hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
638027c0eadc956d2dd934c655aead93cd6a42bf
893
py
Python
setup.py
flych3r/producer-consumer-service
2b9d87a058f7ac82cee3d7767f772a3a2c1fe8db
[ "MIT" ]
1
2022-01-16T10:49:42.000Z
2022-01-16T10:49:42.000Z
setup.py
flych3r/producer-consumer-service
2b9d87a058f7ac82cee3d7767f772a3a2c1fe8db
[ "MIT" ]
null
null
null
setup.py
flych3r/producer-consumer-service
2b9d87a058f7ac82cee3d7767f772a3a2c1fe8db
[ "MIT" ]
1
2022-03-09T10:58:24.000Z
2022-03-09T10:58:24.000Z
from setuptools import find_packages, setup with open('requirements.txt') as f: DEPENDENCIES = [dep.strip() for dep in f.readlines()] LICENSE = 'MIT License' CLASSIFIERS = [ 'Development Status :: 3 - Alpha', 'Programming Language :: Python :: 3', 'Operating System :: OS Independent', ] if LICENSE: CLASSIFIERS.append(f'License :: OSI Approved :: {LICENSE}') print(DEPENDENCIES) setup( name='app', version='0.1.0', author='Matheus Xavier', author_email='matheus.sampaio011@gmail.com', license=LICENSE, python_requires='>=3.7', description='A Producer and a Consumer service that will \ be connected through a Queue', long_description_content_type='text/markdown', url='consumer-producer-service', packages=find_packages(), classifiers=CLASSIFIERS, install_requires=DEPENDENCIES, include_package_data=True )
26.264706
63
0.692049
e5956e99bab59a9e13d23122cbc3b2093546e27b
1,098
py
Python
src/bobbit/modules/mock.py
sebmaster36/bobbit
7c9106a5c1d30f6ea64dc4ada2458f626f94b047
[ "MIT" ]
10
2020-05-20T20:28:01.000Z
2022-02-15T06:08:17.000Z
src/bobbit/modules/mock.py
sebmaster36/bobbit
7c9106a5c1d30f6ea64dc4ada2458f626f94b047
[ "MIT" ]
28
2020-05-20T20:39:32.000Z
2021-12-31T16:37:05.000Z
src/bobbit/modules/mock.py
sebmaster36/bobbit
7c9106a5c1d30f6ea64dc4ada2458f626f94b047
[ "MIT" ]
19
2020-05-27T23:47:11.000Z
2022-03-04T04:11:12.000Z
# mock.py # Metadata NAME = 'mock' ENABLE = True PATTERN = r'^!mock (?P<phrase>.*)' USAGE = '''Usage: !mock <phrase|nick> Given a phrase, this translates the phrase into a mocking spongebob phrase. Example: > !mock it should work on slack and irc iT ShOuLd wOrK On sLaCk aNd iRc Alternatively, given a nick, this translates the last message from the user into a mocking spongebob phrase. Example: > !mock AndroidKitKat I LoVe aPpLe ''' # Command async def mock(bot, message, phrase): if phrase in bot.users: try: history = bot.history.search(message.channel, nick=phrase, limit=1, reverse=True) phrase = list(history)[0].body except IndexError: pass phrase = phrase.lower().rstrip() response = '' for count, letter in enumerate(phrase): if count % 2: letter = letter.upper() response += letter return message.with_body(response) # Register def register(bot): return ( ('command', PATTERN, mock), ) # vim: set sts=4 sw=4 ts=8 expandtab ft=python:
22.408163
93
0.631148
3d42ab9012bf1221c6bd0924b866dca98dc6e69c
565
py
Python
setup.py
conradbez/streamlit-node-graph
a29b8a28bc272c41d9a39dea5d57171615a6b43c
[ "MIT" ]
null
null
null
setup.py
conradbez/streamlit-node-graph
a29b8a28bc272c41d9a39dea5d57171615a6b43c
[ "MIT" ]
null
null
null
setup.py
conradbez/streamlit-node-graph
a29b8a28bc272c41d9a39dea5d57171615a6b43c
[ "MIT" ]
null
null
null
import setuptools setuptools.setup( name="streamlit-node-graph", version="0.0.7", author="", author_email="", description="", long_description="", long_description_content_type="text/plain", url="", packages=setuptools.find_packages(), include_package_data=True, classifiers=[], python_requires=">=3.6", install_requires=[ # By definition, a Custom Component depends on Streamlit. # If your component has other Python dependencies, list # them here. "streamlit >= 0.63", ], )
24.565217
65
0.635398
7178756a0ee688001fb892fb1d48f2aed040bfcd
197
py
Python
mmpy_bot/plugins/ping.py
whoo/mmpy_bot
0ec39d44eff5cd474fcfc5a596910fd26c5c0a9d
[ "MIT" ]
1
2020-04-21T16:23:26.000Z
2020-04-21T16:23:26.000Z
mmpy_bot/plugins/ping.py
whoo/mmpy_bot
0ec39d44eff5cd474fcfc5a596910fd26c5c0a9d
[ "MIT" ]
6
2018-06-05T16:09:16.000Z
2018-08-26T00:26:04.000Z
mmpy_bot/plugins/ping.py
whoo/mmpy_bot
0ec39d44eff5cd474fcfc5a596910fd26c5c0a9d
[ "MIT" ]
1
2021-03-05T20:11:17.000Z
2021-03-05T20:11:17.000Z
# -*- coding: utf-8 -*- import re from mmpy_bot.bot import respond_to @respond_to('^ping$', re.IGNORECASE) def ping_reply(message): message.reply('pong') ping_reply.__doc__ = "Send pong"
14.071429
36
0.690355
676e179a69163d02a9250af2d7947529edd58239
240
py
Python
cultureplatform/forum/forms.py
michaelroudnitski/cultureplatform
38a68faa541cd1b043ec0c0f98323b2fb7623d14
[ "Apache-2.0" ]
null
null
null
cultureplatform/forum/forms.py
michaelroudnitski/cultureplatform
38a68faa541cd1b043ec0c0f98323b2fb7623d14
[ "Apache-2.0" ]
null
null
null
cultureplatform/forum/forms.py
michaelroudnitski/cultureplatform
38a68faa541cd1b043ec0c0f98323b2fb7623d14
[ "Apache-2.0" ]
null
null
null
from django import forms from django.forms import ModelForm from .models import Forum class NewForumForm(ModelForm): """ inherits the Forum model and casts as a form """ class Meta: model = Forum fields = ['title',]
26.666667
56
0.683333
6576ad21a81521db92f89009753b2c4420df2979
3,498
py
Python
dfetch/commands/update.py
jgeudens/dfetch
da9fb65a805a8eaf96ebde265b3f294080df3465
[ "MIT" ]
11
2020-10-14T14:51:02.000Z
2022-02-07T18:40:43.000Z
dfetch/commands/update.py
jgeudens/dfetch
da9fb65a805a8eaf96ebde265b3f294080df3465
[ "MIT" ]
138
2020-11-02T21:18:40.000Z
2022-03-31T20:44:08.000Z
dfetch/commands/update.py
jgeudens/dfetch
da9fb65a805a8eaf96ebde265b3f294080df3465
[ "MIT" ]
5
2020-10-31T12:35:04.000Z
2022-01-27T12:51:55.000Z
"""Update is the main functionality of dfetch. You can add Projects to your :ref:`Manifest` and update will fetch the version specified. It tries to determine what kind of vcs it is: git, svn or something else. .. uml:: /static/uml/update.puml Child-manifests ~~~~~~~~~~~~~~~ It is possible that projects have manifests of their own. After the projects of the main manifest are fetched, *Dfetch* will look for new manifests and update these as well following the same logic as above. If you don't what this, you can prevent *Dfetch* checking child-manifests with ``--non-recursive``. .. note:: Any name or destination clashes are currently up to the user. """ import argparse import os from typing import List import dfetch.commands.command import dfetch.manifest.manifest import dfetch.manifest.project import dfetch.manifest.validate import dfetch.project.git import dfetch.project.svn from dfetch.log import get_logger from dfetch.manifest.project import ProjectEntry from dfetch.util.util import catch_runtime_exceptions, in_directory logger = get_logger(__name__) class Update(dfetch.commands.command.Command): """Update all modules from the manifest. Verifies the manifest and checks all dependencies if updates are available. """ @staticmethod def create_menu(subparsers: "argparse._SubParsersAction") -> None: """Add the menu for the update action.""" parser = dfetch.commands.command.Command.parser(subparsers, Update) parser.add_argument( "-N", "--non-recursive", action="store_true", help="Don't recursively check for child manifests.", ) parser.add_argument( "-f", "--force", action="store_true", help="Always perform update, ignoring version check or local changes.", ) parser.add_argument( "projects", metavar="<project>", type=str, nargs="*", help="Specific project(s) to update", ) def __call__(self, args: argparse.Namespace) -> None: """Perform the update.""" manifest, path = dfetch.manifest.manifest.get_manifest() exceptions: List[str] = [] with in_directory(os.path.dirname(path)): for project in manifest.selected_projects(args.projects): with catch_runtime_exceptions(exceptions) as exceptions: dfetch.project.make(project).update(force=args.force) if not args.non_recursive and os.path.isdir(project.destination): with in_directory(project.destination): exceptions += Update.__update_child_manifests( project, path, force=args.force ) if exceptions: raise RuntimeError("\n".join(exceptions)) @staticmethod def __update_child_manifests( project: ProjectEntry, path: str, force: bool = False ) -> List[str]: exceptions: List[str] = [] for ( childmanifest, childpath, ) in dfetch.manifest.manifest.get_childmanifests(project, skip=[path]): with in_directory(os.path.dirname(childpath)): for childproject in childmanifest.projects: with catch_runtime_exceptions(exceptions) as exceptions: dfetch.project.make(childproject).update(force) return exceptions
34.633663
96
0.644082
f15ac40822df80131972ca404d5acbe64a55fb1e
58,508
py
Python
tensorflow2/tf2cv/models/model_store.py
tucan9389/imgclsmob
cf01fc242ce466a425de7779076ea023bf0148bc
[ "MIT" ]
1
2020-04-10T16:02:19.000Z
2020-04-10T16:02:19.000Z
tensorflow2/tf2cv/models/model_store.py
tucan9389/imgclsmob
cf01fc242ce466a425de7779076ea023bf0148bc
[ "MIT" ]
null
null
null
tensorflow2/tf2cv/models/model_store.py
tucan9389/imgclsmob
cf01fc242ce466a425de7779076ea023bf0148bc
[ "MIT" ]
1
2020-12-10T18:44:27.000Z
2020-12-10T18:44:27.000Z
""" Model store which provides pretrained models. """ __all__ = ['get_model_file'] import os import zipfile import logging import hashlib _model_sha1 = {name: (error, checksum, repo_release_tag, ds, scale) for name, error, checksum, repo_release_tag, ds, scale in [ ('alexnet', '1789', 'ecc4bb4e46e05dde17809978d2900f4fe14ea590', 'v0.0.422', 'in1k', 0.875), ('alexnetb', '1859', '9e390537e070ee42c5deeb6c456f81c991efbb49', 'v0.0.422', 'in1k', 0.875), ('zfnet', '1717', '9500db3008e9ca8bc8f8de8101ec760e5ac8c05a', 'v0.0.422', 'in1k', 0.875), ('zfnetb', '1480', '47533f6a367312c8b2f56202aeae0be366013116', 'v0.0.422', 'in1k', 0.875), ('vgg11', '1017', 'c20556f4179e9311f28baa310702b6ea9265fee8', 'v0.0.422', 'in1k', 0.875), ('vgg13', '0951', '9fa609fcb5cb44caf2737d13c0accc07cdea0c9d', 'v0.0.422', 'in1k', 0.875), ('vgg16', '0834', 'ce78831f5d0640bd2fd619ba7d8d5027e62eb4f2', 'v0.0.422', 'in1k', 0.875), ('vgg19', '0768', 'ec5ac0baa5d49c041af48e67d34d1a89f1a72e7f', 'v0.0.422', 'in1k', 0.875), ('bn_vgg11', '0936', 'ef31b86687e83d413cb9c95c9ead657c3de9f21b', 'v0.0.422', 'in1k', 0.875), ('bn_vgg13', '0887', '2cccc7252ab4798fd9a6c3ce9d0b59717c47e40b', 'v0.0.422', 'in1k', 0.875), ('bn_vgg16', '0759', '1ca9dee8ef41ed84a216636d3c21380988ea1bf8', 'v0.0.422', 'in1k', 0.875), ('bn_vgg19', '0688', '81d25be84932c1c2848cabd4533423e3fd2cdbec', 'v0.0.422', 'in1k', 0.875), ('bn_vgg11b', '0975', 'aeaccfdc4a655d895e280165cf5be856472ca91f', 'v0.0.422', 'in1k', 0.875), ('bn_vgg13b', '1019', '1102ffb7817ff11a8db85f1b9b8519b100da26a0', 'v0.0.422', 'in1k', 0.875), ('bn_vgg16b', '0862', '137178f78ace3943333a98d980dd88b4746e66af', 'v0.0.422', 'in1k', 0.875), ('bn_vgg19b', '0817', 'cd68a741183cbbab52562c4b7330d721e8ffa739', 'v0.0.422', 'in1k', 0.875), ('bninception', '0865', '4cab3cce0eb1b79b872b189f5b0d9e4bb20f5ff4', 'v0.0.423', 'in1k', 0.875), ('resnet10', '1390', '9e787f637312e04d3ec85136bf0ceca50acf8c80', 'v0.0.422', 'in1k', 0.875), ('resnet12', '1301', '8bc41d1b1da87463857bb5ca03fe252ef03116ad', 'v0.0.422', 'in1k', 0.875), ('resnet14', '1224', '7573d98872e622ef74e036c8a436a39ab75e9378', 'v0.0.422', 'in1k', 0.875), ('resnetbc14b', '1115', '5f30b7985b5a57d34909f3db08c52dfe1da065ac', 'v0.0.422', 'in1k', 0.875), ('resnet16', '1088', '14ce0d64680c3fe52f43b407a00d1a23b6cfd81c', 'v0.0.422', 'in1k', 0.875), ('resnet18_wd4', '1745', '6e80041645de7ccbe156ce5bc3cbde909cee6b41', 'v0.0.422', 'in1k', 0.875), ('resnet18_wd2', '1283', '85a7caff1b2f8e355a1b8cb559e836d5b0c22d12', 'v0.0.422', 'in1k', 0.875), ('resnet18_w3d4', '1067', 'c1735b7de29016779c95e8e1481e5ded955b2b63', 'v0.0.422', 'in1k', 0.875), ('resnet18', '0956', '6645845a7614afd265e997223d38e00433f00182', 'v0.0.422', 'in1k', 0.875), ('resnet26', '0837', 'a8f20f7194cdfcb6fd514a8dc9546105fd7a562a', 'v0.0.422', 'in1k', 0.875), ('resnetbc26b', '0757', 'd70a2cadfb648f4c528704f1b9983f35af94de6f', 'v0.0.422', 'in1k', 0.875), ('resnet34', '0744', '7f7d70e7780e24b4cb60cefc895198cdb2b94665', 'v0.0.422', 'in1k', 0.875), ('resnetbc38b', '0677', '75e405a71f7227de5abb6a3c3c44d807b5963c44', 'v0.0.422', 'in1k', 0.875), ('resnet50', '0604', '728800bf57bd49f79671399fd4fd2b7fe9883f07', 'v0.0.422', 'in1k', 0.875), ('resnet50b', '0614', 'b2a49da61dce6309c75e77226bb047b43247da24', 'v0.0.422', 'in1k', 0.875), ('resnet101', '0601', 'b6befeb4c8cf6d72d9c325c22df72ac792b51706', 'v0.0.422', 'in1k', 0.875), ('resnet101b', '0511', 'e3076227a06b394aebcce6260c4afc665224c987', 'v0.0.422', 'in1k', 0.875), ('resnet152', '0534', '2d8e394abcb9d35d2a853bb4dacb58460ff13551', 'v0.0.422', 'in1k', 0.875), ('resnet152b', '0480', 'b77f1e2c9158cc49deba2cf60b8a8e8d6605d654', 'v0.0.422', 'in1k', 0.875), ('preresnet10', '1402', '541bf0e17a576b1676069563a1ed0de0fde4090f', 'v0.0.422', 'in1k', 0.875), ('preresnet12', '1320', '349c0df4a835699bdb045bedc3d38a7747cd21d4', 'v0.0.422', 'in1k', 0.875), ('preresnet14', '1224', '194b876203e467fbad2ccd2e03b90a79bfec8dac', 'v0.0.422', 'in1k', 0.875), ('preresnetbc14b', '1152', 'bc4e06ff3df99e7ffa0b2bdafa224796fa46f5a9', 'v0.0.422', 'in1k', 0.875), ('preresnet16', '1080', 'e00c40ee6d211f553bff0274771e5461150c69f4', 'v0.0.422', 'in1k', 0.875), ('preresnet18_wd4', '1780', '6ac7bc592983ced18c863f203db80bbd30e87a0b', 'v0.0.422', 'in1k', 0.875), ('preresnet18_wd2', '1314', '0c0528c8ae4943aa68ba0298209f2ed418e4f644', 'v0.0.422', 'in1k', 0.875), ('preresnet18_w3d4', '1070', '056b46c6e8ee2c86ebee560efea81dd43bbd5de6', 'v0.0.422', 'in1k', 0.875), ('preresnet18', '0955', '621ead9297b93673ec1c040e091efff9142313b5', 'v0.0.422', 'in1k', 0.875), ('preresnet26', '0837', '1a92a73217b1611c27b0c7082a018328264a65ff', 'v0.0.422', 'in1k', 0.875), ('preresnetbc26b', '0788', '1f737cd6c173ed8e5d9a8a69b35e1cf696ba622e', 'v0.0.422', 'in1k', 0.875), ('preresnet34', '0754', '3cc5ae1481512a8b206fb96ac8b632bcc5ee2db9', 'v0.0.422', 'in1k', 0.875), ('preresnetbc38b', '0636', '3396b49b5d20e7d362f9bd8879c00a21e8d67df1', 'v0.0.422', 'in1k', 0.875), ('preresnet50', '0625', '208605629d347a64b9a354f5ad7f441f736eb418', 'v0.0.422', 'in1k', 0.875), ('preresnet50b', '0634', '711227b1a93dd721dd3e37709456acfde969ba18', 'v0.0.422', 'in1k', 0.875), ('preresnet101', '0573', 'd45ea488f72fb99af1c46e4064b12c5014a7b626', 'v0.0.422', 'in1k', 0.875), ('preresnet101b', '0539', '54d23aff956752be614c2ba66d8bff5477cf0367', 'v0.0.422', 'in1k', 0.875), ('preresnet152', '0532', '0ad4b58f2365028db9216f1e080898284328cc3e', 'v0.0.422', 'in1k', 0.875), ('preresnet152b', '0500', '119062d97d30f6636905c824c6d1b4e21be2c3f2', 'v0.0.422', 'in1k', 0.875), ('preresnet200b', '0563', '2f9c761d78714c33d3b260add782e3851b0078f4', 'v0.0.422', 'in1k', 0.875), ('preresnet269b', '0557', '7003b3c4a1dea496f915750b4411cc67042a111d', 'v0.0.422', 'in1k', 0.875), ('resnext14_16x4d', '1222', 'bff90c1d3dbde7ea4a6972bbacb619e252d344ea', 'v0.0.422', 'in1k', 0.875), ('resnext14_32x2d', '1247', '06aa6709cfb4cf23793eb0eee5d5fce42cfcb9cb', 'v0.0.422', 'in1k', 0.875), ('resnext14_32x4d', '1115', '3acdaec14a6c74284c03bc79ed47e9ecb394e652', 'v0.0.422', 'in1k', 0.875), ('resnext26_32x2d', '0851', '827791ccefaef07e5837f8fb1dae8733c871c029', 'v0.0.422', 'in1k', 0.875), ('resnext26_32x4d', '0718', '4f05525e34b9aeb82db2339f714b25055d94657b', 'v0.0.422', 'in1k', 0.875), ('resnext50_32x4d', '0547', '45234d14f0e80700afc5c61e1bd148d848d8d089', 'v0.0.422', 'in1k', 0.875), ('resnext101_32x4d', '0494', '3990ddd1e776c7e90625db9a8f683e1d6a6fb301', 'v0.0.422', 'in1k', 0.875), ('resnext101_64x4d', '0484', 'f8cf1580943cf3c6d6019f2fcc44f8adb857cb20', 'v0.0.422', 'in1k', 0.875), ('seresnet10', '1332', '33a592e1497d37a427920c1408be908ba28d2a6d', 'v0.0.422', 'in1k', 0.875), ('seresnet18', '0921', '46c847abfdbd82c41a096e385163f21ae29ee200', 'v0.0.422', 'in1k', 0.875), ('seresnet26', '0807', '5178b3b1ea71bb118ffcc5d471f782f4ae6150d4', 'v0.0.422', 'in1k', 0.875), ('seresnetbc26b', '0684', '1460a381603c880f24fb0a42bfb6b79b850e2b28', 'v0.0.422', 'in1k', 0.875), ('seresnetbc38b', '0575', '18fcfcc1fee078382ad957e0f7d139ff596732e7', 'v0.0.422', 'in1k', 0.875), ('seresnet50', '0560', 'f1b84c8de0d25bbd4e92fcaefd9dd5012fa74bc4', 'v0.0.441', 'in1k', 0.875), ('seresnet50b', '0533', '256002c3b489d5b685ee1ab6b62303d7768c5816', 'v0.0.422', 'in1k', 0.875), ('seresnet101', '0589', '2a22ba87f5b0d56d51063898161d4c42cac45325', 'v0.0.422', 'in1k', 0.875), ('seresnet101b', '0464', 'a10be1d25d3112825e7b77277d6c56eb276dc799', 'v0.0.460', 'in1k', 0.875), ('seresnet152', '0576', '8023259a13a53aa0a72d9df6468721314e702872', 'v0.0.422', 'in1k', 0.875), ('sepreresnet10', '1309', 'af20d06c486dc97cff0f6d9bc52a7c7458040514', 'v0.0.422', 'in1k', 0.875), ('sepreresnet18', '0940', 'fe403280f68a5dfa93366437b9ff37ce3a419cf8', 'v0.0.422', 'in1k', 0.875), ('sepreresnetbc26b', '0640', 'a72bf8765efb1024bdd33eebe9920fd3e22d0bd6', 'v0.0.422', 'in1k', 0.875), ('sepreresnetbc38b', '0567', '17d10c63f096db1b7bfb59b6c6ffe14b9c669676', 'v0.0.422', 'in1k', 0.875), ('seresnext50_32x4d', '0509', '4244900a583098a5fb6c174c834f44a7471305c2', 'v0.0.422', 'in1k', 0.875), ('seresnext101_32x4d', '0459', '13a9b2fd699a3e25ee18d93a408dbaf3dee74428', 'v0.0.422', 'in1k', 0.875), ('seresnext101_64x4d', '0465', 'ec0a3b132256c8a7d0f92c45775d201a456f25fb', 'v0.0.422', 'in1k', 0.875), ('senet16', '0805', 'f5f576568d02a572be5276b0b64e71ce4d1c4531', 'v0.0.422', 'in1k', 0.875), ('senet28', '0590', '667d56873564cc22b2f10478d5f3d55cda580c61', 'v0.0.422', 'in1k', 0.875), ('senet154', '0466', 'f1b79a9bf0f7073bacf534d846c03d1b71dc404b', 'v0.0.422', 'in1k', 0.875), ('ibn_resnet50', '0668', '4c72a071e13235ccea0db3d932db8ec5f691e155', 'v0.0.427', 'in1k', 0.875), ('ibn_resnet101', '0584', '2c2c4993de8b8d79a66a62a1dbf682e552eb16c1', 'v0.0.427', 'in1k', 0.875), ('ibnb_resnet50', '0695', '7178cc50d166fa2d2474b5110aaea7fcd41bd8ca', 'v0.0.427', 'in1k', 0.875), ('ibn_resnext101_32x4d', '0564', 'c149beb5a735b75d35a728f0f0054514899e9f8b', 'v0.0.427', 'in1k', 0.875), ('ibn_densenet121', '0749', '009d1919ec097777b9ffb3c1c4ff7802e0158201', 'v0.0.427', 'in1k', 0.875), ('ibn_densenet169', '0684', '7152d6ccf07babca362df603d45b09fd37ca6744', 'v0.0.427', 'in1k', 0.875), ('airnet50_1x64d_r2', '0623', '6940f0e553a65c1beb4b769e31685cdde59359b8', 'v0.0.423', 'in1k', 0.875), ('airnet50_1x64d_r16', '0650', 'b7bb86623e680f08a39828894052099cc5198842', 'v0.0.423', 'in1k', 0.875), ('airnext50_32x4d_r2', '0572', 'fa8e40ab400cd8507a02606db72d270382482ecf', 'v0.0.423', 'in1k', 0.875), ('bam_resnet50', '0697', '3a4101c80ee21a615835f954c5ca67a959978554', 'v0.0.424', 'in1k', 0.875), ('cbam_resnet50', '0639', '1d0bdb0e36545428975df6dcb32bac876934744c', 'v0.0.429', 'in1k', 0.875), ('pyramidnet101_a360', '0651', '9db84918734d8fe916664ecef49df0a0c0168530', 'v0.0.423', 'in1k', 0.875), ('diracnet18v2', '1113', '4d687b749342d23996d078a0984fd6affe63e47c', 'v0.0.429', 'in1k', 0.875), ('diracnet34v2', '0950', '161d97fda4104be091e918ea24c903bfffdc9b8d', 'v0.0.429', 'in1k', 0.875), ('densenet121', '0684', 'e9196a9c93534ca7b71ef136e5cc27f240370481', 'v0.0.422', 'in1k', 0.875), ('densenet161', '0591', '78224027b390f943b30130a7921ded2887776a77', 'v0.0.432', 'in1k', 0.875), ('densenet169', '0606', 'f708dc3310008e59814745ffc22ddf829fb2d25a', 'v0.0.422', 'in1k', 0.875), ('densenet201', '0591', '450c656858d693932253b486069690fe727f6f89', 'v0.0.426', 'in1k', 0.875), ('peleenet', '1129', 'e1c3cdea31e2c683d71f808765963c2fffcd672e', 'v0.0.429', 'in1k', 0.875), ('wrn50_2', '0614', 'bea17aa953afed82540c509d7c2964d602fcb2af', 'v0.0.423', 'in1k', 0.875), ('drnc26', '0788', '571eb2dc632b9aecd2726507847412e4e2d3149b', 'v0.0.425', 'in1k', 0.875), ('drnc42', '0693', '52dd60289e5d9cd8eeb66786eb31b9bd5b1b0b36', 'v0.0.425', 'in1k', 0.875), ('drnc58', '0626', 'e5c7be8922e6c9e60661d0aa88618f5b28961289', 'v0.0.425', 'in1k', 0.875), ('drnd22', '0848', '42f7a37bc912979db496fff8b808f724b4712974', 'v0.0.425', 'in1k', 0.875), ('drnd38', '0737', 'a110827559aa831a3b2b9a2b032c8adbc47769e5', 'v0.0.425', 'in1k', 0.875), ('drnd54', '0626', 'cb792485021c6f946e28cc3e72674e5a1286b9da', 'v0.0.425', 'in1k', 0.875), ('drnd105', '0583', '80eb9ec2efd053d2f1e73d08911208c5d787e7cf', 'v0.0.425', 'in1k', 0.875), ('dpn68', '0658', '5b70b7b86c33c3dfb04f5fa189e5d501e8804499', 'v0.0.427', 'in1k', 0.875), ('dpn98', '0528', '6883ec37bc83f092101511a4e46702f1587f970e', 'v0.0.427', 'in1k', 0.875), ('dpn131', '0524', '971af47c5c45175a9999002849d4bb5e47fa99f3', 'v0.0.427', 'in1k', 0.875), ('darknet_tiny', '1745', 'd30be41aad15edf40dfed0bbf53d0e68c520f9f3', 'v0.0.422', 'in1k', 0.875), ('darknet_ref', '1671', 'b4991f6b58ae95118aa9ea84cae4a27e328196b5', 'v0.0.422', 'in1k', 0.875), ('darknet53', '0558', '4a63ab3005e5138445da5fac4247c460de02a41b', 'v0.0.422', 'in1k', 0.875), ('bagnet9', '3553', '43eb57dcbbce90287d0c3158457077fcc6a4c5ef', 'v0.0.424', 'in1k', 0.875), ('bagnet17', '2154', '8a31e34793f4ebc9c7585f531dab1b47b3befc0d', 'v0.0.424', 'in1k', 0.875), ('bagnet33', '1497', 'ef600c89aacdd881c2c5483defa9cb220286d31b', 'v0.0.424', 'in1k', 0.875), ('dla34', '0823', '9232e3e7c299c2e83a49e5372affee2f19226518', 'v0.0.427', 'in1k', 0.875), ('dla46c', '1287', 'dfcae3b549121205008235fd7e59793b394f8998', 'v0.0.427', 'in1k', 0.875), ('dla46xc', '1229', 'a858beca359f41cfe836cec6d30b01ba98109d06', 'v0.0.427', 'in1k', 0.875), ('dla60', '0711', '7375fcfd8ec94bfd6587ef49d52e4f2dcefc0296', 'v0.0.427', 'in1k', 0.875), ('dla60x', '0621', '3c5941dbfdf66b879c02901282e8500288bc6498', 'v0.0.427', 'in1k', 0.875), ('dla60xc', '1075', 'a7850f0307de77fcce42afdbb7070776b7c219ca', 'v0.0.427', 'in1k', 0.875), ('dla102', '0643', '2be886b250ba9ea8721e8bdba62b4e32d33e19e4', 'v0.0.427', 'in1k', 0.875), ('dla102x', '0602', '46640eec0179abf109951d865f5c397024cf9297', 'v0.0.427', 'in1k', 0.875), ('dla102x2', '0553', '06c930313e017f2ef9596d9259f0029d399f563a', 'v0.0.427', 'in1k', 0.875), ('dla169', '0590', 'e010166d75cd6603a94f006f0dbf5a4d9185bf07', 'v0.0.427', 'in1k', 0.875), ('hrnet_w18_small_v1', '0974', '8db99936134de71bf0700e2855b5caef30a95298', 'v0.0.428', 'in1k', 0.875), ('hrnet_w18_small_v2', '0805', 'fcb8e21898d1dd5ace4587f33e1d5e9c335369e5', 'v0.0.428', 'in1k', 0.875), ('hrnetv2_w18', '0686', '71c614d725ecfca2506ccf5d71723796cc7ae275', 'v0.0.428', 'in1k', 0.875), ('hrnetv2_w30', '0606', '4883e3451691d7d14a3d7d3572aecc21f3aa8454', 'v0.0.428', 'in1k', 0.875), ('hrnetv2_w32', '0607', 'ef949840f95a1cd82bc7ad8795929c795058d78b', 'v0.0.428', 'in1k', 0.875), ('hrnetv2_w40', '0573', '29cece1c277ee70a91a373f3c5cb266f6a1af9e3', 'v0.0.428', 'in1k', 0.875), ('hrnetv2_w44', '0595', 'a4e4781ca1c32fc98beed3167832601ca51266c9', 'v0.0.428', 'in1k', 0.875), ('hrnetv2_w48', '0581', '3af4ed57e2c7dab91794f933f7e8105320935d31', 'v0.0.428', 'in1k', 0.875), ('hrnetv2_w64', '0553', 'aede8def2f12173f640f85187b531c5218615d92', 'v0.0.428', 'in1k', 0.875), ('vovnet39', '0825', '49cbcdc62cc7815a4bc76e508da8feee0f802e00', 'v0.0.431', 'in1k', 0.875), ('vovnet57', '0812', '0977958aceb28a7481a230e0ba52750d43e5b152', 'v0.0.431', 'in1k', 0.875), ('selecsls42b', '0676', '0d785bec0c31aee57e1d267900ae1a942a665fcb', 'v0.0.430', 'in1k', 0.875), ('selecsls60', '0630', 'a799a0e5ddcc3991808bd8d98a83a3e717ee87e4', 'v0.0.430', 'in1k', 0.875), ('selecsls60b', '0604', 'bc9c43191043382b38e3be5893d1d8316ca401e9', 'v0.0.430', 'in1k', 0.875), ('hardnet39ds', '1003', '4971cd5a76946293a137d78032ee024f0258c979', 'v0.0.435', 'in1k', 0.875), ('hardnet68ds', '0845', 'dd35f3f91bfe55c354d4aac2b5830c3a744741ed', 'v0.0.435', 'in1k', 0.875), ('hardnet68', '0740', '9ea05e3973dddb52b970872fc3ed76fa32d10731', 'v0.0.435', 'in1k', 0.875), ('hardnet85', '0644', '7892e2215c2d1c32996be09a724c8125c8c49572', 'v0.0.435', 'in1k', 0.875), ('squeezenet_v1_0', '1760', 'd13ba73265325f21eb34e782989a7269cad406c6', 'v0.0.422', 'in1k', 0.875), ('squeezenet_v1_1', '1742', '95b614487f1f0572bd0dba18e0fc6d63df3a6bfc', 'v0.0.422', 'in1k', 0.875), ('squeezeresnet_v1_0', '1783', 'db620d998257c84fd6d5e80bba48cc1022febda3', 'v0.0.422', 'in1k', 0.875), ('squeezeresnet_v1_1', '1789', '13d6bc6bd85adf83ef55325443495feb07c5788f', 'v0.0.422', 'in1k', 0.875), ('sqnxt23_w1', '1861', '379975ebe54b180f52349c3737b17ea7b2613953', 'v0.0.422', 'in1k', 0.875), ('sqnxt23v5_w1', '1762', '153b4ce73714d2ecdca294efb365ab9c026e2f41', 'v0.0.422', 'in1k', 0.875), ('sqnxt23_w3d2', '1334', 'a2ba956cfeed0b4bbfc37776c6a1cd5ca13d9345', 'v0.0.422', 'in1k', 0.875), ('sqnxt23v5_w3d2', '1284', '72efaa710f0f1645cb220cb9950b3660299f2bed', 'v0.0.422', 'in1k', 0.875), ('sqnxt23_w2', '1069', 'f43dee19c527460f9815fc4e5eeeaef99fae4df3', 'v0.0.422', 'in1k', 0.875), ('sqnxt23v5_w2', '1026', 'da80c6407a4c18be31bcdd08356666942a9ef2b4', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g1_wd4', '3681', '04a9e2d4ada22b3d317e2fc8b7d4ec11865c414f', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g3_wd4', '3618', 'c9aad0f08d129726bbc19219c9773b38cf38825e', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g1_wd2', '2236', '082db702c422d8bce12d4d79228de56f088a420d', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g3_wd2', '2059', 'e3aefeeb36c20e325d0c7fe46afc60484167609d', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g1_w3d4', '1679', 'a1cc5da3a288299a33353f697ed0297328dc3e95', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g3_w3d4', '1611', '89546a05f499f0fdf96dade0f3db430f92c5920d', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g1_w1', '1348', '52ddb20fd7ff288ae30a17757efda4653c09d5ca', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g2_w1', '1333', '2a8ba6928e6fac05a5fe8911a9a175268eb18382', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g3_w1', '1326', 'daaec8b84572023c1352e11830d296724123408e', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g4_w1', '1313', '35dbd6b9fb8bc3e97367ea210abbd61da407f226', 'v0.0.422', 'in1k', 0.875), ('shufflenet_g8_w1', '1322', '449fb27659101a2cf0a87c90e33f4632d1c5e9f2', 'v0.0.422', 'in1k', 0.875), ('shufflenetv2_wd2', '1843', 'd492d721d3167cd64ab1c2a1f33f3ca5f6dec7c3', 'v0.0.422', 'in1k', 0.875), ('shufflenetv2_w1', '1135', 'dae13ee9f24c89cd1ea12a58fb90b967223c8e2e', 'v0.0.422', 'in1k', 0.875), ('shufflenetv2_w3d2', '0923', 'ea615baab737fca3a3d90303844b4a2922ea2c62', 'v0.0.422', 'in1k', 0.875), ('shufflenetv2_w2', '0821', '6ccac868f595e4618ca7e5f67f7c113f021ffad4', 'v0.0.422', 'in1k', 0.875), ('shufflenetv2b_wd2', '1784', 'd5644a6ab8fcb6ff04f30a2eb862ebd2de92b94c', 'v0.0.422', 'in1k', 0.875), ('shufflenetv2b_w1', '1104', 'b7db0ca041e996ee76fec7f126dc39c4e5120e82', 'v0.0.422', 'in1k', 0.875), ('shufflenetv2b_w3d2', '0877', '9efb13f7d795d63c8fbee736622b9f1940dd5dd5', 'v0.0.422', 'in1k', 0.875), ('shufflenetv2b_w2', '0808', 'ba5c7ddcd8f7da3719f5d1de71d5fd30130d59d9', 'v0.0.422', 'in1k', 0.875), ('menet108_8x1_g3', '2039', '1a8cfc9296011cd994eb48e75e24c33ecf6580f5', 'v0.0.422', 'in1k', 0.875), ('menet128_8x1_g4', '1918', '7fb59f0a8d3e1f490c26546dfe93ea29ebd79c2b', 'v0.0.422', 'in1k', 0.875), ('menet160_8x1_g8', '2034', '3cf9eb2aa2d4e067aa49ce32e7a41e9db5262493', 'v0.0.422', 'in1k', 0.875), ('menet228_12x1_g3', '1291', '21bd19bf0adb73b10cb04ccce8688f119467a114', 'v0.0.422', 'in1k', 0.875), ('menet256_12x1_g4', '1217', 'd9f2e10e6402e5ee2aec485da07da72edf25f790', 'v0.0.422', 'in1k', 0.875), ('menet348_12x1_g3', '0937', 'cee7691c710f5c453b63ef9e8c3e15e699b004bb', 'v0.0.422', 'in1k', 0.875), ('menet352_12x1_g8', '1167', '54a916bcc3920c6ef24243c8c73604b25d728a6d', 'v0.0.422', 'in1k', 0.875), ('menet456_24x1_g3', '0779', '2a70b14bd17e8d4692f15f2f8e9d181e7d95b971', 'v0.0.422', 'in1k', 0.875), ('mobilenet_wd4', '2213', 'ad04596aa730e5bb4429115df70504c5a7dd5969', 'v0.0.422', 'in1k', 0.875), ('mobilenet_wd2', '1333', '01395e1b9e2a54065aafcc8b4c419644e7f6a655', 'v0.0.422', 'in1k', 0.875), ('mobilenet_w3d4', '1051', '7832561b956f0d763b002fbd9f2f880bbb712885', 'v0.0.422', 'in1k', 0.875), ('mobilenet_w1', '0866', '6939232b46fb98c8a9209d66368d630bb50941ed', 'v0.0.422', 'in1k', 0.875), ('fdmobilenet_wd4', '3062', '36aa16df43b344f42d6318cc840a81702951a033', 'v0.0.422', 'in1k', 0.875), ('fdmobilenet_wd2', '1977', '34541b84660b4e812830620c5d48df7c7a142078', 'v0.0.422', 'in1k', 0.875), ('fdmobilenet_w3d4', '1597', '0123c0313194a3094ec006f757d93f59aad73c2b', 'v0.0.422', 'in1k', 0.875), ('fdmobilenet_w1', '1312', 'fa99fb8d728f66f68464221e049a33cd2b8bfc6a', 'v0.0.422', 'in1k', 0.875), ('mobilenetv2_wd4', '2413', 'c3705f55b0df68919fba7ed79204c5651f6f71b1', 'v0.0.422', 'in1k', 0.875), ('mobilenetv2_wd2', '1446', 'b0c9a98b85b579ba77c17d228ace399809c6ab43', 'v0.0.422', 'in1k', 0.875), ('mobilenetv2_w3d4', '1044', 'e122c73eae885d204bc2ba46fb013a9da5cb282f', 'v0.0.422', 'in1k', 0.875), ('mobilenetv2_w1', '0863', 'b32cede3b68f40f2ed0552dcdf238c70f82e5705', 'v0.0.422', 'in1k', 0.875), ('mobilenetv2b_wd4', '2505', '4079f654160fcd7ce37212c2d2da424f22913a70', 'v0.0.453', 'in1k', 0.875), ('mobilenetv2b_wd2', '1473', '129cfd918a4c4ab1b2544bc9ae24ed03f97f00ee', 'v0.0.453', 'in1k', 0.875), ('mobilenetv2b_w3d4', '1152', 'fa93741abc02bf3feb9e276d26dcfc6249a7b0a4', 'v0.0.453', 'in1k', 0.875), ('mobilenetv2b_w1', '0943', '97f1b6763b054d821e3422c7b4faf990005ec2c0', 'v0.0.453', 'in1k', 0.875), ('mobilenetv3_large_w1', '0769', 'f66596ae10c8eaa1ea3cb79b2645bd93f946b059', 'v0.0.422', 'in1k', 0.875), ('igcv3_wd4', '2828', '309359dc5a0cd0439f2be5f629534aa3bdf2b4f9', 'v0.0.422', 'in1k', 0.875), ('igcv3_wd2', '1701', 'b952333ab2024f879d4bb9895331a617f2b957b5', 'v0.0.422', 'in1k', 0.875), ('igcv3_w3d4', '1100', '00294c7b1ab9dddf7ab2cef3e7ec0a627bd67b29', 'v0.0.422', 'in1k', 0.875), ('igcv3_w1', '0899', 'a0cb775dd5bb2c13dce35a21d6fd53a783959702', 'v0.0.422', 'in1k', 0.875), ('mnasnet_b1', '0802', '763d6849142ce86f46cb7ec4c003ccf15542d6eb', 'v0.0.422', 'in1k', 0.875), ('mnasnet_a1', '0756', '8e0f49481a3473b9457d0987c9c6f7e51ff57576', 'v0.0.422', 'in1k', 0.875), ('proxylessnas_cpu', '0751', '47e1431680e115462835e73ec21dec8b6e88eb13', 'v0.0.424', 'in1k', 0.875), ('proxylessnas_gpu', '0726', 'd536cb3e27a47a4a18aa8e230ebe6b4a8f748910', 'v0.0.424', 'in1k', 0.875), ('proxylessnas_mobile', '0783', 'da8cdb80c5bd618258c657ebd8506e1342eaeb0d', 'v0.0.424', 'in1k', 0.875), ('proxylessnas_mobile14', '0653', '478b58cdb6c94007f786ec06a9e71a8dbc14507f', 'v0.0.424', 'in1k', 0.875), ('fbnet_cb', '0784', 'acd12097da630e4bf9051d138f04c7e9535e58c1', 'v0.0.428', 'in1k', 0.875), ('xception', '0558', 'b95b50510de4e39e2ddf759e69501a7470787c00', 'v0.0.423', 'in1k', 0.875), ('inceptionv3', '0563', 'b0094c1c279551394aa5c9709003c567324dcd70', 'v0.0.427', 'in1k', 0.875), ('inceptionv4', '0541', 'c1fa5642c0218e89fbe3effb233bffeb24672ba9', 'v0.0.428', 'in1k', 0.875), ('inceptionresnetv2', '0495', '3e2cc5456bb14fbdaec55006430278970ab64050', 'v0.0.428', 'in1k', 0.875), ('polynet', '0451', 'e752c86bbde4f5ce07ab6d079673a62a7565acf7', 'v0.0.428', 'in1k', 0.875), ('nasnet_4a1056', '0833', '9710e638693fa52538b268e767706210bf37d667', 'v0.0.428', 'in1k', 0.875), ('nasnet_6a4032', '0427', '1f0d2198bffb71386290b9b4e2058af2610574d8', 'v0.0.428', 'in1k', 0.875), ('pnasnet5large', '0427', '90e804af249c36f5f4435eb58ee0f32debefb320', 'v0.0.428', 'in1k', 0.875), ('spnasnet', '0873', 'a38a57a3d582ec4e227405924b84928587ea362f', 'v0.0.427', 'in1k', 0.875), ('efficientnet_b0', '0725', 'fc13925b2b95f5469aba2bb7b8472fdbabd663c3', 'v0.0.427', 'in1k', 0.875), ('efficientnet_b1', '0630', '82e0c512dc557ccb4eb3fbdabf48106988251d6d', 'v0.0.427', 'in1k', 0.882), ('efficientnet_b0b', '0668', '771272448df362b9637c7edf94292ab2c9676314', 'v0.0.429', 'in1k', 0.875), ('efficientnet_b1b', '0577', 'b294ee16111847f37129ff069f9911f76a2233d4', 'v0.0.429', 'in1k', 0.882), ('efficientnet_b2b', '0530', '55bcdc5d03493a581c3a3778b5ee6c08142718b4', 'v0.0.429', 'in1k', 0.890), ('efficientnet_b3b', '0469', 'b8210e1ac4f331b25b95c4a6d30e4b024d84ceb3', 'v0.0.429', 'in1k', 0.904), ('efficientnet_b4b', '0399', '5e35e9c56c3a0f705a44a38087e2084a25ee0a2e', 'v0.0.429', 'in1k', 0.922), ('efficientnet_b5b', '0343', '0ed0c69daa1d75e2da35f49ddea6bcfa0383727f', 'v0.0.429', 'in1k', 0.934), ('efficientnet_b6b', '0312', 'faf631041f84b19668eb207201ec13b2d405e702', 'v0.0.429', 'in1k', 0.942), ('efficientnet_b7b', '0315', '4024912ec1499b559de26b2ee7d7be1c2a3e53cf', 'v0.0.429', 'in1k', 0.949), ('efficientnet_b0c', '0646', '2bd0e2af1d275ab2046002719305bf517137f6df', 'v0.0.433', 'in1k', 0.875), ('efficientnet_b1c', '0582', 'a760b325d867a5aa4093ae69d68e8df04ed7730b', 'v0.0.433', 'in1k', 0.882), ('efficientnet_b2c', '0533', 'ea6ca9cf3c5179ad3927d7c3386c1c18c7183e24', 'v0.0.433', 'in1k', 0.890), ('efficientnet_b3c', '0464', '1c8fced86bc52d3d97fdce3750180d6b694f53c6', 'v0.0.433', 'in1k', 0.904), ('efficientnet_b4c', '0390', 'dc4379eac0dc4144260a270d4eb4ea3835394703', 'v0.0.433', 'in1k', 0.922), ('efficientnet_b5c', '0310', '80258ef75ea1b068b6ccf66420b8dd346c0bcdaa', 'v0.0.433', 'in1k', 0.934), ('efficientnet_b6c', '0286', '285f830add2ce100c6ab035f2a0caf49a33308ad', 'v0.0.433', 'in1k', 0.942), ('efficientnet_b7c', '0276', '1ffad4eca775d49ba48a0aa168a9c81649dab5b1', 'v0.0.433', 'in1k', 0.949), ('efficientnet_b8c', '0270', 'aa691b94070f49e2b7f3a0ac11bc5ddbdb18b1f6', 'v0.0.433', 'in1k', 0.954), ('efficientnet_edge_small_b', '0642', '1c03bb7355c6ab14374520743cc56e1ee22e773b', 'v0.0.434', 'in1k', 0.875), ('efficientnet_edge_medium_b', '0565', '73153b188d8b79cd8cc0ab45991561499df87838', 'v0.0.434', 'in1k', 0.882), ('efficientnet_edge_large_b', '0496', 'd72edce103b4bdac37afeabec281f1aedc9632bc', 'v0.0.434', 'in1k', 0.904), ('mixnet_s', '0737', 'd68d63f1914beeaec4e068c0dbd1defe09c7ffb6', 'v0.0.427', 'in1k', 0.875), ('mixnet_m', '0679', 'f74eab6c0ed1bc453453f433bce1cdde2d3e6bda', 'v0.0.427', 'in1k', 0.875), ('mixnet_l', '0601', '5c2ccc0c906ae29985043dc590317133c0be3376', 'v0.0.427', 'in1k', 0.875), ('resneta50b', '0543', 'ba99aca40e3c117e94980b0d6786910eeae7b9ee', 'v0.0.452', 'in1k', 0.875), ('resneta101b', '0490', 'd6dfa5240ecfa2c11f851535c9e2dafdc3bf016f', 'v0.0.452', 'in1k', 0.875), ('resneta152b', '0465', 'a54b896fcef292ad3e5d6d1290e83cb760d97084', 'v0.0.452', 'in1k', 0.875), ('resnetd50b', '0549', '1c84294f68b78dc58e07496495be0f8ecd2f14e3', 'v0.0.447', 'in1k', 0.875), ('resnetd101b', '0459', '7cce7f1357a3de297f7000b33f505dc67c38fb96', 'v0.0.447', 'in1k', 0.875), ('resnetd152b', '0468', '4673f64c71cf438eeafc890b5a138e301437bf90', 'v0.0.447', 'in1k', 0.875), ('resnet20_cifar10', '0597', '451230e98c5da3cd24e364b76995cdf5bdd36b73', 'v0.0.438', 'cf', 0.0), ('resnet20_cifar100', '2964', '5fa28f78b6b33f507f6b79a41f7fca07f681e4a5', 'v0.0.438', 'cf', 0.0), ('resnet20_svhn', '0343', '3480eec0f2781350815d07aa57bb821ecadc8b69', 'v0.0.438', 'cf', 0.0), ('resnet56_cifar10', '0452', 'a39ad94af7aad7adf21f41436cb8d86a948c7e90', 'v0.0.438', 'cf', 0.0), ('resnet56_cifar100', '2488', '8e413ab97ce41f96e02888776bc9ec71df49d909', 'v0.0.438', 'cf', 0.0), ('resnet56_svhn', '0275', '5acc55374dab36f2ebe70948393112fad83c4b17', 'v0.0.438', 'cf', 0.0), ('resnet110_cifar10', '0369', 'c625643a3c10909cdfc6c955418f0fca174b8d01', 'v0.0.438', 'cf', 0.0), ('resnet110_cifar100', '2280', 'c248211b354f7058b3066c5fb4ad87b2d0bdb6a0', 'v0.0.438', 'cf', 0.0), ('resnet110_svhn', '0245', 'a07e849f5e3233ef458072a30d8cc04ae84ff054', 'v0.0.438', 'cf', 0.0), ('resnet164bn_cifar10', '0368', 'cf08cca79ac123304add47b3aaba11cb4c46a25b', 'v0.0.438', 'cf', 0.0), ('resnet164bn_cifar100', '2044', '1ba347905fe05d922c9ec5ba876611b6393c6c99', 'v0.0.438', 'cf', 0.0), ('resnet164bn_svhn', '0242', '1bfa8083c38c89c19a4e0b53f714876705624fa7', 'v0.0.438', 'cf', 0.0), ('resnet272bn_cifar10', '0333', 'c8b0a926aeba2cdd404454bb22a731a3aed5996c', 'v0.0.438', 'cf', 0.0), ('resnet272bn_cifar100', '2007', '5357e0df7431ce2fb41f748fa04454f5a7055d1c', 'v0.0.438', 'cf', 0.0), ('resnet272bn_svhn', '0243', 'e2a8e35588d6375815a9b633f66e019a393553f7', 'v0.0.438', 'cf', 0.0), ('resnet542bn_cifar10', '0343', 'c31829d4c5845f9604e1a0f5aec938f03fcc05c3', 'v0.0.438', 'cf', 0.0), ('resnet542bn_cifar100', '1932', '2db913a6e6e577a366e2ab30030b9e976a388008', 'v0.0.438', 'cf', 0.0), ('resnet542bn_svhn', '0234', '0d6759e722dd536b2ce16ef856b6926fba023c6d', 'v0.0.438', 'cf', 0.0), ('resnet1001_cifar10', '0328', '552ab287f0a8224ae960a4ec0b4aed0f309e6641', 'v0.0.438', 'cf', 0.0), ('resnet1001_cifar100', '1979', '75c8acac55fce2dfc5c3f56cd10dd0467e56ffd2', 'v0.0.438', 'cf', 0.0), ('resnet1001_svhn', '0241', 'c9a01550d011abc9e6bc14df63952715a88a506a', 'v0.0.438', 'cf', 0.0), ('resnet1202_cifar10', '0353', '3559a9431d3ddd3ef1ee24bf2baa1b7184a21108', 'v0.0.438', 'cf', 0.0), ('resnet1202_cifar100', '2156', '28fcf78635c21d23b018d70a812eeae2ae24ad39', 'v0.0.438', 'cf', 0.0), ('preresnet20_cifar10', '0651', 'd3e7771e923032393bb6fa88d62625f3da64d9fe', 'v0.0.439', 'cf', 0.0), ('preresnet20_cifar100', '3022', '447255f8c6ad79dc42a2644438e35bc39fdeed36', 'v0.0.439', 'cf', 0.0), ('preresnet20_svhn', '0322', '6dcae6129ca6839c35a1ae9b3d69c4d41591811d', 'v0.0.439', 'cf', 0.0), ('preresnet56_cifar10', '0449', 'b4bfdaa8eaa4370899d1fb0c3c360158cf3fa3f4', 'v0.0.439', 'cf', 0.0), ('preresnet56_cifar100', '2505', '180fc2081f3c694b0c3db2948cb05e06f1070ee2', 'v0.0.439', 'cf', 0.0), ('preresnet56_svhn', '0280', '6e074c73832de7afcb8e61405b2eb62bc969d35f', 'v0.0.439', 'cf', 0.0), ('preresnet110_cifar10', '0386', '287a4b0cdd424fdf29d862b411f556f3d8f57f98', 'v0.0.439', 'cf', 0.0), ('preresnet110_cifar100', '2267', 'ab677c09518f0b7aae855153fc820811bd530c28', 'v0.0.439', 'cf', 0.0), ('preresnet110_svhn', '0279', '226a0b342145852f4289630f6fd82d2c90f38e01', 'v0.0.439', 'cf', 0.0), ('preresnet164bn_cifar10', '0364', '29a459fad0f60028b48f1908970d3947728d76b0', 'v0.0.439', 'cf', 0.0), ('preresnet164bn_cifar100', '2018', 'c764970119e627e5c88fe3c7cb6a7d36cd7f29d0', 'v0.0.439', 'cf', 0.0), ('preresnet164bn_svhn', '0258', '2307c36f351e22d9bf0240fdcf5b5651dce03e57', 'v0.0.439', 'cf', 0.0), ('preresnet272bn_cifar10', '0325', '5bacdc955e8d800e08d6513a6ecd21ce79da6c84', 'v0.0.439', 'cf', 0.0), ('preresnet272bn_cifar100', '1963', '22e0919886949484354b5a18f6c87ab5aa33b61a', 'v0.0.439', 'cf', 0.0), ('preresnet272bn_svhn', '0234', '3451d5fbc8dfecf2da2e624319f0e0068091f358', 'v0.0.439', 'cf', 0.0), ('preresnet542bn_cifar10', '0314', 'd8324d47e327c92f3557db4ba806071041a56f69', 'v0.0.439', 'cf', 0.0), ('preresnet542bn_cifar100', '1871', '703875c6827c83e26e05cd3e516b5a3234d01747', 'v0.0.439', 'cf', 0.0), ('preresnet542bn_svhn', '0236', '5ca0759231c9a045df4ef40a47d8b81e624664f8', 'v0.0.439', 'cf', 0.0), ('preresnet1001_cifar10', '0265', '978844c1315a0a3f6261393bcc954cecb85c199a', 'v0.0.439', 'cf', 0.0), ('preresnet1001_cifar100', '1841', '7481e79c54d9a32d163c740eb53310c6a5f40b01', 'v0.0.439', 'cf', 0.0), ('preresnet1202_cifar10', '0339', 'ab04c456454c933245d91f36942166d45393a8bc', 'v0.0.439', 'cf', 0.0), ('resnext20_1x64d_cifar10', '0433', 'e0ab86674852a3c78f4a600e9e8ca50a06ff0bb9', 'v0.0.440', 'cf', 0.0), ('resnext20_1x64d_cifar100', '2197', '413945af9f271e173bb2085de38d65e98905f304', 'v0.0.440', 'cf', 0.0), ('resnext20_1x64d_svhn', '0298', '105736c8c2cb1bf8a4ac4538ccd7e139501095d6', 'v0.0.440', 'cf', 0.0), ('resnext20_2x32d_cifar10', '0453', '7aa966dd0803c3f731d0f858125baedca245cf86', 'v0.0.440', 'cf', 0.0), ('resnext20_2x32d_cifar100', '2255', 'bf34e56aea7d21fca0b99c14558d6b06aab1f94f', 'v0.0.440', 'cf', 0.0), ('resnext20_2x32d_svhn', '0296', 'b61e1395c12285ca0c765f3ddbfd8a5c4d252536', 'v0.0.440', 'cf', 0.0), ('resnext20_2x64d_cifar10', '0403', '367377ed36b429753d727369cba42db281b40443', 'v0.0.440', 'cf', 0.0), ('resnext20_2x64d_cifar100', '2060', '6eef33bcb44c73dfdfe51036f5d647b5eba286c5', 'v0.0.440', 'cf', 0.0), ('resnext20_2x64d_svhn', '0283', 'dedfbac24ad3e67c55609b79da689e01ad6ba759', 'v0.0.440', 'cf', 0.0), ('resnext20_4x16d_cifar10', '0470', '333e834da705f54958887ce7a34335b0e71fcfad', 'v0.0.440', 'cf', 0.0), ('resnext20_4x16d_cifar100', '2304', 'fa8d4e06a0455f49da492377be9fe90140795629', 'v0.0.440', 'cf', 0.0), ('resnext20_4x16d_svhn', '0317', 'cab6d9fd851d47f11863075e83dd699cddb21571', 'v0.0.440', 'cf', 0.0), ('resnext20_4x32d_cifar10', '0373', 'e4aa1b0dade046bbfc872f4c84ac5fe3bcbeda11', 'v0.0.440', 'cf', 0.0), ('resnext20_4x32d_cifar100', '2131', 'edabd5da34edfba348b8f1712bbb0dc3ce6c5a82', 'v0.0.440', 'cf', 0.0), ('resnext20_4x32d_svhn', '0298', '82b75cbb31f2ea3497548a19fdf1f5fb0531527c', 'v0.0.440', 'cf', 0.0), ('resnext20_8x8d_cifar10', '0466', '1dbd9f5e45f120c697d128558b4d263f2ac94f0e', 'v0.0.440', 'cf', 0.0), ('resnext20_8x8d_cifar100', '2282', '51922108355f86cb0131826715cef9e81513e399', 'v0.0.440', 'cf', 0.0), ('resnext20_8x8d_svhn', '0318', '6ef55252a46d6106a160d87da107a1293cbce654', 'v0.0.440', 'cf', 0.0), ('resnext20_8x16d_cifar10', '0404', '5329db5f6066a73e085805ab40969af31a43e4f7', 'v0.0.440', 'cf', 0.0), ('resnext20_8x16d_cifar100', '2172', '3665fda790f0164078ffd6403e022a0ba8186c47', 'v0.0.440', 'cf', 0.0), ('resnext20_8x16d_svhn', '0301', 'd1a547e4514e6338934b26c473061b49c669c632', 'v0.0.440', 'cf', 0.0), ('resnext20_16x4d_cifar10', '0404', 'c671993585f1cc878941475e87c266c8a1895ca8', 'v0.0.440', 'cf', 0.0), ('resnext20_16x4d_cifar100', '2282', 'e800aabb6ea23a0555d2ac5a1856d7d289a46bca', 'v0.0.440', 'cf', 0.0), ('resnext20_16x4d_svhn', '0321', '77a670a80e976b173272614cf9416e904f1defde', 'v0.0.440', 'cf', 0.0), ('resnext20_16x8d_cifar10', '0394', 'cf7c675c52499a714fb3391c0240c265d6f1bb01', 'v0.0.440', 'cf', 0.0), ('resnext20_16x8d_cifar100', '2173', '0a33029811f76f93e79b83bf6cb19d74711c2e5b', 'v0.0.440', 'cf', 0.0), ('resnext20_16x8d_svhn', '0293', '4ebac2762e92f1c12b28e3012c171333a63706e1', 'v0.0.440', 'cf', 0.0), ('resnext20_32x2d_cifar10', '0461', 'b05d34915134060c39ea4f6b9e356b539a1e147b', 'v0.0.440', 'cf', 0.0), ('resnext20_32x2d_cifar100', '2322', '2def8cc21fe9057a63aee6aef2c718720fd90230', 'v0.0.440', 'cf', 0.0), ('resnext20_32x2d_svhn', '0327', '0c099194b551bf0d72a0028a13a94a7ca277473b', 'v0.0.440', 'cf', 0.0), ('resnext20_32x4d_cifar10', '0420', '6011e9e91f901ab98107e451149065524d2acc30', 'v0.0.440', 'cf', 0.0), ('resnext20_32x4d_cifar100', '2213', '9508c15dddd01d0064938023904c6c23ad901da5', 'v0.0.440', 'cf', 0.0), ('resnext20_32x4d_svhn', '0309', 'c8a843e1a0ce40fe2f42e3406e671e9a0df55d82', 'v0.0.440', 'cf', 0.0), ('resnext20_64x1d_cifar10', '0493', 'a13300cea5f2c626c096ac1fbf9f707a6da46f0b', 'v0.0.440', 'cf', 0.0), ('resnext20_64x1d_cifar100', '2353', '91695baa3caba28fa7507b3ffa0629048e01aa6e', 'v0.0.440', 'cf', 0.0), ('resnext20_64x1d_svhn', '0342', 'a3bad459c16926727190d1875ae90e709d50145e', 'v0.0.440', 'cf', 0.0), ('resnext20_64x2d_cifar10', '0438', '3846d7a7ecea5fe4da1d0895da05b675b84e23d7', 'v0.0.440', 'cf', 0.0), ('resnext20_64x2d_cifar100', '2235', 'e4a559ccaba13da694828aca7f83bafc9e364dcd', 'v0.0.440', 'cf', 0.0), ('resnext20_64x2d_svhn', '0314', 'c755e25d61534ec355c2da1a458dc5772d1f790e', 'v0.0.440', 'cf', 0.0), ('resnext29_16x64d_cifar10', '0241', '712e474493fd9f504010ca0a8eb10a94431bffdb', 'v0.0.440', 'cf', 0.0), ('resnext29_16x64d_cifar100', '1693', '2df09272ed462101da32619e652074f8c1f3ec23', 'v0.0.440', 'cf', 0.0), ('resnext29_16x64d_svhn', '0268', 'c929fadabc9bd8c2b2e97d4e2703ec2fba31032b', 'v0.0.440', 'cf', 0.0), ('resnext29_32x4d_cifar10', '0315', '5ed2e0f0945e138c3aa0c9acc0c5fd08f2d840cd', 'v0.0.440', 'cf', 0.0), ('resnext29_32x4d_cifar100', '1950', 'e99791392f0930372efefbe0a54304230ac4cc90', 'v0.0.440', 'cf', 0.0), ('resnext29_32x4d_svhn', '0280', 'de6cba99c40a882e98d2ef002cc14d799f5bf8bc', 'v0.0.440', 'cf', 0.0), ('resnext56_1x64d_cifar10', '0287', '5da5fe18fdf2b55977266631e2eb4b7913e7d591', 'v0.0.440', 'cf', 0.0), ('resnext56_1x64d_cifar100', '1825', '727009516efca454a34a3e310608b45d4c9a4020', 'v0.0.440', 'cf', 0.0), ('resnext56_1x64d_svhn', '0242', 'dd7ac31ee1f1a0ffcd3049fc056e8e705cae93f0', 'v0.0.440', 'cf', 0.0), ('resnext56_2x32d_cifar10', '0301', '54d6f2df3a903cb23978cd674495ab1e8894ab09', 'v0.0.440', 'cf', 0.0), ('resnext56_2x32d_cifar100', '1786', '6639c30dd1bc152736c21c9de27823d0ce3b367c', 'v0.0.440', 'cf', 0.0), ('resnext56_2x32d_svhn', '0246', '61524d8aff0534121257ec5b8b65647cbdafda7f', 'v0.0.440', 'cf', 0.0), ('resnext56_4x16d_cifar10', '0311', '766ab89fccd5b2675d5d42a9372346fd7bf45b77', 'v0.0.440', 'cf', 0.0), ('resnext56_4x16d_cifar100', '1809', '61b41c3b953a4a7198dec6a379f789030a998e42', 'v0.0.440', 'cf', 0.0), ('resnext56_4x16d_svhn', '0244', 'b7ab24694a0c1f635fbb2b2e4130272b5e75b6bc', 'v0.0.440', 'cf', 0.0), ('resnext56_8x8d_cifar10', '0307', '685eab396974992f71402533be96229cdc3eb751', 'v0.0.440', 'cf', 0.0), ('resnext56_8x8d_cifar100', '1806', 'f3f80382faa7baadaef4e09fedb924b4d5deac78', 'v0.0.440', 'cf', 0.0), ('resnext56_8x8d_svhn', '0247', '85692d770f3bab690dc9aa57b4e3d9aa728121e9', 'v0.0.440', 'cf', 0.0), ('resnext56_16x4d_cifar10', '0312', '930e5d5baf62d2fe4e48afe7dbd928079fd5531a', 'v0.0.440', 'cf', 0.0), ('resnext56_16x4d_cifar100', '1824', '667ba1835c3db07e54ad4dfbc6ea99a0b12afd78', 'v0.0.440', 'cf', 0.0), ('resnext56_16x4d_svhn', '0256', '86f327a9652e79a4a38c0d6ebc9fda8f0a6c3ea4', 'v0.0.440', 'cf', 0.0), ('resnext56_32x2d_cifar10', '0314', '9e387e2e6c769802fbf7a911b67d2c490e14db85', 'v0.0.440', 'cf', 0.0), ('resnext56_32x2d_cifar100', '1860', '7a236896b7f00913f8a0846d39382d87bc56214c', 'v0.0.440', 'cf', 0.0), ('resnext56_32x2d_svhn', '0253', 'b93a0535890a340774a190fab2a521696b134600', 'v0.0.440', 'cf', 0.0), ('resnext56_64x1d_cifar10', '0341', 'bc7469474a3cf31622186aa86c0c837b9c05563a', 'v0.0.440', 'cf', 0.0), ('resnext56_64x1d_cifar100', '1816', '06c6c7a0bb97cd67360e624dd9ca3193969c3e06', 'v0.0.440', 'cf', 0.0), ('resnext56_64x1d_svhn', '0255', '9e9e3cc2bf26b8c691b5b2b12fb3908dd999f870', 'v0.0.440', 'cf', 0.0), ('resnext272_1x64d_cifar10', '0255', '6efe448a89da1340dca7158d12a0355d1b2d2d75', 'v0.0.440', 'cf', 0.0), ('resnext272_1x64d_cifar100', '1911', 'e9275c944ff841c29316a2728068a6162af39488', 'v0.0.440', 'cf', 0.0), ('resnext272_1x64d_svhn', '0234', '4d348e9ec9d261318d1264c61f4817de612797e4', 'v0.0.440', 'cf', 0.0), ('resnext272_2x32d_cifar10', '0274', '4e35f99476d34225bd07ed2f4274ed021fb635f3', 'v0.0.440', 'cf', 0.0), ('resnext272_2x32d_cifar100', '1834', '274ef60797974e3d7290644861facefa983bc7f2', 'v0.0.440', 'cf', 0.0), ('resnext272_2x32d_svhn', '0244', 'f792396540a630a0d51932f9c7557e5d96ddb66c', 'v0.0.440', 'cf', 0.0), ('seresnet20_cifar10', '0601', '2f392e4a48cffe1ff96b92ca28fd0f020e9d89aa', 'v0.0.442', 'cf', 0.0), ('seresnet20_cifar100', '2854', '598b585838afb8907e76c6e9af2b92417f5eeb08', 'v0.0.442', 'cf', 0.0), ('seresnet20_svhn', '0323', 'ef43ce80cc226dff6d7c0fd120daaa89fe353392', 'v0.0.442', 'cf', 0.0), ('seresnet56_cifar10', '0413', '0224e930258e0567cf18bd1b0f5ae8ffd85d6231', 'v0.0.442', 'cf', 0.0), ('seresnet56_cifar100', '2294', '9c86ec999dac74831ab3918682c1753fde447187', 'v0.0.442', 'cf', 0.0), ('seresnet56_svhn', '0264', 'a8fcc570f6ab95d188148f0070f714c052bcf0f3', 'v0.0.442', 'cf', 0.0), ('seresnet110_cifar10', '0363', '4c28f93f8fe23a216aba5cb80af8412023b42cdb', 'v0.0.442', 'cf', 0.0), ('seresnet110_cifar100', '2086', '6435b022d058e62f95bbd2bb6447cd76f0a14316', 'v0.0.442', 'cf', 0.0), ('seresnet110_svhn', '0235', '57751ac70c94c9bbe95a1229af30b5471db498b1', 'v0.0.442', 'cf', 0.0), ('seresnet164bn_cifar10', '0339', '64d051543b02cb26fb6a22220ad35bb5b80243e3', 'v0.0.442', 'cf', 0.0), ('seresnet164bn_cifar100', '1995', '121a777aa64b7249a9483baa1e8a677a7c9587df', 'v0.0.442', 'cf', 0.0), ('seresnet164bn_svhn', '0245', 'a19e2e88575459f35303a058e486a944e34f8379', 'v0.0.442', 'cf', 0.0), ('seresnet272bn_cifar10', '0339', 'baa561b6c4449558a11900ae24780d6fcdd9efdf', 'v0.0.442', 'cf', 0.0), ('seresnet272bn_cifar100', '1907', 'a29e50de59aac03cff1d657ce0653a02246c39dc', 'v0.0.442', 'cf', 0.0), ('seresnet272bn_svhn', '0238', '918ee0dea7a956bca36d23459e822488e3a0659e', 'v0.0.442', 'cf', 0.0), ('seresnet542bn_cifar10', '0347', 'e95ebdb9b79f4955731147c078e1607dd174ffe9', 'v0.0.442', 'cf', 0.0), ('seresnet542bn_cifar100', '1887', 'ddc4d5c89d56a0c560e5174194db071fcb960d81', 'v0.0.442', 'cf', 0.0), ('seresnet542bn_svhn', '0226', '5ec784aabe3030f519ca22821b7a58a30e0bf179', 'v0.0.442', 'cf', 0.0), ('sepreresnet20_cifar10', '0618', '22217b323af922b720bc044bce9556b0dde18d97', 'v0.0.443', 'cf', 0.0), ('sepreresnet20_cifar100', '2831', 'e8dab8b87dbe512dfabd7cdbaff9b08be81fb36b', 'v0.0.443', 'cf', 0.0), ('sepreresnet20_svhn', '0324', 'e7dbcc9678dfa8ce0b2699de601699d29a5cb868', 'v0.0.443', 'cf', 0.0), ('sepreresnet56_cifar10', '0451', '32637db56c6fed2a3d66778ee3335527f2d8e25d', 'v0.0.443', 'cf', 0.0), ('sepreresnet56_cifar100', '2305', 'aea4d90bc7fd0eb8f433e376d1aba8e3c0d1ac55', 'v0.0.443', 'cf', 0.0), ('sepreresnet56_svhn', '0271', 'ea024196ca9bd0ff331e8d8d3da376aecf9ea0c1', 'v0.0.443', 'cf', 0.0), ('sepreresnet110_cifar10', '0454', 'e317c56922fbf1cec478e46e49d6edd3c4ae3b03', 'v0.0.443', 'cf', 0.0), ('sepreresnet110_cifar100', '2261', '19a8d4a1563f8fb61c63a5c577f40f3363efec00', 'v0.0.443', 'cf', 0.0), ('sepreresnet110_svhn', '0259', '6291c548277580f90ed0e22845f06eb7b022f8f9', 'v0.0.443', 'cf', 0.0), ('sepreresnet164bn_cifar10', '0373', '253c0430d6e8d2ba9c4c5526beed3b2e90573fe4', 'v0.0.443', 'cf', 0.0), ('sepreresnet164bn_cifar100', '2005', '9c3ed25062e52a23f73600c1a0f99064f89b4a47', 'v0.0.443', 'cf', 0.0), ('sepreresnet164bn_svhn', '0256', 'c89523226a8a010459ebec9c48d940773946e7bf', 'v0.0.443', 'cf', 0.0), ('sepreresnet272bn_cifar10', '0339', '1ca0bed3b3ae20d55322fa2f75057edb744fb63d', 'v0.0.443', 'cf', 0.0), ('sepreresnet272bn_cifar100', '1913', 'eb75217f625dbc97af737e5878a9eab28fdf3b03', 'v0.0.443', 'cf', 0.0), ('sepreresnet272bn_svhn', '0249', '0a778e9d68f6921463563ef84054969221809aef', 'v0.0.443', 'cf', 0.0), ('sepreresnet542bn_cifar10', '0309', '7764e8bddba21c75b8f8d4775093721d859f850c', 'v0.0.443', 'cf', 0.0), ('sepreresnet542bn_cifar100', '1945', '969d2bf0a8d213757486e18c180ba14058e08eac', 'v0.0.443', 'cf', 0.0), ('sepreresnet542bn_svhn', '0247', '8e2427367762cf20b67b407e2a1ec8479b0ad41c', 'v0.0.443', 'cf', 0.0), ('pyramidnet110_a48_cifar10', '0372', '3b6ab16073fb0ff438d4376d320be9b119aee362', 'v0.0.444', 'cf', 0.0), ('pyramidnet110_a48_cifar100', '2095', '3490690ae62adc4b91dc29ba06f9dc2abf272fce', 'v0.0.444', 'cf', 0.0), ('pyramidnet110_a48_svhn', '0247', '1582739049630e1665b577781ccca1e65f961749', 'v0.0.444', 'cf', 0.0), ('pyramidnet110_a84_cifar10', '0298', 'bf303f3414123bdf79cb23d3316dd171df74f5d4', 'v0.0.444', 'cf', 0.0), ('pyramidnet110_a84_cifar100', '1887', '85789d68d11ad663a53ed921ce6fb28a98248874', 'v0.0.444', 'cf', 0.0), ('pyramidnet110_a84_svhn', '0243', 'aacb5f882c7810181c0d4de061c2a76dfbf4925b', 'v0.0.444', 'cf', 0.0), ('pyramidnet110_a270_cifar10', '0251', '983d99830e7bb23ca0123ec47dfa05143eb8a37e', 'v0.0.444', 'cf', 0.0), ('pyramidnet110_a270_cifar100', '1710', 'cc58021f2406c3593a51f62d03fea714d0649036', 'v0.0.444', 'cf', 0.0), ('pyramidnet110_a270_svhn', '0238', 'b8742320795657a0b51d35226c2e14fc76acac11', 'v0.0.444', 'cf', 0.0), ('pyramidnet164_a270_bn_cifar10', '0242', 'aa879193cd4730fd06430b494c11497121fad2df', 'v0.0.444', 'cf', 0.0), ('pyramidnet164_a270_bn_cifar100', '1670', '25ddf056b681987c1db76b60a08a1e1a7830a51e', 'v0.0.444', 'cf', 0.0), ('pyramidnet164_a270_bn_svhn', '0234', '94bb4029e52688f7616d5fd680acacf7c6e3cd4e', 'v0.0.444', 'cf', 0.0), ('pyramidnet200_a240_bn_cifar10', '0244', 'c269bf7d485a13a9beed9c0aade75ff959584ef9', 'v0.0.444', 'cf', 0.0), ('pyramidnet200_a240_bn_cifar100', '1609', 'd2b1682287b6047477c3efd322f305957bb393ef', 'v0.0.444', 'cf', 0.0), ('pyramidnet200_a240_bn_svhn', '0232', '77f2380c1fd77abb80b830e0d44f2986fde28ec9', 'v0.0.444', 'cf', 0.0), ('pyramidnet236_a220_bn_cifar10', '0247', '26aac5d0938a96902484f0a51f7f3440551c9c96', 'v0.0.444', 'cf', 0.0), ('pyramidnet236_a220_bn_cifar100', '1634', '37d5b197d45c3985ad3a9ba346f148e63cd271fb', 'v0.0.444', 'cf', 0.0), ('pyramidnet236_a220_bn_svhn', '0235', '6a9a8b0a5fbcce177c8b4449ad138b6f3a94f2bb', 'v0.0.444', 'cf', 0.0), ('pyramidnet272_a200_bn_cifar10', '0239', 'b57f64f1964798fac3d62fd796c87df8132cf18c', 'v0.0.444', 'cf', 0.0), ('pyramidnet272_a200_bn_cifar100', '1619', '5c233384141f7700da643c53f4245d2f0d00ded7', 'v0.0.444', 'cf', 0.0), ('pyramidnet272_a200_bn_svhn', '0240', '0a389e2f1811af7cacc2a27b6df748a7c46d951a', 'v0.0.444', 'cf', 0.0), ('densenet40_k12_cifar10', '0561', 'e6e20ebfcc60330050d4c1eb94d03d8fadb738df', 'v0.0.445', 'cf', 0.0), ('densenet40_k12_cifar100', '2490', 'ef38ff655136f7921e785836c659be7f1d11424d', 'v0.0.445', 'cf', 0.0), ('densenet40_k12_svhn', '0305', '7d5860ae4c8f912a4374e6214720d13ad52f3ffb', 'v0.0.445', 'cf', 0.0), ('densenet40_k12_bc_cifar10', '0643', '58950791713ee0ec19f6e1bc6e6e3731fc4a9484', 'v0.0.445', 'cf', 0.0), ('densenet40_k12_bc_cifar100', '2841', 'c7fbb0f4e74cafbd0e329597e63fbc81682c8e90', 'v0.0.445', 'cf', 0.0), ('densenet40_k12_bc_svhn', '0320', '77fd3ddf577ba336f7eac64f0ac6afaabbb25fd1', 'v0.0.445', 'cf', 0.0), ('densenet40_k24_bc_cifar10', '0452', '61a7fe9c0654161991da1e4eb1e0286d451d8cec', 'v0.0.445', 'cf', 0.0), ('densenet40_k24_bc_cifar100', '2267', 'b3878e8252d7ae1c53b6d2b5c6f77a857c281e9b', 'v0.0.445', 'cf', 0.0), ('densenet40_k24_bc_svhn', '0290', 'b8a231f7cd23b122bb8d9afe362c6de2663c1241', 'v0.0.445', 'cf', 0.0), ('densenet40_k36_bc_cifar10', '0404', 'ce27624f5701f020d2feff0e88e69da07b0ef958', 'v0.0.445', 'cf', 0.0), ('densenet40_k36_bc_cifar100', '2050', '045ae83a5ee3d1a85864cadadeb537242138c2d8', 'v0.0.445', 'cf', 0.0), ('densenet40_k36_bc_svhn', '0260', 'a176dcf180f086d88bbf4ff028b084bf02394a35', 'v0.0.445', 'cf', 0.0), ('densenet100_k12_cifar10', '0366', 'fc483c0bdd58e5013a3910f939334d5f40c65438', 'v0.0.445', 'cf', 0.0), ('densenet100_k12_cifar100', '1965', '4f0083d6698d42165c8b326c1e4beda6d9679796', 'v0.0.445', 'cf', 0.0), ('densenet100_k12_svhn', '0260', 'e810c38067bf34dc679caaeb4021623f2277b6b8', 'v0.0.445', 'cf', 0.0), ('densenet100_k24_cifar10', '0313', '7f9ee9b3787c2540c4448f424c504f0509000234', 'v0.0.445', 'cf', 0.0), ('densenet100_k24_cifar100', '1808', 'b0842c59c00f14df58d0f8bbac8348837e30e751', 'v0.0.445', 'cf', 0.0), ('densenet100_k12_bc_cifar10', '0416', '66beb8fc89f7e40d2b529e0f3270549324b5b784', 'v0.0.445', 'cf', 0.0), ('densenet100_k12_bc_cifar100', '2119', 'c1b857d51eb582eee8dbd7250d05871e40a7f4c4', 'v0.0.445', 'cf', 0.0), ('densenet190_k40_bc_cifar10', '0252', '9cc5cfcbef9425227370ac8c6404cfc1e3edbf55', 'v0.0.445', 'cf', 0.0), ('densenet250_k24_bc_cifar10', '0267', '3217a1b3c61afc9d08bc4b43bff4aac103da0012', 'v0.0.445', 'cf', 0.0), ('densenet250_k24_bc_cifar100', '1739', '02d967b564c48b25117aac6cd7b095fd5d30d4d5', 'v0.0.445', 'cf', 0.0), ('resnet10_cub', '2758', '1a6846b3854d1942997d7082e94b330ddce3db19', 'v0.0.446', 'cub', 0.0), ('resnet12_cub', '2668', '03c8073655ae51f21ceed7d7f86f9ed6169fc310', 'v0.0.446', 'cub', 0.0), ('resnet14_cub', '2435', '24b0bfebaa0d1b4442fa63a659d22de8ff594118', 'v0.0.446', 'cub', 0.0), ('resnet16_cub', '2328', '81cc8192c880c687175d636a0339e16463c61627', 'v0.0.446', 'cub', 0.0), ('resnet18_cub', '2335', '198bdc26bbfaad777ea6d494c41b9d66a493aac7', 'v0.0.446', 'cub', 0.0), ('resnet26_cub', '2264', '545967849063af9b5ec55a5cf339f5897f394e85', 'v0.0.446', 'cub', 0.0), ('seresnet10_cub', '2749', '484fc1661dda247db32dd6a54b88dc156da5156c', 'v0.0.446', 'cub', 0.0), ('seresnet12_cub', '2611', '0e5b4e23f30add924f8cad41704cb335a36b2049', 'v0.0.446', 'cub', 0.0), ('seresnet14_cub', '2375', '56c268728f7343aa1410cb2f046860c34428b123', 'v0.0.446', 'cub', 0.0), ('seresnet16_cub', '2321', 'ed3ead791be4af44aa1202f0dbf4b26fdb770963', 'v0.0.446', 'cub', 0.0), ('seresnet18_cub', '2309', 'f699f05f2a2ce41dae01d5d6c180ec2569356f0a', 'v0.0.446', 'cub', 0.0), ('seresnet26_cub', '2258', 'c02ba47493bc9185a7fb06584e23b5a740082e77', 'v0.0.446', 'cub', 0.0), ('mobilenet_w1_cub', '2346', 'b8f24c14b9ed9629efb161510547e30c4a37edc2', 'v0.0.446', 'cub', 0.0), ('proxylessnas_mobile_cub', '2202', '73ceed5a6a3f870b306da0c48318d969e53d6340', 'v0.0.446', 'cub', 0.0), ('pspnet_resnetd101b_voc', '7599', 'fbe47bfce77b8c9cab3c9c5913f6a42c04cce946', 'v0.0.448', 'voc', 0.0), ('pspnet_resnetd50b_ade20k', '2712', 'f4fadf0b3f5a39e1ab070736d792bd9259c0d371', 'v0.0.450', 'voc', 0.0), ('pspnet_resnetd101b_ade20k', '3259', 'ac8569f44bd646ee8875d2b3eae0ab54c72c4904', 'v0.0.450', 'voc', 0.0), ('pspnet_resnetd101b_coco', '5438', 'b64ff2dcde6d3f989c45cec2a021d3769f4cb9eb', 'v0.0.451', 'voc', 0.0), ('pspnet_resnetd101b_cityscapes', '5760', '6dc20af68e9de31b663469b170e75cb016bd3a1f', 'v0.0.449', 'cs', 0.0), ('deeplabv3_resnetd101b_voc', '7560', 'e261b6fd9c4878c41bfa088777ea53fcddb4fa51', 'v0.0.448', 'voc', 0.0), ('deeplabv3_resnetd152b_voc', '7791', '72038caba5f552c77d08ad768bda004643f1c53e', 'v0.0.448', 'voc', 0.0), ('deeplabv3_resnetd50b_ade20k', '3172', '2ba069a73d81d6b2ceaf7f2c57f2fe3dd673b78b', 'v0.0.450', 'voc', 0.0), ('deeplabv3_resnetd101b_ade20k', '3488', '08c90933a65061a56e3b22e9c143340a98455075', 'v0.0.450', 'voc', 0.0), ('deeplabv3_resnetd101b_coco', '5865', '39525a1333ebf12ca32578f32831b3e5b22a887a', 'v0.0.451', 'voc', 0.0), ('deeplabv3_resnetd152b_coco', '6067', 'f4dabc62dc8209e7a9adf0dceef97837b06b21c9', 'v0.0.451', 'voc', 0.0), ('fcn8sd_resnetd101b_voc', '8039', 'e140349ce60ad3943b535efb081b3e9c2a58f6e9', 'v0.0.448', 'voc', 0.0), ('fcn8sd_resnetd50b_ade20k', '3310', 'd440f859bad1c84790aa1c3e1c0addc21b171d4a', 'v0.0.450', 'voc', 0.0), ('fcn8sd_resnetd101b_ade20k', '3550', '970d968a1fb44670993b065c1603a6a7c0bd57a1', 'v0.0.450', 'voc', 0.0), ('fcn8sd_resnetd101b_coco', '5968', '69c001b3875c5399dfc1281eb5a051bafef40e4b', 'v0.0.451', 'voc', 0.0), ('icnet_resnetd50b_cityscapes', '6060', '1e53e1d1724e61cc740cfbc818ca6e14015185ef', 'v0.0.457', 'cs', 0.0), ('alphapose_fastseresnet101b_coco', '7415', 'd1f0464a0f2c520d8690d49d09fe1426b0ab3eab', 'v0.0.454', 'cocohpe', 0.0), ('simplepose_resnet18_coco', '6631', '4d907c70a6f3ccaba321c05406ce038351e0c67f', 'v0.0.455', 'cocohpe', 0.0), ('simplepose_resnet50b_coco', '7102', '74506b66735333e3deab5908d309d3ec04c94861', 'v0.0.455', 'cocohpe', 0.0), ('simplepose_resnet101b_coco', '7244', '6f9e08d6afa08e83176e8e04f7566e255265e080', 'v0.0.455', 'cocohpe', 0.0), ('simplepose_resnet152b_coco', '7253', 'c018fb87bb8e5f5d8d6daa6a922869b2f36481cf', 'v0.0.455', 'cocohpe', 0.0), ('simplepose_resneta50b_coco', '7170', 'c9ddc1c90ddac88b1f64eb962e1bda87887668a5', 'v0.0.455', 'cocohpe', 0.0), ('simplepose_resneta101b_coco', '7297', '6db62b714be632359020c972bedb459e5210820f', 'v0.0.455', 'cocohpe', 0.0), ('simplepose_resneta152b_coco', '7344', 'f65954b9df20bf9fa64a9791563729fa51983cf5', 'v0.0.455', 'cocohpe', 0.0), ('simplepose_mobile_resnet18_coco', '6625', '8f3e5cc4c6af306c23f0882887d7b36ee0b1079a', 'v0.0.456', 'cocohpe', 0.0), # noqa ('simplepose_mobile_resnet50b_coco', '7110', 'e8f61fdaf7aacbe58d006129943988ae95c9aef3', 'v0.0.456', 'cocohpe', 0.0), # noqa ('simplepose_mobile_mobilenet_w1_coco', '6410', '27c918b95148b87944eec36ac422bf18792513ae', 'v0.0.456', 'cocohpe', 0.0), # noqa ('simplepose_mobile_mobilenetv2b_w1_coco', '6374', '4bcc3462fb2af46ed6daed78d15920a274e58051', 'v0.0.456', 'cocohpe', 0.0), # noqa ('simplepose_mobile_mobilenetv3_small_w1_coco', '5434', '1cfee871467e99e7af23e5135bb9a4765f010a05', 'v0.0.456', 'cocohpe', 0.0), # noqa ('simplepose_mobile_mobilenetv3_large_w1_coco', '6367', '8c8583fbe6d60355c232a10b5de8a455a38ba073', 'v0.0.456', 'cocohpe', 0.0), # noqa ('lwopenpose2d_mobilenet_cmupan_coco', '3999', '626b66cb1d36d0721b59d5acaa8d08d7690ea830', 'v0.0.458', 'cocohpe', 0.0), # noqa ('lwopenpose3d_mobilenet_cmupan_coco', '3999', 'df9b1c5f667deb93a87f69479ce92093e7c9f3b6', 'v0.0.458', 'cocohpe', 0.0), # noqa ('ibppose_coco', '6487', '79500f3d5dd990fd63544e3e3ca65f0382b06e44', 'v0.0.459', 'cocohpe', 0.0), ]} imgclsmob_repo_url = 'https://github.com/osmr/imgclsmob' def get_model_name_suffix_data(model_name): if model_name not in _model_sha1: raise ValueError("Pretrained model for {name} is not available.".format(name=model_name)) error, sha1_hash, repo_release_tag, ds, scale = _model_sha1[model_name] return error, sha1_hash, repo_release_tag def get_model_file(model_name, local_model_store_dir_path=os.path.join("~", ".tensorflow", "models")): """ Return location for the pretrained on local file system. This function will download from online model zoo when model cannot be found or has mismatch. The root directory will be created if it doesn't exist. Parameters ---------- model_name : str Name of the model. local_model_store_dir_path : str, default $TENSORFLOW_HOME/models Location for keeping the model parameters. Returns ------- file_path Path to the requested pretrained model file. """ error, sha1_hash, repo_release_tag = get_model_name_suffix_data(model_name) short_sha1 = sha1_hash[:8] file_name = "{name}-{error}-{short_sha1}.tf2.h5".format( name=model_name, error=error, short_sha1=short_sha1) local_model_store_dir_path = os.path.expanduser(local_model_store_dir_path) file_path = os.path.join(local_model_store_dir_path, file_name) if os.path.exists(file_path): if _check_sha1(file_path, sha1_hash): return file_path else: logging.warning("Mismatch in the content of model file detected. Downloading again.") else: logging.info("Model file not found. Downloading to {}.".format(file_path)) if not os.path.exists(local_model_store_dir_path): os.makedirs(local_model_store_dir_path) zip_file_path = file_path + ".zip" _download( url="{repo_url}/releases/download/{repo_release_tag}/{file_name}.zip".format( repo_url=imgclsmob_repo_url, repo_release_tag=repo_release_tag, file_name=file_name), path=zip_file_path, overwrite=True) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall(local_model_store_dir_path) os.remove(zip_file_path) if _check_sha1(file_path, sha1_hash): return file_path else: raise ValueError("Downloaded file has different hash. Please try again.") def _download(url, path=None, overwrite=False, sha1_hash=None, retries=5, verify_ssl=True): """ Download an given URL Parameters ---------- url : str URL to download path : str, optional Destination path to store downloaded file. By default stores to the current directory with same name as in url. overwrite : bool, optional Whether to overwrite destination file if already exists. sha1_hash : str, optional Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified but doesn't match. retries : integer, default 5 The number of times to attempt the download in case of failure or non 200 return codes verify_ssl : bool, default True Verify SSL certificates. Returns ------- str The file path of the downloaded file. """ import warnings try: import requests except ImportError: class requests_failed_to_import(object): pass requests = requests_failed_to_import if path is None: fname = url.split("/")[-1] # Empty filenames are invalid assert fname, "Can't construct file-name from this URL. Please set the `path` option manually." else: path = os.path.expanduser(path) if os.path.isdir(path): fname = os.path.join(path, url.split("/")[-1]) else: fname = path assert retries >= 0, "Number of retries should be at least 0" if not verify_ssl: warnings.warn( "Unverified HTTPS request is being made (verify_ssl=False). " "Adding certificate verification is strongly advised.") if overwrite or not os.path.exists(fname) or (sha1_hash and not _check_sha1(fname, sha1_hash)): dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname))) if not os.path.exists(dirname): os.makedirs(dirname) while retries + 1 > 0: # Disable pyling too broad Exception # pylint: disable=W0703 try: print("Downloading {} from {}...".format(fname, url)) r = requests.get(url, stream=True, verify=verify_ssl) if r.status_code != 200: raise RuntimeError("Failed downloading url {}".format(url)) with open(fname, "wb") as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) if sha1_hash and not _check_sha1(fname, sha1_hash): raise UserWarning("File {} is downloaded but the content hash does not match." " The repo may be outdated or download may be incomplete. " "If the `repo_url` is overridden, consider switching to " "the default repo.".format(fname)) break except Exception as e: retries -= 1 if retries <= 0: raise e else: print("download failed, retrying, {} attempt{} left" .format(retries, "s" if retries > 1 else "")) return fname def _check_sha1(filename, sha1_hash): """ Check whether the sha1 hash of the file content matches the expected hash. Parameters ---------- filename : str Path to the file. sha1_hash : str Expected sha1 hash in hexadecimal digits. Returns ------- bool Whether the file content matches the expected hash. """ sha1 = hashlib.sha1() with open(filename, "rb") as f: while True: data = f.read(1048576) if not data: break sha1.update(data) return sha1.hexdigest() == sha1_hash
85.28863
140
0.693153
81ab95abbb5c997a4fc4ad2b394eef7b81910e12
919
py
Python
backend/app/app/api/api_v1/report/__init__.py
jimorsm/vue-element-admin-fastapi
3ffc7dc3d2be988e544f339af466538cb0708d25
[ "MIT" ]
null
null
null
backend/app/app/api/api_v1/report/__init__.py
jimorsm/vue-element-admin-fastapi
3ffc7dc3d2be988e544f339af466538cb0708d25
[ "MIT" ]
null
null
null
backend/app/app/api/api_v1/report/__init__.py
jimorsm/vue-element-admin-fastapi
3ffc7dc3d2be988e544f339af466538cb0708d25
[ "MIT" ]
null
null
null
from typing import Any from fastapi import APIRouter, Request, Depends from sqlalchemy.orm import Session from fastapi.responses import StreamingResponse from app.api import deps from app.api.api_v1.report.gen_report import Report router = APIRouter() @router.get("/report/excel_generate/{excel_name}", tags=["report"], exclude_dependencies=True) def excel_generate(*, excel_name: str = "", request: Request, db: Session = Depends(deps.get_db)) -> Any: """ 通过动态import的形式,统一处理excel:模板下载/数据导出 """ report = Report(code=excel_name, query_params=request.query_params).module if request.query_params.get("template", "1") == "1": bio = report.get_template() # 模板 else: bio = report.get_instance(db) # 实例 file_name = report.file_name.encode('utf-8').decode('latin1') return StreamingResponse(bio, headers={'Content-Disposition': f'attachment; filename={file_name}.xlsx'})
36.76
108
0.723613
583218c96f655d4e3f5d49c227591c356da50513
2,392
py
Python
Notebooks/test-gdxp.py
henrydambanemuya/gdelt-colombia
65f84912df6f7a1137b685fbc0a0cc9a3e124b41
[ "MIT" ]
null
null
null
Notebooks/test-gdxp.py
henrydambanemuya/gdelt-colombia
65f84912df6f7a1137b685fbc0a0cc9a3e124b41
[ "MIT" ]
null
null
null
Notebooks/test-gdxp.py
henrydambanemuya/gdelt-colombia
65f84912df6f7a1137b685fbc0a0cc9a3e124b41
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Aug 7 05:34:18 2017 @author: Administrator """ # Import useful libraries import gdeltxp import gdeltviz import operator import scipy as sp import pandas as pd import numpy as np import seaborn as sns import matplotlib.cm as cm import matplotlib.pyplot as plt from math import isnan from collections import Counter from collections import OrderedDict plt.style.use('seaborn-whitegrid') # Declare global variables all_events = pd.read_csv('C:/Users/Administrator/Dropbox/GDELT/all_events.csv').sort_values('SQLDATE', ascending=1) goldstein_codes = pd.read_csv('C:/Users/Administrator/Dropbox/GDELT/goldstein_codes.csv') event_codes = pd.read_csv('C:/Users/Administrator/Dropbox/GDELT/event_codes.csv') events, goldstein = {}, {} # Populate event names dictionary for index, row in event_codes.iterrows(): events[row.CAMEOEVENTCODE] = row.EVENTDESCRIPTION events[106] = 'unknown' # Populate goldstein scale dictionary for index, row in goldstein_codes.iterrows(): goldstein[int(row.CAMEOEVENTCODE)] = row.GOLDSTEINSCALE goldstein[106] = 0 #print(all_events.columns) #print(goldstein_codes.columns) #print(event_codes.columns) # Event Summary gdeltxp.eventsSummary(all_events) # Actor Type Codes Counts ActorType1Codes = gdeltxp.actorType1Codes(all_events) print(ActorType1Codes) # Actor Type Code Pie Chart gdeltviz.pieChart(list(ActorType1Codes.keys()), list(ActorType1Codes.values())) # Prominent Actors ActorNames = gdeltxp.actorNames(all_events) print(ActorNames) # Prominent Actors Visualization gdeltviz.pieChart(list(ActorNames.keys()), list(ActorNames.values())) dates = sorted([key for key in Counter(all_events['SQLDATE']).keys()]) farc1 = [all_events.loc[all_events['SQLDATE'] == date].loc[all_events['Actor1Name'] == 'FARC', 'GoldsteinScale'].sum() for date in dates] # / (len(all_events.loc[all_events['SQLDATE'] == date].loc[all_events['Actor1Name'] == 'FARC', 'GoldsteinScale'])+1) farc2 = [all_events.loc[all_events['SQLDATE'] == date].loc[all_events['Actor2Name'] == 'FARC', 'GoldsteinScale'].sum() for date in dates] # / (len(all_events.loc[all_events['SQLDATE'] == date].loc[all_events['Actor2Name'] == 'FARC', 'GoldsteinScale'])+1) window = 1 farc = gdeltxp.movingAverage([farc1[i] + farc2[i] for i in range(len(farc1))], window) print(farc[:10])
36.8
255
0.738294
38ae7722bac6619235bc12b68ee36754a1686c15
9,853
py
Python
utils.py
statgen/bravo_data_prep
dd483f5e96566243f27769ecbfa41c055ab8d22b
[ "MIT" ]
null
null
null
utils.py
statgen/bravo_data_prep
dd483f5e96566243f27769ecbfa41c055ab8d22b
[ "MIT" ]
null
null
null
utils.py
statgen/bravo_data_prep
dd483f5e96566243f27769ecbfa41c055ab8d22b
[ "MIT" ]
null
null
null
import traceback from collections import OrderedDict from operator import itemgetter AF_BUCKETS = [0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] METRICS = { 'BaseQRankSum': {}, 'ClippingRankSum': {}, 'DP': {'name': 'Total Depth'}, 'FS': {}, 'InbreedingCoeff': {}, 'MQ': {'name': 'Mapping Quality'}, 'MQRankSum': {}, 'QD': {}, 'ReadPosRankSum': {}, 'VQSLOD': {}, 'SVM': {'name': 'SVM Score'}, 'FIBC_P': {'name': 'In-Breeding Coefficient'}, 'FIBC_I': {'name': 'In-Breeding Coefficient (pop-adjusted)'}, 'HWE_SLP_P': {'name': 'HWE signed log p-value'}, 'HWE_SLP_I': {'name': 'HWE signed log p-value (pop-adjusted)'}, 'ABE': {'name': 'Expected Allele Balance'}, 'ABZ': {'name': 'Allele Balance Z-score'}, 'BQZ': {'name': 'BaseQual-Allele correlation'}, 'CYZ': {'name': 'Cycle-Allele correlation'}, 'STZ': {'name': 'Strand-Allele correlation'}, 'IOR': {'name': 'Inflated Rate of Observing other alleles (log10)'}, 'NM0': {'name': 'Avg num mismatches in reads with ref alleles'}, 'NM1': {'name': 'Avg num mismatches in reads with alt alleles'}, 'NMZ': {'name': 'Mismatches/read-Allele correlation'}, } for k,v in METRICS.items(): v.setdefault('name',k) class Consequence(object): # This is a slightly modified version of VEP's recommendations - see http://useast.ensembl.org/info/genome/variation/predicted_data.html#consequences # The ordering of the LoF variants is from snpEff's recommendations - see http://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf # To find all variants that are used, run: # mongo --eval 'db.variants.distinct("vep_annotations.Consequence").forEach(printjson)' topmed | tr -d '",' | tr "&" "\n" | sort -u _lof_csqs = [ "transcript_ablation", "frameshift_variant", "stop_gained", "stop_lost", "start_lost", "splice_acceptor_variant", "splice_donor_variant", "transcript_amplification", ] _missense_csqs = [ "inframe_insertion", "inframe_deletion", "missense_variant", "protein_altering_variant", ] _synonymous_csqs = [ "splice_region_variant", "incomplete_terminal_codon_variant", "stop_retained_variant", "synonymous_variant", ] _other_csqs = [ "coding_sequence_variant", "mature_miRNA_variant", "5_prime_UTR_variant", "3_prime_UTR_variant", "non_coding_transcript_exon_variant", "intron_variant", "NMD_transcript_variant", "non_coding_transcript_variant", "upstream_gene_variant", "downstream_gene_variant", "TFBS_ablation", "TFBS_amplification", "TF_binding_site_variant", "regulatory_region_ablation", "regulatory_region_amplification", "feature_elongation", "regulatory_region_variant", "feature_truncation", "intergenic_variant", ] csqs = _lof_csqs + _missense_csqs + _synonymous_csqs + _other_csqs assert len(csqs) == len(set(csqs)) # No dupes! csqidxs = {csq:i for i,csq in enumerate(csqs)} as_obj = { 'order':csqs, 'n_lof':len(_lof_csqs), # todo: instead use `last_lof_csqidx`, likewise below 'n_lof_mis':len(_lof_csqs)+len(_missense_csqs), 'n_lof_mis_syn':len(_lof_csqs)+len(_missense_csqs)+len(_synonymous_csqs), } class Xpos: CHROMOSOME_STRINGS = [str(x) for x in range(1, 22+1)] + ['X', 'Y', 'M'] CHROMOSOME_STRING_TO_NUMBER = {chrom: idx+1 for idx,chrom in enumerate(CHROMOSOME_STRINGS) } CHROMOSOME_NUMBER_TO_STRING = {chrom_num: chrom for chrom,chrom_num in CHROMOSOME_STRING_TO_NUMBER.items()} @staticmethod def from_chrom_pos(chrom, pos): if chrom.startswith('chr'): chrom = chrom[3:] return Xpos.CHROMOSOME_STRING_TO_NUMBER[chrom] * int(1e9) + pos @staticmethod def to_chrom_pos(xpos): pos = xpos % int(1e9) chrom = Xpos.CHROMOSOME_NUMBER_TO_STRING[int(xpos) / int(1e9)] return (chrom, pos) @staticmethod def to_pos(xpos): return xpos % int(1e9) @staticmethod def check_chrom(chrom): if chrom.startswith('chr'): chrom = chrom[3:] return chrom in Xpos.CHROMOSOME_STRING_TO_NUMBER class ConsequenceDrilldown(object): @staticmethod def from_variant(variant): """ Returns something like {"frameshift": {"ENSG00001234": [{"SYMBOL": "APOL1", "Gene": "ENSG00001234", "Feature": "ENST00002345", ...}]}} """ if 'vep_annotations' not in variant: return {} consequences_drilldown = OrderedDict() for annotation in variant['vep_annotations']: consequences_drilldown.setdefault(Consequence.csqs[annotation['worst_csqidx']], {}).setdefault(annotation['Gene'], []).append(annotation) # Sort the consequences for csq in consequences_drilldown: for gene in consequences_drilldown[csq]: consequences_drilldown[csq][gene] = sorted(consequences_drilldown[csq][gene], key=lambda ann: (ann.get('HGVS'), ann.get('Feature'))) return consequences_drilldown @staticmethod def split_into_two_columns(consequences): ''' Try to make two columns of similar height, but with the first a little taller. Returns the names of the consequences (ie, the keys), but not the values (because that'd be a pain to use). ''' if len(consequences) == 0: return ([], []) elif len(consequences) == 1: return (consequences.keys(), []) consequence_heights = [0] for annotations in consequences.values()[0].values(): consequence_heights[0] += len(annotations) # The number of annotations in this gene (because all are shown in the first consequence) # TODO: check for the other things displayed in variant_details.html for csq in consequences.values()[1:]: consequence_heights.append(len(csq)) # The number of genes in this consequence (because annotations are collapsed in these consequences) index = ConsequenceDrilldown._get_midpoint_index(consequence_heights) return (consequences.keys()[:index], consequences.keys()[index:]) @staticmethod def _get_midpoint_index(lst): ''' for test_lst in [[1], [1,2,3], [3,1,1], [3,1,1,1], [3,1,1,1,1]]: index = get_midpoint_index(test_lst) assert 0 < index <= len(test_lst) assert sum(test_lst[:index]) >= sum(test_lst[index:]) assert sum(test_lst[:index-1]) < sum(test_lst[index-1:]) ''' half = sum(lst) / 2.0 acc = 0 for index, num in enumerate(lst): if acc >= half: return index acc += num return len(lst) @staticmethod def get_top_gene_and_HGVSs(consequences_drilldown): """Returns something like ("APOL1", ["Gly70Ter", "Gly88Ter"])""" if not consequences_drilldown: return None, [] gene_drilldowns_for_top_csq = consequences_drilldown.values()[0] if len(gene_drilldowns_for_top_csq) != 1: # we need exactly one gene return None, [] annotation_drilldowns_for_top_csq = gene_drilldowns_for_top_csq.values()[0] gene_symbol_for_top_csq = annotation_drilldowns_for_top_csq[0].get('SYMBOL') or gene_drilldowns_for_top_csq.keys()[0] HGVSs_for_top_csq = sorted({ann['HGVS'] for ann in annotation_drilldowns_for_top_csq if ann.get('HGVS')}) return gene_symbol_for_top_csq, sorted(HGVSs_for_top_csq) class defaultdict_that_passes_key_to_default_factory(dict): "A class like collections.defaultdict, but where the default_factory takes the missing key as an argument." def __init__(self, default_factory): self._default_factory = default_factory super(defaultdict_that_passes_key_to_default_factory, self).__init__() def __missing__(self, key): value = self[key] = self._default_factory(key) return value def indent_pprint(obj): import pprint print('\n').join('####'+line for line in pprint.pformat(obj).split('\n')) def mkdict(*dicts, **ret): for d in dicts: ret.update({k:True for k in d} if isinstance(d, (set,list)) else d) return ret def clamp(num, min_value, max_value): return max(min_value, min(max_value, num)) def sortedgroupby(iterable, key): from itertools import groupby return groupby(sorted(iterable, key=key), key=key) def histogram_from_counter(counter, num_bins=10, bin_range=None): from math import floor if bin_range is None: bin_range = (min(counter.iterkeys()), max(counter.iterkeys())) bin_width = float(bin_range[1] - bin_range[0]) / num_bins if bin_width == 0: only_key = counter.keys()[0] print(f"Warning: metric always had the value {counter.keys()}") return {'left_edges': [only_key-1, only_key, only_key+1], 'mids': [only_key-1, only_key, only_key+1], 'counts': [0, counter.values()[0], 0]} bin_left_edges = [bin_range[0] + bin_width * i for i in range(num_bins)] bin_counts = [0]*num_bins for key, count in counter.iteritems(): bin_i = (key - bin_range[0]) / bin_width try: bin_i = int(floor(bin_i)) except: print(f"error on: {bin_i} {key} {bin_range[0]} {bin_range[1]} {bin_width}") raise bin_i = clamp(bin_i, min_value=0, max_value=num_bins-1) bin_counts[bin_i] += count bin_mids = [left_edge + bin_width/2.0 for left_edge in bin_left_edges] return {'left_edges': bin_left_edges, 'mids': bin_mids, 'counts': bin_counts}
43.214912
153
0.639907
90f938d31f8d98b67f38e14438ad5a0ce83897ba
5,817
py
Python
examples/titanic/assets/algo_random_forest/algo.py
cupcicm/substra
19eeec1dda02cce0e10ef6ed285636e974a6e77a
[ "Apache-2.0" ]
null
null
null
examples/titanic/assets/algo_random_forest/algo.py
cupcicm/substra
19eeec1dda02cce0e10ef6ed285636e974a6e77a
[ "Apache-2.0" ]
null
null
null
examples/titanic/assets/algo_random_forest/algo.py
cupcicm/substra
19eeec1dda02cce0e10ef6ed285636e974a6e77a
[ "Apache-2.0" ]
null
null
null
import re import pandas as pd import pickle from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV import numpy as np import substratools as tools class Algo(tools.algo.Algo): def _normalize_X(self, X): # Relatives X['relatives'] = X['SibSp'] + X['Parch'] X.loc[X['relatives'] > 0, 'not_alone'] = 0 X.loc[X['relatives'] == 0, 'not_alone'] = 1 X['not_alone'] = X['not_alone'].astype(int) # Passenger ID X = X.drop(['PassengerId'], axis=1) # Cabin deck = {"A": 1, "B": 2, "C": 3, "D": 4, "E": 5, "F": 6, "G": 7, "U": 8} X['Cabin'] = X['Cabin'].fillna("U0") X['Deck'] = X['Cabin'].map( lambda x: re.compile("([a-zA-Z]+)").search(x).group()) X['Deck'] = X['Deck'].map(deck) X['Deck'] = X['Deck'].fillna(0) X['Deck'] = X['Deck'].astype(int) X = X.drop(['Cabin'], axis=1) # Age mean = X["Age"].mean() std = X["Age"].std() is_null = X["Age"].isnull().sum() # compute random numbers between the mean, std and is_null rand_age = np.random.randint(mean - std, mean + std, size=is_null) # fill NaN values in Age column with random values generated age_slice = X["Age"].copy() age_slice[np.isnan(age_slice)] = rand_age X["Age"] = age_slice X["Age"] = X["Age"].astype(int) # make Age into a category X['Age'] = X['Age'].astype(int) X.loc[X['Age'] <= 11, 'Age'] = 0 X.loc[(X['Age'] > 11) & (X['Age'] <= 18), 'Age'] = 1 X.loc[(X['Age'] > 18) & (X['Age'] <= 22), 'Age'] = 2 X.loc[(X['Age'] > 22) & (X['Age'] <= 27), 'Age'] = 3 X.loc[(X['Age'] > 27) & (X['Age'] <= 33), 'Age'] = 4 X.loc[(X['Age'] > 33) & (X['Age'] <= 40), 'Age'] = 5 X.loc[(X['Age'] > 40) & (X['Age'] <= 66), 'Age'] = 6 X.loc[X['Age'] > 66, 'Age'] = 6 # create Age_Class feature X['Age_Class'] = X['Age'] * X['Pclass'] # Embarked ports = {"S": 0, "C": 1, "Q": 2} X['Embarked'] = X['Embarked'].fillna('S') X['Embarked'] = X['Embarked'].map(ports) # Fare X['Fare'] = X['Fare'].fillna(0) X['Fare'] = X['Fare'].astype(int) # make Fare into a category X.loc[X['Fare'] <= 7.91, 'Fare'] = 0 X.loc[(X['Fare'] > 7.91) & (X['Fare'] <= 14.454), 'Fare'] = 1 X.loc[(X['Fare'] > 14.454) & (X['Fare'] <= 31), 'Fare'] = 2 X.loc[(X['Fare'] > 31) & (X['Fare'] <= 99), 'Fare'] = 3 X.loc[(X['Fare'] > 99) & (X['Fare'] <= 250), 'Fare'] = 4 X.loc[X['Fare'] > 250, 'Fare'] = 5 X['Fare'] = X['Fare'].astype(int) # create Fare_Per_Person feature X['Fare_Per_Person'] = X['Fare'] / (X['relatives'] + 1) X['Fare_Per_Person'] = X['Fare_Per_Person'].astype(int) # Name titles = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} # extract titles X['Title'] = X.Name.str.extract(' ([A-Za-z]+)\.', expand=False) # replace titles with a more common title or as Rare X['Title'] = X['Title'].replace( ['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') X['Title'] = X['Title'].replace('Mlle', 'Miss') X['Title'] = X['Title'].replace('Ms', 'Miss') X['Title'] = X['Title'].replace('Mme', 'Mrs') # convert titles into numbers X['Title'] = X['Title'].map(titles) # filling NaN with 0, to get safe X['Title'] = X['Title'].fillna(0) X = X.drop(['Name'], axis=1) # Sex genders = {"male": 0, "female": 1} X['Sex'] = X['Sex'].map(genders) # Ticket X = X.drop(['Ticket'], axis=1) # Drop non relevant features X = X.drop("not_alone", axis=1) X = X.drop("Parch", axis=1) return X def _predict_pandas(self, model, X): y_pred = model.predict(X) return pd.DataFrame(columns=['Survived'], data=y_pred) def train(self, X, y, models, rank): X = self._normalize_X(X) # the following RFC hyperparameters were determined using: # >>> param_grid = {"criterion": ["gini", "entropy"], "min_samples_leaf": [1, 5, 10, 25, 50, 70], # "min_samples_split": [2, 4, 10, 12, 16, 18, 25, 35], # "n_estimators": [100, 400, 700, 1000, 1500]} # >>> rf = RandomForestClassifier(n_estimators=100, max_features='auto', oob_score=True, # random_state=1, n_jobs=-1) # >>>,clf = GridSearchCV(estimator=rf, param_grid=param_grid, n_jobs=-1) # Random Forest random_forest = RandomForestClassifier(criterion="gini", min_samples_leaf=1, min_samples_split=10, n_estimators=100, max_features='auto', oob_score=True, random_state=1, n_jobs=-1) random_forest.fit(X, y) y_pred = self._predict_pandas(random_forest, X) return y_pred, random_forest def predict(self, X, model): X = self._normalize_X(X) return self._predict_pandas(model, X) def load_model(self, path): with open(path, 'rb') as f: return pickle.load(f) def save_model(self, model, path): with open(path, 'wb') as f: pickle.dump(model, f) if __name__ == '__main__': tools.algo.execute(Algo())
37.772727
105
0.480832
181ed57e3eb39153ad141aa8f03aeb15ee7f7127
510
py
Python
idManager/view/authentication_view.py
lgarciasbr/idm-api
3517d29d55eb2a06fb5b4b21359b6cf6d11529a0
[ "Apache-2.0" ]
2
2018-01-14T22:43:43.000Z
2018-01-14T22:43:48.000Z
idManager/view/authentication_view.py
lgarciasbr/idm-api
3517d29d55eb2a06fb5b4b21359b6cf6d11529a0
[ "Apache-2.0" ]
null
null
null
idManager/view/authentication_view.py
lgarciasbr/idm-api
3517d29d55eb2a06fb5b4b21359b6cf6d11529a0
[ "Apache-2.0" ]
null
null
null
from flask import jsonify def auth_login(http_status_code, message, token): view = jsonify({'status_code': http_status_code, 'message': message, '_token': token}) return view def auth_is_valid(http_status_code, message, token): view = jsonify({'status_code': http_status_code, 'message': message, '_token': token}) return view def auth_logout(http_status_code, message, token): view = jsonify({'status_code': http_status_code, 'message': message, '_token': token}) return view
25.5
90
0.721569
1f9ff1929c0bc02e2a5782ebe815a7b05d5833dc
7,176
py
Python
alephnull/sources/test_source.py
Python3pkg/AlephNull
70c522573fe1416c9f4972c9d0078a9b96de0c57
[ "Apache-2.0" ]
1
2021-05-16T21:10:41.000Z
2021-05-16T21:10:41.000Z
alephnull/sources/test_source.py
Python3pkg/AlephNull
70c522573fe1416c9f4972c9d0078a9b96de0c57
[ "Apache-2.0" ]
null
null
null
alephnull/sources/test_source.py
Python3pkg/AlephNull
70c522573fe1416c9f4972c9d0078a9b96de0c57
[ "Apache-2.0" ]
1
2021-04-02T19:01:11.000Z
2021-04-02T19:01:11.000Z
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A source to be used in testing. """ import pytz from itertools import cycle from datetime import datetime, timedelta import numpy as np from alephnull.protocol import ( Event, DATASOURCE_TYPE ) from alephnull.gens.utils import hash_args from alephnull.utils.tradingcalendar import trading_days def create_trade(sid, price, amount, datetime, source_id="test_factory"): trade = Event() trade.source_id = source_id trade.type = DATASOURCE_TYPE.TRADE trade.sid = sid trade.dt = datetime trade.price = price trade.close_price = price trade.open_price = price trade.low = price * .95 trade.high = price * 1.05 trade.volume = amount return trade def date_gen(start=datetime(2006, 6, 6, 12, tzinfo=pytz.utc), delta=timedelta(minutes=1), count=100, repeats=None): """ Utility to generate a stream of dates. """ one_day = timedelta(days=1) cur = start if delta == one_day: # if we are producing daily timestamps, we # use midnight cur = cur.replace(hour=0, minute=0, second=0, microsecond=0) # yield count trade events, all on trading days, and # during trading hours. # NB: Being inside of trading hours is currently dependent upon the # count parameter being less than the number of trading minutes in a day for i in range(count): if repeats: for j in range(repeats): yield cur else: yield cur cur = cur + delta cur_midnight = cur.replace(hour=0, minute=0, second=0, microsecond=0) # skip over any non-trading days while cur_midnight not in trading_days: cur = cur + one_day cur_midnight = cur.replace(hour=0, minute=0, second=0, microsecond=0) cur = cur.replace(day=cur_midnight.day) def mock_prices(count): """ Utility to generate a stream of mock prices. By default cycles through values from 0.0 to 10.0, n times. """ return (float(i % 10) + 1.0 for i in range(count)) def mock_volumes(count): """ Utility to generate a set of volumes. By default cycles through values from 100 to 1000, incrementing by 50. """ return ((i * 50) % 900 + 100 for i in range(count)) class SpecificEquityTrades(object): """ Yields all events in event_list that match the given sid_filter. If no event_list is specified, generates an internal stream of events to filter. Returns all events if filter is None. Configuration options: count : integer representing number of trades sids : list of values representing simulated internal sids start : start date delta : timedelta between internal events filter : filter to remove the sids """ def __init__(self, *args, **kwargs): # We shouldn't get any positional arguments. assert len(args) == 0 # Default to None for event_list and filter. self.event_list = kwargs.get('event_list') self.filter = kwargs.get('filter') if self.event_list is not None: # If event_list is provided, extract parameters from there # This isn't really clean and ultimately I think this # class should serve a single purpose (either take an # event_list or autocreate events). self.count = kwargs.get('count', len(self.event_list)) self.sids = kwargs.get( 'sids', np.unique([event.sid for event in self.event_list]).tolist()) self.start = kwargs.get('start', self.event_list[0].dt) self.end = kwargs.get('start', self.event_list[-1].dt) self.delta = kwargs.get( 'delta', self.event_list[1].dt - self.event_list[0].dt) self.concurrent = kwargs.get('concurrent', False) else: # Unpack config dictionary with default values. self.count = kwargs.get('count', 500) self.sids = kwargs.get('sids', [1, 2]) self.start = kwargs.get( 'start', datetime(2008, 6, 6, 15, tzinfo=pytz.utc)) self.delta = kwargs.get( 'delta', timedelta(minutes=1)) self.concurrent = kwargs.get('concurrent', False) # Hash_value for downstream sorting. self.arg_string = hash_args(*args, **kwargs) self.generator = self.create_fresh_generator() def __iter__(self): return self def __next__(self): return next(self.generator) def rewind(self): self.generator = self.create_fresh_generator() def get_hash(self): return self.__class__.__name__ + "-" + self.arg_string def update_source_id(self, gen): for event in gen: event.source_id = self.get_hash() yield event def create_fresh_generator(self): if self.event_list: event_gen = (event for event in self.event_list) unfiltered = self.update_source_id(event_gen) # Set up iterators for each expected field. else: if self.concurrent: # in this context the count is the number of # trades per sid, not the total. dates = date_gen( count=self.count, start=self.start, delta=self.delta, repeats=len(self.sids), ) else: dates = date_gen( count=self.count, start=self.start, delta=self.delta ) prices = mock_prices(self.count) volumes = mock_volumes(self.count) sids = cycle(self.sids) # Combine the iterators into a single iterator of arguments arg_gen = zip(sids, prices, volumes, dates) # Convert argument packages into events. unfiltered = (create_trade(*args, source_id=self.get_hash()) for args in arg_gen) # If we specified a sid filter, filter out elements that don't # match the filter. if self.filter: filtered = filter( lambda event: event.sid in self.filter, unfiltered) # Otherwise just use all events. else: filtered = unfiltered # Return the filtered event stream. return filtered
31.893333
77
0.60131
6b339f25d2315186b02e4e3cb9e27f2f8e930848
9,087
py
Python
bitbots_animation_server/src/bitbots_animation_server/animation_node.py
bit-bots/bitbots_motion
7bdf35eba88773cc71759b25fae201d2accd573d
[ "MIT" ]
3
2020-05-30T07:04:33.000Z
2021-08-07T07:41:27.000Z
bitbots_animation_server/src/bitbots_animation_server/animation_node.py
bit-bots/bitbots_motion
7bdf35eba88773cc71759b25fae201d2accd573d
[ "MIT" ]
149
2018-12-18T12:49:56.000Z
2022-01-06T10:51:32.000Z
bitbots_animation_server/src/bitbots_animation_server/animation_node.py
bit-bots/bitbots_motion
7bdf35eba88773cc71759b25fae201d2accd573d
[ "MIT" ]
4
2019-07-28T11:25:02.000Z
2021-12-06T19:04:18.000Z
#!/usr/bin/env python3 import json import time import actionlib import traceback import numpy as np import rospy from humanoid_league_msgs.msg import PlayAnimationResult, PlayAnimationFeedback from humanoid_league_msgs.msg import PlayAnimationAction as PlayAction from humanoid_league_msgs.msg import Animation as AnimationMsg from trajectory_msgs.msg import JointTrajectoryPoint, JointTrajectory from bitbots_animation_server.animation import parse from sensor_msgs.msg import Imu, JointState from bitbots_animation_server.resource_manager import find_all_animations_by_name from humanoid_league_msgs.msg import RobotControlState from bitbots_animation_server.spline_animator import SplineAnimator from bitbots_ros_patches.rate import Rate class AnimationNode: def __init__(self): """Starts a simple action server and waits for requests.""" # currently we set log level to info since the action server is spamming too much log_level = rospy.INFO if rospy.get_param("debug_active", False) else rospy.INFO rospy.init_node("animation", log_level=log_level, anonymous=False) if not rospy.get_param("simulation_active"): rospy.on_shutdown(self.on_shutdown_hook) rospy.logdebug("Starting Animation Server") server = PlayAnimationAction(rospy.get_name()) rospy.spin() def on_shutdown_hook(self): # we got external shutdown, let's still wait a bit, since we propably want to do a shut down animation rospy.sleep(5) class PlayAnimationAction(object): _feedback = PlayAnimationFeedback _result = PlayAnimationResult def __init__(self, name): self.current_joint_states = None self.action_name = name self.hcm_state = 0 self.current_animation = None self.animation_cache = {} all_animations = find_all_animations_by_name() for animation_name, animation_file in all_animations.items(): try: with open(animation_file) as fp: self.animation_cache[animation_name] = parse(json.load(fp)) except IOError: rospy.logerr("Animation '%s' could not be loaded" % animation_name) except ValueError: rospy.logerr( "Animation '%s' had a ValueError. Probably there is a syntax error in the animation file. " "See traceback" % animation_name) traceback.print_exc() # predefined messages for performance self.anim_msg = AnimationMsg() # AnimationMsg takes a JointTrajectory message to also be able to process trajectories. To keep this # functionality, we use this message type, even though we only need a single joint goal in this case. self.traj_msg = JointTrajectory() self.traj_point = JointTrajectoryPoint() rospy.Subscriber("joint_states", JointState, self.update_current_pose, queue_size=1) rospy.Subscriber("robot_state", RobotControlState, self.update_hcm_state, queue_size=1) self.hcm_publisher = rospy.Publisher("animation", AnimationMsg, queue_size=1) self._as = actionlib.SimpleActionServer(self.action_name, PlayAction, execute_cb=self.execute_cb, auto_start=False) self._as.start() def execute_cb(self, goal): """ This is called, when someone calls the animation action""" first = True self.current_animation = goal.animation # publish info to the console for the user rospy.loginfo("Request to play animation %s", goal.animation) if self.hcm_state != 0 and not goal.hcm: # 0 means controllable # we cant play an animation right now # but we send a request, so that we may can soon self.send_animation_request() rospy.loginfo("HCM not controllable. Only sent request to make it come controllable.") self._as.set_aborted(text="HCM not controllable. Will now become controllable. Try again later.") return animator = self.get_animation_splines(self.current_animation) # start animation rate = Rate(500) while not rospy.is_shutdown() and animator: # first check if we have another goal self.check_for_new_goal() new_goal = self._as.current_goal.goal.goal.animation # if there is a new goal, calculate new splines and reset the time if new_goal != self.current_animation: self.current_animation = new_goal animator = self.get_animation_splines(self.current_animation) first = True # if we're here we want to play the next keyframe, cause there is no other goal # compute next pose t = rospy.get_time() - animator.get_start_time() pose = animator.get_positions_rad(t) if pose is None: # see walking node reset # animation is finished # tell it to the hcm self.send_animation(False, True, goal.hcm, None, None) self._as.publish_feedback(PlayAnimationFeedback(percent_done=100)) # we give a positive result self._as.set_succeeded(PlayAnimationResult(True)) return self.send_animation(first, False, goal.hcm, pose, animator.get_torque(t)) first = False # we have sent the first frame, all frames after this can't be the first perc_done = int(((rospy.get_time() - animator.get_start_time()) / animator.get_duration()) * 100) perc_done = max(0, min(perc_done, 100)) self._as.publish_feedback(PlayAnimationFeedback(percent_done=perc_done)) try: # catch exception of moving backwards in time, when restarting simulator rate.sleep() except rospy.exceptions.ROSTimeMovedBackwardsException: rospy.logwarn("We moved backwards in time. This is probably because the simulation was reset.") except rospy.exceptions.ROSInterruptException: exit() def get_animation_splines(self, animation_name): if animation_name not in self.animation_cache: rospy.logerr("Animation '%s' not found" % animation_name) self._as.set_aborted(False, "Animation not found") return parsed_animation = self.animation_cache[animation_name] return SplineAnimator(parsed_animation, self.current_joint_states) def check_for_new_goal(self): if self._as.is_new_goal_available(): next_goal = self._as.next_goal if not next_goal or not next_goal.get_goal(): return rospy.logdebug("New goal: " + next_goal.get_goal().animation) if next_goal.get_goal().hcm: rospy.logdebug("Accepted hcm animation %s", next_goal.get_goal().animation) # cancel old stuff and restart self._as.current_goal.set_aborted() self._as.accept_new_goal() else: # can't run this animation now self._as.next_goal.set_rejected() # delete the next goal to make sure, that we can accept something else self._as.next_goal = None rospy.logwarn("Couldn't start non hcm animation because another one is already running.") def update_current_pose(self, msg): """Gets the current motor positions and updates the representing pose accordingly.""" self.current_joint_states = msg def update_hcm_state(self, msg): self.hcm_state = msg.state def send_animation_request(self): self.anim_msg.request = True self.anim_msg.header.stamp = rospy.Time.now() self.hcm_publisher.publish(self.anim_msg) def send_animation(self, first, last, hcm, pose, torque): self.anim_msg.request = False self.anim_msg.first = first self.anim_msg.last = last self.anim_msg.hcm = hcm if pose is not None: self.traj_msg.joint_names = [] self.traj_msg.points = [JointTrajectoryPoint()] # We are only using a single point in the trajectory message, since we only want to send a single joint goal self.traj_msg.points[0].positions = [] self.traj_msg.points[0].effort = [] for joint in pose: self.traj_msg.joint_names.append(joint) self.traj_msg.points[0].positions.append(pose[joint]) if torque: # 1 and 2 should be mapped to 1 self.traj_msg.points[0].effort.append(np.clip((torque[joint]), 0, 1)) self.anim_msg.position = self.traj_msg self.anim_msg.header.stamp = rospy.Time.now() self.hcm_publisher.publish(self.anim_msg) if __name__ == "__main__": rospy.logdebug("starting animation node") animation = AnimationNode()
44.985149
120
0.652801
57b97df33665a61498fde35d95241a5cc574e373
3,701
py
Python
samples/samplenetconf/cmds/show_ctrl_yangmodel.py
gaberger/pybvc
bf546c4595a1a6282fca084865c5a0e69194030f
[ "BSD-3-Clause" ]
null
null
null
samples/samplenetconf/cmds/show_ctrl_yangmodel.py
gaberger/pybvc
bf546c4595a1a6282fca084865c5a0e69194030f
[ "BSD-3-Clause" ]
1
2021-03-26T00:46:31.000Z
2021-03-26T00:46:31.000Z
samples/samplenetconf/cmds/show_ctrl_yangmodel.py
gaberger/pybvc
bf546c4595a1a6282fca084865c5a0e69194030f
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python """ Copyright (c) 2015, BROCADE COMMUNICATIONS SYSTEMS, INC All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @authors: Sergei Garbuzov @status: Development @version: 1.1.0 """ import sys import getopt from pybvc.controller.controller import Controller from pybvc.common.status import STATUS from pybvc.common.utils import load_dict_from_file def usage(myname): print(' Usage: %s -i <identifier> -v <version>' % myname) sys.exit() if __name__ == "__main__": f = "cfg.yml" d = {} if(load_dict_from_file(f, d) == False): print("Config file '%s' read error: " % f) exit() try: ctrlIpAddr = d['ctrlIpAddr'] ctrlPortNum = d['ctrlPortNum'] ctrlUname = d['ctrlUname'] ctrlPswd = d['ctrlPswd'] except: print ("Failed to get Controller device attributes") exit(0) model_identifier = None model_version = None if(len(sys.argv) == 1): print(" Error: missing arguments") usage(sys.argv[0]) argv = sys.argv[1:] try: opts, args = getopt.getopt(argv,"i:v:h",["identifier=","version=","help"]) except getopt.GetoptError, e: print(" Error: %s" % e.msg) usage(sys.argv[0]) for opt, arg in opts: if opt in ("-h", "--help"): usage(sys.argv[0]) elif opt in ("-i", "--identifier"): model_identifier = arg elif opt in ("-v", "--version"): model_version = arg else: print("Error: failed to parse option %s" % opt) usage(sys.argv[0]) if(model_identifier == None) or (model_version == None): print("Error: incomplete command") usage(sys.argv[0]) ctrl = Controller(ctrlIpAddr, ctrlPortNum, ctrlUname, ctrlPswd) print ("<<< 'Controller': %s" % (ctrlIpAddr)) result = ctrl.get_schema("controller-config", model_identifier, model_version) status = result.get_status() if(status.eq(STATUS.OK) == True): print "YANG model definition:" schema = result.get_data() print schema.encode('utf-8', 'replace') else: print ("\n") print ("!!!Failed, reason: %s" % status.brief().lower()) print ("%s" % status.detailed()) exit(0) print ("\n")
32.182609
82
0.673872
d3d82815a654bd2783a8710cd4e3980324a894be
7,829
py
Python
cmoon/src/detect.py
Cmoon-cyl/ros-module
f026bbdde1193fd96eb9c50e1602ca4a9de90310
[ "MIT" ]
3
2021-08-28T18:40:33.000Z
2021-12-13T02:19:47.000Z
cmoon/src/detect.py
Cmoon-cyl/ros-module
f026bbdde1193fd96eb9c50e1602ca4a9de90310
[ "MIT" ]
null
null
null
cmoon/src/detect.py
Cmoon-cyl/ros-module
f026bbdde1193fd96eb9c50e1602ca4a9de90310
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 import sys sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') import argparse import os import shutil import time from pathlib import Path import cv2 import torch import torch.backends.cudnn as cudnn from numpy import random from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer, set_logging) from utils.torch_utils import select_device, load_classifier, time_synchronized def detect(save_img=False): out, source, weights, view_img, save_txt, imgsz = \ opt.save_dir, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt') # Initialize set_logging() device = select_device(opt.device) if os.path.exists(out): # output dir shutil.rmtree(out) # delete dir os.makedirs(out) # make new dir half = device.type != 'cpu' # half precision only supported on CUDA # 加载模型 model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights modelc.to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] # Run inference t0 = time.time() img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, conf, *xywh) if opt.save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line) + '\n') % line) if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if view_img: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fourcc = 'mp4v' # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: print('Results saved to %s' % Path(out)) print('Done. (%.3fs)' % (time.time() - t0)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-dir', type=str, default='inference/output', help='directory to save results') parser.add_argument('--classes', nargs='+', type=int, default='0', help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--update', action='store_true', help='update all models') opt = parser.parse_args() print(opt) with torch.no_grad(): if opt.update: # update all models (to fix SourceChangeWarning) for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: detect() strip_optimizer(opt.weights) else: detect()
43.73743
119
0.588325
06ae9a95a9f1648df551ab990f2b314f5f65ed91
1,332
py
Python
nonebot/default_config.py
Hieuzest/nonebot
7418c4ac174d3b4fa7078a528bff3283d6999ec5
[ "MIT" ]
1
2021-01-21T09:46:32.000Z
2021-01-21T09:46:32.000Z
nonebot/default_config.py
BillYang2016/nonebot
515b7dbf44ffa8326c9ae9948e4c261d89f699a0
[ "MIT" ]
null
null
null
nonebot/default_config.py
BillYang2016/nonebot
515b7dbf44ffa8326c9ae9948e4c261d89f699a0
[ "MIT" ]
1
2021-08-03T08:50:06.000Z
2021-08-03T08:50:06.000Z
""" Default configurations. Any derived configurations must import everything from this module at the very beginning of their code, and then set their own value to override the default one. For example: >>> from nonebot.default_config import * >>> PORT = 9090 >>> DEBUG = False >>> SUPERUSERS.add(123456) >>> NICKNAME = '小明' """ from datetime import timedelta from typing import Collection, Union, Iterable, Pattern, Optional, Dict, Any from .typing import Expression_T API_ROOT: str = '' ACCESS_TOKEN: str = '' SECRET: str = '' HOST: str = '127.0.0.1' PORT: int = 8080 DEBUG: bool = True SUPERUSERS: Collection[int] = set() NICKNAME: Union[str, Iterable[str]] = '' COMMAND_START: Iterable[Union[str, Pattern]] = {'/', '!', '/', '!'} COMMAND_SEP: Iterable[Union[str, Pattern]] = {'/', '.'} SESSION_EXPIRE_TIMEOUT: Optional[timedelta] = timedelta(minutes=5) SESSION_RUN_TIMEOUT: Optional[timedelta] = None SESSION_RUNNING_EXPRESSION: Expression_T = '您有命令正在执行,请稍后再试' SHORT_MESSAGE_MAX_LENGTH: int = 50 DEFAULT_VALIDATION_FAILURE_EXPRESSION: Expression_T = '您的输入不符合要求,请重新输入' MAX_VALIDATION_FAILURES: int = 3 TOO_MANY_VALIDATION_FAILURES_EXPRESSION: Expression_T = \ '您输入错误太多次啦,如需重试,请重新触发本功能' SESSION_CANCEL_EXPRESSION: Expression_T = '好的' APSCHEDULER_CONFIG: Dict[str, Any] = {'apscheduler.timezone': 'Asia/Shanghai'}
27.183673
78
0.742492
f50436a5e84190fada4c96ee939bb0f6f56ef0c4
100
py
Python
venv/lib/python2.7/UserDict.py
IdeasBlockLT/emem
a3f6e1950e9a074fbb696728778b22d6f523c3df
[ "MIT" ]
null
null
null
venv/lib/python2.7/UserDict.py
IdeasBlockLT/emem
a3f6e1950e9a074fbb696728778b22d6f523c3df
[ "MIT" ]
9
2019-12-04T23:15:54.000Z
2022-02-10T11:05:43.000Z
venv/lib/python2.7/UserDict.py
edbolivar/perfectpair
c165cff40353c602fe0dc418375b90e9b25de674
[ "MIT" ]
null
null
null
/usr/local/Cellar/python@2/2.7.16/Frameworks/Python.framework/Versions/2.7/lib/python2.7/UserDict.py
100
100
0.81
187a148176437703af871944bf5e1b79df3d7f9c
21,771
py
Python
qlib/model/trainer.py
LogCreative/qlib
da48f42f3f35bbbbe9c00c23831a80409a4a13ab
[ "MIT" ]
2
2021-06-12T20:48:26.000Z
2021-06-25T02:26:09.000Z
qlib/model/trainer.py
LogCreative/qlib
da48f42f3f35bbbbe9c00c23831a80409a4a13ab
[ "MIT" ]
1
2022-03-10T03:57:50.000Z
2022-03-10T03:57:50.000Z
qlib/model/trainer.py
LogCreative/qlib
da48f42f3f35bbbbe9c00c23831a80409a4a13ab
[ "MIT" ]
1
2022-02-22T03:09:56.000Z
2022-02-22T03:09:56.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """ The Trainer will train a list of tasks and return a list of model recorders. There are two steps in each Trainer including ``train``(make model recorder) and ``end_train``(modify model recorder). This is a concept called ``DelayTrainer``, which can be used in online simulating for parallel training. In ``DelayTrainer``, the first step is only to save some necessary info to model recorders, and the second step which will be finished in the end can do some concurrent and time-consuming operations such as model fitting. ``Qlib`` offer two kinds of Trainer, ``TrainerR`` is the simplest way and ``TrainerRM`` is based on TaskManager to help manager tasks lifecycle automatically. """ import socket import time import re from typing import Callable, List from tqdm.auto import tqdm from qlib.data.dataset import Dataset from qlib.log import get_module_logger from qlib.model.base import Model from qlib.utils import flatten_dict, get_callable_kwargs, init_instance_by_config, auto_filter_kwargs, fill_placeholder from qlib.workflow import R from qlib.workflow.record_temp import SignalRecord from qlib.workflow.recorder import Recorder from qlib.workflow.task.manage import TaskManager, run_task from qlib.data.dataset.weight import Reweighter def _log_task_info(task_config: dict): R.log_params(**flatten_dict(task_config)) R.save_objects(**{"task": task_config}) # keep the original format and datatype R.set_tags(**{"hostname": socket.gethostname()}) def _exe_task(task_config: dict): rec = R.get_recorder() # model & dataset initiation model: Model = init_instance_by_config(task_config["model"]) dataset: Dataset = init_instance_by_config(task_config["dataset"]) reweighter: Reweighter = task_config.get("reweighter", None) # model training auto_filter_kwargs(model.fit)(dataset, reweighter=reweighter) R.save_objects(**{"params.pkl": model}) # this dataset is saved for online inference. So the concrete data should not be dumped dataset.config(dump_all=False, recursive=True) R.save_objects(**{"dataset": dataset}) # fill placehorder placehorder_value = {"<MODEL>": model, "<DATASET>": dataset} task_config = fill_placeholder(task_config, placehorder_value) # generate records: prediction, backtest, and analysis records = task_config.get("record", []) if isinstance(records, dict): # prevent only one dict records = [records] for record in records: # Some recorder require the parameter `model` and `dataset`. # try to automatically pass in them to the initialization function # to make defining the tasking easier r = init_instance_by_config( record, recorder=rec, default_module="qlib.workflow.record_temp", try_kwargs={"model": model, "dataset": dataset}, ) r.generate() def begin_task_train(task_config: dict, experiment_name: str, recorder_name: str = None) -> Recorder: """ Begin task training to start a recorder and save the task config. Args: task_config (dict): the config of a task experiment_name (str): the name of experiment recorder_name (str): the given name will be the recorder name. None for using rid. Returns: Recorder: the model recorder """ with R.start(experiment_name=experiment_name, recorder_name=recorder_name): _log_task_info(task_config) return R.get_recorder() def end_task_train(rec: Recorder, experiment_name: str) -> Recorder: """ Finish task training with real model fitting and saving. Args: rec (Recorder): the recorder will be resumed experiment_name (str): the name of experiment Returns: Recorder: the model recorder """ with R.start(experiment_name=experiment_name, recorder_id=rec.info["id"], resume=True): task_config = R.load_object("task") _exe_task(task_config) return rec def task_train(task_config: dict, experiment_name: str, recorder_name: str = None) -> Recorder: """ Task based training, will be divided into two steps. Parameters ---------- task_config : dict The config of a task. experiment_name: str The name of experiment recorder_name: str The name of recorder Returns ---------- Recorder: The instance of the recorder """ with R.start(experiment_name=experiment_name, recorder_name=recorder_name): _log_task_info(task_config) _exe_task(task_config) return R.get_recorder() class Trainer: """ The trainer can train a list of models. There are Trainer and DelayTrainer, which can be distinguished by when it will finish real training. """ def __init__(self): self.delay = False def train(self, tasks: list, *args, **kwargs) -> list: """ Given a list of task definitions, begin training, and return the models. For Trainer, it finishes real training in this method. For DelayTrainer, it only does some preparation in this method. Args: tasks: a list of tasks Returns: list: a list of models """ raise NotImplementedError(f"Please implement the `train` method.") def end_train(self, models: list, *args, **kwargs) -> list: """ Given a list of models, finished something at the end of training if you need. The models may be Recorder, txt file, database, and so on. For Trainer, it does some finishing touches in this method. For DelayTrainer, it finishes real training in this method. Args: models: a list of models Returns: list: a list of models """ # do nothing if you finished all work in `train` method return models def is_delay(self) -> bool: """ If Trainer will delay finishing `end_train`. Returns: bool: if DelayTrainer """ return self.delay def __call__(self, *args, **kwargs) -> list: return self.end_train(self.train(*args, **kwargs)) def has_worker(self) -> bool: """ Some trainer has backend worker to support parallel training This method can tell if the worker is enabled. Returns ------- bool: if the worker is enabled """ return False def worker(self): """ start the worker Raises ------ NotImplementedError: If the worker is not supported """ raise NotImplementedError(f"Please implement the `worker` method") class TrainerR(Trainer): """ Trainer based on (R)ecorder. It will train a list of tasks and return a list of model recorders in a linear way. Assumption: models were defined by `task` and the results will be saved to `Recorder`. """ # Those tag will help you distinguish whether the Recorder has finished traning STATUS_KEY = "train_status" STATUS_BEGIN = "begin_task_train" STATUS_END = "end_task_train" def __init__(self, experiment_name: str = None, train_func: Callable = task_train): """ Init TrainerR. Args: experiment_name (str, optional): the default name of experiment. train_func (Callable, optional): default training method. Defaults to `task_train`. """ super().__init__() self.experiment_name = experiment_name self.train_func = train_func def train(self, tasks: list, train_func: Callable = None, experiment_name: str = None, **kwargs) -> List[Recorder]: """ Given a list of `task`s and return a list of trained Recorder. The order can be guaranteed. Args: tasks (list): a list of definitions based on `task` dict train_func (Callable): the training method which needs at least `tasks` and `experiment_name`. None for the default training method. experiment_name (str): the experiment name, None for use default name. kwargs: the params for train_func. Returns: List[Recorder]: a list of Recorders """ if isinstance(tasks, dict): tasks = [tasks] if len(tasks) == 0: return [] if train_func is None: train_func = self.train_func if experiment_name is None: experiment_name = self.experiment_name recs = [] for task in tqdm(tasks, desc="train tasks"): rec = train_func(task, experiment_name, **kwargs) rec.set_tags(**{self.STATUS_KEY: self.STATUS_BEGIN}) recs.append(rec) return recs def end_train(self, models: list, **kwargs) -> List[Recorder]: """ Set STATUS_END tag to the recorders. Args: models (list): a list of trained recorders. Returns: List[Recorder]: the same list as the param. """ if isinstance(models, Recorder): models = [models] for rec in models: rec.set_tags(**{self.STATUS_KEY: self.STATUS_END}) return models class DelayTrainerR(TrainerR): """ A delayed implementation based on TrainerR, which means `train` method may only do some preparation and `end_train` method can do the real model fitting. """ def __init__(self, experiment_name: str = None, train_func=begin_task_train, end_train_func=end_task_train): """ Init TrainerRM. Args: experiment_name (str): the default name of experiment. train_func (Callable, optional): default train method. Defaults to `begin_task_train`. end_train_func (Callable, optional): default end_train method. Defaults to `end_task_train`. """ super().__init__(experiment_name, train_func) self.end_train_func = end_train_func self.delay = True def end_train(self, models, end_train_func=None, experiment_name: str = None, **kwargs) -> List[Recorder]: """ Given a list of Recorder and return a list of trained Recorder. This class will finish real data loading and model fitting. Args: models (list): a list of Recorder, the tasks have been saved to them end_train_func (Callable, optional): the end_train method which needs at least `recorder`s and `experiment_name`. Defaults to None for using self.end_train_func. experiment_name (str): the experiment name, None for use default name. kwargs: the params for end_train_func. Returns: List[Recorder]: a list of Recorders """ if isinstance(models, Recorder): models = [models] if end_train_func is None: end_train_func = self.end_train_func if experiment_name is None: experiment_name = self.experiment_name for rec in models: if rec.list_tags()[self.STATUS_KEY] == self.STATUS_END: continue end_train_func(rec, experiment_name, **kwargs) rec.set_tags(**{self.STATUS_KEY: self.STATUS_END}) return models class TrainerRM(Trainer): """ Trainer based on (R)ecorder and Task(M)anager. It can train a list of tasks and return a list of model recorders in a multiprocessing way. Assumption: `task` will be saved to TaskManager and `task` will be fetched and trained from TaskManager """ # Those tag will help you distinguish whether the Recorder has finished traning STATUS_KEY = "train_status" STATUS_BEGIN = "begin_task_train" STATUS_END = "end_task_train" # This tag is the _id in TaskManager to distinguish tasks. TM_ID = "_id in TaskManager" def __init__( self, experiment_name: str = None, task_pool: str = None, train_func=task_train, skip_run_task: bool = False ): """ Init TrainerR. Args: experiment_name (str): the default name of experiment. task_pool (str): task pool name in TaskManager. None for use same name as experiment_name. train_func (Callable, optional): default training method. Defaults to `task_train`. skip_run_task (bool): If skip_run_task == True: Only run_task in the worker. Otherwise skip run_task. """ super().__init__() self.experiment_name = experiment_name self.task_pool = task_pool self.train_func = train_func self.skip_run_task = skip_run_task def train( self, tasks: list, train_func: Callable = None, experiment_name: str = None, before_status: str = TaskManager.STATUS_WAITING, after_status: str = TaskManager.STATUS_DONE, **kwargs, ) -> List[Recorder]: """ Given a list of `task`s and return a list of trained Recorder. The order can be guaranteed. This method defaults to a single process, but TaskManager offered a great way to parallel training. Users can customize their train_func to realize multiple processes or even multiple machines. Args: tasks (list): a list of definitions based on `task` dict train_func (Callable): the training method which needs at least `task`s and `experiment_name`. None for the default training method. experiment_name (str): the experiment name, None for use default name. before_status (str): the tasks in before_status will be fetched and trained. Can be STATUS_WAITING, STATUS_PART_DONE. after_status (str): the tasks after trained will become after_status. Can be STATUS_WAITING, STATUS_PART_DONE. kwargs: the params for train_func. Returns: List[Recorder]: a list of Recorders """ if isinstance(tasks, dict): tasks = [tasks] if len(tasks) == 0: return [] if train_func is None: train_func = self.train_func if experiment_name is None: experiment_name = self.experiment_name task_pool = self.task_pool if task_pool is None: task_pool = experiment_name tm = TaskManager(task_pool=task_pool) _id_list = tm.create_task(tasks) # all tasks will be saved to MongoDB query = {"_id": {"$in": _id_list}} if not self.skip_run_task: run_task( train_func, task_pool, query=query, # only train these tasks experiment_name=experiment_name, before_status=before_status, after_status=after_status, **kwargs, ) if not self.is_delay(): tm.wait(query=query) recs = [] for _id in _id_list: rec = tm.re_query(_id)["res"] rec.set_tags(**{self.STATUS_KEY: self.STATUS_BEGIN}) rec.set_tags(**{self.TM_ID: _id}) recs.append(rec) return recs def end_train(self, recs: list, **kwargs) -> List[Recorder]: """ Set STATUS_END tag to the recorders. Args: recs (list): a list of trained recorders. Returns: List[Recorder]: the same list as the param. """ if isinstance(recs, Recorder): recs = [recs] for rec in recs: rec.set_tags(**{self.STATUS_KEY: self.STATUS_END}) return recs def worker( self, train_func: Callable = None, experiment_name: str = None, ): """ The multiprocessing method for `train`. It can share a same task_pool with `train` and can run in other progress or other machines. Args: train_func (Callable): the training method which needs at least `task`s and `experiment_name`. None for the default training method. experiment_name (str): the experiment name, None for use default name. """ if train_func is None: train_func = self.train_func if experiment_name is None: experiment_name = self.experiment_name task_pool = self.task_pool if task_pool is None: task_pool = experiment_name run_task(train_func, task_pool=task_pool, experiment_name=experiment_name) def has_worker(self) -> bool: return True class DelayTrainerRM(TrainerRM): """ A delayed implementation based on TrainerRM, which means `train` method may only do some preparation and `end_train` method can do the real model fitting. """ def __init__( self, experiment_name: str = None, task_pool: str = None, train_func=begin_task_train, end_train_func=end_task_train, skip_run_task: bool = False, ): """ Init DelayTrainerRM. Args: experiment_name (str): the default name of experiment. task_pool (str): task pool name in TaskManager. None for use same name as experiment_name. train_func (Callable, optional): default train method. Defaults to `begin_task_train`. end_train_func (Callable, optional): default end_train method. Defaults to `end_task_train`. skip_run_task (bool): If skip_run_task == True: Only run_task in the worker. Otherwise skip run_task. E.g. Starting trainer on a CPU VM and then waiting tasks to be finished on GPU VMs. """ super().__init__(experiment_name, task_pool, train_func) self.end_train_func = end_train_func self.delay = True self.skip_run_task = skip_run_task def train(self, tasks: list, train_func=None, experiment_name: str = None, **kwargs) -> List[Recorder]: """ Same as `train` of TrainerRM, after_status will be STATUS_PART_DONE. Args: tasks (list): a list of definition based on `task` dict train_func (Callable): the train method which need at least `task`s and `experiment_name`. Defaults to None for using self.train_func. experiment_name (str): the experiment name, None for use default name. Returns: List[Recorder]: a list of Recorders """ if isinstance(tasks, dict): tasks = [tasks] if len(tasks) == 0: return [] _skip_run_task = self.skip_run_task self.skip_run_task = False # The task preparation can't be skipped res = super().train( tasks, train_func=train_func, experiment_name=experiment_name, after_status=TaskManager.STATUS_PART_DONE, **kwargs, ) self.skip_run_task = _skip_run_task return res def end_train(self, recs, end_train_func=None, experiment_name: str = None, **kwargs) -> List[Recorder]: """ Given a list of Recorder and return a list of trained Recorder. This class will finish real data loading and model fitting. Args: recs (list): a list of Recorder, the tasks have been saved to them. end_train_func (Callable, optional): the end_train method which need at least `recorder`s and `experiment_name`. Defaults to None for using self.end_train_func. experiment_name (str): the experiment name, None for use default name. kwargs: the params for end_train_func. Returns: List[Recorder]: a list of Recorders """ if isinstance(recs, Recorder): recs = [recs] if end_train_func is None: end_train_func = self.end_train_func if experiment_name is None: experiment_name = self.experiment_name task_pool = self.task_pool if task_pool is None: task_pool = experiment_name _id_list = [] for rec in recs: _id_list.append(rec.list_tags()[self.TM_ID]) query = {"_id": {"$in": _id_list}} if not self.skip_run_task: run_task( end_train_func, task_pool, query=query, # only train these tasks experiment_name=experiment_name, before_status=TaskManager.STATUS_PART_DONE, **kwargs, ) TaskManager(task_pool=task_pool).wait(query=query) for rec in recs: rec.set_tags(**{self.STATUS_KEY: self.STATUS_END}) return recs def worker(self, end_train_func=None, experiment_name: str = None): """ The multiprocessing method for `end_train`. It can share a same task_pool with `end_train` and can run in other progress or other machines. Args: end_train_func (Callable, optional): the end_train method which need at least `recorder`s and `experiment_name`. Defaults to None for using self.end_train_func. experiment_name (str): the experiment name, None for use default name. """ if end_train_func is None: end_train_func = self.end_train_func if experiment_name is None: experiment_name = self.experiment_name task_pool = self.task_pool if task_pool is None: task_pool = experiment_name run_task( end_train_func, task_pool=task_pool, experiment_name=experiment_name, before_status=TaskManager.STATUS_PART_DONE, ) def has_worker(self) -> bool: return True
37.02551
221
0.636167
e42d2a07a18171eec8c9a065e0e645a99d95aa7b
719
py
Python
osisoft/pidevclub/piwebapi/web_id/web_id_string_type.py
inselbuch/pwap2
4ded0a62b241d9354f39ce87f3411fe9708317e3
[ "Apache-2.0" ]
3
2019-05-16T15:44:09.000Z
2020-11-25T22:28:31.000Z
osisoft/pidevclub/piwebapi/web_id/web_id_string_type.py
inselbuch/pwap2
4ded0a62b241d9354f39ce87f3411fe9708317e3
[ "Apache-2.0" ]
null
null
null
osisoft/pidevclub/piwebapi/web_id/web_id_string_type.py
inselbuch/pwap2
4ded0a62b241d9354f39ce87f3411fe9708317e3
[ "Apache-2.0" ]
8
2019-03-15T10:20:57.000Z
2021-05-20T13:06:37.000Z
# coding: utf-8 """ Copyright 2018 OSIsoft, LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at <http://www.apache.org/licenses/LICENSE-2.0> Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from enum import Enum class WebIdStringType(Enum): OneGuid = 1 TwoGuids = 2 ThreeGuids = 3
27.653846
74
0.721836
9fc4e4101b694e8f833d7d36f5f7268f75b9ff81
3,819
py
Python
lib/var_stack.py
hyche/openbmc-test-automation
1e656463b8db4fc55dc1a2bf7650d1bca845f958
[ "Apache-2.0" ]
null
null
null
lib/var_stack.py
hyche/openbmc-test-automation
1e656463b8db4fc55dc1a2bf7650d1bca845f958
[ "Apache-2.0" ]
null
null
null
lib/var_stack.py
hyche/openbmc-test-automation
1e656463b8db4fc55dc1a2bf7650d1bca845f958
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python r""" Define the var_stack class. """ import sys import collections try: from robot.utils import DotDict except ImportError: pass import gen_print as gp class var_stack: r""" Define the variable stack class. An object of this class can be used to push variable name/variable value pairs which may be popped off the stack at a later time. The most obvious use for this is for saving variables that are to be restored later. Example code: save_stack = var_stack('save_stack') var1 = "johnson" save_stack.push(var1) var1 = "smith" ... var1 = save_stack.pop('var1') # var1 has now been restored to the value "johnson". Example use: var1 = "mike" save_stack.push(var1) var1 = "james" save_stack.push(var1) save_stack.print_obj() # The print-out of the object would then look like this: save_stack: stack_dict: [var1]: [var1][0]: mike [var1][1]: james # Continuing with this code... var1 = save_stack.pop('var1') save_stack.print_obj() # The print-out of the object would then look like this: save_stack: stack_dict: [var1]: [var1][0]: mike """ def __init__(self, obj_name='var_stack'): r""" Initialize a new object of this class type. Description of argument(s): obj_name The name of the object. This is useful for printing out the object. """ self.__obj_name = obj_name # Create a stack dictionary. try: self.__stack_dict = collections.OrderedDict() except AttributeError: self.__stack_dict = DotDict() def sprint_obj(self): r""" sprint the fields of this object. This would normally be for debug purposes. """ buffer = "" buffer += self.__obj_name + ":\n" indent = 2 buffer += gp.sprint_varx('stack_dict', self.__stack_dict, 1, indent) return buffer def print_obj(self): r""" print the fields of this object to stdout. This would normally be for debug purposes. """ sys.stdout.write(self.sprint_obj()) def push(self, var_value, var_name=""): r""" push the var_name/var_value pair onto the stack. Description of argument(s): var_value The value being pushed. var_name The name of the variable containing the value to be pushed. This parameter is normally unnecessary as this function can figure out the var_name. This is provided for Robot callers. In this scenario, we are unable to get the variable name ourselves. """ if var_name == "": # The caller has not passed a var_name so we will try to figure # it out. stack_frame_ix = 2 var_name = gp.get_arg_name(0, 1, stack_frame_ix) if var_name in self.__stack_dict: self.__stack_dict[var_name].append(var_value) else: self.__stack_dict[var_name] = [var_value] def pop(self, var_name=""): r""" Pop the value for the given var_name from the stack and return it. Description of argument(s): var_name The name of the variable whose value is to be popped. """ return self.__stack_dict[var_name].pop()
26.520833
78
0.547264
a1681cf073ec401205eb9645b9ce165c01168aff
1,893
py
Python
utils/writer.py
tony-rsa/Few-shot-Font-Generation-with-Localized-Style-Representations-and-Factorization-AAAI-2021-
33322e72fb5054ab5348f12d986059263a05d5ce
[ "MIT" ]
98
2020-09-24T01:05:19.000Z
2022-03-04T16:13:42.000Z
utils/writer.py
tony-rsa/Few-shot-Font-Generation-with-Localized-Style-Representations-and-Factorization-AAAI-2021-
33322e72fb5054ab5348f12d986059263a05d5ce
[ "MIT" ]
26
2020-09-24T07:36:37.000Z
2022-02-08T12:36:49.000Z
utils/writer.py
tony-rsa/Few-shot-Font-Generation-with-Localized-Style-Representations-and-Factorization-AAAI-2021-
33322e72fb5054ab5348f12d986059263a05d5ce
[ "MIT" ]
20
2020-09-24T02:29:42.000Z
2022-01-23T15:35:28.000Z
""" LF-Font Copyright (c) 2020-present NAVER Corp. MIT license """ from pathlib import Path import torch.nn.functional as F from . import save_tensor_to_image class Writer: def add_scalars(self, tag_scalar_dic, global_step): raise NotImplementedError() def add_image(self, tag, img_tensor, global_step): raise NotImplementedError() class DiskWriter(Writer): def __init__(self, img_path, scale=None): self.img_dir = Path(img_path) self.img_dir.mkdir(parents=True, exist_ok=True) self.scale = scale def add_scalars(self, tag_scalar_dic, global_step): pass # raise Exception("DiskWriter supports add_image only") def add_image(self, tag, img_tensor, global_step): path = self.img_dir / "{:07d}-{}.png".format(global_step, tag) save_tensor_to_image(img_tensor, path, self.scale) class TBWriter(Writer): def __init__(self, dir_path, scale=None): from torch.utils.tensorboard import SummaryWriter self.writer = SummaryWriter(dir_path, flush_secs=30) self.scale = scale def add_scalars(self, tag_scalar_dic, global_step): for tag, scalar in tag_scalar_dic.items(): self.writer.add_scalar(tag, scalar, global_step) def add_image(self, tag, img_tensor, global_step): if self.scale: img_tensor = F.interpolate( img_tensor.unsqueeze(0), scale_factor=self.scale, mode='bilinear', align_corners=False ).squeeze(0) self.writer.add_image(tag, img_tensor, global_step) class TBDiskWriter(TBWriter): def __init__(self, dir_path, img_path, scale=None): super().__init__(dir_path) self._disk_writer = DiskWriter(img_path, scale) def add_image(self, tag, img_tensor, global_step): return self._disk_writer.add_image(tag, img_tensor, global_step)
31.55
82
0.683043
3406049335d99d644917125e8b716c8c4bbe412b
4,174
py
Python
tic-tac-toe.py
RuTh-git/Tic-tac-toe-project
8a7f7720b91ca7f519c5fd66925ef154aa938142
[ "MIT" ]
null
null
null
tic-tac-toe.py
RuTh-git/Tic-tac-toe-project
8a7f7720b91ca7f519c5fd66925ef154aa938142
[ "MIT" ]
null
null
null
tic-tac-toe.py
RuTh-git/Tic-tac-toe-project
8a7f7720b91ca7f519c5fd66925ef154aa938142
[ "MIT" ]
null
null
null
# -------Global Variables--------- # Game board board =["-","-","-", "-","-","-", "-","-","-",] # If game is still going game_still_going = True # Who won? Or tie? winner = None # Whos turn is it current_player = "X" # Display board def display_board(): print("\n") print(board[0] + " | " + board[1] + " | " + board[2]) print(board[3] + " | " + board[4] + " | " + board[5]) print(board[6] + " | " + board[7] + " | " + board[8]) print("\n") # Play a game of tic tac toe def play_game(): # Display initial board display_board() # While the game is still going while game_still_going: # handle a single turn of an arbitrary player handle_turn(current_player) # check if the game has ended check_if_game_over() # Flip to the other player flip_player() # The game has ended if winner == "X" or winner == "O": print(winner + " won.") elif winner == None: print("Tie.") # Handle a single turn of an arbitrary player def handle_turn(player): print(player + "'s turn.") print("\n") position = input("Choose a position from 1-9: ") valid = False while not valid: while position not in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]: position = input("Choose a position from 1-9: ") position = int(position) - 1 if board[position] == "-": valid = True else: print("You can't go there. Go again.") print("\n") board[position] = player display_board() def check_if_game_over(): check_for_winner() check_if_tie() def check_for_winner(): # Set up global Variables global winner # check rows row_winner = check_rows() # check columns column_winner = check_columns() # check diagonals diagonal_winner = check_diagonals() if row_winner: winner = row_winner elif column_winner: winner = column_winner elif diagonal_winner: winner = diagonal_winner else: winner = None return def check_rows(): # Set up global variables global game_still_going # check if any of the rows have all the same value (and is not empty) row_1 = board[0] == board[1] == board[2] != "-" row_2 = board[3] == board[4] == board[5] != "-" row_3 = board[6] == board[7] == board[8] != "-" # If any row does have a match, flag that there is a win if row_1 or row_2 or row_3: game_still_going = False # Return the winner (X or O) if row_1: return board[0] elif row_2: return board[3] elif row_3: return board[6] return def check_columns(): # Set up global variables global game_still_going # check if any of the columns have all the same value (and is not empty) column_1 = board[0] == board[3] == board[6] != "-" column_2 = board[1] == board[4] == board[7] != "-" column_3 = board[2] == board[5] == board[8] != "-" # If any column does have a match, flag that there is a win if column_1 or column_2 or column_3: game_still_going = False # Return the winner (X or O) if column_1: return board[0] elif column_2: return board[1] elif column_3: return board[2] return def check_diagonals(): # Set up global variables global game_still_going # check if any of the columns have all the same value (and is not empty) diagonal_1 = board[0] == board[4] == board[8] != "-" diagonal_2 = board[6] == board[4] == board[2] != "-" # If any column does have a match, flag that there is a win if diagonal_1 or diagonal_2: game_still_going = False # Return the winner (X or O) if diagonal_1: return board[0] elif diagonal_2: return board[6] return def check_if_tie(): global game_still_going if "-" not in board: game_still_going = False return def flip_player(): # global variables we need global current_player # if the current player was x, then change it to O if current_player == "X": current_player = "O" # If the current player was O, then change it to X elif current_player == "O": current_player = "X" return play_game() # board # display board # play game # handle turn # check win # check rows # check columns # check diagonals # check tie # flip player
20.766169
74
0.626977
7c1c9db0b17eae1fd6b696637fe2e3e7cb6f427f
6,234
py
Python
ongeza/main.py
reubano/bump
0473bc49cd3b58dd1f4b87ac63ea5184c99bd9d5
[ "MIT" ]
40
2015-12-31T17:00:01.000Z
2020-06-05T20:59:27.000Z
ongeza/main.py
reubano/bump
0473bc49cd3b58dd1f4b87ac63ea5184c99bd9d5
[ "MIT" ]
7
2016-01-12T13:51:59.000Z
2018-06-10T16:18:30.000Z
ongeza/main.py
reubano/bump
0473bc49cd3b58dd1f4b87ac63ea5184c99bd9d5
[ "MIT" ]
5
2016-02-05T01:45:01.000Z
2020-06-24T08:57:23.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: sw=4:ts=4:expandtab """ An automated way to follow the Semantic Versioning Specification """ from __future__ import ( absolute_import, division, print_function, with_statement, unicode_literals) import ongeza from sys import exit from os import getcwd, path as p from argparse import RawTextHelpFormatter, ArgumentParser from builtins import * # noqa pylint: disable=unused-import from . import Project, version_is_valid, TRAVIS CURDIR = None if TRAVIS else p.abspath(getcwd()) parser = ArgumentParser( description=( "description: ongeza makes following the Semantic Versioning " "Specification a breeze.\nIf called with no options, ongeza will " "print the current git repository's tag version.\nIf <dir> is not " "specified, the current dir is used."), prog='ongeza', usage='%(prog)s [options] <dir>', formatter_class=RawTextHelpFormatter) group = parser.add_mutually_exclusive_group() group.add_argument( '-t', '--type', dest='ongeza_type', action='store', metavar='TYPE', choices=['m', 'n', 'p', 'major', 'minor', 'patch'], help=( "version bump type, must be one of:\n" " m or major: [x].0.0\n" " n or minor: x.[y].0\n" " p or patch: x.y.[z]")) group.add_argument( '-s', '--set', dest='new_version', action='store', metavar='VERSION', help='set arbitrary version number') parser.add_argument( dest='dir', nargs='?', default=CURDIR, help='the project directory (default: %s).\n\n' % CURDIR) parser.add_argument( '-S', '--skip-commit', action='store_true', help='skip committing version' ' bumped files') parser.add_argument( '-T', '--tag', action='store_true', help='create git tag at HEAD with the' ' bumped version number') parser.add_argument( '-p', '--push', action='store_true', help='push to the remote origin') parser.add_argument( '-a', '--stash', action='store_true', help='stash uncommitted changes') parser.add_argument( '-f', '--tag-format', action='store', metavar='FORMAT', default=ongeza.DEFAULT_TAG_FMT, help='git tag format') parser.add_argument( '-F', '--tag-msg-format', action='store', metavar='FORMAT', default=ongeza.DEFAULT_TAG_MSG_FMT, help='git tag message format') parser.add_argument( '-c', '--commit-msg-format', action='store', metavar='FORMAT', default=ongeza.DEFAULT_COMMIT_MSG_FMT, help='git commit message format') parser.add_argument( '-g', '--sign', action='store_true', help='make a GPG-signed tag (implies `--tag`)') parser.add_argument( '-i', '--file', action='store', help='the versioned file') parser.add_argument( '-v', '--version', help="Show version and exit.", action='store_true', default=False) parser.add_argument( '-V', '--verbose', action='store_true', help='increase output verbosity') args = parser.parse_args() def prelim_check(project): result = True if args.version: project.logger.info('ongeza v%s', ongeza.__version__) elif project.version and not args.ongeza_type and not args.new_version: project.logger.info('Current version: {0.version}'.format(project)) elif not any([project.version, args.ongeza_type, args.new_version]): project.logger.info('No valid versions found.') else: result = False return result def ongeza_project(project): if project.is_dirty and not args.stash: error = ( "Can't bump the version with uncommitted changes. Please " "commit your changes or stash the following files and try " "again. Optionally, run with '-a' option to auto stash these " "files. Dirty files:\n%s" % "\n".join(project.dirty_files)) raise RuntimeError(error) elif project.is_dirty: project.logger.info("Stashing changes...\n") project.stash() if args.new_version and version_is_valid(args.new_version): new_version = args.new_version elif args.new_version: msg = "Invalid version: '{0.version}'. Please use x.y.z format." raise RuntimeError(msg.format(args)) elif project.version and args.ongeza_type: new_version = project.ongeza(args.ongeza_type) else: error = "No git tags found, please run with '-s and -T' options" raise RuntimeError(error) return new_version def cleanup(project, new_version): msg = "Couldn't find a version to bump." if project.bumped and not args.skip_commit: message = args.commit_msg_format.format(version=new_version) project.add(project.dirty_files) project.commit(message) if args.stash and project.stash_count: project.unstash() if project.bumped and (args.tag or args.sign): message = args.tag_msg_format.format(version=new_version) tag_text = args.tag_format.format(version=new_version) project.tag(message, tag_text, sign=args.sign) elif args.tag: raise RuntimeError("%s Nothing to tag." % msg) if project.bumped and args.push: project.push() elif args.push: raise RuntimeError("%s Nothing to push." % msg) def set_versions(project, new_version): # in some cases, e.g., single file python modules, the versioned file # can't be predetermined and we must do a 2nd search over all files for wave in [1, 2]: project.set_versions(new_version, wave) if project.bumped: msg = 'Bumped from version %s to %s.' project.logger.info(msg, project.version, new_version) break else: msg = "Couldn't find version '{0.version}' in any files." raise RuntimeError(msg.format(project)) def run(): project = Project(args.dir, args.file, verbose=args.verbose) if prelim_check(project): exit(0) try: new_version = ongeza_project(project) set_versions(project, new_version) except RuntimeError as err: project.logger.error(err) exit(1) try: cleanup(project, new_version) except RuntimeError as err: project.logger.error(err) exit(1) exit(0) if __name__ == "__main__": run()
31.806122
78
0.659769
5abbf8e6ff8847971330035478442d874011f79f
1,410
py
Python
Medium/994. Rotting Oranges/solution (1).py
czs108/LeetCode-Solutions
889f5b6a573769ad077a6283c058ed925d52c9ec
[ "MIT" ]
3
2020-05-09T12:55:09.000Z
2022-03-11T18:56:05.000Z
Medium/994. Rotting Oranges/solution (1).py
czs108/LeetCode-Solutions
889f5b6a573769ad077a6283c058ed925d52c9ec
[ "MIT" ]
null
null
null
Medium/994. Rotting Oranges/solution (1).py
czs108/LeetCode-Solutions
889f5b6a573769ad077a6283c058ed925d52c9ec
[ "MIT" ]
1
2022-03-11T18:56:16.000Z
2022-03-11T18:56:16.000Z
# 994. Rotting Oranges # Runtime: 56 ms, faster than 50.05% of Python3 online submissions for Rotting Oranges. # Memory Usage: 14.1 MB, less than 88.54% of Python3 online submissions for Rotting Oranges. from collections import deque class Solution: def orangesRotting(self, grid: list[list[int]]) -> int: Fresh, Rotten = 1, 2 que = deque() fresh_num = 0 for row in range(len(grid)): for col in range(len(grid[0])): if grid[row][col] == Rotten: que.append((row, col)) elif grid[row][col] == Fresh: fresh_num += 1 que.append((-1, -1)) time = -1 dirs = ((-1, 0), (1, 0), (0, 1), (0, -1)) while que: row, col = que.popleft() if row < 0: time += 1 if que: que.append((-1, -1)) else: for dir in dirs: next_row, next_col = row + dir[0], col + dir[1] if 0 <= next_row and next_row < len(grid) and 0 <= next_col and next_col < len(grid[0]): if grid[next_row][next_col] == Fresh: grid[next_row][next_col] = Rotten que.append((next_row, next_col)) fresh_num -= 1 return time if fresh_num == 0 else -1
34.390244
108
0.473759
0b4d7dbdc379bdbacda4112d2aa6969ec796308e
1,837
py
Python
news/models.py
Avneet5/news_agg
20fd1715002209d6411ec1e05c05fc1ed4005afe
[ "MIT" ]
null
null
null
news/models.py
Avneet5/news_agg
20fd1715002209d6411ec1e05c05fc1ed4005afe
[ "MIT" ]
null
null
null
news/models.py
Avneet5/news_agg
20fd1715002209d6411ec1e05c05fc1ed4005afe
[ "MIT" ]
null
null
null
from django.db import models from django.utils import timezone from django.contrib.auth.models import User import datetime from users.models import Author class Topic(models.Model): name = models.CharField(max_length=100, unique=True) def __repr__(self): return self.name def __str__(self): return self.name class Article(models.Model): headline = models.CharField(max_length=100) location = models.CharField(max_length=255, blank=True, null=True) publish_date = models.DateField(default=datetime.date.today) byline = models.CharField(max_length=150, blank=True) author = models.ForeignKey(Author, on_delete=models.CASCADE) image_url = models.URLField(max_length=200) content = models.TextField(max_length=3000) article_topic = models.ForeignKey(Topic, on_delete=models.CASCADE) keywords = models.CharField(max_length=255) def __repr__(self): return self.headline def __str__(self): return self.headline class Comment(models.Model): comment_by = models.ForeignKey(User, on_delete=models.CASCADE) date_posted = models.DateTimeField(default=timezone.now()) article_id = models.ForeignKey(Article, on_delete=models.CASCADE) content = models.CharField(max_length=200) class Tag(models.Model): article_id = models.ForeignKey(Article, on_delete=models.CASCADE) name = models.CharField(max_length=255) class View(models.Model): article_id = models.ForeignKey(Article, on_delete=models.CASCADE) user_id = models.ForeignKey(User, on_delete=models.CASCADE) def __repr__(self): return str(self.user_id) + str(self.article_id) def __str__(self): return str(self.user_id) + " viewed " + str(self.article_id) # class Article_URL(models.Model): # url = models.URLField(max_length=250)
29.629032
70
0.732172
a5640507ff92353768feef4a4a298dac106f9f26
22,231
py
Python
test/functional/wallet_multiwallet.py
blinkhash/blinkhash-core
e05662019c2fa4cb2dc3736f38e48492712c23b1
[ "MIT" ]
3
2021-07-27T16:59:47.000Z
2021-12-31T20:55:46.000Z
test/functional/wallet_multiwallet.py
blinkhash/blinkhash-core
e05662019c2fa4cb2dc3736f38e48492712c23b1
[ "MIT" ]
null
null
null
test/functional/wallet_multiwallet.py
blinkhash/blinkhash-core
e05662019c2fa4cb2dc3736f38e48492712c23b1
[ "MIT" ]
1
2021-12-31T12:58:23.000Z
2021-12-31T12:58:23.000Z
#!/usr/bin/env python3 # Copyright (c) 2017-2021 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test multiwallet. Verify that a blinkhashd node can load multiple wallet files """ from decimal import Decimal from threading import Thread import os import shutil import stat import time from test_framework.authproxy import JSONRPCException from test_framework.blocktools import COINBASE_MATURITY from test_framework.test_framework import BlinkhashTestFramework from test_framework.test_node import ErrorMatch from test_framework.util import ( assert_equal, assert_raises_rpc_error, get_rpc_proxy, ) got_loading_error = False def test_load_unload(node, name): global got_loading_error while True: if got_loading_error: return try: node.loadwallet(name) node.unloadwallet(name) except JSONRPCException as e: if e.error['code'] == -4 and 'Wallet already loading' in e.error['message']: got_loading_error = True return class MultiWalletTest(BlinkhashTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.rpc_timeout = 120 self.extra_args = [["-nowallet"], []] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def add_options(self, parser): parser.add_argument( '--data_wallets_dir', default=os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data/wallets/'), help='Test data with wallet directories (default: %(default)s)', ) def run_test(self): node = self.nodes[0] data_dir = lambda *p: os.path.join(node.datadir, self.chain, *p) wallet_dir = lambda *p: data_dir('wallets', *p) wallet = lambda name: node.get_wallet_rpc(name) def wallet_file(name): if name == self.default_wallet_name: return wallet_dir(self.default_wallet_name, self.wallet_data_filename) if os.path.isdir(wallet_dir(name)): return wallet_dir(name, "wallet.dat") return wallet_dir(name) assert_equal(self.nodes[0].listwalletdir(), {'wallets': [{'name': self.default_wallet_name}]}) # check wallet.dat is created self.stop_nodes() assert_equal(os.path.isfile(wallet_dir(self.default_wallet_name, self.wallet_data_filename)), True) # create symlink to verify wallet directory path can be referenced # through symlink os.mkdir(wallet_dir('w7')) os.symlink('w7', wallet_dir('w7_symlink')) os.symlink('..', wallet_dir('recursive_dir_symlink')) os.mkdir(wallet_dir('self_walletdat_symlink')) os.symlink('wallet.dat', wallet_dir('self_walletdat_symlink/wallet.dat')) # rename wallet.dat to make sure plain wallet file paths (as opposed to # directory paths) can be loaded # create another dummy wallet for use in testing backups later self.start_node(0) node.createwallet("empty") node.createwallet("plain") node.createwallet("created") self.stop_nodes() empty_wallet = os.path.join(self.options.tmpdir, 'empty.dat') os.rename(wallet_file("empty"), empty_wallet) shutil.rmtree(wallet_dir("empty")) empty_created_wallet = os.path.join(self.options.tmpdir, 'empty.created.dat') os.rename(wallet_dir("created", self.wallet_data_filename), empty_created_wallet) shutil.rmtree(wallet_dir("created")) os.rename(wallet_file("plain"), wallet_dir("w8")) shutil.rmtree(wallet_dir("plain")) # restart node with a mix of wallet names: # w1, w2, w3 - to verify new wallets created when non-existing paths specified # w - to verify wallet name matching works when one wallet path is prefix of another # sub/w5 - to verify relative wallet path is created correctly # extern/w6 - to verify absolute wallet path is created correctly # w7_symlink - to verify symlinked wallet path is initialized correctly # w8 - to verify existing wallet file is loaded correctly. Not tested for SQLite wallets as this is a deprecated BDB behavior. # '' - to verify default wallet file is created correctly to_create = ['w1', 'w2', 'w3', 'w', 'sub/w5', 'w7_symlink'] in_wallet_dir = [w.replace('/', os.path.sep) for w in to_create] # Wallets in the wallet dir in_wallet_dir.append('w7') # w7 is not loaded or created, but will be listed by listwalletdir because w7_symlink to_create.append(os.path.join(self.options.tmpdir, 'extern/w6')) # External, not in the wallet dir, so we need to avoid adding it to in_wallet_dir to_load = [self.default_wallet_name] if not self.options.descriptors: to_load.append('w8') wallet_names = to_create + to_load # Wallet names loaded in the wallet in_wallet_dir += to_load # The loaded wallets are also in the wallet dir self.start_node(0) for wallet_name in to_create: self.nodes[0].createwallet(wallet_name) for wallet_name in to_load: self.nodes[0].loadwallet(wallet_name) os.mkdir(wallet_dir('no_access')) os.chmod(wallet_dir('no_access'), 0) try: with self.nodes[0].assert_debug_log(expected_msgs=['Error scanning']): walletlist = self.nodes[0].listwalletdir()['wallets'] finally: # Need to ensure access is restored for cleanup os.chmod(wallet_dir('no_access'), stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) assert_equal(sorted(map(lambda w: w['name'], walletlist)), sorted(in_wallet_dir)) assert_equal(set(node.listwallets()), set(wallet_names)) # should raise rpc error if wallet path can't be created err_code = -4 if self.options.descriptors else -1 assert_raises_rpc_error(err_code, "boost::filesystem::create_directory:", self.nodes[0].createwallet, "w8/bad") # check that all requested wallets were created self.stop_node(0) for wallet_name in wallet_names: assert_equal(os.path.isfile(wallet_file(wallet_name)), True) self.nodes[0].assert_start_raises_init_error(['-walletdir=wallets'], 'Error: Specified -walletdir "wallets" does not exist') self.nodes[0].assert_start_raises_init_error(['-walletdir=wallets'], 'Error: Specified -walletdir "wallets" is a relative path', cwd=data_dir()) self.nodes[0].assert_start_raises_init_error(['-walletdir=debug.log'], 'Error: Specified -walletdir "debug.log" is not a directory', cwd=data_dir()) self.start_node(0, ['-wallet=w1', '-wallet=w1']) self.stop_node(0, 'Warning: Ignoring duplicate -wallet w1.') if not self.options.descriptors: # Only BDB doesn't open duplicate wallet files. SQLite does not have this limitation. While this may be desired in the future, it is not necessary # should not initialize if one wallet is a copy of another shutil.copyfile(wallet_dir('w8'), wallet_dir('w8_copy')) in_wallet_dir.append('w8_copy') exp_stderr = r"BerkeleyDatabase: Can't open database w8_copy \(duplicates fileid \w+ from w8\)" self.nodes[0].assert_start_raises_init_error(['-wallet=w8', '-wallet=w8_copy'], exp_stderr, match=ErrorMatch.PARTIAL_REGEX) # should not initialize if wallet file is a symlink os.symlink('w8', wallet_dir('w8_symlink')) self.nodes[0].assert_start_raises_init_error(['-wallet=w8_symlink'], r'Error: Invalid -wallet path \'w8_symlink\'\. .*', match=ErrorMatch.FULL_REGEX) # should not initialize if the specified walletdir does not exist self.nodes[0].assert_start_raises_init_error(['-walletdir=bad'], 'Error: Specified -walletdir "bad" does not exist') # should not initialize if the specified walletdir is not a directory not_a_dir = wallet_dir('notadir') open(not_a_dir, 'a', encoding="utf8").close() self.nodes[0].assert_start_raises_init_error(['-walletdir=' + not_a_dir], 'Error: Specified -walletdir "' + not_a_dir + '" is not a directory') self.log.info("Do not allow -upgradewallet with multiwallet") self.nodes[0].assert_start_raises_init_error(['-upgradewallet'], "Error: Error parsing command line arguments: Invalid parameter -upgradewallet") # if wallets/ doesn't exist, datadir should be the default wallet dir wallet_dir2 = data_dir('walletdir') os.rename(wallet_dir(), wallet_dir2) self.start_node(0) self.nodes[0].createwallet("w4") self.nodes[0].createwallet("w5") assert_equal(set(node.listwallets()), {"w4", "w5"}) w5 = wallet("w5") self.generatetoaddress(node, nblocks=1, address=w5.getnewaddress(), sync_fun=self.no_op) # now if wallets/ exists again, but the rootdir is specified as the walletdir, w4 and w5 should still be loaded os.rename(wallet_dir2, wallet_dir()) self.restart_node(0, ['-nowallet', '-walletdir=' + data_dir()]) self.nodes[0].loadwallet("w4") self.nodes[0].loadwallet("w5") assert_equal(set(node.listwallets()), {"w4", "w5"}) w5 = wallet("w5") w5_info = w5.getwalletinfo() assert_equal(w5_info['immature_balance'], 5000) competing_wallet_dir = os.path.join(self.options.tmpdir, 'competing_walletdir') os.mkdir(competing_wallet_dir) self.restart_node(0, ['-nowallet', '-walletdir=' + competing_wallet_dir]) self.nodes[0].createwallet(self.default_wallet_name) if self.options.descriptors: exp_stderr = f"Error: SQLiteDatabase: Unable to obtain an exclusive lock on the database, is it being used by another instance of {self.config['environment']['PACKAGE_NAME']}?" else: exp_stderr = r"Error: Error initializing wallet database environment \"\S+competing_walletdir\S*\"!" self.nodes[1].assert_start_raises_init_error(['-walletdir=' + competing_wallet_dir], exp_stderr, match=ErrorMatch.PARTIAL_REGEX) self.restart_node(0) for wallet_name in wallet_names: self.nodes[0].loadwallet(wallet_name) assert_equal(sorted(map(lambda w: w['name'], self.nodes[0].listwalletdir()['wallets'])), sorted(in_wallet_dir)) wallets = [wallet(w) for w in wallet_names] wallet_bad = wallet("bad") # check wallet names and balances self.generatetoaddress(node, nblocks=1, address=wallets[0].getnewaddress(), sync_fun=self.no_op) for wallet_name, wallet in zip(wallet_names, wallets): info = wallet.getwalletinfo() assert_equal(info['immature_balance'], 5000 if wallet is wallets[0] else 0) assert_equal(info['walletname'], wallet_name) # accessing invalid wallet fails assert_raises_rpc_error(-18, "Requested wallet does not exist or is not loaded", wallet_bad.getwalletinfo) # accessing wallet RPC without using wallet endpoint fails assert_raises_rpc_error(-19, "Wallet file not specified", node.getwalletinfo) w1, w2, w3, w4, *_ = wallets self.generatetoaddress(node, nblocks=COINBASE_MATURITY + 1, address=w1.getnewaddress(), sync_fun=self.no_op) assert_equal(w1.getbalance(), 10000) assert_equal(w2.getbalance(), 0) assert_equal(w3.getbalance(), 0) assert_equal(w4.getbalance(), 0) w1.sendtoaddress(w2.getnewaddress(), 1) w1.sendtoaddress(w3.getnewaddress(), 2) w1.sendtoaddress(w4.getnewaddress(), 3) self.generatetoaddress(node, nblocks=1, address=w1.getnewaddress(), sync_fun=self.no_op) assert_equal(w2.getbalance(), 1) assert_equal(w3.getbalance(), 2) assert_equal(w4.getbalance(), 3) batch = w1.batch([w1.getblockchaininfo.get_request(), w1.getwalletinfo.get_request()]) assert_equal(batch[0]["result"]["chain"], self.chain) assert_equal(batch[1]["result"]["walletname"], "w1") self.log.info('Check for per-wallet settxfee call') assert_equal(w1.getwalletinfo()['paytxfee'], 0) assert_equal(w2.getwalletinfo()['paytxfee'], 0) w2.settxfee(0.001) assert_equal(w1.getwalletinfo()['paytxfee'], 0) assert_equal(w2.getwalletinfo()['paytxfee'], Decimal('0.00100000')) self.log.info("Test dynamic wallet loading") self.restart_node(0, ['-nowallet']) assert_equal(node.listwallets(), []) assert_raises_rpc_error(-18, "No wallet is loaded. Load a wallet using loadwallet or create a new one with createwallet. (Note: A default wallet is no longer automatically created)", node.getwalletinfo) self.log.info("Load first wallet") loadwallet_name = node.loadwallet(wallet_names[0]) assert_equal(loadwallet_name['name'], wallet_names[0]) assert_equal(node.listwallets(), wallet_names[0:1]) node.getwalletinfo() w1 = node.get_wallet_rpc(wallet_names[0]) w1.getwalletinfo() self.log.info("Load second wallet") loadwallet_name = node.loadwallet(wallet_names[1]) assert_equal(loadwallet_name['name'], wallet_names[1]) assert_equal(node.listwallets(), wallet_names[0:2]) assert_raises_rpc_error(-19, "Wallet file not specified", node.getwalletinfo) w2 = node.get_wallet_rpc(wallet_names[1]) w2.getwalletinfo() self.log.info("Concurrent wallet loading") threads = [] for _ in range(3): n = node.cli if self.options.usecli else get_rpc_proxy(node.url, 1, timeout=600, coveragedir=node.coverage_dir) t = Thread(target=test_load_unload, args=(n, wallet_names[2])) t.start() threads.append(t) for t in threads: t.join() global got_loading_error assert_equal(got_loading_error, True) self.log.info("Load remaining wallets") for wallet_name in wallet_names[2:]: loadwallet_name = self.nodes[0].loadwallet(wallet_name) assert_equal(loadwallet_name['name'], wallet_name) assert_equal(set(self.nodes[0].listwallets()), set(wallet_names)) # Fail to load if wallet doesn't exist path = os.path.join(self.options.tmpdir, "node0", "regtest", "wallets", "wallets") assert_raises_rpc_error(-18, "Wallet file verification failed. Failed to load database path '{}'. Path does not exist.".format(path), self.nodes[0].loadwallet, 'wallets') # Fail to load duplicate wallets path = os.path.join(self.options.tmpdir, "node0", "regtest", "wallets", "w1", "wallet.dat") if self.options.descriptors: assert_raises_rpc_error(-4, f"Wallet file verification failed. SQLiteDatabase: Unable to obtain an exclusive lock on the database, is it being used by another instance of {self.config['environment']['PACKAGE_NAME']}?", self.nodes[0].loadwallet, wallet_names[0]) else: assert_raises_rpc_error(-35, "Wallet file verification failed. Refusing to load database. Data file '{}' is already loaded.".format(path), self.nodes[0].loadwallet, wallet_names[0]) # This tests the default wallet that BDB makes, so SQLite wallet doesn't need to test this # Fail to load duplicate wallets by different ways (directory and filepath) path = os.path.join(self.options.tmpdir, "node0", "regtest", "wallets", "wallet.dat") assert_raises_rpc_error(-35, "Wallet file verification failed. Refusing to load database. Data file '{}' is already loaded.".format(path), self.nodes[0].loadwallet, 'wallet.dat') # Only BDB doesn't open duplicate wallet files. SQLite does not have this limitation. While this may be desired in the future, it is not necessary # Fail to load if one wallet is a copy of another assert_raises_rpc_error(-4, "BerkeleyDatabase: Can't open database w8_copy (duplicates fileid", self.nodes[0].loadwallet, 'w8_copy') # Fail to load if one wallet is a copy of another, test this twice to make sure that we don't re-introduce #14304 assert_raises_rpc_error(-4, "BerkeleyDatabase: Can't open database w8_copy (duplicates fileid", self.nodes[0].loadwallet, 'w8_copy') # Fail to load if wallet file is a symlink assert_raises_rpc_error(-4, "Wallet file verification failed. Invalid -wallet path 'w8_symlink'", self.nodes[0].loadwallet, 'w8_symlink') # Fail to load if a directory is specified that doesn't contain a wallet os.mkdir(wallet_dir('empty_wallet_dir')) path = os.path.join(self.options.tmpdir, "node0", "regtest", "wallets", "empty_wallet_dir") assert_raises_rpc_error(-18, "Wallet file verification failed. Failed to load database path '{}'. Data is not in recognized format.".format(path), self.nodes[0].loadwallet, 'empty_wallet_dir') self.log.info("Test dynamic wallet creation.") # Fail to create a wallet if it already exists. path = os.path.join(self.options.tmpdir, "node0", "regtest", "wallets", "w2") assert_raises_rpc_error(-4, "Failed to create database path '{}'. Database already exists.".format(path), self.nodes[0].createwallet, 'w2') # Successfully create a wallet with a new name loadwallet_name = self.nodes[0].createwallet('w9') in_wallet_dir.append('w9') assert_equal(loadwallet_name['name'], 'w9') w9 = node.get_wallet_rpc('w9') assert_equal(w9.getwalletinfo()['walletname'], 'w9') assert 'w9' in self.nodes[0].listwallets() # Successfully create a wallet using a full path new_wallet_dir = os.path.join(self.options.tmpdir, 'new_walletdir') new_wallet_name = os.path.join(new_wallet_dir, 'w10') loadwallet_name = self.nodes[0].createwallet(new_wallet_name) assert_equal(loadwallet_name['name'], new_wallet_name) w10 = node.get_wallet_rpc(new_wallet_name) assert_equal(w10.getwalletinfo()['walletname'], new_wallet_name) assert new_wallet_name in self.nodes[0].listwallets() self.log.info("Test dynamic wallet unloading") # Test `unloadwallet` errors assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].unloadwallet) assert_raises_rpc_error(-18, "Requested wallet does not exist or is not loaded", self.nodes[0].unloadwallet, "dummy") assert_raises_rpc_error(-18, "Requested wallet does not exist or is not loaded", node.get_wallet_rpc("dummy").unloadwallet) assert_raises_rpc_error(-8, "RPC endpoint wallet and wallet_name parameter specify different wallets", w1.unloadwallet, "w2"), # Successfully unload the specified wallet name self.nodes[0].unloadwallet("w1") assert 'w1' not in self.nodes[0].listwallets() # Unload w1 again, this time providing the wallet name twice self.nodes[0].loadwallet("w1") assert 'w1' in self.nodes[0].listwallets() w1.unloadwallet("w1") assert 'w1' not in self.nodes[0].listwallets() # Successfully unload the wallet referenced by the request endpoint # Also ensure unload works during walletpassphrase timeout w2.encryptwallet('test') w2.walletpassphrase('test', 1) w2.unloadwallet() time.sleep(1.1) assert 'w2' not in self.nodes[0].listwallets() # Successfully unload all wallets for wallet_name in self.nodes[0].listwallets(): self.nodes[0].unloadwallet(wallet_name) assert_equal(self.nodes[0].listwallets(), []) assert_raises_rpc_error(-18, "No wallet is loaded. Load a wallet using loadwallet or create a new one with createwallet. (Note: A default wallet is no longer automatically created)", self.nodes[0].getwalletinfo) # Successfully load a previously unloaded wallet self.nodes[0].loadwallet('w1') assert_equal(self.nodes[0].listwallets(), ['w1']) assert_equal(w1.getwalletinfo()['walletname'], 'w1') assert_equal(sorted(map(lambda w: w['name'], self.nodes[0].listwalletdir()['wallets'])), sorted(in_wallet_dir)) # Test backing up and restoring wallets self.log.info("Test wallet backup") self.restart_node(0, ['-nowallet']) for wallet_name in wallet_names: self.nodes[0].loadwallet(wallet_name) for wallet_name in wallet_names: rpc = self.nodes[0].get_wallet_rpc(wallet_name) addr = rpc.getnewaddress() backup = os.path.join(self.options.tmpdir, 'backup.dat') if os.path.exists(backup): os.unlink(backup) rpc.backupwallet(backup) self.nodes[0].unloadwallet(wallet_name) shutil.copyfile(empty_created_wallet if wallet_name == self.default_wallet_name else empty_wallet, wallet_file(wallet_name)) self.nodes[0].loadwallet(wallet_name) assert_equal(rpc.getaddressinfo(addr)['ismine'], False) self.nodes[0].unloadwallet(wallet_name) shutil.copyfile(backup, wallet_file(wallet_name)) self.nodes[0].loadwallet(wallet_name) assert_equal(rpc.getaddressinfo(addr)['ismine'], True) # Test .walletlock file is closed self.start_node(1) wallet = os.path.join(self.options.tmpdir, 'my_wallet') self.nodes[0].createwallet(wallet) if self.options.descriptors: assert_raises_rpc_error(-4, "Unable to obtain an exclusive lock", self.nodes[1].loadwallet, wallet) else: assert_raises_rpc_error(-4, "Error initializing wallet database environment", self.nodes[1].loadwallet, wallet) self.nodes[0].unloadwallet(wallet) self.nodes[1].loadwallet(wallet) if __name__ == '__main__': MultiWalletTest().main()
51.820513
273
0.67154
abcf8eea5dd499f3501146abc9e504d059970d18
90,337
py
Python
myenv/lib/python3.7/site-packages/google/protobuf/unittest_custom_options_pb2.py
theCydonian/AudioEyes
3dece4529b31e6c63771c4358457962999bda3b4
[ "MIT" ]
4,768
2015-01-08T04:45:33.000Z
2022-03-28T07:32:59.000Z
myenv/lib/python3.7/site-packages/google/protobuf/unittest_custom_options_pb2.py
theCydonian/AudioEyes
3dece4529b31e6c63771c4358457962999bda3b4
[ "MIT" ]
2,599
2015-01-06T21:51:28.000Z
2022-03-30T12:40:09.000Z
venv/Lib/site-packages/google/protobuf/unittest_custom_options_pb2.py
Ammar-Raneez/Craigslist_Scraper
4d8ef7d65f6cb4bbc7a461828ab02ec9e3006f71
[ "MIT" ]
878
2015-01-10T00:03:30.000Z
2022-03-31T22:54:15.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/protobuf/unittest_custom_options.proto from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import service as _service from google.protobuf import service_reflection # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/protobuf/unittest_custom_options.proto', package='protobuf_unittest', syntax='proto2', serialized_options=b'\200\001\001\210\001\001\220\001\001\360\350\301\035\352\255\300\345$\372\354\205;p\010d\022\016FileAnnotation\032\026\022\024NestedFileAnnotation\"\036\372\354\205;\031\022\027FileExtensionAnnotation*$\013\020\366\353\256\007\032\033\n\031EmbeddedMessageSetElement\014', create_key=_descriptor._internal_create_key, serialized_pb=b'\n-google/protobuf/unittest_custom_options.proto\x12\x11protobuf_unittest\x1a google/protobuf/descriptor.proto\"\xbf\x01\n\x1cTestMessageWithCustomOptions\x12\x1e\n\x06\x66ield1\x18\x01 \x01(\tB\x0e\x08\x01\xc1\xe0\xc3\x1d-\xe1u\n\x02\x00\x00\x00\x12\x15\n\x0boneof_field\x18\x02 \x01(\x05H\x00\";\n\x06\x41nEnum\x12\x0f\n\x0b\x41NENUM_VAL1\x10\x01\x12\x16\n\x0b\x41NENUM_VAL2\x10\x02\x1a\x05\xb0\x86\xfa\x05{\x1a\x08\xc5\xf6\xc9\x1d\xeb\xfc\xff\xff:\x10\x08\x00\xe0\xe9\xc2\x1d\xc8\xff\xff\xff\xff\xff\xff\xff\xff\x01\x42\x19\n\x07\x41nOneof\x12\x0e\xf8\xac\xc3\x1d\x9d\xff\xff\xff\xff\xff\xff\xff\xff\x01\"\x18\n\x16\x43ustomOptionFooRequest\"\x19\n\x17\x43ustomOptionFooResponse\"\x1e\n\x1c\x43ustomOptionFooClientMessage\"\x1e\n\x1c\x43ustomOptionFooServerMessage\"m\n\x1a\x44ummyMessageContainingEnum\"O\n\x0cTestEnumType\x12\x1a\n\x16TEST_OPTION_ENUM_TYPE1\x10\x16\x12#\n\x16TEST_OPTION_ENUM_TYPE2\x10\xe9\xff\xff\xff\xff\xff\xff\xff\xff\x01\"!\n\x1f\x44ummyMessageInvalidAsOptionType\"\x8a\x01\n\x1c\x43ustomOptionMinIntegerValues:j\xd0\xde\xb2\x1d\x00\xe8\xc6\xb2\x1d\x80\x80\x80\x80\xf8\xff\xff\xff\xff\x01\xb0\xbc\xb2\x1d\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01\x80\x93\xb2\x1d\x00\xf8\xf5\xb0\x1d\x00\x80\xc4\xb0\x1d\xff\xff\xff\xff\x0f\xf8\x97\xb0\x1d\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x9d\xf5\xaf\x1d\x00\x00\x00\x00\x91\xee\xaf\x1d\x00\x00\x00\x00\x00\x00\x00\x00\xad\x8d\xaf\x1d\x00\x00\x00\x80\x99\xd6\xa8\x1d\x00\x00\x00\x00\x00\x00\x00\x80\"\x91\x01\n\x1c\x43ustomOptionMaxIntegerValues:q\xd0\xde\xb2\x1d\x01\xe8\xc6\xb2\x1d\xff\xff\xff\xff\x07\xb0\xbc\xb2\x1d\xff\xff\xff\xff\xff\xff\xff\xff\x7f\x80\x93\xb2\x1d\xff\xff\xff\xff\x0f\xf8\xf5\xb0\x1d\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x80\xc4\xb0\x1d\xfe\xff\xff\xff\x0f\xf8\x97\xb0\x1d\xfe\xff\xff\xff\xff\xff\xff\xff\xff\x01\x9d\xf5\xaf\x1d\xff\xff\xff\xff\x91\xee\xaf\x1d\xff\xff\xff\xff\xff\xff\xff\xff\xad\x8d\xaf\x1d\xff\xff\xff\x7f\x99\xd6\xa8\x1d\xff\xff\xff\xff\xff\xff\xff\x7f\"n\n\x17\x43ustomOptionOtherValues:S\xe8\xc6\xb2\x1d\x9c\xff\xff\xff\xff\xff\xff\xff\xff\x01\xf5\xdf\xa3\x1d\xe7\x87\x45\x41\xe9\xdc\xa2\x1d\xfbY\x8c\x42\xca\xc0\xf3?\xaa\xdc\xa2\x1d\x0eHello, \"World\"\xb2\xd9\xa2\x1d\x0bHello\x00World\x88\xd9\xa2\x1d\xe9\xff\xff\xff\xff\xff\xff\xff\xff\x01\"4\n\x1cSettingRealsFromPositiveInts:\x14\xf5\xdf\xa3\x1d\x00\x00@A\xe9\xdc\xa2\x1d\x00\x00\x00\x00\x00@c@\"4\n\x1cSettingRealsFromNegativeInts:\x14\xf5\xdf\xa3\x1d\x00\x00@\xc1\xe9\xdc\xa2\x1d\x00\x00\x00\x00\x00@c\xc0\"U\n\x12\x43omplexOptionType1\x12\x0b\n\x03\x66oo\x18\x01 \x01(\x05\x12\x0c\n\x04\x66oo2\x18\x02 \x01(\x05\x12\x0c\n\x04\x66oo3\x18\x03 \x01(\x05\x12\x0c\n\x04\x66oo4\x18\x04 \x03(\x05*\x08\x08\x64\x10\x80\x80\x80\x80\x02\"\x8b\x03\n\x12\x43omplexOptionType2\x12\x32\n\x03\x62\x61r\x18\x01 \x01(\x0b\x32%.protobuf_unittest.ComplexOptionType1\x12\x0b\n\x03\x62\x61z\x18\x02 \x01(\x05\x12\x46\n\x04\x66red\x18\x03 \x01(\x0b\x32\x38.protobuf_unittest.ComplexOptionType2.ComplexOptionType4\x12H\n\x06\x62\x61rney\x18\x04 \x03(\x0b\x32\x38.protobuf_unittest.ComplexOptionType2.ComplexOptionType4\x1a\x97\x01\n\x12\x43omplexOptionType4\x12\r\n\x05waldo\x18\x01 \x01(\x05\x32r\n\x0c\x63omplex_opt4\x12\x1f.google.protobuf.MessageOptions\x18\x8a\xf5\xd1\x03 \x01(\x0b\x32\x38.protobuf_unittest.ComplexOptionType2.ComplexOptionType4*\x08\x08\x64\x10\x80\x80\x80\x80\x02\"\x9c\x01\n\x12\x43omplexOptionType3\x12\x0b\n\x03qux\x18\x01 \x01(\x05\x12T\n\x12\x63omplexoptiontype5\x18\x02 \x01(\n28.protobuf_unittest.ComplexOptionType3.ComplexOptionType5\x1a#\n\x12\x43omplexOptionType5\x12\r\n\x05plugh\x18\x03 \x01(\x05\"\x1f\n\x0b\x43omplexOpt6\x12\x10\n\x05xyzzy\x18\xdf\xbf\xcf\x03 \x01(\x05\"\xf1\x01\n\x15VariousComplexOptions:\xd7\x01\xa2\xe2\x95\x1d\x02\x08*\xa2\xe2\x95\x1d\x06\xd8\x85\x9e\x1d\xc4\x02\xa2\xe2\x95\x1d\x08\x92\xf5\x9d\x1d\x03\x08\xec\x06\xa2\xe2\x95\x1d\x02 c\xa2\xe2\x95\x1d\x02 X\xaa\xfd\x90\x1d\x03\x10\xdb\x07\xaa\xfd\x90\x1d\x06\xf8\xe6\x97\x1d\x8e\x05\xaa\xfd\x90\x1d\x05\n\x03\x08\xe7\x05\xaa\xfd\x90\x1d\x08\n\x06\xd8\x85\x9e\x1d\xcf\x0f\xaa\xfd\x90\x1d\n\n\x08\x92\xf5\x9d\x1d\x03\x08\xd8\x0f\xaa\xfd\x90\x1d\x08\xc2\xac\x97\x1d\x03\x08\xe5\x05\xaa\xfd\x90\x1d\x0b\xc2\xac\x97\x1d\x06\xd8\x85\x9e\x1d\xce\x0f\xaa\xfd\x90\x1d\r\xc2\xac\x97\x1d\x08\x92\xf5\x9d\x1d\x03\x08\xc9\x10\xd2\xa8\x8f\x1d\x03\x08\xb3\x0f\xaa\xfd\x90\x1d\x05\x1a\x03\x08\xc1\x02\xaa\xfd\x90\x1d\x04\"\x02\x08\x65\xaa\xfd\x90\x1d\x05\"\x03\x08\xd4\x01\xfa\xde\x90\x1d\x02\x08\t\xfa\xde\x90\x1d\x04\x13\x18\x16\x14\xe3\xdc\xfc\x1c\xf8\xfd\xfb\x1c\x18\xe4\xdc\xfc\x1c\"#\n\x13\x41ggregateMessageSet*\x08\x08\x04\x10\xff\xff\xff\xff\x07:\x02\x08\x01\"\xa0\x01\n\x1a\x41ggregateMessageSetElement\x12\t\n\x01s\x18\x01 \x01(\t2w\n\x15message_set_extension\x12&.protobuf_unittest.AggregateMessageSet\x18\xf6\xeb\xae\x07 \x01(\x0b\x32-.protobuf_unittest.AggregateMessageSetElement\"\xfd\x01\n\tAggregate\x12\t\n\x01i\x18\x01 \x01(\x05\x12\t\n\x01s\x18\x02 \x01(\t\x12)\n\x03sub\x18\x03 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate\x12*\n\x04\x66ile\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.FileOptions\x12\x34\n\x04mset\x18\x05 \x01(\x0b\x32&.protobuf_unittest.AggregateMessageSet2M\n\x06nested\x12\x1c.google.protobuf.FileOptions\x18\xa7\xd1\xb0\x07 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate\"Y\n\x10\x41ggregateMessage\x12)\n\tfieldname\x18\x01 \x01(\x05\x42\x16\xf2\xa1\x87;\x11\x12\x0f\x46ieldAnnotation:\x1a\xc2\xd1\x86;\x15\x08\x65\x12\x11MessageAnnotation\"\xc9\x01\n\x10NestedOptionType\x1a;\n\rNestedMessage\x12\"\n\x0cnested_field\x18\x01 \x01(\x05\x42\x0c\xc1\xe0\xc3\x1d\xea\x03\x00\x00\x00\x00\x00\x00:\x06\xe0\xe9\xc2\x1d\xe9\x07\"5\n\nNestedEnum\x12\x1d\n\x11NESTED_ENUM_VALUE\x10\x01\x1a\x06\xb0\x86\xfa\x05\xec\x07\x1a\x08\xc5\xf6\xc9\x1d\xeb\x03\x00\x00\x32\x41\n\x10nested_extension\x12\x1c.google.protobuf.FileOptions\x18\xfd\xf8\xe2\x03 \x01(\x05\x42\x06\xc8\x8b\xca\x1d\xed\x07\"d\n\rOldOptionType\x12\x38\n\x05value\x18\x01 \x02(\x0e\x32).protobuf_unittest.OldOptionType.TestEnum\"\x19\n\x08TestEnum\x12\r\n\tOLD_VALUE\x10\x00\"s\n\rNewOptionType\x12\x38\n\x05value\x18\x01 \x02(\x0e\x32).protobuf_unittest.NewOptionType.TestEnum\"(\n\x08TestEnum\x12\r\n\tOLD_VALUE\x10\x00\x12\r\n\tNEW_VALUE\x10\x01\"-\n!TestMessageWithRequiredEnumOption:\x08\xfa\xe8\xfc\x94\x03\x02\x08\x00*6\n\nMethodOpt1\x12\x13\n\x0fMETHODOPT1_VAL1\x10\x01\x12\x13\n\x0fMETHODOPT1_VAL2\x10\x02*M\n\rAggregateEnum\x12%\n\x05VALUE\x10\x01\x1a\x1a\xca\xfc\x89;\x15\x12\x13\x45numValueAnnotation\x1a\x15\x92\x95\x88;\x10\x12\x0e\x45numAnnotation2\x8e\x01\n\x1cTestServiceWithCustomOptions\x12\x63\n\x03\x46oo\x12).protobuf_unittest.CustomOptionFooRequest\x1a*.protobuf_unittest.CustomOptionFooResponse\"\x05\xe0\xfa\x8c\x1e\x02\x1a\t\x90\xb2\x8b\x1e\xd3\xdb\x80\xcbI2\x99\x01\n\x10\x41ggregateService\x12k\n\x06Method\x12#.protobuf_unittest.AggregateMessage\x1a#.protobuf_unittest.AggregateMessage\"\x17\xca\xc8\x96;\x12\x12\x10MethodAnnotation\x1a\x18\xca\xfb\x8e;\x13\x12\x11ServiceAnnotation:2\n\tfile_opt1\x12\x1c.google.protobuf.FileOptions\x18\x8e\x9d\xd8\x03 \x01(\x04:8\n\x0cmessage_opt1\x12\x1f.google.protobuf.MessageOptions\x18\x9c\xad\xd8\x03 \x01(\x05:4\n\nfield_opt1\x12\x1d.google.protobuf.FieldOptions\x18\x88\xbc\xd8\x03 \x01(\x06:8\n\nfield_opt2\x12\x1d.google.protobuf.FieldOptions\x18\xb9\xa1\xd9\x03 \x01(\x05:\x02\x34\x32:4\n\noneof_opt1\x12\x1d.google.protobuf.OneofOptions\x18\xcf\xb5\xd8\x03 \x01(\x05:2\n\tenum_opt1\x12\x1c.google.protobuf.EnumOptions\x18\xe8\x9e\xd9\x03 \x01(\x0f:<\n\x0f\x65num_value_opt1\x12!.google.protobuf.EnumValueOptions\x18\xe6\xa0_ \x01(\x05:8\n\x0cservice_opt1\x12\x1f.google.protobuf.ServiceOptions\x18\xa2\xb6\xe1\x03 \x01(\x12:U\n\x0bmethod_opt1\x12\x1e.google.protobuf.MethodOptions\x18\xac\xcf\xe1\x03 \x01(\x0e\x32\x1d.protobuf_unittest.MethodOpt1:4\n\x08\x62ool_opt\x12\x1f.google.protobuf.MessageOptions\x18\xea\xab\xd6\x03 \x01(\x08:5\n\tint32_opt\x12\x1f.google.protobuf.MessageOptions\x18\xed\xa8\xd6\x03 \x01(\x05:5\n\tint64_opt\x12\x1f.google.protobuf.MessageOptions\x18\xc6\xa7\xd6\x03 \x01(\x03:6\n\nuint32_opt\x12\x1f.google.protobuf.MessageOptions\x18\xb0\xa2\xd6\x03 \x01(\r:6\n\nuint64_opt\x12\x1f.google.protobuf.MessageOptions\x18\xdf\x8e\xd6\x03 \x01(\x04:6\n\nsint32_opt\x12\x1f.google.protobuf.MessageOptions\x18\xc0\x88\xd6\x03 \x01(\x11:6\n\nsint64_opt\x12\x1f.google.protobuf.MessageOptions\x18\xff\x82\xd6\x03 \x01(\x12:7\n\x0b\x66ixed32_opt\x12\x1f.google.protobuf.MessageOptions\x18\xd3\xfe\xd5\x03 \x01(\x07:7\n\x0b\x66ixed64_opt\x12\x1f.google.protobuf.MessageOptions\x18\xe2\xfd\xd5\x03 \x01(\x06:8\n\x0csfixed32_opt\x12\x1f.google.protobuf.MessageOptions\x18\xd5\xf1\xd5\x03 \x01(\x0f:8\n\x0csfixed64_opt\x12\x1f.google.protobuf.MessageOptions\x18\xe3\x8a\xd5\x03 \x01(\x10:5\n\tfloat_opt\x12\x1f.google.protobuf.MessageOptions\x18\xfe\xbb\xd4\x03 \x01(\x02:6\n\ndouble_opt\x12\x1f.google.protobuf.MessageOptions\x18\xcd\xab\xd4\x03 \x01(\x01:6\n\nstring_opt\x12\x1f.google.protobuf.MessageOptions\x18\xc5\xab\xd4\x03 \x01(\t:5\n\tbytes_opt\x12\x1f.google.protobuf.MessageOptions\x18\x96\xab\xd4\x03 \x01(\x0c:p\n\x08\x65num_opt\x12\x1f.google.protobuf.MessageOptions\x18\x91\xab\xd4\x03 \x01(\x0e\x32:.protobuf_unittest.DummyMessageContainingEnum.TestEnumType:p\n\x10message_type_opt\x12\x1f.google.protobuf.MessageOptions\x18\xaf\xf2\xd3\x03 \x01(\x0b\x32\x32.protobuf_unittest.DummyMessageInvalidAsOptionType:6\n\x04quux\x12%.protobuf_unittest.ComplexOptionType1\x18\xdb\xe0\xd3\x03 \x01(\x05:^\n\x05\x63orge\x12%.protobuf_unittest.ComplexOptionType1\x18\xd2\xde\xd3\x03 \x01(\x0b\x32%.protobuf_unittest.ComplexOptionType3:8\n\x06grault\x12%.protobuf_unittest.ComplexOptionType2\x18\xef\xfc\xd2\x03 \x01(\x05:_\n\x06garply\x12%.protobuf_unittest.ComplexOptionType2\x18\xc8\xf5\xd2\x03 \x01(\x0b\x32%.protobuf_unittest.ComplexOptionType1:_\n\x0c\x63omplex_opt1\x12\x1f.google.protobuf.MessageOptions\x18\xa4\xdc\xd2\x03 \x01(\x0b\x32%.protobuf_unittest.ComplexOptionType1:_\n\x0c\x63omplex_opt2\x12\x1f.google.protobuf.MessageOptions\x18\xd5\x8f\xd2\x03 \x01(\x0b\x32%.protobuf_unittest.ComplexOptionType2:_\n\x0c\x63omplex_opt3\x12\x1f.google.protobuf.MessageOptions\x18\xef\x8b\xd2\x03 \x01(\x0b\x32%.protobuf_unittest.ComplexOptionType3:W\n\x0b\x63omplexopt6\x12\x1f.google.protobuf.MessageOptions\x18\xcc\xcb\xcf\x03 \x01(\n2\x1e.protobuf_unittest.ComplexOpt6:N\n\x07\x66ileopt\x12\x1c.google.protobuf.FileOptions\x18\xcf\xdd\xb0\x07 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate:P\n\x06msgopt\x12\x1f.google.protobuf.MessageOptions\x18\x98\xea\xb0\x07 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate:P\n\x08\x66ieldopt\x12\x1d.google.protobuf.FieldOptions\x18\x9e\xf4\xb0\x07 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate:N\n\x07\x65numopt\x12\x1c.google.protobuf.EnumOptions\x18\xd2\x82\xb1\x07 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate:V\n\nenumvalopt\x12!.google.protobuf.EnumValueOptions\x18\xc9\x9f\xb1\x07 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate:T\n\nserviceopt\x12\x1f.google.protobuf.ServiceOptions\x18\xb9\xef\xb1\x07 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate:R\n\tmethodopt\x12\x1e.google.protobuf.MethodOptions\x18\x89\xe9\xb2\x07 \x01(\x0b\x32\x1c.protobuf_unittest.Aggregate:_\n\x11required_enum_opt\x12\x1f.google.protobuf.MessageOptions\x18\x8f\xcd\xcf\x32 \x01(\x0b\x32 .protobuf_unittest.OldOptionTypeB\x87\x01\x80\x01\x01\x88\x01\x01\x90\x01\x01\xf0\xe8\xc1\x1d\xea\xad\xc0\xe5$\xfa\xec\x85;p\x08\x64\x12\x0e\x46ileAnnotation\x1a\x16\x12\x14NestedFileAnnotation\"\x1e\xfa\xec\x85;\x19\x12\x17\x46ileExtensionAnnotation*$\x0b\x10\xf6\xeb\xae\x07\x1a\x1b\n\x19\x45mbeddedMessageSetElement\x0c' , dependencies=[google_dot_protobuf_dot_descriptor__pb2.DESCRIPTOR,]) _METHODOPT1 = _descriptor.EnumDescriptor( name='MethodOpt1', full_name='protobuf_unittest.MethodOpt1', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='METHODOPT1_VAL1', index=0, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='METHODOPT1_VAL2', index=1, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=3006, serialized_end=3060, ) _sym_db.RegisterEnumDescriptor(_METHODOPT1) MethodOpt1 = enum_type_wrapper.EnumTypeWrapper(_METHODOPT1) _AGGREGATEENUM = _descriptor.EnumDescriptor( name='AggregateEnum', full_name='protobuf_unittest.AggregateEnum', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='VALUE', index=0, number=1, serialized_options=b'\312\374\211;\025\022\023EnumValueAnnotation', type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=b'\222\225\210;\020\022\016EnumAnnotation', serialized_start=3062, serialized_end=3139, ) _sym_db.RegisterEnumDescriptor(_AGGREGATEENUM) AggregateEnum = enum_type_wrapper.EnumTypeWrapper(_AGGREGATEENUM) METHODOPT1_VAL1 = 1 METHODOPT1_VAL2 = 2 VALUE = 1 FILE_OPT1_FIELD_NUMBER = 7736974 file_opt1 = _descriptor.FieldDescriptor( name='file_opt1', full_name='protobuf_unittest.file_opt1', index=0, number=7736974, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) MESSAGE_OPT1_FIELD_NUMBER = 7739036 message_opt1 = _descriptor.FieldDescriptor( name='message_opt1', full_name='protobuf_unittest.message_opt1', index=1, number=7739036, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) FIELD_OPT1_FIELD_NUMBER = 7740936 field_opt1 = _descriptor.FieldDescriptor( name='field_opt1', full_name='protobuf_unittest.field_opt1', index=2, number=7740936, type=6, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) FIELD_OPT2_FIELD_NUMBER = 7753913 field_opt2 = _descriptor.FieldDescriptor( name='field_opt2', full_name='protobuf_unittest.field_opt2', index=3, number=7753913, type=5, cpp_type=1, label=1, has_default_value=True, default_value=42, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) ONEOF_OPT1_FIELD_NUMBER = 7740111 oneof_opt1 = _descriptor.FieldDescriptor( name='oneof_opt1', full_name='protobuf_unittest.oneof_opt1', index=4, number=7740111, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) ENUM_OPT1_FIELD_NUMBER = 7753576 enum_opt1 = _descriptor.FieldDescriptor( name='enum_opt1', full_name='protobuf_unittest.enum_opt1', index=5, number=7753576, type=15, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) ENUM_VALUE_OPT1_FIELD_NUMBER = 1560678 enum_value_opt1 = _descriptor.FieldDescriptor( name='enum_value_opt1', full_name='protobuf_unittest.enum_value_opt1', index=6, number=1560678, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) SERVICE_OPT1_FIELD_NUMBER = 7887650 service_opt1 = _descriptor.FieldDescriptor( name='service_opt1', full_name='protobuf_unittest.service_opt1', index=7, number=7887650, type=18, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) METHOD_OPT1_FIELD_NUMBER = 7890860 method_opt1 = _descriptor.FieldDescriptor( name='method_opt1', full_name='protobuf_unittest.method_opt1', index=8, number=7890860, type=14, cpp_type=8, label=1, has_default_value=False, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) BOOL_OPT_FIELD_NUMBER = 7706090 bool_opt = _descriptor.FieldDescriptor( name='bool_opt', full_name='protobuf_unittest.bool_opt', index=9, number=7706090, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) INT32_OPT_FIELD_NUMBER = 7705709 int32_opt = _descriptor.FieldDescriptor( name='int32_opt', full_name='protobuf_unittest.int32_opt', index=10, number=7705709, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) INT64_OPT_FIELD_NUMBER = 7705542 int64_opt = _descriptor.FieldDescriptor( name='int64_opt', full_name='protobuf_unittest.int64_opt', index=11, number=7705542, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) UINT32_OPT_FIELD_NUMBER = 7704880 uint32_opt = _descriptor.FieldDescriptor( name='uint32_opt', full_name='protobuf_unittest.uint32_opt', index=12, number=7704880, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) UINT64_OPT_FIELD_NUMBER = 7702367 uint64_opt = _descriptor.FieldDescriptor( name='uint64_opt', full_name='protobuf_unittest.uint64_opt', index=13, number=7702367, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) SINT32_OPT_FIELD_NUMBER = 7701568 sint32_opt = _descriptor.FieldDescriptor( name='sint32_opt', full_name='protobuf_unittest.sint32_opt', index=14, number=7701568, type=17, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) SINT64_OPT_FIELD_NUMBER = 7700863 sint64_opt = _descriptor.FieldDescriptor( name='sint64_opt', full_name='protobuf_unittest.sint64_opt', index=15, number=7700863, type=18, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) FIXED32_OPT_FIELD_NUMBER = 7700307 fixed32_opt = _descriptor.FieldDescriptor( name='fixed32_opt', full_name='protobuf_unittest.fixed32_opt', index=16, number=7700307, type=7, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) FIXED64_OPT_FIELD_NUMBER = 7700194 fixed64_opt = _descriptor.FieldDescriptor( name='fixed64_opt', full_name='protobuf_unittest.fixed64_opt', index=17, number=7700194, type=6, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) SFIXED32_OPT_FIELD_NUMBER = 7698645 sfixed32_opt = _descriptor.FieldDescriptor( name='sfixed32_opt', full_name='protobuf_unittest.sfixed32_opt', index=18, number=7698645, type=15, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) SFIXED64_OPT_FIELD_NUMBER = 7685475 sfixed64_opt = _descriptor.FieldDescriptor( name='sfixed64_opt', full_name='protobuf_unittest.sfixed64_opt', index=19, number=7685475, type=16, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) FLOAT_OPT_FIELD_NUMBER = 7675390 float_opt = _descriptor.FieldDescriptor( name='float_opt', full_name='protobuf_unittest.float_opt', index=20, number=7675390, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) DOUBLE_OPT_FIELD_NUMBER = 7673293 double_opt = _descriptor.FieldDescriptor( name='double_opt', full_name='protobuf_unittest.double_opt', index=21, number=7673293, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) STRING_OPT_FIELD_NUMBER = 7673285 string_opt = _descriptor.FieldDescriptor( name='string_opt', full_name='protobuf_unittest.string_opt', index=22, number=7673285, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) BYTES_OPT_FIELD_NUMBER = 7673238 bytes_opt = _descriptor.FieldDescriptor( name='bytes_opt', full_name='protobuf_unittest.bytes_opt', index=23, number=7673238, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) ENUM_OPT_FIELD_NUMBER = 7673233 enum_opt = _descriptor.FieldDescriptor( name='enum_opt', full_name='protobuf_unittest.enum_opt', index=24, number=7673233, type=14, cpp_type=8, label=1, has_default_value=False, default_value=22, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) MESSAGE_TYPE_OPT_FIELD_NUMBER = 7665967 message_type_opt = _descriptor.FieldDescriptor( name='message_type_opt', full_name='protobuf_unittest.message_type_opt', index=25, number=7665967, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) QUUX_FIELD_NUMBER = 7663707 quux = _descriptor.FieldDescriptor( name='quux', full_name='protobuf_unittest.quux', index=26, number=7663707, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) CORGE_FIELD_NUMBER = 7663442 corge = _descriptor.FieldDescriptor( name='corge', full_name='protobuf_unittest.corge', index=27, number=7663442, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) GRAULT_FIELD_NUMBER = 7650927 grault = _descriptor.FieldDescriptor( name='grault', full_name='protobuf_unittest.grault', index=28, number=7650927, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) GARPLY_FIELD_NUMBER = 7649992 garply = _descriptor.FieldDescriptor( name='garply', full_name='protobuf_unittest.garply', index=29, number=7649992, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) COMPLEX_OPT1_FIELD_NUMBER = 7646756 complex_opt1 = _descriptor.FieldDescriptor( name='complex_opt1', full_name='protobuf_unittest.complex_opt1', index=30, number=7646756, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) COMPLEX_OPT2_FIELD_NUMBER = 7636949 complex_opt2 = _descriptor.FieldDescriptor( name='complex_opt2', full_name='protobuf_unittest.complex_opt2', index=31, number=7636949, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) COMPLEX_OPT3_FIELD_NUMBER = 7636463 complex_opt3 = _descriptor.FieldDescriptor( name='complex_opt3', full_name='protobuf_unittest.complex_opt3', index=32, number=7636463, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) COMPLEXOPT6_FIELD_NUMBER = 7595468 complexopt6 = _descriptor.FieldDescriptor( name='complexopt6', full_name='protobuf_unittest.complexopt6', index=33, number=7595468, type=10, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) FILEOPT_FIELD_NUMBER = 15478479 fileopt = _descriptor.FieldDescriptor( name='fileopt', full_name='protobuf_unittest.fileopt', index=34, number=15478479, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) MSGOPT_FIELD_NUMBER = 15480088 msgopt = _descriptor.FieldDescriptor( name='msgopt', full_name='protobuf_unittest.msgopt', index=35, number=15480088, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) FIELDOPT_FIELD_NUMBER = 15481374 fieldopt = _descriptor.FieldDescriptor( name='fieldopt', full_name='protobuf_unittest.fieldopt', index=36, number=15481374, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) ENUMOPT_FIELD_NUMBER = 15483218 enumopt = _descriptor.FieldDescriptor( name='enumopt', full_name='protobuf_unittest.enumopt', index=37, number=15483218, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) ENUMVALOPT_FIELD_NUMBER = 15486921 enumvalopt = _descriptor.FieldDescriptor( name='enumvalopt', full_name='protobuf_unittest.enumvalopt', index=38, number=15486921, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) SERVICEOPT_FIELD_NUMBER = 15497145 serviceopt = _descriptor.FieldDescriptor( name='serviceopt', full_name='protobuf_unittest.serviceopt', index=39, number=15497145, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) METHODOPT_FIELD_NUMBER = 15512713 methodopt = _descriptor.FieldDescriptor( name='methodopt', full_name='protobuf_unittest.methodopt', index=40, number=15512713, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) REQUIRED_ENUM_OPT_FIELD_NUMBER = 106161807 required_enum_opt = _descriptor.FieldDescriptor( name='required_enum_opt', full_name='protobuf_unittest.required_enum_opt', index=41, number=106161807, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) _TESTMESSAGEWITHCUSTOMOPTIONS_ANENUM = _descriptor.EnumDescriptor( name='AnEnum', full_name='protobuf_unittest.TestMessageWithCustomOptions.AnEnum', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='ANENUM_VAL1', index=0, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='ANENUM_VAL2', index=1, number=2, serialized_options=b'\260\206\372\005{', type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=b'\305\366\311\035\353\374\377\377', serialized_start=190, serialized_end=249, ) _sym_db.RegisterEnumDescriptor(_TESTMESSAGEWITHCUSTOMOPTIONS_ANENUM) _DUMMYMESSAGECONTAININGENUM_TESTENUMTYPE = _descriptor.EnumDescriptor( name='TestEnumType', full_name='protobuf_unittest.DummyMessageContainingEnum.TestEnumType', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='TEST_OPTION_ENUM_TYPE1', index=0, number=22, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='TEST_OPTION_ENUM_TYPE2', index=1, number=-23, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=443, serialized_end=522, ) _sym_db.RegisterEnumDescriptor(_DUMMYMESSAGECONTAININGENUM_TESTENUMTYPE) _NESTEDOPTIONTYPE_NESTEDENUM = _descriptor.EnumDescriptor( name='NestedEnum', full_name='protobuf_unittest.NestedOptionType.NestedEnum', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='NESTED_ENUM_VALUE', index=0, number=1, serialized_options=b'\260\206\372\005\354\007', type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=b'\305\366\311\035\353\003\000\000', serialized_start=2618, serialized_end=2671, ) _sym_db.RegisterEnumDescriptor(_NESTEDOPTIONTYPE_NESTEDENUM) _OLDOPTIONTYPE_TESTENUM = _descriptor.EnumDescriptor( name='TestEnum', full_name='protobuf_unittest.OldOptionType.TestEnum', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='OLD_VALUE', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=2815, serialized_end=2840, ) _sym_db.RegisterEnumDescriptor(_OLDOPTIONTYPE_TESTENUM) _NEWOPTIONTYPE_TESTENUM = _descriptor.EnumDescriptor( name='TestEnum', full_name='protobuf_unittest.NewOptionType.TestEnum', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='OLD_VALUE', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='NEW_VALUE', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=2917, serialized_end=2957, ) _sym_db.RegisterEnumDescriptor(_NEWOPTIONTYPE_TESTENUM) _TESTMESSAGEWITHCUSTOMOPTIONS = _descriptor.Descriptor( name='TestMessageWithCustomOptions', full_name='protobuf_unittest.TestMessageWithCustomOptions', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='field1', full_name='protobuf_unittest.TestMessageWithCustomOptions.field1', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\010\001\301\340\303\035-\341u\n\002\000\000\000', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='oneof_field', full_name='protobuf_unittest.TestMessageWithCustomOptions.oneof_field', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ _TESTMESSAGEWITHCUSTOMOPTIONS_ANENUM, ], serialized_options=b'\010\000\340\351\302\035\310\377\377\377\377\377\377\377\377\001', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='AnOneof', full_name='protobuf_unittest.TestMessageWithCustomOptions.AnOneof', index=0, containing_type=None, create_key=_descriptor._internal_create_key, fields=[], serialized_options=b'\370\254\303\035\235\377\377\377\377\377\377\377\377\001'), ], serialized_start=103, serialized_end=294, ) _CUSTOMOPTIONFOOREQUEST = _descriptor.Descriptor( name='CustomOptionFooRequest', full_name='protobuf_unittest.CustomOptionFooRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=296, serialized_end=320, ) _CUSTOMOPTIONFOORESPONSE = _descriptor.Descriptor( name='CustomOptionFooResponse', full_name='protobuf_unittest.CustomOptionFooResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=322, serialized_end=347, ) _CUSTOMOPTIONFOOCLIENTMESSAGE = _descriptor.Descriptor( name='CustomOptionFooClientMessage', full_name='protobuf_unittest.CustomOptionFooClientMessage', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=349, serialized_end=379, ) _CUSTOMOPTIONFOOSERVERMESSAGE = _descriptor.Descriptor( name='CustomOptionFooServerMessage', full_name='protobuf_unittest.CustomOptionFooServerMessage', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=381, serialized_end=411, ) _DUMMYMESSAGECONTAININGENUM = _descriptor.Descriptor( name='DummyMessageContainingEnum', full_name='protobuf_unittest.DummyMessageContainingEnum', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _DUMMYMESSAGECONTAININGENUM_TESTENUMTYPE, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=413, serialized_end=522, ) _DUMMYMESSAGEINVALIDASOPTIONTYPE = _descriptor.Descriptor( name='DummyMessageInvalidAsOptionType', full_name='protobuf_unittest.DummyMessageInvalidAsOptionType', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=524, serialized_end=557, ) _CUSTOMOPTIONMININTEGERVALUES = _descriptor.Descriptor( name='CustomOptionMinIntegerValues', full_name='protobuf_unittest.CustomOptionMinIntegerValues', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\320\336\262\035\000\350\306\262\035\200\200\200\200\370\377\377\377\377\001\260\274\262\035\200\200\200\200\200\200\200\200\200\001\200\223\262\035\000\370\365\260\035\000\200\304\260\035\377\377\377\377\017\370\227\260\035\377\377\377\377\377\377\377\377\377\001\235\365\257\035\000\000\000\000\221\356\257\035\000\000\000\000\000\000\000\000\255\215\257\035\000\000\000\200\231\326\250\035\000\000\000\000\000\000\000\200', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=560, serialized_end=698, ) _CUSTOMOPTIONMAXINTEGERVALUES = _descriptor.Descriptor( name='CustomOptionMaxIntegerValues', full_name='protobuf_unittest.CustomOptionMaxIntegerValues', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\320\336\262\035\001\350\306\262\035\377\377\377\377\007\260\274\262\035\377\377\377\377\377\377\377\377\177\200\223\262\035\377\377\377\377\017\370\365\260\035\377\377\377\377\377\377\377\377\377\001\200\304\260\035\376\377\377\377\017\370\227\260\035\376\377\377\377\377\377\377\377\377\001\235\365\257\035\377\377\377\377\221\356\257\035\377\377\377\377\377\377\377\377\255\215\257\035\377\377\377\177\231\326\250\035\377\377\377\377\377\377\377\177', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=701, serialized_end=846, ) _CUSTOMOPTIONOTHERVALUES = _descriptor.Descriptor( name='CustomOptionOtherValues', full_name='protobuf_unittest.CustomOptionOtherValues', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\350\306\262\035\234\377\377\377\377\377\377\377\377\001\365\337\243\035\347\207EA\351\334\242\035\373Y\214B\312\300\363?\252\334\242\035\016Hello, \"World\"\262\331\242\035\013Hello\000World\210\331\242\035\351\377\377\377\377\377\377\377\377\001', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=848, serialized_end=958, ) _SETTINGREALSFROMPOSITIVEINTS = _descriptor.Descriptor( name='SettingRealsFromPositiveInts', full_name='protobuf_unittest.SettingRealsFromPositiveInts', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\365\337\243\035\000\000@A\351\334\242\035\000\000\000\000\000@c@', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=960, serialized_end=1012, ) _SETTINGREALSFROMNEGATIVEINTS = _descriptor.Descriptor( name='SettingRealsFromNegativeInts', full_name='protobuf_unittest.SettingRealsFromNegativeInts', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\365\337\243\035\000\000@\301\351\334\242\035\000\000\000\000\000@c\300', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1014, serialized_end=1066, ) _COMPLEXOPTIONTYPE1 = _descriptor.Descriptor( name='ComplexOptionType1', full_name='protobuf_unittest.ComplexOptionType1', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='foo', full_name='protobuf_unittest.ComplexOptionType1.foo', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='foo2', full_name='protobuf_unittest.ComplexOptionType1.foo2', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='foo3', full_name='protobuf_unittest.ComplexOptionType1.foo3', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='foo4', full_name='protobuf_unittest.ComplexOptionType1.foo4', index=3, number=4, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=True, syntax='proto2', extension_ranges=[(100, 536870912), ], oneofs=[ ], serialized_start=1068, serialized_end=1153, ) _COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4 = _descriptor.Descriptor( name='ComplexOptionType4', full_name='protobuf_unittest.ComplexOptionType2.ComplexOptionType4', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='waldo', full_name='protobuf_unittest.ComplexOptionType2.ComplexOptionType4.waldo', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ _descriptor.FieldDescriptor( name='complex_opt4', full_name='protobuf_unittest.ComplexOptionType2.ComplexOptionType4.complex_opt4', index=0, number=7633546, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1390, serialized_end=1541, ) _COMPLEXOPTIONTYPE2 = _descriptor.Descriptor( name='ComplexOptionType2', full_name='protobuf_unittest.ComplexOptionType2', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='bar', full_name='protobuf_unittest.ComplexOptionType2.bar', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='baz', full_name='protobuf_unittest.ComplexOptionType2.baz', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='fred', full_name='protobuf_unittest.ComplexOptionType2.fred', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='barney', full_name='protobuf_unittest.ComplexOptionType2.barney', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4, ], enum_types=[ ], serialized_options=None, is_extendable=True, syntax='proto2', extension_ranges=[(100, 536870912), ], oneofs=[ ], serialized_start=1156, serialized_end=1551, ) _COMPLEXOPTIONTYPE3_COMPLEXOPTIONTYPE5 = _descriptor.Descriptor( name='ComplexOptionType5', full_name='protobuf_unittest.ComplexOptionType3.ComplexOptionType5', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='plugh', full_name='protobuf_unittest.ComplexOptionType3.ComplexOptionType5.plugh', index=0, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1675, serialized_end=1710, ) _COMPLEXOPTIONTYPE3 = _descriptor.Descriptor( name='ComplexOptionType3', full_name='protobuf_unittest.ComplexOptionType3', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='qux', full_name='protobuf_unittest.ComplexOptionType3.qux', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='complexoptiontype5', full_name='protobuf_unittest.ComplexOptionType3.complexoptiontype5', index=1, number=2, type=10, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_COMPLEXOPTIONTYPE3_COMPLEXOPTIONTYPE5, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1554, serialized_end=1710, ) _COMPLEXOPT6 = _descriptor.Descriptor( name='ComplexOpt6', full_name='protobuf_unittest.ComplexOpt6', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='xyzzy', full_name='protobuf_unittest.ComplexOpt6.xyzzy', index=0, number=7593951, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1712, serialized_end=1743, ) _VARIOUSCOMPLEXOPTIONS = _descriptor.Descriptor( name='VariousComplexOptions', full_name='protobuf_unittest.VariousComplexOptions', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\242\342\225\035\002\010*\242\342\225\035\006\330\205\236\035\304\002\242\342\225\035\010\222\365\235\035\003\010\354\006\242\342\225\035\002 c\242\342\225\035\002 X\252\375\220\035\003\020\333\007\252\375\220\035\006\370\346\227\035\216\005\252\375\220\035\005\n\003\010\347\005\252\375\220\035\010\n\006\330\205\236\035\317\017\252\375\220\035\n\n\010\222\365\235\035\003\010\330\017\252\375\220\035\010\302\254\227\035\003\010\345\005\252\375\220\035\013\302\254\227\035\006\330\205\236\035\316\017\252\375\220\035\r\302\254\227\035\010\222\365\235\035\003\010\311\020\322\250\217\035\003\010\263\017\252\375\220\035\005\032\003\010\301\002\252\375\220\035\004\"\002\010e\252\375\220\035\005\"\003\010\324\001\372\336\220\035\002\010\t\372\336\220\035\004\023\030\026\024\343\334\374\034\370\375\373\034\030\344\334\374\034', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1746, serialized_end=1987, ) _AGGREGATEMESSAGESET = _descriptor.Descriptor( name='AggregateMessageSet', full_name='protobuf_unittest.AggregateMessageSet', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\010\001', is_extendable=True, syntax='proto2', extension_ranges=[(4, 2147483647), ], oneofs=[ ], serialized_start=1989, serialized_end=2024, ) _AGGREGATEMESSAGESETELEMENT = _descriptor.Descriptor( name='AggregateMessageSetElement', full_name='protobuf_unittest.AggregateMessageSetElement', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='s', full_name='protobuf_unittest.AggregateMessageSetElement.s', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ _descriptor.FieldDescriptor( name='message_set_extension', full_name='protobuf_unittest.AggregateMessageSetElement.message_set_extension', index=0, number=15447542, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2027, serialized_end=2187, ) _AGGREGATE = _descriptor.Descriptor( name='Aggregate', full_name='protobuf_unittest.Aggregate', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='i', full_name='protobuf_unittest.Aggregate.i', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='s', full_name='protobuf_unittest.Aggregate.s', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='sub', full_name='protobuf_unittest.Aggregate.sub', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='file', full_name='protobuf_unittest.Aggregate.file', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='mset', full_name='protobuf_unittest.Aggregate.mset', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ _descriptor.FieldDescriptor( name='nested', full_name='protobuf_unittest.Aggregate.nested', index=0, number=15476903, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2190, serialized_end=2443, ) _AGGREGATEMESSAGE = _descriptor.Descriptor( name='AggregateMessage', full_name='protobuf_unittest.AggregateMessage', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='fieldname', full_name='protobuf_unittest.AggregateMessage.fieldname', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\362\241\207;\021\022\017FieldAnnotation', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\302\321\206;\025\010e\022\021MessageAnnotation', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2445, serialized_end=2534, ) _NESTEDOPTIONTYPE_NESTEDMESSAGE = _descriptor.Descriptor( name='NestedMessage', full_name='protobuf_unittest.NestedOptionType.NestedMessage', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='nested_field', full_name='protobuf_unittest.NestedOptionType.NestedMessage.nested_field', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\301\340\303\035\352\003\000\000\000\000\000\000', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\340\351\302\035\351\007', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2557, serialized_end=2616, ) _NESTEDOPTIONTYPE = _descriptor.Descriptor( name='NestedOptionType', full_name='protobuf_unittest.NestedOptionType', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ _descriptor.FieldDescriptor( name='nested_extension', full_name='protobuf_unittest.NestedOptionType.nested_extension', index=0, number=7912573, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=b'\310\213\312\035\355\007', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], nested_types=[_NESTEDOPTIONTYPE_NESTEDMESSAGE, ], enum_types=[ _NESTEDOPTIONTYPE_NESTEDENUM, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2537, serialized_end=2738, ) _OLDOPTIONTYPE = _descriptor.Descriptor( name='OldOptionType', full_name='protobuf_unittest.OldOptionType', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='value', full_name='protobuf_unittest.OldOptionType.value', index=0, number=1, type=14, cpp_type=8, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ _OLDOPTIONTYPE_TESTENUM, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2740, serialized_end=2840, ) _NEWOPTIONTYPE = _descriptor.Descriptor( name='NewOptionType', full_name='protobuf_unittest.NewOptionType', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='value', full_name='protobuf_unittest.NewOptionType.value', index=0, number=1, type=14, cpp_type=8, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ _NEWOPTIONTYPE_TESTENUM, ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2842, serialized_end=2957, ) _TESTMESSAGEWITHREQUIREDENUMOPTION = _descriptor.Descriptor( name='TestMessageWithRequiredEnumOption', full_name='protobuf_unittest.TestMessageWithRequiredEnumOption', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\372\350\374\224\003\002\010\000', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2959, serialized_end=3004, ) _TESTMESSAGEWITHCUSTOMOPTIONS_ANENUM.containing_type = _TESTMESSAGEWITHCUSTOMOPTIONS _TESTMESSAGEWITHCUSTOMOPTIONS.oneofs_by_name['AnOneof'].fields.append( _TESTMESSAGEWITHCUSTOMOPTIONS.fields_by_name['oneof_field']) _TESTMESSAGEWITHCUSTOMOPTIONS.fields_by_name['oneof_field'].containing_oneof = _TESTMESSAGEWITHCUSTOMOPTIONS.oneofs_by_name['AnOneof'] _DUMMYMESSAGECONTAININGENUM_TESTENUMTYPE.containing_type = _DUMMYMESSAGECONTAININGENUM _COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4.containing_type = _COMPLEXOPTIONTYPE2 _COMPLEXOPTIONTYPE2.fields_by_name['bar'].message_type = _COMPLEXOPTIONTYPE1 _COMPLEXOPTIONTYPE2.fields_by_name['fred'].message_type = _COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4 _COMPLEXOPTIONTYPE2.fields_by_name['barney'].message_type = _COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4 _COMPLEXOPTIONTYPE3_COMPLEXOPTIONTYPE5.containing_type = _COMPLEXOPTIONTYPE3 _COMPLEXOPTIONTYPE3.fields_by_name['complexoptiontype5'].message_type = _COMPLEXOPTIONTYPE3_COMPLEXOPTIONTYPE5 _AGGREGATE.fields_by_name['sub'].message_type = _AGGREGATE _AGGREGATE.fields_by_name['file'].message_type = google_dot_protobuf_dot_descriptor__pb2._FILEOPTIONS _AGGREGATE.fields_by_name['mset'].message_type = _AGGREGATEMESSAGESET _NESTEDOPTIONTYPE_NESTEDMESSAGE.containing_type = _NESTEDOPTIONTYPE _NESTEDOPTIONTYPE_NESTEDENUM.containing_type = _NESTEDOPTIONTYPE _OLDOPTIONTYPE.fields_by_name['value'].enum_type = _OLDOPTIONTYPE_TESTENUM _OLDOPTIONTYPE_TESTENUM.containing_type = _OLDOPTIONTYPE _NEWOPTIONTYPE.fields_by_name['value'].enum_type = _NEWOPTIONTYPE_TESTENUM _NEWOPTIONTYPE_TESTENUM.containing_type = _NEWOPTIONTYPE DESCRIPTOR.message_types_by_name['TestMessageWithCustomOptions'] = _TESTMESSAGEWITHCUSTOMOPTIONS DESCRIPTOR.message_types_by_name['CustomOptionFooRequest'] = _CUSTOMOPTIONFOOREQUEST DESCRIPTOR.message_types_by_name['CustomOptionFooResponse'] = _CUSTOMOPTIONFOORESPONSE DESCRIPTOR.message_types_by_name['CustomOptionFooClientMessage'] = _CUSTOMOPTIONFOOCLIENTMESSAGE DESCRIPTOR.message_types_by_name['CustomOptionFooServerMessage'] = _CUSTOMOPTIONFOOSERVERMESSAGE DESCRIPTOR.message_types_by_name['DummyMessageContainingEnum'] = _DUMMYMESSAGECONTAININGENUM DESCRIPTOR.message_types_by_name['DummyMessageInvalidAsOptionType'] = _DUMMYMESSAGEINVALIDASOPTIONTYPE DESCRIPTOR.message_types_by_name['CustomOptionMinIntegerValues'] = _CUSTOMOPTIONMININTEGERVALUES DESCRIPTOR.message_types_by_name['CustomOptionMaxIntegerValues'] = _CUSTOMOPTIONMAXINTEGERVALUES DESCRIPTOR.message_types_by_name['CustomOptionOtherValues'] = _CUSTOMOPTIONOTHERVALUES DESCRIPTOR.message_types_by_name['SettingRealsFromPositiveInts'] = _SETTINGREALSFROMPOSITIVEINTS DESCRIPTOR.message_types_by_name['SettingRealsFromNegativeInts'] = _SETTINGREALSFROMNEGATIVEINTS DESCRIPTOR.message_types_by_name['ComplexOptionType1'] = _COMPLEXOPTIONTYPE1 DESCRIPTOR.message_types_by_name['ComplexOptionType2'] = _COMPLEXOPTIONTYPE2 DESCRIPTOR.message_types_by_name['ComplexOptionType3'] = _COMPLEXOPTIONTYPE3 DESCRIPTOR.message_types_by_name['ComplexOpt6'] = _COMPLEXOPT6 DESCRIPTOR.message_types_by_name['VariousComplexOptions'] = _VARIOUSCOMPLEXOPTIONS DESCRIPTOR.message_types_by_name['AggregateMessageSet'] = _AGGREGATEMESSAGESET DESCRIPTOR.message_types_by_name['AggregateMessageSetElement'] = _AGGREGATEMESSAGESETELEMENT DESCRIPTOR.message_types_by_name['Aggregate'] = _AGGREGATE DESCRIPTOR.message_types_by_name['AggregateMessage'] = _AGGREGATEMESSAGE DESCRIPTOR.message_types_by_name['NestedOptionType'] = _NESTEDOPTIONTYPE DESCRIPTOR.message_types_by_name['OldOptionType'] = _OLDOPTIONTYPE DESCRIPTOR.message_types_by_name['NewOptionType'] = _NEWOPTIONTYPE DESCRIPTOR.message_types_by_name['TestMessageWithRequiredEnumOption'] = _TESTMESSAGEWITHREQUIREDENUMOPTION DESCRIPTOR.enum_types_by_name['MethodOpt1'] = _METHODOPT1 DESCRIPTOR.enum_types_by_name['AggregateEnum'] = _AGGREGATEENUM DESCRIPTOR.extensions_by_name['file_opt1'] = file_opt1 DESCRIPTOR.extensions_by_name['message_opt1'] = message_opt1 DESCRIPTOR.extensions_by_name['field_opt1'] = field_opt1 DESCRIPTOR.extensions_by_name['field_opt2'] = field_opt2 DESCRIPTOR.extensions_by_name['oneof_opt1'] = oneof_opt1 DESCRIPTOR.extensions_by_name['enum_opt1'] = enum_opt1 DESCRIPTOR.extensions_by_name['enum_value_opt1'] = enum_value_opt1 DESCRIPTOR.extensions_by_name['service_opt1'] = service_opt1 DESCRIPTOR.extensions_by_name['method_opt1'] = method_opt1 DESCRIPTOR.extensions_by_name['bool_opt'] = bool_opt DESCRIPTOR.extensions_by_name['int32_opt'] = int32_opt DESCRIPTOR.extensions_by_name['int64_opt'] = int64_opt DESCRIPTOR.extensions_by_name['uint32_opt'] = uint32_opt DESCRIPTOR.extensions_by_name['uint64_opt'] = uint64_opt DESCRIPTOR.extensions_by_name['sint32_opt'] = sint32_opt DESCRIPTOR.extensions_by_name['sint64_opt'] = sint64_opt DESCRIPTOR.extensions_by_name['fixed32_opt'] = fixed32_opt DESCRIPTOR.extensions_by_name['fixed64_opt'] = fixed64_opt DESCRIPTOR.extensions_by_name['sfixed32_opt'] = sfixed32_opt DESCRIPTOR.extensions_by_name['sfixed64_opt'] = sfixed64_opt DESCRIPTOR.extensions_by_name['float_opt'] = float_opt DESCRIPTOR.extensions_by_name['double_opt'] = double_opt DESCRIPTOR.extensions_by_name['string_opt'] = string_opt DESCRIPTOR.extensions_by_name['bytes_opt'] = bytes_opt DESCRIPTOR.extensions_by_name['enum_opt'] = enum_opt DESCRIPTOR.extensions_by_name['message_type_opt'] = message_type_opt DESCRIPTOR.extensions_by_name['quux'] = quux DESCRIPTOR.extensions_by_name['corge'] = corge DESCRIPTOR.extensions_by_name['grault'] = grault DESCRIPTOR.extensions_by_name['garply'] = garply DESCRIPTOR.extensions_by_name['complex_opt1'] = complex_opt1 DESCRIPTOR.extensions_by_name['complex_opt2'] = complex_opt2 DESCRIPTOR.extensions_by_name['complex_opt3'] = complex_opt3 DESCRIPTOR.extensions_by_name['complexopt6'] = complexopt6 DESCRIPTOR.extensions_by_name['fileopt'] = fileopt DESCRIPTOR.extensions_by_name['msgopt'] = msgopt DESCRIPTOR.extensions_by_name['fieldopt'] = fieldopt DESCRIPTOR.extensions_by_name['enumopt'] = enumopt DESCRIPTOR.extensions_by_name['enumvalopt'] = enumvalopt DESCRIPTOR.extensions_by_name['serviceopt'] = serviceopt DESCRIPTOR.extensions_by_name['methodopt'] = methodopt DESCRIPTOR.extensions_by_name['required_enum_opt'] = required_enum_opt _sym_db.RegisterFileDescriptor(DESCRIPTOR) TestMessageWithCustomOptions = _reflection.GeneratedProtocolMessageType('TestMessageWithCustomOptions', (_message.Message,), { 'DESCRIPTOR' : _TESTMESSAGEWITHCUSTOMOPTIONS, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.TestMessageWithCustomOptions) }) _sym_db.RegisterMessage(TestMessageWithCustomOptions) CustomOptionFooRequest = _reflection.GeneratedProtocolMessageType('CustomOptionFooRequest', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMOPTIONFOOREQUEST, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.CustomOptionFooRequest) }) _sym_db.RegisterMessage(CustomOptionFooRequest) CustomOptionFooResponse = _reflection.GeneratedProtocolMessageType('CustomOptionFooResponse', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMOPTIONFOORESPONSE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.CustomOptionFooResponse) }) _sym_db.RegisterMessage(CustomOptionFooResponse) CustomOptionFooClientMessage = _reflection.GeneratedProtocolMessageType('CustomOptionFooClientMessage', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMOPTIONFOOCLIENTMESSAGE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.CustomOptionFooClientMessage) }) _sym_db.RegisterMessage(CustomOptionFooClientMessage) CustomOptionFooServerMessage = _reflection.GeneratedProtocolMessageType('CustomOptionFooServerMessage', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMOPTIONFOOSERVERMESSAGE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.CustomOptionFooServerMessage) }) _sym_db.RegisterMessage(CustomOptionFooServerMessage) DummyMessageContainingEnum = _reflection.GeneratedProtocolMessageType('DummyMessageContainingEnum', (_message.Message,), { 'DESCRIPTOR' : _DUMMYMESSAGECONTAININGENUM, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.DummyMessageContainingEnum) }) _sym_db.RegisterMessage(DummyMessageContainingEnum) DummyMessageInvalidAsOptionType = _reflection.GeneratedProtocolMessageType('DummyMessageInvalidAsOptionType', (_message.Message,), { 'DESCRIPTOR' : _DUMMYMESSAGEINVALIDASOPTIONTYPE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.DummyMessageInvalidAsOptionType) }) _sym_db.RegisterMessage(DummyMessageInvalidAsOptionType) CustomOptionMinIntegerValues = _reflection.GeneratedProtocolMessageType('CustomOptionMinIntegerValues', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMOPTIONMININTEGERVALUES, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.CustomOptionMinIntegerValues) }) _sym_db.RegisterMessage(CustomOptionMinIntegerValues) CustomOptionMaxIntegerValues = _reflection.GeneratedProtocolMessageType('CustomOptionMaxIntegerValues', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMOPTIONMAXINTEGERVALUES, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.CustomOptionMaxIntegerValues) }) _sym_db.RegisterMessage(CustomOptionMaxIntegerValues) CustomOptionOtherValues = _reflection.GeneratedProtocolMessageType('CustomOptionOtherValues', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMOPTIONOTHERVALUES, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.CustomOptionOtherValues) }) _sym_db.RegisterMessage(CustomOptionOtherValues) SettingRealsFromPositiveInts = _reflection.GeneratedProtocolMessageType('SettingRealsFromPositiveInts', (_message.Message,), { 'DESCRIPTOR' : _SETTINGREALSFROMPOSITIVEINTS, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.SettingRealsFromPositiveInts) }) _sym_db.RegisterMessage(SettingRealsFromPositiveInts) SettingRealsFromNegativeInts = _reflection.GeneratedProtocolMessageType('SettingRealsFromNegativeInts', (_message.Message,), { 'DESCRIPTOR' : _SETTINGREALSFROMNEGATIVEINTS, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.SettingRealsFromNegativeInts) }) _sym_db.RegisterMessage(SettingRealsFromNegativeInts) ComplexOptionType1 = _reflection.GeneratedProtocolMessageType('ComplexOptionType1', (_message.Message,), { 'DESCRIPTOR' : _COMPLEXOPTIONTYPE1, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.ComplexOptionType1) }) _sym_db.RegisterMessage(ComplexOptionType1) ComplexOptionType2 = _reflection.GeneratedProtocolMessageType('ComplexOptionType2', (_message.Message,), { 'ComplexOptionType4' : _reflection.GeneratedProtocolMessageType('ComplexOptionType4', (_message.Message,), { 'DESCRIPTOR' : _COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.ComplexOptionType2.ComplexOptionType4) }) , 'DESCRIPTOR' : _COMPLEXOPTIONTYPE2, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.ComplexOptionType2) }) _sym_db.RegisterMessage(ComplexOptionType2) _sym_db.RegisterMessage(ComplexOptionType2.ComplexOptionType4) ComplexOptionType3 = _reflection.GeneratedProtocolMessageType('ComplexOptionType3', (_message.Message,), { 'ComplexOptionType5' : _reflection.GeneratedProtocolMessageType('ComplexOptionType5', (_message.Message,), { 'DESCRIPTOR' : _COMPLEXOPTIONTYPE3_COMPLEXOPTIONTYPE5, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.ComplexOptionType3.ComplexOptionType5) }) , 'DESCRIPTOR' : _COMPLEXOPTIONTYPE3, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.ComplexOptionType3) }) _sym_db.RegisterMessage(ComplexOptionType3) _sym_db.RegisterMessage(ComplexOptionType3.ComplexOptionType5) ComplexOpt6 = _reflection.GeneratedProtocolMessageType('ComplexOpt6', (_message.Message,), { 'DESCRIPTOR' : _COMPLEXOPT6, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.ComplexOpt6) }) _sym_db.RegisterMessage(ComplexOpt6) VariousComplexOptions = _reflection.GeneratedProtocolMessageType('VariousComplexOptions', (_message.Message,), { 'DESCRIPTOR' : _VARIOUSCOMPLEXOPTIONS, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.VariousComplexOptions) }) _sym_db.RegisterMessage(VariousComplexOptions) AggregateMessageSet = _reflection.GeneratedProtocolMessageType('AggregateMessageSet', (_message.Message,), { 'DESCRIPTOR' : _AGGREGATEMESSAGESET, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.AggregateMessageSet) }) _sym_db.RegisterMessage(AggregateMessageSet) AggregateMessageSetElement = _reflection.GeneratedProtocolMessageType('AggregateMessageSetElement', (_message.Message,), { 'DESCRIPTOR' : _AGGREGATEMESSAGESETELEMENT, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.AggregateMessageSetElement) }) _sym_db.RegisterMessage(AggregateMessageSetElement) Aggregate = _reflection.GeneratedProtocolMessageType('Aggregate', (_message.Message,), { 'DESCRIPTOR' : _AGGREGATE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.Aggregate) }) _sym_db.RegisterMessage(Aggregate) AggregateMessage = _reflection.GeneratedProtocolMessageType('AggregateMessage', (_message.Message,), { 'DESCRIPTOR' : _AGGREGATEMESSAGE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.AggregateMessage) }) _sym_db.RegisterMessage(AggregateMessage) NestedOptionType = _reflection.GeneratedProtocolMessageType('NestedOptionType', (_message.Message,), { 'NestedMessage' : _reflection.GeneratedProtocolMessageType('NestedMessage', (_message.Message,), { 'DESCRIPTOR' : _NESTEDOPTIONTYPE_NESTEDMESSAGE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.NestedOptionType.NestedMessage) }) , 'DESCRIPTOR' : _NESTEDOPTIONTYPE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.NestedOptionType) }) _sym_db.RegisterMessage(NestedOptionType) _sym_db.RegisterMessage(NestedOptionType.NestedMessage) OldOptionType = _reflection.GeneratedProtocolMessageType('OldOptionType', (_message.Message,), { 'DESCRIPTOR' : _OLDOPTIONTYPE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.OldOptionType) }) _sym_db.RegisterMessage(OldOptionType) NewOptionType = _reflection.GeneratedProtocolMessageType('NewOptionType', (_message.Message,), { 'DESCRIPTOR' : _NEWOPTIONTYPE, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.NewOptionType) }) _sym_db.RegisterMessage(NewOptionType) TestMessageWithRequiredEnumOption = _reflection.GeneratedProtocolMessageType('TestMessageWithRequiredEnumOption', (_message.Message,), { 'DESCRIPTOR' : _TESTMESSAGEWITHREQUIREDENUMOPTION, '__module__' : 'google.protobuf.unittest_custom_options_pb2' # @@protoc_insertion_point(class_scope:protobuf_unittest.TestMessageWithRequiredEnumOption) }) _sym_db.RegisterMessage(TestMessageWithRequiredEnumOption) google_dot_protobuf_dot_descriptor__pb2.FileOptions.RegisterExtension(file_opt1) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(message_opt1) google_dot_protobuf_dot_descriptor__pb2.FieldOptions.RegisterExtension(field_opt1) google_dot_protobuf_dot_descriptor__pb2.FieldOptions.RegisterExtension(field_opt2) google_dot_protobuf_dot_descriptor__pb2.OneofOptions.RegisterExtension(oneof_opt1) google_dot_protobuf_dot_descriptor__pb2.EnumOptions.RegisterExtension(enum_opt1) google_dot_protobuf_dot_descriptor__pb2.EnumValueOptions.RegisterExtension(enum_value_opt1) google_dot_protobuf_dot_descriptor__pb2.ServiceOptions.RegisterExtension(service_opt1) method_opt1.enum_type = _METHODOPT1 google_dot_protobuf_dot_descriptor__pb2.MethodOptions.RegisterExtension(method_opt1) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(bool_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(int32_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(int64_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(uint32_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(uint64_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(sint32_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(sint64_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(fixed32_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(fixed64_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(sfixed32_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(sfixed64_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(float_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(double_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(string_opt) google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(bytes_opt) enum_opt.enum_type = _DUMMYMESSAGECONTAININGENUM_TESTENUMTYPE google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(enum_opt) message_type_opt.message_type = _DUMMYMESSAGEINVALIDASOPTIONTYPE google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(message_type_opt) ComplexOptionType1.RegisterExtension(quux) corge.message_type = _COMPLEXOPTIONTYPE3 ComplexOptionType1.RegisterExtension(corge) ComplexOptionType2.RegisterExtension(grault) garply.message_type = _COMPLEXOPTIONTYPE1 ComplexOptionType2.RegisterExtension(garply) complex_opt1.message_type = _COMPLEXOPTIONTYPE1 google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(complex_opt1) complex_opt2.message_type = _COMPLEXOPTIONTYPE2 google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(complex_opt2) complex_opt3.message_type = _COMPLEXOPTIONTYPE3 google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(complex_opt3) complexopt6.message_type = _COMPLEXOPT6 google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(complexopt6) fileopt.message_type = _AGGREGATE google_dot_protobuf_dot_descriptor__pb2.FileOptions.RegisterExtension(fileopt) msgopt.message_type = _AGGREGATE google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(msgopt) fieldopt.message_type = _AGGREGATE google_dot_protobuf_dot_descriptor__pb2.FieldOptions.RegisterExtension(fieldopt) enumopt.message_type = _AGGREGATE google_dot_protobuf_dot_descriptor__pb2.EnumOptions.RegisterExtension(enumopt) enumvalopt.message_type = _AGGREGATE google_dot_protobuf_dot_descriptor__pb2.EnumValueOptions.RegisterExtension(enumvalopt) serviceopt.message_type = _AGGREGATE google_dot_protobuf_dot_descriptor__pb2.ServiceOptions.RegisterExtension(serviceopt) methodopt.message_type = _AGGREGATE google_dot_protobuf_dot_descriptor__pb2.MethodOptions.RegisterExtension(methodopt) required_enum_opt.message_type = _OLDOPTIONTYPE google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(required_enum_opt) _COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4.extensions_by_name['complex_opt4'].message_type = _COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4 google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(_COMPLEXOPTIONTYPE2_COMPLEXOPTIONTYPE4.extensions_by_name['complex_opt4']) _AGGREGATEMESSAGESETELEMENT.extensions_by_name['message_set_extension'].message_type = _AGGREGATEMESSAGESETELEMENT AggregateMessageSet.RegisterExtension(_AGGREGATEMESSAGESETELEMENT.extensions_by_name['message_set_extension']) _AGGREGATE.extensions_by_name['nested'].message_type = _AGGREGATE google_dot_protobuf_dot_descriptor__pb2.FileOptions.RegisterExtension(_AGGREGATE.extensions_by_name['nested']) google_dot_protobuf_dot_descriptor__pb2.FileOptions.RegisterExtension(_NESTEDOPTIONTYPE.extensions_by_name['nested_extension']) DESCRIPTOR._options = None _AGGREGATEENUM._options = None _AGGREGATEENUM.values_by_name["VALUE"]._options = None _TESTMESSAGEWITHCUSTOMOPTIONS.oneofs_by_name['AnOneof']._options = None _TESTMESSAGEWITHCUSTOMOPTIONS_ANENUM._options = None _TESTMESSAGEWITHCUSTOMOPTIONS_ANENUM.values_by_name["ANENUM_VAL2"]._options = None _TESTMESSAGEWITHCUSTOMOPTIONS.fields_by_name['field1']._options = None _TESTMESSAGEWITHCUSTOMOPTIONS._options = None _CUSTOMOPTIONMININTEGERVALUES._options = None _CUSTOMOPTIONMAXINTEGERVALUES._options = None _CUSTOMOPTIONOTHERVALUES._options = None _SETTINGREALSFROMPOSITIVEINTS._options = None _SETTINGREALSFROMNEGATIVEINTS._options = None _VARIOUSCOMPLEXOPTIONS._options = None _AGGREGATEMESSAGESET._options = None _AGGREGATEMESSAGE.fields_by_name['fieldname']._options = None _AGGREGATEMESSAGE._options = None _NESTEDOPTIONTYPE_NESTEDMESSAGE.fields_by_name['nested_field']._options = None _NESTEDOPTIONTYPE_NESTEDMESSAGE._options = None _NESTEDOPTIONTYPE_NESTEDENUM._options = None _NESTEDOPTIONTYPE_NESTEDENUM.values_by_name["NESTED_ENUM_VALUE"]._options = None _NESTEDOPTIONTYPE.extensions_by_name['nested_extension']._options = None _TESTMESSAGEWITHREQUIREDENUMOPTION._options = None _TESTSERVICEWITHCUSTOMOPTIONS = _descriptor.ServiceDescriptor( name='TestServiceWithCustomOptions', full_name='protobuf_unittest.TestServiceWithCustomOptions', file=DESCRIPTOR, index=0, serialized_options=b'\220\262\213\036\323\333\200\313I', create_key=_descriptor._internal_create_key, serialized_start=3142, serialized_end=3284, methods=[ _descriptor.MethodDescriptor( name='Foo', full_name='protobuf_unittest.TestServiceWithCustomOptions.Foo', index=0, containing_service=None, input_type=_CUSTOMOPTIONFOOREQUEST, output_type=_CUSTOMOPTIONFOORESPONSE, serialized_options=b'\340\372\214\036\002', create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_TESTSERVICEWITHCUSTOMOPTIONS) DESCRIPTOR.services_by_name['TestServiceWithCustomOptions'] = _TESTSERVICEWITHCUSTOMOPTIONS _AGGREGATESERVICE = _descriptor.ServiceDescriptor( name='AggregateService', full_name='protobuf_unittest.AggregateService', file=DESCRIPTOR, index=1, serialized_options=b'\312\373\216;\023\022\021ServiceAnnotation', create_key=_descriptor._internal_create_key, serialized_start=3287, serialized_end=3440, methods=[ _descriptor.MethodDescriptor( name='Method', full_name='protobuf_unittest.AggregateService.Method', index=0, containing_service=None, input_type=_AGGREGATEMESSAGE, output_type=_AGGREGATEMESSAGE, serialized_options=b'\312\310\226;\022\022\020MethodAnnotation', create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_AGGREGATESERVICE) DESCRIPTOR.services_by_name['AggregateService'] = _AGGREGATESERVICE TestServiceWithCustomOptions = service_reflection.GeneratedServiceType('TestServiceWithCustomOptions', (_service.Service,), dict( DESCRIPTOR = _TESTSERVICEWITHCUSTOMOPTIONS, __module__ = 'google.protobuf.unittest_custom_options_pb2' )) TestServiceWithCustomOptions_Stub = service_reflection.GeneratedServiceStubType('TestServiceWithCustomOptions_Stub', (TestServiceWithCustomOptions,), dict( DESCRIPTOR = _TESTSERVICEWITHCUSTOMOPTIONS, __module__ = 'google.protobuf.unittest_custom_options_pb2' )) AggregateService = service_reflection.GeneratedServiceType('AggregateService', (_service.Service,), dict( DESCRIPTOR = _AGGREGATESERVICE, __module__ = 'google.protobuf.unittest_custom_options_pb2' )) AggregateService_Stub = service_reflection.GeneratedServiceStubType('AggregateService_Stub', (AggregateService,), dict( DESCRIPTOR = _AGGREGATESERVICE, __module__ = 'google.protobuf.unittest_custom_options_pb2' )) # @@protoc_insertion_point(module_scope)
47.59589
11,592
0.801012
cb2e0f0ccf935d5273651b23d7facc7c376e6711
3,347
py
Python
dist.py
kwadrat/s_dist
a0c8e6a0420bcc5f15fbbdf4ccbea9d9afd97902
[ "MIT" ]
null
null
null
dist.py
kwadrat/s_dist
a0c8e6a0420bcc5f15fbbdf4ccbea9d9afd97902
[ "MIT" ]
null
null
null
dist.py
kwadrat/s_dist
a0c8e6a0420bcc5f15fbbdf4ccbea9d9afd97902
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- import sys import unittest def thresh(value): return (6 * (value + 100) / 50) class Box: def __init__(self): ''' Box: ''' self.ls = [] def add(self, value, tm=None): ''' Box: Dodaj kolejną wartość do listy ''' if tm is not None and tm > thresh(value): self.ls = [value] else: if value not in self.ls: self.ls.append(value) if len(self.ls) > 2: if ( abs(self.ls[2] - self.ls[0]) > abs(self.ls[2] - self.ls[1])): del self.ls[0] else: del self.ls[1] def get(self): ''' Box: Wyznacz średnią wartość listy ''' if self.ls: return sum(self.ls) / (len(self.ls)) else: return None class TestDist(unittest.TestCase): def test_something(self): ''' TestDist: ''' obk = Box() obk.add(10, 0) self.assertEqual(obk.get(), 10) obk.add(12) self.assertEqual(obk.get(), 11) def test_second(self): ''' TestDist: ''' obk = Box() obk.add(20) obk.add(30) self.assertEqual(obk.get(), 25) obk.add(40) self.assertEqual(obk.get(), 35) def test_third(self): ''' TestDist: Pomiń element bardziej odległy (czyli drugi) ''' obk = Box() obk.add(2) obk.add(10) obk.add(0) self.assertEqual(obk.get(), 1) def test_four(self): ''' TestDist: Jeśli element jest już na liście jako pierwszy, to zignoruj ten nowy element. ''' obk = Box() obk.add(2) obk.add(10) obk.add(2) self.assertEqual(obk.get(), 6) def test_fifth(self): ''' TestDist: Jeśli element jest już na liście w dowolnym miejsciu, to zignoruj ten nowy element. ''' obk = Box() obk.add(2) obk.add(10) obk.add(10) self.assertEqual(obk.get(), 6) def test_sixth(self): ''' TestDist: Wyrzuć wszystkie elementy jeśli czas jest większy niż 10 sekund ''' obk = Box() obk.add(2) obk.add(10) obk.add(30, 12) self.assertEqual(obk.get(), 20) def test_seventh(self): ''' TestDist: Obsługa pustej listy ''' obk = Box() self.assertEqual(obk.get(), None) def test_eighth(self): ''' TestDist: ''' for i in range(30, 0, -1): print(i) obk = Box() obk.add(2) obk.add(10) obk.add(30, i) self.assertEqual(obk.get(), 30) def test_ninth(self): ''' TestDist: ''' self.assertEqual(thresh(15), 13.8) self.assertEqual(thresh(16), 13.92) if __name__ == '__main__': if len(sys.argv) == 2 and sys.argv[1] == 'test': unittest.main(argv=sys.argv[:1]) else: for i in range(0, 30): print('%s %s' % (i, thresh(i)))
22.165563
60
0.45115
834518c45369bd86c1419ef0546e1a751f74c5ec
6,868
py
Python
test/integration/ggrc/integrations/test_asmt_sync_job.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/integration/ggrc/integrations/test_asmt_sync_job.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/integration/ggrc/integrations/test_asmt_sync_job.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (C) 2020 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Integration test for Assessment object sync cron job.""" from datetime import datetime import ddt import mock from ggrc import settings from ggrc.models import all_models from ggrc.integrations.synchronization_jobs import assessment_sync_job from ggrc.integrations.synchronization_jobs import sync_utils from ggrc.integrations import constants from integration import ggrc from integration.ggrc.models import factories @ddt.ddt @mock.patch.object(settings, "ISSUE_TRACKER_ENABLED", True) @mock.patch('ggrc.integrations.issues.Client.update_issue', return_value=mock.MagicMock()) class TestAsmtSyncJob(ggrc.TestCase): """Test cron job for sync Assessment object attributes.""" @staticmethod def _create_asmt(people_sync_enabled): """Helper function creating assessment and audit.""" with factories.single_commit(): asmt = factories.AssessmentFactory() factories.IssueTrackerIssueFactory( enabled=True, issue_tracked_obj=asmt.audit, people_sync_enabled=people_sync_enabled, **TestAsmtSyncJob._issuetracker_data() ) factories.IssueTrackerIssueFactory( enabled=True, issue_tracked_obj=asmt, due_date=datetime.utcnow(), **TestAsmtSyncJob._issuetracker_data() ) return asmt @staticmethod def _issuetracker_data(): """Helper function returning default issue tracker settings.""" return dict( component_id=constants.DEFAULT_ISSUETRACKER_VALUES["component_id"], hotlist_id=constants.DEFAULT_ISSUETRACKER_VALUES["hotlist_id"], issue_type=constants.DEFAULT_ISSUETRACKER_VALUES["issue_type"], issue_priority=constants.DEFAULT_ISSUETRACKER_VALUES["issue_priority"], issue_severity=constants.DEFAULT_ISSUETRACKER_VALUES["issue_severity"], ) @staticmethod def _to_issuetrakcer_repr(asmt): """Return issue tracker representation of assessment.""" return { asmt.issuetracker_issue.issue_id: dict( component_id=int(asmt.issuetracker_issue.component_id), status=asmt.status, type=asmt.issuetracker_issue.issue_type, priority=asmt.issuetracker_issue.issue_priority, severity=asmt.issuetracker_issue.issue_severity, reporter=asmt.issuetracker_issue.reporter or "", assignee=asmt.issuetracker_issue.assignee or "", verifier=asmt.issuetracker_issue.assignee or "", ccs=asmt.issuetracker_issue.cc_list or [], ), } @staticmethod def _construct_expected_upd_call(current_repr, new_audit_captains=(), new_asmt_assignees=(), people_sync_enabled=False): """Return expected args for client update_issue call.""" issue_id, = current_repr.keys() body = dict(current_repr[issue_id]) new_audit_captains = {a.email for a in new_audit_captains} new_asmt_assignees = {a.email for a in new_asmt_assignees} if people_sync_enabled: if new_audit_captains: body["reporter"] = min(new_audit_captains) if new_asmt_assignees: body["assignee"] = min(new_asmt_assignees) body["verifier"] = body["assignee"] body["ccs"] = list( (new_audit_captains | new_asmt_assignees) - {body["reporter"], body["assignee"]} ) body["status"] = constants.STATUSES_MAPPING.get(body["status"]) return str(issue_id), body @ddt.data(True, False) def test_assignee_people_sync(self, people_sync_enabled, update_issue_mock): """Test sync of Assignees when people_sync_enabled is on/off.""" asmt = self._create_asmt(people_sync_enabled=people_sync_enabled) issuetracker_repr = self._to_issuetrakcer_repr(asmt) with factories.single_commit(): assignee_1 = factories.PersonFactory() assignee_2 = factories.PersonFactory() expected_upd_args = self._construct_expected_upd_call( current_repr=issuetracker_repr, new_asmt_assignees=(assignee_1, assignee_2), people_sync_enabled=people_sync_enabled, ) asmt.add_person_with_role_name(assignee_1, "Assignees") asmt.add_person_with_role_name(assignee_2, "Assignees") with mock.patch.object(sync_utils, "iter_issue_batches", return_value=[issuetracker_repr]): assessment_sync_job.sync_assessment_attributes() update_issue_mock.assert_called_once_with(*expected_upd_args) @ddt.data(True, False) def test_captains_people_sync_on(self, people_sync_enabled, update_issue_mock): """Test sync of Audit Captain when people_sync_enabled is on/off.""" asmt = self._create_asmt(people_sync_enabled=people_sync_enabled) issuetracker_repr = self._to_issuetrakcer_repr(asmt) with factories.single_commit(): audit_captain_1 = factories.PersonFactory() audit_captain_2 = factories.PersonFactory() expected_upd_args = self._construct_expected_upd_call( current_repr=issuetracker_repr, new_audit_captains=(audit_captain_1, audit_captain_2), people_sync_enabled=people_sync_enabled, ) asmt.audit.add_person_with_role_name(audit_captain_1, "Audit Captains") asmt.audit.add_person_with_role_name(audit_captain_2, "Audit Captains") with mock.patch.object(sync_utils, "iter_issue_batches", return_value=[issuetracker_repr]): assessment_sync_job.sync_assessment_attributes() update_issue_mock.assert_called_once_with(*expected_upd_args) def test_empty_due_date_sync(self, update_issue_mock): """Test adding empty due_date in Issue""" due_date = None with factories.single_commit(): assmt = self._create_asmt(True) assmt.start_date = due_date issue = assmt.issuetracker_issue issuetracker_issue_id = issue.id iti = self._to_issuetrakcer_repr(assmt) iti[assmt.issuetracker_issue.issue_id].update({ "custom_fields": [{ constants.CustomFields.DUE_DATE: issue.due_date.strftime("%Y-%m-%d") }], }) batches = [iti] with mock.patch.object( sync_utils, "iter_issue_batches", return_value=batches ): assessment_sync_job.sync_assessment_attributes() issue_id = iti.keys()[0] payload = iti[issue_id] payload["custom_fields"] = [{ 'display_string': 'Due Date', 'type': 'DATE', 'name': 'Due Date', 'value': None, }] payload["status"] = 'ASSIGNED' update_issue_mock.assert_called_once_with(issue_id, payload) issue = all_models.IssuetrackerIssue.query.get(issuetracker_issue_id) self.assertIsNone(issue.due_date)
38.155556
79
0.703698
078476690ad123517df847f294bf38e86d99b3a3
3,009
py
Python
modules/lex_bot_importer.py
adamhamden/lex-bot
3c21b8d60607950c707b97ff5ba8491d40e31592
[ "MIT" ]
null
null
null
modules/lex_bot_importer.py
adamhamden/lex-bot
3c21b8d60607950c707b97ff5ba8491d40e31592
[ "MIT" ]
null
null
null
modules/lex_bot_importer.py
adamhamden/lex-bot
3c21b8d60607950c707b97ff5ba8491d40e31592
[ "MIT" ]
null
null
null
import boto3 import pprint import json import os class LexBotImporter: def __init__(self): self.client = boto3.client('lex-models') def import_bot(self, bot_file=None, file_path=None): bot_data = self._parse_bot_file(bot_file, file_path) self._construct_bot(bot_data) @staticmethod def _parse_bot_file(bot_file=None, file_path=None): if bot_file is None: raise RuntimeError("ERROR: No bot file was provided") return if file_path is None: file_path = os.path.dirname(os.path.abspath(__file__)) print("No filepath provided, using current file path") filename = os.path.join(file_path, bot_file) try: with open(filename) as f: bot_data = json.load(f) except FileNotFoundError: print("ERROR: Bot file was not found") return print("Successfully parsed {}".format(bot_file)) return bot_data def _construct_bot(self, bot_data): self._import_slot_types(bot_data) self._import_intents(bot_data) self._import_bot_configurations(bot_data) def _import_slot_types(self, bot_data): for slot in bot_data['resource']['slotTypes']: del slot['version'] # check if slot exists try: response = self.client.get_slot_type(name=slot['name'], version='$LATEST') slot['checksum'] = response['checksum'] except self.client.exceptions.NotFoundException: pass self.client.put_slot_type(**slot) print("Successfully imported slot type {}".format(slot['name'])) def _import_intents(self, bot_data): for intent in bot_data['resource']['intents']: del intent['version'] # check if intent exists try: response = self.client.get_intent(name=intent['name'], version='$LATEST') intent['checksum'] = response['checksum'] except self.client.exceptions.NotFoundException: pass self.client.put_intent(**intent) print("Successfully imported intent {}".format(intent['name'])) def _import_bot_configurations(self, bot_data): bot = bot_data['resource'] del bot['version'] del bot['slotTypes'] # check if bot exists try: response = self.client.get_bot(name=bot['name'], versionOrAlias='$LATEST') bot['checksum'] = response['checksum'] except self.client.exceptions.NotFoundException: pass intent_list = [] for intent in bot_data['resource']['intents']: intent_list.append({'intentName': intent['name'], 'intentVersion':'$LATEST'}) bot['intents'] = intent_list response = self.client.put_bot(**bot) print("Successfully imported bot {}".format(bot['name'])) pprint.pprint(response)
27.605505
90
0.600199
09d98d61117490010bd9092f0a3d521efac6767e
793
py
Python
gen_locale.py
iida-hayato/factorio-not-included
4350c02bd301646245733a5cb37bb446f24950b9
[ "MIT" ]
3
2021-02-06T01:58:24.000Z
2021-12-23T03:51:44.000Z
gen_locale.py
iida-hayato/factorio-not-included
4350c02bd301646245733a5cb37bb446f24950b9
[ "MIT" ]
null
null
null
gen_locale.py
iida-hayato/factorio-not-included
4350c02bd301646245733a5cb37bb446f24950b9
[ "MIT" ]
null
null
null
import re def gen_with(type,path=''): if path == '': path = f'prototypes/{type}.lua' gen_from_file(type, path) def gen_from_file(type, path): with open(path) as f: lineList = f.readlines() for line in lineList: target = r'^ *name = ' if re.search(target, line): new_line = re.findall(r'name = "(.*)"',line) name = new_line[0] print(f'{name}={name}') print(f'[item-name]') gen_with('item','prototypes/entity-item.lua') gen_with('item') print(f'[fluid-name]') gen_with('fluid','prototypes/fluids.lua') print(f'[entity-name]') gen_with('entity') print(f'[recipe-name]') gen_with('recipe') gen_with('recipe','prototypes/entity-recipe.lua') print(f'[technology-name]') gen_with('tech')
25.580645
60
0.596469
1716751a27d8f123957b12b8474c789ae4568729
115
py
Python
module1-web-application-development-with-flask/APP/__init__.py
lucguittard/DS-Unit-3-Sprint-3-Productization-and-Cloud
79c2c8ec02a673b135da1d012747fee82d50ce35
[ "MIT" ]
1
2020-05-28T21:56:57.000Z
2020-05-28T21:56:57.000Z
module1-web-application-development-with-flask/APP/__init__.py
lucguittard/DS-Unit-3-Sprint-3-Productization-and-Cloud
79c2c8ec02a673b135da1d012747fee82d50ce35
[ "MIT" ]
4
2021-06-02T00:41:19.000Z
2022-03-12T00:07:13.000Z
module1-web-application-development-with-flask/APP/__init__.py
lucguittard/DS-Unit-3-Sprint-3-Productization-and-Cloud
79c2c8ec02a673b135da1d012747fee82d50ce35
[ "MIT" ]
null
null
null
"""Entry point for twitoff flask app""" from .app import create_app APP = create_app #no relation to folder name
23
45
0.747826
612d37597f0f5c95f38a16dade99500c6223ed3d
2,689
py
Python
test/_utils/_common_utils_for_test.py
Nayef211/data
66b7ac07f75c45f1cc6aed71423fdb5d29a9648f
[ "BSD-3-Clause" ]
null
null
null
test/_utils/_common_utils_for_test.py
Nayef211/data
66b7ac07f75c45f1cc6aed71423fdb5d29a9648f
[ "BSD-3-Clause" ]
null
null
null
test/_utils/_common_utils_for_test.py
Nayef211/data
66b7ac07f75c45f1cc6aed71423fdb5d29a9648f
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. import os import tempfile from torch.utils.data import IterDataPipe from typing import Any, List, Tuple, TypeVar T_co = TypeVar("T_co", covariant=True) class IDP_NoLen(IterDataPipe): def __init__(self, input_dp): super().__init__() self.input_dp = input_dp def __iter__(self): for i in self.input_dp: yield i def get_name(path_and_stream): return os.path.basename(path_and_stream[0]), path_and_stream[1] # Given a DataPipe and integer n, iterate the DataPipe for n elements and store the elements into a list # Then, reset the DataPipe and return a tuple of two lists # 1. A list of elements yielded before the reset # 2. A list of all elements of the DataPipe after the reset def reset_after_n_next_calls(datapipe: IterDataPipe[T_co], n: int) -> Tuple[List[T_co], List[T_co]]: it = iter(datapipe) res_before_reset = [] for _ in range(n): res_before_reset.append(next(it)) return res_before_reset, list(datapipe) def create_temp_dir_and_files() -> List[Any]: # The temp dir and files within it will be released and deleted in tearDown(). # Adding `noqa: P201` to avoid mypy's warning on not releasing the dir handle within this function. temp_dir = tempfile.TemporaryDirectory() # noqa: P201 temp_dir_path = temp_dir.name with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, prefix="1", suffix=".txt") as f: temp_file1_name = f.name with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, prefix="2", suffix=".byte") as f: temp_file2_name = f.name with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, prefix="3", suffix=".empty") as f: temp_file3_name = f.name with open(temp_file1_name, "w") as f1: f1.write("0123456789abcdef") with open(temp_file2_name, "wb") as f2: f2.write(b"0123456789abcdef") temp_sub_dir = tempfile.TemporaryDirectory(dir=temp_dir_path) # noqa: P201 temp_sub_dir_path = temp_sub_dir.name with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, prefix="4", suffix=".txt") as f: temp_sub_file1_name = f.name with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, prefix="5", suffix=".byte") as f: temp_sub_file2_name = f.name with open(temp_sub_file1_name, "w") as f1: f1.write("0123456789abcdef") with open(temp_sub_file2_name, "wb") as f2: f2.write(b"0123456789abcdef") return [ (temp_dir, temp_file1_name, temp_file2_name, temp_file3_name), (temp_sub_dir, temp_sub_file1_name, temp_sub_file2_name), ]
37.347222
107
0.708814
7c9ddf2c7258d54413713fd8792353fb1ae0f5d4
9,562
py
Python
heat/tests/test_sahara_cluster.py
pshchelo/heat
6cf94a3ece89d77b839f61292e5f023c3f192c82
[ "Apache-2.0" ]
null
null
null
heat/tests/test_sahara_cluster.py
pshchelo/heat
6cf94a3ece89d77b839f61292e5f023c3f192c82
[ "Apache-2.0" ]
null
null
null
heat/tests/test_sahara_cluster.py
pshchelo/heat
6cf94a3ece89d77b839f61292e5f023c3f192c82
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2014 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import mock from oslo_config import cfg import six from heat.common import exception from heat.common import template_format from heat.engine.clients.os import glance from heat.engine.clients.os import neutron from heat.engine.clients.os import sahara from heat.engine.resources.openstack.sahara import sahara_cluster as sc from heat.engine import scheduler from heat.tests import common from heat.tests import utils cluster_stack_template = """ heat_template_version: 2013-05-23 description: Hadoop Cluster by Sahara resources: super-cluster: type: OS::Sahara::Cluster properties: name: super-cluster plugin_name: vanilla hadoop_version: 2.3.0 cluster_template_id: some_cluster_template_id default_image_id: some_image key_name: admin neutron_management_network: some_network """ class FakeCluster(object): def __init__(self, status='Active'): self.status = status self.id = "some_id" self.name = "super-cluster" self.info = {"HDFS": {"NameNode": "hdfs://hostname:port", "Web UI": "http://host_ip:port"}} class SaharaClusterTest(common.HeatTestCase): def setUp(self): super(SaharaClusterTest, self).setUp() self.patchobject(sc.constraints.CustomConstraint, '_is_valid' ).return_value = True self.patchobject(glance.GlanceClientPlugin, 'get_image_id' ).return_value = 'some_image_id' self.patchobject(neutron.NeutronClientPlugin, '_create') self.patchobject(neutron.NeutronClientPlugin, 'find_neutron_resource' ).return_value = 'some_network_id' self.sahara_mock = mock.MagicMock() self.patchobject(sahara.SaharaClientPlugin, '_create' ).return_value = self.sahara_mock self.cl_mgr = self.sahara_mock.clusters self.fake_cl = FakeCluster() self.t = template_format.parse(cluster_stack_template) def _init_cluster(self, template): self.stack = utils.parse_stack(template) cluster = self.stack['super-cluster'] return cluster def _create_cluster(self, template): cluster = self._init_cluster(template) self.cl_mgr.create.return_value = self.fake_cl self.cl_mgr.get.return_value = self.fake_cl scheduler.TaskRunner(cluster.create)() self.assertEqual((cluster.CREATE, cluster.COMPLETE), cluster.state) self.assertEqual(self.fake_cl.id, cluster.resource_id) return cluster def test_cluster_create(self): self._create_cluster(self.t) expected_args = ('super-cluster', 'vanilla', '2.3.0') expected_kwargs = {'cluster_template_id': 'some_cluster_template_id', 'user_keypair_id': 'admin', 'default_image_id': 'some_image_id', 'net_id': 'some_network_id'} self.cl_mgr.create.assert_called_once_with(*expected_args, **expected_kwargs) self.cl_mgr.get.assert_called_once_with(self.fake_cl.id) def test_cluster_delete(self): cluster = self._create_cluster(self.t) self.cl_mgr.get.side_effect = [ self.fake_cl, sahara.sahara_base.APIException(error_code=404)] self.cl_mgr.get.reset_mock() scheduler.TaskRunner(cluster.delete)() self.assertEqual((cluster.DELETE, cluster.COMPLETE), cluster.state) self.cl_mgr.delete.assert_called_once_with(self.fake_cl.id) self.assertEqual(2, self.cl_mgr.get.call_count) def test_cluster_create_fails(self): cfg.CONF.set_override('action_retry_limit', 0) cluster = self._init_cluster(self.t) self.cl_mgr.create.return_value = self.fake_cl self.cl_mgr.get.return_value = FakeCluster(status='Error') create_task = scheduler.TaskRunner(cluster.create) ex = self.assertRaises(exception.ResourceFailure, create_task) expected = 'ResourceInError: Went to status Error due to "Unknown"' self.assertEqual(expected, six.text_type(ex)) def test_cluster_delete_fails(self): cluster = self._create_cluster(self.t) self.cl_mgr.delete.side_effect = sahara.sahara_base.APIException() delete_task = scheduler.TaskRunner(cluster.delete) ex = self.assertRaises(exception.ResourceFailure, delete_task) expected = "APIException: None" self.assertEqual(expected, six.text_type(ex)) self.cl_mgr.delete.assert_called_once_with(self.fake_cl.id) def test_cluster_not_found_in_delete(self): cluster = self._create_cluster(self.t) self.cl_mgr.delete.side_effect = sahara.sahara_base.APIException( error_code=404) scheduler.TaskRunner(cluster.delete)() self.cl_mgr.delete.assert_called_once_with(self.fake_cl.id) def test_cluster_check_delete_complete_error(self): cluster = self._create_cluster(self.t) self.cl_mgr.get.side_effect = [ self.fake_cl, sahara.sahara_base.APIException()] self.cl_mgr.get.reset_mock() delete_task = scheduler.TaskRunner(cluster.delete) ex = self.assertRaises(exception.ResourceFailure, delete_task) expected = "APIException: None" self.assertEqual(expected, six.text_type(ex)) self.cl_mgr.delete.assert_called_once_with(self.fake_cl.id) self.assertEqual(2, self.cl_mgr.get.call_count) def test_cluster_delete_cluster_in_error(self): cluster = self._create_cluster(self.t) self.cl_mgr.get.side_effect = [ self.fake_cl, FakeCluster(status='Error')] self.cl_mgr.get.reset_mock() delete_task = scheduler.TaskRunner(cluster.delete) ex = self.assertRaises(exception.ResourceFailure, delete_task) expected = 'ResourceInError: Went to status Error due to "Unknown"' self.assertEqual(expected, six.text_type(ex)) self.cl_mgr.delete.assert_called_once_with(self.fake_cl.id) self.assertEqual(2, self.cl_mgr.get.call_count) def test_cluster_resolve_attribute(self): cluster = self._create_cluster(self.t) self.cl_mgr.get.reset_mock() self.assertEqual(self.fake_cl.info, cluster._resolve_attribute('info')) self.assertEqual(self.fake_cl.status, cluster._resolve_attribute('status')) self.assertEqual(2, self.cl_mgr.get.call_count) def test_cluster_resource_mapping(self): cluster = self._init_cluster(self.t) mapping = sc.resource_mapping() self.assertEqual(1, len(mapping)) self.assertEqual(sc.SaharaCluster, mapping['OS::Sahara::Cluster']) self.assertIsInstance(cluster, sc.SaharaCluster) def test_cluster_create_no_image_anywhere_fails(self): self.t['resources']['super-cluster']['properties'].pop( 'default_image_id') self.sahara_mock.cluster_templates.get.return_value = mock.Mock( default_image_id=None) cluster = self._init_cluster(self.t) ex = self.assertRaises(exception.ResourceFailure, scheduler.TaskRunner(cluster.create)) self.assertIsInstance(ex.exc, exception.StackValidationFailed) self.assertIn("image must be provided: " "Referenced cluster template some_cluster_template_id " "has no default_image_id defined.", six.text_type(ex.message)) def test_cluster_validate_no_network_on_neutron_fails(self): self.t['resources']['super-cluster']['properties'].pop( 'neutron_management_network') cluster = self._init_cluster(self.t) self.patchobject(cluster, 'is_using_neutron', return_value=True) ex = self.assertRaises(exception.StackValidationFailed, cluster.validate) self.assertEqual("neutron_management_network must be provided", six.text_type(ex)) def test_validation_error_for_deprecated_properties(self): tmpl = ''' heat_template_version: 2013-05-23 description: Hadoop Cluster by Sahara resources: super-cluster: type: OS::Sahara::Cluster properties: name: super-cluster plugin_name: vanilla hadoop_version: 2.3.0 cluster_template_id: some_cluster_template_id image: some_image default_image_id: test_image_id key_name: admin neutron_management_network: some_network ''' ct = self._init_cluster(template_format.parse(tmpl)) ex = self.assertRaises(exception.ResourcePropertyConflict, ct.validate) msg = 'Cannot define the following properties at the same time: ' self.assertIn(msg, six.text_type(ex))
42.123348
79
0.673395
8325bf8dc69d83238be966171dcdbe3035fdca9c
37,395
py
Python
tensorflow/targetDirectory/lib/python3.7/site-packages/tensorflow/python/ops/gen_state_ops.py
amyhxqin/heartbit
ebb67349e90654e275760d081b80b343bd2f45eb
[ "MIT" ]
null
null
null
tensorflow/targetDirectory/lib/python3.7/site-packages/tensorflow/python/ops/gen_state_ops.py
amyhxqin/heartbit
ebb67349e90654e275760d081b80b343bd2f45eb
[ "MIT" ]
null
null
null
tensorflow/targetDirectory/lib/python3.7/site-packages/tensorflow/python/ops/gen_state_ops.py
amyhxqin/heartbit
ebb67349e90654e275760d081b80b343bd2f45eb
[ "MIT" ]
null
null
null
"""Python wrappers around Brain. This file is MACHINE GENERATED! Do not edit. """ import collections from google.protobuf import text_format from tensorflow.core.framework import op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes from tensorflow.python.framework import op_def_registry from tensorflow.python.framework import ops from tensorflow.python.framework import op_def_library _assign_outputs = ["output_ref"] def assign(ref, value, validate_shape=None, use_locking=None, name=None): r"""Update 'ref' by assigning 'value' to it. This operation outputs "ref" after the assignment is done. This makes it easier to chain operations that need to use the reset value. Args: ref: A mutable `Tensor`. Should be from a `Variable` node. May be uninitialized. value: A `Tensor`. Must have the same type as `ref`. The value to be assigned to the variable. validate_shape: An optional `bool`. Defaults to `True`. If true, the operation will validate that the shape of 'value' matches the shape of the Tensor being assigned to. If false, 'ref' will take on the shape of 'value'. use_locking: An optional `bool`. Defaults to `True`. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: Same as "ref". Returned as a convenience for operations that want to use the new value after the variable has been reset. """ result = _op_def_lib.apply_op("Assign", ref=ref, value=value, validate_shape=validate_shape, use_locking=use_locking, name=name) return result _assign_add_outputs = ["output_ref"] def assign_add(ref, value, use_locking=None, name=None): r"""Update 'ref' by adding 'value' to it. This operation outputs "ref" after the update is done. This makes it easier to chain operations that need to use the reset value. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. Should be from a `Variable` node. value: A `Tensor`. Must have the same type as `ref`. The value to be added to the variable. use_locking: An optional `bool`. Defaults to `False`. If True, the addition will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: Same as "ref". Returned as a convenience for operations that want to use the new value after the variable has been updated. """ result = _op_def_lib.apply_op("AssignAdd", ref=ref, value=value, use_locking=use_locking, name=name) return result _assign_sub_outputs = ["output_ref"] def assign_sub(ref, value, use_locking=None, name=None): r"""Update 'ref' by subtracting 'value' from it. This operation outputs "ref" after the update is done. This makes it easier to chain operations that need to use the reset value. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. Should be from a `Variable` node. value: A `Tensor`. Must have the same type as `ref`. The value to be subtracted to the variable. use_locking: An optional `bool`. Defaults to `False`. If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: Same as "ref". Returned as a convenience for operations that want to use the new value after the variable has been updated. """ result = _op_def_lib.apply_op("AssignSub", ref=ref, value=value, use_locking=use_locking, name=name) return result _count_up_to_outputs = ["output"] def count_up_to(ref, limit, name=None): r"""Increments 'ref' until it reaches 'limit'. Args: ref: A mutable `Tensor`. Must be one of the following types: `int32`, `int64`. Should be from a scalar `Variable` node. limit: An `int`. If incrementing ref would bring it above limit, instead generates an 'OutOfRange' error. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `ref`. A copy of the input before increment. If nothing else modifies the input, the values produced will all be distinct. """ result = _op_def_lib.apply_op("CountUpTo", ref=ref, limit=limit, name=name) return result __destroy_temporary_variable_outputs = ["value"] def _destroy_temporary_variable(ref, var_name, name=None): r"""Destroys the temporary variable and returns its final value. Sets output to the value of the Tensor pointed to by 'ref', then destroys the temporary variable called 'var_name'. All other uses of 'ref' *must* have executed before this op. This is typically achieved by chaining the ref through each assign op, or by using control dependencies. Outputs the final value of the tensor pointed to by 'ref'. Args: ref: A mutable `Tensor`. A reference to the temporary variable tensor. var_name: A `string`. Name of the temporary variable, usually the name of the matching 'TemporaryVariable' op. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `ref`. """ result = _op_def_lib.apply_op("DestroyTemporaryVariable", ref=ref, var_name=var_name, name=name) return result _is_variable_initialized_outputs = ["is_initialized"] def is_variable_initialized(ref, name=None): r"""Checks whether a tensor has been initialized. Outputs boolean scalar indicating whether the tensor has been initialized. Args: ref: A mutable `Tensor`. Should be from a `Variable` node. May be uninitialized. name: A name for the operation (optional). Returns: A `Tensor` of type `bool`. """ result = _op_def_lib.apply_op("IsVariableInitialized", ref=ref, name=name) return result _scatter_add_outputs = ["output_ref"] def scatter_add(ref, indices, updates, use_locking=None, name=None): r"""Adds sparse updates to a variable reference. This operation computes # Scalar indices ref[indices, ...] += updates[...] # Vector indices (for each i) ref[indices[i], ...] += updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] += updates[i, ..., j, ...] This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions add. Requires `updates.shape = indices.shape + ref.shape[1:]`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="../../images/ScatterAdd.png" alt> </div> Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to add to `ref`. use_locking: An optional `bool`. Defaults to `False`. If True, the addition will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: Same as `ref`. Returned as a convenience for operations that want to use the updated values after the update is done. """ result = _op_def_lib.apply_op("ScatterAdd", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return result _scatter_div_outputs = ["output_ref"] def scatter_div(ref, indices, updates, use_locking=None, name=None): r"""Divides a variable reference by sparse updates. This operation computes # Scalar indices ref[indices, ...] /= updates[...] # Vector indices (for each i) ref[indices[i], ...] /= updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...] This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions divide. Requires `updates.shape = indices.shape + ref.shape[1:]`. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of values that `ref` is divided by. use_locking: An optional `bool`. Defaults to `False`. If True, the operation will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: Same as `ref`. Returned as a convenience for operations that want to use the updated values after the update is done. """ result = _op_def_lib.apply_op("ScatterDiv", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return result _scatter_mul_outputs = ["output_ref"] def scatter_mul(ref, indices, updates, use_locking=None, name=None): r"""Multiplies sparse updates into a variable reference. This operation computes # Scalar indices ref[indices, ...] *= updates[...] # Vector indices (for each i) ref[indices[i], ...] *= updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...] This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions multiply. Requires `updates.shape = indices.shape + ref.shape[1:]`. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to multiply to `ref`. use_locking: An optional `bool`. Defaults to `False`. If True, the operation will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: Same as `ref`. Returned as a convenience for operations that want to use the updated values after the update is done. """ result = _op_def_lib.apply_op("ScatterMul", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return result _scatter_nd_add_outputs = ["output_ref"] def scatter_nd_add(ref, indices, updates, use_locking=None, name=None): r"""Applies sparse addition between `updates` and individual values or slices within a given variable according to `indices`. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: ``` [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]. ``` For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that addition would look like this: ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) add = tf.scatter_nd_add(ref, indices, updates) with tf.Session() as sess: print sess.run(add) The resulting update to ref would look like this: [1, 13, 3, 14, 14, 6, 7, 20] See [tf.scatter_nd](#scatter_nd) for more details about how to make updates to slices. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. A mutable Tensor. Should be from a Variable node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. Must have the same type as `ref`. A Tensor. Must have the same type as ref. A tensor of updated values to add to ref. use_locking: An optional `bool`. Defaults to `False`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done. """ result = _op_def_lib.apply_op("ScatterNdAdd", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return result _scatter_nd_sub_outputs = ["output_ref"] def scatter_nd_sub(ref, indices, updates, use_locking=None, name=None): r"""Applies sparse subtraction between `updates` and individual values or slices within a given variable according to `indices`. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: ``` [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]. ``` For example, say we want to subtract 4 scattered elements from a rank-1 tensor with 8 elements. In Python, that subtraction would look like this: ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) sub = tf.scatter_nd_sub(ref, indices, updates) with tf.Session() as sess: print sess.run(sub) The resulting update to ref would look like this: [1, -9, 3, -6, -4, 6, 7, -4] See [tf.scatter_nd](#scatter_nd) for more details about how to make updates to slices. Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. A mutable Tensor. Should be from a Variable node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. Must have the same type as `ref`. A Tensor. Must have the same type as ref. A tensor of updated values to subtract from ref. use_locking: An optional `bool`. Defaults to `False`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done. """ result = _op_def_lib.apply_op("ScatterNdSub", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return result _scatter_nd_update_outputs = ["output_ref"] def scatter_nd_update(ref, indices, updates, use_locking=None, name=None): r"""Applies sparse `updates` to individual values or slices within a given variable according to `indices`. `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. `indices` must be integer tensor, containing indices into `ref`. It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`. The innermost dimension of `indices` (with length `K`) corresponds to indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th dimension of `ref`. `updates` is `Tensor` of rank `Q-1+P-K` with shape: ``` [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]. ``` For example, say we want to update 4 scattered elements to a rank-1 tensor to 8 elements. In Python, that update would look like this: ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8]) indices = tf.constant([[4], [3], [1] ,[7]]) updates = tf.constant([9, 10, 11, 12]) update = tf.scatter_nd_update(ref, indices, updates) with tf.Session() as sess: print sess.run(update) The resulting update to ref would look like this: [1, 11, 3, 10, 9, 6, 7, 12] See [tf.scatter_nd](#scatter_nd) for more details about how to make updates to slices. Args: ref: A mutable `Tensor`. A mutable Tensor. Should be from a Variable node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A Tensor. Must be one of the following types: int32, int64. A tensor of indices into ref. updates: A `Tensor`. Must have the same type as `ref`. A Tensor. Must have the same type as ref. A tensor of updated values to add to ref. use_locking: An optional `bool`. Defaults to `True`. An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A mutable `Tensor`. Has the same type as `ref`. Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done. """ result = _op_def_lib.apply_op("ScatterNdUpdate", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return result _scatter_sub_outputs = ["output_ref"] def scatter_sub(ref, indices, updates, use_locking=None, name=None): r"""Subtracts sparse updates to a variable reference. # Scalar indices ref[indices, ...] -= updates[...] # Vector indices (for each i) ref[indices[i], ...] -= updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...] This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. Duplicate entries are handled correctly: if multiple `indices` reference the same location, their (negated) contributions add. Requires `updates.shape = indices.shape + ref.shape[1:]`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="../../images/ScatterSub.png" alt> </div> Args: ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to subtract from `ref`. use_locking: An optional `bool`. Defaults to `False`. If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: Same as `ref`. Returned as a convenience for operations that want to use the updated values after the update is done. """ result = _op_def_lib.apply_op("ScatterSub", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return result _scatter_update_outputs = ["output_ref"] def scatter_update(ref, indices, updates, use_locking=None, name=None): r"""Applies sparse updates to a variable reference. This operation computes # Scalar indices ref[indices, ...] = updates[...] # Vector indices (for each i) ref[indices[i], ...] = updates[i, ...] # High rank indices (for each i, ..., j) ref[indices[i, ..., j], ...] = updates[i, ..., j, ...] This operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value. If values in `ref` is to be updated more than once, because there are duplicate entires in `indices`, the order at which the updates happen for each value is undefined. Requires `updates.shape = indices.shape + ref.shape[1:]`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="../../images/ScatterUpdate.png" alt> </div> Args: ref: A mutable `Tensor`. Should be from a `Variable` node. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor of indices into the first dimension of `ref`. updates: A `Tensor`. Must have the same type as `ref`. A tensor of updated values to store in `ref`. use_locking: An optional `bool`. Defaults to `True`. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: Same as `ref`. Returned as a convenience for operations that want to use the updated values after the update is done. """ result = _op_def_lib.apply_op("ScatterUpdate", ref=ref, indices=indices, updates=updates, use_locking=use_locking, name=name) return result __temporary_variable_outputs = ["ref"] def _temporary_variable(shape, dtype, var_name=None, name=None): r"""Returns a tensor that may be mutated, but only persists within a single step. This is an experimental op for internal use only and it is possible to use this op in unsafe ways. DO NOT USE unless you fully understand the risks. It is the caller's responsibility to ensure that 'ref' is eventually passed to a matching 'DestroyTemporaryVariable' op after all other uses have completed. Outputs a ref to the tensor state so it may be read or modified. E.g. var = state_ops._temporary_variable([1, 2], types.float_) var_name = var.op.name var = state_ops.assign(var, [[4.0, 5.0]]) var = state_ops.assign_add(var, [[6.0, 7.0]]) final = state_ops._destroy_temporary_variable(var, var_name=var_name) Args: shape: A `tf.TensorShape` or list of `ints`. The shape of the variable tensor. dtype: A `tf.DType`. The type of elements in the variable tensor. var_name: An optional `string`. Defaults to `""`. Overrides the name used for the temporary variable resource. Default value is the name of the 'TemporaryVariable' op (which is guaranteed unique). name: A name for the operation (optional). Returns: A mutable `Tensor` of type `dtype`. A reference to the variable tensor. """ result = _op_def_lib.apply_op("TemporaryVariable", shape=shape, dtype=dtype, var_name=var_name, name=name) return result __variable_outputs = ["ref"] def _variable(shape, dtype, container=None, shared_name=None, name=None): r"""Holds state in the form of a tensor that persists across steps. Outputs a ref to the tensor state so it may be read or modified. TODO(zhifengc/mrry): Adds a pointer to a more detail document about sharing states in tensorflow. Args: shape: A `tf.TensorShape` or list of `ints`. The shape of the variable tensor. dtype: A `tf.DType`. The type of elements in the variable tensor. container: An optional `string`. Defaults to `""`. If non-empty, this variable is placed in the given container. Otherwise, a default container is used. shared_name: An optional `string`. Defaults to `""`. If non-empty, this variable is named in the given bucket with this shared_name. Otherwise, the node name is used instead. name: A name for the operation (optional). Returns: A mutable `Tensor` of type `dtype`. A reference to the variable tensor. """ result = _op_def_lib.apply_op("Variable", shape=shape, dtype=dtype, container=container, shared_name=shared_name, name=name) return result def _InitOpDefLibrary(): op_list = op_def_pb2.OpList() text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list) op_def_registry.register_op_list(op_list) op_def_lib = op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib _InitOpDefLibrary.op_list_ascii = """op { name: "Assign" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "value" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" } attr { name: "validate_shape" type: "bool" default_value { b: true } } attr { name: "use_locking" type: "bool" default_value { b: true } } allows_uninitialized_input: true } op { name: "AssignAdd" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "value" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" allowed_values { list { type: DT_FLOAT type: DT_DOUBLE type: DT_INT64 type: DT_INT32 type: DT_UINT8 type: DT_UINT16 type: DT_INT16 type: DT_INT8 type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_QINT8 type: DT_QUINT8 type: DT_QINT32 type: DT_HALF } } } attr { name: "use_locking" type: "bool" default_value { b: false } } } op { name: "AssignSub" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "value" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" allowed_values { list { type: DT_FLOAT type: DT_DOUBLE type: DT_INT64 type: DT_INT32 type: DT_UINT8 type: DT_UINT16 type: DT_INT16 type: DT_INT8 type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_QINT8 type: DT_QUINT8 type: DT_QINT32 type: DT_HALF } } } attr { name: "use_locking" type: "bool" default_value { b: false } } } op { name: "CountUpTo" input_arg { name: "ref" type_attr: "T" is_ref: true } output_arg { name: "output" type_attr: "T" } attr { name: "limit" type: "int" } attr { name: "T" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } } op { name: "DestroyTemporaryVariable" input_arg { name: "ref" type_attr: "T" is_ref: true } output_arg { name: "value" type_attr: "T" } attr { name: "T" type: "type" } attr { name: "var_name" type: "string" } } op { name: "IsVariableInitialized" input_arg { name: "ref" type_attr: "dtype" is_ref: true } output_arg { name: "is_initialized" type: DT_BOOL } attr { name: "dtype" type: "type" } allows_uninitialized_input: true } op { name: "ScatterAdd" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "indices" type_attr: "Tindices" } input_arg { name: "updates" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" allowed_values { list { type: DT_FLOAT type: DT_DOUBLE type: DT_INT64 type: DT_INT32 type: DT_UINT8 type: DT_UINT16 type: DT_INT16 type: DT_INT8 type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_QINT8 type: DT_QUINT8 type: DT_QINT32 type: DT_HALF } } } attr { name: "Tindices" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } attr { name: "use_locking" type: "bool" default_value { b: false } } } op { name: "ScatterDiv" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "indices" type_attr: "Tindices" } input_arg { name: "updates" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" allowed_values { list { type: DT_FLOAT type: DT_DOUBLE type: DT_INT64 type: DT_INT32 type: DT_UINT8 type: DT_UINT16 type: DT_INT16 type: DT_INT8 type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_QINT8 type: DT_QUINT8 type: DT_QINT32 type: DT_HALF } } } attr { name: "Tindices" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } attr { name: "use_locking" type: "bool" default_value { b: false } } } op { name: "ScatterMul" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "indices" type_attr: "Tindices" } input_arg { name: "updates" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" allowed_values { list { type: DT_FLOAT type: DT_DOUBLE type: DT_INT64 type: DT_INT32 type: DT_UINT8 type: DT_UINT16 type: DT_INT16 type: DT_INT8 type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_QINT8 type: DT_QUINT8 type: DT_QINT32 type: DT_HALF } } } attr { name: "Tindices" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } attr { name: "use_locking" type: "bool" default_value { b: false } } } op { name: "ScatterNdAdd" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "indices" type_attr: "Tindices" } input_arg { name: "updates" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" allowed_values { list { type: DT_FLOAT type: DT_DOUBLE type: DT_INT64 type: DT_INT32 type: DT_UINT8 type: DT_UINT16 type: DT_INT16 type: DT_INT8 type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_QINT8 type: DT_QUINT8 type: DT_QINT32 type: DT_HALF } } } attr { name: "Tindices" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } attr { name: "use_locking" type: "bool" default_value { b: false } } } op { name: "ScatterNdSub" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "indices" type_attr: "Tindices" } input_arg { name: "updates" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" allowed_values { list { type: DT_FLOAT type: DT_DOUBLE type: DT_INT64 type: DT_INT32 type: DT_UINT8 type: DT_UINT16 type: DT_INT16 type: DT_INT8 type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_QINT8 type: DT_QUINT8 type: DT_QINT32 type: DT_HALF } } } attr { name: "Tindices" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } attr { name: "use_locking" type: "bool" default_value { b: false } } } op { name: "ScatterNdUpdate" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "indices" type_attr: "Tindices" } input_arg { name: "updates" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" } attr { name: "Tindices" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } attr { name: "use_locking" type: "bool" default_value { b: true } } } op { name: "ScatterSub" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "indices" type_attr: "Tindices" } input_arg { name: "updates" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" allowed_values { list { type: DT_FLOAT type: DT_DOUBLE type: DT_INT64 type: DT_INT32 type: DT_UINT8 type: DT_UINT16 type: DT_INT16 type: DT_INT8 type: DT_COMPLEX64 type: DT_COMPLEX128 type: DT_QINT8 type: DT_QUINT8 type: DT_QINT32 type: DT_HALF } } } attr { name: "Tindices" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } attr { name: "use_locking" type: "bool" default_value { b: false } } } op { name: "ScatterUpdate" input_arg { name: "ref" type_attr: "T" is_ref: true } input_arg { name: "indices" type_attr: "Tindices" } input_arg { name: "updates" type_attr: "T" } output_arg { name: "output_ref" type_attr: "T" is_ref: true } attr { name: "T" type: "type" } attr { name: "Tindices" type: "type" allowed_values { list { type: DT_INT32 type: DT_INT64 } } } attr { name: "use_locking" type: "bool" default_value { b: true } } } op { name: "TemporaryVariable" output_arg { name: "ref" type_attr: "dtype" is_ref: true } attr { name: "shape" type: "shape" } attr { name: "dtype" type: "type" } attr { name: "var_name" type: "string" default_value { s: "" } } is_stateful: true } op { name: "Variable" output_arg { name: "ref" type_attr: "dtype" is_ref: true } attr { name: "shape" type: "shape" } attr { name: "dtype" type: "type" } attr { name: "container" type: "string" default_value { s: "" } } attr { name: "shared_name" type: "string" default_value { s: "" } } is_stateful: true } """ _op_def_lib = _InitOpDefLibrary()
26.844939
204
0.621955
450e327d6bbd23bfdb940bfaa4a7447da4eca54b
4,840
py
Python
monai/data/png_saver.py
RobinCamarasa/MONAI
8207e1e2a3555ddc3fe938e058552651900dc951
[ "Apache-2.0" ]
null
null
null
monai/data/png_saver.py
RobinCamarasa/MONAI
8207e1e2a3555ddc3fe938e058552651900dc951
[ "Apache-2.0" ]
null
null
null
monai/data/png_saver.py
RobinCamarasa/MONAI
8207e1e2a3555ddc3fe938e058552651900dc951
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional, Union import numpy as np import torch from monai.data.png_writer import write_png from monai.data.utils import create_file_basename from monai.utils import InterpolateMode class PNGSaver: """ Save the data as png file, it can support single data content or a batch of data. Typically, the data can be segmentation predictions, call `save` for single data or call `save_batch` to save a batch of data together. If no meta data provided, use index from 0 as the filename prefix. """ def __init__( self, output_dir: str = "./", output_postfix: str = "seg", output_ext: str = ".png", resample: bool = True, mode: Union[InterpolateMode, str] = InterpolateMode.NEAREST, scale: Optional[int] = None, ) -> None: """ Args: output_dir: output image directory. output_postfix: a string appended to all output file names. output_ext: output file extension name. resample: whether to resample and resize if providing spatial_shape in the metadata. mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``} The interpolation mode. Defaults to ``"nearest"``. See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate scale: {``255``, ``65535``} postprocess data by clipping to [0, 1] and scaling [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling. """ self.output_dir = output_dir self.output_postfix = output_postfix self.output_ext = output_ext self.resample = resample self.mode: InterpolateMode = InterpolateMode(mode) self.scale = scale self._data_index = 0 def save(self, data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None: """ Save data into a png file. The meta_data could optionally have the following keys: - ``'filename_or_obj'`` -- for output file name creation, corresponding to filename or object. - ``'spatial_shape'`` -- for data output shape. If meta_data is None, use the default index (starting from 0) as the filename. Args: data: target data content that to be saved as a png format file. Assuming the data shape are spatial dimensions. Shape of the spatial dimensions (C,H,W). C should be 1, 3 or 4 meta_data: the meta data information corresponding to the data. Raises: ValueError: When ``data`` channels is not one of [1, 3, 4]. See Also :py:meth:`monai.data.png_writer.write_png` """ filename = meta_data["filename_or_obj"] if meta_data else str(self._data_index) self._data_index += 1 spatial_shape = meta_data.get("spatial_shape", None) if meta_data and self.resample else None if torch.is_tensor(data): data = data.detach().cpu().numpy() filename = create_file_basename(self.output_postfix, filename, self.output_dir) filename = f"{filename}{self.output_ext}" if data.shape[0] == 1: data = data.squeeze(0) elif 2 < data.shape[0] < 5: data = np.moveaxis(data, 0, -1) else: raise ValueError(f"Unsupported number of channels: {data.shape[0]}, available options are [1, 3, 4]") write_png( data, file_name=filename, output_spatial_shape=spatial_shape, mode=self.mode, scale=self.scale, ) def save_batch(self, batch_data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None: """Save a batch of data into png format files. Args: batch_data: target batch data content that save into png format. meta_data: every key-value in the meta_data is corresponding to a batch of data. """ for i, data in enumerate(batch_data): # save a batch of files self.save(data, {k: meta_data[k][i] for k in meta_data} if meta_data else None)
40.672269
113
0.633058
0cbaf33ea7ad3e657b9515399301c39989a2f22a
82,616
py
Python
test/sql/test_selectable.py
gujun4990/sqlalchemy
057bae2295feb86529a04f09cd2f3d4c2c6d88a8
[ "MIT" ]
1
2018-04-02T18:41:52.000Z
2018-04-02T18:41:52.000Z
test/sql/test_selectable.py
gujun4990/sqlalchemy
057bae2295feb86529a04f09cd2f3d4c2c6d88a8
[ "MIT" ]
null
null
null
test/sql/test_selectable.py
gujun4990/sqlalchemy
057bae2295feb86529a04f09cd2f3d4c2c6d88a8
[ "MIT" ]
3
2017-09-26T13:59:24.000Z
2020-12-04T17:51:54.000Z
"""Test various algorithmic properties of selectables.""" from sqlalchemy.testing import eq_, assert_raises, \ assert_raises_message, is_ from sqlalchemy import * from sqlalchemy.testing import fixtures, AssertsCompiledSQL, \ AssertsExecutionResults from sqlalchemy.sql import elements from sqlalchemy import testing from sqlalchemy.sql import util as sql_util, visitors, expression from sqlalchemy import exc from sqlalchemy.sql import table, column, null from sqlalchemy import util from sqlalchemy.schema import Column, Table, MetaData metadata = MetaData() table1 = Table('table1', metadata, Column('col1', Integer, primary_key=True), Column('col2', String(20)), Column('col3', Integer), Column('colx', Integer), ) table2 = Table('table2', metadata, Column('col1', Integer, primary_key=True), Column('col2', Integer, ForeignKey('table1.col1')), Column('col3', String(20)), Column('coly', Integer), ) keyed = Table('keyed', metadata, Column('x', Integer, key='colx'), Column('y', Integer, key='coly'), Column('z', Integer), ) class SelectableTest( fixtures.TestBase, AssertsExecutionResults, AssertsCompiledSQL): __dialect__ = 'default' def test_indirect_correspondence_on_labels(self): # this test depends upon 'distance' to # get the right result # same column three times s = select([table1.c.col1.label('c2'), table1.c.col1, table1.c.col1.label('c1')]) # this tests the same thing as # test_direct_correspondence_on_labels below - # that the presence of label() affects the 'distance' assert s.corresponding_column(table1.c.col1) is s.c.col1 assert s.corresponding_column(s.c.col1) is s.c.col1 assert s.corresponding_column(s.c.c1) is s.c.c1 def test_labeled_subquery_twice(self): scalar_select = select([table1.c.col1]).label('foo') s1 = select([scalar_select]) s2 = select([scalar_select, scalar_select]) eq_( s1.c.foo.proxy_set, set([s1.c.foo, scalar_select, scalar_select.element]) ) eq_( s2.c.foo.proxy_set, set([s2.c.foo, scalar_select, scalar_select.element]) ) assert s1.corresponding_column(scalar_select) is s1.c.foo assert s2.corresponding_column(scalar_select) is s2.c.foo def test_label_grouped_still_corresponds(self): label = select([table1.c.col1]).label('foo') label2 = label.self_group() s1 = select([label]) s2 = select([label2]) assert s1.corresponding_column(label) is s1.c.foo assert s2.corresponding_column(label) is s2.c.foo def test_direct_correspondence_on_labels(self): # this test depends on labels being part # of the proxy set to get the right result l1, l2 = table1.c.col1.label('foo'), table1.c.col1.label('bar') sel = select([l1, l2]) sel2 = sel.alias() assert sel2.corresponding_column(l1) is sel2.c.foo assert sel2.corresponding_column(l2) is sel2.c.bar sel2 = select([table1.c.col1.label('foo'), table1.c.col2.label('bar')]) sel3 = sel.union(sel2).alias() assert sel3.corresponding_column(l1) is sel3.c.foo assert sel3.corresponding_column(l2) is sel3.c.bar def test_keyed_gen(self): s = select([keyed]) eq_(s.c.colx.key, 'colx') eq_(s.c.colx.name, 'x') assert s.corresponding_column(keyed.c.colx) is s.c.colx assert s.corresponding_column(keyed.c.coly) is s.c.coly assert s.corresponding_column(keyed.c.z) is s.c.z sel2 = s.alias() assert sel2.corresponding_column(keyed.c.colx) is sel2.c.colx assert sel2.corresponding_column(keyed.c.coly) is sel2.c.coly assert sel2.corresponding_column(keyed.c.z) is sel2.c.z def test_keyed_label_gen(self): s = select([keyed]).apply_labels() assert s.corresponding_column(keyed.c.colx) is s.c.keyed_colx assert s.corresponding_column(keyed.c.coly) is s.c.keyed_coly assert s.corresponding_column(keyed.c.z) is s.c.keyed_z sel2 = s.alias() assert sel2.corresponding_column(keyed.c.colx) is sel2.c.keyed_colx assert sel2.corresponding_column(keyed.c.coly) is sel2.c.keyed_coly assert sel2.corresponding_column(keyed.c.z) is sel2.c.keyed_z def test_keyed_c_collection_upper(self): c = Column('foo', Integer, key='bar') t = Table('t', MetaData(), c) is_(t.c.bar, c) def test_keyed_c_collection_lower(self): c = column('foo') c.key = 'bar' t = table('t', c) is_(t.c.bar, c) def test_clone_c_proxy_key_upper(self): c = Column('foo', Integer, key='bar') t = Table('t', MetaData(), c) s = select([t])._clone() assert c in s.c.bar.proxy_set def test_clone_c_proxy_key_lower(self): c = column('foo') c.key = 'bar' t = table('t', c) s = select([t])._clone() assert c in s.c.bar.proxy_set def test_no_error_on_unsupported_expr_key(self): from sqlalchemy.sql.expression import BinaryExpression def myop(x, y): pass t = table('t', column('x'), column('y')) expr = BinaryExpression(t.c.x, t.c.y, myop) s = select([t, expr]) eq_( s.c.keys(), ['x', 'y', expr.anon_label] ) def test_cloned_intersection(self): t1 = table('t1', column('x')) t2 = table('t2', column('x')) s1 = t1.select() s2 = t2.select() s3 = t1.select() s1c1 = s1._clone() s1c2 = s1._clone() s2c1 = s2._clone() s3c1 = s3._clone() eq_( expression._cloned_intersection( [s1c1, s3c1], [s2c1, s1c2] ), set([s1c1]) ) def test_cloned_difference(self): t1 = table('t1', column('x')) t2 = table('t2', column('x')) s1 = t1.select() s2 = t2.select() s3 = t1.select() s1c1 = s1._clone() s1c2 = s1._clone() s2c1 = s2._clone() s2c2 = s2._clone() s3c1 = s3._clone() eq_( expression._cloned_difference( [s1c1, s2c1, s3c1], [s2c1, s1c2] ), set([s3c1]) ) def test_distance_on_aliases(self): a1 = table1.alias('a1') for s in (select([a1, table1], use_labels=True), select([table1, a1], use_labels=True)): assert s.corresponding_column(table1.c.col1) \ is s.c.table1_col1 assert s.corresponding_column(a1.c.col1) is s.c.a1_col1 def test_join_against_self(self): jj = select([table1.c.col1.label('bar_col1')]) jjj = join(table1, jj, table1.c.col1 == jj.c.bar_col1) # test column directly against itself assert jjj.corresponding_column(jjj.c.table1_col1) \ is jjj.c.table1_col1 assert jjj.corresponding_column(jj.c.bar_col1) is jjj.c.bar_col1 # test alias of the join j2 = jjj.alias('foo') assert j2.corresponding_column(table1.c.col1) \ is j2.c.table1_col1 def test_clone_append_column(self): sel = select([literal_column('1').label('a')]) eq_(list(sel.c.keys()), ['a']) cloned = visitors.ReplacingCloningVisitor().traverse(sel) cloned.append_column(literal_column('2').label('b')) cloned.append_column(func.foo()) eq_(list(cloned.c.keys()), ['a', 'b', 'foo()']) def test_append_column_after_replace_selectable(self): basesel = select([literal_column('1').label('a')]) tojoin = select([ literal_column('1').label('a'), literal_column('2').label('b') ]) basefrom = basesel.alias('basefrom') joinfrom = tojoin.alias('joinfrom') sel = select([basefrom.c.a]) replaced = sel.replace_selectable( basefrom, basefrom.join(joinfrom, basefrom.c.a == joinfrom.c.a) ) self.assert_compile( replaced, "SELECT basefrom.a FROM (SELECT 1 AS a) AS basefrom " "JOIN (SELECT 1 AS a, 2 AS b) AS joinfrom " "ON basefrom.a = joinfrom.a" ) replaced.append_column(joinfrom.c.b) self.assert_compile( replaced, "SELECT basefrom.a, joinfrom.b FROM (SELECT 1 AS a) AS basefrom " "JOIN (SELECT 1 AS a, 2 AS b) AS joinfrom " "ON basefrom.a = joinfrom.a" ) def test_against_cloned_non_table(self): # test that corresponding column digs across # clone boundaries with anonymous labeled elements col = func.count().label('foo') sel = select([col]) sel2 = visitors.ReplacingCloningVisitor().traverse(sel) assert sel2.corresponding_column(col) is sel2.c.foo sel3 = visitors.ReplacingCloningVisitor().traverse(sel2) assert sel3.corresponding_column(col) is sel3.c.foo def test_with_only_generative(self): s1 = table1.select().as_scalar() self.assert_compile( s1.with_only_columns([s1]), "SELECT (SELECT table1.col1, table1.col2, " "table1.col3, table1.colx FROM table1) AS anon_1" ) def test_type_coerce_preserve_subq(self): class MyType(TypeDecorator): impl = Integer stmt = select([type_coerce(column('x'), MyType).label('foo')]) stmt2 = stmt.select() assert isinstance(stmt._raw_columns[0].type, MyType) assert isinstance(stmt.c.foo.type, MyType) assert isinstance(stmt2.c.foo.type, MyType) def test_select_on_table(self): sel = select([table1, table2], use_labels=True) assert sel.corresponding_column(table1.c.col1) \ is sel.c.table1_col1 assert sel.corresponding_column( table1.c.col1, require_embedded=True) is sel.c.table1_col1 assert table1.corresponding_column(sel.c.table1_col1) \ is table1.c.col1 assert table1.corresponding_column(sel.c.table1_col1, require_embedded=True) is None def test_join_against_join(self): j = outerjoin(table1, table2, table1.c.col1 == table2.c.col2) jj = select([table1.c.col1.label('bar_col1')], from_obj=[j]).alias('foo') jjj = join(table1, jj, table1.c.col1 == jj.c.bar_col1) assert jjj.corresponding_column(jjj.c.table1_col1) \ is jjj.c.table1_col1 j2 = jjj.alias('foo') assert j2.corresponding_column(jjj.c.table1_col1) \ is j2.c.table1_col1 assert jjj.corresponding_column(jj.c.bar_col1) is jj.c.bar_col1 def test_table_alias(self): a = table1.alias('a') j = join(a, table2) criterion = a.c.col1 == table2.c.col2 self.assert_(criterion.compare(j.onclause)) def test_alias_handles_column_context(self): # not quite a use case yet but this is expected to become # prominent w/ Postgresql's tuple functions stmt = select([table1.c.col1, table1.c.col2]) a = stmt.alias('a') self.assert_compile( select([func.foo(a)]), "SELECT foo(SELECT table1.col1, table1.col2 FROM table1) " "AS foo_1 FROM " "(SELECT table1.col1 AS col1, table1.col2 AS col2 FROM table1) " "AS a" ) def test_union(self): # tests that we can correspond a column in a Select statement # with a certain Table, against a column in a Union where one of # its underlying Selects matches to that same Table u = select([table1.c.col1, table1.c.col2, table1.c.col3, table1.c.colx, null().label('coly')]).union(select([table2.c.col1, table2.c.col2, table2.c.col3, null().label('colx'), table2.c.coly])) s1 = table1.select(use_labels=True) s2 = table2.select(use_labels=True) assert u.corresponding_column(s1.c.table1_col2) is u.c.col2 assert u.corresponding_column(s2.c.table2_col2) is u.c.col2 def test_union_precedence(self): # conflicting column correspondence should be resolved based on # the order of the select()s in the union s1 = select([table1.c.col1, table1.c.col2]) s2 = select([table1.c.col2, table1.c.col1]) s3 = select([table1.c.col3, table1.c.colx]) s4 = select([table1.c.colx, table1.c.col3]) u1 = union(s1, s2) assert u1.corresponding_column(table1.c.col1) is u1.c.col1 assert u1.corresponding_column(table1.c.col2) is u1.c.col2 u1 = union(s1, s2, s3, s4) assert u1.corresponding_column(table1.c.col1) is u1.c.col1 assert u1.corresponding_column(table1.c.col2) is u1.c.col2 assert u1.corresponding_column(table1.c.colx) is u1.c.col2 assert u1.corresponding_column(table1.c.col3) is u1.c.col1 def test_singular_union(self): u = union(select([table1.c.col1, table1.c.col2, table1.c.col3]), select([table1.c.col1, table1.c.col2, table1.c.col3])) u = union(select([table1.c.col1, table1.c.col2, table1.c.col3])) assert u.c.col1 is not None assert u.c.col2 is not None assert u.c.col3 is not None def test_alias_union(self): # same as testunion, except its an alias of the union u = select([table1.c.col1, table1.c.col2, table1.c.col3, table1.c.colx, null().label('coly')]).union( select([table2.c.col1, table2.c.col2, table2.c.col3, null().label('colx'), table2.c.coly]) ).alias('analias') s1 = table1.select(use_labels=True) s2 = table2.select(use_labels=True) assert u.corresponding_column(s1.c.table1_col2) is u.c.col2 assert u.corresponding_column(s2.c.table2_col2) is u.c.col2 assert u.corresponding_column(s2.c.table2_coly) is u.c.coly assert s2.corresponding_column(u.c.coly) is s2.c.table2_coly def test_union_of_alias(self): s1 = select([table1.c.col1, table1.c.col2]) s2 = select([table1.c.col1, table1.c.col2]).alias() u1 = union(s1, s2) assert u1.corresponding_column(s1.c.col1) is u1.c.col1 assert u1.corresponding_column(s2.c.col1) is u1.c.col1 u2 = union(s2, s1) assert u2.corresponding_column(s1.c.col1) is u2.c.col1 assert u2.corresponding_column(s2.c.col1) is u2.c.col1 def test_union_of_text(self): s1 = select([table1.c.col1, table1.c.col2]) s2 = text("select col1, col2 from foo").columns( column('col1'), column('col2')) u1 = union(s1, s2) assert u1.corresponding_column(s1.c.col1) is u1.c.col1 assert u1.corresponding_column(s2.c.col1) is u1.c.col1 u2 = union(s2, s1) assert u2.corresponding_column(s1.c.col1) is u2.c.col1 assert u2.corresponding_column(s2.c.col1) is u2.c.col1 @testing.emits_warning("Column 'col1'") def test_union_dupe_keys(self): s1 = select([table1.c.col1, table1.c.col2, table2.c.col1]) s2 = select([table2.c.col1, table2.c.col2, table2.c.col3]) u1 = union(s1, s2) assert u1.corresponding_column( s1.c._all_columns[0]) is u1.c._all_columns[0] assert u1.corresponding_column(s2.c.col1) is u1.c._all_columns[0] assert u1.corresponding_column(s1.c.col2) is u1.c.col2 assert u1.corresponding_column(s2.c.col2) is u1.c.col2 assert u1.corresponding_column(s2.c.col3) is u1.c._all_columns[2] assert u1.corresponding_column(table2.c.col1) is u1.c._all_columns[2] assert u1.corresponding_column(table2.c.col3) is u1.c._all_columns[2] @testing.emits_warning("Column 'col1'") def test_union_alias_dupe_keys(self): s1 = select([table1.c.col1, table1.c.col2, table2.c.col1]).alias() s2 = select([table2.c.col1, table2.c.col2, table2.c.col3]) u1 = union(s1, s2) assert u1.corresponding_column( s1.c._all_columns[0]) is u1.c._all_columns[0] assert u1.corresponding_column(s2.c.col1) is u1.c._all_columns[0] assert u1.corresponding_column(s1.c.col2) is u1.c.col2 assert u1.corresponding_column(s2.c.col2) is u1.c.col2 assert u1.corresponding_column(s2.c.col3) is u1.c._all_columns[2] # this differs from the non-alias test because table2.c.col1 is # more directly at s2.c.col1 than it is s1.c.col1. assert u1.corresponding_column(table2.c.col1) is u1.c._all_columns[0] assert u1.corresponding_column(table2.c.col3) is u1.c._all_columns[2] @testing.emits_warning("Column 'col1'") def test_union_alias_dupe_keys_grouped(self): s1 = select([table1.c.col1, table1.c.col2, table2.c.col1]).\ limit(1).alias() s2 = select([table2.c.col1, table2.c.col2, table2.c.col3]).limit(1) u1 = union(s1, s2) assert u1.corresponding_column( s1.c._all_columns[0]) is u1.c._all_columns[0] assert u1.corresponding_column(s2.c.col1) is u1.c._all_columns[0] assert u1.corresponding_column(s1.c.col2) is u1.c.col2 assert u1.corresponding_column(s2.c.col2) is u1.c.col2 assert u1.corresponding_column(s2.c.col3) is u1.c._all_columns[2] # this differs from the non-alias test because table2.c.col1 is # more directly at s2.c.col1 than it is s1.c.col1. assert u1.corresponding_column(table2.c.col1) is u1.c._all_columns[0] assert u1.corresponding_column(table2.c.col3) is u1.c._all_columns[2] def test_select_union(self): # like testaliasunion, but off a Select off the union. u = select([table1.c.col1, table1.c.col2, table1.c.col3, table1.c.colx, null().label('coly')]).union( select([table2.c.col1, table2.c.col2, table2.c.col3, null().label('colx'), table2.c.coly]) ).alias('analias') s = select([u]) s1 = table1.select(use_labels=True) s2 = table2.select(use_labels=True) assert s.corresponding_column(s1.c.table1_col2) is s.c.col2 assert s.corresponding_column(s2.c.table2_col2) is s.c.col2 def test_union_against_join(self): # same as testunion, except its an alias of the union u = select([table1.c.col1, table1.c.col2, table1.c.col3, table1.c.colx, null().label('coly')]).union( select([table2.c.col1, table2.c.col2, table2.c.col3, null().label('colx'), table2.c.coly]) ).alias('analias') j1 = table1.join(table2) assert u.corresponding_column(j1.c.table1_colx) is u.c.colx assert j1.corresponding_column(u.c.colx) is j1.c.table1_colx def test_join(self): a = join(table1, table2) print(str(a.select(use_labels=True))) b = table2.alias('b') j = join(a, b) print(str(j)) criterion = a.c.table1_col1 == b.c.col2 self.assert_(criterion.compare(j.onclause)) def test_select_alias(self): a = table1.select().alias('a') j = join(a, table2) criterion = a.c.col1 == table2.c.col2 self.assert_(criterion.compare(j.onclause)) def test_select_labels(self): a = table1.select(use_labels=True) j = join(a, table2) criterion = a.c.table1_col1 == table2.c.col2 self.assert_(criterion.compare(j.onclause)) def test_scalar_cloned_comparator(self): sel = select([table1.c.col1]).as_scalar() expr = sel == table1.c.col1 sel2 = visitors.ReplacingCloningVisitor().traverse(sel) expr2 = sel2 == table1.c.col1 is_(expr2.left, sel2) def test_column_labels(self): a = select([table1.c.col1.label('acol1'), table1.c.col2.label('acol2'), table1.c.col3.label('acol3')]) j = join(a, table2) criterion = a.c.acol1 == table2.c.col2 self.assert_(criterion.compare(j.onclause)) def test_labeled_select_correspoinding(self): l1 = select([func.max(table1.c.col1)]).label('foo') s = select([l1]) eq_(s.corresponding_column(l1), s.c.foo) s = select([table1.c.col1, l1]) eq_(s.corresponding_column(l1), s.c.foo) def test_select_alias_labels(self): a = table2.select(use_labels=True).alias('a') j = join(a, table1) criterion = table1.c.col1 == a.c.table2_col2 self.assert_(criterion.compare(j.onclause)) def test_table_joined_to_select_of_table(self): metadata = MetaData() a = Table('a', metadata, Column('id', Integer, primary_key=True)) j2 = select([a.c.id.label('aid')]).alias('bar') j3 = a.join(j2, j2.c.aid == a.c.id) j4 = select([j3]).alias('foo') assert j4.corresponding_column(j2.c.aid) is j4.c.aid assert j4.corresponding_column(a.c.id) is j4.c.id def test_two_metadata_join_raises(self): m = MetaData() m2 = MetaData() t1 = Table('t1', m, Column('id', Integer), Column('id2', Integer)) t2 = Table('t2', m, Column('id', Integer, ForeignKey('t1.id'))) t3 = Table('t3', m2, Column('id', Integer, ForeignKey('t1.id2'))) s = select([t2, t3], use_labels=True) assert_raises(exc.NoReferencedTableError, s.join, t1) def test_multi_label_chain_naming_col(self): # See [ticket:2167] for this one. l1 = table1.c.col1.label('a') l2 = select([l1]).label('b') s = select([l2]) assert s.c.b is not None self.assert_compile( s.select(), "SELECT b FROM (SELECT (SELECT table1.col1 AS a FROM table1) AS b)" ) s2 = select([s.label('c')]) self.assert_compile( s2.select(), "SELECT c FROM (SELECT (SELECT (" "SELECT table1.col1 AS a FROM table1) AS b) AS c)" ) def test_self_referential_select_raises(self): t = table('t', column('x')) s = select([t]) s.append_whereclause(s.c.x > 5) assert_raises_message( exc.InvalidRequestError, r"select\(\) construct refers to itself as a FROM", s.compile ) def test_unusual_column_elements_text(self): """test that .c excludes text().""" s = select([table1.c.col1, text("foo")]) eq_( list(s.c), [s.c.col1] ) def test_unusual_column_elements_clauselist(self): """Test that raw ClauseList is expanded into .c.""" from sqlalchemy.sql.expression import ClauseList s = select([table1.c.col1, ClauseList(table1.c.col2, table1.c.col3)]) eq_( list(s.c), [s.c.col1, s.c.col2, s.c.col3] ) def test_unusual_column_elements_boolean_clauselist(self): """test that BooleanClauseList is placed as single element in .c.""" c2 = and_(table1.c.col2 == 5, table1.c.col3 == 4) s = select([table1.c.col1, c2]) eq_( list(s.c), [s.c.col1, s.corresponding_column(c2)] ) def test_from_list_deferred_constructor(self): c1 = Column('c1', Integer) c2 = Column('c2', Integer) s = select([c1]) t = Table('t', MetaData(), c1, c2) eq_(c1._from_objects, [t]) eq_(c2._from_objects, [t]) self.assert_compile(select([c1]), "SELECT t.c1 FROM t") self.assert_compile(select([c2]), "SELECT t.c2 FROM t") def test_from_list_deferred_whereclause(self): c1 = Column('c1', Integer) c2 = Column('c2', Integer) s = select([c1]).where(c1 == 5) t = Table('t', MetaData(), c1, c2) eq_(c1._from_objects, [t]) eq_(c2._from_objects, [t]) self.assert_compile(select([c1]), "SELECT t.c1 FROM t") self.assert_compile(select([c2]), "SELECT t.c2 FROM t") def test_from_list_deferred_fromlist(self): m = MetaData() t1 = Table('t1', m, Column('x', Integer)) c1 = Column('c1', Integer) s = select([c1]).where(c1 == 5).select_from(t1) t2 = Table('t2', MetaData(), c1) eq_(c1._from_objects, [t2]) self.assert_compile(select([c1]), "SELECT t2.c1 FROM t2") def test_from_list_deferred_cloning(self): c1 = Column('c1', Integer) c2 = Column('c2', Integer) s = select([c1]) s2 = select([c2]) s3 = sql_util.ClauseAdapter(s).traverse(s2) Table('t', MetaData(), c1, c2) self.assert_compile( s3, "SELECT t.c2 FROM t" ) def test_from_list_with_columns(self): table1 = table('t1', column('a')) table2 = table('t2', column('b')) s1 = select([table1.c.a, table2.c.b]) self.assert_compile(s1, "SELECT t1.a, t2.b FROM t1, t2" ) s2 = s1.with_only_columns([table2.c.b]) self.assert_compile(s2, "SELECT t2.b FROM t2" ) s3 = sql_util.ClauseAdapter(table1).traverse(s1) self.assert_compile(s3, "SELECT t1.a, t2.b FROM t1, t2" ) s4 = s3.with_only_columns([table2.c.b]) self.assert_compile(s4, "SELECT t2.b FROM t2" ) def test_from_list_warning_against_existing(self): c1 = Column('c1', Integer) s = select([c1]) # force a compile. self.assert_compile( s, "SELECT c1" ) Table('t', MetaData(), c1) self.assert_compile( s, "SELECT t.c1 FROM t" ) def test_from_list_recovers_after_warning(self): c1 = Column('c1', Integer) c2 = Column('c2', Integer) s = select([c1]) # force a compile. eq_(str(s), "SELECT c1") @testing.emits_warning() def go(): return Table('t', MetaData(), c1, c2) t = go() eq_(c1._from_objects, [t]) eq_(c2._from_objects, [t]) # 's' has been baked. Can't afford # not caching select._froms. # hopefully the warning will clue the user self.assert_compile(s, "SELECT t.c1 FROM t") self.assert_compile(select([c1]), "SELECT t.c1 FROM t") self.assert_compile(select([c2]), "SELECT t.c2 FROM t") def test_label_gen_resets_on_table(self): c1 = Column('c1', Integer) eq_(c1._label, "c1") Table('t1', MetaData(), c1) eq_(c1._label, "t1_c1") class RefreshForNewColTest(fixtures.TestBase): def test_join_uninit(self): a = table('a', column('x')) b = table('b', column('y')) j = a.join(b, a.c.x == b.c.y) q = column('q') b.append_column(q) j._refresh_for_new_column(q) assert j.c.b_q is q def test_join_init(self): a = table('a', column('x')) b = table('b', column('y')) j = a.join(b, a.c.x == b.c.y) j.c q = column('q') b.append_column(q) j._refresh_for_new_column(q) assert j.c.b_q is q def test_join_samename_init(self): a = table('a', column('x')) b = table('b', column('y')) j = a.join(b, a.c.x == b.c.y) j.c q = column('x') b.append_column(q) j._refresh_for_new_column(q) assert j.c.b_x is q def test_select_samename_init(self): a = table('a', column('x')) b = table('b', column('y')) s = select([a, b]).apply_labels() s.c q = column('x') b.append_column(q) s._refresh_for_new_column(q) assert q in s.c.b_x.proxy_set def test_aliased_select_samename_uninit(self): a = table('a', column('x')) b = table('b', column('y')) s = select([a, b]).apply_labels().alias() q = column('x') b.append_column(q) s._refresh_for_new_column(q) assert q in s.c.b_x.proxy_set def test_aliased_select_samename_init(self): a = table('a', column('x')) b = table('b', column('y')) s = select([a, b]).apply_labels().alias() s.c q = column('x') b.append_column(q) s._refresh_for_new_column(q) assert q in s.c.b_x.proxy_set def test_aliased_select_irrelevant(self): a = table('a', column('x')) b = table('b', column('y')) c = table('c', column('z')) s = select([a, b]).apply_labels().alias() s.c q = column('x') c.append_column(q) s._refresh_for_new_column(q) assert 'c_x' not in s.c def test_aliased_select_no_cols_clause(self): a = table('a', column('x')) s = select([a.c.x]).apply_labels().alias() s.c q = column('q') a.append_column(q) s._refresh_for_new_column(q) assert 'a_q' not in s.c def test_union_uninit(self): a = table('a', column('x')) s1 = select([a]) s2 = select([a]) s3 = s1.union(s2) q = column('q') a.append_column(q) s3._refresh_for_new_column(q) assert a.c.q in s3.c.q.proxy_set def test_union_init_raises(self): a = table('a', column('x')) s1 = select([a]) s2 = select([a]) s3 = s1.union(s2) s3.c q = column('q') a.append_column(q) assert_raises_message( NotImplementedError, "CompoundSelect constructs don't support addition of " "columns to underlying selectables", s3._refresh_for_new_column, q ) def test_nested_join_uninit(self): a = table('a', column('x')) b = table('b', column('y')) c = table('c', column('z')) j = a.join(b, a.c.x == b.c.y).join(c, b.c.y == c.c.z) q = column('q') b.append_column(q) j._refresh_for_new_column(q) assert j.c.b_q is q def test_nested_join_init(self): a = table('a', column('x')) b = table('b', column('y')) c = table('c', column('z')) j = a.join(b, a.c.x == b.c.y).join(c, b.c.y == c.c.z) j.c q = column('q') b.append_column(q) j._refresh_for_new_column(q) assert j.c.b_q is q def test_fk_table(self): m = MetaData() fk = ForeignKey('x.id') Table('x', m, Column('id', Integer)) a = Table('a', m, Column('x', Integer, fk)) a.c q = Column('q', Integer) a.append_column(q) a._refresh_for_new_column(q) eq_(a.foreign_keys, set([fk])) fk2 = ForeignKey('g.id') p = Column('p', Integer, fk2) a.append_column(p) a._refresh_for_new_column(p) eq_(a.foreign_keys, set([fk, fk2])) def test_fk_join(self): m = MetaData() fk = ForeignKey('x.id') Table('x', m, Column('id', Integer)) a = Table('a', m, Column('x', Integer, fk)) b = Table('b', m, Column('y', Integer)) j = a.join(b, a.c.x == b.c.y) j.c q = Column('q', Integer) b.append_column(q) j._refresh_for_new_column(q) eq_(j.foreign_keys, set([fk])) fk2 = ForeignKey('g.id') p = Column('p', Integer, fk2) b.append_column(p) j._refresh_for_new_column(p) eq_(j.foreign_keys, set([fk, fk2])) class AnonLabelTest(fixtures.TestBase): """Test behaviors fixed by [ticket:2168].""" def test_anon_labels_named_column(self): c1 = column('x') assert c1.label(None) is not c1 eq_(str(select([c1.label(None)])), "SELECT x AS x_1") def test_anon_labels_literal_column(self): c1 = literal_column('x') assert c1.label(None) is not c1 eq_(str(select([c1.label(None)])), "SELECT x AS x_1") def test_anon_labels_func(self): c1 = func.count('*') assert c1.label(None) is not c1 eq_(str(select([c1])), "SELECT count(:count_2) AS count_1") c2 = select([c1]).compile() eq_(str(select([c1.label(None)])), "SELECT count(:count_2) AS count_1") def test_named_labels_named_column(self): c1 = column('x') eq_(str(select([c1.label('y')])), "SELECT x AS y") def test_named_labels_literal_column(self): c1 = literal_column('x') eq_(str(select([c1.label('y')])), "SELECT x AS y") class JoinAliasingTest(fixtures.TestBase, AssertsCompiledSQL): __dialect__ = 'default' def test_flat_ok_on_non_join(self): a = table('a', column('a')) s = a.select() self.assert_compile( s.alias(flat=True).select(), "SELECT anon_1.a FROM (SELECT a.a AS a FROM a) AS anon_1" ) def test_join_alias(self): a = table('a', column('a')) b = table('b', column('b')) self.assert_compile( a.join(b, a.c.a == b.c.b).alias(), "SELECT a.a AS a_a, b.b AS b_b FROM a JOIN b ON a.a = b.b" ) def test_join_standalone_alias(self): a = table('a', column('a')) b = table('b', column('b')) self.assert_compile( alias(a.join(b, a.c.a == b.c.b)), "SELECT a.a AS a_a, b.b AS b_b FROM a JOIN b ON a.a = b.b" ) def test_join_alias_flat(self): a = table('a', column('a')) b = table('b', column('b')) self.assert_compile( a.join(b, a.c.a == b.c.b).alias(flat=True), "a AS a_1 JOIN b AS b_1 ON a_1.a = b_1.b" ) def test_join_standalone_alias_flat(self): a = table('a', column('a')) b = table('b', column('b')) self.assert_compile( alias(a.join(b, a.c.a == b.c.b), flat=True), "a AS a_1 JOIN b AS b_1 ON a_1.a = b_1.b" ) def test_composed_join_alias_flat(self): a = table('a', column('a')) b = table('b', column('b')) c = table('c', column('c')) d = table('d', column('d')) j1 = a.join(b, a.c.a == b.c.b) j2 = c.join(d, c.c.c == d.c.d) self.assert_compile( j1.join(j2, b.c.b == c.c.c).alias(flat=True), "a AS a_1 JOIN b AS b_1 ON a_1.a = b_1.b JOIN " "(c AS c_1 JOIN d AS d_1 ON c_1.c = d_1.d) ON b_1.b = c_1.c" ) def test_composed_join_alias(self): a = table('a', column('a')) b = table('b', column('b')) c = table('c', column('c')) d = table('d', column('d')) j1 = a.join(b, a.c.a == b.c.b) j2 = c.join(d, c.c.c == d.c.d) self.assert_compile( select([j1.join(j2, b.c.b == c.c.c).alias()]), "SELECT anon_1.a_a, anon_1.b_b, anon_1.c_c, anon_1.d_d " "FROM (SELECT a.a AS a_a, b.b AS b_b, c.c AS c_c, d.d AS d_d " "FROM a JOIN b ON a.a = b.b " "JOIN (c JOIN d ON c.c = d.d) ON b.b = c.c) AS anon_1" ) class JoinConditionTest(fixtures.TestBase, AssertsCompiledSQL): __dialect__ = 'default' def test_join_condition(self): m = MetaData() t1 = Table('t1', m, Column('id', Integer)) t2 = Table('t2', m, Column('id', Integer), Column('t1id', ForeignKey('t1.id'))) t3 = Table('t3', m, Column('id', Integer), Column('t1id', ForeignKey('t1.id')), Column('t2id', ForeignKey('t2.id'))) t4 = Table('t4', m, Column('id', Integer), Column('t2id', ForeignKey('t2.id'))) t5 = Table('t5', m, Column('t1id1', ForeignKey('t1.id')), Column('t1id2', ForeignKey('t1.id')), ) t1t2 = t1.join(t2) t2t3 = t2.join(t3) for (left, right, a_subset, expected) in [ (t1, t2, None, t1.c.id == t2.c.t1id), (t1t2, t3, t2, t1t2.c.t2_id == t3.c.t2id), (t2t3, t1, t3, t1.c.id == t3.c.t1id), (t2t3, t4, None, t2t3.c.t2_id == t4.c.t2id), (t2t3, t4, t3, t2t3.c.t2_id == t4.c.t2id), (t2t3.join(t1), t4, None, t2t3.c.t2_id == t4.c.t2id), (t2t3.join(t1), t4, t1, t2t3.c.t2_id == t4.c.t2id), (t1t2, t2t3, t2, t1t2.c.t2_id == t2t3.c.t3_t2id), ]: assert expected.compare( sql_util.join_condition( left, right, a_subset=a_subset)) # these are ambiguous, or have no joins for left, right, a_subset in [ (t1t2, t3, None), (t2t3, t1, None), (t1, t4, None), (t1t2, t2t3, None), (t5, t1, None), (t5.select(use_labels=True), t1, None) ]: assert_raises( exc.ArgumentError, sql_util.join_condition, left, right, a_subset=a_subset ) als = t2t3.alias() # test join's behavior, including natural for left, right, expected in [ (t1, t2, t1.c.id == t2.c.t1id), (t1t2, t3, t1t2.c.t2_id == t3.c.t2id), (t2t3, t1, t1.c.id == t3.c.t1id), (t2t3, t4, t2t3.c.t2_id == t4.c.t2id), (t2t3, t4, t2t3.c.t2_id == t4.c.t2id), (t2t3.join(t1), t4, t2t3.c.t2_id == t4.c.t2id), (t2t3.join(t1), t4, t2t3.c.t2_id == t4.c.t2id), (t1t2, als, t1t2.c.t2_id == als.c.t3_t2id) ]: assert expected.compare( left.join(right).onclause ) # these are right-nested joins j = t1t2.join(t2t3) assert j.onclause.compare(t2.c.id == t3.c.t2id) self.assert_compile( j, "t1 JOIN t2 ON t1.id = t2.t1id JOIN " "(t2 JOIN t3 ON t2.id = t3.t2id) ON t2.id = t3.t2id") st2t3 = t2t3.select(use_labels=True) j = t1t2.join(st2t3) assert j.onclause.compare(t2.c.id == st2t3.c.t3_t2id) self.assert_compile( j, "t1 JOIN t2 ON t1.id = t2.t1id JOIN " "(SELECT t2.id AS t2_id, t2.t1id AS t2_t1id, " "t3.id AS t3_id, t3.t1id AS t3_t1id, t3.t2id AS t3_t2id " "FROM t2 JOIN t3 ON t2.id = t3.t2id) ON t2.id = t3_t2id") def test_join_multiple_equiv_fks(self): m = MetaData() t1 = Table('t1', m, Column('id', Integer, primary_key=True) ) t2 = Table( 't2', m, Column( 't1id', Integer, ForeignKey('t1.id'), ForeignKey('t1.id'))) assert sql_util.join_condition(t1, t2).compare(t1.c.id == t2.c.t1id) def test_join_cond_no_such_unrelated_table(self): m = MetaData() # bounding the "good" column with two "bad" ones is so to # try to get coverage to get the "continue" statements # in the loop... t1 = Table('t1', m, Column('y', Integer, ForeignKey('t22.id')), Column('x', Integer, ForeignKey('t2.id')), Column('q', Integer, ForeignKey('t22.id')), ) t2 = Table('t2', m, Column('id', Integer)) assert sql_util.join_condition(t1, t2).compare(t1.c.x == t2.c.id) assert sql_util.join_condition(t2, t1).compare(t1.c.x == t2.c.id) def test_join_cond_no_such_unrelated_column(self): m = MetaData() t1 = Table('t1', m, Column('x', Integer, ForeignKey('t2.id')), Column('y', Integer, ForeignKey('t3.q'))) t2 = Table('t2', m, Column('id', Integer)) Table('t3', m, Column('id', Integer)) assert sql_util.join_condition(t1, t2).compare(t1.c.x == t2.c.id) assert sql_util.join_condition(t2, t1).compare(t1.c.x == t2.c.id) def test_join_cond_no_such_related_table(self): m1 = MetaData() m2 = MetaData() t1 = Table('t1', m1, Column('x', Integer, ForeignKey('t2.id'))) t2 = Table('t2', m2, Column('id', Integer)) assert_raises_message( exc.NoReferencedTableError, "Foreign key associated with column 't1.x' could not find " "table 't2' with which to generate a foreign key to " "target column 'id'", sql_util.join_condition, t1, t2 ) assert_raises_message( exc.NoReferencedTableError, "Foreign key associated with column 't1.x' could not find " "table 't2' with which to generate a foreign key to " "target column 'id'", sql_util.join_condition, t2, t1 ) def test_join_cond_no_such_related_column(self): m = MetaData() t1 = Table('t1', m, Column('x', Integer, ForeignKey('t2.q'))) t2 = Table('t2', m, Column('id', Integer)) assert_raises_message( exc.NoReferencedColumnError, "Could not initialize target column for " "ForeignKey 't2.q' on table 't1': " "table 't2' has no column named 'q'", sql_util.join_condition, t1, t2 ) assert_raises_message( exc.NoReferencedColumnError, "Could not initialize target column for " "ForeignKey 't2.q' on table 't1': " "table 't2' has no column named 'q'", sql_util.join_condition, t2, t1 ) class PrimaryKeyTest(fixtures.TestBase, AssertsExecutionResults): def test_join_pk_collapse_implicit(self): """test that redundant columns in a join get 'collapsed' into a minimal primary key, which is the root column along a chain of foreign key relationships.""" meta = MetaData() a = Table('a', meta, Column('id', Integer, primary_key=True)) b = Table('b', meta, Column('id', Integer, ForeignKey('a.id'), primary_key=True)) c = Table('c', meta, Column('id', Integer, ForeignKey('b.id'), primary_key=True)) d = Table('d', meta, Column('id', Integer, ForeignKey('c.id'), primary_key=True)) assert c.c.id.references(b.c.id) assert not d.c.id.references(a.c.id) assert list(a.join(b).primary_key) == [a.c.id] assert list(b.join(c).primary_key) == [b.c.id] assert list(a.join(b).join(c).primary_key) == [a.c.id] assert list(b.join(c).join(d).primary_key) == [b.c.id] assert list(d.join(c).join(b).primary_key) == [b.c.id] assert list(a.join(b).join(c).join(d).primary_key) == [a.c.id] def test_join_pk_collapse_explicit(self): """test that redundant columns in a join get 'collapsed' into a minimal primary key, which is the root column along a chain of explicit join conditions.""" meta = MetaData() a = Table('a', meta, Column('id', Integer, primary_key=True), Column('x', Integer)) b = Table('b', meta, Column('id', Integer, ForeignKey('a.id'), primary_key=True), Column('x', Integer)) c = Table('c', meta, Column('id', Integer, ForeignKey('b.id'), primary_key=True), Column('x', Integer)) d = Table('d', meta, Column('id', Integer, ForeignKey('c.id'), primary_key=True), Column('x', Integer)) print(list(a.join(b, a.c.x == b.c.id).primary_key)) assert list(a.join(b, a.c.x == b.c.id).primary_key) == [a.c.id] assert list(b.join(c, b.c.x == c.c.id).primary_key) == [b.c.id] assert list(a.join(b).join(c, c.c.id == b.c.x).primary_key) \ == [a.c.id] assert list(b.join(c, c.c.x == b.c.id).join(d).primary_key) \ == [b.c.id] assert list(b.join(c, c.c.id == b.c.x).join(d).primary_key) \ == [b.c.id] assert list( d.join( b, d.c.id == b.c.id).join( c, b.c.id == c.c.x).primary_key) == [ b.c.id] assert list(a.join(b).join(c, c.c.id == b.c.x).join(d).primary_key) == [a.c.id] assert list(a.join(b, and_(a.c.id == b.c.id, a.c.x == b.c.id)).primary_key) == [a.c.id] def test_init_doesnt_blowitaway(self): meta = MetaData() a = Table('a', meta, Column('id', Integer, primary_key=True), Column('x', Integer)) b = Table('b', meta, Column('id', Integer, ForeignKey('a.id'), primary_key=True), Column('x', Integer)) j = a.join(b) assert list(j.primary_key) == [a.c.id] j.foreign_keys assert list(j.primary_key) == [a.c.id] def test_non_column_clause(self): meta = MetaData() a = Table('a', meta, Column('id', Integer, primary_key=True), Column('x', Integer)) b = Table('b', meta, Column('id', Integer, ForeignKey('a.id'), primary_key=True), Column('x', Integer, primary_key=True)) j = a.join(b, and_(a.c.id == b.c.id, b.c.x == 5)) assert str(j) == "a JOIN b ON a.id = b.id AND b.x = :x_1", str(j) assert list(j.primary_key) == [a.c.id, b.c.x] def test_onclause_direction(self): metadata = MetaData() employee = Table('Employee', metadata, Column('name', String(100)), Column('id', Integer, primary_key=True), ) engineer = Table('Engineer', metadata, Column('id', Integer, ForeignKey('Employee.id'), primary_key=True)) eq_(util.column_set(employee.join(engineer, employee.c.id == engineer.c.id).primary_key), util.column_set([employee.c.id])) eq_(util.column_set(employee.join(engineer, engineer.c.id == employee.c.id).primary_key), util.column_set([employee.c.id])) class ReduceTest(fixtures.TestBase, AssertsExecutionResults): def test_reduce(self): meta = MetaData() t1 = Table('t1', meta, Column('t1id', Integer, primary_key=True), Column('t1data', String(30))) t2 = Table( 't2', meta, Column( 't2id', Integer, ForeignKey('t1.t1id'), primary_key=True), Column( 't2data', String(30))) t3 = Table( 't3', meta, Column( 't3id', Integer, ForeignKey('t2.t2id'), primary_key=True), Column( 't3data', String(30))) eq_(util.column_set(sql_util.reduce_columns([ t1.c.t1id, t1.c.t1data, t2.c.t2id, t2.c.t2data, t3.c.t3id, t3.c.t3data, ])), util.column_set([t1.c.t1id, t1.c.t1data, t2.c.t2data, t3.c.t3data])) def test_reduce_selectable(self): metadata = MetaData() engineers = Table('engineers', metadata, Column('engineer_id', Integer, primary_key=True), Column('engineer_name', String(50))) managers = Table('managers', metadata, Column('manager_id', Integer, primary_key=True), Column('manager_name', String(50))) s = select([engineers, managers]).where(engineers.c.engineer_name == managers.c.manager_name) eq_(util.column_set(sql_util.reduce_columns(list(s.c), s)), util.column_set([s.c.engineer_id, s.c.engineer_name, s.c.manager_id])) def test_reduce_generation(self): m = MetaData() t1 = Table('t1', m, Column('x', Integer, primary_key=True), Column('y', Integer)) t2 = Table('t2', m, Column('z', Integer, ForeignKey('t1.x')), Column('q', Integer)) s1 = select([t1, t2]) s2 = s1.reduce_columns(only_synonyms=False) eq_( set(s2.inner_columns), set([t1.c.x, t1.c.y, t2.c.q]) ) s2 = s1.reduce_columns() eq_( set(s2.inner_columns), set([t1.c.x, t1.c.y, t2.c.z, t2.c.q]) ) def test_reduce_only_synonym_fk(self): m = MetaData() t1 = Table('t1', m, Column('x', Integer, primary_key=True), Column('y', Integer)) t2 = Table('t2', m, Column('x', Integer, ForeignKey('t1.x')), Column('q', Integer, ForeignKey('t1.y'))) s1 = select([t1, t2]) s1 = s1.reduce_columns(only_synonyms=True) eq_( set(s1.c), set([s1.c.x, s1.c.y, s1.c.q]) ) def test_reduce_only_synonym_lineage(self): m = MetaData() t1 = Table('t1', m, Column('x', Integer, primary_key=True), Column('y', Integer), Column('z', Integer) ) # test that the first appearance in the columns clause # wins - t1 is first, t1.c.x wins s1 = select([t1]) s2 = select([t1, s1]).where(t1.c.x == s1.c.x).where(s1.c.y == t1.c.z) eq_( set(s2.reduce_columns().inner_columns), set([t1.c.x, t1.c.y, t1.c.z, s1.c.y, s1.c.z]) ) # reverse order, s1.c.x wins s1 = select([t1]) s2 = select([s1, t1]).where(t1.c.x == s1.c.x).where(s1.c.y == t1.c.z) eq_( set(s2.reduce_columns().inner_columns), set([s1.c.x, t1.c.y, t1.c.z, s1.c.y, s1.c.z]) ) def test_reduce_aliased_join(self): metadata = MetaData() people = Table( 'people', metadata, Column( 'person_id', Integer, Sequence( 'person_id_seq', optional=True), primary_key=True), Column( 'name', String(50)), Column( 'type', String(30))) engineers = Table( 'engineers', metadata, Column('person_id', Integer, ForeignKey('people.person_id' ), primary_key=True), Column('status', String(30)), Column('engineer_name', String(50)), Column('primary_language', String(50)), ) managers = Table( 'managers', metadata, Column('person_id', Integer, ForeignKey('people.person_id'), primary_key=True), Column('status', String(30)), Column('manager_name', String(50))) pjoin = \ people.outerjoin(engineers).outerjoin(managers).\ select(use_labels=True).alias('pjoin' ) eq_(util.column_set(sql_util.reduce_columns( [pjoin.c.people_person_id, pjoin.c.engineers_person_id, pjoin.c.managers_person_id])), util.column_set([pjoin.c.people_person_id])) def test_reduce_aliased_union(self): metadata = MetaData() item_table = Table( 'item', metadata, Column( 'id', Integer, ForeignKey('base_item.id'), primary_key=True), Column( 'dummy', Integer, default=0)) base_item_table = Table( 'base_item', metadata, Column( 'id', Integer, primary_key=True), Column( 'child_name', String(255), default=None)) from sqlalchemy.orm.util import polymorphic_union item_join = polymorphic_union({ 'BaseItem': base_item_table.select( base_item_table.c.child_name == 'BaseItem'), 'Item': base_item_table.join(item_table)}, None, 'item_join') eq_(util.column_set(sql_util.reduce_columns([item_join.c.id, item_join.c.dummy, item_join.c.child_name])), util.column_set([item_join.c.id, item_join.c.dummy, item_join.c.child_name])) def test_reduce_aliased_union_2(self): metadata = MetaData() page_table = Table('page', metadata, Column('id', Integer, primary_key=True)) magazine_page_table = Table('magazine_page', metadata, Column('page_id', Integer, ForeignKey('page.id'), primary_key=True)) classified_page_table = Table( 'classified_page', metadata, Column( 'magazine_page_id', Integer, ForeignKey('magazine_page.page_id'), primary_key=True)) # this is essentially the union formed by the ORM's # polymorphic_union function. we define two versions with # different ordering of selects. # # the first selectable has the "real" column # classified_page.magazine_page_id pjoin = union( select([ page_table.c.id, magazine_page_table.c.page_id, classified_page_table.c.magazine_page_id ]). select_from( page_table.join(magazine_page_table). join(classified_page_table)), select([ page_table.c.id, magazine_page_table.c.page_id, cast(null(), Integer).label('magazine_page_id') ]). select_from(page_table.join(magazine_page_table)) ).alias('pjoin') eq_(util.column_set(sql_util.reduce_columns( [pjoin.c.id, pjoin.c.page_id, pjoin.c.magazine_page_id])), util.column_set([pjoin.c.id])) # the first selectable has a CAST, which is a placeholder for # classified_page.magazine_page_id in the second selectable. # reduce_columns needs to take into account all foreign keys # derived from pjoin.c.magazine_page_id. the UNION construct # currently makes the external column look like that of the # first selectable only. pjoin = union(select([ page_table.c.id, magazine_page_table.c.page_id, cast(null(), Integer).label('magazine_page_id') ]). select_from(page_table.join(magazine_page_table)), select([ page_table.c.id, magazine_page_table.c.page_id, classified_page_table.c.magazine_page_id ]). select_from(page_table.join(magazine_page_table). join(classified_page_table)) ).alias('pjoin') eq_(util.column_set(sql_util.reduce_columns( [pjoin.c.id, pjoin.c.page_id, pjoin.c.magazine_page_id])), util.column_set([pjoin.c.id])) class DerivedTest(fixtures.TestBase, AssertsExecutionResults): def test_table(self): meta = MetaData() t1 = Table('t1', meta, Column('c1', Integer, primary_key=True), Column('c2', String(30))) t2 = Table('t2', meta, Column('c1', Integer, primary_key=True), Column('c2', String(30))) assert t1.is_derived_from(t1) assert not t2.is_derived_from(t1) def test_alias(self): meta = MetaData() t1 = Table('t1', meta, Column('c1', Integer, primary_key=True), Column('c2', String(30))) t2 = Table('t2', meta, Column('c1', Integer, primary_key=True), Column('c2', String(30))) assert t1.alias().is_derived_from(t1) assert not t2.alias().is_derived_from(t1) assert not t1.is_derived_from(t1.alias()) assert not t1.is_derived_from(t2.alias()) def test_select(self): meta = MetaData() t1 = Table('t1', meta, Column('c1', Integer, primary_key=True), Column('c2', String(30))) t2 = Table('t2', meta, Column('c1', Integer, primary_key=True), Column('c2', String(30))) assert t1.select().is_derived_from(t1) assert not t2.select().is_derived_from(t1) assert select([t1, t2]).is_derived_from(t1) assert t1.select().alias('foo').is_derived_from(t1) assert select([t1, t2]).alias('foo').is_derived_from(t1) assert not t2.select().alias('foo').is_derived_from(t1) class AnnotationsTest(fixtures.TestBase): def test_hashing(self): t = table('t', column('x')) a = t.alias() s = t.select() s2 = a.select() for obj in [ t, t.c.x, a, s, s2, t.c.x > 1, (t.c.x > 1).label(None) ]: annot = obj._annotate({}) eq_(set([obj]), set([annot])) def test_compare(self): t = table('t', column('x'), column('y')) x_a = t.c.x._annotate({}) assert t.c.x.compare(x_a) assert x_a.compare(t.c.x) assert not x_a.compare(t.c.y) assert not t.c.y.compare(x_a) assert (t.c.x == 5).compare(x_a == 5) assert not (t.c.y == 5).compare(x_a == 5) s = select([t]) x_p = s.c.x assert not x_a.compare(x_p) assert not t.c.x.compare(x_p) x_p_a = x_p._annotate({}) assert x_p_a.compare(x_p) assert x_p.compare(x_p_a) assert not x_p_a.compare(x_a) def test_late_name_add(self): from sqlalchemy.schema import Column c1 = Column(Integer) c1_a = c1._annotate({"foo": "bar"}) c1.name = 'somename' eq_(c1_a.name, 'somename') def test_late_table_add(self): c1 = Column("foo", Integer) c1_a = c1._annotate({"foo": "bar"}) t = Table('t', MetaData(), c1) is_(c1_a.table, t) def test_basic_attrs(self): t = Table('t', MetaData(), Column('x', Integer, info={'q': 'p'}), Column('y', Integer, key='q')) x_a = t.c.x._annotate({}) y_a = t.c.q._annotate({}) t.c.x.info['z'] = 'h' eq_(y_a.key, 'q') is_(x_a.table, t) eq_(x_a.info, {'q': 'p', 'z': 'h'}) eq_(t.c.x.anon_label, x_a.anon_label) def test_custom_constructions(self): from sqlalchemy.schema import Column class MyColumn(Column): def __init__(self): Column.__init__(self, 'foo', Integer) _constructor = Column t1 = Table('t1', MetaData(), MyColumn()) s1 = t1.select() assert isinstance(t1.c.foo, MyColumn) assert isinstance(s1.c.foo, Column) annot_1 = t1.c.foo._annotate({}) s2 = select([annot_1]) assert isinstance(s2.c.foo, Column) annot_2 = s1._annotate({}) assert isinstance(annot_2.c.foo, Column) def test_custom_construction_correct_anno_subclass(self): # [ticket:2918] from sqlalchemy.schema import Column from sqlalchemy.sql.elements import AnnotatedColumnElement class MyColumn(Column): pass assert isinstance( MyColumn('x', Integer)._annotate({"foo": "bar"}), AnnotatedColumnElement) def test_custom_construction_correct_anno_expr(self): # [ticket:2918] from sqlalchemy.schema import Column class MyColumn(Column): pass col = MyColumn('x', Integer) binary_1 = col == 5 col_anno = MyColumn('x', Integer)._annotate({"foo": "bar"}) binary_2 = col_anno == 5 eq_(binary_2.left._annotations, {"foo": "bar"}) def test_annotated_corresponding_column(self): table1 = table('table1', column("col1")) s1 = select([table1.c.col1]) t1 = s1._annotate({}) t2 = s1 # t1 needs to share the same _make_proxy() columns as t2, even # though it's annotated. otherwise paths will diverge once they # are corresponded against "inner" below. assert t1.c is t2.c assert t1.c.col1 is t2.c.col1 inner = select([s1]) assert inner.corresponding_column( t2.c.col1, require_embedded=False) is inner.corresponding_column( t2.c.col1, require_embedded=True) is inner.c.col1 assert inner.corresponding_column( t1.c.col1, require_embedded=False) is inner.corresponding_column( t1.c.col1, require_embedded=True) is inner.c.col1 def test_annotated_visit(self): table1 = table('table1', column("col1"), column("col2")) bin = table1.c.col1 == bindparam('foo', value=None) assert str(bin) == "table1.col1 = :foo" def visit_binary(b): b.right = table1.c.col2 b2 = visitors.cloned_traverse(bin, {}, {'binary': visit_binary}) assert str(b2) == "table1.col1 = table1.col2" b3 = visitors.cloned_traverse(bin._annotate({}), {}, {'binary': visit_binary}) assert str(b3) == 'table1.col1 = table1.col2' def visit_binary(b): b.left = bindparam('bar') b4 = visitors.cloned_traverse(b2, {}, {'binary': visit_binary}) assert str(b4) == ":bar = table1.col2" b5 = visitors.cloned_traverse(b3, {}, {'binary': visit_binary}) assert str(b5) == ":bar = table1.col2" def test_label_accessors(self): t1 = table('t1', column('c1')) l1 = t1.c.c1.label(None) is_(l1._order_by_label_element, l1) l1a = l1._annotate({"foo": "bar"}) is_(l1a._order_by_label_element, l1a) def test_annotate_aliased(self): t1 = table('t1', column('c1')) s = select([(t1.c.c1 + 3).label('bat')]) a = s.alias() a = sql_util._deep_annotate(a, {'foo': 'bar'}) eq_(a._annotations['foo'], 'bar') eq_(a.element._annotations['foo'], 'bar') def test_annotate_expressions(self): table1 = table('table1', column('col1'), column('col2')) for expr, expected in [(table1.c.col1, 'table1.col1'), (table1.c.col1 == 5, 'table1.col1 = :col1_1'), (table1.c.col1.in_([2, 3, 4]), 'table1.col1 IN (:col1_1, :col1_2, ' ':col1_3)')]: eq_(str(expr), expected) eq_(str(expr._annotate({})), expected) eq_(str(sql_util._deep_annotate(expr, {})), expected) eq_(str(sql_util._deep_annotate( expr, {}, exclude=[table1.c.col1])), expected) def test_deannotate(self): table1 = table('table1', column("col1"), column("col2")) bin = table1.c.col1 == bindparam('foo', value=None) b2 = sql_util._deep_annotate(bin, {'_orm_adapt': True}) b3 = sql_util._deep_deannotate(b2) b4 = sql_util._deep_deannotate(bin) for elem in (b2._annotations, b2.left._annotations): assert '_orm_adapt' in elem for elem in b3._annotations, b3.left._annotations, \ b4._annotations, b4.left._annotations: assert elem == {} assert b2.left is not bin.left assert b3.left is not b2.left and b2.left is not bin.left assert b4.left is bin.left # since column is immutable # deannotate copies the element assert bin.right is not b2.right and b2.right is not b3.right \ and b3.right is not b4.right def test_annotate_unique_traversal(self): """test that items are copied only once during annotate, deannotate traversal #2453 - however note this was modified by #1401, and it's likely that re49563072578 is helping us with the str() comparison case now, as deannotate is making clones again in some cases. """ table1 = table('table1', column('x')) table2 = table('table2', column('y')) a1 = table1.alias() s = select([a1.c.x]).select_from( a1.join(table2, a1.c.x == table2.c.y) ) for sel in ( sql_util._deep_deannotate(s), visitors.cloned_traverse(s, {}, {}), visitors.replacement_traverse(s, {}, lambda x: None) ): # the columns clause isn't changed at all assert sel._raw_columns[0].table is a1 assert sel._froms[0] is sel._froms[1].left eq_(str(s), str(sel)) # when we are modifying annotations sets only # partially, each element is copied unconditionally # when encountered. for sel in ( sql_util._deep_deannotate(s, {"foo": "bar"}), sql_util._deep_annotate(s, {'foo': 'bar'}), ): assert sel._froms[0] is not sel._froms[1].left # but things still work out due to # re49563072578 eq_(str(s), str(sel)) def test_annotate_varied_annot_same_col(self): """test two instances of the same column with different annotations preserving them when deep_annotate is run on them. """ t1 = table('table1', column("col1"), column("col2")) s = select([t1.c.col1._annotate({"foo": "bar"})]) s2 = select([t1.c.col1._annotate({"bat": "hoho"})]) s3 = s.union(s2) sel = sql_util._deep_annotate(s3, {"new": "thing"}) eq_( sel.selects[0]._raw_columns[0]._annotations, {"foo": "bar", "new": "thing"} ) eq_( sel.selects[1]._raw_columns[0]._annotations, {"bat": "hoho", "new": "thing"} ) def test_deannotate_2(self): table1 = table('table1', column("col1"), column("col2")) j = table1.c.col1._annotate({"remote": True}) == \ table1.c.col2._annotate({"local": True}) j2 = sql_util._deep_deannotate(j) eq_( j.left._annotations, {"remote": True} ) eq_( j2.left._annotations, {} ) def test_deannotate_3(self): table1 = table('table1', column("col1"), column("col2"), column("col3"), column("col4")) j = and_( table1.c.col1._annotate({"remote": True}) == table1.c.col2._annotate({"local": True}), table1.c.col3._annotate({"remote": True}) == table1.c.col4._annotate({"local": True}) ) j2 = sql_util._deep_deannotate(j) eq_( j.clauses[0].left._annotations, {"remote": True} ) eq_( j2.clauses[0].left._annotations, {} ) def test_annotate_fromlist_preservation(self): """test the FROM list in select still works even when multiple annotate runs have created copies of the same selectable #2453, continued """ table1 = table('table1', column('x')) table2 = table('table2', column('y')) a1 = table1.alias() s = select([a1.c.x]).select_from( a1.join(table2, a1.c.x == table2.c.y) ) assert_s = select([select([s])]) for fn in ( sql_util._deep_deannotate, lambda s: sql_util._deep_annotate(s, {'foo': 'bar'}), lambda s: visitors.cloned_traverse(s, {}, {}), lambda s: visitors.replacement_traverse(s, {}, lambda x: None) ): sel = fn(select([fn(select([fn(s)]))])) eq_(str(assert_s), str(sel)) def test_bind_unique_test(self): table('t', column('a'), column('b')) b = bindparam("bind", value="x", unique=True) # the annotation of "b" should render the # same. The "unique" test in compiler should # also pass, [ticket:2425] eq_(str(or_(b, b._annotate({"foo": "bar"}))), ":bind_1 OR :bind_1") def test_comparators_cleaned_out_construction(self): c = column('a') comp1 = c.comparator c1 = c._annotate({"foo": "bar"}) comp2 = c1.comparator assert comp1 is not comp2 def test_comparators_cleaned_out_reannotate(self): c = column('a') c1 = c._annotate({"foo": "bar"}) comp1 = c1.comparator c2 = c1._annotate({"bat": "hoho"}) comp2 = c2.comparator assert comp1 is not comp2 def test_comparator_cleanout_integration(self): c = column('a') c1 = c._annotate({"foo": "bar"}) comp1 = c1.comparator c2 = c1._annotate({"bat": "hoho"}) comp2 = c2.comparator assert (c2 == 5).left._annotations == {"foo": "bar", "bat": "hoho"} class ReprTest(fixtures.TestBase): def test_ensure_repr_elements(self): for obj in [ elements.Cast(1, 2), elements.TypeClause(String()), elements.ColumnClause('x'), elements.BindParameter('q'), elements.Null(), elements.True_(), elements.False_(), elements.ClauseList(), elements.BooleanClauseList.and_(), elements.Tuple(), elements.Case([]), elements.Extract('foo', column('x')), elements.UnaryExpression(column('x')), elements.Grouping(column('x')), elements.Over(func.foo()), elements.Label('q', column('x')), ]: repr(obj) class WithLabelsTest(fixtures.TestBase): def _assert_labels_warning(self, s): assert_raises_message( exc.SAWarning, r"replaced by Column.*, which has the same key", lambda: s.c ) def _assert_result_keys(self, s, keys): compiled = s.compile() eq_(set(compiled._create_result_map()), set(keys)) def _assert_subq_result_keys(self, s, keys): compiled = s.select().compile() eq_(set(compiled._create_result_map()), set(keys)) def _names_overlap(self): m = MetaData() t1 = Table('t1', m, Column('x', Integer)) t2 = Table('t2', m, Column('x', Integer)) return select([t1, t2]) def test_names_overlap_nolabel(self): sel = self._names_overlap() self._assert_labels_warning(sel) self._assert_result_keys(sel, ['x']) def test_names_overlap_label(self): sel = self._names_overlap().apply_labels() eq_( list(sel.c.keys()), ['t1_x', 't2_x'] ) self._assert_result_keys(sel, ['t1_x', 't2_x']) def _names_overlap_keys_dont(self): m = MetaData() t1 = Table('t1', m, Column('x', Integer, key='a')) t2 = Table('t2', m, Column('x', Integer, key='b')) return select([t1, t2]) def test_names_overlap_keys_dont_nolabel(self): sel = self._names_overlap_keys_dont() eq_( list(sel.c.keys()), ['a', 'b'] ) self._assert_result_keys(sel, ['x']) def test_names_overlap_keys_dont_label(self): sel = self._names_overlap_keys_dont().apply_labels() eq_( list(sel.c.keys()), ['t1_a', 't2_b'] ) self._assert_result_keys(sel, ['t1_x', 't2_x']) def _labels_overlap(self): m = MetaData() t1 = Table('t', m, Column('x_id', Integer)) t2 = Table('t_x', m, Column('id', Integer)) return select([t1, t2]) def test_labels_overlap_nolabel(self): sel = self._labels_overlap() eq_( list(sel.c.keys()), ['x_id', 'id'] ) self._assert_result_keys(sel, ['x_id', 'id']) def test_labels_overlap_label(self): sel = self._labels_overlap().apply_labels() t2 = sel.froms[1] eq_( list(sel.c.keys()), ['t_x_id', t2.c.id.anon_label] ) self._assert_result_keys(sel, ['t_x_id', 'id_1']) self._assert_subq_result_keys(sel, ['t_x_id', 'id_1']) def _labels_overlap_keylabels_dont(self): m = MetaData() t1 = Table('t', m, Column('x_id', Integer, key='a')) t2 = Table('t_x', m, Column('id', Integer, key='b')) return select([t1, t2]) def test_labels_overlap_keylabels_dont_nolabel(self): sel = self._labels_overlap_keylabels_dont() eq_(list(sel.c.keys()), ['a', 'b']) self._assert_result_keys(sel, ['x_id', 'id']) def test_labels_overlap_keylabels_dont_label(self): sel = self._labels_overlap_keylabels_dont().apply_labels() eq_(list(sel.c.keys()), ['t_a', 't_x_b']) self._assert_result_keys(sel, ['t_x_id', 'id_1']) def _keylabels_overlap_labels_dont(self): m = MetaData() t1 = Table('t', m, Column('a', Integer, key='x_id')) t2 = Table('t_x', m, Column('b', Integer, key='id')) return select([t1, t2]) def test_keylabels_overlap_labels_dont_nolabel(self): sel = self._keylabels_overlap_labels_dont() eq_(list(sel.c.keys()), ['x_id', 'id']) self._assert_result_keys(sel, ['a', 'b']) def test_keylabels_overlap_labels_dont_label(self): sel = self._keylabels_overlap_labels_dont().apply_labels() t2 = sel.froms[1] eq_(list(sel.c.keys()), ['t_x_id', t2.c.id.anon_label]) self._assert_result_keys(sel, ['t_a', 't_x_b']) self._assert_subq_result_keys(sel, ['t_a', 't_x_b']) def _keylabels_overlap_labels_overlap(self): m = MetaData() t1 = Table('t', m, Column('x_id', Integer, key='x_a')) t2 = Table('t_x', m, Column('id', Integer, key='a')) return select([t1, t2]) def test_keylabels_overlap_labels_overlap_nolabel(self): sel = self._keylabels_overlap_labels_overlap() eq_(list(sel.c.keys()), ['x_a', 'a']) self._assert_result_keys(sel, ['x_id', 'id']) self._assert_subq_result_keys(sel, ['x_id', 'id']) def test_keylabels_overlap_labels_overlap_label(self): sel = self._keylabels_overlap_labels_overlap().apply_labels() t2 = sel.froms[1] eq_(list(sel.c.keys()), ['t_x_a', t2.c.a.anon_label]) self._assert_result_keys(sel, ['t_x_id', 'id_1']) self._assert_subq_result_keys(sel, ['t_x_id', 'id_1']) def _keys_overlap_names_dont(self): m = MetaData() t1 = Table('t1', m, Column('a', Integer, key='x')) t2 = Table('t2', m, Column('b', Integer, key='x')) return select([t1, t2]) def test_keys_overlap_names_dont_nolabel(self): sel = self._keys_overlap_names_dont() self._assert_labels_warning(sel) self._assert_result_keys(sel, ['a', 'b']) def test_keys_overlap_names_dont_label(self): sel = self._keys_overlap_names_dont().apply_labels() eq_( list(sel.c.keys()), ['t1_x', 't2_x'] ) self._assert_result_keys(sel, ['t1_a', 't2_b']) class ResultMapTest(fixtures.TestBase): def _fixture(self): m = MetaData() t = Table('t', m, Column('x', Integer), Column('y', Integer)) return t def _mapping(self, stmt): compiled = stmt.compile() return dict( (elem, key) for key, elements in compiled._create_result_map().items() for elem in elements[1] ) def test_select_label_alt_name(self): t = self._fixture() l1, l2 = t.c.x.label('a'), t.c.y.label('b') s = select([l1, l2]) mapping = self._mapping(s) assert l1 in mapping assert t.c.x not in mapping def test_select_alias_label_alt_name(self): t = self._fixture() l1, l2 = t.c.x.label('a'), t.c.y.label('b') s = select([l1, l2]).alias() mapping = self._mapping(s) assert l1 in mapping assert t.c.x not in mapping def test_select_alias_column(self): t = self._fixture() x, y = t.c.x, t.c.y s = select([x, y]).alias() mapping = self._mapping(s) assert t.c.x in mapping def test_select_alias_column_apply_labels(self): t = self._fixture() x, y = t.c.x, t.c.y s = select([x, y]).apply_labels().alias() mapping = self._mapping(s) assert t.c.x in mapping def test_select_table_alias_column(self): t = self._fixture() x, y = t.c.x, t.c.y ta = t.alias() s = select([ta.c.x, ta.c.y]) mapping = self._mapping(s) assert x not in mapping def test_select_label_alt_name_table_alias_column(self): t = self._fixture() x, y = t.c.x, t.c.y ta = t.alias() l1, l2 = ta.c.x.label('a'), ta.c.y.label('b') s = select([l1, l2]) mapping = self._mapping(s) assert x not in mapping assert l1 in mapping assert ta.c.x not in mapping def test_column_subquery_exists(self): t = self._fixture() s = exists().where(t.c.x == 5).select() mapping = self._mapping(s) assert t.c.x not in mapping eq_( [type(entry[-1]) for entry in s.compile()._result_columns], [Boolean] ) def test_plain_exists(self): expr = exists([1]) eq_(type(expr.type), Boolean) eq_( [type(entry[-1]) for entry in select([expr]).compile()._result_columns], [Boolean] ) def test_plain_exists_negate(self): expr = ~exists([1]) eq_(type(expr.type), Boolean) eq_( [type(entry[-1]) for entry in select([expr]).compile()._result_columns], [Boolean] ) def test_plain_exists_double_negate(self): expr = ~(~exists([1])) eq_(type(expr.type), Boolean) eq_( [type(entry[-1]) for entry in select([expr]).compile()._result_columns], [Boolean] ) def test_column_subquery_plain(self): t = self._fixture() s1 = select([t.c.x]).where(t.c.x > 5).as_scalar() s2 = select([s1]) mapping = self._mapping(s2) assert t.c.x not in mapping assert s1 in mapping eq_( [type(entry[-1]) for entry in s2.compile()._result_columns], [Integer] ) def test_unary_boolean(self): s1 = select([not_(True)], use_labels=True) eq_( [type(entry[-1]) for entry in s1.compile()._result_columns], [Boolean] ) class ForUpdateTest(fixtures.TestBase, AssertsCompiledSQL): __dialect__ = "default" def _assert_legacy(self, leg, read=False, nowait=False): t = table('t', column('c')) s1 = select([t], for_update=leg) if leg is False: assert s1._for_update_arg is None assert s1.for_update is None else: eq_( s1._for_update_arg.read, read ) eq_( s1._for_update_arg.nowait, nowait ) eq_(s1.for_update, leg) def test_false_legacy(self): self._assert_legacy(False) def test_plain_true_legacy(self): self._assert_legacy(True) def test_read_legacy(self): self._assert_legacy("read", read=True) def test_nowait_legacy(self): self._assert_legacy("nowait", nowait=True) def test_read_nowait_legacy(self): self._assert_legacy("read_nowait", read=True, nowait=True) def test_legacy_setter(self): t = table('t', column('c')) s = select([t]) s.for_update = 'nowait' eq_(s._for_update_arg.nowait, True) def test_basic_clone(self): t = table('t', column('c')) s = select([t]).with_for_update(read=True, of=t.c.c) s2 = visitors.ReplacingCloningVisitor().traverse(s) assert s2._for_update_arg is not s._for_update_arg eq_(s2._for_update_arg.read, True) eq_(s2._for_update_arg.of, [t.c.c]) self.assert_compile(s2, "SELECT t.c FROM t FOR SHARE OF t", dialect="postgresql") def test_adapt(self): t = table('t', column('c')) s = select([t]).with_for_update(read=True, of=t.c.c) a = t.alias() s2 = sql_util.ClauseAdapter(a).traverse(s) eq_(s2._for_update_arg.of, [a.c.c]) self.assert_compile(s2, "SELECT t_1.c FROM t AS t_1 FOR SHARE OF t_1", dialect="postgresql")
34.683459
79
0.545439
edd4b889aaca2071b7d1eff6a77d3d199ebb8ec3
4,925
py
Python
install/core/python/tank_vendor/shotgun_api3/lib/mockgun/schema.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
null
null
null
install/core/python/tank_vendor/shotgun_api3/lib/mockgun/schema.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
null
null
null
install/core/python/tank_vendor/shotgun_api3/lib/mockgun/schema.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
1
2020-02-15T10:42:56.000Z
2020-02-15T10:42:56.000Z
""" ----------------------------------------------------------------------------- Copyright (c) 2009-2017, Shotgun Software Inc Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Shotgun Software Inc nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ----------------------------------------------------------------------------- """ import cPickle as pickle import os import copy from .errors import MockgunError class SchemaFactory(object): """ Allows to instantiate a pickled schema. """ _schema_entity_cache = None _schema_entity_cache_path = None _schema_cache = None _schema_cache_path = None @classmethod def get_schemas(cls, schema_path, schema_entity_path): """ Retrieves the schemas from disk. :param str schema_path: Path to the schema. :param str schema_entity_path: Path to the entities schema. :returns: Pair of dictionaries holding the schema and entities schema. :rtype: tuple """ if not os.path.exists(schema_path): raise MockgunError("Cannot locate Mockgun schema file '%s'!" % schema_path) if not os.path.exists(schema_entity_path): raise MockgunError("Cannot locate Mockgun schema file '%s'!" % schema_entity_path) # Poor man's attempt at a cache. All of our use cases deal with a single pair of files # for the duration of the unit tests, so keep a cache for both inputs. We don't want # to deal with ever growing caches anyway. Just having this simple cache has shown # speed increases of up to 500% for Toolkit unit tests alone. if schema_path != cls._schema_cache_path: cls._schema_cache = cls._read_file(schema_path) cls._schema_cache_path = schema_path if schema_entity_path != cls._schema_entity_cache_path: cls._schema_entity_cache = cls._read_file(schema_entity_path) cls._schema_entity_cache_path = schema_entity_path return cls._schema_cache, cls._schema_entity_cache @classmethod def _read_file(cls, path): fh = open(path, "rb") try: return pickle.load(fh) finally: fh.close() # Highest protocol that Python 2.4 supports, which is the earliest version of Python we support. # Actually, this is the same version that Python 2.7 supports at the moment! _HIGHEST_24_PICKLE_PROTOCOL = 2 # ---------------------------------------------------------------------------- # Utility methods def generate_schema(shotgun, schema_file_path, schema_entity_file_path): """ Helper method for mockgun. Generates the schema files needed by the mocker by connecting to a real shotgun and downloading the schema information for that site. Once the generated schema files are being passed to mockgun, it will mimic the site's schema structure. :param sg_url: Shotgun site url :param sg_script: Script name to connect with :param sg_key: Script key to connect with :param schema_file_path: Path where to write the main schema file to :param schema_entity_file_path: Path where to write the entity schema file to """ schema = shotgun.schema_read() fh = open(schema_file_path, "wb") try: pickle.dump(schema, fh, protocol=_HIGHEST_24_PICKLE_PROTOCOL) finally: fh.close() schema_entity = shotgun.schema_entity_read() fh = open(schema_entity_file_path, "wb") try: pickle.dump(schema_entity, fh, protocol=_HIGHEST_24_PICKLE_PROTOCOL) finally: fh.close()
39.4
96
0.690355
83b67e5c4e02f696592fff9ac77e90d9986bdd00
271
py
Python
Python3/server.py
MatYoshr/Alibaba-FC-CustomRuntime-Sample
06c12d3547d660fa65b9966e2d8f42a3d7367932
[ "MIT" ]
null
null
null
Python3/server.py
MatYoshr/Alibaba-FC-CustomRuntime-Sample
06c12d3547d660fa65b9966e2d8f42a3d7367932
[ "MIT" ]
null
null
null
Python3/server.py
MatYoshr/Alibaba-FC-CustomRuntime-Sample
06c12d3547d660fa65b9966e2d8f42a3d7367932
[ "MIT" ]
null
null
null
from flask import Flask import os import sys app = Flask(__name__) @app.route('/invoke', methods=['GET','POST']) def hello_world(): return sys.version if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=os.environ.get("FC_SERVER_PORT", "9000"))
22.583333
86
0.686347
c2f769e79df9d4280287b3a4c70aec83088110a2
399
py
Python
backend/ownly_29896/wsgi.py
crowdbotics-apps/ownly-29896
31f5f8da6607479c7931f69cdd7e3e29a6858719
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/ownly_29896/wsgi.py
crowdbotics-apps/ownly-29896
31f5f8da6607479c7931f69cdd7e3e29a6858719
[ "FTL", "AML", "RSA-MD" ]
18
2021-08-29T18:20:38.000Z
2022-01-09T17:44:40.000Z
backend/ownly_29896/wsgi.py
crowdbotics-apps/ownly-29896
31f5f8da6607479c7931f69cdd7e3e29a6858719
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" WSGI config for ownly_29896 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ownly_29896.settings') application = get_wsgi_application()
23.470588
78
0.789474
1742d00e98016b7987bab1bdb32140ee303406f3
1,632
py
Python
socket/port_killer.py
robotx-school/eurobot-2022
c5a6bfba92191fe0643e1691175fd0facf9fbf99
[ "MIT" ]
1
2022-03-23T12:03:16.000Z
2022-03-23T12:03:16.000Z
socket/port_killer.py
robotx-school/eurobot-2022
c5a6bfba92191fe0643e1691175fd0facf9fbf99
[ "MIT" ]
null
null
null
socket/port_killer.py
robotx-school/eurobot-2022
c5a6bfba92191fe0643e1691175fd0facf9fbf99
[ "MIT" ]
null
null
null
import os import subprocess import sys def KillPort(port): try: port = int(port) cmd = 'lsof -t -i:{0}'.format(port) pid = None try: pid = subprocess.check_output(cmd, shell=True) except Exception as e: print("No process running on port {} by current user. Checking if root is running the proecess".format(port)) if pid is None: cmd = 'sudo lsof -t -i:{0}'.format(port) pid = subprocess.check_output(cmd, shell=True) pids = pid.decode().split("\n") pids_int = [] for pid in pids: if pid: pid = int(pid) pids_int.append(pid) except ValueError as e: print(e) return -1 except Exception as e: print("No process found running on port {0}.".format(port)) return -1 for pid in pids_int: processTypeCmd = 'ps -p {0} -o comm='.format(pid) processType = subprocess.check_output(processTypeCmd, shell=True, text=True).rstrip('\n') userCmd = 'ps -o user= -p {}'.format(pid) user = subprocess.check_output(userCmd, shell=True, text=True).rstrip('\n') if user.lower() == "root": killCmd = 'sudo kill -9 {0}'.format(pid) else: killCmd = 'kill -9 {0}'.format(pid) isKilled = os.system(killCmd) if isKilled == 0: print("Port {0} is free. Processs {1} killed successfully".format(port, pid)) else: print("Cannot free port {0}.Failed to kill process {1}, err code:{2}".format(port, pid, isKilled))
36.266667
121
0.553309
8c51da32a0619b8f4256c36fa1da731423738730
6,317
py
Python
utils/contour.py
euCanSHare/dicom2nitfi
1d036b4d197b63430a97f7ace19d00a771a599a3
[ "MIT" ]
null
null
null
utils/contour.py
euCanSHare/dicom2nitfi
1d036b4d197b63430a97f7ace19d00a771a599a3
[ "MIT" ]
null
null
null
utils/contour.py
euCanSHare/dicom2nitfi
1d036b4d197b63430a97f7ace19d00a771a599a3
[ "MIT" ]
null
null
null
import os import cv2 import glob import pickle import numpy as np from utils.parse_cvi42 import parse as parse_cvi def parseContours(patient_dir, new_dir): """ Find and parse contours from cvi42 files. Returns true if files were found and false otherwise. """ # Obtain cvi42wsx or cvi42ws file files = list(glob.iglob(os.path.join(patient_dir, '*.cvi42ws*'))) if len(files) != 0: cvi42_file = files[0] print('cvi42 xml file is', cvi42_file) # Parse file parse_cvi(cvi42_file, new_dir) return True return False def getContour(contour_pickle, X, Y): ''' Construct contour from points in pickle file and return in given dimensions. ''' # The image annotation by default upsamples the image and then # annotate on the upsampled image. up = 4 # Check whether there is a corresponding contour file for this dicom if os.path.exists(contour_pickle): with open(contour_pickle, 'rb') as f: contours = pickle.load(f) # Labels # short axis lv_endo = 1 lv_epi = 2 rv_endo = 3 papil = 4 enh_ref_myo = 6 ref_myo = 7 excl_enh = 10 no_reflow = 20 # Long axis la_endo = 4 ra_endo = 5 # Fill the contours in order # RV endocardium first, then LV epicardium, # then LV endocardium, then RA and LA. # # Issue: there is a problem in very rare cases, # e.g. eid 2485225, 2700750, 2862965, 2912168, # where LV epicardial contour is not a closed contour. This problem # can only be solved if we could have a better definition of contours. # Thanks for Elena Lukaschuk and Stefan Piechnik for pointing this out. # We skip the last point in the contours from cvi, otherwise # the polygon may present problems when closing. print('----------->', contours.keys()) ordered_contours = [] if 'sarvendocardialContour' in contours: ordered_contours += [(contours['sarvendocardialContour'], rv_endo)] if 'larvendocardialContour' in contours: ordered_contours += [(contours['larvendocardialContour'][:-1], rv_endo)] if 'saepicardialContour' in contours: ordered_contours += [(contours['saepicardialContour'], lv_epi)] if 'saepicardialOpenContour' in contours: ordered_contours += [(contours['saepicardialOpenContour'], lv_epi)] # Close LV epicardium in long axis by taking the closest # points to the endocardium contour if 'laendocardialContour' in contours: aux = contours['laepicardialContour'].copy() start_closest = min(contours['laendocardialContour'], key=lambda x: np.linalg.norm(x-aux[0])) aux = np.concatenate(([start_closest], aux)) end_closest = min(contours['laendocardialContour'], key=lambda x: np.linalg.norm(x-aux[-1])) aux = np.concatenate((aux, [end_closest])) contours['laepicardialContour'] = aux if 'laepicardialContour' in contours: ordered_contours += [(contours['laepicardialContour'][:-1], lv_epi)] if 'laepicardialOpenContour' in contours: ordered_contours += [(contours['laepicardialOpenContour'], lv_epi)] if 'saendocardialContour' in contours: ordered_contours += [(contours['saendocardialContour'], lv_endo)] if 'laendocardialContour' in contours: ordered_contours += [(contours['laendocardialContour'][:-1], lv_endo)] if 'saendocardialOpenContour' in contours: ordered_contours += [(contours['saendocardialOpenContour'], lv_endo)] if 'laendocardialOpenContour' in contours: ordered_contours += [(contours['laendocardialOpenContour'][:-1], lv_endo)] if 'saEnhancementReferenceMyoContour' in contours: ordered_contours += [(contours['saEnhancementReferenceMyoContour'], enh_ref_myo)] if 'saReferenceMyoContour' in contours: ordered_contours += [(contours['saReferenceMyoContour'], ref_myo)] if 'excludeEnhancementAreaContour' in contours: ordered_contours += [(contours['excludeEnhancementAreaContour'], excl_enh)] if 'noReflowAreaContour' in contours: ordered_contours += [(contours['noReflowAreaContour'], no_reflow)] if 'laraContour' in contours: ordered_contours += [(contours['laraContour'], ra_endo)] if 'lalaContour' in contours: ordered_contours += [(contours['lalaContour'], la_endo)] # if 'sapapilMuscContour' in contours: # ordered_contours += [(contours['sapapilMuscContour'], papil)] # cv2.fillPoly requires the contour coordinates to be integers. # However, the contour coordinates are floating point number since # they are drawn on an upsampled image by 4 times. # We multiply it by 4 to be an integer. Then we perform fillPoly on # the upsampled image as cvi42 does. This leads to a consistent volume # measurement as cvi2. If we perform fillPoly on the original image, the # volumes are often over-estimated by 5~10%. # We found that it also looks better to fill polygons on the upsampled # space and then downsample the label map than fill on the original image. lab_up = np.zeros((Y * up, X * up)) for c, l in ordered_contours: coord = np.round(c * up).astype(np.int) # Remove outlier points in contours. # For some unknown reason, some outlier points appear. # b = np.linalg.norm(coord - np.mean(coord, axis=0), axis=1) # coord = coord[(b < np.mean(b) + 3*np.std(b))&(b > np.mean(b) - 3*np.std(b))] cv2.fillPoly(lab_up, [coord], l) return lab_up[::up, ::up].transpose(), lab_up.transpose()
44.485915
109
0.602343
92b97812e5d9a15a7d41e70452c013e92056a3d0
7,082
py
Python
p3/views/profile.py
malemburg/epcon
1edec493ac1258950dcabdc9f9ee8b97c24f96c5
[ "BSD-2-Clause" ]
null
null
null
p3/views/profile.py
malemburg/epcon
1edec493ac1258950dcabdc9f9ee8b97c24f96c5
[ "BSD-2-Clause" ]
null
null
null
p3/views/profile.py
malemburg/epcon
1edec493ac1258950dcabdc9f9ee8b97c24f96c5
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: UTF-8 -*- import os.path import logging from assopy import models as amodels from assopy.views import render_to_json from conference import models as cmodels from conference.views import profile_access, json_dumps from django import http from django import forms from django.contrib.auth.decorators import login_required from django.db import transaction from django.shortcuts import get_object_or_404, redirect, render from email_template import utils from p3 import dataaccess from p3 import forms as p3forms from p3 import models log = logging.getLogger('p3.views') @profile_access def p3_profile(request, slug, profile=None, full_access=False, format_='html'): if format_ == 'json': pdata = dataaccess.profile_data(profile.user_id) from conference.templatetags.conference import markdown2 pdata['bio'] = markdown2(pdata['bio'], "smarty-pants,code-color") return http.HttpResponse( json_dumps(pdata), content_type='text/javascript') tpl = 'conference/profile_publicdata_form.html' if request.method == 'POST': section = request.POST.get('section') if section == 'public-data': fc = p3forms.P3ProfilePublicDataForm tpl = 'conference/profile_publicdata_form.html' elif section == 'bio': fc = p3forms.P3ProfileBioForm tpl = 'conference/profile_bio_form.html' elif section == 'visibility': fc = p3forms.P3ProfileVisibilityForm tpl = 'conference/profile_visibility_form.html' elif section == 'picture': fc = p3forms.P3ProfilePictureForm tpl = 'conference/profile_picture_form.html' else: fc = p3forms.P3ProfileForm form = fc(instance=profile, data=request.POST, files=request.FILES) if form.is_valid(): form.save() else: form = p3forms.P3ProfileForm(instance=profile) ctx = { 'form': form, 'full_access': full_access, 'profile': profile, } return render(request, tpl, ctx) def p3_profile_avatar(request, slug): p = get_object_or_404(cmodels.AttendeeProfile, slug=slug).p3_profile from urllib2 import urlopen try: img = urlopen(p.profile_image_url()) except Exception: import p3 from django.conf import settings path = os.path.join(os.path.dirname(p3.__file__), 'static', settings.P3_ANONYMOUS_AVATAR) img = file(path) ct = 'image/jpg' else: headers = img.info() ct = headers.get('content-type') return http.HttpResponse(img.read(), content_type=ct) @login_required @render_to_json def p3_profile_message(request, slug): if request.method != 'POST': return http.HttpResponseNotAllowed(('POST',)) class MessageForm(forms.Form): subject = forms.CharField() message = forms.CharField() f = MessageForm(data=request.POST) if f.is_valid(): data = f.cleaned_data profile = get_object_or_404(cmodels.AttendeeProfile, slug=slug) try: profile.p3_profile.send_user_message(request.user, data['subject'], data['message']) except ValueError as e: return http.HttpResponseBadRequest(str(e)) return "OK" return f.errors @login_required def p3_account_data(request): ctx = {} if request.method == 'POST': profile = cmodels.AttendeeProfile.objects.getOrCreateForUser(request.user) form = p3forms.P3ProfilePersonalDataForm(instance=profile, data=request.POST) ctx['pform'] = form if form.is_valid(): form.save() data = form.cleaned_data request.user.first_name = data['first_name'] request.user.last_name = data['last_name'] request.user.save() if profile.slug[0] == '-': slug = cmodels.AttendeeProfile.objects.findSlugForUser(request.user) if slug and slug[0] != '-': profile.slug = slug profile.save() return render(request, "assopy/profile_personal_data.html", ctx) @transaction.atomic def OTCHandler_E(request, token): user = token.user models.TicketConference.objects\ .filter(assigned_to=user.email)\ .update(assigned_to=token.payload) user.email = token.payload user.save() log.info('"%s" has verified the new email "%s"', user.username, user.email) return redirect('assopy-profile') @login_required def p3_account_email(request): if request.method == 'POST': form = p3forms.P3ProfileEmailContactForm(data=request.POST, user=request.user) if form.is_valid(): email = form.cleaned_data['email'] if email != request.user.email: log.info( 'requested an email change from "%s" to "%s" for the user "%s"', request.user.email, email, request.user.username,) utils.email( 'verify-account', ctx={ 'user': request.user, 'token': amodels.Token.objects.create(ctype='e', user=request.user, payload=email), }, to=[email] ).send() else: form = p3forms.P3ProfileEmailContactForm(initial={'email': request.user.email}) ctx = { 'pform': form, } return render(request, "assopy/profile_email_contact.html", ctx) @login_required def p3_account_spam_control(request): ctx = {} if request.method == 'POST': profile = cmodels.AttendeeProfile.objects.getOrCreateForUser(request.user) form = p3forms.P3ProfileSpamControlForm(instance=profile.p3_profile, data=request.POST) if form.is_valid(): form.save() return render(request, "assopy/profile_spam_control.html", ctx) def connect_profile_to_assopy(backend, user, response, *args, **kwargs): """ CB to be filled in the python-social-auth pipeline in order to verify if user is a new user and (if not) assopy and conference profiles are created. For more details about the reason for adding this method look at assopy.views.janrain_token that should be doing the same but for a janrain backend instead of python-social-auth. Params: Refer to http://python-social-auth.readthedocs.org/en/latest/pipeline.html for more details """ # TODO: `email` is not used anywhere if backend.name.startswith('google'): email = kwargs['details']['email'] try: # check if assopy user have already been created for this user asso_user = user.assopy_user except amodels.User.DoesNotExist: # create it if not...s log.debug('the current user "%s" will become an assopy user', user) asso_user = amodels.User(user=user) asso_user.save() # same for conference profile... profile = cmodels.AttendeeProfile.objects.getOrCreateForUser(user)
36.694301
107
0.641768
bd2162e1db4a0f5c9bc1322145d5cf37e9f20061
474
py
Python
lab03/tests/q5_4.py
ucsb-ds/ds1-f20-content
25f62c7a597b98da436ca39631761c1f3feccfdd
[ "MIT" ]
2
2020-10-14T12:43:18.000Z
2021-01-06T18:06:16.000Z
lab03/tests/q5_4.py
ucsb-int5/int5-f19-notebooks
5b3d1ee6964d9357f211f4706787403ec5a3079c
[ "MIT" ]
3
2019-12-14T06:20:14.000Z
2019-12-14T07:12:33.000Z
lab03/tests/q5_4.py
ucsb-int5/int5-f19-notebooks
5b3d1ee6964d9357f211f4706787403ec5a3079c
[ "MIT" ]
3
2019-10-02T18:36:06.000Z
2019-12-03T18:16:45.000Z
test = { 'name': '', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" >>> abs(average_20th_century_rating - 8.2783625730994146) < 1e-5 True >>> abs(average_21st_century_rating - 8.2379746835443033) < 1e-5 True """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest' } ] }
18.96
74
0.411392
754615df952793c6737430ba77e8fb0443cd059f
5,276
py
Python
venv/Lib/site-packages/Token/generated/provider/models/proxy_create_payment_request.py
The-Fragment/FragmentFembot
bca0027b423753eb162590e8fd440a2c1e65d133
[ "MIT" ]
null
null
null
venv/Lib/site-packages/Token/generated/provider/models/proxy_create_payment_request.py
The-Fragment/FragmentFembot
bca0027b423753eb162590e8fd440a2c1e65d133
[ "MIT" ]
5
2020-06-06T00:40:42.000Z
2021-06-10T22:36:12.000Z
venv/Lib/site-packages/Token/generated/provider/models/proxy_create_payment_request.py
The-Fragment/FragmentFembot
bca0027b423753eb162590e8fd440a2c1e65d133
[ "MIT" ]
null
null
null
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems class ProxyCreatePaymentRequest(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ ProxyCreatePaymentRequest - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'payee_authority': 'Authority', 'description': 'str', 'amount': 'Money', 'route': 'Route' } self.attribute_map = { 'payee_authority': 'payeeAuthority', 'description': 'description', 'amount': 'amount', 'route': 'route' } self._payee_authority = None self._description = None self._amount = None self._route = None @property def payee_authority(self): """ Gets the payee_authority of this ProxyCreatePaymentRequest. :return: The payee_authority of this ProxyCreatePaymentRequest. :rtype: Authority """ return self._payee_authority @payee_authority.setter def payee_authority(self, payee_authority): """ Sets the payee_authority of this ProxyCreatePaymentRequest. :param payee_authority: The payee_authority of this ProxyCreatePaymentRequest. :type: Authority """ self._payee_authority = payee_authority @property def description(self): """ Gets the description of this ProxyCreatePaymentRequest. :return: The description of this ProxyCreatePaymentRequest. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this ProxyCreatePaymentRequest. :param description: The description of this ProxyCreatePaymentRequest. :type: str """ self._description = description @property def amount(self): """ Gets the amount of this ProxyCreatePaymentRequest. :return: The amount of this ProxyCreatePaymentRequest. :rtype: Money """ return self._amount @amount.setter def amount(self, amount): """ Sets the amount of this ProxyCreatePaymentRequest. :param amount: The amount of this ProxyCreatePaymentRequest. :type: Money """ self._amount = amount @property def route(self): """ Gets the route of this ProxyCreatePaymentRequest. :return: The route of this ProxyCreatePaymentRequest. :rtype: Route """ return self._route @route.setter def route(self, route): """ Sets the route of this ProxyCreatePaymentRequest. :param route: The route of this ProxyCreatePaymentRequest. :type: Route """ self._route = route def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
26.918367
86
0.582449
5d7e96b177e4541bf6724ee500a084cc1811ebd9
1,768
py
Python
brownian/wiener.py
rmorshea/quantfi
bb29364fe19c20ab2fe77263c474b147c795a058
[ "MIT" ]
null
null
null
brownian/wiener.py
rmorshea/quantfi
bb29364fe19c20ab2fe77263c474b147c795a058
[ "MIT" ]
null
null
null
brownian/wiener.py
rmorshea/quantfi
bb29364fe19c20ab2fe77263c474b147c795a058
[ "MIT" ]
null
null
null
import numpy as np from math import erfc from random import random from random import gauss def w_series(n, dt, t_init=0, w_init=0.0): """Returns one realization of a Wiener process with n steps of length dt. The time and Wiener series can be initialized using t_init and w_init respectively. """ n+=1 t_series = np.arange(t_init,(n-0.1)*dt,dt) h = t_series[1]-t_series[0] z = np.random.normal(0.0,1.0,n) dw = np.sqrt(h)*z dw[0] = w_init w_series = dw.cumsum() return t_series, w_series def raise_res(T, W, c, mu=0, sigma=1): '''Increase the resolution of a wiener series by a factor of c. Returns a more reolved Wiener series and its associate time series T = the given Time series. W = the associated Wiener series. c = Scaling factor (integer greater than 1). mu = Mean of W's underlying normal distribution. sigma = Standard deviation of W's underlying normal distribution. ''' dT = T[1]-T[0] dt = float(T[1]-T[0])/c t_series = [] w_series = [] for i in range(len(T)-1): t = T[i] w_t = W[i] t_next = T[i+1] w_next = W[i+1] t_series.append(t) w_series.append(w_t) for j in range(c-1): t+=dt dW = (w_next-w_t) drawfrm_cum = np.sqrt(2)*np.sqrt(t_next-t)*sigma*erfc(random()) if np.sqrt(2)*np.sqrt(t_next-t)*sigma*erfc(-2*random())<abs(dW): w_t+=abs(gauss(0,np.sqrt(dt)*sigma))*float(dW)/abs(dW) else: w_t+=gauss(0,np.sqrt(dt)*sigma) t_series.append(t) w_series.append(w_t) t_series.append(T[-1]) w_series.append(W[-1]) return t_series,w_series
33.358491
87
0.582579
d033b45df446d22c451833757c02cdcecc49c230
399
py
Python
lab_manager/wsgi.py
edilson/lab_manager
e0885d0b132b4e2e45b52510758a532128aa29ea
[ "MIT" ]
null
null
null
lab_manager/wsgi.py
edilson/lab_manager
e0885d0b132b4e2e45b52510758a532128aa29ea
[ "MIT" ]
5
2021-03-19T03:19:12.000Z
2021-06-10T19:21:38.000Z
lab_manager/wsgi.py
edilson/lab_manager
e0885d0b132b4e2e45b52510758a532128aa29ea
[ "MIT" ]
null
null
null
""" WSGI config for lab_manager project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'lab_manager.settings') application = get_wsgi_application()
23.470588
78
0.789474
ac434f8aa69e24c120e0acf556b1efa746bc3c33
2,583
py
Python
sdk/edgegateway/azure-mgmt-edgegateway/setup.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
1
2021-09-07T18:39:05.000Z
2021-09-07T18:39:05.000Z
sdk/edgegateway/azure-mgmt-edgegateway/setup.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
null
null
null
sdk/edgegateway/azure-mgmt-edgegateway/setup.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
1
2022-03-04T06:21:56.000Z
2022-03-04T06:21:56.000Z
#!/usr/bin/env python #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import re import os.path from io import open from setuptools import find_packages, setup # Change the PACKAGE_NAME only to change folder and different name PACKAGE_NAME = "azure-mgmt-edgegateway" PACKAGE_PPRINT_NAME = "Data Box Edge / Data Box Gateway" # a-b-c => a/b/c package_folder_path = PACKAGE_NAME.replace('-', '/') # a-b-c => a.b.c namespace_name = PACKAGE_NAME.replace('-', '.') # Version extraction inspired from 'requests' with open(os.path.join(package_folder_path, 'version.py') if os.path.exists(os.path.join(package_folder_path, 'version.py')) else os.path.join(package_folder_path, '_version.py'), 'r') as fd: version = re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') with open('README.md', encoding='utf-8') as f: readme = f.read() with open('CHANGELOG.md', encoding='utf-8') as f: changelog = f.read() setup( name=PACKAGE_NAME, version=version, description='Microsoft Azure {} Client Library for Python'.format(PACKAGE_PPRINT_NAME), long_description=readme + '\n\n' + changelog, long_description_content_type='text/markdown', license='MIT License', author='Microsoft Corporation', author_email='azpysdkhelp@microsoft.com', url='https://github.com/Azure/azure-sdk-for-python', classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'License :: OSI Approved :: MIT License', ], zip_safe=False, packages=find_packages(exclude=[ 'tests', # Exclude packages that will be covered by PEP420 or nspkg 'azure', 'azure.mgmt', ]), install_requires=[ 'msrest>=0.6.21', 'msrestazure>=0.4.32,<2.0.0', 'azure-common~=1.1', ], python_requires=">=3.6", )
34.44
91
0.604336
e19cd40437838d24a1995a39a5891650832aae3a
1,051
py
Python
benchmark.py
alessiamarcolini/speech-to-text-benchmark
16962ee2391fc2725ae1fcfe91c197753d192ac8
[ "Apache-2.0" ]
null
null
null
benchmark.py
alessiamarcolini/speech-to-text-benchmark
16962ee2391fc2725ae1fcfe91c197753d192ac8
[ "Apache-2.0" ]
null
null
null
benchmark.py
alessiamarcolini/speech-to-text-benchmark
16962ee2391fc2725ae1fcfe91c197753d192ac8
[ "Apache-2.0" ]
null
null
null
import argparse import editdistance from dataset import * from engine import * from tqdm import tqdm if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--engine_type", type=str, required=True) args = parser.parse_args() dataset = Dataset.create("SpeechAccentArchive") print("loaded %s with %.2f hours of data" % (str(dataset), dataset.size_hours())) engine = ASREngine.create(ASREngines[args.engine_type]) print("created %s engine" % str(engine)) word_error_count = 0 word_count = 0 for i in tqdm(range(dataset.size())): path, ref_transcript = dataset.get(i) transcript = engine.transcribe(path) if transcript is None: continue ref_words = ref_transcript.strip("\n ").lower().split() words = transcript.strip("\n ").lower().split() word_error_count += editdistance.eval(ref_words, words) word_count += len(ref_words) print("word error rate : %.2f" % (100 * float(word_error_count) / word_count))
28.405405
85
0.663178
297eb3946d007c19017a09d690ddaeac3caebcec
4,154
py
Python
nicos/devices/notifiers/mattermost.py
ebadkamil/nicos
0355a970d627aae170c93292f08f95759c97f3b5
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
12
2019-11-06T15:40:36.000Z
2022-01-01T16:23:00.000Z
nicos/devices/notifiers/mattermost.py
ebadkamil/nicos
0355a970d627aae170c93292f08f95759c97f3b5
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
91
2020-08-18T09:20:26.000Z
2022-02-01T11:07:14.000Z
nicos/devices/notifiers/mattermost.py
ISISComputingGroup/nicos
94cb4d172815919481f8c6ee686f21ebb76f2068
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
6
2020-01-11T10:52:30.000Z
2022-02-25T12:35:23.000Z
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2021 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Georg Brandl <g.brandl@fz-juelich.de> # # ***************************************************************************** import json import requests from nicos.core import ConfigurationError, Param from nicos.devices.notifiers import Notifier from nicos.utils.credentials.keystore import nicoskeystore class Mattermost(Notifier): """Mattermost notifier. Mattermost is a group chat system similar to Slack, but open source. To use this notifier, some Mattermost user must register an "Incoming Webhook" on the Mattermost instance. The credid parameter should be set to a NICOS keystore credential ID of the "secret" part of the hook URL. Receivers can be given as channels, using the last part of the channel's URL, or people, in the form ``@joe``. For example, if you want to send messages via a webhook with the URL https://chat.example.org/hooks/xsdkue8djsk to the user "joe" and to the channel https://chat.example.org/team/channels/nicos-notifications you would set the following configuration:: baseurl = 'https://chat.example.org' credid = '...' (a keystore ID with the value 'xsdkue8djsk') receivers = ['nicos-notifications', '@joe'] The `username` parameter can be set freely, Mattermost will show "bot" next to it to avoid spoofing actual users. """ parameters = { 'baseurl': Param('URL of the Mattermost instance', type=str, mandatory=True), 'username': Param('User name to show for notifications', type=str, mandatory=True), 'iconurl': Param('URL of an image to show next to notifications', type=str, default=''), 'credid': Param('Credential ID in the NICOS keystore ' 'for the hook ID', type=str, default='mattermost'), } _headers = { 'Content-Type': 'application/json', 'Accept': 'application/json', } def doInit(self, mode): secret_hookid = nicoskeystore.getCredential(self.credid) if not secret_hookid: raise ConfigurationError('Mattermost hook ID missing in keystore') self._hookurl = self.baseurl + '/hooks/' + secret_hookid def send(self, subject, body, what=None, short=None, important=True): message = '**%s**\n\n```\n%s\n```' % (subject, body) if important: message = '@all ' + message for entry in self._getAllRecipients(important): self.log.debug('sending Mattermost message to %s', entry) data = {'text': message, 'username': self.username, 'channel': entry} if self.iconurl: data['icon_url'] = self.iconurl try: response = requests.post(self._hookurl, headers=self._headers, data=json.dumps(data), timeout=2) if not response.ok: raise ValueError(response.json()['message']) except Exception as err: self.log.warning('Could not send Mattermost ' 'message to %s: %s', entry, err, exc=1)
41.128713
79
0.617236
a296f896f7f89db76b01f3b1738038ff9447eef0
25,797
py
Python
test/functional/p2p_sendheaders.py
ORO-mlm/ORO-Core
770e4728e1b67023f2f52da2850e058732e7583f
[ "MIT" ]
null
null
null
test/functional/p2p_sendheaders.py
ORO-mlm/ORO-Core
770e4728e1b67023f2f52da2850e058732e7583f
[ "MIT" ]
null
null
null
test/functional/p2p_sendheaders.py
ORO-mlm/ORO-Core
770e4728e1b67023f2f52da2850e058732e7583f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.mininode import * from test_framework.test_framework import OroTestFramework from test_framework.util import * from test_framework.blocktools import create_block, create_coinbase ''' SendHeadersTest -- test behavior of headers messages to announce blocks. Setup: - Two nodes, two p2p connections to node0. One p2p connection should only ever receive inv's (omitted from testing description below, this is our control). Second node is used for creating reorgs. Part 1: No headers announcements before "sendheaders" a. node mines a block [expect: inv] send getdata for the block [expect: block] b. node mines another block [expect: inv] send getheaders and getdata [expect: headers, then block] c. node mines another block [expect: inv] peer mines a block, announces with header [expect: getdata] d. node mines another block [expect: inv] Part 2: After "sendheaders", headers announcements should generally work. a. peer sends sendheaders [expect: no response] peer sends getheaders with current tip [expect: no response] b. node mines a block [expect: tip header] c. for N in 1, ..., 10: * for announce-type in {inv, header} - peer mines N blocks, announces with announce-type [ expect: getheaders/getdata or getdata, deliver block(s) ] - node mines a block [ expect: 1 header ] Part 3: Headers announcements stop after large reorg and resume after getheaders or inv from peer. - For response-type in {inv, getheaders} * node mines a 7 block reorg [ expect: headers announcement of 8 blocks ] * node mines an 8-block reorg [ expect: inv at tip ] * peer responds with getblocks/getdata [expect: inv, blocks ] * node mines another block [ expect: inv at tip, peer sends getdata, expect: block ] * node mines another block at tip [ expect: inv ] * peer responds with getheaders with an old hashstop more than 8 blocks back [expect: headers] * peer requests block [ expect: block ] * node mines another block at tip [ expect: inv, peer sends getdata, expect: block ] * peer sends response-type [expect headers if getheaders, getheaders/getdata if mining new block] * node mines 1 block [expect: 1 header, peer responds with getdata] Part 4: Test direct fetch behavior a. Announce 2 old block headers. Expect: no getdata requests. b. Announce 3 new blocks via 1 headers message. Expect: one getdata request for all 3 blocks. (Send blocks.) c. Announce 1 header that forks off the last two blocks. Expect: no response. d. Announce 1 more header that builds on that fork. Expect: one getdata request for two blocks. e. Announce 16 more headers that build on that fork. Expect: getdata request for 14 more blocks. f. Announce 1 more header that builds on that fork. Expect: no response. Part 5: Test handling of headers that don't connect. a. Repeat 10 times: 1. Announce a header that doesn't connect. Expect: getheaders message 2. Send headers chain. Expect: getdata for the missing blocks, tip update. b. Then send 9 more headers that don't connect. Expect: getheaders message each time. c. Announce a header that does connect. Expect: no response. d. Announce 49 headers that don't connect. Expect: getheaders message each time. e. Announce one more that doesn't connect. Expect: disconnect. ''' direct_fetch_response_time = 0.05 class BaseNode(SingleNodeConnCB): def __init__(self): SingleNodeConnCB.__init__(self) self.last_inv = None self.last_headers = None self.last_block = None self.last_getdata = None self.block_announced = False self.last_getheaders = None self.disconnected = False self.last_blockhash_announced = None def clear_last_announcement(self): with mininode_lock: self.block_announced = False self.last_inv = None self.last_headers = None # Request data for a list of block hashes def get_data(self, block_hashes): msg = msg_getdata() for x in block_hashes: msg.inv.append(CInv(2, x)) self.connection.send_message(msg) def get_headers(self, locator, hashstop): msg = msg_getheaders() msg.locator.vHave = locator msg.hashstop = hashstop self.connection.send_message(msg) def send_block_inv(self, blockhash): msg = msg_inv() msg.inv = [CInv(2, blockhash)] self.connection.send_message(msg) def on_inv(self, conn, message): self.last_inv = message self.block_announced = True self.last_blockhash_announced = message.inv[-1].hash def on_headers(self, conn, message): self.last_headers = message if len(message.headers): self.block_announced = True message.headers[-1].calc_sha256() self.last_blockhash_announced = message.headers[-1].sha256 def on_block(self, conn, message): self.last_block = message.block self.last_block.calc_sha256() def on_getdata(self, conn, message): self.last_getdata = message def on_getheaders(self, conn, message): self.last_getheaders = message def on_close(self, conn): self.disconnected = True # Test whether the last announcement we received had the # right header or the right inv # inv and headers should be lists of block hashes def check_last_announcement(self, headers=None, inv=None): expect_headers = headers if headers != None else [] expect_inv = inv if inv != None else [] test_function = lambda: self.block_announced assert(wait_until(test_function, timeout=60)) with mininode_lock: self.block_announced = False success = True compare_inv = [] if self.last_inv != None: compare_inv = [x.hash for x in self.last_inv.inv] if compare_inv != expect_inv: success = False hash_headers = [] if self.last_headers != None: # treat headers as a list of block hashes hash_headers = [ x.sha256 for x in self.last_headers.headers ] if hash_headers != expect_headers: success = False self.last_inv = None self.last_headers = None return success # Syncing helpers def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_block != None and self.last_block.sha256 == blockhash assert(wait_until(test_function, timeout=timeout)) return def wait_for_getheaders(self, timeout=60): test_function = lambda: self.last_getheaders != None assert(wait_until(test_function, timeout=timeout)) return def wait_for_getdata(self, hash_list, timeout=60): if hash_list == []: return test_function = lambda: self.last_getdata != None and [x.hash for x in self.last_getdata.inv] == hash_list assert(wait_until(test_function, timeout=timeout)) return def wait_for_disconnect(self, timeout=60): test_function = lambda: self.disconnected assert(wait_until(test_function, timeout=timeout)) return def wait_for_block_announcement(self, block_hash, timeout=60): test_function = lambda: self.last_blockhash_announced == block_hash assert(wait_until(test_function, timeout=timeout)) return def send_header_for_blocks(self, new_blocks): headers_message = msg_headers() headers_message.headers = [ CBlockHeader(b) for b in new_blocks ] self.send_message(headers_message) def send_getblocks(self, locator): getblocks_message = msg_getblocks() getblocks_message.locator.vHave = locator self.send_message(getblocks_message) # InvNode: This peer should only ever receive inv's, because it doesn't ever send a # "sendheaders" message. class InvNode(BaseNode): def __init__(self): BaseNode.__init__(self) # TestNode: This peer is the one we use for most of the testing. class TestNode(BaseNode): def __init__(self): BaseNode.__init__(self) class SendHeadersTest(OroTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 2 def setup_network(self): self.nodes = [] self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, [["-debug", "-logtimemicros=1"]]*2) connect_nodes(self.nodes[0], 1) # mine count blocks and return the new tip def mine_blocks(self, count): # Clear out last block announcement from each p2p listener [ x.clear_last_announcement() for x in self.p2p_connections ] self.nodes[0].generate(count) return int(self.nodes[0].getbestblockhash(), 16) # mine a reorg that invalidates length blocks (replacing them with # length+1 blocks). # Note: we clear the state of our p2p connections after the # to-be-reorged-out blocks are mined, so that we don't break later tests. # return the list of block hashes newly mined def mine_reorg(self, length): self.nodes[0].generate(length) # make sure all invalidated blocks are node0's self.sync_blocks(self.nodes, wait=0.1) for x in self.p2p_connections: x.wait_for_block_announcement(int(self.nodes[0].getbestblockhash(), 16)) x.clear_last_announcement() tip_height = self.nodes[1].getblockcount() hash_to_invalidate = self.nodes[1].getblockhash(tip_height-(length-1)) self.nodes[1].invalidateblock(hash_to_invalidate) all_hashes = self.nodes[1].generate(length+1) # Must be longer than the orig chain self.sync_blocks(self.nodes, wait=0.1) return [int(x, 16) for x in all_hashes] def run_test(self): # Setup the p2p connections and start up the network thread. inv_node = InvNode() test_node = TestNode() self.p2p_connections = [inv_node, test_node] connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], inv_node)) # Set nServices to 0 for test_node, so no block download will occur outside of # direct fetching connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node, services=0)) inv_node.add_connection(connections[0]) test_node.add_connection(connections[1]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here inv_node.wait_for_verack() test_node.wait_for_verack() tip = int(self.nodes[0].getbestblockhash(), 16) # PART 1 # 1. Mine a block; expect inv announcements each time print("Part 1: headers don't start before sendheaders message...") for i in range(4): old_tip = tip tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) # Try a few different responses; none should affect next announcement if i == 0: # first request the block test_node.get_data([tip]) test_node.wait_for_block(tip, timeout=5) elif i == 1: # next try requesting header and block test_node.get_headers(locator=[old_tip], hashstop=tip) test_node.get_data([tip]) test_node.wait_for_block(tip) test_node.clear_last_announcement() # since we requested headers... elif i == 2: # this time announce own block via headers height = self.nodes[0].getblockcount() last_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] block_time = last_time + 1 new_block = create_block(tip, create_coinbase(height+1), block_time) new_block.solve() test_node.send_header_for_blocks([new_block]) test_node.wait_for_getdata([new_block.sha256], timeout=5) test_node.send_message(msg_block(new_block)) test_node.sync_with_ping() # make sure this block is processed inv_node.clear_last_announcement() test_node.clear_last_announcement() print("Part 1: success!") print("Part 2: announce blocks with headers after sendheaders message...") # PART 2 # 2. Send a sendheaders message and test that headers announcements # commence and keep working. test_node.send_message(msg_sendheaders()) prev_tip = int(self.nodes[0].getbestblockhash(), 16) test_node.get_headers(locator=[prev_tip], hashstop=0) test_node.sync_with_ping() # Now that we've synced headers, headers announcements should work tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) height = self.nodes[0].getblockcount()+1 block_time += 10 # Advance far enough ahead for i in range(10): # Mine i blocks, and alternate announcing either via # inv (of tip) or via headers. After each, new blocks # mined by the node should successfully be announced # with block header, even though the blocks are never requested for j in range(2): blocks = [] for b in range(i+1): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 if j == 0: # Announce via inv test_node.send_block_inv(tip) test_node.wait_for_getdata([tip], timeout=5) # Test that duplicate inv's won't result in duplicate # getdata requests, or duplicate headers announcements inv_node.send_block_inv(tip) # Should have received a getheaders as well! test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks[0:-1]], timeout=5) [ inv_node.send_block_inv(x.sha256) for x in blocks[0:-1] ] inv_node.sync_with_ping() else: # Announce via headers test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks], timeout=5) # Test that duplicate headers won't result in duplicate # getdata requests (the check is further down) inv_node.send_header_for_blocks(blocks) inv_node.sync_with_ping() [ test_node.send_message(msg_block(x)) for x in blocks ] test_node.sync_with_ping() inv_node.sync_with_ping() # This block should not be announced to the inv node (since it also # broadcast it) assert_equal(inv_node.last_inv, None) assert_equal(inv_node.last_headers, None) tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) height += 1 block_time += 1 print("Part 2: success!") print("Part 3: headers announcements can stop after large reorg, and resume after headers/inv from peer...") # PART 3. Headers announcements can stop after large reorg, and resume after # getheaders or inv from peer. for j in range(2): # First try mining a reorg that can propagate with header announcement new_block_hashes = self.mine_reorg(length=7) tip = new_block_hashes[-1] assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=new_block_hashes), True) block_time += 8 # Mine a too-large reorg, which should be announced with a single inv new_block_hashes = self.mine_reorg(length=8) tip = new_block_hashes[-1] assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) block_time += 9 fork_point = self.nodes[0].getblock("%02x" % new_block_hashes[0])["previousblockhash"] fork_point = int(fork_point, 16) # Use getblocks/getdata test_node.send_getblocks(locator = [fork_point]) assert_equal(test_node.check_last_announcement(inv=new_block_hashes), True) test_node.get_data(new_block_hashes) test_node.wait_for_block(new_block_hashes[-1]) for i in range(3): # Mine another block, still should get only an inv tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) if i == 0: # Just get the data -- shouldn't cause headers announcements to resume test_node.get_data([tip]) test_node.wait_for_block(tip) elif i == 1: # Send a getheaders message that shouldn't trigger headers announcements # to resume (best header sent will be too old) test_node.get_headers(locator=[fork_point], hashstop=new_block_hashes[1]) test_node.get_data([tip]) test_node.wait_for_block(tip) elif i == 2: test_node.get_data([tip]) test_node.wait_for_block(tip) # This time, try sending either a getheaders to trigger resumption # of headers announcements, or mine a new block and inv it, also # triggering resumption of headers announcements. if j == 0: test_node.get_headers(locator=[tip], hashstop=0) test_node.sync_with_ping() else: test_node.send_block_inv(tip) test_node.sync_with_ping() # New blocks should now be announced with header tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) print("Part 3: success!") print("Part 4: Testing direct fetch behavior...") tip = self.mine_blocks(1) height = self.nodes[0].getblockcount() + 1 last_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] block_time = last_time + 1 # Create 2 blocks. Send the blocks, then send the headers. blocks = [] for b in range(2): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 inv_node.send_message(msg_block(blocks[-1])) inv_node.sync_with_ping() # Make sure blocks are processed test_node.last_getdata = None test_node.send_header_for_blocks(blocks) test_node.sync_with_ping() # should not have received any getdata messages with mininode_lock: assert_equal(test_node.last_getdata, None) # This time, direct fetch should work blocks = [] for b in range(3): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 test_node.send_header_for_blocks(blocks) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks], timeout=direct_fetch_response_time) [ test_node.send_message(msg_block(x)) for x in blocks ] test_node.sync_with_ping() # Now announce a header that forks the last two blocks tip = blocks[0].sha256 height -= 1 blocks = [] # Create extra blocks for later for b in range(20): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 # Announcing one block on fork should not trigger direct fetch # (less work than tip) test_node.last_getdata = None test_node.send_header_for_blocks(blocks[0:1]) test_node.sync_with_ping() with mininode_lock: assert_equal(test_node.last_getdata, None) # Announcing one more block on fork should trigger direct fetch for # both blocks (same work as tip) test_node.send_header_for_blocks(blocks[1:2]) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks[0:2]], timeout=direct_fetch_response_time) # Announcing 16 more headers should trigger direct fetch for 14 more # blocks test_node.send_header_for_blocks(blocks[2:18]) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks[2:16]], timeout=direct_fetch_response_time) # Announcing 1 more header should not trigger any response test_node.last_getdata = None test_node.send_header_for_blocks(blocks[18:19]) test_node.sync_with_ping() with mininode_lock: assert_equal(test_node.last_getdata, None) print("Part 4: success!") # Now deliver all those blocks we announced. [ test_node.send_message(msg_block(x)) for x in blocks ] print("Part 5: Testing handling of unconnecting headers") # First we test that receipt of an unconnecting header doesn't prevent # chain sync. for i in range(10): test_node.last_getdata = None blocks = [] # Create two more blocks. for j in range(2): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 # Send the header of the second block -> this won't connect. with mininode_lock: test_node.last_getheaders = None test_node.send_header_for_blocks([blocks[1]]) test_node.wait_for_getheaders(timeout=1) test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks]) [ test_node.send_message(msg_block(x)) for x in blocks ] test_node.sync_with_ping() assert_equal(int(self.nodes[0].getbestblockhash(), 16), blocks[1].sha256) blocks = [] # Now we test that if we repeatedly don't send connecting headers, we # don't go into an infinite loop trying to get them to connect. MAX_UNCONNECTING_HEADERS = 10 for j in range(MAX_UNCONNECTING_HEADERS+1): blocks.append(create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 for i in range(1, MAX_UNCONNECTING_HEADERS): # Send a header that doesn't connect, check that we get a getheaders. with mininode_lock: test_node.last_getheaders = None test_node.send_header_for_blocks([blocks[i]]) test_node.wait_for_getheaders(timeout=1) # Next header will connect, should re-set our count: test_node.send_header_for_blocks([blocks[0]]) # Remove the first two entries (blocks[1] would connect): blocks = blocks[2:] # Now try to see how many unconnecting headers we can send # before we get disconnected. Should be 5*MAX_UNCONNECTING_HEADERS for i in range(5*MAX_UNCONNECTING_HEADERS - 1): # Send a header that doesn't connect, check that we get a getheaders. with mininode_lock: test_node.last_getheaders = None test_node.send_header_for_blocks([blocks[i%len(blocks)]]) test_node.wait_for_getheaders(timeout=1) # Eventually this stops working. with mininode_lock: self.last_getheaders = None test_node.send_header_for_blocks([blocks[-1]]) # Should get disconnected test_node.wait_for_disconnect() with mininode_lock: self.last_getheaders = True print("Part 5: success!") # Finally, check that the inv node never received a getdata request, # throughout the test assert_equal(inv_node.last_getdata, None) if __name__ == '__main__': SendHeadersTest().main()
42.429276
116
0.634066
f4d4ef0efcf86ddc89e38ea493a020e6d1dc4d7d
7,195
py
Python
airflow/jobs/local_task_job.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
7
2018-11-19T12:05:13.000Z
2020-01-17T08:30:38.000Z
airflow/jobs/local_task_job.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
14
2019-11-22T09:24:20.000Z
2021-07-09T06:06:59.000Z
airflow/jobs/local_task_job.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-05-01T21:54:37.000Z
2021-05-01T21:54:37.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import os import signal from typing import Optional from airflow.configuration import conf from airflow.exceptions import AirflowException from airflow.jobs.base_job import BaseJob from airflow.models.taskinstance import TaskInstance from airflow.stats import Stats from airflow.task.task_runner import get_task_runner from airflow.utils import timezone from airflow.utils.net import get_hostname from airflow.utils.session import provide_session from airflow.utils.state import State class LocalTaskJob(BaseJob): """LocalTaskJob runs a single task instance.""" __mapper_args__ = {'polymorphic_identity': 'LocalTaskJob'} def __init__( self, task_instance: TaskInstance, ignore_all_deps: bool = False, ignore_depends_on_past: bool = False, ignore_task_deps: bool = False, ignore_ti_state: bool = False, mark_success: bool = False, pickle_id: Optional[str] = None, pool: Optional[str] = None, *args, **kwargs, ): self.task_instance = task_instance self.dag_id = task_instance.dag_id self.ignore_all_deps = ignore_all_deps self.ignore_depends_on_past = ignore_depends_on_past self.ignore_task_deps = ignore_task_deps self.ignore_ti_state = ignore_ti_state self.pool = pool self.pickle_id = pickle_id self.mark_success = mark_success self.task_runner = None # terminating state is used so that a job don't try to # terminate multiple times self.terminating = False super().__init__(*args, **kwargs) def _execute(self): self.task_runner = get_task_runner(self) # pylint: disable=unused-argument def signal_handler(signum, frame): """Setting kill signal handler""" self.log.error("Received SIGTERM. Terminating subprocesses") self.on_kill() raise AirflowException("LocalTaskJob received SIGTERM signal") # pylint: enable=unused-argument signal.signal(signal.SIGTERM, signal_handler) if not self.task_instance.check_and_change_state_before_execution( mark_success=self.mark_success, ignore_all_deps=self.ignore_all_deps, ignore_depends_on_past=self.ignore_depends_on_past, ignore_task_deps=self.ignore_task_deps, ignore_ti_state=self.ignore_ti_state, job_id=self.id, pool=self.pool, ): self.log.info("Task is not able to be run") return try: self.task_runner.start() heartbeat_time_limit = conf.getint('scheduler', 'scheduler_zombie_task_threshold') while True: # Monitor the task to see if it's done. Wait in a syscall # (`os.wait`) for as long as possible so we notice the # subprocess finishing as quick as we can max_wait_time = max( 0, # Make sure this value is never negative, min( ( heartbeat_time_limit - (timezone.utcnow() - self.latest_heartbeat).total_seconds() * 0.75 ), self.heartrate, ), ) return_code = self.task_runner.return_code(timeout=max_wait_time) if return_code is not None: self.log.info("Task exited with return code %s", return_code) return self.heartbeat() # If it's been too long since we've heartbeat, then it's possible that # the scheduler rescheduled this task, so kill launched processes. # This can only really happen if the worker can't read the DB for a long time time_since_last_heartbeat = (timezone.utcnow() - self.latest_heartbeat).total_seconds() if time_since_last_heartbeat > heartbeat_time_limit: Stats.incr('local_task_job_prolonged_heartbeat_failure', 1, 1) self.log.error("Heartbeat time limit exceeded!") raise AirflowException( "Time since last heartbeat({:.2f}s) " "exceeded limit ({}s).".format(time_since_last_heartbeat, heartbeat_time_limit) ) finally: self.on_kill() def on_kill(self): self.task_runner.terminate() self.task_runner.on_finish() @provide_session def heartbeat_callback(self, session=None): """Self destruct task if state has been moved away from running externally""" if self.terminating: # ensure termination if processes are created later self.task_runner.terminate() return self.task_instance.refresh_from_db() ti = self.task_instance if ti.state == State.RUNNING: fqdn = get_hostname() same_hostname = fqdn == ti.hostname if not same_hostname: self.log.warning( "The recorded hostname %s " "does not match this instance's hostname " "%s", ti.hostname, fqdn, ) raise AirflowException("Hostname of job runner does not match") current_pid = os.getpid() same_process = ti.pid == current_pid if not same_process: self.log.warning("Recorded pid %s does not match " "the current pid %s", ti.pid, current_pid) raise AirflowException("PID of job runner does not match") elif self.task_runner.return_code() is None and hasattr(self.task_runner, 'process'): self.log.warning( "State of this instance has been externally set to %s. " "Terminating instance.", ti.state ) if ti.state == State.FAILED and ti.task.on_failure_callback: context = ti.get_template_context() ti.task.on_failure_callback(context) if ti.state == State.SUCCESS and ti.task.on_success_callback: context = ti.get_template_context() ti.task.on_success_callback(context) self.task_runner.terminate() self.terminating = True
39.972222
109
0.622794
931779bb5bed9a51d76b040868ae4716fa6a109b
1,318
py
Python
huxley/api/mixins.py
srisainachuri/huxley
7166a1423e49b506d6d5f142c748eac4e5d2314c
[ "BSD-3-Clause" ]
18
2015-07-12T00:55:51.000Z
2021-12-13T15:41:06.000Z
huxley/api/mixins.py
srisainachuri/huxley
7166a1423e49b506d6d5f142c748eac4e5d2314c
[ "BSD-3-Clause" ]
288
2015-01-13T23:05:09.000Z
2022-03-25T17:35:36.000Z
huxley/api/mixins.py
srisainachuri/huxley
7166a1423e49b506d6d5f142c748eac4e5d2314c
[ "BSD-3-Clause" ]
47
2015-05-12T15:39:57.000Z
2022-03-30T09:12:48.000Z
# Copyright (c) 2011-2015 Berkeley Model United Nations. All rights reserved. # Use of this source code is governed by a BSD License (see LICENSE). import json from django.db import transaction from rest_framework import status from rest_framework.response import Response from huxley.core.models import Delegate class ListUpdateModelMixin(object): """ Update a queryset """ def list_update(self, request, partial=False, *args, **kwargs): updates = {delegate['id']: delegate for delegate in request.data} response_data = [] with transaction.atomic(): delegates = Delegate.objects.filter(id__in=updates.keys()) for delegate in delegates: serializer = self.get_serializer( instance=delegate, data=updates[delegate.id], partial=partial) serializer.is_valid(raise_exception=True) serializer.save() response_data.append(serializer.data) return Response(response_data, status=status.HTTP_200_OK) def put(self, request, *args, **kwargs): return self.list_update(request, *args, **kwargs) def patch(self, request, *args, **kwargs): return self.list_update(request, partial=True, *args, **kwargs)
32.95
77
0.650228
3645da2ad5b34e11dbc50baba8b592b1fe09ecdd
6,770
py
Python
test/test_oneview_id_pools_ipv4_range_facts.py
LaudateCorpus1/oneview-ansible
a1befcab3ff8d23ab7f85844eeba0d2f2c6a21e2
[ "Apache-2.0" ]
108
2016-06-28T18:14:08.000Z
2022-02-21T09:16:06.000Z
test/test_oneview_id_pools_ipv4_range_facts.py
HPE-Japan-Presales/oneview-ansible
26eb13354333d862d9e80f07e3fe9bbe2eb59af3
[ "Apache-2.0" ]
248
2016-07-14T12:50:17.000Z
2022-02-06T18:57:16.000Z
test/test_oneview_id_pools_ipv4_range_facts.py
HPE-Japan-Presales/oneview-ansible
26eb13354333d862d9e80f07e3fe9bbe2eb59af3
[ "Apache-2.0" ]
88
2016-06-29T15:52:44.000Z
2022-03-10T12:34:41.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- ### # Copyright (2016-2021) Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### import pytest import mock from hpe_test_utils import OneViewBaseTest from oneview_module_loader import IdPoolsIpv4RangeFactsModule ERROR_MSG = 'Fake message error' DEFAULT_RANGE_TEMPLATE = dict( name='Ipv4Range', uri='rest/range/test', subnetUri='rest/subnet/test', type='Range', enabled=True, gateway='10.10.0.1' ) DEFAULT_NOT_RANGE_TEMPLATE = dict( name='NOTIpv4Range', uri='rest/range/not', subnetUri='rest/subnet/test', type='Range', gateway='10.3.3.1' ) DEFAULT_SUBNET_TEMPLATE_1 = dict( name='Ipv4Subnet1', uri='rest/subnet/test1', type='Subnet', rangeUris=['rest/range/not2', 'rest/range/not3'] ) DEFAULT_SUBNET_TEMPLATE_2 = dict( name='Ipv4Subnet2', uri='rest/subnet/test2', type='Subnet', rangeUris=['rest/range/test', 'rest/range/not4'] ) PARAMS_GET_ALL = dict( config='config.json', ) PARAMS_GET_ALL_FROM_SUBNET = dict( config='config.json', subnetUri='rest/subnet/test2' ) PARAMS_GET_BY_NAME_AND_SUBNET_URI = dict( config='config.json', name="Ipv4Range", subnetUri='rest/subnet/test2' ) PARAMS_GET_BY_URI = dict( config='config.json', uri='/rest/ipv4-range/test' ) PARAMS_GET_ALLOCATED_FRAGMENTS = dict( config='config.json', options=['allocatedFragments'], uri='/rest/ipv4-range/test' ) PARAMS_GET_SCHEMA = dict( config='config.json', options=['schema'] ) PARAMS_GET_FREE_FRAGMENTS = dict( config='config.json', options=['freeFragments'], uri='/rest/ipv4-range/test' ) ALL_SUBNETS = [DEFAULT_SUBNET_TEMPLATE_1.copy(), DEFAULT_SUBNET_TEMPLATE_2.copy()] @pytest.mark.resource(TestIdPoolsIpv4RangeFactsModule='id_pools_ipv4_ranges') class TestIdPoolsIpv4RangeFactsModule(OneViewBaseTest): def test_should_get_all_id_pools_ipv4_ranges(self): self.mock_ov_client.id_pools_ipv4_subnets.get_all.return_value = ALL_SUBNETS range_1 = DEFAULT_RANGE_TEMPLATE.copy() range_2 = DEFAULT_RANGE_TEMPLATE.copy() range_3 = DEFAULT_RANGE_TEMPLATE.copy() range_4 = DEFAULT_RANGE_TEMPLATE.copy() ranges = [range_2, range_3, range_1, range_4] self.resource.get_by_uri().data = range_1 self.mock_ansible_module.params = PARAMS_GET_ALL IdPoolsIpv4RangeFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(id_pools_ipv4_ranges=ranges) ) def test_should_get_all_id_pools_ipv4_ranges_from_subnet(self): obj = mock.Mock() obj.data = DEFAULT_SUBNET_TEMPLATE_2 self.mock_ov_client.id_pools_ipv4_subnets.get_by_uri.return_value = obj range_1 = DEFAULT_RANGE_TEMPLATE.copy() range_4 = DEFAULT_RANGE_TEMPLATE.copy() ranges = [range_1, range_4] self.resource.get_by_uri.return_value = self.resource self.resource.data = range_1 self.mock_ansible_module.params = PARAMS_GET_ALL_FROM_SUBNET IdPoolsIpv4RangeFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(id_pools_ipv4_ranges=ranges) ) def test_should_get_id_pools_ipv4_range_from_subnet_and_name(self): obj = mock.Mock() obj.data = DEFAULT_SUBNET_TEMPLATE_2 self.mock_ov_client.id_pools_ipv4_subnets.get_by_uri.return_value = obj range_1 = DEFAULT_RANGE_TEMPLATE.copy() self.resource.get_by_uri.return_value = self.resource self.resource.data = range_1 self.mock_ansible_module.params = PARAMS_GET_BY_NAME_AND_SUBNET_URI IdPoolsIpv4RangeFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(id_pools_ipv4_ranges=[range_1]) ) def test_should_get_id_pools_ipv4_range_from_uri(self): self.resource.get_by_uri.return_value = self.resource self.resource.data = DEFAULT_RANGE_TEMPLATE.copy() self.mock_ansible_module.params = PARAMS_GET_BY_URI IdPoolsIpv4RangeFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(id_pools_ipv4_ranges=[DEFAULT_RANGE_TEMPLATE.copy()]) ) def test_should_get_id_pools_ipv4_ranges_allocated_fragments(self): self.resource.get_by_uri().data = DEFAULT_RANGE_TEMPLATE.copy() self.resource.get_allocated_fragments.return_value = [{'frag': 'test'}] self.mock_ansible_module.params = PARAMS_GET_ALLOCATED_FRAGMENTS IdPoolsIpv4RangeFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(id_pools_ipv4_ranges=[DEFAULT_RANGE_TEMPLATE.copy()], id_pools_ipv4_ranges_allocated_fragments=[{'frag': 'test'}]) ) def test_should_get_id_pools_ipv4_ranges_schema(self): self.resource.get_schema.return_value = [{'schema': 'schema'}] self.mock_ansible_module.params = PARAMS_GET_SCHEMA IdPoolsIpv4RangeFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(id_pools_ipv4_ranges_schema=[{'schema': 'schema'}], id_pools_ipv4_ranges=[]) ) def test_should_get_id_pools_ipv4_ranges_free_fragments(self): self.resource.get_by_uri().data = DEFAULT_RANGE_TEMPLATE.copy() self.resource.get_free_fragments.return_value = [{'frag': 'testfree'}] self.mock_ansible_module.params = PARAMS_GET_FREE_FRAGMENTS IdPoolsIpv4RangeFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(id_pools_ipv4_ranges=[DEFAULT_RANGE_TEMPLATE.copy()], id_pools_ipv4_ranges_free_fragments=[{'frag': 'testfree'}]) ) if __name__ == '__main__': pytest.main([__file__])
32.705314
91
0.706499
b5115e230109299bbe27f9d7c8e09b58d707310d
5,204
py
Python
stable_baselines/her/utils.py
johannes-dornheim/stable-baselines
b38b6d47daa119118104c63568edc4b255a0282e
[ "MIT" ]
null
null
null
stable_baselines/her/utils.py
johannes-dornheim/stable-baselines
b38b6d47daa119118104c63568edc4b255a0282e
[ "MIT" ]
null
null
null
stable_baselines/her/utils.py
johannes-dornheim/stable-baselines
b38b6d47daa119118104c63568edc4b255a0282e
[ "MIT" ]
null
null
null
from collections import OrderedDict import numpy as np from gym import spaces # Important: gym mixes up ordered and unordered keys # and the Dict space may return a different order of keys that the actual one KEY_ORDER = ['observation', 'achieved_goal', 'desired_goal'] class HERGoalEnvWrapper(object): """ A wrapper that allow to use dict observation space (coming from GoalEnv) with the RL algorithms. It assumes that all the spaces of the dict space are of the same type. :param env: (gym.GoalEnv) """ def __init__(self, env): super(HERGoalEnvWrapper, self).__init__() self.env = env self.metadata = self.env.metadata self.action_space = env.action_space self.spaces = list(env.observation_space.spaces.values()) self.achieved_goals = {} # Check that all spaces are of the same type # (current limitation of the wrapper) space_types = [type(env.observation_space.spaces[key]) for key in KEY_ORDER] assert len(set(space_types)) == 1, "The spaces for goal and observation"\ " must be of the same type" if isinstance(self.spaces[0], spaces.Discrete): self.obs_dim = 1 self.goal_dim = 1 else: goal_space_shape = env.observation_space.spaces['achieved_goal'].shape self.obs_dim = env.observation_space.spaces['observation'].shape[0] self.goal_dim = goal_space_shape[0] if len(goal_space_shape) == 2: assert goal_space_shape[1] == 1, "Only 1D observation spaces are supported yet" else: assert len(goal_space_shape) == 1, "Only 1D observation spaces are supported yet" if isinstance(self.spaces[0], spaces.MultiBinary): total_dim = self.obs_dim + self.goal_dim # 2 * self.goal_dim self.observation_space = spaces.MultiBinary(total_dim) elif isinstance(self.spaces[0], spaces.Box): lows = np.concatenate([space.low for space in np.array(self.spaces)[[0, 2]]]) # np.concatenate([space.low for space in self.spaces]) highs = np.concatenate([space.high for space in np.array(self.spaces)[[0, 2]]]) # np.concatenate([space.high for space in self.spaces]) self.observation_space = spaces.Box(lows, highs, dtype=np.float32) elif isinstance(self.spaces[0], spaces.Discrete): dimensions = [env.observation_space.spaces[key].n for key in ['observation', 'desired_goal']] self.observation_space = spaces.MultiDiscrete(dimensions) else: raise NotImplementedError("{} space is not supported".format(type(self.spaces[0]))) def convert_dict_to_obs(self, obs_dict): """ :param obs_dict: (dict<np.ndarray>) :return: (np.ndarray) """ # Note: achieved goal is not removed from the observation # this is helpful to have a revertible transformation # -------------------------------------------------------------------------------------------- # instead: achieved goals are stored in extra dict hash(obs,desired):achieved ! # Assumes (obs,desired)->achieved to be unique ! # -------------------------------------------------------------------------------------------- if isinstance(self.observation_space, spaces.MultiDiscrete): # Special case for multidiscrete obs = np.concatenate([[int(obs_dict[key])] for key in ['observation', 'desired_goal']]) else: # obs = np.concatenate([obs_dict[key] for key in ['observation', 'desired_goal']]) # todo !!!!!!!!!! experimental relative goal obs = np.concatenate([obs_dict['observation'], obs_dict['desired_goal'] - obs_dict['observation']]) # todo !!!!!!!!!! experimental relative goal # obs.flags.writeable = False # self.achieved_goals[hash(obs.data)] = obs_dict['achieved_goal'] self.achieved_goals[hash(obs.data.tobytes())] = obs_dict['achieved_goal'] return obs def convert_obs_to_dict(self, observations): """ Inverse operation of convert_dict_to_obs :param observations: (np.ndarray) :return: (OrderedDict<np.ndarray>) """ return OrderedDict([ ('observation', observations[:self.obs_dim]), ('achieved_goal', self.achieved_goals[hash(observations.data.tobytes())]), ('desired_goal', observations[self.obs_dim:]), ]) def step(self, action): obs, reward, done, info = self.env.step(action) return self.convert_dict_to_obs(obs), reward, done, info def seed(self, seed=None): return self.env.seed(seed) def reset(self): # todo test self.achieved_goals = {} o = self.convert_dict_to_obs(self.env.reset()) return o def compute_reward(self, achieved_goal, desired_goal, info): return self.env.compute_reward(achieved_goal, desired_goal, info) def render(self, mode='human'): return self.env.render(mode) def close(self): return self.env.close()
41.967742
147
0.610492
985c98390f7334a400ae670f14277845167e0aa9
178
py
Python
libs/__init__.py
SeanLee97/word2vec-test
68053556c7016cecc5e97dd25c28dd452b77f2e4
[ "MIT" ]
1
2019-01-20T08:39:25.000Z
2019-01-20T08:39:25.000Z
libs/__init__.py
SeanLee97/word2vec-test
68053556c7016cecc5e97dd25c28dd452b77f2e4
[ "MIT" ]
null
null
null
libs/__init__.py
SeanLee97/word2vec-test
68053556c7016cecc5e97dd25c28dd452b77f2e4
[ "MIT" ]
null
null
null
# !/usr/bin/env python # -*- coding: utf-8 -*- from .gensim_word_vector import GensimWordVector from .word_vector import WordVector __all__ = ('GensimWordVecotr', 'WordVector')
25.428571
48
0.747191
cb3d8abf07cc204799323aaec16d40aa299b15c6
5,584
py
Python
pydefect/core/tests/test_supercell_calc_results.py
wangvei/pydefect
e909796c429e16982cefe549d16881039bce89e7
[ "MIT" ]
1
2021-06-07T03:05:39.000Z
2021-06-07T03:05:39.000Z
pydefect/core/tests/test_supercell_calc_results.py
wangvei/pydefect
e909796c429e16982cefe549d16881039bce89e7
[ "MIT" ]
null
null
null
pydefect/core/tests/test_supercell_calc_results.py
wangvei/pydefect
e909796c429e16982cefe549d16881039bce89e7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from copy import deepcopy import tempfile import numpy as np from pydefect.core.defect_entry import DefectEntry from pydefect.core.supercell_calc_results import ( ProcarDefectProperty, SupercellCalcResults) from pymatgen.io.vasp.outputs import Vasprun, Procar from pymatgen.electronic_structure.core import Spin from pydefect.util.testing import PydefectTest from pydefect.util.tools import flatten_dict class ProcarDefectPropertyTest(PydefectTest): def setUp(self) -> None: """ Va_O in the 2+ charge state in 64-atom supercells""" # TODO: Fix the hob_index toss123 and change related values. # The true hob_index is 123 but is fine for unittest. hob_index = {Spin.up: 124, Spin.down: 124} procar = self.get_object_by_name( Procar, ["defects", "MgO", "Va_O1_2", "PROCAR"]) vasprun = self.get_object_by_name( Vasprun, ["defects", "MgO", "Va_O1_2", "vasprun.xml"]) eigenvalues = vasprun.eigenvalues structure = self.get_structure_by_name("MgO64atoms-Va_O1_2") neighboring_sites = [0, 4, 16, 17, 24, 26] self.prop = ProcarDefectProperty.analyze_procar( hob_index=hob_index, procar=procar, eigenvalues=eigenvalues, structure=structure, neighboring_sites=neighboring_sites) def test_band_edge_energies(self): expected = { Spin.up: {'hob': {'top': 5.5148, 'bottom': 5.5148}, 'lub': {'top': 8.6662, 'bottom': 8.6662}}, Spin.down: {'hob': {'top': 5.5148, 'bottom': 5.5148}, 'lub': {'top': 8.6662, 'bottom': 8.6662}}} self.assertEqual(expected, self.prop.band_edge_energies) def test_orbital_character(self): expected = \ {Spin.up: {'hob': {'top': {'Mg': {'s': 0.018, 'p': 0.036, 'd': 0.018, 'f': 0.0}, 'O': {'s': 0.018, 'p': 0.216, 'd': 0.0, 'f': 0.0}}, 'bottom': {'Mg': {'s': 0.018, 'p': 0.036, 'd': 0.018, 'f': 0.0}, 'O': {'s': 0.018, 'p': 0.216, 'd': 0.0, 'f': 0.0}}}, 'lub': {'top': {'Mg': {'s': 0.174, 'p': 0.006, 'd': 0.0, 'f': 0.0}, 'O': {'s': 0.199, 'p': 0.114, 'd': 0.0, 'f': 0.0}}, 'bottom': {'Mg': {'s': 0.174, 'p': 0.006, 'd': 0.0, 'f': 0.0}, 'O': {'s': 0.199, 'p': 0.114, 'd': 0.0, 'f': 0.0}}}}} expected[Spin.down] = deepcopy(expected[Spin.up]) for k1, k2, k3, k4, k5, v in flatten_dict(expected): self.assertAlmostEqual( v, self.prop.orbital_character[k1][k2][k3][k4][k5], 3) def test_participation_ratio(self): expected = { Spin.up: {'hob': 0.235294, 'lub': 0.060852}, Spin.down: {'hob': 0.235294, 'lub': 0.060852}} for k1, k2, v in flatten_dict(expected): self.assertAlmostEqual(v, self.prop.participation_ratio[k1][k2], 5) class SupercellDftResultsTest(PydefectTest): def setUp(self): """ Va_O in the 2+ charge state in 64-atom supercells""" self.mgO_perfect = \ SupercellCalcResults.from_vasp_files( directory_path=self.DEFECTS_MGO_DIR / "perfect") filepath = ["defects", "MgO", "Va_O1_2", "defect_entry.json"] defect_entry = self.get_object_by_name(DefectEntry.load_json, filepath) self.mgo_va_o1_2 = SupercellCalcResults.from_vasp_files( directory_path=self.DEFECTS_MGO_DIR / "Va_O1_2", defect_entry=defect_entry) def test_from_vasp_files(self): # CAUTION: When constructing Structure object from Structure.from_file # velocities are not stored, so equality check of Structure # objects returns False. If the structure is converted via # poscar file format, it may be solved. # energy expected = -399.85095628 actual = self.mgo_va_o1_2.total_energy self.assertAlmostEqual(expected, actual, 5) # total_magnetization expected = 0.0 actual = self.mgo_va_o1_2.total_magnetization self.assertAlmostEqual(expected, actual, 5) # eigenvalue: test only a single point expected = [-1.40215e+01, 1.0] actual = self.mgo_va_o1_2.eigenvalues[Spin.up][0][0] self.assertArrayAlmostEqual(expected, actual, 5) def test_dict(self): expected = self.mgo_va_o1_2.as_dict() actual = SupercellCalcResults.from_dict(expected).as_dict() self.assertEqual(expected, actual) def test_json(self): tmp_file = tempfile.NamedTemporaryFile() self.mgo_va_o1_2.to_json_file(tmp_file.name) actual = SupercellCalcResults.load_json(tmp_file.name) np.testing.assert_equal(actual.eigenvalues[Spin.up], self.mgo_va_o1_2.eigenvalues[Spin.up]) def test_msonable(self): self.assertMSONable(self.mgO_perfect) self.assertMSONable(self.mgo_va_o1_2)
45.032258
79
0.540294
036ce55119476fbe6301c7d070519569bdbad4a1
8,208
py
Python
pyartcd/pyartcd/pipelines/check_bugs.py
DennisPeriquet/aos-cd-jobs
d864953fd70b0828f74e0fe2a602a60ac6820ccb
[ "Apache-2.0" ]
null
null
null
pyartcd/pyartcd/pipelines/check_bugs.py
DennisPeriquet/aos-cd-jobs
d864953fd70b0828f74e0fe2a602a60ac6820ccb
[ "Apache-2.0" ]
null
null
null
pyartcd/pyartcd/pipelines/check_bugs.py
DennisPeriquet/aos-cd-jobs
d864953fd70b0828f74e0fe2a602a60ac6820ccb
[ "Apache-2.0" ]
null
null
null
import asyncio import subprocess import concurrent import click import aiohttp from pyartcd.cli import cli, click_coroutine, pass_runtime from pyartcd.runtime import Runtime BASE_URL = 'https://api.openshift.com/api/upgrades_info/v1/graph?arch=amd64&channel=fast' ELLIOTT_BIN = 'elliott' async def is_ga(version: str, session): # 3.11 is an exception, no need to query Openshift API if version == '3.11': return True url = f'{BASE_URL}-{version}' # A release is considered GA'd if nodes are found async with session.get(url, headers={'Accept': 'application/json'}) as response: assert response.status == 200 response.raise_for_status() response_body = await response.json() nodes = response_body['nodes'] return len(nodes) > 0 def get_next_version(version: str) -> str: major, minor = version.split('.')[:2] return '.'.join([major, str(int(minor) + 1)]) class CheckBugsPipeline: def __init__(self, runtime: Runtime, channel: str, versions: list, pre_releases: list) -> None: self.runtime = runtime self.versions = versions self.pre_releases = pre_releases self.logger = runtime.logger self.applicable_versions = [] self.blockers = {} self.regressions = {} self.slack_client = self.initialize_slack_client(runtime, channel) @staticmethod def initialize_slack_client(runtime: Runtime, channel: str): if not channel.startswith('#'): raise ValueError('Invalid Slack channel name provided') slack_client = runtime.new_slack_client() slack_client.bind_channel(channel) return slack_client async def run(self): # Check applicable OCP versions await self._check_applicable_versions() # Find blocker bugs with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] for v in self.applicable_versions: futures.append(executor.submit(self._find_blockers, v)) for f in futures: try: self.blockers.update(f.result()) except TypeError: # In case no blockers have been found pass # Find regressions with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] for v in self.applicable_versions: futures.append(executor.submit(self._find_regressions, v)) for f in futures: try: self.regressions.update(f.result()) except TypeError: # In case no regressions have been found pass # Notify Slack await self._slack_report() self.logger.info('All done!') async def _check_applicable_versions(self): ga_info = {} async with aiohttp.ClientSession() as session: tasks = [] for v in self.versions: tasks.append(asyncio.ensure_future(is_ga(v, session))) responses = await asyncio.gather(*tasks) ga_info = dict(zip(self.versions, responses)) self.applicable_versions = [v for v in self.versions if ga_info.get(v, True)] if self.applicable_versions: self.logger.info(f'Found applicable versions: {" ".join(self.applicable_versions)}') else: self.logger.warning('No applicable versions found') def _find_blockers(self, version: str): self.logger.info(f'Checking blocker bugs for Openshift {version}') cmd = [ ELLIOTT_BIN, f'--group=openshift-{version}', f'--working-dir={version}-working', 'find-bugs:blocker', '--output=slack' ] self.logger.info(f'Executing command: {" ".join(cmd)}') process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() errcode = process.returncode if errcode: self.logger.error(f'Command {cmd} failed with {errcode}: see output below') self.logger.info(err) return None out = out.decode().strip().splitlines() if not out: self.logger.info('No blockers found for version %s', version) return None self.logger.info('Cmd returned: %s', out) return {version: out} def _find_regressions(self, version: str): # Do nothing for 3.11 if version == '3.11': return None # Check pre-release if self._next_is_prerelease(version): self.logger.info( 'Version %s is in pre-release state: skipping regression checks for %s', get_next_version(version), version ) return None self.logger.info(f'Checking possible regressions for Openshift {version}') # Find bugs cmd = [ ELLIOTT_BIN, f'--group=openshift-{version}', f'--working-dir={version}-working', 'find-bugs:sweep' ] self.logger.info(f'Executing command: {" ".join(cmd)}') process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() errcode = process.returncode if errcode: self.logger.error(f'Command {cmd} failed with {errcode}: see output below') self.logger.info(err) return None # First line in elliott stdout is something like "Searching for bugs..." # Next line (if present) goes like this: "Found N bugs (M ignored):" # Following is a list of bugs that we need to process out = out.decode().strip().splitlines() if len(out) < 2: return None bugs = out[-1].split(':')[1].split(', ') # Verify bugs cmd = [ ELLIOTT_BIN, f'--group=openshift-{version}', f'--working-dir={version}-working', 'verify-bugs', '--output=slack' ] cmd.extend(bugs) self.logger.info(f'Executing command: {" ".join(cmd)}') process = subprocess.Popen(cmd, stdout=subprocess.PIPE) out, _ = process.communicate() # If process returned 0, no regressions were found if not process.returncode: self.logger.info('No regressions found for version %s', version) return None out = out.decode().strip().splitlines() res = {version: out} if out else None return res def _next_is_prerelease(self, version: str) -> bool: return get_next_version(version) in self.pre_releases async def _slack_report(self): # If no issues have been found, do nothing if not any((self.blockers, self.regressions)): return # Merge results from collections import defaultdict report = defaultdict(list) for d in (self.blockers, self.regressions): for k, v in d.items(): report[k].extend(v) # Format output message message = ':red-siren: *There are some issues to look into:*' for k in report.keys(): message += f'\n:warning:*{k}*' for i in report[k]: message += f'\n{i}' self.logger.info('Sending notification to Slack') self.logger.debug(message) await self.slack_client.say(message) @cli.command('check-bugs') @click.option('--slack_channel', required=False, default='#art-team', help='Slack channel to be notified for failures') @click.option('--version', required=True, multiple=True, help='OCP version to check for blockers e.g. 4.7') @click.option('--pre_release', required=False, multiple=True, help='OCP versions still in pre-release state') @pass_runtime @click_coroutine async def check_bugs(runtime: Runtime, slack_channel: str, version: list, pre_release: list): pipeline = CheckBugsPipeline(runtime, channel=slack_channel, versions=version, pre_releases=pre_release) await pipeline.run()
35.532468
108
0.601486
aecb3b2ae1460d8b77898e47bda5f36545a19365
3,181
py
Python
master/admin_migrations/0001_initial.py
YangWanjun/areaparking
b08bc9b8f8d5f602d823115263b9d040edb9f245
[ "Apache-2.0" ]
1
2018-08-02T04:00:44.000Z
2018-08-02T04:00:44.000Z
master/admin_migrations/0001_initial.py
YangWanjun/areaparking
b08bc9b8f8d5f602d823115263b9d040edb9f245
[ "Apache-2.0" ]
null
null
null
master/admin_migrations/0001_initial.py
YangWanjun/areaparking
b08bc9b8f8d5f602d823115263b9d040edb9f245
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-03-05 06:41 from __future__ import unicode_literals from django.conf import settings import django.contrib.admin.models from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('contenttypes', '0002_remove_content_type_name'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='EMailLogEntry', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('action_time', models.DateTimeField(default=django.utils.timezone.now, editable=False, verbose_name='action time')), ('sender', models.EmailField(max_length=254, verbose_name='差出人')), ('recipient', models.CharField(max_length=1000, verbose_name='宛先')), ('cc', models.CharField(blank=True, max_length=1000, null=True, verbose_name='CC')), ('bcc', models.CharField(blank=True, max_length=1000, null=True, verbose_name='BCC')), ('title', models.CharField(max_length=50, verbose_name='件名')), ('body', models.TextField(verbose_name='メール本文')), ('attachment', models.CharField(blank=True, max_length=255, null=True, verbose_name='添付ファイル名')), ], options={ 'verbose_name': 'メール送信履歴', 'verbose_name_plural': 'メール送信履歴', 'db_table': 'ap_email_log', 'ordering': ['-action_time'], 'managed': False, }, ), migrations.CreateModel( name='LogEntry', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('action_time', models.DateTimeField(default=django.utils.timezone.now, editable=False, verbose_name='action time')), ('object_id', models.TextField(blank=True, null=True, verbose_name='object id')), ('object_repr', models.CharField(max_length=200, verbose_name='object repr')), ('action_flag', models.PositiveSmallIntegerField(verbose_name='action flag')), ('change_message', models.TextField(blank=True, verbose_name='change message')), ('content_type', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='contenttypes.ContentType', verbose_name='content type')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='user')), ], options={ 'verbose_name': 'log entry', 'verbose_name_plural': 'log entries', 'db_table': 'django_admin_log', 'ordering': ('-action_time',), }, managers=[ ('objects', django.contrib.admin.models.LogEntryManager()), ], ), ]
48.19697
181
0.606413
24e8d560f2f515675e4ca9e01399df36c8142ba2
18,173
py
Python
src/mygrad/nnet/layers/gru.py
kw-0/MyGrad
307f1bb5f2391e7f4df49fe43a7acf9d1e8ea141
[ "MIT" ]
147
2018-07-14T01:37:35.000Z
2022-03-29T06:37:58.000Z
src/mygrad/nnet/layers/gru.py
kw-0/MyGrad
307f1bb5f2391e7f4df49fe43a7acf9d1e8ea141
[ "MIT" ]
223
2018-05-31T14:13:18.000Z
2022-02-27T18:53:49.000Z
src/mygrad/nnet/layers/gru.py
kw-0/MyGrad
307f1bb5f2391e7f4df49fe43a7acf9d1e8ea141
[ "MIT" ]
27
2018-06-17T14:42:05.000Z
2021-10-31T00:21:09.000Z
import weakref from numbers import Integral import numpy as np from mygrad._utils import SkipGradient from mygrad.operation_base import Operation from mygrad.tensor_base import Tensor try: from numba import njit, vectorize except ImportError: # pragma: no cover raise ImportError( "The package `numba` must be installed in order to access the gru." ) @vectorize( ["float32(float32)", "float64(float64)"], nopython=True, ) def sig(f): # pragma: no cover """ Calculates a sigmoid function """ return 1 / (1 + np.exp(-f)) @vectorize( ["float32(float32)", "float64(float64)"], nopython=True, ) def d_sig(f): # pragma: no cover """ Calculates the derivative of a sigmoid function """ return f * (1 - f) @vectorize( ["float32(float32)", "float64(float64)"], nopython=True, ) def d_tanh(f): # pragma: no cover """ Calculates the derivative of a tanh function """ return 1 - f ** 2 @njit def dot(a, b): """ Calculates the dot product between 2 arrays of shapes (W,X,Y) and (Y,Z), respectively """ return np.dot(a.reshape(-1, a.shape[-1]), b).reshape(*a.shape[:-1], b.shape[-1]) @njit def _gru_layer(s, z, r, h, Wz, Wr, Wh): """Given: S(t=0) z = X(t) Uz + bz r = X(t) Ur + br h = X(t) Uh + bh Compute Z(t), R(t), H(t), S(t) for all 1 <= t <= T Parameters ---------- s : numpy.ndarray, shape=(T+1, N, D) Modified in-place z : numpy.ndarray, shape=(T, N, D) Modified in-place r : numpy.ndarray, shape=(T, N, D) Modified in-place h : numpy.ndarray, shape=(T, N, D) Modified in-place Wz : numpy.ndarray, shape=(D, D) Wr : numpy.ndarray, shape=(D, D) Wh : numpy.ndarray, shape=(D, D)""" for n in range(len(s) - 1): z[n] += np.dot(s[n], Wz) z[n] = sig(z[n]) r[n] += np.dot(s[n], Wr) r[n] = sig(r[n]) h[n] += np.dot(r[n] * s[n], Wh) h[n] = np.tanh(h[n]) s[n + 1] = (1 - z[n]) * h[n] + z[n] * s[n] @njit def _gru_dLds(s, z, r, dLds, Wz, Wh, Wr, dz, dh, dr, s_h, one_z): """ Z_{t} = sigmoid(Uz X_{t} + Wz S_{t-1} + bz) R_{t} = sigmoid(Ur X_{t} + Wr S_{t-1} + br) H_{t} = tanh(Uh X_{t} + Wh (R{t} * S_{t-1}) + bh) S_{t} = (1 - Z{t}) * H{t} + Z{t} * S_{t-1} Returns -------- dL / ds(t) = partial dL / ds(t+1) * ds(t+1) / ds(t) + partial dL / ds(t+1) * ds(t+1) / dz(t) * dz(t) / ds(t) + partial dL / ds(t+1) * ds(t+1) / dh(t) * dh(t) / ds(t) + partial dL / ds(t+1) * ds(t+1) / dh(t) * dh(t) / dr(t) * dr(t) / ds(t) """ dLdh = dot(dLds * one_z * dh, Wh) out = z * dLds out += dot(dLds * s_h * dz, Wz) out += dLdh * r out += dot(dLdh * s * dr, Wr) return out @njit def _gru_bptt( X, dLds, s, z, r, Wz, Wh, Wr, dz, dh, dr, s_h, one_z, bp_lim, old_dLds=None ): Wz, Wh, Wr = Wz.T, Wh.T, Wr.T bptt = bp_lim < len(X) - 1 if bptt: # pragma: no cover old_dLds = np.zeros_like(dLds) for i in range(bp_lim): # dL(t) / ds(t) + dL(t+1) / ds(t) if bptt: # pragma: no cover source_index = slice(1, len(dLds) - i) target_index = slice(None, len(dLds) - (i + 1)) dt = dLds[source_index] - old_dLds[source_index] old_dLds = np.copy(dLds) else: # no backprop truncation source_index = slice(len(dLds) - (i + 1), len(dLds) - i) target_index = slice(len(dLds) - (i + 2), len(dLds) - (i + 1)) dt = dLds[source_index] dLds[target_index] += _gru_dLds( s[source_index], z[source_index], r[source_index], dt, Wz, Wh, Wr, dz[source_index], dh[source_index], dr[source_index], s_h[source_index], one_z[source_index], ) def _backprop(var, grad): # pragma: no cover if not var.constant: if var._grad is None: var._grad = np.asarray(grad) else: var._grad += grad class GRUnit(Operation): def __call__( self, X, Uz, Wz, bz, Ur, Wr, br, Uh, Wh, bh, s0=None, bp_lim=None, dropout=0.0 ): if bp_lim is not None: assert isinstance(bp_lim, Integral) and 0 <= bp_lim < len(X) assert 0.0 <= dropout < 1.0 self._dropout = dropout self.bp_lim = bp_lim if bp_lim is not None else len(X) - 1 self.X = X # type: Tensor # shape=(T, N, C) self.Uz = Uz # type: Tensor # shape=(C, D) self.Wz = Wz # type: Tensor # shape=(D, D) self.bz = bz # type: Tensor # shape=(D,) self.Ur = Ur # type: Tensor # shape=(C, D) self.Wr = Wr # type: Tensor # shape=(D, D) self.br = br # type: Tensor # shape=(D,) self.Uh = Uh # type: Tensor # shape=(C, D) self.Wh = Wh # type: Tensor # shape=(D, D) self.bh = bh # type: Tensor # shape=(D,) self.variables = ( self.X, self.Uz, self.Wz, self.bz, self.Ur, self.Wr, self.br, self.Uh, self.Wh, self.bh, ) self.type = max(t.dtype for t in self.variables) T, N, C = X.shape (D,) = bz.shape seq = self.X.data # t starts at 0 for S; all other sequences begin at t = 1 out = np.zeros((T + 1, N, D), dtype=self.type) if s0 is not None: out[0] = s0.data if isinstance(s0, Tensor) else s0 # compute all contributions to Z, R, H from the input sequence # shape: T, N, D z = np.tensordot(seq, self.Uz.data, [[-1], [0]]).astype(self.type, copy=False) r = np.tensordot(seq, self.Ur.data, [[-1], [0]]).astype(self.type, copy=False) h = np.tensordot(seq, self.Uh.data, [[-1], [0]]).astype(self.type, copy=False) if dropout: p = 1 - dropout # For Uz/Ur/Uh: a dropout mask is generated for each datum and is applied uniformly across T self._dropUz, self._dropUr, self._dropUh = ( np.random.binomial(1, p, size=(3, 1, N, D)) / p ) self._dropWz, self._dropWr, self._dropWh = ( np.random.binomial(1, p, size=(3, D, D)) / p ) z *= self._dropUz r *= self._dropUr h *= self._dropUh Wz = (self._dropWz * self.Wz.data).astype(self.type, copy=False) Wr = (self._dropWr * self.Wr.data).astype(self.type, copy=False) Wh = (self._dropWh * self.Wh.data).astype(self.type, copy=False) else: self._dropUz, self._dropUr, self._dropUh = None, None, None self._dropWz, self._dropWr, self._dropWh = None, None, None Wz = self.Wz.data.astype(self.type, copy=False) Wr = self.Wr.data.astype(self.type, copy=False) Wh = self.Wh.data.astype(self.type, copy=False) z += bz.data.astype(self.type, copy=False) # X Uz + bz r += br.data.astype(self.type, copy=False) # X Ur + br h += bh.data.astype(self.type, copy=False) # X Uh + bh _gru_layer(out, z, r, h, Wz, Wr, Wh) self._z = z self._r = r self._h = h return out def backward_var(self, grad, index, **kwargs): raise SkipGradient("Gradient computed in GRU.backward()") def backward(self, grad, *, graph, **kwargs): hidden_seq = self._hidden_seq() if hidden_seq is None: # pragma: no cover assert False, "should be unreachable" s = hidden_seq.data[:-1] z = self._z r = self._r h = self._h dLds = grad[1:].astype(self.type, copy=False) const = {"1 - h**2": d_tanh(h), "z*(1 - z)": d_sig(z), "r*(1 - r)": d_sig(r)} if self._dropout: Wz = (self._dropWz * self.Wz.data).astype(self.type, copy=False) Wr = (self._dropWr * self.Wr.data).astype(self.type, copy=False) Wh = (self._dropWh * self.Wh.data).astype(self.type, copy=False) else: Wz = self.Wz.data.astype(self.type, copy=False) Wr = self.Wr.data.astype(self.type, copy=False) Wh = self.Wh.data.astype(self.type, copy=False) const["s - h"] = s - h const["1 - z"] = 1 - z _gru_bptt( self.X.data, dLds, s, z, r, Wz, Wh, Wr, const["z*(1 - z)"], const["1 - h**2"], const["r*(1 - r)"], const["s - h"], const["1 - z"], self.bp_lim, ) zgrad = dLds * const["s - h"] # dL / dz hgrad = dLds * const["1 - z"] # dL / dh rgrad = dot(const["1 - h**2"] * hgrad, Wh.T) * s # dL / dr hidden_seq._grad = dLds if not (self.Uz.constant and self.Wz.constant and self.bz.constant): dz = zgrad * const["z*(1 - z)"] # backprop through Wz if not self.Wz.constant: dWz = np.tensordot(s, dz, ([0, 1], [0, 1])) if self._dropout: dWz *= self._dropWz _backprop( self.Wz, dWz.astype(self.Wz.dtype, copy=False) ) # self.Wz.backward(dWz, **kwargs) # backprop through bz if not self.bz.constant: _backprop(self.bz, dz.sum(axis=(0, 1), dtype=self.bz.dtype)) # backprop through bz if not self.Uz.constant: if self._dropout: dz *= ( self._dropUz ) # IMPORTANT augmented update: this must come after Wz and bz backprop _backprop( self.Uz, np.tensordot(self.X.data, dz, ([0, 1], [0, 1])).astype( self.Uz.dtype, copy=False ), ) if not (self.Ur.constant and self.Wr.constant and self.br.constant): dr = rgrad * const["r*(1 - r)"] # backprop through Wr if not self.Wr.constant: dWr = np.tensordot(s, dr, ([0, 1], [0, 1])) if self._dropout: dWr *= self._dropWr _backprop(self.Wr, dWr.astype(self.Wr.dtype, copy=False)) # backprop through br if not self.br.constant: _backprop( self.br, dr.sum(axis=(0, 1), dtype=self.br.dtype) ) # self.br.backward(dr.sum(axis=(0, 1)), **kwargs) # backprop through Ur if not self.Ur.constant: if self._dropout: dr *= ( self._dropUr ) # IMPORTANT augmented update: this must come after Wr and br backprop _backprop( self.Ur, np.tensordot(self.X.data, dr, ([0, 1], [0, 1])).astype( self.Ur.dtype, copy=False ), ) if not (self.Uh.constant and self.Wh.constant and self.bh.constant): dh = hgrad * const["1 - h**2"] # backprop through Wh if not self.Wh.constant: dWh = np.tensordot((s * r), dh, ([0, 1], [0, 1])) if self._dropout: dWh *= self._dropWh _backprop( self.Wh, dWh.astype(self.Wh.dtype, copy=False) ) # self.Wh.backward(dWh, **kwargs) # backprop through bh if not self.bh.constant: _backprop( self.bh, dh.sum(axis=(0, 1), dtype=self.bh.dtype) ) # self.bh.backward(dh.sum(axis=(0, 1)), **kwargs) # backprop through Uh if not self.Uh.constant: if self._dropout: dh *= ( self._dropUh ) # IMPORTANT augmented update: this must come after Wh and bh backprop _backprop( self.Uh, np.tensordot(self.X.data, dh, ([0, 1], [0, 1])).astype( self.Uh.dtype, copy=False ), ) # backprop through X if not self.X.constant: tmp = dLds * const["1 - z"] * const["1 - h**2"] if not self._dropout: dLdX = np.dot( (dLds * const["s - h"]) * const["z*(1 - z)"], self.Uz.data.T ) dLdX += np.dot(tmp, self.Uh.data.T) dLdX += np.dot( np.dot(tmp, Wh.T) * s * const["r*(1 - r)"], self.Ur.data.T ) else: dLdX = np.dot( (self._dropUz * (dLds * const["s - h"]) * const["z*(1 - z)"]), self.Uz.data.T, ) dLdX += np.dot(self._dropUh * tmp, self.Uh.data.T) dLdX += np.dot( self._dropUr * (dot(tmp, Wh.T) * s * const["r*(1 - r)"]), self.Ur.data.T, ) _backprop( self.X, dLdX.astype(self.X.dtype, copy=False) ) # self.X.backward(dLdX, **kwargs) del self._z del self._r del self._h super().backward(grad, graph=graph) def gru( X, Uz, Wz, bz, Ur, Wr, br, Uh, Wh, bh, s0=None, bp_lim=None, dropout=0.0, constant=None, ): r"""Performs a forward pass of sequential data through a Gated Recurrent Unit layer, returning the 'hidden-descriptors' arrived at by utilizing the trainable parameters as follows:: Z_{t} = sigmoid(X_{t} Uz + S_{t-1} Wz + bz) R_{t} = sigmoid(X_{t} Ur + S_{t-1} Wr + br) H_{t} = tanh(X_{t} Uh + (R{t} * S_{t-1}) Wh + bh) S_{t} = (1 - Z{t}) * H{t} + Z{t} * S_{t-1} Parameters ---------- X : array_like, shape=(T, N, C) The sequential data to be passed forward. Uz : array_like, shape=(C, D) The weights used to map sequential data to its hidden-descriptor representation Wz : array_like, shape=(D, D) The weights used to map a hidden-descriptor to a hidden-descriptor. bz : array_like, shape=(D,) The biases used to scale a hidden-descriptor. Ur : array_like, shape=(C, D) The weights used to map sequential data to its hidden-descriptor representation Wr : array_like, shape=(D, D) The weights used to map a hidden-descriptor to a hidden-descriptor. br : array_like, shape=(D,) The biases used to scale a hidden-descriptor. Uh : array_like, shape=(C, D) The weights used to map sequential data to its hidden-descriptor representation Wh : array_like, shape=(D, D) The weights used to map a hidden-descriptor to a hidden-descriptor. bh : array_like, shape=(D,) The biases used to scale a hidden-descriptor. s0 : Optional[array_like], shape=(N, D) The 'seed' hidden descriptors to feed into the RNN. If None, a Tensor of zeros of shape (N, D) is created. bp_lim : Optional[int] *This feature is experimental and is currently untested*. The (non-zero) limit of the depth of back propagation through time to be performed. If `None` back propagation is passed back through the entire sequence. E.g. `bp_lim=3` will propagate gradients only up to 3 steps backward through the recursive sequence. dropout : float (default=0.), 0 <= dropout < 1 If non-zero, the dropout scheme described in [1]_ is applied. See Notes for more details. constant : bool, optional (default=False) If True, the resulting Tensor is a constant. Returns ------- mygrad.Tensor, shape=(T+1, N, D) The sequence of 'hidden-descriptors' produced by the forward pass of the RNN. Notes ----- - :math:`T` : Sequence length - :math:`N` : Batch size - :math:`C` : Length of single datum - :math:`D` : Length of 'hidden' descriptor The GRU system of equations is given by: .. math:: Z_{t} = \sigma (X_{t} U_z + S_{t-1} Wz + bz) R_{t} = \sigma (X_{t} U_r + S_{t-1} Wr + br) H_{t} = tanh(X_{t} U_h + (R_{t} * S_{t-1}) W_h + b_h) S_{t} = (1 - Z_{t}) * H_{t} + Z_{t} * S_{t-1} Following the dropout scheme specified in [1]_, the hidden-hidden weights (Wz/Wr/Wh) randomly have their weights dropped prior to forward/back-prop. The input connections (via Uz/Ur/Uh) have variational dropout ([2]_) applied to them with a common dropout mask across all t. That is three static dropout masks, each with shape-(N,D), are applied to .. math:: X_{t} U_z X_{t} U_r X_{t} U_h respectively, for all :math:`t`. References ---------- .. [1] S. Merity, et. al. "Regularizing and Optimizing LSTM Language Models", arXiv:1708.02182v1, 2017. .. [2] Y. Gal, Z. Ghahramani "A Theoretically Grounded Application of Dropout in Recurrent Neural Networks" arXiv:1512.05287v5, 2016.""" if s0 is not None: if not isinstance(s0, np.ndarray) and not ( isinstance(s0, Tensor) and (constant or s0.constant) ): raise ValueError( "GRU does not support non-constant tensors for the initial hidden" "state value, `s0`" ) s = Tensor._op( GRUnit, X, Uz, Wz, bz, Ur, Wr, br, Uh, Wh, bh, op_kwargs=dict(s0=s0, bp_lim=bp_lim, dropout=dropout), constant=constant, ) try: s.creator._hidden_seq = weakref.ref(s) except AttributeError: # pragma: no cover # `no-autodiff` mode does not record creator pass return s
31.715532
104
0.504595
488d142b11275fb4350573ecbb2695961f425671
2,690
py
Python
latextools/shortcuts.py
cduck/latextools
8161acc88d669951b2b5e1e3e6888b9fc918b49a
[ "MIT" ]
13
2020-06-02T22:57:13.000Z
2022-03-26T23:07:27.000Z
latextools/shortcuts.py
cduck/latextools
8161acc88d669951b2b5e1e3e6888b9fc918b49a
[ "MIT" ]
3
2021-06-03T14:38:17.000Z
2022-02-28T23:05:48.000Z
latextools/shortcuts.py
cduck/latextools
8161acc88d669951b2b5e1e3e6888b9fc918b49a
[ "MIT" ]
2
2020-08-19T05:44:23.000Z
2021-06-03T01:56:48.000Z
from .project import LatexProject from .content import BasicContent from .document import DocumentConfig, STANDALONE_CONFIG from .common_preamble import pkg def render_snippet(content=r'$Z\cdot Y=X$', *packages, commands=(), lpad=0, rpad=0, tpad=0, bpad=0, pad=None, config=STANDALONE_CONFIG): '''Easy way to render a small snippet of Latex code. Use `latextools.pkg` and `.cmd` for quick package and command definitions. Returns a Pdf object. Save with `obj.save('file.pdf')`. Add to drawing with `d.draw(obj)` (using drawSvg). ''' if pad is not None: lpad, bpad, rpad, tpad = (pad,) * 4 if config is None: config = DocumentConfig('standalone') if (lpad, bpad, rpad, tpad) != (0, 0, 0, 0): padding = [p if isinstance(p, str) else '{}pt'.format(p) for p in (lpad, bpad, rpad, tpad)] border_conf = 'border={{{}}}'.format(' '.join(padding)) if (config.doc_type == 'standalone' and not any(option.startswith('border=') for option in config.options)): config = DocumentConfig( 'standalone', options=(*config.options, border_conf), packages=config.packages, commands=config.commands) proj = LatexProject() content = BasicContent(content, packages, commands) proj.add_file(content.as_document(path='main.tex', config=config)) r = proj.compile_pdf(options=['-halt-on-error', '-file-line-error', '-interaction', 'nonstopmode', '-shell-escape']) return r def render_qcircuit(content=r'& \gate{X} & \qw', *packages, r=0.5, c=0.7, const_size=False, const_row=False, const_col=False, lpad=1, rpad=1, tpad=1, bpad=1, pad=None, commands=(), config=None): '''Easy way to render a qcircuit diagram. Use `latextools.pkg` and `.cmd` for quick package and command definitions. Returns a Pdf object. Save with `obj.save('file.pdf')`. Add to drawing with `d.draw(obj)` (using drawSvg). ''' if not isinstance(r, str): r = '{}em'.format(r) if not isinstance(c, str): c = '{}em'.format(c) q_conf = '@R={} @C{}'.format(r, c) if const_row: q_conf += ' @!R' if const_col: q_conf += ' @!C' if const_size: q_conf += ' @!' content = '\\Qcircuit {} {{\n{}\n}}'.format(q_conf, content.strip()) return render_snippet(content, pkg.qcircuit, *packages, lpad=lpad, rpad=rpad, tpad=tpad, bpad=bpad, pad=pad, commands=commands, config=config)
40.757576
78
0.580669
8665769f5e157ef85e4bfbc7513a2880671a301e
2,288
py
Python
lcm-types/python/vectornav_lcmt.py
FikkleG/gallopingFaster
2578980f0fbb3a2aa32054bc12cab6e156f1953f
[ "MIT" ]
null
null
null
lcm-types/python/vectornav_lcmt.py
FikkleG/gallopingFaster
2578980f0fbb3a2aa32054bc12cab6e156f1953f
[ "MIT" ]
null
null
null
lcm-types/python/vectornav_lcmt.py
FikkleG/gallopingFaster
2578980f0fbb3a2aa32054bc12cab6e156f1953f
[ "MIT" ]
null
null
null
"""LCM type definitions This file automatically generated by lcm. DO NOT MODIFY BY HAND!!!! """ try: import cStringIO.StringIO as BytesIO except ImportError: from io import BytesIO import struct class vectornav_lcmt(object): __slots__ = ["q", "w", "a"] __typenames__ = ["float", "float", "float"] __dimensions__ = [[4], [3], [3]] def __init__(self): self.q = [ 0.0 for dim0 in range(4) ] self.w = [ 0.0 for dim0 in range(3) ] self.a = [ 0.0 for dim0 in range(3) ] def encode(self): buf = BytesIO() buf.write(vectornav_lcmt._get_packed_fingerprint()) self._encode_one(buf) return buf.getvalue() def _encode_one(self, buf): buf.write(struct.pack('>4f', *self.q[:4])) buf.write(struct.pack('>3f', *self.w[:3])) buf.write(struct.pack('>3f', *self.a[:3])) def decode(data): if hasattr(data, 'read'): buf = data else: buf = BytesIO(data) if buf.read(8) != vectornav_lcmt._get_packed_fingerprint(): raise ValueError("Decode error") return vectornav_lcmt._decode_one(buf) decode = staticmethod(decode) def _decode_one(buf): self = vectornav_lcmt() self.q = struct.unpack('>4f', buf.read(16)) self.w = struct.unpack('>3f', buf.read(12)) self.a = struct.unpack('>3f', buf.read(12)) return self _decode_one = staticmethod(_decode_one) def _get_hash_recursive(parents): if vectornav_lcmt in parents: return 0 tmphash = (0xf57906decbf7ebdc) & 0xffffffffffffffff tmphash = (((tmphash<<1)&0xffffffffffffffff) + (tmphash>>63)) & 0xffffffffffffffff return tmphash _get_hash_recursive = staticmethod(_get_hash_recursive) _packed_fingerprint = None def _get_packed_fingerprint(): if vectornav_lcmt._packed_fingerprint is None: vectornav_lcmt._packed_fingerprint = struct.pack(">Q", vectornav_lcmt._get_hash_recursive([])) return vectornav_lcmt._packed_fingerprint _get_packed_fingerprint = staticmethod(_get_packed_fingerprint) def get_hash(self): """Get the LCM hash of the struct""" return struct.unpack(">Q", vectornav_lcmt._get_packed_fingerprint())[0]
32.225352
106
0.63549
205a14f14d01200e512f8ca3e91d3ac4554cf899
6,698
py
Python
codes/gpt_query/Data/SubData_test.py
biswesh456/Simulated-Dialog-Generation
b1f12e09c3e0be274f03e66eb08402e0f681f97a
[ "Apache-2.0" ]
6
2021-12-12T00:11:25.000Z
2022-03-02T23:23:58.000Z
codes/gpt_query/Data/SubData_test.py
biswesh456/Simulated-Dialog-Generation
b1f12e09c3e0be274f03e66eb08402e0f681f97a
[ "Apache-2.0" ]
null
null
null
codes/gpt_query/Data/SubData_test.py
biswesh456/Simulated-Dialog-Generation
b1f12e09c3e0be274f03e66eb08402e0f681f97a
[ "Apache-2.0" ]
null
null
null
import pickle import json import random import torch import numpy as np import os from tokenizers import ByteLevelBPETokenizer class SubData_test(): def __init__(self, data_dir, vocab_size, bert_model_name, eot="EOT"): self.eot = eot with open(data_dir+"test.input.txt", "r") as f: valid_contexts = f.readlines() self.valid_contexts = [[y.strip() for y in x.strip().split(eot)] for x in valid_contexts] with open(data_dir+"test.tgt.txt", "r") as f: valid_responses = f.readlines() self.valid_responses = [x.strip() + ' [SEP]' for x in valid_responses] with open(data_dir+"test.goal.txt", "r") as f: valid_goals = f.readlines() self.valid_goals = [x.strip() for x in valid_goals] with open(data_dir+"test.key.txt", "r") as f: valid_keys = f.readlines() self.valid_keys = [[int(y) for y in x.strip().split()] for x in valid_keys] self.valid_keys = [[(key[k], key[k+1]) for k in range(0,len(key),2)] for key in self.valid_keys] self.shuffle_te = np.arange(len(self.valid_contexts)) path = data_dir+"5ByteLevelBPETokenizer" + str(vocab_size)+'-' self.tokenizer = ByteLevelBPETokenizer(vocab_file= path+"vocab.json",merges_file=path+"merges.txt", lowercase=True) self.tokenizer.add_special_tokens(["<pad>", "[SEP]"]) def tensorFromSentence(self, sent, maxlen): indices = torch.Tensor(self.tokenizer.encode(sent).ids).long() ulen = len(indices) if ulen>maxlen: indices = torch.cat((indices[:maxlen-1], indices[-1:]), dim=0) ulen = maxlen return indices, ulen def TensorFromGoal(self, sent, maxlen, g_keys): encoding = self.tokenizer.encode(sent) offset = encoding.offsets j = 0 new_keys = [] # map the key indices to new key indices after tokenisation for start,end in g_keys: start-=1 while j < len(offset) and j < maxlen: if offset[j][0] == start: new_keys.append(j) if offset[j][1] == end: j += 1 break j += 1 while j < len(offset) and j < maxlen and offset[j][1] != end: new_keys.append(j) j += 1 if j<maxlen: new_keys.append(j) j += 1 break else: j += 1 indices = torch.Tensor(encoding.ids).long() ulen = len(indices) if ulen>maxlen: indices = torch.cat((indices[:maxlen-1], indices[-1:]), dim=0) ulen = maxlen return indices, ulen, new_keys, len(new_keys) def shuffle_train(self): self.shuffle_te = np.random.permutation(len(self.valid_contexts)) def get_batch(self, batch_size=10, maxlen=50, train=True, start=-1, word=None, goallen=500): contexts = self.valid_contexts responses = self.valid_responses shuffle = self.shuffle_te goal = self.valid_goals keys = self.valid_keys cc_plain = [] rr_plain = [] g_plain = [] g_keys = [] for i in range(batch_size): if word is None: if start==-1: ind = random.randint(0, len(contexts)-1) else: ind = start + i ind = shuffle[ind] else: if start==-1: x = random.randint(0, len(self.inverted_index[word])-1) ind = self.inverted_index[word][x] else: x = start + i ind = self.inverted_index[word][x] cc = contexts[ind] rr = responses[ind] g = goal[ind] k = keys[ind] cc_plain.append(cc) rr_plain.append(rr) g_plain.append(g) g_keys.append(k) max_cutts = max([len(cc) for cc in cc_plain]) c_utts = torch.zeros(batch_size, max_cutts, maxlen).long() c_ulens = torch.zeros(batch_size, max_cutts).long() c_clens = torch.zeros(batch_size).long() cind_mat = torch.zeros(batch_size, max_cutts, maxlen) r_utts = torch.zeros(batch_size, 1, maxlen).long() r_ulens = torch.zeros(batch_size, 1).long() r_clens = torch.zeros(batch_size).long() rind_mat = torch.zeros(batch_size, 1, maxlen) g_utts = torch.zeros(batch_size, goallen).long() g_ulens = torch.zeros(batch_size).long() g_clens = torch.zeros(batch_size).long() gind_mat = torch.zeros(batch_size, goallen) keys = torch.zeros(batch_size, goallen).long() kind_mat = torch.zeros(batch_size, goallen) k_ulens = torch.zeros(batch_size).long() for i,cc in enumerate(cc_plain): for j,utt in enumerate(cc): uinds, ulen = self.tensorFromSentence(utt, maxlen) cind_mat[i, j, :ulen] = 1 c_utts[i,j, :ulen] = uinds c_ulens[i,j] = ulen c_clens[i] += 1 for i,rr in enumerate(rr_plain): uinds, ulen = self.tensorFromSentence(rr, maxlen) rind_mat[i, 0, :ulen] = 1 r_utts[i, 0, :ulen] = uinds r_ulens[i, 0] = ulen r_clens[i] = 1 for i,gg in enumerate(g_plain): uinds, ulen, new_key, klen = self.TensorFromGoal(gg, goallen, g_keys[i]) gind_mat[i, :ulen] = 1 g_utts[i, :ulen] = uinds g_ulens[i] = ulen keys[i, :klen] = torch.LongTensor(new_key) kind_mat[i, :klen] = 1 k_ulens[i] = klen c_utts = c_utts[:,:,:c_ulens.max()] r_utts = r_utts[:,:,:r_ulens.max()] g_utts = g_utts[:,:g_ulens.max()] cind_mat = cind_mat[:,:,:c_ulens.max()] rind_mat = rind_mat[:,:,:r_ulens.max()] gind_mat = gind_mat[:,:g_ulens.max()] keys = keys[:,:k_ulens.max()] kind_mat = kind_mat[:,:k_ulens.max()] return c_utts, c_ulens, c_clens, r_utts, r_ulens, r_clens, cind_mat,\ rind_mat, gind_mat, g_utts, g_ulens, keys, kind_mat, k_ulens
36.601093
108
0.513288
598caab27782b8dbd386a798d00cab6e5bad899e
1,529
py
Python
onlineShop/Library/models.py
alirezaryahi/django-onlineShop
b36c4a37ac98977862b83f646c2303ec4bb1a6ab
[ "MIT" ]
null
null
null
onlineShop/Library/models.py
alirezaryahi/django-onlineShop
b36c4a37ac98977862b83f646c2303ec4bb1a6ab
[ "MIT" ]
null
null
null
onlineShop/Library/models.py
alirezaryahi/django-onlineShop
b36c4a37ac98977862b83f646c2303ec4bb1a6ab
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Category(models.Model): title = models.CharField(max_length=200, verbose_name='عنوان') class Meta: verbose_name = 'موضوع' verbose_name_plural = 'موضوع ها' def __str__(self): return self.title class Author(models.Model): first_name = models.CharField(max_length=100, verbose_name='نام') last_name = models.CharField(max_length=100, verbose_name='نام خانوادگی') class Meta: verbose_name = 'نویسنده' verbose_name_plural = 'نویسندگان' def __str__(self): return self.last_name class Book(models.Model): category = models.ForeignKey(Category, on_delete=models.CASCADE, verbose_name='موضوع') author = models.ForeignKey(Author, on_delete=models.CASCADE, verbose_name='نویسنده') title = models.CharField(max_length=200, verbose_name='عنوان کتاب') description = models.TextField(verbose_name='توضیحات', null=True, blank=True) price = models.IntegerField(default=0, verbose_name='قیمت') image = models.ImageField(upload_to='books/', null=True, blank=True, verbose_name='تصویر') vote = models.IntegerField(default=0) is_exist = models.BooleanField(default=True, verbose_name='موجود') select = models.CharField(max_length=100, default='book') class Meta: verbose_name = 'کتاب' verbose_name_plural = 'کتاب ها' ordering = ['-vote'] def __str__(self): return self.title
31.854167
95
0.676913
6202bb3207c3920803da072ff3262aa98dbdb0d5
624
py
Python
comments/migrations/0002_auto_20210531_2230.py
Stepan91/utk_api
f917afc9019711f8d8643ebea88eed84f33c449a
[ "MIT" ]
null
null
null
comments/migrations/0002_auto_20210531_2230.py
Stepan91/utk_api
f917afc9019711f8d8643ebea88eed84f33c449a
[ "MIT" ]
null
null
null
comments/migrations/0002_auto_20210531_2230.py
Stepan91/utk_api
f917afc9019711f8d8643ebea88eed84f33c449a
[ "MIT" ]
null
null
null
# Generated by Django 3.2.3 on 2021-05-31 19:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('comments', '0001_initial'), ] operations = [ migrations.AlterField( model_name='comment', name='email', field=models.EmailField(max_length=254, unique=True, verbose_name='Адрес электронной почты'), ), migrations.AlterField( model_name='comment', name='image', field=models.ImageField(blank=True, upload_to='', verbose_name='Изображение'), ), ]
26
105
0.599359
0b2c6c537a9233c47ee653a0dbab586ac275bfbd
36,162
py
Python
operator/main.py
gnossen/kadalu
65af1ac86eb0d79f1589cbbfe82320800d6b357c
[ "Apache-2.0" ]
null
null
null
operator/main.py
gnossen/kadalu
65af1ac86eb0d79f1589cbbfe82320800d6b357c
[ "Apache-2.0" ]
null
null
null
operator/main.py
gnossen/kadalu
65af1ac86eb0d79f1589cbbfe82320800d6b357c
[ "Apache-2.0" ]
null
null
null
""" KaDalu Operator: Once started, deploys required CSI drivers, bootstraps the ConfigMap and waits for the CRD update to create Server pods """ import json import logging import os import re import time import uuid import urllib3 from jinja2 import Template from kadalulib import execute as lib_execute from kadalulib import logf, logging_setup, send_analytics_tracker, is_host_reachable from kubernetes import client, config, watch from urllib3.exceptions import (ProtocolError, NewConnectionError) from utils import CommandError from utils import execute as utils_execute NAMESPACE = os.environ.get("KADALU_NAMESPACE", "kadalu") VERSION = os.environ.get("KADALU_VERSION", "latest") K8S_DIST = os.environ.get("K8S_DIST", "kubernetes") KUBELET_DIR = os.environ.get("KUBELET_DIR") VERBOSE = os.environ.get("VERBOSE", "no") MANIFESTS_DIR = "/kadalu/templates" KUBECTL_CMD = "/usr/bin/kubectl" KADALU_CONFIG_MAP = "kadalu-info" CSI_POD_PREFIX = "csi-" STORAGE_CLASS_NAME_PREFIX = "kadalu." # TODO: Add ThinArbiter VALID_HOSTING_VOLUME_TYPES = ["Replica1", "Replica2", "Replica3", "Disperse", "External"] VALID_PV_RECLAIM_POLICY_TYPES = ["delete", "archive"] VOLUME_TYPE_REPLICA_1 = "Replica1" VOLUME_TYPE_REPLICA_2 = "Replica2" VOLUME_TYPE_REPLICA_3 = "Replica3" VOLUME_TYPE_EXTERNAL = "External" VOLUME_TYPE_DISPERSE = "Disperse" CREATE_CMD = "create" APPLY_CMD = "apply" DELETE_CMD = "delete" def template(filename, **kwargs): """Substitute the template with provided fields""" content = "" with open(filename + ".j2") as template_file: content = template_file.read() if kwargs.get("render", False): return Template(content).render(**kwargs) return Template(content).stream(**kwargs).dump(filename) def bricks_validation(bricks): """Validate Brick path and node options""" ret = True for idx, brick in enumerate(bricks): if not ret: break if brick.get("pvc", None) is not None: continue if brick.get("path", None) is None and \ brick.get("device", None) is None: logging.error(logf("Storage path/device not specified", number=idx+1)) ret = False if brick.get("node", None) is None: logging.error(logf("Storage node not specified", number=idx+1)) ret = False return ret def validate_ext_details(obj): """Validate external Volume details""" cluster = obj["spec"].get("details", None) if not cluster: logging.error(logf("External Cluster details not given.")) return False valid = 0 ghosts = [] gport = 24007 if cluster.get('gluster_hosts', None): valid += 1 hosts = cluster.get('gluster_hosts') ghosts.extend(hosts) if cluster.get('gluster_host', None): valid += 1 ghosts.append(cluster.get('gluster_host')) if cluster.get('gluster_volname', None): valid += 1 if cluster.get('gluster_port', None): gport = cluster.get('gluster_port', 24007) if valid < 2: logging.error(logf("No 'host' and 'volname' details provided.")) return False if not is_host_reachable(ghosts, gport): logging.error(logf("gluster server not reachable: on %s:%d" % (ghosts, gport))) # Noticed that there may be glitches in n/w during this time. # Not good to fail the validation, instead, just log here, so # we are aware this is a possible reason. #return False logging.debug(logf("External Storage %s successfully validated" % \ obj["metadata"].get("name", "<unknown>"))) return True # pylint: disable=too-many-return-statements # pylint: disable=too-many-branches def validate_volume_request(obj): """Validate the Volume request for Replica options, number of bricks etc""" if not obj.get("spec", None): logging.error("Storage 'spec' not specified") return False pv_reclaim_policy = obj["spec"].get("pvReclaimPolicy", "delete") if pv_reclaim_policy not in VALID_PV_RECLAIM_POLICY_TYPES: logging.error("PV Reclaim Policy not valid") return False voltype = obj["spec"].get("type", None) if voltype is None: logging.error("Storage type not specified") return False if voltype not in VALID_HOSTING_VOLUME_TYPES: logging.error(logf("Invalid Storage type", valid_types=",".join(VALID_HOSTING_VOLUME_TYPES), provided_type=voltype)) return False if voltype == VOLUME_TYPE_EXTERNAL: return validate_ext_details(obj) bricks = obj["spec"].get("storage", []) if not bricks_validation(bricks): return False decommissioned = "" subvol_bricks_count = 1 if voltype == VOLUME_TYPE_REPLICA_2: subvol_bricks_count = 2 elif voltype == VOLUME_TYPE_REPLICA_3: subvol_bricks_count = 3 if voltype == VOLUME_TYPE_DISPERSE: disperse_config = obj["spec"].get("disperse", None) if disperse_config is None: logging.error("Disperse Volume data and redundancy " "count is not specified") return False data_bricks = disperse_config.get("data", 0) redundancy_bricks = disperse_config.get("redundancy", 0) if data_bricks == 0 or redundancy_bricks == 0: logging.error("Disperse Volume data or redundancy " "count is not specified") return False subvol_bricks_count = data_bricks + redundancy_bricks # redundancy must be greater than 0, and the total number # of bricks must be greater than 2 * redundancy. This # means that a dispersed volume must have a minimum of 3 bricks. if subvol_bricks_count <= (2 * redundancy_bricks): logging.error("Invalid redundancy for the Disperse Volume") return False # stripe_size = (bricks_count - redundancy) * 512 # Using combinations of #Bricks/redundancy that give a power # of two for the stripe size will make the disperse volume # perform better in most workloads because it's more typical # to write information in blocks that are multiple of two # https://docs.gluster.org/en/latest/Administrator-Guide # /Setting-Up-Volumes/#creating-dispersed-volumes if data_bricks % 2 != 0: logging.error("Disperse Configuration is not Optimal") return False if len(bricks) % subvol_bricks_count != 0: logging.error("Invalid number of storage directories/devices" " specified") return False if subvol_bricks_count > 1: for i in range(0, int(len(bricks) / subvol_bricks_count)): decommissioned = "" for k in range(0, subvol_bricks_count): brick_idx = (i * subvol_bricks_count) + k brick = bricks[brick_idx] decom = brick.get("decommissioned", "") if k == 0: decommissioned = decom continue if decom != decommissioned: logging.error(logf( "All of distribute subvolume should be marked decommissioned", brick=brick, brick_index=brick_idx)) return False # If we are here, decommissioned option is properly given. if voltype == VOLUME_TYPE_REPLICA_2: tiebreaker = obj["spec"].get("tiebreaker", None) if tiebreaker and (not tiebreaker.get("node", None) or not tiebreaker.get("path", None)): logging.error(logf("'tiebreaker' provided for replica2 " "config is not valid")) return False logging.debug(logf("Storage %s successfully validated" % \ obj["metadata"].get("name", "<unknown>"))) return True def get_brick_device_dir(brick): """If custom file is passed as brick device then the parent directory needs to be mounted as is in server container""" brick_device_dir = "" logging.info(repr(brick)) brickdev = brick.get("device", "") logging.info(brickdev) if brickdev != "" and not brickdev.startswith("/dev/"): brick_device_dir = os.path.dirname(brickdev) return brick_device_dir def get_brick_hostname(volname, idx, suffix=True): """Brick hostname is <statefulset-name>-<ordinal>.<service-name> statefulset name is the one which is visible when the `get pods` command is run, so the format used for that name is "server-<volname>-<idx>". Escape dots from the hostname from the input otherwise will become invalid name. Service is created with name as Volume name. For example, brick_hostname will be "server-spool1-0-0.spool1" and server pod name will be "server-spool1-0" """ tmp_vol = volname.replace("-", "_") dns_friendly_volname = re.sub(r'\W+', '', tmp_vol).replace("_", "-") hostname = "server-%s-%d" % (dns_friendly_volname, idx) if suffix: return "%s-0.%s" % (hostname, volname) return hostname def upgrade_storage_pods(core_v1_client): """ Upgrade the Storage pods after operator pod upgrade """ # Add new entry in the existing config map configmap_data = core_v1_client.read_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE) for key in configmap_data.data: if ".info" not in key: continue volname = key.replace('.info', '') data = json.loads(configmap_data.data[key]) logging.info(logf("config map", volname=volname, data=data)) if data['type'] == VOLUME_TYPE_EXTERNAL: # nothing to be done for upgrade, say we are good. logging.debug(logf( "volume type external, nothing to upgrade", volname=volname, data=data)) continue if data['type'] == VOLUME_TYPE_REPLICA_1: # No promise of high availability, upgrade logging.debug(logf( "volume type Replica1, calling upgrade", volname=volname, data=data)) # TODO: call upgrade # Replica 2 and Replica 3 needs to check for self-heal # count 0 before going ahead with upgrade. # glfsheal volname --file-path=/template/file info-summary obj = {} obj["metadata"] = {} obj["spec"] = {} obj["metadata"]["name"] = volname obj["spec"]["type"] = data['type'] obj["spec"]["pvReclaimPolicy"] = data.get("pvReclaimPolicy", "delete") obj["spec"]["volume_id"] = data["volume_id"] obj["spec"]["storage"] = [] # Need this loop so below array can be constructed in the proper order for val in data["bricks"]: obj["spec"]["storage"].append({}) # Set Node ID for each storage device from configmap for val in data["bricks"]: idx = val["brick_index"] obj["spec"]["storage"][idx]["node_id"] = val["node_id"] obj["spec"]["storage"][idx]["path"] = val["host_brick_path"] obj["spec"]["storage"][idx]["node"] = val["kube_hostname"] obj["spec"]["storage"][idx]["device"] = val["brick_device"] obj["spec"]["storage"][idx]["pvc"] = val["pvc_name"] if data['type'] == VOLUME_TYPE_REPLICA_2: if "tie-breaker.kadalu.io" not in data['tiebreaker']['node']: obj["spec"]["tiebreaker"] = data['tiebreaker'] # TODO: call upgrade_pods_with_heal_check() here deploy_server_pods(obj) def update_config_map(core_v1_client, obj): """ Volinfo of new hosting Volume is generated and updated to ConfigMap """ volname = obj["metadata"]["name"] voltype = obj["spec"]["type"] pv_reclaim_policy = obj["spec"].get("pvReclaimPolicy", "delete") volume_id = obj["spec"]["volume_id"] disperse_config = obj["spec"].get("disperse", {}) data = { "namespace": NAMESPACE, "kadalu_version": VERSION, "volname": volname, "volume_id": volume_id, "kadalu_format": obj["spec"].get("kadalu_format", "native"), "type": voltype, "pvReclaimPolicy" : pv_reclaim_policy, "bricks": [], "disperse": { "data": disperse_config.get("data", 0), "redundancy": disperse_config.get("redundancy", 0) }, "options": obj["spec"].get("options", {}) } # Add new entry in the existing config map configmap_data = core_v1_client.read_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE) # For each brick, add brick path and node id bricks = obj["spec"]["storage"] for idx, storage in enumerate(bricks): data["bricks"].append({ "brick_path": "/bricks/%s/data/brick" % volname, "kube_hostname": storage.get("node", ""), "node": get_brick_hostname(volname, idx), "node_id": storage["node_id"], "host_brick_path": storage.get("path", ""), "brick_device": storage.get("device", ""), "pvc_name": storage.get("pvc", ""), "brick_device_dir": get_brick_device_dir(storage), "decommissioned": storage.get("decommissioned", ""), "brick_index": idx }) if voltype == VOLUME_TYPE_REPLICA_2: tiebreaker = obj["spec"].get("tiebreaker", None) if not tiebreaker: logging.warning(logf("No 'tiebreaker' provided for replica2 " "config. Using default tie-breaker.kadalu.io:/mnt", volname=volname)) # Add default tiebreaker if no tie-breaker option provided tiebreaker = { "node": "tie-breaker.kadalu.io", "path": "/mnt", } if not tiebreaker.get("port", None): tiebreaker["port"] = 24007 data["tiebreaker"] = tiebreaker volinfo_file = "%s.info" % volname configmap_data.data[volinfo_file] = json.dumps(data) core_v1_client.patch_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE, configmap_data) logging.info(logf("Updated configmap", name=KADALU_CONFIG_MAP, volname=volname)) def deploy_server_pods(obj): """ Deploy server pods depending on type of Hosting Volume and other options specified """ # Deploy server pod volname = obj["metadata"]["name"] voltype = obj["spec"]["type"] pv_reclaim_policy = obj["spec"].get("pvReclaimPolicy", "delete") docker_user = os.environ.get("DOCKER_USER", "kadalu") shd_required = False if voltype in (VOLUME_TYPE_REPLICA_3, VOLUME_TYPE_REPLICA_2, VOLUME_TYPE_DISPERSE): shd_required = True template_args = { "namespace": NAMESPACE, "kadalu_version": VERSION, "docker_user": docker_user, "volname": volname, "voltype": voltype, "pvReclaimPolicy": pv_reclaim_policy, "volume_id": obj["spec"]["volume_id"], "shd_required": shd_required } # One StatefulSet per Brick for idx, storage in enumerate(obj["spec"]["storage"]): template_args["host_brick_path"] = storage.get("path", "") template_args["kube_hostname"] = storage.get("node", "") # TODO: Understand the need, and usage of suffix template_args["serverpod_name"] = get_brick_hostname( volname, idx, suffix=False ) template_args["brick_path"] = "/bricks/%s/data/brick" % volname template_args["brick_index"] = idx template_args["brick_device"] = storage.get("device", "") template_args["pvc_name"] = storage.get("pvc", "") template_args["brick_device_dir"] = get_brick_device_dir(storage) template_args["brick_node_id"] = storage["node_id"] template_args["k8s_dist"] = K8S_DIST template_args["verbose"] = VERBOSE filename = os.path.join(MANIFESTS_DIR, "server.yaml") template(filename, **template_args) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) logging.info(logf("Deployed Server pod", volname=volname, manifest=filename, node=storage.get("node", ""))) def handle_external_storage_addition(core_v1_client, obj): """Deploy service(One service per Volume)""" volname = obj["metadata"]["name"] details = obj["spec"]["details"] pv_reclaim_policy = obj["spec"].get("pvReclaimPolicy", "delete") hosts = [] ghost = details.get("gluster_host", None) ghosts = details.get("gluster_hosts", None) if ghost: hosts.append(ghost) if ghosts: hosts.extend(ghosts) data = { "volname": volname, "volume_id": obj["spec"]["volume_id"], "type": VOLUME_TYPE_EXTERNAL, "pvReclaimPolicy": pv_reclaim_policy, # CRD would set 'native' but just being cautious "kadalu_format": obj["spec"].get("kadalu_format", "native"), "gluster_hosts": ",".join(hosts), "gluster_volname": details["gluster_volname"], "gluster_options": details.get("gluster_options", ""), } # Add new entry in the existing config map configmap_data = core_v1_client.read_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE) volinfo_file = "%s.info" % volname configmap_data.data[volinfo_file] = json.dumps(data) core_v1_client.patch_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE, configmap_data) logging.info(logf("Updated configmap", name=KADALU_CONFIG_MAP, volname=volname)) filename = os.path.join(MANIFESTS_DIR, "external-storageclass.yaml") template(filename, **data) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) logging.info(logf("Deployed External StorageClass", volname=volname, manifest=filename)) def handle_added(core_v1_client, obj): """ New Volume is requested. Update the configMap and deploy """ if not validate_volume_request(obj): # TODO: Delete Custom resource logging.debug(logf( "validation of volume request failed", yaml=obj )) return # Ignore if already deployed volname = obj["metadata"]["name"] pods = core_v1_client.list_namespaced_pod(NAMESPACE) for pod in pods.items: if pod.metadata.name.startswith("server-" + volname + "-"): logging.debug(logf( "Ignoring already deployed server statefulsets", storagename=volname )) return # Add new entry in the existing config map configmap_data = core_v1_client.read_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE) if configmap_data.data.get("%s.info" % volname, None): # Volume already exists logging.debug(logf( "Ignoring already updated volume config", storagename=volname )) return # Generate new Volume ID if obj["spec"].get("volume_id", None) is None: obj["spec"]["volume_id"] = str(uuid.uuid1()) # Apply existing Volume ID to recreate storage pool from existing device/path else: logging.info(logf( "Applying existing volume id", volume_id=obj["spec"]["volume_id"] )) voltype = obj["spec"]["type"] if voltype == VOLUME_TYPE_EXTERNAL: handle_external_storage_addition(core_v1_client, obj) return # Generate Node ID for each storage device. for idx, _ in enumerate(obj["spec"]["storage"]): obj["spec"]["storage"][idx]["node_id"] = "node-%d" % idx # Storage Class deploy_storage_class(obj) update_config_map(core_v1_client, obj) deploy_server_pods(obj) filename = os.path.join(MANIFESTS_DIR, "services.yaml") template(filename, namespace=NAMESPACE, volname=volname) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) logging.info(logf("Deployed Service", volname=volname, manifest=filename)) def handle_modified(core_v1_client, obj): """ Handle when Volume option is updated or Volume state is changed to maintenance """ # TODO: Handle Volume maintenance mode volname = obj["metadata"]["name"] voltype = obj["spec"]["type"] if voltype == VOLUME_TYPE_EXTERNAL: # Modification of 'External' volume type is not supported logging.info(logf( "Modification of 'External' volume type is not supported", storagename=volname )) return if not validate_volume_request(obj): logging.debug(logf( "validation of volume request failed", yaml=obj )) return configmap_data = core_v1_client.read_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE) if not configmap_data.data.get("%s.info" % volname, None): # Volume doesn't exists logging.error(logf( "Volume config not found", storagename=volname )) return # Volume ID (uuid) is already generated, re-use cfgmap = json.loads(configmap_data.data[volname + ".info"]) # Get volume-id from config map obj["spec"]["volume_id"] = cfgmap["volume_id"] # Set Node ID for each storage device from configmap for idx, _ in enumerate(obj["spec"]["storage"]): obj["spec"]["storage"][idx]["node_id"] = "node-%d" % idx # Add new entry in the existing config map update_config_map(core_v1_client, obj) deploy_server_pods(obj) filename = os.path.join(MANIFESTS_DIR, "services.yaml") template(filename, namespace=NAMESPACE, volname=volname) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) logging.info(logf("Deployed Service", volname=volname, manifest=filename)) def handle_deleted(core_v1_client, obj): """ If number of pvs provisioned from that volume is zero - Delete the respective server pods If number of pvs is not zero, wait or periodically check for num_pvs. Delete Server pods only when pvs becomes zero. """ volname = obj["metadata"]["name"] storage_info_data = get_configmap_data(volname) logging.info(logf("Delete requested", volname=volname)) pv_count = get_num_pvs(storage_info_data) if pv_count == -1: logging.error( logf("Storage delete failed. Failed to get PV count", number_of_pvs=pv_count, storage=volname)) return if pv_count != 0: logging.warning( logf("Storage delete failed. Storage is not empty", number_of_pvs=pv_count, storage=volname)) elif pv_count == 0: hostvol_type = storage_info_data.get("type") # We can't delete external volume but cleanup StorageClass and Configmap # Delete Configmap and Storage class for both Native & External delete_storage_class(volname, hostvol_type) delete_config_map(core_v1_client, obj) if hostvol_type != "External": delete_server_pods(storage_info_data, obj) filename = os.path.join(MANIFESTS_DIR, "services.yaml") template(filename, namespace=NAMESPACE, volname=volname) lib_execute(KUBECTL_CMD, DELETE_CMD, "-f", filename) logging.info( logf("Deleted Service", volname=volname, manifest=filename)) return def get_configmap_data(volname): """ Get storage info data from kadalu configmap """ cmd = ["kubectl", "get", "configmap", "kadalu-info", "-nkadalu", "-ojson"] try: resp = utils_execute(cmd) config_data = json.loads(resp.stdout) data = config_data['data'] storage_name = "%s.info" % volname storage_info_data = data[storage_name] # Return data in 'dict' format return json.loads(storage_info_data) except CommandError as err: logging.error(logf( "Failed to get details from configmap", error=err )) return None def get_num_pvs(storage_info_data): """ Get number of PVs provisioned from volume requested for deletion through configmap. """ volname = storage_info_data['volname'] cmd = None if storage_info_data.get("type") == "External": # We can't access external cluster and so query existing PVs which are # using external storageclass volname = "kadalu." + volname jpath = ('jsonpath=\'{range .items[?(@.spec.storageClassName=="%s")]}' '{.spec.storageClassName}{"\\n"}{end}\'' % volname) cmd = ["kubectl", "get", "pv", "-o", jpath] else: bricks = storage_info_data['bricks'] dbpath = "/bricks/" + volname + "/data/brick/stat.db" query = ("select count(pvname) from pv_stats;") cmd = [ "kubectl", "exec", "-i", bricks[0]['node'].replace("." + volname, ""), "-c", "server", "-nkadalu", "--", "sqlite3", dbpath, query ] try: resp = utils_execute(cmd) parts = resp.stdout.strip("'").split() if storage_info_data.get("type") == "External": return len(parts) pv_count = int(parts[0]) return pv_count except CommandError as msg: # 1. If storage is created but no PV is carved then pv_stats table is not # created in SQLITE3 # 2. If we fail to create 'server' pod then there'll be no 'server' # container (this'll be hit if supplied 'storageClass' is invalid) if msg.stderr.find("no such table") != -1 or msg.stderr.find( "container not found") != -1: # We are good to delete server pods return 0 logging.error( logf("Failed to get size details of the " "storage \"%s\"" % volname, error=msg)) # Return error as its -1 return -1 def delete_server_pods(storage_info_data, obj): """ Delete server pods depending on type of Hosting Volume and other options specified """ volname = obj["metadata"]["name"] voltype = storage_info_data['type'] volumeid = storage_info_data['volume_id'] docker_user = os.environ.get("DOCKER_USER", "kadalu") shd_required = False if voltype in (VOLUME_TYPE_REPLICA_3, VOLUME_TYPE_REPLICA_2): shd_required = True template_args = { "namespace": NAMESPACE, "kadalu_version": VERSION, "docker_user": docker_user, "volname": volname, "voltype": voltype, "volume_id": volumeid, "shd_required": shd_required } bricks = storage_info_data['bricks'] # Traverse all bricks from configmap for brick in bricks: idx = brick['brick_index'] template_args["host_brick_path"] = brick['host_brick_path'] template_args["kube_hostname"] = brick['kube_hostname'] template_args["serverpod_name"] = get_brick_hostname( volname, idx, suffix=False ) template_args["brick_path"] = "/bricks/%s/data/brick" % volname template_args["brick_index"] = idx template_args["brick_device"] = brick['brick_device'] template_args["pvc_name"] = brick['pvc_name'] template_args["brick_device_dir"] = brick['brick_device_dir'] template_args["brick_node_id"] = brick['node_id'] template_args["k8s_dist"] = K8S_DIST filename = os.path.join(MANIFESTS_DIR, "server.yaml") template(filename, **template_args) lib_execute(KUBECTL_CMD, DELETE_CMD, "-f", filename) logging.info(logf( "Deleted Server pod", volname=volname, manifest=filename, node=brick['node'] )) def delete_config_map(core_v1_client, obj): """ Volinfo of existing Volume is generated and ConfigMap is deleted """ volname = obj["metadata"]["name"] # Add new entry in the existing config map configmap_data = core_v1_client.read_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE) volinfo_file = "%s.info" % volname configmap_data.data[volinfo_file] = None core_v1_client.patch_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE, configmap_data) logging.info(logf( "Deleted configmap", name=KADALU_CONFIG_MAP, volname=volname )) def delete_storage_class(hostvol_name, _): """ Deletes deployed External and Custom StorageClass """ sc_name = "kadalu." + hostvol_name lib_execute(KUBECTL_CMD, DELETE_CMD, "sc", sc_name) logging.info(logf( "Deleted Storage class", volname=hostvol_name )) def watch_stream(core_v1_client, k8s_client): """ Watches kubernetes event stream for kadalustorages in Kadalu namespace """ crds = client.CustomObjectsApi(k8s_client) k8s_watch = watch.Watch() resource_version = "" for event in k8s_watch.stream(crds.list_cluster_custom_object, "kadalu-operator.storage", "v1alpha1", "kadalustorages", resource_version=resource_version): obj = event["object"] operation = event['type'] spec = obj.get("spec") if not spec: continue metadata = obj.get("metadata") resource_version = metadata['resourceVersion'] logging.debug(logf("Event", operation=operation, object=repr(obj))) if operation == "ADDED": handle_added(core_v1_client, obj) elif operation == "MODIFIED": handle_modified(core_v1_client, obj) elif operation == "DELETED": handle_deleted(core_v1_client, obj) def crd_watch(core_v1_client, k8s_client): """ Watches the CRD to provision new PV Hosting Volumes """ while True: try: watch_stream(core_v1_client, k8s_client) except (ProtocolError, NewConnectionError): # It might so happen that this'll be logged for every hit in k8s # event stream in kadalu namespace and better to log at debug level logging.debug( logf( "Watch connection broken and restarting watch on the stream" )) time.sleep(30) def deploy_csi_pods(core_v1_client): """ Look for CSI pods, if any one CSI pod found then that means it is deployed """ pods = core_v1_client.list_namespaced_pod( NAMESPACE) for pod in pods.items: if pod.metadata.name.startswith(CSI_POD_PREFIX): logging.info("Updating already deployed CSI pods") # Deploy CSI Pods api_instance = client.VersionApi().get_code() int_api_instance_major = int(api_instance.major) int_api_instance_minor = int(api_instance.minor) if int_api_instance_major > 1 or int_api_instance_major == 1 and \ int_api_instance_minor >= 22: filename = os.path.join(MANIFESTS_DIR, "csi-driver-object-v1.yaml") template(filename, namespace=NAMESPACE, kadalu_version=VERSION) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) elif int_api_instance_major > 1 or int_api_instance_major == 1 and \ int_api_instance_minor >= 14: filename = os.path.join(MANIFESTS_DIR, "csi-driver-object.yaml") template(filename, namespace=NAMESPACE, kadalu_version=VERSION) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) else: filename = os.path.join(MANIFESTS_DIR, "csi-driver-crd.yaml") template(filename, namespace=NAMESPACE, kadalu_version=VERSION) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) filename = os.path.join(MANIFESTS_DIR, "csi.yaml") docker_user = os.environ.get("DOCKER_USER", "kadalu") template(filename, namespace=NAMESPACE, kadalu_version=VERSION, docker_user=docker_user, k8s_dist=K8S_DIST, kubelet_dir=KUBELET_DIR, verbose=VERBOSE,) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) logging.info(logf("Deployed CSI Pods", manifest=filename)) def deploy_config_map(core_v1_client): """Deploys the template configmap if not exists""" configmaps = core_v1_client.list_namespaced_config_map( NAMESPACE) uid = uuid.uuid4() upgrade = False for item in configmaps.items: if item.metadata.name == KADALU_CONFIG_MAP: logging.info(logf( "Found existing configmap. Updating", name=item.metadata.name )) # Don't overwrite UID info. configmap_data = core_v1_client.read_namespaced_config_map( KADALU_CONFIG_MAP, NAMESPACE) if configmap_data.data.get("uid", None): uid = configmap_data.data["uid"] upgrade = True # Keep the config details required to be preserved. # Deploy Config map filename = os.path.join(MANIFESTS_DIR, "configmap.yaml") template(filename, namespace=NAMESPACE, kadalu_version=VERSION, uid=uid) if not upgrade: lib_execute(KUBECTL_CMD, CREATE_CMD, "-f", filename) logging.info(logf("ConfigMap Deployed", manifest=filename, uid=uid, upgrade=upgrade)) return uid, upgrade def deploy_storage_class(obj): """Deploys the default and custom storage class for KaDalu if not exists""" # Deploy defalut Storage Class api_instance = client.StorageV1Api() scs = api_instance.list_storage_class() sc_names = [] for tmpl in os.listdir(MANIFESTS_DIR): if tmpl.startswith("storageclass-") and tmpl.endswith(".j2"): sc_names.append( tmpl.replace("storageclass-", "").replace(".yaml.j2", "") ) installed_scs = [item.metadata.name for item in scs.items] for sc_name in sc_names: filename = os.path.join(MANIFESTS_DIR, "storageclass-%s.yaml" % sc_name) if sc_name in installed_scs: logging.info(logf("StorageClass already present, continuing with Apply", manifest=filename)) template(filename, namespace=NAMESPACE, kadalu_version=VERSION, hostvol_name=obj["metadata"]["name"], kadalu_format=obj["spec"].get("kadalu_format", "native")) lib_execute(KUBECTL_CMD, APPLY_CMD, "-f", filename) logging.info(logf("Deployed StorageClass", manifest=filename)) def main(): """Main""" config.load_incluster_config() # As per the issue https://github.com/kubernetes-client/python/issues/254 clnt = client.Configuration() #go and get a copy of the default config clnt.verify_ssl = False #set verify_ssl to false in that config client.Configuration.set_default(clnt) #make that config the default for all new clients core_v1_client = client.CoreV1Api() k8s_client = client.ApiClient() # ConfigMap uid, upgrade = deploy_config_map(core_v1_client) # CSI Pods deploy_csi_pods(core_v1_client) if upgrade: logging.info(logf("Upgrading to ", version=VERSION)) upgrade_storage_pods(core_v1_client) # Send Analytics Tracker # The information from this analytics is available for # developers to understand and build project in a better # way send_analytics_tracker("operator", uid) # Watch CRD crd_watch(core_v1_client, k8s_client) if __name__ == "__main__": logging_setup() # This not advised in general, but in kadalu's operator, it is OK to # ignore these warnings as we know to make calls only inside of # kubernetes cluster urllib3.disable_warnings() main()
35.108738
92
0.625187
b51bed45544a397abb8c24627599e8f655c7e754
1,989
py
Python
src/services/crud/room/api.py
b1team/trada
22ceaf4d50fe3a38ff402315c029e574773ca9e0
[ "MIT" ]
null
null
null
src/services/crud/room/api.py
b1team/trada
22ceaf4d50fe3a38ff402315c029e574773ca9e0
[ "MIT" ]
1
2021-03-12T15:16:03.000Z
2021-03-12T15:16:03.000Z
src/services/crud/room/api.py
b1team/trada
22ceaf4d50fe3a38ff402315c029e574773ca9e0
[ "MIT" ]
null
null
null
from . import logic from src.api.exceptions import room_errors, user_errors from src.services.crud.users.logic import get_user_by_id from src.services.crud.users.logic import get_user_id def create_room(room_name: str, user_id: str): if logic.get_room(room_name): raise room_errors.ExistingError(obj=f"Room {room_name}") user = get_user_by_id(user_id) room = logic.create_room(room_name) logic.invite_member(room.id, user.username, is_owner=True) data = { "room": room.to_dict(), "owner": user.to_dict(), } return data def invite_member(room_id: str, member_name: str): try: member_id = get_user_id(member_name) if not member_id: raise user_errors.NotFoundError(obj=f"User {member_name}") member = logic.check_member_exists(room_id, member_id) except Exception as e: raise room_errors.IdFormatError() if member: raise room_errors.ExistingError(obj=f"Member {member_name}") return logic.invite_member(room_id, member_name) def delete_room(room_id: str): try: room = logic.check_room_exists(room_id) except: raise room_errors.IdFormatError() if room: return logic.remove_room(room_id) return False def get_room_members(room_id: str): return logic.room_members(room_id) def delete_member(room_id: str, member_name: str): try: member_remove = logic.remove_member(room_id, member_name) except: return False else: return member_remove def get_rooms(user_id: str): try: rooms = logic.get_user_room(user_id) except: raise room_errors.IdFormatError() return rooms def room_update(room_id: str, room_name: str, avatar: str): try: logic.check_room_exists(room_id) except: raise room_errors.IdFormatError() return logic.update_room(room_id, room_name, avatar) def members(room_id: str): return logic.get_members(room_id)
25.5
70
0.69281
cdec89fd0bf04ac1e522b22d20cf1b5f60a13a18
1,180
py
Python
examples/httpbin/upload_test.py
qNone/HttpRunner
022b0920d235749b242ed9eee2e575bf04a56653
[ "Apache-2.0" ]
1
2021-06-21T11:17:01.000Z
2021-06-21T11:17:01.000Z
examples/httpbin/upload_test.py
qNone/HttpRunner
022b0920d235749b242ed9eee2e575bf04a56653
[ "Apache-2.0" ]
null
null
null
examples/httpbin/upload_test.py
qNone/HttpRunner
022b0920d235749b242ed9eee2e575bf04a56653
[ "Apache-2.0" ]
null
null
null
# NOTE: Generated By HttpRunner v3.1.2 # FROM: upload.yml from httprunner import HttpRunner, Config, Step, RunRequest, RunTestCase class TestCaseUpload(HttpRunner): config = Config("test upload file with httpbin").base_url("${get_httpbin_server()}") teststeps = [ Step( RunRequest("upload file") .with_variables( **{ "file_path": "test.env", "m_encoder": "${multipart_encoder(file=$file_path)}", } ) .post("/post") .with_headers(**{"Content-Type": "${multipart_content_type($m_encoder)}"}) .with_data("$m_encoder") .validate() .assert_equal("status_code", 200) .assert_startswith("body.files.file", "UserName=test") ), Step( RunRequest("upload file with keyword") .post("/post") .upload(**{"file": "test.env"}) .validate() .assert_equal("status_code", 200) .assert_startswith("body.files.file", "UserName=test") ), ] if __name__ == "__main__": TestCaseUpload().test_start()
30.25641
88
0.534746
c58c97c721d9f83a5c1c1576d564800035d5b24b
1,068
py
Python
kubernetes/test/test_v1_service_port.py
amanagarwal33/python
e31693557f75950805fb4dc5af4cb7434a470e26
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1_service_port.py
amanagarwal33/python
e31693557f75950805fb4dc5af4cb7434a470e26
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1_service_port.py
amanagarwal33/python
e31693557f75950805fb4dc5af4cb7434a470e26
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 <<<<<<< HEAD OpenAPI spec version: v1.15.6 Generated by: https://openapi-generator.tech ======= OpenAPI spec version: v1.5.3 Generated by: https://github.com/swagger-api/swagger-codegen.git >>>>>>> release-1.0 """ from __future__ import absolute_import import unittest import kubernetes.client from kubernetes.client.models.v1_service_port import V1ServicePort # noqa: E501 from kubernetes.client.rest import ApiException class TestV1ServicePort(unittest.TestCase): """V1ServicePort unit test stubs""" def setUp(self): pass def tearDown(self): pass def testV1ServicePort(self): """Test V1ServicePort""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes.client.models.v1_service_port.V1ServicePort() # noqa: E501 pass if __name__ == '__main__': unittest.main()
23.217391
124
0.694757
c2854046229af13bd0f5223c9c0a6c6350659982
1,223
py
Python
strings/longest_substring_without_duplication.py
maanavshah/coding-interview
4c842cdbc6870da79684635f379966d1caec2162
[ "MIT" ]
null
null
null
strings/longest_substring_without_duplication.py
maanavshah/coding-interview
4c842cdbc6870da79684635f379966d1caec2162
[ "MIT" ]
null
null
null
strings/longest_substring_without_duplication.py
maanavshah/coding-interview
4c842cdbc6870da79684635f379966d1caec2162
[ "MIT" ]
null
null
null
# # O(n) time | O(n) space def longestSubstringWithoutDuplication(string): currentChars = {} currentSubstring = [] longestSubstring = [] maxLongest = 0 i = 0 while i < len(string): if string[i] in currentChars: if maxLongest < len(currentSubstring): maxLongest = len(currentSubstring) longestSubstring = currentSubstring index = currentChars[string[i]] + 1 currentChars = {string[index]: index} currentSubstring = [string[index]] i = index else: currentChars[string[i]] = i currentSubstring.append(string[i]) i += 1 if maxLongest < len(currentSubstring): longestSubstring = currentSubstring return ''.join(longestSubstring) def longestSubstringWithoutDuplication(string): startIdx = 0 longest = [0, 1] lastSeen = dict() for idx, s in enumerate(string): if s in lastSeen: startIdx = max(startIdx, lastSeen[s] + 1) if longest[1] - longest[0] < idx + 1 - startIdx: longest[0] = startIdx longest[1] = idx + 1 lastSeen[s] = idx return string[longest[0]: longest[1]]
32.184211
56
0.58054
5e4098ce87208a08c94609f13aba78d4b7963348
9,750
py
Python
behavior_regularized_offline_rl/brac/sac_agent.py
rmitra/google-research
ddc22300c4cb3223654c9a981f892dc0f6286e35
[ "Apache-2.0" ]
1
2020-03-05T09:34:44.000Z
2020-03-05T09:34:44.000Z
behavior_regularized_offline_rl/brac/sac_agent.py
robot-ai-machinelearning/google-research
88481d10a87947ffb9305dc7665682e008b27391
[ "Apache-2.0" ]
null
null
null
behavior_regularized_offline_rl/brac/sac_agent.py
robot-ai-machinelearning/google-research
88481d10a87947ffb9305dc7665682e008b27391
[ "Apache-2.0" ]
1
2020-03-05T09:24:01.000Z
2020-03-05T09:24:01.000Z
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Soft Actor Critic Agent. Based on 'Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor' by Tuomas Haarnoja, et al. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import gin import tensorflow.compat.v1 as tf from behavior_regularized_offline_rl.brac import agent from behavior_regularized_offline_rl.brac import networks from behavior_regularized_offline_rl.brac import policies from behavior_regularized_offline_rl.brac import utils @gin.configurable class Agent(agent.Agent): """SAC Agent.""" def __init__( self, target_entropy=None, ensemble_q_lambda=1.0, **kwargs): self._ensemble_q_lambda = ensemble_q_lambda self._target_entropy = target_entropy super(Agent, self).__init__(**kwargs) def _build_fns(self): self._agent_module = AgentModule(modules=self._modules) if self._target_entropy is None: self._target_entropy = - self._action_spec.shape[0] self._q_fns = self._agent_module.q_nets self._p_fn = self._agent_module.p_fn self._log_alpha = self._agent_module.log_alpha def _get_q_vars(self): return self._agent_module.q_source_variables def _get_p_vars(self): return self._agent_module.p_variables def _get_q_weight_norm(self): weights = self._agent_module.q_source_weights norms = [] for w in weights: norm = tf.reduce_sum(tf.square(w)) norms.append(norm) return tf.add_n(norms) def _get_p_weight_norm(self): weights = self._agent_module.p_weights norms = [] for w in weights: norm = tf.reduce_sum(tf.square(w)) norms.append(norm) return tf.add_n(norms) def ensemble_q(self, qs): lambda_ = self._ensemble_q_lambda return (lambda_ * tf.reduce_min(qs, axis=-1) + (1 - lambda_) * tf.reduce_max(qs, axis=-1)) def _ensemble_q2_target(self, q2_targets): return self.ensemble_q(q2_targets) def _ensemble_q1(self, q1s): return self.ensemble_q(q1s) def _build_q_loss(self, batch): s1 = batch['s1'] s2 = batch['s2'] a = batch['a1'] r = batch['r'] dsc = batch['dsc'] _, a2, log_pi_a2 = self._p_fn(s2) q2_targets = [] q1_preds = [] for q_fn, q_fn_target in self._q_fns: q2_target_ = q_fn_target(s2, a2) q1_pred = q_fn(s1, a) q1_preds.append(q1_pred) q2_targets.append(q2_target_) q2_targets = tf.stack(q2_targets, axis=-1) q2_target = self._ensemble_q2_target(q2_targets) v2_target = q2_target - tf.exp(self._log_alpha) * log_pi_a2 q1_target = tf.stop_gradient(r + dsc * self._discount * v2_target) q_losses = [] for q1_pred in q1_preds: q_loss_ = tf.reduce_mean(tf.square(q1_pred - q1_target)) q_losses.append(q_loss_) q_loss = tf.add_n(q_losses) q_w_norm = self._get_q_weight_norm() norm_loss = self._weight_decays[0] * q_w_norm loss = q_loss + norm_loss info = collections.OrderedDict() info['q_loss'] = q_loss info['q_norm'] = q_w_norm info['r_mean'] = tf.reduce_mean(r) info['dsc_mean'] = tf.reduce_mean(dsc) info['q1_target_mean'] = tf.reduce_mean(q1_target) return loss, info def _build_p_loss(self, batch): s = batch['s1'] _, a, log_pi_a = self._p_fn(s) q1s = [] for q_fn, _ in self._q_fns: q1_ = q_fn(s, a) q1s.append(q1_) q1s = tf.stack(q1s, axis=-1) q1 = self._ensemble_q1(q1s) p_loss = tf.reduce_mean(tf.exp(self._log_alpha) * log_pi_a - q1) p_w_norm = self._get_p_weight_norm() norm_loss = self._weight_decays[1] * p_w_norm loss = p_loss + norm_loss info = collections.OrderedDict() info['p_loss'] = p_loss info['p_norm'] = p_w_norm return loss, info def _build_a_loss(self, batch): s = batch['s1'] _, _, log_pi_a = self._p_fn(s) alpha = tf.exp(self._log_alpha) a_loss = tf.reduce_mean(alpha * (-log_pi_a - self._target_entropy)) info = collections.OrderedDict() info['a_loss'] = a_loss info['alpha'] = alpha return a_loss, info def _get_source_target_vars(self): return (self._agent_module.q_source_variables, self._agent_module.q_target_variables) def _build_optimizers(self): opts = self._optimizers if len(opts) == 1: opts = tuple([opts[0]] * 3) elif len(opts) < 3: raise ValueError('Bad optimizers %s.' % opts) self._q_optimizer = utils.get_optimizer(opts[0][0])(lr=opts[0][1]) self._p_optimizer = utils.get_optimizer(opts[1][0])(lr=opts[1][1]) self._a_optimizer = utils.get_optimizer(opts[2][0])(lr=opts[2][1]) if len(self._weight_decays) == 1: self._weight_decays = tuple([self._weight_decays[0]] * 3) @tf.function def _optimize_step(self, batch): info = collections.OrderedDict() if tf.equal(self._global_step % self._update_freq, 0): source_vars, target_vars = self._get_source_target_vars() self._update_target_fns(source_vars, target_vars) q_info = self._optimize_q(batch) p_info = self._optimize_p(batch) a_info = self._optimize_a(batch) info.update(p_info) info.update(q_info) info.update(a_info) return info def _optimize_q(self, batch): vars_ = self._q_vars with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(vars_) loss, info = self._build_q_loss(batch) grads = tape.gradient(loss, vars_) grads_and_vars = tuple(zip(grads, vars_)) self._q_optimizer.apply_gradients(grads_and_vars) return info def _optimize_p(self, batch): vars_ = self._p_vars with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(vars_) loss, info = self._build_p_loss(batch) grads = tape.gradient(loss, vars_) grads_and_vars = tuple(zip(grads, vars_)) self._p_optimizer.apply_gradients(grads_and_vars) return info def _optimize_a(self, batch): vars_ = [self._log_alpha] with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(vars_) loss, info = self._build_a_loss(batch) grads = tape.gradient(loss, vars_) grads_and_vars = tuple(zip(grads, vars_)) self._a_optimizer.apply_gradients(grads_and_vars) return info def _build_test_policies(self): policy = policies.DeterministicSoftPolicy( a_network=self._agent_module.p_net) self._test_policies['main'] = policy def _build_online_policy(self): return policies.RandomSoftPolicy( a_network=self._agent_module.p_net, ) def _init_vars(self, batch): self._build_q_loss(batch) self._build_p_loss(batch) self._q_vars = self._get_q_vars() self._p_vars = self._get_p_vars() def _build_checkpointer(self): return tf.train.Checkpoint( policy=self._agent_module.p_net, agent=self._agent_module) class AgentModule(agent.AgentModule): """Tensorflow modules for SAC agent.""" def _build_modules(self): self._q_nets = [] n_q_fns = self._modules.n_q_fns for _ in range(n_q_fns): self._q_nets.append( [self._modules.q_net_factory(), # Learned Q-value. self._modules.q_net_factory(),] # Target Q-value. ) self._p_net = self._modules.p_net_factory() self._log_alpha = tf.Variable(0.0) @property def log_alpha(self): return self._log_alpha @property def q_nets(self): return self._q_nets @property def q_source_weights(self): q_weights = [] for q_net, _ in self._q_nets: q_weights += q_net.weights return q_weights @property def q_target_weights(self): q_weights = [] for _, q_net in self._q_nets: q_weights += q_net.weights return q_weights @property def q_source_variables(self): vars_ = [] for q_net, _ in self._q_nets: vars_ += q_net.trainable_variables return tuple(vars_) @property def q_target_variables(self): vars_ = [] for _, q_net in self._q_nets: vars_ += q_net.trainable_variables return tuple(vars_) @property def p_net(self): return self._p_net def p_fn(self, s): return self._p_net(s) @property def p_weights(self): return self._p_net.weights @property def p_variables(self): return self._p_net.trainable_variables def get_modules(model_params, action_spec): """Creates modules for Q-value and policy.""" model_params, n_q_fns = model_params if len(model_params) == 1: model_params = tuple([model_params[0]] * 2) elif len(model_params) < 2: raise ValueError('Bad model parameters %s.' % model_params) def q_net_factory(): return networks.CriticNetwork( fc_layer_params=model_params[0]) def p_net_factory(): return networks.ActorNetwork( action_spec, fc_layer_params=model_params[1]) modules = utils.Flags( q_net_factory=q_net_factory, p_net_factory=p_net_factory, n_q_fns=n_q_fns, ) return modules class Config(agent.Config): def _get_modules(self): return get_modules( self._agent_flags.model_params, self._agent_flags.action_spec)
29.36747
74
0.693436
d74af98820a660192e4f34ec99f7b86557d38f2d
152
py
Python
t14.py
mahendra1904/pythod-programs
d4d75dac65e9795ea5728f75d90aa0b39296b25e
[ "bzip2-1.0.6" ]
null
null
null
t14.py
mahendra1904/pythod-programs
d4d75dac65e9795ea5728f75d90aa0b39296b25e
[ "bzip2-1.0.6" ]
null
null
null
t14.py
mahendra1904/pythod-programs
d4d75dac65e9795ea5728f75d90aa0b39296b25e
[ "bzip2-1.0.6" ]
null
null
null
import statistics tup = eval(input("Enter a tuple :-")) sum = sum(tup) print("Average =", sum / len( tup )) print("Mean =", statistics.mean( tup ) )
19
40
0.625
2eda9878f981928e3eacf5ff3089d0654e08412c
33,496
py
Python
tests/jenkins.py
jubrad/salt
7960334fb726cfde45e6409da79a65535c626685
[ "Apache-2.0" ]
1
2021-08-14T13:48:38.000Z
2021-08-14T13:48:38.000Z
tests/jenkins.py
jubrad/salt
7960334fb726cfde45e6409da79a65535c626685
[ "Apache-2.0" ]
3
2015-03-31T14:44:05.000Z
2015-06-18T19:02:24.000Z
tests/jenkins.py
jubrad/salt
7960334fb726cfde45e6409da79a65535c626685
[ "Apache-2.0" ]
1
2020-01-02T09:03:24.000Z
2020-01-02T09:03:24.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' This script is used to test Salt from a Jenkins server, specifically jenkins.saltstack.com. This script is intended to be shell-centric!! ''' # Import python libs from __future__ import absolute_import, print_function import glob import os import re import sys import json import time import shutil import optparse import subprocess import random # Import Salt libs import salt.utils.files import salt.utils.stringutils try: from salt.utils.nb_popen import NonBlockingPopen except ImportError: # Salt not installed, or nb_popen was not yet shipped with it SALT_LIB = os.path.abspath( os.path.dirname(os.path.dirname(__file__)) ) if SALT_LIB not in sys.path: sys.path.insert(0, SALT_LIB) try: # Let's try using the current checked out code from salt.utils.nb_popen import NonBlockingPopen except ImportError: # Still an ImportError??? Let's use some "brute-force" sys.path.insert( 0, os.path.join(SALT_LIB, 'salt', 'utils') ) from nb_popen import NonBlockingPopen # Import 3rd-party libs import yaml try: import requests HAS_REQUESTS = True except ImportError: HAS_REQUESTS = False SALT_GIT_URL = 'https://github.com/saltstack/salt.git' def build_pillar_data(options): ''' Build a YAML formatted string to properly pass pillar data ''' pillar = {'test_transport': options.test_transport, 'cloud_only': options.cloud_only, 'with_coverage': options.test_without_coverage is False} if options.test_git_commit is not None: pillar['test_git_commit'] = options.test_git_commit if options.test_git_url is not None: pillar['test_git_url'] = options.test_git_url if options.bootstrap_salt_url is not None: pillar['bootstrap_salt_url'] = options.bootstrap_salt_url if options.bootstrap_salt_commit is not None: pillar['bootstrap_salt_commit'] = options.bootstrap_salt_commit if options.package_source_dir: pillar['package_source_dir'] = options.package_source_dir if options.package_build_dir: pillar['package_build_dir'] = options.package_build_dir if options.package_artifact_dir: pillar['package_artifact_dir'] = options.package_artifact_dir if options.pillar: pillar.update(dict(options.pillar)) return yaml.dump(pillar, default_flow_style=True, indent=0, width=sys.maxint).rstrip() def build_minion_target(options, vm_name): target = vm_name for grain in options.grain_target: target += ' and G@{0}'.format(grain) if options.grain_target: return '"{0}"'.format(target) return target def generate_vm_name(options): ''' Generate a random enough vm name ''' if 'BUILD_NUMBER' in os.environ: random_part = 'BUILD{0:0>6}'.format(os.environ.get('BUILD_NUMBER')) else: random_part = os.urandom(3).encode('hex') return '{0}-{1}-{2}'.format(options.vm_prefix, options.platform, random_part) def delete_vm(options): ''' Stop a VM ''' cmd = 'salt-cloud -d {0} -y'.format(options.delete_vm) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() def echo_parseable_environment(options, parser): ''' Echo NAME=VAL parseable output ''' output = [] if options.platform: name = generate_vm_name(options) output.extend([ 'JENKINS_SALTCLOUD_VM_PLATFORM={0}'.format(options.platform), 'JENKINS_SALTCLOUD_VM_NAME={0}'.format(name) ]) if options.provider: output.append( 'JENKINS_SALTCLOUD_VM_PROVIDER={0}'.format(options.provider) ) if options.pull_request: # This is a Jenkins triggered Pull Request # We need some more data about the Pull Request available to the # environment if HAS_REQUESTS is False: parser.error( 'The python \'requests\' library needs to be installed' ) headers = {} url = 'https://api.github.com/repos/saltstack/salt/pulls/{0}'.format(options.pull_request) github_access_token_path = os.path.join( os.environ.get('JENKINS_HOME', os.path.expanduser('~')), '.github_token' ) if os.path.isfile(github_access_token_path): with salt.utils.files.fopen(github_access_token_path) as rfh: headers = { 'Authorization': 'token {0}'.format(rfh.read().strip()) } http_req = requests.get(url, headers=headers) if http_req.status_code != 200: parser.error( 'Unable to get the pull request: {0[message]}'.format(http_req.json()) ) pr_details = http_req.json() output.extend([ 'SALT_PR_GIT_URL={0}'.format(pr_details['head']['repo']['clone_url']), 'SALT_PR_GIT_BRANCH={0}'.format(pr_details['head']['ref']), 'SALT_PR_GIT_COMMIT={0}'.format(pr_details['head']['sha']), 'SALT_PR_GIT_BASE_BRANCH={0}'.format(pr_details['base']['ref']), ]) sys.stdout.write('\n\n{0}\n\n'.format('\n'.join(output))) sys.stdout.flush() def download_unittest_reports(options): print('Downloading remote unittest reports...') sys.stdout.flush() workspace = options.workspace xml_reports_path = os.path.join(workspace, 'xml-test-reports') if os.path.isdir(xml_reports_path): shutil.rmtree(xml_reports_path) os.makedirs(xml_reports_path) cmds = ( 'salt {0} archive.tar zcvf /tmp/xml-test-reports.tar.gz \'*.xml\' cwd=/tmp/xml-unittests-output/', 'salt {0} cp.push /tmp/xml-test-reports.tar.gz', 'mv -f /var/cache/salt/master/minions/{1}/files/tmp/xml-test-reports.tar.gz {2} && ' 'tar zxvf {2}/xml-test-reports.tar.gz -C {2}/xml-test-reports && ' 'rm -f {2}/xml-test-reports.tar.gz' ) vm_name = options.download_unittest_reports for cmd in cmds: cmd = cmd.format(build_minion_target(options, vm_name), vm_name, workspace) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() if proc.returncode != 0: print( '\nFailed to execute command. Exit code: {0}'.format( proc.returncode ) ) time.sleep(0.25) def download_coverage_report(options): print('Downloading remote coverage report...') sys.stdout.flush() workspace = options.workspace vm_name = options.download_coverage_report if os.path.isfile(os.path.join(workspace, 'coverage.xml')): os.unlink(os.path.join(workspace, 'coverage.xml')) cmds = ( 'salt {0} archive.gzip /tmp/coverage.xml', 'salt {0} cp.push /tmp/coverage.xml.gz', 'gunzip /var/cache/salt/master/minions/{1}/files/tmp/coverage.xml.gz', 'mv /var/cache/salt/master/minions/{1}/files/tmp/coverage.xml {2}' ) for cmd in cmds: cmd = cmd.format(build_minion_target(options, vm_name), vm_name, workspace) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() if proc.returncode != 0: print( '\nFailed to execute command. Exit code: {0}'.format( proc.returncode ) ) time.sleep(0.25) def download_remote_logs(options): print('Downloading remote logs...') sys.stdout.flush() workspace = options.workspace vm_name = options.download_remote_logs for fname in ('salt-runtests.log', 'minion.log'): if os.path.isfile(os.path.join(workspace, fname)): os.unlink(os.path.join(workspace, fname)) if not options.remote_log_path: options.remote_log_path = [ '/tmp/salt-runtests.log', '/var/log/salt/minion' ] cmds = [] for remote_log in options.remote_log_path: cmds.extend([ 'salt {{0}} archive.gzip {0}'.format(remote_log), 'salt {{0}} cp.push {0}.gz'.format(remote_log), 'gunzip /var/cache/salt/master/minions/{{1}}/files{0}.gz'.format(remote_log), 'mv /var/cache/salt/master/minions/{{1}}/files{0} {{2}}/{1}'.format( remote_log, '{0}{1}'.format( os.path.basename(remote_log), '' if remote_log.endswith('.log') else '.log' ) ) ]) for cmd in cmds: cmd = cmd.format(build_minion_target(options, vm_name), vm_name, workspace) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() if proc.returncode != 0: print( '\nFailed to execute command. Exit code: {0}'.format( proc.returncode ) ) time.sleep(0.25) def download_packages(options): print('Downloading packages...') sys.stdout.flush() workspace = options.workspace vm_name = options.download_packages for fglob in ('salt-*.rpm', 'salt-*.deb', 'salt-*.pkg.xz', 'salt-buildpackage.log'): for fname in glob.glob(os.path.join(workspace, fglob)): if os.path.isfile(fname): os.unlink(fname) cmds = [ ('salt {{0}} archive.tar czf {0}.tar.gz sources=\'*.*\' cwd={0}' .format(options.package_artifact_dir)), 'salt {{0}} cp.push {0}.tar.gz'.format(options.package_artifact_dir), ('tar -C {{2}} -xzf /var/cache/salt/master/minions/{{1}}/files{0}.tar.gz' .format(options.package_artifact_dir)), ] for cmd in cmds: cmd = cmd.format(build_minion_target(options, vm_name), vm_name, workspace) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() if proc.returncode != 0: print( '\nFailed to execute command. Exit code: {0}'.format( proc.returncode ) ) time.sleep(0.25) def run(opts): ''' RUN! ''' vm_name = os.environ.get( 'JENKINS_SALTCLOUD_VM_NAME', generate_vm_name(opts) ) if opts.download_remote_reports: if opts.test_without_coverage is False: opts.download_coverage_report = vm_name opts.download_unittest_reports = vm_name opts.download_packages = vm_name if opts.bootstrap_salt_commit is not None: if opts.bootstrap_salt_url is None: opts.bootstrap_salt_url = 'https://github.com/saltstack/salt.git' cmd = ( 'salt-cloud -l debug' ' --script-args "-D -g {bootstrap_salt_url} -n git {1}"' ' -p {provider}_{platform} {0}'.format( vm_name, os.environ.get( 'SALT_MINION_BOOTSTRAP_RELEASE', opts.bootstrap_salt_commit ), **opts.__dict__ ) ) else: cmd = ( 'salt-cloud -l debug' ' --script-args "-D -n git {1}" -p {provider}_{platform} {0}'.format( vm_name, os.environ.get( 'SALT_MINION_BOOTSTRAP_RELEASE', opts.bootstrap_salt_commit ), **opts.__dict__ ) ) if opts.splay is not None: # Sleep a random number of seconds cloud_downtime = random.randint(0, opts.splay) print('Sleeping random period before calling salt-cloud: {0}'.format(cloud_downtime)) time.sleep(cloud_downtime) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = NonBlockingPopen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stream_stds=True ) proc.poll_and_read_until_finish(interval=0.5) proc.communicate() retcode = proc.returncode if retcode != 0: print('Failed to bootstrap VM. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) print('VM Bootstrapped. Exit code: {0}'.format(retcode)) sys.stdout.flush() # Sleep a random number of seconds bootstrap_downtime = random.randint(0, opts.splay) print('Sleeping for {0} seconds to allow the minion to breathe a little'.format(bootstrap_downtime)) sys.stdout.flush() time.sleep(bootstrap_downtime) if opts.bootstrap_salt_commit is not None: # Let's find out if the installed version matches the passed in pillar # information print('Grabbing bootstrapped minion version information ... ') cmd = 'salt -t 100 {0} --out json test.version'.format(build_minion_target(opts, vm_name)) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, _ = proc.communicate() retcode = proc.returncode if retcode != 0: print('Failed to get the bootstrapped minion version. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) outstr = salt.utils.stringutils.to_str(stdout).strip() if not outstr: print('Failed to get the bootstrapped minion version(no output). Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) try: version_info = json.loads(outstr) bootstrap_minion_version = os.environ.get( 'SALT_MINION_BOOTSTRAP_RELEASE', opts.bootstrap_salt_commit[:7] ) print('Minion reported salt version: {0}'.format(version_info)) if bootstrap_minion_version not in version_info[vm_name]: print('\n\nATTENTION!!!!\n') print('The boostrapped minion version commit does not contain the desired commit:') print( ' \'{0}\' does not contain \'{1}\''.format( version_info[vm_name], bootstrap_minion_version ) ) print('\n\n') sys.stdout.flush() #if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: # delete_vm(opts) #sys.exit(retcode) else: print('matches!') except ValueError: print('Failed to load any JSON from \'{0}\''.format(outstr)) if opts.cloud_only: # Run Cloud Provider tests preparation SLS cloud_provider_downtime = random.randint(3, opts.splay) time.sleep(cloud_provider_downtime) cmd = ( 'salt -t 900 {target} state.sls {cloud_prep_sls} pillar="{pillar}" ' '--no-color'.format( target=build_minion_target(opts, vm_name), cloud_prep_sls='cloud-only', pillar=build_pillar_data(opts), ) ) else: # Run standard preparation SLS standard_sls_downtime = random.randint(3, opts.splay) time.sleep(standard_sls_downtime) cmd = ( 'salt -t 1800 {target} state.sls {prep_sls} pillar="{pillar}" ' '--no-color'.format( target=build_minion_target(opts, vm_name), prep_sls=opts.prep_sls, pillar=build_pillar_data(opts), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = proc.communicate() if stdout: print(salt.utils.stringutils.to_str(stdout)) if stderr: print(salt.utils.stringutils.to_str(stderr)) sys.stdout.flush() retcode = proc.returncode if retcode != 0: print('Failed to execute the preparation SLS file. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) if opts.cloud_only: cloud_provider_pillar = random.randint(3, opts.splay) time.sleep(cloud_provider_pillar) # Run Cloud Provider tests pillar preparation SLS cmd = ( 'salt -t 600 {target} state.sls {cloud_prep_sls} pillar="{pillar}" ' '--no-color'.format( target=build_minion_target(opts, vm_name), cloud_prep_sls='cloud-test-configs', pillar=build_pillar_data(opts), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) stdout, stderr = proc.communicate() if stdout: # DO NOT print the state return here! print('Cloud configuration files provisioned via pillar.') if stderr: print(salt.utils.stringutils.to_str(stderr)) sys.stdout.flush() retcode = proc.returncode if retcode != 0: print('Failed to execute the preparation SLS file. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) if opts.prep_sls_2 is not None: sls_2_downtime = random.randint(3, opts.splay) time.sleep(sls_2_downtime) # Run the 2nd preparation SLS cmd = ( 'salt -t 30 {target} state.sls {prep_sls_2} pillar="{pillar}" ' '--no-color'.format( prep_sls_2=opts.prep_sls_2, pillar=build_pillar_data(opts), target=build_minion_target(opts, vm_name), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) stdout, stderr = proc.communicate() if stdout: print(salt.utils.stringutils.to_str(stdout)) if stderr: print(salt.utils.stringutils.to_str(stderr)) sys.stdout.flush() retcode = proc.returncode if retcode != 0: print('Failed to execute the 2nd preparation SLS file. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) # Run remote checks if opts.test_git_url is not None: test_git_downtime = random.randint(1, opts.splay) time.sleep(test_git_downtime) # Let's find out if the cloned repository if checked out from the # desired repository print('Grabbing the cloned repository remotes information ... ') cmd = 'salt -t 100 {0} --out json git.remote_get /testing'.format(build_minion_target(opts, vm_name)) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, _ = proc.communicate() retcode = proc.returncode if retcode != 0: print('Failed to get the cloned repository remote. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) if not stdout: print('Failed to get the cloned repository remote(no output). Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) try: remotes_info = json.loads(stdout.strip()) if remotes_info is None or remotes_info[vm_name] is None or opts.test_git_url not in remotes_info[vm_name]: print('The cloned repository remote is not the desired one:') print(' \'{0}\' is not in {1}'.format(opts.test_git_url, remotes_info)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) print('matches!') except ValueError: print('Failed to load any JSON from \'{0}\''.format(salt.utils.stringutils.to_str(stdout).strip())) if opts.test_git_commit is not None: test_git_commit_downtime = random.randint(1, opts.splay) time.sleep(test_git_commit_downtime) # Let's find out if the cloned repository is checked out at the desired # commit print('Grabbing the cloned repository commit information ... ') cmd = 'salt -t 100 {0} --out json git.revision /testing'.format(build_minion_target(opts, vm_name)) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, _ = proc.communicate() sys.stdout.flush() retcode = proc.returncode if retcode != 0: print('Failed to get the cloned repository revision. Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) if not stdout: print('Failed to get the cloned repository revision(no output). Exit code: {0}'.format(retcode)) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) try: revision_info = json.loads(stdout.strip()) if revision_info[vm_name][7:] != opts.test_git_commit[7:]: print('The cloned repository commit is not the desired one:') print(' \'{0}\' != \'{1}\''.format(revision_info[vm_name][:7], opts.test_git_commit[:7])) sys.stdout.flush() if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) sys.exit(retcode) print('matches!') except ValueError: print('Failed to load any JSON from \'{0}\''.format(salt.utils.stringutils.to_str(stdout).strip())) # Run tests here test_begin_downtime = random.randint(3, opts.splay) time.sleep(test_begin_downtime) cmd = ( 'salt -t 1800 {target} state.sls {sls} pillar="{pillar}" --no-color'.format( sls=opts.sls, pillar=build_pillar_data(opts), target=build_minion_target(opts, vm_name), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = proc.communicate() outstr = salt.utils.stringutils.to_str(stdout) if outstr: print(outstr) if stderr: print(salt.utils.stringutils.to_str(stderr)) sys.stdout.flush() try: match = re.search(r'Test Suite Exit Code: (?P<exitcode>[\d]+)', outstr) retcode = int(match.group('exitcode')) except AttributeError: # No regex matching retcode = 1 except ValueError: # Not a number!? retcode = 1 except TypeError: # No output!? retcode = 1 if outstr: # Anything else, raise the exception raise if retcode == 0: # Build packages time.sleep(3) cmd = ( 'salt -t 1800 {target} state.sls buildpackage pillar="{pillar}" --no-color'.format( pillar=build_pillar_data(opts), target=build_minion_target(opts, vm_name), ) ) print('Running CMD: {0}'.format(cmd)) sys.stdout.flush() proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, stderr = proc.communicate() if stdout: print(salt.utils.stringutils.to_str(stdout)) if stderr: print(salt.utils.stringutils.to_str(stderr)) sys.stdout.flush() # Grab packages and log file (or just log file if build failed) download_packages(opts) if opts.download_remote_reports: # Download unittest reports download_unittest_reports(opts) # Download coverage report if opts.test_without_coverage is False: download_coverage_report(opts) if opts.clean and 'JENKINS_SALTCLOUD_VM_NAME' not in os.environ: delete_vm(opts) return retcode def parse(): ''' Parse the CLI options ''' parser = optparse.OptionParser() parser.add_option( '--vm-prefix', default=os.environ.get('JENKINS_VM_NAME_PREFIX', 'ZJENKINS'), help='The bootstrapped machine name prefix' ) parser.add_option( '-w', '--workspace', default=os.path.abspath( os.environ.get( 'WORKSPACE', os.path.dirname(os.path.dirname(__file__)) ) ), help='Path the execution workspace' ) parser.add_option( '--platform', default=os.environ.get('JENKINS_SALTCLOUD_VM_PLATFORM', None), help='The target platform, choose from:\ncent6\ncent5\nubuntu12.04') parser.add_option( '--provider', default=os.environ.get('JENKINS_SALTCLOUD_VM_PROVIDER', None), help='The vm provider') parser.add_option( '--bootstrap-salt-url', default=None, help='The salt git repository url used to boostrap a minion') parser.add_option( '--bootstrap-salt-commit', default=None, help='The salt git commit used to boostrap a minion') parser.add_option( '--test-git-url', default=None, help='The testing git repository url') parser.add_option( '--test-git-commit', default=None, help='The testing git commit to track') parser.add_option( '--test-transport', default='zeromq', choices=('zeromq', 'raet', 'tcp'), help=('Select which transport to run the integration tests with, ' 'zeromq, raet, or tcp. Default: %default') ) parser.add_option( '--test-without-coverage', default=False, action='store_true', help='Do not generate coverage reports' ) parser.add_option( '--prep-sls', default='git.salt', help='The sls file to execute to prepare the system') parser.add_option( '--prep-sls-2', default=None, help='An optional 2nd system preparation SLS') parser.add_option( '--sls', default='testrun-no-deps', help='The final sls file to execute') parser.add_option( '--pillar', action='append', nargs=2, help='Pillar (key, value)s to pass to the sls file. ' 'Example: \'--pillar pillar_key pillar_value\'') parser.add_option( '--no-clean', dest='clean', default=True, action='store_false', help='Clean up the built vm') parser.add_option( '--echo-parseable-environment', default=False, action='store_true', help='Print a parseable KEY=VAL output' ) parser.add_option( '--pull-request', type=int, help='Include the PR info only' ) parser.add_option( '--delete-vm', default=None, help='Delete a running VM' ) parser.add_option( '--download-remote-reports', default=False, action='store_true', help='Download remote reports when running remote \'testrun\' state' ) parser.add_option( '--download-unittest-reports', default=None, help='Download the XML unittest results' ) parser.add_option( '--download-coverage-report', default=None, help='Download the XML coverage reports' ) parser.add_option( '--remote-log-path', action='append', default=[], help='Provide additional log paths to download from remote minion' ) parser.add_option( '--download-remote-logs', default=None, help='Download remote minion and runtests log files' ) parser.add_option( '--grain-target', action='append', default=[], help='Match minions using compound matchers, the minion ID, plus the passed grain.' ) parser.add_option( '--cloud-only', default=False, action='store_true', help='Run the cloud provider tests only.' ) parser.add_option( '--build-packages', default=True, action='store_true', help='Run buildpackage.py to create packages off of the git build.' ) # These next three options are ignored if --build-packages is False parser.add_option( '--package-source-dir', default='/testing', help='Directory where the salt source code checkout is found ' '(default: %default)', ) parser.add_option( '--package-build-dir', default='/tmp/salt-buildpackage', help='Build root for automated package builds (default: %default)', ) parser.add_option( '--package-artifact-dir', default='/tmp/salt-packages', help='Location on the minion from which packages should be ' 'retrieved (default: %default)', ) parser.add_option( '--splay', default='10', help='The number of seconds across which calls to provisioning components should be made' ) options, args = parser.parse_args() if options.delete_vm is not None and not options.test_git_commit: delete_vm(options) parser.exit(0) if options.download_unittest_reports is not None and not options.test_git_commit: download_unittest_reports(options) parser.exit(0) if options.test_without_coverage is False: if options.download_coverage_report is not None and not options.test_git_commit: download_coverage_report(options) parser.exit(0) if options.download_remote_logs is not None and not options.test_git_commit: download_remote_logs(options) parser.exit(0) if not options.platform and not options.pull_request: parser.exit('--platform or --pull-request is required') if not options.provider and not options.pull_request: parser.exit('--provider or --pull-request is required') if options.echo_parseable_environment: echo_parseable_environment(options, parser) parser.exit(0) if not options.test_git_commit and not options.pull_request: parser.exit('--commit or --pull-request is required') return options if __name__ == '__main__': exit_code = run(parse()) print('Exit Code: {0}'.format(exit_code)) sys.exit(exit_code)
33.230159
119
0.588637
845bb9e3c3300d2c59867aa9fb3dc30d73c69554
632
py
Python
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/survey_crm/__manifest__.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
1
2019-12-19T01:53:13.000Z
2019-12-19T01:53:13.000Z
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/survey_crm/__manifest__.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
null
null
null
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/survey_crm/__manifest__.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. { 'name': 'Survey CRM', 'version': '2.0', 'category': 'Marketing', 'complexity': 'easy', 'website': 'https://www.odoo.com/page/survey', 'description': """ Survey - CRM (bridge module) ================================================================================= This module adds a Survey mass mailing button inside the more option of lead/customers views """, 'depends': ['crm', 'survey'], 'data': [ 'views/survey_crm_views.xml', ], 'installable': True, 'auto_install': True }
30.095238
92
0.53481
1800dcac9f0000fc4a4eb31610c510c91407390b
12,734
py
Python
pyglet/__init__.py
jmiller89/pyglet
311fe4a461e3c37a98fb1015af2a87533df58934
[ "BSD-3-Clause" ]
null
null
null
pyglet/__init__.py
jmiller89/pyglet
311fe4a461e3c37a98fb1015af2a87533df58934
[ "BSD-3-Clause" ]
null
null
null
pyglet/__init__.py
jmiller89/pyglet
311fe4a461e3c37a98fb1015af2a87533df58934
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # Copyright (c) 2008-2019 pyglet contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- """pyglet is a cross-platform games and multimedia package. More information is available at http://www.pyglet.org """ import os import sys #: The release version version = '2.0.dev0' if 'sphinx' in sys.modules: setattr(sys, 'is_pyglet_doc_run', True) _is_pyglet_doc_run = hasattr(sys, "is_pyglet_doc_run") and sys.is_pyglet_doc_run # Pyglet platform treats *BSD systems as Linux compat_platform = sys.platform if "bsd" in compat_platform: compat_platform = "linux-compat" _enable_optimisations = not __debug__ if getattr(sys, 'frozen', None): _enable_optimisations = True #: Global dict of pyglet options. To change an option from its default, you #: must import ``pyglet`` before any sub-packages. For example:: #: #: import pyglet #: pyglet.options['debug_gl'] = False #: #: The default options can be overridden from the OS environment. The #: corresponding environment variable for each option key is prefaced by #: ``PYGLET_``. For example, in Bash you can set the ``debug_gl`` option with:: #: #: PYGLET_DEBUG_GL=True; export PYGLET_DEBUG_GL #: #: For options requiring a tuple of values, separate each value with a comma. #: #: The non-development options are: #: #: audio #: A sequence of the names of audio modules to attempt to load, in #: order of preference. Valid driver names are: #: #: * directsound, the Windows DirectSound audio module (Windows only) #: * pulse, the PulseAudio module (Linux only) #: * openal, the OpenAL audio module #: * silent, no audio #: debug_lib #: If True, prints the path of each dynamic library loaded. #: debug_gl #: If True, all calls to OpenGL functions are checked afterwards for #: errors using ``glGetError``. This will severely impact performance, #: but provides useful exceptions at the point of failure. By default, #: this option is enabled if ``__debug__`` is (i.e., if Python was not run #: with the -O option). It is disabled by default when pyglet is "frozen" #: within a py2exe or py2app library archive. #: shadow_window #: By default, pyglet creates a hidden window with a GL context when #: pyglet.gl is imported. This allows resources to be loaded before #: the application window is created, and permits GL objects to be #: shared between windows even after they've been closed. You can #: disable the creation of the shadow window by setting this option to #: False. #: #: Some OpenGL driver implementations may not support shared OpenGL #: contexts and may require disabling the shadow window (and all resources #: must be loaded after the window using them was created). Recommended #: for advanced developers only. #: #: .. versionadded:: 1.1 #: vsync #: If set, the `pyglet.window.Window.vsync` property is ignored, and #: this option overrides it (to either force vsync on or off). If unset, #: or set to None, the `pyglet.window.Window.vsync` property behaves #: as documented. #: xsync #: If set (the default), pyglet will attempt to synchronise the drawing of #: double-buffered windows to the border updates of the X11 window #: manager. This improves the appearance of the window during resize #: operations. This option only affects double-buffered windows on #: X11 servers supporting the Xsync extension with a window manager #: that implements the _NET_WM_SYNC_REQUEST protocol. #: #: .. versionadded:: 1.1 #: search_local_libs #: If False, pyglet won't try to search for libraries in the script #: directory and its `lib` subdirectory. This is useful to load a local #: library instead of the system installed version. This option is set #: to True by default. #: #: .. versionadded:: 1.2 #: options = { 'audio': ('directsound', 'openal', 'pulse', 'silent'), 'debug_font': False, 'debug_gl': not _enable_optimisations, 'debug_gl_trace': False, 'debug_gl_trace_args': False, 'debug_gl_shaders': False, 'debug_graphics_batch': False, 'debug_lib': False, 'debug_media': False, 'debug_texture': False, 'debug_trace': False, 'debug_trace_args': False, 'debug_trace_depth': 1, 'debug_trace_flush': True, 'debug_win32': False, 'debug_x11': False, 'shadow_window': True, 'vsync': None, 'xsync': True, 'xlib_fullscreen_override_redirect': False, 'search_local_libs': True, } _option_types = { 'audio': tuple, 'debug_font': bool, 'debug_gl': bool, 'debug_gl_trace': bool, 'debug_gl_trace_args': bool, 'debug_gl_shaders': bool, 'debug_graphics_batch': bool, 'debug_lib': bool, 'debug_media': bool, 'debug_texture': bool, 'debug_trace': bool, 'debug_trace_args': bool, 'debug_trace_depth': int, 'debug_trace_flush': bool, 'debug_win32': bool, 'debug_x11': bool, 'ffmpeg_libs_win': tuple, 'shadow_window': bool, 'vsync': bool, 'xsync': bool, 'xlib_fullscreen_override_redirect': bool, 'search_local_libs': bool, } def _read_environment(): """Read defaults for options from environment""" for key in options: env = 'PYGLET_%s' % key.upper() try: value = os.environ[env] if _option_types[key] is tuple: options[key] = value.split(',') elif _option_types[key] is bool: options[key] = value in ('true', 'TRUE', 'True', '1') elif _option_types[key] is int: options[key] = int(value) except KeyError: pass _read_environment() if compat_platform == 'cygwin': # This hack pretends that the posix-like ctypes provides windows # functionality. COM does not work with this hack, so there is no # DirectSound support. import ctypes ctypes.windll = ctypes.cdll ctypes.oledll = ctypes.cdll ctypes.WINFUNCTYPE = ctypes.CFUNCTYPE ctypes.HRESULT = ctypes.c_long # Call tracing # ------------ _trace_filename_abbreviations = {} def _trace_repr(value, size=40): value = repr(value) if len(value) > size: value = value[:size // 2 - 2] + '...' + value[-size // 2 - 1:] return value def _trace_frame(thread, frame, indent): from pyglet import lib if frame.f_code is lib._TraceFunction.__call__.__code__: is_ctypes = True func = frame.f_locals['self']._func name = func.__name__ location = '[ctypes]' else: is_ctypes = False code = frame.f_code name = code.co_name path = code.co_filename line = code.co_firstlineno try: filename = _trace_filename_abbreviations[path] except KeyError: # Trim path down dir = '' path, filename = os.path.split(path) while len(dir + filename) < 30: filename = os.path.join(dir, filename) path, dir = os.path.split(path) if not dir: filename = os.path.join('', filename) break else: filename = os.path.join('...', filename) _trace_filename_abbreviations[path] = filename location = '(%s:%d)' % (filename, line) if indent: name = 'Called from %s' % name print('[%d] %s%s %s' % (thread, indent, name, location)) if _trace_args: if is_ctypes: args = [_trace_repr(arg) for arg in frame.f_locals['args']] print(' %sargs=(%s)' % (indent, ', '.join(args))) else: for argname in code.co_varnames[:code.co_argcount]: try: argvalue = _trace_repr(frame.f_locals[argname]) print(' %s%s=%s' % (indent, argname, argvalue)) except: pass if _trace_flush: sys.stdout.flush() def _thread_trace_func(thread): def _trace_func(frame, event, arg): if event == 'call': indent = '' for i in range(_trace_depth): _trace_frame(thread, frame, indent) indent += ' ' frame = frame.f_back if not frame: break elif event == 'exception': (exception, value, traceback) = arg print('First chance exception raised:', repr(exception)) return _trace_func def _install_trace(): global _trace_thread_count sys.setprofile(_thread_trace_func(_trace_thread_count)) _trace_thread_count += 1 _trace_thread_count = 0 _trace_args = options['debug_trace_args'] _trace_depth = options['debug_trace_depth'] _trace_flush = options['debug_trace_flush'] if options['debug_trace']: _install_trace() # Lazy loading # ------------ class _ModuleProxy: _module = None def __init__(self, name): self.__dict__['_module_name'] = name def __getattr__(self, name): try: return getattr(self._module, name) except AttributeError: if self._module is not None: raise import_name = 'pyglet.%s' % self._module_name __import__(import_name) module = sys.modules[import_name] object.__setattr__(self, '_module', module) globals()[self._module_name] = module return getattr(module, name) def __setattr__(self, name, value): try: setattr(self._module, name, value) except AttributeError: if self._module is not None: raise import_name = 'pyglet.%s' % self._module_name __import__(import_name) module = sys.modules[import_name] object.__setattr__(self, '_module', module) globals()[self._module_name] = module setattr(module, name, value) if True: app = _ModuleProxy('app') canvas = _ModuleProxy('canvas') clock = _ModuleProxy('clock') com = _ModuleProxy('com') event = _ModuleProxy('event') font = _ModuleProxy('font') gl = _ModuleProxy('gl') graphics = _ModuleProxy('graphics') image = _ModuleProxy('image') input = _ModuleProxy('input') lib = _ModuleProxy('lib') media = _ModuleProxy('media') model = _ModuleProxy('model') resource = _ModuleProxy('resource') sprite = _ModuleProxy('sprite') text = _ModuleProxy('text') window = _ModuleProxy('window') # Fool py2exe, py2app into including all top-level modules # (doesn't understand lazy loading) if False: from . import app from . import canvas from . import clock from . import com from . import event from . import font from . import gl from . import graphics from . import input from . import image from . import lib from . import media from . import model from . import resource from . import sprite from . import text from . import window
33.335079
80
0.640647
dbcb5689c94aa07ef7ffa6a55ba3a528b9220dcf
7,122
py
Python
petra_camera/devices/dalsaproxy.py
yamedvedya/camera_viewer
9e4d213f1ffc5a32517f4cd4f67e7563819ea480
[ "MIT" ]
null
null
null
petra_camera/devices/dalsaproxy.py
yamedvedya/camera_viewer
9e4d213f1ffc5a32517f4cd4f67e7563819ea480
[ "MIT" ]
null
null
null
petra_camera/devices/dalsaproxy.py
yamedvedya/camera_viewer
9e4d213f1ffc5a32517f4cd4f67e7563819ea480
[ "MIT" ]
null
null
null
# Created by matveyev at 01.12.2020 # ---------------------------------------------------------------------- # Author: yury.matveev@desy.de # ---------------------------------------------------------------------- """Dalsa camera proxy """ import numpy as np import PyTango import logging from watchdog.observers import Observer from watchdog.events import PatternMatchingEventHandler import os.path as ospath from PIL import Image from petra_camera.devices.base_camera import BaseCamera from petra_camera.main_window import APP_NAME logger = logging.getLogger(APP_NAME) # ---------------------------------------------------------------------- class DalsaProxy(BaseCamera): _settings_map = { 'max_level_limit': (None, ) } visible_layouts = ('folder', 'source') # ---------------------------------------------------------------------- def __init__(self, settings): super(DalsaProxy, self).__init__(settings) if settings.hasAttribute('folders'): self._possible_folders = [item.strip() for item in settings.getAttribute("folders").split(';')] else: self._possible_folders = ['/gpfs/current/raw/', '/gpfs/commissioning/raw/'] if settings.hasAttribute('sources'): self._possible_sources = [item.strip() for item in settings.getAttribute("folders").split(';')] else: self._possible_sources = ['Event', 'Files'] self._my_event_handler = PatternMatchingEventHandler(["*.tif"], "", False, True) self._my_event_handler.on_created = self._on_created self._my_observer = None self._source = self._possible_sources[0] self.path = self._possible_folders[0] self._last_frame = np.zeros((1, 1)) self.error_flag = False self.error_msg = '' self._running = False # ---------------------------------------------------------------------- def start_acquisition(self): if self._source == 'Event': logger.debug(f'{self._my_name}: starting acquisition: event mode') if self._device_proxy is None: raise RuntimeError('No device proxy') self._device_proxy.write_attribute("PixelFormat", "Mono16") self._device_proxy.write_attribute("ViewingMode", 2) self._eid = self._device_proxy.subscribe_event("Image16", PyTango.EventType.DATA_READY_EVENT, self._on_event, [], True) self._running = True return True elif self._source == 'Files': if self.path != '': logger.debug(f'{self._my_name}: starting acquisition: file mode') self._my_observer = Observer() self._my_observer.schedule(self._my_event_handler, self.path, recursive=True) self._my_observer.start() self._running = True return True else: raise RuntimeError('Path is not exist') else: raise RuntimeError('Unknown mode') # ---------------------------------------------------------------------- def stop_acquisition(self): if self._source == 'Event': logger.debug(f'{self._my_name}: stopping acquisition: event mode') self._device_proxy.unsubscribe_event(self._eid) elif self._source == 'Files': logger.debug(f'{self._my_name}: stopping acquisition: file mode') self._my_observer.stop() self._my_observer.join() else: raise RuntimeError('Unknown mode') self._running = False # ---------------------------------------------------------------------- def _on_event(self, event): if not event.err: logger.debug(f'{self._my_name}: new tango event') data = event.device.read_attribute(event.attr_name.split('/')[6]) self._last_frame = np.array(data.value)[self._picture_size[0]:self._picture_size[2], self._picture_size[1]:self._picture_size[3]] self._new_frame_flag = True else: pass # ---------------------------------------------------------------------- def _on_created(self, event): logger.debug(f'{self._my_name}: new file system event') self.id = ' file: {}'.format(ospath.splitext(ospath.basename(event.src_path))[0]) self._last_frame = np.array(Image.open(event.src_path))[self._picture_size[0]:self._picture_size[2], self._picture_size[1]:self._picture_size[3]] self._new_frame_flag = True # ---------------------------------------------------------------------- def _set_new_path(self, path): logger.debug(f'{self._my_name}: new file path: {path}') need_to_restart = self._running if self._running: self.stop_acquisition() self._last_frame = np.zeros((1, 1)) self._new_frame_flag = True self.path = path if need_to_restart: self.start_acquisition() # ---------------------------------------------------------------------- def get_settings(self, option, cast): if option in ['Path', 'Source', 'possible_sources', 'possible_folders']: logger.debug(f'{self._my_name}: setting {cast.__name__}({option}) requested') if option == 'Path': path = super(DalsaProxy, self).get_settings(option, cast) if path != '': self._set_new_path(path) return self.path elif option == 'Source': source = super(DalsaProxy, self).get_settings(option, cast) if source != '': self._change_source(source) return self._source elif option == 'possible_sources': return self._possible_sources elif option == 'possible_folders': return self._possible_folders else: return super(DalsaProxy, self).get_settings(option, cast) # ---------------------------------------------------------------------- def save_settings(self, option, value): if option in ['Path', 'Source']: logger.debug(f'{self._my_name}: setting {option}: new value {value}') if option == 'Path': self._set_new_path(value) elif option == 'Source': self._change_source(value) super(DalsaProxy, self).save_settings(option, value) # ---------------------------------------------------------------------- def _change_source(self, source): need_to_restart = self._running if self._running: self.stop_acquisition() self._last_frame = np.zeros((1, 1)) self._new_frame_flag = True self._source = source if need_to_restart: self.start_acquisition()
33.753555
108
0.511654
bd8224cc12b9ca9f27ee5d178cd4bdb800490c38
15,556
py
Python
thermoplotting/kinetics/trajectories.py
Van-der-Ven-Group/thermoplotting
d826d728f406896b7a56207f3f4e9b4176de0e97
[ "MIT" ]
10
2015-04-28T18:53:00.000Z
2020-09-23T13:29:07.000Z
thermoplotting/kinetics/trajectories.py
Van-der-Ven-Group/thermoplotting
d826d728f406896b7a56207f3f4e9b4176de0e97
[ "MIT" ]
1
2019-05-20T19:20:24.000Z
2019-05-20T19:20:24.000Z
thermoplotting/kinetics/trajectories.py
goirijo/thermoplotting
d826d728f406896b7a56207f3f4e9b4176de0e97
[ "MIT" ]
4
2015-08-03T18:36:46.000Z
2022-03-30T23:13:04.000Z
from __future__ import print_function from __future__ import division from __future__ import absolute_import import pandas as pd import numpy as np class KineticTrajectory(object): """A trajectory is a list of x,y,z and time coordinates for a single atom in a kinetic Monte Carlo simulation, which has the values of that atom after every hop that happens in the simulation. When dealing with data for several atoms, do not use this class. Instead use KineticData.""" def __init__(self, x, y, z, t, copy=False): """Initialize with a list of coordinates Parameters ---------- x : x component of coordinate y : y component of coordinate z : z component of coordinate t : time elapsed for the current coordinate copy : if True, creates copy of the data passed """ #Not convinced this is managing the memory the way you think, but "not copying" appears to be faster if copy: self._data = pd.DataFrame(data={"x": x.copy(), "y": y.copy(), "z": z.copy(), "t": t.copy()}) else: self._data = pd.DataFrame(data={"x": x, "y": y, "z": z, "t": t}) #Add the norm of the distances self._data["r"]=np.sqrt(np.square(self._data[["x","y","z"]]).sum(axis=1)) def x(self): return self._data["x"] def y(self): return self._data["y"] def z(self): return self._data["z"] def t(self): return self._data["t"] def r(self): return self._data["r"] def data(self): return self._data def size(self): return len(self.t()) def as_matrix(self): return self._data[["x","y","z","t"]].as_matrix() def segment(self, n): """Split the trajectory into n independent looking trajectories. If the number of samples is not divisible by n, the remainder will be discarded. Parameters ---------- n : int Returns ------- list[KineticTrajectory] """ block_size=self.size()//n data_blocks=[self._data.loc[i*block_size:(i+1)*block_size,["x","y","z","t"]] for i in xrange(n)] for ix,d in enumerate(data_blocks[1::]): d-=self._data.loc[block_size*(ix+1)-1] return [KineticTrajectory(**d) for d in data_blocks] class KineticData(object): """Store and retrieve kinetic Monte Carlo data by type of species, and other conveniences. This is meant to store a single KMC simulation from start to finish""" def _input_sanity_raise(self,trajectories, time, occ_species): if(trajectories.shape[0]!=len(occ_species)): raise ValueError("There must be an xyz trajectory for each species to name") if(trajectories.shape[1]!=len(time)): raise ValueError("There must be as many time data points as there are coordinates for each atom") if(trajectories.shape[2]!=3): raise ValueError("The trajectories arrays must hold only values for the x, y, and z coordinates") return def _master_dataframe(self, trajectories, time, occ_species): """Given the constructor data, create the master DataFrame that holds all the information about the trajectories of each atom, including what species each one is and where it was sitting at the beginning of the KMC simulation cell. Parameters ---------- trajectories : list of tx3 arrays of length s as np.array time : array of float of length t occ_species list of str of length s Returns ------- pd.DataFrame """ #Create the labels for each atom, with the species name and the index into the starting configdof occ_labels=[o+"({})".format(ix) for o,ix in zip(occ_species,xrange(len(occ_species)))] #Calculate the norm of the displacements for every atom at every time step norms=np.linalg.norm(trajectories,axis=2) assert(len(occ_labels)==len(trajectories)) assert(len(norms)==len(trajectories)) #The concatenated numpy array now has shape[2]==4 with the norm travelled as a new value full_trajectory_data=np.concatenate((trajectories,np.expand_dims(norms,2)),axis=2) assert(full_trajectory_data.shape[2]==4) #Create MultiIndex for columns, which will group x,y,z,r by atom doing the trajectory labels0=[ix for ix,_ in enumerate(occ_labels) for i in xrange(4)] assert(labels0[0]==labels0[3] and labels0[-1]==labels0[-4]) labels1=[i for ix,_ in enumerate(occ_labels) for i in xrange(4)] assert(labels0[1]==labels1[-4]) col_mix=pd.MultiIndex(levels=[occ_labels,["x","y","z","r"]],labels=[labels0,labels1],names=["atomic","cart"]) #Reshape the trajectory data so that it's 2 dimensional, with the xyzr columns side by side nats,ntime,ndim=full_trajectory_data.shape data_digest=full_trajectory_data.transpose(0,2,1).reshape(nats*ndim,ntime).T #Include the time into the set of data as an additional Index time_ix=np.arange(ntime) timed_mix=pd.MultiIndex(levels=[time_ix,time],labels=[time_ix,time_ix],names=["index","time"]) #Create the master DataFrame, this has all the things and has columns at two levels: #by species and by trajectory. There are two index levels, sample index and time master_frame=pd.DataFrame(data_digest,index=timed_mix,columns=col_mix) return master_frame def __init__(self, trajectories, time, occ_species,direct=None): """Initialize with a list of trajectories, the elapsed time per step, and a list of the occupation name for each atom. Assumes all data comes in incremental time (will not sort anything). Internally this is a multi-indexed Pandas array, where one level deals with the atoms, naming each "column" things like "Ni(0)", "Al(1)", etc, to indicate the species and the index into the unrolled configuration of the starting config, as well as the elapsed time, which is common across every atom. The other level deals with columns of type "x", "y", or "z" to keep track of the trajectory of each atom. The master data should always remain in a state where Level 0 refers to the atom labels and Level 1 refers to the trajectories Parameters ---------- trajectories : list of 3xt arrays of length s as np.array time : array of float of length t occ_species : list of str of length s direct : pd.DataFrame, bypasses the normal construction """ if(direct is None): self._input_sanity_raise(trajectories, time, occ_species) self._master=self._master_dataframe(trajectories,time,occ_species) else: self._master=direct return def atom_cols(self, va_as_specie=False): """Return array of the column names for every atom. If specified, include the vacancies as a specie. Parameters ---------- va_as_specie : bool Returns ------- list """ everything=self._master.columns.get_level_values("atomic").unique() if va_as_specie: return everything else: return [x for x in everything if "Va" not in x] def specie_cols(self, specie): """Return an array of column names that can be used to index into every trajectory of a particular specie Parameters ---------- specie : str Returns ------- list of str """ return [s for s in self.atom_cols() if specie in s] def num_atoms(self,va_as_specie=False): """Returns total number of sites that there is data for If specified, include the vacancies as a specie. Parameters ---------- va_as_specie : bool Returns ------- int """ return len(self.atom_cols(va_as_specie)) def composition(self, specie, va_as_specie=False): """Returns the ratio of number of specie to total number of atoms (not including vacancies unless specified) Parameters ---------- specie : str Returns ------- float """ return len(self.specie_cols(specie))/self.num_atoms(va_as_specie) def index_trajectory(self, index): """Return the x, y, z, and t values of a particular atom throughout the simulation, specifying only the index and not the specie Parameters ---------- atom : int Returns ------- pd.DataFrame with x,y,z columns and t as secondary index """ for a in self.atom_cols(): if "({})".format(index) in a: return self.atomic_trajectory(a) def atomic_trajectory(self, atom): """Return the x, y, z, and t values of a particular atom throughout the simulation Parameters ---------- atom : str (e.g. Ni(9)) Returns ------- pd.DataFrame with x,y,z columns and t as secondary index """ return self._master[atom] def specie_data(self, specie): """Return only the data for a particular species Parameters ---------- specie : str Returns ------- pd.DataFrame """ return self._master[self.specie_cols(specie)] def specie_names(self): """Returns the names of all species present Returns ------- set of str """ all_cols=self.atom_cols(va_as_specie=True) return set([col.split("(")[0] for col in all_cols]) def _column_swap(self): """return the master data with cart over atomic Returns ------- DataFrame """ return self._master.swaplevel("atomic","cart",axis=1) def x(self): return self._column_swap["x"] def y(self): return self._column_swap["y"] def z(self): return self._column_swap["z"] def r(self): return self._column_swap["r"] def t(self): return self._master.index.get_level_values("time").values def _index_at_time(self, time): """Return the index (row) corresponding to the data for the instant just after (or equal to) the specified time Parameters ---------- time : float Returns ------- int """ return self._master[self.t()>=time].index.get_level_values("index")[0] def values_at_time(self, time): """Return the values of everything just below the value of the time specified. Parameters ---------- time : float Returns ------- pd.DataFrame """ return self._master.loc[self._index_at_time(time)] def specie_values_at_time(self, time, specie): """Return the values of everything just below the value of the time specified, but only for the desired specie Parameters ---------- time : float specie : str Returns ------- pd.DataFrame """ specie_dump=self.specie_data(specie) return specie_dump.loc[self._index_at_time(time)] def independized_measurements(self): """Similar to segmenting the data into multiple apparently independent run, this routine will make every point appear to have started at t=0 and r=0. This can be useful for data you collect where you don't sample every step, and you'd like to keep all the "final" data points in the same array. Returns ------- KineticData """ #create copy of data and subtract out values indep=self._master.copy() indep.iloc[1::]=indep.iloc[1::].values-indep.iloc[0:-1] #fix the distance stacked=indep.stack("atomic") stacked["r"]=np.linalg.norm(stacked[["x","y","z"]],axis=1) indep=stacked.unstack("atomic").stack("cart").unstack("cart") #set the time reset_time=self._master.index.get_level_values("time").values reset_time[1::]=reset_time[1::]-reset_time[0:-1] indep.index.set_levels(reset_time,"time",inplace=True) return KineticData(None,None,None,direct=indep) def _indexed_segmentation(self, end_inds): """Given indexes into the sampled data, split the master DataFrame into the specified chunks, and reset the elapsed time and coordinates such that each segment appears to be an independent run Parameters ---------- end_inds : list of int, each int is the "up to" index of each segment Returns ------- list of KineticData """ start_inds=[0]+end_inds[0:-1] raw_segments=[self._master.iloc[ix:nx] for ix,nx in zip(start_inds,end_inds)] # raw_segments=[self._master.iloc[seg_length*s:seg_length*(s+1)] for s in xrange(n)] n=len(raw_segments) #We will subtract the values of the "previous simulation", starting with #the final segment #These are indexes in reverse that exclude zero rev_seg_ix=np.arange(n-1)[::-1]+1 for rix in rev_seg_ix: raw_segments[rix]=raw_segments[rix]-raw_segments[rix-1].iloc[-1] #The norm (r) needs to be recalculated raw_segments[rix]=raw_segments[rix].stack("atomic") raw_segments[rix]["r"]=np.linalg.norm(raw_segments[rix][["x","y","z"]],axis=1) raw_segments[rix]=raw_segments[rix].unstack("atomic").stack("cart").unstack("cart") #The time also needs to be reset reset_time=self._master.index.get_level_values("time")-raw_segments[rix-1].index.get_level_values("time")[-1] raw_segments[rix].index.set_levels(reset_time,"time",inplace=True) return [KineticData(None,None,None,direct=raw) for raw in raw_segments] def sampled_segmentation(self, n): """Split the data into n KineticData as if the data had been run independently, subtracting out time and coordinates so that they start at zero. Remainder data is discarded. Parameters ---------- n : int Returns ------- list of KineticData """ seg_length=len(self._master)//n seg_inds=[seg_length*(i+1) for i in xrange(n)] return self._indexed_segmentation(seg_inds) def timed_segmentation(self, n): """Return segments of data in which equal sets of time have elapsed Parameters ---------- time : int Returns ------- list of KineticData """ time_length=self.total_time()/n time_inds=[self._index_at_time(time_length*(i+1)) for i in xrange(n)] return self._indexed_segmentation(time_inds) def values(self): """Return all the data ever Returns ------- pd.DataFrame """ return self._master def total_time(self): """Returns the most amount of time elapsed Returns ------- float """ return self._master.index.get_level_values("time")[-1]
31.112
121
0.603304
2563c0dccf2c9040fca098bd58622dc6e5a18c9b
10,587
py
Python
flaskshop/dashboard/views/product.py
dedalgr/flask-shop
206c4ec75184d0bf2fbb0fe8014722a7e683b04b
[ "BSD-3-Clause" ]
null
null
null
flaskshop/dashboard/views/product.py
dedalgr/flask-shop
206c4ec75184d0bf2fbb0fe8014722a7e683b04b
[ "BSD-3-Clause" ]
null
null
null
flaskshop/dashboard/views/product.py
dedalgr/flask-shop
206c4ec75184d0bf2fbb0fe8014722a7e683b04b
[ "BSD-3-Clause" ]
null
null
null
from datetime import datetime from flask import request, render_template, redirect, url_for, current_app from flask_babel import lazy_gettext, gettext from flaskshop.product.models import ( ProductAttribute, ProductType, Collection, Product, Category, ProductType, ProductVariant, AttributeChoiceValue ) from flaskshop.dashboard.forms import ( AttributeForm, CollectionForm, CategoryForm, ProductTypeForm, ProductForm, ProductCreateForm, VariantForm, ) def attributes(): page = request.args.get("page", type=int, default=1) pagination = ProductAttribute.query.paginate(page, 10) props = { "id": lazy_gettext("ID"), "title": lazy_gettext("Title"), "values_label": lazy_gettext("Value"), "types_label": lazy_gettext("ProductType"), } context = { "title": lazy_gettext("Product Attribute"), "items": pagination.items, "props": props, "pagination": pagination, "identity": gettext("attributes"), } return render_template("list.html", **context) def attributes_manage(id=None): if id: attr = ProductAttribute.get_by_id(id) form = AttributeForm(obj=attr) else: form = AttributeForm() if form.validate_on_submit(): if not id: attr = ProductAttribute() attr.title = form.title.data attr.update_types(form.types.data) attr.update_values(form.values.data) attr.save() return redirect(url_for("dashboard.attributes")) product_types = ProductType.query.all() return render_template( "product/attribute.html", form=form, product_types=product_types ) def collections(): page = request.args.get("page", type=int, default=1) pagination = Collection.query.paginate(page, 10) props = {"id": lazy_gettext("ID"), "title": lazy_gettext("Title"), "created_at": lazy_gettext("Created At")} context = { "title": lazy_gettext("Product Collection"), "items": pagination.items, "props": props, "pagination": pagination, "identity": gettext("collections"), } return render_template("list.html", **context) def collections_manage(id=None): if id: collection = Collection.get_by_id(id) form = CollectionForm(obj=collection) else: form = CollectionForm() if form.validate_on_submit(): if not id: collection = Collection() collection.title = form.title.data collection.update_products(form.products.data) image = form.bgimg_file.data if image: background_img = image.filename upload_file = current_app.config["UPLOAD_DIR"] / background_img upload_file.write_bytes(image.read()) collection.background_img = ( current_app.config["UPLOAD_FOLDER"] + "/" + background_img ) collection.save() return redirect(url_for("dashboard.collections")) products = Product.query.all() return render_template("product/collection.html", form=form, products=products) def categories(): page = request.args.get("page", type=int, default=1) pagination = Category.query.paginate(page, 10) props = { "id": lazy_gettext("ID"), "title": lazy_gettext("Title"), "parent": lazy_gettext("Parent"), "created_at": lazy_gettext("Created At"), } context = { "title": lazy_gettext("Product Category"), "items": pagination.items, "props": props, "pagination": pagination, "identity": gettext("categories"), } return render_template("list.html", **context) def categories_manage(id=None): if id: category = Category.get_by_id(id) form = CategoryForm(obj=category) else: form = CategoryForm() if form.validate_on_submit(): if not id: category = Category() category.title = form.title.data category.parent_id = form.parent_id.data image = form.bgimg_file.data if image: background_img = image.filename upload_file = current_app.config["UPLOAD_DIR"] / background_img upload_file.write_bytes(image.read()) category.background_img = ( current_app.config["UPLOAD_FOLDER"] + "/" + background_img ) category.save() return redirect(url_for("dashboard.categories")) parents = Category.first_level_items() return render_template("product/category.html", form=form, parents=parents) def product_types(): page = request.args.get("page", type=int, default=1) pagination = ProductType.query.paginate(page, 10) props = { "id": lazy_gettext("ID"), "title": lazy_gettext("Title"), "has_variants": lazy_gettext("Has Variants"), "is_shipping_required": lazy_gettext("Is Shipping Required"), "created_at": lazy_gettext("Created At"), } context = { "title": lazy_gettext("Product Type"), "items": pagination.items, "props": props, "pagination": pagination, "identity": gettext("product_types"), } return render_template("list.html", **context) def product_types_manage(id=None): if id: product_type = ProductType.get_by_id(id) form = ProductTypeForm(obj=product_type) else: form = ProductTypeForm() if form.validate_on_submit(): if not id: product_type = ProductType() product_type.update_product_attr(form.product_attributes.data) product_type.update_variant_attr(form.variant_attr_id.data) del form.product_attributes del form.variant_attr_id form.populate_obj(product_type) product_type.save() return redirect(url_for("dashboard.product_types")) attributes = ProductAttribute.query.all() return render_template( "product/product_type.html", form=form, attributes=attributes ) def products(): page = request.args.get("page", type=int, default=1) query = Product.query on_sale = request.args.get("sale", type=int) if on_sale is not None: query = query.filter_by(on_sale=on_sale) category = request.args.get("category", type=int) if category: query = query.filter_by(category_id=category) title = request.args.get("title", type=str) if title: query = query.filter(Product.title.like(f"%{title}%")) created_at = request.args.get("created_at", type=str) if created_at: start_date, end_date = created_at.split("-") start_date = datetime.strptime(start_date.strip(), "%m/%d/%Y") end_date = datetime.strptime(end_date.strip(), "%m/%d/%Y") query = query.filter(Product.created_at.between(start_date, end_date)) pagination = query.paginate(page, 10) props = { "id": lazy_gettext("ID"), "title": lazy_gettext("Title"), "on_sale_human": lazy_gettext("On Sale"), "sold_count": lazy_gettext("Sold Count"), "price_human": lazy_gettext("Price"), "category": lazy_gettext("Category"), } context = { "items": pagination.items, "props": props, "pagination": pagination, "categories": Category.query.all(), } return render_template("product/list.html", **context) def product_detail(id): product = Product.get_by_id(id) return render_template("product/detail.html", product=product) def _save_product(product, form): product.update_images(form.images.data) product.update_attributes(form.attributes.data) del form.images del form.attributes form.populate_obj(product) product.save() return product def product_edit(id): product = Product.get_by_id(id) form = ProductForm(obj=product) if form.validate_on_submit(): _save_product(product, form) return redirect(url_for("dashboard.product_detail", id=product.id)) categories = Category.query.all() context = {"form": form, "categories": categories, "product": product} return render_template("product/product_edit.html", **context) def product_create_step1(): form = ProductCreateForm() if form.validate_on_submit(): return redirect( url_for( "dashboard.product_create_step2", product_type_id=form.product_type_id.data, ) ) product_types = ProductType.query.all() return render_template( "product/product_create_step1.html", form=form, product_types=product_types ) def product_create_step2(): form = ProductForm() product_type_id = request.args.get("product_type_id", 1, int) product_type = ProductType.get_by_id(product_type_id) categories = Category.query.all() if form.validate_on_submit(): product = Product(product_type_id=product_type_id) product = _save_product(product, form) #product.generate_variants() return redirect(url_for("dashboard.product_detail", id=product.id)) return render_template( "product/product_create_step2.html", form=form, product_type=product_type, categories=categories, ) def variant_manage(id=None): product_type_id = request.args.get("product_type_id", 1, int) product_type = ProductType.get_by_id(product_type_id) if id: variant = ProductVariant.get_by_id(id) form = VariantForm(obj=variant) var = form.attributes.object_data var2 = form.attributes.data del form.attributes form.attributes = product_type.product_attributes[0] form.attributes.label = product_type.product_attributes[0].title form.attributes.data = var2 form.attributes.object_data = var form.populate_obj(variant) else: form = VariantForm() if form.validate_on_submit(): if not id: variant = ProductVariant() product_id = request.args.get("product_id") if product_id: variant.product_id = product_id variant.title = form.title.data variant.quantity = form.quantity.data variant.attributes = {product_type_id: form.attributes.data[0]} variant.sku = str(variant.product_id) + "-" + str(form.sku_id.data) variant.save() return redirect(url_for("dashboard.product_detail", id=variant.product_id)) return render_template("product/variant.html", form=form, product_type=product_type)
33.503165
112
0.648342
3cb2440d218ffc48aa2ada169e2f66a4d8683096
1,537
py
Python
10_Other/Python Assignments/Titanic Dataset/readme open in spyder.py
Arunken/PythonScripts
702d0a3af7a9be3311f9da0afc5285d453f15484
[ "Apache-2.0" ]
null
null
null
10_Other/Python Assignments/Titanic Dataset/readme open in spyder.py
Arunken/PythonScripts
702d0a3af7a9be3311f9da0afc5285d453f15484
[ "Apache-2.0" ]
1
2021-06-02T00:58:47.000Z
2021-06-02T00:58:47.000Z
10_Other/Python Assignments/Titanic Dataset/readme open in spyder.py
Arunken/PythonScripts
702d0a3af7a9be3311f9da0afc5285d453f15484
[ "Apache-2.0" ]
null
null
null
''' Column Description: ------------------ >> survival: Survival (0 = no; 1 = yes) >> class: Passenger class (1 = first; 2 = second; 3 = third) >> name: Name >> sex: Sex >> age: Age >> sibsp: Number of siblings/spouses aboard >> parch: Number of parents/children aboard >> ticket: Ticket number >> fare: Passenger fare >> cabin: Cabin >> embarked: Port of embarkation (C = Cherbourg; Q = Queenstown; S = Southampton) >> boat: Lifeboat (if survived) >> body: Body number (if did not survive and body was recovered) Q1. Analyze the dataset and find the following : a) The number of females who survived the disaster. b) The number of males who survived the disaster. c) The number of children under the age of 10 who survived the disaster. d) The number of people who survived the disaster. e) The probability that a female survives the disaster. f) The probability that a male survives the disaster. g) The probability that a person from newyork survives the disaster. h) Make a plot of the percentage of people who survived in accordance with the passenger class. i) Make a plot of the percentage of people who survived in accordance with the passenger class and gender. j) Make a plot of the percentage of people who survived in accordance with the gender. k) How likely would it be for a woman belonging to first class survive as compared to a woman belonging to some other passenger class. l) Draw your conclusions based on the findings from the above analysis. '''
41.540541
138
0.713077
645100d0a1372f7ed7dc1d346a17938d6eef5f0d
277
py
Python
client/utils/data_request_type.py
devhid/tnnl
72cf2b2fea8731ec01e4f17732a873539c8c367e
[ "MIT" ]
null
null
null
client/utils/data_request_type.py
devhid/tnnl
72cf2b2fea8731ec01e4f17732a873539c8c367e
[ "MIT" ]
null
null
null
client/utils/data_request_type.py
devhid/tnnl
72cf2b2fea8731ec01e4f17732a873539c8c367e
[ "MIT" ]
null
null
null
from enum import Enum class DataRequestType(Enum): """ Enum that represents the type of data request that is sent. """ HEAD = 0 # sent to signify beginning of data transfer NORMAL = 1 # contains actual file data TAIL = 2 # sent to signify end of data transfer
34.625
71
0.703971
8556e6ad2ec40638ce618c789778f5b1bf8e75f1
211
py
Python
src/boot.py
jsayles/Thing12
84a67ed735adfd46ffc2cb384e7a88585e81cb86
[ "Apache-2.0" ]
1
2020-03-29T17:06:16.000Z
2020-03-29T17:06:16.000Z
src/boot.py
jsayles/Thing12
84a67ed735adfd46ffc2cb384e7a88585e81cb86
[ "Apache-2.0" ]
null
null
null
src/boot.py
jsayles/Thing12
84a67ed735adfd46ffc2cb384e7a88585e81cb86
[ "Apache-2.0" ]
null
null
null
# This file is executed on every boot (including wake-boot from deepsleep) import gc # Disable the ESP debug statements #import esp #esp.osdebug(None) # Web REPL #import webrepl #webrepl.start() gc.collect()
16.230769
74
0.753555
16d23475f0797ecdd082e59427ee82f5af7de14e
4,793
py
Python
Python/klampt/model/create/moving_base_robot.py
joaomcm/Klampt
a184c885ad1d1f120511d95229e33b3da1908665
[ "BSD-3-Clause" ]
238
2015-01-09T15:21:27.000Z
2022-03-30T22:48:45.000Z
Python/klampt/model/create/moving_base_robot.py
tcrapse/Klampt
d5a334e73f1f24ba4c606e03f49915b353799a57
[ "BSD-3-Clause" ]
89
2015-08-26T16:56:42.000Z
2022-03-29T23:45:46.000Z
Python/klampt/model/create/moving_base_robot.py
tcrapse/Klampt
d5a334e73f1f24ba4c606e03f49915b353799a57
[ "BSD-3-Clause" ]
84
2015-01-10T18:41:52.000Z
2022-03-30T03:32:50.000Z
"""Common code for creating and moving free-floating moving bases. The way to do this is to add a "virtual linkage" of 3 translational DOFs and 3 revolute DOFs. Some tuning may need to be done to the motor drivers in order to make the controller stable. """ import os from klampt.math import vectorops,so3 def make(robotfile,world,tempname="temp.rob",debug=False): """Converts the given fixed-base robot file into a moving base robot and loads it into the given world. Args: robotfile (str): the name of a fixed-base robot file to load world (WorldModel): a world that will contain the new robot tempname (str, optional): a name of a temporary file containing the moving-base robot debug (bool, optional): if True, the robot file named by ``tempname`` is not removed from disk. Returns: (RobotModel): the loaded robot, stored in ``world``. """ _template_ = """### Boilerplate kinematics of a drivable floating (translating and rotating) cube with a robot hand mounted on it TParent 1 0 0 0 1 0 0 0 1 0 0 0 \\ 1 0 0 0 1 0 0 0 1 0 0 0 \\ 1 0 0 0 1 0 0 0 1 0 0 0 \\ 1 0 0 0 1 0 0 0 1 0 0 0 \\ 1 0 0 0 1 0 0 0 1 0 0 0 \\ 1 0 0 0 1 0 0 0 1 0 0 0 parents -1 0 1 2 3 4 axis 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 jointtype p p p r r r qMin -1 -1 -1 -inf -inf -inf qMax 1 1 1 inf inf inf q 0 0 0 0 0 0 links "tx" "ty" "tz" "rz" "ry" "rx" geometry "" "" "" "" "" "{TriangleMesh\\nOFF\\n8 12 0\\n0 0 0\\n0 0 1\\n0 1 0\\n0 1 1\\n1 0 0\\n1 0 1\\n1 1 0\\n1 1 1\\n3 0 1 3\\n3 0 3 2\\n3 4 6 7\\n3 4 7 5\\n3 0 4 5\\n3 0 5 1\\n3 2 3 7\\n3 2 7 6\\n3 0 2 6\\n3 0 6 4\\n3 1 5 7\\n3 1 7 3\\n}" geomscale 1 1 1 1 1 0.01 mass 0.1 0.1 0.1 0.1 0.1 0.1 com 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 inertia 0.001 0 0 0 0.001 0 0 0 0.001 \\ 0.001 0 0 0 0.001 0 0 0 0.001 \\ 0.001 0 0 0 0.001 0 0 0 0.001 \\ 0.001 0 0 0 0.001 0 0 0 0.001 \\ 0.001 0 0 0 0.001 0 0 0 0.001 \\ 0.001 0 0 0 0.001 0 0 0 0.001 torqueMax 500 500 500 50 50 50 accMax 4 4 4 4 4 4 4 velMax 2 2 2 3 3 3 joint normal 0 joint normal 1 joint normal 2 joint spin 3 joint spin 4 joint spin 5 driver normal 0 driver normal 1 driver normal 2 driver normal 3 driver normal 4 driver normal 5 servoP 5000 5000 5000 500 500 500 servoI 10 10 10 .5 .5 .5 servoD 100 100 100 10 10 10 viscousFriction 50 50 50 50 50 50 dryFriction 1 1 1 1 1 1 property sensors <sensors><ForceTorqueSensor name="base_force" link="5" hasForce="1 1 1" hasTorque="1 1 1" /></sensors> mount 5 "%s" 1 0 0 0 1 0 0 0 1 0 0 0 as "%s" """ robotname = os.path.splitext(os.path.basename(robotfile))[0] f = open(tempname,'w') f.write(_template_ % (robotfile,robotname)) f.close() world.loadElement(tempname) robot = world.robot(world.numRobots()-1) #set torques mass = sum(robot.link(i).getMass().mass for i in range(robot.numLinks())) inertia = 0.0 for i in range(robot.numLinks()): m = robot.link(i).getMass() inertia += (vectorops.normSquared(m.com)*m.mass + max(m.inertia)) tmax = robot.getTorqueMax() tmax[0] = tmax[1] = tmax[2] = mass*9.8*5 tmax[3] = tmax[4] = tmax[5] = inertia*9.8*5 robot.setName("moving-base["+robotname+"]") robot.setTorqueMax(tmax) if debug: robot.saveFile(tempname) else: os.remove(tempname) return robot def get_xform(robot): """For a moving base robot model, returns the current base rotation matrix R and translation t.""" return robot.link(5).getTransform() def set_xform(robot,R,t): """For a moving base robot model, set the current base rotation matrix R and translation t. (Note: if you are controlling a robot during simulation, use send_moving_base_xform_command) """ q = robot.getConfig() for i in range(3): q[i] = t[i] roll,pitch,yaw = so3.rpy(R) q[3]=yaw q[4]=pitch q[5]=roll robot.setConfig(q) def send_xform_linear(controller,R,t,dt): """For a moving base robot model, send a command to move to the rotation matrix R and translation t using linear interpolation over the duration dt. Note: with the reflex model, can't currently set hand commands and linear base commands simultaneously """ q = controller.getCommandedConfig() for i in range(3): q[i] = t[i] roll,pitch,yaw = so3.rpy(R) q[3]=yaw q[4]=pitch q[5]=roll controller.setLinear(q,dt) def send_xform_PID(controller,R,t): """For a moving base robot model, send a command to move to the rotation matrix R and translation t by setting the PID setpoint Note: with the reflex model, can't currently set hand commands and linear base commands simultaneously """ q = controller.getCommandedConfig() for i in range(3): q[i] = t[i] roll,pitch,yaw = so3.rpy(R) q[3]=yaw q[4]=pitch q[5]=roll v = controller.getCommandedVelocity() controller.setPIDCommand(q,v)
30.922581
256
0.665554
da98949abf49e2acb40829ac3fab1f07f172acd8
5,192
py
Python
examples/sardeshmukh_hoskins.py
njweber2/barotropy
2cbf9fcba82052e956c52c138f4bfefef77b6381
[ "MIT" ]
null
null
null
examples/sardeshmukh_hoskins.py
njweber2/barotropy
2cbf9fcba82052e956c52c138f4bfefef77b6381
[ "MIT" ]
null
null
null
examples/sardeshmukh_hoskins.py
njweber2/barotropy
2cbf9fcba82052e956c52c138f4bfefef77b6381
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from barotropy import ( LinearizedDynamics, LinearizedDiffusion, LinearizedDamping, Forcing, NonlinearDynamics, NonlinearDiffusion, NonlinearDamping, super_rotation, debug_plots, gaussian_blob_2d ) from sympl import (Leapfrog, PlotFunctionMonitor, NetCDFMonitor, get_component_aliases, get_constant, TendencyInDiagnosticsWrapper) from datetime import timedelta import re import os import numpy as np from time import time import spharm Re = get_constant('planetary_radius', 'm') Omega = get_constant('planetary_rotation_rate', 's^-1') def main(): # ============ Adjustable Variables ============ # Integration Options dt = timedelta(minutes=15) # timestep duration = '48_00:00' # run duration ('<days>_<hours>:<mins>')t linearized = True ncout_freq = 6 # netcdf write frequency (hours) plot_freq = 6 # plot Monitor call frequency (hours) ntrunc = 42 # triangular truncation for spharm (e.g., 21 --> T21) # Diffusion Options diff_on = True # Use diffusion? k = 2.338e16 # Diffusion coefficient for del^4 hyperdiffusion # Forcing Options forcing_on = True # Apply vort. tendency forcing? damp_ts = 14.7 # Damping timescale (in days) # I/O Options ncoutfile = os.path.join(os.path.dirname(__file__), 'sardeshmukh88.nc') append_nc = False # Append to an existing netCDF file? # ============================================== start = time() # Get the initial state state = super_rotation(linearized=linearized, ntrunc=ntrunc) # Set up the Timestepper with the desired Prognostics if linearized: dynamics_prog = LinearizedDynamics(ntrunc=ntrunc) diffusion_prog = LinearizedDiffusion(k=k, ntrunc=ntrunc) damping_prog = LinearizedDamping(tau=damp_ts) else: dynamics_prog = NonlinearDynamics(ntrunc=ntrunc) diffusion_prog = NonlinearDiffusion(k=k, ntrunc=ntrunc) damping_prog = NonlinearDamping(tau=damp_ts) prognostics = [TendencyInDiagnosticsWrapper(dynamics_prog, 'dynamics')] if diff_on: prognostics.append(TendencyInDiagnosticsWrapper(diffusion_prog, 'diffusion')) if forcing_on: # Get our suptropical RWS forcing (from equatorial divergence) rws, rlat, rlon = rws_from_tropical_divergence(state) prognostics.append(TendencyInDiagnosticsWrapper(Forcing.from_numpy_array(rws, rlat, rlon, ntrunc=ntrunc, linearized=linearized), 'forcing')) prognostics.append(TendencyInDiagnosticsWrapper(damping_prog, 'damping')) stepper = Leapfrog(prognostics) # Create Monitors for plotting & storing data plt_monitor = PlotFunctionMonitor(debug_plots.fourpanel) if os.path.isfile(ncoutfile) and not append_nc: os.remove(ncoutfile) aliases = get_component_aliases(*prognostics) nc_monitor = NetCDFMonitor(ncoutfile, write_on_store=True, aliases=aliases) # Figure out the end date of this run d, h, m = re.split('[_:]', duration) end_date = state['time'] + timedelta(days=int(d), hours=int(h), minutes=int(m)) # Begin the integration loop idate = state['time'] while state['time'] <= end_date: # Get the state at the next timestep using our Timestepper diagnostics, next_state = stepper(state, dt) # Add any calculated diagnostics to our current state state.update(diagnostics) # Write state to netCDF every <ncout_freq> hours fhour = (state['time'] - idate).days*24 + (state['time'] - idate).seconds/3600 if fhour % ncout_freq == 0: print(state['time']) nc_monitor.store(state) # Make plot(s) every <plot_freq> hours if fhour % plot_freq == 0: plt_monitor.store(state) # Advance the state to the next timestep next_state['time'] = state['time'] + dt state = next_state print('TOTAL INTEGRATION TIME: {:.02f} min\n'.format((time()-start)/60.)) def rws_from_tropical_divergence(state, center=(0., 145.), amp=6e-6, width=12): # Get desired state variables lats = state['latitude'].values lons = state['longitude'].values vort_bar = state['base_atmosphere_relative_vorticity'].values s = spharm.Spharmt(lats.shape[1], lons.shape[0], gridtype='regular', rsphere=Re) vortb_spec = s.grdtospec(vort_bar) ubar, vbar = s.getuv(vortb_spec, np.zeros(vortb_spec.shape)) divergence = gaussian_blob_2d(lats, lons, center, width, amp) # Calculate the Rossby Wave Source # Term 1 zetabar_spec, _ = s.getvrtdivspec(ubar, vbar) zetabar = s.spectogrd(zetabar_spec) + 2 * Omega * np.sin(np.deg2rad(lats)) term1 = -zetabar * divergence # Term 2 uchi, vchi = s.getuv(np.zeros(zetabar_spec.shape), s.grdtospec(divergence)) dzeta_dx, dzeta_dy = s.getgrad(s.grdtospec(zetabar)) term2 = - uchi * dzeta_dx - vchi * dzeta_dy rws = term1 + term2 return rws, lats, lons if __name__ == '__main__': main()
39.333333
116
0.654468
c9ce508dfdb05569f4f212137032a7dd16e86a55
2,549
py
Python
tensorflow/examples/learn/boston.py
tianyapiaozi/tensorflow
fb3ce0467766a8e91f1da0ad7ada7c24fde7a73a
[ "Apache-2.0" ]
522
2016-06-08T02:15:50.000Z
2022-03-02T05:30:36.000Z
tensorflow/examples/learn/boston.py
shrikunjsarda/tensorflow
7e8927e7af0c51ac20a63bd4eab6ff83df1a39ae
[ "Apache-2.0" ]
133
2017-04-26T16:49:49.000Z
2019-10-15T11:39:26.000Z
tensorflow/examples/learn/boston.py
shrikunjsarda/tensorflow
7e8927e7af0c51ac20a63bd4eab6ff83df1a39ae
[ "Apache-2.0" ]
108
2016-06-16T15:34:05.000Z
2022-03-12T13:23:11.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNRegressor for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection from sklearn import preprocessing import tensorflow as tf def main(unused_argv): # Load dataset boston = datasets.load_boston() x, y = boston.data, boston.target # Split dataset into train / test x_train, x_test, y_train, y_test = model_selection.train_test_split( x, y, test_size=0.2, random_state=42) # Scale data (training set) to 0 mean and unit standard deviation. scaler = preprocessing.StandardScaler() x_train = scaler.fit_transform(x_train) # Build 2 layer fully connected DNN with 10, 10 units respectively. feature_columns = [ tf.feature_column.numeric_column('x', shape=np.array(x_train).shape[1:])] regressor = tf.estimator.DNNRegressor( feature_columns=feature_columns, hidden_units=[10, 10]) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': x_train}, y=y_train, batch_size=1, num_epochs=None, shuffle=True) regressor.train(input_fn=train_input_fn, steps=2000) # Predict. x_transformed = scaler.transform(x_test) test_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': x_transformed}, y=y_test, num_epochs=1, shuffle=False) predictions = regressor.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['predictions'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score_sklearn = metrics.mean_squared_error(y_predicted, y_test) print('MSE (sklearn): {0:f}'.format(score_sklearn)) # Score with tensorflow. scores = regressor.evaluate(input_fn=test_input_fn) print('MSE (tensorflow): {0:f}'.format(scores['average_loss'])) if __name__ == '__main__': tf.app.run()
35.402778
79
0.75206
207e0a773b8923441c1b288e9e18489069f138eb
37,694
py
Python
tensorflow/contrib/layers/python/layers/feature_column_ops.py
RMORIOKA/tensorflow
6886eb9c73940fd3b4dfadc3d6964ae9aa71eef6
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/layers/python/layers/feature_column_ops.py
RMORIOKA/tensorflow
6886eb9c73940fd3b4dfadc3d6964ae9aa71eef6
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/layers/python/layers/feature_column_ops.py
RMORIOKA/tensorflow
6886eb9c73940fd3b4dfadc3d6964ae9aa71eef6
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities related to FeatureColumn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework.python.framework import checkpoint_utils from tensorflow.contrib.framework.python.framework import experimental from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.layers.python.layers import embedding_ops from tensorflow.contrib.layers.python.layers import feature_column as fc from tensorflow.contrib.layers.python.layers import layers from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor as sparse_tensor_py from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging def _embeddings_from_arguments(column, args, weight_collections, trainable, output_rank=2): """Returns embeddings for a column based on the computed arguments. Args: column: the column name. args: the _DeepEmbeddingLookupArguments for this column. weight_collections: collections to store weights in. trainable: whether these embeddings should be trainable. output_rank: the desired rank of the returned `Output`. Inner dimensions will be combined to produce the desired rank. Returns: the embeddings. Raises: ValueError: if not possible to create. """ # pylint: disable=protected-access input_tensor = layers._inner_flatten(args.input_tensor, output_rank) weight_tensor = None if args.weight_tensor is not None: weight_tensor = layers._inner_flatten(args.weight_tensor, output_rank) # pylint: enable=protected-access if args.hashed: embeddings = contrib_variables.model_variable( name='weights', shape=[args.vocab_size], dtype=dtypes.float32, initializer=args.initializer, trainable=trainable, collections=weight_collections) return embedding_ops.hashed_embedding_lookup_sparse( embeddings, input_tensor, args.dimension, combiner=args.combiner, name='lookup') if args.shared_embedding_name is not None: shared_embedding_collection_name = ( 'SHARED_EMBEDDING_COLLECTION_' + args.shared_embedding_name.upper()) graph = ops.get_default_graph() shared_embedding_collection = ( graph.get_collection_ref(shared_embedding_collection_name)) shape = [args.vocab_size, args.dimension] if shared_embedding_collection: if len(shared_embedding_collection) > 1: raise ValueError('Collection %s can only contain one ' '(partitioned) variable.' % shared_embedding_collection_name) else: embeddings = shared_embedding_collection[0] if embeddings.get_shape() != shape: raise ValueError('The embedding variable with name {} already ' 'exists, but its shape does not match required ' 'embedding shape here. Please make sure to use ' 'different shared_embedding_name for different ' 'shared embeddings.'.format( args.shared_embedding_name)) else: embeddings = contrib_variables.model_variable( name=args.shared_embedding_name, shape=shape, dtype=dtypes.float32, initializer=args.initializer, trainable=trainable, collections=weight_collections) graph.add_to_collection(shared_embedding_collection_name, embeddings) else: embeddings = contrib_variables.model_variable( name='weights', shape=[args.vocab_size, args.dimension], dtype=dtypes.float32, initializer=args.initializer, trainable=trainable, collections=weight_collections) if isinstance(embeddings, variables.Variable): embeddings = [embeddings] else: embeddings = embeddings._get_variable_list() # pylint: disable=protected-access # pylint: disable=protected-access _maybe_restore_from_checkpoint( column._checkpoint_path(), embeddings) return embedding_ops.safe_embedding_lookup_sparse( embeddings, input_tensor, sparse_weights=weight_tensor, combiner=args.combiner, name=column.name + 'weights', max_norm=args.max_norm) def _input_from_feature_columns(columns_to_tensors, feature_columns, weight_collections, trainable, scope, output_rank, default_name): """Implementation of `input_from(_sequence)_feature_columns`.""" check_feature_columns(feature_columns) with variable_scope.variable_scope(scope, default_name=default_name, values=columns_to_tensors.values()): output_tensors = [] transformer = _Transformer(columns_to_tensors) if weight_collections: weight_collections = list(set(list(weight_collections) + [ops.GraphKeys.GLOBAL_VARIABLES])) for column in sorted(set(feature_columns), key=lambda x: x.key): with variable_scope.variable_scope(None, default_name=column.name, values=columns_to_tensors.values()): transformed_tensor = transformer.transform(column) try: # pylint: disable=protected-access arguments = column._deep_embedding_lookup_arguments( transformed_tensor) output_tensors.append(_embeddings_from_arguments( column, arguments, weight_collections, trainable, output_rank=output_rank)) except NotImplementedError as ee: try: # pylint: disable=protected-access output_tensors.append(column._to_dnn_input_layer( transformed_tensor, weight_collections, trainable, output_rank=output_rank)) except ValueError as e: raise ValueError('Error creating input layer for column: {}.\n' '{}, {}'.format(column.name, e, ee)) return array_ops.concat(output_rank - 1, output_tensors) def input_from_feature_columns(columns_to_tensors, feature_columns, weight_collections=None, trainable=True, scope=None): """A tf.contrib.layer style input layer builder based on FeatureColumns. Generally a single example in training data is described with feature columns. At the first layer of the model, this column oriented data should be converted to a single tensor. Each feature column needs a different kind of operation during this conversion. For example sparse features need a totally different handling than continuous features. Example: ```python # Building model for training columns_to_tensor = tf.parse_example(...) first_layer = input_from_feature_columns( columns_to_tensors=columns_to_tensor, feature_columns=feature_columns) second_layer = fully_connected(inputs=first_layer, ...) ... ``` where feature_columns can be defined as follows: ```python sparse_feature = sparse_column_with_hash_bucket( column_name="sparse_col", ...) sparse_feature_emb = embedding_column(sparse_id_column=sparse_feature, ...) real_valued_feature = real_valued_column(...) real_valued_buckets = bucketized_column( source_column=real_valued_feature, ...) feature_columns=[sparse_feature_emb, real_valued_buckets] ``` Args: columns_to_tensors: A mapping from feature column to tensors. 'string' key means a base feature (not-transformed). It can have FeatureColumn as a key too. That means that FeatureColumn is already transformed by input pipeline. For example, `inflow` may have handled transformations. feature_columns: A set containing all the feature columns. All items in the set should be instances of classes derived by FeatureColumn. weight_collections: List of graph collections to which weights are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. Returns: A Tensor which can be consumed by hidden layers in the neural network. Raises: ValueError: if FeatureColumn cannot be consumed by a neural network. """ return _input_from_feature_columns(columns_to_tensors, feature_columns, weight_collections, trainable, scope, output_rank=2, default_name='input_from_feature_columns') @experimental def sequence_input_from_feature_columns(columns_to_tensors, feature_columns, weight_collections=None, trainable=True, scope=None): """Builds inputs for sequence models from `FeatureColumn`s. See documentation for `input_from_feature_columns`. The following types of `FeatureColumn` are permitted in `feature_columns`: `_OneHotColumn`, `_EmbeddingColumn`, `_HashedEmbeddingColumn`, `_RealValuedColumn`, `_DataFrameColumn`. In addition, columns in `feature_columns` may not be constructed using any of the following: `HashedEmbeddingColumn`, `BucketizedColumn`, `CrossedColumn`. Args: columns_to_tensors: A mapping from feature column to tensors. 'string' key means a base feature (not-transformed). It can have FeatureColumn as a key too. That means that FeatureColumn is already transformed by input pipeline. For example, `inflow` may have handled transformations. feature_columns: A set containing all the feature columns. All items in the set should be instances of classes derived by FeatureColumn. weight_collections: List of graph collections to which weights are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. Returns: A Tensor which can be consumed by hidden layers in the neural network. Raises: ValueError: if FeatureColumn cannot be consumed by a neural network. """ _check_supported_sequence_columns(feature_columns) _check_forbidden_sequence_columns(feature_columns) return _input_from_feature_columns( columns_to_tensors, feature_columns, weight_collections, trainable, scope, output_rank=3, default_name='sequence_input_from_feature_columns') def _create_embedding_lookup(column, columns_to_tensors, embedding_lookup_arguments, num_outputs, trainable, weight_collections): """Creates variables and returns predictions for linear weights in a model. Args: column: the column we're working on. columns_to_tensors: a map from column name to tensors. embedding_lookup_arguments: arguments for embedding lookup. num_outputs: how many outputs. trainable: whether the variable we create is trainable. weight_collections: weights will be placed here. Returns: variables: the created embeddings. predictions: the computed predictions. """ with variable_scope.variable_scope( None, default_name=column.name, values=columns_to_tensors.values()): variable = contrib_variables.model_variable( name='weights', shape=[embedding_lookup_arguments.vocab_size, num_outputs], dtype=dtypes.float32, initializer=embedding_lookup_arguments.initializer, trainable=trainable, collections=weight_collections) if isinstance(variable, variables.Variable): variable = [variable] else: variable = variable._get_variable_list() # pylint: disable=protected-access predictions = embedding_ops.safe_embedding_lookup_sparse( variable, embedding_lookup_arguments.input_tensor, sparse_weights=embedding_lookup_arguments.weight_tensor, combiner=embedding_lookup_arguments.combiner, name=column.name + '_weights') return variable, predictions def _maybe_restore_from_checkpoint(checkpoint_path, variable): if checkpoint_path is not None: path, tensor_name = checkpoint_path weights_to_restore = variable if len(variable) == 1: weights_to_restore = variable[0] checkpoint_utils.init_from_checkpoint(path, {tensor_name: weights_to_restore}) def _create_joint_embedding_lookup(columns_to_tensors, embedding_lookup_arguments, num_outputs, trainable, weight_collections): """Creates an embedding lookup for all columns sharing a single weight.""" for arg in embedding_lookup_arguments: assert arg.weight_tensor is None, ( 'Joint sums for weighted sparse columns are not supported. ' 'Please use weighted_sum_from_feature_columns instead.') assert arg.combiner == 'sum', ( 'Combiners other than sum are not supported for joint sums. ' 'Please use weighted_sum_from_feature_columns instead.') assert len(embedding_lookup_arguments) >= 1, ( 'At least one column must be in the model.') prev_size = 0 sparse_tensors = [] for a in embedding_lookup_arguments: t = a.input_tensor values = t.values + prev_size prev_size += a.vocab_size sparse_tensors.append( sparse_tensor_py.SparseTensor(t.indices, values, t.shape)) sparse_tensor = sparse_ops.sparse_concat(1, sparse_tensors) with variable_scope.variable_scope( None, default_name='linear_weights', values=columns_to_tensors.values()): variable = contrib_variables.model_variable( name='weights', shape=[prev_size, num_outputs], dtype=dtypes.float32, initializer=init_ops.zeros_initializer, trainable=trainable, collections=weight_collections) if isinstance(variable, variables.Variable): variable = [variable] else: variable = variable._get_variable_list() # pylint: disable=protected-access predictions = embedding_ops.safe_embedding_lookup_sparse( variable, sparse_tensor, sparse_weights=None, combiner='sum', name='_weights') return variable, predictions def joint_weighted_sum_from_feature_columns(columns_to_tensors, feature_columns, num_outputs, weight_collections=None, trainable=True, scope=None): """A restricted linear prediction builder based on FeatureColumns. As long as all feature columns are unweighted sparse columns this computes the prediction of a linear model which stores all weights in a single variable. Args: columns_to_tensors: A mapping from feature column to tensors. 'string' key means a base feature (not-transformed). It can have FeatureColumn as a key too. That means that FeatureColumn is already transformed by input pipeline. For example, `inflow` may have handled transformations. feature_columns: A set containing all the feature columns. All items in the set should be instances of classes derived from FeatureColumn. num_outputs: An integer specifying number of outputs. Default value is 1. weight_collections: List of graph collections to which weights are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. Returns: A tuple containing: * A Tensor which represents predictions of a linear model. * A list of Variables storing the weights. * A Variable which is used for bias. Raises: ValueError: if FeatureColumn cannot be used for linear predictions. """ check_feature_columns(feature_columns) with variable_scope.variable_scope( scope, default_name='joint_weighted_sum_from_feature_columns', values=columns_to_tensors.values()): transformer = _Transformer(columns_to_tensors) embedding_lookup_arguments = [] for column in sorted(set(feature_columns), key=lambda x: x.key): transformed_tensor = transformer.transform(column) try: embedding_lookup_arguments.append( column._wide_embedding_lookup_arguments(transformed_tensor)) # pylint: disable=protected-access except NotImplementedError: raise NotImplementedError('Real-valued columns are not supported. ' 'Use weighted_sum_from_feature_columns ' 'instead, or bucketize these columns.') variable, predictions_no_bias = _create_joint_embedding_lookup( columns_to_tensors, embedding_lookup_arguments, num_outputs, trainable, weight_collections) bias = contrib_variables.model_variable( 'bias_weight', shape=[num_outputs], initializer=init_ops.zeros_initializer, collections=_add_variable_collection(weight_collections)) _log_variable(bias) predictions = nn_ops.bias_add(predictions_no_bias, bias) return predictions, variable, bias def weighted_sum_from_feature_columns(columns_to_tensors, feature_columns, num_outputs, weight_collections=None, trainable=True, scope=None): """A tf.contrib.layer style linear prediction builder based on FeatureColumns. Generally a single example in training data is described with feature columns. This function generates weighted sum for each num_outputs. Weighted sum refers to logits in classification problems. It refers to prediction itself for linear regression problems. Example: ``` # Building model for training feature_columns = ( real_valued_column("my_feature1"), ... ) columns_to_tensor = tf.parse_example(...) logits = weighted_sum_from_feature_columns( columns_to_tensors=columns_to_tensor, feature_columns=feature_columns, num_outputs=1) loss = tf.nn.sigmoid_cross_entropy_with_logits(logits, labels) ``` Args: columns_to_tensors: A mapping from feature column to tensors. 'string' key means a base feature (not-transformed). It can have FeatureColumn as a key too. That means that FeatureColumn is already transformed by input pipeline. For example, `inflow` may have handled transformations. feature_columns: A set containing all the feature columns. All items in the set should be instances of classes derived from FeatureColumn. num_outputs: An integer specifying number of outputs. Default value is 1. weight_collections: List of graph collections to which weights are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. Returns: A tuple containing: * A Tensor which represents predictions of a linear model. * A dictionary which maps feature_column to corresponding Variable. * A Variable which is used for bias. Raises: ValueError: if FeatureColumn cannot be used for linear predictions. """ check_feature_columns(feature_columns) with variable_scope.variable_scope( scope, default_name='weighted_sum_from_feature_columns', values=columns_to_tensors.values()): output_tensors = [] column_to_variable = dict() transformer = _Transformer(columns_to_tensors) # pylint: disable=protected-access for column in sorted(set(feature_columns), key=lambda x: x.key): transformed_tensor = transformer.transform(column) try: embedding_lookup_arguments = column._wide_embedding_lookup_arguments( transformed_tensor) variable, predictions = _create_embedding_lookup( column, columns_to_tensors, embedding_lookup_arguments, num_outputs, trainable, weight_collections) except NotImplementedError: with variable_scope.variable_scope( None, default_name=column.name, values=columns_to_tensors.values()): tensor = column._to_dense_tensor(transformed_tensor) tensor = fc._reshape_real_valued_tensor(tensor, 2, column.name) variable = [contrib_variables.model_variable( name='weight', shape=[tensor.get_shape()[1], num_outputs], initializer=init_ops.zeros_initializer, collections=weight_collections)] predictions = math_ops.matmul(tensor, variable[0], name='matmul') except ValueError as ee: raise ValueError('Error creating weighted sum for column: {}.\n' '{}'.format(column.name, ee)) output_tensors.append(predictions) column_to_variable[column] = variable _log_variable(variable) _maybe_restore_from_checkpoint(column._checkpoint_path(), variable) # pylint: enable=protected-access predictions_no_bias = math_ops.add_n(output_tensors) bias = contrib_variables.model_variable( 'bias_weight', shape=[num_outputs], initializer=init_ops.zeros_initializer, collections=_add_variable_collection(weight_collections)) _log_variable(bias) predictions = nn_ops.bias_add(predictions_no_bias, bias) return predictions, column_to_variable, bias def parse_feature_columns_from_examples(serialized, feature_columns, name=None, example_names=None): """Parses tf.Examples to extract tensors for given feature_columns. This is a wrapper of 'tf.parse_example'. Example: ```python columns_to_tensor = parse_feature_columns_from_examples( serialized=my_data, feature_columns=my_features) # Where my_features are: # Define features and transformations sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[...]) my_features = [embedding_feature_b, real_feature_buckets, embedding_feature_a] ``` Args: serialized: A vector (1-D Tensor) of strings, a batch of binary serialized `Example` protos. feature_columns: An iterable containing all the feature columns. All items should be instances of classes derived from _FeatureColumn. name: A name for this operation (optional). example_names: A vector (1-D Tensor) of strings (optional), the names of the serialized protos in the batch. Returns: A `dict` mapping FeatureColumn to `Output` and `SparseTensor` values. """ check_feature_columns(feature_columns) columns_to_tensors = parsing_ops.parse_example( serialized=serialized, features=fc.create_feature_spec_for_parsing(feature_columns), name=name, example_names=example_names) transformer = _Transformer(columns_to_tensors) for column in sorted(set(feature_columns), key=lambda x: x.key): transformer.transform(column) return columns_to_tensors def transform_features(features, feature_columns): """Returns transformed features based on features columns passed in. Example: ```python columns_to_tensor = transform_features(features=features, feature_columns=feature_columns) # Where my_features are: # Define features and transformations sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[...]) feature_columns = [embedding_feature_b, real_feature_buckets, embedding_feature_a] ``` Args: features: A dictionary of features. feature_columns: An iterable containing all the feature columns. All items should be instances of classes derived from _FeatureColumn. Returns: A `dict` mapping FeatureColumn to `Output` and `SparseTensor` values. """ check_feature_columns(feature_columns) columns_to_tensor = features.copy() transformer = _Transformer(columns_to_tensor) for column in sorted(set(feature_columns), key=lambda x: x.key): transformer.transform(column) keys = list(columns_to_tensor.keys()) for k in keys: if k not in feature_columns: columns_to_tensor.pop(k) return columns_to_tensor def parse_feature_columns_from_sequence_examples( serialized, context_feature_columns, sequence_feature_columns, name=None, example_name=None): """Parses tf.SequenceExamples to extract tensors for given `FeatureColumn`s. Args: serialized: A scalar (0-D Tensor) of type string, a single serialized `SequenceExample` proto. context_feature_columns: An iterable containing the feature columns for context features. All items should be instances of classes derived from `_FeatureColumn`. Can be `None`. sequence_feature_columns: An iterable containing the feature columns for sequence features. All items should be instances of classes derived from `_FeatureColumn`. Can be `None`. name: A name for this operation (optional). example_name: A scalar (0-D Tensor) of type string (optional), the names of the serialized proto. Returns: A tuple consisting of: context_features: a dict mapping `FeatureColumns` from `context_feature_columns` to their parsed `Output`s/`SparseTensor`s. sequence_features: a dict mapping `FeatureColumns` from `sequence_feature_columns` to their parsed `Output`s/`SparseTensor`s. """ # Sequence example parsing requires a single (scalar) example. try: serialized = array_ops.reshape(serialized, []) except ValueError as e: raise ValueError( 'serialized must contain as single sequence example. Batching must be ' 'done after parsing for sequence examples. Error: {}'.format(e)) if context_feature_columns is None: context_feature_columns = [] if sequence_feature_columns is None: sequence_feature_columns = [] check_feature_columns(context_feature_columns) context_feature_spec = fc.create_feature_spec_for_parsing( context_feature_columns) check_feature_columns(sequence_feature_columns) sequence_feature_spec = fc._create_sequence_feature_spec_for_parsing( # pylint: disable=protected-access sequence_feature_columns, allow_missing_by_default=False) return parsing_ops.parse_single_sequence_example(serialized, context_feature_spec, sequence_feature_spec, example_name, name) def _log_variable(variable): if isinstance(variable, list): for var in variable: if isinstance(variable, variables.Variable): logging.info('Created variable %s, with device=%s', var.name, var.device) elif isinstance(variable, variables.Variable): logging.info('Created variable %s, with device=%s', variable.name, variable.device) def _infer_real_valued_column_for_tensor(name, tensor): """Creates a real_valued_column for given tensor and name.""" if isinstance(tensor, sparse_tensor_py.SparseTensor): raise ValueError( 'SparseTensor is not supported for auto detection. Please define ' 'corresponding FeatureColumn for tensor {} {}.', name, tensor) if not (tensor.dtype.is_integer or tensor.dtype.is_floating): raise ValueError( 'Non integer or non floating types are not supported for auto detection' '. Please define corresponding FeatureColumn for tensor {} {}.', name, tensor) shape = tensor.get_shape().as_list() dimension = 1 for i in range(1, len(shape)): dimension *= shape[i] return fc.real_valued_column(name, dimension=dimension, dtype=tensor.dtype) def infer_real_valued_columns(features): if not isinstance(features, dict): return [_infer_real_valued_column_for_tensor('', features)] feature_columns = [] for key, value in features.items(): feature_columns.append(_infer_real_valued_column_for_tensor(key, value)) return feature_columns def check_feature_columns(feature_columns): """Checks the validity of the set of FeatureColumns. Args: feature_columns: A set of instances or subclasses of FeatureColumn. Raises: ValueError: If there are duplicate feature column keys. """ seen_keys = set() for f in feature_columns: key = f.key if key in seen_keys: raise ValueError('Duplicate feature column key found for column: {}. ' 'This usually means that the column is almost identical ' 'to another column, and one must be discarded.'.format( f.name)) seen_keys.add(key) class _Transformer(object): """Handles all the transformations defined by FeatureColumn if needed. FeatureColumn specifies how to digest an input column to the network. Some feature columns require data transformations. This class handles those transformations if they are not handled already. Some features may be used in more than one place. For example, one can use a bucketized feature by itself and a cross with it. In that case Transformer should create only one bucketization op instead of multiple ops for each feature column. To handle re-use of transformed columns, Transformer keeps all previously transformed columns. Example: ```python sparse_feature = sparse_column_with_hash_bucket(...) real_valued_feature = real_valued_column(...) real_valued_buckets = bucketized_column(source_column=real_valued_feature, ...) sparse_x_real = crossed_column( columns=[sparse_feature, real_valued_buckets], hash_bucket_size=10000) columns_to_tensor = tf.parse_example(...) transformer = Transformer(columns_to_tensor) sparse_x_real_tensor = transformer.transform(sparse_x_real) sparse_tensor = transformer.transform(sparse_feature) real_buckets_tensor = transformer.transform(real_valued_buckets) ``` """ def __init__(self, columns_to_tensors): """Initializes transfomer. Args: columns_to_tensors: A mapping from feature columns to tensors. 'string' key means a base feature (not-transformed). It can have FeatureColumn as a key too. That means that FeatureColumn is already transformed by input pipeline. For example, `inflow` may have handled transformations. Transformed features are inserted in columns_to_tensors. """ self._columns_to_tensors = columns_to_tensors def transform(self, feature_column): """Returns a Tensor which represents given feature_column. Args: feature_column: An instance of FeatureColumn. Returns: A Tensor which represents given feature_column. It may create a new Tensor or re-use an existing one. Raises: ValueError: if FeatureColumn cannot be handled by this Transformer. """ logging.debug('Transforming feature_column %s', feature_column) if feature_column in self._columns_to_tensors: # Feature_column is already transformed. return self._columns_to_tensors[feature_column] feature_column.insert_transformed_feature(self._columns_to_tensors) if feature_column not in self._columns_to_tensors: raise ValueError('Column {} is not supported.'.format( feature_column.name)) return self._columns_to_tensors[feature_column] def _add_variable_collection(weight_collections): if weight_collections: weight_collections = list( set(list(weight_collections) + [ops.GraphKeys.GLOBAL_VARIABLES])) return weight_collections # TODO(jamieas): remove the following logic once all FeatureColumn types are # supported for sequences. # pylint: disable=protected-access _SUPPORTED_SEQUENCE_COLUMNS = (fc._OneHotColumn, fc._EmbeddingColumn, fc._RealValuedColumn) _FORBIDDEN_SEQUENCE_COLUMNS = (fc._HashedEmbeddingColumn, fc._BucketizedColumn, fc._CrossedColumn) def _check_supported_sequence_columns(feature_columns): """Asserts `feature_columns` are in `_SUPPORTED_SEQUENCE_COLUMNS`.""" for col in feature_columns: if not isinstance(col, _SUPPORTED_SEQUENCE_COLUMNS): raise ValueError( 'FeatureColumn type {} is not currently supported for sequence data.'. format(type(col).__name__)) def _get_parent_columns(feature_column): """Returns the tuple of `FeatureColumn`s that `feature_column` depends on.""" if isinstance(feature_column, (fc._WeightedSparseColumn, fc._OneHotColumn, fc._EmbeddingColumn,)): return (feature_column.sparse_id_column,) if isinstance(feature_column, (fc._BucketizedColumn,)): return (feature_column.source_column,) if isinstance(feature_column, (fc._CrossedColumn)): return tuple(feature_column.columns) return tuple() def _gather_feature_columns(feature_columns): """Returns a list of all ancestor `FeatureColumns` of `feature_columns`.""" gathered = list(feature_columns) i = 0 while i < len(gathered): for column in _get_parent_columns(gathered[i]): if column not in gathered: gathered.append(column) i += 1 return gathered def _check_forbidden_sequence_columns(feature_columns): """Recursively cecks `feature_columns` for `_FORBIDDEN_SEQUENCE_COLUMNS`.""" all_feature_columns = _gather_feature_columns(feature_columns) for feature_column in all_feature_columns: if isinstance(feature_column, _FORBIDDEN_SEQUENCE_COLUMNS): raise ValueError( 'Column {} is of type {}, which is not currently supported for ' 'sequences.'.format(feature_column.name, type(feature_column).__name__))
40.1
109
0.687802
263d1b061f95f3c72d83f1cd1095e8510615b43c
6,080
py
Python
ros/src/twist_controller/dbw_node.py
marcin-sielski/CarND-Capstone
9d305fef9a908604809d5b0056a19ce8ff2e1edd
[ "MIT" ]
null
null
null
ros/src/twist_controller/dbw_node.py
marcin-sielski/CarND-Capstone
9d305fef9a908604809d5b0056a19ce8ff2e1edd
[ "MIT" ]
null
null
null
ros/src/twist_controller/dbw_node.py
marcin-sielski/CarND-Capstone
9d305fef9a908604809d5b0056a19ce8ff2e1edd
[ "MIT" ]
1
2020-01-13T20:02:31.000Z
2020-01-13T20:02:31.000Z
#!/usr/bin/env python import rospy from std_msgs.msg import Bool from dbw_mkz_msgs.msg import ThrottleCmd, SteeringCmd, BrakeCmd, SteeringReport from geometry_msgs.msg import TwistStamped import math from twist_controller import Controller ''' You can build this node only after you have built (or partially built) the `waypoint_updater` node. You will subscribe to `/twist_cmd` message which provides the proposed linear and angular velocities. You can subscribe to any other message that you find important or refer to the document for list of messages subscribed to by the reference implementation of this node. One thing to keep in mind while building this node and the `twist_controller` class is the status of `dbw_enabled`. While in the simulator, its enabled all the time, in the real car, that will not be the case. This may cause your PID controller to accumulate error because the car could temporarily be driven by a human instead of your controller. We have provided two launch files with this node. Vehicle specific values (like vehicle_mass, wheel_base) etc should not be altered in these files. We have also provided some reference implementations for PID controller and other utility classes. You are free to use them or build your own. Once you have the proposed throttle, brake, and steer values, publish it on the various publishers that we have created in the `__init__` function. ''' class DBWNode(object): def __init__(self): rospy.init_node('dbw_node') vehicle_mass = rospy.get_param('~vehicle_mass', 1736.35) fuel_capacity = rospy.get_param('~fuel_capacity', 13.5) brake_deadband = rospy.get_param('~brake_deadband', .1) decel_limit = rospy.get_param('~decel_limit', -5) accel_limit = rospy.get_param('~accel_limit', 1.) wheel_radius = rospy.get_param('~wheel_radius', 0.2413) wheel_base = rospy.get_param('~wheel_base', 2.8498) steer_ratio = rospy.get_param('~steer_ratio', 14.8) max_lat_accel = rospy.get_param('~max_lat_accel', 3.) max_steer_angle = rospy.get_param('~max_steer_angle', 8.) self.steer_pub = rospy.Publisher('/vehicle/steering_cmd', SteeringCmd, queue_size=1) self.throttle_pub = rospy.Publisher('/vehicle/throttle_cmd', ThrottleCmd, queue_size=1) self.brake_pub = rospy.Publisher('/vehicle/brake_cmd', BrakeCmd, queue_size=1) # TODO: Create `Controller` object # self.controller = Controller(<Arguments you wish to provide>) self.controller = Controller(vehicle_mass=vehicle_mass, fuel_capacity=fuel_capacity, brake_deadband=brake_deadband, decel_limit=decel_limit, accel_limit=accel_limit, wheel_radius=wheel_radius, wheel_base=wheel_base, steer_ratio=steer_ratio, max_lat_accel=max_lat_accel, max_steer_angle=max_steer_angle) # TODO: Subscribe to all the topics you need to rospy.Subscriber('/vehicle/dbw_enabled', Bool, self.dbw_enabled_cb) rospy.Subscriber('/twist_cmd', TwistStamped, self.twist_cb) rospy.Subscriber('/current_velocity', TwistStamped, self.velocity_cb) self.current_vel = None self.curr_ang_vel = None self.dbw_enabled = None self.linear_vel = None self.angular_vel = None self.throttle = self.steering = self.barke = 0 self.loop() def loop(self): rate = rospy.Rate(50) # 50Hz while not rospy.is_shutdown(): # TODO: Get predicted throttle, brake, and steering using `twist_controller` # You should only publish the control commands if dbw is enabled # throttle, brake, steering = self.controller.control(<current linear velocity>, # <dbw status>, # <proposed linear velocity>, # <proposed angular velocity>, # <any other argument you need>) # if <dbw is enabled>: # self.publish(throttle, brake, steer) if not None in (self.current_vel, self.linear_vel, self.angular_vel): self.throttle, self.brake, self.steering = self.controller.control(self.current_vel, self.dbw_enabled, self.linear_vel, self.angular_vel) if self.dbw_enabled: self.publish(self.throttle, self.brake, self.steering) rate.sleep() def dbw_enabled_cb(self, msg): self.dbw_enabled = msg def twist_cb(self, msg): self.linear_vel = msg.twist.linear.x self.angular_vel = msg.twist.angular.z def velocity_cb(self, msg): self.current_vel = msg.twist.linear.x def publish(self, throttle, brake, steer): tcmd = ThrottleCmd() tcmd.enable = True tcmd.pedal_cmd_type = ThrottleCmd.CMD_PERCENT tcmd.pedal_cmd = throttle self.throttle_pub.publish(tcmd) scmd = SteeringCmd() scmd.enable = True scmd.steering_wheel_angle_cmd = steer self.steer_pub.publish(scmd) bcmd = BrakeCmd() bcmd.enable = True bcmd.pedal_cmd_type = BrakeCmd.CMD_TORQUE bcmd.pedal_cmd = brake self.brake_pub.publish(bcmd) if __name__ == '__main__': DBWNode()
44.705882
101
0.592928
65d9d1824cabf585def706e2aa1ff3056d2bdccc
10,885
py
Python
preprocessing/preprocessor.py
saams4u/BIMODAL
0a52d4e6eef4ad244904fb51892e948ab4a4336e
[ "CC-BY-4.0" ]
null
null
null
preprocessing/preprocessor.py
saams4u/BIMODAL
0a52d4e6eef4ad244904fb51892e948ab4a4336e
[ "CC-BY-4.0" ]
null
null
null
preprocessing/preprocessor.py
saams4u/BIMODAL
0a52d4e6eef4ad244904fb51892e948ab4a4336e
[ "CC-BY-4.0" ]
null
null
null
""" Implementation of all preprocessing steps """ import pandas as pd import numpy as np from rdkit import Chem import sys import os np.random.seed(1) class Preprocessor: def __init__(self, name): # where name is the name of the file # List to store data self._data = [] # If True, check after each function that all duplicates are still removed self._duplicates_removed = False if os.path.isfile(name + '.csv'): self._data = pd.read_csv(name + '.csv', header=None).values[:, 0] elif os.path.isfile(name + '.tar.xz'): # Skip first line since empty and last line since nan self._data = pd.read_csv(name + '.tar.xz', compression='xz', header=None).values[1:-1, 0] elif os.path.isfile(name + '.smi.zip'): # Skip first line since empty and last line since nan self._data = pd.read_csv(name + '.smi.zip', compression='zip', header=None).values[1:-1, 0] # Remove empty dimensions self._data = np.squeeze(self._data) return def preprocess(self, name, aug=1, length=128): """ Preprocess data depending on model type :param name: Name of the model :param aug: Data augmentation :return: """ if name == "ForwardRNN": self.add_ending('E') self.add_sentinel('G') self.padding_right('A', l=length+2) elif name == "FBRNN_fixed" or name == "BIMODAL_fixed": self.add_middle('G') self.add_ending('E') self.add_sentinel('E') self.padding_left_right('A', l=length+3) elif name == "FBRNN_random" or name == "BIMODAL_random": self.add_ending('E') self.add_sentinel('E') self.add_token_random_padding(start_token='G', pad_token='A', aug=aug, l=3+length*2) elif name == "NADE_fixed": p.padding_left_right('A', l=length) p.add_ending('G') p.add_sentinel('G') elif name == "NADE_random": self.padding_left_right('A', l=length) self.add_ending('G') self.add_sentinel('G') self.insert_missing_token(missing_token='M', aug=aug) else: print("CAN NOT FIND MODEL") sys.exit() def remove_not_valid(self): """Remove all SMILES not accepted by the RDKit :return: """ # Store index to delete to_delete = [] # Find not valid SMILES for i, s in enumerate(self._data): mol = Chem.MolFromSmiles(str(s)) if mol is None: to_delete.append(i) # Delete SMILES if len(to_delete) != 0: self._data = np.delete(self._data, to_delete) return def remove_duplicates(self): """Remove all SMILES appearing more than once :return: """ self._data = np.unique(self._data) # Set flag to always remove duplicated after an operation self._duplicates_removed = True return def remove_stereochem(self): """Remove all token related stereochemistry :return: """ # Token used for stereochemistry stereochem_token = ['/', '@', '\\'] for t in stereochem_token: self.remove_token(t) # Remove possible created duplicates if self._duplicates_removed: self.remove_duplicates() return def remove_token(self, t): """Remove token t from all elements of data :param t: token to remove :return: """ self._data = np.array([d.replace(t, '') for d in self._data]) # Remove possible created duplicates if self._duplicates_removed: self.remove_duplicates() return def remove_salts(self): """Remove all salts Non-bonded interactions are represented by '.' We assume that the one with the largest SMILES sequence should be preserved :return: """ for i, s in enumerate(self._data): splits = s.split('.') # Select longest part of SMILES self._data[i] = max(splits, key=len) # Remove possible deposits self.remove_token('.') # Remove possible created duplicates if self._duplicates_removed: self.remove_duplicates() return def canonicalize(self): """Canonicalize all SMILES from data :return: """ for i, s in enumerate(self._data): mol = Chem.MolFromSmiles(str(s)) self._data[i] = Chem.MolToSmiles(mol, isomericSmiles=True, canonical=True) # Remove possible created duplicates if self._duplicates_removed: self.remove_duplicates() return def remove_length(self, min_len=34, max_len=128): """Keep only SMILES with a length between min and max :param min_len: minimal length (-1: no minimal length) max_len: maximal length (-1: no maximal length) :return: """ # Store index to delete to_delete = [] # Find strings longer than max if max_len != -1: for i, s in enumerate(self._data): if len(s) > max_len: to_delete.append(i) # Find Strings shorter than min if min != -1: for i, s in enumerate(self._data): if len(s) < min_len: to_delete.append(i) # Remove elements self._data = np.delete(self._data, to_delete) return def add_sentinel(self, token='E'): """Add token at the beginning of each SMILES :param token: token to insert :return: """ data = [] for i, s in enumerate(self._data): data.append(token + s) self._data = data return def add_ending(self, token='E'): """Add token at the end of each SMILES :param token: token to insert :return: """ data = [] for i, s in enumerate(self._data): data.append(s + token) self._data = data return def add_middle(self, token='G'): """Add token in the middle of each SMILES :param token: token to insert :return: """ data = [] for i, s in enumerate(self._data): mid = len(s) // 2 data.append(s[:mid] + token + s[mid:]) self._data = data return def add_token_random_padding(self, start_token='G', pad_token='A', aug=5, l=0): '''Add start_token a n different random position and pad to have start_token in the middle of the obtained sequence Meathod should be applied after add_ending :param start_token: token introduced in the string :param pad_token: token used for padding :param n: number for data augmentation :param l: length of the final string (if l=0 use length of longest string) ''' # Compute length of longest string if l == 0: max_l = len(max(self._data, key=len)) - 1 else: max_l = l // 2 aug_data = np.empty((self._data.size, aug)).astype(object) for i, s in enumerate(self._data): l = len(s) # Choose n different position for starting token (after 0 and before l-1, # since 0 and l-1 are special tokens for the ending (E)) r = np.random.choice(np.arange(l - 1) + 1, aug, replace=False) # Tmp array to store augmentation of a SMILES for j, r_j in enumerate(r): # Added token should be located within the molecule (after 0 and before l-1, # since 0 and l-1 are special tokens for the ending (E) aug_data[i, j] = s[:r_j].rjust(max_l, pad_token) + start_token + s[r_j:].ljust(max_l, pad_token) # Convert array to shape (n_samples, n_augmentation) print(self._data.shape) self._data = aug_data.astype(str) def insert_missing_token(self, missing_token='M', aug=1): """Insert missing_token at random position and store changed and reference SMILES :param missing_token: Token used to indicate missing value """ # New data array (n_samples, 2) stores correct SMILES and SMILES with missing values data = np.empty((self._data.size, aug + 1)).astype(object) data[:, 0] = self._data for a in range(aug): data[:, a + 1] = np.copy(self._data) # Iteration over complete data for i, s in enumerate(self._data): # Compute length of current SMILES l = len(s) # Compute number of missing values between 0 and l-2 (First and last token are not replaced) n_missing = np.random.choice(np.arange(l - 2), aug, replace=False) for a in range(aug): # Compute position of missing values between 1 and l-2 (First token (0) and # last token (l-1) are not replaced) r = np.random.choice(np.arange(l - 2) + 1, n_missing[a], replace=False) # Insert missing values for r_i in r: data[i, a + 1] = data[i, a + 1][:r_i] + missing_token + data[i, a + 1][r_i + 1:] self._data = data.astype(str) def padding_right(self, token='A', l=0): """Padding of data on the right side to obtain a consistent length :param token: token used for padding :return l: length of the padding (if l=0 use length of longest string) """ # Compute length of longest string if no length specified if l == 0: l = len(max(self._data, key=len)) # Padding of all strings in array data = [] for i, s in enumerate(self._data): data.append(s.ljust(l, token)) self._data = data return l def padding_left_right(self, token='A', l=0): """Padding of data on the right and left side to obtain a consistent length :param token: token used for padding :return l: length of the padding (if l=0 use length of longest string) """ # Compute length of longest string if l == 0: l = len(max(self._data, key=len)) # Padding of all strings in array data = [] for i, s in enumerate(self._data): data.append(s.center(l, token)) self._data = data return l def save_data(self, name='data.csv'): pd.DataFrame(self._data).to_csv(name, header=None, index=None) return def get_data(self): return self._data
33.804348
123
0.56362
2056fd5bad150e3b004d922ba326fbdff9f38aa4
1,719
py
Python
codes/Lib/site-packages/openpyxl/charts/tests/test_reference.py
charlescayno/automation
a4a34d87f372d49fd69740ad3ca46ae19bf2612d
[ "MIT" ]
null
null
null
codes/Lib/site-packages/openpyxl/charts/tests/test_reference.py
charlescayno/automation
a4a34d87f372d49fd69740ad3ca46ae19bf2612d
[ "MIT" ]
null
null
null
codes/Lib/site-packages/openpyxl/charts/tests/test_reference.py
charlescayno/automation
a4a34d87f372d49fd69740ad3ca46ae19bf2612d
[ "MIT" ]
null
null
null
# Copyright (c) 2010-2014 openpyxl import pytest @pytest.fixture def column_of_letters(sheet, Reference): for idx, l in enumerate("ABCDEFGHIJ", 1): sheet.cell(row=idx, column=2).value = l return Reference(sheet, (1, 2), (10, 2)) class TestReference: def test_single_cell_ctor(self, cell): assert cell.pos1 == (1, 1) assert cell.pos2 is None def test_range_ctor(self, cell_range): assert cell_range.pos1 == (1, 1) assert cell_range.pos2 == (10, 1) def test_single_cell_ref(self, cell): assert cell.values == [0] assert str(cell) == "'reference'!$A$1" def test_cell_range_ref(self, cell_range): assert cell_range.values == [0, 1, 2, 3, 4, 5, 6, 7, 8 , 9] assert str(cell_range) == "'reference'!$A$1:$A$10" def test_data_type(self, cell): with pytest.raises(ValueError): cell.data_type = 'f' cell.data_type = None def test_type_inference(self, cell, cell_range, column_of_letters, missing_values): assert cell.values == [0] assert cell.data_type == 'n' assert cell_range.values == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] assert cell_range.data_type == 'n' assert column_of_letters.values == list("ABCDEFGHIJ") assert column_of_letters.data_type == "s" assert missing_values.values == ['', '', 1, 2, 3, 4, 5, 6, 7, 8] missing_values.values assert missing_values.data_type == 'n' def test_number_format(self, cell): with pytest.raises(ValueError): cell.number_format = 'YYYY' cell.number_format = 'd-mmm' assert cell.number_format == 'd-mmm'
30.696429
72
0.602094
4d4d5c44ad6e2406914f4033f8d484c061a785c8
6,577
py
Python
rcnn/tools/test_rcnn.py
sjiang17/keypoint-maskrcnn
f78562d4701a57fe1b95ba56f946e33658d7d039
[ "Apache-2.0" ]
3
2018-12-13T09:00:01.000Z
2019-09-11T03:38:02.000Z
rcnn/tools/test_rcnn.py
sjiang17/keypoint-maskrcnn
f78562d4701a57fe1b95ba56f946e33658d7d039
[ "Apache-2.0" ]
null
null
null
rcnn/tools/test_rcnn.py
sjiang17/keypoint-maskrcnn
f78562d4701a57fe1b95ba56f946e33658d7d039
[ "Apache-2.0" ]
1
2019-12-01T09:22:36.000Z
2019-12-01T09:22:36.000Z
import os import cPickle import argparse import pprint from ..config import config, default, generate_config from ..symbol import * from ..dataset import * from ..core.loader import TestLoader, SequentialLoader from ..core.tester import Predictor, generate_proposals from ..utils.load_model import load_param def test_rcnn(network, dataset, image_set, root_path, dataset_path, ctx, prefix, epoch, vis, shuffle, thresh): # rpn generate proposal config config.TEST.HAS_RPN = True # print config pprint.pprint(config) # load symbol if cfg.MASKFCN.ON: sym = eval('get_' + network + '_maskfcn_test')(num_anchors=config.NUM_ANCHORS) else: sym = eval('get_' + network + '_mask_test')(num_anchors=config.NUM_ANCHORS) sym = sym.get_internals()['mask_roi_output'] # load dataset and prepare imdb for training imdb = eval(dataset)(image_set, root_path, dataset_path) roidb = imdb.gt_roidb() # (possibly) group the roidb by aspect horizontal_inds, vertical_inds = [], [] for ind, roirec in enumerate(roidb): if roirec['width'] > roirec['height']: horizontal_inds.append(ind) else: vertical_inds.append(ind) aspect_group = True if len(horizontal_inds) > 0 and len(vertical_inds) > 0 else False print("aspect_group={}".format(aspect_group)) if aspect_group: horizontal_roidb = [roidb[ind] for ind in horizontal_inds] vertical_roidb = [roidb[ind] for ind in vertical_inds] l1 = TestLoader(horizontal_roidb, batch_size=len(ctx), shuffle=shuffle, has_rpn=True) l2 = TestLoader(vertical_roidb, batch_size=len(ctx), shuffle=shuffle, has_rpn=True) test_data = SequentialLoader(iters=[l1, l2]) else: test_data = TestLoader(roidb, batch_size=len(ctx), shuffle=shuffle, has_rpn=True) # load model arg_params, aux_params = load_param(prefix, epoch, convert=True, ctx=None) # infer shape data_shape_dict = dict(test_data.provide_data) arg_shape, _, aux_shape = sym.infer_shape(**data_shape_dict) arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape)) aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape)) # check parameters for k in sym.list_arguments(): if k in data_shape_dict or 'label' in k: continue assert k in arg_params, k + ' not initialized' assert arg_params[k].shape == arg_shape_dict[k], \ 'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str( arg_params[k].shape) for k in sym.list_auxiliary_states(): assert k in aux_params, k + ' not initialized' assert aux_params[k].shape == aux_shape_dict[k], \ 'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str( aux_params[k].shape) # decide maximum shape data_names = [k[0] for k in test_data.provide_data] label_names = None if test_data.provide_label is None else [k[0] for k in test_data.provide_label] max_data_shape = [('data', (len(ctx), 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] # create predictor predictor = Predictor(sym, data_names, label_names, context=ctx, max_data_shapes=max_data_shape, provide_data=test_data.provide_data, provide_label=test_data.provide_label, arg_params=arg_params, aux_params=aux_params) # start testing imdb_boxes, original_boxes = generate_proposals(predictor, test_data, imdb, vis=vis, thresh=thresh) if aspect_group: # imdb_boxes = [imdb_boxes[ind] for ind in (horizontal_inds + vertical_inds)] # original_boxes = [original_boxes[ind] for ind in (horizontal_inds + vertical_inds)] reordered_imdb_boxes, reordered_original_boxes = [None] * len(imdb_boxes), [None] * len(imdb_boxes) for i, orig_ind in enumerate(horizontal_inds + vertical_inds): reordered_imdb_boxes[orig_ind] = imdb_boxes[i] reordered_original_boxes[orig_ind] = original_boxes[i] imdb_boxes, original_boxes = reordered_imdb_boxes, reordered_original_boxes # save results rpn_folder = os.path.join(imdb.root_path, 'rpn_data') if not os.path.exists(rpn_folder): os.mkdir(rpn_folder) rpn_file = os.path.join(rpn_folder, imdb.name + '_rpn.pkl') with open(rpn_file, 'wb') as f: cPickle.dump(imdb_boxes, f, cPickle.HIGHEST_PROTOCOL) if thresh > 0: full_rpn_file = os.path.join(rpn_folder, imdb.name + '_full_rpn.pkl') with open(full_rpn_file, 'wb') as f: cPickle.dump(original_boxes, f, cPickle.HIGHEST_PROTOCOL) print 'wrote rpn proposals to {}'.format(rpn_file) imdb.evaluate_recall(roidb, candidate_boxes=imdb_boxes) def parse_args(): parser = argparse.ArgumentParser(description='Test a Region Proposal Network') # general parser.add_argument('--network', help='network name', default=default.network, type=str) parser.add_argument('--dataset', help='dataset name', default=default.dataset, type=str) args, rest = parser.parse_known_args() generate_config(args.network, args.dataset) parser.add_argument('--image_set', help='image_set name', default=default.test_image_set, type=str) parser.add_argument('--root_path', help='output data folder', default=default.root_path, type=str) parser.add_argument('--dataset_path', help='dataset path', default=default.dataset_path, type=str) # testing parser.add_argument('--prefix', help='model to test with', default=default.rpn_prefix, type=str) parser.add_argument('--epoch', help='model to test with', default=default.rpn_epoch, type=int) # rpn parser.add_argument('--gpu', help='GPU device to test with', default='0', type=str) parser.add_argument('--vis', help='turn on visualization', action='store_true') parser.add_argument('--thresh', help='rpn proposal threshold', default=0, type=float) parser.add_argument('--shuffle', help='shuffle data on visualization', action='store_true') args = parser.parse_args() return args def main(): args = parse_args() print 'Called with argument:', args ctx = [mx.gpu(int(gpu)) for gpu in args.gpu.split(',')] test_rpn(args.network, args.dataset, args.image_set, args.root_path, args.dataset_path, ctx, args.prefix, args.epoch, args.vis, args.shuffle, args.thresh) if __name__ == '__main__': main()
43.846667
118
0.684355
83e6747f689b22297129a4eddfbe426c44e4d435
1,303
py
Python
python_modules/dagster/dagster/core/storage/alembic/versions/024_add_columns_start_time_and_end_time_postgres.py
asamoal/dagster
08fad28e4b608608ce090ce2e8a52c2cf9dd1b64
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/storage/alembic/versions/024_add_columns_start_time_and_end_time_postgres.py
asamoal/dagster
08fad28e4b608608ce090ce2e8a52c2cf9dd1b64
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/storage/alembic/versions/024_add_columns_start_time_and_end_time_postgres.py
asamoal/dagster
08fad28e4b608608ce090ce2e8a52c2cf9dd1b64
[ "Apache-2.0" ]
null
null
null
"""Add columns start_time and end_time Revision ID: 42add02bf976 Revises: f78059038d01 Create Date: 2021-12-20 13:41:14.924529 """ import sqlalchemy as sa from alembic import op from sqlalchemy import inspect # revision identifiers, used by Alembic. revision = "42add02bf976" down_revision = "f78059038d01" branch_labels = None depends_on = None # pylint: disable=no-member def upgrade(): inspector = inspect(op.get_bind()) has_tables = inspector.get_table_names() if "runs" in has_tables: columns = [x.get("name") for x in inspector.get_columns("runs")] with op.batch_alter_table("runs") as batch_op: if "start_time" not in columns: batch_op.add_column(sa.Column("start_time", sa.Float)) if "end_time" not in columns: batch_op.add_column(sa.Column("end_time", sa.Float)) def downgrade(): inspector = inspect(op.get_bind()) has_tables = inspector.get_table_names() if "runs" in has_tables: columns = [x.get("name") for x in inspector.get_columns("runs")] with op.batch_alter_table("runs") as batch_op: if "start_time" in columns: batch_op.drop_column("start_time") if "end_time" in columns: batch_op.drop_column("end_time")
28.326087
72
0.663853
89d6ca37f625f101e7fcad5b257635540cd5dad3
2,908
py
Python
networkit/stopwatch.py
krzysztof-turowski/networkit
b0db9e30be1a7f7dcf74eaff2a013988a81973ce
[ "MIT" ]
null
null
null
networkit/stopwatch.py
krzysztof-turowski/networkit
b0db9e30be1a7f7dcf74eaff2a013988a81973ce
[ "MIT" ]
null
null
null
networkit/stopwatch.py
krzysztof-turowski/networkit
b0db9e30be1a7f7dcf74eaff2a013988a81973ce
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2008 John Paulett (john -at- 7oars.com) # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. import time """ stopwatch is a very simple Python module for measuring time. Great for finding out how long code takes to execute. >>> import stopwatch >>> t = stopwatch.Timer() >>> t.elapsed 3.8274309635162354 >>> print t 15.9507198334 sec >>> t.stop() 30.153270959854126 >>> print t 30.1532709599 sec Decorator exists for printing out execution times: >>> from stopwatch import clockit >>> @clockit def mult(a, b): return a * b >>> print mult(2, 6) mult in 1.38282775879e-05 sec 6 """ __version__ = '0.3.1' __author__ = 'John Paulett <http://blog.7oars.com>' class Timer(object): """ Main stopwatch object, providing functionality to measure time. """ def __init__(self): self.__stopped = None self.__start = self.__time() def stop(self): """ stop() Stops the clock permanently for the instance of the Timer. Returns the time at which the instance was stopped. Returns ------- float Stop time. """ self.__stopped = self.__last_time() return self.elapsed def elapsed(self): """ elapsed() The number of seconds since the current time that the Timer object was created. If stop() was called, it is the number of seconds from the instance creation until stop() was called. Returns ------- float Elapsed time. """ return self.__last_time() - self.__start elapsed = property(elapsed) def start_time(self): """ start_time() The time at which the Timer instance was created. Returns ------- float Starting time. """ return self.__start start_time = property(start_time) def stop_time(self): """ stop_time() The time at which stop() was called, or None if stop was never called. Returns ------- float or None Stop time. """ return self.__stopped stop_time = property(stop_time) def __last_time(self): """Return the current time or the time at which stop() was call, if called at all. """ if self.__stopped is not None: return self.__stopped return self.__time() def __time(self): """Wrapper for time.time() to allow unit testing. """ return time.time() def __str__(self): """Nicely format the elapsed time """ return str(self.elapsed) + ' sec' def clockit(func): """ clockit(func) Function decorator that times the evaluation of *func* and prints the execution time. Example ------- ..code >>> from stopwatch import clockit >>> @clockit def mult(a, b): return a * b >>> print mult(2, 6) mult in 1.38282775879e-05 sec """ def new(*args, **kw): t = Timer() retval = func(*args, **kw) t.stop() print('%s in %s') % (func.__name__, t) del t return retval return new
19.006536
70
0.662311
20cd834b812b212144d1b798400c9517e6bf13e8
391
py
Python
backend/website/wsgi.py
Abhiram-Joshi/Projectsv2
73416697290161dd45eb3192ed7e6275201f81c9
[ "MIT" ]
13
2021-08-31T14:21:45.000Z
2021-11-08T13:14:59.000Z
backend/website/wsgi.py
Abhiram-Joshi/Projectsv2
73416697290161dd45eb3192ed7e6275201f81c9
[ "MIT" ]
11
2021-08-20T19:10:40.000Z
2022-03-30T13:28:49.000Z
backend/website/wsgi.py
Abhiram-Joshi/Projectsv2
73416697290161dd45eb3192ed7e6275201f81c9
[ "MIT" ]
3
2021-05-18T15:00:49.000Z
2021-08-10T06:59:28.000Z
""" WSGI config for website project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "website.settings") application = get_wsgi_application()
23
78
0.785166
d1fa9a442f9fff7d44046eba89a7e7a6622c9414
10,385
py
Python
validator/tests/test_commands.py
s-scherrer/qa4sm
99fa62d5e42e5a2b81c5bad1553c8137fe4259e7
[ "MIT" ]
10
2019-02-27T15:05:15.000Z
2022-03-10T21:13:40.000Z
validator/tests/test_commands.py
s-scherrer/qa4sm
99fa62d5e42e5a2b81c5bad1553c8137fe4259e7
[ "MIT" ]
69
2019-07-04T23:20:17.000Z
2022-03-29T06:34:06.000Z
validator/tests/test_commands.py
s-scherrer/qa4sm
99fa62d5e42e5a2b81c5bad1553c8137fe4259e7
[ "MIT" ]
10
2019-03-14T11:46:58.000Z
2022-03-25T13:06:16.000Z
''' Test our custom django commands ''' from datetime import datetime, timedelta import logging from unittest.mock import patch from dateutil.tz.tz import tzlocal from django.conf import settings from django.core.management import call_command from django.test import TestCase from django.utils import timezone from validator.models import Dataset from validator.models import ValidationRun from validator.tests.testutils import set_dataset_paths from django.contrib.auth import get_user_model User = get_user_model() # See https://stackoverflow.com/a/6513372/ class TestCommands(TestCase): fixtures = ['variables', 'versions', 'datasets', 'filters'] __logger = logging.getLogger(__name__) def setUp(self): user_data = { 'username': 'testuser', 'password': 'secret', 'email': 'noreply@awst.at', 'first_name': 'Chuck', 'last_name': 'Norris', } try: self.testuser = User.objects.get(username=user_data['username']) except User.DoesNotExist: self.testuser = User.objects.create_user(**user_data) set_dataset_paths() def test_abortrunningvalidations(self): # make sure we don't have real running validations running_validations = ValidationRun.objects.filter(progress__range=(0, 99)) assert not running_validations # make sure we have a fake running validation for testing run = ValidationRun() run.start_time = datetime.now(tzlocal()) run.progress = 50 run.save() run_id = run.id running_validations = ValidationRun.objects.filter(progress__range=(0, 99)) assert running_validations # run the command args = [] opts = {} call_command('abortrunningvalidations', *args, **opts) # make sure that our test validation was marked as failed running_validations = ValidationRun.objects.filter(progress__range=(0, 99)) assert not running_validations test_val = ValidationRun.objects.get(id=run_id) assert test_val assert test_val.end_time assert test_val.progress == -1 def test_autocleanupvalidations(self): ended_vals = ValidationRun.objects.filter(end_time__isnull=False).count() ## unexpired validation run1 = ValidationRun() run1.start_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS * 4) run1.end_time = timezone.now() run1.user = self.testuser run1.save() runid1 = run1.id ## 20% of warning period has passed run2 = ValidationRun() run2.start_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS * 4) run2.end_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS - settings.VALIDATION_EXPIRY_WARNING_DAYS * 0.8) run2.user = self.testuser run2.save() runid2 = run2.id ## 80% of warning period has passed run3 = ValidationRun() run3.start_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS * 4) run3.end_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS - settings.VALIDATION_EXPIRY_WARNING_DAYS * 0.2) run3.user = self.testuser run3.save() runid3 = run3.id ## just expired validation run4 = ValidationRun() run4.start_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS * 4) run4.end_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS) run4.user = self.testuser run4.save() runid4 = run4.id ## long expired validation run5 = ValidationRun() run5.start_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS * 4) run5.end_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS * 2) run5.user = self.testuser run5.save() runid5 = run5.id # test what happens if there is no user assigned to a validation no_user_run = ValidationRun() no_user_run.start_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS * 4) no_user_run.end_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS) no_user_run.user = None no_user_run.save() no_user_run_id = no_user_run.id # test what happens if there is no user assigned to a validation, but validation has been published no_user_run_published = ValidationRun() no_user_run_published.start_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS * 4) no_user_run_published.end_time = timezone.now() - timedelta(days=settings.VALIDATION_EXPIRY_DAYS) no_user_run_published.user = None no_user_run_published.doi = '10101/101.010' no_user_run_published.save() no_user_run_published_id = no_user_run_published.id ended_vals2 = ValidationRun.objects.filter(end_time__isnull=False).count() assert ended_vals + 7 == ended_vals2 assert runid1 assert runid2 assert runid3 assert runid4 assert runid5 assert no_user_run_id assert no_user_run_published_id # run the command args = [] opts = {} call_command('autocleanupvalidations', *args, **opts) ## reload from db because the validations have been changed. run1 = ValidationRun.objects.get(pk=runid1) run2 = ValidationRun.objects.get(pk=runid2) run3 = ValidationRun.objects.get(pk=runid3) run4 = ValidationRun.objects.get(pk=runid4) run5 = ValidationRun.objects.get(pk=runid5) non_user_val = ValidationRun.objects.filter(pk=no_user_run_id) no_user_run_published = ValidationRun.objects.get(pk=no_user_run_published_id) ## with the last command call, the user should have been notified about most of our test validations ## but the validations should not have been deleted yet assert not run1.expiry_notified assert run2.expiry_notified assert run3.expiry_notified assert run4.expiry_notified assert run5.expiry_notified assert len(non_user_val) == 0 # there should be no validation anymore, because it was already removed assert not no_user_run_published.expiry_notified # no notification sent ## the validations may have been extended in the previous step, undo that to get them really deleted in the next call run1.last_extended = None run1.save() run2.last_extended = None run2.save() run3.last_extended = None run3.save() run4.last_extended = None run4.save() run5.last_extended = None run5.save() call_command('autocleanupvalidations', *args, **opts) ## the two expired validations should be have been deleted now ended_vals3 = ValidationRun.objects.filter(end_time__isnull=False).count() assert ended_vals + 4 == ended_vals3 def test_setdatasetpaths(self): new_test_path = 'new_test_path/' new_test_path2 = 'another_test_path/' num_changed = 0 # ensure that every second dataset has no storage path for counter, dataset in enumerate(Dataset.objects.all().order_by('id')): if counter % 2 == 0: dataset.storage_path = '' dataset.save() num_changed += 1 self.__logger.debug('setting empty path for: ' + dataset.short_name) ## instruct the command to change only the empty paths, give no default path, and set a new path every time user_input = [ 'u', '', ] user_input.extend([new_test_path] * num_changed) args = [] opts = {} with patch('builtins.input', side_effect=user_input): ## this mocks user input for the command # run the command call_command('setdatasetpaths', *args, **opts) # check that the datasets were changed correctly for counter, dataset in enumerate(Dataset.objects.all().order_by('id')): self.__logger.debug('checking path for ' + dataset.short_name) if counter % 2 == 0: assert new_test_path in dataset.storage_path else: assert new_test_path not in dataset.storage_path ## second round of testing! ## instruct the command to change all paths, give a default path, and accept the suggestion every time user_input = [ '', new_test_path2, ] user_input.extend([''] * Dataset.objects.count()) args = [] opts = {} with patch('builtins.input', side_effect=user_input): ## this mocks user input for the command # run the command call_command('setdatasetpaths', *args, **opts) # check that the datasets were changed correctly for counter, dataset in enumerate(Dataset.objects.all().order_by('id')): self.__logger.debug('checking path second time for ' + dataset.short_name) assert new_test_path2 in dataset.storage_path ## third round of testing! ## instruct the command to change all paths, give no default path, and keep the existing path (default) every time user_input = [ 'a', '', ] user_input.extend([''] * Dataset.objects.count()) args = [] opts = {} with patch('builtins.input', side_effect=user_input): ## this mocks user input for the command # run the command call_command('setdatasetpaths', *args, **opts) # check that the datasets were changed correctly for counter, dataset in enumerate(Dataset.objects.all().order_by('id')): self.__logger.debug('checking path second time for ' + dataset.short_name) assert new_test_path2 in dataset.storage_path assert dataset.short_name in dataset.storage_path with patch('builtins.input', side_effect=user_input): ## this mocks user input for the command # run the command to list the paths call_command('getdatasetpaths', *args, **opts)
39.188679
136
0.651613
f7708d4af289e41a22fb7b11ca366ae649f96981
1,456
py
Python
tests/testInterference.py
KOLANICH/lazyImport.py
ee6574c10c941973de8f4ea3b67af3e94fc9668d
[ "Unlicense" ]
null
null
null
tests/testInterference.py
KOLANICH/lazyImport.py
ee6574c10c941973de8f4ea3b67af3e94fc9668d
[ "Unlicense" ]
null
null
null
tests/testInterference.py
KOLANICH/lazyImport.py
ee6574c10c941973de8f4ea3b67af3e94fc9668d
[ "Unlicense" ]
null
null
null
import sys from pathlib import Path import unittest thisDir = Path(__file__).parent.absolute() sys.path.insert(0, str(thisDir.parent)) sys.path.insert(0, str(thisDir)) from ImportTimeline import ImportTimelineTestCase class Tests(ImportTimelineTestCase): def testInterference(self): self.etalon = [ "from lazilyTest2 import b", "lazilyTest2/__init__.py run", "lazilyTest2/b.py run", ("lazilyTest1", False), ("lazilyTest1.a", False), ("lazily.lazilyTest1", True), ("lazily.lazilyTest1.a", True), ("lazily.lazilyTest1.b", False), "from lazily.lazilyTest1 import a", ("lazilyTest1", False), ("lazilyTest1.a", False), ("lazily.lazilyTest1", True), ("lazily.lazilyTest1.a", True), ("lazily.lazilyTest1.b", False) ] self.log("from lazilyTest2 import b") from lazilyTest2 import b self.assertInModulesStatus("lazilyTest1") self.assertInModulesStatus("lazilyTest1.a") self.assertInModulesStatus("lazily.lazilyTest1") self.assertInModulesStatus("lazily.lazilyTest1.a") self.assertInModulesStatus("lazily.lazilyTest1.b") self.log("from lazily.lazilyTest1 import a") from lazily.lazilyTest1 import a self.assertInModulesStatus("lazilyTest1") self.assertInModulesStatus("lazilyTest1.a") self.assertInModulesStatus("lazily.lazilyTest1") self.assertInModulesStatus("lazily.lazilyTest1.a") self.assertInModulesStatus("lazily.lazilyTest1.b") if __name__ == "__main__": unittest.main()
27.471698
52
0.739698
d1a5657994555d96cc13ea302fd99341b8b9c6a2
30,644
py
Python
arignote/data/readers.py
stephen-hoover/Arignote
f438c929295558f3354ec07598a3a023fc4108e0
[ "MIT" ]
2
2016-01-18T02:12:13.000Z
2018-07-24T01:55:20.000Z
arignote/data/readers.py
stephen-hoover/Arignote
f438c929295558f3354ec07598a3a023fc4108e0
[ "MIT" ]
3
2015-07-08T13:30:33.000Z
2015-07-10T19:56:08.000Z
arignote/data/readers.py
stephen-hoover/Arignote
f438c929295558f3354ec07598a3a023fc4108e0
[ "MIT" ]
null
null
null
""" This module reads and iterates over data, making it available for training. """ from __future__ import division import abc import threading import numpy as np try: import pandas as pd except ImportError: # No pandas; we can't read HDF5 files. pd = None import six import theano from ..util import misc from ..util import netlog from ..data import files log = netlog.setup_logging("data_readers", level="INFO") def to_data_object(data, batch_size=128, **kwargs): """Wrap the input in a Data object. If it has length 1, assume that it's a 1-tuple containing an array of features. If length 2, assume the second element is the labels. Extra keyword arguments will be passed to the `Data` constructor. The keyword arguments will be ignored if `data` is already a Data object or is None.""" if data is None or isinstance(data, Data): obj = data else: labels = kwargs.pop("labels", None) if len(data) == 1: features = data[0] elif len(data) == 2: features, labels = data else: features = data obj = Data(features, labels, batch_size=batch_size, **kwargs) return obj def to_data_partitions(train, valid=0, test=0, batch_size=128, **kwargs): """Wrap the input in a DataWithHoldoutPartitions object. If it has length 1, assume that it's a 1-tuple containing an array of features. If length 2, assume the second element is the labels. Extra keyword arguments will be passed to the `Data` constructor. The keyword arguments will be ignored if `data` is already a DataWithHoldoutPartitions object.""" if isinstance(train, DataWithHoldoutParitions): output = train.train, train.valid, train.test elif isinstance(train, Data): if valid == 0: valid = None if test == 0: test = None if ((valid is not None and not isinstance(valid, Data)) or (test is not None and not isinstance(test, Data))): raise TypeError("If inputting training data as a `Data` object, validation and" "test sets must also be presented as `Data` objects.") output = (train, valid, test) else: train_labels = None if len(train) == 1: features = train[0] elif len(train) == 2: features, train_labels = train else: features = train valid_frac, test_frac = 0, 0 if misc.is_floatlike(valid): valid_frac = valid valid = None else: valid = to_data_object(valid, batch_size=batch_size, allow_partial_batch=True, **kwargs) if misc.is_floatlike(test): test_frac = test test = None else: test = to_data_object(test, batch_size=batch_size, allow_partial_batch=True, **kwargs) obj = DataWithHoldoutParitions(features, labels=train_labels, valid_frac=valid_frac, test_frac=test_frac, batch_size=batch_size, **kwargs) if valid is None: valid = obj.valid if test is None: test = obj.test output = obj.train, valid, test return output def threaded_generator(generator, num_cached=10): """Wrap a generator in a thread, using a queue to return data. Note that due to the Python GIL, this will not allow generators to work while other Python code is running. If part of a program releases the GIL, however, this wrapper can store up extra items from the generator it wraps. Threaded generator implementation due to Jan Schlueter, https://github.com/f0k https://github.com/Lasagne/Lasagne/issues/12#issuecomment-59494251 """ queue = six.moves.queue.Queue(maxsize=num_cached) sentinel = object() # guaranteed unique reference # define producer (putting items into queue) def producer(): for item in generator: queue.put(item) queue.put(sentinel) # start producer (in a background thread) thread = threading.Thread(target=producer) thread.daemon = True thread.start() # run as consumer (read items from queue, in current thread) item = queue.get() while item is not sentinel: yield item queue.task_done() item = queue.get() class Data(object): """ This is the base class for all data iterators suitable for use in training, and can be used for simple data iteration. """ def __init__(self, features, labels=None, batch_size=128, alter_features=None, alter_labels=None, start=0, stop=None, allow_partial_batch=False): self.batch_size = batch_size self.features = features self.labels = labels self.alter_features = alter_features self.alter_labels = alter_labels self.start = start self.stop = stop self.allow_partial_batch = allow_partial_batch if self.batch_size is None: raise TypeError("Batch size may not be None!") self.n_rows = 0 self._setup() def __len__(self): stop = self.n_rows if (self.stop is None or self.stop > self.n_rows) else self.stop return stop - self.start def _setup(self): """Execute setup tasks, both input checking and creating derived attributes.""" # Turn non-Reader data inputs into Readers. self.features = get_reader(self.features, labels=False) if self.labels is not None: self.labels = get_reader(self.labels, labels=True) self.n_rows = len(self.features) # For alteration, turn None into a do-nothing function. if self.alter_features is None: self.alter_features = lambda x: x if self.alter_labels is None: self.alter_labels = lambda x: x # Check the inputs. if self.labels is not None and len(self.features) != len(self.labels): raise ValueError("The features have {} rows, but the labels have {} " "rows.".format(len(self.features), len(self.labels))) # Figure out where we're starting each section of the data as a fraction of the whole. self.n_epochs = 0 def iter_epoch(self, num_cached=3): for item in threaded_generator(self.iter_epoch_single(), num_cached=num_cached): yield item def iter_epoch_single(self): """Iterate through the data represented by this object. **Yields** A 2-tuple minibatch of (features, labels) if this object holds labels, else a minibatch of features. """ # Set up the feature and label iterators. feature_rdr = self.features.iter_epoch(batch_size=self.batch_size, start=self.start, stop=self.stop, start_on_batch=True, allow_partial=self.allow_partial_batch) data = feature_rdr if self.labels is not None: label_rdr = self.labels.iter_epoch(batch_size=self.batch_size, start=self.start, stop=self.stop, start_on_batch=True, allow_partial=self.allow_partial_batch) data = six.moves.zip(feature_rdr, label_rdr) # Iterate over the data. for item in data: if self.labels is not None: yield self.alter_features(item[0]), self.alter_labels(item[1]) else: yield self.alter_features(item) self.n_epochs += 1 def peek(self): """Return the first epoch of data.""" return next(self.iter_epoch_single()) class DataWithHoldoutParitions(object): """ This class partitions input data into three sections: training data, validation data, and testing data. It uses rows of input data in the order it finds them. The first section of the data will be used for training, the middle section for validation, and the last section for testing. This object will have a training set as `self.train`, a validation set (if any) as `self.valid`, and a test set (if any) as `self.test`. """ def __init__(self, features, labels=None, batch_size=128, valid_frac=0.1, test_frac=0.1, alter_features=None, alter_labels=None): self.batch_size = batch_size self.valid_frac = valid_frac self.test_frac = test_frac self.features = features self.labels = labels self.alter_features = alter_features self.alter_labels = alter_labels self.n_rows = {} self._setup() self._set_partitions() def __len__(self): return self.n_rows["all"] def _setup(self): """Execute setup tasks, both input checking and creating derived attributes.""" # Turn non-Reader data inputs into Readers. self.features = get_reader(self.features, labels=False) if self.labels is not None: self.labels = get_reader(self.labels, labels=True) self.n_rows["all"] = len(self.features) # Allow None for valid or test fractions. if self.valid_frac is None: self.valid_frac = 0. if self.test_frac is None: self.test_frac = 0. # Check the inputs. if self.labels is not None and len(self.features) != len(self.labels): raise ValueError("The features have {} rows, but the labels have {} " "rows.".format(len(self.features), len(self.labels))) if self.valid_frac > 1 or self.valid_frac < 0: raise ValueError("Select a validation set fraction from [0, 1).") if self.test_frac > 1 or self.test_frac < 0: raise ValueError("Select a test set fraction from [0, 1).") # Figure out where we're starting each section of the data as a fraction of the whole. self.n_epochs = {"train": 0, "test": 0, "valid": 0} self._start_stop_frac = {"train": (0., 1 - self.valid_frac - self.test_frac), "valid": (1 - self.valid_frac - self.test_frac, 1 - self.test_frac), "test": (1 - self.test_frac, None)} if self._start_stop_frac["train"][1] <= 0: raise ValueError("A validation set of {%:.2} of the data and test set of {%:.2} of " "the data don't leave any training " "data.".format(self.valid_frac, self.test_frac)) # Translate the start/stop fractions into start/stop rows. self.start_stop = {} for key, val in self._start_stop_frac.items(): start_row = self.features.get_start_row(val[0], batch_size=self.batch_size) # The `batch_size` input makes sure each section stops at an integer number of batches. # Allow the test partition (the last one) to go to the end of the data. stop_row = self.features.get_stop_row(start_row, val[1], batch_size=(None if key == "test" else self.batch_size)) self.start_stop[key] = (start_row, stop_row) self.n_rows[key] = stop_row - start_row # Record if there's data partitions we're not using. self.using_partition = {"valid": self.valid_frac, "test": self.test_frac, "train": True} def _set_partitions(self): """Create a `Data` object for training, testing, and validation partitions, and store them in this instance.""" for partition_name in ["train", "test", "valid"]: if self.using_partition[partition_name]: partition = Data(self.features, self.labels, self.batch_size, alter_features=self.alter_features, alter_labels=self.alter_labels, start=self.start_stop[partition_name][0], stop=self.start_stop[partition_name][1], allow_partial_batch=(partition_name != "train")) else: partition = None setattr(self, partition_name, partition) def iter_epoch(self, which="train", num_cached=3): """Return an iterator which steps through one epoch of the specified partition.""" if not self.using_partition[which]: return if which not in self.start_stop: raise ValueError("Pick `which` from {}.".format(list(self.start_stop.keys()))) return getattr(self, which).iter_epoch(num_cached=num_cached) def get_reader(src, labels=False): """Returns a Reader of the appropriate type to iterate over the given source. If the source is an HDF5 file, we'll attempt to guess the table name. Create the Reader manually if you have an HDF5 file with a non-inferrable table name. """ # If the input is a file, figure out which type. if isinstance(src, six.string_types): ftype = files.get_file_type(src) else: ftype = None # If the input was the name of a pickle file, read from that pickle. # If there's two things inside, then assume it's a tuple of (features, labels). # Otherwise assume that the entire thing is what we want. if ftype == "pkl": data = files.read_pickle(src) if len(data) == 2: if labels: log.debug("Taking the second element of data in {} as our labels.".format(src)) src = data[1] else: log.debug("Taking the first element of data in {} as our features.".format(src)) src = data[0] else: src = data # Turn the input into a Reader, if it isn't already. if isinstance(src, np.ndarray) or (pd is not None and isinstance(src, pd.DataFrame)): rdr = ArrayReader(src) elif ftype == "hdf": if pd is None: raise ImportError("`pandas` is required for HDF5 file reading.") # HDF5 file input. Try to infer the proper table name. with pd.HDFStore(src, "r") as store: keys = [k.strip("/") for k in store.keys()] if len(keys) == 1: table_name = keys[0] else: # Assume that a table holds labels if it has one of a standard set of names. label_keys = [k for k in keys if k in ["label", "labels", "target", "targets"]] if labels: if len(label_keys) == 1: table_name = label_keys[0] else: raise ValueError("I could not infer the name of the table holding labels " "in {}.".format(src)) else: if len(keys) - len(label_keys) == 1: table_name = [k for k in keys if k not in label_keys][0] else: raise ValueError("I could not infer the name of the table holding features " "in {}.".format(src)) rdr = HDFReader(src, table_name) elif isinstance(src, Reader): # The input could already be a Reader, in which case we don't need to do anything. rdr = src else: raise TypeError("Could not figure out what to do with data source {}.".format(src)) return rdr class Reader(object): """ This is the abstract base class for reading data from various sources. """ __metaclass__ = abc.ABCMeta def __init__(self, data_src): self.data_src = data_src # Set the following attributes in the subclasses, once we know how to figure # this information out from the input data. self.n_rows = None self.shape = None # This is the shape of a single row of data. self.ndim = None # The number of dimensions of a single row of data. self.dtype = None # This is the data type of the entire data store, not a single row (which might have mixed dtypes). @abc.abstractmethod def iter_epoch(self, batch_size, start=0, stop=None, start_on_batch=True, allow_partial=False): """Iterate through an opened data source.""" def __len__(self): return self.n_rows def get_start_row(self, start, batch_size=None): """Figure out which row iteration should start from. Translate a fraction-of-the-file input into a row index, and shift the start row to lie on the closest previous batch boundary, if we're given a `batch_size`. **Parameters** * `start` <int or float>: Start iterating from here. May be an integer row index or a float fraction of the total rows. **Optional Parameters** * `batch_size` <int|None>: If provided, shift the starting row so that it's the first row at or before `start` which is a multiple of `batch_size`. **Returns** An integer row index. **Raises** `ValueError` if `start` is bad. """ # Do input checking on the `start`, and convert it to the appropriate row index if needed. if isinstance(start, (float, np.floating)): # Convert fractional starts to row numbers if start >= 1. or start < 0: raise ValueError("Fractional start locations must be in [0., 1).") start = int(start * self.n_rows) if start >= self.n_rows or start < 0: # Make sure we're not out of bounds. raise ValueError("Can't start at row {} of a {}-row array.".format(start, self.n_rows)) if batch_size is not None: # Often we'll want to start an integer number of batches into the array. start = (start // batch_size) * batch_size return start def get_stop_row(self, start, stop, batch_size=None): """Figure out where iteration should end. Translate a fraction-of-the-file input into a row index, and shift the end row to be such that iteration will cover an integer number of batches, if we're given a `batch_size`. **Parameters** * `start` <int>: Start iterating from here. Used to adjust the end row so that we reach an integer number of batches. * `stop` <int or float>: Stop iterating here. May be an integer row index or a float fraction of the total number of rows. **Optional Parameters** * `batch_size` <int|None>: If provided, shift the ending row so that it's the first row at or before `stop` which is a multiple of `batch_size` away from `start`. **Returns** An integer row index. **Raises** `ValueError` if `stop` is bad or `start` is not an integer. """ # If `start` is accidentally a fraction, this won't work. if isinstance(start, (float, np.floating)): raise ValueError("`start` must be a number of rows, not a fraction.") # Do input checking on the `stop`, and convert it to the appropriate row index if needed. if stop is None: stop = self.n_rows # Default to taking all of the available rows. elif isinstance(stop, (float, np.floating)) or stop == 1: if stop > 1. or stop <= 0: raise ValueError("Fractional stop locations must be in (0., 1].") stop = int(stop * self.n_rows) if stop > self.n_rows or stop <= 0: raise ValueError("Can't stop at row {} of a {}-row array.".format(stop, self.n_rows)) # Adjust the `stop` so that it's an integer number of batches from the `start`. if batch_size is not None: stop = ((stop - start) // batch_size) * batch_size + start return stop class HDFReader(Reader): """ Read from an HDF5 file. We assume that the images are stored in a pandas structure which can be cast as an array. The tables should be created appendable so that they have all the necessary metadata. Images should be stored as either a Panel or Panel4D. For example, you can store a single image in a row of an HDF5 table as store = pd.HDFStore(filename) for i_row, image in enumerate(all_my_images): store.append("labels", labels.iloc[i_row: i_row + 1]) store.append("images", pd.Panel4D({labels.index[i_row]: image}), axes=["labels", "major_axis", "minor_axis"], complib="zlib", complevel=9) store.close() Here, "labels" is a Series object containing the labels of all your images, and "image" is a 3D array with the color axis first. """ def __init__(self, fname, table=None, color=None, asarray=None): """ * `fname` <str>: File name of an HDF5 file * `table` <str|None>: Name of a table in `fname` which contains data. Must be supplied if the file has more than one table. * `color` <int|None>: Default choice for the `color` input to `iter_epochs`. * `asarray` <bool|None>: Cast outputs to arrays? Defaults to True if the rows of data have more than 1 dimension, and False for 1D rows. """ if pd is None: raise ImportError("`pandas` is required for HDF5 file reading.") super(HDFReader, self).__init__(fname) self.color = color self.filename = fname self.table_name = table with pd.HDFStore(self.filename, "r") as data_src: if self.table_name is None: if len(data_src.keys()) > 1: raise ValueError("The HDF5 file has tables {}: which do you " "want?".format(data_src.keys())) else: self.table_name = data_src.keys()[0].strip("/") # Read the first row of data to find the shape. # Trim the first element from the shape -- it will be 1, the number of rows we read. # Assume that the "rows" of data are designated by the first of the index axes. # For a Panel4D, this is "labels". For a Panel, this is "items". self._index_name = data_src.get_storer(table).index_axes[0].name first_row = data_src.select(table, where="{} == 0".format(self._index_name)) self.shape = first_row.shape[1:] self.ndim = len(self.shape) self.dtype = type(first_row) if hasattr(first_row, "columns"): # Support reading the header from DataFrames. self.header = first_row.columns else: self.header = None # Figure out if we should cast the output to arrays. if asarray is None: asarray = self.ndim > 1 self.asarray = asarray # Figure out how many rows of data are in the table. # Pandas stores data of > 2D in row x column format. One dimension of input data # will be the "columns", and all the rest will be flattened into rows. self._n_cols = data_src.get_storer(table).ncols self.n_rows = (data_src.get_storer(table).nrows / (np.prod(self.shape) / self._n_cols)) if self.n_rows != int(self.n_rows): raise ValueError("Table {} appears to have data of shape {}, but I failed to find the " "correct number of rows.".format(data_src.get_storer(table), self.shape)) self.n_rows = int(self.n_rows) log.debug("Opened file {}. I found {} rows of data with shape " "{}.".format(self.filename, self.n_rows, self.shape)) def iter_epoch(self, batch_size, start=0, stop=None, start_on_batch=True, allow_partial=False, color=None): """ Iterate through this array, one batch at a time. **Parameters** * `batch_size` <int>: Number of rows of the array to return at once. **Optional Parameters** * `start` <int or float|0>: Start at this row. Either an integer row number, or a fraction of the total rows. We may start at a slightly different row if `start_on_batch` is True. * `stop` <int or float|None>: Stop iterating when we reach this many rows. May be given as a fraction of the total rows in the array. Will be modified so that we iterate through an integer number of batches (unless `allow_partial` is True). Default to stopping at the end of the array. * `start_on_batch` <bool|True>: If True, modify the `start` row so that we begin at an integer number of batches into the array, at or before the requested `start`. * `allow_partial` <bool|False>: If False, every returned batch will have `batch_size` rows. Iteration will stop at or before the requested `stop` row. If True, the final returned batch may have fewer rows, if the requested chunk of data is not an integer number of batches. * `color` <int|None>: If not None, select this index from the last axis of the shared data. For multicolor images, we expect to have shape (rows, columns, colors). Will not work if the data are not stored as a Panel or Panel4D. **Returns** An iterator over portions of the array. """ if color is None: color = self.color if color is not None and self.dtype not in [pd.Panel, pd.Panel4D]: raise ValueError("Cannot select a `color` unless reading image data.") start = self.get_start_row(start=start, batch_size=(batch_size if start_on_batch else None)) stop = self.get_stop_row(start, stop, batch_size=(None if allow_partial else batch_size)) log.debug("Iterating through HDF5 file {} from row {} to row {} in batches " "of {}.".format(self.filename, start, min([stop, self.n_rows]), batch_size)) # Set up the iteration. array_maker = (lambda x: np.asarray(x, dtype=theano.config.floatX).squeeze()) \ if self.asarray else (lambda x: x) item_size = np.prod(self.shape) / self._n_cols # A single row of data is this many "rows" in the HDF5Store. if color is not None: item_size /= self.shape[-1] where_stmt = "minor_axis == {color}".format(color=color) if color is not None else None # Iterate through the data. with pd.HDFStore(self.filename, "r") as data_src: for chunk in data_src.select(self.table_name, start=start * item_size, stop=stop * item_size, chunksize=batch_size * item_size, where=where_stmt): yield array_maker(chunk) # Code below preserved as a different way of iterating through the table. # It's possibly less efficient, and suffers from the flaw of assuming that the # index is integers from 0 to n_rows. #where_stmt += "({index} >= {start} & {index} < {stop})".format(index=self._index_name, # start="{start}", # stop="{stop}") #for i_start in range(start, stop, batch_size): # i_stop = min([i_start + batch_size, stop]) # yield array_maker(self.data_src.select( # self.table_name, where=where_stmt.format(start=i_start, stop=i_stop))).squeeze() class ArrayReader(Reader): """ Read from an array which is entirely in memory. """ def __init__(self, array): """Initialize from an input array. The input may also be the file name of a pickle which contains a single array. """ if isinstance(array, six.string_types): array = files.read_pickle(array) super(ArrayReader, self).__init__(np.asarray(array)) self.n_rows = len(array) self.shape = array.shape[1:] self.ndim = len(self.shape) self.dtype = array.dtype def iter_epoch(self, batch_size, start=0, stop=None, start_on_batch=True, allow_partial=False): """ Iterate through this array, one batch at a time. **Parameters** * `batch_size` <int>: Number of rows of the array to return at once. **Optional Parameters** * `start` <int or float|0>: Start at this row. Either an integer row number, or a fraction of the total rows. We may start at a slightly different row if `start_on_batch` is True. * `stop` <int or float|None>: Stop iterating when we reach this many rows. May be given as a fraction of the total rows in the array. Will be modified so that we iterate through an integer number of batches (unless `allow_partial` is True). Default to stopping at the end of the array. * `start_on_batch` <bool|True>: If True, modify the `start` row so that we begin at an integer number of batches into the array, at or before the requested `start`. * `allow_partial` <bool|False>: If False, every returned batch will have `batch_size` rows. Iteration will stop at or before the requested `stop` row. If True, the final returned batch may have fewer rows, if the requested chunk of data is not an integer number of batches. **Returns** An iterator over portions of the array. """ start = self.get_start_row(start=start, batch_size=(batch_size if start_on_batch else None)) stop = self.get_stop_row(start, stop, batch_size=(None if allow_partial else batch_size)) log.debug("Iterating through array from row {} to row {} in batches " "of {}.".format(start, min([stop, self.n_rows]), batch_size)) for i_start in range(start, stop, batch_size): yield self.data_src[i_start: min([i_start + batch_size, stop])]
43.590327
126
0.597442
49815985a6d7f6697cb7354450e50e63a63d4e1a
3,187
py
Python
modeller.py
fuxes/jiminy-modeler
b584a2cd8e73ec825c256546eacd0556545e7c74
[ "Apache-2.0" ]
1
2018-06-02T03:37:20.000Z
2018-06-02T03:37:20.000Z
modeller.py
fuxes/jiminy-modeler
b584a2cd8e73ec825c256546eacd0556545e7c74
[ "Apache-2.0" ]
21
2017-11-10T21:25:02.000Z
2018-04-13T14:13:56.000Z
modeller.py
fuxes/jiminy-modeler
b584a2cd8e73ec825c256546eacd0556545e7c74
[ "Apache-2.0" ]
5
2017-10-19T09:46:32.000Z
2018-08-21T18:34:28.000Z
"""ALS Modeller for Project Jiminy.""" import itertools import math import operator import time import pyspark.mllib.recommendation as rec import logger loggers = logger.get_logger() class Estimator: """Estimator class for Project Jiminy. Used to determine Model parameters. """ def __init__(self, data): self._data = data # std bootstrap proportions for the training, validation and testing self._sets = self._split([0.6, 0.3, 0.1]) def _split(self, proportions): """Split data into three random chunks.""" split = self._data.randomSplit(proportions) return {'training': split[0], 'validation': split[1], 'test': split[2]} def rmse(self, model): """Compute root mean squared error for the validation set.""" predictions = model.predictAll( self._sets['validation'].map(lambda x: (x[0], x[1]))) predictions_rating = predictions.map(Estimator.group_ratings) validation_rating = self._sets['validation'].map( Estimator.group_ratings) joined = validation_rating.join(predictions_rating) return math.sqrt(joined.map(lambda x: (x[1][0] - x[1][1]) ** 2).mean()) @staticmethod def group_ratings(x): """Return ((userId, movieId), rating).""" return ((int(x[0]), int(x[1])), float(x[2])) def _train(self, rank, iterations, lambda_, seed): """Train a model, using the given parameters.""" return rec.ALS.train(ratings=self._sets['training'], rank=rank, seed=seed, lambda_=lambda_, iterations=iterations) def run(self, ranks, lambdas, iterations): """Return optimal parameters from given input sets.""" rmses = [] combos = [] for parameters in itertools.product(ranks, lambdas, iterations): rank, lambda_, iteration = parameters loggers.info("Evaluating parameters: %s" % str(parameters)) start_time = time.time() rmse = self.rmse(self._train(rank=rank, iterations=iteration, lambda_=lambda_, seed=42)) elapsed_time = time.time() - start_time loggers.info("RMSE = %f (took %f seconds)" % (rmse, elapsed_time)) rmses.append(rmse) combos.append(parameters) maximum = min(enumerate(rmses), key=operator.itemgetter(1))[0] optimal = combos[maximum] return { 'rank': optimal[0], 'lambda': optimal[1], 'iteration': optimal[2] } class Trainer: """Train the ALS model.""" def __init__(self, data, rank, iterations, lambda_, seed): self._data = data self.rank = rank self.iterations = iterations self.lambda_ = lambda_ self.seed = seed def train(self): return rec.ALS.train(ratings=self._data, rank=self.rank, seed=self.seed, lambda_=self.lambda_, iterations=self.iterations)
35.808989
79
0.571698
9a919c5329c8a2cc391ef49a72b9b586787144cb
3,581
py
Python
source/SpotInterruptionTriggerFunction/app.py
horsfieldsa/ec2-spot-interruption-dashboard
27d25c3243beac82627d46aca0b6c9c06ca0feb0
[ "MIT-0" ]
27
2020-05-15T20:15:42.000Z
2022-03-16T04:13:46.000Z
source/SpotInterruptionTriggerFunction/app.py
horsfieldsa/ec2-spot-interruption-dashboard
27d25c3243beac82627d46aca0b6c9c06ca0feb0
[ "MIT-0" ]
5
2020-05-15T22:29:30.000Z
2021-04-14T19:55:48.000Z
source/SpotInterruptionTriggerFunction/app.py
horsfieldsa/ec2-spot-interruption-dashboard
27d25c3243beac82627d46aca0b6c9c06ca0feb0
[ "MIT-0" ]
10
2020-05-15T20:21:42.000Z
2022-01-25T10:27:55.000Z
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import boto3 import os import json import logging from botocore.exceptions import ClientError logger = logging.getLogger() logger.setLevel(logging.INFO) instance_metadata_table = boto3.resource('dynamodb').Table(os.environ['INSTANCE_METADATA_TABLE']) def lambda_handler(event, context): logger.info(event) # Transform CloudWatch Event item = { 'InstanceId': event['detail']['instance-id'], 'Region': event['region'], 'LastEventTime': event['time'], 'LastEventType': 'spot-interruption', 'State': 'none', 'Interrupted': True, 'InterruptedInstanceAction': event['detail']['instance-action'], 'InterruptionTime': event['time'] } logger.info(item) # Commit to DynamoDB try: response=instance_metadata_table.update_item( Key={ 'InstanceId': item['InstanceId'] }, UpdateExpression="SET #Region = :Region, #LastEventTime = :LastEventTime, #LastEventType = :LastEventType, #Interrupted = :Interrupted, #InterruptedInstanceAction = :InterruptedInstanceAction, #InterruptionTime = :InterruptionTime, #EventHistory = list_append(if_not_exists(#EventHistory, :empty_list), :EventHistory)", ExpressionAttributeNames={ '#Region' : 'Region', '#LastEventTime' : 'LastEventTime', '#LastEventType' : 'LastEventType', '#Interrupted' : 'Interrupted', '#InterruptedInstanceAction' : 'InterruptedInstanceAction', '#InterruptionTime' : 'InterruptionTime', '#EventHistory' : 'EventHistory' }, ExpressionAttributeValues={ ':Region': item['Region'], ':LastEventTime': item['LastEventTime'], ':LastEventType': item['LastEventType'], ':Interrupted': item['Interrupted'], ':InterruptedInstanceAction': item['InterruptedInstanceAction'], ':InterruptionTime': item['InterruptionTime'], ':EventHistory': [{ "Name": item['LastEventType'], "Time": item['LastEventTime'], "State": item['State'] }], ":empty_list": [] }, ReturnValues="NONE" ) logger.info(response) except ClientError as e: message = 'Error updating instance in DynamoDB: {}'.format(e) logger.info(message) raise Exception(message) # End logger.info('Execution Complete') return
41.16092
331
0.633343
bebd5bf8e72954dde3e59224030c1c2cff462e3a
18,128
py
Python
pyriemann/estimation.py
stonebig/pyRiemann
176e766f540bd4c7846f38573165fc3d27fc69ca
[ "BSD-3-Clause" ]
null
null
null
pyriemann/estimation.py
stonebig/pyRiemann
176e766f540bd4c7846f38573165fc3d27fc69ca
[ "BSD-3-Clause" ]
null
null
null
pyriemann/estimation.py
stonebig/pyRiemann
176e766f540bd4c7846f38573165fc3d27fc69ca
[ "BSD-3-Clause" ]
null
null
null
"""Estimation of covariance matrices.""" import numpy as np from .spatialfilters import Xdawn from .utils.covariance import (covariances, covariances_EP, cospectrum, coherence) from sklearn.base import BaseEstimator, TransformerMixin from sklearn.covariance import shrunk_covariance def _nextpow2(i): """Find next power of 2.""" n = 1 while n < i: n *= 2 return n class Covariances(BaseEstimator, TransformerMixin): """Estimation of covariance matrix. Perform a simple covariance matrix estimation for each given trial. Parameters ---------- estimator : string (default: 'scm') covariance matrix estimator. For regularization consider 'lwf' or 'oas' For the complete list of estimators, see parameter `estimator` of :func:`pyriemann.utils.covariance.covariances`. See Also -------- ERPCovariances XdawnCovariances CospCovariances HankelCovariances """ def __init__(self, estimator='scm'): """Init.""" self.estimator = estimator def fit(self, X, y=None): """Fit. Do nothing. For compatibility purpose. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. y : ndarray shape (n_trials,) labels corresponding to each trial, not used. Returns ------- self : Covariances instance The Covariances instance. """ return self def transform(self, X): """Estimate covariance matrices. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. Returns ------- covmats : ndarray, shape (n_trials, n_channels, n_channels) ndarray of covariance matrices for each trials. """ covmats = covariances(X, estimator=self.estimator) return covmats class ERPCovariances(BaseEstimator, TransformerMixin): r"""Estimate special form covariance matrix for ERP. Estimation of special form covariance matrix dedicated to ERP processing. For each class, a prototyped response is obtained by average across trial : .. math:: \mathbf{P} = \frac{1}{N} \sum_i^N \mathbf{X}_i and a super trial is build using the concatenation of P and the trial X : .. math:: \mathbf{\tilde{X}}_i = \left[ \begin{array}{c} \mathbf{P} \\ \mathbf{X}_i \end{array} \right] This super trial :math:`\mathbf{\\tilde{X}}_i` will be used for covariance estimation. This allows to take into account the spatial structure of the signal, as described in [1]. Parameters ---------- classes : list of int | None (default None) list of classes to take into account for prototype estimation. If None (default), all classes will be accounted. estimator : string (default: 'scm') covariance matrix estimator. For regularization consider 'lwf' or 'oas' For the complete list of estimators, see parameter `estimator` of :func:`pyriemann.utils.covariance.covariances`. svd : int | None (default None) if not none, the prototype responses will be reduce using a svd using the number of components passed in svd. See Also -------- Covariances XdawnCovariances CospCovariances HankelCovariances References ---------- [1] A. Barachant, M. Congedo ,"A Plug&Play P300 BCI Using Information Geometry", arXiv:1409.0107, 2014. [2] M. Congedo, A. Barachant, A. Andreev ,"A New generation of Brain-Computer Interface Based on Riemannian Geometry", arXiv: 1310.8115. 2013. [3] A. Barachant, M. Congedo, G. Van Veen, C. Jutten, "Classification de potentiels evoques P300 par geometrie riemannienne pour les interfaces cerveau-machine EEG", 24eme colloque GRETSI, 2013. """ def __init__(self, classes=None, estimator='scm', svd=None): """Init.""" self.classes = classes self.estimator = estimator self.svd = svd if svd is not None: if not isinstance(svd, int): raise TypeError('svd must be None or int') def fit(self, X, y): """Fit. Estimate the Prototyped response for each classes. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. y : ndarray shape (n_trials,) labels corresponding to each trial. Returns ------- self : ERPCovariances instance The ERPCovariances instance. """ if self.classes is not None: classes = self.classes else: classes = np.unique(y) self.P_ = [] for c in classes: # Prototyped responce for each class P = np.mean(X[y == c, :, :], axis=0) # Apply svd if requested if self.svd is not None: U, s, V = np.linalg.svd(P) P = np.dot(U[:, 0:self.svd].T, P) self.P_.append(P) self.P_ = np.concatenate(self.P_, axis=0) return self def transform(self, X): """Estimate special form covariance matrices. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. Returns ------- covmats : ndarray, shape (n_trials, n_c, n_c) ndarray of covariance matrices for each trials, with n_c the size of covmats equal to n_channels * (n_classes + 1) in case svd is None and equal to n_channels + n_classes * svd otherwise. """ covmats = covariances_EP(X, self.P_, estimator=self.estimator) return covmats class XdawnCovariances(BaseEstimator, TransformerMixin): """Estimate special form covariance matrix for ERP combined with Xdawn. Estimation of special form covariance matrix dedicated to ERP processing combined with Xdawn spatial filtering. This is similar to `ERPCovariances` but data are spatially filtered with `Xdawn`. A complete descrition of the method is available in [1]_. The advantage of this estimation is to reduce dimensionality of the covariance matrices efficiently. Parameters ---------- nfilter: int (default 4) number of Xdawn filter per classes. applyfilters: bool (default True) if set to true, spatial filter are applied to the prototypes and the signals. When set to False, filters are applied only to the ERP prototypes allowing for a better generalization across subject and session at the expense of dimensionality increase. In that case, the estimation is similar to ERPCovariances with `svd=nfilter` but with more compact prototype reduction. classes : list of int | None (default None) list of classes to take into account for prototype estimation. If None (default), all classes will be accounted. estimator : string (default: 'scm') covariance matrix estimator. For regularization consider 'lwf' or 'oas' For the complete list of estimators, see parameter `estimator` of :func:`pyriemann.utils.covariance.covariances`. xdawn_estimator : string (default: 'scm') covariance matrix estimator for xdawn spatial filtering. baseline_cov : baseline_cov : array, shape(n_chan, n_chan) | None (default) baseline_covariance for xdawn. see `Xdawn`. See Also -------- ERPCovariances Xdawn References ---------- .. [1] Barachant, A. "MEG decoding using Riemannian Geometry and Unsupervised classification", 2014 """ def __init__(self, nfilter=4, applyfilters=True, classes=None, estimator='scm', xdawn_estimator='scm', baseline_cov=None): """Init.""" self.applyfilters = applyfilters self.estimator = estimator self.xdawn_estimator = xdawn_estimator self.classes = classes self.nfilter = nfilter self.baseline_cov = baseline_cov def fit(self, X, y): """Fit. Estimate spatial filters and prototyped response for each classes. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. y : ndarray shape (n_trials,) labels corresponding to each trial. Returns ------- self : XdawnCovariances instance The XdawnCovariances instance. """ self.Xd_ = Xdawn( nfilter=self.nfilter, classes=self.classes, estimator=self.xdawn_estimator, baseline_cov=self.baseline_cov) self.Xd_.fit(X, y) self.P_ = self.Xd_.evokeds_ return self def transform(self, X): """Estimate xdawn covariance matrices. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. Returns ------- covmats : ndarray, shape (n_trials, n_c, n_c) ndarray of covariance matrices for each trials. """ if self.applyfilters: X = self.Xd_.transform(X) covmats = covariances_EP(X, self.P_, estimator=self.estimator) return covmats ############################################################################### class CospCovariances(BaseEstimator, TransformerMixin): """Estimation of cospectral covariance matrix. Co-spectral matrices are the real part of complex cross-spectral matrices (see :func:`pyriemann.utils.covariance.cross_spectrum`), estimated as the spectrum covariance in the frequency domain. This method returns a 4-d array with a cospectral covariance matrice for each trial and in each frequency bin of the FFT. Parameters ---------- window : int (default 128) The length of the FFT window used for spectral estimation. overlap : float (default 0.75) The percentage of overlap between window. fmin : float | None, (default None) The minimal frequency to be returned. fmax : float | None, (default None) The maximal frequency to be returned. fs : float | None, (default None) The sampling frequency of the signal. Attributes ---------- freqs_ : ndarray, shape (n_freqs,) If transformed, the frequencies associated to cospectra. See Also -------- Covariances HankelCovariances Coherences """ def __init__(self, window=128, overlap=0.75, fmin=None, fmax=None, fs=None): """Init.""" self.window = _nextpow2(window) self.overlap = overlap self.fmin = fmin self.fmax = fmax self.fs = fs def fit(self, X, y=None): """Fit. Do nothing. For compatibility purpose. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. y : ndarray, shape (n_trials,) labels corresponding to each trial, not used. Returns ------- self : CospCovariances instance The CospCovariances instance. """ return self def transform(self, X): """Estimate the cospectral covariance matrices. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. Returns ------- covmats : ndarray, shape (n_trials, n_channels, n_channels, n_freqs) ndarray of covariance matrices for each trials and for each frequency bin. """ Nt = len(X) out = [] for i in range(Nt): S, freqs = cospectrum( X[i], window=self.window, overlap=self.overlap, fmin=self.fmin, fmax=self.fmax, fs=self.fs) out.append(S) self.freqs_ = freqs return np.array(out) class Coherences(CospCovariances): """Estimation of coherences matrix. Coherence matrix estimation. this method will return a 4-d array with a coherence matrice estimation for each trial and in each frequency bin of the FFT. The estimation of coherence matrix is done with matplotlib cohere function. Parameters ---------- window : int (default 128) The lengt of the FFT window used for spectral estimation. overlap : float (default 0.75) The percentage of overlap between window. fmin : float | None, (default None) the minimal frequency to be returned. fmax : float | None, (default None) The maximal frequency to be returned. fs : float | None, (default None) The sampling frequency of the signal. See Also -------- Covariances HankelCovariances CospCovariances """ def transform(self, X): """Estimate the coherences matrices. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. Returns ------- covmats : ndarray, shape (n_trials, n_channels, n_channels, n_freqs) ndarray of coherence matrices for each trials and for each frequency bin. """ Nt, Ne, _ = X.shape out = [] for i in range(Nt): S = coherence( X[i], window=self.window, overlap=self.overlap, fmin=self.fmin, fmax=self.fmax, fs=self.fs) out.append(S) return np.array(out) class HankelCovariances(BaseEstimator, TransformerMixin): """Estimation of covariance matrix with time delayed hankel matrices. This estimation is usefull to catch spectral dynamics of the signal, similarly to the CSSP method. It is done by concatenating time delayed version of the signal before covariance estimation. Parameters ---------- delays: int, list of int (default, 2) the delays to apply for the hankel matrices. if Int, it use a range of delays up to the given value. A list of int can be given. estimator : string (default: 'scm') covariance matrix estimator. For regularization consider 'lwf' or 'oas' For the complete list of estimators, see parameter `estimator` of :func:`pyriemann.utils.covariance.covariances`. See Also -------- Covariances ERPCovariances XdawnCovariances CospCovariances """ def __init__(self, delays=4, estimator='scm'): """Init.""" self.delays = delays self.estimator = estimator def fit(self, X, y=None): """Fit. Do nothing. For compatibility purpose. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. y : ndarray shape (n_trials,) labels corresponding to each trial, not used. Returns ------- self : Covariances instance The Covariances instance. """ return self def transform(self, X): """Estimate the hankel covariance matrices. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of trials. Returns ------- covmats : ndarray, shape (n_trials, n_channels, n_channels) ndarray of covariance matrices for each trials. """ if isinstance(self.delays, int): delays = range(1, self.delays) else: delays = self.delays X2 = [] for x in X: tmp = x for d in delays: tmp = np.r_[tmp, np.roll(x, d, axis=-1)] X2.append(tmp) X2 = np.array(X2) covmats = covariances(X2, estimator=self.estimator) return covmats class Shrinkage(BaseEstimator, TransformerMixin): """Regularization of covariance matrices by shrinkage This transformer apply a shrinkage regularization to any covariance matrix. It directly use the `shrunk_covariance` function from scikit learn, applied on each trial. Parameters ---------- shrinkage: float, (default, 0.1) Coefficient in the convex combination used for the computation of the shrunk estimate. must be between 0 and 1 Notes ----- .. versionadded:: 0.2.5 """ def __init__(self, shrinkage=0.1): """Init.""" self.shrinkage = shrinkage def fit(self, X, y=None): """Fit. Do nothing. For compatibility purpose. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_samples) ndarray of Target data. y : ndarray shape (n_trials,) Labels corresponding to each trial, not used. Returns ------- self : Shrinkage instance The Shrinkage instance. """ return self def transform(self, X): """Shrink and return the covariance matrices. Parameters ---------- X : ndarray, shape (n_trials, n_channels, n_channels) ndarray of covariances matrices Returns ------- covmats : ndarray, shape (n_trials, n_channels, n_channels) ndarray of covariance matrices for each trials. """ covmats = np.zeros_like(X) for ii, x in enumerate(X): covmats[ii] = shrunk_covariance(x, self.shrinkage) return covmats
29.963636
79
0.589365
4b885584ea2f63e286e80a8812a9ed659ffbfebf
354
py
Python
ssdcoin/simulator/simulator_constants.py
ZeDon-SP/ssdcoin-blockchain
310b461fa43e26305771322438206d9a5fc00f7a
[ "Apache-2.0" ]
7
2021-07-20T16:54:56.000Z
2021-11-05T10:05:07.000Z
ssdcoin/simulator/simulator_constants.py
ZeDon-SP/ssdcoin-blockchain
310b461fa43e26305771322438206d9a5fc00f7a
[ "Apache-2.0" ]
2
2021-07-23T15:26:36.000Z
2021-08-18T17:37:50.000Z
ssdcoin/simulator/simulator_constants.py
ZeDon-SP/ssdcoin-blockchain
310b461fa43e26305771322438206d9a5fc00f7a
[ "Apache-2.0" ]
null
null
null
if __name__ == "__main__": from tests.block_tools import BlockTools, test_constants from ssdcoin.util.default_root import DEFAULT_ROOT_PATH # TODO: mariano: fix this with new consensus bt = BlockTools(root_path=DEFAULT_ROOT_PATH) new_genesis_block = bt.create_genesis_block(test_constants, b"0") print(bytes(new_genesis_block))
35.4
69
0.768362