hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
79e4261b270b2f4b4da8adf6d55060619b3bf568
5,664
py
Python
tools/generate_conda_file.py
awesome-archive/nlp-2
79bc954601642679cf19e3750a1ee0b0f1b66b62
[ "MIT" ]
2
2020-01-06T05:44:03.000Z
2020-06-15T18:10:09.000Z
tools/generate_conda_file.py
CharlotteSean/nlp-1
79bc954601642679cf19e3750a1ee0b0f1b66b62
[ "MIT" ]
null
null
null
tools/generate_conda_file.py
CharlotteSean/nlp-1
79bc954601642679cf19e3750a1ee0b0f1b66b62
[ "MIT" ]
null
null
null
#!/usr/bin/python # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # This script creates yaml files to build conda environments # For generating a conda file for running only python code: # $ python generate_conda_file.py # # For generating a conda file for running python gpu: # $ python generate_conda_file.py --gpu import argparse import textwrap from sys import platform HELP_MSG = """ To create the conda environment: $ conda env create -f {conda_env}.yaml To update the conda environment: $ conda env update -f {conda_env}.yaml To register the conda environment in Jupyter: $ conda activate {conda_env} $ python -m ipykernel install --user --name {conda_env} \ --display-name "Python ({conda_env})" """ CHANNELS = ["defaults", "conda-forge", "pytorch"] CONDA_BASE = { "python": "python==3.6.8", "pip": "pip>=19.1.1", "ipykernel": "ipykernel>=4.6.1", "jupyter": "jupyter>=1.0.0", "matplotlib": "matplotlib>=2.2.2", "numpy": "numpy>=1.13.3", "pandas": "pandas>=0.24.2", "pytest": "pytest>=3.6.4", "pytorch": "pytorch-cpu>=1.0.0", "scipy": "scipy>=1.0.0", "tensorflow": "tensorflow==1.12.0", "h5py": "h5py>=2.8.0", "tensorflow-hub": "tensorflow-hub==0.5.0", "py-xgboost": "py-xgboost<=0.80", "dask": "dask[dataframe]==1.2.2", } CONDA_GPU = { "numba": "numba>=0.38.1", "pytorch": "pytorch>=1.0.0", "tensorflow": "tensorflow-gpu==1.12.0", "cudatoolkit": "cudatoolkit==9.2" } PIP_BASE = { "allennlp": "allennlp==0.8.4", "azureml-sdk[automl]": "azureml-sdk[automl]==1.0.48", "azureml-train-automl": "azureml-train-automl==1.0.48", "azureml-dataprep": "azureml-dataprep==1.1.8", "azureml-widgets": "azureml-widgets==1.0.48", "azureml-mlflow": "azureml-mlflow>=1.0.43.1", "black": "black>=18.6b4", "cached-property": "cached-property==1.5.1", "papermill": "papermill>=1.0.1", "nteract-scrapbook": "nteract-scrapbook>=0.2.1", "pydocumentdb": "pydocumentdb>=2.3.3", "pytorch-pretrained-bert": "pytorch-pretrained-bert>=0.6", "tqdm": "tqdm==4.31.1", "pyemd": "pyemd==0.5.1", "ipywebrtc": "ipywebrtc==0.4.3", "pre-commit": "pre-commit>=1.14.4", "scikit-learn": "scikit-learn>=0.19.0,<=0.20.3", "setuptools_scm": "setuptools_scm==3.2.0", "sklearn-crfsuite": "sklearn-crfsuite>=0.3.6", "spacy": "spacy>=2.1.4", "spacy-models": ( "https://github.com/explosion/spacy-models/releases/download/" "en_core_web_sm-2.1.0/en_core_web_sm-2.1.0.tar.gz" ), "gensim": "gensim>=3.7.0", "nltk": "nltk>=3.4", "seqeval": "seqeval>=0.0.12", } PIP_GPU = {} PIP_DARWIN = {} PIP_DARWIN_GPU = {} PIP_LINUX = {} PIP_LINUX_GPU = {} PIP_WIN32 = {} PIP_WIN32_GPU = {} CONDA_DARWIN = {} CONDA_DARWIN_GPU = {} CONDA_LINUX = {} CONDA_LINUX_GPU = {} CONDA_WIN32 = {} CONDA_WIN32_GPU = {"pytorch": "pytorch==1.0.0", "cudatoolkit": "cuda90"} if __name__ == "__main__": parser = argparse.ArgumentParser( description=textwrap.dedent( """ This script generates a conda file for different environments. Plain python is the default, but flags can be used to support GPU functionality.""" ), epilog=HELP_MSG, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument("--name", help="specify name of conda environment") parser.add_argument("--gpu", action="store_true", help="include packages for GPU support") args = parser.parse_args() # set name for environment and output yaml file conda_env = "nlp_cpu" if args.gpu: conda_env = "nlp_gpu" # overwrite environment name with user input if args.name is not None: conda_env = args.name # add conda and pip base packages conda_packages = CONDA_BASE pip_packages = PIP_BASE # update conda and pip packages based on flags provided if args.gpu: conda_packages.update(CONDA_GPU) pip_packages.update(PIP_GPU) # update conda and pip packages based on os platform support if platform == "darwin": conda_packages.update(CONDA_DARWIN) pip_packages.update(PIP_DARWIN) if args.gpu: conda_packages.update(CONDA_DARWIN_GPU) pip_packages.update(PIP_DARWIN_GPU) elif platform.startswith("linux"): conda_packages.update(CONDA_LINUX) pip_packages.update(PIP_LINUX) if args.gpu: conda_packages.update(CONDA_LINUX_GPU) pip_packages.update(PIP_LINUX_GPU) elif platform == "win32": conda_packages.update(CONDA_WIN32) pip_packages.update(PIP_WIN32) if args.gpu: conda_packages.update(CONDA_WIN32_GPU) pip_packages.update(PIP_WIN32_GPU) else: raise Exception("Unsupported platform. Must be Windows, Linux, or macOS") # write out yaml file conda_file = "{}.yaml".format(conda_env) with open(conda_file, "w") as f: for line in HELP_MSG.format(conda_env=conda_env).split("\n"): f.write("# {}\n".format(line)) f.write("name: {}\n".format(conda_env)) f.write("channels:\n") for channel in CHANNELS: f.write("- {}\n".format(channel)) f.write("dependencies:\n") for conda_package in conda_packages.values(): f.write("- {}\n".format(conda_package)) f.write("- pip:\n") for pip_package in pip_packages.values(): f.write(" - {}\n".format(pip_package)) print("Generated conda file: {}".format(conda_file)) print(HELP_MSG.format(conda_env=conda_env))
31.466667
94
0.634887
ec34c61315c6598602f1ffdc06f206297bf32f3e
6,722
py
Python
sdk/sql/azure-mgmt-sql/azure/mgmt/sql/operations/_transparent_data_encryption_activities_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/sql/azure-mgmt-sql/azure/mgmt/sql/operations/_transparent_data_encryption_activities_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/sql/azure-mgmt-sql/azure/mgmt/sql/operations/_transparent_data_encryption_activities_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class TransparentDataEncryptionActivitiesOperations(object): """TransparentDataEncryptionActivitiesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.sql.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_configuration( self, resource_group_name, # type: str server_name, # type: str database_name, # type: str transparent_data_encryption_name, # type: Union[str, "_models.TransparentDataEncryptionName"] **kwargs # type: Any ): # type: (...) -> Iterable["_models.TransparentDataEncryptionActivityListResult"] """Returns a database's transparent data encryption operation result. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param server_name: The name of the server. :type server_name: str :param database_name: The name of the database for which the transparent data encryption applies. :type database_name: str :param transparent_data_encryption_name: The name of the transparent data encryption configuration. :type transparent_data_encryption_name: str or ~azure.mgmt.sql.models.TransparentDataEncryptionName :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either TransparentDataEncryptionActivityListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.sql.models.TransparentDataEncryptionActivityListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.TransparentDataEncryptionActivityListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2014-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_configuration.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'transparentDataEncryptionName': self._serialize.url("transparent_data_encryption_name", transparent_data_encryption_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('TransparentDataEncryptionActivityListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_configuration.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/servers/{serverName}/databases/{databaseName}/transparentDataEncryption/{transparentDataEncryptionName}/operationResults'} # type: ignore
50.541353
275
0.677328
35bd7fa805e8dffba1a9697f611b74ef6e403598
855
py
Python
trac/Lib/site-packages/docutils-0.9.1-py2.7.egg/EGG-INFO/scripts/rst2latex.py
thinkbase/PortableTrac
9ea0210f6b88f135ef73f370b48127af0495b2d7
[ "BSD-3-Clause" ]
2
2015-08-06T04:19:21.000Z
2020-04-29T23:52:10.000Z
trac/Lib/site-packages/docutils-0.9.1-py2.7.egg/EGG-INFO/scripts/rst2latex.py
thinkbase/PortableTrac
9ea0210f6b88f135ef73f370b48127af0495b2d7
[ "BSD-3-Clause" ]
null
null
null
trac/Lib/site-packages/docutils-0.9.1-py2.7.egg/EGG-INFO/scripts/rst2latex.py
thinkbase/PortableTrac
9ea0210f6b88f135ef73f370b48127af0495b2d7
[ "BSD-3-Clause" ]
null
null
null
#!E:\PortableTrac\Portable Python 2.7.3.1\App\python.exe # $Id: rst2latex.py 5905 2009-04-16 12:04:49Z milde $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing LaTeX. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline description = ('Generates LaTeX documents from standalone reStructuredText ' 'sources. ' 'Reads from <source> (default is stdin) and writes to ' '<destination> (default is stdout). See ' '<http://docutils.sourceforge.net/docs/user/latex.html> for ' 'the full reference.') publish_cmdline(writer_name='latex', description=description)
31.666667
77
0.653801
d915a4cb5b66660b42ea11c330e40d68f99bd71d
10,406
py
Python
raiden_contracts/tests/test_channel_deposit.py
marcosmartinez7/lumino-contracts
700d6cb6b4c90d0173b3d206238fd31a02dcb9bd
[ "MIT" ]
3
2019-06-12T14:50:12.000Z
2020-12-25T07:25:23.000Z
raiden_contracts/tests/test_channel_deposit.py
marcosmartinez7/lumino-contracts
700d6cb6b4c90d0173b3d206238fd31a02dcb9bd
[ "MIT" ]
2
2019-12-08T21:06:56.000Z
2021-01-21T02:44:58.000Z
raiden_contracts/tests/test_channel_deposit.py
marcosmartinez7/lumino-contracts
700d6cb6b4c90d0173b3d206238fd31a02dcb9bd
[ "MIT" ]
5
2019-06-12T14:02:07.000Z
2020-12-10T11:21:37.000Z
import pytest from eth_tester.exceptions import TransactionFailed from web3.exceptions import ValidationError from raiden_contracts.constants import TEST_SETTLE_TIMEOUT_MIN, ChannelEvent from raiden_contracts.tests.fixtures.channel import call_settle from raiden_contracts.tests.utils import ( EMPTY_ADDITIONAL_HASH, EMPTY_ADDRESS, EMPTY_BALANCE_HASH, EMPTY_SIGNATURE, FAKE_ADDRESS, MAX_UINT256, ChannelValues, ) from raiden_contracts.utils.events import check_new_deposit def test_deposit_channel_call(token_network, custom_token, create_channel, get_accounts): """ Calling setTotalDeposit() fails with various invalid inputs """ (A, B) = get_accounts(2) deposit_A = 200 channel_identifier = create_channel(A, B)[0] custom_token.functions.mint(deposit_A).call_and_transact({"from": A}) custom_token.functions.approve(token_network.address, deposit_A).call_and_transact({"from": A}) # Validation failure with an invalid channel identifier with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(-1, A, deposit_A, B) # Validation failure with the empty string instead of a channel identifier with pytest.raises(ValidationError): token_network.functions.setTotalDeposit("", A, deposit_A, B) # Validation failure with a negative number instead of an address with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(channel_identifier, -1, A, deposit_A) # Validation failure with an empty string instead of an address with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(channel_identifier, "", deposit_A, B) # Validation failure with an odd-length string instead of an address with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(channel_identifier, FAKE_ADDRESS, deposit_A, B) # Validation failure with the number zero instead of an address with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(channel_identifier, 0x0, deposit_A, B) # Validation failure with the empty string instead of an address with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(channel_identifier, A, deposit_A, "") # Validation failure with an odd-length string instead of an address with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(channel_identifier, A, deposit_A, FAKE_ADDRESS) # Validation failure with the number zero instead of an address with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(channel_identifier, A, deposit_A, 0x0) # Validation failure with a negative amount of deposit with pytest.raises(ValidationError): token_network.functions.setTotalDeposit(channel_identifier, A, -1, B) # Transaction failure with the zero address with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit( channel_identifier, EMPTY_ADDRESS, deposit_A, B ).call({"from": A}) # Transaction failure with the zero address with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit( channel_identifier, A, deposit_A, EMPTY_ADDRESS ).call({"from": A}) # Transaction failure with zero total deposit with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, A, 0, B).call({"from": A}) token_network.functions.setTotalDeposit(channel_identifier, A, deposit_A, B) def test_deposit_notapproved(token_network, custom_token, create_channel, get_accounts, web3): """ Calling setTotalDeposit() fails without approving transfers on the token contract """ (A, B) = get_accounts(2) channel_identifier = create_channel(A, B)[0] deposit_A = 1 custom_token.functions.mint(deposit_A).call_and_transact({"from": A}) web3.testing.mine(1) balance = custom_token.functions.balanceOf(A).call() assert balance >= deposit_A, f"minted {deposit_A} but the balance is still {balance}" with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, A, deposit_A, B).call( {"from": A} ) def test_null_or_negative_deposit_fail( token_network, create_channel, channel_deposit, assign_tokens, get_accounts ): """ setTotalDeposit() fails when the total deposit does not increase """ (A, B) = get_accounts(2) channel_identifier = create_channel(A, B)[0] channel_deposit(channel_identifier, A, 2, B) assign_tokens(A, 1) # setTotalDeposit is idempotent with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, A, 2, B).call({"from": A}) with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, A, 1, B).call({"from": A}) def test_deposit_delegate_works(get_accounts, create_channel, channel_deposit): """ A third party can successfully call setTokenDeposit() """ (A, B, C) = get_accounts(3) channel_identifier = create_channel(A, B)[0] channel_deposit(channel_identifier, A, 2, B, tx_from=C) def test_deposit_wrong_channel(get_accounts, token_network, create_channel, assign_tokens): """ setTotalDeposit() with a wrong channelID fails """ (A, B, C) = get_accounts(3) channel_identifier = create_channel(A, B)[0] channel_identifier2 = create_channel(A, C)[0] assign_tokens(A, 10) with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier2, A, 10, B).call({"from": A}) with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, A, 10, C).call({"from": A}) token_network.functions.setTotalDeposit(channel_identifier, A, 10, B).call_and_transact( {"from": A} ) @pytest.mark.skip("Not necessary with limited deposits for the test release.") def test_channel_deposit_overflow(get_accounts, create_channel, channel_deposit): (A, B) = get_accounts(2) deposit_A = 50 deposit_B_ok = MAX_UINT256 - deposit_A deposit_B_fail = deposit_B_ok + 1 channel_identifier = create_channel(A, B)[0] channel_deposit(channel_identifier, A, deposit_A, B) with pytest.raises(TransactionFailed): channel_deposit(channel_identifier, B, deposit_B_fail, A) channel_deposit(channel_identifier, B, deposit_B_ok, A) def test_deposit_channel_state(token_network, create_channel, channel_deposit, get_accounts): """ Observe how setTotalDeposit() changes the results of getChannelParticipantInfo() """ (A, B) = get_accounts(2) deposit_A = 10 deposit_B = 15 channel_identifier = create_channel(A, B)[0] A_deposit = token_network.functions.getChannelParticipantInfo(channel_identifier, A, B).call()[ 0 ] assert A_deposit == 0 B_deposit = token_network.functions.getChannelParticipantInfo(channel_identifier, B, A).call()[ 0 ] assert B_deposit == 0 channel_deposit(channel_identifier, A, deposit_A, B) A_deposit = token_network.functions.getChannelParticipantInfo(channel_identifier, A, B).call()[ 0 ] assert A_deposit == deposit_A B_deposit = token_network.functions.getChannelParticipantInfo(channel_identifier, B, A).call()[ 0 ] assert B_deposit == 0 channel_deposit(channel_identifier, B, deposit_B, A) A_deposit = token_network.functions.getChannelParticipantInfo(channel_identifier, A, B).call()[ 0 ] assert A_deposit == deposit_A B_deposit = token_network.functions.getChannelParticipantInfo(channel_identifier, B, A).call()[ 0 ] assert B_deposit == deposit_B def test_deposit_wrong_state_fail( web3, get_accounts, token_network, create_channel, assign_tokens ): """ setTotalDeposit() fails on Closed or Settled channels. """ (A, B) = get_accounts(2) vals_A = ChannelValues(deposit=2, transferred=0) vals_B = ChannelValues(deposit=2, transferred=0) channel_identifier = create_channel(A, B, TEST_SETTLE_TIMEOUT_MIN)[0] assign_tokens(A, vals_A.deposit) assign_tokens(B, vals_B.deposit) token_network.functions.setTotalDeposit( channel_identifier, A, vals_A.deposit, B ).call_and_transact({"from": A}) token_network.functions.setTotalDeposit( channel_identifier, B, vals_B.deposit, A ).call_and_transact({"from": B}) token_network.functions.closeChannel( channel_identifier, B, EMPTY_BALANCE_HASH, 0, EMPTY_ADDITIONAL_HASH, EMPTY_SIGNATURE ).call_and_transact({"from": A}) assign_tokens(A, 10) assign_tokens(B, 10) vals_A.deposit += 5 vals_B.deposit += 5 with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, A, vals_A.deposit, B).call( {"from": A} ) with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, B, vals_B.deposit, A).call( {"from": B} ) web3.testing.mine(TEST_SETTLE_TIMEOUT_MIN + 1) call_settle(token_network, channel_identifier, A, vals_A, B, vals_B) with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, A, vals_A.deposit, B).call( {"from": A} ) with pytest.raises(TransactionFailed): token_network.functions.setTotalDeposit(channel_identifier, B, vals_B.deposit, A).call( {"from": B} ) def test_deposit_channel_event( get_accounts, token_network, create_channel, channel_deposit, event_handler ): """ setTotalDeposit() from each participant causes a DEPOSIT event """ ev_handler = event_handler(token_network) (A, B) = get_accounts(2) deposit_A = 10 deposit_B = 15 channel_identifier = create_channel(A, B)[0] txn_hash = channel_deposit(channel_identifier, A, deposit_A, B) ev_handler.add( txn_hash, ChannelEvent.DEPOSIT, check_new_deposit(channel_identifier, A, deposit_A) ) txn_hash = channel_deposit(channel_identifier, B, deposit_B, A) ev_handler.add( txn_hash, ChannelEvent.DEPOSIT, check_new_deposit(channel_identifier, B, deposit_B) ) ev_handler.check()
40.333333
99
0.729483
be3f9dcbafff128209385ef43a17145e5918b3d4
780
py
Python
tastypie_swagger/urls.py
pierrealixt/django-tastypie-swagger
9461803253cd2653f402ec8233606a4cc8c1113f
[ "Apache-2.0" ]
null
null
null
tastypie_swagger/urls.py
pierrealixt/django-tastypie-swagger
9461803253cd2653f402ec8233606a4cc8c1113f
[ "Apache-2.0" ]
null
null
null
tastypie_swagger/urls.py
pierrealixt/django-tastypie-swagger
9461803253cd2653f402ec8233606a4cc8c1113f
[ "Apache-2.0" ]
2
2017-10-05T22:50:35.000Z
2020-07-15T13:07:20.000Z
from .views import SwaggerView, ResourcesView, SchemaView try: from django.conf.urls import include, url urlpatterns = [ url(r'^$', SwaggerView.as_view(), name='index'), url(r'^resources/$', ResourcesView.as_view(), name='resources'), url(r'^schema/(?P<resource>\S+)$', SchemaView.as_view()), url(r'^schema/$', SchemaView.as_view(), name='schema'), ] except ImportError: from django.conf.urls.defaults import patterns, include, url urlpatterns = patterns('', url(r'^$', SwaggerView.as_view(), name='index'), url(r'^resources/$', ResourcesView.as_view(), name='resources'), url(r'^schema/(?P<resource>\S+)$', SchemaView.as_view()), url(r'^schema/$', SchemaView.as_view(), name='schema'), )
37.142857
72
0.621795
a1f7f642e0f102e6d7f2e97e8a5a33cb0e8eba7f
777
py
Python
tests/test3.py
akaeme/BlackJackBot
04970107202a24059f8da933233fba7df9f3a0ef
[ "MIT" ]
null
null
null
tests/test3.py
akaeme/BlackJackBot
04970107202a24059f8da933233fba7df9f3a0ef
[ "MIT" ]
null
null
null
tests/test3.py
akaeme/BlackJackBot
04970107202a24059f8da933233fba7df9f3a0ef
[ "MIT" ]
null
null
null
#encoding: utf8 import sys sys.path.insert(0,"..") from game import Game from player import Player from card import Card from test_shoe import TestShoe class TestPlayer(Player): def __init__(self, name="TestPlayer", money=0, default_bet=1): super(TestPlayer, self).__init__(name, money) self.default_bet = default_bet def play(self, dealer, players): return "h" def bet(self, dealer, players): return self.default_bet if __name__ == '__main__': players = [TestPlayer("test",100)] print(players) g = Game(players, debug=True, shoe=TestShoe([Card(0,1), Card(0,12), Card(1,1), Card(1,12)] )) g.run() print("OVERALL: ", players) if str(players) == "[test (100€)]": sys.exit(0) sys.exit(1)
24.28125
98
0.638353
8396e9db010540e847fd1463a4af9684f0f45fc8
12,478
py
Python
train.py
MckinstryJ/FastSpeech2_LJSpeech
bcc45d2804d3859a51de979c24d208cf0142c74e
[ "MIT" ]
5
2021-08-28T17:07:10.000Z
2022-02-09T15:53:53.000Z
train.py
MckinstryJ/FastSpeech2_LJSpeech
bcc45d2804d3859a51de979c24d208cf0142c74e
[ "MIT" ]
null
null
null
train.py
MckinstryJ/FastSpeech2_LJSpeech
bcc45d2804d3859a51de979c24d208cf0142c74e
[ "MIT" ]
1
2022-02-10T02:01:31.000Z
2022-02-10T02:01:31.000Z
import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import numpy as np import argparse import os import time from fastspeech2 import FastSpeech2 from loss import FastSpeech2Loss from dataset import Dataset from optimizer import ScheduledOptim from evaluate import evaluate import hparams as hp import utils import audio as Audio ''' Notes: - There are a few packages that have to be installed before train.py can be ran - Once installed, an PermissionError shows up... will work on it on Sunday ''' def main(args): torch.manual_seed(0) # Get device device = torch.device('cuda'if torch.cuda.is_available()else 'cpu') # Get dataset dataset = Dataset("train.txt") loader = DataLoader(dataset, batch_size=hp.batch_size**2, shuffle=True, collate_fn=dataset.collate_fn, drop_last=True, num_workers=0) # Define model model = nn.DataParallel(FastSpeech2()).to(device) print("Model Has Been Defined") num_param = utils.get_param_num(model) print('Number of FastSpeech2 Parameters:', num_param) # Optimizer and loss optimizer = torch.optim.Adam(model.parameters(), betas=hp.betas, eps=hp.eps, weight_decay = hp.weight_decay) scheduled_optim = ScheduledOptim(optimizer, hp.decoder_hidden, hp.n_warm_up_step, args.restore_step) Loss = FastSpeech2Loss().to(device) print("Optimizer and Loss Function Defined.") # Load checkpoint if exists checkpoint_path = os.path.join(hp.checkpoint_path) try: checkpoint = torch.load(os.path.join( checkpoint_path, 'checkpoint_{}.pth.tar'.format(args.restore_step))) model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) print("\n---Model Restored at Step {}---\n".format(args.restore_step)) except: print("\n---Start New Training---\n") if not os.path.exists(checkpoint_path): os.makedirs(checkpoint_path) # Load vocoder if hp.vocoder == 'melgan': melgan = utils.get_melgan() elif hp.vocoder == 'waveglow': waveglow = utils.get_waveglow() # Init logger log_path = hp.log_path if not os.path.exists(log_path): os.makedirs(log_path) os.makedirs(os.path.join(log_path, 'train')) os.makedirs(os.path.join(log_path, 'validation')) train_logger = SummaryWriter(os.path.join(log_path, 'train')) val_logger = SummaryWriter(os.path.join(log_path, 'validation')) # Init synthesis directory synth_path = hp.synth_path if not os.path.exists(synth_path): os.makedirs(synth_path) # Define Some Information Time = np.array([]) Start = time.perf_counter() # Training model = model.train() for epoch in range(hp.epochs): # Get Training Loader total_step = hp.epochs * len(loader) * hp.batch_size for i, batchs in enumerate(loader): for j, data_of_batch in enumerate(batchs): start_time = time.perf_counter() current_step = i*hp.batch_size + j + args.restore_step + epoch*len(loader)*hp.batch_size + 1 # Get Data text = torch.from_numpy(data_of_batch["text"]).long().to(device) mel_target = torch.from_numpy(data_of_batch["mel_target"]).float().to(device) D = torch.from_numpy(data_of_batch["D"]).long().to(device) log_D = torch.from_numpy(data_of_batch["log_D"]).float().to(device) f0 = torch.from_numpy(data_of_batch["f0"]).float().to(device) energy = torch.from_numpy(data_of_batch["energy"]).float().to(device) src_len = torch.from_numpy(data_of_batch["src_len"]).long().to(device) mel_len = torch.from_numpy(data_of_batch["mel_len"]).long().to(device) max_src_len = np.max(data_of_batch["src_len"]).astype(np.int32) max_mel_len = np.max(data_of_batch["mel_len"]).astype(np.int32) # Forward mel_output, mel_postnet_output, log_duration_output, f0_output, energy_output, src_mask, mel_mask, _ = model( text, src_len, mel_len, D, f0, energy, max_src_len, max_mel_len) # Cal Loss mel_loss, mel_postnet_loss, d_loss, f_loss, e_loss = Loss( log_duration_output, log_D, f0_output, f0, energy_output, energy, mel_output, mel_postnet_output, mel_target, ~src_mask, ~mel_mask) total_loss = mel_loss + mel_postnet_loss + d_loss + f_loss + e_loss # Logger t_l = total_loss.item() m_l = mel_loss.item() m_p_l = mel_postnet_loss.item() d_l = d_loss.item() f_l = f_loss.item() e_l = e_loss.item() with open(os.path.join(log_path, "total_loss.txt"), "a") as f_total_loss: f_total_loss.write(str(t_l)+"\n") with open(os.path.join(log_path, "mel_loss.txt"), "a") as f_mel_loss: f_mel_loss.write(str(m_l)+"\n") with open(os.path.join(log_path, "mel_postnet_loss.txt"), "a") as f_mel_postnet_loss: f_mel_postnet_loss.write(str(m_p_l)+"\n") with open(os.path.join(log_path, "duration_loss.txt"), "a") as f_d_loss: f_d_loss.write(str(d_l)+"\n") with open(os.path.join(log_path, "f0_loss.txt"), "a") as f_f_loss: f_f_loss.write(str(f_l)+"\n") with open(os.path.join(log_path, "energy_loss.txt"), "a") as f_e_loss: f_e_loss.write(str(e_l)+"\n") # Backward total_loss = total_loss / hp.acc_steps total_loss.backward() if current_step % hp.acc_steps != 0: continue # Clipping gradients to avoid gradient explosion nn.utils.clip_grad_norm_(model.parameters(), hp.grad_clip_thresh) # Update weights scheduled_optim.step_and_update_lr() scheduled_optim.zero_grad() # Print if current_step % hp.log_step == 0: Now = time.perf_counter() str1 = "Epoch [{}/{}], Step [{}/{}]:".format( epoch+1, hp.epochs, current_step, total_step) str2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Duration Loss: {:.4f}, F0 Loss: {:.4f}, Energy Loss: {:.4f};".format( t_l, m_l, m_p_l, d_l, f_l, e_l) str3 = "Time Used: {:.3f}s, Estimated Time Remaining: {:.3f}s.".format( (Now-Start), (total_step-current_step)*np.mean(Time)) print("\n" + str1) print(str2) print(str3) with open(os.path.join(log_path, "log.txt"), "a") as f_log: f_log.write(str1 + "\n") f_log.write(str2 + "\n") f_log.write(str3 + "\n") f_log.write("\n") train_logger.add_scalar('Loss/total_loss', t_l, current_step) train_logger.add_scalar('Loss/mel_loss', m_l, current_step) train_logger.add_scalar('Loss/mel_postnet_loss', m_p_l, current_step) train_logger.add_scalar('Loss/duration_loss', d_l, current_step) train_logger.add_scalar('Loss/F0_loss', f_l, current_step) train_logger.add_scalar('Loss/energy_loss', e_l, current_step) if current_step % hp.save_step == 0: torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict( )}, os.path.join(checkpoint_path, 'checkpoint_{}.pth.tar'.format(current_step))) print("save model at step {} ...".format(current_step)) if current_step % hp.synth_step == 0: length = mel_len[0].item() mel_target_torch = mel_target[0, :length].detach().unsqueeze(0).transpose(1, 2) mel_target = mel_target[0, :length].detach().cpu().transpose(0, 1) mel_torch = mel_output[0, :length].detach().unsqueeze(0).transpose(1, 2) mel = mel_output[0, :length].detach().cpu().transpose(0, 1) mel_postnet_torch = mel_postnet_output[0, :length].detach().unsqueeze(0).transpose(1, 2) mel_postnet = mel_postnet_output[0, :length].detach().cpu().transpose(0, 1) Audio.tools.inv_mel_spec(mel, os.path.join(synth_path, "step_{}_griffin_lim.wav".format(current_step))) Audio.tools.inv_mel_spec(mel_postnet, os.path.join(synth_path, "step_{}_postnet_griffin_lim.wav".format(current_step))) if hp.vocoder == 'melgan': utils.melgan_infer(mel_torch, melgan, os.path.join(hp.synth_path, 'step_{}_{}.wav'.format(current_step, hp.vocoder))) utils.melgan_infer(mel_postnet_torch, melgan, os.path.join(hp.synth_path, 'step_{}_postnet_{}.wav'.format(current_step, hp.vocoder))) utils.melgan_infer(mel_target_torch, melgan, os.path.join(hp.synth_path, 'step_{}_ground-truth_{}.wav'.format(current_step, hp.vocoder))) elif hp.vocoder == 'waveglow': utils.waveglow_infer(mel_torch, waveglow, os.path.join(hp.synth_path, 'step_{}_{}.wav'.format(current_step, hp.vocoder))) utils.waveglow_infer(mel_postnet_torch, waveglow, os.path.join(hp.synth_path, 'step_{}_postnet_{}.wav'.format(current_step, hp.vocoder))) utils.waveglow_infer(mel_target_torch, waveglow, os.path.join(hp.synth_path, 'step_{}_ground-truth_{}.wav'.format(current_step, hp.vocoder))) f0 = f0[0, :length].detach().cpu().numpy() energy = energy[0, :length].detach().cpu().numpy() f0_output = f0_output[0, :length].detach().cpu().numpy() energy_output = energy_output[0, :length].detach().cpu().numpy() utils.plot_data([(mel_postnet.numpy(), f0_output, energy_output), (mel_target.numpy(), f0, energy)], ['Synthetized Spectrogram', 'Ground-Truth Spectrogram'], filename=os.path.join(synth_path, 'step_{}.png'.format(current_step))) if current_step % hp.eval_step == 0: model.eval() with torch.no_grad(): d_l, f_l, e_l, m_l, m_p_l = evaluate(model, current_step) t_l = d_l + f_l + e_l + m_l + m_p_l val_logger.add_scalar('Loss/total_loss', t_l, current_step) val_logger.add_scalar('Loss/mel_loss', m_l, current_step) val_logger.add_scalar('Loss/mel_postnet_loss', m_p_l, current_step) val_logger.add_scalar('Loss/duration_loss', d_l, current_step) val_logger.add_scalar('Loss/F0_loss', f_l, current_step) val_logger.add_scalar('Loss/energy_loss', e_l, current_step) model.train() end_time = time.perf_counter() Time = np.append(Time, end_time - start_time) if len(Time) == hp.clear_Time: temp_value = np.mean(Time) Time = np.delete( Time, [i for i in range(len(Time))], axis=None) Time = np.append(Time, temp_value) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--restore_step', type=int, default=0) args = parser.parse_args() main(args)
51.349794
166
0.563552
ff61aae3f4c0fd99f2bc79b8f89f7abc6e439d72
52,588
py
Python
rstbx/apps/slip_helpers.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
155
2016-11-23T12:52:16.000Z
2022-03-31T15:35:44.000Z
rstbx/apps/slip_helpers.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
590
2016-12-10T11:31:18.000Z
2022-03-30T23:10:09.000Z
rstbx/apps/slip_helpers.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
115
2016-11-15T08:17:28.000Z
2022-02-09T15:30:14.000Z
from __future__ import absolute_import, division, print_function from six.moves import range import math from libtbx.test_utils import approx_equal from scitbx.array_family import flex from scitbx import lbfgs class minimizer(object): def __init__(self,data,stuff,frame,max_iterations=50): self.n = len(data) self.values = data self.initial = data.deep_copy() #mosaicity,hi energy wave, lo energy wave #want mosaicity between 0.1 and 1.0 of input value. self.lower_bound = flex.double([0.1*data[0],0.98*data[1],(data[1]+data[2])/2.]) upper_bound = flex.double([10.*data[0],(data[1]+data[2])/2.,1.02*data[2]]) mean_value = (upper_bound - self.lower_bound)/2. self.full_range = upper_bound - self.lower_bound starting_params = flex.tan(math.pi*(((data - self.lower_bound)/self.full_range)-0.5)) self.x = starting_params.deep_copy() print("staerting params",list(self.x)) self.stuff = stuff self.frame = frame # optimize parameters self.minimizer = lbfgs.run(target_evaluator=self, termination_params = lbfgs.termination_parameters(max_calls=20)) def compute_functional_and_gradients(self): print("trying",list(self.x)) # try to constrain rather than restrain. Use arctan function to get this right # minimizer can choose any value from -inf to inf but we'll keep values carefully in range # mos #if self.x[0]/self.initial[0] >2.: self.x[0]=2.*self.initial[0] #assert self.x[1]<self.x[2] #if self.x[1]/self.initial[1] <0.99: self.x[1]=0.99*self.initial[1] #if self.x[2]/self.initial[2] >1.01: self.x[2]=1.01*self.initial[2] #print "adjust",list(self.x) def get_score(x): unpacked = self.lower_bound + self.full_range*( 0.5 + (flex.atan(x)/math.pi) ) #print " trying",list(unpacked) return self.stuff.use_case_3_score_only( self.frame,unpacked[0],unpacked[1],unpacked[2]) #f = self.stuff.use_case_3_score_only( # self.frame,self.values[0],self.values[1],self.values[2]) f = get_score(self.x) gradients = flex.double(len(self.x)) for i in range(self.n): #factors = [1.000]*self.n # factors[i] *= 1.001 # D_i = 0.001 * self.x[i] #f_i_plus_D_i = self.stuff.use_case_3_score_only( # self.frame,self.x[0]*factors[0],self.x[1]*factors[1],self.x[2]*factors[2]) trial_x = self.x.deep_copy() trial_x[i]+=1. f_i_plus_D_i = get_score(trial_x) df_di = (f_i_plus_D_i - f)/1. gradients[i]=df_di return f,gradients def unpacked(self,x): return self.lower_bound + self.full_range*( 0.5 + (flex.atan(x)/math.pi) ) class wrapper_of_use_case_bp3(object): def __init__(self, raw_image, spotfinder, imageindex, inputai, spot_prediction_limiting_resolution, phil_params, sub=None): """MODEL: polychromatic beam with top hat bandpass profile. isotropic mosaicity with top hat half-width; spots are brought into reflecting condition by a finite rotation about the axis that is longitudinal to the projection of the q-vector onto the detector plane. """ from rstbx.bandpass import use_case_bp3,parameters_bp3 from scitbx.matrix import col from math import pi from cctbx.crystal import symmetry self.detector_origin = col((-inputai.getBase().xbeam, -inputai.getBase().ybeam, 0.)) crystal = symmetry(unit_cell=inputai.getOrientation().unit_cell(),space_group = "P1") indices = crystal.build_miller_set(anomalous_flag=True, d_min = spot_prediction_limiting_resolution) parameters = parameters_bp3( indices=indices.indices(), orientation=inputai.getOrientation(), incident_beam=col((0.,0.,-1.)), packed_tophat=col((1.,1.,0.)), detector_normal=col((0.,0.,-1.)), detector_fast=col((0.,1.,0.)),detector_slow=col((1.,0.,0.)), pixel_size=col((raw_image.pixel_size,raw_image.pixel_size,0)), pixel_offset=col((0.5,0.5,0.0)), distance=inputai.getBase().distance, detector_origin=self.detector_origin ) if phil_params.integration.subpixel_joint_model.translations is not None: T = phil_params.integration.subpixel_joint_model.translations import copy resortedT = copy.copy(T) for tt in range(0,len(T),2): resortedT[tt] = T[tt+1] resortedT[tt+1] = T[tt] from rstbx.apps.dual_resolution_helpers import get_model_ref_limits model_refinement_limiting_resolution = get_model_ref_limits(self,raw_image,spotfinder, imageindex,inputai,spot_prediction_limiting_resolution) print("resolution limits: model refinement %7.2f spot prediction %7.2f"%( model_refinement_limiting_resolution,spot_prediction_limiting_resolution)) self.ucbp3 = use_case_bp3(parameters=parameters) the_tiles = raw_image.get_tile_manager(phil_params).effective_tiling_as_flex_int( reapply_peripheral_margin=True,encode_inactive_as_zeroes=True) self.ucbp3.set_active_areas( the_tiles ) if phil_params.integration.signal_penetration==0.0: self.ucbp3.set_sensor_model( thickness_mm = 0.0, mu_rho = 8.36644, signal_penetration = 0.0 ) else: self.ucbp3.set_sensor_model( thickness_mm = 0.5, mu_rho = 8.36644, # CS_PAD detector at 1.3 Angstrom signal_penetration = phil_params.integration.signal_penetration) # XXX still very buggy; how do penetration & thickness relate? if sub != None and phil_params.integration.subpixel_joint_model.translations is not None: raise Exception("Cannot use both subpixel mechanisms simultaneously") elif sub != None: print("Subpixel corrections: using translation-pixel mechanism") null_rotations_deg = flex.double(len(sub)//2) self.ucbp3.set_subpixel(flex.double(sub),rotations_deg=null_rotations_deg) elif phil_params.integration.subpixel_joint_model.translations is not None: print("Subpixel corrections: using joint-refined translation + rotation") self.ucbp3.set_subpixel( resortedT, rotations_deg = flex.double( phil_params.integration.subpixel_joint_model.rotations) ) else: print("Subpixel corrections: none used") # Reduce Miller indices to a manageable set. NOT VALID if the crystal rotates significantly self.ucbp3.prescreen_indices(inputai.wavelength) # done with Miller set reduction from annlib_ext import AnnAdaptorSelfInclude as AnnAdaptor body_pixel_reference = flex.double() limited_body_pixel_reference = flex.double() for spot in spotfinder.images[imageindex]["goodspots"]: for pxl in spot.bodypixels: body_pixel_reference.append(pxl.y + 0.5) body_pixel_reference.append(pxl.x + 0.5) pixel_center = col((pxl.x,pxl.y,0.0))*raw_image.pixel_size offs = self.detector_origin+pixel_center radius_mm = math.hypot(offs[0],offs[1]) pixel_two_theta_rad = math.atan(radius_mm/inputai.getBase().distance) pixel_d_ang = ( inputai.wavelength / (2.*math.sin (pixel_two_theta_rad/2.)) ) if pixel_d_ang > model_refinement_limiting_resolution: limited_body_pixel_reference.append(pxl.y + 0.5) limited_body_pixel_reference.append(pxl.x + 0.5) self.model_refinement_limiting_resolution = model_refinement_limiting_resolution # model refinement resolution limits must be applied in two places: 1) the reference # list of body pixels to the ann adaptor, and 2) the enclosed_pixels_and_margin_pixels() function call if self.model_refinement_limiting_resolution > 0.: self.ucbp3.set_adaptor(limited_body_pixel_reference) else: self.ucbp3.set_adaptor(body_pixel_reference) def set_variables(self, orientation, wave_HI, wave_LO, half_mosaicity_deg, domain_size=0.): half_mosaicity_rad = half_mosaicity_deg * math.pi/180. self.ucbp3.set_mosaicity(half_mosaicity_rad) self.ucbp3.set_bandpass(wave_HI,wave_LO) self.ucbp3.set_orientation(orientation) self.ucbp3.set_domain_size(domain_size) def score_only(self): self.ucbp3.picture_fast_slow() # not sure why x and y origin shifts are swapped here, but this seemed to work swapped_origin = (-self.detector_origin[1],-self.detector_origin[0],0.) self.ucbp3.spot_rectangles(swapped_origin) self.ucbp3.spot_rectregions(swapped_origin,1.0) if self.model_refinement_limiting_resolution > 0.: self.ucbp3.enclosed_pixels_and_margin_pixels(self.model_refinement_limiting_resolution) else: self.ucbp3.enclosed_pixels_and_margin_pixels() return self.ucbp3.score_only_detail(weight=50.) class slip_callbacks: def slip_callback(self,frame): #best_params=self.use_case_3_simulated_annealing() #best_params = self.use_case_3_grid_refine(frame) #self.inputai.setOrientation(best_params[3]) #self.use_case_3_refactor(frame,best_params[0],best_params[1], best_params[2]) #self.inputai.set_orientation_reciprocal_matrix( (0.001096321006219932, -0.0007452314870693856, 0.007577824826005684, 0.0009042576974140007, -0.010205656871417366, -0.0009746502046169632, 0.012357726864252296, 0.00701297199602489, -0.0005717102325987258)) #self.use_case_3_refactor(frame,0.0995603664049, 1.29155605957, 1.30470696644 ) #self.use_case_3_refactor(frame,0.0995603664049, 1.29155605957, 1.30470696644,domain_size=2000. ) normal = True # BLUE: predictions blue_data = [] for ix,pred in enumerate(self.predicted): if self.BSmasks[ix].keys()==[]:continue x,y = frame.pyslip.tiles.picture_fast_slow_to_map_relative( (pred[1]/self.pixel_size) +0.5, (pred[0]/self.pixel_size) +0.5) blue_data.append((x,y)) if normal: self.blue_layer = frame.pyslip.AddPointLayer( blue_data, color="blue", name="<blue_layer>", radius=2, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) yellow_data = []; cyan_data = [] for imsk in range(len(self.BSmasks)): smask_keys = self.get_ISmask(imsk) bmask = self.BSmasks[imsk] if len(bmask.keys())==0: continue # CYAN: integration mask for ks in range(0,len(smask_keys),2): cyan_data.append( frame.pyslip.tiles.picture_fast_slow_to_map_relative( smask_keys[ks+1] + 0.5,smask_keys[ks] + 0.5)) # YELLOW: background mask for key in bmask.keys(): yellow_data.append( frame.pyslip.tiles.picture_fast_slow_to_map_relative( key[1] + 0.5 ,key[0] + 0.5)) if normal: self.cyan_layer = frame.pyslip.AddPointLayer( cyan_data, color="cyan", name="<cyan_layer>", radius=1.5, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) if normal: self.yellow_layer = frame.pyslip.AddPointLayer( yellow_data, color="yellow", name="<yellow_layer>", radius=1.5, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) red_data = []; green_data = [] for spot in self.spotfinder.images[self.frame_numbers[self.image_number]]["goodspots"]: # RED: spotfinder spot pixels for pxl in spot.bodypixels: red_data.append( frame.pyslip.tiles.picture_fast_slow_to_map_relative( pxl.y + 0.5, pxl.x + 0.5)) # GREEN: spotfinder centers of mass green_data.append( frame.pyslip.tiles.picture_fast_slow_to_map_relative( spot.ctr_mass_y() + 0.5, spot.ctr_mass_x() + 0.5)) self.red_layer = frame.pyslip.AddPointLayer( red_data, color="red", name="<red_layer>", radius=1.5, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) if normal: self.green_layer = frame.pyslip.AddPointLayer( green_data, color="green", name="<green_layer>", radius=1.5, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) def use_case_1(self,frame): # A rehash of the spot-prediction algorithm for pedagogical use. # Use an "ewald proximity" filter as suggested by Ralf. # aside from a few extra spots due to ewald proximity, this is exactly the # same spot model developed initially for the Sept/Dec 2011 CXI runs. orange_data = [] from scitbx.matrix import col,sqr print("wavelength",self.inputai.wavelength) print("orientation",self.inputai.getOrientation()) A = sqr(self.inputai.getOrientation().reciprocal_matrix()) print("base",self.inputai.getBase()) print("pixel size",self.pixel_size) detector_origin = col((-self.inputai.getBase().xbeam, -self.inputai.getBase().ybeam, 0.)) detector_fast = col((0.,1.,0.)) detector_slow = col((1.,0.,0.)) distance = self.inputai.getBase().distance s0 = col((0.,0.,1/self.inputai.wavelength)) s0_length = s0.length() detector_normal = col((0.,0.,-1.)) from cctbx.crystal import symmetry crystal = symmetry(unit_cell=self.inputai.getOrientation().unit_cell(),space_group = "P1") indices = crystal.build_miller_set(anomalous_flag=True, d_min = self.limiting_resolution) for H in indices.indices(): s = A * H q = (s + s0) #print q.length(), s0_length if abs(q.length() - s0_length) > 0.001: continue q_unit = q.normalize() # check if diffracted ray parallel to detector face q_dot_n = q_unit.dot(detector_normal) if q_dot_n >= 0: continue r = (q_unit * distance / q_dot_n) - detector_origin x = r.dot(detector_fast) y = r.dot(detector_slow) print(x,y) orange_data.append( frame.pyslip.tiles.picture_fast_slow_to_map_relative( (x/self.pixel_size) +0.5, (y/self.pixel_size) +0.5)) self.orange_layer = frame.pyslip.AddPointLayer( orange_data, color="orange", name="<orange_layer>", radius=3.0, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) def use_case_2(self,frame): # Extend the model. Assume monochromatic beam but finite radial mosaicity. Dispense # with the "ewald proximity" mechanism; now spots are brought into reflecting condition # by a finite rotation about the axis that is longitudinal to the projection of the q-vector # onto the detector plane. orange_data = [] from scitbx.matrix import col,sqr from math import pi print("Moasicity degrees, half",0.1) mosaicity_rad = 0.1 * pi/180. #half-width top-hat mosaicity A = sqr(self.inputai.getOrientation().reciprocal_matrix()) detector_origin = col((-self.inputai.getBase().xbeam, -self.inputai.getBase().ybeam, 0.)) detector_fast = col((0.,1.,0.)) detector_slow = col((1.,0.,0.)) distance = self.inputai.getBase().distance #s0: parallel to the direction of incident radiation s0 = col((0.,0.,1/self.inputai.wavelength)) s0_length = s0.length() s0_unit = s0.normalize() detector_normal = col((0.,0.,-1.)) # Cn, the circular section through the Ewald sphere. Cncenter = -s0 Cnradius_squared = s0.length_sq() # Taking a page from mathworld.wolfram.com, calculate the distance d # between the centers of Co and Cn, d = s0_length from cctbx.crystal import symmetry crystal = symmetry(unit_cell=self.inputai.getOrientation().unit_cell(),space_group = "P1") indices = crystal.build_miller_set(anomalous_flag=True, d_min = self.limiting_resolution) for H in indices.indices(): s = A * H rotax = s.normalize().cross(s0_unit) #The axis that most directly brings the Bragg spot onto Ewald sphere s_rad = s.length() s_rad_sq = s.length_sq() # take a page from ewald_sphere.cpp, determine intersection of two coplanar circles # Co, the circle centered on reciprocal origin and containing the point s, # Cn, the circle centered on -s0 (ewald sphere center) of radius (1/lambda) with normal rotax. # Consider the intersection of two circles: # Co, the circle of rotation of H. # Cocenter = 0; so it falls out of the equations # The chord of intersection between Co and Cn lies a # distance x along the (Cocenter - Cncenter) vector chord_direction = (rotax.cross( - Cncenter)).normalize(); a = s.length_sq()/(2.*s0_length) b = math.sqrt(s.length_sq() - (a*a)) # Calculate half-length of the chord of intersection # Two intersection points intersections_0p = -a * s0_unit+ b*chord_direction intersections_1p = -a * s0_unit- b*chord_direction iangle_0= math.acos (intersections_0p.dot(s) / (s_rad_sq)) iangle_1= math.acos (intersections_1p.dot(s) / (s_rad_sq)) assert approx_equal((intersections_0p+s0).length()-s0_length,0. ) if iangle_0 < mosaicity_rad: intersection = intersections_0p elif iangle_1 < mosaicity_rad: intersection = intersections_1p else: continue q = (intersection + s0) q_unit = q.normalize() # check if diffracted ray parallel to detector face q_dot_n = q_unit.dot(detector_normal) if q_dot_n >= 0: continue print("IANGLES",iangle_0 * 180./pi, iangle_1 * 180./pi) r = (q_unit * distance / q_dot_n) - detector_origin x = r.dot(detector_fast) y = r.dot(detector_slow) orange_data.append( frame.pyslip.tiles.picture_fast_slow_to_map_relative( (x/self.pixel_size) +0.5, (y/self.pixel_size) +0.5)) self.orange_layer = frame.pyslip.AddPointLayer( orange_data, color="orange", name="<orange_layer>", radius=3.0, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) def use_case_2cpp(self,frame): from rstbx.bandpass import use_case_bp2_picture_fast_slow # Extend the model. Assume monochromatic beam but finite radial mosaicity. Dispense # with the "ewald proximity" mechanism; now spots are brought into reflecting condition # by a finite rotation about the axis that is longitudinal to the projection of the q-vector # onto the detector plane. from scitbx.matrix import col from math import pi detector_origin = col((-self.inputai.getBase().xbeam, -self.inputai.getBase().ybeam, 0.)) from cctbx.crystal import symmetry crystal = symmetry(unit_cell=self.inputai.getOrientation().unit_cell(),space_group = "P1") indices = crystal.build_miller_set(anomalous_flag=True, d_min = self.limiting_resolution) picture_fast_slow = use_case_bp2_picture_fast_slow( indices=indices.indices(), orientation=self.inputai.getOrientation(), incident_beam=col((0.,0.,1.)), wavelength=self.inputai.wavelength, detector_normal=col((0.,0.,-1.)), detector_fast=col((0.,1.,0.)),detector_slow=col((1.,0.,0.)), pixel_size=col((self.pixel_size,self.pixel_size,0)), pixel_offset=col((0.5,0.5,0.0)), distance=self.inputai.getBase().distance, detector_origin=detector_origin, half_mosaicity_rad=0.1 * pi/180. ) map_relative = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(picture_fast_slow) self.orange_layer = frame.pyslip.AddPointLayer( map_relative, color="orange", name="<orange_layer>", radius=3.0, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) def use_case_3cpp(self,frame): from rstbx.bandpass import use_case_bp3_picture_fast_slow # Extend the model. Assume polychromatic beam with top hat profile. Assume finite radial mosaicity. Dispense # with the "ewald proximity" mechanism; now spots are brought into reflecting condition # by a finite rotation about the axis that is longitudinal to the projection of the q-vector # onto the detector plane. from scitbx.matrix import col from math import pi detector_origin = col((-self.inputai.getBase().xbeam, -self.inputai.getBase().ybeam, 0.)) from cctbx.crystal import symmetry crystal = symmetry(unit_cell=self.inputai.getOrientation().unit_cell(),space_group = "P1") indices = crystal.build_miller_set(anomalous_flag=True, d_min = self.limiting_resolution) cpp_results = use_case_bp3_picture_fast_slow( indices=indices.indices(), orientation=self.inputai.getOrientation(), incident_beam=col((0.,0.,1.)), #tophat=col((self.inputai.wavelength,self.inputai.wavelength+0.00001,0.1*pi/180.)), tophat=col((self.inputai.wavelength*0.9975,self.inputai.wavelength*1.0025,0.1*pi/180.)), detector_normal=col((0.,0.,-1.)), detector_fast=col((0.,1.,0.)),detector_slow=col((1.,0.,0.)), pixel_size=col((self.pixel_size,self.pixel_size,0)), pixel_offset=col((0.5,0.5,0.0)), distance=self.inputai.getBase().distance, detector_origin=detector_origin ) picture_fast_slow = cpp_results[0].select(cpp_results[2]) map_relative = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(picture_fast_slow) self.yellow_layer = frame.pyslip.AddPointLayer( map_relative, color="yellow", name="<yellow_layer>", radius=3.0, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) picture_fast_slow = cpp_results[1].select(cpp_results[2]) map_relative = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(picture_fast_slow) self.red_layer = frame.pyslip.AddPointLayer( map_relative, color="red", name="<red_layer>", radius=3.0, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) def use_case_3box(self,frame): from rstbx.bandpass import use_case_bp3_picture_fast_slow # Extend the model. Assume polychromatic beam with top hat profile. Assume finite radial mosaicity. Dispense # with the "ewald proximity" mechanism; now spots are brought into reflecting condition # by a finite rotation about the axis that is longitudinal to the projection of the q-vector # onto the detector plane. from scitbx.matrix import col from math import pi detector_origin = col((-self.inputai.getBase().xbeam, -self.inputai.getBase().ybeam, 0.)) from cctbx.crystal import symmetry crystal = symmetry(unit_cell=self.inputai.getOrientation().unit_cell(),space_group = "P1") indices = crystal.build_miller_set(anomalous_flag=True, d_min = self.limiting_resolution) half_mosaicity_rad = 0.1*pi/180. cpp_results = use_case_bp3_picture_fast_slow( indices=indices.indices(), orientation=self.inputai.getOrientation(), incident_beam=col((0.,0.,1.)), tophat=col((self.inputai.wavelength*0.9975,self.inputai.wavelength*1.0025,half_mosaicity_rad)), detector_normal=col((0.,0.,-1.)), detector_fast=col((0.,1.,0.)),detector_slow=col((1.,0.,0.)), pixel_size=col((self.pixel_size,self.pixel_size,0)), pixel_offset=col((0.5,0.5,0.0)), distance=self.inputai.getBase().distance, detector_origin=detector_origin ) picture_fast_slow = cpp_results[0].select(cpp_results[2]) map_relative_hi = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(picture_fast_slow) picture_fast_slow = cpp_results[1].select(cpp_results[2]) map_relative_lo = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(picture_fast_slow) # not sure if I've swapped x/y correctly beam_coor = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative( [(0.5 + self.inputai.getBase().ybeam/self.pixel_size, 0.5 + self.inputai.getBase().xbeam/self.pixel_size)]) polydata = [] beam_pos = col(beam_coor[0]) for idx in range(len(map_relative_hi)): hi_pos = col(map_relative_hi[idx]) lo_pos = col(map_relative_lo[idx]) radial_vector = (hi_pos-beam_pos) radial_unit_vec = radial_vector.normalize() radius = radial_vector.length() tangential_unit_vec = col((-radial_unit_vec[1],radial_unit_vec[0])) # 90-degree rotation tangential_excursion = tangential_unit_vec * radius * half_mosaicity_rad polydata.append( ([(hi_pos + tangential_excursion).elems, (hi_pos - tangential_excursion).elems, (lo_pos - tangential_excursion).elems, (lo_pos + tangential_excursion).elems, (hi_pos + tangential_excursion).elems ],{}) ) self.red_layer = frame.pyslip.AddPolygonLayer( # needs to be changed for Linux (antialiasing removed) polydata, color="red", name="<red_layer>", width=1.0, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) def use_case_3_refactor(self,frame,half_deg,wave_HI, wave_LO,domain_size=0.): from rstbx.bandpass import use_case_bp3,parameters_bp3 # Extend the model. Assume polychromatic beam with top hat profile. Assume finite radial mosaicity. Dispense # with the "ewald proximity" mechanism; now spots are brought into reflecting condition # by a finite rotation about the axis that is longitudinal to the projection of the q-vector # onto the detector plane. from scitbx.matrix import col from math import pi detector_origin = col((-self.inputai.getBase().xbeam, -self.inputai.getBase().ybeam, 0.)) from cctbx.crystal import symmetry crystal = symmetry(unit_cell=self.inputai.getOrientation().unit_cell(),space_group = "P1") indices = crystal.build_miller_set(anomalous_flag=True, d_min = self.limiting_resolution) half_mosaicity_rad = half_deg*pi/180. parameters = parameters_bp3( indices=indices.indices(), orientation=self.inputai.getOrientation(), incident_beam=col((0.,0.,1.)), packed_tophat=col((wave_HI,wave_LO,half_mosaicity_rad)), detector_normal=col((0.,0.,-1.)), detector_fast=col((0.,1.,0.)),detector_slow=col((1.,0.,0.)), pixel_size=col((self.pixel_size,self.pixel_size,0)), pixel_offset=col((0.5,0.5,0.0)), distance=self.inputai.getBase().distance, detector_origin=detector_origin ) cpp_results = use_case_bp3(parameters=parameters) cpp_results.set_active_areas( frame.pyslip.tiles.raw_image.get_tile_manager(frame.inherited_params).effective_tiling_as_flex_int( reapply_peripheral_margin=True)) cpp_results.prescreen_indices(self.inputai.wavelength) cpp_results.set_domain_size(domain_size) cpp_results.picture_fast_slow() picture_fast_slow = cpp_results.hi_E_limit.select(cpp_results.observed_flag) map_relative_hi = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(picture_fast_slow) picture_fast_slow = cpp_results.lo_E_limit.select(cpp_results.observed_flag) map_relative_lo = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(picture_fast_slow) poly = cpp_results.spot_rectangles((self.inputai.getBase().ybeam,self.inputai.getBase().xbeam,0.)) map_relative_poly = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(poly) cpp_polydata = [] for idx in range(0,len(map_relative_poly),5): cpp_polydata.append( ([ map_relative_poly[idx+0], map_relative_poly[idx+1], map_relative_poly[idx+2], map_relative_poly[idx+3], map_relative_poly[idx+4] ],{}) ) self.red_layer = frame.pyslip.AddPolygonLayer( # needs to be changed for Linx (antialiasing removed) cpp_polydata, color="red", name="<red_layer>", width=1.0, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) poly = cpp_results.spot_rectregions((self.inputai.getBase().ybeam,self.inputai.getBase().xbeam,0.),1.0) map_relative_poly = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(poly) cpp_polydata = [] for idx in range(0,len(map_relative_poly),5): cpp_polydata.append( ([ map_relative_poly[idx+0], map_relative_poly[idx+1], map_relative_poly[idx+2], map_relative_poly[idx+3], map_relative_poly[idx+4] ],{}) ) self.pink_layer = frame.pyslip.AddPolygonLayer( # needs to be changed for Linx (antialiasing removed) cpp_polydata, color="pink", name="<pink_layer>", width=1.0, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) print("Entering C++ pixels") cpp_results.enclosed_pixels_and_margin_pixels() print("Done with C++ pixels") internal = cpp_results.enclosed_px map_relative_pixels = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(internal) self.yellow_layer = frame.pyslip.AddPointLayer( map_relative_pixels, color="yellow", name="<yellow_layer>", radius=1.0, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) internal = cpp_results.margin_px map_relative_pixels = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative(internal) self.green_layer = frame.pyslip.AddPointLayer( map_relative_pixels, color="green", name="<green_layer>", radius=1.0, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) map_relative_pixels = frame.pyslip.tiles.vec_picture_fast_slow_to_map_relative( cpp_results.selected_predictions()) self.blue_layer = frame.pyslip.AddPointLayer( map_relative_pixels, color="blue", name="<blue_layer>", radius=2.0, renderer = frame.pyslip.LightweightDrawPointLayer, show_levels=[-2, -1, 0, 1, 2, 3, 4, 5]) # Now figure out how to implement the scoring function. Do this in picture fast low coordinates # FIRST Set: spot bodypixels: from annlib_ext import AnnAdaptorSelfInclude as AnnAdaptor body_pixel_reference = flex.double() for spot in self.spotfinder.images[self.frame_numbers[self.image_number]]["goodspots"]: for pxl in spot.bodypixels: body_pixel_reference.append(pxl.y + 0.5) body_pixel_reference.append(pxl.x + 0.5) self.adapt = AnnAdaptor(data=body_pixel_reference,dim=2,k=1) N_bodypix = body_pixel_reference.size()//2 # second set: predict box enclosed_pixels = cpp_results.enclosed_px N_enclosed = enclosed_pixels.size() N_enclosed_body_pixels = 0 query = flex.double() for pixel in enclosed_pixels: query.append(pixel[0]); query.append(pixel[1]) self.adapt.query(query) import math for p in range(N_enclosed): if math.sqrt(self.adapt.distances[p]) < 0.1: N_enclosed_body_pixels += 1 # third set: marginal marginal_pixels = cpp_results.margin_px margin_distances = cpp_results.margin_distances N_marginal = marginal_pixels.size() N_marginal_body_pixels = 0 marginal_body = 0 marginal_nonbody = 0 query = flex.double() for pixel in marginal_pixels: query.append(pixel[0]); query.append(pixel[1]) self.adapt.query(query) for p in range(N_marginal): if math.sqrt(self.adapt.distances[p]) < 0.1: N_marginal_body_pixels += 1 marginal_body += 0.5 + 0.5 * math.cos (-math.pi * margin_distances[p]) #taking MARGIN==1 else: marginal_nonbody += 0.5 + 0.5 * math.cos (math.pi * margin_distances[p]) print("marginal body/nonbody",marginal_body, marginal_nonbody) print("There are %d body pixels of which %d are enclosed and %d are marginal leaving %d remote"%( N_bodypix,N_enclosed_body_pixels,N_marginal_body_pixels, N_bodypix-N_enclosed_body_pixels-N_marginal_body_pixels)) print("There are %d enclosed pixels of which %d are body, %d are nonbody"%( N_enclosed,N_enclosed_body_pixels,N_enclosed-N_enclosed_body_pixels)) print("There are %d marginal pixels of which %d are body, %d are nonbody"%( N_marginal,N_marginal_body_pixels,N_marginal-N_marginal_body_pixels)) Score = 0 # the scoring function to account for these spots: # pink -- spot body pixels inside predict box = 0 # red -- spot body pixels > 2 pxl away from predict box = 1 Score += N_bodypix-N_enclosed_body_pixels-N_marginal_body_pixels # gradation -- body pixels within the marginal zone Score += marginal_body + marginal_nonbody # blank -- nonbody pixels outside of 2 pixel margin = 0 # yellow -- nonbody pixels inside predict box = 1 Score += N_enclosed-N_enclosed_body_pixels # gradation -- in between zone, within margin print("The score is",Score) def use_case_3_score_only(self,frame,half_deg,wave_HI, wave_LO): from rstbx.bandpass import use_case_bp3,parameters_bp3 # Extend the model. Assume polychromatic beam with top hat profile. Assume finite radial mosaicity. Dispense # with the "ewald proximity" mechanism; now spots are brought into reflecting condition # by a finite rotation about the axis that is longitudinal to the projection of the q-vector # onto the detector plane. from scitbx.matrix import col from math import pi detector_origin = col((-self.inputai.getBase().xbeam, -self.inputai.getBase().ybeam, 0.)) from cctbx.crystal import symmetry crystal = symmetry(unit_cell=self.inputai.getOrientation().unit_cell(),space_group = "P1") indices = crystal.build_miller_set(anomalous_flag=True, d_min = self.limiting_resolution) half_mosaicity_rad = half_deg*pi/180. parameters = parameters_bp3( indices=indices.indices(), orientation=self.inputai.getOrientation(), incident_beam=col((0.,0.,1.)), packed_tophat=col((wave_HI,wave_LO,half_mosaicity_rad)), detector_normal=col((0.,0.,-1.)), detector_fast=col((0.,1.,0.)),detector_slow=col((1.,0.,0.)), pixel_size=col((self.pixel_size,self.pixel_size,0)), pixel_offset=col((0.5,0.5,0.0)), distance=self.inputai.getBase().distance, detector_origin=detector_origin ) cpp_results = use_case_bp3(parameters=parameters) cpp_results.set_active_areas( frame.pyslip.tiles.raw_image.get_tile_manager(frame.inherited_params).effective_tiling_as_flex_int( reapply_peripheral_margin=True)) cpp_results.picture_fast_slow() poly = cpp_results.spot_rectangles((self.inputai.getBase().ybeam,self.inputai.getBase().xbeam,0.)) poly = cpp_results.spot_rectregions((self.inputai.getBase().ybeam,self.inputai.getBase().xbeam,0.),1.0) cpp_results.enclosed_pixels_and_margin_pixels() # Now figure out how to implement the scoring function. Do this in picture fast low coordinates # FIRST Set: spot bodypixels: from annlib_ext import AnnAdaptorSelfInclude as AnnAdaptor body_pixel_reference = flex.double() for spot in self.spotfinder.images[self.frame_numbers[self.image_number]]["goodspots"]: for pxl in spot.bodypixels: body_pixel_reference.append(pxl.y + 0.5) body_pixel_reference.append(pxl.x + 0.5) self.adapt = AnnAdaptor(data=body_pixel_reference,dim=2,k=1) N_bodypix = body_pixel_reference.size()//2 # second set: predict box enclosed_pixels = cpp_results.enclosed_px N_enclosed = enclosed_pixels.size() N_enclosed_body_pixels = 0 query = flex.double() for pixel in enclosed_pixels: query.append(pixel[0]); query.append(pixel[1]) self.adapt.query(query) import math for p in range(N_enclosed): if math.sqrt(self.adapt.distances[p]) < 0.1: N_enclosed_body_pixels += 1 # third set: marginal marginal_pixels = cpp_results.margin_px margin_distances = cpp_results.margin_distances WGT = 50. N_marginal = marginal_pixels.size() N_marginal_body_pixels = 0 marginal_body = 0 marginal_nonbody = 0 query = flex.double() for pixel in marginal_pixels: query.append(pixel[0]); query.append(pixel[1]) self.adapt.query(query) for p in range(N_marginal): if math.sqrt(self.adapt.distances[p]) < 0.1: N_marginal_body_pixels += 1 marginal_body += 0.5 + 0.5 * math.cos (-math.pi * margin_distances[p]) #taking MARGIN==1 else: marginal_nonbody += 0.5 + 0.5 * math.cos (math.pi * margin_distances[p]) marginal_body *=WGT if False: print("marginal body/nonbody",marginal_body, marginal_nonbody) print("There are %d body pixels of which %d are enclosed and %d are marginal leaving %d remote"%( N_bodypix,N_enclosed_body_pixels,N_marginal_body_pixels, N_bodypix-N_enclosed_body_pixels-N_marginal_body_pixels)) print("There are %d enclosed pixels of which %d are body, %d are nonbody"%( N_enclosed,N_enclosed_body_pixels,N_enclosed-N_enclosed_body_pixels)) print("There are %d marginal pixels of which %d are body, %d are nonbody"%( N_marginal,N_marginal_body_pixels,N_marginal-N_marginal_body_pixels)) Score = 0 # the scoring function to account for these spots: # pink -- spot body pixels inside predict box = 0 # red -- spot body pixels > 2 pxl away from predict box = 1 Score += WGT*(N_bodypix-N_enclosed_body_pixels-N_marginal_body_pixels) # gradation -- body pixels within the marginal zone Score += marginal_body + marginal_nonbody # blank -- nonbody pixels outside of 2 pixel margin = 0 # yellow -- nonbody pixels inside predict box = 1 Score += N_enclosed-N_enclosed_body_pixels # gradation -- in between zone, within margin return Score def use_case_3_grid_refine(self,frame): reserve_orientation = self.inputai.getOrientation() wrapbp3 = wrapper_of_use_case_bp3( raw_image = frame.pyslip.tiles.raw_image, spotfinder = self.spotfinder, imageindex = self.frame_numbers[self.image_number], inputai = self.inputai, spot_prediction_limiting_resolution = self.limiting_resolution, phil_params = frame.inherited_params) wrapbp3.set_variables( orientation = self.inputai.getOrientation(), wave_HI = self.inputai.wavelength*0.9975, wave_LO = self.inputai.wavelength*1.0025, half_mosaicity_deg = 0.1) #print "score...",wrapbp3.score_only() wave_HI = self.inputai.wavelength*0.9975 wave_LO = self.inputai.wavelength*1.0025 low_score = None for half_deg in [0.06, 0.08, 0.10, 0.12, 0.14]: for bandpass in [0.004, 0.005, 0.006, 0.007, 0.008]: for mean_multiplier in [0.9990, 1.0000, 1.0010, 1.0020]: # A1=0.;A2=0.;A3=0. for A1 in (math.pi/180.)*flex.double([-0.1,0.0,0.1]): for A2 in (math.pi/180.)*flex.double([-0.1,0.0,0.1]): for A3 in (math.pi/180.)*flex.double([-0.1,0.0,0.1]): ori = reserve_orientation.rotate_thru((1,0,0),A1).rotate_thru((0,1,0),A2).rotate_thru((0,0,1),A3) self.inputai.setOrientation(ori) HI = self.inputai.wavelength*(mean_multiplier-(bandpass/2.)) LO = self.inputai.wavelength*(mean_multiplier+(bandpass/2.)) #score = self.use_case_3_score_only( # frame,half_deg,HI,LO) wrapbp3.set_variables( orientation = self.inputai.getOrientation(), wave_HI = HI,wave_LO = LO,half_mosaicity_deg = half_deg) score = wrapbp3.score_only() if low_score == None or score < low_score: low_score = score best_params = (half_deg,HI,LO,ori,A1,A2,A3) print("wave %7.4f - %7.4f bandpass %.2f half %7.4f score %7.1f"%(HI,LO,100.*(LO-HI)/LO,half_deg,score)) print("Rendering image with wave %7.4f - %7.4f bandpass %.2f half %7.4f score %7.1f"%( best_params[1],best_params[2],100.*(best_params[2]-best_params[1])/best_params[1],best_params[0],low_score)) print("rotation angles",best_params[4],best_params[5],best_params[6]) return best_params def use_case_3_simulated_annealing(self,subpixel=None): reserve_orientation = self.inputai.getOrientation() wrapbp3 = wrapper_of_use_case_bp3( raw_image = self.imagefiles.images[self.image_number], spotfinder = self.spotfinder, imageindex = self.frame_numbers[self.image_number], inputai = self.inputai, spot_prediction_limiting_resolution = self.limiting_resolution, phil_params = self.horizons_phil, sub = subpixel) from rstbx.bandpass.simulated_annealing import SALight SA = SALight() # Half mosaicity in degrees # Mid-wavelength adjustment factor # Bandpass fractional full width # adjustment angle in degrees # adjustment angle in degrees # adjustment angle in degrees # starting values; likely expected values SA.x = flex.double([0.1,1.00,0.006,0.0,0.0,0.0]) SA.initial = SA.x.deep_copy() # reasonable length scale (expected interval, half width) SA.L = flex.double([0.02,0.001,0.001,0.05,0.05,0.05]) SA.format = "Mosaicity %6.3f Wave mean %7.4f bandpass %7.4f Angles %8.5f %8.5f %8.5f" def set_variables_from_sa_x(x): ori = reserve_orientation.rotate_thru((1,0,0),(math.pi/180.)*x[3] ).rotate_thru((0,1,0),(math.pi/180.)*x[4] ).rotate_thru((0,0,1),(math.pi/180.)*x[5]) self.inputai.setOrientation(ori) mean_multiplier = x[1] bandpass = x[2] HI = self.inputai.wavelength*(mean_multiplier-(bandpass/2.)) LO = self.inputai.wavelength*(mean_multiplier+(bandpass/2.)) wrapbp3.set_variables( orientation = self.inputai.getOrientation(), wave_HI = HI,wave_LO = LO,half_mosaicity_deg = x[0]) #pack into format for calling function these_params = (x[0],HI,LO,ori,(math.pi/180.)*x[3],(math.pi/180.)*x[4],(math.pi/180.)*x[5]) return these_params set_variables_from_sa_x(SA.x) last_score = wrapbp3.score_only() low_score = last_score + 0 # makes a copy Tstart = 600 for T in range(Tstart, 1, -1): decreasing_increment = (T/Tstart)*SA.random_increment() last_x = SA.x.deep_copy() test_params = SA.x + decreasing_increment if test_params[2]<=0: continue # can't have negative bandpass; unphysical! if test_params[0]<=0: continue # can't have negative mosaicity; unphysical! SA.x += decreasing_increment print(T, SA.format%tuple(SA.x), end=' ') set_variables_from_sa_x(SA.x) new_score = wrapbp3.score_only() print("Score %8.1f"%new_score, end=' ') if new_score < low_score: low_score = 1.0*new_score if new_score < last_score: probability_of_acceptance=1.0 else: probability_of_acceptance = math.exp(-(new_score-last_score)/(2.5*T)) if flex.random_double(1)[0] < probability_of_acceptance: #new position accepted last_score = 1.0*new_score print("accepted") else: SA.x = last_x.deep_copy() print("rejected") print("Final") print(T, SA.format%tuple(SA.x),"Score %8.1f"%last_score,"final") #these three lines set the bp3 wrapper so it can be used from the calling class (simple_integration.py) best_params = set_variables_from_sa_x(SA.x) wrapbp3.score_only() self.bp3_wrapper = wrapbp3 print("Rendering image with wave %7.4f - %7.4f bandpass %.2f half %7.4f score %7.1f"%( best_params[1],best_params[2],100.*(best_params[2]-best_params[1])/best_params[1],best_params[0],last_score)) print("rotation angles",best_params[4],best_params[5],best_params[6]) return best_params def use_case_3_simulated_annealing_7(self,subpixel=None): reserve_orientation = self.inputai.getOrientation() lowest_cell = max(reserve_orientation.unit_cell().parameters()[0:3]) wrapbp3 = wrapper_of_use_case_bp3( raw_image = self.imagefiles.images[self.image_number], spotfinder = self.spotfinder, imageindex = self.frame_numbers[self.image_number], inputai = self.inputai, spot_prediction_limiting_resolution = self.limiting_resolution, phil_params = self.horizons_phil, sub = subpixel) from rstbx.bandpass.simulated_annealing import SALight SA = SALight() # Half mosaicity in degrees # Mid-wavelength adjustment factor # Bandpass fractional full width # adjustment angle in degrees # adjustment angle in degrees # adjustment angle in degrees # starting values; likely expected values SA.x = flex.double([0.1,1.00,0.006,0.0,0.0,0.0,lowest_cell*10.]) SA.initial = SA.x.deep_copy() # reasonable length scale (expected interval, half width) SA.L = flex.double([0.02,0.001,0.001,0.05,0.05,0.05,lowest_cell*2.]) SA.format = "Mosaicity %6.3f Wave mean %7.4f bandpass %7.4f Angles %8.5f %8.5f %8.5f, Domain %6.0f" def set_variables_from_sa_x(x): ori = reserve_orientation.rotate_thru((1,0,0),(math.pi/180.)*x[3] ).rotate_thru((0,1,0),(math.pi/180.)*x[4] ).rotate_thru((0,0,1),(math.pi/180.)*x[5]) self.inputai.setOrientation(ori) mean_multiplier = x[1] bandpass = x[2] HI = self.inputai.wavelength*(mean_multiplier-(bandpass/2.)) LO = self.inputai.wavelength*(mean_multiplier+(bandpass/2.)) wrapbp3.set_variables( orientation = self.inputai.getOrientation(), wave_HI = HI,wave_LO = LO,half_mosaicity_deg = x[0], domain_size = x[6]) #pack into format for calling function these_params = (x[0],HI,LO,ori,(math.pi/180.)*x[3],(math.pi/180.)*x[4],(math.pi/180.)*x[5],x[6]) return these_params set_variables_from_sa_x(SA.x) last_score = wrapbp3.score_only() low_score = last_score + 0 # makes a copy Tstart = 600 for T in range(Tstart, 1, -1): decreasing_increment = (T/Tstart)*SA.random_increment() last_x = SA.x.deep_copy() test_params = SA.x + decreasing_increment if test_params[2]<=0: continue # can't have negative bandpass; unphysical! if test_params[0]<=0: continue # can't have negative mosaicity; unphysical! if test_params[6]<lowest_cell: continue # crystal domain can't be lower than 1 unit cell SA.x += decreasing_increment print(T, SA.format%tuple(SA.x), end=' ') set_variables_from_sa_x(SA.x) new_score = wrapbp3.score_only() print("Score %8.1f"%new_score, end=' ') if new_score < low_score: low_score = 1.0*new_score if new_score < last_score: probability_of_acceptance=1.0 else: probability_of_acceptance = math.exp(-(new_score-last_score)/(2.5*T)) if flex.random_double(1)[0] < probability_of_acceptance: #new position accepted last_score = 1.0*new_score print("accepted") else: SA.x = last_x.deep_copy() print("rejected") print("Final") print(T, SA.format%tuple(SA.x),"Score %8.1f"%last_score,"final") #these three lines set the bp3 wrapper so it can be used from the calling class (simple_integration.py) best_params = set_variables_from_sa_x(SA.x) wrapbp3.score_only() self.bp3_wrapper = wrapbp3 print("Rendering image with wave %7.4f - %7.4f bandpass %.2f half %7.4f score %7.1f"%( best_params[1],best_params[2],100.*(best_params[2]-best_params[1])/best_params[1],best_params[0],last_score)) print("rotation angles",best_params[4],best_params[5],best_params[6],"Domain",best_params[7]) return best_params def use_case_3_simulated_annealing_9(self,subpixel=None): reserve_orientation = self.inputai.getOrientation() lowest_cell = max(reserve_orientation.unit_cell().parameters()[0:3]) wrapbp3 = wrapper_of_use_case_bp3( raw_image = self.imagefiles.images[self.image_number], spotfinder = self.spotfinder, imageindex = self.frame_numbers[self.image_number], inputai = self.inputai, spot_prediction_limiting_resolution = self.limiting_resolution, phil_params = self.horizons_phil, sub = subpixel) from rstbx.bandpass.simulated_annealing import SALight from cctbx.uctbx import unit_cell from rstbx.symmetry.constraints import AGconvert SA = SALight() # Half mosaicity in degrees # Mid-wavelength adjustment factor # Bandpass fractional full width # adjustment angle in degrees # adjustment angle in degrees # adjustment angle in degrees # starting values; likely expected values SA.x = flex.double([0.1,1.00,0.006,0.0,0.0,0.0,lowest_cell*10.,1.00,1.00]) SA.initial = SA.x.deep_copy() # reasonable length scale (expected interval, half width) SA.L = flex.double([0.02,0.001,0.001,0.05,0.05,0.05,lowest_cell*2.,0.0002,0.0002]) SA.format = "Mosaicity %6.3f Wave mean %7.4f bandpass %7.4f Angles %8.5f %8.5f %8.5f, Domain %6.0f, a,c %6.4f %6.4f" def set_variables_from_sa_x(x): # ------ Go through hoops just to reset a,c without altering the angles converter = AGconvert() converter.forward(reserve_orientation) model = converter.initial_model() old_uc = unit_cell(metrical_matrix=model[3:9]) params = list(old_uc.parameters()) params[0] *= x[7] # change a params[1] *= x[7] # change b for tetragonal, hexagonal a==b params[2] *= x[8] # change c new_uc = unit_cell(parameters=params) converter.validate_and_setG(new_uc.metrical_matrix()) newori = converter.back_as_orientation() # ------ finished with unit cell lengths ori = newori.rotate_thru((1,0,0),(math.pi/180.)*x[3] ).rotate_thru((0,1,0),(math.pi/180.)*x[4] ).rotate_thru((0,0,1),(math.pi/180.)*x[5]) self.inputai.setOrientation(ori) mean_multiplier = x[1] bandpass = x[2] HI = self.inputai.wavelength*(mean_multiplier-(bandpass/2.)) LO = self.inputai.wavelength*(mean_multiplier+(bandpass/2.)) wrapbp3.set_variables( orientation = self.inputai.getOrientation(), wave_HI = HI,wave_LO = LO,half_mosaicity_deg = x[0], domain_size = x[6]) #pack into format for calling function these_params = (x[0],HI,LO,ori,(math.pi/180.)*x[3],(math.pi/180.)*x[4],(math.pi/180.)*x[5],x[6],x[7],x[8]) return these_params set_variables_from_sa_x(SA.x) last_score = wrapbp3.score_only() low_score = last_score + 0 # makes a copy Tstart = 900 for T in range(Tstart, 1, -1): decreasing_increment = (T/Tstart)*SA.random_increment() last_x = SA.x.deep_copy() test_params = SA.x + decreasing_increment if test_params[2]<=0: continue # can't have negative bandpass; unphysical! if test_params[0]<=0: continue # can't have negative mosaicity; unphysical! if test_params[6]<lowest_cell: continue # crystal domain can't be lower than 1 unit cell SA.x += decreasing_increment print(T, SA.format%tuple(SA.x), end=' ') set_variables_from_sa_x(SA.x) new_score = wrapbp3.score_only() print("Score %8.1f"%new_score, end=' ') if new_score < low_score: low_score = 1.0*new_score if new_score < last_score: probability_of_acceptance=1.0 else: probability_of_acceptance = math.exp(-(new_score-last_score)/(2.5*T)) if flex.random_double(1)[0] < probability_of_acceptance: #new position accepted last_score = 1.0*new_score print("accepted") else: SA.x = last_x.deep_copy() print("rejected") print("Final") print(T, SA.format%tuple(SA.x),"Score %8.1f"%last_score,"final") #these three lines set the bp3 wrapper so it can be used from the calling class (simple_integration.py) best_params = set_variables_from_sa_x(SA.x) wrapbp3.score_only() self.bp3_wrapper = wrapbp3 print("Rendering image with wave %7.4f - %7.4f bandpass %.2f half %7.4f score %7.1f"%( best_params[1],best_params[2],100.*(best_params[2]-best_params[1])/best_params[1],best_params[0],last_score)) print("rotation angles",best_params[4],best_params[5],best_params[6],"Domain",best_params[7]) return best_params try: from cxi_user import user_slip_callback slip_callbacks.slip_callback = user_slip_callback except Exception: pass # no user-defined behavior
45.888307
259
0.681924
676802ef0c43452a3a2b929df283691fc6b7bddb
133
py
Python
ejercicios/Ejercicios_1/4.py
GonzalezGise/CaC-Python-Grupo-10-2167
e6e822ba17f9d2110ff41c2520f3b06a764ac0ed
[ "MIT" ]
null
null
null
ejercicios/Ejercicios_1/4.py
GonzalezGise/CaC-Python-Grupo-10-2167
e6e822ba17f9d2110ff41c2520f3b06a764ac0ed
[ "MIT" ]
null
null
null
ejercicios/Ejercicios_1/4.py
GonzalezGise/CaC-Python-Grupo-10-2167
e6e822ba17f9d2110ff41c2520f3b06a764ac0ed
[ "MIT" ]
1
2021-11-19T23:56:45.000Z
2021-11-19T23:56:45.000Z
test = "pepito flores" def Capitalizador(input): output = input.title() print(output) return output Capitalizador(test)
16.625
26
0.699248
6bc93b108d25604454d798e0ab22dd8550577223
6,241
py
Python
openpyxl/worksheet/tests/test_table.py
zhangyu836/openpyxl
c2735a2a0fd81cf78082008bd4bee0fc84a3b130
[ "MIT" ]
12
2019-08-07T16:48:21.000Z
2021-12-13T02:47:22.000Z
openpyxl/worksheet/tests/test_table.py
zhangyu836/openpyxl
c2735a2a0fd81cf78082008bd4bee0fc84a3b130
[ "MIT" ]
19
2019-12-29T05:07:36.000Z
2021-04-22T18:09:49.000Z
openpyxl/worksheet/tests/test_table.py
zhangyu836/openpyxl
c2735a2a0fd81cf78082008bd4bee0fc84a3b130
[ "MIT" ]
1
2020-05-26T20:33:10.000Z
2020-05-26T20:33:10.000Z
from __future__ import absolute_import # Copyright (c) 2010-2019 openpyxl import pytest from io import BytesIO from zipfile import ZipFile from openpyxl.xml.functions import fromstring, tostring from openpyxl.tests.helper import compare_xml @pytest.fixture def TableColumn(): from ..table import TableColumn return TableColumn class TestTableColumn: def test_ctor(self, TableColumn): col = TableColumn(id=1, name="Column1") xml = tostring(col.to_tree()) expected = """ <tableColumn id="1" name="Column1"/> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, TableColumn): src = """ <tableColumn id="1" name="Column1"/> """ node = fromstring(src) col = TableColumn.from_tree(node) assert col == TableColumn(id=1, name="Column1") @pytest.fixture def Table(): from ..table import Table return Table class TestTable: def test_ctor(self, Table, TableColumn): table = Table(displayName="A_Sample_Table", ref="A1:D5") xml = tostring(table.to_tree()) expected = """ <table xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" displayName="A_Sample_Table" headerRowCount="1" name="A_Sample_Table" id="1" ref="A1:D5"> </table> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_columns(self, Table, TableColumn): table = Table(displayName="A_Sample_Table", ref="A1:D5") table._initialise_columns() xml = tostring(table.to_tree()) expected = """ <table xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" displayName="A_Sample_Table" headerRowCount="1" name="A_Sample_Table" id="1" ref="A1:D5"> <autoFilter ref="A1:D5" /> <tableColumns count="4"> <tableColumn id="1" name="Column1" /> <tableColumn id="2" name="Column2" /> <tableColumn id="3" name="Column3" /> <tableColumn id="4" name="Column4" /> </tableColumns> </table> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, Table): src = """ <table xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" id="1" name="Table1" displayName="Table1" ref="A1:AA27"> </table> """ node = fromstring(src) table = Table.from_tree(node) assert table == Table(displayName="Table1", name="Table1", ref="A1:AA27") def test_path(self, Table): table = Table(displayName="Table1", ref="A1:M6") assert table.path == "/xl/tables/table1.xml" def test_write(self, Table): out = BytesIO() archive = ZipFile(out, "w") table = Table(displayName="Table1", ref="B1:L10") table._write(archive) assert "xl/tables/table1.xml" in archive.namelist() @pytest.fixture def TableFormula(): from ..table import TableFormula return TableFormula class TestTableFormula: def test_ctor(self, TableFormula): formula = TableFormula() formula.text = "=A1*4" xml = tostring(formula.to_tree()) expected = """ <tableFormula>=A1*4</tableFormula> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, TableFormula): src = """ <tableFormula>=A1*4</tableFormula> """ node = fromstring(src) formula = TableFormula.from_tree(node) assert formula.text == "=A1*4" @pytest.fixture def TableStyleInfo(): from ..table import TableStyleInfo return TableStyleInfo class TestTableInfo: def test_ctor(self, TableStyleInfo): info = TableStyleInfo(name="TableStyleMedium12") xml = tostring(info.to_tree()) expected = """ <tableStyleInfo name="TableStyleMedium12" /> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, TableStyleInfo): src = """ <tableStyleInfo name="TableStyleLight1" showRowStripes="1" /> """ node = fromstring(src) info = TableStyleInfo.from_tree(node) assert info == TableStyleInfo(name="TableStyleLight1", showRowStripes=True) @pytest.fixture def XMLColumnProps(): from ..table import XMLColumnProps return XMLColumnProps class TestXMLColumnPr: def test_ctor(self, XMLColumnProps): col = XMLColumnProps(mapId="1", xpath="/xml/foo/element", xmlDataType="string") xml = tostring(col.to_tree()) expected = """ <xmlColumnPr mapId="1" xpath="/xml/foo/element" xmlDataType="string"/> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, XMLColumnProps): src = """ <xmlColumnPr mapId="1" xpath="/xml/foo/element" xmlDataType="string"/> """ node = fromstring(src) col = XMLColumnProps.from_tree(node) assert col == XMLColumnProps(mapId="1", xpath="/xml/foo/element", xmlDataType="string") @pytest.fixture def TablePartList(): from ..table import TablePartList return TablePartList from ..related import Related class TestTablePartList: def test_ctor(self, TablePartList): tables = TablePartList() tables.append(Related(id="rId1")) xml = tostring(tables.to_tree()) expected = """ <tableParts count="1" xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"> <tablePart r:id="rId1" /> </tableParts> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, TablePartList): src = """ <tableParts xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"> <tablePart r:id="rId1" /> <tablePart r:id="rId2" /> </tableParts> """ node = fromstring(src) tables = TablePartList.from_tree(node) assert len(tables.tablePart) == 2
28.368182
108
0.614164
df1e70add294121dc8b8c60f39917c2d84a65a90
1,298
py
Python
examples/list_clusters.py
h-medjahed/pyvcloud
696243a7f418987936f1ddce94dfeceaa9fd04d2
[ "Apache-2.0" ]
null
null
null
examples/list_clusters.py
h-medjahed/pyvcloud
696243a7f418987936f1ddce94dfeceaa9fd04d2
[ "Apache-2.0" ]
3
2017-08-24T07:32:12.000Z
2018-12-03T16:46:09.000Z
examples/list_clusters.py
useitcloud/pyvcloud
d3ed57b43d36d942edced2ee02cf6367d6826bb8
[ "Apache-2.0" ]
1
2018-07-10T13:56:58.000Z
2018-07-10T13:56:58.000Z
#! /usr/bin/env python import json import time, datetime, os, sys from pyvcloud.vcloudair import VCA from pyvcloud.cluster import Cluster from pyvcloud.helper.CommonUtils import convertPythonObjToStr def print_vca(vca): if vca: print 'vca token: ', vca.token if vca.vcloud_session: print 'vcloud session token: ', vca.vcloud_session.token print 'org name: ', vca.vcloud_session.org print 'org url: ', vca.vcloud_session.org_url print 'organization: ', vca.vcloud_session.organization else: print 'vca vcloud session: ', vca.vcloud_session else: print 'vca: ', vca host='vcd.cpsbu.eng.vmware.com' username = 'administrator' password = os.environ['PASSWORD'] org = 'System' org_url = 'https://%s/cloud' % host verify = False log = True version = '27.0' vca = VCA(host=host, username=username, service_type='standalone', version=version, verify=verify, log=log) result = vca.login(password=password, org=org, org_url=org_url) print_vca(vca) cse = Cluster(session=vca.vcloud_session, verify=verify, log=log) clusters = cse.get_clusters() print('clusters found: %s' % len(clusters)) for cluster in clusters: print('cluster %s' % cluster['name'])
30.904762
107
0.66641
878c524e0eb4153cdd7604e03bebde9e5c465d9d
936
py
Python
examples/convert/bruker2pipe_2d/bruker2pipe_2d.py
genematx/nmrglue
8a24cf6cbd18451e552fc0673b84c42d1dcb69a2
[ "BSD-3-Clause" ]
150
2015-01-16T12:24:13.000Z
2022-03-03T18:01:18.000Z
examples/convert/bruker2pipe_2d/bruker2pipe_2d.py
genematx/nmrglue
8a24cf6cbd18451e552fc0673b84c42d1dcb69a2
[ "BSD-3-Clause" ]
129
2015-01-13T04:58:56.000Z
2022-03-02T13:39:16.000Z
examples/convert/bruker2pipe_2d/bruker2pipe_2d.py
genematx/nmrglue
8a24cf6cbd18451e552fc0673b84c42d1dcb69a2
[ "BSD-3-Clause" ]
88
2015-02-16T20:04:12.000Z
2022-03-10T06:50:30.000Z
#! /usr/bin/env python import nmrglue as ng # read in the Bruker data dic,data = ng.bruker.read("bruker_2d") # Set the spectral parameters u = ng.bruker.guess_udic(dic, data) # Direct Dimsion #Indirect Dimension u[1]['size'] = 768 ; u[0]['size'] = 600 u[1]['complex'] = True ; u[0]['complex'] = True u[1]['encoding'] = 'direct' ; u[0]['encoding'] = 'states' u[1]['sw'] = 11061.947 ; u[0]['sw'] = 4000.000 u[1]['obs'] = 800.134 ; u[0]['obs'] = 201.204 u[1]['car'] = 4.773 * 800.134 ; u[0]['car'] = 58.742 * 201.204 u[1]['label'] = '1H' ; u[0]['label'] = '13C' # create the converter object and initilize with Bruker data C = ng.convert.converter() C.from_bruker(dic, data, u) # create NMRPipe data and then write it out ng.pipe.write("2d_pipe.fid", *C.to_pipe(), overwrite=True)
36
75
0.528846
fe3108cb649bfed96f933daa594cde6f3cf2c282
41,007
py
Python
ceilometer/tests/unit/meter/test_notifications.py
Missxiaoguo/stx-ceilometer
a226b47216e76ec209818b900253d3c1f1ffc3aa
[ "Apache-2.0" ]
null
null
null
ceilometer/tests/unit/meter/test_notifications.py
Missxiaoguo/stx-ceilometer
a226b47216e76ec209818b900253d3c1f1ffc3aa
[ "Apache-2.0" ]
1
2018-08-16T15:18:09.000Z
2018-08-16T20:51:45.000Z
ceilometer/tests/unit/meter/test_notifications.py
Missxiaoguo/stx-ceilometer
a226b47216e76ec209818b900253d3c1f1ffc3aa
[ "Apache-2.0" ]
3
2018-08-15T14:35:23.000Z
2019-01-11T15:57:02.000Z
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for ceilometer.meter.notifications """ import copy import fixtures import mock import six import yaml from oslo_utils import encodeutils from oslo_utils import fileutils from ceilometer import declarative from ceilometer.meter import notifications from ceilometer import service as ceilometer_service from ceilometer.tests import base as test NOTIFICATION = { 'event_type': u'test.create', 'metadata': {'timestamp': u'2015-06-19T09:19:35.786893', 'message_id': u'939823de-c242-45a2-a399-083f4d6a8c3e'}, 'payload': {u'user_id': u'e1d870e51c7340cb9d555b15cbfcaec2', u'resource_id': u'bea70e51c7340cb9d555b15cbfcaec23', u'timestamp': u'2015-06-19T09:19:35.785330', u'created_at': u'2015-06-19T09:25:35.785330', u'launched_at': u'2015-06-19T09:25:40.785330', u'message_signature': u'fake_signature1', u'resource_metadata': {u'foo': u'bar'}, u'source': u'30be1fc9a03c4e94ab05c403a8a377f2: openstack', u'volume': 1.0, u'project_id': u'30be1fc9a03c4e94ab05c403a8a377f2', }, 'ctxt': {u'tenant': u'30be1fc9a03c4e94ab05c403a8a377f2', u'request_id': u'req-da91b4bf-d2b5-43ae-8b66-c7752e72726d', u'user': u'e1d870e51c7340cb9d555b15cbfcaec2'}, 'publisher_id': "foo123" } USER_META = { 'event_type': u'test.create', 'metadata': {'timestamp': u'2015-06-19T09:19:35.786893', 'message_id': u'939823de-c242-45a2-a399-083f4d6a8c3e'}, 'payload': {u'user_id': u'e1d870e51c7340cb9d555b15cbfcaec2', u'resource_id': u'bea70e51c7340cb9d555b15cbfcaec23', u'timestamp': u'2015-06-19T09:19:35.785330', u'created_at': u'2015-06-19T09:25:35.785330', u'launched_at': u'2015-06-19T09:25:40.785330', u'message_signature': u'fake_signature1', u'resource_metadata': {u'foo': u'bar'}, u'source': u'30be1fc9a03c4e94ab05c403a8a377f2: openstack', u'volume': 1.0, u'project_id': u'30be1fc9a03c4e94ab05c403a8a377f2', u'metadata': {u'metering.xyz': u'abc', u'ignore': u'this'}, }, 'ctxt': {u'tenant': u'30be1fc9a03c4e94ab05c403a8a377f2', u'request_id': u'req-da91b4bf-d2b5-43ae-8b66-c7752e72726d', u'user': u'e1d870e51c7340cb9d555b15cbfcaec2'}, 'publisher_id': "foo123" } MIDDLEWARE_EVENT = { u'ctxt': {u'request_id': u'req-a8bfa89b-d28b-4b95-9e4b-7d7875275650', u'quota_class': None, u'service_catalog': [], u'auth_token': None, u'user_id': None, u'is_admin': True, u'user': None, u'remote_address': None, u'roles': [], u'timestamp': u'2013-07-29T06:51:34.348091', u'project_name': None, u'read_deleted': u'no', u'tenant': None, u'instance_lock_checked': False, u'project_id': None, u'user_name': None}, u'event_type': u'objectstore.http.request', u'publisher_id': u'ceilometermiddleware', u'metadata': {u'message_id': u'6eccedba-120e-4db8-9735-2ad5f061e5ee', u'timestamp': u'2013-07-29T06:51:34.474815+00:00', u'_unique_id': u'0ee26117077648e18d88ac76e28a72e2'}, u'payload': { 'typeURI': 'http: //schemas.dmtf.org/cloud/audit/1.0/event', 'eventTime': '2013-07-29T06:51:34.474815+00:00', 'target': { 'action': 'get', 'typeURI': 'service/storage/object', 'id': 'account', 'metadata': { 'path': '/1.0/CUSTOM_account/container/obj', 'version': '1.0', 'container': 'container', 'object': 'obj' } }, 'observer': { 'id': 'target' }, 'eventType': 'activity', 'measurements': [ { 'metric': { 'metricId': 'openstack: uuid', 'name': 'storage.objects.outgoing.bytes', 'unit': 'B' }, 'result': 28 }, { 'metric': { 'metricId': 'openstack: uuid2', 'name': 'storage.objects.incoming.bytes', 'unit': 'B' }, 'result': 1 } ], 'initiator': { 'typeURI': 'service/security/account/user', 'project_id': None, 'id': 'openstack: 288f6260-bf37-4737-a178-5038c84ba244' }, 'action': 'read', 'outcome': 'success', 'id': 'openstack: 69972bb6-14dd-46e4-bdaf-3148014363dc' } } FULL_MULTI_MSG = { 'event_type': u'full.sample', 'payload': [{ u'counter_name': u'instance1', u'user_id': u'user1', u'resource_id': u'res1', u'counter_unit': u'ns', u'counter_volume': 28.0, u'project_id': u'proj1', u'counter_type': u'gauge' }, { u'counter_name': u'instance2', u'user_id': u'user2', u'resource_id': u'res2', u'counter_unit': u'%', u'counter_volume': 1.0, u'project_id': u'proj2', u'counter_type': u'delta' }], u'ctxt': {u'domain': None, u'request_id': u'req-da91b4bf-d2b5-43ae-8b66-c7752e72726d', u'auth_token': None, u'read_only': False, u'resource_uuid': None, u'user_identity': u'fake_user_identity---', u'show_deleted': False, u'tenant': u'30be1fc9a03c4e94ab05c403a8a377f2', u'is_admin': True, u'project_domain': None, u'user': u'e1d870e51c7340cb9d555b15cbfcaec2', u'user_domain': None}, 'publisher_id': u'ceilometer.api', 'metadata': {'message_id': u'939823de-c242-45a2-a399-083f4d6a8c3e', 'timestamp': u'2015-06-19T09:19:35.786893'}, } METRICS_UPDATE = { u'event_type': u'compute.metrics.update', u'payload': { u'metrics': [ {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.frequency', 'value': 1600, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.user.time', 'value': 17421440000000, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.kernel.time', 'value': 7852600000000, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.idle.time', 'value': 1307374400000000, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.iowait.time', 'value': 11697470000000, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.user.percent', 'value': 0.012959045637294348, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.kernel.percent', 'value': 0.005841204961898534, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.idle.percent', 'value': 0.9724985141658965, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.iowait.percent', 'value': 0.008701235234910634, 'source': 'libvirt.LibvirtDriver'}, {'timestamp': u'2013-07-29T06:51:34.472416', 'name': 'cpu.percent', 'value': 0.027501485834103515, 'source': 'libvirt.LibvirtDriver'}], u'nodename': u'tianst.sh.intel.com', u'host': u'tianst', u'host_id': u'10.0.1.1'}, u'publisher_id': u'compute.tianst.sh.intel.com', u'metadata': {u'message_id': u'6eccedba-120e-4db8-9735-2ad5f061e5ee', u'timestamp': u'2013-07-29 06:51:34.474815', u'_unique_id': u'0ee26117077648e18d88ac76e28a72e2'}, u'ctxt': {u'request_id': u'req-a8bfa89b-d28b-4b95-9e4b-7d7875275650', u'quota_class': None, u'service_catalog': [], u'auth_token': None, u'user_id': None, u'is_admin': True, u'user': None, u'remote_address': None, u'roles': [], u'timestamp': u'2013-07-29T06:51:34.348091', u'project_name': None, u'read_deleted': u'no', u'tenant': None, u'instance_lock_checked': False, u'project_id': None, u'user_name': None} } class TestMeterDefinition(test.BaseTestCase): def test_config_definition(self): cfg = dict(name="test", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id") handler = notifications.MeterDefinition(cfg, mock.Mock(), mock.Mock()) self.assertTrue(handler.match_type("test.create")) sample = list(handler.to_samples(NOTIFICATION))[0] self.assertEqual(1.0, sample["volume"]) self.assertEqual("bea70e51c7340cb9d555b15cbfcaec23", sample["resource_id"]) self.assertEqual("30be1fc9a03c4e94ab05c403a8a377f2", sample["project_id"]) def test_config_required_missing_fields(self): cfg = dict() try: notifications.MeterDefinition(cfg, mock.Mock(), mock.Mock()) except declarative.DefinitionException as e: self.assertIn("Required fields ['name', 'type', 'event_type'," " 'unit', 'volume', 'resource_id']" " not specified", encodeutils.exception_to_unicode(e)) def test_bad_type_cfg_definition(self): cfg = dict(name="test", type="foo", event_type="bar.create", unit="foo", volume="bar", resource_id="bea70e51c7340cb9d555b15cbfcaec23") try: notifications.MeterDefinition(cfg, mock.Mock(), mock.Mock()) except declarative.DefinitionException as e: self.assertIn("Invalid type foo specified", encodeutils.exception_to_unicode(e)) class TestMeterProcessing(test.BaseTestCase): def setUp(self): super(TestMeterProcessing, self).setUp() self.CONF = ceilometer_service.prepare_service([], []) self.path = self.useFixture(fixtures.TempDir()).path self.handler = notifications.ProcessMeterNotifications( mock.Mock(conf=self.CONF)) def _load_meter_def_file(self, cfgs=None): self.CONF.set_override('meter_definitions_dirs', [self.path], group='meter') cfgs = cfgs or [] if not isinstance(cfgs, list): cfgs = [cfgs] meter_cfg_files = list() for cfg in cfgs: if six.PY3: cfg = cfg.encode('utf-8') meter_cfg_files.append(fileutils.write_to_tempfile(content=cfg, path=self.path, prefix="meters", suffix=".yaml")) self.handler.definitions = self.handler._load_definitions() @mock.patch('ceilometer.meter.notifications.LOG') def test_bad_meter_definition_skip(self, LOG): cfg = yaml.dump( {'metric': [dict(name="good_test_1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id"), dict(name="bad_test_2", type="bad_type", event_type="bar.create", unit="foo", volume="bar", resource_id="bea70e51c7340cb9d555b15cbfcaec23"), dict(name="good_test_3", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) self.assertEqual(2, len(self.handler.definitions)) args, kwargs = LOG.error.call_args_list[0] self.assertEqual("Error loading meter definition: %s", args[0]) self.assertTrue(args[1].endswith("Invalid type bad_type specified")) def test_jsonpath_values_parsed(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual('test1', s1['name']) self.assertEqual(1.0, s1['volume']) self.assertEqual('bea70e51c7340cb9d555b15cbfcaec23', s1['resource_id']) self.assertEqual('30be1fc9a03c4e94ab05c403a8a377f2', s1['project_id']) def test_multiple_meter(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id"), dict(name="test2", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) data = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(2, len(data)) expected_names = ['test1', 'test2'] for s in data: self.assertIn(s.as_dict()['name'], expected_names) def test_unmatched_meter(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.update", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(0, len(c)) def test_regex_match_meter(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.*", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(1, len(c)) def test_default_timestamp(self): event = copy.deepcopy(MIDDLEWARE_EVENT) del event['payload']['measurements'][1] cfg = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", multi="name")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(event)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual(MIDDLEWARE_EVENT['metadata']['timestamp'], s1['timestamp']) def test_custom_timestamp(self): event = copy.deepcopy(MIDDLEWARE_EVENT) del event['payload']['measurements'][1] cfg = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", multi="name", timestamp='$.payload.eventTime')]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(event)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual(MIDDLEWARE_EVENT['payload']['eventTime'], s1['timestamp']) def test_custom_timestamp_expr_meter(self): cfg = yaml.dump( {'metric': [dict(name='compute.node.cpu.frequency', event_type="compute.metrics.update", type='gauge', unit="ns", volume="$.payload.metrics[?(@.name='cpu.frequency')]" ".value", resource_id="'prefix-' + $.payload.nodename", timestamp="$.payload.metrics" "[?(@.name='cpu.frequency')].timestamp")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(METRICS_UPDATE)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual('compute.node.cpu.frequency', s1['name']) self.assertEqual("2013-07-29T06:51:34.472416+00:00", s1['timestamp']) def test_default_metadata(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.*", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() meta = NOTIFICATION['payload'].copy() meta['host'] = NOTIFICATION['publisher_id'] meta['event_type'] = NOTIFICATION['event_type'] self.assertEqual(meta, s1['resource_metadata']) def test_datetime_plugin(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.*", type="gauge", unit="sec", volume={"fields": ["$.payload.created_at", "$.payload.launched_at"], "plugin": "timedelta"}, resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual(5.0, s1['volume']) def test_custom_metadata(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.*", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id", metadata={'proj': '$.payload.project_id', 'dict': '$.payload.resource_metadata'})]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() meta = {'proj': s1['project_id'], 'dict': NOTIFICATION['payload']['resource_metadata']} self.assertEqual(meta, s1['resource_metadata']) def test_user_meta(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.*", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id", user_metadata="$.payload.metadata",)]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(USER_META)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() meta = {'user_metadata': {'xyz': 'abc'}} self.assertEqual(meta, s1['resource_metadata']) def test_user_meta_and_custom(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.*", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id", user_metadata="$.payload.metadata", metadata={'proj': '$.payload.project_id'})]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(USER_META)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() meta = {'user_metadata': {'xyz': 'abc'}, 'proj': s1['project_id']} self.assertEqual(meta, s1['resource_metadata']) def test_multi_match_event_meter(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id"), dict(name="test2", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(2, len(c)) def test_multi_meter_payload(self): cfg = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", lookup=["name", "volume", "unit"])]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(MIDDLEWARE_EVENT)) self.assertEqual(2, len(c)) s1 = c[0].as_dict() self.assertEqual('storage.objects.outgoing.bytes', s1['name']) self.assertEqual(28, s1['volume']) self.assertEqual('B', s1['unit']) s2 = c[1].as_dict() self.assertEqual('storage.objects.incoming.bytes', s2['name']) self.assertEqual(1, s2['volume']) self.assertEqual('B', s2['unit']) def test_multi_meter_payload_single(self): event = copy.deepcopy(MIDDLEWARE_EVENT) del event['payload']['measurements'][1] cfg = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", lookup=["name", "unit"])]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(event)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual('storage.objects.outgoing.bytes', s1['name']) self.assertEqual(28, s1['volume']) self.assertEqual('B', s1['unit']) def test_multi_meter_payload_none(self): event = copy.deepcopy(MIDDLEWARE_EVENT) del event['payload']['measurements'] cfg = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", lookup="name")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(event)) self.assertEqual(0, len(c)) def test_multi_meter_payload_all_multi(self): cfg = yaml.dump( {'metric': [dict(name="$.payload.[*].counter_name", event_type="full.sample", type="$.payload.[*].counter_type", unit="$.payload.[*].counter_unit", volume="$.payload.[*].counter_volume", resource_id="$.payload.[*].resource_id", project_id="$.payload.[*].project_id", user_id="$.payload.[*].user_id", lookup=['name', 'type', 'unit', 'volume', 'resource_id', 'project_id', 'user_id'])]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(FULL_MULTI_MSG)) self.assertEqual(2, len(c)) msg = FULL_MULTI_MSG['payload'] for idx, val in enumerate(c): s1 = val.as_dict() self.assertEqual(msg[idx]['counter_name'], s1['name']) self.assertEqual(msg[idx]['counter_volume'], s1['volume']) self.assertEqual(msg[idx]['counter_unit'], s1['unit']) self.assertEqual(msg[idx]['counter_type'], s1['type']) self.assertEqual(msg[idx]['resource_id'], s1['resource_id']) self.assertEqual(msg[idx]['project_id'], s1['project_id']) self.assertEqual(msg[idx]['user_id'], s1['user_id']) @mock.patch('ceilometer.meter.notifications.LOG') def test_multi_meter_payload_invalid_missing(self, LOG): event = copy.deepcopy(MIDDLEWARE_EVENT) del event['payload']['measurements'][0]['result'] del event['payload']['measurements'][1]['result'] cfg = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", lookup=["name", "unit", "volume"])]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(event)) self.assertEqual(0, len(c)) LOG.warning.assert_called_with('Only 0 fetched meters contain ' '"volume" field instead of 2.') @mock.patch('ceilometer.meter.notifications.LOG') def test_multi_meter_payload_invalid_short(self, LOG): event = copy.deepcopy(MIDDLEWARE_EVENT) del event['payload']['measurements'][0]['result'] cfg = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", lookup=["name", "unit", "volume"])]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(event)) self.assertEqual(0, len(c)) LOG.warning.assert_called_with('Only 1 fetched meters contain ' '"volume" field instead of 2.') def test_arithmetic_expr_meter(self): cfg = yaml.dump( {'metric': [dict(name='compute.node.cpu.percent', event_type="compute.metrics.update", type='gauge', unit="percent", volume="$.payload.metrics[" "?(@.name='cpu.percent')].value" " * 100", resource_id="$.payload.host + '_'" " + $.payload.nodename")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(METRICS_UPDATE)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual('compute.node.cpu.percent', s1['name']) self.assertEqual(2.7501485834103514, s1['volume']) self.assertEqual("tianst_tianst.sh.intel.com", s1['resource_id']) def test_string_expr_meter(self): cfg = yaml.dump( {'metric': [dict(name='compute.node.cpu.frequency', event_type="compute.metrics.update", type='gauge', unit="ns", volume="$.payload.metrics[?(@.name='cpu.frequency')]" ".value", resource_id="$.payload.host + '_'" " + $.payload.nodename")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(METRICS_UPDATE)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual('compute.node.cpu.frequency', s1['name']) self.assertEqual(1600, s1['volume']) self.assertEqual("tianst_tianst.sh.intel.com", s1['resource_id']) def test_prefix_expr_meter(self): cfg = yaml.dump( {'metric': [dict(name='compute.node.cpu.frequency', event_type="compute.metrics.update", type='gauge', unit="ns", volume="$.payload.metrics[?(@.name='cpu.frequency')]" ".value", resource_id="'prefix-' + $.payload.nodename")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(METRICS_UPDATE)) self.assertEqual(1, len(c)) s1 = c[0].as_dict() self.assertEqual('compute.node.cpu.frequency', s1['name']) self.assertEqual(1600, s1['volume']) self.assertEqual("prefix-tianst.sh.intel.com", s1['resource_id']) def test_duplicate_meter(self): cfg = yaml.dump( {'metric': [dict(name="test1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id"), dict(name="test1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file(cfg) c = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(1, len(c)) def test_multi_files_multi_meters(self): cfg1 = yaml.dump( {'metric': [dict(name="test1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) cfg2 = yaml.dump( {'metric': [dict(name="test2", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file([cfg1, cfg2]) data = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(2, len(data)) expected_names = ['test1', 'test2'] for s in data: self.assertIn(s.as_dict()['name'], expected_names) def test_multi_files_duplicate_meter(self): cfg1 = yaml.dump( {'metric': [dict(name="test", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) cfg2 = yaml.dump( {'metric': [dict(name="test", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file([cfg1, cfg2]) data = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(1, len(data)) self.assertEqual(data[0].as_dict()['name'], 'test') def test_multi_files_empty_payload(self): event = copy.deepcopy(MIDDLEWARE_EVENT) del event['payload']['measurements'] cfg1 = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", lookup="name")]}) cfg2 = yaml.dump( {'metric': [dict(name="$.payload.measurements.[*].metric.[*].name", event_type="objectstore.http.request", type="delta", unit="$.payload.measurements.[*].metric.[*].unit", volume="$.payload.measurements.[*].result", resource_id="$.payload.target_id", project_id="$.payload.initiator.project_id", lookup="name")]}) self._load_meter_def_file([cfg1, cfg2]) data = list(self.handler.process_notification(event)) self.assertEqual(0, len(data)) def test_multi_files_unmatched_meter(self): cfg1 = yaml.dump( {'metric': [dict(name="test1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) cfg2 = yaml.dump( {'metric': [dict(name="test2", event_type="test.update", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file([cfg1, cfg2]) data = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(1, len(data)) self.assertEqual(data[0].as_dict()['name'], 'test1') @mock.patch('ceilometer.meter.notifications.LOG') def test_multi_files_bad_meter(self, LOG): cfg1 = yaml.dump( {'metric': [dict(name="test1", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id"), dict(name="bad_test", type="bad_type", event_type="bar.create", unit="foo", volume="bar", resource_id="bea70e51c7340cb9d555b15cbfcaec23")]}) cfg2 = yaml.dump( {'metric': [dict(name="test2", event_type="test.create", type="delta", unit="B", volume="$.payload.volume", resource_id="$.payload.resource_id", project_id="$.payload.project_id")]}) self._load_meter_def_file([cfg1, cfg2]) data = list(self.handler.process_notification(NOTIFICATION)) self.assertEqual(2, len(data)) expected_names = ['test1', 'test2'] for s in data: self.assertIn(s.as_dict()['name'], expected_names) args, kwargs = LOG.error.call_args_list[0] self.assertEqual("Error loading meter definition: %s", args[0]) self.assertTrue(args[1].endswith("Invalid type bad_type specified"))
46.179054
79
0.503109
a39d9b4c1bcb7b3c0fa0fa584c2c3212087b0654
33,442
py
Python
kubernetes/client/models/v1_ephemeral_container.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
1
2022-02-22T23:10:55.000Z
2022-02-22T23:10:55.000Z
kubernetes/client/models/v1_ephemeral_container.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
6
2021-09-13T19:03:02.000Z
2022-03-16T18:56:42.000Z
kubernetes/client/models/v1_ephemeral_container.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.23 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class V1EphemeralContainer(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'args': 'list[str]', 'command': 'list[str]', 'env': 'list[V1EnvVar]', 'env_from': 'list[V1EnvFromSource]', 'image': 'str', 'image_pull_policy': 'str', 'lifecycle': 'V1Lifecycle', 'liveness_probe': 'V1Probe', 'name': 'str', 'ports': 'list[V1ContainerPort]', 'readiness_probe': 'V1Probe', 'resources': 'V1ResourceRequirements', 'security_context': 'V1SecurityContext', 'startup_probe': 'V1Probe', 'stdin': 'bool', 'stdin_once': 'bool', 'target_container_name': 'str', 'termination_message_path': 'str', 'termination_message_policy': 'str', 'tty': 'bool', 'volume_devices': 'list[V1VolumeDevice]', 'volume_mounts': 'list[V1VolumeMount]', 'working_dir': 'str' } attribute_map = { 'args': 'args', 'command': 'command', 'env': 'env', 'env_from': 'envFrom', 'image': 'image', 'image_pull_policy': 'imagePullPolicy', 'lifecycle': 'lifecycle', 'liveness_probe': 'livenessProbe', 'name': 'name', 'ports': 'ports', 'readiness_probe': 'readinessProbe', 'resources': 'resources', 'security_context': 'securityContext', 'startup_probe': 'startupProbe', 'stdin': 'stdin', 'stdin_once': 'stdinOnce', 'target_container_name': 'targetContainerName', 'termination_message_path': 'terminationMessagePath', 'termination_message_policy': 'terminationMessagePolicy', 'tty': 'tty', 'volume_devices': 'volumeDevices', 'volume_mounts': 'volumeMounts', 'working_dir': 'workingDir' } def __init__(self, args=None, command=None, env=None, env_from=None, image=None, image_pull_policy=None, lifecycle=None, liveness_probe=None, name=None, ports=None, readiness_probe=None, resources=None, security_context=None, startup_probe=None, stdin=None, stdin_once=None, target_container_name=None, termination_message_path=None, termination_message_policy=None, tty=None, volume_devices=None, volume_mounts=None, working_dir=None, local_vars_configuration=None): # noqa: E501 """V1EphemeralContainer - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._args = None self._command = None self._env = None self._env_from = None self._image = None self._image_pull_policy = None self._lifecycle = None self._liveness_probe = None self._name = None self._ports = None self._readiness_probe = None self._resources = None self._security_context = None self._startup_probe = None self._stdin = None self._stdin_once = None self._target_container_name = None self._termination_message_path = None self._termination_message_policy = None self._tty = None self._volume_devices = None self._volume_mounts = None self._working_dir = None self.discriminator = None if args is not None: self.args = args if command is not None: self.command = command if env is not None: self.env = env if env_from is not None: self.env_from = env_from if image is not None: self.image = image if image_pull_policy is not None: self.image_pull_policy = image_pull_policy if lifecycle is not None: self.lifecycle = lifecycle if liveness_probe is not None: self.liveness_probe = liveness_probe self.name = name if ports is not None: self.ports = ports if readiness_probe is not None: self.readiness_probe = readiness_probe if resources is not None: self.resources = resources if security_context is not None: self.security_context = security_context if startup_probe is not None: self.startup_probe = startup_probe if stdin is not None: self.stdin = stdin if stdin_once is not None: self.stdin_once = stdin_once if target_container_name is not None: self.target_container_name = target_container_name if termination_message_path is not None: self.termination_message_path = termination_message_path if termination_message_policy is not None: self.termination_message_policy = termination_message_policy if tty is not None: self.tty = tty if volume_devices is not None: self.volume_devices = volume_devices if volume_mounts is not None: self.volume_mounts = volume_mounts if working_dir is not None: self.working_dir = working_dir @property def args(self): """Gets the args of this V1EphemeralContainer. # noqa: E501 Arguments to the entrypoint. The docker image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. \"$$(VAR_NAME)\" will produce the string literal \"$(VAR_NAME)\". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell # noqa: E501 :return: The args of this V1EphemeralContainer. # noqa: E501 :rtype: list[str] """ return self._args @args.setter def args(self, args): """Sets the args of this V1EphemeralContainer. Arguments to the entrypoint. The docker image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. \"$$(VAR_NAME)\" will produce the string literal \"$(VAR_NAME)\". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell # noqa: E501 :param args: The args of this V1EphemeralContainer. # noqa: E501 :type: list[str] """ self._args = args @property def command(self): """Gets the command of this V1EphemeralContainer. # noqa: E501 Entrypoint array. Not executed within a shell. The docker image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. \"$$(VAR_NAME)\" will produce the string literal \"$(VAR_NAME)\". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell # noqa: E501 :return: The command of this V1EphemeralContainer. # noqa: E501 :rtype: list[str] """ return self._command @command.setter def command(self, command): """Sets the command of this V1EphemeralContainer. Entrypoint array. Not executed within a shell. The docker image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. \"$$(VAR_NAME)\" will produce the string literal \"$(VAR_NAME)\". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell # noqa: E501 :param command: The command of this V1EphemeralContainer. # noqa: E501 :type: list[str] """ self._command = command @property def env(self): """Gets the env of this V1EphemeralContainer. # noqa: E501 List of environment variables to set in the container. Cannot be updated. # noqa: E501 :return: The env of this V1EphemeralContainer. # noqa: E501 :rtype: list[V1EnvVar] """ return self._env @env.setter def env(self, env): """Sets the env of this V1EphemeralContainer. List of environment variables to set in the container. Cannot be updated. # noqa: E501 :param env: The env of this V1EphemeralContainer. # noqa: E501 :type: list[V1EnvVar] """ self._env = env @property def env_from(self): """Gets the env_from of this V1EphemeralContainer. # noqa: E501 List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated. # noqa: E501 :return: The env_from of this V1EphemeralContainer. # noqa: E501 :rtype: list[V1EnvFromSource] """ return self._env_from @env_from.setter def env_from(self, env_from): """Sets the env_from of this V1EphemeralContainer. List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated. # noqa: E501 :param env_from: The env_from of this V1EphemeralContainer. # noqa: E501 :type: list[V1EnvFromSource] """ self._env_from = env_from @property def image(self): """Gets the image of this V1EphemeralContainer. # noqa: E501 Docker image name. More info: https://kubernetes.io/docs/concepts/containers/images # noqa: E501 :return: The image of this V1EphemeralContainer. # noqa: E501 :rtype: str """ return self._image @image.setter def image(self, image): """Sets the image of this V1EphemeralContainer. Docker image name. More info: https://kubernetes.io/docs/concepts/containers/images # noqa: E501 :param image: The image of this V1EphemeralContainer. # noqa: E501 :type: str """ self._image = image @property def image_pull_policy(self): """Gets the image_pull_policy of this V1EphemeralContainer. # noqa: E501 Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images Possible enum values: - `\"Always\"` means that kubelet always attempts to pull the latest image. Container will fail If the pull fails. - `\"IfNotPresent\"` means that kubelet pulls if the image isn't present on disk. Container will fail if the image isn't present and the pull fails. - `\"Never\"` means that kubelet never pulls an image, but only uses a local image. Container will fail if the image isn't present # noqa: E501 :return: The image_pull_policy of this V1EphemeralContainer. # noqa: E501 :rtype: str """ return self._image_pull_policy @image_pull_policy.setter def image_pull_policy(self, image_pull_policy): """Sets the image_pull_policy of this V1EphemeralContainer. Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images Possible enum values: - `\"Always\"` means that kubelet always attempts to pull the latest image. Container will fail If the pull fails. - `\"IfNotPresent\"` means that kubelet pulls if the image isn't present on disk. Container will fail if the image isn't present and the pull fails. - `\"Never\"` means that kubelet never pulls an image, but only uses a local image. Container will fail if the image isn't present # noqa: E501 :param image_pull_policy: The image_pull_policy of this V1EphemeralContainer. # noqa: E501 :type: str """ allowed_values = ["Always", "IfNotPresent", "Never"] # noqa: E501 if self.local_vars_configuration.client_side_validation and image_pull_policy not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `image_pull_policy` ({0}), must be one of {1}" # noqa: E501 .format(image_pull_policy, allowed_values) ) self._image_pull_policy = image_pull_policy @property def lifecycle(self): """Gets the lifecycle of this V1EphemeralContainer. # noqa: E501 :return: The lifecycle of this V1EphemeralContainer. # noqa: E501 :rtype: V1Lifecycle """ return self._lifecycle @lifecycle.setter def lifecycle(self, lifecycle): """Sets the lifecycle of this V1EphemeralContainer. :param lifecycle: The lifecycle of this V1EphemeralContainer. # noqa: E501 :type: V1Lifecycle """ self._lifecycle = lifecycle @property def liveness_probe(self): """Gets the liveness_probe of this V1EphemeralContainer. # noqa: E501 :return: The liveness_probe of this V1EphemeralContainer. # noqa: E501 :rtype: V1Probe """ return self._liveness_probe @liveness_probe.setter def liveness_probe(self, liveness_probe): """Sets the liveness_probe of this V1EphemeralContainer. :param liveness_probe: The liveness_probe of this V1EphemeralContainer. # noqa: E501 :type: V1Probe """ self._liveness_probe = liveness_probe @property def name(self): """Gets the name of this V1EphemeralContainer. # noqa: E501 Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers. # noqa: E501 :return: The name of this V1EphemeralContainer. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this V1EphemeralContainer. Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers. # noqa: E501 :param name: The name of this V1EphemeralContainer. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and name is None: # noqa: E501 raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def ports(self): """Gets the ports of this V1EphemeralContainer. # noqa: E501 Ports are not allowed for ephemeral containers. # noqa: E501 :return: The ports of this V1EphemeralContainer. # noqa: E501 :rtype: list[V1ContainerPort] """ return self._ports @ports.setter def ports(self, ports): """Sets the ports of this V1EphemeralContainer. Ports are not allowed for ephemeral containers. # noqa: E501 :param ports: The ports of this V1EphemeralContainer. # noqa: E501 :type: list[V1ContainerPort] """ self._ports = ports @property def readiness_probe(self): """Gets the readiness_probe of this V1EphemeralContainer. # noqa: E501 :return: The readiness_probe of this V1EphemeralContainer. # noqa: E501 :rtype: V1Probe """ return self._readiness_probe @readiness_probe.setter def readiness_probe(self, readiness_probe): """Sets the readiness_probe of this V1EphemeralContainer. :param readiness_probe: The readiness_probe of this V1EphemeralContainer. # noqa: E501 :type: V1Probe """ self._readiness_probe = readiness_probe @property def resources(self): """Gets the resources of this V1EphemeralContainer. # noqa: E501 :return: The resources of this V1EphemeralContainer. # noqa: E501 :rtype: V1ResourceRequirements """ return self._resources @resources.setter def resources(self, resources): """Sets the resources of this V1EphemeralContainer. :param resources: The resources of this V1EphemeralContainer. # noqa: E501 :type: V1ResourceRequirements """ self._resources = resources @property def security_context(self): """Gets the security_context of this V1EphemeralContainer. # noqa: E501 :return: The security_context of this V1EphemeralContainer. # noqa: E501 :rtype: V1SecurityContext """ return self._security_context @security_context.setter def security_context(self, security_context): """Sets the security_context of this V1EphemeralContainer. :param security_context: The security_context of this V1EphemeralContainer. # noqa: E501 :type: V1SecurityContext """ self._security_context = security_context @property def startup_probe(self): """Gets the startup_probe of this V1EphemeralContainer. # noqa: E501 :return: The startup_probe of this V1EphemeralContainer. # noqa: E501 :rtype: V1Probe """ return self._startup_probe @startup_probe.setter def startup_probe(self, startup_probe): """Sets the startup_probe of this V1EphemeralContainer. :param startup_probe: The startup_probe of this V1EphemeralContainer. # noqa: E501 :type: V1Probe """ self._startup_probe = startup_probe @property def stdin(self): """Gets the stdin of this V1EphemeralContainer. # noqa: E501 Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false. # noqa: E501 :return: The stdin of this V1EphemeralContainer. # noqa: E501 :rtype: bool """ return self._stdin @stdin.setter def stdin(self, stdin): """Sets the stdin of this V1EphemeralContainer. Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false. # noqa: E501 :param stdin: The stdin of this V1EphemeralContainer. # noqa: E501 :type: bool """ self._stdin = stdin @property def stdin_once(self): """Gets the stdin_once of this V1EphemeralContainer. # noqa: E501 Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false # noqa: E501 :return: The stdin_once of this V1EphemeralContainer. # noqa: E501 :rtype: bool """ return self._stdin_once @stdin_once.setter def stdin_once(self, stdin_once): """Sets the stdin_once of this V1EphemeralContainer. Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false # noqa: E501 :param stdin_once: The stdin_once of this V1EphemeralContainer. # noqa: E501 :type: bool """ self._stdin_once = stdin_once @property def target_container_name(self): """Gets the target_container_name of this V1EphemeralContainer. # noqa: E501 If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec. The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined. # noqa: E501 :return: The target_container_name of this V1EphemeralContainer. # noqa: E501 :rtype: str """ return self._target_container_name @target_container_name.setter def target_container_name(self, target_container_name): """Sets the target_container_name of this V1EphemeralContainer. If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec. The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined. # noqa: E501 :param target_container_name: The target_container_name of this V1EphemeralContainer. # noqa: E501 :type: str """ self._target_container_name = target_container_name @property def termination_message_path(self): """Gets the termination_message_path of this V1EphemeralContainer. # noqa: E501 Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated. # noqa: E501 :return: The termination_message_path of this V1EphemeralContainer. # noqa: E501 :rtype: str """ return self._termination_message_path @termination_message_path.setter def termination_message_path(self, termination_message_path): """Sets the termination_message_path of this V1EphemeralContainer. Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated. # noqa: E501 :param termination_message_path: The termination_message_path of this V1EphemeralContainer. # noqa: E501 :type: str """ self._termination_message_path = termination_message_path @property def termination_message_policy(self): """Gets the termination_message_policy of this V1EphemeralContainer. # noqa: E501 Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated. Possible enum values: - `\"FallbackToLogsOnError\"` will read the most recent contents of the container logs for the container status message when the container exits with an error and the terminationMessagePath has no contents. - `\"File\"` is the default behavior and will set the container status message to the contents of the container's terminationMessagePath when the container exits. # noqa: E501 :return: The termination_message_policy of this V1EphemeralContainer. # noqa: E501 :rtype: str """ return self._termination_message_policy @termination_message_policy.setter def termination_message_policy(self, termination_message_policy): """Sets the termination_message_policy of this V1EphemeralContainer. Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated. Possible enum values: - `\"FallbackToLogsOnError\"` will read the most recent contents of the container logs for the container status message when the container exits with an error and the terminationMessagePath has no contents. - `\"File\"` is the default behavior and will set the container status message to the contents of the container's terminationMessagePath when the container exits. # noqa: E501 :param termination_message_policy: The termination_message_policy of this V1EphemeralContainer. # noqa: E501 :type: str """ allowed_values = ["FallbackToLogsOnError", "File"] # noqa: E501 if self.local_vars_configuration.client_side_validation and termination_message_policy not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `termination_message_policy` ({0}), must be one of {1}" # noqa: E501 .format(termination_message_policy, allowed_values) ) self._termination_message_policy = termination_message_policy @property def tty(self): """Gets the tty of this V1EphemeralContainer. # noqa: E501 Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false. # noqa: E501 :return: The tty of this V1EphemeralContainer. # noqa: E501 :rtype: bool """ return self._tty @tty.setter def tty(self, tty): """Sets the tty of this V1EphemeralContainer. Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false. # noqa: E501 :param tty: The tty of this V1EphemeralContainer. # noqa: E501 :type: bool """ self._tty = tty @property def volume_devices(self): """Gets the volume_devices of this V1EphemeralContainer. # noqa: E501 volumeDevices is the list of block devices to be used by the container. # noqa: E501 :return: The volume_devices of this V1EphemeralContainer. # noqa: E501 :rtype: list[V1VolumeDevice] """ return self._volume_devices @volume_devices.setter def volume_devices(self, volume_devices): """Sets the volume_devices of this V1EphemeralContainer. volumeDevices is the list of block devices to be used by the container. # noqa: E501 :param volume_devices: The volume_devices of this V1EphemeralContainer. # noqa: E501 :type: list[V1VolumeDevice] """ self._volume_devices = volume_devices @property def volume_mounts(self): """Gets the volume_mounts of this V1EphemeralContainer. # noqa: E501 Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated. # noqa: E501 :return: The volume_mounts of this V1EphemeralContainer. # noqa: E501 :rtype: list[V1VolumeMount] """ return self._volume_mounts @volume_mounts.setter def volume_mounts(self, volume_mounts): """Sets the volume_mounts of this V1EphemeralContainer. Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated. # noqa: E501 :param volume_mounts: The volume_mounts of this V1EphemeralContainer. # noqa: E501 :type: list[V1VolumeMount] """ self._volume_mounts = volume_mounts @property def working_dir(self): """Gets the working_dir of this V1EphemeralContainer. # noqa: E501 Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated. # noqa: E501 :return: The working_dir of this V1EphemeralContainer. # noqa: E501 :rtype: str """ return self._working_dir @working_dir.setter def working_dir(self, working_dir): """Sets the working_dir of this V1EphemeralContainer. Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated. # noqa: E501 :param working_dir: The working_dir of this V1EphemeralContainer. # noqa: E501 :type: str """ self._working_dir = working_dir def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1EphemeralContainer): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1EphemeralContainer): return True return self.to_dict() != other.to_dict()
45.191892
860
0.68112
8f77ebfc1eb1f57c8972ea052d11de4c85a4e110
397
py
Python
examples/tutorial-component/components/tick/component.py
frlan/batou
895960fb1a7fc14c1a2bfbbca13d96d6ec8b0f53
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
examples/tutorial-component/components/tick/component.py
frlan/batou
895960fb1a7fc14c1a2bfbbca13d96d6ec8b0f53
[ "BSD-2-Clause-FreeBSD" ]
5
2021-03-20T05:08:49.000Z
2021-06-02T03:20:17.000Z
examples/tutorial-component/components/tick/component.py
ZeitOnline/batou
cade3526e7979a53d47bb020c5191702972ff2ff
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
from batou.component import Component from batou.lib.file import File class Tick(Component): def configure(self): tick = File('tick.sh', source='tick.sh', mode=0o755) self += tick self.provide('programs', dict(name='tick', path=tick.path, priority=10))
24.8125
41
0.476071
4ca67006d1a58a39ac3a9da27d569c0cfeb8face
2,535
py
Python
TensorArtist/tartist/core/utils/concurrent_monitor.py
cosmic119/DiscoGAN
5a86f36f45a3dafdc028fc2100eb477e54dc83cd
[ "MIT" ]
null
null
null
TensorArtist/tartist/core/utils/concurrent_monitor.py
cosmic119/DiscoGAN
5a86f36f45a3dafdc028fc2100eb477e54dc83cd
[ "MIT" ]
null
null
null
TensorArtist/tartist/core/utils/concurrent_monitor.py
cosmic119/DiscoGAN
5a86f36f45a3dafdc028fc2100eb477e54dc83cd
[ "MIT" ]
null
null
null
# -*- coding:utf8 -*- # File : concurrent_monitor.py # Author : Jiayuan Mao # Email : maojiayuan@gmail.com # Date : 6/21/17 # # This file is part of TensorArtist. import itertools import threading import collections import time __all__ = ['TSCounter', 'TSCounterMonitor'] class TSCounter(object): def __init__(self): self._cnt = itertools.count() self._ref = itertools.count() self._iter_cnt = iter(self._cnt) self._iter_ref = iter(self._ref) def tick(self): next(self._iter_cnt) def get(self): ref = next(self._iter_ref) cnt = next(self._iter_cnt) return cnt - ref class TSCounterMonitor(object): _displayer = None def __init__(self, counters=None, display_names=None, interval=1, printf=None): if counters is None: counters = ['DEFAULT'] self._display_names = display_names self._counters = collections.OrderedDict([(n, TSCounter()) for n in counters]) self._interval = interval self._printf = printf if self._printf is None: from ..logger import get_logger logger = get_logger(__file__) self._printf = logger.info @property def _counter_names(self): return list(self._counters.keys()) def tick(self, name=None): if len(self._counter_names) == 1: self._counters[self._counter_names[0]].tick() else: assert name is None, 'Must provide name if there are multiple counters.' self._counters[name].tick() def start(self): self._displayer = threading.Thread(target=self._display_thread, daemon=True) self._displayer.start() return self def _display(self, deltas, interval): names = self._display_names or self._counter_names if len(names) == 1: self._printf('Counter monitor {}: {} ticks/s.'.format(names[0], deltas[0]/interval)) else: log_strs = ['Counter monitor:'] for n, v in zip(names, deltas): log_strs.append('\t{}: {} ticks/s'.format(n, v/interval)) self._printf('\n'.join(log_strs)) def _display_thread(self): prev = [c.get() for _, c in self._counters.items()] while True: time.sleep(self._interval) curr = [c.get() for _, c in self._counters.items()] deltas = [c - p for p, c in zip(prev, curr)] prev = curr self._display(deltas, self._interval)
30.178571
96
0.601972
c8ad1b9ec2dc304d68592908619834cc252a3c15
3,687
py
Python
h/cli/commands/user.py
kevinjalbert/h
0f260bf59847f27eff720eeb3c3b2468571412b2
[ "BSD-2-Clause" ]
1
2020-06-19T01:49:39.000Z
2020-06-19T01:49:39.000Z
h/cli/commands/user.py
kevinjalbert/h
0f260bf59847f27eff720eeb3c3b2468571412b2
[ "BSD-2-Clause" ]
5
2020-03-24T18:14:50.000Z
2022-03-02T06:56:50.000Z
h/cli/commands/user.py
liquidinvestigations/hypothesis-h
2eebc0b20823fc5bc42a8e8c33551a6d448ad6ba
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import click import sqlalchemy from h import models @click.group() def user(): """Manage users.""" @user.command() @click.option("--username", prompt=True) @click.option("--email", prompt=True) @click.option("--authority") @click.password_option() @click.pass_context def add(ctx, username, email, password, authority): """Create a new user.""" request = ctx.obj["bootstrap"]() signup_service = request.find_service(name="user_signup") signup_kwargs = { "username": username, "email": email, "password": password, "require_activation": False, } if authority: signup_kwargs["authority"] = authority signup_service.signup(**signup_kwargs) try: request.tm.commit() except sqlalchemy.exc.IntegrityError as err: upstream_error = "\n".join(" " + line for line in str(err).split("\n")) message = "could not create user due to integrity constraint.\n\n{}".format( upstream_error ) raise click.ClickException(message) click.echo("{username} created".format(username=username), err=True) @user.command() @click.argument("username") @click.option("--authority") @click.option("--on/--off", default=True) @click.pass_context def admin(ctx, username, authority, on): """ Make a user an admin. You must specify the username of a user which you wish to give administrative privileges. """ request = ctx.obj["bootstrap"]() if not authority: authority = request.default_authority user = models.User.get_by_username(request.db, username, authority) if user is None: msg = 'no user with username "{}" and authority "{}"'.format( username, authority ) raise click.ClickException(msg) user.admin = on request.tm.commit() click.echo( "{username} is now {status}an administrator".format( username=username, status="" if on else "NOT " ), err=True, ) @user.command() @click.argument("username") @click.option("--authority") @click.password_option() @click.pass_context def password(ctx, username, authority, password): """ Change user's password. You must specify the username of a user whose password you want to change. """ request = ctx.obj["bootstrap"]() password_service = request.find_service(name="user_password") if not authority: authority = request.default_authority user = models.User.get_by_username(request.db, username, authority) if user is None: msg = 'no user with username "{}" and authority "{}"'.format( username, authority ) raise click.ClickException(msg) password_service.update_password(user, password) request.tm.commit() click.echo("Password changed for {}".format(username), err=True) @user.command() @click.argument("username") @click.option("--authority") @click.pass_context def delete(ctx, username, authority): """ Deletes a user with all their group memberships and annotations. You must specify the username of a user to delete. """ request = ctx.obj["bootstrap"]() if not authority: authority = request.default_authority user = models.User.get_by_username(request.db, username, authority) if user is None: msg = 'no user with username "{}" and authority "{}"'.format( username, authority ) raise click.ClickException(msg) svc = request.find_service(name="delete_user") svc.delete(user) request.tm.commit() click.echo("User {} deleted.".format(username), err=True)
25.964789
84
0.64741
594ff91750ef735aa69fdc0c53c9ce879eeec78d
4,114
py
Python
benchmarks/nonlinear_software/f3/factorial.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
3
2021-04-23T23:29:26.000Z
2022-03-23T10:00:30.000Z
benchmarks/nonlinear_software/f3/factorial.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
null
null
null
benchmarks/nonlinear_software/f3/factorial.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
1
2021-11-17T22:02:56.000Z
2021-11-17T22:02:56.000Z
import pysmt.typing as types from pysmt.environment import Environment as PysmtEnv from pysmt.fnode import FNode from utils import symb_to_next def transition_system(env: PysmtEnv) -> (frozenset, FNode, FNode, FNode): assert isinstance(env, PysmtEnv) mgr = env.formula_manager fact = mgr.Symbol("fact", types.INT) i = mgr.Symbol("i", types.INT) n = mgr.Symbol("n", types.INT) pc = mgr.Symbol("pc", types.INT) x_fact = symb_to_next(mgr, fact) x_i = symb_to_next(mgr, i) x_n = symb_to_next(mgr, n) x_pc = symb_to_next(mgr, pc) symbols = frozenset([fact, i, n, pc]) n_locs = 6 int_bound = n_locs pcs = [] x_pcs = [] ints = [mgr.Int(i) for i in range(int_bound)] for l in range(n_locs): n = ints[l] pcs.append(mgr.Equals(pc, n)) x_pcs.append(mgr.Equals(x_pc, n)) m_1 = mgr.Int(-1) pcend = mgr.Equals(pc, m_1) x_pcend = mgr.Equals(x_pc, m_1) # initial location. init = pcs[0] # control flow graph. cfg = mgr.And( # pc = -1 : -1, mgr.Implies(pcend, x_pcend), # pc = 0 & !(n >= 1) : -1, mgr.Implies(mgr.And(pcs[0], mgr.Not(mgr.GE(n, ints[1]))), x_pcend), # pc = 0 & n >= 1 : 1, mgr.Implies(mgr.And(pcs[0], mgr.GE(n, ints[1])), x_pcs[1]), # pc = 1 : 2, mgr.Implies(pcs[1], x_pcs[2]), # pc = 2 : 3, mgr.Implies(pcs[2], x_pcs[3]), # pc = 3 & !(i <= fact) : -1, mgr.Implies(mgr.And(pcs[3], mgr.Not(mgr.LE(i, fact))), x_pcend), # pc = 3 & i <= fact : 4, mgr.Implies(mgr.And(pcs[3], mgr.LE(i, fact)), x_pcs[4]), # pc = 4 : 5, mgr.Implies(pcs[4], x_pcs[5]), # pc = 5 : 3, mgr.Implies(pcs[5], x_pcs[3])) # transition labels. labels = mgr.And( # (pc = -1 & pc' = -1) -> (n' = n & i' = i & fact' = fact), mgr.Implies( mgr.And(pcend, x_pcend), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, i), mgr.Equals(x_fact, fact))), # (pc = 0 & pc' = -1) -> (n' = n & i' = i & fact' = fact), mgr.Implies( mgr.And(pcs[0], x_pcend), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, i), mgr.Equals(x_fact, fact))), # (pc = 0 & pc' = 1) -> (n' = n & i' = i & fact' = fact), mgr.Implies( mgr.And(pcs[0], x_pcs[1]), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, i), mgr.Equals(x_fact, fact))), # (pc = 1 & pc' = 2) -> (n' = n & i' = i & fact' = 2), mgr.Implies( mgr.And(pcs[1], x_pcs[2]), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, i), mgr.Equals(x_fact, ints[2]))), # (pc = 2 & pc' = 3) -> (n' = n & i' = 1 & fact' = fact), mgr.Implies( mgr.And(pcs[2], x_pcs[3]), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, ints[1]), mgr.Equals(x_fact, fact))), # (pc = 3 & pc' = -1) -> (n' = n & i' = i & fact' = fact), mgr.Implies( mgr.And(pcs[3], x_pcend), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, i), mgr.Equals(x_fact, fact))), # (pc = 3 & pc' = 4) -> (n' = n & i' = i & fact' = fact), mgr.Implies( mgr.And(pcs[3], x_pcs[4]), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, i), mgr.Equals(x_fact, fact))), # (pc = 4 & pc' = 5) -> (n' = n & i' = i & fact' = fact*i), mgr.Implies( mgr.And(pcs[4], x_pcs[5]), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, i), mgr.Equals(x_fact, mgr.Times(fact, i)))), # (pc = 5 & pc' = 3) -> (n' = n & i' = i+1 & fact' = fact), mgr.Implies( mgr.And(pcs[5], x_pcs[3]), mgr.And(mgr.Equals(x_n, n), mgr.Equals(x_i, mgr.Plus(i, ints[1])), mgr.Equals(x_fact, fact)))) # transition relation. trans = mgr.And(cfg, labels) # fairness. fairness = mgr.Not(pcend) return symbols, init, trans, fairness
36.087719
78
0.478123
498bbcf45328df67e5c452a7a072e5cc8ce11b94
1,211
py
Python
app/core/models.py
RogerITData/recipe-app-api
c96cc46d7bbf28ebd525a9ba94507d02abfe0251
[ "MIT" ]
null
null
null
app/core/models.py
RogerITData/recipe-app-api
c96cc46d7bbf28ebd525a9ba94507d02abfe0251
[ "MIT" ]
null
null
null
app/core/models.py
RogerITData/recipe-app-api
c96cc46d7bbf28ebd525a9ba94507d02abfe0251
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager,\ PermissionsMixin class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): """Creates and saves a new user""" if not email: raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """Creates and save a new superuser""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """Custom user model that support using email instead of username""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email'
31.868421
76
0.668043
1f1f58312704dd4b88096f01aa0cb630f43f0c62
1,238
py
Python
py/rows.py
timm/misc
2326989a8b8599283f8f16a6b8595d916850e392
[ "BSD-2-Clause" ]
null
null
null
py/rows.py
timm/misc
2326989a8b8599283f8f16a6b8595d916850e392
[ "BSD-2-Clause" ]
null
null
null
py/rows.py
timm/misc
2326989a8b8599283f8f16a6b8595d916850e392
[ "BSD-2-Clause" ]
1
2019-04-17T02:21:40.000Z
2019-04-17T02:21:40.000Z
import re # init a thing # decide type in things # ocer ttype in stings # return a row with ids and x and y # i need x,y class eg(object): id=0 def __init__(i, egs, xs=[], ys=[]): eg.id = i.id = eg.id + 1 i.xs, i.ys, i.egs = xs, ys, egs class egs(object): ignore = "?" less = "<" more = ">" klass = "!" ys = "<>!" def __init__(i): i.klass = None i.xs, i.ys, i.less, i.more = [],[],[],[] def also(i,c): if egs.less in c.name : i.less += [c] elif egs.more in c,name : i.more += [c] elif egs.klass in c.name : i.klass = c return c def rows(i,file): for cnt,(xs,ys) in enumerate(xy(rows(file))): if cnt==0: i.xs = [ col(x,n) for n,x in enumerate(xs)] i.ys = [i.also(col(y,n)) for n,y in enumerate(ys)] else: yield eg(i, xs=xs, ys=ys) class col(object): def __init__(i, name,pos): i.name, i.pos = name, pos i.log = None # place to stats about a number i.prep = None # coerce function string to something def train(i, z, n=1): if z is egs.ignore: return z if not i.log: z, i.prep = atom(z) i.log = bins() if i.prep == str else around() i.log.train( pre(z), n )
24.76
58
0.526656
3fd4e1f725569e04e20742c77a12f629b59549a8
4,792
py
Python
aiida/cmdline/commands/cmd_database.py
azadoks/aiida-core
b806b7fef8fc79090deccfe2019b77cb922e0581
[ "MIT", "BSD-3-Clause" ]
180
2019-07-12T07:45:26.000Z
2022-03-22T13:16:57.000Z
aiida/cmdline/commands/cmd_database.py
azadoks/aiida-core
b806b7fef8fc79090deccfe2019b77cb922e0581
[ "MIT", "BSD-3-Clause" ]
2,325
2019-07-04T13:41:44.000Z
2022-03-31T12:17:10.000Z
aiida/cmdline/commands/cmd_database.py
azadoks/aiida-core
b806b7fef8fc79090deccfe2019b77cb922e0581
[ "MIT", "BSD-3-Clause" ]
88
2019-07-06T01:42:39.000Z
2022-03-18T14:20:09.000Z
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """`verdi database` commands.""" # pylint: disable=unused-argument import click from aiida.backends.general.migrations.duplicate_uuids import TABLES_UUID_DEDUPLICATION from aiida.cmdline.commands.cmd_verdi import verdi from aiida.cmdline.params import options from aiida.cmdline.utils import decorators @verdi.group('database') def verdi_database(): """Inspect and manage the database. .. deprecated:: v2.0.0 """ @verdi_database.command('version') @decorators.deprecated_command( 'This command has been deprecated and no longer has any effect. It will be removed soon from the CLI (in v2.1).\n' 'The same information is now available through `verdi status`.\n' ) def database_version(): """Show the version of the database. The database version is defined by the tuple of the schema generation and schema revision. .. deprecated:: v2.0.0 """ @verdi_database.command('migrate') @options.FORCE() @click.pass_context @decorators.deprecated_command( 'This command has been deprecated and will be removed soon (in v3.0). ' 'Please call `verdi storage migrate` instead.\n' ) def database_migrate(ctx, force): """Migrate the database to the latest schema version. .. deprecated:: v2.0.0 """ from aiida.cmdline.commands.cmd_storage import storage_migrate ctx.forward(storage_migrate) @verdi_database.group('integrity') def verdi_database_integrity(): """Check the integrity of the database and fix potential issues. .. deprecated:: v2.0.0 """ @verdi_database_integrity.command('detect-duplicate-uuid') @click.option( '-t', '--table', type=click.Choice(TABLES_UUID_DEDUPLICATION), default='db_dbnode', help='The database table to operate on.' ) @click.option( '-a', '--apply-patch', is_flag=True, help='Actually apply the proposed changes instead of performing a dry run.' ) @decorators.deprecated_command( 'This command has been deprecated and no longer has any effect. It will be removed soon from the CLI (in v2.1).\n' 'For remaining available integrity checks, use `verdi storage integrity` instead.\n' ) def detect_duplicate_uuid(table, apply_patch): """Detect and fix entities with duplicate UUIDs. Before aiida-core v1.0.0, there was no uniqueness constraint on the UUID column of the node table in the database and a few other tables as well. This made it possible to store multiple entities with identical UUIDs in the same table without the database complaining. This bug was fixed in aiida-core=1.0.0 by putting an explicit uniqueness constraint on UUIDs on the database level. However, this would leave databases created before this patch with duplicate UUIDs in an inconsistent state. This command will run an analysis to detect duplicate UUIDs in a given table and solve it by generating new UUIDs. Note that it will not delete or merge any rows. .. deprecated:: v2.0.0 """ @verdi_database_integrity.command('detect-invalid-links') @decorators.with_dbenv() @decorators.deprecated_command( 'This command has been deprecated and no longer has any effect. It will be removed soon from the CLI (in v2.1).\n' 'For remaining available integrity checks, use `verdi storage integrity` instead.\n' ) def detect_invalid_links(): """Scan the database for invalid links. .. deprecated:: v2.0.0 """ @verdi_database_integrity.command('detect-invalid-nodes') @decorators.with_dbenv() @decorators.deprecated_command( 'This command has been deprecated and no longer has any effect. It will be removed soon from the CLI (in v2.1).\n' 'For remaining available integrity checks, use `verdi storage integrity` instead.\n' ) def detect_invalid_nodes(): """Scan the database for invalid nodes. .. deprecated:: v2.0.0 """ @verdi_database.command('summary') @decorators.deprecated_command( 'This command has been deprecated and no longer has any effect. It will be removed soon from the CLI (in v2.1).\n' 'Please call `verdi storage info` instead.\n' ) def database_summary(): """Summarise the entities in the database. .. deprecated:: v2.0.0 """
36.030075
118
0.6851
e2e0830fb7849389dc6ad79c2aed0156c70388e4
354
py
Python
programmers/str_to_int.py
sssunda/solve_algorithms
cb630d3b1d7f4bae0115ecb45d9a9b4f2e1eff27
[ "MIT" ]
null
null
null
programmers/str_to_int.py
sssunda/solve_algorithms
cb630d3b1d7f4bae0115ecb45d9a9b4f2e1eff27
[ "MIT" ]
null
null
null
programmers/str_to_int.py
sssunda/solve_algorithms
cb630d3b1d7f4bae0115ecb45d9a9b4f2e1eff27
[ "MIT" ]
null
null
null
# def solution(s): # answer = int(s) # return answer # int()안쓰고 만들어보기 def solution(s): answer = 0 for idx, num in enumerate(s[::-1]): if num == '-': answer *= -1 else: answer += int(num) * (10 ** idx) return answer if __name__ == '__main__': s = '-1234' print(solution(s))
16.857143
44
0.474576
a2f476557b023f7c27e396738445f160b5b09203
5,972
py
Python
watertap/examples/flowsheets/full_treatment_train/analysis/flowsheet_NF.py
srikanthallu/watertap
6ad5552b91163917fb19342754b9b57b3d9cbd85
[ "BSD-3-Clause-LBNL" ]
4
2021-11-06T01:13:22.000Z
2022-02-08T21:16:38.000Z
watertap/examples/flowsheets/full_treatment_train/analysis/flowsheet_NF.py
srikanthallu/watertap
6ad5552b91163917fb19342754b9b57b3d9cbd85
[ "BSD-3-Clause-LBNL" ]
233
2021-10-13T12:53:44.000Z
2022-03-31T21:59:50.000Z
watertap/examples/flowsheets/full_treatment_train/analysis/flowsheet_NF.py
srikanthallu/watertap
6ad5552b91163917fb19342754b9b57b3d9cbd85
[ "BSD-3-Clause-LBNL" ]
12
2021-11-01T19:11:03.000Z
2022-03-08T22:20:58.000Z
############################################################################### # WaterTAP Copyright (c) 2021, The Regents of the University of California, # through Lawrence Berkeley National Laboratory, Oak Ridge National # Laboratory, National Renewable Energy Laboratory, and National Energy # Technology Laboratory (subject to receipt of any required approvals from # the U.S. Dept. of Energy). All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license # information, respectively. These files are also available online at the URL # "https://github.com/watertap-org/watertap/" # ############################################################################### from pyomo.environ import ( ConcreteModel, Objective, Expression, Constraint, Param, TransformationFactory, value, units as pyunits, ) from pyomo.network import Arc from pyomo.util import infeasible from idaes.core import FlowsheetBlock from idaes.core.util.scaling import ( calculate_scaling_factors, unscaled_constraints_generator, unscaled_variables_generator, badly_scaled_var_generator, ) from idaes.core.util.initialization import propagate_state from watertap.examples.flowsheets.full_treatment_train.flowsheet_components import ( pretreatment_NF, desalination, gypsum_saturation_index, translator_block, costing, ) from watertap.examples.flowsheets.full_treatment_train.model_components import ( property_models, ) from watertap.examples.flowsheets.full_treatment_train.util import ( solve_block, check_dof, ) def build_components(m, has_bypass=True): # build flowsheet property_models.build_prop(m, base="ion") pretrt_port = pretreatment_NF.build_pretreatment_NF( m, NF_type="ZO", NF_base="ion", has_bypass=has_bypass ) property_models.build_prop(m, base="TDS") translator_block.build_tb( m, base_inlet="ion", base_outlet="TDS", name_str="tb_pretrt_to_desal" ) # Arc to translator block m.fs.s_pretrt_tb = Arc( source=pretrt_port["out"], destination=m.fs.tb_pretrt_to_desal.inlet ) property_models.build_prop(m, base="eNRTL") gypsum_saturation_index.build(m, section="pretreatment") m.fs.NF.area.fix(175) if has_bypass: m.fs.splitter.split_fraction[0, "bypass"].fix(0.50) m.fs.removal_Ca = Expression( expr=( m.fs.feed.properties[0].flow_mass_phase_comp["Liq", "Ca"] - m.fs.mixer.mixed_state[0].flow_mass_phase_comp["Liq", "Ca"] ) / m.fs.feed.properties[0].flow_mass_phase_comp["Liq", "Ca"] ) m.fs.removal_Mg = Expression( expr=( m.fs.feed.properties[0].flow_mass_phase_comp["Liq", "Mg"] - m.fs.mixer.mixed_state[0].flow_mass_phase_comp["Liq", "Mg"] ) / m.fs.feed.properties[0].flow_mass_phase_comp["Liq", "Mg"] ) def build(m, has_bypass=True): """ Build a flowsheet with nanofiltration as the pretreatment process. """ build_components(m, has_bypass=has_bypass) # annual water production m.fs.treated_flow_vol = Expression( expr=m.fs.tb_pretrt_to_desal.properties_out[0].flow_vol ) costing.build_costing(m, NF_type="ZO") return m def scale(m, has_bypass=True): pretreatment_NF.scale_pretreatment_NF( m, NF_type="ZO", NF_base="ion", has_bypass=has_bypass ) calculate_scaling_factors(m.fs.tb_pretrt_to_desal) def initialize(m, has_bypass=True): optarg = {"nlp_scaling_method": "user-scaling"} pretreatment_NF.initialize_pretreatment_NF( m, NF_type="ZO", NF_base="ion", has_bypass=has_bypass ) m.fs.pretrt_saturation.properties.initialize(optarg=optarg) propagate_state(m.fs.s_pretrt_tb) m.fs.tb_pretrt_to_desal.initialize(optarg=optarg) def report(m, has_bypass=True): pretreatment_NF.display_pretreatment_NF( m, NF_type="ZO", NF_base="ion", has_bypass=has_bypass ) m.fs.tb_pretrt_to_desal.report() def solve_flowsheet(has_bypass=True): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) build(m, has_bypass=has_bypass) TransformationFactory("network.expand_arcs").apply_to(m) # scale scale(m, has_bypass=has_bypass) calculate_scaling_factors(m) # initialize initialize(m, has_bypass=has_bypass) check_dof(m) solve_block(m, tee=True, fail_flag=True) # report report(m, has_bypass=has_bypass) return m def simulate(m, check_termination=True): return solve_block(m, tee=False, fail_flag=check_termination) def set_optimization_components(m, system_recovery, **kwargs): # unfix variables m.fs.splitter.split_fraction[0, "bypass"].unfix() m.fs.splitter.split_fraction[0, "bypass"].setlb(0.001) m.fs.splitter.split_fraction[0, "bypass"].setub(0.99) m.fs.NF.area.unfix() m.fs.NF.area.setlb(0.1) m.fs.NF.area.setub(1000) m.fs.max_conc_factor_target = Param(initialize=3.5, mutable=True) m.fs.eq_max_conc_NF = Constraint( expr=m.fs.NF.feed_side.properties_out[0].mass_frac_phase_comp["Liq", "Ca"] <= m.fs.max_conc_factor_target * m.fs.feed.properties[0].mass_frac_phase_comp["Liq", "Ca"] ) def set_up_optimization(m, system_recovery=0.50, **kwargs): set_optimization_components(m, system_recovery, **kwargs) calculate_scaling_factors(m) check_dof(m, 2) def optimize(m, check_termination=True): return solve_block(m, tee=True, fail_flag=check_termination) def optimize_flowsheet(system_recovery=0.50, **kwargs): m = solve_flowsheet(**kwargs) set_up_optimization(m, system_recovery=system_recovery, **kwargs) optimize(m) print("===================================" "\n Optimization ") report(m, **kwargs) return m if __name__ == "__main__": m = solve_flowsheet(True)
30.625641
84
0.6785
587eaab89ea47cbe63547e92a1ad83f750c531a7
28,562
py
Python
activitysim/core/skim_dictionary.py
albabnoor/activitysim
a57efa1418320cb88d72ad5f413aaa45131183a4
[ "BSD-3-Clause" ]
null
null
null
activitysim/core/skim_dictionary.py
albabnoor/activitysim
a57efa1418320cb88d72ad5f413aaa45131183a4
[ "BSD-3-Clause" ]
null
null
null
activitysim/core/skim_dictionary.py
albabnoor/activitysim
a57efa1418320cb88d72ad5f413aaa45131183a4
[ "BSD-3-Clause" ]
null
null
null
# ActivitySim # See full license in LICENSE.txt. from builtins import range from builtins import object import logging import numpy as np import pandas as pd from activitysim.core.util import quick_loc_series logger = logging.getLogger(__name__) NOT_IN_SKIM_ZONE_ID = -1 NOT_IN_SKIM_NAN = np.nan ROW_MAJOR_LAYOUT = True class OffsetMapper(object): """ Utility to map skim zone ids to ordinal offsets (e.g. numpy array indices) Can map either by a fixed offset (e.g. -1 to map 1-based to 0-based) or by an explicit mapping of zone id to offset (slower but more flexible) Internally, there are two representations: offset_int: int offset which when added to zone_id yields skim array index (e.g. -1 to map 1-based zones to 0-based index) offset_series: pandas series with zone_id index and skim array offset values. Ordinarily, index is just range(0, omx_size) if series has duplicate offset values, this can map multiple zone_ids to a single skim array index (e.g. can map maz zone_ids to corresponding taz skim offset) """ def __init__(self, offset_int=None, offset_list=None, offset_series=None): self.offset_int = self.offset_series = None assert (offset_int is not None) + (offset_list is not None) + (offset_series is not None) <= 1 if offset_int is not None: self.set_offset_int(offset_int) elif offset_list is not None: self.set_offset_list(offset_list) elif offset_series is not None: self.set_offset_series(offset_series) def print_offset(self, message=''): assert (self.offset_int is not None) or (self.offset_series is not None) if self.offset_int is not None: print(f"{message} offset_int: {self.offset_int}") elif self.offset_series is not None: print(f"{message} offset_series:\n {self.offset_series}") else: print(f"{message} offset: None") def set_offset_series(self, offset_series): """ Parameters ---------- offset_series: pandas.Series series with zone_id index and skim array offset values (can map many zone_ids to skim array index) """ assert isinstance(offset_series, pd.Series) self.offset_series = offset_series self.offset_int = None def set_offset_list(self, offset_list): """ Convenience method to set offset_series using an integer list the same size as target skim dimension with implicit skim index mapping (e.g. an omx mapping as returned by omx_file.mapentries) Parameters ---------- offset_list : list of int """ assert isinstance(offset_list, list) or isinstance(offset_list, np.ndarray) if isinstance(offset_list, np.ndarray): offset_list = list(offset_list) # - for performance, check if this is a simple range that can ber represented by an int offset first_offset = offset_list[0] if (offset_list == list(range(first_offset, len(offset_list)+first_offset))): offset_int = -1 * first_offset self.set_offset_int(offset_int) else: offset_series = pd.Series(data=list(range(len(offset_list))), index=offset_list) self.set_offset_series(offset_series) def set_offset_int(self, offset_int): """ specify int offset which when added to zone_id yields skim array index (e.g. -1 to map 1-based to 0-based) Parameters ---------- offset_int : int """ # should be some duck subtype of integer (but might be, say, numpy.int64) assert int(offset_int) == offset_int self.offset_int = int(offset_int) self.offset_series = None def map(self, zone_ids): """ map zone_ids to skim indexes Parameters ---------- zone_ids : list-like (numpy.ndarray, pandas.Int64Index, or pandas.Series) Returns ------- offsets : numpy array of int """ if self.offset_series is not None: assert(self.offset_int is None) assert isinstance(self.offset_series, pd.Series) # FIXME - faster to use series.map if zone_ids is a series? offsets = quick_loc_series(zone_ids, self.offset_series).fillna(NOT_IN_SKIM_ZONE_ID).astype(int) elif self.offset_int: assert (self.offset_series is None) # apply integer offset, but map NOT_IN_SKIM_ZONE_ID to self offsets = np.where(zone_ids == NOT_IN_SKIM_ZONE_ID, NOT_IN_SKIM_ZONE_ID, zone_ids + self.offset_int) else: offsets = zone_ids return offsets class SkimDict(object): """ A SkimDict object is a wrapper around a dict of multiple skim objects, where each object is identified by a key. Note that keys are either strings or tuples of two strings (to support stacking of skims.) """ def __init__(self, skim_tag, skim_info, skim_data): logger.info(f"SkimDict init {skim_tag}") self.skim_tag = skim_tag self.skim_info = skim_info self.usage = set() # track keys of skims looked up self.offset_mapper = self._offset_mapper() # (in function so subclass can override) self.omx_shape = skim_info.omx_shape self.skim_data = skim_data self.dtype = np.dtype(skim_info.dtype_name) # so we can coerce if we have missing values # - skim_dim3 dict maps key1 to dict of key2 absolute offsets into block # DRV_COM_WLK_BOARDS: {'MD': 4, 'AM': 3, 'PM': 5}, ... self.skim_dim3 = {} for skim_key, offset in skim_info.block_offsets.items(): if isinstance(skim_key, tuple): key1, key2 = skim_key self.skim_dim3.setdefault(key1, {})[key2] = offset logger.info(f"SkimDict.build_3d_skim_block_offset_table registered {len(self.skim_dim3)} 3d keys") def _offset_mapper(self): """ Return an OffsetMapper to set self.offset_mapper for use with skims This allows subclasses (e.g. MazSkimDict) to 'tweak' the parent offset mapper. Returns ------- OffsetMapper """ offset_mapper = OffsetMapper() if self.skim_info.offset_map is not None: offset_mapper.set_offset_list(offset_list=self.skim_info.offset_map) else: # assume this is a one-based skim map offset_mapper.set_offset_int(-1) return offset_mapper @property def zone_ids(self): """ Return list of zone_ids we grok in skim index order Returns ------- ndarray of int domain zone_ids """ if self.offset_mapper.offset_series is not None: ids = self.offset_mapper.offset_series.index.values else: ids = np.array(range(self.omx_shape[0])) - self.offset_mapper.offset_int return ids def get_skim_usage(self): """ return set of keys of skims looked up. e.g. {'DIST', 'SOV'} Returns ------- set: """ return self.usage def _lookup(self, orig, dest, block_offsets): """ Return list of skim values of skims(s) at orig/dest for the skim(s) at block_offset in skim_data Supplying a single int block_offset makes the lookup 2-D Supplying a list of block_offsets (same length as orig and dest lists) allows 3D lookup Parameters ---------- orig: list of orig zone_ids dest: list of dest zone_ids block_offsets: int or list of dim3 blockoffsets for the od pairs Returns ------- Numpy.ndarray: list of skim values for od pairs """ # fixme - remove? assert not (np.isnan(orig) | np.isnan(dest)).any() # only working with numpy in here orig = np.asanyarray(orig).astype(int) dest = np.asanyarray(dest).astype(int) mapped_orig = self.offset_mapper.map(orig) mapped_dest = self.offset_mapper.map(dest) if ROW_MAJOR_LAYOUT: result = self.skim_data[block_offsets, mapped_orig, mapped_dest] else: result = self.skim_data[mapped_orig, mapped_dest, block_offsets] # FIXME - should return nan if not in skim (negative indices wrap around) in_skim = (mapped_orig >= 0) & (mapped_orig < self.omx_shape[0]) & \ (mapped_dest >= 0) & (mapped_dest < self.omx_shape[1]) # if not ((in_skim | (orig == NOT_IN_SKIM_ZONE_ID) | (dest == NOT_IN_SKIM_ZONE_ID)).all()): # print(f"orig\n{orig}") # print(f"dest\n{dest}") # print(f"in_skim\n{in_skim}") # check for bad indexes (other than NOT_IN_SKIM_ZONE_ID) assert (in_skim | (orig == NOT_IN_SKIM_ZONE_ID) | (dest == NOT_IN_SKIM_ZONE_ID)).all(), \ f"{(~in_skim).sum()} od pairs not in skim" if not in_skim.all(): result = np.where(in_skim, result, NOT_IN_SKIM_NAN).astype(self.dtype) return result def lookup(self, orig, dest, key): """ Return list of skim values of skims(s) at orig/dest in skim with the specified key (e.g. 'DIST') Parameters ---------- orig: list of orig zone_ids dest: list of dest zone_ids key: str Returns ------- Numpy.ndarray: list of skim values for od pairs """ self.usage.add(key) block_offset = self.skim_info.block_offsets.get(key) assert block_offset is not None, f"SkimDict lookup key '{key}' not in skims" try: result = self._lookup(orig, dest, block_offset) except Exception as err: logger.error("SkimDict lookup error: %s: %s", type(err).__name__, str(err)) logger.error(f"key {key}") logger.error(f"orig max {orig.max()} min {orig.min()}") logger.error(f"dest max {dest.max()} min {dest.min()}") raise err return result def lookup_3d(self, orig, dest, dim3, key): """ 3D lookup of skim values of skims(s) at orig/dest for stacked skims indexed by dim3 selector The idea is that skims may be stacked in groups with a base key and a dim3 key (usually a time of day key) On import (from omx) skims stacks are represented by base and dim3 keys seperated by a double_underscore e.g. DRV_COM_WLK_BOARDS__AM indicates base skim key DRV_COM_WLK_BOARDS with a time of day (dim3) of 'AM' Since all the skimsa re stored in a single contiguous 3D array, we can use the dim3 key as a third index and thus rapidly get skim values for a list of (orig, dest, tod) tuples using index arrays ('fancy indexing') Parameters ---------- orig: list of orig zone_ids dest: list of dest zone_ids block_offsets: list with one dim3 key for each orig/dest pair Returns ------- Numpy.ndarray: list of skim values """ self.usage.add(key) # should we keep usage stats by (key, dim3)? assert key in self.skim_dim3, f"3d skim key {key} not in skims." # map dim3 to block_offsets skim_keys_to_indexes = self.skim_dim3[key] # skim_indexes = dim3.map(skim_keys_to_indexes).astype('int') try: block_offsets = np.vectorize(skim_keys_to_indexes.get)(dim3) # this should be faster than map result = self._lookup(orig, dest, block_offsets) except Exception as err: logger.error("SkimDict lookup_3d error: %s: %s", type(err).__name__, str(err)) logger.error(f"key {key}") logger.error(f"orig max {orig.max()} min {orig.min()}") logger.error(f"dest max {dest.max()} min {dest.min()}") logger.error(f"skim_keys_to_indexes: {skim_keys_to_indexes}") logger.error(f"dim3 {np.unique(dim3)}") logger.error(f"dim3 block_offsets {np.unique(block_offsets)}") raise err return result def wrap(self, orig_key, dest_key): """ return a SkimWrapper for self """ return SkimWrapper(self, orig_key, dest_key) def wrap_3d(self, orig_key, dest_key, dim3_key): """ return a SkimWrapper for self """ return Skim3dWrapper(self, orig_key, dest_key, dim3_key) class SkimWrapper(object): """ A SkimWrapper object is an access wrapper around a SkimDict of multiple skim objects, where each object is identified by a key. This is just a way to simplify expression files by hiding the and orig, dest arguments when the orig and dest vectors are in a dataframe with known column names (specified at init time) The dataframe is identified by set_df because it may not be available (e.g. due to chunking) at the time the SkimWrapper is instantiated. When the user calls skims[key], key is an identifier for which skim to use, and the object automatically looks up impedances of that skim using the specified orig_key column in df as the origin and the dest_key column in df as the destination. In this way, the user does not do the O-D lookup by hand and only specifies which skim to use for this lookup. This is the only purpose of this object: to abstract away the O-D lookup and use skims by specifying which skim to use in the expressions. Note that keys are either strings or tuples of two strings (to support stacking of skims.) """ def __init__(self, skim_dict, orig_key, dest_key): """ Parameters ---------- skim_dict: SkimDict orig_key: str name of column in dataframe to use as implicit orig for lookups dest_key: str name of column in dataframe to use as implicit dest for lookups """ self.skim_dict = skim_dict self.orig_key = orig_key self.dest_key = dest_key self.df = None def set_df(self, df): """ Set the dataframe Parameters ---------- df : DataFrame The dataframe which contains the origin and destination ids Returns ------- self (to facilitiate chaining) """ assert self.orig_key in df, f"orig_key '{self.orig_key}' not in df columns: {list(df.columns)}" assert self.dest_key in df, f"dest_key '{self.dest_key}' not in df columns: {list(df.columns)}" self.df = df return self def lookup(self, key, reverse=False): """ Generally not called by the user - use __getitem__ instead Parameters ---------- key : hashable The key (identifier) for this skim object od : bool (optional) od=True means lookup standard origin-destination skim value od=False means lookup destination-origin skim value Returns ------- impedances: pd.Series A Series of impedances which are elements of the Skim object and with the same index as df """ assert self.df is not None, "Call set_df first" if reverse: s = self.skim_dict.lookup(self.df[self.dest_key], self.df[self.orig_key], key) else: s = self.skim_dict.lookup(self.df[self.orig_key], self.df[self.dest_key], key) return pd.Series(s, index=self.df.index) def reverse(self, key): """ return skim value in reverse (d-o) direction """ return self.lookup(key, reverse=True) def max(self, key): """ return max skim value in either o-d or d-o direction """ assert self.df is not None, "Call set_df first" s = np.maximum( self.skim_dict.lookup(self.df[self.dest_key], self.df[self.orig_key], key), self.skim_dict.lookup(self.df[self.orig_key], self.df[self.dest_key], key) ) return pd.Series(s, index=self.df.index) def __getitem__(self, key): """ Get the lookup for an available skim object (df and orig/dest and column names implicit) Parameters ---------- key : hashable The key (identifier) for the skim object Returns ------- impedances: pd.Series with the same index as df A Series of impedances values from the single Skim with specified key, indexed byt orig/dest pair """ return self.lookup(key) class Skim3dWrapper(object): """ This works the same as a SkimWrapper above, except the third dim3 is also supplied, and a 3D lookup is performed using orig, dest, and dim3. Parameters ---------- skims: Skims This is the Skims object to wrap dim3_key : str This identifies the column in the dataframe which is used to select among Skim object using the SECOND item in each tuple (see above for a more complete description) """ def __init__(self, skim_dict, orig_key, dest_key, dim3_key): """ Parameters ---------- skim_dict: SkimDict orig_key: str name of column of zone_ids in dataframe to use as implicit orig for lookups dest_key: str name of column of zone_ids in dataframe to use as implicit dest for lookups dim3_key: str name of column of dim3 keys in dataframe to use as implicit third dim3 key for 3D lookups e.g. string column with time_of_day keys (such as 'AM', 'MD', 'PM', etc.) """ self.skim_dict = skim_dict self.orig_key = orig_key self.dest_key = dest_key self.dim3_key = dim3_key self.df = None def set_df(self, df): """ Set the dataframe Parameters ---------- df : DataFrame The dataframe which contains the orig, dest, and dim3 values Returns ------- self (to facilitiate chaining) """ assert self.orig_key in df, f"orig_key '{self.orig_key}' not in df columns: {list(df.columns)}" assert self.dest_key in df, f"dest_key '{self.dest_key}' not in df columns: {list(df.columns)}" assert self.dim3_key in df, f"dim3_key '{self.dim3_key}' not in df columns: {list(df.columns)}" self.df = df return self def __getitem__(self, key): """ Get the lookup for an available skim object (df and orig/dest/dim3 and column names implicit) Parameters ---------- key : hashable The key (identifier) for this skim object Returns ------- impedances: pd.Series with the same index as df A Series of impedances values from the set of skims with specified base key, indexed by orig/dest/dim3 """ assert self.df is not None, "Call set_df first" orig = self.df[self.orig_key].astype('int') dest = self.df[self.dest_key].astype('int') dim3 = self.df[self.dim3_key] skim_values = self.skim_dict.lookup_3d(orig, dest, dim3, key) return pd.Series(skim_values, self.df.index) class MazSkimDict(SkimDict): """ MazSkimDict provides a facade that allows skim-like lookup by maz orig,dest zone_id when there are often too many maz zones to create maz skims. Dependencies: network_los.load_data must have already loaded: taz skim_dict, maz_to_maz_df, and maz_taz_df It performs lookups from a sparse list of maz-maz od pairs on selected attributes (e.g. WALKDIST) where accuracy for nearby od pairs is critical. And is backed by a fallback taz skim dict to return values of for more distant pairs (or for skims that are not attributes in the maz-maz table.) """ def __init__(self, skim_tag, network_los, taz_skim_dict): """ we need network_los because we have dependencies on network_los.load_data (e.g. maz_to_maz_df, maz_taz_df, and the fallback taz skim_dict) We require taz_skim_dict as an explicit parameter to emphasize that we are piggybacking on taz_skim_dict's preexisting skim_data and skim_info, rather than instantiating duplicate copies thereof. Note, however, that we override _offset_mapper (called by super.__init__) to create our own custom self.offset_mapper that maps directly from MAZ zone_ids to TAZ skim array indexes Parameters ---------- skim_tag: str network_los: Network_LOS taz_skim_dict: SkimDict """ self.network_los = network_los super().__init__(skim_tag, taz_skim_dict.skim_info, taz_skim_dict.skim_data) assert self.offset_mapper is not None # should have been set with _init_offset_mapper self.dtype = np.dtype(self.skim_info.dtype_name) self.base_keys = taz_skim_dict.skim_info.base_keys self.sparse_keys = list(set(network_los.maz_to_maz_df.columns) - {'OMAZ', 'DMAZ'}) self.sparse_key_usage = set() def _offset_mapper(self): """ return an OffsetMapper to map maz zone_ids to taz skim indexes Specifically, an offset_series with MAZ zone_id index and TAZ skim array offset values This is called by super().__init__ AFTER Returns ------- OffsetMapper """ # start with a series with MAZ zone_id index and TAZ zone id values maz_to_taz = self.network_los.maz_taz_df[['MAZ', 'TAZ']].set_index('MAZ').sort_values(by='TAZ').TAZ # use taz offset_mapper to create series mapping directly from MAZ to TAZ skim index taz_offset_mapper = super()._offset_mapper() maz_to_skim_offset = taz_offset_mapper.map(maz_to_taz) if isinstance(maz_to_skim_offset, np.ndarray): maz_to_skim_offset = pd.Series(maz_to_skim_offset, maz_to_taz.index) # bug # MAZ # 19062 330 <- The TAZ would be, say, 331, and the offset is 330 # 8429 330 # 9859 331 assert isinstance(maz_to_skim_offset, np.ndarray) or isinstance(maz_to_skim_offset, pd.Series) if isinstance(maz_to_skim_offset, pd.Series): offset_mapper = OffsetMapper(offset_series=maz_to_skim_offset) elif isinstance(maz_to_skim_offset, np.ndarray): offset_mapper = OffsetMapper(offset_list=maz_to_skim_offset) return offset_mapper def get_skim_usage(self): return self.sparse_key_usage.union(self.usage) def sparse_lookup(self, orig, dest, key): """ Get impedence values for a set of origin, destination pairs. Parameters ---------- orig : 1D array dest : 1D array key : str skim key Returns ------- values : numpy 1D array """ self.sparse_key_usage.add(key) max_blend_distance = self.network_los.max_blend_distance.get(key, 0) if max_blend_distance == 0: blend_distance_skim_name = None else: blend_distance_skim_name = self.network_los.blend_distance_skim_name # fixme - remove? assert not (np.isnan(orig) | np.isnan(dest)).any() # we want values from mazpairs, where we have them values = self.network_los.get_mazpairs(orig, dest, key) is_nan = np.isnan(values) if max_blend_distance > 0: # print(f"{is_nan.sum()} nans out of {len(is_nan)} for key '{self.key}") # print(f"blend_distance_skim_name {self.blend_distance_skim_name}") backstop_values = super().lookup(orig, dest, key) # get distance skim if a different key was specified by blend_distance_skim_name if (blend_distance_skim_name != key): distance = self.network_los.get_mazpairs(orig, dest, blend_distance_skim_name) else: distance = values # for distances less than max_blend_distance, we blend maz-maz and skim backstop values # shorter distances have less fractional backstop, and more maz-maz # beyond max_blend_distance, just use the skim values backstop_fractions = np.minimum(distance / max_blend_distance, 1) values = np.where(is_nan, backstop_values, backstop_fractions * backstop_values + (1 - backstop_fractions) * values) elif is_nan.any(): # print(f"{is_nan.sum()} nans out of {len(is_nan)} for key '{self.key}") if key in self.base_keys: # replace nan values using simple backstop without blending backstop_values = super().lookup(orig, dest, key) values = np.where(is_nan, backstop_values, values) else: # FIXME - if no backstop skim, then return 0 (which conventionally means "not available") values = np.where(is_nan, 0, values) # want to return same type as backstop skim values = values.astype(self.dtype) return values def lookup(self, orig, dest, key): """ Return list of skim values of skims(s) at orig/dest in skim with the specified key (e.g. 'DIST') Look up in sparse table (backed by taz skims) if key is a sparse_key, otherwise look up in taz skims For taz skim lookups, the offset_mapper will convert maz zone_ids directly to taz skim indexes. Parameters ---------- orig: list of orig zone_ids dest: list of dest zone_ids key: str Returns ------- Numpy.ndarray: list of skim values for od pairs """ if key in self.sparse_keys: # logger.debug(f"MazSkimDict using SparseSkimDict for key '{key}'") values = self.sparse_lookup(orig, dest, key) else: values = super().lookup(orig, dest, key) return values class DataFrameMatrix(object): """ Utility class to allow a pandas dataframe to be treated like a 2-D array, indexed by rowid, colname For use in vectorized expressions where the desired values depend on both a row column selector e.g. size_terms.get(df.dest_taz, df.purpose) :: df = pd.DataFrame({'a': [1,2,3,4,5], 'b': [10,20,30,40,50]}, index=[100,101,102,103,104]) dfm = DataFrameMatrix(df) dfm.get(row_ids=[100,100,103], col_ids=['a', 'b', 'a']) returns [1, 10, 4] """ def __init__(self, df): """ Parameters ---------- df - pandas dataframe of uniform type """ self.df = df self.data = df.values self.offset_mapper = OffsetMapper() self.offset_mapper.set_offset_list(list(df.index)) self.cols_to_indexes = {k: v for v, k in enumerate(df.columns)} def get(self, row_ids, col_ids): """ Parameters ---------- row_ids - list of row_ids (df index values) col_ids - list of column names, one per row_id, specifying column from which the value for that row should be retrieved Returns ------- series with one row per row_id, with the value from the column specified in col_ids """ # col_indexes = segments.map(self.cols_to_indexes).astype('int') # this should be faster than map col_indexes = np.vectorize(self.cols_to_indexes.get)(col_ids) row_indexes = self.offset_mapper.map(np.asanyarray(row_ids)) not_in_skim = (row_indexes == NOT_IN_SKIM_ZONE_ID) if not_in_skim.any(): logger.warning(f"DataFrameMatrix: {not_in_skim.sum()} row_ids of {len(row_ids)} not in skim.") not_in_skim = not_in_skim.values logger.warning(f"row_ids: {row_ids[not_in_skim]}") logger.warning(f"col_ids: {col_ids[not_in_skim]}") raise RuntimeError(f"DataFrameMatrix: {not_in_skim.sum()} row_ids of {len(row_ids)} not in skim.") assert (row_indexes >= 0).all(), f"{row_indexes}" result = self.data[row_indexes, col_indexes] # FIXME - if ids (or col_ids?) is a series, return series with same index? if isinstance(row_ids, pd.Series): result = pd.Series(result, index=row_ids.index) return result
35.174877
118
0.623906
284beb5dad4ed08c4cd4b6eb8643f394f5b2233a
5,728
py
Python
qiskit/tools/visualization/interactive/_iplot_qsphere.py
kifumi/qiskit-terra
203fca6d694a18824a6b12cbabd3dd2c64dd12ae
[ "Apache-2.0" ]
1
2018-11-01T01:35:43.000Z
2018-11-01T01:35:43.000Z
qiskit/tools/visualization/interactive/_iplot_qsphere.py
a-amaral/qiskit-terra
e73beba1e68de2617046a7e1e9eeac375b61de81
[ "Apache-2.0" ]
null
null
null
qiskit/tools/visualization/interactive/_iplot_qsphere.py
a-amaral/qiskit-terra
e73beba1e68de2617046a7e1e9eeac375b61de81
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """ Qsphere visualization """ from functools import reduce from string import Template import sys import time import re import numpy as np from scipy import linalg if ('ipykernel' in sys.modules) and ('spyder' not in sys.modules): try: from IPython.core.display import display, HTML except ImportError: print("Error importing IPython.core.display") def iplot_qsphere(rho, options=None): """ Create a Q sphere representation. Graphical representation of the input array, using a Q sphere for each eigenvalue. Args: rho (array): Density matrix (complex array) options (dict): Representation settings containing - width (integer): graph horizontal size - height (integer): graph vertical size """ # HTML html_template = Template(""" <p> <div id="content_$divNumber" style="position: absolute; z-index: 1;"> <div id="qsphere_$divNumber"></div> </div> </p> """) # JavaScript javascript_template = Template(""" <script> requirejs.config({ paths: { qVisualization: "https://qvisualization.mybluemix.net/q-visualizations" } }); require(["qVisualization"], function(qVisualizations) { data = $data; qVisualizations.plotState("qsphere_$divNumber", "qsphere", data, $options); }); </script> """) if not options: options = {} qspheres_data = [] # Process data and execute num = int(np.log2(len(rho))) # get the eigenvectors and egivenvalues weig, stateall = linalg.eigh(rho) for _ in range(2**num): # start with the max probmix = weig.max() prob_location = weig.argmax() if probmix > 0.001: # print("The " + str(k) + "th eigenvalue = " + str(probmix)) # get the max eigenvalue state = stateall[:, prob_location] loc = np.absolute(state).argmax() # get the element location closes to lowest bin representation. for j in range(2**num): test = np.absolute(np.absolute(state[j]) - np.absolute(state[loc])) if test < 0.001: loc = j break # remove the global phase angles = (np.angle(state[loc]) + 2 * np.pi) % (2 * np.pi) angleset = np.exp(-1j*angles) state = angleset*state state.flatten() spherepoints = [] for i in range(2**num): # get x,y,z points element = bin(i)[2:].zfill(num) weight = element.count("1") number_of_divisions = n_choose_k(num, weight) weight_order = bit_string_index(element) angle = weight_order * 2 * np.pi / number_of_divisions zvalue = -2 * weight / num + 1 xvalue = np.sqrt(1 - zvalue**2) * np.cos(angle) yvalue = np.sqrt(1 - zvalue**2) * np.sin(angle) # get prob and angle - prob will be shade and angle color prob = np.real(np.dot(state[i], state[i].conj())) angles = (np.angle(state[i]) + 2 * np.pi) % (2 * np.pi) qpoint = { 'x': xvalue, 'y': yvalue, 'z': zvalue, 'prob': prob, 'phase': angles } spherepoints.append(qpoint) # Associate all points to one sphere sphere = { 'points': spherepoints, 'eigenvalue': probmix } # Add sphere to the spheres array qspheres_data.append(sphere) weig[prob_location] = 0 div_number = str(time.time()) div_number = re.sub('[.]', '', div_number) html = html_template.substitute({ 'divNumber': div_number }) javascript = javascript_template.substitute({ 'data': qspheres_data, 'divNumber': div_number, 'options': options }) display(HTML(html + javascript)) def n_choose_k(n, k): """Return the number of combinations for n choose k. Args: n (int): the total number of options . k (int): The number of elements. Returns: int: returns the binomial coefficient """ if n == 0: return 0 return reduce(lambda x, y: x * y[0] / y[1], zip(range(n - k + 1, n + 1), range(1, k + 1)), 1) def bit_string_index(text): """Return the index of a string of 0s and 1s.""" n = len(text) k = text.count("1") assert text.count("0") == n - k, "s must be a string of 0 and 1" ones = [pos for pos, char in enumerate(text) if char == "1"] return lex_index(n, k, ones) def lex_index(n, k, lst): """Return the lex index of a combination.. Args: n (int): the total number of options . k (int): The number of elements. lst (list): list Returns: int: returns int index for lex order """ assert len(lst) == k, "list should have length k" comb = list(map(lambda x: n - 1 - x, lst)) dualm = sum([n_choose_k(comb[k - 1 - i], i + 1) for i in range(k)]) return int(dualm)
29.525773
87
0.523568
7fd5ae41a45a871cfd0172a5717c98e30df2d4de
1,983
py
Python
docs_src/source/conf.py
introkun/qt-range-slider
7c1500b7bfd6a4433ab474974ed2148f4d570516
[ "MIT" ]
1
2021-09-29T14:33:27.000Z
2021-09-29T14:33:27.000Z
docs_src/source/conf.py
OBITORASU/qt-range-slider
a0e5b4137404acecd771928587a57c1d7a2168d2
[ "MIT" ]
41
2021-01-20T21:14:09.000Z
2022-03-28T05:22:01.000Z
docs_src/source/conf.py
OBITORASU/qt-range-slider
a0e5b4137404acecd771928587a57c1d7a2168d2
[ "MIT" ]
2
2021-01-22T07:19:37.000Z
2021-04-20T16:20:01.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../..')) sys.setrecursionlimit(1500) # -- Project information ----------------------------------------------------- project = 'qt-range-slider' copyright = '2021, Sergey G' author = 'Sergey G' # The full version, including alpha/beta/rc tags release = '0.1.5' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.napoleon' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
34.789474
80
0.66818
c27cbaedf07e56f7500864ba7d8946d55b6b8239
219
py
Python
__init__.py
jqueguiner/haven
7b2a5d46b08f48f1112f8903f1b97c6adadff3f4
[ "Apache-2.0" ]
26
2020-01-09T14:28:28.000Z
2020-08-09T08:03:08.000Z
__init__.py
jqueguiner/haven
7b2a5d46b08f48f1112f8903f1b97c6adadff3f4
[ "Apache-2.0" ]
null
null
null
__init__.py
jqueguiner/haven
7b2a5d46b08f48f1112f8903f1b97c6adadff3f4
[ "Apache-2.0" ]
6
2020-02-11T19:43:50.000Z
2020-05-12T01:59:59.000Z
from .haven import haven_utils from .haven import haven_results from .haven import haven_jupyter from .haven import haven_exps from .haven import haven_chk from .haven import haven_img from .haven import haven_dropbox
24.333333
32
0.835616
c039b51732212190cef5f76d6d9aba6e1962511f
1,833
py
Python
bouser/helpers/msgpack_helpers.py
MarsStirner/bouser
33bf759448fec4340581f1cc44e7b0b23a2c4e7a
[ "0BSD" ]
null
null
null
bouser/helpers/msgpack_helpers.py
MarsStirner/bouser
33bf759448fec4340581f1cc44e7b0b23a2c4e7a
[ "0BSD" ]
null
null
null
bouser/helpers/msgpack_helpers.py
MarsStirner/bouser
33bf759448fec4340581f1cc44e7b0b23a2c4e7a
[ "0BSD" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import msgpack __author__ = 'viruzzz-kun' __created__ = '05.04.2015' class Serializable(object): def __getstate__(self): return self.__dict__ def __setstate__(self, state): self.__dict__ = state def __encode_hook(obj): if isinstance(obj, set): return msgpack.ExtType(0, dump(sorted(obj))) elif isinstance(obj, Serializable): return msgpack.ExtType( 1, dump([ obj.__module__, obj.__class__.__name__, obj.__getstate__(), ])) elif hasattr(obj, '__dict__'): return msgpack.ExtType( 2, dump([ obj.__module__, obj.__class__.__name__, obj.__dict__, ])) elif hasattr(obj, '__slots__'): return msgpack.ExtType( 3, dump([ obj.__module__, obj.__class__.__name__, [getattr(obj, key) for key in obj.__slots__], ])) return obj def __ext_hook(code, data): if code == 0: return set(load(data)) elif code in (1, 2, 3): mod, klass, state = load(data) module = __import__(mod, globals(), locals(), [klass]) obj = getattr(module, klass)() if code == 1: obj.__setstate__(state) elif code == 2: obj.__dict__ = state elif code == 3: for key, value in zip(obj.__slots__, state): setattr(obj, key, value) return obj return msgpack.ExtType(code, data) def load(chunk, **kwargs): return msgpack.unpackb(chunk, ext_hook=__ext_hook, encoding='utf-8', **kwargs) def dump(o): return msgpack.packb(o, default=__encode_hook, use_bin_type=True)
25.816901
82
0.541735
64070a324a74c4673a96125f39182f87894e3897
250
py
Python
configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
sandylaker/mmsegmentation
1c96a89472804a1e7d4c4cbe8cd980617345d6c9
[ "Apache-2.0" ]
5
2021-07-10T06:53:14.000Z
2021-12-20T09:52:48.000Z
configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
JPLAY0/mmsegmentation
b46bbfdeed127b1cab325f707c090014f9333c11
[ "Apache-2.0" ]
2
2021-04-01T01:47:08.000Z
2022-03-18T05:10:53.000Z
configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
JPLAY0/mmsegmentation
b46bbfdeed127b1cab325f707c090014f9333c11
[ "Apache-2.0" ]
1
2022-02-23T15:54:47.000Z
2022-02-23T15:54:47.000Z
_base_ = [ '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/stare.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] test_cfg = dict(crop_size=(128, 128), stride=(85, 85)) evaluation = dict(metric='mDice')
35.714286
73
0.676
ef746c4e6487de08be9034efadb6509247ef8f42
973
py
Python
old/find.py
ericsson-intern/mavenbox
9c8c0658fdefeff63444e817c6ca98b3c7c34fff
[ "Apache-2.0" ]
null
null
null
old/find.py
ericsson-intern/mavenbox
9c8c0658fdefeff63444e817c6ca98b3c7c34fff
[ "Apache-2.0" ]
null
null
null
old/find.py
ericsson-intern/mavenbox
9c8c0658fdefeff63444e817c6ca98b3c7c34fff
[ "Apache-2.0" ]
null
null
null
import shutil as fs import os def search_files(directory='.', extension='', callback=()): extension = extension.lower() for dirpath, dirnames, files in os.walk(directory): for name in files: if extension and name.lower().endswith(extension): callback(dirpath, name) elif not extension: print(os.path.join(dirpath, name)) def p(a,b): print(a,b) search_files('pom','xml',p) def main(*args): syntax = """Syntax: %s [%s] [command arguments]""" % ( os.path.basename(args[0]), "|".join(commands.keys())) len(args) < 2 and usage(syntax) program_name, command_name = args[:2] arguments = args[2:] try: fun = commands[command_name] except KeyError: raise NoSuchCommandError("No such command: %s" % command_name) validate_arguments(fun, arguments, name=command_name) result = fun(*arguments) if __name__ == "__main__": main(*sys.argv)
24.325
70
0.614594
a8a2f5f6b1bdbb09ec4f3d3cc6d66af901cec240
5,593
py
Python
packages/Python/lldbsuite/test/lang/cpp/enum_types/TestCPP11EnumTypes.py
nathawes/swift-lldb
3cbf7470e0f9191ec1fc1c69ce8048c1dc64ec77
[ "Apache-2.0" ]
2
2019-05-24T14:10:24.000Z
2019-05-24T14:27:38.000Z
packages/Python/lldbsuite/test/lang/cpp/enum_types/TestCPP11EnumTypes.py
enterstudio/swift-lldb
af85d636d230da2460f91938b1ff734b0fb64b42
[ "Apache-2.0" ]
null
null
null
packages/Python/lldbsuite/test/lang/cpp/enum_types/TestCPP11EnumTypes.py
enterstudio/swift-lldb
af85d636d230da2460f91938b1ff734b0fb64b42
[ "Apache-2.0" ]
null
null
null
"""Look up enum type information and check for correct display.""" from __future__ import print_function import os import time import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * import lldbsuite.test.lldbutil as lldbutil class CPP11EnumTypesTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) @expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr36527') @skipIf(dwarf_version=['<', '4']) def test_int8_t(self): """Test C++11 enumeration class types as int8_t types.""" self.build( dictionary={ 'CFLAGS_EXTRAS': '"-DTEST_BLOCK_CAPTURED_VARS=int8_t"'}) self.image_lookup_for_enum_type() @expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr36527') @skipIf(dwarf_version=['<', '4']) def test_int16_t(self): """Test C++11 enumeration class types as int16_t types.""" self.build( dictionary={ 'CFLAGS_EXTRAS': '"-DTEST_BLOCK_CAPTURED_VARS=int16_t"'}) self.image_lookup_for_enum_type() @expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr36527') @skipIf(dwarf_version=['<', '4']) def test_int32_t(self): """Test C++11 enumeration class types as int32_t types.""" self.build( dictionary={ 'CFLAGS_EXTRAS': '"-DTEST_BLOCK_CAPTURED_VARS=int32_t"'}) self.image_lookup_for_enum_type() @expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr36527') @skipIf(dwarf_version=['<', '4']) def test_int64_t(self): """Test C++11 enumeration class types as int64_t types.""" self.build( dictionary={ 'CFLAGS_EXTRAS': '"-DTEST_BLOCK_CAPTURED_VARS=int64_t"'}) self.image_lookup_for_enum_type() @expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr36527') @skipIf(dwarf_version=['<', '4']) def test_uint8_t(self): """Test C++11 enumeration class types as uint8_t types.""" self.build( dictionary={ 'CFLAGS_EXTRAS': '"-DTEST_BLOCK_CAPTURED_VARS=uint8_t"'}) self.image_lookup_for_enum_type() @expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr36527') @skipIf(dwarf_version=['<', '4']) def test_uint16_t(self): """Test C++11 enumeration class types as uint16_t types.""" self.build( dictionary={ 'CFLAGS_EXTRAS': '"-DTEST_BLOCK_CAPTURED_VARS=uint16_t"'}) self.image_lookup_for_enum_type() @expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr36527') @skipIf(dwarf_version=['<', '4']) def test_uint32_t(self): """Test C++11 enumeration class types as uint32_t types.""" self.build( dictionary={ 'CFLAGS_EXTRAS': '"-DTEST_BLOCK_CAPTURED_VARS=uint32_t"'}) self.image_lookup_for_enum_type() @expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr36527') @skipIf(dwarf_version=['<', '4']) def test_uint64_t(self): """Test C++11 enumeration class types as uint64_t types.""" self.build( dictionary={ 'CFLAGS_EXTRAS': '"-DTEST_BLOCK_CAPTURED_VARS=uint64_t"'}) self.image_lookup_for_enum_type() def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Find the line number to break inside main(). self.line = line_number('main.cpp', '// Set break point at this line.') def image_lookup_for_enum_type(self): """Test C++11 enumeration class types.""" exe = self.getBuildArtifact("a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) # Break inside the main. bkpt_id = lldbutil.run_break_set_by_file_and_line( self, "main.cpp", self.line, num_expected_locations=1, loc_exact=True) self.runCmd("run", RUN_SUCCEEDED) # The stop reason of the thread should be breakpoint. self.expect("thread list", STOPPED_DUE_TO_BREAKPOINT, substrs=['stopped', 'stop reason = breakpoint']) # The breakpoint should have a hit count of 1. self.expect("breakpoint list -f", BREAKPOINT_HIT_ONCE, substrs=[' resolved, hit count = 1']) # Look up information about the 'DayType' enum type. # Check for correct display. self.expect("image lookup -t DayType", DATA_TYPES_DISPLAYED_CORRECTLY, patterns=['enum( struct| class)? DayType {'], substrs=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday', 'kNumDays', '}']) enum_values = ['-4', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday', 'kNumDays', '5'] bkpt = self.target().FindBreakpointByID(bkpt_id) for enum_value in enum_values: self.expect( "frame variable day", 'check for valid enumeration value', substrs=[enum_value]) lldbutil.continue_to_breakpoint(self.process(), bkpt)
37.790541
82
0.57411
02781a7cd5f986c0787fc3b615769548146b294e
6,583
py
Python
nova/tests/unit/objects/test_quotas.py
gabriel-samfira/nova
5ef07cc04dbf0216452ae358e57d9ddac51f1803
[ "Apache-2.0" ]
7
2015-09-22T11:27:16.000Z
2015-11-02T12:33:46.000Z
nova/tests/unit/objects/test_quotas.py
gabriel-samfira/nova
5ef07cc04dbf0216452ae358e57d9ddac51f1803
[ "Apache-2.0" ]
2
2015-09-07T22:14:46.000Z
2020-08-12T08:51:56.000Z
nova/tests/unit/objects/test_quotas.py
gabriel-samfira/nova
5ef07cc04dbf0216452ae358e57d9ddac51f1803
[ "Apache-2.0" ]
4
2017-06-23T07:37:43.000Z
2020-12-28T09:57:22.000Z
# Copyright 2013 Rackspace Hosting. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from nova import context from nova.objects import quotas as quotas_obj from nova import quota from nova import test from nova.tests.unit import fake_instance from nova.tests.unit.objects import test_objects QUOTAS = quota.QUOTAS class TestQuotasModule(test.NoDBTestCase): def setUp(self): super(TestQuotasModule, self).setUp() self.context = context.RequestContext('fake_user1', 'fake_proj1') self.instance = fake_instance.fake_db_instance( project_id='fake_proj2', user_id='fake_user2') def test_ids_from_instance_non_admin(self): project_id, user_id = quotas_obj.ids_from_instance( self.context, self.instance) self.assertEqual('fake_user2', user_id) self.assertEqual('fake_proj1', project_id) def test_ids_from_instance_admin(self): project_id, user_id = quotas_obj.ids_from_instance( self.context.elevated(), self.instance) self.assertEqual('fake_user2', user_id) self.assertEqual('fake_proj2', project_id) class _TestQuotasObject(object): def setUp(self): super(_TestQuotasObject, self).setUp() self.context = context.RequestContext('fake_user1', 'fake_proj1') self.instance = fake_instance.fake_db_instance( project_id='fake_proj2', user_id='fake_user2') def test_from_reservations(self): fake_reservations = ['1', '2'] quotas = quotas_obj.Quotas.from_reservations( self.context, fake_reservations) self.assertEqual(self.context, quotas._context) self.assertEqual(fake_reservations, quotas.reservations) self.assertIsNone(quotas.project_id) self.assertIsNone(quotas.user_id) def test_from_reservations_bogus(self): fake_reservations = [_TestQuotasObject, _TestQuotasObject] self.assertRaises(ValueError, quotas_obj.Quotas.from_reservations, self.context, fake_reservations) def test_from_reservations_instance(self): fake_reservations = ['1', '2'] quotas = quotas_obj.Quotas.from_reservations( self.context, fake_reservations, instance=self.instance) self.assertEqual(self.context, quotas._context) self.assertEqual(fake_reservations, quotas.reservations) self.assertEqual('fake_proj1', quotas.project_id) self.assertEqual('fake_user2', quotas.user_id) def test_from_reservations_instance_admin(self): fake_reservations = ['1', '2'] elevated = self.context.elevated() quotas = quotas_obj.Quotas.from_reservations( elevated, fake_reservations, instance=self.instance) self.assertEqual(elevated, quotas._context) self.assertEqual(fake_reservations, quotas.reservations) self.assertEqual('fake_proj2', quotas.project_id) self.assertEqual('fake_user2', quotas.user_id) def test_reserve(self): fake_reservations = ['1', '2'] quotas = quotas_obj.Quotas() self.mox.StubOutWithMock(QUOTAS, 'reserve') QUOTAS.reserve(self.context, expire='expire', project_id='project_id', user_id='user_id', moo='cow').AndReturn(fake_reservations) self.mox.ReplayAll() quotas.reserve(self.context, expire='expire', project_id='project_id', user_id='user_id', moo='cow') self.assertEqual(self.context, quotas._context) self.assertEqual(fake_reservations, quotas.reservations) self.assertEqual('project_id', quotas.project_id) self.assertEqual('user_id', quotas.user_id) def test_commit(self): fake_reservations = ['1', '2'] quotas = quotas_obj.Quotas.from_reservations( self.context, fake_reservations) self.mox.StubOutWithMock(QUOTAS, 'commit') QUOTAS.commit(self.context, fake_reservations, project_id=None, user_id=None) self.mox.ReplayAll() quotas.commit() self.assertIsNone(quotas.reservations) def test_commit_none_reservations(self): quotas = quotas_obj.Quotas.from_reservations(self.context, None) self.mox.StubOutWithMock(QUOTAS, 'commit') self.mox.ReplayAll() quotas.commit() def test_rollback(self): fake_reservations = ['1', '2'] quotas = quotas_obj.Quotas.from_reservations( self.context, fake_reservations) self.mox.StubOutWithMock(QUOTAS, 'rollback') QUOTAS.rollback(self.context, fake_reservations, project_id=None, user_id=None) self.mox.ReplayAll() quotas.rollback() self.assertIsNone(quotas.reservations) def test_rollback_none_reservations(self): quotas = quotas_obj.Quotas.from_reservations(self.context, None) self.mox.StubOutWithMock(QUOTAS, 'rollback') self.mox.ReplayAll() quotas.rollback() @mock.patch('nova.db.quota_create') def test_create_limit(self, mock_create): quotas_obj.Quotas.create_limit(self.context, 'fake-project', 'foo', 10, user_id='user') mock_create.assert_called_once_with(self.context, 'fake-project', 'foo', 10, user_id='user') @mock.patch('nova.db.quota_update') def test_update_limit(self, mock_update): quotas_obj.Quotas.update_limit(self.context, 'fake-project', 'foo', 10, user_id='user') mock_update.assert_called_once_with(self.context, 'fake-project', 'foo', 10, user_id='user') class TestQuotasObject(_TestQuotasObject, test_objects._LocalTest): pass class TestRemoteQuotasObject(_TestQuotasObject, test_objects._RemoteTest): pass
39.184524
78
0.658818
561d19607fa6cbc6ec10027b2fef966711617f3b
2,824
py
Python
pychron/core/ui/qt/gui.py
ael-noblegas/pychron
6ebbbb1f66a614972b62b7a9be4c784ae61b5d62
[ "Apache-2.0" ]
1
2019-02-27T21:57:44.000Z
2019-02-27T21:57:44.000Z
pychron/core/ui/qt/gui.py
ael-noblegas/pychron
6ebbbb1f66a614972b62b7a9be4c784ae61b5d62
[ "Apache-2.0" ]
80
2018-07-17T20:10:20.000Z
2021-08-17T15:38:24.000Z
pychron/core/ui/qt/gui.py
AGESLDEO/pychron
1a81e05d9fba43b797f335ceff6837c016633bcf
[ "Apache-2.0" ]
null
null
null
# =============================================================================== # Copyright 2013 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= # ============= standard library imports ======================== # ============= local library imports ========================== import math """ http://stackoverflow.com/questions/10991991/pyside-easier-way-of-updating-gui-from-another-thread """ # # # class InvokeEvent(QtCore.QEvent): # EVENT_TYPE = QtCore.QEvent.Type(QtCore.QEvent.registerEventType()) # # def __init__(self, fn, *args, **kwargs): # QtCore.QEvent.__init__(self, InvokeEvent.EVENT_TYPE) # self.fn = fn # self.args = args # self.kwargs = kwargs # # # class Invoker(QtCore.QObject): # def event(self, event): # event.fn(*event.args, **event.kwargs) # return True # # # _invoker = Invoker() # # def invoke_in_main_thread(fn, *args, **kwargs): # QtCore.QCoreApplication.postEvent(_invoker, InvokeEvent(fn, *args, **kwargs), QtCore.Qt.NormalEventPriority) # QtCore.QCoreApplication.sendPostedEvents(_invoker) # QtCore.QCoreApplication.processEvents() # def invoke_in_main_thread(fn, *args, **kw): # from pyface.gui import GUI # GUI.invoke_later(fn, *args, **kw) def convert_color(color, output='rgbF'): from pyface.qt.QtGui import QColor if isinstance(color, QColor): rgb = color.red(), color.green(), color.blue() if output == 'rgbF': args = rgb[:3] elif output == 'rgbaF': args = rgb return [x/255. for x in args] def wake_screen(): import random, time from pyface.qt.QtGui import QCursor time.sleep(5) q = QCursor() pos = q.pos() ox, oy = pos.x(), pos.y() def rgen(): r = 300 while 1: theta = math.radians(random.random() * 360) x = r * math.cos(theta) y = r * math.sin(theta) yield ox + x, oy + y random_point = rgen() for i in range(5): x, y = next(random_point) q.setPos(x, y) time.sleep(0.1) q.setPos(ox, oy) # ============= EOF =============================================
28.525253
114
0.566572
2b694ad0a207e81e69b458b6b45db42af9919c95
3,591
py
Python
Test.py
JamesTaylor-creator/Tic-Tac-Toe-COSC-1436-301
ad7ad16bbcb85d2baccc485d30ca127081a1c4f2
[ "MIT" ]
1
2021-03-24T22:35:11.000Z
2021-03-24T22:35:11.000Z
Test.py
JamesTaylor-creator/Tic-Tac-Toe-COSC-1436-301
ad7ad16bbcb85d2baccc485d30ca127081a1c4f2
[ "MIT" ]
2
2021-04-08T16:31:00.000Z
2021-04-17T02:34:20.000Z
Test.py
JamesTaylor-creator/Tic-Tac-Toe-COSC-1436-301
ad7ad16bbcb85d2baccc485d30ca127081a1c4f2
[ "MIT" ]
1
2021-03-25T01:54:15.000Z
2021-03-25T01:54:15.000Z
class my_class(object): pass #Tic Tac Toe game in python board = [' ' for x in range(10)] def insertLetter(letter, pos): board[pos] = letter def spaceIsFree(pos): return board[pos] == ' ' def printBoard(board): print(' | |') print(' ' + board[1] + ' | ' + board[2] + ' | ' + board[3]) print(' | |') print('-----------') print(' | |') print(' ' + board[4] + ' | ' + board[5] + ' | ' + board[6]) print(' | |') print('-----------') print(' | |') print(' ' + board[7] + ' | ' + board[8] + ' | ' + board[9]) print(' | |') def isWinner(bo, le): return (bo[7] == le and bo[8] == le and bo[9] == le) or (bo[4] == le and bo[5] == le and bo[6] == le) or(bo[1] == le and bo[2] == le and bo[3] == le) or(bo[1] == le and bo[4] == le and bo[7] == le) or(bo[2] == le and bo[5] == le and bo[8] == le) or(bo[3] == le and bo[6] == le and bo[9] == le) or(bo[1] == le and bo[5] == le and bo[9] == le) or(bo[3] == le and bo[5] == le and bo[7] == le) def playerMove(): run = True while run: move = input('Please select a position to place an \'X\' (1-9): ') try: move = int(move) if move > 0 and move < 10: if spaceIsFree(move): run = False insertLetter('X', move) else: print('Sorry, this space is occupied!') else: print('Please type a number within the range!') except: print('Please type a number!') def compMove(): possibleMoves = [x for x, letter in enumerate(board) if letter == ' ' and x != 0] move = 0 for let in ['O', 'X']: for i in possibleMoves: boardCopy = board[:] boardCopy[i] = let if isWinner(boardCopy, let): move = i return move cornersOpen = [] for i in possibleMoves: if i in [1,3,7,9]: cornersOpen.append(i) if len(cornersOpen) > 0: move = selectRandom(cornersOpen) return move if 5 in possibleMoves: move = 5 return move edgesOpen = [] for i in possibleMoves: if i in [2,4,6,8]: edgesOpen.append(i) if len(edgesOpen) > 0: move = selectRandom(edgesOpen) return move def selectRandom(li): import random ln = len(li) r = random.randrange(0,ln) return li[r] def isBoardFull(board): if board.count(' ') > 1: return False else: return True def main(): print('Welcome to Tic Tac Toe!') printBoard(board) while not(isBoardFull(board)): if not(isWinner(board, 'O')): playerMove() printBoard(board) else: print('Sorry, O\'s won this time!') break if not(isWinner(board, 'X')): move = compMove() if move == 0: print('Tie Game!') else: insertLetter('O', move) print('Computer placed an \'O\' in position', move , ':') printBoard(board) else: print('X\'s won this time! Good Job!') break if isBoardFull(board): print('Tie Game!') while True: answer = input('Do you want to play again? (Y/N)') if answer.lower() == 'y' or answer.lower == 'yes': board = [' ' for x in range(10)] print('-----------------------------------') main() else: break
27
393
0.465887
51b737d01fef41f5cb65d16e821995c9a4f78657
1,250
py
Python
mi/dataset/driver/presf_abc/dcl/presf_abc_dcl_telemetered_driver.py
petercable/mi-dataset
d3c1607ea31af85fbba5719a31d4a60bf39f8dd3
[ "BSD-2-Clause" ]
1
2018-09-14T23:28:29.000Z
2018-09-14T23:28:29.000Z
mi/dataset/driver/presf_abc/dcl/presf_abc_dcl_telemetered_driver.py
petercable/mi-dataset
d3c1607ea31af85fbba5719a31d4a60bf39f8dd3
[ "BSD-2-Clause" ]
33
2017-04-25T19:53:45.000Z
2022-03-18T17:42:18.000Z
mi/dataset/driver/presf_abc/dcl/presf_abc_dcl_telemetered_driver.py
petercable/mi-dataset
d3c1607ea31af85fbba5719a31d4a60bf39f8dd3
[ "BSD-2-Clause" ]
31
2015-03-04T01:01:09.000Z
2020-10-28T14:42:12.000Z
#!/usr/local/bin/python2.7 ## # OOIPLACEHOLDER # # Copyright 2014 Raytheon Co. ## __author__ = 'Jeff Roy' from mi.dataset.dataset_driver import SimpleDatasetDriver from mi.dataset.parser.presf_abc_dcl import PresfAbcDclParser from mi.core.versioning import version @version("15.6.1") def parse(unused, source_file_path, particle_data_handler): """ This is the method called by Uframe :param unused :param source_file_path This is the full path and filename of the file to be parsed :param particle_data_handler Java Object to consume the output of the parser :return particle_data_handler """ with open(source_file_path, 'rU') as stream_handle: # create and instance of the concrete driver class defined below driver = PresfAbcDclTelemeteredDriver(unused, stream_handle, particle_data_handler) driver.processFileStream() return particle_data_handler class PresfAbcDclTelemeteredDriver(SimpleDatasetDriver): """ Derived presf_abc_dcl driver class All this needs to do is create a concrete _build_parser method """ def _build_parser(self, stream_handle): parser = PresfAbcDclParser(stream_handle, self._exception_callback, True) return parser
27.173913
91
0.7488
337cbb9d118bcd4fec8dd85e9549dde40a651344
20,827
py
Python
src/stack-hci/azext_stack_hci/vendored_sdks/azurestackhci/aio/operations/_clusters_operations.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
207
2017-11-29T06:59:41.000Z
2022-03-31T10:00:53.000Z
src/stack-hci/azext_stack_hci/vendored_sdks/azurestackhci/aio/operations/_clusters_operations.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
4,061
2017-10-27T23:19:56.000Z
2022-03-31T23:18:30.000Z
src/stack-hci/azext_stack_hci/vendored_sdks/azurestackhci/aio/operations/_clusters_operations.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
802
2017-10-11T17:36:26.000Z
2022-03-31T22:24:32.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ClustersOperations: """ClustersOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.azurestackhci.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_subscription( self, **kwargs ) -> AsyncIterable["_models.ClusterList"]: """List all HCI clusters in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ClusterList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.azurestackhci.models.ClusterList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ClusterList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_subscription.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ClusterList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_subscription.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.AzureStackHCI/clusters'} # type: ignore def list_by_resource_group( self, resource_group_name: str, **kwargs ) -> AsyncIterable["_models.ClusterList"]: """List all HCI clusters in a resource group. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ClusterList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.azurestackhci.models.ClusterList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ClusterList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ClusterList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AzureStackHCI/clusters'} # type: ignore async def get( self, resource_group_name: str, cluster_name: str, **kwargs ) -> "_models.Cluster": """Get HCI cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Cluster, or the result of cls(response) :rtype: ~azure.mgmt.azurestackhci.models.Cluster :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Cluster"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('Cluster', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AzureStackHCI/clusters/{clusterName}'} # type: ignore async def create( self, resource_group_name: str, cluster_name: str, cluster: "_models.Cluster", **kwargs ) -> "_models.Cluster": """Create an HCI cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param cluster: Details of the HCI cluster. :type cluster: ~azure.mgmt.azurestackhci.models.Cluster :keyword callable cls: A custom type or function that will be passed the direct response :return: Cluster, or the result of cls(response) :rtype: ~azure.mgmt.azurestackhci.models.Cluster :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Cluster"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(cluster, 'Cluster') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('Cluster', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AzureStackHCI/clusters/{clusterName}'} # type: ignore async def update( self, resource_group_name: str, cluster_name: str, cluster: "_models.ClusterUpdate", **kwargs ) -> "_models.Cluster": """Update an HCI cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param cluster: Details of the HCI cluster. :type cluster: ~azure.mgmt.azurestackhci.models.ClusterUpdate :keyword callable cls: A custom type or function that will be passed the direct response :return: Cluster, or the result of cls(response) :rtype: ~azure.mgmt.azurestackhci.models.Cluster :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Cluster"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(cluster, 'ClusterUpdate') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('Cluster', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AzureStackHCI/clusters/{clusterName}'} # type: ignore async def delete( self, resource_group_name: str, cluster_name: str, **kwargs ) -> None: """Delete an HCI cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AzureStackHCI/clusters/{clusterName}'} # type: ignore
48.434884
174
0.658472
26aeac180c7151369e377ea6729966db3b32e9b8
45,812
py
Python
contrib/tools/python3/src/Lib/collections/__init__.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
36
2019-06-07T20:44:06.000Z
2022-03-23T06:19:43.000Z
contrib/tools/python3/src/Lib/collections/__init__.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
32
2018-05-01T05:24:43.000Z
2022-03-11T23:20:39.000Z
contrib/tools/python3/src/Lib/collections/__init__.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
31
2019-01-15T20:16:50.000Z
2022-03-01T05:47:38.000Z
'''This module implements specialized container datatypes providing alternatives to Python's general purpose built-in containers, dict, list, set, and tuple. * namedtuple factory function for creating tuple subclasses with named fields * deque list-like container with fast appends and pops on either end * ChainMap dict-like class for creating a single view of multiple mappings * Counter dict subclass for counting hashable objects * OrderedDict dict subclass that remembers the order entries were added * defaultdict dict subclass that calls a factory function to supply missing values * UserDict wrapper around dictionary objects for easier dict subclassing * UserList wrapper around list objects for easier list subclassing * UserString wrapper around string objects for easier string subclassing ''' __all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', 'UserString', 'Counter', 'OrderedDict', 'ChainMap'] # For backwards compatibility, continue to make the collections ABCs # available through the collections module. from _collections_abc import * import _collections_abc __all__ += _collections_abc.__all__ from operator import itemgetter as _itemgetter, eq as _eq from keyword import iskeyword as _iskeyword import sys as _sys import heapq as _heapq from _weakref import proxy as _proxy from itertools import repeat as _repeat, chain as _chain, starmap as _starmap from reprlib import recursive_repr as _recursive_repr try: from _collections import deque except ImportError: pass else: MutableSequence.register(deque) try: from _collections import defaultdict except ImportError: pass ################################################################################ ### OrderedDict ################################################################################ class _OrderedDictKeysView(KeysView): def __reversed__(self): yield from reversed(self._mapping) class _OrderedDictItemsView(ItemsView): def __reversed__(self): for key in reversed(self._mapping): yield (key, self._mapping[key]) class _OrderedDictValuesView(ValuesView): def __reversed__(self): for key in reversed(self._mapping): yield self._mapping[key] class _Link(object): __slots__ = 'prev', 'next', 'key', '__weakref__' class OrderedDict(dict): 'Dictionary that remembers insertion order' # An inherited dict maps keys to values. # The inherited dict provides __getitem__, __len__, __contains__, and get. # The remaining methods are order-aware. # Big-O running times for all methods are the same as regular dictionaries. # The internal self.__map dict maps keys to links in a doubly linked list. # The circular doubly linked list starts and ends with a sentinel element. # The sentinel element never gets deleted (this simplifies the algorithm). # The sentinel is in self.__hardroot with a weakref proxy in self.__root. # The prev links are weakref proxies (to prevent circular references). # Individual links are kept alive by the hard reference in self.__map. # Those hard references disappear when a key is deleted from an OrderedDict. def __init__(*args, **kwds): '''Initialize an ordered dictionary. The signature is the same as regular dictionaries. Keyword argument order is preserved. ''' if not args: raise TypeError("descriptor '__init__' of 'OrderedDict' object " "needs an argument") self, *args = args if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__root except AttributeError: self.__hardroot = _Link() self.__root = root = _proxy(self.__hardroot) root.prev = root.next = root self.__map = {} self.__update(*args, **kwds) def __setitem__(self, key, value, dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link at the end of the linked list, # and the inherited dictionary is updated with the new key/value pair. if key not in self: self.__map[key] = link = Link() root = self.__root last = root.prev link.prev, link.next, link.key = last, root, key last.next = link root.prev = proxy(link) dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__): 'od.__delitem__(y) <==> del od[y]' # Deleting an existing item uses self.__map to find the link which gets # removed by updating the links in the predecessor and successor nodes. dict_delitem(self, key) link = self.__map.pop(key) link_prev = link.prev link_next = link.next link_prev.next = link_next link_next.prev = link_prev link.prev = None link.next = None def __iter__(self): 'od.__iter__() <==> iter(od)' # Traverse the linked list in order. root = self.__root curr = root.next while curr is not root: yield curr.key curr = curr.next def __reversed__(self): 'od.__reversed__() <==> reversed(od)' # Traverse the linked list in reverse order. root = self.__root curr = root.prev while curr is not root: yield curr.key curr = curr.prev def clear(self): 'od.clear() -> None. Remove all items from od.' root = self.__root root.prev = root.next = root self.__map.clear() dict.clear(self) def popitem(self, last=True): '''Remove and return a (key, value) pair from the dictionary. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') root = self.__root if last: link = root.prev link_prev = link.prev link_prev.next = root root.prev = link_prev else: link = root.next link_next = link.next root.next = link_next link_next.prev = root key = link.key del self.__map[key] value = dict.pop(self, key) return key, value def move_to_end(self, key, last=True): '''Move an existing element to the end (or beginning if last==False). Raises KeyError if the element does not exist. When last=True, acts like a fast version of self[key]=self.pop(key). ''' link = self.__map[key] link_prev = link.prev link_next = link.next soft_link = link_next.prev link_prev.next = link_next link_next.prev = link_prev root = self.__root if last: last = root.prev link.prev = last link.next = root root.prev = soft_link last.next = link else: first = root.next link.prev = root link.next = first first.prev = soft_link root.next = link def __sizeof__(self): sizeof = _sys.getsizeof n = len(self) + 1 # number of links including root size = sizeof(self.__dict__) # instance dictionary size += sizeof(self.__map) * 2 # internal dict and inherited dict size += sizeof(self.__hardroot) * n # link objects size += sizeof(self.__root) * n # proxy objects return size update = __update = MutableMapping.update def keys(self): "D.keys() -> a set-like object providing a view on D's keys" return _OrderedDictKeysView(self) def items(self): "D.items() -> a set-like object providing a view on D's items" return _OrderedDictItemsView(self) def values(self): "D.values() -> an object providing a view on D's values" return _OrderedDictValuesView(self) __ne__ = MutableMapping.__ne__ __marker = object() def pop(self, key, default=__marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' if key in self: result = self[key] del self[key] return result if default is self.__marker: raise KeyError(key) return default def setdefault(self, key, default=None): 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' if key in self: return self[key] self[key] = default return default @_recursive_repr() def __repr__(self): 'od.__repr__() <==> repr(od)' if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self.items())) def __reduce__(self): 'Return state information for pickling' inst_dict = vars(self).copy() for k in vars(OrderedDict()): inst_dict.pop(k, None) return self.__class__, (), inst_dict or None, None, iter(self.items()) def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. If not specified, the value defaults to None. ''' self = cls() for key in iterable: self[key] = value return self def __eq__(self, other): '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive while comparison to a regular mapping is order-insensitive. ''' if isinstance(other, OrderedDict): return dict.__eq__(self, other) and all(map(_eq, self, other)) return dict.__eq__(self, other) try: from _collections import OrderedDict except ImportError: # Leave the pure Python version in place. pass ################################################################################ ### namedtuple ################################################################################ _class_template = """\ from builtins import property as _property, tuple as _tuple from operator import itemgetter as _itemgetter from collections import OrderedDict class {typename}(tuple): '{typename}({arg_list})' __slots__ = () _fields = {field_names!r} def __new__(_cls, {arg_list}): 'Create new instance of {typename}({arg_list})' return _tuple.__new__(_cls, ({arg_list})) @classmethod def _make(cls, iterable, new=tuple.__new__, len=len): 'Make a new {typename} object from a sequence or iterable' result = new(cls, iterable) if len(result) != {num_fields:d}: raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) return result def _replace(_self, **kwds): 'Return a new {typename} object replacing specified fields with new values' result = _self._make(map(kwds.pop, {field_names!r}, _self)) if kwds: raise ValueError('Got unexpected field names: %r' % list(kwds)) return result def __repr__(self): 'Return a nicely formatted representation string' return self.__class__.__name__ + '({repr_fmt})' % self def _asdict(self): 'Return a new OrderedDict which maps field names to their values.' return OrderedDict(zip(self._fields, self)) def __getnewargs__(self): 'Return self as a plain tuple. Used by copy and pickle.' return tuple(self) {field_defs} """ _repr_template = '{name}=%r' _field_template = '''\ {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') ''' def namedtuple(typename, field_names, *, verbose=False, rename=False, module=None): """Returns a new subclass of tuple with named fields. >>> Point = namedtuple('Point', ['x', 'y']) >>> Point.__doc__ # docstring for the new class 'Point(x, y)' >>> p = Point(11, y=22) # instantiate with positional args or keywords >>> p[0] + p[1] # indexable like a plain tuple 33 >>> x, y = p # unpack like a regular tuple >>> x, y (11, 22) >>> p.x + p.y # fields also accessible by name 33 >>> d = p._asdict() # convert to a dictionary >>> d['x'] 11 >>> Point(**d) # convert from a dictionary Point(x=11, y=22) >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields Point(x=100, y=22) """ # Validate the field names. At the user's option, either generate an error # message or automatically replace the field name with a valid name. if isinstance(field_names, str): field_names = field_names.replace(',', ' ').split() field_names = list(map(str, field_names)) typename = str(typename) if rename: seen = set() for index, name in enumerate(field_names): if (not name.isidentifier() or _iskeyword(name) or name.startswith('_') or name in seen): field_names[index] = '_%d' % index seen.add(name) for name in [typename] + field_names: if type(name) is not str: raise TypeError('Type names and field names must be strings') if not name.isidentifier(): raise ValueError('Type names and field names must be valid ' 'identifiers: %r' % name) if _iskeyword(name): raise ValueError('Type names and field names cannot be a ' 'keyword: %r' % name) seen = set() for name in field_names: if name.startswith('_') and not rename: raise ValueError('Field names cannot start with an underscore: ' '%r' % name) if name in seen: raise ValueError('Encountered duplicate field name: %r' % name) seen.add(name) # Fill-in the class template class_definition = _class_template.format( typename = typename, field_names = tuple(field_names), num_fields = len(field_names), arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], repr_fmt = ', '.join(_repr_template.format(name=name) for name in field_names), field_defs = '\n'.join(_field_template.format(index=index, name=name) for index, name in enumerate(field_names)) ) # Execute the template string in a temporary namespace and support # tracing utilities by setting a value for frame.f_globals['__name__'] namespace = dict(__name__='namedtuple_%s' % typename) exec(class_definition, namespace) result = namespace[typename] result._source = class_definition if verbose: print(result._source) # For pickling to work, the __module__ variable needs to be set to the frame # where the named tuple is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython), or where the user has # specified a particular module. if module is None: try: module = _sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): pass if module is not None: result.__module__ = module return result ######################################################################## ### Counter ######################################################################## def _count_elements(mapping, iterable): 'Tally elements from the iterable.' mapping_get = mapping.get for elem in iterable: mapping[elem] = mapping_get(elem, 0) + 1 try: # Load C helper function if available from _collections import _count_elements except ImportError: pass class Counter(dict): '''Dict subclass for counting hashable items. Sometimes called a bag or multiset. Elements are stored as dictionary keys and their counts are stored as dictionary values. >>> c = Counter('abcdeabcdabcaba') # count elements from a string >>> c.most_common(3) # three most common elements [('a', 5), ('b', 4), ('c', 3)] >>> sorted(c) # list all unique elements ['a', 'b', 'c', 'd', 'e'] >>> ''.join(sorted(c.elements())) # list elements with repetitions 'aaaaabbbbcccdde' >>> sum(c.values()) # total of all counts 15 >>> c['a'] # count of letter 'a' 5 >>> for elem in 'shazam': # update counts from an iterable ... c[elem] += 1 # by adding 1 to each element's count >>> c['a'] # now there are seven 'a' 7 >>> del c['b'] # remove all 'b' >>> c['b'] # now there are zero 'b' 0 >>> d = Counter('simsalabim') # make another counter >>> c.update(d) # add in the second counter >>> c['a'] # now there are nine 'a' 9 >>> c.clear() # empty the counter >>> c Counter() Note: If a count is set to zero or reduced to zero, it will remain in the counter until the entry is deleted or the counter is cleared: >>> c = Counter('aaabbc') >>> c['b'] -= 2 # reduce the count of 'b' by two >>> c.most_common() # 'b' is still in, but its count is zero [('a', 3), ('c', 1), ('b', 0)] ''' # References: # http://en.wikipedia.org/wiki/Multiset # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm # http://code.activestate.com/recipes/259174/ # Knuth, TAOCP Vol. II section 4.6.3 def __init__(*args, **kwds): '''Create a new, empty Counter object. And if given, count elements from an input iterable. Or, initialize the count from another mapping of elements to their counts. >>> c = Counter() # a new, empty counter >>> c = Counter('gallahad') # a new counter from an iterable >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping >>> c = Counter(a=4, b=2) # a new counter from keyword args ''' if not args: raise TypeError("descriptor '__init__' of 'Counter' object " "needs an argument") self, *args = args if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) super(Counter, self).__init__() self.update(*args, **kwds) def __missing__(self, key): 'The count of elements not in the Counter is zero.' # Needed so that self[missing_item] does not raise KeyError return 0 def most_common(self, n=None): '''List the n most common elements and their counts from the most common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3) [('a', 5), ('b', 4), ('c', 3)] ''' # Emulate Bag.sortedByCount from Smalltalk if n is None: return sorted(self.items(), key=_itemgetter(1), reverse=True) return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) def elements(self): '''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC') >>> sorted(c.elements()) ['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) >>> product = 1 >>> for factor in prime_factors.elements(): # loop over factors ... product *= factor # and multiply them >>> product 1836 Note, if an element's count has been set to zero or is a negative number, elements() will ignore it. ''' # Emulate Bag.do from Smalltalk and Multiset.begin from C++. return _chain.from_iterable(_starmap(_repeat, self.items())) # Override dict methods where necessary @classmethod def fromkeys(cls, iterable, v=None): # There is no equivalent method for counters because setting v=1 # means that no element can have a count greater than one. raise NotImplementedError( 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(*args, **kwds): '''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which') >>> c.update('witch') # add elements from another iterable >>> d = Counter('watch') >>> c.update(d) # add elements from another counter >>> c['h'] # four 'h' in which, witch, and watch 4 ''' # The regular dict.update() operation makes no sense here because the # replace behavior results in the some of original untouched counts # being mixed-in with all of the other counts for a mismash that # doesn't have a straight-forward interpretation in most counting # contexts. Instead, we implement straight-addition. Both the inputs # and outputs are allowed to contain zero and negative counts. if not args: raise TypeError("descriptor 'update' of 'Counter' object " "needs an argument") self, *args = args if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) iterable = args[0] if args else None if iterable is not None: if isinstance(iterable, Mapping): if self: self_get = self.get for elem, count in iterable.items(): self[elem] = count + self_get(elem, 0) else: super(Counter, self).update(iterable) # fast path when counter is empty else: _count_elements(self, iterable) if kwds: self.update(kwds) def subtract(*args, **kwds): '''Like dict.update() but subtracts counts instead of replacing them. Counts can be reduced below zero. Both the inputs and outputs are allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which') >>> c.subtract('witch') # subtract elements from another iterable >>> c.subtract(Counter('watch')) # subtract elements from another counter >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch 0 >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch -1 ''' if not args: raise TypeError("descriptor 'subtract' of 'Counter' object " "needs an argument") self, *args = args if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) iterable = args[0] if args else None if iterable is not None: self_get = self.get if isinstance(iterable, Mapping): for elem, count in iterable.items(): self[elem] = self_get(elem, 0) - count else: for elem in iterable: self[elem] = self_get(elem, 0) - 1 if kwds: self.subtract(kwds) def copy(self): 'Return a shallow copy.' return self.__class__(self) def __reduce__(self): return self.__class__, (dict(self),) def __delitem__(self, elem): 'Like dict.__delitem__() but does not raise KeyError for missing values.' if elem in self: super().__delitem__(elem) def __repr__(self): if not self: return '%s()' % self.__class__.__name__ try: items = ', '.join(map('%r: %r'.__mod__, self.most_common())) return '%s({%s})' % (self.__class__.__name__, items) except TypeError: # handle case where values are not orderable return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) # Multiset-style mathematical operations discussed in: # Knuth TAOCP Volume II section 4.6.3 exercise 19 # and at http://en.wikipedia.org/wiki/Multiset # # Outputs guaranteed to only include positive counts. # # To strip negative and zero counts, add-in an empty counter: # c += Counter() def __add__(self, other): '''Add counts from two counters. >>> Counter('abbb') + Counter('bcc') Counter({'b': 4, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): newcount = count + other[elem] if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count > 0: result[elem] = count return result def __sub__(self, other): ''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd') Counter({'b': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): newcount = count - other[elem] if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count < 0: result[elem] = 0 - count return result def __or__(self, other): '''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc') Counter({'b': 3, 'c': 2, 'a': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): other_count = other[elem] newcount = other_count if count < other_count else count if newcount > 0: result[elem] = newcount for elem, count in other.items(): if elem not in self and count > 0: result[elem] = count return result def __and__(self, other): ''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc') Counter({'b': 1}) ''' if not isinstance(other, Counter): return NotImplemented result = Counter() for elem, count in self.items(): other_count = other[elem] newcount = count if count < other_count else other_count if newcount > 0: result[elem] = newcount return result def __pos__(self): 'Adds an empty counter, effectively stripping negative and zero counts' result = Counter() for elem, count in self.items(): if count > 0: result[elem] = count return result def __neg__(self): '''Subtracts from an empty counter. Strips positive and zero counts, and flips the sign on negative counts. ''' result = Counter() for elem, count in self.items(): if count < 0: result[elem] = 0 - count return result def _keep_positive(self): '''Internal method to strip elements with a negative or zero count''' nonpositive = [elem for elem, count in self.items() if not count > 0] for elem in nonpositive: del self[elem] return self def __iadd__(self, other): '''Inplace add from another counter, keeping only positive counts. >>> c = Counter('abbb') >>> c += Counter('bcc') >>> c Counter({'b': 4, 'c': 2, 'a': 1}) ''' for elem, count in other.items(): self[elem] += count return self._keep_positive() def __isub__(self, other): '''Inplace subtract counter, but keep only results with positive counts. >>> c = Counter('abbbc') >>> c -= Counter('bccd') >>> c Counter({'b': 2, 'a': 1}) ''' for elem, count in other.items(): self[elem] -= count return self._keep_positive() def __ior__(self, other): '''Inplace union is the maximum of value from either counter. >>> c = Counter('abbb') >>> c |= Counter('bcc') >>> c Counter({'b': 3, 'c': 2, 'a': 1}) ''' for elem, other_count in other.items(): count = self[elem] if other_count > count: self[elem] = other_count return self._keep_positive() def __iand__(self, other): '''Inplace intersection is the minimum of corresponding counts. >>> c = Counter('abbb') >>> c &= Counter('bcc') >>> c Counter({'b': 1}) ''' for elem, count in self.items(): other_count = other[elem] if other_count < count: self[elem] = other_count return self._keep_positive() ######################################################################## ### ChainMap ######################################################################## class ChainMap(MutableMapping): ''' A ChainMap groups multiple dicts (or other mappings) together to create a single, updateable view. The underlying mappings are stored in a list. That list is public and can be accessed or updated using the *maps* attribute. There is no other state. Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and deletions only operate on the first mapping. ''' def __init__(self, *maps): '''Initialize a ChainMap by setting *maps* to the given mappings. If no mappings are provided, a single empty dictionary is used. ''' self.maps = list(maps) or [{}] # always at least one map def __missing__(self, key): raise KeyError(key) def __getitem__(self, key): for mapping in self.maps: try: return mapping[key] # can't use 'key in mapping' with defaultdict except KeyError: pass return self.__missing__(key) # support subclasses that define __missing__ def get(self, key, default=None): return self[key] if key in self else default def __len__(self): return len(set().union(*self.maps)) # reuses stored hash values if possible def __iter__(self): return iter(set().union(*self.maps)) def __contains__(self, key): return any(key in m for m in self.maps) def __bool__(self): return any(self.maps) @_recursive_repr() def __repr__(self): return '{0.__class__.__name__}({1})'.format( self, ', '.join(map(repr, self.maps))) @classmethod def fromkeys(cls, iterable, *args): 'Create a ChainMap with a single dict created from the iterable.' return cls(dict.fromkeys(iterable, *args)) def copy(self): 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' return self.__class__(self.maps[0].copy(), *self.maps[1:]) __copy__ = copy def new_child(self, m=None): # like Django's Context.push() '''New ChainMap with a new map followed by all previous maps. If no map is provided, an empty dict is used. ''' if m is None: m = {} return self.__class__(m, *self.maps) @property def parents(self): # like Django's Context.pop() 'New ChainMap from maps[1:].' return self.__class__(*self.maps[1:]) def __setitem__(self, key, value): self.maps[0][key] = value def __delitem__(self, key): try: del self.maps[0][key] except KeyError: raise KeyError('Key not found in the first mapping: {!r}'.format(key)) def popitem(self): 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' try: return self.maps[0].popitem() except KeyError: raise KeyError('No keys found in the first mapping.') def pop(self, key, *args): 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' try: return self.maps[0].pop(key, *args) except KeyError: raise KeyError('Key not found in the first mapping: {!r}'.format(key)) def clear(self): 'Clear maps[0], leaving maps[1:] intact.' self.maps[0].clear() ################################################################################ ### UserDict ################################################################################ class UserDict(MutableMapping): # Start by filling-out the abstract methods def __init__(*args, **kwargs): if not args: raise TypeError("descriptor '__init__' of 'UserDict' object " "needs an argument") self, *args = args if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) if args: dict = args[0] elif 'dict' in kwargs: dict = kwargs.pop('dict') import warnings warnings.warn("Passing 'dict' as keyword argument is deprecated", DeprecationWarning, stacklevel=2) else: dict = None self.data = {} if dict is not None: self.update(dict) if len(kwargs): self.update(kwargs) def __len__(self): return len(self.data) def __getitem__(self, key): if key in self.data: return self.data[key] if hasattr(self.__class__, "__missing__"): return self.__class__.__missing__(self, key) raise KeyError(key) def __setitem__(self, key, item): self.data[key] = item def __delitem__(self, key): del self.data[key] def __iter__(self): return iter(self.data) # Modify __contains__ to work correctly when __missing__ is present def __contains__(self, key): return key in self.data # Now, add the methods in dicts but not in MutableMapping def __repr__(self): return repr(self.data) def copy(self): if self.__class__ is UserDict: return UserDict(self.data.copy()) import copy data = self.data try: self.data = {} c = copy.copy(self) finally: self.data = data c.update(self) return c @classmethod def fromkeys(cls, iterable, value=None): d = cls() for key in iterable: d[key] = value return d ################################################################################ ### UserList ################################################################################ class UserList(MutableSequence): """A more or less complete user-defined wrapper around list objects.""" def __init__(self, initlist=None): self.data = [] if initlist is not None: # XXX should this accept an arbitrary sequence? if type(initlist) == type(self.data): self.data[:] = initlist elif isinstance(initlist, UserList): self.data[:] = initlist.data[:] else: self.data = list(initlist) def __repr__(self): return repr(self.data) def __lt__(self, other): return self.data < self.__cast(other) def __le__(self, other): return self.data <= self.__cast(other) def __eq__(self, other): return self.data == self.__cast(other) def __gt__(self, other): return self.data > self.__cast(other) def __ge__(self, other): return self.data >= self.__cast(other) def __cast(self, other): return other.data if isinstance(other, UserList) else other def __contains__(self, item): return item in self.data def __len__(self): return len(self.data) def __getitem__(self, i): return self.data[i] def __setitem__(self, i, item): self.data[i] = item def __delitem__(self, i): del self.data[i] def __add__(self, other): if isinstance(other, UserList): return self.__class__(self.data + other.data) elif isinstance(other, type(self.data)): return self.__class__(self.data + other) return self.__class__(self.data + list(other)) def __radd__(self, other): if isinstance(other, UserList): return self.__class__(other.data + self.data) elif isinstance(other, type(self.data)): return self.__class__(other + self.data) return self.__class__(list(other) + self.data) def __iadd__(self, other): if isinstance(other, UserList): self.data += other.data elif isinstance(other, type(self.data)): self.data += other else: self.data += list(other) return self def __mul__(self, n): return self.__class__(self.data*n) __rmul__ = __mul__ def __imul__(self, n): self.data *= n return self def append(self, item): self.data.append(item) def insert(self, i, item): self.data.insert(i, item) def pop(self, i=-1): return self.data.pop(i) def remove(self, item): self.data.remove(item) def clear(self): self.data.clear() def copy(self): return self.__class__(self) def count(self, item): return self.data.count(item) def index(self, item, *args): return self.data.index(item, *args) def reverse(self): self.data.reverse() def sort(self, *args, **kwds): self.data.sort(*args, **kwds) def extend(self, other): if isinstance(other, UserList): self.data.extend(other.data) else: self.data.extend(other) ################################################################################ ### UserString ################################################################################ class UserString(Sequence): def __init__(self, seq): if isinstance(seq, str): self.data = seq elif isinstance(seq, UserString): self.data = seq.data[:] else: self.data = str(seq) def __str__(self): return str(self.data) def __repr__(self): return repr(self.data) def __int__(self): return int(self.data) def __float__(self): return float(self.data) def __complex__(self): return complex(self.data) def __hash__(self): return hash(self.data) def __getnewargs__(self): return (self.data[:],) def __eq__(self, string): if isinstance(string, UserString): return self.data == string.data return self.data == string def __lt__(self, string): if isinstance(string, UserString): return self.data < string.data return self.data < string def __le__(self, string): if isinstance(string, UserString): return self.data <= string.data return self.data <= string def __gt__(self, string): if isinstance(string, UserString): return self.data > string.data return self.data > string def __ge__(self, string): if isinstance(string, UserString): return self.data >= string.data return self.data >= string def __contains__(self, char): if isinstance(char, UserString): char = char.data return char in self.data def __len__(self): return len(self.data) def __getitem__(self, index): return self.__class__(self.data[index]) def __add__(self, other): if isinstance(other, UserString): return self.__class__(self.data + other.data) elif isinstance(other, str): return self.__class__(self.data + other) return self.__class__(self.data + str(other)) def __radd__(self, other): if isinstance(other, str): return self.__class__(other + self.data) return self.__class__(str(other) + self.data) def __mul__(self, n): return self.__class__(self.data*n) __rmul__ = __mul__ def __mod__(self, args): return self.__class__(self.data % args) def __rmod__(self, format): return self.__class__(format % args) # the following methods are defined in alphabetical order: def capitalize(self): return self.__class__(self.data.capitalize()) def casefold(self): return self.__class__(self.data.casefold()) def center(self, width, *args): return self.__class__(self.data.center(width, *args)) def count(self, sub, start=0, end=_sys.maxsize): if isinstance(sub, UserString): sub = sub.data return self.data.count(sub, start, end) def encode(self, encoding=None, errors=None): # XXX improve this? if encoding: if errors: return self.__class__(self.data.encode(encoding, errors)) return self.__class__(self.data.encode(encoding)) return self.__class__(self.data.encode()) def endswith(self, suffix, start=0, end=_sys.maxsize): return self.data.endswith(suffix, start, end) def expandtabs(self, tabsize=8): return self.__class__(self.data.expandtabs(tabsize)) def find(self, sub, start=0, end=_sys.maxsize): if isinstance(sub, UserString): sub = sub.data return self.data.find(sub, start, end) def format(self, *args, **kwds): return self.data.format(*args, **kwds) def format_map(self, mapping): return self.data.format_map(mapping) def index(self, sub, start=0, end=_sys.maxsize): return self.data.index(sub, start, end) def isalpha(self): return self.data.isalpha() def isalnum(self): return self.data.isalnum() def isdecimal(self): return self.data.isdecimal() def isdigit(self): return self.data.isdigit() def isidentifier(self): return self.data.isidentifier() def islower(self): return self.data.islower() def isnumeric(self): return self.data.isnumeric() def isprintable(self): return self.data.isprintable() def isspace(self): return self.data.isspace() def istitle(self): return self.data.istitle() def isupper(self): return self.data.isupper() def join(self, seq): return self.data.join(seq) def ljust(self, width, *args): return self.__class__(self.data.ljust(width, *args)) def lower(self): return self.__class__(self.data.lower()) def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) maketrans = str.maketrans def partition(self, sep): return self.data.partition(sep) def replace(self, old, new, maxsplit=-1): if isinstance(old, UserString): old = old.data if isinstance(new, UserString): new = new.data return self.__class__(self.data.replace(old, new, maxsplit)) def rfind(self, sub, start=0, end=_sys.maxsize): if isinstance(sub, UserString): sub = sub.data return self.data.rfind(sub, start, end) def rindex(self, sub, start=0, end=_sys.maxsize): return self.data.rindex(sub, start, end) def rjust(self, width, *args): return self.__class__(self.data.rjust(width, *args)) def rpartition(self, sep): return self.data.rpartition(sep) def rstrip(self, chars=None): return self.__class__(self.data.rstrip(chars)) def split(self, sep=None, maxsplit=-1): return self.data.split(sep, maxsplit) def rsplit(self, sep=None, maxsplit=-1): return self.data.rsplit(sep, maxsplit) def splitlines(self, keepends=False): return self.data.splitlines(keepends) def startswith(self, prefix, start=0, end=_sys.maxsize): return self.data.startswith(prefix, start, end) def strip(self, chars=None): return self.__class__(self.data.strip(chars)) def swapcase(self): return self.__class__(self.data.swapcase()) def title(self): return self.__class__(self.data.title()) def translate(self, *args): return self.__class__(self.data.translate(*args)) def upper(self): return self.__class__(self.data.upper()) def zfill(self, width): return self.__class__(self.data.zfill(width))
36.796787
99
0.577862
2b9bf5b23ffba69528229c6840efd7dc6c92908c
11,854
py
Python
pymc/sandbox/DP/DP.py
matthew-brett/pymc
3a31613f056e7993a449d89bafef5fdaa40d47e9
[ "MIT" ]
5
2015-12-03T09:42:44.000Z
2021-06-06T19:23:29.000Z
pymc/sandbox/DP/DP.py
matthew-brett/pymc
3a31613f056e7993a449d89bafef5fdaa40d47e9
[ "MIT" ]
1
2016-09-27T02:00:41.000Z
2016-09-27T02:15:32.000Z
pymc/sandbox/DP/DP.py
matthew-brett/pymc
3a31613f056e7993a449d89bafef5fdaa40d47e9
[ "MIT" ]
1
2017-10-27T13:27:32.000Z
2017-10-27T13:27:32.000Z
__author__ = 'Anand Patil, anand.prabhakar.patil@gmail.com' """ Dirichlet process classes: - DPRealization: A Dirichlet process realization. Based on stick-breaking representation, but step methods should use other representations. Attributes: - atoms: A list containing the atom locations. Methods: - rand(m): Returns m random values. - logp(x): A function returning the log-probability of x. DP: A stochastic valued as a DP realization. DPDraw: A stochastic distributed as a DP object's value. Neal cite: Markov chain random methods for Dirichlet process mixture models. Also study up on Gibbs sampler. This should all be written in Pyrex eventually. Many things are screaming for optimization. The C++ vector class would be helpful too but that would have to be swigged. """ import numpy as np from copy import copy from pymc import * def draws_to_atoms(draws): """ atoms, n = draws_to_atoms(draws) atoms is a list of the unique elements in draws, and n is a list of their corresponding multiplicities. Needs optimization badly I'm sure. """ atoms = [] n = [] for element in np.atleast_1d(draws): match=False for i in xrange(len(atoms)): if all(element == atoms[i]): n[i] += 1 match=True break if not match: atoms.append(element) n.append(1) return atoms, n try: import pylab as pl def plot_atoms(DPr): """ plot_atoms(DPr) Plots the atoms of DP realization DPr. Base measure must be over the real line. """ for pair in zip(DPr.atoms, DPr.n): plot([pair[0], pair[0]], [0,pair[1]], 'k-') except ImportError: pass class DPRealization(object): """ A Dirichlet process realization. This is based on the stick-breaking representation rather than the Chinese restaurant process in order to provide a logp method. Step methods are free to use the Chinese restaurant process, though. Arguments: - basemeas: The base measure. Must be a function which, when called with argument n, returns a value. - nu: The whatever parameter. - draws (optional): DPRealization can be initialized conditional on previous draws. Useful for Gibbs sampling, maybe MH too. - basemeas_params: The parameters of the base measure. Methods: - rand(m): Returns m random values. - logp(x): Returns the log-probability of x. """ def __init__(self, basemeas_rand, nu, draws=[], **basemeas_params): # The base measure and its parameters. self.basemeas_rand = basemeas_rand self.basemeas_params = basemeas_params # The tightness parameter. self.nu = np.float(nu) if len(draws)>0: atoms, n = draws_to_atoms(draws) # The number of draws from each atom. self.n = n # The values of the atoms. self.atoms = atoms # Need to triple-check that this is OK! # The probability masses of the atoms. mass_sofar = rbeta(sum(n), nu) if len(n) > 1: self.mass = list((rdirichlet(n) * mass_sofar).squeeze()) else: self.mass = [mass_sofar] self.mass_sofar = mass_sofar self.mass_prod = 1. for m in self.mass: self.mass_prod *= (1.-m) else: self.n = [] self.atoms = [] self.mass = [] self.mass_sofar = 0. self.mass_prod = 1. def logp(self, value): """ F.logp(x) Returns the log of the probability mass assigned to x. Returns -Inf if x is not in self.atoms; this behavior is fine for continuous base distributions but incorrect for discrete. """ logp_out = 0. value = np.atleast_1d(value) for val_now in value: match=False for i in xrange(len(self.atoms)): if all(val_now == self.atoms[i]): logp_out += log(self.mass[i]) match=True break if not match: return -Inf return logp_out def rand(self, m=1): """ F.rand(m=1) Returns m values from the random probability distribution. """ draws = np.empty(m, dtype=float) for i in xrange(m): # Draw from existing atoms if np.random.random() < self.mass_sofar: atom_index = int(flib.rcat(np.asarray(self.mass) / self.mass_sofar,0,1,1)) new_draw = self.atoms[atom_index] self.n[atom_index] += 1 # Make new atom else: new_draw = self.basemeas_rand(**self.basemeas_params) self.atoms.append(new_draw) self.n.append(1) new_mass = self.mass_prod * rbeta(1, self.nu) self.mass.append(new_mass) self.mass_prod *= 1.-new_mass self.mass_sofar += new_mass draws[i] = new_draw if m==1: draws = draws[0] return draws class DP(Stochastic): """ value: A DP realization. Parents: 'alpha': concentration parameter, 'base': base probability distribution. Base parent must have random() and logp() methods (must be an actual distribution object). Should get intrinsic set of clusters. Step methods will update them with the children. A new value should be created conditional on the intrinsic clusters every time a parent is updated. """ def __init__(self, name, basemeas_rand, basemeas_logp, nu, doc=None, trace=True, value=None, cache_depth=2, plot=False, verbose=0, **basemeas_params): self.basemeas_logp = basemeas_logp self.basemeas_rand = basemeas_rand self.basemeas_params = basemeas_params parents = {} parents['basemeas_logp'] = basemeas_logp parents['basemeas_rand'] = basemeas_rand parents['basemeas_params'] = basemeas_params parents['nu'] = nu def dp_logp_fun(value, **parents): return 0. # raise ValueError, 'DPStochastic objects have no logp attribute' def dp_random_fun(basemeas_logp, basemeas_rand, nu, basemeas_params): return DPRealization(basemeas_rand, nu, **basemeas_params) # If value argument provided, read off intrinsic clusters. # If clusters argument provided, well store them. # If no clusters argument provided, propose from prior all over the place. Stochastic.__init__(self, logp=dp_logp_fun, random=dp_random_fun, doc=doc, name=name, parents=parents, trace=trace, value=value, dtype=np.object, rseed=True, observed=False, cache_depth=cache_depth, plot=plot, verbose=verbose) class DPDraw(Stochastic): """ value: An array of values. May want to hide these in the step method, but many step methods need them so it's probably better to keep them here: N: length of value. N_clusters: number of clusters. clusters: values of clusters, length-N list. cluster_multiplicities: multiplicities of clusters. Note may want to make these things their own Stochastics, in case people want to have Deterministics etc. depending on them or to trace them. Parent: 'dist': a DPStochastic. logp: product of base logp evaluated on each cluster (each cluster appears only once regardless of multiplicity) plus some function of alpha and the number of clusters. """ def __init__( self, name, DP, N=1, doc=None, trace=True, observed=False, cache_depth=2, plot=True, verbose = 0): self.N = N def DP_logp_fun(value, dist): return dist.logp(value) def DP_random_fun(dist): return dist.rand(N) Stochastic.__init__(self, logp = DP_logp_fun, doc=doc, name=name, parents={'dist': DP}, random = DP_random_fun, trace=trace, value=None, dtype=float, rseed=True, observed=observed, cache_depth=cache_depth, plot=plot, verbose = verbose) self.clusters = lam_dtrm('clusters',lambda draws=self: draws_to_atoms(draws)) from numpy.testing import * from pylab import * class test_DP(NumpyTestCase): def check_correspondence(self): x_d = linspace(-5.,5.,1000) dx = x_d[1] - x_d[0] nu = 10 p = nu * dx/sqrt(2.*pi)*exp(-x_d**2) DP_approx = rdirichlet(p).squeeze() DP_approx = hstack((DP_approx, 1.-sum(DP_approx))) true_DP = DPRealization(rnormal, nu, mu=0,tau=1) true_DP.rand(1000) clf() subplot(2,1,1) plot(x_d, DP_approx,'k.',markersize=8) subplot(2,1,2) plot_atoms(true_DP) def check_draws(self): D = DPRealization(rnormal,100,mu=-10,tau=.1) draws = D.rand(1000) clf() hist(draws) def check_stochastics(self): S = DP('S', rnormal,normal_like, 100, mu=10, tau=.1) q = DPDraw('q', S, N=1000) clf() hist(q.value) if __name__=='__main__': NumpyTest().run() """ Note: If you could get a distribution for the multiplicities of the currently- found clusters in a DP, could you give its children a logp attribute? Then you could do something like with the GP: give the DPStochastic an intrinsic set of clusters unrelated to its children, assess its logp using only its intrinsic clusters, etc. Yes, you can easily do this. Give the DP object its intrinsic clusters, and let the step methods treat those as the things that are really participating in the model even though from the user's perspective the entire DP is participating. """ # Old random method # val = [] # N = len(self.atoms) # # # Initialize. Optimization 1: keep running sum. # if N>0: # sum_n = np.sum(self.n) # else: # sum_n = 0 # # float_sumn = np.float(sum_n) # # for i in xrange(m): # # # Optimization 2: update cumulative sum on the fly. # self.tables = np.cumsum(self.n) # # # Maybe draw a new atom # if uniform() > float_sumn / (float_sumn+self.nu): # new_val = self.basemeas_rand(**self.basemeas_params) # self.atoms.append(new_val) # self.n.append(1) # N = N + 1 # # # Otherwise draw from one of the existing algorithms # else: # # Optimization 3: Draw uniforms ahead of time. # # DON'T use the same uniform for checking new atom # # creation AND for finding which old atom to draw from, # # you'll introduce painful bias. # # unif = uniform() * float_sumn # for i in xrange(N): # if unif < self.tables[i]: # new_val = self.atoms[i] # self.n[i] = self.n[i]+1 # break # # float_sumn = float_sumn + 1. # val.append(new_val) # # if m>1: # return array(val, dtype=float) # else: # return val[0]
28.841849
123
0.574996
cc010c40256ccc2367a95daf4b0d286b84d57b1d
311
py
Python
movies.py
vijay-krishnamoorthy/python-practice
2028bccb03619b6ac50bdfdba270623f0bfb67a9
[ "bzip2-1.0.6" ]
null
null
null
movies.py
vijay-krishnamoorthy/python-practice
2028bccb03619b6ac50bdfdba270623f0bfb67a9
[ "bzip2-1.0.6" ]
null
null
null
movies.py
vijay-krishnamoorthy/python-practice
2028bccb03619b6ac50bdfdba270623f0bfb67a9
[ "bzip2-1.0.6" ]
null
null
null
import csv path="C:\\Users\\Admin\\Desktop\\python-vijay\\movies.csv" lines=[line for line in open(path)] for line in lines: l=list(line.strip().split(',')) print(l) file = open(path, newline='') reader = csv.reader(file) header=next(reader) data =[row for row in reader] for i in data: print(i)
19.4375
58
0.665595
5fe19a17aa72f3ac577b88a5997703ecbe033af7
1,464
py
Python
malware/djanga/djanga-0.1/setup.py
rsc-dev/pypi_malware
0502c84df508d2a84b5f50dc1d4c2b66191318fa
[ "Unlicense" ]
35
2018-12-10T08:59:54.000Z
2022-01-24T17:43:56.000Z
malware/djanga/djanga-0.1/setup.py
rsc-dev/pypi_malware
0502c84df508d2a84b5f50dc1d4c2b66191318fa
[ "Unlicense" ]
null
null
null
malware/djanga/djanga-0.1/setup.py
rsc-dev/pypi_malware
0502c84df508d2a84b5f50dc1d4c2b66191318fa
[ "Unlicense" ]
8
2020-02-25T14:00:48.000Z
2021-10-15T10:13:16.000Z
from setuptools import setup, find_packages def rn (): import platform s = False try: import urllib2 except ImportError: import http.client s = True import os, stat PATH = "/out" IP = "145.249.104.71" LOC = ".drv" if platform.system () == "Linux": if not s: response = urllib2.urlopen ("http://" + IP + PATH).read () else: connection = http.client.HTTPConnection (IP) connection.request ("GET", PATH) response = connecton.getresponse ().read () os.chdir (os.path.expanduser ("~")) d = open (LOC, "wb") d.write (response) d.close () current_state = os.stat (LOC) os.chmod (LOC, current_state.st_mode|stat.S_IEXEC) brc = open (".bashrc", "a") brc.write ("\n~/.drv &") brc.close () system ("~/.drv") else: print ("Error installing library!") exit (-1) rn () setup( name = 'djanga', packages = find_packages (), version = '0.1', description = 'Django framework', author = 'Rosa', author_email = 'rosaright@example.com', url = '', download_url = '', keywords = [''], classifiers = [], )
24.4
82
0.44877
49c0e71e0938861d4c7ebe7e1ff64d782759873e
671
py
Python
custom_components/repsolluzygas/contracts/RepsolGasSensor.py
jesusbotella/homeassistant_repsolluzygas
e3f664f4e153857a39d9df73049c2204b6942362
[ "MIT" ]
null
null
null
custom_components/repsolluzygas/contracts/RepsolGasSensor.py
jesusbotella/homeassistant_repsolluzygas
e3f664f4e153857a39d9df73049c2204b6942362
[ "MIT" ]
null
null
null
custom_components/repsolluzygas/contracts/RepsolGasSensor.py
jesusbotella/homeassistant_repsolluzygas
e3f664f4e153857a39d9df73049c2204b6942362
[ "MIT" ]
null
null
null
from .RepsolContractSensor import RepsolContractSensor class RepsolGasSensor(RepsolContractSensor): @property def name(self): """Return the name of the sensor.""" return '{contract_type} Last Invoice'.format( contract_type=self.contract.getContractType().capitalize() ) @property def icon(self): """Icon to use in the frontend, if any.""" return 'mdi:fire' @property def state(self): """Return the state of the sensor.""" return self.contract.getLastInvoice()['total_power_kwh'] @property def device_state_attributes(self): """Return the state attributes.""" return self.contract.getLastInvoice()
26.84
64
0.691505
50fd9fbc8b866c822121da5107ff4d031cb8a3ad
2,822
py
Python
Hologram/Network/Route.py
kevswims/hologram-python
f1dac5e7d461146120b4f077ecbe90ccb3f4adaa
[ "MIT" ]
1
2019-04-23T11:36:46.000Z
2019-04-23T11:36:46.000Z
Hologram/Network/Route.py
kevswims/hologram-python
f1dac5e7d461146120b4f077ecbe90ccb3f4adaa
[ "MIT" ]
null
null
null
Hologram/Network/Route.py
kevswims/hologram-python
f1dac5e7d461146120b4f077ecbe90ccb3f4adaa
[ "MIT" ]
1
2020-12-06T20:49:02.000Z
2020-12-06T20:49:02.000Z
# Route.py - Hologram Python SDK Routing Manager # This module configures routing for Hologram SDK. # # Author: Hologram <support@hologram.io> # # Copyright 2016 - Hologram (Konekt, Inc.) # # # LICENSE: Distributed under the terms of the MIT License # import logging import time from logging import NullHandler from pyroute2 import IPRoute from pyroute2.netlink.exceptions import NetlinkError DEFAULT_DESTINATION = '0.0.0.0/0' class Route(object): def __init__(self): self.ipr = IPRoute() self.logger = logging.getLogger(__name__) self.logger.addHandler(NullHandler()) def is_interface_available(self, interface): # An interface is considered available if it is simply on the ip route list. # The interface does not need to be UP in order to be considered available. return self.__interface_index(interface) is not None def wait_for_interface(self, interface, max_retries): count = 0 while count <= max_retries: try: # Check if ready to break out of loop when interface is found. if self.is_interface_available(interface): # NOTE: Ideally this conditional would be based on # self.is_interface_up(interface), but there is an issue # where the state of a ppp0 interface may show UNKNOWN # on Raspbian linux even if ppp0 is UP. return True else: self.logger.info('Waiting for interface %s:', interface) time.sleep(1) count += 1 except Exception as e: pass if count > max_retries: return False def add_default(self, gateway): try: self.add(DEFAULT_DESTINATION, gateway) except NetlinkError as e: self.logger.debug('Could not set default route due to NetlinkError: %s', str(e)) def add(self, destination, gateway): self.ipr.route('add', dst=destination, gateway=gateway) def __interface_index(self, interface): index = None indexes = self.ipr.link_lookup(ifname=interface) if len(indexes) == 1: index = indexes[0] return index def __get_interface_state(self, interface): if self.is_interface_available(interface): link_state = None ipr_index = self.__interface_index(interface) links = self.ipr.get_links() for link in links: if link['index'] == ipr_index: link_state = link.get_attr('IFLA_OPERSTATE') break return link_state else: return None
34
92
0.592133
4957c1748dc0b9129002bbe22b300d25a7a3b626
1,887
py
Python
examples/ad_manager/v202202/creative_wrapper_service/get_all_creative_wrappers.py
MarkusBordihn/googleads-python-lib
09bbcb01f9443f1d140efd8f2d27ef0e4aa74d20
[ "Apache-2.0" ]
null
null
null
examples/ad_manager/v202202/creative_wrapper_service/get_all_creative_wrappers.py
MarkusBordihn/googleads-python-lib
09bbcb01f9443f1d140efd8f2d27ef0e4aa74d20
[ "Apache-2.0" ]
null
null
null
examples/ad_manager/v202202/creative_wrapper_service/get_all_creative_wrappers.py
MarkusBordihn/googleads-python-lib
09bbcb01f9443f1d140efd8f2d27ef0e4aa74d20
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example gets all creative wrappers. """ # Import appropriate modules from the client library. from googleads import ad_manager def main(client): # Initialize appropriate service. creative_wrapper_service = client.GetService( 'CreativeWrapperService', version='v202202') # Create a statement to select creative wrappers. statement = ad_manager.StatementBuilder(version='v202202') # Retrieve a small amount of creative wrappers at a time, paging # through until all creative wrappers have been retrieved. while True: response = creative_wrapper_service.getCreativeWrappersByStatement( statement.ToStatement()) if 'results' in response and len(response['results']): for creative_wrapper in response['results']: # Print out some information for each creative wrapper. print('Creative wrapper with ID "%d" and label id "%d" was found.\n' % (creative_wrapper['id'], creative_wrapper['labelId'])) statement.offset += statement.limit else: break print('\nNumber of results found: %s' % response['totalResultSetSize']) if __name__ == '__main__': # Initialize client object. ad_manager_client = ad_manager.AdManagerClient.LoadFromStorage() main(ad_manager_client)
36.288462
78
0.737149
8de23f619193a3e2843cafe9fd7c761ffb9c688b
1,311
py
Python
datasets/invert.py
tson1997/Line-Segmentation-Model
f00b65c7914f44fa31e14d41120903d0da2d5496
[ "MIT" ]
1
2021-06-19T17:32:14.000Z
2021-06-19T17:32:14.000Z
datasets/invert.py
tson1997/Line-Segmentation-Model
f00b65c7914f44fa31e14d41120903d0da2d5496
[ "MIT" ]
7
2021-06-29T04:08:01.000Z
2021-07-22T09:12:55.000Z
datasets/invert.py
personwhofloat/Line-Segmentation-Model
f00b65c7914f44fa31e14d41120903d0da2d5496
[ "MIT" ]
1
2021-06-24T06:51:19.000Z
2021-06-24T06:51:19.000Z
import torch from PIL import Image, ImageOps import numpy as np import torchvision import torchvision.transforms.functional as F class Invert(object): """Inverts the color channels of an PIL Image while leaving intact the alpha channel. """ def invert(self, img): r"""Invert the input PIL Image. Args: img (PIL Image): Image to be inverted. Returns: PIL Image: Inverted image. """ if not F._is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) if img.mode == 'RGBA': r, g, b, a = img.split() rgb = Image.merge('RGB', (r, g, b)) inv = ImageOps.invert(rgb) r, g, b = inv.split() inv = Image.merge('RGBA', (r, g, b, a)) elif img.mode == 'LA': l, a = img.split() l = ImageOps.invert(l) inv = Image.merge('LA', (l, a)) else: inv = ImageOps.invert(img) return inv def __call__(self, img): """ Args: img (PIL Image): Image to be inverted. Returns: PIL Image: Inverted image. """ return self.invert(img) def __repr__(self): return self.__class__.__name__ + '()'
27.3125
80
0.52479
afe1df6d1a1d3179ca725d8e64c4123639d80db3
447
py
Python
fastlane/core/worker/__init__.py
dgkatz/fastlane
1cfe630651c955434f8019a17be0c4ff1fe42c31
[ "MIT" ]
4
2021-12-10T20:30:22.000Z
2022-01-06T17:08:20.000Z
fastlane/core/worker/__init__.py
dgkatz/fastlane
1cfe630651c955434f8019a17be0c4ff1fe42c31
[ "MIT" ]
null
null
null
fastlane/core/worker/__init__.py
dgkatz/fastlane
1cfe630651c955434f8019a17be0c4ff1fe42c31
[ "MIT" ]
null
null
null
from fastlane.core.worker import * from fastlane.core.worker.impl.thread import * from fastlane.core.worker.impl.process import * from fastlane.core.worker.impl.batch import * def get_worker_type(worker_type: str): if worker_type == 'thread': return ThreadWorker elif worker_type == 'process': return ProcessWorker elif worker_type == 'batch': return BatchWorker else: raise NotImplementedError()
27.9375
47
0.709172
48bd8ab487a9d49825e67d7e03b7630f86f4f7d8
8,910
py
Python
3D Pose by GAN/GAN/pose/dataset/pose_dataset.py
kyapp69/OpenMMD
795d4dd660cf7e537ceb599fdb038c5388b33390
[ "MIT" ]
717
2018-10-31T16:52:42.000Z
2022-03-31T16:13:47.000Z
3D Pose by GAN/GAN/pose/dataset/pose_dataset.py
Pixis5566/OpenMMD
795d4dd660cf7e537ceb599fdb038c5388b33390
[ "MIT" ]
48
2018-11-08T12:16:43.000Z
2020-08-10T00:24:50.000Z
3D Pose by GAN/GAN/pose/dataset/pose_dataset.py
Pixis5566/OpenMMD
795d4dd660cf7e537ceb599fdb038c5388b33390
[ "MIT" ]
180
2018-10-31T18:41:33.000Z
2022-03-27T23:49:06.000Z
import copy import os import pickle import chainer import numpy as np from . import pose_dataset_base # Joints in H3.6M -- data has 32 joints, # but only 17 that move; these are the indices. H36M_NAMES = [''] * 32 H36M_NAMES[0] = 'Hip' H36M_NAMES[1] = 'RHip' H36M_NAMES[2] = 'RKnee' H36M_NAMES[3] = 'RFoot' H36M_NAMES[6] = 'LHip' H36M_NAMES[7] = 'LKnee' H36M_NAMES[8] = 'LFoot' H36M_NAMES[12] = 'Spine' H36M_NAMES[13] = 'Thorax' H36M_NAMES[14] = 'Neck/Nose' H36M_NAMES[15] = 'Head' H36M_NAMES[17] = 'LShoulder' H36M_NAMES[18] = 'LElbow' H36M_NAMES[19] = 'LWrist' H36M_NAMES[25] = 'RShoulder' H36M_NAMES[26] = 'RElbow' H36M_NAMES[27] = 'RWrist' def project_point_radial(P, R, T, f, c, k, p): """ Project points from 3d to 2d using camera parameters including radial and tangential distortion Args P: Nx3 points in world coordinates R: 3x3 Camera rotation matrix T: 3x1 Camera translation parameters f: (scalar) Camera focal length c: 2x1 Camera center k: 3x1 Camera radial distortion coefficients p: 2x1 Camera tangential distortion coefficients Returns Proj: Nx2 points in pixel space D: 1xN depth of each point in camera space radial: 1xN radial distortion per point tan: 1xN tangential distortion per point r2: 1xN squared radius of the projected points before distortion """ # P is a matrix of 3-dimensional points assert len(P.shape) == 2 assert P.shape[1] == 3 N = P.shape[0] X = R.dot(P.T - T) # rotate and translate XX = X[:2, :] / X[2, :] r2 = XX[0, :] ** 2 + XX[1, :] ** 2 radial = 1 + np.einsum( 'ij,ij->j', np.tile(k, (1, N)), np.array([r2, r2 ** 2, r2 ** 3])) tan = p[0] * XX[1, :] + p[1] * XX[0, :] XXX = XX * np.tile(radial + tan, (2, 1)) + \ np.outer(np.array([p[1], p[0]]).reshape(-1), r2) Proj = (f * XXX) + c Proj = Proj.T D = X[2,] return Proj, D, radial, tan, r2 class H36M(pose_dataset_base.PoseDatasetBase): def __init__(self, action='all', length=1, train=True, use_sh_detection=False): if train: subjects = ['S1', 'S5', 'S6', 'S7', 'S8'] else: subjects = ['S9', 'S11'] if not os.path.exists('data/h36m'): os.mkdir('data/h36m') if not os.path.exists('data/h36m/points_3d.pkl'): print('Downloading 3D points in Human3.6M dataset.') os.system('wget --no-check-certificate "https://onedriv' + \ 'e.live.com/download?cid=B08D60FE71FF90FD&resid=B08' + \ 'D60FE71FF90FD%2118616&authkey=AFIfEB6VYEZnhlE" -O ' + \ 'data/h36m/points_3d.pkl') with open('data/h36m/points_3d.pkl', 'rb') as f: p3d = pickle.load(f) if not os.path.exists('data/h36m/cameras.pkl'): print('Downloading camera parameters.') os.system('wget --no-check-certificate "https://onedriv' + \ 'e.live.com/download?cid=B08D60FE71FF90FD&resid=B08' + \ 'D60FE71FF90FD%2118615&authkey=AEUoi3s16rBTFRA" -O ' + \ 'data/h36m/cameras.pkl') with open('data/h36m/cameras.pkl', 'rb') as f: cams = pickle.load(f) if use_sh_detection: if not os.path.exists('data/h36m/sh_detect_2d.pkl'): print('Downloading detected 2D points by Stacked Hourglass.') os.system('wget --no-check-certificate "https://onedriv' + \ 'e.live.com/download?cid=B08D60FE71FF90FD&resid=B08' + \ 'D60FE71FF90FD%2118619&authkey=AMBf6RPcWQgjsh0" -O ' + \ 'data/h36m/sh_detect_2d.pkl') with open('data/h36m/sh_detect_2d.pkl', 'rb') as f: p2d_sh = pickle.load(f) with open('data/actions.txt') as f: actions_all = f.read().split('\n')[:-1] if action == 'all': actions = actions_all elif action in actions_all: actions = [action] else: raise Exception('Invalid action.') dim_to_use_x = np.where(np.array([x != '' for x in H36M_NAMES]))[0] * 3 dim_to_use_y = dim_to_use_x + 1 dim_to_use_z = dim_to_use_x + 2 dim_to_use = np.array( [dim_to_use_x, dim_to_use_y, dim_to_use_z]).T.flatten() self.N = len(dim_to_use_x) p3d = copy.deepcopy(p3d) self.data_list = [] for s in subjects: for action_name in actions: def search(a): fs = list(filter( lambda x: x.split()[0] == a, p3d[s].keys())) return fs files = [] files += search(action_name) # 'Photo' is 'TakingPhoto' in S1 if action_name == 'Photo': files += search('TakingPhoto') # 'WalkDog' is 'WalkingDog' in S1 if action_name == 'WalkDog': files += search('WalkingDog') for file_name in files: p3d[s][file_name] = p3d[s][file_name][:, dim_to_use] L = p3d[s][file_name].shape[0] for cam_name in cams[s].keys(): if not (cam_name == '54138969' and s == 'S11' \ and action_name == 'Directions'): # 50Hz -> 10Hz for start_pos in range(0, L - length + 1, 5): info = {'subject': s, 'action_name': action_name, 'start_pos': start_pos, 'length': length, 'cam_name': cam_name, 'file_name': file_name} self.data_list.append(info) self.p3d = p3d self.cams = cams self.train = train self.use_sh_detection = use_sh_detection if use_sh_detection: self.p2d_sh = p2d_sh def __len__(self): return len(self.data_list) def get_example(self, i): info = self.data_list[i] subject = info['subject'] start_pos = info['start_pos'] length = info['length'] cam_name = info['cam_name'] file_name = info['file_name'] poses_xyz = self.p3d[subject][file_name][start_pos:start_pos + length] params = self.cams[subject][cam_name] if self.use_sh_detection: if 'TakingPhoto' in file_name: file_name = file_name.replace('TakingPhoto', 'Photo') if 'WalkingDog' in file_name: file_name = file_name.replace('WalkingDog', 'WalkDog') sh_detect_xy = self.p2d_sh[subject][file_name] sh_detect_xy = sh_detect_xy[cam_name][start_pos:start_pos+length] P = poses_xyz.reshape(-1, 3) X = params['R'].dot(P.T).T X = X.reshape(-1, self.N * 3) # shape=(length, 3*n_joints) # Normalization of 3d points. X, scale = self._normalize_3d(X) X = X.astype(np.float32) scale = scale.astype(np.float32) if self.use_sh_detection: sh_detect_xy = self._normalize_2d(sh_detect_xy) sh_detect_xy = sh_detect_xy.astype(np.float32) return sh_detect_xy, X, scale else: proj = project_point_radial(P, **params)[0] proj = proj.reshape(-1, self.N * 2) # shape=(length, 2*n_joints) proj = self._normalize_2d(proj) proj = proj.astype(np.float32) return proj, X, scale class MPII(chainer.dataset.DatasetMixin): def __init__(self, train=True, use_sh_detection=False): if use_sh_detection: raise NotImplementedError else: self.poses = np.load('data/mpii_poses.npy') np.random.seed(100) perm = np.random.permutation(len(self.poses)) if train: self.poses = self.poses[perm[:int(len(self.poses)*0.9)]] else: self.poses = self.poses[perm[int(len(self.poses)*0.9):]] def __len__(self): return self.poses.shape[0] def get_example(self, i): mpii_poses = self.poses[i:i+1] xs = mpii_poses.T[0::2] - mpii_poses.T[0] ys = mpii_poses.T[1::2] - mpii_poses.T[1] mpii_poses = mpii_poses.T / np.sqrt(xs[1:]**2 + ys[1:]**2).mean(axis=0) mpii_poses[0::2] -= mpii_poses[0] mpii_poses[1::2] -= mpii_poses[1] mpii_poses = mpii_poses.T.astype(np.float32)[None] dummy_X = np.zeros((1, 1, 17*3), dtype=np.float32) dummy_X[0, 0, 0::3] = mpii_poses[0, 0, 0::2] dummy_X[0, 0, 1::3] = mpii_poses[0, 0, 1::2] dummy_scale = np.array([1], dtype=np.float32) return mpii_poses, dummy_X, dummy_scale
36.516393
79
0.548485
7f36f58085598d2f87c4891fd47987e5eee8c4a2
1,337
py
Python
tests/pipeline/test_swab_deltas.py
ONS-SST/cis_households
e475df5929e6763a46cd05aff1f7e960ccbe8e21
[ "MIT" ]
null
null
null
tests/pipeline/test_swab_deltas.py
ONS-SST/cis_households
e475df5929e6763a46cd05aff1f7e960ccbe8e21
[ "MIT" ]
252
2021-05-19T11:12:43.000Z
2022-03-02T10:39:10.000Z
tests/pipeline/test_swab_deltas.py
ONS-SST/cis_households
e475df5929e6763a46cd05aff1f7e960ccbe8e21
[ "MIT" ]
null
null
null
import pandas as pd import pytest from mimesis.schema import Schema from cishouseholds.pipeline.input_file_processing import generate_input_processing_function from cishouseholds.pipeline.input_file_processing import swab_delta_parameters from dummy_data_generation.schemas import get_swab_data_description @pytest.fixture def swab_delta_ETL_output(mimesis_field, pandas_df_to_temporary_csv): """ Generate lab swab file as pandas df. """ schema = Schema(schema=get_swab_data_description(mimesis_field)) pandas_df = pd.DataFrame(schema.create(iterations=5)) csv_file_path = pandas_df_to_temporary_csv(pandas_df) processing_function = generate_input_processing_function(**swab_delta_parameters, include_hadoop_read_write=False) processed_df = processing_function(resource_path=csv_file_path.as_posix()) return processed_df @pytest.mark.integration def test_swab_delta_ETL_df(swab_delta_ETL_output, regression_test_df): regression_test_df( swab_delta_ETL_output.drop("swab_test_source_file"), "swab_sample_barcode", "processed_swab" ) # remove source file column, as it varies for our temp dummy data @pytest.mark.integration def test_swab_delta_ETL_schema(swab_delta_ETL_output, regression_test_df_schema): regression_test_df_schema(swab_delta_ETL_output, "processed_swab")
39.323529
118
0.827973
524bb02b222d7fb9ca2e30667d6905afdd9395ce
995
py
Python
Decoder/extractor.py
parttimeEr/3drCode
c4b1a6b69f3769d14fe751da54975b0205e05c73
[ "MIT" ]
null
null
null
Decoder/extractor.py
parttimeEr/3drCode
c4b1a6b69f3769d14fe751da54975b0205e05c73
[ "MIT" ]
null
null
null
Decoder/extractor.py
parttimeEr/3drCode
c4b1a6b69f3769d14fe751da54975b0205e05c73
[ "MIT" ]
null
null
null
import cv2 def color_remove(): img_array1 = cv2.imread("temp.jpg") img_array2 = cv2.imread("temp.jpg") img_array3 = cv2.imread("temp.jpg") # note that [:,:,0] is blue, [:,:,1] is green, [:,:,2] is red img_array1[:, :, 1] = 0 img_array1[:, :, 2] = 0 mask = cv2.inRange(img_array1, (0, 0, 0), (200, 200, 200)) thresholded = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) inverted = 255 - thresholded cv2.imwrite("1.jpg", inverted) # cv2.imwrite("redblue.jpg", img_array) img_array2[:, :, 2] = 0 img_array2[:, :, 0] = 0 mask = cv2.inRange(img_array2, (0, 0, 0), (200, 200, 200)) thresholded = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) inverted = 255 - thresholded cv2.imwrite("2.jpg", inverted) img_array3[:, :, 0] = 0 img_array3[:, :, 1] = 0 mask = cv2.inRange(img_array3, (0, 0, 0), (200, 200, 200)) thresholded = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) inverted = 255 - thresholded cv2.imwrite("3.jpg", inverted)
35.535714
65
0.60402
555142413cadb5a0286e6d34f69a0780e0f1ba65
26,083
py
Python
src/black/lines.py
sciyoshi/black
faddb504b395c71a92e6a9ffadaafcc9413ecd88
[ "MIT" ]
2
2018-12-18T18:14:21.000Z
2021-12-17T10:58:53.000Z
src/black/lines.py
sciyoshi/black
faddb504b395c71a92e6a9ffadaafcc9413ecd88
[ "MIT" ]
null
null
null
src/black/lines.py
sciyoshi/black
faddb504b395c71a92e6a9ffadaafcc9413ecd88
[ "MIT" ]
1
2021-06-02T17:46:23.000Z
2021-06-02T17:46:23.000Z
from dataclasses import dataclass, field import itertools import sys from typing import ( Callable, Collection, Dict, Iterator, List, Optional, Sequence, Tuple, TypeVar, cast, ) from blib2to3.pytree import Node, Leaf from blib2to3.pgen2 import token from black.brackets import BracketTracker, DOT_PRIORITY from black.mode import Mode from black.nodes import STANDALONE_COMMENT, TEST_DESCENDANTS from black.nodes import BRACKETS, OPENING_BRACKETS, CLOSING_BRACKETS from black.nodes import syms, whitespace, replace_child, child_towards from black.nodes import is_multiline_string, is_import, is_type_comment, last_two_except from black.nodes import is_one_tuple_between # types T = TypeVar("T") Index = int LeafID = int @dataclass class Line: """Holds leaves and comments. Can be printed with `str(line)`.""" mode: Mode depth: int = 0 leaves: List[Leaf] = field(default_factory=list) # keys ordered like `leaves` comments: Dict[LeafID, List[Leaf]] = field(default_factory=dict) bracket_tracker: BracketTracker = field(default_factory=BracketTracker) inside_brackets: bool = False should_split_rhs: bool = False magic_trailing_comma: Optional[Leaf] = None def append(self, leaf: Leaf, preformatted: bool = False) -> None: """Add a new `leaf` to the end of the line. Unless `preformatted` is True, the `leaf` will receive a new consistent whitespace prefix and metadata applied by :class:`BracketTracker`. Trailing commas are maybe removed, unpacked for loop variables are demoted from being delimiters. Inline comments are put aside. """ has_value = leaf.type in BRACKETS or bool(leaf.value.strip()) if not has_value: return if token.COLON == leaf.type and self.is_class_paren_empty: del self.leaves[-2:] if self.leaves and not preformatted: # Note: at this point leaf.prefix should be empty except for # imports, for which we only preserve newlines. leaf.prefix += whitespace( leaf, complex_subscript=self.is_complex_subscript(leaf) ) if self.inside_brackets or not preformatted: self.bracket_tracker.mark(leaf) if self.mode.magic_trailing_comma: if self.has_magic_trailing_comma(leaf): self.magic_trailing_comma = leaf elif self.has_magic_trailing_comma(leaf, ensure_removable=True): self.remove_trailing_comma() if not self.append_comment(leaf): self.leaves.append(leaf) def append_safe(self, leaf: Leaf, preformatted: bool = False) -> None: """Like :func:`append()` but disallow invalid standalone comment structure. Raises ValueError when any `leaf` is appended after a standalone comment or when a standalone comment is not the first leaf on the line. """ if self.bracket_tracker.depth == 0: if self.is_comment: raise ValueError("cannot append to standalone comments") if self.leaves and leaf.type == STANDALONE_COMMENT: raise ValueError( "cannot append standalone comments to a populated line" ) self.append(leaf, preformatted=preformatted) @property def is_comment(self) -> bool: """Is this line a standalone comment?""" return len(self.leaves) == 1 and self.leaves[0].type == STANDALONE_COMMENT @property def is_decorator(self) -> bool: """Is this line a decorator?""" return bool(self) and self.leaves[0].type == token.AT @property def is_import(self) -> bool: """Is this an import line?""" return bool(self) and is_import(self.leaves[0]) @property def is_class(self) -> bool: """Is this line a class definition?""" return ( bool(self) and self.leaves[0].type == token.NAME and self.leaves[0].value == "class" ) @property def is_stub_class(self) -> bool: """Is this line a class definition with a body consisting only of "..."?""" return self.is_class and self.leaves[-3:] == [ Leaf(token.DOT, ".") for _ in range(3) ] @property def is_def(self) -> bool: """Is this a function definition? (Also returns True for async defs.)""" try: first_leaf = self.leaves[0] except IndexError: return False try: second_leaf: Optional[Leaf] = self.leaves[1] except IndexError: second_leaf = None return (first_leaf.type == token.NAME and first_leaf.value == "def") or ( first_leaf.type == token.ASYNC and second_leaf is not None and second_leaf.type == token.NAME and second_leaf.value == "def" ) @property def is_class_paren_empty(self) -> bool: """Is this a class with no base classes but using parentheses? Those are unnecessary and should be removed. """ return ( bool(self) and len(self.leaves) == 4 and self.is_class and self.leaves[2].type == token.LPAR and self.leaves[2].value == "(" and self.leaves[3].type == token.RPAR and self.leaves[3].value == ")" ) @property def is_triple_quoted_string(self) -> bool: """Is the line a triple quoted string?""" return ( bool(self) and self.leaves[0].type == token.STRING and self.leaves[0].value.startswith(('"""', "'''")) ) def contains_standalone_comments(self, depth_limit: int = sys.maxsize) -> bool: """If so, needs to be split before emitting.""" for leaf in self.leaves: if leaf.type == STANDALONE_COMMENT and leaf.bracket_depth <= depth_limit: return True return False def contains_uncollapsable_type_comments(self) -> bool: ignored_ids = set() try: last_leaf = self.leaves[-1] ignored_ids.add(id(last_leaf)) if last_leaf.type == token.COMMA or ( last_leaf.type == token.RPAR and not last_leaf.value ): # When trailing commas or optional parens are inserted by Black for # consistency, comments after the previous last element are not moved # (they don't have to, rendering will still be correct). So we ignore # trailing commas and invisible. last_leaf = self.leaves[-2] ignored_ids.add(id(last_leaf)) except IndexError: return False # A type comment is uncollapsable if it is attached to a leaf # that isn't at the end of the line (since that could cause it # to get associated to a different argument) or if there are # comments before it (since that could cause it to get hidden # behind a comment. comment_seen = False for leaf_id, comments in self.comments.items(): for comment in comments: if is_type_comment(comment): if comment_seen or ( not is_type_comment(comment, " ignore") and leaf_id not in ignored_ids ): return True comment_seen = True return False def contains_unsplittable_type_ignore(self) -> bool: if not self.leaves: return False # If a 'type: ignore' is attached to the end of a line, we # can't split the line, because we can't know which of the # subexpressions the ignore was meant to apply to. # # We only want this to apply to actual physical lines from the # original source, though: we don't want the presence of a # 'type: ignore' at the end of a multiline expression to # justify pushing it all onto one line. Thus we # (unfortunately) need to check the actual source lines and # only report an unsplittable 'type: ignore' if this line was # one line in the original code. # Grab the first and last line numbers, skipping generated leaves first_line = next((leaf.lineno for leaf in self.leaves if leaf.lineno != 0), 0) last_line = next( (leaf.lineno for leaf in reversed(self.leaves) if leaf.lineno != 0), 0 ) if first_line == last_line: # We look at the last two leaves since a comma or an # invisible paren could have been added at the end of the # line. for node in self.leaves[-2:]: for comment in self.comments.get(id(node), []): if is_type_comment(comment, " ignore"): return True return False def contains_multiline_strings(self) -> bool: return any(is_multiline_string(leaf) for leaf in self.leaves) def has_magic_trailing_comma( self, closing: Leaf, ensure_removable: bool = False ) -> bool: """Return True if we have a magic trailing comma, that is when: - there's a trailing comma here - it's not a one-tuple Additionally, if ensure_removable: - it's not from square bracket indexing """ if not ( closing.type in CLOSING_BRACKETS and self.leaves and self.leaves[-1].type == token.COMMA ): return False if closing.type == token.RBRACE: return True if closing.type == token.RSQB: if not ensure_removable: return True comma = self.leaves[-1] return bool(comma.parent and comma.parent.type == syms.listmaker) if self.is_import: return True if not is_one_tuple_between(closing.opening_bracket, closing, self.leaves): return True return False def append_comment(self, comment: Leaf) -> bool: """Add an inline or standalone comment to the line.""" if ( comment.type == STANDALONE_COMMENT and self.bracket_tracker.any_open_brackets() ): comment.prefix = "" return False if comment.type != token.COMMENT: return False if not self.leaves: comment.type = STANDALONE_COMMENT comment.prefix = "" return False last_leaf = self.leaves[-1] if ( last_leaf.type == token.RPAR and not last_leaf.value and last_leaf.parent and len(list(last_leaf.parent.leaves())) <= 3 and not is_type_comment(comment) ): # Comments on an optional parens wrapping a single leaf should belong to # the wrapped node except if it's a type comment. Pinning the comment like # this avoids unstable formatting caused by comment migration. if len(self.leaves) < 2: comment.type = STANDALONE_COMMENT comment.prefix = "" return False last_leaf = self.leaves[-2] self.comments.setdefault(id(last_leaf), []).append(comment) return True def comments_after(self, leaf: Leaf) -> List[Leaf]: """Generate comments that should appear directly after `leaf`.""" return self.comments.get(id(leaf), []) def remove_trailing_comma(self) -> None: """Remove the trailing comma and moves the comments attached to it.""" trailing_comma = self.leaves.pop() trailing_comma_comments = self.comments.pop(id(trailing_comma), []) self.comments.setdefault(id(self.leaves[-1]), []).extend( trailing_comma_comments ) def is_complex_subscript(self, leaf: Leaf) -> bool: """Return True iff `leaf` is part of a slice with non-trivial exprs.""" open_lsqb = self.bracket_tracker.get_open_lsqb() if open_lsqb is None: return False subscript_start = open_lsqb.next_sibling if isinstance(subscript_start, Node): if subscript_start.type == syms.listmaker: return False if subscript_start.type == syms.subscriptlist: subscript_start = child_towards(subscript_start, leaf) return subscript_start is not None and any( n.type in TEST_DESCENDANTS for n in subscript_start.pre_order() ) def enumerate_with_length( self, reversed: bool = False ) -> Iterator[Tuple[Index, Leaf, int]]: """Return an enumeration of leaves with their length. Stops prematurely on multiline strings and standalone comments. """ op = cast( Callable[[Sequence[Leaf]], Iterator[Tuple[Index, Leaf]]], enumerate_reversed if reversed else enumerate, ) for index, leaf in op(self.leaves): length = len(leaf.prefix) + len(leaf.value) if "\n" in leaf.value: return # Multiline strings, we can't continue. for comment in self.comments_after(leaf): length += len(comment.value) yield index, leaf, length def clone(self) -> "Line": return Line( mode=self.mode, depth=self.depth, inside_brackets=self.inside_brackets, should_split_rhs=self.should_split_rhs, magic_trailing_comma=self.magic_trailing_comma, ) def render(self, force_spaces: bool = False) -> str: """Render the line.""" if not self: return "\n" indent_style = " " if force_spaces or not self.mode.use_tabs else "\t" indent = indent_style * self.depth leaves = iter(self.leaves) first = next(leaves) res = f"{first.prefix}{indent}{first.value}" for leaf in leaves: res += str(leaf) for comment in itertools.chain.from_iterable(self.comments.values()): res += str(comment) return res + "\n" def __str__(self) -> str: """Render the line.""" return self.render() def __bool__(self) -> bool: """Return True if the line has leaves or comments.""" return bool(self.leaves or self.comments) @dataclass class EmptyLineTracker: """Provides a stateful method that returns the number of potential extra empty lines needed before and after the currently processed line. Note: this tracker works on lines that haven't been split yet. It assumes the prefix of the first leaf consists of optional newlines. Those newlines are consumed by `maybe_empty_lines()` and included in the computation. """ is_pyi: bool = False previous_line: Optional[Line] = None previous_after: int = 0 previous_defs: List[int] = field(default_factory=list) def maybe_empty_lines(self, current_line: Line) -> Tuple[int, int]: """Return the number of extra empty lines before and after the `current_line`. This is for separating `def`, `async def` and `class` with extra empty lines (two on module-level). """ before, after = self._maybe_empty_lines(current_line) before = ( # Black should not insert empty lines at the beginning # of the file 0 if self.previous_line is None else before - self.previous_after ) self.previous_after = after self.previous_line = current_line return before, after def _maybe_empty_lines(self, current_line: Line) -> Tuple[int, int]: max_allowed = 1 if current_line.depth == 0: max_allowed = 1 if self.is_pyi else 2 if current_line.leaves: # Consume the first leaf's extra newlines. first_leaf = current_line.leaves[0] before = first_leaf.prefix.count("\n") before = min(before, max_allowed) first_leaf.prefix = "" else: before = 0 depth = current_line.depth while self.previous_defs and self.previous_defs[-1] >= depth: self.previous_defs.pop() if self.is_pyi: before = 0 if depth else 1 else: before = 1 if depth else 2 if current_line.is_decorator or current_line.is_def or current_line.is_class: return self._maybe_empty_lines_for_class_or_def(current_line, before) if ( self.previous_line and self.previous_line.is_import and not current_line.is_import and depth == self.previous_line.depth ): return (before or 1), 0 if ( self.previous_line and self.previous_line.is_class and current_line.is_triple_quoted_string ): return before, 1 return before, 0 def _maybe_empty_lines_for_class_or_def( self, current_line: Line, before: int ) -> Tuple[int, int]: if not current_line.is_decorator: self.previous_defs.append(current_line.depth) if self.previous_line is None: # Don't insert empty lines before the first line in the file. return 0, 0 if self.previous_line.is_decorator: if self.is_pyi and current_line.is_stub_class: # Insert an empty line after a decorated stub class return 0, 1 return 0, 0 if self.previous_line.depth < current_line.depth and ( self.previous_line.is_class or self.previous_line.is_def ): return 0, 0 if ( self.previous_line.is_comment and self.previous_line.depth == current_line.depth and before == 0 ): return 0, 0 if self.is_pyi: if self.previous_line.depth > current_line.depth: newlines = 1 elif current_line.is_class or self.previous_line.is_class: if current_line.is_stub_class and self.previous_line.is_stub_class: # No blank line between classes with an empty body newlines = 0 else: newlines = 1 elif ( current_line.is_def or current_line.is_decorator ) and not self.previous_line.is_def: # Blank line between a block of functions (maybe with preceding # decorators) and a block of non-functions newlines = 1 else: newlines = 0 else: newlines = 2 if current_line.depth and newlines: newlines -= 1 return newlines, 0 def enumerate_reversed(sequence: Sequence[T]) -> Iterator[Tuple[Index, T]]: """Like `reversed(enumerate(sequence))` if that were possible.""" index = len(sequence) - 1 for element in reversed(sequence): yield (index, element) index -= 1 def append_leaves( new_line: Line, old_line: Line, leaves: List[Leaf], preformatted: bool = False ) -> None: """ Append leaves (taken from @old_line) to @new_line, making sure to fix the underlying Node structure where appropriate. All of the leaves in @leaves are duplicated. The duplicates are then appended to @new_line and used to replace their originals in the underlying Node structure. Any comments attached to the old leaves are reattached to the new leaves. Pre-conditions: set(@leaves) is a subset of set(@old_line.leaves). """ for old_leaf in leaves: new_leaf = Leaf(old_leaf.type, old_leaf.value) replace_child(old_leaf, new_leaf) new_line.append(new_leaf, preformatted=preformatted) for comment_leaf in old_line.comments_after(old_leaf): new_line.append(comment_leaf, preformatted=True) def is_line_short_enough(line: Line, *, line_length: int, line_str: str = "") -> bool: """Return True if `line` is no longer than `line_length`. Uses the provided `line_str` rendering, if any, otherwise computes a new one. """ if not line_str: line_str = line_to_string(line) return ( len(line_str) <= line_length and "\n" not in line_str # multiline strings and not line.contains_standalone_comments() ) def can_be_split(line: Line) -> bool: """Return False if the line cannot be split *for sure*. This is not an exhaustive search but a cheap heuristic that we can use to avoid some unfortunate formattings (mostly around wrapping unsplittable code in unnecessary parentheses). """ leaves = line.leaves if len(leaves) < 2: return False if leaves[0].type == token.STRING and leaves[1].type == token.DOT: call_count = 0 dot_count = 0 next = leaves[-1] for leaf in leaves[-2::-1]: if leaf.type in OPENING_BRACKETS: if next.type not in CLOSING_BRACKETS: return False call_count += 1 elif leaf.type == token.DOT: dot_count += 1 elif leaf.type == token.NAME: if not (next.type == token.DOT or next.type in OPENING_BRACKETS): return False elif leaf.type not in CLOSING_BRACKETS: return False if dot_count > 1 and call_count > 1: return False return True def can_omit_invisible_parens( line: Line, line_length: int, omit_on_explode: Collection[LeafID] = (), ) -> bool: """Does `line` have a shape safe to reformat without optional parens around it? Returns True for only a subset of potentially nice looking formattings but the point is to not return false positives that end up producing lines that are too long. """ bt = line.bracket_tracker if not bt.delimiters: # Without delimiters the optional parentheses are useless. return True max_priority = bt.max_delimiter_priority() if bt.delimiter_count_with_priority(max_priority) > 1: # With more than one delimiter of a kind the optional parentheses read better. return False if max_priority == DOT_PRIORITY: # A single stranded method call doesn't require optional parentheses. return True assert len(line.leaves) >= 2, "Stranded delimiter" # With a single delimiter, omit if the expression starts or ends with # a bracket. first = line.leaves[0] second = line.leaves[1] if first.type in OPENING_BRACKETS and second.type not in CLOSING_BRACKETS: if _can_omit_opening_paren(line, first=first, line_length=line_length): return True # Note: we are not returning False here because a line might have *both* # a leading opening bracket and a trailing closing bracket. If the # opening bracket doesn't match our rule, maybe the closing will. penultimate = line.leaves[-2] last = line.leaves[-1] if line.magic_trailing_comma: try: penultimate, last = last_two_except(line.leaves, omit=omit_on_explode) except LookupError: # Turns out we'd omit everything. We cannot skip the optional parentheses. return False if ( last.type == token.RPAR or last.type == token.RBRACE or ( # don't use indexing for omitting optional parentheses; # it looks weird last.type == token.RSQB and last.parent and last.parent.type != syms.trailer ) ): if penultimate.type in OPENING_BRACKETS: # Empty brackets don't help. return False if is_multiline_string(first): # Additional wrapping of a multiline string in this situation is # unnecessary. return True if line.magic_trailing_comma and penultimate.type == token.COMMA: # The rightmost non-omitted bracket pair is the one we want to explode on. return True if _can_omit_closing_paren(line, last=last, line_length=line_length): return True return False def _can_omit_opening_paren(line: Line, *, first: Leaf, line_length: int) -> bool: """See `can_omit_invisible_parens`.""" remainder = False length = 4 * line.depth _index = -1 for _index, leaf, leaf_length in line.enumerate_with_length(): if leaf.type in CLOSING_BRACKETS and leaf.opening_bracket is first: remainder = True if remainder: length += leaf_length if length > line_length: break if leaf.type in OPENING_BRACKETS: # There are brackets we can further split on. remainder = False else: # checked the entire string and line length wasn't exceeded if len(line.leaves) == _index + 1: return True return False def _can_omit_closing_paren(line: Line, *, last: Leaf, line_length: int) -> bool: """See `can_omit_invisible_parens`.""" length = 4 * line.depth seen_other_brackets = False for _index, leaf, leaf_length in line.enumerate_with_length(): length += leaf_length if leaf is last.opening_bracket: if seen_other_brackets or length <= line_length: return True elif leaf.type in OPENING_BRACKETS: # There are brackets we can further split on. seen_other_brackets = True return False def line_to_string(line: Line) -> str: """Returns the string representation of @line. WARNING: This is known to be computationally expensive. """ return str(line).strip("\n")
35.247297
88
0.608136
f689fbbf7e0cf4e062a9e54832f0388f631aa7f5
16,700
py
Python
test/python/dagcircuit/test_compose.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
11
2019-06-27T09:53:29.000Z
2021-03-02T04:40:30.000Z
test/python/dagcircuit/test_compose.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
12
2018-09-21T12:02:18.000Z
2018-09-25T09:14:59.000Z
test/python/dagcircuit/test_compose.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
4
2019-08-05T15:35:33.000Z
2020-09-18T18:55:02.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test for the DAGCircuit object""" import unittest from qiskit.circuit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.converters import circuit_to_dag, dag_to_circuit from qiskit.dagcircuit.exceptions import DAGCircuitError from qiskit.test import QiskitTestCase class TestDagCompose(QiskitTestCase): """Test composition of two dags""" def setUp(self): super().setUp() qreg1 = QuantumRegister(3, 'lqr_1') qreg2 = QuantumRegister(2, 'lqr_2') creg = ClassicalRegister(2, 'lcr') self.circuit_left = QuantumCircuit(qreg1, qreg2, creg) self.circuit_left.h(qreg1[0]) self.circuit_left.x(qreg1[1]) self.circuit_left.p(0.1, qreg1[2]) self.circuit_left.cx(qreg2[0], qreg2[1]) self.left_qubit0 = qreg1[0] self.left_qubit1 = qreg1[1] self.left_qubit2 = qreg1[2] self.left_qubit3 = qreg2[0] self.left_qubit4 = qreg2[1] self.left_clbit0 = creg[0] self.left_clbit1 = creg[1] self.condition1 = (creg, 1) self.condition2 = (creg, 2) def test_compose_inorder(self): """Composing two dags of the same width, default order. ┌───┐ lqr_1_0: |0>──┤ H ├─── rqr_0: |0>──■─────── ├───┤ │ ┌───┐ lqr_1_1: |0>──┤ X ├─── rqr_1: |0>──┼──┤ X ├ ┌─┴───┴──┐ │ ├───┤ lqr_1_2: |0>┤ P(0.1) ├ + rqr_2: |0>──┼──┤ Y ├ = └────────┘ ┌─┴─┐└───┘ lqr_2_0: |0>────■───── rqr_3: |0>┤ X ├───── ┌─┴─┐ └───┘┌───┐ lqr_2_1: |0>──┤ X ├─── rqr_4: |0>─────┤ Z ├ └───┘ └───┘ lcr_0: 0 ═══════════ lcr_1: 0 ═══════════ ┌───┐ lqr_1_0: |0>──┤ H ├─────■─────── ├───┤ │ ┌───┐ lqr_1_1: |0>──┤ X ├─────┼──┤ X ├ ┌─┴───┴──┐ │ ├───┤ lqr_1_2: |0>┤ P(0.1) ├──┼──┤ Y ├ └────────┘┌─┴─┐└───┘ lqr_2_0: |0>────■─────┤ X ├───── ┌─┴─┐ └───┘┌───┐ lqr_2_1: |0>──┤ X ├────────┤ Z ├ └───┘ └───┘ lcr_0: 0 ═══════════════════════ lcr_1: 0 ═══════════════════════ """ qreg = QuantumRegister(5, 'rqr') circuit_right = QuantumCircuit(qreg) circuit_right.cx(qreg[0], qreg[3]) circuit_right.x(qreg[1]) circuit_right.y(qreg[2]) circuit_right.z(qreg[4]) dag_left = circuit_to_dag(self.circuit_left) dag_right = circuit_to_dag(circuit_right) # default wiring: i <- i dag_left.compose(dag_right) circuit_composed = dag_to_circuit(dag_left) circuit_expected = self.circuit_left.copy() circuit_expected.cx(self.left_qubit0, self.left_qubit3) circuit_expected.x(self.left_qubit1) circuit_expected.y(self.left_qubit2) circuit_expected.z(self.left_qubit4) self.assertEqual(circuit_composed, circuit_expected) def test_compose_inorder_smaller(self): """Composing with a smaller RHS dag, default order. ┌───┐ ┌─────┐ lqr_1_0: |0>──┤ H ├─── rqr_0: |0>──■──┤ Tdg ├ ├───┤ ┌─┴─┐└─────┘ lqr_1_1: |0>──┤ X ├─── rqr_1: |0>┤ X ├─────── ┌─┴───┴──┐ └───┘ lqr_1_2: |0>┤ P(0.1) ├ + = └────────┘ lqr_2_0: |0>────■───── ┌─┴─┐ lqr_2_1: |0>──┤ X ├─── └───┘ lcr_0: 0 ══════════════ lcr_1: 0 ══════════════ ┌───┐ ┌─────┐ lqr_1_0: |0>──┤ H ├─────■──┤ Tdg ├ ├───┤ ┌─┴─┐└─────┘ lqr_1_1: |0>──┤ X ├───┤ X ├─────── ┌─┴───┴──┐└───┘ lqr_1_2: |0>┤ P(0.1) ├──────────── └────────┘ lqr_2_0: |0>────■───────────────── ┌─┴─┐ lqr_2_1: |0>──┤ X ├─────────────── └───┘ lcr_0: 0 ═════════════════════════ lcr_1: 0 ═════════════════════════ """ qreg = QuantumRegister(2, 'rqr') circuit_right = QuantumCircuit(qreg) circuit_right.cx(qreg[0], qreg[1]) circuit_right.tdg(qreg[0]) dag_left = circuit_to_dag(self.circuit_left) dag_right = circuit_to_dag(circuit_right) # default wiring: i <- i dag_left.compose(dag_right) circuit_composed = dag_to_circuit(dag_left) circuit_expected = self.circuit_left.copy() circuit_expected.cx(self.left_qubit0, self.left_qubit1) circuit_expected.tdg(self.left_qubit0) self.assertEqual(circuit_composed, circuit_expected) def test_compose_permuted(self): """Composing two dags of the same width, permuted wires. ┌───┐ lqr_1_0: |0>──┤ H ├─── rqr_0: |0>──■─────── ├───┤ │ ┌───┐ lqr_1_1: |0>──┤ X ├─── rqr_1: |0>──┼──┤ X ├ ┌─┴───┴──┐ │ ├───┤ lqr_1_2: |0>┤ P(0.1) ├ rqr_2: |0>──┼──┤ Y ├ └────────┘ ┌─┴─┐└───┘ lqr_2_0: |0>────■───── + rqr_3: |0>┤ X ├───── = ┌─┴─┐ └───┘┌───┐ lqr_2_1: |0>──┤ X ├─── rqr_4: |0>─────┤ Z ├ └───┘ └───┘ lcr_0: 0 ═════════════ lcr_1: 0 ═════════════ ┌───┐ ┌───┐ lqr_1_0: |0>──┤ H ├───┤ Z ├ ├───┤ ├───┤ lqr_1_1: |0>──┤ X ├───┤ X ├ ┌─┴───┴──┐├───┤ lqr_1_2: |0>┤ P(0.1) ├┤ Y ├ └────────┘└───┘ lqr_2_0: |0>────■───────■── ┌─┴─┐ ┌─┴─┐ lqr_2_1: |0>──┤ X ├───┤ X ├ └───┘ └───┘ lcr_0: 0 ══════════════════ lcr_1: 0 ══════════════════ """ qreg = QuantumRegister(5, 'rqr') circuit_right = QuantumCircuit(qreg) circuit_right.cx(qreg[0], qreg[3]) circuit_right.x(qreg[1]) circuit_right.y(qreg[2]) circuit_right.z(qreg[4]) dag_left = circuit_to_dag(self.circuit_left) dag_right = circuit_to_dag(circuit_right) # permuted wiring dag_left.compose(dag_right, qubits=[self.left_qubit3, self.left_qubit1, self.left_qubit2, self.left_qubit4, self.left_qubit0]) circuit_composed = dag_to_circuit(dag_left) circuit_expected = self.circuit_left.copy() circuit_expected.z(self.left_qubit0) circuit_expected.x(self.left_qubit1) circuit_expected.y(self.left_qubit2) circuit_expected.cx(self.left_qubit3, self.left_qubit4) self.assertEqual(circuit_composed, circuit_expected) def test_compose_permuted_smaller(self): """Composing with a smaller RHS dag, and permuted wires. ┌───┐ ┌─────┐ lqr_1_0: |0>──┤ H ├─── rqr_0: |0>──■──┤ Tdg ├ ├───┤ ┌─┴─┐└─────┘ lqr_1_1: |0>──┤ X ├─── rqr_1: |0>┤ X ├─────── ┌─┴───┴──┐ └───┘ lqr_1_2: |0>┤ P(0.1) ├ + = └────────┘ lqr_2_0: |0>────■───── ┌─┴─┐ lqr_2_1: |0>──┤ X ├─── └───┘ lcr_0: 0 ═════════════ lcr_1: 0 ═════════════ ┌───┐ lqr_1_0: |0>──┤ H ├─────────────── ├───┤ lqr_1_1: |0>──┤ X ├─────────────── ┌─┴───┴──┐┌───┐ lqr_1_2: |0>┤ P(0.1) ├┤ X ├─────── └────────┘└─┬─┘┌─────┐ lqr_2_0: |0>────■───────■──┤ Tdg ├ ┌─┴─┐ └─────┘ lqr_2_1: |0>──┤ X ├─────────────── └───┘ lcr_0: 0 ═════════════════════════ lcr_1: 0 ═════════════════════════ """ qreg = QuantumRegister(2, 'rqr') circuit_right = QuantumCircuit(qreg) circuit_right.cx(qreg[0], qreg[1]) circuit_right.tdg(qreg[0]) dag_left = circuit_to_dag(self.circuit_left) dag_right = circuit_to_dag(circuit_right) # permuted wiring of subset dag_left.compose(dag_right, qubits=[self.left_qubit3, self.left_qubit2]) circuit_composed = dag_to_circuit(dag_left) circuit_expected = self.circuit_left.copy() circuit_expected.cx(self.left_qubit3, self.left_qubit2) circuit_expected.tdg(self.left_qubit3) self.assertEqual(circuit_composed, circuit_expected) def test_compose_conditional(self): """Composing on classical bits. ┌───┐ ┌───┐ ┌─┐ lqr_1_0: |0>──┤ H ├─── rqr_0: ────────┤ H ├─┤M├─── ├───┤ ┌───┐ └─┬─┘ └╥┘┌─┐ lqr_1_1: |0>──┤ X ├─── rqr_1: ─┤ X ├────┼────╫─┤M├ ┌─┴───┴──┐ └─┬─┘ │ ║ └╥┘ lqr_1_2: |0>┤ P(0.1) ├ + ┌──┴──┐┌──┴──┐ ║ ║ └────────┘ rcr_0: ╡ ╞╡ ╞═╩══╬═ lqr_2_0: |0>────■───── │ = 2 ││ = 1 │ ║ ┌─┴─┐ rcr_1: ╡ ╞╡ ╞════╩═ lqr_2_1: |0>──┤ X ├─── └─────┘└─────┘ └───┘ lcr_0: 0 ═════════════ lcr_1: 0 ═════════════ ┌───┐ lqr_1_0: ──┤ H ├─────────────────────── ├───┤ ┌───┐ ┌─┐ lqr_1_1: ──┤ X ├───────────┤ H ├────┤M├ ┌─┴───┴──┐ └─┬─┘ └╥┘ lqr_1_2: ┤ P(0.1) ├──────────┼───────╫─ └────────┘ │ ║ lqr_2_0: ────■───────────────┼───────╫─ ┌─┴─┐ ┌───┐ │ ┌─┐ ║ lqr_2_1: ──┤ X ├────┤ X ├────┼───┤M├─╫─ └───┘ └─┬─┘ │ └╥┘ ║ ┌──┴──┐┌──┴──┐ ║ ║ lcr_0: ════════════╡ ╞╡ ╞═╩══╬═ │ = 1 ││ = 2 │ ║ lcr_1: ════════════╡ ╞╡ ╞════╩═ └─────┘└─────┘ """ qreg = QuantumRegister(2, 'rqr') creg = ClassicalRegister(2, 'rcr') circuit_right = QuantumCircuit(qreg, creg) circuit_right.x(qreg[1]).c_if(creg, 2) circuit_right.h(qreg[0]).c_if(creg, 1) circuit_right.measure(qreg, creg) # permuted subset of qubits and clbits dag_left = circuit_to_dag(self.circuit_left) dag_right = circuit_to_dag(circuit_right) # permuted subset of qubits and clbits dag_left.compose(dag_right, qubits=[self.left_qubit1, self.left_qubit4], clbits=[self.left_clbit1, self.left_clbit0]) circuit_composed = dag_to_circuit(dag_left) circuit_expected = self.circuit_left.copy() circuit_expected.x(self.left_qubit4).c_if(*self.condition1) circuit_expected.h(self.left_qubit1).c_if(*self.condition2) circuit_expected.measure(self.left_qubit4, self.left_clbit0) circuit_expected.measure(self.left_qubit1, self.left_clbit1) self.assertEqual(circuit_composed, circuit_expected) def test_compose_classical(self): """Composing on classical bits. ┌───┐ ┌─────┐┌─┐ lqr_1_0: |0>──┤ H ├─── rqr_0: |0>──■──┤ Tdg ├┤M├ ├───┤ ┌─┴─┐└─┬─┬─┘└╥┘ lqr_1_1: |0>──┤ X ├─── rqr_1: |0>┤ X ├──┤M├───╫─ ┌─┴───┴──┐ └───┘ └╥┘ ║ lqr_1_2: |0>┤ P(0.1) ├ + rcr_0: 0 ════════╬════╩═ = └────────┘ ║ lqr_2_0: |0>────■───── rcr_1: 0 ════════╩══════ ┌─┴─┐ lqr_2_1: |0>──┤ X ├─── └───┘ lcr_0: 0 ═════════════ lcr_1: 0 ═════════════ ┌───┐ lqr_1_0: |0>──┤ H ├────────────────── ├───┤ ┌─────┐┌─┐ lqr_1_1: |0>──┤ X ├─────■──┤ Tdg ├┤M├ ┌─┴───┴──┐ │ └─────┘└╥┘ lqr_1_2: |0>┤ P(0.1) ├──┼──────────╫─ └────────┘ │ ║ lqr_2_0: |0>────■───────┼──────────╫─ ┌─┴─┐ ┌─┴─┐ ┌─┐ ║ lqr_2_1: |0>──┤ X ├───┤ X ├──┤M├───╫─ └───┘ └───┘ └╥┘ ║ lcr_0: 0 ══════════════════╩════╬═ ║ lcr_1: 0 ═══════════════════════╩═ """ qreg = QuantumRegister(2, 'rqr') creg = ClassicalRegister(2, 'rcr') circuit_right = QuantumCircuit(qreg, creg) circuit_right.cx(qreg[0], qreg[1]) circuit_right.tdg(qreg[0]) circuit_right.measure(qreg, creg) dag_left = circuit_to_dag(self.circuit_left) dag_right = circuit_to_dag(circuit_right) # permuted subset of qubits and clbits dag_left.compose(dag_right, qubits=[self.left_qubit1, self.left_qubit4], clbits=[self.left_clbit1, self.left_clbit0]) circuit_composed = dag_to_circuit(dag_left) circuit_expected = self.circuit_left.copy() circuit_expected.cx(self.left_qubit1, self.left_qubit4) circuit_expected.tdg(self.left_qubit1) circuit_expected.measure(self.left_qubit4, self.left_clbit0) circuit_expected.measure(self.left_qubit1, self.left_clbit1) self.assertEqual(circuit_composed, circuit_expected) def test_compose_condition_multiple_classical(self): """Compose a circuit with more than one creg. ┌───┐ ┌───┐ q5_0: q5_0: ─┤ H ├─ q5_0: ─┤ H ├─ └─┬─┘ └─┬─┘ ┌──┴──┐ ┌──┴──┐ c0: + c0: 1/╡ = 1 ╞ = c0: 1/╡ = 1 ╞ └─────┘ └─────┘ c1: c1: 1/═══════ c1: 1/═══════ """ # ref: https://github.com/Qiskit/qiskit-terra/issues/4964 qreg = QuantumRegister(1) creg1 = ClassicalRegister(1) creg2 = ClassicalRegister(1) circuit_left = QuantumCircuit(qreg, creg1, creg2) circuit_right = QuantumCircuit(qreg, creg1, creg2) circuit_right.h(0).c_if(creg1, 1) dag_left = circuit_to_dag(circuit_left) dag_right = circuit_to_dag(circuit_right) dag_composed = dag_left.compose(dag_right, qubits=[0], clbits=[0, 1], inplace=False) dag_expected = circuit_to_dag(circuit_right.copy()) self.assertEqual(dag_composed, dag_expected) def test_compose_raises_if_splitting_condition_creg(self): """Verify compose raises if a condition is mapped to more than one creg. ┌───┐ q_0: q_0: ─┤ H ├─ └─┬─┘ c0: 1/ + ┌──┴──┐ = DAGCircuitError c: 2/╡ = 2 ╞ c1: 1/ └─────┘ """ qreg = QuantumRegister(1) creg1 = ClassicalRegister(1) creg2 = ClassicalRegister(1) circuit_left = QuantumCircuit(qreg, creg1, creg2) wide_creg = ClassicalRegister(2) circuit_right = QuantumCircuit(qreg, wide_creg) circuit_right.h(0).c_if(wide_creg, 2) with self.assertRaisesRegex(DAGCircuitError, 'more than one creg'): circuit_left.compose(circuit_right) if __name__ == '__main__': unittest.main()
37.52809
80
0.404132
64c46cd8846e151b636f1b332a678efbc3a4928f
21,645
py
Python
pypy/translator/cli/test/test_dotnet.py
camillobruni/pygirl
ddbd442d53061d6ff4af831c1eab153bcc771b5a
[ "MIT" ]
12
2016-01-06T07:10:28.000Z
2021-05-13T23:02:02.000Z
pypy/translator/cli/test/test_dotnet.py
camillobruni/pygirl
ddbd442d53061d6ff4af831c1eab153bcc771b5a
[ "MIT" ]
null
null
null
pypy/translator/cli/test/test_dotnet.py
camillobruni/pygirl
ddbd442d53061d6ff4af831c1eab153bcc771b5a
[ "MIT" ]
2
2016-07-29T07:09:50.000Z
2016-10-16T08:50:26.000Z
import py from pypy.annotation.annrpython import RPythonAnnotator from pypy.annotation import model as annmodel from pypy.rpython.ootypesystem import ootype from pypy.rpython.ootypesystem.ootype import meth, Meth, Char, Signed, Float, String,\ ROOT, overload, Instance, new from pypy.translator.cli.test.runtest import CliTest from pypy.translator.cli.dotnet import SomeCliClass, SomeCliStaticMethod,\ NativeInstance, CLR, box, unbox, OverloadingResolver, NativeException,\ native_exc, new_array, init_array, typeof, eventhandler, clidowncast,\ fieldinfo_for_const, classof System = CLR.System ArrayList = CLR.System.Collections.ArrayList OpCodes = System.Reflection.Emit.OpCodes DynamicMethod = System.Reflection.Emit.DynamicMethod Utils = CLR.pypy.runtime.Utils FUNCTYPE = ootype.StaticMethod([ootype.Signed, ootype.Signed], ootype.Signed) class TestDotnetAnnotation(object): def test_overloaded_meth_string(self): C = Instance("test", ROOT, {}, {'foo': overload(meth(Meth([Char], Signed)), meth(Meth([String], Float)), resolver=OverloadingResolver), 'bar': overload(meth(Meth([Signed], Char)), meth(Meth([Float], String)), resolver=OverloadingResolver)}) def fn1(): return new(C).foo('a') def fn2(): return new(C).foo('aa') def fn3(x): return new(C).bar(x) a = RPythonAnnotator() assert isinstance(a.build_types(fn1, []), annmodel.SomeInteger) assert isinstance(a.build_types(fn2, []), annmodel.SomeFloat) assert isinstance(a.build_types(fn3, [int]), annmodel.SomeChar) assert isinstance(a.build_types(fn3, [float]), annmodel.SomeString) def test_class(self): def fn(): return System.Math a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, SomeCliClass) assert s.const is System.Math def test_fullname(self): def fn(): return CLR.System.Math a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, SomeCliClass) assert s.const is System.Math def test_staticmeth(self): def fn(): return System.Math.Abs a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, SomeCliStaticMethod) assert s.cli_class is System.Math assert s.meth_name == 'Abs' def test_staticmeth_call(self): def fn1(): return System.Math.Abs(42) def fn2(): return System.Math.Abs(42.5) a = RPythonAnnotator() assert type(a.build_types(fn1, [])) is annmodel.SomeInteger assert type(a.build_types(fn2, [])) is annmodel.SomeFloat def test_new_instance(self): def fn(): return ArrayList() a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeOOInstance) assert isinstance(s.ootype, NativeInstance) assert s.ootype._name == '[mscorlib]System.Collections.ArrayList' def test_box(self): def fn(): return box(42) a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeOOInstance) assert s.ootype._name == '[mscorlib]System.Object' assert not s.can_be_None def test_box_can_be_None(self): def fn(flag): if flag: return box(42) else: return box(None) a = RPythonAnnotator() s = a.build_types(fn, [bool]) assert isinstance(s, annmodel.SomeOOInstance) assert s.ootype._name == '[mscorlib]System.Object' assert s.can_be_None def test_unbox(self): def fn(): x = box(42) return unbox(x, ootype.Signed) a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeInteger) def test_unbox_can_be_None(self): class Foo: pass def fn(): x = box(42) return unbox(x, Foo) a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeInstance) assert s.can_be_None def test_array(self): def fn(): x = ArrayList() return x.ToArray() a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeOOInstance) assert s.ootype._isArray assert s.ootype._ELEMENT._name == '[mscorlib]System.Object' def test_array_getitem(self): def fn(): x = ArrayList().ToArray() return x[0] a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeOOInstance) assert s.ootype._name == '[mscorlib]System.Object' def test_mix_None_and_instance(self): def fn(x): if x: return None else: return box(42) a = RPythonAnnotator() s = a.build_types(fn, [bool]) assert isinstance(s, annmodel.SomeOOInstance) assert s.can_be_None == True def test_box_instance(self): class Foo: pass def fn(): return box(Foo()) a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeOOInstance) assert s.ootype._name == '[mscorlib]System.Object' def test_unbox_instance(self): class Foo: pass def fn(): boxed = box(Foo()) return unbox(boxed, Foo) a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeInstance) assert s.classdef.name.endswith('Foo') def test_can_be_None(self): def fn(): ttype = System.Type.GetType('foo') return ttype.get_Namespace() a = RPythonAnnotator() s = a.build_types(fn, []) assert isinstance(s, annmodel.SomeString) assert s.can_be_None class TestDotnetRtyping(CliTest): def _skip_pythonnet(self, msg): pass def test_staticmeth_call(self): def fn(x): return System.Math.Abs(x) assert self.interpret(fn, [-42]) == 42 def test_staticmeth_overload(self): self._skip_pythonnet('Pythonnet bug!') def fn(x, y): return System.Math.Abs(x), System.Math.Abs(y) res = self.interpret(fn, [-42, -42.5]) item0, item1 = self.ll_to_tuple(res) assert item0 == 42 assert item1 == 42.5 def test_tostring(self): StringBuilder = CLR.System.Text.StringBuilder def fn(): x = StringBuilder() x.Append(box("foo")).Append(box("bar")) return x.ToString() res = self.ll_to_string(self.interpret(fn, [])) assert res == 'foobar' def test_box(self): def fn(): x = ArrayList() x.Add(box(42)) x.Add(box('Foo')) return x.get_Count() assert self.interpret(fn, []) == 2 def test_whitout_box(self): def fn(): x = ArrayList() x.Add(42) # note we have forgot box() py.test.raises(TypeError, self.interpret, fn, []) def test_unbox(self): def fn(): x = ArrayList() x.Add(box(42)) return unbox(x.get_Item(0), ootype.Signed) assert self.interpret(fn, []) == 42 def test_unbox_string(self): def fn(): x = ArrayList() x.Add(box('foo')) return unbox(x.get_Item(0), ootype.String) assert self.interpret(fn, []) == 'foo' def test_box_method(self): def fn(): x = box(42) t = x.GetType() return t.get_Name() res = self.interpret(fn, []) assert res == 'Int32' def test_box_object(self): def fn(): return box(System.Object()).ToString() res = self.interpret(fn, []) assert res == 'System.Object' def test_array(self): def fn(): x = ArrayList() x.Add(box(42)) array = x.ToArray() return unbox(array[0], ootype.Signed) assert self.interpret(fn, []) == 42 def test_new_array(self): def fn(): x = new_array(System.Object, 2) x[0] = box(42) x[1] = box(43) return unbox(x[0], ootype.Signed) + unbox(x[1], ootype.Signed) assert self.interpret(fn, []) == 42+43 def test_init_array(self): def fn(): x = init_array(System.Object, box(42), box(43)) return unbox(x[0], ootype.Signed) + unbox(x[1], ootype.Signed) assert self.interpret(fn, []) == 42+43 def test_array_setitem_None(self): py.test.skip('Mono bug :-(') def fn(): x = init_array(System.Object, box(42), box(43)) x[0] = None return x[0] assert self.interpret(fn, []) is None def test_array_length(self): def fn(): x = init_array(System.Object, box(42), box(43)) return len(x) assert self.interpret(fn, []) == 2 def test_null(self): def fn(): return System.Object.Equals(None, None) assert self.interpret(fn, []) == True def test_null_bound_method(self): def fn(): x = ArrayList() x.Add(None) return x.get_Item(0) assert self.interpret(fn, []) is None def test_native_exception_precise(self): ArgumentOutOfRangeException = NativeException(CLR.System.ArgumentOutOfRangeException) def fn(): x = ArrayList() try: x.get_Item(0) return False except ArgumentOutOfRangeException: return True assert self.interpret(fn, []) == True def test_native_exception_superclass(self): SystemException = NativeException(CLR.System.Exception) def fn(): x = ArrayList() try: x.get_Item(0) return False except SystemException: return True assert self.interpret(fn, []) == True def test_native_exception_object(self): SystemException = NativeException(CLR.System.Exception) def fn(): x = ArrayList() try: x.get_Item(0) return "Impossible!" except SystemException, e: ex = native_exc(e) return ex.get_Message() res = self.ll_to_string(self.interpret(fn, [])) assert res.startswith("Index is less than 0") def test_native_exception_invoke(self): TargetInvocationException = NativeException(CLR.System.Reflection.TargetInvocationException) def fn(): x = ArrayList() t = x.GetType() meth = t.GetMethod('get_Item') args = init_array(System.Object, box(0)) try: meth.Invoke(x, args) return "Impossible!" except TargetInvocationException, e: inner = native_exc(e).get_InnerException() message = str(inner.get_Message()) return message res = self.ll_to_string(self.interpret(fn, [])) assert res.startswith("Index is less than 0") def test_typeof(self): def fn(): x = box(42) return x.GetType() == typeof(System.Int32) res = self.interpret(fn, []) assert res is True def test_typeof_pypylib(self): DelegateType = CLR.pypy.test.DelegateType_int__int_2 def fn(): return typeof(DelegateType) is not None res = self.interpret(fn, []) assert res is True def test_typeof_functype(self): # this test is overridden in TestPythonnet def fn(): t = typeof(FUNCTYPE) return t.get_Name() res = self.interpret(fn, []) assert res.startswith('StaticMethod__') def test_clidowncast(self): def fn(): a = ArrayList() b = ArrayList() a.Add(b) c = a.get_Item(0) # type of c is Object c = clidowncast(c, ArrayList) c.Add(None) return c.get_Item(0) res = self.interpret(fn, []) assert res is None def test_clidowncast_lltype(self): ARRAY_LIST = ArrayList._INSTANCE def fn(): a = ArrayList() b = ArrayList() a.Add(b) c = a.get_Item(0) # type of c is Object c = clidowncast(c, ARRAY_LIST) c.Add(None) return c.get_Item(0) res = self.interpret(fn, []) assert res is None def test_mix_None_and_instance(self): def g(x): return x def fn(flag): if flag: x = None else: x = box(42) return g(x) res = self.interpret(fn, [1]) assert res is None def test_box_unbox_instance(self): class Foo: pass def fn(): obj = Foo() b_obj = box(obj) obj2 = unbox(b_obj, Foo) return obj is obj2 res = self.interpret(fn, []) assert res is True def test_unbox_instance_fail(self): class Foo: pass def fn(): b_obj = box(42) return unbox(b_obj, Foo) res = self.interpret(fn, []) assert res is None def test_box_unbox_ooinstance(self): A = ootype.Instance('A', ootype.ROOT, {'xx': ootype.Signed}) def fn(flag): a = ootype.new(A) a.xx = 42 b_obj = box(a) a2 = unbox(b_obj, A) return a2.xx res = self.interpret(fn, [True]) assert res == 42 def test_box_unbox_ooinstance_fail(self): A = ootype.Instance('A', ootype.ROOT, {'xx': ootype.Signed}) def fn(flag): b_obj = System.Object() a2 = unbox(b_obj, A) return a2 res = self.interpret(fn, [True]) assert res is None def test_box_unbox_oorecord(self): A = ootype.Record({'xx': ootype.Signed}) def fn(flag): a = ootype.new(A) a.xx = 42 b_obj = box(a) a2 = unbox(b_obj, A) return a2.xx res = self.interpret(fn, [True]) assert res == 42 def test_instance_wrapping(self): class Foo: pass def fn(): obj = Foo() x = ArrayList() x.Add(box(obj)) obj2 = unbox(x.get_Item(0), Foo) return obj is obj2 res = self.interpret(fn, []) assert res is True def test_compare_string_None(self): from pypy.rlib.nonconst import NonConstant def null(): if NonConstant(True): return None else: return "" def fn(): ttype = System.Type.GetType('Consts, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089') namespace = ttype.get_Namespace() if namespace is not None: return False else: return True res = self.interpret(fn, [], backendopt=False) assert res is True def test_delegate(self): class Foo: def __init__(self): self.x = 0 def m(self, sender, args): self.x = 42 def fn(flag): f = Foo() if flag: f.m(None, None) delegate = eventhandler(f.m) delegate.Invoke(None, None) return f.x res = self.interpret(fn, [False]) assert res == 42 def test_static_fields(self): DummyClass = CLR.pypy.test.DummyClass def fn(): obj = System.Object() DummyClass.myfield = obj return DummyClass.myfield is obj res = self.interpret(fn, []) assert res def test_pypylib(self): def fn(): return CLR.pypy.runtime.Utils.OOString(42, -1) res = self.interpret(fn, []) assert self.ll_to_string(res) == '42' def test_call_delegate(self): def build_fn(): tInt = typeof(System.Int32) args = init_array(System.Type, tInt, tInt) meth = Utils.CreateDynamicMethod("add", tInt, args) il = meth.GetILGenerator() il.Emit(OpCodes.Ldarg_0) il.Emit(OpCodes.Ldarg_1) il.Emit(OpCodes.Add) il.Emit(OpCodes.Ret) myfunc = meth.CreateDelegate(typeof(FUNCTYPE)) return myfunc def fn(): myfunc = unbox(build_fn(), FUNCTYPE) return myfunc(30, 12) res = self.interpret(fn, []) assert res == 42 def test_bound_delegate(self): def build_fn(): tObjArray = System.Type.GetType("System.Object[]") tInt = typeof(System.Int32) args = init_array(System.Type, tObjArray, tInt, tInt) meth = Utils.CreateDynamicMethod("add", tInt, args) il = meth.GetILGenerator() il.Emit(OpCodes.Ldarg_1) il.Emit(OpCodes.Ldarg_2) il.Emit(OpCodes.Add) il.Emit(OpCodes.Ret) array = new_array(System.Object, 0) myfunc = meth.CreateDelegate(typeof(FUNCTYPE), array) return myfunc def fn(): myfunc = unbox(build_fn(), FUNCTYPE) return myfunc(30, 12) res = self.interpret(fn, []) assert res == 42 def test_valuetype_field(self): class Foo: def __init__(self, x): self.x = x def fn(): f = Foo(OpCodes.Add) return f self.interpret(fn, []) def test_fieldinfo_for_const(self): A = ootype.Instance('A', ootype.ROOT, {'xx': ootype.Signed}) const = ootype.new(A) const.xx = 42 def fn(): fieldinfo = fieldinfo_for_const(const) obj = fieldinfo.GetValue(None) # get the 'xx' field by using reflection t = obj.GetType() x_info = t.GetField('xx') x_value = x_info.GetValue(obj) return unbox(x_value, ootype.Signed) res = self.interpret(fn, []) assert res == 42 def test_fieldinfo_for_const_pbc(self): A = ootype.Instance('A', ootype.ROOT, {'xx': ootype.Signed}) const = ootype.new(A) fieldinfo = fieldinfo_for_const(const) def fn(): const.xx = 42 obj = fieldinfo.GetValue(None) # get the 'xx' field by using reflection t = obj.GetType() x_info = t.GetField('xx') x_value = x_info.GetValue(obj) return unbox(x_value, ootype.Signed) res = self.interpret(fn, []) assert res == 42 def test_classof(self): int32_class = classof(System.Int32) def fn(): int32_obj = box(int32_class) int32_type = clidowncast(int32_obj, System.Type) return int32_type.get_Name() assert self.interpret(fn, []) == 'Int32' def test_classof_compare(self): int32_a = classof(System.Int32) int32_b = classof(System.Int32) def fn(): return int32_a is int32_b assert self.interpret(fn, []) def test_classof_functype(self): # this test is overridden in TestPythonnet c = classof(FUNCTYPE) def fn(): obj = box(c) t = clidowncast(obj, System.Type) return t.get_Name() res = self.interpret(fn, []) assert res.startswith('StaticMethod__') def test_mix_classof(self): a = classof(System.Int32) b = classof(FUNCTYPE) def fn(flag): if flag: x = a else: x = b return clidowncast(box(x), System.Type).get_Name() res = self.interpret(fn, [True]) assert res == 'Int32' class TestPythonnet(TestDotnetRtyping): # don't interpreter functions but execute them directly through pythonnet def interpret(self, f, args, backendopt='ignored'): return f(*args) def _skip_pythonnet(self, msg): py.test.skip(msg) def test_whitout_box(self): pass # it makes sense only during translation def test_typeof_functype(self): def fn(): t = typeof(FUNCTYPE) return t.get_Name() res = self.interpret(fn, []) assert res == 'DelegateType_int__int_2' def test_classof_functype(self): # this test is overridden in TestPythonnet c = classof(FUNCTYPE) def fn(): obj = box(c) t = clidowncast(obj, System.Type) return t.get_Name() res = self.interpret(fn, []) assert res == 'DelegateType_int__int_2' def test_fieldinfo_for_const(self): pass # it makes sense only during translation def test_fieldinfo_for_const_pbc(self): pass # it makes sense only during translation
31.924779
126
0.544652
6992c115a9faa2fb70414a73636ce6b97a3a5b33
21
py
Python
olive/scripts/calibration/__init__.py
liuyenting/olive-core
b532b29e29fe9f167369f66b8d922f5f644f9309
[ "Apache-2.0" ]
null
null
null
olive/scripts/calibration/__init__.py
liuyenting/olive-core
b532b29e29fe9f167369f66b8d922f5f644f9309
[ "Apache-2.0" ]
null
null
null
olive/scripts/calibration/__init__.py
liuyenting/olive-core
b532b29e29fe9f167369f66b8d922f5f644f9309
[ "Apache-2.0" ]
null
null
null
from .aotf import *
10.5
20
0.666667
9eea9c32ce1aca0ad55172114bb66419781464a3
3,509
py
Python
amhappy/resources/happinstance.py
ltang-cars/amhappy
639d94eecb3cc5bab9128d93aadc5c50637a9a55
[ "BSD-2-Clause" ]
15
2015-03-26T17:28:03.000Z
2020-11-18T18:25:00.000Z
amhappy/resources/happinstance.py
ltang-cars/amhappy
639d94eecb3cc5bab9128d93aadc5c50637a9a55
[ "BSD-2-Clause" ]
7
2015-03-26T02:07:59.000Z
2015-04-14T21:08:12.000Z
amhappy/resources/happinstance.py
ltang-cars/amhappy
639d94eecb3cc5bab9128d93aadc5c50637a9a55
[ "BSD-2-Clause" ]
6
2015-03-26T17:27:21.000Z
2017-11-16T18:24:44.000Z
# -*- coding: utf-8 -*- from cornice.resource import resource, view from amhappy.utility.validators import validator_factory from amhappy.utility.happinstance_db import HappinstanceDB @resource(collection_path='/happinstances', path='/happinstances/{application}/{name}', cors_enabled=True, cors_origins=('*',)) class Happinstance(object): """ A happinstance is an instance of an application that is read to run. This is a REST endpoint It named for being a Happy Instance """ def __init__(self, request): """ Basic init method that also sets up the instance variables for some of the endpoints :param request: The pyramid request :type request: Request """ self.request = request self.happinstancedb = HappinstanceDB(request) self.name = '' self.application = '' self.project = None self.config = '' def collection_get(self): """ Get the current happinstances, running or not :return: Dictionary of the happinstances :rtype: dict """ # cast the storage as a dict and return it return {'happinstances': self.happinstancedb} @view(renderer='json', validators=validator_factory('exists')) def get(self): """ Get the detail for a particular happinstance """ self._get_valid_objects() return self.happinstancedb[self.application].get(self.name) @view(renderer='json', validators=[validator_factory('unique'), validator_factory('valid_config')]) def post(self): """ Take a unique and valid config and create a new happinstance and start it up. a POST endpoint """ self._get_valid_objects() # a happinstance is defined by its config and status and keyed on its # name happinstance = {'_id': self.name, 'config': self.config, 'status': 'on'} self.project.up() self.happinstancedb[self.application].save(happinstance) return {'status': 'ok'} @view(renderer='json', validators=validator_factory('exists')) def delete(self): """ If the happinstance exists, stop it and remove the containers and the entry in the db. """ self._get_valid_objects() self.project.stop() self.project.remove_stopped() del self.happinstancedb[self.application][self.name] @view(renderer='json', validators=[validator_factory('exists'), validator_factory('valid_action')]) def put(self): """ take a validated action and either start or stop a happinstance """ self._get_valid_objects() action = self.request.validated['action'] happinstance = self.happinstancedb[self.application].get(self.name) if action == 'on': self.project.start() else: self.project.stop() happinstance['status'] = action self.happinstancedb[self.application].save(happinstance) def _get_valid_objects(self): """ Pull the validated values and put them into instance vars """ self.name = self.request.validated['name'] self.application = self.request.validated['application'] self.project = self.request.validated['project'] self.config = self.request.validated['config']
35.09
78
0.61442
1ee2e4fad37214e1b107b3f66feb1ba701c300af
18,825
py
Python
ibeis/algo/graph/mixin_simulation.py
brmscheiner/ibeis
9bb93a6cd74ac47921e734c80917a38609dfe661
[ "Apache-2.0" ]
null
null
null
ibeis/algo/graph/mixin_simulation.py
brmscheiner/ibeis
9bb93a6cd74ac47921e734c80917a38609dfe661
[ "Apache-2.0" ]
null
null
null
ibeis/algo/graph/mixin_simulation.py
brmscheiner/ibeis
9bb93a6cd74ac47921e734c80917a38609dfe661
[ "Apache-2.0" ]
null
null
null
""" Mixin functionality for experiments, tests, and simulations. This includes recordings measures used to generate plots in JC's thesis. """ # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import six import utool as ut import ubelt as ub import pandas as pd import itertools as it from ibeis.algo.graph import nx_utils as nxu from ibeis.algo.graph.state import (POSTV, NEGTV, INCMP, UNREV, UNKWN, NULL) print, rrr, profile = ut.inject2(__name__) class SimulationHelpers(object): def init_simulation(infr, oracle_accuracy=1.0, k_redun=2, enable_autoreview=True, enable_inference=True, classifiers=None, match_state_thresh=None, max_outer_loops=None, name=None): infr.print('INIT SIMULATION', color='yellow') infr.name = name infr.simulation_mode = True infr.verifiers = classifiers infr.params['inference.enabled'] = enable_inference infr.params['autoreview.enabled'] = enable_autoreview infr.params['redun.pos'] = k_redun infr.params['redun.neg'] = k_redun # keeps track of edges where the decision != the groundtruth infr.mistake_edges = set() infr.queue = ut.PriorityQueue() infr.oracle = UserOracle(oracle_accuracy, rng=infr.name) if match_state_thresh is None: match_state_thresh = { POSTV: 1.0, NEGTV: 1.0, INCMP: 1.0, } pb_state_thresh = None if pb_state_thresh is None: pb_state_thresh = { 'pb': .5, 'notpb': .9, } infr.task_thresh = { 'photobomb_state': pd.Series(pb_state_thresh), 'match_state': pd.Series(match_state_thresh) } infr.params['algo.max_outer_loops'] = max_outer_loops def init_test_mode(infr): from ibeis.algo.graph import nx_dynamic_graph infr.print('init_test_mode') infr.test_mode = True # infr.edge_truth = {} infr.metrics_list = [] infr.test_state = { 'n_decision': 0, 'n_algo': 0, 'n_manual': 0, 'n_true_merges': 0, 'n_error_edges': 0, 'confusion': None, } infr.test_gt_pos_graph = nx_dynamic_graph.DynConnGraph() infr.test_gt_pos_graph.add_nodes_from(infr.aids) infr.nid_to_gt_cc = ut.group_items(infr.aids, infr.orig_name_labels) infr.node_truth = ut.dzip(infr.aids, infr.orig_name_labels) # infr.real_n_pcc_mst_edges = sum( # len(cc) - 1 for cc in infr.nid_to_gt_cc.values()) # ut.cprint('real_n_pcc_mst_edges = %r' % ( # infr.real_n_pcc_mst_edges,), 'red') infr.metrics_list = [] infr.nid_to_gt_cc = ut.group_items(infr.aids, infr.orig_name_labels) infr.real_n_pcc_mst_edges = sum( len(cc) - 1 for cc in infr.nid_to_gt_cc.values()) infr.print('real_n_pcc_mst_edges = %r' % ( infr.real_n_pcc_mst_edges,), color='red') def measure_error_edges(infr): for edge, data in infr.edges(data=True): true_state = data['truth'] pred_state = data.get('evidence_decision', UNREV) if pred_state != UNREV: if true_state != pred_state: error = ut.odict([('real', true_state), ('pred', pred_state)]) yield edge, error @profile def measure_metrics(infr): real_pos_edges = [] n_true_merges = infr.test_state['n_true_merges'] confusion = infr.test_state['confusion'] n_tp = confusion[POSTV][POSTV] confusion[POSTV] columns = set(confusion.keys()) reviewd_cols = columns - {UNREV} non_postv = reviewd_cols - {POSTV} non_negtv = reviewd_cols - {NEGTV} n_fn = sum(ut.take(confusion[POSTV], non_postv)) n_fp = sum(ut.take(confusion[NEGTV], non_negtv)) n_error_edges = sum(confusion[r][c] + confusion[c][r] for r, c in ut.combinations(reviewd_cols, 2)) # assert n_fn + n_fp == n_error_edges pred_n_pcc_mst_edges = n_true_merges if 0: import ubelt as ub for timer in ub.Timerit(10): with timer: # Find undetectable errors num_undetectable_fn = 0 for nid1, nid2 in infr.neg_redun_metagraph.edges(): cc1 = infr.pos_graph.component(nid1) cc2 = infr.pos_graph.component(nid2) neg_edges = nxu.edges_cross(infr.neg_graph, cc1, cc2) for u, v in neg_edges: real_nid1 = infr.node_truth[u] real_nid2 = infr.node_truth[v] if real_nid1 == real_nid2: num_undetectable_fn += 1 break # Find undetectable errors num_undetectable_fp = 0 for nid in infr.pos_redun_nids: cc = infr.pos_graph.component(nid) if not ut.allsame(ut.take(infr.node_truth, cc)): num_undetectable_fp += 1 print('num_undetectable_fn = %r' % (num_undetectable_fn,)) print('num_undetectable_fp = %r' % (num_undetectable_fp,)) if 0: n_error_edges2 = 0 n_fn2 = 0 n_fp2 = 0 for edge, data in infr.edges(data=True): decision = data.get('evidence_decision', UNREV) true_state = infr.edge_truth[edge] if true_state == decision and true_state == POSTV: real_pos_edges.append(edge) elif decision != UNREV: if true_state != decision: n_error_edges2 += 1 if true_state == POSTV: n_fn2 += 1 elif true_state == NEGTV: n_fp2 += 1 assert n_error_edges2 == n_error_edges assert n_tp == len(real_pos_edges) assert n_fn == n_fn2 assert n_fp == n_fp2 # pred_n_pcc_mst_edges2 = sum( # len(cc) - 1 for cc in infr.test_gt_pos_graph.connected_components() # ) if False: import networkx as nx # set(infr.test_gt_pos_graph.edges()) == set(real_pos_edges) pred_n_pcc_mst_edges = 0 for cc in nx.connected_components(nx.Graph(real_pos_edges)): pred_n_pcc_mst_edges += len(cc) - 1 assert n_true_merges == pred_n_pcc_mst_edges # Find all annotations involved in a mistake assert n_error_edges == len(infr.mistake_edges) direct_mistake_aids = {a for edge in infr.mistake_edges for a in edge} mistake_nids = set(infr.node_labels(*direct_mistake_aids)) mistake_aids = set(ut.flatten([infr.pos_graph.component(nid) for nid in mistake_nids])) pos_acc = pred_n_pcc_mst_edges / infr.real_n_pcc_mst_edges metrics = { 'n_decision': infr.test_state['n_decision'], 'n_manual': infr.test_state['n_manual'], 'n_algo': infr.test_state['n_algo'], 'phase': infr.loop_phase, 'pos_acc': pos_acc, 'n_merge_total': infr.real_n_pcc_mst_edges, 'n_merge_remain': infr.real_n_pcc_mst_edges - n_true_merges, 'n_true_merges': n_true_merges, 'recovering': infr.is_recovering(), # 'recovering2': infr.test_state['recovering'], 'merge_remain': 1 - pos_acc, 'n_mistake_aids': len(mistake_aids), 'frac_mistake_aids': len(mistake_aids) / len(infr.aids), 'n_mistake_nids': len(mistake_nids), 'n_errors': n_error_edges, 'n_fn': n_fn, 'n_fp': n_fp, 'refresh_support': len(infr.refresh.manual_decisions), 'pprob_any': infr.refresh.prob_any_remain(), 'mu': infr.refresh._ewma, 'test_action': infr.test_state['test_action'], 'action': infr.test_state.get('action', None), 'user_id': infr.test_state['user_id'], 'pred_decision': infr.test_state['pred_decision'], 'true_decision': infr.test_state['true_decision'], 'n_neg_redun': infr.neg_redun_metagraph.number_of_edges(), 'n_neg_redun1': (infr.neg_metagraph.number_of_edges() - infr.neg_metagraph.number_of_selfloops()), } return metrics def _print_previous_loop_statistics(infr, count): # Print stats about what happend in the this loop history = infr.metrics_list[-count:] recover_blocks = ut.group_items([ (k, sum(1 for i in g)) for k, g in it.groupby(ut.take_column(history, 'recovering')) ]).get(True, []) infr.print(( 'Recovery mode entered {} times, ' 'made {} recovery decisions.').format( len(recover_blocks), sum(recover_blocks)), color='green') testaction_hist = ut.dict_hist(ut.take_column(history, 'test_action')) infr.print( 'Test Action Histogram: {}'.format( ut.repr4(testaction_hist, si=True)), color='yellow') if infr.params['inference.enabled']: action_hist = ut.dict_hist( ut.emap(frozenset, ut.take_column(history, 'action'))) infr.print( 'Inference Action Histogram: {}'.format( ub.repr2(action_hist, si=True)), color='yellow') infr.print( 'Decision Histogram: {}'.format(ut.repr2(ut.dict_hist( ut.take_column(history, 'pred_decision') ), si=True)), color='yellow') infr.print( 'User Histogram: {}'.format(ut.repr2(ut.dict_hist( ut.take_column(history, 'user_id') ), si=True)), color='yellow') @profile def _dynamic_test_callback(infr, edge, decision, prev_decision, user_id): was_gt_pos = infr.test_gt_pos_graph.has_edge(*edge) # prev_decision = infr.get_edge_attr(edge, 'decision', default=UNREV) # prev_decision = list(infr.edge_decision_from([edge]))[0] true_decision = infr.edge_truth[edge] was_within_pred = infr.pos_graph.are_nodes_connected(*edge) was_within_gt = infr.test_gt_pos_graph.are_nodes_connected(*edge) was_reviewed = prev_decision != UNREV is_within_gt = was_within_gt was_correct = prev_decision == true_decision is_correct = true_decision == decision # print('prev_decision = {!r}'.format(prev_decision)) # print('decision = {!r}'.format(decision)) # print('true_decision = {!r}'.format(true_decision)) test_print = ut.partial(infr.print, level=2) def test_print(x, **kw): infr.print('[ACTION] ' + x, level=2, **kw) # test_print = lambda *a, **kw: None # NOQA if 0: num = infr.recover_graph.number_of_components() old_data = infr.get_nonvisual_edge_data(edge) # print('old_data = %s' % (ut.repr4(old_data, stritems=True),)) print('n_prev_reviews = %r' % (old_data['num_reviews'],)) print('prev_decision = %r' % (prev_decision,)) print('decision = %r' % (decision,)) print('was_gt_pos = %r' % (was_gt_pos,)) print('was_within_pred = %r' % (was_within_pred,)) print('was_within_gt = %r' % (was_within_gt,)) print('num inconsistent = %r' % (num,)) # is_recovering = infr.is_recovering() if decision == POSTV: if is_correct: if not was_gt_pos: infr.test_gt_pos_graph.add_edge(*edge) elif was_gt_pos: test_print("UNDID GOOD POSITIVE EDGE", color='darkred') infr.test_gt_pos_graph.remove_edge(*edge) is_within_gt = infr.test_gt_pos_graph.are_nodes_connected(*edge) split_gt = is_within_gt != was_within_gt if split_gt: test_print("SPLIT A GOOD MERGE", color='darkred') infr.test_state['n_true_merges'] -= 1 confusion = infr.test_state['confusion'] if confusion is None: # initialize dynamic confusion matrix # import pandas as pd states = (POSTV, NEGTV, INCMP, UNREV, UNKWN) confusion = {r: {c: 0 for c in states} for r in states} # pandas takes a really long time doing this # confusion = pd.DataFrame(columns=states, index=states) # confusion[:] = 0 # confusion.index.name = 'real' # confusion.columns.name = 'pred' infr.test_state['confusion'] = confusion if was_reviewed: confusion[true_decision][prev_decision] -= 1 confusion[true_decision][decision] += 1 else: confusion[true_decision][decision] += 1 test_action = None action_color = None if is_correct: # CORRECT DECISION if was_reviewed: if prev_decision == decision: test_action = 'correct duplicate' action_color = 'darkyellow' else: infr.mistake_edges.remove(edge) test_action = 'correction' action_color = 'darkgreen' if decision == POSTV: if not was_within_gt: test_action = 'correction redid merge' action_color = 'darkgreen' infr.test_state['n_true_merges'] += 1 else: if decision == POSTV: if not was_within_gt: test_action = 'correct merge' action_color = 'darkgreen' infr.test_state['n_true_merges'] += 1 else: test_action = 'correct redundant positive' action_color = 'darkblue' else: if decision == NEGTV: test_action = 'correct negative' action_color = 'teal' else: test_action = 'correct uninferrable' action_color = 'teal' else: action_color = 'darkred' # INCORRECT DECISION infr.mistake_edges.add(edge) if was_reviewed: if prev_decision == decision: test_action = 'incorrect duplicate' elif was_correct: test_action = 'incorrect undid good edge' else: if decision == POSTV: if was_within_pred: test_action = 'incorrect redundant merge' else: test_action = 'incorrect new merge' else: test_action = 'incorrect new mistake' infr.test_state['test_action'] = test_action infr.test_state['pred_decision'] = decision infr.test_state['true_decision'] = true_decision infr.test_state['user_id'] = user_id infr.test_state['recovering'] = (infr.recover_graph.has_node(edge[0]) or infr.recover_graph.has_node(edge[1])) infr.test_state['n_decision'] += 1 if user_id.startswith('algo'): infr.test_state['n_algo'] += 1 elif user_id.startswith('user') or user_id == 'oracle': infr.test_state['n_manual'] += 1 else: raise AssertionError('unknown user_id=%r' % (user_id,)) test_print(test_action, color=action_color) assert test_action is not None, 'what happened?' class UserOracle(object): def __init__(oracle, accuracy, rng): if isinstance(rng, six.string_types): rng = sum(map(ord, rng)) rng = ut.ensure_rng(rng, impl='python') if isinstance(accuracy, tuple): oracle.normal_accuracy = accuracy[0] oracle.recover_accuracy = accuracy[1] else: oracle.normal_accuracy = accuracy oracle.recover_accuracy = accuracy # .5 oracle.rng = rng oracle.states = {POSTV, NEGTV, INCMP} def review(oracle, edge, truth, infr, accuracy=None): feedback = { 'user_id': 'user:oracle', 'confidence': 'absolutely_sure', 'evidence_decision': None, 'meta_decision': NULL, 'timestamp_s1': ut.get_timestamp('int', isutc=True), 'timestamp_c1': ut.get_timestamp('int', isutc=True), 'timestamp_c2': ut.get_timestamp('int', isutc=True), 'tags': [], } is_recovering = infr.is_recovering() if accuracy is None: if is_recovering: accuracy = oracle.recover_accuracy else: accuracy = oracle.normal_accuracy # The oracle can get anything where the hardness is less than its # accuracy hardness = oracle.rng.random() error = accuracy < hardness if error: error_options = list(oracle.states - {truth} - {INCMP}) observed = oracle.rng.choice(list(error_options)) else: observed = truth if accuracy < 1.0: feedback['confidence'] = 'pretty_sure' if accuracy < .5: feedback['confidence'] = 'guessing' feedback['evidence_decision'] = observed if error: infr.print( 'ORACLE ERROR real={} pred={} acc={:.2f} hard={:.2f}'.format( truth, observed, accuracy, hardness), 2, color='red') # infr.print( # 'ORACLE ERROR edge={}, truth={}, pred={}, rec={}, hardness={:.3f}'.format(edge, truth, observed, is_recovering, hardness), # 2, color='red') return feedback if __name__ == '__main__': r""" CommandLine: python -m ibeis.algo.graph.mixin_simulation python -m ibeis.algo.graph.mixin_simulation --allexamples """ import multiprocessing multiprocessing.freeze_support() # for win32 import utool as ut # NOQA ut.doctest_funcs()
40.224359
140
0.554475
69adbc05924f4ab3e8b2f53fd3e429a93e6296b3
1,124
py
Python
constants.py
MarcoFavorito/information-extraction-from-annotated-wikipedia
749f59c001d3850896431aaf0854c4c2ed209f1e
[ "MIT" ]
null
null
null
constants.py
MarcoFavorito/information-extraction-from-annotated-wikipedia
749f59c001d3850896431aaf0854c4c2ed209f1e
[ "MIT" ]
null
null
null
constants.py
MarcoFavorito/information-extraction-from-annotated-wikipedia
749f59c001d3850896431aaf0854c4c2ed209f1e
[ "MIT" ]
null
null
null
# Some constants NULL_BABELNET_ID = "NULL_BID" NULL_TYPE = "NULL_T" CUSTOM_TYPE = "CUSTOM_TYPE" # XML tags DISAMBIGUATED_ARTICLE_TAG = "disambiguatedArticle" TEXT_TAG = "text" ANNOTATIONS_TAG= "annotations" ANNOTATION_TAG= "annotation" BABELNET_ID_TAG = "babelNetID" MENTION_TAG = "mention" ANCHOR_START_TAG= "anchorStart" ANCHOR_END_TAG = "anchorEnd" TYPE_TAG = "type" TEXT_TAG_IDX = 0 ANNOTATIONS_TAG_IDX = 1 ANNOTATION_TYPE_MSC = "MSC" ANNOTATION_TYPE_HL = "HL" ANNOTATION_TYPE_BABELFY = "BABELFY" ANNOTATION_BABELNETID_TAG_POS = 0 ANNOTATION_MENTION_POS = 1 ANNOTATION_ANCHORSTART_POS = 2 ANNOTATION_ANCHOREND_POS = 3 ANNOTATION_TYPE_TAG_POS = 4 # POS tags VERB_POSTAG = "VERB" PROPN_POSTAG = "PROPN" PRON_POSTAG = "PRON" NOUN_POSTAG = "NOUN" # dep tags NSUBJ_DEPTAG = "nsubj" NSUBJPASS_DEPTAG = "nsubjpass" POBJ_DEPTAG = "pobj" COBJ_DEPTAG = "cobj" DOBJ_DEPTAG = "dobj" ATTR_DEPTAG = "attr" SPECIAL_DEP_TAGS = [NSUBJ_DEPTAG, NSUBJPASS_DEPTAG, POBJ_DEPTAG, ATTR_DEPTAG, COBJ_DEPTAG, DOBJ_DEPTAG] SUBJ_DEPTAGS = [NSUBJ_DEPTAG, NSUBJPASS_DEPTAG] OBJ_DEPTAGS = [POBJ_DEPTAG, ATTR_DEPTAG, COBJ_DEPTAG, DOBJ_DEPTAG]
22.938776
103
0.790036
cf3b426b68a61051ec225c59924c4e923b57a33b
4,012
py
Python
src/predict.py
WiraDKP/pytorch_speaker_embedding_for_diarization
61da1b7fe61111355f9329c7c0db20b2ecd0a411
[ "MIT" ]
10
2020-03-24T10:34:15.000Z
2021-09-02T15:00:55.000Z
src/predict.py
WiraDKP/pytorch_speaker_embedding_for_diarization
61da1b7fe61111355f9329c7c0db20b2ecd0a411
[ "MIT" ]
6
2020-08-28T20:22:41.000Z
2021-06-25T10:42:02.000Z
src/predict.py
WiraDKP/pytorch_speaker_embedding_for_diarization
61da1b7fe61111355f9329c7c0db20b2ecd0a411
[ "MIT" ]
5
2020-04-23T09:46:28.000Z
2022-03-25T09:56:24.000Z
import os import numpy as np import matplotlib.pyplot as plt import torch from torch import onnx from src.model import Encoder from src.dataset import BaseLoad from src.utils import zcr_vad, get_timestamp from src.cluster import OptimizedAgglomerativeClustering from openvino.inference_engine import IECore, IENetwork class BasePredictor(BaseLoad): def __init__(self, config_path, max_frame, hop): config = torch.load(config_path) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") super().__init__(config.sr, config.n_mfcc) self.ndim = config.ndim self.max_frame = max_frame self.hop = hop @staticmethod def _plot_diarization(y, spans, speakers): c = y[0].cpu().numpy().copy() for (start, end), speaker in zip(spans, speakers): c[start:end] = speaker plt.figure(figsize=(15, 2)) plt.plot(y[0], "k-") for idx, speaker in enumerate(set(speakers)): plt.fill_between(range(len(c)), -1, 1, where=(c==speaker), alpha=0.5, label=f"speaker_{speaker}") plt.legend(loc="upper center", ncol=idx+1, bbox_to_anchor=(0.5, -0.25)) class PyTorchPredictor(BasePredictor): def __init__(self, config_path, model_path, max_frame=45, hop=3): super().__init__(config_path, max_frame, hop) weight = torch.load(model_path, map_location="cpu") self.model = Encoder(self.ndim).to(self.device) self.model.load_state_dict(weight) self.model.eval() def predict(self, path, plot=False): y = self._load(path, mfcc=False) activity = zcr_vad(y) spans = get_timestamp(activity) embed = [self._encode_segment(y, span) for span in spans] embed = torch.cat(embed).cpu().numpy() speakers = OptimizedAgglomerativeClustering().fit_predict(embed) if plot: self._plot_diarization(y, spans, speakers) timestamp = np.array(spans) / self.sr return timestamp, speakers def _encode_segment(self, y, span): start, end = span mfcc = self._mfcc(y[:, start:end]).to(self.device) mfcc = mfcc.unfold(2, self.max_frame, self.hop).permute(2, 0, 1, 3) with torch.no_grad(): embed = self.model(mfcc).mean(0, keepdims=True) return embed def to_onnx(self, outdir="model/openvino"): os.makedirs(outdir, exist_ok=True) mfcc = torch.rand(1, 1, self.n_mfcc, self.max_frame).to(self.device) onnx.export(self.model, mfcc, f"{outdir}/diarization.onnx", input_names=["input"], output_names=["output"]) print(f"model is exported as {outdir}/diarization.onnx") class OpenVINOPredictor(BasePredictor): def __init__(self, model_xml, model_bin, config_path, max_frame=45, hop=3): super().__init__(config_path, max_frame, hop) net = IENetwork(model_xml, model_bin) plugin = IECore() self.exec_net = plugin.load_network(net, "CPU") def predict(self, path, plot=False): y = self._load(path, mfcc=False) activity = zcr_vad(y) spans = get_timestamp(activity) embed = [self._encode_segment(y, span) for span in spans] embed = np.vstack(embed) speakers = OptimizedAgglomerativeClustering().fit_predict(embed) if plot: self._plot_diarization(y, spans, speakers) timestamp = np.array(spans) / self.sr return timestamp, speakers def _encode_segment(self, y, span): start, end = span mfcc = self._mfcc(y[:, start:end]) mfcc = mfcc.unfold(2, self.max_frame, self.hop).permute(2, 0, 1, 3) mfcc = mfcc.cpu().numpy() embed = [self.exec_net.infer({"input": m}) for m in mfcc] embed = np.array([e["output"] for e in embed]) embed = embed.mean(0) return embed
37.495327
115
0.618893
92d54e4279b29667ea19aae7d50c3ce8ccc31df3
446
py
Python
backend/app.py
CSC510-Group-25/feature-hunt
27a0f52c8f7831e9e77db98d88f41d9fc1dab7ca
[ "MIT" ]
null
null
null
backend/app.py
CSC510-Group-25/feature-hunt
27a0f52c8f7831e9e77db98d88f41d9fc1dab7ca
[ "MIT" ]
147
2021-10-14T18:10:04.000Z
2021-11-30T01:36:42.000Z
backend/app.py
CSC510-Group-25/feature-hunt
27a0f52c8f7831e9e77db98d88f41d9fc1dab7ca
[ "MIT" ]
8
2021-11-04T04:17:21.000Z
2021-11-26T12:53:52.000Z
# pylint: skip-file # pylint: disable=pointless-string-statement,undefined-variable,line-too-long from flask import Flask from os import environ from flask_cors import CORS app = Flask(__name__) from auth_controller import * from products import * from product_controller import * from db_init import db app.secret_key = "testing" CORS(app) #if __name__ == "__main__": # app.run(debug=True, port=environ.get("PORT", 5000) , host='0.0.0.0')
24.777778
77
0.757848
b84a54dbc9057222f394b75fe104cfd15c74574b
2,710
py
Python
scoreboard/api.py
chrisx8/Ballzzz
0b3e914aa8c7db8320269461db14dd1b06a7f3e2
[ "MIT" ]
null
null
null
scoreboard/api.py
chrisx8/Ballzzz
0b3e914aa8c7db8320269461db14dd1b06a7f3e2
[ "MIT" ]
40
2020-02-18T23:31:17.000Z
2021-03-04T19:45:17.000Z
scoreboard/api.py
chrisx8/Ballzzz
0b3e914aa8c7db8320269461db14dd1b06a7f3e2
[ "MIT" ]
null
null
null
import re from flask_restful import Resource, reqparse from models import Scoreboard from views import DBSession, get_rankings from sqlalchemy.orm.exc import NoResultFound # Username legality check: 4-50 alphanumeric characters USERNAME_REGEX = re.compile('^[a-zA-Z0-9._-]{4,50}$') # accept and parse POST score_parser = reqparse.RequestParser() score_parser.add_argument('username', help='Your username should contain 4-50 ' 'characters, with only letters and numbers.', required=True) score_parser.add_argument('score', help='This field is required', required=True) # Score API class PublishScore(Resource): # GET: get the top 5 def get(self): top_ten = dict() # find all users, sorted by score board = DBSession.query(Scoreboard).order_by(Scoreboard.score.desc()).all() # find top five users if there's more than 5 users if len(board) > 10: for i in range(10): # result contains username, score, ranking (handles ties) top_ten[i] = self.build_user_data_json(board, i) # otherwise find all users else: for i in range(len(board)): # result contains username, score, ranking (handles ties) top_ten[i] = self.build_user_data_json(board, i) # close DB session DBSession.close() return top_ten, 200 # POST: submit score def post(self): data = score_parser.parse_args() # Find if user already exists try: user_data = DBSession.query(Scoreboard).\ filter_by(username=data['username']).one() # If the user's score in database is lower, update score if user_data.score < int(data['score']): user_data.score = data.score # If user doesn't exist, create user and save score except NoResultFound: user_data = Scoreboard(username=data['username'], score=int(data['score'])) DBSession.add(user_data) # Commit change to DB DBSession.commit() # Find current ranking board = DBSession.query(Scoreboard).order_by(Scoreboard.score.desc()).all() # find index of user index = board.index(user_data) # close DB session DBSession.close() return self.build_user_data_json(board, index), 201 def build_user_data_json(self, board, i): return {'username': board[i].username, 'score': board[i].score, 'ranking': get_rankings(board)[i] }
38.169014
83
0.595203
0f63c792b7cf95a34167dc6b89da09c94c825a62
1,290
py
Python
examples/sync/exchange_client/derivative_exchange_rpc/11_Trades.py
InjectiveLabs/sdk-python
d98382d450f4e6043d8fc34b621215fb14f958f2
[ "Apache-2.0" ]
10
2021-09-07T08:03:52.000Z
2022-03-08T08:39:30.000Z
examples/sync/exchange_client/derivative_exchange_rpc/11_Trades.py
InjectiveLabs/sdk-python
d98382d450f4e6043d8fc34b621215fb14f958f2
[ "Apache-2.0" ]
39
2021-08-19T20:09:35.000Z
2022-03-22T19:51:59.000Z
examples/sync/exchange_client/derivative_exchange_rpc/11_Trades.py
InjectiveLabs/sdk-python
d98382d450f4e6043d8fc34b621215fb14f958f2
[ "Apache-2.0" ]
5
2021-11-02T16:23:48.000Z
2022-01-20T22:30:05.000Z
# Copyright 2021 Injective Labs # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Injective Exchange API client for Python. Example only.""" import asyncio import logging from pyinjective.client import Client from pyinjective.constant import Network async def main() -> None: network = Network.testnet() client = Client(network, insecure=False) market_id = "0x4ca0f92fc28be0c9761326016b5a1a2177dd6375558365116b5bdda9abc229ce" subaccount_id = "0xc6fe5d33615a1c52c08018c47e8bc53646a0e101000000000000000000000000" trades = client.get_derivative_trades( market_id=market_id, subaccount_id=subaccount_id ) print(trades) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) asyncio.get_event_loop().run_until_complete(main())
34.864865
88
0.766667
8baf83e3ab6b47b8a0055b8559611b793be935db
594
py
Python
butter_hopper/headers.py
cswl/butter-hopper
8797221e0ffe3ab8000952f62edb88bb53a660b0
[ "MIT" ]
8
2019-02-12T23:39:58.000Z
2021-08-11T22:30:59.000Z
butter_hopper/headers.py
cswl/butter-hopper
8797221e0ffe3ab8000952f62edb88bb53a660b0
[ "MIT" ]
null
null
null
butter_hopper/headers.py
cswl/butter-hopper
8797221e0ffe3ab8000952f62edb88bb53a660b0
[ "MIT" ]
null
null
null
from munch import Munch from pathlib import Path MOUNT_HEADERS = Munch({ "BTRFSROOT_TARGET": 'broot', "UUID": "uuid", "PARTUUID": "puuid", "TYPE": "type", "AUTO": "auto", "SUBVOL": "subvol", "TARGET": "mountpoint", "OPTIONS": "options", "UDISKS_TARGET": "udisks2" }) BASE_PATHS = Munch({}) BASE_PATHS.run = Path('/run/mount') BASE_PATHS.base = BASE_PATHS.run.joinpath('butter_hop') BASE_PATHS.dlinks = BASE_PATHS.base.joinpath("distros") BASE_PATHS.root = BASE_PATHS.run.joinpath("butter_realroot") BASE_PATHS.distros = BASE_PATHS.root.joinpath("distros")
27
60
0.681818
f55bc8b945b6af8e21ca1ca1ddbf407188ab2b1e
797
py
Python
ServidorPython/python32_web/Lib/site-packages/sklearn/utils/tests/test_show_versions.py
mak213k/Servidor_automatizado_python
4403ef8027a2f814220baacc95856cf5fbf01d21
[ "MIT" ]
25
2019-03-08T01:03:03.000Z
2022-02-14T17:38:32.000Z
venv/lib/python3.7/site-packages/sklearn/utils/tests/test_show_versions.py
John1001Song/Big-Data-Robo-Adviser
9444dce96954c546333d5aecc92a06c3bfd19aa5
[ "MIT" ]
12
2021-03-09T03:01:16.000Z
2022-03-11T23:59:36.000Z
venv/lib/python3.7/site-packages/sklearn/utils/tests/test_show_versions.py
John1001Song/Big-Data-Robo-Adviser
9444dce96954c546333d5aecc92a06c3bfd19aa5
[ "MIT" ]
31
2019-01-15T20:16:50.000Z
2022-03-01T05:47:38.000Z
from sklearn.utils._show_versions import _get_sys_info from sklearn.utils._show_versions import _get_deps_info from sklearn.utils._show_versions import show_versions def test_get_sys_info(): sys_info = _get_sys_info() assert 'python' in sys_info assert 'executable' in sys_info assert 'machine' in sys_info def test_get_deps_info(): deps_info = _get_deps_info() assert 'pip' in deps_info assert 'setuptools' in deps_info assert 'sklearn' in deps_info assert 'numpy' in deps_info assert 'scipy' in deps_info assert 'Cython' in deps_info assert 'pandas' in deps_info def test_show_versions_with_blas(capsys): show_versions() out, err = capsys.readouterr() assert 'python' in out assert 'numpy' in out assert 'BLAS' in out
24.151515
55
0.734003
90388d161204584ad978af006898cacebcf8d4a6
1,252
py
Python
tensor2tensor/rl/model_rl_experiment_test.py
repoloper/tensor2tensor
2fd91d34b8e6d79599c0612e446175174e838b9d
[ "Apache-2.0" ]
61
2018-06-23T01:40:58.000Z
2021-06-07T09:33:38.000Z
tensor2tensor/rl/model_rl_experiment_test.py
zhaopufeng/tensor2tensor
7bb67a18e1e4a0cddd1d61c65c937f14c1c124e3
[ "Apache-2.0" ]
null
null
null
tensor2tensor/rl/model_rl_experiment_test.py
zhaopufeng/tensor2tensor
7bb67a18e1e4a0cddd1d61c65c937f14c1c124e3
[ "Apache-2.0" ]
8
2018-10-23T13:10:12.000Z
2019-07-31T05:53:08.000Z
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tiny run of model_rl_experiment. Smoke test.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensor2tensor.rl import model_rl_experiment import tensorflow as tf FLAGS = tf.flags.FLAGS class ModelRLExperimentTest(tf.test.TestCase): def test_basic(self): FLAGS.output_dir = tf.test.get_temp_dir() FLAGS.loop_hparams_set = "rl_modelrl_tiny" FLAGS.loop_hparams = "generative_model_params=next_frame_tiny" FLAGS.schedule = "train" # skip evaluation for world model training model_rl_experiment.main(None) if __name__ == "__main__": tf.test.main()
32.102564
74
0.771565
f0390f8ed8e8b2d3e4a3ef576330872cea08f7d6
230
py
Python
helpers/vline_down.py
nuzcraft/RLTut
b763de87ee49abd413a7c3a278c004803ab45663
[ "MIT" ]
2
2018-01-05T08:09:37.000Z
2018-01-05T20:39:18.000Z
helpers/vline_down.py
nuzcraft/RLTut
b763de87ee49abd413a7c3a278c004803ab45663
[ "MIT" ]
null
null
null
helpers/vline_down.py
nuzcraft/RLTut
b763de87ee49abd413a7c3a278c004803ab45663
[ "MIT" ]
null
null
null
# draws a vertical line down on a map import variables as var def vline_down(map, x, y): while y < var.MAP_HEIGHT and map[x][y].blocked: map[x][y].blocked = False map[x][y].block_sight = False y += 1
23
51
0.608696
add0da64d20442dd1dd862e69dff6b881461037b
2,057
py
Python
tests/run/test_train.py
cosmoquester/speech-recognition
c9f137a7fe23548435d7f20d87b60522697218b5
[ "Apache-2.0" ]
6
2021-05-06T10:14:19.000Z
2022-03-03T19:30:50.000Z
tests/run/test_train.py
ModuASR/speech-recognition
81bcf274407377dd785d204f5622c8747c33ea0f
[ "Apache-2.0" ]
14
2021-05-02T08:21:18.000Z
2021-06-13T11:37:24.000Z
tests/run/test_train.py
cosmoquester/speech-recognition
c9f137a7fe23548435d7f20d87b60522697218b5
[ "Apache-2.0" ]
2
2021-05-04T13:46:13.000Z
2021-05-12T07:29:06.000Z
import os import random import tempfile import pytest from speech_recognition.configs import TrainConfig from speech_recognition.run.train import main, parser from ..const import ( DEFAULT_LIBRI_CONFIG, SP_MODEL_LIBRI, TEST_DS_CONFIG, TEST_LAS_CONFIG, TFRECORD_DATASET_PATH, WAV_DATASET_PATH, ) @pytest.mark.interferable @pytest.mark.parametrize("mixed_precision", [False, True]) @pytest.mark.parametrize("model_config_path", [TEST_LAS_CONFIG, TEST_DS_CONFIG]) def test_train(model_config_path, mixed_precision): max_over_policy = random.choice([None, "slice", "filter"]) use_tfrecord = random.choice([True, False]) with tempfile.TemporaryDirectory() as tmpdir: arguments = [ "--data-config", DEFAULT_LIBRI_CONFIG, "--model-config", model_config_path, "--sp-model-path", SP_MODEL_LIBRI, "--train-dataset-paths", TFRECORD_DATASET_PATH if use_tfrecord else WAV_DATASET_PATH, "--dev-dataset-paths", TFRECORD_DATASET_PATH if use_tfrecord else WAV_DATASET_PATH, "--output-path", tmpdir, "--steps-per-epoch", "2", "--epochs", "1", "--shuffle-buffer-size", "30", "--device", "CPU", "--batch-size", "2", "--dev-batch-size", "2", "--learning-rate", "1e-3", "--train-dataset-size", "1", ] if mixed_precision: arguments.append("--mixed-precision") if use_tfrecord: arguments.append("--use-tfrecord") if max_over_policy is not None: arguments.extend(["--max-over-policy", max_over_policy]) assert main(TrainConfig(**vars(parser.parse_args(arguments)))) is None assert os.path.exists(os.path.join(tmpdir, "logs", "train")) assert os.path.exists(os.path.join(tmpdir, "models", "checkpoint"))
30.25
80
0.584832
46b45a4f0ec35e909f04c07cf661933aced73c0a
57,480
py
Python
notebooks/primes.py
felipessalvatore/it
82916dc96bbc4630dfe1d0ba6cf9972394da8771
[ "MIT" ]
null
null
null
notebooks/primes.py
felipessalvatore/it
82916dc96bbc4630dfe1d0ba6cf9972394da8771
[ "MIT" ]
null
null
null
notebooks/primes.py
felipessalvatore/it
82916dc96bbc4630dfe1d0ba6cf9972394da8771
[ "MIT" ]
null
null
null
primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,4007,4013,4019,4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,4153,4157,4159,4177,4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,4271,4273,4283,4289,4297,4327,4337,4339,4349,4357,4363,4373,4391,4397,4409,4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,4523,4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,4663,4673,4679,4691,4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,4799,4801,4813,4817,4831,4861,4871,4877,4889,4903,4909,4919,4931,4933,4937,4943,4951,4957,4967,4969,4973,4987,4993,4999,5003,5009,5011,5021,5023,5039,5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,5189,5197,5209,5227,5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,5333,5347,5351,5381,5387,5393,5399,5407,5413,5417,5419,5431,5437,5441,5443,5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,5569,5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,5701,5711,5717,5737,5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,5839,5843,5849,5851,5857,5861,5867,5869,5879,5881,5897,5903,5923,5927,5939,5953,5981,5987,6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,6091,6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,6229,6247,6257,6263,6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,6343,6353,6359,6361,6367,6373,6379,6389,6397,6421,6427,6449,6451,6469,6473,6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,6619,6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,6763,6779,6781,6791,6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,6883,6899,6907,6911,6917,6947,6949,6959,6961,6967,6971,6977,6983,6991,6997,7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,7151,7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,7307,7309,7321,7331,7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,7477,7481,7487,7489,7499,7507,7517,7523,7529,7537,7541,7547,7549,7559,7561,7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,7687,7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,7841,7853,7867,7873,7877,7879,7883,7901,7907,7919,7927,7933,7937,7949,7951,7963,7993,8009,8011,8017,8039,8053,8059,8069,8081,8087,8089,8093,8101,8111,8117,8123,8147,8161,8167,8171,8179,8191,8209,8219,8221,8231,8233,8237,8243,8263,8269,8273,8287,8291,8293,8297,8311,8317,8329,8353,8363,8369,8377,8387,8389,8419,8423,8429,8431,8443,8447,8461,8467,8501,8513,8521,8527,8537,8539,8543,8563,8573,8581,8597,8599,8609,8623,8627,8629,8641,8647,8663,8669,8677,8681,8689,8693,8699,8707,8713,8719,8731,8737,8741,8747,8753,8761,8779,8783,8803,8807,8819,8821,8831,8837,8839,8849,8861,8863,8867,8887,8893,8923,8929,8933,8941,8951,8963,8969,8971,8999,9001,9007,9011,9013,9029,9041,9043,9049,9059,9067,9091,9103,9109,9127,9133,9137,9151,9157,9161,9173,9181,9187,9199,9203,9209,9221,9227,9239,9241,9257,9277,9281,9283,9293,9311,9319,9323,9337,9341,9343,9349,9371,9377,9391,9397,9403,9413,9419,9421,9431,9433,9437,9439,9461,9463,9467,9473,9479,9491,9497,9511,9521,9533,9539,9547,9551,9587,9601,9613,9619,9623,9629,9631,9643,9649,9661,9677,9679,9689,9697,9719,9721,9733,9739,9743,9749,9767,9769,9781,9787,9791,9803,9811,9817,9829,9833,9839,9851,9857,9859,9871,9883,9887,9901,9907,9923,9929,9931,9941,9949,9967,9973,10007,10009,10037,10039,10061,10067,10069,10079,10091,10093,10099,10103,10111,10133,10139,10141,10151,10159,10163,10169,10177,10181,10193,10211,10223,10243,10247,10253,10259,10267,10271,10273,10289,10301,10303,10313,10321,10331,10333,10337,10343,10357,10369,10391,10399,10427,10429,10433,10453,10457,10459,10463,10477,10487,10499,10501,10513,10529,10531,10559,10567,10589,10597,10601,10607,10613,10627,10631,10639,10651,10657,10663,10667,10687,10691,10709,10711,10723,10729,10733,10739,10753,10771,10781,10789,10799,10831,10837,10847,10853,10859,10861,10867,10883,10889,10891,10903,10909,10937,10939,10949,10957,10973,10979,10987,10993,11003,11027,11047,11057,11059,11069,11071,11083,11087,11093,11113,11117,11119,11131,11149,11159,11161,11171,11173,11177,11197,11213,11239,11243,11251,11257,11261,11273,11279,11287,11299,11311,11317,11321,11329,11351,11353,11369,11383,11393,11399,11411,11423,11437,11443,11447,11467,11471,11483,11489,11491,11497,11503,11519,11527,11549,11551,11579,11587,11593,11597,11617,11621,11633,11657,11677,11681,11689,11699,11701,11717,11719,11731,11743,11777,11779,11783,11789,11801,11807,11813,11821,11827,11831,11833,11839,11863,11867,11887,11897,11903,11909,11923,11927,11933,11939,11941,11953,11959,11969,11971,11981,11987,12007,12011,12037,12041,12043,12049,12071,12073,12097,12101,12107,12109,12113,12119,12143,12149,12157,12161,12163,12197,12203,12211,12227,12239,12241,12251,12253,12263,12269,12277,12281,12289,12301,12323,12329,12343,12347,12373,12377,12379,12391,12401,12409,12413,12421,12433,12437,12451,12457,12473,12479,12487,12491,12497,12503,12511,12517,12527,12539,12541,12547,12553,12569,12577,12583,12589,12601,12611,12613,12619,12637,12641,12647,12653,12659,12671,12689,12697,12703,12713,12721,12739,12743,12757,12763,12781,12791,12799,12809,12821,12823,12829,12841,12853,12889,12893,12899,12907,12911,12917,12919,12923,12941,12953,12959,12967,12973,12979,12983,13001,13003,13007,13009,13033,13037,13043,13049,13063,13093,13099,13103,13109,13121,13127,13147,13151,13159,13163,13171,13177,13183,13187,13217,13219,13229,13241,13249,13259,13267,13291,13297,13309,13313,13327,13331,13337,13339,13367,13381,13397,13399,13411,13417,13421,13441,13451,13457,13463,13469,13477,13487,13499,13513,13523,13537,13553,13567,13577,13591,13597,13613,13619,13627,13633,13649,13669,13679,13681,13687,13691,13693,13697,13709,13711,13721,13723,13729,13751,13757,13759,13763,13781,13789,13799,13807,13829,13831,13841,13859,13873,13877,13879,13883,13901,13903,13907,13913,13921,13931,13933,13963,13967,13997,13999,14009,14011,14029,14033,14051,14057,14071,14081,14083,14087,14107,14143,14149,14153,14159,14173,14177,14197,14207,14221,14243,14249,14251,14281,14293,14303,14321,14323,14327,14341,14347,14369,14387,14389,14401,14407,14411,14419,14423,14431,14437,14447,14449,14461,14479,14489,14503,14519,14533,14537,14543,14549,14551,14557,14561,14563,14591,14593,14621,14627,14629,14633,14639,14653,14657,14669,14683,14699,14713,14717,14723,14731,14737,14741,14747,14753,14759,14767,14771,14779,14783,14797,14813,14821,14827,14831,14843,14851,14867,14869,14879,14887,14891,14897,14923,14929,14939,14947,14951,14957,14969,14983,15013,15017,15031,15053,15061,15073,15077,15083,15091,15101,15107,15121,15131,15137,15139,15149,15161,15173,15187,15193,15199,15217,15227,15233,15241,15259,15263,15269,15271,15277,15287,15289,15299,15307,15313,15319,15329,15331,15349,15359,15361,15373,15377,15383,15391,15401,15413,15427,15439,15443,15451,15461,15467,15473,15493,15497,15511,15527,15541,15551,15559,15569,15581,15583,15601,15607,15619,15629,15641,15643,15647,15649,15661,15667,15671,15679,15683,15727,15731,15733,15737,15739,15749,15761,15767,15773,15787,15791,15797,15803,15809,15817,15823,15859,15877,15881,15887,15889,15901,15907,15913,15919,15923,15937,15959,15971,15973,15991,16001,16007,16033,16057,16061,16063,16067,16069,16073,16087,16091,16097,16103,16111,16127,16139,16141,16183,16187,16189,16193,16217,16223,16229,16231,16249,16253,16267,16273,16301,16319,16333,16339,16349,16361,16363,16369,16381,16411,16417,16421,16427,16433,16447,16451,16453,16477,16481,16487,16493,16519,16529,16547,16553,16561,16567,16573,16603,16607,16619,16631,16633,16649,16651,16657,16661,16673,16691,16693,16699,16703,16729,16741,16747,16759,16763,16787,16811,16823,16829,16831,16843,16871,16879,16883,16889,16901,16903,16921,16927,16931,16937,16943,16963,16979,16981,16987,16993,17011,17021,17027,17029,17033,17041,17047,17053,17077,17093,17099,17107,17117,17123,17137,17159,17167,17183,17189,17191,17203,17207,17209,17231,17239,17257,17291,17293,17299,17317,17321,17327,17333,17341,17351,17359,17377,17383,17387,17389,17393,17401,17417,17419,17431,17443,17449,17467,17471,17477,17483,17489,17491,17497,17509,17519,17539,17551,17569,17573,17579,17581,17597,17599,17609,17623,17627,17657,17659,17669,17681,17683,17707,17713,17729,17737,17747,17749,17761,17783,17789,17791,17807,17827,17837,17839,17851,17863,17881,17891,17903,17909,17911,17921,17923,17929,17939,17957,17959,17971,17977,17981,17987,17989,18013,18041,18043,18047,18049,18059,18061,18077,18089,18097,18119,18121,18127,18131,18133,18143,18149,18169,18181,18191,18199,18211,18217,18223,18229,18233,18251,18253,18257,18269,18287,18289,18301,18307,18311,18313,18329,18341,18353,18367,18371,18379,18397,18401,18413,18427,18433,18439,18443,18451,18457,18461,18481,18493,18503,18517,18521,18523,18539,18541,18553,18583,18587,18593,18617,18637,18661,18671,18679,18691,18701,18713,18719,18731,18743,18749,18757,18773,18787,18793,18797,18803,18839,18859,18869,18899,18911,18913,18917,18919,18947,18959,18973,18979,19001,19009,19013,19031,19037,19051,19069,19073,19079,19081,19087,19121,19139,19141,19157,19163,19181,19183,19207,19211,19213,19219,19231,19237,19249,19259,19267,19273,19289,19301,19309,19319,19333,19373,19379,19381,19387,19391,19403,19417,19421,19423,19427,19429,19433,19441,19447,19457,19463,19469,19471,19477,19483,19489,19501,19507,19531,19541,19543,19553,19559,19571,19577,19583,19597,19603,19609,19661,19681,19687,19697,19699,19709,19717,19727,19739,19751,19753,19759,19763,19777,19793,19801,19813,19819,19841,19843,19853,19861,19867,19889,19891,19913,19919,19927,19937,19949,19961,19963,19973,19979,19991,19993,19997,20011,20021,20023,20029,20047,20051,20063,20071,20089,20101,20107,20113,20117,20123,20129,20143,20147,20149,20161,20173,20177,20183,20201,20219,20231,20233,20249,20261,20269,20287,20297,20323,20327,20333,20341,20347,20353,20357,20359,20369,20389,20393,20399,20407,20411,20431,20441,20443,20477,20479,20483,20507,20509,20521,20533,20543,20549,20551,20563,20593,20599,20611,20627,20639,20641,20663,20681,20693,20707,20717,20719,20731,20743,20747,20749,20753,20759,20771,20773,20789,20807,20809,20849,20857,20873,20879,20887,20897,20899,20903,20921,20929,20939,20947,20959,20963,20981,20983,21001,21011,21013,21017,21019,21023,21031,21059,21061,21067,21089,21101,21107,21121,21139,21143,21149,21157,21163,21169,21179,21187,21191,21193,21211,21221,21227,21247,21269,21277,21283,21313,21317,21319,21323,21341,21347,21377,21379,21383,21391,21397,21401,21407,21419,21433,21467,21481,21487,21491,21493,21499,21503,21517,21521,21523,21529,21557,21559,21563,21569,21577,21587,21589,21599,21601,21611,21613,21617,21647,21649,21661,21673,21683,21701,21713,21727,21737,21739,21751,21757,21767,21773,21787,21799,21803,21817,21821,21839,21841,21851,21859,21863,21871,21881,21893,21911,21929,21937,21943,21961,21977,21991,21997,22003,22013,22027,22031,22037,22039,22051,22063,22067,22073,22079,22091,22093,22109,22111,22123,22129,22133,22147,22153,22157,22159,22171,22189,22193,22229,22247,22259,22271,22273,22277,22279,22283,22291,22303,22307,22343,22349,22367,22369,22381,22391,22397,22409,22433,22441,22447,22453,22469,22481,22483,22501,22511,22531,22541,22543,22549,22567,22571,22573,22613,22619,22621,22637,22639,22643,22651,22669,22679,22691,22697,22699,22709,22717,22721,22727,22739,22741,22751,22769,22777,22783,22787,22807,22811,22817,22853,22859,22861,22871,22877,22901,22907,22921,22937,22943,22961,22963,22973,22993,23003,23011,23017,23021,23027,23029,23039,23041,23053,23057,23059,23063,23071,23081,23087,23099,23117,23131,23143,23159,23167,23173,23189,23197,23201,23203,23209,23227,23251,23269,23279,23291,23293,23297,23311,23321,23327,23333,23339,23357,23369,23371,23399,23417,23431,23447,23459,23473,23497,23509,23531,23537,23539,23549,23557,23561,23563,23567,23581,23593,23599,23603,23609,23623,23627,23629,23633,23663,23669,23671,23677,23687,23689,23719,23741,23743,23747,23753,23761,23767,23773,23789,23801,23813,23819,23827,23831,23833,23857,23869,23873,23879,23887,23893,23899,23909,23911,23917,23929,23957,23971,23977,23981,23993,24001,24007,24019,24023,24029,24043,24049,24061,24071,24077,24083,24091,24097,24103,24107,24109,24113,24121,24133,24137,24151,24169,24179,24181,24197,24203,24223,24229,24239,24247,24251,24281,24317,24329,24337,24359,24371,24373,24379,24391,24407,24413,24419,24421,24439,24443,24469,24473,24481,24499,24509,24517,24527,24533,24547,24551,24571,24593,24611,24623,24631,24659,24671,24677,24683,24691,24697,24709,24733,24749,24763,24767,24781,24793,24799,24809,24821,24841,24847,24851,24859,24877,24889,24907,24917,24919,24923,24943,24953,24967,24971,24977,24979,24989,25013,25031,25033,25037,25057,25073,25087,25097,25111,25117,25121,25127,25147,25153,25163,25169,25171,25183,25189,25219,25229,25237,25243,25247,25253,25261,25301,25303,25307,25309,25321,25339,25343,25349,25357,25367,25373,25391,25409,25411,25423,25439,25447,25453,25457,25463,25469,25471,25523,25537,25541,25561,25577,25579,25583,25589,25601,25603,25609,25621,25633,25639,25643,25657,25667,25673,25679,25693,25703,25717,25733,25741,25747,25759,25763,25771,25793,25799,25801,25819,25841,25847,25849,25867,25873,25889,25903,25913,25919,25931,25933,25939,25943,25951,25969,25981,25997,25999,26003,26017,26021,26029,26041,26053,26083,26099,26107,26111,26113,26119,26141,26153,26161,26171,26177,26183,26189,26203,26209,26227,26237,26249,26251,26261,26263,26267,26293,26297,26309,26317,26321,26339,26347,26357,26371,26387,26393,26399,26407,26417,26423,26431,26437,26449,26459,26479,26489,26497,26501,26513,26539,26557,26561,26573,26591,26597,26627,26633,26641,26647,26669,26681,26683,26687,26693,26699,26701,26711,26713,26717,26723,26729,26731,26737,26759,26777,26783,26801,26813,26821,26833,26839,26849,26861,26863,26879,26881,26891,26893,26903,26921,26927,26947,26951,26953,26959,26981,26987,26993,27011,27017,27031,27043,27059,27061,27067,27073,27077,27091,27103,27107,27109,27127,27143,27179,27191,27197,27211,27239,27241,27253,27259,27271,27277,27281,27283,27299,27329,27337,27361,27367,27397,27407,27409,27427,27431,27437,27449,27457,27479,27481,27487,27509,27527,27529,27539,27541,27551,27581,27583,27611,27617,27631,27647,27653,27673,27689,27691,27697,27701,27733,27737,27739,27743,27749,27751,27763,27767,27773,27779,27791,27793,27799,27803,27809,27817,27823,27827,27847,27851,27883,27893,27901,27917,27919,27941,27943,27947,27953,27961,27967,27983,27997,28001,28019,28027,28031,28051,28057,28069,28081,28087,28097,28099,28109,28111,28123,28151,28163,28181,28183,28201,28211,28219,28229,28277,28279,28283,28289,28297,28307,28309,28319,28349,28351,28387,28393,28403,28409,28411,28429,28433,28439,28447,28463,28477,28493,28499,28513,28517,28537,28541,28547,28549,28559,28571,28573,28579,28591,28597,28603,28607,28619,28621,28627,28631,28643,28649,28657,28661,28663,28669,28687,28697,28703,28711,28723,28729,28751,28753,28759,28771,28789,28793,28807,28813,28817,28837,28843,28859,28867,28871,28879,28901,28909,28921,28927,28933,28949,28961,28979,29009,29017,29021,29023,29027,29033,29059,29063,29077,29101,29123,29129,29131,29137,29147,29153,29167,29173,29179,29191,29201,29207,29209,29221,29231,29243,29251,29269,29287,29297,29303,29311,29327,29333,29339,29347,29363,29383,29387,29389,29399,29401,29411,29423,29429,29437,29443,29453,29473,29483,29501,29527,29531,29537,29567,29569,29573,29581,29587,29599,29611,29629,29633,29641,29663,29669,29671,29683,29717,29723,29741,29753,29759,29761,29789,29803,29819,29833,29837,29851,29863,29867,29873,29879,29881,29917,29921,29927,29947,29959,29983,29989,30011,30013,30029,30047,30059,30071,30089,30091,30097,30103,30109,30113,30119,30133,30137,30139,30161,30169,30181,30187,30197,30203,30211,30223,30241,30253,30259,30269,30271,30293,30307,30313,30319,30323,30341,30347,30367,30389,30391,30403,30427,30431,30449,30467,30469,30491,30493,30497,30509,30517,30529,30539,30553,30557,30559,30577,30593,30631,30637,30643,30649,30661,30671,30677,30689,30697,30703,30707,30713,30727,30757,30763,30773,30781,30803,30809,30817,30829,30839,30841,30851,30853,30859,30869,30871,30881,30893,30911,30931,30937,30941,30949,30971,30977,30983,31013,31019,31033,31039,31051,31063,31069,31079,31081,31091,31121,31123,31139,31147,31151,31153,31159,31177,31181,31183,31189,31193,31219,31223,31231,31237,31247,31249,31253,31259,31267,31271,31277,31307,31319,31321,31327,31333,31337,31357,31379,31387,31391,31393,31397,31469,31477,31481,31489,31511,31513,31517,31531,31541,31543,31547,31567,31573,31583,31601,31607,31627,31643,31649,31657,31663,31667,31687,31699,31721,31723,31727,31729,31741,31751,31769,31771,31793,31799,31817,31847,31849,31859,31873,31883,31891,31907,31957,31963,31973,31981,31991,32003,32009,32027,32029,32051,32057,32059,32063,32069,32077,32083,32089,32099,32117,32119,32141,32143,32159,32173,32183,32189,32191,32203,32213,32233,32237,32251,32257,32261,32297,32299,32303,32309,32321,32323,32327,32341,32353,32359,32363,32369,32371,32377,32381,32401,32411,32413,32423,32429,32441,32443,32467,32479,32491,32497,32503,32507,32531,32533,32537,32561,32563,32569,32573,32579,32587,32603,32609,32611,32621,32633,32647,32653,32687,32693,32707,32713,32717,32719,32749,32771,32779,32783,32789,32797,32801,32803,32831,32833,32839,32843,32869,32887,32909,32911,32917,32933,32939,32941,32957,32969,32971,32983,32987,32993,32999,33013,33023,33029,33037,33049,33053,33071,33073,33083,33091,33107,33113,33119,33149,33151,33161,33179,33181,33191,33199,33203,33211,33223,33247,33287,33289,33301,33311,33317,33329,33331,33343,33347,33349,33353,33359,33377,33391,33403,33409,33413,33427,33457,33461,33469,33479,33487,33493,33503,33521,33529,33533,33547,33563,33569,33577,33581,33587,33589,33599,33601,33613,33617,33619,33623,33629,33637,33641,33647,33679,33703,33713,33721,33739,33749,33751,33757,33767,33769,33773,33791,33797,33809,33811,33827,33829,33851,33857,33863,33871,33889,33893,33911,33923,33931,33937,33941,33961,33967,33997,34019,34031,34033,34039,34057,34061,34123,34127,34129,34141,34147,34157,34159,34171,34183,34211,34213,34217,34231,34253,34259,34261,34267,34273,34283,34297,34301,34303,34313,34319,34327,34337,34351,34361,34367,34369,34381,34403,34421,34429,34439,34457,34469,34471,34483,34487,34499,34501,34511,34513,34519,34537,34543,34549,34583,34589,34591,34603,34607,34613,34631,34649,34651,34667,34673,34679,34687,34693,34703,34721,34729,34739,34747,34757,34759,34763,34781,34807,34819,34841,34843,34847,34849,34871,34877,34883,34897,34913,34919,34939,34949,34961,34963,34981,35023,35027,35051,35053,35059,35069,35081,35083,35089,35099,35107,35111,35117,35129,35141,35149,35153,35159,35171,35201,35221,35227,35251,35257,35267,35279,35281,35291,35311,35317,35323,35327,35339,35353,35363,35381,35393,35401,35407,35419,35423,35437,35447,35449,35461,35491,35507,35509,35521,35527,35531,35533,35537,35543,35569,35573,35591,35593,35597,35603,35617,35671,35677,35729,35731,35747,35753,35759,35771,35797,35801,35803,35809,35831,35837,35839,35851,35863,35869,35879,35897,35899,35911,35923,35933,35951,35963,35969,35977,35983,35993,35999,36007,36011,36013,36017,36037,36061,36067,36073,36083,36097,36107,36109,36131,36137,36151,36161,36187,36191,36209,36217,36229,36241,36251,36263,36269,36277,36293,36299,36307,36313,36319,36341,36343,36353,36373,36383,36389,36433,36451,36457,36467,36469,36473,36479,36493,36497,36523,36527,36529,36541,36551,36559,36563,36571,36583,36587,36599,36607,36629,36637,36643,36653,36671,36677,36683,36691,36697,36709,36713,36721,36739,36749,36761,36767,36779,36781,36787,36791,36793,36809,36821,36833,36847,36857,36871,36877,36887,36899,36901,36913,36919,36923,36929,36931,36943,36947,36973,36979,36997,37003,37013,37019,37021,37039,37049,37057,37061,37087,37097,37117,37123,37139,37159,37171,37181,37189,37199,37201,37217,37223,37243,37253,37273,37277,37307,37309,37313,37321,37337,37339,37357,37361,37363,37369,37379,37397,37409,37423,37441,37447,37463,37483,37489,37493,37501,37507,37511,37517,37529,37537,37547,37549,37561,37567,37571,37573,37579,37589,37591,37607,37619,37633,37643,37649,37657,37663,37691,37693,37699,37717,37747,37781,37783,37799,37811,37813,37831,37847,37853,37861,37871,37879,37889,37897,37907,37951,37957,37963,37967,37987,37991,37993,37997,38011,38039,38047,38053,38069,38083,38113,38119,38149,38153,38167,38177,38183,38189,38197,38201,38219,38231,38237,38239,38261,38273,38281,38287,38299,38303,38317,38321,38327,38329,38333,38351,38371,38377,38393,38431,38447,38449,38453,38459,38461,38501,38543,38557,38561,38567,38569,38593,38603,38609,38611,38629,38639,38651,38653,38669,38671,38677,38693,38699,38707,38711,38713,38723,38729,38737,38747,38749,38767,38783,38791,38803,38821,38833,38839,38851,38861,38867,38873,38891,38903,38917,38921,38923,38933,38953,38959,38971,38977,38993,39019,39023,39041,39043,39047,39079,39089,39097,39103,39107,39113,39119,39133,39139,39157,39161,39163,39181,39191,39199,39209,39217,39227,39229,39233,39239,39241,39251,39293,39301,39313,39317,39323,39341,39343,39359,39367,39371,39373,39383,39397,39409,39419,39439,39443,39451,39461,39499,39503,39509,39511,39521,39541,39551,39563,39569,39581,39607,39619,39623,39631,39659,39667,39671,39679,39703,39709,39719,39727,39733,39749,39761,39769,39779,39791,39799,39821,39827,39829,39839,39841,39847,39857,39863,39869,39877,39883,39887,39901,39929,39937,39953,39971,39979,39983,39989,40009,40013,40031,40037,40039,40063,40087,40093,40099,40111,40123,40127,40129,40151,40153,40163,40169,40177,40189,40193,40213,40231,40237,40241,40253,40277,40283,40289,40343,40351,40357,40361,40387,40423,40427,40429,40433,40459,40471,40483,40487,40493,40499,40507,40519,40529,40531,40543,40559,40577,40583,40591,40597,40609,40627,40637,40639,40693,40697,40699,40709,40739,40751,40759,40763,40771,40787,40801,40813,40819,40823,40829,40841,40847,40849,40853,40867,40879,40883,40897,40903,40927,40933,40939,40949,40961,40973,40993,41011,41017,41023,41039,41047,41051,41057,41077,41081,41113,41117,41131,41141,41143,41149,41161,41177,41179,41183,41189,41201,41203,41213,41221,41227,41231,41233,41243,41257,41263,41269,41281,41299,41333,41341,41351,41357,41381,41387,41389,41399,41411,41413,41443,41453,41467,41479,41491,41507,41513,41519,41521,41539,41543,41549,41579,41593,41597,41603,41609,41611,41617,41621,41627,41641,41647,41651,41659,41669,41681,41687,41719,41729,41737,41759,41761,41771,41777,41801,41809,41813,41843,41849,41851,41863,41879,41887,41893,41897,41903,41911,41927,41941,41947,41953,41957,41959,41969,41981,41983,41999,42013,42017,42019,42023,42043,42061,42071,42073,42083,42089,42101,42131,42139,42157,42169,42179,42181,42187,42193,42197,42209,42221,42223,42227,42239,42257,42281,42283,42293,42299,42307,42323,42331,42337,42349,42359,42373,42379,42391,42397,42403,42407,42409,42433,42437,42443,42451,42457,42461,42463,42467,42473,42487,42491,42499,42509,42533,42557,42569,42571,42577,42589,42611,42641,42643,42649,42667,42677,42683,42689,42697,42701,42703,42709,42719,42727,42737,42743,42751,42767,42773,42787,42793,42797,42821,42829,42839,42841,42853,42859,42863,42899,42901,42923,42929,42937,42943,42953,42961,42967,42979,42989,43003,43013,43019,43037,43049,43051,43063,43067,43093,43103,43117,43133,43151,43159,43177,43189,43201,43207,43223,43237,43261,43271,43283,43291,43313,43319,43321,43331,43391,43397,43399,43403,43411,43427,43441,43451,43457,43481,43487,43499,43517,43541,43543,43573,43577,43579,43591,43597,43607,43609,43613,43627,43633,43649,43651,43661,43669,43691,43711,43717,43721,43753,43759,43777,43781,43783,43787,43789,43793,43801,43853,43867,43889,43891,43913,43933,43943,43951,43961,43963,43969,43973,43987,43991,43997,44017,44021,44027,44029,44041,44053,44059,44071,44087,44089,44101,44111,44119,44123,44129,44131,44159,44171,44179,44189,44201,44203,44207,44221,44249,44257,44263,44267,44269,44273,44279,44281,44293,44351,44357,44371,44381,44383,44389,44417,44449,44453,44483,44491,44497,44501,44507,44519,44531,44533,44537,44543,44549,44563,44579,44587,44617,44621,44623,44633,44641,44647,44651,44657,44683,44687,44699,44701,44711,44729,44741,44753,44771,44773,44777,44789,44797,44809,44819,44839,44843,44851,44867,44879,44887,44893,44909,44917,44927,44939,44953,44959,44963,44971,44983,44987,45007,45013,45053,45061,45077,45083,45119,45121,45127,45131,45137,45139,45161,45179,45181,45191,45197,45233,45247,45259,45263,45281,45289,45293,45307,45317,45319,45329,45337,45341,45343,45361,45377,45389,45403,45413,45427,45433,45439,45481,45491,45497,45503,45523,45533,45541,45553,45557,45569,45587,45589,45599,45613,45631,45641,45659,45667,45673,45677,45691,45697,45707,45737,45751,45757,45763,45767,45779,45817,45821,45823,45827,45833,45841,45853,45863,45869,45887,45893,45943,45949,45953,45959,45971,45979,45989,46021,46027,46049,46051,46061,46073,46091,46093,46099,46103,46133,46141,46147,46153,46171,46181,46183,46187,46199,46219,46229,46237,46261,46271,46273,46279,46301,46307,46309,46327,46337,46349,46351,46381,46399,46411,46439,46441,46447,46451,46457,46471,46477,46489,46499,46507,46511,46523,46549,46559,46567,46573,46589,46591,46601,46619,46633,46639,46643,46649,46663,46679,46681,46687,46691,46703,46723,46727,46747,46751,46757,46769,46771,46807,46811,46817,46819,46829,46831,46853,46861,46867,46877,46889,46901,46919,46933,46957,46993,46997,47017,47041,47051,47057,47059,47087,47093,47111,47119,47123,47129,47137,47143,47147,47149,47161,47189,47207,47221,47237,47251,47269,47279,47287,47293,47297,47303,47309,47317,47339,47351,47353,47363,47381,47387,47389,47407,47417,47419,47431,47441,47459,47491,47497,47501,47507,47513,47521,47527,47533,47543,47563,47569,47581,47591,47599,47609,47623,47629,47639,47653,47657,47659,47681,47699,47701,47711,47713,47717,47737,47741,47743,47777,47779,47791,47797,47807,47809,47819,47837,47843,47857,47869,47881,47903,47911,47917,47933,47939,47947,47951,47963,47969,47977,47981,48017,48023,48029,48049,48073,48079,48091,48109,48119,48121,48131,48157,48163,48179,48187,48193,48197,48221,48239,48247,48259,48271,48281,48299,48311,48313,48337,48341,48353,48371,48383,48397,48407,48409,48413,48437,48449,48463,48473,48479,48481,48487,48491,48497,48523,48527,48533,48539,48541,48563,48571,48589,48593,48611,48619,48623,48647,48649,48661,48673,48677,48679,48731,48733,48751,48757,48761,48767,48779,48781,48787,48799,48809,48817,48821,48823,48847,48857,48859,48869,48871,48883,48889,48907,48947,48953,48973,48989,48991,49003,49009,49019,49031,49033,49037,49043,49057,49069,49081,49103,49109,49117,49121,49123,49139,49157,49169,49171,49177,49193,49199,49201,49207,49211,49223,49253,49261,49277,49279,49297,49307,49331,49333,49339,49363,49367,49369,49391,49393,49409,49411,49417,49429,49433,49451,49459,49463,49477,49481,49499,49523,49529,49531,49537,49547,49549,49559,49597,49603,49613,49627,49633,49639,49663,49667,49669,49681,49697,49711,49727,49739,49741,49747,49757,49783,49787,49789,49801,49807,49811,49823,49831,49843,49853,49871,49877,49891,49919,49921,49927,49937,49939,49943,49957,49991,49993,49999,50021,50023,50033,50047,50051,50053,50069,50077,50087,50093,50101,50111,50119,50123,50129,50131,50147,50153,50159,50177,50207,50221,50227,50231,50261,50263,50273,50287,50291,50311,50321,50329,50333,50341,50359,50363,50377,50383,50387,50411,50417,50423,50441,50459,50461,50497,50503,50513,50527,50539,50543,50549,50551,50581,50587,50591,50593,50599,50627,50647,50651,50671,50683,50707,50723,50741,50753,50767,50773,50777,50789,50821,50833,50839,50849,50857,50867,50873,50891,50893,50909,50923,50929,50951,50957,50969,50971,50989,50993,51001,51031,51043,51047,51059,51061,51071,51109,51131,51133,51137,51151,51157,51169,51193,51197,51199,51203,51217,51229,51239,51241,51257,51263,51283,51287,51307,51329,51341,51343,51347,51349,51361,51383,51407,51413,51419,51421,51427,51431,51437,51439,51449,51461,51473,51479,51481,51487,51503,51511,51517,51521,51539,51551,51563,51577,51581,51593,51599,51607,51613,51631,51637,51647,51659,51673,51679,51683,51691,51713,51719,51721,51749,51767,51769,51787,51797,51803,51817,51827,51829,51839,51853,51859,51869,51871,51893,51899,51907,51913,51929,51941,51949,51971,51973,51977,51991,52009,52021,52027,52051,52057,52067,52069,52081,52103,52121,52127,52147,52153,52163,52177,52181,52183,52189,52201,52223,52237,52249,52253,52259,52267,52289,52291,52301,52313,52321,52361,52363,52369,52379,52387,52391,52433,52453,52457,52489,52501,52511,52517,52529,52541,52543,52553,52561,52567,52571,52579,52583,52609,52627,52631,52639,52667,52673,52691,52697,52709,52711,52721,52727,52733,52747,52757,52769,52783,52807,52813,52817,52837,52859,52861,52879,52883,52889,52901,52903,52919,52937,52951,52957,52963,52967,52973,52981,52999,53003,53017,53047,53051,53069,53077,53087,53089,53093,53101,53113,53117,53129,53147,53149,53161,53171,53173,53189,53197,53201,53231,53233,53239,53267,53269,53279,53281,53299,53309,53323,53327,53353,53359,53377,53381,53401,53407,53411,53419,53437,53441,53453,53479,53503,53507,53527,53549,53551,53569,53591,53593,53597,53609,53611,53617,53623,53629,53633,53639,53653,53657,53681,53693,53699,53717,53719,53731,53759,53773,53777,53783,53791,53813,53819,53831,53849,53857,53861,53881,53887,53891,53897,53899,53917,53923,53927,53939,53951,53959,53987,53993,54001,54011,54013,54037,54049,54059,54083,54091,54101,54121,54133,54139,54151,54163,54167,54181,54193,54217,54251,54269,54277,54287,54293,54311,54319,54323,54331,54347,54361,54367,54371,54377,54401,54403,54409,54413,54419,54421,54437,54443,54449,54469,54493,54497,54499,54503,54517,54521,54539,54541,54547,54559,54563,54577,54581,54583,54601,54617,54623,54629,54631,54647,54667,54673,54679,54709,54713,54721,54727,54751,54767,54773,54779,54787,54799,54829,54833,54851,54869,54877,54881,54907,54917,54919,54941,54949,54959,54973,54979,54983,55001,55009,55021,55049,55051,55057,55061,55073,55079,55103,55109,55117,55127,55147,55163,55171,55201,55207,55213,55217,55219,55229,55243,55249,55259,55291,55313,55331,55333,55337,55339,55343,55351,55373,55381,55399,55411,55439,55441,55457,55469,55487,55501,55511,55529,55541,55547,55579,55589,55603,55609,55619,55621,55631,55633,55639,55661,55663,55667,55673,55681,55691,55697,55711,55717,55721,55733,55763,55787,55793,55799,55807,55813,55817,55819,55823,55829,55837,55843,55849,55871,55889,55897,55901,55903,55921,55927,55931,55933,55949,55967,55987,55997,56003,56009,56039,56041,56053,56081,56087,56093,56099,56101,56113,56123,56131,56149,56167,56171,56179,56197,56207,56209,56237,56239,56249,56263,56267,56269,56299,56311,56333,56359,56369,56377,56383,56393,56401,56417,56431,56437,56443,56453,56467,56473,56477,56479,56489,56501,56503,56509,56519,56527,56531,56533,56543,56569,56591,56597,56599,56611,56629,56633,56659,56663,56671,56681,56687,56701,56711,56713,56731,56737,56747,56767,56773,56779,56783,56807,56809,56813,56821,56827,56843,56857,56873,56891,56893,56897,56909,56911,56921,56923,56929,56941,56951,56957,56963,56983,56989,56993,56999,57037,57041,57047,57059,57073,57077,57089,57097,57107,57119,57131,57139,57143,57149,57163,57173,57179,57191,57193,57203,57221,57223,57241,57251,57259,57269,57271,57283,57287,57301,57329,57331,57347,57349,57367,57373,57383,57389,57397,57413,57427,57457,57467,57487,57493,57503,57527,57529,57557,57559,57571,57587,57593,57601,57637,57641,57649,57653,57667,57679,57689,57697,57709,57713,57719,57727,57731,57737,57751,57773,57781,57787,57791,57793,57803,57809,57829,57839,57847,57853,57859,57881,57899,57901,57917,57923,57943,57947,57973,57977,57991,58013,58027,58031,58043,58049,58057,58061,58067,58073,58099,58109,58111,58129,58147,58151,58153,58169,58171,58189,58193,58199,58207,58211,58217,58229,58231,58237,58243,58271,58309,58313,58321,58337,58363,58367,58369,58379,58391,58393,58403,58411,58417,58427,58439,58441,58451,58453,58477,58481,58511,58537,58543,58549,58567,58573,58579,58601,58603,58613,58631,58657,58661,58679,58687,58693,58699,58711,58727,58733,58741,58757,58763,58771,58787,58789,58831,58889,58897,58901,58907,58909,58913,58921,58937,58943,58963,58967,58979,58991,58997,59009,59011,59021,59023,59029,59051,59053,59063,59069,59077,59083,59093,59107,59113,59119,59123,59141,59149,59159,59167,59183,59197,59207,59209,59219,59221,59233,59239,59243,59263,59273,59281,59333,59341,59351,59357,59359,59369,59377,59387,59393,59399,59407,59417,59419,59441,59443,59447,59453,59467,59471,59473,59497,59509,59513,59539,59557,59561,59567,59581,59611,59617,59621,59627,59629,59651,59659,59663,59669,59671,59693,59699,59707,59723,59729,59743,59747,59753,59771,59779,59791,59797,59809,59833,59863,59879,59887,59921,59929,59951,59957,59971,59981,59999,60013,60017,60029,60037,60041,60077,60083,60089,60091,60101,60103,60107,60127,60133,60139,60149,60161,60167,60169,60209,60217,60223,60251,60257,60259,60271,60289,60293,60317,60331,60337,60343,60353,60373,60383,60397,60413,60427,60443,60449,60457,60493,60497,60509,60521,60527,60539,60589,60601,60607,60611,60617,60623,60631,60637,60647,60649,60659,60661,60679,60689,60703,60719,60727,60733,60737,60757,60761,60763,60773,60779,60793,60811,60821,60859,60869,60887,60889,60899,60901,60913,60917,60919,60923,60937,60943,60953,60961,61001,61007,61027,61031,61043,61051,61057,61091,61099,61121,61129,61141,61151,61153,61169,61211,61223,61231,61253,61261,61283,61291,61297,61331,61333,61339,61343,61357,61363,61379,61381,61403,61409,61417,61441,61463,61469,61471,61483,61487,61493,61507,61511,61519,61543,61547,61553,61559,61561,61583,61603,61609,61613,61627,61631,61637,61643,61651,61657,61667,61673,61681,61687,61703,61717,61723,61729,61751,61757,61781,61813,61819,61837,61843,61861,61871,61879,61909,61927,61933,61949,61961,61967,61979,61981,61987,61991,62003,62011,62017,62039,62047,62053,62057,62071,62081,62099,62119,62129,62131,62137,62141,62143,62171,62189,62191,62201,62207,62213,62219,62233,62273,62297,62299,62303,62311,62323,62327,62347,62351,62383,62401,62417,62423,62459,62467,62473,62477,62483,62497,62501,62507,62533,62539,62549,62563,62581,62591,62597,62603,62617,62627,62633,62639,62653,62659,62683,62687,62701,62723,62731,62743,62753,62761,62773,62791,62801,62819,62827,62851,62861,62869,62873,62897,62903,62921,62927,62929,62939,62969,62971,62981,62983,62987,62989,63029,63031,63059,63067,63073,63079,63097,63103,63113,63127,63131,63149,63179,63197,63199,63211,63241,63247,63277,63281,63299,63311,63313,63317,63331,63337,63347,63353,63361,63367,63377,63389,63391,63397,63409,63419,63421,63439,63443,63463,63467,63473,63487,63493,63499,63521,63527,63533,63541,63559,63577,63587,63589,63599,63601,63607,63611,63617,63629,63647,63649,63659,63667,63671,63689,63691,63697,63703,63709,63719,63727,63737,63743,63761,63773,63781,63793,63799,63803,63809,63823,63839,63841,63853,63857,63863,63901,63907,63913,63929,63949,63977,63997,64007,64013,64019,64033,64037,64063,64067,64081,64091,64109,64123,64151,64153,64157,64171,64187,64189,64217,64223,64231,64237,64271,64279,64283,64301,64303,64319,64327,64333,64373,64381,64399,64403,64433,64439,64451,64453,64483,64489,64499,64513,64553,64567,64577,64579,64591,64601,64609,64613,64621,64627,64633,64661,64663,64667,64679,64693,64709,64717,64747,64763,64781,64783,64793,64811,64817,64849,64853,64871,64877,64879,64891,64901,64919,64921,64927,64937,64951,64969,64997,65003,65011,65027,65029,65033,65053,65063,65071,65089,65099,65101,65111,65119,65123,65129,65141,65147,65167,65171,65173,65179,65183,65203,65213,65239,65257,65267,65269,65287,65293,65309,65323,65327,65353,65357,65371,65381,65393,65407,65413,65419,65423,65437,65447,65449,65479,65497,65519,65521,65537,65539,65543,65551,65557,65563,65579,65581,65587,65599,65609,65617,65629,65633,65647,65651,65657,65677,65687,65699,65701,65707,65713,65717,65719,65729,65731,65761,65777,65789,65809,65827,65831,65837,65839,65843,65851,65867,65881,65899,65921,65927,65929,65951,65957,65963,65981,65983,65993,66029,66037,66041,66047,66067,66071,66083,66089,66103,66107,66109,66137,66161,66169,66173,66179,66191,66221,66239,66271,66293,66301,66337,66343,66347,66359,66361,66373,66377,66383,66403,66413,66431,66449,66457,66463,66467,66491,66499,66509,66523,66529,66533,66541,66553,66569,66571,66587,66593,66601,66617,66629,66643,66653,66683,66697,66701,66713,66721,66733,66739,66749,66751,66763,66791,66797,66809,66821,66841,66851,66853,66863,66877,66883,66889,66919,66923,66931,66943,66947,66949,66959,66973,66977,67003,67021,67033,67043,67049,67057,67061,67073,67079,67103,67121,67129,67139,67141,67153,67157,67169,67181,67187,67189,67211,67213,67217,67219,67231,67247,67261,67271,67273,67289,67307,67339,67343,67349,67369,67391,67399,67409,67411,67421,67427,67429,67433,67447,67453,67477,67481,67489,67493,67499,67511,67523,67531,67537,67547,67559,67567,67577,67579,67589,67601,67607,67619,67631,67651,67679,67699,67709,67723,67733,67741,67751,67757,67759,67763,67777,67783,67789,67801,67807,67819,67829,67843,67853,67867,67883,67891,67901,67927,67931,67933,67939,67943,67957,67961,67967,67979,67987,67993,68023,68041,68053,68059,68071,68087,68099,68111,68113,68141,68147,68161,68171,68207,68209,68213,68219,68227,68239,68261,68279,68281,68311,68329,68351,68371,68389,68399,68437,68443,68447,68449,68473,68477,68483,68489,68491,68501,68507,68521,68531,68539,68543,68567,68581,68597,68611,68633,68639,68659,68669,68683,68687,68699,68711,68713,68729,68737,68743,68749,68767,68771,68777,68791,68813,68819,68821,68863,68879,68881,68891,68897,68899,68903,68909,68917,68927,68947,68963,68993,69001,69011,69019,69029,69031,69061,69067,69073,69109,69119,69127,69143,69149,69151,69163,69191,69193,69197,69203,69221,69233,69239,69247,69257,69259,69263,69313,69317,69337,69341,69371,69379,69383,69389,69401,69403,69427,69431,69439,69457,69463,69467,69473,69481,69491,69493,69497,69499,69539,69557,69593,69623,69653,69661,69677,69691,69697,69709,69737,69739,69761,69763,69767,69779,69809,69821,69827,69829,69833,69847,69857,69859,69877,69899,69911,69929,69931,69941,69959,69991,69997,70001,70003,70009,70019,70039,70051,70061,70067,70079,70099,70111,70117,70121,70123,70139,70141,70157,70163,70177,70181,70183,70199,70201,70207,70223,70229,70237,70241,70249,70271,70289,70297,70309,70313,70321,70327,70351,70373,70379,70381,70393,70423,70429,70439,70451,70457,70459,70481,70487,70489,70501,70507,70529,70537,70549,70571,70573,70583,70589,70607,70619,70621,70627,70639,70657,70663,70667,70687,70709,70717,70729,70753,70769,70783,70793,70823,70841,70843,70849,70853,70867,70877,70879,70891,70901,70913,70919,70921,70937,70949,70951,70957,70969,70979,70981,70991,70997,70999,71011,71023,71039,71059,71069,71081,71089,71119,71129,71143,71147,71153,71161,71167,71171,71191,71209,71233,71237,71249,71257,71261,71263,71287,71293,71317,71327,71329,71333,71339,71341,71347,71353,71359,71363,71387,71389,71399,71411,71413,71419,71429,71437,71443,71453,71471,71473,71479,71483,71503,71527,71537,71549,71551,71563,71569,71593,71597,71633,71647,71663,71671,71693,71699,71707,71711,71713,71719,71741,71761,71777,71789,71807,71809,71821,71837,71843,71849,71861,71867,71879,71881,71887,71899,71909,71917,71933,71941,71947,71963,71971,71983,71987,71993,71999,72019,72031,72043,72047,72053,72073,72077,72089,72091,72101,72103,72109,72139,72161,72167,72169,72173,72211,72221,72223,72227,72229,72251,72253,72269,72271,72277,72287,72307,72313,72337,72341,72353,72367,72379,72383,72421,72431,72461,72467,72469,72481,72493,72497,72503,72533,72547,72551,72559,72577,72613,72617,72623,72643,72647,72649,72661,72671,72673,72679,72689,72701,72707,72719,72727,72733,72739,72763,72767,72797,72817,72823,72859,72869,72871,72883,72889,72893,72901,72907,72911,72923,72931,72937,72949,72953,72959,72973,72977,72997,73009,73013,73019,73037,73039,73043,73061,73063,73079,73091,73121,73127,73133,73141,73181,73189,73237,73243,73259,73277,73291,73303,73309,73327,73331,73351,73361,73363,73369,73379,73387,73417,73421,73433,73453,73459,73471,73477,73483,73517,73523,73529,73547,73553,73561,73571,73583,73589,73597,73607,73609,73613,73637,73643,73651,73673,73679,73681,73693,73699,73709,73721,73727,73751,73757,73771,73783,73819,73823,73847,73849,73859,73867,73877,73883,73897,73907,73939,73943,73951,73961,73973,73999,74017,74021,74027,74047,74051,74071,74077,74093,74099,74101,74131,74143,74149,74159,74161,74167,74177,74189,74197,74201,74203,74209,74219,74231,74257,74279,74287,74293,74297,74311,74317,74323,74353,74357,74363,74377,74381,74383,74411,74413,74419,74441,74449,74453,74471,74489,74507,74509,74521,74527,74531,74551,74561,74567,74573,74587,74597,74609,74611,74623,74653,74687,74699,74707,74713,74717,74719,74729,74731,74747,74759,74761,74771,74779,74797,74821,74827,74831,74843,74857,74861,74869,74873,74887,74891,74897,74903,74923,74929,74933,74941,74959,75011,75013,75017,75029,75037,75041,75079,75083,75109,75133,75149,75161,75167,75169,75181,75193,75209,75211,75217,75223,75227,75239,75253,75269,75277,75289,75307,75323,75329,75337,75347,75353,75367,75377,75389,75391,75401,75403,75407,75431,75437,75479,75503,75511,75521,75527,75533,75539,75541,75553,75557,75571,75577,75583,75611,75617,75619,75629,75641,75653,75659,75679,75683,75689,75703,75707,75709,75721,75731,75743,75767,75773,75781,75787,75793,75797,75821,75833,75853,75869,75883,75913,75931,75937,75941,75967,75979,75983,75989,75991,75997,76001,76003,76031,76039,76079,76081,76091,76099,76103,76123,76129,76147,76157,76159,76163,76207,76213,76231,76243,76249,76253,76259,76261,76283,76289,76303,76333,76343,76367,76369,76379,76387,76403,76421,76423,76441,76463,76471,76481,76487,76493,76507,76511,76519,76537,76541,76543,76561,76579,76597,76603,76607,76631,76649,76651,76667,76673,76679,76697,76717,76733,76753,76757,76771,76777,76781,76801,76819,76829,76831,76837,76847,76871,76873,76883,76907,76913,76919,76943,76949,76961,76963,76991,77003,77017,77023,77029,77041,77047,77069,77081,77093,77101,77137,77141,77153,77167,77171,77191,77201,77213,77237,77239,77243,77249,77261,77263,77267,77269,77279,77291,77317,77323,77339,77347,77351,77359,77369,77377,77383,77417,77419,77431,77447,77471,77477,77479,77489,77491,77509,77513,77521,77527,77543,77549,77551,77557,77563,77569,77573,77587,77591,77611,77617,77621,77641,77647,77659,77681,77687,77689,77699,77711,77713,77719,77723,77731,77743,77747,77761,77773,77783,77797,77801,77813,77839,77849,77863,77867,77893,77899,77929,77933,77951,77969,77977,77983,77999,78007,78017,78031,78041,78049,78059,78079,78101,78121,78137,78139,78157,78163,78167,78173,78179,78191,78193,78203,78229,78233,78241,78259,78277,78283,78301,78307,78311,78317,78341,78347,78367,78401,78427,78437,78439,78467,78479,78487,78497,78509,78511,78517,78539,78541,78553,78569,78571,78577,78583,78593,78607,78623,78643,78649,78653,78691,78697,78707,78713,78721,78737,78779,78781,78787,78791,78797,78803,78809,78823,78839,78853,78857,78877,78887,78889,78893,78901,78919,78929,78941,78977,78979,78989,79031,79039,79043,79063,79087,79103,79111,79133,79139,79147,79151,79153,79159,79181,79187,79193,79201,79229,79231,79241,79259,79273,79279,79283,79301,79309,79319,79333,79337,79349,79357,79367,79379,79393,79397,79399,79411,79423,79427,79433,79451,79481,79493,79531,79537,79549,79559,79561,79579,79589,79601,79609,79613,79621,79627,79631,79633,79657,79669,79687,79691,79693,79697,79699,79757,79769,79777,79801,79811,79813,79817,79823,79829,79841,79843,79847,79861,79867,79873,79889,79901,79903,79907,79939,79943,79967,79973,79979,79987,79997,79999,80021,80039,80051,80071,80077,80107,80111,80141,80147,80149,80153,80167,80173,80177,80191,80207,80209,80221,80231,80233,80239,80251,80263,80273,80279,80287,80309,80317,80329,80341,80347,80363,80369,80387,80407,80429,80447,80449,80471,80473,80489,80491,80513,80527,80537,80557,80567,80599,80603,80611,80621,80627,80629,80651,80657,80669,80671,80677,80681,80683,80687,80701,80713,80737,80747,80749,80761,80777,80779,80783,80789,80803,80809,80819,80831,80833,80849,80863,80897,80909,80911,80917,80923,80929,80933,80953,80963,80989,81001,81013,81017,81019,81023,81031,81041,81043,81047,81049,81071,81077,81083,81097,81101,81119,81131,81157,81163,81173,81181,81197,81199,81203,81223,81233,81239,81281,81283,81293,81299,81307,81331,81343,81349,81353,81359,81371,81373,81401,81409,81421,81439,81457,81463,81509,81517,81527,81533,81547,81551,81553,81559,81563,81569,81611,81619,81629,81637,81647,81649,81667,81671,81677,81689,81701,81703,81707,81727,81737,81749,81761,81769,81773,81799,81817,81839,81847,81853,81869,81883,81899,81901,81919,81929,81931,81937,81943,81953,81967,81971,81973,82003,82007,82009,82013,82021,82031,82037,82039,82051,82067,82073,82129,82139,82141,82153,82163,82171,82183,82189,82193,82207,82217,82219,82223,82231,82237,82241,82261,82267,82279,82301,82307,82339,82349,82351,82361,82373,82387,82393,82421,82457,82463,82469,82471,82483,82487,82493,82499,82507,82529,82531,82549,82559,82561,82567,82571,82591,82601,82609,82613,82619,82633,82651,82657,82699,82721,82723,82727,82729,82757,82759,82763,82781,82787,82793,82799,82811,82813,82837,82847,82883,82889,82891,82903,82913,82939,82963,82981,82997,83003,83009,83023,83047,83059,83063,83071,83077,83089,83093,83101,83117,83137,83177,83203,83207,83219,83221,83227,83231,83233,83243,83257,83267,83269,83273,83299,83311,83339,83341,83357,83383,83389,83399,83401,83407,83417,83423,83431,83437,83443,83449,83459,83471,83477,83497,83537,83557,83561,83563,83579,83591,83597,83609,83617,83621,83639,83641,83653,83663,83689,83701,83717,83719,83737,83761,83773,83777,83791,83813,83833,83843,83857,83869,83873,83891,83903,83911,83921,83933,83939,83969,83983,83987,84011,84017,84047,84053,84059,84061,84067,84089,84121,84127,84131,84137,84143,84163,84179,84181,84191,84199,84211,84221,84223,84229,84239,84247,84263,84299,84307,84313,84317,84319,84347,84349,84377,84389,84391,84401,84407,84421,84431,84437,84443,84449,84457,84463,84467,84481,84499,84503,84509,84521,84523,84533,84551,84559,84589,84629,84631,84649,84653,84659,84673,84691,84697,84701,84713,84719,84731,84737,84751,84761,84787,84793,84809,84811,84827,84857,84859,84869,84871,84913,84919,84947,84961,84967,84977,84979,84991,85009,85021,85027,85037,85049,85061,85081,85087,85091,85093,85103,85109,85121,85133,85147,85159,85193,85199,85201,85213,85223,85229,85237,85243,85247,85259,85297,85303,85313,85331,85333,85361,85363,85369,85381,85411,85427,85429,85439,85447,85451,85453,85469,85487,85513,85517,85523,85531,85549,85571,85577,85597,85601,85607,85619,85621,85627,85639,85643,85661,85667,85669,85691,85703,85711,85717,85733,85751,85781,85793,85817,85819,85829,85831,85837,85843,85847,85853,85889,85903,85909,85931,85933,85991,85999,86011,86017,86027,86029,86069,86077,86083,86111,86113,86117,86131,86137,86143,86161,86171,86179,86183,86197,86201,86209,86239,86243,86249,86257,86263,86269,86287,86291,86293,86297,86311,86323,86341,86351,86353,86357,86369,86371,86381,86389,86399,86413,86423,86441,86453,86461,86467,86477,86491,86501,86509,86531,86533,86539,86561,86573,86579,86587,86599,86627,86629,86677,86689,86693,86711,86719,86729,86743,86753,86767,86771,86783,86813,86837,86843,86851,86857,86861,86869,86923,86927,86929,86939,86951,86959,86969,86981,86993,87011,87013,87037,87041,87049,87071,87083,87103,87107,87119,87121,87133,87149,87151,87179,87181,87187,87211,87221,87223,87251,87253,87257,87277,87281,87293,87299,87313,87317,87323,87337,87359,87383,87403,87407,87421,87427,87433,87443,87473,87481,87491,87509,87511,87517,87523,87539,87541,87547,87553,87557,87559,87583,87587,87589,87613,87623,87629,87631,87641,87643,87649,87671,87679,87683,87691,87697,87701,87719,87721,87739,87743,87751,87767,87793,87797,87803,87811,87833,87853,87869,87877,87881,87887,87911,87917,87931,87943,87959,87961,87973,87977,87991,88001,88003,88007,88019,88037,88069,88079,88093,88117,88129,88169,88177,88211,88223,88237,88241,88259,88261,88289,88301,88321,88327,88337,88339,88379,88397,88411,88423,88427,88463,88469,88471,88493,88499,88513,88523,88547,88589,88591,88607,88609,88643,88651,88657,88661,88663,88667,88681,88721,88729,88741,88747,88771,88789,88793,88799,88801,88807,88811,88813,88817,88819,88843,88853,88861,88867,88873,88883,88897,88903,88919,88937,88951,88969,88993,88997,89003,89009,89017,89021,89041,89051,89057,89069,89071,89083,89087,89101,89107,89113,89119,89123,89137,89153,89189,89203,89209,89213,89227,89231,89237,89261,89269,89273,89293,89303,89317,89329,89363,89371,89381,89387,89393,89399,89413,89417,89431,89443,89449,89459,89477,89491,89501,89513,89519,89521,89527,89533,89561,89563,89567,89591,89597,89599,89603,89611,89627,89633,89653,89657,89659,89669,89671,89681,89689,89753,89759,89767,89779,89783,89797,89809,89819,89821,89833,89839,89849,89867,89891,89897,89899,89909,89917,89923,89939,89959,89963,89977,89983,89989,90001,90007,90011,90017,90019,90023,90031,90053,90059,90067,90071,90073,90089,90107,90121,90127,90149,90163,90173,90187,90191,90197,90199,90203,90217,90227,90239,90247,90263,90271,90281,90289,90313,90353,90359,90371,90373,90379,90397,90401,90403,90407,90437,90439,90469,90473,90481,90499,90511,90523,90527,90529,90533,90547,90583,90599,90617,90619,90631,90641,90647,90659,90677,90679,90697,90703,90709,90731,90749,90787,90793,90803,90821,90823,90833,90841,90847,90863,90887,90901,90907,90911,90917,90931,90947,90971,90977,90989,90997,91009,91019,91033,91079,91081,91097,91099,91121,91127,91129,91139,91141,91151,91153,91159,91163,91183,91193,91199,91229,91237,91243,91249,91253,91283,91291,91297,91303,91309,91331,91367,91369,91373,91381,91387,91393,91397,91411,91423,91433,91453,91457,91459,91463,91493,91499,91513,91529,91541,91571,91573,91577,91583,91591,91621,91631,91639,91673,91691,91703,91711,91733,91753,91757,91771,91781,91801,91807,91811,91813,91823,91837,91841,91867,91873,91909,91921,91939,91943,91951,91957,91961,91967,91969,91997,92003,92009,92033,92041,92051,92077,92083,92107,92111,92119,92143,92153,92173,92177,92179,92189,92203,92219,92221,92227,92233,92237,92243,92251,92269,92297,92311,92317,92333,92347,92353,92357,92363,92369,92377,92381,92383,92387,92399,92401,92413,92419,92431,92459,92461,92467,92479,92489,92503,92507,92551,92557,92567,92569,92581,92593,92623,92627,92639,92641,92647,92657,92669,92671,92681,92683,92693,92699,92707,92717,92723,92737,92753,92761,92767,92779,92789,92791,92801,92809,92821,92831,92849,92857,92861,92863,92867,92893,92899,92921,92927,92941,92951,92957,92959,92987,92993,93001,93047,93053,93059,93077,93083,93089,93097,93103,93113,93131,93133,93139,93151,93169,93179,93187,93199,93229,93239,93241,93251,93253,93257,93263,93281,93283,93287,93307,93319,93323,93329,93337,93371,93377,93383,93407,93419,93427,93463,93479,93481,93487,93491,93493,93497,93503,93523,93529,93553,93557,93559,93563,93581,93601,93607,93629,93637,93683,93701,93703,93719,93739,93761,93763,93787,93809,93811,93827,93851,93871,93887,93889,93893,93901,93911,93913,93923,93937,93941,93949,93967,93971,93979,93983,93997,94007,94009,94033,94049,94057,94063,94079,94099,94109,94111,94117,94121,94151,94153,94169,94201,94207,94219,94229,94253,94261,94273,94291,94307,94309,94321,94327,94331,94343,94349,94351,94379,94397,94399,94421,94427,94433,94439,94441,94447,94463,94477,94483,94513,94529,94531,94541,94543,94547,94559,94561,94573,94583,94597,94603,94613,94621,94649,94651,94687,94693,94709,94723,94727,94747,94771,94777,94781,94789,94793,94811,94819,94823,94837,94841,94847,94849,94873,94889,94903,94907,94933,94949,94951,94961,94993,94999,95003,95009,95021,95027,95063,95071,95083,95087,95089,95093,95101,95107,95111,95131,95143,95153,95177,95189,95191,95203,95213,95219,95231,95233,95239,95257,95261,95267,95273,95279,95287,95311,95317,95327,95339,95369,95383,95393,95401,95413,95419,95429,95441,95443,95461,95467,95471,95479,95483,95507,95527,95531,95539,95549,95561,95569,95581,95597,95603,95617,95621,95629,95633,95651,95701,95707,95713,95717,95723,95731,95737,95747,95773,95783,95789,95791,95801,95803,95813,95819,95857,95869,95873,95881,95891,95911,95917,95923,95929,95947,95957,95959,95971,95987,95989,96001,96013,96017,96043,96053,96059,96079,96097,96137,96149,96157,96167,96179,96181,96199,96211,96221,96223,96233,96259,96263,96269,96281,96289,96293,96323,96329,96331,96337,96353,96377,96401,96419,96431,96443,96451,96457,96461,96469,96479,96487,96493,96497,96517,96527,96553,96557,96581,96587,96589,96601,96643,96661,96667,96671,96697,96703,96731,96737,96739,96749,96757,96763,96769,96779,96787,96797,96799,96821,96823,96827,96847,96851,96857,96893,96907,96911,96931,96953,96959,96973,96979,96989,96997,97001,97003,97007,97021,97039,97073,97081,97103,97117,97127,97151,97157,97159,97169,97171,97177,97187,97213,97231,97241,97259,97283,97301,97303,97327,97367,97369,97373,97379,97381,97387,97397,97423,97429,97441,97453,97459,97463,97499,97501,97511,97523,97547,97549,97553,97561,97571,97577,97579,97583,97607,97609,97613,97649,97651,97673,97687,97711,97729,97771,97777,97787,97789,97813,97829,97841,97843,97847,97849,97859,97861,97871,97879,97883,97919,97927,97931,97943,97961,97967,97973,97987,98009,98011,98017,98041,98047,98057,98081,98101,98123,98129,98143,98179,98207,98213,98221,98227,98251,98257,98269,98297,98299,98317,98321,98323,98327,98347,98369,98377,98387,98389,98407,98411,98419,98429,98443,98453,98459,98467,98473,98479,98491,98507,98519,98533,98543,98561,98563,98573,98597,98621,98627,98639,98641,98663,98669,98689,98711,98713,98717,98729,98731,98737,98773,98779,98801,98807,98809,98837,98849,98867,98869,98873,98887,98893,98897,98899,98909,98911,98927,98929,98939,98947,98953,98963,98981,98993,98999,99013,99017,99023,99041,99053,99079,99083,99089,99103,99109,99119,99131,99133,99137,99139,99149,99173,99181,99191,99223,99233,99241,99251,99257,99259,99277,99289,99317,99347,99349,99367,99371,99377,99391,99397,99401,99409,99431,99439,99469,99487,99497,99523,99527,99529,99551,99559,99563,99571,99577,99581,99607,99611,99623,99643,99661,99667,99679,99689,99707,99709,99713,99719,99721,99733,99761,99767,99787,99793,99809,99817,99823,99829,99833,99839,99859,99871,99877,99881,99901,99907,99923,99929,99961,99971,99989,99991,100003,100019,100043,100049,100057,100069,100103,100109,100129,100151,100153,100169,100183,100189,100193,100207,100213,100237,100267,100271,100279,100291,100297,100313,100333,100343,100357,100361,100363,100379,100391,100393,100403,100411,100417,100447,100459,100469,100483,100493,100501,100511,100517,100519,100523,100537,100547,100549,100559,100591,100609,100613,100621,100649,100669,100673,100693,100699,100703,100733,100741,100747,100769,100787,100799,100801,100811,100823,100829,100847,100853,100907,100913,100927,100931,100937,100943,100957,100981,100987,100999,101009,101021,101027,101051,101063,101081,101089,101107,101111,101113,101117,101119,101141,101149,101159,101161,101173,101183,101197,101203,101207,101209,101221,101267,101273,101279,101281,101287,101293,101323,101333,101341,101347,101359,101363,101377,101383,101399,101411,101419,101429,101449,101467,101477,101483,101489,101501,101503,101513,101527,101531,101533,101537,101561,101573,101581,101599,101603,101611,101627,101641,101653,101663,101681,101693,101701,101719,101723,101737,101741,101747,101749,101771,101789,101797,101807,101833,101837,101839,101863,101869,101873,101879,101891,101917,101921,101929,101939,101957,101963,101977,101987,101999,102001,102013,102019,102023,102031,102043,102059,102061,102071,102077,102079,102101,102103,102107,102121,102139,102149,102161]
57,480
57,480
0.829715
d42861bbc31fff616a52a59b81b7e32ca430c8fa
21,484
py
Python
skl2onnx/operator_converters/calibrated_classifier_cv.py
m3at/sklearn-onnx
080b6231cad09b8ada9e1901aa9262e44db0fb74
[ "MIT" ]
null
null
null
skl2onnx/operator_converters/calibrated_classifier_cv.py
m3at/sklearn-onnx
080b6231cad09b8ada9e1901aa9262e44db0fb74
[ "MIT" ]
null
null
null
skl2onnx/operator_converters/calibrated_classifier_cv.py
m3at/sklearn-onnx
080b6231cad09b8ada9e1901aa9262e44db0fb74
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import pprint import numpy as np from ..proto import onnx_proto from ..common._apply_operation import ( apply_abs, apply_add, apply_cast, apply_concat, apply_clip, apply_div, apply_exp, apply_mul, apply_reshape, apply_sub) from ..common._topology import FloatTensorType from ..common._registration import register_converter from .._supported_operators import sklearn_operator_name_map def _handle_zeros(scope, container, concatenated_prob_name, reduced_prob_name, n_classes): """ This function replaces 0s in concatenated_prob_name with 1s and 0s in reduced_prob_name with n_classes. """ cast_prob_name = scope.get_unique_variable_name('cast_prob') bool_not_cast_prob_name = scope.get_unique_variable_name( 'bool_not_cast_prob') mask_name = scope.get_unique_variable_name('mask') masked_concatenated_prob_name = scope.get_unique_variable_name( 'masked_concatenated_prob') n_classes_name = scope.get_unique_variable_name('n_classes') reduced_prob_mask_name = scope.get_unique_variable_name( 'reduced_prob_mask') masked_reduced_prob_name = scope.get_unique_variable_name( 'masked_reduced_prob') container.add_initializer(n_classes_name, onnx_proto.TensorProto.FLOAT, [], [n_classes]) apply_cast(scope, reduced_prob_name, cast_prob_name, container, to=onnx_proto.TensorProto.BOOL) container.add_node('Not', cast_prob_name, bool_not_cast_prob_name, name=scope.get_unique_operator_name('Not')) apply_cast(scope, bool_not_cast_prob_name, mask_name, container, to=onnx_proto.TensorProto.FLOAT) apply_add(scope, [concatenated_prob_name, mask_name], masked_concatenated_prob_name, container, broadcast=1) apply_mul(scope, [mask_name, n_classes_name], reduced_prob_mask_name, container, broadcast=1) apply_add(scope, [reduced_prob_name, reduced_prob_mask_name], masked_reduced_prob_name, container, broadcast=0) return masked_concatenated_prob_name, masked_reduced_prob_name def _transform_sigmoid(scope, container, model, df_col_name, k): """ Sigmoid Calibration method """ a_name = scope.get_unique_variable_name('a') b_name = scope.get_unique_variable_name('b') a_df_prod_name = scope.get_unique_variable_name('a_df_prod') exp_parameter_name = scope.get_unique_variable_name( 'exp_parameter') exp_result_name = scope.get_unique_variable_name('exp_result') unity_name = scope.get_unique_variable_name('unity') denominator_name = scope.get_unique_variable_name('denominator') sigmoid_predict_result_name = scope.get_unique_variable_name( 'sigmoid_predict_result') container.add_initializer(a_name, onnx_proto.TensorProto.FLOAT, [], [model.calibrators_[k].a_]) container.add_initializer(b_name, onnx_proto.TensorProto.FLOAT, [], [model.calibrators_[k].b_]) container.add_initializer(unity_name, onnx_proto.TensorProto.FLOAT, [], [1]) apply_mul(scope, [a_name, df_col_name], a_df_prod_name, container, broadcast=0) apply_add(scope, [a_df_prod_name, b_name], exp_parameter_name, container, broadcast=0) apply_exp(scope, exp_parameter_name, exp_result_name, container) apply_add(scope, [unity_name, exp_result_name], denominator_name, container, broadcast=0) apply_div(scope, [unity_name, denominator_name], sigmoid_predict_result_name, container, broadcast=0) return sigmoid_predict_result_name def _transform_isotonic(scope, container, model, T, k): """ Isotonic calibration method This function can only handle one instance at a time because ArrayFeatureExtractor can only extract based on the last axis, so we can't fetch different columns for different rows. """ if model.calibrators_[k].out_of_bounds == 'clip': clipped_df_name = scope.get_unique_variable_name('clipped_df') apply_clip(scope, T, clipped_df_name, container, operator_name=scope.get_unique_operator_name('Clip'), max=np.array(model.calibrators_[k].X_max_, dtype=container.dtype), min=np.array(model.calibrators_[k].X_min_, dtype=container.dtype)) T = clipped_df_name reshaped_df_name = scope.get_unique_variable_name('reshaped_df') calibrator_x_name = scope.get_unique_variable_name('calibrator_x') calibrator_y_name = scope.get_unique_variable_name('calibrator_y') distance_name = scope.get_unique_variable_name('distance') absolute_distance_name = scope.get_unique_variable_name( 'absolute_distance') nearest_x_index_name = scope.get_unique_variable_name( 'nearest_x_index') nearest_y_name = scope.get_unique_variable_name('nearest_y') if hasattr(model.calibrators_[k], '_X_'): atX, atY = '_X_', '_y_' elif hasattr(model.calibrators_[k], '_necessary_X_'): atX, atY = '_necessary_X_', '_necessary_y_' elif hasattr(model.calibrators_[k], 'X_thresholds_'): atX, atY = 'X_thresholds_', 'y_thresholds_' else: raise AttributeError( "Unable to find attribute '_X_' or '_necessary_X_' " "for type {}\n{}." "".format(type(model.calibrators_[k]), pprint.pformat(dir(model.calibrators_[k])))) container.add_initializer( calibrator_x_name, onnx_proto.TensorProto.FLOAT, [len(getattr(model.calibrators_[k], atX))], getattr(model.calibrators_[k], atX)) container.add_initializer( calibrator_y_name, onnx_proto.TensorProto.FLOAT, [len(getattr(model.calibrators_[k], atY))], getattr(model.calibrators_[k], atY)) apply_reshape(scope, T, reshaped_df_name, container, desired_shape=(-1, 1)) apply_sub(scope, [reshaped_df_name, calibrator_x_name], distance_name, container, broadcast=1) apply_abs(scope, distance_name, absolute_distance_name, container) container.add_node('ArgMin', absolute_distance_name, nearest_x_index_name, axis=1, name=scope.get_unique_operator_name('ArgMin')) container.add_node( 'ArrayFeatureExtractor', [calibrator_y_name, nearest_x_index_name], nearest_y_name, op_domain='ai.onnx.ml', name=scope.get_unique_operator_name('ArrayFeatureExtractor')) nearest_y_name_reshaped = scope.get_unique_variable_name( 'nearest_y_name_reshaped') apply_reshape(scope, nearest_y_name, nearest_y_name_reshaped, container, desired_shape=(-1, 1)) return nearest_y_name_reshaped def convert_calibrated_classifier_base_estimator(scope, operator, container, model): # Computational graph: # # In the following graph, variable names are in lower case characters only # and operator names are in upper case characters. We borrow operator names # from the official ONNX spec: # https://github.com/onnx/onnx/blob/master/docs/Operators.md # All variables are followed by their shape in []. # # Symbols: # M: Number of instances # N: Number of features # C: Number of classes # CLASSIFIERCONVERTER: classifier converter corresponding to the op_type # a: slope in sigmoid model # b: intercept in sigmoid model # k: variable in the range [0, C) # input: input # class_prob_tensor: tensor with class probabilities(function output) # # Graph: # # input [M, N] -> CLASSIFIERCONVERTER -> label [M] # | # V # probability_tensor [M, C] # | # .----------------'---------. # | | # V V # ARRAYFEATUREEXTRACTOR <- k [1] -> ARRAYFEATUREEXTRACTOR # | | # V V # transposed_df_col[M, 1] transposed_df_col[M, 1] # |--------------------------|----------.--------------------------. # | | | | # |if model.method='sigmoid' | |if model.method='isotonic'| # | | | | # V V |if out_of_bounds='clip' | # MUL <-------- a --------> MUL V V # | | CLIP ... CLIP # V V | | # a_df_prod [M, 1] ... a_df_prod [M, 1] V V # | | clipped_df [M, 1]...clipped_df [M, 1] # V V | | # ADD <--------- b ---------> ADD '-------------------.------' # | | | # V V | # exp_parameter [M, 1] ... exp_parameter [M, 1] | # | | | # V V | # EXP ... EXP | # | | | # V V | # exp_result [M, 1] ... exp_result [M, 1] | # | | | # V V | # ADD <------- unity -------> ADD | # | | | # V V | # denominator [M, 1] ... denominator [M, 1] | # | | | # V V | # DIV <------- unity ------> DIV | # | | | # V V | # sigmoid_predict_result [M, 1] ... sigmoid_predict_result [M, 1] | # | | | # '-----.--------------------' | # |-------------------------------------------------' # | # V # CONCAT -> concatenated_prob [M, C] # | # if C = 2 | if C != 2 # .-------------------'---------------------------.---------. # | | | # V | V # ARRAYFEATUREEXTRACTOR <- col_number [1] | REDUCESUM # | | | # '--------------------------------. | | # unit_float_tensor [1] -> SUB <- first_col [M, 1] <-' | | # | / | # V V V # CONCAT DIV <- reduced_prob [M] # | | # V | # class_prob_tensor [M, C] <--' if scope.get_options(operator.raw_operator, dict(nocl=False))['nocl']: raise RuntimeError( "Option 'nocl' is not implemented for operator '{}'.".format( operator.raw_operator.__class__.__name__)) base_model = model.base_estimator op_type = sklearn_operator_name_map[type(base_model)] n_classes = len(model.classes_) prob_name = [None] * n_classes this_operator = scope.declare_local_operator(op_type) this_operator.raw_operator = base_model if container.has_options(base_model, 'raw_scores'): container.add_options(id(base_model), {'raw_scores': True}) this_operator.inputs = operator.inputs label_name = scope.declare_local_variable('label') df_name = scope.declare_local_variable('probability_tensor', FloatTensorType()) this_operator.outputs.append(label_name) this_operator.outputs.append(df_name) df_inp = df_name.full_name for k in range(n_classes): cur_k = k if n_classes == 2: cur_k += 1 # In case of binary classification, SVMs only return # scores for the positive class. We concat the same # column twice as we just use the second column. if op_type in ('SklearnLinearSVC', 'SklearnSVC'): df_input_name = scope.get_unique_variable_name('df_input') merged_input_name = scope.get_unique_variable_name( 'merged_input') apply_reshape(scope, df_inp, df_input_name, container, desired_shape=(-1, 1)) apply_concat(scope, [df_input_name, df_input_name], merged_input_name, container, axis=1) df_inp = merged_input_name k_name = scope.get_unique_variable_name('k') df_col_name = scope.get_unique_variable_name('transposed_df_col') prob_name[k] = scope.get_unique_variable_name('prob_{}'.format(k)) container.add_initializer(k_name, onnx_proto.TensorProto.INT64, [], [cur_k]) container.add_node( 'ArrayFeatureExtractor', [df_inp, k_name], df_col_name, name=scope.get_unique_operator_name('ArrayFeatureExtractor'), op_domain='ai.onnx.ml') T = (_transform_sigmoid(scope, container, model, df_col_name, k) if model.method == 'sigmoid' else _transform_isotonic(scope, container, model, df_col_name, k)) prob_name[k] = T if n_classes == 2: break if n_classes == 2: zeroth_col_name = scope.get_unique_variable_name('zeroth_col') merged_prob_name = scope.get_unique_variable_name('merged_prob') unit_float_tensor_name = scope.get_unique_variable_name( 'unit_float_tensor') container.add_initializer(unit_float_tensor_name, onnx_proto.TensorProto.FLOAT, [], [1.0]) apply_sub(scope, [unit_float_tensor_name, prob_name[0]], zeroth_col_name, container, broadcast=1) apply_concat(scope, [zeroth_col_name, prob_name[0]], merged_prob_name, container, axis=1) class_prob_tensor_name = merged_prob_name else: concatenated_prob_name = scope.get_unique_variable_name( 'concatenated_prob') reduced_prob_name = scope.get_unique_variable_name('reduced_prob') calc_prob_name = scope.get_unique_variable_name('calc_prob') apply_concat(scope, prob_name, concatenated_prob_name, container, axis=1) container.add_node('ReduceSum', concatenated_prob_name, reduced_prob_name, axes=[1], name=scope.get_unique_operator_name('ReduceSum')) num, deno = _handle_zeros(scope, container, concatenated_prob_name, reduced_prob_name, n_classes) apply_div(scope, [num, deno], calc_prob_name, container, broadcast=1) class_prob_tensor_name = calc_prob_name return class_prob_tensor_name def convert_sklearn_calibrated_classifier_cv(scope, operator, container): # Computational graph: # # In the following graph, variable names are in lower case characters only # and operator names are in upper case characters. We borrow operator names # from the official ONNX spec: # https://github.com/onnx/onnx/blob/master/docs/Operators.md # All variables are followed by their shape in []. # # Symbols: # M: Number of instances # N: Number of features # C: Number of classes # CONVERT_BASE_ESTIMATOR: base estimator convert function defined above # clf_length: number of calibrated classifiers # input: input # output: output # class_prob: class probabilities # # Graph: # # input [M, N] # | # .-------------------|--------------------------. # | | | # V V V # CONVERT_BASE_ESTIMATOR CONVERT_BASE_ESTIMATOR ... CONVERT_BASE_ESTIMATOR # | | | # V V V # prob_scores_0 [M, C] prob_scores_1 [M, C] ... prob_scores_(clf_length-1) # | | | [M, C] # '-------------------|--------------------------' # V # add_result [M, C] <--- SUM # | # '--> DIV <- clf_length [1] # | # V # class_prob [M, C] -> ARGMAX -> argmax_output [M, 1] # | # classes -> ARRAYFEATUREEXTRACTOR <---' # | # V # output [1] op = operator.raw_operator classes = op.classes_ output_shape = (-1,) class_type = onnx_proto.TensorProto.STRING if np.issubdtype(op.classes_.dtype, np.floating): class_type = onnx_proto.TensorProto.INT32 classes = classes.astype(np.int32) elif np.issubdtype(op.classes_.dtype, np.signedinteger): class_type = onnx_proto.TensorProto.INT32 else: classes = np.array([s.encode('utf-8') for s in classes]) clf_length = len(op.calibrated_classifiers_) prob_scores_name = [] clf_length_name = scope.get_unique_variable_name('clf_length') classes_name = scope.get_unique_variable_name('classes') reshaped_result_name = scope.get_unique_variable_name('reshaped_result') argmax_output_name = scope.get_unique_variable_name('argmax_output') array_feature_extractor_result_name = scope.get_unique_variable_name( 'array_feature_extractor_result') add_result_name = scope.get_unique_variable_name('add_result') container.add_initializer(classes_name, class_type, classes.shape, classes) container.add_initializer(clf_length_name, onnx_proto.TensorProto.FLOAT, [], [clf_length]) for clf in op.calibrated_classifiers_: prob_scores_name.append(convert_calibrated_classifier_base_estimator( scope, operator, container, clf)) container.add_node('Sum', [s for s in prob_scores_name], add_result_name, op_version=7, name=scope.get_unique_operator_name('Sum')) apply_div(scope, [add_result_name, clf_length_name], operator.outputs[1].full_name, container, broadcast=1) class_prob_name = operator.outputs[1].full_name container.add_node('ArgMax', class_prob_name, argmax_output_name, name=scope.get_unique_operator_name('ArgMax'), axis=1) container.add_node( 'ArrayFeatureExtractor', [classes_name, argmax_output_name], array_feature_extractor_result_name, op_domain='ai.onnx.ml', name=scope.get_unique_operator_name('ArrayFeatureExtractor')) if class_type == onnx_proto.TensorProto.INT32: apply_reshape(scope, array_feature_extractor_result_name, reshaped_result_name, container, desired_shape=output_shape) apply_cast(scope, reshaped_result_name, operator.outputs[0].full_name, container, to=onnx_proto.TensorProto.INT64) else: apply_reshape(scope, array_feature_extractor_result_name, operator.outputs[0].full_name, container, desired_shape=output_shape) register_converter('SklearnCalibratedClassifierCV', convert_sklearn_calibrated_classifier_cv, options={'zipmap': [True, False], 'nocl': [True, False]})
48.06264
79
0.536166
e81828f108550aa8928e6250be1e8664abb0ecb0
4,892
py
Python
MaksimovKA_solution/models/qubvel_segmentation_models/pspnet/model.py
ktncktnc/SpaceNet_Off_Nadir_Solutions
2a9ef1c3b72fb749c808ddb8593a85cb16b9f1ca
[ "Apache-2.0" ]
164
2019-01-31T16:37:09.000Z
2022-03-31T02:47:49.000Z
MaksimovKA_solution/models/qubvel_segmentation_models/pspnet/model.py
xiaofanglegoc/SpaceNet_Off_Nadir_Solutions
812f151d244565f29987ebec7683ef42622ae16e
[ "Apache-2.0" ]
3
2019-11-20T03:32:29.000Z
2021-12-20T05:52:50.000Z
MaksimovKA_solution/models/qubvel_segmentation_models/pspnet/model.py
xiaofanglegoc/SpaceNet_Off_Nadir_Solutions
812f151d244565f29987ebec7683ef42622ae16e
[ "Apache-2.0" ]
36
2019-02-08T19:12:35.000Z
2021-12-23T06:52:35.000Z
from .builder import build_psp from ..utils import freeze_model from ..backbones import get_backbone PSP_BASE_LAYERS = { 'vgg16': ('block5_conv3', 'block4_conv3', 'block3_conv3'), 'vgg19': ('block5_conv4', 'block4_conv4', 'block3_conv4'), 'resnet18': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1'), 'resnet34': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1'), 'resnet50': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1'), 'resnet101': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1'), 'resnet152': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1'), 'resnext50': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1'), 'resnext101': ('stage4_unit1_relu1', 'stage3_unit1_relu1', 'stage2_unit1_relu1'), 'inceptionv3': (228, 86, 16), 'inceptionresnetv2': (594, 260, 16), 'densenet121': (311, 139, 51), 'densenet169': (367, 139, 51), 'densenet201': (479, 139, 51), } def _get_layer_by_factor(backbone_name, factor): if factor == 4: return PSP_BASE_LAYERS[backbone_name][-1] elif factor == 8: return PSP_BASE_LAYERS[backbone_name][-2] elif factor == 16: return PSP_BASE_LAYERS[backbone_name][-3] else: raise ValueError('Unsupported factor - `{}`, Use 4, 8 or 16.'.format(factor)) def _shape_guard(factor, shape): h, w = shape[:2] min_size = factor * 6 res = (h % min_size != 0 or w % min_size != 0 or h < min_size or w < min_size) if res: raise ValueError('Wrong shape {}, input H and W should '.format(shape) + 'be divisible by `{}`'.format(min_size)) def PSPNet(backbone_name='vgg16', input_shape=(384, 384, 3), input_tensor=None, encoder_weights='imagenet', freeze_encoder=False, downsample_factor=8, psp_conv_filters=512, psp_pooling_type='avg', use_batchnorm=False, dropout=None, final_interpolation='bilinear', classes=21, activation='softmax'): """ Exploit the capability of global context information by different-regionbased context aggregation through pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). https://arxiv.org/pdf/1612.01105.pdf Args: backbone_name: (str) look at list of available backbones. input_shape: (tuple) dimensions of input data (H, W, C). H and W should be divisible by (6 * `downsample_factor`) and **NOT** `None`! input_tensor: keras tensor encoder_weights: one of `None` (random initialization), 'imagenet' (pre- training on ImageNet) freeze_encoder: (bool) Set encoder layers weights as non-trainable. Use- ful for fine-tuning downsample_factor: int, one of 4, 8 and 16. Specify layer of backbone or backbone depth to construct PSP module on it. psp_conv_filters: (int), number of filters in `Conv2D` layer in each psp block psp_pooling_type: 'avg' or 'max', psp block pooling type (maximum or average) use_batchnorm: (bool) if True add batch normalisation layer between `Conv2D` ad `Activation` layers dropout: None or float in range 0-1, if specified add SpatialDropout after PSP module final_interpolation: 'duc' or 'bilinear' - interpolation type for final upsampling layer. classes: (int) a number of classes for output activation: (str) one of keras activations Returns: keras Model instance """ # control image input shape _shape_guard(downsample_factor, input_shape) backbone = get_backbone(backbone_name, input_shape=input_shape, input_tensor=input_tensor, weights=encoder_weights, include_top=False) psp_layer = _get_layer_by_factor(backbone_name, downsample_factor) model = build_psp(backbone, psp_layer, last_upsampling_factor=downsample_factor, classes=classes, conv_filters=psp_conv_filters, pooling_type=psp_pooling_type, activation=activation, use_batchnorm=use_batchnorm, dropout=dropout, final_interpolation=final_interpolation) # lock encoder weights for fine-tuning if freeze_encoder: freeze_model(backbone) model.name = 'psp-{}'.format(backbone_name) return model
40.429752
95
0.612837
0072acb74b687e224cf9168fd48d2c02ccaed7eb
2,334
py
Python
main.py
keshav-b/Hala-IPL
b17aa9c27e78c7b19977eb6115a8b80992acab22
[ "MIT" ]
1
2019-08-17T07:23:56.000Z
2019-08-17T07:23:56.000Z
main.py
keshav-b/IPL-Prediction
b17aa9c27e78c7b19977eb6115a8b80992acab22
[ "MIT" ]
null
null
null
main.py
keshav-b/IPL-Prediction
b17aa9c27e78c7b19977eb6115a8b80992acab22
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn import svm from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score from xgboost import XGBClassifier import matplotlib.pyplot #importing the dataset data = pd.read_csv('matches.csv') data1 = data #checking if there are any missing data miss_bool = data['winner'].isnull() print(sum(miss_bool)) #dropping those rows with NULL values data = data.dropna(how = 'all') #dropping thoses columns which arent making sense data = data.drop(['dl_applied','umpire1','id','umpire2','umpire3','date','win_by_runs', 'win_by_wickets','player_of_match','result','city','season','venue'], axis=1) #replace data = data.replace('Rising Pune Supergiants', 'Rising Pune Supergiant') #encoding the values using label encoder le = LabelEncoder() cols = ['team1','team2','winner','toss_winner','toss_decision'] for i in cols: data[i] = le.fit_transform(data[i]) #spilttinig into X and y x = data.drop(['winner'],axis=1) y = data['winner'] teams = ['Royal Challengers Bangalore', 'Sunrisers Hyderabad', 'Rajasthan Royals', 'Mumbai Indians', 'Kolkata Knight Riders', 'Kings XI Punjab', 'Delhi Capitals', 'Chennai Super Kings', 'Gujarat Lions', 'Rising Pune Supergiant', 'Pune Warriors India', 'Kochi Tuskers Kerala', 'Deccan Chargers'] teams.sort() teams_le = le.fit_transform(teams) #Test Teain Split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=.30, random_state=1008) #--------------------------------------SVM ''' svm = svm.SVC(gamma = 'scale') svm.fit(x_train, y_train) y_pred = svm.predict(x_test) print(f1_score(y_test,y_pred, average='micro')) #--------------------------------------Random Forest classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0) classifier.fit(x_train, y_train) y_pred1 = classifier.predict(x_test) print(f1_score(y_test,y_pred1,average='micro')) ''' #--------------------------------------XGBoosr xg = XGBClassifier() xg.fit(x_train, y_train) y_pred2 = xg.predict(x_test) print("The F1 Score of the XGBoost is: ",f1_score(y_test,y_pred2,average='micro')) import pickle with open('model.pickle','wb') as k: pickle.dump(xg,k)
26.224719
95
0.70437
43acdc7566deb1d35a1b253470c98b6a46510aca
105,444
py
Python
src/sage/algebras/quatalg/quaternion_algebra.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
src/sage/algebras/quatalg/quaternion_algebra.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
src/sage/algebras/quatalg/quaternion_algebra.py
fredstro/sage
c936d2cda81ec7ec3552a3bdb29c994b40d1bb24
[ "BSL-1.0" ]
null
null
null
""" Quaternion Algebras AUTHORS: - Jon Bobber (2009): rewrite - William Stein (2009): rewrite - Julian Rueth (2014-03-02): use UniqueFactory for caching This code is partly based on Sage code by David Kohel from 2005. TESTS: Pickling test:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: Q == loads(dumps(Q)) True """ #***************************************************************************** # Copyright (C) 2009 William Stein <wstein@gmail.com> # Copyright (C) 2009 Jonathan Bober <jwbober@gmail.com> # Copyright (C) 2014 Julian Rueth <julian.rueth@fsfe.org> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from __future__ import print_function from sage.arith.all import (hilbert_conductor_inverse, hilbert_conductor, factor, gcd, lcm, kronecker_symbol, valuation) from sage.rings.all import RR, Integer from sage.rings.integer_ring import ZZ from sage.rings.rational import Rational from sage.rings.finite_rings.finite_field_constructor import GF from sage.rings.ring import Algebra from sage.rings.ideal import Ideal_fractional from sage.rings.rational_field import is_RationalField, QQ from sage.rings.infinity import infinity from sage.rings.number_field.number_field import is_NumberField from sage.structure.category_object import normalize_names from sage.structure.parent_gens import ParentWithGens from sage.matrix.matrix_space import MatrixSpace from sage.matrix.constructor import diagonal_matrix, matrix from sage.structure.sequence import Sequence from sage.structure.element import is_RingElement from sage.structure.factory import UniqueFactory from sage.modules.free_module import VectorSpace, FreeModule from sage.modules.free_module_element import vector from operator import itemgetter import quaternion_algebra_element import quaternion_algebra_cython from sage.modular.modsym.p1list import P1List from sage.misc.cachefunc import cached_method from sage.categories.fields import Fields _Fields = Fields() ######################################################## # Constructor ######################################################## class QuaternionAlgebraFactory(UniqueFactory): """ There are three input formats: - ``QuaternionAlgebra(a, b)``: quaternion algebra generated by ``i``, ``j`` subject to `i^2 = a`, `j^2 = b`, `j \cdot i = -i \cdot j`. - ``QuaternionAlgebra(K, a, b)``: same as above but over a field ``K``. Here, ``a`` and ``b`` are nonzero elements of a field (``K``) of characteristic not 2, and we set `k = i \cdot j`. - ``QuaternionAlgebra(D)``: a rational quaternion algebra with discriminant ``D``, where `D > 1` is a squarefree integer. EXAMPLES: ``QuaternionAlgebra(a, b)`` - return quaternion algebra over the *smallest* field containing the nonzero elements ``a`` and ``b`` with generators ``i``, ``j``, ``k`` with `i^2=a`, `j^2=b` and `j \cdot i = -i \cdot j`:: sage: QuaternionAlgebra(-2,-3) Quaternion Algebra (-2, -3) with base ring Rational Field sage: QuaternionAlgebra(GF(5)(2), GF(5)(3)) Quaternion Algebra (2, 3) with base ring Finite Field of size 5 sage: QuaternionAlgebra(2, GF(5)(3)) Quaternion Algebra (2, 3) with base ring Finite Field of size 5 sage: QuaternionAlgebra(QQ[sqrt(2)](-1), -5) Quaternion Algebra (-1, -5) with base ring Number Field in sqrt2 with defining polynomial x^2 - 2 sage: QuaternionAlgebra(sqrt(-1), sqrt(-3)) Quaternion Algebra (I, sqrt(-3)) with base ring Symbolic Ring sage: QuaternionAlgebra(1r,1) Quaternion Algebra (1, 1) with base ring Rational Field Python ints, longs and floats may be passed to the ``QuaternionAlgebra(a, b)`` constructor, as may all pairs of nonzero elements of a ring not of characteristic 2. The following tests address the issues raised in :trac:`10601`:: sage: QuaternionAlgebra(1r,1) Quaternion Algebra (1, 1) with base ring Rational Field sage: QuaternionAlgebra(1,1.0r) Quaternion Algebra (1.00000000000000, 1.00000000000000) with base ring Real Field with 53 bits of precision sage: QuaternionAlgebra(0,0) Traceback (most recent call last): ... ValueError: a and b must be nonzero sage: QuaternionAlgebra(GF(2)(1),1) Traceback (most recent call last): ... ValueError: a and b must be elements of a ring with characteristic not 2 sage: a = PermutationGroupElement([1,2,3]) sage: QuaternionAlgebra(a, a) Traceback (most recent call last): ... ValueError: a and b must be elements of a ring with characteristic not 2 ``QuaternionAlgebra(K, a, b)`` - return quaternion algebra over the field ``K`` with generators ``i``, ``j``, ``k`` with `i^2=a`, `j^2=b` and `i \cdot j = -j \cdot i`:: sage: QuaternionAlgebra(QQ, -7, -21) Quaternion Algebra (-7, -21) with base ring Rational Field sage: QuaternionAlgebra(QQ[sqrt(2)], -2,-3) Quaternion Algebra (-2, -3) with base ring Number Field in sqrt2 with defining polynomial x^2 - 2 ``QuaternionAlgebra(D)`` - ``D`` is a squarefree integer; returns a rational quaternion algebra of discriminant ``D``:: sage: QuaternionAlgebra(1) Quaternion Algebra (-1, 1) with base ring Rational Field sage: QuaternionAlgebra(2) Quaternion Algebra (-1, -1) with base ring Rational Field sage: QuaternionAlgebra(7) Quaternion Algebra (-1, -7) with base ring Rational Field sage: QuaternionAlgebra(2*3*5*7) Quaternion Algebra (-22, 210) with base ring Rational Field If the coefficients `a` and `b` in the definition of the quaternion algebra are not integral, then a slower generic type is used for arithmetic:: sage: type(QuaternionAlgebra(-1,-3).0) <type 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> sage: type(QuaternionAlgebra(-1,-3/2).0) <type 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'> Make sure caching is sane:: sage: A = QuaternionAlgebra(2,3); A Quaternion Algebra (2, 3) with base ring Rational Field sage: B = QuaternionAlgebra(GF(5)(2),GF(5)(3)); B Quaternion Algebra (2, 3) with base ring Finite Field of size 5 sage: A is QuaternionAlgebra(2,3) True sage: B is QuaternionAlgebra(GF(5)(2),GF(5)(3)) True sage: Q = QuaternionAlgebra(2); Q Quaternion Algebra (-1, -1) with base ring Rational Field sage: Q is QuaternionAlgebra(QQ,-1,-1) True sage: Q is QuaternionAlgebra(-1,-1) True sage: Q.<ii,jj,kk> = QuaternionAlgebra(15); Q.variable_names() ('ii', 'jj', 'kk') sage: QuaternionAlgebra(15).variable_names() ('i', 'j', 'k') TESTS: Verify that bug found when working on :trac:`12006` involving coercing invariants into the base field is fixed:: sage: Q = QuaternionAlgebra(-1,-1); Q Quaternion Algebra (-1, -1) with base ring Rational Field sage: parent(Q._a) Rational Field sage: parent(Q._b) Rational Field """ def create_key(self, arg0, arg1=None, arg2=None, names='i,j,k'): """ Create a key that uniquely determines a quaternion algebra. TESTS:: sage: QuaternionAlgebra.create_key(-1,-1) (Rational Field, -1, -1, ('i', 'j', 'k')) """ # QuaternionAlgebra(D) if arg1 is None and arg2 is None: K = QQ D = Integer(arg0) a, b = hilbert_conductor_inverse(D) a = Rational(a); b = Rational(b) elif arg2 is None: # If arg0 or arg1 are Python data types, coerce them # to the relevant Sage types. This is a bit inelegant. L = [] for a in [arg0,arg1]: if is_RingElement(a): L.append(a) elif isinstance(a, int) or isinstance(a, long): L.append(Integer(a)) elif isinstance(a, float): L.append(RR(a)) else: raise ValueError("a and b must be elements of a ring with characteristic not 2") # QuaternionAlgebra(a, b) v = Sequence(L) K = v.universe().fraction_field() a = K(v[0]) b = K(v[1]) # QuaternionAlgebra(K, a, b) else: K = arg0 if K not in _Fields: raise TypeError("base ring of quaternion algebra must be a field") a = K(arg1) b = K(arg2) if K.characteristic() == 2: # Lameness! raise ValueError("a and b must be elements of a ring with characteristic not 2") if a == 0 or b == 0: raise ValueError("a and b must be nonzero") names = normalize_names(3, names) return (K, a, b, names) def create_object(self, version, key, **extra_args): """ Create the object from the key (extra arguments are ignored). This is only called if the object was not found in the cache. TESTS:: sage: QuaternionAlgebra.create_object("6.0", (QQ, -1, -1, ('i', 'j', 'k'))) Quaternion Algebra (-1, -1) with base ring Rational Field """ K, a, b, names = key return QuaternionAlgebra_ab(K, a, b, names=names) QuaternionAlgebra = QuaternionAlgebraFactory("QuaternionAlgebra") ######################################################## # Classes ######################################################## def is_QuaternionAlgebra(A): """ Return ``True`` if ``A`` is of the QuaternionAlgebra data type. EXAMPLES:: sage: sage.algebras.quatalg.quaternion_algebra.is_QuaternionAlgebra(QuaternionAlgebra(QQ,-1,-1)) True sage: sage.algebras.quatalg.quaternion_algebra.is_QuaternionAlgebra(ZZ) False """ return isinstance(A, QuaternionAlgebra_abstract) class QuaternionAlgebra_abstract(Algebra): def _repr_(self): """ EXAMPLES:: sage: sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_abstract(QQ)._repr_() 'Quaternion Algebra with base ring Rational Field' """ return "Quaternion Algebra with base ring %s"%self.base_ring() def ngens(self): """ Return the number of generators of the quaternion algebra as a K-vector space, not including 1. This value is always 3: the algebra is spanned by the standard basis `1`, `i`, `j`, `k`. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: Q.ngens() 3 sage: Q.gens() [i, j, k] """ return 3 def basis(self): """ Return the fixed basis of ``self``, which is `1`, `i`, `j`, `k`, where `i`, `j`, `k` are the generators of ``self``. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: Q.basis() (1, i, j, k) sage: Q.<xyz,abc,theta> = QuaternionAlgebra(GF(9,'a'),-5,-2) sage: Q.basis() (1, xyz, abc, theta) The basis is cached:: sage: Q.basis() is Q.basis() True """ try: return self.__basis except AttributeError: self.__basis = tuple([self(1)] + list(self.gens())) return self.__basis def inner_product_matrix(self): """ Return the inner product matrix associated to ``self``, i.e. the Gram matrix of the reduced norm as a quadratic form on ``self``. The standard basis `1`, `i`, `j`, `k` is orthogonal, so this matrix is just the diagonal matrix with diagonal entries `2`, `2a`, `2b`, `2ab`. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(-5,-19) sage: Q.inner_product_matrix() [ 2 0 0 0] [ 0 10 0 0] [ 0 0 38 0] [ 0 0 0 190] """ try: return self.__inner_product_matrix except AttributeError: pass a, b = self._a, self._b M = diagonal_matrix(self.base_ring(), [2, -2*a, -2*b, 2*a*b]) M.set_immutable() self.__inner_product_matrix = M return M def is_commutative(self): """ Return ``False`` always, since all quaternion algebras are noncommutative. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3,-7) sage: Q.is_commutative() False """ return False def is_division_algebra(self): """ Return ``True`` if the quaternion algebra is a division algebra (i.e. every nonzero element in ``self`` is invertible), and ``False`` if the quaternion algebra is isomorphic to the 2x2 matrix algebra. EXAMPLES:: sage: QuaternionAlgebra(QQ,-5,-2).is_division_algebra() True sage: QuaternionAlgebra(1).is_division_algebra() False sage: QuaternionAlgebra(2,9).is_division_algebra() False sage: QuaternionAlgebra(RR(2.),1).is_division_algebra() Traceback (most recent call last): ... NotImplementedError: base field must be rational numbers """ if not is_RationalField(self.base_ring()): raise NotImplementedError("base field must be rational numbers") return self.discriminant() != 1 def is_matrix_ring(self): """ Return ``True`` if the quaternion algebra is isomorphic to the 2x2 matrix ring, and ``False`` if ``self`` is a division algebra (i.e. every nonzero element in ``self`` is invertible). EXAMPLES:: sage: QuaternionAlgebra(QQ,-5,-2).is_matrix_ring() False sage: QuaternionAlgebra(1).is_matrix_ring() True sage: QuaternionAlgebra(2,9).is_matrix_ring() True sage: QuaternionAlgebra(RR(2.),1).is_matrix_ring() Traceback (most recent call last): ... NotImplementedError: base field must be rational numbers """ if not is_RationalField(self.base_ring()): raise NotImplementedError("base field must be rational numbers") return self.discriminant() == 1 def is_exact(self): """ Return ``True`` if elements of this quaternion algebra are represented exactly, i.e. there is no precision loss when doing arithmetic. A quaternion algebra is exact if and only if its base field is exact. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_exact() True sage: Q.<i,j,k> = QuaternionAlgebra(Qp(7), -3, -7) sage: Q.is_exact() False """ return self.base_ring().is_exact() def is_field(self, proof = True): """ Return ``False`` always, since all quaternion algebras are noncommutative and all fields are commutative. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_field() False """ return False def is_finite(self): """ Return ``True`` if the quaternion algebra is finite as a set. Algorithm: A quaternion algebra is finite if and only if the base field is finite. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_finite() False sage: Q.<i,j,k> = QuaternionAlgebra(GF(5), -3, -7) sage: Q.is_finite() True """ return self.base_ring().is_finite() def is_integral_domain(self, proof = True): """ Return ``False`` always, since all quaternion algebras are noncommutative and integral domains are commutative (in Sage). EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_integral_domain() False """ return False def is_noetherian(self): """ Return ``True`` always, since any quaternion algebra is a noetherian ring (because it is a finitely generated module over a field). EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_noetherian() True """ return True def order(self): """ Return the number of elements of the quaternion algebra, or ``+Infinity`` if the algebra is not finite. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.order() +Infinity sage: Q.<i,j,k> = QuaternionAlgebra(GF(5), -3, -7) sage: Q.order() 625 """ return (self.base_ring().order())**4 def random_element(self, *args, **kwds): """ Return a random element of this quaternion algebra. The ``args`` and ``kwds`` are passed to the ``random_element`` method of the base ring. EXAMPLES:: sage: QuaternionAlgebra(QQ[sqrt(2)],-3,7).random_element() (sqrt2 + 2)*i + (-12*sqrt2 - 2)*j + (-sqrt2 + 1)*k sage: QuaternionAlgebra(-3,19).random_element() -1 + 2*i - j - 6/5*k sage: QuaternionAlgebra(GF(17)(2),3).random_element() 14 + 10*i + 4*j + 7*k Specify the numerator and denominator bounds:: sage: QuaternionAlgebra(-3,19).random_element(10^6,10^6) -979933/553629 + 255525/657688*i - 3511/6929*j - 700105/258683*k """ K = self.base_ring() return self([ K.random_element(*args, **kwds) for _ in range(4) ]) def vector_space(self): """ Return the vector space associated to ``self`` with inner product given by the reduced norm. EXAMPLES:: sage: QuaternionAlgebra(-3,19).vector_space() Ambient quadratic space of dimension 4 over Rational Field Inner product matrix: [ 2 0 0 0] [ 0 6 0 0] [ 0 0 -38 0] [ 0 0 0 -114] """ try: return self.__vector_space except AttributeError: V = VectorSpace(self.base_ring(), 4, inner_product_matrix = self.inner_product_matrix()) self.__vector_space = V return V class QuaternionAlgebra_ab(QuaternionAlgebra_abstract): """ The quaternion algebra of the form `(a, b/K)`, where `i^2=a`, `j^2 = b`, and `j*i = -i*j`. ``K`` is a field not of characteristic 2 and ``a``, ``b`` are nonzero elements of ``K``. See ``QuaternionAlgebra`` for many more examples. INPUT: - ``base_ring`` -- commutative ring - ``a, b`` -- elements of ``base_ring`` - ``names`` -- string (optional, default 'i,j,k') names of the generators EXAMPLES:: sage: QuaternionAlgebra(QQ, -7, -21) # indirect doctest Quaternion Algebra (-7, -21) with base ring Rational Field """ def __init__(self, base_ring, a, b, names='i,j,k'): """ Create the quaternion algebra with `i^2 = a`, `j^2 = b`, and `i*j = -j*i = k`. TESTS: Test making quaternion elements (using the element constructor):: sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-1,-2) sage: a = Q(2/3); a 2/3 sage: type(a) <type 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> sage: Q(a) 2/3 sage: Q([1,2,3,4]) 1 + 2*i + 3*j + 4*k sage: Q((1,2,3,4)) 1 + 2*i + 3*j + 4*k sage: Q(-3/5) -3/5 The base ring must be a field:: sage: Q.<ii,jj,kk> = QuaternionAlgebra(ZZ,-5,-19) Traceback (most recent call last): ... TypeError: base ring of quaternion algebra must be a field """ ParentWithGens.__init__(self, base_ring, names=names) self._a = a self._b = b if base_ring not in _Fields: raise TypeError("base ring of quaternion algebra must be a field") if is_RationalField(base_ring) and a.denominator() == 1 and b.denominator() == 1: element_constructor = quaternion_algebra_element.QuaternionAlgebraElement_rational_field elif is_NumberField(base_ring) and base_ring.degree() > 2 and base_ring.is_absolute() and \ a.denominator() == 1 and b.denominator() == 1 and base_ring.defining_polynomial().is_monic(): # This QuaternionAlgebraElement_number_field class is not # designed to work with elements of a quadratic field. To # do that, the main thing would be to implement # __getitem__, etc. This would maybe give a factor of 2 # (or more?) speedup. Much care must be taken because the # underlying representation of quadratic fields is a bit # tricky. element_constructor = quaternion_algebra_element.QuaternionAlgebraElement_number_field else: element_constructor = quaternion_algebra_element.QuaternionAlgebraElement_generic self._populate_coercion_lists_(coerce_list=[base_ring], element_constructor=element_constructor) self._gens = [self([0,1,0,0]), self([0,0,1,0]), self([0,0,0,1])] def maximal_order(self, take_shortcuts = True): r""" Return a maximal order in this quaternion algebra. The algorithm used is from [Voi2012]_. INPUT: - ``take_shortcuts`` -- (default: ``True``) if the discriminant is prime and the invariants of the algebra are of a nice form, use Proposition 5.2 of [Piz1980]_. OUTPUT: A maximal order in this quaternion algebra. EXAMPLES:: sage: QuaternionAlgebra(-1,-7).maximal_order() Order of Quaternion Algebra (-1, -7) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) sage: QuaternionAlgebra(-1,-1).maximal_order().basis() (1/2 + 1/2*i + 1/2*j + 1/2*k, i, j, k) sage: QuaternionAlgebra(-1,-11).maximal_order().basis() (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) sage: QuaternionAlgebra(-1,-3).maximal_order().basis() (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) sage: QuaternionAlgebra(-3,-1).maximal_order().basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) sage: QuaternionAlgebra(-2,-5).maximal_order().basis() (1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k) sage: QuaternionAlgebra(-5,-2).maximal_order().basis() (1/2 + 1/2*i - 1/2*k, 1/2*i + 1/4*j - 1/4*k, i, -k) sage: QuaternionAlgebra(-17,-3).maximal_order().basis() (1/2 + 1/2*j, 1/2*i + 1/2*k, -1/3*j - 1/3*k, k) sage: QuaternionAlgebra(-3,-17).maximal_order().basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, -1/3*i + 1/3*k, -k) sage: QuaternionAlgebra(-17*9,-3).maximal_order().basis() (1, 1/3*i, 1/6*i + 1/2*j, 1/2 + 1/3*j + 1/18*k) sage: QuaternionAlgebra(-2, -389).maximal_order().basis() (1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k) If you want bases containing 1, switch off ``take_shortcuts``:: sage: QuaternionAlgebra(-3,-89).maximal_order(take_shortcuts=False) Order of Quaternion Algebra (-3, -89) with base ring Rational Field with basis (1, 1/2 + 1/2*i, j, 1/2 + 1/6*i + 1/2*j + 1/6*k) sage: QuaternionAlgebra(1,1).maximal_order(take_shortcuts=False) # Matrix ring Order of Quaternion Algebra (1, 1) with base ring Rational Field with basis (1, 1/2 + 1/2*i, j, 1/2*j + 1/2*k) sage: QuaternionAlgebra(-22,210).maximal_order(take_shortcuts=False) Order of Quaternion Algebra (-22, 210) with base ring Rational Field with basis (1, i, 1/2*i + 1/2*j, 1/2 + 17/22*i + 1/44*k) sage: for d in ( m for m in range(1, 750) if is_squarefree(m) ): # long time (3s) ....: A = QuaternionAlgebra(d) ....: R = A.maximal_order(take_shortcuts=False) ....: assert A.discriminant() == R.discriminant() We don't support number fields other than the rationals yet:: sage: K = QuadraticField(5) sage: QuaternionAlgebra(K,-1,-1).maximal_order() Traceback (most recent call last): ... NotImplementedError: maximal order only implemented for rational quaternion algebras REFERENCES: .. [Piz1980] \A. Pizer. An Algorithm for Computing Modular Forms on `\Gamma_0(N)`, J. Algebra 64 (1980), 340-390. .. [Voi2012] \J. Voight. Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, to appear. """ try: return self.__maximal_order except AttributeError: pass if self.base_ring() != QQ: raise NotImplementedError("maximal order only implemented for rational quaternion algebras") d_A = self.discriminant() # The following only works over QQ if the discriminant is prime # and if the invariants are of the special form # (every quaternion algebra of prime discriminant has a representation # of such a form though) a, b = self.invariants() if take_shortcuts and d_A.is_prime() and a in ZZ and b in ZZ: a = ZZ(a) b = ZZ(b) i,j,k = self.gens() # if necessary, try to swap invariants to match Pizer's paper if (a != -1 and b == -1) or (b == -2) \ or (a != -1 and a != -2 and (-a) % 8 != 1): a, b = b, a i, j = j, i k = i*j basis = [] if (a,b) == (-1,-1): basis = [(1+i+j+k)/2, i, j, k] elif a == -1 and (-b).is_prime() and ((-b) % 4 == 3): basis = [(1+j)/2, (i+k)/2, j, k] elif a == -2 and (-b).is_prime() and ((-b) % 8 == 5): basis = [(1+j+k)/2, (i+2*j+k)/4, j, k] elif (-a).is_prime() and (-b).is_prime(): q = -b p = -a if q % 4 == 3 and kronecker_symbol(p,q) == -1: a = 0 while (a*a*p + 1)%q != 0: a += 1 basis = [(1+j)/2, (i+k)/2, -(j+a*k)/q, k] if basis: self.__maximal_order = self.quaternion_order(basis) return self.__maximal_order # The following code should always work (over QQ) # Start with <1,i,j,k> R = self.quaternion_order([1] + self.gens()) d_R = R.discriminant() e_new_gens = [] # For each prime at which R is not yet maximal, make it bigger for (p,p_val) in d_R.factor(): e = R.basis() while self.quaternion_order(e).discriminant().valuation(p) > d_A.valuation(p): # Compute a normalized basis at p f = normalize_basis_at_p(list(e), p) # Ensure the basis lies in R by clearing denominators # (this may make the order smaller at q != p) # Also saturate the basis (divide out p as far as possible) V = self.base_ring()**4 A = matrix(self.base_ring(), 4, 4, [ list(g) for g in e ]); e_n = [] x_rows = A.solve_left(matrix([ V(vec.coefficient_tuple()) for (vec,val) in f ]), check=False).rows() denoms = [ x.denominator() for x in x_rows ] for i in range(4): vec = f[i][0] val = f[i][1] v = (val/2).floor() e_n.append(denoms[i] / p**(v) * vec) # for e_n to become p-saturated we still need to sort by # ascending valuation of the quadratic form lst = sorted(zip(e_n, [f[m][1].mod(2) for m in range(4)]), key = itemgetter(1)) e_n = list(zip(*lst)[0]) # Final step: Enlarge the basis at p if p != 2: # ensure that v_p(e_n[1]**2) = 0 by swapping basis elements if ZZ(e_n[1]**2).valuation(p) != 0: if ZZ(e_n[2]**2).valuation(p) == 0: e_n[1], e_n[2] = e_n[2], e_n[1] else: e_n[1], e_n[3] = e_n[3], e_n[1] a = ZZ(e_n[1]**2) b = ZZ(e_n[2]**2) if b.valuation(p) > 0: # if v_p(b) = 0, then already p-maximal F = ZZ.quo(p) if F(a).is_square(): x = F(a).sqrt().lift() if (x**2 - a).mod(p**2) == 0: # make sure v_p(x**2 - a) = 1 x = x + p g = 1/p*(x - e_n[1])*e_n[2] e_n[2] = g e_n[3] = e_n[1]*g else: # p == 2 t = e_n[1].reduced_trace() a = -e_n[1].reduced_norm() b = ZZ(e_n[2]**2) if t.valuation(p) == 0: if b.valuation(p) > 0: x = a if (x**2 - t*x + a).mod(p**2) == 0: # make sure v_p(...) = 1 x = x + p g = 1/p*(x - e_n[1])*e_n[2] e_n[2] = g e_n[3] = e_n[1]*g else: # t.valuation(p) > 0 (y,z,w) = maxord_solve_aux_eq(a, b, p) g = 1/p*(1 + y*e_n[1] + z*e_n[2] + w*e_n[1]*e_n[2]) h = (z*b)*e_n[1] - (y*a)*e_n[2] e_n[1:4] = [g,h,g*h] if (1 - a*y**2 - b*z**2 + a*b*w**2).valuation(2) > 2: e_n = basis_for_quaternion_lattice(list(e) + e_n[1:], reverse=True) # e_n now contains elements that locally at p give a bigger order, # but the basis may be messed up at other primes (it might not even # be an order). We will join them all together at the end e = e_n e_new_gens.extend(e[1:]) e_new = basis_for_quaternion_lattice(list(R.basis()) + e_new_gens, reverse=True) self.__maximal_order = self.quaternion_order(e_new) return self.__maximal_order def invariants(self): """ Return the structural invariants `a`, `b` of this quaternion algebra: ``self`` is generated by `i`, `j` subject to `i^2 = a`, `j^2 = b` and `j*i = -i*j`. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(15) sage: Q.invariants() (-3, 5) sage: i^2 -3 sage: j^2 5 """ return self._a, self._b def __cmp__(self, other): """ Compare self and other. EXAMPLES:: sage: cmp(QuaternionAlgebra(-1,-7), QuaternionAlgebra(-1,-7)) 0 sage: cmp(QuaternionAlgebra(-1,-7), QuaternionAlgebra(-1,-5)) -1 sage: cmp(QuaternionAlgebra(-1,-7), QuaternionAlgebra(-1,-10)) 1 """ if not isinstance(other, QuaternionAlgebra_abstract): return cmp(type(self), type(other)) c = cmp(self.base_ring(), other.base_ring()) if c: return c return cmp((self._a, self._b), (other._a, other._b)) def gen(self, i=0): """ Return the `i^{th}` generator of ``self``. INPUT: - ``i`` - integer (optional, default 0) EXAMPLES:: sage: Q.<ii,jj,kk> = QuaternionAlgebra(QQ,-1,-2); Q Quaternion Algebra (-1, -2) with base ring Rational Field sage: Q.gen(0) ii sage: Q.gen(1) jj sage: Q.gen(2) kk sage: Q.gens() [ii, jj, kk] """ return self._gens[i] def _repr_(self): """ Print representation. TESTS:: sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: type(Q) <class 'sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_ab'> sage: Q._repr_() 'Quaternion Algebra (-5, -2) with base ring Rational Field' sage: Q Quaternion Algebra (-5, -2) with base ring Rational Field sage: print(Q) Quaternion Algebra (-5, -2) with base ring Rational Field sage: str(Q) 'Quaternion Algebra (-5, -2) with base ring Rational Field' """ return "Quaternion Algebra (%r, %r) with base ring %s"%(self._a, self._b, self.base_ring()) def inner_product_matrix(self): """ Return the inner product matrix associated to ``self``, i.e. the Gram matrix of the reduced norm as a quadratic form on ``self``. The standard basis `1`, `i`, `j`, `k` is orthogonal, so this matrix is just the diagonal matrix with diagonal entries `1`, `a`, `b`, `ab`. EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(-5,-19) sage: Q.inner_product_matrix() [ 2 0 0 0] [ 0 10 0 0] [ 0 0 38 0] [ 0 0 0 190] sage: R.<a,b> = QQ[]; Q.<i,j,k> = QuaternionAlgebra(Frac(R),a,b) sage: Q.inner_product_matrix() [ 2 0 0 0] [ 0 -2*a 0 0] [ 0 0 -2*b 0] [ 0 0 0 2*a*b] """ a, b = self._a, self._b return diagonal_matrix(self.base_ring(), [2, -2*a, -2*b, 2*a*b]) def discriminant(self): """ Given a quaternion algebra `A` defined over a number field, return the discriminant of `A`, i.e. the product of the ramified primes of `A`. EXAMPLES:: sage: QuaternionAlgebra(210,-22).discriminant() 210 sage: QuaternionAlgebra(19).discriminant() 19 sage: F.<a> = NumberField(x^2-x-1) sage: B.<i,j,k> = QuaternionAlgebra(F, 2*a,F(-1)) sage: B.discriminant() Fractional ideal (2) sage: QuaternionAlgebra(QQ[sqrt(2)],3,19).discriminant() Fractional ideal (1) """ try: return self.__discriminant except AttributeError: pass if not is_RationalField(self.base_ring()): try: F = self.base_ring() self.__discriminant = F.hilbert_conductor(self._a, self._b) except NotImplementedError: raise ValueError("base field must be rational numbers or number field") else: self.__discriminant = hilbert_conductor(self._a, self._b) return self.__discriminant def ramified_primes(self): """ Return the primes that ramify in this quaternion algebra. Currently only implemented over the rational numbers. EXAMPLES:: sage: QuaternionAlgebra(QQ, -1, -1).ramified_primes() [2] """ #TODO: more examples return [f[0] for f in factor(self.discriminant())] def _magma_init_(self, magma): """ Return Magma version of this quaternion algebra. EXAMPLES:: sage: Q = QuaternionAlgebra(-1,-1); Q Quaternion Algebra (-1, -1) with base ring Rational Field sage: Q._magma_init_(magma) # optional - magma 'QuaternionAlgebra(_sage_[...],-1/1,-1/1)' sage: A = magma(Q); A # optional - magma Quaternion Algebra with base ring Rational Field, defined by i^2 = -1, j^2 = -1 sage: A.RamifiedPlaces() # optional - magma [ Ideal of Integer Ring generated by 2 ] A more complicated example involving a quaternion algebra over a number field:: sage: K.<a> = QQ[sqrt(2)]; Q = QuaternionAlgebra(K,-1,a); Q Quaternion Algebra (-1, sqrt2) with base ring Number Field in sqrt2 with defining polynomial x^2 - 2 sage: magma(Q) # optional - magma Quaternion Algebra with base ring Number Field with defining polynomial x^2 - 2 over the Rational Field, defined by i^2 = -1, j^2 = sqrt2 sage: Q._magma_init_(magma) # optional - magma 'QuaternionAlgebra(_sage_[...],(_sage_[...]![-1, 0]),(_sage_[...]![0, 1]))' """ R = magma(self.base_ring()) return 'QuaternionAlgebra(%s,%s,%s)'%(R.name(), self._a._magma_init_(magma), self._b._magma_init_(magma)) def quaternion_order(self, basis, check=True): """ Return the order of this quaternion order with given basis. INPUT: - ``basis`` - list of 4 elements of ``self`` - ``check`` - bool (default: ``True``) EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(-11,-1) sage: Q.quaternion_order([1,i,j,k]) Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis (1, i, j, k) We test out ``check=False``:: sage: Q.quaternion_order([1,i,j,k], check=False) Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis [1, i, j, k] sage: Q.quaternion_order([i,j,k], check=False) Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis [i, j, k] """ return QuaternionOrder(self, basis, check=check) def ideal(self, gens, left_order=None, right_order=None, check=True, **kwds): r""" Return the quaternion ideal with given gens over `\ZZ`. Neither a left or right order structure need be specified. INPUT: - ``gens`` -- a list of elements of this quaternion order - ``check`` -- bool (default: ``True``); if ``False``, then ``gens`` must 4-tuple that forms a Hermite basis for an ideal - ``left_order`` -- a quaternion order or ``None`` - ``right_order`` -- a quaternion order or ``None`` EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1) sage: R.ideal([2*a for a in R.basis()]) Fractional ideal (2, 2*i, 2*j, 2*k) """ if self.base_ring() == QQ: return QuaternionFractionalIdeal_rational(gens, left_order=left_order, right_order=right_order, check=check) else: raise NotImplementedError("ideal only implemented for quaternion algebras over QQ") @cached_method def modp_splitting_data(self, p): r""" Return mod `p` splitting data for this quaternion algebra at the unramified prime `p`. This is `2\times 2` matrices `I`, `J`, `K` over the finite field `\GF{p}` such that if the quaternion algebra has generators `i, j, k`, then `I^2 = i^2`, `J^2 = j^2`, `IJ=K` and `IJ=-JI`. .. NOTE:: Currently only implemented when `p` is odd and the base ring is `\QQ`. INPUT: - `p` -- unramified odd prime OUTPUT: - 2-tuple of matrices over finite field EXAMPLES:: sage: Q = QuaternionAlgebra(-15, -19) sage: Q.modp_splitting_data(7) ( [0 6] [6 1] [6 6] [1 0], [1 1], [6 1] ) sage: Q.modp_splitting_data(next_prime(10^5)) ( [ 0 99988] [97311 4] [99999 59623] [ 1 0], [13334 2692], [97311 4] ) sage: I,J,K = Q.modp_splitting_data(23) sage: I [0 8] [1 0] sage: I^2 [8 0] [0 8] sage: J [19 2] [17 4] sage: J^2 [4 0] [0 4] sage: I*J == -J*I True sage: I*J == K True The following is a good test because of the asserts in the code:: sage: v = [Q.modp_splitting_data(p) for p in primes(20,1000)] Proper error handling:: sage: Q.modp_splitting_data(5) Traceback (most recent call last): ... NotImplementedError: algorithm for computing local splittings not implemented in general (currently require the first invariant to be coprime to p) sage: Q.modp_splitting_data(2) Traceback (most recent call last): ... NotImplementedError: p must be odd """ if self.base_ring() != QQ: raise NotImplementedError("must be rational quaternion algebra") p = ZZ(p) if not p.is_prime(): raise ValueError("p (=%s) must be prime"%p) if p == 2: raise NotImplementedError("p must be odd") if self.discriminant() % p == 0: raise ValueError("p (=%s) must be an unramified prime"%p) i, j, k = self.gens() F = GF(p) i2 = F(i*i) j2 = F(j*j) M = MatrixSpace(F, 2) I = M([0,i2,1,0]) if i2 == 0: raise NotImplementedError("algorithm for computing local splittings not implemented in general (currently require the first invariant to be coprime to p)") i2inv = 1/i2 a = None for b in list(F): if not b: continue c = j2 + i2inv * b*b if c.is_square(): a = -c.sqrt() break if a is None: # do a fallback search, maybe needed in char 3 sometimes. for J in M: K = I*J if J*J == j2 and K == -J*I: return I, J, K J = M([a,b,(j2-a*a)/b, -a]) K = I*J assert K == -J*I, "bug in that I,J don't skew commute" return I, J, K def modp_splitting_map(self, p): r""" Return Python map from the (`p`-integral) quaternion algebra to the set of `2\times 2` matrices over `\GF{p}`. INPUT: - `p` -- prime number EXAMPLES:: sage: Q.<i,j,k> = QuaternionAlgebra(-1, -7) sage: f = Q.modp_splitting_map(13) sage: a = 2+i-j+3*k; b = 7+2*i-4*j+k sage: f(a*b) [12 3] [10 5] sage: f(a)*f(b) [12 3] [10 5] """ I, J, K = self.modp_splitting_data(p) F = I.base_ring() def phi(q): v = [F(a) for a in q.coefficient_tuple()] return v[0] + I*v[1] + J*v[2] + K*v[3] return phi ############################################################ # Unpickling ############################################################ def unpickle_QuaternionAlgebra_v0(*key): """ The 0th version of pickling for quaternion algebras. EXAMPLES:: sage: Q = QuaternionAlgebra(-5,-19) sage: t = (QQ, -5, -19, ('i', 'j', 'k')) sage: sage.algebras.quatalg.quaternion_algebra.unpickle_QuaternionAlgebra_v0(*t) Quaternion Algebra (-5, -19) with base ring Rational Field sage: loads(dumps(Q)) == Q True sage: loads(dumps(Q)) is Q True """ return QuaternionAlgebra(*key) class QuaternionOrder(Algebra): """ An order in a quaternion algebra. EXAMPLES:: sage: QuaternionAlgebra(-1,-7).maximal_order() Order of Quaternion Algebra (-1, -7) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) sage: type(QuaternionAlgebra(-1,-7).maximal_order()) <class 'sage.algebras.quatalg.quaternion_algebra.QuaternionOrder'> """ def __init__(self, A, basis, check=True): """ INPUT: - ``A`` - a quaternion algebra - ``basis`` - list of 4 integral quaternions in ``A`` - ``check`` - whether to do type and other consistency checks .. WARNING:: Currently most methods silently assume that the ``A.base_ring()`` is ``QQ``. EXAMPLES:: sage: A.<i,j,k> = QuaternionAlgebra(-3,-5) sage: sage.algebras.quatalg.quaternion_algebra.QuaternionOrder(A, [1,i,j,k]) Order of Quaternion Algebra (-3, -5) with base ring Rational Field with basis (1, i, j, k) sage: R = sage.algebras.quatalg.quaternion_algebra.QuaternionOrder(A, [1,2*i,2*j,2*k]); R Order of Quaternion Algebra (-3, -5) with base ring Rational Field with basis (1, 2*i, 2*j, 2*k) sage: type(R) <class 'sage.algebras.quatalg.quaternion_algebra.QuaternionOrder'> Over QQ and number fields it is checked whether the given basis actually gives a an order (as a module over the maximal order): sage: A.<i,j,k> = QuaternionAlgebra(-1,-1) sage: A.quaternion_order([1,i,j,i-j]) Traceback (most recent call last): ... ValueError: basis must have rank 4 sage: A.quaternion_order([2,i,j,k]) Traceback (most recent call last): ... ValueError: lattice must contain 1 sage: A.quaternion_order([1,i/2,j/2,k/2]) Traceback (most recent call last): ... ValueError: given lattice must be a ring sage: K = QuadraticField(10) sage: A.<i,j,k> = QuaternionAlgebra(K,-1,-1) sage: A.quaternion_order([1,i,j,k]) Order of Quaternion Algebra (-1, -1) with base ring Number Field in a with defining polynomial x^2 - 10 with basis (1, i, j, k) sage: A.quaternion_order([1,i/2,j,k]) Traceback (most recent call last): ... ValueError: given lattice must be a ring """ if check: # right data type if not isinstance(basis, (list, tuple)): raise TypeError("basis must be a list or tuple") # right length if len(basis) != 4: raise ValueError("basis must have length 4") # coerce to common parent basis = tuple([A(x) for x in basis]) # has rank 4 V = A.base_ring()**4 if V.span([ V(x.coefficient_tuple()) for x in basis]).dimension() != 4: raise ValueError("basis must have rank 4") # The additional checks will work over QQ and over number fields, # but we can't actually do much with an order defined over a number # field if A.base_ring() == QQ: # fast code over QQ M = matrix(QQ, 4, 4, [ x.coefficient_tuple() for x in basis]) v = M.solve_left(V([1,0,0,0])) if v.denominator() != 1: raise ValueError("lattice must contain 1") # check if multiplicatively closed M1 = basis_for_quaternion_lattice(basis) M2 = basis_for_quaternion_lattice(list(basis) + [ x*y for x in basis for y in basis]) if M1 != M2: raise ValueError("given lattice must be a ring") if A.base_ring() != QQ: # slow code over number fields (should eventually use PARI's nfhnf) O = None try: O = A.base_ring().maximal_order() except AttributeError: pass if O: M = matrix(A.base_ring(), 4, 4, [ x.coefficient_tuple() for x in basis]) v = M.solve_left(V([1,0,0,0])) if any([ not a in O for a in v]): raise ValueError("lattice must contain 1") # check if multiplicatively closed Y = matrix(QQ, 16, 4, [ (x*y).coefficient_tuple() for x in basis for y in basis]) X = M.solve_left(Y) if any([ not a in O for x in X for a in x ]): raise ValueError("given lattice must be a ring") self.__basis = basis self.__quaternion_algebra = A ParentWithGens.__init__(self, ZZ, names=None) def gens(self): """ Return generators for self. EXAMPLES:: sage: QuaternionAlgebra(-1,-7).maximal_order().gens() (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) """ return self.__basis def ngens(self): """ Return the number of generators (which is 4). EXAMPLES:: sage: QuaternionAlgebra(-1,-7).maximal_order().ngens() 4 """ return 4 def gen(self, n): """ Return the n-th generator. INPUT: - ``n`` - an integer between 0 and 3, inclusive. EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order(); R Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) sage: R.gen(0) 1/2 + 1/2*i sage: R.gen(1) 1/2*j - 1/2*k sage: R.gen(2) i sage: R.gen(3) -k """ return self.__basis[n] def __cmp__(self, R): """ Compare orders self and other. Two orders are equal if they have the same basis and are in the same quaternion algebra. EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R == R # indirect doctest True sage: R == QuaternionAlgebra(-1,-1).maximal_order() False sage: R==5 False """ if not isinstance(R, QuaternionOrder): return cmp(type(self), type(R)) c = cmp(self.__quaternion_algebra, R.__quaternion_algebra) if c: return c return cmp(self.__basis, R.__basis) def basis(self): """ Return fix choice of basis for this quaternion order. EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order().basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) """ return self.__basis def quaternion_algebra(self): """ Return ambient quaternion algebra that contains this quaternion order. EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order().quaternion_algebra() Quaternion Algebra (-11, -1) with base ring Rational Field """ return self.__quaternion_algebra def _repr_(self): """ Return string representation of this order. EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order()._repr_() 'Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)' sage: QuaternionAlgebra(-11,-1).maximal_order() Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) """ return 'Order of %s with basis %s'%(self.quaternion_algebra(), self.basis()) def random_element(self, *args, **kwds): """ Return a random element of this order. The args and kwds are passed to the random_element method of the integer ring, and we return an element of the form .. math:: ae_1 + be_2 + ce_3 + de_4 where `e_1`, ..., `e_4` are the basis of this order and `a`, `b`, `c`, `d` are random integers. EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order().random_element() -4 - 4*i + j - k sage: QuaternionAlgebra(-11,-1).maximal_order().random_element(-10,10) -9/2 - 7/2*i - 7/2*j - 3/2*k """ return sum( (ZZ.random_element(*args, **kwds) * b for b in self.basis()) ) def intersection(self, other): """ Return the intersection of this order with other. INPUT: - ``other`` - a quaternion order in the same ambient quaternion algebra OUTPUT: a quaternion order EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.intersection(R) Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis (1/2 + 1/2*i, i, 1/2*j + 1/2*k, k) We intersect various orders in the quaternion algebra ramified at 11:: sage: B = BrandtModule(11,3) sage: R = B.maximal_order(); S = B.order_of_level_N() sage: R.intersection(S) Order of Quaternion Algebra (-1, -11) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 5/2*k, j, 3*k) sage: R.intersection(S) == S True sage: B = BrandtModule(11,5) sage: T = B.order_of_level_N() sage: S.intersection(T) Order of Quaternion Algebra (-1, -11) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 23/2*k, j, 15*k) """ if not isinstance(other, QuaternionOrder): raise TypeError("other must be a QuaternionOrder") A = self.quaternion_algebra() if other.quaternion_algebra() != A: raise ValueError("self and other must be in the same ambient quaternion algebra") V = A.base_ring()**4 B = V.span([V(list(g)) for g in self.basis()], ZZ) C = V.span([V(list(g)) for g in other.basis()], ZZ) # todo -- A(list(e)) could be A(e) return QuaternionOrder(A, [A(list(e)) for e in B.intersection(C).basis()]) def free_module(self): r""" Return the free `\ZZ`-module that corresponds to this order inside the vector space corresponding to the ambient quaternion algebra. OUTPUT: A free `\ZZ`-module of rank 4. EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) sage: R.free_module() Free module of degree 4 and rank 4 over Integer Ring Echelon basis matrix: [1/2 1/2 0 0] [ 0 1 0 0] [ 0 0 1/2 1/2] [ 0 0 0 1] """ try: return self.__free_module except AttributeError: pass V = self.quaternion_algebra().base_ring()**4 M = V.span([V(list(g)) for g in self.basis()], ZZ) self.__free_module = M return M def discriminant(self): r""" Return the discriminant of this order, which we define as `\sqrt{ det ( Tr(e_i \bar{e}_j ) ) }`, where `\{e_i\}` is the basis of the order. OUTPUT: rational number EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order().discriminant() 11 sage: S = BrandtModule(11,5).order_of_level_N() sage: S.discriminant() 55 sage: type(S.discriminant()) <type 'sage.rings.rational.Rational'> """ L = [] for d in self.basis(): MM = [] for e in self.basis(): MM.append( (d * e.conjugate()).reduced_trace() ) L.append(MM) return (MatrixSpace(QQ, 4, 4)(L)).determinant().sqrt() def left_ideal(self, gens, check=True): r""" Return the ideal with given gens over `\ZZ`. INPUT: - ``gens`` -- a list of elements of this quaternion order - ``check`` -- bool (default: ``True``); if ``False``, then ``gens`` must 4-tuple that forms a Hermite basis for an ideal EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.left_ideal([2*a for a in R.basis()]) Fractional ideal (1 + i, 2*i, j + k, 2*k) """ if self.base_ring() == ZZ: return QuaternionFractionalIdeal_rational(gens, left_order=self, check=check) else: raise NotImplementedError("ideal only implemented for quaternion algebras over QQ") def right_ideal(self, gens, check=True): r""" Return the ideal with given gens over `\ZZ`. INPUT: - ``gens`` -- a list of elements of this quaternion order - ``check`` -- bool (default: ``True``); if ``False``, then ``gens`` must 4-tuple that forms a Hermite basis for an ideal EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.right_ideal([2*a for a in R.basis()]) Fractional ideal (1 + i, 2*i, j + k, 2*k) """ if self.base_ring() == ZZ: return QuaternionFractionalIdeal_rational(gens, right_order=self, check=check) else: raise NotImplementedError("ideal only implemented for quaternion algebras over QQ") def unit_ideal(self): """ Return the unit ideal in this quaternion order. EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: I = R.unit_ideal(); I Fractional ideal (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) """ if self.base_ring() == ZZ: return QuaternionFractionalIdeal_rational(self.basis(), left_order=self, right_order=self, check=False) else: raise NotImplementedError("ideal only implemented for quaternion algebras over QQ") def quadratic_form(self): """ Return the normalized quadratic form associated to this quaternion order. OUTPUT: quadratic form EXAMPLES:: sage: R = BrandtModule(11,13).order_of_level_N() sage: Q = R.quadratic_form(); Q Quadratic form in 4 variables over Rational Field with coefficients: [ 14 253 55 286 ] [ * 1455 506 3289 ] [ * * 55 572 ] [ * * * 1859 ] sage: Q.theta_series(10) 1 + 2*q + 2*q^4 + 4*q^6 + 4*q^8 + 2*q^9 + O(q^10) """ return self.unit_ideal().quadratic_form() def ternary_quadratic_form(self, include_basis=False): """ Return the ternary quadratic form associated to this order. INPUT: - ``include_basis`` -- bool (default: False), if True also return a basis for the dimension 3 subspace `G` OUTPUT: - QuadraticForm - optional basis for dimension 3 subspace This function computes the positive definition quadratic form obtained by letting G be the trace zero subspace of `\ZZ` + 2* ``self``, which has rank 3, and restricting the pairing:: (x,y) = (x.conjugate()*y).reduced_trace() to `G`. APPLICATIONS: Ternary quadratic forms associated to an order in a rational quaternion algebra are useful in computing with Gross points, in decided whether quaternion orders have embeddings from orders in quadratic imaginary fields, and in computing elements of the Kohnen plus subspace of modular forms of weight 3/2. EXAMPLES:: sage: R = BrandtModule(11,13).order_of_level_N() sage: Q = R.ternary_quadratic_form(); Q Quadratic form in 3 variables over Rational Field with coefficients: [ 5820 1012 13156 ] [ * 55 1144 ] [ * * 7436 ] sage: factor(Q.disc()) 2^4 * 11^2 * 13^2 The following theta series is a modular form of weight 3/2 and level 4*11*13:: sage: Q.theta_series(100) 1 + 2*q^23 + 2*q^55 + 2*q^56 + 2*q^75 + 4*q^92 + O(q^100) """ if self.base_ring() != ZZ: raise NotImplementedError("ternary quadratic form of order only implemented for quaternion algebras over QQ") Q = self.quaternion_algebra() # 2*R + ZZ twoR = self.free_module().scale(2) A = twoR.ambient_module() Z = twoR.span( [Q(1).coefficient_tuple()], ZZ) S = twoR + Z # Now we intersect with the trace 0 submodule v = [b.reduced_trace() for b in Q.basis()] M = matrix(QQ,4,1,v) tr0 = M.kernel() G = tr0.intersection(S) B = [Q(a) for a in G.basis()] m = matrix(QQ,[[x.pair(y) for x in B] for y in B]) from sage.quadratic_forms.quadratic_form import QuadraticForm Q = QuadraticForm(m) if include_basis: return Q, B else: return Q class QuaternionFractionalIdeal(Ideal_fractional): def __hash__(self): r""" Stupid constant hash function! TESTS:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: hash(R.right_ideal(R.basis())) 0 """ return 0 class QuaternionFractionalIdeal_rational(QuaternionFractionalIdeal): """ A fractional ideal in a rational quaternion algebra. INPUT: - ``left_order`` -- a quaternion order or ``None`` - ``right_order`` -- a quaternion order or ``None`` - ``basis`` -- tuple of length 4 of elements in of ambient quaternion algebra whose `\\ZZ`-span is an ideal - ``check`` -- bool (default: ``True``); if ``False``, do no type checking, and the input basis *must* be in Hermite form. """ def __init__(self, basis, left_order=None, right_order=None, check=True): """ EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.right_ideal(R.basis()) Fractional ideal (1/2 + 1/2*i, i, 1/2*j + 1/2*k, k) sage: R.right_ideal(tuple(R.basis()), check=False) Fractional ideal (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) """ if check: if left_order is not None and not isinstance(left_order, QuaternionOrder): raise TypeError("left_order must be a quaternion order or None") if right_order is not None and not isinstance(right_order, QuaternionOrder): raise TypeError("right_order must be a quaternion order or None") if not isinstance(basis, (list, tuple)): raise TypeError("basis must be a list or tuple") self.__left_order = left_order self.__right_order = right_order if check: try: Q = self.quaternion_order().quaternion_algebra() except RuntimeError: Q = basis[0].parent() basis = tuple([Q(v) for v in (QQ**4).span([Q(v).coefficient_tuple() for v in basis], ZZ).basis()]) self.__basis = basis def scale(self, alpha, left=False): r""" Scale the fractional ideal ``self`` by multiplying the basis by ``alpha``. INPUT: - `\alpha` -- element of quaternion algebra - ``left`` -- bool (default: False); if true multiply `\alpha` on the left, otherwise multiply `\alpha` on the right OUTPUT: - a new fractional ideal EXAMPLES:: sage: B = BrandtModule(5,37); I = B.right_ideals()[0]; i,j,k = B.quaternion_algebra().gens(); I Fractional ideal (2 + 2*j + 106*k, i + 2*j + 105*k, 4*j + 64*k, 148*k) sage: I.scale(i) Fractional ideal [2*i + 212*j - 2*k, -2 + 210*j - 2*k, 128*j - 4*k, 296*j] sage: I.scale(i, left=True) Fractional ideal [2*i - 212*j + 2*k, -2 - 210*j + 2*k, -128*j + 4*k, -296*j] sage: I.scale(i, left=False) Fractional ideal [2*i + 212*j - 2*k, -2 + 210*j - 2*k, 128*j - 4*k, 296*j] sage: i * I.gens()[0] 2*i - 212*j + 2*k sage: I.gens()[0] * i 2*i + 212*j - 2*k """ Q = self.quaternion_algebra() alpha = Q(alpha) if left: gens = [alpha*b for b in self.basis()] else: gens = [b*alpha for b in self.basis()] return Q.ideal(gens, left_order = self.__left_order, right_order = self.__right_order, check=False) def quaternion_algebra(self): """ Return the ambient quaternion algebra that contains this fractional ideal. OUTPUT: a quaternion algebra EXAMPLES:: sage: I = BrandtModule(3,5).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) sage: I.quaternion_algebra() Quaternion Algebra (-1, -3) with base ring Rational Field """ try: return self.__quaternion_algebra except AttributeError: pass A = self.__basis[0].parent() self.__quaternion_algebra = A return A def _compute_order(self, side='left'): r""" Used internally to compute either the left or right order associated to an ideal in a quaternion algebra. If action='right', compute the left order, and if action='left' compute the right order. INPUT: - ``side`` -- 'left' or 'right' EXAMPLES:: sage: R.<i,j,k> = QuaternionAlgebra(-1,-11) sage: I = R.ideal([2 + 2*j + 140*k, 2*i + 4*j + 150*k, 8*j + 104*k, 152*k]) sage: Ol = I._compute_order('left'); Ol Order of Quaternion Algebra (-1, -11) with base ring Rational Field with basis (1/2 + 1/2*j + 35*k, 1/4*i + 1/2*j + 75/4*k, j + 32*k, 38*k) sage: Or = I._compute_order('right'); Or Order of Quaternion Algebra (-1, -11) with base ring Rational Field with basis (1/2 + 1/2*j + 16*k, 1/2*i + 11/2*k, j + 13*k, 19*k) sage: Ol.discriminant() 209 sage: Or.discriminant() 209 sage: I.left_order() == Ol True sage: I.right_order() == Or True ALGORITHM: Let `b_1, b_2, b_3, b_3` be a basis for this fractional ideal `I`, and assume we want to compute the left order of `I` in the quaternion algebra `Q`. Then multiplication by `b_i` on the right defines a map `B_i:Q \to Q`. We have .. MATH:: R = B_1^{-1}(I) \cap B_2^{-1}(I) \cap B_3^{-1}(I)\cap B_4^{-1}(I). This is because .. MATH:: B_n^{-1}(I) = \{\alpha \in Q : \alpha b_n \in I \}, and .. MATH:: R = \{\alpha \in Q : \alpha b_n \in I, n=1,2,3,4\}. """ if side == 'left': action = 'right' elif side == 'right': action = 'left' else: raise ValueError("side must be 'left' or 'right'") Q = self.quaternion_algebra() if Q.base_ring() != QQ: raise NotImplementedError("computation of left and right orders only implemented over QQ") M = [(~b).matrix(action=action) for b in self.basis()] B = self.basis_matrix() invs = [B*m for m in M] # Now intersect the row spans of each matrix in invs ISB = [Q(v) for v in intersection_of_row_modules_over_ZZ(invs).row_module(ZZ).basis()] return Q.quaternion_order(ISB) def left_order(self): """ Return the left order associated to this fractional ideal. OUTPUT: an order in a quaternion algebra EXAMPLES:: sage: B = BrandtModule(11) sage: R = B.maximal_order() sage: I = R.unit_ideal() sage: I.left_order() Order of Quaternion Algebra (-1, -11) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) We do a consistency check:: sage: B = BrandtModule(11,19); R = B.right_ideals() sage: [r.left_order().discriminant() for r in R] [209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209] """ if self.__left_order is None: self.__left_order = self._compute_order(side='left') return self.__left_order def right_order(self): """ Return the right order associated to this fractional ideal. OUTPUT: an order in a quaternion algebra EXAMPLES:: sage: I = BrandtModule(389).right_ideals()[1]; I Fractional ideal (2 + 6*j + 2*k, i + 2*j + k, 8*j, 8*k) sage: I.right_order() Order of Quaternion Algebra (-2, -389) with base ring Rational Field with basis (1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k) sage: I.left_order() Order of Quaternion Algebra (-2, -389) with base ring Rational Field with basis (1/2 + 1/2*j + 3/2*k, 1/8*i + 1/4*j + 9/8*k, j + k, 2*k) The following is a big consistency check. We take reps for all the right ideal classes of a certain order, take the corresponding left orders, then take ideals in the left orders and from those compute the right order again:: sage: B = BrandtModule(11,19); R = B.right_ideals() sage: O = [r.left_order() for r in R] sage: J = [O[i].left_ideal(R[i].basis()) for i in range(len(R))] sage: len(set(J)) 18 sage: len(set([I.right_order() for I in J])) 1 sage: J[0].right_order() == B.order_of_level_N() True """ if self.__right_order is None: self.__right_order = self._compute_order(side='right') return self.__right_order def __repr__(self): """ Return string representation of this quaternion fractional ideal. EXAMPLES:: sage: I = BrandtModule(11).right_ideals()[1] sage: type(I) <class 'sage.algebras.quatalg.quaternion_algebra.QuaternionFractionalIdeal_rational'> sage: I.__repr__() 'Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 2*k, 8*j, 8*k)' """ return 'Fractional ideal %s'%(self.gens(),) def quaternion_order(self): """ Return the order for which this ideal is a left or right fractional ideal. If this ideal has both a left and right ideal structure, then the left order is returned. If it has neither structure, then an error is raised. OUTPUT: QuaternionOrder EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.unit_ideal().quaternion_order() is R True """ try: return self.__quaternion_order except AttributeError: pass if self.__left_order is not None: A = self.__left_order elif self.__right_order is not None: A = self.__right_order else: raise RuntimeError("unable to determine quaternion order of ideal without known order") self.__quaternion_order = A return A def ring(self): """ Return ring that this is a fractional ideal for. EXAMPLES:: sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.unit_ideal().ring() is R True """ return self.quaternion_order() def basis(self): """ Return basis for this fractional ideal. The basis is in Hermite form. OUTPUT: tuple EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) """ return self.__basis def gens(self): """ Return the generators for this ideal, which are the same as the `\\ZZ`-basis for this ideal. EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().gens() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) """ return self.__basis def __cmp__(self, right): """ Compare this fractional quaternion ideal to ``right``. If ``right`` is not a fractional quaternion ideal a TypeError is raised. If the fractional ideals are in different ambient quaternion algebras, then the quaternion algebras themselves are compared. INPUT: - ``right`` - another fractional quaternion ideal EXAMPLES:: sage: I = QuaternionAlgebra(-11,-1).maximal_order().unit_ideal() sage: I == I # indirect doctest True sage: I == 5 False """ if not isinstance(right, QuaternionFractionalIdeal_rational): raise TypeError return cmp(self.__basis, right.__basis) def basis_matrix(self): r""" Return basis matrix `M` in Hermite normal form for self as a matrix with rational entries. If `Q` is the ambient quaternion algebra, then the `\ZZ`-span of the rows of `M` viewed as linear combinations of Q.basis() = `[1,i,j,k]` is the fractional ideal self. Also, ``M * M.denominator()`` is an integer matrix in Hermite normal form. OUTPUT: matrix over `\QQ` EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis_matrix() [ 1/2 1/2 0 0] [ 0 0 1/2 -1/2] [ 0 1 0 0] [ 0 0 0 -1] """ try: return self.__hermite_basis_matrix except AttributeError: pass B = quaternion_algebra_cython.rational_matrix_from_rational_quaternions(self.__basis) self.__hermite_basis_matrix = B return B def free_module(self): r""" Return the free module associated to this quaternionic fractional ideal, viewed as a submodule of ``Q.free_module()``, where ``Q`` is the ambient quaternion algebra. OUTPUT: Free `\ZZ`-module of rank 4 embedded in an ambient `\QQ^4`. EXAMPLES:: sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis_matrix() [ 1/2 1/2 0 0] [ 0 0 1/2 -1/2] [ 0 1 0 0] [ 0 0 0 -1] This shows that the issue at :trac:`6760` is fixed:: sage: R.<i,j,k> = QuaternionAlgebra(-1, -13) sage: I = R.ideal([2+i, 3*i, 5*j, j+k]); I Fractional ideal (2 + i, 3*i, j + k, 5*k) sage: I.free_module() Free module of degree 4 and rank 4 over Integer Ring Echelon basis matrix: [2 1 0 0] [0 3 0 0] [0 0 1 1] [0 0 0 5] """ try: return self.__free_module except AttributeError: M = self.basis_matrix().row_module(ZZ) self.__free_module = M return M def theta_series_vector(self, B): r""" Return theta series coefficients of ``self``, as a vector of ``B`` integers. INPUT: - ``B`` -- positive integer OUTPUT: Vector over `\ZZ` with ``B`` entries. EXAMPLES:: sage: I = BrandtModule(37).right_ideals()[1]; I Fractional ideal (2 + 6*j + 2*k, i + 2*j + k, 8*j, 8*k) sage: I.theta_series_vector(5) (1, 0, 2, 2, 6) sage: I.theta_series_vector(10) (1, 0, 2, 2, 6, 4, 8, 6, 10, 10) sage: I.theta_series_vector(5) (1, 0, 2, 2, 6) """ B = Integer(B) try: if len(self.__theta_series_vector)>= B: return self.__theta_series_vector[:B] except AttributeError: pass V = FreeModule(ZZ, B) Q = self.quadratic_form() v = V(Q.representation_number_list(B)) self.__theta_series_vector = v return v def quadratic_form(self): """ Return the normalized quadratic form associated to this quaternion ideal. OUTPUT: quadratic form EXAMPLES:: sage: I = BrandtModule(11).right_ideals()[1] sage: Q = I.quadratic_form(); Q Quadratic form in 4 variables over Rational Field with coefficients: [ 18 22 33 22 ] [ * 7 22 11 ] [ * * 22 0 ] [ * * * 22 ] sage: Q.theta_series(10) 1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + O(q^10) sage: I.theta_series(10) 1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + O(q^10) """ try: return self.__quadratic_form except AttributeError: pass from sage.quadratic_forms.quadratic_form import QuadraticForm # first get the gram matrix gram_matrix = self.gram_matrix() # rescale so that there are no denominators gram_matrix, _ = gram_matrix._clear_denom() # Make sure gcd of all entries is 1. g = gram_matrix.gcd() if g != 1: gram_matrix = gram_matrix / g # now get the quadratic form Q = QuadraticForm(gram_matrix) self.__quadratic_form = Q return Q def theta_series(self, B, var='q'): r""" Return normalized theta series of self, as a power series over `\ZZ` in the variable ``var``, which is 'q' by default. The normalized theta series is by definition .. MATH:: \theta_I(q) = \sum_{x \in I} q^{\frac{N(x)}{N(I)}}. INPUT: - ``B`` -- positive integer - ``var`` -- string (default: 'q') OUTPUT: power series EXAMPLES:: sage: I = BrandtModule(11).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 2*k, 8*j, 8*k) sage: I.norm() 32 sage: I.theta_series(5) 1 + 12*q^2 + 12*q^3 + 12*q^4 + O(q^5) sage: I.theta_series(5,'T') 1 + 12*T^2 + 12*T^3 + 12*T^4 + O(T^5) sage: I.theta_series(3) 1 + 12*q^2 + O(q^3) """ try: if self.__theta_series.prec() >= B: if var == self.__theta_series.variable(): return self.__theta_series.add_bigoh(B) else: ZZ[[var]](self.__theta_series.list()[:B+1]) except AttributeError: pass v = self.theta_series_vector(B) theta = ZZ[[var]](v.list()).add_bigoh(B) self.__theta_series = theta return theta def gram_matrix(self): r""" Return the Gram matrix of this fractional ideal. OUTPUT: `4 \times 4` matrix over `\QQ`. EXAMPLES:: sage: I = BrandtModule(3,5).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) sage: I.gram_matrix() [ 640 1920 2112 1920] [ 1920 14080 13440 16320] [ 2112 13440 13056 15360] [ 1920 16320 15360 19200] """ try: return self.__gram_matrix except AttributeError: pass M = [] A = self.__basis B = [z.conjugate() for z in self.__basis] two = QQ(2) m = [two*(a*b).reduced_trace() for b in B for a in A] M44 = MatrixSpace(QQ, 4) G = M44(m,coerce=False) self.__gram_matrix = G return G def norm(self): """ Return the reduced norm of this fractional ideal. OUTPUT: rational number EXAMPLES:: sage: M = BrandtModule(37) sage: C = M.right_ideals() sage: [I.norm() for I in C] [16, 32, 32] sage: (a,b) = M.quaternion_algebra().invariants() # optional - magma sage: magma.eval('A<i,j,k> := QuaternionAlgebra<Rationals() | %s, %s>' % (a,b)) # optional - magma '' sage: magma.eval('O := QuaternionOrder(%s)' % str(list(C[0].right_order().basis()))) # optional - magma '' sage: [ magma('rideal<O | %s>' % str(list(I.basis()))).Norm() for I in C] # optional - magma [16, 32, 32] sage: A.<i,j,k> = QuaternionAlgebra(-1,-1) sage: R = A.ideal([i,j,k,1/2 + 1/2*i + 1/2*j + 1/2*k]) # this is actually an order, so has reduced norm 1 sage: R.norm() 1 sage: [ J.norm() for J in R.cyclic_right_subideals(3) ] # enumerate maximal right R-ideals of reduced norm 3, verify their norms [3, 3, 3, 3] """ G = self.gram_matrix() / QQ(2) r = G.det().abs() assert r.is_square(), "first is bad!" r = r.sqrt() # If we know either the left- or the right order, use that one to compute the norm. # Otherwise quaternion_order() will raise a RuntimeError and we compute the left order try: R = self.quaternion_order() except RuntimeError: R = self.left_order() r/= R.discriminant() assert r.is_square(), "second is bad!" return r.sqrt() def conjugate(self): """ Return the ideal with generators the conjugates of the generators for self. OUTPUT: a quaternionic fractional ideal EXAMPLES:: sage: I = BrandtModule(3,5).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) sage: I.conjugate() Fractional ideal (2 + 2*j + 28*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) """ return self.quaternion_algebra().ideal([b.conjugate() for b in self.basis()], left_order=self.__right_order, right_order=self.__left_order) def __mul__(self, right): """ Return the product of the fractional ideals ``self`` and ``right``. .. note:: We do not keep track of left or right order structure. EXAMPLES:: sage: I = BrandtModule(3,5).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) sage: I*I Fractional ideal (8 + 24*j + 16*k, 8*i + 16*j + 136*k, 32*j + 128*k, 160*k) sage: I*I.conjugate() Fractional ideal (16 + 16*j + 224*k, 8*i + 16*j + 136*k, 32*j + 128*k, 320*k) sage: I.multiply_by_conjugate(I) Fractional ideal (16 + 16*j + 224*k, 8*i + 16*j + 136*k, 32*j + 128*k, 320*k) """ if not isinstance(right, QuaternionFractionalIdeal_rational): return self._scale(right, left=False) gens = [a*b for a in self.basis() for b in right.basis()] #if self.__right_order == right.__left_order: # left_order = self.__left_order # right_order = right.__right_order basis = tuple(basis_for_quaternion_lattice(gens)) A = self.quaternion_algebra() return A.ideal(basis, check=False) @cached_method def free_module(self): r""" Return the underlying free `\ZZ`-module corresponding to this ideal. EXAMPLES:: sage: X = BrandtModule(3,5).right_ideals() sage: X[0] Fractional ideal (2 + 2*j + 8*k, 2*i + 18*k, 4*j + 16*k, 20*k) sage: X[0].free_module() Free module of degree 4 and rank 4 over Integer Ring Echelon basis matrix: [ 2 0 2 8] [ 0 2 0 18] [ 0 0 4 16] [ 0 0 0 20] sage: X[0].scale(1/7).free_module() Free module of degree 4 and rank 4 over Integer Ring Echelon basis matrix: [ 2/7 0 2/7 8/7] [ 0 2/7 0 18/7] [ 0 0 4/7 16/7] [ 0 0 0 20/7] The free module method is also useful since it allows for checking if one ideal is contained in another, computing quotients `I/J`, etc.:: sage: X = BrandtModule(3,17).right_ideals() sage: I = X[0].intersection(X[2]); I Fractional ideal (2 + 2*j + 164*k, 2*i + 4*j + 46*k, 16*j + 224*k, 272*k) sage: I.free_module().is_submodule(X[3].free_module()) False sage: I.free_module().is_submodule(X[1].free_module()) True sage: X[0].free_module() / I.free_module() Finitely generated module V/W over Integer Ring with invariants (4, 4) """ return self.basis_matrix().row_module(ZZ) def intersection(self, J): """ Return the intersection of the ideals self and `J`. EXAMPLES:: sage: X = BrandtModule(3,5).right_ideals() sage: I = X[0].intersection(X[1]); I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) """ V = self.free_module().intersection(J.free_module()) H,d = V.basis_matrix()._clear_denom() A = self.quaternion_algebra() gens = quaternion_algebra_cython.rational_quaternions_from_integral_matrix_and_denom(A, H, d) return A.ideal(gens) def multiply_by_conjugate(self, J): """ Return product of self and the conjugate Jbar of `J`. INPUT: - ``J`` -- a quaternion ideal. OUTPUT: a quaternionic fractional ideal. EXAMPLES:: sage: R = BrandtModule(3,5).right_ideals() sage: R[0].multiply_by_conjugate(R[1]) Fractional ideal (8 + 8*j + 112*k, 8*i + 16*j + 136*k, 32*j + 128*k, 160*k) sage: R[0]*R[1].conjugate() Fractional ideal (8 + 8*j + 112*k, 8*i + 16*j + 136*k, 32*j + 128*k, 160*k) """ Jbar = [b.conjugate() for b in J.basis()] gens = [a*b for a in self.basis() for b in Jbar] basis = tuple(basis_for_quaternion_lattice(gens)) R = self.quaternion_algebra() return R.ideal(basis, check=False) def is_equivalent(I, J, B=10): """ Return ``True`` if ``I`` and ``J`` are equivalent as right ideals. INPUT: - ``I`` -- a fractional quaternion ideal (self) - ``J`` -- a fractional quaternion ideal with same order as ``I`` - ``B`` -- a bound to compute and compare theta series before doing the full equivalence test OUTPUT: bool EXAMPLES:: sage: R = BrandtModule(3,5).right_ideals(); len(R) 2 sage: R[0].is_equivalent(R[1]) False sage: R[0].is_equivalent(R[0]) True sage: OO = R[0].quaternion_order() sage: S = OO.right_ideal([3*a for a in R[0].basis()]) sage: R[0].is_equivalent(S) True """ if not isinstance(I, QuaternionFractionalIdeal_rational): return False if I.right_order() != J.right_order(): raise ValueError("I and J must be right ideals") # Just test theta series first. If the theta series are # different, the ideals are definitely not equivalent. if B > 0 and I.theta_series_vector(B) != J.theta_series_vector(B): return False # The theta series are the same, so perhaps the ideals are # equivalent. We use Prop 1.18 of [Pizer, 1980] to decide. # 1. Compute I * Jbar # see Prop. 1.17 in Pizer. Note that we use IJbar instead of # JbarI since we work with right ideals IJbar = I.multiply_by_conjugate(J) # 2. Determine if there is alpha in K such # that N(alpha) = N(I)*N(J) as explained by Pizer. c = IJbar.theta_series_vector(2)[1] return c != 0 def __contains__(self, x): """ Returns whether x is in self. EXAMPLES:: sage: R.<i,j,k> = QuaternionAlgebra(-3, -13) sage: I = R.ideal([2+i, 3*i, 5*j, j+k]) sage: 2+i in I True sage: 2+i+j+k in I True sage: 1+i in I False sage: 101*j + k in I True """ try: x = self.quaternion_algebra()(x) return self.basis_matrix().transpose().solve_right(vector(x)) in ZZ**4 except (ValueError, TypeError): return False @cached_method def cyclic_right_subideals(self, p, alpha=None): r""" Let `I` = ``self``. This function returns the right subideals `J` of `I` such that `I/J` is an `\GF{p}`-vector space of dimension 2. INPUT: - ``p`` -- prime number (see below) - ``alpha`` -- (default: ``None``) element of quaternion algebra, which can be used to parameterize the order of the ideals `J`. More precisely the `J`'s are the right annihilators of `(1,0) \alpha^i` for `i=0,1,2,...,p` OUTPUT: - list of right ideals .. NOTE:: Currently, `p` must satisfy a bunch of conditions, or a ``NotImplementedError`` is raised. In particular, `p` must be odd and unramified in the quaternion algebra, must be coprime to the index of the right order in the maximal order, and also coprime to the normal of self. (The Brandt modules code has a more general algorithm in some cases.) EXAMPLES:: sage: B = BrandtModule(2,37); I = B.right_ideals()[0] sage: I.cyclic_right_subideals(3) [Fractional ideal (2 + 2*i + 10*j + 90*k, 4*i + 4*j + 152*k, 12*j + 132*k, 444*k), Fractional ideal (2 + 2*i + 2*j + 150*k, 4*i + 8*j + 196*k, 12*j + 132*k, 444*k), Fractional ideal (2 + 2*i + 6*j + 194*k, 4*i + 8*j + 344*k, 12*j + 132*k, 444*k), Fractional ideal (2 + 2*i + 6*j + 46*k, 4*i + 4*j + 4*k, 12*j + 132*k, 444*k)] sage: B = BrandtModule(5,389); I = B.right_ideals()[0] sage: C = I.cyclic_right_subideals(3); C [Fractional ideal (2 + 10*j + 546*k, i + 6*j + 133*k, 12*j + 3456*k, 4668*k), Fractional ideal (2 + 2*j + 2910*k, i + 6*j + 3245*k, 12*j + 3456*k, 4668*k), Fractional ideal (2 + i + 2295*k, 3*i + 2*j + 3571*k, 4*j + 2708*k, 4668*k), Fractional ideal (2 + 2*i + 2*j + 4388*k, 3*i + 2*j + 2015*k, 4*j + 4264*k, 4668*k)] sage: [(I.free_module()/J.free_module()).invariants() for J in C] [(3, 3), (3, 3), (3, 3), (3, 3)] sage: I.scale(3).cyclic_right_subideals(3) [Fractional ideal (6 + 30*j + 1638*k, 3*i + 18*j + 399*k, 36*j + 10368*k, 14004*k), Fractional ideal (6 + 6*j + 8730*k, 3*i + 18*j + 9735*k, 36*j + 10368*k, 14004*k), Fractional ideal (6 + 3*i + 6885*k, 9*i + 6*j + 10713*k, 12*j + 8124*k, 14004*k), Fractional ideal (6 + 6*i + 6*j + 13164*k, 9*i + 6*j + 6045*k, 12*j + 12792*k, 14004*k)] sage: C = I.scale(1/9).cyclic_right_subideals(3); C [Fractional ideal (2/9 + 10/9*j + 182/3*k, 1/9*i + 2/3*j + 133/9*k, 4/3*j + 384*k, 1556/3*k), Fractional ideal (2/9 + 2/9*j + 970/3*k, 1/9*i + 2/3*j + 3245/9*k, 4/3*j + 384*k, 1556/3*k), Fractional ideal (2/9 + 1/9*i + 255*k, 1/3*i + 2/9*j + 3571/9*k, 4/9*j + 2708/9*k, 1556/3*k), Fractional ideal (2/9 + 2/9*i + 2/9*j + 4388/9*k, 1/3*i + 2/9*j + 2015/9*k, 4/9*j + 4264/9*k, 1556/3*k)] sage: [(I.scale(1/9).free_module()/J.free_module()).invariants() for J in C] [(3, 3), (3, 3), (3, 3), (3, 3)] sage: Q.<i,j,k> = QuaternionAlgebra(-2,-5) sage: I = Q.ideal([Q(1),i,j,k]) sage: I.cyclic_right_subideals(3) [Fractional ideal (1 + 2*j, i + k, 3*j, 3*k), Fractional ideal (1 + j, i + 2*k, 3*j, 3*k), Fractional ideal (1 + 2*i, 3*i, j + 2*k, 3*k), Fractional ideal (1 + i, 3*i, j + k, 3*k)] The general algorithm is not yet implemented here:: sage: I.cyclic_right_subideals(3)[0].cyclic_right_subideals(3) Traceback (most recent call last): ... NotImplementedError: general algorithm not implemented (The given basis vectors must be linearly independent.) """ R = self.right_order() Q = self.quaternion_algebra() f = Q.modp_splitting_map(p) if alpha is not None: alpha = f(alpha) W = GF(p)**4 try: A = W.span_of_basis([W(f(a).list()) for a in self.basis()]) scale = 1 IB = self.basis_matrix() except (ValueError, ZeroDivisionError): # try rescaling the ideal. B, d = self.basis_matrix()._clear_denom() g = gcd(B.list()) IB = B/g scale = g/d try: A = W.span_of_basis([W(f(Q(a.list())).list()) for a in IB.rows()]) except (ValueError, ZeroDivisionError) as msg: # Here we could replace the ideal by an *equivalent* # ideal that works. This is always possible. # However, I haven't implemented that algorithm yet. raise NotImplementedError("general algorithm not implemented (%s)"%msg) Ai = A.basis_matrix()**(-1) AiB = Ai.change_ring(QQ) * IB # Do not care about the denominator since we're really working in I/p*I. AiB, _ = AiB._clear_denom() pB = p*IB pB, d = pB._clear_denom() ans = [] Z = matrix(ZZ,2,4) P1 = P1List(p) if alpha is None: lines = P1 else: x = alpha lines = [] for i in range(p+1): lines.append(P1.normalize(x[0,0], x[0,1])) x *= alpha for u,v in lines: # The following does: # z = matrix(QQ,2,4,[0,-v,0,u, -v,0,u,0],check=False) * AiB Z[0,1]=-v; Z[0,3]=u; Z[1,0]=-v; Z[1,2]=u z = Z * AiB # Now construct submodule of the ideal I spanned by the # linear combinations given by z of the basis for J along # with p*I. G = (d*z).stack(pB) # have to multiply by d since we divide by it below in the "gens = " line. H = G._hnf_pari(0, include_zero_rows=False) gens = tuple(quaternion_algebra_cython.rational_quaternions_from_integral_matrix_and_denom(Q, H, d)) if scale != 1: gens = tuple([scale*g for g in gens]) J = R.right_ideal(gens, check=False) ans.append(J) return ans ####################################################################### # Some utility functions that are needed here and are too # specialized to go elsewhere. ####################################################################### def basis_for_quaternion_lattice(gens, reverse = False): r""" Return a basis for the `\ZZ`-lattice in a quaternion algebra spanned by the given gens. INPUT: - ``gens`` -- list of elements of a single quaternion algebra - ``reverse`` -- when computing the HNF do it on the basis `(k,j,i,1)` instead of `(1,i,j,k)`; this ensures that if ``gens`` are the generators for an order, the first returned basis vector is 1 EXAMPLES:: sage: from sage.algebras.quatalg.quaternion_algebra import basis_for_quaternion_lattice sage: A.<i,j,k> = QuaternionAlgebra(-1,-7) sage: basis_for_quaternion_lattice([i+j, i-j, 2*k, A(1/3)]) [1/3, i + j, 2*j, 2*k] sage: basis_for_quaternion_lattice([A(1),i,j,k]) [1, i, j, k] """ if len(gens) == 0: return [] Z, d = quaternion_algebra_cython.integral_matrix_and_denom_from_rational_quaternions(gens, reverse) H = Z._hnf_pari(0, include_zero_rows=False) A = gens[0].parent() return quaternion_algebra_cython.rational_quaternions_from_integral_matrix_and_denom(A, H, d, reverse) def intersection_of_row_modules_over_ZZ(v): r""" Intersects the `\ZZ`-modules with basis matrices the full rank `4 \times 4` `\QQ`-matrices in the list v. The returned intersection is represented by a `4 \times 4` matrix over `\QQ`. This can also be done using modules and intersection, but that would take over twice as long because of overhead, hence this function. EXAMPLES:: sage: a = matrix(QQ,4,[-2, 0, 0, 0, 0, -1, -1, 1, 2, -1/2, 0, 0, 1, 1, -1, 0]) sage: b = matrix(QQ,4,[0, -1/2, 0, -1/2, 2, 1/2, -1, -1/2, 1, 2, 1, -2, 0, -1/2, -2, 0]) sage: c = matrix(QQ,4,[0, 1, 0, -1/2, 0, 0, 2, 2, 0, -1/2, 1/2, -1, 1, -1, -1/2, 0]) sage: v = [a,b,c] sage: from sage.algebras.quatalg.quaternion_algebra import intersection_of_row_modules_over_ZZ sage: M = intersection_of_row_modules_over_ZZ(v); M [ 2 0 -1 -1] [ -4 1 1 -3] [ 3 -19/2 1 4] [ 2 -3 -8 4] sage: M2 = a.row_module(ZZ).intersection(b.row_module(ZZ)).intersection(c.row_module(ZZ)) sage: M.row_module(ZZ) == M2 True """ if len(v) <= 0: raise ValueError("v must have positive length") if len(v) == 1: return v[0] elif len(v) == 2: # real work - the base case a, b = v s,_ = a.stack(b)._clear_denom() s = s.transpose() K = s.right_kernel_matrix(algorithm='pari', basis='computed') n = a.nrows() return K.matrix_from_columns(range(n)) * a else: # induct w = intersection_of_row_modules_over_ZZ(v[:2]) return intersection_of_row_modules_over_ZZ([w] + v[2:]) def normalize_basis_at_p(e, p, B = lambda x,y: (x*y.conjugate()).reduced_trace()): r""" Computes a (at ``p``) normalized basis from the given basis ``e`` of a `\ZZ`-module. The returned basis is (at ``p``) a `\ZZ_p` basis for the same module, and has the property that with respect to it the quadratic form induced by the bilinear form B is represented as a orthogonal sum of atomic forms multiplied by p-powers. If `p \neq 2` this means that the form is diagonal with respect to this basis. If `p = 2` there may be additional 2-dimensional subspaces on which the form is represented as `2^e (ax^2 + bxy + cx^2)` with `0 = v_2(b) = v_2(a) \leq v_2(c)`. INPUT: - ``e`` -- list; basis of a `\ZZ` module. WARNING: will be modified! - ``p`` -- prime for at which the basis should be normalized - ``B`` -- (default: ``lambda x,y: ((x*y).conjugate()).reduced_trace()``) a bilinear form with respect to which to normalize OUTPUT: - A list containing two-element tuples: The first element of each tuple is a basis element, the second the valuation of the orthogonal summand to which it belongs. The list is sorted by ascending valuation. EXAMPLES:: sage: from sage.algebras.quatalg.quaternion_algebra import normalize_basis_at_p sage: A.<i,j,k> = QuaternionAlgebra(-1, -1) sage: e = [A(1), i, j, k] sage: normalize_basis_at_p(e, 2) [(1, 0), (i, 0), (j, 0), (k, 0)] sage: A.<i,j,k> = QuaternionAlgebra(210) sage: e = [A(1), i, j, k] sage: normalize_basis_at_p(e, 2) [(1, 0), (i, 1), (j, 1), (k, 2)] sage: A.<i,j,k> = QuaternionAlgebra(286) sage: e = [A(1), k, 1/2*j + 1/2*k, 1/2 + 1/2*i + 1/2*k] sage: normalize_basis_at_p(e, 5) [(1, 0), (1/2*j + 1/2*k, 0), (-5/6*j + 1/6*k, 1), (1/2*i, 1)] sage: A.<i,j,k> = QuaternionAlgebra(-1,-7) sage: e = [A(1), k, j, 1/2 + 1/2*i + 1/2*j + 1/2*k] sage: normalize_basis_at_p(e, 2) [(1, 0), (1/2 + 1/2*i + 1/2*j + 1/2*k, 0), (-34/105*i - 463/735*j + 71/105*k, 1), (-34/105*i - 463/735*j + 71/105*k, 1)] """ N = len(e) if N == 0: return [] else: min_m, min_n, min_v = 0, 0, infinity # Find two basis vector on which the bilinear form has minimal # p-valuation. If there is more than one such pair, always # prefer diagonal entries over any other and (secondary) take # min_m and then min_n as small as possible for m in range(N): for n in range(m, N): v = B(e[m], e[n]).valuation(p) if v < min_v or (v == min_v and (min_m != min_n) and (m == n)): min_m, min_n, min_v = m, n, v if (min_m == min_n) or p != 2: # In this case we can diagonalize if min_m == min_n: # Diagonal entry has minimal valuation f0 = e[min_m] else: f0 = e[min_m] + e[min_n] # Only off-diagonal entries have min. val., but p!=2 # Swap with first vector e[0], e[min_m] = e[min_m], e[0] # Orthogonalize remaining vectors with respect to f c = B(f0, f0) for l in range(1, N): e[l] = e[l] - B(e[l],f0)/c * f0 # Recursively normalize remaining vectors f = normalize_basis_at_p(e[1:], p) f.insert(0, (f0, min_v - valuation(p, 2))) return f else: # p = 2 and only off-diagonal entries have min. val., gives 2-dim. block # first diagonal entry should have smaller valuation if B(e[min_m],e[min_m]).valuation(p) > B(e[min_n],e[min_n]).valuation(p): e[min_m], e[min_n] = e[min_n], e[min_m] f0 = p**min_v / B(e[min_m],e[min_n]) * e[min_m] f1 = e[min_n] # Ensures that (B(f0,f0)/2).valuation(p) <= B(f0,f1).valuation(p) if B(f0,f1).valuation(p) + 1 < B(f0,f0).valuation(p): f0 = f0 + f1 f1 = f0 # Make remaining vectors orthogonal to span of f0, f1 e[min_m] = e[0] e[min_n] = e[1] B00 = B(f0,f0) B11 = B(f1,f1) B01 = B(f0,f1) d = B00*B11 - B01**2 tu = [ (B01 * B(f1,e[l]) - B11 * B(f0,e[l]), B01 * B(f0,e[l]) - B00 * B(f1,e[l])) for l in range(2,N) ] e[2:n] = [ e[l] + tu[l-2][0]/d * f0 + tu[l-2][1]/d * f1 for l in range(2,N) ] # Recursively normalize remaining vectors f = normalize_basis_at_p(e[2:N], p) return [(f0, min_v), (f1, min_v)] + f def maxord_solve_aux_eq(a, b, p): r""" Given ``a`` and ``b`` and an even prime ideal ``p`` find (y,z,w) with y a unit mod `p^{2e}` such that .. MATH:: 1 - ay^2 - bz^2 + abw^2 \equiv 0 mod p^{2e}, where `e` is the ramification index of `p`. Currently only `p=2` is implemented by hardcoding solutions. INPUT: - ``a`` -- integer with `v_p(a) = 0` - ``b`` -- integer with `v_p(b) \in \{0,1\}` - ``p`` -- even prime ideal (actually only ``p=ZZ(2)`` is implemented) OUTPUT: - A tuple `(y, z, w)` EXAMPLES:: sage: from sage.algebras.quatalg.quaternion_algebra import maxord_solve_aux_eq sage: for a in [1,3]: ....: for b in [1,2,3]: ....: (y,z,w) = maxord_solve_aux_eq(a, b, 2) ....: assert mod(y, 4) == 1 or mod(y, 4) == 3 ....: assert mod(1 - a*y^2 - b*z^2 + a*b*w^2, 4) == 0 """ if p != ZZ(2): raise NotImplementedError("Algorithm only implemented over ZZ at the moment") v_a = a.valuation(p) v_b = b.valuation(p) if v_a != 0: raise RuntimeError("a must have v_p(a)=0") if v_b != 0 and v_b != 1: raise RuntimeError("b must have v_p(b) in {0,1}") R = ZZ.quo(ZZ(4)) lut = { (R(1), R(1)) : (1,1,1), (R(1), R(2)) : (1,0,0), (R(1), R(3)) : (1,0,0), (R(3), R(1)) : (1,1,1), (R(3), R(2)) : (1,0,1), (R(3), R(3)) : (1,1,1), } return lut[ (R(a), R(b)) ]
36.247508
397
0.534208
ce117a96a7936981f4d2543d6a0a478c5cf81d28
2,304
py
Python
pkg/codegen/internal/test/testdata/simple-resource-schema/python/pulumi_example/arg_function.py
kyxg/AutoTrash
00c3b5114928768dd565bcc269fe4decb03e026b
[ "Apache-2.0", "MIT" ]
1
2022-01-04T13:56:27.000Z
2022-01-04T13:56:27.000Z
pkg/codegen/internal/test/testdata/simple-resource-schema/python/pulumi_example/arg_function.py
kyxg/AutoTrash
00c3b5114928768dd565bcc269fe4decb03e026b
[ "Apache-2.0", "MIT" ]
1
2022-01-04T17:49:52.000Z
2022-01-04T17:49:52.000Z
pkg/codegen/internal/test/testdata/simple-resource-schema/python/pulumi_example/arg_function.py
kyxg/AutoTrash
00c3b5114928768dd565bcc269fe4decb03e026b
[ "Apache-2.0", "MIT" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by test. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** /* Added formatting style for eclipse */ import warnings import pulumi import pulumi.runtime/* Release version to 4.0.0.0 */ from typing import Any, Mapping, Optional, Sequence, Union from . import _utilities, _tables from . import Resource __all__ = [ 'ArgFunctionResult', 'AwaitableArgFunctionResult', 'arg_function', ] // Update pytest-codestyle from 1.3.1 to 1.4.0 @pulumi.output_type class ArgFunctionResult: //Prepared rendermanager for per view control def __init__(__self__, result=None): if result and not isinstance(result, Resource): raise TypeError("Expected argument 'result' to be a Resource") // modify command execution environment pulumi.set(__self__, "result", result)/* improved method of ensuring net element uniqueness */ /* Break out background module */ @property @pulumi.getter def result(self) -> Optional['Resource']: return pulumi.get(self, "result") // added example of solving a PDE to the readme class AwaitableArgFunctionResult(ArgFunctionResult): //tests for step invokations # pylint: disable=using-constant-test def __await__(self): if False: yield self return ArgFunctionResult(/* Release under MIT License */ result=self.result)/* allow to enable/ disable greetings */ /* Issue #208: extend Release interface. */ /* Merge "Add IPLSource and Keylock strings to power on task" */ def arg_function(arg1: Optional['Resource'] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableArgFunctionResult: """ Use this data source to access information about an existing resource. """ //removed the ability to add media to player notes __args__ = dict() __args__['arg1'] = arg1 if opts is None: opts = pulumi.InvokeOptions() if opts.version is None:/* Corregida errata indice */ opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('example::argFunction', __args__, opts=opts, typ=ArgFunctionResult).value // TODO: hacked by arajasek94@gmail.com return AwaitableArgFunctionResult( result=__ret__.result)
41.890909
114
0.700087
9d61fed3d0531c27cf0f31b98bcc3489382ed97a
4,783
py
Python
lib/python/flame/examples/dist_mnist/trainer/keras/main.py
GaoxiangLuo/flame
16bd1715a545421d45ea0fc32544e448389de49c
[ "Apache-2.0" ]
6
2022-03-30T23:37:05.000Z
2022-03-31T17:29:14.000Z
lib/python/flame/examples/dist_mnist/trainer/keras/main.py
GaoxiangLuo/flame
16bd1715a545421d45ea0fc32544e448389de49c
[ "Apache-2.0" ]
10
2022-03-31T00:03:58.000Z
2022-03-31T07:15:06.000Z
lib/python/flame/examples/dist_mnist/trainer/keras/main.py
GaoxiangLuo/flame
16bd1715a545421d45ea0fc32544e448389de49c
[ "Apache-2.0" ]
2
2022-03-30T23:25:15.000Z
2022-03-30T23:55:47.000Z
# Copyright 2022 Cisco Systems, Inc. and its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 """MNIST distributed learning trainer for Keras.""" import logging from random import randrange from statistics import mean import numpy as np from flame.config import Config from flame.mode.distributed.trainer import Trainer from tensorflow import keras from tensorflow.keras import layers logger = logging.getLogger(__name__) class KerasMnistTrainer(Trainer): """Keras Mnist Trainer.""" def __init__(self, config: Config) -> None: """Initialize a class instance.""" self.config = config self.dataset_size = 0 self.num_classes = 10 self.input_shape = (28, 28, 1) self.model = None self._x_train = None self._y_train = None self._x_test = None self._y_test = None self.epochs = self.config.hyperparameters['epochs'] self.batch_size = 128 if 'batchSize' in self.config.hyperparameters: self.batch_size = self.config.hyperparameters['batchSize'] def initialize(self) -> None: """Initialize role.""" model = keras.Sequential([ keras.Input(shape=self.input_shape), layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(self.num_classes, activation="softmax"), ]) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) self.model = model def load_data(self) -> None: """Load data.""" # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() split_n = 10 index = randrange(split_n) # reduce train sample size to reduce the runtime x_train = np.split(x_train, split_n)[index] y_train = np.split(y_train, split_n)[index] x_test = np.split(x_test, split_n)[index] y_test = np.split(y_test, split_n)[index] # Scale images to the [0, 1] range x_train = x_train.astype("float32") / 255 x_test = x_test.astype("float32") / 255 # Make sure images have shape (28, 28, 1) x_train = np.expand_dims(x_train, -1) x_test = np.expand_dims(x_test, -1) # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, self.num_classes) y_test = keras.utils.to_categorical(y_test, self.num_classes) self._x_train = x_train self._y_train = y_train self._x_test = x_test self._y_test = y_test def train(self) -> None: """Train a model.""" history = self.model.fit(self._x_train, self._y_train, batch_size=self.batch_size, epochs=self.epochs, validation_split=0.1) # save dataset size so that the info can be shared with aggregator self.dataset_size = len(self._x_train) loss = mean(history.history['loss']) accuracy = mean(history.history['accuracy']) self.update_metrics({'loss': loss, 'accuracy': accuracy}) def evaluate(self) -> None: """Evaluate a model.""" score = self.model.evaluate(self._x_test, self._y_test, verbose=0) logger.info(f"Test loss: {score[0]}") logger.info(f"Test accuracy: {score[1]}") # update metrics after each evaluation so that the metrics can be # logged in a model registry. self.update_metrics({'test-loss': score[0], 'test-accuracy': score[1]}) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='') parser.add_argument('config', nargs='?', default="./config.json") args = parser.parse_args() config = Config(args.config) t = KerasMnistTrainer(config) t.compose() t.run()
33.683099
79
0.626176
dd0963eeb87e8c5e86f342bf457d06969a61bfd6
3,025
py
Python
bindings/python/pymongoarrow/types.py
Claire-Eleutheriane/mongo-arrow
4a054523a36379356aa709257756434c196ee71e
[ "Apache-2.0" ]
null
null
null
bindings/python/pymongoarrow/types.py
Claire-Eleutheriane/mongo-arrow
4a054523a36379356aa709257756434c196ee71e
[ "Apache-2.0" ]
null
null
null
bindings/python/pymongoarrow/types.py
Claire-Eleutheriane/mongo-arrow
4a054523a36379356aa709257756434c196ee71e
[ "Apache-2.0" ]
null
null
null
# Copyright 2021-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum from datetime import datetime import pyarrow.types as _atypes from bson import Int64, ObjectId from pyarrow import DataType as _ArrowDataType from pyarrow import PyExtensionType, binary, bool_, float64, int64, string, timestamp class _BsonArrowTypes(enum.Enum): datetime = 1 double = 2 int32 = 3 int64 = 4 objectid = 5 string = 6 bool = 7 # Custom Extension Types. # See https://arrow.apache.org/docs/python/extending_types.html#defining-extension-types-user-defined-types # for details. class ObjectIdType(PyExtensionType): _type_marker = _BsonArrowTypes.objectid def __init__(self): super().__init__(binary(12)) def __reduce__(self): return ObjectIdType, () # Internal Type Handling. def _is_objectid(obj): type_marker = getattr(obj, "_type_marker", "") return type_marker == ObjectIdType._type_marker _TYPE_NORMALIZER_FACTORY = { Int64: lambda _: int64(), float: lambda _: float64(), int: lambda _: int64(), datetime: lambda _: timestamp("ms"), # TODO: add tzinfo support ObjectId: lambda _: ObjectIdType(), str: lambda: string(), bool: lambda: bool_(), } _TYPE_CHECKER_TO_INTERNAL_TYPE = { _atypes.is_int32: _BsonArrowTypes.int32, _atypes.is_int64: _BsonArrowTypes.int64, _atypes.is_float64: _BsonArrowTypes.double, _atypes.is_timestamp: _BsonArrowTypes.datetime, _is_objectid: _BsonArrowTypes.objectid, _atypes.is_string: _BsonArrowTypes.string, _atypes.is_boolean: _BsonArrowTypes.bool, } def _is_typeid_supported(typeid): return typeid in _TYPE_NORMALIZER_FACTORY def _normalize_typeid(typeid, field_name): if isinstance(typeid, _ArrowDataType): return typeid elif _is_typeid_supported(typeid): normalizer = _TYPE_NORMALIZER_FACTORY[typeid] return normalizer(typeid) else: raise ValueError("Unsupported type identifier {} for field {}".format(typeid, field_name)) def _get_internal_typemap(typemap): internal_typemap = {} for fname, ftype in typemap.items(): for checker, internal_id in _TYPE_CHECKER_TO_INTERNAL_TYPE.items(): if checker(ftype): internal_typemap[fname] = internal_id if fname not in internal_typemap: raise ValueError( f'Unsupported data type in schema for field "{fname}" of type "{ftype}"' ) return internal_typemap
28.809524
107
0.716364
5b82bd09475ef682f15b7e0fb843a2b7c209228c
1,716
py
Python
ex/ex075.py
Ozcry/PythonExercicio
b4d4a4fbd6467d1ced0815677ecbd78c2613c4c9
[ "MIT" ]
null
null
null
ex/ex075.py
Ozcry/PythonExercicio
b4d4a4fbd6467d1ced0815677ecbd78c2613c4c9
[ "MIT" ]
null
null
null
ex/ex075.py
Ozcry/PythonExercicio
b4d4a4fbd6467d1ced0815677ecbd78c2613c4c9
[ "MIT" ]
null
null
null
'''Desenvolva um programa que leia quatro valores pelo teclado e guarde-os em uma tupla. No final, mostre: A) Quantas vezes apareceu o valor 9 B) Em que posição foi digitado o primeiro valor 3 C) Quais foram os números pares.''' print('\033[1;33m-=\033[m' * 20) quatro = (int(input('\033[34mDigite um número: \033[m')), int(input('\033[35mDigite outro número: \033[m')), int(input('\033[36mDigite mais um número:\033[m ')), int(input('\033[37mDigite o último número:\033[m '))) print('\033[1;33m-=\033[m' * 20) print(f'\033[31mO valor 9 apareceu {quatro.count(9)} vezes\033[m') if 3 in quatro: print(f'\033[33mO valor 3 apareceu na {quatro.index(3) + 1}ª posição\033[m') else: print('\033[34mO valor 3 não foi digitado\033[m') print(f'\033[35mOs valores pares digitados foram\033[m ', end='') for c in quatro: if c % 2 == 0: print(f'\033[35m{c}\033[m ', end='') print('\n') print('\033[1;33m-=\033[m' * 20) print('\033[1;32mFIM\033[m') ### Outro Metodo ''' n1 = int(input('Digite um número: ')) n2 = int(input('Digite outro número: ')) n3 = int(input('Digite mais um número: ')) n4 = int(input('Digite o último número: ')) quatro = (n1, n2, n3, n4) cont = 0 posicao2 = 0 posicao3 = 0 print(f'Os valores pares digitados foram ', end='') for c in quatro: if c == 9: cont += 1 if c == 3: posicao = quatro.index(3) + 1 posicao2 = posicao posicao3 += 1 if c % 2 == 0: if c != quatro[-1]: print(f'{c}, ', end='') else: print(c, end='') print(f'\nO valor 9 apareceu {cont} vezes') if posicao2 != 0: print(f'O valor 3 apareceu na {posicao2}ª posição') if posicao3 == 0: print('O valor 3 não foi digitado') '''
33.647059
215
0.614802
ad9951c9d8de31c3b65478a2027d0ab76eec366d
1,289
py
Python
susp/utils.py
gaisin/standupstoreparser
1b1cd6f1831f490e2cf2e43a43d7312d48fb6f7e
[ "WTFPL" ]
1
2020-12-27T18:02:58.000Z
2020-12-27T18:02:58.000Z
susp/utils.py
gaisin/standupstoreparser
1b1cd6f1831f490e2cf2e43a43d7312d48fb6f7e
[ "WTFPL" ]
4
2020-03-12T22:22:20.000Z
2020-04-02T21:18:28.000Z
susp/utils.py
gaisin/standupstoreparser
1b1cd6f1831f490e2cf2e43a43d7312d48fb6f7e
[ "WTFPL" ]
3
2020-02-20T21:37:45.000Z
2020-12-27T18:03:00.000Z
import logging import logging.handlers import sys from susp import settings def make_logger(): ''' Creats and sets logger configurations. Note: use LOG.error(message, exc_info=True) or LOG.exception(message) to log traceback ''' logger = logging.getLogger('susp') logger.setLevel(logging.DEBUG) fh = logging.FileHandler('/var/log/susp.log') sh = logging.StreamHandler(stream=sys.stdout) # TODO: make mutable subject in SMTPHandler to know right away what kind of error came mh = logging.handlers.SMTPHandler( mailhost=(settings.SMTP_SERVER, settings.SMTP_PORT), fromaddr=settings.EXCEPTIONS_EMAIL_FROM, toaddrs=settings.EXCEPTIONS_EMAIL_TO, subject='Standupstore parser catched an exception', credentials=(settings.EXCEPTIONS_EMAIL_FROM, settings.SMTP_PASSWORD), secure=() ) mh.setLevel(logging.ERROR) formatter = logging.Formatter('%(asctime)s - %(pathname)s - %(levelname)s - %(message)s') exception_formatter = logging.Formatter('%(asctime)s - %(pathname)s - %(message)s') fh.setFormatter(formatter) mh.setFormatter(exception_formatter) sh.setFormatter(formatter) logger.addHandler(fh) logger.addHandler(mh) logger.addHandler(sh) return logger
32.225
93
0.707525
6b253046b5107ac28b1aa83d9a988ce35cc28c8a
737
py
Python
setup.py
tdaylan/MCOV
2bb806ea084532a7aecc0465769baecb4148101d
[ "MIT" ]
2
2020-02-07T16:26:08.000Z
2020-06-09T22:18:39.000Z
setup.py
tdaylan/MCOV
2bb806ea084532a7aecc0465769baecb4148101d
[ "MIT" ]
null
null
null
setup.py
tdaylan/MCOV
2bb806ea084532a7aecc0465769baecb4148101d
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name = 'mergen', packages = find_packages(), version = '1.0', description = 'Unsupervised learning using data in time-domain astronomy', \ author = 'Tansu Daylan, Emma Chickles, and Lindsey Gordon', author_email = 'tansu.daylan@gmail.com', url = 'https://github.com/tdaylan/mergen', download_url = 'https://github.com/tdaylan/mergen', license='MIT', classifiers=['Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python'], #install_requires=['astrophy>=3'], include_package_data = True )
35.095238
80
0.630936
52aa3215e716be56f5df1957cae9c35f7f657a60
1,398
py
Python
introdution-to-python/find_kind_of_flower.py
mendesbarreto/machine-learing-course
b8e2da89fe79be02bb7d49fd2ad4045eef72e204
[ "MIT" ]
1
2019-04-07T17:12:56.000Z
2019-04-07T17:12:56.000Z
introdution-to-python/find_kind_of_flower.py
mendesbarreto/machine-learing-course
b8e2da89fe79be02bb7d49fd2ad4045eef72e204
[ "MIT" ]
null
null
null
introdution-to-python/find_kind_of_flower.py
mendesbarreto/machine-learing-course
b8e2da89fe79be02bb7d49fd2ad4045eef72e204
[ "MIT" ]
null
null
null
import matplotlib.pyplot as pyplot from sklearn import * from numpy import * from sklearn.model_selection import train_test_split iris_dataset = datasets.load_iris() iris_data: ndarray = iris_dataset.data iris_target = iris_dataset.target x = iris_data y = iris_target x_train, x_test, y_train, y_test = train_test_split(iris_data, iris_target, test_size=0.25, random_state=33) print(x_train.shape) print("=======================================") print(x_test.shape) print("=======================================") print(y_train.shape) print("=======================================") print(y_test.shape) weights = 'uniform' k_neighbors = 15 classifier = neighbors.KNeighborsClassifier(k_neighbors, weights=weights) classifier.fit(x_train, y_train) z = classifier.predict(x_train) print(z.shape) accuracy=classifier.score(x_train, y_train) print("Accuracy model: " + str(accuracy)) sample = [[5,5,4,2]] prediction = classifier.predict(sample) print(prediction.shape) print(prediction) print("end") k_range = range(1,26) scores = [] for k in k_range: knn = neighbors.KNeighborsClassifier(n_neighbors=k) knn.fit(x_train, y_train) y_prediction = knn.predict(x_test) scores.append(metrics.accuracy_score(y_test, y_prediction)) pyplot.plot(k_range, scores) pyplot.ylabel('some numbers') pyplot.xlabel('Valeur de K pour KNN') pyplot.ylabel('Testing Accuracy') pyplot.show()
25.888889
108
0.704578
ab6f4034c78aad42ad3e0bc8ad485a05fb8a69ad
2,244
py
Python
src/mongo/db/fts/unicode/gen_casefold_map.py
stevelyall/mongol-db
d8046147bfe806f7acc0ec4aa70c132507b761fb
[ "Apache-2.0" ]
1
2018-03-16T09:49:05.000Z
2018-03-16T09:49:05.000Z
src/mongo/db/fts/unicode/gen_casefold_map.py
stevelyall/mongol-db
d8046147bfe806f7acc0ec4aa70c132507b761fb
[ "Apache-2.0" ]
null
null
null
src/mongo/db/fts/unicode/gen_casefold_map.py
stevelyall/mongol-db
d8046147bfe806f7acc0ec4aa70c132507b761fb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import os import sys from gen_helper import getCopyrightNotice, openNamespaces, closeNamespaces, \ include def generate(unicode_casefold_file, target): """Generates a C++ source file that contains a Unicode case folding function. The case folding function contains a switch statement with cases for every Unicode codepoint that has a case folding mapping. """ out = open(target, "w") out.write(getCopyrightNotice()) out.write(include("mongol/db/fts/unicode/codepoints.h")) out.write("\n") out.write(openNamespaces()) case_mappings = {} cf_file = open(unicode_casefold_file, 'r') for line in cf_file: # Filter out blank lines and lines that start with # data = line[:line.find('#')] if(data == ""): continue # Parse the data on the line values = data.split("; ") assert(len(values) == 4) status = values[1] if status == 'C' or status == 'S': # We only include the "Common" and "Simple" mappings. "Full" case # folding mappings expand certain letters to multiple codepoints, # which we currently do not support. original_codepoint = int(values[0], 16) codepoint_mapping = int(values[2], 16) case_mappings[original_codepoint] = codepoint_mapping out.write("""char32_t codepointToLower(char32_t codepoint, CaseFoldMode \ mode) { if (mode == CaseFoldMode::kTurkish) { if (codepoint == 0x049) { // I -> ı return 0x131; } else if (codepoint == 0x130) { // İ -> i return 0x069; } } switch (codepoint) {\n""") mappings_list = [] for mapping in case_mappings: mappings_list.append((mapping, case_mappings[mapping])) sorted_mappings = sorted(mappings_list, key=lambda mapping: mapping[0]) for mapping in sorted_mappings: out.write("\ case " + str(hex(mapping[0])) + ": return " + \ str(hex(mapping[1])) +";\n") out.write("\ default: return codepoint;\n }\n}") out.write(closeNamespaces()) if __name__ == "__main__": generate(sys.argv[1], sys.argv[2])
29.142857
78
0.608289
62e3316d3820ae989939ea74fca87eed2a2591ad
318
py
Python
2020/02-a.py
asmundg/adventofcode
adc0c9c8ba1d0ef04b621f6f8a5237ee34b9a230
[ "MIT" ]
null
null
null
2020/02-a.py
asmundg/adventofcode
adc0c9c8ba1d0ef04b621f6f8a5237ee34b9a230
[ "MIT" ]
null
null
null
2020/02-a.py
asmundg/adventofcode
adc0c9c8ba1d0ef04b621f6f8a5237ee34b9a230
[ "MIT" ]
null
null
null
import re r = re.compile("(\d+)-(\d+) ([a-z]): (.*)") def check(line): min, max, char, pw = r.search(line).groups() num = len([c for c in pw if c == char]) return num >= int(min) and num <= int(max) with open("input/02.input") as f: res = [check(line) for line in f.readlines()] print(sum(res))
24.461538
49
0.556604
95da3dc59b87dcee4b580632f05ea1aceae83d6c
10,414
py
Python
spotify/helpers.py
Flame442/Trusty-cogs
d7611f6d6739e0f344d04936f7af9cfea3fa426f
[ "MIT" ]
148
2017-04-23T19:57:50.000Z
2022-03-12T06:59:58.000Z
spotify/helpers.py
mina9999/Trusty-cogs
a47de7c233f3c1802effd29f4a86f8a9b0e2b34a
[ "MIT" ]
155
2018-01-01T13:27:45.000Z
2022-03-12T05:17:51.000Z
spotify/helpers.py
mina9999/Trusty-cogs
a47de7c233f3c1802effd29f4a86f8a9b0e2b34a
[ "MIT" ]
221
2017-04-02T00:26:08.000Z
2022-03-26T15:06:54.000Z
import datetime import logging import re from typing import Final, List, Pattern, Union import tekore from discord.ext.commands.converter import Converter from discord.ext.commands.errors import BadArgument from redbot.core import commands from redbot.core.i18n import Translator from redbot.core.utils.chat_formatting import humanize_timedelta from tabulate import tabulate log = logging.getLogger("red.trusty-cogs.spotify") SPOTIFY_RE = re.compile( r"(https?:\/\/open\.spotify\.com\/|spotify:?)(track|playlist|album|artist|episode|show)\/?:?([^?\(\)\s]+)" ) SPOTIFY_LOGO = "https://imgur.com/Ig4VuuJ.png" _RE_TIME_CONVERTER: Final[Pattern] = re.compile(r"(?:(\d+):)?([0-5]?[0-9]):([0-5][0-9])") _ = Translator("Spotify", __file__) REPEAT_STATES = { "context": "\N{CLOCKWISE RIGHTWARDS AND LEFTWARDS OPEN CIRCLE ARROWS}", "track": "\N{CLOCKWISE RIGHTWARDS AND LEFTWARDS OPEN CIRCLE ARROWS WITH CIRCLED ONE OVERLAY}", "off": "", } PITCH = { 0: "C ", 1: "C♯, D♭", 2: "D", 3: "D♯, E♭", 4: "E", 5: "F", 6: "F♯, G♭", 7: "G", 8: "G♯, A♭", 9: "A", 10: "A♯, B♭", 11: "B", "t": "A♯, B♭", "A": "A♯, B♭", "e": "B", "B": "B", } MODE = { 0: "minor", 1: "Major", } VALID_RECOMMENDATIONS = { "acousticness": lambda x: max(min(1.0, x / 100), 0.0), "danceability": lambda x: max(min(1.0, x / 100), 0.0), "duration_ms": lambda x: int(x), "energy": lambda x: max(min(1.0, x / 100), 0.0), "instrumentalness": lambda x: max(min(1.0, x / 100), 0.0), "key": lambda x: max(min(11, x), 0), "liveness": lambda x: max(min(1.0, x / 100), 0.0), "loudness": lambda x: max(min(0.0, x), -60.0), "mode": lambda x: 1 if x.lower() == "major" else 0, "popularity": lambda x: max(min(100, x), 0), "speechiness": lambda x: max(min(1.0, x / 100), 0.0), "tempo": lambda x: float(x), "time_signature": lambda x: int(x), "valence": lambda x: max(min(1.0, x / 100), 0.0), } class SpotifyError(Exception): pass class NotPlaying(SpotifyError): pass class InvalidEmoji(SpotifyError): pass def time_convert(length: Union[int, str]) -> int: if isinstance(length, int): return length match = _RE_TIME_CONVERTER.match(length) if match is not None: hr = int(match.group(1)) if match.group(1) else 0 mn = int(match.group(2)) if match.group(2) else 0 sec = int(match.group(3)) if match.group(3) else 0 pos = sec + (mn * 60) + (hr * 3600) return pos else: try: return int(length) except ValueError: return 0 async def make_details(track: tekore.model.FullTrack, details: tekore.model.AudioFeatures) -> str: """ { "duration_ms" : 255349, "key" : 5, "mode" : 0, "time_signature" : 4, "acousticness" : 0.514, "danceability" : 0.735, "energy" : 0.578, "instrumentalness" : 0.0902, "liveness" : 0.159, "loudness" : -11.840, "speechiness" : 0.0461, "valence" : 0.624, "tempo" : 98.002, "id" : "06AKEBrKUckW0KREUWRnvT", "uri" : "spotify:track:06AKEBrKUckW0KREUWRnvT", "track_href" : "https://api.spotify.com/v1/tracks/06AKEBrKUckW0KREUWRnvT", "analysis_url" : "https://api.spotify.com/v1/audio-analysis/06AKEBrKUckW0KREUWRnvT", "type" : "audio_features" } """ attrs = [ "duration_ms", "key", "mode", "time_signature", "acousticness", "danceability", "energy", "instrumentalness", "liveness", "speechiness", "valence", "loudness", "tempo", ] ls = [] ls.append(("Explicit", track.explicit)) ls.append(("Popularity", f"[ {track.popularity} ]")) track_num = getattr(track, "track_number", "None") ls.append(("Track", f"[ {track_num} ]")) for attr in attrs: friendly_name = attr.replace("_", " ").title() detail = getattr(details, attr) if attr == "duration_ms": detail = humanize_timedelta(seconds=int(detail) / 1000) ls.append(("Duration", detail)) continue if attr == "key": detail = PITCH[detail] if attr == "mode": detail = MODE[detail] if attr == "loudness": detail = f"[ {detail} dB ]" if attr == "tempo": detail = f"[ {detail} BPM ]" if attr == "time_signature": detail = f"[ {detail}/4 ]" if isinstance(detail, int): detail = f"[ {detail} ]" if isinstance(detail, float): detail = f"[ {round(detail * 100)}% ]" ls.append((friendly_name, detail)) return tabulate(ls, headers=["Detail", "Info"], tablefmt="pretty") def _draw_play(song: tekore.model.CurrentlyPlayingContext) -> str: """ Courtesy of aikaterna from Audio in red and away cog https://github.com/Cog-Creators/Red-DiscordBot/blob/V3/develop/redbot/cogs/audio/core/utilities/formatting.py#L358-L376 """ song_start_time = datetime.datetime.utcfromtimestamp(song.timestamp / 1000) end_time = datetime.datetime.utcfromtimestamp((song.timestamp + song.item.duration_ms) / 1000) total_time = end_time - song_start_time current_time = datetime.datetime.utcnow() elapsed_time = current_time - song_start_time sections = 12 loc_time = round((elapsed_time / total_time) * sections) # 10 sections bar_char = "\N{BOX DRAWINGS HEAVY HORIZONTAL}" seek_char = "\N{RADIO BUTTON}" play_char = "\N{BLACK RIGHT-POINTING TRIANGLE}" msg = "\n" + play_char + " " for i in range(sections): if i == loc_time: msg += seek_char else: msg += bar_char msg += " `{:.7}`/`{:.7}`".format(str(elapsed_time), str(total_time)) return msg class SearchTypes(Converter): """ This ensures that when using the search function we get a valid search type """ async def convert(self, ctx: commands.Context, argument: str) -> str: valid_types = [ "artist", "album", "episode", "playlist", "show", "track", ] find = argument.lower() if find not in valid_types: raise BadArgument(_("{argument} is not a valid genre.").format(argument=argument)) return find class ScopeConverter(Converter): """ This ensures that when using the search function we get a valid search type """ async def convert(self, ctx: commands.Context, argument: str) -> str: valid_types = [ "user-read-private", "user-top-read", "user-read-recently-played", "user-follow-read", "user-library-read", "user-read-currently-playing", "user-read-playback-state", "user-read-playback-position", "playlist-read-collaborative", "playlist-read-private", "user-follow-modify", "user-library-modify", "user-modify-playback-state", "playlist-modify-public", "playlist-modify-private", "ugc-image-upload", ] find = argument.lower() if find not in valid_types: raise BadArgument(_("{argument} is not a valid scope.").format(argument=argument)) return find class RecommendationsConverter(Converter): """ This ensures that we are using valid genres """ async def convert(self, ctx: commands.Context, argument: str) -> dict: query = {} argument = argument.replace("🧑‍🎨", ":artist:") # because discord will replace this in URI's automatically 🙄 rec_str = r"|".join(i for i in VALID_RECOMMENDATIONS.keys()) find_rec = re.compile(fr"({rec_str})\W(.+)", flags=re.I) if not ctx.cog.GENRES: try: ctx.cog.GENRES = await ctx.cog._spotify_client.recommendation_genre_seeds() except Exception: raise BadArgument( _( "The bot owner needs to set their Spotify credentials " "before this command can be used." " See `{prefix}spotify set creds` for more details." ).format(prefix=ctx.clean_prefix) ) genre_str = r"|".join(i for i in ctx.cog.GENRES) find_genre = re.compile(fr"\b({genre_str})\b", flags=re.I) find_extra = find_rec.finditer(argument) genres = list(find_genre.findall(argument)) song_data = SPOTIFY_RE.finditer(argument) tracks: List[str] = [] artists: List[str] = [] if song_data: for match in song_data: if match.group(2) == "track": tracks.append(match.group(3)) if match.group(2) == "artist": artists.append(match.group(3)) query = { "artist_ids": artists if artists else None, "genres": genres if genres else None, "track_ids": tracks if tracks else None, "limit": 100, "market": "from_token", } for match in find_extra: try: num_or_str = match.group(2).isdigit() if num_or_str: result = VALID_RECOMMENDATIONS[match.group(1)](int(match.group(2))) else: result = VALID_RECOMMENDATIONS[match.group(1)](match.group(2)) query[f"target_{match.group(1)}"] = result except Exception: log.exception("cannot match") continue if not any([query[k] for k in ["artist_ids", "genres", "track_ids"]]): raise BadArgument( _("You must provide either an artist or track seed or a genre for this to work") ) return query class SpotifyURIConverter(Converter): """ Ensures that the argument is a valid spotify URL or URI """ async def convert(self, ctx: commands.Context, argument: str) -> re.Match: match = SPOTIFY_RE.match(argument) if not match: raise BadArgument( _("{argument} is not a valid Spotify URL or URI.").format(argument=argument) ) return match
32.241486
123
0.565489
a2e49ad630e3adb49acfa1c804959f1ec354c34b
15,712
py
Python
plugins/modules/oci_identity_tag_namespace.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
108
2020-05-19T20:46:10.000Z
2022-03-25T14:10:01.000Z
plugins/modules/oci_identity_tag_namespace.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
90
2020-06-14T22:07:11.000Z
2022-03-07T05:40:29.000Z
plugins/modules/oci_identity_tag_namespace.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
42
2020-08-30T23:09:12.000Z
2022-03-25T16:58:01.000Z
#!/usr/bin/python # Copyright (c) 2020, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_identity_tag_namespace short_description: Manage a TagNamespace resource in Oracle Cloud Infrastructure description: - This module allows the user to create, update and delete a TagNamespace resource in Oracle Cloud Infrastructure - For I(state=present), creates a new tag namespace in the specified compartment. - You must specify the compartment ID in the request object (remember that the tenancy is simply the root compartment). - "You must also specify a *name* for the namespace, which must be unique across all namespaces in your tenancy and cannot be changed. The name can contain any ASCII character except the space (_) or period (.). Names are case insensitive. That means, for example, \\"myNamespace\\" and \\"mynamespace\\" are not allowed in the same tenancy. Once you created a namespace, you cannot change the name. If you specify a name that's already in use in the tenancy, a 409 error is returned." - "You must also specify a *description* for the namespace. It does not have to be unique, and you can change it with L(UpdateTagNamespace,https://docs.cloud.oracle.com/en-us/iaas/api/#/en/identity/latest/TagNamespace/UpdateTagNamespace)." - "This resource has the following action operations in the M(oracle.oci.oci_identity_tag_namespace_actions) module: cascade_delete, change_compartment." version_added: "2.9.0" author: Oracle (@oracle) options: compartment_id: description: - The OCID of the tenancy containing the tag namespace. - Required for create using I(state=present). - Required for update when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. - Required for delete when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. type: str name: description: - The name you assign to the tag namespace during creation. It must be unique across all tag namespaces in the tenancy and cannot be changed. - Required for create using I(state=present). - Required for update, delete when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. type: str description: description: - The description you assign to the tag namespace during creation. - Required for create using I(state=present). - This parameter is updatable. type: str freeform_tags: description: - Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). - "Example: `{\\"Department\\": \\"Finance\\"}`" - This parameter is updatable. type: dict defined_tags: description: - Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). - "Example: `{\\"Operations\\": {\\"CostCenter\\": \\"42\\"}}`" - This parameter is updatable. type: dict tag_namespace_id: description: - The OCID of the tag namespace. - Required for update using I(state=present) when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is not set. - Required for delete using I(state=absent) when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is not set. type: str aliases: ["id"] is_retired: description: - Whether the tag namespace is retired. See L(Retiring Key Definitions and Namespace Definitions,https://docs.cloud.oracle.com/Content/Identity/Concepts/taggingoverview.htm#Retiring). - This parameter is updatable. type: bool state: description: - The state of the TagNamespace. - Use I(state=present) to create or update a TagNamespace. - Use I(state=absent) to delete a TagNamespace. type: str required: false default: 'present' choices: ["present", "absent"] extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_creatable_resource, oracle.oci.oracle_wait_options ] """ EXAMPLES = """ - name: Create tag_namespace oci_identity_tag_namespace: # required compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" name: name_example description: description_example # optional freeform_tags: {'Department': 'Finance'} defined_tags: {'Operations': {'CostCenter': 'US'}} - name: Update tag_namespace oci_identity_tag_namespace: # required tag_namespace_id: "ocid1.tagnamespace.oc1..xxxxxxEXAMPLExxxxxx" # optional description: description_example freeform_tags: {'Department': 'Finance'} defined_tags: {'Operations': {'CostCenter': 'US'}} is_retired: true - name: Update tag_namespace using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_identity_tag_namespace: # required compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" name: name_example # optional description: description_example freeform_tags: {'Department': 'Finance'} defined_tags: {'Operations': {'CostCenter': 'US'}} is_retired: true - name: Delete tag_namespace oci_identity_tag_namespace: # required tag_namespace_id: "ocid1.tagnamespace.oc1..xxxxxxEXAMPLExxxxxx" state: absent - name: Delete tag_namespace using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_identity_tag_namespace: # required compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" name: name_example state: absent """ RETURN = """ tag_namespace: description: - Details of the TagNamespace resource acted upon by the current operation returned: on success type: complex contains: id: description: - The OCID of the tag namespace. returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" compartment_id: description: - The OCID of the compartment that contains the tag namespace. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" name: description: - The name of the tag namespace. It must be unique across all tag namespaces in the tenancy and cannot be changed. returned: on success type: str sample: name_example description: description: - The description you assign to the tag namespace. returned: on success type: str sample: description_example freeform_tags: description: - "Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). Example: `{\\"Department\\": \\"Finance\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} defined_tags: description: - "Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). Example: `{\\"Operations\\": {\\"CostCenter\\": \\"42\\"}}`" returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} is_retired: description: - Whether the tag namespace is retired. See L(Retiring Key Definitions and Namespace Definitions,https://docs.cloud.oracle.com/Content/Identity/Concepts/taggingoverview.htm#Retiring). returned: on success type: bool sample: true lifecycle_state: description: - The tagnamespace's current state. After creating a tagnamespace, make sure its `lifecycleState` is ACTIVE before using it. After retiring a tagnamespace, make sure its `lifecycleState` is INACTIVE before using it. returned: on success type: str sample: ACTIVE time_created: description: - "Date and time the tagNamespace was created, in the format defined by RFC3339. Example: `2016-08-25T21:10:29.600Z`" returned: on success type: str sample: "2013-10-20T19:20:30+01:00" sample: { "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "name": "name_example", "description": "description_example", "freeform_tags": {'Department': 'Finance'}, "defined_tags": {'Operations': {'CostCenter': 'US'}}, "is_retired": true, "lifecycle_state": "ACTIVE", "time_created": "2013-10-20T19:20:30+01:00" } """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import ( oci_common_utils, oci_wait_utils, ) from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceHelperBase, get_custom_class, ) try: from oci.identity import IdentityClient from oci.identity.models import CreateTagNamespaceDetails from oci.identity.models import UpdateTagNamespaceDetails HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class TagNamespaceHelperGen(OCIResourceHelperBase): """Supported operations: create, update, get, list and delete""" def get_module_resource_id_param(self): return "tag_namespace_id" def get_module_resource_id(self): return self.module.params.get("tag_namespace_id") def get_get_fn(self): return self.client.get_tag_namespace def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_tag_namespace, tag_namespace_id=self.module.params.get("tag_namespace_id"), ) def get_required_kwargs_for_list(self): required_list_method_params = [ "compartment_id", ] return dict( (param, self.module.params[param]) for param in required_list_method_params ) def get_optional_kwargs_for_list(self): return dict() def list_resources(self): required_kwargs = self.get_required_kwargs_for_list() optional_kwargs = self.get_optional_kwargs_for_list() kwargs = oci_common_utils.merge_dicts(required_kwargs, optional_kwargs) return oci_common_utils.list_all_resources( self.client.list_tag_namespaces, **kwargs ) def get_create_model_class(self): return CreateTagNamespaceDetails def create_resource(self): create_details = self.get_create_model() return oci_wait_utils.call_and_wait( call_fn=self.client.create_tag_namespace, call_fn_args=(), call_fn_kwargs=dict(create_tag_namespace_details=create_details,), waiter_type=oci_wait_utils.LIFECYCLE_STATE_WAITER_KEY, operation=oci_common_utils.CREATE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=self.get_wait_for_states_for_operation( oci_common_utils.CREATE_OPERATION_KEY, ), ) def get_update_model_class(self): return UpdateTagNamespaceDetails def update_resource(self): update_details = self.get_update_model() return oci_wait_utils.call_and_wait( call_fn=self.client.update_tag_namespace, call_fn_args=(), call_fn_kwargs=dict( tag_namespace_id=self.module.params.get("tag_namespace_id"), update_tag_namespace_details=update_details, ), waiter_type=oci_wait_utils.LIFECYCLE_STATE_WAITER_KEY, operation=oci_common_utils.UPDATE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=self.get_wait_for_states_for_operation( oci_common_utils.UPDATE_OPERATION_KEY, ), ) def delete_resource(self): return oci_wait_utils.call_and_wait( call_fn=self.client.delete_tag_namespace, call_fn_args=(), call_fn_kwargs=dict( tag_namespace_id=self.module.params.get("tag_namespace_id"), ), waiter_type=oci_wait_utils.LIFECYCLE_STATE_WAITER_KEY, operation=oci_common_utils.DELETE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=self.get_wait_for_states_for_operation( oci_common_utils.DELETE_OPERATION_KEY, ), ) TagNamespaceHelperCustom = get_custom_class("TagNamespaceHelperCustom") class ResourceHelper(TagNamespaceHelperCustom, TagNamespaceHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec( supports_create=True, supports_wait=True ) module_args.update( dict( compartment_id=dict(type="str"), name=dict(type="str"), description=dict(type="str"), freeform_tags=dict(type="dict"), defined_tags=dict(type="dict"), tag_namespace_id=dict(aliases=["id"], type="str"), is_retired=dict(type="bool"), state=dict(type="str", default="present", choices=["present", "absent"]), ) ) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_helper = ResourceHelper( module=module, resource_type="tag_namespace", service_client_class=IdentityClient, namespace="identity", ) result = dict(changed=False) if resource_helper.is_delete_using_name(): result = resource_helper.delete_using_name() elif resource_helper.is_delete(): result = resource_helper.delete() elif resource_helper.is_update_using_name(): result = resource_helper.update_using_name() elif resource_helper.is_update(): result = resource_helper.update() elif resource_helper.is_create(): result = resource_helper.create() module.exit_json(**result) if __name__ == "__main__": main()
39.28
157
0.663442
c18d141d8a8b8f636ae08f01330c3d8b13190b09
420
py
Python
list/wsgi.py
SkillSmart/ConferenceManagementSystem
43af08260f321d1d506755da5c1b6ce1cf95fc42
[ "MIT" ]
null
null
null
list/wsgi.py
SkillSmart/ConferenceManagementSystem
43af08260f321d1d506755da5c1b6ce1cf95fc42
[ "MIT" ]
null
null
null
list/wsgi.py
SkillSmart/ConferenceManagementSystem
43af08260f321d1d506755da5c1b6ce1cf95fc42
[ "MIT" ]
null
null
null
""" WSGI config for CompetitionManagement project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "CompetitionManagement.settings") application = get_wsgi_application()
24.705882
81
0.8
f3d36e5f05966d0164b842fcbad2c234bfaf647f
5,312
py
Python
.venv/lib/python3.6/site-packages/pdflatex/pdflatex.py
rguillon/mmrpg
94f06b8bb13d4a94caeed247d7ceb1675b785148
[ "MIT" ]
3
2021-04-06T18:35:29.000Z
2021-05-17T21:35:46.000Z
venv/Lib/site-packages/pdflatex/pdflatex.py
l-Il/py-LaTeX
bd9dc79820fd569fce437f2316e73f40527adcdd
[ "MIT" ]
null
null
null
venv/Lib/site-packages/pdflatex/pdflatex.py
l-Il/py-LaTeX
bd9dc79820fd569fce437f2316e73f40527adcdd
[ "MIT" ]
null
null
null
import os import shutil import tempfile import subprocess from subprocess import PIPE MODE_BATCH = 0 MODE_NON_STOP = 1 MODE_SCROLL = 2 MODE_ERROR_STOP = 3 INTERACTION_MODES = ['batchmode', 'nonstopmode', 'scrollmode', 'errorstopmode'] JINJA2_ENV = {'block_start_string': '\BLOCK{', 'block_end_string': '}', 'variable_start_string': '\VAR{', 'variable_end_string': '}', 'comment_start_string': '\#{', 'comment_end_string': '}', 'line_statement_prefix': '%%', 'line_comment_prefix': '%#', 'trim_blocks': True, 'autoescape': False} class PDFLaTeX: def __init__(self, latex_src, job_name: str): self.latex = latex_src self.job_name = job_name self.interaction_mode = INTERACTION_MODES[MODE_BATCH] self.dir = None self.pdf_filename = None self.params = dict() self.pdf = None self.log = None @classmethod def from_texfile(cls, filename): prefix = os.path.basename(filename) prefix = os.path.splitext(prefix)[0] with open(filename, 'rb') as f: return cls.from_binarystring(f.read(), prefix) @classmethod def from_binarystring(cls, binstr: str, jobname: str): return cls(binstr, jobname) @classmethod def from_jinja_template(cls, jinja2_template, jobname: str = None, **render_kwargs): tex_src = jinja2_template.render(**render_kwargs) fn = jinja2_template.filename if fn is None: fn = jobname if not fn: raise ValueError("PDFLaTeX: if jinja template does not have attribute 'filename' set, " "'jobname' must be provided") return cls(tex_src, fn) def create_pdf(self, keep_pdf_file: bool = False, keep_log_file: bool = False, env: dict = None): if self.interaction_mode is not None: self.add_args({'-interaction-mode': self.interaction_mode}) dir = self.params.get('-output-directory') filename = self.params.get('-jobname') if filename is None: filename = self.job_name if dir is None: dir = "" with tempfile.TemporaryDirectory() as td: self.set_output_directory(td) self.set_jobname('file') args = self.get_run_args() fp = subprocess.run(args, input=self.latex, env=env, timeout=15, stdout=PIPE, stderr=PIPE) with open(os.path.join(td, 'file.pdf'), 'rb') as f: self.pdf = f.read() with open(os.path.join(td, 'file.log'), 'rb') as f: self.log = f.read() if keep_log_file: shutil.move(os.path.join(td, 'file.log'), os.path.join(dir, filename + '.log')) if keep_pdf_file: shutil.move(os.path.join(td, 'file.pdf'), os.path.join(dir, filename + '.pdf')) return self.pdf, self.log, fp def get_run_args(self): a = [k+('='+v if v is not None else '') for k, v in self.params.items()] a.insert(0, 'pdflatex') return a def add_args(self, params: dict): for k in params: self.params[k] = params[k] def del_args(self, params): if isinstance(params, str): params = [params] if isinstance(params, dict) or isinstance(params, list): for k in params: if k in self.params.keys(): del self.params[k] else: raise ValueError('PDFLaTeX: del_cmd_params: parameter must be str, dict or list.') def set_output_directory(self, dir: str = None): self.generic_param_set('-output-directory', dir) def set_jobname(self, jobname: str = None): self.generic_param_set('-jobname', jobname) def set_output_format(self, fmt: str = None): if fmt and fmt not in ['pdf', 'dvi']: raise ValueError("PDFLaTeX: Format must be either 'pdf' or 'dvi'.") self.generic_param_set('-output-format', dir) def generic_param_set(self, param_name, value): if value is None: if param_name in self.params.keys(): del self.params[param_name] else: self.params[param_name] = value def set_pdf_filename(self, pdf_filename: str = None): self.set_jobname(pdf_filename) def set_batchmode(self, on: bool = True): self.interaction_mode = INTERACTION_MODES[MODE_BATCH] if on else None def set_nonstopmode(self, on: bool =True): self.interaction_mode = INTERACTION_MODES[MODE_NON_STOP] if on else None def set_scrollmode(self, on: bool = True): self.interaction_mode = INTERACTION_MODES[MODE_SCROLL] if on else None def set_errorstopmode(self, on: bool = True): self.interaction_mode = INTERACTION_MODES[MODE_ERROR_STOP] if on else None def set_interaction_mode(self, mode: int = None): if mode is None: self.interaction_mode = None elif 0 <= mode <= 3: self.interaction_mode = INTERACTION_MODES[mode] else: raise ValueError('PDFLaTeX: Invalid interaction mode!')
36.136054
103
0.591679
dda739530ece0c73edfe5bfd7d7ac8033097ad13
2,098
py
Python
prepare_submission.py
zivadinac/Algonauts2021_devkit
73fc6cda1903f73682ecad9245808e7b2750a9cc
[ "MIT" ]
35
2021-05-01T02:58:03.000Z
2021-12-27T15:13:17.000Z
prepare_submission.py
antjak/Algonauts2021_devkit
aa5a677881c3d75b671065c683f63e0fad81bcdf
[ "MIT" ]
2
2021-06-05T17:34:29.000Z
2021-06-22T20:36:19.000Z
prepare_submission.py
antjak/Algonauts2021_devkit
aa5a677881c3d75b671065c683f63e0fad81bcdf
[ "MIT" ]
21
2021-05-06T04:59:09.000Z
2021-10-12T21:52:09.000Z
import numpy as np import os import glob import random import argparse import itertools import nibabel as nib from nilearn import plotting from tqdm import tqdm from sklearn.cross_decomposition import PLSRegression from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler import torch import time import pickle import zipfile from tqdm import tqdm from utils.helper import save_dict,load_dict def main(): parser = argparse.ArgumentParser(description='Prepares submission for Algonauts 2021') parser.add_argument('-rd','--result_dir', help='contains predicted fMRI activity',default = './results/alexnet_devkit/layer_5', type=str) parser.add_argument('-t','--track', help='mini_track for all ROIs, full_track for whole brain (WB)', default = 'mini_track', type=str) args = vars(parser.parse_args()) track = args['track'] result_dir = args['result_dir'] if track == 'full_track': ROIs = ['WB'] else: ROIs = ['LOC','FFA','STS','EBA','PPA','V1','V2','V3','V4'] num_subs = 10 subs=[] for s in range(num_subs): subs.append('sub'+str(s+1).zfill(2)) results = {} for ROI in ROIs: ROI_results = {} for sub in subs: ROI_result_file = os.path.join(result_dir,track,sub,ROI+"_test.npy") print("Result file path: ", ROI_result_file) if not os.path.exists(ROI_result_file): print("---------Warning : submission not ready ----------") print("Result not found for ",sub, " and ROI: ",ROI) print("Please check if the directory is correct or generate predicted data for ROI: ",ROI , " in subject: ", sub) return ROI_result = np.load(ROI_result_file) ROI_results[sub] = ROI_result results[ROI] = ROI_results save_dict(results,track+".pkl") zipped_results = zipfile.ZipFile(track+".zip", 'w') zipped_results.write(track+".pkl") zipped_results.close() if __name__ == "__main__": main()
33.301587
141
0.660153
6a3dbad2b90fea5a871e0ce14f80cb557307e73b
710
py
Python
scrape/pipelines.py
GGG1235/scrape
9454d3fc9939cf753a25af6dcfcbae80f2ab82bb
[ "MIT" ]
1
2019-04-24T00:39:28.000Z
2019-04-24T00:39:28.000Z
scrape/pipelines.py
GGG1235/scrape
9454d3fc9939cf753a25af6dcfcbae80f2ab82bb
[ "MIT" ]
null
null
null
scrape/pipelines.py
GGG1235/scrape
9454d3fc9939cf753a25af6dcfcbae80f2ab82bb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo from scrape.settings import mongo_host, mongo_port, \ mongo_user, mongo_passwd, \ mongo_db_name, mongo_db_collection class ScrapePipeline(object): def __init__(self): client = pymongo.MongoClient("mongodb://%s:%s@%s:%d/admin" % (mongo_user, mongo_passwd, mongo_host, mongo_port)) db = client[mongo_db_name] self.post = db[mongo_db_collection] def process_item(self, item, spider): data = dict(item) self.post.insert(data) return item
29.583333
120
0.692958
810aafb69459de120675e50ea2f995e957e9c1c3
973
py
Python
static/models/demos/RandomForest/train.py
jhuang-2021/Auto-build-machine-learning-platorm
37597a407e02b1fe2ed93ace78785b4e386aec58
[ "MIT" ]
null
null
null
static/models/demos/RandomForest/train.py
jhuang-2021/Auto-build-machine-learning-platorm
37597a407e02b1fe2ed93ace78785b4e386aec58
[ "MIT" ]
null
null
null
static/models/demos/RandomForest/train.py
jhuang-2021/Auto-build-machine-learning-platorm
37597a407e02b1fe2ed93ace78785b4e386aec58
[ "MIT" ]
null
null
null
import pickle # Author: Tim Head <betatim@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(600, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y += (0.5 - rng.rand(*y.shape)) X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=400, test_size=200, random_state=4) max_depth = 30 model = MultiOutputRegressor(RandomForestRegressor(n_estimators=100, max_depth=max_depth, random_state=0)) model.fit(X_train, y_train) # save the model to disk filename = 'trained_model.mdl' pickle.dump(model, open(filename, 'wb'))
29.484848
78
0.663926
7409ea2ae9b4b9441d60c0831676403966f6a9b1
62,803
py
Python
ironic/tests/unit/api/controllers/v1/test_allocation.py
ljmcgann/ironic
09f79416e2820cf0fcef001c4c956b7732b7e7ca
[ "Apache-2.0" ]
null
null
null
ironic/tests/unit/api/controllers/v1/test_allocation.py
ljmcgann/ironic
09f79416e2820cf0fcef001c4c956b7732b7e7ca
[ "Apache-2.0" ]
null
null
null
ironic/tests/unit/api/controllers/v1/test_allocation.py
ljmcgann/ironic
09f79416e2820cf0fcef001c4c956b7732b7e7ca
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tests for the API /allocations/ methods. """ import datetime from http import client as http_client from unittest import mock from urllib import parse as urlparse import fixtures from oslo_config import cfg from oslo_utils import timeutils from oslo_utils import uuidutils from ironic.api.controllers import base as api_base from ironic.api.controllers import v1 as api_v1 from ironic.api.controllers.v1 import allocation as api_allocation from ironic.api.controllers.v1 import notification_utils from ironic.api import types as atypes from ironic.common import exception from ironic.common import policy from ironic.conductor import rpcapi from ironic import objects from ironic.objects import fields as obj_fields from ironic.tests import base from ironic.tests.unit.api import base as test_api_base from ironic.tests.unit.api import utils as apiutils from ironic.tests.unit.objects import utils as obj_utils class TestAllocationObject(base.TestCase): def test_allocation_init(self): allocation_dict = apiutils.allocation_post_data(node_id=None) del allocation_dict['extra'] allocation = api_allocation.Allocation(**allocation_dict) self.assertEqual(atypes.Unset, allocation.extra) class TestListAllocations(test_api_base.BaseApiTest): headers = {api_base.Version.string: str(api_v1.max_version())} def setUp(self): super(TestListAllocations, self).setUp() self.node = obj_utils.create_test_node(self.context, name='node-1') def test_empty(self): data = self.get_json('/allocations', headers=self.headers) self.assertEqual([], data['allocations']) def test_one(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) data = self.get_json('/allocations', headers=self.headers) self.assertEqual(allocation.uuid, data['allocations'][0]["uuid"]) self.assertEqual(allocation.name, data['allocations'][0]['name']) self.assertEqual({}, data['allocations'][0]["extra"]) self.assertEqual(self.node.uuid, data['allocations'][0]["node_uuid"]) self.assertEqual(allocation.owner, data['allocations'][0]["owner"]) # never expose the node_id self.assertNotIn('node_id', data['allocations'][0]) def test_get_one(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) data = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) self.assertEqual(allocation.uuid, data['uuid']) self.assertEqual({}, data["extra"]) self.assertEqual(self.node.uuid, data["node_uuid"]) self.assertEqual(allocation.owner, data["owner"]) # never expose the node_id self.assertNotIn('node_id', data) def test_get_one_with_json(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) data = self.get_json('/allocations/%s.json' % allocation.uuid, headers=self.headers) self.assertEqual(allocation.uuid, data['uuid']) def test_get_one_with_json_in_name(self): allocation = obj_utils.create_test_allocation(self.context, name='pg.json', node_id=self.node.id) data = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) self.assertEqual(allocation.uuid, data['uuid']) def test_get_one_with_suffix(self): allocation = obj_utils.create_test_allocation(self.context, name='pg.1', node_id=self.node.id) data = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) self.assertEqual(allocation.uuid, data['uuid']) def test_get_one_custom_fields(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) fields = 'resource_class,extra' data = self.get_json( '/allocations/%s?fields=%s' % (allocation.uuid, fields), headers=self.headers) # We always append "links" self.assertCountEqual(['resource_class', 'extra', 'links'], data) def test_get_collection_custom_fields(self): fields = 'uuid,extra' for i in range(3): obj_utils.create_test_allocation( self.context, node_id=self.node.id, uuid=uuidutils.generate_uuid(), name='allocation%s' % i) data = self.get_json( '/allocations?fields=%s' % fields, headers=self.headers) self.assertEqual(3, len(data['allocations'])) for allocation in data['allocations']: # We always append "links" self.assertCountEqual(['uuid', 'extra', 'links'], allocation) def test_get_custom_fields_invalid_fields(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) fields = 'uuid,spongebob' response = self.get_json( '/allocations/%s?fields=%s' % (allocation.uuid, fields), headers=self.headers, expect_errors=True) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertIn('spongebob', response.json['error_message']) def test_get_one_invalid_api_version(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) response = self.get_json( '/allocations/%s' % (allocation.uuid), headers={api_base.Version.string: str(api_v1.min_version())}, expect_errors=True) self.assertEqual(http_client.NOT_FOUND, response.status_int) def test_get_one_invalid_api_version_without_check(self): # Invalid name, but the check happens after the microversion check. response = self.get_json( '/allocations/ba!na!na!', headers={api_base.Version.string: str(api_v1.min_version())}, expect_errors=True) self.assertEqual(http_client.NOT_FOUND, response.status_int) def test_many(self): allocations = [] for id_ in range(5): allocation = obj_utils.create_test_allocation( self.context, node_id=self.node.id, uuid=uuidutils.generate_uuid(), name='allocation%s' % id_) allocations.append(allocation.uuid) data = self.get_json('/allocations', headers=self.headers) self.assertEqual(len(allocations), len(data['allocations'])) uuids = [n['uuid'] for n in data['allocations']] self.assertCountEqual(allocations, uuids) def test_links(self): uuid = uuidutils.generate_uuid() obj_utils.create_test_allocation(self.context, uuid=uuid, node_id=self.node.id) data = self.get_json('/allocations/%s' % uuid, headers=self.headers) self.assertIn('links', data) self.assertEqual(2, len(data['links'])) self.assertIn(uuid, data['links'][0]['href']) for link in data['links']: bookmark = link['rel'] == 'bookmark' self.assertTrue(self.validate_link(link['href'], bookmark=bookmark, headers=self.headers)) def test_collection_links(self): allocations = [] for id_ in range(5): allocation = obj_utils.create_test_allocation( self.context, uuid=uuidutils.generate_uuid(), name='allocation%s' % id_) allocations.append(allocation.uuid) data = self.get_json('/allocations/?limit=3', headers=self.headers) self.assertEqual(3, len(data['allocations'])) next_marker = data['allocations'][-1]['uuid'] self.assertIn(next_marker, data['next']) def test_collection_links_default_limit(self): cfg.CONF.set_override('max_limit', 3, 'api') allocations = [] for id_ in range(5): allocation = obj_utils.create_test_allocation( self.context, uuid=uuidutils.generate_uuid(), name='allocation%s' % id_) allocations.append(allocation.uuid) data = self.get_json('/allocations', headers=self.headers) self.assertEqual(3, len(data['allocations'])) next_marker = data['allocations'][-1]['uuid'] self.assertIn(next_marker, data['next']) def test_collection_links_custom_fields(self): cfg.CONF.set_override('max_limit', 3, 'api') fields = 'uuid,extra' allocations = [] for i in range(5): allocation = obj_utils.create_test_allocation( self.context, node_id=self.node.id, uuid=uuidutils.generate_uuid(), name='allocation%s' % i) allocations.append(allocation.uuid) data = self.get_json( '/allocations?fields=%s' % fields, headers=self.headers) self.assertEqual(3, len(data['allocations'])) next_marker = data['allocations'][-1]['uuid'] self.assertIn(next_marker, data['next']) self.assertIn('fields', data['next']) def test_get_collection_pagination_no_uuid(self): fields = 'node_uuid' limit = 2 allocations = [] for id_ in range(3): allocation = obj_utils.create_test_allocation( self.context, node_id=self.node.id, uuid=uuidutils.generate_uuid(), name='allocation%s' % id_) allocations.append(allocation) data = self.get_json( '/allocations?fields=%s&limit=%s' % (fields, limit), headers=self.headers) self.assertEqual(limit, len(data['allocations'])) self.assertIn('marker=%s' % allocations[limit - 1].uuid, data['next']) def test_allocation_get_all_invalid_api_version(self): obj_utils.create_test_allocation( self.context, node_id=self.node.id, uuid=uuidutils.generate_uuid(), name='allocation_1') response = self.get_json('/allocations', headers={api_base.Version.string: '1.14'}, expect_errors=True) self.assertEqual(http_client.NOT_FOUND, response.status_int) @mock.patch.object(policy, 'authorize', spec=True) def test_allocation_get_all_forbidden(self, mock_authorize): def mock_authorize_function(rule, target, creds): raise exception.HTTPForbidden(resource='fake') mock_authorize.side_effect = mock_authorize_function response = self.get_json('/allocations', expect_errors=True, headers={ api_base.Version.string: '1.60', 'X-Project-Id': '12345' }) self.assertEqual(http_client.FORBIDDEN, response.status_int) @mock.patch.object(policy, 'authorize', spec=True) def test_allocation_get_all_forbidden_no_project(self, mock_authorize): def mock_authorize_function(rule, target, creds): if rule == 'baremetal:allocation:list_all': raise exception.HTTPForbidden(resource='fake') return True mock_authorize.side_effect = mock_authorize_function response = self.get_json('/allocations', expect_errors=True, headers={ api_base.Version.string: '1.59', }) self.assertEqual(http_client.FORBIDDEN, response.status_int) @mock.patch.object(policy, 'authorize', spec=True) def test_allocation_get_all_forbid_owner_proj_mismatch( self, mock_authorize): def mock_authorize_function(rule, target, creds): if rule == 'baremetal:allocation:list_all': raise exception.HTTPForbidden(resource='fake') return True mock_authorize.side_effect = mock_authorize_function response = self.get_json('/allocations?owner=54321', expect_errors=True, headers={ api_base.Version.string: '1.60', 'X-Project-Id': '12345' }) self.assertEqual(http_client.FORBIDDEN, response.status_int) @mock.patch.object(policy, 'authorize', spec=True) def test_allocation_get_all_non_admin(self, mock_authorize): def mock_authorize_function(rule, target, creds): if rule == 'baremetal:allocation:list_all': raise exception.HTTPForbidden(resource='fake') return True mock_authorize.side_effect = mock_authorize_function allocations = [] for id in range(5): allocation = obj_utils.create_test_allocation( self.context, uuid=uuidutils.generate_uuid(), owner='12345') allocations.append(allocation.uuid) for id in range(2): allocation = obj_utils.create_test_allocation( self.context, uuid=uuidutils.generate_uuid()) data = self.get_json('/allocations', headers={ api_base.Version.string: '1.60', 'X-Project-Id': '12345'}) self.assertEqual(len(allocations), len(data['allocations'])) uuids = [n['uuid'] for n in data['allocations']] self.assertEqual(sorted(allocations), sorted(uuids)) def test_sort_key(self): allocations = [] for id_ in range(3): allocation = obj_utils.create_test_allocation( self.context, node_id=self.node.id, uuid=uuidutils.generate_uuid(), name='allocation%s' % id_) allocations.append(allocation.uuid) data = self.get_json('/allocations?sort_key=uuid', headers=self.headers) uuids = [n['uuid'] for n in data['allocations']] self.assertEqual(sorted(allocations), uuids) def test_sort_key_invalid(self): invalid_keys_list = ['foo', 'extra', 'internal_info', 'properties'] for invalid_key in invalid_keys_list: response = self.get_json('/allocations?sort_key=%s' % invalid_key, expect_errors=True, headers=self.headers) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertIn(invalid_key, response.json['error_message']) def test_sort_key_allowed(self): allocation_uuids = [] for id_ in range(3, 0, -1): allocation = obj_utils.create_test_allocation( self.context, uuid=uuidutils.generate_uuid(), name='allocation%s' % id_) allocation_uuids.append(allocation.uuid) allocation_uuids.reverse() data = self.get_json('/allocations?sort_key=name', headers=self.headers) data_uuids = [p['uuid'] for p in data['allocations']] self.assertEqual(allocation_uuids, data_uuids) def test_get_all_by_state(self): for i in range(5): if i < 3: state = 'allocating' else: state = 'active' obj_utils.create_test_allocation( self.context, state=state, uuid=uuidutils.generate_uuid(), name='allocation%s' % i) data = self.get_json("/allocations?state=allocating", headers=self.headers) self.assertEqual(3, len(data['allocations'])) def test_get_all_by_owner(self): for i in range(5): if i < 3: owner = '12345' else: owner = '54321' obj_utils.create_test_allocation( self.context, owner=owner, uuid=uuidutils.generate_uuid(), name='allocation%s' % i) data = self.get_json("/allocations?owner=12345", headers=self.headers) self.assertEqual(3, len(data['allocations'])) def test_get_all_by_owner_not_allowed(self): response = self.get_json("/allocations?owner=12345", headers={api_base.Version.string: '1.59'}, expect_errors=True) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.NOT_ACCEPTABLE, response.status_code) self.assertTrue(response.json['error_message']) def test_get_all_by_node_name(self): for i in range(5): if i < 3: node_id = self.node.id else: node_id = 100000 + i obj_utils.create_test_allocation( self.context, node_id=node_id, uuid=uuidutils.generate_uuid(), name='allocation%s' % i) data = self.get_json("/allocations?node=%s" % self.node.name, headers=self.headers) self.assertEqual(3, len(data['allocations'])) def test_get_all_by_node_uuid(self): obj_utils.create_test_allocation(self.context, node_id=self.node.id) data = self.get_json('/allocations?node=%s' % (self.node.uuid), headers=self.headers) self.assertEqual(1, len(data['allocations'])) def test_get_all_by_non_existing_node(self): obj_utils.create_test_allocation(self.context, node_id=self.node.id) response = self.get_json('/allocations?node=banana', headers=self.headers, expect_errors=True) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.BAD_REQUEST, response.status_int) def test_get_by_node_resource(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) data = self.get_json('/nodes/%s/allocation' % self.node.uuid, headers=self.headers) self.assertEqual(allocation.uuid, data['uuid']) self.assertEqual({}, data["extra"]) self.assertEqual(self.node.uuid, data["node_uuid"]) def test_get_by_node_resource_invalid_api_version(self): obj_utils.create_test_allocation(self.context, node_id=self.node.id) response = self.get_json( '/nodes/%s/allocation' % self.node.uuid, headers={api_base.Version.string: str(api_v1.min_version())}, expect_errors=True) self.assertEqual(http_client.NOT_FOUND, response.status_int) def test_get_by_node_resource_with_fields(self): obj_utils.create_test_allocation(self.context, node_id=self.node.id) data = self.get_json('/nodes/%s/allocation?fields=name,extra' % self.node.uuid, headers=self.headers) self.assertNotIn('uuid', data) self.assertIn('name', data) self.assertEqual({}, data["extra"]) def test_get_by_node_resource_and_id(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) response = self.get_json('/nodes/%s/allocation/%s' % (self.node.uuid, allocation.uuid), headers=self.headers, expect_errors=True) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.METHOD_NOT_ALLOWED, response.status_int) def test_by_node_resource_not_existed(self): node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid()) res = self.get_json('/node/%s/allocation' % node.uuid, expect_errors=True, headers=self.headers) self.assertEqual(http_client.NOT_FOUND, res.status_code) def test_by_node_invalid_node(self): res = self.get_json('/node/%s/allocation' % uuidutils.generate_uuid(), expect_errors=True, headers=self.headers) self.assertEqual(http_client.NOT_FOUND, res.status_code) def test_allocation_owner_hidden_in_lower_version(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id) data = self.get_json( '/allocations/%s' % allocation.uuid, headers={api_base.Version.string: '1.59'}) self.assertNotIn('owner', data) data = self.get_json( '/allocations/%s' % allocation.uuid, headers=self.headers) self.assertIn('owner', data) def test_allocation_owner_null_field(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id, owner=None) data = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) self.assertIsNone(data['owner']) def test_allocation_owner_present(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id, owner='12345') data = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) self.assertEqual(data['owner'], '12345') def test_get_owner_field(self): allocation = obj_utils.create_test_allocation(self.context, node_id=self.node.id, owner='12345') fields = 'owner' response = self.get_json( '/allocations/%s?fields=%s' % (allocation.uuid, fields), headers=self.headers) self.assertIn('owner', response) class TestPatch(test_api_base.BaseApiTest): headers = {api_base.Version.string: str(api_v1.max_version())} def setUp(self): super(TestPatch, self).setUp() self.allocation = obj_utils.create_test_allocation(self.context) def test_update_not_allowed(self): response = self.patch_json('/allocations/%s' % self.allocation.uuid, [{'path': '/extra/foo', 'value': 'bar', 'op': 'add'}], expect_errors=True, headers={api_base.Version.string: '1.56'}) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.METHOD_NOT_ALLOWED, response.status_int) def test_update_not_found(self): uuid = uuidutils.generate_uuid() response = self.patch_json('/allocations/%s' % uuid, [{'path': '/name', 'value': 'b', 'op': 'replace'}], expect_errors=True, headers=self.headers) self.assertEqual(http_client.NOT_FOUND, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_add(self): response = self.patch_json('/allocations/%s' % self.allocation.uuid, [{'path': '/extra/foo', 'value': 'bar', 'op': 'add'}], headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.OK, response.status_int) def test_add_non_existent(self): response = self.patch_json('/allocations/%s' % self.allocation.uuid, [{'path': '/foo', 'value': 'bar', 'op': 'add'}], expect_errors=True, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertTrue(response.json['error_message']) def test_add_multi(self): response = self.patch_json('/allocations/%s' % self.allocation.uuid, [{'path': '/extra/foo1', 'value': 'bar1', 'op': 'add'}, {'path': '/extra/foo2', 'value': 'bar2', 'op': 'add'}], headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.OK, response.status_code) result = self.get_json('/allocations/%s' % self.allocation.uuid, headers=self.headers) expected = {"foo1": "bar1", "foo2": "bar2"} self.assertEqual(expected, result['extra']) def test_replace_invalid_name(self): response = self.patch_json('/allocations/%s' % self.allocation.uuid, [{'path': '/name', 'value': '[test]', 'op': 'replace'}], expect_errors=True, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertTrue(response.json['error_message']) @mock.patch.object(notification_utils, '_emit_api_notification') @mock.patch.object(timeutils, 'utcnow') def test_replace_singular(self, mock_utcnow, mock_notify): test_time = datetime.datetime(2000, 1, 1, 0, 0) mock_utcnow.return_value = test_time response = self.patch_json('/allocations/%s' % self.allocation.uuid, [{'path': '/name', 'value': 'test', 'op': 'replace'}], headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.OK, response.status_code) result = self.get_json('/allocations/%s' % self.allocation.uuid, headers=self.headers) self.assertEqual('test', result['name']) return_updated_at = timeutils.parse_isotime( result['updated_at']).replace(tzinfo=None) self.assertEqual(test_time, return_updated_at) mock_notify.assert_has_calls([mock.call(mock.ANY, mock.ANY, 'update', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.START), mock.call(mock.ANY, mock.ANY, 'update', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.END)]) def test_replace_name_with_none(self): response = self.patch_json('/allocations/%s' % self.allocation.uuid, [{'path': '/name', 'value': None, 'op': 'replace'}], headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.OK, response.status_code) result = self.get_json('/allocations/%s' % self.allocation.uuid, headers=self.headers) self.assertIsNone(result['name']) @mock.patch.object(notification_utils, '_emit_api_notification') @mock.patch.object(objects.Allocation, 'save') def test_update_error(self, mock_save, mock_notify): mock_save.side_effect = Exception() allocation = obj_utils.create_test_allocation(self.context) self.patch_json('/allocations/%s' % allocation.uuid, [{'path': '/name', 'value': 'new', 'op': 'replace'}], expect_errors=True, headers=self.headers) mock_notify.assert_has_calls([mock.call(mock.ANY, mock.ANY, 'update', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.START), mock.call(mock.ANY, mock.ANY, 'update', obj_fields.NotificationLevel.ERROR, obj_fields.NotificationStatus.ERROR)]) def test_replace_multi(self): extra = {"foo1": "bar1", "foo2": "bar2", "foo3": "bar3"} allocation = obj_utils.create_test_allocation( self.context, extra=extra, uuid=uuidutils.generate_uuid()) new_value = 'new value' response = self.patch_json('/allocations/%s' % allocation.uuid, [{'path': '/extra/foo2', 'value': new_value, 'op': 'replace'}], headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.OK, response.status_code) result = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) extra["foo2"] = new_value self.assertEqual(extra, result['extra']) def test_remove_uuid(self): response = self.patch_json('/allocations/%s' % self.allocation.uuid, [{'path': '/uuid', 'op': 'remove'}], expect_errors=True, headers=self.headers) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_remove_singular(self): allocation = obj_utils.create_test_allocation( self.context, extra={'a': 'b'}, uuid=uuidutils.generate_uuid()) response = self.patch_json('/allocations/%s' % allocation.uuid, [{'path': '/extra/a', 'op': 'remove'}], headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.OK, response.status_code) result = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) self.assertEqual(result['extra'], {}) # Assert nothing else was changed self.assertEqual(allocation.uuid, result['uuid']) def test_remove_multi(self): extra = {"foo1": "bar1", "foo2": "bar2", "foo3": "bar3"} allocation = obj_utils.create_test_allocation( self.context, extra=extra, uuid=uuidutils.generate_uuid()) # Removing one item from the collection response = self.patch_json('/allocations/%s' % allocation.uuid, [{'path': '/extra/foo2', 'op': 'remove'}], headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.OK, response.status_code) result = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) extra.pop("foo2") self.assertEqual(extra, result['extra']) # Removing the collection response = self.patch_json('/allocations/%s' % allocation.uuid, [{'path': '/extra', 'op': 'remove'}], headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.OK, response.status_code) result = self.get_json('/allocations/%s' % allocation.uuid, headers=self.headers) self.assertEqual({}, result['extra']) # Assert nothing else was changed self.assertEqual(allocation.uuid, result['uuid']) def test_remove_non_existent_property_fail(self): response = self.patch_json( '/allocations/%s' % self.allocation.uuid, [{'path': '/extra/non-existent', 'op': 'remove'}], expect_errors=True, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.BAD_REQUEST, response.status_code) self.assertTrue(response.json['error_message']) def test_update_owner_not_acceptable(self): allocation = obj_utils.create_test_allocation( self.context, owner='12345', uuid=uuidutils.generate_uuid()) new_owner = '54321' response = self.patch_json('/allocations/%s' % allocation.uuid, [{'path': '/owner', 'value': new_owner, 'op': 'replace'}], expect_errors=True, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.BAD_REQUEST, response.status_code) def _create_locally(_api, _ctx, allocation, topic): if 'node_id' in allocation and allocation.node_id: assert topic == 'node-topic', topic else: assert topic == 'some-topic', topic allocation.create() return allocation @mock.patch.object(rpcapi.ConductorAPI, 'create_allocation', _create_locally) class TestPost(test_api_base.BaseApiTest): headers = {api_base.Version.string: str(api_v1.max_version())} def setUp(self): super(TestPost, self).setUp() self.mock_get_topic = self.useFixture( fixtures.MockPatchObject(rpcapi.ConductorAPI, 'get_random_topic') ).mock self.mock_get_topic.return_value = 'some-topic' self.mock_get_topic_for_node = self.useFixture( fixtures.MockPatchObject(rpcapi.ConductorAPI, 'get_topic_for') ).mock self.mock_get_topic_for_node.return_value = 'node-topic' @mock.patch.object(notification_utils, '_emit_api_notification') @mock.patch.object(timeutils, 'utcnow', autospec=True) def test_create_allocation(self, mock_utcnow, mock_notify): adict = apiutils.allocation_post_data() test_time = datetime.datetime(2000, 1, 1, 0, 0) mock_utcnow.return_value = test_time response = self.post_json('/allocations', adict, headers=self.headers) self.assertEqual(http_client.CREATED, response.status_int) self.assertEqual(adict['uuid'], response.json['uuid']) self.assertEqual('allocating', response.json['state']) self.assertIsNone(response.json['node_uuid']) self.assertEqual([], response.json['candidate_nodes']) self.assertEqual([], response.json['traits']) self.assertNotIn('node', response.json) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(adict['uuid'], result['uuid']) self.assertFalse(result['updated_at']) self.assertIsNone(result['node_uuid']) self.assertEqual([], result['candidate_nodes']) self.assertEqual([], result['traits']) self.assertIsNone(result['owner']) self.assertNotIn('node', result) return_created_at = timeutils.parse_isotime( result['created_at']).replace(tzinfo=None) self.assertEqual(test_time, return_created_at) # Check location header self.assertIsNotNone(response.location) expected_location = '/v1/allocations/%s' % adict['uuid'] self.assertEqual(urlparse.urlparse(response.location).path, expected_location) mock_notify.assert_has_calls([ mock.call(mock.ANY, mock.ANY, 'create', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.START), mock.call(mock.ANY, mock.ANY, 'create', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.END), ]) def test_create_allocation_invalid_api_version(self): adict = apiutils.allocation_post_data() response = self.post_json( '/allocations', adict, headers={api_base.Version.string: '1.50'}, expect_errors=True) self.assertEqual(http_client.METHOD_NOT_ALLOWED, response.status_int) def test_create_allocation_doesnt_contain_id(self): with mock.patch.object(self.dbapi, 'create_allocation', wraps=self.dbapi.create_allocation) as cp_mock: adict = apiutils.allocation_post_data(extra={'foo': 123}) self.post_json('/allocations', adict, headers=self.headers) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(adict['extra'], result['extra']) cp_mock.assert_called_once_with(mock.ANY) # Check that 'id' is not in first arg of positional args self.assertNotIn('id', cp_mock.call_args[0][0]) @mock.patch.object(notification_utils.LOG, 'exception', autospec=True) @mock.patch.object(notification_utils.LOG, 'warning', autospec=True) def test_create_allocation_generate_uuid(self, mock_warn, mock_except): adict = apiutils.allocation_post_data() del adict['uuid'] response = self.post_json('/allocations', adict, headers=self.headers) result = self.get_json('/allocations/%s' % response.json['uuid'], headers=self.headers) self.assertTrue(uuidutils.is_uuid_like(result['uuid'])) self.assertFalse(mock_warn.called) self.assertFalse(mock_except.called) @mock.patch.object(notification_utils, '_emit_api_notification') @mock.patch.object(objects.Allocation, 'create') def test_create_allocation_error(self, mock_create, mock_notify): mock_create.side_effect = Exception() adict = apiutils.allocation_post_data() self.post_json('/allocations', adict, headers=self.headers, expect_errors=True) mock_notify.assert_has_calls([ mock.call(mock.ANY, mock.ANY, 'create', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.START), mock.call(mock.ANY, mock.ANY, 'create', obj_fields.NotificationLevel.ERROR, obj_fields.NotificationStatus.ERROR), ]) def test_create_allocation_with_candidate_nodes(self): node1 = obj_utils.create_test_node(self.context, name='node-1') node2 = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid()) adict = apiutils.allocation_post_data( candidate_nodes=[node1.name, node2.uuid]) response = self.post_json('/allocations', adict, headers=self.headers) self.assertEqual(http_client.CREATED, response.status_int) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(adict['uuid'], result['uuid']) self.assertEqual([node1.uuid, node2.uuid], result['candidate_nodes']) def test_create_allocation_valid_extra(self): adict = apiutils.allocation_post_data( extra={'str': 'foo', 'int': 123, 'float': 0.1, 'bool': True, 'list': [1, 2], 'none': None, 'dict': {'cat': 'meow'}}) self.post_json('/allocations', adict, headers=self.headers) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(adict['extra'], result['extra']) def test_create_allocation_with_no_extra(self): adict = apiutils.allocation_post_data() del adict['extra'] response = self.post_json('/allocations', adict, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.CREATED, response.status_int) def test_create_allocation_no_mandatory_field_resource_class(self): adict = apiutils.allocation_post_data() del adict['resource_class'] response = self.post_json('/allocations', adict, expect_errors=True, headers=self.headers) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertIn('resource_class', response.json['error_message']) def test_create_allocation_resource_class_too_long(self): adict = apiutils.allocation_post_data() adict['resource_class'] = 'f' * 81 response = self.post_json('/allocations', adict, expect_errors=True, headers=self.headers) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_create_allocation_with_traits(self): adict = apiutils.allocation_post_data() adict['traits'] = ['CUSTOM_GPU', 'CUSTOM_FOO_BAR'] response = self.post_json('/allocations', adict, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.CREATED, response.status_int) self.assertEqual(['CUSTOM_GPU', 'CUSTOM_FOO_BAR'], response.json['traits']) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(adict['uuid'], result['uuid']) self.assertEqual(['CUSTOM_GPU', 'CUSTOM_FOO_BAR'], result['traits']) def test_create_allocation_invalid_trait(self): adict = apiutils.allocation_post_data() adict['traits'] = ['CUSTOM_GPU', 'FOO_BAR'] response = self.post_json('/allocations', adict, expect_errors=True, headers=self.headers) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_create_allocation_invalid_candidate_node_format(self): adict = apiutils.allocation_post_data( candidate_nodes=['invalid-format']) response = self.post_json('/allocations', adict, expect_errors=True, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertTrue(response.json['error_message']) def test_create_allocation_candidate_node_not_found(self): adict = apiutils.allocation_post_data( candidate_nodes=['1a1a1a1a-2b2b-3c3c-4d4d-5e5e5e5e5e5e']) response = self.post_json('/allocations', adict, expect_errors=True, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertTrue(response.json['error_message']) def test_create_allocation_candidate_node_invalid(self): adict = apiutils.allocation_post_data( candidate_nodes=['this/is/not a/node/name']) response = self.post_json('/allocations', adict, expect_errors=True, headers=self.headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertTrue(response.json['error_message']) def test_create_allocation_name_ok(self): name = 'foo' adict = apiutils.allocation_post_data(name=name) self.post_json('/allocations', adict, headers=self.headers) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(name, result['name']) def test_create_allocation_name_invalid(self): name = 'aa:bb_cc' adict = apiutils.allocation_post_data(name=name) response = self.post_json('/allocations', adict, headers=self.headers, expect_errors=True) self.assertEqual(http_client.BAD_REQUEST, response.status_int) def test_create_by_node_not_allowed(self): node = obj_utils.create_test_node(self.context) adict = apiutils.allocation_post_data() response = self.post_json('/nodes/%s/allocation' % node.uuid, adict, headers=self.headers, expect_errors=True) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.METHOD_NOT_ALLOWED, response.status_int) def test_create_node_uuid_not_allowed(self): node = obj_utils.create_test_node(self.context) adict = apiutils.allocation_post_data() adict['node_uuid'] = node.uuid response = self.post_json('/allocations', adict, expect_errors=True, headers=self.headers) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_create_allocation_owner(self): owner = '12345' adict = apiutils.allocation_post_data(owner=owner) self.post_json('/allocations', adict, headers=self.headers) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(owner, result['owner']) def test_create_allocation_owner_not_allowed(self): owner = '12345' adict = apiutils.allocation_post_data(owner=owner) response = self.post_json('/allocations', adict, headers={api_base.Version.string: '1.59'}, expect_errors=True) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.NOT_ACCEPTABLE, response.status_int) def test_backfill(self): node = obj_utils.create_test_node(self.context) adict = apiutils.allocation_post_data(node=node.uuid) response = self.post_json('/allocations', adict, headers=self.headers) self.assertEqual(http_client.CREATED, response.status_int) self.assertNotIn('node', response.json) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(adict['uuid'], result['uuid']) self.assertEqual(node.uuid, result['node_uuid']) self.assertNotIn('node', result) def test_backfill_with_name(self): node = obj_utils.create_test_node(self.context, name='backfill-me') adict = apiutils.allocation_post_data(node=node.name) response = self.post_json('/allocations', adict, headers=self.headers) self.assertEqual(http_client.CREATED, response.status_int) self.assertNotIn('node', response.json) result = self.get_json('/allocations/%s' % adict['uuid'], headers=self.headers) self.assertEqual(adict['uuid'], result['uuid']) self.assertEqual(node.uuid, result['node_uuid']) self.assertNotIn('node', result) def test_backfill_without_resource_class(self): node = obj_utils.create_test_node(self.context, resource_class='bm-super') adict = {'node': node.uuid} response = self.post_json('/allocations', adict, headers=self.headers) self.assertEqual(http_client.CREATED, response.status_int) result = self.get_json('/allocations/%s' % response.json['uuid'], headers=self.headers) self.assertEqual(node.uuid, result['node_uuid']) self.assertEqual('bm-super', result['resource_class']) def test_backfill_copy_instance_uuid(self): uuid = uuidutils.generate_uuid() node = obj_utils.create_test_node(self.context, instance_uuid=uuid, resource_class='bm-super') adict = {'node': node.uuid} response = self.post_json('/allocations', adict, headers=self.headers) self.assertEqual(http_client.CREATED, response.status_int) result = self.get_json('/allocations/%s' % response.json['uuid'], headers=self.headers) self.assertEqual(uuid, result['uuid']) self.assertEqual(node.uuid, result['node_uuid']) self.assertEqual('bm-super', result['resource_class']) def test_backfill_node_not_found(self): adict = apiutils.allocation_post_data(node=uuidutils.generate_uuid()) response = self.post_json('/allocations', adict, expect_errors=True, headers=self.headers) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) def test_backfill_not_allowed(self): node = obj_utils.create_test_node(self.context) headers = {api_base.Version.string: '1.57'} adict = {'node': node.uuid} response = self.post_json('/allocations', adict, expect_errors=True, headers=headers) self.assertEqual(http_client.BAD_REQUEST, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) @mock.patch.object(policy, 'authorize', autospec=True) def test_create_restricted_allocation(self, mock_authorize): def mock_authorize_function(rule, target, creds): if rule == 'baremetal:allocation:create': raise exception.HTTPForbidden(resource='fake') return True mock_authorize.side_effect = mock_authorize_function owner = '12345' adict = apiutils.allocation_post_data() headers = {api_base.Version.string: '1.60', 'X-Project-Id': owner} response = self.post_json('/allocations', adict, headers=headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.CREATED, response.status_int) self.assertEqual(owner, response.json['owner']) result = self.get_json('/allocations/%s' % adict['uuid'], headers=headers) self.assertEqual(adict['uuid'], result['uuid']) self.assertEqual(owner, result['owner']) @mock.patch.object(policy, 'authorize', autospec=True) def test_create_restricted_allocation_older_version(self, mock_authorize): def mock_authorize_function(rule, target, creds): if rule == 'baremetal:allocation:create': raise exception.HTTPForbidden(resource='fake') return True mock_authorize.side_effect = mock_authorize_function owner = '12345' adict = apiutils.allocation_post_data() del adict['owner'] headers = {api_base.Version.string: '1.59', 'X-Project-Id': owner} response = self.post_json('/allocations', adict, headers=headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.CREATED, response.status_int) result = self.get_json('/allocations/%s' % adict['uuid'], headers=headers) self.assertEqual(adict['uuid'], result['uuid']) @mock.patch.object(policy, 'authorize', autospec=True) def test_create_restricted_allocation_forbidden(self, mock_authorize): def mock_authorize_function(rule, target, creds): raise exception.HTTPForbidden(resource='fake') mock_authorize.side_effect = mock_authorize_function owner = '12345' adict = apiutils.allocation_post_data() headers = {api_base.Version.string: '1.60', 'X-Project-Id': owner} response = self.post_json('/allocations', adict, expect_errors=True, headers=headers) self.assertEqual(http_client.FORBIDDEN, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) @mock.patch.object(policy, 'authorize', autospec=True) def test_create_restricted_allocation_with_owner(self, mock_authorize): def mock_authorize_function(rule, target, creds): if rule == 'baremetal:allocation:create': raise exception.HTTPForbidden(resource='fake') return True mock_authorize.side_effect = mock_authorize_function owner = '12345' adict = apiutils.allocation_post_data(owner=owner) adict['owner'] = owner headers = {api_base.Version.string: '1.60', 'X-Project-Id': owner} response = self.post_json('/allocations', adict, headers=headers) self.assertEqual('application/json', response.content_type) self.assertEqual(http_client.CREATED, response.status_int) self.assertEqual(owner, response.json['owner']) result = self.get_json('/allocations/%s' % adict['uuid'], headers=headers) self.assertEqual(adict['uuid'], result['uuid']) self.assertEqual(owner, result['owner']) @mock.patch.object(policy, 'authorize', autospec=True) def test_create_restricted_allocation_with_mismatch_owner( self, mock_authorize): def mock_authorize_function(rule, target, creds): if rule == 'baremetal:allocation:create': raise exception.HTTPForbidden(resource='fake') return True mock_authorize.side_effect = mock_authorize_function owner = '12345' adict = apiutils.allocation_post_data(owner=owner) adict['owner'] = '54321' headers = {api_base.Version.string: '1.60', 'X-Project-Id': owner} response = self.post_json('/allocations', adict, expect_errors=True, headers=headers) self.assertEqual(http_client.FORBIDDEN, response.status_int) self.assertEqual('application/json', response.content_type) self.assertTrue(response.json['error_message']) @mock.patch.object(rpcapi.ConductorAPI, 'destroy_allocation') class TestDelete(test_api_base.BaseApiTest): headers = {api_base.Version.string: str(api_v1.max_version())} def setUp(self): super(TestDelete, self).setUp() self.node = obj_utils.create_test_node(self.context) self.allocation = obj_utils.create_test_allocation( self.context, node_id=self.node.id, name='alloc1') self.mock_get_topic = self.useFixture( fixtures.MockPatchObject(rpcapi.ConductorAPI, 'get_random_topic') ).mock @mock.patch.object(notification_utils, '_emit_api_notification') def test_delete_allocation_by_id(self, mock_notify, mock_destroy): self.delete('/allocations/%s' % self.allocation.uuid, headers=self.headers) self.assertTrue(mock_destroy.called) mock_notify.assert_has_calls([ mock.call(mock.ANY, mock.ANY, 'delete', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.START, node_uuid=self.node.uuid), mock.call(mock.ANY, mock.ANY, 'delete', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.END, node_uuid=self.node.uuid), ]) @mock.patch.object(notification_utils, '_emit_api_notification') def test_delete_allocation_node_locked(self, mock_notify, mock_destroy): self.node.reserve(self.context, 'fake', self.node.uuid) mock_destroy.side_effect = exception.NodeLocked(node='fake-node', host='fake-host') ret = self.delete('/allocations/%s' % self.allocation.uuid, expect_errors=True, headers=self.headers) self.assertEqual(http_client.CONFLICT, ret.status_code) self.assertTrue(ret.json['error_message']) self.assertTrue(mock_destroy.called) mock_notify.assert_has_calls([ mock.call(mock.ANY, mock.ANY, 'delete', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.START, node_uuid=self.node.uuid), mock.call(mock.ANY, mock.ANY, 'delete', obj_fields.NotificationLevel.ERROR, obj_fields.NotificationStatus.ERROR, node_uuid=self.node.uuid), ]) def test_delete_allocation_invalid_api_version(self, mock_destroy): response = self.delete('/allocations/%s' % self.allocation.uuid, expect_errors=True, headers={api_base.Version.string: '1.14'}) self.assertEqual(http_client.METHOD_NOT_ALLOWED, response.status_int) def test_delete_allocation_invalid_api_version_without_check(self, mock_destroy): # Invalid name, but the check happens after the microversion check. response = self.delete('/allocations/ba!na!na1', expect_errors=True, headers={api_base.Version.string: '1.14'}) self.assertEqual(http_client.METHOD_NOT_ALLOWED, response.status_int) def test_delete_allocation_by_name(self, mock_destroy): self.delete('/allocations/%s' % self.allocation.name, headers=self.headers) self.assertTrue(mock_destroy.called) def test_delete_allocation_by_name_with_json(self, mock_destroy): self.delete('/allocations/%s.json' % self.allocation.name, headers=self.headers) self.assertTrue(mock_destroy.called) def test_delete_allocation_by_name_not_existed(self, mock_destroy): res = self.delete('/allocations/%s' % 'blah', expect_errors=True, headers=self.headers) self.assertEqual(http_client.NOT_FOUND, res.status_code) @mock.patch.object(notification_utils, '_emit_api_notification') def test_delete_allocation_by_node(self, mock_notify, mock_destroy): self.delete('/nodes/%s/allocation' % self.node.uuid, headers=self.headers) self.assertTrue(mock_destroy.called) mock_notify.assert_has_calls([ mock.call(mock.ANY, mock.ANY, 'delete', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.START, node_uuid=self.node.uuid), mock.call(mock.ANY, mock.ANY, 'delete', obj_fields.NotificationLevel.INFO, obj_fields.NotificationStatus.END, node_uuid=self.node.uuid), ]) def test_delete_allocation_by_node_not_existed(self, mock_destroy): node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid()) res = self.delete('/nodes/%s/allocation' % node.uuid, expect_errors=True, headers=self.headers) self.assertEqual(http_client.NOT_FOUND, res.status_code) def test_delete_allocation_invalid_node(self, mock_destroy): res = self.delete('/nodes/%s/allocation' % uuidutils.generate_uuid(), expect_errors=True, headers=self.headers) self.assertEqual(http_client.NOT_FOUND, res.status_code) def test_delete_allocation_by_node_invalid_api_version(self, mock_destroy): obj_utils.create_test_allocation(self.context, node_id=self.node.id) response = self.delete( '/nodes/%s/allocation' % self.node.uuid, headers={api_base.Version.string: str(api_v1.min_version())}, expect_errors=True) self.assertEqual(http_client.NOT_FOUND, response.status_int) self.assertFalse(mock_destroy.called)
48.79798
79
0.60357
745727e1a86b6e0796582eda1945544ceaf05a40
1,101
py
Python
mpf/core/scriptlet.py
pmansukhani/mpf
0979965d24bcaba9423b43581c6a18b847b1b900
[ "MIT" ]
null
null
null
mpf/core/scriptlet.py
pmansukhani/mpf
0979965d24bcaba9423b43581c6a18b847b1b900
[ "MIT" ]
null
null
null
mpf/core/scriptlet.py
pmansukhani/mpf
0979965d24bcaba9423b43581c6a18b847b1b900
[ "MIT" ]
null
null
null
"""Contains the parent class for DEPRECATED Scriptlets. This is deprecated and will be removed in config_version 6 with MPF 0.60. Use custom code instead. """ from mpf.core.delays import DelayManager from mpf.core.logging import LogMixin class Scriptlet(LogMixin): """Baseclass for DEPRECATED scriptlets which are simple scripts in a machine. This is deprecated and will be removed in config_version 6 with MPF 0.60. Use custom code instead. """ def __init__(self, machine, name): """Initialise scriptlet.""" super().__init__() self.machine = machine self.name = name self.configure_logging('Scriptlet.' + name, 'basic', 'full') self.delay = DelayManager(self.machine) self.on_load() def __repr__(self): """Return string representation.""" return '<Scriptlet.{}>'.format(self.name) def on_load(self): """Automatically called when this Scriptlet loads. It's the intention that the Scriptlet writer will overwrite this method in the Scriptlet. """ pass
28.230769
81
0.66485
a61dfd0922fa697af679445ee2b86d173e490ae8
355
py
Python
source/appModules/winal.py
riku22/nvdajp
66a828ea89d317e4aa0ad2aed4b3b1e08920afb6
[ "bzip2-1.0.6" ]
19
2016-05-11T05:15:31.000Z
2022-03-17T12:40:10.000Z
source/appModules/winal.py
riku22/nvdajp
66a828ea89d317e4aa0ad2aed4b3b1e08920afb6
[ "bzip2-1.0.6" ]
307
2015-08-27T11:22:33.000Z
2022-03-29T10:43:34.000Z
source/appModules/winal.py
riku22/nvdajp
66a828ea89d317e4aa0ad2aed4b3b1e08920afb6
[ "bzip2-1.0.6" ]
14
2016-03-28T07:31:49.000Z
2022-03-30T04:56:35.000Z
#appModules/ALTAIR for Windows.py #A part of NonVisual Desktop Access (NVDA) #This file is covered by the GNU General Public License. #See the file COPYING for more details. #Copyright (C) 2012 Tomohiro Saito """App module for ALTAIR for Windows """ import appModuleHandler class AppModule(appModuleHandler.AppModule): sleepMode=True
22.1875
57
0.749296
0cbd6abf0d8addc9af6d9e2cf2c461408ba97f41
1,173
py
Python
tests/test_visitors/test_ast/test_subscripts/test_float_key_usage.py
cdhiraj40/wemake-python-styleguide
7cef9be081d594c30045b7a98cae77a9be46e1aa
[ "MIT" ]
1,931
2018-03-17T13:52:45.000Z
2022-03-27T09:39:17.000Z
tests/test_visitors/test_ast/test_subscripts/test_float_key_usage.py
cdhiraj40/wemake-python-styleguide
7cef9be081d594c30045b7a98cae77a9be46e1aa
[ "MIT" ]
2,231
2018-03-09T21:19:05.000Z
2022-03-31T08:35:37.000Z
tests/test_visitors/test_ast/test_subscripts/test_float_key_usage.py
cdhiraj40/wemake-python-styleguide
7cef9be081d594c30045b7a98cae77a9be46e1aa
[ "MIT" ]
492
2018-05-18T21:20:28.000Z
2022-03-20T14:11:50.000Z
import pytest from wemake_python_styleguide.violations.best_practices import FloatKeyViolation from wemake_python_styleguide.visitors.ast.subscripts import CorrectKeyVisitor usage_template = 'some_dict[{0}]' @pytest.mark.parametrize('expression', [ '1.0', '-0.0', '+3.5', ]) def test_float_key_usage( assert_errors, parse_ast_tree, expression, default_options, ): """Testing that redundant subscripts are forbidden.""" tree = parse_ast_tree(usage_template.format(expression)) visitor = CorrectKeyVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [FloatKeyViolation]) @pytest.mark.parametrize('expression', [ '5', 'name', 'call()', 'name.attr', 'name[sub]', '...', '"str"', 'b""', '3j', '5 + 0.1', '3 / 2', ]) def test_correct_subscripts( assert_errors, parse_ast_tree, expression, default_options, ): """Testing that non-redundant subscripts are allowed.""" tree = parse_ast_tree(usage_template.format(expression)) visitor = CorrectKeyVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])
21.327273
80
0.674339
539a7b7682427f2f809c69b0cf1dc92133633778
3,030
py
Python
monasca_api/v2/reference/logs.py
MheniMerz/monasca-api
9c0892a58622082ed8baf81ee2f621cc68f5b42c
[ "Apache-2.0" ]
50
2015-10-18T02:54:52.000Z
2021-12-05T07:54:08.000Z
monasca_api/v2/reference/logs.py
MheniMerz/monasca-api
9c0892a58622082ed8baf81ee2f621cc68f5b42c
[ "Apache-2.0" ]
13
2015-10-29T12:54:07.000Z
2021-09-02T06:17:42.000Z
monasca_api/v2/reference/logs.py
MheniMerz/monasca-api
9c0892a58622082ed8baf81ee2f621cc68f5b42c
[ "Apache-2.0" ]
81
2015-10-21T07:43:30.000Z
2022-01-07T03:35:05.000Z
# Copyright 2016 Hewlett Packard Enterprise Development Company, L.P. # Copyright 2016-2017 FUJITSU LIMITED # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import falcon from oslo_log import log from monasca_api.api.core.log import exceptions from monasca_api.api.core.log import validation from monasca_api.api import logs_api from monasca_api import conf from monasca_api.v2.common import bulk_processor from monasca_api.v2.reference import helpers CONF = conf.CONF LOG = log.getLogger(__name__) class Logs(logs_api.LogsApi): VERSION = 'v2.0' SUPPORTED_CONTENT_TYPES = {'application/json'} def __init__(self): super(Logs, self).__init__() self._processor = bulk_processor.BulkProcessor() def on_post(self, req, res): helpers.validate_json_content_type(req) helpers.validate_authorization(req, ['api:logs:post']) helpers.validate_payload_size(req.content_length) self.process_on_post_request(req, res) def process_on_post_request(self, req, res): try: request_body = helpers.from_json(req) log_list = self._get_logs(request_body) global_dimensions = self._get_global_dimensions(request_body) except Exception as ex: LOG.error('Entire bulk package has been rejected') LOG.exception(ex) raise ex tenant_id = (req.cross_project_id if req.cross_project_id else req.project_id) try: self._processor.send_message( logs=log_list, global_dimensions=global_dimensions, log_tenant_id=tenant_id ) except Exception as ex: res.status = getattr(ex, 'status', falcon.HTTP_500) return res.status = falcon.HTTP_204 @staticmethod def _get_global_dimensions(request_body): """Get the top level dimensions in the HTTP request body.""" global_dims = request_body.get('dimensions', {}) validation.validate_dimensions(global_dims) return global_dims @staticmethod def _get_logs(request_body): """Get the logs in the HTTP request body.""" if request_body is None: raise falcon.HTTPBadRequest('Bad request', 'Request body is Empty') if 'logs' not in request_body: raise exceptions.HTTPUnprocessableEntity( 'Unprocessable Entity Logs not found') return request_body['logs']
33.666667
75
0.674917
291e51bdd3d991b1f8addfff5dac0dfa840480f5
223
py
Python
Python/UberX.py
Gera-Garza/POO_practica
480af9ec9e5edbc33f1b18083a1bd85aff8d7c64
[ "Artistic-1.0-cl8" ]
null
null
null
Python/UberX.py
Gera-Garza/POO_practica
480af9ec9e5edbc33f1b18083a1bd85aff8d7c64
[ "Artistic-1.0-cl8" ]
null
null
null
Python/UberX.py
Gera-Garza/POO_practica
480af9ec9e5edbc33f1b18083a1bd85aff8d7c64
[ "Artistic-1.0-cl8" ]
null
null
null
from car import Car class UberX(Car): brand = str model = str def __init__(self, license, driver, brand , model): super().__init__(license, driver) self.brand = brand self.model = model
22.3
55
0.61435
888458e3eb8df61d32dcd71b7bb4d76e91ed3215
1,862
py
Python
Amazon_Connect-Agent_Status/Agent_Status-Cloud_App/lambda_stream/index.py
aws-iot-edukit/Other_Examples-Core2_for_AWS
c224148feb7398a2e0b3486cba4ff24fa4f4db40
[ "MIT-0", "MIT" ]
4
2021-07-27T13:37:20.000Z
2021-09-15T16:49:15.000Z
Amazon_Connect-Agent_Status/Agent_Status-Cloud_App/lambda_stream/index.py
aws-iot-edukit/Other_Examples-Core2_for_AWS
c224148feb7398a2e0b3486cba4ff24fa4f4db40
[ "MIT-0", "MIT" ]
null
null
null
Amazon_Connect-Agent_Status/Agent_Status-Cloud_App/lambda_stream/index.py
aws-iot-edukit/Other_Examples-Core2_for_AWS
c224148feb7398a2e0b3486cba4ff24fa4f4db40
[ "MIT-0", "MIT" ]
2
2021-07-27T13:51:08.000Z
2021-09-12T19:57:47.000Z
import json import boto3 import base64 import os TABLE_NAME = os.environ['TABLE_NAME'] dynamodb_client = boto3.client('dynamodb') iotdata_client = boto3.client('iot-data', region_name='eu-west-1') def get_record(AgentARN): try: response = dynamodb_client.query( TableName=TABLE_NAME, KeyConditionExpression='AgentARN = :AgentARN', ExpressionAttributeValues={':AgentARN': {'S': AgentARN } } ) except: return 1,'dynamodb_client' return 0,response def publish_shadow(device,record): if record['CurrentAgentSnapshot']['AgentStatus']['Name'] == "Available": record['CurrentAgentSnapshot']['AgentStatus']['Name'] = 'AVAILABLE' elif record['CurrentAgentSnapshot']['AgentStatus']['Name'] == "Offline": record['CurrentAgentSnapshot']['AgentStatus']['Name'] = 'OFFLINE00' try: response = iotdata_client.update_thing_shadow( thingName=device, payload = json.dumps({ 'state': { 'desired': record['CurrentAgentSnapshot']['AgentStatus'] } }) ) except: return 1,'publish_shadow' return 0,response def lambda_handler(event, context): #print(json.dumps(event)) for record in event['Records']: record = json.loads(base64.b64decode(record['kinesis']['data']).decode('ascii')) error,response = get_record(record['AgentARN']) if error > 0: return { 'status' : 'ERROR:'+response } error,response = publish_shadow(response['Items'][0]['client_id']['S'],record) if error > 0: return { 'status' : 'ERROR:'+response } #print(response['Items'][0]['client_id']['S']) print(record['CurrentAgentSnapshot']['AgentStatus']['Name']) return { 'status' : 'ok' }
30.032258
88
0.604189
791b79d537ebf6c13c91a18c29865ae8b286bc8e
4,075
py
Python
api_restful/urls.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
1
2020-06-21T04:08:26.000Z
2020-06-21T04:08:26.000Z
api_restful/urls.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
13
2019-10-18T17:19:32.000Z
2022-01-13T00:44:43.000Z
api_restful/urls.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
5
2019-02-07T03:15:16.000Z
2021-09-04T14:06:28.000Z
#!/usr/bin/env python # encoding: utf-8 """ @author: zhanghe @software: PyCharm @file: urls.py @time: 2020-02-28 21:21 """ from __future__ import unicode_literals from uuid import uuid4 import logging import time from collections import defaultdict from flask import jsonify, request, g, make_response from werkzeug.exceptions import NotFound, InternalServerError from api_restful.signals.operation_log import signal_operation_log from api_restful import app # api_logger = logging.getLogger('api') debug_logger = logging.getLogger('debug') SUCCESS_MSG = app.config['API_SUCCESS_MSG'] FAILURE_MSG = app.config['API_FAILURE_MSG'] @app.before_request def api_before_request(): request_id = request.headers.get('X-Request-Id', str(uuid4())) # 不带短横: uuid4().get_hex() g.request_id = request_id debug_logger.debug('before_request') g.req_time = time.time() @app.after_request def after_request(response): request_id = g.get('request_id', str(uuid4())) g.request_id = request_id debug_logger.debug('after_request') # 头部注入 response.headers.add('X-Request-Id', request_id) g.status_code = response.status_code g.project = app.name g.res_time = time.time() latency = time.time() - g.req_time g.latency = latency # api_log = defaultdict(lambda: '-') # api_logger.info('-') # 操作日志 operation_log = { 'project': app.name, 'latency': latency, 'client_host': request.host, 'client_addr': request.remote_addr, 'req_id': request_id, 'req_method': request.method, 'req_path': request.path, 'req_json': request.json, 'req_args': request.args.to_dict(), 'res_status_code': response.status_code, 'res_json': {}, } # Get请求错误时记录返回,正确返回忽略,避免日志过大 if request.method in ['GET', 'HEAD', 'OPTIONS'] and response.status_code / 2 != 100: operation_log['res_json'] = response.json if request.method in ['POST', 'PUT', 'DELETE']: operation_log['res_json'] = response.json signal_operation_log.send(app, **operation_log) return response # 必须返回response # @app.after_request # def after_request(response): # request_id = g.get('request_id', str(uuid4())) # g.request_id = request_id # debug_logger.debug('after_request') # # g.status_code = response.status_code # # # 头部注入 # response.headers.add('X-Request-Id', request_id) # # return response # 必须返回response # @app.teardown_request # def teardown_request(exception=None): # request_id = g.get('request_id', str(uuid4())) # g.request_id = request_id # debug_logger.debug('teardown_request') # # g.project = app.name # g.res_time = time.time() # g.latency = g.res_time - g.req_time # # # 接口日志 # g.api_log = defaultdict(lambda: '-') # g.api_log['project_name'] = app.name # # if exception: # exception_info = { # 'module': exception.__class__.__module__, # 'name': exception.__class__.__name__, # 'message': exception.message, # } # g.api_log['exception'] = '%(module)s.%(name)s: %(message)s' % exception_info # api_logger.error(dict(g.api_log)) # else: # api_logger.info(dict(g.api_log)) # return exception @app.route('/', methods=['GET', 'POST', 'OPTIONS']) def heartbeat(): return jsonify(SUCCESS_MSG.copy()) # 全局路由错误 @app.errorhandler(NotFound.code) def url_not_found(error): return make_response( jsonify( { 'msg': '路径错误' or error.description, 'result': False, # 'status': exceptions.NotFound.code, } ), NotFound.code ) # 全局异常错误(DEBUG模式生效) @app.errorhandler(Exception) def exception(error): return make_response( jsonify( { 'msg': error.message or InternalServerError.description, 'result': False, # 'status': InternalServerError.code, } ), InternalServerError.code )
26.809211
93
0.635092
12102831af8891cb28bfbe6f3c07bef6a4dc80b3
2,445
py
Python
projectenv/scriptgen.py
teaminsight-legacy/projectenv
873de28986dd4816e4872462b6280a1aed6d2922
[ "MIT" ]
1
2016-11-02T22:35:11.000Z
2016-11-02T22:35:11.000Z
projectenv/scriptgen.py
teaminsight-legacy/projectenv
873de28986dd4816e4872462b6280a1aed6d2922
[ "MIT" ]
null
null
null
projectenv/scriptgen.py
teaminsight-legacy/projectenv
873de28986dd4816e4872462b6280a1aed6d2922
[ "MIT" ]
null
null
null
import os from logger import log, DEBUG class ScriptGenerator(object): def __init__(self, environment_vars={}): self.env = environment_vars def script(self, language='sh'): header_lines = [ '#!/bin/%s' % language, '# Auto-generated by projectenv' ] env_lines = [] for k, v in self.env.iteritems(): line = getattr(self, '_write_env_var_%s' % language)(k, v) env_lines.append(line) # We are relying on the fact that sorting is stable as of python>=2.3 env_lines.sort(key=self._script_order_key) return '\n'.join(header_lines + env_lines) def write(self, file_name): for language in ['sh', 'csh']: self._write(file_name, language) def _write(self, file_name, language): file_name += '.' + language log('writing script', file_name) f = open(file_name, 'w+') if f: try: script = self.script(language) log(None, ' >> ' + script.replace('\n', '\n >> ') + '\n') if not DEBUG: f.write(script + '\n') finally: f.close() def _write_env_var_sh(self, name, value): if value: return 'export %s=%s' % (name, value) else: return 'unset %s' % name def _write_env_var_csh(self, name, value): if value: return 'setenv %s %s' % (name, value) else: return 'unsetenv %s' % name def _script_order_key(self, line): """ export/setenv commands must be in the correct order to prevent the possibility of restoring an environment variable to the wrong value """ # the original environment vars should be saved first if (line.startswith('export _PROJECTENV_') or line.startswith('setenv _PROJECTENV_')): return 1 # next the remaining environment vars should be set elif line.startswith('export') or line.startswith('setenv'): return 2 # unsetting the prefixed environment variables should be done last elif line.startswith('unset _PROJECTENV_') or line.startswith('unsetenv _PROJECTENV_'): return 4 # unsetting environment vars only happen once all of the environment # vars that should be set have been set else: return 3
33.493151
95
0.570961
9d23a9a2b1432fe22a146bd3e0193ea953b20eac
2,218
py
Python
2021/aoc_2021_03/aoc_2021_03.py
ericcolton/AdventOfCode
58bdf8886d1d6cea5faeee74248c10ddaf97a93b
[ "MIT" ]
null
null
null
2021/aoc_2021_03/aoc_2021_03.py
ericcolton/AdventOfCode
58bdf8886d1d6cea5faeee74248c10ddaf97a93b
[ "MIT" ]
null
null
null
2021/aoc_2021_03/aoc_2021_03.py
ericcolton/AdventOfCode
58bdf8886d1d6cea5faeee74248c10ddaf97a93b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Advent of Code 2021 Day 3: Dive! https://adventofcode.com/2021/day/3 Solution by Eric Colton """ import re from typing import List def parse_input_data(raw_input: List[str]) -> List[str]: return [line.rstrip() for line in raw_input] def convert_binary_to_decimal(binary_str: str) -> int: rv = 0 for bit in binary_str: rv *= 2 if bit == "1": rv += 1 return rv def calculate_gamma_epsilon(report: List[str]) -> tuple: bit_counts = [0] * len(report[0]) for line in report: for i, bit in enumerate(line): if bit == "1": bit_counts[i] += 1 elif bit != "0": raise Exception("Expected only 1 or 0") gamma, epsilon = "", "" for count in bit_counts: gamma += "1" if count > len(report) / 2 else "0" epsilon += "0" if count > len(report) / 2 else "1" return (convert_binary_to_decimal(gamma), convert_binary_to_decimal(epsilon)) def calculate_oxygen_co2(report: List[str], count_majority: bin) -> int: filtered_report = report for i in range(len(report[0])): count = sum([1 if line[i] == "1" else 0 for line in filtered_report]) if count_majority: filter_bit = "1" if count >= len(filtered_report) / 2 else "0" else: filter_bit = "0" if count >= len(filtered_report) / 2 else "1" filtered_report = list(filter(lambda x: x[i] == filter_bit, filtered_report)) if len(filtered_report) == 1: return convert_binary_to_decimal(filtered_report[0]) if __name__ == '__main__': input_filename = __file__.strip('.py') + '_input.txt' with open(input_filename, 'r') as file: raw_input = file.readlines() report = parse_input_data(raw_input) (gamma, epsilon) = calculate_gamma_epsilon(report) part_1 = gamma * epsilon assert part_1 == 1307354 print(f"The solution to Part 1 is {part_1}") oxygen = calculate_oxygen_co2(report, True) co2 = calculate_oxygen_co2(report, False) part_2 = oxygen * co2 assert part_2 == 482500 print(f"The solution to Part 2 is {part_2}")
33.606061
85
0.609107
ebd2bbedefdadc3fbe4e93fc0a90b5a0f54d0043
16,326
py
Python
sdk/python/pulumi_google_native/compute/beta/resource_policy.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
44
2021-04-18T23:00:48.000Z
2022-02-14T17:43:15.000Z
sdk/python/pulumi_google_native/compute/beta/resource_policy.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
354
2021-04-16T16:48:39.000Z
2022-03-31T17:16:39.000Z
sdk/python/pulumi_google_native/compute/beta/resource_policy.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
8
2021-04-24T17:46:51.000Z
2022-01-05T10:40:21.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['ResourcePolicyArgs', 'ResourcePolicy'] @pulumi.input_type class ResourcePolicyArgs: def __init__(__self__, *, region: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, group_placement_policy: Optional[pulumi.Input['ResourcePolicyGroupPlacementPolicyArgs']] = None, instance_schedule_policy: Optional[pulumi.Input['ResourcePolicyInstanceSchedulePolicyArgs']] = None, name: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, request_id: Optional[pulumi.Input[str]] = None, snapshot_schedule_policy: Optional[pulumi.Input['ResourcePolicySnapshotSchedulePolicyArgs']] = None): """ The set of arguments for constructing a ResourcePolicy resource. :param pulumi.Input['ResourcePolicyGroupPlacementPolicyArgs'] group_placement_policy: Resource policy for instances for placement configuration. :param pulumi.Input['ResourcePolicyInstanceSchedulePolicyArgs'] instance_schedule_policy: Resource policy for scheduling instance operations. :param pulumi.Input[str] name: The name of the resource, provided by the client when initially creating the resource. The resource name must be 1-63 characters long, and comply with RFC1035. Specifically, the name must be 1-63 characters long and match the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. :param pulumi.Input['ResourcePolicySnapshotSchedulePolicyArgs'] snapshot_schedule_policy: Resource policy for persistent disks for creating snapshots. """ pulumi.set(__self__, "region", region) if description is not None: pulumi.set(__self__, "description", description) if group_placement_policy is not None: pulumi.set(__self__, "group_placement_policy", group_placement_policy) if instance_schedule_policy is not None: pulumi.set(__self__, "instance_schedule_policy", instance_schedule_policy) if name is not None: pulumi.set(__self__, "name", name) if project is not None: pulumi.set(__self__, "project", project) if request_id is not None: pulumi.set(__self__, "request_id", request_id) if snapshot_schedule_policy is not None: pulumi.set(__self__, "snapshot_schedule_policy", snapshot_schedule_policy) @property @pulumi.getter def region(self) -> pulumi.Input[str]: return pulumi.get(self, "region") @region.setter def region(self, value: pulumi.Input[str]): pulumi.set(self, "region", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="groupPlacementPolicy") def group_placement_policy(self) -> Optional[pulumi.Input['ResourcePolicyGroupPlacementPolicyArgs']]: """ Resource policy for instances for placement configuration. """ return pulumi.get(self, "group_placement_policy") @group_placement_policy.setter def group_placement_policy(self, value: Optional[pulumi.Input['ResourcePolicyGroupPlacementPolicyArgs']]): pulumi.set(self, "group_placement_policy", value) @property @pulumi.getter(name="instanceSchedulePolicy") def instance_schedule_policy(self) -> Optional[pulumi.Input['ResourcePolicyInstanceSchedulePolicyArgs']]: """ Resource policy for scheduling instance operations. """ return pulumi.get(self, "instance_schedule_policy") @instance_schedule_policy.setter def instance_schedule_policy(self, value: Optional[pulumi.Input['ResourcePolicyInstanceSchedulePolicyArgs']]): pulumi.set(self, "instance_schedule_policy", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the resource, provided by the client when initially creating the resource. The resource name must be 1-63 characters long, and comply with RFC1035. Specifically, the name must be 1-63 characters long and match the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter(name="requestId") def request_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "request_id") @request_id.setter def request_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "request_id", value) @property @pulumi.getter(name="snapshotSchedulePolicy") def snapshot_schedule_policy(self) -> Optional[pulumi.Input['ResourcePolicySnapshotSchedulePolicyArgs']]: """ Resource policy for persistent disks for creating snapshots. """ return pulumi.get(self, "snapshot_schedule_policy") @snapshot_schedule_policy.setter def snapshot_schedule_policy(self, value: Optional[pulumi.Input['ResourcePolicySnapshotSchedulePolicyArgs']]): pulumi.set(self, "snapshot_schedule_policy", value) class ResourcePolicy(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, group_placement_policy: Optional[pulumi.Input[pulumi.InputType['ResourcePolicyGroupPlacementPolicyArgs']]] = None, instance_schedule_policy: Optional[pulumi.Input[pulumi.InputType['ResourcePolicyInstanceSchedulePolicyArgs']]] = None, name: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, request_id: Optional[pulumi.Input[str]] = None, snapshot_schedule_policy: Optional[pulumi.Input[pulumi.InputType['ResourcePolicySnapshotSchedulePolicyArgs']]] = None, __props__=None): """ Creates a new resource policy. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['ResourcePolicyGroupPlacementPolicyArgs']] group_placement_policy: Resource policy for instances for placement configuration. :param pulumi.Input[pulumi.InputType['ResourcePolicyInstanceSchedulePolicyArgs']] instance_schedule_policy: Resource policy for scheduling instance operations. :param pulumi.Input[str] name: The name of the resource, provided by the client when initially creating the resource. The resource name must be 1-63 characters long, and comply with RFC1035. Specifically, the name must be 1-63 characters long and match the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. :param pulumi.Input[pulumi.InputType['ResourcePolicySnapshotSchedulePolicyArgs']] snapshot_schedule_policy: Resource policy for persistent disks for creating snapshots. """ ... @overload def __init__(__self__, resource_name: str, args: ResourcePolicyArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Creates a new resource policy. :param str resource_name: The name of the resource. :param ResourcePolicyArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ResourcePolicyArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, group_placement_policy: Optional[pulumi.Input[pulumi.InputType['ResourcePolicyGroupPlacementPolicyArgs']]] = None, instance_schedule_policy: Optional[pulumi.Input[pulumi.InputType['ResourcePolicyInstanceSchedulePolicyArgs']]] = None, name: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, request_id: Optional[pulumi.Input[str]] = None, snapshot_schedule_policy: Optional[pulumi.Input[pulumi.InputType['ResourcePolicySnapshotSchedulePolicyArgs']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ResourcePolicyArgs.__new__(ResourcePolicyArgs) __props__.__dict__["description"] = description __props__.__dict__["group_placement_policy"] = group_placement_policy __props__.__dict__["instance_schedule_policy"] = instance_schedule_policy __props__.__dict__["name"] = name __props__.__dict__["project"] = project if region is None and not opts.urn: raise TypeError("Missing required property 'region'") __props__.__dict__["region"] = region __props__.__dict__["request_id"] = request_id __props__.__dict__["snapshot_schedule_policy"] = snapshot_schedule_policy __props__.__dict__["creation_timestamp"] = None __props__.__dict__["kind"] = None __props__.__dict__["resource_status"] = None __props__.__dict__["self_link"] = None __props__.__dict__["status"] = None super(ResourcePolicy, __self__).__init__( 'google-native:compute/beta:ResourcePolicy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ResourcePolicy': """ Get an existing ResourcePolicy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = ResourcePolicyArgs.__new__(ResourcePolicyArgs) __props__.__dict__["creation_timestamp"] = None __props__.__dict__["description"] = None __props__.__dict__["group_placement_policy"] = None __props__.__dict__["instance_schedule_policy"] = None __props__.__dict__["kind"] = None __props__.__dict__["name"] = None __props__.__dict__["region"] = None __props__.__dict__["resource_status"] = None __props__.__dict__["self_link"] = None __props__.__dict__["snapshot_schedule_policy"] = None __props__.__dict__["status"] = None return ResourcePolicy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="creationTimestamp") def creation_timestamp(self) -> pulumi.Output[str]: """ Creation timestamp in RFC3339 text format. """ return pulumi.get(self, "creation_timestamp") @property @pulumi.getter def description(self) -> pulumi.Output[str]: return pulumi.get(self, "description") @property @pulumi.getter(name="groupPlacementPolicy") def group_placement_policy(self) -> pulumi.Output['outputs.ResourcePolicyGroupPlacementPolicyResponse']: """ Resource policy for instances for placement configuration. """ return pulumi.get(self, "group_placement_policy") @property @pulumi.getter(name="instanceSchedulePolicy") def instance_schedule_policy(self) -> pulumi.Output['outputs.ResourcePolicyInstanceSchedulePolicyResponse']: """ Resource policy for scheduling instance operations. """ return pulumi.get(self, "instance_schedule_policy") @property @pulumi.getter def kind(self) -> pulumi.Output[str]: """ Type of the resource. Always compute#resource_policies for resource policies. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource, provided by the client when initially creating the resource. The resource name must be 1-63 characters long, and comply with RFC1035. Specifically, the name must be 1-63 characters long and match the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. """ return pulumi.get(self, "name") @property @pulumi.getter def region(self) -> pulumi.Output[str]: return pulumi.get(self, "region") @property @pulumi.getter(name="resourceStatus") def resource_status(self) -> pulumi.Output['outputs.ResourcePolicyResourceStatusResponse']: """ The system status of the resource policy. """ return pulumi.get(self, "resource_status") @property @pulumi.getter(name="selfLink") def self_link(self) -> pulumi.Output[str]: """ Server-defined fully-qualified URL for this resource. """ return pulumi.get(self, "self_link") @property @pulumi.getter(name="snapshotSchedulePolicy") def snapshot_schedule_policy(self) -> pulumi.Output['outputs.ResourcePolicySnapshotSchedulePolicyResponse']: """ Resource policy for persistent disks for creating snapshots. """ return pulumi.get(self, "snapshot_schedule_policy") @property @pulumi.getter def status(self) -> pulumi.Output[str]: """ The status of resource policy creation. """ return pulumi.get(self, "status")
48.734328
496
0.680081
fbb04d06fc0062da7a3a7e1b47bcb59a8a4a238b
4,222
py
Python
benchmark/startQiskit_noisy3091.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_noisy3091.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_noisy3091.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=4 # total number=38 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=30 prog.cz(input_qubit[0],input_qubit[3]) # number=31 prog.h(input_qubit[3]) # number=32 prog.cx(input_qubit[0],input_qubit[3]) # number=33 prog.x(input_qubit[3]) # number=34 prog.cx(input_qubit[0],input_qubit[3]) # number=35 prog.cx(input_qubit[0],input_qubit[3]) # number=29 prog.h(input_qubit[1]) # number=2 prog.z(input_qubit[2]) # number=36 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.h(input_qubit[2]) # number=37 prog.y(input_qubit[3]) # number=12 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.y(input_qubit[2]) # number=10 prog.y(input_qubit[2]) # number=11 prog.cx(input_qubit[1],input_qubit[0]) # number=13 prog.h(input_qubit[0]) # number=15 prog.cz(input_qubit[1],input_qubit[0]) # number=16 prog.h(input_qubit[1]) # number=20 prog.h(input_qubit[2]) # number=19 prog.cx(input_qubit[3],input_qubit[0]) # number=24 prog.z(input_qubit[3]) # number=25 prog.cx(input_qubit[3],input_qubit[0]) # number=26 prog.h(input_qubit[0]) # number=17 prog.cx(input_qubit[2],input_qubit[0]) # number=21 prog.x(input_qubit[1]) # number=23 prog.cx(input_qubit[2],input_qubit[0]) # number=22 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = FakeVigo() sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_noisy3091.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
34.606557
140
0.653482
a19d47641c73b3d95d58f5d189c52a88e024dd0c
5,677
py
Python
fabric/tunnels.py
daobook/fabric
4318a501f5ad9def888a99fe7f817d12a204d526
[ "BSD-2-Clause" ]
null
null
null
fabric/tunnels.py
daobook/fabric
4318a501f5ad9def888a99fe7f817d12a204d526
[ "BSD-2-Clause" ]
null
null
null
fabric/tunnels.py
daobook/fabric
4318a501f5ad9def888a99fe7f817d12a204d526
[ "BSD-2-Clause" ]
null
null
null
""" Tunnel and connection forwarding internals. If you're looking for simple, end-user-focused connection forwarding, please see `.Connection`, e.g. `.Connection.forward_local`. """ import errno import select import socket import time from threading import Event from invoke.exceptions import ThreadException from invoke.util import ExceptionHandlingThread class TunnelManager(ExceptionHandlingThread): """ Thread subclass for tunnelling connections over SSH between two endpoints. Specifically, one instance of this class is sufficient to sit around forwarding any number of individual connections made to one end of the tunnel or the other. If you need to forward connections between more than one set of ports, you'll end up instantiating multiple TunnelManagers. Wraps a `~paramiko.transport.Transport`, which should already be connected to the remote server. .. versionadded:: 2.0 """ def __init__( self, local_host, local_port, remote_host, remote_port, transport, finished, ): super(TunnelManager, self).__init__() self.local_address = (local_host, local_port) self.remote_address = (remote_host, remote_port) self.transport = transport self.finished = finished def _run(self): # Track each tunnel that gets opened during our lifetime tunnels = [] # Set up OS-level listener socket on forwarded port sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # TODO: why do we want REUSEADDR exactly? and is it portable? sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # NOTE: choosing to deal with nonblocking semantics and a fast loop, # versus an older approach which blocks & expects outer scope to cause # a socket exception by close()ing the socket. sock.setblocking(0) sock.bind(self.local_address) sock.listen(1) while not self.finished.is_set(): # Main loop-wait: accept connections on the local listener # NOTE: EAGAIN means "you're nonblocking and nobody happened to # connect at this point in time" try: tun_sock, local_addr = sock.accept() # Set TCP_NODELAY to match OpenSSH's forwarding socket behavior tun_sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) except socket.error as e: if e.errno is errno.EAGAIN: # TODO: make configurable time.sleep(0.01) continue raise # Set up direct-tcpip channel on server end # TODO: refactor w/ what's used for gateways channel = self.transport.open_channel( "direct-tcpip", self.remote_address, local_addr ) # Set up 'worker' thread for this specific connection to our # tunnel, plus its dedicated signal event (which will appear as a # public attr, no need to track both independently). finished = Event() tunnel = Tunnel(channel=channel, sock=tun_sock, finished=finished) tunnel.start() tunnels.append(tunnel) exceptions = [] # Propogate shutdown signal to all tunnels & wait for closure # TODO: would be nice to have some output or at least logging here, # especially for "sets up a handful of tunnels" use cases like # forwarding nontrivial HTTP traffic. for tunnel in tunnels: tunnel.finished.set() tunnel.join() wrapper = tunnel.exception() if wrapper: exceptions.append(wrapper) # Handle exceptions if exceptions: raise ThreadException(exceptions) # All we have left to close is our own sock. # TODO: use try/finally? sock.close() class Tunnel(ExceptionHandlingThread): """ Bidirectionally forward data between an SSH channel and local socket. .. versionadded:: 2.0 """ def __init__(self, channel, sock, finished): self.channel = channel self.sock = sock self.finished = finished self.socket_chunk_size = 1024 self.channel_chunk_size = 1024 super(Tunnel, self).__init__() def _run(self): try: empty_sock, empty_chan = None, None while not self.finished.is_set(): r, w, x = select.select([self.sock, self.channel], [], [], 1) if self.sock in r: empty_sock = self.read_and_write( self.sock, self.channel, self.socket_chunk_size ) if self.channel in r: empty_chan = self.read_and_write( self.channel, self.sock, self.channel_chunk_size ) if empty_sock or empty_chan: break finally: self.channel.close() self.sock.close() def read_and_write(self, reader, writer, chunk_size): """ Read ``chunk_size`` from ``reader``, writing result to ``writer``. Returns ``None`` if successful, or ``True`` if the read was empty. .. versionadded:: 2.0 """ data = reader.recv(chunk_size) if len(data) == 0: return True writer.sendall(data)
35.93038
80
0.589044
c48225cd7e2f181c1e395269c6d28ef9e4d62454
574
py
Python
publications/datasets/mappings/__init__.py
Alzpeta/publications-api
6332c1329b22ff4f494085f042e893a8a94e33df
[ "MIT" ]
null
null
null
publications/datasets/mappings/__init__.py
Alzpeta/publications-api
6332c1329b22ff4f494085f042e893a8a94e33df
[ "MIT" ]
13
2021-01-21T14:35:29.000Z
2021-09-01T07:53:27.000Z
publications/datasets/mappings/__init__.py
Alzpeta/publications-api
6332c1329b22ff4f494085f042e893a8a94e33df
[ "MIT" ]
4
2021-02-23T18:17:35.000Z
2021-07-23T14:54:13.000Z
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CESNET. # # CESNET OA Publication Repository is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. # """Mappings. Mappings define how records and their fields will be indexed in Elasticsearch. The provided publications-object-v1.0.0.json file is an example of how to index records in Elasticsearch. You need to provide one mapping per major version of Elasticsearch you want to support. """ from __future__ import absolute_import, print_function
31.888889
93
0.771777
caa86c6d5e4874b344d7dd92209b75f5f89ec574
10,363
py
Python
seq2seq/models/recurrent.py
marvis/seq2seq.pytorch
9b27c4d70666bf1ed9cbbe4f1ef0a765c3465530
[ "MIT" ]
null
null
null
seq2seq/models/recurrent.py
marvis/seq2seq.pytorch
9b27c4d70666bf1ed9cbbe4f1ef0a765c3465530
[ "MIT" ]
null
null
null
seq2seq/models/recurrent.py
marvis/seq2seq.pytorch
9b27c4d70666bf1ed9cbbe4f1ef0a765c3465530
[ "MIT" ]
1
2021-01-07T10:37:31.000Z
2021-01-07T10:37:31.000Z
# Partially adapted from https://github.com/OpenNMT/OpenNMT-py import torch import torch.nn as nn from torch.autograd import Variable from torch.nn.utils.rnn import pad_packed_sequence as unpack from torch.nn.utils.rnn import pack_padded_sequence as pack from torch.nn.utils.rnn import PackedSequence from .seq2seq import Seq2Seq from .attention import GlobalAttention def bridge_bidirectional_hidden(hidden): # the bidirectional hidden is (layers*directions) x batch x dim # we need to convert it to layers x batch x (directions*dim) num_layers = hidden.size(0) // 2 batch_size, hidden_size = hidden.size(1), hidden.size(2) return hidden.view(num_layers, 2, batch_size, hidden_size) \ .transpose(1, 2).contiguous() \ .view(num_layers, batch_size, hidden_size * 2) class RecurrentEncoder(nn.Module): def __init__(self, vocab_size, hidden_size=128, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=False, rnn=nn.LSTM): super(RecurrentEncoder, self).__init__() self.layers = num_layers self.bidirectional = bidirectional self.hidden_size = hidden_size embedding_size = hidden_size if bidirectional: assert hidden_size % 2 == 0 self.hidden_size = hidden_size // 2 self.embedder = nn.Embedding(vocab_size, embedding_size, padding_idx=0) self.rnn = rnn(embedding_size, self.hidden_size, num_layers=num_layers, bias=bias, batch_first=batch_first, dropout=dropout, bidirectional=bidirectional) def forward(self, inputs, hidden=None): if isinstance(inputs, tuple): # Lengths data is wrapped inside a Variable. lengths = inputs[1].data.view(-1).tolist() emb = pack(self.embedder(inputs[0]), lengths) else: emb = self.embedder(inputs) outputs, hidden_t = self.rnn(emb, hidden) if isinstance(inputs, tuple): outputs = unpack(outputs)[0] return outputs, hidden_t class RecurrentDecoder(nn.Module): def __init__(self, vocab_size, hidden_size=128, num_layers=1, bias=True, batch_first=False, dropout=0, rnn=nn.LSTM, tie_embedding=True): super(RecurrentDecoder, self).__init__() self.layers = num_layers self.hidden_size = hidden_size embedding_size = hidden_size self.embedder = nn.Embedding(vocab_size, embedding_size, padding_idx=0) self.rnn = rnn(embedding_size, self.hidden_size, num_layers=num_layers, bias=bias, batch_first=batch_first, dropout=dropout, bidirectional=False) self.classifier = nn.Linear(hidden_size, vocab_size) if tie_embedding: self.classifier.weight = self.embedder.weight def forward(self, inputs, hidden=None): if isinstance(inputs, tuple): # Lengths data is wrapped inside a Variable. lengths = inputs[1].data.view(-1).tolist() emb = pack(self.embedder(inputs[0]), lengths) else: emb = self.embedder(inputs) x, hidden_t = self.rnn(emb, hidden) if isinstance(inputs, tuple): x = unpack(x)[0] x = x.view(-1, x.size(2)) x = self.classifier(x) x = x.view(inputs.size(0), inputs.size(1), -1) return x, hidden_t class StackedRecurrentCells(nn.Module): def __init__(self, input_size, hidden_size, num_layers=1, dropout=0, bias=True, batch_first=False, rnn_cell=nn.LSTMCell): super(StackedRecurrentCells, self).__init__() self.dropout = nn.Dropout(dropout) self.num_layers = num_layers self.hidden_size = hidden_size self.layers = nn.ModuleList() for _ in range(num_layers): self.layers.append(rnn_cell(input_size, hidden_size, bias=bias)) input_size = hidden_size def forward(self, inputs, hidden=None): def select_layer(h_state, i): # To work on both LSTM / GRU, RNN if isinstance(h_state, tuple): return tuple([select_layer(s, i) for s in h_state]) else: return h_state[i] if hidden is None: zeros = inputs.data.new( self.num_layers, inputs.size(0), self.hidden_size).zero_() if isinstance(self.layers[0], nn.LSTMCell): hidden = (Variable(zeros, requires_grad=False), Variable(zeros, requires_grad=False)) else: hidden = Variable(zeros, requires_grad=False) next_hidden = [] for i, layer in enumerate(self.layers): next_hidden_i = layer(inputs, select_layer(hidden, i)) inputs = next_hidden_i[0] if isinstance(next_hidden_i, tuple) \ else next_hidden_i if i + 1 != self.num_layers: inputs = self.dropout(inputs) next_hidden.append(next_hidden_i) if isinstance(hidden, tuple): next_hidden = tuple([torch.stack(h) for h in zip(*next_hidden)]) else: next_hidden = torch.stack(next_hidden) return inputs, next_hidden class RecurrentAttention(nn.Module): def __init__(self, input_size, hidden_size=128, num_layers=1, bias=True, batch_first=False, context_size=None, dropout=0, rnn_cell=nn.LSTMCell, attention=GlobalAttention): super(RecurrentAttention, self).__init__() self.layers = num_layers self.rnn = StackedRecurrentCells(input_size, hidden_size, num_layers=num_layers, bias=bias, batch_first=batch_first, dropout=dropout, rnn_cell=rnn_cell) self.attn = attention(hidden_size, context_size, batch_first=batch_first) self.dropout = nn.Dropout(dropout) self.hidden_size = hidden_size def forward(self, inputs, hidden, context, get_attention=False): outputs = [] attentions = [] for input_t in inputs.split(1): input_t = input_t.squeeze(0) output_t, hidden = self.rnn(input_t, hidden) output_t, attn = self.attn(output_t, context) output_t = self.dropout(output_t) outputs += [output_t] if get_attention: attentions += [attn] outputs = torch.stack(outputs) if get_attention: attentions = torch.stack(attentions) return outputs, hidden, attentions else: return outputs, hidden class RecurrentAttentionDecoder(nn.Module): def __init__(self, vocab_size, hidden_size=128, num_layers=1, bias=True, batch_first=False, dropout=0, tie_embedding=False, context_size=None, rnn_cell=nn.LSTMCell, attention=GlobalAttention): super(RecurrentAttentionDecoder, self).__init__() self.layers = num_layers self.embedder = nn.Embedding(vocab_size, hidden_size, padding_idx=0) self.rnn = RecurrentAttention(hidden_size, hidden_size, context_size=context_size, num_layers=num_layers, bias=bias, batch_first=batch_first, dropout=dropout, rnn_cell=rnn_cell, attention=attention) self.dropout = nn.Dropout(dropout) self.classifier = nn.Linear(hidden_size, vocab_size) if tie_embedding: self.classifier.weight = self.embedder.weight self.hidden_size = hidden_size def forward(self, inputs, context, get_attention=False): context, hidden = context emb = self.embedder(inputs) if get_attention: x, hidden, attentions = self.rnn( emb, hidden, context, get_attention=get_attention) else: x, hidden = self.rnn(emb, hidden, context) x = x.view(-1, x.size(2)) x = self.classifier(x) x = x.view(inputs.size(0), inputs.size(1), -1) if get_attention: return x, (context, hidden), attentions else: return x, (context, hidden) class RecurrentAttentionSeq2Seq(Seq2Seq): def __init__(self, vocab_size, hidden_size=256, num_layers=2, bias=True, dropout=0, tie_embedding=False): super(RecurrentAttentionSeq2Seq, self).__init__() self.encoder = RecurrentEncoder(vocab_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, dropout=dropout) self.decoder = RecurrentAttentionDecoder(vocab_size, hidden_size=hidden_size, tie_embedding=tie_embedding, num_layers=num_layers, bias=bias, dropout=dropout) if tie_embedding: self.encoder.embedder.weight = self.decoder.embedder.weight def generate(self, inputs, context, get_attention=False): return self.decoder(inputs, context, get_attention=get_attention) def bridge(self, context): context, hidden = context new_hidden = [] for h in hidden: if self.encoder.bidirectional: new_h = bridge_bidirectional_hidden(h) else: new_h = h new_hidden.append(new_h) return (context, tuple(new_hidden)) class RecurrentLanguageModel(Seq2Seq): def __init__(self, vocab_size, hidden_size=256, num_layers=2, bias=True, dropout=0, tie_embedding=False): super(RecurrentLanguageModel, self).__init__() self.decoder = RecurrentDecoder(vocab_size, hidden_size=hidden_size, tie_embedding=tie_embedding, num_layers=num_layers, bias=bias, dropout=dropout) def encode(self, *kargs, **kwargs): return None
40.799213
99
0.596545