.poll() is not None: raise MinicapStartError('minicap server quit immediately') reg_cleanup(proc.kill) time.sleep(.5) # self.proc = proc # self.nbsp = nbsp self.server_flag = True def teardown(self) -> None: """ 关闭minicap服务 Returns: None """ logger.debug('minicap server teardown') if self.proc: self.proc.kill() if self.nbsp: self.nbsp.kill() if self.MNC_PORT and self.device.get_forward_port(remote=self.MNC_LOCAL_NAME): self.device.remove_forward(local=f'tcp:{self.MNC_PORT}') self.server_flag = False def _set_minicap_forward(self): """ 设置minicap开放的端口 Returns: None """ # teardown服务后,保留端口信息,用于下次启动 remote = f'localabstract:{self.MNC_LOCAL_NAME}' if port := self.device.get_forward_port(remote=remote, device_id=self.device.device_id): self.MNC_PORT = port return self.MNC_PORT = self.MNC_PORT or self.device.get_available_forward_local() self.device.forward(local=f'tcp:{self.MNC_PORT}', remote=remote) def _install_minicap(self) -> None: """ check if minicap and minicap.so installed Returns: None """ if not self.device.check_file(ANDROID_TMP_PATH, 'minicap'): self.device.push(local=MNC_LOCAL_PATH.format(abi_version=self.device.abi_version), remote=MNC_REMOTE_PATH) time.sleep(1) self.device.shell(['chmod', '755', MNC_REMOTE_PATH]) if not self.device.check_file(ANDROID_TMP_PATH, 'minicap.so'): self.device.push(local=MNC_SO_LOCAL_PATH.format(abi_version=self.device.abi_version, sdk_version=self.device.sdk_version), remote=MNC_SO_REMOTE_PATH) time.sleep(1) self.device.shell(['chmod', '755', MNC_SO_REMOTE_PATH]) def _get_params(self) -> Tuple[int, int, int, int, int]: """ 获取minicap命令需要的屏幕分辨率参数 Returns: None """ display_info = self.device.displayInfo real_width = display_info['width'] real_height = display_info['height'] real_rotation = display_info['rotation'] if self.quirk_flag & 2 and real_rotation in (90, 270): params = real_height, real_width, real_height, real_width, 0 else: params = real_width, real_height, real_width, real_height, real_rotation return params def update_rotation(self, rotation): """ 更新屏幕方向 Args: rotation: 方向角度 Returns: None """ logger.debug("minicap update_rotation: {}", rotation) self._update_rotation_event.set() def get_frame(self): """ 获取屏幕截图 Returns: 图像数据 """ if self._update_rotation_event.is_set(): logger.info('minicap update_rotation') self.teardown() self.start_server() self._update_rotation_event.clear() try: return self._get_frame() except (ConnectionRefusedError, OSError) as err: self.teardown() raise MinicapServerConnectError(f'{err}') def _get_frame(self): s = SafeSocket() s.connect((self.device.host, self.MNC_PORT)) t = s.recv(24) # minicap header global_headers = struct.unpack("<2B5I2B", t) # Global header binary format https://github.com/openstf/minicap#global-header-binary-format ori, self.quirk_flag = global_headers[-2:] if self.quirk_flag & 2 and ori not in (0, 1, 2): stopping = True logger.error("quirk_flag found:{}, going to resetup", self.quirk_flag) else: stopping = False if not stopping: s.send(b"1") if self.RECVTIMEOUT is not None: header = s.recv_with_timeout(4, self.RECVTIMEOUT) else: header = s.recv(4) if header is None: logger.error("minicap header is None") else: frame_size = struct.unpack("<I", header)[0] frame_data = s.recv(frame_size) s.close() return frame_data logger.info('minicap get_frame ends') s.close() self.teardown() if __name__ == '__main__': import cv2 from baseImage import IMAGE from adbutils import ADBDevice from adbutils.extra.minicap import Minicap device = ADBDevice(device_id='emulator-5554') minicap = Minicap(device) minicap.start_server() while True: if img := minicap.get_frame(): cv2.imshow('test', IMAGE(img).imread()) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() minicap.teardown()
31.447257
114
0.587012
94d506bdd976bd930b419b039ccab407e9d29abf
6,099
py
Python
catalyst/rl/offpolicy/algorithms/critic.py
andrey-avdeev/catalyst
fd17aaba7775c99b7e2b1ce86e60aa8f2379acc3
[ "Apache-2.0" ]
1
2019-11-26T06:41:33.000Z
2019-11-26T06:41:33.000Z
catalyst/rl/offpolicy/algorithms/critic.py
andrey-avdeev/catalyst
fd17aaba7775c99b7e2b1ce86e60aa8f2379acc3
[ "Apache-2.0" ]
null
null
null
catalyst/rl/offpolicy/algorithms/critic.py
andrey-avdeev/catalyst
fd17aaba7775c99b7e2b1ce86e60aa8f2379acc3
[ "Apache-2.0" ]
1
2021-12-20T07:32:25.000Z
2021-12-20T07:32:25.000Z
from typing import Dict, Union # isort:skip import copy from catalyst.rl import utils from catalyst.rl.core import ( ActorSpec, AlgorithmSpec, CriticSpec, EnvironmentSpec ) from catalyst.rl.registry import AGENTS class OffpolicyCritic(AlgorithmSpec): def __init__( self, critic: CriticSpec, gamma: float, n_step: int, critic_loss_params: Dict = None, critic_optimizer_params: Dict = None, critic_scheduler_params: Dict = None, critic_grad_clip_params: Dict = None, critic_tau: float = 1.0, **kwargs ): self._device = utils.get_device() self.critic = critic.to(self._device) self.target_critic = copy.deepcopy(critic).to(self._device) # preparation critic_components = utils.get_trainer_components( agent=self.critic, loss_params=critic_loss_params, optimizer_params=critic_optimizer_params, scheduler_params=critic_scheduler_params, grad_clip_params=critic_grad_clip_params ) # criterion self._critic_loss_params = critic_components["loss_params"] self.critic_criterion = critic_components["criterion"] # optimizer self._critic_optimizer_params = critic_components["optimizer_params"] self.critic_optimizer = critic_components["optimizer"] # scheduler self._critic_scheduler_params = critic_components["scheduler_params"] self.critic_scheduler = critic_components["scheduler"] # grad clipping self._critic_grad_clip_params = critic_components["grad_clip_params"] self.critic_grad_clip_fn = critic_components["grad_clip_fn"] # other hyperparameters self._n_step = n_step self._gamma = gamma self.critic_tau = critic_tau # other init self._init(**kwargs) def _init(self, **kwargs): assert len(kwargs) == 0 @property def n_step(self) -> int: return self._n_step @property def gamma(self) -> float: return self._gamma def pack_checkpoint(self, with_optimizer: bool = True): checkpoint = {} for key in ["critic"]: checkpoint[f"{key}_state_dict"] = getattr(self, key).state_dict() if with_optimizer: for key2 in ["optimizer", "scheduler"]: key2 = f"{key}_{key2}" value2 = getattr(self, key2, None) if value2 is not None: checkpoint[f"{key2}_state_dict"] = value2.state_dict() return checkpoint def unpack_checkpoint(self, checkpoint, with_optimizer: bool = True): for key in ["critic"]: value_l = getattr(self, key, None) if value_l is not None: value_r = checkpoint[f"{key}_state_dict"] value_l.load_state_dict(value_r) if with_optimizer: for key2 in ["optimizer", "scheduler"]: key2 = f"{key}_{key2}" value_l = getattr(self, key2, None) if value_l is not None: value_r = checkpoint[f"{key2}_state_dict"] value_l.load_state_dict(value_r) def critic_update(self, loss): self.critic.zero_grad() self.critic_optimizer.zero_grad() loss.backward() if self.critic_grad_clip_fn is not None: self.critic_grad_clip_fn(self.critic.parameters()) self.critic_optimizer.step() if self.critic_scheduler is not None: self.critic_scheduler.step() return {"lr_critic": self.critic_scheduler.get_lr()[0]} def target_critic_update(self): utils.soft_update(self.target_critic, self.critic, self.critic_tau) def update_step(self, value_loss, critic_update=True): """ Updates parameters of neural networks and returns learning metrics Args: value_loss: critic_update: Returns: """ raise NotImplementedError def train(self, batch, actor_update=False, critic_update=True): states_t, actions_t, rewards_t, states_tp1, done_t = \ batch["state"], batch["action"], batch["reward"], \ batch["next_state"], batch["done"] states_t = utils.any2device(states_t, self._device) actions_t = utils.any2device(actions_t, self._device).unsqueeze(1).long() rewards_t = utils.any2device(rewards_t, self._device).unsqueeze(1) states_tp1 = utils.any2device(states_tp1, device=self._device) done_t = utils.any2device(done_t, device=self._device).unsqueeze(1) """ states_t: [bs; history_len; observation_len] actions_t: [bs; 1] rewards_t: [bs; 1] states_tp1: [bs; history_len; observation_len] done_t: [bs; 1] """ value_loss = self._loss_fn( states_t, actions_t, rewards_t, states_tp1, done_t ) metrics = self.update_step( value_loss=value_loss, critic_update=critic_update ) return metrics @classmethod def prepare_for_trainer( cls, env_spec: EnvironmentSpec, config: Dict ) -> "AlgorithmSpec": config_ = config.copy() agents_config = config_["agents"] critic_params = agents_config["critic"] critic = AGENTS.get_from_params( **critic_params, env_spec=env_spec, ) algorithm = cls( **config_["algorithm"], critic=critic, ) return algorithm @classmethod def prepare_for_sampler( cls, env_spec: EnvironmentSpec, config: Dict ) -> Union[ActorSpec, CriticSpec]: config_ = config.copy() agents_config = config_["agents"] critic_params = agents_config["critic"] critic = AGENTS.get_from_params( **critic_params, env_spec=env_spec, ) return critic
32.967568
78
0.606329
5fdf048733391e31248a0a83599c0cf14cfd3f2a
11,452
py
Python
tensorflow/python/eager/def_function_xla_jit_test.py
Mithilesh1609/tensorflow
63f70b5611d7f50512ea26295d26016c2704901b
[ "Apache-2.0" ]
8
2020-07-29T18:50:45.000Z
2021-07-25T07:06:43.000Z
tensorflow/python/eager/def_function_xla_jit_test.py
3ecurityy/tensorflow
f8c0e68a8aa5d575a19129ec67c9ed6262652082
[ "Apache-2.0" ]
2
2021-08-25T16:14:36.000Z
2022-02-10T05:39:47.000Z
tensorflow/python/eager/def_function_xla_jit_test.py
3ecurityy/tensorflow
f8c0e68a8aa5d575a19129ec67c9ed6262652082
[ "Apache-2.0" ]
11
2020-05-31T13:14:56.000Z
2021-12-14T04:39:25.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import tensor_array_ops from tensorflow.python.platform import test class DefFunctionTest(test.TestCase): def testAutoclusteringWithTfFunction(self): @def_function.function(experimental_compile=False) def outer(a, b, c): return a * inner(b, c) + c @def_function.function(experimental_compile=True) def inner(b, c): return b + c * b i1 = constant_op.constant([1.0, 2.0, 3.0, 4.0, 5.0]) i2 = constant_op.constant([1.0, 2.0, 3.0, 4.0, 5.0]) i3 = constant_op.constant([1.0, 2.0, 3.0, 4.0, 5.0]) with context.collect_graphs(optimized=True) as graphs: outer(i1, i2, i3) if test_util.is_xla_enabled(): self.assertIn('_XlaRun', [n.op for n in graphs[0].node]) else: self.assertNotIn('_XlaRun', [n.op for n in graphs[0].node]) def testBasic(self): def fn(x, a): return x + a func = def_function.function(fn, experimental_compile=False) xla_func = def_function.function(fn, experimental_compile=True) inputs = constant_op.constant([1, 2, 2, 3, 3]) self.assertAllClose([2, 3, 3, 4, 4], func(inputs, 1)) if not test.is_built_with_rocm(): # XLA support is not yet enabled for TF ROCm self.assertAllClose([2, 3, 3, 4, 4], xla_func(inputs, 1)) def testBasicInt32(self): def fn(x, a): return x + a xla_func = def_function.function(fn, experimental_compile=True) inputs = constant_op.constant([1, 2, 2, 3, 3], dtype=dtypes.int32) if not test.is_built_with_rocm(): # XLA support is not yet enabled for TF ROCm self.assertAllClose([2, 3, 3, 4, 4], xla_func(inputs, 1)) def testDerivative(self): if test.is_built_with_rocm(): return def fn(x, a): return 2 * x + a xla_func = def_function.function(fn, experimental_compile=True) with backprop.GradientTape() as tape: inputs = constant_op.constant([1., 2., 2., 3., 3.]) tape.watch(inputs) outputs = xla_func(inputs, 1) self.assertAllClose([2, 2, 2, 2, 2], tape.gradient(outputs, inputs)) # pylint: disable=protected-access (forward, backward) = xla_func.get_concrete_function( inputs, 1)._delayed_rewrite_functions.forward_backward() # Check that the must-compile attribute gets correctly propagated to the # created derivatives. self.assertTrue(backward.function_def.attr['_XlaMustCompile']) self.assertTrue(forward.definition.attr['_XlaMustCompile']) # Calling function with experimental_compile=True from # experimental_compile=False should compile the inner func. def testNestedCall(self): def fn(x, a): return x + a xla_func = def_function.function(fn, experimental_compile=True) def fn2(x, a): return xla_func(x, a) func = def_function.function(fn2, experimental_compile=False) inputs = constant_op.constant([1, 2, 2, 3, 3]) if not test.is_built_with_rocm(): # XLA support is not yet enabled for TF ROCm self.assertAllClose([2, 3, 3, 4, 4], func(inputs, 1)) def testNestedCallUnsupportedOps(self): def fn(x): return array_ops.unique(x).y xla_func = def_function.function(fn, experimental_compile=True) def fn2(x): return xla_func(x) func = def_function.function(fn2, experimental_compile=False) inputs = constant_op.constant([1, 2, 2, 3, 3]) if not test.is_built_with_rocm(): with self.assertRaisesRegexp(errors.InvalidArgumentError, 'not compilable'): func(inputs) def testUnsupportedOps(self): def fn(x): return array_ops.unique(x).y # Unique is not supported by XLA func = def_function.function(fn, experimental_compile=False) xla_func = def_function.function(fn, experimental_compile=True) inputs = constant_op.constant([1, 2, 2, 3, 3]) self.assertAllClose([1, 2, 3], func(inputs)) with self.assertRaisesRegexp(errors.InvalidArgumentError, 'not compilable'): xla_func(inputs) def testFunctionGradient(self): v = resource_variable_ops.ResourceVariable(2.0) def fn(x): return v * x func = def_function.function(fn, experimental_compile=False) xla_func = def_function.function(fn, experimental_compile=True) def run_and_check(test_func): x = constant_op.constant(3.0) with backprop.GradientTape() as tape: y = test_func(x) dy = tape.gradient(y, v) self.assertAllClose(6.0, y) self.assertAllClose(3.0, dy) run_and_check(func) if not test.is_built_with_rocm(): # XLA support is not yet enabled for TF ROCm run_and_check(xla_func) def testControlFlow(self): @def_function.function(experimental_compile=True) def f(x): assert control_flow_util.GraphOrParentsInXlaContext( ops.get_default_graph()) x = ops.convert_to_tensor(x) def body(i, a): return i + 1, control_flow_ops.cond(i > 2, lambda: a + (x**2), lambda: a + 3) return control_flow_ops.while_loop( lambda i, *_: i < 10, body, (constant_op.constant(0), constant_op.constant(3.)), maximum_iterations=10)[1] @def_function.function(experimental_compile=True) def g(x): x = ops.convert_to_tensor(x) with backprop.GradientTape() as tape: tape.watch(x) y = f(x) return y, tape.gradient(y, x) self.assertAllClose(40.0, f(2.0)) self.assertAllClose([40.0, 28.0], g(2.0)) def testMethodCompilation(self): if test.is_built_with_rocm(): return class C(object): @def_function.function(experimental_compile=True) def f1(self, x, a): return x + a inputs = constant_op.constant([1, 2, 2, 3, 3]) c = C() self.assertAllClose([2, 3, 3, 4, 4], c.f1(inputs, 1)) def testMethodCompilationUnsupportedFunc(self): if test.is_built_with_rocm(): return class C(object): @def_function.function(experimental_compile=True) def f1(self, x): return array_ops.unique(x).y inputs = constant_op.constant([1, 2, 2, 3, 3]) c = C() with self.assertRaisesRegexp(errors.InvalidArgumentError, 'not compilable'): c.f1(inputs) def testMustBeConstantPropagation(self): if test.is_built_with_rocm(): return @def_function.function(experimental_compile=True) def f(): return constant_op.constant([0, 2, 1], dtype=dtypes.int32) @def_function.function(experimental_compile=True) def g(a, b): return array_ops.transpose(a, b) @def_function.function def z(): return g(array_ops.ones([3, 4, 3], dtype=dtypes.float32), f()) z() def testArgMinMax(self): @def_function.function(experimental_compile=True) def argmax(x): return math_ops.argmax(x) @def_function.function(experimental_compile=True) def argmin(x): return math_ops.argmin(x) self.assertAllClose(0, argmax(array_ops.ones([10], dtype=dtypes.float32))) self.assertAllClose(0, argmax(array_ops.ones([10]))) self.assertAllClose(0, argmin(array_ops.ones([10], dtype=dtypes.float32))) self.assertAllClose(0, argmin(array_ops.ones([10]))) def testErrorMessagePassingTensorArray(self): @def_function.function(experimental_compile=True) def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=1, element_shape=[]) ta = ta.write(0, 2 * x) y = ta.read(0) return y x = constant_op.constant(3.14) with backprop.GradientTape() as tape: tape.watch(x) with self.assertRaisesRegexp( errors.UnimplementedError, 'TensorList crossing the XLA/TF boundary'): y = f(x) tape.gradient(y, x) def testTensorListConcatV2(self): def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[3]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() compiled_f = def_function.function(experimental_compile=True)(f) inputs = constant_op.constant([3.14, 2.68, 7.69]) self.assertAllClose([6.28, 5.36, 15.38, 9.42, 8.04, 23.07], f(inputs)) self.assertAllClose(compiled_f(inputs), f(inputs)) def testTensorListConcatV2Multidim(self): def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[3, 2]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() compiled_f = def_function.function(experimental_compile=True)(f) inputs = constant_op.constant([[3.14, 21.1], [2.68, 22.2], [7.69, 23.3]]) self.assertAllClose(f(inputs), compiled_f(inputs)) def testTensorListConcatV2Scalars(self): def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[1]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() compiled_f = def_function.function(experimental_compile=True)(f) inputs = constant_op.constant([3.14]) self.assertAllClose(f(inputs), compiled_f(inputs)) def testTensorListConcatGrad(self): def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[3]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() def g(): x = constant_op.constant([3.14, 2.68, 7.69]) with backprop.GradientTape() as tape: tape.watch(x) y = f(x) return tape.gradient(y, x) compiled_g = def_function.function(experimental_compile=True)(g) self.assertAllClose([5.0, 5.0, 5.0], g()) self.assertAllClose(compiled_g(), g()) def testCumsum(self): @def_function.function(experimental_compile=True) def f(x): return math_ops.cumsum(x) f64_input = constant_op.constant([1.1, 2.2, 3.3], dtype=dtypes.float64) self.assertAllClose([1.1, 3.3, 6.6], f(f64_input)) if __name__ == '__main__': ops.enable_eager_execution() test.main()
30.867925
80
0.668442
ec456a9461cfa53a2f0be8a212d2c2b9b280fe49
12,504
py
Python
projectinfo/test.py
lifecake/Project-build-info
6594c41933af3351d5ad62510cd84f004f675f9a
[ "Apache-2.0" ]
null
null
null
projectinfo/test.py
lifecake/Project-build-info
6594c41933af3351d5ad62510cd84f004f675f9a
[ "Apache-2.0" ]
null
null
null
projectinfo/test.py
lifecake/Project-build-info
6594c41933af3351d5ad62510cd84f004f675f9a
[ "Apache-2.0" ]
null
null
null
import json # # { # "applicationId":"com.neulion.f", # "applicationName":"f", # "applicationVersion":"8.0602", # "librarys": [ # { # "libraryName":"track-core", # "libraryVersion":"6" # },{ # "libraryName":"track-ga", # "libraryVersion":"6" # },{ # "libraryName":"player", # "libraryVersion":"5.0.0" # } # ] # } tempdata = [{"package":"com.neulion.firetv.ufc.android.amazon.dev","packageName":"ufc-tv","productFlavorName":"amazon","packageVersionCode":"103","packageVersionName":"8.0613","packageTargetSdk":"27","packageMiniSdk":"21","deepLinkScheme":"amazon_ufctv","packageMappingUrl":"","libraryCoordinateList":[{"group":"com.android.tools.lint","name":"lint-gradle","currentVersion":"26.1.2"},{"group":"org.jetbrains.kotlin","name":"kotlin-annotation-processing-gradle","currentVersion":"1.2.41"},{"group":"com.crashlytics.sdk.android","name":"crashlytics","currentVersion":"2.8.0"},{"group":"com.squareup.leakcanary","name":"leakcanary-android","currentVersion":"1.5.4"},{"group":"com.squareup.leakcanary","name":"leakcanary-android-no-op","currentVersion":"1.5.4"},{"group":"org.jetbrains.kotlin","name":"kotlin-stdlib-jdk8","currentVersion":"1.2.41"},{"group":"com.google.android.gms","name":"play-services-analytics","currentVersion":"11.8.0"},{"group":"com.android.databinding","name":"baseLibrary","currentVersion":"3.1.2"},{"group":"com.neulion.android.app","name":"core","currentVersion":"0.5.3-SNAPSHOT"},{"group":"com.neulion.android.iap","name":"iap-amazon","currentVersion":"2.1.0-SNAPSHOT"},{"group":"android.arch.lifecycle","name":"extensions","currentVersion":"1.1.1"},{"group":"com.android.support","name":"support-annotations","currentVersion":"27.0.2"},{"group":"com.android.databinding","name":"adapters","currentVersion":"3.1.2"},{"group":"com.android.support","name":"recyclerview-v7","currentVersion":"27.0.2"},{"group":"com.jakewharton","name":"butterknife-compiler","currentVersion":"8.8.1"},{"group":"com.neulion.android","name":"service-v5","currentVersion":"3.0.12"},{"group":"com.android.databinding","name":"library","currentVersion":"3.1.2"},{"group":"com.android.support","name":"appcompat-v7","currentVersion":"27.0.2"},{"group":"com.android.support","name":"leanback-v17","currentVersion":"27.0.2"},{"group":"com.android.databinding","name":"compiler","currentVersion":"3.1.2"},{"group":"com.jakewharton","name":"butterknife","currentVersion":"8.8.1"},{"group":"com.neulion.android.media","name":"NeuPlayer","currentVersion":"4.7.2-SNAPSHOT"},{"group":"com.android.support","name":"design","currentVersion":"27.0.2"},{"group":"com.android.support","name":"multidex-instrumentation","currentVersion":"1.0.2"},{"group":"com.android.support","name":"cardview-v7","currentVersion":"27.0.2"},{"group":"com.neulion.android.iap","name":"iap-google","currentVersion":"2.1.0-SNAPSHOT"},{"group":"com.neulion.android.tracking","name":"tracker-ga","currentVersion":"4.3.2"},{"group":"com.neulion.android","name":"uikit-fresco","currentVersion":"1.1.12-SNAPSHOT"},{"group":"com.neulion.android","name":"appengine","currentVersion":"2.4.0"},{"group":"com.android.support","name":"multidex","currentVersion":"1.0.2"},{"group":"com.android.support","name":"support-v4","currentVersion":"27.0.2"},{"group":"com.android.support.constraint","name":"constraint-layout","currentVersion":"1.1.0"},{"group":"uk.co.chrisjenx","name":"calligraphy","currentVersion":"2.3.0"},{"group":"com.neulion.android","name":"commonparser","currentVersion":"3.0.4"}]},{"package":"com.neulion.firetv.ufc.android.amazon.dev","packageName":"ufc-tv","productFlavorName":"google","packageVersionCode":"103","packageVersionName":"8.0613","packageTargetSdk":"27","packageMiniSdk":"21","deepLinkScheme":"google_ufctv","packageMappingUrl":"","libraryCoordinateList":[{"group":"com.android.tools.lint","name":"lint-gradle","currentVersion":"26.1.2"},{"group":"org.jetbrains.kotlin","name":"kotlin-annotation-processing-gradle","currentVersion":"1.2.41"},{"group":"com.crashlytics.sdk.android","name":"crashlytics","currentVersion":"2.8.0"},{"group":"com.squareup.leakcanary","name":"leakcanary-android","currentVersion":"1.5.4"},{"group":"com.squareup.leakcanary","name":"leakcanary-android-no-op","currentVersion":"1.5.4"},{"group":"org.jetbrains.kotlin","name":"kotlin-stdlib-jdk8","currentVersion":"1.2.41"},{"group":"com.google.android.gms","name":"play-services-analytics","currentVersion":"11.8.0"},{"group":"com.android.databinding","name":"baseLibrary","currentVersion":"3.1.2"},{"group":"com.neulion.android.app","name":"core","currentVersion":"0.5.3-SNAPSHOT"},{"group":"com.neulion.android.iap","name":"iap-amazon","currentVersion":"2.1.0-SNAPSHOT"},{"group":"android.arch.lifecycle","name":"extensions","currentVersion":"1.1.1"},{"group":"com.android.support","name":"support-annotations","currentVersion":"27.0.2"},{"group":"com.android.databinding","name":"adapters","currentVersion":"3.1.2"},{"group":"com.android.support","name":"recyclerview-v7","currentVersion":"27.0.2"},{"group":"com.jakewharton","name":"butterknife-compiler","currentVersion":"8.8.1"},{"group":"com.neulion.android","name":"service-v5","currentVersion":"3.0.12"},{"group":"com.android.databinding","name":"library","currentVersion":"3.1.2"},{"group":"com.android.support","name":"appcompat-v7","currentVersion":"27.0.2"},{"group":"com.android.support","name":"leanback-v17","currentVersion":"27.0.2"},{"group":"com.android.databinding","name":"compiler","currentVersion":"3.1.2"},{"group":"com.jakewharton","name":"butterknife","currentVersion":"8.8.1"},{"group":"com.neulion.android.media","name":"NeuPlayer","currentVersion":"4.7.2-SNAPSHOT"},{"group":"com.android.support","name":"design","currentVersion":"27.0.2"},{"group":"com.android.support","name":"multidex-instrumentation","currentVersion":"1.0.2"},{"group":"com.android.support","name":"cardview-v7","currentVersion":"27.0.2"},{"group":"com.neulion.android.iap","name":"iap-google","currentVersion":"2.1.0-SNAPSHOT"},{"group":"com.neulion.android.tracking","name":"tracker-ga","currentVersion":"4.3.2"},{"group":"com.neulion.android","name":"uikit-fresco","currentVersion":"1.1.12-SNAPSHOT"},{"group":"com.neulion.android","name":"appengine","currentVersion":"2.4.0"},{"group":"com.android.support","name":"multidex","currentVersion":"1.0.2"},{"group":"com.android.support","name":"support-v4","currentVersion":"27.0.2"},{"group":"com.android.support.constraint","name":"constraint-layout","currentVersion":"1.1.0"},{"group":"uk.co.chrisjenx","name":"calligraphy","currentVersion":"2.3.0"},{"group":"com.neulion.android","name":"commonparser","currentVersion":"3.0.4"}]},{"package":"com.neulion.firetv.ufc.android.amazon.dev","packageName":"ufc-tv","productFlavorName":"prod","packageVersionCode":"103","packageVersionName":"8.0613","packageTargetSdk":"27","packageMiniSdk":"21","deepLinkScheme":"prod_ufctv","packageMappingUrl":"","libraryCoordinateList":[{"group":"com.android.tools.lint","name":"lint-gradle","currentVersion":"26.1.2"},{"group":"org.jetbrains.kotlin","name":"kotlin-annotation-processing-gradle","currentVersion":"1.2.41"},{"group":"com.crashlytics.sdk.android","name":"crashlytics","currentVersion":"2.8.0"},{"group":"com.squareup.leakcanary","name":"leakcanary-android","currentVersion":"1.5.4"},{"group":"com.squareup.leakcanary","name":"leakcanary-android-no-op","currentVersion":"1.5.4"},{"group":"org.jetbrains.kotlin","name":"kotlin-stdlib-jdk8","currentVersion":"1.2.41"},{"group":"com.google.android.gms","name":"play-services-analytics","currentVersion":"11.8.0"},{"group":"com.android.databinding","name":"baseLibrary","currentVersion":"3.1.2"},{"group":"com.neulion.android.app","name":"core","currentVersion":"0.5.3-SNAPSHOT"},{"group":"com.neulion.android.iap","name":"iap-amazon","currentVersion":"2.1.0-SNAPSHOT"},{"group":"android.arch.lifecycle","name":"extensions","currentVersion":"1.1.1"},{"group":"com.android.support","name":"support-annotations","currentVersion":"27.0.2"},{"group":"com.android.databinding","name":"adapters","currentVersion":"3.1.2"},{"group":"com.android.support","name":"recyclerview-v7","currentVersion":"27.0.2"},{"group":"com.jakewharton","name":"butterknife-compiler","currentVersion":"8.8.1"},{"group":"com.neulion.android","name":"service-v5","currentVersion":"3.0.12"},{"group":"com.android.databinding","name":"library","currentVersion":"3.1.2"},{"group":"com.android.support","name":"appcompat-v7","currentVersion":"27.0.2"},{"group":"com.android.support","name":"leanback-v17","currentVersion":"27.0.2"},{"group":"com.android.databinding","name":"compiler","currentVersion":"3.1.2"},{"group":"com.jakewharton","name":"butterknife","currentVersion":"8.8.1"},{"group":"com.neulion.android.media","name":"NeuPlayer","currentVersion":"4.7.2-SNAPSHOT"},{"group":"com.android.support","name":"design","currentVersion":"27.0.2"},{"group":"com.android.support","name":"multidex-instrumentation","currentVersion":"1.0.2"},{"group":"com.android.support","name":"cardview-v7","currentVersion":"27.0.2"},{"group":"com.neulion.android.iap","name":"iap-google","currentVersion":"2.1.0-SNAPSHOT"},{"group":"com.neulion.android.tracking","name":"tracker-ga","currentVersion":"4.3.2"},{"group":"com.neulion.android","name":"uikit-fresco","currentVersion":"1.1.12-SNAPSHOT"},{"group":"com.neulion.android","name":"appengine","currentVersion":"2.4.0"},{"group":"com.android.support","name":"multidex","currentVersion":"1.0.2"},{"group":"com.android.support","name":"support-v4","currentVersion":"27.0.2"},{"group":"com.android.support.constraint","name":"constraint-layout","currentVersion":"1.1.0"},{"group":"uk.co.chrisjenx","name":"calligraphy","currentVersion":"2.3.0"},{"group":"com.neulion.android","name":"commonparser","currentVersion":"3.0.4"}]}] print(type(tempdata)) print(len(tempdata)) for data in tempdata: print(data) print(type(data)) db = get_db() error = None if dict1['package'] is None: error = 'Missing package' elif dict1['packageName'] is None: error = 'Missing packageName' elif dict1['packageVersionCode'] is None: error = 'Missing packageVersionCode' elif dict1['libraryCoordinateList'] is None: error = 'Missing Library info' # if already exist just update. elif db.execute( 'SELECT package, packageVersionName, productFlavorName FROM Package WHERE package = ? and ' 'packageVersionName = ? and productFlavorName = ?', (dict1['package'], dict1['packageVersionName'], dict1['productFlavorName'])).fetchone() is not None: # print('Found') db.execute( 'UPDATE Package SET packageName = ?, packageVersionCode = ?,productFlavorName = ?, packageTargetSdk = ?, ' 'packageMiniSdk = ?, packageMappingUrl = ?, deepLinkScheme = ? WHERE package = ? and ' 'packageVersionName = ?', (dict1['packageName'], dict1['packageVersionCode'], dict1['productFlavorName'], dict1['packageTargetSdk'], dict1['packageMiniSdk'], dict1['packageMappingUrl'], dict1['deepLinkScheme'], dict1['package'], dict1['packageVersionName']) ) db.execute( 'UPDATE Package SET date = datetime(\'now\', \'localtime\') WHERE package = ? and ' 'packageVersionName = ?', (dict1['package'], dict1['packageVersionName']) ) db.commit() id = db.execute( 'select id from PackageLibrary WHERE package = ? and packageVersionName = ? and productFlavorName = ?', (dict1['package'], dict1['packageVersionName'], dict1['productFlavorName'])) pids = [dict(id=row[0]) for row in id.fetchall()] ids = [] for item in pids: ids.append(item['id']) # print(ids) i = 0 for dict2 in dict1['libraryCoordinateList']: db.execute( 'UPDATE PackageLibrary SET package = ?, packageName = ?, productFlavorName = ?, packageVersionName = ?, ' 'libraryGroup = ?, libraryName = ?, libraryVersion = ? WHERE package = ? and ' 'packageVersionName = ? and id = ?', (dict1['package'], dict1['packageName'], dict1['productFlavorName'], dict1['packageVersionName'], dict2['group'], dict2['name'], dict2['currentVersion'], dict1['package'], dict1['packageVersionName'], ids[i]) ) db.commit() i = i + 1 # print('Update') error = 'Project Info Updated' # print(error) # insert new data
142.090909
9,437
0.678183
9e5c52b6cf5d1d4f09346b9729877dfc22605e0d
922
py
Python
src/cpapi/_api/__init__.py
cpcgskill/cpapi
50ebd86637aec5aab47dff5561f1f1b54e967d64
[ "Apache-2.0" ]
1
2021-09-11T08:06:59.000Z
2021-09-11T08:06:59.000Z
src/cpapi/_api/__init__.py
cpcgskill/cpapi
50ebd86637aec5aab47dff5561f1f1b54e967d64
[ "Apache-2.0" ]
null
null
null
src/cpapi/_api/__init__.py
cpcgskill/cpapi
50ebd86637aec5aab47dff5561f1f1b54e967d64
[ "Apache-2.0" ]
null
null
null
# -*-coding:utf-8 -*- u""" :创建时间: 2021/11/28 0:17 :作者: 苍之幻灵 :我的主页: https://cpcgskill.com :QQ: 2921251087 :爱发电: https://afdian.net/@Phantom_of_the_Cang :aboutcg: https://www.aboutcg.org/teacher/54335 :bilibili: https://space.bilibili.com/351598127 """ import os from . import _run_lib from . import (OpenMaya, OpenMayaAnim, OpenMayaFX, OpenMayaRender, OpenMayaUI, OpenMayaMPx) if os.environ.get("CPAPI_DEBUG"): from imp import reload reload(_run_lib) [reload(m) for m in (OpenMaya, OpenMayaAnim, OpenMayaFX, OpenMayaRender, OpenMayaUI, OpenMayaMPx)] __all__ = ["OpenMaya", "OpenMayaAnim", "OpenMayaFX", "OpenMayaRender", "OpenMayaUI", "OpenMayaMPx", ]
24.263158
47
0.52603
6cc12c1f2dfd67def08699f3e820417935576ccb
342
py
Python
app/migrations/0024_remove_submittedplaylist_playlist.py
kindweb223/React-Django-M3U8
ee3edfabcf4e4423e96591df7cf42f8d89813292
[ "Apache-2.0" ]
1
2020-12-28T07:54:05.000Z
2020-12-28T07:54:05.000Z
app/migrations/0024_remove_submittedplaylist_playlist.py
kindweb223/React-Django-M3U8
ee3edfabcf4e4423e96591df7cf42f8d89813292
[ "Apache-2.0" ]
11
2020-06-05T17:35:01.000Z
2022-02-26T07:00:16.000Z
app/migrations/0024_remove_submittedplaylist_playlist.py
kindweb223/React-Django-M3U8
ee3edfabcf4e4423e96591df7cf42f8d89813292
[ "Apache-2.0" ]
1
2021-11-02T11:35:45.000Z
2021-11-02T11:35:45.000Z
# Generated by Django 2.0.6 on 2018-06-10 13:04 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('app', '0023_remove_channel_playlist'), ] operations = [ migrations.RemoveField( model_name='submittedplaylist', name='playlist', ), ]
19
48
0.608187
a1b794740acbca6a99e4484cd005846cd5cb76ca
1,093
py
Python
iotbx/regression/tst_reindex.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
iotbx/regression/tst_reindex.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
iotbx/regression/tst_reindex.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import division import libtbx.load_env from libtbx.test_utils import approx_equal from libtbx.utils import null_out import os def exercise(): hkl_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/reflection_files/1yjp.mtz", test=os.path.isfile) if (hkl_file is None): print "Skipping" return from iotbx.command_line import reindex from iotbx import file_reader output_file = reindex.run(args=[hkl_file, "change_of_basis=c,b,a", "output_file=tmp666.mtz"], out=null_out()) assert os.path.isfile(output_file) arrays_in = file_reader.any_file(hkl_file).file_server.miller_arrays arrays_out = file_reader.any_file(output_file).file_server.miller_arrays assert (approx_equal(arrays_in[0].unit_cell().parameters(), (21.937, 4.866, 23.477, 90.0, 107.08, 90.0), eps=0.001)) assert (approx_equal(arrays_out[0].unit_cell().parameters(), (23.477, 4.866, 21.937, 90.0, 107.08, 90.0), eps=0.001)) assert (arrays_out[0].info().labels == ["FOBS_X","SIGFOBS_X"]) if (__name__ == "__main__"): exercise() print "OK"
35.258065
74
0.73559
19bb171a1474b58de771aad125a56f8f720398f4
2,605
py
Python
test/integration/ggrc/models/mixins/test_stateful.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
1
2019-01-12T23:46:00.000Z
2019-01-12T23:46:00.000Z
test/integration/ggrc/models/mixins/test_stateful.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/integration/ggrc/models/mixins/test_stateful.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (C) 2020 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Integration test for Stateful mixin.""" import ddt from integration.ggrc import api_helper from integration.ggrc.query_helper import WithQueryApi from integration.ggrc import TestCase from integration.ggrc.models import factories from ggrc.models import get_model from ggrc.models.mixins import synchronizable @ddt.ddt class TestStatefulMixin(WithQueryApi, TestCase): """Test cases for Stateful mixin.""" def setUp(self): super(TestStatefulMixin, self).setUp() self.client.get("/login") self.api = api_helper.Api() @ddt.data( "AccessGroup", "Audit", "Control", "DataAsset", "Requirement", "Facility", "Issue", "Market", "Objective", "OrgGroup", "Product", "Program", "Project", "Risk", "Requirement", "Threat", "Vendor", "ProductGroup", "TechnologyEnvironment", ) def test_update_status(self, model_name): """Test status updating for {0}.""" factory = factories.get_model_factory(model_name) # pylint: disable=protected-access if issubclass(factory._meta.model, synchronizable.Synchronizable): self.api.login_as_external() obj = factory() object_name = obj._inflector.table_singular for status in obj.VALID_STATES: # Try to update status. response = self.api.put(obj, {u"status": status}) self.assert200(response) # Check that status has been updated. response = self.api.get(get_model(model_name), obj.id) self.assert200(response) new_status = response.json.get(object_name, {}).get("status") self.assertEqual(new_status, status) @ddt.data( "AccessGroup", "Audit", "Control", "DataAsset", "Requirement", "Facility", "Issue", "Market", "Objective", "OrgGroup", "Product", "Program", "Project", "Risk", "Requirement", "Threat", "Vendor", "ProductGroup", "TechnologyEnvironment", ) def test_set_invalid_status(self, model_name): """Test returning 400 code for setting invalid status.""" factory = factories.get_model_factory(model_name) # pylint: disable=protected-access if issubclass(factory._meta.model, synchronizable.Synchronizable): self.api.login_as_external() obj = factory() invalid_status = u"Invalid status." response = self.api.put(obj, {u"status": invalid_status}) self.assert400(response)
26.05
78
0.651056
c885f0065000b73ac53a35b722ccb4a73be07dd2
460
py
Python
askbotopenmooc/wsgi.py
OpenMOOC/askbot-openmooc
8534e435247b6217d5cbc62b9eac15c8f75eba62
[ "Apache-2.0" ]
3
2015-03-17T09:17:43.000Z
2017-02-06T21:18:42.000Z
askbotopenmooc/wsgi.py
OpenMOOC/askbot-openmooc
8534e435247b6217d5cbc62b9eac15c8f75eba62
[ "Apache-2.0" ]
null
null
null
askbotopenmooc/wsgi.py
OpenMOOC/askbot-openmooc
8534e435247b6217d5cbc62b9eac15c8f75eba62
[ "Apache-2.0" ]
2
2016-08-02T15:44:30.000Z
2017-07-17T05:11:35.000Z
import os import sys os.environ['DJANGO_SETTINGS_MODULE'] = 'askbotopenmooc.settings' try: localsettings = os.environ['LOCAL_SETTINGS_PATH'] sys.path.insert(0, localsettings) except: sys.path.insert(0, '/etc/openmooc/askbot') sys.path.insert(0, os.getcwd()) def application(environ, start_response): from django.core.wsgi import get_wsgi_application django_app = get_wsgi_application() return django_app(environ, start_response)
27.058824
64
0.752174
9053ec91cc1458d45f6bb059cae38cde098208b5
3,540
py
Python
plenum/test/view_change/test_catchup_to_next_view_during_view_change_by_primary.py
Toktar/indy-plenum
2f1f838332b0506f8dd8837ac341cba0cd3f7ff4
[ "Apache-2.0" ]
null
null
null
plenum/test/view_change/test_catchup_to_next_view_during_view_change_by_primary.py
Toktar/indy-plenum
2f1f838332b0506f8dd8837ac341cba0cd3f7ff4
[ "Apache-2.0" ]
null
null
null
plenum/test/view_change/test_catchup_to_next_view_during_view_change_by_primary.py
Toktar/indy-plenum
2f1f838332b0506f8dd8837ac341cba0cd3f7ff4
[ "Apache-2.0" ]
null
null
null
import pytest from plenum.common.constants import DOMAIN_LEDGER_ID from plenum.test.delayers import delay_for_view from plenum.test.helper import checkViewNoForNodes, sdk_send_random_and_check, waitForViewChange, view_change_timeout from plenum.test.node_catchup.helper import ensure_all_nodes_have_same_data from plenum.test.node_request.helper import sdk_ensure_pool_functional from plenum.test.stasher import delay_rules from plenum.test.test_node import checkProtocolInstanceSetup, ensureElectionsDone nodeCount = 7 VIEW_CHANGE_TIMEOUT = 5 @pytest.fixture(scope="module") def tconf(tconf): with view_change_timeout(tconf, VIEW_CHANGE_TIMEOUT): yield tconf def test_catchup_to_next_view_during_view_change_by_primary(txnPoolNodeSet, looper, sdk_pool_handle, sdk_wallet_steward): ''' 1) Lagging node is a primary for view=1 2) All nodes except the lagging one start a view change (to view=1) 3) The nodes can not finish it on time since the Primary for view=1 is lagging 4) All nodes except the lagging one go to view=2 then 5) All nodes except the lagging one order txns on view=2 6) Lagging node gets InstanceChanges for view=1 => it changes to view=2, and catches up till txns from view=2 7) Lagging node gets InstanceChanges for view=2 => it changes to view=2 8) Make sure that the lagging node is up to date, and can participate in consensus ''' lagging_node = txnPoolNodeSet[1] other_nodes = list(set(txnPoolNodeSet) - {lagging_node}) initial_view_no = checkViewNoForNodes(txnPoolNodeSet) initial_last_ordered = lagging_node.master_last_ordered_3PC with delay_rules(lagging_node.nodeIbStasher, delay_for_view(viewNo=2)): with delay_rules(lagging_node.nodeIbStasher, delay_for_view(viewNo=0), delay_for_view(viewNo=1)): # view change to viewNo=2 since a primary for viewNo=1 is a lagging node for n in txnPoolNodeSet: n.view_changer.on_master_degradation() waitForViewChange(looper, other_nodes, expectedViewNo=initial_view_no + 2, customTimeout=30) checkProtocolInstanceSetup(looper=looper, nodes=other_nodes, instances=range(3)) ensure_all_nodes_have_same_data(looper, nodes=other_nodes) # order some txns sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, 5) assert initial_view_no == lagging_node.viewNo assert initial_last_ordered == lagging_node.master_last_ordered_3PC assert len(lagging_node.master_replica._ordering_service.requestQueues[DOMAIN_LEDGER_ID]) > 0 # make sure that the first View Change happened on lagging node waitForViewChange(looper, [lagging_node], expectedViewNo=initial_view_no + 1, customTimeout=20) assert initial_view_no + 1 == lagging_node.viewNo # make sure that the second View Change happened on lagging node waitForViewChange(looper, [lagging_node], expectedViewNo=initial_view_no + 2, customTimeout=20) ensureElectionsDone(looper=looper, nodes=txnPoolNodeSet) ensure_all_nodes_have_same_data(looper, nodes=other_nodes) # make sure that the pool is functional sdk_ensure_pool_functional(looper, txnPoolNodeSet, sdk_wallet_steward, sdk_pool_handle)
49.859155
117
0.716384
004554929c99fa509481a37e5de1141e0426118d
290
py
Python
tag/player.py
kendase3/every
83b543c54a2dd071f0a34f128c5baa20a7e58def
[ "BSD-2-Clause" ]
1
2017-06-12T18:36:20.000Z
2017-06-12T18:36:20.000Z
tag/player.py
kendase3/every
83b543c54a2dd071f0a34f128c5baa20a7e58def
[ "BSD-2-Clause" ]
null
null
null
tag/player.py
kendase3/every
83b543c54a2dd071f0a34f128c5baa20a7e58def
[ "BSD-2-Clause" ]
null
null
null
# remember that ord('@') trick class Player: def __init__(self, id, color, isIt, x, y): self.id = id self.color = color self.isIt = isIt self.x = x self.y = y def __repr__(self): return "hi!" #return "number=%d" % self.number def __str__(self): return repr(self)
16.111111
43
0.617241
860fefe5014696d7380eb92e0af086e6a1d8085e
272
py
Python
packages/task-scheduler/task_scheduler/models/pydantic_models.py
baviera08/romi-dashboard
ac3a15014ad3c3bdac523a6550934a06653cfba1
[ "Apache-2.0" ]
null
null
null
packages/task-scheduler/task_scheduler/models/pydantic_models.py
baviera08/romi-dashboard
ac3a15014ad3c3bdac523a6550934a06653cfba1
[ "Apache-2.0" ]
1
2020-12-01T20:25:32.000Z
2020-12-01T20:25:32.000Z
packages/task-scheduler/task_scheduler/models/pydantic_models.py
baviera08/romi-dashboard
ac3a15014ad3c3bdac523a6550934a06653cfba1
[ "Apache-2.0" ]
null
null
null
from tortoise.contrib.pydantic import pydantic_model_creator from .tortoise_models import ScheduledTask, TaskRule TaskRule_Pydantic = pydantic_model_creator(TaskRule, name="TaskRule") ScheduledTask_Pydantic = pydantic_model_creator(ScheduledTask, name="ScheduledTask")
34
84
0.860294
88bb448b81e46bbc9a0dae96a3587159507bff06
1,724
py
Python
detect_scale.py
PBrockmann/StripesCounter
cd1d3daf8da335308659c24facaa373917e8942f
[ "MIT" ]
2
2021-02-05T17:40:25.000Z
2021-12-01T02:45:38.000Z
detect_scale.py
PBrockmann/StripesCounter
cd1d3daf8da335308659c24facaa373917e8942f
[ "MIT" ]
8
2021-04-06T19:47:41.000Z
2021-05-17T15:08:21.000Z
detect_scale.py
PBrockmann/StripesCounter
cd1d3daf8da335308659c24facaa373917e8942f
[ "MIT" ]
1
2021-04-06T18:29:35.000Z
2021-04-06T18:29:35.000Z
#!/usr/bin/env python #================================================================= # Author: Patrick Brockmann CEA/DRF/LSCE - Feb 2021 #================================================================= # Test detection of the scale # Usage: ./detect_scale.py BEL17-2-2_1.35x_haut0001.png #------------------------------------------------------------------ import sys, re, os import numpy as np import cv2 import pytesseract #------------------------------------------------------------------ imageFileName = sys.argv[1] print("File: ", imageFileName) #------------------------------------------------------------------ img = cv2.imread(imageFileName) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) mask = cv2.inRange(gray, 0, 0) print("Writing mask.png") cv2.imwrite('mask.png', mask) #------------------------------------------------------------------ try: scaleDetected = pytesseract.image_to_string(mask) matchObj = re.match(r'[^0-9]*([0-9]*)mm', scaleDetected.strip()) scaleValue = float(matchObj.group(1)) print("Detected scale value: ", scaleValue) except: print("Detected scale value: not possible") #------------------------------------------------------------------ try: fld = cv2.ximgproc.createFastLineDetector() lines = fld.detect(mask) scaleLength = 0 for line in lines: point1 = np.array((line[0][0],line[0][1])) point2 = np.array((line[0][2],line[0][3])) length = np.linalg.norm(point1 - point2) #print(point1, point2, dist) if (length > scaleLength): scaleLength = int(length) print("Detected scale length in pixel: ", scaleLength) except: print("Detected scale length in pixel: not possible")
32.528302
68
0.486079
6d8e8c6647762a04790ce5563cba9ab7ff98c2d8
150
py
Python
python/json_/json_example.py
SnoopJeDi/playground
73fab4a38ceeff3da23683e3dd1cb1b3a74cf4cf
[ "MIT" ]
null
null
null
python/json_/json_example.py
SnoopJeDi/playground
73fab4a38ceeff3da23683e3dd1cb1b3a74cf4cf
[ "MIT" ]
null
null
null
python/json_/json_example.py
SnoopJeDi/playground
73fab4a38ceeff3da23683e3dd1cb1b3a74cf4cf
[ "MIT" ]
null
null
null
import json from pprint import pprint if __name__ == "__main__": with open("data.json", "r") as f: data = json.load(f) pprint(data)
16.666667
37
0.62
b68ca9021b65b1f601a184f6b0131e7bc2195fe9
14,306
py
Python
tests/api/v3_1_1/test_sg_vn_mapping.py
CiscoISE/ciscoisesdk
860b0fc7cc15d0c2a39c64608195a7ab3d5f4885
[ "MIT" ]
36
2021-05-18T16:24:19.000Z
2022-03-05T13:44:41.000Z
tests/api/v3_1_1/test_sg_vn_mapping.py
CiscoISE/ciscoisesdk
860b0fc7cc15d0c2a39c64608195a7ab3d5f4885
[ "MIT" ]
15
2021-06-08T19:03:37.000Z
2022-02-25T14:47:33.000Z
tests/api/v3_1_1/test_sg_vn_mapping.py
CiscoISE/ciscoisesdk
860b0fc7cc15d0c2a39c64608195a7ab3d5f4885
[ "MIT" ]
6
2021-06-10T09:32:01.000Z
2022-01-12T08:34:39.000Z
# -*- coding: utf-8 -*- """IdentityServicesEngineAPI sg_vn_mapping API fixtures and tests. Copyright (c) 2021 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pytest from fastjsonschema.exceptions import JsonSchemaException from ciscoisesdk.exceptions import MalformedRequest from ciscoisesdk.exceptions import ciscoisesdkException from tests.environment import IDENTITY_SERVICES_ENGINE_VERSION pytestmark = pytest.mark.skipif(IDENTITY_SERVICES_ENGINE_VERSION != '3.1.1', reason='version does not match') def is_valid_get_sg_vn_mappings(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') json_schema_validate('jsd_e69e3338166d5c1887e5fa82efb72a11_v3_1_1').validate(obj.response) return True def get_sg_vn_mappings(api): endpoint_result = api.sg_vn_mapping.get_sg_vn_mappings( filter='value1,value2', filter_type='string', page=0, size=0, sort='string', sort_by='string' ) return endpoint_result @pytest.mark.sg_vn_mapping def test_get_sg_vn_mappings(api, validator): try: assert is_valid_get_sg_vn_mappings( validator, get_sg_vn_mappings(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def get_sg_vn_mappings_default(api): endpoint_result = api.sg_vn_mapping.get_sg_vn_mappings( filter=None, filter_type=None, page=None, size=None, sort=None, sort_by=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_get_sg_vn_mappings_default(api, validator): try: assert is_valid_get_sg_vn_mappings( validator, get_sg_vn_mappings_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_create_sg_vn_mapping(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') json_schema_validate('jsd_018b050fff6a5302ace3e16674c8b19a_v3_1_1').validate(obj.response) return True def create_sg_vn_mapping(api): endpoint_result = api.sg_vn_mapping.create_sg_vn_mapping( active_validation=False, id='string', last_update='string', payload=None, sg_name='string', sgt_id='string', vn_id='string', vn_name='string' ) return endpoint_result @pytest.mark.sg_vn_mapping def test_create_sg_vn_mapping(api, validator): try: assert is_valid_create_sg_vn_mapping( validator, create_sg_vn_mapping(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def create_sg_vn_mapping_default(api): endpoint_result = api.sg_vn_mapping.create_sg_vn_mapping( active_validation=False, id=None, last_update=None, payload=None, sg_name=None, sgt_id=None, vn_id=None, vn_name=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_create_sg_vn_mapping_default(api, validator): try: assert is_valid_create_sg_vn_mapping( validator, create_sg_vn_mapping_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_bulk_create_sg_vn_mappings(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') json_schema_validate('jsd_3e81b5f00f35577dbad11186f70f25be_v3_1_1').validate(obj.response) return True def bulk_create_sg_vn_mappings(api): endpoint_result = api.sg_vn_mapping.bulk_create_sg_vn_mappings( active_validation=False, payload=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_bulk_create_sg_vn_mappings(api, validator): try: assert is_valid_bulk_create_sg_vn_mappings( validator, bulk_create_sg_vn_mappings(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def bulk_create_sg_vn_mappings_default(api): endpoint_result = api.sg_vn_mapping.bulk_create_sg_vn_mappings( active_validation=False, payload=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_bulk_create_sg_vn_mappings_default(api, validator): try: assert is_valid_bulk_create_sg_vn_mappings( validator, bulk_create_sg_vn_mappings_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_bulk_delete_sg_vn_mappings(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') json_schema_validate('jsd_3c5cad090a875d9d8bd87e59654c9d75_v3_1_1').validate(obj.response) return True def bulk_delete_sg_vn_mappings(api): endpoint_result = api.sg_vn_mapping.bulk_delete_sg_vn_mappings( active_validation=False, payload=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_bulk_delete_sg_vn_mappings(api, validator): try: assert is_valid_bulk_delete_sg_vn_mappings( validator, bulk_delete_sg_vn_mappings(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def bulk_delete_sg_vn_mappings_default(api): endpoint_result = api.sg_vn_mapping.bulk_delete_sg_vn_mappings( active_validation=False, payload=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_bulk_delete_sg_vn_mappings_default(api, validator): try: assert is_valid_bulk_delete_sg_vn_mappings( validator, bulk_delete_sg_vn_mappings_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_bulk_update_sg_vn_mappings(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') json_schema_validate('jsd_80c9c798a8ce58b88b3231575f5b8c98_v3_1_1').validate(obj.response) return True def bulk_update_sg_vn_mappings(api): endpoint_result = api.sg_vn_mapping.bulk_update_sg_vn_mappings( active_validation=False, payload=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_bulk_update_sg_vn_mappings(api, validator): try: assert is_valid_bulk_update_sg_vn_mappings( validator, bulk_update_sg_vn_mappings(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def bulk_update_sg_vn_mappings_default(api): endpoint_result = api.sg_vn_mapping.bulk_update_sg_vn_mappings( active_validation=False, payload=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_bulk_update_sg_vn_mappings_default(api, validator): try: assert is_valid_bulk_update_sg_vn_mappings( validator, bulk_update_sg_vn_mappings_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_get_sg_vn_mapping_by_id(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') json_schema_validate('jsd_8fceb2944abb59e2a748b970ee79fbb7_v3_1_1').validate(obj.response) return True def get_sg_vn_mapping_by_id(api): endpoint_result = api.sg_vn_mapping.get_sg_vn_mapping_by_id( id='string' ) return endpoint_result @pytest.mark.sg_vn_mapping def test_get_sg_vn_mapping_by_id(api, validator): try: assert is_valid_get_sg_vn_mapping_by_id( validator, get_sg_vn_mapping_by_id(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def get_sg_vn_mapping_by_id_default(api): endpoint_result = api.sg_vn_mapping.get_sg_vn_mapping_by_id( id='string' ) return endpoint_result @pytest.mark.sg_vn_mapping def test_get_sg_vn_mapping_by_id_default(api, validator): try: assert is_valid_get_sg_vn_mapping_by_id( validator, get_sg_vn_mapping_by_id_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_update_sg_vn_mapping_by_id(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') json_schema_validate('jsd_147075a66f9651fca28e85b97cf1b968_v3_1_1').validate(obj.response) return True def update_sg_vn_mapping_by_id(api): endpoint_result = api.sg_vn_mapping.update_sg_vn_mapping_by_id( active_validation=False, id='string', last_update='string', payload=None, sg_name='string', sgt_id='string', vn_id='string', vn_name='string' ) return endpoint_result @pytest.mark.sg_vn_mapping def test_update_sg_vn_mapping_by_id(api, validator): try: assert is_valid_update_sg_vn_mapping_by_id( validator, update_sg_vn_mapping_by_id(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def update_sg_vn_mapping_by_id_default(api): endpoint_result = api.sg_vn_mapping.update_sg_vn_mapping_by_id( active_validation=False, id='string', last_update=None, payload=None, sg_name=None, sgt_id=None, vn_id=None, vn_name=None ) return endpoint_result @pytest.mark.sg_vn_mapping def test_update_sg_vn_mapping_by_id_default(api, validator): try: assert is_valid_update_sg_vn_mapping_by_id( validator, update_sg_vn_mapping_by_id_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e def is_valid_delete_sg_vn_mapping_by_id(json_schema_validate, obj): if not obj: return False assert hasattr(obj, 'headers') assert hasattr(obj, 'content') assert hasattr(obj, 'text') assert hasattr(obj, 'response') json_schema_validate('jsd_0718cb6b83a55dfb8f3536b43cfaf081_v3_1_1').validate(obj.response) return True def delete_sg_vn_mapping_by_id(api): endpoint_result = api.sg_vn_mapping.delete_sg_vn_mapping_by_id( id='string' ) return endpoint_result @pytest.mark.sg_vn_mapping def test_delete_sg_vn_mapping_by_id(api, validator): try: assert is_valid_delete_sg_vn_mapping_by_id( validator, delete_sg_vn_mapping_by_id(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest)): print("ERROR: {error}".format(error=original_e)) raise original_e def delete_sg_vn_mapping_by_id_default(api): endpoint_result = api.sg_vn_mapping.delete_sg_vn_mapping_by_id( id='string' ) return endpoint_result @pytest.mark.sg_vn_mapping def test_delete_sg_vn_mapping_by_id_default(api, validator): try: assert is_valid_delete_sg_vn_mapping_by_id( validator, delete_sg_vn_mapping_by_id_default(api) ) except Exception as original_e: with pytest.raises((JsonSchemaException, MalformedRequest, TypeError)): raise original_e
30.117895
109
0.707815
a719325853ab2aeab1138ecb6282d2dccae7971f
1,171
py
Python
test/test_validation.py
rpgoldman/pySBOL3
0f1ea8d56466206d38561d0cca8207bda1bc96bc
[ "MIT" ]
14
2020-09-14T20:28:08.000Z
2022-01-23T13:04:31.000Z
test/test_validation.py
rpgoldman/pySBOL3
0f1ea8d56466206d38561d0cca8207bda1bc96bc
[ "MIT" ]
203
2020-05-13T16:15:21.000Z
2022-03-24T17:40:09.000Z
test/test_validation.py
rpgoldman/pySBOL3
0f1ea8d56466206d38561d0cca8207bda1bc96bc
[ "MIT" ]
8
2020-07-29T16:37:19.000Z
2022-03-23T12:22:55.000Z
import unittest import sbol3 class TestValidationReport(unittest.TestCase): def test_boolean(self): # False if no errors or warnings report = sbol3.ValidationReport() self.assertEqual(False, bool(report)) # True if any errors report.addError(None, None, 'Fake error') self.assertEqual(True, bool(report)) # True if any warnings report = sbol3.ValidationReport() report.addWarning(None, None, 'Fake warning') self.assertEqual(True, bool(report)) # True if both errors and warnings report = sbol3.ValidationReport() report.addError(None, None, 'Fake error') report.addWarning(None, None, 'Fake warning') self.assertEqual(True, bool(report)) def test_length(self): # Length should be the sum of errors and warnings report = sbol3.ValidationReport() self.assertEqual(0, len(report)) report.addError(None, None, 'Fake error') self.assertEqual(1, len(report)) report.addWarning(None, None, 'Fake warning') self.assertEqual(2, len(report)) if __name__ == '__main__': unittest.main()
31.648649
57
0.643894
8d0a0b143a8fb9def345f5930ec29e2c2448ea79
24,363
py
Python
opentelemetry-exporter-gcp-monitoring/tests/test_cloud_monitoring.py
manojpandey/opentelemetry-operations-python
d4ca1f1ff7186bf76ea53e2ee3fdfb97f897e84b
[ "Apache-2.0" ]
null
null
null
opentelemetry-exporter-gcp-monitoring/tests/test_cloud_monitoring.py
manojpandey/opentelemetry-operations-python
d4ca1f1ff7186bf76ea53e2ee3fdfb97f897e84b
[ "Apache-2.0" ]
null
null
null
opentelemetry-exporter-gcp-monitoring/tests/test_cloud_monitoring.py
manojpandey/opentelemetry-operations-python
d4ca1f1ff7186bf76ea53e2ee3fdfb97f897e84b
[ "Apache-2.0" ]
null
null
null
# pylint: disable=too-many-statements # Copyright 2021 The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from collections import OrderedDict from typing import Optional from unittest import mock from google.api.label_pb2 import LabelDescriptor from google.api.metric_pb2 import MetricDescriptor from google.api.monitored_resource_pb2 import MonitoredResource from google.cloud.monitoring_v3.proto.metric_pb2 import TimeSeries from opentelemetry.exporter.cloud_monitoring import ( MAX_BATCH_WRITE, NANOS_PER_SECOND, UNIQUE_IDENTIFIER_KEY, WRITE_INTERVAL, CloudMonitoringMetricsExporter, ) from opentelemetry.sdk.metrics import MeterProvider from opentelemetry.sdk.metrics.export import ExportRecord from opentelemetry.sdk.metrics.export.aggregate import ( HistogramAggregator, SumAggregator, ValueObserverAggregator, ) from opentelemetry.sdk.resources import Resource class UnsupportedAggregator: pass class MockBatcher: def __init__(self, stateful): self.stateful = stateful def mock_meter(stateful: Optional[bool] = None): # create an autospec of Meter from an instance in order to capture instance # variables (meter.processor) meter = MeterProvider(stateful).get_meter(__name__) meter_mock = mock.create_autospec(meter, spec_set=True) meter_mock.processor.stateful = meter.processor.stateful return meter_mock class MockMetric: def __init__( self, name="name", description="description", value_type=int, meter=None, stateful=True, ): self.name = name self.description = description self.value_type = value_type self.meter = meter or mock_meter(stateful) # pylint: disable=protected-access # pylint can't deal with ProtoBuf object members # pylint: disable=no-member class TestCloudMonitoringMetricsExporter(unittest.TestCase): def setUp(self): self.client_patcher = mock.patch( "opentelemetry.exporter.cloud_monitoring.MetricServiceClient" ) self.client_patcher.start() def tearDown(self) -> None: self.client_patcher.stop() @classmethod def setUpClass(cls): cls.project_id = "PROJECT" cls.project_name = "PROJECT_NAME" def test_constructor_default(self): exporter = CloudMonitoringMetricsExporter(self.project_id) self.assertEqual(exporter.project_id, self.project_id) def test_constructor_explicit(self): client = mock.Mock() exporter = CloudMonitoringMetricsExporter( self.project_id, client=client ) self.assertIs(exporter.client, client) self.assertEqual(exporter.project_id, self.project_id) def test_batch_write(self): client = mock.Mock() exporter = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client ) exporter.project_name = self.project_name exporter._batch_write(range(2 * MAX_BATCH_WRITE + 1)) client.create_time_series.assert_has_calls( [ mock.call(self.project_name, range(MAX_BATCH_WRITE)), mock.call( self.project_name, range(MAX_BATCH_WRITE, 2 * MAX_BATCH_WRITE), ), mock.call( self.project_name, range(2 * MAX_BATCH_WRITE, 2 * MAX_BATCH_WRITE + 1), ), ] ) exporter._batch_write(range(MAX_BATCH_WRITE)) client.create_time_series.assert_has_calls( [mock.call(self.project_name, range(MAX_BATCH_WRITE))] ) exporter._batch_write(range(MAX_BATCH_WRITE - 1)) client.create_time_series.assert_has_calls( [mock.call(self.project_name, range(MAX_BATCH_WRITE - 1))] ) def test_get_metric_descriptor(self): client = mock.Mock() exporter = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client ) exporter.project_name = self.project_name self.assertIsNone( exporter._get_metric_descriptor( ExportRecord( MockMetric(), (), UnsupportedAggregator(), Resource.get_empty(), ) ) ) record = ExportRecord( MockMetric(), (("label1", "value1"),), SumAggregator(), Resource.get_empty(), ) metric_descriptor = exporter._get_metric_descriptor(record) client.create_metric_descriptor.assert_called_with( self.project_name, MetricDescriptor( **{ "name": None, "type": "custom.googleapis.com/OpenTelemetry/name", "display_name": "name", "description": "description", "labels": [ LabelDescriptor(key="label1", value_type="STRING") ], "metric_kind": "CUMULATIVE", "value_type": "INT64", } ), ) # Getting a cached metric descriptor shouldn't use another call cached_metric_descriptor = exporter._get_metric_descriptor(record) self.assertEqual(client.create_metric_descriptor.call_count, 1) self.assertEqual(metric_descriptor, cached_metric_descriptor) # Drop labels with values that aren't string, int or bool exporter._get_metric_descriptor( ExportRecord( MockMetric(name="name2", value_type=float), ( ("label1", "value1"), ("label2", dict()), ("label3", 3), ("label4", False), ), SumAggregator(), Resource.get_empty(), ) ) client.create_metric_descriptor.assert_called_with( self.project_name, MetricDescriptor( **{ "name": None, "type": "custom.googleapis.com/OpenTelemetry/name2", "display_name": "name2", "description": "description", "labels": [ LabelDescriptor(key="label1", value_type="STRING"), LabelDescriptor(key="label3", value_type="INT64"), LabelDescriptor(key="label4", value_type="BOOL"), ], "metric_kind": "CUMULATIVE", "value_type": "DOUBLE", } ), ) def test_get_value_observer_metric_descriptor(self): client = mock.Mock() exporter = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client ) exporter.project_name = self.project_name record = ExportRecord( MockMetric(), (), ValueObserverAggregator(), Resource.get_empty(), ) exporter._get_metric_descriptor(record) client.create_metric_descriptor.assert_called_with( self.project_name, MetricDescriptor( **{ "name": None, "type": "custom.googleapis.com/OpenTelemetry/name", "display_name": "name", "description": "description", "labels": [], "metric_kind": "GAUGE", "value_type": "INT64", } ), ) def test_export(self): client = mock.Mock() with mock.patch( "opentelemetry.exporter.cloud_monitoring.time_ns", lambda: NANOS_PER_SECOND, ): exporter = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client ) exporter.project_name = self.project_name exporter.export( [ ExportRecord( MockMetric(), (("label1", "value1"),), UnsupportedAggregator(), Resource.get_empty(), ) ] ) client.create_time_series.assert_not_called() client.create_metric_descriptor.return_value = MetricDescriptor( **{ "name": None, "type": "custom.googleapis.com/OpenTelemetry/name", "display_name": "name", "description": "description", "labels": [ LabelDescriptor(key="label1", value_type="STRING"), LabelDescriptor(key="label2", value_type="INT64"), ], "metric_kind": "CUMULATIVE", "value_type": "DOUBLE", } ) resource = Resource( attributes={ "cloud.account.id": 123, "host.id": "host", "cloud.zone": "US", "cloud.provider": "gcp", "extra_info": "extra", "gcp.resource_type": "gce_instance", "not_gcp_resource": "value", } ) sum_agg_one = SumAggregator() sum_agg_one.checkpoint = 1 sum_agg_one.last_update_timestamp = ( WRITE_INTERVAL + 1 ) * NANOS_PER_SECOND exporter.export( [ ExportRecord( MockMetric(meter=mock_meter()), (("label1", "value1"), ("label2", 1),), sum_agg_one, resource, ), ExportRecord( MockMetric(meter=mock_meter()), (("label1", "value2"), ("label2", 2),), sum_agg_one, resource, ), ] ) expected_resource = MonitoredResource( type="gce_instance", labels={"project_id": "123", "instance_id": "host", "zone": "US"}, ) series1 = TimeSeries(resource=expected_resource) series1.metric_kind = MetricDescriptor.MetricKind.CUMULATIVE series1.metric.type = "custom.googleapis.com/OpenTelemetry/name" series1.metric.labels["label1"] = "value1" series1.metric.labels["label2"] = "1" point = series1.points.add() point.value.int64_value = 1 point.interval.end_time.seconds = WRITE_INTERVAL + 1 point.interval.end_time.nanos = 0 point.interval.start_time.seconds = 1 point.interval.start_time.nanos = 0 series2 = TimeSeries(resource=expected_resource) series2.metric_kind = MetricDescriptor.MetricKind.CUMULATIVE series2.metric.type = "custom.googleapis.com/OpenTelemetry/name" series2.metric.labels["label1"] = "value2" series2.metric.labels["label2"] = "2" point = series2.points.add() point.value.int64_value = 1 point.interval.end_time.seconds = WRITE_INTERVAL + 1 point.interval.end_time.nanos = 0 point.interval.start_time.seconds = 1 point.interval.start_time.nanos = 0 client.create_time_series.assert_has_calls( [mock.call(self.project_name, [series1, series2])] ) # Attempting to export too soon after another export with the exact # same labels leads to it being dropped sum_agg_two = SumAggregator() sum_agg_two.checkpoint = 1 sum_agg_two.last_update_timestamp = ( WRITE_INTERVAL + 2 ) * NANOS_PER_SECOND exporter.export( [ ExportRecord( MockMetric(), (("label1", "value1"), ("label2", 1),), sum_agg_two, Resource.get_empty(), ), ExportRecord( MockMetric(), (("label1", "value2"), ("label2", 2),), sum_agg_two, Resource.get_empty(), ), ] ) self.assertEqual(client.create_time_series.call_count, 1) # But exporting with different labels is fine sum_agg_two.checkpoint = 2 exporter.export( [ ExportRecord( MockMetric(), (("label1", "changed_label"), ("label2", 2),), sum_agg_two, Resource.get_empty(), ), ] ) series3 = TimeSeries() series3.metric_kind = MetricDescriptor.MetricKind.CUMULATIVE series3.metric.type = "custom.googleapis.com/OpenTelemetry/name" series3.metric.labels["label1"] = "changed_label" series3.metric.labels["label2"] = "2" point = series3.points.add() point.value.int64_value = 2 point.interval.end_time.seconds = WRITE_INTERVAL + 2 point.interval.end_time.nanos = 0 point.interval.start_time.seconds = 1 point.interval.start_time.nanos = 0 client.create_time_series.assert_has_calls( [ mock.call(self.project_name, [series1, series2]), mock.call(self.project_name, [series3]), ] ) def test_export_value_observer(self): client = mock.Mock() with mock.patch( "opentelemetry.exporter.cloud_monitoring.time_ns", lambda: NANOS_PER_SECOND, ): exporter = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client ) exporter.project_name = self.project_name client.create_metric_descriptor.return_value = MetricDescriptor( **{ "name": None, "type": "custom.googleapis.com/OpenTelemetry/name", "display_name": "name", "description": "description", "labels": [], "metric_kind": "GAUGE", "value_type": "INT64", } ) aggregator = ValueObserverAggregator() aggregator.checkpoint = aggregator._TYPE(1, 2, 3, 4, 5) aggregator.last_update_timestamp = ( WRITE_INTERVAL + 1 ) * NANOS_PER_SECOND exporter.export( [ ExportRecord( MockMetric(meter=mock_meter()), (), aggregator, Resource.get_empty(), ) ] ) series = TimeSeries() series.metric_kind = MetricDescriptor.MetricKind.GAUGE series.metric.type = "custom.googleapis.com/OpenTelemetry/name" point = series.points.add() point.value.int64_value = 5 point.interval.end_time.seconds = WRITE_INTERVAL + 1 point.interval.end_time.nanos = 0 point.interval.start_time.seconds = WRITE_INTERVAL + 1 point.interval.start_time.nanos = 0 client.create_time_series.assert_has_calls( [mock.call(self.project_name, [series])] ) def test_export_histogram(self): client = mock.Mock() with mock.patch( "opentelemetry.exporter.cloud_monitoring.time_ns", lambda: NANOS_PER_SECOND, ): exporter = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client ) exporter.project_name = self.project_name client.create_metric_descriptor.return_value = MetricDescriptor( **{ "name": None, "type": "custom.googleapis.com/OpenTelemetry/name", "display_name": "name", "description": "description", "labels": [], "metric_kind": "CUMULATIVE", "value_type": "DISTRIBUTION", } ) aggregator = HistogramAggregator(config={"bounds": [2, 4, 6]}) aggregator.checkpoint = OrderedDict([(2, 1), (4, 2), (6, 4), (">", 3)]) aggregator.last_update_timestamp = ( WRITE_INTERVAL + 1 ) * NANOS_PER_SECOND exporter.export( [ ExportRecord( MockMetric(meter=mock_meter()), (), aggregator, Resource.get_empty(), ) ] ) series = TimeSeries() series.metric_kind = MetricDescriptor.MetricKind.CUMULATIVE series.metric.type = "custom.googleapis.com/OpenTelemetry/name" point = { "interval": { "start_time": {"seconds": 1}, "end_time": {"seconds": 11}, }, "value": { "distribution_value": { "count": 10, "bucket_options": { "explicit_buckets": {"bounds": [2.0, 4.0, 6.0]} }, "bucket_counts": [1, 2, 4, 3], } }, } series.points.add(**point) client.create_time_series.assert_has_calls( [mock.call(self.project_name, [series])] ) def test_stateless_times(self): client = mock.Mock() with mock.patch( "opentelemetry.exporter.cloud_monitoring.time_ns", lambda: NANOS_PER_SECOND, ): exporter = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client, ) client.create_metric_descriptor.return_value = MetricDescriptor( **{ "name": None, "type": "custom.googleapis.com/OpenTelemetry/name", "display_name": "name", "description": "description", "labels": [ LabelDescriptor( key=UNIQUE_IDENTIFIER_KEY, value_type="STRING" ), ], "metric_kind": "CUMULATIVE", "value_type": "DOUBLE", } ) agg = SumAggregator() agg.checkpoint = 1 agg.last_update_timestamp = (WRITE_INTERVAL + 1) * NANOS_PER_SECOND metric_record = ExportRecord( MockMetric(stateful=False), (), agg, Resource.get_empty() ) exporter.export([metric_record]) exports_1 = client.create_time_series.call_args_list[0] # verify the first metric started at exporter start time self.assertEqual( exports_1[0][1][0].points[0].interval.start_time.seconds, 1 ) self.assertEqual( exports_1[0][1][0].points[0].interval.start_time.nanos, 0 ) self.assertEqual( exports_1[0][1][0].points[0].interval.end_time.seconds, WRITE_INTERVAL + 1, ) agg.last_update_timestamp = (WRITE_INTERVAL * 2 + 2) * NANOS_PER_SECOND metric_record = ExportRecord( MockMetric(stateful=False), (), agg, Resource.get_empty() ) exporter.export([metric_record]) exports_2 = client.create_time_series.call_args_list[1] # 1ms ahead of end time of last export self.assertEqual( exports_2[0][1][0].points[0].interval.start_time.seconds, WRITE_INTERVAL + 1, ) self.assertEqual( exports_2[0][1][0].points[0].interval.start_time.nanos, 1e6 ) self.assertEqual( exports_2[0][1][0].points[0].interval.end_time.seconds, WRITE_INTERVAL * 2 + 2, ) def test_unique_identifier(self): client = mock.Mock() exporter1 = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client, add_unique_identifier=True, ) exporter2 = CloudMonitoringMetricsExporter( project_id=self.project_id, client=client, add_unique_identifier=True, ) exporter1.project_name = self.project_name exporter2.project_name = self.project_name client.create_metric_descriptor.return_value = MetricDescriptor( **{ "name": None, "type": "custom.googleapis.com/OpenTelemetry/name", "display_name": "name", "description": "description", "labels": [ LabelDescriptor( key=UNIQUE_IDENTIFIER_KEY, value_type="STRING" ), ], "metric_kind": "CUMULATIVE", "value_type": "DOUBLE", } ) sum_agg_one = SumAggregator() sum_agg_one.update(1) metric_record = ExportRecord( MockMetric(), (), sum_agg_one, Resource.get_empty() ) exporter1.export([metric_record]) exporter2.export([metric_record]) ( first_call, second_call, ) = client.create_metric_descriptor.call_args_list self.assertEqual(first_call[0][1].labels[0].key, UNIQUE_IDENTIFIER_KEY) self.assertEqual( second_call[0][1].labels[0].key, UNIQUE_IDENTIFIER_KEY ) first_call, second_call = client.create_time_series.call_args_list self.assertNotEqual( first_call[0][1][0].metric.labels[UNIQUE_IDENTIFIER_KEY], second_call[0][1][0].metric.labels[UNIQUE_IDENTIFIER_KEY], ) def test_extract_resources(self): exporter = CloudMonitoringMetricsExporter(project_id=self.project_id) self.assertIsNone( exporter._get_monitored_resource(Resource.get_empty()) ) resource = Resource( attributes={ "cloud.account.id": 123, "host.id": "host", "cloud.zone": "US", "cloud.provider": "gcp", "extra_info": "extra", "gcp.resource_type": "gce_instance", "not_gcp_resource": "value", } ) expected_extract = MonitoredResource( type="gce_instance", labels={"project_id": "123", "instance_id": "host", "zone": "US"}, ) self.assertEqual( exporter._get_monitored_resource(resource), expected_extract ) resource = Resource( attributes={ "cloud.account.id": "123", "host.id": "host", "extra_info": "extra", "not_gcp_resource": "value", "gcp.resource_type": "gce_instance", "cloud.provider": "gcp", } ) # Should throw when passed a malformed GCP resource dict self.assertRaises(KeyError, exporter._get_monitored_resource, resource) resource = Resource( attributes={ "cloud.account.id": "123", "host.id": "host", "extra_info": "extra", "not_gcp_resource": "value", "gcp.resource_type": "unsupported_gcp_resource", "cloud.provider": "gcp", } ) self.assertIsNone(exporter._get_monitored_resource(resource)) resource = Resource( attributes={ "cloud.account.id": "123", "host.id": "host", "extra_info": "extra", "not_gcp_resource": "value", "cloud.provider": "aws", } ) self.assertIsNone(exporter._get_monitored_resource(resource))
34.121849
79
0.547962
b2e17f23a4ec1b82369713ea51c54e2366ce05e0
3,103
py
Python
test/unit/applications/lang/java.py
devnexen/unit
d65a66f9d813294917822554311281c5e1a7126b
[ "Apache-2.0" ]
1
2021-03-08T05:11:13.000Z
2021-03-08T05:11:13.000Z
test/unit/applications/lang/java.py
devnexen/unit
d65a66f9d813294917822554311281c5e1a7126b
[ "Apache-2.0" ]
null
null
null
test/unit/applications/lang/java.py
devnexen/unit
d65a66f9d813294917822554311281c5e1a7126b
[ "Apache-2.0" ]
null
null
null
import glob import os import shutil import subprocess import pytest from unit.applications.proto import TestApplicationProto from unit.option import option class TestApplicationJava(TestApplicationProto): application_type = "java" def prepare_env(self, script): app_path = option.temp_dir + '/java' web_inf_path = app_path + '/WEB-INF/' classes_path = web_inf_path + 'classes/' script_path = option.test_dir + '/java/' + script + '/' if not os.path.isdir(app_path): os.makedirs(app_path) src = [] for f in os.listdir(script_path): file_path = script_path + f if f.endswith('.java'): src.append(file_path) continue if f.startswith('.') or f == 'Makefile': continue if os.path.isdir(file_path): if f == 'WEB-INF': continue shutil.copytree(file_path, app_path + '/' + f) continue if f == 'web.xml': if not os.path.isdir(web_inf_path): os.makedirs(web_inf_path) shutil.copy2(file_path, web_inf_path) else: shutil.copy2(file_path, app_path) if src: if not os.path.isdir(classes_path): os.makedirs(classes_path) classpath = ( option.current_dir + '/build/tomcat-servlet-api-9.0.39.jar' ) ws_jars = glob.glob( option.current_dir + '/build/websocket-api-java-*.jar' ) if not ws_jars: pytest.fail('websocket api jar not found.') javac = [ 'javac', '-target', '8', '-source', '8', '-nowarn', '-encoding', 'utf-8', '-d', classes_path, '-classpath', classpath + ':' + ws_jars[0], ] javac.extend(src) if option.detailed: print("\n$ " + " ".join(javac)) try: process = subprocess.Popen(javac, stderr=subprocess.STDOUT) process.communicate() except KeyboardInterrupt: raise except: pytest.fail('Can\'t run javac process.') def load(self, script, **kwargs): self.prepare_env(script) self._load_conf( { "listeners": {"*:7080": {"pass": "applications/" + script}}, "applications": { script: { "unit_jars": option.current_dir + '/build', "type": self.get_application_type(), "processes": {"spare": 0}, "working_directory": option.test_dir + '/java/' + script + '/', "webapp": option.temp_dir + '/java', } }, }, **kwargs )
28.731481
76
0.461811
c1343b86c95800f1c2ed39765720eb12c94274c1
33,699
py
Python
JSSPproblem.py
zangzelin/HDNNMv2.0
6704119f9354986cf16dff267c754db0bf78d640
[ "MIT" ]
6
2019-03-12T05:35:17.000Z
2020-02-13T18:27:13.000Z
JSSPproblem.py
Chupeng24/HDNNMv2.0
6704119f9354986cf16dff267c754db0bf78d640
[ "MIT" ]
null
null
null
JSSPproblem.py
Chupeng24/HDNNMv2.0
6704119f9354986cf16dff267c754db0bf78d640
[ "MIT" ]
4
2019-03-12T05:36:06.000Z
2021-03-09T13:41:00.000Z
import copy import random import time # from __future__ import print_function from itertools import combinations, permutations # import guchoose import matplotlib.pyplot as plt import numpy as np import pandas as pd # Import Python wrapper for or-tools constraint solver. from ortools.constraint_solver import pywrapcp import Subproblem class Problem: m = None # number of the machines n = None # number of the jobs solute = None time_low = None time_high = None p = np.array([]) # the processing time of jobs r = np.array([]) # the order limit x = np.array([]) # the result position mat h = np.array([]) # the start time of jobs e = np.array([]) # the end time of jobs f = np.array([]) best_x = np.array([]) opetimalx = None number_of_1d_feature = 11 # p.sum() def __init__(self, m, n, time_low, time_high): self.m = m self.n = n self.time_high = time_high self.time_low = time_low self.solute = 0 a = list(range(self.time_low, self.time_high)) p = [] for k in range(self.n): p.append(random.sample(a, self.m)) self.p = np.array(p) a = list(range(self.m)) r = [] for k in range(self.n): r.append(random.sample(a, self.m)) self.r = np.array(r) sum_time_of_job = np.sum(self.p,axis=1) for i in range(n): for j in range(i+1, n): if sum_time_of_job[i] > sum_time_of_job[j]: a = np.copy(self.p[j,:]) self.p[j,:] = self.p[i,:] self.p[i,:] = a sum_time_of_job[i],sum_time_of_job[j] = sum_time_of_job[j],sum_time_of_job[i] sum_time_of_mach = [[i,0] for i in range(m)] for i in range(n): for j in range(m): sum_time_of_mach[self.r[i,j]][1] += self.p[i,j] for i in range(m): for j in range(i+1, m): if sum_time_of_mach[i][1] > sum_time_of_mach[j][1] : sum_time_of_mach[i], sum_time_of_mach[j] = sum_time_of_mach[j], sum_time_of_mach[i] nr = np.zeros((n,m),dtype=int)-1 for i in range(m): nr[self.r==i] =sum_time_of_mach[i][0] sum_time_of_mach = [[i,0] for i in range(m)] for i in range(n): for j in range(m): sum_time_of_mach[self.r[i,j]][1] += self.p[i,j] self.r = nr def Print_info(self): machine_job_p = np.zeros((self.m, self.n)) machine_job_r = np.zeros((self.m, self.n)) for job in range(self.n): for order in range(self.m): machine = self.r[job, order] machine_job_p[machine, job] = self.p[job, order] machine_job_r[machine, job] = order np.savetxt('p.csv', machine_job_p, delimiter=',') np.savetxt('r.csv', machine_job_r, delimiter=',') self.PlotResult() def SaveProblemToFile(self, filepath, index, pool=0): filename = '{}/jssp_problem_m={}_n={}_timehigh={}_timelow={}_pool={}.txt'.format( filepath, self.m, self.n, self.time_high, self.time_low, pool) f = open(filename, 'a') # f.write(str(index)) # f.write('\nr=\n') f.write(str(self.m)+'\n') f.write(str(self.n)+'\n') f.write(TranslateNpToStr(self.p)) f.write(TranslateNpToStr(self.r)) f.close() def SavesolutionToFile(self, filepath, index, pool=0): f = open('{}/jssp_problem_m={}_n={}_timehigh={}_timelow={}_pool={}.txt'.format( filepath, self.m, self.n, self.time_high, self.time_low, pool), 'a') # f.write(str(index)+'\n') f.write(TranslateNpToStr(self.x)) f.write(TranslateNpToStr(self.h)) f.write(TranslateNpToStr(self.e)) f.close() def SoluteWithBBM(self): solver = pywrapcp.Solver('jobshop') solver.TimeLimit(1) all_machines = range(0, self.m) all_jobs = range(0, self.n) x = np.zeros((self.m, self.n, 2), dtype=int) h = np.zeros((self.m, self.n), dtype=int) e = np.zeros((self.m, self.n), dtype=int) # processing_times = self.p.tolist() # machines = self.r.tolist() horizon = int(self.p.sum()) # Creates jobs. all_tasks = {} for i in all_jobs: for j in range(self.m): all_tasks[(i, j)] = solver.FixedDurationIntervalVar( 0, horizon, int(self.p[i, j]), False, 'Job_%i_%i' % (i, j)) # Creates sequence variables and add disjunctive constraints. all_sequences = [] all_machines_jobs = [] for i in all_machines: machines_jobs = [] for j in all_jobs: for k in range(self.m): if self.r[j, k] == i: machines_jobs.append(all_tasks[(j, k)]) disj = solver.DisjunctiveConstraint( machines_jobs, 'machine %i' % i) all_sequences.append(disj.SequenceVar()) solver.Add(disj) # Add conjunctive contraints. for i in all_jobs: for j in range(0, self.m - 1): solver.Add( all_tasks[(i, j + 1)].StartsAfterEnd(all_tasks[(i, j)])) # Set the objective. obj_var = solver.Max([all_tasks[(i, self.m-1)].EndExpr() for i in all_jobs]) objective_monitor = solver.Minimize(obj_var, 1) # Create search phases. sequence_phase = solver.Phase([all_sequences[i] for i in all_machines], solver.SEQUENCE_DEFAULT) vars_phase = solver.Phase([obj_var], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE) main_phase = solver.Compose([sequence_phase, vars_phase]) # Create the solution collector. collector = solver.LastSolutionCollector() # Add the interesting variables to the SolutionCollector. collector.Add(all_sequences) collector.AddObjective(obj_var) for i in all_machines: sequence = all_sequences[i] sequence_count = sequence.Size() for j in range(0, sequence_count): t = sequence.Interval(j) collector.Add(t.StartExpr().Var()) collector.Add(t.EndExpr().Var()) # Solve the problem. disp_col_width = 10 if solver.Solve(main_phase, [objective_monitor, collector]): # print("\nOptimal Schedule Length:", collector.ObjectiveValue(0), "\n") sol_line = "" sol_line_tasks = "" # print("Optimal Schedule", "\n") for i in all_machines: seq = all_sequences[i] sol_line += "Machine " + str(i) + ": " sol_line_tasks += "Machine " + str(i) + ": " sequence = collector.ForwardSequence(0, seq) seq_size = len(sequence) for j in range(0, seq_size): t = seq.Interval(sequence[j]) # Add spaces to output to align columns. sol_line_tasks += t.Name() + " " * (disp_col_width - len(t.Name())) x[i, j, 0] = int(t.Name().split('_')[1]) x[i, j, 1] = int(t.Name().split('_')[2]) for j in range(0, seq_size): t = seq.Interval(sequence[j]) sol_tmp = "[" + \ str(collector.Value(0, t.StartExpr().Var())) + "," sol_tmp += str(collector.Value(0, t.EndExpr().Var())) + "] " # Add spaces to output to align columns. sol_line += sol_tmp + " " * (disp_col_width - len(sol_tmp)) h[i, j] = collector.Value(0, t.StartExpr().Var()) e[i, j] = collector.Value(0, t.EndExpr().Var()) sol_line += "\n" sol_line_tasks += "\n" self.x = x self.h = h self.e = e self.best_x = x def SoluteWithGA(self): pt_tmp = self.p ms_tmp = self.r + 1 dfshape = pt_tmp.shape num_mc = dfshape[1] # number of machines num_job = dfshape[0] # number of jobs num_gene = num_mc*num_job # number of genes in a chromosome pt = pt_tmp ms = ms_tmp population_size = 30 crossover_rate = 0.8 mutation_rate = 0.2 mutation_selection_rate = 0.2 num_mutation_jobs = round(num_gene*mutation_selection_rate) num_iteration = 2000 start_time = time.time() Tbest = 999999999999999 best_list, best_obj = [], [] population_list = [] makespan_record = [] for i in range(population_size): # generate a random permutation of 0 to num_job*num_mc-1 nxm_random_num = list(np.random.permutation(num_gene)) # add to the population_list population_list.append(nxm_random_num) for j in range(num_gene): # convert to job number format, every job appears m times population_list[i][j] = population_list[i][j] % num_job for n in range(num_iteration): Tbest_now = 99999999999 '''-------- two point crossover --------''' parent_list = copy.deepcopy(population_list) offspring_list = copy.deepcopy(population_list) # generate a random sequence to select the parent chromosome to crossover S = list(np.random.permutation(population_size)) for m in range(int(population_size/2)): crossover_prob = np.random.rand() if crossover_rate >= crossover_prob: parent_1 = population_list[S[2*m]][:] parent_2 = population_list[S[2*m+1]][:] child_1 = parent_1[:] child_2 = parent_2[:] cutpoint = list(np.random.choice( num_gene, 2, replace=False)) cutpoint.sort() child_1[cutpoint[0]:cutpoint[1] ] = parent_2[cutpoint[0]:cutpoint[1]] child_2[cutpoint[0]:cutpoint[1] ] = parent_1[cutpoint[0]:cutpoint[1]] offspring_list[S[2*m]] = child_1[:] offspring_list[S[2*m+1]] = child_2[:] '''----------repairment-------------''' for m in range(population_size): job_count = {} # 'larger' record jobs appear in the chromosome more than m times, and 'less' records less than m times. larger, less = [], [] for i in range(num_job): if i in offspring_list[m]: count = offspring_list[m].count(i) pos = offspring_list[m].index(i) # store the above two values to the job_count dictionary job_count[i] = [count, pos] else: count = 0 job_count[i] = [count, 0] if count > num_mc: larger.append(i) elif count < num_mc: less.append(i) for k in range(len(larger)): chg_job = larger[k] while job_count[chg_job][0] > num_mc: for d in range(len(less)): if job_count[less[d]][0] < num_mc: offspring_list[m][job_count[chg_job] [1]] = less[d] job_count[chg_job][1] = offspring_list[m].index( chg_job) job_count[chg_job][0] = job_count[chg_job][0]-1 job_count[less[d]][0] = job_count[less[d]][0]+1 if job_count[chg_job][0] == num_mc: break '''--------mutatuon--------''' for m in range(len(offspring_list)): mutation_prob = np.random.rand() if mutation_rate >= mutation_prob: # chooses the position to mutation m_chg = list(np.random.choice( num_gene, num_mutation_jobs, replace=False)) # save the value which is on the first mutation position t_value_last = offspring_list[m][m_chg[0]] for i in range(num_mutation_jobs-1): # displacement offspring_list[m][m_chg[i] ] = offspring_list[m][m_chg[i+1]] # move the value of the first mutation position to the last mutation position offspring_list[m][m_chg[num_mutation_jobs-1] ] = t_value_last '''--------fitness value(calculate makespan)-------------''' total_chromosome = copy.deepcopy( parent_list)+copy.deepcopy(offspring_list) # parent and offspring chromosomes combination chrom_fitness, chrom_fit = [], [] total_fitness = 0 for m in range(population_size*2): # for every gene line j_keys = [j for j in range(num_job)] key_count = {key: 0 for key in j_keys} j_count = {key: 0 for key in j_keys} m_keys = [j+1 for j in range(num_mc)] m_count = {key: 0 for key in m_keys} for i in total_chromosome[m]: gen_t = int(pt[i][key_count[i]]) gen_m = int(ms[i][key_count[i]]) j_count[i] = j_count[i]+gen_t m_count[gen_m] = m_count[gen_m]+gen_t if m_count[gen_m] < j_count[i]: m_count[gen_m] = j_count[i] elif m_count[gen_m] > j_count[i]: j_count[i] = m_count[gen_m] key_count[i] = key_count[i]+1 makespan = max(j_count.values()) chrom_fitness.append(1/makespan) chrom_fit.append(makespan) total_fitness = total_fitness+chrom_fitness[m] '''----------selection(roulette wheel approach)----------''' pk, qk = [], [] for i in range(population_size*2): pk.append(chrom_fitness[i]/total_fitness) for i in range(population_size*2): cumulative = 0 for j in range(0, i+1): cumulative = cumulative+pk[j] qk.append(cumulative) selection_rand = [np.random.rand() for i in range(population_size)] for i in range(population_size): if selection_rand[i] <= qk[0]: population_list[i] = copy.deepcopy(total_chromosome[0]) else: for j in range(0, population_size*2-1): if selection_rand[i] > qk[j] and selection_rand[i] <= qk[j+1]: population_list[i] = copy.deepcopy( total_chromosome[j+1]) break '''----------comparison----------''' for i in range(population_size*2): if chrom_fit[i] < Tbest_now: Tbest_now = chrom_fit[i] sequence_now = copy.deepcopy(total_chromosome[i]) if Tbest_now <= Tbest: Tbest = Tbest_now sequence_best = copy.deepcopy(sequence_now) makespan_record.append(Tbest) '''----------result----------''' # print("optimal sequence", sequence_best) # print("optimal value:%f" % Tbest) # print('the elapsed time:%s' % (time.time() - start_time)) import pandas as pd import datetime x = np.zeros((self.m, self.n, 2), dtype=int) h = np.zeros((self.m, self.n), dtype=int) e = np.zeros((self.m, self.n), dtype=int) m_keys = [j+1 for j in range(num_mc)] j_keys = [j for j in range(num_job)] key_count = {key: 0 for key in j_keys} j_count = {key: 0 for key in j_keys} m_count = {key: 0 for key in m_keys} j_record = {} for i in sequence_best: gen_t = int(pt[i][key_count[i]]) # time gen_m = int(ms[i][key_count[i]]) # order j_count[i] = j_count[i]+gen_t # time of job m_count[gen_m] = m_count[gen_m]+gen_t # time of machine if m_count[gen_m] < j_count[i]: m_count[gen_m] = j_count[i] elif m_count[gen_m] > j_count[i]: j_count[i] = m_count[gen_m] # convert seconds to hours, minutes and seconds start_time = int(j_count[i]-pt[i][int(key_count[i])]) end_time = int(j_count[i]) j_record[(i, gen_m)] = [start_time, end_time,key_count[i]] key_count[i] = key_count[i]+1 df = [] for m in m_keys: for j in j_keys: list_of_start = [j_record[(q, m)][0] for q in j_keys] list_of_start.sort() order = list_of_start.index(j_record[(j, m)][0]) h[m-1, order] = j_record[(j, m)][0] e[m-1, order] = j_record[(j, m)][1] x[m-1, order, 0] = j x[m-1, order, 1] = j_record[(j, m)][2] df.append(dict(Task='Machine %s' % (m), Start='2018-07-14 %s' % (str(j_record[( j, m)][0])), Finish='2018-07-14 %s' % (str(j_record[(j, m)][1])), Resource='Job %s' % (j+1))) self.h = h self.e = e self.x = x self.best_x = x # self.PlotResult() # plt.show() def PlotResult(self, num=0): colorbox = ['yellow', 'whitesmoke', 'lightyellow', 'khaki', 'silver', 'pink', 'lightgreen', 'orange', 'grey', 'r', 'brown'] for i in range(100): colorArr = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'] color = "" for i in range(6): color += colorArr[random.randint(0, 14)] colorbox.append("#"+color) zzl = plt.figure(figsize=(12, 4)) for i in range(self.m): # number_of_mashine: for j in range(self.n): # number_of_job: # % 数据读写 mPoint1 = self.h[i, j] # % 读取开始的点 mPoint2 = self.e[i, j] # % 读取结束的点 mText = i + 1.5 # % 读取机器编号 PlotRec(mPoint1, mPoint2, mText) # % 画图函数,(开始点,结束点,高度) Word = str(self.x[i, j, 0]+1) +'.'+ str(self.x[i, j, 1]+1) # % 读取工件编号 # hold on # % 填充 x1 = mPoint1 y1 = mText-0.8 x2 = mPoint2 y2 = mText-0.8 x3 = mPoint2 y3 = mText x4 = mPoint1 y4 = mText plt.fill([x1, x2, x3, x4], [y1, y2, y3, y4], color=colorbox[self.x[i, j, 0]]) plt.text(0.5*mPoint1+0.5*mPoint2-3, mText-0.5, Word) plt.xlabel('Time') plt.ylabel('Machine') plt.tight_layout() plt.savefig('out.png', dpi=400) def SoluteWithBBMAndSaveToFile(self, filepath, index, pool=0): self.SoluteWithBBM() self.SaveProblemToFile(filepath, index, pool) self.SavesolutionToFile(filepath, index, pool) def SoluteWithGaAndSaveToFile(self, filepath, index, pool=0): self.SoluteWithGA() self.SaveProblemToFile(filepath, index, pool) self.SavesolutionToFile(filepath, index, pool) def LoadProblemWithSolution(self, filepath, index, pool=0): f = open('data/jssp_problem_'+filepath, 'r') # line_list = [ i for i in range(index * 7, index * 7 + 7 )] data = f.readlines() data = data[index * 7:index * 7 + 7] self.m = int(data[0]) self.n = int(data[1]) # print(data[2]) self.p = np.fromstring( data[2][:-1], dtype=int, sep=',').reshape((self.n, self.m)) self.r = np.fromstring( data[3][:-1], dtype=int, sep=',').reshape((self.n, self.m)) self.x = np.fromstring( data[4][:-1], dtype=int, sep=',').reshape((self.m, self.n, 2)) self.h = np.fromstring( data[5][:-1], dtype=int, sep=',').reshape((self.m, self.n)) self.e = np.fromstring( data[6][:-1], dtype=int, sep=',').reshape((self.m, self.n)) def CalculateSimilarityDegree(self,x = None): if x is not None: self.x = x right = 0 for i in range(self.m): for j in range(self.n): if self.x[i,j,0] == self.best_x[i,j,0] and self.x[i,j,1] == self.best_x[i,j,1]: right += 1 return right/self.m/self.n def LoadProblemWithoutSolution(self, filepath, index, pool=0): f = open('data/jssp_problem_'+filepath, 'r') # line_list = [ i for i in range(index * 7, index * 7 + 7 )] data = f.readlines() data = data[index * 7:index * 7 + 7] self.m = int(data[0]) self.n = int(data[1]) # print(data[2]) self.p = np.fromstring( data[2][:-1], dtype=int, sep=',').reshape((self.n, self.m)) self.r = np.fromstring( data[3][:-1], dtype=int, sep=',').reshape((self.n, self.m)) # self.x = np.fromstring( # data[4][:-1], dtype=int, sep=',').reshape((self.m, self.n, 2)) # self.h = np.fromstring( # data[5][:-1], dtype=int, sep=',').reshape((self.m, self.n)) # self.e = np.fromstring( # data[6][:-1], dtype=int, sep=',').reshape((self.m, self.n)) def subproblem(self): sub_list = [] for job in range(self.n): for procedure in range(self.m): sub_p = Subproblem.Subproblem(self, job, procedure) sub_list.append(sub_p) return sub_list def GetFeaturesInTest1D(self): F = [] sub_list = self.subproblem() for sub in sub_list: F.append(sub.GetFeatures1D()) F = np.array(F) return F def Getlables(self): L = [] sub_list = self.subproblem() for sub in sub_list: L.append(sub.label) L = np.array(L) return L def GetFeaturesInTest1D2D(self): len_feature_1d = self.number_of_1d_feature F1d = [] F2d1 = [] F2d2 = [] F2d3 = [] F2d4 = [] F2d5 = [] F2d6 = [] sub_list = self.subproblem() for sub in sub_list: F1d.append(sub.GetFeatures1D()) features_2d = sub.GetFeatures2D() F2d1.append(features_2d[0]) F2d2.append(features_2d[1]) F2d3.append(features_2d[2]) F2d4.append(features_2d[3]) F2d5.append(features_2d[4]) F2d6.append(features_2d[5]) F1d = np.array(F1d).reshape( (-1, len_feature_1d, 1)) F2d1 = np.array(F2d1).reshape( (-1, self.n**2, self.n**2, 1)) F2d2 = np.array(F2d2).reshape( (-1, self.n**2, self.n, 1)) F2d3 = np.array(F2d3).reshape( (-1, self.n**2, len_feature_1d, 1)) F2d4 = np.array(F2d4).reshape( (-1, self.n, self.n, 1)) F2d5 = np.array(F2d5).reshape( (-1, self.n, len_feature_1d, 1)) F2d6 = np.array(F2d6).reshape( (-1, len_feature_1d, len_feature_1d, 1)) tf = [F1d.reshape((-1, len_feature_1d, 1)), F2d1, F2d2, F2d3, F2d4, F2d5, F2d6] return tf def GetIndexMatrix(self): index = np.zeros((self.n, self.m)) sub = self.subproblem() for s in sub: index[s.job_id, s.machine_id] = s.SearchInX() return index def SchedulingSequenceGenerationMethod(self, output): np.savetxt('output.csv', output,fmt="%.2f",delimiter=',') for i in range(self.m * self.n): output[i,:] = output[i,:]/output[i,:].sum() h = np.zeros((self.m, self.n)) e = np.zeros((self.m, self.n)) x = np.zeros((self.m, self.n,2)) procedure_job = [0] * self.n order_machine = [0] * self.m for i in range(self.m*self.n): possible_probability = [] for job in range(self.n): procedure = procedure_job[job] machine = self.r[job,min(4,procedure)] order = order_machine[machine] if procedure <5 and order < 5: possible_probability.append( [job,procedure,machine,order,output[job*self.m+procedure][order]] ) else: machine = -1 possible_probability.append( [job,procedure,machine,order,0] ) possible_probability = sorted(possible_probability, key=lambda x:x[4] ) bestjob,bestproce,bestmachine,bestorder = possible_probability[-1][:4] x[bestmachine,bestorder][:] = [bestjob,bestproce] procedure_job[bestjob]+=1 order_machine[bestmachine] += 1 self.x = x def GurobiModelingmethod(self, output): np.savetxt('output.csv', output,fmt="%.2f",delimiter=',') lables = self.Getlables() R = self.r.reshape(self.m*self.n) # x ,p = guchoose.main(output,R,lables,self.m,self.n) self.x = x h = np.zeros((self.m, self.n)) e = np.zeros((self.m, self.n)) for order in range(self.n): timeline_machine = np.zeros((self.m), dtype=int) timeline_jobs = np.zeros((self.n), dtype=int) index_in_machine = np.zeros((self.m), dtype=int) job_finsh = np.zeros((self.n), dtype=int) for i in range(self.m*self.n): mask = np.zeros((self.m), dtype=int) for ma in range(self.m): job, order = x[ma, min(self.n-1, index_in_machine[ma]), :] # if job_finsh[job] == order: mask[ma] = timeline_machine[ma] # else: # mask[ma] = 10000 earlyestmachine = np.argmin(mask) while index_in_machine[earlyestmachine] == self.n: timeline_machine[earlyestmachine] = 100000 earlyestmachine = np.argmin(timeline_machine) # while can_do_in_machine[earlyestmachine] job, order = x[earlyestmachine, index_in_machine[earlyestmachine], :] time_s = max( timeline_machine[earlyestmachine], timeline_jobs[job]) time_e = time_s + self.p[job, order] timeline_machine[earlyestmachine] = time_e timeline_jobs[job] = time_e h[earlyestmachine, index_in_machine[earlyestmachine]] = time_s e[earlyestmachine, index_in_machine[earlyestmachine]] = time_e index_in_machine[earlyestmachine] += 1 job_finsh[job] += 1 self.e = e self.h = h def PriorityQueuingMethod(self, output): np.savetxt('output.csv', output,fmt="%.2f",delimiter=',') lables = self.Getlables() R = self.r.reshape(self.m*self.n) x = [[] for j in range(self.m) ] for i in range(self.m*self.n): machine = R[i] x[machine].append([i//self.m,i%self.m,output[i]]) for m in range(self.m): x[m].sort(key = lambda x:x[2]) xx = np.zeros((self.m,self.n,2),dtype=int) for i in range(self.m): for j in range(self.n): xx[i,j,0] = x[i][j][0] xx[i,j,1] = x[i][j][1] x =xx self.x = xx h = np.zeros((self.m, self.n)) e = np.zeros((self.m, self.n)) for order in range(self.n): timeline_machine = np.zeros((self.m), dtype=int) timeline_jobs = np.zeros((self.n), dtype=int) index_in_machine = np.zeros((self.m), dtype=int) job_finsh = np.zeros((self.n), dtype=int) for i in range(self.m*self.n): mask = np.zeros((self.m), dtype=int) for ma in range(self.m): job, order = x[ma, min(self.n-1, index_in_machine[ma]), :] if job_finsh[job] == order: mask[ma] = timeline_machine[ma] else: mask[ma] = 10000 earlyestmachine = np.argmin(mask) while index_in_machine[earlyestmachine] == self.n: timeline_machine[earlyestmachine] = 100000 earlyestmachine = np.argmin(timeline_machine) # while can_do_in_machine[earlyestmachine] job, order = x[earlyestmachine, index_in_machine[earlyestmachine], :] time_s = max( timeline_machine[earlyestmachine], timeline_jobs[job]) time_e = time_s + self.p[job, order] timeline_machine[earlyestmachine] = time_e timeline_jobs[job] = time_e h[earlyestmachine, index_in_machine[earlyestmachine]] = time_s e[earlyestmachine, index_in_machine[earlyestmachine]] = time_e index_in_machine[earlyestmachine] += 1 job_finsh[job] += 1 self.e = e self.h = h # def SchedulingSequenceGenerationMethod(self, output): # np.savetxt('output.csv', output, delimiter=',') # x = np.zeros((self.m, self.n, 2), dtype=int) # for machine in range(self.m): # M = [] # index = np.argwhere(self.r == machine) # M = [output[job*self.m + pro] for job, pro in index] # M = np.array(M) # for i in range(self.n): # max_in_M = M.max() # a, order = np.argwhere(M == max_in_M)[0] # x[machine, order, :] = index[a] # M[a, :] = 0 # M[:, order] = 0 # self.x = x # # x = self.x # h = np.zeros((self.m, self.n)) # e = np.zeros((self.m, self.n)) # for order in range(self.n): # timeline_machine = np.zeros((self.m), dtype=int) # timeline_jobs = np.zeros((self.n), dtype=int) # index_in_machine = np.zeros((self.m), dtype=int) # job_finsh = np.zeros((self.n), dtype=int) # for i in range(self.m*self.n): # mask = np.zeros((self.m), dtype=int) # for ma in range(self.m): # job, order = x[ma, min(self.n-1, index_in_machine[ma]), :] # # if job_finsh[job] == order: # mask[ma] = timeline_machine[ma] # # else: # # mask[ma] = 10000 # earlyestmachine = np.argmin(mask) # while index_in_machine[earlyestmachine] == self.n: # timeline_machine[earlyestmachine] = 100000 # earlyestmachine = np.argmin(timeline_machine) # # while can_do_in_machine[earlyestmachine] # job, order = x[earlyestmachine, # index_in_machine[earlyestmachine], :] # time_s = max( # timeline_machine[earlyestmachine], timeline_jobs[job]) # time_e = time_s + self.p[job, order] # timeline_machine[earlyestmachine] = time_e # timeline_jobs[job] = time_e # h[earlyestmachine, index_in_machine[earlyestmachine]] = time_s # e[earlyestmachine, index_in_machine[earlyestmachine]] = time_e # index_in_machine[earlyestmachine] += 1 # job_finsh[job] += 1 # self.e = e # self.h = h # # print('ddd') def GetMakespan(self): return self.e.max() def TranslateNpToStr(m): a = m.reshape((-1)) a = list(a) s = ''.join(['{},'.format(round(o,2)) for o in a]) + '\n' return s def PlotRec(mPoint1, mPoint2, mText): vPoint = np.zeros((4, 2)) vPoint[0, :] = [mPoint1, mText-0.8] vPoint[1, :] = [mPoint2, mText-0.8] vPoint[2, :] = [mPoint1, mText] vPoint[3, :] = [mPoint2, mText] plt.plot([vPoint[0, 0], vPoint[1, 0]], [vPoint[0, 1], vPoint[1, 1]], 'k') # hold on plt.plot([vPoint[0, 0], vPoint[2, 0]], [vPoint[0, 1], vPoint[2, 1]], 'k') plt.plot([vPoint[1, 0], vPoint[3, 0]], [vPoint[1, 1], vPoint[3, 1]], 'k') plt.plot([vPoint[2, 0], vPoint[3, 0]], [vPoint[2, 1], vPoint[3, 1]], 'k') if __name__ == "__main__": prob = Problem(2, 8, 10, 30) prob.SoluteWithBBMAndSaveToFile('data', 0) prob.Print_info() sub_list = prob.subproblem() sub_list[0].Show2DFeatures()
38.513143
120
0.501439
9b5a8f1b4102d499bd26a90d822f7e95d987f48f
45,161
py
Python
python/akg/utils/kernel_exec.py
nn4ip/akg
4ca2d3fa46f172246ad8275f8c171ae85d0c7dd2
[ "Apache-2.0" ]
null
null
null
python/akg/utils/kernel_exec.py
nn4ip/akg
4ca2d3fa46f172246ad8275f8c171ae85d0c7dd2
[ "Apache-2.0" ]
null
null
null
python/akg/utils/kernel_exec.py
nn4ip/akg
4ca2d3fa46f172246ad8275f8c171ae85d0c7dd2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 # Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """util""" import sys import gc import inspect import datetime import os import uuid import logging import time import random import subprocess import re import tvm from timeit import default_timer as timer from threading import Thread from functools import reduce import numpy as np from enum import IntEnum import ctypes import akg import akg.tvm from akg.tvm import autotvm from akg.tvm import rpc from akg.tvm import _api_internal from akg.build_module import help_tiling_level from akg.utils import result_analysis as ra_util from akg.utils import format_transform as ft_util from akg.utils import custom_tiling as ct_util from akg.utils import validation_check as vc_util from akg.utils.dsl_create import TensorUtils from akg.backend.parsing_profiling_data import HWTSLogParser from akg.backend.parsing_profiling_data import validate_and_normalize_path sh = logging.StreamHandler(sys.stdout) logging.getLogger().addHandler(sh) logging.getLogger().setLevel(logging.INFO) rpc_machine = {} rpc_lb = {} PERFORMANCE_TEST_FILE = "PERFORMANCE_TEST_FILE" BINDS = "binds" CUDA = "cuda" CCE = "cce" RANDOM_SEED_NUM = 20 PROF_ERROR_CODE = 9999999999 WGT_WIDTH = 16 INP_WIDTH = 16 OUT_WIDTH = 16 BLOCK_IN = 16 BLOCK_OUT = 16 BLOCK_REDUCE = 16 INP_ELEM_BYTES = (BLOCK_IN * BLOCK_REDUCE * INP_WIDTH // 8) WGT_ELEM_BYTES = (BLOCK_OUT * BLOCK_REDUCE * WGT_WIDTH // 8) OUT_ELEM_BYTES = (BLOCK_IN * BLOCK_OUT * OUT_WIDTH // 8) GLB_ELEM_BYTES = (16 * OUT_WIDTH // 8) class ReturnType(IntEnum): """Return Type IntEnum""" DEFAULT = 0 FEAT = 1 MOD = 2 MOD_AND_FEAT = 3 def debug_mode(debug_flag): """ Pass to enable tpu debug mode. Args: debug_flag (int): The dbeug flag to be passed. Returns: list of function, the pass to set to build_config(add_lower_pass=tpu.debug_mode(mode)). """ # the number in pass_list such as 0,1,2,3 represents the order of the pass called pass_list = [] if debug_flag == 1: from akg.tvm import ir_pass pass_list.append((0, ir_pass.inject_dma_intrin)) return pass_list def func_time_required(func_name): """Checking the Time Required for Function Running.""" def wrapper(*args, **kwargs): t0 = time.time() result = func_name(*args, **kwargs) t1 = time.time() logging.info("func_time_required func:%s, running:%lf seconds", func_name.__name__, (t1 - t0)) return result return wrapper def create_code(kernel_name, code_path=None, code=None, code_type=CCE): """ Create cce or cuda file. Args: kernel_name: file name. code_path: file path. code: code. code_type: code type. """ if code_type == CCE: postfix = ".cce" elif code_type == CUDA: postfix = ".cu" else: logging.info("the target code type %s is not supported.", code_type) if not code_path: code_path = "./" if code_type == CCE and len(code_path) > 4 and code_path[-4:].lower() == postfix: real_path = code_path elif code_type == CUDA and len(code_path) > 3 and code_path[-3:].lower() == postfix: real_path = code_path else: if code_path[-1] == r"/": real_path = code_path + kernel_name + postfix else: real_path = code_path + r"/" + kernel_name + postfix dir_path = r"/".join(real_path.split(r"/")[:-1]) if not os.path.isdir(dir_path): os.makedirs(dir_path) with open(real_path, 'wt') as ss: ss.write(code) def gen_name_kernel(kernel, dtype, shapes): """generate kernel name.""" def _flat_array(srclist, dstlist): for i in srclist: if isinstance(i, (list, tuple)): _flat_array(i, dstlist) else: dstlist.append(i) res = '' flat = [] _flat_array(shapes, flat) for s in flat: res = "%s%s'_'" % (res, s) res = "%s_%s%s" % (kernel, res, dtype) return res def load_rpc_server_info(mode): """ load rpc server host and port info. Args: mode (str): string of runtime choose, can set ca aic and rpc. """ env_dic = os.environ if env_dic.get('RPC_HOST') and env_dic.get('RPC_PORT'): return None if mode == 'rpc_cloud': logging.error("runtime_mode=rpc_cloud must set 1980 host ip and port!") raise Exception("ERROR:runtime_mode=rpc_cloud must set 1980 host ip and port!") rpc_server_info_config = env_dic.get('RPC_SERVER_INFO_FILE') if not rpc_server_info_config: logging.error("runtime_mode=rpc must set RPC_SERVER_INFO_FILE for rpc server info config") raise Exception("ERROR:runtime_mode=rpc must set RPC_SERVER_INFO_FILE for rpc server info config") # load rpc server host and port info from local file. import json with open(rpc_server_info_config, 'r') as f: info = json.load(f) for i in info: rpc_machine[i] = info[i] rpc_lb[i] = 0.0 return None def dispatch(rank=0): """Function for lock waiting dispatch handle version 1.""" def _sort_by_value(d): items = list(d.items()) random.shuffle(items) items.sort(key=lambda x: x[1]) return [item[0] for item in items] for k, v in rpc_lb.items(): logging.info("######rpc_lb[%s]=%f", rpc_machine[k][0], v) lb_list = _sort_by_value(rpc_lb) if len(lb_list) > rank: return lb_list[rank] return lb_list[len(lb_list) - 1] def commit(remote, weight): rpc_lb[remote] = weight @func_time_required def mod_launch_rpc_worker(mod, args, outputs, host, port, tuning=False): """internal RPC worker, should be called by mod_launch_rpc_thread.""" logging.info("%s:====start connect to rpc ip: %s, rpc port: %d ", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), host, port) remote = rpc.connect(host, port, session_timeout=300) logging.info("%s:====connect to rpc ip: %s, rpc port: %d finished ", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), host, port) uuid_str = uuid.uuid4().hex temp_file_name = "stackvm_%s.o" % uuid_str mod.save(temp_file_name) remote.upload(temp_file_name) remote_mod = remote.load_module(temp_file_name) ctx = remote.cce() arg_list = [] for a in args: arg_list.append(akg.tvm.nd.array(a, ctx)) start_time = timer() remote_mod(*arg_list) ctx.sync() if os.path.exists(temp_file_name): os.remove(temp_file_name) out_list = [] for i in outputs: out = arg_list[len(arg_list) + i if i < 0 else i].asnumpy() out_list.append(out) # this time measure is no accurate now, to be improved soon t = timer() - start_time if not tuning: return out_list[0] if len(out_list) == 1 else tuple(out_list) stat_info = {"run_time": t} return out_list[0] if len(out_list) == 1 else tuple(out_list), stat_info def mod_launch_rpc_thread(mode, mod, args, outputs, results, need_retry, retry, tuning=False): """internal RPC thread, should be called by mod_launch_rpc_multithread.""" remoteevb = '0' host = None port = None env_dic = os.environ if env_dic.get('RPC_HOST') and env_dic.get('RPC_PORT'): host = env_dic.get('RPC_HOST') port = int(env_dic.get('RPC_PORT')) else: if mode == 'rpc_cloud': logging.error("runtime_mode=rpc_cloud must set 1980 host ip and port!") raise Exception("ERROR:runtime_mode=rpc_cloud must set 1980 host ip and port!") remoteevb = dispatch(retry) host = rpc_machine[remoteevb][0] port = rpc_machine[remoteevb][1] start_time = timer() end_time = 0.0 logging.debug("rpc ip: %s, rpc port: %d", host, port) try: out_list = mod_launch_rpc_worker(mod, args, outputs, host, port, tuning=tuning) end_time = timer() t = end_time - start_time if not env_dic.get('RPC_HOST'): commit(remoteevb, 20 if t > 20 else t) logging.info("===this round host is %s time is %f", host, (end_time - start_time)) results[retry] = out_list except RuntimeError: need_retry[retry] = True end_time = timer() logging.error("===Failed! this round host is %s time is %f", host, (end_time - start_time)) if not env_dic.get('RPC_HOST'): commit(remoteevb, end_time - start_time + 20 * (retry + 1)) logging.error("rpc retry error: %d %s", retry, sys.exc_info()) def mod_launch_rpc(mode, mod, args, outputs, tuning=False): """ launch rpc or rpc_cloud module with retry. Note: To minimize waiting time of struggler RPC servers, we wait for a short timeout and spawn a new thread after the timeout. In normal case, RPC would complete before the short timeout, so, only one thread will be created. When the RPC server is slow, we create multiple threads that run concurrently. We wait for the first thread that successfully completes its work and return the result. If a thread fails (an exception is raised), we spawn a new thread to retry. Newly spawned threads will use different RPC servers. We bound the maximum number of threads, i.e. maximum number of retries. """ max_num_threads = 5 import operator arg_filter = filter(lambda x: isinstance(x, np.ndarray), args) arg_tensor = list(arg_filter) tensor_size = reduce(operator.add, [reduce(operator.mul, arg.shape) for arg in arg_tensor]) expected_upload_speed = 5e6 expected_upload_time = int(tensor_size / expected_upload_speed) timeout_before_spawning_new_thread = 200 + expected_upload_time poll_interval = 1 thread_timeout = 400 + expected_upload_time * 3 load_rpc_server_info(mode) threads = [None] * max_num_threads results = [None] * max_num_threads need_retry = [None] * max_num_threads retried = [False] * max_num_threads for thread_index in range(max_num_threads): if thread_index > 0: logging.error("Thread %d run for %d seconds, spawn a new thread to retry", (thread_index - 1), timeout_before_spawning_new_thread) threads[thread_index] = Thread(target=mod_launch_rpc_thread, args=(mode, mod, args, outputs, results, need_retry, thread_index, tuning)) # daemonize the thread to prevent long running threads from hanging the whole process threads[thread_index].daemon = True threads[thread_index].start() poll_count = timeout_before_spawning_new_thread // poll_interval while poll_count > 0: poll_count -= 1 # wait for the newly created thread, because it is most likely to complete first threads[thread_index].join(poll_interval) for poll_index in range(thread_index + 1): if not threads[poll_index].is_alive() and not need_retry[poll_index]: return results[poll_index] if need_retry[poll_index] and not retried[poll_index]: logging.error("Thread %d exit with error, spawn a new thread immediately", poll_index) poll_count = 0 retried[poll_index] = True logging.error("All %d threads are created, poll the threads until the first one exits normally, \ or all threads exit abnormally or timeout", max_num_threads) poll_count = thread_timeout // poll_interval for _ in range(poll_count): threads[max_num_threads - 1].join(poll_interval) exit_thread_count = 0 for poll_index in range(max_num_threads): if not threads[poll_index].is_alive() and not need_retry[poll_index]: return results[poll_index] if not threads[poll_index].is_alive(): exit_thread_count += 1 if exit_thread_count == max_num_threads: logging.error("All %d threads exit abnormally", max_num_threads) return None logging.error("All %d threads timeout", max_num_threads) return None def profiling_mode_run(mod, args, outputs, tuning, device_id): """ Function for collecting cycle data from device. Args: mod: CCE Module. args: list or tuple of numpy array. outputs: list or tuple of output argment index. tuning: tuning model. device_id: device_id on device. """ ctx = akg.tvm.ndarray.cce(device_id) tvm.get_global_func("ascend_start_profiling")(device_id) arg_list = [] for a in args: arg_list.append(akg.tvm.nd.array(a, ctx)) time_before_launch = time.time() mod(*arg_list) ctx.sync() tvm.get_global_func("ascend_stop_profiling")() out_list = [] cycle = profiling_analyse(device_id, time_before_launch) for i in outputs: out = arg_list[len(arg_list) + i if i < 0 else i].asnumpy() out_list.append(out) logging.info('=====parsing cycles==============================') if cycle != PROF_ERROR_CODE: logging.info(cycle) else: logging.error("OOPS, can't correctly parsing cycles!") TestUtils.record_cycle(cycle) logging.info('=====parsing cycles==============================') output_data = out_list[0] if len(out_list) == 1 else tuple(out_list) if tuning: return output_data, {'run_time': cycle} return output_data def profiling_analyse(device_id, time_before_launch): """analyse profiling.""" def exec_cmds_with_pipe(cmd_list): cmd_num = len(cmd_list) if cmd_num <= 1: raise RuntimeError("length of cmd_list should be greater than 1.") ps = [] for i, cmd in enumerate(cmd_list): if i == 0: p = subprocess.Popen(cmd, stdout=subprocess.PIPE) else: p = subprocess.Popen(cmd, stdin=ps[-1].stdout, stdout=subprocess.PIPE) ps.append(p) for p in ps: p.wait() return ps[-1].communicate() if not isinstance(device_id, int): raise TypeError("device_id must be an integer.") try: public_path = os.getenv('PROFILING_DIR') if public_path is None: raise RuntimeError("Environment PROFILING_DIR not set!") public_path = validate_and_normalize_path(public_path) cmd_list = [ ["find", public_path, "-iname", "*.log.%d" % device_id, "-printf", "'%T+\t%p\n'"], ["grep", "JOB"], ["sort", "-r"], ["head", "-n10"], ["awk", "{print $2}"], ["head", "-n1"], ] for _ in range(200): p = exec_cmds_with_pipe(cmd_list) if p[0].decode('utf8').strip() == '': time.sleep(1) else: break try: job_file = p[0].decode('utf8').strip().split('/')[-2] except BaseException: logging.warning("failed to decode profiling result") return None logging.debug("job file is: %s", job_file) file_abs_path = public_path + "/" + job_file file_create_time = os.path.getctime(file_abs_path) if file_create_time < time_before_launch: raise RuntimeError("The JOB file is too old") count = 0 while count < 5: try: hwtslog_parser = HWTSLogParser(file_abs_path) return hwtslog_parser.execute() except BaseException: time.sleep(1) count += 1 except SyntaxError as e: logging.error(e) return PROF_ERROR_CODE def array_as_continue(arr): assert isinstance(arr, np.ndarray) arr = np.ascontiguousarray(arr, dtype=arr.dtype) assert arr.flags['C_CONTIGUOUS'] return arr def get_launch_args(arg_list, outputs): launch_args = [] outputs = set(outputs) for i in range(len(arg_list)): arg = arg_list[i] if isinstance(arg, np.ndarray): data = arg.ctypes.data_as(ctypes.c_void_p) nbytes = arg.size * arg.dtype.itemsize is_output = 1 if i in outputs else 0 launch_args.append(data) launch_args.append(nbytes) launch_args.append(is_output) else: launch_args.append(arg) return launch_args def mod_launch_air(mod, args, outputs, device_id): """launch mod on kc_air.""" ctx = akg.tvm.ndarray.cce(device_id) arg_list = [] for a in args: if isinstance(a, np.ndarray): arg_list.append(akg.tvm.nd.array(a, ctx)) elif isinstance(a, (list, tuple)): for aa in a: if isinstance(aa, np.ndarray): arg_list.append(akg.tvm.nd.array(aa, ctx)) else: arg_list.append(aa) else: arg_list.append(a) for retry in range(3): need_retry = False try: mod(*arg_list) ctx.sync() out_list = [] if not need_retry: for i in outputs: out = arg_list[len(arg_list) + i if i < 0 else i].asnumpy() out_list.append(out) return out_list[0] if len(out_list) == 1 else tuple(out_list) except RuntimeError: need_retry = True logging.error("kc_air retry error: %d %s", retry, sys.exc_info()) logging.error("kc_air runtime error, please check!") return None def ascend_run(kernel_name, args, outputs, device_id): """launch mod on ascend.""" # Currently akg runs through this function in CCE RT mode arg_list = [] for a in args: if isinstance(a, np.ndarray): arg_list.append(array_as_continue(a)) elif isinstance(a, (list, tuple)): for aa in a: if isinstance(aa, np.ndarray): arg_list.append(array_as_continue(a)) else: arg_list.append(aa) else: arg_list.append(a) outputs = [len(arg_list) + i if i < 0 else i for i in outputs] launch_args_list = get_launch_args(arg_list, outputs) tvm.get_global_func("ascend_run")(kernel_name, device_id, *launch_args_list) out_list = [] for i in outputs: out = arg_list[i] out_list.append(out) return out_list[0] if len(out_list) == 1 else tuple(out_list) def get_kernel_name(code): kernel_name_end_pos = code.find("_kernel") kernel_name_start_pos = code[:kernel_name_end_pos].rfind(" ") + 1 kernel_name = code[kernel_name_start_pos:kernel_name_end_pos] if not kernel_name: raise ValueError("fail to get kernel_name") return kernel_name @func_time_required def mod_launch(mod, args, outputs=(-1,), tuning=False, device_id=-1, expect=None, repeat_time=400): """ unified run CCE kernel api. Args: mod (str): CCE Module, string of runtime choose, can set ca aic and rpc. args (Union[list, tuple]): list or tuple of numpy array. outputs (Union[list, tuple]): list or tuple of output argment index. tuning (bool): tuning model. device_id: device_id on device. expect: when mode in ["compile_cloud", "compile_mini"], return it. Returns: output numpy array, or tuple of numpy array if multi-output. """ gc.collect() if device_id == -1: device_id = int(os.environ.get("DEVICE_ID", 0)) module = mod.imported_modules[0] if module.type_key == CUDA: ctx = akg.tvm.context(CUDA, device_id) mod_args = [akg.tvm.nd.array(a, ctx) for a in args] mod(*mod_args) out_list = [mod_args[len(args) + i if i < 0 else i].asnumpy() for i in outputs] if not tuning: return out_list[0] if len(out_list) == 1 else tuple(out_list) else: cycles = get_gpu_cycles(mod, *mod_args, device_id=device_id, repeat_time=repeat_time) return out_list[0] if len(out_list) == 1 else tuple(out_list), {'run_time': cycles} stat_info = {} profiling_mode = get_profiling_mode() if profiling_mode: return profiling_mode_run(mod, args, outputs, tuning, device_id) mode = get_runtime_mode() if mode == 'aic': output = aic_model.launch(mod, args, outputs) if not tuning: return output ra_util.get_ticks(stat_info) return output, stat_info if mode == 'aic_cloud': output = aic_model.launch(mod, args, outputs, spec=aic_model.Spec.CLOUD) if not tuning: return output ra_util.get_ticks(stat_info) return output, stat_info if mode in ('rpc', 'rpc_cloud'): return mod_launch_rpc(mode, mod, args, outputs, tuning) # The air_cloud is the current default mode and needs to be modified in the future if mode == 'air_cloud': kernel_name = get_kernel_name(module.get_source()) return ascend_run(kernel_name, args, outputs, device_id) if mode in ('ca', 'air', 'air_cloud'): return mod_launch_air(mod, args, outputs, device_id) if mode in ("compile_cloud", "compile_mini"): return expect if mode in ("csim", "ccesim", "cdiff"): from akg.backend.csim import csim_launch return csim_launch(args, outputs) if mode == "cpu": tvm_array = [] ctx = akg.tvm.context("llvm", 0) for _, args_val in enumerate(args): tvm_temp = akg.tvm.nd.array(args_val, ctx) tvm_array.append(tvm_temp) mod(*tvm_array) return tvm_array[-1].asnumpy() raise ValueError("mode must be aic, rpc, aic_cloud, ca, compile_cloud, compile_mini, cpu, csim, ccesim or cdiff") def gen_kernel_name(input_shapes, input_types, op_attrs=None, kernel_name=""): """generate kernel name.""" dir_max_length = 250 shape_info = '' for _, (shape, dtype) in enumerate(zip(input_shapes, input_types)): if isinstance(shape, (list, tuple)) and shape and isinstance(shape[0], (list, tuple)): for _, tmp_shape in enumerate(shape): vc_util.check_shape(tmp_shape) tmp_shape = list(tmp_shape) str_tmp_shape = [str(tmp) for tmp in tmp_shape] shape_info = "%s_%s_%s" % (shape_info, dtype, '_'.join(str_tmp_shape)) elif isinstance(shape, akg.tvm.tensor.Tensor): for tmp_shape in shape.shape: if isinstance(tmp_shape, akg.tvm.expr.Var): str_shape = tmp_shape.name else: str_shape = str(tmp_shape) shape_info = "%s_%s_%s" % (shape_info, dtype, '_'.join(str_shape)) else: vc_util.check_shape(shape) if isinstance(shape, akg.tvm.expr.Var): shape = [shape] shape = list(shape) str_shape = [str(i) for i in shape] shape_info = "%s_%s_%s" % (shape_info, dtype, '_'.join(str_shape)) if op_attrs is not None: for tmp in op_attrs: if isinstance(tmp, (list, tuple)): for ele in tmp: if isinstance(ele, (list, tuple)): str_tmp = [str(i) for i in ele] shape_info = shape_info + '_' + '_'.join(str_tmp) else: shape_info = shape_info + '_' + str(ele) elif isinstance(tmp, (int, float)): shape_info = shape_info + '_' + str(tmp) elif isinstance(tmp, (str)): shape_info = shape_info + '_' + tmp elif isinstance(tmp, (np.ndarray)): shape = list(tmp.shape) str_shape = [str(i) for i in shape] shape_info = shape_info + '_' + '_'.join(str_shape) kernel_name = kernel_name + shape_info kernel_name = re.sub(r'[^0-9a-zA-Z]+', '_', kernel_name) if len(kernel_name) > dir_max_length: logging.info("Dir name %s exceed maximal length, use first %d char as dir name.", kernel_name, dir_max_length) kernel_name = kernel_name[:dir_max_length] return kernel_name @func_time_required def op_build_test(op_func, input_shapes, input_types, op_attrs=None, kernel_name="", attrs=None, log_cce=False, dump_ir=True, dump_code=True, polyhedral=True, tuning=False): """ Return module from op_build with given inputs, distinguish tuning mode. Args: op_func (function returning an op or (op, [op_vars])): The op build function input_shapes(iterable of iterable of int): the dim sizes for input for op input_types (iterable of iterable of str): the dtypes for each input op_attrs (list or tuple): extra attributes for the op. kernel_name (str): name of op. attrs (dict): tiling parameter. log_cce (bool): False by default. dump_ir (bool): True by default. dump_code (bool): False by default. polyhedral (bool): True by default. tuning (bool): False by default. Return: module. """ if isinstance(attrs, dict) and 'tuning' in attrs.keys(): kernel_name = kernel_name else: kernel_name = gen_kernel_name(input_shapes, input_types, op_attrs, kernel_name) logging.debug('kernel_name---------- %s', str(kernel_name)) mod = op_build(op_func, input_shapes, input_types, op_attrs, kernel_name, attrs, log_cce, dump_ir, dump_code, polyhedral, tuning) return mod def recursive_copy(obj): """ Copy a container object recursively Args: obj (list, tuple, dict or object): input container object. Return: copied object. """ if isinstance(obj, list): return [recursive_copy(it) for it in obj] if isinstance(obj, tuple): return tuple([recursive_copy(it) for it in obj]) if isinstance(obj, dict): copy_obj = dict() for key in obj: copy_obj[key] = recursive_copy(obj[key]) return copy_obj return obj def gen_inputs_and_shape_params(input_shapes, input_types, inputs, shape_params): """ Generate akg.tvm.placeholder as inputs for op with given input_shapes and input_types Args: input_shapes(iterable of iterable of int): the dim sizes for input for op. input_types (iterable of iterable of str): the dtypes for each input. inputs (list): None by default. shape_params (list): None by default. """ for i, (shape, dtype) in enumerate(zip(input_shapes, input_types)): if isinstance(shape, (list, tuple)) and shape and isinstance(shape[0], (list, tuple)): tmp_input = [] for j, tmp_shape in enumerate(shape): tmp_input.append(akg.tvm.placeholder(tmp_shape, dtype, "input_%d_%d" % (i + 1, j + 1))) for tmp in tmp_shape: if isinstance(tmp, akg.tvm.expr.Var): shape_params.append(tmp) inputs.append(tmp_input) elif isinstance(shape, (list, tuple)) and shape and isinstance(shape[0], akg.tvm.expr.Var): inputs.append(akg.tvm.placeholder(shape, dtype, "input_%d" % (i + 1))) for tmp_shape in shape: if isinstance(tmp_shape, akg.tvm.expr.Var): shape_params.append(tmp_shape) elif isinstance(shape, akg.tvm.tensor.Tensor): inputs.append(shape) for tmp_shape in shape.shape: shape_params.append(tmp_shape) else: inputs.append(akg.tvm.placeholder(shape, dtype, "input_%d" % (i + 1))) def gen_attrs_params(op_attrs, attrs_params): """ Parsing attrs given by op_attrs. Args: op_attrs (list or tuple): extra attributes for the op. attrs_params (list): None by default. """ for tmp_attr in op_attrs: if isinstance(tmp_attr, (list, tuple)) and tmp_attr and isinstance(tmp_attr[0], akg.tvm.expr.Var): for attr_param in tmp_attr: if isinstance(attr_param, akg.tvm.expr.Var): attrs_params.append(attr_param) elif isinstance(tmp_attr, akg.tvm.expr.Var): attrs_params.append(tmp_attr) def get_dim_from_func_map(attrs, op_func, args, input_shapes, input_types, op_attrs): """ Get tiling parameter from map defined in op_func. Args: attrs (dict): tiling parameter. op_func (function returning an op or (op, [op_vars])): The op build function. args (list): input tensors and attributes(if exists) of op_func. input_shapes (iterable of iterable of int): the dim sizes for input for op. input_types (iterable of iterable of str): the dtypes for each input. op_attrs (list or tuple): extra attributes for the op. """ if attrs is None or 'dim' not in attrs or not attrs['dim']: dim_info = "" if attrs is None: attrs = dict() if op_func.__name__ in ct_util.set_dim_func_map.keys(): value = ct_util.set_dim_func_map[op_func.__name__] if inspect.isfunction(value): dim_info = value(*args) elif isinstance(value, dict): key = [] key.append(ft_util.convert_to_list(input_shapes)) key.append(ft_util.convert_to_list(input_types)) if op_attrs is not None: key.append(op_attrs) key = str(tuple(key)) if key in value.keys(): dim_info = ct_util.set_dims(value[key]) else: raise RuntimeError("Registered set_dim_map is invalid. Must be a function or a dict!") if isinstance(dim_info, (list, tuple)): dim_info = dim_info[0] attrs['dim'] = dim_info return attrs def parsing_output(output, attrs, compute_func, sch_tmpl, gpu_binds): """ Parsing the outputs of op. Args: output (iterable of iterable of akg.tvm.tensor): the outputs of op. attrs (dict): tiling parameter. compute_func (function): None by default, func for doing compute_inline or other. sch_tmpl (dict): None by default. gpu_binds (dict): None by default. """ if isinstance(output, (list, tuple)): from inspect import isfunction new_outputs = [] for elem in output: if isfunction(elem): compute_func = elem elif isinstance(elem, dict): for key, value in elem.items(): if key not in attrs or not attrs[key]: attrs[key] = value elif isinstance(elem, (list, tuple)): new_outputs += elem else: new_outputs.append(elem) output = new_outputs elif isinstance(output, dict): sch_tmpl = output output = sch_tmpl['output'] gpu_binds = sch_tmpl['binds'] return output, compute_func, sch_tmpl, gpu_binds def gen_op_var(inputs, output, op_var): """ Combine inputs and outputs about the op. Args: inputs(list): the inputs of op. output(list): the outputs of op. op_var (list): inputs and outputs for the op. """ for xx in inputs: if isinstance(xx, list): for x in xx: op_var.append(x) else: op_var.append(xx) if isinstance(output, (list, tuple)): op_var = op_var + [i for i in output if TensorUtils.is_output_value(i)] else: if TensorUtils.is_output_value(output): op_var = op_var + [output] return op_var def gen_shape_var(attrs_params, shape_params, shape_var): """ Combine shape of inputs and extra attributes about the op. Args: attrs_params(list): shape of inputs for the op shape_params(list): extra attributes for the op shape_var (list): shape of inputs and extra attributes for the op. """ if attrs_params: for i in attrs_params: if i not in shape_var: shape_var.append(i) for i in shape_params: if i not in shape_var: shape_var.append(i) def gen_spaces_dim_key(op_func, args, s, op_var, kernel_name, attrs, polyhedral, tuning, target): """ Generate tiling parameter. Args: op_func (function returning an op or (op, [op_vars])): The op build function. args (Union[list, tuple]): list or tuple of numpy array. s (dict): schedule of op. op_var (list): the akg.tvm.tensor of inputs and outputs for op. kernel_name (str): name of op. attrs (dict): tiling parameter. polyhedral (bool): True by default. tuning (bool): False by default. Return: tiling parameter. """ set_dim_key = "" if op_func.__name__ in ct_util.set_dim_func_map.keys(): func_ = ct_util.set_dim_func_map[op_func.__name__] if inspect.isfunction(func_): set_dim_key = func_(*args)[1] elif op_func.__name__ in ct_util.gen_key_func_map.keys(): func_ = ct_util.gen_key_func_map[op_func.__name__] if inspect.isfunction(func_): set_dim_key = func_(*args) with akg.build_config(dump_pass_ir=True): spaces = akg.lower(s, op_var, name=kernel_name, attrs=attrs, polyhedral=polyhedral, tuning=tuning, target=target) if set_dim_key == "": set_dim_key = str(args) return spaces, set_dim_key def create_gpu_mod(sch_tmpl, s, op_func, op_var, shape_var, kernel_name, attrs, polyhedral, binds, dump_ir, dump_code, tuning): """ Return module for op of gpu. Args: sch_tmpl (dict): schedule of op and the others. s (dict): schedule of op. op_func (function returning an op or (op, [op_vars])): The op build function. op_var (list): the akg.tvm.tensor of inputs and outputs for op. shape_var (list): shape of inputs and extra attributes for the op. kernel_name (str): name of op. attrs (dict): tiling parameter. polyhedral (bool): True by default. binds (dict): BINDS dump_ir (bool): True by default. dump_code (bool): False by default. tuning (bool): False by default. Return: module. """ if sch_tmpl is not None or (attrs and attrs.get("target", "cce") == "cuda"): if kernel_name == "": kernel_name = op_func.__name__ if sch_tmpl is None else sch_tmpl['op_name'] target = CUDA if sch_tmpl is not None: if sch_tmpl['target'] != CUDA: raise ValueError("Only support cuda as target when using schedule template.") with akg.tvm.target.cuda() as target: if not tuning: s = sch_tmpl['schedule'](sch_tmpl['output']) with akg.tvm.build_config(dump_pass_ir=dump_ir): mod = akg.build(s, op_var, "cuda", shape_var, name=kernel_name, attrs=attrs, polyhedral=False, binds=binds) else: @autotvm.template def _autotune_template(): s = sch_tmpl['schedule'](sch_tmpl['output']) return (s, op_var) # create autotune task task = autotvm.task.create(_autotune_template, args=list(), target='cuda') print("task config: ", task.config_space) # set measure_option measure_option = autotvm.measure_option( builder=autotvm.LocalBuilder(), runner=autotvm.LocalRunner(repeat=5, min_repeat_ms=150, timeout=4) ) # Begin tuning, log records to file `kernel_name.log` tuner = autotvm.tuner.RandomTuner(task) if not os.path.exists(kernel_name + '.log'): tuner.tune(n_trial=len(task.config_space), measure_option=measure_option, callbacks=[autotvm.callback.log_to_file(kernel_name + '.log')]) # query best config dispatch_context = autotvm.apply_history_best(kernel_name + '.log') best_config = dispatch_context.query(task.target, task.workload) print("\nBest config is:") print(best_config) # apply best config with autotvm.apply_history_best(kernel_name + '.log'): s, op_var = _autotune_template() mod = akg.build(s, op_var, "cuda", shape_var, name=kernel_name, attrs=attrs, polyhedral=False, binds=binds) else: with akg.build_config(dump_pass_ir=dump_ir): mod = akg.build(s, op_var, target, shape_var, name=kernel_name, attrs=attrs, polyhedral=polyhedral, binds=binds) if dump_code: source_code = mod.imported_modules[0].get_source() create_code(kernel_name, "./", source_code, CUDA) return mod def op_build(op_func, input_shapes, input_types, op_attrs=None, kernel_name="", attrs=None, log_cce=False, dump_ir=True, dump_code=True, polyhedral=True, tuning=False, ret_mode=ReturnType.MOD): """ Return module built from op_func with given inputs. Args: op_func (function returning an op or (op, [op_vars])): The op build function. input_shapes(iterable of iterable of int): the dim sizes for input for op. input_types (iterable of iterable of str): the dtypes for each input. op_attrs (list or tuple): extra attributes for the op. kernel_name (str): name of op. attrs (dict): tiling parameter. log_cce (bool): False by default. dump_ir (bool): True by default. dump_code (bool): False by default. polyhedral (bool): True by default. tuning (bool): False by default. Return: module. """ inputs = [] shape_params = [] # save all the shape params for dynamic_shape cases gen_inputs_and_shape_params(input_shapes, input_types, inputs, shape_params) attrs_params = [] if op_attrs is not None: args = inputs + op_attrs gen_attrs_params(op_attrs, attrs_params) else: args = inputs # backup inputs because the tensor names may be updated inside op_func inputs_backup = recursive_copy(inputs) output = op_func(*args) # restore inputs to make sure that tensor names are not changed by op_func inputs = inputs_backup # set dim attrs = get_dim_from_func_map(attrs, op_func, args, input_shapes, input_types, op_attrs) compute_func = None # func which is defined in dsl for doing compute_inline or other sch_tmpl = None gpu_binds = None output, compute_func, sch_tmpl, gpu_binds = parsing_output(output, attrs, compute_func, sch_tmpl, gpu_binds) op_var = [] op_var = gen_op_var(inputs, output, op_var) shape_var = [] gen_shape_var(attrs_params, shape_params, shape_var) if sch_tmpl is not None: return create_gpu_mod(sch_tmpl, None, op_func, op_var, shape_var, kernel_name, attrs, polyhedral, gpu_binds, dump_ir, dump_code, tuning) if isinstance(output, (list, tuple)): tmp = [] for x in list(output): if isinstance(x, tuple): tmp.append(x[0].op) else: tmp.append(x.op) s = akg.tvm.create_schedule(tmp) else: s = akg.tvm.create_schedule(output.op) if compute_func is not None: compute_func(s) polyhedral = False target = CCE if attrs and attrs.get("target", "cce") == CUDA: target = CUDA level = attrs.get("help_tiling") if attrs and "help_tiling" in attrs else None if tuning or (level is not None and level > help_tiling_level['None']): return gen_spaces_dim_key(op_func, args, s, op_var, kernel_name, attrs, polyhedral, tuning, target) mode = get_runtime_mode() if mode == "cpu": mod = akg.tvm.build(s, op_var, "llvm") if not os.path.isdir("./cpu/ir/"): os.makedirs("./cpu/ir/") with os.fdopen(os.open("./cpu/ir/" + kernel_name + ".cc", os.O_WRONLY | os.O_CREAT, 0o400), 'w') as irf: irf.write(akg.tvm.lower(s, op_var, shape_var, simple_mode=True)) return mod binds = None if not attrs else attrs.pop(BINDS, None) if ret_mode in [ReturnType.FEAT, ReturnType.MOD_AND_FEAT]: if binds is None: from akg.tvm import build_module binds, _ = build_module.get_binds(op_var) cfg = _api_internal._GetCurrentBuildConfig() stmt, args = _api_internal._Lower(s, op_var, shape_params, kernel_name, binds, attrs, False, True, False, target, cfg, True) from akg.utils.auto_tuning import get_features_from_stmts feature = get_features_from_stmts(stmts=[stmt], binds=[binds], n_skip_cache=0)[0] if ret_mode == ReturnType.FEAT: return feature mod = _api_internal._BuildStmtToModule(stmt, kernel_name, cfg, args, target) return mod, feature if target == CUDA: return create_gpu_mod(None, s, op_func, op_var, shape_var, kernel_name, attrs, polyhedral, binds, dump_ir, dump_code, tuning) target = CCE with akg.build_config(dump_pass_ir=dump_ir): mod = akg.build(s, op_var, target, shape_var, name=kernel_name, attrs=attrs, polyhedral=polyhedral, binds=binds) source_code = mod.imported_modules[0].get_source() if log_cce: logging.debug("#################cce code####################") logging.debug(source_code) if dump_code: create_code(kernel_name, "./", source_code, target) return mod def get_runtime_mode(): """get runtime mode.""" env_dic = os.environ if not env_dic.get('RUNTIME_MODE'): mode = 'rpc_cloud' else: mode = env_dic.get('RUNTIME_MODE') return mode def get_profiling_mode(): """get profiling mode.""" env_dic = os.environ if env_dic.get('PROFILING_MODE') and env_dic.get('PROFILING_MODE').lower() == "true": return True return False def product_is_mini(): """check whether in mini environment.""" mode = get_runtime_mode() if mode in ('rpc', 'air', 'aic', 'compile_mini'): return True return False def get_available_devices_num(): """get available devives num.""" env_dic = os.environ try: return int(env_dic.get('DEVICE_TOTAL_NUM').lower()) if env_dic.get('DEVICE_TOTAL_NUM') else 1 except NameError as e: logging.error(e) return 1 def get_device_id(): """get device id.""" env_dic = os.environ try: return int(env_dic.get('DEVICE_ID').lower()) if env_dic.get('DEVICE_ID') else 0 except NameError as e: logging.error(e) return 0 def get_gpu_cycles(mod, *mod_args, device_id=0, repeat_time=400): """get gpu profiling cycles.""" from akg.utils.result_analysis import gpu_profiling tcost = gpu_profiling(mod, *mod_args, repeat_time=repeat_time, device_id=device_id) return tcost class TestUtils: """Class for getting cycle and core num.""" @staticmethod def record_cycle(cycle): if os.environ.get(PERFORMANCE_TEST_FILE): result_file = os.environ.get(PERFORMANCE_TEST_FILE) with open(result_file, "a+") as f: f.write("{0}\n".format(cycle)) @staticmethod def record_core(stmt): """Function for getting performance data from cores.""" def get_core_num(): core_num = 1 if hasattr(stmt, 'attr_key') and stmt.attr_key == 'thread_extent': core_num = stmt.value return core_num if os.environ.get(PERFORMANCE_TEST_FILE): result_file = os.environ.get(PERFORMANCE_TEST_FILE) with open(result_file, "a+") as f: f.write("{0}; ".format(get_core_num()))
36.332261
120
0.615221
4b87eb9e4d08a1f94537f4fb14b275fbcabe4ff3
202
py
Python
fbpcs/pc_pre_validation/__init__.py
joe1234wu/fbpcs
c9f57bf1b65adcbe39c6676ade5fc89e81dc5979
[ "MIT" ]
24
2021-08-24T09:30:18.000Z
2022-03-28T20:51:01.000Z
fbpcs/pc_pre_validation/__init__.py
joe1234wu/fbpcs
c9f57bf1b65adcbe39c6676ade5fc89e81dc5979
[ "MIT" ]
142
2021-08-16T23:49:27.000Z
2022-03-31T21:05:04.000Z
fbpcs/pc_pre_validation/__init__.py
joe1234wu/fbpcs
c9f57bf1b65adcbe39c6676ade5fc89e81dc5979
[ "MIT" ]
23
2021-09-10T22:55:04.000Z
2022-03-25T18:11:25.000Z
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
33.666667
65
0.752475
51b8379e1c2e4cc4657663b6e8dbd0b2612b5c41
2,449
py
Python
goXSS.py
filipesam/goXSS
eae5d56c3a750ba47a2b5bcf242ba6d9916dfbbd
[ "MIT" ]
null
null
null
goXSS.py
filipesam/goXSS
eae5d56c3a750ba47a2b5bcf242ba6d9916dfbbd
[ "MIT" ]
null
null
null
goXSS.py
filipesam/goXSS
eae5d56c3a750ba47a2b5bcf242ba6d9916dfbbd
[ "MIT" ]
null
null
null
import sys, random, string, httplib, requests, getopt, re def usage(): print "goXSS.py -u <attackurl> -o <outputfile>" #simple payloadgenerator def generatePayload(): global varRandomString varRandomString = "".join(random.sample(string.ascii_uppercase, 8)) print "-" * 65 print "Random string generated for XSS attack is:", varRandomString """ def breakChars(): global tryToBreak tryToBreak = ['<','>','"','\\','/','(',')'] for character in tryToBreak: print "Trying to break:", tryToBreak """ def attackUrl(): generatePayload() tryToBreak = ['<','>','"','script','/','=',':','<script>', '<img >','<svg/onload=alert(0)>','confirm'] for Char in tryToBreak: global inject inject = str(Char) print "Trying... " + inject #breakChars() urlRequest = urlSet + "/" + varRandomString + inject r = requests.get(url=urlRequest) print "Url to attack is:", urlRequest print r print "-" * 65 #print 'Output file is =>', outFile # comment or uncomment next line to debug #print(r.content) global response response = r.content searchReflection() def searchReflection(): #searchPayload = varRandomString + tryToBreak searchPayload = varRandomString + inject if re.search(searchPayload, response): print "Found", searchPayload, "on Response !" print "=" * 65 else: print "REFLECTION NOT FOUND" def main(argv): if len(argv)<2: usage() try: opts, args = getopt.getopt(argv,"hu:o:",["urlSet=","outFile="]) except getopt.GetoptError: print "goXSS.py -u <attackurl> -o <outputfile>" sys.exit(2) for opt, arg in opts: if opt == '-h': print 'goXSS.py -u <attackurl> -o <outputfile>' sys.exit() elif opt in ("-u", "--url"): global urlSet urlSet = arg elif opt in ("-o", "--ofile"): global outFile outFile = arg attackUrl() if __name__ == "__main__": main(sys.argv[1:]) ##### TODO # should also "fuzz" http methods # try all methods, like requests.put, request.head, etc #def encodeChars(): # should encode *breakChars in unicode, hex, url, double encode # Search reflection function should be created in a manner # to search for literal "chars" reflected (raw hex value)
28.811765
71
0.585953
5ba9fb5d05b27339d924bfe42c0e6ba0c2c68da3
10,985
py
Python
models/match/multiview-simnet/model.py
seiriosPlus/PaddleRec
2101532f8444783c68c4d545e5fc556a14a460a0
[ "Apache-2.0" ]
null
null
null
models/match/multiview-simnet/model.py
seiriosPlus/PaddleRec
2101532f8444783c68c4d545e5fc556a14a460a0
[ "Apache-2.0" ]
null
null
null
models/match/multiview-simnet/model.py
seiriosPlus/PaddleRec
2101532f8444783c68c4d545e5fc556a14a460a0
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle.fluid.layers.tensor as tensor import paddle.fluid.layers.control_flow as cf from paddlerec.core.utils import envs from paddlerec.core.model import Model as ModelBase class BowEncoder(object): """ bow-encoder """ def __init__(self): self.param_name = "" def forward(self, emb): return fluid.layers.sequence_pool(input=emb, pool_type='sum') class CNNEncoder(object): """ cnn-encoder""" def __init__(self, param_name="cnn", win_size=3, ksize=128, act='tanh', pool_type='max'): self.param_name = param_name self.win_size = win_size self.ksize = ksize self.act = act self.pool_type = pool_type def forward(self, emb): return fluid.nets.sequence_conv_pool( input=emb, num_filters=self.ksize, filter_size=self.win_size, act=self.act, pool_type=self.pool_type, param_attr=self.param_name + ".param", bias_attr=self.param_name + ".bias") class GrnnEncoder(object): """ grnn-encoder """ def __init__(self, param_name="grnn", hidden_size=128): self.param_name = param_name self.hidden_size = hidden_size def forward(self, emb): fc0 = fluid.layers.fc(input=emb, size=self.hidden_size * 3, param_attr=self.param_name + "_fc.w", bias_attr=False) gru_h = fluid.layers.dynamic_gru( input=fc0, size=self.hidden_size, is_reverse=False, param_attr=self.param_name + ".param", bias_attr=self.param_name + ".bias") return fluid.layers.sequence_pool(input=gru_h, pool_type='max') class SimpleEncoderFactory(object): def __init__(self): pass ''' create an encoder through create function ''' def create(self, enc_type, enc_hid_size): if enc_type == "bow": bow_encode = BowEncoder() return bow_encode elif enc_type == "cnn": cnn_encode = CNNEncoder(ksize=enc_hid_size) return cnn_encode elif enc_type == "gru": rnn_encode = GrnnEncoder(hidden_size=enc_hid_size) return rnn_encode class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) self.init_config() def init_config(self): self._fetch_interval = 1 query_encoder = envs.get_global_env("hyper_parameters.query_encoder", None, self._namespace) title_encoder = envs.get_global_env("hyper_parameters.title_encoder", None, self._namespace) query_encode_dim = envs.get_global_env("hyper_parameters.query_encode_dim", None, self._namespace) title_encode_dim = envs.get_global_env("hyper_parameters.title_encode_dim", None, self._namespace) query_slots = envs.get_global_env("hyper_parameters.query_slots", None, self._namespace) title_slots = envs.get_global_env("hyper_parameters.title_slots", None, self._namespace) factory = SimpleEncoderFactory() self.query_encoders = [ factory.create(query_encoder, query_encode_dim) for i in range(query_slots) ] self.title_encoders = [ factory.create(title_encoder, title_encode_dim) for i in range(title_slots) ] self.emb_size = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace) self.emb_dim = envs.get_global_env("hyper_parameters.embedding_dim", None, self._namespace) self.emb_shape = [self.emb_size, self.emb_dim] self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size", None, self._namespace) self.margin = 0.1 def input(self, is_train=True): self.q_slots = [ fluid.data( name="%d" % i, shape=[None, 1], lod_level=1, dtype='int64') for i in range(len(self.query_encoders)) ] self.pt_slots = [ fluid.data( name="%d" % (i + len(self.query_encoders)), shape=[None, 1], lod_level=1, dtype='int64') for i in range(len(self.title_encoders)) ] if is_train == False: return self.q_slots + self.pt_slots self.nt_slots = [ fluid.data( name="%d" % (i + len(self.query_encoders) + len(self.title_encoders)), shape=[None, 1], lod_level=1, dtype='int64') for i in range(len(self.title_encoders)) ] return self.q_slots + self.pt_slots + self.nt_slots def train_input(self): res = self.input() self._data_var = res use_dataloader = envs.get_global_env("hyper_parameters.use_DataLoader", False, self._namespace) if self._platform != "LINUX" or use_dataloader: self._data_loader = fluid.io.DataLoader.from_generator( feed_list=self._data_var, capacity=256, use_double_buffer=False, iterable=False) def get_acc(self, x, y): less = tensor.cast(cf.less_than(x, y), dtype='float32') label_ones = fluid.layers.fill_constant_batch_size_like( input=x, dtype='float32', shape=[-1, 1], value=1.0) correct = fluid.layers.reduce_sum(less) total = fluid.layers.reduce_sum(label_ones) acc = fluid.layers.elementwise_div(correct, total) return acc def net(self): q_embs = [ fluid.embedding( input=query, size=self.emb_shape, param_attr="emb") for query in self.q_slots ] pt_embs = [ fluid.embedding( input=title, size=self.emb_shape, param_attr="emb") for title in self.pt_slots ] nt_embs = [ fluid.embedding( input=title, size=self.emb_shape, param_attr="emb") for title in self.nt_slots ] # encode each embedding field with encoder q_encodes = [ self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs) ] pt_encodes = [ self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs) ] nt_encodes = [ self.title_encoders[i].forward(emb) for i, emb in enumerate(nt_embs) ] # concat multi view for query, pos_title, neg_title q_concat = fluid.layers.concat(q_encodes) pt_concat = fluid.layers.concat(pt_encodes) nt_concat = fluid.layers.concat(nt_encodes) # projection of hidden layer q_hid = fluid.layers.fc(q_concat, size=self.hidden_size, param_attr='q_fc.w', bias_attr='q_fc.b') pt_hid = fluid.layers.fc(pt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b') nt_hid = fluid.layers.fc(nt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b') # cosine of hidden layers cos_pos = fluid.layers.cos_sim(q_hid, pt_hid) cos_neg = fluid.layers.cos_sim(q_hid, nt_hid) # pairwise hinge_loss loss_part1 = fluid.layers.elementwise_sub( tensor.fill_constant_batch_size_like( input=cos_pos, shape=[-1, 1], value=self.margin, dtype='float32'), cos_pos) loss_part2 = fluid.layers.elementwise_add(loss_part1, cos_neg) loss_part3 = fluid.layers.elementwise_max( tensor.fill_constant_batch_size_like( input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'), loss_part2) self.avg_cost = fluid.layers.mean(loss_part3) self.acc = self.get_acc(cos_neg, cos_pos) def avg_loss(self): self._cost = self.avg_cost def metrics(self): self._metrics["loss"] = self.avg_cost self._metrics["acc"] = self.acc def train_net(self): self.train_input() self.net() self.avg_loss() self.metrics() def optimizer(self): learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace) optimizer = fluid.optimizer.Adam(learning_rate=learning_rate) return optimizer def infer_input(self): res = self.input(is_train=False) self._infer_data_var = res self._infer_data_loader = fluid.io.DataLoader.from_generator( feed_list=self._infer_data_var, capacity=64, use_double_buffer=False, iterable=False) def infer_net(self): self.infer_input() # lookup embedding for each slot q_embs = [ fluid.embedding( input=query, size=self.emb_shape, param_attr="emb") for query in self.q_slots ] pt_embs = [ fluid.embedding( input=title, size=self.emb_shape, param_attr="emb") for title in self.pt_slots ] # encode each embedding field with encoder q_encodes = [ self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs) ] pt_encodes = [ self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs) ] # concat multi view for query, pos_title, neg_title q_concat = fluid.layers.concat(q_encodes) pt_concat = fluid.layers.concat(pt_encodes) # projection of hidden layer q_hid = fluid.layers.fc(q_concat, size=self.hidden_size, param_attr='q_fc.w', bias_attr='q_fc.b') pt_hid = fluid.layers.fc(pt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b') # cosine of hidden layers cos = fluid.layers.cos_sim(q_hid, pt_hid) self._infer_results['query_pt_sim'] = cos
36.374172
116
0.593446
7f797c552beb18902c986182c04e291a8f147e2e
618
py
Python
pymanopt/tools/autodiff/_backend.py
calincru/pymanopt
3eb4696ea7fc62e89905409afadc3d905b36ed30
[ "BSD-3-Clause" ]
21
2020-06-18T20:35:33.000Z
2022-03-29T16:46:08.000Z
pymanopt/tools/autodiff/_backend.py
leonbottou/pymanopt
7d8c46f4513c3746234ba804604694b11db62d0a
[ "BSD-3-Clause" ]
null
null
null
pymanopt/tools/autodiff/_backend.py
leonbottou/pymanopt
7d8c46f4513c3746234ba804604694b11db62d0a
[ "BSD-3-Clause" ]
3
2021-03-30T09:08:57.000Z
2022-03-24T07:53:21.000Z
from functools import wraps def assert_backend_available(f): @wraps(f) def inner(backend, *args, **kwargs): if not backend.is_available(): raise RuntimeError( "Backend `{:s}` is not available".format(str(backend))) return f(backend, *args, **kwargs) return inner class Backend(object): def __str__(self): return "<backend>" def __id(self, objective, argument): return objective compile_function = compute_gradient = compute_hessian = __id def __false(self): return False is_available = is_compatible = __false
22.888889
71
0.635922
607d202aba2d5ec60a2a22d9ae462f7a144a7a1d
544
py
Python
demo_numpy.py
gmunozhe/astr-119-session-4
3ee9f816587797b8a8580112b95f886e793791bd
[ "MIT" ]
null
null
null
demo_numpy.py
gmunozhe/astr-119-session-4
3ee9f816587797b8a8580112b95f886e793791bd
[ "MIT" ]
null
null
null
demo_numpy.py
gmunozhe/astr-119-session-4
3ee9f816587797b8a8580112b95f886e793791bd
[ "MIT" ]
null
null
null
import numpy as np x = 1.0 #define a float y = 2.0 #define another float #trig print(np.sin(x)) #sin(x) print(np.cos(x)) #cos(x) print(np.tan(x)) #tan(x) print(np.arcsin(x)) #arcsin(x) print(np.arccos(x)) #arccos(x) print(np.arctan(x)) #arctan(x) print(np.arctan2(x,y)) #arctan(x/y) print(np.rad2deg(x)) #convert rad to deg #hyperbolic functions print(np.sinh(x)) #sinh(x) print(np.cosh(x)) #cosh(x) print(np.tanh(x)) #tanh(x) print(np.arcsinh(x)) #arcsinh(x) print(np.arccosh(x)) #arccosh(x) print(np.arctanh(x)) #arctanh(x)
24.727273
41
0.654412
5ace0dcec041557ef65f26f30f329a4ea04e3288
1,084
py
Python
dimsim/tests/test_dimsim.py
blowsfire/DimSim
d81a552f9b21a547c0b39ceffe0a596e289da9f4
[ "Apache-2.0" ]
82
2018-11-07T08:03:50.000Z
2022-03-17T14:53:29.000Z
dimsim/tests/test_dimsim.py
blowsfire/DimSim
d81a552f9b21a547c0b39ceffe0a596e289da9f4
[ "Apache-2.0" ]
11
2019-01-24T02:57:02.000Z
2021-03-05T06:11:10.000Z
dimsim/tests/test_dimsim.py
blowsfire/DimSim
d81a552f9b21a547c0b39ceffe0a596e289da9f4
[ "Apache-2.0" ]
23
2018-12-10T10:19:10.000Z
2022-03-10T09:54:17.000Z
# -*- coding: utf-8 -*- # Standard libs import io import os # Dependencies import pytest # The module to test from dimsim.core.model import get_distance, get_candidates def test_distance_near(): dist = get_distance(u'大侠',u'大虾') assert dist == 0.0002380952380952381 def test_distance_far(): dist = get_distance(u'大侠',u'大人') assert dist == 25.001417183349876 def test_distance_pinyin(): dist = get_distance(['da4','xia2'],['da4','xia1'],pinyin=True) assert dist == 0.0002380952380952381 def test_invalid_input(): pytest.raises(AssertionError, get_distance, u'大侠', u'大') def test_get_candidates_simplified(): candidates = get_candidates(u'大侠', mode='simplified', theta=1) for c in candidates: assert c in [u'打下', u'大虾', u'大侠'] def test_get_candidates_traditional(): candidates = get_candidates(u'粉丝', mode='traditional', theta=1) for c in candidates: assert c in [u'門市', u'分時', u'焚屍', u'粉飾', u'粉絲'] if __name__ == '__main__': pytest.main([__file__])
27.794872
71
0.644834
158181450ce624f5f615bc988aaa119ded2e7b43
4,605
py
Python
tenant_schemas/middleware.py
BillSchumacher/django-tenant-schemas
a4e3cdce3465fe7572f5cb8e84b7699386582c38
[ "MIT" ]
null
null
null
tenant_schemas/middleware.py
BillSchumacher/django-tenant-schemas
a4e3cdce3465fe7572f5cb8e84b7699386582c38
[ "MIT" ]
1
2022-02-19T22:48:12.000Z
2022-02-19T22:48:12.000Z
tenant_schemas/middleware.py
BillSchumacher/django-tenant-schemas
a4e3cdce3465fe7572f5cb8e84b7699386582c38
[ "MIT" ]
null
null
null
import django from django.conf import settings from django.core.exceptions import DisallowedHost from django.db import connection from django.http import Http404 from tenant_schemas.utils import ( get_public_schema_name, get_tenant_model, remove_www, ) """ These middlewares should be placed at the very top of the middleware stack. Selects the proper database schema using request information. Can fail in various ways which is better than corrupting or revealing data. Extend BaseTenantMiddleware for a custom tenant selection strategy, such as inspecting the header, or extracting it from some OAuth token. """ class BaseTenantMiddleware(object): TENANT_NOT_FOUND_EXCEPTION = Http404 """ Subclass and override this to achieve desired behaviour. Given a request, return the tenant to use. Tenant should be an instance of TENANT_MODEL. We have three parameters for backwards compatibility (the request would be enough). """ def __init__(self, get_response): self.get_response = get_response # One-time configuration and initialization. def __call__(self, request): # Code to be executed for each request before # the view (and later middleware) are called. response = self.get_response(request) # Code to be executed for each request/response after # the view is called. return response def get_tenant(self, model, hostname, request): raise NotImplementedError def hostname_from_request(self, request): """ Extracts hostname from request. Used for custom requests filtering. By default removes the request's port and common prefixes. """ return remove_www(request.get_host().split(":")[0]).lower() def process_request(self, request): # Connection needs first to be at the public schema, as this is where # the tenant metadata is stored. connection.set_schema_to_public() hostname = self.hostname_from_request(request) TenantModel = get_tenant_model() try: # get_tenant must be implemented by extending this class. tenant = self.get_tenant(TenantModel, hostname, request) assert isinstance(tenant, TenantModel) except TenantModel.DoesNotExist: raise self.TENANT_NOT_FOUND_EXCEPTION( "No tenant for {!r}".format(request.get_host()) ) except AssertionError: raise self.TENANT_NOT_FOUND_EXCEPTION( "Invalid tenant {!r}".format(request.tenant) ) request.tenant = tenant connection.set_tenant(request.tenant) # Do we have a public-specific urlconf? if ( hasattr(settings, "PUBLIC_SCHEMA_URLCONF") and request.tenant.schema_name == get_public_schema_name() ): request.urlconf = settings.PUBLIC_SCHEMA_URLCONF class TenantMiddleware(BaseTenantMiddleware): """ Selects the proper database schema using the request host. E.g. <my_tenant>.<my_domain> """ def get_tenant(self, model, hostname, request): return model.objects.get(domain_url=hostname) class SuspiciousTenantMiddleware(TenantMiddleware): """ Extend the TenantMiddleware in scenario where you need to configure ``ALLOWED_HOSTS`` to allow ANY domain_url to be used because your tenants can bring any custom domain with them, as opposed to all tenants being a subdomain of a common base. See https://github.com/bernardopires/django-tenant-schemas/pull/269 for discussion on this middleware. """ TENANT_NOT_FOUND_EXCEPTION = DisallowedHost class DefaultTenantMiddleware(SuspiciousTenantMiddleware): """ Extend the SuspiciousTenantMiddleware in scenario where you want to configure a tenant to be served if the hostname does not match any of the existing tenants. Subclass and override DEFAULT_SCHEMA_NAME to use a schema other than the public schema. class MyTenantMiddleware(DefaultTenantMiddleware): DEFAULT_SCHEMA_NAME = 'default' """ DEFAULT_SCHEMA_NAME = None def get_tenant(self, model, hostname, request): try: return super(DefaultTenantMiddleware, self).get_tenant( model, hostname, request ) except model.DoesNotExist: schema_name = self.DEFAULT_SCHEMA_NAME if not schema_name: schema_name = get_public_schema_name() return model.objects.get(schema_name=schema_name)
33.613139
91
0.692725
b81abac88477bd0299011f5c1591650394a83ea8
1,185
py
Python
plugins/extract/detect/manual.py
RedPillGroup/RedPillFaceSwap
2313d4fe0e6e7b579ce450d556ad4fd6bd0cbed6
[ "MIT" ]
1
2020-04-14T22:16:50.000Z
2020-04-14T22:16:50.000Z
plugins/extract/detect/manual.py
RedPillGroup/RedPillFaceSwap
2313d4fe0e6e7b579ce450d556ad4fd6bd0cbed6
[ "MIT" ]
null
null
null
plugins/extract/detect/manual.py
RedPillGroup/RedPillFaceSwap
2313d4fe0e6e7b579ce450d556ad4fd6bd0cbed6
[ "MIT" ]
2
2020-04-14T22:17:09.000Z
2020-10-30T03:01:13.000Z
#!/usr/bin/env python3 """ Manual face detection plugin """ from ._base import Detector, dlib class Detect(Detector): """ Manual Detector """ def __init__(self, **kwargs): super().__init__(**kwargs) def set_model_path(self): """ No model required for Manual Detector """ return None def initialize(self, *args, **kwargs): """ Create the mtcnn detector """ print("Initializing Manual Detector...") super().initialize(*args, **kwargs) self.init.set() print("Initialized Manual Detector.") def detect_faces(self, *args, **kwargs): """ Return the given bounding box in a dlib rectangle """ super().detect_faces(*args, **kwargs) while True: item = self.queues["in"].get() if item == "EOF": break image, face = item bounding_box = [dlib.rectangle(int(face[0]), int(face[1]), int(face[2]), int(face[3]))] retval = {"image": image, "detected_faces": bounding_box} self.finalize(retval) self.queues["out"].put("EOF")
30.384615
71
0.538397
a1cfce7bd9c169353199d420666a73fafeeb2112
1,511
py
Python
alipay/aop/api/domain/AlipayDataDataserviceAntdacEasyserviceQueryModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/AlipayDataDataserviceAntdacEasyserviceQueryModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/AlipayDataDataserviceAntdacEasyserviceQueryModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * class AlipayDataDataserviceAntdacEasyserviceQueryModel(object): def __init__(self): self._method_id = None self._parameter_json = None @property def method_id(self): return self._method_id @method_id.setter def method_id(self, value): self._method_id = value @property def parameter_json(self): return self._parameter_json @parameter_json.setter def parameter_json(self, value): self._parameter_json = value def to_alipay_dict(self): params = dict() if self.method_id: if hasattr(self.method_id, 'to_alipay_dict'): params['method_id'] = self.method_id.to_alipay_dict() else: params['method_id'] = self.method_id if self.parameter_json: if hasattr(self.parameter_json, 'to_alipay_dict'): params['parameter_json'] = self.parameter_json.to_alipay_dict() else: params['parameter_json'] = self.parameter_json return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayDataDataserviceAntdacEasyserviceQueryModel() if 'method_id' in d: o.method_id = d['method_id'] if 'parameter_json' in d: o.parameter_json = d['parameter_json'] return o
26.982143
79
0.621443
68bcd8c281d7dc2f7bd7b869d529645ea319cddc
2,128
py
Python
utils/dpbench_datagen/kmeans/generate_data_random.py
geexie/dpbench
7d41409ded3c816f35003bc5aea071852bceb892
[ "BSD-2-Clause" ]
8
2021-03-26T15:17:58.000Z
2022-01-21T21:56:19.000Z
utils/dpbench_datagen/kmeans/generate_data_random.py
geexie/dpbench
7d41409ded3c816f35003bc5aea071852bceb892
[ "BSD-2-Clause" ]
22
2021-03-30T21:20:57.000Z
2022-02-22T13:42:17.000Z
utils/dpbench_datagen/kmeans/generate_data_random.py
geexie/dpbench
7d41409ded3c816f35003bc5aea071852bceb892
[ "BSD-2-Clause" ]
7
2021-03-23T11:00:43.000Z
2022-02-02T12:28:55.000Z
import numpy as np try: import numpy.random_intel as rnd except: import numpy.random as rnd # constants used for input data generation SEED = 7777777 XL = 1.0 XH = 5.0 # write input data to a file in binary format def __dump_binary__(X, arrayPclusters, arrayC, arrayCsum, arrayCnumpoint): with open("X.bin", "w") as fd: X.tofile(fd) with open("arrayPclusters.bin", "w") as fd: arrayPclusters.tofile(fd) # with open('arrayC.bin', 'w') as fd: # arrayC.tofile(fd) # with open('arrayCsum.bin', 'w') as fd: # arrayCsum.tofile(fd) # with open('arrayCnumpoint.bin', 'w') as fd: # arrayCnumpoint.tofile(fd) # write input data to a file in text format def __dump_text__(X, arrayPclusters, arrayC, arrayCsum, arrayCnumpoint): with open("X.txt", "w") as fd: X.tofile(fd, "\n", "%s") with open("arrayPclusters.txt", "w") as fd: arrayPclusters.tofile(fd, "\n", "%s") # with open('arrayC.txt', 'w') as fd: # arrayC.tofile(fd, '\n', '%s') # with open('arrayCsum.txt', 'w') as fd: # arrayCsum.tofile(fd, '\n', '%s') # with open('arrayCnumpoint.txt', 'w') as fd: # arrayCnumpoint.tofile(fd, '\n', '%s') # call numpy.random.uniform to generate input data def gen_rand_data(nopt, dims=2, NUMBER_OF_CENTROIDS=10, dtype=np.float64): rnd.seed(SEED) return ( rnd.uniform(XL, XH, (nopt, dims)).astype(dtype), np.ones(nopt, dtype=np.int32), np.ones((NUMBER_OF_CENTROIDS, 2), dtype=dtype), np.ones((NUMBER_OF_CENTROIDS, 2), dtype=dtype), np.ones(NUMBER_OF_CENTROIDS, dtype=np.int32), ) # call numpy.random.uniform to generate input data and write the input as binary to a file def gen_data_to_file(nopt, dims=2, NUMBER_OF_CENTROIDS=10, dtype=np.float64): X, arrayPclusters, arrayC, arrayCsum, arrayCnumpoint = gen_rand_data( nopt, dims, NUMBER_OF_CENTROIDS, dtype ) __dump_binary__(X, arrayPclusters, arrayC, arrayCsum, arrayCnumpoint) # __dump_text__(X,arrayPclusters,arrayC,arrayCsum,arrayCnumpoint) #for verification purpose only
31.294118
100
0.654135
241c12e14dbb5788f2ef3baaa2c49ec7834ffd7f
640
py
Python
backend/manage.py
crowdbotics-apps/solitary-scene-29128
2a516e2a2175f144c83f85110a3ebc7dbe364bd6
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/manage.py
crowdbotics-apps/solitary-scene-29128
2a516e2a2175f144c83f85110a3ebc7dbe364bd6
[ "FTL", "AML", "RSA-MD" ]
15
2021-07-24T22:01:20.000Z
2021-07-24T22:01:26.000Z
backend/manage.py
crowdbotics-apps/solitary-scene-29128
2a516e2a2175f144c83f85110a3ebc7dbe364bd6
[ "FTL", "AML", "RSA-MD" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'solitary_scene_29128.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
29.090909
84
0.689063
dbcf4cbdaa6a29b778ce2262a0a2bb25fb13a7bc
24,816
py
Python
solaris/files/usr/local/bin/diskmap.py
rafie/zfs-on-solaris-setup
cd777d1420b3de0af4342dedd1038e9e96509b0a
[ "MIT" ]
null
null
null
solaris/files/usr/local/bin/diskmap.py
rafie/zfs-on-solaris-setup
cd777d1420b3de0af4342dedd1038e9e96509b0a
[ "MIT" ]
null
null
null
solaris/files/usr/local/bin/diskmap.py
rafie/zfs-on-solaris-setup
cd777d1420b3de0af4342dedd1038e9e96509b0a
[ "MIT" ]
null
null
null
#!/usr/bin/env python ########################### # Please go to https://github.com/swacquie/DiskMap ########################### VERSION="0.11b" import subprocess, re, os, sys, readline, cmd, pickle, glob from pprint import pformat, pprint pj = os.path.join from socket import gethostname hostname = gethostname() cachefile = "/tmp/pouet" sas2ircu = "/usr/local/bin/sas2ircu" prtconf = "/usr/sbin/prtconf" zpool = "/usr/sbin/zpool" smartctl = "/usr/sbin/smartctl" mdb = "/usr/bin/mdb" def run(cmd, args, tosend=""): if not isinstance(args, list): args = [ args ] if not os.path.exists(cmd): raise Exception("Executable %s not found, please provide absolute path"%cmd) args = tuple([ str(i) for i in args ]) if tosend: process = subprocess.Popen((cmd,) + args, stdout=subprocess.PIPE, stdin=subprocess.PIPE) return process.communicate(tosend)[0] else: return subprocess.Popen((cmd,) + args, stdout=subprocess.PIPE).communicate()[0] def revert(mydict): return dict([ (v,k) for k,v in mydict.items()]) def cleandict(mydict, *toint): result = {} for k in mydict.keys(): if k in toint: result[k] = long(mydict[k]) elif isinstance(mydict[k], str): result[k] = mydict[k].strip() else: result[k] = mydict[k] return result def megabyze(i, fact=1000): """ Return the size in Kilo, Mega, Giga, Tera, Peta according to the input. """ i = float(i) for unit in "", "K", "M", "G", "T", "P": if i < 2000: break i = i / fact return "%.1f%s"%(i, unit) class SesManager(cmd.Cmd): def __init__(self, *l, **kv): cmd.Cmd.__init__(self, *l, **kv) self._enclosures = {} self._controllers = {} self._disks = {} self.aliases = {} self.prompt = "Diskmap - %s> "%hostname @property def disks(self): return dict([ (k, v) for k, v in self._disks.items() if k.startswith("/dev/rdsk/") ]) @property def enclosures(self): return self._enclosures @property def controllers(self): return self._controllers def discover_controllers(self, fromstring=None): """ Discover controller present in the computer """ if not fromstring: fromstring = run(sas2ircu, "LIST") tmp = re.findall("(\n +[0-9]+ +.*)", fromstring) for ctrl in tmp: ctrl = ctrl.strip() m = re.match("(?P<id>[0-9]) +(?P<adaptertype>[^ ].*[^ ]) +(?P<vendorid>[^ ]+) +" "(?P<deviceid>[^ ]+) +(?P<pciadress>[^ ]*:[^ ]*) +(?P<subsysvenid>[^ ]+) +" "(?P<subsysdevid>[^ ]+) *", ctrl) if m: m = cleandict(m.groupdict(), "id") self._controllers[m["id"]] = m def discover_enclosures(self, ctrls = None): """ Discover enclosure wired to controller. Ctrls = { 0: 'sas2ircu output', 1: 'sas2ircu output', ...}""" if not ctrls: tmp = {} for ctrl in self.controllers.keys(): tmp[ctrl] = run(sas2ircu, [ctrl, "DISPLAY"]) ctrls = tmp for ctrl, output in ctrls.items(): enclosures = {} # Discover enclosures for m in re.finditer("Enclosure# +: (?P<index>[^ ]+)\n +" "Logical ID +: (?P<id>[^ ]+)\n +" "Numslots +: (?P<numslot>[0-9]+)", output): m = cleandict(m.groupdict(), "index", "numslot") m["controller"] = ctrl self._enclosures[m["id"].lower()] = m enclosures[m["index"]] = m # Discover Drives for m in re.finditer("Device is a Hard disk\n +" "Enclosure # +: (?P<enclosureindex>[^\n]*)\n +" "Slot # +: (?P<slot>[^\n]*)\n +" "(SAS Address +: (?P<sasaddress>[^\n]*)\n +)?" "State +: (?P<state>[^\n]*)\n +" "Size .in MB./.in sectors. +: (?P<sizemb>[^/]*)/(?P<sizesector>[^\n]*)\n +" "Manufacturer +: (?P<manufacturer>[^\n]*)\n +" "Model Number +: (?P<model>[^\n]*)\n +" "Firmware Revision +: (?P<firmware>[^\n]*)\n +" "Serial No +: (?P<serial>[^\n]*)\n +" "(GUID +: (?P<guid>[^\n]*)\n +)?" "Protocol +: (?P<protocol>[^\n]*)\n +" "Drive Type +: (?P<drivetype>[^\n]*)\n" , output): m = cleandict(m.groupdict(), "enclosureindex", "slot", "sizemb", "sizesector") m["enclosure"] = enclosures[m["enclosureindex"]]["id"] m["controller"] = ctrl self._disks[m["serial"]] = m def discover_mapping(self, fromstring=None): """ use prtconf to get real device name using disk serial """ if not fromstring: fromstring = run(prtconf, "-v") # Do some ugly magic to get what we want # First, get one line per drive tmp = fromstring.replace("\n", "").replace("disk, instance", "\n") # Then match with regex tmp = re.findall("name='inquiry-serial-no' type=string items=1 dev=none +value='([^']+)'" ".*?" #"name='client-guid' type=string items=1 *value='([^']+)'" #".*?" "dev_link=(/dev/rdsk/c[^ ]*d0)s0", tmp) # Capitalize serial an guid for serial, device in tmp: serial = serial.strip().upper() # Sometimes serial returned by prtconf and by sas2ircu are different. Mangle them if serial not in self._disks and serial.replace("-", "") in self._disks: serial = serial.replace("-", "") if serial in self._disks: # Add device name to disks self._disks[serial]["device"] = device # Add a reverse lookup self._disks[device] = self._disks[serial] else: print "Warning : Got the serial %s from prtconf, but can't find it in disk detected by sas2ircu (disk removed/not on backplane ?)"%serial def discover_zpool(self, fromstring=None): """ Try to locate disk in current zpool configuration""" if not fromstring: fromstring = run(zpool, "status") pools = fromstring.split("pool:") for pool in pools: if not pool.strip(): continue for m in re.finditer(" (?P<pool>[^\n]+)\n *" # We've splitted on pool:, so our first word is the pool name "state: (?P<state>[^ ]+)\n *" "(status: (?P<status>(.|\n)+)\n *)??" "scan: (?P<scan>(.|\n)*)\n *" "config: ?(?P<config>(.|\n)*)\n *" "errors: (?P<errors>[^\n]*)" ,pool): m = m.groupdict() parent = "stripped" for disk in re.finditer("(?P<indent>[ \t]+)(?P<name>[^ \t\n]+)( +(?P<state>[^ \t\n]+) +)?(" "(?P<read>[^ \t\n]+) +(?P<write>[^ \t\n]+) +" "(?P<cksum>[^\n]+))?(?P<notes>[^\n]+)?\n", m["config"]): disk = disk.groupdict() if not disk["name"] or disk["name"] in ("NAME", m["pool"]): continue if disk["name"][-4:-2] == "d0": disk["name"] = disk["name"][:-2] if (disk["name"].startswith("mirror") or disk["name"].startswith("log") or disk["name"].startswith("raid") or disk["name"].startswith("spare") or disk["name"].startswith("cache")): parent = disk["name"].strip() continue if "/dev/rdsk" not in disk["name"]: disk["name"] = "/dev/rdsk/%s"%disk["name"] if disk["name"] not in self._disks: print "Warning : Got the disk %s from zpool status, but can't find it in disk detected by sas2ircu (disk removed ?)"%disk["name"] continue self._disks[disk["name"]]["zpool"] = self._disks[disk["name"]].get("zpool", {}) self._disks[disk["name"]]["zpool"][m["pool"]] = parent def set_leds(self, disks, value=True): if isinstance(disks, dict): disks = disks.values() progress = xrange(1,len(disks)+1, 1).__iter__() value = "on" if value else "off" for disk in disks: print "\rTurning leds %s : %3d/%d"%(value, progress.next(),len(disks)), run(sas2ircu, [disk["controller"], "LOCATE", "%(enclosureindex)s:%(slot)s"%disk, value]) print def preloop(self): try: self.do_load() except: print "Loading of previous save failed, trying to discover" self.do_discover() self.do_save() def emptyline(self): self.do_help("") def do_quit(self, line): "Quit" return True do_EOF = do_quit def do_discover(self, configdir=""): """Perform discovery on host to populate controller, enclosures and disks Take an optionnal parameter which can be a directory containing files dumped with confidump. """ self._enclosures = {} self._controllers = {} self._disks = {} if configdir and os.path.isdir(configdir): # We wan't to load data from an other box for testing purposes # So we don't want to catch any exception files = os.listdir(configdir) for f in ("prtconf-v.txt", "sas2ircu-0-display.txt", "sas2ircu-list.txt", "zpool-status.txt"): if f not in files: print "Invalid confdir, lacking of %s"%f return self.discover_controllers(file(pj(configdir, "sas2ircu-list.txt")).read()) files = glob.glob(pj(configdir, "sas2ircu-*-display.txt")) tmp = {} for name in files: ctrlid = long(os.path.basename(name).split("-")[1]) tmp[ctrlid] = file(name).read() self.discover_enclosures(tmp) self.discover_mapping(file(pj(configdir, "prtconf-v.txt")).read()) self.discover_zpool(file(pj(configdir, "zpool-status.txt")).read()) else: for a in ( "discover_controllers", "discover_enclosures", "discover_mapping", "discover_zpool" ): try: getattr(self, a)() except Exception, e: print "Got an error during %s discovery : %s"%(a,e) print "Please run %s configdump and send the report to dev"%sys.argv[0] self.do_save() do_refresh = do_discover def do_save(self, line=cachefile): """Save data to cache file. Use file %s if not specified"""%cachefile if not line: line = cachefile # Cmd pass a empty string pickle.dump((self.controllers, self.enclosures, self._disks, self.aliases), file(line, "w+")) def do_load(self, line=cachefile): """Load data from cache file. Use file %s if not specified"""%cachefile self._controllers, self._enclosures, self._disks, self.aliases = pickle.load(file(line)) def do_enclosures(self, line): """Display detected enclosures""" pprint(self.enclosures) def do_controllers(self, line): """Display detected controllers""" pprint(self.controllers) def do_disks(self, line): """Display detected disks. Use -v for verbose output""" list = [ ("%1d:%.2d:%.2d"%(v["controller"], v["enclosureindex"], v["slot"]), v) for k,v in self.disks.items() ] list.sort() if line == "-v": pprint (list) return totalsize = 0 for path, disk in list: disk["path"] = path disk["device"] = disk["device"].replace("/dev/rdsk/", "") disk["readablesize"] = megabyze(disk["sizemb"]*1024*1024) disk["pzpool"] = " / ".join([ "%s: %s"%(k,v) for k,v in disk.get("zpool", {}).items() ]) totalsize += disk["sizemb"]*1024*1024 print "%(path)s %(device)23s %(model)16s %(readablesize)6s %(state)s %(pzpool)s"%disk print "Drives : %s Total Capacity : %s"%(len(self.disks), megabyze(totalsize)) def smartctl(self, disks, action="status"): """ Execute smartctl on listed drive. If no drive selected, run it on all available drive. """ params = [ "-s", "on", "-d", "sat" ] if action == "status": params += [ "-a" ] elif action == "test": params += [ "-t", "short" ] result = [] progress = xrange(1,len(disks)+1, 1).__iter__() for disk in disks: print "\rExecuting smartcl on %s : %3d/%d"%(disk["device"].replace("/dev/rdsk/",""), progress.next(),len(disks)), smartparams = params + [ disk["device"]+"p0" ] result.append(run(smartctl, smartparams)) print "Done" return result def do_smartcl_getstatus(self, line): # FIXME : line parsing if line: raise NotImplemetedError else: disks = self.disks.values() for (disk, smartoutput) in zip(disks, self.smartctl(disks)): try: self._disks[disk["device"]]["smartoutput"] = smartoutput smartoutput = re.sub("\n[ \t]+", " ", smartoutput) if "test failed" in smartoutput: print " Disk %s fail his last test"%disk["device"].replace("/dev/rdsk/", "") zob= re.findall("(Self-test execution status.*)", smartoutput) except KeyError: pass def do_smartcl_runtest(self, line): # FIXME : line parsing if line: raise NotImplemetedError else: disks = self.disks.values() self.smartctl(disks, action="test") def get_enclosure(self, line): """ Try to find an enclosure """ aliases = revert(self.aliases) if line in aliases: line = aliases[line] if line in self.enclosures: return line if line.lower() in self.enclosures: return line.lower() try: c, e = line.split(":", 1) c, e = long(c), long(e) tmp = [ v["id"].lower() for v in self.enclosures.values() if v["controller"] == c and v["index"] == e ] if len(tmp) != 1: raise return tmp[0] except Exception, e: #print e return None def get_disk(self, line): for t in (line, "/dev/rdsk/%s"%line, line.upper(), line.lower()): tmp = self._disks.get(t, None) if tmp: return [ tmp ] # Try to locate by path try: # Check if first element of path is an enclosure tmp = line.split(":",2) if len(tmp) == 2: e = self.get_enclosure(tmp[0]) if e: return [ disk for disk in self.disks.values() if disk["enclosure"] == e and disk["slot"] == long(tmp[1]) ] else: c, e, s = tmp c, e, s = long(c), long(e), long(s) return [ disk for disk in self.disks.values() if disk["controller"] == c and disk["enclosureindex"] == e and disk["slot"] == s ] except Exception, e: #print e return None def do_drawletter(self, line): """ Print a char on a 4x6 enclosure """ line = line.strip() if not line: return letters = { "N": [ 0, 1, 2, 3, 4, 5, 9, 10, 13, 14, 18, 19, 20, 21, 22, 23 ], "X": [ 0, 1, 4, 5, 8, 9, 14, 15, 18 , 19, 22, 23 ], # FIXME Ajouter les chiffres } letter, enclosure = line.split(" ",1) e = self.get_enclosure(enclosure) if not e: print "Invalid enclosure %s"%e self.do_ledoff(e) self.set_leds([ disk for disk in self.disks.values() if disk["slot"] in letters[letter] and disk["enclosure"] == e ], True) def do_configdump(self, path): if not path: path = pj(".", "configudump-%s"%hostname) if not os.path.exists(path): os.makedirs(path) tmp = run(sas2ircu, "LIST") self.discover_controllers(tmp) file(pj(path, "sas2ircu-list.txt"), "w").write(tmp) for ctrl in self.controllers: file(pj(path, "sas2ircu-%s-display.txt"%ctrl), "w").write( run(sas2ircu, [ctrl, "DISPLAY"])) file(pj(path, "prtconf-v.txt"), "w").write( run(prtconf, "-v")) file(pj(path, "zpool-status.txt"), "w").write( run(zpool, "status")) print "Dumped all value to path %s"%path def ledparse(self, value, line): line = line.strip() targets = [] if line == "all": targets = self.disks else: # Try to see if it's an enclosure target = self.get_enclosure(line) if target: targets = [ disk for disk in self.disks.values() if disk["enclosure"] == target ] else: # Try to see if it's a disk targets = self.get_disk(line) if targets: self.set_leds(targets, value) else: print "Could not find what you're talking about" def do_ledon(self, line): """ Turn on locate led on parameters FIXME : syntax parameters""" self.ledparse(True, line) def complete_ledon(self, text, line, begidx, endidx): candidates = [ "all", "ALL" ] candidates.extend(self.aliases.values()) candidates.extend([ disk["device"].replace("/dev/rdsk/", "") for disk in self.disks.values() ]) candidates.extend([ disk["serial"] for disk in self.disks.values() ]) candidates.extend([ "%(controller)s:%(enclosureindex)s:%(slot)s"%disk for disk in self.disks.values() ]) candidates.extend([ "%(controller)s:%(index)s"%enclosure for enclosure in self.enclosures.values() ] ) candidates.sort() return [ i for i in candidates if i.startswith(text) ] complete_ledoff = complete_ledon def do_ledoff(self, line): """ Turn off locate led on parameters FIXME : syntax parameters""" self.ledparse(False, line) def do_alias(self, line): """ Used to set a name on a enclosure. Usage : alias enclosure name alias -r name alias -r enclosure Without parameters : list current alias """ if not line: pprint(self.aliases) elif line.startswith("-r"): junk, alias = line.split(" ",1) alias = alias.strip() if alias in self.aliases: del self.aliases[alias] else: # We have to do a reverse lookup to find it ! tmp = revert(self.aliases) if alias in tmp: del self.aliases[tmp[alias]] self.do_save() elif " " in line: target, alias = line.split(" ",1) alias = alias.strip() enclosure = self.get_enclosure(target.strip()) if not enclosure: print "No such enclosure %s"%target.lower() else: self.aliases[enclosure] = alias self.do_save() def complete_alias(self, text, line, begidx, endidx): if line.startswith("alias -r "): return ([ i for i in self.aliases.keys() if i.startswith(text) ] + [ i for i in self.aliases.values() if i.startswith(text) ]) if line.count(" ") == 1: result = [] result.extend(self.enclosures.keys()) result.extend([ "%(controller)s:%(index)s"%e for e in self.enclosures.values() ]) return [ i for i in result if i.startswith(text) ] def do_mangle(self, junk=""): """ This function is automatically called when piping something to diskmap. It'll suffix all drive name with the enclosure name they are in (defined with an alias) and the drive slot. Try : iostat -x -e -n 1 | diskmap.py """ if sys.stdin.isatty(): print "This command is not intented to be executed in interactive mode" return replacelist = [] for enclosure, alias in self.aliases.items(): for disk in self.disks.values(): if disk["enclosure"] == enclosure: tmp = disk["device"].replace("/dev/rdsk/", "") replacelist.append((tmp, "%s/%s%02d"%(tmp, alias, disk["slot"]))) line = sys.stdin.readline() while line: for r, e in replacelist: line = line.replace(r, e) sys.stdout.write(line) sys.stdout.flush() line = sys.stdin.readline() def do_sd_timeout(self, timeout=""): """ Get / Set sd timeout value When no parameter is present, display the current sd_io_time, and check that running drive use the same timing. This script will only change value for the running drive. If you wan't to apply change permanently, put 'set sd:sd_io_time=5' in /etc/system Be aware that the script will change the default value of sd_io_time, and also change the current value for all drive in your system. See : http://blogs.everycity.co.uk/alasdair/2011/05/adjusting-drive-timeouts-with-mdb-on-solaris-or-openindiana/ """ if timeout: try: timeout = int(timeout) except: print "Invalid timeout specified" return # Displaying current timeout tmp = run(mdb, "-k", tosend="sd_io_time::print\n") globaltimeout = int(tmp.strip(), 16) print "Current Global sd_io_time : %s"%globaltimeout drivestimeout = run(mdb, "-k", tosend="::walk sd_state | ::grep '.!=0' | " "::print -a struct sd_lun un_cmd_timeout\n") values = [ int(i, 16) for i in re.findall("= (0x[0-9a-f]+)", drivestimeout) if i ] print "Got %s values from sd disk driver, %s are not equal to system default"%( len(values), len(values)-values.count(globaltimeout)) if timeout: # We want to set new timeout for drives # Set global timeout print "Setting global timeout ...", run(mdb, "-kw", tosend="sd_io_time/W 0x%x\n"%timeout) # Set timeout for every drive for driveid in re.findall("(.+) un_cmd_timeout", drivestimeout): print "\rSetting timeout for drive id %s ..."%driveid, run(mdb, "-kw", tosend="%s/W 0x%x\n"%(driveid, timeout)) print "Done" print "Don't forget add to your /etc/system 'set sd:sd_io_time=%s' so change persist accross reboot"%timeout def __str__(self): result = [] for i in ("controllers", "enclosures", "disks"): result.append(i.capitalize()) result.append("="*80) result.append(pformat(getattr(self,i))) result.append("") return "\n".join(result) import unittest class TestConfigs(unittest.TestCase): pass if __name__ == "__main__": #if not os.path.isfile(sas2ircu): # sys.exit("Error, cannot find sas2ircu (%s)"%sas2ircu) sm = SesManager() if len(sys.argv) > 1: sm.preloop() sm.onecmd(" ".join(sys.argv[1:])) sm.postloop() elif sys.stdin.isatty(): sm.cmdloop() else: sm.preloop() sm.onecmd("mangle") sm.postloop()
41.637584
153
0.507012
d3b6a51bcd5a4eadc3a1a9f78385e7817002eb6a
121,919
py
Python
tensorflow/python/framework/test_util.py
devsangwoo/tensor
066592c9f9cdf4acdd1b9b104766271133e9088e
[ "Apache-2.0" ]
1
2020-01-12T14:38:34.000Z
2020-01-12T14:38:34.000Z
tensorflow/python/framework/test_util.py
devsangwoo/tensor
066592c9f9cdf4acdd1b9b104766271133e9088e
[ "Apache-2.0" ]
null
null
null
tensorflow/python/framework/test_util.py
devsangwoo/tensor
066592c9f9cdf4acdd1b9b104766271133e9088e
[ "Apache-2.0" ]
null
null
null
<<<<<<< HEAD # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """Test utils for tensorflow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from collections import OrderedDict import contextlib import functools import gc import itertools import math import os import random import re import tempfile import threading import unittest from absl.testing import parameterized import numpy as np import six from google.protobuf import descriptor_pool from google.protobuf import text_format from tensorflow.core.framework import graph_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python import _pywrap_stacktrace_handler from tensorflow.python import _pywrap_util_port from tensorflow.python import pywrap_tensorflow from tensorflow.python import tf2 from tensorflow.python.client import device_lib from tensorflow.python.client import session from tensorflow.python.compat.compat import forward_compatibility_horizon from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.eager import tape from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import errors_impl from tensorflow.python.framework import gpu_util from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.framework import versions from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import control_flow_util_v2 from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.ops.ragged import ragged_tensor_value from tensorflow.python.ops import script_ops from tensorflow.python.ops import summary_ops_v2 from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import server_lib from tensorflow.python.util import compat from tensorflow.python.util import deprecation from tensorflow.python.util import nest from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect from tensorflow.python.util.protobuf import compare from tensorflow.python.util.tf_export import tf_export from tensorflow.python.util.compat import collections_abc # If the below import is made available through the BUILD rule, then this # function is overridden and will instead return True and cause Tensorflow # graphs to be compiled with XLA. def is_xla_enabled(): return False try: from tensorflow.python.framework.is_xla_test_true import is_xla_enabled # pylint: disable=g-import-not-at-top except: pass def _get_object_count_by_type(): return collections.Counter([type(obj).__name__ for obj in gc.get_objects()]) @tf_export("test.gpu_device_name") def gpu_device_name(): """Returns the name of a GPU device if available or the empty string.""" for x in device_lib.list_local_devices(): if x.device_type == "GPU" or x.device_type == "SYCL": return compat.as_str(x.name) return "" def assert_ops_in_graph(expected_ops, graph): """Assert all expected operations are found. Args: expected_ops: `dict<string, string>` of op name to op type. graph: Graph to check. Returns: `dict<string, node>` of node name to node. Raises: ValueError: If the expected ops are not present in the graph. """ actual_ops = {} gd = graph.as_graph_def() for node in gd.node: if node.name in expected_ops: if expected_ops[node.name] != node.op: raise ValueError("Expected op for node %s is different. %s vs %s" % (node.name, expected_ops[node.name], node.op)) actual_ops[node.name] = node if set(expected_ops.keys()) != set(actual_ops.keys()): raise ValueError("Not all expected ops are present. Expected %s, found %s" % (expected_ops.keys(), actual_ops.keys())) return actual_ops @tf_export("test.assert_equal_graph_def", v1=[]) def assert_equal_graph_def_v2(expected, actual): """Asserts that two `GraphDef`s are (mostly) the same. Compares two `GraphDef` protos for equality, ignoring versions and ordering of nodes, attrs, and control inputs. Node names are used to match up nodes between the graphs, so the naming of nodes must be consistent. This function ignores randomized attribute values that may appear in V2 checkpoints. Args: expected: The `GraphDef` we expected. actual: The `GraphDef` we have. Raises: AssertionError: If the `GraphDef`s do not match. TypeError: If either argument is not a `GraphDef`. """ assert_equal_graph_def(actual, expected, checkpoint_v2=True, hash_table_shared_name=True) @tf_export(v1=["test.assert_equal_graph_def"]) def assert_equal_graph_def_v1(actual, expected, checkpoint_v2=False, hash_table_shared_name=False): """Asserts that two `GraphDef`s are (mostly) the same. Compares two `GraphDef` protos for equality, ignoring versions and ordering of nodes, attrs, and control inputs. Node names are used to match up nodes between the graphs, so the naming of nodes must be consistent. Args: actual: The `GraphDef` we have. expected: The `GraphDef` we expected. checkpoint_v2: boolean determining whether to ignore randomized attribute values that appear in V2 checkpoints. hash_table_shared_name: boolean determining whether to ignore randomized shared_names that appear in HashTableV2 op defs. Raises: AssertionError: If the `GraphDef`s do not match. TypeError: If either argument is not a `GraphDef`. """ assert_equal_graph_def(actual, expected, checkpoint_v2, hash_table_shared_name) def assert_equal_graph_def(actual, expected, checkpoint_v2=False, hash_table_shared_name=False): if not isinstance(actual, graph_pb2.GraphDef): raise TypeError("Expected tf.GraphDef for actual, got %s" % type(actual).__name__) if not isinstance(expected, graph_pb2.GraphDef): raise TypeError("Expected tf.GraphDef for expected, got %s" % type(expected).__name__) if checkpoint_v2: _strip_checkpoint_v2_randomized(actual) _strip_checkpoint_v2_randomized(expected) if hash_table_shared_name: _strip_hash_table_shared_name(actual) _strip_hash_table_shared_name(expected) diff = pywrap_tensorflow.EqualGraphDefWrapper(actual.SerializeToString(), expected.SerializeToString()) if diff: raise AssertionError(compat.as_str(diff)) def assert_meta_graph_protos_equal(tester, a, b): """Compares MetaGraphDefs `a` and `b` in unit test class `tester`.""" # Carefully check the collection_defs tester.assertEqual(set(a.collection_def), set(b.collection_def)) collection_keys = a.collection_def.keys() for k in collection_keys: a_value = a.collection_def[k] b_value = b.collection_def[k] proto_type = ops.get_collection_proto_type(k) if proto_type: a_proto = proto_type() b_proto = proto_type() # Number of entries in the collections is the same tester.assertEqual( len(a_value.bytes_list.value), len(b_value.bytes_list.value)) for (a_value_item, b_value_item) in zip(a_value.bytes_list.value, b_value.bytes_list.value): a_proto.ParseFromString(a_value_item) b_proto.ParseFromString(b_value_item) tester.assertProtoEquals(a_proto, b_proto) else: tester.assertEquals(a_value, b_value) # Compared the fields directly, remove their raw values from the # proto comparison below. a.ClearField("collection_def") b.ClearField("collection_def") # Check the graph_defs. assert_equal_graph_def(a.graph_def, b.graph_def, checkpoint_v2=True) # Check graph_def versions (ignored by assert_equal_graph_def). tester.assertProtoEquals(a.graph_def.versions, b.graph_def.versions) # Compared the fields directly, remove their raw values from the # proto comparison below. a.ClearField("graph_def") b.ClearField("graph_def") tester.assertProtoEquals(a, b) # Matches attributes named via _SHARDED_SUFFIX in # tensorflow/python/training/saver.py _SHARDED_SAVE_OP_PATTERN = "_temp_[0-9a-z]{32}/part" def _strip_checkpoint_v2_randomized(graph_def): for node in graph_def.node: delete_keys = [] for attr_key in node.attr: attr_tensor_value = node.attr[attr_key].tensor if attr_tensor_value and len(attr_tensor_value.string_val) == 1: attr_tensor_string_value = attr_tensor_value.string_val[0] if (attr_tensor_string_value and re.match(_SHARDED_SAVE_OP_PATTERN, str(attr_tensor_string_value))): delete_keys.append(attr_key) for attr_key in delete_keys: del node.attr[attr_key] _TABLE_SHARED_NAME_PATTERN = r"hash_table_[0-9a-z\-]+" def _strip_hash_table_shared_name(graph_def): for node in graph_def.node: delete_keys = [] if node.op == "HashTableV2" and "shared_name" in node.attr: if re.match(_TABLE_SHARED_NAME_PATTERN, str(node.attr["shared_name"].s)): delete_keys.append("shared_name") for attr_key in delete_keys: del node.attr[attr_key] def IsGoogleCudaEnabled(): return _pywrap_util_port.IsGoogleCudaEnabled() def IsBuiltWithROCm(): return _pywrap_util_port.IsBuiltWithROCm() def IsBuiltWithNvcc(): return _pywrap_util_port.IsBuiltWithNvcc() def GpuSupportsHalfMatMulAndConv(): return _pywrap_util_port.GpuSupportsHalfMatMulAndConv() def IsMklEnabled(): return _pywrap_util_port.IsMklEnabled() def InstallStackTraceHandler(): _pywrap_stacktrace_handler.InstallStacktraceHandler() def NHWCToNCHW(input_tensor): """Converts the input from the NHWC format to NCHW. Args: input_tensor: a 4- or 5-D tensor, or an array representing shape Returns: converted tensor or shape array """ # tensor dim -> new axis order new_axes = {4: [0, 3, 1, 2], 5: [0, 4, 1, 2, 3]} if isinstance(input_tensor, ops.Tensor): ndims = input_tensor.shape.ndims return array_ops.transpose(input_tensor, new_axes[ndims]) else: ndims = len(input_tensor) return [input_tensor[a] for a in new_axes[ndims]] def NHWCToNCHW_VECT_C(input_shape_or_tensor): """Transforms the input from the NHWC layout to NCHW_VECT_C layout. Note: Does not include quantization or type conversion steps, which should be applied afterwards. Args: input_shape_or_tensor: a 4- or 5-D tensor, or an array representing shape Returns: tensor or shape array transformed into NCHW_VECT_C Raises: ValueError: if last dimension of `input_shape_or_tensor` is not evenly divisible by 4. """ permutations = {5: [0, 3, 1, 2, 4], 6: [0, 4, 1, 2, 3, 5]} is_tensor = isinstance(input_shape_or_tensor, ops.Tensor) temp_shape = ( input_shape_or_tensor.shape.as_list() if is_tensor else input_shape_or_tensor) if temp_shape[-1] % 4 != 0: raise ValueError( "Last dimension of input must be evenly divisible by 4 to convert to " "NCHW_VECT_C.") temp_shape[-1] //= 4 temp_shape.append(4) permutation = permutations[len(temp_shape)] if is_tensor: t = array_ops.reshape(input_shape_or_tensor, temp_shape) return array_ops.transpose(t, permutation) else: return [temp_shape[a] for a in permutation] def NCHW_VECT_CToNHWC(input_shape_or_tensor): """Transforms the input from the NCHW_VECT_C layout to NHWC layout. Note: Does not include de-quantization or type conversion steps, which should be applied beforehand. Args: input_shape_or_tensor: a 5- or 6-D tensor, or an array representing shape Returns: tensor or shape array transformed into NHWC Raises: ValueError: if last dimension of `input_shape_or_tensor` is not 4. """ permutations = {5: [0, 2, 3, 1, 4], 6: [0, 2, 3, 4, 1, 5]} is_tensor = isinstance(input_shape_or_tensor, ops.Tensor) input_shape = ( input_shape_or_tensor.shape.as_list() if is_tensor else input_shape_or_tensor) if input_shape[-1] != 4: raise ValueError("Last dimension of NCHW_VECT_C must be 4.") permutation = permutations[len(input_shape)] nhwc_shape = [input_shape[a] for a in permutation[:-1]] nhwc_shape[-1] *= input_shape[-1] if is_tensor: t = array_ops.transpose(input_shape_or_tensor, permutation) return array_ops.reshape(t, nhwc_shape) else: return nhwc_shape def NCHWToNHWC(input_tensor): """Converts the input from the NCHW format to NHWC. Args: input_tensor: a 4- or 5-D tensor, or an array representing shape Returns: converted tensor or shape array """ # tensor dim -> new axis order new_axes = {4: [0, 2, 3, 1], 5: [0, 2, 3, 4, 1]} if isinstance(input_tensor, ops.Tensor): ndims = input_tensor.shape.ndims return array_ops.transpose(input_tensor, new_axes[ndims]) else: ndims = len(input_tensor) return [input_tensor[a] for a in new_axes[ndims]] def skip_if(condition): """Skips the decorated function if condition is or evaluates to True. Args: condition: Either an expression that can be used in "if not condition" statement, or a callable whose result should be a boolean. Returns: The wrapped function """ def real_skip_if(fn): def wrapper(*args, **kwargs): if callable(condition): skip = condition() else: skip = condition if not skip: return fn(*args, **kwargs) return wrapper return real_skip_if def enable_c_shapes(fn): """No-op. TODO(b/74620627): Remove this.""" return fn def with_c_shapes(cls): """No-op. TODO(b/74620627): Remove this.""" return cls def enable_control_flow_v2(fn): """Decorator for enabling CondV2 and WhileV2 on a test. Note this enables using CondV2 and WhileV2 after running the test class's setup/teardown methods. In addition to this, callers must import the while_v2 module in order to set the _while_v2 module in control_flow_ops. Args: fn: the function to be wrapped Returns: The wrapped function """ def wrapper(*args, **kwargs): enable_control_flow_v2_old = control_flow_util.ENABLE_CONTROL_FLOW_V2 control_flow_util.ENABLE_CONTROL_FLOW_V2 = True try: return fn(*args, **kwargs) finally: control_flow_util.ENABLE_CONTROL_FLOW_V2 = enable_control_flow_v2_old return wrapper def with_control_flow_v2(cls): """Adds methods that call original methods with WhileV2 and CondV2 enabled. Note this enables CondV2 and WhileV2 in new methods after running the test class's setup method. In addition to this, callers must import the while_v2 module in order to set the _while_v2 module in control_flow_ops. If a test function has _disable_control_flow_v2 attr set to True (using the @disable_control_flow_v2 decorator), the v2 function is not generated for it. Example: @test_util.with_control_flow_v2 class ControlFlowTest(test.TestCase): def testEnabledForV2(self): ... @test_util.disable_control_flow_v2("b/xyzabc") def testDisabledForV2(self): ... Generated class: class ControlFlowTest(test.TestCase): def testEnabledForV2(self): ... def testEnabledForV2WithControlFlowV2(self): // Enable V2 flags. testEnabledForV2(self) // Restore V2 flags. def testDisabledForV2(self): ... Args: cls: class to decorate Returns: cls with new test methods added """ if control_flow_util.ENABLE_CONTROL_FLOW_V2: return cls for name, value in cls.__dict__.copy().items(): if (callable(value) and name.startswith(unittest.TestLoader.testMethodPrefix) and not getattr(value, "_disable_control_flow_v2", False)): setattr(cls, name + "WithControlFlowV2", enable_control_flow_v2(value)) return cls def disable_control_flow_v2(unused_msg): """Decorator for a function in a with_control_flow_v2 enabled test class. Blocks the function from being run with v2 control flow ops. Args: unused_msg: Reason for disabling. Returns: The wrapped function with _disable_control_flow_v2 attr set to True. """ def wrapper(func): func._disable_control_flow_v2 = True return func return wrapper def enable_output_all_intermediates(fn): """Force-enable outputing all intermediates from functional control flow ops. Args: fn: the function to be wrapped Returns: The wrapped function """ def wrapper(*args, **kwargs): output_all_intermediates_old = \ control_flow_util_v2._EXPERIMENTAL_OUTPUT_ALL_INTERMEDIATES_OVERRIDE control_flow_util_v2._EXPERIMENTAL_OUTPUT_ALL_INTERMEDIATES_OVERRIDE = True try: return fn(*args, **kwargs) finally: control_flow_util_v2._EXPERIMENTAL_OUTPUT_ALL_INTERMEDIATES_OVERRIDE = \ output_all_intermediates_old return wrapper def assert_no_new_pyobjects_executing_eagerly(func=None, warmup_iters=2): """Decorator for asserting that no new Python objects persist after a test. Runs the test multiple times executing eagerly, first as a warmup and then to let objects accumulate. The warmup helps ignore caches which do not grow as the test is run repeatedly. Useful for checking that there are no missing Py_DECREFs in the C exercised by a bit of Python. Args: func: The function to test. warmup_iters: The numer of warmup iterations, excluded from measuring. Returns: The wrapped function performing the test. """ def wrap_f(f): def decorator(self, *args, **kwargs): """Warms up, gets object counts, runs the test, checks for new objects.""" with context.eager_mode(): gc.disable() # Run the test 2 times as warmup, in an attempt to fill up caches, which # should not grow as the test is run repeatedly below. # # TODO(b/117156879): Running warmup twice is black magic; we have seen # tests that fail with 1 warmup run, and pass with 2, on various # versions of python2.7.x. for _ in range(warmup_iters): f(self, *args, **kwargs) # Some objects are newly created by _get_object_count_by_type(). So # create and save as a dummy variable to include it as a baseline. obj_count_by_type = _get_object_count_by_type() gc.collect() obj_count_by_type = _get_object_count_by_type() if ops.has_default_graph(): collection_sizes_before = { collection: len(ops.get_collection(collection)) for collection in ops.get_default_graph().collections } for _ in range(3): f(self, *args, **kwargs) # Note that gc.get_objects misses anything that isn't subject to garbage # collection (C types). Collections are a common source of leaks, so we # test for collection sizes explicitly. if ops.has_default_graph(): for collection_key in ops.get_default_graph().collections: collection = ops.get_collection(collection_key) size_before = collection_sizes_before.get(collection_key, 0) if len(collection) > size_before: raise AssertionError( ("Collection %s increased in size from " "%d to %d (current items %s).") % (collection_key, size_before, len(collection), collection)) # Make sure our collection checks don't show up as leaked memory by # removing references to temporary variables. del collection del collection_key del size_before del collection_sizes_before gc.collect() # There should be no new Python objects hanging around. obj_count_by_type = _get_object_count_by_type() - obj_count_by_type # In some cases (specifacally on MacOS), new_count is somehow # smaller than previous_count. # Using plain assert because not all classes using this decorator # have assertLessEqual assert not obj_count_by_type, ( "The following objects were newly created: %s" % str(obj_count_by_type)) gc.enable() return decorator if func is None: return wrap_f else: return wrap_f(func) def assert_no_new_tensors(f): """Decorator for asserting that no new Tensors persist after a test. Mainly useful for checking that code using the Python C API has correctly manipulated reference counts. Clears the caches that it knows about, runs the garbage collector, then checks that there are no Tensor or Tensor-like objects still around. This includes Tensors to which something still has a reference (e.g. from missing Py_DECREFs) and uncollectable cycles (i.e. Python reference cycles where one of the objects has __del__ defined). Args: f: The test case to run. Returns: The decorated test case. """ def decorator(self, **kwargs): """Finds existing Tensors, runs the test, checks for new Tensors.""" def _is_tensorflow_object(obj): try: return isinstance(obj, (ops.Tensor, variables.Variable, tensor_shape.Dimension, tensor_shape.TensorShape)) except ReferenceError: # If the object no longer exists, we don't care about it. return False tensors_before = set( id(obj) for obj in gc.get_objects() if _is_tensorflow_object(obj)) outside_executed_eagerly = context.executing_eagerly() # Run the test in a new graph so that collections get cleared when it's # done, but inherit the graph key so optimizers behave. outside_graph_key = ops.get_default_graph()._graph_key with ops.Graph().as_default(): ops.get_default_graph()._graph_key = outside_graph_key if outside_executed_eagerly: with context.eager_mode(): result = f(self, **kwargs) else: result = f(self, **kwargs) # Make an effort to clear caches, which would otherwise look like leaked # Tensors. context.context()._clear_caches() # pylint: disable=protected-access gc.collect() tensors_after = [ obj for obj in gc.get_objects() if _is_tensorflow_object(obj) and id(obj) not in tensors_before ] if tensors_after: raise AssertionError(("%d Tensors not deallocated after test: %s" % ( len(tensors_after), str(tensors_after), ))) return result return decorator def _find_reference_cycle(objects, idx): def get_ignore_reason(obj, blacklist): """Tests whether an object should be omitted from the dependency graph.""" if len(blacklist) > 100: return "<depth limit>" if tf_inspect.isframe(obj): if "test_util.py" in tf_inspect.getframeinfo(obj)[0]: return "<test code>" for b in blacklist: if b is obj: return "<test code>" if obj is blacklist: return "<test code>" return None # Note: this function is meant to help with diagnostics. Its output is purely # a human-readable representation, so you may freely modify it to suit your # needs. def describe(obj, blacklist, leaves_only=False): """Returns a custom human-readable summary of obj. Args: obj: the value to describe. blacklist: same as blacklist in get_ignore_reason. leaves_only: boolean flag used when calling describe recursively. Useful for summarizing collections. """ if get_ignore_reason(obj, blacklist): return "{}{}".format(get_ignore_reason(obj, blacklist), type(obj)) if tf_inspect.isframe(obj): return "frame: {}".format(tf_inspect.getframeinfo(obj)) elif tf_inspect.ismodule(obj): return "module: {}".format(obj.__name__) else: if leaves_only: return "{}, {}".format(type(obj), id(obj)) elif isinstance(obj, list): return "list({}): {}".format( id(obj), [describe(e, blacklist, leaves_only=True) for e in obj]) elif isinstance(obj, tuple): return "tuple({}): {}".format( id(obj), [describe(e, blacklist, leaves_only=True) for e in obj]) elif isinstance(obj, dict): return "dict({}): {} keys".format(id(obj), len(obj.keys())) elif tf_inspect.isfunction(obj): return "function({}) {}; globals ID: {}".format( id(obj), obj.__name__, id(obj.__globals__)) else: return "{}, {}".format(type(obj), id(obj)) def build_ref_graph(obj, graph, reprs, blacklist): """Builds a reference graph as <referrer> -> <list of refferents>. Args: obj: The object to start from. The graph will be built by recursively adding its referrers. graph: Dict holding the graph to be built. To avoid creating extra references, the graph holds object IDs rather than actual objects. reprs: Auxiliary structure that maps object IDs to their human-readable description. blacklist: List of objects to ignore. """ referrers = gc.get_referrers(obj) blacklist = blacklist + (referrers,) obj_id = id(obj) for r in referrers: if get_ignore_reason(r, blacklist) is None: r_id = id(r) if r_id not in graph: graph[r_id] = [] if obj_id not in graph[r_id]: graph[r_id].append(obj_id) build_ref_graph(r, graph, reprs, blacklist) reprs[r_id] = describe(r, blacklist) def find_cycle(el, graph, reprs, path): """Finds and prints a single cycle in the dependency graph.""" if el not in graph: return for r in graph[el]: if r in path: logging.error("Reference cycle sample:") for p in path + (r,): logging.error(reprs.get(p, "unknown object " + str(p))) return True else: if find_cycle(r, graph, reprs, path + (r,)): return True return False obj = objects[idx] graph = {} # referrer ID -> object ID reprs = {} # object ID -> description build_ref_graph(obj, graph, reprs, (objects, graph, reprs, get_ignore_reason, describe, build_ref_graph, find_cycle)) for k in graph: if find_cycle(k, graph, reprs, ()): return True return False def assert_no_garbage_created(f): """Test method decorator to assert that no garbage has been created. Note that this decorator sets DEBUG_SAVEALL, which in some Python interpreters cannot be un-set (i.e. will disable garbage collection for any other unit tests in the same file/shard). Args: f: The function to decorate. Returns: The decorated function. """ def decorator(self, **kwargs): """Sets DEBUG_SAVEALL, runs the test, and checks for new garbage.""" # Force-load `distribution_strategy_context` to prevent GC at # test time when using eager. Remove once b/117329403 is resolved. tape.distribution_strategy_context.get_strategy() gc.disable() previous_debug_flags = gc.get_debug() gc.set_debug(gc.DEBUG_SAVEALL) gc.collect() previous_garbage = len(gc.garbage) result = f(self, **kwargs) gc.collect() new_garbage = len(gc.garbage) if new_garbage > previous_garbage: logging.error( "The decorated test created work for Python's garbage collector, " "likely due to a reference cycle. New objects in cycle(s):") for i, obj in enumerate(gc.garbage[previous_garbage:]): try: logging.error("Object %d of %d", i, len(gc.garbage) - previous_garbage) def _safe_object_str(obj): return "<%s %d>" % (obj.__class__.__name__, id(obj)) logging.error(" Object type: %s", _safe_object_str(obj)) logging.error( " Referrer types: %s", ", ".join( [_safe_object_str(ref) for ref in gc.get_referrers(obj)])) logging.error( " Referent types: %s", ", ".join( [_safe_object_str(ref) for ref in gc.get_referents(obj)])) logging.error(" Object attribute names: %s", dir(obj)) logging.error(" Object __str__:") logging.error(obj) logging.error(" Object __repr__:") logging.error(repr(obj)) except Exception: # pylint: disable=broad-except logging.error("(Exception while printing object)") # When garbage is created, this call can help identify reference cycles, # which are typically the cause of such garbage. if new_garbage > previous_garbage: for i in range(previous_garbage, new_garbage): if _find_reference_cycle(gc.garbage, i): break # This will fail if any garbage has been created, typically because of a # reference cycle. self.assertEqual(previous_garbage, new_garbage) # TODO(allenl): Figure out why this debug flag reset doesn't work. It would # be nice to be able to decorate arbitrary tests in a large test suite and # not hold on to every object in other tests. gc.set_debug(previous_debug_flags) gc.enable() return result return decorator def _combine_named_parameters(**kwargs): """Generate combinations based on its keyword arguments. Two sets of returned combinations can be concatenated using +. Their product can be computed using `times()`. Args: **kwargs: keyword arguments of form `option=[possibilities, ...]` or `option=the_only_possibility`. Returns: a list of dictionaries for each combination. Keys in the dictionaries are the keyword argument names. Each key has one value - one of the corresponding keyword argument values. """ sort_by_key = lambda k: k[0] combinations = [] for key, values in sorted(kwargs.items(), key=sort_by_key): if not isinstance(values, list): values = [values] combinations.append([(key, value) for value in values]) return [OrderedDict(result) for result in itertools.product(*combinations)] def generate_combinations_with_testcase_name(**kwargs): """Generate combinations based on its keyword arguments using combine(). This function calls combine() and appends a testcase name to the list of dictionaries returned. The 'testcase_name' key is a required for named parameterized tests. Args: **kwargs: keyword arguments of form `option=[possibilities, ...]` or `option=the_only_possibility`. Returns: a list of dictionaries for each combination. Keys in the dictionaries are the keyword argument names. Each key has one value - one of the corresponding keyword argument values. """ combinations = _combine_named_parameters(**kwargs) named_combinations = [] for combination in combinations: assert isinstance(combination, OrderedDict) name = "".join([ "_{}_{}".format("".join(filter(str.isalnum, key)), "".join(filter(str.isalnum, str(value)))) for key, value in combination.items() ]) named_combinations.append( OrderedDict( list(combination.items()) + [("testcase_name", "_test{}".format(name))])) return named_combinations def run_all_in_graph_and_eager_modes(cls): """Execute all test methods in the given class with and without eager.""" base_decorator = run_in_graph_and_eager_modes for name in dir(cls): if (not name.startswith(unittest.TestLoader.testMethodPrefix) or name.startswith("testSkipEager") or name.startswith("test_skip_eager") or name == "test_session"): continue value = getattr(cls, name, None) if callable(value): setattr(cls, name, base_decorator(value)) return cls def build_as_function_and_v1_graph(func=None): """Run a test case in v1 graph mode and inside tf.function in eager mode. WARNING: This decorator can only be used in test cases that statically checks generated graph. Attempting to evaluate graph or function results via. session.run() or self.evaluate() will fail. WARNING: This decorator can only be used for test cases that inherit from absl.testing.parameterized.TestCase. Args: func: Test case function to be decorated. Returns: Decorated test case function. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError( "`run_in_graph_mode_and_function` only supports test methods.") @parameterized.named_parameters(("_v1_graph", "v1_graph"), ("_function", "function")) @functools.wraps(f) def decorated(self, run_mode, *args, **kwargs): if run_mode == "v1_graph": with ops.Graph().as_default(): f(self, *args, **kwargs) elif run_mode == "function": @def_function.function def function_in_eager(): f(self, *args, **kwargs) # Create a new graph for the eagerly executed version of this test for # better isolation. graph_for_eager_test = ops.Graph() with graph_for_eager_test.as_default(), context.eager_mode(): function_in_eager() ops.dismantle_graph(graph_for_eager_test) else: return ValueError("Unknown run mode %s" % run_mode) return decorated if func is not None: return decorator(func) return decorator def eager_lazy_remote_copy_on_and_off(f): """Execute the test method w/o lazy tensor copy for function remote inputs.""" @parameterized.named_parameters([("WithLazyRemoteCopy", True), ("", False)]) @functools.wraps(f) def decorator(self, lazily_remote_copy, *args, **kwargs): if lazily_remote_copy: context.context().lazy_remote_inputs_copy = True else: context.context().lazy_remote_inputs_copy = False f(self, *args, **kwargs) return decorator def run_in_graph_and_eager_modes(func=None, config=None, use_gpu=True, reset_test=True, assert_no_eager_garbage=False): """Execute the decorated test with and without enabling eager execution. This function returns a decorator intended to be applied to test methods in a `tf.test.TestCase` class. Doing so will cause the contents of the test method to be executed twice - once normally, and once with eager execution enabled. This allows unittests to confirm the equivalence between eager and graph execution (see `tf.compat.v1.enable_eager_execution`). For example, consider the following unittest: ```python class MyTests(tf.test.TestCase): @run_in_graph_and_eager_modes def test_foo(self): x = tf.constant([1, 2]) y = tf.constant([3, 4]) z = tf.add(x, y) self.assertAllEqual([4, 6], self.evaluate(z)) if __name__ == "__main__": tf.test.main() ``` This test validates that `tf.add()` has the same behavior when computed with eager execution enabled as it does when constructing a TensorFlow graph and executing the `z` tensor in a session. `deprecated_graph_mode_only`, `run_v1_only`, `run_v2_only`, and `run_in_graph_and_eager_modes` are available decorators for different v1/v2/eager/graph combinations. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. config: An optional config_pb2.ConfigProto to use to configure the session when executing graphs. use_gpu: If True, attempt to run as many operations as possible on GPU. reset_test: If True, tearDown and SetUp the test case between the two executions of the test (once with and once without eager execution). assert_no_eager_garbage: If True, sets DEBUG_SAVEALL on the garbage collector and asserts that no extra garbage has been created when running the test with eager execution enabled. This will fail if there are reference cycles (e.g. a = []; a.append(a)). Off by default because some tests may create garbage for legitimate reasons (e.g. they define a class which inherits from `object`), and because DEBUG_SAVEALL is sticky in some Python interpreters (meaning that tests which rely on objects being collected elsewhere in the unit test file will not work). Additionally, checks that nothing still has a reference to Tensors that the test allocated. Returns: Returns a decorator that will run the decorated test method twice: once by constructing and executing a graph in a session and once with eager execution enabled. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError( "`run_in_graph_and_eager_modes` only supports test methods. " "Did you mean to use `run_all_in_graph_and_eager_modes`?") def decorated(self, *args, **kwargs): try: with context.graph_mode(): with self.test_session(use_gpu=use_gpu, config=config): f(self, *args, **kwargs) except unittest.case.SkipTest: pass def run_eagerly(self, **kwargs): if not use_gpu: with ops.device("/device:CPU:0"): f(self, *args, **kwargs) else: f(self, *args, **kwargs) if assert_no_eager_garbage: ops.reset_default_graph() run_eagerly = assert_no_new_tensors( assert_no_garbage_created(run_eagerly)) if reset_test: # This decorator runs the wrapped test twice. # Reset the test environment between runs. self.tearDown() self._tempdir = None # Create a new graph for the eagerly executed version of this test for # better isolation. graph_for_eager_test = ops.Graph() with graph_for_eager_test.as_default(), context.eager_mode(): if reset_test: self.setUp() run_eagerly(self, **kwargs) ops.dismantle_graph(graph_for_eager_test) return decorated if func is not None: return decorator(func) return decorator def py_func_if_in_function(f): def decorated(*args, **kwds): if not ops.get_default_graph()._building_function: return f(*args, **kwds) tensor_args = [] tensor_indices = [] for i, arg in enumerate(args): if isinstance(arg, (ops.Tensor, variables.Variable)): tensor_args.append(arg) tensor_indices.append(i) def inner_f(*inner_tensor_args): my_args = list(args) for i, n in zip(tensor_indices, inner_tensor_args): my_args[i] = n return f(*my_args, **kwds) return script_ops.py_func(inner_f, tensor_args, []) return tf_decorator.make_decorator(f, decorated) def also_run_as_tf_function(f): """Runs the decorated test twice--once as is, once inside a tf.function. This allows you to run a test both in eager execution and inside a tf.function, exercising the two execution modes supported in tf 2.0. The test assertions are automatically done inside tf.py_funcs, and tf.function ensures that they run in the proper order and with the proper side effects. Currently variable creation is not supported in tests annotated with this decorator since it's tricky to ensure the variable doesn't get repeatedly created when retracing the tf.function. Args: f: the test method to be decorated Returns: The decorated test method, which will run both in eager and inside a tf.function. """ def decorated(*args, **kwds): def bound_f(): f(*args, **kwds) with context.eager_mode(): # Running in eager mode bound_f() # Running as TF function # TODO(b/121143941): Remove the autograph override. def_function.function(bound_f, autograph=False)() return decorated def deprecated_graph_mode_only(func=None): """Execute the decorated test in graph mode. This function returns a decorator intended to be applied to tests that are not compatible with eager mode. When this decorator is applied, the test body will be run in an environment where API calls construct graphs instead of executing eagerly. `deprecated_graph_mode_only`, `run_v1_only`, `run_v2_only`, and `run_in_graph_and_eager_modes` are available decorators for different v1/v2/eager/graph combinations. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will run the decorated test method in graph mode. """ def decorator(f): if tf_inspect.isclass(f): setup = f.__dict__.get("setUp") if setup is not None: setattr(f, "setUp", decorator(setup)) for name, value in f.__dict__.copy().items(): if (callable(value) and name.startswith(unittest.TestLoader.testMethodPrefix)): setattr(f, name, decorator(value)) return f def decorated(self, *args, **kwargs): if context.executing_eagerly(): with context.graph_mode(): return f(self, *args, **kwargs) else: return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator run_deprecated_v1 = deprecated_graph_mode_only def run_all_in_deprecated_graph_mode_only(cls): """Execute all tests in a class in graph mode.""" base_decorator = deprecated_graph_mode_only for name in dir(cls): if (not name.startswith(unittest.TestLoader.testMethodPrefix) or name == "test_session"): continue value = getattr(cls, name, None) if callable(value): setattr(cls, name, base_decorator(value)) return cls def run_v1_only(reason, func=None): """Execute the decorated test only if running in v1 mode. This function is intended to be applied to tests that exercise v1 only functionality. If the test is run in v2 mode it will simply be skipped. `deprecated_graph_mode_only`, `run_v1_only`, `run_v2_only`, and `run_in_graph_and_eager_modes` are available decorators for different v1/v2/eager/graph combinations. Args: reason: string giving a reason for limiting the test to v1 only. func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will conditionally skip the decorated test method. """ if not isinstance(reason, str): raise ValueError("'reason' should be string, got {}".format(type(reason))) def decorator(f): if tf_inspect.isclass(f): # To skip an entire test suite class, we only decorate the setUp method # to skip all tests. There are cases when setUp is not defined (not # overridden in subclasses of TestCase, so not available in f.__dict__ # below). For those cases, we walk the method resolution order list and # pick the first setUp method we find (usually this should be the one in # the parent class since that's the TestCase class). for cls in type.mro(f): setup = cls.__dict__.get("setUp") if setup is not None: setattr(f, "setUp", decorator(setup)) break return f else: # If f is just a function, just create a decorator for it and return it def decorated(self, *args, **kwargs): if tf2.enabled(): self.skipTest(reason) return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator def run_v2_only(func=None): """Execute the decorated test only if running in v2 mode. This function is intended to be applied to tests that exercise v2 only functionality. If the test is run in v1 mode it will simply be skipped. `deprecated_graph_mode_only`, `run_v1_only`, `run_v2_only`, and `run_in_graph_and_eager_modes` are available decorators for different v1/v2/eager/graph combinations. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will conditionally skip the decorated test method. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError("`run_v2_only` only supports test methods.") def decorated(self, *args, **kwargs): if not tf2.enabled(): self.skipTest("Test is only compatible with v2") return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator def run_gpu_only(func=None): """Execute the decorated test only if a GPU is available. This function is intended to be applied to tests that require the presence of a GPU. If a GPU is absent, it will simply be skipped. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will conditionally skip the decorated test method. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError("`run_gpu_only` only supports test methods.") def decorated(self, *args, **kwargs): if not is_gpu_available(): self.skipTest("Test requires GPU") return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator def run_cuda_only(func=None): """Execute the decorated test only if a GPU is available. This function is intended to be applied to tests that require the precense of a CUDA GPU. If a CUDA GPU is absent, it will simply be skipped. Args: func: function to be annotated. If `func` is None, this method returns a decorator the can be applied to a function. If `func` is not None this returns the decorator applied to `func`. Returns: Returns a decorator that will conditionally skip the decorated test method. """ def decorator(f): if tf_inspect.isclass(f): raise ValueError("`run_cuda_only` only supports test methods.") def decorated(self, *args, **kwargs): if not is_gpu_available(cuda_only=True): self.skipTest("Test requires CUDA GPU") return f(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator def with_forward_compatibility_horizons(*horizons): """Executes the decorated test with the specified forward-compat horizons. Args: *horizons: A list of (year, month, day) tuples. If the list includes `None`, then the test will also be run with no forward-compatibility horizon set. Returns: A decorator that will execute the test with the specified horizons. """ if not horizons: raise ValueError("Expected at least one horizon.") for horizon in horizons: if not ((horizon is None) or (len(horizon) == 3 and all(isinstance(x, int) for x in horizon))): raise ValueError("Bad horizon value: %r" % horizon) def decorator(f): if tf_inspect.isclass(f): raise ValueError("`with_forward_compatibility_horizons` only " "supports test methods.") def decorated(self, *args, **kwargs): for horizon in horizons: if horizon is None: f(self, *args, **kwargs) else: (year, month, day) = horizon with forward_compatibility_horizon(year, month, day): f(self, *args, **kwargs) return decorated return decorator @deprecation.deprecated(None, "Use `tf.config.list_physical_devices('GPU')` instead.") @tf_export("test.is_gpu_available") def is_gpu_available(cuda_only=False, min_cuda_compute_capability=None): """Returns whether TensorFlow can access a GPU. Warning: if a non-GPU version of the package is installed, the function would also return False. Use `tf.test.is_built_with_cuda` to validate if TensorFlow was build with CUDA support. Args: cuda_only: limit the search to CUDA GPUs. min_cuda_compute_capability: a (major,minor) pair that indicates the minimum CUDA compute capability required, or None if no requirement. Note that the keyword arg name "cuda_only" is misleading (since routine will return true when a GPU device is available irrespective of whether TF was built with CUDA support or ROCm support. However no changes here because ++ Changing the name "cuda_only" to something more generic would break backward compatibility ++ Adding an equivalent "rocm_only" would require the implementation check the build type. This in turn would require doing the same for CUDA and thus potentially break backward compatibility ++ Adding a new "cuda_or_rocm_only" would not break backward compatibility, but would require most (if not all) callers to update the call to use "cuda_or_rocm_only" instead of "cuda_only" Returns: True if a GPU device of the requested kind is available. """ try: for local_device in device_lib.list_local_devices(): if local_device.device_type == "GPU": gpu_info = gpu_util.compute_capability_from_device_desc(local_device) cc = gpu_info.compute_capability or (0, 0) if not min_cuda_compute_capability or cc >= min_cuda_compute_capability: return True if local_device.device_type == "SYCL" and not cuda_only: return True return False except errors_impl.NotFoundError as e: if not all(x in str(e) for x in ["CUDA", "not find"]): raise e else: logging.error(str(e)) return False @contextlib.contextmanager def device(use_gpu): """Uses gpu when requested and available.""" if use_gpu and is_gpu_available(): dev = "/device:GPU:0" else: dev = "/device:CPU:0" with ops.device(dev): yield @contextlib.contextmanager def use_gpu(): """Uses gpu when requested and available.""" with device(use_gpu=True): yield @contextlib.contextmanager def force_gpu(): """Force the gpu to be used.""" with ops.device("/device:GPU:0"): yield @contextlib.contextmanager def force_cpu(): """Force the cpu to be used.""" with ops.device("/device:CPU:0"): yield class CapturedWrites(object): """A utility class to load the captured writes made to a stream.""" def __init__(self, capture_location): self.capture_location = capture_location def contents(self): """Get the captured writes as a single string.""" with open(self.capture_location) as tmp_file: output_data = "".join(tmp_file.readlines()) return output_data class FakeEagerSession(object): """Fake session so tests that conditionally use placeholders can use eager. There are a number of tests that conditionally use placeholders for shape inference. The pattern is demonstrated here: ```python with self.cached_session() as sess: if static_shape: y = math_ops.matmul(x, ...) feed_dict = {} else: x_ph = array_ops.placeholder(...) y = math_ops.matmul(x_ph, ...) feed_dict = {x_ph: x} val = sess.run(y, feed_dict=feed_dict) ``` Since the feed_dict is empty when not using placeholders we should be able to call self.evaluate(), however this requires rewriting the test case. This class should be considered a stop-gap solution to get tests running with eager with minimal changes to the actual test. """ def __init__(self, test_case): self._test_case = test_case def run(self, fetches, *args, **kwargs): """Evalaute `fetches`. Fail if additional args are specified. Args: fetches: A Tensor or a nested list/tuple of Tensors. *args: Positional arguments **kwargs: Keyword arguments Raises: RuntimeError: If args or kwargs are specified. Returns: Tensors as numpy values. """ feed_dict = kwargs.pop("feed_dict", {}) if feed_dict: raise RuntimeError( "feed_dict is not supported when eager execution is enabled " "(in this case, sess.run(t) is shorthand for t.numpy()") if args or kwargs: raise RuntimeError( "Optional args are not supported when eager execution is enabled " "(in this case, sess.run(t) is shorthand for t.numpy()") return self._test_case.evaluate(fetches) class ErrorLoggingSession(session.Session): """Wrapper around a Session that logs errors in run().""" def run(self, *args, **kwargs): try: return super(ErrorLoggingSession, self).run(*args, **kwargs) except Exception as e: # pylint: disable=broad-except # Note: disable the logging for OutOfRangeError, which makes the output # of tf.data tests hard to read, because OutOfRangeError is used as the # signal completion if not isinstance(e, errors.OutOfRangeError): logging.error(str(e)) raise def disable_cudnn_autotune(func): """Disable autotuning during the call to this function. Some tests want to base assertions on a graph being isomorphic with a copy. To ensure this, this decorator disables autotuning. Args: func: Function to run with CuDNN autotuning turned off. Returns: Decorated function. """ def decorator(f): def decorated(self, *args, **kwargs): original_tf_cudnn_use_autotune = os.environ.get("TF_CUDNN_USE_AUTOTUNE") os.environ["TF_CUDNN_USE_AUTOTUNE"] = "false" original_xla_flags = os.environ.get("XLA_FLAGS") new_xla_flags = "--xla_gpu_disable_autotune" if original_xla_flags: new_xla_flags += " " + original_xla_flags os.environ["XLA_FLAGS"] = new_xla_flags result = f(self, *args, **kwargs) if (original_tf_cudnn_use_autotune is None): del os.environ["TF_CUDNN_USE_AUTOTUNE"] else: os.environ["TF_CUDNN_USE_AUTOTUNE"] = original_tf_cudnn_use_autotune if (original_xla_flags is None): del os.environ["XLA_FLAGS"] else: os.environ["XLA_FLAGS"] = original_xla_flags return result return decorated if func is not None: return decorator(func) return decorator # The description is just for documentation purposes. def enable_tf_xla_constant_folding(description): if not isinstance(description, str): raise ValueError("'description' should be string, got {}".format( type(description))) def enable_tf_xla_constant_folding_impl(func): """Enable constant folding during the call to this function. Some tests fail without constant folding. Args: func: Function to run with constant folding turned on. Returns: Decorated function. """ def decorator(f): def decorated(self, *args, **kwargs): original_var = pywrap_tensorflow.TF_GetXlaConstantFoldingDisabled() pywrap_tensorflow.TF_SetXlaConstantFoldingDisabled(False) result = f(self, *args, **kwargs) pywrap_tensorflow.TF_SetXlaConstantFoldingDisabled(original_var) return result return decorated if func is not None: return decorator(func) return decorator return enable_tf_xla_constant_folding_impl # The description is just for documentation purposes. def disable_xla(description): def disable_xla_impl(func): """Execute the test method only if xla is not enabled.""" def decorator(func): def decorated(self, *args, **kwargs): if is_xla_enabled(): return else: return func(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator return disable_xla_impl def for_all_test_methods(decorator, *args, **kwargs): """Generate class-level decorator from given method-level decorator. It is expected for the given decorator to take some arguments and return a method that is then called on the test method to produce a decorated method. Args: decorator: The decorator to apply. *args: Positional arguments **kwargs: Keyword arguments Returns: Function that will decorate a given classes test methods with the decorator. """ def all_test_methods_impl(cls): """Apply decorator to all test methods in class.""" for name in dir(cls): value = getattr(cls, name) if callable(value) and name.startswith( "test") and (name != "test_session"): setattr(cls, name, decorator(*args, **kwargs)(value)) return cls return all_test_methods_impl # The description is just for documentation purposes. def no_xla_auto_jit(description): # pylint: disable=unused-argument def no_xla_auto_jit_impl(func): """This test is not intended to be run with XLA auto jit enabled.""" def decorator(func): def decorated(self, *args, **kwargs): if is_xla_enabled(): # Skip test if using XLA is forced. return else: return func(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator return no_xla_auto_jit_impl # The description is just for documentation purposes. def xla_allow_fallback(description): # pylint: disable=unused-argument def xla_allow_fallback_impl(func): """Allow fallback to TF even though testing xla.""" def decorator(func): def decorated(self, *args, **kwargs): if is_xla_enabled(): # Update the global XLABuildOpsPassFlags to enable lazy compilation, # which allows the compiler to fall back to TF classic. Remember the # old value so that we can reset it. old_value = pywrap_tensorflow.TF_SetXlaEnableLazyCompilation(True) result = func(self, *args, **kwargs) pywrap_tensorflow.TF_SetXlaEnableLazyCompilation(old_value) return result else: return func(self, *args, **kwargs) return decorated if func is not None: return decorator(func) return decorator return xla_allow_fallback_impl class EagerSessionWarner(object): def __getattr__(self, attr): raise AttributeError( "Trying to access properties or call methods on the result of " "self.session(), self.cached_session(), etc while eager execution " "is enabled. If you're porting this test case to TF 2.0, either " "adapt the test to work with eager execution or insert a call to " "tf.disable_eager_execution() in the main() function of this test " "file.") @tf_export("test.TestCase") class TensorFlowTestCase(googletest.TestCase): """Base class for tests that need to test TensorFlow.""" def __init__(self, methodName="runTest"): # pylint: disable=invalid-name super(TensorFlowTestCase, self).__init__(methodName) if is_xla_enabled(): pywrap_tensorflow.TF_SetXlaAutoJitMode("2") pywrap_tensorflow.TF_SetXlaMinClusterSize(1) pywrap_tensorflow.TF_SetXlaEnableLazyCompilation(False) pywrap_tensorflow.TF_SetTfXlaCpuGlobalJit(True) # Constant folding secretly runs code on TF:Classic CPU, so we also # disable it here. pywrap_tensorflow.TF_SetXlaConstantFoldingDisabled(True) ======= # pylint: disable=invalid-name """Test utils for tensorflow.""" import contextlib import math import re import threading import tensorflow.python.platform import numpy as np from google.protobuf import text_format from tensorflow.core.framework import config_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.client import graph_util from tensorflow.python.client import session from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.platform import googletest from tensorflow.python.platform import logging from tensorflow.python.util.protobuf import compare def IsGoogleCudaEnabled(): return pywrap_tensorflow.IsGoogleCudaEnabled() class TensorFlowTestCase(googletest.TestCase): """Root class for tests that need to test tensor flow. """ def __init__(self, methodName="runTest"): super(TensorFlowTestCase, self).__init__(methodName) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self._threads = [] self._tempdir = None self._cached_session = None def setUp(self): self._ClearCachedSession() <<<<<<< HEAD random.seed(random_seed.DEFAULT_GRAPH_SEED) np.random.seed(random_seed.DEFAULT_GRAPH_SEED) # Note: The following line is necessary because some test methods may error # out from within nested graph contexts (e.g., via assertRaises and # assertRaisesRegexp), which may leave ops._default_graph_stack non-empty # under certain versions of Python. That would cause # ops.reset_default_graph() to throw an exception if the stack were not # cleared first. ops._default_graph_stack.reset() # pylint: disable=protected-access ops.reset_default_graph() random_seed.set_random_seed(random_seed.DEFAULT_GRAPH_SEED) # Reset summary writer in case another test used set_as_default() with their # summary writer. summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access summary_state.writer = None # Avoiding calling setUp() for the poorly named test_session method. if self.id().endswith(".test_session"): self.skipTest("Not a test.") def tearDown(self): for thread in self._threads: thread.check_termination() ======= ops.reset_default_graph() def tearDown(self): for thread in self._threads: self.assertFalse(thread.is_alive(), "A checkedThread did not terminate") >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self._ClearCachedSession() def _ClearCachedSession(self): if self._cached_session is not None: self._cached_session.close() self._cached_session = None def get_temp_dir(self): <<<<<<< HEAD """Returns a unique temporary directory for the test to use. If you call this method multiple times during in a test, it will return the same folder. However, across different runs the directories will be different. This will ensure that across different runs tests will not be able to pollute each others environment. If you need multiple unique directories within a single test, you should use tempfile.mkdtemp as follows: tempfile.mkdtemp(dir=self.get_temp_dir()): Returns: string, the path to the unique temporary directory created for this test. """ if not self._tempdir: self._tempdir = tempfile.mkdtemp(dir=googletest.GetTempDir()) return self._tempdir @contextlib.contextmanager def captureWritesToStream(self, stream): """A context manager that captures the writes to a given stream. This context manager captures all writes to a given stream inside of a `CapturedWrites` object. When this context manager is created, it yields the `CapturedWrites` object. The captured contents can be accessed by calling `.contents()` on the `CapturedWrites`. For this function to work, the stream must have a file descriptor that can be modified using `os.dup` and `os.dup2`, and the stream must support a `.flush()` method. The default python sys.stdout and sys.stderr are examples of this. Note that this does not work in Colab or Jupyter notebooks, because those use alternate stdout streams. Example: ```python class MyOperatorTest(test_util.TensorFlowTestCase): def testMyOperator(self): input = [1.0, 2.0, 3.0, 4.0, 5.0] with self.captureWritesToStream(sys.stdout) as captured: result = MyOperator(input).eval() self.assertStartsWith(captured.contents(), "This was printed.") ``` Args: stream: The stream whose writes should be captured. This stream must have a file descriptor, support writing via using that file descriptor, and must have a `.flush()` method. Yields: A `CapturedWrites` object that contains all writes to the specified stream made during this context. """ stream.flush() fd = stream.fileno() tmp_file_path = tempfile.mktemp(dir=self.get_temp_dir()) tmp_file = open(tmp_file_path, "w") orig_fd = os.dup(fd) os.dup2(tmp_file.fileno(), fd) try: yield CapturedWrites(tmp_file_path) finally: tmp_file.close() os.dup2(orig_fd, fd) def _AssertProtoEquals(self, a, b, msg=None): """Asserts that a and b are the same proto. Uses ProtoEq() first, as it returns correct results for floating point attributes, and then use assertProtoEqual() ======= if not self._tempdir: self._tempdir = googletest.GetTempDir() return self._tempdir def _AssertProtoEquals(self, a, b): """Asserts that a and b are the same proto. Uses Proto2Cmp() first, as it returns correct results for floating point attributes, and then use assertProto2Equal() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. in case of failure as it provides good error messages. Args: a: a proto. b: another proto. <<<<<<< HEAD msg: Optional message to report on failure. """ if not compare.ProtoEq(a, b): compare.assertProtoEqual(self, a, b, normalize_numbers=True, msg=msg) def assertProtoEquals(self, expected_message_maybe_ascii, message, msg=None): ======= """ if compare.Proto2Cmp(a, b) != 0: compare.assertProto2Equal(self, a, b, normalize_numbers=True) def assertProtoEquals(self, expected_message_maybe_ascii, message): >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. """Asserts that message is same as parsed expected_message_ascii. Creates another prototype of message, reads the ascii message into it and then compares them using self._AssertProtoEqual(). Args: <<<<<<< HEAD expected_message_maybe_ascii: proto message in original or ascii form. message: the message to validate. msg: Optional message to report on failure. """ msg = msg if msg else "" if isinstance(expected_message_maybe_ascii, type(message)): ======= expected_message_maybe_ascii: proto message in original or ascii form message: the message to validate """ if type(expected_message_maybe_ascii) == type(message): >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. expected_message = expected_message_maybe_ascii self._AssertProtoEquals(expected_message, message) elif isinstance(expected_message_maybe_ascii, str): expected_message = type(message)() <<<<<<< HEAD text_format.Merge( expected_message_maybe_ascii, expected_message, descriptor_pool=descriptor_pool.Default()) self._AssertProtoEquals(expected_message, message, msg=msg) else: assert False, ("Can't compare protos of type %s and %s. %s" % (type(expected_message_maybe_ascii), type(message), msg)) def assertProtoEqualsVersion( self, expected, actual, producer=versions.GRAPH_DEF_VERSION, min_consumer=versions.GRAPH_DEF_VERSION_MIN_CONSUMER, msg=None): expected = "versions { producer: %d min_consumer: %d };\n%s" % ( producer, min_consumer, expected) self.assertProtoEquals(expected, actual, msg=msg) ======= text_format.Merge(expected_message_maybe_ascii, expected_message) self._AssertProtoEquals(expected_message, message) else: assert False, ("Can't compare protos of type " + type(expected_message_maybe_ascii) + " and " + type(message)) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. def assertStartsWith(self, actual, expected_start, msg=None): """Assert that actual.startswith(expected_start) is True. Args: actual: str expected_start: str msg: Optional message to report on failure. """ if not actual.startswith(expected_start): fail_msg = "%r does not start with %r" % (actual, expected_start) fail_msg += " : %r" % (msg) if msg else "" self.fail(fail_msg) <<<<<<< HEAD def _eval_tensor(self, tensor): if tensor is None: return None elif callable(tensor): return self._eval_helper(tensor()) else: try: if sparse_tensor.is_sparse(tensor): return sparse_tensor.SparseTensorValue(tensor.indices.numpy(), tensor.values.numpy(), tensor.dense_shape.numpy()) elif ragged_tensor.is_ragged(tensor): return ragged_tensor_value.RaggedTensorValue( self._eval_tensor(tensor.values), self._eval_tensor(tensor.row_splits)) elif isinstance(tensor, ops.IndexedSlices): return ops.IndexedSlicesValue( values=tensor.values.numpy(), indices=tensor.indices.numpy(), dense_shape=tensor.dense_shape.numpy()) return tensor.numpy() except AttributeError as e: six.raise_from(ValueError("Unsupported type %s." % type(tensor)), e) def _eval_helper(self, tensors): if tensors is None: return None return nest.map_structure(self._eval_tensor, tensors) def evaluate(self, tensors): """Evaluates tensors and returns numpy values. Args: tensors: A Tensor or a nested list/tuple of Tensors. Returns: tensors numpy values. """ if context.executing_eagerly(): return self._eval_helper(tensors) else: sess = ops.get_default_session() if sess is None: with self.test_session() as sess: return sess.run(tensors) else: return sess.run(tensors) # pylint: disable=g-doc-return-or-yield @contextlib.contextmanager def session(self, graph=None, config=None, use_gpu=False, force_gpu=False): """Returns a TensorFlow Session for use in executing tests. Note that this will set this session and the graph as global defaults. Use the `use_gpu` and `force_gpu` options to control where ops are run. If `force_gpu` is True, all ops are pinned to `/device:GPU:0`. Otherwise, if `use_gpu` is True, TensorFlow tries to run as many ops on the GPU as possible. If both `force_gpu and `use_gpu` are False, all ops are pinned to the CPU. Example: ``` python class MyOperatorTest(test_util.TensorFlowTestCase): def testMyOperator(self): with self.session(use_gpu=True): valid_input = [1.0, 2.0, 3.0, 4.0, 5.0] result = MyOperator(valid_input).eval() self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0] invalid_input = [-1.0, 2.0, 7.0] with self.assertRaisesOpError("negative input not supported"): MyOperator(invalid_input).eval() ``` Args: graph: Optional graph to use during the returned session. config: An optional config_pb2.ConfigProto to use to configure the session. use_gpu: If True, attempt to run as many ops as possible on GPU. force_gpu: If True, pin all ops to `/device:GPU:0`. Yields: A Session object that should be used as a context manager to surround the graph building and execution code in a test case. """ if context.executing_eagerly(): yield EagerSessionWarner() else: with self._create_session(graph, config, force_gpu) as sess: with self._constrain_devices_and_set_default(sess, use_gpu, force_gpu): yield sess @contextlib.contextmanager def cached_session(self, graph=None, config=None, use_gpu=False, force_gpu=False): """Returns a TensorFlow Session for use in executing tests. This method behaves differently than self.session(): for performance reasons `cached_session` will by default reuse the same session within the same test. The session returned by this function will only be closed at the end of the test (in the TearDown function). Use the `use_gpu` and `force_gpu` options to control where ops are run. If `force_gpu` is True, all ops are pinned to `/device:GPU:0`. Otherwise, if `use_gpu` is True, TensorFlow tries to run as many ops on the GPU as possible. If both `force_gpu and `use_gpu` are False, all ops are pinned to the CPU. Example: ```python class MyOperatorTest(test_util.TensorFlowTestCase): def testMyOperator(self): with self.cached_session(use_gpu=True) as sess: valid_input = [1.0, 2.0, 3.0, 4.0, 5.0] result = MyOperator(valid_input).eval() self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0] invalid_input = [-1.0, 2.0, 7.0] with self.assertRaisesOpError("negative input not supported"): MyOperator(invalid_input).eval() ``` ======= # pylint: disable=g-doc-return-or-yield @contextlib.contextmanager def test_session(self, graph=None, config=None, use_gpu=False, force_gpu=False): """Returns a TensorFlow Session for use in executing tests. This method should be used for all functional tests. Use the `use_gpu` and `force_gpu` options to control where ops are run. If `force_gpu` is True, all ops are pinned to `/gpu:0`. Otherwise, if `use_gpu` is True, TensorFlow tries to run as many ops on the GPU as possible. If both `force_gpu and `use_gpu` are False, all ops are pinned to the CPU. Example: class MyOperatorTest(test_util.TensorFlowTestCase): def testMyOperator(self): with self.test_session(use_gpu=True): valid_input = [1.0, 2.0, 3.0, 4.0, 5.0] result = MyOperator(valid_input).eval() self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0] invalid_input = [-1.0, 2.0, 7.0] with self.assertRaisesOpError("negative input not supported"): MyOperator(invalid_input).eval() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. Args: graph: Optional graph to use during the returned session. config: An optional config_pb2.ConfigProto to use to configure the session. use_gpu: If True, attempt to run as many ops as possible on GPU. <<<<<<< HEAD force_gpu: If True, pin all ops to `/device:GPU:0`. Yields: A Session object that should be used as a context manager to surround the graph building and execution code in a test case. """ if context.executing_eagerly(): yield FakeEagerSession(self) else: sess = self._get_cached_session( graph, config, force_gpu, crash_if_inconsistent_args=True) with self._constrain_devices_and_set_default(sess, use_gpu, force_gpu) as cached: yield cached @contextlib.contextmanager @deprecation.deprecated(None, "Use `self.session()` or " "`self.cached_session()` instead.") def test_session(self, graph=None, config=None, use_gpu=False, force_gpu=False): """Use cached_session instead.""" if self.id().endswith(".test_session"): self.skipTest( "Tests that have the name \"test_session\" are automatically skipped " "by TensorFlow test fixture, as the name is reserved for creating " "sessions within tests. Please rename your test if you have a test " "with this name.") if context.executing_eagerly(): yield None else: if graph is None: sess = self._get_cached_session( graph, config, force_gpu, crash_if_inconsistent_args=False) with self._constrain_devices_and_set_default(sess, use_gpu, force_gpu) as cached: yield cached else: with self.session(graph, config, use_gpu, force_gpu) as sess: yield sess ======= force_gpu: If True, pin all ops to `/gpu:0`. Returns: A Session object that should be used as a context manager to surround the graph building and execution code in a test case. """ def prepare_config(config): if config is None: config = config_pb2.ConfigProto() config.allow_soft_placement = not force_gpu config.gpu_options.per_process_gpu_memory_fraction = 0.3 elif force_gpu and config.allow_soft_placement: config = config_pb2.ConfigProto().CopyFrom(config) config.allow_soft_placement = False return config if graph is None: if self._cached_session is None: self._cached_session = session.Session(graph=None, config=prepare_config(config)) sess = self._cached_session with sess.graph.as_default(), sess.as_default(): if force_gpu: with sess.graph.device("/gpu:0"): yield sess elif use_gpu: yield sess else: with sess.graph.device(graph_util.pin_to_cpu): yield sess else: with session.Session(graph=graph, config=prepare_config(config)) as sess: if force_gpu: with sess.graph.device("/gpu:0"): yield sess elif use_gpu: yield sess else: with sess.graph.device(graph_util.pin_to_cpu): yield sess >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. # pylint: enable=g-doc-return-or-yield class _CheckedThread(object): """A wrapper class for Thread that asserts successful completion. This class should be created using the TensorFlowTestCase.checkedThread() method. """ def __init__(self, testcase, target, args=None, kwargs=None): """Constructs a new instance of _CheckedThread. Args: testcase: The TensorFlowTestCase for which this thread is being created. target: A callable object representing the code to be executed in the thread. args: A tuple of positional arguments that will be passed to target. kwargs: A dictionary of keyword arguments that will be passed to target. """ self._testcase = testcase self._target = target self._args = () if args is None else args self._kwargs = {} if kwargs is None else kwargs self._thread = threading.Thread(target=self._protected_run) self._exception = None <<<<<<< HEAD self._is_thread_joined = False ======= >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. def _protected_run(self): """Target for the wrapper thread. Sets self._exception on failure.""" try: self._target(*self._args, **self._kwargs) <<<<<<< HEAD except Exception as e: # pylint: disable=broad-except ======= # pylint: disable=broad-except except Exception as e: # pylint: enable=broad-except >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. self._exception = e def start(self): """Starts the thread's activity. This must be called at most once per _CheckedThread object. It arranges for the object's target to be invoked in a separate thread of control. """ self._thread.start() def join(self): """Blocks until the thread terminates. Raises: self._testcase.failureException: If the thread terminates with due to an exception. """ <<<<<<< HEAD self._is_thread_joined = True self._thread.join() if self._exception is not None: self._testcase.fail("Error in checkedThread: %s" % str(self._exception)) ======= self._thread.join() if self._exception is not None: self._testcase.fail( "Error in checkedThread: %s" % str(self._exception)) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. def is_alive(self): """Returns whether the thread is alive. This method returns True just before the run() method starts until just after the run() method terminates. Returns: True if the thread is alive, otherwise False. """ return self._thread.is_alive() <<<<<<< HEAD def check_termination(self): """Returns whether the checked thread was properly used and did terminate. Every checked thread should be "join"ed after starting, and before the test tears down. If it is not joined, it is possible the thread will hang and cause flaky failures in tests. Raises: self._testcase.failureException: If check_termination was called before thread was joined. RuntimeError: If the thread is not terminated. This means thread was not joined with the main thread. """ if self._is_thread_joined: if self.is_alive(): raise RuntimeError( "Thread was not joined with main thread, and is still running " "when the test finished.") else: self._testcase.fail("A checked thread was not joined.") ======= >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. def checkedThread(self, target, args=None, kwargs=None): """Returns a Thread wrapper that asserts 'target' completes successfully. This method should be used to create all threads in test cases, as otherwise there is a risk that a thread will silently fail, and/or assertions made in the thread will not be respected. Args: target: A callable object to be executed in the thread. args: The argument tuple for the target invocation. Defaults to (). kwargs: A dictionary of keyword arguments for the target invocation. Defaults to {}. Returns: A wrapper for threading.Thread that supports start() and join() methods. """ ret = TensorFlowTestCase._CheckedThread(self, target, args, kwargs) self._threads.append(ret) return ret <<<<<<< HEAD # pylint: enable=invalid-name @py_func_if_in_function def assertNear(self, f1, f2, err, msg=None): ======= # pylint: enable=invalid-name def assertNear(self, f1, f2, err): >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. """Asserts that two floats are near each other. Checks that |f1 - f2| < err and asserts a test failure if not. Args: <<<<<<< HEAD f1: A float value. f2: A float value. err: A float value. msg: An optional string message to append to the failure message. """ # f1 == f2 is needed here as we might have: f1, f2 = inf, inf self.assertTrue( f1 == f2 or math.fabs(f1 - f2) <= err, "%f != %f +/- %f%s" % (f1, f2, err, " (%s)" % msg if msg is not None else "")) @py_func_if_in_function def assertArrayNear(self, farray1, farray2, err, msg=None): ======= f1: a float value. f2: a float value. err: a float value. """ self.assertTrue(math.fabs(f1 - f2) < err) def assertArrayNear(self, farray1, farray2, err): >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. """Asserts that two float arrays are near each other. Checks that for all elements of farray1 and farray2 |f1 - f2| < err. Asserts a test failure if not. Args: farray1: a list of float values. farray2: a list of float values. err: a float value. <<<<<<< HEAD msg: Optional message to report on failure. """ self.assertEqual(len(farray1), len(farray2), msg=msg) for f1, f2 in zip(farray1, farray2): self.assertNear(float(f1), float(f2), err, msg=msg) ======= """ for f1, f2 in zip(farray1, farray2): self.assertNear(f1, f2, err) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. def _NDArrayNear(self, ndarray1, ndarray2, err): return np.linalg.norm(ndarray1 - ndarray2) < err <<<<<<< HEAD @py_func_if_in_function def assertNDArrayNear(self, ndarray1, ndarray2, err, msg=None): ======= def assertNDArrayNear(self, ndarray1, ndarray2, err): >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. """Asserts that two numpy arrays have near values. Args: ndarray1: a numpy ndarray. ndarray2: a numpy ndarray. err: a float. The maximum absolute difference allowed. <<<<<<< HEAD msg: Optional message to report on failure. """ self.assertTrue(self._NDArrayNear(ndarray1, ndarray2, err), msg=msg) def _GetNdArray(self, a): # If a is tensor-like then convert it to ndarray if tensor_util.is_tensor(a): if isinstance(a, ops._EagerTensorBase): a = a.numpy() else: a = self.evaluate(a) if not isinstance(a, np.ndarray): return np.array(a) return a def _assertArrayLikeAllClose(self, a, b, rtol=1e-6, atol=1e-6, msg=None): a = self._GetNdArray(a) b = self._GetNdArray(b) # When the array rank is small, print its contents. Numpy array printing is # implemented using inefficient recursion so prints can cause tests to # time out. if a.shape != b.shape and (b.ndim <= 3 or b.size < 500): shape_mismatch_msg = ("Shape mismatch: expected %s, got %s with contents " "%s.") % (a.shape, b.shape, b) else: shape_mismatch_msg = "Shape mismatch: expected %s, got %s." % (a.shape, b.shape) self.assertEqual(a.shape, b.shape, shape_mismatch_msg) msgs = [msg] if not np.allclose(a, b, rtol=rtol, atol=atol): # Adds more details to np.testing.assert_allclose. ======= """ self.assertTrue(self._NDArrayNear(ndarray1, ndarray2, err)) def _GetNdArray(self, a): if not isinstance(a, np.ndarray): a = np.array(a) return a def assertAllClose(self, a, b, rtol=1e-6, atol=1e-6): """Asserts that two numpy arrays have near values. Args: a: a numpy ndarray or anything can be converted to one. b: a numpy ndarray or anything can be converted to one. rtol: relative tolerance atol: absolute tolerance """ a = self._GetNdArray(a) b = self._GetNdArray(b) self.assertEqual( a.shape, b.shape, "Shape mismatch: expected %s, got %s." % (a.shape, b.shape)) if not np.allclose(a, b, rtol=rtol, atol=atol): # Prints more details than np.testing.assert_allclose. >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. # # NOTE: numpy.allclose (and numpy.testing.assert_allclose) # checks whether two arrays are element-wise equal within a # tolerance. The relative difference (rtol * abs(b)) and the # absolute difference atol are added together to compare against # the absolute difference between a and b. Here, we want to <<<<<<< HEAD # tell user which elements violate such conditions. cond = np.logical_or( np.abs(a - b) > atol + rtol * np.abs(b), np.isnan(a) != np.isnan(b)) if a.ndim: x = a[np.where(cond)] y = b[np.where(cond)] msgs.append("not close where = {}".format(np.where(cond))) else: # np.where is broken for scalars x, y = a, b msgs.append("not close lhs = {}".format(x)) msgs.append("not close rhs = {}".format(y)) msgs.append("not close dif = {}".format(np.abs(x - y))) msgs.append("not close tol = {}".format(atol + rtol * np.abs(y))) msgs.append("dtype = {}, shape = {}".format(a.dtype, a.shape)) # TODO(xpan): There seems to be a bug: # tensorflow/compiler/tests:binary_ops_test pass with float32 # nan even though the equal_nan is False by default internally. np.testing.assert_allclose( a, b, rtol=rtol, atol=atol, err_msg="\n".join(msgs), equal_nan=True) def _assertAllCloseRecursive(self, a, b, rtol=1e-6, atol=1e-6, path=None, msg=None): path = path or [] path_str = (("[" + "][".join(str(p) for p in path) + "]") if path else "") msg = msg if msg else "" # Check if a and/or b are namedtuples. if hasattr(a, "_asdict"): a = a._asdict() if hasattr(b, "_asdict"): b = b._asdict() a_is_dict = isinstance(a, collections_abc.Mapping) if a_is_dict != isinstance(b, collections_abc.Mapping): raise ValueError("Can't compare dict to non-dict, a%s vs b%s. %s" % (path_str, path_str, msg)) if a_is_dict: self.assertItemsEqual( a.keys(), b.keys(), msg="mismatched keys: a%s has keys %s, but b%s has keys %s. %s" % (path_str, a.keys(), path_str, b.keys(), msg)) for k in a: path.append(k) self._assertAllCloseRecursive( a[k], b[k], rtol=rtol, atol=atol, path=path, msg=msg) del path[-1] elif isinstance(a, (list, tuple)): # Try to directly compare a, b as ndarrays; if not work, then traverse # through the sequence, which is more expensive. try: a_as_ndarray = self._GetNdArray(a) b_as_ndarray = self._GetNdArray(b) self._assertArrayLikeAllClose( a_as_ndarray, b_as_ndarray, rtol=rtol, atol=atol, msg="Mismatched value: a%s is different from b%s. %s" % (path_str, path_str, msg)) except (ValueError, TypeError) as e: if len(a) != len(b): raise ValueError( "Mismatched length: a%s has %d items, but b%s has %d items. %s" % (path_str, len(a), path_str, len(b), msg)) for idx, (a_ele, b_ele) in enumerate(zip(a, b)): path.append(str(idx)) self._assertAllCloseRecursive( a_ele, b_ele, rtol=rtol, atol=atol, path=path, msg=msg) del path[-1] # a and b are ndarray like objects else: try: self._assertArrayLikeAllClose( a, b, rtol=rtol, atol=atol, msg=("Mismatched value: a%s is different from b%s. %s" % (path_str, path_str, msg))) except TypeError as e: msg = ("Error: a%s has %s, but b%s has %s. %s" % (path_str, type(a), path_str, type(b), msg)) e.args = ((e.args[0] + " : " + msg,) + e.args[1:]) raise @py_func_if_in_function def assertAllClose(self, a, b, rtol=1e-6, atol=1e-6, msg=None): """Asserts that two structures of numpy arrays or Tensors, have near values. `a` and `b` can be arbitrarily nested structures. A layer of a nested structure can be a `dict`, `namedtuple`, `tuple` or `list`. Args: a: The expected numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor), or any arbitrarily nested of structure of these. b: The actual numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor), or any arbitrarily nested of structure of these. rtol: relative tolerance. atol: absolute tolerance. msg: Optional message to report on failure. Raises: ValueError: if only one of `a[p]` and `b[p]` is a dict or `a[p]` and `b[p]` have different length, where `[p]` denotes a path to the nested structure, e.g. given `a = [(1, 1), {'d': (6, 7)}]` and `[p] = [1]['d']`, then `a[p] = (6, 7)`. """ if ragged_tensor.is_ragged(a) or ragged_tensor.is_ragged(b): return self._assertRaggedClose(a, b, rtol, atol, msg) self._assertAllCloseRecursive(a, b, rtol=rtol, atol=atol, msg=msg) @py_func_if_in_function def assertAllCloseAccordingToType(self, a, b, rtol=1e-6, atol=1e-6, float_rtol=1e-6, float_atol=1e-6, half_rtol=1e-3, half_atol=1e-3, bfloat16_rtol=1e-2, bfloat16_atol=1e-2, msg=None): """Like assertAllClose, but also suitable for comparing fp16 arrays. In particular, the tolerance is reduced to 1e-3 if at least one of the arguments is of type float16. Args: a: the expected numpy ndarray or anything can be converted to one. b: the actual numpy ndarray or anything can be converted to one. rtol: relative tolerance. atol: absolute tolerance. float_rtol: relative tolerance for float32. float_atol: absolute tolerance for float32. half_rtol: relative tolerance for float16. half_atol: absolute tolerance for float16. bfloat16_rtol: relative tolerance for bfloat16. bfloat16_atol: absolute tolerance for bfloat16. msg: Optional message to report on failure. """ a = self._GetNdArray(a) b = self._GetNdArray(b) # types with lower tol are put later to overwrite previous ones. if (a.dtype == np.float32 or b.dtype == np.float32 or a.dtype == np.complex64 or b.dtype == np.complex64): rtol = max(rtol, float_rtol) atol = max(atol, float_atol) if a.dtype == np.float16 or b.dtype == np.float16: rtol = max(rtol, half_rtol) atol = max(atol, half_atol) if (a.dtype == dtypes.bfloat16.as_numpy_dtype or b.dtype == dtypes.bfloat16.as_numpy_dtype): rtol = max(rtol, bfloat16_rtol) atol = max(atol, bfloat16_atol) self.assertAllClose(a, b, rtol=rtol, atol=atol, msg=msg) @py_func_if_in_function def assertNotAllClose(self, a, b, **kwargs): """Assert that two numpy arrays, or Tensors, do not have near values. Args: a: the first value to compare. b: the second value to compare. **kwargs: additional keyword arguments to be passed to the underlying `assertAllClose` call. Raises: AssertionError: If `a` and `b` are unexpectedly close at all elements. """ try: self.assertAllClose(a, b, **kwargs) except AssertionError: return raise AssertionError("The two values are close at all elements") @py_func_if_in_function def assertAllEqual(self, a, b, msg=None): """Asserts that two numpy arrays or Tensors have the same values. Args: a: the expected numpy ndarray or anything can be converted to one. b: the actual numpy ndarray or anything can be converted to one. msg: Optional message to report on failure. """ if (ragged_tensor.is_ragged(a) or ragged_tensor.is_ragged(b)): return self._assertRaggedEqual(a, b, msg) msg = msg if msg else "" a = self._GetNdArray(a) b = self._GetNdArray(b) # Arbitrary bounds so that we don't print giant tensors. if (b.ndim <= 3 or b.size < 500): self.assertEqual( a.shape, b.shape, "Shape mismatch: expected %s, got %s." " Contents: %s. \n%s." % (a.shape, b.shape, b, msg)) else: self.assertEqual( a.shape, b.shape, "Shape mismatch: expected %s, got %s." " %s" % (a.shape, b.shape, msg)) same = (a == b) if (a.dtype in [ np.float16, np.float32, np.float64, dtypes.bfloat16.as_numpy_dtype ]): same = np.logical_or(same, np.logical_and(np.isnan(a), np.isnan(b))) msgs = [msg] if not np.all(same): # Adds more details to np.testing.assert_array_equal. ======= # print out which elements violate such conditions. cond = np.abs(a - b) > atol + rtol * np.abs(b) if a.ndim: x = a[np.where(cond)] y = b[np.where(cond)] print "not close where = ", np.where(cond) else: # np.where is broken for scalars x, y = a, b print "not close lhs = ", x print "not close rhs = ", y print "not close dif = ", np.abs(x - y) print "not close tol = ", atol + rtol * np.abs(y) np.testing.assert_allclose(a, b, rtol=rtol, atol=atol) def assertAllEqual(self, a, b): """Asserts that two numpy arrays have the same values. Args: a: a numpy ndarray or anything can be converted to one. b: a numpy ndarray or anything can be converted to one. """ a = self._GetNdArray(a) b = self._GetNdArray(b) self.assertEqual( a.shape, b.shape, "Shape mismatch: expected %s, got %s." % (a.shape, b.shape)) same = (a == b) if a.dtype == np.float32 or a.dtype == np.float64: same = np.logical_or(same, np.logical_and(np.isnan(a), np.isnan(b))) if not np.all(same): # Prints more details than np.testing.assert_array_equal. >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. diff = np.logical_not(same) if a.ndim: x = a[np.where(diff)] y = b[np.where(diff)] <<<<<<< HEAD msgs.append("not equal where = {}".format(np.where(diff))) else: # np.where is broken for scalars x, y = a, b msgs.append("not equal lhs = {}".format(x)) msgs.append("not equal rhs = {}".format(y)) # With Python 3, we need to make sure the dtype matches between a and b. b = b.astype(a.dtype) np.testing.assert_array_equal(a, b, err_msg="\n".join(msgs)) @py_func_if_in_function def assertNotAllEqual(self, a, b, msg=None): """Asserts that two numpy arrays or Tensors do not have the same values. Args: a: the expected numpy ndarray or anything can be converted to one. b: the actual numpy ndarray or anything can be converted to one. msg: Optional message to report on failure. """ try: self.assertAllEqual(a, b, msg) except AssertionError: return raise AssertionError("The two values are equal at all elements") @py_func_if_in_function def assertAllGreater(self, a, comparison_target): """Assert element values are all greater than a target value. Args: a: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). comparison_target: The target value of comparison. """ a = self._GetNdArray(a) self.assertGreater(np.min(a), comparison_target) @py_func_if_in_function def assertAllLess(self, a, comparison_target): """Assert element values are all less than a target value. Args: a: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). comparison_target: The target value of comparison. """ a = self._GetNdArray(a) self.assertLess(np.max(a), comparison_target) @py_func_if_in_function def assertAllGreaterEqual(self, a, comparison_target): """Assert element values are all greater than or equal to a target value. Args: a: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). comparison_target: The target value of comparison. """ a = self._GetNdArray(a) self.assertGreaterEqual(np.min(a), comparison_target) @py_func_if_in_function def assertAllLessEqual(self, a, comparison_target): """Assert element values are all less than or equal to a target value. Args: a: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). comparison_target: The target value of comparison. """ a = self._GetNdArray(a) self.assertLessEqual(np.max(a), comparison_target) def _format_subscripts(self, subscripts, value, limit=10, indent=2): """Generate a summary of ndarray subscripts as a list of str. If limit == N, this method will print up to the first N subscripts on separate lines. A line of ellipses (...) will be appended at the end if the number of subscripts exceeds N. Args: subscripts: The tensor (np.ndarray) subscripts, of the same format as np.where()'s return value, i.e., a tuple of arrays with each array corresponding to a dimension. E.g., (array([1, 1]), array([0, 1])). value: (np.ndarray) value of the tensor. limit: (int) The maximum number of indices to print. indent: (int) Number of characters to indent at the beginning of each line. Returns: (list of str) the multi-line representation of the subscripts and values, potentially with omission at the end. """ lines = [] subscripts = np.transpose(subscripts) prefix = " " * indent for subscript in itertools.islice(subscripts, limit): lines.append(prefix + str(subscript) + " : " + str(value[tuple(subscript)])) if len(subscripts) > limit: lines.append(prefix + "...") return lines @py_func_if_in_function def assertAllInRange(self, target, lower_bound, upper_bound, open_lower_bound=False, open_upper_bound=False): """Assert that elements in a Tensor are all in a given range. Args: target: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). lower_bound: lower bound of the range upper_bound: upper bound of the range open_lower_bound: (`bool`) whether the lower bound is open (i.e., > rather than the default >=) open_upper_bound: (`bool`) whether the upper bound is open (i.e., < rather than the default <=) Raises: AssertionError: if the value tensor does not have an ordered numeric type (float* or int*), or if there are nan values, or if any of the elements do not fall in the specified range. """ target = self._GetNdArray(target) if not (np.issubdtype(target.dtype, np.floating) or np.issubdtype(target.dtype, np.integer)): raise AssertionError( "The value of %s does not have an ordered numeric type, instead it " "has type: %s" % (target, target.dtype)) nan_subscripts = np.where(np.isnan(target)) if np.size(nan_subscripts): raise AssertionError( "%d of the %d element(s) are NaN. " "Subscripts(s) and value(s) of the NaN element(s):\n" % (len(nan_subscripts[0]), np.size(target)) + "\n".join(self._format_subscripts(nan_subscripts, target))) range_str = (("(" if open_lower_bound else "[") + str(lower_bound) + ", " + str(upper_bound) + (")" if open_upper_bound else "]")) violations = ( np.less_equal(target, lower_bound) if open_lower_bound else np.less( target, lower_bound)) violations = np.logical_or( violations, np.greater_equal(target, upper_bound) if open_upper_bound else np.greater(target, upper_bound)) violation_subscripts = np.where(violations) if np.size(violation_subscripts): raise AssertionError( "%d of the %d element(s) are outside the range %s. " % (len(violation_subscripts[0]), np.size(target), range_str) + "Subscript(s) and value(s) of the offending elements:\n" + "\n".join(self._format_subscripts(violation_subscripts, target))) @py_func_if_in_function def assertAllInSet(self, target, expected_set): """Assert that elements of a Tensor are all in a given closed set. Args: target: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). expected_set: (`list`, `tuple` or `set`) The closed set that the elements of the value of `target` are expected to fall into. Raises: AssertionError: if any of the elements do not fall into `expected_set`. """ target = self._GetNdArray(target) # Elements in target that are not in expected_set. diff = np.setdiff1d(target.flatten(), list(expected_set)) if np.size(diff): raise AssertionError("%d unique element(s) are not in the set %s: %s" % (np.size(diff), expected_set, diff)) @py_func_if_in_function def assertDTypeEqual(self, target, expected_dtype): """Assert ndarray data type is equal to expected. Args: target: The numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor). expected_dtype: Expected data type. """ target = self._GetNdArray(target) if not isinstance(target, list): arrays = [target] for arr in arrays: self.assertEqual(arr.dtype, expected_dtype) ======= print "not equal where = ", np.where(diff) else: # np.where is broken for scalars x, y = a, b print "not equal lhs = ", x print "not equal rhs = ", y np.testing.assert_array_equal(a, b) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. # pylint: disable=g-doc-return-or-yield @contextlib.contextmanager def assertRaisesWithPredicateMatch(self, exception_type, expected_err_re_or_predicate): """Returns a context manager to enclose code expected to raise an exception. <<<<<<< HEAD If the exception is an OpError, the op stack is also included in the message predicate search. Args: exception_type: The expected type of exception that should be raised. expected_err_re_or_predicate: If this is callable, it should be a function of one argument that inspects the passed-in exception and returns True (success) or False (please fail the test). Otherwise, the error message is expected to match this regular expression partially. Returns: A context manager to surround code that is expected to raise an exception. ======= Args: exception_type: The expected type of exception that should be raised. expected_err_re_or_predicate: If this is callable, it should be a function of one argument that inspects the passed-in OpError exception and returns True (success) or False (please fail the test). Otherwise, the error message is expected to match this regular expression partially. Returns: A context manager to surround code that is expected to raise an errors.OpError exception. >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. """ if callable(expected_err_re_or_predicate): predicate = expected_err_re_or_predicate else: <<<<<<< HEAD def predicate(e): err_str = e.message if isinstance(e, errors.OpError) else str(e) op = e.op if isinstance(e, errors.OpError) else None while op is not None: err_str += "\nCaused by: " + op.name op = op._original_op # pylint: disable=protected-access logging.info("Searching within error strings: '%s' within '%s'", expected_err_re_or_predicate, err_str) return re.search(expected_err_re_or_predicate, err_str) try: yield self.fail(exception_type.__name__ + " not raised") except Exception as e: # pylint: disable=broad-except if not isinstance(e, exception_type) or not predicate(e): raise AssertionError("Exception of type %s: %s" % (str(type(e)), str(e))) ======= def predicate(e): err_str = e.message op = e.op while op is not None: err_str += "\nCaused by: " + op.name op = op._original_op logging.info("Searching within error strings: '%s' within '%s'", expected_err_re_or_predicate, err_str) return re.search(expected_err_re_or_predicate, err_str) try: yield self.fail(exception_type.__name__ + " not raised") # pylint: disable=broad-except except Exception as e: # pylint: enable=broad-except if not isinstance(e, exception_type) or not predicate(e): raise AssertionError(e) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. # pylint: enable=g-doc-return-or-yield def assertRaisesOpError(self, expected_err_re_or_predicate): return self.assertRaisesWithPredicateMatch(errors.OpError, expected_err_re_or_predicate) <<<<<<< HEAD def assertShapeEqual(self, np_array, tf_tensor, msg=None): ======= def assertShapeEqual(self, np_array, tf_tensor): >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. """Asserts that a Numpy ndarray and a TensorFlow tensor have the same shape. Args: np_array: A Numpy ndarray or Numpy scalar. tf_tensor: A Tensor. <<<<<<< HEAD msg: Optional message to report on failure. ======= >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. Raises: TypeError: If the arguments have the wrong type. """ if not isinstance(np_array, (np.ndarray, np.generic)): raise TypeError("np_array must be a Numpy ndarray or Numpy scalar") if not isinstance(tf_tensor, ops.Tensor): raise TypeError("tf_tensor must be a Tensor") <<<<<<< HEAD self.assertAllEqual( np_array.shape, tf_tensor.get_shape().as_list(), msg=msg) def assertDeviceEqual(self, device1, device2, msg=None): """Asserts that the two given devices are the same. Args: device1: A string device name or TensorFlow `DeviceSpec` object. device2: A string device name or TensorFlow `DeviceSpec` object. msg: Optional message to report on failure. """ device1 = pydev.canonical_name(device1) device2 = pydev.canonical_name(device2) self.assertEqual( device1, device2, "Devices %s and %s are not equal. %s" % (device1, device2, msg)) def _GetPyList(self, a): """Converts `a` to a nested python list.""" if isinstance(a, ragged_tensor.RaggedTensor): return self.evaluate(a).to_list() elif isinstance(a, ops.Tensor): a = self.evaluate(a) return a.tolist() if isinstance(a, np.ndarray) else a elif isinstance(a, np.ndarray): return a.tolist() elif isinstance(a, ragged_tensor_value.RaggedTensorValue): return a.to_list() else: return np.array(a).tolist() def _assertRaggedEqual(self, a, b, msg): """Asserts that two ragged tensors are equal.""" a_list = self._GetPyList(a) b_list = self._GetPyList(b) self.assertEqual(a_list, b_list, msg) if not (isinstance(a, (list, tuple)) or isinstance(b, (list, tuple))): a_ragged_rank = a.ragged_rank if ragged_tensor.is_ragged(a) else 0 b_ragged_rank = b.ragged_rank if ragged_tensor.is_ragged(b) else 0 self.assertEqual(a_ragged_rank, b_ragged_rank, msg) def _assertRaggedClose(self, a, b, rtol, atol, msg=None): a_list = self._GetPyList(a) b_list = self._GetPyList(b) self._assertListCloseRecursive(a_list, b_list, rtol, atol, msg) if not (isinstance(a, (list, tuple)) or isinstance(b, (list, tuple))): a_ragged_rank = a.ragged_rank if ragged_tensor.is_ragged(a) else 0 b_ragged_rank = b.ragged_rank if ragged_tensor.is_ragged(b) else 0 self.assertEqual(a_ragged_rank, b_ragged_rank, msg) def _assertListCloseRecursive(self, a, b, rtol, atol, msg, path="value"): self.assertEqual(type(a), type(b)) if isinstance(a, (list, tuple)): self.assertLen(a, len(b), "Length differs for %s" % path) for i in range(len(a)): self._assertListCloseRecursive(a[i], b[i], rtol, atol, msg, "%s[%s]" % (path, i)) else: self._assertAllCloseRecursive(a, b, rtol, atol, path, msg) # Fix Python 3 compatibility issues if six.PY3: # pylint: disable=invalid-name # Silence a deprecation warning assertRaisesRegexp = googletest.TestCase.assertRaisesRegex # assertItemsEqual is assertCountEqual as of 3.2. assertItemsEqual = googletest.TestCase.assertCountEqual # pylint: enable=invalid-name @contextlib.contextmanager def _constrain_devices_and_set_default(self, sess, use_gpu, force_gpu): """Set the session and its graph to global default and constrain devices.""" if context.executing_eagerly(): yield None else: with sess.graph.as_default(), sess.as_default(): if force_gpu: # Use the name of an actual device if one is detected, or # '/device:GPU:0' otherwise gpu_name = gpu_device_name() if not gpu_name: gpu_name = "/device:GPU:0" with sess.graph.device(gpu_name): yield sess elif use_gpu: yield sess else: with sess.graph.device("/device:CPU:0"): yield sess def _create_session(self, graph, config, force_gpu): """See session() for details.""" def prepare_config(config): """Returns a config for sessions. Args: config: An optional config_pb2.ConfigProto to use to configure the session. Returns: A config_pb2.ConfigProto object. """ # TODO(b/114333779): Enforce allow_soft_placement=False when # use_gpu=False. Currently many tests rely on the fact that any device # will be used even when a specific device is supposed to be used. allow_soft_placement = not force_gpu if config is None: config = context.context().config config.allow_soft_placement = allow_soft_placement elif not allow_soft_placement and config.allow_soft_placement: config_copy = context.context().config config = config_copy config.allow_soft_placement = False # Don't perform optimizations for tests so we don't inadvertently run # gpu ops on cpu config.graph_options.optimizer_options.opt_level = -1 # Disable Grappler constant folding since some tests & benchmarks # use constant input and become meaningless after constant folding. # DO NOT DISABLE GRAPPLER OPTIMIZERS WITHOUT CONSULTING WITH THE # GRAPPLER TEAM. config.graph_options.rewrite_options.constant_folding = ( rewriter_config_pb2.RewriterConfig.OFF) config.graph_options.rewrite_options.pin_to_host_optimization = ( rewriter_config_pb2.RewriterConfig.OFF) return config return ErrorLoggingSession(graph=graph, config=prepare_config(config)) def _get_cached_session(self, graph=None, config=None, force_gpu=False, crash_if_inconsistent_args=True): """See cached_session() for documentation.""" if self._cached_session is None: sess = self._create_session( graph=graph, config=config, force_gpu=force_gpu) self._cached_session = sess self._cached_graph = graph self._cached_config = config self._cached_force_gpu = force_gpu return sess else: if crash_if_inconsistent_args and self._cached_graph is not graph: raise ValueError("The graph used to get the cached session is " "different than the one that was used to create the " "session. Maybe create a new session with " "self.session()") if crash_if_inconsistent_args and self._cached_config is not config: raise ValueError("The config used to get the cached session is " "different than the one that was used to create the " "session. Maybe create a new session with " "self.session()") if crash_if_inconsistent_args and (self._cached_force_gpu is not force_gpu): raise ValueError( "The force_gpu value used to get the cached session is " "different than the one that was used to create the " "session. Maybe create a new session with " "self.session()") return self._cached_session @tf_export("test.create_local_cluster") def create_local_cluster(num_workers, num_ps, protocol="grpc", worker_config=None, ps_config=None): """Create and start local servers and return the associated `Server` objects. "PS" stands for "parameter server": a task responsible for storing and updating the model's parameters. Other tasks send updates to these parameters as they work on optimizing the parameters. This particular division of labor between tasks is not required, but is common for distributed training. Read more at https://www.tensorflow.org/guide/extend/architecture ![components](https://www.tensorflow.org/images/diag1.svg "components") Figure illustrates the interaction of these components. "/job:worker/task:0" and "/job:ps/task:0" are both tasks with worker services. Example: ```python workers, _ = tf.test.create_local_cluster(num_workers=2, num_ps=2) worker_sessions = [tf.compat.v1.Session(w.target) for w in workers] with tf.device("/job:ps/task:0"): ... with tf.device("/job:ps/task:1"): ... with tf.device("/job:worker/task:0"): ... with tf.device("/job:worker/task:1"): ... worker_sessions[0].run(...) ``` Args: num_workers: Number of worker servers to start. num_ps: Number of PS servers to start. protocol: Communication protocol. Allowed values are documented in the documentation of `tf.distribute.Server`. worker_config: (optional) `tf.ConfigProto` to initialize workers. Can be used to instantiate multiple devices etc. ps_config: (optional) `tf.ConfigProto` to initialize PS servers. Returns: A tuple `(worker_servers, ps_servers)`. `worker_servers` is a list of `num_workers` objects of type `tf.distribute.Server` (all running locally); and `ps_servers` is a list of `num_ps` objects of similar type. Raises: ImportError: if portpicker module was not found at load time """ import portpicker # pylint: disable=g-import-not-at-top worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] cluster_dict = { "worker": ["localhost:%s" % port for port in worker_ports], "ps": ["localhost:%s" % port for port in ps_ports] } cs = server_lib.ClusterSpec(cluster_dict) workers = [ server_lib.Server( cs, job_name="worker", protocol=protocol, task_index=ix, config=worker_config, start=True) for ix in range(num_workers) ] ps_servers = [ server_lib.Server( cs, job_name="ps", protocol=protocol, task_index=ix, config=ps_config, start=True) for ix in range(num_ps) ] return workers, ps_servers def get_node_def_from_graph(node_name, graph_def): """Returns the `NodeDef` instance for given node name in the graph def. This method explores only the NodeDefs in `graph_def.node`. Args: node_name: Name of the NodeDef to search for. graph_def: An instance of `GraphDef` proto. Returns: the `NodeDef` instance whose name field matches the given node_name or None. """ for node_def in graph_def.node: if node_def.name == node_name: return node_def return None def set_producer_version(graph, producer_version): """Sets graph.graph_def_versions.producer to `producer_version`.""" # The C API doesn't expose altering GraphDefVersions. We can indirectly set # it via import_graph_def though. graph_def = graph_pb2.GraphDef() graph_def.versions.producer = producer_version with graph.as_default(): importer.import_graph_def(graph_def) assert graph.graph_def_versions.producer, producer_version ======= self.assertAllEqual(np_array.shape, tf_tensor.get_shape().as_list()) >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library.
35.20618
112
0.669797
ff86d75b923d4bd935e96a15be2d0bdef2854ae4
5,130
py
Python
src/tools/tools.py
Blackdevil132/machineLearning
de048bb1473994052f8ed1afb11a15b7833b506d
[ "MIT" ]
1
2019-05-04T07:28:19.000Z
2019-05-04T07:28:19.000Z
src/tools/tools.py
Blackdevil132/machineLearning
de048bb1473994052f8ed1afb11a15b7833b506d
[ "MIT" ]
3
2019-04-29T09:20:11.000Z
2019-04-29T09:23:22.000Z
src/tools/tools.py
Blackdevil132/machineLearning
de048bb1473994052f8ed1afb11a15b7833b506d
[ "MIT" ]
null
null
null
import math import sys import time def statusBar(iteration, total_episodes): bar_len = 60 filled_len = int(round(bar_len * iteration / total_episodes)) percents = 100 * iteration / total_episodes bar = '=' * filled_len + '-' * (bar_len - filled_len) sys.stdout.write('\r[%s] %s%%\n' % (bar, percents)) sys.stdout.flush() def product(li): prod = 1 for elem in li: prod *= elem return prod def sieveOfEratosthenes(n): # finds all primes < n # list of numbers from 2 to n, excluding even numbers primes = [2] + [i for i in range(3, n, 2)] # start at index 1, index 0 is already dealt with i = 1 while True: try: # find position of the square of number at index i j = primes.index(primes[i] ** 2) except ValueError: # if square is > n, done return primes # remove all multiples of primes[i] while j < len(primes): if primes[j] % primes[i] == 0: primes.pop(j) else: j += 1 i += 1 def getPrimes(n): # returns primes < n # reads primes from file if possible with open("primes.txt", 'r') as file: primes = file.read().split(',') primes = list(map(int, primes)) if n is None: return primes elif n > primes[-1]: primes = sieveOfAtkin(n) file = open("primes.txt", 'w') text = ','.join(map(str, primes)) file.write(text) file.close() return primes else: return list(filter(lambda x: x < n, primes)) def readPrimes(PATH, limit=None): with open(PATH, 'r') as file: diffs = file.read().split(',') max_p = int(diffs.pop(0)) if limit is None: limit = max_p primes = [2, 3] for d in diffs: p = primes[-1]+2*int(d) if p > limit: break primes.append(p) return primes def savePrimes(PATH, primes): with open(PATH, 'w') as file: file.write("%i" % primes[-1]) for i in range(2, len(primes)): file.write(",%i" % ((primes[i] - primes[i-1])//2)) def fac(n): # return faculty of n # recursive if n == 0: return 1 return fac(n-1) * n def gcD(a, b): # return greatest common divisor of a and b if a == 0: return abs(b) if b == 0: return abs(a) while b != 0: tmp = a % b a = b b = tmp return abs(a) def trialDivision(n, partial=False): # returns all prime factors of n factors = [] primes = getPrimes(n) if not primes: return [] exp = 2 if partial: exp = 3 i = 0 while primes[i]**exp <= n: p = primes[i] if n % p == 0: n //= p factors.append(p) else: i += 1 if n != 1: factors.append(n) return factors class TrialDivision: def __init__(self, limit=None, partial=False): self.primes = readPrimes("primes.p", limit) self.partial = partial def exec(self, n): factors = [] if not self.primes: return [] exp = 2 if self.partial: exp = 3 i = 0 while self.primes[i] ** exp <= n: p = self.primes[i] if n % p == 0: n //= p factors.append(p) else: i += 1 if n != 1: factors.append(n) return factors def distinct(li): # removes all duplicates from list li return list(dict.fromkeys(li)) def timeit(func, args, loops=None): if loops is None: start = time.perf_counter() ret = func(*args) end = time.perf_counter() print("Execution Time for %s: %.3f s" % (func.__name__, (end-start))) return ret start = time.perf_counter() for i in range(loops): func(*args) end = time.perf_counter() if loops > 1: print("%i Loops, Average Execution Time for %s: %.3f s" % (loops, func.__name__, (end-start)/loops)) else: print("Execution Time for %s: %.3f ss" % (func.__name__, (end-start)/loops)) return (end-start)/loops def sieveOfAtkin(n): primes = [2, 3, 5] sieve = [False] * (n+1) root_n = int(math.sqrt(n)) x = 1 while x*x < n: y = 1 while y*y < n: n1 = 4*x**2 + y**2 n2 = 3*x**2 + y**2 n3 = 3*x**2 - y**2 #print(x, y, n) #print(n1, n2, n3) if n1 <= n and n1 % 60 in (1, 13, 17, 29, 37, 41, 49, 53): sieve[n1] ^= True if n2 <= n and n2 % 60 in (7, 19, 31, 43): sieve[n2] ^= True if x > y and n3 <= n and n3 % 60 in (11, 23, 47, 59): sieve[n3] ^= True y += 1 x += 1 for x in range(5, n): if sieve[x]: primes.append(x) if x < root_n: for y in range(x**2, n+1, x**2): sieve[y] = False return primes
20.52
108
0.488499
c5a808700fab519b28fa025dbd65b6e1d6270430
1,390
py
Python
src/osipidce/qt_gui/madym_gui_processor.py
michaelberks/OSIPI-DCE-DSC-toolbox
60690aafab06e253601588396c2cdf683f705b82
[ "Apache-2.0" ]
1
2021-10-04T15:43:15.000Z
2021-10-04T15:43:15.000Z
src/osipidce/qt_gui/madym_gui_processor.py
michaelberks/OSIPI-DCE-DSC-toolbox
60690aafab06e253601588396c2cdf683f705b82
[ "Apache-2.0" ]
null
null
null
src/osipidce/qt_gui/madym_gui_processor.py
michaelberks/OSIPI-DCE-DSC-toolbox
60690aafab06e253601588396c2cdf683f705b82
[ "Apache-2.0" ]
null
null
null
/*! * @file madym_gui_processor.h * @brief Class for GUI processing tasks that runs in separate thread to main GUI * @details Allows processing to proceed without blocking the main GUI. Not currently used. * @author MA Berks (c) Copyright QBI Lab, University of Manchester 2020 */ #ifndef MADYM_GUI_PROCESSOR #define MADYM_GUI_PROCESSOR #include <QObject> #include <mdm_RunTools.h> //!Class for GUI processing tasks that runs in separate thread to main GUI class madym_gui_processor : public QObject { Q_OBJECT // INTERFACE //!Enum defining the the type of tool to process public: enum RunType { T1, //!< T1 mapping AIF, //!< AIF detection DCE //!< DCE tracer-kinetic model fitting }; madym_gui_processor(); //! Reference to set run tools options /*! \return options */ mdm_RunTools& madym_exe(); //! Set a new run tools object of the required sub-type /*! \param type of run tool required: T1, AIF or DCE */ void set_madym_exe(RunType type); signals: //! QT signal sent when processing finished /*! */ void processing_finished(int); public slots: //! QT slot to do some processing /*! */ void start_processing(); // IMPLEMENTATION private: // Methods private: // Variables //Run tools object, dynamically allocated in factory method std::unique_ptr<mdm_RunTools> madym_exe_; }; #endif //MADYM_GUI_PROCESSOR
19.857143
91
0.708633
606f684844e0cb224be1c6694d8da7084b42c693
24,012
py
Python
readml/icecream/icecream.py
soumayaihihi/readml
bfda11cccf8ffe2a29a98589696769f843304309
[ "Apache-2.0" ]
null
null
null
readml/icecream/icecream.py
soumayaihihi/readml
bfda11cccf8ffe2a29a98589696769f843304309
[ "Apache-2.0" ]
null
null
null
readml/icecream/icecream.py
soumayaihihi/readml
bfda11cccf8ffe2a29a98589696769f843304309
[ "Apache-2.0" ]
null
null
null
""" FBDTools library - icecream package This module contains the main class that prepares data and draws PD/ICE/ALE plots. """ import os import warnings from typing import Any, Dict, List, Optional, Sized, Union import numpy as np import pandas as pd import plotly.graph_objs as go from plotly import offline from .check_utils import check_input_in_list, conduct_full_check from .compute_utils import ( aggregate_series, compute_ale_agg_results, compute_ice_model_predictions, compute_ice_model_results_2D, compute_model_ale_results_2D, guess_model_predict_function, pivot_dataframe, sample_kmeans, sample_quantiles, ) from .config import options from .discretizer import FeatureDiscretizer from .plot_utils import ( plotly_ice_box, plotly_ice_lines, plotly_partial_dependency, plotly_partial_dependency_2d_hist, plotly_partial_dependency_2d_scatter, ) class IceCream(object): """ Class that generates and contains predictions and aggregations used to draw PDPlots, ICE plots and ALE plots. Parameters ---------- data : pd.DataFrame Dataframe of model inputs feature_names : List[str] List of names of columns from data to discretize and analyse bins : Union[Dict[str, Union[int, Sized, None]], int] = {} Bin definitions for features: - None -> all bin definitions are guessed by module - integer -> value is used as number of bins for all features - dict -> keys are features names, values are: - integers for number of bins (0 for categorical features) - None to let the module decide - Sized to define specific bins Empty dict by default (which means all bins will be guessed) use_ale : bool, optional If True, computes ALE: Accumulated Local Effects. Can only be used for numerical features. (the Default is False) model : scikit-learn model, optional Model to compute predictions using provided data, `model.predict(data)` must work predictions : Optional[Sized] Series containing predictions for rows in data, used if no model can be given targets : Optional[Sized] Series containing targets for rows in data aggfunc : str, optional Aggregation function for targets and predictions aggregation (the default is "mean") use_classif_proba : bool, optional If True, use prediction probability as model output, only used if model is a classifier. (the default is True) clip_quantile : float, optional Quantile to clip the feature values for continuous features, set to 0 to disable clipping (the default is 0.0) quantile_based : bool, optional Option to use a quantile-based discretization function for continuous features (instead of a linear discretization), (the default is False) Attributes ---------- features : List[FeatureDiscretizer] Discretized representations of the studied features predictions : Dict[str, pd.DataFrame] Dictionary of predictions, keys are feature names, values are dataframes of predictions for each bin agg_predictions : Dict[str, pd.Series] Dictionary of aggregated predictions values, keys are feature names agg_targets : Dict[str, pd.Series] Dictionary of aggregated target values, keys are feature names - samples : Dict[str, pd.DataFrame] Dict of dataframes of computed predictions samples/clusters if ice line plot is drawn. Not filled until `draw` method is called. """ def __init__( self, data: pd.DataFrame, feature_names: List[str], bins: Union[Dict[str, Union[int, Sized, None]], int] = {}, use_ale: bool = False, model: Optional[Any] = None, predictions: Optional[Sized] = None, targets: Optional[Sized] = None, aggfunc: str = "mean", use_classif_proba: bool = True, clip_quantile: float = 0.0, quantile_based: bool = False, class_name=None, ) -> None: """ Creates class instance with attributes, then run results computation. """ conduct_full_check( data, feature_names, bins, model, predictions, targets, aggfunc, ["mean", "median"], use_classif_proba, clip_quantile, use_ale, ) # transform bins if a scalar was given if isinstance(bins, (int, np.integer)): bins = {name: bins for name in feature_names} self.features = [ FeatureDiscretizer( data[name], bins.get(name), clip_quantile, quantile_based ) for name in feature_names ] self.predictions = dict() # type: Dict[str, Any] self.agg_predictions = dict() # type: Dict[str, Any] self.agg_targets = dict() # type: Dict[str, Any] self.samples = dict() # type: Dict[str, Any] self._aggfunc = aggfunc self.use_ale = use_ale self.class_name = class_name self._run(data, model, predictions, targets, use_classif_proba, use_ale) def __repr__(self) -> str: return "{}: features ({})".format( self.__class__.__name__, ", ".join([feature.name for feature in self.features]), ) def _run( self, data: pd.DataFrame, model: Any, predictions: Optional[Sized], targets: Optional[Sized], use_classif_proba: bool, use_ale: bool, ) -> None: """ Run all operations to compute data used in PDPlots, ICE plots and ALE plots. Operations are run only if model/targets/predictions are given. """ if predictions is not None: predictions = pd.Series(predictions) self.agg_predictions = { feature.name: aggregate_series(feature, predictions, self._aggfunc) for feature in self.features } if model is not None: predict_function = guess_model_predict_function( model, use_classif_proba, self.class_name ) if use_ale: for feature in self.features: self.agg_predictions[feature.name] = compute_ale_agg_results( data, feature, predict_function ) else: self.predictions = { feature.name: compute_ice_model_predictions( data, feature, predict_function ) for feature in self.features } self.agg_predictions = { name: self.predictions[name].agg(self._aggfunc, axis=0) for name in self.predictions } if targets is not None: targets = pd.Series(targets) self.agg_targets = { feature.name: aggregate_series(feature, targets, self._aggfunc) for feature in self.features } def draw( self, kind: str = "pdp", show: bool = True, save_path: Optional[str] = None, ice_nb_lines: int = 15, ice_clustering_method: str = "quantiles", ) -> Dict[str, go.FigureWidget]: """ Builds plots, optionally shows them in current notebook and save them in HTML format. Parameters ---------- kind : str, optional Kind of plot to draw, possibilities are: - "pdp": draws a Partial Dependency Plot - "box": draws a box plot of predictions for each bin of features - "ice": draws a Individual Conditional Expectation plot - "ale": draws an Accumulated Local Effects plot (the default is "pdp") show : bool, optional Option to show the plots in notebook (the default is True) save_path : Optional[str] Path to directory to save the plots, directory is created if it does not exist ice_nb_lines : int, optional Number of lines to draw if kind="ice" (the default is 15) ice_clustering_method : str, optional Sampling or clustering method to compute the best lines to draw if kind="ice", available methods: - "kmeans": automatic clustering using KMeans to get representative lines - "quantiles": division of predictions in quantiles to get lines - "random": random selection of rows among predictions (the default is "quantiles") Returns ------- figures : Dict[str, go.FigureWidget] Dictionary of generated plots, keys are feature names, values are Plotly objects """ check_input_in_list(kind, ["pdp", "box", "ice", "ale"]) check_input_in_list(ice_clustering_method, ["kmeans", "quantiles", "random"]) # specific arguments for ice plot method if kind == "ice": figures = self._ice_lines_plot( nb_lines=ice_nb_lines, clustering_method=ice_clustering_method ) elif kind == "box": figures = self._ice_box_plot() elif kind == "pdp" or kind == "ale": figures = self._line_plot() if save_path is not None: save_dir = os.path.abspath(save_path) os.makedirs(save_dir, exist_ok=True) for name, figure in figures.items(): filename = os.path.join(save_dir, "{}_{}.html".format(kind, name)) offline.plot(figure, filename=filename, auto_open=False) if show: # for loop on features list for sorted show for feature in self.features: if feature.name in figures: offline.iplot(figures[feature.name]) return figures def _line_plot(self) -> Dict[str, go.FigureWidget]: """ Returns a dict of N Plotly line plots for the N features contained in instance. Returns ------- figures : Dict[str, go.FigureWidget] Dictionary of generated plots, keys are feature names, values are Plotly objects """ if not self.predictions and self.agg_predictions and not self.use_ale: warnings.warn( "No model was provided, shown predictions were aggregated" " and thus do not explain the model that produced them" ) figures = dict() for feature in self.features: name = feature.name figures[name] = plotly_partial_dependency( feature, self.agg_predictions.get(name), self.agg_targets.get(name), self._aggfunc, self.use_ale, ) return figures def _ice_box_plot(self) -> Dict[str, go.FigureWidget]: """ Returns a dict of N Plotly ICE Box plots for the N features in instance. Returns ------- figures : Dict[str, go.FigureWidget] Dictionary of generated plots, keys are feature names, values are Plotly objects """ if not self.predictions and self.agg_predictions: warnings.warn( "No model was provided, predictions cannot be shown on the ICE box plot" ) figures = dict() for feature in self.features: name = feature.name figures[name] = plotly_ice_box( feature, self.predictions.get(name), self.agg_targets.get(name), self._aggfunc, ) return figures def _ice_lines_plot( self, nb_lines: int, clustering_method: str ) -> Dict[str, go.FigureWidget]: """ Returns a dict of N Plotly ICE plots for the N features in instance. Returns ------- figures : Dict[str, go.FigureWidget] Dictionary of generated plots, keys are feature names, values are Plotly objects """ if not self.predictions and self.agg_predictions: warnings.warn( "No model was provided, predictions cannot be shown on the ICE plot" ) if nb_lines < 2: raise ValueError( "Number of lines for ICE plot must be greater than 1" ", use PDP to show a 1 line aggregation plot" ) figures = dict() for feature in self.features: name = feature.name predictions = self.predictions.get(name) if predictions is not None: assert ( len(predictions) >= nb_lines ), "Number of lines must be inferior or equal to length of dataset" if clustering_method == "random": samples = predictions.sample(n=nb_lines) counts = np.full(nb_lines, len(predictions) / nb_lines) names = ["" for _ in samples] colors = [options.predictions_color for _ in samples] elif clustering_method == "kmeans": samples, counts, names, colors = sample_kmeans( predictions, nb_lines ) elif clustering_method == "quantiles": samples, counts, names, colors = sample_quantiles( predictions, nb_lines ) figures[name] = plotly_ice_lines( feature, samples, counts, names, colors, self.agg_targets.get(name), self._aggfunc, ) self.samples[name] = samples return figures class IceCream2D(object): """ Class that generates and contains predictions and aggregations used to draw 2D interaction plots (partial dependencies or ALE heatmaps). Parameters ---------- data : pd.DataFrame Dataframe of model inputs feature_x : str Name of column from data to discretize for x axis feature_y : str Name of column from data to discretize for y axis bins_x : Optional[Union[int, Sized]] Bin definition for feature_x - None -> bin definition is guessed by module - integer -> value is used as number of bins for all features - Sized -> define specific bins bins_y : Optional[Union[int, Sized]] Bin definition for feature_y - None -> bin definition is guessed by module - integer -> value is used as number of bins for all features - Sized -> define specific bins use_ale : bool, optional If True, computes ALE: Accumulated Local Effects. Can only be used for numerical features. (the default is False) model : scikit-learn model, optional Model to compute predictions using provided data, `model.predict(data)` must work predictions : Optional[Sized] Series containing predictions for rows in data, used if no model can be given targets : Optional[Sized] Series containing targets for rows in data aggfunc : str, optional Aggregation function for targets and predictions aggregation (the default is "mean") use_classif_proba : bool If True, use prediction probability as model output, only used if model is a classifier (the default is True) clip_quantile : float, optional Quantile to clip the feature values for continuous features, set to 0 to disable clipping (the default is 0.0) quantile_based : bool, optional Option to use a quantile-based discretization function for continuous features (instead of a linear discretization). (the default is False) Attributes ---------- feature_x : FeatureDiscretizer Discretized representation of feature for x axis feature_y : FeatureDiscretizer Discretized representation of feature for y axis counts : List[pd.DataFrame] List of counts of number of rows for each square of heatmap agg_predictions : pd.DataFrame Dataframe of aggregated predictions for each bin of features x and y agg_targets : pd.DataFrame Dataframe of aggregated targets for each bin of features x and y """ def __init__( self, data: pd.DataFrame, feature_x: str, feature_y: str, bins_x: Optional[Union[int, Sized]], bins_y: Optional[Union[int, Sized]], use_ale: bool = False, model: Optional[Any] = None, predictions: Optional[Sized] = None, targets: Optional[Sized] = None, aggfunc: str = "mean", use_classif_proba: bool = True, clip_quantile: float = 0.0, quantile_based: bool = False, ) -> None: """ Creates class instance with attributes, then run results computation. """ conduct_full_check( data, [feature_x, feature_y], {"x": bins_x, "y": bins_y}, model, predictions, targets, aggfunc, ["mean", "median"], use_classif_proba, clip_quantile, use_ale, ) self.feature_x = FeatureDiscretizer( data[feature_x], bins_x, clip_quantile, quantile_based ) self.feature_y = FeatureDiscretizer( data[feature_y], bins_y, clip_quantile, quantile_based ) self.counts = None self.use_ale = use_ale self.agg_predictions = None self.agg_targets = None self._aggfunc = aggfunc self._run(data, model, predictions, targets, use_classif_proba, use_ale) def __repr__(self) -> str: return "{}: feature_x ({}), feature_y ({})".format( self.__class__.__name__, self.feature_x.name, self.feature_y.name ) def _run( self, data: pd.DataFrame, model: Any, predictions: Optional[Sized], targets: Optional[Sized], use_classif_proba: bool, use_ale: bool, ) -> None: """ Run all operations to compute data used in heatmaps. """ # fake data for count pivot table data_temp = data.assign(values=0) self.counts = pivot_dataframe( data_temp, "values", self.feature_x, self.feature_y, "count", fill_value=0 ) if predictions is not None: predictions = pd.Series(predictions) data_temp = data.assign(values=predictions) self.agg_predictions = pivot_dataframe( data_temp, "values", self.feature_x, self.feature_y, self._aggfunc ) if model is not None: predict_function = guess_model_predict_function(model, use_classif_proba) if use_ale: self.agg_predictions = compute_model_ale_results_2D( data, self.feature_x, self.feature_y, predict_function ) else: self.agg_predictions = compute_ice_model_results_2D( data, self.feature_x, self.feature_y, predict_function, self._aggfunc, ) if targets is not None: targets = pd.Series(targets) data_temp = data.assign(values=targets) self.agg_targets = pivot_dataframe( data_temp, "values", self.feature_x, self.feature_y, self._aggfunc ) def draw( self, kind: str = "hist", show: bool = True, save_path: Optional[str] = None ) -> List[go.FigureWidget]: """ Builds plots, optionally shows them in current notebook and save them in HTML format. Parameters ---------- show : bool, optional Option to show the plots in notebook (the default is True) save_path : Optional[str] Path to directory to save the plots, directory is created if it does not exist (the default is None) kind : str Kind of plot to draw, possibilities are: - "hist": histograms for feature values, heatmap for predictions and targets - "scatter": scatter for feature values, heatmap for predictions and targets (the default is "hist") Returns ------- figures : List[go.FigureWidget] List of generated plots, 1 plot for predictions if model or predictions were given 1 plot for targets if they were given """ check_input_in_list(kind, ["hist", "scatter"]) if kind == "hist": figures = self._pd_hist_plot() elif kind == "scatter": figures = self._pd_scatter_plot() if save_path is not None: save_dir = os.path.abspath(save_path) os.makedirs(save_dir, exist_ok=True) for i, figure in enumerate(figures): filename = os.path.join(save_dir, "heatmap_{}.html".format(i)) offline.plot(figure, filename=filename, auto_open=False) if show: # for loop on features list for sorted show for figure in figures: offline.iplot(figure) return figures def _pd_hist_plot(self) -> List[go.FigureWidget]: """ Returns a list of Plotly PDP 2D plots. Returns ------- figures : Dict[str, go.FigureWidget] List of generated plots, 1 plot for predictions if model or predictions were given 1 plot for targets if they were given """ figures = [] # type: List[go.FigureWidget] if self.agg_predictions is not None: figures.append( plotly_partial_dependency_2d_hist( self.feature_x, self.feature_y, self.counts, self.agg_predictions, "predictions", ) ) if self.agg_targets is not None: figures.append( plotly_partial_dependency_2d_hist( self.feature_x, self.feature_y, self.counts, self.agg_targets, "targets", ) ) return figures def _pd_scatter_plot(self) -> List[go.FigureWidget]: """ Returns a list of Plotly PDP 2D plots. Returns ------- figures : Dict[str, go.FigureWidget] List of generated plots, 1 plot for predictions if model or predictions were given 1 plot for targets if they were given """ figures = [] # type: List[go.FigureWidget] if self.agg_predictions is not None: figures.append( plotly_partial_dependency_2d_scatter( self.feature_x, self.feature_y, self.counts, self.agg_predictions, "predictions", ) ) if self.agg_targets is not None: figures.append( plotly_partial_dependency_2d_scatter( self.feature_x, self.feature_y, self.counts, self.agg_targets, "targets", ) ) return figures
36.162651
93
0.576837
a9f92d9cc611578dc7c9fd5df3952959267a1634
1,451
py
Python
RiotConsts.py
nattokun/leagueOfRate
4d5bd2e4e8256495eefce99b1e7c15589ee796cc
[ "MIT" ]
null
null
null
RiotConsts.py
nattokun/leagueOfRate
4d5bd2e4e8256495eefce99b1e7c15589ee796cc
[ "MIT" ]
null
null
null
RiotConsts.py
nattokun/leagueOfRate
4d5bd2e4e8256495eefce99b1e7c15589ee796cc
[ "MIT" ]
null
null
null
URL = { 'base' : 'https://global.api.pvp.net/api/{url}', 'summoner_by_name' : 'lol/na/v{version}/summoner/by-name/{names}?champData=stats', 'summoner_summonerId_rune' : 'lol/na/v{version}/summoner/{ids}/runes', 'summoner_summonerId_masteries' : 'lol/na/v{version}/summoner/{ids}/masteries', 'champions' : 'lol/static-data/na/v{version}/champion', 'champion_by_id': 'lol/static-data/na/v{version}/champion/{ids}', 'get_champion_stats' : 'lol/static-data/na/v1.2/champion/{ids}?champData=stats', 'get_champion_info' : 'lol/static-data/na/v1.2/champion/{ids}?champData=info', 'get_champion_spells' : 'lol/static-data/na/v1.2/champion/{ids}?champData=spells', 'get_rune_by_id' : 'lol/static-data/na/v{version}/rune/{ids}', 'get_rune_stats_by_id' : 'lol/static-data/na/v{version}/rune/{ids}?runeData=all' } API_VERSIONS = { 'champion': 1.2, 'current-game': 1.0, 'featured-games': 1.0, 'game': 1.3, 'league': 2.5, 'lol-static-data': 1.2, 'lol-status': 1.0, 'match': 2.2, 'matchhistory': 2.2, 'matchlist': 2.2, 'stats': 1.3, 'summoner': 1.4, 'team': 2.4 } REGIONS = { 'GLOBAL' : 'global', 'BRAZIL' : 'br', 'EUROPE_NORDIC_EAST' : 'eune', 'EUROPE_WEST' : 'euw', 'KOREA' : 'kr', 'LATIN_AMERICA_NORTH' : 'lan', 'LATIN_AMERICA_SOUTH' : 'las', 'NORTH_AMERICA' : 'na', 'OCEANIA' : 'oce', 'RUSSIA' : 'ru', 'TURKEY' : 'tr' }
32.977273
86
0.610613
6b377e365f6f8a257180be569b6960fd4c0f8887
4,478
py
Python
experiments/gradcam_utils.py
anonymous-user-256/mlrc-cgn
64f43fcb89b3a13c0ae46db4f19060d9f204a6b1
[ "MIT" ]
null
null
null
experiments/gradcam_utils.py
anonymous-user-256/mlrc-cgn
64f43fcb89b3a13c0ae46db4f19060d9f204a6b1
[ "MIT" ]
null
null
null
experiments/gradcam_utils.py
anonymous-user-256/mlrc-cgn
64f43fcb89b3a13c0ae46db4f19060d9f204a6b1
[ "MIT" ]
null
null
null
"""Helper functions for GradCAM analysis. Referece: https://linuxtut.com/en/082f71b96b9aca0d5df5/ """ import os import sys import argparse import json import numpy as np import pandas as pd import torch from torchvision import transforms import torchvision.datasets as tv_datasets from torchvision import transforms as tv_transforms from torchvision.utils import save_image, make_grid from PIL import Image from tqdm import tqdm from gradcam.utils import visualize_cam from gradcam import GradCAM, GradCAMpp import matplotlib.pyplot as plt import seaborn as sns from torchmetrics import JaccardIndex import warnings warnings.filterwarnings("ignore") from experiment_utils import set_env, REPO_PATH, seed_everything set_env() from cgn_framework.mnists.models.classifier import CNN from cgn_framework.mnists.train_cgn import save from cgn_framework.mnists.dataloader import get_tensor_dataloaders, TENSOR_DATASETS def compute_iou_between_gt_and_gradcam_for_mnist( dataset, weight_path, seed=0, disable_tqdm=False, debug=False, return_samples=False, ): """ Compute IoU between ground truth and GradCAM for MNIST. Args: dataset (str): dataset name weight_path (str): absolute path to the checkpoint file seed (int): random seed disable_tqdm (bool): whether to disable tqdm progress bar debug (bool): whether to print debug messages return_samples (bool): whether to return samples of the gradcam """ seed_everything(seed) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # load model and its weights from a checkpoint model = CNN() # load checkpoint print("Loading model weights from checkpoint: {}".format(weight_path)) ckpt = torch.load(weight_path, map_location='cpu') model.load_state_dict(ckpt) model = model.eval() model = model.to(device) # load the test dataloader to evaluate GradCAM on print("Loading dataset: {}".format(dataset)) dl_train, dl_test = get_tensor_dataloaders(dataset, 64) ds_test = dl_test.dataset # load original MNIST to obtain binary maps T = tv_transforms.Compose([ tv_transforms.Resize((32, 32), Image.NEAREST), tv_transforms.ToTensor(), ]) original_data_root = os.path.join(REPO_PATH, "cgn_framework/mnists/data/MNIST/") original = tv_datasets.MNIST( root=original_data_root, download=True, train=False, transform=T, ) # define the target layer to be used target_layer = model.model[8] gradcam = GradCAM(model, target_layer) # for metric computation jaccard = JaccardIndex(num_classes=2) jaccard = jaccard.to(device) # apply GradCAM on the test set num_samples = len(ds_test) if not debug else 10 np.random.seed(0) sample_indices = np.random.choice(num_samples, 10, replace=False) iterator = tqdm( range(num_samples), colour="red", bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', desc="Computing GradCAM", disable=disable_tqdm, ) samples = [] iou_values = [] labels = [] show = False for i in iterator: # get image image, label = ds_test[i] image = image.to(device) # get gradcam mask gc_mask, _ = gradcam(image.unsqueeze(0)) heatmap, result = visualize_cam(gc_mask, image) gc_mask = gc_mask.squeeze(0).to(device) # get coresponding GT mask from original dataset gt_mask = original[i][0] gt_mask = gt_mask.to(device) gt_mask_binary = gt_mask > 0.5 iou = jaccard(gc_mask, gt_mask_binary) iou_values.append(iou.cpu().item()) labels.append(label) if return_samples and i in sample_indices: samples.append([image.data.cpu(), heatmap, result]) if show: grid = make_grid([gt_mask, gc_mask], padding=0) plt.title(f"IoU: {iou:.4f}", fontsize=18) plt.imshow(grid.permute((1, 2, 0))) plt.show() df = pd.DataFrame(None, columns=["iou", "label"]) df["iou"] = iou_values df["label"] = torch.stack(labels).numpy() class_wise_results = dict(df.groupby("label")["iou"].mean()) class_wise_results["overall_mean"] = np.mean(iou_values) class_wise_results["overall_std"] = np.std(iou_values) if return_samples: return class_wise_results, sample_indices, samples else: return class_wise_results
31.535211
92
0.685574
2d104e6da45af53cfc81f93a054461cd8717aa0c
5,078
py
Python
src/metropolisGA.py
lbenning/Knapsack
1b06409bafc04210837b984fb638804794faada6
[ "MIT" ]
4
2015-07-26T19:59:25.000Z
2018-12-13T15:39:44.000Z
src/metropolisGA.py
lbenning/Knapsack
1b06409bafc04210837b984fb638804794faada6
[ "MIT" ]
null
null
null
src/metropolisGA.py
lbenning/Knapsack
1b06409bafc04210837b984fb638804794faada6
[ "MIT" ]
null
null
null
import random import numpy from tools import * import math # Computes the Hamming distance between 2 bitstrings, # which is simply the number of places where the bitstrings # differ in value def hammingDistance(x,y): dist = 0 for z in range(len(x)): if (not x[z] == y[z]): dist += 1 return dist # Genetic algorithm simulation - uses the Metropolis algorithm # to maintain diversity def geneticMetropolis(popSize,values,weights,limit,epsilon,exactSoln): # Initialization population = [] for x in range(popSize): population.append(generatePack(values,weights,limit)) # Track number of evaluations of fitness function fitCtr = 0 # Mutation rate that will be degraded mut = degradeMutation(fitCtr) # Top individual's fitness topFitness = -1 # Pairing indices for tournament pairing = numpy.arange(0,popSize) # Initial temperature temp = 1000 # Cooling factor - multiplies temp. by this factor coolFactor = 0.95 while(True): # Run a tournament numpy.random.shuffle(pairing) curr = 0 while (curr+1 < len(population)): parent1 = population[pairing[curr]] parent2 = population[pairing[curr+1]] child1 = reproduce(parent1,parent2,weights,limit,mut) child2 = reproduce(parent2,parent1,weights,limit,mut) # Compute fitnesses of parents and children fitnesses = (fitness(parent1,values),fitness(parent2,values),fitness(child1,values), fitness(child2,values)) # Update the top fitness if new best achieved topFitness = max(topFitness,fitnesses[0],fitnesses[1], fitnesses[2],fitnesses[3]) # Termination condition if (topFitness*(1+epsilon) >= exactSoln): return topFitness fitCtr += 4 # Replace according to Metropolis algorithm if (hammingDistance(parent1,child1)+hammingDistance(parent2,child2) > hammingDistance(parent1,child2)+hammingDistance(parent2,child1)): if (fitnesses[2] >= fitnesses[0] or random.uniform(0,1) <= math.exp(-(fitnesses[0]-fitnesses[2])/temp)): population[pairing[curr]] = child1 if (fitnesses[3] >= fitnesses[1] or random.uniform(0,1) <= math.exp(-(fitnesses[1]-fitnesses[3])/temp)): population[pairing[curr+1]] = child2 else: if (fitnesses[3] >= fitnesses[0] or random.uniform(0,1) <= math.exp(-(fitnesses[0]-fitnesses[3])/temp)): population[pairing[curr]] = child2 if (fitnesses[2] >= fitnesses[1] or random.uniform(0,1) <= math.exp(-(fitnesses[1]-fitnesses[2])/temp)): population[pairing[curr+1]] = child1 curr += 2 # Update the mutation rate mut = degradeMutation(fitCtr) # Update the temperature temp *= coolFactor # Genetic algorithm simulation - uses the Metropolis algorithm # to maintain diversity def recordMetropolis(popSize,values,weights,limit,intervals,bound): # Initialization population = [] for x in range(popSize): population.append(generatePack(values,weights,limit)) # Track number of evaluations of fitness function fitCtr = 0 # Mutation rate that will be degraded mut = degradeMutation(fitCtr) # Top individual's fitness topFitness = -1 # Pairing indices for tournament pairing = numpy.arange(0,popSize) # Initial temperature temp = 1000 # Cooling factor - multiplies temp. by this factor coolFactor = 0.95 # Record fitnesses recFitnesses = [] while(True): # Run a tournament numpy.random.shuffle(pairing) curr = 0 while (curr+1 < len(population)): parent1 = population[pairing[curr]] parent2 = population[pairing[curr+1]] child1 = reproduce(parent1,parent2,weights,limit,mut) child2 = reproduce(parent2,parent1,weights,limit,mut) # Compute fitnesses of parents and children fitnesses = (fitness(parent1,values),fitness(parent2,values),fitness(child1,values), fitness(child2,values)) # Update the top fitness if new best achieved topFitness = max(topFitness,fitnesses[0],fitnesses[1], fitnesses[2],fitnesses[3]) # Replace according to Metropolis algorithm if (hammingDistance(parent1,child1)+hammingDistance(parent2,child2) > hammingDistance(parent1,child2)+hammingDistance(parent2,child1)): if (fitnesses[2] >= fitnesses[0] or random.uniform(0,1) <= math.exp(-(fitnesses[0]-fitnesses[2])/temp)): population[pairing[curr]] = child1 if (fitnesses[3] >= fitnesses[1] or random.uniform(0,1) <= math.exp(-(fitnesses[1]-fitnesses[3])/temp)): population[pairing[curr+1]] = child2 else: if (fitnesses[3] >= fitnesses[0] or random.uniform(0,1) <= math.exp(-(fitnesses[0]-fitnesses[3])/temp)): population[pairing[curr]] = child2 if (fitnesses[2] >= fitnesses[1] or random.uniform(0,1) <= math.exp(-(fitnesses[1]-fitnesses[2])/temp)): population[pairing[curr+1]] = child1 if (fitCtr+1 in intervals or fitCtr+2 in intervals or fitCtr+3 in intervals or fitCtr+4 in intervals): recFitnesses.append(topFitness) curr += 2 fitCtr += 4 # Termination condition if (fitCtr >= bound): return recFitnesses # Update the mutation rate mut = degradeMutation(fitCtr) # Update the temperature temp *= coolFactor
31.540373
87
0.707562
cb9a97aa13bd8cca4f6601674cd746fd949a882a
676
py
Python
app/post/admin.py
HSAkash/Questionnaire-Docker
ee7f45ddc04e9ce72156a888255711df6a34720b
[ "MIT" ]
1
2021-12-26T06:18:48.000Z
2021-12-26T06:18:48.000Z
app/post/admin.py
HSAkash/Questionnaire_api
95a0e4e7bc680fe27dd312dad0e2fd70ceafb8b4
[ "MIT" ]
null
null
null
app/post/admin.py
HSAkash/Questionnaire_api
95a0e4e7bc680fe27dd312dad0e2fd70ceafb8b4
[ "MIT" ]
null
null
null
from django.contrib import admin from post import models class QuestionAdmin(admin.ModelAdmin): list_display = ('title', 'user', 'created_at', 'published_date') list_filter = ('published_date',) search_fields = ('title', 'user') date_hierarchy = 'published_date' ordering = ['-published_date'] filter_horizontal = () fieldsets = () list_per_page = 10 class AnswerAdmin(admin.ModelAdmin): list_display = ('question', 'user') search_fields = ('question', 'user') filter_horizontal = () fieldsets = () list_per_page = 10 admin.site.register(models.Question, QuestionAdmin) admin.site.register(models.Answer, AnswerAdmin)
26
68
0.693787
3519a70791b2636cbd96069edb8169eb4b81d7b9
8,530
py
Python
scripts/fixup_dlp_v2_keywords.py
renovate-bot/python-dlp
f329cf691bc8fa49b70ea5a443b5dc36c3b59eb9
[ "Apache-2.0" ]
7
2021-02-21T10:39:41.000Z
2021-12-07T07:31:28.000Z
scripts/fixup_dlp_v2_keywords.py
renovate-bot/python-dlp
f329cf691bc8fa49b70ea5a443b5dc36c3b59eb9
[ "Apache-2.0" ]
6
2021-02-02T23:46:11.000Z
2021-11-15T01:46:02.000Z
scripts/fixup_dlp_v2_keywords.py
renovate-bot/python-dlp
f329cf691bc8fa49b70ea5a443b5dc36c3b59eb9
[ "Apache-2.0" ]
4
2021-01-28T23:25:45.000Z
2021-08-30T01:55:16.000Z
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os import libcst as cst import pathlib import sys from typing import (Any, Callable, Dict, List, Sequence, Tuple) def partition( predicate: Callable[[Any], bool], iterator: Sequence[Any] ) -> Tuple[List[Any], List[Any]]: """A stable, out-of-place partition.""" results = ([], []) for i in iterator: results[int(predicate(i))].append(i) # Returns trueList, falseList return results[1], results[0] class dlpCallTransformer(cst.CSTTransformer): CTRL_PARAMS: Tuple[str] = ('retry', 'timeout', 'metadata') METHOD_TO_PARAMS: Dict[str, Tuple[str]] = { 'activate_job_trigger': ('name', ), 'cancel_dlp_job': ('name', ), 'create_deidentify_template': ('parent', 'deidentify_template', 'template_id', 'location_id', ), 'create_dlp_job': ('parent', 'inspect_job', 'risk_job', 'job_id', 'location_id', ), 'create_inspect_template': ('parent', 'inspect_template', 'template_id', 'location_id', ), 'create_job_trigger': ('parent', 'job_trigger', 'trigger_id', 'location_id', ), 'create_stored_info_type': ('parent', 'config', 'stored_info_type_id', 'location_id', ), 'deidentify_content': ('parent', 'deidentify_config', 'inspect_config', 'item', 'inspect_template_name', 'deidentify_template_name', 'location_id', ), 'delete_deidentify_template': ('name', ), 'delete_dlp_job': ('name', ), 'delete_inspect_template': ('name', ), 'delete_job_trigger': ('name', ), 'delete_stored_info_type': ('name', ), 'finish_dlp_job': ('name', ), 'get_deidentify_template': ('name', ), 'get_dlp_job': ('name', ), 'get_inspect_template': ('name', ), 'get_job_trigger': ('name', ), 'get_stored_info_type': ('name', ), 'hybrid_inspect_dlp_job': ('name', 'hybrid_item', ), 'hybrid_inspect_job_trigger': ('name', 'hybrid_item', ), 'inspect_content': ('parent', 'inspect_config', 'item', 'inspect_template_name', 'location_id', ), 'list_deidentify_templates': ('parent', 'page_token', 'page_size', 'order_by', 'location_id', ), 'list_dlp_jobs': ('parent', 'filter', 'page_size', 'page_token', 'type_', 'order_by', 'location_id', ), 'list_info_types': ('parent', 'language_code', 'filter', 'location_id', ), 'list_inspect_templates': ('parent', 'page_token', 'page_size', 'order_by', 'location_id', ), 'list_job_triggers': ('parent', 'page_token', 'page_size', 'order_by', 'filter', 'location_id', ), 'list_stored_info_types': ('parent', 'page_token', 'page_size', 'order_by', 'location_id', ), 'redact_image': ('parent', 'location_id', 'inspect_config', 'image_redaction_configs', 'include_findings', 'byte_item', ), 'reidentify_content': ('parent', 'reidentify_config', 'inspect_config', 'item', 'inspect_template_name', 'reidentify_template_name', 'location_id', ), 'update_deidentify_template': ('name', 'deidentify_template', 'update_mask', ), 'update_inspect_template': ('name', 'inspect_template', 'update_mask', ), 'update_job_trigger': ('name', 'job_trigger', 'update_mask', ), 'update_stored_info_type': ('name', 'config', 'update_mask', ), } def leave_Call(self, original: cst.Call, updated: cst.Call) -> cst.CSTNode: try: key = original.func.attr.value kword_params = self.METHOD_TO_PARAMS[key] except (AttributeError, KeyError): # Either not a method from the API or too convoluted to be sure. return updated # If the existing code is valid, keyword args come after positional args. # Therefore, all positional args must map to the first parameters. args, kwargs = partition(lambda a: not bool(a.keyword), updated.args) if any(k.keyword.value == "request" for k in kwargs): # We've already fixed this file, don't fix it again. return updated kwargs, ctrl_kwargs = partition( lambda a: a.keyword.value not in self.CTRL_PARAMS, kwargs ) args, ctrl_args = args[:len(kword_params)], args[len(kword_params):] ctrl_kwargs.extend(cst.Arg(value=a.value, keyword=cst.Name(value=ctrl)) for a, ctrl in zip(ctrl_args, self.CTRL_PARAMS)) request_arg = cst.Arg( value=cst.Dict([ cst.DictElement( cst.SimpleString("'{}'".format(name)), cst.Element(value=arg.value) ) # Note: the args + kwargs looks silly, but keep in mind that # the control parameters had to be stripped out, and that # those could have been passed positionally or by keyword. for name, arg in zip(kword_params, args + kwargs)]), keyword=cst.Name("request") ) return updated.with_changes( args=[request_arg] + ctrl_kwargs ) def fix_files( in_dir: pathlib.Path, out_dir: pathlib.Path, *, transformer=dlpCallTransformer(), ): """Duplicate the input dir to the output dir, fixing file method calls. Preconditions: * in_dir is a real directory * out_dir is a real, empty directory """ pyfile_gen = ( pathlib.Path(os.path.join(root, f)) for root, _, files in os.walk(in_dir) for f in files if os.path.splitext(f)[1] == ".py" ) for fpath in pyfile_gen: with open(fpath, 'r') as f: src = f.read() # Parse the code and insert method call fixes. tree = cst.parse_module(src) updated = tree.visit(transformer) # Create the path and directory structure for the new file. updated_path = out_dir.joinpath(fpath.relative_to(in_dir)) updated_path.parent.mkdir(parents=True, exist_ok=True) # Generate the updated source file at the corresponding path. with open(updated_path, 'w') as f: f.write(updated.code) if __name__ == '__main__': parser = argparse.ArgumentParser( description="""Fix up source that uses the dlp client library. The existing sources are NOT overwritten but are copied to output_dir with changes made. Note: This tool operates at a best-effort level at converting positional parameters in client method calls to keyword based parameters. Cases where it WILL FAIL include A) * or ** expansion in a method call. B) Calls via function or method alias (includes free function calls) C) Indirect or dispatched calls (e.g. the method is looked up dynamically) These all constitute false negatives. The tool will also detect false positives when an API method shares a name with another method. """) parser.add_argument( '-d', '--input-directory', required=True, dest='input_dir', help='the input directory to walk for python files to fix up', ) parser.add_argument( '-o', '--output-directory', required=True, dest='output_dir', help='the directory to output files fixed via un-flattening', ) args = parser.parse_args() input_dir = pathlib.Path(args.input_dir) output_dir = pathlib.Path(args.output_dir) if not input_dir.is_dir(): print( f"input directory '{input_dir}' does not exist or is not a directory", file=sys.stderr, ) sys.exit(-1) if not output_dir.is_dir(): print( f"output directory '{output_dir}' does not exist or is not a directory", file=sys.stderr, ) sys.exit(-1) if os.listdir(output_dir): print( f"output directory '{output_dir}' is not empty", file=sys.stderr, ) sys.exit(-1) fix_files(input_dir, output_dir)
40.619048
158
0.630832
c9f7aa6c5fb3a86ffed726042e9a048ca9704c49
12,963
py
Python
bento/commands/tests/test_configure.py
cournape/Bento
37de23d784407a7c98a4a15770ffc570d5f32d70
[ "BSD-3-Clause" ]
55
2015-01-20T21:12:52.000Z
2021-11-23T12:29:32.000Z
bento/commands/tests/test_configure.py
esc/Bento
5e13318c0a74e956f9e80fa7617fb31ffc356088
[ "BSD-3-Clause" ]
6
2015-01-16T07:01:29.000Z
2021-08-19T20:00:17.000Z
bento/commands/tests/test_configure.py
esc/Bento
5e13318c0a74e956f9e80fa7617fb31ffc356088
[ "BSD-3-Clause" ]
6
2015-08-12T18:11:47.000Z
2019-01-05T08:36:05.000Z
import os import sys import shutil import tempfile import posixpath import mock from bento.compat.api.moves \ import \ unittest from bento.core.options \ import \ PackageOptions from bento.core \ import \ PackageDescription from bento.core.node \ import \ create_root_with_source_tree from bento.commands.wrapper_utils \ import \ run_command_in_context from bento.commands.tests.utils \ import \ prepare_configure from bento.backends.yaku_backend \ import \ ConfigureYakuContext from bento.commands.configure \ import \ _compute_scheme, set_scheme_unix, set_scheme_win32 BENTO_INFO = """\ Name: Sphinx Version: 0.6.3 Summary: Python documentation generator Url: http://sphinx.pocoo.org/ DownloadUrl: http://pypi.python.org/pypi/Sphinx Description: Some long description. Author: Georg Brandl AuthorEmail: georg@python.org Maintainer: Georg Brandl MaintainerEmail: georg@python.org License: BSD """ PY_VERSION_SHORT = ".".join(str(_) for _ in sys.version_info[:2]) PY_VERSION_SHORT_NO_DOT = "".join(str(_) for _ in sys.version_info[:2]) class TestConfigureCommand(unittest.TestCase): def setUp(self): self.d = tempfile.mkdtemp() self.root = create_root_with_source_tree(self.d, os.path.join(self.d, "build")) self.old_dir = os.getcwd() os.chdir(self.d) def tearDown(self): os.chdir(self.old_dir) shutil.rmtree(self.d) def test_simple(self): root = self.root run_node = root.find_node(self.d) conf, configure = prepare_configure(run_node, BENTO_INFO, ConfigureYakuContext) run_command_in_context(conf, configure) def test_flags(self): bento_info = """\ Name: foo Flag: floupi Description: some floupi flag Default: true """ run_node = self.root.find_node(self.d) conf, configure = prepare_configure(run_node, bento_info, ConfigureYakuContext, ["--floupi=false"]) run_command_in_context(conf, configure) UNIX_REFERENCE = { 'destdir': "/", 'prefix': None, 'eprefix': None, 'bindir': '$eprefix/bin', 'sbindir': '$eprefix/sbin', 'libexecdir': '$eprefix/libexec', 'sysconfdir': '$prefix/etc', 'sharedstatedir': '$prefix/com', 'localstatedir': '$prefix/var', 'libdir': '$eprefix/lib', 'includedir': '$prefix/include', 'datarootdir': '$prefix/share', 'datadir': '$datarootdir', 'mandir': '$datarootdir/man', 'infodir': '$datarootdir/info', 'localedir': '$datarootdir/locale', 'docdir': '$datarootdir/doc/$pkgname', 'htmldir': '$docdir', 'dvidir': '$docdir', 'psdir': '$docdir', 'pdfdir': '$docdir', 'sitedir': '$libdir/python$py_version_short/site-packages', 'pkgdatadir': '$datadir/$pkgname' } WIN32_REFERENCE = { 'destdir': "C:\\", 'prefix': None, 'eprefix': r'$prefix', 'bindir': r'$eprefix\Scripts', 'sbindir': r'$eprefix\Scripts', 'libexecdir': r'$eprefix\Scripts', 'sysconfdir': r'$prefix\etc', 'sharedstatedir': r'$prefix\com', 'localstatedir': r'$prefix\var', 'libdir': r'$eprefix\lib', 'includedir': r'$prefix\include', 'datarootdir': r'$prefix\share', 'datadir': r'$datarootdir', 'mandir': r'$datarootdir\man', 'infodir': r'$datarootdir\info', 'localedir': r'$datarootdir\locale', 'docdir': r'$datarootdir\doc\$pkgname', 'htmldir': r'$docdir', 'dvidir': r'$docdir', 'psdir': r'$docdir', 'pdfdir': r'$docdir', 'sitedir': r'$prefix\Lib\site-packages', 'pkgdatadir': r'$datadir\$pkgname' } MOCK_DEBIAN_SCHEME = { 'purelib': '$base/local/lib/python$py_version_short/dist-packages', 'headers': '$base/local/include/python$py_version_short/$dist_name', 'scripts': '$base/local/bin', } class TestUnixScheme(unittest.TestCase): def setUp(self): super(TestUnixScheme, self).setUp() options = mock.Mock() options.eprefix = None options.prefix = None self.options = options def _compute_scheme(self, bento_info, options): package_options = PackageOptions.from_string(bento_info) pkg = PackageDescription.from_string(bento_info) scheme = _compute_scheme(package_options) set_scheme_unix(scheme, options, pkg) return scheme @mock.patch("sys.platform", "linux2") @mock.patch("bento.commands.configure.virtualenv_prefix", lambda: None) @mock.patch("bento.core.platforms.sysconfig.bento.utils.path.find_root", lambda ignored: r"/") @mock.patch("distutils.command.install.INSTALL_SCHEMES", {"unix_prefix": UNIX_REFERENCE}) def test_scheme_default(self): bento_info = """\ Name: foo """ self.options.prefix = self.eprefix = None scheme = self._compute_scheme(bento_info, self.options) prefix = scheme.pop("prefix") eprefix = scheme.pop("eprefix") py_version_short = scheme.pop("py_version_short") pkgname = scheme.pop("pkgname") self.assertEqual(prefix, "/usr/local") self.assertEqual(eprefix, "/usr/local") self.assertEqual(pkgname, "foo") self.assertEqual(py_version_short, PY_VERSION_SHORT) # Check that other values in scheme have not been modified for k, v in scheme.items(): self.assertEqual(UNIX_REFERENCE[k], v, "discrepency for path %s: %s vs %s" % (k, UNIX_REFERENCE[k], v)) @mock.patch("sys.platform", "darwin") @mock.patch("bento.core.platforms.sysconfig.bento.utils.path.find_root", lambda ignored: r"/") @mock.patch("bento.commands.configure.op.normpath", posixpath.normpath) @mock.patch("bento.commands.configure.virtualenv_prefix", lambda: None) @mock.patch("sys.prefix", "/Library/Frameworks/Python.framework/Versions/2.8") @mock.patch("sys.exec_prefix", "/Exec/Library/Frameworks/Python.framework/Versions/2.8") def test_scheme_default_darwin(self): bento_info = """\ Name: foo """ self.options.prefix = self.eprefix = None scheme = self._compute_scheme(bento_info, self.options) prefix = scheme.pop("prefix") eprefix = scheme.pop("eprefix") py_version_short = scheme.pop("py_version_short") pkgname = scheme.pop("pkgname") self.assertEqual(prefix, sys.prefix) self.assertEqual(eprefix, sys.exec_prefix) self.assertEqual(pkgname, "foo") self.assertEqual(py_version_short, PY_VERSION_SHORT) # Check that other values in scheme have not been modified for k, v in scheme.items(): self.assertEqual(UNIX_REFERENCE[k], v) @mock.patch("sys.platform", "linux2") @mock.patch("bento.core.platforms.sysconfig.bento.utils.path.find_root", lambda ignored: r"/") def test_scheme_with_prefix(self): bento_info = """\ Name: foo """ self.options.prefix = "/home/guido" scheme = self._compute_scheme(bento_info, self.options) prefix = scheme.pop("prefix") eprefix = scheme.pop("eprefix") py_version_short = scheme.pop("py_version_short") pkgname = scheme.pop("pkgname") self.assertEqual(prefix, "/home/guido") self.assertEqual(eprefix, "/home/guido") self.assertEqual(pkgname, "foo") self.assertEqual(py_version_short, PY_VERSION_SHORT) # Check that other values in scheme have not been modified for k, v in scheme.items(): self.assertEqual(UNIX_REFERENCE[k], v) self.options.eprefix = "/home/exec/guido" scheme = self._compute_scheme(bento_info, self.options) prefix = scheme.pop("prefix") eprefix = scheme.pop("eprefix") py_version_short = scheme.pop("py_version_short") pkgname = scheme.pop("pkgname") self.assertEqual(prefix, "/home/guido") self.assertEqual(eprefix, "/home/exec/guido") self.assertEqual(pkgname, "foo") self.assertEqual(py_version_short, PY_VERSION_SHORT) # Check that other values in scheme have not been modified for k, v in scheme.items(): self.assertEqual(UNIX_REFERENCE[k], v) @mock.patch("sys.platform", "linux2") def test_scheme_with_eprefix_fail(self): bento_info = """\ Name: foo """ self.options.eprefix = "/home/guido" self.assertRaises(NotImplementedError, lambda: self._compute_scheme(bento_info, self.options)) @mock.patch("sys.platform", "linux2") @mock.patch("bento.commands.configure.virtualenv_prefix", lambda: None) @mock.patch("bento.core.platforms.sysconfig.bento.utils.path.find_root", lambda ignored: r"/") @mock.patch("distutils.command.install.INSTALL_SCHEMES", {"unix_local": MOCK_DEBIAN_SCHEME}, create=True) def test_scheme_debian(self): bento_info = """\ Name: foo """ scheme = self._compute_scheme(bento_info, self.options) prefix = scheme.pop("prefix") eprefix = scheme.pop("eprefix") sitedir = scheme.pop("sitedir") includedir = scheme.pop("includedir") self.assertEqual(prefix, "/usr/local") self.assertEqual(eprefix, "/usr/local") self.assertEqual(sitedir, "/usr/local/lib/python%s/dist-packages" % PY_VERSION_SHORT) self.assertEqual(includedir, "/usr/local/include/python%s/foo" % PY_VERSION_SHORT) scheme.pop("py_version_short") scheme.pop("pkgname") # Check that other values in scheme have not been modified for k, v in scheme.items(): self.assertEqual(UNIX_REFERENCE[k], v) @mock.patch("sys.platform", "linux2") @mock.patch("bento.core.platforms.sysconfig.bento.utils.path.find_root", lambda ignored: r"/") @mock.patch("bento.commands.configure.virtualenv_prefix", lambda: "/home/guido/.env") def test_scheme_venv(self): bento_info = """\ Name: foo """ scheme = self._compute_scheme(bento_info, self.options) prefix = scheme.pop("prefix") eprefix = scheme.pop("eprefix") self.assertEqual(prefix, "/home/guido/.env") self.assertEqual(eprefix, "/home/guido/.env") scheme.pop("py_version_short") scheme.pop("pkgname") # Check that other values in scheme have not been modified for k, v in scheme.items(): self.assertEqual(UNIX_REFERENCE[k], v) class TestWin32Scheme(unittest.TestCase): def setUp(self): super(TestWin32Scheme, self).setUp() options = mock.Mock() options.eprefix = None options.prefix = None self.options = options def _compute_scheme(self, bento_info, options): package_options = PackageOptions.from_string(bento_info) pkg = PackageDescription.from_string(bento_info) scheme = _compute_scheme(package_options) set_scheme_win32(scheme, options, pkg) return scheme @mock.patch("sys.platform", "win32") @mock.patch("bento.core.platforms.sysconfig.bento.utils.path.find_root", lambda ignored: "C:\\") @mock.patch("sys.prefix", r"C:\Python%s" % PY_VERSION_SHORT_NO_DOT) @mock.patch("sys.exec_prefix", r"C:\Python%s" % PY_VERSION_SHORT_NO_DOT) def test_scheme_default(self): bento_info = """\ Name: foo """ self.options.prefix = self.eprefix = None scheme = self._compute_scheme(bento_info, self.options) prefix = scheme.pop("prefix") eprefix = scheme.pop("eprefix") py_version_short = scheme.pop("py_version_short") pkgname = scheme.pop("pkgname") self.assertEqual(prefix, sys.prefix) self.assertEqual(eprefix, sys.exec_prefix) self.assertEqual(pkgname, "foo") self.assertEqual(py_version_short, PY_VERSION_SHORT) # Check that other values in scheme have not been modified for k, v in scheme.items(): self.assertEqual(WIN32_REFERENCE[k], v, "discrepency for path %s: %s vs %s" % (k, WIN32_REFERENCE[k], v)) @mock.patch("sys.platform", "win32") @mock.patch("bento.core.platforms.sysconfig.bento.utils.path.find_root", lambda ignored: "C:\\") def test_scheme_prefix(self): bento_info = """\ Name: foo """ self.options.prefix = r"C:\foo" self.eprefix = None scheme = self._compute_scheme(bento_info, self.options) prefix = scheme.pop("prefix") eprefix = scheme.pop("eprefix") scheme.pop("py_version_short") scheme.pop("pkgname") self.assertEqual(prefix, r"C:\foo") self.assertEqual(eprefix, r"C:\foo") # Check that other values in scheme have not been modified for k, v in scheme.items(): self.assertEqual(WIN32_REFERENCE[k], v, "discrepency for path %s: %s vs %s" % (k, WIN32_REFERENCE[k], v))
34.846774
117
0.64553
5dd6f8ed6415b20b8c562de190ffa03177cd0fab
3,432
py
Python
dace/codegen/prettycode.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
1
2021-07-26T07:58:06.000Z
2021-07-26T07:58:06.000Z
dace/codegen/prettycode.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
null
null
null
dace/codegen/prettycode.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
1
2021-03-04T13:01:48.000Z
2021-03-04T13:01:48.000Z
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. """ Code I/O stream that automates indentation and mapping of code to SDFG nodes. """ from six import StringIO from dace.config import Config class CodeIOStream(StringIO): """ Code I/O stream that automates indentation and mapping of code to SDFG nodes. """ def __init__(self, base_indentation=0): super(CodeIOStream, self).__init__() self._indent = 0 self._spaces = int(Config.get('compiler', 'indentation_spaces')) def write(self, contents, sdfg=None, state_id=None, node_id=None): # Delete single trailing newline, as this will be implicitly inserted # anyway if contents: if contents[-1] == "\n": lines = contents[:-1].split("\n") else: lines = contents.split('\n') else: lines = contents # If SDFG/state/node location is given, annotate this line if sdfg is not None: location_identifier = ' ////__DACE:%d' % sdfg.sdfg_id if state_id is not None: location_identifier += ':' + str(state_id) if node_id is not None: if not isinstance(node_id, list): node_id = [node_id] for i, nid in enumerate(node_id): if not isinstance(nid, int): node_id[i] = sdfg.nodes()[state_id].node_id(nid) location_identifier += ':' + ','.join( [str(nid) for nid in node_id]) else: location_identifier = '' # Write each line separately for line in lines: opening_braces = line.count('{') closing_braces = line.count('}') # Count closing braces before opening ones (e.g., for "} else {") first_opening_brace = line.find('{') initial_closing_braces = 0 if first_opening_brace > 0: initial_closing_braces = line[:first_opening_brace].count('}') closing_braces -= initial_closing_braces brace_balance = opening_braces - closing_braces # Write line and then change indentation if initial_closing_braces > 0: self._indent -= initial_closing_braces if brace_balance < 0: self._indent += brace_balance codeline = self._indent * self._spaces * ' ' + line.strip() # Location identifier is written at character 81 and on, find out # how many spaces we need to add for that loc_spaces = max(80 - len(codeline), 2) if location_identifier != '': super(CodeIOStream, self).write(codeline + loc_spaces * ' ' + location_identifier + '\n') else: # avoid ending spaces (useful for OpenCL and multiline macros) super(CodeIOStream, self).write(codeline + '\n') if brace_balance > 0: self._indent += brace_balance # If indentation failed, warn user if self._indent < -1: super(CodeIOStream, self).write( '///WARNING: Indentation failure! This probably ' + 'indicates an error in the SDFG.\n') self._indent = 0
40.857143
81
0.550991
2a88d970abb658d6fe65c9795e36dc4c9fb1bfc4
2,329
py
Python
legal_ner/utils/prepare_pretraining_data.py
openlegaldata/legal-ner
3a9e8301b05f97ab159e24a3b3c7670b63ccb665
[ "MIT" ]
22
2019-02-12T09:50:40.000Z
2021-07-05T22:00:00.000Z
legal_ner/utils/prepare_pretraining_data.py
vishenka-git/legal-ner
3a9e8301b05f97ab159e24a3b3c7670b63ccb665
[ "MIT" ]
null
null
null
legal_ner/utils/prepare_pretraining_data.py
vishenka-git/legal-ner
3a9e8301b05f97ab159e24a3b3c7670b63ccb665
[ "MIT" ]
5
2019-02-08T04:34:33.000Z
2020-05-24T01:13:34.000Z
import re from pathlib import Path import plac import srsly from legal_ner.preprocessing import HtmlConcealer def split_paragraphs(string): paragraph_delimiter = re.compile(r'\n') paragraphs = [] while True: m = re.search(paragraph_delimiter, string) if m is None: paragraphs += [string] break paragraphs += [string[:m.start(0)]] string = string[m.end(0):] return paragraphs @plac.annotations( input=('Path to json dump of oldp cases', 'option', 'i', Path), output=('Path to jsonl file with raw texts', 'option', 'o', Path) ) def main(input: Path, output: Path): """A script to prepare unsupervised pretraining data for spacy. The created data is intended to be used with the commands https://spacy.io/api/cli#pretrain and consecutively https://spacy.io/api/cli#train""" if not output.parent.exists(): output.parent.mkdir(parents=True, exist_ok=True) with input.open(mode='r') as in_f: with output.open(mode='w') as out_f: print("Preparing training data...") for line in in_f: json = srsly.json_loads(line) concealer = HtmlConcealer(json['content']) # the order is crucial concealer.replace_html_special_ents() concealer.remove_pattern(r'<br.*>', replace_with='\n') # html linebreaks concealer.remove_pattern(r'<[^>]+>') # html tags concealer.remove_pattern(r'\xa0+|\t| {2,}', replace_with=' ') # white space concealer.remove_enumeration_numbers() concealer.remove_pattern(r'(^ +)|( +$)', flags=re.MULTILINE) # leading or trailing whitespace concealer.remove_pattern(r'^[A-ZÄÜÖ]( [a-zäüö]){4,}( :)?$', flags=re.MULTILINE) # whitespace # separated letters for headlines, e.g. T e n o r concealer.remove_pattern(r'\n{2,}', replace_with='\n') # duplicate newlines concealer.remove_pattern(r'(^\n)|(\n$)') # newline at start or end paragraphs = split_paragraphs(concealer.get_content()) out_f.writelines(['{"text": "' + p + '"}\n' for p in paragraphs if len(p) > 10]) print("...finished!") if __name__ == '__main__': plac.call(main)
40.859649
112
0.603693
750cda8952c7af399a41c5f53b354b95b48f5c8a
2,367
py
Python
models/tohinz_models.py
chunchentu/EvadeML-Zoo
dd8e85b9424871496a4dfb62f603f97e733f2433
[ "MIT" ]
164
2017-08-18T16:24:44.000Z
2022-03-18T19:32:17.000Z
models/tohinz_models.py
chunchentu/EvadeML-Zoo
dd8e85b9424871496a4dfb62f603f97e733f2433
[ "MIT" ]
14
2018-12-19T20:58:54.000Z
2022-03-13T14:34:41.000Z
models/tohinz_models.py
chunchentu/EvadeML-Zoo
dd8e85b9424871496a4dfb62f603f97e733f2433
[ "MIT" ]
74
2017-11-06T15:35:19.000Z
2022-02-09T05:53:09.000Z
from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten, Lambda from keras.layers import MaxPooling2D, Conv2D from keras.layers.normalization import BatchNormalization def tohinz_svhn_model(logits=False, input_range_type=2, pre_filter=lambda x:x): input_shape=(32, 32, 3) nb_filters = 32 nb_denses = [512,10] return tohinz_model(input_shape, nb_filters, nb_denses, logits, input_range_type, pre_filter) def tohinz_model(input_shape, nb_filters, nb_denses, logits, input_range_type, pre_filter): model = Sequential() if input_range_type == 1: # The input data range is [0, 1]. # Convert to [-0.5,0.5] by x-0.5. scaler = lambda x: x-0.5 elif input_range_type == 2: # The input data range is [-0.5, 0.5]. # Don't need to do scaling for carlini models, as it is the input range by default. scaler = lambda x: x elif input_range_type == 3: # The input data range is [-1, 1]. Convert to [-0.5,0.5] by x/2. scaler = lambda x: x/2 model.add(Lambda(scaler, input_shape=input_shape)) model.add(Lambda(pre_filter, output_shape=input_shape)) model.add(Conv2D(nb_filters, kernel_size=3, input_shape=input_shape, padding="same")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(nb_filters, 3, padding="same")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.3)) model.add(Conv2D(nb_filters*2, 3)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(nb_filters*2, 3, padding="same")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.3)) model.add(Conv2D(nb_filters*4, 3)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(nb_filters*4, 3, padding="same")) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(nb_denses[0], activation='relu')) model.add(Dropout(0.3)) model.add(Dense(nb_denses[1])) if not logits: model.add(Activation('softmax')) return model
33.814286
97
0.682298
1ae64f81cf524efc20569591f33ed71e16eb46a8
906
py
Python
.history/extract-table-camelot_20220617141938.py
tjxj/pdf2docx
3338a95f1a971de8caf0369fa3ce794d2d6d57cd
[ "Apache-2.0" ]
null
null
null
.history/extract-table-camelot_20220617141938.py
tjxj/pdf2docx
3338a95f1a971de8caf0369fa3ce794d2d6d57cd
[ "Apache-2.0" ]
null
null
null
.history/extract-table-camelot_20220617141938.py
tjxj/pdf2docx
3338a95f1a971de8caf0369fa3ce794d2d6d57cd
[ "Apache-2.0" ]
null
null
null
from os import set_inheritable import camelot import pandas as pd tables = camelot.read_pdf('/Users/huhaiyang/Archives/2020.pdf',pages='1-3') #tables.export('foo22.csv') # json, excel, html, markdown, sqlite # tables[1] # tables[1].parsing_report # { # 'accuracy': 99.02, # 'whitespace': 12.24, # 'order': 1, # 'page': 2 # } # tables[1].to_csv('foo.csv') # to_json, to_excel, to_html, to_markdown, to_sqlite # #tables[0].df # get a pandas DataFrame! result = pd.ExcelWriter('result.xlsx') # for table in tables: # table = table.df # for i in range(0,len(tables)): # sheetname = str(i) # table.to_excel(result, sheetname,index=False) # 写入同一个表的不同sheet for i in range(0,len(tables)): table = tables[i].df sheetname = str(i) table.to_excel(result, sheetname,index=False) # 写入同一个表的不同sheet result.save() # print(tables[1].df.info()) # print(len(tables))
28.3125
82
0.661148
88a2a6e176f47e4a63a4beaeba9b75bd30c71ff4
1,368
py
Python
eha_jsonpath/__init__.py
hughpyle/jsonpath-extensions
0b053ac61d85d836fd3240a25b18a436a438bc15
[ "Apache-2.0" ]
1
2021-07-12T05:12:20.000Z
2021-07-12T05:12:20.000Z
eha_jsonpath/__init__.py
hughpyle/jsonpath-extensions
0b053ac61d85d836fd3240a25b18a436a438bc15
[ "Apache-2.0" ]
2
2019-05-16T17:31:50.000Z
2019-05-20T15:44:23.000Z
eha_jsonpath/__init__.py
hughpyle/jsonpath-extensions
0b053ac61d85d836fd3240a25b18a436a438bc15
[ "Apache-2.0" ]
1
2020-09-16T12:19:47.000Z
2020-09-16T12:19:47.000Z
from jsonpath_ng.ext.parser import ExtentedJsonPathParser from . import ext_functions as fn # You must use this parser instead of the normal or ext one. class JsonPathParser(ExtentedJsonPathParser): "Aether extension of jsonpath_ng extensions..." # register all exposed functions in this method def p_jsonpath_named_operator(self, p): "jsonpath : NAMED_OPERATOR" if p[1].startswith("splitlist("): p[0] = fn.SplitList(p[1]) elif p[1].startswith("cast("): p[0] = fn.Cast(p[1]) elif p[1].startswith("match("): p[0] = fn.Match(p[1]) elif p[1].startswith("notmatch("): p[0] = fn.NotMatch(p[1]) elif p[1].startswith("epoch("): p[0] = fn.ParseEpochDatetime(p[1]) elif p[1].startswith("datetime("): p[0] = fn.ParseDatetime(p[1]) elif p[1].startswith("hash("): p[0] = fn.Hash(p[1]) elif p[1].startswith("valuereplace("): p[0] = fn.ValueReplace(p[1]) elif p[1].startswith("template("): p[0] = fn.Template(p[1]) elif p[1].startswith("dictionaryreplace("): p[0] = fn.DictionaryReplace(p[1]) else: super(JsonPathParser, self).p_jsonpath_named_operator(p) def parse(path, debug=False): return JsonPathParser(debug=debug).parse(path)
36
68
0.590643
42de41a08eb9bb12f0987ac03e4da0e50b97b75a
7,244
py
Python
pyNetCDF/concatNetcdfFiles.py
mjsauvinen/P4US
ba7bbc77a6e482f612ba5aa5f021a41fcbb23345
[ "MIT" ]
4
2017-06-10T13:34:29.000Z
2021-10-08T14:33:43.000Z
pyNetCDF/concatNetcdfFiles.py
mjsauvinen/P4US
ba7bbc77a6e482f612ba5aa5f021a41fcbb23345
[ "MIT" ]
8
2018-07-10T12:00:49.000Z
2021-09-16T13:58:59.000Z
pyNetCDF/concatNetcdfFiles.py
mjsauvinen/P4US
ba7bbc77a6e482f612ba5aa5f021a41fcbb23345
[ "MIT" ]
6
2019-05-03T07:29:12.000Z
2022-01-21T03:10:27.000Z
#!/usr/bin/env python3 from netcdfTools import * import sys import argparse import numpy as np ''' Description: Author: Mikko Auvinen Finnish Meteorological Institute ''' #==========================================================# def idBounds( cmin, cmaxL, cminL, dc, nc ): ic1 = np.round((cminL-cmin)/dc , decimals=0).astype(int) ic2 = np.round((cmaxL-cmin)/dc , decimals=0).astype(int)+1 ic2 = np.minimum( nc, ic2 ) return ic1, ic2 #==========================================================# #==========================================================# parser = argparse.ArgumentParser(prog='concat3dNetCDF.py') parser.add_argument("-f", "--filenames",type=str, nargs='+', default=None, \ help="Name of the input NETCDF file.") parser.add_argument("-fo", "--fileout",type=str, default="CONCAT.nc",\ help="Name of the output NETCDF file.") parser.add_argument("-sn", "--scalars",type=str, nargs='+', default=None,\ help="(Optional) Scalars to be included.") parser.add_argument("-so", "--scalarsOnly", action="store_true", default=False,\ help="Only scalars, skip wind vector components.") parser.add_argument("-nt", "--ntimeskip", type=int, default=0,\ help="Skip <nt> number of time steps.") args = parser.parse_args() #==========================================================# # Initial renaming operations and variable declarations filenames = args.filenames fileout = args.fileout scalars = args.scalars ntskip = args.ntimeskip scalarsOnly = args.scalarsOnly parameter = True; variable = False dtol = 1E-5 # distance tolerance # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # # Open output NetCDF file dso = netcdfOutputDataset( fileout ) # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # if(scalarsOnly): vstr = scalars[0] else: vstr = 'u' if( filenames is not None ): Nf = len(filenames) else: sys.exit(' No input NETCDF files given. Exiting ...') dsL = list() xL = list() yL = list() zL = list() timeL = list() uL = list() vL = list() wL = list() sL = list() tv = None xMaxL = np.zeros(Nf); yMaxL = np.zeros(Nf); zMaxL = np.zeros(Nf) xMinL = np.zeros(Nf); yMinL = np.zeros(Nf); zMinL = np.zeros(Nf) xMaxL[:] = yMaxL[:] = zMaxL[:] = -9999. xMinL[:] = yMinL[:] = zMinL[:] = 9999. dxo = dyo = dzo = None nto = None for n,fn in enumerate(filenames): ds, varList, paramList = netcdfDataset(fn) dsL.append( ds ) time, time_dims = read1DVariableFromDataset('time',vstr, ds, ntskip, 0, 1 ) # All values. print(' time dim = {} '.format(time_dims)) if( nto is None ): nto = len(time) else: print(' Checking time array dimensions ...') if( nto != len(time) ): sys.exit(' Time dimensions do not match ') x, x_dims = read1DVariableFromDataset( 'x',vstr, ds, 0, 0, 1 ) y, y_dims = read1DVariableFromDataset( 'y',vstr, ds, 0, 0, 1 ) z, z_dims = read1DVariableFromDataset( 'z',vstr, ds, 0, 0, 1 ) # A check should be entered dx=np.mean(x[1:]-x[:-1]); dy=np.mean(y[1:]-y[:-1]); dz=np.mean(z[1:]-z[:-1]) print('dx={:.3f}; dy={:.3f}; dz={:.3f}'.format(dx,dy,dz)) if( dxo is None ): dxo = dx; dyo = dy; dzo = dz else: print(' Checking that resolutions match ...') if( np.abs(dx-dxo)>dtol ): sys.exit(' dx do not match ') if( np.abs(dy-dyo)>dtol ): sys.exit(' dy do not match ') if( np.abs(dz-dzo)>dtol ): sys.exit(' dz do not match ') # Store coord arrays and record min and max values timeL.append(time) xL.append(x); xMaxL[n]=np.max(x); xMinL[n]=np.min(x) yL.append(y); yMaxL[n]=np.max(y); yMinL[n]=np.min(y) zL.append(z); zMaxL[n]=np.max(z); zMinL[n]=np.min(z) # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # # Global coordinate bounds xMax = np.max(xMaxL); xMin = np.min(xMinL) yMax = np.max(yMaxL); yMin = np.min(yMinL) zMax = np.max(zMaxL); zMin = np.min(zMinL) # Create global coords xc = np.arange( xMin, xMax+dx, dx ) yc = np.arange( yMin, yMax+dy, dy ) zc = np.arange( zMin, zMax+dz, dz ) nt = len(time) nx = len(xc); ny = len(yc); nz = len(zc) # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # tv = createNetcdfVariable( dso, time,'time', nt ,'s','f4',('time',), parameter ) xv = createNetcdfVariable( dso, xc , 'x' , nx , 'm', 'f4', ('x',) , parameter ) yv = createNetcdfVariable( dso, yc , 'y' , ny , 'm', 'f4', ('y',) , parameter ) zv = createNetcdfVariable( dso, zc , 'z' , nz , 'm', 'f4', ('z',) , parameter ) # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # if( not scalarsOnly ): print('Concatenating u arrays ...') uc = np.zeros( (nt, nz, ny, nx) ); print(' u concat shape = {} '.format((nt, nz, ny, nx))) for n in range(Nf): u, u_dims = read3DVariableFromDataset( 'u', dsL[n], ntskip, 0, 0, 1 ) # All values. print(' u dims = {} '.format(u_dims)) i1, i2 = idBounds(xMin, xMaxL[n], xMinL[n], dx, nx ) print(' i1, i2 = {}, {} '.format(i1,i2)) j1, j2 = idBounds(yMin, yMaxL[n], yMinL[n], dy, ny ) print(' j1, j2 = {}, {} '.format(j1,j2)) k1, k2 = idBounds(zMin, zMaxL[n], zMinL[n], dz, nz ) print(' k1, k2 = {}, {} '.format(k1,k2)) uc[:,k1:k2, j1:j2, i1:i2] = u[:,:,:,:] u = None uv = createNetcdfVariable(dso,uc,'u', nt, 'm/s', 'f4',('time','z','y','x',), variable) uc = None # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # print('Concatenating v arrays ...') vc = np.zeros( (nt, nz, ny, nx) ) for n in range(Nf): v, v_dims = read3DVariableFromDataset( 'v', dsL[n], ntskip, 0, 0, 1 ) # All values. i1, i2 = idBounds( xMin, xMaxL[n], xMinL[n], dx, nx ) j1, j2 = idBounds( yMin, yMaxL[n], yMinL[n], dy, ny ) k1, k2 = idBounds( zMin, zMaxL[n], zMinL[n], dz, nz ) vc[:,k1:k2, j1:j2, i1:i2] = v[:,:,:,:] v = None vv = createNetcdfVariable(dso,vc,'v', nt, 'm/s', 'f4',('time','z','y','x',), variable) vc = None # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # print('Concatenating w arrays ...') wc = np.zeros( (nt, nz, ny, nx) ) for n in range(Nf): w, w_dims = read3DVariableFromDataset( 'w', dsL[n], ntskip, 0, 0, 1 ) # All values. i1, i2 = idBounds( xMin, xMaxL[n], xMinL[n], dx, nx ) j1, j2 = idBounds( yMin, yMaxL[n], yMinL[n], dy, ny ) k1, k2 = idBounds( zMin, zMaxL[n], zMinL[n], dz, nz ) wc[:,k1:k2, j1:j2, i1:i2] = w[:,:,:,:] w = None wv = createNetcdfVariable(dso,wc,'w', nt, 'm/s', 'f4',('time','z','y','x',), variable) wc = None # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # if( scalars ): sv = list() for sn in scalars: print('Concatenating {} arrays ...'.format(sn)) sc = np.zeros( (nt, nz, ny, nx) ) for n in range(Nf): s, s_dims = read3DVariableFromDataset( sn, dsL[n], ntskip, 0, 0, 1 ) # All values. i1, i2 = idBounds( xMin, xMaxL[n], xMinL[n], dx, nx ) j1, j2 = idBounds( yMin, yMaxL[n], yMinL[n], dy, ny ) k1, k2 = idBounds( zMin, zMaxL[n], zMinL[n], dz, nz ) sc[:,k1:k2, j1:j2, i1:i2] = s[:,:,:,:] s = None sv.append(createNetcdfVariable(dso,sc,sn,nt,'-','f4',('time','z','y','x',),variable)) sc = None # - - - - Done , finalize the output - - - - - - - - - - netcdfWriteAndClose( dso )
34.331754
92
0.53037
c3eb0dc1e8912dc690efbd1f04f7f94a7981ce25
3,041
py
Python
buildings/tests/gui/test_setup_edit_geometry_production.py
strk/nz-buildings
8dc8ee19d322837380bb4f016b01eccee2c1bd0a
[ "PostgreSQL", "CC-BY-4.0" ]
2
2020-02-21T00:46:31.000Z
2020-08-17T14:22:19.000Z
buildings/tests/gui/test_setup_edit_geometry_production.py
strk/nz-buildings
8dc8ee19d322837380bb4f016b01eccee2c1bd0a
[ "PostgreSQL", "CC-BY-4.0" ]
243
2018-12-16T22:01:54.000Z
2022-01-10T20:09:24.000Z
buildings/tests/gui/test_setup_edit_geometry_production.py
strk/nz-buildings
8dc8ee19d322837380bb4f016b01eccee2c1bd0a
[ "PostgreSQL", "CC-BY-4.0" ]
1
2020-03-24T10:35:43.000Z
2020-03-24T10:35:43.000Z
# -*- coding: utf-8 -*- """ ################################################################################ # # Copyright 2018 Crown copyright (c) # Land Information New Zealand and the New Zealand Government. # All rights reserved # # This program is released under the terms of the 3 clause BSD license. See the # LICENSE file for more information. # ################################################################################ Tests: Edit Production Outline GUI setup confirm default settings ***************************************************************************/ """ import unittest from qgis.PyQt.QtCore import Qt from qgis.core import QgsProject from qgis.utils import plugins, iface class SetUpEditProduction(unittest.TestCase): """ Test Edit Outline GUI initial setup confirm default settings """ def setUp(self): """Runs before each test.""" self.building_plugin = plugins.get("buildings") self.building_plugin.main_toolbar.actions()[0].trigger() self.dockwidget = self.building_plugin.dockwidget sub_menu = self.dockwidget.lst_sub_menu sub_menu.setCurrentItem(sub_menu.findItems("Edit Outlines", Qt.MatchExactly)[0]) self.production_frame = self.dockwidget.current_frame self.edit_dialog = self.production_frame.edit_dialog for action in iface.building_toolbar.actions(): if action.text() == "Edit Geometry": action.trigger() def tearDown(self): """Runs after each test.""" self.production_frame.btn_exit.click() def test_production_gui_set_up(self): """ Initial set up of the frame """ self.assertTrue(self.edit_dialog.isVisible()) self.assertFalse(self.edit_dialog.layout_status.isVisible()) self.assertTrue(self.edit_dialog.layout_capture_method.isVisible()) self.assertFalse(self.edit_dialog.layout_lifecycle_stage.isVisible()) self.assertFalse(self.edit_dialog.layout_general_info.isVisible()) self.assertFalse(self.edit_dialog.layout_end_lifespan.isVisible()) self.assertFalse(self.edit_dialog.btn_edit_save.isEnabled()) self.assertFalse(self.edit_dialog.btn_edit_reset.isEnabled()) self.assertFalse(self.edit_dialog.cmb_capture_method.isEnabled()) def test_layer_registry(self): """ Layer registry has the correct components """ layer_bool = False edit_bool = False root = QgsProject.instance().layerTreeRoot() group = root.findGroup("Building Tool Layers") layers = group.findLayers() names = [layer.layer().name() for layer in layers] if "building_outlines" in names and "historic_outlines" in names: layer_bool = True for layer in layers: if ( layer.layer().name() == "building_outlines" and layer.layer().isEditable() ): edit_bool = True self.assertTrue(layer_bool) self.assertTrue(edit_bool)
38.0125
88
0.62315
9e9b6d7f50ee4888913900942398cba4d6f17430
8,000
py
Python
scripts/kconfig/kconfig.py
jaruiz/zephyr
2a103ea67493ebcae5c5d7720f6e1a38a05faff1
[ "Apache-2.0" ]
2
2018-12-17T21:00:20.000Z
2019-02-03T09:47:38.000Z
scripts/kconfig/kconfig.py
jaruiz/zephyr
2a103ea67493ebcae5c5d7720f6e1a38a05faff1
[ "Apache-2.0" ]
6
2019-01-09T08:50:20.000Z
2019-07-29T09:47:59.000Z
scripts/kconfig/kconfig.py
jaruiz/zephyr
2a103ea67493ebcae5c5d7720f6e1a38a05faff1
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Modified from: https://github.com/ulfalizer/Kconfiglib/blob/master/examples/merge_config.py import argparse import os import sys import textwrap from kconfiglib import Kconfig, Symbol, BOOL, STRING, TRISTATE, TRI_TO_STR # Warnings that won't be turned into errors (but that will still be printed), # identified by a substring of the warning. The warning texts from Kconfiglib # are guaranteed to not change. WARNING_WHITELIST = ( # Warning generated when a symbol with unsatisfied dependencies is being # selected. These should be investigated, but whitelist them for now. "y-selected", ) def fatal(warning): # Returns True if 'warning' is not whitelisted and should be turned into an # error for wl_warning in WARNING_WHITELIST: if wl_warning in warning: return False # Only allow enabled (printed) warnings to be fatal return enabled(warning) def enabled(warning): # Returns True if 'warning' should be printed # Some prj.conf files seem to deliberately override settings from the board # configuration (e.g. samples/bluetooth/hci_usb/prj.conf, with GPIO=y). # Disable the warning about a symbol being assigned more than once. return "set more than once" not in warning def main(): parse_args() print("Parsing Kconfig tree in {}".format(args.kconfig_root)) kconf = Kconfig(args.kconfig_root, warn_to_stderr=False) # Enable warnings for assignments to undefined symbols kconf.enable_undef_warnings() for i, config in enumerate(args.conf_fragments): print(("Loading {} as base" if i == 0 else "Merging {}") .format(config)) # replace=False creates a merged configuration kconf.load_config(config, replace=False) # Print warnings for symbols whose actual value doesn't match the assigned # value for sym in kconf.unique_defined_syms: # Was the symbol assigned to? Choice symbols are checked separately. if sym.user_value is not None and not sym.choice: verify_assigned_sym_value(sym) # Print warnings for choices whose actual selection doesn't match the user # selection for choice in kconf.unique_choices: if choice.user_selection: verify_assigned_choice_value(choice) # Hack: Force all symbols to be evaluated, to catch warnings generated # during evaluation. Wait till the end to write the actual output files, so # that we don't generate any output if there are warnings-turned-errors. # # Kconfiglib caches calculated symbol values internally, so this is still # fast. kconf.write_config(os.devnull) # We could roll this into the loop below, but it's nice to always print all # warnings, even if one of them turns out to be fatal for warning in kconf.warnings: if enabled(warning): print("\n" + warning, file=sys.stderr) # Turn all warnings except for explicity whitelisted ones into errors. In # particular, this will turn assignments to undefined Kconfig variables # into errors. # # A warning is generated by this script whenever a symbol gets a different # value than the one it was assigned. Keep that one as just a warning for # now as well. for warning in kconf.warnings: if fatal(warning): sys.exit("\n" + textwrap.fill( "Error: Aborting due to non-whitelisted Kconfig " "warning '{}'.\nNote: If this warning doesn't point " "to an actual problem, you can add it to the " "whitelist at the top of {}." .format(warning, sys.argv[0]), 100) + "\n") # Write the merged configuration and the C header kconf.write_config(args.dotconfig) kconf.write_autoconf(args.autoconf) # Message printed when a promptless symbol is assigned (and doesn't get the # assigned value) PROMPTLESS_HINT = """ This symbol has no prompt, meaning assignments in configuration files have no effect on it. It can only be set indirectly, via Kconfig defaults (e.g. in a Kconfig.defconfig file) or through being 'select'ed or 'imply'd (note: try to avoid Kconfig 'select's except for trivial promptless "helper" symbols without dependencies, as it ignores dependencies and forces symbols on).""" # Message about where to look up symbol information SYM_INFO_HINT = """ You can check symbol information (including dependencies) in the 'menuconfig' interface (see the Application Development Primer section of the manual), or in the Kconfig reference at http://docs.zephyrproject.org/latest/reference/kconfig/CONFIG_{}.html (which is updated regularly from the master branch). See the 'Setting configuration values' section of the Board Porting Guide as well.""" PROMPTLESS_HINT_EXTRA = """ It covers Kconfig.defconfig files.""" def verify_assigned_sym_value(sym): # Verifies that the value assigned to 'sym' "took" (matches the value the # symbol actually got), printing a warning otherwise # Tristate values are represented as 0, 1, 2. Having them as # "n", "m", "y" is more convenient here, so convert. if sym.type in (BOOL, TRISTATE): user_value = TRI_TO_STR[sym.user_value] else: user_value = sym.user_value if user_value != sym.str_value: msg = "warning: {} was assigned the value '{}' but got the " \ "value '{}'." \ .format(name_and_loc(sym), user_value, sym.str_value) if promptless(sym): msg += PROMPTLESS_HINT msg += SYM_INFO_HINT.format(sym.name) if promptless(sym): msg += PROMPTLESS_HINT_EXTRA # Use a large fill() width to try to avoid linebreaks in the symbol # reference link print("\n" + textwrap.fill(msg, 100), file=sys.stderr) def verify_assigned_choice_value(choice): # Verifies that the choice symbol that was selected (by setting it to y) # ended up as the selection, printing a warning otherwise. # # We check choice symbols separately to avoid warnings when two different # choice symbols within the same choice are set to y. This might happen if # a choice selection from a board defconfig is overriden in a prj.conf, for # example. The last choice symbol set to y becomes the selection (and all # other choice symbols get the value n). # # Without special-casing choices, we'd detect that the first symbol set to # y ended up as n, and print a spurious warning. if choice.user_selection is not choice.selection: msg = "warning: the choice symbol {} was selected (set =y), but {} " \ "ended up as the choice selection. {}" \ .format(name_and_loc(choice.user_selection), name_and_loc(choice.selection) if choice.selection else "no symbol", SYM_INFO_HINT.format(choice.user_selection.name)) print("\n" + textwrap.fill(msg, 100), file=sys.stderr) def name_and_loc(sym): # Helper for printing the name and Kconfig file location(s) for a symbol if not sym.nodes: return sym.name + " (undefined)" return "{} (defined at {})".format( sym.name, ", ".join("{}:{}".format(node.filename, node.linenr) for node in sym.nodes)) def promptless(sym): # Returns True if 'sym' has no prompt. Since the symbol might be defined in # multiple locations, we need to check all locations. return not any(node.prompt for node in sym.nodes) def parse_args(): global args parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument("kconfig_root") parser.add_argument("dotconfig") parser.add_argument("autoconf") parser.add_argument("conf_fragments", metavar='conf', type=str, nargs='+') args = parser.parse_args() if __name__ == "__main__": main()
37.914692
93
0.685875
0488b8c23e44049164a74d7969dd9273cd547974
23,338
py
Python
src/skmultiflow/evaluation/evaluate_prequential_delayed.py
denisesato/scikit-multiflow
3eb4c7262bb60d7e3f65c0d3395e4572d9a8cb95
[ "BSD-3-Clause" ]
663
2017-11-16T15:48:45.000Z
2022-03-28T07:38:17.000Z
src/skmultiflow/evaluation/evaluate_prequential_delayed.py
denisesato/scikit-multiflow
3eb4c7262bb60d7e3f65c0d3395e4572d9a8cb95
[ "BSD-3-Clause" ]
293
2017-12-16T12:33:49.000Z
2022-02-22T03:34:25.000Z
src/skmultiflow/evaluation/evaluate_prequential_delayed.py
denisesato/scikit-multiflow
3eb4c7262bb60d7e3f65c0d3395e4572d9a8cb95
[ "BSD-3-Clause" ]
201
2017-11-30T15:52:30.000Z
2022-03-25T21:46:55.000Z
import os import warnings import re import numpy as np from timeit import default_timer as timer from numpy import unique from skmultiflow.evaluation.base_evaluator import StreamEvaluator from skmultiflow.utils import constants from skmultiflow.data import TimeManager class EvaluatePrequentialDelayed(StreamEvaluator): """ The prequential evaluation delayed method. The prequential evaluation delayed is designed specifically for stream settings, in the sense that each sample serves two purposes, and that samples are analysed sequentially, in order of arrival, and are used to update the model only when their label are available, given their timestamps (arrival and available times). This method consists of using each sample to test the model, which means to make a predictions, and then the same sample is used to train the model (partial fit) after its label is available after a certain delay. This way the model is always tested on samples that it hasn't seen yet and updated on samples that have their labels available. Parameters ---------- n_wait: int (Default: 200) The number of samples to process between each test. Also defines when to update the plot if ``show_plot=True``. Note that setting ``n_wait`` too small can significantly slow the evaluation process. max_samples: int (Default: 100000) The maximum number of samples to process during the evaluation. batch_size: int (Default: 1) The number of samples to pass at a time to the model(s). pretrain_size: int (Default: 200) The number of samples to use to train the model before starting the evaluation. Used to enforce a 'warm' start. max_time: float (Default: float("inf")) The maximum duration of the simulation (in seconds). metrics: list, optional (Default: ['accuracy', 'kappa']) | The list of metrics to track during the evaluation. Also defines the metrics that will be displayed in plots and/or logged into the output file. Valid options are: | **Classification** | 'accuracy' | 'kappa' | 'kappa_t' | 'kappa_m' | 'true_vs_predicted' | 'precision' | 'recall' | 'f1' | 'gmean' | **Multi-target Classification** | 'hamming_score' | 'hamming_loss' | 'exact_match' | 'j_index' | **Regression** | 'mean_square_error' | 'mean_absolute_error' | 'true_vs_predicted' | **Multi-target Regression** | 'average_mean_squared_error' | 'average_mean_absolute_error' | 'average_root_mean_square_error' | **General purpose** (no plot generated) | 'running_time' | 'model_size' output_file: string, optional (Default: None) File name to save the summary of the evaluation. show_plot: bool (Default: False) If True, a plot will show the progress of the evaluation. Warning: Plotting can slow down the evaluation process. restart_stream: bool, optional (default: True) If True, the stream is restarted once the evaluation is complete. data_points_for_classification: bool(Default: False) If True, the visualization used is a cloud of data points (only works for classification) and default performance metrics are ignored. If specific metrics are required, then they *must* be explicitly set using the ``metrics`` attribute. Notes ----- 1. This evaluator can process a single learner to track its performance; or multiple learners at a time, to compare different models on the same stream. 2. The metric 'true_vs_predicted' is intended to be informative only. It corresponds to evaluations at a specific moment which might not represent the actual learner performance across all instances. 3. The metrics `running_time` and `model_size ` are not plotted when the `show_plot` option is set. Only their current value is displayed at the bottom of the figure. However, their values over the evaluation are written into the resulting csv file if the `output_file` option is set. Examples -------- >>> # The first example demonstrates how to evaluate one model >>> import numpy as np >>> import pandas as pd >>> from skmultiflow.data import TemporalDataStream >>> from skmultiflow.trees import HoeffdingTreeClassifier >>> from skmultiflow.evaluation import EvaluatePrequentialDelayed >>> >>> # Columns used to get the data, label and time from iris_timestamp dataset >>> DATA_COLUMNS = ["sepal_length", "sepal_width", "petal_length", "petal_width"] >>> LABEL_COLUMN = "label" >>> TIME_COLUMN = "timestamp" >>> >>> # Read a csv with stream data >>> data = pd.read_csv("https://raw.githubusercontent.com/scikit-multiflow/streaming-datasets/" >>> "master/iris_timestamp.csv") >>> # Convert time column to datetime >>> data[TIME_COLUMN] = pd.to_datetime(data[TIME_COLUMN]) >>> # Sort data by time >>> data = data.sort_values(by=TIME_COLUMN) >>> # Get X, y and time >>> X = data[DATA_COLUMNS].values >>> y = data[LABEL_COLUMN].values >>> time = data[TIME_COLUMN].values >>> >>> >>> # Set a delay of 1 day >>> delay_time = np.timedelta64(1, "D") >>> # Set the stream >>> stream = TemporalDataStream(X, y, time, sample_delay=delay_time, ordered=False) >>> >>> # Set the model >>> ht = HoeffdingTreeClassifier() >>> >>> # Set the evaluator >>> >>> evaluator = EvaluatePrequentialDelayed(batch_size=1, >>> pretrain_size=X.shape[0]//2, >>> max_samples=X.shape[0], >>> output_file='results_delay.csv', >>> metrics=['accuracy', 'recall', 'precision', 'f1', 'kappa']) >>> >>> # Run evaluation >>> evaluator.evaluate(stream=stream, model=ht, model_names=['HT']) >>> # The second example demonstrates how to compare two models >>> import numpy as np >>> import pandas as pd >>> from skmultiflow.data import TemporalDataStream >>> from skmultiflow.trees import HoeffdingTreeClassifier >>> from skmultiflow.bayes import NaiveBayes >>> from skmultiflow.evaluation import EvaluatePrequentialDelayed >>> >>> # Columns used to get the data, label and time from iris_timestamp dataset >>> DATA_COLUMNS = ["sepal_length", "sepal_width", "petal_length", "petal_width"] >>> LABEL_COLUMN = "label" >>> TIME_COLUMN = "timestamp" >>> >>> # Read a csv with stream data >>> data = pd.read_csv("../data/datasets/iris_timestamp.csv") >>> # Convert time column to datetime >>> data[TIME_COLUMN] = pd.to_datetime(data[TIME_COLUMN]) >>> # Sort data by time >>> data = data.sort_values(by=TIME_COLUMN) >>> # Get X, y and time >>> X = data[DATA_COLUMNS].values >>> y = data[LABEL_COLUMN].values >>> time = data[TIME_COLUMN].values >>> >>> >>> # Set a delay of 30 minutes >>> delay_time = np.timedelta64(30, "m") >>> # Set the stream >>> stream = TemporalDataStream(X, y, time, sample_delay=delay_time, ordered=False) >>> >>> # Set the models >>> ht = HoeffdingTreeClassifier() >>> nb = NaiveBayes() >>> >>> evaluator = EvaluatePrequentialDelayed(batch_size=1, >>> pretrain_size=X.shape[0]//2, >>> max_samples=X.shape[0], >>> output_file='results_delay.csv', >>> metrics=['accuracy', 'recall', 'precision', 'f1', 'kappa']) >>> >>> # Run evaluation >>> evaluator.evaluate(stream=stream, model=[ht, nb], model_names=['HT', 'NB']) """ def __init__(self, n_wait=200, max_samples=100000, batch_size=1, pretrain_size=200, max_time=float("inf"), metrics=None, output_file=None, show_plot=False, restart_stream=True, data_points_for_classification=False): super().__init__() self._method = 'prequential' self.n_wait = n_wait self.max_samples = max_samples self.pretrain_size = pretrain_size self.batch_size = batch_size self.max_time = max_time self.output_file = output_file self.show_plot = show_plot self.data_points_for_classification = data_points_for_classification if not self.data_points_for_classification: if metrics is None: self.metrics = [constants.ACCURACY, constants.KAPPA] else: if isinstance(metrics, list): self.metrics = metrics else: raise TypeError("Attribute 'metrics' must be 'None' or 'list', passed {}". format(type(metrics))) else: if metrics is None: self.metrics = [constants.DATA_POINTS] else: if isinstance(metrics, list): self.metrics = metrics self.metrics.append(constants.DATA_POINTS) else: raise TypeError("Attribute 'metrics' must be 'None' or 'list', passed {}". format(type(metrics))) self.restart_stream = restart_stream self.n_sliding = n_wait warnings.filterwarnings("ignore", ".*invalid value encountered in true_divide.*") warnings.filterwarnings("ignore", ".*Passing 1d.*") def evaluate(self, stream, model, model_names=None): """ Evaluates a model or set of models on samples from a stream. Parameters ---------- stream: Stream The stream from which to draw the samples. model: skmultiflow.core.BaseSKMObject or sklearn.base.BaseEstimator or list The model or list of models to evaluate. model_names: list, optional (Default=None) A list with the names of the models. Returns ------- StreamModel or list The trained model(s). """ self._init_evaluation(model=model, stream=stream, model_names=model_names) if self._check_configuration(): self._reset_globals() # Initialize metrics and outputs (plots, log files, ...) self._init_metrics() self._init_plot() self._init_file() self.model = self._train_and_test if self.show_plot: self.visualizer.hold() return self.model def _update_classifiers(self, X, y, sample_weight): # check if there are samples to update if len(X) > 0: # Train if self.first_run: for i in range(self.n_models): if self._task_type != constants.REGRESSION and \ self._task_type != constants.MULTI_TARGET_REGRESSION: # Accounts for the moment of training beginning self.running_time_measurements[i].compute_training_time_begin() self.model[i].partial_fit(X=X, y=y, classes=self.stream.target_values, sample_weight=sample_weight) # Accounts the ending of training self.running_time_measurements[i].compute_training_time_end() else: self.running_time_measurements[i].compute_training_time_begin() self.model[i].partial_fit(X=X, y=y, sample_weight=sample_weight) self.running_time_measurements[i].compute_training_time_end() # Update total running time self.running_time_measurements[i].update_time_measurements(self.batch_size) self.first_run = False else: for i in range(self.n_models): self.running_time_measurements[i].compute_training_time_begin() self.model[i].partial_fit(X, y, sample_weight=sample_weight) self.running_time_measurements[i].compute_training_time_end() self.running_time_measurements[i].update_time_measurements(self.batch_size) self.global_sample_count += len(X) # self.batch_size def _update_metrics_delayed(self, y_true_delayed, y_pred_delayed): # update metrics if y_pred_delayed has items if len(y_pred_delayed) > 0: for j in range(self.n_models): for i in range(len(y_pred_delayed[0])): self.mean_eval_measurements[j].add_result(y_true_delayed[i], y_pred_delayed[j][i]) self.current_eval_measurements[j].add_result(y_true_delayed[i], y_pred_delayed[j][i]) self._check_progress(self.actual_max_samples) if ((self.global_sample_count % self.n_wait) == 0 or (self.global_sample_count >= self.max_samples) or (self.global_sample_count / self.n_wait > self.update_count + 1)): if y_pred_delayed is not None: self._update_metrics() self.update_count += 1 def _transform_model_predictions(self, predictions): out = [] if len(predictions) > 0: for j in range(predictions.shape[1]): out.append(predictions[:, j]) out = np.asarray(out) return out def _transform_predictions_model(self, predictions): out = [] if len(predictions) > 0: for j in range(predictions.shape[1]): k = [] for i in range(predictions.shape[0]): k.append(predictions[i, j]) out.append(k) return out def _predict_samples(self, X): if X is not None: # Test prediction = [[] for _ in range(self.n_models)] for i in range(self.n_models): try: # Testing time self.running_time_measurements[i].compute_testing_time_begin() prediction[i].extend(self.model[i].predict(X)) self.running_time_measurements[i].compute_testing_time_end() except TypeError: raise TypeError("Unexpected prediction value from {}" .format(type(self.model[i]).__name__)) # adapt prediction matrix to sample-model instead of model-sample by transposing it y_pred = np.asarray(prediction) # transform y_pred_T = self._transform_model_predictions(y_pred) return y_pred_T @property def _train_and_test(self): """ Method to control the prequential evaluation. Returns ------- BaseSKMObject extension or list of BaseClassifier extensions The trained classifiers. """ self._start_time = timer() self._end_time = timer() print('Prequential Evaluation Delayed') print('Evaluating {} target(s).'.format(self.stream.n_targets)) self.actual_max_samples = self.stream.n_remaining_samples() if self.actual_max_samples == -1 or self.actual_max_samples > self.max_samples: self.actual_max_samples = self.max_samples self.first_run = True if self.pretrain_size > 0: print('Pre-training on {} sample(s).'.format(self.pretrain_size)) # get current batch X, y_true, arrival_time, available_time, sample_weight = self.stream.\ next_sample(self.pretrain_size) for i in range(self.n_models): if self._task_type == constants.CLASSIFICATION: # Training time computation self.running_time_measurements[i].compute_training_time_begin() self.model[i].partial_fit(X=X, y=y_true, classes=self.stream.target_values, sample_weight=sample_weight) self.running_time_measurements[i].compute_training_time_end() elif self._task_type == constants.MULTI_TARGET_CLASSIFICATION: self.running_time_measurements[i].compute_training_time_begin() self.model[i].partial_fit(X=X, y=y_true, classes=unique(self.stream.target_values), sample_weight=sample_weight) self.running_time_measurements[i].compute_training_time_end() else: self.running_time_measurements[i].compute_training_time_begin() self.model[i].partial_fit(X=X, y=y_true, sample_weight=sample_weight) self.running_time_measurements[i].compute_training_time_end() self.running_time_measurements[i].update_time_measurements(self.pretrain_size) self.global_sample_count += self.pretrain_size self.first_run = False # initialize time_manager with last timestamp available self.time_manager = TimeManager(arrival_time[-1]) self.update_count = 0 print('Evaluating...') while ((self.global_sample_count < self.actual_max_samples) & ( self._end_time - self._start_time < self.max_time) & (self.stream.has_more_samples())): try: # get current batch X, y_true, arrival_time, available_time, sample_weight = self.stream.\ next_sample(self.batch_size) # update current timestamp self.time_manager.update_timestamp(arrival_time[-1]) # get delayed samples to update model before predicting a new batch X_delayed, y_true_delayed, y_pred_delayed = self.time_manager.\ get_available_samples() # transpose prediction matrix to model-sample again y_pred_delayed = self._transform_predictions_model(y_pred_delayed) self._update_metrics_delayed(y_true_delayed=y_true_delayed, y_pred_delayed=y_pred_delayed) # before getting new samples, update classifiers with samples # that are already available self._update_classifiers(X=X_delayed, y=y_true_delayed, sample_weight=sample_weight) # predict samples and get predictions y_pred = self._predict_samples(X) # add current samples to delayed queue self.time_manager.update_queue(X=X, y_true=y_true, y_pred=y_pred, sample_weight=sample_weight, arrival_time=arrival_time, available_time=available_time) self._end_time = timer() except BaseException as exc: print(exc) if exc is KeyboardInterrupt: self._update_metrics() break # evaluate remaining samples in the delayed_queue # iterate over delay_queue while it has samples according to batch_size while self.time_manager.has_more_samples(): # get current samples to process X_delayed, y_true_delayed, y_pred_delayed, sample_weight = self.time_manager.\ next_sample(self.batch_size) # transpose prediction matrix to model-sample again y_pred_delayed = self._transform_predictions_model(y_pred_delayed) # update metrics self._update_metrics_delayed(y_true_delayed, y_pred_delayed) # update classifier with these samples for output models self._update_classifiers(X_delayed, y_true_delayed, sample_weight) self._end_time = timer() # Flush file buffer, in case it contains data self._flush_file_buffer() if len(set(self.metrics).difference({constants.DATA_POINTS})) > 0: self.evaluation_summary() else: print('Done') if self.restart_stream: self.stream.restart() return self.model def partial_fit(self, X, y, classes=None, sample_weight=None): """ Partially fit all the models on the given data. Parameters ---------- X: numpy.ndarray of shape (n_samples, n_features) The data upon which the estimators will be trained. y: numpy.ndarray of shape (, n_samples) The classification labels / target values for all samples in X. classes: list, optional (default=None) Stores all the classes that may be encountered during the classification task. Not used for regressors. sample_weight: numpy.ndarray, optional (default=None) Samples weight. If not provided, uniform weights are assumed. Returns ------- EvaluatePrequential self """ if self.model is not None: for i in range(self.n_models): if self._task_type == constants.CLASSIFICATION or \ self._task_type == constants.MULTI_TARGET_CLASSIFICATION: self.model[i].partial_fit(X=X, y=y, classes=classes, sample_weight=sample_weight) else: self.model[i].partial_fit(X=X, y=y, sample_weight=sample_weight) return self else: return self def predict(self, X): """ Predicts with the estimator(s) being evaluated. Parameters ---------- X: numpy.ndarray of shape (n_samples, n_features) All the samples we want to predict the label for. Returns ------- list of numpy.ndarray Model(s) predictions """ predictions = None if self.model is not None: predictions = [] for i in range(self.n_models): predictions.append(self.model[i].predict(X)) return predictions def get_info(self): info = self.__repr__() if self.output_file is not None: _, filename = os.path.split(self.output_file) info = re.sub(r"output_file=(.\S+),", "output_file='{}',".format(filename), info) return info
41.306195
99
0.587197
dfea85318cf11eb86eda0983e81edecc22d889bf
1,116
py
Python
setup.py
epfl-lts2/spikexplore
05c5ff1aa1cca3f77126c0de9a1b6b9360813afd
[ "Apache-2.0" ]
null
null
null
setup.py
epfl-lts2/spikexplore
05c5ff1aa1cca3f77126c0de9a1b6b9360813afd
[ "Apache-2.0" ]
null
null
null
setup.py
epfl-lts2/spikexplore
05c5ff1aa1cca3f77126c0de9a1b6b9360813afd
[ "Apache-2.0" ]
null
null
null
from setuptools import setup setup( name='spikexplore', version='0.0.11', description='Graph exploration using inhomogeneous filtered diffusion', url='https://github.com/epfl-lts2/spikexplore', author='Nicolas Aspert, Benjamin Ricaud', author_email='nicolas.aspert@epfl.ch, benjamin.ricaud@epfl.ch', license='Apache license', packages=['spikexplore', 'spikexplore.backends'], scripts=[], install_requires=['pandas', 'numpy', 'networkx', 'tqdm', 'twython', 'wikipedia-api', 'python-louvain', 'TwitterAPI' ], python_requires='>=3.6', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.6' ], )
33.818182
75
0.539427
4772f678a77321acbb602c7452561773bd46074a
1,763
py
Python
videointelligence/google/cloud/videointelligence_v1beta2/types.py
paoloburelli/google-cloud-python
e54b4318c2c8d9fc4ef0d78aa2a1eea874ace1cd
[ "Apache-2.0" ]
1
2018-06-29T17:53:28.000Z
2018-06-29T17:53:28.000Z
videointelligence/google/cloud/videointelligence_v1beta2/types.py
paoloburelli/google-cloud-python
e54b4318c2c8d9fc4ef0d78aa2a1eea874ace1cd
[ "Apache-2.0" ]
null
null
null
videointelligence/google/cloud/videointelligence_v1beta2/types.py
paoloburelli/google-cloud-python
e54b4318c2c8d9fc4ef0d78aa2a1eea874ace1cd
[ "Apache-2.0" ]
null
null
null
# Copyright 2017, Google LLC All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import sys from google.api import http_pb2 from google.longrunning import operations_pb2 from google.protobuf import any_pb2 from google.protobuf import descriptor_pb2 from google.protobuf import duration_pb2 from google.protobuf import empty_pb2 from google.protobuf import timestamp_pb2 from google.rpc import status_pb2 from google.api_core.protobuf_helpers import get_messages from google.cloud.videointelligence_v1beta2.proto import video_intelligence_pb2 _shared_modules = [ http_pb2, operations_pb2, any_pb2, descriptor_pb2, duration_pb2, empty_pb2, timestamp_pb2, status_pb2, ] _local_modules = [ video_intelligence_pb2, ] names = [] for module in _shared_modules: for name, message in get_messages(module).items(): setattr(sys.modules[__name__], name, message) names.append(name) for module in _local_modules: for name, message in get_messages(module).items(): message.__module__ = 'google.cloud.videointelligence_v1beta2.types' setattr(sys.modules[__name__], name, message) names.append(name) __all__ = tuple(sorted(names))
29.383333
79
0.766307
7d63b9efe5660d4792bf3580558dc444a5f48b8b
2,601
py
Python
snr_mix.py
aws-samples/asteroid-on-sagemaker
4613b10b8f579029038cc768cef620d25a09478d
[ "MIT-0" ]
null
null
null
snr_mix.py
aws-samples/asteroid-on-sagemaker
4613b10b8f579029038cc768cef620d25a09478d
[ "MIT-0" ]
null
null
null
snr_mix.py
aws-samples/asteroid-on-sagemaker
4613b10b8f579029038cc768cef620d25a09478d
[ "MIT-0" ]
null
null
null
import pathlib import numpy as np # import soundfile as sf # import librosa EPS = np.finfo(float).eps np.random.seed(0) def is_clipped(audio, clipping_threshold=0.99): return any(abs(audio) > clipping_threshold) def normalize(audio, target_level=-25): '''Normalize the signal to the target level''' rms = (audio ** 2).mean() ** 0.5 scalar = 10 ** (target_level / 20) / (rms+EPS) audio = audio * scalar return audio def snr_mixer(clean, noise, snr, target_level=-25, clipping_threshold=0.99): '''Function to mix clean speech and noise at various SNR levels''' if len(clean) > len(noise): noise = np.append(noise, np.zeros(len(clean)-len(noise))) else: clean = np.append(clean, np.zeros(len(noise)-len(clean))) # Normalizing to -25 dB FS clean = clean/(max(abs(clean))+EPS) clean = normalize(clean, target_level) rmsclean = (clean**2).mean()**0.5 noise = noise/(max(abs(noise))+EPS) noise = normalize(noise, target_level) rmsnoise = (noise**2).mean()**0.5 # Set the noise level for a given SNR noisescalar = rmsclean / (10**(snr/20)) / (rmsnoise+EPS) noisenewlevel = noise * noisescalar # Mix noise and clean speech noisyspeech = clean + noisenewlevel # Randomly select RMS value between -15 dBFS and -35 dBFS and normalize noisyspeech with that value # There is a chance of clipping that might happen with very less probability, which is not a major issue. noisy_rms_level = np.random.randint(-35, -15) rmsnoisy = (noisyspeech**2).mean()**0.5 scalarnoisy = 10 ** (noisy_rms_level / 20) / (rmsnoisy+EPS) noisyspeech = noisyspeech * scalarnoisy clean = clean * scalarnoisy noisenewlevel = noisenewlevel * scalarnoisy # Final check to see if there are any amplitudes exceeding +/- 1. If so, normalize all the signals accordingly if is_clipped(noisyspeech): noisyspeech_maxamplevel = max(abs(noisyspeech))/(clipping_threshold-EPS) noisyspeech = noisyspeech/noisyspeech_maxamplevel clean = clean/noisyspeech_maxamplevel noisenewlevel = noisenewlevel/noisyspeech_maxamplevel noisy_rms_level = int(20*np.log10(scalarnoisy/noisyspeech_maxamplevel*(rmsnoisy+EPS))) return clean, noisenewlevel, noisyspeech, noisy_rms_level cleanpath = pathlib.Path('clean').glob('*wav') noisepath = pathlib.Path('noise').glob('*wav') for clean, noise in zip(cleanpath, noisepath): clean_wav,_ = librosa.load(clean, sr =16000) noise_wav,_ = librosa.load(noise, sr = 16000) clean_wav[::2] print(clean, noise)
36.633803
114
0.688966
2cf2ec5b11427f2abe6dd5ce17368fa46901ed28
690
py
Python
defichain/ocean/__init__.py
eric-volz/defichainLibrary
458a8155bd595bf0fdf026651d95a5fe78dafc9c
[ "MIT" ]
1
2022-03-29T15:15:17.000Z
2022-03-29T15:15:17.000Z
defichain/ocean/__init__.py
eric-volz/defichainPythonLibrary
b01dfddbb5e16d5b3dcda8e4014bcea8d2a1832b
[ "MIT" ]
null
null
null
defichain/ocean/__init__.py
eric-volz/defichainPythonLibrary
b01dfddbb5e16d5b3dcda8e4014bcea8d2a1832b
[ "MIT" ]
1
2022-03-24T12:25:44.000Z
2022-03-24T12:25:44.000Z
# Just to be present: Ocean from defichain.ocean.modules.address import Address from defichain.ocean.modules.blocks import Blocks from defichain.ocean.modules.fee import Fee from defichain.ocean.modules.loan import Loan from defichain.ocean.modules.masternodes import Masternodes from defichain.ocean.modules.oracles import Oracles from defichain.ocean.modules.poolpairs import Poolpairs from defichain.ocean.modules.prices import Prices from defichain.ocean.modules.rawTx import RawTx from defichain.ocean.modules.rpc import Rpc from defichain.ocean.modules.stats import Stats from defichain.ocean.modules.tokens import Tokens from defichain.ocean.modules.transactions import Transactions
46
61
0.856522
89fa38879eebea779b1cb808e15de39e9be4db5c
12,341
py
Python
ReTreeingFuncs.py
JudoWill/ResearchNotebooks
35796f7ef07361eb2926c8770e623f4e9d48ab96
[ "MIT" ]
1
2019-02-03T03:45:29.000Z
2019-02-03T03:45:29.000Z
ReTreeingFuncs.py
JudoWill/ResearchNotebooks
35796f7ef07361eb2926c8770e623f4e9d48ab96
[ "MIT" ]
null
null
null
ReTreeingFuncs.py
JudoWill/ResearchNotebooks
35796f7ef07361eb2926c8770e623f4e9d48ab96
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> from pandas import DataFrame, Series, merge, read_csv, MultiIndex, Index, concat from subprocess import check_call from tempfile import NamedTemporaryFile as NTF import os, os.path import numpy as np from scipy.stats import ttest_ind from itertools import groupby,combinations, islice from operator import itemgetter from Bio import Phylo import networkx import sys import pickle from random import shuffle import csv, shlex, shutil os.chdir('/home/will/HIVTropism//') sys.path.append('/home/will/HIVReportGen/AnalysisCode/') sys.path.append('/home/will/PySeqUtils/') # <codecell> from SeqProcessTools import read_pat_seq_data, load_training_seq_data, align_seq_data_frame from GeneralSeqTools import fasta_reader, WebPSSM_V3_fasta, yield_chunks from Bio.Seq import Seq from Bio.Alphabet import generic_dna import glob from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor from itertools import chain, product # <codecell> with open('trop_dict.pkl') as handle: trop_dict = pickle.load(handle) with open('wanted_data.pkl') as handle: wanted_data = pickle.load(handle) trans_dict = wanted_data['Name'].to_dict() ntrop_dict = dict((trans_dict[key], val) for key, val in trop_dict.items()) trop_dict = ntrop_dict wanted_data = wanted_data.set_index('Name') # <codecell> wanted_data['Tropism'][wanted_data['gp120-seq-align'].notnull()].value_counts() # <codecell> from GeneralSeqTools import fasta_writer fourkb_cols = ['gp120-seq-align', 'Nef-seq-align', 'Vpr-seq-align', 'Tat-1-seq-align', 'Tat-2-seq-align', 'LTR-seq-align'] four = wanted_data[fourkb_cols].dropna() wseqs = set() with open('/home/will/Dropbox/HIVseqs/BensTropismLabels.csv') as handle: for row in csv.DictReader(handle, delimiter=','): wseqs.add(row['Patient ID']) for col in four.columns: found = set() prot = col.rsplit('-', 2)[0] fname = 'AlignForBenj/fourKB_%s.fasta' % prot with open(fname, 'w') as handle: for seq, name in zip(four[col], four.index): if name in wseqs and name not in found: fasta_writer(handle, [(name+'-'+trop_dict[name], ''.join(seq))]) found.add(name) print prot, len(found) # <codecell> foukb_lanl = ['AB078005', 'AB221126', 'AB253432', 'AB286955', 'AB287365', 'AB287367', 'AB287368', 'AB287369', 'AB480695', 'AB485642', 'AB565479', 'AB565496', 'AB565497', 'AB565499', 'AB565500', 'AB565502', 'AB604946', 'AB604948', 'AB604950', 'AB604951', 'AB641836', 'AF003887', 'AF003888', 'AF004394', 'AF042100', 'AF042101', 'AF538302', 'AF538303', 'AF538307', 'AJ271445', 'AY173953', 'AY352275', 'AY835748', 'AY835754', 'AY835759', 'AY835762', 'AY835766', 'AY835769', 'AY835770', 'AY835774', 'AY835777', 'AY835779', 'AY970950', 'DQ007901', 'DQ007902', 'DQ007903', 'DQ295192', 'DQ295193', 'DQ295194', 'DQ295195', 'DQ358809', 'DQ837381', 'DQ990880', 'EF057102', 'EF363123', 'EF363124', 'EF363126', 'EF363127', 'GU647196', 'GU733713', 'JN944928', 'JN944936', 'JN944939', 'JN944940', 'JN944942', 'JN944943', 'JN944944', 'JN944946', 'JN944948', 'JQ316126', 'JQ316128', 'JQ316131', 'JQ316132', 'JQ316134', 'JQ316135', 'JQ341411', 'JQ429433', 'M17449', 'U34604'] # <codecell> from collections import Counter trops = [] for p in wanted_data['gp120-seq-align'].dropna().index: trops.append(trop_dict.get(p, None)) Counter(trops) # <codecell> wseqs = set(wanted_data['gp120'].dropna().index) cols = ['gp120-seq-align', 'Nef-seq-align', 'Vpr-seq-align', 'Tat-1-seq-align', 'Tat-2-seq-align', 'LTR-seq-align'] for col in cols: found = set() prot = col.rsplit('-', 2)[0] fname = 'AlignForBenj/has_env_%s.fasta' % prot df = wanted_data[col].dropna() with open(fname, 'w') as handle: for seq, name in zip(df, df.index): if name in wseqs and name not in found: fasta_writer(handle, [(name+'-'+trop_dict[name], ''.join(seq))]) found.add(name) # <codecell> def yield_regions(trop_dict): regions = ['LTR-seq-align', 'gp41-seq-align', 'gp120-seq-align', 'Nef-seq-align', 'Vpr-seq-align', 'Tat-1-seq-align', 'Tat-2-seq-align', ] tail_cols = ['gp120', 'gp41', 'Nef', 'Vpr', 'Tat-1', 'Tat-2', 'LTR'] fourkb_cols = ['gp120', 'Nef', 'Vpr', 'Tat-1', 'Tat-2', 'LTR'] groups = [('fourkb', wanted_data[fourkb_cols].dropna().index), ('full_env', wanted_data[['gp120', 'gp41']].dropna().index), ('full_tail', wanted_data[tail_cols].dropna().index), ] subs = ['SubB'] win_sizes = [5, 10, 15, 20, 30, 35] for region, (gname, ind), sub in product(regions, groups, subs): prot = region.split('-')[0] gwanted = wanted_data.ix[ind] mask = gwanted['Sub'] == sub seq_ser = gwanted[mask][region].dropna() print prot, gname, sub, len(seq_ser) seqs = [(name, ''.join(list(seq))) for name, seq in zip(seq_ser.index, seq_ser.values)] seq_len = len(seqs[0][1]) for win, start in product(win_sizes, range(seq_len)): stop = start+win if stop < seq_len: nseqs = [(name, seq[start:stop]) for name, seq in seqs] yield gname, sub, prot, start, win, nseqs, trop_dict # <codecell> import dendropy # <codecell> from Bio.Alphabet import generic_dna, generic_protein import TreeingTools def calculate_region(arg): gname, sub, prot, start, win, nseqs, trop_dict = arg treename = 'quicktrees/%s-%s-%s-%i-%i.tree' % (gname, sub, prot, start, win) matfname = 'quicktrees/%s-%s-%s-%i-%i.pkl' % (gname, sub, prot, start, win) if os.path.exists(treename): #benj_res = 'Already Processed' #return gname, sub, prot, win, start, benj_res with open(matfname) as handle: dmat = pickle.load(handle) with open(treename) as handle: tree = dendropy.Tree.get_from_stream(handle, 'newick') else: is_aa = prot != 'LTR' alphabet = generic_protein if is_aa else generic_dna try: tree, dmat = TreeingTools.phylip_tree_collapse_unique(nseqs, alphabet=alphabet) except ValueError: benj_res = 'Too few unique sequences to process' return gname, sub, prot, win, start, benj_res except: benj_res = 'uncaught exception in dist-mat' return gname, sub, prot, win, start, benj_res print 'writing' with open(matfname, 'w') as handle: pickle.dump(dmat, handle) with open(treename, 'w') as handle: tree.write_to_stream(handle, 'newick') try: benj_res = TreeingTools.check_distance_pvals(dmat, trop_dict, nreps = 50) except AssertionError: benj_res = 'too few groups' return gname, sub, prot, win, start, benj_res except: benj_res = 'uncaught exception' return gname, sub, prot, win, start, benj_res try: out = TreeingTools.evaluate_association_index(tree, trop_dict) benj_res['AI'], benj_res['AI-pval'], benj_res['AI-null'] = out except: benj_res['AI'], benj_res['AI-pval'], benj_res['AI-null'] = ('error', 'error', 'error') return gname, sub, prot, win, start, benj_res # <codecell> def quick_yield_regions(trop_dict): nseqs = wanted_data.ix[foukb_lanl]['gp120-seq-align'] aseqs = wanted_data['gp120-seq-align'].dropna() regions = [('C1', 0, 101), ('V1', 101, 127), ('V2', 127, 166), ('C2', 166, 266), ('V3', 266, 301), ('C3', 301, 355), ('V4', 355, 388), ('C4', 388, 430), ('V5', 430, 439), ('C5', 439, 462)] for name, start, stop in regions: seqs = [(n, ''.join(s[start:stop])) for n, s in zip(nseqs.index, nseqs.values)] yield '44kb', 'gp120', name, start, stop, seqs, trop_dict seqs = [(n, ''.join(s[start:stop])) for n, s in zip(aseqs.index, aseqs.values)] yield 'All', 'gp120', name, start, stop, seqs, trop_dict # <codecell> from itertools import groupby, imap from types import StringType benj_fields = ['GroupName', 'Subtype', 'Prot', 'Start', 'WinSize', 'Group2Mean', 'Group2Std', 'Group2Name', 'Group1Mean', 'Group1Std', 'RawPval', 'AdjPval', 'Group1Name', 'AI', 'AI-pval', 'AI-null'] fname = 'gp120_new_BenjRes.tsv' handle = open(fname, 'w') benj_writer = csv.DictWriter(handle, benj_fields, delimiter = '\t') benj_writer.writeheader() results = imap(calculate_region, quick_yield_regions(trop_dict)) for gname, sub, prot, win, start, benj_res in results: #print prot, start, win tdict = { 'Prot':prot, 'Start':start, 'WinSize':win, 'GroupName':gname, 'Subtype':sub, } if type(benj_res) is StringType: if (benj_res == 'Already Processed') or benj_res.startswith('Too few unique sequences'): continue print benj_res, prot, start, win else: benj_res.update(tdict) benj_writer.writerow(benj_res) handle.close() # <codecell> from itertools import groupby, imap from operator import itemgetter from concurrent.futures import ThreadPoolExecutor benj_fields = ['GroupName', 'Subtype', 'Prot', 'Start', 'WinSize', 'Group2Mean', 'Group2Std', 'Group2Name', 'Group1Mean', 'Group1Std', 'RawPval', 'AdjPval', 'Group1Name', 'AI', 'AI-pval', 'AI-null'] fname = 'more_phylip_BenjRes.tsv' benj_writer = csv.DictWriter(open(fname, 'w'), benj_fields, delimiter = '\t') benj_writer.writeheader() multi = True print 'Starting multiprocessing!' if multi: pool = ProcessPoolExecutor(max_workers = 30) results = pool.map(calculate_region, yield_regions(trop_dict)) else: results = imap(calculate_region, islice(yield_regions(trop_dict), 0,35)) for gname, sub, prot, win, start, benj_res in results: #print prot, start, win tdict = { 'Prot':prot, 'Start':start, 'WinSize':win, 'GroupName':gname, 'Subtype':sub, } if type(benj_res) is StringType: if (benj_res == 'Already Processed') or benj_res.startswith('Too few unique sequences'): continue print benj_res, prot, start, win else: benj_res.update(tdict) benj_writer.writerow(benj_res) if multi: pool.shutdown() # <codecell> # <codecell> #with open('allgp120.fasta', 'w') as handle: tres = [] for key, row in wanted_data[['gp120-seq-align', 'Tropism']].dropna().iterrows(): oname = key+'-'+row['Tropism'] tres.append((oname, ''.join(row['gp120-seq-align']))) # <codecell> tree, dmat = TreeingTools.phylip_tree_collapse_unique(tres, alphabet=generic_protein) # <codecell> with open('gp120tree.nexus', 'w') as handle: tree.write_to_stream(handle, 'nexus') # <codecell> import networkx with open('gp120tree.dot') as handle: new_tree = networkx.read_dot(handle) # <codecell> pos = networkx.spring_layout(new_tree, dim=100) #networkx.draw_spring(new_tree, # with_labels = False, # dim = 10) # <codecell> pos.items()[-10:] # <codecell>
30.775561
96
0.578235
b57bd152c99c2f1dc2584c2e2e6268b58b86bb27
7,937
py
Python
src/vector_quantizer_ema.py
VictorZuanazzi/VQ-VAE-Images
cf39dccbc1cd233426fd0145ce5945574ec431d1
[ "MIT" ]
2
2019-11-23T11:46:31.000Z
2020-02-13T15:19:55.000Z
src/vector_quantizer_ema.py
VictorZuanazzi/VQ-VAE-Images
cf39dccbc1cd233426fd0145ce5945574ec431d1
[ "MIT" ]
null
null
null
src/vector_quantizer_ema.py
VictorZuanazzi/VQ-VAE-Images
cf39dccbc1cd233426fd0145ce5945574ec431d1
[ "MIT" ]
null
null
null
##################################################################################### # MIT License # # # # Copyright (C) 2019 Charly Lamothe # # Copyright (C) 2018 Zalando Research # # # # This file is part of VQ-VAE-images. # # # # Permission is hereby granted, free of charge, to any person obtaining a copy # # of this software and associated documentation files (the "Software"), to deal # # in the Software without restriction, including without limitation the rights # # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # # copies of the Software, and to permit persons to whom the Software is # # furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in all # # copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # # SOFTWARE. # ##################################################################################### import torch import torch.nn as nn class VectorQuantizerEMA(nn.Module): """ Inspired from Sonnet implementation of VQ-VAE https://arxiv.org/abs/1711.00937, in https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/vqvae.py and pytorch implementation of it from zalandoresearch in https://github.com/zalandoresearch/pytorch-vq-vae/blob/master/vq-vae.ipynb. Implements a slightly modified version of the algorithm presented in 'Neural Discrete Representation Learning' by van den Oord et al. https://arxiv.org/abs/1711.00937 The difference between VectorQuantizerEMA and VectorQuantizer is that this module uses exponential moving averages to update the embedding vectors instead of an auxiliary loss. This has the advantage that the embedding updates are independent of the choice of optimizer (SGD, RMSProp, Adam, K-Fac, ...) used for the encoder, decoder and other parts of the architecture. For most experiments the EMA version trains faster than the non-EMA version. Input any tensor to be quantized. Last dimension will be used as space in which to quantize. All other dimensions will be flattened and will be seen as different examples to quantize. The output tensor will have the same shape as the input. For example a tensor with shape [16, 32, 32, 64] will be reshaped into [16384, 64] and all 16384 vectors (each of 64 dimensions) will be quantized independently. Args: embedding_dim: integer representing the dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. num_embeddings: integer, the number of vectors in the quantized space. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper). decay: float, decay for the moving averages. epsilon: small float constant to avoid numerical instability. """ def __init__(self, device, num_embeddings, embedding_dim, commitment_cost, decay, epsilon=1e-5): super(VectorQuantizerEMA, self).__init__() self._device = device self._embedding_dim = embedding_dim self._num_embeddings = num_embeddings self._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim) self._embedding.weight.data.normal_() self._commitment_cost = commitment_cost self.register_buffer('_ema_cluster_size', torch.zeros(num_embeddings)) self._ema_w = nn.Parameter(torch.Tensor(num_embeddings, self._embedding_dim)) self._ema_w.data.normal_() self._decay = decay self._epsilon = epsilon def forward(self, inputs): """ Connects the module to some inputs. Args: inputs: Tensor, final dimension must be equal to embedding_dim. All other leading dimensions will be flattened and treated as a large batch. Returns: dict containing the following keys and values: quantize: Tensor containing the quantized version of the input. loss: Tensor containing the loss to optimize. perplexity: Tensor containing the perplexity of the encodings. encodings: Tensor containing the discrete encodings, ie which element of the quantized space each input element was mapped to. encoding_indices: Tensor containing the discrete encoding indices, ie which element of the quantized space each input element was mapped to. """ # Convert inputs from BCHW -> BHWC inputs = inputs.permute(0, 2, 3, 1).contiguous() input_shape = inputs.shape # Flatten input flat_input = inputs.view(-1, self._embedding_dim) # Calculate distances distances = (torch.sum(flat_input ** 2, dim=1, keepdim=True) + torch.sum(self._embedding.weight ** 2, dim=1) - 2 * torch.matmul(flat_input, self._embedding.weight.t())) # Encoding encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) encodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings).to(self._device) encodings.scatter_(1, encoding_indices, 1) # Use EMA to update the embedding vectors if self.training: self._ema_cluster_size = self._ema_cluster_size * self._decay + \ (1 - self._decay) * torch.sum(encodings, 0) n = torch.sum(self._ema_cluster_size.data) self._ema_cluster_size = ( (self._ema_cluster_size + self._epsilon) / (n + self._num_embeddings * self._epsilon) * n ) dw = torch.matmul(encodings.t(), flat_input) self._ema_w = nn.Parameter(self._ema_w * self._decay + (1 - self._decay) * dw) self._embedding.weight = nn.Parameter(self._ema_w / self._ema_cluster_size.unsqueeze(1)) # Quantize and unflatten quantized = torch.matmul(encodings, self._embedding.weight).view(input_shape) # Loss e_latent_loss = torch.mean((quantized.detach() - inputs) ** 2) loss = self._commitment_cost * e_latent_loss quantized = inputs + (quantized - inputs).detach() avg_probs = torch.mean(encodings, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) # Convert quantized from BHWC -> BCHW return loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodings @property def embedding(self): return self._embedding
52.217105
132
0.597077
1a908899a742f564a44112682fa2b97caa2491e6
6,797
py
Python
pytorch_lightning/loggers/mlflow.py
Lucien-cs/pytorch-lightning
bf8a395a4004fa7f2ea804b6de8cececc609f9aa
[ "Apache-2.0" ]
1
2021-04-06T08:47:01.000Z
2021-04-06T08:47:01.000Z
pytorch_lightning/loggers/mlflow.py
Lucien-cs/pytorch-lightning
bf8a395a4004fa7f2ea804b6de8cececc609f9aa
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/loggers/mlflow.py
Lucien-cs/pytorch-lightning
bf8a395a4004fa7f2ea804b6de8cececc609f9aa
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MLflow Logger ------------- """ import re import warnings from argparse import Namespace from time import time from typing import Any, Dict, Optional, Union try: import mlflow from mlflow.tracking import MlflowClient except ModuleNotFoundError: # pragma: no-cover mlflow = None MlflowClient = None from pytorch_lightning import _logger as log from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment from pytorch_lightning.utilities import rank_zero_only LOCAL_FILE_URI_PREFIX = "file:" class MLFlowLogger(LightningLoggerBase): """ Log using `MLflow <https://mlflow.org>`_. Install it with pip: .. code-block:: bash pip install mlflow .. code-block:: python from pytorch_lightning import Trainer from pytorch_lightning.loggers import MLFlowLogger mlf_logger = MLFlowLogger( experiment_name="default", tracking_uri="file:./ml-runs" ) trainer = Trainer(logger=mlf_logger) Use the logger anywhere in your :class:`~pytorch_lightning.core.lightning.LightningModule` as follows: .. code-block:: python from pytorch_lightning import LightningModule class LitModel(LightningModule): def training_step(self, batch, batch_idx): # example self.logger.experiment.whatever_ml_flow_supports(...) def any_lightning_module_function_or_hook(self): self.logger.experiment.whatever_ml_flow_supports(...) Args: experiment_name: The name of the experiment tracking_uri: Address of local or remote tracking server. If not provided, defaults to `file:<save_dir>`. tags: A dictionary tags for the experiment. save_dir: A path to a local directory where the MLflow runs get saved. Defaults to `./mlflow` if `tracking_uri` is not provided. Has no effect if `tracking_uri` is provided. prefix: A string to put at the beginning of metric keys. """ LOGGER_JOIN_CHAR = '-' def __init__( self, experiment_name: str = 'default', tracking_uri: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, save_dir: Optional[str] = './mlruns', prefix: str = '', ): if mlflow is None: raise ImportError('You want to use `mlflow` logger which is not installed yet,' ' install it with `pip install mlflow`.') super().__init__() if not tracking_uri: tracking_uri = f'{LOCAL_FILE_URI_PREFIX}{save_dir}' self._experiment_name = experiment_name self._experiment_id = None self._tracking_uri = tracking_uri self._run_id = None self.tags = tags self._prefix = prefix self._mlflow_client = MlflowClient(tracking_uri) @property @rank_zero_experiment def experiment(self) -> MlflowClient: r""" Actual MLflow object. To use MLflow features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: self.logger.experiment.some_mlflow_function() """ if self._experiment_id is None: expt = self._mlflow_client.get_experiment_by_name(self._experiment_name) if expt is not None: self._experiment_id = expt.experiment_id else: log.warning(f'Experiment with name {self._experiment_name} not found. Creating it.') self._experiment_id = self._mlflow_client.create_experiment(name=self._experiment_name) if self._run_id is None: run = self._mlflow_client.create_run(experiment_id=self._experiment_id, tags=self.tags) self._run_id = run.info.run_id return self._mlflow_client @property def run_id(self): # create the experiment if it does not exist to get the run id _ = self.experiment return self._run_id @property def experiment_id(self): # create the experiment if it does not exist to get the experiment id _ = self.experiment return self._experiment_id @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: params = self._convert_params(params) params = self._flatten_dict(params) for k, v in params.items(): self.experiment.log_param(self.run_id, k, v) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0' metrics = self._add_prefix(metrics) timestamp_ms = int(time() * 1000) for k, v in metrics.items(): if isinstance(v, str): log.warning(f'Discarding metric with string value {k}={v}.') continue new_k = re.sub("[^a-zA-Z0-9_/. -]+", "", k) if k != new_k: warnings.warn(("MLFlow only allows '_', '/', '.' and ' ' special characters in metric name.\n", f"Replacing {k} with {new_k}.")) k = new_k self.experiment.log_metric(self.run_id, k, v, timestamp_ms, step) @rank_zero_only def finalize(self, status: str = 'FINISHED') -> None: super().finalize(status) status = 'FINISHED' if status == 'success' else status if self.experiment.get_run(self.run_id): self.experiment.set_terminated(self.run_id, status) @property def save_dir(self) -> Optional[str]: """ The root file directory in which MLflow experiments are saved. Return: Local path to the root experiment directory if the tracking uri is local. Otherwhise returns `None`. """ if self._tracking_uri.startswith(LOCAL_FILE_URI_PREFIX): return self._tracking_uri.lstrip(LOCAL_FILE_URI_PREFIX) @property def name(self) -> str: return self.experiment_id @property def version(self) -> str: return self.run_id
33.985
111
0.643666
f71a062d2b5783e4fd92b44153a453460f29e699
53,902
py
Python
Lib/http/client.py
treebee/cpython
e152169da95b52fa41931572bc90857253c4a5dd
[ "CNRI-Python-GPL-Compatible" ]
1
2019-05-29T18:22:03.000Z
2019-05-29T18:22:03.000Z
Lib/http/client.py
treebee/cpython
e152169da95b52fa41931572bc90857253c4a5dd
[ "CNRI-Python-GPL-Compatible" ]
4
2022-03-30T01:50:22.000Z
2022-03-30T01:50:28.000Z
Lib/http/client.py
treebee/cpython
e152169da95b52fa41931572bc90857253c4a5dd
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
r"""HTTP/1.1 client library <intro stuff goes here> <other stuff, too> HTTPConnection goes through a number of "states", which define when a client may legally make another request or fetch the response for a particular request. This diagram details these state transitions: (null) | | HTTPConnection() v Idle | | putrequest() v Request-started | | ( putheader() )* endheaders() v Request-sent |\_____________________________ | | getresponse() raises | response = getresponse() | ConnectionError v v Unread-response Idle [Response-headers-read] |\____________________ | | | response.read() | putrequest() v v Idle Req-started-unread-response ______/| / | response.read() | | ( putheader() )* endheaders() v v Request-started Req-sent-unread-response | | response.read() v Request-sent This diagram presents the following rules: -- a second request may not be started until {response-headers-read} -- a response [object] cannot be retrieved until {request-sent} -- there is no differentiation between an unread response body and a partially read response body Note: this enforcement is applied by the HTTPConnection class. The HTTPResponse class does not enforce this state machine, which implies sophisticated clients may accelerate the request/response pipeline. Caution should be taken, though: accelerating the states beyond the above pattern may imply knowledge of the server's connection-close behavior for certain requests. For example, it is impossible to tell whether the server will close the connection UNTIL the response headers have been read; this means that further requests cannot be placed into the pipeline until it is known that the server will NOT be closing the connection. Logical State __state __response ------------- ------- ---------- Idle _CS_IDLE None Request-started _CS_REQ_STARTED None Request-sent _CS_REQ_SENT None Unread-response _CS_IDLE <response_class> Req-started-unread-response _CS_REQ_STARTED <response_class> Req-sent-unread-response _CS_REQ_SENT <response_class> """ import email.parser import email.message import http import io import re import socket import collections.abc from urllib.parse import urlsplit # HTTPMessage, parse_headers(), and the HTTP status code constants are # intentionally omitted for simplicity __all__ = ["HTTPResponse", "HTTPConnection", "HTTPException", "NotConnected", "UnknownProtocol", "UnknownTransferEncoding", "UnimplementedFileMode", "IncompleteRead", "InvalidURL", "ImproperConnectionState", "CannotSendRequest", "CannotSendHeader", "ResponseNotReady", "BadStatusLine", "LineTooLong", "RemoteDisconnected", "error", "responses"] HTTP_PORT = 80 HTTPS_PORT = 443 _UNKNOWN = 'UNKNOWN' # connection states _CS_IDLE = 'Idle' _CS_REQ_STARTED = 'Request-started' _CS_REQ_SENT = 'Request-sent' # hack to maintain backwards compatibility globals().update(http.HTTPStatus.__members__) # another hack to maintain backwards compatibility # Mapping status codes to official W3C names responses = {v: v.phrase for v in http.HTTPStatus.__members__.values()} # maximal line length when calling readline(). _MAXLINE = 65536 _MAXHEADERS = 100 # Header name/value ABNF (http://tools.ietf.org/html/rfc7230#section-3.2) # # VCHAR = %x21-7E # obs-text = %x80-FF # header-field = field-name ":" OWS field-value OWS # field-name = token # field-value = *( field-content / obs-fold ) # field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ] # field-vchar = VCHAR / obs-text # # obs-fold = CRLF 1*( SP / HTAB ) # ; obsolete line folding # ; see Section 3.2.4 # token = 1*tchar # # tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" # / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~" # / DIGIT / ALPHA # ; any VCHAR, except delimiters # # VCHAR defined in http://tools.ietf.org/html/rfc5234#appendix-B.1 # the patterns for both name and value are more lenient than RFC # definitions to allow for backwards compatibility _is_legal_header_name = re.compile(rb'[^:\s][^:\r\n]*').fullmatch _is_illegal_header_value = re.compile(rb'\n(?![ \t])|\r(?![ \t\n])').search # These characters are not allowed within HTTP URL paths. # See https://tools.ietf.org/html/rfc3986#section-3.3 and the # https://tools.ietf.org/html/rfc3986#appendix-A pchar definition. # Prevents CVE-2019-9740. Includes control characters such as \r\n. # We don't restrict chars above \x7f as putrequest() limits us to ASCII. _contains_disallowed_url_pchar_re = re.compile('[\x00-\x20\x7f]') # Arguably only these _should_ allowed: # _is_allowed_url_pchars_re = re.compile(r"^[/!$&'()*+,;=:@%a-zA-Z0-9._~-]+$") # We are more lenient for assumed real world compatibility purposes. # We always set the Content-Length header for these methods because some # servers will otherwise respond with a 411 _METHODS_EXPECTING_BODY = {'PATCH', 'POST', 'PUT'} def _encode(data, name='data'): """Call data.encode("latin-1") but show a better error message.""" try: return data.encode("latin-1") except UnicodeEncodeError as err: raise UnicodeEncodeError( err.encoding, err.object, err.start, err.end, "%s (%.20r) is not valid Latin-1. Use %s.encode('utf-8') " "if you want to send it encoded in UTF-8." % (name.title(), data[err.start:err.end], name)) from None class HTTPMessage(email.message.Message): # XXX The only usage of this method is in # http.server.CGIHTTPRequestHandler. Maybe move the code there so # that it doesn't need to be part of the public API. The API has # never been defined so this could cause backwards compatibility # issues. def getallmatchingheaders(self, name): """Find all header lines matching a given header name. Look through the list of headers and find all lines matching a given header name (and their continuation lines). A list of the lines is returned, without interpretation. If the header does not occur, an empty list is returned. If the header occurs multiple times, all occurrences are returned. Case is not important in the header name. """ name = name.lower() + ':' n = len(name) lst = [] hit = 0 for line in self.keys(): if line[:n].lower() == name: hit = 1 elif not line[:1].isspace(): hit = 0 if hit: lst.append(line) return lst def parse_headers(fp, _class=HTTPMessage): """Parses only RFC2822 headers from a file pointer. email Parser wants to see strings rather than bytes. But a TextIOWrapper around self.rfile would buffer too many bytes from the stream, bytes which we later need to read as bytes. So we read the correct bytes here, as bytes, for email Parser to parse. """ headers = [] while True: line = fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("header line") headers.append(line) if len(headers) > _MAXHEADERS: raise HTTPException("got more than %d headers" % _MAXHEADERS) if line in (b'\r\n', b'\n', b''): break hstring = b''.join(headers).decode('iso-8859-1') return email.parser.Parser(_class=_class).parsestr(hstring) class HTTPResponse(io.BufferedIOBase): # See RFC 2616 sec 19.6 and RFC 1945 sec 6 for details. # The bytes from the socket object are iso-8859-1 strings. # See RFC 2616 sec 2.2 which notes an exception for MIME-encoded # text following RFC 2047. The basic status line parsing only # accepts iso-8859-1. def __init__(self, sock, debuglevel=0, method=None, url=None): # If the response includes a content-length header, we need to # make sure that the client doesn't read more than the # specified number of bytes. If it does, it will block until # the server times out and closes the connection. This will # happen if a self.fp.read() is done (without a size) whether # self.fp is buffered or not. So, no self.fp.read() by # clients unless they know what they are doing. self.fp = sock.makefile("rb") self.debuglevel = debuglevel self._method = method # The HTTPResponse object is returned via urllib. The clients # of http and urllib expect different attributes for the # headers. headers is used here and supports urllib. msg is # provided as a backwards compatibility layer for http # clients. self.headers = self.msg = None # from the Status-Line of the response self.version = _UNKNOWN # HTTP-Version self.status = _UNKNOWN # Status-Code self.reason = _UNKNOWN # Reason-Phrase self.chunked = _UNKNOWN # is "chunked" being used? self.chunk_left = _UNKNOWN # bytes left to read in current chunk self.length = _UNKNOWN # number of bytes left in response self.will_close = _UNKNOWN # conn will close at end of response def _read_status(self): line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") if len(line) > _MAXLINE: raise LineTooLong("status line") if self.debuglevel > 0: print("reply:", repr(line)) if not line: # Presumably, the server closed the connection before # sending a valid response. raise RemoteDisconnected("Remote end closed connection without" " response") try: version, status, reason = line.split(None, 2) except ValueError: try: version, status = line.split(None, 1) reason = "" except ValueError: # empty version will cause next test to fail. version = "" if not version.startswith("HTTP/"): self._close_conn() raise BadStatusLine(line) # The status code is a three-digit number try: status = int(status) if status < 100 or status > 999: raise BadStatusLine(line) except ValueError: raise BadStatusLine(line) return version, status, reason def begin(self): if self.headers is not None: # we've already started reading the response return # read until we get a non-100 response while True: version, status, reason = self._read_status() if status != CONTINUE: break # skip the header from the 100 response while True: skip = self.fp.readline(_MAXLINE + 1) if len(skip) > _MAXLINE: raise LineTooLong("header line") skip = skip.strip() if not skip: break if self.debuglevel > 0: print("header:", skip) self.code = self.status = status self.reason = reason.strip() if version in ("HTTP/1.0", "HTTP/0.9"): # Some servers might still return "0.9", treat it as 1.0 anyway self.version = 10 elif version.startswith("HTTP/1."): self.version = 11 # use HTTP/1.1 code for HTTP/1.x where x>=1 else: raise UnknownProtocol(version) self.headers = self.msg = parse_headers(self.fp) if self.debuglevel > 0: for hdr, val in self.headers.items(): print("header:", hdr + ":", val) # are we using the chunked-style of transfer encoding? tr_enc = self.headers.get("transfer-encoding") if tr_enc and tr_enc.lower() == "chunked": self.chunked = True self.chunk_left = None else: self.chunked = False # will the connection close at the end of the response? self.will_close = self._check_close() # do we have a Content-Length? # NOTE: RFC 2616, S4.4, #3 says we ignore this if tr_enc is "chunked" self.length = None length = self.headers.get("content-length") # are we using the chunked-style of transfer encoding? tr_enc = self.headers.get("transfer-encoding") if length and not self.chunked: try: self.length = int(length) except ValueError: self.length = None else: if self.length < 0: # ignore nonsensical negative lengths self.length = None else: self.length = None # does the body have a fixed length? (of zero) if (status == NO_CONTENT or status == NOT_MODIFIED or 100 <= status < 200 or # 1xx codes self._method == "HEAD"): self.length = 0 # if the connection remains open, and we aren't using chunked, and # a content-length was not provided, then assume that the connection # WILL close. if (not self.will_close and not self.chunked and self.length is None): self.will_close = True def _check_close(self): conn = self.headers.get("connection") if self.version == 11: # An HTTP/1.1 proxy is assumed to stay open unless # explicitly closed. if conn and "close" in conn.lower(): return True return False # Some HTTP/1.0 implementations have support for persistent # connections, using rules different than HTTP/1.1. # For older HTTP, Keep-Alive indicates persistent connection. if self.headers.get("keep-alive"): return False # At least Akamai returns a "Connection: Keep-Alive" header, # which was supposed to be sent by the client. if conn and "keep-alive" in conn.lower(): return False # Proxy-Connection is a netscape hack. pconn = self.headers.get("proxy-connection") if pconn and "keep-alive" in pconn.lower(): return False # otherwise, assume it will close return True def _close_conn(self): fp = self.fp self.fp = None fp.close() def close(self): try: super().close() # set "closed" flag finally: if self.fp: self._close_conn() # These implementations are for the benefit of io.BufferedReader. # XXX This class should probably be revised to act more like # the "raw stream" that BufferedReader expects. def flush(self): super().flush() if self.fp: self.fp.flush() def readable(self): """Always returns True""" return True # End of "raw stream" methods def isclosed(self): """True if the connection is closed.""" # NOTE: it is possible that we will not ever call self.close(). This # case occurs when will_close is TRUE, length is None, and we # read up to the last byte, but NOT past it. # # IMPLIES: if will_close is FALSE, then self.close() will ALWAYS be # called, meaning self.isclosed() is meaningful. return self.fp is None def read(self, amt=None): if self.fp is None: return b"" if self._method == "HEAD": self._close_conn() return b"" if amt is not None: # Amount is given, implement using readinto b = bytearray(amt) n = self.readinto(b) return memoryview(b)[:n].tobytes() else: # Amount is not given (unbounded read) so we must check self.length # and self.chunked if self.chunked: return self._readall_chunked() if self.length is None: s = self.fp.read() else: try: s = self._safe_read(self.length) except IncompleteRead: self._close_conn() raise self.length = 0 self._close_conn() # we read everything return s def readinto(self, b): """Read up to len(b) bytes into bytearray b and return the number of bytes read. """ if self.fp is None: return 0 if self._method == "HEAD": self._close_conn() return 0 if self.chunked: return self._readinto_chunked(b) if self.length is not None: if len(b) > self.length: # clip the read to the "end of response" b = memoryview(b)[0:self.length] # we do not use _safe_read() here because this may be a .will_close # connection, and the user is reading more bytes than will be provided # (for example, reading in 1k chunks) n = self.fp.readinto(b) if not n and b: # Ideally, we would raise IncompleteRead if the content-length # wasn't satisfied, but it might break compatibility. self._close_conn() elif self.length is not None: self.length -= n if not self.length: self._close_conn() return n def _read_next_chunk_size(self): # Read the next chunk size from the file line = self.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("chunk size") i = line.find(b";") if i >= 0: line = line[:i] # strip chunk-extensions try: return int(line, 16) except ValueError: # close the connection as protocol synchronisation is # probably lost self._close_conn() raise def _read_and_discard_trailer(self): # read and discard trailer up to the CRLF terminator ### note: we shouldn't have any trailers! while True: line = self.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("trailer line") if not line: # a vanishingly small number of sites EOF without # sending the trailer break if line in (b'\r\n', b'\n', b''): break def _get_chunk_left(self): # return self.chunk_left, reading a new chunk if necessary. # chunk_left == 0: at the end of the current chunk, need to close it # chunk_left == None: No current chunk, should read next. # This function returns non-zero or None if the last chunk has # been read. chunk_left = self.chunk_left if not chunk_left: # Can be 0 or None if chunk_left is not None: # We are at the end of chunk, discard chunk end self._safe_read(2) # toss the CRLF at the end of the chunk try: chunk_left = self._read_next_chunk_size() except ValueError: raise IncompleteRead(b'') if chunk_left == 0: # last chunk: 1*("0") [ chunk-extension ] CRLF self._read_and_discard_trailer() # we read everything; close the "file" self._close_conn() chunk_left = None self.chunk_left = chunk_left return chunk_left def _readall_chunked(self): assert self.chunked != _UNKNOWN value = [] try: while True: chunk_left = self._get_chunk_left() if chunk_left is None: break value.append(self._safe_read(chunk_left)) self.chunk_left = 0 return b''.join(value) except IncompleteRead: raise IncompleteRead(b''.join(value)) def _readinto_chunked(self, b): assert self.chunked != _UNKNOWN total_bytes = 0 mvb = memoryview(b) try: while True: chunk_left = self._get_chunk_left() if chunk_left is None: return total_bytes if len(mvb) <= chunk_left: n = self._safe_readinto(mvb) self.chunk_left = chunk_left - n return total_bytes + n temp_mvb = mvb[:chunk_left] n = self._safe_readinto(temp_mvb) mvb = mvb[n:] total_bytes += n self.chunk_left = 0 except IncompleteRead: raise IncompleteRead(bytes(b[0:total_bytes])) def _safe_read(self, amt): """Read the number of bytes requested. This function should be used when <amt> bytes "should" be present for reading. If the bytes are truly not available (due to EOF), then the IncompleteRead exception can be used to detect the problem. """ data = self.fp.read(amt) if len(data) < amt: raise IncompleteRead(data, amt-len(data)) return data def _safe_readinto(self, b): """Same as _safe_read, but for reading into a buffer.""" amt = len(b) n = self.fp.readinto(b) if n < amt: raise IncompleteRead(bytes(b[:n]), amt-n) return n def read1(self, n=-1): """Read with at most one underlying system call. If at least one byte is buffered, return that instead. """ if self.fp is None or self._method == "HEAD": return b"" if self.chunked: return self._read1_chunked(n) if self.length is not None and (n < 0 or n > self.length): n = self.length result = self.fp.read1(n) if not result and n: self._close_conn() elif self.length is not None: self.length -= len(result) return result def peek(self, n=-1): # Having this enables IOBase.readline() to read more than one # byte at a time if self.fp is None or self._method == "HEAD": return b"" if self.chunked: return self._peek_chunked(n) return self.fp.peek(n) def readline(self, limit=-1): if self.fp is None or self._method == "HEAD": return b"" if self.chunked: # Fallback to IOBase readline which uses peek() and read() return super().readline(limit) if self.length is not None and (limit < 0 or limit > self.length): limit = self.length result = self.fp.readline(limit) if not result and limit: self._close_conn() elif self.length is not None: self.length -= len(result) return result def _read1_chunked(self, n): # Strictly speaking, _get_chunk_left() may cause more than one read, # but that is ok, since that is to satisfy the chunked protocol. chunk_left = self._get_chunk_left() if chunk_left is None or n == 0: return b'' if not (0 <= n <= chunk_left): n = chunk_left # if n is negative or larger than chunk_left read = self.fp.read1(n) self.chunk_left -= len(read) if not read: raise IncompleteRead(b"") return read def _peek_chunked(self, n): # Strictly speaking, _get_chunk_left() may cause more than one read, # but that is ok, since that is to satisfy the chunked protocol. try: chunk_left = self._get_chunk_left() except IncompleteRead: return b'' # peek doesn't worry about protocol if chunk_left is None: return b'' # eof # peek is allowed to return more than requested. Just request the # entire chunk, and truncate what we get. return self.fp.peek(chunk_left)[:chunk_left] def fileno(self): return self.fp.fileno() def getheader(self, name, default=None): '''Returns the value of the header matching *name*. If there are multiple matching headers, the values are combined into a single string separated by commas and spaces. If no matching header is found, returns *default* or None if the *default* is not specified. If the headers are unknown, raises http.client.ResponseNotReady. ''' if self.headers is None: raise ResponseNotReady() headers = self.headers.get_all(name) or default if isinstance(headers, str) or not hasattr(headers, '__iter__'): return headers else: return ', '.join(headers) def getheaders(self): """Return list of (header, value) tuples.""" if self.headers is None: raise ResponseNotReady() return list(self.headers.items()) # We override IOBase.__iter__ so that it doesn't check for closed-ness def __iter__(self): return self # For compatibility with old-style urllib responses. def info(self): '''Returns an instance of the class mimetools.Message containing meta-information associated with the URL. When the method is HTTP, these headers are those returned by the server at the head of the retrieved HTML page (including Content-Length and Content-Type). When the method is FTP, a Content-Length header will be present if (as is now usual) the server passed back a file length in response to the FTP retrieval request. A Content-Type header will be present if the MIME type can be guessed. When the method is local-file, returned headers will include a Date representing the file's last-modified time, a Content-Length giving file size, and a Content-Type containing a guess at the file's type. See also the description of the mimetools module. ''' return self.headers def geturl(self): '''Return the real URL of the page. In some cases, the HTTP server redirects a client to another URL. The urlopen() function handles this transparently, but in some cases the caller needs to know which URL the client was redirected to. The geturl() method can be used to get at this redirected URL. ''' return self.url def getcode(self): '''Return the HTTP status code that was sent with the response, or None if the URL is not an HTTP URL. ''' return self.status class HTTPConnection: _http_vsn = 11 _http_vsn_str = 'HTTP/1.1' response_class = HTTPResponse default_port = HTTP_PORT auto_open = 1 debuglevel = 0 @staticmethod def _is_textIO(stream): """Test whether a file-like object is a text or a binary stream. """ return isinstance(stream, io.TextIOBase) @staticmethod def _get_content_length(body, method): """Get the content-length based on the body. If the body is None, we set Content-Length: 0 for methods that expect a body (RFC 7230, Section 3.3.2). We also set the Content-Length for any method if the body is a str or bytes-like object and not a file. """ if body is None: # do an explicit check for not None here to distinguish # between unset and set but empty if method.upper() in _METHODS_EXPECTING_BODY: return 0 else: return None if hasattr(body, 'read'): # file-like object. return None try: # does it implement the buffer protocol (bytes, bytearray, array)? mv = memoryview(body) return mv.nbytes except TypeError: pass if isinstance(body, str): return len(body) return None def __init__(self, host, port=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None, blocksize=8192): self.timeout = timeout self.source_address = source_address self.blocksize = blocksize self.sock = None self._buffer = [] self.__response = None self.__state = _CS_IDLE self._method = None self._tunnel_host = None self._tunnel_port = None self._tunnel_headers = {} (self.host, self.port) = self._get_hostport(host, port) # This is stored as an instance variable to allow unit # tests to replace it with a suitable mockup self._create_connection = socket.create_connection def set_tunnel(self, host, port=None, headers=None): """Set up host and port for HTTP CONNECT tunnelling. In a connection that uses HTTP CONNECT tunneling, the host passed to the constructor is used as a proxy server that relays all communication to the endpoint passed to `set_tunnel`. This done by sending an HTTP CONNECT request to the proxy server when the connection is established. This method must be called before the HTML connection has been established. The headers argument should be a mapping of extra HTTP headers to send with the CONNECT request. """ if self.sock: raise RuntimeError("Can't set up tunnel for established connection") self._tunnel_host, self._tunnel_port = self._get_hostport(host, port) if headers: self._tunnel_headers = headers else: self._tunnel_headers.clear() def _get_hostport(self, host, port): if port is None: i = host.rfind(':') j = host.rfind(']') # ipv6 addresses have [...] if i > j: try: port = int(host[i+1:]) except ValueError: if host[i+1:] == "": # http://foo.com:/ == http://foo.com/ port = self.default_port else: raise InvalidURL("nonnumeric port: '%s'" % host[i+1:]) host = host[:i] else: port = self.default_port if host and host[0] == '[' and host[-1] == ']': host = host[1:-1] return (host, port) def set_debuglevel(self, level): self.debuglevel = level def _tunnel(self): connect_str = "CONNECT %s:%d HTTP/1.0\r\n" % (self._tunnel_host, self._tunnel_port) connect_bytes = connect_str.encode("ascii") self.send(connect_bytes) for header, value in self._tunnel_headers.items(): header_str = "%s: %s\r\n" % (header, value) header_bytes = header_str.encode("latin-1") self.send(header_bytes) self.send(b'\r\n') response = self.response_class(self.sock, method=self._method) (version, code, message) = response._read_status() if code != http.HTTPStatus.OK: self.close() raise OSError("Tunnel connection failed: %d %s" % (code, message.strip())) while True: line = response.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("header line") if not line: # for sites which EOF without sending a trailer break if line in (b'\r\n', b'\n', b''): break if self.debuglevel > 0: print('header:', line.decode()) def connect(self): """Connect to the host and port specified in __init__.""" self.sock = self._create_connection( (self.host,self.port), self.timeout, self.source_address) self.sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) if self._tunnel_host: self._tunnel() def close(self): """Close the connection to the HTTP server.""" self.__state = _CS_IDLE try: sock = self.sock if sock: self.sock = None sock.close() # close it manually... there may be other refs finally: response = self.__response if response: self.__response = None response.close() def send(self, data): """Send `data' to the server. ``data`` can be a string object, a bytes object, an array object, a file-like object that supports a .read() method, or an iterable object. """ if self.sock is None: if self.auto_open: self.connect() else: raise NotConnected() if self.debuglevel > 0: print("send:", repr(data)) if hasattr(data, "read") : if self.debuglevel > 0: print("sendIng a read()able") encode = self._is_textIO(data) if encode and self.debuglevel > 0: print("encoding file using iso-8859-1") while 1: datablock = data.read(self.blocksize) if not datablock: break if encode: datablock = datablock.encode("iso-8859-1") self.sock.sendall(datablock) return try: self.sock.sendall(data) except TypeError: if isinstance(data, collections.abc.Iterable): for d in data: self.sock.sendall(d) else: raise TypeError("data should be a bytes-like object " "or an iterable, got %r" % type(data)) def _output(self, s): """Add a line of output to the current request buffer. Assumes that the line does *not* end with \\r\\n. """ self._buffer.append(s) def _read_readable(self, readable): if self.debuglevel > 0: print("sendIng a read()able") encode = self._is_textIO(readable) if encode and self.debuglevel > 0: print("encoding file using iso-8859-1") while True: datablock = readable.read(self.blocksize) if not datablock: break if encode: datablock = datablock.encode("iso-8859-1") yield datablock def _send_output(self, message_body=None, encode_chunked=False): """Send the currently buffered request and clear the buffer. Appends an extra \\r\\n to the buffer. A message_body may be specified, to be appended to the request. """ self._buffer.extend((b"", b"")) msg = b"\r\n".join(self._buffer) del self._buffer[:] self.send(msg) if message_body is not None: # create a consistent interface to message_body if hasattr(message_body, 'read'): # Let file-like take precedence over byte-like. This # is needed to allow the current position of mmap'ed # files to be taken into account. chunks = self._read_readable(message_body) else: try: # this is solely to check to see if message_body # implements the buffer API. it /would/ be easier # to capture if PyObject_CheckBuffer was exposed # to Python. memoryview(message_body) except TypeError: try: chunks = iter(message_body) except TypeError: raise TypeError("message_body should be a bytes-like " "object or an iterable, got %r" % type(message_body)) else: # the object implements the buffer interface and # can be passed directly into socket methods chunks = (message_body,) for chunk in chunks: if not chunk: if self.debuglevel > 0: print('Zero length chunk ignored') continue if encode_chunked and self._http_vsn == 11: # chunked encoding chunk = f'{len(chunk):X}\r\n'.encode('ascii') + chunk \ + b'\r\n' self.send(chunk) if encode_chunked and self._http_vsn == 11: # end chunked transfer self.send(b'0\r\n\r\n') def putrequest(self, method, url, skip_host=False, skip_accept_encoding=False): """Send a request to the server. `method' specifies an HTTP request method, e.g. 'GET'. `url' specifies the object being requested, e.g. '/index.html'. `skip_host' if True does not add automatically a 'Host:' header `skip_accept_encoding' if True does not add automatically an 'Accept-Encoding:' header """ # if a prior response has been completed, then forget about it. if self.__response and self.__response.isclosed(): self.__response = None # in certain cases, we cannot issue another request on this connection. # this occurs when: # 1) we are in the process of sending a request. (_CS_REQ_STARTED) # 2) a response to a previous request has signalled that it is going # to close the connection upon completion. # 3) the headers for the previous response have not been read, thus # we cannot determine whether point (2) is true. (_CS_REQ_SENT) # # if there is no prior response, then we can request at will. # # if point (2) is true, then we will have passed the socket to the # response (effectively meaning, "there is no prior response"), and # will open a new one when a new request is made. # # Note: if a prior response exists, then we *can* start a new request. # We are not allowed to begin fetching the response to this new # request, however, until that prior response is complete. # if self.__state == _CS_IDLE: self.__state = _CS_REQ_STARTED else: raise CannotSendRequest(self.__state) # Save the method we use, we need it later in the response phase self._method = method if not url: url = '/' # Prevent CVE-2019-9740. if match := _contains_disallowed_url_pchar_re.search(url): raise InvalidURL(f"URL can't contain control characters. {url!r} " f"(found at least {match.group()!r})") request = '%s %s %s' % (method, url, self._http_vsn_str) # Non-ASCII characters should have been eliminated earlier self._output(request.encode('ascii')) if self._http_vsn == 11: # Issue some standard headers for better HTTP/1.1 compliance if not skip_host: # this header is issued *only* for HTTP/1.1 # connections. more specifically, this means it is # only issued when the client uses the new # HTTPConnection() class. backwards-compat clients # will be using HTTP/1.0 and those clients may be # issuing this header themselves. we should NOT issue # it twice; some web servers (such as Apache) barf # when they see two Host: headers # If we need a non-standard port,include it in the # header. If the request is going through a proxy, # but the host of the actual URL, not the host of the # proxy. netloc = '' if url.startswith('http'): nil, netloc, nil, nil, nil = urlsplit(url) if netloc: try: netloc_enc = netloc.encode("ascii") except UnicodeEncodeError: netloc_enc = netloc.encode("idna") self.putheader('Host', netloc_enc) else: if self._tunnel_host: host = self._tunnel_host port = self._tunnel_port else: host = self.host port = self.port try: host_enc = host.encode("ascii") except UnicodeEncodeError: host_enc = host.encode("idna") # As per RFC 273, IPv6 address should be wrapped with [] # when used as Host header if host.find(':') >= 0: host_enc = b'[' + host_enc + b']' if port == self.default_port: self.putheader('Host', host_enc) else: host_enc = host_enc.decode("ascii") self.putheader('Host', "%s:%s" % (host_enc, port)) # note: we are assuming that clients will not attempt to set these # headers since *this* library must deal with the # consequences. this also means that when the supporting # libraries are updated to recognize other forms, then this # code should be changed (removed or updated). # we only want a Content-Encoding of "identity" since we don't # support encodings such as x-gzip or x-deflate. if not skip_accept_encoding: self.putheader('Accept-Encoding', 'identity') # we can accept "chunked" Transfer-Encodings, but no others # NOTE: no TE header implies *only* "chunked" #self.putheader('TE', 'chunked') # if TE is supplied in the header, then it must appear in a # Connection header. #self.putheader('Connection', 'TE') else: # For HTTP/1.0, the server will assume "not chunked" pass def putheader(self, header, *values): """Send a request header line to the server. For example: h.putheader('Accept', 'text/html') """ if self.__state != _CS_REQ_STARTED: raise CannotSendHeader() if hasattr(header, 'encode'): header = header.encode('ascii') if not _is_legal_header_name(header): raise ValueError('Invalid header name %r' % (header,)) values = list(values) for i, one_value in enumerate(values): if hasattr(one_value, 'encode'): values[i] = one_value.encode('latin-1') elif isinstance(one_value, int): values[i] = str(one_value).encode('ascii') if _is_illegal_header_value(values[i]): raise ValueError('Invalid header value %r' % (values[i],)) value = b'\r\n\t'.join(values) header = header + b': ' + value self._output(header) def endheaders(self, message_body=None, *, encode_chunked=False): """Indicate that the last header line has been sent to the server. This method sends the request to the server. The optional message_body argument can be used to pass a message body associated with the request. """ if self.__state == _CS_REQ_STARTED: self.__state = _CS_REQ_SENT else: raise CannotSendHeader() self._send_output(message_body, encode_chunked=encode_chunked) def request(self, method, url, body=None, headers={}, *, encode_chunked=False): """Send a complete request to the server.""" self._send_request(method, url, body, headers, encode_chunked) def _send_request(self, method, url, body, headers, encode_chunked): # Honor explicitly requested Host: and Accept-Encoding: headers. header_names = frozenset(k.lower() for k in headers) skips = {} if 'host' in header_names: skips['skip_host'] = 1 if 'accept-encoding' in header_names: skips['skip_accept_encoding'] = 1 self.putrequest(method, url, **skips) # chunked encoding will happen if HTTP/1.1 is used and either # the caller passes encode_chunked=True or the following # conditions hold: # 1. content-length has not been explicitly set # 2. the body is a file or iterable, but not a str or bytes-like # 3. Transfer-Encoding has NOT been explicitly set by the caller if 'content-length' not in header_names: # only chunk body if not explicitly set for backwards # compatibility, assuming the client code is already handling the # chunking if 'transfer-encoding' not in header_names: # if content-length cannot be automatically determined, fall # back to chunked encoding encode_chunked = False content_length = self._get_content_length(body, method) if content_length is None: if body is not None: if self.debuglevel > 0: print('Unable to determine size of %r' % body) encode_chunked = True self.putheader('Transfer-Encoding', 'chunked') else: self.putheader('Content-Length', str(content_length)) else: encode_chunked = False for hdr, value in headers.items(): self.putheader(hdr, value) if isinstance(body, str): # RFC 2616 Section 3.7.1 says that text default has a # default charset of iso-8859-1. body = _encode(body, 'body') self.endheaders(body, encode_chunked=encode_chunked) def getresponse(self): """Get the response from the server. If the HTTPConnection is in the correct state, returns an instance of HTTPResponse or of whatever object is returned by the response_class variable. If a request has not been sent or if a previous response has not be handled, ResponseNotReady is raised. If the HTTP response indicates that the connection should be closed, then it will be closed before the response is returned. When the connection is closed, the underlying socket is closed. """ # if a prior response has been completed, then forget about it. if self.__response and self.__response.isclosed(): self.__response = None # if a prior response exists, then it must be completed (otherwise, we # cannot read this response's header to determine the connection-close # behavior) # # note: if a prior response existed, but was connection-close, then the # socket and response were made independent of this HTTPConnection # object since a new request requires that we open a whole new # connection # # this means the prior response had one of two states: # 1) will_close: this connection was reset and the prior socket and # response operate independently # 2) persistent: the response was retained and we await its # isclosed() status to become true. # if self.__state != _CS_REQ_SENT or self.__response: raise ResponseNotReady(self.__state) if self.debuglevel > 0: response = self.response_class(self.sock, self.debuglevel, method=self._method) else: response = self.response_class(self.sock, method=self._method) try: try: response.begin() except ConnectionError: self.close() raise assert response.will_close != _UNKNOWN self.__state = _CS_IDLE if response.will_close: # this effectively passes the connection to the response self.close() else: # remember this, so we can tell when it is complete self.__response = response return response except: response.close() raise try: import ssl except ImportError: pass else: class HTTPSConnection(HTTPConnection): "This class allows communication via SSL." default_port = HTTPS_PORT # XXX Should key_file and cert_file be deprecated in favour of context? def __init__(self, host, port=None, key_file=None, cert_file=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None, *, context=None, check_hostname=None, blocksize=8192): super(HTTPSConnection, self).__init__(host, port, timeout, source_address, blocksize=blocksize) if (key_file is not None or cert_file is not None or check_hostname is not None): import warnings warnings.warn("key_file, cert_file and check_hostname are " "deprecated, use a custom context instead.", DeprecationWarning, 2) self.key_file = key_file self.cert_file = cert_file if context is None: context = ssl._create_default_https_context() will_verify = context.verify_mode != ssl.CERT_NONE if check_hostname is None: check_hostname = context.check_hostname if check_hostname and not will_verify: raise ValueError("check_hostname needs a SSL context with " "either CERT_OPTIONAL or CERT_REQUIRED") if key_file or cert_file: context.load_cert_chain(cert_file, key_file) self._context = context if check_hostname is not None: self._context.check_hostname = check_hostname def connect(self): "Connect to a host on a given (SSL) port." super().connect() if self._tunnel_host: server_hostname = self._tunnel_host else: server_hostname = self.host self.sock = self._context.wrap_socket(self.sock, server_hostname=server_hostname) __all__.append("HTTPSConnection") class HTTPException(Exception): # Subclasses that define an __init__ must call Exception.__init__ # or define self.args. Otherwise, str() will fail. pass class NotConnected(HTTPException): pass class InvalidURL(HTTPException): pass class UnknownProtocol(HTTPException): def __init__(self, version): self.args = version, self.version = version class UnknownTransferEncoding(HTTPException): pass class UnimplementedFileMode(HTTPException): pass class IncompleteRead(HTTPException): def __init__(self, partial, expected=None): self.args = partial, self.partial = partial self.expected = expected def __repr__(self): if self.expected is not None: e = ', %i more expected' % self.expected else: e = '' return '%s(%i bytes read%s)' % (self.__class__.__name__, len(self.partial), e) def __str__(self): return repr(self) class ImproperConnectionState(HTTPException): pass class CannotSendRequest(ImproperConnectionState): pass class CannotSendHeader(ImproperConnectionState): pass class ResponseNotReady(ImproperConnectionState): pass class BadStatusLine(HTTPException): def __init__(self, line): if not line: line = repr(line) self.args = line, self.line = line class LineTooLong(HTTPException): def __init__(self, line_type): HTTPException.__init__(self, "got more than %d bytes when reading %s" % (_MAXLINE, line_type)) class RemoteDisconnected(ConnectionResetError, BadStatusLine): def __init__(self, *pos, **kw): BadStatusLine.__init__(self, "") ConnectionResetError.__init__(self, *pos, **kw) # for backwards compatibility error = HTTPException
37.020604
82
0.571352
f031e0720b0d2b724ee611831958d96caa96ff5a
251
py
Python
manage.py
alexfalcucc/wyd-kravov-raffle
75b39fde050166a3883dd83dbb7046c0b8339eb3
[ "MIT" ]
null
null
null
manage.py
alexfalcucc/wyd-kravov-raffle
75b39fde050166a3883dd83dbb7046c0b8339eb3
[ "MIT" ]
null
null
null
manage.py
alexfalcucc/wyd-kravov-raffle
75b39fde050166a3883dd83dbb7046c0b8339eb3
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "jmj_2016.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
22.818182
72
0.772908
e55eacb5ca0e7abf77d90693ac6740788b8279eb
720
py
Python
paddlevideo/modeling/framework/__init__.py
shippingwang/PaddleVideo
48e6bb5f67ad44f7ef3c5cd683e8e7b8c50f0918
[ "Apache-2.0" ]
1
2021-01-13T09:14:35.000Z
2021-01-13T09:14:35.000Z
paddlevideo/modeling/framework/__init__.py
shippingwang/PaddleVideo
48e6bb5f67ad44f7ef3c5cd683e8e7b8c50f0918
[ "Apache-2.0" ]
null
null
null
paddlevideo/modeling/framework/__init__.py
shippingwang/PaddleVideo
48e6bb5f67ad44f7ef3c5cd683e8e7b8c50f0918
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .recognizers import BaseRecognizer, Recognizer2D __all__ = ['BaseRecognizer', 'Recognizer2D']
40
74
0.758333
c3052d4811568fb451986374c6ed89ddce5fa927
7,306
py
Python
doc/conf.py
Andrea-MariaDB-2/treeio
f50ab9bae93f7a0a062b5316485a7bbeb4b6ac4e
[ "MIT" ]
242
2015-01-01T15:08:23.000Z
2022-01-19T21:14:24.000Z
doc/conf.py
J4CODE/treeio
bae3115f4015aad2cbc5ab45572232ceec990495
[ "MIT" ]
52
2015-01-05T09:13:17.000Z
2018-12-26T14:52:43.000Z
doc/conf.py
J4CODE/treeio
bae3115f4015aad2cbc5ab45572232ceec990495
[ "MIT" ]
99
2015-01-09T23:28:14.000Z
2021-12-30T09:19:51.000Z
# encoding: utf-8 # Copyright 2011 Tree.io Limited # This file is part of Treeio. # License www.tree.io/license # -*- coding: utf-8 -*- # # Hardtree documentation build configuration file, created by # sphinx-quickstart on Mon Oct 25 16:15:27 2010. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../../')) sys.path.insert(0, os.path.abspath('../')) import treeio_project.settings, django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "treeio_project.settings") django.setup() # -- General configuration ----------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Hardtree' copyright = u'2010, Tree.io Limited' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.0' # The full version, including alpha/beta/rc tags. release = '1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Hardtreedoc' # -- Options for LaTeX output -------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Hardtree.tex', u'Hardtree Documentation', u'Tree.io Limited', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'treeio', u'Hardtree Documentation', [u'Tree.io Limited'], 1) ]
32.04386
80
0.722557
edcecde4be995e447dd2bd5858cd4169ff024caa
2,068
py
Python
msbapi/api.py
samuelrince/msbapi
31dfb3780dfd562be65c27ecc35f07373dbf1251
[ "MIT" ]
null
null
null
msbapi/api.py
samuelrince/msbapi
31dfb3780dfd562be65c27ecc35f07373dbf1251
[ "MIT" ]
null
null
null
msbapi/api.py
samuelrince/msbapi
31dfb3780dfd562be65c27ecc35f07373dbf1251
[ "MIT" ]
null
null
null
import os import requests from enum import Enum from typing import Optional from pydantic import BaseModel from msbapi.command import add_torrent_file, add_torrent_magnet class TorrentTypes(str, Enum): default = 'default' movie = 'movie' series = 'series' music = 'music' class TorrentRequest(BaseModel): url: str type: Optional[TorrentTypes] = None class Config: use_enum_values = True class TorrentResponse(BaseModel): success: bool def download_path(torrent_type: Optional[str] = None) -> str: if torrent_type == TorrentTypes.movie: return os.path.join(os.getenv('BASE_PATH'), 'Plex', 'Films') elif torrent_type == TorrentTypes.series: return os.path.join(os.getenv('BASE_PATH'), 'Plex', 'Series') elif torrent_type == TorrentTypes.music: return os.path.join(os.getenv('BASE_PATH'), 'music') elif torrent_type == TorrentTypes.default: return os.getenv('BASE_PATH') else: return os.getenv('BASE_PATH') def download_torrent_file(url: str) -> Optional[bytes]: response = requests.get(url) if response.ok: return response.content def rt_response_success(response: requests.Response) -> bool: if response.ok: return response.json() == {'result': 'Success'} return False def add_new_torrent(torrent: TorrentRequest) -> TorrentResponse: dl_path = download_path(torrent.type) # .torrent file to download and send if torrent.url.startswith('http'): file = download_torrent_file(torrent.url) if file: rutorrent_response = add_torrent_file(torrent_file=file, path=dl_path) if rt_response_success(rutorrent_response): return TorrentResponse(success=True) # magnet link to send elif torrent.url.startswith('magnet'): rutorrent_response = add_torrent_magnet(torrent_magnet=torrent.url, path=dl_path) if rt_response_success(rutorrent_response): return TorrentResponse(success=True) return TorrentResponse(success=False)
28.328767
89
0.694874
aa2e6b3d5ecfdd80762535350b7fd9bd2734ecd7
14,013
py
Python
VMBackup/main/fsfreezer.py
abhishek-goyal1/azure-linux-extensions
8737310b9697879240a7cb1f332d75b0862f36ff
[ "Apache-2.0" ]
null
null
null
VMBackup/main/fsfreezer.py
abhishek-goyal1/azure-linux-extensions
8737310b9697879240a7cb1f332d75b0862f36ff
[ "Apache-2.0" ]
null
null
null
VMBackup/main/fsfreezer.py
abhishek-goyal1/azure-linux-extensions
8737310b9697879240a7cb1f332d75b0862f36ff
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # VM Backup extension # # Copyright 2014 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess from mounts import Mounts import datetime import threading import os import time import sys import signal import traceback import threading import fcntl from common import CommonVariables from Utils.ResourceDiskUtil import ResourceDiskUtil def thread_for_binary(self,args): self.logger.log("Thread for binary is called",True) time.sleep(3) self.logger.log("Waited in thread for 3 seconds",True) self.logger.log("****** 1. Starting Freeze Binary ",True) self.child = subprocess.Popen(args,stdout=subprocess.PIPE) self.logger.log("Binary subprocess Created",True) class FreezeError(object): def __init__(self): self.errorcode = None self.fstype = None self.path = None def __str__(self): return "errorcode:" + str(self.errorcode) + " fstype:" + str(self.fstype) + " path" + str(self.path) class FreezeResult(object): def __init__(self): self.errors = [] def __str__(self): error_str = "" for error in self.errors: error_str+=(str(error)) + "\n" return error_str class FreezeHandler(object): def __init__(self,logger,hutil): # sig_handle valid values(0:nothing done,1: freezed successfully, 2:freeze failed) self.sig_handle = 0 self.child= None self.logger=logger self.hutil = hutil def sigusr1_handler(self,signal,frame): self.logger.log('freezed',False) self.logger.log("****** 4. Freeze Completed (Signal=1 received)",False) self.sig_handle=1 def sigchld_handler(self,signal,frame): self.logger.log('some child process terminated') if(self.child is not None and self.child.poll() is not None): self.logger.log("binary child terminated",True) self.logger.log("****** 9. Binary Process completed (Signal=2 received)",True) self.sig_handle=2 def reset_signals(self): self.sig_handle = 0 self.child= None def startproc(self,args): binary_thread = threading.Thread(target=thread_for_binary, args=[self, args]) binary_thread.start() SafeFreezeWaitInSecondsDefault = 66 proc_sleep_time = self.hutil.get_intvalue_from_configfile('SafeFreezeWaitInSeconds',SafeFreezeWaitInSecondsDefault) for i in range(0,(int(proc_sleep_time/2))): if(self.sig_handle==0): self.logger.log("inside while with sig_handle "+str(self.sig_handle)) time.sleep(2) else: break self.logger.log("Binary output for signal handled: "+str(self.sig_handle)) return self.sig_handle def signal_receiver(self): signal.signal(signal.SIGUSR1,self.sigusr1_handler) signal.signal(signal.SIGCHLD,self.sigchld_handler) class FsFreezer: def __init__(self, patching, logger, hutil): """ """ self.patching = patching self.logger = logger self.hutil = hutil try: self.mounts = Mounts(patching = self.patching, logger = self.logger) except Exception as e: errMsg='Failed to retrieve mount points, Exception %s, stack trace: %s' % (str(e), traceback.format_exc()) self.logger.log(errMsg,True,'Warning') self.logger.log(str(e), True) self.mounts = None self.frozen_items = set() self.unfrozen_items = set() self.freeze_handler = FreezeHandler(self.logger, self.hutil) self.mount_open_failed = False resource_disk = ResourceDiskUtil(patching = patching, logger = logger) self.resource_disk_mount_point = resource_disk.get_resource_disk_mount_point() self.skip_freeze = True self.isAquireLockSucceeded = True self.getLockRetry = 0 self.maxGetLockRetry = 5 self.safeFreezelockFile = None def should_skip(self, mount): if(self.resource_disk_mount_point is not None and mount.mount_point == self.resource_disk_mount_point): return True elif((mount.fstype == 'ext3' or mount.fstype == 'ext4' or mount.fstype == 'xfs' or mount.fstype == 'btrfs') and mount.type != 'loop' ): return False else: return True def freeze_safe(self,timeout): self.root_seen = False error_msg='' timedout = False self.skip_freeze = True mounts_to_skip = None try: mounts_to_skip = self.hutil.get_strvalue_from_configfile('MountsToSkip','') self.logger.log("skipped mount :" + str(mounts_to_skip), True) mounts_list_to_skip = mounts_to_skip.split(',') except Exception as e: errMsg='Failed to read from config, Exception %s, stack trace: %s' % (str(e), traceback.format_exc()) self.logger.log(errMsg,True,'Warning') try: freeze_result = FreezeResult() freezebin=os.path.join(os.getcwd(),os.path.dirname(__file__),"safefreeze/bin/safefreeze") args=[freezebin,str(timeout)] no_mount_found = True for mount in self.mounts.mounts: self.logger.log("fsfreeze mount :" + str(mount.mount_point), True) if(mount.mount_point == '/'): self.root_seen = True self.root_mount = mount elif(mount.mount_point not in mounts_list_to_skip and not self.should_skip(mount)): if(self.skip_freeze == True): self.skip_freeze = False args.append(str(mount.mount_point)) if(self.root_seen and not self.should_skip(self.root_mount)): if(self.skip_freeze == True): self.skip_freeze = False args.append('/') self.logger.log("skip freeze is : " + str(self.skip_freeze), True) if(self.skip_freeze == True): return freeze_result,timedout self.logger.log("arg : " + str(args),True) self.freeze_handler.reset_signals() self.freeze_handler.signal_receiver() self.logger.log("proceeded for accepting signals", True) if(mounts_to_skip == '/'): #for continue logging to avoid out of memory issue self.logger.enforce_local_flag(True) else: self.logger.enforce_local_flag(False) start_time = datetime.datetime.utcnow() while self.getLockRetry < self.maxGetLockRetry: try: if not os.path.isdir('/etc/azure/MicrosoftRecoverySvcsSafeFreezeLock'): os.mkdir('/etc/azure/MicrosoftRecoverySvcsSafeFreezeLock') self.safeFreezelockFile = open("/etc/azure/MicrosoftRecoverySvcsSafeFreezeLock/SafeFreezeLockFile","w") self.logger.log("/etc/azure/MicrosoftRecoverySvcsSafeFreezeLock/SafeFreezeLockFile file opened Sucessfully",True) try: fcntl.lockf(self.safeFreezelockFile, fcntl.LOCK_EX | fcntl.LOCK_NB) self.logger.log("Aquiring lock succeeded",True) self.isAquireLockSucceeded = True break except Exception as ex: self.safeFreezelockFile.close() raise ex except Exception as e: self.logger.log("Failed to open file or aquire lock: %s, stack trace: %s" % (str(e), traceback.format_exc()),True) self.isAquireLockSucceeded = False self.getLockRetry= self.getLockRetry + 1 time.sleep(1) if(self.getLockRetry == self.maxGetLockRetry - 1): time.sleep(30) self.logger.log("Retry to aquire lock count: "+ str(self.getLockRetry),True) end_time = datetime.datetime.utcnow() self.logger.log("Wait time to aquire lock "+ str(end_time - start_time),True) sig_handle = None if (self.isAquireLockSucceeded == True): sig_handle=self.freeze_handler.startproc(args) self.logger.log("freeze_safe after returning from startproc : sig_handle="+str(sig_handle)) if(sig_handle != 1): if (self.freeze_handler.child is not None): self.log_binary_output() if (sig_handle == 0): timedout = True error_msg="freeze timed-out" freeze_result.errors.append(error_msg) self.logger.log(error_msg, True, 'Error') elif (self.mount_open_failed == True): error_msg=CommonVariables.unable_to_open_err_string freeze_result.errors.append(error_msg) self.logger.log(error_msg, True, 'Error') elif (self.isAquireLockSucceeded == False): error_msg="Mount Points already freezed by some other processor" freeze_result.errors.append(error_msg) self.logger.log(error_msg,True,'Error') else: error_msg="freeze failed for some mount" freeze_result.errors.append(error_msg) self.logger.log(error_msg, True, 'Error') except Exception as e: self.logger.enforce_local_flag(True) error_msg='freeze failed for some mount with exception, Exception %s, stack trace: %s' % (str(e), traceback.format_exc()) freeze_result.errors.append(error_msg) self.logger.log(error_msg, True, 'Error') return freeze_result,timedout def releaseFileLock(self): if (self.isAquireLockSucceeded == True): try: fcntl.lockf(self.safeFreezelockFile, fcntl.LOCK_UN) self.safeFreezelockFile.close() except Exception as e: self.logger.log("Failed to unlock: %s, stack trace: %s" % (str(e), traceback.format_exc()),True) try: os.remove("/etc/azure/MicrosoftRecoverySvcsSafeFreezeLock/SafeFreezeLockFile") except Exception as e: self.logger.log("Failed to delete /etc/azure/MicrosoftRecoverySvcsSafeFreezeLock/SafeFreezeLockFile file: %s, stack trace: %s" % (str(e), traceback.format_exc()),True) def thaw_safe(self): thaw_result = None unable_to_sleep = False try: thaw_result = FreezeResult() if(self.skip_freeze == True): return thaw_result, unable_to_sleep if(self.freeze_handler.child is None): self.logger.log("child already completed", True) self.logger.log("****** 7. Error - Binary Process Already Completed", True) error_msg = 'snapshot result inconsistent' thaw_result.errors.append(error_msg) elif(self.freeze_handler.child.poll() is None): self.logger.log("child process still running") self.logger.log("****** 7. Sending Thaw Signal to Binary") self.freeze_handler.child.send_signal(signal.SIGUSR1) for i in range(0,30): if(self.freeze_handler.child.poll() is None): self.logger.log("child still running sigusr1 sent") time.sleep(1) else: break self.logger.enforce_local_flag(True) self.log_binary_output() if(self.freeze_handler.child.returncode!=0): error_msg = 'snapshot result inconsistent as child returns with failure' thaw_result.errors.append(error_msg) self.logger.log(error_msg, True, 'Error') else: self.logger.log("Binary output after process end when no thaw sent: ", True) if(self.freeze_handler.child.returncode==2): error_msg = 'Unable to execute sleep' thaw_result.errors.append(error_msg) unable_to_sleep = True else: error_msg = 'snapshot result inconsistent' thaw_result.errors.append(error_msg) self.logger.enforce_local_flag(True) self.log_binary_output() self.logger.log(error_msg, True, 'Error') self.logger.enforce_local_flag(True) finally: self.releaseFileLock() return thaw_result, unable_to_sleep def log_binary_output(self): self.logger.log("============== Binary output traces start ================= ", True) while True: line=self.freeze_handler.child.stdout.readline() if sys.version_info > (3,): line = str(line, encoding='utf-8', errors="backslashreplace") else: line = str(line) if("Failed to open:" in line): self.mount_open_failed = True if(line != ''): self.logger.log(line.rstrip(), True) else: break self.logger.log("============== Binary output traces end ================= ", True)
44.485714
179
0.596161
8ffec7f2be53a7b2d40e3e8c480a12532d6a7974
10,073
py
Python
phpmyadmin/doc/conf.py
worttreffer/real1
424e896322e74179cd9f3a2689c44df6ac02bb80
[ "MIT" ]
null
null
null
phpmyadmin/doc/conf.py
worttreffer/real1
424e896322e74179cd9f3a2689c44df6ac02bb80
[ "MIT" ]
1
2021-05-10T11:02:02.000Z
2021-05-10T11:02:02.000Z
phpmyadmin/doc/conf.py
worttreffer/real1
424e896322e74179cd9f3a2689c44df6ac02bb80
[ "MIT" ]
1
2019-09-05T09:39:18.000Z
2019-09-05T09:39:18.000Z
# -*- coding: utf-8 -*- # # phpMyAdmin documentation build configuration file, created by # sphinx-quickstart on Wed Sep 26 14:04:48 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "_ext"))) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['configext'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'phpMyAdmin' copyright = u'2012 - 2018, The phpMyAdmin devel team' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '5.1.0-dev' # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build', 'html', 'doctrees'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'phpMyAdmindoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'phpMyAdmin.tex', u'phpMyAdmin Documentation', u'The phpMyAdmin devel team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'phpmyadmin', u'phpMyAdmin Documentation', [u'The phpMyAdmin devel team'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'phpMyAdmin', u'phpMyAdmin Documentation', u'The phpMyAdmin devel team', 'phpMyAdmin', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'phpMyAdmin' epub_author = u'The phpMyAdmin devel team' epub_publisher = u'The phpMyAdmin devel team' epub_copyright = copyright # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Highlight PHP without starting <?php tag from sphinx.highlighting import lexers from pygments.lexers.web import PhpLexer lexers['php'] = PhpLexer(startinline=True) # Number of retries and timeout for linkcheck linkcheck_retries = 10 linkcheck_timeout = 10 linkcheck_anchors = False linkcheck_ignore = [ # Site is often down r'https://software.opensuse.org/package/.*', r'https://pecl.php.net/.*', # 403 Client Error: Forbidden r'https://authy.com/.*', # 500 Server Error: Internal Server Error r'http://www.scriptalicious.com/.*', ]
31.576803
82
0.718952
2f4f7cd7ffa25422c458f7b92062cf771c95af4b
1,609
py
Python
stubs.min/System/__init___parts/MarshalByRefObject.py
denfromufa/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
1
2017-07-07T11:15:45.000Z
2017-07-07T11:15:45.000Z
stubs.min/System/__init___parts/MarshalByRefObject.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
stubs.min/System/__init___parts/MarshalByRefObject.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
class MarshalByRefObject(object): """ Enables access to objects across application domain boundaries in applications that support remoting. """ def CreateObjRef(self,requestedType): """ CreateObjRef(self: MarshalByRefObject,requestedType: Type) -> ObjRef Creates an object that contains all the relevant information required to generate a proxy used to communicate with a remote object. requestedType: The System.Type of the object that the new System.Runtime.Remoting.ObjRef will reference. Returns: Information required to generate a proxy. """ pass def GetLifetimeService(self): """ GetLifetimeService(self: MarshalByRefObject) -> object Retrieves the current lifetime service object that controls the lifetime policy for this instance. Returns: An object of type System.Runtime.Remoting.Lifetime.ILease used to control the lifetime policy for this instance. """ pass def InitializeLifetimeService(self): """ InitializeLifetimeService(self: MarshalByRefObject) -> object Obtains a lifetime service object to control the lifetime policy for this instance. Returns: An object of type System.Runtime.Remoting.Lifetime.ILease used to control the lifetime policy for this instance. This is the current lifetime service object for this instance if one exists; otherwise,a new lifetime service object initialized to the value of the System.Runtime.Remoting.Lifetime.LifetimeServices.LeaseManagerPollTime property. """ pass
37.418605
111
0.724052
b9dbf62f9c3d8025199b3066cf74a32ffbf437fb
156
py
Python
hw/andrei_bondar/test_bondar.py
alexander-sidorov/qap-05
6db7c0a1eeadd15f7d3f826e7f0ac4be3949ec8c
[ "MIT" ]
9
2021-12-10T21:30:07.000Z
2022-02-25T21:32:34.000Z
hw/andrei_bondar/test_bondar.py
alexander-sidorov/qap-05
6db7c0a1eeadd15f7d3f826e7f0ac4be3949ec8c
[ "MIT" ]
22
2021-12-11T08:46:58.000Z
2022-02-02T15:56:37.000Z
hw/andrei_bondar/test_bondar.py
alexander-sidorov/qap-05
6db7c0a1eeadd15f7d3f826e7f0ac4be3949ec8c
[ "MIT" ]
8
2021-12-11T09:15:45.000Z
2022-02-02T08:09:09.000Z
def test_example() -> None: assert True, "not True" assert 1 + 1 == 2 assert 4 / 2 == 2 assert 2 * 2 == 4 assert "ab" + "bc" == "abbc"
19.5
32
0.49359
ef9c889ac241646a46b25de312e4e463611176e7
4,420
py
Python
src/OTLMOW/PostenMapping/Model/Post060344470.py
davidvlaminck/OTLClassPython
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
2
2022-02-01T08:58:11.000Z
2022-02-08T13:35:17.000Z
src/OTLMOW/PostenMapping/Model/Post060344470.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
src/OTLMOW/PostenMapping/Model/Post060344470.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
# coding=utf-8 from OTLMOW.PostenMapping.StandaardPost import StandaardPost from OTLMOW.PostenMapping.StandaardPostMapping import StandaardPostMapping # Generated with PostenCreator. To modify: extend, do not edit class Post060344470(StandaardPost): def __init__(self): super().__init__( nummer='0603.44470', beschrijving='Gestaalstraalde waterdoorlatende betonstraatstenen, wit met kleurondersteunende granulaten volgens 6-3.5, met drainageopeningen, 100 mm', meetstaateenheid='M2', mappings=[StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating.aard', dotnotatie='aard', defaultWaarde='met-drainageopeningen', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.44470') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#Laag.laagRol', dotnotatie='laagRol', defaultWaarde='straatlaag', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.44470') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating.type', dotnotatie='type', defaultWaarde='witte-met-kleurondersteunende-granulaten', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.44470') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating.afwerking', dotnotatie='afwerking', defaultWaarde='gestaaldstraald', range='', usagenote='', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.44470') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#LaagDikte.dikte', dotnotatie='dikte', defaultWaarde='10', range='', usagenote='cm^^cdt:ucumunit', isMeetstaatAttr=0, isAltijdInTeVullen=0, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.44470') , StandaardPostMapping( typeURI='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#WaterdoorlatendeBestrating', attribuutURI='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#Laag.oppervlakte', dotnotatie='oppervlakte', defaultWaarde='', range='', usagenote='m2^^cdt:ucumunit', isMeetstaatAttr=1, isAltijdInTeVullen=1, isBasisMapping=1, mappingStatus='gemapt 2.0', mappingOpmerking='', standaardpostnummer='0603.44470')])
48.571429
163
0.578054
ed045ae4cb6ee0e2f44f269d3dca1166314ca141
465
py
Python
_pytest/test_everything.py
tzvetkoff/wee-slack
da7a9643b5d2512b749e711d5af12259f90517b7
[ "MIT" ]
null
null
null
_pytest/test_everything.py
tzvetkoff/wee-slack
da7a9643b5d2512b749e711d5af12259f90517b7
[ "MIT" ]
null
null
null
_pytest/test_everything.py
tzvetkoff/wee-slack
da7a9643b5d2512b749e711d5af12259f90517b7
[ "MIT" ]
1
2021-07-05T08:57:42.000Z
2021-07-05T08:57:42.000Z
from __future__ import print_function, unicode_literals import glob import json def test_everything(realish_eventrouter, team): datafiles = glob.glob("_pytest/data/websocket/*.json") for fname in sorted(datafiles): data = json.loads(open(fname, 'r').read()) team.ws.add(data) realish_eventrouter.receive_ws_callback(team.team_hash, None) realish_eventrouter.handle_next() assert len(realish_eventrouter.queue) == 14
27.352941
69
0.724731
ca312ec06796627aebcdf95772d6011616f907c8
13,909
py
Python
aiobotocore/endpoint.py
fraglab/aiobotocore
dec5a6324d150e8d7eff648b511c0227f30485cc
[ "Apache-2.0" ]
2
2020-08-28T12:11:59.000Z
2020-09-29T14:34:15.000Z
aiobotocore/endpoint.py
fraglab/aiobotocore
dec5a6324d150e8d7eff648b511c0227f30485cc
[ "Apache-2.0" ]
4
2020-08-28T11:51:20.000Z
2020-11-28T13:54:15.000Z
aiobotocore/endpoint.py
admdev8/aiobotocore
bddbeeec248ed25ae514c222f012e778fbd4655c
[ "Apache-2.0" ]
null
null
null
import aiohttp import asyncio import io import ssl import aiohttp.http_exceptions from aiohttp.client import URL from botocore.endpoint import EndpointCreator, Endpoint, DEFAULT_TIMEOUT, \ MAX_POOL_CONNECTIONS, logger, history_recorder, create_request_object from botocore.exceptions import ConnectionClosedError from botocore.hooks import first_non_none_response from botocore.utils import is_valid_endpoint_url from multidict import MultiDict from urllib.parse import urlparse from urllib3.response import HTTPHeaderDict from aiobotocore.response import StreamingBody from aiobotocore._endpoint_helpers import _text, _IOBaseWrapper, \ ClientResponseProxy async def convert_to_response_dict(http_response, operation_model): """Convert an HTTP response object to a request dict. This converts the requests library's HTTP response object to a dictionary. :type http_response: botocore.vendored.requests.model.Response :param http_response: The HTTP response from an AWS service request. :rtype: dict :return: A response dictionary which will contain the following keys: * headers (dict) * status_code (int) * body (string or file-like object) """ response_dict = { # botocore converts keys to str, so make sure that they are in # the expected case. See detailed discussion here: # https://github.com/aio-libs/aiobotocore/pull/116 # aiohttp's CIMultiDict camel cases the headers :( 'headers': HTTPHeaderDict( {k.decode('utf-8').lower(): v.decode('utf-8') for k, v in http_response.raw_headers}), 'status_code': http_response.status_code, 'context': { 'operation_name': operation_model.name, } } if response_dict['status_code'] >= 300: response_dict['body'] = await http_response.read() elif operation_model.has_event_stream_output: response_dict['body'] = http_response.raw elif operation_model.has_streaming_output: length = response_dict['headers'].get('content-length') response_dict['body'] = StreamingBody(http_response.raw, length) else: response_dict['body'] = await http_response.read() return response_dict class AioEndpoint(Endpoint): def __init__(self, *args, proxies=None, **kwargs): super().__init__(*args, **kwargs) self.proxies = proxies or {} async def create_request(self, params, operation_model=None): request = create_request_object(params) if operation_model: request.stream_output = any([ operation_model.has_streaming_output, operation_model.has_event_stream_output ]) service_id = operation_model.service_model.service_id.hyphenize() event_name = 'request-created.{service_id}.{op_name}'.format( service_id=service_id, op_name=operation_model.name) await self._event_emitter.emit(event_name, request=request, operation_name=operation_model.name) prepared_request = self.prepare_request(request) return prepared_request async def _send_request(self, request_dict, operation_model): attempts = 1 request = await self.create_request(request_dict, operation_model) context = request_dict['context'] success_response, exception = await self._get_response( request, operation_model, context) while await self._needs_retry(attempts, operation_model, request_dict, success_response, exception): attempts += 1 # If there is a stream associated with the request, we need # to reset it before attempting to send the request again. # This will ensure that we resend the entire contents of the # body. request.reset_stream() # Create a new request when retried (including a new signature). request = await self.create_request( request_dict, operation_model) success_response, exception = await self._get_response( request, operation_model, context) if success_response is not None and \ 'ResponseMetadata' in success_response[1]: # We want to share num retries, not num attempts. total_retries = attempts - 1 success_response[1]['ResponseMetadata']['RetryAttempts'] = \ total_retries if exception is not None: raise exception else: return success_response async def _get_response(self, request, operation_model, context): # This will return a tuple of (success_response, exception) # and success_response is itself a tuple of # (http_response, parsed_dict). # If an exception occurs then the success_response is None. # If no exception occurs then exception is None. success_response, exception = await self._do_get_response( request, operation_model) kwargs_to_emit = { 'response_dict': None, 'parsed_response': None, 'context': context, 'exception': exception, } if success_response is not None: http_response, parsed_response = success_response kwargs_to_emit['parsed_response'] = parsed_response kwargs_to_emit['response_dict'] = await convert_to_response_dict( http_response, operation_model) service_id = operation_model.service_model.service_id.hyphenize() await self._event_emitter.emit( 'response-received.%s.%s' % ( service_id, operation_model.name), **kwargs_to_emit) return success_response, exception async def _do_get_response(self, request, operation_model): try: logger.debug("Sending http request: %s", request) history_recorder.record('HTTP_REQUEST', { 'method': request.method, 'headers': request.headers, 'streaming': operation_model.has_streaming_input, 'url': request.url, 'body': request.body }) service_id = operation_model.service_model.service_id.hyphenize() event_name = 'before-send.%s.%s' % ( service_id, operation_model.name) responses = await self._event_emitter.emit(event_name, request=request) http_response = first_non_none_response(responses) if http_response is None: http_response = await self._send(request) except aiohttp.ClientConnectionError as e: e.request = request # botocore expects the request property return None, e except aiohttp.http_exceptions.BadStatusLine: better_exception = ConnectionClosedError( endpoint_url=request.url, request=request) return None, better_exception except Exception as e: logger.debug("Exception received when sending HTTP request.", exc_info=True) return None, e # This returns the http_response and the parsed_data. response_dict = await convert_to_response_dict(http_response, operation_model) http_response_record_dict = response_dict.copy() http_response_record_dict['streaming'] = \ operation_model.has_streaming_output history_recorder.record('HTTP_RESPONSE', http_response_record_dict) protocol = operation_model.metadata['protocol'] parser = self._response_parser_factory.create_parser(protocol) parsed_response = parser.parse( response_dict, operation_model.output_shape) if http_response.status_code >= 300: self._add_modeled_error_fields( response_dict, parsed_response, operation_model, parser, ) history_recorder.record('PARSED_RESPONSE', parsed_response) return (http_response, parsed_response), None # NOTE: The only line changed here changing time.sleep to asyncio.sleep async def _needs_retry(self, attempts, operation_model, request_dict, response=None, caught_exception=None): service_id = operation_model.service_model.service_id.hyphenize() event_name = 'needs-retry.%s.%s' % ( service_id, operation_model.name) responses = await self._event_emitter.emit( event_name, response=response, endpoint=self, operation=operation_model, attempts=attempts, caught_exception=caught_exception, request_dict=request_dict) handler_response = first_non_none_response(responses) if handler_response is None: return False else: # Request needs to be retried, and we need to sleep # for the specified number of times. logger.debug("Response received to retry, sleeping for " "%s seconds", handler_response) await asyncio.sleep(handler_response) return True async def _send(self, request): # Note: When using aiobotocore with dynamodb, requests fail on crc32 # checksum computation as soon as the response data reaches ~5KB. # When AWS response is gzip compressed: # 1. aiohttp is automatically decompressing the data # (http://aiohttp.readthedocs.io/en/stable/client.html#binary-response-content) # 2. botocore computes crc32 on the uncompressed data bytes and fails # cause crc32 has been computed on the compressed data # The following line forces aws not to use gzip compression, # if there is a way to configure aiohttp not to perform decompression, # we can remove the following line and take advantage of # aws gzip compression. # https://github.com/boto/botocore/issues/1255 url = request.url headers = request.headers data = request.body headers['Accept-Encoding'] = 'identity' headers_ = MultiDict( (z[0], _text(z[1], encoding='utf-8')) for z in headers.items()) # botocore does this during the request so we do this here as well # TODO: this should be part of the ClientSession, perhaps make wrapper proxy = self.proxies.get(urlparse(url.lower()).scheme) if isinstance(data, io.IOBase): data = _IOBaseWrapper(data) url = URL(url, encoded=True) resp = await self.http_session.request( request.method, url=url, headers=headers_, data=data, proxy=proxy) # If we're not streaming, read the content so we can retry any timeout # errors, see: # https://github.com/boto/botocore/blob/develop/botocore/vendored/requests/sessions.py#L604 if not request.stream_output: await resp.read() return resp class AioEndpointCreator(EndpointCreator): # TODO: handle socket_options def create_endpoint(self, service_model, region_name, endpoint_url, verify=None, response_parser_factory=None, timeout=DEFAULT_TIMEOUT, max_pool_connections=MAX_POOL_CONNECTIONS, http_session_cls=aiohttp.ClientSession, proxies=None, socket_options=None, client_cert=None, connector_args=None): if not is_valid_endpoint_url(endpoint_url): raise ValueError("Invalid endpoint: %s" % endpoint_url) if proxies is None: proxies = self._get_proxies(endpoint_url) endpoint_prefix = service_model.endpoint_prefix logger.debug('Setting %s timeout as %s', endpoint_prefix, timeout) if isinstance(timeout, (list, tuple)): conn_timeout, read_timeout = timeout else: conn_timeout = read_timeout = timeout if connector_args is None: # AWS has a 20 second idle timeout: # https://forums.aws.amazon.com/message.jspa?messageID=215367 # aiohttp default timeout is 30s so set something reasonable here connector_args = dict(keepalive_timeout=12) timeout = aiohttp.ClientTimeout( sock_connect=conn_timeout, sock_read=read_timeout ) ssl_context = None if client_cert: if isinstance(client_cert, str): key_file = None cert_file = client_cert elif isinstance(client_cert, tuple): cert_file, key_file = client_cert else: assert False ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) ssl_context.load_cert_chain(cert_file, key_file) connector = aiohttp.TCPConnector( limit=max_pool_connections, verify_ssl=self._get_verify_value(verify), ssl_context=ssl_context, **connector_args) aio_session = aiohttp.ClientSession( connector=connector, timeout=timeout, skip_auto_headers={'CONTENT-TYPE'}, response_class=ClientResponseProxy, auto_decompress=False) return AioEndpoint( endpoint_url, endpoint_prefix=endpoint_prefix, event_emitter=self._event_emitter, response_parser_factory=response_parser_factory, http_session=aio_session, proxies=proxies)
43.330218
99
0.637573
de00e5f6632b7561d3897ee36a4a17c3e3bbc959
1,850
py
Python
tests/nnapi/specs/Ex/transpose_conv_ex_float_4.mod.py
bogus-sudo/ONE-1
7052a817eff661ec2854ed2e7ee0de5e8ba82b55
[ "Apache-2.0" ]
255
2020-05-22T07:45:29.000Z
2022-03-29T23:58:22.000Z
tests/nnapi/specs/Ex/transpose_conv_ex_float_4.mod.py
bogus-sudo/ONE-1
7052a817eff661ec2854ed2e7ee0de5e8ba82b55
[ "Apache-2.0" ]
5,102
2020-05-22T07:48:33.000Z
2022-03-31T23:43:39.000Z
tests/nnapi/specs/Ex/transpose_conv_ex_float_4.mod.py
bogus-sudo/ONE-1
7052a817eff661ec2854ed2e7ee0de5e8ba82b55
[ "Apache-2.0" ]
120
2020-05-22T07:51:08.000Z
2022-02-16T19:08:05.000Z
# model batch = 1 in_chans = 1 out_chans = 1 in_rows = 4 in_cols = 4 out_rows = 8 out_cols = 8 ker_rows = 3 ker_cols = 3 stride = 2 # pad is 0 (left: 0 right: 1 top: 0 bottom: 1) input_table = [x for x in range(batch * in_rows * in_cols * in_chans)] kernel_table = [x for x in range(out_chans * ker_rows * ker_cols * in_chans)] out_table = [0 for x in range(batch * out_rows * out_cols * out_chans)] for i in range(batch): for j in range(in_rows): for k in range(in_cols): for l in range(in_chans): out_row_origin = j * stride out_col_origin = k * stride input_value = input_table[((i * in_rows + j) * in_cols + k) * in_chans + l] for m in range(ker_rows): for n in range(ker_cols): for o in range(out_chans): out_row = out_row_origin + m out_col = out_col_origin + n if (out_row < out_rows) and (out_col < out_cols) and (out_row >= 0) and (out_col >= 0): kernel_value = kernel_table[((o * ker_rows + m) * ker_cols + n) * in_chans + l] out_table[((i * out_rows + out_row) * out_cols + out_col) * out_chans + o] += (input_value * kernel_value) model = Model() i0 = Input("op_shape", "TENSOR_INT32", "{4}") weights = Parameter("ker", "TENSOR_FLOAT32", "{1, 3, 3, 1}", kernel_table) i1 = Input("in", "TENSOR_FLOAT32", "{1, 4, 4, 1}" ) pad = Int32Scalar("pad_same", 1) s_x = Int32Scalar("stride_x", 2) s_y = Int32Scalar("stride_y", 2) i2 = Output("op", "TENSOR_FLOAT32", "{1, 8, 8, 1}") model = model.Operation("TRANSPOSE_CONV_EX", i0, weights, i1, pad, s_x, s_y).To(i2) # Example 1. Input in operand 0, input0 = {i0: # output shape [1, 8, 8, 1], i1: # input 0 input_table} output0 = {i2: # output 0 out_table} # Instantiate an example Example((input0, output0))
33.636364
122
0.605946
1ae6e2d58397ea698b8c3ce58fd4be0a1ee56533
742
py
Python
src/articles/entrypoints/rest_api/views/authentication_view.py
Tserewara/dama-rowahutu
9f8d0ecfa8760cf25efb343472734042a4b2fa15
[ "MIT" ]
2
2021-03-19T11:19:14.000Z
2021-05-04T19:02:34.000Z
src/articles/entrypoints/rest_api/views/authentication_view.py
Tserewara/dama-rowahutu
9f8d0ecfa8760cf25efb343472734042a4b2fa15
[ "MIT" ]
null
null
null
src/articles/entrypoints/rest_api/views/authentication_view.py
Tserewara/dama-rowahutu
9f8d0ecfa8760cf25efb343472734042a4b2fa15
[ "MIT" ]
1
2021-03-03T17:33:12.000Z
2021-03-03T17:33:12.000Z
from flask import request, jsonify, session from flask.views import MethodView from src.articles.domain.entities import exceptions from src.articles.services import credential_service, unit_of_work class AuthenticationAPI(MethodView): @staticmethod def post(): try: username = credential_service.authenticate( username=request.json['username'], password=request.json['password'], uow=unit_of_work.SqlAlchemyUnitOfWork() ) session['username'] = username return jsonify({'message': 'Logging successful!'}), 200 except exceptions.CredentialValueError as e: return jsonify({'message': f'{str(e)}'}), 401
26.5
67
0.648248
998082bccf447ca3705359362c8fcecc22faba19
1,487
py
Python
vendor/github.com/elastic/beats/metricbeat/module/mysql/test_mysql.py
maehue/mqttbeat
6c10f56096747732e40b70e298391eccd43d118b
[ "Apache-2.0" ]
14
2019-05-07T16:12:03.000Z
2020-07-17T12:49:42.000Z
vendor/github.com/elastic/beats/metricbeat/module/mysql/test_mysql.py
maehue/mqttbeat
6c10f56096747732e40b70e298391eccd43d118b
[ "Apache-2.0" ]
7
2019-05-14T13:46:01.000Z
2021-01-09T08:10:59.000Z
vendor/github.com/elastic/beats/metricbeat/module/mysql/test_mysql.py
maehue/mqttbeat
6c10f56096747732e40b70e298391eccd43d118b
[ "Apache-2.0" ]
3
2019-08-19T12:22:02.000Z
2020-07-17T12:53:43.000Z
import os import sys import unittest from nose.plugins.attrib import attr sys.path.append(os.path.join(os.path.dirname(__file__), '../../tests/system')) import metricbeat MYSQL_FIELDS = metricbeat.COMMON_FIELDS + ["mysql"] MYSQL_STATUS_FIELDS = ["clients", "cluster", "cpu", "keyspace", "memory", "persistence", "replication", "server", "stats"] @metricbeat.parameterized_with_supported_versions class Test(metricbeat.BaseTest): COMPOSE_SERVICES = ['mysql'] @unittest.skipUnless(metricbeat.INTEGRATION_TESTS, "integration test") @attr('integration') def test_status(self): """ MySQL module outputs an event. """ self.render_config_template(modules=[{ "name": "mysql", "metricsets": ["status"], "hosts": self.get_hosts(), "period": "5s" }]) proc = self.start_beat() self.wait_until(lambda: self.output_lines() > 0) proc.check_kill_and_wait() self.assert_no_logged_warnings() output = self.read_output_json() self.assertEqual(len(output), 1) evt = output[0] self.assertItemsEqual(self.de_dot(MYSQL_FIELDS), evt.keys(), evt) status = evt["mysql"]["status"] assert status["connections"] > 0 assert status["opened_tables"] > 0 self.assert_fields_are_documented(evt) def get_hosts(self): return ['root:test@tcp({})/'.format(self.compose_host())]
29.156863
78
0.627438
d7083384b0883e4c2af5d6bb5e127cb32c8d23fb
8,395
py
Python
aws_deploy_package/twilio/rest/studio/v1/flow/execution/execution_context.py
anandhakrishnanh1998/Twilio-Chat-Bot
bb5cb02e363deb4c31a24cae6b0fd0b893ef2e20
[ "MIT" ]
1
2020-01-18T08:06:57.000Z
2020-01-18T08:06:57.000Z
aws_deploy_package/twilio/rest/studio/v1/flow/execution/execution_context.py
anandhakrishnanh1998/Twilio-Chat-Bot
bb5cb02e363deb4c31a24cae6b0fd0b893ef2e20
[ "MIT" ]
9
2019-12-05T00:49:12.000Z
2021-09-08T01:31:25.000Z
flask/lib/python3.6/site-packages/twilio/rest/studio/v1/flow/execution/execution_context.py
JOFLIX/grapevines
34576e01184570d79cc140b42ffb71d322132da6
[ "MIT", "Unlicense" ]
null
null
null
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class ExecutionContextList(ListResource): """ """ def __init__(self, version, flow_sid, execution_sid): """ Initialize the ExecutionContextList :param Version version: Version that contains the resource :param flow_sid: Flow Sid. :param execution_sid: Execution Sid. :returns: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextList :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextList """ super(ExecutionContextList, self).__init__(version) # Path Solution self._solution = {'flow_sid': flow_sid, 'execution_sid': execution_sid, } def get(self): """ Constructs a ExecutionContextContext :returns: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextContext :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextContext """ return ExecutionContextContext( self._version, flow_sid=self._solution['flow_sid'], execution_sid=self._solution['execution_sid'], ) def __call__(self): """ Constructs a ExecutionContextContext :returns: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextContext :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextContext """ return ExecutionContextContext( self._version, flow_sid=self._solution['flow_sid'], execution_sid=self._solution['execution_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Studio.V1.ExecutionContextList>' class ExecutionContextPage(Page): """ """ def __init__(self, version, response, solution): """ Initialize the ExecutionContextPage :param Version version: Version that contains the resource :param Response response: Response from the API :param flow_sid: Flow Sid. :param execution_sid: Execution Sid. :returns: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextPage :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextPage """ super(ExecutionContextPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of ExecutionContextInstance :param dict payload: Payload response from the API :returns: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextInstance :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextInstance """ return ExecutionContextInstance( self._version, payload, flow_sid=self._solution['flow_sid'], execution_sid=self._solution['execution_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Studio.V1.ExecutionContextPage>' class ExecutionContextContext(InstanceContext): """ """ def __init__(self, version, flow_sid, execution_sid): """ Initialize the ExecutionContextContext :param Version version: Version that contains the resource :param flow_sid: Flow Sid. :param execution_sid: Execution Sid. :returns: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextContext :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextContext """ super(ExecutionContextContext, self).__init__(version) # Path Solution self._solution = {'flow_sid': flow_sid, 'execution_sid': execution_sid, } self._uri = '/Flows/{flow_sid}/Executions/{execution_sid}/Context'.format(**self._solution) def fetch(self): """ Fetch a ExecutionContextInstance :returns: Fetched ExecutionContextInstance :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return ExecutionContextInstance( self._version, payload, flow_sid=self._solution['flow_sid'], execution_sid=self._solution['execution_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Studio.V1.ExecutionContextContext {}>'.format(context) class ExecutionContextInstance(InstanceResource): """ """ def __init__(self, version, payload, flow_sid, execution_sid): """ Initialize the ExecutionContextInstance :returns: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextInstance :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextInstance """ super(ExecutionContextInstance, self).__init__(version) # Marshaled Properties self._properties = { 'account_sid': payload['account_sid'], 'context': payload['context'], 'flow_sid': payload['flow_sid'], 'execution_sid': payload['execution_sid'], 'url': payload['url'], } # Context self._context = None self._solution = {'flow_sid': flow_sid, 'execution_sid': execution_sid, } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: ExecutionContextContext for this ExecutionContextInstance :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextContext """ if self._context is None: self._context = ExecutionContextContext( self._version, flow_sid=self._solution['flow_sid'], execution_sid=self._solution['execution_sid'], ) return self._context @property def account_sid(self): """ :returns: Account Sid. :rtype: unicode """ return self._properties['account_sid'] @property def context(self): """ :returns: Flow state. :rtype: dict """ return self._properties['context'] @property def flow_sid(self): """ :returns: Flow Sid. :rtype: unicode """ return self._properties['flow_sid'] @property def execution_sid(self): """ :returns: Execution Sid. :rtype: unicode """ return self._properties['execution_sid'] @property def url(self): """ :returns: The URL of this resource. :rtype: unicode """ return self._properties['url'] def fetch(self): """ Fetch a ExecutionContextInstance :returns: Fetched ExecutionContextInstance :rtype: twilio.rest.studio.v1.flow.execution.execution_context.ExecutionContextInstance """ return self._proxy.fetch() def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Studio.V1.ExecutionContextInstance {}>'.format(context)
31.092593
99
0.633234
f6d66c63660a566fbf18b5956e31988ff80416e4
3,607
py
Python
detectron/datasets/dummy_datasets.py
gaohaidong/Detectron
cbf1b9177e3a1a3420e38c8c6e7a2e39aed604ef
[ "Apache-2.0" ]
null
null
null
detectron/datasets/dummy_datasets.py
gaohaidong/Detectron
cbf1b9177e3a1a3420e38c8c6e7a2e39aed604ef
[ "Apache-2.0" ]
null
null
null
detectron/datasets/dummy_datasets.py
gaohaidong/Detectron
cbf1b9177e3a1a3420e38c8c6e7a2e39aed604ef
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Provide stub objects that can act as stand-in "dummy" datasets for simple use cases, like getting all classes in a dataset. This exists so that demos can be run without requiring users to download/install datasets first. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from detectron.utils.collections import AttrDict def get_coco_dataset(): """A dummy COCO dataset that includes only the 'classes' field.""" ds = AttrDict() classes = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] ds.classes = {i: name for i, name in enumerate(classes)} return ds def get_traffic_dataset(): """A dummy COCO dataset that includes only the 'classes' field.""" ds = AttrDict() classes = [ '__background__', 'car' ] ds.classes = {i: name for i, name in enumerate(classes)} return ds def get_cloth_dataset(): """A dummy COCO dataset that includes only the 'classes' field.""" ds = AttrDict() classes = [ '__background__', 'huibian','qianjie','bianzhadong','quewei','diaojing','cusha','xianyin','quejing','diaogong','zhixi','pobian','lengduan','cashang','bianquejing','maoban','wuzi','mingqianxian','houduan','bianzhenyan','gongsha','zhengneyin','cadong','jiandong','jiama','jingtiaohua','maodong','zhiru','youzi','camao','zhadong','tiaohua','diaowei','houbaoduan','xiuyin','bianquewei','erduo','jiedong','maoli','podong','huangzi','jinsha','zhashu','zhasha','bianbaiyin','jingcusha','weicusha' ] ds.classes = {i: name for i, name in enumerate(classes)} return ds def get_steel_dataset(): ds = AttrDict() classes = [ '__background__', 'steel' ] ds.classes = {i: name for i, name in enumerate(classes)} return ds def get_hanzi_dataset(): ds = AttrDict() classes = [ '__background__', 'hanzi' ] ds.classes = {i: name for i, name in enumerate(classes)} return ds
44.530864
497
0.641808
972a998e659d9d74dd29f62c346df8477136048c
4,195
py
Python
package_monitor/admin.py
yunojuno-archive/django-package-monitor
5e387c1274b707050dcb441dbfd5b6c0aa7c57dc
[ "MIT" ]
4
2019-07-22T18:28:26.000Z
2020-08-03T15:06:33.000Z
package_monitor/admin.py
yunojuno-archive/django-package-monitor
5e387c1274b707050dcb441dbfd5b6c0aa7c57dc
[ "MIT" ]
4
2020-09-12T12:15:02.000Z
2020-09-13T09:38:26.000Z
package_monitor/admin.py
yunojuno-archive/django-package-monitor
5e387c1274b707050dcb441dbfd5b6c0aa7c57dc
[ "MIT" ]
2
2019-07-22T18:50:54.000Z
2020-06-30T03:19:03.000Z
import logging from typing import Iterable, List, Optional, Tuple from django.contrib import admin from django.db.models import F from django.db.models.query import QuerySet from django.http.request import HttpRequest from django.template.defaultfilters import truncatechars from django.utils.safestring import mark_safe from .models import PackageVersion logger = logging.getLogger(__name__) def html_list(data: Optional[Iterable]) -> str: """Convert dict into formatted HTML.""" if data is None: return "" def as_li(val: str) -> str: return f"<li>{val}</li>" items = [as_li(v) for v in data] return mark_safe("<ul>%s</ul>" % "".join(items)) def check_pypi( modeladmin: admin.ModelAdmin, request: HttpRequest, queryset: QuerySet ) -> None: """Update latest package info from PyPI.""" for p in queryset: if p.is_editable: logger.debug("Ignoring version update '%s' is editable", p.package_name) else: p.update_from_pypi() check_pypi.short_description = "Update selected packages from PyPI" # type: ignore class UpdateAvailableListFilter(admin.SimpleListFilter): """Enable filtering by packages with an update available.""" title = "Update available" parameter_name = "update" def lookups( self, request: HttpRequest, model_admin: admin.ModelAdmin ) -> List[Tuple[str, str]]: return [ ("1", "Yes"), ("0", "No"), ("-1", "Unknown"), ] def queryset(self, request: HttpRequest, queryset: QuerySet) -> QuerySet: """Filter based on whether an update (of any sort) is available.""" if self.value() == "-1": return queryset.filter(latest_version__isnull=True) elif self.value() == "0": return queryset.filter( current_version__isnull=False, latest_version__isnull=False, latest_version=F("current_version"), ) elif self.value() == "1": return queryset.filter( current_version__isnull=False, latest_version__isnull=False ).exclude(latest_version=F("current_version")) else: return queryset class PackageVersionAdmin(admin.ModelAdmin): actions = (check_pypi,) change_list_template = "change_list.html" list_display = ( "package_name", "_updateable", "current_version", "next_version", "latest_version", "supports_py3", "_licence", "diff_status", "checked_pypi_at", ) list_filter = ( "diff_status", "is_editable", "is_parseable", UpdateAvailableListFilter, "supports_py3", ) ordering = ["package_name"] readonly_fields = ( "package_name", "is_editable", "is_parseable", "current_version", "next_version", "latest_version", "diff_status", "checked_pypi_at", "url", "licence", "raw", "available_updates", "python_support", "supports_py3", "django_support", ) def _licence(self, obj: "PackageVersion") -> str: """Return truncated version of licence.""" return truncatechars(obj.licence, 20) _licence.short_description = "PyPI licence" # type: ignore def _updateable(self, obj: "PackageVersion") -> Optional[bool]: """Return True if there are available updates.""" if obj.latest_version is None or obj.is_editable: return None else: return obj.latest_version != obj.current_version _updateable.boolean = True # type: ignore _updateable.short_description = "Update available" # type: ignore def available_updates(self, obj: "PackageVersion") -> str: """Print out all versions ahead of the current one.""" from package_monitor import pypi package = pypi.Package(obj.package_name) versions = package.all_versions() return html_list([v for v in versions if v > obj.current_version]) admin.site.register(PackageVersion, PackageVersionAdmin)
29.542254
84
0.622884
d8b1294c11b87a1305f6147267ed6ca9bbc4d2ab
3,260
py
Python
detecting_gender/predict.py
melvinwevers/detecting_faces-medium-types-gender
eac51acdcc19b073b6a3a46275e3d47abdbc3b6f
[ "MIT" ]
null
null
null
detecting_gender/predict.py
melvinwevers/detecting_faces-medium-types-gender
eac51acdcc19b073b6a3a46275e3d47abdbc3b6f
[ "MIT" ]
null
null
null
detecting_gender/predict.py
melvinwevers/detecting_faces-medium-types-gender
eac51acdcc19b073b6a3a46275e3d47abdbc3b6f
[ "MIT" ]
null
null
null
from adabound import AdaBound from keras.models import load_model from keras.preprocessing.image import ImageDataGenerator from keras.utils import CustomObjectScope import os.path import tensorflow as tf import keras.backend as K import numpy as np import argparse from sklearn.metrics import classification_report def make_generators(args): testPath = os.path.join(args.dataset, "test/1990") testAug = ImageDataGenerator( rescale=1.0 / 255 ) mean = np.array([123.68, 116.779, 103.939], dtype="float32") testAug.mean = mean # initialize the testing generator testGen = testAug.flow_from_directory( testPath, class_mode="binary", target_size=(args.image_size, args.image_size), color_mode="rgb", shuffle=False, batch_size=args.batch_size) print(testGen.class_indices.keys()) return testGen def get_args(): parser = argparse.ArgumentParser(description="Fine-tuning vgg16 for gender estimation in historical adverts.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--batch_size", type=int, default=64, help="batch size") parser.add_argument("--n_epochs", type=int, default=50, help="number of epochs") parser.add_argument("--lr", type=float, default=1e-3, help="initial learning rate") parser.add_argument("--opt", type=str, default="adabound", help="optimizer name; 'sgd' or 'adam'") parser.add_argument("--patience", type=int, default=6, help="Patience for callbacks") parser.add_argument("--image_size", type=int, default=224, help="Input size of images") parser.add_argument("--eraser", action="store_true") parser.add_argument("--dataset", type=str, default="../data/gender_3") parser.add_argument("--aug", action="store_true", help="use data augmentation if set true") parser.add_argument("--output_path", type=str, default="checkpoints", help="checkpoint dir") parser.add_argument("--figures_path", type=str, default="figures", help="path for figures") parser.add_argument("--model_path", type=str, default="model.h5", help="model dir") args = parser.parse_args() return args def evaluate(args): testGen = make_generators(args) with CustomObjectScope({'AdaBound': AdaBound()}): model = load_model('binary_model.h5') # print(testGen.classes) predIdxs = model.predict_generator(testGen, steps=( testGen.samples // args.batch_size) + 1, verbose=1) predIdxs = predIdxs > 0.5 # print(predIdxs) print(classification_report(testGen.classes, predIdxs, target_names=testGen.class_indices.keys())) if __name__ == '__main__': os.environ['KERAS_BACKEND'] = 'tensorflow' config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.95 config.gpu_options.allow_growth = True sess = tf.Session(config=config) K.set_session(sess) args = get_args() evaluate(args)
33.958333
114
0.644785
e2a9d373c8dd89e535f964917bfa7ffc8342adea
1,127
py
Python
main/migrations/0013_auto_20171117_0305.py
abhishek9991/Club-Website
cadd69fe46a94c26af2035ed6ca9a3a0e4743fc9
[ "MIT" ]
1
2021-06-04T04:32:34.000Z
2021-06-04T04:32:34.000Z
main/migrations/0013_auto_20171117_0305.py
abhishek9991/Club-Website
cadd69fe46a94c26af2035ed6ca9a3a0e4743fc9
[ "MIT" ]
null
null
null
main/migrations/0013_auto_20171117_0305.py
abhishek9991/Club-Website
cadd69fe46a94c26af2035ed6ca9a3a0e4743fc9
[ "MIT" ]
1
2020-10-01T04:23:04.000Z
2020-10-01T04:23:04.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-11-16 21:35 from __future__ import unicode_literals import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0012_auto_20171117_0226'), ] operations = [ migrations.CreateModel( name='feedback', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('eventid', models.IntegerField()), ('name', models.CharField(blank=True, max_length=100)), ('comment', models.TextField()), ('star', models.IntegerField(default=0)), ], ), migrations.AlterField( model_name='event', name='end_time', field=models.TimeField(default=datetime.time(3, 5, 21, 651681)), ), migrations.AlterField( model_name='event', name='start_time', field=models.TimeField(default=datetime.time(3, 5, 21, 651681)), ), ]
30.459459
114
0.566105